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Abstract. The Glauber dynamics can efficiently sample independent
sets almost uniformly at random in polynomial time for graphs in a
certain class. The class is determined by boundedness of a new graph
parameter called bipartite pathwidth. This result, which we prove for
the more general hardcore distribution with fugacity A, can be viewed as
a strong generalisation of Jerrum and Sinclair’s work on approximately
counting matchings. The class of graphs with bounded bipartite path-
width includes line graphs and claw-free graphs, which generalise line
graphs. We consider two further generalisations of claw-free graphs and
prove that these classes have bounded bipartite pathwidth.
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1 Introduction

We will show that we can approximate the number of independent sets in graphs
for which all bipartite induced subgraphs are well structured, in a sense that we
will define precisely. Our approach is to generalise the Markov chain analysis of
Jerrum and Sinclair [19] for the corresponding problem of counting matchings.
Their canonical path argument relied on the fact that the symmetric difference
of two matchings of a given graph G is a bipartite subgraph of G consisting
of a disjoint union of paths and even-length cycles. We introduce a new graph
parameter, which we call bipartite pathwidth, to enable us to give the strongest
generalisation of the approach of [19].

1.1 Independent Set Problems

For a given graph G, let Z(G) be the set of all independent sets in G. The
independence number o(G) = max{|I| : I € I(G)} is the size of the largest
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independent set in G. The problem of finding «(G) is NP-hard in general, even
in various restricted cases, such as degree-bounded graphs. However, polynomial
time algorithms have been constructed for finding a maximum independent set,
for various graph classes. The most important case has been matchings, which
are independent sets in the line graph L(G) of G. This has been generalised to
larger classes of graphs, for example claw-free graphs [24], which include line
graphs [4], and fork-free graphs [1], which include claw-free graphs.

Counting independent sets in graphs is known to be #P-complete in gen-
eral [26], and in various restricted cases [15,30]. Exact counting is known only
for some restricted graph classes. Even approximate counting is NP-hard in gen-
eral, and is unlikely to be in polynomial time for bipartite graphs [11].

For some classes of graphs, for example line graphs, approximate counting is
known to be possible [19,20]. The most successful Markov chain approach relies
on a close correspondence between approximate counting and sampling uni-
formly at random [21]. It was applied to degree-bounded graphs in [23] and [12].
In his PhD thesis [22], Matthews used a Markov chain for sampling independent
sets in claw-free graphs. His chain, and its analysis, generalises that of [19].

Several other approaches to approximate counting have been successfully
applied to the independent set problem. Weitz [31] used the correlation decay
approach on degree-bounded graphs, resulting in an FPTAS for counting inde-
pendent sets in graphs with degree at most 5. Sly [29] gave a matching NP-
hardness result. The correlation decay method was also applied to matchings
in [3], and was extended to complex values of A in [16]. Recently, Efthymiou
et al. [14] proved that the Markov chain approach can (almost) produce the
best results obtainable by other methods.

The independence polynomial Pg(\) of a graph G is defined in (1) below.
The Taylor series approach of Barvinok [2] was used by Patel and Regts [25] to
give a FPTAS for Pg()) in degree-bounded claw-free graphs. The success of the
method depends on the location of the roots of the independence polynomial.
Chudnovsky and Seymour [7] proved that all these roots are real, and hence they
are all negative. Then the algorithm of [25] is valid for all complex A which are
not real and negative. In this extended abstract (for proofs see [13]), we return
to the Markov chain approach.

1.2 Preliminaries

We write [m] = {1,2,...,m} for any positive integer m, and let A @ B denote
the symmetric difference of sets A, B. For graph theoretic definitions not given
here, see [10]. Throughout this paper, all graphs are simple and undirected.
G[S] denotes the subgraph of G induced by the set S and N(v) denotes the
neighbourhood of vertex v. Given a graph G = (V, E), let Zx(G) be the set
of independent sets of G of size k. The independence polynomial of G is the
partition function
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a(G)
Po(N) = Y AT=3" Ny Ak, (1)
1€Z(G) k=0
where Ny = |Zx(G)| for k = 0,...,«. Here A € C is called the fugacity. We
consider only real A and assume A > 1/n to avoid trivialities. We have Ny = 1,
Ni =n and N, < (Z) for k =2,...,n. Thus it follows that for any A > 0,

a(G)

140\ < Po()) < YA < (14 M) 2)
¢ kz_o<k>

Note also that Pg(0) = 1 and Pg(1) = |Z(G)|.

An almost uniform sampler for a probability distribution 7 on a state 2
is a randomised algorithm which takes as input a real number 6 > 0 and
outputs a sample from a distribution p such that the total variation distance
3> seoln(@) — m(x)| is at most 4. The sampler is a fully polynomial almost
uniform sampler (FPAUS) if its running time is polynomial in the input size n
and log(1/6). The word “uniform” here is historical, as it was first used in the
case where 7 is the uniform distribution. We use it in a more general setting.

If w: 2 — R is a weight function, then the Gibbs distribution m satisfies
m(x) = w(x)/W for all x € 2, where W =" o w(x). fw(z) =1 forall x € 2
then 7 is uniform. For independent sets with w(I) = Al we have

m(I) = A/Pg(N), (3)

and is often called the hardcore distribution. Jerrum, Valiant and Vazirani [21]
showed that approximating W is equivalent to the existence of an FPAUS for 7,
provided the problem is self-reducible. Counting independent sets in a graph is
a self-reducible problem. (2) can be tightened to

[e3%

n - n k 2
IS (k> PLIES Z( 2!) < (n/\)O‘Z% < e(n\)®. (4)
k=0 k=0

k=0

2 Markov Chains

2.1 Mixing Time

For general information on Markov chains and approximate counting see [17,18].

Consider a Markov chain on state space {2 with stationary distribution 7 and
transition matrix P. Let p,, be the distribution of the chain after n steps. We will
assume that pg is the distribution which assigns probability 1 to a fixed initial
state x € §2. The mizing time of the Markov chain, from initial state x € {2, is
T(€) = min{n : dorv(pn, 7) < €}, where drv (pn, 7) is the total variation distance
between p, and 7. In the case of the Glauber dynamics for independent sets,
the stationary distribution 7 satisfies (3), and in particular m(2@)~! = Pg(\).
We will always use @ as our starting state.
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Let Bmax = max{f1, |3 o|—1|}, where 3; is the second-largest eigenvalue and
Bio|-1 is the smallest eigenvalue of P. From [9, Proposition 3] follows 7,(g) <
(1 = Bmax) ™" (In(m(z)™) +1n(1/¢)) , see also [28, Proposition 1(i)]. Hence for
A>1/n,

75() < (1 = Bmax) " (@(G)In(nA) + 1 +1n(1/e)), (5)

using (4). We can easily prove that (1+05_1) " is bounded above by min{\, n},
see (9). It is more difficult to bound the relaxation time (1 — 3;)~ 1.

2.2 Canonical Paths Method

To bound the mixing time of our Markov chain we will apply the canonical paths
method of Jerrum and Sinclair [19]. This may be summarised as follows. Let the
problem size be n (in our setting, n is the number of vertices in the graph G,
2 = Z(G) and hence [2| < 2™). For each pair of states X,Y € {2 we define
a path yxy from X to Y, namely X = Zy — Zs — -+ — Z; = Y such that
successive pairs along the path are given by a transition of the Markov chain.
Write £xy = ¢ for the length of the path vxy, and let £1,,x = maxx y xy. We
require .« to be at most polynomial in n. This is usually easy to achieve, but
the set of paths {yxy } must also satisfy the following property.

For any transition (Z, Z’) of the chain there must exist an encoding W, such
that, given (Z, Z’) and W, there are at most v distinct possibilities for X and
Y such that (Z,Z') € vxy. That is, each transition of the chain can lie on at
most v [£2*| canonical paths, where 2* is some set which contains all possible
encodings. We usually require v to be polynomial in n. It is common to refer to
the additional information provided by v as “guesses”, and we will do so here.
In our situation, all encodings will be independent sets, so we may assume that
2% = {2. The congestion o of the chosen set of paths is given by

1
= wnlsmwas,, X, ) ©

X,Y:’yxyS(Z,Z/)

where the maximum is taken over all pairs (Z,Z’) with P(Z,Z') > 0and Z' # Z
(that is, over all transitions of the chain), and the sum is over all paths containing
the transition (Z, Z’). A bound on the relaxation time (1— ;)= will follow from
a bound on congestion, using Sinclair’s result [28, Cor. 6]:

(1 - 51)_1 < Emax - (7)

2.3 Glauber Dynamics

The Markov chain we employ will be the Glauber dynamics. In fact, we will
consider a weighted version of this chain, for a given value of the fugacity (also
called activity) A > 0. Define 7(Z) = A4l /Pg()) for all Z € Z(G), where Pg()\)
is the independence polynomial defined in (1). A transition from Z € Z(G) to
7' € I(G) will be as follows. Choose a vertex v of G uniformly at random.
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— If v € Z then Z’ «— Z\{v} with probability 1/(1 + A).
~Ifv¢ Zand ZU{v} € Z(G) then Z' «— Z U {v} with probability A/(1+ A).
— Otherwise Z' « Z.

This Markov chain is irreducible and aperiodic, and satisfies the detailed balance
equations m(Z)P(Z,Z") = n(Z")P(Z',Z) for all Z,Z' € Z(G). Therefore, the
Gibbs distribution = is the stationary distribution of the chain. If Z’ is obtained
from Z by deleting a vertex v then

n(%ﬂ) and P(Z.,2) = — (8)

P(2,7') = SGESYA

The unweighted version is given by setting A = 1, and has uniform stationary
distribution. Since the analysis for general X is hardly any more complicated than
that for A = 1, we will work with the weighted case.

It follows from the transition procedure that P(Z,Z) > min{1,\}/(1 + X)
for all states Z € Z(G). That is, every state has a self-loop probability of at least
this value. Using a result of Diaconis and Saloff-Coste [8, p. 702], we conclude
that the smallest eigenvalue §j7(q)—1 of P satisfies

14\
1 e T
L+ Bz)-1)" < 2min{l, A}

< min{\,n} (9)
for A > 1/n. This bound will be dominated by our bound on the relaxation time.
We will always use the initial state Zy = &, since @ € Z(G) for any graph G.
In order to bound the relaxation time (1—/3;)~! we will use the canonical path
method. A key observation is that for any X,Y € Z(G), the induced subgraph
G[X @ Y] of G is bipartite. This can easily be seen by colouring vertices in
X\Y black and vertices in Y\ X white, and observing that no edge in G can
connect vertices of the same colour. To exploit this observation, we introduce
the bipartite pathwidth of a graph in Sect.3. In Sect.4 we show how to use
the bipartite pathwidth to construct canonical paths for independent sets, and
analyse the congestion of this set of paths to prove our main result, Theorem 1.

3 Pathwidth and Bipartite Pathwidth

The pathwidth of a graph was defined by Robertson and Seymour [27], and has
proved a very useful notion in graph theory [6,10]. A path decomposition of a
graph G = (V, E) is a sequence B = (B, Ba, ..., B;.) of subsets of V such that

1. for every v € V there is some i € [r] such that v € B;,
2. for every e € E there is some 4 € [r] such that e C B;, and
3. for every v € V the set {i € [r] : v € B;} forms an interval in [r].

The width and length of this path decomposition B are w(B) = max{|B;| :
i € [r]} =1 and ¢(B) = r and the pathwidth pw(G) of a given graph G is
pw(G) = ming w(B), where the minimum taken over all path decompositions
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Fig. 1. A bipartite graph

B of G. Condition3 is equivalent to B; N By, C Bj; for all ¢, j and k with
1< <j<k<r. If werefer to a bag with index ¢ ¢ [r] then by default B; = &.
The graph in Fig. 1 has a path decomposition with the following bags:

B, = {a’b7d7g} By = {a,c,d,g} B; = {Cadvgve} By = {daevag}
B5 = {dafaga.]} BG = {f,gahm]} B7 = {g,hvla.]}

This path decomposition has length 7 and width 3. If P is a path, C is a cycle,
K, is a complete graph and K, ; is a complete bipartite graph then

pw(P)=1, pw(C)=2, pw(K,)=n—-1, pw(K,p)=min{a,b}. (10)

The following result will be useful for bounding the pathwidth. The first state-
ment is [5, Lemma 11], while the second appears in [27, Eq. (1.5)].

Lemma 1. For every subgraph H of G, pw(H) < pw(G) holds. If W C V(G)
then pw(G) < pw(G — W) + |W|.

The bipartite pathwidth bpw(G) of a graph G is the maximum pathwidth of
an induced subgraph of G that is bipartite. For any integer p > 2, let C,, be the
class of graphs G with bpw(G) < p. By Lemmall C, is a hereditary class.

Clearly bpw(G) < pw(G), but the bipartite pathwidth of G may be much
smaller than its pathwidth. A more general example is the class of unit inter-
val graphs. These may have cliques of arbitrary size, and hence arbitrary path-
width. However they are claw-free, so their induced bipartite subgraphs are linear
forests, and hence they have bipartite pathwidth at most 1 from Eq. 10. The even
more general interval graphs do not contain a tripod (depicted in Sect. 5.3), so
their bipartite subgraphs are forests of caterpillars, and hence they have bipartite
pathwidth at most 2.

Lemma 2. Let p be a positive integer.

(i) Every graph with at most 2p + 1 vertices belongs to C,.
(ii) No element of C, can contain K,i11 p41 as an induced subgraph.

A fixed linear order < on the vertex set V of a graph G, extends to subsets
of V as follows: if A,B C V then A < B if and only if (a) |4| < |BJ; or (b)
|A| = |B| and the smallest element of A& B belongs to A. Next, given two path
decompositions A = (A;)j_; and B = (B;)j_; of G, we say that A < B if and
only if (a) r < s; or (b) » = s and A; < B;, where j = min{¢ : A; # B;}.
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4 Canonical Paths for Independent Sets

Suppose that G € Cp, so that bpw(G) < p. Take X,Y € Z(G) and let Hy,. .., H;
be the connected components of G[X @ Y] in lexicographical order. The graph
G[X @Y is bipartite, so every component Hy, ..., H; is connected and bipartite.
We will define a canonical path vxy from X to Y by processing the components
Hy,...,H;inorder. Let H, be the component of G[X &Y ] which we are currently
processing, and suppose that after processing Hi,..., H,_1 we have a partial
canonical path X = Zy,..., Zn. If a = 0 then Zy = Zy = X. The encoding Wy
for Zy is defined by

INeWy=XaY and ZynNnWy=XnNY. (11)

In particular, when ¢ = 0 we have Wy = Y. We remark that (11) will not
hold during the processing of a component, but always holds immediately after
the processing of a component is complete. Because we process components
one-by-one, in order, and due to the definition of the encoding Wy, we have

ZNNHs=YNH, for s=1,...,a—1 (processed), (12)
ZNNHs; =XNH, for s=a,...,t (not processed), (13)
WnNHs;=XNH, fors=1,...,a—1 (processed), (14)
WnNH; =Y NH; for s=a,...,t (not processed). (15)

We now describe how to extend this partial canonical path by processing the
component H,. Let h = |H,|. We will define a sequence Zy, Zn+1,-.., ZN+th
of independent sets, and a corresponding sequence Wy, Wxy1,..., Wnyp of
encodings, such that Z,&W, C X®Y and Z,N"W, = XNY forj=N,...,N+h.
Define the set of “remembered vertices” R, = (X @ Y)\(Z, & Wy) for £ =
N, ..., N + h. By definition, the triple (Z, W, R) = (Z;, Wy, Ry) satisfies

(Z&W)NR=2 and (ZOW)UR=XaY. (16)

This immediately implies that | Z,|+ |Wy|+|R| = | X|+|Y | for £ = N,...,N+h.
Let B = (By,...,B;) be the lexicographically-least path decomposition of
H,. Here we use the ordering on path decompositions defined at the end of
Sect. 3. Since G € Cp, the maximum bag size in Bis d < p+ 1.
We process H, by processing the bags By, ..., B, in order. Initially Ry = &
by (11). If bag B; is currently being processed and the current independent set
is Z and the current encoding is W, then

(XN (B U -UBi_l))\Bi — (Wn(ByU---UB;_1))\B, (17)
(YN (B U UBZ D)\B; = (Zn (B U UBZ 1))\Bi, (18)
(XN (Big1U- B))\B; = (ZN (Biy1 U- B)\B;, (19)
( ( i1 U- ))\B, = (W N (Bi+1 U- )) (20)

Let Zy,, Wy, Ry denote the current independent set, encoding and set of
remembered vertices, immediately after the processing of bag B;_1. We will write
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R, = RZ‘ U R, where vertices in RZ‘ are added to R, during the preprocessing
phase (and must eventually be inserted into the current independent set), and
vertices in R, are added to R, due to a deletion step (and will go into the
encoding during the postprocessing phase). When ¢ = 0 we have ¢ = N and in
particular, Ry = RX, =Ry =0.

Preprocessing: We “forget” the vertices of B; N Biy1 N Wy and add them to
Rzr_ This does not change the independent set or add to the canonical path.
Rzr — R;ZF U (Bz NBi+1N Wg); Wy — Wg\(Bl n Bi+1);

Deletion steps: for each u € B; N Zy, in lexicographical order, do

Zoy1 < Zo\{u};
if u ¢ Biy1 then Wy « Wy U{u}; R | «— R,

else Wy« Wy R, «— R, U{u};
{—0+1;

Insertion steps: for each u € (B; N (WU R/ ))\B;41, in lexicogr. order, do
Zoy1 < ZoU{ul;
if u € W, then Wy — W\{u}; R/, — R/;
else Wy 1 «— Wy; RZFH — Rzr U{u};

{—0+1,;

Postprocessing: All elements of R, which do not belong to Bii1 can now
be safely added to Wy. This does not change the current independent set or
add to the canonical path.

Wy — W, U (RZ\Bi+1)§ RZ — RZ N Bit1;

By construction, vertices added to RZ‘ are removed from Wy, so the “otherwise”
case for insertion is precisely u € R?.

Observe that both Z, and W, are independent sets at every step. This is true
initially (when ¢ = N) and remains true. The preprocessing phases removes all
vertices of B;NB;+1 from W, which makes room for other vertices to be inserted
into the encoding later. A deletion step shrinks the current independent set and
adds the removed vertex into W, or R, . A deleted vertex is only added to R,
if it belongs to B; N B;41, and so might have a neighbour in Wy. In the insertion
steps we add vertices from (Bi N (W UR;))\BZ-_H to Zy, now that we have made
room. Here B; is the last bag which contains the vertex being inserted into the
independent set, so any neighbour of this vertex in X has already been deleted
from the current independent set. This phase can only shrink the encoding W,.
Also observe that (16) holds for (Z, W, R) = (Z;, Wy, Ry) at every point. Finally,
by construction we have R, C B; at all times. Table 1 illustrates this construction
for the graph in Fig. 1.

Each step of the canonical path alters the current independent set Z; by
exactly one element of X ®Y . Every vertex of X\Y is removed from the current
independent set at some point, and is never re-inserted, while every vertex of
Y\ X is inserted into the current independent set once, and is never removed.
Vertices outside X @Y are never altered and belong to all or none of the inde-
pendent sets in the canonical path. Therefore fyax < 20(G).
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Table 1. The steps of the canonical path, processing each bag in order.

B; preprocessing after 1st step after 2nd step
after 3rd step postprocessing

OmORO

i
:

%e

O

O
5 Om® ORORC,
B (D006 GO0 OO
MO mOROnO,
BORCORONO,
OO0 OO0 OO ®

Br

O O-O~@

Lemma 3. At any transition (Z, Z') which occurs during the processing of bag
B;, the set R of remembered vertices satisfies R C By, with |R| < p unless
ZNB;, =WnNB;, =&. In this case R = B;, which gives |R| = p+ 1, and
Z'=Z J{u} for some u € B;.

Lemma 4. Given a transition (Z,Z'), the encoding W of Z and the set R of
remembered vertices, we can uniquely reconstruct (X,Y) with (Z,Z') € vxv .

Theorem 1. Let G € C, be a graph with n vertices and let A\ > 1/n, where
p > 2 is an integer. Then the Glauber dynamics with fugacity A on Z(G) (and
initial state &) has mixing time

5(¢) < 2ea(G)nPt! Ap(1 + max()\, 1/>\)> (a(G) In(nX) + 1+ 1n(1/5)>.

When p is constant, this upper bound is polynomial in n and max(X\,1/)\).

5 Recognisable Subclasses of C,

Theorem 1 shows that the Glauber dynamics for independent sets is rapidly
mixing for any graph G in the class C,, where p is a fixed positive integer.
However, the complexity of recognising membership in the class C, is unknown.
Therefore, we consider here three classes of graphs determined by small excluded
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subgraphs. These classes have polynomial time recognition algorithms. Note that
we must always exclude large complete bipartite subgraphs. The three classes
are nested. We will obtain better bounds for pathwidth in the smaller classes,
and hence better mixing time bounds in Theorem 1.

5.1 Claw-Free Graphs

Claw-free graphs exclude the K 3, the claw. Claw-free graphs form an important
superclass of line graphs [4], and independent sets in line graphs are matchings.

Lemma 5. Let G be a claw-free graph with independent sets X, Y € Z(G). Then
G[X @Y] is a disjoint union of paths and cycles.

Lemma 6. Claw-free graphs are a proper subclass of Cs.

5.2 Graphs with No Fork or Complete Bipartite Subgraph

Fork-free graphs exclude the following induced subgraph, the fork:

——

Two vertices u and v are false twins if N(u) = N(v). In Fig.2, vertices to
which false twins can be added are indicated by red colour. Hence each graph
containing a red vertex represents an infinite family of augmented graphs.

Aoa LA <

o—o o0——0—0 o0—0—@—0—70

Fig. 2. The path Py, the cycle Cs, the augmented bipartite wheel BW5, the cube Qs,
an augmented domino, followed by augmented paths P5, P; and P§. (Color figure
online)

Lemma 7. A bipartite graph is fork-free if and only if every connected compo-
nent is a path, a cycle of even length, a BWy, a cube QQ3, or can be obtained from
a complete bipartite graph by removing at most two edges that form a matching.

Lemma 8. For all integers d > 1 the fork-free graphs without induced Kqi1, 441
have bipartite pathwidth at most max(4,d + 2).
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5.3 Graphs Free of Armchairs, Stirrers and Tripods

The graphs depicted below are called armchair, stirrer and tripod. A fast graph
is a graph that contains none of these three as an induced subgraph.

Theorem 2. For every integer d > 1, a fast bipartite graph that does not contain
Kat+1,d+1 as an induced subgraph has pathwidth at most 4d — 1.

6 Conclusions and Further Work

It is clearly NP-hard in general to determine the bipartite pathwidth of a graph,
since it is NP-complete to determine the pathwidth of a bipartite graph. How-
ever, we need only determine whether bpw(G) < d for some constant d. The
complexity of this question is less clear. Bodlaender [5] has shown that the ques-
tion pw(G) < d, can be answered in O(2¢ n) time. However, this implies nothing
about bpw(G).

In the case of claw-free graphs we can prove stronger sampling results using
log-concavity. How far does log-concavity extends in this setting? Does it hold
for fork-free graphs? Does some generalisation of log-concavity hold for graphs of
bounded bipartite pathwidth? Where log-concavity holds, it allows us to approx-
imate the number of independent sets of a given size. However, there is still the
requirement of “amenability” [19]. Jerrum, Sinclair and Vigoda [20] have shown
that this can be dispensed with in the case of matchings. Can this be done
for claw-free graphs? More ambitiously, can the result of [20] be extended to
fork-free graphs and larger classes of graphs of bounded bipartite pathwidth?

An extension would be to consider bipartite treewidth, btw(G). Since tw(G) =
O(pw(G)logn) [6, Thm. 66], our results here immediately imply that bounded
bipartite treewidth implies quasipolynomial mixing time for the Glauber dynam-
ics. Can this be improved to polynomial time?

Finally, can approaches to approximate counting be employed for the inde-
pendent set problem in particular graph classes? Patel and Regts [25] have used
the Taylor expansion approach for claw-free graphs. Could this be extended?
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