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Abstract. It is shown that a breadth-first search in a directed or undi-
rected graph with n vertices and m edges can be carried out in O(n+m)
time with n log2 3 + O((log n)2) bits of working memory.
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1 Introduction

1.1 Space-Bounded Computation

The study of the amount of memory necessary to solve specific computational
problems has a long tradition. A fundamental early result in the area is the
discovery by Savitch [14] that the s-t connectivity problem (given a graph G
and two vertices s and t in G, decide whether G contains a path from s to
t) can be solved with O((log n)2) bits of memory on n-vertex graphs. In order
for this and related results to make sense, one must distinguish between the
memory used to hold the input and the working memory, which is the only
memory accounted for. The working memory is usable without restrictions, but
the memory that holds the input is read-only and any output is stored in write-
only memory. Informally, these conventions serve to forbid “cheating” by using
input or output memory for temporary storage. They are all the more natural
when, as in the original setting of Savitch, the input graph is present only in
the form of a computational procedure that can test the existence of an edge
between two given vertices.

Savitch’s algorithm is admirably frugal as concerns memory, but its (worst-
case) running time is superpolynomial. It was later generalized by Barnes, Buss,
Ruzzo and Schieber [4], who proved, in particular, that the s-t connectivity prob-
lem can be solved on n-vertex graphs in nO(1) time using O(n/2b

√
log n) bits for

arbitrary fixed b > 0. In the special case of undirected graphs, a celebrated result
of Reingold [13] even achieves polynomial time with just O(log n) bits. The run-
ning times of the algorithms behind the latter results, although polynomial, are
“barely so” in the sense that the polynomials are of high degree. A more recent
research direction searches for algorithms that still use memory as sparingly as
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possible but are nonetheless fast, ideally as fast as the best algorithms that are
not subject to space restrictions. The quest to reduce space requirements and
running time simultaneously is motivated in practical terms by the existence of
small mobile or embedded devices with little memory, by memory hierarchies
that allow smaller data sets to be processed faster, and by situations in which
the input is too big to be stored locally and must be accessed through query pro-
cedures running on a remote server. The Turing machine models running time
on real computers rather crudely, so the model of computation underlying the
newer research is the random-access machine and, more specifically, the word
RAM.

1.2 The Breadth-First-Search Problem

This paper continues an ongoing search for the best time and space bounds for
carrying out a breadth-first search or BFS in a directed or undirected graph.
Formally, we consider the BFS problem to be that of computing a shortest-path
spanning forest of an input graph G = (V,E) consistent with a given permutation
of V in top-down order, a somewhat tedious definition of which can be found
in [8]. Suffice it here to say that if all vertices of the input graph G are reachable
from a designated start vertex s ∈ V , the task at hand essentially is to output
the vertices in V in an order of nondecreasing distance from s in G. The BFS
problem is important in itself, but has also served as a yardstick with which to
gauge the strength of new algorithmic and data-structuring ideas in the realm
of space-efficient computing.

In the following consider an input graph G = (V,E) and take n = |V | and
m = |E|. The algorithms of Savitch [14] and of Barnes et al. [4] are easily
adapted, within the time and space bounds cited above, to compute the actual
distance from s to t (∞ if t is not reachable from s). As a consequence, the
BFS problem can be solved on n-vertex graphs with O((log n)2) bits or in nO(1)

time with n/2Ω(
√

log n) bits. Every reasonably fast BFS algorithm known to the
author, however, can be characterized by an integer constant c ≥ 2, dynamically
assigns to each vertex in V one of c states or colors, and maintains the color
of each vertex explicitly or implicitly. Let us call such an algorithm a c-color
BFS algorithm. E.g., the classic BFS algorithm marks each vertex as visited
or unvisited and stores a subset of the visited vertices in a FIFO queue, which
makes it a 3-color algorithm: The unvisited vertices are white, the visited vertices
in the FIFO queue are gray, and the remaining visited vertices are black. Because
the distribution of colors over the vertices can be nearly arbitrary, a c-color BFS
algorithm with an n-vertex input graph must spend at least n log2 c bits on
storing the vertex colors. The classic BFS algorithm uses much more space since
the FIFO queue may hold nearly n vertices and occupy Θ(n log n) bits.

Similarly as Dijkstra’s algorithm can be viewed as an abstract algorithm
turned into a concrete algorithm by the choice of a particular priority-queue
data structure, Elmasry, Hagerup and Kammer [6] described a simple abstract
4-color BFS algorithm that uses O(n + m) time plus O(n + m) calls of opera-
tions in an appropriate data structure that stores the vertex colors. This allowed
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them to derive a first BFS algorithm that works in O(n + m) time with O(n)
bits. Using the same abstract algorithm with a different data structure, Banerjee,
Chakraborty and Raman [2] lowered the space bound to 2n+O(n log log n/log n)
bits. Concurrently, Hagerup and Kammer [10] obtained a space bound of
n log2 3 + O(n/(log n)t) bits, for arbitrary fixed t ≥ 1, by stepping to a better
so-called choice-dictionary data structure but, more significantly, by developing
an abstract 3-color BFS algorithm to work with it. The algorithm uses the three
colors white, gray and black and, for an undirected graph in which all vertices
are reachable from the start vertex s, can be described via the code below. No
output is mentioned, but a vertex can be output when it is colored gray.

Color all vertices white;
Color s gray;
while some vertex is gray do

for each gray vertex u do (∗ exploration round ∗)
if u = s or u has a black neighbor then

Color gray all white neighbors of u;
for each gray vertex u do (∗ consolidation round ∗)

if u has no white neighbor then
Color u black;

Roughly speaking, the white vertices have not yet been encountered by the
search, the black vertices are completely done with, and the gray vertices form
the layer of currently active vertices at a common distance from s. The two
inner loops of the algorithm iterate over the gray vertices in order to replace
them by their white neighbors, which form the next gray layer. Both iterations
are dynamic in the sense that the set of gray vertices changes while it is being
iterated over. The first iteration (the exploration round) colors additional vertices
gray, and we would prefer for these newly gray vertices not to be enumerated by
the iteration. Satisfying this requirement is not easy for a space-efficient algo-
rithm, however, and therefore the iteration instead tests each enumerated vertex
for being “old”—exactly then does it equal s or have a black neighbor—and
ignores the other gray vertices. Similarly, the second iteration (the consolidation
round) colors black only those gray vertices that are no longer needed as neigh-
bors of white vertices—these include all “old” gray vertices. Even so, the choice
dictionary must support dynamic iteration suitably. This represents the biggest
challenge for a space-efficient implementation of the abstract algorithm.

For a directed graph, the changes are slight: “black neighbor” should be
replaced by “black inneighbor”, and each of the two occurrences of “white neigh-
bor” should be replaced by “white outneighbor”. If not all vertices are reachable
from s, the code above, except for its first line, must be wrapped in a standard
way in an outer loop that steps s through all vertices in a suitable order and
restarts the BFS at every vertex found to still be white when it is chosen as s.
This leads to no additional complications and will be ignored in the following.
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1.3 Recent Work and Our Contribution

Starting with the algorithm of Hagerup and Kammer [10], all new BFS algo-
rithms have space bounds of the form n log2 3+s(n) bits for some function s with
s(n) = o(n). In a practical setting the leading factor of log2 3 is likely to matter
more than the exact form of s, so that the progress since the algorithm of Hagerup
and Kammer could be viewed as insignificant. However, at least from a theoreti-
cal point of view it is interesting to explore how much space is needed beyond the
seemingly unavoidable n log2 3 bits required to store the vertex colors. If a 3-color
BFS algorithm uses n log2 3 + s(n) bits, we will therefore say that it works with
s(n) extra bits. If its running time is t(n,m), we may summarize its resource
requirements in the pair (t(n,m), s(n)). Adapting the notion of pareto domi-
nance, we say that an algorithm with the resource pair (t(n,m), s(n)) dominates
an algorithm with the resource pair (t′(n,m), s′(n)) if t(n,m) = O(t′(n,m)) and
s(n) = o(s′(n)) or t(n,m) = o(t′(n,m)) and s(n) = O(s′(n)).

Banerjee, Chakraborty, Raman and Satti [3] indicated a slew of 3-color BFS
algorithms with the following resource pairs: (nO(1), o(n)), (O(nm), O((log n)2)),
(O(m(log n)2), o(n)) and (O(m log nf(n)), O(n/f(n))) for certain slowly grow-
ing functions f . The first of these algorithms is dominated by that of Barnes
et al. [4], which also uses polynomial time but o(n) bits altogether, not just o(n)
extra bits. The third algorithm of [3] is dominated by the algorithm of Hagerup
and Kammer [10], whose resource pair is (O(n + m), O(n/(log n)t)) for arbi-
trary fixed t ≥ 1. Instantiating the 3-color abstract algorithm of [10] with a new
choice dictionary, Hagerup [8] obtained an algorithm that has the resource pair
(O(n log n + m log log n), O((log n)2)) and dominates the two remaining algo-
rithms of [3]. Another algorithm of [8] is faster but less space-efficient and has
the resource pair (O(n log n + m), nε) for arbitrary fixed ε > 0.

Here we present a new data structure, designed specifically to be used with
the abstract 3-color BFS algorithm of [10], that leads to a concrete BFS algo-
rithm operating in O(n + m) time using n log2 3 + O((log n)2) bits of working
memory. The new algorithm combines the best time and space bounds of all pre-
vious algorithms with running-time bounds of O(nm) or less, and therefore dom-
inates all of them. It is also simpler than several previous algorithms. We obtain
a slightly more general result by introducing a tradeoff parameter t ≥ 1: The run-
ning time is O((n+m)t), and the space bound is n log2 3+O((log n)2/t+ log n)
bits. If the degrees of the vertices 1, . . . , n of the input graph G form a nonde-
creasing sequence or if G is approximately regular, we achieve a running time of
O((n + m) log log n) with just n log2 3 + O(log n) bits.

The technical contributions of the present paper include:

– A new representation of vertex colors
– A new approach to dynamic iteration
– A refined analysis of the abstract 3-color BFS algorithm of [10]
– An amortized analysis of the new data structure.

Conversely, we draw on [10] not only for its abstract 3-color BFS algorithm,
but also for setting many of the basic concepts straight and for a technical
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lemma. Another crucial component is the in-place chain technique of Katoh and
Goto [12], as developed further in [8,9,11]. A fundamental representation of n
colors drawn from {0, 1, 2} in close to n log2 3 bits so as to support efficient access
to individual colors is due to Dodis, Pǎtraşcu and Thorup [5].

2 Preliminaries

We do not need to be very specific about the way in which the input graph
G = (V,E) is presented to the algorithm. With n = |V | and m = |E|, we assume
that n can be determined in O(n + m) time and that V = {1, . . . , n}. If G is
undirected, we also assume that for each vertex u ∈ V , it is possible to iterate
over the neighbors of u in at most constant time plus time proportional to their
number. If G is directed, the assumption is the same, but now the neighbors of u
include both the inneighbors and the outneighbors of u, and inneighbors should
(of course) be distinguishable from outneighbors.

Our model of computation is a word RAM [1,7] with a word length of w bits,
where we assume that w is large enough to allow all memory words in use to
be addressed. As part of ensuring this, we assume that w ≥ log2 n. The word
RAM has constant-time operations for addition, subtraction and multiplication
modulo 2w, division with truncation ((x, y) �→ �x/y	 for y > 0), left shift modulo
2w ((x, y) �→ (x 
 y) mod 2w, where x 
 y = x · 2y), right shift ((x, y) �→ x �
y = �x/2y	), and bitwise Boolean operations (and, or and xor (exclusive or)).

3 The Representation of the Vertex Colors

This section develops a data structure for storing a color drawn from the set
{white, gray,black} for each of the n vertices in V = {1, . . . , n}. As we will see,
the data structure enables linear-time execution of the abstract 3-color BFS algo-
rithm of [10] and occupies n log2 3 + O((log n)2) bits. An inspection of the algo-
rithm reveals that the operations that must be supported by the data structure
are reading and updating the colors of given vertices—this by itself is easy—and
dynamic iteration over the set of gray vertices. A main constraint for the latter
operation is that the iteration must happen in time proportional to the number
of gray vertices, i.e., we must be able to find the gray vertices efficiently.

Let us encode the color white as 1 = 012, gray as 0 = 002 and black
as 2 = 102. In the following we will not distinguish between a color and
its corresponding integer or 2-bit string. Take Λ = �log2 n	, q = 10Λ and
λ = �log2 q
 = Θ(log log n). In the interest of simplicity let us assume that
n is large enough to make λ2 ≤ Λ. In order to keep track of the colors of the
vertices in V we divide the sequence of n colors into N = �n/q	 segments of
exactly q colors each, with at most q − 1 colors left over. Each segment is rep-
resented via a big integer drawn from {0, . . . , 3q − 1}. Because q = O(log n),
big integers can be manipulated in constant time. The N big integers are in
turn maintained in an instance of the data structure of Lemma1 below, which
occupies N log2 3q + O((log N)2) = n log2 3 + O((log n)2) bits.
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Lemma 1 ([5], Theorem 1). There is a data structure that, given arbitrary
positive integers N and C with C = NO(1), can be initialized in O(log N) time
and subsequently maintains an array of N elements drawn from {0, . . . , C − 1}
in N log2 C + O((log N)2) bits such that individual array elements can be read
and updated in constant time.

3.1 Containers and Their Structure and Operations

We view the N big integers as objects with a nontrivial internal structure and
therefore use the more suggestive term container to denote the big integer in a
given position in the sequence of N big integers. We shall say that each of the
q vertices whose colors are stored in a container is located in the container. A
container may represent q colors a0, . . . , aq−1 in several different ways illustrated
in Fig. 1. The most natural representation is as the integer x =

∑q−1
j=0 aj3j .

We call this the regular representation, and a container is regular if it uses
the regular representation (Fig. 1(b)). When a vertex u is located in a regular
container, we can read and update the color of u in constant time, provided
that we store a table of the powers 30, 31, . . . , 3q−1. E.g., with notation as above,
aj = �x/3j	 mod 3 for j = 0, . . . , q − 1. The table occupies O((log n)2) bits and
can be computed in O(log n) time.

We allow a variant in which a regular container D is a master (Fig. 1(a)). The
difference is that the 3Λ most significant bits of the big integer corresponding
to D are relocated to a different container D′, said to be the slave corresponding
to D, and stored there. This frees 3Λ − 1 bits in D for other uses (the most
significant bit is fixed at 0 to ensure that the value of the big digit does not exceed
3q − 1). Since �log2(N +1)
 ≤ log2(n/8)+1 = log2 n− 2 ≤ �log2 n	− 1 = Λ− 1,
we can store a pointer (possibly null) to a container in Λ − 1 bits, so a master
has room for three such pointers. One of these designates the slave D′, while the
use of the two other pointers, called iteration pointers, is explained later. Even
though it may be necessary to access the data relocated to the slave, a master
still allows vertex colors to be read and updated in constant time.

When it is desired to iterate over the gray vertices in a regular container,
the container is first converted to the loose representation, in which the 2-bit
strings corresponding to the q color values are simply concatenated to form a
string of 2q bits. Since log2 q ≤ λ, this can be done in O(λ) time with the
algorithm of Lemma 2 below, used with c = 3, d = 4 and s = q. The algorithm
is a word-parallel version (i.e., essentially independent computations take place
simultaneously in different regions of a word) of a simple divide-and-conquer
procedure.

Lemma 2 ([8], Lemma 3.3 with f = 2 and p = 1). Given integers c, d and s

with 2 ≤ c, d ≤ 4, s ≥ 1 and s = O(w) and an integer of the form
∑s−1

j=0 ajc
j,

where 0 ≤ aj < min{c, d} for j = 0, . . . , s − 1, the integer
∑s−1

j=0 ajd
j can be

computed in O(log(s + 1)) time.

Conversely, using the lemma instead with c = 4 and d = 3, we can convert
from the loose to the regular representation, again in O(λ) time. Once a container
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Fig. 1. Four different representations in containers. Crosshatched areas symbolize col-
ors white, gray and black stored to base 3, while vertically striped areas symbolize
black-and-white vectors.
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is in the loose representation, we can locate the first (smallest) gray vertex in
the container in constant time with the algorithm of part (a) of the following
lemma that, again, draws heavily on word-parallel techniques. At this point we
use the lemma with m = q and f = 2.

Lemma 3 ([10], Lemma 3.2). Let m and f be given integers with 1 ≤ m, f < 2w

and suppose that a sequence A = (a1, . . . , am) with ai ∈ {0, . . . , 2f − 1} for
i = 1, . . . , m is given in the form of the (mf)-bit binary representation of the
integer

∑m−1
i=0 2ifai+1. Then the following holds:

(a) Let I0 = {i ∈ {1, . . . m} : ai = 0}. Then, in O(1 + mf/w) time, we can test
whether I0 = ∅ and, if not, compute min I0.

(b) If m < 2f and an integer k ∈ {0, . . . , 2f − 1} is given, then rank(k,A) =
|{i ∈ {1, . . . , m} : k ≥ ai}| can be computed in O(1 + mf/w) time.

Subsequently, if we remember the last grey vertex enumerated, we can shift
out that vertex and all vertices preceding it before applying the same algorithm.
This enables us to iterate over the set Vg of gray vertices in the container in
O(|Vg| + 1) time. The colors of the at most q − 1 vertices left over from the
division into segments are kept permanently in what corresponds to the loose
representation. This uses O(log n) bits, and it will be obvious how to adapt the
various operations to take these vertices and their colors into account, for which
reason we shall ignore them in the following.

If a container is a slave (Fig. 1(d)), we require the number ng of gray ver-
tices in the container to be bounded by λ − 1, and we store its gray vertices
separately in a gray list. The gray list takes the form of the integer ng, stored
(somewhat wastefully) in λ bits, followed by a sorted sequence of ng integers,
each represented in λ bits, that indicate the positions of the gray vertices within
the container. By the assumption λ2 ≤ Λ, the gray list fits within Λ bits. Because
of the availability of the gray list, we can store the remaining vertex colors in a
black-and-white vector of just q bits by dropping the most significant bit, which
normally allows us to distinguish between the colors gray and black, from all
q 2-bit color values. Since 32 ≥ 23 and therefore q log2 3 ≥ 15Λ, this leaves at
least 15Λ − Λ − q = 4Λ bits, which are used to hold the 3Λ bits relocated from
the master and a pointer to the master. We call this representation the compact
representation. A container may be compact, i.e., in the compact representation,
without being a slave (Fig. 1(c)). Then, instead of the data relocated from a
master, it stores two iteration pointers and a null pointer.

Using the algorithm of Lemma3(b) with m = ng and f = λ, we can test
in constant time whether a vertex located in a compact container is gray by
checking whether its number within the container occurs in the gray list of
the container. If not, we can subsequently determine the color of the vertex in
constant time from the black-and-white vector. Similarly, we can change the
color of a given vertex in constant time. This may involve creating a gap for
the new vertex in the gray list or, conversely, closing such a gap, which is easily
accomplished with a constant number of bitwise Boolean and shift operations.
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It is also easy to see that we can iterate over the ng gray vertices in O(ng + 1)
time.

If a color change increases the number ng of gray vertices in a compact con-
tainer to λ, the container must be converted to the regular representation. For
this it will be convenient if the black-and-white vector stores the q least sig-
nificant bits of the vertex colors not in their natural order, but in the shuffled
order obtained by placing the first half of the bits, in the natural order, in the
odd-numbered positions of the black-and-white vector and the last half in the
even-numbered positions. With this convention, we can still read and update
vertex colors in constant time. We can also unshuffle the black-and-white vector
in constant time, creating 1-bit gaps for the most significant bits, by separating
the bits in the odd-numbered positions from those in the even-numbered posi-
tions and concatenating the two sequences. Subsequently each most significant
bit is set to be the complement of its corresponding least significant bit to rep-
resent the colors white and black according to the loose representation. Going
through the gray list, we can then introduce the gray colors one by one. Thus
we can convert from the compact to the loose and from there to the regular
representation in O(ng + λ) = O(λ) time. Conversely, if a container in the loose
representation has fewer than λ gray vertices, it can be converted to the compact
representation in O(λ) time.

3.2 The In-place Chain Technique for Containers

The overall organization of the containers follows the in-place chain technique [8,
9,11,12]. By means of an integer μ ∈ {0, . . . , N} equal to the number of compact
containers, the sequence D1, . . . , DN of containers is dynamically divided into
a left part, consisting of D1, . . . , Dμ, and a right part, Dμ+1, . . . , DN . A regular
container is a master if and only if it belongs to the left part, and a compact
container is a slave if and only if it belongs to the right part. Thus the two
representations shown on the left in Fig. 1((a) and (c)) can occur only in the
left part, while the two representations shown on the right can occur only in the
right part. In particular, every container in the left part has iteration pointers.

Call a container gray-free if no vertex located in the container is gray. The
iteration pointers are used to join all containers in the left part, with the excep-
tion of the gray-free compact containers, into a doubly-linked iteration list whose
first and last elements are stored in O(log n) bits outside of the containers.

When an update of a vertex color causes a container Di to switch from the
compact to the regular representation, μ decreases by 1, say from μ0 to μ0 −1. If
i = μ0, Di belongs to the left part before the switch and to the right part after
the switch, i.e., in terms of Fig. 1, the switch is from (c) to (b). If i �= μ0, the
switch is more complicated, in that it involves other containers. If i < μ0 (Fig. 1,
(c) to (a)), Di becomes a master, whereas if i > μ0 (Fig. 1, (d) to (b)), Di stops
being a slave. In both cases there now is a master Dm without a slave, a situation
that must be remedied. However, Dμ0 also switches, namely either from (a) to
(b) or from (c) to (d). In the case “(a) to (b)” Dμ0 stops being a master, and its
former slave can become the slave of Dm. In the case “(c) to (d)” Dμ0 becomes a
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slave and can serve as the slave of Dm. Thus in all cases masters and slaves can
again be matched up appropriately. Altogether, the operation involves changing
some pointers and moving some relocated data in at most four containers. After
the conversion of Di, this takes constant time.

In some circumstances that still need to be specified, a container Di may
switch from the regular to the compact representation, which causes μ to increase
by 1, say from μ0 to μ0 + 1. We can handle this situation similarly as above. If
i = μ0 + 1, the switch is from (b) to (c) in Fig. 1, and nothing more must be
done. Otherwise, whether the switch is from (a) to (c) or from (b) to (d), there
will be a slave without a master. Simultaneously Dμ0+1 switches either from (b)
to (a) (it becomes the needed master) or from (d) to (c) (it stops being a slave,
and its former master takes on the new slave). Again, after the conversion of Di,
the matching between masters and slaves can be updated in constant time.

4 BFS Algorithms

4.1 The Basic Algorithm

To execute the first line of the abstract 3-color BFS algorithm with the vertex-
color data structure developed in the previous section, we initialize the data
structure as follows: All vertices are white, all containers are compact, but not
slaves, all have empty gray lists, the iteration list is empty, and μ = N .

It was already described how to read and update vertex colors. If a color
change causes a compact container D in the left part to become gray-free, D is
shunted out of the iteration list. Conversely, if a compact container in the left
part stops being gray-free, it is inserted at the end of the iteration list. The case
in which a container enters or leaves the left part because of a change in μ is
handled analogously. All of this can happen in constant time. The only exception
is if a color change forces a container to switch from the compact to the regular
representation, which takes O(λ) time.

Recall that the abstract 3-color BFS algorithm alternates between exploration
rounds, in which it iterates over the gray vertices and colors some of their white
neighbors gray, and consolidation rounds, in which it iterates over the gray ver-
tices and colors some of them black. Each iteration is realized by iterating over
two lists of containers: the explicitly maintained iteration list and the implicit
right list, which consists of the containers DN ,DN−1, . . . , Dμ+1 in that order.
Each of the two iterations can be viewed as moving a pebble through the relevant
list. Because the lists may change dynamically, the following rules apply: If a
currently pebbled container D is deleted from its list, the pebble is first moved
to the successor of D, if any, in the relevant list. If a pebble reaches the end of its
list, it waits there for new containers that may be inserted at the end of the list.
One of the at most two pebbled containers is the current container Dc, whose
gray vertices are enumerated as explained earlier. If Dc is regular, this involves
first converting it to the loose representation. Once all gray vertices in Dc have
been enumerated, Dc stops being the current container. If it is in the loose rep-
resentation, we convert it to either the regular or the compact representation.
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If the iteration happens in an exploration round, we always convert Dc to the
regular representation, so that μ does not increase. If the iteration happens in a
consolidation round, we attempt to convert it to the compact representation. If
this fails because Dc contains more than λ − 1 gray vertices, we instead convert
it to the regular representation; μ does not decrease. Then the pebble on Dc is
moved to the list successor of Dc, and one of the at most two containers that
are now pebbled is chosen to be the new current container. The iteration ends
when both pebbles are at the end of their respective lists.

Since every container that is not gray-free belongs either to the iteration
list or to the right list, it is clear that each round enumerates all vertices that
are gray at the beginning of the round (and maybe some that become gray in
the course of the round). A container and its gray vertices may be enumerated
twice, namely once as part of the iteration list and once as part of the right
list. The BFS algorithm can tolerate this, and no vertex is enumerated more
than twice within one round because μ moves in only one direction within the
round. A vertex can be gray for at most (part of) four consecutive rounds, so
the total number of vertex enumerations is O(n). Therefore the total time spent
on enumeration is O(n), except possibly for the following two contributions to
the running time: (1) Containers that are enumerated but turn out to be gray-
free; (2) Conversions of containers between different representations. As for (1),
every container concerned is regular or on the right side, i.e., the number of such
containers is bounded by 2(N −μ). Since the iteration converts all N −μ regular
containers to the loose representation, the contribution of (1) is dominated by
that of (2). And as for (2), since the number of other conversions is within a
constant factor of the number of conversions to the regular representation, it
suffices to bound the latter by O(n/λ). Call a conversion of a container D to the
regular representation proper if D contains at least λ gray vertices at the time
of the conversion, and improper otherwise. Improper conversions happen only in
exploration rounds. Before the first conversion of a container D to the regular
representation, λ vertices located in D must have become gray, and between two
successive proper conversions of D at least λ vertices in D either change color
or are enumerated. Moreover, between two consecutive proper conversions of D
there can be at most one improper conversion of D (namely in an exploration
round). Since the number of color changes and of vertex enumerations is O(n),
the bound follows.

Theorem 1. The BFS problem can be solved on directed or undirected graphs
with n vertices and m edges in O(n + m) time with n log2 3 + O((log n)2) bits of
working memory.

4.2 A Time-Space Tradeoff

In order to derive a time-space tradeoff from Theorem 1, we must take a slightly
closer look at the data structure of Dodis et al. [5] behind Lemma 1. For
a certain set S whose elements can be represented in O(log n) bits, a cer-
tain function g : S → S that can be evaluated in constant time and a cer-
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tain start value x0 ∈ S that can be computed in constant time, the pre-
processing of the data structure serves to compute and store a table Y of
x0 = g(0)(x0), g(1)(x0), g(2)(x0), . . . , g(�log2 N�)(x0), where g(j), for integer j ≥ 0,
denotes j-fold repeated application of g. In addition, we need the powers
30, 31, . . . ,3q−1, which are also assumed to be stored in Y . If we carry out the
preprocessing but store g(j)(x0) and 3j only for those values of j that are mul-
tiples of t for some given integer t ≥ 1, the shortened table Y ′ occupies only
O(�(log n)/t
 log n) = O((log n)2/t + log n) bits, and the rest of the BFS algo-
rithm works with O(log n) bits. Whenever the data structure of Sect. 3 is called
upon to carry out an operation, it needs a constant number of entries of Y , which
can be reconstructed from those in Y ′ in O(t) time. This causes a slowdown of
O(t) compared to an algorithm that has the full table Y at its disposal. Thus
Theorem 1 generalizes as follows:

Theorem 2. For every given t ≥ 1, the BFS problem can be solved on directed
or undirected graphs with n vertices and m edges in O((n + m)t) time with
n log2 3 + O((log n)2/t + log n) bits of working memory.

4.3 BFS with n log2 3 + O(logN) Bits

Suppose now that we are allowed only O(log n) extra bits. Then, with notation
as in the previous subsection, we can no longer afford to store the table Y of
x0, g(x0), g(2)(x0), . . . , g(�log2 N�)(x0) and 30, 31, . . . , 3q−1. Instead we store only
the two O(log n)-bit quantities x0 and 3 and compute g(i)(x0) and 3i from them
as needed. Concerning the latter, 3i can be computed in O(log q) = O(λ) time for
arbitrary i ∈ {0, . . . , q−1} by a well-known method based on repeated squaring.

When the data structure of Dodis et al. [5] is used to represent an array A
with index set {1, . . . , N}, A[j], for j = 1, . . . , N , is associated with the node j
in a complete N -node binary tree T whose nodes are numbered 1, . . . , N in the
manner of Heapsort, i.e., the root is 1, the parent of every nonroot node j is �j/2	,
and every left child is even. Suppose that a node j ∈ {1, . . . , N} is of height h
in T . Then we can access (read or update) A[j] in constant time after computing
g(h)(x0) from x0, which takes O(h + 1) time. In the worst case h = Θ(log n),
so we can access A with a slowdown of O(log n) relative to an algorithm with
access to the full table Y . This leads to the result of Theorem 2 for t = log n, i.e.,
O((n + m) log n) time and O(log n) extra bits. However, for most j the height h
is much smaller than log2 n, which hints at a possible improvement.

For i = 1, . . . , n, let di be the (total) degree of the vertex i in the input graph.
It is easy to see that the number of accesses to the color of i in the course of
the execution of the BFS algorithm is O(di + 1). The color of i is located in the
container Dj , where j = �i/q
, or in a slave Dj′ with j′ > j, and Dj is in fact a
big digit stored in A[j], where A is the array maintained with the data structure
of Dodis et al. [5]. The depth of the node j in the corresponding binary tree T
is exactly �log2 j	 = �log2�i/q
	, and it is not difficult to see that its height is
at most �log2�n/q
	 − �log2�i/q
	 ≤ log2(n/i) + 2. Therefore the running time
of the complete BFS algorithm is O((n + m) log log n +

∑n
i=1 di log(2n/i)).
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If d1 ≤ · · · ≤ dn,
∑n

i=1 di log2(2n/i) ≤ (1/n)(
∑n

i=1 di)(
∑n

i=1 log2(2n/i)) =
O(m). Thus if the vertex degrees form a nondecreasing sequence, the running
time is O((n+m) log log n). Since log2(2n/i) ≤ 1+r log2 log2 n if i ≥ n/(log2 n)r

for some r ≥ 1, the same is true if
∑�n/(log2 n)r�

i=1 di = O(m log log n/log n) for
some fixed r ≥ 1. Informally, the latter condition is satisfied if G is approximately
regular. In particular, it is satisfied if the ratio of the maximum degree in G to
the average degree is (at most) polylogarithmic in n.
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