
45th International Workshop, WG 2019
Vall de Núria, Spain, June 19–21, 2019
Revised Papers

Graph-Theoretic Concepts
in Computer ScienceLN

CS
 1

17
89

AR
Co

SS
Ignasi Sau
Dimitrios M. Thilikos (Eds.)

Lecture Notes in Computer Science 11789

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ignasi Sau • Dimitrios M. Thilikos (Eds.)

Graph-Theoretic Concepts
in Computer Science
45th International Workshop, WG 2019
Vall de Núria, Spain, June 19–21, 2019
Revised Papers

123

Editors
Ignasi Sau
CNRS, LIRMM, Université de Montpellier
Montpellier, France

Dimitrios M. Thilikos
CNRS, LIRMM, Université de Montpellier
Montpellier, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-30785-1 ISBN 978-3-030-30786-8 (eBook)
https://doi.org/10.1007/978-3-030-30786-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8981-9287
https://orcid.org/0000-0003-0470-1800
https://doi.org/10.1007/978-3-030-30786-8

Preface

The 45th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2019) took place at the Vall de Núria, Catalonia, Spain, a valley very close to the
French-Spanish borders, during June 19–21, 2019. About 60 mathematicians and
computer scientists from all over the world (Austria, Brazil, Canada, Czech Republic,
Denmark, France, Germany, India, Israel, Japan, the Netherlands, Norway, Poland,
Romania, Russia, Slovenia, Spain, Switzerland, the United Kingdom, and the United
States) attended the conference.

WG has a long standing tradition. Since 1975, WG has taken place 24 times in
Germany, 5 times in the Netherlands, 3 times in France, 2 times in Austria, 2 times in
Czech Republic, as well as 1 time in Greece, Israel, Italy, Norway, Slovakia, Spain,
Switzerland, Turkey, and in the United Kingdom.

WG aims at merging theory and practice by demonstrating how concepts from
Graph Theory can be applied to various areas in Computer Science, or by extracting
new graph theoretic problems from applications. The goal is to present emerging
research results and to identify and explore directions of future research. The confer-
ence is well-balanced with respect to established researchers and young scientists.

There were 87 submissions, 3 of which were withdrawn before entering the review
process. Each submission was carefully reviewed by at least 3, and on average 3.4,
members of the Program Committee (PC). The PC accepted 29 papers – an acceptance
ratio of around 35 %. We should stress that, due to the high competition and the limited
schedule, there were papers that were not accepted although they deserved to be.

The program also included three excellent invited talks: the first one was given by
Marc Noy (Universitat Politècnica de Catalunya and Barcelona Graduate School of
Mathematics, Spain) on “Logic of Sparse Random Graphs,” the second one was given
by Saket Saurabh (Institute of Mathematical Sciences, Chennai, India, and University
of Bergen, Norway) on “Parameterized Algorithms for Geometric Graphs via
Decomposition Theorems,” and the third was given by Frédéric Havet (CNRS, I3S,
Inria, France) on “Unavoidability and Universality of Digraphs.” The abstracts of the
three talks can be found at the beginning of these proceedings.

We wish to thank all those who contributed to the success of WG 2019. While it is
impossible to enumerate them all, this certainly includes the authors for submitting
high-quality papers, the reviewers and the members of the PC for their detailed work,
the speakers for their well-prepared talks, all the participants for their enthusiasm, and
the personnel of the Hotel Vall de Núria for the pleasant conference environment and
facilities. In particular, we would like to thank Núria Riu for all her help concerning the
logistics in Vall de Núria.

We are grateful to all members of the Organizing Committee of WG 2019, namely
Raul Wayne Teixera Lopes (Universidade Federal do Ceará, Brazil), Maximilian
Wötzel (Universitat Politècnica de Catalunya, Spain), and Vasiliki Velona (Universitat
Politècnica de Catalunya and Universitat Pompeu Fabra, Spain).

http://wg2019.sau.thilikos.info/
https://www.google.com/maps/place/Vall+de+N%C3%BAria/@42.4001469,2.1324608,14z/data=!3m1!4b1!4m5!3m4!1s0x12a55d6477fa172d:0x3ee20b8557c35f1e!8m2!3d42.4001488!4d2.1499704
https://www.valldenuria.cat/en/

We are also thankful to Ana Valdés (Creacongresos) for the financial managing
of the event. Special thanks to Charalampos Tampakopoulos for his programming,
development, and hosting services via IsoftCloud. Finally, our deepest gratitude to Mar
Pairó for designing the logo of the conference.

July 2019 Ignasi Sau
Dimitrios M. Thilikos

vi Preface

https://www.creacongresos.com/
https://www.isoftcloud.gr/en

Organization

Program Committee

Hans L. Bodlaender Utrecht University and TU/e, The Netherlands
Mohar Bojan Simon Fraser University, Canada, and University

of Ljubljana, Slovenia
L. Chandran Sunil Indian Institute of Science, India
Maria Chudnovsky Princeton University, USA
Marek Cygan University of Warsaw, Poland
Tınaz Ekim Aşici Bogazici University, Turkey
Jirí Fiala Charles University, Czech Republic
Loukas Georgiadis University of Ioannina, Greece
Petr Golovach Bergen University, Norway
Gregory Gutin Royal Holloway, University of London, UK
Juraj Hromkovic ETH Zurich, Switzerland
Michael Kaufmann University of Tuebingen, Germany
Eun Jung Kim CNRS, LAMSADE, University of Paris Dauphine,

France
Cláudia Linhares Sales Universidade Federal do Ceara, Brazil
Rolf Niedermeier Technische Universität Berlin, Germany
Naomi Nishimura University of Waterloo, Canada
David R. Cheriton University of Waterloo, Canada
Nicolas Nisse Inria, I3S, France
Daniël Paulusma Durham University, UK
Ignaz Rutter Universität Passau, Germany
Ignasi Sau CNRS, LIRMM, Universit de Montpellier, France
Maria Serna Universitat Politecnica de Catalunya and Barcelona

Graduate School of Mathematics, Spain
Mordechai Shalom TelHai College, Israel
Hisao Tamaki Meiji University, Japan
Dimitrios M. Thilikos CNRS, LIRMM, Universit de Montpellier, France,

and NKUA, Greece

Organizing Committee

Raul Wayne Teixera Lopes
Ignasi Sau
Dimitrios M. Thilikos
Vasiliki Velona
Maximilian Wötzel

Organization Entities

AlGCo project-team, LIRMM, Université de Montpellier, CNRS, France.
Departament de Ciències de la Computació, Universitat Politècnica de Catalunya,
Barcelona, Spain.
Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain.
Creacongresos.
IsoftCloud
Hotel Vall de Núria

Additional Reviewers

Adiga, Abhijin
Agrawal, Akanksha
Aichholzer, Oswin
Almeida, Sheila
Angelini, Patrizio
Araujo, Julio
Babu, Jasine
Bandyapadhyay, Sayan
Barrus, Michael
Basavaraju, Manu
Baste, Julien
Bekos, Michael
Belmonte, Rémy
Benevides, Fabricio S.
Bensmail, Julien
Bentert, Matthias
Bentz, Cédric
Berge, Pierre
Bergougnoux, Benjamin
Bezakova, Ivona
Blažej, Václav
Bläsius, Thomas
Boeckenhauer, Hans-Joachim
Bonnet, Édouard
Bonomo, Flavia
Brause, Christoph
Brettell, Nick
Brewster, Richard
Broersma, Hajo
Bulatov, Andrei
Burjons Pujol, Elisabet
Cabello, Sergio
Campelo, Manoel

Campos, Victor
Carvalho, Marcelo
Chakraborty, Diptarka
Chaplick, Steven
Coudert, David
Crespelle, Christophe
Cseh, Ágnes
Dąbrowski, Konrad Kazimierz
de Lima, Paloma
Dell, Holger
Dibek, Cemil
Doczkal, Christian
Dourado, Mitre
Dross, François
Ducoffe, Guillaume
Dvořák, Zdeněk
Eiben, Eduard
Emek, Yuval
Escoffier, Bruno
Felsner, Stefan
Fluschnik, Till
Francis, Mathew
Frei, Fabian
Froese, Vincent
Förster, Henry
Gajarský, Jakub
Galby, Esther
Giannis, Konstantinos
Gonçalves, Daniel
Gronemann, Martin
Gözüpek, Didem
Harrenstein, Paul
Heeger, Klaus

viii Organization

https://www.creacongresos.com/
https://www.isoftcloud.gr/en
https://www.valldenuria.cat/en/

Hoffmann, Michael
Huang, Shenwei
Igarashi, Ayumi
Issac, Davis
Jaffke, Lars
Jansen, Bart M. P.
Kaczmarczyk, Andrzej
Karanasiou, Aika-terini
Kellerhals, Leon
Khan, Arindam
Kindermann, Philipp
Kita, Nanao
Knauer, Kolja
Knop, Dušan
Kolay, Sudeshna
Kolliopoulos, Stavros
Komm, Dennis
Konstantinidis, Athanasios
Kratsch, Stefan
Kwon, O-Joung
Kynčl, Jan
Lahiri, Abhiruk
Lampis, Michael
Le, Van Bang
Lima, Carlos Vinicius
Lochet, William
Luo, Junjie
Majumdar, Diptapriyo
Masařík, Tomáš
McConnell, Ross
Mchedlidze, Tamara
Mertzios, George
Misra, Neeldhara
Mnich, Matthias
Molter, Hendrik
Montecchiani, Fabrizio
Mouawad, Amer
Mukherjee, Joydeep
Nichterlein, André
Nogueira, Loana
Okamoto, Yoshio
Panolan, Fahad
Papadopoulos, Charis
Paschos, Vangelis

Paul, Christophe
Perarnau, Guillem
Pergel, Martin
Petreschi, Rosella
Pilipczuk, Michał
Pradhan, D.
Radermacher, Marcel
Rajendraprasad, Deepak
Reidl, Felix
Renken, Malte
Richerby, David
Rosenke, Christian
Rossmanith, Peter
Rote, Günter
Roth, Marc
Sajith, P.
Sampaio Rocha, Leonardo
Sampaio, Rudini
Schneck, Thomas
Shachnai, Hadas
Siebertz, Sebastian
Sikora, Florian
Silva, Ana
Simonov, Kirill
Singh, Nitin
Soares, Ronan
Souza, Uéverton
Spirkl, Sophie
Spoerhase, Joachim
Stamoulis, Giannos
Stavropoulos, Konstantinos
Steiner, Raphael
Stumpf, Peter
Suchan, Karol
Suchy, Ondrej
Sun, Kevin
Takaoka, Asahi
Tappini, Alessandra
Thomas, Robin
Ueckerdt, Torsten
Uehara, Ryuhei
Unger, Walter
Verbeek, Kevin
Viennot, Laurent

Organization ix

Watrigant, Remi
Watrigant, Rémi
Wehner, David
Wong, Prudence W. H.
Wrochna, Marcin

Xiao, Mingyu
Zaks, Shmuel
Zeman, Peter
Žitnik, Arjana

x Organization

The Long Tradition of WG

WG 1975 U. Pape – Berlin, Germany
WG 1976 H. Noltemeier – Göttingen, Germany
WG 1977 J. Mühlbacher – Linz, Austria
WG 1978 M. Nagl, H. J. Schneider – Castler Feuerstein, Germany
WG 1979 U. Pape – Berlin, Germany
WG 1980 H. Noltemeier – Bad Honnef, Germany
WG 1981 J. Mühlbacher – Linz, Austria
WG 1982 H. J. Schneider, H. Göttler – Neuenkirchen, Germany
WG 1983 M. Nagl, J. Perl – Haus Ohrbeck near Onasbrück, Germany
WG 1984 U. Pape – Berlin, Germany
WG 1985 H. Noltemeier – Castle Schwanberg near Würzburg, Germany
WG 1986 G. Tinhofer, G. Schmidt – Bernried near Munich, Germany
WG 1987 H. Göttler, H. J. Schneider – Kloster Banz near Bamberg, Germany
WG 1988 J. van Leeuwen – Amsterdam, The Netherlands
WG 1989 M. Nagl – Castle Rolduc, The Netherlands
WG 1990 R. H. Möhring – Berlin, Germany
WG 1991 G. Schmidt, R. Berghammer – Fischbachau near Munich, Germany
WG 1992 E. W Mayr – Wiesbaden-Naurod, Germany
WG 1993 J. van Leeuwen – Utrecht, The Netherlands
WG 1994 G. Tinhofer, E. W. Mayr, G. Schmidt – Herrsching near Munich, Germany
WG 1995 M. Nagl – Aachen, Germany
WG 1996 G. Ausiello, A. Marchetti-Spaccamela – Como, Italy
WG 1997 R. H. Möhring – Berlin, Germany
WG 1998 J. Hromkovič, O. Sýkora – Smolenice Castle, Slovakia Republic
WG 1999 P. Widmayer – Ascona, Switzerland
WG 2000 D. Wagner – Konstanz, Germany
WG 2001 A. Brandstädt, Boltenhagen near Rostock, Germany
WG 2002 L. Kucera – Ceský Krumlov, Czech Republic
WG 2003 H. L. Bodlaender – Elspeet, The Netherlands
WG 2004 J. Hromkovič, M. Nagl – Bad Honnef, Germany
WG 2005 D. Kratsch – Metz, France
WG 2006 F. V. Fomin – Bergen, Norway
WG 2007 A. Brandstädt, D. Kratsch, H. Müller – Dornburg near Jena, Germany
WG 2008 H. Broersma, T. Erlebach – Durham, UK
WG 2009 C. Paul, M. Habib – Montpellier, France
WG 2010 D. M. Thilikos – Zarós, Crete, Greece
WG 2011 J. Kratochvíl – Teplá Monastery, West Bohemia, Czech Republic
WG 2012 M. C. Golumbic, G. Morgenstern, M. Stern, A. Levy – Jerusalem, Israel
WG 2013 A. Brandstädt, K. Jansen, R. Reischuk – Lübeck, Germany
WG 2014 D. Kratsch„ I. Todinca – Zarós, Le Domaine de Chalès, Orléans, France

WG 2015 E. W. Mayr – Munich, Germany
WG 2016 P. Heggernes – Istanbul, Turkey
WG 2017 H. L. Bodlaender, G. J. Woeginger – Eindhoven, The Netherlands
WG 2018 A. Brandstädt, E. Köhler, K. Meer – Zarós, Cottbus, Germany
WG 2019 I. Sau, D. M. Thilikos – Vall de Núria, Catalunya, Spain

xii The Long Tradition of WG

Abstracts of Invited Talks

Logic and Random Graphs

Marc Noy

Department of Mathematics, Universitat Politècnica de Catalunya and Barcelona
Graduate School of Mathematics, Edifici Omega, 08034 Barcelona, Spain

marc.noy@upc.edu

Abstract. We survey recent results on limiting probabilities of graph properties
expressible in first order logic and monadic second order logic for two models of
sparse random graphs: the classical model Gðn; pÞ with p ¼ c=n, and random
planar graphs and related classes of graphs.

Unavoidability and Universality of Digraphs

Frédéric Havet

CNRS, I3S, and Inria, Université Côte d’Azur, France

Abstract. A digraph F is n-unadoidable (resp. n-universal) if it is contained in
every tournament of order n (resp. n-chromatic digraph). Well-known theorems
imply that there is an nF such that F is nF-unavoidable (resp. nF-universal) if
and only if F is acyclic, (resp. an oriented forest). However, determining the
smallest nF for which it occurs is a challenging question. In this talk, we survey
the results on unavoidability and universality with an emphasis on oriented
forests. In particular, we shall detail the following new results obtained jointly
with F. Dross: every arborescence of order n with k leaves is ðnþ k � 1Þ-
unavoidable; every tree of order n with k leaves is 3

2 nþ 3
2 k � 2

� �
-unavoidable,

21
8 n� 47

16

� �
-unavoidable. and ðnþ 144k2 � 280kþ 124Þ-unavoidable.

Parameterized Algorithms for Geometric
Graphs via Decomposition Theorems

Saket Saurabh

The Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.res.in

Abstract. Parameterized complexity is one of the most established algorithmic
paradigms to deal with computationally hard problems. In the first two decades,
the field largely focused on problems arising from studies of graphs and net-
works. However, lately the focus has changed substantially and it has started to
permeate into other fields such as computational geometry, and computational
social choice theory. In this talk, we will survey some exciting developments in
the emerging field of parameterized computational geometry through our con-
tributions. We will focus on designing efficient parameterized algorithms on
unit-disk graphs via new graph decomposition theorems.

Contents

Subexponential Algorithms for Variants of Homomorphism Problem
in String Graphs . 1

Karolina Okrasa and Paweł Rzążewski

The 4-Steiner Root Problem . 14
Guillaume Ducoffe

Hamiltonicity Below Dirac’s Condition . 27
Bart M. P. Jansen, László Kozma, and Jesper Nederlof

Maximum Independent Sets in Subcubic Graphs: New Results 40
Ararat Harutyunyan, Michael Lampis, Vadim Lozin,
and Jérôme Monnot

Cyclewidth and the Grid Theorem for Perfect Matching
Width of Bipartite Graphs . 53

Meike Hatzel, Roman Rabinovich, and Sebastian Wiederrecht

Local Approximation of the Maximum Cut in Regular Graphs 66
Étienne Bamas and Louis Esperet

Fixed-Parameter Tractability of Counting Small Minimum (S, T)-Cuts 79
Pierre Bergé, Benjamin Mouscadet, Arpad Rimmel,
and Joanna Tomasik

Fast Breadth-First Search in Still Less Space . 93
Torben Hagerup

A Turing Kernelization Dichotomy for Structural Parameterizations
of F -Minor-Free Deletion . 106

Huib Donkers and Bart M. P. Jansen

Flip Distances Between Graph Orientations . 120
Oswin Aichholzer, Jean Cardinal, Tony Huynh, Kolja Knauer,
Torsten Mütze, Raphael Steiner, and Birgit Vogtenhuber

Graph Functionality. 135
Bogdan Alecu, Aistis Atminas, and Vadim Lozin

On Happy Colorings, Cuts, and Structural Parameterizations 148
Ivan Bliznets and Danil Sagunov

Shortest Reconfiguration of Matchings. 162
Nicolas Bousquet, Tatsuhiko Hatanaka, Takehiro Ito,
and Moritz Mühlenthaler

Travelling on Graphs with Small Highway Dimension 175
Yann Disser, Andreas Emil Feldmann, Max Klimm,
and Jochen Könemann

The Power of Cut-Based Parameters for Computing Edge Disjoint Paths 190
Robert Ganian and Sebastian Ordyniak

Geometric Representations of Dichotomous Ordinal Data 205
Patrizio Angelini, Michael A. Bekos, Martin Gronemann,
and Antonios Symvonis

Linear MIM-Width of Trees . 218
Svein Høgemo, Jan Arne Telle, and Erlend Raa Vågset

Approximating Minimum Dominating Set on String Graphs 232
Dibyayan Chakraborty, Sandip Das, and Joydeep Mukherjee

Classified Rank-Maximal Matchings and Popular Matchings –
Algorithms and Hardness . 244

Meghana Nasre, Prajakta Nimbhorkar, and Nada Pulath

Maximum Matchings and Minimum Blocking Sets in H6-Graphs 258
Therese Biedl, Ahmad Biniaz, Veronika Irvine, Kshitij Jain,
Philipp Kindermann, and Anna Lubiw

A Polynomial-Time Algorithm for the Independent Set Problem
in fP10;C4;C6g-Free Graphs . 271

Edin Husić and Martin Milanič

Independent Set Reconfiguration Parameterized by Modular-Width 285
Rémy Belmonte, Tesshu Hanaka, Michael Lampis, Hirotaka Ono,
and Yota Otachi

Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth 298
Martin Dyer, Catherine Greenhill, and Haiko Müller

Intersection Graphs of Non-crossing Paths . 311
Steven Chaplick

Reconfiguring Hamiltonian Cycles in L-Shaped Grid Graphs 325
Rahnuma Islam Nishat and Sue Whitesides

Color Refinement, Homomorphisms, and Hypergraphs 338
Jan Böker

xx Contents

3-Colorable Planar Graphs Have an Intersection Segment Representation
Using 3 Slopes . 351

Daniel Gonçalves

The Exponential-Time Complexity of Counting (Quantum)
Graph Homomorphisms . 364

Hubie Chen, Radu Curticapean, and Holger Dell

Minimal Separators in Graph Classes Defined by Small Forbidden
Induced Subgraphs . 379

Martin Milanič and Nevena Pivač

Author Index . 393

Contents xxi

Subexponential Algorithms for Variants
of Homomorphism Problem in String

Graphs

Karolina Okrasa and Pawe�l Rz ↪ażewski(B)

Faculty of Mathematics and Information Science, Warsaw University of Technology,
Warsaw, Poland

{k.okrasa,p.rzazewski}@mini.pw.edu.pl

Abstract. We consider the complexity of finding weighted homomor-
phisms from intersection graphs of curves (string graphs) with n vertices
to a fixed graph H. We provide a complete dichotomy for the problem: if
H has no two vertices sharing two common neighbors, then the problem

can be solved in time 2O(n2/3 log n), otherwise there is no algorithm work-
ing in time 2o(n), even in intersection graphs of segments, unless the ETH
fails. This generalizes several known results concerning the complexity
of computational problems in geometric intersection graphs.

Then we consider two variants of graph homomorphism problem,
called locally injective homomorphism and locally bijective homomor-
phism, where we require the homomorphism to be injective or bijective
on the neighborhood of each vertex. We show that for each target graph
H, both problems can always be solved in time 2O(

√
n log n) in string

graphs. For the locally surjective homomorphism, defined analogously,
the situation seems more complicated. We show the dichotomy theo-
rem for simple connected graphs H with maximum degree 2. If H is
isomorphic to P3 or C4, then the existence of a locally surjective homo-
morphism from a string graph with n vertices to H can be decided in

time 2O(n2/3 log3/2 n), otherwise, assuming ETH, the problem cannot be
solved in time 2o(n). As a byproduct, we obtain results concerning the
complexity of variants of homomorphism problem in Pt-free graphs – in
particular, the weighted homomorphism dichotomy, analogous to the one
for string graphs.

Keywords: Graph homomorphism · Subexponential algorithm ·
String graphs · Segment graphs

1 Introduction

The theory of NP-completeness gives us tools to identify problems which are
unlikely to admit polynomial-time algorithms, but it does not give any insight
into possible complexities of problems that are considered hard. For example, the

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 1–13, 2019.
https://doi.org/10.1007/978-3-030-30786-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_1

2 K. Okrasa and P. Rz ↪ażewski

best algorithms we know for most canonical problems like 3-Coloring, Inde-
pendent Set, Dominating Set, Vertex Cover, Hamiltonian Cycle, are
single-exponential, i.e., with complexity 2O(n) (n will always denote the num-
ber of vertices in the input graph). On the other hand, in planar graphs these
problems are still NP-complete, but they admit subexponential algorithms (i.e.,
working in time 2o(n)). Indeed, most canonical problems in planar graphs admit a
certain “square-root phenomenon”, i.e., can be solved in time 2 ˜O(

√
n)1. The core

building block in construction of subexponential algorithms for planar graphs is
the celebrated planar decomposition theorem by Lipton and Tarjan [35], which
asserts that every planar graph has a balanced separator of size O(

√
n).

To argue whether those algorithms are asymptotically optimal and, in gen-
eral, to prove meaningful lower bounds on the complexity of hard problems, we
need a stronger assumption than “P �= NP”. Such a stronger assumption, com-
monly used in complexity theory, is the Exponential Time Hypothesis (ETH) by
Impagliazzo and Paturi [27], which implies that 3-Sat with n variables cannot be
solved in time 2o(n). For example, assuming the ETH, 3-Coloring, Indepen-
dent Set, Dominating Set, Vertex Cover, Hamiltonian Cycle cannot
be solved in time 2o(n) in general graphs or in time 2o(

√
n) in planar graphs. Thus

the algorithms we know are asymptotically tight, unless the ETH fails.
A natural direction of research is to consider restricted graph classes and

try to classify problems solvable in subexponential time. Geometric intersection
graphs provide a rich family of graph classes, which are potentially interesting
from the point of view of fine-grained complexity, as they lie “in between” planar
graphs and all graphs. For a family S of sets, we define its intersection graph,
whose vertices are in one-to-one correspondence to members of S, and two ver-
tices are adjacent if and only if their corresponding sets intersect. We will be
interested in intersection graphs of sets of geometric objects in the plane.

For example, in unit disk graphs, i.e., intersection graphs of unit-radius disks
in the plane, Independent Set, Hamiltonian Cycle, Vertex Cover can be
solved in time 2Õ(

√
n) [1,15,38], and k-Coloring can be solved in time 2Õ(

√
nk)

for every k [3,28]. All these bounds are essentially tight under the ETH, up to
polylogarithmic factors in the exponent. Many algorithms for (unit) disk graphs
use the fact that disk intersection graphs also have small separators. Indeed,
Miller et al. showed that the intersection graph of a family of n disks, such that
at most k of them share a single point, has a balanced separator of size O(

√
nk)

[42]. This was later generalized to intersection graphs of families of arbitrary
convex shapes that are fat, i.e., with bounded ratio of the radius of the smallest
enclosing circle to the radius of the largest enclosed circle [47].

It is perhaps interesting to note that, by the celebrated kissing lemma by
Koebe [29], every planar graph is an intersection graph of interior-disjoint disks.
Note that in such a representation each point is contained in at most two disks,
so the separator theorem for disk graphs implies the planar separator theorem.

In this paper we are interested in intersection graphs of non-fat geometric
objects. In particular, we will investigate string graphs, i.e., intersection graphs

1 In the ˜O(·) notation we suppress polylogarithmic factors.

Subexponential Algorithms for Variants of Homomorphism Problem 3

of continuous curves in the plane (see Kratochv́ıl [30,31]) and segment graphs,
i.e., intersection graphs of straight-line segments (see Kratochv́ıl and Matoušek
[33]). We can restrict the representation even further and consider k-DIR graphs,
which are intersection graphs of segments using at most k distinct slopes [33]. It
is known that planar graphs form another subclass of segment graphs [6,18].

General string separator theorems have been proven by Fox and
Pach [16] and Matoušek [40]. The following, asymptotically tight version, was
shown by Lee [34].

Theorem 1 (Lee [34]). Every string graph with m edges has a balanced sepa-
rator of size O(

√
m). ��

Observe that since planar graphs are string graphs and have linear number
of edges, Theorem 1 implies the planar separator theorem.

Using the string separator theorem, Fox and Pach [17] showed that Inde-

pendent Set (and thus Vertex Cover) can be solved in subexponential time
in string graphs. Combining Theorem1 with their approach gives the complexity
2Õ(n2/3). The algorithm is a simple win-win strategy: either we have a vertex of
large degree and we branch on choosing it to the solution or not, or all degrees
are small and thus there exists a small balanced separator, which allows us for
one step of divide & conquer. Recently, Marx and Pilipczuk [38] used a different
approach to obtain a 2O(

√
n)pO(1) algorithm for Independent Set in string

graphs, where p is the number of geometric vertices in the representation.
While the algorithm of Marx and Pilipczuk seems difficult to generalize to

other problems, Bonnet and Rz ↪ażewski [5] showed that the win-win strategy of
Fox and Pach can be successfully applied to obtain subexponential algorithms for
3-Coloring, Feedback Vertex Set, and Max Induced Matching. Quite
surprisingly, they showed that for every k ≥ 4, k-Coloring cannot be solved
in time 2o(n), even in 2-DIR graphs, unless the ETH fails. They also showed
that assuming the ETH, Dominating Set, Independent Dominating Set,
and Connected Dominating Set do not admit subexponential algorithms in
segment graphs, and Clique does not admit such an algorithm in string graphs.

This shows that the complexity landscape in string and segment graphs
appears to be much more interesting than in planar graphs or intersection graphs
of fat objects. In order to understand which problems can be solved in subexpo-
nential time, it would be especially desirable to obtain full dichotomy theorems
for some natural families of problems, instead of proving ad-hoc results for sin-
gle problems. A natural language to describe these families in a uniform way is
provided by graph homomorphisms. For graphs G and H (with possible loops),
a homomorphism from G to H, denoted by h : G → H, is an edge-preserving
mapping from the vertex set of G to the vertex set of H (see the book by Hell and
Nešetřil [24]). A homomorphism h : G → H will be often called an H-coloring
of G and we will think of vertices of H as colors. Note that the notion of homo-
morphisms is flexible and allows us to impose additional restrictions, such as
vertex/edge lists [10,25] or vertex/edge weights [21]. This way many well-known
problems can be formulated as problems of finding a homomorphism to a cer-
tain graph H, possibly with additional constraints. For example, k-Coloring is

4 K. Okrasa and P. Rz ↪ażewski

equivalent to a homomorphism to Kk, and Independent Set is equivalent to
a weight-maximizing homomorphism to H = 0 1 (numbers denote weights
of vertices of G mapped to particular vertices of H).

Weighted Homomorphisms. Let H = (V (H), E(H)) be a fixed graph
(with possible loops), and consider the following computational problem called
WHom(H). The instance consists of a graph G = (V (G), E(G)), a weight func-
tion w : (V (G) × V (H)) ∪ (E(G) × E(H)) → R, and an integer k. For simplicity
we also allow −∞ as a weight, but this can be avoided by shifting all weights and
using a sufficiently small integer to represent the weight corresponding to a for-
bidden choice. For a homomorphism h : G → H and for any X ⊆ V (G) ∪ E(G)
we define the weight of X by wh(X) =

∑
x∈X w(x, h(x)). The weight of h is

defined as wh(V (G) ∪ E(G)). We ask if there exists a homomorphism from G to
H whose total weight is at least k. It is straightforward to see that this prob-
lem generalizes some well-studied variants of graph homomorphism problem,
including List Homomorphism [10] and Min Cost Homomorphism [21].

We show the following dichotomy theorem for WHom(H) in string graphs.

Theorem 2. (♠)2 Let H be a fixed graph.

(a) If H has no two vertices with two common neighbors, then the WHom(H)
problem can be solved in time 2O(n2/3 log n) for string graphs.

(b) Otherwise, the WHom(H) problem in NP-complete and cannot be solved in
time 2o(n) for segment graphs, unless the ETH fails.

Very recently Groenland et al. [20] observed that if H has no two vertices
with two common neighbors, then WHom(H) can be solved in time 2O(

√
n) in

Pt-free graphs, for every fixed t. Note that there are string graphs with arbitrarily
long induced paths, and there are Pt-free graphs that are not string graphs.

The algorithm proving Theorem2(a) is a slight adaptation of the win-win
approach by Fox and Pach [17], later extended by Bonnet and Rz ↪ażewski [5],
and Groenland et al. [20]. The proof of part (b) is divided into a few cases,
depending on the structure of H. In our reductions we try not to use the whole
expressibility of the WHom(H) problem, but aim to obtain hardness even for
some natural special cases. All hardness proofs follow the same pattern – we
start with a grid-like arrangement of segments, inducing a clique or a biclique,
and then add constant-size gadgets to encode a specific problem. Note that this
requires the objects to be non-fat and gives some intuition why problems in
segment graphs tend to be harder than in intersection graphs of fat objects, and
how the hardest instances look like. Finally, all graphs we construct are actually
Pt-free for some fixed t, which, along with the result of Groenland et al. [20],
gives the following dichotomy theorem for Pt-free graphs.

Theorem 3 (♠). Let H be a fixed graph.

2 Full proofs of theorems marked with ♠ are omitted, but can be found in the full
version of this paper [45].

Subexponential Algorithms for Variants of Homomorphism Problem 5

(a) If H has no two vertices with two common neighbors, then for all fixed t the
WHom(H) problem can be solved in time 2O(

√
n) for Pt-free graphs.

(b) Otherwise, there is t for which WHom(H) is NP-complete and cannot be
solved in time 2o(n) for Pt-free graphs with n vertices, unless the ETH fails.

Locally Constrained Homomorphisms. Interesting variants of graph homo-
morphism problems can be obtained by imposing some additional constrains on
the neighborhood of each vertex. A homomorphism h from G to H is called locally
injective (locally bijective, locally surjective) if for every v ∈ V (G) it induces an
injective (bijective, surjective, resp.) mapping between the neighborhood of v and
the neighborhood of h(v). Locally bijective homomorphisms have been studied
from combinatorial [12,14] and computational point of view [7,11,13,37]. Let
LIHom(H), LBHom(H), and LSHom(H) denote, respectively, the computa-
tional problems of determining the existence of a locally injective, bijective, and
surjective homomorphism from a given graph to H.

Some well-known graph problems can be expressed as locally constrained
homomorphism. For example, locally injective homomorphism to the comple-
ment of the k-vertex path appears to be equivalent to k-L(2, 1)-labeling, i.e.,
a mapping from the vertex set of the input graph to the set {1, 2, . . . , k}, in
which adjacent vertices get labels differing by at least 2, and vertices with a
common neighbor get different labels [19,23]. If H is the complete graph Kk,
then LIHom(H) is exactly the k-coloring of the square of the graph [36,48].
Finally, if H is a complete graph with k vertices, where every vertex has a loop,
then LIHom(H) is equivalent to the injective k-coloring [22,26], in which the
only restriction is that no two vertices with a common neighbor get the same
color.

We show that, unlike WHom(H), both LIHom(H) and LBHom(H) can
always be solved in subexponential time in string graphs.

Theorem 4 (♠). For every fixed graph H, the LIHom(H) problem and the
LBHom(H) problem can be solved in time 2O(

√
n log n) for string graphs.

The LSHom(H) problem appears to be much harder. In particular, we show
the following dichotomy for simple graphs H with Δ(H) ≤ 2 (observe that if
|H| ≤ 2, the problem can trivially be solved in polynomial time).

Theorem 5. Let H be a connected simple graph with Δ(H) ≤ 2 and |H| ≥ 3.

(a) If H ∈ {P3, C4}, then the LSHom(H) problem can be solved in time
2O(n2/3 log3/2 n) for string graphs, even if geometric representation is not
given.

(b) (♠) Otherwise, the LSHom(H) problem cannot be solved in time 2o(n) in
2-DIR graphs, unless the ETH fails.

We also show that LSHom(H) cannot be solved in subexponential time for
H = . Note that none of the graphs H, for which we obtain negative

6 K. Okrasa and P. Rz ↪ażewski

results for LSHom(H) problem, has two vertices with two common neighbors.
Thus they are all “easy” cases of WHom(H).

Representation and Robust Algorithms. When dealing with geometric
intersection graphs, we need to be careful, whether the input consist of the
graph along with the representation, or just the graph (with a promise that a
geometric representation exists). This distinction might be crucial, since finding
a representation is often a computationally hard task.

Recognizing string and segment graphs was shown to be NP-hard by Kra-
tochv́ıl [33], and Kratochv́ıl and Matoušek [32], respectively. However, for a very
long time it was unclear whether these problems are in NP. This is because
there are string graphs, whose every representation requires exponential number
of crossing points [32] and there are segment graphs, whose every representation
requires points with double exponential coordinates [33,41]. Finally, Schaefer,
Sedgwick, and Štefankovič showed that recognizing string graph is in NP [44],
while recognizing segment graph appears to be complete for the complexity class
∃R [39,46]. This is a strong indication that the problem might not be in NP.

For these reasons, it is desirable for an algorithm not to require explicit rep-
resentation. Such algorithms are called robust – they either compute a solution,
or report that the input graph does not belong to the required class. All algo-
rithms presented in the paper are robust, but can be made slightly faster, if the
representation is given. On the other hand, all hardness results hold even if the
graph is given along with the geometric representation.

2 Weighted Homomorphism Problem

For every v ∈ V (G), let NG(v) denote the set of neighbors of v in G and NG(U) =⋃
v∈U NG(v) for any U ⊆ V (G). Let dG(v) = |NG(v)|. If the graph is clear from

the context, we omit the subscript G and simply write N(v) and d(v). We will
say that G (with possible loops) has property (�), if |N(u) ∩ N(v)| ≤ 1 for every
u, v ∈ V (G). Note that if G is loopless, then it has property (�) iff it does not
have C4 as a subgraph. We show that property (�) is essential for the existence
of subexponential algorithms: for all remaining graphs H, an algorithm solving
WHom(H) for string graphs in subexponential time would contradict the ETH.
Observe that we can express the property (�) in terms of forbidden subgraphs.

Observation 6. A graph has property (�) if and only if it does not contain any
of the seven graphs shown on the Fig. 1 as an induced subgraph. ��

To prove Theorem 2(b), it is enough to show hardness of WHom(H) for
graphs H shown in Fig. 1. Indeed, let H be an induced subgraph of H ′ and con-
sider an instance (G,w, k) of WHom(H). Define w′ : V (G) × V (H ′) ∪ E(G) ×
E(H ′) → R as follows: for x ∈ V (G) ∪ E(G), if a ∈ V (H) ∪ E(H), then
w′(x, a) = w(x, a), otherwise w′(x, a) = −∞. Note that (G,w′, k) is an instance
of WHom(H ′), equivalent to the instance (G,w, k) of WHom(H).

Note that the problem of finding a homomorphism to K4 (the graph (g)) is
exactly 4-Coloring. It is known that assuming the ETH, this problem does not
admit a subexponential algorithm, even for 2-DIR graphs [5].

Subexponential Algorithms for Variants of Homomorphism Problem 7

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Characterization of property (�) by forbidden induced subgraphs.

Maximum Cut. In this section, H is the graph (a) from Fig. 1. Note that any
function h : V (G) → V (H) is a homomorphism and thus determining the exis-
tence of a homomorphism with just vertex lists and weights is trivial. However,
it becomes more interesting if we include the edge weights.

We denote the vertices of H by a and b, so we have E(H) = {aa, ab, bb} (see
Fig. 2). We also define the weight function as follows. Let w(v, u) = 0 for every
(v, u) ∈ V (G) × V (H), and for every e ∈ E(G) we set w(e, aa) = w(e, bb) = 0
and w(e, ab) = 1. Note that the value of w(e, f) does not depend on e, so w
is in fact an edge-weighting of H (see Fig. 2(a)). Observe that the weight of
a homomorphism h : G → H equals the number of edges mapped to ab. Thus
finding a homomorphism of maximum weight is equivalent to partitioning the
V (G) into two subsets, so that the number of edges crossing this partition is
maximized. Such a set of edges is called a cut in G and the computational
problem of finding the maximum cut is denoted by Max Cut. It means that for
our result, it is enough to show the hardness of Max Cut on segment graphs.

(a) 10 0
a b

(b)
1

1

0

b

c a

Fig. 2. Graph H with its corresponding weights defined by w in (a) Max Cut and (b)
Odd Cycle Transversal.

Theorem 7 (♠). There is no algorithm solving Max Cut in time 2o(n) for
segment graphs, unless the ETH fails.

Minimum Odd-Cycle Transversal. Now let us consider the case when H
is the graph (b) in Fig. 1. This time we will consider a vertex-weighted variant.
Denote the vertices of H by a, b, c, where a is the vertex with the loop. All edge-
weights are set to 0. For vertex weights, for every v ∈ V (G) we set w(v, b) =
w(v, c) = 1 and w(v, a) = 0. Note that again the weights do not depend on the
choice of v, so we can think of w as a vertex-weighting of H (see Fig. 2(b)).

We observe that finding a homomorphism of maximum weight is equiva-
lent to the problem of finding the maximum number of vertices of G which
induce a bipartite subgraph, or, equivalently, the minimum number of vertices,
whose removal destroys all odd cycles. This problem is known as Odd Cycle

Transversal. We will show the following.

8 K. Okrasa and P. Rz ↪ażewski

Theorem 8 (♠). The Odd Cycle Transversal problem in 2-DIR graphs
with n vertices cannot be solved in time 2o(n), unless the ETH fails.

3 Locally Injective and Locally Bijective Homomorphism

Now let us turn our attention to two other variants of the graph homomorphism
problem, i.e., locally injective and locally bijective homomorphism. Recall that
for a fixed H, the LIHom(H) (LBHom(H), resp.) problem asks if a given graph
G admits a homomorphism h to H with a restriction that for every v ∈ V (G),
the mapping h is injective (bijective, resp.) on the set NG(v). Local injectivity
can be equivalently seen as “no two vertices of G with a common neighbor
may be mapped to the same vertex of H”. Moreover, every locally bijective
homomorphism is also locally injective.

We show that unlike the WHom(H), both LIHom(H) and LBHom(H) can
be solved in subexponential time on string graphs for every H. The crucial
observation is all yes-instances have bounded degree.

Theorem 4 (♠). For every fixed graph H, the LIHom(H) problem and the
LBHom(H) problem can be solved in time 2O(

√
n log n) for string graphs.

As mentioned, locally injective homomorphisms generalize some well-studied
graph labeling problems, so Theorem4 implies the following.

Corollary 9. For any fixed k, (i) the k-L(2, 1)-labeling, (ii) the k-coloring of
the square of a graph, (iii) the injective k-coloring, can be solved in time 2Õ(

√
n)

in string graphs. ��
On the other hand, as every planar graph is a segment graph [6,18], hardness

results for planar graphs can be used to derive ETH-lower bounds for LIHom(H)
– in particular, the following ones follow from the hardness results for k-L(2, 1)-
labeling [9], 7-coloring of the square of a graph [36], and injective 3-coloring [2].

Theorem 10 (Eggemann et al. [9], Ramanathan, Lloyd [36], Bertossi,
Bonuccelli [2]). Unless the ETH fails, there is no algorithm for LIHom(H) in
segment graphs working in time 2o(

√
n), where H is the complement of a path

with at least 4 vertices,a complete graph with 7 vertices,a triangle with additional
loop on its every vertex. ��

4 Locally Surjective Homomorphism

Now we consider the problem of locally surjective homomorphism, denoted by
LSHom(H). For a fixed graph H, the LSHom(H) asks whether a given graph G
admits homomorphism to H, which is surjective on NG(v) for every v ∈ V (G). In
other words, if h(v) = a, then every b ∈ NH(a) must appear on some u ∈ NG(v).
We say that vertex v ∈ V (G) is happy if h(NG(v)) = NH(h(v)). Clearly h is
locally surjective if every vertex of G is happy. We write G

s−→ H to denote a

Subexponential Algorithms for Variants of Homomorphism Problem 9

locally surjective homomorphism from G to H. First, we prove Theorem 5(a),
i.e., show a subexponental algorithm for LSHom(P3) and LSHom(C4).

Let G be an instance of LSHom(P3). We can assume that G does not have
isolated vertices. Also, G is bipartite with bipartition classes X and Y , as other-
wise any homomorphism to P3 cannot exist. Moreover, in any homomorphism,
one of bipartition classes, say Y , will be entirely mapped to the middle vertex
of P3. Note that since no vertex is isolated, vertices of X will always be happy.
Thus G

s−→ P3 if and only if one can color vertices of X with two colors (1 and 3),
so that every vertex from Y has at least one neighbor in each color. We observe
that this is exactly the NAE-Sat problem, where G is an incidence graph of
the input formula. From this we conclude that LSHom(P3) does not have a
subexponential algorithm in general graphs, but is solvable in polynomial time
in planar graphs, since Planar NAE-Sat is in P, see Moret [43]. Moreover, the
list variant of LSHom(P3) in planar graphs in NP-complete, see Dehghan [8].

The win-win approach of Theorem 2(a) cannot be directly applied for
LSHom(P3), as there is no good branching on a high-degree vertex. To show
that LSHom(P3) can be solved in subexponential time in string graphs, we will
use the following result.

Theorem 11 (Lee [34]). There is a constant c > 0 such that for every t ≥ 1,
every Kt,t-free string graph on n vertices has at most c · n · t log t edges. ��

Theorem 12. LSHom(P3) can be solved in time 2O(n2/3 log3/2 n) for string
graph, even if geometric representation is not given.

Proof. We assume that an instance graph G has no isolated vertices and is
bipartite, with bipartition classes X and Y . Note that G is a yes-instance if and
only if there is a homomorphism hX : G

s−→ P3, such that hX(X) = {1, 3} and
hX(Y) = {2}, or homomorphism hY : G

s−→ P3, such that hY (Y) = {1, 3} and
hY (X) = {2}. Let us assume that X is mapped to {1, 3}, the algorithm will be
called twice with roles of X and Y switched. Again, we will solve a more general
problem, in which we define an additional function σ : Y → 2{1,3} and ask for
the existence of a homomorphism h : G → P3, such that σ(y) ⊆ h(NG(y)) for
every y ∈ Y . Clearly, if σ ≡ {1, 3}, then we obtain the LSHom(P3) problem.

First, if |E(G)| ≤ c/3 · n4/3 log n (where c is a constant from Theo-
rem 11), then we can find a balanced separator S of size O(n2/3 log1/2 n) in time
2O(n2/3 log3/2 n). Denote by V1, V2 the sets such that V (G) = V1 �V2 �S and there
is no V1-V2-path in G − S. We exhaustively guess h(x) for every x ∈ S ∩ X and
the partition σ1 � σ2 of σ(y) \ h(N(y) ∩ S) for every y ∈ S ∩ Y . Then, for every
possibility, we consider graphs G1 := G[V1∪S] and G2 := G[V2∪S], in which ver-
tices of S are already colored. For every y ∈ S∩Y we set σ(y) = σ1 if y ∈ V (G1),
otherwise σ(y) = σ2. Then, for every x ∈ S ∩ X, we remove h(x) from σ(y), for
y ∈ N(x), and finally we remove x from the instance. If there exists y for which
σ(y) = φ, we also remove y. If any isolated vertex x ∈ X appears, we remove it
too, as it means that σ(y) of every y ∈ N(x) was already empty, so the color of x
does not matter. We call the algorithm recursively for G1 and G2, together with

10 K. Okrasa and P. Rz ↪ażewski

their corresponding functions σ. Note that G1 or G2 may contain an isolated
vertex y ∈ Y with σ(y) �= φ, in this case we terminate the current recursive call.
The total number of recursive calls is 2|X∩S|4|Y ∩S| = 2O(n2/3 log1/2 n) and the
overall complexity of this step is 2O(n2/3 log3/2 n).

If G has more than c/3 · n4/3 log n edges, then, by Theorem 11, it has a
bipartite subgraph Kn1/3,n1/3 with bipartition classes X ′ ⊆ X and Y ′ ⊆ Y .
We find it exhaustively in time nO(n1/3) = 2O(n1/3 log n). We branch on three
possibilities. Either we set h(x) = 1 for every x ∈ X ′, or h(x) = 3 for every
x ∈ X ′, or we choose x1, x2 ∈ X ′ and set h(x1) = 1 and h(x2) = 3. In first two
cases we proceed with the graph G − X ′ (and remove h(X ′) from σ(y) of every
y ∈ N(X ′)), and in the last case we remove Y ′, together with x1 and x2 (also
adjusting the function σ for their neighbors), as all elements of Y ′ are happy.
Observe that the complexity of this step is F (n) ≤ 2O(n1/3 log n)+2F (n−n1/3)+
n2/3F (n − n1/3) ≤ 2O(n2/3 log n) and so it the total complexity. ��

Using Theorem 12 we can show an analogous result for LSHom(C4).

Theorem 13. LSHom(C4) can be solved in time 2O(n2/3 log3/2 n) for string graph
on n vertices, even if a geometric representation is not given.

Proof. Again, we assume that an instance graph G is bipartite with bipartition
classes X and Y , without isolated vertices. Clearly in any solution h we either
have h(X) = {1, 3} and h(Y) = {2, 4}, or h(X) = {2, 4} and h(Y) = {1, 3}.

Claim 1 (♠). There is h : G
s−→ C4 such that h(X) = {1, 3} iff there are

h1, h2 : G
s−→ P3 for which h1(X) = h2(Y) = {1, 3} and h1(Y) = h2(X) = {2}.

To solve LSHom(C4), we run the algorithm from Theorem12 twice, switching
the roles of X and Y . We return true if both calls return true. ��

As stated in Theorem 5(b), the existence of subexponential algorithms is
unlikely for simple graphs H with Δ(H) ≤ 2 and |H| ≥ 3, different than
P3 and C4.

5 Consequences for Pt-free Graphs

Let us point out that the graphs constructed in our hardness reductions are Pt-
free, for some constant t. This implies the statement (b) of Theorem 3. Recall
that the statement (a) follows from the recent result by Groenland et al. [20].

Theorem 3 (♠). Let H be a fixed graph.

(a) If H has no two vertices with two common neighbors, then the WHom(H)
problem can be solved in time 2O(n2/3 log n) for string graphs.

(b) Otherwise, the WHom(H) problem in NP-complete and cannot be solved
in time 2o(n) for segment graphs, unless the ETH fails.

Subexponential Algorithms for Variants of Homomorphism Problem 11

In particular, we obtain the following result, answering an open problem of
Bonamy et al. [4].

Corollary 14. Odd Cycle Transversal problem is NP-complete and cannot
be solved in time 2o(n) in P13-free graphs, unless the ETH fails. ��

Bonamy et al. [4] considered also a closely related problem Independent

Odd Cycle Transversal, where we additionally require that the removed set
of vertices is independent. Interestingly, the hardness result of Corollary 14 does
not carry over to this problem. Indeed, Independent Odd Cycle Transver-

sal is equivalent to finding a 3-coloring of the input graph, in which the size
of one color class is minimized. It is straightforward to see that this problem
can be stated as WHom(K3), where the weight associated with one vertex is 0,
the weights associated with two other vertices are 1, and all edge weights are 0.
Thus, by Theorem 3, we obtain the following.

Corollary 15. For every fixed t, the Independent Odd Cycle Transver-

sal problem can be solved in time 2O(
√

n) for Pt-free graphs on n vertices. ��

6 Further Research Directions

Let us point out some directions for further research. First, it would be inter-
esting to obtain a dichotomy for the problems of finding a homomorphism and
a list homomorphism from a string graph to a fixed graph H.

Next, we think that obtaining a dichotomy for LSHom(H) in string graphs
is an exciting (and probably difficult) task. Let us mention that the NP-hardness
proof by Fiala and Paulusma [13] implies that if H is a connected graph with
at least two edges, then LSHom(H) cannot be solved in subexponential time in
general graphs.

Finally, observe that Theorems 12 and 13 do not directly generalize to Pt-free
graphs, as we do not know an analog of Theorem11 for this class of graphs. It
would be very interesting to know whether such a result can be proven, or at
least to reprove Theorems 12 and 13 for Pt-free graphs using some other tools.

References

1. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms 52(2), 134–151 (2004)

2. Bertossi, A.A., Bonuccelli, M.A.: Code assignment for hidden terminal interference
avoidance in multihop packet radio networks. IEEE/ACM Transact. Netw. 3(4),
441–449 (1995)

3. Biró, C., Bonnet, É., Marx, D., Miltzow, T., Rz ↪ażewski, P.: Fine-grained complexity
of coloring unit disks and balls. J. of Comp. Geom. 9, 47–80 (2018)

4. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Indepen-
dent feedback vertex set for P5-free graphs. Algorithmica 81(4), 1342–1369 (2019)

5. Bonnet, É., Rz ↪ażewski, P.: Optimality program in segment and string graphs. Algo-
rithmica 81(7), 3047–3073 (2019)

12 K. Okrasa and P. Rz ↪ażewski

6. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of seg-
ments in the plane: extended abstract. In: Proceedings of STOC 2009, pp. 631–638
(2009)

7. Chaplick, S., Fiala, J., van’t Hof, P., Paulusma, D., Tesar, M.: Locally constrained
homomorphisms on graphs of bounded treewidth and bounded degree. Theor.
Comput. Sci. 590, 86–95 (2015)

8. Dehghan, A.: On strongly planar not-all-equal 3SAT. J. Comb. Optim. 32(3), 721–
724 (2016)

9. Eggemann, N., Havet, F., Noble, S.D.: k-L(2, 1)-labelling for planar graphs is NP-
complete for k ≥ 4. Disc. Appl. Math. 158(16), 1777–1788 (2010)

10. Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Com-
binatorica 19(4), 487–505 (1999)

11. Fiala, J., Kratochv́ıl, J.: Locally injective graph homomorphism: lists guarantee
dichotomy. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 15–26. Springer,
Heidelberg (2006). https://doi.org/10.1007/11917496 2

12. Fiala, J., Maxová, J.: Cantor-Bernstein type theorem for locally constrained graph
homomorphisms. Eur. J. Comb. 27(7), 1111–1116 (2006)

13. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment
problem. Theor. Comput. Sci. 349(1), 67–81 (2005)

14. Fiala, J., Paulusma, D., Telle, J.A.: Matrix and graph orders derived from locally
constrained graph homomorphisms. In: J ↪edrzejowicz, J., Szepietowski, A. (eds.)
MFCS 2005. LNCS, vol. 3618, pp. 340–351. Springer, Heidelberg (2005). https://
doi.org/10.1007/11549345 30

15. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: Finding, hitting
and packing cycles in sub exponential time on unit disk graphs. In: Proceedings of
ICALP 2017, LIPIcs, vol. 80, pp. 65:1–65:15 (2017)

16. Fox, J., Pach, J.: A separator theorem for string graphs and its applications. Comb.
Probab. Comput. 19(3), 371–390 (2010)

17. Fox, J., Pach, J.: Computing the independence number of intersection graphs. In:
Proceedings of SODA 2011, pp. 1161–1165 (2011)

18. Gonçalves, D., Isenmann, L., Pennarun, C.: Planar Graphs as L-intersection or
L-contact graphs. In: Proceedings of SODA 2018, pp. 172–184 (2018)

19. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J.
Dis. Math. 5(4), 586–595 (1992)

20. Groenland, C., Okrasa, K., Rz ↪ażewski, P., Scott, A., Seymour, P., Spirkl, S.: H-
colouring Pt-free graphs in sub exponential time. Discrete Applied Mathematics
(2019, to appear)

21. Gutin, G.Z., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph
homomorphisms. Eur. J. Comb. 29(4), 900–911 (2008)

22. Hahn, G., Kratochv́ıl, J., Sirán, J., Sotteau, D.: On the injective chromatic number
of graphs. Disc. Math. 256(1–2), 179–192 (2002)

23. Havet, F., Klazar, M., Kratochv́ıl, J., Kratsch, D., Liedloff, M.: Exact algorithms
for L(2, 1)-labeling of graphs. Algorithmica 59(2), 169–194 (2011)

24. Hell, P., Nesetril, J.: Graphs and Homomorphisms. Oxford University Press, Oxford
(2004)

25. Hell, P., Rafiey, A.: The dichotomy of list homomorphisms for digraphs. In: Pro-
ceedings of SODA 2011, pp. 1703–1713 (2011)

26. Hell, P., Raspaud, A., Stacho, J.: On injective colourings of chordal graphs. In:
Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS,
vol. 4957, pp. 520–530. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78773-0 45

https://doi.org/10.1007/11917496_2
https://doi.org/10.1007/11549345_30
https://doi.org/10.1007/11549345_30
https://doi.org/10.1007/978-3-540-78773-0_45
https://doi.org/10.1007/978-3-540-78773-0_45

Subexponential Algorithms for Variants of Homomorphism Problem 13

27. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

28. Kisfaludi-Bak, S., van der Zanden, T.C.: On the exact complexity of hamiltonian
cycle and q-colouring in disk graphs. In: Fotakis, D., Pagourtzis, A., Paschos, V.T.
(eds.) CIAC 2017. LNCS, vol. 10236, pp. 369–380. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57586-5 31

29. Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhand-
lungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-
Physikalische Klasse 88, 141–164 (1936)

30. Kratochv́ıl, J.: String graphs. I. The number of critical nonstring graphs is infinite.
J. Comb. Theory Ser. B 52(1), 53–66 (1991)

31. Kratochv́ıl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Comb.
Theory Ser. B 52(1), 67–78 (1991)

32. Kratochv́ıl, J., Matoušek, J.: String graphs requiring exponential representations.
J. Comb. Theory Ser. B 53(1), 1–4 (1991)

33. Kratochv́ıl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory
Ser. B 62(2), 289–315 (1994)

34. Lee, J.R.: Separators in region intersection graphs. In: Proceedings of ITCSC 2017,
pp. 1:1–1:8 (2017)

35. Lipton, R., Tarjan, R.: A separator theorem for planar graphs. SIAM J. on Appl.
Math. 36(2), 177–189 (1979)

36. Lloyd, E.L., Ramanathan, S.: On the complexity of distance-2 coloring. In: Pro-
ceedings of ICCI 1992, pp. 71–74 (1992)

37. MacGillivray, G., Swarts, J.: The complexity of locally injective homomorphisms.
Disc. Math. 310(20), 2685–2696 (2010)

38. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility loca-
tion problems using voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015.
LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48350-3 72

39. Matoušek, J.: Intersection graphs of segments and ∃R. CoRR, abs/1406.2636 (2014)
40. Matoušek, J.: Near-optimal separators in string graphs. Comb. Prob. Comput.

23(1), 135–139 (2014)
41. McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. J.

Comb. Theory Ser. B 103(1), 114–143 (2013)
42. Miller, G.L., Teng, S., Thurston, W.P., Vavasis, S.A.: Separators for sphere-

packings and nearest neighbor graphs. J. ACM 44(1), 1–29 (1997)
43. Moret, B.M.: Planar NAE3SAT is in P. SIGACT News 19(2), 51–54 (1988)
44. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. J.

Comput. Syst. Sci. 67(2), 365–380 (2003)
45. Okrasa, K., Rz ↪ażewski, P.: Subexponential algorithms for variants of homomor-

phism problem in string graphs. CoRR, abs/1809.09345 (2018)
46. Schaefer, M., Štefankovič, D.: Fixed points, nash equilibria, and the existential

theory of the reals. Theory Comput. Syst. 60(2), 172–193 (2017)
47. Smith, W.D., Wormald, N.C.: Geometric separator theorems and applications. In:

Proceedings of FOCS 1998, pp. 232–243 (1998)
48. van den Heuvel, J., McGuinness, S.: Coloring the square of a planar graph. J.

Graph Theory 42(2), 110–124 (2003)

https://doi.org/10.1007/978-3-319-57586-5_31
https://doi.org/10.1007/978-3-319-57586-5_31
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1007/978-3-662-48350-3_72

The 4-Steiner Root Problem

Guillaume Ducoffe1,2,3(B)

1 Faculty of Mathematics and Computer Science, University of Bucharest,
Bucharest, Romania

2 The Research Institute of the University of Bucharest ICUB,
Bucharest, Romania

3 National Institute for Research and Development in Informatics,
Bucharest, Romania

guillaume.ducoffe@ici.ro

Abstract. The kth-power of a graph G is obtained by adding an edge
between every two distinct vertices at a distance ≤ k in G. We call G a
k-Steiner power if it is an induced subgraph of the kth-power of some tree
T. In particular, G is a k-leaf power if all vertices in V (G) are leaf-nodes of
T. Our main contribution is a polynomial-time recognition algorithm of
4-Steiner powers, thereby extending the decade-year-old results of (Lin,
Kearney and Jiang, ISAAC’00) for k = 1, 2 and (Chang and Ko, WG’07)
for k = 3. As a byproduct, we give the first known polynomial-time
recognition algorithm for 6-leaf powers. Our work combines several new
algorithmic ideas that help us overcome the previous limitations on the
usual dynamic programming approach for these problems.

Keywords: k-Leaf powers · k-Steiner powers · Clique-tree ·
Clique-arrangement · Dynamic programming · Maximum matching

1 Introduction

A basic problem in computational biology is, given some set of species and a
dissimilarity measure in order to compare them, find a phylogenetic tree that
explains their respective evolution. Namely, such a rooted tree starts from a
common ancestor and branches every time there is a separation between at least
two of the species we consider. In the end, the leaves of the phylogenetic tree
should exactly represent our given set of species. We study a related problem
that has attracted some attention in Graph theory:

Problem 1 (k-Leaf Power).

Input: a graph G = (V,E).
Question: Is there a tree T whose leaf-nodes are the vertices in V and such

that uv ∈ E ⇐⇒ distT(u, v) ≤ k?

This work was supported by an ICUB Fellowship for Young Researchers and a grant
of Romanian Ministry of Research and Innovation CCCDI-UEFISCDI. project no.
17PCCDI/2018.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 14–26, 2019.
https://doi.org/10.1007/978-3-030-30786-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_2

The 4-Steiner Root Problem 15

The yes-instances of Problem 1 are called k-leaf powers. Their structural and
algorithmic properties have been intensively studied (e.g., see [1,8,12] and the
papers cited therein). However, the complexity of k-Leaf Power is a longstand-
ing open problem. Very recently, parameterized (FPT) algorithms were proposed
for every fixed k on the graphs with degeneracy at most d, where the param-
eter is k + d [11]. For general graphs, polynomial-time recognition algorithms
are known only for k ≤ 5 [4,6,9]. Characterizations are known only for k ≤ 4.
Several variations of k-leaf powers were introduced in the literature [5,7,9,13].
In this work, we consider k-Steiner powers: a natural relaxation of k-leaf powers
where the vertices in the graph may also be internal nodes in the tree T. Interest-
ingly, there is a linear-time reduction from k-Leaf Power to (k − 2)-Steiner
Power [6]. However, there only exist polynomial-time recognition algorithms
for k-Steiner powers for k ≤ 3 [9,13].

Our Results. We obtain the first improvement on the recognition of k-Steiner
powers in a decade, by solving the case k = 4. Combining our main result with
the aforementioned reduction from k-Leaf Power to (k − 2)-Steiner Power
[6], we also improve the state of the art for k-leaf powers.

Theorem 1. There is a polynomial-time algorithm for the problems 4-Steiner
Power and 6-Leaf Power. For the yes-instances, this algorithm also outputs
a corresponding tree T.

Proving this above Theorem 1, while it may look like a modest improvement
in our understanding of the k-Leaf Power and k-Steiner Power problems,
was technically challenging. In the full version of this paper, we further discuss
why the dominant approach for k-Steiner Power, based on dynamic program-
ming, was already showing its limitations with 4-Steiner Power. We so believe
that one of the main merits of our work is to bring several new ideas in order to
tackle with these aforementioned limitations. As such, we expect further uses of
these ideas in the study of k-leaf powers and their relatives.

Organization of the Paper. We refer to Sect. 2 for any missing definition in
what follows. As our starting point we restrict our study to chordal graphs and
strongly chordal graphs, that are two well-known classes in algorithmic graph
theory of which k-Steiner powers form a particular subclass [1]. Doing so, we
can use various properties of these classes of graphs, such as: the existence of a
tree-like representation of chordal graphs, that is called a clique-tree [2] and is
commonly used in the design of dynamic programming algorithms on this class
of graphs; and an auxiliary data structure which is called “clique arrangement”
and is polynomial-time computable on strongly chordal graphs [16]. Roughly,
this clique arrangement encodes all possible intersections of a subset of maximal
cliques in a graph. It is worth noticing that clique arrangements were introduced
in the same paper as leaf powers, under the different name of “clique graph”
[17].

Given a k-Steiner power G, let us call k-Steiner root a corresponding tree T.
In Sect. 3 we present new results on the structure of k-Steiner roots that we use

16 G. Ducoffe

in the analysis of our algorithm. Specifically, we show in Sect. 3.1 that in any
k-Steiner root T of a graph G, any intersection of maximal cliques in G must
be contained in a particular subtree where no other vertex of G can be present.
Furthermore, the inclusion relationships between these “clique-intersections” in
G are somewhat reflected by the diameter of their corresponding subtrees in T.
This extends prior results from [9,17]. Then, we focus in Sect. 3.2 on the case k =
4. For every clique-intersection X in a chordal graph G, we classify the vertices in
X into two main categories: “free” and “constrained”, that depend on the other
clique-intersections these vertices are contained in. Our study shows that free
vertices cause a combinatorial explosion of the number of partial solutions we
should store in a naive dynamic programming algorithm. However, we overcome
this issue by proving that there always exists a “well-structured” 4-Steiner root
where such free vertices are leaves with very special properties.

Sections 4, 5, 6 and 7 are devoted to the main steps of the algorithm. We start
by presenting a constructive proof of a rooted clique-tree with quite constrained
properties in Sect. 4. Roughly we carefully control the ancestor/descendant rela-
tionships between the edges that are labelled by different minimal separators of
the graph. These technicalities are the cornerstone of our approach in Sect. 6
in order to bound the number of partial solutions that we should store in our
dynamic programming algorithm.

Then given our special rooted clique-tree TG, we recall that the maximal
cliques and the minimal separators of G can be mapped to the nodes and edges
of TG, respectively. For every node and edge in TG, we consider the corresponding
clique-intersection in G and we precompute by dynamic programming all possible
subtrees to which it could be mapped in some well-structured 4-Steiner root of
G. Of particular importance is Sect. 5.1 where for any minimal separator S, we
give a polynomial-time algorithm in order to generate all the candidate smallest
subtrees that could contain S in a well-structured 4-Steiner root of G. The result
is then easily extended to the maximal cliques that appear as leaves in our
clique-tree (Sect. 5.2). Correctness of these two first parts follows from Sect. 3.2.
Finally, in Sect. 5.3 we give a more complicated representation of a family of
candidate subtrees T〈Ki〉 for all the other maximal cliques Ki. This part is based
on a careful analysis of clique-intersections in Ki and several additional tricks.
Roughly, our representation in Sect. 5.3 is composed of partially constructed
subtrees and of “problematic” subsets that need to be inserted to these subtrees
in order to complete the construction. The exact way these insertions must be
done is postponed until the very end of the algorithm (Sect. 7).

Section 6 is devoted to the encoding of partial solutions in our dynamic pro-
gramming. Specifically, instead of computing partial solutions at each node of the
clique-tree and storing their encodings, we rather pre-compute a polynomial-size
subset of allowed encodings for each node. Then, the problem becomes to decide
whether given such an encoding, there exists a corresponding partial solution.
We formalize our approach by introducing an intermediate problem where the
goal is to compute a 4-Steiner root with additional constraints on its structure
and the distances between some sets of nodes. Finally, we detail in Sect. 7 the res-

The 4-Steiner Root Problem 17

olution of our intermediate problem, thereby completing the presentation of our
algorithm. An all new contribution in this part is a greedy procedure, based on
Maximum-Weight Matching, in order to ensure some distances’ constraints
are satisfied by the solutions we generate during the algorithm.

This is only an extended abstract. Full proofs can be found in our technical
report [10]. Due to their intricacy we gave up optimizing the running-time of our
algorithm. A very rough upper bound would be O(n16m5)-time.

2 Preliminaries

For standard graph terminology, see [3]. All graphs in this study are finite,
simple, unweighted and connected. Given a graph G = (V,E), let n := |V | and
m := |E|. The neighbourhood of a vertex v ∈ V is defined as NG(v) := {u ∈
V | uv ∈ E}. By extension, we define the neighbourhood of a set S ⊆ V as
NG(S) :=

(⋃
v∈S NG(v)

)
\ S. The subgraph induced by any subset U ⊆ V is

denoted by G[U]. For every u, v ∈ V , we denote by distG(u, v) the minimum
length (number of edges) of a uv-path. The eccentricity of vertex v is defined as
eccG(v) := maxu∈V distG(u, v). The radius and the diameter of G are defined,
respectively, as rad(G) := minv∈V eccG(v) and diam(G) := maxv∈V eccG(v). We
denote by C (G) the center of G, a.k.a. the vertices with minimum eccentricity.

Steiner Roots. The kth-power of G, denoted Gk has same vertex-set V as G
and edge-set {uv | 0 < distG(u, v) ≤ k}. If there is some tree T such that G
is an induced subgraph of T k then, we call G a k-Steiner power and T a k-
Steiner root of G. Nodes in V (G) are called real, whereas nodes in V (T) \ V (G)
are called Steiner. We so define, for any S ⊆ V (T): Real(S) := S ∩ V (G) and
Steiner(S) := S \ V (G). Two (sub)trees T, T ′ are Steiner-equivalent, denoted
T ≡G T ′, if and only if Real(T) = Real(T ′) = S and there exists an isomorphism
ι : V (T) → V (T ′) such that ι(v) = v for any v ∈ S (the trees are equal up to an
appropriate identification of their Steiner nodes). Finally, given a node-subset
X ⊆ V (T), T〈X〉 is the smallest subtree of T such that X ⊆ V (T〈X〉).

(Strongly) Chordal Graphs. A clique-tree is a tree TG whose nodes are the max-
imal cliques of G and such that for every v ∈ V , the maximal cliques containing
v induce a subtree of TG. A graph G = (V,E) is called chordal if and only if
it has a clique-tree. Moreover if G is chordal then, we can construct a clique-
tree for G in O(m)-time [2]. An uv-separator is a subset S ⊆ V \ {u, v} such
that u and v are disconnected in G \ S. If in addition, no strict subset of S is
an uv-separator then, S is a minimal uv-separator. A minimal separator of G
is a minimal uv-separator for some u, v ∈ V . For a chordal graph G and any
clique-tree TG of G, S is a minimal separator of G if and only if there exist two
maximal cliques Ki,Kj such that: KiKj ∈ E(TG) and Ki ∩ Kj = S [2]. We
define ES (TG) := {KiKj ∈ E(TG) | Ki ∩ Kj = S} (edges labeled by S).

A clique-intersection of G is the intersection of a subset of maximal cliques in
G. The families of all clique-intersections, maximal cliques and minimal separa-
tors of G are denoted by X (G), K (G) and S (G), respectively. For a superclass

18 G. Ducoffe

of k-Steiner powers known as strongly chordal graphs, the family X (G) has poly-
nomial size and can be computed in polynomial time [15].

Step 0 (Initialization). Given G = (V,E), we check whether G is strongly
chordal. If this is not the case then, G cannot be a 4-Steiner power, and we stop.
Otherwise we compute X (G).

3 Structure Theorems

Some relationships between k-Steiner roots and clique-intersections are proved
in Sect. 3.1. These structural results are the cornerstone of our algorithm and its
analysis. Then, we refine our results for the special case k = 4 in Sect. 3.2.

3.1 Playing with the Root

The following result is a generalization of [9, Lemma 1] to any k. We prove it by
using some intricate properties of the eccentricity function on trees [14].

Theorem 2. Given G = (V,E) and T any k-Steiner root of G, the following
properties hold for any clique-intersection X ∈ X (G):

• We have Real(T〈X〉) = X and diam(T〈X〉) ≤ k;
• If T ′ ⊃ T〈X〉 then, either X = Real(T ′) or diam(T ′) > diam(T〈X〉);
• If k = 2k′ is even then, for any two different maximal cliques Ki,Kj ∈ K (G)

we have C (T〈Ki〉) ∩ C (T〈Kj〉) = ∅.

3.2 Well-Structured 4-Steiner Roots

For k = 4, we introduce new notions which only depend on the clique-
intersections of G. Roughly, given X ∈ X (G) and an arbitrary root T, we intro-
duce some operations in order to modify T〈X〉. Doing so, we wish to force this
subtree to have some more structure, thereby avoiding a combinatorial explo-
sion of the number of possibilities to consider. Therefore, we carefully study
the situations when a vertex v ∈ X may not be arbitrarily movable inside
T〈X〉 (in which case we call v X-constrained). The most natural case is when
there is a X ′ ∈ X (G) s.t. X ′ ⊂ X, v ∈ X ′ and |X ′| ≥ 2 (v is internally
X-constrained)1. However, more subtle cases occur when X is a minimal sepa-
rator, or more generally X is contained in some larger clique-intersection. We
say that v is (X,X1,X2)-sandwiched if X1,X2 ∈ X (G) are s.t. X ⊂ X1 and
X ∩ X2 = {v} ⊂ X1 ∩ X2. Our study reveals that X-constrained vertices have a
very rigid structure. Finally, a vertex that does not fall in one of these two above
cases is called X-free. We prove that we can always force the X-free vertices
to be leaves of the subtree T〈X〉, thereby considerably reducing the number of
possibilities for the latter.
1 When X is a maximal clique, the internally X-constrained vertices can be charac-

terized in terms of simplicial vertices and a subset of the cut-vertices.

The 4-Steiner Root Problem 19

Theorem 3. Let G = (V,E) be a 4-Steiner power. There always exists a well-
structured 4-Steiner root T of G where, for any clique-intersection X ∈ X (G):

• all the X-free vertices are leaves of T〈X〉 with maximum eccentricity
diam(T〈X〉);

• there is a node c ∈ C (T〈X〉) such that for every X-free vertex v, except maybe
one, distT(v, c) = distT(v, C (T〈X〉));

• all the internal nodes on a path between C (T〈X〉) and a X-free vertex are
Steiner nodes of degree two;

• and if X ∈ K (G) and it has a X-free vertex then, diam(T〈X〉) = 4.

4 A Special Rooted Clique-Tree

We now present Step 1 of our algorithm so as to show all the steps in chrono-
logical order. However, please note that in the next Sect. 5, any clique-tree could
be used. Indeed, we will only start using the peculiar properties of our rooted
clique-tree in Sect. 6.

Step 1 (Construction of the rooted clique-tree). We construct a clique-
tree TG of G that we root in some K0 ∈ K (G). In order to give the main
intuition behind its construction, let us consider an arbitrary maximal clique
Ki that is not the root, and its parent node Kp(i). Let Gi be induced by the
maximal cliques in the subtree of TG rooted at Ki. If G has a 4-Steiner root
then, by heredity, so does Gi. Roughly, we would like to bound the number of
partial solutions for Gi that we will need to store for our dynamic programming
algorithm. By Theorem 3, one first step for doing so would be to force most
vertices in Si := Ki ∩ Kp(i) to be Ki-free in the subgraph Gi. More specifically,
for every descendant Kj of Ki in TG we would like to impose Sj �⊆ Si and
Si �⊆ Sj

2. However, both objectives are conflicting and so, we need to find a
trade-off. Admittedly, our proposed solution is quite technical.

Given a clique-tree TG of G = (V,E), we say that a minimal separator S
is weakly TG-convergent if there exists some maximal clique KS that is incident
to all edges in

⋃
S′,S⊂S′ ES′ (TG). S is termed TG-convergent if it is weakly TG-

convergent and the maximal clique KS is also incident to all edges in ES (TG).
The relationship between these notions and 4-Steiner roots is as follows:

Lemma 1. Let T be any 4-Steiner root of G, and let S ∈ S (G). If T〈S〉 is a
non-edge star then, S is weakly TG-convergent for any clique-tree TG of G.

Sketch Proof. We may assume that S is strictly contained in some minimal sep-
arator S′. By Theorem 2, T〈S′〉 has diameter three. This implies C (T〈S〉) ⊂
C (T〈S′〉). Furthermore, we can prove that S′ is contained in exactly two maxi-
mal cliques Ki,Kj and C (T〈Ki〉)∪C (T〈Kj〉) = C (T〈S′〉). Let us assume w.l.o.g.

2 Observe that if Sj ⊂ Si, and |Sj | ≥ 2, then the vertices of Sj are Si-constrained.

20 G. Ducoffe

that C (T〈S〉) = C (T〈Ki〉). Then, any minimal separator S′′ that strictly con-
tains S is contained in Ki and one other maximal clique KS′′ . Let TG be a
clique-tree of G. We have ES′′ (TG) �= ∅, and so KiKS′′ ∈ E(TG). By setting
KS := Ki, we get that S is weakly TG-convergent. ��

Therefore, weak convergence is a necessary condition for a S ∈ S (G) to be
contained in a star in some 4-Steiner root (that is the hardest case to deal with
in our algorithm). If furthermore there is convergence then, we needn’t store any
costly information about the separators that strictly contain S in the encoding of
partial solutions. Indeed, any “inclusion issue” between S and these separators
can be handled with when we process the maximal clique KS . So, we want to
force weak convergence to imply convergence. Our construction in what follows
applies to any S of size at least three. – For smaller separators, we can use much
simpler counting arguments in order to bound the number of possible partial
solutions that we will need to consider by a constant. See Sect. 6 for details. –

Theorem 4. For any chordal graph G, we can compute in polynomial time a
rooted clique-tree TG where, for any Si := Ki ∩ Kp(i):

• If Si is weakly TG-convergent and |Si| ≥ 3 then, Si is TG-convergent;
• Any minimal separator of Gi that is contained in Si is TG-convergent, has at

least three vertices and is strictly contained in a minimal separator of Gi.

5 A Family of Subtrees for the Clique-Intersections

Step 2 (Candidate set generation). We exploit a result of Sect. 3.1 which
states that, for any 4-Steiner root T of G and for any clique-intersection X, the
smallest subtree containing X does not contain any other real nodes. Then,
our goal is, for every X ∈ X (G), to compute a polynomial-size family TX of
“candidate subtrees” whose real nodes are exactly X. Intuitively, TX should
contain all possibilities for T〈X〉 in a well-structured 4-Steiner root T (such a
root must satisfy additional properties given in Sect. 3.2). Note that we only
need to compute this above family for minimal separators and maximal cliques.

5.1 Case of Minimal Separators

The following result serves as a brick-basis construction for computing all the
other families of candidate subtrees.

Theorem 5. In O(n5m)-time we can construct a collection (TS)S∈S(G) such
that, for any well-structured 4-Steiner root T of G, and for any S ∈ S (G), T〈S〉
is Steiner-equivalent to some subtree in TS.

Sketch Proof. Let us describe the main difficulty we had to face on in order to
prove this above result. Given S ∈ S (G) the difficulty in generating TS comes
from the bistars (diameter-three subtrees), as a brute-force generation of all
possibilities would take time exponential in |S|. Let X (S) = {X ∈ X (G) |

The 4-Steiner Root Problem 21

X ⊂ S, |X| ≥ 2}. Based on a careful analysis of the intersection graph IS =
(X (S) , {XX ′ | X ∩ X ′ �= ∅}), we can bound the number of possible mappings
of the internally S-constrained vertices to the nodes of a bistar by an O(|S|2).
We can also bipartition the sandwiched vertices in such a way that each group
should be mapped to a different side of the bistar; each group should in fact
correspond to one of the two maximal cliques containing S. Then, we use the
fact that in a well-structured 4-Steiner root of G, S-free vertices are leaves of
such a bistar with all of them, except maybe one, adjacent to the same central
node. For a fixed mapping of the S-constrained vertices, this only gives us O(|S|)
possibilities in order to map the S-free vertices. Overall, we reduce the number
of possible bistars to an O(|S|5). ��

5.2 Case of a Leaf Node

Theorem 6. Given G = (V,E) and a rooted clique-tree TG of G, let Ki ∈ K (G)
be a leaf. We can construct, in time polynomial in |Ki|, a set Ti of 4-Steiner roots
for Gi := G[Ki] with the following additional property: In any well-structured
4-Steiner root T of G, there exists a T ′

i ∈ Ti Steiner-equivalent to T〈Ki〉.

Sketch Proof. We use a well-known decomposition of Ki into a unique minimal
separator Si := Ki ∩ Kp(i) and a set of simplicial vertices. Given any fixed
possibility for T〈Si〉, there are O(|Si|) possibilities for T〈Si ∪ C (T〈Ki〉)〉. Then,
we use the fact that all simplicial vertices are Ki-free. Since we already fixed
C (T〈Ki〉), by Theorem3, there is essentially one way to add the Ki-free vertices
in order to complete the construction (up to Steiner equivalence). ��

5.3 Case of an Internal Node

Finally, we consider the maximal cliques Ki that are internal nodes of TG. Unsur-
prisingly, several new difficulties arise in the construction of TKi

. Our bottleneck
is solving the following subproblem: compute (up to Steiner equivalence) all pos-
sible central nodes and their neighbourhood in any subtree T〈Ki〉 of diameter
four. We solved this subproblem in most situations, e.g., when there is a mini-
mal separator S ⊆ Ki such that T〈S〉 must be a bistar (diameter-three subtree).
For that, we combine some key arguments in the proof of Theorem 5 with the
transformation techniques that we used in the proof of Theorem3.

Lemma 2. For any graph G, let S ∈ S (G), let K be a maximal clique con-
taining S and let R, c be such that R ⊂ S and either c ∈ R or c is Steiner. We
can compute in O(nm log n)-time a node c′ with the following properties: For any
well-structured 4-Steiner root T of G s.t. T〈S〉 is a bistar, c ∈ C (T〈S〉)\C (T〈K〉),
and Real(NT [c]) = R, there exists a well-structured root T ′ with the same prop-
erties s.t. C (T ′〈K〉) = {c′}, and distT ′(u, v) ≥ distT(u, v) for every u, v ∈ V ;
moreover, either T ≡G T ′, or

∑
u,v∈V distT ′(u, v) >

∑
u,v∈V distT(u, v).

In order to better understand the significance of Lemma2, assume that T〈S〉
should be a bistar in the final solution we want to compute, and that we already

22 G. Ducoffe

identified one of its center node c and the set of real nodes R to which c must
be adjacent. What this above property says is that there is essentially one
canonical way to compute the bistar given R and c. The more technical con-
dition distT ′(u, v) ≥ distT(u, v) is simply there in order to ensure that by doing
so, we cannot miss a solution of an intermediate problem we call Distance-
Constrained Root (i.e., see Sect. 6). Finally, our condition on the potential
function

∑
u,v∈V distT ′(u, v) increasing ensures that we can repeatedly apply

our “canonical completion” method for arbitrarily many minimal separators S.
By using this above method, we obtain the following intermediate construction:

Lemma 3. For any chordal graph G, let TG be a rooted clique-tree and let Ki be
a maximal clique of G = (V,E) with no Ki-free vertex. In O(|Ki|6 · n3m log n)-
time, we can compute a family Bi with the following special property: For any
well-structured 4-Steiner root T of G where for at least one minimal separator
S ⊂ Ki, T〈S〉 is a bistar, there is a T ′ such that T ′〈Si〉 ≡G T〈Si〉, T ′〈Ki〉 ∈ Bi

and distT ′(r, V (Gi) \ Si) ≥ distT(r, V (Gi) \ Si) for every r ∈ V (T〈Si〉)3.

Note that we do not capture all well-structured roots with this above lemma,
but only those maximizing certain distances’ conditions. In the remaining cases
when there are no minimal separators S that are mapped to a bistar, our con-
struction is less satisfying. Specifically, we are left with some “problematic sub-
sets” called thin branches: with exponentially many possible ways to include
them in candidate subtrees. As a way to circumvent this combinatorial explo-
sion, we also include in TKi

some partially constructed subtrees where the thin
branches are omitted. We will greedily decide how to include the thin branches
in these subtrees at Step 4 (Sect. 7).

6 Deciding the Partial Solutions to Store

Step 3 (Selection of the encodings). For the remainder of the algorithm,
let (Kq,Kq−1, . . . ,K0) be a post-ordering of the maximal cliques (i.e., obtained
by depth-first-search traversal of our rooted clique-tree TG). We consider the
maximal cliques Ki ∈ K (G) sequentially, from i = q downto i = 0. The next
two Sections are devoted to the computation of a subset Ti of 4-Steiner roots for
Gi. Specifically, for any 4-Steiner root Ti of Gi we define the following encoding:

encode(Ti) :=
[

Ti〈Si〉 | (distTi
(r, V (Gi) \ Si))r∈V (Ti〈Si〉)

]
.

In what follows, we compute a polynomial-size subset of allowed encodings for the
partial solutions in Ti. That is, we only want to add in Ti some partial solutions
for which the encoding is in the list. Formally, we define an auxiliary problem
called Distance-Constrained Root, where given an encoding as input, we
ask whether there exists a corresponding 4-Steiner root of Gi.

3 Recall that Si and Gi were defined in Sect. 4. By convention, Si = ∅ if Ki is the
root.

The 4-Steiner Root Problem 23

Problem 2 (Distance-Constrained Root) .

Input: a graph G = (V,E) with a rooted clique-tree TG, a maximal clique
Kij , a tree TSij

s.t. Real(TSij
) = Sij , and a sequence (dr)r∈V (TSij

) of
positive integers.

Output: Either a 4-Steiner root Tij of Gij s.t. TSij
≡G Tij 〈Sij 〉 and, ∀r ∈

V (TSij
): distTij

(r, V (Gij)\Sij) ≥ dr; Or ⊥ if there is no such a Tij which
can be extended to some well-structured 4-Steiner root T of G.

Theorem 7. Given G = (V,E) chordal and a rooted clique-tree TG as in The-
orem4, let Ki be an internal node with children Ki1 ,Ki2 , . . . ,Kip . If we can
solve Distance-Constrained Root in time P (n, |Sij |) for some polynomial
P then, we can compute in time O(n|Ki|5P (n, |Ki|)) a family Ti1 , Ti2 , . . . , Tip of
4-Steiner roots for Gi1 , Gi2 , . . . , Gip , respectively, such that:

1. For any j ∈ {1, 2, . . . , p}, |Tij | = O(|Sij |5);
2. For any well-structured 4-Steiner root T of G, there exists a T ′ such

that: T〈Ki〉 ≡G T ′〈Ki〉, T ′〈V (Gij)〉 ∈ Tij for any j ∈ {1, 2, . . . , p}, and
distT ′(r, V (Gi) \ Si) ≥ distT(r, V (Gi) \ Si) for any node r ∈ V (T〈Si〉).

Sketch Proof. We process the children nodes Kij sequentially by non-decreasing
size of the minimal separators Sij . For that, we start constructing the family
TSij

of Theorem 5, and we consider the subtrees TSij
∈ TSij

sequentially. We
divide the proof into several cases depending on |Sij | and on diam(TSij

).
Case |Sij | ≤ 2. There can only be O(1) different possibilities for the distances
(dr)r∈V (TSij

). We could solve Distance-Constrained Root for all these pos-
sibilities, thereby obtaining the family Tij . But in fact, this seemingly simple
case hides a time bomb that will detonate during the second part of the proof
(i.e., when we consider larger minimal separators). To understand why through
an example, let us assume the existence of a large separator Sik of which every
vertex is also a cut-vertex. Then, one possibility for TSik

is a star with a Steiner
central node. For every leaf-node v of that star, let us consider a maximal clique
Kij s.t. Sij = {v}. The star TSik

can only be compatible with solutions Tij s.t.
distTij

(v, V (Gij) \ {v}) ≥ 5 − distTSik
(v, Sik \ {v}) = 3. In particular, we may

have up to two compatible solutions Tij , and that gives us in turn two different
possibilities for the constraint distTik

(v, V (Gik)\Sik). But then, since this is true
for any v ∈ Sik , we are left with 2|Sik

| possibilities for the distance constraints
(dr)r∈V (TSik

)! We can resolve this issue by always choosing any compatible solu-
tion which maximizes distTij

(v, V (Gij) \ {v}). Specifically, if Sij = {v} is a
cut-vertex then, we only keep in the family Tij the partial solution maximizing
distTij

(v, V (Gij) \ Sij). In the same way, if Sij = {u, v} and TSij
is an edge

then, we only need to keep two solutions, namely: among all those maximiz-
ing distTij

(v, V (Gij) \ Sij) (resp., distTij
(u, V (Gij) \ Sij)) the one maximizing

distTij
(u, V (Gij) \ Sij) (resp., distTij

(v, V (Gij) \ Sij)).

24 G. Ducoffe

Case |Sij | ≥ 3. The processing of large minimal separators Sij is more intricate.
For a fixed TSij

we define a family of shorter encodings with only |Sij |O(1)

possibilities, that essentially summarizes at “guessing” the central nodes of T〈Ki〉
and T〈Kij 〉. Assuming a correct guess of these above central nodes, for any partial
solution Tij that is compatible with TSij

, we show how to extract a constant-
number of distance constraints from encode(Tij), in such a way that all other
constraints can be retrieved from those O(1) that we keep in the short encoding
or proved to be irrelevant. Overall, we show that it is sufficient to store only
one solution per possible short encoding. For the purpose of illustration, let us
focus on the case when TSij

is a star (the case of bistars is similar, but simpler).
We first assume that no minimal separator of Gij contains Sij . We may further
assume that no minimal separator of Gij can be contained in Sij (otherwise, by
the second property of Theorem 4 such separators should have size at least 3,
whereas since TSij

is a star they should have size at most 2). In our first subcase,
we assume that the center c of the star will not end in C

(
Tij 〈Kij 〉

)
. Then, we

prove that for every leaf v of the star except maybe one, distTij
(v, V (Gij) \

Sij) = distTij
(c, V (Gij) \Sij)+1 (two distances to store in the short encoding).

Otherwise, c ∈ C
(
Tij 〈Kij 〉

)
. Our previous formula for distTij

(v, V (Gij) \ Sij)
stays true unless v is also contained in a minimal separator of Gij . In this latter
case, such a minimal separator must overlap Sij , and so we can prove that we
always have distTij

(v, V (Gij) \ Sij) = 1. Finally, we assume that a minimal
separator of Gij contains Sij . We derive from both properties of Theorem 4
that c ∈ C

(
Tij 〈Kij 〉

)
and Sij is TG-convergent, with KSij

= Kij . In particular,
Sij �⊆ Si, and so, |Sij ∩ Si| ≤ 2. Recall that we started by guessing C (T〈Ki〉)
and C

(
T〈Kij 〉

)
. We include in our short encoding from the previous case the

distances distTij
(v, V (Gij) \ Sij), v ∈ Sij ∩ (Si ∪ C (T〈Ki〉)), plus some fixed

additional constraints that are derived from the smaller separators contained in
Sij . We stress that this approach could not work with an arbitrary TG. ��

7 The Dynamic Programming

Step 4 (Greedy strategy). While we execute Step 3 for its father node Kp(i),
we compute for Ki a polynomial-size subset of allowed encodings for the 4-Steiner
roots of Gi which we want to compute. For all the constraints in such encodings,
we are left to decide whether there exists a 4-Steiner root of Gi which satisfies
all of them (i.e., we must solve Distance-Constrained Root).

Theorem 8. For every strongly chordal graph G, let ||G|| :=
∑

Ki∈K(G) |Ki|.
Let TG be a rooted clique-tree as in Theorem4 and let Ki ∈ K (G). There is
some polynomial P such that, after a pre-processing in time O(n||Gi||5P (n)),
we can solve Distance-Constrained Root for any input TSi

, (dr)r∈V (TSi
) in

time O(P (n)).

Sketch Proof. If Ki is a leaf of TG then, we construct the family given by The-
orem 6. We keep the trees Ti ∈ Ti that satisfy the constraints we have. From

The 4-Steiner Root Problem 25

now on, let us assume Ki is internal with children Ki1 ,Ki2 , . . . ,Kip . We start
by computing Ti1 , Ti2 , . . . , Tip as in Theorem 7. We also need to construct a rep-
resentation of the family TKi

, as sketched in Sect. 5.3. Roughly, the elements in
this representation are of the form (TYi

, Ci) where Yi ⊆ Ki and Ci must represent
the center of T〈Ki〉 (missing vertices of Ki \ Yi are supposed to be located in
thin branches). This ends the pre-processing step for Ki. In what follows let TSi

and (dr)r∈TSi
be fixed. In order to solve Distance-Constrained Root, we

start by enumerating all pairs (TYi
, Ci). Our construction ensures that Si ⊆ Yi

and so, we can check whether TSi
≡G TYi

〈Si〉. If this not the case then, we
can withdraw this pair and continue. Due to lack of space, we now only sketch
the case Yi = Ki (no thin branch). For every r ∈ TSi

we check whether we
have: distTYi

(r,Ki \ Si) ≥ dr (otherwise, we violate our distances’ constraints).
In the same way, for every j ∈ {1, . . . , p}, we remove from Tij any partial solu-
tion Tij s.t. either Tij 〈Sij 〉 �= TYi

〈Sij 〉 or the distances’ constraints are violated.
We finally explain how to greedily construct a solution (if any), starting from
Ti := TYi

. The procedure is divided into a constant number of phases. Every
time we complete one of these phases, we select a Tij ∈ Tij , for some j, then we
remove from all other Tik ’s the uncompatible partial solutions.

Phase 1: Processing the Cut-Vertices. We consider all the indices j s.t.
Sij = {v} is a cut-vertex. There is one solution left in Tij , so we need to add it.

Phase 2: Processing the Edges. We consider all the indices j s.t. Sij = {u, v}
and TYi

〈Sij 〉 is an edge. We show that we can almost proceed similarly as for
Phase 1 provided we know which among u or v will be closest to V (Gi)\V (Gij)
in a final solution. Therefore, computing this information is the main objective
of this phase. In general, we will pick a vertex of Sij which is the closest to Ci,
but several cases need to be considered before we can validate such a choice.

Phase 3: Processing the Bistars. We consider all the indices j s.t. TYi
〈Sij 〉

is a bistar. A careful analysis shows that in all cases but one degenerate, we can
select any Tij ∈ Tij s.t. distTij

(Ci, V (Gij) \ Sij) is maximized.

Phase 4: Processing the Stars. We finally consider all the indices j s.t.
TYi

〈Sij 〉 is a star. Let C
(
TYi

〈Sij 〉
)

= {c}. Due to lack of space, we only
describe the subcase c ∈ Ci, which is simpler4. We first prove that for every
unprocessed Sik �= Sij , a best possible choice would be to pick a Tij ∈ Tij

s.t. distTij
(C

(
Tij 〈Kij 〉

)
, V (Gij) \ Sij) is maximized. However, we also need to

account for the other indices k such that Sik = Sij . For that, let J = {j′ |
Sij′ = Sij}. The solutions Tij′ , j

′ ∈ J that we will choose must have diame-
ter four, and the center nodes vj′ in Tij′ 〈Kij′ 〉 must be pairwise different. We
do a reduction to Maximum-Weight Matching where we create a bipartite
graph with respective partite sets J and all possible central nodes. For every
j′ ∈ J and Tij′ ∈ Tij′ of diameter four, we add an edge {j′, C

(
Tij′

)
} of weight

distTi
j′ (C

(
Tij 〈Kij′ 〉

)
, V (Gij′) \ Sij′). ��

4 All the missing cases, that includes the addition of thin branches to TYi , are solved
by using the same matching-based approach as in this subcase.

26 G. Ducoffe

References

1. Arumugam, S., Brandstädt, A., Nishizeki, T., Thulasiraman, K.: Handbook of
Graph Theory, Combinatorial Optimization, and Algorithms (2016)

2. Blair, J., Peyton, B.: An introduction to chordal graphs and clique trees. In: George,
A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computa-
tion, pp. 1–29. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-
8369-7 1

3. Bondy, J.A., Murty, U.S.R.: Graph Theory (2008)
4. Brandstädt, A., Le, V.: Structure and linear time recognition of 3-leaf powers. Inf.

Process. Letters 98(4), 133–138 (2006)
5. Brandstädt, A., Le, V., Rautenbach, D.: Exact leaf powers. Theor. Comput. Sci.

411(31–33), 2968–2977 (2010)
6. Brandstädt, A., Le, V., Sritharan, R.: Structure and linear-time recognition of

4-leaf powers. ACM Transact. Algorithms (TALG) 5(1), 11 (2008)
7. Brandstädt, A., Wagner, P.: Characterising (k, �)-leaf powers. Discrete Appl. Math.

158(2), 110–122 (2010)
8. Calamoneri, T., Sinaimeri, B.: Pairwise compatibility graphs: a survey. SIAM Rev.

58(3), 445–460 (2016)
9. Chang, M., Ko, M.: The 3-Steiner root problem. In: WG, pp. 109–120 (2007)

10. Ducoffe, G.: Polynomial-time Recognition of 4-Steiner Powers. Technical Report
arXiv:1810.02304, ArXiv (2018)

11. Eppstein, D., Havvaei, E.: Parameterized leaf power recognition via embedding
into graph products. In: IPEC 2018, pp. 16:1–16:14 (2019)

12. Fellows, M., Meister, D., Rosamond, F., Sritharan, R., Telle, J.: Leaf powers and
their properties: using the trees. In: ISAAC, pp. 402–413 (2008)

13. Jiang, T., Kearney, P., Lin, G.: Phylogenetic k-root and steiner k-root. In: ISAAC,
pp. 539–551 (2000)

14. Jordan, C.: Sur les assemblages de lignes. J. Reine Angew. Math 70(185), 81 (1869)
15. Nevries, R., Rosenke, C.: Characterizing and computing the structure of clique

intersections in strongly chordal graphs. Discr. Appl. Math. 181, 221–234 (2015)
16. Nevries, R., Rosenke, C.: Towards a characterization of leaf powers by clique

arrangements. Graphs and Combinatorics 32(5), 2053–2077 (2016)
17. Nishimura, N., Ragde, P., Thilikos, D.: On graph powers for leaf-labeled trees. J.

Algorithms 42(1), 69–108 (2002)

https://doi.org/10.1007/978-1-4613-8369-7_1
https://doi.org/10.1007/978-1-4613-8369-7_1
http://arxiv.org/abs/1810.02304

Hamiltonicity Below Dirac’s Condition

Bart M. P. Jansen1, László Kozma2(B), and Jesper Nederlof1

1 Eindhoven University of Technology, Eindhoven, Netherlands
{b.m.p.jansen,j.nederlof}@tue.nl

2 Freie Universität Berlin, Berlin, Germany
laszlo.kozma@fu-berlin.de

Abstract. Dirac’s theorem (1952) is a classical result of graph theory,
stating that an n-vertex graph (n ≥ 3) is Hamiltonian if every vertex has
degree at least n/2. Both the value n/2 and the requirement for every
vertex to have high degree are necessary for the theorem to hold.

In this work we give efficient algorithms for determining Hamiltonicity
when either of the two conditions are relaxed. More precisely, we show
that the Hamiltonian Cycle problem can be solved in time ck · nO(1),
for a fixed constant c, if at least n − k vertices have degree at least n/2,
or if all vertices have degree at least n/2 − k. The running time is, in
both cases, asymptotically optimal, under the exponential-time hypoth-
esis (ETH).

The results extend the range of tractability of the Hamiltonian

Cycle problem, showing that it is fixed-parameter tractable when
parameterized below a natural bound. In addition, for the first param-
eterization we show that a kernel with O(k) vertices can be found in
polynomial time.

Keywords: Hamiltonicity · Fixed-parameter tractability ·
Kernelization

1 Introduction

The Hamiltonian Cycle problem asks whether a given undirected graph has
a cycle that visits each vertex exactly once. It is a central problem of graph
theory, operations research, and computer science, with an early history that
well predates these fields (see e.g. [29]).

Several conditions that guarantee the existence of a Hamiltonian cycle in
a graph are known. Perhaps best known among these is Dirac’s theorem from
1952 [15]. It states that a graph with n vertices (n ≥ 3) is Hamiltonian if every

A full version of the paper is available on arXiv [26].
B.M.P. Jansen—Supported by NWO Gravitation grant “Networks”.
L. Kozma—Supported by ERC Consolidator Grant No 617951.
J. Nederlof—Supported by NWO Gravitation grant “Networks” and NWO Grant No
639.021.438.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 27–39, 2019.
https://doi.org/10.1007/978-3-030-30786-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_3

28 B. M. P. Jansen et al.

vertex has degree at least n/2. Various extensions and refinements of Dirac’s
theorem have been obtained, often involving further graph parameters besides
minimum degree (see e.g. the book chapters [14, § 10], [31, § 11] and survey
articles [18,30,32] for an overview). We remark that a polynomial-time verifi-
able condition for Hamiltonicity cannot be both necessary and sufficient, unless
P = NP [27]. In its stated form, Dirac’s theorem is as strong as possible. In
particular, if we replace n/2 by �n/2�, the graph may fail to be two-connected—
a precondition for Hamiltonicity. (Consider two �n/2�-cliques with a common
vertex).

In this paper we relax the conditions of Dirac’s theorem and consider input
graphs in which (1) at least n − k vertices have degree at least n/2 (the degrees
of the remaining vertices can be arbitrarily small), or (2) all vertices have degree
at least n/2 − k.

For both relaxations we show that Hamiltonian Cycle can be solved deter-
ministically, in time ck · nO(1), for some fixed constant c. This establishes the
fixed-parameter tractability of Hamiltonian Cycle when parameterized by the
distance from Dirac’s bound, for two natural ways of measuring this distance.

The known exact algorithms for Hamiltonian Cycle in general graphs
have exponential running time (the problem is one of the original 21 NP-hard
problems [27]). The best deterministic running time of O(2n · n2) is achieved by
the dynamic programming algorithm of Bellman [4], and Held and Karp [24],
and has not been improved since the 1960s. Among randomized algorithms, the
current-best running time of O(1.657n) is achieved by the more recent algo-
rithm of Björklund [6] based on determinants. Improving these bounds remains
a central open question of the field.

Assuming the exponential-time hypothesis (ETH) [25], there is no algorithm
for Hamiltonian Cycle with running time 2o(n). In both parameterizations
considered in this paper, k ≤ n holds. Thus, under ETH, a running time of the
form 2o(k) · nO(1) is ruled out, and our algorithms are optimal, up to the base
of the exponential. Furthermore, there exists a fixed constant α > 0, such that
our parameterized bounds asymptotically improve the current-best bounds for
Hamiltonian Cycle, if the value of k is at most α · n.

For the first parameterization, we show that Hamiltonian Cycle admits a
kernel with O(k) vertices, computable in polynomial time. In other words, the
input graph can be compressed (roughly) to the order of its sparse part, while
preserving Hamiltonicity.

Our results show that checking Hamiltonicity becomes tractable as we app-
roach the degree-bound of Dirac’s theorem. The crude intuition behind Dirac’s
theorem (and many of its generalizations) is that having many edges makes a
graph Hamiltonian. It is a priori far less obvious why approaching the Dirac
bound would make the algorithmic problem easier; one may even expect that
the more edges there are, the harder it becomes to certify non-Hamiltonicity. To
provide some intuition why this is not the case, we give a brief informal summary
of the arguments.

Hamiltonicity Below Dirac’s Condition 29

When n − k vertices have degree at least n/2, i.e. in the first case, our algo-
rithm takes advantage of the fact that, by a result of Bondy and Chvátal, the
subgraph induced by the high-degree vertices can be completed to a clique with-
out changing the Hamiltonicity of the graph; all relevant structure is thus in the
sparse part and its interconnection with the dense part. Then, we find a subset
of the vertices in the clique that are well-connected to the sparse part (by solving
a matching problem in an auxiliary graph), and we ignore the remainder of the
clique. Finally, we show how a Hamiltonian cycle on this smaller, well-connected
subgraph, can be extended to a Hamiltonian cycle of the entire graph, guided
by the alternating paths of the matching. For this parameterization we are not
aware of a comparable result in the literature.

When all vertices have degree at least n/2−k, i.e. in the second case, a result
of Nash-Williams implies that either a Hamiltonian cycle, or a sufficiently large
independent set can be found in polynomial time. In the latter case, we certify
non-Hamiltonicity by showing (roughly) that the complement of the indepen-
dent set is not coverable by a certain number of disjoint paths. This argument
is essentially the same as the one given by Häggkvist [23] towards his algorithm
with running time O(n5k) for the same parameterization. (Häggkvist states this
algorithmic result as a corollary of structural theorems. He does not describe
the details of the algorithm or its analysis, but these are not hard to recon-
struct.) Here we improve the running time of Häggkvist’s algorithm to the stated
(asymptotically optimal) ck · nO(1) by more efficiently solving the arising path
cover subproblem. The case k = 1 of this parameterization was also considered
by Büyükçolak et al. [9].

Statement of Results. Our first result shows that if a graph has a “relaxed”
Dirac property, it can be compressed while preserving its Hamiltonicity.

Theorem 1. Let G be an n-vertex graph such that at least n − k vertices of
G have degree at least n/2. There is a deterministic algorithm that, given G,
constructs in time O(n3) a 3k-vertex graph G′, such that G is Hamiltonian if
and only if G′ is Hamiltonian.

Equivalently stated in the language of parameterized complexity, the Hamil-
tonian cycle problem parameterized by k has a kernel with a linear number of
vertices. To determine the Hamiltonicity of a graph G, we simply apply the algo-
rithm of Theorem1 to compress G, and use an exponential-time algorithm (for
instance, the Held-Karp algorithm) to solve Hamiltonian Cycle directly on
the compressed graph. We thus obtain the following result.

Corollary 1. If at least n − k vertices of an n-vertex graph G have degree at
least n/2, then Hamiltonian Cycle with input G can be solved in deterministic
time O(8k · k2 + n3).

As an alternative, we may also use an approach based on inclusion-
exclusion [28] to solve the reduced Hamiltonian Cycle instance, achieving
the overall running time O(8k · k3 + n3), with polynomial space.

Our result for the second relaxation of Dirac’s theorem is as follows.

30 B. M. P. Jansen et al.

Theorem 2. If every vertex of an n-vertex graph G has degree at least n/2−k,
then Hamiltonian Cycle with input G can be solved in deterministic time
O(234k · n3).

The running time of the Bellman-Held-Karp algorithm for Hamiltonian

Cycle is O(2n · n2). Denoting α = k/n, our results represent an asymptotic
improvement if α < 1/3 in the first parameterization, and if α < 0.0294 in the
second parameterization.

As a counterpoint to our results, we observe that Hamiltonian Cycle

remains hard (in both parameterizations) for arbitrarily small values of α.

Theorem 3. Assuming ETH, Hamiltonian Cycle cannot be solved in time
2o(n) in n-vertex graphs with at least (1 − α) · n vertices of degree at least n/2,
and in n-vertex graphs with minimum degree (1 − α) · n/2, for arbitrary fixed
0 < α < 1/2.

Proof. In both cases we construct a graph with the given degree-requirements
that embeds a hard instance of Hamiltonian Path with α · n vertices. For the
second statement we can use the construction from the NP-hardness proof of
Dahlhaus, Hajnal, and Karpinski [13, Theorem 3.1]. For the first statement, con-
sider an α · n-vertex instance of Hamiltonian Path, connected by two disjoint
edges to an (1 − α) · n-vertex clique. �	

Related Work. In general, parameterized complexity [12,17] allows a finer-
grained understanding of algorithmic problems than classical, univariate com-
plexity. No new insight is gained, however, if the chosen parameter k is large
in all interesting cases. For example, in planar graphs, the Four Color Theorem
guarantees the existence of an independent set of size n/4. As a consequence,
any exponential-time algorithm for maximum independent set trivially achieves
fixed-parameter tractability in terms of the solution size.

To deal with this issue, Mahajan and Raman [33] introduced the method
of parameterizing problems above or below a guaranteed bound. (Similar con-
siderations motivate the “distance from triviality” framework of Guo, Hüffner,
and Niedermeier [19].) In the example of planar independent set, an interesting
parameter is the amount by which the solution size exceeds n/4. Similar ideas
have successfully been applied to several problems (see e.g. [2,5,11,20,21,34]).
Our results also fall in the framework of “above/below” parameterization, with
the remark that our parameter of interest is not the value to be optimized but a
structural property of the input, which we parameterize near its “critical value”.

Perhaps closest to our work is the recent result of Gutin and Patel [22] on
the Traveling Salesman problem, parameterized below the cost of the aver-
age tour. Although it concerns Hamiltonian cycles (in an edge-weighted complete
graph), the result of Gutin and Patel is not directly comparable with our results.
In particular, averaging arguments do not seem to help when studying the exis-
tence of Hamiltonian cycles, which is often determined by local structure in the
graph. For instance, Hamiltonian Cycle remains NP-hard even in graphs with

Hamiltonicity Below Dirac’s Condition 31

average degree αn for any constant α < 1. (Consider a clique of
√

αn vertices,
connected by two disjoint edges to the remaining graph that encodes a hard
instance of Hamiltonian Path on (1 − √

α)n vertices).

2 Preliminaries

We use standard graph-theoretic notation (see e.g. [14]). An edge between ver-
tices u and v is written simply as uv or vu. The neighborhood of a vertex v in
graph G is denoted by NG(v). The degree of v in G is dG(v) = |NG(v)|, and
the minimum degree of G is δG = minv∈V (G) dG(v). We conveniently omit the
subscript G whenever possible. For a set S ⊆ V (G) of vertices, G[S] denotes the
subgraph induced by S on G.

We state Dirac’s theorem and a strengthened statement due to Ore. Let G
be an n-vertex undirected graph, with n ≥ 3.

Lemma 1 (Dirac [15]). If δ ≥ n/2, then G is Hamiltonian.

Lemma 2 (Ore [36]). If dG(u) + dG(v) ≥ n for every non-adjacent pair of
vertices u, v of G, then G is Hamiltonian.

We state a theorem of Bondy and Chvátal that we use in the proofs of both
Theorems 1 and 2.

Lemma 3 (Bondy-Chvátal [7]). Let G be an n-vertex graph, and let G′ be
obtained from G by adding an edge uv to G for some pair of non-adjacent vertices
u, v such that dG(u) + dG(v) ≥ n. Then G′ is Hamiltonian if and only if G is
Hamiltonian. Moreover, given a Hamiltonian cycle of G′, a Hamiltonian cycle
of G can be obtained in linear time.

Lemma 3 implies both Lemmas 1 and 2, as in both cases we can iterate the
edge-augmentation step until obtaining a complete graph.

Finally, we state yet another strengthening of Dirac’s theorem, due to Nash-
Williams [35]. We write this result in a slightly non-standard, explicitly algo-
rithmic form. Our use of this result in proving Theorem2 is the same as in the
argument of Häggkvist [23].

Lemma 4 (Nash-Williams [35]). Let G be a 2-connected graph with n ver-
tices, with δ ≥ (n + 2)/3. Then, we can find in G, in time O(n3), either a
Hamiltonian cycle, or an independent set of size δ + 1.

A simpler proof of Lemma 4 was given by Bondy [8], sketched in [31, § 11]. To
make our discussion self-contained, we spell out an explicitly algorithmic form
of this proof in the full version [26] of the paper (this requires minor changes
with respect to [8]).

32 B. M. P. Jansen et al.

3 Relaxing the Cardinality-Constraint (Theorem1)

Let C ⊆ V (G) denote the set of high-degree vertices of G (those with degree at
least n/2), and let S = V (G) \C denote the remaining (i.e. low-degree) vertices.

Observe that |S| ≤ k. By Lemma 3, we may add all edges between vertices
in C, without changing the Hamiltonicity of G. Assume therefore that C is a
clique.

The proof of the following theorem is inspired by the crown reductions [1,10,
16] used to obtain kernels for Vertex Cover and Saving k Colors.

Theorem 4. There is a polynomial-time algorithm that, given a graph G and
a nonempty set S ⊆ V (G) such that G − S is a clique, outputs an induced
subgraph G′ of G on at most 3|S| vertices such that G is Hamiltonian if and
only if G′ is Hamiltonian.

Proof. Given a graph G let S ⊆ V (G), such that C := V (G)\S is the vertex set
of a clique in G. If |C| ≤ 2|S| then G′ := G suffices, so we assume |C| > 2|S| in
the remainder. Let S′ := {v1, v2 | v ∈ S} be a set containing two representatives
for each vertex of S. Construct a bipartite graph H on vertex set C ∪ S′. For
each edge cv ∈ E(G) with c ∈ C and v ∈ S, add the edges cv1, cv2 to H.
Compute a maximum matching M ⊆ E(H) in graph H, for example using
the Edmonds-Karp algorithm. Let C∗ be the vertices of C saturated (matched)
by M . If |C∗| ≥ |S| + 1 then let C ′ := C∗, and otherwise let C ′ ⊆ C be a
superset of C∗ of size |S| + 1. Output the graph G′ := G[C ′ ∪ S] as the result of
the reduction.

Claim 1. Graph G′ has at most 3|S| vertices.
Proof. Since each vertex of C∗ is matched to a distinct vertex in S′, with |S′| =
2|S|, it follows that |C∗| ≤ 2|S| which implies |C ′| ≤ 2|S|. As V (G′) = C ′ ∪ S,
the claim follows. �

The output graph G′ therefore satisfies the size bound. It remains to prove
that it is equivalent to G with respect to Hamiltonicity. We first prove the simpler
implication.

Claim 2. If G′ is Hamiltonian, then G is Hamiltonian.

Proof. Suppose that G′ is Hamiltonian, and let F ⊆ E(G) be a Hamiltonian
cycle in G′. Fix an arbitrary orientation of F . As each vertex from C ′ has a unique
successor on F , while |C ′| > |S| by definition, it follows that some vertex x ∈
C ′ has a successor from C ′ along the cycle; let this be y ∈ C ′. Then we can
transform F into a Hamiltonian cycle in G by removing the edge xy and replacing
it by a path through all the clique-vertices of C \ C ′. �

The remainder of the proof is aimed at proving the reverse implication.
For this, we introduce some terminology. For a vertex set S∗ in a graph G∗,
we define a path cover of S∗ in G∗ as a set of pairwise vertex-disjoint sim-
ple paths P1, . . . , P� in G∗, such that each vertex of S∗ belongs to exactly one

Hamiltonicity Below Dirac’s Condition 33

path Pi. For a vertex set C∗ in G∗, we say the path cover has C∗-endpoints if the
endpoints of each path Pi belong to C∗. We will sometimes interpret a subgraph
in which each connected component is a path as a path cover, in the natural
way.

Claim 3. If there is a path cover of S in G′ having C ′-endpoints, then G′ is
Hamiltonian.

Proof. Any path cover of S consists of at least one path (since S is nonempty by
assumption) and the endpoints of the paths are all distinct. Hence a path cover
consisting of � ≥ 1 paths has exactly 2� distinct endpoints {s1, t1, . . . , s�, t�},
which are vertices in the clique C ′. Let P�+1 be a simple path in G′ visiting all
vertices that are not touched by the path cover; such a path exists because the
only vertices not touched by the path cover belong to the clique C ′. Then one
can obtain a Hamiltonian cycle in G′ by taking the edges of P1, . . . , P�, P�+1,
together with edges connecting the end of path Pi to the beginning of path Pi+1

for all relevant values of i. �

To prove that Hamiltonicity of G implies Hamiltonicity of G′, we will con-
struct a path cover of S in G′ having C ′-endpoints, using a hypothetical Hamilto-
nian cycle in G. To do so we need several properties enforced by the matching M
in H, which we now explore.

Let UC be the vertices of C that are not saturated by M . Let R denote
the vertices of H that are reachable from UC by an M -alternating path in the
bipartite graph H (which necessarily starts with a non-matching edge), and
define RC := R ∩ C and RS′ := R ∩ S′.

Claim 4. The sets R,RC , RS′ satisfy the following.

1. Each M -alternating path in H from UC to a vertex in RS′ (resp. RC) ends
with a non-matching (resp. matching) edge.

2. Each vertex of RS′ is matched by M to a vertex in RC .
3. For each vertex x ∈ RC we have NH(x) ⊆ RS′ .
4. For each vertex v ∈ S we have v1 ∈ RS′ ⇔ v2 ∈ RS′ .
5. For each vertex v ∈ S′ \ RS′ , we have NH(v) ∩ RC = ∅ and each vertex

of NH(v) is saturated by M .

Proof. (1) An M -alternating path starting in UC must start with a non-matching
edge, since UC consists of unsaturated vertices, and it starts from the C-partite
set of H. Hence such a path moves to the S′-partite set over non-matching edges,
and moves back to the C-partite set over matching edges.

(2) If a vertex x ∈ RS′ ⊆ R is not saturated, then the M -alternating path
from UC witnessing x ∈ R starts and ends with a non-matching edge (by (1))
and is in fact an M -augmenting path. This contradicts that M is a maximum
matching. Hence each x ∈ RS′ is matched by M to some vertex y. By (1) the M -
alternating path from UC to x that witnesses x ∈ RS′ ends with a non-matching
edge, so together with the matching edge xy this forms an M -alternating path
witnessing y ∈ RC .

34 B. M. P. Jansen et al.

(3) Consider a vertex x ∈ RC and an M -alternating path P from UC wit-
nessing x ∈ R. By (1) the last edge on P (if any) is a matching edge. Hence if x
is saturated by M , then its matching partner y is the predecessor of x on P and
a prefix of P witnesses y ∈ R and hence y ∈ RS′ . For any vertex z ∈ NH(x) that
is not the matching partner of x, we can augment P by the edge xz to obtain
an M -alternating path from UC to z witnessing z ∈ RS′ . Together, these two
arguments show NH(x) ⊆ RS′ .

(4) Suppose v1 ∈ RS′ and let P be an M -alternating path from UC to v1.
By (1) path P ends with a non-matching edge xv1. If xv2 ∈ M , then v2 is
the predecessor of x on P , and therefore v2 ∈ RS′ . Otherwise, since v1 and v2
have identical neighborhoods in H, we can replace the last edge of P by xv2 to
obtain an M -alternating path witnessing v2 ∈ RS′ . The case that v2 ∈ RS′ is
symmetric.

(5) Consider v ∈ S′ \ RS′ . If there is a vertex x ∈ NH(v) ∩ RC , then (3)
implies v ∈ RS′ , a contradiction. Hence NH(v) ∩ RC = ∅. An unsaturated H-
neighbor x of v would imply x ∈ NH(v) ∩ UC ⊆ NH(v) ∩ RC , so each vertex
of NH(v) is saturated by M . �

Using these structural insights we can now prove the desired converse to
Claim 2. Before we give the formal proof, we present the main idea. To prove
that G′ is Hamiltonian if G is, we take a Hamiltonian cycle F in G and turn it
into a path cover of S in G′ with C ′-endpoints. Any Hamiltonian cycle F in G
yields a path cover of S with S-endpoints, by simply taking the restriction of F
onto the vertices of S. The challenge is to extend this path cover with edges
into C ′ to give it the desired C ′-endpoints: if the Hamiltonian cycle F used an
edge to jump from S to C, we have to provide a similar jump in G′. If F jumps
from a vertex v ∈ S whose corresponding copies v1, v2 ∈ S′ do not belong to RS′ ,
then by (5) the C-endpoint of the jumping edge is saturated by M , belongs to C ′

and therefore to G′, and can be used to provide the analogous jump in G′. On
the other hand, for all vertices v ∈ S whose copies v1, v2 belong to RS′ , we will
globally assign new jumping edges based on the matching H. The properties of
a matching will ensure that these jumping edges lead to distinct targets and give
a valid path cover of S in G′ having C ′-endpoints. We now formalize these ideas.

Claim 5. If G is Hamiltonian, then G′ is Hamiltonian.

Proof. Let F be a Hamiltonian cycle in G. By Claim 3 it suffices to build a
path cover of S in G′ with C ′-endpoints. View F as a 2-regular subgraph of G,
and let F1 := F [S] be the subgraph of F induced by S. Since F spans G and
all vertices of S are present in G′, it follows that F1 is a path cover of S in G′.
However, the paths in F1 have their endpoints in S rather than in C ′. We resolve
this issue by inserting edges into F1 to turn it into an acyclic subgraph F2 of G′

in which each vertex of S has degree exactly two. This structure F2 must be a
path cover of S in G′ with C ′-endpoints, since the degree-two vertices S cannot
be endpoints of the paths. To do the augmentation, initialize F2 as a copy of F1.
Define RS := {v ∈ S | v1 ∈ RS′ ∨ v2 ∈ RS′} and proceed as follows.

Hamiltonicity Below Dirac’s Condition 35

– For each vertex v ∈ RS , we have v1, v2 ∈ RS′ by Claim 4(4), which implies by
Claim 4(2) that both v1 and v2 are matched to distinct vertices x1, x2 in RC .
If v has degree zero in subgraph F1, then add the edges vx1, vx2 to F2. If v
has degree one in F2 then only add the edge vx1. Do not add any edges if v
already has degree two in F1.

– For each vertex v ∈ S \RS , we claim that NG(v)∩RC = ∅. This follows from
the fact that NG(v) = NH(v1) = NH(v2) and Claim 4(5), using that v /∈ RS

implies v1, v2 /∈ RS′ . Hence the (up to two) neighbors that v ∈ S\RS has in C
on the Hamiltonian cycle F do not belong to RC , while Claim 4(5) ensures
that all vertices of NG(v) are saturated by H and hence belong to C ′. For
each vertex v ∈ S \ RS , for each edge from v to C ∩ C ′ incident on v in F ,
we insert the corresponding edge into F2.

It is clear that the above procedure produces a subgraph F2 in which all
vertices of S have degree exactly two. To see that F2 is indeed a path cover,
having no vertex of degree larger than two, it suffices to notice that the edges
inserted for v ∈ RS connect to distinct vertices in C ′ ∩ RC , while the edges
inserted for v ∈ S \RS connect to C ′ \RC in the same way as in the Hamiltonian
cycle F . Hence F2 forms a path cover of S in G′ having C ′-endpoints, which
implies that G′ is Hamiltonian and proves Claim5. �

Claims 2 and 5 prove the correctness of the reduction and Claim 1 gives the
desired size bound. Since the reduction can easily be performed in polynomial
time, this completes the proof of Theorem 4. �	

Observe that the proof of Claim 2 explicitly constructs the Hamiltonian cycle
in case of a “yes”-answer. The running time of the reduction is dominated by
the bipartite matching step, and the process of undoing the Bondy-Chvátal
augmentations (Lemma 3), if a cycle of the original graph is to be constructed.
Both tasks can be performed in time O(n3).

4 Relaxing the Degree-Constraint (Theorem2)

The outline of the proof largely follows an earlier argument of Häggkvist [23].
We improve the O(n5k) running time of Häggkvist’s algorithm to ck · nO(1).

The algorithm either finds a Hamiltonian cycle or constructs a certificate of
non-Hamiltonicity, in the form of a cut (S, T) of the graph, such that the vertices
of T can not be covered by |S| vertex-disjoint paths, and this certificate can be
verified within the required running time. (Observe that a Hamiltonian cycle
induces such a path cover for an arbitrary cut; paths consisting of single vertices
are allowed).

Assume that k < n/34, and thus δ > 8n/17. (Otherwise we revert to a stan-
dard exponential-time algorithm, and the running time in this case gives the
bound stated in Theorem 2.) Furthermore, δ < n/2 may be assumed, as other-
wise G is Hamiltonian by Dirac’s theorem. Also assume that G is 2-connected
(otherwise it is not Hamiltonian).

36 B. M. P. Jansen et al.

Start by running the procedure from the proof of Lemma4, either obtaining
a Hamiltonian cycle, or an independent set of size δ + 1. Assume that the latter
is the case, and label the obtained independent set as A1.

Partition V (G) into sets A1, A2, and A3, where A2 denotes the set of vertices
in v ∈ V (G) \ A1 such that |NG(v) ∩ A1| ≥ δ/2, and A3 = V (G) \ (A1 ∪ A2). In
words, A2 contains vertices that are sufficiently highly connected to the obtained
independent set, and A3 contains the remaining vertices.

Lemma 5 ([23], Theorem 2). Given sets A1, A2, A3 as defined, we can find
a set of vertices S ⊆ V (G) such that |S| ≥ 3δ − n + 2, and G[V (G) \ S] can be
covered by |S| vertex-disjoint paths if and only if G is Hamiltonian.

We sketch the argument in the full version [26] of the paper, referring to
Häggkvist [23, p. 32–33] for the full details. Setting T := V (G) \ S, it remains
to verify whether G[T] can be covered by |S| vertex-disjoint paths.

Lemma 6. Given an n-vertex graph G, we can find in time O(ct · n3) a cover
of G with n − t vertex-disjoint paths, or report that no such cover exists, for
arbitrary c > (2e)2.

Proof. We apply color-coding [3], [12, § 5.2]. Call a path nontrivial if it has more
than one vertex. Say that a coloring is good for a cover by vertex-disjoint paths,
if all vertices that appear in a nontrivial path receive a different color. Clearly, if
there is a cover by at most n−t paths then there is a cover by exactly n−t paths,
and in such a cover there are at most 2t vertices that appear in a nontrivial path.
So if there is a path cover with n − t paths, a random coloring with 2t colors is
good for this cover with probability e−2t. (See e.g. [12, Lemma 5.4]).

On a vertex-colored graph with color set C = {1, . . . 2t}, we solve the fol-
lowing problem by dynamic programming: for a set X ⊆ C and v ∈ V (G), let
T [X, v] be the smallest number q for which there exists a collection P1, . . . , Pq

of vertex-disjoint paths in G, such that Pq ends in vertex v and the multiset of
colors used in P1, . . . , Pq is exactly equal to X. (In particular, this implies that
no two vertices in a path may have the same color, for it would appear twice in
the multiset and only once in the set X).

Let the 2t-coloring of G be given by f : V (G) → [2t]. Then T [X, v] satisfies
the following recurrence:

– T [{c}, v] = 1 if f(v) = c,
– T [X, v] = +∞ if f(v) /∈ X,

– T [X, v] = min
{

1 + min
u∈V (G)\{v}

T
[
X \ {f(v)}, u

]
, min
u∈NG(v)

T
[
X \ {f(v)}, u

]}
,

otherwise.

Intuitively, the interesting part of the recurrence has two cases: either we can
let v be a trivial path (so we pay 1 for having a path with v, and then need a
collection of paths that can end at any other vertex u that covers the remaining
colors), or we take a system of paths covering the remaining colors that ends in
a neighbor u of v, and add the edge uv to the end of that path.

Hamiltonicity Below Dirac’s Condition 37

Now, observe that for any color-subset X and vertex v, there is a cover of
G with T [X, v] + (n − |X|) paths: we cover |X| vertices, one of each color in X,
by T [X, v] paths and cover the remaining (n − |X|) vertices by trivial paths. So
if we encounter a set X and vertex v for which T [X, v] + (n − |X|) ≤ n − t, or
equivalently, T [X, v] ≤ |X| − t, then the answer is “yes”. On the other hand, if
G has a path cover by n − t paths and a coloring is good for this cover, then
letting X be the set of colors of vertices that appear in a nontrivial path and v
an endpoint of such a path, we obtain T [X, v] + (n − |X|) ≤ n − t.

So by trying e2t random colorings and solving the dynamic program for each
one, we solve the “cover by n − t disjoint paths” problem with constant success
probability. With c2t independent runs for c > e, we can boost the success
probability arbitrarily close to 1. The dynamic program can be solved in time
O(22tn3). The claimed running time follows.

We may de-randomize the algorithm by replacing the randomized coloring
by a deterministic construction, e.g. via splitters. We omit the details of this, by
now standard, technique [12, § 5.6]. �	

In our application of Lemma6, we need to cover G[T] by |S| vertex-disjoint
paths. Observe that |S| ≥ n/2 − 3k, and consequently |T | ≤ n/2 + 3k. The
difference between the order of the graph G[T] and the number of paths t with
which we want to cover it, is therefore at most 6k.

Applying Lemma 6, the running time of this step is thus O(c6k · n3), for
arbitrary c > (2e)2.

To construct a Hamiltonian cycle, find the set S using Lemmas 4 and 5, find
an appropriate path cover using Lemma6, and recover the Hamiltonian cycle of
G by undoing the Bondy-Chvátal steps in Lemma 5. A running time of O(306k ·
n3) follows by adding up the corresponding terms and by using straightforward
data structuring. As 306 < 234, the case k ≥ n/34 dominates the overall running
time.

5 Conclusion

A natural question left open by our work is whether the two parameterizations
can be combined, to obtain a generalization of both.

Conjecture 1. If at least n − k vertices of G have degree at least n/2 − k, then
Hamiltonian Cycle with input G can be solved in time ck · nO(1) for some
constant c.

The results of this paper can be extended with minimal changes to similar
parameterizations of Ore’s theorem (Lemma 2). Extending the results to gener-
alizations of Dirac’s and Ore’s theorems to digraphs would be interesting. More
generally, finding new algorithms by parameterizing structural results of graph
theory (whether related to Hamiltonicity or not) is a promising direction.

Acknowledgement. We thank Naomi Nishimura, Ian Goulden, and Wendy Rush for
obtaining a copy of Bondy’s 1980 research report [8].

38 B. M. P. Jansen et al.

References

1. Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown struc-
tures for vertex cover kernelization. Theory Comput. Syst. 41(3), 411–430 (2007).
https://doi.org/10.1007/s00224-007-1328-0

2. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a
tight lower bound. Algorithmica 61(3), 638–655 (2011). https://doi.org/10.1007/
s00453-010-9428-7

3. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995).
https://doi.org/10.1145/210332.210337

4. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.
J. Assoc. Comput. Mach. 9, 61–63 (1962)

5. Bezáková, I., Curticapean, R., Dell, H., Fomin, F.V.: Finding detours is fixed-
parameter tractable. In: Proceedings of 44th ICALP. pp. 54:1–54:14 (2017).
https://doi.org/10.4230/LIPIcs.ICALP.2017.54

6. Björklund, A.: Determinant sums for undirected Hamiltonicity. SIAM J. Comput.
43(1), 280–299 (2014). https://doi.org/10.1137/110839229

7. Bondy, J.A., Chvátal, V.: A method in graph theory. Discrete Math. 15(2), 111–
135 (1976)

8. Bondy, J.: Longest Paths and Cycles in Graphs of High Degree. Research report,
Department of Combinatorics and Optimization, University of Waterloo (1980)

9. Büyükçolak, Y., Gözüpek, D., Özkan, S., Shalom, M.: On one extension of Dirac’s
theorem on Hamiltonicity. Discrete Appl. Math. 252, 10–16 (2019). https://doi.
org/10.1016/j.dam.2017.01.011

10. Chor, B., Fellows, M., Juedes, D.W.: Linear kernels in linear time, or how to save
k colors in O(n2) steps. In: Proceedings of 30th WG, pp. 257–269 (2004). https://
doi.org/10.1007/978-3-540-30559-0 22

11. Crowston, R., Jones, M., Mnich, M.: Max-cut parameterized above the Edwards-
Erdős bound. Algorithmica 72(3), 734–757 (2015). https://doi.org/10.1007/
s00453-014-9870-z

12. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

13. Dahlhaus, E., Hajnal, P., Karpinski, M.: On the parallel complexity of Hamiltonian
cycle and matching problem on dense graphs. J. Algorithms 15(3), 367–384 (1993).
https://doi.org/10.1006/jagm.1993.1046

14. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

15. Dirac, G.A.: Some theorems on abstract graphs. Proc. London Math. Soc. s3 2(1),
69–81 (1952). https://doi.org/10.1112/plms/s3-2.1.69

16. Fellows, M.R.: Blow-Ups, Win/Win’s, and crown rules: some new directions in
FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39890-5 1

17. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES. Springer, Hei-
delberg (2006). https://doi.org/10.1007/3-540-29953-X

18. Gould, R.J.: Recent advances on the Hamiltonian problem: survey III. Graphs
Comb. 30(1), 1–46 (2014). https://doi.org/10.1007/s00373-013-1377-x

19. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing prob-
lems: distance from triviality. In: Proceedings of 1st IWPEC, pp. 162–173 (2004).
https://doi.org/10.1007/978-3-540-28639-4 15

https://doi.org/10.1007/s00224-007-1328-0
https://doi.org/10.1007/s00453-010-9428-7
https://doi.org/10.1007/s00453-010-9428-7
https://doi.org/10.1145/210332.210337
https://doi.org/10.4230/LIPIcs.ICALP.2017.54
https://doi.org/10.1137/110839229
https://doi.org/10.1016/j.dam.2017.01.011
https://doi.org/10.1016/j.dam.2017.01.011
https://doi.org/10.1007/978-3-540-30559-0_22
https://doi.org/10.1007/978-3-540-30559-0_22
https://doi.org/10.1007/s00453-014-9870-z
https://doi.org/10.1007/s00453-014-9870-z
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1006/jagm.1993.1046
https://doi.org/10.1112/plms/s3-2.1.69
https://doi.org/10.1007/978-3-540-39890-5_1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/s00373-013-1377-x
https://doi.org/10.1007/978-3-540-28639-4_15

Hamiltonicity Below Dirac’s Condition 39

20. Gutin, G.Z., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameter-
ized above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011).
https://doi.org/10.1007/s00224-010-9262-y

21. Gutin, G.Z., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems
parameterized above or below tight bounds. J. Comput. Syst. Sci. 77(2), 422–429
(2011). https://doi.org/10.1016/j.jcss.2010.06.001

22. Gutin, G.Z., Patel, V.: Parameterized traveling salesman problem: beating the
average. SIAM J. Discrete Math. 30(1), 220–238 (2016). https://doi.org/10.1137/
140980946

23. Häggkvist, R.: On the structure of non-Hamiltonian graphs I. Comb. Probab. Com-
put. 1(1), 27–34 (1992). https://doi.org/10.1017/S0963548300000055

24. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Indust. Appl. Math. 10, 196–210 (1962). https://doi.org/10.1137/0110015

25. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/
jcss.2001.1774

26. Jansen, B.M.P., Kozma, L., Nederlof, J.: Hamiltonicity below Dirac’s condition.
CoRR abs/1902.01745 (2019). http://arxiv.org/abs/1902.01745

27. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) IRSS, pp. 85–103. Springer, Heidelberg
(1972). https://doi.org/10.1007/978-1-4684-2001-2 9

28. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion.
Oper. Res. Lett. 1(2), 49–51 (1982). https://doi.org/10.1016/0167-6377(82)90044-
X

29. Knuth, D.: The art of computer programming: updates; pre-fascicle 8A, A draft of
section 7.2.2.4: Hamiltonian paths and cycles. In: Addison-Wesley Series in Com-
puter Science and Information Proceedings, vol. 4. Addison-Wesley (2018). https://
www-cs-faculty.stanford.edu/∼knuth/fasc8a.ps.gz

30. Kühn, D., Osthus, D.: Hamilton cycles in graphs and hypergraphs: an extremal
perspective. CoRR abs/1402.4268 (2014). http://arxiv.org/abs/1402.4268

31. Lawler, E., Shmoys, D., Kan, A., Lenstra, J.: The Traveling Salesman Problem.
Wiley, Hoboken (1985)

32. Li, H.: Generalizations of Dirac’s theorem in Hamiltonian graph theory-a survey.
Discrete Math. 313(19), 2034–2053 (2013). https://doi.org/10.1016/j.disc.2012.11.
025

33. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999). https://doi.org/10.1006/jagm.1998.
0996

34. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed
values. J. Comput. Syst. Sci. 75(2), 137–153 (2009). https://doi.org/10.1016/j.jcss.
2008.08.004

35. Nash-Williams, C.: Edge-disjoint Hamiltonian circuits in graphs with large valency.
In: Mirksy, L. (ed.) Studies in Pure Mathematics, pp. 157–183. Academic Press,
London (1971)

36. Ore, O.: Note on Hamilton circuits. Am. Math. Monthly 67(1), 55 (1960).
http://www.jstor.org/stable/2308928

https://doi.org/10.1007/s00224-010-9262-y
https://doi.org/10.1016/j.jcss.2010.06.001
https://doi.org/10.1137/140980946
https://doi.org/10.1137/140980946
https://doi.org/10.1017/S0963548300000055
https://doi.org/10.1137/0110015
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
http://arxiv.org/abs/1902.01745
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/0167-6377(82)90044-X
https://doi.org/10.1016/0167-6377(82)90044-X
https://www-cs-faculty.stanford.edu/~knuth/fasc8a.ps.gz
https://www-cs-faculty.stanford.edu/~knuth/fasc8a.ps.gz
http://arxiv.org/abs/1402.4268
https://doi.org/10.1016/j.disc.2012.11.025
https://doi.org/10.1016/j.disc.2012.11.025
https://doi.org/10.1006/jagm.1998.0996
https://doi.org/10.1006/jagm.1998.0996
https://doi.org/10.1016/j.jcss.2008.08.004
https://doi.org/10.1016/j.jcss.2008.08.004
http://www.jstor.org/stable/2308928

Maximum Independent Sets in Subcubic
Graphs: New Results

Ararat Harutyunyan1, Michael Lampis1(B), Vadim Lozin2,3,
and Jérôme Monnot1

1 Université Paris-Dauphine, Université PSL, CNRS, LAMSADE, Paris, France
michail.lampis@dauphine.fr

2 University of Warwick, Coventry, UK
3 University of Nizhny Novgorod, Nizhny Novgorod, Russia

Abstract. We consider the complexity of the classical Independent
Set problem on classes of subcubic graphs characterized by a finite set
of forbidden induced subgraphs. It is well-known that a necessary condi-
tion for Independent Set to be tractable in such a class (unless P = NP)
is that the set of forbidden induced subgraphs includes a subdivided star
Sk,k,k, for some k. Here, Sk,k,k is the graph obtained by taking three
paths of length k and identifying one of their endpoints.

It is an interesting open question whether this condition is also suffi-
cient: is Independent Set tractable on all hereditary classes of subcu-
bic graphs that exclude some Sk,k,k? A positive answer to this question
would provide a complete classification of the complexity of Indepen-
dent Set on all classes of subcubic graphs characterized by a finite
set of forbidden induced subgraphs. The best currently known result of
this type is tractability for S2,2,2-free graphs. In this paper we generalize
this result by showing that the problem remains tractable on S2,k,k-free
graphs, for any fixed k. Along the way, we show that subcubic Inde-
pendent Set is tractable for graphs excluding a type of graph we call
an “apple with a long stem”, generalizing known results for apple-free
graphs.

Keywords: Independent set · Sub-Cubic graphs · Apple-Free graphs

1 Introduction

In a graph, an independent set is a subset of vertices no two of which are adjacent.
The maximum independent set problem asks to find in a graph G an independent
set of maximum size. The size of a maximum independent set in G is called the
independence number of G and is denoted α(G).

The maximum independent set problem is one of the first problems that were
shown to be NP-hard. Moreover, the problem remains NP-hard under substantial
restrictions. In particular, it is NP-hard for graphs of vertex degree at most 3,
also known as subcubic graphs. In terms of vertex degree, this is the strongest

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 40–52, 2019.
https://doi.org/10.1007/978-3-030-30786-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_4

Maximum Independent Sets in Subcubic Graphs: New Results 41

possible restriction under which the problem remains NP-hard, since for graphs
of vertex degree at most 2 the problem is solvable in polynomial time. However,
with respect to other parameters the restriction to subcubic graphs is not best
possible, as the problem remains NP-hard for subcubic graphs of girth at least
k for any fixed value of k [10], where the girth of a graph is the size of a smallest
cycle. In other words, the problem is NP-hard for (C3, . . . , Ck)-free subcubic
graphs for each value of k, where Ck is a chordless cycle of length k. The idea
behind this conclusion is quite simple: it is not difficult to see that a double
subdivision of an edge increases the independence number of the graph by exactly
one, and hence, by repeatedly subdividing the edges of a subcubic graph G we
destroy all small cycles in G, i.e. we transform G into a graph of large girth.

Let us observe that by means of edge subdivisions we can also destroy small
copies of some other graphs, in particular, graphs of the form Hk represented in
Fig. 1 (left) . Therefore, the maximum independent set problem remains NP-hard
for (C3, . . . , Ck,H1, . . . , Hk)-free subcubic graphs for each value of k.

Let us denote by Sk the class of (C3, . . . , Ck,H1, . . . , Hk)-free subcubic graphs
and by κ(G) the maximum k such that G ∈ Sk. If G belongs to no class Sk, then
κ(G) is defined to be 0, and if G belongs to all classes Sk, then κ(G) is defined
to be ∞. Also, for a set of graphs M , κ(M) is defined as κ(M) = sup{κ(G) :
G ∈ M}. With this notation, we can derive the following conclusion from the
above discussion (see e.g. [7]).

Theorem 1. Let M be a set of graphs. If κ(M) < ∞, then the maximum inde-
pendent set problem is NP-hard in the class of M -free subcubic graphs.

This theorem suggests that, unless P = NP , the maximum independent set
problem is solvable in polynomial time in the class of M -free graphs only if the
parameter κ is unbounded in the set M . There are three basic ways to unbind
this parameter in M :

1. include in M a graph G with κ(G) = ∞;
2. include in M graphs with arbitrarily large induced cycles;
3. include in M graphs with arbitrarily large induced subgraphs of the form Hk.

To give an example of a polynomial-time result of the first type, let us observe
that κ(G) = ∞ if and only if every connected component of G has the form Si,j,k

represented in Fig. 1 (right). We call any graph of the form Si,j,k a tripod.
In other words, if the set M of forbidden induced subgraphs is finite, then M

must contain a graph for which every component is a tripod for the maximum
independent set problem in the class of M -free subcubic graphs to be polynomial-
time solvable (assuming P �= NP). In [5], it was conjectured that this condition
is also sufficient. Moreover, for graphs of bounded vertex degree the problem
can be easily reduced to connected forbidden induced graphs, in which case the
conjecture can be restated as follows.

Conjecture 1. The maximum independent set problem is polynomial-time solv-
able for G-free subcubic graphs if and only if G is a tripod.

42 A. Harutyunyan et al.

1 2 k 1

2

i−1

i

1
2

j−1
j

1
2

k−1

k

Fig. 1. The graphs Hk (left) and Si,j,k (right)

One of the minimal non-trivial tripods is the claw S1,1,1. The problem can be
solved for the claw-free graphs in polynomial time even without the restriction to
bounded degree graphs [9]. In [6], the result for claw-free graphs was extended
to S1,1,2-free graphs, also known as fork-free graphs, and again without the
restriction to bounded degree graphs. However, any further extension becomes
much harder even for bounded degree graphs, and only recently a solution was
found for S2,2,2-free subcubic graphs [8]. Currently, this is one of the few maximal
subclasses of subcubic graphs with polynomial-time solvable independent set
problem.

Now we turn to polynomial-time solutions of the second type, i.e. classes of
graphs where forbidden induced subgraphs contain arbitrarily large chordless
cycles. Clearly, in this case the set of forbidden induced subgraphs must be infi-
nite. A typical example of this type deals with classes of bounded chordality,
i.e. classes excluding all chordless cycle of length at least k for a constant k.
Without a restriction to bounded degree graphs a solution of this type is known
only for k = 4, i.e. for chordal graphs [4], and is unknown for larger values of
k. Together with the restriction to bounded degree graphs bounded chordal-
ity implies bounded tree-width [2] and hence polynomial-time solvability of the
maximum independent set problem. In other words, the problem can be solved
for (Ck, Ck+1, . . .)-free graphs of bounded vertex degree for each value of k ≥ 3.

An apple Ak, k ≥ 4, is a graph formed of a chordless cycle Ck and an
additional vertex, called the stem, which has exactly one neighbour on the cycle
Ck. The class of (A4, A5, . . .)-free graphs generalizes both chordal graphs and
claw-free graphs, and a solution for the maximum independent set problem in
this class was presented in [3]. In case of bounded degree graphs this solution can
be extended to graphs without large apples, i.e. to (Ak, Ak+1, . . .)-free graphs of
bounded vertex degree for any fixed value of k [7].

Generalizing both the subcubic graphs without large apples and S2,2,2-free
subcubic graphs, in the present paper we prove polynomial-time solvability of the
maximum independent set problem for subcubic graphs excluding large apples
with a long stem. An apple with a long stem A∗

k is obtained from an apple Ak by
adding one more vertex which is adjacent to the stem of Ak only. We show that
for any fixed value of k, the maximum independent set problem in the class of
(A∗

k, A
∗
k+1, . . .)-free subcubic graphs can be solved in polynomial time. Observe

Maximum Independent Sets in Subcubic Graphs: New Results 43

that this class contains all S2,p,p-free subcubic graphs for any fixed p < k (as long
as k ≥ 6) and hence our result brings us much closer to the proof of Conjecture 1.

2 Preliminaries

All graphs in this paper are simple, i.e. undirected, without loops and multiple
edges. The vertex set and the edge set of a graph G is denoted by V (G) and E(G),
respectively. The neighbourhood N(v) of a vertex v ∈ V (G) is the set of vertices
of G adjacent to v. The degree of v ∈ V (G) is the number of its neighbours, i.e.
|N(v)|. As usual, Pn and Cn denote a chordless path and a chordless cycle with
n vertices, respectively,

A subgraph of G induced by a subset U ⊆ V (G) is denoted G[U]. If G
contains no induced subgraph isomorphic to a graph H, we say that G is H-free.

Outline of the Proof. To prove polynomial-time solvability of the maximum inde-
pendent set problem in the class of (A∗

k, A
∗
k+1, . . .)-free subcubic graphs,

1. We start by checking if the input graph G has an induced copy of S2,2,2. If
G is S2,2,2-free, then the problem can be solved for G in polynomial time [8].
Otherwise, we proceed to checking whether G has an induced cycle of length
at least p = 300k. This can be done in polynomial time, as shown in Lemma1
below. If G does not contain induced cycles of length at least p, then the tree-
width of G is bounded by a function of k [2] and hence the problem can be
solved in polynomial time for G.

2. If G contains an induced copy of S2,2,2 and a large induced cycle C, then in
the absence of large induced apples with long stems we prove that it must
contain a large extended cycle C∗, which is a graph obtained from C by
adding two vertices that create a C6 together with four consecutive vertices
of C (see Fig. 7 in Sect. 4). This is shown in Sect. 3. An important ingredient
of this proof is the assumption that the input graph G is connected and
has no separating cliques, i.e. cliques whose removal disconnects the graph.
A polynomial-time reduction of the maximum independent set problem to
graphs without separating cliques can be found in [11,12].

3. After the previous two steps we can assume that our graph contains a large
extended cycle. In Sect. 4 we show how to destroy such a large extended
cycle by means of various local reductions. Each of them transforms G into a
smaller graph G′ in the same class with a fixed difference α(G) − α(G′). The
set of reductions is described in Sect. 4.1 and their application to a graph G
containing a large extended cycle is described in Sect. 4.2. By destroying the
large extended cycle C∗, we destroy either the cycle C or the induced copy
of S2,2,2 (or both) and return to Step 1 to check if there are other copies of a
large induced cycle or an induced S2,2,2.

The first step of the proof outline above is rather straight-forward and relies
on Lemma 1, stated below. The main difficulties lie in the second step (showing
that if the graph has an S2,2,2 and a large induced cycle, then it has a long

44 A. Harutyunyan et al.

extended cycle), which is handled in Sect. 3; and in the third step (showing how
to deal with a large extended cycle), which is handled in Sect. 4. Due to space
constraints, some proofs have been moved to the appendix.

Lemma 1. For each p there is an algorithm running in time nO(p) which decides
if a given n-vertex graph contains an induced cycle of length at least p.

3 From Large Cycles to Extended Large Cycles

We recall that C∗ denotes an extended cycle, i.e. the graph obtained from a cycle
C by adding two vertices that create a C6 together with four consecutive vertices
of C (see Fig. 7 in Sect. 4). Also, A∗

p denotes an apple with a long stem, where p
stands for the size of the cycle in the apple. An apple with a long stem consisting
of a cycle C and two stem vertices x, y will be denoted Cx,y.

The main goal of this section is to show that if G contains a large induced
cycle and an induced copy of S2,2,2, then it contains either a large induced
extended cycle or a large induced apple with a long stem. This will be shown
in two steps in Lemmas 2 and 3. Since we are dealing with graphs which do
not contain large induced apples with long stems, the result of this section is
that we may assume that our graph contains a large induced extended cycle.
We note that throughout this section we will assume that our graph does not
contain any separating cliques; in case it does, it is known how to reduce solving
Independent Set to smaller graphs that do not contain such cliques [11,12].

Lemma 2. Let G be a subcubic graph without separating cliques. If G has an
induced cycle C of length p and an induced copy of S2,2,2, then G has an induced
cycle of length at least p/12 containing the center of an induced S2,2,2.

Lemma 3. Let G be a subcubic graph without separating cliques. If G has an
induced cycle C of length p containing the center of an induced S2,2,2, then G
has an induced extended cycle C∗

t or an induced apple with a long stem A∗
t with

t ≥ p/8.

4 Destroying Large Extended Cycles

According to the previous section, if an (A∗
k, A

∗
k+1, . . .)-free subcubic graph G

contains a large induced cycle and an induced copy of S2,2,2, then it must contain
a large extended cycle C∗. The goal of the present section is to show how to
destroy large extended cycles by means of various local graph reductions. We
describe these reductions in Sect. 4.1 and apply them to large extended cycles in
Sect. 4.2.

Maximum Independent Sets in Subcubic Graphs: New Results 45

c

a

3

1

4

2

d

b

c

a

d

b

ΦΦ ′

Fig. 2. Φ-reduction

4.1 Graph Reductions

Φ-Reduction and House-Reduction. We start with the Φ-reduction intro-
duced in [8]. It applies to a graph G containing an induced copy of the graph Φ
represented on the left of Fig. 2 and consists in replacing Φ by the graph on the
right of Fig. 2.

Lemma 4. By applying the Φ-reduction to an (A∗
k, A

∗
k+1, . . .)-free subcubic

graph G, we obtain an (A∗
k, A

∗
k+1, . . .)-free subcubic graph G′ with α(G′) =

α(G) − 2.

A house is the complement of a P5. If a graph G contains an induced house,
the house-reduction consists in removing from G the vertices that form a triangle
in the house. It was shown in [8] that if G is a subcubic graph, then the house-
reduction reduces α(G) by exactly 1.

Π-Reduction. Now we introduce the Π-reduction illustrated in Fig. 3. In a
graph G, an induced Π is the graph represented on the left of Fig. 3. We observe
that vertex f can be missing, in which case vertices a and c have no other
neighbours in G. However, if f exists, that is, if one of a, c has a neighbour
outside of {1, 3, e}, then f is a common neighbour of a, c. Similarly, vertex h can
be missing, in which case vertices b and d have no other neighbours in G.

f

e

c

a

3

1

4

2

d

b

h

g

f

e

c

a

d

b

h

g

ΠΠ ′

Fig. 3. Π-reduction

Lemma 5. By applying the Π-reduction to an (A∗
k, A

∗
k+1, . . .)-free subcubic

graph G, we obtain an (A∗
k, A

∗
k+1, . . .)-free subcubic graph G′ with α(G′) =

α(G) − 2.

46 A. Harutyunyan et al.

c

a

3

1

4

2

d

b

f

e

c

a

d

b

f

e

ΓΓ ′

Fig. 4. Γ -reduction

Γ -Reduction. One more reduction is illustrated in Fig. 4. We will refer to it as
Γ -reduction. Again, vertex f can be missing, in which case vertices b and d have
degree 2 in the graph, but if f exists it is a common neighbour of b, d.

Lemma 6. By applying the Γ -reduction to an (A∗
k, A

∗
k+1, . . .)-free subcubic

graph G, we obtain an (A∗
k, A

∗
k+1, . . .)-free subcubic graph G′ with α(G′) =

α(G) − 2.

x

2

6

1 y

3

5

4

Fig. 5. Θ graph

Θ-Reduction

Lemma 7. If a subcubic graph G contains an induced Θ (see Fig. 5), then the
deletion of vertices x, y reduces the independence number of G by exactly 1.

Total Struction and Subgraph Reduction. Total struction is an operation
that was introduced in [1]. Roughly speaking, this operation allows us to identify
a part of the graph that can be replaced by an auxiliary graph in a way that
decreases the size of the maximum independent set by a precise value. Even
though this operation is quite powerful, in this paper we will only need to use
two special cases of total struction, given by Corollaries 1 and 2.

Corollary 1. For any graph G = (V,E) and H ⊆ V let N [H] denote the set of
vertices at distance at most 1 from H. Then, we have the following: if α(G[H]) =
α(G[N [H]]), then α(G[V \ N [H]]) = α(G) − α(G[H]).

Informally, Corollary 1 gives rise to the following transformation: if we can
find a set of vertices H such that G[H] and G[N [H]] have the same maximum
independent set, then we simply select an independent set of H in our solution

Maximum Independent Sets in Subcubic Graphs: New Results 47

y

2

6

1 x

3

5

4

Graph A1

a 1 6 5 4

32xy

Graph A2 with degG(3) = degG(y) = degG(6) = 2

a 1 6 5 4

32xy

z

Graph A3

Fig. 6. Graphs A1, A2 and A3

and delete all vertices of N [H]. The deletion of N [H] in the case when α(G[H]) =
α(G[N [H]]) was called in [8] the H-subgraph reduction.

It is not difficult to check that if A1, A2, or A3 (see Fig. 6) is an induced
subgraph of a subcubic graph, then we can use Corollary 1 as we have:

– α(A1[{2, 3, 5, 6, x, y}]) = α(A1) = 3,
– α(A2[{1, 2, 3, 5, 6, x, y}]) = α(A2) = 4,
– α(A3[{1, 2, 3, 5, 6, x, y}]) = α(A3) = 4.

Lemma 8. If A1, A2, or A3 is an induced subgraph of a subcubic graph G, then
α(G − A1) = α(G) − 3, α(G − A2) = α(G) − 4, α(G − A3) = α(G) − 4.

Corollary 2. Let G = (V,E) be a subcubic graph and K ⊆ V such that G[K]
induces a K2,3. Then, if G′ is the graph obtained from G by deleting the vertices
of K and introducing a new vertex z connected to N(K), we have (i) α(G′) =
α(G) − 2 and (ii) if G′ contains an apple with a long stem A∗

p, then G also
contains an apple with a long stem A∗

p′ , with p′ ≥ p.

4.2 Applying Graph Reductions to Large Extended Cycles

Let G be an (A∗
k, A

∗
k+1, . . .)-free subcubic graph. For ease of terminology and

notation we will refer to any A∗
t with t ≥ k simply as a large apple with a long

stem. According to Sect. 3, we may assume that G contains a large extended
cycle C∗

p , i.e. a graph that consists of an induced cycle of length p, plus two extra
vertices which form a C6 together with four consecutive vertices of the cycle and
have no other neighbours in C∗

p . We denote the vertices of an extended cycle
as shown in Fig. 7, where we have given labels to the vertices of the C6, plus
some other interesting vertices. In the remainder we use simply C∗ to denote
the extended cycle and C6 to denote the set of vertices {1, 2, 3, 4, 5, 6}. Without
loss of generality, we assume that p ≥ 3k.

We will now go through a sequence of cases that covers all possible ways in
which C∗ may be connected to the rest of the graph.

Case 0: Vertices 2 and 3 both have degree 2 in G. In this case we delete
2, 3 from the graph and add the edge connecting 1 to 4. This decreases α(G)
by exactly 1. Also, it is not difficult to check that this transformation does not
create any new forbidden induced subgraphs.

48 A. Harutyunyan et al.

b d

a c

1 4

2 3

6 5

Fig. 7. An extended cycle

Because of the above we can assume that the set {2, 3} has a neighbour
outside of C∗. We call this vertex x. Without loss of generality we assume that
x is connected to 2. Let us consider how x is connected to the rest of C∗. The
rest of the cases are defined as follows.

– Case 1.1: N(x) ∩ C∗ = {2}
– Case 1.2: N(x) ∩ C6 = {2} and x has exactly one neighbour in C∗ \ C6

– Case 1.3: N(x) ∩ C6 = {2} and x has two neighbours in C∗ \ C6

If we rule out the above cases we conclude that x has at least two neighbours
in C6. Since the degrees of 1, 4 are already three in C∗, we conclude that x has
at least two neighbours in {2, 3, 5, 6}. Let us also rule out two further cases.

– Case 1.4: N(x) ∩ C6 = {2, 3};
– Case 1.5: |N(x) ∩ C6| = 3

Lemma 9. If one of Cases 1.1–1.5 applies, then the instance can be simplified in
polynomial time. If none of Cases 1.1–1.5 applies, then either N(x)∩C6 = {2, 5}
or N(x) ∩ C6 = {2, 6}.

Thus, we may suppose: N(x)∩C6 = {2, 5} or N(x)∩C6 = {2, 6}. We handle
these two cases separately in the following subsections.

x is Adjacent to 2 and 6.

Lemma 10. Let x be a vertex adjacent to 2 and 6 and assume x has a neighbour
y not in C∗. Then G contains an induced Φ or an induced Π or an induced Γ
or an induced Θ.

Proof. If y is adjacent to 3, then by Lemma 9 (and symmetry) y is also adjacent
to 5 and hence vertices 1, 2, 3, 4, 5, 6, x, y induce a Θ.

If y is adjacent to c, then vertices 2, 3, 4, x, y, c create a cycle of length 6 which,
together with the path 1ab . . . d gives a second large extended cycle. Therefore,
by Lemma 9 applied to this extended cycle, vertex 5 must be adjacent to y and
hence vertices 1, 2, x, 6, y, 5, c, 4 induce a Φ.

If y is adjacent to a, then vertices a, y, 1, 2, x, 6, 3, 4, 5 induce a Γ with a
possible missing common neighbour of 3 and 5 (any neighbour of these vertices
must be common by Lemma 9).

Maximum Independent Sets in Subcubic Graphs: New Results 49

If y is adjacent to b and not adjacent to a, then vertices a, b, y, 1, 2, x, 6, 3, 4, 5
induce a Π with a possible missing common neighbour of 3 and 5 (any neighbour
of these vertices must be common by Lemma 9).

From now on, we assume y has no neighbours in {3, 5, a, b, c}. If y has neigh-
bours on C∗ \C6, then we can distinguish at most 3 cycles containing y as shown
in Fig. 8 (if y has only 1 neighbour on C∗ \ C6, the cycle C2 is missing).

We observe that at least one of the cycles C1, C2, C3 is large, i.e. has length
at least p/3. Then G contains a large apple with a long stem

– C∗ ∪ {x, y} \ {5, 6} if y has no neighbours on C∗ \ C6,
– C1 ∪ {3, 4} if C1 is large,
– C2 ∪ {x, 2} if C2 is large,
– C3 ∪ {1, a} if C3 is large.

A contradiction in all cases shows that y has a neighbour in {3, 5, a, b, c} and
hence G contains an induced Φ or an induced Π or an induced Γ or an induced
Θ. 	

b c

a 4

2
1 3

x

y
C1 C3

C2

Fig. 8. Vertex y has neighbours on C

We therefore find ourselves in the following context: N(x) ∩ C6 = {2, 6} and
N(x) \ C∗ = ∅. Before we proceed, let us identify another relevant vertex. If 3
has a neighbour outside C∗ we call that vertex y. By Lemma 9 (and appropriate
symmetry) y is also connected to 5. We have also argued that x and y are not
adjacent. We will in the remainder assume that the degree of x is at least as
large as the degree of y. This is without loss of generality, as the two vertices
can be exchanged by an appropriate automorphism of C∗. In what follows, we
analyze all possible adjacencies of x and y to the vertices of C∗.

Case 2.1: If x has degree 2 and y does not exist (therefore 3, 5 have degree
2), then we apply the H-subgraph reduction (Corollary 1) with H = {x, 3, 5}, in
which case α(G[H]) = α(G[N [H]]) = 3 and hence the removal of N [H] decreases
α(G) by 3.

Case 2.2: Assume x has degree 2 and y exists (therefore, y is connected
to 3, 5). We have assumed without loss of generality that x has at least as high
degree as y, therefore y has no other neighbour. We delete from the graph vertices

50 A. Harutyunyan et al.

2, 3, x, y. If G′ is the new graph, we claim that α(G′) = α(G)−2. The inequality
α(G′) ≥ α(G) − 2 is clear, since no independent set can take more than two of
the deleted vertices. To see that α(G) ≥ α(G′)+2, take a maximum independent
set in G′. If it contains vertex 5, then it does not contain 4 or 6. Therefore, we
can augment it with x, 3. If it contains 6, we can augment it similarly by adding
y, 2. Finally, if it contains neither 5 nor 6, we augment it with x, y.

Case 2.3: If x is connected to a, {x, 1, a, 2, 6} induces a K2,3, we can therefore
invoke Corollary 2 to simplify the graph.

Case 2.4: If x is connected to c, then x61ab . . . cx together with 3, 4 form a
large apple with a long stem.

Case 2.5: If x is connected to d, then x21ab . . . dx together with 3, 4 form a
large apple with a long stem.

Case 2.6: If x is connected to a vertex f of C∗ in the path from b to d (but
not b or d), then: if f is closer to a than to c, we take the path xf . . . dc432x plus
1, a; otherwise we take xf . . . ba12x plus 3, 4. In both cases these form a large
apple with a long stem.

Case 2.7: If x is connected to b and y does not exist, then we apply the H-
subgraph reduction with H = {x, 1, 3, 5}. It is not hard to check that α(G[H]) =
α(G[N [H]]) = 4 and hence the removal of N [H] decreases α(G) by 4.

Case 2.8: Assume x is connected to b, y exists and it has degree 2 (that is, y is
connected only to 3, 5). We delete from the graph the vertices {x, y, 1, 2, 3, 5, 6}
and add a new vertex z adjacent to a, b, 4. We claim α(G′) = α(G)−3. To see that
α(G) ≥ α(G′)+3 take an independent set of the new graph. If it does not include
z then we augment it with {2, 6, y}; if it does include z, it does not contain any
of a, b, 4, so we replace z with {1, x, 3, 5}. To see that α(G′) ≥ α(G) − 3 take
an independent set of G. If it contains at most three of the deleted vertices we
are done. If it contains four, these must be {1, x, 3, 5}, therefore the set does not
contain any of a, b, 4; in this case we replace the deleted vertices by z.

The new graph does not have a large apple with a long stem that uses z and
both a, b, since that would induce a triangle. If, on the other hand, it has an
apple with a long stem that uses z and at most two of its neighbours, then G
also has a subdivided copy of the same subgraph if we replace z with 1, 2, 3.

Case 2.9: Finally, suppose x is connected to b, y exists and y has degree
3. Since x and y have the same degree, we may exchange their roles, and by
symmetry and the same case analysis that we did for x we conclude that y must
be connected to d (otherwise one of the previous cases applies). We transform
the graph as follows: we delete the vertices 1, 2, 3, 4, 5, 6, x, y and add two new
vertices z, w such that z, w are connected to each other, z is connected to a, b,
and w is connected to c, d. We claim that α(G′) = α(G) − 3. First, to obtain
α(G′) ≥ α(G)− 3, take a maximum independent set of G. If it contains a vertex
from a, b and a vertex from c, d, then it contains at most three of the deleted
vertices, since the six deleted vertices which are not adjacent to a vertex of the
independent set induce a cycle of length 6. In all other cases, the independent set
in G contains at most four of the deleted vertices. However, if the set does not
contain any of a, b, we can augment it with z in G′, while if it does not contain

Maximum Independent Sets in Subcubic Graphs: New Results 51

any of c, d we can add to it w. To see that α(G) ≥ α(G′) + 3, take a maximum
independent set in G′. If it is using z, then it does not contain a or b. In G we
replace z with 1, x, 3, 5. The situation is symmetric if the set contains w. Finally,
if it does not contain either z or w, we observe that deleting the neighbours of
the set among the removed vertices gives a cycle of length 6, of which we can
select three vertices. The transformation does not introduce a new large apple
with a long stem, since the closed neighbourhoods of z, w include a triangle,
therefore if one or two of these vertices is used in the apple we can replace them
with an appropriate induced path through the deleted vertices in G.

x is Adjacent to 2 and 5

Lemma 11. Let x be a vertex adjacent to 2 and 5 and assume x has a neighbour
y not in C∗. Then G contains an induced A1 or an induced A2 or an induced
A3 (Fig. 6).

Proof. If y is adjacent to 3 or 6, then y is adjacent to both 3 and 6 (Lemma9)
and hence G contains an induced A1. Assume y is adjacent to a. Then, if all
three vertices 3, 6, y have degree 2 in G, then G contains an induced A2. If vertex
3 has degree three, it has a common neighbour with 6 (by Lemma 9), call this
neighbour z. We claim that z must also be connected to y, which will give an
induced A3. To see this, consider the set of vertices (C∗ \{2, 3})∪{x, y}. This set
induces an extended cycle, where the C6 is now formed by a, 1, 6, 5, x, y. Since z
is connected to 6, it must be connected to one of {x, y} (Lemma 9). However, x
already has three neighbours (2, 5, y), therefore, z is connected to y.

If y is adjacent to c this is symmetric to y being adjacent to a. So, we suppose
that y is adjacent to none of 3, 6, a, c. The rest of the proof is similar to that of
Lemma 10 with the only difference that if y is adjacent only to b this time we
can find a large apple with a long stem, where the stem is {1, 6} and the cycle
goes through byx234cd . . . b. 	

Lemma 12. Let x be a vertex adjacent to 2 and 5 and assume x has a neighbour
in C∗ \ C6. Then this neighbour is one of a and c.

To complete the case analysis, we prove the following lemma.

Lemma 13. Let x be a vertex adjacent to 2 and 5 and suppose that if x has a
neighbour in C∗ \ C6, then this neighbour is a. Then we can in polynomial time
reduce our instance to a smaller instance.

5 Conclusion

Summarizing the discussion in the previous sections, we make the following con-
clusion, which extends several previously known results.

Theorem 2. Maximum independent set can be solved in polynomial time in the
class of (A∗

k, A
∗
k+1, . . .)-free subcubic graphs for any fixed value of k.

52 A. Harutyunyan et al.

Since A∗
t contains S2,k,k for any t > 2k +1, we derive the following corollary

Corollary 3. Maximum independent set can be solved in polynomial time in the
class of S2,k,k-free subcubic graphs for any fixed value of k.

This result brings us closer to the dichotomy of Conjecture 1. However, prov-
ing this conjecture in its whole generality remains a challenging open problem.

Acknowledgment. Vadim Lozin acknowledges support from the Russian Science
Foundation Grant No. 17-11-01336.

References

1. Alexe, G., Hammer, P.L., Lozin, V.V., de Werra, D.: Struction revisited. Discrete
Appl. Math. 132(1–3), 27–46 (2003)

2. Bodlaender, H.L., Thilikos, D.M.: Treewidth for graphs with small chordality. Dis-
crete Appl. Math. 79(1–3), 45–61 (1997)

3. Brandstädt, A., Lozin, V.V., Mosca, R.: Independent sets of maximum weight in
apple-free graphs. SIAM J. Discrete Math. 24(1), 239–254 (2010)

4. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Comput.
1(2), 180–187 (1972)

5. Lozin, V.V.: From matchings to independent sets. Discrete Appl. Math. 231, 4–14
(2017)

6. Lozin, V.V., Milanic, M.: A polynomial algorithm to find an independent set of
maximum weight in a fork-free graph. J. Discrete Algorithms 6(4), 595–604 (2008)

7. Lozin, V.V., Milanic, M., Purcell, C.: Graphs without large apples and the max-
imum weight independent set problem. Graphs Combinatorics 30(2), 395–410
(2014)

8. Lozin, V.V., Monnot, J., Ries, B.: On the maximum independent set problem in
subclasses of subcubic graphs. J. Discrete Algorithms 31, 104–112 (2015)

9. Minty, G.J.: Minty on maximal independent sets of vertices in claw-free graphs. J.
Comb. Theory Ser. B 28(3), 284–304 (1980)

10. Murphy, O.J.: Computing independent sets in graphs with large girth. Discrete
Appl. Math. 35(2), 167–170 (1992)

11. Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55(2), 221–232
(1985)

12. Whitesides, S.: An algorithm for finding clique cut-sets. Inf. Process. Lett. 12(1),
31–32 (1981)

Cyclewidth and the Grid Theorem
for Perfect Matching Width

of Bipartite Graphs

Meike Hatzel(B), Roman Rabinovich, and Sebastian Wiederrecht(B)

TU Berlin, Berlin, Germany
{meike.hatzel,roman.rabinovich,sebastian.wiederrecht}@tu-berlin.de

Abstract. A connected graph G is called matching covered if every edge
of G is contained in a perfect matching. Perfect matching width is a width
parameter for matching covered graphs based on a branch decomposition.
It was introduced by Norine and intended as a tool for the structural
study of matching covered graphs, especially in the context of Pfaffian
orientations. Norine conjectured that graphs of high perfect matching
width contain a large grid as a matching minor, similar to the result on
treewidth by Robertson and Seymour.

In this paper we obtain the first results on perfect matching width
since its introduction. For the restricted case of bipartite graphs, we
show that perfect matching width is equivalent to directed treewidth
and thus, the Directed Grid Theorem by Kawarabayashi and Kreutzer
for directed treewidth implies Norine’s conjecture.

Keywords: Branch decomposition · Perfect matching ·
Directed treewidth · Matching minor

1 Introduction

The concept of width parameters, or decompositions of graphs into tree-like
structures has proven to be a powerful tool in both structural graph theory
and for coping with computational intractability. The shining star among these
concepts is the treewidth of undirected graphs introduced in its popular form in
the Graph Minor series by Robertson and Seymour (see [RS10]).

Tree decompositions are a way to decompose a given graph into loosely
connected small subgraphs of bounded size that, in many algorithmic appli-
cations, can be dealt with individually instead of considering the graph as a
whole. This concept allows the use of dynamic programming and other tech-
niques to solve many hard computational problems (see for example [Bod96,
Bod97,Bod05,DF16]). A major milestone in the graph minor project was the

This work has been supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (ERC consolidator
grant DISTRUCT, agreement No. 648527).
c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 53–65, 2019.
https://doi.org/10.1007/978-3-030-30786-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_5

54 M. Hatzel et al.

Grid Theorem [RS86], which states that if the treewidth of a graph is sufficiently
high, the graph has a large grid as a minor.

A natural generalisation of treewidth to directed graphs, directed treewidth,
was introduced by Reed in [Ree99] and by Johnson et al. in [JRST01] along with
the conjecture of a directed version of the Grid Theorem. After being open for sev-
eral years, the conjecture was proven by Kawarabayashi and Kreutzer [KK15]).

It is possible to go further and to consider even more general structures
than directed graphs. One of the ways to do this is to characterise (strongly
connected) directed graphs by pairs of undirected bipartite graphs and perfect
matchings. The generalisation (up to the strong connectivity) is then to drop
the condition on the graphs to be bipartite. The theory of matching minors in
matching covered graphs is deeply connected to the theory of butterfly minors
in strongly connected directed graphs. This connection can be used to show
structural results on directed graphs by using matching theory (see [McC00,
GT11]).

The corresponding branch of graph theory was developed from the theory of
tight cuts and tight cut decompositions of matching covered graphs introduced
by Kotzig, Lovász and Plummer [Lov87,LP09,Kot60]. A graph is matching cov-
ered if it is connected and each of its edges is contained in a perfect matching.
One of the main incentives of the field is the question of Pfaffian orientations;
see [McC04,Tho06] for an overview on the subject. Matching minors can be used
to characterise the bipartite Pfaffian graphs [McC04,RST99]. The characterisa-
tion implies a polynomial time algorithm for the problem to decide whether a
matching covered bipartite graph is Pfaffian or not.

While no polynomial time algorithm for recognising general Pfaffian graphs is
known, Norine defines a branch decomposition for matching covered graphs and
gives an algorithm that decides whether a graph from a class of bounded perfect
matching width is Pfaffian in XP-time. Norine and Thomas also conjecture a grid
theorem for this new width parameter (see [Nor05,Tho06]). Based on the above
mentioned ties between bipartite matching covered graphs and directed graphs,
Norine conjectures in his thesis that the Grid Theorem for digraphs would at
least imply the conjecture in the bipartite case. Whether perfect matching width
and directed treewidth could be seen as equivalent was unknown at that time.

Contribution. We prove that high perfect matching width of a bipartite graph
implies that it has a large cylindrical grid as a matching minor, which settles the
Matching Grid Conjecture for the bipartite case. We also show that the reverse
direction holds. To do so, in Sect. 2, we introduce a branch decomposition and a
corresponding new width parameter for directed graphs, cyclewidth, and prove
its equivalence to directed treewidth. This new width measure is very interesting
in itself and not only because, while equivalent to treewidth, it is much better
behaved since it is closed under minors.

As an advantage of cyclewidth we consider that its introduction leads to
a straightforward proof of the Matching Grid Theorem for bipartite graphs: in
Sect. 3 we show that cyclewidth and perfect matching width are within a constant

The Grid Theorem for Perfect Matching Width of Bipartite Graphs 55

factor of each other; this immediately implies the Matching Grid Theorem for
bipartite graphs. Our proofs are algorithmic and thus also imply an approxima-
tion algorithm for perfect matching width on bipartite graphs, which is the first
known result on this matter.

We also show that the perfect matching width of a matching minor of a
matching covered bipartite graph is at most two times higher than the perfect
matching width of the original graph.

A width parameter like cyclewidth never considers an edge that is not con-
tained in a directed cycle. So, when studying cyclewidth and related topics,
one might restrict themselves to strongly connected digraphs. Similarly, an edge
that is not contained in any perfect matching is, in most cases, irrelevant for the
matching theoretic properties of the graph. For this reason it is common to only
consider matching covered graphs as this does not pose any loss of generality.

We take the freedom to rename Norine’s matching-width [Nor05] to perfect
matching width to better distinguish it from related parameters such as maxi-
mum matching width (see [JST17]).

1.1 Preliminaries

We consider finite graphs and digraphs without multiple edges and use standard
notation (see [Die17]). For a graph G, its vertex set is denoted by V (G) and its
edge set by E(G), and similarly for digraphs where we call arcs edges.

Let X ⊆ V (G) be a non-empty set of vertices in a graph G. The cut around
X is the set ∂ (X) ⊆ E(G) of all edges joining vertices of X to vertices of
V (G)\X. We call X and V (G)\X the shores of ∂ (X). A set E ⊆ E(G) is a cut
if E = ∂ (X) for some X. Note that in connected graphs the shores are uniquely
defined.

A matching of a graph G is a set M ⊆ E(G) such that no two edges in M
share a common endpoint. If e = xy ∈ M , e is said to cover the two vertices
x and y. A matching M is called perfect if every vertex of G is covered by an
edge of M . We denote by M (G) the set of all perfect matchings of a graph
G. A graph G is called matching covered if G is connected and for every edge
e ∈ E(G) there is an M ∈ M (G) with e ∈ M .

Definition 1.1. Let G = (A ∪ B,E) be a bipartite graph and let M ∈ M (G) be
a perfect matching of G. The M -direction D (G,M) of G is defined as follows
(see also Fig. 1). Let M =

{
a1b1, . . . , a|M |b|M |

}
with ai ∈ A, bi ∈ B for 1 ≤ i ≤

|M |. Then,
(i) V (D (G,M)) :=

{
v1, . . . , v|M |

}
and

(ii) E(D (G,M)) := {(vi, vj) | aibj ∈ E(G)}.
Thus, the M -direction D (G,M) of G is defined by contracting the edges of M ,
and orienting the remaining edges of G from A to B. The following is a well
known observation about M -directions.

56 M. Hatzel et al.

G and M

b1

a1

b2 a2

b3

a3

b4a4

b5a5

b6

a6

b7 a7 D(G,M)

v1

v2

v3

v4

v5

v6

v7

Fig. 1. A bipartite graph G = (A ∪ B,E) with perfect matching M and its M -direction.

Lemma 1.2. A digraph D is strongly connected if and only if there is a bipartite
matching covered graph G and a perfect matching M ∈ M (G) such that D is
isomorphic to D (G,M). Furthermore, the pair (G,M) is uniquely defined by D.

This shows why matching covered graphs are such a meaningful graph class,
because they correspond to the strongly connected directed graphs.

2 Directed Treewidth and Cyclewidth

Since perfect matching width is defined via a branch decomposition, our first step
towards showing the asymptotic equivalence of directed treewidth and perfect
matching width of bipartite graphs is to relate directed treewidth to cyclewidth, a
directed branchwidth parameter. In Sect. 2.1, we introduce cyclewidth and show
that it provides a linear lower bound on the directed treewidth. Then, in Sect. 2.2,
we show that taking butterfly minors does not increase the cyclewidth and that
large cylindrical grids have large cyclewidth. The Directed Grid Theorem then
implies that there exists a function that bounds the cyclewidth of a digraph from
below by its directed treewidth.

2.1 Cyclewidth: A Branch Decomposition for Digraphs

An arborescence is a directed tree T with a root r0 and all edges directed away
from r0. Let D be a digraph and let Z ⊆ V (D). A set S ⊆ V (D)−Z is Z-normal
if there is no directed walk in D −Z with the first and last vertex in S that uses
a vertex of D − (Z ∪ S).

Definition 2.1. A directed tree decomposition of a digraph D is given by a
triple (T, β, γ), where T is an arborescence, β : V (T) → 2V (D) and γ : E(T) →
2V (D) are functions such that

(i) {β(t) | t ∈ V (T)} is a partition of V (D) into possibly empty sets, and
(ii) if e ∈ E(T), then

⋃ {β(t) | t ∈ V (T), t > e} is γ(e)-normal.

For any t ∈ V (T) we define Γ (t) := β(t)∪⋃ {γ(e) | e ∈ E(T), e ∼ t}, where e ∼ t
means that e is incident with t. The width of (T, δ, γ) is the least integer w such

The Grid Theorem for Perfect Matching Width of Bipartite Graphs 57

that |Γ (t)| ≤ w +1 for all t ∈ V (T). The directed treewidth dtw(D) of D is the
least integer w such that D has a directed tree decomposition of width w. The
sets β(t) are called bags and the sets γ(e) are called the guards of the directed
tree decomposition. For a subtree T ′ of T we write β(T ′) for

⋃
v∈V (T) β(v).

Definition 2.2 (Butterfly Minor). Let D be a digraph. An edge e = (u, v) ∈
E(D) is butterfly-contractible if e is the only outgoing edge of u or the only
incoming edge of v. A butterfly contraction is the operation of identifying the
endpoints of a butterfly-contractible edge and deleting any resulting multiple edges
and loops. A digraph D′ is a butterfly-minor of D, if it can be obtained from a
subgraph of D by butterfly contractions.

Definition 2.3 (Cylindrical Grid). A cylindrical grid D�
k of order k consists

of k concentric directed cycles and 2k paths connecting the cycles in alternating
directions, see Fig. 2.

Fig. 2. A cylindrical grid of order 6.

Theorem 2.4 (Kawarabayashi and Kreutzer [KK15]). There is a function
f : N → N such that every digraph D either satisfies dtw(D) ≤ k, or contains
the cylindrical grid of order f(k) as a butterfly minor.

The problem of relating directed treewidth and perfect matching width is that
the latter is defined by a branch decomposition where the value of a cut is
determined locally with respect to the cut while, in a directed tree decomposition,
the guards of a tree edge may appear almost everywhere in the graph.

In order to approach this problem, we introduce a new width parameter,
which is defined over a branch decomposition.

Let T be a tree and e = tt′ ∈ E(T). Then T � e := (T1, T2) where T1 is the
subtree containing t and T2 the subtrees containing t′ in T − e. Let L (T) denote
the set of leaves of T .

Definition 2.5 (Cyclewidth). Let D be a digraph. A cycle decomposition of D
is a tuple (T, ϕ), where T is a cubic tree (i.e. all inner vertices have degree three)

58 M. Hatzel et al.

and ϕ : L (T) → V (D) is a bijection. For a subtree T ′ of T we use ϕ(T ′) :=
{ϕ(t) | t ∈ V (T ′) ∩ L (T)}. Let t1t2 ∈ E(T) and let (T1, T2) := T � t1t2. Let
∂ (t1t2) := ∂ (ϕ(T1)). The cyclic porosity of the edge t1t2 is defined as

cp (∂ (t1t2)) := max
C family of pairwise

disjoint directed cycles
in D

∣
∣
∣∂ (t1t2) ∩

⋃

C∈C
E(C)

∣
∣
∣.

The width of a cycle decomposition (T, ϕ) is given by maxt1t2∈E(T) cp(∂(t1t2))/2 and
the cyclewidth of D is defined as

cw (D) := min
(T,ϕ) cycle decomposition

of D

max
t1t2∈E(T)

cp(∂(t1t2))/2.

The factor of 1/2 might seem arbitrary and it kind of is. We added it because
otherwise cyclewidth would only take even numbers which is a quite strange
property for a width measure.

In order to show that directed treewidth bounds cyclewidth from above by a
function, we construct a cycle decomposition from a directed tree decomposition
in two steps. First, we push all vertices contained in bags of inner vertices of the
arborescence into leaf bags. Second, we transform the result into a cubic tree.

Lemma 2.6. Let (T, β, γ) be a directed tree decomposition of a digraph D. There
is a linear time algorithm that computes a directed tree decomposition (T ′, β′, γ′)
of D of the same width such that |β′(�)| = 1 for all � ∈ L (T ′) and β′(t) = ∅ for
all inner vertices of T .

Proof (sketch). For every t ∈ V (T) \ L(T) we introduce a new child t′ with
β′(t′) := β(t) and γ′(tt′) := γ(st) where st ∈ E(T). Finally, β′(t) := ∅. It is easy
to confirm that the construction yields a directed tree decomposition of the same
width as (T, β, γ).
�
We call a directed tree decomposition like the one we obtain from Lemma 2.6 a
leaf directed tree decomposition. For the second step we need to further manip-
ulate this decomposition. A cycle decomposition requires a cubic tree, therefore
we have to transform the arborescence of our decomposition into one of total
degree 3 at every vertex. To achieve this we replace every high degree vertex by
a long path and attach the children one at a time while maintaining the guards.
Then, for every vertex of degree two we contract one of its incident edges.

Lemma 2.7. If the directed treewidth of a digraph D is at most k, then there is
a cubic leaf directed tree decomposition of width k for D.

Both constructions in the proofs of Lemmata 2.6 and 2.7 can be computed in
linear time. It remains to observe that if we forget the orientation of the edges
as well as the guard function of the resulting decomposition, we obtain a cycle
decomposition of bounded width.

Proposition 2.8. For every digraph D holds cw (D) ≤ dtw(D). Moreover, a
cycle decomposition of D of width at most k can be computed from a directed
tree decomposition of D of width k.

This can be done in polynomial time.

The Grid Theorem for Perfect Matching Width of Bipartite Graphs 59

2.2 Cyclewidth and Cylindrical Grids

The goal of this subsection is to establish a lower bound on the cyclewidth of a
digraph in terms of its directed treewidth. Here we face a special challenge. Most
width parameters, including directed treewidth, imply separations of bounded
size, namely in the width of the decomposition. For cyclewidth it is not immedi-
ately clear whether there exists a function f : N → N such that, given a digraph
D and a cut ∂ (X) in D, there always is a set S ⊆ V (D) that hits all directed
cycles crossing ∂ (X) and satisfying |S| ≤ f(cp (∂ (X))).

We take a different approach. We show that the cyclewidth of cylindrical
grids is unbounded and that cyclewidth is closed under taking butterfly minors
(a property that does not hold for directed treewidth as shown by Adler [Adl07]).
The Directed Grid Theorem then implies the desired result.

Theorem 2.9. If D is a digraph and D′ is a butterfly minor of D, then
cw (D′) ≤ cw (D).

For some intuition behind Theorem 2.9 note that, if an edge e is butterfly con-
tractible, every directed cycle containing one of the two endpoints of e must
contain e itself. Therefore, by contracting the edge no new cycles are generated
and so if there is a family of directed cycles in D′ that witnesses the cycle poros-
ity of some cut in D′, it corresponds to a family of cycles in D witnessing the
cycle porosity of the corresponding cut. This property is especially interesting,
because directed treewidth itself is not closed under butterfly minors.

Lemma 2.10. The cylindrical grid of order k has cyclewidth at least k/3.

Proof (sketch). Every cycle decomposition of every digraph D contains an edge e
that induces a bipartition of V (D) where both partitions contain at least a third
of V (D). For a cycle decomposition of a large cylindrical grid, consider such an
edge. In case that both shores contain a concentric cycle C1 and C2 of the grid,
the cycle starting at C1, going to C2, returning to C1 and so on intersects the
cut with every change between C1 and C2. In the other case one of the shores
contains no concentric cycle completely. The other shore can contain at most
two third of the concentric cycles completely, i.e. the remaining (at least k/3)
cycles cross the cut.
�
We conclude this section by stating and proving its main result: the equivalence
between directed treewidth and cyclewidth.

Theorem 2.11. A class D of digraphs is a class of bounded directed treewidth
if and only if it is a class of bounded cyclewidth.

Proof. Let D be a class of digraphs. Suppose D has unbounded directed
treewidth, then for each n ∈ N there is a digraph D′

n ∈ D such that dtw(D′) ≥ n.
By Theorem2.4, we can conclude that for every n ∈ N there is a digraph Dn ∈ D
that contains the cylindrical grid of order n as a butterfly minor. Therefore,
cw (Dn) ≥ n

3 by Lemma 2.10 and Theorem 2.9. Thus, D has also unbounded
cyclewidth. Vice versa, assume D is of bounded directed treewidth. Then it also
is of bounded cyclewidth due to Proposition 2.8.
�

60 M. Hatzel et al.

3 Perfect Matching Width

We now leave the world of directed graphs and start to consider undirected
graphs with perfect matchings. As seen in Lemma 1.2, strongly connected
directed graphs correspond to matching covered bipartite graphs with a fixed
perfect matching. We discuss this correspondence in more detail in this section.
The goal of this section is to establish a connection between the perfect matching
width of bipartite matching covered graphs and the directed treewidth of their
M -directions.

A set S ⊆ V (G) of vertices is called conformal if G−S has a perfect matching.
Given a perfect matching M ∈ M (G), a set S ⊆ V (G) is called M -conformal
if M contains a perfect matching of both G − S and G[S]. A subgraph H ⊆ G
is conformal if V (H) is a conformal set and it is called M -conformal if V (H)
is M -conformal. If a cycle C is M -conformal, there is another perfect matching
M ′ = M with E(C) \ M ⊆ M ′. Hence, if needed, we say C is M -M ′-conformal
to indicate that M and M ′ form a partition of the edges of C.

3.1 Perfect Matching Width and Directed Cycles

Definition 3.1 (Perfect Matching Width). Let G be a matching covered
graph. We define the matching-porosity of ∂ (X) as follows:

mp (∂ (X)) := max
M∈M(G)

|M ∩ ∂ (X)| .

A perfect matching decomposition of G is a tuple (T, δ) where T is a cubic tree
and δ : L (T) → V (G) a bijection. Let e be an edge in T . Removing the edge e
splits T in two subtrees T1 and T2. Let

Xi := {δ(t) | t ∈ L (T) ∩ V (Ti)}

be the two classes of that partition. Note that ∂ (X1) = ∂ (X2) defines an edge
cut in G, we refer to it by ∂ (e). The width of (T, δ) is given by maxe∈E(T) mp (e)
and the perfect matching width of G is then defined as

pmw (G) := min
(T,δ) perfect matching
decomposition of G

max
e∈E(T)

mp (∂ (e)) .

If we consider the M -direction of a matching covered bipartite graph G with
M ∈ M (G), then any cycle decomposition (T, ϕ) of D (G,M) can be interpreted
as a decomposition of G where ϕ is a bijection between L (T) and M . Then,
every edge in T induces a bipartition of V (G) into M -conformal sets. The next
definition relates this observation to perfect matching decompositions.

Definition 3.2 (M-Perfect Matching Width). Let G be a matching covered
graph and M ∈ M (G). Define S as the set of all perfect matching decompo-
sitions (T, δ) of G such that for every inner edge e holds if (T1, T2) = T � e,

The Grid Theorem for Perfect Matching Width of Bipartite Graphs 61

then δ(L (T1)) and δ(L (T2)) are M -conformal. The M -perfect matching width,
M -pmw, is defined as

M -pmw (G) := min(T,δ)∈S maxe∈E(T) mp(∂(e))/2.

Here again the factor 1/2 avoids the measure to take only even numbers.

Proposition 3.3. Let G be a matching covered graph and M ∈ M (G). Then,
pmw(G)/2 ≤ M -pmw (G) ≤ pmw (G).

Proof (sketch). The first inequality is trivial. For the second one consider a cut
∂ (X) of matching porosity k. Then, our desired perfect matching M has at most
k edges in ∂ (X). Therefore, we have to shift at most k vertices from X to X in
order to obtain a cut between two M -conformal sets. Since we shift at most k
vertices for every cut, the matching porosity increases by at most k, so it ends
up to be 2k. Thus the M -perfect matching width is k again.
�
We now need the following observation. Let G = (A ∪ B,E) be a bipartite
matching covered graph and M,M ′ ∈ M (G) two distinct perfect matchings.
Then the graph induced by M ∪ M ′ consists only of isolated edges and M -M ′-
conformal cycles. Moreover, the isolated edges are exactly the set M ∩M ′. Let C
be such an M -M ′-conformal cycle. Then in both, D (G,M) and D (G,M ′), C
corresponds to a directed cycle. On the other hand let N ∈ M (G) and let C
be a directed cycle in D (G,N). Then C corresponds to an N -conformal cycle
CN in G of exactly double the length, where E(C) and E(CN) \ N coincide (if
we forget the direction of edges in C). Thus (N \ E(CN)) ∪ (E(CN) \ N) is a
perfect matching of G.

So there is a one-to-one correspondence between the directed cycles in
D (G,M) and the M -conformal cycles in G. Using this insight we can trans-
late an M -perfect matching decomposition of G to a cycle decomposition of
D (G,M) and back, which yields the next lemma.

Lemma 3.4. Let G be a bipartite and matching covered graph and M ∈ M (G).
Then M -pmw (G) = cw (D (G,M)).

The following theorem is an immediate corollary of Proposition 3.3 and
Lemma 3.4.

Theorem 3.5. Let G be a bipartite and matching covered graph and M ∈
M (G). Then pmw(G)/2 ≤ cw (D (G,M)) ≤ pmw (G).

3.2 The Bipartite Matching Grid

We now almost have all pieces in place to deduce the grid theorem for matching
covered bipartite graphs. The only missing piece is a minor concept for matching
covered graphs. The standard concept of contractions in graphs reduces the num-
ber of vertices by exactly one. Thus, it does not preserve the property whether

62 M. Hatzel et al.

the graph contains a perfect matching. However, if we always consider conformal
subgraphs and contract two edges at a time, parity is not an issue.

The idea of matching minors appears in the work of McGuaig [McC01],
but the formal framework and the actual name were introduced by Norine and
Thomas in [NT07].

Definition 3.6 (Bicontraction). Let G be a graph and let v0 be a vertex of G
of degree two incident to the edges e1 = v0v1 and e2 = v0v2. Let H be obtained
from G by contracting both e1 and e2 and deleting all resulting parallel edges. We
say H is obtained from G by bicontraction or bicontracting the vertex v0.

Definition 3.7 (Matching Minor). Let G and H be graphs. We say that H
is a matching minor of G if H can be obtained from a conformal subgraph of G
by repeatedly bicontracting vertices of degree two.

There is a strong relation between matching minors of bipartite matching covered
graphs and butterfly minors of strongly connected digraphs.

Lemma 3.8 (McGuaig [McC00]). Let G and H be bipartite matching covered
graphs. Then H is a matching minor of G if and only if there exist perfect
matchings M ∈ M (G) and M ′ ∈ M (H) such that D (H,M ′) is a butterfly
minor of D (G,M).

We want to establish a relation between the perfect matching width of a matching
covered graph and the perfect matching width of its matching minors. By using
our result on the relation of the cyclewidth of digraphs and the cyclewidth of
their butterfly minors, we are able to derive the next result.

Proposition 3.9. Let G and H be matching covered bipartite graphs. If H is a
matching minor of G, then pmw (H) ≤ 2pmw (G).

Proof. Let H be a matching minor of G. Then, Lemma 3.8 provides the
existence of perfect matchings M ∈ M (G) and M ′ ∈ M (H) such that
D (H,M ′) is a butterfly minor of D (G,M). The M -perfect matching width
of G is at most pmw (G) by Proposition 3.3 and, by Lemma 3.4, M -pmw (G) =
cw (D (G,M)). Since D (H,M ′) is a butterfly minor of D (G,M), Theorem 2.9
gives us cw (D (H,M ′)) ≤ cw (D (G,M)). At last, using Lemma3.4 again and
combining the above inequalities, we obtain pmw (H) ≤ 2pmw (G).
�
As we are going for a cylindrical grid and derive the grid theorem for bipartite
matching covered graphs from the Directed Grid Theorem anyway, it makes
sense to derive our grid from the directed case as well. The following definition
defines the bipartite matching grid by providing a procedure that allows us to
obtain it from the directed cylindrical grid. Let Eo be the set of edges of the
outermost cycle containing exactly those edges which are the sole outgoing edges
of their tails. Let Ei be the set of edges of the innermost cycle containing exactly
those edges which are the sole incoming edges of their heads.

The Grid Theorem for Perfect Matching Width of Bipartite Graphs 63

Definition 3.10 (Bipartite Matching Grid). Let k ∈ N be a positive inte-
ger. Let D̂�

k be the digraph obtained from D�
k by butterfly contracting every edge

from Eo and every edge from Ei. The bipartite matching grid of order k is
the unique bipartite matching covered graph GM

k that has a perfect matching
M ∈ M (

GM
k

)
such that D (

GM
k ,M

)
= D̂�

k .

The uniqueness of GM
k and M follows from Lemma 1.2. Figure 3 provides an

example. Note that all contractible edges are contained in the innermost and in
the outermost cycle of D�

k and provide a perfect matching of those two cycles.
Here, we construct GM

3 from D�
3 . The contractible edges are highlighted.

D3 D3 GM
3

Fig. 3. The construction of the bipartite matching grid of order 3 from the (directed)
cylindrical grid of order 3

Assume that a bipartite matching covered graph G has high perfect matching
width. By Theorem3.5, this implies high cyclewidth for all M -directions of G.
This, in turn, implies large cylindrical grids as butterfly minors on those M -
directions. Now Lemma 3.8 allows us to translate these cylindrical grids into
matching minors of G and as the perfect matching width of G is bounded from
below by the width of its matching minors (Proposition 3.9), we obtain the grid
theorem for bipartite matching covered graphs.

Proposition 3.11. There is a function f : N → N such that every matching
covered bipartite graph G either satisfies pmw (G) ≤ k, or contains the bipartite
matching grid of order f(k) as a matching minor.

4 Conclusion

We provide a first proof for the bipartite version of the Matching Grid Conjecture.
However, this proof relies heavily on machinery found and used in directed graph
structure theory and it would be nice to have a completely matching theoretical
proof. Moreover, there is probably no hope to extend the methods used for
proving the Directed Grid Theorem to the non-bipartite matching covered case

64 M. Hatzel et al.

which remains open. Most likely, we need a completely novel approach in order
to attempt solving this second and much more difficult part of the conjecture.

A smaller and probably more accessible problem occurring in this paper is the
question for a nice lower bound on the cyclewidth in terms of directed treewidth.
The current proof uses the Directed Grid Theorem and therefore the lower bound
is equally exponential as the function provided by the theorem. We conjecture
that cyclewidth and directed treewidth are actually within a constant factor of
each other, a result that would, most likely, enable us to prove Erdős-Pósa-type
results for matching covered bipartite graphs.

References

[Adl07] Adler, I.: Directed tree-width examples. J. Comb. Theory Ser. B 97(5), 718–
725 (2007)

[Bod96] Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

[Bod97] Bodlaender, H.L.: Treewidth: algorithmic techniques and results. In: Prívara,
I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0029946

[Bod05] Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M.,
Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30577-4_1

[DF16] Downey,R.G., Fellows,M.R.: Fundamentals of ParameterizedComplexity, 1st
edn. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

[Die17] Diestel, R.: Graph Theory, vol. 173. Springer, Heidelberg (2017)
[GT11] Guenin, B., Thomas, R.: Packing directed circuits exactly. Combinatorica

31(4), 397–421 (2011)
[JRST01] Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width.

J. Comb. Theory Ser. B 82(1), 138–154 (2001)
[JST17] Jeong, J., Sæther, S.H., Telle, J.A.: Maximum matching width: new char-

acterizations and a fast algorithm for dominating set. Discrete Appl. Math.
248, 114–124 (2017)

[KK15] Kawarabayashi, K., Kreutzer, S.: The directed grid theorem. In: Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, pp. 655–664 (2015)

[Kot60] Kotzig, A.: On the theory of finite graphs with a linear factor I–III [Slo-
vak with German summary]. Fyz. Casopis Slovensk. Akad. Vied, 9–10
(1959/1960)

[Lov87] Lovász, L.: Matching structure and the matching lattice. J. Comb. Theory
Ser. B 43(2), 187–222 (1987)

[LP09] Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathe-
matical Society, Providence (2009)

[McC00] McCuaig, W.: Even dicycles. J. Graph Theory 35(1), 46–68 (2000)
[McC01] McCuaig, W.: Brace generation. J. Graph Theory 38(3), 124–169 (2001)
[McC04] McCuaig, W.: Pólya’s permanent problem. Electron. J. Comb. 11(1), 79

(2004)
[Nor05] Norine, S.: Matching structure and Pfaffian orientations of graphs. Ph.D.

thesis. Georgia Institute of Technology (2005)

https://doi.org/10.1007/BFb0029946
https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1007/978-1-4471-5559-1

The Grid Theorem for Perfect Matching Width of Bipartite Graphs 65

[NT07] Norine, S., Thomas, R.: Generating bricks. J. Comb. Theory Ser. B 97(5),
769–817 (2007)

[Ree99] Reed, B.: Introducing directed tree width. Electron. Notes Discrete Math. 3,
222–229 (1999)

[RS86] Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph.
J. Comb. Theory Ser. B 41(1), 92–114 (1986)

[RS10] Robertson, N., Seymour, P.D.: Graph minors I–XXIII. J. Comb. Theory Ser.
B (1982–2010)

[RST99] Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orienta-
tions, and even directed circuits. Ann. Math. 150(3), 929–975 (1999)

[Tho06] Thomas, R.: A survey of Pfaffian orientations of graphs. In: Proceedings of
the International Congress of Mathematicians, vol. 3, pp. 963–984. Citeseer
(2006)

Local Approximation of the Maximum
Cut in Regular Graphs

Étienne Bamas1 and Louis Esperet2(B)

1 School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

etienne.bamas@epfl.ch
2 Laboratoire G-SCOP (CNRS, Univ. Grenoble Alpes), Grenoble, France

louis.esperet@grenoble-inp.fr

Abstract. This paper is devoted to the distributed complexity of find-
ing an approximation of the maximum cut in graphs. A classical algo-
rithm consists in letting each vertex choose its side of the cut uniformly
at random. This does not require any communication and achieves an
approximation ratio of at least 1

2
in average. When the graph is d-regular

and triangle-free, a slightly better approximation ratio can be achieved
with a randomized algorithm running in a single round. Here, we inves-
tigate the round complexity of deterministic distributed algorithms for
MaxCut in regular graphs. We first prove that if G is d-regular, with d
even and fixed, no deterministic algorithm running in a constant num-
ber of rounds can achieve a constant approximation ratio. We then give
a simple one-round deterministic algorithm achieving an approximation
ratio of 1

d
for d-regular graphs with d odd. We show that this is best pos-

sible in several ways, and in particular no deterministic algorithm with
approximation ratio 1

d
+ ε (with ε > 0) can run in a constant number

of rounds. We also prove results of a similar flavour for the MaxDi-

Cut problem in regular oriented graphs, where we want to maximize the
number of arcs oriented from the left part to the right part of the cut.

Keywords: Maximum cut · Distributed approximation ·
Local algorithm

1 Introduction

Although the maximum cut problem (MaxCut) is fundamental in combina-
torial optimization, it has not been intensively studied from the perspective of
distributed algorithms. The folklore algorithm consisting in choosing uniformly
at random one side of the cut for each vertex of a graph G can however be
seen as a distributed randomized algorithm with no rounds of communication.

Partially supported by ANR Projects GATO (anr-16-ce40-0009-01) and GrR (anr-
18-ce40-0032), and LabEx PERSYVAL-Lab (anr-11-labx-0025). The full version of
the paper is available at arXiv:1902.04899.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 66–78, 2019.
https://doi.org/10.1007/978-3-030-30786-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_6&domain=pdf
http://orcid.org/0000-0001-6200-0514
https://arxiv.org/pdf/1902.04899
https://doi.org/10.1007/978-3-030-30786-8_6

Local Approximation of the Maximum Cut in Regular Graphs 67

By the linearity of expectation, this algorithm gives a cut (a bipartition of the
vertex set) of size at least m/2 in average, where m is the number of edges of
G. Here, by the size of the cut, we mean the number of edges connecting the
two parts of the bipartition. Since every cut in G contains at most m edges, this
algorithm has approximation ratio at least 1

2 in average, which means that the
size of the cut given by the algorithm is at least 1

2 of the size of the maximum
cut in average.

A natural question is whether a better approximation ratio can be obtained
if more rounds of communications are allowed. This question was answered pos-
itively by Shearer [26] in the case of triangle-free d-regular graphs. A d-regular
graph is a graph in which every vertex has degree d. In the case of triangle-free
d-regular graphs, Shearer gave a simple randomized algorithm finding a cut of
size at least m ·(12 + 0.177√

d
) in average, and thus achieving an approximation ratio

of 1
2 + 0.177√

d
in average. Shearer’s algorithm uses a single round of communica-

tion, messages consisting of a single bit, and at most 3 random bits per vertex.
This was recently improved by Hirvonen, Rybicki, Schmid and Suomela [15],
who obtained a simpler algorithm finding a cut of size at least m ·

(
1
2 + 0.28125√

d

)

in average. Their algorithm uses a single round of communication, messages
consisting of a single bit, and a single random bit per vertex.

The case where d is small and the girth (length of a shortest cycle) is large has
also been considered: for 3-regular graphs, Kardoš, Král’ and Volec [16] showed
that when the girth is at least 637789, there exists a randomized distributed
algorithm that outputs a cut of average size at least 0.88672 m in at most 318894
rounds (the important value here is the size of the cut). This was improved by
Lyons [19], who proved a lower bound of 0.89 m for cubic graphs of girth at least
655. The best known lower bound for cubic graphs of large girth, 0.90 m, was
proved by Gamarnik and Li [9], using a result of Csóka, Gerencsér, Harangi, and
Virág [3]. The bound of Lyons [19] holds for any d-regular graphs of large enough
(but constant) girth: such graphs have a cut of size at least m · (12 + 2

π
√

d
) ≈

m ·(12 + 0.637√
d

). On the other hand, Dembo, Montanari and Sen [6] showed that in

random d-regular graphs, the maximum cut has size m · (12 + 0.763+o(1)√
d

) + o(m)
with high probability, proving a conjecture of [9]. The existence of this constant
≈0.763 is also connected to a conjecture of Hatami, Lovász and Szegedy [14] on
limits of sparse graphs (see also the conclusion of [24] where the conjecture is
strongly disproved for maximum independent sets, improving on an earlier result
of [10]).

All the results mentioned above (except the result of Gamarnik and Li [9])
can be translated into efficient algorithms working in the CONGEST model. In
this model, each node of the graph corresponds to a processor with infinite
computational power and has a unique ID (each ID is an integer between 1
and poly(n), where n denotes the number of vertices in the graph). Nodes can
communicate with their neighbors in the graph in synchronous rounds until each
node outputs 0 or 1, corresponding to its side in the cut. In the CONGEST model,
each message sent by a node to a neighbor has size O(log n), while in some of the

68 É. Bamas and L. Esperet

algorithms above, the messages have size at most 1. Let us call CONGEST(B)
the variant of the CONGEST model in which messages are restricted to have size
at most B (instead of O(log n)), and let us say that an algorithm is local in a
model if it runs in a constant number of rounds in this model. In particular the
results of [15,16,26] mentioned above can be translated into local algorithms in
the CONGEST(O(1)) model, while the results of [3,19] can be translated into
local algorithms in the CONGEST model.

Note that some of our lower bounds are also valid in the less restricted
LOCAL model where the size of each message is not limited. In the following, we
will make it clear if this applies. On the other hand, all our algorithms can be
implemented in the PO model (anonymous network with port numbering and
orientations), which is significantly stronger than the CONGEST model (see [13]
for some results on local algorithms in PO and CONGEST).

We now review recent results on distributed approximation of MaxCut. On
the deterministic side, Censor-Hillel, Levy, and Shachnai [2] designed a determin-
istic 1

2 -approximation that runs in Õ (Δ + log∗ n) rounds in the CONGEST model
on any graph of maximum degree at most Δ. More recently, Kawarabayashi
and Schwartzman [17] improved the complexity for constant factor approxima-
tion by providing a deterministic

(
1
2 − ε

)
-approximation that runs in O(log∗ n)

rounds (for any ε > 0), in the CONGEST model. However, no deterministic local
approximation for MaxCut (i.e. running in a constant number of rounds) in
the CONGEST model is known.

There is a similar gap between randomized and deterministic approximations
for the maximum directed cut problem. Censor-Hillel, Levy, and Shachnai [2]
provided a deterministic algorithm running in O(Δ+log∗ n) rounds that guaran-
tees a 1

3 -approximation as well as a randomized 1
2 -approximation with the same

round complexity. The round complexities were improved by Kawarabayashi and
Schwartzman [17] who provided a deterministic

(
1
3 − ε

)
-approximation running

in O(log∗ n) rounds as well as a randomized
(
1
2 − ε

)
-approximation in O(ε−1)

rounds. All these results are stated in the CONGEST model. Similarly, no deter-
ministic local algorithm is known to achieve a constant factor approximation for
this problem.

1.1 Our Results

Our work focuses on bridging the gap between extremely efficient randomized
local algorithms and slower deterministic algorithms for MaxCut. It should
be noted that there are generic tools to derandomize distributed algorithms
(see [4,11] for recent results in this direction) but existing techniques mainly
apply to locally checkable problems (problem for which a solution can be checked
locally), which is not the case of (approximations of) MaxCut.

In Sect. 2 we show that any deterministic algorithm that guarantees a con-
stant factor approximation for MaxCut on the class of bipartite d-regular
graphs when d is a (fixed) even integer requires Ω(log∗ n) rounds, which matches
the complexity of the algorithm of Kawarabayashi and Schwartzman [17] men-
tioned above. When d is odd, we show that one cannot achieve a approximation

Local Approximation of the Maximum Cut in Regular Graphs 69

ratio better than 1
d in a constant number of rounds. Our proofs use an elementary

graph construction and then apply Ramsey’s theorem [25]. Both these arguments
are not new in distributed algorithms: our construction is inspired from Linial’s
seminal paper [18] that provides a lower bound on the round complexity of col-
oring cycles and from a more recent paper by Åstrand, Polishchuk, Rybicki,
Suomela, and Uitto [1] which applies Ramsey’s theorem in a similar setting to
prove that there is no deterministic and local constant factor approximation for
the maximum matching problem. It was pointed out to us that similar arguments
were also used by Czygrinow, Hanckowiak, and Wawrzyniak [5] to prove lower
bounds for the approximation of maximum independent sets in cycles. Here, our
results hold for any d-regular graph (d is not necessarily equal to 2), so some
additional work needs to be done compared to the simple case of cycles.

In Sect. 3, we show that this barrier of 1
d when d is odd is sharp: we first

remark that a result of Naor and Stockmeyer [22] on weak 2-coloring of graphs
directly gives a deterministic local algorithm that guarantees a 1

d -approximation.
We then provide a much simpler and faster deterministic local algorithm achiev-
ing the same approximation ratio. It runs in a single round with messages of size
O(log n) and we also argue that this cannot be improved.

For the Maximum Directed Cut problem in d-regular graphs, we prove that
a similar situation occurs. If d is even, a constant factor approximation cannot
be achieved in o(log∗ n) rounds, and if d is odd, no (2d + ε)-approximation can
be achieved in o(log∗ n) rounds (for any ε > 0). On the other hand, if d is odd,
a 2

d+1/d factor approximation can be achieved in 0 round, and a 2
d+1/d−Ω(1/d2)

factor approximation can be achieved in 2 rounds. Note that there is a small
gap between the lower bounds and the upper bound of 2

d , and we explain some
obstacles towards closing the gap.

Our results imply that while finding a constant factor approximation for
the (directed) maximum cut problem in regular graphs of even degree does not
require any communication for randomized distributed algorithm (i.e. it can be
solved in 0 round), for deterministic algorithms an unbounded number of rounds
are needed in this case. Note that this separation is not possible for locally
checkable problems (see Theorem 3 in [4]). The (perhaps) surprising aspect is
that in the case of regular graphs of odd degree, the problem can be solved by a
deterministic algorithm without communication (if some orientation is given).

Note that another example of non locally checkable problem with such a
separation between the randomized and deterministic complexities was given in
[11]. Their problem consists in marking (1 + o(1))

√
n vertices of an n-cycle; the

randomized version can also be solved in 0 round, while the deterministic version
needs Ω(

√
n) rounds.

1.2 Definitions

A cut in a graph G is a bipartition (A,B) of its vertex set V (G). We usually
refer to A and B as the left side and the right side of the cut, respectively. The
size of a cut (A,B) is the number of edges with one end in A and the other in

70 É. Bamas and L. Esperet

B. The MaxCut problem in a graph G consists in finding a cut in G whose size
is maximum.

Given an oriented graph G, a directed cut is again a bipartition (A,B) of the
vertex set of G, and the size of the directed cut (A,B) is the number of arcs
with their tail in A and their head in B. The MaxDiCut problem in an oriented
graph G consists in finding a directed cut in G whose size is maximum.

Our results in this paper mainly concern d-regular graph, i.e. graphs in which
each vertex has degree d. When we refer to an oriented d-regular graph G, we
mean that the underlying unoriented graph is d-regular (the out-degrees can be
arbitrary).

For an integer k � 1, the tower function twrk is the function defined as
twr1(x) = x and twrk(x) = 2twrk−1(x) for k � 2. The iterated logarithm of an
integer n, denoted by log∗ n is defined as 0 if n � 1, and as 1 + log∗(log n)
otherwise (here and everywhere else in the paper, log denotes the logarithm
base 2). The following can be easily derived by induction on k.

Claim 1. For any k, n � 1:

log∗(twrk(n)) = k − 1 + log∗(n)

2 Many Rounds for Deterministic Constant Factor
Approximation in Regular Graphs

As mentioned in the introduction of this paper, Kawarabayashi and Schwartzman
[17] provided a deterministic approximation running in O(log∗ n) rounds for both
problems studied here. In this section, we show with simple arguments based on
bounds on Ramsey numbers that their bound is best possible.

In this section, we set [n] = {1, . . . , n}. The q-color Ramsey number rk(n; q)
is the minimum N such that in any q-coloring of the k-element subsets of [N],
there is an n-element subset S of [N] such that all k-element subsets of S have
the same color (see [21] for a recent survey on Ramsey numbers).

Theorem 2 ([7,8]). There exists c > 0 such that for any positive integers q, k,
and n, we have rk(n; q) � twrk(c · n · q log q).

We will also need two simple constructions of d-regular bipartite graphs.
We first assume that d is even. We consider a cycle C of size n, with n even,

and then add an edge between each pair of vertices that are at distance exactly
i in C for every i ∈ {3, 5, 7, . . . , d − 1}. This graph, which we denote by Cd

n, is
certainly bipartite (the bipartition corresponds to the vertices at even distance
from some arbitrary vertex in C, and the vertices at odd distance from this
vertex). See Fig. 1 for an example of this graph. By a slight abuse of language,
we say that two (or more) vertices of Cd

n are consecutive if they are consecutive
in C. Similarly, when we refer to the clockwise order around Cd

n, we indeed refer
to the clockwise order around C.

Local Approximation of the Maximum Cut in Regular Graphs 71

Assume now d is odd. We take two disjoint copies of Cd−1
n and assume that

the vertices of the cycle C in the first copy are u1, u2, . . . , un, in clockwise order,
and the vertices of the cycle C in the second copy are v1, v2, . . . , vn in clockwise
order. We then connect ui and vi by an edge, for any 1 � i � n. This graph,
which we denote by Dd

2n, is clearly bipartite and d-regular, see Fig. 2 for an
example.

Fig. 1. C4
12 Fig. 2. D5

24

We are now ready to state the main result of this section.

Theorem 3. Let d � 2 be a fixed integer.

– If d is even, then any deterministic algorithm in the LOCAL model that guar-
antees a constant factor approximation for MaxCut on the class of bipartite
d-regular n-vertex graphs runs in Ω(log∗ n) rounds.

– If d is odd, then for any ε > 0, any deterministic
(
1
d + ε

)
-approximation

algorithm in the LOCAL model for MaxCut on the class of bipartite d-regular
n-vertex graphs runs in Ω(log∗ n) rounds.

Note that since the LOCAL model is less restrictive than the CONGEST
model, this theorem is also valid in the CONGEST model.

Due to space limitation, the full proof of Theorem3 is given in the full version
of the paper. The idea is to use the 2 color version of Theorem 2 to find a large
number of blocks of ID’s that behave similarly with respect to a given algorithm,
and to place these blocks of ID’s consecutively around the graphs Cd

n and Dd
2n.

In both cases a significant portion of the edges of a maximum cut will be missed.
In the second case the barrier of 1

d comes from the perfect matching between the
outer cycle and the inner cycle, on which little can be said.

A direct consequence of our theorem is the following corollary that matches
the round complexity obtained by Kawarabayashi and Schwartzman [17]:

72 É. Bamas and L. Esperet

Corollary 4. Deterministic constant factor approximation on general graphs
for MaxCut in the LOCAL model requires Ω(log∗ n) rounds.

2.1 Directed Cut

In this section, we consider the similar problem MaxDiCut where edges are
oriented and we only count the edges going from the left side of the cut to
the right side. We can prove similar bounds on the quality of the solution one
can hope to achieve by simply orienting our lower bound graphs Cd

n and Dd
2n:

we will define
−→
Cd

n as the same graph as Cd
n where we orient all the edges in

clockwise order. Similarly,
−−→
Dd

2n is obtained from Dd
2n by orienting all the edges

in clockwise order on both the inner and outer cycle, and all the edges in the
remaining perfect matching from the outer cycle to the inner cycle. We can again
apply Ramsey’s theorem as in the proof of Theorem 3 to obtain the following
result:

Theorem 5. Let d > 0 be a fixed integer.

– If d is even, any deterministic algorithm that guarantees a constant factor
approximation for MaxDiCut on the class of d-regular bipartite n-vertex
oriented graphs requires Ω(log∗ n) rounds in the LOCAL model.

– If d is odd, then for any ε > 0, any deterministic
(
2
d + ε

)
-approximation

of MaxDiCut on the class of d-regular bipartite n-vertex oriented graphs
requires Ω(log∗ n) rounds in the LOCAL model.

We note a slight difference with Theorem 3 in the case where d is odd. In
Theorem 5 the approximation ratio is only bounded by 2

d , instead 1
d . This hap-

pens because with our definition of
−−→
Dd

2n, one can check that the optimal directed
cut is of size nd

4 = m
2 instead of m in the undirected case.

3 Matching the Approximation Ratio When d Is Odd

3.1 Weak-Coloring

In a landmark paper, Naor and Stockmeyer [22] addressed the issue of what can
or cannot be computed locally. In particular, they proved one result that turns
out to be relevant in our case.

A weak coloring of a graph is a coloring of its vertices such that each vertex
has at least one neighbor with a different color. Observe that a weak coloring
using only 2 colors is a 1

d -approximation of the MaxCut problem when the
graph is d-regular. Let Od be the class of graphs of maximum degree d where
the degree of every vertex is odd. Naor and Stockmeyer proved the following
theorem.

Local Approximation of the Maximum Cut in Regular Graphs 73

Theorem 6 ([22]). There is a constant b such that, for every d, there is a
deterministic algorithm with round complexity log∗ d+ b in the CONGEST model
that solves the weak 2-coloring problem in the class Od.

As discussed above, this result directly implies that one can produce a local
deterministic 1

d -approximation of the MaxCut problem on d-regular graphs.
However, the result given here is much stronger than what we are looking for
as in this case every vertex has at least one incident edge in the cut. A natural
question is whether a faster algorithm (of round complexity that does not depend
on d) exists for the MaxCut problem on d-regular graphs with d odd. In the
next section, we prove that such an algorithm exists.

3.2 A Simpler and Faster Algorithm

Consider the following algorithm: every vertex v collects the list of IDs of its
neighbors, then v chooses its side of the cut depending on whether the median
value of this list is higher or lower than its own ID. We call this algorithm the
median algorithm. It runs in a single round and we prove the following theorem:

Theorem 7. When the input is a d-regular graph on n vertices, with d odd, the
median algorithm finds in 1 round a 1

d -approximation for the MaxCut problem
in the CONGEST model.

We will actually give two different proofs of this result, the first proof shows
a slightly better result in term of size of the cut while the second proof holds
even for graphs in Od. In the first one, we prove the following slightly stronger
statement.

Theorem 8. When the input is a d-regular graph on n vertices, with d odd, the
median algorithm outputs in 1 round (in the CONGEST model) a cut of size at
least n

2 + (d−1)(d+1)
4 .

The proof of Theorem 8 is given in the full version of the paper. The idea is
to orient each edge from the lower ID to the higher ID. The obtained orientation
is acyclic, and the median algorithm places the vertices with out-degree higher
than in-degree on one side of the cut and the other vertices on the other side of
the cut. In the analysis the fact that the orientation is acyclic is important to
obtain the additive term (d−1)(d+1)

4 .
An interesting aspect of Theorem 8 is that it shows that in Theorem 3, it

is crucial that d is a fixed constant (independent of n). Indeed, if d = Ω(
√

n),
then n

2 + (d−1)(d+1)
4 � (1 + Ω(1))n

2 and thus the median algorithm achieves a
1+ε
d -approximation, for some ε > 0. This is impossible when d is a constant, as

shown by Theorem 3.
The median algorithm is based on finding an (acyclic) orientation of the input

graph. Here, we do it by simply orienting the edges from the end with lower ID
to the end with higher ID. This costs a single round of communication, with
messages of size log n (since vertices have to send their ID to their neighbors).

74 É. Bamas and L. Esperet

It follows that in the more restricted CONGEST(b) model, where messages have
size at most b, our algorithm takes log n

b rounds. In particular, if only messages
of size 1 are allowed, our algorithm takes log n rounds. It turns out that this is
close to best possible.

Theorem 9. Let Dd =
{
Dd

2n, n > 0
}

for d odd. Any deterministic constant
factor approximation of MaxCut on the class Dd requires at least (1−o(1)) log n
rounds in the CONGEST(1) model.

The proof of Theorem9 is given in the full version of the paper. It is based
on a simple symmetry argument.

3.3 Directed Cuts

Given a bipartition (V1, V2) of an oriented graph G, the set of arcs oriented from
V1 to V2 (the directed cut from V1 to V2) is denoted by

−→
E (V1, V2). The maximum

cardinality of a directed cut in G is denoted by maxdicut(G).
Let G be an oriented graph. For each vertex v, we define the deficit of v as

δ(v) = d+(v) − d−(v), where d+(v) and d−(v) denote the out-degree and in-
degree of v, respectively. We define the sign of a vertex v as the sign of δ(v), and
we say that that a vertex is positive or negative accordingly. The set of positive
vertices is denoted by V + and the set of negative vertices is denoted by V −.
Note that if all the vertices of G have odd degree (in particular if G is d-regular
with d odd), then every vertex is positive or negative and this case V +, V − form
a bipartition of the vertex set V of G.

Note that the median algorithm described in the previous subsection can be
rephrased as: find an acyclic orientation of G and then choose the cut (V −, V +)
with respect to this orientation. Our second proof of Theorem7 will be a direct
consequence of the following general result (which proves that not only the cut,
but also the directed cut between V + and V − has size at least n/2, and that the
original orientation does not need to be acyclic).

Theorem 10. Let G be an n-vertex oriented d-regular graph with d odd, and let
V + and V − be defined as above. Then the directed cut

−→
E (V +, V −) contains at

least max{n
2 , 2

d+1/d · maxdicut(G)} arcs.

The proof of Theorem 10 is given in the full version of the paper. From now
on, we call the 0-round algorithm resulting from Theorem10 the oriented median
algorithm. The factor 2

d+1/d might seem a little surprising, but it turns out to
be sharp, in the following sense: there are infinite families of d-regular oriented
graphs G for which the oriented median algorithm outputs a cut of size precisely

2
d+1/dmaxdicut(G) (an example is given in the full version of the paper). So the
problem does not come from the analysis of the algorithm, but rather from the
algorithm itself.

To overcome this issue and close the gap with the 2
d bound, one might be

tempted to consider local improvements. In the following, a vertex will be stable

Local Approximation of the Maximum Cut in Regular Graphs 75

if it has at least one neighbor on the other side of the cut. Otherwise it will be
unstable. We now consider the following simple algorithm: at every round, every
unstable vertex changes side. When we perform one round of this algorithm, we
say we perform a flip (as this algorithm can be seen as a variant of the well
known FLIP algorithm that is further discussed in the conclusion).

Theorem 11. Assume that d � 3 is odd. Then the 2-round algorithm consisting
of the oriented median algorithm followed by two flips provides a 2

d+1/d−c/d2 -
approximation (for some c > 0) for the MaxDiCut problem in d-regular graphs.

The proof of Theorem11 is given in the full version of the paper. Theorem11
proves that after 2 flips, we can slightly improve on the approximation ratio of
Theorem 10. A natural question is whether the same can be achieved after a
single flip (in the full version of the paper, we give an example showing that the
answer is negative).

4 Conclusion

4.1 FLIP

In Sect. 3, we have designed a very simple one-round algorithm approximat-
ing MaxCut in regular graphs (with odd degrees). Once a solution has been
obtained, it might be tempting to run a few more rounds of computation to see
if the solution can be improved locally.

We have already seen a simple way to improve the quality of a solution (by
moving the so-called unstable vertices to the other side of the cut), but the notion
of stability we used was specifically designed to improve the approximation ratio
in a small number of rounds. Another simple way to locally improve a cut (in the
sequential setting this time) is to take a vertex with more neighbors in its own
part than in the other part, and change its side. If this is done until no such vertex
exists, the resulting cut is maximal, and in this case is a 1

2 -approximation of the
maximum cut. This operation, called FLIP, has been studied for a long time.
When the edges are weighted, it was proved by Poljak [23] that any sequence
of FLIPs takes only polynomially many steps before reaching a maximal cut in
cubic graphs, while Monien and Tscheuschner [20] proved that there are graphs
of maximum degree 4 for which a sequence of FLIPs can take exponentially many
steps to reach a maximal cut. In the unweighted case however, since each flip
improves the cut by at least one, the maximum number of flips before reaching
a maximal cut is bounded by the number edges (which is linear in n in bounded
degree graphs). In the distributed framework, it might be tempting to consider
running some rounds of the distributed FLIP dynamics: at each round, each
vertex with more neighbors in its own part than in the other part changes side.
The graph Dd

2n constructed in the previous sections shows that it might not be
helpful at all: if all the vertices of the outer cycle are in one side of the cut,
and all the vertices of the inner cycle are on the other side of the cut, then at

76 É. Bamas and L. Esperet

each round, all the vertices of the graph would change side, not improving the
solution.

It might be worth noting that in our application of the median algorithm, not
all vertices of the outer cycle of Dd

2n are on the same side of the cut (given some
bad labelling): due to some side-effects, roughly d vertices in the outer cycle are
not on the same side of the cut as the others, and similarly for the inner cycle.
It can then be checked that if we run the distributed FLIP dynamics in this
instance, the solution does improve over time, but improving the approximation
ratio from 1

d to 1
d + ε requires Ω(εn) rounds, which is extremely unpractical.

This has to be compared with the lower bound of Theorem3, which says that in
order to achieve an approximation ratio of 1

d + ε in general, one needs a number
of rounds of the order of Ω(log∗ n).

4.2 SLOCAL vs LOCAL Model in the Deterministic Setting

Recently introduced by Ghaffari, Kuhn and Maus in [12], the SLOCAL model
is designed to study the influence of the two major issues in LOCAL algorithms
separately: in this model nodes are processed sequentially in any order. When a
node v is processed, it can access its t-neighborhood and eventually additional
information stored by vertices in this neighborhood that have been processed
before v. In this model, symmetry breaking becomes free (the given order already
breaks the symmetry) and only locality remains challenging.

Although finding an approximate maximum cut is not locally checkable, one
can make an interesting parallel in this case. A very simple deterministic approx-
imation algorithm for the maximum cut can be run in the SLOCAL model: simply
process vertices in any order and when a vertex is processed put it on the side
maximizing its local cut according to already processed neighbors. Note that
each vertex loses at most half of its edges at each step, and each edge is counted
once, so this is indeed a 1

2 -approximation with locality 1 and although we are
studying a problem that is not locally checkable, this suggests that symmetry
breaking (and not locality) is the bottleneck in our case.

Acknowledgement. We would like to thank Jérémie Chalopin and Keren Censor-
Hillel for their remarks on the complexity of finding an orientation using very small
messages in the CONGEST model. We also thank Michal Dory for calling reference [5]
to our attention, and David Gamarnik for pointing out references [3,6,9,19] to us.

References

1. Åstrand, M., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: Local algorithms
in (weakly) coloured graphs. CoRR abs/1002.0125 (2010)

2. Censor-Hillel, K., Levy, R., Shachnai, H.: Fast distributed approximation for max-
cut. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.)
ALGOSENSORS 2017. LNCS, vol. 10718, pp. 41–56. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-72751-6 4

https://doi.org/10.1007/978-3-319-72751-6_4

Local Approximation of the Maximum Cut in Regular Graphs 77

3. Csóka, E., Gerencsér, B., Harangi, V., Virág, B.: Invariant gaussian processes and
independent sets on regular graphs of large girth. Random Struct. Algorithms 47,
284–303 (2015)

4. Chang, Y.-J., Kopelowitz, T., Pettie, S.: An exponential separation between ran-
domized and deterministic complexity in the LOCAL model. In: IEEE 57th Annual
Symposium on Foundations of Computer Science (2016)

5. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations
in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87779-0 6

6. Dembo, A., Montanari, A., Sen, S.: Extremal cuts of sparse random graphs. Ann.
Probab. 45(2), 1190–1217 (2017)

7. Erdős, P., Rado, R.: Combinatorial theorems on classifications of subsets of a given
set. Proc. Lond. Math. Soc. 3, 417–439 (1952)

8. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2,
463–470 (1935)

9. Gamarnik, D., Li, Q.: On the max-cut of sparse random graphs. Random Struct.
Algorithms 52(2), 219–262 (2018)

10. Gamarnik, D., Sudan, M.: Limits of local algorithms over sparse random graphs. In:
Proceedings of Innovations in Theoretical Computer Science (ITCS), pp. 369–376
(2014)

11. Ghaffari, M., Harris, D.G., Kuhn, F.: On derandomizing local distributed algo-
rithms. In: IEEE Symposium on Foundations of Computer Science (2018)

12. Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph
problems. In: 49th Annual ACM Symposium on Theory of Computing, pp. 784–797
(2017)

13. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. J.
ACM 60, #39 (2013)

14. Hatami, H., Lovász, L., Szegedy, B.: Limits of local-global convergent graph
sequences. Geom. Funct. Anal. 24(1), 269–296 (2014)

15. Hirvonen, J., Rybicki, J., Schmid, S., Suomela, J.: Large cuts with local algorithms
on triangle-free graphs. Electron. J. Combin. 24(4), #P4.21 (2017)

16. Kardoš, F., Král’, D., Volec, J.: Maximum edge-cuts in cubic graphs with large
girth and in random cubic graphs. Random Struct. Algorithms 41(4), 506–520
(2012)

17. Kawarabayashi, K.-I., Schwartzman, G.: Adapting local sequential algorithms to
the distributed setting. In: 32nd International Symposium on Distributed Com-
puting, pp. 35:1–35:17 (2018)

18. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

19. Lyons, R.: Factors of IID on trees. Combin. Probab. Comput. 26(2), 285–300
(2017)

20. Monien, B., Tscheuschner, T.: On the power of nodes of degree four in the local
max-cut problem. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol.
6078, pp. 264–275. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13073-1 24

21. Mubayi, D., Suk, A.: A survey of hypergraph Ramsey problems. ArXiv e-prints
(2017)

22. Naor, M., Stockmeyer, L.: What can be computed locally?. In: 25th Annual ACM
Symposium on Theory of Computing, pp. 184–193 (1993)

23. Poljak, S.: Integer linear programs and local search for max-cut. SIAM J. Comput.
21(3), 450–465 (1995)

https://doi.org/10.1007/978-3-540-87779-0_6
https://doi.org/10.1007/978-3-642-13073-1_24
https://doi.org/10.1007/978-3-642-13073-1_24

78 É. Bamas and L. Esperet

24. Rahman, M., Virág, B.: Local algorithms for independent sets are half-optimal.
Ann. Probab. 45(3), 1543–1577 (2017)

25. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30, 264–286
(1930)

26. Shearer, J.B.: A note on bipartite subgraphs of triangle-free graphs. Random
Struct. Algorithms 3(2), 223–226 (1992)

Fixed-Parameter Tractability of Counting
Small Minimum (S, T)-Cuts

Pierre Bergé1(B), Benjamin Mouscadet2, Arpad Rimmel2,
and Joanna Tomasik2

1 LRI, Université Paris-Sud, Université Paris-Saclay, Orsay, France
Pierre.Berge@lri.fr

2 LRI, CentraleSupélec, Université Paris-Saclay, Orsay, France
Benjamin.Mouscadet@supelec.fr, {Arpad.Rimmel,Joanna.Tomasik}@lri.fr

Abstract. The parameterized complexity of counting minimum cuts
stands as a natural question because Ball and Provan showed its #P-
completeness. For any undirected graph G = (V,E) and two disjoint
sets of its vertices S, T , we design a fixed-parameter tractable algorithm
which counts minimum edge (S, T)-cuts parameterized by their size p.
Our algorithm operates on a transformed graph instance. This transfor-
mation, called drainage, reveals a collection of at most n = |V | succes-
sive minimum (S, T)-cuts Zi. We prove that any minimum (S, T)-cut X
contains edges of at least one cut Zi. This observation, together with
Menger’s theorem, allows us to build the algorithm counting all mini-

mum (S, T)-cuts with running time 2O(p2)nO(1). Initially dedicated to
counting minimum cuts, it can be modified to obtain an FPT sampling
of minimum edge (S, T)-cuts.

Keywords: Fixed-parameter tractability · Counting problems ·
Minimum cuts

1 Introduction

The issue of counting minimum cuts in graphs has been drawing attention over
the years due to its practical applications. Indeed, the number of minimum cuts
is an important factor for the network reliability analysis [2–4,24]. Thereby, the
probability that a stochastic graph is connected may be computed [3]. Further-
more, cuts on planar graphs are used for image segmentation [8]. An image is
seen as a planar graph where vertices represent pixels and edges connect two
neighboring pixels if they are similar. Counting minimum cuts provides an esti-
mation of the number of segmentations.

We focus on the problem of counting minimum edge (S, T)-cuts in undirected
graphs G = (V,E), S, T ⊆ V . We call it counting mincuts (Definition 1) as
it is the counting variant of the classical problem mincut, which asks for a
minimum (S, T)-cut in graph G. Ball and Provan showed in [26] that counting
mincuts is unlikely solvable in polynomial time as it is #P-complete. They
c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 79–92, 2019.
https://doi.org/10.1007/978-3-030-30786-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_7

80 P. Bergé et al.

also devised a polynomial-time algorithm for counting mincuts on planar
graphs [3]. Bezáková and Friedlander [6] generalized it with an O(nμ + n log n)-
time algorithm on weighted planar graphs, where μ is the length of the shortest
(s, t)-paths. For general graphs, some upper bounds on the number of minimum
cuts have been given [10] in function of parameters such as the radius, the
maximum degree, etc. Two fixed-parameter tractable (FPT) algorithms have
been proposed for counting mincuts. Bezáková et al. [5] built an algorithm for
both directed and undirected graphs with small treewidth λ; its time complexity
is O(23λλn). Moreover, Chambers et al. [9] designed an algorithm for directed
graphs embedded on orientable surfaces of genus g: its execution time is O(2gn2).
We study the fixed-parameter tractability of counting mincuts, parameterized
by the size p of the minimum (S, T)-cuts.

Definition 1 (Counting mincuts).

Input: Undirected graph G = (V,E), sets of vertices S, T � V , S ∩ T = ∅.

Output: The number of minimum edge (S, T)-cuts.

The minimum (S, T)-cut size for a counting mincuts instance I =
(G,S, T) is obtained in polynomial time [17]. A brute force XP algorithm com-
putes the number C(I) of minimum (S, T)-cuts in time nO(p) by enumerat-
ing all edge sets of size p and picking up those which are (S, T)-cuts. More
efficient exponential algorithms exist, as the one of Nagamochi et al., in time
O

(
pn2 + pnC(I)

)
, in [24]. Our contribution, summarized in the theorem below,

is an algorithm efficient for small values of p.

Theorem 1. The counting of minimum edge (S, T)-cuts can be solved in time
O(2p(p+2)pmn3) on undirected graphs G = (V,E).1

An FPT〈p〉 algorithm can be deduced from the results in two articles [5,21]
and its execution time is O∗ (

2H(p)
)

where H(p) = Ω
(

2p√
p

)
. The treewidth

reduction theorem established by Marx et al. in [21] says that there is a linear-
time reduction transforming graph G into another graph G′ which conserves the
(S, T)-cuts of size p and such that the treewidth of G′, τ(G′), verifies τ(G′) =
2O(p). After this transformation, the number of minimum (S, T)-cuts of G′ is
obtained thanks to the algorithm given in [5]. The overall time taken with this
method is O∗ (

22
p)

. Our result, Theorem 1, improves this exponential factor.
This result highlights a complexity gap between the counting and the enumer-

ation, as the latter cannot be FPT parameterized by p. Indeed, certain instances
contain a number C(I) = (n−1

p)p of minimum cuts, as in case of graph G made
of p vertex-disjoint (S, T)-paths with S = {s} and T = {t}.

Our algorithm is based on a cut-decomposition Z(I) = (Z1, . . . , Zk) of
instance I, 1 ≤ k < n, called the drainage where for every 1 ≤ i ≤ k, edge
1 The proofs in Sects. 3 and 4 are withdrawn due to the restriction on the number of
pages. The full version can be found here: https://arxiv.org/abs/1907.02353.

https://arxiv.org/abs/1907.02353

Fixed-Parameter Tractability of Counting Small Minimum (S, T)-Cuts 81

set Zi is a minimum (S, T)-cut. Set R(Zi, S) denotes the vertices which are
reachable from S after the removal of edges in Zi. The reachable sets of Zi are
included one into another: R(Z1, S) � R(Z2, S) � . . . � R(Zk, S). The drainage
fulfils the following property: if X is a minimum (S, T)-cut, some edges Bi of
a certain Zi belong to X, Bi = X ∩ Zi �= ∅, and no other edge of X has one
endpoint in R(Zi, S). The set Bi is called the front dam of cut X. The key idea of
the recursive counting we propose is that any minimum cut X is the union of its
front dam with a minimum cut of a sub-instance, called dry instance, of I. These
techniques work as well on multigraphs, i.e. on graphs with multiple edges. After
modifications, our algorithm also samples minimum edge (S, T)-cuts.

To design the drainage Z(I), we use the concept of important cuts [20] which
is the key ingredient of many FPT algorithms to solve cuts problems [7,12,14,
20,22]. An (S, T)-cut Y is important if there is no other (S, T)-cut Y ′ such
that |Y ′| ≤ |Y | and R(Y, S) � R(Y ′, S). There is a unique minimum important
(S, T)-cut and it can be identified in polynomial time [20].

The second concept used in our algorithm is Menger’s theorem [23]. It states
that the size of minimum edge (S, T)-cuts in an undirected graph is equal to
the maximum number of edge-disjoint (S, T)-paths. As the max-flow min-cut
theorem [17] generalizes Menger’s theorem, one of the largest sets of edge-disjoint
(S, T)-paths is found in polynomial time.

To close this introductory chapter, we give a “table of contents” of our article.
Section 2 introduces the notations used. Section 3 explains the construction of
the drainage Z(I) = (Z1, . . . , Zk). In Sect. 4, we propose our algorithm and
compute its time complexity. Finally, we conclude and give ideas about future
research.

2 Definitions and Notation

We summarize basic concepts of parameterized and counting complexity but also
introduce the notation we will use.

Fixed-Parameter Tractability. NP-hard problems are unlikely to be solvable
with polynomial time algorithms. However, solving them efficiently may become
possible when parameters are associated to problem instances and the values of
these parameters are small.

Referring to Downey and Fellows [15] and Niedermeier [25], a parameterized
problem is said fixed-parameter tractable (FPT) if there is an algorithm solving
it in time O(f(p)P (n)) = O∗(f(p)), where p is a parameter, n is the instance
size, P is a polynomial function, and f is an arbitrary computable function.
As a problem may be studied for different parameters p1, p2, . . ., the notation
“FPT” becomes ambiguous. If there is an algorithm solving a problem in time
O (f(p1)P (n)), then it is FPT〈p1〉. In this study, the parameter p of counting
mincuts is the size of the minimum (S, T)-cut.

Counting Problems. The study of #P complexity class and the counting prob-
lems it contains, started with Valiant [27]. Class #P is the set of counting prob-
lems such that their decision version is in class NP. The subclass #P-complete

82 P. Bergé et al.

contains counting problems such that all problems in #P can be reduced to them
with a polynomial-time counting reduction. No #P-complete problem can be
solved in polynomial time unless P = NP. Moreover, there are decision problems
such as cnf-2sat [19] which are solvable in polynomial time but their associated
counting problem is #P-complete [27]. The complexity of counting problems has
been extended via the parameterized complexity framework [13,16]. A relevant
question to ask about a #P-complete problem is whether there is an FPT algo-
rithm counting all its solutions. For example, with G and H as input, FPT
algorithms counting the number of occurrences of H as a subgraph of G have
been intensively studied [1,18,28].

Cuts in Undirected Graphs. We study undirected graphs G = (V,E), where
n = |V | and m = |E|. For any set of vertices U ⊆ V , we denote by E [U] the set
of edges of G with two endpoints in U and G [U] the subgraph of G induced by
U : G [U] = (U,E [U]). Notation G\U refers to the graph deprived of vertices in
U . For any set of edges E′ ⊆ E, the graph G deprived of edges E′ is denoted by
G\E′:

G\U = G [V \U] and G\E′ = (V,E\E′) .

A path is a sequence of pairwise different vertices v1 ·v2 ·v3 · · · vi ·vi+1 · · · , where
two successive vertices (vi, vi+1) are adjacent in G. To improve readability, we
abuse notations: v1 ∈ Q and (v1, v2) ∈ Q mean that vertex v1 and edge (v1, v2)
are on path Q, respectively.

Cut problems usually consist in finding the smallest set of edges X ⊆ E which
splits the graph G\X into connected components meeting certain criteria. Given
two sets of vertices S (sources) and T (targets), set X ⊆ E is an (S, T)-cut if
there is no path connecting a vertex from S with a vertex from T in G\X.
An (S, T)-cut X is said to be minimum if there is no (S, T)-cut X ′ such that
|X ′| < |X|. For any (S, T)-cut X, its source side R(X,S) is the set of vertices
that are reachable from S in G\X. Its target side R(X,T) contains the vertices
reachable from T in G\X. We define two sets V S(X) and V T (X):

– set V S(X) = {u ∈ R(X,S); (u, v) ∈ X}, i.e. the vertices of R(X,S) incident
to cut X,

– set V T (X) = {u ∈ R(X,T); (u, v) ∈ X}, i.e. the vertices of R(X,T) incident
to cut X.

Important and Closest Cuts. As defined in [20], an (S, T)-cut X is important
if there is no other (S, T)-cut X ′ such that |X ′| ≤ |X| and R(X,S) � R(X ′, S).
Intuitively, an important (S, T)-cut is such that there is no other cut smaller in
size which is closer to T . The number of important (S, T)-cuts of size at most
p depends only on p [11] and there is no more than one minimum important
(S, T)-cut [20]. Although the proofs in [20] handle vertex cuts, an edge-to-vertex
reduction preserves these properties on edge cuts [7,20].

Lemma 1 (Unicity of minimum important cuts [20]). For disjoint sets
of vertices S and T , there is a unique minimum important (S, T)-cut and it may
be found in polynomial time.

Fixed-Parameter Tractability of Counting Small Minimum (S, T)-Cuts 83

On undirected graphs, we say that an important (T, S)-cut is a closest (S, T)-
cut. Figure 1 gives an example of graph G with two (S, T)-cuts X1 and X2, where
S = {s1, s2} and T = {t}. Cut X1 is not closest as the edges incident to S form a
cut Z1 smaller than X1 and R(Z1, S) ⊆ R(X1, S). Cut X2 is closest because there
is no cut with at most three edges whose reachable set of vertices is contained
in R(X2, S).

s2

s1

t

Z1
X1 X2

Fig. 1. Illustration of Definition 2 for closest (S, T)-cuts: X2 is closest whereas X1 is
not.

Definition 2. An (S, T)-cut X is closest if there is no other (S, T)-cut X ′ such
that |X ′| ≤ |X| and R(X ′, S) ⊆ R(X,S).

As a minimum closest (S, T)-cut is also a minimum important (T, S)-cut
on undirected graphs, there is a unique minimum closest (S, T)-cut according
to Lemma 1. Since the graph is uncapacitated, computing the minimum closest
(S, T)-cut is made in time O(mp), using p iterations of Ford-Fulkerson’s algo-
rithm [17].

3 Framework: Drainage and Menger’s Paths

We introduce tools needed to design an algorithm solving counting mincuts
in FPT〈p〉 time, where p is the size of any minimum (S, T)-cut. We build the
drainage, a collection of minimum cuts Zi, i ∈ {1, . . . , k}, where k < n, such
that at least one edge of any minimum (S, T)-cut X belongs to

⋃k
i=1 Zi. Then,

we highlight properties coming from Menger’s theorem.

3.1 Construction of the Drainage

The drainage Z (I) = (Z1, . . . , Zk) of an instance I = (G,S, T) is a collection of
minimum (S, T)-cuts Zi, |Zi| = p, satisfying the following properties:

– there are less than n cuts Zi, i.e. 1 ≤ k < n,
– the reachable sets of cuts Zi fulfil R(Zi, S) � R(Zi+1, S) for i ∈ {1, . . . , k − 1},
– for any minimum (S, T)-cut X, there is at least one cut Zi which has edges

with X in common: X ∩ Zi �= ∅.

84 P. Bergé et al.

We construct the drainage iteratively. Let S1 = S and Z1 be the minimum
closest (S1, T)-cut. We fix R1 = R(Z1, S). Let S2 be the set of vertices incident
to edges of Z1 inside R(Z1, T): S2 = V T (Z1) = {v /∈ R1, (u, v) ∈ Z1}.

Next, we construct Z2 which is the minimum closest (S2, T)-cut in
G\R(Z1, S). If |Z2| > p, the drainage construction stops. Otherwise, if |Z2| = p,
set R2 follows the same scheme as R1, R2 = R(Z2, S2) in graph G\R(Z1, S). We
repeat the process until no more minimum (Si, T)-cut Zi of size p can be found.
We denote by k the number of cuts Zi produced and fix Rk+1 = R(Zk, T). Cuts
Zi form the minimum drainage cuts of I.

R1 R2 R3 R4

s1

s2

s3

t1

t2

Z1

Z2

Z3

Fig. 2. The drainage (cuts Zi, sets Ri and Si) for an instance containing graph G,
sources S = {s1, s2, s3} and targets T = {t1, t2}. Here, R1 = S1 (in general, R1 ⊇ S1).
(Color figure online)

Figure 2 provides us with an example of graph G with S = {s1, s2, s3} and
T = {t1, t2} and indicates its drainage. The size of minimum (S, T)-cuts is
p = 4. Blue, red, and green edges represent minimum drainage cuts Z1, Z2, and
Z3, respectively. Similarly, blue, red, green, and yellow vertices represent sets
S1 = S, S2, S3, and S4. Reachable sets R1, R2, R3, and R4 are also appropriately
colored. As the size of the minimum cut between S4 (yellow vertices) and T in
graph G\R(Z3, S) is greater than p, we have k = 3.

We emphasize that set Ri, which is R(Zi, Si) taken in G\R(Zi−1, S), and
set R(Zi, S) are different for i �= 1. On the one hand, set R(Zi, S) =

⋃i
�=1 R�

contains the vertices reachable from S in graph G deprived of Zi. On the other
hand, set Ri can be written Ri = R(Zi, S)\R(Zi−1, S). Sets Ri and Ri+1 are
disjoint and nonempty, as Si ⊆ Ri and Si+1 ⊆ Ri+1. Moreover, the minimum
drainage cuts are disjoint: Zi ∩ Zj = ∅. The number k of minimum drainage
cuts is less than n and the running time needed to construct the drainage is
in O(mnp). The reachable vertex sets of cuts Zi are included one into another:
R(Zi, S) � R(Zi+1, S). The following theorem shows that, for any minimum
(S, T)-cut X, there is a cut Zi containing edges of X. Among cuts Zi sharing
edges with X, we are interested in the one with the smallest index.

Fixed-Parameter Tractability of Counting Small Minimum (S, T)-Cuts 85

Definition 3 (Front of X). Front of X, i(X), 1 ≤ i(X) ≤ k is the smallest
index i such that Zi ∩ X �= ∅.

The next theorem states the properties of i(X) for any minimum (S, T)-cut.

Theorem 2. Any minimum (S, T)-cut X admits a front i(X) and
X ∩ E

[
R(Zi(X), S)

]
= ∅.

The reader can verify that any minimum (S, T)-cut of G contains some edges
of at least one cut Z1, Z2, or Z3 in Fig. 2.

3.2 Menger’s Paths

Menger’s theorem states that the size of the minimum edge (S, T)-cuts is equal
to the maximum number of edge-disjoint (S, T)-paths [23]. One of these largest
sets of edge-disjoint (S, T)-paths can be found in polynomial time using flow
techniques [17]. We denote by Q = {Q1, . . . , Qp} such a set of p edge-disjoint
(S, T)-paths, taken arbitrarily. We call paths from Q Menger’s paths, to distin-
guish them from other paths in graph G.

Set Q is used to identify minimum (S, T)-cuts. It is fixed throughout the
course of the proofs in this article. The observation that edges of all minimum
(S, T)-cuts belong to the paths from Q is formulated in:

Lemma 2. For any minimum (S, T)-cut X, each Menger’s path Qj contains
one edge of X. If Qj : v

(j)
1 · v

(j)
2 · · · v(j)

� · v
(j)
�+1 · · · and (v(j)

� , v
(j)
�+1) ∈ X, then

v
(j)
� ∈ R(X,S) and v

(j)
�+1 ∈ R(X,T).

Its consequence is that each edge of a cut Zi belongs to a Menger’s path.
Figure 3 illustrates the Menger’s paths on the instance (G,S, T) already intro-
duced in Fig. 2. As the minimum (S, T)-cut size is four, there are four edge-
disjoint (S, T)-paths distinguished with colors. Menger’s paths are naturally ori-
ented from sources to targets.

4 Counting Minimum Edge (S, T)-Cuts in Undirected
Graphs

We describe our algorithm which counts all minimum (S, T)-cuts in an undi-
rected graph G. Based on the concepts introduced in Sect. 3, we prove not only
that it achieves its objective but also that its time complexity is FPT.

4.1 Dams and Dry Areas

We begin by the definition of dams which are subsets of cuts Zi of the drainage
of G.

Definition 4 (Dam). A dam Bi is a nonempty subset of a minimum drainage
cut Zi, i.e. Bi ⊆ Zi, Bi �= ∅.

86 P. Bergé et al.

R1 R2 R3 R4

s1

s2

s3

t1

t2

Fig. 3. Menger’s paths in graph G with sources S = {s1, s2, s3}, targets T = {t1, t2}.
(Color figure online)

Thanks to this definition, Theorem2 together with the concept of the front
makes us observe that any minimum (S, T)-cut X contains a front dam:

Definition 5 (Front dam). The front dam of a minimum (S, T)-cut X is
Bi(X) = X ∩ Zi(X).

We know that all edges in X\Bi(X) belong to the target side of Zi(X),
E

[
R(Zi(X), T)

]
, and the source side of Zi(X) is empty, X ∩E

[
R(Zi(X), S)

]
= ∅.

If X\Bi(X) = ∅, then X = Zi(X). A dam Bi is characterized by:

– its level, i.e. the index i of the cut Zi it belongs to,
– its signature σ(Bi) = {Qj : Bi ∩ Qj �= ∅}, i.e. the set of Menger’s paths pass-

ing through it.

Choking graph G with dam Bi(X) puts in evidence a subgraph which still
connects S and T through X\Bi(X). Our idea is to dam a graph gradually in
order to dry it completely.

The description of the method we devised to reach this goal requires a trans-
formation of G into GD which is actually G with certain edges directed (GD

is a mixed graph). If edge e does not belong to a Menger’s path, it stays undi-
rected. For path Qj : v

(j)
1 ·v(j)

2 ·v(j)
3 · · · , edges (v(j)

i , v
(j)
i+1) become arcs (v(j)

i , v
(j)
i+1),

respecting the natural flow from sources to targets.
Figure 3 illustrates graph GD. Arrows indicate the arcs while bare segments

represent its edges. According to Lemma 2, any minimum (S, T)-cut of G is made
up of arcs in GD. Minimum drainage cuts Zi are thus composed of arcs, directed
from Ri to Ri+1. We insist on the fact that graph GD is only used to define the
notion of dry area, we do not count minimum cuts in it.

Definition 6 (Dry area). The dry area of Bi is the set A∗(Bi) which contains
the vertices of G which are not reachable from S in graph GD deprived of Bi,
i.e. GD\Bi.

In a less formal way, set A∗(Bi) keeps vertices which are dried as Bi is the
only means to irrigate them. The definition of the dry instance follows.

Fixed-Parameter Tractability of Counting Small Minimum (S, T)-Cuts 87

R1 R2 R3 R4

s1

s2

s3

t1

t2

B2S∗(B2)

A∗(B2)

T ∗(B2)

Fig. 4. An example of dam B2 and its dry instance D (I, B2) =
(G∗(B2), S

∗(B2), T
∗(B2)) (Color figure online)

Definition 7 (Dry instance). The dry instance induced by a dam Bi is
an instance D (I, Bi) = (G∗(Bi), S∗(Bi), T ∗(Bi)) with graph G∗(Bi) =
(V ∗(Bi), E∗(Bi)). In particular,

– set S∗(Bi) keeps vertices reachable from S “just before” dam Bi. Formally, it
contains the tails of arcs in Bi: S∗(Bi) = {u : (u, v) ∈ Bi},

– set T ∗(Bi) keeps vertices placed “after” dam Bi which become irrigated
in GD\Bi. Formally, it contains the heads of arcs which have their tail
either inside S∗(Bi) or inside A∗(Bi) and their head outside: T ∗(Bi) =
{v /∈ A∗(Bi) : (u, v) ∈ E, u ∈ S∗(Bi) ∪ A∗(Bi)},

– set V ∗(Bi) is the union: V ∗(Bi) = S∗(Bi) ∪ A∗(Bi) ∪ T ∗(Bi),
– set E∗(Bi) stores edges of G which lie inside the dry area of Bi or on its

border (one endpoint is outside) in GD. Formally, it is composed of edges
with two endpoints in V ∗(Bi) and at least one of them in A∗(Bi): E∗(Bi) =
{(u, v) ∈ E : u ∈ A∗(Bi), v ∈ V ∗(Bi)}.

Figure 4 gives an example of dam B2 ⊆ Z2 and the dry instance it induces
in G. Its arcs are drawn in red, arcs of Z2\B2 are red and dashed. Blue vertices
represent the vertices unreachable from S in GD\B2, i.e. set A∗(B2). Sets S∗(B2)
and T ∗(B2) are drawn in green and purple, respectively. Set E∗(B2) is composed
of dam B2 (red arcs) and blue edges/arcs.

An important property of dry areas is that there is no arc (u, v) of GD

“entering” in the dry area A∗(Bi), except for arcs in Bi.

Lemma 3. For any dam Bi, there is no arc (u, v) in GD such that u /∈ A∗(Bi)
and v ∈ A∗(Bi), except for arcs in Bi. Moreover, there is no undirected edge
with exactly one endpoint in A∗(Bi).

In Theorem 3, we provide a characterization of any minimum (S, T)-cut which
is based on dry instances and on closest dams. We start by:

88 P. Bergé et al.

Definition 8. A dam Bh is closer than dam Bi if (i) h < i, (ii) σ(Bh) = σ(Bi),
and (iii) edges in Bi are the only edges of level i inside the dry instance of Bh:
E∗(Bh) ∩ Zi = Bi.

As a consequence, the dry area of Bi is included in the dry area of Bh when
Bh is closer than Bi: A∗(Bi) � A∗(Bh). Indeed, if a vertex is unreachable from
S in GD\Bi, then it also is unreachable from S in GD\Bh as arcs of Bi cannot
be attained from S in GD\Bh according to Definition 8.

Definition 9 (Closest dam). Dam Bi is a closest dam if no dam Bh, h < i
is closer than Bi.

For any dam Bi, either Bi is a closest dam or there is a closest dam Bh �= Bi,
closer than Bi. Each dam Bi admits a closest dam (itself or Bh) which is unique.

Lemma 4. Any dam Bi has a unique closest dam.

Moreover, if Bh is a closest dam then its complement Bh = Zh\Bh is also a
closest dam. This property will be used to prove the fixed-parameter tractability
of our algorithm.

Lemma 5. If Bh is a closest dam, then Bh = Zh\Bh is also a closest dam.

Observe that the dry areas of a dam Bi and its complement, A∗(Bi) and
A∗(Bi) respectively, are disjoint because any vertex is reachable from S either
in G\Bi or in G\Bi or in both of them.

4.2 A Characterization of Minimum Cuts with Dry Instances

Theorem 3 provides us with the keystone to build our FPT〈p〉 algorithm. It
combines the concepts of dry instance and closest dam: given a minimum (S, T)-
cut X and its front dam Bi(X), either X\Bi(X) = ∅ and X = Zi(X) or edges
in X\Bi(X) �= ∅ belong to the dry instance of the dam Bh(X) = Zh(X)\Bh(X),
where Bh(X) is the closest dam of Bi(X).

Theorem 3. If X �= Zi(X) is a minimum cut for I, Bi(X) its front dam, and
Bh(X) the closest dam of Bi(X), then set X\Bi(X) is a minimum cut for the dry
instance of Bh(X) = Zh(X)\Bh(X), i.e. D (I, Bh(X)

)
.

Therefore, any minimum (S, T)-cut X, which is not a minimum drainage cut
Zi(X) itself, can be partitioned into two sets, Bi(X) and X\Bi(X), such that:

– Bi(X) is a minimum cut of instance D (I, Bh(X)

)
and a dam of I,

– X\Bi(X) is a minimum cut of instance D (I, Bh(X)

)
and all its edges belong

to the target side of Zi(X), E
[
R(Zi(X), T)

]
.

Conversely, given a closest dam Bh and its complement Bh = Zh\Bh, the
union Bi ∪ XBh

, where the closest dam of Bi is Bh and XBh
is a minimum cut

of D (I, Bh

)
, separates S from T .

Fixed-Parameter Tractability of Counting Small Minimum (S, T)-Cuts 89

Theorem 4. Let Bh be a closest dam of Z(I) and Bh = Zh\Bh. Let Bi be
a dam such that Bh is closer than Bi and XBh

a minimum cut of D (I, Bh

)
.

Then, Bi ∪ XBh
is a minimum (S, T)-cut for instance I.

We now prove a stronger result for set X\Bi(X). In fact, edges of set X\Bi(X)

lie in the target side of level i(X) − h(X) + 1 in the drainage of instance
D (I, Bh(X)

)
. This statement is formulated in the theorem below.

Theorem 5. Let X be a minimum (S, T)-cut of G and let (Z ′
1, . . . , Z

′
k′) be the

drainage of instance D (I, Bh(X)

)
. Then, set Z ′

i(X)−h(X)+1 is equal to Bi(X) =
Zi(X)\Bi(X) and edges X\Bi(X) belong to the target side of Z ′

i(X)−h(X)+1 inside
instance D (I, Bh(X)

)
.

4.3 Description of the Algorithm

Our algorithm starts by computing the drainage Z(I) and the Menger’s paths
of input instance I. For all dams Bi, it counts the minimum cuts of size p in I
which admit the front dam Bi. If Bi �= Zi, it does this recursively by counting
the minimum cuts in instance D (I, Bh

)
which only contains edges from the

target side of the internal level i − h + 1 of D (I, Bh

)
, where Bh is the closest

dam of Bi. The minimum cut size in D(I, Bh) is at most p − 1.
We denote by C0(I) = C(I) the total number of minimum (S, T)-cuts of

instance I. We define C�(I) as the number of minimum cuts of instance I which
are composed of edges from E [R(Z�, T)] only. For example, C2(I) gives the
number of minimum (S, T)-cuts in instance I without edges of Z1 ∪ Z2. Value
C�(I), 0 ≤ � ≤ k − 1, can be written:

C�(I) = k − � +
∑

Closest
dam Bh�Zh

∑

i : i>�,
∃Bi:Bh

closer than Bi

Ci−h+1

(D (I, Bh

))
. (1)

The first k − � cuts are the minimum drainage cuts of I with level greater
than �, i.e. cuts Z�+1, . . . , Zk. The second term counts cuts taking edges only
from E [R(Z�, T)] and admitting a front dam Bi(X) �= Zi(X). Theorems 3 and
5 guarantee that any of these minimum (S, T)-cuts is counted at least once.
Indeed, for any front dam Bi and its closest dam Bh, we compute the number
of cuts in instance D (I, Bh

)
such that all their edges belong to the target side

of Bi, which is the internal level i − h + 1 in D (I, Bh

)
. In the event that the

drainage of D (I, Bh

)
has less than i−h+1 levels, then Ci−h+1

(D (I, Bh

))
= 0,

as it means no minimum cut of I has the front dam Bi.
Conversely, the unicity of a closest dam ensures us that each minimum cut

is counted exactly once. A minimum (S, T)-cut X �= Zi(X) has a unique front
dam Bi(X) and the closest dam Bh(X) of Bi(X) is unique (Lemma 4). Finally,
Theorem 4 secures that all cuts counted with Eq. (1) are minimum (S, T)-cuts.

Value C0(I) is computed thanks to recursive calls on multiple instances
D (I, Bh

)
. From now on, we distinguish the input instance I (for which we

90 P. Bergé et al.

want to compute C0(I)) with other instances (denoted by J later on) of the
recursive tree. The base cases of the recursion, i.e. the leaves of the recursive
tree, are the computation of values C�(J) either in instances J where the min-
imum cut size is one or in instances where no minimum cut admits a front dam
Bi �= Zi, i > �. In both cases, the only minimum cuts of J are its minimum
drainage cuts. Each recursive call of the algorithm makes the minimum cut size
decrease: for example, if the minimum cut size of J is q, then it is

∣
∣Bh

∣
∣ < q for

an instance D (J , Bh

)
. Therefore, the recursive tree is not deeper than p − 1.

To terminate this algorithm analysis, we prove that its execution time is
FPT〈p〉. To count minimum cuts for an instance of depth d in the recursive tree,
our algorithm counts not only its minimum drainage cuts but also minimum
cuts of multiple instances of depth d + 1. Consequently, the time complexity of
our algorithm depends on the number of instances in the recursive tree. The
following theorem states it is upper-bounded by 2p2

m.

Theorem 6. There are at most 2p2
m instances in the recursive tree.

For any instance J of the recursive tree, the algorithm computes its drainage
Z (J), its Menger’s paths and all instances D(J , Bh) where Bh is a closest
dam of Z (J). This third operation is done by enumerating all dams Bi of
Z(J), verifying whether there is another dam Bh which is closer than Bi, and
(if Bi is a closest dam) identifying the vertices/edges of D(J , Bi) thanks to
a depth-first search in GD\Bi. As there are at most 2pn dams in Z (J), its
execution time is O(22pn3). The overall complexity is O

(
2p2

m(mnp + 22pn3)
)

=

O
(
2p(p+2)pmn3

)
.

5 Conclusion

In this study, we were interested in the parameterized complexity of counting the
minimum (S, T)-cuts in undirected graphs. The conclusion is that this problem
is FPT〈p〉 as we devised an algorithm running in O(2p(p+2)pmn3). Our algorithm
starts by “draining” the graph: the drainage is made of k < n minimum cuts
Zi. For any minimum cut of the instance, at least one of the minimum drainage
cuts Zi contains edges of X. For this reason, we believe that the drainage could
be used on other cut problems.

In the future, we will focus on the fixed-parameter tractability of counting
minimum vertex (S, T)-cuts. Although the concepts used for the edge version
can be generalized to vertex cuts (the drainage, Menger’s paths, dry areas, and
closest dams), the generalization of our algorithm to vertex cuts is compromised
for one major reason: Theorem3 is not true anymore.

References

1. Arvind, V., Raman, V.: Approximation algorithms for some parameterized count-
ing problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp.
453–464. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36136-7 40

https://doi.org/10.1007/3-540-36136-7_40

Fixed-Parameter Tractability of Counting Small Minimum (S, T)-Cuts 91

2. Ball, M.O., Colbourn, C.J., Provan, J.S.: Network reliability. In: Handbooks in
Operations Research and Management Science, vol. 7, pp. 673–762. Elsevier (1995)

3. Ball, M.O., Provan, J.S.: Calculating bounds on reachability and connectedness in
stochastic networks. Networks 13(2), 253–278 (1983)

4. Ball, M.O., Provan, J.S.: Computing network reliability in time polynomial in the
number of cuts. Oper. Res. 32(3), 516–526 (1984)

5. Bezáková, I., Chambers, E.W., Fox, K.: Integrating and sampling cuts in bounded
treewidth graphs. In: Letzter, G., et al. (eds.) Advances in the Mathematical Sci-
ences. AWMS, vol. 6, pp. 401–415. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34139-2 20

6. Bezáková, I., Friedlander, A.J.: Counting and sampling minimum (S, T)-cuts in
weighted planar graphs in polynomial time. Theoret. Comput. Sci. 417, 2–11
(2012)

7. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proceedings of
STOC, pp. 459–468 (2011)

8. Boykov, Y., Veksler, O.: Graph cuts in vision and graphics: theories and applica-
tions. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical
Models in Computer Vision, pp. 79–96. Springer, Boston (2006). https://doi.org/
10.1007/0-387-28831-7 5

9. Chambers, E.W., Fox, K., Nayyeri, A.: Counting and sampling minimum cuts in
genus g graphs. In: Proceedings of SoCG, pp. 249–258 (2013)

10. Chandran, L.S., Ram, L.S.: On the number of minimum cuts in a graph. In: Pro-
ceedings of COCOON, pp. 220–229 (2002)

11. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum
node multiway cut problem. Algorithmica 55(1), 1–13 (2009)

12. Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset. SIAM J. Comput. 42(4),
1674–1696 (2013)

13. Curticapean, R.: Counting problems in parameterized complexity. In: Proceedings
of IPEC, pp. 1–18 (2018)

14. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum
bisection is fixed parameter tractable. In: Proceedings of STOC, pp. 323–332 (2014)

15. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-
0515-9

16. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
J. Comput. 33(4), 892–922 (2004)

17. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,
399–404 (1956)

18. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorith-
mica 65(4), 828–844 (2013)

19. Krom, M.R.: The decision problem for a class of firstorder formulas in which all
disjunctions are binary. Math. Logic Q. 13(12), 15–20 (1967)

20. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci.
351(3), 394–406 (2006)

21. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms 9(4), 30:1–30:35 (2013)

22. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In: Proceedings of STOC, pp. 469–478 (2011)

23. Menger, K.: Zur allgemeinen Kurventheorie. Fundamenta Mathematicæ 10(1), 96–
115 (1927)

https://doi.org/10.1007/978-3-319-34139-2_20
https://doi.org/10.1007/978-3-319-34139-2_20
https://doi.org/10.1007/0-387-28831-7_5
https://doi.org/10.1007/0-387-28831-7_5
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9

92 P. Bergé et al.

24. Nagamochi, H., Sun, Z., Ibaraki, T.: Counting the number of minimum cuts in
undirected multigraphs. IEEE Trans. Reliab. 40, 610–614 (1991)

25. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. OUP, Oxford (2006)

26. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput. 12(4), 777–788 (1983)

27. Valiant, L.G.: The complexity of counting the permanent. Theoret. Comput. Sci.
8, 189–201 (1979)

28. Williams, V.V., Williams, R.: Finding, minimizing, and counting weighted sub-
graphs. SIAM J. Comput. 42(3), 831–854 (2013)

Fast Breadth-First Search in Still Less
Space

Torben Hagerup(B)

Institut für Informatik, Universität Augsburg, 86135 Augsburg, Germany
hagerup@informatik.uni-augsburg.de

Abstract. It is shown that a breadth-first search in a directed or undi-
rected graph with n vertices and m edges can be carried out in O(n+m)
time with n log2 3 + O((log n)2) bits of working memory.

Keywords: Graph algorithms · Space efficiency · BFS ·
Succinct data structures · Choice dictionaries · In-place chain technique

1 Introduction

1.1 Space-Bounded Computation

The study of the amount of memory necessary to solve specific computational
problems has a long tradition. A fundamental early result in the area is the
discovery by Savitch [14] that the s-t connectivity problem (given a graph G
and two vertices s and t in G, decide whether G contains a path from s to
t) can be solved with O((log n)2) bits of memory on n-vertex graphs. In order
for this and related results to make sense, one must distinguish between the
memory used to hold the input and the working memory, which is the only
memory accounted for. The working memory is usable without restrictions, but
the memory that holds the input is read-only and any output is stored in write-
only memory. Informally, these conventions serve to forbid “cheating” by using
input or output memory for temporary storage. They are all the more natural
when, as in the original setting of Savitch, the input graph is present only in
the form of a computational procedure that can test the existence of an edge
between two given vertices.

Savitch’s algorithm is admirably frugal as concerns memory, but its (worst-
case) running time is superpolynomial. It was later generalized by Barnes, Buss,
Ruzzo and Schieber [4], who proved, in particular, that the s-t connectivity prob-
lem can be solved on n-vertex graphs in nO(1) time using O(n/2b

√
log n) bits for

arbitrary fixed b > 0. In the special case of undirected graphs, a celebrated result
of Reingold [13] even achieves polynomial time with just O(log n) bits. The run-
ning times of the algorithms behind the latter results, although polynomial, are
“barely so” in the sense that the polynomials are of high degree. A more recent
research direction searches for algorithms that still use memory as sparingly as
c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 93–105, 2019.
https://doi.org/10.1007/978-3-030-30786-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_8&domain=pdf
http://orcid.org/0000-0001-6974-2473
https://doi.org/10.1007/978-3-030-30786-8_8

94 T. Hagerup

possible but are nonetheless fast, ideally as fast as the best algorithms that are
not subject to space restrictions. The quest to reduce space requirements and
running time simultaneously is motivated in practical terms by the existence of
small mobile or embedded devices with little memory, by memory hierarchies
that allow smaller data sets to be processed faster, and by situations in which
the input is too big to be stored locally and must be accessed through query pro-
cedures running on a remote server. The Turing machine models running time
on real computers rather crudely, so the model of computation underlying the
newer research is the random-access machine and, more specifically, the word
RAM.

1.2 The Breadth-First-Search Problem

This paper continues an ongoing search for the best time and space bounds for
carrying out a breadth-first search or BFS in a directed or undirected graph.
Formally, we consider the BFS problem to be that of computing a shortest-path
spanning forest of an input graph G = (V,E) consistent with a given permutation
of V in top-down order, a somewhat tedious definition of which can be found
in [8]. Suffice it here to say that if all vertices of the input graph G are reachable
from a designated start vertex s ∈ V , the task at hand essentially is to output
the vertices in V in an order of nondecreasing distance from s in G. The BFS
problem is important in itself, but has also served as a yardstick with which to
gauge the strength of new algorithmic and data-structuring ideas in the realm
of space-efficient computing.

In the following consider an input graph G = (V,E) and take n = |V | and
m = |E|. The algorithms of Savitch [14] and of Barnes et al. [4] are easily
adapted, within the time and space bounds cited above, to compute the actual
distance from s to t (∞ if t is not reachable from s). As a consequence, the
BFS problem can be solved on n-vertex graphs with O((log n)2) bits or in nO(1)

time with n/2Ω(
√

log n) bits. Every reasonably fast BFS algorithm known to the
author, however, can be characterized by an integer constant c ≥ 2, dynamically
assigns to each vertex in V one of c states or colors, and maintains the color
of each vertex explicitly or implicitly. Let us call such an algorithm a c-color
BFS algorithm. E.g., the classic BFS algorithm marks each vertex as visited
or unvisited and stores a subset of the visited vertices in a FIFO queue, which
makes it a 3-color algorithm: The unvisited vertices are white, the visited vertices
in the FIFO queue are gray, and the remaining visited vertices are black. Because
the distribution of colors over the vertices can be nearly arbitrary, a c-color BFS
algorithm with an n-vertex input graph must spend at least n log2 c bits on
storing the vertex colors. The classic BFS algorithm uses much more space since
the FIFO queue may hold nearly n vertices and occupy Θ(n log n) bits.

Similarly as Dijkstra’s algorithm can be viewed as an abstract algorithm
turned into a concrete algorithm by the choice of a particular priority-queue
data structure, Elmasry, Hagerup and Kammer [6] described a simple abstract
4-color BFS algorithm that uses O(n + m) time plus O(n + m) calls of opera-
tions in an appropriate data structure that stores the vertex colors. This allowed

Fast Breadth-First Search in Still Less Space 95

them to derive a first BFS algorithm that works in O(n + m) time with O(n)
bits. Using the same abstract algorithm with a different data structure, Banerjee,
Chakraborty and Raman [2] lowered the space bound to 2n+O(n log log n/log n)
bits. Concurrently, Hagerup and Kammer [10] obtained a space bound of
n log2 3 + O(n/(log n)t) bits, for arbitrary fixed t ≥ 1, by stepping to a better
so-called choice-dictionary data structure but, more significantly, by developing
an abstract 3-color BFS algorithm to work with it. The algorithm uses the three
colors white, gray and black and, for an undirected graph in which all vertices
are reachable from the start vertex s, can be described via the code below. No
output is mentioned, but a vertex can be output when it is colored gray.

Color all vertices white;
Color s gray;
while some vertex is gray do

for each gray vertex u do (∗ exploration round ∗)
if u = s or u has a black neighbor then

Color gray all white neighbors of u;
for each gray vertex u do (∗ consolidation round ∗)

if u has no white neighbor then
Color u black;

Roughly speaking, the white vertices have not yet been encountered by the
search, the black vertices are completely done with, and the gray vertices form
the layer of currently active vertices at a common distance from s. The two
inner loops of the algorithm iterate over the gray vertices in order to replace
them by their white neighbors, which form the next gray layer. Both iterations
are dynamic in the sense that the set of gray vertices changes while it is being
iterated over. The first iteration (the exploration round) colors additional vertices
gray, and we would prefer for these newly gray vertices not to be enumerated by
the iteration. Satisfying this requirement is not easy for a space-efficient algo-
rithm, however, and therefore the iteration instead tests each enumerated vertex
for being “old”—exactly then does it equal s or have a black neighbor—and
ignores the other gray vertices. Similarly, the second iteration (the consolidation
round) colors black only those gray vertices that are no longer needed as neigh-
bors of white vertices—these include all “old” gray vertices. Even so, the choice
dictionary must support dynamic iteration suitably. This represents the biggest
challenge for a space-efficient implementation of the abstract algorithm.

For a directed graph, the changes are slight: “black neighbor” should be
replaced by “black inneighbor”, and each of the two occurrences of “white neigh-
bor” should be replaced by “white outneighbor”. If not all vertices are reachable
from s, the code above, except for its first line, must be wrapped in a standard
way in an outer loop that steps s through all vertices in a suitable order and
restarts the BFS at every vertex found to still be white when it is chosen as s.
This leads to no additional complications and will be ignored in the following.

96 T. Hagerup

1.3 Recent Work and Our Contribution

Starting with the algorithm of Hagerup and Kammer [10], all new BFS algo-
rithms have space bounds of the form n log2 3+s(n) bits for some function s with
s(n) = o(n). In a practical setting the leading factor of log2 3 is likely to matter
more than the exact form of s, so that the progress since the algorithm of Hagerup
and Kammer could be viewed as insignificant. However, at least from a theoreti-
cal point of view it is interesting to explore how much space is needed beyond the
seemingly unavoidable n log2 3 bits required to store the vertex colors. If a 3-color
BFS algorithm uses n log2 3 + s(n) bits, we will therefore say that it works with
s(n) extra bits. If its running time is t(n,m), we may summarize its resource
requirements in the pair (t(n,m), s(n)). Adapting the notion of pareto domi-
nance, we say that an algorithm with the resource pair (t(n,m), s(n)) dominates
an algorithm with the resource pair (t′(n,m), s′(n)) if t(n,m) = O(t′(n,m)) and
s(n) = o(s′(n)) or t(n,m) = o(t′(n,m)) and s(n) = O(s′(n)).

Banerjee, Chakraborty, Raman and Satti [3] indicated a slew of 3-color BFS
algorithms with the following resource pairs: (nO(1), o(n)), (O(nm), O((log n)2)),
(O(m(log n)2), o(n)) and (O(m log nf(n)), O(n/f(n))) for certain slowly grow-
ing functions f . The first of these algorithms is dominated by that of Barnes
et al. [4], which also uses polynomial time but o(n) bits altogether, not just o(n)
extra bits. The third algorithm of [3] is dominated by the algorithm of Hagerup
and Kammer [10], whose resource pair is (O(n + m), O(n/(log n)t)) for arbi-
trary fixed t ≥ 1. Instantiating the 3-color abstract algorithm of [10] with a new
choice dictionary, Hagerup [8] obtained an algorithm that has the resource pair
(O(n log n + m log log n), O((log n)2)) and dominates the two remaining algo-
rithms of [3]. Another algorithm of [8] is faster but less space-efficient and has
the resource pair (O(n log n + m), nε) for arbitrary fixed ε > 0.

Here we present a new data structure, designed specifically to be used with
the abstract 3-color BFS algorithm of [10], that leads to a concrete BFS algo-
rithm operating in O(n + m) time using n log2 3 + O((log n)2) bits of working
memory. The new algorithm combines the best time and space bounds of all pre-
vious algorithms with running-time bounds of O(nm) or less, and therefore dom-
inates all of them. It is also simpler than several previous algorithms. We obtain
a slightly more general result by introducing a tradeoff parameter t ≥ 1: The run-
ning time is O((n+m)t), and the space bound is n log2 3+O((log n)2/t+ log n)
bits. If the degrees of the vertices 1, . . . , n of the input graph G form a nonde-
creasing sequence or if G is approximately regular, we achieve a running time of
O((n + m) log log n) with just n log2 3 + O(log n) bits.

The technical contributions of the present paper include:

– A new representation of vertex colors
– A new approach to dynamic iteration
– A refined analysis of the abstract 3-color BFS algorithm of [10]
– An amortized analysis of the new data structure.

Conversely, we draw on [10] not only for its abstract 3-color BFS algorithm,
but also for setting many of the basic concepts straight and for a technical

Fast Breadth-First Search in Still Less Space 97

lemma. Another crucial component is the in-place chain technique of Katoh and
Goto [12], as developed further in [8,9,11]. A fundamental representation of n
colors drawn from {0, 1, 2} in close to n log2 3 bits so as to support efficient access
to individual colors is due to Dodis, Pǎtraşcu and Thorup [5].

2 Preliminaries

We do not need to be very specific about the way in which the input graph
G = (V,E) is presented to the algorithm. With n = |V | and m = |E|, we assume
that n can be determined in O(n + m) time and that V = {1, . . . , n}. If G is
undirected, we also assume that for each vertex u ∈ V , it is possible to iterate
over the neighbors of u in at most constant time plus time proportional to their
number. If G is directed, the assumption is the same, but now the neighbors of u
include both the inneighbors and the outneighbors of u, and inneighbors should
(of course) be distinguishable from outneighbors.

Our model of computation is a word RAM [1,7] with a word length of w bits,
where we assume that w is large enough to allow all memory words in use to
be addressed. As part of ensuring this, we assume that w ≥ log2 n. The word
RAM has constant-time operations for addition, subtraction and multiplication
modulo 2w, division with truncation ((x, y) �→ �x/y	 for y > 0), left shift modulo
2w ((x, y) �→ (x
 y) mod 2w, where x
 y = x · 2y), right shift ((x, y) �→ x �
y = �x/2y), and bitwise Boolean operations (and, or and xor (exclusive or)).

3 The Representation of the Vertex Colors

This section develops a data structure for storing a color drawn from the set
{white, gray,black} for each of the n vertices in V = {1, . . . , n}. As we will see,
the data structure enables linear-time execution of the abstract 3-color BFS algo-
rithm of [10] and occupies n log2 3 + O((log n)2) bits. An inspection of the algo-
rithm reveals that the operations that must be supported by the data structure
are reading and updating the colors of given vertices—this by itself is easy—and
dynamic iteration over the set of gray vertices. A main constraint for the latter
operation is that the iteration must happen in time proportional to the number
of gray vertices, i.e., we must be able to find the gray vertices efficiently.

Let us encode the color white as 1 = 012, gray as 0 = 002 and black
as 2 = 102. In the following we will not distinguish between a color and
its corresponding integer or 2-bit string. Take Λ = �log2 n	, q = 10Λ and
λ = �log2 q = Θ(log log n). In the interest of simplicity let us assume that
n is large enough to make λ2 ≤ Λ. In order to keep track of the colors of the
vertices in V we divide the sequence of n colors into N = �n/q	 segments of
exactly q colors each, with at most q − 1 colors left over. Each segment is rep-
resented via a big integer drawn from {0, . . . , 3q − 1}. Because q = O(log n),
big integers can be manipulated in constant time. The N big integers are in
turn maintained in an instance of the data structure of Lemma1 below, which
occupies N log2 3q + O((log N)2) = n log2 3 + O((log n)2) bits.

98 T. Hagerup

Lemma 1 ([5], Theorem 1). There is a data structure that, given arbitrary
positive integers N and C with C = NO(1), can be initialized in O(log N) time
and subsequently maintains an array of N elements drawn from {0, . . . , C − 1}
in N log2 C + O((log N)2) bits such that individual array elements can be read
and updated in constant time.

3.1 Containers and Their Structure and Operations

We view the N big integers as objects with a nontrivial internal structure and
therefore use the more suggestive term container to denote the big integer in a
given position in the sequence of N big integers. We shall say that each of the
q vertices whose colors are stored in a container is located in the container. A
container may represent q colors a0, . . . , aq−1 in several different ways illustrated
in Fig. 1. The most natural representation is as the integer x =

∑q−1
j=0 aj3j .

We call this the regular representation, and a container is regular if it uses
the regular representation (Fig. 1(b)). When a vertex u is located in a regular
container, we can read and update the color of u in constant time, provided
that we store a table of the powers 30, 31, . . . , 3q−1. E.g., with notation as above,
aj = �x/3j	 mod 3 for j = 0, . . . , q − 1. The table occupies O((log n)2) bits and
can be computed in O(log n) time.

We allow a variant in which a regular container D is a master (Fig. 1(a)). The
difference is that the 3Λ most significant bits of the big integer corresponding
to D are relocated to a different container D′, said to be the slave corresponding
to D, and stored there. This frees 3Λ − 1 bits in D for other uses (the most
significant bit is fixed at 0 to ensure that the value of the big digit does not exceed
3q − 1). Since �log2(N +1) ≤ log2(n/8)+1 = log2 n− 2 ≤ �log2 n	− 1 = Λ− 1,
we can store a pointer (possibly null) to a container in Λ − 1 bits, so a master
has room for three such pointers. One of these designates the slave D′, while the
use of the two other pointers, called iteration pointers, is explained later. Even
though it may be necessary to access the data relocated to the slave, a master
still allows vertex colors to be read and updated in constant time.

When it is desired to iterate over the gray vertices in a regular container,
the container is first converted to the loose representation, in which the 2-bit
strings corresponding to the q color values are simply concatenated to form a
string of 2q bits. Since log2 q ≤ λ, this can be done in O(λ) time with the
algorithm of Lemma 2 below, used with c = 3, d = 4 and s = q. The algorithm
is a word-parallel version (i.e., essentially independent computations take place
simultaneously in different regions of a word) of a simple divide-and-conquer
procedure.

Lemma 2 ([8], Lemma 3.3 with f = 2 and p = 1). Given integers c, d and s

with 2 ≤ c, d ≤ 4, s ≥ 1 and s = O(w) and an integer of the form
∑s−1

j=0 ajc
j,

where 0 ≤ aj < min{c, d} for j = 0, . . . , s − 1, the integer
∑s−1

j=0 ajd
j can be

computed in O(log(s + 1)) time.

Conversely, using the lemma instead with c = 4 and d = 3, we can convert
from the loose to the regular representation, again in O(λ) time. Once a container

Fast Breadth-First Search in Still Less Space 99

Fig. 1. Four different representations in containers. Crosshatched areas symbolize col-
ors white, gray and black stored to base 3, while vertically striped areas symbolize
black-and-white vectors.

100 T. Hagerup

is in the loose representation, we can locate the first (smallest) gray vertex in
the container in constant time with the algorithm of part (a) of the following
lemma that, again, draws heavily on word-parallel techniques. At this point we
use the lemma with m = q and f = 2.

Lemma 3 ([10], Lemma 3.2). Let m and f be given integers with 1 ≤ m, f < 2w

and suppose that a sequence A = (a1, . . . , am) with ai ∈ {0, . . . , 2f − 1} for
i = 1, . . . , m is given in the form of the (mf)-bit binary representation of the
integer

∑m−1
i=0 2ifai+1. Then the following holds:

(a) Let I0 = {i ∈ {1, . . . m} : ai = 0}. Then, in O(1 + mf/w) time, we can test
whether I0 = ∅ and, if not, compute min I0.

(b) If m < 2f and an integer k ∈ {0, . . . , 2f − 1} is given, then rank(k,A) =
|{i ∈ {1, . . . , m} : k ≥ ai}| can be computed in O(1 + mf/w) time.

Subsequently, if we remember the last grey vertex enumerated, we can shift
out that vertex and all vertices preceding it before applying the same algorithm.
This enables us to iterate over the set Vg of gray vertices in the container in
O(|Vg| + 1) time. The colors of the at most q − 1 vertices left over from the
division into segments are kept permanently in what corresponds to the loose
representation. This uses O(log n) bits, and it will be obvious how to adapt the
various operations to take these vertices and their colors into account, for which
reason we shall ignore them in the following.

If a container is a slave (Fig. 1(d)), we require the number ng of gray ver-
tices in the container to be bounded by λ − 1, and we store its gray vertices
separately in a gray list. The gray list takes the form of the integer ng, stored
(somewhat wastefully) in λ bits, followed by a sorted sequence of ng integers,
each represented in λ bits, that indicate the positions of the gray vertices within
the container. By the assumption λ2 ≤ Λ, the gray list fits within Λ bits. Because
of the availability of the gray list, we can store the remaining vertex colors in a
black-and-white vector of just q bits by dropping the most significant bit, which
normally allows us to distinguish between the colors gray and black, from all
q 2-bit color values. Since 32 ≥ 23 and therefore q log2 3 ≥ 15Λ, this leaves at
least 15Λ − Λ − q = 4Λ bits, which are used to hold the 3Λ bits relocated from
the master and a pointer to the master. We call this representation the compact
representation. A container may be compact, i.e., in the compact representation,
without being a slave (Fig. 1(c)). Then, instead of the data relocated from a
master, it stores two iteration pointers and a null pointer.

Using the algorithm of Lemma3(b) with m = ng and f = λ, we can test
in constant time whether a vertex located in a compact container is gray by
checking whether its number within the container occurs in the gray list of
the container. If not, we can subsequently determine the color of the vertex in
constant time from the black-and-white vector. Similarly, we can change the
color of a given vertex in constant time. This may involve creating a gap for
the new vertex in the gray list or, conversely, closing such a gap, which is easily
accomplished with a constant number of bitwise Boolean and shift operations.

Fast Breadth-First Search in Still Less Space 101

It is also easy to see that we can iterate over the ng gray vertices in O(ng + 1)
time.

If a color change increases the number ng of gray vertices in a compact con-
tainer to λ, the container must be converted to the regular representation. For
this it will be convenient if the black-and-white vector stores the q least sig-
nificant bits of the vertex colors not in their natural order, but in the shuffled
order obtained by placing the first half of the bits, in the natural order, in the
odd-numbered positions of the black-and-white vector and the last half in the
even-numbered positions. With this convention, we can still read and update
vertex colors in constant time. We can also unshuffle the black-and-white vector
in constant time, creating 1-bit gaps for the most significant bits, by separating
the bits in the odd-numbered positions from those in the even-numbered posi-
tions and concatenating the two sequences. Subsequently each most significant
bit is set to be the complement of its corresponding least significant bit to rep-
resent the colors white and black according to the loose representation. Going
through the gray list, we can then introduce the gray colors one by one. Thus
we can convert from the compact to the loose and from there to the regular
representation in O(ng + λ) = O(λ) time. Conversely, if a container in the loose
representation has fewer than λ gray vertices, it can be converted to the compact
representation in O(λ) time.

3.2 The In-place Chain Technique for Containers

The overall organization of the containers follows the in-place chain technique [8,
9,11,12]. By means of an integer μ ∈ {0, . . . , N} equal to the number of compact
containers, the sequence D1, . . . , DN of containers is dynamically divided into
a left part, consisting of D1, . . . , Dμ, and a right part, Dμ+1, . . . , DN . A regular
container is a master if and only if it belongs to the left part, and a compact
container is a slave if and only if it belongs to the right part. Thus the two
representations shown on the left in Fig. 1((a) and (c)) can occur only in the
left part, while the two representations shown on the right can occur only in the
right part. In particular, every container in the left part has iteration pointers.

Call a container gray-free if no vertex located in the container is gray. The
iteration pointers are used to join all containers in the left part, with the excep-
tion of the gray-free compact containers, into a doubly-linked iteration list whose
first and last elements are stored in O(log n) bits outside of the containers.

When an update of a vertex color causes a container Di to switch from the
compact to the regular representation, μ decreases by 1, say from μ0 to μ0 −1. If
i = μ0, Di belongs to the left part before the switch and to the right part after
the switch, i.e., in terms of Fig. 1, the switch is from (c) to (b). If i �= μ0, the
switch is more complicated, in that it involves other containers. If i < μ0 (Fig. 1,
(c) to (a)), Di becomes a master, whereas if i > μ0 (Fig. 1, (d) to (b)), Di stops
being a slave. In both cases there now is a master Dm without a slave, a situation
that must be remedied. However, Dμ0 also switches, namely either from (a) to
(b) or from (c) to (d). In the case “(a) to (b)” Dμ0 stops being a master, and its
former slave can become the slave of Dm. In the case “(c) to (d)” Dμ0 becomes a

102 T. Hagerup

slave and can serve as the slave of Dm. Thus in all cases masters and slaves can
again be matched up appropriately. Altogether, the operation involves changing
some pointers and moving some relocated data in at most four containers. After
the conversion of Di, this takes constant time.

In some circumstances that still need to be specified, a container Di may
switch from the regular to the compact representation, which causes μ to increase
by 1, say from μ0 to μ0 + 1. We can handle this situation similarly as above. If
i = μ0 + 1, the switch is from (b) to (c) in Fig. 1, and nothing more must be
done. Otherwise, whether the switch is from (a) to (c) or from (b) to (d), there
will be a slave without a master. Simultaneously Dμ0+1 switches either from (b)
to (a) (it becomes the needed master) or from (d) to (c) (it stops being a slave,
and its former master takes on the new slave). Again, after the conversion of Di,
the matching between masters and slaves can be updated in constant time.

4 BFS Algorithms

4.1 The Basic Algorithm

To execute the first line of the abstract 3-color BFS algorithm with the vertex-
color data structure developed in the previous section, we initialize the data
structure as follows: All vertices are white, all containers are compact, but not
slaves, all have empty gray lists, the iteration list is empty, and μ = N .

It was already described how to read and update vertex colors. If a color
change causes a compact container D in the left part to become gray-free, D is
shunted out of the iteration list. Conversely, if a compact container in the left
part stops being gray-free, it is inserted at the end of the iteration list. The case
in which a container enters or leaves the left part because of a change in μ is
handled analogously. All of this can happen in constant time. The only exception
is if a color change forces a container to switch from the compact to the regular
representation, which takes O(λ) time.

Recall that the abstract 3-color BFS algorithm alternates between exploration
rounds, in which it iterates over the gray vertices and colors some of their white
neighbors gray, and consolidation rounds, in which it iterates over the gray ver-
tices and colors some of them black. Each iteration is realized by iterating over
two lists of containers: the explicitly maintained iteration list and the implicit
right list, which consists of the containers DN ,DN−1, . . . , Dμ+1 in that order.
Each of the two iterations can be viewed as moving a pebble through the relevant
list. Because the lists may change dynamically, the following rules apply: If a
currently pebbled container D is deleted from its list, the pebble is first moved
to the successor of D, if any, in the relevant list. If a pebble reaches the end of its
list, it waits there for new containers that may be inserted at the end of the list.
One of the at most two pebbled containers is the current container Dc, whose
gray vertices are enumerated as explained earlier. If Dc is regular, this involves
first converting it to the loose representation. Once all gray vertices in Dc have
been enumerated, Dc stops being the current container. If it is in the loose rep-
resentation, we convert it to either the regular or the compact representation.

Fast Breadth-First Search in Still Less Space 103

If the iteration happens in an exploration round, we always convert Dc to the
regular representation, so that μ does not increase. If the iteration happens in a
consolidation round, we attempt to convert it to the compact representation. If
this fails because Dc contains more than λ − 1 gray vertices, we instead convert
it to the regular representation; μ does not decrease. Then the pebble on Dc is
moved to the list successor of Dc, and one of the at most two containers that
are now pebbled is chosen to be the new current container. The iteration ends
when both pebbles are at the end of their respective lists.

Since every container that is not gray-free belongs either to the iteration
list or to the right list, it is clear that each round enumerates all vertices that
are gray at the beginning of the round (and maybe some that become gray in
the course of the round). A container and its gray vertices may be enumerated
twice, namely once as part of the iteration list and once as part of the right
list. The BFS algorithm can tolerate this, and no vertex is enumerated more
than twice within one round because μ moves in only one direction within the
round. A vertex can be gray for at most (part of) four consecutive rounds, so
the total number of vertex enumerations is O(n). Therefore the total time spent
on enumeration is O(n), except possibly for the following two contributions to
the running time: (1) Containers that are enumerated but turn out to be gray-
free; (2) Conversions of containers between different representations. As for (1),
every container concerned is regular or on the right side, i.e., the number of such
containers is bounded by 2(N −μ). Since the iteration converts all N −μ regular
containers to the loose representation, the contribution of (1) is dominated by
that of (2). And as for (2), since the number of other conversions is within a
constant factor of the number of conversions to the regular representation, it
suffices to bound the latter by O(n/λ). Call a conversion of a container D to the
regular representation proper if D contains at least λ gray vertices at the time
of the conversion, and improper otherwise. Improper conversions happen only in
exploration rounds. Before the first conversion of a container D to the regular
representation, λ vertices located in D must have become gray, and between two
successive proper conversions of D at least λ vertices in D either change color
or are enumerated. Moreover, between two consecutive proper conversions of D
there can be at most one improper conversion of D (namely in an exploration
round). Since the number of color changes and of vertex enumerations is O(n),
the bound follows.

Theorem 1. The BFS problem can be solved on directed or undirected graphs
with n vertices and m edges in O(n + m) time with n log2 3 + O((log n)2) bits of
working memory.

4.2 A Time-Space Tradeoff

In order to derive a time-space tradeoff from Theorem 1, we must take a slightly
closer look at the data structure of Dodis et al. [5] behind Lemma 1. For
a certain set S whose elements can be represented in O(log n) bits, a cer-
tain function g : S → S that can be evaluated in constant time and a cer-

104 T. Hagerup

tain start value x0 ∈ S that can be computed in constant time, the pre-
processing of the data structure serves to compute and store a table Y of
x0 = g(0)(x0), g(1)(x0), g(2)(x0), . . . , g(�log2 N�)(x0), where g(j), for integer j ≥ 0,
denotes j-fold repeated application of g. In addition, we need the powers
30, 31, . . . ,3q−1, which are also assumed to be stored in Y . If we carry out the
preprocessing but store g(j)(x0) and 3j only for those values of j that are mul-
tiples of t for some given integer t ≥ 1, the shortened table Y ′ occupies only
O(�(log n)/t log n) = O((log n)2/t + log n) bits, and the rest of the BFS algo-
rithm works with O(log n) bits. Whenever the data structure of Sect. 3 is called
upon to carry out an operation, it needs a constant number of entries of Y , which
can be reconstructed from those in Y ′ in O(t) time. This causes a slowdown of
O(t) compared to an algorithm that has the full table Y at its disposal. Thus
Theorem 1 generalizes as follows:

Theorem 2. For every given t ≥ 1, the BFS problem can be solved on directed
or undirected graphs with n vertices and m edges in O((n + m)t) time with
n log2 3 + O((log n)2/t + log n) bits of working memory.

4.3 BFS with n log2 3 + O(logN) Bits

Suppose now that we are allowed only O(log n) extra bits. Then, with notation
as in the previous subsection, we can no longer afford to store the table Y of
x0, g(x0), g(2)(x0), . . . , g(�log2 N�)(x0) and 30, 31, . . . , 3q−1. Instead we store only
the two O(log n)-bit quantities x0 and 3 and compute g(i)(x0) and 3i from them
as needed. Concerning the latter, 3i can be computed in O(log q) = O(λ) time for
arbitrary i ∈ {0, . . . , q−1} by a well-known method based on repeated squaring.

When the data structure of Dodis et al. [5] is used to represent an array A
with index set {1, . . . , N}, A[j], for j = 1, . . . , N , is associated with the node j
in a complete N -node binary tree T whose nodes are numbered 1, . . . , N in the
manner of Heapsort, i.e., the root is 1, the parent of every nonroot node j is �j/2	,
and every left child is even. Suppose that a node j ∈ {1, . . . , N} is of height h
in T . Then we can access (read or update) A[j] in constant time after computing
g(h)(x0) from x0, which takes O(h + 1) time. In the worst case h = Θ(log n),
so we can access A with a slowdown of O(log n) relative to an algorithm with
access to the full table Y . This leads to the result of Theorem 2 for t = log n, i.e.,
O((n + m) log n) time and O(log n) extra bits. However, for most j the height h
is much smaller than log2 n, which hints at a possible improvement.

For i = 1, . . . , n, let di be the (total) degree of the vertex i in the input graph.
It is easy to see that the number of accesses to the color of i in the course of
the execution of the BFS algorithm is O(di + 1). The color of i is located in the
container Dj , where j = �i/q, or in a slave Dj′ with j′ > j, and Dj is in fact a
big digit stored in A[j], where A is the array maintained with the data structure
of Dodis et al. [5]. The depth of the node j in the corresponding binary tree T
is exactly �log2 j	 = �log2�i/q	, and it is not difficult to see that its height is
at most �log2�n/q	 − �log2�i/q	 ≤ log2(n/i) + 2. Therefore the running time
of the complete BFS algorithm is O((n + m) log log n +

∑n
i=1 di log(2n/i)).

Fast Breadth-First Search in Still Less Space 105

If d1 ≤ · · · ≤ dn,
∑n

i=1 di log2(2n/i) ≤ (1/n)(
∑n

i=1 di)(
∑n

i=1 log2(2n/i)) =
O(m). Thus if the vertex degrees form a nondecreasing sequence, the running
time is O((n+m) log log n). Since log2(2n/i) ≤ 1+r log2 log2 n if i ≥ n/(log2 n)r

for some r ≥ 1, the same is true if
∑�n/(log2 n)r�

i=1 di = O(m log log n/log n) for
some fixed r ≥ 1. Informally, the latter condition is satisfied if G is approximately
regular. In particular, it is satisfied if the ratio of the maximum degree in G to
the average degree is (at most) polylogarithmic in n.

References

1. Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for Hamiltonian circuits
and matchings. J. Comput. Syst. Sci. 18(2), 155–193 (1979)

2. Banerjee, N., Chakraborty, S., Raman, V.: Improved space efficient algorithms for
BFS, DFS and applications. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016.
LNCS, vol. 9797, pp. 119–130. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-42634-1 10

3. Banerjee, N., Chakraborty, S., Raman, V., Satti, S.R.: Space efficient linear time
algorithms for BFS, DFS and applications. Theory Comput. Syst. 62(8), 1736–
1762 (2018)

4. Barnes, G., Buss, J.F., Ruzzo, W.L., Schieber, B.: A sublinear space, polynomial
time algorithm for directed s-t connectivity. SIAM J. Comput. 27(5), 1273–1282
(1998)

5. Dodis, Y., Pǎtraşcu, M., Thorup, M.: Changing base without losing space. In:
Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC 2010),
pp. 593–602. ACM (2010)

6. Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient basic graph algorithms.
In: Proceedings of the 32nd International Symposium on Theoretical Aspects of
Computer Science (STACS 2015). LIPIcs, vol. 30, pp. 288–301. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2015)

7. Hagerup, T.: Sorting and searching on the word RAM. In: Morvan, M., Meinel, C.,
Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028575

8. Hagerup, T.: Small uncolored and colored choice dictionaries. Computing Research
Repository (CoRR), arXiv:1809.07661 [cs.DS] (2018)

9. Hagerup, T.: Highly succinct dynamic data structures. In: G ↪asieniec, L.A., Jansson,
J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651, pp. 29–45. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25027-0 3

10. Hagerup, T., Kammer, F.: Succinct choice dictionaries. Computing Research
Repository (CoRR), arXiv:1604.06058 [cs.DS] (2016)

11. Kammer, F., Sajenko, A.: Simple 2f -color choice dictionaries. In: Proceedings of
the 29th International Symposium on Algorithms and Computation (ISAAC 2018).
LIPIcs, vol. 123, pp. 66:1–66:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2018)

12. Katoh, T., Goto, K.: In-place initializable arrays. Computing Research Repository
(CoRR), arXiv:1709.08900 [cs.DS] (2017)

13. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24
(2008)

14. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

https://doi.org/10.1007/978-3-319-42634-1_10
https://doi.org/10.1007/978-3-319-42634-1_10
https://doi.org/10.1007/BFb0028575
http://arxiv.org/abs/1809.07661
https://doi.org/10.1007/978-3-030-25027-0_3
http://arxiv.org/abs/1604.06058
http://arxiv.org/abs/1709.08900

A Turing Kernelization Dichotomy
for Structural Parameterizations

of F-Minor-Free Deletion

Huib Donkers(B) and Bart M. P. Jansen

Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{h.t.donkers,b.m.p.jansen}@tue.nl

Abstract. For a fixed finite family of graphs F , the F-Minor-Free
Deletion problem takes as input a graph G and an integer � and asks
whether there exists a set X ⊆ V (G) of size at most � such that G − X
is F-minor-free. For F = {K2} and F = {K3} this encodes Vertex

Cover and Feedback Vertex Set respectively. When parameterized
by the feedback vertex number of G these two problems are known to
admit a polynomial kernelization. Such a polynomial kernelization also
exists for any F containing a planar graph but no forests.

In this paper we show that F-Minor-Free Deletion parameterized
by the feedback vertex number is MK[2]-hard for F = {P3}. This rules
out the existence of a polynomial kernel assuming NP �⊆ coNP/poly, and
also gives evidence that the problem does not admit a polynomial Turing
kernel. Our hardness result generalizes to any F not containing a P3-
subgraph-free graph, using as parameter the vertex-deletion distance to
treewidth min tw(F), where min tw(F) denotes the minimum treewidth
of the graphs in F . For the other case, where F contains a P3-subgraph-
free graph, we present a polynomial Turing kernelization. Our results
extend to F-Subgraph-Free Deletion.

Keywords: Turing kernelization · Minor-free deletion ·
Subgraph-free deletion · Structural parameterization

1 Introduction

Background and Motivation. Kernelization is a framework for the scientific
investigation of provably effective preprocessing procedures for NP-hard prob-
lems, framed in the language of parameterized complexity. A kernelization for
a parameterized problem is a polynomial-time algorithm that transforms any
parameterized instance (x, k) into an instance (x′, k′) with the same answer,
such that |x′| and k′ are both bounded by f(k) for some computable function
f . The function f is the size of the kernel. Of particular interest are kernels

B. M. P. Jansen: Supported by NWO Gravitation grant “Networks”.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 106–119, 2019.
https://doi.org/10.1007/978-3-030-30786-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_9&domain=pdf
http://orcid.org/0000-0002-2767-8140
http://orcid.org/0000-0001-8204-1268
https://doi.org/10.1007/978-3-030-30786-8_9

Turing Kernelization Dichotomy for F-Minor-Free Deletion 107

of polynomial size. Determining which parameterized problems admit kernels of
polynomial size has become a rich area of algorithmic research [4,13,22].

A common approach in kernelization [1,12,18] is to take the solution size as
the parameter k, with the aim of showing that large inputs that ask for a small
solution can be efficiently reduced in size. However, this method does not give
any nontrivial guarantees when the solution size is known to be proportional to
the total size of the input. For that reason, there is an alternative line of research
[6,7,11,16,19–21,25] that focuses on parameterizations based on a measure of
nontriviality of the instance (cf. [23]). One formal way to capture nontriviality of
a graph problem is to measure how many vertex-deletions are needed to reduce
the input graph to a graph class in which the problem can be solved in polynomial
time. Since many graph problems can be solved in polynomial time on trees and
forests, the structural graph parameter feedback vertex number (the minimum
number of vertex deletions needed to make the graph acyclic, i.e. a forest) is a
relevant measure of nontriviality.

Previous research has shown that for the Vertex Cover problem, there
is a polynomial kernel parameterized by the feedback vertex number [19]. This
preprocessing algorithm guarantees that inputs which are large with respect to
their feedback vertex number, can be efficiently reduced. The Vertex Cover

problem is the simplest in a family of so-called minor-free deletion problems.
For a fixed finite family of graphs F , an input to F-Minor-Free Deletion

consists of a graph G and an integer �. The question is whether there is a set
X of at most � vertices in G, such that the graph G − X obtained by remov-
ing these vertices does not contain any graph from F as a minor. Motivated
by the fact that Vertex Cover and Feedback Vertex Set, arguably the
simplest F-Minor-Free Deletion problems, admit polynomial kernels when
parameterized by the feedback vertex number, we set out to resolve the follow-
ing question: Do all F-Minor-Free Deletion problems admit a polynomial
kernel when parameterized by the feedback vertex number?

Results. To our initial surprise, we prove that the answer to this question is
no. While the parameterization by feedback vertex number admits polynomial
kernels for F = {K2} [19], for F = {K3} [5,18,24], and for any set F containing
a planar graph1 but no forests [12], there are also cases that do not admit
polynomial kernels (assuming NP �⊆ coNP/poly). For example, we will show that
the case of F consisting of a single graph P3 that forms a path on three vertices
does not admit a polynomial kernel.

Recall that a graph is a forest if and only if its treewidth is one [3]. Hence
the feedback vertex number is exactly the minimum number of vertex deletions
needed to obtain a graph of treewidth one. Let tw(G) denote the treewidth
of graph G, and define min tw(F) := minH∈F tw(H). Our lower bound also
holds for F-Subgraph-Free Deletion, which is the related problem that asks

1 If F contains no forests, the size of an optimal solution is at most the size of a
feedback vertex set: the kernel for the solution-size parameterization can be used.

108 H. Donkers and B. M. P. Jansen

whether there is a vertex set X of size at most k such that G − X contains no
graph H ∈ F as a subgraph. We prove the following.

Theorem 1. Let F be a finite set of graphs, such that each graph in F has a
connected component on at least three vertices. Then F-Minor-Free Dele-

tion and F-Subgraph-Free Deletion do not admit polynomial kernels when
parameterized by the vertex-deletion distance to a graph of treewidth min tw(F),
unless NP ⊆ coNP/poly.

Theorem 1 implies the claimed lower bound for F = {P3}: when F contains
an acyclic graph with at least one edge we have min tw(F) = 1 and therefore
the vertex-deletion distance to treewidth min tw(F) equals the feedback vertex
number. The theorem also generalizes earlier results of Cygan et al. [7, Theorem
13], who investigated the problem of losing treewidth by removing vertices.

Theorem 1 is obtained through a polynomial-parameter transformation from
the cnf-sat problem parameterized by the number of variables, for which a
superpolynomial kernelization lower bound is known [8,14]. This transformation
also rules out the existence of polynomial-size Turing kernelizations under a
certain hardness assumption. Turing kernelization [10] is a relaxation of the
traditional form of kernelization. Intuitively, it investigates whether inputs (x, k)
can be solved efficiently using the answers to subproblems of size f(k) which are
provided by an oracle, which models an external computation cluster. Formally,
a Turing kernelization of size f for a parameterized problem Q is an algorithm
that can query an oracle to obtain the answer to any instance of problem Q of size
and parameter bounded by f(k) in a single step, and using this power solves any
instance (x, k) in time polynomial in |x| + k. The reduction proving Theorem 1
also proves the non-existence of polynomial-size Turing kernelizations, unless all
parameterized problems in the complexity class MK[2] defined by Hermelin et al.
[17] have polynomial Turing kernels. (cnf-sat with clauses of unbounded length,
parameterized by the number of variables, is MK[2]-complete [17, Theorem 1, cf.
Theorem 10] and widely believed not to admit polynomial-size Turing kernels.)

Motivated by the general form of the lower bound in Theorem1, we also
investigate upper bounds and derive a complexity dichotomy. For any F that
does not meet the criterion of Theorem 1, we obtain a polynomial Turing kernel.

Theorem 2. Let F be a finite set of graphs, such that some H ∈ F has no
connected component of three or more vertices. Then F-Minor-Free Dele-

tion and F-Subgraph-Free Deletion admit polynomial Turing kernels when
parameterized by the vertex-deletion distance to a graph of treewidth min tw(F).

Note that if some graph H ∈ F has no component of three or more vertices,
then H does not contain P3 as a subgraph and therefore consists of isolated ver-
tices and edges. Hence min tw(F) = 1 in nontrivial cases, so that the parameter
is the feedback vertex number. Our Turing kernelization uses an adaptation of
the Tutte-Berge formula to show that the F-minor-free graphs that result after
removing a solution, have a small witness structure that can be guessed by a
Turing kernelization. After this guessing phase, we can reduce the problem to a

Turing Kernelization Dichotomy for F-Minor-Free Deletion 109

Vertex Cover instance parameterized by feedback vertex set, which we can
shrink using the existing kernelization [19] and query to the oracle.

Organization. We present preliminaries on graphs and kernelization in Sect. 2.
Section 3 develops the lower bounds on (Turing) kernelization when all graphs
in F have a connected component with at least three vertices. In Sect. 4 we show
that in all other cases, a polynomial Turing kernelization exists.

2 Preliminaries

All graphs we consider in this paper are simple, finite and undirected. We denote
the vertex set and edge set of a graph G by V (G) and E(G) respectively. For a
vertex set S ⊆ V (G) let G[S] be the subgraph of G induced by S, and let G − S
denote the subgraph of G induced by V (G) \ S. For a vertex v we use G − v as
shorthand for G − {v}. For a non-negative integer n we use n · G to denote the
graph consisting of n disjoint copies of G. Let NG(S) and NG(v) denote the open
neighborhood in G of a vertex set S and a vertex v respectively. Let degG(v)
denote the degree of v in G. The subscript may be omitted when G is clear from
the context. We use fvs(G) to denote the feedback vertex number of G.

A graph H is a minor of graph G, denoted by H � G, if H can be obtained
from G by a series of edge contractions, edge deletions, and vertex deletions.
An H-model in G is a function ϕ : V (H) → 2V (G) such that (i) for every vertex
v ∈ V (H), the graph G[ϕ(v)] is connected, (ii) for every edge {u, v} ∈ E(H)
there exists an edge {u′, v′} ∈ E(G) with u′ ∈ ϕ(u) and v′ ∈ ϕ(v), and (iii)
for distinct u, v ∈ V (H) we have ϕ(v) ∩ ϕ(u) = ∅. The sets ϕ(v) are called
branch sets. Clearly, H � G if and only if there is an H-model in G. For any
function f : A → B and set A′ ⊆ A we use f(A′) as a shorthand for

⋃
a∈A′ f(a).

Specifically in the case of a minor-model ϕ and graph G, we use ϕ(G) to denote⋃
v∈V (G) ϕ(v). We say a graph H is a component-wise minor of a graph G,

denoted as H � G, when every connected component of H is a minor of G.
For type ∈ {minor, subgraph} and a finite family of graphs F , we define:

F-type-Free Deletion

Input: A graph G and an integer �.
Parameter: vertex-deletion distance to a graph of treewidth min tw(F).
Question: Is there a set X ⊆ V (G) of at most � vertices such that G − X
does not contain any H ∈ F as a type?

A vertex v ∈ V (G) is a cut vertex when its removal from G increases the
number of connected components. A graph is called biconnected when it is con-
nected and contains no cut vertex. A biconnected component of a graph G is a
maximal biconnected subgraph of G. For any integer α, a graph G is called α-
robust when |V (G)| ≥ α and no vertex v ∈ V (G) exists such that G−v contains
a connected component with less than α − 1 vertices.

Proposition 1. Any graph G has a unique maximal α-robust subgraph. Any
α-robust subgraph of G is a subgraph of the maximal α-robust subgraph of G.

110 H. Donkers and B. M. P. Jansen

Proof. The proposition follows straightforwardly from the fact that if G[A] and
G[B] are α-robust, then so is G[A ∪ B]. We now prove this fact.

Consider two vertex sets A,B ⊆ V (G), such that G[A] and G[B] are α-robust.
We show that G[A ∪ B] is α-robust. Since G[A] is α-robust we have |A| ≥ α so
then |A∪B| ≥ α. Suppose for contradiction that there exists a vertex v ∈ A∪B
such that G[A ∪ B] − v contains a connected component of size smaller than
α − 1. Let C be the vertices of this connected component. We know C contains
vertices of at least one of A and B. Assume w.l.o.g. A ∩ C �= ∅, then G[A ∩ C]
is a connected component of size less than α − 1 in G[A] − v. If v ∈ A this
directly contradicts α-robustness of G[A], so assume v �∈ A. Now G[A] contains
a connected component with less than α − 1 vertices. Since |C| < α ≤ |A| there
exists a vertex u ∈ A\C, so then G[A]−u contains a connected component with
less than α − 1 vertices, which contradicts α-robustness of G[A]. �

For any graph G and integer α, let α -prune(G) denote the unique maximal
α-robust subgraph of G, which may be empty. We define a leaf-block of a graph
G as a biconnected component of G that contains at most one cut vertex of G.
The size of a leaf-block H is |V (H)|. The size of the smallest leaf-block of a
graph G is denoted as λ(G). Observe that G is α-robust if and only if λ(G) ≥ α.

A polynomial-parameter transformation from parameterized problem P to
parameterized problem Q is a polynomial-time algorithm that, given an instance
(x, k) of P, outputs an instance (x′, k′) of Q such that (x, k) ∈ P ⇔ (x′, k′) ∈ Q,
and k′ is upper-bounded by a polynomial in k.

Due to space restrictions, the proofs of some claims have been omitted and
are given in the full version [9]. These claims are marked with a (�).

3 Lower Bound

In this section we consider the case where all graphs in F contain a connected
component of at least three vertices and give a polynomial-parameter transfor-
mation from cnf-sat parameterized by the number of variables. In this con-
struction we make use of the way biconnected components of graphs G and H
restrict the options for an H-model to exist in G.

Proposition 2. Let H be an α-robust graph and let ϕ be a minimal H-model
in a graph G, then G[ϕ(H)] is α-robust.

Proof. Take an arbitrary vertex v ∈ ϕ(H) and let u ∈ V (H) be such that
v ∈ ϕ(u). Since H − u does not have connected components smaller than α − 1,
G[ϕ(H)]−ϕ(u) cannot have connected components smaller than α−1. Consider
a spanning tree of G[ϕ(u)]. Each leaf of this spanning tree must be connected
to a vertex in a different branch set, otherwise ϕ is not minimal. We know
every connected component in G[ϕ(u)] − v contains at least one leaf of this
spanning tree, hence every connected component of G[ϕ(u)] − v is connected to
G[ϕ(H)]−ϕ(u). So G[ϕ(H)]−v does not contain a connected component smaller
than α − 1. Since v was arbitrary, G[ϕ(H)] is α-robust. �

Turing Kernelization Dichotomy for F-Minor-Free Deletion 111

Proposition 3. Let ϕ be an H-model in G, and B a biconnected component of
H. Then G[ϕ(B)] contains a biconnected subgraph on at least |B| vertices.
Proof. Let ϕ′ a minimal B-model in G such that ϕ′(v) ⊆ ϕ(v) for all v ∈ V (B).
Hence G[ϕ′(B)] is a subgraph of G[ϕ(B)]. It suffices to show that G[ϕ′(B)]
contains a biconnected component on at least |V (B)| vertices. Since B is bicon-
nected, it is |V (B)|-robust so by Proposition 2 we know G[ϕ′(B)] is |V (B)|-
robust. Hence G[ϕ′(B)] contains a biconnected component on at least |V (B)|
vertices. �
Proposition 4 (�). For any � ∈ {�,�}, two integers α ≥ β, and graphs H
and G we have that H � G ⇒ α -prune(H) � β -prune(G).

We proceed to construct a clause gadget to be used in the polynomial-
parameter transformation from cnf-sat.

Lemma 1. For any connected graph H with at least three vertices there exists a
polynomial-time algorithm that, given an integer n ≥ 1, outputs a graph G and
a vertex set S ⊆ V (G) of size n such that all of the following are true:

1. tw(G) ≤ tw(H),
2. G contains a packing of 3n − 1 vertex-disjoint H-subgraphs,
3. G − S contains a packing of 3n − 2 vertex-disjoint H-subgraphs, and
4. ∀v ∈ S there exists X ⊆ V (G) of size 3n − 1 s.t. all of the following are true:

(a) v ∈ X,
(b) G − X is H-minor-free,
(c) λ(H) -prune(G − X) � H, and
(d) for all connected components Gc of G − X that contain a vertex of S we

have |V (Gc)| < λ(H) and Gc contains exactly one vertex of S.

Proof. Consider a subgraph L of H such that L is a smallest leaf-block of H.
Let R be the graph obtained from H by removing all vertices of L that are not
a cut vertex in H. Note that when H is biconnected, L = H and R is an empty
graph. We distinguish three distinct vertices a, b, c in H. Vertices c and b are
both part of L, where c is the cut vertex (if there is one) and b is any other
vertex in L. Finally vertex a is any vertex in H that is not c or b. See Fig. 1(a).
In the construction of G we will combine copies of H such that a, b, and c form
cut vertices in G and are part of two different H-subgraphs. Vertices b and c are
chosen such that removing either one from a copy of H in G means no vertex
from the L-subgraph of this copy of H can be used in a minimal H-model in G.
In the remainder of this proof we use fK→K′ : V (K) → V (K ′) for isomorphic
graphs K and K ′ to denote a fixed isomorphism.

Take two copies of H, call them H1 and H2. Let R1 and L1 denote the
subgraphs of H1 related to R and L, respectively, by the isomorphism between
H and H1. Similarly let R2 and L2 denote the subgraphs of H2. Take a copy of
L which we call L3. Let M be the graph obtained from the disjoint union of H1,
H2, and L3 by identifying the pair fH→H1(c) and fH→H2(b) into a single vertex

112 H. Donkers and B. M. P. Jansen

s, and identifying the pair fH→H2(c) and fL→L3(c) into a single vertex t. We
label fH→H1(a), fH→H1(b), and fL→L3(b) as u, w, and v respectively.

This construction is motivated by the fact that the graphs M − {v, s}, M −
{u, t}, and M − {w, t} are all H-minor-free, which we will exploit in the formal
correctness argument later. We will connect copies of M to each other via the
vertices u, v, and w so that, although two vertices need to be removed in every
copy of M , one such vertex can always be in two copies of M at the same time.

Fig. 1. We show the situation where a is contained in R. Note that a can always be
chosen such that it is contained in R when H is not biconnected. Note that the graphs
in (b) and (c) are isomorphic but drawn differently.

Now take 2n − 1 copies of M , call them M1, . . . ,M2n−1. For readability we
denote fM→Mi

as fi for all 1 ≤ i ≤ 2n − 1. For all 1 ≤ i < n we identify fi(w)
and fn+i(v), and we identify fn+i(w) and fi+1(u). Let this graph be G, and let
S be the set of vertices fi(v) for all 1 ≤ i ≤ n. Let H1,i, H2,i, R1,i, R2,i, L1,i,
L2,i, and L3,i denote the subgraphs in Mi that correspond to the subgraphs H1,
H2, R1, R2, L1, L2, and L3 in M . See Fig. 1(b) and (c).

This concludes the description of graph G and set S. It is easily seen that
these can be constructed in polynomial time. It remains to verify that all con-
ditions of the lemma statement are met.

(1) Since we connected copies of L and R in a treelike fashion along cut ver-
tices, we did not introduce any new biconnected components. Since the treewidth
of a graph is equal to the maximum treewidth over all its biconnected compo-
nents we know that tw(G) ≤ max{tw(R), tw(L)} = tw(H).

(2) For each 1 ≤ i ≤ n we can distinguish two H-subgraphs in Mi, namely
H1,i and L3,i ∪ R2,i. This gives us 2n H-subgraphs in G. Note that since all
M1, . . . ,Mn are vertex-disjoint, these 2n H-subgraphs are also vertex-disjoint
in G. For each n < i ≤ 2n − 1 we distinguish one H-subgraph, namely H2,i.
Note that since H2,i is vertex-disjoint from all M1, . . . ,Mi−1,Mi+1, . . . ,M2n−1

we have a total of 2n + n − 1 = 3n − 1 vertex-disjoint H-subgraphs in G. This
packing is shown in Fig. 2(a).

Turing Kernelization Dichotomy for F-Minor-Free Deletion 113

(3) Alternatively, for each 1 ≤ i ≤ n we can distinguish one H-subgraph in
Mi, namely H2,i. For each n < i ≤ 2n − 1 we distinguish two H-subgraphs in
Mi, namely H1,i and L3,i ∪ R2,i. Again these H-subgraphs are vertex-disjoint,
and since they also do not contain any vertices of S, they form a packing of
n + 2(n − 1) = 3n − 2 vertex-disjoint H-subgraphs in G − S. See Fig. 2(b).

(4) Let fj(v) ∈ S be an arbitrary vertex in S, implying 1 ≤ j ≤ n, and take

X =
⋃

1≤i<j

{fi(t), fi(w), fi+n(s)} ∪ {fj(v), fj(s)} ∪
⋃

j<i≤n

{fi(t), fi(u), fi+n−1(t)}.

Observe that |X| = 3n−1 and fj(v) ∈ X, so condition 4a of the lemma statement
holds. Next, we give a proof sketch for Conditions 4b, 4c, and 4d for the case
that a ∈ V (R). A complete proof can be found in the full version [9].

Fig. 2. Illustrations of conditions 2, 3 and 4. Vertices in S are marked black.

To show condition 4b holds, by Proposition 4 it is sufficient to show that
λ(H) -prune(G − X) is H-minor-free, since H = λ(H) -prune(H). Figure 2(c)

114 H. Donkers and B. M. P. Jansen

shows a super graph of λ(H) -prune(G−X) in gray. It is easily verified from the
figure that every connected component of λ(H) -prune(G − X) contains insuffi-
cient vertices to contain H as a minor. It can also be seen that every connected
component in λ(H) -prune(G − X) is a subgraph of H, proving condition 4c.
Similarly, condition 4d can also directly be seen to hold from the figure. �

Using the clause gadget described in Lemma 1 we give a polynomial-
parameter transformation for the case where F contains a single, connected
graph H.

Lemma 2. For any connected graph H with at least three vertices there exists
a polynomial-time algorithm that, given a CNF-formula Φ with k variables, out-
puts a graph G and an integer � such that all of the following are true:

1. there is a set S ⊆ V (G) of at most 2k vertices such that tw(G−S) ≤ tw(H),
2. if Φ is not satisfiable then there does not exist a set X ⊆ V (G) of size at most

� such that G − X is H-subgraph-free,
3. if Φ is satisfiable then there exists a set X ⊆ V (G) of size at most � such that

G − X is H-minor-free.

Proof. Let x1, . . . , xk denote the variables of Φ, let C1, . . . , Cm denote the sets
of literals in each clause of Φ, and let n denote the total number of occurrences
of literals in Φ, i.e. n =

∑
1≤j≤m |Cj |. Let H1, . . . , Hk be copies of H. In each

copy Hi we arbitrarily label one vertex vxi
and another v¬xi

. Let Gvar be the
graph obtained from the disjoint union of H1, . . . , Hk. For each clause Cj of Φ we
create a graph called Wj and vertex set Sj ⊆ V (Wj) by invoking Lemma 1 with
H and |Cj |. Let G be the graph obtained from the disjoint union of W1, . . . ,Wm

and Gvar where we identify the vertices in Sj with the appropriate vxi
or v¬xi

as
follows: For each clause Cj let s1, . . . , s|Cj | be the vertices in Sj in some arbitrary
order, and let c1, . . . , c|Cj | be the literals in Cj , then we identify si and vci for
each 1 ≤ i ≤ |Cj |. Finally let � = k + 3n − 2m and S =

⋃
1≤i≤k{vxi

, v¬xi
}. Note

that Sj ⊆ S for all 1 ≤ j ≤ m. This concludes the description of G, �, and S.
It is easy to see they can be constructed in polynomial time. Formal argu-

ments for conditions 1, 2, and 3 are given in the full version [9]. Their proofs
rely on the fact that only � − k = 3n − 2m vertex-deletions are available outside
Gvar, and all are required since Wi − V (Gvar) contains 3|Ci| − 2 vertex disjoint
H-subgraphs for each 1 ≤ i ≤ m. However, since Wi contains 3|Cj | − 1 vertex
disjoint H-subgraphs, one additional vertex-deletion in Wi has to coincide with
a vertex-deletion in Gvar. This is possible if and only if a set X ′ ⊆ V (Gvar) of k
vertices can be chosen such that each Wi, 1 ≤ i ≤ m, contains at least one vertex
from X ′. The choice of X ′ corresponds to a satisfying assignment for Φ. �

The construction from Lemma 2 can directly be used to give a polynomial-
parameter transformation from cnf-sat parameterized by the number of vari-
ables. Observe that if G−X is F-minor-free, then G−X is also F-subgraph-free.
Similarly, if G−X contains an H-subgraph for all X ⊆ V (G) with |X| ≤ �, then
G − X also contains an H-minor. Therefore, for any type ∈ {minor, subgraph}

Turing Kernelization Dichotomy for F-Minor-Free Deletion 115

and F consisting of one connected graph on at least three vertices, Lemma 2
gives a polynomial-parameter transformation from cnf-sat parameterized by
the number of variables to F-type-Free Deletion parameterized by deletion
distance to min tw(F).

When F contains multiple graphs, each containing a connected component
of at least three vertices, it is possible to select a connected component H of one
of the graphs in F such that the construction described in Lemma 2 forms the
main ingredient for a polynomial-parameter transformation. Selection of H and
the remainder of the construction are described in the full version [9].

We conclude that a polynomial-parameter transformation exists for all type ∈
{minor, subgraph} and F containing only graphs with a connected component
on at least three vertices. Together with the fact that cnf-sat is MK[2]-hard
and does not admit a polynomial kernel unless NP ⊆ coNP/poly (cf. [17, Lemma
9]), this proves the following generalization of Theorem1.

Theorem 3 (�). For type ∈ {minor, subgraph} and a set F of graphs, all with
a connected component of at least three vertices, F-type-Free Deletion param-
eterized by vertex-deletion distance to a graph of treewidth min tw(F) is MK[2]-
hard and does not admit a polynomial kernel unless NP ⊆ coNP/poly.

4 A Polynomial Turing Kernelization

In this section we consider the case where F contains a graph with no connected
component of more than two vertices; or in short F contains a P3-subgraph-free
graph. This graph consists of isolated vertices and disjoint edges. Let isol(G)
denote the set of isolated vertices in a graph G, i.e. isol(G) = {v ∈ V (G) |
deg(v) = 0}. We first show that the removal of all isolated vertices from all
graphs in F only changes the answer to F-Minor-Free Deletion and F-
Subgraph-Free Deletion when the input is of constant size.

Lemma 3 (�). For type ∈ {minor, subgraph} and any family of graphs F
containing a P3-subgraph-free graph, let F ′ = {F − isol(F) | F ∈ F}. For any
graph G, if G is F-type-free but not F ′-type-free, then |V (G)| < max

F∈F
(|V (F)| +

2|V (F)|3).
After the removal of isolated vertices in F to obtain F ′, we know that F ′

contains a graph consisting entirely of disjoint edges, i.e. this graph is isomorphic
to c·P2 for some integer c ≥ 0. If c = 0 then F-type-free graphs have constant size
and the problem is polynomial-time solvable. We proceed assuming c ≥ 1. Let
the matching number of a graph G, denoted as ν(G), be the size of a maximum
matching in G. We make the following observation.

Observation 1. For all c ≥ 1, graph G is c · P2-subgraph-free ⇔ ν(G) ≤ c − 1.

We give a characterization of graphs with bounded matching number, based
on an adaptation of the Tutte-Berge formula [2]. We use odd(G) to denote the
number of connected components in G that consist of an odd number of vertices.

116 H. Donkers and B. M. P. Jansen

Lemma 4. (�). For any graph G and integer m we have ν(G) ≤ m if and
only if V (G) can be partitioned into three disjoint sets U,R, S such that all of
the following are true:

– all connected components in G[R] have an odd size of at least 3,
– G[S] is independent,
– NG(S) ⊆ U , and
– |U | + 1

2 (|R| − odd(G[R])) ≤ m.

Observe that for any partition U,R, S satisfying the first three conditions,
we have |R| − odd(G[R]) ≥ 2

3 |R| since each component of G[R] has at least
three vertices. To satisfy the fourth condition therefore requires |U |+ 1

2 (23 |R|) ≤
m, which will be a constant in our application. Since NG(S) ⊆ U , the lemma
guarantees that NG(R) ⊆ U .

Let us showcase how Lemma 4 can be used to attack F-Minor-Free Dele-

tion when F consists of a single graph c · P2, so that the problem is to find a
set X ⊆ G of size at most � such that G − X has matching number less than c.

Theorem 4. For any constant c, the {c ·P2}-Minor-Free Deletion problem
parameterized by the size k of a feedback vertex set, can be solved in polynomial
time using an oracle that answers Vertex Cover instances with O(k3) vertices.

Proof. If an instance (G, �) admits a solution X, then Lemma 4 guarantees that
V (G − X) can be partitioned into U,R, S satisfying the four conditions for m =
c − 1. We try all relevant options for the sets U and R in the partition, of which
there are only polynomially many since |U | + 1

3 |R| ≤ m ∈ O(1).
For given sets U,R ⊆ V (G), we can decide whether there is a solution X of

size at most � for which U,R, and S := V (G) \ (U ∪ R ∪ X) form the partition
witnessing that G − X has matching number at most m, as follows. If some
component of G[R] has even size, or less than three vertices, we reject outright.
Similarly, if |U | + 1

2 (|R| − odd(G[R])) > m, we reject. Now, if U and R were
guessed correctly, then Lemma 4 guarantees that the only neighbors of R in the
graph G − X belong to U . Hence we infer that all vertices of X ′ := NG(R) \ U
must belong to the solution X. Note that since S is an independent set in G−X,
the solution X forms a vertex cover of G − (U ∪ R), so that X ′′ := X \ X ′ is
a vertex cover of G′ := G − (U ∪ R ∪ X ′). On the other hand, for every vertex
cover X ′′ of G′, the graph G− (X ′ ∪X ′′) will have matching number at most m,
as witnessed by the partition. Hence the problem of finding a minimum solution
X whose corresponding graph G − X has U and R as two of the classes in its
witness partition, reduces to finding a minimum vertex cover of the graph G′.
In terms of the decision problem, this means G has a solution of size at most
� with U and R as witness partite sets, if and only if G′ has a vertex cover of
size at most � − |X ′|. Since fvs(G′) ≤ fvs(G), we can apply the known [19]
kernel for Vertex Cover parameterized by the feedback vertex number to
reduce (G′, � − |X ′|) to an equivalent instance with O(fvs(G)3) vertices, which
is queried to the oracle. If the oracle answers positively to any query, then (G, �)
has answer yes; otherwise the answer is no. �

Turing Kernelization Dichotomy for F-Minor-Free Deletion 117

We remark that by using the polynomial-time reduction guaranteed by NP-
completeness, the queries to the oracle can be posed as instances of the origi-
nal F-Minor-Free Deletion problem, rather than Vertex Cover. In the
appendix we present our general (non-adaptive) Turing kernelization for the
minor-free and subgraph-free deletion problems for all families F containing a
P3-subgraph-free graph, combining three ingredients. Lemma3 allows us to focus
on families whose graphs have no isolated vertices. The guessing strategy of The-
orem 4 is the second ingredient. The final ingredient is required to deal with the
fact that a solution subgraph G−X that is c ·P2-minor-free for some c ·P2 ∈ F ,
may still have one of the other graphs in F as a forbidden minor. To cope with
this issue, we show that if G − X has no matching of size c, but does contain a
minor model of some graph in F , then there is such a minor model of constant
size. By employing a more expensive (but still polynomially bounded) guessing
step, this allows us to complete the Turing kernelization and prove the following
theorem.
Theorem 2 (�). Let F be a finite set of graphs, such that some H ∈ F has
no connected component of three or more vertices. Then F-Minor-Free Dele-

tion and F-Subgraph-Free Deletionadmit polynomial Turing kernels when
parameterized by the vertex-deletion distance to a graph of treewidth min tw(F).

5 Conclusion

Earlier work [5,18,19,24] has shown that several F-Minor-Free Deletion

problems admit polynomial kernelizations when parameterized by the feedback
vertex number. In this paper we showed that when F contains a forest and
each graph in F has a connected component of at least three vertices, the
F-Minor-Free Deletion problem does not admit such a polynomial kernel
unless NP ⊆ coNP/poly. This lower bound generalizes to any F where each
graph has a connected component of at least three vertices, when we consider
the vertex-deletion distance to treewidth min tw(F) as parameter.

For all other choices of F we showed that a polynomial Turing kerneliza-
tion exists for F-Minor-Free Deletion parameterized by the feedback vertex
number. The size of the Vertex Cover queries generated by the Turing kernel-
ization does not depend on F : the Turing kernelization can be shown to be uni-
formly polynomial (cf. [15]). However, it remains unknown whether the running
time can be made uniformly polynomial, and whether the Turing kernelization
can be improved to a traditional kernelization.

Our results leave open the possibility that all F-Minor-Free Deletion

problems admit a polynomial kernel when parameterized by the vertex-deletion
distance to a linear forest, i.e. a collection of paths. Resolving this question may
be an interesting direction for future work.

118 H. Donkers and B. M. P. Jansen

References

1. Agrawal, A., Lokshtanov, D., Misra, P., Saurabh, S., Zehavi, M.: Feedback vertex
set inspired kernel for chordal vertex deletion. In: Proceedings of 28th SODA, pp.
1383–1398. SIAM (2017). https://doi.org/10.1137/1.9781611974782.90

2. Berge, C.: Sur le couplage maximum d’un graphe. Comptes rendus hebdomadaires
des séances de l’Académie des sciences 247, 258–259 (1958)

3. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth.
Theor. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-
3975(97)00228-4

4. Bodlaender, H.L.: Kernelization: new upper and lower bound techniques. In: Chen,
J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-11269-0 2

5. Bodlaender, H.L., van Dijk, T.C.: A cubic kernel for feedback vertex set and loop
cutset. Theory Comput. Syst. 46(3), 566–597 (2010)

6. Bougeret, M., Sau, I.: How much does a treedepth modulator help to obtain poly-
nomial kernels beyond sparse graphs? In: Proceedings of 12th IPEC. LIPIcs, vol.
89, pp. 10:1–10:13 (2017). https://doi.org/10.4230/LIPIcs.IPEC.2017.10

7. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the
hardness of losing width. Theory Comput. Syst. 54(1), 73–82 (2014). https://doi.
org/10.1007/s00224-013-9480-1

8. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014). https://
doi.org/10.1145/2629620

9. Donkers, H., Jansen, B.M.P.: A Turing kernelization dichotomy for structural
parameterizations of F-minor-free deletion. CoRR abs/1906.05565 (2019). http://
arxiv.org/abs/1906.05565

10. Fernau, H.: Kernelization, Turing kernels. In: Kao, M.Y. (ed.) Encyclopedia of
Algorithms, pp. 1043–1045. Springer, New York (2016). https://doi.org/10.1007/
978-1-4939-2864-4 528

11. Fomin, F.V., Jansen, B.M.P., Pilipczuk, M.: Preprocessing subgraph and minor
problems: When does a small vertex cover help? J. Comput. Syst. Sci. 80(2), 468–
495 (2014). https://doi.org/10.1016/j.jcss.2013.09.004

12. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: approxi-
mation, kernelization and optimal FPT algorithms. In: Proceedings of 53rd FOCS,
pp. 470–479 (2012). https://doi.org/10.1109/FOCS.2012.62

13. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory
of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019).
https://doi.org/10.1017/9781107415157

14. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011). https://doi.org/10.1016/
j.jcss.2010.06.007

15. Giannopoulou, A.C., Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: Uniform ker-
nelization complexity of hitting forbidden minors. ACM Trans. Algorithms 13(3),
35:1–35:35 (2017). https://doi.org/10.1145/3029051

16. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing prob-
lems: distance from triviality. In: Proceedings of 1st IWPEC, pp. 162–173 (2004).
https://doi.org/10.1007/978-3-540-28639-4 15

17. Hermelin, D., Kratsch, S., Soltys, K., Wahlström, M., Wu, X.: A completeness
theory for polynomial (Turing) kernelization. Algorithmica 71(3), 702–730 (2015).
https://doi.org/10.1007/s00453-014-9910-8

https://doi.org/10.1137/1.9781611974782.90
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1007/978-3-642-11269-0_2
https://doi.org/10.4230/LIPIcs.IPEC.2017.10
https://doi.org/10.1007/s00224-013-9480-1
https://doi.org/10.1007/s00224-013-9480-1
https://doi.org/10.1145/2629620
https://doi.org/10.1145/2629620
http://arxiv.org/abs/1906.05565
http://arxiv.org/abs/1906.05565
https://doi.org/10.1007/978-1-4939-2864-4_528
https://doi.org/10.1007/978-1-4939-2864-4_528
https://doi.org/10.1016/j.jcss.2013.09.004
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1017/9781107415157
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.1145/3029051
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1007/s00453-014-9910-8

Turing Kernelization Dichotomy for F-Minor-Free Deletion 119

18. Iwata, Y.: Linear-time kernelization for feedback vertex set. In: Proceedings of 44th
ICALP. LIPIcs, vol. 80, pp. 68:1–68:14 (2017). https://doi.org/10.4230/LIPIcs.
ICALP.2017.68

19. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited - upper and
lower bounds for a refined parameter. Theory Comput. Syst. 53(2), 263–299 (2013).
https://doi.org/10.1007/s00224-012-9393-4

20. Jansen, B.M.P., Kratsch, S.: Data reduction for graph coloring problems. Inf. Com-
put. 231, 70–88 (2013). https://doi.org/10.1016/j.ic.2013.08.005

21. Jansen, B.M.P., Pieterse, A.: Polynomial kernels for hitting forbidden minors under
structural parameterizations. In: Proceedings of 26th ESA. LIPIcs, vol. 112, pp.
48:1–48:15 (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.48

22. Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization - preprocessing with a guar-
antee. In: The Multivariate Algorithmic Revolution and Beyond, pp. 129–161
(2012). https://doi.org/10.1007/978-3-642-30891-8 10

23. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameteri-
zation. In: Proceedings of 27th STACS, pp. 17–32 (2010). https://doi.org/10.4230/
LIPIcs.STACS.2010.2495

24. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms 6(2)
(2010). https://doi.org/10.1145/1721837.1721848

25. Uhlmann, J., Weller, M.: Two-layer planarization parameterized by feedback edge
set. Theor. Comput. Sci. 494, 99–111 (2013). https://doi.org/10.1016/j.tcs.2013.
01.029

https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://doi.org/10.1007/s00224-012-9393-4
https://doi.org/10.1016/j.ic.2013.08.005
https://doi.org/10.4230/LIPIcs.ESA.2018.48
https://doi.org/10.1007/978-3-642-30891-8_10
https://doi.org/10.4230/LIPIcs.STACS.2010.2495
https://doi.org/10.4230/LIPIcs.STACS.2010.2495
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1016/j.tcs.2013.01.029
https://doi.org/10.1016/j.tcs.2013.01.029

Flip Distances Between
Graph Orientations

Oswin Aichholzer1 , Jean Cardinal2 , Tony Huynh2 , Kolja Knauer3 ,
Torsten Mütze4 , Raphael Steiner4(B) , and Birgit Vogtenhuber1

1 TU Graz, Graz, Austria
{oaich,bvogt}@ist.tugraz.at

2 Université libre de Bruxelles (ULB), Brussels, Belgium
jcardin@ulb.ac.be,tony.bourbaki@gmail.com

3 Université Aix-Marseille, Marseille, France
kolja.knauer@lis-lab.fr

4 TU Berlin, Berlin, Germany
{muetze,steiner}@math.tu-berlin.de

Abstract. Flip graphs are a ubiquitous class of graphs, which encode
relations on a set of combinatorial objects induced by elementary, local
changes. A natural computational problem to consider is the flip dis-
tance: Given two objects, what is the minimum number of flips needed
to transform one into the other?

We consider flip graphs on so-called α-orientations of a graph G, in
which every vertex v has a specified outdegree α(v), and a flip consists
of reversing all edges of a directed cycle. We prove that deciding whether
the flip distance between two α-orientations of a planar graph G is at
most 2 is NP-complete. This also holds in the special case of plane perfect
matchings, where flips involve alternating cycles. We also consider the
dual question of the flip distance between graph orientations in which
every cycle has a specified number of forward edges, and a flip is the
reversal of all edges in a minimal directed cut. In general, the problem
remains hard, but if we only change sinks into sources, or vice-versa,
then the problem can be solved in polynomial time.

Keywords: Flip distance · α-orientation · Graph orientation

T.H. supported by ERC Consolidator Grant 615640-ForEFront; K.K. partially sup-
ported by ANR grants GATO: ANR-16-CE40-0009-01, DISTANCIA: ANR-17-CE40-
0015, and CAPPS: ANR-17-CE40-0018; T.M. is also affiliated with Charles University,
Faculty of Mathematics and Physics, and was supported by GACR grant GA 19-
08554S, and by DFG grant 413902284; R.S. funded by DFG-GRK 2434. B.V. partially
supported by the Austrian Science Fund (FWF): I 3340-N35.
A full version of the paper, including further details and proofs, can be found on
https://arxiv.org/abs/1902.06103.
This work was initiated during the workshop “Order & Geometry” 2018 in Ci ↪ażeń
Palace. We thank the organizers and participants for the stimulating atmosphere.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 120–134, 2019.
https://doi.org/10.1007/978-3-030-30786-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_10&domain=pdf
http://orcid.org/0000-0002-2364-0583
http://orcid.org/0000-0002-2312-0967
http://orcid.org/0000-0002-6908-923X
http://orcid.org/0000-0002-8151-2184
http://orcid.org/0000-0002-6383-7436
http://orcid.org/0000-0002-4234-6136
http://orcid.org/0000-0002-7166-4467
https://arxiv.org/abs/1902.06103
https://doi.org/10.1007/978-3-030-30786-8_10

Flip Distances Between Graph Orientations 121

1 Introduction

The term flip is commonly used in combinatorics to refer to an elementary, local,
reversible operation that transforms one combinatorial object into another. Such
flip operations naturally yield a flip graph, whose vertices are the considered
combinatorial objects, and two of them are adjacent if they differ by a single flip.
A classical example is the flip graph of triangulations of a convex polygon [44]; see
Fig. 1. The vertex set of this graph are all triangulations of the polygon, and two
triangulations are adjacent if one can be obtained from the other by replacing the
diagonal of a quadrilateral formed by two triangles by the other diagonal. Similar
flip graphs have also been investigated for triangulations of general point sets in
the plane [32], triangulations of topological surfaces [34], and planar graphs [7,8].
The flip distance between two combinatorial objects is the minimum number of
flips needed to transform one into the other. It is known that computing the
flip distance between two triangulations of a simple polygon [3] or of a point
set [33] is NP-hard. The latter is known to be fixed-parameter tractable [28].
On the other hand, the NP-hardness of computing the flip distance between two
triangulations of a convex polygon is a well-known open question [13,31,43].
Flip graphs involving other geometric configurations have also been studied,
such as flip graphs of non-crossing perfect matchings of a point set in the plane,
where flips are with respect to alternating 4-cycles [24], or alternating cycles of
arbitrary length [25]. Very recently the distance computation between perfect
matchings of a (non-geometric) graph with respect to alternating 4-cycles has
been studied [6]. Other flip graphs include the flip graph on plane spanning
trees [2], the flip graph of non-crossing partitions of a point set or dissections
of a polygon [26], the mutation graph of simple pseudoline arrangements [41],
the Eulerian tour graph of an Eulerian graph [46], and many others. There is
also a vast collection of interesting flip graphs for non-geometric objects, such
as bitstrings, permutations, combinations, and partitions [16].

Fig. 1. The flip graph of triangulations of a convex polygon.

In essence, a flip graph provides the considered family of combinatorial
objects with an underlying structure that reveals interesting properties about
the objects. It can also be a useful tool for proving that a property holds for all

122 O. Aichholzer et al.

objects, by proving that one particularly nice object has the property, and that
the property is preserved under flips. Flip graphs are also an essential tool for
solving fundamental algorithmic tasks such as random and exhaustive genera-
tion, see e.g. [4] and [39].

The focus of the present paper is on flip graphs for orientations of graphs
satisfying some constraints. First, we consider so-called α-orientations, in which
the outdegree of every vertex is specified by a function α, and the flip operation
consists of reversing the orientation of all edges in a directed cycle. We study
the complexity of computing the flip distance between two such orientations.
An interesting special case of α-orientations corresponds to perfect matchings
in bipartite graphs, where flips involve alternating cycles. We also consider the
dual notion of c-orientations, in which the number of forward edges along each
cycle is specified by a function c. Here a flip consists of reversing all edges in a
directed cut. We also analyze the computational complexity of the flip distance
problem in c-orientations.

There are several deep connections between flip graphs and polytopes. Specif-
ically, many interesting flip graphs arise as the (1-)skeleton of a polytope. For
instance, flip graphs of triangulations of a convex polygon are skeletons of asso-
ciahedra [12], and flip graphs of regular triangulations of a point set in the
plane are skeletons of secondary polytopes (see [32, Chapter 5]). Associahe-
dra are generalized by quotientopes [36], whose skeletons yield flip graphs on
rectangulations [11], bitstrings, permutations, and other combinatorial objects.
Moreover, flip graphs of acyclic orientations or strongly connected orientations
of a graph are skeletons of graphical and co-graphical zonotopes, respectively
(see [37, Section 2]). Similarly, as we show below, flip graphs on α-orientations
are skeletons of matroid intersection polytopes. We also consider vertex flips in
c-orientations, inducing flip graphs that are distributive lattices and in partic-
ular subgraphs of skeletons of certain distributive polytopes. These polytopes
specialize to flip polytopes of planar α-orientations, are generalized by the poly-
tope of tensions of a digraph, and form part of the family of alcoved polytopes
(see [18]).

In the next section, we give the precise statements of the computational
problems we consider, connections with previous work, and the statements of
our results.

2 Problems and Main Results

Flip Distance Between α-Orientations. Given a graph G and some α : V (G) →
N0, an α-orientation of G is an orientation of the edges of G in which every
vertex v has outdegree α(v). An example for a graph and two α-orientations for
this graph is given in Fig. 2. A flip of a directed cycle C in some α-orientation X
consists of the reversal of the orientation of all edges of C, as shown in the figure.
Edges with distinct orientations in two given α-orientations X and Y induce an
Eulerian subdigraph of both X and Y . They can therefore be partitioned into
an edge-disjoint union of cycles in G which are directed in both X and Y . Hence

Flip Distances Between Graph Orientations 123

the reversal of each such cycle in X gives rise to a flip sequence transforming
X into Y and vice versa. We may thus define the flip distance between two
α-orientations X and Y to be the minimum number of cycles in a flip sequence
transforming X into Y . We are interested in the computational complexity of
determining the flip distance between two given α-orientations.

1

1

1

1

1

1

2 2

12

1

1

1

1

1

1

2 2

12

Fig. 2. Two α-orientations of a graph and a flip between them, where the values of α
are depicted on the vertices.

Problem 1. Given a graph G, some α : V (G) → N0, a pair X,Y of α-orientations
of G and an integer k ≥ 0, decide whether the flip distance between X and Y is
at most k.

The crucial difficulty of this problem is that a shortest flip sequence trans-
forming X into Y may flip edges that are oriented the same in X and Y an
even number of times, to reach Y with fewer flips compared to only flipping
edges that are oriented differently in X and Y ; see the example in Fig. 3. This
motivates the following variant of the previous problem:

Problem 2. Given G,α,X, Y, k as in Problem 1, decide whether the flip distance
between X and Y is at most k, where we only allow flipping edges that are
oriented differently in X and Y .

2 1

1

1

2 1

1

1

2 1

1

1

2 1

1

1

2 1

1

1

C1 C2 C3 C4

D1

D2

D3

Fig. 3. An α-orientation X of a graph. The α-orientation Y obtained by flipping the
four directed facial cycles C1, . . . , C4 can be reached with fewer flips by flipping only
the three directed facial cycles D1, D2, D3 in this order.

From α-Orientations to Perfect Matchings. The flexibility in choosing a function
α for a set of α-orientations on a graph allows us to capture numerous relevant

124 O. Aichholzer et al.

combinatorial structures, including: domino and lozenge tilings of a plane region
[40,45], planar spanning trees [22], (planar) bipartite perfect matchings [30],
(planar) bipartite d-factors [14,38], Schnyder woods of a planar triangulation [9],
Eulerian orientations of a (planar) graph [14], k-fractional orientations of a pla-
nar graph with specified outdegrees [5], and contact representations of planar
graphs with homothetic triangles, rectangles, and k-gons [15,19,20,23].

In the following, we focus on perfect matchings of bipartite graphs. Consider
any bipartite graph G with bipartition (V1, V2) equipped with

α : V (G) → N0, α(x) :=

{
1 if x ∈ V1,

dG(x) − 1 if x ∈ V2.

With this definition, in each α-orientation of G, the edges directed from V1

to V2 form a perfect matching. This is illustrated in Fig. 4. Conversely, given a
perfect matching M of G, orienting all edges of M from V1 to V2 and all the
other edges from V2 to V1 yields an α-orientation of the above type. Further-
more, the directed cycles in any α-orientation of G correspond to the alternating
cycles in the associated perfect matching. Flipping an alternating cycle in a per-
fect matching corresponds to exchanging matching and non-matching edges. An
example of the flip graph of perfect matchings of a graph is given in Fig. 5. In
this special case, Problem 1 boils down to:

Problem 3. Given a bipartite graph G, a pair X,Y of perfect matchings in G
and an integer k ≥ 0, decide whether the flip distance between X and Y is at
most k.

1

1

1

1

1

1

2 2

12

Fig. 4. An α-orientation of a bipartite graph and the corresponding perfect matching.

The example from Fig. 3 can be easily modified to show that when transform-
ing X into Y using the fewest number of flips, we may have to flip alternating
cycles that are not in the symmetric difference of X and Y ; see the example in
Fig. 6. If we restrict the flips to only use cycles in the symmetric difference of
X and Y , then the problem of finding the flip distance becomes trivial, as the
symmetric difference is a collection of disjoint cycles, and each of them has to
be flipped, so Problem 2 is trivial for perfect matchings.

Flip Graphs and Matroid Intersection Polytopes. We give a geometric interpre-
tation of the flip distance between α-orientations as the distance in the skeleton
of a 0/1-polytope.

Flip Distances Between Graph Orientations 125

Fig. 5. The flip graph of perfect matchings of a graph. The solid edges indicate flips
along facial cycles, and the dashed edges indicate flips along non-facial cycles.

C1 C2 C3 C4

D1

D2

D3

Fig. 6. A perfect matching X in a graph. The perfect matching Y obtained by flipping
the four alternating facial cycles C1, . . . , C4 can be reached with fewer flips by flipping
only the three alternating facial cycles D1, D2, D3 in this order.

Recall that a matroid is an abstract simplicial complex (E, I), where I ⊆
2E satisfies the independent set augmentation property. The elements of I are
called independent sets. A emphbase of the matroid is an inclusionwise maximal
independent set.

It is well-known that perfect matchings in a bipartite graph G = (V1 ∪V2, E)
are common bases of two partition matroids (E, I1) and (E, I2), in which a set
of edges is independent if no two share an endpoint in V1, or, respectively, in V2.

Similarly, α-orientations can be defined as common bases of two partition
matroids. In this case, every edge of the graph G is replaced by a pair of parallel
arcs, one for each possible orientation of the edge. One matroid encodes the
constraint that in a base, for every edge exactly one orientation is chosen. The
second matroid encodes the constraint that in a base, each vertex v has exactly
α(v) outgoing arcs.

The common base polytope of two matroids is a 0/1-polytope obtained as
the convex hull of the characteristic vectors of the common bases. Adjacency of
two vertices of this polytope has been characterized by Frank and Tardos [21].

126 O. Aichholzer et al.

A shorter proof was given by Iwata [27]. We briefly recall their result in the
next theorem. To state the theorem, consider a matroid M = (E, I), a base
B ∈ I, and a subset F ⊆ E. The exchangeability graph G(B,F) of M is a
bipartite graph with B \ F and F \ B as vertex bipartition, and edge set {ij |
B \{i}∪{j} is a basis}. This definition and the theorem are illustrated in Fig. 7
for the two partition matroids whose common bases are perfect matchings of a
graph.

Theorem 1 ([21,27]). For two matroids M+ = (E, I+) and M− = (E, I−),
two common bases A,B ∈ I+ ∩ I− are adjacent on the common base polytope if
and only if all the following conditions hold:

(i) the exchangeability graph G(A,B) of M+ has a unique perfect matching P+,
(ii) the exchangeability graph G(B,A) of M− has a unique perfect matching P−,
(iii) P+ ∪ P− is a single cycle.

From Theorem 1 we conclude that the flip graphs we consider on perfect
matchings and α-orientations are precisely the skeletons of the corresponding
polytopes of common bases.

A = {1, 3, 5, 7, 8}
2

46

1 3

5

7 8

B = {2, 4, 6, 7, 8}
1 3

5

7 8

6 4

2

5

3

1

6

4

2
A \ B B \ A

G(A,B) (solid)
G(B,A) (dashed)

Fig. 7. Two common bases A and B (left and middle) of the matroids M+ and M−,
where M+ and M− have as independent sets all subsets of edges of the graph where
no two share an endpoint in the set of circled vertices, or the set of squared vertices,
respectively. The right hand side shows the exchangeability graphs G(A, B) of M+

(solid edges) and G(B, A) of M− (dashed edges). As the conditions of Theorem 1 are
met, the two bases are adjacent in the common base polytope, and adjacent in the flip
graph shown in Fig. 5.

It is interesting to compare Problems 1 and 3 with the analogous prob-
lems for other families of matroid polytopes. For instance, it is known that
for two bases A,B of a matroid, the exchangeability graph G(A,B) has a per-
fect matching [10]. Hence A can be transformed into B by performing |AΔB|/2
exchanges of elements (where AΔB is the symmetric difference of A and B),
which is also the distance in the skeleton of the base polytope of the matroid.
On the other hand, the problem of computing the flip distance between two
triangulations of a convex polygon amounts to computing distances in skeletons
of associahedra, which are known to be polymatroids (see [1] and references
therein). This problem is neither known to be in P nor known to be NP-hard.

Flip Distances Between Graph Orientations 127

Also note that for other families of combinatorial polytopes, testing adjacency
is already intractable. This is the case for instance for the polytope of the Trav-
eling Salesman Problem (TSP) [35], whose skeleton is known to have diameter
at most 4 [42]. On the other hand, the corresponding polytope is known to be
the common base polytope of three matroids.

Hardness of Flip Distance Between Perfect Matchings and α-Orientations. We
prove that Problem 3 is NP-complete, even for 2-connected bipartite subcubic
planar graphs and k = 2. This implies that Problem 1 is NP-complete as well.

Theorem 2. Given a 2-connected bipartite subcubic planar graph G and a pair
X,Y of perfect matchings in G, deciding whether the flip distance between X
and Y is at most two is NP-complete.

We prove Theorem 2 by reduction from deciding directed Hamiltonicity of
orientations of cubic planar graphs without sinks and sources. As direct conse-
quences of this proof we get:

Corollary 1. Unless P = NP, deciding whether the flip distance between two
perfect matchings is at most k is not fixed-parameter tractable with respect to
parameter k.

Corollary 2. Unless P = NP, the flip distance between two perfect matchings is
not approximable within a multiplicative factor 3/2 − ε in polynomial time, for
any ε > 0.

We also prove that Problem 2 is NP-complete, even for 4-regular graphs and
k = 2, by reduction from the following problem: Given a digraph D where each
vertex has indegree and outdegree equal to 2, is E(D) the union of two directed
Hamiltonian cycles?

Theorem 3. Given a 4-regular graph G and a pair X,Y of α-orientations of
G, deciding whether the flip distance between X and Y is at most two is NP-
complete. Moreover, the problem remains NP-complete if we only allow flipping
edges that are oriented differently in X and Y .

From α-Orientations in Planar Graphs to c-Orientations. In what follows, we
generalize the problem, via planar duality, to flip distances in so-called c-
orientations.

Consider an arbitrary 2-connected plane graph G and its planar dual G∗.
Then for any orientation D of the edges of G, the directed dual D∗ of D is
obtained by orienting any dual edge forward if it crosses a left-to-right arc in
D in a simultaneous plane embedding of G and G∗, and backward otherwise;
see Fig. 8. Edge sets of directed cycles in D correspond to edge sets of minimal
directed cuts in D∗ and vice-versa. Hence D is acyclic (respectively, strongly
connected) if and only if D∗ is strongly connected (respectively, acyclic). A
directed vertex cut is a cut consisting of all edges incident to a sink or a source
vertex. Directed facial cycles in D are in bijection with the directed vertex cuts

128 O. Aichholzer et al.

in D∗, and vice versa. The unbounded face in the plane embedding of D can be
chosen such that it corresponds to a fixed vertex � in D∗.

Let D be an α-orientation of G. Given a minimal cut in D separating U ⊆
V (D) from U := V (D) \ U , we denote by δ+(U) the edges pointing from U to
U in D. We also let d+D(v) denote the outdegree of vertex v in D. We have

|δ+(U)| =
∑
v∈U

d+D(v) − |E(G[U])| =
∑
v∈U

α(v) − |E(G[U])|,

which only depends on α and G. Consequently, the set of orientations of G∗ which
are directed duals of α-orientations of G can be characterized by the property
that for every cycle C in G∗, the number of edges in clockwise direction is
fixed by a certain value c(C) independent of the orientation. The flip operation
between α-orientations of D consists of the reversal of a directed cycle. In the
corresponding set of dual orientations of D∗, this translates to the reversal of
the orientations of the edges in a minimal directed cut, as shown on Fig. 8.

Fig. 8. Duality between flips in α-orientations (solid edges) and in c-orientations
(dashed edges).

The same notion has been investigated more generally without planarity
conditions under the name of c-orientations by Propp [38] and Knauer [29].
Given a graph G, we can fix an arbitrary direction of traversal for each cycle C.
Given a graph and an assignment c(C) ∈ N0 to each cycle in G, one may define
a c-orientation of G to be an orientation having exactly c(C) edges in forward
direction for every cycle C in G. Note that it is sufficient to define the function c
on a cycle basis of G, which consists of linearly many cycles. The flip operation
on the set Rc of such c-orientations of a graph is defined as the reversal of all
edges in a minimal directed cut. It is not difficult to see that these flips make
the set of c-orientations of a graph connected.

From the duality between planar α-orientations and planar c-orientations,
determining flip distances between α-orientations of 2-connected planar graphs
reduces to determining flip distances between the dual c-orientations. Note
that planar duals of bipartite graphs are exactly the Eulerian planar graphs.
Theorem 2 therefore directly yields:

Corollary 3. Given an Eulerian planar graph G and c-orientations X,Y of
G, deciding whether the flip distance between X and Y is at most two is NP-
complete.

Flip Distances Between Graph Orientations 129

c-Orientations and Distributive Lattices. A more local operation consists of flip-
ping only directed vertex cuts, induced by sources and sinks, excluding a fixed
vertex �. We will refer to this special case as a vertex flip. Specifically, given
a pair of c-orientations X,Y of a graph G with a fixed vertex �, we aim to
transform X into Y using only vertex flips at vertices distinct from �.

A c-orientation X of G might contain a cycle C in G which is directed in X.
According to the definition of a c-orientation, this means that C keeps the same
orientation in every c-orientation of G. Consequently, any (minimal) directed
cut in a c-orientation of G is disjoint from E(C). Contracting the cycle C in
G, we end up with a smaller graph G′ containing the same (minimal) directed
cuts, such that the c-orientations of G are determined by their corresponding
orientations on G′. We can therefore safely assume that the c-orientations that
we consider are all acyclic. Similarly, G will be assumed to be connected.

Problem 4. Given a connected graph G with a fixed vertex � and a pair X,Y
of acyclic c-orientations, what is the length of a shortest vertex flip sequence
transforming X into Y ?

We now reason that every pair of c-orientations is reachable from each other
by vertex flips. This property is provided in a much stronger way by a distributive
lattice structure on the set Rc; see Fig. 9. The next theorem is a special case of
Theorem 1 in Propp [38] where the c-orientations are acyclic.

Theorem 4 ([29,38]). Let G be a graph with fixed vertex � and Rc a set of
acyclic c-orientations of G. Then the partial order ≤c on Rc in which Y covers X
if and only if Y can be obtained from X by flipping a source defines a distributive
lattice on Rc.

Hence Problem 4 consists of finding shortest paths in the cover graph of a
distributive lattice, where the size of the lattice can be exponential in the size
of the input G.
Facial Flips in Planar Graphs. When we consider Problem 4 on planar graphs,
restricting to vertex flips and considering the dual plane graph amounts to con-
sidering only flips of directed facial cycles, excluding the outer face whose dual
vertex is �. We refer to these as facial flips. Felsner [14] considered distributive
lattices induced by facial flips. The following computational problem is a special
case of Problem 4.

Problem 5. Given a 2-connected plane graph G and a pair X,Y of strongly
connected α-orientations, what is the length of a shortest facial flip sequence
transforming X into Y ?

Zhang, Qian, and Zhang [47] recently provided a closed formula for this flip
distance, which can be turned into a polynomial-time algorithm. We prove the
analogous stronger statement for Problem 4.

Theorem 5. There is an algorithm that, given a graph G with a fixed vertex �
and a pair X,Y of c-orientations of G, outputs a shortest vertex flip sequence
between X and Y , and runs in time O(m3) where m is the number of edges.

130 O. Aichholzer et al.

0
0 0 0

�

0
0 1 0

�

0
1 1 1

�

1
1 1 1

�

0
0 1 1

�
0

1 1 0

�

Fig. 9. The distributive lattice induced by vertex flips in c-orientations. The reference
orientation at the bottom is the directed dual D∗ of the orientation D of the graph G
used in Figs. 4 and 5, where some parallel arcs incident with � are grouped together
for simplicity. The numbers depicted at the vertices indicate the number of times that
each vertex is flipped with respect to the reference orientation.

In the planar case, this directly translates to a polynomial-time algorithm
for Problem 5. In [17], the distributive lattice structure on c-orientations is gen-
eralized to so-called Δ-bonds, also known as tensions. We believe that our proof
of Theorem 5 can be generalized to these objects.

Flip Distance with Larger Cut Sets. While computing the cut flip distance
between c-orientations is an NP-hard problem in general (Theorem 2), there
is a polynomial-time-algorithm for computing the distance when only using ver-
tex flips (Theorem 5). It is natural to ask for a threshold between the hard
and easy cases of flip distance problems. Our proof for Theorem 2 involves very
long directed cycles, which correspond to flips of directed cuts in the dual c-
orientations with cut sets of large size. Consequently, one may hope that the
problem gets easier when restricting the sizes of the cut sets involved in a flip
sequence. Our last result destroys this hope:

Theorem 6. Let X,Y be c-orientations of a connected graph G with fixed
vertex �. It is NP-hard to determine the length of a shortest cut flip sequence

Flip Distances Between Graph Orientations 131

transforming X into Y , which consists only of minimal directed cuts with inte-
riors of size at most two.

The proof of Theorem 6 is by reduction from the problem of determining the
jump number of a poset of height two, which is known to be NP-hard.

3 Open Problems

Problem 2 asks for a shortest flip sequence of directed cycles transforming one
α-orientation X into another one Y , where we only allow flipping edges that are
oriented differently in X and Y . Since these edges that are oriented differently
in X and Y form an Eulerian subdigraph D of both X and Y , we get:

Question 1. What is the smallest number of directed cycles into which an Eule-
rian digraph can be decomposed?

We have seen in Theorem 3 that from a computational point of view, this
problem is hard for general digraphs, but we wonder what happens when adding
planarity constraints. Another interesting undirected variant of Question 1 is:

Question 2. Given a graph G with an Eulerian subgraph H, what is the smallest
number of cycles of G such that their symmetric difference is H?

Concerning Theorem 6, we believe that for any bound on the size of the cuts,
the corresponding flip distance will be NP-hard to compute. On the other hand,
we use very particular graphs as gadgets, and we do not know the complexity
of the corresponding problem for planar α-orientations. We think the following
is an interesting special case which actually might be tractable:

Question 3. Let X,Y be perfect matchings of a planar bipartite 3-connected
graph G. What is the complexity of determining the distance of X and Y with
respect to alternating cycles that are either a face or the symmetric difference
of two adjacent faces?

References

1. Aguiar, M., Ardila, F.: Hopf monoids and generalized permutahedra, September
2017. arXiv: 1709.07504

2. Aichholzer, O., Aurenhammer, F., Huemer, C., Vogtenhuber, B.: Gray code enu-
meration of plane straight-line graphs. Graphs Comb. 23(5), 467–479 (2007).
https://doi.org/10.1007/s00373-007-0750-z

3. Aichholzer, O., Mulzer, W., Pilz, A.: Flip distance between triangulations of asim-
ple polygon is NP-complete. Discrete Comput. Geom. 54(2), 368–389 (2015).
https://doi.org/10.1007/s00454-015-9709-7

4. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–
3), 21–46 (1996). https://doi.org/10.1016/0166-218X(95)00026-N. First Interna-
tional Colloquium on Graphs and Optimization (GOI), Grimentz (1992)

http://arxiv.org/abs/1709.07504
https://doi.org/10.1007/s00373-007-0750-z
https://doi.org/10.1007/s00454-015-9709-7
https://doi.org/10.1016/0166-218X(95)00026-N

132 O. Aichholzer et al.

5. Bernardi, O., Fusy, E.: A bijection for triangulations, quadrangulations, pentagu-
lations, etc. J. Comb. Theory Ser. A 119(1), 218–244 (2012). https://doi.org/10.
1016/j.jcta.2011.08.006

6. Bonamy, M., et al.: The Perfect Matching Reconfiguration Problem, April 2019.
arXiv:1904.06184

7. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009).
https://doi.org/10.1016/j.comgeo.2008.04.001

8. Bose, P., Verdonschot, S.: A history of flips in combinatorial triangulations. In:
Márquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 29–44.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34191-5 3

9. Brehm, E.: 3-orientations and Schnyder-3-tree-decompositions, Diploma Thesis,
Freie Universität Berlin (2000)

10. Brualdi, R.A.: Comments on bases in dependence structures. Bull. Australas.
Math. Soc. 1, 161–167 (1969). https://doi.org/10.1017/S000497270004140X

11. Cardinal, J., Sacristán, V., Silveira, R.I.: A note on flips in diagonal rectangula-
tions. Discrete Math. Theor. Comput. Sci. 20(2), 1–22 (2018)

12. Ceballos, C., Santos, F., Ziegler, G.M.: Many non-equivalent realizations of the
associahedron. Combinatorica 35(5), 513–551 (2015). https://doi.org/10.1007/
s00493-014-2959-9

13. Cleary, S., St. John, K.: Rotation distance is fixed-parameter tractable. Inform.
Process. Lett. 109(16), 918–922 (2009). https://doi.org/10.1016/j.ipl.2009.04.023

14. Felsner, S.: Lattice structures from planar graphs. Electron. J. Comb. 11(1), 24
(2004). Research Paper 15

15. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J.
(ed.) Thirty Essays on Geometric Graph Theory, pp. 213–248. Springer, New York
(2013). https://doi.org/10.1007/978-1-4614-0110-0 12

16. Felsner, S., Kleist, L., Mütze, T., Sering, L.: Rainbow cycles in flip graphs. In:
Symposium on Computational Geometry 2018, pp. 38:1–38:14 (2018). https://doi.
org/10.4230/LIPIcs.SoCG.2018.38

17. Felsner, S., Knauer, K.: ULD-lattices and Δ-bonds. Comb. Probab. Comput. 18(5),
707–724 (2009). https://doi.org/10.1017/S0963548309010001

18. Felsner, S., Knauer, K.: Distributive lattices, polyhedra, and generalized flows. Eur.
J. Comb. 32(1), 45–59 (2011). https://doi.org/10.1016/j.ejc.2010.07.011

19. Felsner, S., Schrezenmaier, H., Steiner, R.: Equiangular polygon contact repre-
sentations. In: Brändstadt, A., Köhler, E., Meer, K. (eds.) WG 2018. LNCS, vol.
11159, pp. 203–215. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00256-5 17

20. Felsner, S., Schrezenmaier, H., Steiner, R.: Pentagon contact representations. Elec-
tron. J. Comb. 25(3), 38 (2018). Paper 3.39

21. Frank, A., Tardos, E.: Generalized polymatroids and submodular flows. Math.
Program. 42(3, (Ser. B)), 489–563 (1988). https://doi.org/10.1007/BF01589418.
Submodular optimization

22. Gilmer, P.M., Litherland, R.A.: The duality conjecture in formal knot theory.
Osaka J. Math. 23(1), 229–247 (1986)

23. Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and
duality. Discrete Comput. Geom. 48(1), 239–254 (2012). https://doi.org/10.1007/
s00454-012-9400-1

24. Hernando, M.C., Hurtado, F., Noy, M.: Graphs of non-crossing perfect matchings.
Graphs Comb. 18(3), 517–532 (2002). https://doi.org/10.1007/s003730200038

https://doi.org/10.1016/j.jcta.2011.08.006
https://doi.org/10.1016/j.jcta.2011.08.006
http://arxiv.org/abs/1904.06184
https://doi.org/10.1016/j.comgeo.2008.04.001
https://doi.org/10.1007/978-3-642-34191-5_3
https://doi.org/10.1017/S000497270004140X
https://doi.org/10.1007/s00493-014-2959-9
https://doi.org/10.1007/s00493-014-2959-9
https://doi.org/10.1016/j.ipl.2009.04.023
https://doi.org/10.1007/978-1-4614-0110-0_12
https://doi.org/10.4230/LIPIcs.SoCG.2018.38
https://doi.org/10.4230/LIPIcs.SoCG.2018.38
https://doi.org/10.1017/S0963548309010001
https://doi.org/10.1016/j.ejc.2010.07.011
https://doi.org/10.1007/978-3-030-00256-5_17
https://doi.org/10.1007/978-3-030-00256-5_17
https://doi.org/10.1007/BF01589418
https://doi.org/10.1007/s00454-012-9400-1
https://doi.org/10.1007/s00454-012-9400-1
https://doi.org/10.1007/s003730200038

Flip Distances Between Graph Orientations 133

25. Houle, M.E., Hurtado, F., Noy, M., Rivera-Campo, E.: Graphs of triangulations
and perfect matchings. Graphs Comb. 21(3), 325–331 (2005). https://doi.org/10.
1007/s00373-005-0615-2

26. Huemer, C., Hurtado, F., Noy, M., Omaña-Pulido, E.: Gray codes for non-crossing
partitions and dissections of a convex polygon. Discrete Appl. Math. 157(7), 1509–
1520 (2009). https://doi.org/10.1016/j.dam.2008.06.018

27. Iwata, S.: On matroid intersection adjacency. Discrete Math. 242(1–3), 277–281
(2002). https://doi.org/10.1016/S0012-365X(01)00167-4

28. Kanj, I., Sedgwick, E., Xia, G.: Computing the flip distance between triangulations.
Discrete Comput. Geom. 58(2), 313–344 (2017). https://doi.org/10.1007/s00454-
017-9867-x

29. Knauer, K.: Partial orders on orientations via cycle flips. Master’s thesis, Faculty
of Mathematics, TU Berlin (2007)

30. Lam, P.C.B., Zhang, H.: A distributive lattice on the set of perfect matchings of
a plane bipartite graph. Order 20(1), 13–29 (2003). https://doi.org/10.1023/A:
1024483217354

31. Li, M., Zhang, L.: Better approximation of diagonal-flip transformation and rota-
tion transformation. In: Hsu, W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS,
vol. 1449, pp. 85–94. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-
68535-9 12

32. Loera, J.A.D., Rambau, J., Santos, F.: Triangulations: Structures for Algo-
rithms and Applications. No. 25 in Algorithms and Computation in Mathematics.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12971-1

33. Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point set
is NP-complete. Comput. Geom. 49, 17–23 (2015). https://doi.org/10.1016/j.
comgeo.2014.11.001

34. Negami, S.: Diagonal flips in triangulations of surfaces. Discrete Math. 135(1–3),
225–232 (1994). https://doi.org/10.1016/0012-365X(93)E0101-9

35. Papadimitriou, C.H.: The adjacency relation on the traveling salesman polytope
is NP-complete. Math. Program. 14(3), 312–324 (1978). https://doi.org/10.1007/
BF01588973

36. Pilaud, V., Santos, F.: Quotientopes, August 2018. arXiv: 1711.05353
37. Postnikov, A.: Permutohedra, associahedra, and beyond. Int. Math. Res. Not.

IMRN 6, 1026–1106 (2009). https://doi.org/10.1093/imrn/rnn153
38. Propp, J.: Lattice structure for orientations of graphs, September 2002.

arXiv: math/0209005
39. Propp, J., Wilson, D.: Coupling from the past: a user’s guide. In: Microsurveys

in discrete probability, Princeton, NJ (1997). DIMACS Series Discrete Mathemat-
ics Theoretical Computer Science, vol. 41, pp. 181–192. American Mathematical
Society, Providence, RI (1998)

40. Rémila, E.: The lattice structure of the set of domino tilings of a polygon. Theor.
Comput. Sci. 322(2), 409–422 (2004). https://doi.org/10.1016/j.tcs.2004.03.020

41. Ringel, G.: Über Geraden in allgemeiner lage. Elem. Math. 12, 75–82 (1957)
42. Rispoli, F.J., Cosares, S.: A bound of 4 for the diameter of the symmetric traveling

salesman polytope. SIAM J. Discrete Math. 11(3), 373–380 (1998). https://doi.
org/10.1137/S0895480196312462

43. Rogers, R.O.: On finding shortest paths in the rotation graph of binary trees. In:
Proceedings of the Thirtieth Southeastern International Conference on Combina-
torics, Graph Theory, and Computing, Boca Raton, FL, vol. 137, pp. 77–95 (1999)

https://doi.org/10.1007/s00373-005-0615-2
https://doi.org/10.1007/s00373-005-0615-2
https://doi.org/10.1016/j.dam.2008.06.018
https://doi.org/10.1016/S0012-365X(01)00167-4
https://doi.org/10.1007/s00454-017-9867-x
https://doi.org/10.1007/s00454-017-9867-x
https://doi.org/10.1023/A:1024483217354
https://doi.org/10.1023/A:1024483217354
https://doi.org/10.1007/3-540-68535-9_12
https://doi.org/10.1007/3-540-68535-9_12
https://doi.org/10.1007/978-3-642-12971-1
https://doi.org/10.1016/j.comgeo.2014.11.001
https://doi.org/10.1016/j.comgeo.2014.11.001
https://doi.org/10.1016/0012-365X(93)E0101-9
https://doi.org/10.1007/BF01588973
https://doi.org/10.1007/BF01588973
http://arxiv.org/abs/1711.05353
https://doi.org/10.1093/imrn/rnn153
http://arxiv.org/abs/math/0209005
https://doi.org/10.1016/j.tcs.2004.03.020
https://doi.org/10.1137/S0895480196312462
https://doi.org/10.1137/S0895480196312462

134 O. Aichholzer et al.

44. Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, triangulations, and
hyperbolic geometry. J. Am. Math. Soc. 1(3), 647–681 (1988). https://doi.org/10.
2307/1990951

45. Thurston, W.P.: Conway’s tiling groups. Am. Math. Mon. 97(8), 757–773 (1990).
https://doi.org/10.2307/2324578

46. Zhang, F.J., Guo, X.F.: Hamilton cycles in directed Euler tour graphs. Discrete
Math. 64(2–3), 289–298 (1987). https://doi.org/10.1016/0012-365X(87)90198-1

47. Zhang, W.J., Qian, J.G., Zhang, F.J.: Distance between α-orientations of plane
graphs by facial cycle reversals. Acta Mathematica Sinica, English Series (2019).
https://doi.org/10.1007/s10114-018-7403-4

https://doi.org/10.2307/1990951
https://doi.org/10.2307/1990951
https://doi.org/10.2307/2324578
https://doi.org/10.1016/0012-365X(87)90198-1
https://doi.org/10.1007/s10114-018-7403-4

Graph Functionality

Bogdan Alecu1, Aistis Atminas2, and Vadim Lozin1(B)

1 Mathematics Institute, University of Warwick, Coventry, UK
{B.Alecu,V.Lozin}@warwick.ac.uk

2 Department of Mathematics, London School of Economics, London, UK
A.Atminas@lse.ac.uk

Abstract. In the present paper, we introduce the notion of graph func-
tionality, which generalizes simultaneously several other graph param-
eters, such as degeneracy or clique-width, in the sense that bounded
degeneracy or bounded clique-width imply bounded functionality. More-
over, we show that this generalization is proper by revealing classes of
graphs of unbounded degeneracy and clique-width, where functionality is
bounded by a constant. We also prove that bounded functionality implies
bounded VC-dimension, i.e. graphs of bounded VC-dimension extend
graphs of bounded functionality, and this extension also is proper.

Keywords: Clique-width · Graph degeneracy · VC-dimension ·
Permutation graph · Graph representation

1 Introduction

Let G = (V,E) be a simple graph, i.e. an undirected graph without loops and
multiple edges. We denote by A = AG the adjacency matrix of G and by A(x, y)
the element of this matrix corresponding to vertices x, y ∈ V , i.e. A(x, y) = 1 if
x and y are adjacent, and A(x, y) = 0 otherwise.

We say that a vertex y ∈ V is a function of vertices x1, . . . , xk ∈ V if
there exists a Boolean function f of k variables such that for any vertex z ∈
V − {y, x1, . . . , xk}, we have A(y, z) = f(A(x1, z), . . . , A(xk, z)).

The functionality fun(y) of vertex y is the minimum k such that y is a function
of k vertices. In particular, the functionality of an isolated vertex is 0, and the
same is true for a dominating vertex, i.e. a vertex adjacent to all the other
vertices in the graph. More generally, the functionality of a vertex y does not
exceed the number of its neighbours (the degree of y) and the number of its non-
neighbours. One more simple example of functional vertices is given by twins,
i.e. vertices x and y that have the same set of neighbours different from x and
y. Twins are functions of each other and their functionality is (at most) 1. The
same is true for anti-twins, i.e. vertices whose neighbourhoods complement each
other.

From a practical point of view, the notion of functional vertices is of interest
in the area of graph learning and graph mining, since it makes graphs amenable
c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 135–147, 2019.
https://doi.org/10.1007/978-3-030-30786-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_11

136 B. Alecu et al.

to the techniques of Logical Analysis of Data [11], which is based on Boolean
methods for pattern detection. This notion provides a tool for revealing depen-
dencies that are hidden in the structure of the graph and for identifying alliances
that are more complex than “friends” or “enemies”.

From a theoretical point of view, the importance of this notion is due to the
fact that it defines a new complexity measure, which we call graph functionality.
The functionality fun(G) of G is

max
H

min
y∈V (H)

fun(y),

where the maximum is taken over all induced subgraphs H of G. Similarly to
many other graph parameters, this notion becomes valuable when its value is
small, i.e. is bounded by a constant independent of the size of the graph. The
purpose of this paper is to show that graphs of bounded functionality general-
ize simultaneously several other important graph properties, such as graphs of
bounded vertex degree, degeneracy, arboricity, tree-width and clique-width. We
prove this in Sect. 2. Moreover, in the same section we show that this general-
ization is proper by revealing classes of graphs where functionality is bounded
but the other parameters are not. This includes permutation graphs, line graphs
and, more generally, the intersection graphs of 3-uniform hypergraphs. On the
other hand, in Sect. 3 we show that bounded functionality implies bounded VC-
dimension, i.e. graphs of bounded VC-dimension extend graphs of bounded func-
tionality, and this extension also is proper.

Throughout the paper, we consider only simple graphs and use standard
terminology and notation. In particular, for a graph G, we denote by V (G) and
E(G) the vertex set and the edge set of G, respectively. The neighbourhood N(v)
of a vertex v ∈ V (G) is the set of vertices of G adjacent to v and the degree of
v is |N(v)|. A vertex of degree 0 is called isolated. The closed neighbourhood of
v is N [v] = {v} ∪ N(v). A chordless cycle of length n is denoted Cn. A graph
H is an induced subgraph of a graph G if H can be obtained from G by vertex
deletions. A class X of graphs is hereditary if it is closed under taking induced
subgraphs.

2 Graphs of Small Functionality

From the discussion in the introduction, it follows that graphs of bounded func-
tionality extend graphs of bounded vertex degree. More generally, they extend
graphs of bounded degeneracy, where the degeneracy of G is the minimum k
such that every induced subgraph of G has a vertex of degree at most k. A
notion related to degeneracy is that of arboricity, which is the minimum number
of forests into which the edges of G can be partitioned. The degeneracy of G is
always between the arboricity and twice the arboricity of G and hence graphs
of bounded functionality extend graphs of bounded arboricity too.

One more important graph parameter is clique-width. Many algorithmic
problems that are generally NP-hard become polynomial-time solvable when

Graph Functionality 137

restricted to graphs of bounded clique-width [6]. Clique-width is a relatively new
notion and it generalizes another important graph parameter, tree-width, stud-
ied in the literature for decades. Clique-width is stronger than tree-width in the
sense that graphs of bounded tree-width have bounded clique-width. In Sect. 2.1,
we show that functionality is stronger than clique-width by proving that graphs
of bounded clique-width have bounded functionality. Then in Sects. 2.2 and 2.3
we identify classes of graphs where functionality is bounded, but degeneracy and
clique-width are not.

2.1 Graphs of Bounded Clique-Width

The notion of clique-width of a graph was introduced in [5]. The clique-width of
a graph G is denoted cwd(G) and is defined as the minimum number of labels
needed to construct G by means of the following four graph operations:

– creation of a new vertex v with label i (denoted i(v)),
– disjoint union of two labelled graphs G and H (denoted G ⊕ H),
– connecting vertices with specified labels i and j (denoted ηi,j) and
– renaming label i to label j (denoted ρi→j).

Every graph can be defined by an algebraic expression using the four opera-
tions above. This expression is called a k-expression if it uses k different labels.
For instance, the cycle C5 on vertices a, b, c, d, e (listed along the cycle) can be
defined by the following 4-expression:

η4,1(η4,3(4(e) ⊕ ρ4→3(ρ3→2(η4,3(4(d) ⊕ η3,2(3(c) ⊕ η2,1(2(b) ⊕ 1(a)))))))).

Alternatively, any algebraic expression defining G can be represented as a
rooted binary tree, whose leaves correspond to the operations of vertex creation,
the internal nodes correspond to the ⊕-operations, and the root is associated
with G. The operations η and ρ are assigned to the respective edges of the tree.
Figure 1 shows the tree representing the above expression defining a C5.

+ + + +C5

4(e) 4(d) 3(c) 2(b)

1(a)
ρ4→3ρ3→2η4,3η4,1η4,3 η3,2 η2,1

Fig. 1. The tree representing the expression defining a C5

Among various examples of graphs of bounded clique-width we mention
distance-hereditary graphs. These are graphs of clique-width at most 3 [8]. Every
graph in this class can be constructed from a single vertex by successively adding
either a pendant vertex or a twin (true or false) [4]. From this characterization
we immediately conclude that the functionality of distance-hereditary graphs is
at most one. More generally, in the next theorem we show that functionality is
bounded for all classes of graphs of bounded clique-width.

138 B. Alecu et al.

Theorem 1. For any graph G, fun(G) ≤ 2cwd(G) − 1.

Proof. Let G be a graph of clique-width k and let T be a tree corresponding to
a k-expression that describes G. Consider a node v of the tree such that the tree
Tv rooted at v has more than k leaves, and neither of the two children of v has
this property (if no such v exists, we are done, since G has at most k vertices).
Since Tv has more than k leaves, at least two of them, say x and y, have the
same label at node v. On the other hand, Tv has at most 2k leaves by the choice
of v. Therefore, G contains at most 2k − 2 vertices that distinguish x and y,
since x and y are not distinguished outside of Tv. As a result, the functionality
of both x and y is at most 2k − 1.

It is known (see e.g. [7]) that the clique-width of an induced subgraph of G
cannot exceed the clique-width of G. Therefore, every induced subgraph of G
has a vertex of functionality at most 2k − 1. Thus, the functionality of G is at
most 2k − 1. ��

In the proof of Theorem 1 the bound on functionality is achieved in a very
specific way: in any graph of bounded clique width, there must exist two ver-
tices whose neighbourhoods have small symmetric difference. The converse is
generally not true. However, large symmetric difference for all pairs of vertices
necessarily implies large clique-width, and this provides an alternative approach
to identifying graphs of large clique-width. To illustrate this idea, in the next
section we construct permutation graphs where the neighbourhoods of any pair
of vertices have large symmetric difference. On the other hand, we show that the
functionality of permutation graphs is bounded by a constant.

2.2 Permutation Graphs

Let π be a permutation of the elements in {1, 2, . . . , n}. The permutation graph
of π is a graph with vertex set {1, 2, . . . , n} in which two vertices i and j are
adjacent if and only if (i − j)(π(i) − π(j)) < 0. Clique-width is known to be
unbounded in the class of permutation graphs [8], and so is degeneracy.

For the purpose of this section, we associate a permutation π with its plot,
i.e. the set of points (i, π(i)) in the plane. We label those points by π(i) and
define the geometric neighbourhood of a point k to be the union of two regions
in the plane: the one above and to its left, and the one below and to its right.
Then it is not difficult to see that the set of points of the permutation lying in
the geometric neighbourhood of k is precisely the set of neighbours of vertex k
in the permutation graph of π.

Theorem 2. The functionality of permutation graphs is at most 8.

Proof. Since the class of permutation graphs is hereditary, it suffices to show
that every permutation graph contains a vertex of functionality at most 8. Let
G be a permutation graph corresponding to a permutation π. The proof will be
given in two steps: first, we show that if there is a vertex with a certain property
in G (yet to be specified), then this vertex is a function of 4 other vertices.

Graph Functionality 139

6

1

4

2

5

3

Fig. 2. Geometric representation of π = 614253, with the neighbourhood of 4 shaded

Second, we show how to find vertices that are “close enough” to having that
property.

Step 1: Consider the plot of π. Among any 3 horizontally consecutive points,
one is vertically between the two others. We call such a point vertical middle (in
the permutation from Fig. 2, the vertical middle points are 4, 2 and 3). Similarly,
among any 3 vertically consecutive points, one is horizontally between the two
others, and we call this point horizontal middle (in Fig. 2, the horizontally middle
points are 2, 5 and 4).

Now let us suppose that π has a point x that is simultaneously a horizontal
and a vertical middle point. Then x is part of a triple x, b, t (not necessarily in
that order) of horizontally consecutive points, where b is the bottom point (the
lowest in the triple) and t is the top point (the highest in the triple). Also, x
is part of a triple x, l, r (not necessarily in that order) of vertically consecutive
points, where l is the leftmost and r is the rightmost point in the triple (see
Fig. 3a for an illustration).

In general, x can be at any of the 9 intersection points of pairs of 3 consecutive
vertical and horizontal lines, i.e. x is somewhere in X (see Fig. 3b). We also have
l ∈ L, r ∈ R, t ∈ T and b ∈ B for the surrounding points (see Fig. 3b). The
important thing to note is that, since the points are consecutive, those are the
only points of the permutation lying in the shaded area X ∪ L ∪ R ∪ T ∪ B. Any
point different from x, l, r, t, b lies in one of Q1, Q2, Q3 or Q4.

It is not difficult to see that the geometric neighbourhood corresponding
to (N(r)∩ N(b))∪ (N(l)∩ N(t)) (see Fig. 3a) will always contain Q2 and Q4,
and will never intersect Q1 or Q3. Therefore, the function that describes how x
depends on {l, r, t, b} can be written as follows:

f(xr, xb, xl, xt) = xrxb ∨ xlxt,

where xr, xb, xl, xt are Boolean variables corresponding to points r, b, l, t, respec-
tively. In other words, a vertex y
∈ {x, l, r, t, b} is adjacent to x if and only if
f(A(y, r), A(y, b), A(y, l), A(y, t)) = 1.

Step 2: Let us relax the simultaneous middle point condition to the following
one: amongst every 5 vertically (respectively horizontally) consecutive points,

140 B. Alecu et al.

x

l

r

b

t

(a) The geometric neighbourhood
corresponding to

(N(r) ∩ N(b)) ∪ (N(l) ∩ N(t))

XL R

T

B

Q1Q2

Q3 Q4

(b) Partition of the plot

Fig. 3. A middle point x and its four surrounding points

call the middle three weak horizontal (respectively vertical) middle points. Note
that if the number of points is divisible by 5, at least 3

5 of them are weak vertical
and at least 3

5 of them are weak horizontal middle points. Using this observation
it is not hard to deduce that if there are at least 13 points, then more than half
of them are weak vertical and more than half of them are weak horizontal middle
points. Therefore, there must exist a point x that is simultaneously both. We
can deal with this case only, as the functionality of any graph on at most 12
vertices is at most 6, which is due to the fact that every vertex has at most 6
neighbours or non-neighbours. If x is simultaneously a weak vertical and weak
horizontal middle point, then there must exist quintuples l, x, m1, m2, r and
t, x, m3, m4, b (not necessarily in that order), where x is a simultaneous weak
middle point in both directions, while m1, m2, m3 and m4 are the other weak
middle points in their respective quintuples. By removing m1, m2, m3 and m4

from the graph, we find ourselves in the configuration of Step 1 and conclude
that x is a function of {l, r, t, b} in the reduced graph. Therefore, in the original
graph x is a function of {l, r, t, b,m1,m2,m3,m4}, concluding the proof. ��

In the rest of this section, we give a construction of permutation graphs
where every pair of neighbourhoods has large symmetric difference. Together
with Theorem 1, this construction gives an alternative proof of the known fact
that permutation graphs have unbounded clique-width. For two distinct vertices
x1 and x2, let sd(x1, x2) denote the number of vertices other than x1 and x2

that are adjacent to exactly one of them.

Theorem 3. For any t ∈ N, there is a permutation graph G such that for any
distinct x1, x2 ∈ V (G), sd(x1, x2) ≥ t.

Graph Functionality 141

Proof. We will make use of the geometric representation of permutations dis-
cussed earlier. Given two vertices x1 and x2 of a permutation graph G, the
symmetric difference of their neighbourhoods can be represented geometrically
as an area in the plane (see Fig. 4). More precisely, a vertex different from x1

and x2 lies in the symmetric difference of their neighbourhoods if and only if the
corresponding point of the permutation lies in the shaded area.

x1

x2

Fig. 4. Geometric symmetric difference of two points x1 and x2

In order to prove the theorem, it suffices, for each t ∈ N, to exhibit a set St

of points in the plane (with no two on the same vertical or horizontal line) such
that for any pair x1, x2 ∈ St, there are at least t other points of St lying in the
geometric symmetric difference of x1 and x2. Such a construction immediately
gives rise to a permutation and thus a permutation graph where the symmetric
difference of the neighbourhoods of any pair of vertices is at least t.

We construct sets St in the following way (see Fig. 5 for an example):

– start with all the points with integer coordinates between 0 and t inclusive;
– apply to the set the rotation sending (1, 0) to (1, 1

t+1) and (0, 1) to (− 1
t+1 , 1).

To see that these sets have indeed the desired property, let x1, x2 ∈ St. For
simplicity, we will use the coordinates of the points before the rotation. Suppose
x1 = (a1, b1) and x2 = (a2, b2). There are four possible cases (after switching x1

and x2 if necessary):

– If a1 = a2 and b1 < b2, then the t points (k, b2), (l, b1) with k < a1 < l are in
the symmetric difference.

– Similarly, if b1 = b2 and a1 < a2, then the t points (a1, k), (a2, l) with
k < b1 < l are in the symmetric difference.

– If a1 < a2 and b1 < b2, the following points all lie in the symmetric difference
of x and y:
(1) Points (a1, k) with k < b1 (in the bottom region).
(2) Points (a1, k) with b1 < k ≤ b2 (in the left region).
(3) Points (a2, k) with b2 < k (in the top region).

142 B. Alecu et al.

Fig. 5. The set S6

(4) Points (a2, k) with b1 ≤ k < b2 (in the right region).
In particular, (1) and (3) account for at least b1 + t − b2 points, while (2)
and (4) account for 2(b2 − b1) others. We conclude that in total, at least
t + (b2 − b1) > t points lie in the symmetric difference of x1 and x2.

– If a1 < a2 and b1 > b2, a similar index chasing argument exhibits at least t
points in the symmetric difference of x1 and x2. ��

2.3 Intersection Graphs

In this section, we show that unit interval graphs and line graphs have bounded
functionality. It is known (see e.g. [9,12]) that clique-width is unbounded in
both of those classes. The same is true for degeneracy, since line graphs and unit
interval graphs contain arbitrarily large cliques.

Theorem 4. The functionality of unit interval graphs is at most 2.

Proof. Let G be a unit interval graph with n vertices and assume without loss of
generality that G has no isolated vertices (by adding isolated vertices to a graph
we increase neither its functionality not symmetric difference).

Take a unit interval representation for G = (V,E) with the interval endpoints
all distinct. We label the vertices v1, . . . , vn in the order in which they appear
on the real line (from left to right), and denote the endpoints of interval Ii
corresponding to vertex vi by ai < bi.

For two distinct vertices vi and vj , write like before sd(vi, vj) to denote the
number of vertices in V \ {vi, vj} adjacent to exactly one of them. From the
definition, it is immediate that fun(vi) ≤ sd(vi, vj) + 1.

We will bound

S =
n−1∑

i=1

sd(vi, vi+1).

Graph Functionality 143

Note that any neighbour of vi which is not a neighbour of vi+1 needs to have
its right endpoint between ai and ai+1. Similarly, any neighbour of vi+1 but
not of vi needs to have its left endpoint between bi and bi+1. In other words,
sd(vi, vi+1) is bounded above by the number of endpoints in (ai, ai+1)∪(bi, bi+1)
(we say bounded above and not equal, since it might happen that bi lies between
ai and ai+1, without contributing to the symmetric difference).

The key is now to note that any endpoint can be counted at most once in
the whole sum S, since all (ai, ai+1) are disjoint (and the same applies to the
(bi, bi+1)), and the a’s can only appear between b’s (and vice-versa). In fact, a1

and bn are never counted in S, and if a2 is between b1 and b2, then v1 must be
isolated, so a2 is not counted either. The sum is thus at most 2n − 3. Since it
has n−1 terms, one of the terms, say sd(vt, vt+1), must be at most 1. Therefore,
the functionality of both vt and vt+1 is at most 2.

Since the class of unit interval graphs is hereditary, we conclude that the
functionality of any unit interval graph is at most 2. ��
Theorem 5. The functionality of line graphs is at most 6.

Proof. Let G be a graph and H be the line graph of G. Since the class of line
graphs is hereditary, it suffices to prove that H has a vertex of functionality
at most 6. We will prove a stronger result showing that every vertex of H has
functionality at most 6.

Let x be a vertex in H, i.e. an edge in G. We denote the two endpoints of
this edge in G by a and b. Assume first that both the degree of a and the degree
of b are at least 4. Let Y = {y1, y2, y3} be a set of any three edges of G incident
to a, and let Z = {z1, z2, z3} be a set of any three edges of G incident to b.

We claim that a vertex v
∈ {x}∪ Y ∪Z is adjacent to x in H if and only if it
is adjacent to every vertex in Y or to every vertex in Z. Indeed, if v is adjacent to
x in H, then the edge v intersects the edge x in G. If the intersection consists of
a, then v is adjacent to every vertex in Y in the graph H, and if the intersection
consists of b, then v is adjacent to every vertex in Z in the graph H. Conversely,
let v be adjacent to every vertex in Y , then v must intersect the edges y1, y2, y3
in G at vertex a, in which case v is adjacent to x in H. Similarly, if v is adjacent
to every vertex in Z, then v intersects the edges z1, z2, z3 in G at vertex b and
hence v is adjacent to x in H.

Therefore, in the case when both a and b have degree at least 4 in G, the
function that describes how x depends on {y1, y2, y3, z1, z2, z3} in the graph H
can be written as follows: f(y1, y2, y3, z1, z2, z3) = y1y2y3 ∨ z1z2z3.

If the degree of a is less than 4, we include in Y all the edges of G distinct
from x which are incident to a (if there are any) and remove the term y1y2y3
from the function. Similarly, if the degree of b is less than 4, we include in Z
all the edges of G distinct from x which are incident to b (if there are any) and
remove the term z1z2z3 from the function. If both terms have been removed, the
function is defined to be identically 0, i.e. no vertices are adjacent to x in H,
except for those in Y ∪ Z. ��

144 B. Alecu et al.

Having proved that the intersection graph of edges, i.e. the intersection graph
of a family of 2-subsets, has bounded functionality, it is natural to ask whether
the intersection graph of a family of k-subsets has bounded functionality for
k > 2. This question is substantially harder and we answer it only for k = 3 (we
omit the proof here).

Theorem 6. Intersection graphs of 3-uniform hypergraphs have functionality
bounded by 462.

3 Graphs of Large Functionality

Knowing what is good without knowing what is bad is just half-knowledge.
Therefore, in this section we turn to graphs of large functionality.

When we talk about graphs of large functionality we assume that we deal
with an infinite family X of graphs, because in any finite collection of graphs
functionality is bounded by a constant. Moreover, we can further assume that
X is hereditary. Indeed, if X is not hereditary, we can extend it to a heredi-
tary class by adding all induced subgraphs of graphs in X, and this extension
has (un)bounded functionality if and only if X has, because by definition the
functionality of an induced subgraph of a graph G is never larger than the func-
tionality of G.

The notion of functional vertices was originally introduced in [1] for com-
pact representation of graphs. This paper does not formally define the notion
of graph functionality, but the results proved in [1] imply that any hereditary
class of graphs of bounded functionality has 2O(n log2 n) labelled graphs with n
vertices. In the terminology of [3], these are classes with (at most) factorial speed
of growth, or simply (at most) factorial classes. Therefore, in every superfacto-
rial class functionality is unbounded. This is the case, for instance, for bipartite,
co-bipartite and split graphs, since each of these classes contains at least 2n

2/4

labelled graphs with n vertices. This conclusion allows us to establish a relation-
ship between functionality and one more important graph parameter known as
VC-dimension.

A set system (X,S) consists of a set X and a family S of subsets of X. A
subset A ⊆ X is shattered if for every subset B ⊆ A there is a set C ∈ S such
that B = A ∩ C. The VC-dimension of (X,S) is the cardinality of a largest
shattered subset of X.

The VC-dimension of a graph G = (V,E) was defined in [2] as the VC-
dimension of the set system (V, S), where S the family of closed neighbourhoods
of vertices of G, i.e. S = {N [v] : v ∈ V (G)}. We denote the VC-dimension of
G by vc(G).

Theorem 7. There exists a function f such that for any graph G, vc(G) ≤
f(fun(G)).

Proof. Fix a k and consider the class Xk of all graphs of functionality at most
k. Clearly, Xk is hereditary. Assume Xk contains graphs of arbitrarily large

Graph Functionality 145

VC-dimension and let G1, G2, . . . be an infinite sequence of graphs from Xk

with strictly increasing values of the VC-dimension. Let Y be the hereditary
class containing all these graphs and all their induced subgraphs. Then Y is a
hereditary subclass of Xk with unbounded VC-dimension. It is was shown in [13]
that the only minimal hereditary classes of graph of unbounded VC-dimension
are bipartite, co-bipartite and split graphs. But then Y and hence Xk contains
one of these three classes, which is a contradiction to the fact that functionality
is unbounded in these classes. Therefore, there is a constant f(k) bounding the
VC-dimension of graphs in Xk, which proves the result. ��

Since large VC-dimension implies large functionality, it would be natural
to construct graphs of large functionality through constructing graphs of large
VC-dimension. The latter is an easy task. Indeed, consider the bipartite graph
Dn = (A,B,E) with two parts |A| = n and |B| = 2n. For each subset C ⊆ A
we create a vertex in B whose neighbourhood coincide with C. Clearly, the VC-
dimension of Dn is n and hence with n growing the functionality of Dn grows
as well.

However, this example is not very interesting in the sense that Dn contains
vertices of low functionality (of low degree) and hence graphs of large function-
ality are hidden in Dn as proper induced subgraphs. A much more interesting
task is constructing graphs where all vertices have large functionality. In what
follows, we show that this is the case for hypercubes.

Let Vn = {0, 1}n be the set of binary sequences of length n and let v, w ∈ Vn.
The Hamming distance d(v, w) between v and w is the number of positions in
which the two sequences differ. A hypercube Qn is the graph with vertex set
Vn = {0, 1}n, in which two vertices are adjacent if and only if the Hamming
distance between them equals 1.

Theorem 8. Functionality of the hypercube Qn is at least (n − 1)/3.

Proof. By symmetry, it suffices to show that the vertex v = 00 . . . 0 ∈ Vn has
functionality at least (n − 1)/3. Suppose v is a function of vertices in a set
S ⊆ Vn\{v}. To provide a lower bound on the size of S, and hence a lower
bound on the functionality of v, for each i = 1, 2, . . . , n consider the set Si =
{w ∈ S : d(w, v) = i}, i.e. the set of all binary sequences in S that contain
exactly i 1s. Also, consider the following set:

I = {i ∈ {1, 2, . . . , n} : ∃z = z1z2 . . . zn ∈ S1 ∪ S2 ∪ S3 with zi = 1}.

Suppose |I| ≤ n − 2. Then there exist two positions i and j such that for any
sequence z = z1z2 . . . zn ∈ S1 ∪ S2 ∪ S3, we have zi = 0 and zj = 0. Consider the
following two vertices:

– u = u1u2 . . . un with uk = 1 if and only if k = i,
– w = w1w2 . . . wn with wk = 1 if and only if k = i or k = j.

We claim that u and w are not adjacent to any vertex z ∈ S. First, it is not
hard to see that for any z ∈ S1 ∪ S2 ∪ S3 we have d(z, u) ≥ 2 and d(z, w) ≥ 2.

146 B. Alecu et al.

Indeed, any z ∈ S1 ∪ S2 ∪ S3 differs from u and w in position i, i.e. zi = 0 and
ui = wi = 1, and there must exist a k
= i, j with zk = 1 and uk = wk = 0.
Also, it is not difficult to see that d(z, u) ≥ 2 and d(z, w) ≥ 2 for any vertex
z ∈ S\(S1 ∪ S2 ∪ S3), because any such z has at least four 1s, while u and w
have at most two 1s. Therefore, by definition, u and w are not adjacent to any
vertex in S.

We see that the assumption that |I| ≤ n − 2 leads to the conclusion that
there are two vertices u,w ∈ Qn\(S ∪{v}) which are non-adjacent to any vertex
in S, but have different adjacencies to v. This contradicts the fact that v is a
function of the vertices in S. So, we must conclude that I has size at least n−1.
As each vertex in S1∪S2∪S3 has at most three 1s, we conclude that S1∪S2∪S3

must contain at least |I|/3 = (n − 1)/3 vertices. This completes the proof of the
theorem. ��

Theorem 7 shows that graphs of bounded VC-dimension constitute an exten-
sion of graphs of bounded functionality, while Theorem 8 shows that this exten-
sion is proper, since the hereditary closure of hypercubes constitutes a proper
subclass of bipartite graphs.

4 Concluding Remarks and Open Problems

In this paper, we proved a number of results about graph functionality. However,
many questions on this topic remain unanswered. Some of them are motivated
by the results presented in the paper, for instance:

Problem 1. Is functionality bounded for the intersection graphs of k-uniform
hypergraphs for k > 3? What about interval graphs?

Many other questions are motivated by related research. Of particular interest
is the notion of implicit representation [10]. Similarly to bounded functionality,
any hereditary class that admits an implicit representation is at most factorial.
However, the question whether all factorial classes admit implicit representa-
tions, also known as the implicit graph representation conjecture, is widely open.
Note that for non-hereditary classes the conjecture is not valid (see e.g. [14]). We
ask whether there is any relationship between the two notions in the universe of
hereditary classes.

Problem 2. Does implicit representation of graphs in a hereditary class imply
bounded functionality in that class and/or vice versa?

One more open question is inspired by a result in [1] showing that if the family
of prime (with respect to modular decomposition) graphs in a hereditary class
X is factorial, then the entire class X is factorial.

Problem 3. Is it true that if prime (with respect to modular decomposition)
graphs in a hereditary class X have bounded functionality, then all graphs in X
have bounded functionality?

We note that a similar question for implicit representations is open too.

Graph Functionality 147

References

1. Atminas, A., Collins, A., Lozin, V., Zamaraev, V.: Implicit representations and
factorial properties of graphs. Discrete Math. 338, 164–179 (2015)

2. Alon, N., Brightwell, G., Kierstead, H., Kostochka, A., Winkler, P.: Dominating
sets in k-majority tournaments. J. Comb. Theory Ser. B 96, 374–387 (2006)

3. Balogh, J., Bollobás, B., Weinreich, D.: The speed of hereditary properties of
graphs. J. Comb. Theory Ser. B 79, 131–156 (2000)

4. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser.
B 41, 182–208 (1986)

5. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46, 218–270 (1993)

6. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33, 125–150 (2000)

7. Courcelle, B., Olariu, S.: Upper bounds to the clique-width of a graph. Discrete
Appl. Math. 101, 77–114 (2000)

8. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes.
Int. J. Found. Comput. Sci. 11(3), 423–443 (2000)

9. Gurski, F., Wanke, E.: Line graphs of bounded clique-width. Discrete Math. 307,
2734–2754 (2007)

10. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. In: STOC
1988, pp. 334–343 (1988)

11. Lejeune, M., Lozin, V., Lozina, I., Ragab, A., Yacout, S.: Recent advances in the
theory and practice of Logical Analysis of Data. Eur. J. Oper. Res. 275, 1–15
(2019)

12. Lozin, V.: Minimal classes of graphs of unbounded clique-width. Ann. Comb. 15,
707–722 (2011)

13. Lozin, V.: Graph parameters and Ramsey theory. Lect. Notes Comput. Sci. 10765,
185–194 (2018)

14. Spinrad, J.P.: Efficient Graph Representations. Fields Institute Monographs, 19,
xiii+342 pp. American Mathematical Society, Providence (2003)

On Happy Colorings, Cuts,
and Structural Parameterizations

Ivan Bliznets1,2 and Danil Sagunov1(B)

1 St. Petersburg Department of Steklov Institute of Mathematics of the Russian
Academy of Sciences, St. Petersburg, Russia

iabliznets@gmail.com, danilka.pro@gmail.com
2 National Research University Higher School of Economics, St. Petersburg, Russia

Abstract. We study the Maximum Happy Vertices and Maximum

Happy Edges problems. The former problem is a variant of clusteriza-
tion, where some vertices have already been assigned to clusters. The
second problem gives a natural generalization of Multiway Uncut,
which is the complement of the classical Multiway Cut problem. Due
to their fundamental role in theory and practice, clusterization and cut
problems has always attracted a lot of attention. We establish a new con-
nection between these two classes of problems by providing a reduction
between Maximum Happy Vertices and Node Multiway Cut. More-
over, we study structural and distance to triviality parameterizations of
Maximum Happy Vertices and Maximum Happy Edges. Obtained
results in these directions answer questions explicitly asked in four works:
Agrawal ’17, Aravind et al. ’16, Choudhari and Reddy ’18, Misra and
Reddy ’17.

Keywords: Happy coloring · Maximum happy vertices ·
Maximum happy edges · Homophily law · Multiway cut ·
Distance to triviality · Treewidth · Clique-width ·
Parameterized complexity

1 Introduction

In this paper, we study Maximum Happy Vertices and Maximum Happy

Edges. Both problems were recently introduced by Zhang and Li in [24], moti-
vated by a study of algorithmic aspects of the homophyly law in large networks.
Informally they paraphrase the law as “birds of a feather flock together”. The
law states that in social networks people are more likely to connect with peo-
ple sharing similar interests with them. A social network is represented by a
graph, where each vertex corresponds to a person in the network, and an edge
between two vertices denotes that corresponding persons are connected within
the network. Furthermore, we let vertices have colors assigned. The color of a
vertex indicates type, character or affiliation of the corresponding person in the

This research was supported by the Russian Science Foundation (project 16-11-10123).

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 148–161, 2019.
https://doi.org/10.1007/978-3-030-30786-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_12

On Happy Colorings, Cuts, and Structural Parameterizations 149

network. An edge is called happy if its endpoints are colored with the same color.
A vertex is called happy if all its neighbours are colored with the same color as
the vertex itself. Equivalently, a vertex is happy if all edges incident to it are
happy. The formal definitions of Maximum Happy Vertices and Maximum

Happy Edges are the following:

Maximum Happy Vertices (MHV)
Input: A graph G, a partial coloring of vertices p : S → [�] for

some S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G) → [�] extending the partial

coloring p such that the number of happy vertices with
respect to c is at least k?

Maximum Happy Edges (MHE)
Input: A graph G, a partial coloring of vertices p : S → [�] for

some S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G) → [�] extending the par-

tial coloring p such that the number of happy edges with
respect to c is at least k?

Maximum Happy Edges has an immediate connection to Multiway Cut.
Precisely, if each color is used in precoloring exactly once, then Maximum

Happy Edges is exactly the Multiway Uncut problem, i.e. the edge comple-
ment of Multiway Cut. Thus, Maximum Happy Edges is a generalization
of the Multiway Uncut problem. So, in this case the connection between clus-
tering vertices by color and cutting edges in order to separate different colors
is pretty obvious. However, this is not the case for vertex version of the prob-
lem, which we would like to connect with the vertex version of Multiway Cut,
Node Multiway Cut.

Maximum Happy Vertices can be seen as a sort of clusterization problem,
in which some vertices already have prescribed color/cluster and the goal is to
identify colors/clusters of initially uncolored/unassigned vertices. In some sense,
we would like to clusterize the graph in such a way that overall boundary of
clusters is minimized. Here, by a boundary of a cluster we understand vertices
of the cluster that are connected to vertices outside the cluster. While it is
possible to straightforwardly formulate the problem in terms of a special cutting
problem, this kind of formalization will sound complicated and unnatural. We
show that MHV can be easily transformed into Node Multiway Cut, thereby
constructing an additional bridge between clusterization and cutting problems.

Recently, MHV and MHE have attracted a lot of attention and were studied
from parameterized [1–3,7,19] and approximation [22–25] points of view as well
as from experimental perspective [18]. Further, dozens of algorithms for the
classical Multiway Cut problem have been considered as well, which is the
complement of a special case of MHE.

150 I. Bliznets and D. Sagunov

In 2015, Zhang and Li established that �-MHE and �-MHV are NP-hard for
� ≥ 3, where � is the number of colors used. Later, Aravind et al. [2] showed that
when the input graph is a tree, �-MHV and �-MHE can be solved in O(n� log �)
and in O(n�) time respectively. In [19], Misra and Reddy proved NP-hardness
of both MHV and MHE on split and on bipartite graphs, and showed that
MHV is polynomial time solvable on cographs.

From the approximation perspective, the currently best known results are
the following. Zhang et al. [25] showed that MHV can be approximated within

1
Δ+1 , where Δ is the maximum degree of the input graph, and MHE can be

approximated within 1
2 +

√
2
4 f(�), where f(�) = (1−1/�)

√
�(�−1)+1/

√
2

�−1+1/2� ≤ 1. They
also claimed that a more careful analysis can improve the approximation ratio
for MHV to 1

Δ+1/g(Δ) , where g(Δ) = (
√

Δ +
√

Δ + 1)2Δ > 4Δ2.
The known results in parameterized complexity (not including kernelization)

are summarized in Table 1. Results proved in the paper are marked by ∗ in
the table. Agrawal [1] provides O(k2�2)-kernel for MHV, where � is the number
of used colors and k is the number of desired happy vertices. Independently,
Gao and Gao [13] present a (2k�+k + k� + k + �)-kernel for the general case
and a (7(k� + k) + � − 10)-kernel in the case of planar graphs. We provide
a kernel on O(d3) vertices for MHV parameterized by the distance to clique,
partially answering a question in [19]. Note that the kernel sizes mentioned in
this paragraph correspond to the number of vertices in the kernels.

Table 1. Known and established results under distance-to-triviality and structural
parameters. ∗ marks results of this work. T indicates a result proven as a theorem. C
indicates a result proven as a corollary. d denotes the distance parameter of the row.

Parameter MHE �-MHE MHV �-MHV

Distance to threshold
graphs

? ? dO(d) · nO(1) [7]

Distance to clique dO(d) · nO(1) [19]

Distance to cluster W[1]-hard C3∗ �d · nO(1) dO(d) · nO(1) T3∗

Distance to cographs

W[1]-hard C2∗
?

W[1]-hard C3∗
(2�)d · nO(1)

Treewidth �tw · nO(1) [1,3] �tw · nO(1) [3,19]

Pathwidth �pw · nO(1) [3,19] �pw · nO(1) [1,3]
Cliquewidth ? ?

Feedback vertex set
number

�d · nO(1) (2�)d · nO(1)

Vertex cover number dO(d) · nO(1) [19]

Split vertex deletion
number

Odd cycle transver-
sal number

para-NP-hard [19]

Neighbourhood
diversity

2nd · nO(1)[3]

Our Results: The main contributions of our work are the following.

On Happy Colorings, Cuts, and Structural Parameterizations 151

– We establish a natural connection between Maximum Happy Vertices on a
graph G and Node Multiway Cut on a second power of a certain subgraph
of G.

– We answer questions in [1,2] about existence of FPT-algorithm for MHV

parameterized by the treewidth of the input graph only.
– Similarly, we answer one of the questions from Choudhari et al. [7] and Misra

et al. [19] by showing W[1]-hardness of MHE parameterized by the cluster
vertex deletion number. We show that MHV, in contrast to MHE, is in
FPT when parameterized by the cluster vertex deletion number.

– We partially answer a question stated by Misra and Reddy in [19]. We provide
a kernel of size O(d3) for MHV, where d is the distance to cliques.

– Among other results, we also present the first algorithm for Node Multiway

Cut parameterized by the clique-width of the input graph.

Organization of the Paper: Section 3 describes results under some structural
and distance-to-triviality parameters. In Sect. 5 we provide results connecting
Node Multiway Cut and Maximum Happy Vertices. In Sect. 6 we provide
a polynomial kernel for MHV parameterized by the distance to clique.

2 Preliminaries

Basic Notation. We denote the set of positive integer numbers by N. For each
positive integer k, by [k] we denote the set of all positive integers not exceeding
k, {1, 2, . . . , k}. We use ∞ to denote an infinitely large number, for which holds
n < ∞ and n + ∞ = ∞ + n = ∞, where n is an arbitrary integer. We use
� for the disjoint union operator, i.e. A� B equals A∪ B, with an additional
constraint that A and B are disjoint.

We use the traditional O-notation for asymptotical upper bounds. We
additionally use the O∗-notation that hides polynomial factors. Many of our
results concern the parameterized complexity of the problems, including fixed-
parameter tractable algorithms, kernelization algorithms, and some hardness
results for certain parameters. For a detailed survey in parameterized algorithms
we refer to the book of Cygan et al. [10]. In their book one may also find defini-
tions of pathwidth and treewidth that are considered as parameters in some of
our results.

Throughout the paper, we use standard graph notation and terminology,
following the book of Diestel [12]. All graphs in our work are undirected simple
graphs. We consider several graph classes in our work. Interval graphs are graphs
whose vertices can be represented as intervals on the real line, so that a pair of
vertices are connected by an edge if and only if their representative intervals
intersect. Cluster graphs are graphs that are a disjoint union of cliques, or,
equivalently, graphs that do not contain induced paths on three vertices.

We often refer to the distance to G parameter, where G is an arbitrary graph
class. For a graph G, we say that a vertex subset S ⊆ V (G) is a G modulator of
G, if G becomes a member of G after deletion of S, i.e. G \ S ∈ G. Then, the
distance to G parameter of G is defined as the size of its smallest G modulator.

152 I. Bliznets and D. Sagunov

Graph Colorings. When dealing with instances of Maximum Happy Ver-

tices or Maximum Happy Edges, we use a notion of colorings. A coloring of
a graph G is a function that maps vertices of the graph to a set of colors. If this
function is partial, we call such a coloring partial. If not stated otherwise, we
use � for the number of distinct colors, and assume that colors are integers in
[�]. A partial coloring p is always given as a part of the input for both problems,
along with graph G. We also call p a precoloring of the graph G, and use (G, p)
to denote the graph along with the precoloring. The goal of both problems is to
extend this partial coloring to a specific coloring c that maps each vertex to a
color. We call c a full coloring (or simply, a coloring) of G that extends p. We
may also say that c is a coloring of (G, p). For convenience, introduce the notion
of potentially happy vertices, both for full and partial colorings.

Definition 1. We call a vertex v of (G, p) potentially happy, if there exists a
coloring c of (G, p) such that v is happy with respect to c. In other words, if
u and w are precolored neighbours of v, then p(u) = p(w) (and p(u) = p(v), if
v is a precolored vertex). We denote the set of all potentially happy vertices in
(G, p) by H(G, p).

By Hi(G, p) we denote the set of all potentially happy vertices in (G, p) such
that they are either precolored with color i or have a neighbour precolored with
color i:

Hi(G, p) = {v ∈ H(G, p) | N [v] ∩ p−1(i) �= ∅}.

In other words, if a vertex v ∈ Hi(G, p) is happy with respect to some coloring
c of (G, p), then necessarily c(v) = i.

Note that if c is a full coloring of a graph G, then |H(G, c)| is equal to the
number of vertices in G that are happy with respect to c.
Clique-Width. Among other structural parameters, we consider clique-width
in our work. We follow definitions presented by Lackner et al. in their work on
Multicut parameterized by clique-width [17].

Due to the space restrictions, we omit the definition of clique-width and k-
expressions to the full version of this paper. For more details on clique-width we
refer to [14].
Omitted Proofs. Due to the space restricitons, we omit full proofs of some
theorems, lemmata, corollaries or claims to the full version of this paper. For
some of them we leave a proof sketch instead of a full proof, and for some of
them we omit the proof completely. Such statements with omitted proofs are
marked with the ‘�’ sign.

3 Structural and Distance-to-Triviality Parameters

In [1], Agrawal proved that Maximum Happy Vertices is W[1]-hard with
respect to the standard parameter, the number of happy vertices. In [2,7,19]
some structural parameters for MHV and MHE were studied. In [1], Agrawal
also asked whether MHV admits an FPT algorithm when parameterized by the

On Happy Colorings, Cuts, and Structural Parameterizations 153

treewidth of the input graph alone. In this section, we show that both MHV and
MHE are W[1]-hard with respect to certain distance-to-triviality and structural
parameters, including treewidth, answering the question of Agrawal and some
other questions. We start with the definition of a classical W[1]-complete (with
respect to the solution size) problem.

Regular Multicolored Independent Set

Input: Graph G, with degree of every vertex in G equal to r, a
partition of G into k cliques V1, V2, . . . , Vk.

Parameter: k
Question: Is there a multicolored independent set in G of size k, i.e.

a subset S ⊆ V (G) of its vertices that is an independent
set in G and |S ∩ Vi| = 1 for every i ∈ [k]?

Theorem 1. Maximum Happy Vertices is W[1]-hard when parameterized
by the distance to graphs that are a disjoint union of paths consisting of three
vertices.

Proof. We reduce from Regular Multicolored Independent Set, that is
W[1]-complete with respect to k due to [4].

Let (G, k, V1, V2, . . . , Vk) be an instance of Regular Multicolored Inde-

pendent Set, and let r be the degree of every vertex in G, i.e. r = |N(v)| for
any v ∈ V (G). We assume that |Vi| ≥ 2 for each i, since otherwise the instance
can be trivially reduced to an instance with a smaller k. We construct an instance
(G′, p, k′) of Maximum Happy Vertices as follows.

We set � = |V (G)|, so each color corresponds to a unique vertex of G. For
convenience, we use vertices of G as colors, instead of the numbers in [�].

For each edge uv ∈ E(G), we introduce a path on three vertices tuuv, euv, tvuv

in G′, with euv being the middle vertex of the path. Endpoint vertices tuuv and
tvuv are precolored in colors u and v respectively, i.e. p(tuuv) = u and p(tvuv) = v,
and the middle vertex is left uncolored.

We then introduce a selection gadget in G′. That is, we introduce k uncolored
vertices s1, s2, . . . , sk. For each i ∈ [k] and each color v ∈ Vi, we connect si with
each vertex precolored in color v. Thus, a vertex tuuv becomes connected to
exactly one vertex of the selection gadget si, where i is such that u ∈ Vi. The
purpose of the selection gadget is that the color of si in the optimal coloring
corresponds to a vertex that we should take in Vi in the initial instance of
Regular Multicolored Independent Set.

We finally set k′ = kr and argue that (G, k, V1, V2, . . . , Vk) is a yes-instance
of Regular Multicolored Independent Set if and only if (G′, p, k′) is a
yes-instance of Maximum Happy Vertices.

Let S ⊆ V (G) be a multicolored independent set of G, i.e. S is an independent
set in G and |S ∩ Vi| = 1 for each i. Let us construct a coloring c of V (G′) such
that it extends p and at least k′ = kr vertices of G are happy with respect to
c. For each i, set the color of si to vi, i.e. c(si) = vi, where vi ∈ S ∩ Vi. For
each edge uv ∈ E(G), set the color of euv to u, if u ∈ S, or to v, if v ∈ S, and

154 I. Bliznets and D. Sagunov

to an arbitrary color otherwise. Formally, c(euv) = u, if u ∈ S, and c(euv) = v,
if v ∈ S. If u, v /∈ S, then c(euv) can be assigned an arbitrary color. Note that
either u /∈ S or v /∈ S, since S is an independent set.

G′ has no other uncolored vertex, thus the construction of c is complete.

Claim 1. For each vertex u ∈ S and each edge uv ∈ E(G) incident to u, tuuv is
happy with respect to c.

Proof of Claim 1. Indeed, tuuv is adjacent to exactly two vertices: si, where u ∈
Vi, and euv. Since u ∈ S, c(si) = u and c(euv) = u by construction of c. tuuv is a
vertex precolored with color u, hence tuuv is happy with respect to c. �

For each u ∈ S, there are exactly r edges adjacent to u, hence all r vertices
precolored with color u are happy. |S| = k, hence at least kr vertices of G′ are
happy with respect to c.

It is left to prove that if (G′, p, k′) is a yes-instance of Maximum Happy

Vertices, then (G, k, V1, V2, . . . , Vk) is a yes-instance of Regular Multicol-

ored Independent Set.

Claim 2. Let c be an arbitrary coloring of V (G′) extending p. There are at
most kr happy vertices in G′ with respect to c. Moreover, all happy vertices are
precolored vertices of at most k distinct colors.

Proof of Claim 2. Observe that for each i ∈ [k], si is unhappy with respect to
any coloring extending p, since neighbours of si are precolored with colors in
Vi, and each color is presented exactly r times among its neighbours, and we
assumed that Vi consists of at least two vertices.

For each uv ∈ E(G), euv is adjacent to exactly two vertices tuuv and tvuv,
which are precolored with two distinct colors u and v. Thus, euv is also unhappy
with respect to any coloring extending p.

Hence, only precolored vertices of G′ can be happy, i.e. vertices tuuv for uv ∈
E(G). Each of them is adjacent to exactly one vertex of the selector gadget, i.e.
vertex si for some i ∈ [k]. But for each i ∈ [k], only the neighbours that share
the same color as si can be happy. Thus, each happy vertex shares a color with
one of k vertices of the selection gadget. Since each color is presented exactly r
times in the partial coloring p, there can be at most kr such happy vertices. �

Let c be a coloring of V (G′) extending p such that at least kr vertices of
G′ are happy with respect to c. According to Claim 2, exactly kr vertices of
G′ are happy with respect to c, and they are precolored with k different colors.
Moreover, for each color, all r precolored vertices of this color are happy. Let S
be the set of these k colors, i.e. S = {c(s1), c(s2), . . . , c(sk)}. We argue that S is
an independent set in G. Note that |S ∩ Vi| = 1 is then automatically satisfied,
as Vi is a clique in G for each i ∈ [k].

Claim 3. If there are kr happy vertices among the vertices of type tvuv in G′

with respect to coloring c, that extends p, then S = {c(s1), c(s2), . . . , c(sk)} is
an independent set in G.

On Happy Colorings, Cuts, and Structural Parameterizations 155

Proof of Claim 3. Indeed, suppose that S is not an independent set in G, i.e.
there are vertices u, v ∈ S, such that uv ∈ E(G). Then there is a path tuuv, euv,
tvuv in G′. tuuv is a happy vertex of color c(tuuv) = p(tuuv) = u, hence c(euv) = u.
Analogously, tvuv is a happy vertex of color v, hence c(euv) = v. We get that
u = c(euv) = v, which contradicts our assumption. �

We have shown that (G′, p, k′) is an instance equivalent to (G, k, V1, V2, . . . ,
Vk); moreover, it can be constructed in polynomial time.

Note that the deletion of the selector gadget vertices in G′ leads to G′ being
a disjoint union of paths consisting of three vertices. Thus, G′ has the distance
parameter being at most k, and if Maximum Happy Vertices is in FPT when
parameterized by the distance to graphs being a disjoint union of path consisting
of three vertices, then W[1]-complete Regular Multicolored Independent

Set is also in FPT. Hence, MHV is W[1]-hard with respect to the distance
parameter. ��

The following corollary answers an open question posed in [1].

Corollary 1. Maximum Happy Vertices is W[1]-hard with respect to param-
eters pathwidth, treewidth or clique-width, distance to cographs, feedback vertex
set number.

Proof Sketch. W[1]-hardness of MHV with respect to the parameters distance
to cographs or feedback vertex set number is an immediate corollary of Theorem
1. Since graphs of type n × P3 (that is, graphs that are a disjoint union of paths
consisting of three vertices) are simultaneously cographs and forests, respectively
to the parameters. Proofs of bounded pathwidth, treewidth and clique-width for
graphs with bounded distance to n × P3 can be found in the full version of the
paper. ��
Theorem 2. Maximum Happy Edges is W[1]-hard when parameterized by
the distance to graphs that are disjoint union of paths consisting of three vertices
and is W[1]-hard when parameterized by the distance to graphs that are a disjoint
union of cycles of length three.

Proof Sketch. We adjust the reduction from Regular Multicolored Inde-

pendent Set to MHV provided in the proof of Theorem 1.
Given an instance (G, k, V1, V2, . . . , Vk) of Regular Multicolored Inde-

pendent Set, we construct an instance (G′, p, k′) of Maximum Happy

Edges as follows.
Let n = |V (G)|, m = |E(G)|. G′ is constructed in the same way as in the

proof of Theorem 1: for each edge uv ∈ E(G), we introduce a path on three
vertices tuuv, euv, tvuv, and set p(tuuv) = u, p(tvuv) = v, and euv is left uncolored;
then we introduce the selection gadget vertices s1, s2, . . . , sk, and introduce an
edge between si and tuuv for each i ∈ [k], u ∈ Vi and uv ∈ E(G). For each i ∈ [k],
si is left uncolored.

Additionally, we introduce edges new to this construction: for each i, j ∈ [k]
and each edge uv ∈ E(G), such that u ∈ Vi and v ∈ Vj , we introduce edges

156 I. Bliznets and D. Sagunov

between euv and si and between euv and sj . In case i = j, we introduce only
one edge.

We also need additional precolored vertices in order for this reduction to
work. For each i ∈ [k], and each v ∈ Vi, we introduce m new paths consisting
of three vertices in G′: for each j ∈ [m], we introduce a path a1

v,j , a2
v,j , a3

v,j .
Every vertex in these new paths we precolor with color v, i.e. p(a1

v,j) = p(a2
v,j) =

p(a3
v,j) = v for each j, and connect by a newly-introduced edge to exactly one

vertex of the selector gadget si. These auxiliary vertices will ensure that for each
i ∈ [k], si is colored with one of the colors in Vi. Paths between these vertices
are needed only to preserve the distance parameter.

We finally set k′ = kr + (m + kr) + (3k + 2n) · m and argue that
(G, k, V1, V2, . . . , Vk) is a yes-instance of Regular Multicolored Indepen-

dent Set if and only if (G′, p, k′) is a yes-instance of Maximum Happy Edges.
For the full proof of this fact, which is mostly by carefully counting each edge
in G′, we refer to the full version of our paper.

To prove the same for the distance to graphs being a disjoint union of cycles
of length three, we note that in our construction of G′, endpoints of the paths
are precolored vertices. Hence, we can add an edge between endpoints of each
path, i.e. between tvuv and tuuv for each uv ∈ E(G) and between a1

v,j and a3
v,j for

each v ∈ V (G) and j ∈ [m], and just increase the parameter k′ by the number
of newly-appeared happy edges. Namely, these are the edges between a1

v,j and
a3

v,j , thus we increase k′ by n ·m, and the other parts of the construction remain
the same. ��
Corollary 2. Maximum Happy Edges is W[1]-hard with respect to parame-
ters pathwidth, treewidth or clique-width, distance to cographs, feedback vertex
set number.

The rest of the section focuses on the parameterized complexity of both
MHV and MHE parameterized by the distance to cluster parameter. We sepa-
rate MHE and MHV, showing that the former problem is W[1]-hard with respect
to this parameter, but the latter admits an FPT-algorithm. This answers an open
question posed in works of Choudhari and Reddy [7] and Misra and Reddy [19].

Corollary 3. Maximum Happy Edges is W[1]-hard when parameterized by
the cluster vertex deletion number.

Proof. Observe that graph consisting of disjoint cycles of length three is a cluster
graph. Then, by Theorem 2, MHE is W[1]-hard when parameterized by the
distance to cluster graphs. ��
Theorem 3. Maximum Happy Vertices can be solved in O∗((2d)d) time,
where d is the distance to cluster parameter of the input graph.

Proof Sketch. We adapt algorithms of Misra and Reddy presented in [19] in their
proofs of FPT membership result for both MHV and MHE parameterized by
the vertex cover number and by the distance to clique parameters. For a full
proof we refer to the full version of our paper. ��

On Happy Colorings, Cuts, and Structural Parameterizations 157

4 Obtaining W[2]-Hardness

We are grateful for the anonymous reviewers of this paper for sharing ideas of
how the statements of Theorems 1 and 2 can be changed to obtain W[2]-hardness
with respect to structural parameters, strengthening Corrollaries 1, 2 and 3. This
section is dedicated to these W[2]-hardness results.

Theorem 4 (�). Maximum Happy Vertices is W[2]-hard when parameter-
ized by the distance to graphs that are a disjoint union of stars.

Theorem 5 (�). Maximum Happy Edges is W[2]-hard when parameterized
by the distance to graphs that are a disjoint union of stars and is W[2]-hard when
parameterized by the distance to graphs that are a disjoin union of cliques.

Corollary 4 (�). Maximum Happy Vertices and Maximum Happy

Edges are both W[2]-hard with respect to parameters pathwidth, treewidth or
clique-width, distance to cographs, feedback vertex set number.

5 Maximum Happy Vertices and Node Multiway Cut

This section reveals the connection between Maximum Happy Vertices and
Node Multiway Cut. This connection is a natural supplement of the straight-
forward connection of the edge versions of the problems, Maximum Happy

Edges and Multiway Cut. It is more convenient for us to use a variation of
Node Multiway Cut, called Group Multiway Cut, where terminal groups
are used instead of singleton terminals.

Group Multiway Cut [6]
Input: A graph G and pairwise disjoint sets of terminals

{T1, T2, . . . , T�}, and an integer k.
Question: Is there a set S ⊆ V (G) of size at most k such that G \ S

has no u − v path for any u ∈ Ti, v ∈ Tj and i �= j?

We start with the following crucial lemma.

Lemma 1. Let G be a graph with precoloring p. Let H ⊆ H(G, p) be an arbitrary
subset of its potentially happy vertices. Then a coloring c extending p, so that
all vertices in H are happy with respect to c, exists if and only if there exists no
path u1, u2, . . . , ut in G, such that u1 and ut are precolored and p(u1) �= p(ut),
and for each i ∈ [t − 1], either ui or ui+1 is in H.

Proof Sketch. The basic idea of the proof is that happy vertices are incident only
to happy edges. Furthermore, two vertices of distinct colors cannot be connected
by a path containing only of happy edges. For the full formal proof we refer to
the full version of our paper. ��

158 I. Bliznets and D. Sagunov

Theorem 6. Let (G, p, k) be an instance of Maximum Happy Vertices.
Then (G, p, k) is a yes-instance of Maximum Happy Vertices if and only if
(G2[H(G, p)], {H1(G, p),H2(G, p), . . . ,H�(G, p)}, |H(G, p)|−k) is a yes-instance
of Group Multiway Cut.

Proof. Let (G, p, k) be a yes-instance of MHV. We show that (G2[H(G, p)],
{H1(G, p),H2(G, p), . . . ,H�(G, p)}, |H(G, p)| − k) is a yes-instance of Group

Multiway Cut. Since (G, p, k) is a yes-instance, there is a coloring c such that
at least k vertices of (G, p) are happy with respect to c. Let H be a set of any k
of these vertices, i.e. |H| = k and all vertices in H are happy with respect to c
in (G, p).

Observe that any path in G whose all edges are incident to at least one vertex
of H, corresponds to a simple path in G2[H]. Indeed, let u1, u2, . . . , ut be a path
in G such that ui ∈ H or ui+1 ∈ H for each i ∈ [t−1]. Let uH

1 , uH
2 , . . . , uH

t1 be the
subsequence of u1, . . . , ut of vertices in H (H ∩ {u1, . . . , ut} = {uH

1 , . . . , uH
t1}).

Note that for each i ∈ [t1 − 1], uH
i and uH

i+1 are either consequent in u1, . . . , ut

or there is only one vertex between them in u1, . . . , ut. That is, there is an edge
between uH

i and uH
i+1 in G2[H]. Thus, uH

1 , uH
2 , . . . , uH

t1 is a path in G2[H]. Vice
versa, any simple path in G2[H] corresponds to paths in G which edges are
incident to vertices in H.

Since all vertices H are happy in (G, p), by Lemma 1, there is no path between
differently precolored vertices with all edges incident to at least one vertex in
H. Consider G2[H] and suppose that there exists a path between vertices v
and w in G2[H], such that v ∈ Hi(G, p) and w ∈ Hj(G, p), and i �= j. As
shown above, this path corresponds to a path between v and w in G, and all
edges of this path are incident to H. Since v ∈ Hi(G, p), there is a precolored
vertex v′ ∈ N [v] with p(v′) = i. Similarly, there is a w′ ∈ N [w] with p(w′) =
j. There is a path between v′ and w′ in G with all edges incident to H and
p(v′) �= p(w′), a contradiction. Hence, no vertices in different sets of terminals
Hi(G, p) and Hj(G, p) are connected in G2[H]. Thus, H(G, p) \ H is an answer
to (G2[H(G, p)], {Hi(G, p)}, |H(G, p)| − k), so it is a yes-instance of Group

Multiway Cut.
The proof in the other direction is similar: if S, (|S| = |H(G, p)| − k), is

a solution to the instance of Group Multiway Cut, then all k vertices in
H(G, p) \ S can be happy simultaneously in (G, p). ��

Theorem 6 shows the importance of potentially happy vertices in the input of
MHV. Other vertices are playing role of common neighbours or precolored neigh-
bours for potentially happy vertices. Note that the sets H(G, p) and Hi(G, p) are
computable in polynomial time. Thus, an instance of MHV can be compressed
in order to contain only useful information about potentially happy vertices. We
formulate this in the following corollary.

Corollary 5 (�). Maximum Happy Vertices, parameterized by the number
of potentially happy vertices h, (i) admits a polynomial compression into Group

Multiway Cut with h vertices and (ii) admits a kernel with O(h2) vertices and
edges.

On Happy Colorings, Cuts, and Structural Parameterizations 159

Another interesting consequence of Theorem 6, along with Corollary 1, is a
lower bound on algorithms for Group Multiway Cut parameterized by clique-
width.

Corollary 6. Group Multiway Cut is W[1]-hard when parameterized by the
clique-width of the input graph.

Proof. By Corollary 1, Maximum Happy Vertices is W[1]-hard when param-
eterized by the clique-width of the input graph. Take an instance (G, p, k) of
MHV. As shown by Todinca in [21], if G has clique-width t, then the power
Gc of G has clique-width at most 2tct. Hence, G2 has clique-width at most 2t2t.
Then, as shown by Courcelle and Olariu in [9], every induced subgraph of a graph
of clique-width t has clique-width at most t, so G2[H(G, p)] has clique-width at
most 2t2t as well. So, in an instance (G2[H(G, p)], {Hi(G, p)}, |H(G, p)| − k) of
Group Multiway Cut equivalent to the instance (G, p, k), the clique-width
of the input graph is bounded if the clique-width of G is bounded. Since the
reduction from MHV to Group Multiway Cut is polynomial, the corollary
statement follows. ��

In contrast, we have that Node Multiway Cut is in FPT when parame-
terized by the clique-width of the input graph. We present an algorithm solving
Node Multiway Cut using dynamic programming on a w-expression of G.

Theorem 7 (�). Node Multiway Cut can be solved in (w + 3)2w · nO(1), if
a w-expression of G is given.

6 Polynomial Kernel for Maximum Happy Vertices

In this section, we present a polynomial kernel for MHV parameterized by the
distance to clique. This partially answers a question of Misra and Reddy in [19],
where they also showed FPT algorithms for both MHV and MHE parameterized
by this parameter.

Theorem 8 (�). Maximum Happy Vertices admits a kernel with O(d3) ver-
tices, where d is the distance to clique parameter, and the parameter and a clique
modulator of G are not given explicitly.

References

1. Agrawal, A.: On the parameterized complexity of happy vertex coloring. In:
Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp.
103–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78825-8 9

2. Aravind, N.R., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy
vertex coloring problems for trees. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.)
IWOCA 2016. LNCS, vol. 9843, pp. 281–292. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44543-4 22

https://doi.org/10.1007/978-3-319-78825-8_9
https://doi.org/10.1007/978-3-319-44543-4_22
https://doi.org/10.1007/978-3-319-44543-4_22

160 I. Bliznets and D. Sagunov

3. Aravind, N., Kalyanasundaram, S., Kare, A.S., Lauri, J.: Algorithms and hardness
results for happy coloring problems. arXiv preprint arXiv:1705.08282 (2017)

4. Belmonte, R., Golovach, P.A., van ’t Hof, P., Paulusma, D.: Parameterized com-
plexity of two edge contraction problems with degree constraints. In: Gutin, G.,
Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 16–27. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03898-8 3

5. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm
for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2015)

6. Chitnis, R., Fomin, F.V., Lokshtanov, D., Misra, P., Ramanujan, M.S., Saurabh, S.:
Faster exact algorithms for some terminal set problems. In: Gutin, G., Szeider, S.
(eds.) IPEC 2013. LNCS, vol. 8246, pp. 150–162. Springer, Cham (2013). https://
doi.org/10.1007/978-3-319-03898-8 14

7. Choudhari, J., Reddy, I.V.: On structural parameterizations of happy coloring,
empire coloring and boxicity. In: Rahman, M.S., Sung, W.-K., Uehara, R. (eds.)
WALCOM 2018. LNCS, vol. 10755, pp. 228–239. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75172-6 20

8. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM J. Comput. 34(4), 825–847 (2005)

9. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1–3), 77–114 (2000)

10. Cygan, M., et al.: Parameterized Algorithms, vol. 3. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-319-21275-3

11. Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating
set is fixed parameter tractable in claw-free graphs. Theor. Comput. Sci. 412(50),
6982–7000 (2011). https://doi.org/10.1016/j.tcs.2011.09.010

12. Diestel, R.: Graph Theory. Springer, Heidelberg (2018). https://doi.org/10.1007/
978-3-662-53622-3

13. Gao, H., Gao, W.: Kernelization for maximum happy vertices problem. In: Ben-
der, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol.
10807, pp. 504–514. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77404-6 37

14. Hlineny, P., Oum, S.I., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Comput. J. 51(3), 326–362 (2007)

15. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2008)

16. Jansen, K., Scheffler, P., Woeginger, G.: The disjoint cliques problem. RAIRO-
Oper. Res. 31(1), 45–66 (1997)

17. Lackner, M., Pichler, R., Rümmele, S., Woltran, S.: Multicut on graphs of bounded
clique-width. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 115–126.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31770-5 11

18. Lewis, R., Thiruvady, D., Morgan, K.: Finding happiness: an analysis of the max-
imum happy vertices problem. Comput. Oper. Res. 103, 265–276 (2019)

19. Misra, N., Reddy, I.V.: The parameterized complexity of happy colorings. In:
Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp.
142–153. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78825-8 12

20. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall, Upper Saddle River (1981)

21. Todinca, I.: Coloring powers of graphs of bounded clique-width. In: Bodlaender,
H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 370–382. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39890-5 32

http://arxiv.org/abs/1705.08282
https://doi.org/10.1007/978-3-319-03898-8_3
https://doi.org/10.1007/978-3-319-03898-8_14
https://doi.org/10.1007/978-3-319-03898-8_14
https://doi.org/10.1007/978-3-319-75172-6_20
https://doi.org/10.1007/978-3-319-75172-6_20
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2011.09.010
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-319-77404-6_37
https://doi.org/10.1007/978-3-319-77404-6_37
https://doi.org/10.1007/978-3-642-31770-5_11
https://doi.org/10.1007/978-3-319-78825-8_12
https://doi.org/10.1007/978-3-540-39890-5_32

On Happy Colorings, Cuts, and Structural Parameterizations 161

22. Xu, Y., Goebel, R., Lin, G.: Submodular and supermodular multi-labeling, and
vertex happiness. CoRR (2016)

23. Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum
happy vertices and edges problems. In: Xu, D., Du, D., Du, D. (eds.) COCOON
2015. LNCS, vol. 9198, pp. 159–170. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21398-9 13

24. Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theor. Comput.
Sci. 593, 117–131 (2015)

25. Zhang, P., Xu, Y., Jiang, T., Li, A., Lin, G., Miyano, E.: Improved approximation
algorithms for the maximum happy vertices and edges problems. Algorithmica
80(5), 1412–1438 (2018)

https://doi.org/10.1007/978-3-319-21398-9_13
https://doi.org/10.1007/978-3-319-21398-9_13

Shortest Reconfiguration of Matchings

Nicolas Bousquet1, Tatsuhiko Hatanaka2, Takehiro Ito2,
and Moritz Mühlenthaler2(B)

1 CNRS, Laboratoire G-SCOP, Grenoble-INP, Univ. Grenoble-Alpes,
Grenoble, France

nicolas.bousquet@grenoble-inp.fr
2 Fakultät für Mathematik, TU Dortmund University, Dortmund, Germany

moritz.muehlenthaler@math.tu-dortmund.de

Abstract. Imagine that unlabelled tokens are placed on edges forming
a matching of a graph. A token can be moved to another edge pro-
vided that the edges containing tokens remain a matching. The distance
between two configurations of tokens is the minimum number of moves
required to transform one into the other. We study the problem of com-
puting the distance between two given configurations. We prove that
if source and target configurations are maximal matchings, then the
problem admits no polynomial-time sublogarithmic-factor approxima-
tion algorithm unless P = NP. On the positive side, we show that for
matchings of bipartite graphs the problem is fixed-parameter tractable
parameterized by the size d of the symmetric difference of the two given
configurations. Furthermore, we obtain a dε-factor approximation algo-
rithm for the distance of two maximum matchings of bipartite graphs for
every ε > 0. The proofs of our positive results are constructive and can
hence be turned into algorithms that output shortest transformations.
Both algorithmic results rely on a close connection to the Directed
Steiner Tree problem. Finally, we show that determining the exact
distance between two configurations is complete for the class DP, and
determining the maximum distance between any two configurations of a
given graph is DP-hard.

Keywords: Matchings · Reconfiguration ·
Fixed-parameter tractability · Approximation hardness

1 Introduction

A reconfiguration problem asks for the existence of a step-by-step transformation
between two given configurations, where in each step we apply some simple mod-
ification to the current configuration. The set of configurations may for instance
be the set of k-colorings [3,10] or independent sets [15,16,18] of a graph, or the

N. Bousquet—This author was partially supported by ANR project GrR (ANR-18-
CE40-0032).
T. Ito—Partially supported by JST CREST Grant Number JPMJCR1402, and JSPS
KAKENHI Grant Numbers JP18H04091 and JP19K11814, Japan.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 162–174, 2019.
https://doi.org/10.1007/978-3-030-30786-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_13

Shortest Reconfiguration of Matchings 163

G
Ms

Mt

M0

M1

M2 M3

M4

M5

Fig. 1. A reconfiguration sequence Ms = M0, M1, . . . , M4 = Mt of matchings in a
graph G.

set of satisfying assignments of a Boolean formula [12]. A suitable modification
may for example alter the color of a single vertex, or the truth value of a variable
in a satisfying assignment. For recent surveys on reconfiguration problems the
reader is referred to [14] or [20].

Recently, there has been considerable interest in the complexity of find-
ing shortest transformations between configurations. Examples include finding
a shortest transformation between triangulations of planar point sets [22] and
simple polygons [1], configurations of the Rubik’s cube [6], and satisfying assign-
ments of Boolean formulas [19]. For all of these problems, except for the last one,
we can decide efficiently if a transformation between two given configurations
exists. However, deciding if there is a transformation of at most a given length
is NP-complete. In particular, the flip distance of triangulations of planar point
sets is known to be APX-hard [22] and, on the positive side, fixed-parameter
tractable (FPT) in the length of the transformation [17]. Our reference problem
is the task of computing the length of a shortest transformation between two
matchings of a graph.

Reconfiguration of Matchings. A matching M of a graph is a set of pair-
wise independent edges. (Fig. 1 shows the six different matchings of the graph
G.) A matching is inclusion-wise maximal if it is not properly contained in
another matching. We may consider a matching as a placement of (unlabeled)
tokens on independent edges. Then the Token Jumping (TJ) operation pro-
vides an adjacency relation on the set of matchings of a graph, all having the
same cardinality1: Two matchings M and M ′ of a graph G are adjacent (under

1 There is another well-studied operation called Token Sliding (TS). In this paper, we
employ TJ as the default operation. However, some of our results apply also to TS.

164 N. Bousquet et al.

TJ) if one can be obtained from the other by relocating a single token, that is,
if |M \ M ′| = 1 and |M ′ \ M | = 1. We say that a sequence M0,M1, . . . ,M�

of matchings of G is a reconfiguration sequence of length � from M to M ′, if
M0 = M , M� = M ′, and the matchings Mi−1 and Mi are adjacent for each
i ∈ {1, 2, . . . , �}; see the sequence M0,M1, . . . ,M4 in Fig. 1 as an example. The
following question is often referred to as the reachability variant of the matching
reconfiguration problem:

Matching Reconfiguration
Input: Graph G and two matchings Ms,Mt of G.
Question: Is there a reconfiguration sequence from Ms to Mt?

Matching Reconfiguration is known as an early example of a reconfig-
uration problem that admits a non-trivial polynomial-time algorithm [15]. For
Yes-instances, the algorithm from [15] gives a bound of O(n2) on the length
of a transformation. The distance between two matchings is the length of a
shortest transformation between them (under TJ). If there is no transformation
between two matchings, we regard their distance as infinity. In this paper we
study the complexity of the following optimization problem related to matching
reconfiguration, which is also referred to as the shortest variant.

Matching Distance
Input: Graph G and two matchings Ms,Mt of G.
Task: Compute the distance between Ms and Mt.

We also study two related exact problems. The first is the exact version of
Matching Distance, which takes as input also the supposed distance � of the
given matchings.

Exact Matching Distance
Input: Graph G, matchings Ms,Mt of G, and number � ∈ N.
Question: Is � equal to the distance between Ms and Mt?

We can similarly define Exact Matching Diameter: Given a graph G and
numbers k, � ∈ N, decide if the maximum distance between any two matchings
of G of cardinality k is equal to �.

Related Results. Despite recent intensive studies on reconfiguration problems
(see, e.g., [20]), most known algorithmic (positive) results are obtained for reach-
ability variants. However, such algorithms sometimes also give answers to the
corresponding shortest variants: if the algorithm constructs an actual reconfig-
uration sequence which, at any step, transforms an edge of the initial matching
into an edge of the target one, then the transformation must indeed be a shortest
one.

Generally speaking, finding shortest transformations is more difficult when
we need a detour, a transformation that touches an element that is not in the
symmetric difference of the source and target configurations. For such a detour-
required case, only a few polynomial-time algorithms are known for shortest

Shortest Reconfiguration of Matchings 165

variants, e.g., satisfying assignments of a certain Boolean formulas [19], and inde-
pendent sets under the TS operation for caterpillars [24]. Note that Matching
Reconfiguration belongs to the detour-required case (in the example of Fig. 1,
we need to use the edge in E(G) \ (Ms ∪ Mt) in any reconfiguration sequence).

The reconfiguration of matchings is a special case of the reconfiguration of
independent sets of a graph. To see this, recall that matchings of a graph corre-
spond to independent sets of its line graph. Therefore, by a result of Kamiński
et al. [16], we can solve Matching Distance in polynomial time if the line
graph of a given graph is even-hole-free. Note that in this case no detour is
required.

Our Results. Although the reconfiguration of independent sets is one of the
most well-studied reconfiguration problems (see, e.g., a survey [20]), to the best of
our knowledge, the shortest variant of independent sets under the TJ operation is
known to be solvable only for even-hole-free graphs, as mentioned above. Thus,
in this paper, we start a systematic study of the complexity of finding short-
est reconfiguration sequences between matchings, and more generally, between
independent sets of a graph.

Our first result shows that there is no polynomial-time algorithm that com-
putes a sublogarithmic-factor approximation of the distance between two match-
ings unless P = NP. The result implies approximation hardness for the length of
shortest transformations between b-matchings of a graph and shortest transfor-
mations between independent sets on any graph class containing line graphs of
bipartite graphs. Note that maximal subclasses of line graphs of bipartite graphs
that have been considered in the literature are either trivial (e.g., disjoint unions
of cliques) or even-hole-free, so our result implies a sharp complexity bound.

Theorem 1. Matching Distance admits no polynomial-time o(log n)-factor
approximation algorithm, unless P = NP, even for maximal matchings of bipar-
tite graphs of maximum degree three.

The proof of Theorem1 is provided in Sect. 2. Our main result is positive. We
show that determining the distance between matchings of bipartite graphs is
FPT, where the parameter is the size d of the symmetric difference of the two
input matchings. An outline of the algorithm is provided in Sect. 3.1. We distin-
guish two main cases: either a shortest reconfiguration sequence contains a non-
inclusion-wise maximal matching or not. For the former case we give a polyno-
mial time algorithm. Note that this algorithm implies in particular a polynomial-
time algorithm for finding a shortest transformation between two matchings if
at least one of the two matchings is not inclusion-wise maximal. In order to
deal with the latter case, we give a reduction from Matching Distance to the
problem Directed Steiner Tree, where the number of terminals is of the
order of the size of the symmetric difference of the source and target matchings.
By putting everything together we obtain our main result.

Theorem 2. Matching Distance in bipartite graphs can be solved in time 2d ·
nO(1), where d is the size of the symmetric difference of the two given matchings.

166 N. Bousquet et al.

Theorem 2 raises hopes for possible generalizations, e.g., an FPT algorithm
for finding shortest transformations between matchings in general graphs or
between independent sets of claw-free graphs. For maximum matchings, our
reduction to Directed Steiner Tree is approximation-preserving, which
implies the following.

Corollary 1. Matching Distance restricted to maximum matchings in bipar-
tite graphs admits a polynomial-time dε-factor approximation algorithm for every
ε > 0, where d is the size of the symmetric difference of two given matchings.

The proofs of Theorem 2 and Corollary 1 are given in Sect. 3.
We finally show that there is a polynomial-time algorithm that decides if

the maximum distance between any two matchings of a graph is finite. In con-
trast, we also show that the problems Exact Matching Distance and Exact
Matching Diameter are both hard for the class DP, a class containing both
NP and coNP.

Theorem 3. The problem Exact Matching Distance is DP-complete and
the problem Exact Matching Diameter is DP-hard.

The class DP has been introduced by Papadimitriou and Yannakakis in [21]
and is a natural complexity class for exact problems and critical problems. It was
proved by Frieze and Teng that the related problem of deciding the diameter
of the graph of a polyhedron is also DP-hard [11]. Section 4 is devoted to the
proof of Theorem3. Due to space restriction, proofs of statements marked by
(∗) are not included in this extended abstract. We would like to remark that
the NP-hardness of Matching Distance has been established independently
in [13].

Notation. Let G = (V,E) be a graph. Unless stated otherwise, graphs are
simple. For standard definitions and notation related to graphs, we refer the
reader to [7]. We denote by A� B, the symmetric difference of two sets A and
B. That is, A� B := (A \ B) ∪ (B \ A). Let M ⊆ E be a matching of G.
A vertex of G that is not incident to any edge in M is called M -exposed (or
M -free), otherwise it is called matched or covered.

2 Approximation Hardness of Matching Distance

To prove Theorem 1, we first show the following slightly less general result.

Theorem 4. Matching Distance admits no o(log n)-factor approximation
unless P = NP, even when restricted to maximum matchings on bipartite graphs
of maximum degree three.

We show that a sublogarithmic-factor approximation for Matching Dis-
tance yields a sublogarithmic-factor approximation of Set Cover. Since Set
Cover is not approximable within a sublogarithmic factor, unless P = NP [8],

Shortest Reconfiguration of Matchings 167

Theorem 4 follows. Note that Theorem 4 also holds for the TS operation if M1

and M2 are maximum2. To obtain Theorem 1, we need to slightly alter the
reduction used in the proof of Theorem4 to transform maximum matchings into
maximal matchings. (We refer the reader to the full version [4] for the detailed
construction).

Let us briefly recall some definitions related to the Set Cover problem. An
instance I = (U,S) of Set Cover is given by a set U of items and a family S
of subsets of U . The task is to find the minimum number of sets in S that are
required to cover U . We denote this number by OPT(I) and let n := |U | and
m := |S|. Furthermore, let d := maxS∈S{|S|} be the maximum cardinality of a
set in S and, for each u ∈ U , let fu := |{S ∈ S | u ∈ S}| be the frequency of u,
and let f := maxu∈U{fu} be frequency of I.

Let us now give the reduction and the two main lemmas that guarantee the
safeness of our construction.

Reduction. We construct from the Set Cover instance I = (U,S) an instance
I ′ = (G,M1,M2) of Matching Distance as follows. For each item u ∈ U ,
we create a cycle Cu of length four and label one of the vertices by cu. Then,
for each set S ∈ S, we add a path PS of length L := |U |(2 + f + d) and label
the end-points pS and qS . We may assume without loss of generality that L is
even. Now, for each set S ∈ S and item u ∈ U , we join pS to cu by an edge if
and only if u ∈ S. The two matchings M1 and M2 are constructed as follows.
For each S ∈ S, we leave qS exposed and add every second other edge to both
matchings. For each u ∈ U there are two different perfect matchings of Cu and
we add one to M1 and the other to M2. Note that the graph G is bipartite and,
since L is even, only the vertices qS are M1- and M2-exposed for S ∈ S. In
order to get the maximum degree down to three, we have to use a slightly more
elaborate construction for the part of G that corresponds to the incidence graph
of the Set Cover instance. This completes the construction of the instance I ′

of Matching Distance.
Observe that the construction of I ′ performed in polynomial time. In order

to change the matching on a cycle Cu, it is necessary to move each token on
some path PS such that u ∈ S. Intuitively, we think of L as a very large number,
so in order to change the matching M1 on each cycle Cu, u ∈ U , it is desirable to
minimize the number of times we have to move the tokens on the long paths PS ,
S ∈ S. In order to obtain the approximation hardness result in Theorem4, we
establish the following correspondences between reconfiguration sequences from
M1 to M2 and covers of U by sets in S:

Lemma 1 (∗). Let C ⊆ S be a cover of U . Then there is a reconfiguration
sequence from M1 to M2 of length at most 2L|C| + 2|U |(2 + f + d).

2 If we delete an edge e of a maximum matching, we can only replace it by an edge
e′ sharing an endpoint with e. So for maximum matchings, TJ and TS rules are
equivalent.

168 N. Bousquet et al.

Lemma 2 (∗). There is a polynomial-time algorithm A′ that constructs from
a reconfiguration sequence τ from M1 to M2 of length |τ | a cover C ⊆ S of U of
cardinality at most |τ |/2L.

Combining Lemmas 1 and 2, we have that a o(log |I ′|)-factor approxima-
tion algorithm for Matching Distance yields a o(log n)-factor approximation
algorithm for Set Cover, which contradicts the approximation hardness result
from [8].

3 Matching Distance in Bipartite Graphs is FPT

The goal of this section is Theorem 2, which states that the distance of two
matchings of a bipartite graph is FPT, where the parameter is the size d of the
symmetric difference of the source and target matchings. Let us fix an instance
(G,Ms,Mt) of Matching Distance and let us assume that the graph G =
(V,E) is bipartite with bipartition V = (U,W). According to [15, Proposition 1]
we may check in polynomial time whether a transformation from Ms to Mt exists,
so let us assume in the following such transformation exists. In the remainder of
this section we denote by C (resp., P) be the set of (Ms,Mt)-alternating cycles
(resp., (Ms,Mt)-alternating paths) in (V,Ms �Mt).

3.1 Overview of the Algorithm

There are two distinct main cases we need to consider.

Case 1 (A shortest transformation from Ms to Mt visits a matching that is not
inclusion-wise maximal).
We show that in this case we can find a shortest transformation from Ms to Mt

in polynomial time, which may seem quite surprising in the light of the hardness
result given in Theorem 1. We first observe that the following holds:

Lemma 3 (∗). A shortest transformation between two matchings can be com-
puted in polynomial time if at least one of them is not inclusion-wise maximal.

To prove Lemma 3, we show that the distance of two matchings Ms and Mt,
at least one of which is not inclusion-wise maximal, is either |Ms �Mt|/2 or
|Ms �Mt|/2 + 1. We can check in polynomial time which case applies. Note
that Lemma 3 also holds if we do not assume that the input graph is bipartite.
The hard part of Case 1 is to prove the following lemma (which only holds for
bipartite graphs):

Lemma 4 (∗). There is a polynomial-time algorithm that outputs a shortest
transformation from Ms to Mt via a matching M that is not inclusion-wise
maximal, or indicates that no such transformation exists.

Shortest Reconfiguration of Matchings 169

Let us briefly summarize the algorithm. Since a shortest transformation from
Ms to Mt visits a non-inclusion-wise maximal matching, we have that Ms and
Mt cannot be maximum, so there is at least one Ms-augmenting path. Note that,
given an Ms-augmenting path P , we may transform Ms into a non-inclusion-
wise maximal matching by sliding tokens along P . We may then find a shortest
transformation from the resulting matching to Mt in polynomial time accord-
ing to Lemma 3. We show that it suffices to find an Ms-augmenting path that
gives an overall shortest transformation. This task reduces to a shortest-path-
computation in a suitable weighted digraph.

Case 2 (No shortest transformation from Ms to Mt visits a matching that is not
inclusion-wise maximal).
Let us first assume that Ms and Mt are maximum. We reduce the task of finding
a shortest transformation from Ms to Mt to the problem Directed Steiner
Tree, which is defined as follows.

Directed Steiner Tree
Input: Directed graph D = (V,A), integral arc weights c ∈ Z

A
≥0, root

vertex r ∈ V , and terminals T ⊆ V .
Task: Find a minimum-cost directed tree in D that connects the root r
to each terminal.

The reduction to Directed Steiner Tree and its correctness are sketched
in Sect. 3.2. The main idea is to construct an instance of Directed Steiner
Tree such that each arc of positive cost corresponds to a token move and its cost
corresponds to how many times the token has to be moved in a transformation
from Ms to Mt. It is known that Directed Steiner Tree parameterized by
the number of terminals is FPT [2,9]. Our reduction gives at most d/2 terminals.
We employ the FPT algorithm from [2] to obtain the following result.

Lemma 5. Let Ms and Mt be maximum. Then there is an algorithm that finds
in time 2d/2 · nO(1) a shortest transformation from Ms to Mt, or indicates that
no such transformation exists.

In order to deal with the case that Ms and Mt are not maximum, we first
recall the following lemma from [15].

Lemma 6 ([15, Lemma 1]). If Ms and Mt are maximum then there is a trans-
formation from Ms to Mt if and only if, for each cycle C ∈ C, there is an
Ms-alternating path in G connecting an Ms-exposed vertex to C.

Note that we assume that for each shortest transformation from Ms to Mt, each
intermediate matching is inclusion-wise maximal. Therefore, in a shortest trans-
formation from Ms to Mt, we have to use the algorithm from the constructive
proof of Lemma 6 to transform the cycles in C. Hence, in such a transformation,
we have to consider for each cycle C ∈ C the two choices that C is reconfig-
ured using either an Ms-exposed vertex from U or from W . Since each cycle has
length at least four, we have that C contains at most d/4 cycles.

170 N. Bousquet et al.

We branch over all of the at most 2d/4 possible choices. For each choice,
we reduce the problem to the case where Ms and Mt are maximum as follows.
We create two sub-instances: one for the cycles C1 that have to be reconfigured
using exposed vertices in U and one for the cycles C2 that have to be reconfigured
using exposed vertices in W . For the sub-instance of cycles in C1, we delete all
the exposed vertices in W and the matching Ms then becomes maximum. (We
perform a similar reduction in the other case). We finally show that no transfor-
mation maintaining maximal matchings all along is better than combining the
optimal solutions of the two sub-instances and obtain the following result.

Lemma 7 (∗). Suppose no shortest transformation from Ms to Mt visits a
matching that is not inclusion-wise maximal. Then there is an algorithm that
finds in time 2d · nO(1) a shortest transformation from Ms to Mt.

Hence, Theorem 2 follows from Lemmas 4 and 7. Note that if Ms and Mt

are maximum, then we may use the approximation algorithm for Directed
Steiner Tree from [5] instead of the exact algorithm from [2]. Since our
reduction to Directed Steiner Tree preserves costs, we obtain from an
α-approximate solution of the Directed Steiner Tree instance an α-
approximate solution to Matching Distance, which implies Corollary 1. Our
techniques are not likely to generalize to matchings in non-bipartite graphs in a
straight-forward way. We leave as an open problem whether finding a shortest
transformation between two matchings in non-bipartite graphs is FPT in the
size of the symmetric difference of source and target matchings.

3.2 Proof of Lemma 5: Reduction to Directed Steiner Tree

Let Ms and Mt be maximum matchings of G. We will reduce the task of finding
a shortest transformation from Ms to Mt to the Directed Steiner Tree
problem. Note that if some edge e is not contained in any maximum matching
of G, then we cannot move any token to e and e can be deleted from the graph.
Therefore, we may assume that every edge of G is contained in some maximum
matching. Let Xs be the set of Ms-exposed vertices of G. By the properties of the
Edmonds-Gallai decomposition [23, Ch. 24.4b], we may assume the following3.

Proposition 1 (∗). Without loss of generality we have Xs ⊆ U .

Reduction. The main feature of the reduction is that it preserves costs. That is,
an optimal Steiner tree of cost α corresponds to a shortest transformation from
Ms to Mt of length at most α. We construct an instance I ′ := (D, c, r, T) of
Directed Steiner Tree as follows. The digraph D = (U ′, A) is given by

U ′ := {v ∈ U | ∃ an even-length Ms-alternating path from Xs to v} ∪ {r}
A := {uw | u,w ∈ U, ∃v ∈ W : uv ∈ E \ Ms, vw ∈ Ms} ∪ R,

3 Due to space restrictions, the definition of Edmonds-Gallai decomposition is not
included in this extended abstract, see [4] for more details.

Shortest Reconfiguration of Matchings 171

where r is a new vertex and R := {rv | v ∈ Xs}. For an arc uw ∈ A, let the
weight cuw be given by

cuw :=

⎧
⎪⎨

⎪⎩

0 if u = r,

1 if there are two edges uv ∈ Mt and vw in Ms.

2 otherwise.

The set T of terminals is given by T := U ′ ∩ ⋃
Z∈C∪P V (Z). Note that any two

distinct items in P ∪ C are vertex-disjoint. The root of the Steiner tree is the
vertex r. This completes the construction of the instance I ′.

Let us now give an outline of the proof of Lemma5, which states that finding
a shortest transformation between two maximum matchings Ms and Mt of a
bipartite graph is fixed parameter tractable, where the parameter is the size d
of the symmetric difference of Ms and Mt.

We first observe that we may restrict our attention to Steiner trees with some
structure on the paths P and cycles C of (V,Ms �Mt).

Proposition 2 (∗). Let F be a Steiner tree for I ′. Then we can obtain in
polynomial time a Steiner tree F ′ for I ′ of cost at most c(F) with the following
properties.

(i) For each P ∈ P, the tree F ′ contains all arcs in A(P).
(ii) For each C ∈ C, the tree F ′ misses exactly one arc of A(C).
(iii) For each P ∈ P, the root r is joined to the Ms-exposed vertex of P .

The proof of next lemma shows how to construct from a Steiner tree F ′ of
cost c(F ′) a reconfiguration sequence of length at most c(F ′).

Lemma 8 (∗). Let F ′ be a Steiner tree for I ′. Then we can construct in poly-
nomial time a transformation from Ms to Mt of length at most c(F ′).

Let us sketch the proof of Lemma 8. If F ′ does not satisfy the properties of
Proposition 2, then we may find in polynomial time a Steiner tree F for I ′ of cost
at most c(F ′) that does. We perform a DFS traversal of F giving a preference
to visiting arcs with largest weight. Note that we visit each arc of F twice, once
going “down” the tree and once going “up”. Each arc of weight at least one
corresponds to a token and the arc-weight specifies how often the corresponding
token is moved during the traversal of F . When we traverse an arc of weight
one going down the tree, then we move a token to its target destination, so we
perform no token move when backtracking. On the other hand, an arc of weight
two corresponds to moving a token away from its target position, so we have to
undo the move when backtracking. The placement of the terminals on the items
in C ∪ P ensures that after the traversal of F , all tokens have been moved to
their target positions.

From Lemma 8 and the next lemma we may conclude that the shortest length
of a transformation from Ms to Mt equals the optimal cost of a Steiner tree for I ′.

172 N. Bousquet et al.

Lemma 9 (∗). Let M0,M1, . . . ,Mm be a transformation of length m from Ms

to Mt. Then there is a Steiner tree F of I ′ such that c(F) ≤ m.

We combine our previous arguments to prove Lemma5. The construction of
I ′ can be performed in polynomial time. Moreover, the number of terminals of I ′

is at most d/2. So the Directed Steiner Tree algorithm from [2] computes
an optimal Steiner tree F ∗ of I ′ in time 2d/2 · nO(1). Lemma 8 ensures that
F ∗ can be turned into an transformation between Ms and Mt in polynomial
time. Lemma 9 ensures that this transformation is of the shortest length. Finally,
since the construction is polynomial, the approximation algorithm for Directed
Steiner Tree from [5] yields Corollary 1.

4 Exact Distance and Diameter

We consider the problems Exact Matching Distance and Exact Matching
Diameter. Before presenting our hardness results for these problems, we first
prove that we can decide in polynomial if the maximal distance of any two
matchings of a graph is finite. It will be convenient to consider the reconfiguration
graph Mk(G) of matchings of a graph G, which is given as follows.

V (Mk(G)) := {M ⊆ E | M is a matching in G, |M | = k}
E(Mk(G)) := {MN | M,N ∈ V (Mk(G)), |M �N | = 2}

We show that for k ≥ 0 we can decide in polynomial time if Mk(G) is
connected. First suppose that k is less than the size of a maximum match-
ing of G. Then we can transform any matching of size k into one that is not
inclusion-wise maximal by sliding tokens along an augmenting path. Hence, by
the algorithm given in the proof of Lemma3, the graph Mk(G) is connected.
Now suppose that k is equal to the size of a maximum matching of G and con-
sider the Edmonds-Gallai decomposition A,D,C of the vertex set of G, where
C are the vertices that are covered by any maximum matching [23, Ch. 24.4b].
By showing that Mk(G) is connected if and only if the graph G[C] has a unique
perfect matching we obtain the following result.

Theorem 5 (∗). There is a polynomial-time algorithm that, given a graph G
and a number k ∈ N, decides if Mk(G) is connected.

To obtain hardness results for Exact Matching Distance and Exact
Matching Diameter it suffices to consider maximum matchings. By using a
similar construction to the one from Sect. 2 we show that Exact Matching
Distance and Exact Matching Diameter are hard for the class DP, which
is given by DP := {L1 ∩L2 | L1 ∈ NP, L2 ∈ coNP}. We reduce from the problem
Exact Vertex Cover, which asks whether the minimum size of a vertex cover
of a graph is equal to a given number �. Our construction guarantees that, if
we can decide the size of a shortest transformation, then we can decide the size
of a minimum vertex cover. Since Exact Matching Distance is in DP (the
question “is the distance of two matchings in Mk(G) at most �” being in NP),
Theorem 3 follows.

Shortest Reconfiguration of Matchings 173

References

1. Aichholzer, O., Mulzer, W., Pilz, A.: Flip distance between triangulations of a
simple polygon is NP-complete. Discret. Comput. Geom. 54(2), 368–389 (2015).
https://doi.org/10.1007/s00454-015-9709-7

2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast sub-
set convolution. In: Proceedings of the Thirty-ninth Annual ACM Symposium on
Theory of Computing, pp. 67–74. ACM (2007). https://doi.org/10.1145/1250790.
1250801

3. Bonamy, M., Bousquet, N.: Recoloring graphs via tree decompositions. Eur. J.
Comb. 69, 200–213 (2018). https://doi.org/10.1016/j.ejc.2017.10.010

4. Bousquet, N., Hatanaka, T., Ito, T., Mühlenthaler, M.: Shortest reconfiguration of
matchings. CoRR abs/1812.05419 (2018)

5. Charikar, M., et al.: Approximation algorithms for directed Steiner problems. J.
Algorithms 33(1), 73–91 (1999). https://doi.org/10.1006/jagm.1999.1042

6. Demaine, E.D., Eisenstat, S., Rudoy, M.: Solving the Rubik’s cube optimally is
NP-complete. In: 35th Symposium on Theoretical Aspects of Computer Science.
STACS, vol. 96, pp. 24:1–24:13 (2018). https://doi.org/10.4230/LIPIcs.STACS.
2018.24

7. Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173, 3rd edn.
Springer, Heidelberg (2005)

8. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of
the 46th Annual ACM Symposium on Theory of Computing, pp. 624–633. ACM,
New York (2014). https://doi.org/10.1145/2591796.2591884

9. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–
207 (1971). https://doi.org/10.1002/net.3230010302

10. Feghali, C., Johnson, M., Paulusma, D.: A reconfigurations analogue of Brooks’
theorem and its consequences. J. Graph Theory 83(4), 340–358 (2016)

11. Frieze, A.M., Teng, S.H.: On the complexity of computing the diameter of
a polytope. Comput. Complex. 4(3), 207–219 (1994). https://doi.org/10.1007/
BF01206636

12. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectiv-
ity of Boolean satisfiability: computational and structural dichotomies. SIAM J.
Comput. 2330–2355 (2009). https://doi.org/10.1137/07070440X

13. Gupta, M., Kumar, H., Misra, N.: On the complexity of optimal matching reconfig-
uration. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM
2019. LNCS, vol. 11376, pp. 221–233. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-10801-4 18

14. van den Heuvel, J.: The complexity of change. In: Surveys in Combinatorics 2013,
pp. 127–160. Cambridge University Press (2013)

15. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011). https://doi.org/10.1016/j.tcs.2010.12.005

16. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theor. Comput. Sci. 439, 9–15 (2012). https://doi.org/10.
1016/j.tcs.2012.03.004

17. Li, S., Feng, Q., Meng, X., Wang, J.: An improved FPT algorithm for the flip
distance problem. In: 42nd International Symposium on Mathematical Foundations
of Computer Science (MFCS 2017), vol. 83, pp. 65:1–65:13 (2017). https://doi.org/
10.4230/LIPIcs.MFCS.2017.65

https://doi.org/10.1007/s00454-015-9709-7
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1016/j.ejc.2017.10.010
https://doi.org/10.1006/jagm.1999.1042
https://doi.org/10.4230/LIPIcs.STACS.2018.24
https://doi.org/10.4230/LIPIcs.STACS.2018.24
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1002/net.3230010302
https://doi.org/10.1007/BF01206636
https://doi.org/10.1007/BF01206636
https://doi.org/10.1137/07070440X
https://doi.org/10.1007/978-3-030-10801-4_18
https://doi.org/10.1007/978-3-030-10801-4_18
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.4230/LIPIcs.MFCS.2017.65
https://doi.org/10.4230/LIPIcs.MFCS.2017.65

174 N. Bousquet et al.

18. Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfigura-
tion on bipartite graphs. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 185–195. SIAM (2018)

19. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration
paths in the solution space of Boolean formulas. SIAM J. Discret. Math. 31(3),
2185–2200 (2017). https://doi.org/10.1137/16M1065288

20. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4:52) (2018).
https://doi.org/10.3390/a11040052

21. Papadimitriou, C.H., Yannakakis, M.: The complexity of facets (and some facets
of complexity). J. Comput. Syst. Sci. 28(2), 244–259 (1984). https://doi.org/10.
1016/0022-0000(84)90068-0

22. Pilz, A.: Flip distance between triangulations of a planar point set is APX-hard.
Comput. Geom. 47(5), 589–604 (2014). https://doi.org/10.1016/j.comgeo.2014.01.
001

23. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency, Algorithms
and Combinatorics, vol. 24. Springer, Heidelberg (2003)

24. Yamada, T., Uehara, R.: Shortest reconfiguration of sliding tokens on a caterpillar.
In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 236–
248. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6 19

https://doi.org/10.1137/16M1065288
https://doi.org/10.3390/a11040052
https://doi.org/10.1016/0022-0000(84)90068-0
https://doi.org/10.1016/0022-0000(84)90068-0
https://doi.org/10.1016/j.comgeo.2014.01.001
https://doi.org/10.1016/j.comgeo.2014.01.001
https://doi.org/10.1007/978-3-319-30139-6_19

Travelling on Graphs with Small Highway
Dimension

Yann Disser1, Andreas Emil Feldmann2(B), Max Klimm3,
and Jochen Könemann4

1 TU Darmstadt, Darmstadt, Germany
disser@mathematik.tu-darmstadt.de

2 Charles University in Prague, Prague, Czechia
feldmann.a.e@gmail.com

3 Humboldt-Universität zu Berlin, Berlin, Germany
max.klimm@hu-berlin.de

4 University of Waterloo, Waterloo, Canada
jochen@uwaterloo.ca

Abstract. We study the Travelling Salesperson (TSP) and the Steiner
Tree problem (STP) in graphs of low highway dimension. This graph
parameter was introduced by Abraham et al. [SODA 2010] as a model
for transportation networks, on which TSP and STP naturally occur for
various applications in logistics. It was previously shown [Feldmann et
al. ICALP 2015] that these problems admit a quasi-polynomial time
approximation scheme (QPTAS) on graphs of constant highway dimen-
sion. We demonstrate that a significant improvement is possible in the
special case when the highway dimension is 1, for which we present a
fully-polynomial time approximation scheme (FPTAS). We also prove
that STP is weakly NP-hard for these restricted graphs. For TSP we
show NP-hardness for graphs of highway dimension 6, which answers an
open problem posed in [Feldmann et al. ICALP 2015].

Keywords: Travelling Salesperson · Steiner Tree ·
Highway dimension · Approximation scheme · NP-hardness

1 Introduction

Two fundamental optimization problems already included in Karp’s initial
list of 21 NP-complete problems [33] are the Travelling Salesperson

Y. Disser—Supported by the ‘Excellence Initiative’ of the German Federal and State
Governments and the Graduate School CE at TU Darmstadt.
A. E. Feldmann—Supported by the Czech Science Foundation GAČR (grant #17-
10090Y), and by the Center for Foundations of Modern Computer Science (Charles
Univ. project UNCE/SCI/004).
M. Klimm—Supported by the German Research Foundation (DFG) as part of Math+

(project AA3-4).
J. Könemann—Supported by the Discovery Grant Program of the Natural Sciences
and Engineering Research Council of Canada.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 175–189, 2019.
https://doi.org/10.1007/978-3-030-30786-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_14

176 Y. Disser et al.

problem (TSP) and the Steiner Tree problem (STP). Given an undirected
graph G = (V,E) with non-negative edge weights w : E → R

+, the TSP asks
to find the shortest closed walk in G visiting all nodes of V . Besides its funda-
mental role in computational complexity and combinatorial optimization, this
problem has a variety of applications ranging from circuit manufacturing [29,41]
and scientific imaging [14] to vehicle routing problems [40] in transportation
networks. For the STP, a subset R ⊆ V of nodes is marked as terminals. The
task is to find a weight-minimal connected subgraph of G containing the ter-
minals. It has plenty of fundamental applications in network design including
telecommunication networks [42], computer vision [20], circuit design [30], and
computational biology [22,43], but also lies at the heart of line planning in public
transportation [17].

Both TSP and STP are APX-hard in general [6,13,21,34,39,45] implying
that, unless P = NP, none of these problems admit a polynomial-time approxi-
mation scheme (PTAS), i.e., an algorithm that computes a (1+ε)-approximation
in polynomial time for any given constant ε > 0. On the other hand, for restricted
inputs PTASs do exist, e.g., for planar graphs [5,18,28,36], Euclidean and Man-
hattan metrics [7,44], and more generally low doubling1 metrics [8].

We study another class of graphs captured by the notion of highway dimen-
sion, which was proposed by Abraham et al. [3]. This graph parameter models
transportation networks and is thus of particular importance in terms of appli-
cations for both TSP and STP. On a high level, the highway dimension is based
on the empirical observation of Bast et al. [9,10] that travelling from a point in a
network to a sufficiently distant point on a shortest path always passes through
a sparse set of “hubs”. The following formal definition is taken from [25] and
follows the lines of Abraham et al. [3].2 Here the distance between two vertices
is the length of the shortest path between them, according to the edge weights.
The ball Bv(r) of radius r around a vertex v contains all vertices with distance
at most r from v.

Definition 1. For a scale r ∈ R>0, let P(r,2r] denote the set of all vertex sets
of shortest paths with length in (r, 2r]. A shortest path cover for scale r is a
hitting set for P(r,2r], i.e., a set spc(r) ⊆ V such that |spc(r) ∩ P | �= ∅ for all
P ∈ P(r,2r]. The vertices of spc(r) are the hubs for scale r. A shortest path
cover spc(r) is locally h-sparse, if |spc(r) ∩ Bv(2r)| ≤ h for all vertices v ∈ V .
The highway dimension of G is the smallest integer h such that there is a locally
h-sparse shortest path cover spc(r) for every scale r ∈ R>0 in G.

The algorithmic consequences of this graph parameter were originally studied
in the context of road networks [1–3], which are conjectured to have fairly small

1 A metric is said to have doubling dimension d if for all r > 0 every ball of radius r
can be covered by at most 2d balls of half the radius r/2.

2 It is often assumed that all shortest paths are unique when defining the highway
dimension, since this allows good polynomial approximations of this graph parame-
ter [2]. In this work however, we do not rely on these approximations, and thus do
not require uniqueness of shortest paths.

Travelling on Graphs with Small Highway Dimension 177

highway dimension. Road networks are generally non-planar due to overpasses
and tunnels, and are also not Euclidean due to different driving or transmission
speeds. This is even more pronounced in public transportation networks, where
large stations have many incoming connections and plenty of crossing links, mak-
ing Euclidean (or more generally low doubling) and planar metrics unsuitable as
models. Here the highway dimension is better suited, since longer connections
are serviced by larger and sparser stations (such as train stations and airports)
that can act as hubs.

The main question posed in this paper is whether the structure of graphs
with low highway dimension admits PTASs for problems such as TSP and STP,
similar to Euclidean or planar instances. It was shown that quasi-polynomial
time approximation schemes (QPTASs) exist for these problems [24], i.e., (1 +
ε)-approximation algorithms with runtime 2polylog(n) assuming that ε and the
highway dimension of the input graph are constants. However it was left open
whether this can be improved to polynomial time.

1.1 Our Results

Our main result concerns graphs of the smallest possible highway dimension, and
shows that for these fully polynomial time approximation schemes (FPTASs)
exist, i.e., a (1 + ε)-approximation can be computed in time polynomial in both
the input size and 1/ε. Thus at least for this restricted case we obtain a significant
improvement over the previously known QPTAS [24].

Theorem 2. Both Travelling Salesperson and Steiner Tree admit an
FPTAS on graphs with highway dimension 1.

From an application point of view, so-called hub-and-spoke networks that can
typically be seen in air traffic networks can be argued to have very small highway
dimension close to 1: their star-like structure implies that hubs are needed at the
centers of stars only, where all shortest paths converge. From a more theoretical
viewpoint, we show that surprisingly the STP problem is non-trivial on graphs
highway dimension 1, since it is still NP-hard even on this very restricted case.
Interestingly, together with Theorem 2 this implies [49] that STP is weakly NP-
hard on graphs of highway dimension 1. This is in contrast to planar graphs or
Euclidean metrics, for which the problem is strongly NP-hard.

Theorem 3. The Steiner Tree problem is weakly NP-hard on graphs with
highway dimension 1.3

It was in fact left as an open problem in [24] to determine the hardness of
STP and also TSP on graphs of constant highway dimension. Theorem3 settles
this question for STP. We also answer the question for TSP, but in this case
we are not able to bring down the highway dimension to 1 so that the following
theorem does not complement Theorem 2 tightly.

Theorem 4. The Travelling Salesperson problem is NP-hard on graphs
with highway dimension 6.
3 The proofs of Theorems 3 and 4 are deferred to the full version of the paper.

178 Y. Disser et al.

1.2 Techniques

We present a step towards a better understanding of low highway dimension
graphs by giving new structural insights on graphs of highway dimension 1.
It is not hard to find examples of (weighted) complete graphs with highway
dimension 1 (cf. [24]), and thus such graphs are not minor-closed. Nevertheless,
it was suggested in [24] that the treewidth of low highway dimension graphs
might be bounded polylogarithmically in terms of the aspect ratio α, which
is the maximum distance divided by the minimum distance between any two
vertices of the input graph.

Definition 5. A tree decomposition of a graph G = (V,E) is a tree D where
each node v is labelled with a bag Xv ⊆ V of vertices of G, such that the following
holds: (a)

⋃
v∈V (D) Xv = V , (b) for every edge {u,w} ∈ E there is a node

v ∈ V (D) such that Xv contains both u and w, and (c) for every v ∈ V the set
{u ∈ V (D) | v ∈ Xu} induces a connected subtree of D. The width of the tree
decomposition is max{|Xv| − 1 | v ∈ V (D)}. The treewidth of a graph G is the
minimum width among all tree decompositions for G.

As suggested in [24], one may hope to prove that the treewidth of any graph
of highway dimension h is, say, O(h polylog(α)). As argued in Sect. 4, it unfor-
tunately is unlikely that such a bound is generally possible. In contrast to this,
our main structural insight on graphs of highway dimension 1 is that they have
treewidth O(log α). This implies FPTASs for TSP and STP, since we may reduce
the aspect ratio of any graph with n vertices to O(n/ε) and then use algorithms
by Bodlaender et al. [16] to compute optimum solutions to TSP and STP in
graphs of treewidth t in 2O(t)n time. Since reducing the aspect ratio distorts the
solution by a factor of 1 + ε, this results in an approximation scheme. Although
these are fairly standard techniques for metrics (cf. [24]), in our case we need to
take special care, since we need to bound the treewidth of the graphs resulting
from this reduction, which the standard techniques do not guarantee.

It remains an intriguing open problem to understand the complexity and
structure of graphs of constant highway dimension larger than 1.

1.3 Related Work

The Travelling Salesperson problem (TSP) is among Karp’s initial list
of 21 NP-complete problems [33]. For general metric instances, the best known
approximation algorithm is due to Christofides [23] and computes a solution with
cost at most 3/2 times the LP value. For unweighted instances, the best known
approximation guarantee is 7/5 and is due to Sebő and Vygen [47]. In general
the problem is APX-hard [34,39,45]. For geometric instances where the nodes are
points in R

d and distances are given by some lp-norm, there exists a PTAS [4,44]
for fixed d. When d = log n, the problem is APX-hard [48]. Krauthgamer and Lee
[38] generalized the PTAS to hyperbolic space. Grigni et al. [28] gave a PTAS
for unweighted planar graphs which was later generalized by Arora et al. [5] to
the weighted case. For improvements of the running time see Klein [36].

Travelling on Graphs with Small Highway Dimension 179

The Steiner Tree problem (STP) is contained in Karp’s list of NP-
complete problems as well [33]. The best approximation algorithm for general
metric instances is due to Byrka et al. [19] and computes a solution with cost at
most ln(4) + ε < 1.39 times that of an LP relaxation. Their algorithm improved
upon previous results by, e.g., Robins and Zelikovsky [46] and Hougardy and
Prömel [32]. Also the STP is APX-hard [21] in general. For Euclidean dis-
tances and nodes in R

d with d constant there is a PTAS due to Arora [4]. For
d = log |R|/ log log |R| where R is the terminal set, the problem is APX-hard [48].
For planar graphs, there is a PTAS for STP [18], and even for the more general
Steiner Forest problem for graphs with bounded genus [11]. Note that STP

remains NP-complete for planar graphs [27].
It is worth mentioning that alternate definitions of the highway dimension

exist.4 In particular, in a follow-up paper to [3], Abraham et al. [1] define a ver-
sion of the highway dimension, which implies that the graphs also have bounded
doubling dimension. A related model for transportation networks was given
by Kosowski and Viennot [37] via the so-called skeleton dimension, which also
implies bounded doubling dimension. Hence for these definitions, Bartal et al. [8]
already provide a PTAS for TSP. The highway dimension definition used here
(cf. Definition 1) on the other hand allows for metrics of large doubling dimen-
sion as noted by Abraham et al. [3]: a star has highway dimension 1 (by using
the center vertex to hit all paths), but its doubling dimension is unbounded.
While it may be reasonable to assume that road networks (which are the main
concern in the works of Abraham et al. [1–3]) have low doubling dimension, there
are metrics modelling transportation networks for which it can be argued that
the doubling dimension is large, while the highway dimension should be small.
These settings are better captured by Definition 1. For instance, the so-called
hub-and-spoke networks that can typically be seen in air traffic networks are
star-like networks and are unlikely to have small doubling dimension while still
having very small highway dimension close to 1. Thus in these examples it is rea-
sonable to assume that the doubling dimension is a lot larger than the highway
dimension.

Feldmann et al. [24] showed that graphs with low highway dimension can be
embedded into graphs with low treewidth. This embedding gives rise to a QPTAS
for both TSP and STP but also other problems. However, the result in [24] is
only valid for a less general definition of the highway dimension from [2], i.e.,
there are graphs which have constant highway dimension according to Defini-
tion 1 but for which the algorithm of [24] cannot be applied. For the less general
definition from [2], Becker et al. [12] give a PTAS for Bounded-Capacity Vehi-

cle Routing in graphs of bounded highway dimension. Also the k-Center

problem has been studied on graphs of bounded highway dimension, both for
the less general definition [12] and the more general one used here [25,26].

4 See [24, Section 9] and [15] for detailed discussions on different definitions of the
highway dimension.

180 Y. Disser et al.

2 Structure of Graphs with Highway Dimension 1

In this section, we analyse the structure of graphs with highway dimension 1.
To this end, let us fix a graph G with highway dimension 1 and a shortest path
cover spc(r) for each scale r ∈ R

+. As a preprocessing, we remove edges that
are longer than the shortest path between their endpoints, so that the triangle
inequality holds.

We begin by analysing the structure of the graph G≤2r, which is spanned by
all edges of the input graph G of length at most 2r. If G has highway dimension 1
it exhibits the following key property.

Lemma 6. Let G be a metric graph with highway dimension 1, r ∈ R
+ a scale,

and spc(r) a shortest path cover for scale r. Then, every connected component
of G≤2r contains at most one hub.

Proof. For the sake of contradiction, let r ∈ R
+ and let x, y ∈ spc(r) be a closest

pair of distinct hubs in some component of G≤2r. Let further P be a shortest
path in G≤2r between x and y using only edges of length at most 2r. (Note that
P need not be a shortest path between x and y in G.) In particular, there is no
other hub from spc(r)\{x, y} along P . This implies that every edge of P that is
not incident to either x or y must be of length at most r, since otherwise the edge
would be a shortest path of length (r, 2r] between its endpoints (using that G is
metric) contradicting the fact that spc(r) is a shortest path cover for scale r.

Since the highway dimension of G is 1, any ball Bw(2r) around a vertex
w ∈ V (P) contains at most one of the hubs x, y ∈ spc(r). Let x′, y′ ∈ P be the
vertices indicent to x and y along P , respectively. Since the length of the edge
{x, x′} is at most 2r, the ball Bx′(2r) must contain x and, by the observation
above, it cannot contain y (in particular {x, y} is not an edge). Symmetrically,
the ball By′(2r) contains y but not x. Consequently, x′ �= y′ and neither of these
two vertices can be a hub of scale r, i.e., the path P contains at least two vertices
different from x and y.

Let Vx = {w ∈ V : dist(x,w) < dist(y, w)} contain all vertices closer to x
than to y, where dist(·, ·) refers to the distance in the original graph G. As all
edge weights are strictly positive, we have that dist(x, y) > 0 and thus y /∈ Vx.
Since P starts with vertex x ∈ Vx and ends with vertex y /∈ Vx we deduce
that there is an edge {u, v} of P such that u ∈ Vx and v /∈ Vx. In particular,
dist(x, u) < dist(y, u) and dist(y, v) ≤ dist(x, v). We must have {u, v} �= {y′, y},
since otherwise dist(x, y′) < dist(y, y′) ≤ 2r and hence By′(2r) would contain x.
Similarly, we have {u, v} �= {x, x′}, since otherwise Bx′(2r) would contain y. Note
that, by definition, u �= y and v �= x, and hence x, y /∈ {u, v}. Consequently, since
every edge of P not incident to either x or y must have length at most r, we
conclude that {u, v} has length at most r.

Finally, consider the scale r′ ∈ R
+, defined such that 2r′ = dist(x, u) +

dist(u, v). Let Q and Q′ denote shortest paths between x, u and v, y in G,
respectively. Then the ball Bv(2r′) around v contains Q by definition of r′.
From dist(y, v) ≤ dist(x, v) ≤ dist(x, u) + dist(u, v) = 2r′ it follows that

Travelling on Graphs with Small Highway Dimension 181

Bv(2r′) contains Q′ as well. Also, dist(y, v) ≤ dist(x, v) means that Bv(2r)
cannot contain x, and hence 2r′ = dist(x, u) + dist(u, v) ≥ dist(x, v) > 2r,
which implies r′ > r. W.l.o.g., assume that dist(x, u) ≤ dist(v, y) (otherwise
consider scale 2r′ = dist(y, v) + dist(u, v) and the ball Bu(2r′)). Our earlier
observation that dist(u, v) ≤ r with r < r′ then yields dist(v, y) ≥ dist(x, u) =
2r′ − dist(u, v) > r′. In other words, the lengths of both paths Q and Q′ are
in (r′, 2r′], and so they both need to contain a hub of spc(r′). However, by defi-
nition of u, v, the paths Q and Q′ are vertex disjoint, which means that the ball
Bv(2r′), which contains Q and Q′, also contains at least two hubs from spc(r′).
This is a contradiction with G having highway dimension 1.
�

Given a graph G, we now consider graphs G≤2r for exponentially growing
scales. In particular, for any integer i ≥ 0 we define the scale ri = 2i and call a
connected component of G≤2ri

a level-i component. Note that the level-i compo-
nents partition the graph G, and that the level-i components are a refinement of
the level-(i + 1) components, i.e., every level-i component is contained in some
level-(i + 1) component. W.l.o.g., we scale the edge weights of the graph such
that mine∈E w(e) = 3, so that there are no edges on level 0, and every level-0
component is a singleton. Let α = maxu�=v dist(u,v)

minu�=v dist(u,v) = maxu�=v dist(u,v)
3 be the aspect

ratio of G. In our applications we may assume that G is connected, so that there
is exactly one level-(1 + �log2(α)) component containing all of G.

Since every edge is a shortest path between its endpoints, every edge e =
{u, v} that connects a vertex u of a level-i component C with a vertex v outside
C is hit by a hub of spc(rj), where j is the level for which w(e) ∈ (rj , 2rj].
Moreover, since v lies outside C, we have w(e) > 2ri and, thus, j ≥ i + 1.
The following definition captures the set of the hubs through which edges can
possibly leave C.

Definition 7. Let C be a level-i component of G. We define the set of interface
points of C as IC :=

⋃
j≥i{u ∈ spc(rj) : distC(u) ≤ 2rj}, where distC(u)

denotes the minimum distance from u to a vertex in C (if u ∈ C, distC(u) = 0).

Note that, for technical reasons, we explicitly add every hub at level i of
a component to its set of interface points as well, even if such a hub does not
connect the component with any vertex outside at distance more than 2ri.

Lemma 8. If G has highway dimension 1, then each interface IC of a level-i
component C contains at most one hub for each level j ≥ i.

Proof. Assume that there are two hubs u, v ∈ spc(rj) in IC , and recall that we
preprocessed the graph so that the triangle inequality holds. Then u and v must
be contained in the same level-j component C ′, since u and v are connected
to C with edges of length at most 2rj (or are contained in C) and C ⊆ C ′. This
contradicts Lemma 6.
�

Using level-i components and their interface points we can prove that the
treewidth of a graph with highway dimension 1 is bounded in terms of the
aspect ratio.

182 Y. Disser et al.

Lemma 9. If a graph G has highway dimension 1 and aspect ratio α, its
treewidth is at most 1 + �log2(α).
Proof. The tree decomposition of G is given by the refinement property of level-i
components. That is, let D be a tree that contains a node vC for every level-i
component C for all levels 0 ≤ i ≤ 1 + �log2(α). For every node vC we add
an edge in D to node vC′ , if C is a level-i component, C ′ is a level-(i + 1)
component, and C ⊆ C ′. The bag XC for node vC contains the interface points
IC . For a level-0 component C the bag XC additionally contains the single vertex
u contained in C.

Clearly, the tree decomposition has Property (a) of Definition 5, since the
level-0 components partition the vertices of G and every vertex of G is contained
in a bag XC corresponding to a level-0 component C. Also, Property (b) is given
by the bags XC for level-0 components C, since for every edge e of G one of its
endpoints u is a hub of spc(ri) where i is such that w(e) ∈ (ri, 2ri], and the
other endpoint w is contained in a level-0 component C, for which XC contains
u and w.

For Property (c), first consider a vertex u of G, which is not contained in any
set of interface points for any level-i component and any 0 ≤ i ≤ log2(α). Such
a vertex only appears in the bag XC for the level-0 component C containing u,
and thus the node vC for which the bag contains u trivially induces a connected
subtree of D.

Any other vertex u of G is an interface point. Let i be the highest level for
which u ∈ IC for some level-i component C. We claim that u ∈ C, which implies
that C is the unique level-i component containing u in its interface. To show our
claim, assume u /∈ C. Then, by definition, IC contains u because u ∈ spc(rj)
for some j ≥ i and u has some neighbour at distance at most 2rj in C. Since
we preprocessed the graph such that every edge is a shortest path between its
endpoints, this means that there must be an edge e = {u, v} with w(e) ∈ (rj , 2rj]
and v ∈ C. Since u /∈ C, we have i < j. Let C ′ be the unique level-j component
with C ⊆ C ′. Then, by definition, u ∈ IC′ , which contradicts the maximality
of i. This proves our claim and shows that the highest level component C with
u ∈ XC is uniquely defined. Moreover, we obtain u ∈ spc(ri).

Now consider a level-i′ component C ′ with i′ < i, such that u ∈ XC′ , and
let C ′′ be the unique level-(i′ + 1) component containing C ′. We claim that
u ∈ XC′′ . If u ∈ C ′ ⊆ C ′′, then u ∈ XC′′ , since u ∈ spc(ri), distC′′(u) = 0 ≤ 2ri

and i′ + 1 ≤ i. If u /∈ C ′, then u ∈ XC′ implies u ∈ IC′ , which means that
there must be a vertex w ∈ C ′ with dist(u,w) ≤ 2ri. But then w ∈ C ′′ and thus
distC′′(u) ≤ 2ri. Together with u ∈ spc(ri), this implies u ∈ XC′′ , as claimed.
Since vC′ is a child of vC′′ in the tree D, it follows inductively that the nodes of
D with bags containing u induce a subtree of D with root vC , which establishes
Property (c).

By Lemma 8 each set of interface points contains at most one hub of each
level. Since all edges have length at least 3, there are no hubs in spc(r0) on level 0.
This means that each bag of the tree decomposition contains at most 1+�log2(α)

Travelling on Graphs with Small Highway Dimension 183

interface points. The bags for level-0 components contain one additional vertex.
Thus the treewidth of G is at most 1 + �log2(α), as claimed.
�

An additional property that we will exploit for our algorithms is the following.
A (μ, δ)-net N ⊆ V is a subset of vertices such that (a) the distance between any
two distinct net points u,w ∈ N is more than μ, and (b) for every vertex v ∈ V
there is some net point w ∈ N at distance at most δ. For graphs of highway
dimension 1 however, we can obtain nets with additional favourable properties,
as the next lemma shows.

Lemma 10. For any graph G of highway dimension 1 and any r > 0, there is
an (r, 3r)-net such that every connected component of G≤r contains exactly one
net point. Moreover this net can be computed in polynomial time.

Proof. We first derive an upper bound of 3r for the diameter of any connected
component of G≤r. Lemma 6 implies that a connected component C contains at
most one hub x of spc(r/2). By definition, any shortest path in C of length in
(r/2, r] must pass through x. We also know that every edge of C has length
at most r. Consequently, every edge in C not incident to x must have length
at most r/2, since each edge constitutes a shortest path between its endpoints.
This implies that any shortest path in C that is not hit by x must have length
at most r/2: if C contains a shortest path P with length more than r/2 not
containing x we could repeatedly remove edges of length at most r/2 from P
until we obtain a shortest path of length in (r/2, r] not hit by x, a contradiction.
Now consider a shortest path P in G of length more than r/2 from some vertex
v ∈ C to x (note that this path may not be entirely contained in C). Let {u,w}
be the unique edge of P such that dist(v, u) ≤ r/2 and dist(v, w) > r/2. If the
length of the edge {u,w} is at most r/2 then dist(v, w) ≤ r, and thus w = x,
since the part of the path from v to w is a shortest path of length in (r/2, r] and
thus needs to pass through x. Otherwise the length of the edge {u,w} is in the
interval (r/2, r], which again implies w = x, since the edge must contain x. In
either case, dist(v, x) ≤ 3r/2. This implies that every vertex in C is at distance
at most 3r/2 from x, and thus the diameter of C is at most 3r.

To compute the (r, 3r)-net, we greedily pick an arbitrary vertex of each
connected component of G≤r. As the distances between components of G≤r

is greater than r, and every vertex lies in some component containing a net
point, we get the desired distance bounds. Clearly this net can be computed in
polynomial time.
�

3 Approximation Schemes

In general the aspect ratio of a graph may be exponential in the input size. A key
ingredient of our algorithms is to reduce the aspect ratio α of the input graph G =
(V,E) to a polynomial. For STP and TSP, standard techniques can be used to
reduce the aspect ratio to O(n/ε) when aiming for a (1+ε)-approximation. This
was for instance also used in [24] for low highway dimension graphs, but here

184 Y. Disser et al.

we need to take special care not to destroy the structural properties given by
Lemma 9 in this process. In particular, we need to reduce the aspect ratio and
maintain the fact that the treewidth is bounded.

Therefore, we reduce the aspect ratio of our graphs by the following prepro-
cessing. Both metric TSP and STP admit constant factor approximations in
polynomial time using well-known algorithms [19,23]. We first compute a solu-
tion of cost c using a β-approximation algorithm for the problem at hand (TSP

or STP). For TSP, the diameter of the graph G clearly is at most c/2. For
STP we remove every vertex of V that is at distance more than c from any
terminal, since such a vertex cannot be part of the optimum solution. After hav-
ing removed all such vertices in this way, we obtain a graph G of diameter at
most 3c. Thus, in the following, we may assume that our graph G has diameter
at most 3c. We then set r = εc

3n in Lemma 10 to obtain a (εc
3n , εc

n)-net N ⊆ V . As
a consequence the metric induced by N (with distances of G) has aspect ratio at
most 3c

εc/(3n) = O(n/ε), since the minimum distance between any two net points
of N is at least εc

3n and the maximum distance is at most 3c. We will exploit this
property in the following.

By Lemma 10, each connected component of G≤ εc
3n

contains exactly one net
point of N . Let η : V �→ N map each vertex of G to the unique net point in
the same connected component of G≤ εc

3n
. We define a new graph G′ with vertex

set N ⊆ V and edge set {{η(u), η(v)} : {u, v} ∈ E ∧ η(u) �= η(v)}. The length
of each edge {w,w′} of G′ is the shortest path distance between w and w′ in
G. This new graph G′ may not have bounded highway dimension, but we claim
that it has treewidth O(log(n/ε)).

Lemma 11. If G has highway dimension 1, the graph G′ with vertex set N
has treewidth O(log(n/ε)). Moreover, a tree decomposition for G′ of width
O(log(n/ε)) can be computed in polynomial time.

Proof. We construct a tree decomposition D′ of G′ as follows. Following Lemma 9
we can compute a tree decomposition D of width at most 1+�log2(α), where α
is the aspect ratio of G: for this we need to compute a locally 1-sparse shortest
path cover spc(ri) for each level i, which can be done in polynomial time via
an XP algorithm [24] if the highway dimension is 1. We then find the level-i
components and their interface points, from which the tree decomposition D
and its bags can be constructed. Since there are O(log α) levels and α is at most
exponential in the input size (which includes the encoding length of the edge
weights), we can compute D in polynomial time.

We construct D′ from D by replacing every bag X of D by a new bag
X ′ = {η(v) : v ∈ X} containing the net points for the vertices in X. It is not
hard to see that Properties (a) and (b) of Definition 5 are fulfilled by D′, since
they are true for D. For Property (c), note that for any edge {u, v} of G, the
set of all bags of D that contain u or v form a connected subtree of D. This
is because the bags containing u form a connected subtree (Property (c)), the
same is true for v, and both these subtrees share at least one node labelled
by a bag containing the edge {u, v} (Property (b)). Consequently, the set of

Travelling on Graphs with Small Highway Dimension 185

all bags containing vertices of any connected subgraph of G form a connected
subtree. In particular, for any connected component A of G≤ εc

3n
, the set of bags

of D containing at least one vertex of A form a connected subtree. This implies
Property (c) for D′. Thus, D′ is indeed a tree decomposition of G′ according to
Definition 5. Note that D′ can be computed in polynomial time.

To bound the width of D′, recall that a bag X of the tree decomposition D
of G contains the interface points IC of a level-i component C, in addition to one
more vertex of C on the lowest level i = 0. Each interface point is a hub from
spc(rj) at some level j ≥ i and is at distance at most 2rj from C. In particular,
if 2ri ≤ εc

3n then C is a component of G≤2ri
⊆ G≤ εc

3n
, and all hubs of IC ∩spc(rj)

for which 2rj ≤ εc
3n lie in the same connected component A of G≤ εc

3n
as C. These

hubs are therefore all mapped to the same net point w in A by η. In addition
to w, the bag X ′ = {η(v) : v ∈ X} resulting from X and η contains at most
one vertex for every level j such that 2rj > εc

3n . As rj = 2j , this condition is
equivalent to j > log2(

εc
3n) − 1. As there are 1 + �log2(α) levels in total, there

are O(log(αn
εc)) hubs in X ′. This bound is obviously also valid in case 2ri > εc

3n .
We preprocessed the graph G so that its diameter is at most 3c and its minimum
distance is 3, which implies an aspect ratio α of at most c for G. This means
that every bag X ′ contains O(log(n/ε)) vertices, and thus the claimed treewidth
bound for G′ follows.
�

We are now ready to prove our main result.

Proof (of Theorem 2). To solve TSP or STP on G we first use the above reduc-
tion to obtain G′ and its tree decomposition D′, and then compute an optimum
solution for G′. For TSP, G′ is already a valid input instance, but for STP we
need to define a terminal set, which simply is R′ = {η(v) | v ∈ R} if R is the
terminal set of G. Bodlaender et al. [16] proved that for both TSP and STP

there are deterministic algorithms to solve these problems exactly in time 2O(t)n,
given a tree decomposition of the input graph of width t. By Lemma 11 we can
thus compute the optimum to G′ in time 2O(log(n/ε)) ·n = (n/ε)O(1). Afterwards,
we convert the solution for G′ back to a solution for G, as follows.

For TSP we may greedily add vertices of V to the tour on N by connecting
every vertex v ∈ V to the net point η(v). As the vertices N of G′ form a
(εc
3n , εc

n)-net of V , this incurs an additional cost of at most 2 εc
n per vertex, which

sums up to at most 2εc. Let Opt and Opt
′ denote the costs of the optimum

tours in G and G′, respectively. We know that c ≤ β · Opt, since we used a
β-approximation algorithm to compute c. Furthermore, the optimum tour in G
can be converted to a tour in G′ of cost at most Opt by short-cutting, due to
the triangle inequality. Thus Opt

′ ≤ Opt, which means that the cost of the
computed tour in G is at most Opt

′ + 2εc ≤ (1 + 2βε)Opt.
Similarly, for STP we may greedily connect a terminal v of G to the terminal

η(v) of G′ in the computed Steiner tree in G′. This adds an additional cost of at
most εc

n , which sums up to at most εc. Let now Opt and Opt
′ be the costs of the

optimum Steiner trees in G and G′, respectively. We may convert a Steiner tree T
in G into a tree T ′ in G′ by using edge {η(u), η(v)} for each edge {u, v} of T . Note

186 Y. Disser et al.

that the resulting tree T ′ contains all terminals of G′, since R′ = {η(v) | v ∈ R}.
As the vertices N of G′ form a (εc

3n , εc
n)-net of V , the cost of T ′ is at most

Opt + 2εc if the cost of T is Opt (by the same argument as used for the proof
of Lemma 11). As before, we know that c ≤ β · Opt, and thus the cost of the
computed Steiner tree in G is at most Opt

′ + εc ≤ Opt+ 3εc ≤ (1 + 3βε)Opt.
Hence we obtain FPTASs for both TSP and STP, which compute

(1 + ε)-approximations within a runtime that is polynomial in the input
size and 1/ε.
�

4 Conclusions

We showed that, somewhat surprisingly, graphs of highway dimension 1 exhibit
a rich combinatorial structure. On one hand, it was already known [24] that
these graphs are not minor-closed and thus their treewidth is unbounded. Here
we additionally showed that STP is weakly NP-hard on such graphs, further
confirming that these graphs have non-trivial properties. On the other hand,
we proved in Lemma 9 that the treewidth of a graph of highway dimension 1 is
logarithmically bounded in the aspect ratio α. This in turn can be exploited to
obtain a very efficient FPTAS for both STP and TSP.

At this point one may wonder whether it is possible to generalize Lemma 9
to larger values of the highway dimension. In particular, in [24] it was suggested
that the treewidth of a graph of highway dimension h might be bounded by,
say, O(h polylog(α)). However such a bound is highly unlikely in general, since
it would have the following consequence for the k-Center problem, for which
k vertices (centers) need to be selected in a graph such that the maximum
distance of any vertex to its closest center is minimized. It was shown in [25]
that it is NP-hard to compute a (2 − ε)-approximation for k-Center on graphs
of highway dimension O(log2 n), for any ε > 0. Given such a graph, the same
preprocessing of Sect. 3 could be used to derive an analogue of Lemma 11, i.e.,
a graph G′ of treewidth O(polylog(n/ε)) could be computed for the net N .
Moreover, a 2-approximation for k-Center can be computed in polynomial
time on any graph [31], and if the input has treewidth t a (1+ ε)-approximation
can be computed in (t/ε)O(t)nO(1) time [35]. Using the same arguments to prove
Theorem 2 for STP and TSP, it would now be possible to compute a (1 + ε)-
approximation for k-Center in quasi-polynomial time (cf. [26]). That is, we
would obtain a QPTAS for graphs of highway dimension O(log2 n), which is
highly unlikely given that computing a (2 − ε)-approximation is NP-hard on
such graphs.

The above argument rules out any bound of (h log α)O(1) for graphs of high-
way dimension h and aspect ratio α, unless NP-hard problems admit quasi-
polynomial time algorithms. In fact, we conjecture that the k-Center problem
is NP-hard to approximate within a factor of 2−ε for graphs of constant highway
dimension (for some constant larger than 1). If this is true, then the above argu-
ment even rules out a treewidth bound of f(h) polylog(α) for any function f .
Thus, in order to answer the open problem of [24] and obtain a PTAS for graphs
of constant highway dimension, a different approach seems to be needed.

Travelling on Graphs with Small Highway Dimension 187

References

1. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimen-
sion and provably efficient shortest path algorithms. J. ACM 63(5), 41 (2016)

2. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-dimension
and shortest path algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22006-7 58

3. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest
paths, and provably efficient algorithms. In: Proceedings of the 21st Annual ACM-
SIAM Symposium Discrete Algorithms (SODA), pp. 782–793 (2010)

4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems. J. ACM 45(5), 753–782 (1998)

5. Arora, S., Grigni, M., Karger, D.R., Klein, P.N., Woloszyn, A.: A polynomial-time
approximation scheme for weighted planar graph TSP. In: Proceedings of the 9th
Annual ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 33–41 (1998)

6. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
hardness of approximation problems. In: Proceedings of the 33rd Annual IEEE
Symposium Foundations Computer Science (FOCS), pp. 14–23 (1992)

7. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians
and related problems. In: Proceedings of the 30th Annual ACM Symposium Theory
Computer (STOC), pp. 106–113 (1998)

8. Bartal, Y., Gottlieb, L.-A., Krauthgamer, R.: The traveling salesman problem: low-
dimensionality implies a polynomial time approximation scheme. In: Proceedings
of the 44th Annual ACM Symposium Theory Computer (STOC), pp. 663–672
(2012)

9. Bast, H., Funke, S., Matijevic, D.: Ultrafast shortest-path queries via transit nodes.
In: The Shortest Path Problem: Ninth DIMACS Implementation Challenge, vol.
74, pp. 175–192 (2009)

10. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant
time shortest-path queries in road networks. In: Proceedings of the 9th Workshop
Algorithm Engineering and Experiments (ALENEX) (2007)

11. Bateni, M., Hajiaghayi, M.T., Marx, D.: Approximation schemes for Steiner forest
on planar graphs and graphs of bounded treewidth. J. ACM 58, 21:1–21:37 (2011)

12. Becker, A., Klein, P.N., Saulpic, D.: Polynomial-time approximation schemes for k-
center, k-median, and capacitated vehicle routing in bounded highway dimension.
In: Proceedings of the 26th Annual European Symposium on Algorithms (ESA
2018), pp. 8:1–8:15 (2018)

13. Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1 and 2. Inform.
Process. Lett. 32, 171–176 (1989)

14. Bland, R., Shallcross, D.: Large traveling salesman problems arising from experi-
ments in X-ray crystallography: a preliminary report on computation. Oper. Res.
Lett. 8, 125–128 (1989)

15. Blum, J.: Hierarchy of transportation network parameters and hardness results
(2019). arXiv: 1905.11166 [cs.DM]

16. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS,
vol. 7965, pp. 196–207. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39206-1 17

https://doi.org/10.1007/978-3-642-22006-7_58
https://doi.org/10.1007/978-3-642-22006-7_58
http://arxiv.org/abs/1905.11166
https://doi.org/10.1007/978-3-642-39206-1_17
https://doi.org/10.1007/978-3-642-39206-1_17

188 Y. Disser et al.

17. Borndörfer, R., Neumann, M., Pfetsch, M.E.: The line connectivity problem. In:
Fleischmann, B., Borgwardt, K.H., Klein, R., Tuma, A. (eds.) Operations Research
Proceedings, pp. 557–562. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-642-00142-0 90

18. Borradaile, G., Kenyon-Mathieu, C., Klein, P.: A polynomial-time approximation
scheme for Steiner tree in planar graphs. In: Proceedings of the 18th Annual ACM-
SIAM Symposium Discrete Algorithms (SODA), pp. 1285–1294 (2007)

19. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approx-
imation for Steiner tree. In: Proceedings of the 42nd Annual ACM Symposium
Theory Computer (STOC), pp. 583–592 (2010)

20. Chen, C.Y., Grauman, K.: Efficient activity detection in untrimmed video with
max-subgraph search. IEEE Trans. Pattern Anal. Mach. Intell. 39, 908–921 (2018)

21. Chleb́ık, M., Chleb́ıková, J.: The Steiner tree problem on graphs: inapproximability
results. Theor. Comput. Sci. 406, 207–214 (2008)

22. Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A.,
Schwartz, R.: Phylogenetic analysis of multiprobe uorescence in situ hybridization
data from tumor cell populations. Bioinformatics 29, i189–i198 (2013)

23. Christofides, N.: Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical report 388. Graduate School of Industrial Administration,
Carnegie Mellon University (1976)

24. Feldmann, A.E., Fung, W.S., Könemann, J., Post, I.: A (1+ε)-embedding of low
highway dimension graphs into bounded treewidth graphs. SIAM J. Comput. 41,
1667–1704 (2018)

25. Feldmann, A.E.: Fixed parameter approximations for k-center problems in low
highway dimension graphs. Algorithmica (2018)

26. Feldmann, A.E., Marx, D.: The parameterized hardness of the k-center problem
in transportation networks. In: Proceedings of the 16th Scandinavian Symposium
and Workshop Algorithm Theory (SWAT), pp. 19:1–19:13 (2018)

27. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32, 826–834 (1977)

28. Grigni, M., Koutsoupias, E., Papadimitriou, C.H.: An approximation scheme for
planar graph TSP. In: Proceedings of the 36th Annual IEEE Symposium Founda-
tions Computer Science (FOCS), pp. 640–645 (1995)

29. Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman
problems. Math. Program. 51, 141–202 (1991)

30. Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in VLSI
design. In: Chvatal, V. (ed.) Combinatorial Optimization: Methods and Applica-
tions, pp. 33–96. IOS Press, Amsterdam (2011)

31. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms
for bottleneck problems. J. ACM 33(3), 533–550 (1986)

32. Hougardy, S., Prömel, H.J.: A 1.598 approximation algorithm for the Steiner prob-
lem in graphs. In: Proceedings of the 10th Annual ACM-SIAM Symposium Discrete
Algorithms (SODA), pp. 448–453 (1999)

33. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-
2001-2 9

34. Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP.
J. Comput. Syst. Sci. 81, 1665–1677 (2015)

https://doi.org/10.1007/978-3-642-00142-0_90
https://doi.org/10.1007/978-3-642-00142-0_90
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Travelling on Graphs with Small Highway Dimension 189

35. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters, tight bounds,
and approximation for (k, r)-center. In: Proceedings of the 28th International Sym-
posium Algorithms Computer (ISAAC), pp. 50:1–50:13 (2017)

36. Klein, P.: A linear-time approximation scheme for TSP in undirected planar graphs
with edge-weights. SIAM J. Comput. 37(6), 1926–1952 (2008)

37. Kosowski, A., Viennot, L.: Beyond highway dimension: small distance labels using
tree skeletons. In: Proceedings of the 28th Annual ACM-SIAM Symposium Discrete
Algorithms (SODA), pp. 1462–1478 (2017)

38. Krauthgamer, R., Lee, J.R.: Algorithms on negatively curved spaces. In: Proceed-
ings of the 47th Annual IEEE Symposium Foundations Computer Science (FOCS),
pp. 119–132 (2006)

39. Lampis, M.: Improved inapproximability for TSP. Theory Comput. 10, 217–236
(2014)

40. Laporte, G., Nobert, Y., Desrochers, M.: Optimal routing under capacity and dis-
tance restrictions. Oper. Res. 33, 1050–1073 (1985)

41. Lenstra, J., Rinnooy Kan, A.: Some simple applications of the traveling salesman
problem. Oper. Res. Quart. 26, 717–733 (1975)

42. Ljubić, I., Weiskirchner, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.:
An algorithmic framework for the exact solution of the prizecollecting Steiner tree
problem. Math. Program. 105, 427–449 (2006)

43. Loboda, A.A., Artyomov, M.N., Sergushichev, A.A.: Solving generalized
maximum-weight connected subgraph problem for network enrichment analysis.
In: Frith, M., Storm Pedersen, C.N. (eds.) WABI 2016. LNCS, vol. 9838, pp. 210–
221. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43681-4 17

44. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a
simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

45. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling sales-
man problem. Combinatorica 26, 101–120 (2006)

46. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation.
SIAM J. Discret. Math. 19, 122–134 (2005)

47. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for the graph-
TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combi-
natorica 34, 1–34 (2014)

48. Trevisan, L.: When Hamming meets Euclid: the approximability of geometric TSP
and Steiner tree. SIAM J. Comput. 30, 475–485 (2000)

49. Vazirani, V.V.: Approximation Algorithms. Springer, New York (2001)

https://doi.org/10.1007/978-3-319-43681-4_17

The Power of Cut-Based Parameters
for Computing Edge Disjoint Paths

Robert Ganian1 and Sebastian Ordyniak2(B)

1 Algorithms and Complexity Group, Vienna University of Technology,
Vienna, Austria

2 Algorithms Group, University of Sheffield, Sheffield, UK
sordyniak@gmail.com

Abstract. This paper revisits the classical Edge Disjoint Paths (EDP)
problem, where one is given an undirected graph G and a set of termi-
nal pairs P and asks whether G contains a set of pairwise edge-disjoint
paths connecting every terminal pair in P . Our aim is to identify struc-
tural properties (parameters) of graphs which allow the efficient solution
of EDP without restricting the placement of terminals in P in any way.
In this setting, EDP is known to remain NP-hard even on extremely
restricted graph classes, such as graphs with a vertex cover of size 3.

We present three results which use edge-separator based parameters
to chart new islands of tractability in the complexity landscape of EDP.
Our first and main result utilizes the fairly recent structural parameter
treecut width (a parameter with fundamental ties to graph immersions
and graph cuts): we obtain a polynomial-time algorithm for EDP on
every graph class of bounded treecut width. Our second result shows that
EDP parameterized by treecut width is unlikely to be fixed-parameter
tractable. Our final, third result is a polynomial kernel for EDP param-
eterized by the size of a minimum feedback edge set in the graph.

Keywords: Edge disjoint path problem · Feedback edge set ·
Treecut width · Parameterized complexity

1 Introduction

Edge Disjoint Paths (EDP) is a fundamental routing graph problem: we
are given a graph G and a set P containing pairs of vertices (terminals), and
are asked to decide whether there is a set of |P | pairwise edge disjoint paths
in G connecting each pair in P . Similarly to its counterpart, the Vertex Dis-

joint Paths (VDP) problem, EDP has been at the center of numerous results
in structural graph theory, approximation algorithms, and parameterized algo-
rithms [1,7,8,12,14,16,18,19,23].

Robert Ganian acknowledges support by the Austrian Science Fund (FWF, Project
P31336), and is also affiliated with FI MUNI, Czech Republic.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 190–204, 2019.
https://doi.org/10.1007/978-3-030-30786-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_15

The Power of Cut-Based Parameters for Computing Edge Disjoint Paths 191

Both EDP and VDP are NP-complete in general [13], and a significant
amount of research has focused on identifying structural properties which make
these problems tractable. For instance, Robertson and Seymour’s seminal work
in the Graph Minors project [19] provides an O(n3) time algorithm for both
problems for every fixed value of |P |. Such results are often viewed through the
more refined lens of the parameterized complexity paradigm [4,6]; there, each
problem is associated with a numerical parameter k (capturing some structural
property of the instance), and the goal is to obtain algorithms which are effi-
cient when the parameter is small. Ideally, the aim is then to obtain so-called
fixed-parameter algorithms for the problem, i.e., algorithms which run in time
f(k) ·nO(1) where f is a computable function and n the input size; the aforemen-
tioned result of Robertson and Seymour is hence an example of a fixed-parameter
algorithm where k = |P |, and we say that the problem is FPT (w.r.t. this partic-
ular parameterization). In cases where fixed-parameter algorithms are unlikely
to exist, one can instead aim for so-called XP algorithms, i.e., algorithms which
run in polynomial time for every fixed value of k.

Naturally, one prominent question that arises is whether we can use the
structure of the input graph itself (captured via a structural parameter) to solve
EDP and VDP. Here, we find a stark contrast in the difficulty between these
two, otherwise closely related, problems. Indeed, while VDP is known to be FPT
with respect to the well-established structural parameter treewidth [21], EDP is
NP-hard even on graphs of treewidth 3 [8]. What’s worse, the same reduction
shows that EDP remains NP-hard even on graphs with a vertex cover of size
3 [8], which rules out fixed-parameter and XP algorithms for the vast majority of
studied graph parameters (including, e.g., treedepth and the size of a minimum
feedback vertex set).

We note that previous research on the problem has found ways of circumvent-
ing these negative results by imposing additional restrictions. Zhou et al. [23]
introduced the notion of an augmented graph, which contains information about
how terminal pairs need to be connected, and used the treewidth of this graph
to solve EDP. Recent work [11], which primarily focused on the complexity of
EDP on near-forests and with respect to parameterizations of the augmented
graphs, has also observed that EDP admits a fixed-parameter algorithm when
parameterized by treewidth and the maximum degree of the graph.

Our Contribution. The aim of this paper is to provide new algorithms and
matching lower bounds for solving the Edge Disjoint Paths problem without
imposing any restrictions on the number and placement of terminals. In other
words, our aim is to be able to identify structural properties of the graph which
guarantee tractability of the problem without knowing any information about
the placement of terminals. The only positive result known so far in this setting
requires us to restrict the degree of the input graph; however, in the bounded-
degree setting there is a simple treewidth-preserving reduction from EDP to
VDP (see Proposition 1), and so the problem only becomes truly interesting
when the input graphs can contain vertices of higher degree.

192 R. Ganian and S. Ordyniak

Our main result is an XP algorithm for EDP when parameterized by the
structural parameter treecut width [17,22]. Treecut width is inherently tied to
the theory of graph immersions; in particular, it has a similar relationship to
graph immersions and cuts as treewidth has to graph minors and separators.
Since its introduction, treecut width has been successfully used to obtain fixed-
parameter algorithms for problems which are W[1]-hard w.r.t. treewidth [9,10];
however, this is the first time that it has been used to obtain an algorithm for a
problem that is NP-hard on graphs of bounded treewidth.

One “feature” of algorithmically exploiting treecut width is that it requires
the solution of a non-trivial dynamic programming step. In previous works, this
was carried out mostly by direct translations into Integer Linear Program-

ming instances with few integer variables [9] or by using network flows [10]. In
the case of EDP, the dynamic programming step requires us to solve an instance
of EDP with a vertex cover of size k where every vertex outside of the vertex
cover has a degree of 2; we call this problem Simple EDP and solve it in the
dedicated Sect. 3. It is worth noting that there is only a very small gap between
Simple EDP (for which we provide an XP algorithm) and graphs with a vertex
cover of size 3 (where EDP is known to be NP-hard).

In view of our main result, it is natural to ask whether the algorithm can be
improved to a fixed-parameter one. After all, given the parallels between EDP

parameterized by treecut width (an edge-separator based parameter) and VDP

parameterized by treewidth (a vertex-separator based parameter), one would
rightfully expect that the fixed-parameter tractability result on the latter [21]
would be mirrored in the former case. Surprisingly, we rule this out by showing
that EDP parameterized by treecut width is W[1]-hard [4,6] and hence unlikely
to be fixed-parameter tractable; in fact, we obtain this lower-bound result even in
the more restrictive setting of Simple EDP. The proof is based on an involved
reduction from an adapted variant of the Multidimensional Subset Sum

problem [10,11] and forms our second main contribution.
Having ruled out fixed-parameter algorithms for EDP parameterized by tree-

cut width and in view of previous lower-bound results, one may ask whether it is
even possible to obtain such an algorithm for any reasonable parameterization.
We answer this question positively by using the size of a minimum feedback
edge set as a parameter. In fact, we show an even stronger result: as our final
contribution, we obtain a so-called linear kernel [4,6] for EDP parameterized
by the size of a minimum feedback edge set.

Organization of the Paper. After introducing the required preliminaries in
Sect. 2, we proceed to introducing Simple EDP, solving it via an XP algorithm
and establishing our lower-bound result (Sect. 3). Section 4 then contains our
algorithm for EDP parameterized by treecut width. Finally, in Sect. 5 we obtain
a polynomial kernel for EDP parameterized by the size of a minimum feedback
edge set.

The Power of Cut-Based Parameters for Computing Edge Disjoint Paths 193

2 Preliminaries

We use standard terminology for graph theory, see for instance [5]. Given a
graph G, we let V (G) denote its vertex set and E(G) its edge set. The (open)
neighborhood of a vertex x ∈ V (G) is the set {y ∈ V (G) : xy ∈ E(G)} and is
denoted by NG(x). For a vertex subset X, the neighborhood of X is defined as⋃

x∈X NG(x) \ X and denoted by NG(X); we drop the subscript if the graph is
clear from the context. Contracting an edge {a, b} is the operation of replacing
vertices a, b by a new vertex whose neighborhood is (N(a)∪N(b)) \ {a, b}. For a
vertex set A (or edge set B), we use G−A (G−B) to denote the graph obtained
from G by deleting all vertices in A (edges in B), and we use G[A] to denote the
subgraph induced on A, i.e., G − (V (G) \ A).

A forest is a graph without cycles, and an edge set X is a feedback edge set
if G − X is a forest. The feedback edge set number of a graph G, denoted by
fes(G), is the smallest integer k such that G has a feedback edge set of size k.
We use [i] to denote the set {0, 1, . . . , i}.

We assume that readers are familiar with basic notions in the area of param-
eterized complexity [3,6], such as the classes FPT and W[1] and the notion of
kernelization.

2.1 Edge Disjoint Path Problem

Throughout the paper we consider the following problem.

Edge Disjoint Paths (EDP)

Input: A graph G and a set P of terminal pairs, i.e., a set of
subsets of V (G) of size two.

Question: Is there a set of pairwise edge disjoint paths connecting
every set of terminal pairs in P?

A vertex which occurs in a terminal pair is called a terminal, and a set of
pairwise edge disjoint paths connecting every set of terminal pairs in P is called a
solution. Without loss of generality, we assume that G is connected. The Vertex

Disjoint Paths (VDP) problem is defined analogously as EDP, with the sole
distinction being that the paths must be vertex-disjoint.

The following proposition establishes a link between EDP and VDP on
graphs of bounded degree. Since we will not need the notion of treewidth [20] for
any other result presented in the paper, we refer to the standard textbooks [3,6]
for its definition.

Proposition 1. There exists a linear-time reduction from EDP to VDP with
the following property: if the input graph has treewidth k and maximum degree
d, then the output graph has treewidth at most k · d + 1.

We remark that Proposition 1 in combination with the known fixed-
parameter algorithm for VDP parameterized by treewidth [21] provides an
alternative proof for the fixed-parameter tractability of EDP parameterized by
degree and treewidth [11].

194 R. Ganian and S. Ordyniak

2.2 Treecut Width

The notion of treecut decompositions was introduced by Wollan [22], see also [17].
A family of subsets X1, . . . , Xk of X is a near-partition of X if they are pairwise
disjoint and

⋃k
i=1 Xi = X, allowing the possibility of Xi = ∅.

Definition 1. A treecut decomposition of G is a pair (T,X) which consists of
a rooted tree T and a near-partition X = {Xt ⊆ V (G) : t ∈ V (T)} of V (G). A
set in the family X is called a bag of the treecut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge
incident to t on the path to r. Let Tu and Tt be the two connected components
in T − e(t) which contain u and t, respectively. Note that (

⋃
q∈Tu

Xq,
⋃

q∈Tt
Xq)

is a near-partition of V (G), and we use Et to denote the set of edges with one
endpoint in each part. We define the adhesion of t (adh(t)) as |Et|; we explicitly
set adh(r) = 0 and E(r) = ∅.

The torso of a treecut decomposition (T,X) at a node t, written as Ht, is
the graph obtained from G as follows. If T consists of a single node t, then the
torso of (T,X) at t is G. Otherwise let T1, . . . , T� be the connected components
of T − t. For each i = 1, . . . , �, the vertex set Zi ⊆ V (G) is defined as the set⋃

b∈V (Ti)
Xb. The torso Ht at t is obtained from G by consolidating each vertex

set Zi into a single vertex zi (this is also called shrinking in the literature). Here,
the operation of consolidating a vertex set Z into z is to substitute Z by z in G,
and for each edge e between Z and v ∈ V (G) \ Z, adding an edge zv in the new
graph. We note that this may create parallel edges.

The operation of suppressing (also called dissolving in the literature) a vertex
v of degree at most 2 consists of deleting v, and when the degree is two, adding
an edge between the neighbors of v. Given a connected graph G and X ⊆ V (G),
let the 3-center of (G,X) be the unique graph obtained from G by exhaustively
suppressing vertices in V (G) \ X of degree at most two. Finally, for a node t of
T , we denote by H̃t the 3-center of (Ht,Xt), where Ht is the torso of (T,X) at
t. Let the torso-size tor(t) denote |H̃t|.
Definition 2. The width of a treecut decomposition (T,X) of G is
maxt∈V (T){adh(t), tor(t)}. The treecut width of G, or tcw(G) in short, is the
minimum width of (T,X) over all treecut decompositions (T,X) of G.

Without loss of generality, we shall assume that Xr = ∅. We conclude this
subsection with some notation related to treecut decompositions. Given a tree
node t, let Tt be the subtree of T rooted at t. Let Yt =

⋃
b∈V (Tt)

Xb, and let Gt

denote the induced subgraph G[Yt]. A node t �= r in a rooted treecut decompo-
sition is thin if adh(t) ≤ 2 and bold otherwise (Fig. 1).

While it is not known how to compute optimal treecut decompositions effi-
ciently, there exists a fixed-parameter 2-approximation algorithm which we can
use instead.

Theorem 1 ([15]). There exists an algorithm that takes as input an n-vertex
graph G and integer k, runs in time 2O(k2 log k)n2, and either outputs a treecut
decomposition of G of width at most 2k or correctly reports that tcw(G) > k.

The Power of Cut-Based Parameters for Computing Edge Disjoint Paths 195

a
d

b c

e

f

g

d(2, 0)

a(3, 3)

bc(3, 3)

e

(1, 2)

f

(1, 2)

g

(1, 1)

Fig. 1. A graph G and a width-3 treecut decomposition of G, including the torso-size
(left value) and adhesion (right value) of each node.

A treecut decomposition (T,X) is nice if it satisfies the following condition for
every thin node t ∈ V (T): N(Yt)∩(

⋃
b is a sibling of t Yb) = ∅. The intuition behind

nice treecut decompositions is that we restrict the neighborhood of thin nodes
in a way which facilitates dynamic programming. Every treecut decomposition
can be transformed into a nice treecut decomposition of the same width in cubic
time [9].

For a node t, we let Bt = { b is a child of t | |N(Yb)| ≤ 2 ∧ N(Yb) ⊆ Xt }
denote the set of thin children of t whose neighborhood is a subset of Xt, and
we let At = { a is a child of t | a �∈ Bt } be the set of all other children of t. Then
|At| ≤ 2k + 1 for every node t in a nice treecut decomposition [9].

We refer to previous work [9,15,17,22] for a more detailed comparison of
treecut width to other parameters. Here, we mention only that treecut width
lies “between” treewidth and treewidth plus maximum degree.

3 The Simple Edge Disjoint Paths Problem

Before we start working towards our algorithm for solving EDP parameterized
by treecut width, we will first deal with a simpler (but crucial) setting for the
problem. We call this the Simple Edge Disjoint Paths problem (Simple
EDP) and define it below.

Simple EDP

Input: An EDP instance (G,P) such that V (G) = A ∪ B where B
is an independent set containing vertices of degree at most 2.

Parameter: k = |A|
Question: Is (G,P) a YES-instance of EDP?

Notice that every instance of Simple EDP has treecut width at most k, and
so it forms a special case of EDP parameterized by treecut width. Indeed, the
treecut decomposition where T is a star, the center bag contains A, and each
leaf bag contains a vertex from B (except for the root r, where Xr = ∅), has
treecut width at most k. This contrasts to the setting where G has a vertex
cover of size 3 and all vertices outside the vertex cover have degree 3; the treecut

196 R. Ganian and S. Ordyniak

width of such graphs is not bounded by any constant, and EDP is known to be
NP-complete in this setting [8].

The main reason we introduce and focus on Simple EDP is that it captures
the combinatorial problem that needs to be solved in the dynamic step of the
algorithm for EDP parameterized by treecut width. Hence, our first task here
will be to solve Simple EDP by an algorithm that can later be called as a
subroutine.

Lemma 1. Simple EDP can be solved in time O(|P |(k2)+1(k + 1)!).

Sketch of Proof. Let (G,P) with partition A and B and k = |A| be an instance
of Simple EDP. Let the terminal graph of G, denoted by GT , as the graph with
vertex set V and edge set P . Our first course of action will be to simplify the
instance by removing all vertices in B that are not part of any terminal pair;
to this end, we add multi-edges into G[A] which represent removed degree-2
vertices. We now make the following two observations:

O1 Consider a path H connecting a terminal pair p ∈ P in a solution. Because
B is an independent set and every vertex in B has degree at most two and
is contained in at least one terminal pair in P , we obtain that all inner
vertices of H are from A. Hence, H contains at most k + 2 vertices and
all inner vertices of H are contained in A. It follows that H is completely
characterized by the sequence of vertices it uses in A. Consequently, there
are at most

∑k
�=1

(
k
�

)
�! ≤ (k + 1)! different types of paths that need to be

considered for the connection of any terminal pair.
O2 GT [B] is a disjoint union of paths and cycles. This is because every vertex

v of G can be contained in at most |NG(v)| terminal pairs in P (otherwise
we immediately reject) and all vertices in B have degree at most two.

Let u and v be two distinct vertices in A. Because |A| ≤ k, we can enumer-
ate all possible paths between u and v in G[A] in time O((k + 1)!). We will
represent each such path H as a binary vector EH , whose entries are indexed
by all sets of two distinct vertices in A, such that EH [e] = 1 if H uses the
edge e and EH [e] = 0 otherwise. Moreover, we will denote by Eu,v the set
{EH | H is a path between u and v in G[A] }; intuitively, Eu,v captures all pos-
sible sets of edges that need to be used in order to connect u to v.

Let S be a solution for (G,P). The algorithm represents every solution S for
(G,P) as a solution vector ES of natural numbers whose entries are indexed by
all sets {u, v} of two distinct vertices in A. More specifically, for two distinct
vertices u and v in A, ES [{u, v}] is equal to the number of edges between u
and v used by the paths in S. The algorithm uses dynamic programming to
compute the set L of all solution vectors; clearly, L �= ∅ if and only if (G,P) is
a YES-instance. We compute L in two main steps:

(S1) the algorithm computes the set LA of all solution vectors for the sub-
instance (G[A], P ′) of (G,P), where P ′ is the subset of P containing all
terminal pairs {p, q} with p, q ∈ A.

The Power of Cut-Based Parameters for Computing Edge Disjoint Paths 197

(S2) the algorithm computes the set of all solution vectors for the sub-instance
(G,P \ P ′). Note that every terminal pair p in P \ P ′ is either completely
contained in B, in which case it forms an edge of a path or a cycle in GT [B],
or p has one vertex in A and the other vertex in B, which is the endpoint
of a path in GT [B]. The algorithm now computes the set of all solution
vectors for the sub-instance (G,P \ P ′) in two steps:

(S2A) For every cycle C in GT [B], the algorithm computes the set LC of all
solution vectors for the sub-instance (G[A ∪ V (C)], PC), where PC is the
subset of P containing all terminal pairs {p, q} such that p, q ∈ C.

(S2B) For every path H in GT [B], the algorithm computes the set LH of all
solution vectors for the sub-instance (G[A∪V (H)], PH), where PH is the
subset of P containing all terminal pairs {p, q} with {p, q} ∩ V (H) �= ∅.

In the end, the set of all hypothetical solution vectors L′ for (G,P) is obtained
as LA ⊕ (⊕C is a cycle of GT [B]LC) ⊕ (⊕H is a path of GT [B]LH), where P ⊕ P ′ for
two sets P and P ′ of solution vectors is equal to {R + R′ | R ∈ P ∧ R′ ∈ P ′ }.
Each vector in L′ describes one possible set of multi-edges in G[A] that can be
used to connect all terminal pairs in P . In order to compute L, one simply needs
to remove all vectors from L′ which require more multi-edges than are available
in G[A]; in particular, to obtain L we delete each S from L′ such that there
exist u, v ∈ A where ES [{u, v}] exceeds the number of multi-edges between u
and v in G. The algorithm then returns YES if L is non-empty and otherwise
the algorithm returns NO. �

Notice that Lemma 1 does not provide a fixed-parameter algorithm for Sim-

ple EDP. Our second task for this section will be to rule out the existence of
such algorithms (hence also ruling out the fixed-parameter tractability of EDP

parameterized by treecut width).
Before we proceed, we would like note that this outcome was highly surprising

for the authors. Indeed, not only does this “break” the parallel between {VDP,
treewidth} and {EDP, treecut width}, but inspecting the dynamic programming
algorithm for EDP parameterized by treecut width presented in Sect. 4 reveals
that solving Simple EDP is the only step which requires more than “FPT-time”.
In particular, if Simple EDP were FPT, then EDP parameterized by treecut
width would also be FPT. This situation contrasts the vast majority of dynamic
programming algorithms for parameters such as treewidth and clique-width [2],
where the complexity bottleneck is usually tied to the size of the records used
and not to the computation of the dynamic step.

Our lower-bound result is based on a parameterized reduction from the
following problem, whose W[1]-hardness follows from recent work of the
authors [10,11]:

198 R. Ganian and S. Ordyniak

Multidimensional Subset Sum (MSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with si ∈
N

k for every i with 1 ≤ i ≤ n, a target vector t ∈ N
k, and an

integer �.
Parameter: k
Question: Is there a subset S′ ⊆ S with |S′| ≥ � such that

∑
s∈S′ s ≤ t?

Lemma 2. Simple EDP is W[1]-hard.

4 An Algorithm for EDP on Graphs of Bounded Treecut
Width

The goal of this section is to provide an XP algorithm for EDP parameterized by
treecut-width. The core of the algorithm is a dynamic programming procedure
which runs on a nice treecut decomposition (T,X) of the input graph G.

Overview. Our first aim is to define the data table the algorithm is going to
dynamically compute for individual nodes of the treecut decomposition; to this
end, we introduce two additional notions. For a node t, we say that Yt (or Gt)
contains an unmatched terminal s if {s, e} ∈ P , s ∈ Yt and e �∈ Yt; let Ut be the
multiset containing all unmatched terminals Yt (one entry in Ut per tuple in P
which contains an unmatched terminal). For a subgraph H of G, let PH ⊆ P
denote the subset of terminal pairs whose both endpoints lie in H.

Let a record for node t be a tuple (δ, I, F, L) where:

– δ is a partitioning of Et into internal (I ′), leaving (L′), foreign (F ′) and
unused (U ′);

– I is a set of subsets of size 2 that is a perfect matching between the edges in
I ′;

– F is a set of subsets of size 2 that is a perfect matching between the edges in
F ′;

– L is a perfect matching between Ut and the edges in L′.

Intuitively, a record captures all the information we need about one possi-
ble interaction between a solution to EDP and the edges in Et. In particular,
unmatched terminals need to cross between Yt and Gt using an edge in Et and
L captures the first edge used by a path from an unmatched terminal in the
solution, while I and F capture information about paths which intersect with
Et but whose terminals both lie in Yt and V (Gt) \Yt, respectively. We formalize
this intuition below through the notion of a valid record.

Definition 3. A record λ = (δ, I, F, L) is valid for t if (Gλ, Pλ) is a YES-
instance of EDP, where (Gλ, Pλ) is constructed from (Gt, PGt

) as follows:

1. For each {{a, b}, {c, d}} ∈ I where a, c ∈ Yt, add a new vertex into Gt and
connect it to a and c by edges (note that if a = c then this simply creates a
new leaf and hence this operation can be ignored).

The Power of Cut-Based Parameters for Computing Edge Disjoint Paths 199

2. For each {s, {a, b}} ∈ L where a ∈ Yt, add a new tuple {s, e′} into PGt
and a

new leaf e′ into Gt adjacent to a.
3. For each {{a, b}, {c, d}} ∈ F where a, c ∈ Yt, add two new leaves b′, d′ into

Gt, make them adjacent to a and c respectively, and add {b′, d′} into PGt
.

We are now ready to define our data tables: for a node t ∈ V (T), let D(t)
be the set of all valid records for t. We now make two observations. First, for
any node t in a nice treecut decomposition of width k, it holds that there exist
at most 4k · k! distinct records and hence |D(t)| ≤ 4k · k!; indeed, there are 4k

possible choices for δ, and for each such choice and each edge e in Et one has
at most k options of what to match with e. Second, if r is the root of T , then
either D(r) = ∅ or D(r) = {(∅, ∅, ∅, ∅)}; furthermore, (G,P) is a YES-instance
if and only if the latter holds. Hence it suffices to compute D(r) in order to solve
EDP.

The next lemma shows that D(t) can be computed efficiently for all leaves
of t.

Lemma 3. Given (G,P), a width-k treecut decomposition (T,X) of G and a
leaf t ∈ V (T) as the input, it is possible to compute D(t) in time kO(k2).

At this point, all that is left to obtain a dynamic leaves-to-root algorithm
which solves EDP is the dynamic step, i.e., computing the data table for a node
t ∈ V (t) from the data tables of its children. Unfortunately, that is where all
the difficulty of the problem lies, and our first step towards handling this task
will be the introduction of two additional notions related to records. The first
is correspondence, which allows us to associate each solution to (G,P) with a
specific record for t; on an intuitive level, a solution corresponds to a particular
record if that record precisely captures the “behavior” of that solution on Et.
Correspondence will, among others, be used to later argue the correctness of our
algorithm.

Definition 4. A solution S to (G,P) corresponds to a record λ = (δ, I, F, L)
for t if the conditions 1.–4. stated below hold for every a-b path S ∈ S such that
S ∩ Et �= ∅. We let s = |S ∩ Et| and we denote individual edges in S ∩ Et by
e1, e2, . . . es, ordered from the edge nearest to a along S.

1. If a, b �∈ Yt, then for each odd i ∈ [s], F contains (ei, ei+1).
2. If a, b ∈ Yt, then for each odd i ∈ [s], I contains (ei, ei+1).
3. If {a, b} ∩ Yt = {a}, then L contains (a, e1), and for each even i ∈ [s] F

contains (ei, ei+1).
4. There are no elements in I, F, L other than those specified above.

Note that “restricting” the solution S to the instance (Gλ, Pλ) used in Def-
inition 3 yields also a solution to (Gλ, Pλ); in particular, for each path S ∈ S
that intersects Et, one replaces the path segments of S in G \ Yt by the newly
created vertices to obtain a solution to (Gλ, Pλ). Consequently, if S corresponds
to λ then λ must be valid (however, it is clearly not true that every valid record

200 R. Ganian and S. Ordyniak

has a solution to the whole instance that corresponds to it). Moreover, since
Definition 4 is constructive and deterministic, for each solution S and node t
there exists precisely one corresponding valid record λ.

The second notion that we will need is that of simplification. This is an
operation which takes a valid record λ for a node t and replaces Gt by a “small
representative” so that the resulting graph retains the existence of a solution
corresponding to λ. Simplification can also be seen as being complementary
to the construction of (Gλ, Pλ) used in Definition 3 (instead of modeling the
implications of a record on Gt, we model its implications on G − Yt), and will
later form an integral part of our procedure for computing valid records for
nodes.

Definition 5. The simplification of a node t in accordance with λ = (δ, I, F, L)
is an operation which transforms the instance (G,P) into a new instance (G′, P ′)
obtained from (G − Yt, PG−Yt

) as follows. (1) For each {s, {a, b}} ∈ L where
(s, e) ∈ P and b �∈ Yt, we add (s, e) to P ′ and create a vertex s adjacent to b.
(2) For each {{a, b}, {c, d}} ∈ I where a, c ∈ Yt and a �= c, we add (a, c) into
P ′, add vertices a and c into G′, and add edges {a, b} and {c, d}. (3) For each
{{a, b}, {c, d}} ∈ F where a, c ∈ Yt and b �= d, we create a vertex x and set
N(x) = {b, d}.
Observation 1. If there exists a solution to (G,P) which corresponds to a
record λ = (δ, I, F, L) for t, and if (G′, P ′) is the result of simplification of t in
accordance with λ, then (G′, P ′) admits a solution. On the other hand, if (G′, P ′)
is the result of simplification of t in accordance with a record λ and if (G′, P ′)
admits a solution, then (G,P) also admits a solution.

The Dynamic Step. The following crucial lemma represents the tool that
allows us to deal with the dynamic step of our leaf-to-root computation along
the decomposition.

Lemma 4. There is an algorithm which takes as input (G,P) along with a
width-k treecut decomposition (T,X) of G and a non-leaf node t ∈ V (T) and
D(t′) for every child t′ of t, runs in time (k|P |)O(k2), and outputs D(t).

Sketch of Proof. We begin by looping through all of the at most 4k · k! distinct
records for t; for each such record λ, our task is to decide whether it is valid, i.e.,
whether (Gλ, Pλ) is a YES-instance. On an intuitive level, our aim will now be
to use branching and simplification in order to reduce the question of checking
whether λ is valid to an instance of Simple EDP.

In our first layer of branching, we will select a record from the data tables
of each node in At. Formally, we say that a record-set is a mapping τ : t′ ∈
At �→ λt′ ∈ D(t′). Note that the number of record-sets is upper-bounded by
(4k · k!)3(2k+1), and we will loop over all possible record-sets.

Next, for each record-set τ , we will apply simplification to each node t′ ∈ At

in accordance with τ(t′), and recall that each vertex v created by this sequence
of simplifications has degree at most 2. We then apply a reduction rule to ensure

The Power of Cut-Based Parameters for Computing Edge Disjoint Paths 201

that each such vertex is only adjacent to (V (G) \ Yt) ∪ Xt. At this point, every
vertex contained in a bag Xt′ for t′ ∈ At has degree at most 2 and is only
adjacent to Xt ∪ (V (G)\Yt). Now, we apply one additional reduction rule which
allows us to replace every thin node by vertices of degree at most 2 adjacent to
Xt (there are only a few possible kinds of records that thin nodes can have, and
we use simple replacement rules for each individual case).

At this point, every vertex in V (Gλ) \ Xt is of degree at most 2 and only
adjacent to Xt, and so (Gλ, Pλ) is an instance of Simple EDP. All that is left is
to invoke Lemma 1; if it is a YES-instance then we add λ to D(t), and otherwise
we do not.

We conclude the proof by arguing correctness. Assume λ is a valid record.
By Definition 3, this implies that (Gλ, Pλ) admits a solution S. For each child
t′ ∈ At, S corresponds to some record λS

t′ for t; consider now the branch in our
algorithm which sets τ(t′) = λS

t′ . Then by Observation 1 it follows that each
simplification carried out by the algorithm preserves the existence of a solution
to (Gλ, Pλ). Hence the instance of Simple EDP we obtain at the end of this
branch must also be a YES-instance. �

Theorem 2. EDP can be solved in time at most O(n3) + kO(k2)n2 +
(k|P |)O(k2)n, where k is the treecut width of the input graph and n is the number
of its vertices.

Proof. We begin by invoking Theorem1 to compute a treecut decomposition of
G of width at most 2k and then converting it into a nice treecut decomposition
(this takes time kO(k2)n2 and O(n3), respectively). Afterwards, we use Lemma 3
to compute D(t) for each leaf of T , followed by a recursive leaf-to-root application
of Lemma 4. Once we compute D(r) for the root r of T , we output YES if and
only if D(r) = {(∅, ∅, ∅, ∅)}. �

5 Kernelizing EDP Parameterized by Feedback Edge Set

The goal of this section is to provide a fixed-parameter algorithm for EDP which
exploits the structure of the input graph exclusively. While treecut width cannot
be used to obtain such an algorithm, here we show that the feedback edge set
number can. More specifically, we obtain a linear kernel for EDP parameterized
by the feedback edge set number. Our kernel relies on the following two facts:

Fact 1. A minimum feedback edge set of a graph G can be obtained by deleting
the edges of minimum spanning trees of all connected components of G, and
hence can be computed in time O(|E(G)| · log |V (G)|).
Fact 2 ([12]). EDP can be solved in polynomial time when G is a forest.

For the purposes of this section, it will be useful to assume that each vertex
v ∈ V (G) occurs in at most one terminal pair, each vertex in a terminal pair has
degree 1 in G, and each terminal pair is not adjacent to each other. Note that

202 R. Ganian and S. Ordyniak

for any instance without these properties, we can add a new leaf vertex for each
terminal, attach it to the original terminal, and replace the original terminal in
P with the leaf vertex [11,23].

Consider an instance (G,P) of EDP and let X ⊆ E(G) be a minimum
feedback edge set X. Let Y be the set of all vertices incident to at least one
edge from X, and let Q = G − X. Similarly as before, given a subgraph H of G,
we say that H contains an unmatched terminal s if {s, t} ∈ P , s ∈ V (H) and
t �∈ V (H). We begin with two simple reduction rules which allow us to remove
degree 2 vertices and leaves not containing a terminal.

Reduction Rule 1. Let v ∈ V (G) be such that |NG(v)| = 1. If v is not a
terminal, then delete v from G.

Reduction Rule 2. Let v, a, b ∈ V (G) be such that NG(v) = {a, b} and {a, b} �∈
E. Then delete v and add the edge ab into E. Furthermore, if {a, v} or {v, b}
were in X then add {a, b} in X.

Of crucial importance is our third rule, which allows us to prune the instance
of subtrees with a single edge to Y . For a subgraph H of G, recall that PH ⊆ P
denotes the subset of terminal pairs whose both endpoints lie in H.

Reduction Rule 3. Let L be a connected component of G − Y such that there
exists a single edge {� ∈ L, y ∈ Y } between L and Y .

a. If L contains no unmatched terminal and (L,PL) is a YES-instance of EDP,
then set P := P \ PL and G := G \ V (L).

b. If L contains precisely one unmatched terminal s where {s, t} ∈ P and the
instance (L,PL ∪ {s, �}) is a YES-instance of EDP, then set P := P \ PL

and G := ((V (G) \ V (L)) ∪ {s}, (E(G) \ (E(L) ∪ {{�, y}}) ∪ {y, s}).
c. In all other cases, (G,P) is a NO-instance of EDP.

After exhaustive application of Reduction Rules 1, 2 and 3 we observe that
each leaf in Q is either in Y or adjacent to a vertex in Y . The simple rule below
is required to obtain a bound on the number of leaves in Q in the subsequent
step.

Reduction Rule 4. If {a, b} ∈ P and a, b are leaves in G such that N(a) =
N(b), then remove a and b from G and P .

After exhaustive application of Reduction Rules 1, 2, 3 and 4, we can prove:

Lemma 5. If Q contains more than 4|X| leaves, then (G,P) is a NO-instance.

Finally, we put everything together in the proof of the desired theorem.

Theorem 3. EDP admits a linear kernel parameterized by the feedback edge
set number of the input graph.

The Power of Cut-Based Parameters for Computing Edge Disjoint Paths 203

Proof. Let (G,P) be an instance of EDP; w.l.o.g. we assume that G is and
remains connected (note that if G becomes disconnected due to a later appli-
cation of a reduction rule, one can simply kernelize each connected component
separately). We begin by computing a minimum feedback edge set X of G using
Fact 1. We then exhaustively apply Reduction Rules 1, 2, 3 and 4; since EDP

is polynomial-time tractable by Fact 2, the time required to apply each rule is
easily seen to be polynomial.

After no more rules can be applied, we compare the number of leaves in
Q = G − X to |X| (note that V (G) = V (X)). If Q contains more than 4|X|
leaves, then we reject in view of Lemma 5. On the other hand, if Q contains at
most 4|X| leaves, then we claim that Q contains at most 11|X| − 2 vertices.
Indeed, the number of vertices of degree at least 3 in a forest is at most equal to
the number of leaves minus two and in particular Q has at most 4|X|−2 vertices
of degree at least 3. Moreover, due to the exhaustive application of Reduction
Rule 2 it follows that the number of degree two vertices is at most |X|. And
so, by putting together the bounds on |Y | along with the number of vertices of
degree 1 and 2 and 3, we obtain |V (G)| = |V (Q)| ≤ 2|X|+4|X|+ |X|+4|X|−2,
as claimed. �

References

1. Chekuri, C., Khanna, S., Bruce Shepherd, F.: An O(sqrt(n)) approximation and
integrality gap for disjoint paths and unsplittable flow. Theory Comput. 2(7), 137–
146 (2006)

2. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

3. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015)
4. Cygan, M., et al.: Parameterized Algorithms. Springer, Berlin (2014)
5. Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)
6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts

in Computer Science. Springer, Heidelberg (2013)
7. Ene, A., Mnich, M., Pilipczuk, M., Risteski, A.: On routing disjoint paths in

bounded treewidth graphs. In: Proceedings of the SWAT 2016. LIPIcs, vol. 53,
pp. 15:1–15:15. Schloss Dagstuhl (2016)

8. Fleszar, K., Mnich, M., Spoerhase, J.: New algorithms for maximum disjoint paths
based on tree-likeness. In: Proceedings of the ESA 2016, pp. 42:1–42:17 (2016)

9. Ganian, R., Kim, E.J., Szeider, S.: Algorithmic applications of tree-cut width.
In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol.
9235, pp. 348–360. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48054-0 29

10. Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the
bounded-degree vertex deletion problem. In: Proceedings of the STACS 2018, pp.
33:1–33:14 (2018)

11. Ganian, R., Ordyniak, S., Sridharan, R.: On structural parameterizations of the
edge disjoint paths problem. In Proceedings of the ISAAC 2017. LIPIcs, vol. 92,
pp. 36:1–36:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

https://doi.org/10.1007/978-3-662-48054-0_29
https://doi.org/10.1007/978-3-662-48054-0_29

204 R. Ganian and S. Ordyniak

12. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

13. Karp, R.M.: On the computational complexity of combinatorial problems. Net-
works 5(1), 45–68 (1975)

14. Kawarabayashi, K., Kobayashi, Y., Kreutzer, S.: An excluded half-integral grid
theorem for digraphs and the directed disjoint paths problem. In: Proceedings of
the STOC 2014, pp. 70–78. ACM (2014)

15. Kim, E., Oum, S., Paul, C., Sau, I., Thilikos, D.M.: An FPT 2-approximation for
tree-cut decomposition. In: Sanità, L., Skutella, M. (eds.) WAOA 2015. LNCS,
vol. 9499, pp. 35–46. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
28684-6 4

16. Kolliopoulos, S.G., Stein, C.: Approximating disjoint-path problems using packing
integer programs. Math. Program. 99(1), 63–87 (2004)

17. Marx, D., Wollan, P.: Immersions in highly edge connected graphs. SIAM J. Dis-
cret. Math. 28(1), 503–520 (2014)

18. Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is NP-complete
for series-parallel graphs. Discret. Appl. Math. 115(1–3), 177–186 (2001)

19. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. J.
Comb. Theory Ser. B 63(1), 65–110 (1995)

20. Robertson, N., Seymour, P.D.: Graph minors. XVIII. tree-decompositions and well-
quasi-ordering. J. Comb. Theory Ser. B 89(1), 77–108 (2003)

21. Scheffler, P.: Practical linear time algorithm for disjoint paths in graphs with
bounded tree-width. In: Technical report TR 396/1994. FU Berlin, Fachbereich
3 Mathematik (1994)

22. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb.
Theory Ser. B 110, 47–66 (2015)

23. Zhou, X., Tamura, S., Nishizeki, T.: Finding edge-disjoint paths in partial k-trees.
Algorithmica 26(1), 3–30 (2000)

https://doi.org/10.1007/978-3-319-28684-6_4
https://doi.org/10.1007/978-3-319-28684-6_4

Geometric Representations
of Dichotomous Ordinal Data

Patrizio Angelini1(B), Michael A. Bekos1, Martin Gronemann2,
and Antonios Symvonis3

1 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

{angelini,bekos}@informatik.uni-tuebingen.de
2 Institut für Informatik, Universität zu Köln, Köln, Germany

gronemann@informatik.uni-koeln.de
3 School of Applied Mathematical and Physical Sciences, NTUA,

Athens, Greece
symvonis@math.ntua.gr

Abstract. Motivated by the study of ordinal embeddings in machine
learning and by the recognition of Euclidean preferences in computa-
tional social science, we study the following problem. Given a graph G,
together with a set of relationships between pairs of edges, each speci-
fying that an edge must be longer than another edge, is it possible to
construct a straight-line drawing of G satisfying all these relationships?

We mainly consider a dichotomous setting, in which edges are par-
titioned into short and long, as otherwise there are simple (planar)
instances that do not admit a solution. Since the problem is NP-hard even
in this setting, we study under which conditions a solution always exists.
We prove that degeneracy-2 graphs, subcubic graphs, double-wheels, and
4-colorable graphs in which the short edges induce a caterpillar always
admit a realization. These positive results are complemented by negative
instances, even when the input graph is composed of a maximal planar
graph, namely a double-wheel graph, and an edge. We conjecture that
planar graphs always admit a (not necessarily planar) realization in the
dichotomous setting.

Keywords: Geometric representations · Ordinal data ·
Graph drawing

1 Introduction

When modeling an application domain by means of a graph, it is sometimes
necessary to associate weights to the edges, in order to represent the strength
of the binary relationship among the actors. When a quantitative information is
available, it is possible to assign specific values for the weights; this is however not
always the case, as many application domains only carry an ordinal information.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 205–217, 2019.
https://doi.org/10.1007/978-3-030-30786-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_16

206 P. Angelini et al.

A typical example, which first triggered our work, comes from automatic
classification systems (say, of images), whose training set often consists of a
set of answers to questions of the type: Given three images A, B, and C; is
A more similar to B or to C? This setting is modeled in machine learning by
the notion of ordinal embedding [21]. Consider a set of objects x1, . . . , xn in an
abstract space, and suppose that the only information about their displacement
is a set of ordinal constraints of the form dist(xi, xj) < dist(xk, xl). The goal
is to find a point configuration p1, . . . , pn in the d-dimensional Euclidean space
R

d that, by preserving as many ordinal constraints as possible, returns a good
approximation of the displacement of x1, . . . , xn.

Ordinal embeddings are also known as non-metric multi-dimensional scaling,
as opposed to the classical multi-dimensional scaling [7], where the goal is to pre-
serve the actual (possibly weighted) graph distances. Ordinal embeddings were
first applied in the 60’s by Shepard [19,20] and Kruskal [14,15] to the analysis of
psychometric data. They have been later studied in several domains, mainly from
a heuristic point of view [1,3,13,17,22]. Alon et al. [5] also provided approxima-
tion algorithms. A major contribution is due to Terada and von Luxburg [21],
who proved that, if n is large enough, it suffices to know the h nearest neighbors
of each point, for some parameter h, to approximately reconstruct the point set.

Another example comes from the recognition of Euclidean multidimensional
preferences [6,9,10,16] in computational social science. In this setting, two sets
of objects are given, the decision makers and the alternatives, and the goal is
to place them in R

d so that their distances represent the preferences of each
decision maker. One can see this problem as an ordinal embedding one in which
the graph is bipartite; however, the goal here is to test if all constraints can be
satisfied rather than to find an approximation. Efficient algorithms exist when
d = 1 [9,10], while for any d ≥ 2 the problem is as hard as the existential theory
of the reals (that is, it is ∃R-hard, and thus NP-hard) [16].

We approach these problems from a graph drawing perspective. Given a
graph G and a set R of relationships, each specifying that an edge must be longer
than another, the goal is to construct a realization of 〈G,R〉, i.e., a straight-line
drawing of G in R

2 satisfying R. We consider the special case in which R induces
a partition of the edges of G = (V,E) into k sets E1, . . . , Ek and the goal is to
find a straight-line drawing of G in which all the edges in Ei are (strictly) shorter
than those in Ej , for 1 ≤ i < j ≤ k. Aichholzer et al. [2] studied this problem
when R describes a total order on the edges (i.e., k = |E|) with the extra
requirement that the drawing of G has to be planar. Another variant of this
problem, which has been proven to be NP-hard with and without the planarity
requirement [8,11,18], requires all edges to have the same length.

We mainly focus on the case k = 2, where the partition consists of short and
long edges; in this case, R is dichotomous. In image classification, the dichoto-
mous setting may originate from answers to the question: Given two images A
and B, are they similar to each other? Also, the setting in which only the h
nearest neighbors of each vertex are known [21] is equivalent to the one in which
h of the edges incident to a vertex must be shorter than the remaining ones; note

Geometric Representations of Dichotomous Ordinal Data 207

that in this case the short/long dichotomy is defined on a local scale. Finally, the
recognition of d-dimensional Euclidean preferences has also been studied when a
decision maker either likes (short edge) an alternative or not (long edge) [12,16],
both for global and local dichotomies. Since the ∃R-hardness [16] extends to these
relaxations, our problem is ∃R-hard, and thus NP-hard, even when G is bipartite.

Alam et al. [4] independently proved NP-hardness, when G is complete, and
that degree-2 contractible graphs always admit realizations in the dichotomous
setting; a graph is degree-2 contractible if there is a sequence of edge-contractions,
each involving an edge with a vertex of degree at most 2, that results in the
removal of all edges. This includes 2-trees, and thus series-parallel graphs.

Our Contribution. In Sect. 2, we extend the result by Alam et al. [4] to any
set of (not necessarily dichotomous) relationships. Given that both hardness
results [4,16] hold when G is a non-planar graph, we study the role of planarity
in our problem. As noted in [2], one cannot hope for planar realizations, even
for small graphs like K4. Thus, we investigate whether planar graphs admit not-
necessarily planar realizations. While we could construct a negative instance for
k = 3 in which G is planar, even if we allow non-planar realizations (Sect. 2), we
are not aware of any planar instance for the dichotomous setting. For this reason,
we focus the rest of our study on the dichotomous setting. In Sect. 3, we present
negative instances when G is a maximal planar graph plus an edge (includ-
ing K5), and give algorithms to construct realizations for any set of dichotomous
relationships for several graph classes: degeneracy-2 graphs (i.e., graphs where
every subgraph has at least one vertex of degree at most 2), subcubic graphs,
and double wheels (i.e., maximal planar graphs composed of a cycle and two
vertices, each connected to all vertices of the cycle). Since degree-2 contractible
graphs have degeneracy 2, we obtain another strengthening of the result by Alam
et al. [4]. We finally prove that every 4-colorable graph admits a realization, if
the subgraph induced by the short edges is a caterpillar, namely a tree such
that the removal of all the leaves yields a path. This includes planar graphs,
and (even non-planar) bipartite graphs, for which the problem is NP-hard if
we neglect the additional condition on the short edges. We conclude with open
problems in Sect. 4.

Preliminaries. We start with an observation, based on the fact that, if there
exists a set of long edges whose removal creates different connected compo-
nents, we can draw such components separately and place them far away from
each other.

Observation 1. Let G be a graph and let R be a set of relationships partitioning
its edges into k ≥ 2 sets E1, . . . , Ek. Then, it is not a loss of generality to assume
that the subgraph obtained by removing the longest edges (that is, Ek) is connected
and spanning. In particular, if R is dichotomous, the subgraph induced by the
short edges is connected and spanning.

Next, we describe a configuration that enforces a crossing between specific
edges, which we use for constructing instances that do not admit any realization.

208 P. Angelini et al.

Fig. 1. (a)–(b) Illustrations for the proof of Lemma 1; (c)–(g) realizations of K4 for any
combination of short (solid) and long (dashed) edges that complies with Observation 1.

Lemma 1. Let G be a graph containing K4 as a subgraph, and let R be a set of
relationships partitioning its edges into k ≥ 2 sets E1, . . . , Ek. Let e1 ∈ Ei and
e2 ∈ Ej be two independent edges of the K4, with i ≤ j. Suppose that each of
the remaining edges of the K4 belongs to one of the sets E1, . . . , Ei−1. Then, in
any realization of 〈G,R〉, edges e1 and e2 cross.

Proof. Assume there is a realization of 〈G,R〉 in which e1 and e2 do not cross.
We distinguish two cases, based on whether the four vertices of the K4 are in
convex position or not. In the latter case, one of them, say v, lies inside the
triangle created by the remaining three. Note that in this realization, no two
edges of the K4 cross each other. However, v is incident to an edge, say e1, that
is longer than its other two incident edges, say e and e′ (see Fig. 1a). Notice that
the angle between e1 and e (e1 and e′) must be smaller than 90◦, as otherwise
the opposite edge would be longer than e1. Hence, the angle between e and e′ is
larger than 180◦, a contradiction to the fact that v lies inside the triangle.

We now consider the case in which the endpoints of e1 and e2 are in con-
vex position. Thus, together with two shorter edges, they form a planar convex
quadrilateral (see Fig. 1b). Notice that every interior angle of the quadrilateral
is formed by exactly an edge in E1, . . . , Ei−1 and one in Ei, . . . , Ek. Hence, all
interior angles are smaller than 90◦, as otherwise the edges corresponding to the
two diagonals of the quadrilateral would be longer than e1 or e2. As a result,
their sum is smaller than 360◦, a contradiction. �	

The fact that a realization of K4 may require a crossing was already observed
by Aichholzer et al. [2] in the dichotomous setting. Lemma 1 restates this result
in a slightly stronger form, since it enforces a specific pair of edges to cross,
and holds for any k ≥ 2. On the other hand, we observe that when crossings are
allowed, then K4 is realizable for any set of dichotomous relationships; see Fig. 1.

Another observation for the dichotomous setting is that it is not a loss of
generality to assume that G is biconnected. To see this, consider any cut-vertex
v of G, which defines several subgraphs of G that are all incident to v. Suppose
that each of these subgraphs admits a realization with respect to R. By scaling
up or down each of these realizations uniformly, we can ensure that each short
edge of R is shorter than 1 and each long edge is longer than 1. This results
in a realization for 〈G,R〉. On the other hand, any realization of 〈G,R〉 clearly
contains a realization of each of the subgraphs defined by v.

Geometric Representations of Dichotomous Ordinal Data 209

We conclude this section with a positive result for the dichotomous setting
when the subgraph induced by the short edges has some special structure.

Lemma 2. Let G be a graph and R a set of dichotomous relationships. Then,
〈G,R〉 admits a realization, if the subgraph induced by the short edges is (i) a
rooted spanning tree T and there is no long edge connecting two vertices whose
depths in T differ by at most 1, or (ii) a Hamiltonian cycle of G.

Proof. For (i), we place the vertices on the x-axis, such that each vertex lies in
a small neighborhood of the point with x-coordinate equal to its depth in T .
Hence, the minimum (maximum) distance between any two vertices joined by a
long (short) edge is almost 2 (slightly more than 1). For (ii), we place the vertices
of G at the corners of a regular n-gon Qn, as they appear along the Hamiltonian
cycle. Hence, the short edges are drawn as the boundary edges of Qn, while the
long edges are drawn as chords of Qn. Consequently, the length of each of the
short edges of R is smaller than the length of the long edges of R. �	

2 Realizability When k ≥ 3

In this section, we consider instances 〈G,R〉 in which the set of relationships R
is not dichotomous, that is, it defines a partition E1, . . . , Ek of the edges of G
such that k ≥ 3. We first prove that a negative instance 〈G,R〉 exists even if
k = 3 (that is, R is trichotomous) and G is a planar 3-tree with seven vertices.
On the positive side we show that, if G is a degree-2 contractible graph, then
〈G,R〉 can always be realized for any value of k, which generalizes the result by
Alam et al. [4] from the dichotomous setting to the general one.

Theorem 1. For every n ≥ 7, there exists an n-vertex planar 3-tree G and a set
of trichotomous relationships R such that 〈G,R〉 does not admit any realization.

Proof. Let G be the planar 3-tree on seven vertices of Fig. 2a. The set R of tri-
chotomous relationships is such that E1 = {(u1, u6), (u1, u7), (u2, u5), (u2, u6),
(u3, u5), (u3, u7)}, E2 = {(u1, u4), (u2, u4), (u3, u4)}, and E3 =

{
(u1, u2),

(u2, u3), (u3, u1), (u4, u5), (u4, u6), (u4, u7)
}
. Suppose, for a contradiction, that

u1

u3u2

u4
u6 u7

u5

u1

u3u2

u4

u5

u1

u3u2
u5

u4

Fig. 2. Illustration for the proof of Theorem 1. The edges of E1, E2 and E3 are illus-
trated solid, dotted and dashed, respectively.

210 P. Angelini et al.

〈G,R〉 admits a realization. We distinguish two cases: (i) at least one of the
edges of E2 crosses an outer edge of G, and (ii) none of the edges of E2 crosses
an outer edge of G. Note that the outer edges of G belong to E3.

Consider Case (i) and assume w.l.o.g. that (u1, u4) crosses (u2, u3); see
Fig. 2b. By applying Lemma1 to the K4 formed by the vertices 〈u2, u3, u4, u5〉,
we have that edges (u2, u3) and (u4, u5) cross. We claim that the gray-shaded
angle at u4 is at least 120◦. To see this, observe that vertices 〈u1, u2, u4〉 and
〈u1, u3, u4〉 form two triangles, whose longest edges are (u1, u2) and (u1, u3),
respectively. Thus, the angles opposite to these edges are at least 60◦ each.
Since these two angles together form the gray-shaded angle at u4, the claim
holds. Since the edges (u2, u5) and (u3, u5) are both shorter than the edges
(u2, u4) and (u3, u4), the gray-shaded angle at u5 is larger than the one at u4;
hence, it is larger than 120◦. Also, in both triangles formed by 〈u2, u4, u5〉 and
〈u3, u4, u5〉, the longest edge is (u4, u5). Thus, each of the gray-shaded angles at
u2 and u3 is larger than 60◦. Since the sum of the angles of the quadrilateral
formed by 〈u2, u4, u3, u5〉 is larger than 360◦, we have a contradiction.

Consider now Case (ii). As in the previous case, edges (u2, u3) and (u4, u5)
cross, by Lemma 1. Analogously, (u1, u3) and (u4, u7) cross, and (u1, u2) and
(u4, u6) cross, by Lemma 1. These observations together with the assumption of
Case (ii) imply that vertex u4 must lie inside the triangle formed by 〈u1, u2, u3〉;
see Fig. 2c. In this case, the edges (u1, u4), (u2, u4), and (u3, u4) form three angles
around u4, one of which is at least 120◦; say w.l.o.g. the angle between (u2, u4)
and (u3, u4). Since the edges (u2, u5) and (u3, u5) are both shorter than the edges
(u2, u4) and (u3, u4), the gray-shaded angle at u5 is larger than the one at u4;
hence, it is larger than 120◦. Since in both triangles formed by 〈u2, u4, u5〉 and
〈u3, u4, u5〉 the longest edge is (u4, u5), each of the gray-shaded angles at u2 and
u3 is larger than 60◦, and thus the sum of the angles of the quadrilateral formed
by 〈u2, u4, u3, u5〉 is larger than 360◦; a contradiction.

By Cases (i)–(ii), 〈G,R〉 does not admit a realization. Since any planar graph
that contains G as a subgraph has the same property, the statement follows. �	

We now present our positive result for degree-2 contractible graphs.

Theorem 2. Let G be a degree-2 contractible graph and let R be a set of rela-
tionships partitioning its edges into k ≥ 2 sets. Then, 〈G,R〉 admits a realization.

Proof. Let v1, . . . , vn be the vertices of G in the order implied by the definition
of degree-2 contractible graphs, and let E1, . . . , Ek be the given partition of its
edges. Our proof is inspired by the one in [4] for the case k = 2. Beside extending
this result to any value of k, we also prove a slightly stronger statement, namely
that we can draw all the edges in the same set Ei with the same length, which
we set to �i = k + i. As a result, �i

2 < �j < 2�i, for any 1 ≤ i, j ≤ k, and hence
the ratio between the lengths of any two edges of G is less than 2.

The proof is by induction on the number m of edges of G. In the base case
m = 1, we draw the unique edge, which belongs to a set Ej , as a horizontal
line segment of length �j . In the inductive case, in which G has m > 0 edges,
we consider the last vertex vn in the order v1, . . . , vn of the vertices. Let G− be

Geometric Representations of Dichotomous Ordinal Data 211

the graph obtained from G by contracting one of the edges incident to vn. Note
that, if vn has degree 2 in G, this contraction may introduce an edge in G−,
between the two neighbors of vn, that does not belong to G. In this case, we add
this edge to set E1.

By induction, G− admits a drawing Γ− in which every edge in set Ei, with
1 ≤ i ≤ k, has length �i. If vn has degree 1 in G, we construct a drawing Γ of G
in which every edge in set Ei, with 1 ≤ i ≤ k, has length �i by placing vn in Γ−

on any point at distance �j from the unique neighbor of vn. If vn has degree 2 in
G, let vl and vr be the two neighbors of vj in G. Since vn has been contracted to
one of vl and vr in order to obtain G−, edge (vl, vr) exists in G− and belongs to
some set Ej , with 1 ≤ j ≤ k (recall that j = 1, if (vl, vr) does not belong to G).
Also, let Ex and Ey, with 1 ≤ x, y ≤ k, be the sets that contain edges (vn, vl)
and (vn, vr), respectively. Consider two circles Cl and Cr with radii �x and �y,
centered at vl and vr in Γ−, respectively. Since vl and vr have distance �j in
Γ−, and since �x + �y > �j (given that �x, �y >

�j
2), circles Cl and Cr intersect in

two distinct points. Hence, we can obtain Γ by placing vn in Γ− on one of these
two points, which ensures that edges (vn, vl) and (vn, vr) have length �x and �y,
respectively. Since vn has degree at most 2, by definition of degree-2 contractible
graph, this concludes the proof. �	

3 Realizability in the Dichotomous Setting

In this section we study whether certain graph classes admit realizations for any
set of dichotomous relationships, and provide positive and negative examples.
While 〈K4, R〉 admits a realization for any set R of dichotomous relationships,
we show that for the complete graph K5 there exists a set of dichotomous rela-
tionships making it not realizable. We prove this statement in the next theorem
for a more general class of graphs, whose members are almost planar, in the
sense that the removal of a single edge is sufficient to ensure planarity.

Theorem 3. For every odd n ≥ 5, there exists an n-vertex graph G, composed
of a maximal planar graph and of a single edge, and a set of dichotomous rela-
tionships R such that 〈G,R〉 does not admit any realization.

Proof. Graph G is initialized as a double wheel on n vertices, i.e., starting from
two central vertices, s and t, and a cycle C = v1, . . . , vn−2, we connect every vi

to both s and t; see Fig. 3a. All the edges of the cycle C are long, while all the
edges incident to s and t, are short. Finally, we add a long edge between s and t.

Note that any two consecutive vertices vi and vi+1 along C form a K4 together
with s and t, in which (s, t) and (vi, vi+1) form an independent pair of long edges.
Hence, by Lemma 1, edge (s, t) must cross every edge (vi, vi+1) of C. Since n is
odd, this implies that v1 and vn−2 are in the same half-plane defined by the line
through s and t, but then (v1, vn−2) cannot cross (s, t), a contradiction. Note
that, when n is even, a realization exists; see Fig. 3b. �	
Theorem 3 implies that there exist negative instances of the problem in which
the input graph G is composed of a double wheel and of an edge between its two

212 P. Angelini et al.

s
t

v1
v2
v3

v4
v5
v6

s t

v1, v3, v5

v2, v4, v6

Ct

s t

Cs
D2

D1

d

D2

D1

Fig. 3. Illustrations for the proofs of (a–b) Theorem 3 and of (c) Theorem4.

central vertices; also, for n = 5 the obtained graph is the complete graph K5,
which has degree at most 4. In the following, we prove that this result is tight
in two senses. First, we show in Theorem 4 that, if G is a double wheel (without
the edge between its central vertices), then 〈G,R〉 is a positive instance for every
set R of dichotomous relationships. Second, we show in Theorem 6 that, if G is a
subcubic graph (i.e., its vertices have degree at most 3), then 〈G,R〉 is a positive
instance for every set R of dichotomous relationships.

Note that a subcubic graph is not necessarily degree-2 contractible, even if
the graph is not cubic (i.e., its vertices have degree exactly 3). For example, any
subdivision of a cubic graph is not degree-2 contractible. On the other hand, if
a subcubic graph has a vertex of degree at most 2, then it has degeneracy at
most 2. Thus, as an auxiliary result for Theorem 6, we prove in Theorem5 that a
degeneracy-2 graph always admits a realization in the dichotomous setting. This
result is interesting per sé, as it provides another strengthening of the result by
Alam et al. [4], since a degree-2 contractible graph has degeneracy at most 2.

Theorem 4. Let G be a double wheel graph on n ≥ 4 vertices and let R be any
set of dichotomous relationships. Then, 〈G,R〉 admits a realization.

Proof sketch. We place the two central vertices s and t of G at a distance d <
√

3
to be defined later. Consider two circles Cs and Ct with radius 1, centered at s
and t, respectively; see Fig. 3c. Since d <

√
3, Cs and Ct intersect at two points

p1 and p2 whose distance is larger than 1. Thus, there exist two small disks D1

and D2, centered at p1 and p2, respectively, with radius ε > 0 such that the
distance between any point inside D1 and any point inside D2 is larger than 1.

Our strategy is to place every vertex vi of the cycle C = v1, . . . , vn−2 of G,
except for at most two of them, in the interior of either D1 or D2. Note that
each of these disks is split by Cs and Ct into four subregions, which realize all
possible combinations of distances, larger or smaller than 1, from s and t. Thus,
when we place a vertex vi in a disk, we choose the subregion that realizes the
required lengths of edges (s, vi) and (t, vi).

We first place v1 in D1. Then, for each i = 2, . . . , n − 2, we place vi inside
D1 or D2 based on the placement of vi−1 and on the required length of edge
(vi−1, vi). Namely, if this edge is short, we place vi in the same disk as vi−1,

Geometric Representations of Dichotomous Ordinal Data 213

otherwise in the other disk. This strategy works well when the number of long
edges in C is even (including the case in which all edges of C are short), since the
placement of vn−2 inside D1 or D2 determined by our strategy is coherent with
the required length of edge (v1, vn−2). When the number of long edges along C
is odd, we have to find a way to “break the parity”.

With this in mind we distinguish two cases, based on whether there exist two
consecutive long edges (vi−1, vi) and (vi, vi+1) along C, or not. In the former case,
we place vertex vi in a suitable position outside the two disks that respects the
required distances to s and t, and allows vi−1 and vi+1 to be placed in different
disks, hence breaking the parity. Note that, if we choose the value of the distance
d between s and t to be smaller than 1, then we can guarantee a position for
vi. In the latter case, we consider three consecutive edges along C such that
(vi−1, vi) is short, (vi, vi+1) is long, and (vi+1, vi+2) is short, and we break the
parity by placing vi−1 and vi+2 in the same disk. This is done via an additional
case analysis, based on the required lengths of the edges connecting vi and vi+1

to s and t. Note that, in one of the cases, we need the value of the distance d
between s and t to be larger than 1 (in particular, we set it equal to 1.5 <

√
3).

Since the distance between D1 and D2 is larger than 1 for any value d <
√

3,
and since only one of the cases needs to be applied in order to break the parity,
we can set the required value at the beginning of the construction. �	
Theorem 5. Let G be a degeneracy-2 graph and let R be any set of dichotomous
relationships. Then, 〈G,R〉 admits a realization s.t. all vertices of G lie on a cir-
cle C with radius

√
2/2 and each short (long) edge in R is smaller (larger) than 1.

Proof. Let v1, . . . , vn be an ordering of the vertices of G such that vertex vi has
degree at most 2 in the subgraph Hi of G induced by vertices v1, . . . , vi, for
each i = 1, . . . , n. In the base of the recursion, we place vertex v1 at any point
of C. For the recursive step of our algorithm, assume that we have computed
a realization of the subgraph Hi−1 of G induced by the vertices v1, . . . , vi−1,
for some i = 2, . . . , n − 1 such that: (I.1) all vertices of Hi−1 lie on C, (I.2) no
two vertices of Hi−1 are at antipodal points of C, (I.3) each short (long) edge of
Hi−1 in R has length smaller (larger) than 1. In the following, we describe how
to determine a position of vi, such that (I.1)–(I.3) are satisfied for graph Hi.

Recall that vertex vi has at most two neighbors in Hi−1. Assume first that vi

has exactly two neightbors in Hi−1, say vj and vk; see Fig. 4a. By (I.1) and (I.2),
vertices vj and vk lie on two points, say pj and pk of C, which are not antipodal.
Let Cj and Ck be two circles of unit radius centered at pj and pk, respectively.
Since the sum of the radii of Cj and Ck is larger than the diameter of C, circles Cj

and Ck overlap. Further, the overlap of Cj and Ck contains an arc of C of positive
length, which we denote by S(j, k). In particular, S(j, k) lies on the shorter of
the two arcs of C defined by pj and pk; also, S(j, k) would degenerate to a single
point only if pj and pk were antipodal. Symmetrically, on the longer of the two
arcs of C defined by pj and pk, there is an arc of C with positive length, which
is contained neither in Cj nor in Ck; we denote this arc by L(j, k). Again, L(j, k)
would degenerate to a single point, only if pj and pk were antipodal.

214 P. Angelini et al.

C

pk

Ck

pj

Cj

L(j, k)

S(j, k)

pi

1

1

√ 2/
2

√
2/2

pi

pj

Cj

1

Fig. 4. Illustrations for the proofs of Theorem 5.

If the edges from vi to vj and vk are both short (long), then we place vi at any
point pi of S(j, k) (L(j, k), respectively), that is antipodal to none of the points
where v1, . . . , vi−1 reside. Clearly, (I.1) and (I.2) are satisfied. If pi ∈ S(j, k), then
pi lies in the interior of both Cj and Ck. Otherwise, pi is contained neither in Cj

nor in Ck. In both cases (I.3) is also satisfied. Consider now the case where the
edge from vi to vj is short, while the edge from vi to vk is long; the other case is
symmetric. We place vi at any point on the arc of C that lies in the interior of Cj ,
but not along S(j, k), and is antipodal to none of the points where v1, . . . , vi−1

reside. Note that this arc exists since Cj and Ck have the same radius and are
centered in different points of C. By construction, (I.1)–(I.3) are clearly satisfied.

If vi has only one neighbor in Hi−1, say vj , placed at point pj , we consider
a circle Cj with unit radius centered at pj ; see Fig. 4b. We place vi on a point of
C that is antipodal to none of the points where v1, . . . , vi−1 reside, and is either
in the interior or in the exterior of Cj , based on whether edge (vi, vj) is short or
long, respectively. Thus, (I.1)–(I.3) are satisfied. �	
Theorem 6. Let G be a subcubic graph and let R be any set of dichotomous
relationships. Then, 〈G,R〉 admits a realization.

Proof. Let H be the subgraph of G induced by the short edges of R. Suppose
first that there exists no vertex of G that is incident to three short edges of R.
In this case, graph H forms either a Hamiltonian path or a Hamiltonian cycle of
G, since H is connected and spanning by Observation 1, and since G is subcubic.
Hence, 〈G,R〉 admits a realization by Lemma 2.

Suppose now that G has a vertex v that is incident to three short edges of R.
If we remove v, then the resulting graph G′ becomes 2-degenerate. Note that G′

is connected, since G can be assumed biconnected (as observed in Preliminaries).
Let R′ ⊂ R be the set of dichotomous relationships for G′. By Theorem 5, 〈G′, R′〉
admits a realization such that all vertices of G′ lie on a circle C with radius

√
2/2

and each short (long) edge of G′ in R′ has length smaller (larger) than 1. Since

Geometric Representations of Dichotomous Ordinal Data 215

v1 v6
α α

α

β β

ββ

L
ci−1
i Lci

i

vi

Lc′
i

i even

i odd
Lc′′

i+1

Lci
i+1

vi+1

L
ci−1
i−1

α

β
αα αvi−1

Fig. 5. Illustrations for the proof of Theorem 7.

v is incident to three short edges of R in G, and since the radius of C is smaller
than 1, if we place v at the center of C, then all the edges incident to v are
shorter than 1. �	

We conclude by extending the previous two results to 4-colorable graphs,
which include all planar graphs, all bipartite graphs, and all graphs of maximum
degree 4 (except for K5). For this, however, we have to impose some constraints
on the structure of the subgraph induced by the short edges.

Theorem 7. Let G be a 4-colorable graph and let R be a set of dichotomous
relationships such that the subgraph induced by the short edges is a spanning
caterpillar. Then, 〈G,R〉 admits a realization.

Proof. Recall that a caterpillar is a tree such that the removal of all the leaves
yields a path v1, . . . , vm, called spine. Let f : V → C be a 4-coloring of G, where
C = {1, . . . , 4}. Denote by Lj

i the leaves adjacent to vi with color j. For each
pair of consecutive spine vertices vi and vi+1, with 1 ≤ i < m, we identify a color
ci ∈ C, which we call common color of vi and vi+1 with the following properties.
The common color ci is different from the colors of vi and vi+1 in the 4-coloring
f ; also, no three consecutive vertices share the same common color, i.e., for all
1 < i < m, it holds that ci−1 = ci. To compute the common colors, we first set
c1 ∈ C\{f(v1), f(v2)}; then, for each i > 1, we set ci = C\{f(vi), f(vi+1), ci−1}.

We place the spine vertices at unit distances along an arc such that the spine
is slightly bent (see Fig. 5a) by setting α = 60◦ + γ and β = 90◦ − 3

2γ for some
small γ > 0. The leaves of every vi are placed according to their color. Consider
the three sets L

ci−1
i , Lci

i and Lc′
i , where c′ = C \ {ci−1, ci, f(vi)}. We will say

that one of these sets is placed at a spot, meaning that all its vertices lie in a
small neighborhood around a point.

The first two sets L
ci−1
i , Lci

i are placed at unit distance from vi at the two
spots indicated in Fig. 5b. The interior angles α > 60◦ ensure that L

ci−1
i and Lci

i

are at a distance greater than 1 from each other and also from vi−1 and vi+1

(dashed). The third set Lc′
i is placed on the inner side of the arc (see Fig. 5b).

216 P. Angelini et al.

For i even, we place set Lc′
i at unit distance from vi, while for i odd at distance

1
2 from vi. For any 0 < γ ≤ min {3.386◦, 60◦/n}, it can be proved that Lc′

i is
not only far enough from vi−1 and vi+1, but also from their corresponding spots
that are placed on the inner side of the arc (see, e.g., Lc′′

i in Fig. 5b).
By construction, the short edges of the caterpillar are not longer than 1.

Moreover, the distance between every pair of vertices that have distinct colors
and are adjacent to the same spine vertex is larger than 1. The critical part are
the distances between leaves adjacent to consecutive spine vertices. However,
since Lci

i , Lci
i+1 have the common color ci, there cannot exist an edge between

them. The sets placed on the inner side of the arc alternate in their distance
from the spine vertex ensuring that their distance is larger than 1. �	

4 Conclusions

We studied the problem of constructing geometric realizations of graphs accom-
panied with ordinal relationships on their edge lengths. We derived constructive
algorithms for some graph classes, mainly in the dichotomous case, and presented
some negative instances. Our work raises several open problems.

– The most intriguing question is whether every instance 〈G,R〉 such that G is a
planar graph admits a realization in the dichotomous setting. We conjecture
an affirmative answer to this question. Towards settling this conjecture, a
possible direction is to consider restrictions on the subgraph induced by the
short edges that make planar graphs realizable, as in Theorem7, or to focus
on special families of planar graphs, e.g., triangle-free planar graphs, planar
graphs with maximum degree 4, or planar 3-trees.

– As an extension of Theorem 5, another interesting class in the dichotomous
setting is the one of degeneracy-3 graphs, which include (even non-planar)
3-trees. Note that the negative instances from Theorem 3 have degeneracy 4.

– Another possible direction is to consider instances in which the subgraph
induced by the long edges (rather than by the short edges) has a special
structure, e.g., it forms a Hamiltonian cycle.

– Finally, from the ordinal embeddings point of view, the variant in which the
edge relationships are specified locally to each vertex is equally important.

Acknowledgement. The authors would like to thank Michael Kaufmann and Ulrike
von Luxburg for useful discussions.

References

1. Agarwal, S., Wills, J., Cayton, L., Lanckriet, G.R.G., Kriegman, D.J., Belongie,
S.J.: Generalized non-metric multidimensional scaling. In: Meila, M., Shen, X.
(eds.) AISTATS. JMLR Proceedings, vol. 2, pp. 11–18. JMLR.org (2007)

2. Aichholzer, O., Hoffmann, M., van Kreveld, M.J., Rote, G.: Graph drawings with
relative edge length specifications. In: CCCG (2014)

Geometric Representations of Dichotomous Ordinal Data 217

3. Ailon, N.: An active learning algorithm for ranking from pairwise preferences with
an almost optimal query complexity. J. Mach. Learn. Res. 13, 137–164 (2012)

4. Alam, M.J., Kobourov, S.G., Pupyrev, S., Toeniskoetter, J.: Weak unit disk and
interval representation of graphs. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol.
9224, pp. 237–251. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53174-7 17

5. Alon, N., Badoiu, M., Demaine, E.D., Farach-Colton, M., Hajiaghayi, M.T.,
Sidiropoulos, A.: Ordinal embeddings of minimum relaxation: general properties,
trees, and ultrametrics. ACM Trans. Algorithms 4(4), 46:1–46:21 (2008)

6. Bennett, J.F., Hays, W.L.: Multidimensional unfolding: determining the dimen-
sionality of ranked preference data. Psychometrika 25(1), 27–43 (1960)

7. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications.
Springer, Heidelberg (2005)

8. Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified
edge lengths. J. Graph Algorithms Appl. 11(1), 259–276 (2007)

9. Chen, J., Pruhs, K., Woeginger, G.J.: The one-dimensional Euclidean domain:
finitely many obstructions are not enough. Soc. Choice Welf. 48(2), 409–432 (2017)

10. Doignon, J., Falmagne, J.: A polynomial time algorithm for unidimensional unfold-
ing representations. J. Algorithms 16(2), 218–233 (1994)

11. Eades, P., Wormald, N.C.: Fixed edge-length graph drawing is NP-hard. Discret.
Appl. Math. 28(2), 111–134 (1990)

12. Elkind, E., Lackner, M.: Structure in dichotomous preferences. In: Yang, Q.,
Wooldridge, M. (eds.) IJCAI, pp. 2019–2025. AAAI Press (2015)

13. Jamieson, K.G., Nowak, R.D.: Low-dimensional embedding using adaptively
selected ordinal data. In: Allerton Conference on Communication, Control, and
Computer, pp. 1077–1084. IEEE (2011)

14. Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika 29(1), 1–27 (1964)

15. Kruskal, J.: Nonmetric multidimensional scaling: a numerical method. Psychome-
trika 29(2), 115–129 (1964)

16. Peters, D.: Recognising multidimensional Euclidean preferences. In: Singh, S.P.,
Markovitch, S. (eds.) AAAI, pp. 642–648. AAAI Press (2017)

17. Quist, M., Yona, G., Yu, B.: Distributional scaling: an algorithm for structure-
preserving embedding of metric and nonmetric spaces. J. Mach. Learn. Res. 5,
399–420 (2004)

18. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In:
17th Allerton Conference on Communication, Control, and Computer, pp. 480–489.
IEEE (1979)

19. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an
unknown distance function. I. Psychometrika 27(2), 125–140 (1962)

20. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an
unknown distance function. II. Psychometrika 27(3), 219–246 (1962)

21. Terada, Y., von Luxburg, U.: Local ordinal embedding. In: ICML. JMLR Workshop
and Conference Proceedings, vol. 32, pp. 847–855. JMLR.org (2014)

22. Vo, D., Vo, N., Challa, S.: Weighted MDS for Sensor Localization. In: Gervasi,
O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA
2008. LNCS, vol. 5073, pp. 409–418. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-69848-7 34

https://doi.org/10.1007/978-3-662-53174-7_17
https://doi.org/10.1007/978-3-662-53174-7_17
https://doi.org/10.1007/978-3-540-69848-7_34
https://doi.org/10.1007/978-3-540-69848-7_34

Linear MIM-Width of Trees

Svein Høgemo(B), Jan Arne Telle, and Erlend Raa V̊agset

Department of Informatics, University of Bergen, Bergen, Norway
svein.hogemo@student.uib.no, {jan.arne.telle,erlend.vagset}@uib.no

Abstract. We provide an O(n logn) algorithm computing the linear
maximum induced matching width of a tree and an optimal layout.

Keywords: Width parameters · Exact algorithms ·
Linear MIM-width · Acyclic graphs

1 Introduction

The study of structural graph width parameters like tree-width, clique-width
and rank-width has been ongoing for a long time, and their algorithmic use has
been steadily increasing [11,18]. The maximum induced matching width, denoted
MIM-width, and the linear variant linear MIM-width, introduced by Vatshelle
in 2012 [21], are graph parameters having very strong modelling power. The
linear MIM-width parameter asks for a linear layout of vertices such that the
bipartite graph induced by edges crossing any vertex cut has a maximum induced
matching of bounded size. Belmonte and Vatshelle [2] showed that interval

graphs, convex graphs and permutation graphs, where clique-width can be
proportional to the square root of the number of vertices [10], all have linear
MIM-width 1, and that an optimal layout can be found in polynomial time.

Since many well-known classes of graphs have bounded MIM-width or lin-
ear MIM-width, algorithms that run in XP time in these parameters will yield
polynomial-time algorithms on several interesting graph classes at once. Such
algorithms have been developed for many problems: by Bui-Xuan et al. [4] for
the class of LCVS-VP - Locally Checkable Vertex Subset and Vertex Partition-
ing - problems, by Jaffke et al. for non-local problems like Feedback Vertex

Set [14,15] and also for Generalized Distance Domination [13], by Golo-
vach et al. [9] for output-polynomial Enumeration of Minimal Dominating

sets, by Bergougnoux and Kanté [3] for several Connectivity problems, and by
Galby et al. for Semitotal Domination [8]. These results give a common
explanation for many classical results in the field of algorithms on special graph
classes and extends them to the field of parameterized complexity.

Note that very low MIM-width or linear MIM-width still allows quite complex
cuts compared to similarly defined graph parameters. For example, carving-
width 1 allows just a single edge, maximum matching-width 1 a star graph,

Long version with extra figures and full proofs is published on arxiv [12].

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 218–231, 2019.
https://doi.org/10.1007/978-3-030-30786-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_17&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_17

Linear MIM-Width of Trees 219

and rank-width 1 a complete bipartite graph. In contrast, linear MIM-width 1
allows any cut where the neighborhoods of the vertices in a color class can be
ordered linearly w.r.t. inclusion. In fact, it is an open problem whether the class
of graphs having linear MIM-width 1 can be recognized in polynomial-time or if
this is NP-complete. Sæther et al. [19] showed that computing the exact MIM-
width and linear MIM-width of general graphs is W[1]-hard and not in APX
unless NP=ZPP, while Yamazaki [22] shows that under the small set expansion
hypothesis it is not in APX unless P=NP. The only graph classes where we know
an exact polynomial-time algorithm computing linear MIM-width are the above-
mentioned classes interval, bi-interval, convex and permutation that all
have structured neighborhoods implying linear MIM-width 1 [2]. Belmonte and
Vatshelle also gave polynomial-time algorithms showing that circular arc

and circular permutation graphs have linear MIM-width at most 2, while
Dilworth k and k-trapezoid have linear MIM-width at most k [2]. Recently,
Fomin et al. [7] showed that linear MIM-width for the very general class of
H-graphs is bounded by 2|E(H)|, and that a layout can be found in polynomial
time if given an H-representation of the input graph. However, none of these
results compute the exact linear MIM-width. On the negative side, Mengel [16]
has shown that strongly chordal split graphs, co-comparability graphs
and circle graphs all can have MIM-width, and linear MIM-width, linear in
the number of vertices.

Just as linear MIM-width can be seen as the linear variant of MIM-width,
path-width can be seen as the linear variant of tree-width. Linear variants of
other well-known parameters like clique-width and rank-width have also been
studied. Arguably, the linear variant of MIM-width commands a more notewor-
thy position, since in contrast to these other linear parameters, for almost all
well-known graph classes where the original parameter (MIM-width) is bounded,
but clique-width is unbounded, then also the linear variant (linear MIM-width)
is bounded.

In this paper we give an O(n log n) algorithm computing the linear MIM-
width of an n-node tree. This is the first graph class of linear MIM-width larger
than 1 having a polynomial-time algorithm computing linear MIM-width and
thus constitutes an important step towards a better understanding of this param-
eter. The path-width of trees was first studied in the early 1990s by Möhring [17],
with Ellis et al. [6] giving an O(n log n) algorithm computing an optimal path-
decomposition, and Skodinis [20] an O(n) algorithm. In 2013 Adler and Kanté [1]
gave linear-time algorithms computing the linear rank-width of trees and also
the linear clique-width of trees, by reduction to the path-width algorithm. Even
though linear MIM-width is very different from path-width, the basic framework
of our algorithm is similar to the path-width algorithm in [6].

In Sect. 2 we give some standard definitions and prove the Path Layout
Lemma, that if a tree T has a path P such that all components of T \ N [P]
have linear MIM-width at most k then T itself has a linear layout with linear
MIM-width at most k + 1. We use this to prove a classification theorem stating
that a tree T has linear MIM-width at least k + 1 if and only if there is a node

220 S. Høgemo et al.

v such that after rooting T in v, at least three children of v themselves have at
least one child whose rooted subtree has linear MIM-width at least k. From this
it follows that the linear MIM-width of an n-node tree is no more than log n.
Our O(n log n) algorithm computing linear MIM-width of a tree T picks an arbi-
trary root r and proceeds bottom-up on the rooted tree Tr. In Sect. 3 we show
how to assign labels to the rooted subtrees encountered in this process giving
their linear MIM-width. However, as with the algorithm computing pathwidth
of a tree, the label is sometimes complex, consisting of linear MIM-width of a
sequence of subgraphs of decreasing linear MIM-width, that are not themselves
full rooted subtrees.

Proposition 1 gives a 7-way case analysis giving a subroutine used to update
the label at a node given the labels at all children. In Sect. 4 we give our bottom-
up algorithm, which will make calls to the subroutine underlying Proposition 1
in order to compute the complex labels and the linear MIM-width.

Finally, we use all the computed labels to lay out the tree in an optimal
manner.

2 Classifying Linear MIM-Width of Trees

We use standard graph theoretic notation, see e.g. [5]. For a graph G = (V,E)
and subset of its nodes S ⊆ V we denote by N [S] the closed neighborhood of S,
by N(S) = N [S]\S its open neighborhood, and by G[S] the graph induced by S.
For a graph G we denote by mim(G) the size of its maximum induced matching
(MIM), the largest number of edges whose endpoints induce a matching. Let σ
be a total order corresponding to the enumeration v1, . . . , vn of the nodes of G;
this will also be called a linear layout of G. For any index 1 ≤ i < n we have a
cut of σ that defines the bipartite graph on edges “crossing the cut” i.e. edges
with one endpoint in {v1, . . . , vi} and the other endpoint in {vi+1, . . . , vn}. The
maximum induced matching width of G under layout σ is denoted mw(σ,G), and
is defined as the maximum, over all cuts of σ, of the value attained by the MIM
of the cut, i.e. of the bipartite graph defined by the cut.

The linear maximum induced matching width – linear MIM-width – of G is
denoted lmw(G), and is the minimum value of mw(σ,G) over all possible layouts
σ of the vertices of G.

We start by showing that if we have a path P in a tree T then the linear MIM-
width of T is no larger than the maximum linear MIM-width of any component
of T \ N [P], plus 1. To discuss these components, the following notion is useful.

Definition 1 (Dangling Tree). Let T be a tree containing the adjacent nodes
v and u. The dangling tree from v in u, T 〈v, u〉, is the component of T \ (u, v)
containing u.

Given a node x ∈ T with neighbors {v1, . . . , vd}, the forest obtained by
removing N [x] from T is a collection of dangling trees {T 〈vi, ui,j〉}, where ui,j �=
x is some neighbor of vi. We can generalize this to a path P = (x1, . . . , xp)
in place of x, such that T \ N [P] = {T 〈vi,j , ui,j,m〉}, where vi,j ∈ N(P) is a

Linear MIM-Width of Trees 221

neighbor of xi and ui,j,m �∈ N [P]. See top part of Fig. 1. This naming convention
will be used in the following sections.

Lemma 1 (Path Layout Lemma). Let T be a tree. If there exists a path
P = (x1, . . . , xp) in T such that every connected component of T \ N [P] has
linear MIM-width ≤ k then lmw(T) ≤ k +1. Moreover, given the layouts for the
components, we can in linear time compute the layout for T .

Proof. Given the optimal linear layouts of the connected components of T \N [P],
we give the below algorithm LinOrd constructing a linear layout σT on the
nodes of T showing that linear MIM-width of T is ≤ k +1. The layout σT starts
out empty and the algorithm has an outer loop going through vertices in the
path P = (x1, . . . , xp). When arriving at xi it uses the concatenation operator
⊕ to add the path node xi before looping over all neighbors vi,j of xi adding the
linear layouts of each dangling tree from vi,j and then vi,j itself. See Fig. 1 for
an illustration.
function LinOrd(T : tree, P = (x1, . . . , xp): path, {σT 〈vi,j ,ui,j,m〉}: lin-ords)

σT ← ∅ � The list starts out empty
for i ← 1, p do � For all nodes on path (x1, . . . , xp)

σT ← σT ⊕ xi � Append path node
for j ← 1, |N(xi) \ P | do � For all nbs of xi not on path: vi,j

for m ← 1, |N(vi,j) \ xi| do � For all dangling trees from vi,j
σT ← σT ⊕ σT 〈vi,j ,ui,j,m〉 � Append given order of T 〈vi,j , ui,j,m〉

σT ← σT ⊕ vi,j � Append vi,j

T1 T2 T3 T4 T5 T6 T8T7

x1 x2 x3 x4

v1,1 v2,1
v1,2

v1,3 v3,1 v3,2

u1,1,1
u2,1,1u1,1,2 u1,2,1

u3,1,1
u3,1,2

u3,2,1 u3,2,2

T1 T2 T3 T4 T5 T6 T8T7

x1 x2 x3 x4
v1,1 v2,1v1,2 v1,3 v3,1 v3,2

u1,1,1 u2,1,1u1,1,2 u1,2,1 u3,1,1 u3,1,2 u3,2,1 u3,2,2

Fig. 1. A tree with a path P = (x1, x2, x3, x4), with nodes in N [N [P]] and dangling
trees featured, and below it the layout given by the Path Layout Lemma.

Firstly, from the algorithm it should be clear that each node of T is added
exactly once to σT , that it runs in linear time, and that there is no cut containing

222 S. Høgemo et al.

two crossing edges from two separate dangling trees. Now we must show that σT

does not contain cuts with MIM larger than k + 1. By assumption the layout of
each dangling tree has no cut with MIM larger than k, and since these layouts
can be found as subsequences of σT it followes that then also σT has no cut with
more than k edges from a single dangling tree T 〈vi,j , ui,j,m〉. Also, we know that
edges from two separate dangling trees cannot both cross the same cut. The only
edges of T left to account for, i.e. not belonging to one of the dangling trees, are
those with both endpoints in N [N [P]], the nodes at distance at most 2 from a
node in P . For every cut of σT that contains more than a single crossing edge
(xi, xi+1), there is a unique xi ∈ P and a unique vi,j ∈ N(xi) such that every
edge with both endpoints in N [N [P]] that crosses the cut is incident on either
xi or vi,j . Since the edge connecting xi and vi,j also crosses the cut, at most one
of these edges can be taken into an induced matching. With these observations
in mind, it is clear that lmw(T) ≤ mw(σT , T) ≤ k + 1.

Definition 2 (k-neighbor and k-component Index). Let x be a node in the
tree T and v a neighbor of x. If v has a neighbor u �= x such that lmw(T 〈v, u〉) ≥
k, then we call v a k-neighbor of x. The k-component index of x is equal to the
number of k-neighbors of x and is denoted DT (x, k), or shortened to D(x, k).

Theorem 1 (Classification of the Linear MIM-width of Trees). For a
tree T and k ≥ 1 we have lmw(T) ≥ k + 1 if and only if D(x, k) ≥ 3 for some
node x.

Proof. We first prove the backward direction by contradiction. Thus we assume
D(x, k) ≥ 3 for a node x and there is a linear layout σ such that mw(σ, T) ≤ k.

Let v1, v2, v3 be the three k-neighbors of x and T1, T2, T3 the three trees of
T \ N [x] each of linear MIM-width k, with vi connected to a node of Ti for
i = 1, 2, 3, that we know must exist by the definition of D(x, k). We know that
for each i = 1, 2, 3 we have a cut Ci in σ with MIM=k and all k edges of this
induced matching coming from the tree Ti. Wlog we assume these three cuts
come in the order C1, C2, C3, i.e. with the cut having an induced matching of
k edges of T2 in the middle. Note that in σ all nodes of T1 must appear before
C2 and all nodes of T3 after C2, as otherwise, since T is connected and the
distance between T2 and the two trees T1 and T3 is at least two, there would
be an extra edge crossing C2 that would increase MIM of this cut to k + 1. It
is also clear that v1 has to be placed before C2 and v3 has to be placed after
C2, for the same reason, e.g. the edge between v1 and a node of T1 cannot cross
C2 without increasing MIM. But then we are left with the vertex x that cannot
be placed neither before C2 nor after C2 without increasing MIM of this cut by
adding at least one of (v1, x) or (v3, x) to the induced matching. We conclude
that D(x, k) ≥ 3 for a node x implies linear MIM-width at least k + 1.

For the full proof of the forward direction, please see the full paper [12], here
we give a sketch. We assume that every node in T has D(x, k) < 3 and show that
then lmw(T) ≤ k. We define the following node subsets: D=2 = {x ∈ V (T) |
D(x, k) = 2} and D=1 = {x ∈ V (T) | D(x, k) = 1}. We show that there is always

Linear MIM-Width of Trees 223

a path P in T such that all the connected components in T \ N [P] have linear
MIM-width ≤ k − 1 in the following way:

If D=2 �= ∅: Then we show that the nodes in D=2 induce a path P =
(x1, . . . , x|P |) in T . This path, plus two extra nodes x0 and x|P |+1, the second
k-neighbor of x1 and x|P | respectively, constitute a path as described above.

If D=2 = ∅, but D=1 �= ∅: Then we show that starting out with an arbitrary
node in D=1, and adding the k-neighbor of the previously added node as long
as it has such a neighbor, constitutes a path as described above.

If D=2 = D=1 = ∅: Then any node in T obviously constitutes a path as
described above.

By the Path Layout Lemma, we then get that lmw(T) ≤ k.

By Theorem 1, every tree with linear MIM-width k ≥ 2 must be at least 3
times bigger than the smallest tree with linear MIM-width k − 1, which implies
the following.

Remark 1. The linear MIM-width of an n-node tree is O(log n).

3 Rooted Trees, k-critical Nodes and Labels

Our algorithm computing linear MIM-width will work on a rooted tree, process-
ing it bottom-up. We will choose an arbitrary node r of the tree T and denote
by Tr the tree rooted in r. For any node x we denote by Tr[x] the standard com-
plete subtree of Tr rooted in x. During the bottom-up processing of Tr we will
compute a label for various subtrees. The notion of a k-critical node is crucial
for the definition of labels.

Definition 3 (k-critical Node). Let Tr be a rooted tree with lmw(Tr) = k. We
call a node x in Tr k-critical if it has exactly two children v1 and v2 that each has
at least one child, u1 and u2 respectively, such that lmw(Tr[u1]) = lmw(Tr[u2]) =
k. Thus x is k-critical in T if and only if lmw(T) = k and DTr[x](x, k) = 2.

If lmw(Tr) = k, then Tr cannot have two k-critical nodes, as by Theorem 1,
Tr would else have linear MIM-width k + 1. For a detailed proof, see the full
paper [12].

Remark 2. If Tr has linear MIM-width k it has at most one k-critical node.

Definition 4 (Label). Let rooted tree Tr have lmw(Tr) = k. Then label(Tr)
consists of a list of decreasing numbers, (a1, . . . , ap), where a1 = k, appended
with a string called last type, which tells us where in the tree an ap-critical node
lies, if it exists at all. If p = 1, then the label is simple, otherwise it is complex.
The label is defined recursively, with type 0 being a base case for singletons and
for stars, and with type 4 being the only one defining a complex label.

– Type 0: r is a leaf, i.e. Tr is a singleton, then label(Tr) = (0, t.0);
or all children of r are leaves, then label(Tr) = (1, t.0)

224 S. Høgemo et al.

– Type 1: No k-critical node in Tr, then label(Tr) = (k, t.1)
– Type 2: r is the k-critical node in Tr, then label(Tr) = (k, t.2)
– Type 3: A child of r is k-critical in Tr, then label(Tr) = (k, t.3)
– Type 4: There is a k-critical node uk in Tr that is neither r nor a child of r.

Let w be the parent of uk. Then label(Tr) = k ⊕ label(Tr \ Tr[w])

In type 4 we note that lmw(Tr \ Tr[w]) < k, since otherwise uk would have
three k-neighbors (two children in the tree and also its parent), and then by
Theorem 1 lmw(Tr) = k + 1. Therefore, all numbers in label(Tr \ Tr[w]) are
smaller than k, and a complex label is thus a list of decreasing numbers followed
by last type ∈ {t.0, t.1, t.2, t.3}.

We now give a Proposition that, for any node x in Tr, will be used to com-
pute label(Tr[x]) based on labels of subtrees rooted at descendants of x. The
subroutine underlying this Proposition (see the decision tree in Fig. 2) will be
used when reaching node x in the bottom-up processing of Tr.

Proposition 1. Let x be a node of Tr with children Child(x), and given
label(Tr[v]) for all v ∈ Child(x). Let k = maxv∈Child(x) {lmw(Tr[v])} and
Nk = {v ∈ Child(x) | lmw(T [v]) = k} and denote by Nk = {v1, . . . , vq} and
by li = label(Tr[vi]). Let tk = DTr[x](x, k) by noting that tk = |{vi ∈ Nk |
vi has child uj with lmw(Tr[uj]) = k}|. Given this, we find label(Tr[x]) as fol-
lows:

– Case 0: if |Child(x)| = 0 then label(Tr[x]) = (0, t.0);
else if k = 0, then label(Tr[x]) = (1, t.0)

– Case 1: Every label in Nk is simple and has last type equal to t.1 or t.0,
and tk ≤ 1. Then, label(Tr[x]) = (k, t.1)

– Case 2: Every label in Nk is simple and has last type equal to t.1 or t.0, but
tk = 2. Then, label(Tr[x]) = (k, t.2)

– Case 3: Every label in Nk is simple and has last type equal to t.1 or t.0, but
tk ≥ 3. Then, label(Tr[x]) = (k + 1, t.1)

– Case 4: |Nk| ≥ 2 and for some vi ∈ Nk, either li is a complex label, or li
has last type equal to either t.2 or t.3. Then, label(Tr[x]) = (k + 1, t.1)

– Case 5: |Nk| = 1, l1 is a simple label and l1 has last type equal to t.2. Then,
label(Tr[x]) = (k, t.3)

– Case 6: |Nk| = 1, l1 is either complex or has last type equal to t.3, and
k �∈ label(Tr[x]\Tr[w]), where w is the parent of the k-critical node in Tr[v1].
Then, label(Tr[x]) = k ⊕ label(Tr[x] \ Tr[w])

– Case 7: |Nk| = 1, l1 is either complex or has last type equal to t.3, and
k ∈ label(Tr[x]\Tr[w]), where w is the parent of the k-critical node in Tr[v1].
Then, label(Tr[x]) = (k + 1, t.1)

Proof. For a full proof see the full paper [12], here we only give a sketch. Observe
the decision tree in Fig. 2 which takes care of all cases, 1 up to 7, apart from
the base cases. It follows from the definition of labels, k, Nk and tk that cases 1

Linear MIM-Width of Trees 225

up to 7 of Proposition 1 corresponds to cases 1 up to 7 in the decision tree, and
this shows that exactly one case applies to every possible rooted tree. To prove
that labels are assigned correctly a case analysis is made based on Definition 4
and position of k-critical nodes. We argue for the two most complicated cases
only.

Case 6: x has only one child v with lmw(Tr[v]) = k, and there is a k-critical
node uk with parent w – neither of which are equal to x – in Tr[v], i.e. Tr[v] is a
type 3 or type 4 tree. Moreover, no tree rooted in another child of w, apart from
uk, can have linear MIM-width ≥ k, since this would imply DTr[v](u

k, k) = 3
and thus lmw(Tr[v]) > k; nor can Tr[x]\Tr[w] have linear MIM-width = k, since
then we would have k in label(Tr[x] \ Tr[w]) disagreeing with the condition of
Case 6. Therefore DTr[x](u, k) = 2, and lmw(Tr[x]) = k. Tr[x] is thus a type 4
tree and the label is assigned according to the definition.

Case 7: Tr[v], uk and w are as described in Case 6. But here, lmw(Tr[x]\Tr[w]) =
k (since the condition says that k is in its label), and thus w is a k-neighbor of
its child uk. By Theorem 1 lmw(Tr[x]) = k + 1, and Tr[x] is a type 1 tree.

DTr[x](x, k)?

≤ 1 = 2 ≥ 3

YES

Is there a child-tree, Tr[vi], of xNO YES

lmw(Tr[x]) = k + 1 and

lmw(Tr[x]) = k and

Tr[x] is a type 1 tree

lmw(Tr[x]) = k and

Tr[x] is a type 2 tree

Tr[x] is a type 1 tree

lmw(Tr[x]) = k + 1 and

Tr[x] is a type 1 tree

lmw(Tr[x]) = k and

Tr[x] is a type 3 tree

Is the lmw of the tree

lmw(Tr[x]) = k and

Tr[x] is a type 4 tree

lmw(Tr[x]) = k + 1 and

Tr[x] is a type 1 tree

NO

YES NO

What is the value of

Is it the root v1 ∈ Tr[v1]

that is the k-critical node?

Tr[x]\Tr[w] equal to k?

Are there other child-trees

that contains a k-critical node? than Tr[vi] that has lmw k?

Case 6

Case 2

Case 4

Case 1

Case 5

Case 3 Case 7

NO YES

Fig. 2. A decision tree corresponding to the case analysis of Proposition 1

4 Computing the Linear MIM-Width of Trees and
Finding an Optimal Layout

The subroutine underlying Proposition 1 will be used in a bottom-up algorithm
that starts out at the leaves and works its way up to the root, computing labels
of subtrees Tr[x]. However, in two cases (Case 6 and 7) we need the label of
Tr[x] \ Tr[w], which is not a complete subtree rooted in any node of Tr. Note
that the label of Tr[x]\Tr[w] is again given by a (recursive) call to Proposition 1

226 S. Høgemo et al.

and is then stored as a suffix of the complex label of Tr[x]. We will compute
these labels by iteratively calling Proposition 1 (substituting the recursion by
iteration). We first need to carefully define the subtrees involved when dealing
with complex labels.

From the definition of labels it is clear that only type 4 trees lead to a complex
label. In that case we have a tree Tr[x] of linear MIM-width k and a k-critical
node uk that is neither x nor a child of x, and the recursive definition gives
label(Tr[x]) = k ⊕ label(Tr[x] \ Tr[w]) for w the parent of uk. Unravelling this
recursive definition, this means that if label(Tr[x]) = (a1, . . . , ap, last type), we
can define a list of nodes (w1, . . . , wp−1) where wi is the parent of an ai-critical
node in Tr[x] \ (Tr[w1] ∪ . . . ∪ Tr[wi−1]). We expand this list with wp = x, such
that there is a unique node in Tr[x] corresponding to each number in label(Tr[x]),
and Tr[x] \ (Tr[w1] ∪ . . . ∪ Tr[wp]) = ∅.

Now, in the first level of a recursive call to Proposition 1 the role of Tr[x] is
taken by Tr[x]\Tr[w1], and in the next level it is taken by (Tr[x]\Tr[w1])\Tr[w2]
etc. The following definition gives a shorthand for denoting these trees.

Definition 5. Let x be a node in Tr, label(Tr[x]) = (a1, a2, . . . , ap, last type)
and the corresponding list of vertices (w1, . . . , wp) is as we describe in the above
text. For any non-negative integer s, the tree Tr[x, s] is the subtree of Tr[x]
obtained by removing all trees Tr[wi] from Tr[x], where ai ≥ s.

In other words, if q is such that aq ≥ s > aq+1, then Tr[x, s] = Tr[x] \
(Tr[w1] ∪ Tr[w2] ∪ . . . ∪ Tr[wq]).

Some important properties of Tr[x, s] follow:

Remark 3. Let Tr[x, s], label(Tr[x, s]), (w1, . . . , wp) and q as in the definition.
Then

1. if s > a1, then Tr[x, s] = Tr[x]
2. label(Tr[x, s]) = (aq+1, . . . , ap, last type)
3. lmw(Tr[x, s]) = aq+1 < s
4. lmw(Tr[x, s + 1]) = s if and only if s ∈ label(Tr[x])
5. Tr[x, s + 1] �= Tr[x, s] if and only if s ∈ label(Tr[x])

The above Remarks follow from the definitions. Note that for any s the tree
Tr[x, s] is defined only after we know label(Tr[x]). In the algorithm, we com-
pute label(Tr[x]) by iterating over increasing values of s (until s > lmw(Tr[x])
since by Remark 3.1 we then have Tr[x, s] = Tr[x]) and we could hope for a
loop invariant saying that we have correctly computed label(Tr[x, s]). However,
Tr[x, s] is only known once we are done. Instead, each iteration of the loop will
correctly compute the label of the following subtree called Tunion[x, s], which is
not always equal to Tr[x, s], but importantly for s > lmw(Tr[x]), we will have
Tunion[x, s] = Tr[x, s] = Tr[x].

Definition 6. Let x be a node in Tr with children v1, . . . , vd. Tunion[x, s] is then
equal to the tree induced by x and the union of all Tr[vi, s] for 1 ≤ i ≤ d. More
technically, Tunion[x, s] = Tr[Vunion] where Vunion = x ∪ V (Tr[v1, s]) ∪ . . . ∪
V (Tr[vd, s]).

Linear MIM-Width of Trees 227

Given a tree T , we find its linear MIM-width by rooting it in an arbitrary
node r, and computing labels by processing Tr bottom-up. The answer is given
by the first element of label(Tr[r]), which by definition is equal to lmw(T). At
a leaf x of Tr we initialize by label(Tr[x]) ← (0, t.0), and at a node x for which
all children are leaves we initialize by label(Tr[x]) ← (1, t.0), according to Def-
inition 4. When reaching a higher node x we compute label of Tr[x] by calling
function MakeLabel(Tr, x).
function MakeLabel(Tr, x) � finds cur label = label(Tr[x])

cur label ← (0, t.0) � This is label(Tunion[x, 0])
{v1, . . . , vd} = children of x
if 0 ∈ label(Tr[vi]) for some i then

cur label ← (1, t.0) � This is then label(Tunion[x, 1])
for s ← 1,maxd

i=1{first element of label(Tr[vi])} do
{l′1, . . . , l

′
d} = {label(Tr[vi, s + 1]) | 1 ≤ i ≤ d}

Ns = {vi | 1 ≤ i ≤ d, s ∈ l′i}
ts = |{vi | vi ∈ Ns, vi has child uj s.t. s ∈ label(Tr[uj , s + 1])}|
if |Ns| > 0 then

case ← the case from Prop. 1 applying to s, {l′1, . . . , l
′
d}, Ns and ts

cur label ← as given by case in Prop. 1 (s ⊕ cur label if Case 6)

Lemma 2. Given labels at descendants of node x in Tr, MakeLabel(Tr, x)
computes label(Tr[x]) as the value of cur label.

Proof. See the full paper [12] for a full proof, here we give only a sketch. The
crucial issue is to prove the loop invariant: “At the end of the s’th iteration of the
for loop the value of cur label is equal to label(Tunion[x, s + 1]).” This invariant
suffices since for s > lmw(Tr[x]), we have Tunion[x, s] = Tr[x].

That this invariant holds for every iteration of the for loop, is proven by induc-
tion. The base case states that before the first iteration (i.e. in the first five lines
of MakeLabel), the value of cur label is set to be equal to label(Tunion[x, 1].
This is true because Tunion[x, 1] is equal to a star if and only if x has a child v
such that 0 ∈ label(Tr[v]), and equal to a singleton otherwise.

To prove the induction step, we assume that the value of cur label is
equal to label(Tunion[x, s] at the beginning of the s’th iteration. To show that
cur label = label(Tunion[x, s+1] at the end of the s’th iteration, we argue for the
correspondence given by the below Table, between parameters used in Proposi-
tion 1 and parameters used in the for loop of MakeLabel.

Table 1. Correspondences between variables

Proposition 1 for loop iteration s Explanation

Tr[x], k Tunion[x, s+ 1], s Tree needing label, max lmw of children

Tr[v1], ..., Tr[vd] Tr[vi, s], ..., Tr[vd, s] Subtrees of children

l1, ..., ld, Nk, tk l′1, ..., l
′
d, Ns, ts Child labels, those with max, root comp. index

label(Tr[x] \ Tr[w]) cur label This is also label(Tunion[x, s+ 1] \ Tr[w, s+ 1])

228 S. Høgemo et al.

Let us here give only the two most complicated of these arguments, showing
that ts computed in iteration s of the for loop corresponds to tk = DTr[x](x, k) in
Proposition 1 – meaning we need to show that ts = DTunion[x,s+1](x, s). Consider
vi, a child of x. In accordance with MakeLabel we say that vi contributes to
ts if vi ∈ Ns and vi has a child uj with s in its label. We thus need to show
that vi contributes to ts if and only if vi is an s-neighbor of x in Tunion[x, s+1].
Observe that by Remark 3.4, lmw(Tr[vi, s + 1]) = lmw(Tr[uj , s + 1]) = s if and
only if s is in the labels of both Tr[vi] and Tr[uj]. If s �∈ label(Tr[uj , s + 1]),
then lmw(Tr[uj , s + 1]) < s, and if this is true for all children of vi, then vi
is not an s-neighbor of x in Tunion[x, s + 1]. If s �∈ label(Tr[vi, s + 1]), then
lmw(Tr[vi, s + 1]) < s and no subtree of Tr[vi, s + 1] can have linear MIM-width
s. However, if s ∈ label(Tr[uj , s + 1]) and s ∈ label(Tr[vi, s + 1]) (this is when vi
contributes to ts), then Tr[vi, s + 1] ∩ Tr[uj] must be equal to Tr[uj , s + 1] and
Tr[uj , s + 1] ⊆ Tunion[x, s + 1]. We thus conclude that vi is an s-neighbor of x in
Tunion[x, s + 1] if and only if vi contributes to ts, so ts = DTunion[x,s+1](x, s).

We then show that if Tunion[x, s + 1] is a Case 6 or Case 7 tree – that is,
|Ns| = 1, and Tr[v1, s + 1] is a type 3 or type 4 tree, with w being the parent of
an s-critical node – then the algorithm has label(Tunion[x, s + 1] \ Tr[w, s + 1])
available for computation, indeed that this is the value of cur label. We know,
by definition of label and Remark 3.5 that Tr[vi, s + 1] \ Tr[vi, s] = Tr[w, s + 1].
But since |Ns| = 1, for every j �= i, Tr[vj , s + 1] \ Tr[vj , s] = ∅. Therefore
Tunion[x, s + 1] \ Tunion[x, s] = Tr[w, s + 1] and Tunion[x, s + 1] \ Tr[w, s + 1] =
Tunion[x, s]. But by the induction assumption, cur label = label(Tunion[x, s]).
Thus cur label corresponds to label(Tr[x] \ Tr[w]) in Proposition 1.

By the correspondences in Table 1, we conclude from Proposition 1, Defini-
tion 6 and the inductive assumption, that cur label = label(Tunion[x, s + 1]) at
the end of the s’th iteration of the for loop in MakeLabel. The loop runs for
k iterations, with k the biggest number in any label of the children of x. At the
end, cur label is thus equal to label(Tunion[x, k + 1]). Since k ≥ lmw(Tr[vi]) for
all i, by definition Tr[vi, k+1] = Tr[vi] for all i, and thus Tunion[x, k+1] = Tr[x].
Therefore, when MakeLabel finishes, cur label = label(Tr[x]).

Theorem 2. Given any tree T , lmw(T) can be computed in O(n log n)-time.

Proof. We find lmw(T) by bottom-up processing of Tr and returning the first
element of label(Tr). After correctly initializating at leaves and nodes whose
children are all leaves, we make a call to MakeLabel for each of the remaining
nodes. Correctness follows by Lemma 2 and induction on the structure of the
rooted tree.

For the timing we show that each call runs in O(log n) time. m is given as the
biggest number in any label of children of x, which is O(log n) by Remark 1. For
every integer s from 1 to m, the algorithm checks how many labels of children of
x contain s (to compute Ns), and how many labels of grandchildren of x contain
s (to compute ts). The labels are sorted in descending order, therefore the whole
loop goes only once through each of these labels, each of length O(log n). Other
than this, MakeLabel only does a constant amount of work. Therefore, Make-

Label(Tr, x), if x has a children and b grandchildren, takes time proportional

Linear MIM-Width of Trees 229

to O(log n)(a+ b). As the sum of the number of children and grandchildren over
all nodes of Tr is O(n), we conclude that the total runtime to compute lmw(T)
is O(n log n).

Theorem 3. A layout of linear MIM-width lmw(T) of a tree T can be found in
O(n log n)-time.

Proof. For a detailed proof, see the full paper [12]. Given T we first run the
algorithm computing lmw(T) finding the label of every full rooted subtree in
Tr. We give a recursive layout-algorithm that uses these labels in tandem with
LinOrd presented in the Path Layout Lemma. We call it on a rooted tree where
labels of all subtrees are known. For simplicity we call this rooted tree Tr even
though in recursive calls this is not the original root r and tree T :

(1) Let lmw(Tr) = k and find a path P in Tr such that all trees in Tr \ N [P]
have linear MIM-width < k. The path depends on the type of Tr as explained
below.
(2) Call this layout-algorithm recursively on every rooted tree in Tr \ N [P]
to obtain optimal linear layouts; for this, we need the correct labels for these
trees, but they are easy to obtain.
(3) Call LinOrd on Tr, P and the layouts provided in step 2.

The path P is found for every Type of tree as follows:

Type 0 trees: Choose P = (r).
Type 1 trees: Choose P to start at the root r, and as long as the last node in
P has a k-neighbor v �∈ P , v is appended to P .
Type 2 trees: We look at the trees rooted in the two k-neighbors of r, Tr[v1]
and Tr[v2]. These are Type 1 trees. Choose paths P1, P2 for Tr[v1] and Tr[v2]
as described above. Gluing these paths together at r we get the path for Tr.
Type 3 trees: r has exactly one child v such that Tr[v] is of type 2. Choose P
as described above for Tr[v].
Type 4 trees: In these trees, Tr contains precisely one node w �= r such that
w is the parent of a k-critical node, x. Tr[w] is a type 3 tree. Choose P for
Tr[w] as described above which will be the path for Tr.

For all paths chosen above, the trees in T \ N [P] have linear MIM-width
strictly less than k since no node in P has a k-neighbor that is not in P . For the
recursive calls we need labels for all subtrees in T \ N [P]. In every case except
Type 4 trees, all these subtrees are full rooted subtrees of Tr, and the label is
clearly known. In Type 4 trees, the subtree Tr \ Tr[w], where w the parent of a
k-critical node, is not a full rooted subtree. In this case we must update the
label of every ancestor y of w, but this is simple, since label(Tr[y] \ Tr[w]) =
label(Tr[y, k]) which we get by removing the first element from label(Tr[y]).

230 S. Høgemo et al.

References

1. Adler, I., Kanté, M.M.: Linear rank-width and linear clique-width of trees. Theor.
Comput. Sci. 589, 87–98 (2015)

2. Belmonte, R., Vatshelle, M.: Graph classes with structured neighborhoods and
algorithmic applications. Theor. Comput. Sci. 511, 54–65 (2013)

3. Bergougnoux, B., Kanté, M.M.: Rank based approach on graphs with structured
neighborhood. CoRR, abs/1805.11275 (2018)

4. Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Fast dynamic programming for locally
checkable vertex subset and vertex partitioning problems. Theor. Comput. Sci.
511, 66–76 (2013)

5. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

6. Ellis, J.A., Sudborough, I.H., Turner, J.S.: The vertex separation and search num-
ber of a graph. Inf. Comput. 113(1), 50–79 (1994)

7. Fomin, F.V., Golovach, P.A., Raymond, J.-F.: On the tractability of optimization
problems on H-graphs. In: Proceedings of the ESA 2018, pp. 30:1–30:14 (2018)

8. Galby, E., Munaro, A., Ries, B.: Semitotal domination: new hardness results
and a polynomial-time algorithm for graphs of bounded MIM-width. CoRR,
abs/1810.06872 (2018)

9. Golovach, P.A., Heggernes, P., Kanté, M.M., Kratsch, D., Sæther, S.H., Villanger,
Y.: Output-polynomial enumeration on graphs of bounded (local) linear MIM-
width. Algorithmica 80(2), 714–741 (2018)

10. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes.
Int. J. Found. Comput. Sci. 11(3), 423–443 (2000)

11. Hlinený, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Comput. J. 51(3), 326–362 (2008)

12. Høgemo, S., Telle, J.A., Raa V̊agset, E.: Linear MIM-width of trees. CoRR,
arXiv:1907.04132 (2019)

13. Jaffke, L., Kwon, O., Strømme, T.J.F., Telle, J.A.: Generalized distance domina-
tion problems and their complexity on graphs of bounded MIM-width. In 13th
International Symposium on Parameterized and Exact Computation, IPEC 2018,
Helsinki, Finland, 20–24 August 2018, pp. 6:1–6:14 (2018)

14. Jaffke, L., Kwon, O., Telle, J.A.: Polynomial-time algorithms for the longest
induced path and induced disjoint paths problems on graphs of bounded MIM-
width. In 12th International Symposium on Parameterized and Exact Computa-
tion, IPEC 2017, Vienna, Austria, 6–8 September 2017, pp. 21:1–21:13 (2017)

15. Jaffke, L., Kwon, O., Telle, J.A.: A unified polynomial-time algorithm for feedback
vertex set on graphs of bounded MIM-width. In 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, Caen, France, 28 February–3 March
2018, pp. 42:1–42:14 (2018)

16. Mengel, S.: Lower bounds on the MIM-width of some graph classes. Discrete Appl.
Math. 248, 28–32 (2018)

17. Möhring, R.H.: Graph problems related to gate matrix layout and PLA folding. In:
Tinhofer, G., Mayr, E., Noltemeier, H., Syslo, M.M. (eds.) Computational Graph
Theory. COMPUTING, vol. 7, pp. 17–51. Springer, Vienna (1990). https://doi.
org/10.1007/978-3-7091-9076-0 2

18. Oum, S.: Rank-width: algorithmic and structural results. Discrete Appl. Math.
231, 15–24 (2017)

http://arxiv.org/abs/1907.04132
https://doi.org/10.1007/978-3-7091-9076-0_2
https://doi.org/10.1007/978-3-7091-9076-0_2

Linear MIM-Width of Trees 231

19. Sæther, S.H., Vatshelle, M.: Hardness of computing width parameters based on
branch decompositions over the vertex set. Theor. Comput. Sci. 615, 120–125
(2016)

20. Skodinis, K.: Construction of linear tree-layouts which are optimal with espect to
vertex separation in linear time. J. Algorithms 47(1), 40–59 (2003)

21. Vatshelle, M.: New width parameters of graphs. Ph.D. thesis, University of Bergen,
Norway (2012)

22. Yamazaki, K.: Inapproximability of rank, clique, Boolean, and maximum induced
matching-widths under small set expansion hypothesis. Algorithms 11(11), 173
(2018)

Approximating Minimum Dominating Set
on String Graphs

Dibyayan Chakraborty(B), Sandip Das, and Joydeep Mukherjee

Indian Statistical Institute, Kolkata, India
dibyayancg@gmail.com, sandipdas@isical.ac.in, joydeep.m1981@gmail.com

Abstract. A string graph is an intersection graph of simple curves on
the plane. For k ≥ 0, Bk-VPG graphs are intersection graphs of simple
rectilinear curves having at most k cusps (bends). It is well-known that
any string graph is a Bk-VPG graph for some value of k. For k ≥ 0,
unit Bk-VPG graphs are intersection graphs of simple rectilinear curves
having at most k cusps (bends) and each segment of the curve being unit
length. Any string graph is a unit-Bk-VPG graph for some value of k.

In this article, we show that the Minimum Dominating Set (MDS)
problem for unit Bk-VPG graphs is NP-Hard for all k ≥ 1 and provide an
O(k4)-approximation algorithm for all k ≥ 0. Furthermore, we also pro-
vide an 8-approximation for the MDS problem for the vertically-stabbed
L-graphs, intersection graphs of L-paths intersecting a common vertical
line. The same problem is known to be APX-Hard (MFCS, 2018). As a
by-product of our proof, we obtained a 2-approximation algorithm for
the stabbing segment with rays (SSR) problem introduced and studied
by Katz et al. (Comput. Geom. 2005).

Keywords: String graph · Dominating set · Approximation algorithm

1 Introduction

A string graph is a graph with simple curves on a plane as vertices, and two
vertices are adjacent if they intersect. String graphs are important as it contains
all intersection graphs of connected sets in R

2. Asinowski et al. [1] introduced the
concept of Bk-VPG graphs to initiate a systematic study of string graphs and
its subclasses. A path is a simple rectilinear curve and a k-bend path is a path
having k cusps (bend). The Bk-VPG graphs are intersection graphs of k-bend
paths. Any string graph has a Bk-VPG representation for some k [1]. A unit
k-bend path is a k-bend path with each segments being of unit length. The unit
Bk-VPG graphs are intersection graphs of unit k-bend paths. Any string graph
has a unit Bk′-VPG representation for some k′.

A dominating set of a graph G = (V,E) is a subset D of vertices V such that
each vertex in V \D is adjacent to some vertex in D. The Minimum Dominating
Set (MDS) problem is to find a minimum cardinality dominating set of a graph
G. It is not possible to approximate the MDS problem on string graphs with n

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 232–243, 2019.
https://doi.org/10.1007/978-3-030-30786-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_18

Approximating Minimum Dominating Set on String Graphs 233

vertices to within (1−α) ln n unless NP ⊆ DTIME(nO(log log n)) [5]. Researchers
have studied the MDS problem extensively on important graph classes like pla-
nar graphs, permutation graphs, cocomparability graphs all of which are sub-
classes of string graphs [1,13,14,16] and hence unit Bk-VPG graphs for some k.
The MDS problem admits constant factor approximation algorithms on intersec-
tion graphs of unit disks, rectangles with bounded aspect ratio, r-regular polygons
etc. all of which are also subclasses of string graphs [10,12]. Mehrabi [18] gave
constant factor approximation algorithms for the MDS problem on restricted
subclasses of B1-VPG graphs. However, for k ≥ 1, it is not known if there is
an f(k)-approximation algorithm for the MDS problem on Bk-VPG graphs. We
show that the MDS problem remains NP-Hard on unit Bk-VPG graphs with
k ≥ 1.

Theorem 1. It is NP-Hard to solve the MDS problem on unit Bk-VPG graphs
with k ≥ 1.

We achieved a constant factor approximation algorithm for the MDS problem
on unit Bk-VPG graphs for a given unit Bk-VPG representation and fixed k.

Theorem 2. Given a unit Bk-VPG representation of a graph G with n vertices,
there is an O(k2n5)-time O(k4)-approximation algorithm to solve the MDS prob-
lem on G.

The MDS problem remains difficult in restricted families of B1-VPG graphs.
An L-path is a 1-bend path having the shape ‘L’. A vertically-stabbed -L-
representation of a graph is a collection of L-paths along with a vertical line
intersecting all the paths such that each path in the collection represents a
vertex of the graph and two paths intersect if and only if the vertices they
represent are adjacent in the graph. A graph is a vertically-stabbed-L graph if
it has a vertically-stabbed-L-representation. Bandyapadhyay et al. [2] proved
APX-hardness for the MDS problem on vertically-stabbed-L graphs. The class
of vertically-stabbed-L graphs was introduced by McGuinness [17] and it con-
tains many important graph classes like interval graphs, outerplanar graphs,
permutation graphs, circle graphs as subclasses. Researchers have studied the
MDS problem on these classes of graphs [4,7–9,11]. An ε-net based algorithm
of Mehrabi [18] gives an O(1)-approximation algorithm for the MDS problem
on vertically-stabbed-L-graphs. The specific value of the constant (which is at
least 32) was not reported by the author. In this paper, we prove the following.

Theorem 3. Given a vertically-stabbed-L-representation of a graph G with n
vertices, there is an O(n5)-time 8-approximation algorithm to solve the MDS
problem on G.

To prove Theorems 2 and 3, we needed to prove a lemma about the stabbing
segment with rays (SSR) problem introduced by Katz et al. [15]. In this prob-
lem, the inputs are a set of disjoint leftward-directed horizontal rays and a set
of disjoint vertical segments. The objective is to select a minimum number of

234 D. Chakraborty et al.

leftward-directed horizontal rays that intersect all vertical segments. Through-
out this article, we let SSR(R, V) denote an SSR instance where R is a given
set of disjoint leftward-directed horizontal rays and V is a given set of disjoint
vertical segments. We observe the following lemma.

Lemma 1. Let R be a set of leftward-directed horizontal rays and V be a set of
vertical segments. The cost of an optimal solution for the Integer Linear Program
(ILP) of SSR(R, V) is at most twice the cost of an optimal solution for the
relaxed linear program (LP) of SSR(R, V).

As a consequence of the above Lemma 1, we have a subquadratic 2-
approximation algorithm for the SSR problem.

Theorem 4. There is an O((n + m) log(n + m))-time 2-approximation algo-
rithm for SSR problem where n and m are the number of rays and segments,
respectively.

We prove both Lemma 1 and Theorem 4 in Sect. 2 and prove Theorem3 in
Sect. 3. In Sect. 4, we prove Theorems 1 and 2.

2 Proof of Lemma1 and Theorem4

In this section, we represent a leftward-directed horizontal ray by simply a ray
and a vertical segment by a segment in short. Let R be a set of disjoint rays and
V be a set of disjoint vertical segments. We assume each segment intersects at
least one ray in R and no two segments in V has the same x-coordinate.

To prove Lemma 1, first we present an iterative algorithm consisting of three
main steps. The first step is to include all rays r ∈ R in heuristic solution S
whenever some segments in V intersect precisely a single ray r in that iterative
step. In the next step, delete all segments intersecting any ray in S from V .
In the final step, find a ray in R \ S whose x-coordinate of the right endpoint
is the smallest among all rays in R \ S and delete it from R (when there are
multiple such rays, choose anyone arbitrarily). We repeat the above three steps
until V is empty. The above algorithm takes O((|R| + |V |) log(|R| + |V |)) time
(using segment trees [3]) and outputs a set S of rays such that all segments in
V intersect at least one ray in S.

We describe the above algorithm formally in Algorithm1. Below we introduce
some notations used to describe the algorithm. We assign token Tr = {r} for
each r ∈ R initially. For i ≥ 1, let Ri, Vi, Si be the set of rays, the set of segments
and the heuristic solution constructed by this Algorithm1, respectively at the
end of ith iteration. A ray r ∈ Ri is critical if there is a segment v ∈ Vi such
that r is the only ray in Ri that intersects v. We describe a discharging technique
below.

Let D be a subset of R. A ray r ∈ D lies in between two rays r′, r′′ ∈ D if
the y-coordinate of r lies in between those of r′, r′′. A ray r ∈ D lies just above
(resp. just below) a ray r′ ∈ D if y-coordinate of r is greater (resp. smaller) than

Approximating Minimum Dominating Set on String Graphs 235

that of r′ and no other ray lies in between r, r′ in D. Two rays r, r′ ∈ D are
neighbours of each other if r lies just above or below r′.

Discharging Method: Let r ∈ Ri−1\Si be a ray whose x-coordinate of the right
endpoint is the smallest. The phrase “r discharges the token to its neighbours”
in the ith iteration means the following operations in the given order.

(i) Let r′ lie just above r and r′′ lie just below r in Ri−1 \ Si. For all x ∈ Tr

(x and r not necessarily distinct) do the following. If there is a segment in
Vi that intersects x, r′ and r then assign Tr′ = Tr′ ∪ {x} and if there is a
segment in Vi that intersects x, r′′ and r then Tr′′ = Tr′′ ∪ {x}.

(ii) Make Tr = ∅ after performing the above step.

Algorithm 1. SSR-Algorithm
Input: A set R of leftward-directed rays and a set V of vertical segments.
Output: A subset of R that intersects all segments in V .

1: Tr = {r} for each r ∈ R and i ← 1, V0 ← V, R0 ← R, S ← ∅, S0 ← ∅ �
Initialisation.

2: while Vi−1 �= ∅ do
3: S ← S ∪ {r : r ∈ Ri−1, r is critical after (i − 1)th iteration} and Si ← S.

� Critical ray collection.
4: Vi ← the set obtained by deleting all segments from Vi−1 that intersect a ray

in Si.
5: Find a r ∈ Ri−1 \ Si whose x-coordinate of the right endpoint is the smallest.
6: r discharges the token to its neighbours.
7: Ri ← The set obtained by deleting {r} ∪ Si from Ri−1.

� Discharging token step.
8: i ← i + 1;
9: end while
10: return S

We have the following observation.

Observation A. For some v ∈ Vk, k ≥ 1, if some ray r ∈ R0 intersects v, then
either r ∈ Rk or there exists some ray r′ ∈ Rk such that r ∈ Tr′ .

Proof. Assume r /∈ Rk. Let <r1, r2, . . . , rk> be a sorted order of the rays such
that for i < j, ri discharged the token to the neighbours before rj . Due to step
5 of SSR-algorithm, X = <r1, r2, . . . , rk> is an increasing sequence based on
the x-coordinate of their right endpoint. Observe that, whenever a ray ri ∈ X
discharged its token to its neighbours in the ith iteration, all the vertical segments
in Vi intersected by ri also intersects one of the immediate neighbours of ri. Again
as v ∈ Vk, v is not intersected by critical ray within k iteration. Hence the result
follows. ��
Lemma 2. For a ray r, there are at most two tokens containing r.

236 D. Chakraborty et al.

Proof. If r never discharged its token to its neighbours, then the statement is
true. Let r discharged the token to its neighbours at iteration i. Note that, r
discharged tokens to at most two of its neighbours. Since r gets deleted after
the discharging step, the rays whose token contain r become neighbours of each
other.

Let j be the minimum integer with i < j such that at the end of (j − 1)th

iteration, there is a ray p ∈ Rj−1 which is critical and r ∈ Tp. Note that iteration
of SSR-Algorithm may stop before encountering such events. However, within
iteration i to j − 1, there may exist some rays which discharged their tokens
containing r due to step 5 of SSR-Algorithm.

To prove the lemma, we use induction to show that there are at most two
tokens containing r in any iteration from i upto j−1. Consider some k, i < k < j,
such that x1, x2 ∈ Rk−1 be only two rays where r ∈ Tx1 and r ∈ Tx2 . Notice that,
x1 and x2 are neighbours of each other and without loss of generality assume
x1 lies just above x2 in Vk−1. Assume x1 discharged its token at kth iteration.
If there exists a neighbour of x1 (say x3) which is different from x2, then due to
the discharging step of kth iteration, x1 passes the token to its neighbours (i.e x2

and x3) and gets deleted from Rk−1 to create Rk. If x3 does not exist, then x1

shall pass the token only to x2. Therefore x2 becomes the top-most ray among
those rays in Rk which intersect some segment intersecting r.

Moreover, if x was the only ray in Rk−1 such that r ∈ Tx, then x was the
top-most (or bottom-most) ray among those rays in Rk−1 which intersect some
segment intersecting r. Therefore, at the end of kth iteration there is exactly one
ray x′ ∈ Rk such that r ∈ Tx′ and x′ must be the top-most (resp. bottom-most)
ray among those rays in Rk which intersect some segment intersecting r.

Hence we conclude that for each k with i ≤ k < j, there is at most two rays
r′, r′′ ∈ Rk such that r ∈ Tr′ ∩ Tr′′ and they are neighbours. If there is exactly
one ray r′′′ ∈ Rk such that r ∈ Tr′′′ then r′′′ must be the top-most or bottom-
most ray among those rays in Rk which intersect some segment intersecting r.

In iteration j, ray p is critical and r ∈ Tp and p is put in heuristic solution.
If p is the only ray whose token contained r, only Tp will contain r after the
termination of Algorithm 1. Let r′, p ∈ Rj−1 be the rays whose token contained
r. They must be neighbours. Without loss of generality assume that p lies just
above r′. If both r′, p are selected in Sj , then there is nothing to prove. Now
consider the set A of segments in Vj that intersects r but not p. Note that, no
ray above p intersects any segment in A. Hence r′ becomes the only ray in next
iterative step whose token contains r and r′ turns to be bottom most ray among
those rays in Rj−1 which intersect some segment intersecting r. Now consider
any iteration k > j. By similar arguments as above, there would be at most one
ray in Rk that contains the token r. Hence the lemma follows. ��

For a segment v ∈ V , let N(v) ⊆ R be the set of rays that intersect v. Let
r ∈ S be a ray, i be the minimum integer such that r ∈ Si. There must exist a
segment νr ∈ Vi−1 such that r is the only ray in Ri−1 that intersects νr and all
rays in N(νr) \ {r} must have passed the token to its neighbours. So, for each

Approximating Minimum Dominating Set on String Graphs 237

ray r ∈ S, there exists a segment νr such that for all x ∈ N(νr) \ {r} we have
Tx = ∅. We call νr a critical segment with respect to r.

Observation B. For a ray r ∈ S let νr be a critical segment with respect to r.
Then N(νr) ⊆ Tr.

Proof. Consider any arbitrary but fixed deleted ray y ∈ N(νr) \ {r} which was
deleted at some jth iteration. By ObservationA, there exists a ray y′ ∈ Rj such
that y′ intersects v and y ∈ Ty′ . Applying the above argument for all rays in
N(νr) \ {r}, we have the proof. ��
Lemma 3. If S is the set returned by SSR-algorithm with rays R and segments
V , then |S| ≤ 2|OPT |, where OPT is an optimum solution of SSR(R, V).

Proof. Let R be the set of rays and V be the set of segments with |R| = n, |V | =
m. Consider the ILP formulation Q of SSR(R, V). For each ray r ∈ R, let
xr ∈ {0, 1} denote the variable corresponding to r. Objective is to minimize∑

r∈R

xr with constraints
∑

r∈N(v)

xr ≥ 1 for all v ∈ V . Let the corresponding

relaxed LP formulation be Ql.
Let Ql = {xr}r∈R be an optimal solution of Ql. Consider SSR-algorithm.

Here, define yr = 1 if r ∈ S, yr = 0 if r /∈ S and Q′ = {yr}r∈R, obtained by
the algorithm. This is a feasible solution of Q as SSR-algorithm terminates only
when no segments are left in Vi. Now we fix any arbitrary r ∈ S and νr be a
critical segment with respect to r. Then due to ObservationB, we know that for
all z ∈ N(νr)\{r} we have Tz = ∅ and N(νr) ⊆ Tr. Therefore, for the constraint
corresponding to νr in Ql, we have that

∑

z∈N(νr)

yz = 1 ≤
∑

z∈N(νr)

xz ≤
∑

z∈Tr

xz [since N(νr) ⊆ Tr by Observation B]

Therefore, from above argument and from Lemma 2 we conclude that

|S| =
∑

r∈S

yr =
∑

r∈S

∑

z∈N(νr)

yz ≤
∑

r∈S

∑

z∈Tr

xz ≤ 2
∑

z∈R

xz ≤ 2|OPT |.

Hence we have the proof. ��
The proofs of Lemma 1 and Theorem 4 follows directly from the proof of

Lemma 3.

3 Proof of Theorem3

In this section, we shall give an O(n5)-time 8-approximation algorithm to solve
the MDS problem on vertically-stabbed-L graphs. In the rest of the paper,
OPT (Q) and OPT (Ql) denote the cost of the optimum solution of an ILP Q
and LP Ql respectively.

238 D. Chakraborty et al.

Overview of the Algorithm: First, we solve the relaxed LP formulation of
the ILP of the MDS problem on the input vertically-stabbed-L graph G and
create two subproblems. We shall show that one of those two subproblems is
equivalent to the SSR problem and the other is equivalent to a Stabbing Rays
with Segments problem (defined below) introduced by Katz et al. [15]. We solve
these two subproblems individually.

In the Stabbing Rays with Segments (SRS) problem, the input is a set
R of disjoint leftward-directed horizontal rays and a set V of disjoint vertical
segments. The objective is to select a minimum cardinality subset of V that
intersects all rays in R. We shall propose a heuristic algorithm that gives a
feasible solution, and its cost is at most twice the cost of the optimum solution
of the ILP of SRS.

2-Approximation Algorithm for SRS Problem: With each segment v ∈ V ,
we associate a token Tv which is a subset of V . Initialise Tv = ∅ for each v ∈ V .
Let ri be the ray whose right-endpoint, (xi, yi), has the smallest x-coordinate.
We assume without loss of generality that x- and y-coordinates of the endpoints
of the rays are all distinct. Assuming that there is a feasible solution to the SRS
instance, there must exist a segment of V that intersects ri. Let N(ri) ⊆ V
be the set of segments that intersect ri. Let vtop (resp. vbot) be a segment in
N(ri) whose top endpoint is top-most (resp., bottom endpoint is bottom-most);
it may be that vtop = vbot. We add both vtop and vbot to our heuristic solution
set S. Also we set Tvtop

= Tvbot
= N(ri). We remove from R all of the rays that

intersect vtop or vbot, delete all segments in N(ri) and then repeat the above
steps untill R = ∅. Observe that for each ray r, there is a segment v ∈ S that
intersects r. Also observe that for each segment v ∈ V , there are at most two
tokens such that both of them contains v.

Lemma 4. Let Q be the ILP of the SRS instance with a set of rays R and set of
segments V as input and Ql be the corresponding relaxed LP. Then OPT (Q) ≤
2 · OPT (Ql).

Proof. Let X = {xv}v∈V be an optimal solution of Ql where xv denotes the value
of the variable in Ql corresponding to v ∈ V . Let S be the solution returned
by the above algorithm with R, V as input. Now define for each v ∈ V , yv = 1
if v ∈ S, yv = 0 if v /∈ S and let Y = {yv}v∈V . Observe that Y is a feasible
solution of Q. For each z ∈ S, there is a ray ri such that Tz = N(ri). Therefore,
yz = 1 ≤

∑

v∈N(ri)

xv =
∑

v∈Tz

xv.

As a segment v is contained in at most two tokens, using the above inequality
we have

|S| =
∑

v∈S

yv ≤
∑

v∈S

∑

v′∈Tv

xv′ ≤ 2
∑

v′∈V

xv′ = 2 · OPT (Ql)

Hence the result follows. ��

Approximating Minimum Dominating Set on String Graphs 239

Now we describe our approximation algorithm for MDS problem on
vertically-stabbed-L graphs. Let R = {Lu}u∈V be a vertically-stabbed-L-
representation of a graph G = (V,E). Without loss of generality, we assume that
(i) the vertical line x = 0 intersects all the L-paths in R and the x-coordinate
of the corner point of each L-path in R is strictly less than 0, and (ii) whenever
two distinct L-paths intersect in R, they intersect at exactly one point.

For a vertex u ∈ V , let N [u] denote the closed neighbourhood of u in G,
Hu = {c ∈ N [u] : Lc intersects the horizontal segment of Lu} and let Vu denote
the set N(u) \ Hu. Based on these we have the following ILP (say Q) of the
problem of finding a minimum dominating set of G.

minimize
∑

v∈V

xv

subject to
∑

v∈Hu

xv +
∑

v∈Vu

xv ≥ 1, ∀u ∈ V

xv ∈ {0, 1}, ∀v ∈ V
Q

Let Ql be the the relaxed LP formulation of Q and Ql = {xv : v ∈ V } be an
optimal solution of Ql. Now we define the following sets.

A1 =

{

u ∈ V :
∑

v∈Hu

xv ≥ 1
2

}

, A2 =

{

u ∈ V :
∑

v∈Vu

xv ≥ 1
2

}

H =
⋃

u∈A1

Hu, V =
⋃

u∈A2

Vu

Based on these, we consider the following two integer programs Q′ and Q′′.

minimize
∑

v∈H

x′
v

subject to
∑

v∈Hu

x′
v ≥ 1,∀u ∈ A1

x′
v ∈ {0, 1}, v ∈ H

minimize
∑

v∈V

x′′
v

subject to
∑

v∈Vu

x′′
v ≥ 1,∀u ∈ A2

x′′
v ∈ {0, 1}, v ∈ V

Q′ Q′′

Let Q′
l and Q′′

l be the relaxed LP of Q′ and Q′′ respectively. Clearly, the
solutions of Q′ and Q′′ gives a feasible solution for Q. Hence OPT (Q) ≤
OPT (Q′) + OPT (Q′′). For each xv ∈ Ql, define yv = min{1, 2xv} and define
Yl = {yv}xv∈Ql

. Notice that Yl gives a solution to Q′
l and Q′′

l . Therefore,
OPT (Q′

l) + OPT (Q′′
l) ≤ 4 · OPT (Ql). We have the following lemma.

Lemma 5. OPT (Q′) ≤ 2 · OPT (Q′
l) and OPT (Q′′) ≤ 2 · OPT (Q′′

l).

Proof. Note that for each vertex u ∈ A1, Hu is non-empty and for each v ∈ Hu,
Lv intersects the horizontal segment of Lu. Let R be the set of horizontal seg-
ments of the L-paths representing the vertices in A1 and S be the set of vertical
segments of the L-paths representing the vertices in H. Since all horizontal seg-
ments in R intersect the vertical line x = 0 and the x-coordinates of the vertical

240 D. Chakraborty et al.

segments in S is strictly less than 0, we can consider the horizontal segments
in R as rightward directed rays. Hence, solving Q′ is equivalent to solving the
ILP, say E , of the problem of finding a minimum cardinality subset of vertical
segments S that intersects all rays in the set R of rightward-directed rays. Hence
solving E is equivalent to solving an SRS instance with R and S as input. By
Lemma 4, we have that

OPT (Q′) = OPT (E) ≤ 2 · OPT (El) ≤ 2 · OPT (Q′
l)

where El is the relaxed LP of E . Hence we have proof of the first part.
For the second part, using similar arguments as above, we can show that

solving Q′′ is equivalent to solving an SSR instance. Hence, by Lemma 1, we
have that OPT (Q′′) ≤ 2 · OPT (Q′′

l). Hence the proof follows. ��

Proof of Theorem 3: Lemma 5 implies that solving Q′ (resp. Q′′) is equivalent
to solving SRS (resp. SSR) problem instance. Let A be the union of the solutions
returned by 2-approximation algorithm for SRS problem and SSR-algorithm,
used to solve Q′ and Q′′ respectively. Hence,

|A| ≤ 2(OPT (Q′
l) + OPT (Q′′

l)) ≤ 8 · OPT (Ql) ≤ 8 · OPT (Q)

Since Ql consists of n variables where n = |V |, solving Ql takes O(n5) time [19].
Solving both the SSR and SRS instances takes a total of O(n log n) time and
therefore the total running time of the algorithm is O(n5).

4 Proof of Theorem1 and Theorem2

First we prove the NP-hardness for the MDS problem on unit B1-VPG graphs.
The (h,w)-grid is the undirected graph G with vertex set {(x, y) : x, y ∈ Z, 1 ≤
x ≤ h, 1 ≤ y ≤ w} and edge set {(u, v)(x, y) : |u − x| + |v − y| = 1}. A graph
G is a grid graph if G is an induced subgraph of (h,w)-grid for some positive
integers h,w.

Proof of Theorem 1: We shall reduce the NP-complete MDS problem on grid
graphs [6] to the MDS problem on unit B1-VPG graphs. It is sufficient to show
that for any positive integers h,w the (h,w)-grid has a unit B1-VPG repre-
sentation. Let G = (V,E) be a (h,w)-grid and ε = 1

hw . For each (x, y) ∈ V
consider the unit L-path L(x,y) such that top endpoint of vertical segment of
L(x,y) is (x, y − ε(x − 1)). The set R = {L(x,y) : (x, y) ∈ V } is a unit B1-VPG
representation of G. This completes the proof.

To prove Theorem 2 we will need Lemma 6. For sake of clarity, first we shall
prove Theorem 2 assuming Lemma 6 to be true. The proof of Lemma 6 uses
Lemma 1, but it is omitted due to space constraints.

Lemma 6. Let S1 and S2 be sets of orthogonal unit length segments. Let C be
the ILP of the problem of finding a minimum cardinality subset D of S2 such
that every segment in S1 intersects some segment in D. There is an O(n5)-time
algorithm to compute a set D′ which gives a solution of C and |D′| ≤ 18·OPT (Cl)
where n = |S1 ∪ S2| and Cl is the relaxed LP of C.

Approximating Minimum Dominating Set on String Graphs 241

Completion of Proof of Theorem 2 Assuming Lemma 6: Let R be a unit
Bk-VPG representation of a unit Bk-VPG graph G = (V,E). We shall assume
that every vertex of G has a self loop (this does not contradict the intersection
model as every rectilinear path intersects itself). For a vertex v ∈ V , let P (v)
denote the path in R that corresponds to v. For a vertex v ∈ V , N(v) and
N [v] denote the open neighbourhood and closed neighbourhood of v, respectively.
Throughout this section, we assume that the segments of each path P ∈ R are
numbered consecutively starting from the leftmost segment by 1, 2, . . . , t where
t(≤ k + 1) is the number of segments in P .

Define φ : E → N × N such that for an edge uv, φ(uv) = (i, j) if and only if
the ith segment of P (u) intersects the jth segment of P (v), and for all 1 ≤ a < i
and 1 ≤ b < j, the ath segment of P (u) does not intersect the bth segment of
P (v).

For a vertex u ∈ V , let Xu(i, j) = {v ∈ N [u] : φ(uv) = (i, j)}. For distinct
pairs (i, j) and (i′, j′) the sets Xu(i, j) and Xu(i′, j′) are disjoint. Let K denote
the set {1, 2, . . . , k + 1} × {1, 2, . . . , k + 1}. Based on these we have the following
ILP of the MDS problem on G.

minimize
∑

v∈V

xv

subject to
∑

(i,j)∈K

∑

v∈Xu(i,j)

xv ≥ 1, ∀u ∈ V

xv ∈ {0, 1}, ∀v ∈ V
Q

First step of our algorithm is to solve the relaxed LP formulation (say Ql) of
Q. Let Ql = {xv : v ∈ V } be an optimal solution of Ql. For each vertex u ∈ V ,
there is a pair (i, j) ∈ K such that

∑

v∈Xu(i,j)

xv ≥ 1
(k+1)2 . For each pair (i, j) ∈ K,

define

A(i, j) =

⎧
⎨

⎩
u ∈ V :

∑

v∈Xu(i,j)

xv ≥ 1
(k + 1)2

⎫
⎬

⎭
, B(i, j) =

⋃

u∈A(i,j)

Xu(i, j)

Based on these, we have the following ILP for each pair (i, j) ∈ K.

minimize
∑

v∈B(i,j)

x′
v

subject to
∑

v∈Xu(i,j)

x′
v ≥ 1, ∀u ∈ A(i, j)

x′
v ∈ {0, 1}, ∀v ∈ B(i, j)

Q(i, j)

For each pair (i, j) ∈ K, let Ql(i, j) be the relaxed LP of Q(i, j). We have
the following

OPT (Q) ≤
∑

(i,j)∈K
OPT (Q(i, j))

242 D. Chakraborty et al.

For each xv ∈ Ql, define yv = min{1, xv(k+1)2} and define Yl = {yv}xv∈Ql
.

Clearly, Yl gives a solution to Ql(i, j) for each (i, j) ∈ K. Moreover,
∑

(i,j)∈K
OPT (Ql(i, j)) ≤ (k + 1)4 · OPT (Ql)

Now we have the following lemma.

Lemma 7. For each pair (i, j) ∈ K, there is a solution D(i, j) for Q(i, j) such
that |D(i, j)| ≤ 18 · OPT (Ql(i, j)).

Proof. For any (i, j) ∈ K, solving Q(i, j) is equivalent to finding a minimum
cardinality subset D of B(i, j) such that each vertex u ∈ A(i, j) has a neighbour
in D∩Xu(i, j). Notice that, for each u ∈ A(i, j) the set Xu(i, j) is non-empty and
each v ∈ Xu(i, j), the ith segment of P (u) intersects the jth segment of P (v).
Let S = {ith segment of P (u) : u ∈ A(i, j)}, T = {jth segment of P (v) : v ∈
B(i, j)}.

Solving Q(i, j) is equivalent to the problem of finding a minimum cardinality
subset D of T such that every segment in S intersect at least one segment in D.
Moreover, every segment in S ∪T have unit length. Hence by Lemma6, we have
a solution (say D(i, j)) for Q(i, j) such that |D(i, j)| ≤ 18 · OPT (Q(i, j)). ��

For each pair (i, j) ∈ K, due to Lemma 7, we have a solution D(i, j) of Q(i, j)
such that |D(i, j)| ≤ 18 · OPT (Ql(i, j)) in polynomial time. Let D be the union
of D(i, j)’s for all (i, j) ∈ K. We have that

|D| =
∑

(i,j)∈K
|D(i, j)|

≤
∑

(i,j)∈K
18 · OPT (Ql(i, j))

≤ 18 · (k + 1)4 · OPT (Ql) ≤ 18 · (k + 1)4 · OPT (Q)

This completes the proof of Theorem 2.

5 Conclusion

We initiated the study of approximating MDS of string graphs in terms of their
unit Bk-VPG representation. It is unlikely that there is o(log k)-approximaiton
algorithm for MDS problem on Bk-VPG graphs. This naturally leads to the
following question.

Question 1. Is there an O(log k)-approximation algorithm for the MDS problem
on Bk-VPG graphs or unit Bk-VPG graphs?

Approximating Minimum Dominating Set on String Graphs 243

References

1. Asinowski, A., Cohen, E., Golumbic, M.C., Limouzy, V., Lipshteyn, M., Stern, M.:
Vertex intersection graphs of paths on a grid. J. Graph Algorithms Appl. 16(2),
129–150 (2012)

2. Bandyapadhyay, S., Maheshwari, A., Mehrabi, S., Suri, S.: Approximating domi-
nating set on intersection graphs of rectangles and L-frames. In: MFCS, pp. 37:1–
37:15 (2018)

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-77974-2

4. Bousquet, N., Gonçalves, D., Mertzios, G.B., Paul, C., Sau, I., Thomassé, S.:
Parameterized domination in circle graphs. In: Golumbic, M.C., Stern, M., Levy,
A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 308–319. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34611-8 31

5. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems
in bounded degree graphs. Inf. Comput. 206(11), 1264–1275 (2008)

6. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1–
3), 165–177 (1990)

7. Colbourn, C.J., Stewart, L.K.: Permutation graphs: connected domination and
steiner trees. Discret. Math. 86(1–3), 179–189 (1990)

8. Damian, M., Pemmaraju, S.V.: APX-hardness of domination problems in circle
graphs. Inf. Process. Lett. 97(6), 231–237 (2006)

9. Damian-Iordache, M., Pemmaraju, S.V.: A (2+ ε)-approximation scheme for min-
imum domination on circle graphs. J. Algorithms 42(2), 255–276 (2002)

10. Erlebach, T., van Leeuwen, E.J.: Domination in geometric intersection graphs. In:
Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS,
vol. 4957, pp. 747–758. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78773-0 64

11. Farber, M., Keil, J.M.: Domination in permutation graphs. J. Algorithms 6(3),
309–321 (1985)

12. Gibson,M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: breaking the
logn barrier. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 243–
254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-2 21

13. Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection
graphs. Discrete Math. 43(1), 37–46 (1983)

14. Gonçalves, D., Isenmann, L., Pennarun, C.: Planar graphs as L-intersection or
L-contact graphs. In: SODA, pp. 172–184 (2018)

15. Katz, M.J., Mitchell, J.S.B., Nir, Y.: Orthogonal segment stabbing. Comput.
Geom.: Theory Appl. 30(2), 197–205 (2005)

16. Lahiri, A., Mukherjee, J., Subramanian, C.R.: Maximum independent set on B1-
VPG graphs. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015.
LNCS, vol. 9486, pp. 633–646. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-26626-8 46

17. McGuinness, S.: On bounding the chromatic number of L-graphs. Discrete Math.
154(1–3), 179–187 (1996)

18. Mehrabi, S.: Approximating domination on intersection graphs of paths on a grid.
In: Solis-Oba, R., Fleischer, R. (eds.) WAOA 2017. LNCS, vol. 10787, pp. 76–89.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89441-6 7

19. Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear pro-
grams. Oper. Res. 34(2), 250–256 (1986)

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-642-34611-8_31
https://doi.org/10.1007/978-3-540-78773-0_64
https://doi.org/10.1007/978-3-540-78773-0_64
https://doi.org/10.1007/978-3-642-15775-2_21
https://doi.org/10.1007/978-3-319-26626-8_46
https://doi.org/10.1007/978-3-319-26626-8_46
https://doi.org/10.1007/978-3-319-89441-6_7

Classified Rank-Maximal Matchings
and Popular Matchings – Algorithms

and Hardness

Meghana Nasre1, Prajakta Nimbhorkar2, and Nada Pulath1(B)

1 Indian Institute of Technology, Chennai, India
nadapulath1710@gmail.com

2 UMI ReLaX, Chennai Mathematical Institute, Chennai, India

Abstract. In this paper, we consider the problem of computing an opti-
mal matching in a bipartite graph G = (A ∪ P,E) where elements of A
specify preferences over their neighbors in P , possibly involving ties, and
each vertex can have capacities and classifications. A classification Cu for
a vertex u is a collection of subsets of neighbors of u. Each subset (class)
C ∈ Cu has an upper quota denoting the maximum number of vertices
from C that can be matched to u. The goal is to find a matching that
is optimal amongst all the feasible matchings, which are matchings that
respect quotas of all the vertices and classes.

We consider two well-studied notions of optimality namely popularity
and rank-maximality. The notion of rank-maximality involves finding a
matching in G with maximum number of rank-1 edges, subject to that,
maximum number of rank-2 edges and so on. We present an O(|E|2)-time
algorithm for finding a feasible rank-maximal matching, when each clas-
sification is a laminar family. We complement this with an NP-hardness
result when classes are non-laminar even under strict preference lists,
and even when only posts have classifications, and each applicant has a
quota of one. We show an analogous dichotomy result for computing a
popular matching amongst feasible matchings (if one exists) in a bipar-
tite graph with posts having capacities and classifications and applicants
having a quota of one.

To solve the classified rank-maximal and popular matchings problems,
we present a framework that involves computing max-flows iteratively in
multiple flow networks. Besides giving polynomial-time algorithms for
classified rank-maximal and popular matching problems, our framework
unifies several algorithms from literature [1,10,12,15].

Keywords: Bipartite graphs · Popularity · Rank-maximality ·
Matchings under classifications

1 Introduction

Matchings under preferences have been well-studied in literature. The input
consists of a bipartite graph G = (A ∪ P,E) where A is a set of applicants, P

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 244–257, 2019.
https://doi.org/10.1007/978-3-030-30786-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_19

Classified Matchings 245

is a set of posts, and applicants have preferences over their neighbors in P . The
preference list of an applicant can involve ties. An edge (a, p) is said to have
rank k, if p is a kth choice of a. The setting where applicants and posts both can
be assigned at most one element from the opposite set is called the one-to-one
setting. This has been generalized to a model where a post p can accommodate
more than one applicant, and has a positive quota q(p) denoting the maximum
number of applicants it can accommodate. An allocation of applicants to posts
in this setting is referred to as a many-to-one matching. Additionally, if an
applicant a can be allotted more than one post simultaneously, up to a positive
quota q(a), it is called the many-to-many setting.

In all the above settings the goal is to match applicants to posts optimally
with respect to the preferences of the applicants. Two well-studied notions of
optimality in this setting are rank-maximality [10] and popularity [1,6]. The
notion of signature defined in the literature [10] is useful to compare two match-
ings with respect to rank-maximality. The signature σM of a matching M is an
r-tuple (x1, . . . , xr) where r denotes the largest rank used by an applicant to
rank any post. For 1 ≤ k ≤ r, xk denotes the number of rank k edges in M .

Definition 1 (Rank-maximal matching). A matching is rank-maximal if it
matches the maximum number of applicants to their rank-1 posts, subject to that,
the maximum number of applicants to their rank-2 posts, and so on. That is, M
has the maximum signature when comparing the signatures of two matchings
lexicographically.

Popularity is defined in terms of votes of applicants between two matchings M
and M ′. An applicant a prefers M over M ′ if and only if a is matched to a higher
preferred post in M as compared to that in M ′, and any applicant prefers to be
matched to one of its neighbors over remaining unmatched.

Definition 2 (Popular matching). A matching M is more popular than
another matching M ′ if more applicants prefer M over M ′ than M ′ over M .
A matching M is popular if there is no matching that is more popular than M .

Rank-maximal matchings have been studied in the many-to-many setting [15],
and popular matchings have been considered in the many-to-one setting [12],
polynomial-time algorithms being known in both the cases.

We consider a natural generalization of the many-to-many setting, where
each vertex u can additionally specify a classification Cu on its set of neighbors
N(u). A classification is a set of subsets of N(u). Each subset Ci

u ∈ Cu is called
a class, and each class has its own quota 0 < q(Ci

u) ≤ q(u). A matching now
requires to respect the quotas of all the classes, and we call such a matching
a feasible matching. Classifications arise naturally in matching problems. While
allotting courses to students, a student does not want to be allotted too many
courses on closely related topics. An instructor may not want a course to have too
many students from the same department. While assigning doctors to hospitals
in the well-studied hospital-residents setting, a hospital has an upper limit on
the number of doctors in a specialization. These constraints are readily modeled
using classifications.

246 M. Nasre et al.

Figure 1 shows an example instance of the classified matching problem where
A = {a1, a2, a3} and P = {p1, p2}. The preferences of the applicants, and the
classifications and quotas can be read from the figure. Consider a feasible match-
ing M = {(a1, p2), (a2, p1), (a3, p2)} which has a signature of (2, 1). The match-
ing M ′ = {(a1, p1), (a2, p1), (a3, p2)} has signature (3, 0) but is infeasible because
of the classification C1

p1
. We will show that the matching is M is both rank-

maximal and popular in this instance.

a1 : p1, p2
a2 : (p1, p2)

a3 : p2, p1

Preference Lists

Cp1 = {C1
p1 = {a1, a2}}

Cp2 = {C1
p2 = {a2, a3}}

Classifications

q(p1) = q(p2) = 2

q(C1
p1) = q(C1

p2) = 1

q(ai) = 1; i = {1, 2, 3}
Quotas

Fig. 1. Preferences to be read as: a1 treats p1 as rank-1 post and p2 as rank-2 post.
Applicant a2 has ties in its preference list and treats both p1 and p2 as its rank-1 posts.
Although q(p1) = 2, the class C1

p1 ∈ Cp1 implies that in any feasible matching post p1
can be matched to at most one applicant from {a1, a2}.

We address the problems of finding a rank-maximal matching in the many-to-
many setting and a popular matching (if it exists) in the many-to-one setting,
both in the presence of classifications. We refer to these problems as CRMM
and CPM problems respectively. We show that both the problems are NP-
hard for arbitrary classifications, and complement the hardness results by giving
polynomial-time algorithms when the classification of each vertex is a laminar
family. A family F of subsets of a set S is said to be laminar if, for every pair
of sets X,Y ∈ F , either X ⊆ Y or Y ⊆ X or X ∩ Y = ∅. Laminar classifications
are natural in settings like student allocation to schools where schools may want
at most a certain number of students from a particular region, district, state,
country and so on. Laminar classification includes the special case of partition,
where the classes are disjoint – a natural classification arising in practice.

Classifications have been previously studied for the two-sided preference
model [4,7] – called the stable marriage setting. In the stable matching case,
existence of a stable matching respecting the classifications can be determined
in polynomial-time if the classes specified by each vertex form a laminar family
[4,7], and otherwise the problem is NP-complete [7]. In our setting, the prefer-
ences being only on one side and the optimality criteria being rank-maximality
or popularity are very different from the stable matching setting. Yet we show
similar results as those of [7] and [4].

Our Contribution: We show the following new results in this paper. Let G =
(A ∪ P,E) denote an instance of the CRMM problem or the CPM problem.

Theorem 1. There is an O(|E|2)-time algorithm for the CRMM problem when
the classification for every vertex is a laminar family.

Classified Matchings 247

We also show the above result for the CPM problem in the many-to-one setting.

Theorem 2. There is an O(|A||E|)-time algorithm for the CPM problem when
the classification for every post is a laminar family.

We complement the above results with a matching hardness result:

Theorem 3. The CRMM and CPM problems are NP-hard when the classes are
non-laminar even when all the preferences are strict, and classifications exist on
only one side of the bipartition.

The hardness holds even when the intersection of the classes in a family is at
most one, and the preference lists have length at most 2. Our reduction also
shows the following hardness result even when there are no ranks on edges.

Theorem 4. The problem of finding a maximum cardinality matching is NP-
hard in the presence of non-laminar classifications.

Related Work: Irving introduced the rank-maximal matchings problem as
“greedy matchings” in [9] for the one-to-one case of strict preferences. Irv-
ing et al. [10] generalized the same to preference lists with ties allowed and
this was further generalized by Paluch [15] for the many-to-many setting. Abra-
ham et al. [1] initiated the study of Popular Matchings problem in the one-to-
one setting and subsequently there have been several results [8,12,13] on gen-
eralization of this model. In all the above results where the model is without
classifications, the algorithms for computing a rank-maximal matching [10,15]
and for computing popular matching in [1,8,12,13] have the following template:
The algorithms are iterative and make crucial use of the well-known Dulmage-
Mendelsohn decomposition w.r.t. maximum matchings in bipartite graphs. The
main use of the decomposition theorem in all the literature mentioned above is
to identify edges that can not belong to any optimal matching. Such edges are
deleted in each iteration, resulting in a reduced graph, such that every maximum
matching in the reduced graph is an optimal matching in the given instance.

Our Technique and Comparison with Prior Work: Although the high-level
idea of our algorithm is similar as in the Irving et al. [10] and Abraham et al. [1],
due to the presence of classifications the proof techniques and the details are
completely different. The Dulmage-Mendelsohn decomposition [3] crucially used
in [10,15] for identifying unnecessary edges relies on the fact that a partial match-
ing computed in an iteration is a maximum matching in the graph considered
in that iteration. In our setting, a feasible matching need not be a maximum
matching in any graph; this poses a difficulty in obtaining a decomposition. We
overcome this by exploiting the connection between matchings and flows. We
use the fact that in any flow network, w.r.t. any max-flow the vertices can be
decomposed into three disjoint sets and this decomposition is invariant of the
flow. To the best of our knowledge, the decomposition of the vertices of a flow
network w.r.t. any max-flow and its invariance w.r.t. a max-flow have not been

248 M. Nasre et al.

used in the literature on matchings with preferences. Besides giving polynomial-
time algorithms for CRMM and CPM problems, our work also unifies several
known results [1,10,12,15].

We emphasize that the techniques used in the capacitated setting, namely
by Manlove and Sng [12] in the capacitated house allocation problem and by
Paluch [15] in the capacitated rank-maximal matchings do not work in the
presence of classifications. We believe that exploiting the natural connection
between bipartite matchings and network flows makes our approach elegant and
also practical. The problems of capacitated matchings with preferences are not
only of theoretical interest but have a wide range of practical applications. We
finally note that the CRMM problem can also be solved using min-cost flows
with slightly higher time complexity, but that approach involves using exponen-
tial weights. Analogously, the CPM problem can be solved using the matroid
generalization considered by Kamiyama [11], however, the running time of the
corresponding algorithm is O(m4). In contrast, our algorithms for the CRMM
and CPM problems are simple, combinatorial and use only elementary flow com-
putations.

Organization of the Paper: In Sect. 2 we describe our flow network for the laminar
CRMM problem and prove properties of the network. In Sect. 3 we present our
algorithm and prove its correctness. In Sect. 4 we give the hardness for the non-
laminar CRMM problem. In the interest of space and readability we present the
detailed algorithmic results for the CPM problem in the full-version [14].

2 Construction of the Flow Network

In this section, we present the construction of our flow-networks used by the
polynomial-time algorithms for the CRMM and the CPM problems when the
classes of each vertex form a laminar family. Recall that the given instance is a
bipartite graph G = (A∪P,E), along with a preference list for each a ∈ A, and a
laminar classification Cu for each u ∈ A∪P for the CRMM problem, and for each
u ∈ P for the CPM problem. We describe the more general case of the CRMM
problem here. We construct the flow network H0 corresponding to the input
bipartite graph G with classifications. We apply the following pre-processing for
every vertex in G:

For every u ∈ A ∪ P with classification Cu, we add the following classes to
Cu.

– C∗
u: We include a class C∗

u = N(u) into Cu with capacity q(C∗
u) = q(u).

– Cw
u : For every w ∈ N(u) and u ∈ A ∪ P , we add a class Cw

u to Cu with
capacity q(Cw

u) = 1.

It is easy to see that this does not change the set of feasible matchings. In the
rest of the paper, we refer to this modified instance as our instance G.

Definition 3 (Classification tree). Let every vertex u ∈ A∪P have a laminar
family of classes Cu. Then, the classes in Cu can be represented as a tree called the

Classified Matchings 249

classification tree Tu with C∗
u being the root of Tu. For two classes C1

u, C2
u ∈ Cu,

the class C1
u is the parent of C2

u in Tu iff C1
u is the smallest class in Cu containing

C2
u. For every w ∈ N(u), the corresponding singleton class Cw

u is a leaf of Tu.

Throughout the paper, we refer to the vertices V of H0 as “nodes”. The
network H0 has nodes corresponding to every element of Tu for each u ∈ A ∪ P .
In addition, there is a source s and a sink t. The edges of H0 include an edge
from s to the root of Ta for each a ∈ A, and an edge from the root of Tp to t,
for each p ∈ P . Each edge of Ta, for each a ∈ A, is directed from parent to child
whereas each edge of Tp, p ∈ P is directed from child to parent in H0. Thus,

V = {s, t} ∪ {Ci
u | Ci

u ∈ Tu and u ∈ A ∪ P}
The set of all edges of H0 represented by F0 and their capacities are as follows:

– For every a ∈ A, F0 contains an edge (s, C∗
a) with capacity q(C∗

a).
– For every p ∈ P , F0 contains an edge (C∗

p , t) with capacity q(C∗
p).

– For a ∈ A and edge (C1
a , C2

a) ∈ Ta such that C1
a is the parent of C2

a , F0

contains an edge (C1
a , C2

a) with capacity q(C2
a).

– For p ∈ P and edge (C1
p , C2

p) ∈ Tp such that C2
p is the parent of C1

p , F0

contains an edge (C1
a , C2

a) with capacity q(C1
a).

C∗
a1

C∗
a2

C∗
a3

s

Cp2
a3

Cp2
a2

Cp1
a1

Cp1
a2

Cp2
a1

Cp1
a3

Ca3
p2

Ca2
p2

Ca1
p2

Ca3
p1

Ca1
p1

Ca2
p1

C∗
p1

C∗
p2

t

C1
p1

C1
p2

L R

2

2

Fig. 2. Flow Network H1 correspond-
ing to example in Fig. 1. H0 is the net-
work without any edges between L and
R. All edges except the one labeled
have unit capacity.

C∗
a1

C∗
a2

C∗
a3

s

Cp2
a3

Cp2
a2

Cp1
a1

Cp1
a2

Cp2
a1

Cp1
a3

Ca3
p2

Ca2
p2

Ca1
p2

Ca3
p1

Ca1
p1

Ca2
p1 C∗

p1

C∗
p2

t

C1
p1

C1
p2

L R

Fig. 3. Black edges and red edges form
the network H1(f1). Black edges alone
form the network H ′

1. Black and blue
edges together form the network H2.
The white and black nodes represent
S1, T1 respectively. In this example
U1 = ∅. (Colro figure online)

We collectively refer to the set of leaves of Ta for all a ∈ A as L and similarly,
the set of leaves of Tp for all p ∈ P as R. Thus

L = {Cp
a | a ∈ A and p ∈ N(a)}; R = {Ca

p | p ∈ P and a ∈ N(p)}

250 M. Nasre et al.

Figure 2 (ignoring the edges from L to R) shows the flow network H0 correspond-
ing to the example in Fig. 1. The nodes in L (respectively R) (shown in the two
ellipses in the figure) have a unique predecessor (successor) in H0. Moreover,
H0 can be seen as a disjoint union of two trees, one rooted at s and another at
t, the edges of the former being directed from parent to child and those of the
latter from child to parent. We call the two trees as applicant-tree and post-tree
respectively. As evident, the graph H0 admits no path from s to t, hence has a
zero max-flow. Our algorithm in Sect. 3 iteratively adds edges to H0. Let H be
any such flow network constructed by our algorithm in some iteration and let f
be a max-flow in H.

Decomposition of Vertices: In this section, we present a decomposition of the
vertices of the flow network w.r.t. a max-flow f . We prove in Sect. 2.1 that the
decomposition is invariant of the max-flow. The decomposition of the vertices
allows us to delete certain edges in H that ensures that signature of the matching
M corresponding to H is preserved in the future iterations. For a flow network
H and a max-flow f in H, let H(f) denote the residual network. We define the
sets Sf , Tf , Uf as follows. Since f is a max-flow, it is immediate that the sets
partition the vertex set V .

Sf = {v | v ∈ V and v is reachable from s in H(f)}
Tf = {v | v ∈ V and v can reach t in H(f)}
Uf = {v | v ∈ V and v /∈ Sf ∪ Tf}

It is well-known that the partition (Sf , Tf ∪ Uf) is a min-s-t-cut of H.

2.1 Properties of the Flow Network

We state properties of the flow network which are essential to prove the correct-
ness of our algorithms for the CRMM and CPM problems. Lemma 1 is known
from theory of network flows (See e.g. [5]). Lemma 2 shows the invariance of the
sets Sf , Tf , Uf . All proofs ommited in the interest of space can be found in the
full-version [14]. The statement of Lemma 2 and its proof are implicit from the
structure of minimum cuts [16]. We remark that the properties in Lemmas 1,
and 2 hold for any flow network H.

Lemma 1. [5] Let H = (V, F) be any flow network where V is the vertex set
and F is the edge set. Let f be a max-flow in H and (X,Y) be any min-s-t-cut
of H. Then the following hold:

– For any edge (a, b) ∈ F such that a ∈ X, b ∈ Y , we have f(a, b) = c(a, b).
– For any edge (b, a) ∈ F such that a ∈ X, b ∈ Y , we have f(a, b) = 0.

Lemma 2. The sets Sf , Tf and Uf are invariant of the max-flow f in H.

The next lemma is specific to our flow network and is useful in proving the
rank-maximality of our algorithm. An analogous claim can be proved for the leaf
classes in the post tree.

Classified Matchings 251

Lemma 3. Consider a node Ci
a ∈ T ∪ U such that either the parent C of Ci

a in
Ta is in S or Ci

a = C∗
a . Then the following hold:

– (i) Every leaf Cp
a in the subtree of Ci

a in Ta belongs to T ∪ U .
– (ii) Every max-flow f must saturate the edge (C,Ci

a).

Conversely, in the applicant-tree, every leaf node Cp
a ∈ T ∪ U has an ancestor

Ci
a ∈ T ∪ U such that the predecessor C of Ci

a (possibly s) is in S and the edge
(C,Ci

a) is saturated in every max-flow.

3 Algorithm for Laminar CRMM

This section gives the detailed pseudo-code for our iterative algorithm for com-
puting a laminar CRMM (see Algorithm 1). We begin by constructing the flow
network H0 as described in Sect. 2. For all e ∈ F0, the max-flow f0(e) = 0 since
there is no s-t path in H0. Start with G′

0 = G0 = (A ∪ P, ∅). We partition the
edges of G into sets Ek, 1 ≤ k ≤ r where r is the maximum rank on any edge
of G and Ek contains the edges of rank k from G. Our algorithm repeatedly
constructs the network Hk and maintains the reduced bipartite graph G′

k. In
each iteration our algorithm operates as follows: it computes a max-flow fk in a
flow network Hk (Step 5) and computes the partition of the vertices Sk, Tk, Uk

w.r.t fk (Step 6). The algorithm then deletes forward and reverse edges of min-
cut (Sk, Tk ∪ Uk) (Step 7). This step is crucial to ensure that the signature of
the matching corresponding to the flow in the subsequent iterations does not
degrade. Finally, the algorithm deletes certain edges of rank higher than k from
the given bipartite graph (Step 8) – we prove that these edges cannot belong to
any CRMM and hence can be removed. Finally, the output of our algorithm is
the R-L edges of the flow network H ′

r constructed in the final iteration.
We illustrate these steps on the example in Fig. 1. Add to H0 edges of

the form (Cp
a , Ca

p) for every rank-1 edge in G to obtain the flow network
H1 (see Fig. 2). Let f1 be a max-flow in H1 corresponding to the matching
M1 = {(a1, p1), (a3, p2)}. That is, for an edge (a, p) ∈ M1 the unique s − t
path containing the edge (Cp

a , Ca
p) in H1 carries unit flow. Figure 3 (black

and red edges) shows the residual network H1(f1) along with the partition
of the vertices as S1, T1, U1 (the set U1 is empty in this example). The edges
{(C∗

p1
, C1

p1
), (C∗

p2
, C1

p2
)} in H1(f1) are of the form (T1, S1) and hence are deleted

as a reverse edges of the min-s-t cut to obtain H ′
1. The flow network H2 is

obtained by adding to H ′
1 the edges {(Cp2

a1
, Ca1

p2
), (Cp1

a3
, Ca3

p1
)}. We remark that

if the reverse edges of the min-s-t cut were not deleted, an augmenting path in
H2 of the form ρ1 = 〈s, C∗

a2
, Cp1

a2
, . . . , C∗

a1
, . . . , C∗

p2
, C1

p2
, C∗

a3
, . . . Ca3

p1
, C∗

p1
, t〉 can

be used to degrade the signature on rank-1 edges. We prove in the subsequent
sections that our deletions ensure that the signature is never degraded.

In Lemma 4 and Corollary 1 we state properties of edges deleted by our algo-
rithm.

Lemma 4. Any edge between Cp
a and Ca

p in Hk(fk) is of the form SkSk, TkTk

or UkUk, irrespective of its direction in Hk(fk). Hence an edge between L and
R is not deleted in Step 7 of Algorithm1.

252 M. Nasre et al.

Algorithm 1. Laminar CRMM
1: Construct the flow network H0 = (V, F0) as described in Section 2.
2: Let F ′

0 = F0 and for each i set E′
i = Ei.

3: for k = 1 to r do
4: Hk = (V, Fk) where Fk = F ′

k−1 ∪ {(Cp
a , C

a
p) | (a, p) ∈ E′

k}.
5: Let fk be a max-flow in Hk. Compute the residual graph Hk(fk) w.r.t. flow fk.
6: Compute the sets Sk, Tk and Uk.
7: Delete all edges of the form (Tk ∪ Uk, Sk) in Hk(fk).
8: Delete an edge (a, p) ∈ E′

j where j > k if Cp
a ∈ Tk ∪ Uk or Ca

p ∈ Sk ∪ Uk.

9: Let H ′
k = (V, F ′

k) be the modified Hk(fk) and let G′
k = (A ∪ P,

⋃k
i=1 E

′
i).

10: Let Mk = {(a, p)|(Ca
p , C

p
a) ∈ H ′

k}.
11: end for
12: Return Mr.

Proof. Let e = (Cp
a , Ca

p) be an edge in Hk. Recall that this is the only outgoing
edge for Cp

a and only incoming edge for Ca
p in Hk. Also, Cp

a has an incoming
edge of capacity 1 from its parent and Ca

p has an outgoing edge with capacity 1
to its parent.

Case 1: Edge e does not carry a flow in fk. Then Cp
a and Ca

p do not receive any
flow. In Hk(fk), e retains its direction. Thus if Cp

a is in Sk, so is Ca
p . Conversely,

if Ca
p is in Sk, then Cp

a has to be in Sk, since Ca
p has no other incoming edge,

and hence the path from s to Ca
p must use the edge e. Similarly, Cp

a is in Tk if
and only if Ca

p is in Tk. If Cp
a is in Uk, then by the same argument as above, Ca

p

can not be in Sk or Tk and hence must be in Uk.
Case 2: Edge e carries a flow of 1 unit in fk. Then the direction of e is reversed

in Hk(fk), thus (Ca
p , Cp

a) is in Hk(fk). Similarly, the direction of the edge to Cp
a

from its parent and of the edge from Ca
p to its parent is also reversed. Thus, both

Cp
a and Ca

p still have only one incoming and one outgoing edge in Hk(fk). Now, if
Cp

a is in Sk, the only path possible from s to Cp
a has to be through Ca

p and hence
Ca

p must be in Sk. Conversely, if Ca
p is in Sk, so is Cp

a since (Ca
p , Cp

a) ∈ Hk(fk).
An analogous argument holds for containment in Tk, and hence in Uk as well.
�

Corollary 1. For every edge (Cp
a , Ca

p) in Hk that carries unit flow in fk, either
one edge on the path from s to Cp

a in Hk or an edge on the path from Ca
p to t in

Hk, but not both, is deleted in the k-th iteration of Step 7 of Algorithm1.

Proof. By Lemma 4, each edge (Cp
a , Ca

p) has both its end-point in the same set
i.e. S, U , or T . If both the end-points are in S, by analogue of Lemma 3, an edge
on the path from Ca

p to t is deleted in Step 7 of the algorithm. We argue that
no edge on the path from s to Cp

a gets deleted. Let ρA be the path from s to Cp
a

that carried flow in Hk. Then every edge on the path ρA is reversed in Hk(fk)
and because Cp

a ∈ S, every vertex on ρA also belongs to S. This implies that no
edge on the path ρA gets deleted.

If both the end-points are in U or T , by Lemma 3, an edge on the path from
s to Cp

a is saturated and hence deleted in Step 7 of the algorithm. An argument

Classified Matchings 253

similar to above shows that no edge on the path from Cp
a to t gets deleted in

this case.
�

3.1 Rank-Maximality of the Output

To prove correctness, we consider flow networks Xi = (V, F0∪{(Cp
a , Ca

p) | (a, p) ∈⋃
j≤i Ej}) and first establish a one-to-one correspondence between matchings in

Gi and flows in Xi. With an abuse of notation, we call an edge (Cp
a , Ca

p) in any
flow network H a rank k edge if the corresponding edge (a, p) in G has rank
k. Also, we refer to directed edges from leaves in the applicant-tree to leaves in
the post-tree as L-R edges and directed edges from leaves in the post-tree to
leaves in the applicant-tree as R-L edges. In the following lemma, we establish
a correspondence between matchings in Gi and flows in Xi.

Lemma 5. For every feasible matching Mi in Gi, there is a corresponding feasi-
ble flow gi in Xi and vice versa. Moreover, the edges present in Mi are precisely
the L-R edges in Xi that carry one unit flow in gi and hence appear as R-L
edges in the residual network Xi(gi).

Define signature of a flow to be signature of the corresponding matching in
G.

Definition 4 (Rank-maximal flow). We call a flow gi in a network Xi to be
rank-maximal if the corresponding matching Mi is rank-maximal in Gi.

Thus gi is a rank-maximal flow in Xi if it uses the maximum number of rank
1 edges, subject to that, maximum number of rank 2 edges and so on. By flow-
decomposition theorem (see e.g. [2]), a flow gi in Xi can be decomposed into
flow on s − t paths, such that each path uses exactly one L-R edge. Thus, based
on the ranks of the L-R edges used, gi can be decomposed into flows g1i , . . . , gi

i

such that, for each j: 1 ≤ j ≤ i, gj
i uses paths only through L-R edges of rank

j. Thus gi = g1i + . . . + gi
i . We call gj

i to be the jth component of gi.

Lemma 6. Suppose, for each j ≤ i, the jth component gj
i of every rank-maximal

flow gi in Xi is a max-flow in Hj. Then the (i + 1)st component gi+1
i+1 of any

rank-maximal flow gi+1 in Xi+1 is a max-flow in Hi+1.

Proof. The statement clearly holds for i = 0, since H1 is same as X1. Now
assume the statement for all j ≤ i < r. We will prove it for i + 1. Moreover, by
the definition of rank-maximal flow, g1i+1 + . . . + gi

i+1 is a rank-maximal flow in
Xi, call it gi.

Let e be an edge with residual capacity c in Xi when the flow gi is set up
in Xi. We show that e has the same residual capacity in Hi(gi

i+1), and hence in
Hi+1. This clearly holds in H1(g1i+1) since H1 and X1 are the same networks.
Inductively, each gj

i+1 is a flow in Hj for 1 ≤ j < i and hence the same amount
of flow is sent through e in Xj as the total flow sent in H1, . . . , Hj . Hence the
residual capacity of e is the same in Xi(gi

i+1) as in Hi(gi
i+1).

254 M. Nasre et al.

Consider a path ρ in Xi+1 that carries a flow of one unit from gi+1
i+1 . Let eρ

be the rank i+1 L-R edge on ρ. Moreover ρA and ρP be the subpaths of ρ from
s to the leaf node in applicant-tree and from the leaf node to t in the post-tree.

Every edge e on ρ must be unsaturated by g1i+1 + . . .+ gi
i+1. If this is not the

case, then gi+1
i+1 can not be routed through e without reducing some flow from

g1i+1 + . . . + gi
i+1 and the resulting flow will not be rank-maximal. Since each

gj
i+1 for 1 ≤ j ≤ i is a max-flow in Hj , and all the edges on ρA and ρP are

unsaturated in each of the flows, every node on ρA is in S and each node on ρP

is in T in each of the first i iterations of the algorithm. Thus no edge of ρA or
ρP is deleted from Hj in the jth iteration of the algorithm for any 1 ≤ j ≤ i,
and also, eρ is not deleted in Step 7 in any iteration.

Thus, in the flow-decomposition of gi+1, every path that carries some flow
along a rank i + 1 edge, is also present in Hi+1. Moreover, if c such paths pass
through an edge e, then as proved above, e has a capacity c in Hi+1. Hence gi+1

i+1

is a valid flow in Hi+1. It has to be a max-flow in Hi+1, otherwise gi+1 will not
be a rank-maximal flow in Xi+1.
�

Lemma 7. Define Yi as the set of R-L edges in H ′
i. For every i, j, with j > i,

the number of edges of rank at most i is the same in Yi and Yj.

Let fi be a max-flow in Hi and Hi(fi) denote the corresponding residual network.
Let Y denote the set of R-L edges in Hi(fi). Corresponding to the R-L edges in
Y , we can set up a flow gi which is a feasible flow in Xi. To obtain such a flow,
we start with every edge having gi(e) = 0. Repeatedly select an unselected edge
e from Y . Let ρe denote the unique s − t path in Xi containing e. We increase
the flow along every edge in ρe by one unit. Using arguments similar to Lemma 5
we conclude that gi is a feasible flow in Xi.

Lemma 8. For every 1 ≤ k ≤ r, the following hold:

1. For every rank-maximal flow gk = g1k + . . . + gk
k of Xk, gi is a max-flow in

Hi for 1 ≤ i ≤ k.
2. Conversely, the flow gk (constructed as above) corresponding to the R-L edges

of Hk(fk) is a rank-maximal flow in Xk.

Proof. We prove this by induction on k. When k = 1, X1 and H1 are the same
networks. A rank-maximal flow g1 in X1 is just a max-flow in X1 and hence in
H1. Algorithm 1 also computes a max-flow in H1. Hence both the statements
hold for k = 1. Assume the statements to be true for each j ≤ i. We prove
them for i + 1. The first statement follows from Lemma 6. We prove the second
statement. By induction hypothesis, gi corresponding to fi is a rank-maximal
flow in Xi, let its signature be (σ1, . . . , σi). Let the signature of a rank-maximal
flow in Xi+1 be (σ1, . . . , σi+1). By Lemma 7, the number of R-L edges of rank
j in H ′

i+1 and hence in Hi+1(fi+1) is the same as in H ′
i, for each j ≤ i. Thus

the signature of gi+1 in Xi+1 corresponding to fi+1 is (σ1, . . . , σi, σ
′
i+1) where

σ′
i+1 ≤ σi+1. However, by Lemma 6, the (i + 1)st component of a rank-maximal

flow in Xi+1 is a max-flow in Hi+1. Since fi+1 is also a max-flow in Hi+1 it must

Classified Matchings 255

be of the same value and hence the corresponding flow gi+1 of fi+1 must have
signature (σ1, . . . , σi+1).
�

Running Time: The size of our flow network is determined by the total number
of classes. Due to the tree structure of Tu, the size of the flow network is equal
to the total size of all preference lists which is O(|E|). The maximum matching
size in our instance is upper bounded by |E| and the max-flow in our network
is also at most O(|E|). By Ford-Fulkerson algorithm, each augmentation takes
O(|E|) time and O(|E|) augmentations are sufficient. This gives an upper bound
of O(|E|2) on the running time. Thus we establish Theorem1.

4 Hardness for Non-laminar Classifications

Here, we consider the CRMM and CPM problems where the classifications are not
necessarily laminar. We show that the following decision version of the CRMM
problem is NP-hard: Given an instance G = (A ∪ P,E) of the CRMM problem
and a signature vector σ = (σ1, . . . , σr), does there exist a feasible matching
M in G such that M has a signature ρ such that ρ � σ? We give a reduction
from the monotone 1-in-3 SAT problem to the above decision version of CRMM.
Throughout this section, we refer to this decision version as the CRMM problem.

The monotone 1-in-3 SAT problem is a variant of the boolean satisfiability
problem where the input is a conjunction of m clauses. Each clause is a disjunc-
tion of exactly three variables and no variable appears in negated form. The goal
is to decide whether there exists a truth assignment to the variables such that
every clause has exactly one true variable and hence two false variables. This
problem is known to be NP-hard [17]. Let φ be the given instance of the monotone
1-in-3 SAT problem, with n variables x1, . . . , xn and m clauses C1, C2, . . . , Cm.
We construct an instance G = (A ∪ P,E) of the CRMM problem as follows:

Applicants: For each variable xi in φ, there are two applicants ai, bi in A.
For each occurrence of xi in clause Cj , there are two applicants aij , bij . Thus
A = {ai, bi, aij , bij | xi ∈ φ, xi ∈ Cj} and |A| = 2n + 6m.

Posts: For each variable xi, there are three posts pi, p
t
i and pf

i . For each clause
Cj , there is a post p̂j . Thus P = {pi, p

t
i, p

f
i | xi ∈ φ} ∪ {p̂j | Cj ∈ φ} and

|P | = 3n + m.

Preferences of Applicants: The applicants have following preferences:

ai : pi, pt
i

bi : pi, pf
i

aij : p̂j , pt
i

bij : p̂j , pf
i

Quotas and Classifications of Posts:

1. Let Cj = xi ∨ xi′ ∨ xi′′ ; the corresponding post p̂j , q(p̂j) = 3 and has classes:
(a) Sij = {aij , bij} with quota 1 for each xi ∈ Cj .

256 M. Nasre et al.

(b) S1j = {aij , ai′j , ai′′j} with quota 1.
(c) S2j = {bij , bi′j , bi′′j} with quota 2.

2. Each post pt
i has quota ki = the number of occurrences of xi in φ and classes:

St
j = {aij , ai} with quota 1, for each j such that xi ∈ Cj .

3. Each post pf
i has quota ki = the number of occurrences of xi in φ and classes:

Sf
j = {bij , bi} with quota 1, for each j such that xi ∈ Cj .

4. Each post pi has quota 1 and no classes.

This completes the description of our CRMM instance. Our reduction also works
for showing the hardness for CPM problem, since only posts have classifications,
and each applicant can be matched to at most one post. We note that the pref-
erences are strict and are of length two; thus the hardness for both the problems
applies even under these restrictions. This establishes Theorems 3 and 4.

References

1. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings.
SIAM J. Comput. 37(4), 1030–1045 (2007)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall Inc., Upper Saddle River (1993)

3. Dulmage, A.L., Mendelsohn, N.S.: Coverings of bipartite graphs. Can. J. Math.
10, 517–534 (1958)

4. Fleiner, T., Kamiyama, N.: A matroid approach to stable matchings with lower
quotas. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pp. 135–142 (2012)

5. Ford, D.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,
Princeton (1962)

6. Gärdenfors, P.: Match making: assignments based on bilateral preferences. Behav.
Sci. 20, 166–173 (1975)

7. Huang, C-C.: Classified stable matching. In: Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 1235–1253
(2010)

8. Huang, C.-C., Kavitha, T., Michail, D., Nasre, M.: Bounded unpopularity match-
ings. Algorithmica 61(3), 738–757 (2011)

9. Irving, R.W.: Greedy Matchings. Technical report TR-2003-136, University of
Glasgow, April 2003

10. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal
matchings. ACM Trans. Algorithms 2(4), 602–610 (2006)

11. Kamiyama, N.: Popular matchings with ties and matroid constraints. SIAM J.
Discrete Math. 31(3), 1801–1819 (2017)

12. Manlove, D.F., Sng, C.T.S.: Popular matchings in the capacitated house allocation
problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 492–503.
Springer, Heidelberg (2006). https://doi.org/10.1007/11841036 45

13. Mestre, J.: Weighted popular matchings. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg
(2006). https://doi.org/10.1007/11786986 62

14. Nasre, M., Nimbhorkar, P., Pulath, N.: Dichotomy results for classified rank-
maximal matchings and popular matchings. CoRR, abs/1805.02851 (2018)

https://doi.org/10.1007/11841036_45
https://doi.org/10.1007/11786986_62

Classified Matchings 257

15. Paluch, K.: Capacitated rank-maximal matchings. In: Spirakis, P.G., Serna, M.
(eds.) CIAC 2013. LNCS, vol. 7878, pp. 324–335. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38233-8 27

16. Picard, J.-C., Queyranne, M.: On the structure of all minimum cuts in a network
and applications. Math. Program. Study 13, 8–16 (1980)

17. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, pp. 216–226 (1978)

https://doi.org/10.1007/978-3-642-38233-8_27

Maximum Matchings and Minimum
Blocking Sets in Θ6-Graphs

Therese Biedl1, Ahmad Biniaz1, Veronika Irvine1, Kshitij Jain2,
Philipp Kindermann3(B), and Anna Lubiw1

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada

{biedl,virvine,alubiw}@uwaterloo.ca, ahmad.biniaz@gmail.com
2 Borealis AI, Waterloo, Canada
kshitij.jain.1@uwaterloo.ca

3 Lehrstuhl für Informatik I, Universität Würzburg, Würzburg, Germany
philipp.kindermann@uni-wuerzburg.de

Abstract. Θ6-graphs are important geometric graphs that have many
applications especially in wireless sensor networks. They are equivalent
to Delaunay graphs where empty equilateral triangles take the place
of empty circles. We investigate lower bounds on the size of maximum
matchings in these graphs. The best known lower bound is n/3, where n
is the number of vertices of the graph, which comes from half-Θ6-graphs
that are subgraphs of Θ6-graphs. Babu et al. (2014) conjectured that any
Θ6-graph has a (near-)perfect matching (as is true for standard Delaunay
graphs). Although this conjecture remains open, we improve the lower
bound to (3n − 8)/7.

We also relate the size of maximum matchings in Θ6-graphs to the
minimum size of a blocking set. Every edge of a Θ6-graph on point set
P corresponds to an empty triangle that contains the endpoints of the
edge but no other point of P . A blocking set has at least one point in
each such triangle. We prove that the size of a maximum matching is
at least β(n)/2 where β(n) is the minimum, over all Θ6-graphs with n
vertices, of the minimum size of a blocking set. In the other direction,
lower bounds on matchings can be used to prove bounds on β, allowing
us to show that β(n) ≥ 3n/4 − 2.

Keywords: Theta-six graphs · Proximity graphs ·
Maximum matching · Minimum blocking set · Triangular-distance
Delaunay graph

1 Introduction

One of the many beautiful properties of Delaunay triangulations is that they
always contain a (near-)perfect matching, that is, at most one vertex is
unmatched, as proved by Dillencourt [21]. This is one example of a structural
property of a so-called proximity graph. A proximity graph is determined by a set
c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 258–270, 2019.
https://doi.org/10.1007/978-3-030-30786-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_20

Maximum Matchings and Minimum Blocking Sets in Θ6-Graphs 259

S of geometric objects in the plane, such as all disks, or all axis-aligned squares.
Given such a set S and a finite point set P , we construct a proximity graph with
vertex set P and with an edge (p, q) if there is an object from S that contains
p and q and no other point of P . When S consists of all disks, then we get the
Delaunay triangulation. Proximity graphs are often defined in a more general
way, with constraints on how the objects may touch points p and q, but this
narrow definition suffices for our purposes.

Various structural properties have been proved for different classes of prox-
imity graphs. Another example is that the L∞-Delaunay graph, which is a prox-
imity graph defined in terms of the set S of all axis-aligned squares, has the even
stronger property of always having a Hamiltonian path [2].

Our paper is about structural properties of Θ6-graphs, which are the prox-
imity graphs determined by equilateral triangles with a horizontal edge. More
precisely, for any finite point set P , define G�(P) to be the proximity graph
of P with respect to upward equilateral triangles �, define G�(P) to be the
proximity graph of P with respect to downward equilateral triangles �, and
define G�(P), the Θ6-graph of P , to be their union. In particular, G�(P) has
an edge between points p and q if and only if there is an equilateral triangle with
a horizontal side that contains p and q and no other point of P . Such a triangle
can be shrunk to an empty triangle that has one of p or q at a corner, the other
point on its boundary, and no points of P in its interior.

The graphs G�(P) and G�(P) are triangular-distance (or “TD”) Delaunay
graphs, first introduced by Chew [18]. Clarkson [19] and Keil [24] first intro-
duced Θ6-graphs(via a different definition), and the equivalence with the above
definition was proved by Bonichon et al. [14]. See Sect. 1.1 for more information.

We explore two conjectures about Θ6-graphs.

Conjecture 1 (Babu et al. [8]). Every Θ6-graph has a (near-)perfect matching.

u

(a)

u

(b)

u

(c)

Fig. 1. A Θ6-graph on n = 6 points with a perfect matching and a blocking set of size
5. (a) A perfect matching. Empty triangles corresponding to edges of u are highlighted.
(b) A blocking set B of size n − 1. Edges have the same color as their blocking point.

(c) G�(P ∪ B). For every edge, one endpoint is in B. (Color figure online)

See Fig. 1a for an example. The best known bound is that every Θ6-graph
on n points has a matching of size at least n/3 minus a small constant—in fact,

260 T. Biedl et al.

this bound holds for any planar graph with minimum degree 3 [27], hence for
any triangulation and in particular for each of G� and G� (modulo the small
additive constant)—see Babu et al. [8] for the exact bound of �(n − 1)/3�. Our
main result is an improvement of this lower bound:

Theorem 1. Every Θ6-graph on n points has a matching of size (3n − 8)/7.

We prove Theorem 1 in Sect. 2 using the same technique that has been used
for matchings in planar proximity graphs, namely the Tutte-Berge theorem,
which relates the size of a maximum matching in a graph to the number of
components of odd cardinality after removing some vertices. In our case, this
approach is more complicated because Θ6-graphs are not planar.

Our second main result relates the size of matchings to the size of blocking or
stabbing sets of proximity graphs, which were introduced by Aronov et al. [5] for
purposes unrelated to matchings. For a proximity graph G(P) defined in terms
of a set of objects S, we say that a set B of points blocks G(P) if B has a point
in the interior of any object from S that contains exactly two points of P , i.e.,
the set B destroys all the edges of G(P), or equivalently, G(P ∪B) has no edges
between vertices in P ; see Fig. 1b–c.

For a set of points P , let β(P) be the minimum size of a blocking set of
G�(P). Let β(n) be the minimum, over all point sets P of size n, of β(P). It
is known that β(n) ≥ �(n − 1)/2� since that is a lower bound for blocking all
G�-graphs of n points [12]. Let μ(n) be the minimum, over all point sets P of
size n, of the size of a maximum matching in G�(P). Conjecture 1 can hence be
restated as μ(n) ≥ �(n − 1)/2�. We relate the parameters μ and β as follows.

Theorem 2. (a) For any point set P of n points in the plane, G�(P) has a
matching of size β(n)/2, i.e., μ(n) ≥ β(n)/2. (b) On the other hand, if μ(n) ≥
cn + d for some constants c, d, then β(n) ≥ (cn + d)/(1 − c).

The two statements in the theorem are proved in Sect. 3. The idea of using
bounds on blocking sets to obtain bounds on matchings is new, and is proved
via the Tutte-Berge theorem. Theorem 2 has two consequences. The first is
that Theorem 1 implies that β(n) ≥ 3n/4 − 2. The second consequence is that
Conjecture 1 is equivalent to the following:

Conjecture 2. β(n) ≥ n − 1.

In the full version of the paper [11], we explore an approach to obtaining
lower bounds on β(n). For B to be a blocking set, it must have a point in every
empty triangle of P that defines an edge in G�(P). Let α(n) be the maximum
number of pairwise internally-disjoint empty triangles of any point set of size n.
Clearly, β(P) ≥ α(P) and β(n) ≥ α(n). Conjecture 1 would be proved if we
could show that α(n) ≥ n − 1. However, we give an example of a point set P of
size n with α(P) ≤ 3n/4, which shows that α(n) ≤ 3n/4.

We also explore a previously-studied variant where the empty triangles must
be completely disjoint. If D is such a set, then every empty triangle in D corre-
sponds to an edge in G�(P), and these edges share no endpoint because the tri-
angles are disjoint. Then D corresponds to a strong matching in G�(P). Strong

Maximum Matchings and Minimum Blocking Sets in Θ6-Graphs 261

matchings were introduced by Ábrego et al. [1,2] for the case where the empty
objects are line segments, rectangles, disks, or squares. They who showed that
Delaunay and L∞-Delaunay need not have strong (near-)perfect matchings (for
disks and squares, respectively). See the following subsection for further back-
ground. Biniaz et al. [12] proved that for any point set of size n, G�(P) has a
strong matching of at least �(n− 1)/9� edges and G�(P) has a strong matching
of at least �(n − 1)/4� edges. We prove an upper bound by giving an example
where the maximum strong matching in G�(P) has 2n/5 edges.

In the full version of the paper [11], we prove some additional bounds on
the number of edges, maximum vertex degree, and maximum independent set of
Θ6-graphs.

1.1 Background

Θ6-graphs and TD-Delaunay Graphs. The Θ6-graph on a set P of points
in the plane, as originally defined by Clarkson [19] and Keil [24], is a geometric
graph with vertex set P and edges constructed as follows. For every point p ∈ P ,
place 6 rays emanating from p at angles that are multiples of π/3 radians from
the positive x-axis. These rays partition the plane into 6 cones with apex p, which
we label C1, . . . , C6 in counterclockwise order starting from the positive x-axis;
see Fig. 2a. Add an edge from p to the closest point in each cone Ci, where the
distance between the apex p and a point q in Ci is measured by the Euclidean
distance from p to the projection of q on the bisector of Ci as depicted in Fig. 2a.
It is straight-forward to show that this definition of Θ6-graphs is equivalent to
the definition of G�(P). The edges of G�(P) come from the odd cones, and the
edges of G�(P) come from the even cones, so the TD-Delaunay graphs G�(P)
and G� are known as “half-Θ6” graphs.

TD-Delaunay graphs are called TD-Delaunay “triangulations”. In fact, they
might fall short of being triangulations. As discussed by Drysdale [22] and
Chew [18] (see also [7]), they are plane graphs that consist of a “support hull”
which need not be convex, and a complete triangulation of the interior (an
explicit proof can be found in [8]). This anomaly is often remedied by surround-
ing the point set with a large bounding triangle. We will use a similar approach.

The more general Θk-graphs, which are defined in terms of k cones, have some
properties that are relevant in a number of application areas. In particular, they
are sparse—Θk(P) has at most k|P | edges [26]—and they are spanners—the
ratio (known as the spanning ratio) of the length of the shortest path between
any two vertices in Θk, k ≥ 4, to the Euclidean distance between the vertices is at
most a constant [15,17,18,24]. Because of these properties, Θk-graphs have appli-
cations in many areas including wireless networking [4,16], motion planning [19],
real-time animation [23], and approximating complete Euclidean graphs [18,25].

Among Θk-graphs, Θ6 has some nice properties that make it suitable for
communications in wireless sensor networks. In particular, k = 6 is the smallest
integer for which: (i) Θk has spanning ratio 2 [14,15,17]; (ii) the so-called ΘΘk-
graph, which is a subgraph of Θk where each vertex has only one incoming edge
per cone, is a spanner [20]; and (iii) half-Θk-graphs admit a deterministic local
competitive routing strategy [16].

262 T. Biedl et al.

Convex Distance Delaunay Graphs. For a set S of homothets of a convex
polygon, the corresponding proximity graphs are the convex distance Delaunay
graphs. This concept has been thoroughly studied, see, e.g., [7,22]. Some of the
helper lemmas we need for half-Θ6-graphs come from more general results that
hold for all convex distance Delaunay graphs.

Blocking Sets in Proximity Graphs. Blocking or “stabbing” sets were intro-
duced by Aronov et al. [5] as a more flexible way to represent graphs via prox-
imity. The idea was explored further by Aichholzer et al. [3] who showed that
3n/2 points are sufficient and at least n − 1 points are necessary to block any
Delaunay triangulation with n vertices. Biniaz et al. [12] showed that at least
�(n − 1)/2� points are necessary to block any G�-graph with n vertices. This
bound is tight for G�-graphs and provides a lower bound on β(n). For results
on blocking [higher order] Gabriel graphs, see [6,13].

Strong Matchings in Proximity Graphs. The idea of strong matchings in
proximity graphs—i.e., pairwise disjoint objects from S each with two points
of P on the boundary and no points in the interior—was introduced by Ábrego
et al. [1,2] for line segments, rectangles, disks, and squares. They show that
strong (near-)perfect matchings always exist in the first two cases, but not always
for disks (Delaunay graphs) and squares (L∞-Delaunay graphs). In fact, they
prove upper bounds of 36n/73 and 5n/11, respectively, on the size of a strong
matching. They also give lower bounds of �(n − 1)/8� and �n/5�, respectively.
The lower bound for squares was improved to �(n − 1)/4� by Biniaz et al. [12]
who also proved lower bounds of �(n − 1)/9� for G� and �(n − 1)/4� for G�.

p

C1

C2

C3

C4

C5

C6

(a)

p

C1

C2

C3

C4

C5

C6

(b)

Fig. 2. The construction of (a) the Θ6-graph, and (b) the odd half-Θ6-graph.

1.2 Preliminaries

We assume that points are in general position and that no line passing through
two points of P makes an angle of 0◦, 60◦ or 120◦ with the horizontal.

Notation. For two points p and q in the plane, we denote by �(p, q) (resp., by
�(p, q)) the smallest upward (resp., downward) equilateral triangle that has p
and q on its boundary. We say that a triangle is empty if it has no points of P

Maximum Matchings and Minimum Blocking Sets in Θ6-Graphs 263

in its interior. With these definitions, the Θ6-graph has an edge between p and
q if and only if �(p, q) is empty or �(p, q) is empty, in which case we say that
the edge (p, q) is introduced by �(p, q) or by �(p, q). Let P be a set of points.
We use the following notation:

μ(P) = maximum number of edges in a matching of G�(P)
β(P) = minimum size of a set of points that block all empty triangles of P

α(P) = maximum number of pairwise internally-disjoint empty triangles

μ∗(P) = maximum number of edges in a strong matching of G�(P)

Furthermore, we define μ(n), β(n), α(n), μ∗(n) to be the minimum of the corre-
sponding parameter over all sets of n points.

Properties of Θ6-Graphs. We need the following two properties of Θ6-graphs:

Lemma 1 (Babu et al. [8]). Let P be a set of points in the plane, and let p
and q be any two points in P . There is a path between p and q in G�(P) that lies
entirely in �(p, q). Moreover, the triangles that introduce the edges of this path
also lie entirely in �(p, q). Analogous statements hold for G�(P) and �(p, q).

We remark that this lemma holds more generally for any convex-distance
Delaunay graph, as does the second property we need. It generalizes the fact
that the (standard) Delaunay triangulation contains the minimum spanning tree
with respect to Euclidean distances. We state the result for the special case of
equilateral triangles. For any two points p and q in the plane, define the weight
function w�(p, q) to be the area of the smallest �-triangle containing p and q.

Lemma 2 (Aurenhammer and Paulini [7]). The minimum spanning tree
of points P with respect to the weight function w�(p, q) is contained in G�(P).

A consequence of Lemma 2 (as noted by Aurenhammer and Paulini in their
more general setting) is that the minimum spanning tree of points P with respect
to the weight function w�(p, q) is contained in both G�(P) and G�(P), because
w�(p, q) = w�(p, q). In particular, this means that the intersection of G�(P)
and G�(P) is connected, as was proved with a different method by Babu et al. [8].

The Tutte-Berge Matching Theorem. Let G be a graph and let S be an arbi-
trary subset of vertices of G. Removing S splits G into a number, comp(G \ S),
of connected components. Let odd(G\S) denote the number of odd components
of G \ S, i.e., components with an odd number of vertices. In 1947, Tutte [28]
characterized graphs that have a perfect matching as exactly those graphs that
have at most |S| odd components for any subset S. In 1957, Berge [10] extended
this result to a formula (today known as the Tutte-Berge formula) for the size
of maximum matchings in graphs. The following is an alternate way of stating
this formula in terms of the number of unmatched vertices.

Theorem 3 (Tutte-Berge Formula; Berge [10]). The number of unmatched
vertices of a maximum matching in G is equal to the maximum over subsets
S ⊆ V of odd(G \ S) − |S|.

264 T. Biedl et al.

To obtain a lower bound on the size of a maximum matching it suffices, by
Theorem 3, to find an upper bound on odd(G \ S) − |S| that holds for any S.
We will use this approach in our proofs of Theorems 1 and 2. In fact, as in
Dillencourt’s proof [21] that Delaunay graphs have perfect matchings we will
find an upper bound on comp(G\S)−|S| that holds for any S, i.e., we establish
a bound on the toughness of the graph [9].

2 Bounding the Size of a Matching

In this section, we prove Theorem 1. Let P be a set of n points in the plane and
let G�(P) be the Θ6-graph on P . We will prove that G�(P) contains a matching
of size at least (3n − 8)/7. As implied by Theorem 3, in order to prove a lower
bound on the size of maximum matching in G�(P), it suffices to prove an upper
bound on odd(G�(P) \ S) − |S| that holds for any subset S of P . Since it is
hard to argue about odd components, we will in fact prove an upper bound on
comp(G�(P) \ S) − |S|. Such a bound applies to odd(G�(P) \ S) − |S| because
odd(G�(P) \ S) ≤ comp(G�(P) \ S).

Our proof will depend on an analysis of the faces of G�(P)\S and G�(P)\S
for which we need some preliminary results. Consider a planar graph G with a
fixed planar embedding. Such an embedding divides the plane into connected
regions, called faces. For every face f of G, we define its degree as the number of
triangles in a triangulation of f plus 2; see Fig. 3 for some examples. Let Fd(G)
denote the set of faces of G with degree d. An easy counting argument shows
that if |V | ≥ 3, then

∑
d≥3(d − 2)|Fd(G)| = 2|V | − 4, since a face of degree d

gives rise to d − 2 faces in a triangulation of G, which has 2|V | − 4 faces by
Euler’s polyhedra formula.

=15d=6d=3d =6d

Fig. 3. The notion of degree of a face.

We will utilize the following lemma that Dillencourt used in his proof
that every Delaunay triangulation contains a (near-)perfect matching. Let G[S]
denote the subgraph of G that is induced by a subset S of its vertices.

Lemma 3 (Dillencourt [21], Lemma 3.4). Let G be a triangulated planar
graph and let S be a subset of vertices of G. Then every face of G[S] contains
at most one component of G \ S.

Maximum Matchings and Minimum Blocking Sets in Θ6-Graphs 265

We aim to apply this result to G�(P) and G�(P). As noted in Sect. 1.1, the
interior faces of G�(P) and G�(P) are triangles, but their outer faces need not
be the convex hull of P . For this reason, we add a set A = {a1, . . . , a6} of sur-
rounding points as follows. Find the smallest �-triangle T� and �-triangle T�

containing all points of P . Let R(P) be the region T� ∪ T�. Observe that all
of the empty triangles that introduce edges of G�(P) lie in R(P), so adding
points outside R(P) does not remove any edge from the graph. We now place
points a1, . . . , a6 near the corners of T� and T� while maintaining the general
position of the point set (see Fig. 4a): at each corner, place a point in the cone
opposite to the cone that contains the triangle, and name the points in such a
way that every point of P has ai in cone Ci.

Now fix a set S for which we want to bound comp(G�(P)\S)−|S|, and define
SA = S∪A. Pick an arbitrary representative point from every connected compo-
nent of G�(P)\S, and let Q be the set of these points, so |Q| = comp(G�(P)\S).

Define G�
A = G�(P ∪ A) and consider its subgraph G�

A [SA] induced by SA.
By construction, the outer face of both G�

A and G�
A [SA] is the hexagon formed

by A; we add three graph edges (not segments) to triangulate the outer face, so
that G�

A is triangulated. Note that none of the points of P (and in particular
therefore no points of Q) are inside the four newly introduced triangular faces.

P

a1

a2

a3

a4

a5

a6

b

R(P)

(a)

q

C1

C2

C3

C4

C5

C6

s

s1s3

s5

π1

π

π3

π5

(b)

Fig. 4. (a) Augmentation of P : the shaded region is R(P), and A = {a1, . . . , a6}.
(b) Illustration for the proof of Lemma 4.

Let f�
d be the number of faces of degree d in G�

A [SA] that contain some
point of Q. We define f�

4+ =
∑

d≥4 f�
d . Since all faces of G�

A are now triangles,
Lemma 3 applies and every face of G�

A [SA] contains at most one component,
hence at most one point of Q. Therefor,

|Q| = f�
3 + f�

4+ and similarly |Q| = f�
3 + f�

4+, (1)

where f�
d is defined in a symmetric manner on graph G�

A [SA].
Let Fd be the set of faces of degree d in G�

A [SA] and observe that, since
no point of Q appears in the four triangles outside the hexagon of A, we have
f�
3 ≤ |F3| − 4. As a consequence,

266 T. Biedl et al.

f�
3 + 2f�

4+ ≤
∑

d≥3

(d − 2)f�
d ≤

∑

d≥3

(d − 2)|Fd| − 4

≤ 2|V (G�
A [SA])| − 4 − 4 = 2|S| + 2|A| − 8 = 2|S| + 4 (2)

and similarly f�
3 + 2f�

4+ ≤ 2|S| + 4.
The crucial insight for getting an improved matching bound is that no com-

ponent can reside inside a face of degree 3 in both G� and G�.

Lemma 4. We have f�
3 ≤ f�

4+ and f�
3 ≤ f�

4+.

Proof. Consider any point q ∈ Q, hence q �∈ SA. Let F� and F� be the faces
of G�

A [SA] and G�
A [SA] that contain q, respectively. It suffices to show that one

of F� and F� has degree at least 4.
By Lemma 2, the minimum-weight spanning tree T of P ∪ A belongs to

both G�
A and G�

A . Find a path π in T that connects q to some point s ∈ SA

such that no vertex of π except s belongs to SA.
Assume first that s is in a cone with even index. Let s1, s3, s5 be the points

of SA that are closest to q in cones C1, C3, C5, respectively; since A ⊆ SA, such
points si exist. Refer to Fig. 4b. By Lemma 1, for every i ∈ {1, 3, 5}, there exists
a path πi between q and si in G� that lies fully in �(q, si). By our choices of
si, no vertex of πi except si is in SA.

So we have four (not necessarily disjoint) paths π, π1, π3, π5 in G� that begin
at q and end at four points s, s1, s3, s5 of SA. These points are distinct because
they belong to four different cones of q. Furthermore, intermediate points of
these paths are not in SA. This implies that s, s1, s3, s5 belong to the boundary
of the same face F� of G�[SA]. In consequence, F� has degree at least 4.

Similarly, if s is in a cone with odd index, then F� has degree at least 4. �
Now we have tools to prove an upper bound on the number of unmatched

vertices and, more generally, the toughness of a Θ6-graph.

Lemma 5. For any S ⊆ P , we have comp(G�(P) \ S) − |S| ≤ (|P | + 16)/7.

Proof. Recall that we fixed a set Q of points in P \S with |Q| = comp(G�(P)\S).
So n = |P | ≥ |S| + |Q|, or equivalently n − |Q| − |S| ≥ 0. Combining this with
the above inequalities, we get

7
(
comp(G�(P) \ S) − |S|

)
≤ 7|Q| − 7|S| + (n − |Q| − |S|)
= n + 3|Q| + 3|Q| − 8|S|

(by (1)) = n + 3
(
f�
3 + f�

4+

)
+ 3

(
f�
3 + f�

4+

)
− 8|S|

(by Lemma 4) ≤ n + 2f�
3 + 4f�

4+ + 2f�
3 + 4f�

4+ − 8|S|
(by (2)) ≤ n + (4|S| + 8) + (4|S| + 8) − 8|S|

= n + 16.

�

Maximum Matchings and Minimum Blocking Sets in Θ6-Graphs 267

Therefore, odd(G�(P) \ S) − |S| ≤ comp(G�(P) \ S) − |S| ≤ (n + 16)/7. In
consequence of the Tutte-Berge formula, therefore any maximum matching M
of G�(P) has at most (n+16)/7 unmatched vertices, hence at least (6n−16)/7
matched vertices and |M | ≥ (3n− 8)/7. This completes the proof of Theorem 1.

q

Fig. 5. A set P of seven points and a subset S (the six larger points). The graph

G�(P) \ S contains a singleton-component q which lies in a face of degree 3 in G�[S]
(green solid edges) and a face of degree 4 in G�[S] (blue dashed edges). (Color figure
online)

Remark. If we knew f�
3 ≤ f�

5+ and f�
3 ≤ f�

5+ (where f�
5+ =

∑
d≥5 f�

d etc.),
then a similar analysis would show odd(G�(P)\S)−|S| ≤ 4, which would imply
Conjecture 1 except for a small constant term. However, Fig. 5 shows an example
where a point q �∈ S lies in a face of degree 3 in G�

A and a face of degree 4 in
G�

A , so our proof-approach cannot be used to prove such a claim.

3 Relationship Between Blocking Sets and Matchings

In this section, we prove Theorem 2—that a lower bound on the blocking size
function β(n) implies a lower bound on the size μ(n) of a maximum matching,
and vice versa.

Lemma 6. For any n ≥ 1, we have β(n + 1) ≤ β(n) + 1.

Proof. Consider a set P with n points such that β(n) = β(P). Let T� be a
downward equilateral triangle that strictly encloses all points of P . Let b be the
rightmost point of T�. Then P lies in cone C4 of b. Let a1 be a point strictly
inside cone C1 of b; see also Fig. 4a. Every upward or downward equilateral
triangle between a1 and any point of P contains the point b. Set P ′ = P ∪ {a1},
and observe that we can block G�(P ′) by using a minimum blocking set B of
G�(P) and adding b to it. Since |B| = β(P) = β(n), we have β(P ′) ≤ β(n) + 1,
and β(n + 1) cannot be larger than that.

Since β(1) = 0, this lemma also shows that β(n) ≤ n − 1, or in other words,
that the ‘n − 1’ in Conjecture 2 is tight.

268 T. Biedl et al.

Theorem 2 (a). For any set P of n points in the plane, G�(P) has a
matching of size β(n)/2 .

Proof. Consider the Θ6-graph G�(P) on a set P of n points in the plane. We
again use the Tutte-Berge formula (Theorem 3) to prove that G�(P) contains
a matching of size at least β(n)/2. Fix an arbitrary set S ⊆ P and consider
the connected components of G�(P) \ S. As in the proof of Theorem 1, fix one
representative point in each component, and let Q be the set of these points.

Consider the Θ6-graph G�(Q) of only the points in Q, and let (q1, q2) be
an edge in it; say it is introduced by �(q1, q2). By Lemma 1, there is a path π
between q1 and q2 in G�(P) that is fully contained in �(q1, q2). Since q1 and q2
are in different components of G�(P) \ S, at least one point of π belongs to S.

Thus, for any edge in G�(Q), the triangle that supports that edge contains a
point in S. Put differently, S blocks G�(Q), and thus |S| ≥ β(|Q|). Furthermore,
β(n) ≤ β(|Q|) + n − |Q| by Lemma 6 since |Q| ≤ n. Combining this with
Theorem 3, it follows that the size of maximum matching in G�(P) is at least

n − (|Q| − |S|)
2

≥ n − (|Q| − β(|Q|))
2

≥ n − (n − β(n))
2

=
β(n)

2
.

�
In particular, if β(n) ≥ n − 1, then μ(n) ≥ β(n)/2 ≥ (n − 1)/2, so by

integrality μ(n) ≥ �(n−1)/2�. In other words, Conjecture 2 implies Conjecture 1.
We now turn to the other half of Theorem 2. Note that Aichholzer et al. [3]

proved a similar result (for c = d = 1/2 and Delaunay graphs), and our proof is
a modification of theirs. (In fact, the proof applies to any proximity graphs.)

Theorem 2 (b). Assume that we know that μ(n) ≥ cn + d for some constants
c, d. Then β(n) ≥ (cn + d)/(1 − c) .

Proof. Let P be a set of n points such that β(P) = β(n) = b, and let B be a
minimum blocking set of G�(P). Let M be a matching of size at least μ(b+n) ≥
cb+cn+d in G�(P ∪B). Since P is an independent set in G�(P ∪B), it contains
at most one endpoint of each edge in M , as well as some unmatched points, so

n = |P | ≤ |M | + (n + b − 2|M |) ≤ n + b − (cb + cn + d)

Solving for b gives β(n) = b ≥ (cn + d)/(1 − c).

In particular, if Conjecture 1 holds, then μ(n) ≥ (n − 1)/2. Hence, c = 1/2
and d = −1/2, therefore β(n) ≥ 2(n − 1)/2 = n − 1 and Conjecture 2 holds.
So Conjecture 1 implies Conjecture 2. As a second consequence, we know that
(3n−8)/7 is a valid lower bound on μ(n) by Theorem 1, therefore (with c = 3/7)
we have β(n) ≥ 7/4 · (3n − 8)/7 = 3n/4 − 2.

Maximum Matchings and Minimum Blocking Sets in Θ6-Graphs 269

4 Conclusions, Additional Properties, Open Problems

We have improved the lower bound on the size of a matching in any Θ6-graph
on n points to (3n − 8)/7. A main open problem is to prove the conjecture that
any Θ6-graph has a (near-)perfect matching.

We have shown that this conjecture is equivalent to proving that every Θ6-
graph on n points requires at least n−1 points to block all its edges. More gener-
ally, we proved a relationship between the minimum size of maximum matchings
and the minimum size of blocking sets so that any improvement in the lower
bound for one of these parameters will also improve the other.

We can also give additional bounds on several parameters of Θ6-graphs. In
particular, we can show that α(n) ≤ 3n/4 and μ∗ ≤ 2n/5. Further, we can prove
that β̂(n) ≥ (5n − 6)/4, where β̂(n) is the maximum number of points that
may be needed to block any Θ6-graph on n points. Finally, we can show that
any Θ6-graph on n ≥ 3 points has at most 5n − 12 edges and minimum degree
at most 9, while there are Θ6-graphs with 5n − 17 edges and Θ6-graphs with
minimum degree 7. The proofs are given in the full version of the paper [11].

Acknowledgements. This work was done by a University of Waterloo problem solv-
ing group. We thank the other participants, Alexi Turcotte and Anurag Murty Naredla,
for inspiring discussions, and the anonymous reviewers for helpful comments.

References

1. Ábrego, B.M., et al.: Matching points with circles and squares. In: Akiyama, J.,
Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742, pp. 1–15. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11589440 1

2. Ábrego, B.M., et al.: Matching points with squares. Discrete Comput. Geom. 41(1),
77–95 (2009)

3. Aichholzer, O., et al.: Blocking Delaunay triangulations. Comput. Geom.: Theory
Appl. 46(2), 154–159 (2013)

4. Alzoubi, K.M., Li, X., Wang, Y., Wan, P., Frieder, O.: Geometric spanners for
wireless ad hoc networks. IEEE Trans. Parallel Distrib. Syst. 14(4), 408–421 (2003)

5. Aronov, B., Dulieu, M., Hurtado, F.: Witness (Delaunay) graphs. Comput. Geom.:
Theory Appl. 44(6–7), 329–344 (2011)

6. Aronov, B., Dulieu, M., Hurtado, F.: Witness Gabriel graphs. Comput. Geom.:
Theory Appl. 46(7), 894–908 (2013)

7. Aurenhammer, F., Paulini, G.: On shape Delaunay tessellations. Inf. Process. Lett.
114(10), 535–541 (2014)

8. Babu, J., Biniaz, A., Maheshwari, A., Smid, M.H.M.: Fixed-orientation equilateral
triangle matching of point sets. Theor. Comput. Sci. 555, 55–70 (2014). Also in
WALCOM 2013

9. Bauer, D., Broersma, H., Schmeichel, E.: Toughness in graphs–a survey. Graphs
Comb. 22(1), 1–35 (2006)

10. Berge, C.: Sur le couplage maximum d’un graphe. Comptes Rendus de l’Académie
des Sciences, Paris 247, 258–259 (1958)

https://doi.org/10.1007/11589440_1

270 T. Biedl et al.

11. Biedl, T., Biniaz, A., Irvine, V., Jain, K., Kindermann, P., Lubiw, A.: Maximum
matchings and minimum blocking sets in θ6-graphs. Arxiv report (2019). https://
arxiv.org/abs/1901.01476

12. Biniaz, A., Maheshwari, A., Smid, M.H.M.: Higher-order triangular-distance
Delaunay graphs: graph-theoretical properties. Comput. Geom.: Theory Appl.
48(9), 646–660 (2015). Also in CALDAM 2015

13. Biniaz, A., Maheshwari, A., Smid, M.H.M.: Matchings in higher-order Gabriel
graphs. Theor. Comput. Sci. 596, 67–78 (2015)

14. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-
graphs, delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.)
WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16926-7 25

15. Bose, P., De Carufel, J.L., Hill, D., Smid, M.H.M.: On the spanning and routing
ratio of theta-four. In: Chan, T.M. (ed.) Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 2361–2370. SIAM (2019)

16. Bose, P., Fagerberg, R., Van Renssen, A., Verdonschot, S.: Competitive routing in
the half-θ6-graph. In: Rabani, Y. (ed.) Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1319–1328. SIAM (2012)

17. Bose, P., Morin, P., van Renssen, A., Verdonschot, S.: The θ5-graph is a spanner.
Comput. Geom. 48(2), 108–119 (2015). Also in WG 2013

18. Chew, P.: There are planar graphs almost as good as the complete graph. J. Com-
put. Syst. Sci. 39(2), 205–219 (1989)

19. Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In:
Aho, A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on Theory of
Computing (STOC), pp. 56–65. ACM (1987)

20. Damian, M., Iacono, J., Winslow, A.: Spanning properties of Theta-Theta-6.
arXiv:1808.04744 (2018)

21. Dillencourt, M.B.: Toughness and Delaunay triangulations. Discrete Comput.
Geom. 5, 575–601 (1990)

22. Drysdale III, R.L.S.: A practical algorithm for computing the Delaunay triangula-
tion for convex distance functions. In: Proceedings of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 159–168 (1990)

23. Fischer, M., Lukovszki, T., Ziegler, M.: Geometric searching in walkthrough anima-
tions with weak spanners in real time. In: Bilardi, G., Italiano, G.F., Pietracaprina,
A., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 163–174. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-68530-8 14

24. Keil, J.M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas,
A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988).
https://doi.org/10.1007/3-540-19487-8 23

25. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete
Euclidean graph. Discrete Comput. Geom. 7, 13–28 (1992)

26. Morin, P., Verdonschot, S.: On the average number of edges in Theta graphs.
Online J. Anal. Comb., page to appear (2014). Also in ANALCO 2014

27. Nishizeki, T., Baybars, I.: Lower bounds on the cardinality of the maximum match-
ings of planar graphs. Discrete Math. 28(3), 255–267 (1979)

28. Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. 22, 107–111
(1947)

https://arxiv.org/abs/1901.01476
https://arxiv.org/abs/1901.01476
https://doi.org/10.1007/978-3-642-16926-7_25
https://doi.org/10.1007/978-3-642-16926-7_25
http://arxiv.org/abs/1808.04744
https://doi.org/10.1007/3-540-68530-8_14
https://doi.org/10.1007/3-540-19487-8_23

A Polynomial-Time Algorithm
for the Independent Set Problem

in {P10, C4, C6}-Free Graphs

Edin Husić1(B) and Martin Milanič2,3

1 LSE, Houghton Street, London WC2A 2AE, UK
e.husic@lse.ac.uk

2 IAM, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
martin.milanic@upr.si

3 FAMNIT, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia

Abstract. We consider the independent set problem, a classical NP-
hard optimization problem that remains hard even under substantial
restrictions on the input graphs. The complexity status of the prob-
lem is unknown for the classes of Pk-free graphs for all k ≥ 7 and for
the class of even-hole-free graphs, that is, graphs not containing any
even induced cycles. Using the technique of augmenting graphs we show
that the independent set problem is solvable in polynomial time in the
class of even-hole-free graphs not containing an induced path on 10 ver-
tices. Our result is developed in the context of the more general class of
{P10, C4, C6}-free graphs.

Keywords: Independent set · Augmenting graph ·
Polynomial-time algorithm

1 Introduction

Given a (finite, simple, undirected) graph G = (V,E), a set I ⊆ V is an inde-
pendent set if no two vertices in I are adjacent. An independent set is said to
be maximal if it is not contained in any other independent set, and maximum
if it is of maximum possible size. In the Maximum Independent Set problem
we are given a graph G as input and the goal is to find an independent set in G
of maximum cardinality. This NP-hard problem is one of the central problems
in theoretical computer science and combinatorial optimization. The problem
is known to remain NP-hard even under substantial restrictions on the input
graphs, for instance for triangle-free graphs [20], planar graphs of maximum

E. Husić did most of his work on the paper while he was a student at the University
of Primorska and École normale supérieure de Lyon. Several ideas for the proofs were
developed in his master thesis [14].
M. Milanič—The work is supported in part by the Slovenian Research Agency (I0-0035,
research program P1-0285 and research projects J1-9110, N1-0102).
c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 271–284, 2019.
https://doi.org/10.1007/978-3-030-30786-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_21

272 E. Husić and M. Milanič

degree at most three [9], and for H-free graphs whenever not every component
of H is a subdivision of a path or the claw [2].

Among the most prominent examples of polynomial-time solvable cases, let
us mention the classes of P5-free graphs [16], P6-free graphs [12], claw-free
graphs [18,22], their generalizations fork-free graphs [3] and �claw-free graphs [5],
and perfect graphs [11]. While Maximum Independent Set is known to
admit subexponential-time algorithms in any class of Pk-free graphs [6], the
determination of the exact complexity status of the problem in the classes of
graphs excluding a fixed path as induced subgraph is a notorious open problem.
Another related open question is whether Maximum Independent Set admits
a polynomial-time algorithm in the class of even-hole-free graphs, where a graph
is said to be even-hole-free if all its induced cycles are odd (see, e.g., the survey
by Vušković [24]). It is worth pointing out that even-hole-free graphs (without
clique cutsets) have unbounded clique-width [1] and hence we cannot solve the
problem in this class by using Tarjan’s decomposition [23] and the metatheorem
of Courcelle et al. [7].

Using the technique of augmenting graphs we show that Maximum Inde-
pendent Set is solvable in polynomial time in the class of even-hole-free graphs
not containing an induced path on 10 vertices. Our result is developed in the
context of the more general class of {P10, C4, C6}-free graphs. These result gener-
alize the fact that Maximum Independent Set is solvable in polynomial time
in the class of {P8, even-hole}-free graphs, which follows from polynomial-time
solvability of the problem in the more general class of {P8, banner}-free graphs,
as shown by Gerber et al. [10].

Structure of the Paper. In Sect. 2 we present the necessary definitions and the
method of augmenting graphs. A characterization of minimal augmenting graphs
in the class of even-hole-free graphs is given in Sect. 3. We present a polynomial-
time algorithm for the independent set problem in {P9, C4, C6}-free graphs in
Sect. 4. Section 5 is devoted to the main result. Due to space limitations, several
proofs are omitted.

2 Preliminaries

Let G = (V,E) be a graph. As usual, we write V (G) for V , E(G) for E, and
uv ∈ E for an edge {u, v} ∈ E. For a non-empty subset W ⊆ V , the induced
subgraph G[W] is defined as the graph H = (W,E ∩ (

W
2

)
), where

(
W
2

)
is the set

of all unordered pairs in W . Given two graphs G and H, we say that G is H-free
if it does not contain an induced subgraph isomorphic to H. Let F be a family of
graphs. A graph G is F-free if it is H-free for every H ∈ F . We denote by Free(F)
the class of F-free graphs. The graph G[V \W] is denoted as G\W . For W = {v},
we will write G\v for simplicity. A hole in a graph is a chordless cycle of length
at least four. A hole is even (resp. odd) if it contains an even (resp. odd) number
of vertices. For n ≥ 3, the cycle with n vertices is denoted as Cn. For k ≥ 2, a
path on k vertices (denoted Pk) is obtained by deleting a vertex from Ck+1. The

Maximum Independent Set in {P10, C4, C6}-Free Graphs 273

neighborhood of a vertex v is the set of vertices NG(v) = {u ∈ V | uv ∈ E}. We
define NG[v] = NG(v)∪ {v}. When the graph is clear from the context, we may
omit the subscript G. The (closed and open) neighborhoods of a set W ⊆ V are
defined as NG[W] =

⋃
v∈W NG[v] and NG(W) = NG[W]\W , respectively. Let

S1, S2 ⊆ V (G). We say that S1 dominates S2 if every vertex in S2 is adjacent
to a vertex in S1. Assume additionally that S1 ∩ S2 = ∅. We say that S1 and
S2 are complete to each other if every vertex of S1 is adjacent to every vertex
S2 and we say that S1 and S2 are anticomplete to each other if there is no edge
with one endpoint in S1 and the other in S2. We will denote by n the number
of vertices of the graph under consideration.

Augmenting Graphs

Given a graph G = (V,E), its line graph L(G) is the graph with vertex set E(G),
with two distinct vertices of L(G) adjacent if and only if they share a vertex as
edges in G. If G is isomorphic to the line graph of H, we say that H is a root
graph of G. Every independent set in L(H) corresponds to a matching in H.
Hence, in the class of line graphs Maximum Independent Set is equivalent to
the maximum matching problem in the root graph. Since we can find in linear
time a root graph of a given line graph [15,21] and the maximum matching
is solvable in polynomial time for any graph G [8], it follows that Maximum
Independent Set is polynomial-time solvable in the class of line graphs.

Generalizing the notion of augmenting paths for the maximum matching
problem to the notion of augmenting graphs for Maximum Independent Set
led to several new polynomial-time algorithms for the problem in particular
classes of graphs, starting with the result for the class of claw-free graphs,
obtained in 1980 independently by Minty [18] and Sbihi [22]. The key defini-
tion is as follows.

Definition 1. Given a graph G and an independent set I ⊆ V (G), an induced
bipartite subgraph H = (W,B;E) in G is I-augmenting if the following holds:

– W ⊆ I,
– B ⊆ V (G)\I,
– |W | < |B| and
– NG(B) ∩ I ⊆ W .

The following theorem, which can be found, e.g., in Mosca [19], suggests a
possible application of augmenting graphs.

Theorem 1. An independent set I in a graph G is maximum if and only if there
is no I-augmenting graph.

The theorem leads to the following approach for finding a maximum inde-
pendent set. Start with an independent set I, then find an I-augmenting graph
(W,B;E) if one exists, replace I with (I\W) ∪ B and iterate. Since the size
of an independent set is at most n = |V (G)|, we will repeat the step at most

274 E. Husić and M. Milanič

n−1 times and obtain a maximum independent set. This approach leads to effi-
cient algorithms for the problem for particular classes of graphs, see [4,10,13,17].
Moreover, it suffices to consider only minimal augmenting graphs. A definition
and a characterization follow.

Definition 2. An augmenting graph H for an independent set I in a graph G
is minimally I-augmenting if no proper induced subgraph of H is I-augmenting.

Lemma 1 (Lozin and Milanič [17]). Given a graph G and an independent
set I ⊆ V (G), an I-augmenting graph H = (W,B;E) is minimally I-augmenting
if and only if the following conditions hold:

(i) |W | = |B| − 1,
(ii) for every non-empty subset A ⊆ W , we have |A| < |NH(A)|, and
(iii) H is connected.

Note that conditions (i)–(iii) are independent of G and I. This leads to the
following.

Definition 3. A minimal augmenting graph is a connected bipartite graph H =
(W,B;E) such that |W | = |B| − 1 and for every non-empty subset A ⊆ W , we
have |A| < |NH(A)|.

3 Minimal Augmenting Even-Hole-Free Graphs

In order to characterize the minimal augmenting graphs in the class of even-
hole-free graphs, the following definition will be helpful.

Definition 4. We say that a tree T is a black-white tree if its vertex set can
be partitioned into two sets B and W such that both sets are independent and
every vertex in W has degree exactly 2. We say that vertices in W are white and
vertices in B are black.

Observation 2. A graph T is a black-white tree if and only if it can be obtained
by subdividing each edge of a tree exactly once.

Lemma 2. A tree is a minimal augmenting graph if and only if it is a black-
white tree.

Proof. Let H = (W,B;E) be a tree. Suppose first that H is a minimal aug-
menting graph. We will show that every vertex in part W is of degree 2. Since
|NH(A)| > |A| for all non-empty subsets A ⊆ W , there exists no white vertex of
degree 1. Moreover, since |B| = |W |+1, we have |B|+ |W | = 2|W |+1. Since H
is a tree, the latter implies that H has exactly 2|W | edges. Suppose that there
exists a vertex w ∈ W of degree 3 or more. Since every vertex in W has degree
at least 2 and W is a part of bipartition (W,B) of H, we infer that H has more
than 2|W | edges; a contradiction.

Maximum Independent Set in {P10, C4, C6}-Free Graphs 275

Suppose now that H is a black-white tree. Consider the graph H ′ with vertex
set B in which two vertices are adjacent if and only if they have a common
neighbor in H. Since every white vertex in H has degree exactly 2 and H is
acyclic, there is a bijective correspondence between edges of H ′ and vertices in
W . Thus, |W | = |E(H ′)| = |V (H ′)| − 1 = |B| − 1, where the second equality
holds since H ′ is a tree. We still need to show that |NH(A)| > |A| for all non-
empty subsets A ⊆ W . Such a set A can be identified with a set of edges of H ′,
say A′. Then, NH(A) corresponds to the set of endpoints of edges in A′. Since
the subgraph of H ′ induced by NH(A) is acyclic and contains all edges in A, we
have |A| ≤ |NH(A)| − 1, as claimed. Thus, H is a minimal augmenting graph. 	

Note that every even-hole-free graph that is bipartite is acyclic. Since minimal
augmenting graphs are connected and bipartite, it follows that every even-hole-
free minimal augmenting graphs is a tree. In particular, by Lemma 2 we have
the following corollary.

Corollary 1. An even-hole-free graph H is a minimal augmenting graph if and
only if it is a black-white tree.

We will refer to a black-white tree also as a (minimal) augmenting tree.
Let us define some particular black-white trees for later use. For positive

integers r and s, we define a black-white rooted tree Tr,s as follows. The root of
the tree Tr,s is white and has exactly two children, both black. The two children
of the root have exactly r and s white children, respectively. Recall that each
non-root white vertex is of degree two and hence has a unique child. There are
no further vertices in Tr,s. Furthermore, for a non-negative integer s we define
a black-white tree Ts as a rooted tree having a black root vertex with exactly s
white children, each having a unique child. There are no further vertices in Ts.
See Fig. 1 for concrete examples. Note that the trees T1,1 and T2 are isomorphic
to paths P7 and P5, respectively.

Fig. 1. T3,2 (left) and T3 (right).

The following lemma is a consequence of Corollary 1.

Lemma 3. Let H be {P9, even-hole}-free graph. Then, H is a minimal aug-
menting graph if and only if H is either isomorphic to a Tr,s for some positive
integers r and s, or to a Ts for some non-negative integer s.

276 E. Husić and M. Milanič

Proof. By Corollary 1, it suffices to prove that trees of the form Tr,s or Ts

are the only P9-free black-white trees. Let H be a P9-free black-white tree.
By Observation 2, there exists a tree T such that H can be obtained from T
by subdividing each edge exactly once. Since H is P9-free, T is P5-free. If T
contains an induced P4, then there exist positive integers r and s such that T
is isomorphic to the graph obtained from the disjoint union of K1,r and K1,s by
connecting the two centers with an edge. In this case H is isomorphic to Tr,s.
On the other hand, if T is P4-free, then T is isomorphic to some K1,s for some
non-negative integer s, which implies that H is isomorphic to a Ts for some
non-negative integer s.

In the remaining two sections we apply the method of augmenting graphs
to obtain a polynomial-time algorithm for Maximum Independent Set in the
class of {P10, C4, C6}-free graphs. We start by developing a polynomial-time
algorithm for the case of {P9, C4, C6}-free graphs.

4 Maximum Independent Set in {P9, C4, C6}-Free
Graphs

Suppose that we want to check, given a graph G and an independent set I in
G, if G contains an I-augmenting graph. Trivially, we can assume that I is a
maximal independent set, since every vertex w ∈ V (G)\I with no neighbor in I
induces an I-augmenting graph. Moreover, we can check in polynomial time if
there exists an I-augmenting graph isomorphic to P3. Thus, we may assume the
following without loss of generality.

Assumption 1. Set I is a maximal independent set in G that does not admit
an augmenting P3.

Note that the trees T0 and T1 are isomorphic to K1 and P3, respectively.
Thus, if a graph G admits an I-augmenting Ts, then s ≥ 2.

For a vertex w ∈ I we define K(w) = {v ∈ V (G) : NG(v) ∩ I = {w}}.

Observation 3. If I is a maximal independent set in a graph G that does not
admit any I-augmenting P3, then for every w ∈ I, the set K(w) is a clique in G.

Our goal is to show that we can efficiently check if a maximal indepen-
dent set I in a given graph G (that satisfies some extra assumptions) admits
an augmenting graph. We try to build an augmenting graph starting from some
prescribed set of vertices. Note that, once we add a vertex b ∈ V (G)\I to our aug-
menting graph, then, by the definition of an augmenting graph, all the neighbors
of b that are in the independent set I must also be included in the augmenting
graph.

We start with two general lemmas establishing sufficient conditions for check-
ing if a maximal independent set I in a given graph G without an I-augmenting
P3 admits an augmenting graph of the form Ts or Tr,s.

Maximum Independent Set in {P10, C4, C6}-Free Graphs 277

Lemma 4. Let F be a set of graphs and k ≥ 3 such that the Maximum
Independent Set problem can be solved in polynomial time in the class of
({Pk−1}∪F)-free graphs. Let G be an ({Pk}∪F)-free graph and let I be a max-
imal independent set in G such that G has no I-augmenting P3. Then it can be
tested in polynomial time whether G has an I-augmenting graph isomorphic to
Ts for some integer s ≥ 2.

Proof. For every vertex x ∈ V (G)\I with |NG(x) ∩ I| ≥ 2, we show how to
check in polynomial time whether G has an I-augmenting Ts with root x, where
s = |NG(x) ∩ I|. We will try to build such a tree T . By the definition of an
augmenting graph, all vertices in NG(x) ∩ I are in T , so add them to T . Note
that since s ≥ 2, vertex x does not belong to K(w) for any w ∈ NG(x) ∩ I.
Let S =

(⋃
w∈NG(x)∩I K(w)

)
\NG(x). By Observation 3, set S is a union of s

cliques. Therefore, there exists an augmenting Ts with root x if and only if there
exists an independent set I∗ in G[S] such that |I∗| = s. Moreover, any such set I∗

is necessarily a maximum independent set in G[S]. It thus suffices to show that
the graph G[S] is ({Pk−1}∪F)-free, since the assumption of the lemma will then
imply that a maximum independent set in G[S] can be computed in polynomial
time. Since G is F-free, so is G[S]. Suppose that G[S] contains an induced
Pk−1 with vertices p1, . . . , pk−1 along the path. Let w ∈ NG(x) ∩ I such that
pk−1 ∈ K(w). Then {p1, . . . , pk−1, w} induces a Pk in G unless pk−2 ∈ K(w).
Assume pk−2 ∈ K(w). Then the set {p1, . . . , pk−2, w, x} induces a Pk in G; a
contradiction. 	

Lemma 5. Let F be a set of graphs and k ≥ 4 such that the Maximum
Independent Set problem can be solved in polynomial time in the class of
({Pk−3} ∪ F)-free graphs. Let G be a ({Pk} ∪ F)-free graph and let I be a max-
imal independent set in G such that G has no I-augmenting P3. Then it can be
tested in polynomial time whether G has an I-augmenting graph isomorphic to
Tr,s for some positive integers r, s.

Proof. For every vertex v ∈ I, we show how to test in polynomial time if there
exists an I-augmenting Tr,s with root v. We consider all pairs of non-adjacent
vertices b′, b′′ ∈ NG(v) and check if there exists an I-augmenting tree T of
type Tr,s with root at v and containing vertices v, b′, b′′. Since b′ and b′′ are
black vertices, any I-augmenting tree T containing b′ and b′′ also contains all
vertices in NG(b′) ∩ I and NG(b′′) ∩ I. If NG(b′) ∩ NG(b′′) ∩ I �= {v} then
such an augmenting tree T does not exist. For the rest of the proof, suppose
that NG(b′) ∩ NG(b′′) = {v}. Denote q = |NG({b′, b′′}) ∩ (I\{v})|. Let Q =(⋃

w∈NG({b′,b′′})∩(I\{v}) K(w)
)

\NG({b′, b′′}). By Observation 3, set Q is a union
of q cliques. Therefore, there exists an augmenting Tr,s with root v and containing
{b′, b′′} if and only if there exists an independent set I∗ in G[Q] such that |I∗| = q.
Moreover, any such set I∗ is necessarily a maximum independent set in G[Q].
It thus suffices to show that the graph G[Q] is ({Pk−3} ∪ F)-free, since the
assumption of the lemma will then imply that a maximum independent set in
G[Q] can be computed in polynomial time.

278 E. Husić and M. Milanič

Since G is F-free, so is G[Q]. For the sake of a contradiction, suppose that
there exists an induced Pk−3 in G[Q]. Denote its vertices as p1, . . . , pk−3 along
the path. Denote by w a vertex in NG({b′, b′′}) ∩ (I\{v}) such that pk−3 ∈
K(w)\NG({b′, b′′}). We may assume without loss of generality that wb′′ ∈ E.
Then wb′ �∈ E. Then the set {p1, . . . , pk−3, w, b′′, v} induces a Pk in G unless
pk−4 ∈ K(w). Assume pk−4 ∈ K(w). Then {p1, . . . , pk−4, w, b′′, v, b′} induces a
Pk in G; a contradiction. 	

Gerber et al. showed in [10] that Maximum Independent Set is solvable
in polynomial time in the class of {P8, banner}-free graphs. The banner is a
graph containing an induced C4, therefore every {P8, C4}-free graph is also {P8,
banner}-free. It follows that Maximum Independent Set is solvable in poly-
nomial time in the class of {P8, banner}-free graphs. Applying Lemmas 4 and 5
with F = {C4} and k = 9 we thus obtain the following.

Corollary 2. Let G be a {P9, C4}-free graph and let I be a maximal independent
set in G such that G has no I-augmenting P3. Then it can be tested in polynomial
time whether G has an I-augmenting graph isomorphic to Ts for some integer
s ≥ 2 or to Tr,s for some positive integers r, s.

Corollary 2 leads to the following theorem.

Theorem 4. Maximum Independent Set is polynomial-time solvable in the
class of {P9, even-hole}-free graphs.

Proof. By Lemma 3, the minimal augmenting graphs in the class of {P9, even-
hole}-free are of type Ts or Tr,s. By Assumption 1 and Corollary 2, we conclude
that Maximum Independent Set is polynomial-time solvable in the class of
{P9, even-hole}-free graphs. 	

Observe that the {P9, even-hole}-free graphs are exactly the {P9, C4, C6, C8}-
free graphs. We strengthen the result of Theorem 4 to the class of {P9, C4, C6}-
free graphs. We do this by showing that there are only finitely many minimal
augmenting {P9, C4, C6}-free graphs that are not Ts or Tr,s. This follows from
Lemma 3 and the following observation.

Lemma 6. Every minimal augmenting {P9, C4, C6}-free graph containing an
induced C8 has at most 15 vertices.

Assumption 1, Corollary 2, and Lemma 6 lead to the following theorem.

Theorem 5. Maximum Independent Set is polynomial-time solvable in the
class of {P9, C4, C6}-free graphs.

5 Maximum Independent Set in {P10, C4, C6}-Free
Graphs

In this section we generalize the previous result on {P9, C4, C6}-free graphs to
the class of {P10, C4, C6}-free graphs. As before, we first classify the minimal
augmenting graphs and then present an algorithm for finding them. We consider
two cases: augmenting trees and augmenting graphs containing a C8 or a C10.

Maximum Independent Set in {P10, C4, C6}-Free Graphs 279

Augmenting Trees. Next to the already mentioned trees Ts and Tr,s, a minimal
augmenting tree in the class of {P9, C4, C6}-free graphs can be a black-white
tree containing an induced P9. These are exactly black-white trees with the root
in the middle vertex of a P9 and every vertex being at distance at most 4 from
the root. An example of such a tree is depicted in Fig. 2.

Fig. 2. A minimal augmenting tree containing a P9.

We already know that Maximum Independent Set is solvable in polyno-
mial time in the class of {P9, C4, C6}-free graphs. Therefore, by Lemmas 4 and 5
we have a polynomial-time algorithm for checking whether a maximal indepen-
dent set I in a {P10, C4, C6}-free graph G admits a minimal augmenting graph
isomorphic to a Ts or a Tr,s. Hence, we need to show how to test whether such a
maximal independent set I admits a minimal augmenting tree containing a P9.

Lemma 7. Let G be a {P10, C4, C6}-free graph and I a maximal independent set
in G. It can be tested in polynomial time whether I admits a minimal augmenting
tree H = (W,B;E) containing an induced P9.

Augmenting Graphs Containing a C8 or a C10. Let us show that a minimal
augmenting graph in the class of {P10, C4, C6}-free graphs cannot contain an
induced C10.

Lemma 8. Let H = (W,B;E) be a minimal {P10, C4, C6}-free augmenting
graph. Then H is C10-free.

Proof. We prove the lemma by contradiction. Let C be an induced C10 in H.
Denote the vertices of C by v1, . . . , v10 so that consecutive vertices are adjacent
(indices modulo 10). Since H is a connected graph with an odd number of ver-
tices, it contains a vertex adjacent to C that is not in C. Let vi be a vertex in
C adjacent to some vertex x ∈ V (H)\V (C). Since G is {C4, C6}-free, we infer
that NH(x) ∩ V (C) = {vi}. But now, (V (C)\{vi+1}) ∪ {x} (indices modulo 10)
induces a P10 in G; a contradiction. 	

By Lemma 8, we know that in the class of {P10, C4, C6}-free graphs a minimal
augmenting graph H is either a black-white tree or contains a C8. It turns out
that a minimal augmenting graph containing a C8 is either one of two specific
graphs or belongs to a particular family of graphs.

280 E. Husić and M. Milanič

x

y

f

W x

W y

a = 2

b = 3

c = 3

Fig. 3. A (2, 3, 3)-crab.

Definition 5. For non-negative integers a, b, c with c ≥ 2, an (a, b, c)-crab is a
bipartite graph H = (W,B;E) that can be built from two disjoint trees of type
Tr, say T and T ′, as follows (see Fig. 3):

– T is isomorphic to Ta+c and T ′ is isomorphic to Tb+c.
– Exactly c leaves of T are identified with c leaves of T ′. We call these inner

leaves. Non-identified leaves of T and T ′ are leaves of H.
– We name the root of T as x and the root of T ′ as y. We say that x and y are

the root vertices of H. We denote by W x the set of white vertices of T whose
children are identified with some leaves of T ′. Similarly for W y.

– A set of c − 1 inner leaves (out of c) is chosen and for each such vertex �,
exactly one of its two neighbors in W x ∪ W y is adjacent to a unique vertex
�p �∈ V (T)∪V (T ′). Moreover �p has no other neighbors in H. We say that �p
is the additional leaf of �. The unique vertex f ∈ NH(W x) ∩ NH(W y) that
does not have an additional leaf will be called the flat vertex of H.

Lemma 9. There exist two graphs F1 and F2 such that the following holds.
Let G be a {P10, C4, C6}-free graph and I a maximal independent set in G that
admits neither an augmenting P3 nor an augmenting P5. Let H = (W,B;E) be
a minimally augmenting graph for I that contains a C8. Then H is either F1,
F2, or an (a, b, c)-crab.

Since F1 and F2 are two fixed graphs, an augmenting graph isomorphic to
F1 or F2 can be trivially detected in polynomial time. Thus, Lemma 9 and the
next lemma imply that we can efficiently detect the existence of an augmenting
graph that contains a C8.

Lemma 10. Let G be a {P10, C4, C6}-free graph and I a maximal independent
set in G such that G has no I-augmenting P3. Then we can test in polynomial
time if I admits an augmenting (a, b, c)-crab.

Proof. By the definition of an (a, b, c)-crab it holds that c ≥ 2. It follows that
every (a, b, c)-crab contains an induced C8. We will check if there exists an

Maximum Independent Set in {P10, C4, C6}-Free Graphs 281

induced cycle C on 8 vertices in G that can be extended to an induced (a, b, c)-
crab. For the rest of the proof, we fix an induced cycle C on 8 vertices in G
and show how one can check if C can be extended to an (a, b, c)-crab. By the
definition of an augmenting graph it must hold |V (C) ∩ I| = |C\I| = 4. Denote
the vertices of C by v1, . . . , v8 so that consecutive vertices are adjacent (indices
modulo 8) and {v1, v3, v5, v7} ⊆ I.

More precisely, we will show how to check if C can be extended to an (a, b, c)-
crab with two particular opposite black vertices of C set as roots of the crab;
furthermore, we may also guess the flat vertex, as well as the additional leaf.
By symmetry, it suffices to consider the case when C can be extended to an
(a, b, c)-crab H with roots v2 and v6, flat vertex v8, and an additional leaf s3
that has unique neighbor v3 in C. See Fig. 4.

v2

v3

v4

v5

v6

v7

v8

v1

s3

w′′

K(w′′)

K2(w′, w′′)

w′

K(w′)
W2

W6
w′′

Fig. 4. Testing for an augmenting (a, b, c)-crab.

In the rest of the proof, whenever we say (a, b, c)-crab we mean an (a, b, c)-
crab with the properties described in the previous sentence. Therefore, it suffices
to consider only the non-neighbors of {v1, v3, v4, v5, v7, v8, s3} (except v2, v6).
Define W6 = NG(v6) ∩ (I\{v5, v7}) and W2 = NG(v2) ∩ (I\{v1, v3}). By the
definition of an augmenting graph, W2∪W6 ⊆ V (H). Moreover, by the definition
of an (a, b, c)-crab, the set of all white vertices that should be in H is exactly
the set {v1, v3, v5, v7} ∪ W2 ∪ W6. So we only need to check whether we can
find a set a black vertices to complete our augmenting graph. We only consider
vertices in V (G)\I non-adjacent to v2 and v6 that are contained in some K(w)
for w ∈ W2 ∪ W6 (we will call these type 1 vertices) or vertices with exactly
one neighbor in W2 and exactly one neighbor in W6 (we will call these type 2
vertices).

Let x be a type 2 vertex and denote by w′, w′′ its neighbors in W2 and W6,
respectively. Suppose that there exists a type 2 vertex y such that its neighbors
in W2 and W6 are w′ and w′′

y (w′′
y �= w′′), respectively. If x is non-adjacent to y,

282 E. Husić and M. Milanič

then the set {y, w′, x, w′′, v6, w′′
y} induces a C6. It follows that xy ∈ E(G) and

thus {y, x, w′′, v6, v7, v8, v1, v2, v3, s3} induces a P10; a contradiction. Hence for
each w′ ∈ W2 having a type 2 neighbor we can define its unique corresponding
vertex w′′ ∈ W6. Moreover, we define K2(w′) = K2(w′′) = K2(w′, w′′) as the
set of all type 2 neighbors of w′ and w′′. Since G is C4-free, every such set is a
clique.

Suppose that w′ ∈ W2 and w′′ ∈ W6 are a pair of corresponding vertices.
Then K2(w′, w′′) �= ∅. Let u and v be two non-adjacent vertices in K2(w′, w′′)∪
K(w′) ∪ K(w′′). Since G does not admit any I-augmenting P3, sets K(w′) and
K(w′′) are cliques by Observation 3. Thus, u and v must belong to different sets
among K(w′), K(w′′), and K2(w′, w′′). If u ∈ K2(w′, w′′) and, say, v ∈ K(w′′),
then we could add u as an inner leaf and v as the additional leaf of u to H. If
on the other hand, u ∈ K(w′) and v ∈ K(w′′) (or vice versa), then we could add
both u and v as leaves to H.

The above suggests the following procedure. For every vertex w′ ∈ W2 having
a type 2 neighbor, we identify its corresponding vertex w′′ ∈ W6, take a pair of
non-adjacent vertices in K2(w′, w′′) ∪ K(w′) ∪ K(w′′), and add the two vertices
to H. If such a pair does not exist, return that there is no (a, b, c)-crab. For the
vertices w ∈ W2 ∪ W6 that have no corresponding vertex, i.e., have no neighbor
of type 2, pick an arbitrary vertex in K(w) and add it to H. If some K(w) = ∅,
then I does not admit an augmenting (a, b, c)-crab.

One can check that c−2 is equal to the number of added non-adjacent vertex
pairs such that one of the two vertices was from some K2(w′) and the other one
from some K(w′′). Similarly, we can take a = |W2|−(c−2) and b = |W6|−(c−2).

Claim. The above procedure is correct.

Proof of Claim: For all type 1 vertices w ∈ W2 ∪W6, we set K2(w) = ∅. Observe
that for the correctness of the above procedure it suffices to prove the following
statement: For every two distinct vertices w′, w′′ ∈ W2 ∪ W6 such that either

1. at least one of w′, w′′ is of type 1, or
2. they are both of type 2 but they are not corresponding vertices,

sets K(w′) ∪ K2(w′) and K(w′′) ∪ K2(w′′) are anticomplete to each other.
To prove the above statement, suppose for a contradiction that there exist

two distinct vertices w′, w′′ ∈ W2 ∪ W6 such that either at least one of w′, w′′

is of type 1, or they are both of type 2 but they are not corresponding vertices,
a vertex s ∈ K(w′) ∪ K2(w′), and a vertex t ∈ K(w′′) ∪ K2(w′′) such that
st ∈ E(G). The assumptions on w′ and w′′ imply that s and t have no common
neighbors in W2 ∪ W6. Now, if w′ ∈ W2, then {t, s, w′, v2, v3, v4, v5, v6, v7, v8}
induces a P10, while if w′ ∈ W6, then {t, s, w′, v6, v7, v8, v1, v2, v3, v4} induces a
P10. In either case, we reach a contradiction. �

Clearly, the procedure runs in polynomial time. 	

We obtain the following theorem.

Theorem 6. Maximum Independent Set is solvable in polynomial time in
the class of {P10, C4, C6}-free graphs.

Maximum Independent Set in {P10, C4, C6}-Free Graphs 283

Corollary 3. Maximum Independent Set is solvable in polynomial time in
the class of {P10, even-hole}-free graphs.

Acknowledgment. The authors are grateful to the anonymous reviewers for many
helpful remarks.

References

1. Adler, I., Le, N.K., Müller, H., Radovanović, M., Trotignon, N., Vušković, K.: On
rank-width of (diamond, even hole)-free graphs. Discrete Math. Theor. Comput.
Sci. 19(1), 12 (2017). Paper No. 24

2. Alekseev, V.E.: The effect of local constraints on the complexity of determination of
the graph independence number. In: Combinatorial-Algebraic Methods in Applied
Mathematics, pp. 3–13 (1982)

3. Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in
graphs without forks. Discrete Appl. Math. 135(1–3), 3–16 (2004). [mr1760726],
Russian translations. II

4. Alekseev, V.E., Lozin, V.V.: Augmenting graphs for independent sets. Discrete
Appl. Math. 145(1), 3–10 (2004)

5. Brandstädt, A., Mosca, R.: Maximum weight independent set for �claw-free graphs
in polynomial time. Discrete Appl. Math. 237, 57–64 (2018)

6. Brause, C.: A subexponential-time algorithm for the maximum independent set
problem in Pt-free graphs. Discrete Appl. Math. 231, 113–118 (2017)

7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

8. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)
9. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.

SIAM J. Appl. Math. 32(4), 826–834 (1977)
10. Gerber, M.U., Hertz, A., Lozin, V.V.: Stable sets in two subclasses of banner-free

graphs. Discrete Appl. Math. 132(1–3), 121–136 (2003)
11. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs.

North-Holland Math. Stud. 88, 325–356 (1984)
12. Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algo-

rithm for maximum weight independent set on P6-free graphs. In: Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1257–
1271. SIAM (2019)

13. Hertz, A., Lozin, V.V.: The maximum independent set problem and augmenting
graphs. In: Avis, D., Hertz, A., Marcotte, O. (eds.) Graph Theory and Combina-
torial Optimization. GERAD 25th Anniversary Series, vol. 8, pp. 69–99. Springer,
New York (2005). https://doi.org/10.1007/0-387-25592-3_4

14. Husić, E.: The maximum independent set problem and equistable graphs. Master’s
thesis, University of Primorska (2017)

15. Lehot, P.G.H.: An optimal algorithm to detect a line graph and output its root
graph. J. ACM 21(4), 569–575 (1974)

16. Lokshtanov, D., Vatshelle, M., Villanger, Y.: Independent set in P5-free graphs in
polynomial time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 570–581. ACM, New York (2014)

https://doi.org/10.1007/0-387-25592-3_4

284 E. Husić and M. Milanič

17. Lozin, V.V., Milanič, M.: On finding augmenting graphs. Discrete Appl. Math.
156(13), 2517–2529 (2008)

18. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb.
Theory Ser. B 28(3), 284–304 (1980)

19. Mosca, R.: Polynomial algorithms for the maximum stable set problem on partic-
ular classes of P5-free graphs. Inf. Process. Lett. 61(3), 137–143 (1997)

20. Poljak, S.: A note on stable sets and colorings of graphs. Comment. Math. Univ.
Carol. 15(2), 307–309 (1974)

21. Roussopoulos, N.: A max {m, n} algorithm for determining the graph H from its
line graph C. Inf. Process. Lett. 2(4), 108–112 (1973)

22. Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un
graphe sans étoile. Discrete Math. 29(1), 53–76 (1980)

23. Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55(2), 221–232
(1985)

24. Vušković, K.: Even-hole-free graphs: a survey. Appl. Anal. Discrete Math. 4(2),
219–240 (2010)

Independent Set Reconfiguration
Parameterized by Modular-Width

Rémy Belmonte1 , Tesshu Hanaka2 , Michael Lampis3 , Hirotaka Ono4 ,
and Yota Otachi5(B)

1 The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
remy.belmonte@uec.ac.jp

2 Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
hanaka.91t@g.chuo-u.ac.jp

3 Université Paris-Dauphine, PSL University, CNRS, LAMSADE,
75016 Paris, France

michail.lampis@dauphine.fr
4 Nagoya University, Nagoya 464-8601, Japan

ono@nagoya-u.jp
5 Kumamoto University, Kumamoto 860-8555, Japan

otachi@cs.kumamoto-u.ac.jp

Abstract. Independent Set Reconfiguration is one of the most
well-studied problems in the setting of combinatorial reconfiguration. It is
known that the problem is PSPACE-complete even for graphs of bounded
bandwidth. This fact rules out the tractability of parameterizations by
most well-studied structural parameters as most of them generalize band-
width. In this paper, we study the parameterization by modular-width,
which is not comparable with bandwidth. We show that the problem
parameterized by modular-width is fixed-parameter tractable under all
previously studied rules TAR, TJ, and TS. The result under TAR resolves
an open problem posed by Bonsma [WG 2014, JGT 2016].

Keywords: Reconfiguration · Independent set · Modular-width

1 Introduction

In a reconfiguration problem, we are given an instance of a search problem
together with two feasible solutions. The algorithmic task there is to decide
whether one solution can be transformed to the other by a sequence of pre-
scribed local modifications while maintaining the feasibility of intermediate
states. Recently, reconfiguration versions of many search problems have been
studied (see [14,23]).

Partially supported by JSPS and MAEDI under the Japan-France Integrated Action
Program (SAKURA) Project GRAPA 38593YJ, and by JSPS/MEXT KAKENHI
Grant Numbers JP24106004, JP17H01698, JP18K11157, JP18K11168, JP18K11169,
JP18H04091, JP18H06469.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 285–297, 2019.
https://doi.org/10.1007/978-3-030-30786-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_22&domain=pdf
http://orcid.org/0000-0001-8043-5343
http://orcid.org/0000-0001-6943-856X
http://orcid.org/0000-0002-5791-0887
http://orcid.org/0000-0003-0845-3947
http://orcid.org/0000-0002-0087-853X
https://doi.org/10.1007/978-3-030-30786-8_22

286 R. Belmonte et al.

Independent Set Reconfiguration is one of the most well-studied recon-
figuration problems. In this problem, we are given a graph and two independent
sets. Our goal is to find a sequence of independent sets that represents a step-
by-step modification from one of the given independent sets to the other. There
are three local modification rules studied in the literature: Token Addition and
Removal (TAR) [3,19,22], Token Jumping (TJ) [4,5,16–18], and Token Sliding
(TS) [1,2,8,10,13,15,21]. Under TAR, given a threshold k, we can remove or add
any vertices as long as the resultant independent set has size at least k. (When
we want to specify the threshold k, we call the rule TAR(k).) TJ allows to swap
one vertex in the current independent set with another vertex not dominated by
the current independent set. TS is a restricted version of TJ that additionally
asks the swapped vertices to be adjacent.

It is known that Independent Set Reconfiguration is PSPACE-
complete under all three rules for general graphs [16], for perfect graphs [19],
and for planar graphs of maximum degree 3 [13] (see [4]). For claw-free graphs,
the problem is solvable in polynomial time under all three rules [4]. For even-
hole-free graphs (graphs without induced cycles of even length), the problem
is known to be polynomial-time solvable under TAR and TJ [19], while it is
PSPACE-complete under TS even for split graphs [1]. Under TS, forests [8] and
interval graphs [2] form maximal known subclasses of even-hole-free graphs for
which Independent Set Reconfiguration is polynomial-time solvable. For
bipartite graphs, the problem is PSPACE-complete under TS and, somewhat
surprisingly, it is NP-complete under TAR and TJ [21].

Independent Set Reconfiguration is studied also in the setting of
parameterized computation. (See the recent textbook [7] for basic concepts in
parameterized complexity.) It is known that there is a constant b such that the
problem is PSPACE-complete under all three rules even for graphs of bandwidth
at most b [25]. Since bandwidth is an upper bound of well-studied structural
parameters such as pathwidth, treewidth, and clique-width, this result rules out
FPT (and even XP) algorithms with these parameters. Given this situation, Bon-
sma [3] asked whether Independent Set Reconfiguration parameterized by
modular-width is tractable under TAR and TJ. The main result of this paper
is to answer this question by presenting an FPT algorithm for Independent
Set Reconfiguration under TAR and TJ parameterized by modular-width.
We also show that under TS the problem allows a much simpler FPT algorithm.

Our results in this paper can be summarized as follows:1

Theorem 1.1. Under all three rules TAR, TJ, and TS, Independent Set
Reconfiguration parameterized by modular-width mw can be solved in time
O∗(2mw).

In Sect. 3, we give our main result for TAR (Theorem 3.9), which implies the
result for TJ (Corollary 3.10). The FPT algorithm under TS is given in Sect. 4
(Theorem 4.7).

The proofs marked with �’s are omitted due to the space limitation.

1 The O∗(·) notation suppresses factors polynomial in the input size.

Independent Set Reconfiguration Parameterized by Modular-Width 287

2 Preliminaries

Let G = (V,E) be a graph. For a set of vertices S ⊆ V , we denote by G[S] the
subgraph induced by S. For a vertex set S ⊆ V , we denote by G − S the graph
G[V \S]. For a vertex u ∈ V , we write G − u instead of G − {u}. For u, v ∈ S,
we denote S ∪ {u} by S + u and S\{v} by S − v, respectively. We use α(G)
to denote the size of a maximum independent set of G. For two sets S,R we
use S � R to denote their symmetric difference, that is, the set (S\R) ∪ (R\S).
For an integer k we use [k] to denote the set {1, . . . , k}. For a vertex v ∈ V , its
(open) neighborhood is denoted by N(v). The open neighborhood of a set S ⊆ V
of vertices is defined as N(S) =

⋃
v∈S N(v)\S. A component of G is a maximal

vertex set S ⊆ V such that G contains a path between each pair of vertices in
S.

In the rest of this section, we are going to give definitions of the terms used
in the following formalization of the main problem:

Problem: Independent Set Reconfiguration under TAR(k)
Input: A graph G, an integer k, and independent sets S and S′ of G.
Parameter: The modular-width of the input graph mw(G).
Question: Does S �k S′ hold?

2.1 TAR(k) Rule

Let S and S′ be independent sets in a graph G and k an integer. Then we write
S

G↔k S′ if |S � S′| ≤ 1 and min{|S|, |S′|} ≥ k. If G is clear from the context we
simply write S ↔k S′. Here S ↔k S′ means that S and S′ can be reconfigured to
each other in one step under the TAR(k) rule, which stands for “Token Addition
and Removal”, under the condition that no independent set contains fewer than
k vertices (tokens). We write S

G�k S′, or simply S �k S′ if G is clear, if there
exists � ≥ 0 and a sequence of independent sets S0, . . . , S� with S0 = S, S� = S′

and for all i ∈ [�] we have Si−1 ↔k Si. If S �k S′ we say that S′ is reachable
from S under the TAR(k) rule.

We recall the following basic facts.

Observation 2.1. For all integers k the relation defined by �k is an equiva-
lence relation on independent sets of size at least k. For any graph G, integer k,
and independent sets S,R, if S �k R, then S �k−1 R. For any graph G and
independent sets S,R we have S �0 R.

2.2 TJ and TS Rules

Under the TJ rule, one step is formed by a removal of a vertex and an addition
of a vertex. As this rule does not change the size of the independent set, we
assume that the given initial and target independent sets are of the same size. In
other words, two independent sets S and S′ with |S| = |S′| can be reconfigured
to each other in one step under the TJ rule if |S � S′| = 2. It is known that the
TJ reachability can be seen as a special case of TAR reachability as follows.

288 R. Belmonte et al.

Proposition 2.2 ([19]). Let S and R be independent sets of G with |S| = |R|.
Then, R is reachable from S under TJ if and only if S �|S|−1 R.

One step under the TS rule is a TJ step with the additional constraint that
the removed and added vertices have to be adjacent. Intuitively, one step in a
TS sequence “slides” a token along an edge. We postpone the introduction of
notation for TS until Sect. 4 to avoid any confusions.

2.3 Modular-Width

In a graph G = (V,E) a module is a set of vertices M ⊆ V with the property that
for all u, v ∈ M and w ∈ V \M , if {u,w} ∈ E, then {v, w} ∈ E. In other words,
a module is a set of vertices that have the same neighbors outside the module.
A graph G = (V,E) has modular-width at most k if it satisfies at least one of
the following conditions (i) |V | ≤ k, or (ii) there exists a partition of V into at
most k sets V1, V2, . . . , Vs, such that G[Vi] has modular-width at most k and Vi

is a module in G, for all i ∈ [s]. We will use mw(G) to denote the minimum k for
which G has modular-width at most k. We recall that there is a polynomial-time
algorithm which, given a graph G = (V,E) produces a non-trivial partition of
V into at most mw(G) modules [6,12,24] and that deleting vertices from G can
only decrease the modular-width. We also recall that Maximum Independent
Set is solvable in time O∗(2mw). Indeed, a faster algorithm with running time
O∗(1.7347mw) is known [9].

A graph has neighborhood diversity at most k if its vertex set can be par-
titioned into k modules, such that each module induces either a clique or an
independent set. We use nd(G) to denote the minimum neighborhood diversity
of G, and recall that nd(G) can be computed in polynomial time [20] and that
nd(G) ≥ mw(G) for all graphs G [11].

It can be seen that the modular-width of a graph is not smaller than its
clique-width. On the other hand, we can see that treewidth, pathwidth, and
bandwidth are not comparable to modular-width. To see this, observe that the
complete graph of n vertices has treewidth n−1 and modular-width 2, and that
the path of n vertices has treewidth 1 and modular-width n for n ≥ 4. Our
positive result and the hardness result by Wrochna [25] together give Fig. 1 that
depicts a map of structural graph parameters with a separation of the complexity
of Independent Set Reconfiguration.

3 FPT Algorithm for Modular-Width Under TAR

In this section we present an FPT algorithm for the TAR(k)-reachability problem
parameterized by modular-width. The main technical ingredient of our algorithm
is a sub-routine which solves a related problem: given a graph G, an independent
set S, and an integer k, what is the largest size of an independent set reachable
from S under TAR(k)? This sub-routine relies on dynamic programming: we
present (in Lemma 3.4) an algorithm which answers this “maximum extensibil-
ity” question, if we are given tables with answers for the same question for all

Independent Set Reconfiguration Parameterized by Modular-Width 289

clique-width

treewidth

pathwidth

modular-width

neighborhood diversity

vertex cover number

PSPACE-complete

FPT

bandwidth

Fig. 1. The complexity of Independent Set Reconfiguration under TAR, TJ, and
TS parameterized by structural graph parameters. “X → Y ” implies that there is a
function f such that X(G) ≥ f(Y (G)) for every graph G.

the modules in a non-trivial partition of the input graph. This results in an algo-
rithm (Theorem 3.5) that solves this problem on graphs of small modular-width,
which we then put to use in Sect. 3.2 to solve the reconfiguration problem.

3.1 Computing a Largest Reachable Set

In this section we present an FPT algorithm (parameterized by modular-width)
which computes the following value:

Definition 3.1. Given a graph G, an independent set S, and an integer k, we
define λ(G,S, k) as the largest size of the independent sets S′ such that S �k S′.

In particular, we will present a constructive algorithm which, given G,S, k
will return an independent set S′ such that |S′| = λ(G,S, k), as well as a recon-
figuration sequence proving that S �k S′.

We begin by tackling an easier case: the case when the parameter is the
neighborhood diversity.

Lemma 3.2 (�). There is an algorithm which, given a graph G, an independent
set S, and an integer k, returns an independent set S′, with |S′| = λ(G,S, k),
and a reconfiguration sequence proving that S �k S′, in time O∗(2nd(G)).

Before presenting the main algorithm of this section, let us also make a useful
observation: once we are able to reach a configuration that contains a sufficiently
large number of vertices from a module, we can safely delete a vertex from the
module (bringing us closer to the case where Lemma 3.2 will apply).

Lemma 3.3 (�). Let G be a graph, S be an independent set of G, k an integer,
and M a module of G. Suppose there exists an independent set A ⊂ M such that
(S ∩ M) ⊆ A and |A| = α(G[M]). Then, for all u ∈ M\A we have λ(G,S, k) =
λ(G − u, S, k).

We are now ready to present our main dynamic programming procedure.

Lemma 3.4 (�). Suppose we are given the following input:

290 R. Belmonte et al.

1. A graph G = (V,E), an integer k, and an independent set S with |S| ≥ k.
2. A partition of V into r ≤ mw(G) non-empty modules, V1, . . . , Vr.
3. For each i ∈ [r], for each j ∈ [|S ∩ Vi|] an independent set Ri,j, such that

|Ri,j | = λ(G[Vi], S ∩ Vi, j), and a transformation sequence proving that (S ∩
Vi)

G[Vi]�j Ri,j.

Then, there exists an algorithm which returns an independent set R of G, such
that |R| = λ(G,S, k), and a transformation sequence proving that S �k R,
running in time O∗(2mw(G)).

We thus arrive to the main theorem of this section.

Theorem 3.5. There exists an algorithm which, given a graph G, an indepen-
dent set S, and an integer k, runs in time O∗(2mw(G)) and outputs an indepen-
dent set S′ such that |S′| = λ(G,S, k) and a TAR(k) transformation S �k S′.

Proof. We perform dynamic programming using Lemma 3.4. More precisely, our
goal is, given G and S, to produce for each value of j ∈ [|S|] an independent set
Rj such that S �j Rj and |Rj | = λ(G,S, j). Clearly, if we can solve this more
general problem in time O∗(2mw(G)) we are done.

Our algorithm works as follows: first, it computes a modular decomposition
of G of minimum width, which can be done in time at most O(n2) [12]. If
|V (G)| ≤ mw(G) then the problem can be solved in O∗(2mw(G)) by brute force
(enumerating all independent sets of G), or even by Lemma 3.2. We therefore
assume that G has a non-trivial partition into r ≤ mw(G) modules V1, . . . , Vr.
We call our algorithm recursively for each G[Vi], and obtain for each i ∈ [r] and
j ∈ [|S ∩Vi|] a set Ri,j such that |Ri,j | = λ(G[Vi], S ∩Vi, j) and a transformation

(S∩Vi)
G[Vi]�j Ri,j . We use this input to invoke the algorithm of Lemma3.4 for each

value of j ∈ [|S|]. This allows us to produce the sets Rj and the corresponding
transformations.

Suppose that β ≥ 2 is a constant such that the algorithm of Lemma 3.4
runs in time at most O(2mw(G)nβ). Our algorithm runs in time at most
O(2mw(G)nβ+2). This can be seen by considering the tree representing a mod-
ular decomposition of G. In each node of the tree (that represents a module of
G) our algorithm makes at most n calls to the algorithm of Lemma 3.4. Since
the modular decomposition has at most O(n) nodes, the running time bound
follows.
�

3.2 Reachability

In this section we will apply the algorithm of Theorem3.5 to obtain an FPT algo-
rithm for the TAR(k) reconfiguration problem parameterized by modular-width.
The main ideas we will need are that (i) using the algorithm of Theorem3.5 we
can decide if it is possible to arrive at a configuration where a module is empty
of tokens (Lemma 3.6) (ii) if a module is empty in both the initial and target
configurations, we can replace it by an independent set (Lemma3.7) and (iii)

Independent Set Reconfiguration Parameterized by Modular-Width 291

the reconfiguration problem is easy on graphs with small neighborhood diversity
(Lemma 3.8). Putting these ideas together we obtain an algorithm which can
always identify an irrelevant vertex which we can delete if the input graph is
connected. If the graph is disconnected, we can use ideas similar to those of [3]
to reduce the problem to appropriate sub-instances in each component.

Lemma 3.6. There is an algorithm which, given a graph G, an independent set
S, a module M of G, and an integer k, runs in time O∗(2mw(G)) and either
returns a set S′ with S′ ∩ M = ∅ and S �k S′ or correctly concludes that no
such set exists.

Proof. We assume that S ∩ M = ∅ (otherwise we simply return S).
Let H be the graph obtained by deleting from G all vertices of V \M that

have a neighbor in M . We invoke the algorithm of Theorem3.5 to compute a set
R in H such that S

H�k R and |R| = λ(H,S, k). If |R\M | ≥ k then we return
as solution the set R\M , and as transformation the transformation sequence
returned by the algorithm, to which we append moves that delete all vertices of
R ∩ M . If |R\M | < k we answer that no such set exists.

Let us now argue for correctness. If the algorithm returns a set S′ := R\M ,
it also returns a TAR(k) transformation from S to S′ in H; this is also a trans-
formation in G, and since S′ ∩ M = ∅, the solution is correct.

Suppose then that the algorithm returns that no solution exists, but for the
sake of contradiction there exists a T with S

G�k T and T ∩ M = ∅. Among all
such sets T select the one at minimum reconfiguration distance from S and let
S0 = S, S1, . . . , S� = T be a shortest reconfiguration sequence. We claim that
this is also a valid reconfiguration sequence in H. Indeed, for all j ∈ [� − 1], the
set Sj contains a vertex from M (otherwise we would have a shorter sequence),
therefore may not contain any deleted vertex. As a result, if a solution T exists,
then S

H�k T . Let A be a maximum independent set of G[M]. We observe
that (i) |T\M | ≥ k since T is reachable with TAR(k) moves and T ∩ M = ∅
(ii) T

H�k (T ∪ A). However, this gives a contradiction, because we now have
S

H�k (T∪A) and this set is strictly larger than the set returned by the algorithm
of Theorem 3.5 when computing λ(H,S, k).
�
Lemma 3.7. Let G be a graph, k an integer, M a module of G, and S, T two
independent sets of G such that S ∩ M = T ∩ M = ∅. Let A be a maximum
independent set of G[M]. Then, for all u ∈ M\A we have S

G�k T if and only
if S

G−u�k T .

Proof. The proof is similar to that of Lemma 3.3. Specifically, since u ∈ S and
u ∈ T , it is easy to see that S

G−u�k T implies S
G�k T . Suppose then that S

G�k

T and we have a sequence S0 = S, S1, . . . , S� = T . We construct a sequence
S′
0 = S, S′

1, . . . , S
′
� such that for all i ∈ [�] we have |Si| = |S′

i|, Si\M = S′
i\M ,

and S′
i ∩ M ⊆ A. This can be done inductively: for S′

0 the desired properties
hold; and for all i ∈ [�] we can prove that if the properties hold for S′

i−1, then

292 R. Belmonte et al.

we can construct S′
i in the same way as in the proof of Lemma 3.3 (namely, we

perform the same moves as Si outside of M , and pick an arbitrary vertex of A
when Si adds a vertex of M).
�
Lemma 3.8. There is an algorithm which, given a graph G, an integer k, and
two independent sets S, T , decides if S �k T in time O∗(2nd(G)).

Proof. The proof is similar to that of Lemma 3.2, but we need to carefully handle
some corner cases. We are given a partition of G into r ≤ nd(G) sets V1, . . . , Vr,
such that each Vi induces a clique or an independent set. Suppose Vi induces a
clique. We use the algorithm of Lemma 3.6 with input (G,S,Vi,k) and with input
(G,T ,Vi,k) to decide if it is possible to empty Vi of tokens. If the algorithm gives
different answers we immediately reject, since there is a configuration that is
reachable from S but not from T . If the algorithm returns S′, T ′ with S′ ∩ Vi =
T ′ ∩ Vi = ∅, then the problem reduces to deciding if S′ �k T ′. However, by
Lemma 3.7 we can delete all the vertices of Vi except one and this does not change
the answer. Finally, if the algorithm responds that Vi cannot be empty in any
configuration reachable from S or T then, if S ∩ Vi = T ∩ Vi we immediately
reject, while if S ∩ Vi = T ∩ Vi we delete from the input Vi and all its neighbors
and solve the reconfiguration problem in the instance (G[V \N [Vi]], k − 1, S\Vi,
T\Vi).

After this preprocessing all sets Vi are independent. We now construct an
auxiliary graph G′ as in Lemma 3.2, namely, our graph has a vertex for every
independent set S of G with |S| ≥ k such that for all i ∈ [r] either S ∩ Vi = ∅ or
Vi ⊆ S. Again, we have an edge between S1, S2 if S1 � S2 = Vi for some i ∈ [r].
We can assume without loss of generality that S, T are represented in this graph
(if there exists Vi such that 0 < |S ∩Vi| < |Vi| we add to S all remaining vertices
of Vi). Now, S � T if and only if S is reachable from T in G′, and this can be
checked in time linear in the size of G′.
�
Theorem 3.9 (TAR). There is an algorithm which, given a graph G, an integer
k, and two independent sets S, T , decides if S �k T in time O∗(2mw(G)).

Proof. Our algorithm considers two cases: if G is connected we will attempt to
simplify G in a way that eventually produces either a graph with small neighbor-
hood diversity or a disconnected graph; if G is disconnected we will recursively
solve an appropriate subproblem in each component.

First, suppose that G is connected. We compute a modular decomposition
of G which gives us a partition of V into r ≤ mw(G) modules V1, . . . , Vr. We
may assume that r ≥ 2 since otherwise G has at most mw(G) vertices and the
claimed running time is trivial in that case. If for all i ∈ [r] we have that G[Vi] is
an independent set, then nd(G) ≤ r and we invoke the algorithm of Lemma3.8.
Suppose then that for some i ∈ [r], G[Vi] contains at least one edge. We invoke
the algorithm of Lemma 3.6 on input (G,S, Vi, k) and on input (G,T, Vi, k). If
the answers returned are different, we decide that S is not reachable from T in
G, because from one set we can reach a configuration that contains no vertex of
Vi and from the other we cannot.

Independent Set Reconfiguration Parameterized by Modular-Width 293

If the algorithm of Lemma 3.6 returned to us two sets S′, T ′ with S′ ∩ Vi =
T ′ ∩ Vi = ∅ then by transitivity we know S � T if and only if S′ � T ′. We
compute a maximum independent set A of G[Vi] and delete from our graph a
vertex u ∈ Vi\A. Such a vertex exists, since G[Vi] is not an independent set. By
Lemma 3.7 deleting u does not affect whether S′ � T ′, so we call our algorithm
with input (G − u, k, S′, T ′), and return its response.

On the other hand, if the algorithm of Lemma3.6 concluded that no set
reachable from either S or T has empty intersection with Vi, we find a vertex
u ∈ V \Vi that has a neighbor in Vi and delete it, that is, we call our algorithm
with input (G − u, k, S, T). Such a vertex u exists because G is connected. This
recursive call is correct because any configuration reachable from S or T contains
some vertex of Vi, which is a neighbor of u, so no reachable configuration uses
u.

We note that if G is connected, all the cases described above will make a
single recursive call on an input that has strictly fewer vertices.

Suppose now that G is not connected and there are s connected components
C1, C2, . . . , Cs. We will assume that |S| = λ(G,S, k) and |T | = λ(G,T, k). This
is without loss of generality, since we can invoke the algorithm of Theorem3.5
and in case |S| < λ(G,S, k) replace S with the set S′ returned by the algorithm
while keeping an equivalent instance (similarly for T).

As a result, we can assume that |S| = |T |, otherwise the answer is trivially
no. More strongly, if there exists a component Ci such that |S ∩ Ci| = |T ∩ Ci|
we answer no. To see that this is correct, we argue that for all S′ such that
S �k S′ we have |S′ ∩ Ci| ≤ |S ∩ Ci|. Indeed, suppose there exists S′ such
that for some i ∈ [s] we have |S′ ∩ Ci| > |S ∩ Ci| and S � S′. Among such
configurations S′ select one that is at minimum reconfiguration distance from S
and let S0 = S, S1, . . . , S� = S′ be a shortest reconfiguration from S to S′. Then
for all j ∈ [�] we have |S\Ci| ≥ |Sj\Ci| (otherwise we would have an S′ that
is at shorter reconfiguration distance from S). This means that the sequence
S0 ∩ Ci, S1 ∩ Ci, . . . , S� ∩ Ci is a TAR(k − |S\Ci|) transformation of S ∩ Ci to
S′ ∩ Ci in G[Ci]. But this transformation proves that the set (S\Ci) ∪ (S′ ∩ Ci)
is TAR(k) reachable from S in G, and since this set is larger than S we have a
contradiction.

For each i ∈ [s] we now consider the reconfiguration instance given by the
following input: (G[Ci], k − |S\Ci|, S ∩ Ci, T ∩ Ci). We call our algorithm recur-
sively for each such instance. If the answer is yes for all these instances we reply
that S is reachable from T , otherwise we reply that the sets are not reachable.

To argue for correctness we use induction on the depth of the recursion. Sup-
pose that the algorithm correctly concludes that the answer to all sub-instances
is yes. Then, there does indeed exist a transformation S � T as follows: starting
from S, for each i ∈ [s] we keep S\Ci constant and perform in G[Ci] the trans-

formation (S ∩Ci)
G[Ci]� k−|S\Ci| (T ∩Ci). At each step this gives a configuration

where S and T agree in more components. Furthermore, since |S ∩Ci| = |T ∩Ci|
for all i ∈ [s], this is a valid TAR(k) reconfiguration.

294 R. Belmonte et al.

Suppose now that the answer is no for the instance (G[Ci], k − |S\Ci|, S ∩
Ci, T ∩Ci). Suppose also, for the sake of contradiction, that there exists a TAR(k)
reconfiguration S0 = S, S1, . . . , S� = T . As argued above, any configuration S′

reachable from S has |S′ ∩ Ci′ | ≤ |S ∩ Ci′ | for all i′ ∈ [s]. This means that
|S\Ci| ≥ |Sj\Ci| for all j ∈ [�]. Hence, the sequence S0 ∩ Ci, S1 ∩ Ci, . . . , S� ∩ Ci

gives a valid TAR(k − |S\Ci|) reconfiguration in G[Ci], which is a contradiction.
Finally, it is not hard to see that the algorithm runs in time O∗(2mw(G)),

because in the case of disconnected graphs we make a single recursive call for
each component.
�

Theorem 3.9 and Proposition 2.2 give an FPT algorithm with the same run-
ning time for TJ.

Corollary 3.10 (TJ). There is an algorithm which, given a graph G and two
independent sets S, T , decides the TJ reachability between S and T in time
O∗(2mw(G)).

4 FPT Algorithm for Modular-Width Under TS

We now present an FPT algorithm deciding the TS-reachability parameterized
by modular-width. The problem under TS is much easier than the one under TAR
since we can reduce the problem to a number of constant-size instances that can
be considered separately. To see this, we first observe that the components can
be considered separately. We then further observe that we only need to solve
the case where each maximal nontrivial module contains at most one vertex of
the current independent set. Finally, we show that the reachability problem on
the reduced case thus far is equivalent to a generalized reachability problem on
a graph of order at most mw(G), where G is the original graph.

Let S and S′ be independent sets of G with |S| = |S′|. Recall that S and
S′ can be reached by one step under TS if |S � S′| = 2 and the two vertices in
S � S′ are adjacent. We denote this relation by S

G↔ S′, or simply by S ↔ S′

if G is clear from the context. We write S
G� S′ (or simply S � S′) if there

exists � ≥ 0 and a sequence of independent sets S0, . . . , S� with S0 = S, S� = S′

and for all i ∈ [�] we have Si−1 ↔ Si. If S � S′ we say that S′ is reachable from
S under the TS rule. Observe that the relation defined by � is an equivalence
relation on independent sets.

The first easy observation is that the TS rule cannot move a token to a
different component since a TS step is always along an edge (and thus within a
component). This is formalized as follows.

Observation 4.1. Let G be a graph, S, S′ independent sets of G, and C1, . . . , Cc

the components of G. Then, S
G� S′ if and only if (S ∩ V (Ci))

G[V (Ci)]� (S′ ∩
V (Ci)) for all i ∈ [c].

The next lemma, which is still an easy one, is a key tool in our algorithm.

Independent Set Reconfiguration Parameterized by Modular-Width 295

Lemma 4.2 (�). Let G be a graph, M a module of G, and S an independent
set in G such that |S∩M | ≥ 2. Then, for every independent set S′ in G, S

G� S′

if and only if S′ ∩ N(M) = ∅ and S
G−N(M)� S′.

Lemma 4.2 implies that S with |S ∩ M | ≥ 2 and S′ with |S′ ∩ M | ≤ 1 are not
reachable to each other. This fact in the following form will be useful later.

Corollary 4.3. Let G be a graph, M a module of G, and S an independent set
in G such that |S ∩ M | ≤ 1. Then, for every independent set S′ in G such that
S � S′, it holds that |S′ ∩ M | ≤ 1.

We now show that a module sharing at most one vertex with both initial
and target independent sets can be replaced with a single vertex, under an
assumption that we may solve a slightly generalized reachability problem (which
is still trivial on a graph of constant size).

Lemma 4.4 (�). Let G be a graph, M a module of G with |M | ≥ 2, and S, S′

independent sets of G with |S| = |S′|. If |M ∩ (S ∪S′)| ≤ 1, then S
G� S′ if and

only if S
G−v� S′ for every v ∈ M\(S ∪ S′).

Lemma 4.5 (�). Let G be a graph, M a module of G, and S, S′ independent
sets of G with |S| = |S′|. If M ∩S = {u}, M ∩S′ = {v}, u = v, and u and v are
in the same component of G[M], then S

G� S′ if and only if S
G−v� S′ − v + u.

Lemma 4.6 (�). Let G be a graph, M a module of G, and S, S′ independent
sets of G with |S| = |S′|. If M ∩S = {u}, M ∩S′ = {v}, u = v, and u and v are
in different components of G[M], then S

G� S′ if and only if S
G−v� S′ − v + u

and there is an independent set T in G − v such that T ∩ M = ∅ and S
G−v� T .

Now we are ready to present our algorithm for the TS-reachability problem.

Theorem 4.7 (TS, �). There is an algorithm which, given a graph G and two
independent sets S, T , decides if S � T in time O∗(2mw(G)).

References

1. Belmonte, R., Kim, E.J., Lampis, M., Mitsou, V., Otachi, Y., Sikora, F.: Token slid-
ing on split graphs. In: STACS. LIPIcs, vol. 126, pp. 13:1–13:17. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2019)

2. Bonamy, M., Bousquet, N.: Token sliding on chordal graphs. In: Bodlaender, H.L.,
Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 127–139. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68705-6 10

3. Bonsma, P.S.: Independent set reconfiguration in cographs and their generaliza-
tions. J. Graph Theory 83(2), 164–195 (2016)

4. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-
free graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp.
86–97. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6 8

https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1007/978-3-319-08404-6_8

296 R. Belmonte et al.

5. Bousquet, N., Mary, A., Parreau, A.: Token jumping in minor-closed classes. In:
Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 136–149. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-8 12

6. Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In:
Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994).
https://doi.org/10.1007/BFb0017474

7. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

8. Demaine, E.D., et al.: Linear-time algorithm for sliding tokens on trees. Theor.
Comput. Sci. 600, 132–142 (2015)

9. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized
by vertex cover and modular width, through potential maximal cliques. Algorith-
mica 80(4), 1146–1169 (2018)

10. Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite
permutation graphs. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS,
vol. 9472, pp. 237–247. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48971-0 21

11. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8 15

12. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Comput. Sci. Rev. 4(1), 41–59 (2010)

13. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theor. Comput. Sci. 343(1–2), 72–96 (2005)

14. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,
Wildon, M. (eds.) Surveys in Combinatorics 2013. London Mathematical Society
Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press, Cambridge
(2013)

15. Hoang, D.A., Uehara, R.: Sliding tokens on a cactus. In: ISAAC. LIPIcs, vol. 64,
pp. 37:1–37:26. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

16. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011)

17. Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the
parameterized complexity for token jumping on graphs. In: Gopal, T.V., Agrawal,
M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 341–351.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06089-7 24

18. Ito, T., Kamiński, M., Ono, H.: Fixed-parameter tractability of token jumping on
planar graphs. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp.
208–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0 17

19. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

20. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1), 19–37 (2012)

21. Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfigura-
tion on bipartite graphs. In: SODA 2018, pp. 185–195 (2018)

22. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the
parameterized complexity of reconfiguration problems. Algorithmica 78(1), 274–
297 (2017)

23. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)

https://doi.org/10.1007/978-3-662-55751-8_12
https://doi.org/10.1007/BFb0017474
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-48971-0_21
https://doi.org/10.1007/978-3-662-48971-0_21
https://doi.org/10.1007/978-3-319-03898-8_15
https://doi.org/10.1007/978-3-319-06089-7_24
https://doi.org/10.1007/978-3-319-13075-0_17

Independent Set Reconfiguration Parameterized by Modular-Width 297

24. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decom-
position via recursive factorizing permutations. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70575-8 52

25. Wrochna, M.: Reconfiguration in bounded bandwidth and tree-depth. J. Comput.
Syst. Sci. 93, 1–10 (2018)

https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52

Counting Independent Sets in Graphs
with Bounded Bipartite Pathwidth

Martin Dyer1, Catherine Greenhill2, and Haiko Müller1(B)

1 School of Computing, University of Leeds, Leeds LS2 9JT, UK
{M.E.Dyer,H.Muller}@leeds.ac.uk

2 School of Mathematics and Statistics, UNSW, Sydney 2052, Australia
C.Greenhill@unsw.edu.au

Abstract. The Glauber dynamics can efficiently sample independent
sets almost uniformly at random in polynomial time for graphs in a
certain class. The class is determined by boundedness of a new graph
parameter called bipartite pathwidth. This result, which we prove for
the more general hardcore distribution with fugacity λ, can be viewed as
a strong generalisation of Jerrum and Sinclair’s work on approximately
counting matchings. The class of graphs with bounded bipartite path-
width includes line graphs and claw-free graphs, which generalise line
graphs. We consider two further generalisations of claw-free graphs and
prove that these classes have bounded bipartite pathwidth.

Keywords: Markov chain Monte Carlo algorithm ·
Fully polynomial-time randomized approximation scheme ·
Independent set · Pathwidth

1 Introduction

We will show that we can approximate the number of independent sets in graphs
for which all bipartite induced subgraphs are well structured, in a sense that we
will define precisely. Our approach is to generalise the Markov chain analysis of
Jerrum and Sinclair [19] for the corresponding problem of counting matchings.
Their canonical path argument relied on the fact that the symmetric difference
of two matchings of a given graph G is a bipartite subgraph of G consisting
of a disjoint union of paths and even-length cycles. We introduce a new graph
parameter, which we call bipartite pathwidth, to enable us to give the strongest
generalisation of the approach of [19].

1.1 Independent Set Problems

For a given graph G, let I(G) be the set of all independent sets in G. The
independence number α(G) = max{|I| : I ∈ I(G)} is the size of the largest

M. Dyer and H. Müller—Research supported by EPSRC grant EP/S016562/1.
C. Greenhill—Research supported by Australian Research Council grant DP19010097.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 298–310, 2019.
https://doi.org/10.1007/978-3-030-30786-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_23

Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth 299

independent set in G. The problem of finding α(G) is NP-hard in general, even
in various restricted cases, such as degree-bounded graphs. However, polynomial
time algorithms have been constructed for finding a maximum independent set,
for various graph classes. The most important case has been matchings, which
are independent sets in the line graph L(G) of G. This has been generalised to
larger classes of graphs, for example claw-free graphs [24], which include line
graphs [4], and fork-free graphs [1], which include claw-free graphs.

Counting independent sets in graphs is known to be #P-complete in gen-
eral [26], and in various restricted cases [15,30]. Exact counting is known only
for some restricted graph classes. Even approximate counting is NP-hard in gen-
eral, and is unlikely to be in polynomial time for bipartite graphs [11].

For some classes of graphs, for example line graphs, approximate counting is
known to be possible [19,20]. The most successful Markov chain approach relies
on a close correspondence between approximate counting and sampling uni-
formly at random [21]. It was applied to degree-bounded graphs in [23] and [12].
In his PhD thesis [22], Matthews used a Markov chain for sampling independent
sets in claw-free graphs. His chain, and its analysis, generalises that of [19].

Several other approaches to approximate counting have been successfully
applied to the independent set problem. Weitz [31] used the correlation decay
approach on degree-bounded graphs, resulting in an FPTAS for counting inde-
pendent sets in graphs with degree at most 5. Sly [29] gave a matching NP-
hardness result. The correlation decay method was also applied to matchings
in [3], and was extended to complex values of λ in [16]. Recently, Efthymiou
et al. [14] proved that the Markov chain approach can (almost) produce the
best results obtainable by other methods.

The independence polynomial PG(λ) of a graph G is defined in (1) below.
The Taylor series approach of Barvinok [2] was used by Patel and Regts [25] to
give a FPTAS for PG(λ) in degree-bounded claw-free graphs. The success of the
method depends on the location of the roots of the independence polynomial.
Chudnovsky and Seymour [7] proved that all these roots are real, and hence they
are all negative. Then the algorithm of [25] is valid for all complex λ which are
not real and negative. In this extended abstract (for proofs see [13]), we return
to the Markov chain approach.

1.2 Preliminaries

We write [m] = {1, 2, . . . ,m} for any positive integer m, and let A ⊕ B denote
the symmetric difference of sets A,B. For graph theoretic definitions not given
here, see [10]. Throughout this paper, all graphs are simple and undirected.
G[S] denotes the subgraph of G induced by the set S and N(v) denotes the
neighbourhood of vertex v. Given a graph G = (V,E), let Ik(G) be the set
of independent sets of G of size k. The independence polynomial of G is the
partition function

300 M. Dyer et al.

PG(λ) =
∑

I∈I(G)

λ|I| =
α(G)∑

k=0

Nk λk, (1)

where Nk = |Ik(G)| for k = 0, . . . , α. Here λ ∈ C is called the fugacity. We
consider only real λ and assume λ ≥ 1/n to avoid trivialities. We have N0 = 1,
N1 = n and Nk ≤ (

n
k

)
for k = 2, . . . , n. Thus it follows that for any λ ≥ 0,

1 + nλ ≤ PG(λ) ≤
α(G)∑

k=0

(
n

k

)
λk ≤ (1 + λ)n. (2)

Note also that PG(0) = 1 and PG(1) = |I(G)|.
An almost uniform sampler for a probability distribution π on a state Ω

is a randomised algorithm which takes as input a real number δ > 0 and
outputs a sample from a distribution μ such that the total variation distance
1
2

∑
x∈Ω |μ(x) − π(x)| is at most δ. The sampler is a fully polynomial almost

uniform sampler (FPAUS) if its running time is polynomial in the input size n
and log(1/δ). The word “uniform” here is historical, as it was first used in the
case where π is the uniform distribution. We use it in a more general setting.

If w : Ω → R is a weight function, then the Gibbs distribution π satisfies
π(x) = w(x)/W for all x ∈ Ω, where W =

∑
x∈Ω w(x). If w(x) = 1 for all x ∈ Ω

then π is uniform. For independent sets with w(I) = λ|I|, we have

π(I) = λ|I|/PG(λ), (3)

and is often called the hardcore distribution. Jerrum, Valiant and Vazirani [21]
showed that approximating W is equivalent to the existence of an FPAUS for π,
provided the problem is self-reducible. Counting independent sets in a graph is
a self-reducible problem. (2) can be tightened to

PG(λ) ≤
α∑

k=0

(
n

k

)
λk ≤

α∑

k=0

(nλ)k

k!
≤ (nλ)α

α∑

k=0

1
k!

≤ e(nλ)α. (4)

2 Markov Chains

2.1 Mixing Time

For general information on Markov chains and approximate counting see [17,18].
Consider a Markov chain on state space Ω with stationary distribution π and

transition matrix P. Let pn be the distribution of the chain after n steps. We will
assume that p0 is the distribution which assigns probability 1 to a fixed initial
state x ∈ Ω. The mixing time of the Markov chain, from initial state x ∈ Ω, is
τx(ε) = min{n : dTV(pn, π) ≤ ε}, where dTV(pn, π) is the total variation distance
between pn and π. In the case of the Glauber dynamics for independent sets,
the stationary distribution π satisfies (3), and in particular π(∅)−1 = PG(λ).
We will always use ∅ as our starting state.

Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth 301

Let βmax = max{β1, |β|Ω|−1|}, where β1 is the second-largest eigenvalue and
β|Ω|−1 is the smallest eigenvalue of P. From [9, Proposition 3] follows τx(ε) ≤
(1 − βmax)−1

(
ln(π(x)−1) + ln(1/ε)

)
, see also [28, Proposition 1(i)]. Hence for

λ ≥ 1/n,
τ∅(ε) ≤ (1 − βmax)−1 (α(G) ln(nλ) + 1 + ln(1/ε)) , (5)

using (4). We can easily prove that (1+β|Ω|−1)−1 is bounded above by min{λ, n},
see (9). It is more difficult to bound the relaxation time (1 − β1)−1.

2.2 Canonical Paths Method

To bound the mixing time of our Markov chain we will apply the canonical paths
method of Jerrum and Sinclair [19]. This may be summarised as follows. Let the
problem size be n (in our setting, n is the number of vertices in the graph G,
Ω = I(G) and hence |Ω| ≤ 2n). For each pair of states X,Y ∈ Ω we define
a path γXY from X to Y , namely X = Z0 → Z2 → · · · → Z� = Y such that
successive pairs along the path are given by a transition of the Markov chain.
Write �XY = � for the length of the path γXY , and let �max = maxX,Y �XY . We
require �max to be at most polynomial in n. This is usually easy to achieve, but
the set of paths {γXY } must also satisfy the following property.

For any transition (Z,Z ′) of the chain there must exist an encoding W , such
that, given (Z,Z ′) and W , there are at most ν distinct possibilities for X and
Y such that (Z,Z ′) ∈ γXY . That is, each transition of the chain can lie on at
most ν |Ω∗| canonical paths, where Ω∗ is some set which contains all possible
encodings. We usually require ν to be polynomial in n. It is common to refer to
the additional information provided by ν as “guesses”, and we will do so here.
In our situation, all encodings will be independent sets, so we may assume that
Ω∗ = Ω. The congestion of the chosen set of paths is given by

 = max
(Z,Z′)

{
1

π(Z)P(Z,Z ′)

∑

X,Y :γXY �(Z,Z′)

π(X)π(Y)
}

, (6)

where the maximum is taken over all pairs (Z,Z ′) with P(Z,Z ′) > 0 and Z ′ �= Z
(that is, over all transitions of the chain), and the sum is over all paths containing
the transition (Z,Z ′). A bound on the relaxation time (1−β1)−1 will follow from
a bound on congestion, using Sinclair’s result [28, Cor. 6]:

(1 − β1)−1 ≤ �max . (7)

2.3 Glauber Dynamics

The Markov chain we employ will be the Glauber dynamics. In fact, we will
consider a weighted version of this chain, for a given value of the fugacity (also
called activity) λ > 0. Define π(Z) = λ|Z|/PG(λ) for all Z ∈ I(G), where PG(λ)
is the independence polynomial defined in (1). A transition from Z ∈ I(G) to
Z ′ ∈ I(G) will be as follows. Choose a vertex v of G uniformly at random.

302 M. Dyer et al.

– If v ∈ Z then Z ′ ← Z\{v} with probability 1/(1 + λ).
– If v /∈ Z and Z ∪ {v} ∈ I(G) then Z ′ ← Z ∪ {v} with probability λ/(1 + λ).
– Otherwise Z ′ ← Z.

This Markov chain is irreducible and aperiodic, and satisfies the detailed balance
equations π(Z)P(Z,Z ′) = π(Z ′)P(Z ′, Z) for all Z,Z ′ ∈ I(G). Therefore, the
Gibbs distribution π is the stationary distribution of the chain. If Z ′ is obtained
from Z by deleting a vertex v then

P(Z,Z ′) =
1

n(1 + λ)
and P(Z ′, Z) =

λ

n(1 + λ)
. (8)

The unweighted version is given by setting λ = 1, and has uniform stationary
distribution. Since the analysis for general λ is hardly any more complicated than
that for λ = 1, we will work with the weighted case.

It follows from the transition procedure that P(Z,Z) ≥ min{1, λ}/(1 + λ)
for all states Z ∈ I(G). That is, every state has a self-loop probability of at least
this value. Using a result of Diaconis and Saloff-Coste [8, p. 702], we conclude
that the smallest eigenvalue β|I(G)|−1 of P satisfies

(1 + β|I(G)|−1)−1 ≤ 1 + λ

2min{1, λ} ≤ min{λ, n} (9)

for λ ≥ 1/n. This bound will be dominated by our bound on the relaxation time.
We will always use the initial state Z0 = ∅, since ∅ ∈ I(G) for any graph G.

In order to bound the relaxation time (1−β1)−1 we will use the canonical path
method. A key observation is that for any X,Y ∈ I(G), the induced subgraph
G[X ⊕ Y] of G is bipartite. This can easily be seen by colouring vertices in
X\Y black and vertices in Y \X white, and observing that no edge in G can
connect vertices of the same colour. To exploit this observation, we introduce
the bipartite pathwidth of a graph in Sect. 3. In Sect. 4 we show how to use
the bipartite pathwidth to construct canonical paths for independent sets, and
analyse the congestion of this set of paths to prove our main result, Theorem1.

3 Pathwidth and Bipartite Pathwidth

The pathwidth of a graph was defined by Robertson and Seymour [27], and has
proved a very useful notion in graph theory [6,10]. A path decomposition of a
graph G = (V,E) is a sequence B = (B1, B2, . . . , Br) of subsets of V such that

1. for every v ∈ V there is some i ∈ [r] such that v ∈ Bi,
2. for every e ∈ E there is some i ∈ [r] such that e ⊆ Bi, and
3. for every v ∈ V the set {i ∈ [r] : v ∈ Bi} forms an interval in [r].

The width and length of this path decomposition B are w(B) = max{|Bi| :
i ∈ [r]} − 1 and �(B) = r and the pathwidth pw(G) of a given graph G is
pw(G) = minB w(B), where the minimum taken over all path decompositions

Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth 303

a c e g i

b d f h j

Fig. 1. A bipartite graph

B of G. Condition 3 is equivalent to Bi ∩ Bk ⊆ Bj for all i, j and k with
1 ≤ i ≤ j ≤ k ≤ r. If we refer to a bag with index i /∈ [r] then by default Bi = ∅.

The graph in Fig. 1 has a path decomposition with the following bags:

B1 = {a,b,d, g} B2 = {a, c,d, g} B3 = {c,d, g, e} B4 = {d, e, f, g}
B5 = {d, f, g, j} B6 = {f, g,h, j} B7 = {g,h, i, j}

This path decomposition has length 7 and width 3. If P is a path, C is a cycle,
Kn is a complete graph and Ka,b is a complete bipartite graph then

pw(P) = 1, pw(C) = 2, pw(Kn) = n − 1, pw(Ka,b) = min{a, b}. (10)

The following result will be useful for bounding the pathwidth. The first state-
ment is [5, Lemma 11], while the second appears in [27, Eq. (1.5)].

Lemma 1. For every subgraph H of G, pw(H) ≤ pw(G) holds. If W ⊆ V (G)
then pw(G) ≤ pw(G − W) + |W |.

The bipartite pathwidth bpw(G) of a graph G is the maximum pathwidth of
an induced subgraph of G that is bipartite. For any integer p ≥ 2, let Cp be the
class of graphs G with bpw(G) ≤ p. By Lemma 1 Cp is a hereditary class.

Clearly bpw(G) ≤ pw(G), but the bipartite pathwidth of G may be much
smaller than its pathwidth. A more general example is the class of unit inter-
val graphs. These may have cliques of arbitrary size, and hence arbitrary path-
width. However they are claw-free, so their induced bipartite subgraphs are linear
forests, and hence they have bipartite pathwidth at most 1 from Eq. 10. The even
more general interval graphs do not contain a tripod (depicted in Sect. 5.3), so
their bipartite subgraphs are forests of caterpillars, and hence they have bipartite
pathwidth at most 2.

Lemma 2. Let p be a positive integer.

(i) Every graph with at most 2p + 1 vertices belongs to Cp.
(ii) No element of Cp can contain Kp+1,p+1 as an induced subgraph.

A fixed linear order < on the vertex set V of a graph G, extends to subsets
of V as follows: if A,B ⊆ V then A < B if and only if (a) |A| < |B|; or (b)
|A| = |B| and the smallest element of A⊕B belongs to A. Next, given two path
decompositions A = (Aj)r

j=1 and B = (Bj)s
j=1 of G, we say that A < B if and

only if (a) r < s; or (b) r = s and Aj < Bj , where j = min{i : Ai �= Bi}.

304 M. Dyer et al.

4 Canonical Paths for Independent Sets

Suppose that G ∈ Cp, so that bpw(G) ≤ p. Take X,Y ∈ I(G) and let H1, . . . , Ht

be the connected components of G[X ⊕ Y] in lexicographical order. The graph
G[X⊕Y] is bipartite, so every component H1, . . . , Ht is connected and bipartite.
We will define a canonical path γXY from X to Y by processing the components
H1, . . . , Ht in order. Let Ha be the component of G[X⊕Y] which we are currently
processing, and suppose that after processing H1, . . . , Ha−1 we have a partial
canonical path X = Z0, . . . , ZN . If a = 0 then ZN = Z0 = X. The encoding WN

for ZN is defined by

ZN ⊕ WN = X ⊕ Y and ZN ∩ WN = X ∩ Y. (11)

In particular, when a = 0 we have W0 = Y . We remark that (11) will not
hold during the processing of a component, but always holds immediately after
the processing of a component is complete. Because we process components
one-by-one, in order, and due to the definition of the encoding WN , we have

ZN ∩ Hs = Y ∩ Hs for s = 1, . . . , a − 1 (processed), (12)
ZN ∩ Hs = X ∩ Hs for s = a, . . . , t (not processed), (13)
WN ∩ Hs = X ∩ Hs for s = 1, . . . , a − 1 (processed), (14)
WN ∩ Hs = Y ∩ Hs for s = a, . . . , t (not processed). (15)

We now describe how to extend this partial canonical path by processing the
component Ha. Let h = |Ha|. We will define a sequence ZN , ZN+1, . . . , ZN+h

of independent sets, and a corresponding sequence WN , WN+1, . . . ,WN+h of
encodings, such that Z�⊕W� ⊆ X⊕Y and Z�∩W� = X∩Y for j = N, . . . , N +h.
Define the set of “remembered vertices” R� = (X ⊕ Y)\(Z� ⊕ W�) for � =
N, . . . , N + h. By definition, the triple (Z,W,R) = (Z�,W�, R�) satisfies

(Z ⊕ W) ∩ R = ∅ and (Z ⊕ W) ∪ R = X ⊕ Y. (16)

This immediately implies that |Z�|+|W�|+|R�| = |X|+|Y | for � = N, . . . , N +h.
Let B = (B1, . . . , Br) be the lexicographically-least path decomposition of

Ha. Here we use the ordering on path decompositions defined at the end of
Sect. 3. Since G ∈ Cp, the maximum bag size in B is d ≤ p + 1.

We process Ha by processing the bags B1, . . . , Br in order. Initially RN = ∅,
by (11). If bag Bi is currently being processed and the current independent set
is Z and the current encoding is W , then

(
X ∩ (B1 ∪ · · · ∪ Bi−1)

)\Bi =
(
W ∩ (B1 ∪ · · · ∪ Bi−1)

)\Bi, (17)
(
Y ∩ (B1 ∪ · · · ∪ Bi−1)

)\Bi =
(
Z ∩ (B1 ∪ · · · ∪ Bi−1)

)\Bi, (18)
(
X ∩ (Bi+1 ∪ · · · ∪ Br)

)\Bi =
(
Z ∩ (Bi+1 ∪ · · · ∪ Br)

)\Bi, (19)
(
Y ∩ (Bi+1 ∪ · · · ∪ Br)

)\Bi =
(
W ∩ (Bi+1 ∪ · · · ∪ Br)

)\Bi. (20)

Let Z�, W�, R� denote the current independent set, encoding and set of
remembered vertices, immediately after the processing of bag Bi−1. We will write

Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth 305

R� = R+
� ∪ R−

� where vertices in R+
� are added to R� during the preprocessing

phase (and must eventually be inserted into the current independent set), and
vertices in R−

� are added to R� due to a deletion step (and will go into the
encoding during the postprocessing phase). When i = 0 we have � = N and in
particular, RN = R+

N = R−
N = ∅.

Preprocessing: We “forget” the vertices of Bi ∩ Bi+1 ∩ W� and add them to
R+

� . This does not change the independent set or add to the canonical path.
R+

� ← R+
� ∪ (Bi ∩ Bi+1 ∩ W�); W� ← W�\(Bi ∩ Bi+1);

Deletion steps: for each u ∈ Bi ∩ Z�, in lexicographical order, do
Z�+1 ← Z�\{u};
if u �∈ Bi+1 then W�+1 ← W� ∪ {u}; R−

�+1 ← R−
�

else W�+1 ← W�; R−
�+1 ← R−

� ∪ {u};
� ← � + 1;

Insertion steps: for each u ∈ (
Bi ∩ (W� ∪ R+

�)
)\Bi+1, in lexicogr. order, do

Z�+1 ← Z� ∪ {u};
if u ∈ W� then W�+1 ← W�\{u}; R+

�+1 ← R+
� ;

else W�+1 ← W�; R+
�+1 ← R+

� ∪ {u};
� ← � + 1;

Postprocessing: All elements of R−
�+1 which do not belong to Bi+1 can now

be safely added to W�. This does not change the current independent set or
add to the canonical path.
W� ← W� ∪ (R−

� \Bi+1); R−
� ← R−

� ∩ Bi+1;

By construction, vertices added to R+
� are removed from W�, so the “otherwise”

case for insertion is precisely u ∈ R+
� .

Observe that both Z� and W� are independent sets at every step. This is true
initially (when � = N) and remains true. The preprocessing phases removes all
vertices of Bi∩Bi+1 from W�, which makes room for other vertices to be inserted
into the encoding later. A deletion step shrinks the current independent set and
adds the removed vertex into W� or R−

� . A deleted vertex is only added to R−
�

if it belongs to Bi ∩Bi+1, and so might have a neighbour in W�. In the insertion
steps we add vertices from

(
Bi ∩(W� ∪R+

�)
)\Bi+1 to Z�, now that we have made

room. Here Bi is the last bag which contains the vertex being inserted into the
independent set, so any neighbour of this vertex in X has already been deleted
from the current independent set. This phase can only shrink the encoding W�.
Also observe that (16) holds for (Z,W,R) = (Z�,W�, R�) at every point. Finally,
by construction we have R� ⊆ Bi at all times. Table 1 illustrates this construction
for the graph in Fig. 1.

Each step of the canonical path alters the current independent set Zi by
exactly one element of X ⊕Y . Every vertex of X\Y is removed from the current
independent set at some point, and is never re-inserted, while every vertex of
Y \X is inserted into the current independent set once, and is never removed.
Vertices outside X ⊕ Y are never altered and belong to all or none of the inde-
pendent sets in the canonical path. Therefore �max ≤ 2α(G).

306 M. Dyer et al.

Table 1. The steps of the canonical path, processing each bag in order.

Bi preprocessing after 1st step after 2nd step
after 3rd step postprocessing

B1 d b a g d b a g− d b a g− −

d b a g− −

B2 d c a g− − d c a g−

B3 d c e g− d c e g− − d c e g− −

B4 d f e g− − d f e g−

B5 f d j g− f d j g

B6 f h j g f h j g− f h j g−

B7 h j i g− h j i g− h j i g−

h j i g− h j i g

Lemma 3. At any transition (Z,Z ′) which occurs during the processing of bag
Bi, the set R of remembered vertices satisfies R ⊆ Bi, with |R| ≤ p unless
Z ∩ Bi = W ∩ Bi = ∅. In this case R = Bi, which gives |R| = p + 1, and
Z ′ = Z ∪ {u} for some u ∈ Bi.

Lemma 4. Given a transition (Z,Z ′), the encoding W of Z and the set R of
remembered vertices, we can uniquely reconstruct (X,Y) with (Z,Z ′) ∈ γXY .

Theorem 1. Let G ∈ Cp be a graph with n vertices and let λ ≥ 1/n, where
p ≥ 2 is an integer. Then the Glauber dynamics with fugacity λ on I(G) (and
initial state ∅) has mixing time

τ∅(ε) ≤ 2eα(G)np+1 λp
(
1 + max(λ, 1/λ)

)(
α(G) ln(nλ) + 1 + ln(1/ε)

)
.

When p is constant, this upper bound is polynomial in n and max(λ, 1/λ).

5 Recognisable Subclasses of Cp

Theorem 1 shows that the Glauber dynamics for independent sets is rapidly
mixing for any graph G in the class Cp, where p is a fixed positive integer.
However, the complexity of recognising membership in the class Cp is unknown.
Therefore, we consider here three classes of graphs determined by small excluded

Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth 307

subgraphs. These classes have polynomial time recognition algorithms. Note that
we must always exclude large complete bipartite subgraphs. The three classes
are nested. We will obtain better bounds for pathwidth in the smaller classes,
and hence better mixing time bounds in Theorem1.

5.1 Claw-Free Graphs

Claw-free graphs exclude the K1,3, the claw. Claw-free graphs form an important
superclass of line graphs [4], and independent sets in line graphs are matchings.

Lemma 5. Let G be a claw-free graph with independent sets X,Y ∈ I(G). Then
G[X ⊕ Y] is a disjoint union of paths and cycles.

Lemma 6. Claw-free graphs are a proper subclass of C2.

5.2 Graphs with No Fork or Complete Bipartite Subgraph

Fork-free graphs exclude the following induced subgraph, the fork:

Two vertices u and v are false twins if N(u) = N(v). In Fig. 2, vertices to
which false twins can be added are indicated by red colour. Hence each graph
containing a red vertex represents an infinite family of augmented graphs.

Fig. 2. The path P9, the cycle C8, the augmented bipartite wheel BW ∗
3 , the cube Q3,

an augmented domino, followed by augmented paths P ∗
2 , P ∗

4 and P ∗
5 . (Color figure

online)

Lemma 7. A bipartite graph is fork-free if and only if every connected compo-
nent is a path, a cycle of even length, a BW ∗

3 , a cube Q3, or can be obtained from
a complete bipartite graph by removing at most two edges that form a matching.

Lemma 8. For all integers d ≥ 1 the fork-free graphs without induced Kd+1,d+1

have bipartite pathwidth at most max(4, d + 2).

308 M. Dyer et al.

5.3 Graphs Free of Armchairs, Stirrers and Tripods

The graphs depicted below are called armchair, stirrer and tripod. A fast graph
is a graph that contains none of these three as an induced subgraph.

Theorem 2. For every integer d ≥ 1, a fast bipartite graph that does not contain
Kd+1,d+1 as an induced subgraph has pathwidth at most 4d − 1.

6 Conclusions and Further Work

It is clearly NP-hard in general to determine the bipartite pathwidth of a graph,
since it is NP-complete to determine the pathwidth of a bipartite graph. How-
ever, we need only determine whether bpw(G) ≤ d for some constant d. The
complexity of this question is less clear. Bodlaender [5] has shown that the ques-
tion pw(G) ≤ d, can be answered in O(2d2

n) time. However, this implies nothing
about bpw(G).

In the case of claw-free graphs we can prove stronger sampling results using
log-concavity. How far does log-concavity extends in this setting? Does it hold
for fork-free graphs? Does some generalisation of log-concavity hold for graphs of
bounded bipartite pathwidth? Where log-concavity holds, it allows us to approx-
imate the number of independent sets of a given size. However, there is still the
requirement of “amenability” [19]. Jerrum, Sinclair and Vigoda [20] have shown
that this can be dispensed with in the case of matchings. Can this be done
for claw-free graphs? More ambitiously, can the result of [20] be extended to
fork-free graphs and larger classes of graphs of bounded bipartite pathwidth?

An extension would be to consider bipartite treewidth, btw(G). Since tw(G) =
O(pw(G) log n) [6, Thm. 66], our results here immediately imply that bounded
bipartite treewidth implies quasipolynomial mixing time for the Glauber dynam-
ics. Can this be improved to polynomial time?

Finally, can approaches to approximate counting be employed for the inde-
pendent set problem in particular graph classes? Patel and Regts [25] have used
the Taylor expansion approach for claw-free graphs. Could this be extended?

References

1. Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in
graphs without forks. Discrete Appl. Math. 135, 3–16 (2004)

2. Barvinok, A.: Computing the partition function of a polynomial on the Boolean
cube. In: Loebl, M., Nešetřil, J., Thomas, R. (eds.) A Journey Through Discrete
Mathematics, pp. 135–164. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-44479-6 7

https://doi.org/10.1007/978-3-319-44479-6_7
https://doi.org/10.1007/978-3-319-44479-6_7

Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth 309

3. Bayati, M., Gamarnik, D., Katz, D., Nair, C., Tetali, P.: Simple deterministic
approximation algorithms for counting matchings. In: Proceedings of the STOC,
pp. 122–127 (2007)

4. Beineke, L.: Characterizations of derived graphs. J. Comb. Theory 9, 129–135
(1970)

5. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

6. Bodlander, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci. 209, 1–45 (1998)

7. Chudnovsky, M., Seymour, P.: The roots of the independence polynomial of a
clawfree graph. J. Comb. Theory (Ser. B) 97, 350–357 (2007)

8. Diaconis, P., Saloff-Coste, L.: Comparison theorems for reversible Markov chains.
Ann. Appl. Probab. 3, 696–730 (1993)

9. Diaconis, P., Stroock, D.: Geometric bounds for eigenvalues of Markov chains. Ann.
Appl. Probab. 1, 36–61 (1991)

10. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

11. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: On the relative complexity
of approximate counting problems. Algorithmica 38, 471–500 (2003)

12. Dyer, M., Greenhill, C.: On Markov chains for independent sets. J. Algorithms 35,
17–49 (2000)

13. Dyer, M., Greenhill, C., Müller, H.: Counting independent sets in graphs with
bounded bipartite pathwidth. Preprint: arXiv:1812.03195 (2018)

14. Efthymiou, C., Hayes, T., Stefankovic, D., Vigoda, E., Yin, Y.: Convergence of
MCMC and loopy BP in the tree uniqueness region for the hard-core model. In:
Proceedings of the FOCS 2016, pp. 704–713. IEEE (2016)

15. Greenhill, C.: The complexity of counting colourings and independent sets in sparse
graphs and hypergraphs. Comput. Complex. 9, 52–72 (2000)

16. Harvey, N.J.A., Srivastava, P., Vondrák, J.: Computing the independence polyno-
mial: from the tree threshold down to the roots. In: Proceedings of the SODA 2018,
pp. 1557–1576 (2018)

17. Jerrum, M.: Mathematical foundations of the Markov chain Monte Carlo method.
In: Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B. (eds.) Probabilistic
Methods for Algorithmic Discrete Mathematics. AC, vol. 16, pp. 116–165. Springer,
Heidelberg (1998). https://doi.org/10.1007/978-3-662-12788-9 4

18. Jerrum, M.: Counting, Sampling and Integrating: Algorithms and Complexity. Lec-
tures in Mathematics - ETH Zürich. Birkhäuser, Basel (2003)

19. Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18,
1149–1178 (1989)

20. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with non-negative entries. J. ACM 51, 671–697
(2004)

21. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci. 43, 169–188 (1986)

22. Matthews, J.: Markov chains for sampling matchings, Ph.D. thesis, University of
Edinburgh (2008)

23. Luby, M., Vigoda, E.: Approximately counting up to four. In: Proceedings of the
STOC 1995, pp. 150–159. ACM (1995)

24. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb.
Theory Ser. B 28, 284–304 (1980)

https://doi.org/10.1007/978-3-662-53622-3
http://arxiv.org/abs/1812.03195
https://doi.org/10.1007/978-3-662-12788-9_4

310 M. Dyer et al.

25. Patel, V., Regts, G.: Deterministic polynomial-time approximation algorithms for
partition functions and graph polynomials. SIAM J. Comput. 46, 1893–1919 (2017)

26. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput. 12, 777–788 (1983)

27. Robertson, N., Seymour, P.D.: Graph minors I: excluding a forest. J. Comb. Theory
Ser. B 35, 39–61 (1983)

28. Sinclair, A.: Improved bounds for mixing rates of Markov chains and multicom-
modity flow. Comb. Probab. Comput. 1, 351–370 (1992)

29. Sly, A.: Computational transition at the uniqueness threshold. In: Proceedings of
the FOCS 2010, pp. 287–296. IEEE (2010)

30. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs.
SIAM J. Comput. 31, 398–427 (2001)

31. Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of
the STOC 2006, pp. 140–149. ACM (2006)

Intersection Graphs of Non-crossing
Paths

Steven Chaplick(B)

Lehrstuhl für Informatik I, Universität Würzburg, Würzburg, Germany
steven.chaplick@uni-wuerzburg.de

Abstract. We study graph classes modeled by families of non-crossing
(NC) connected sets. Two classic graph classes in this context are disk
graphs and proper interval graphs. We focus on the cases when the sets
are paths and the host is a tree. Forbidden induced subgraph character-
izations and linear time certifying recognition algorithms are given for
intersection graphs of NC paths of a tree (and related subclasses). For
intersection graphs of NC paths of a tree, the dominating set problem is
shown to be solvable in linear time. Also, each such graph is shown to
have a Hamiltonian cycle if and only if it is 2-connected, and to have a
Hamiltonian path if and only if its block-cutpoint tree is a path.

Keywords: Clique trees · Non-crossing models · Domination ·
Hamiltonicity

1 Introduction

Intersection models of graphs are ubiquitous in graph theory and covered in
many graph theory textbooks, see, e.g., [20,29]. Generally, for a given graph G,
a collection S of sets, {Sv}v∈V (G), is an intersection model of G when Su∩Sv �= ∅
if and only if uv ∈ E(G). Similarly, we say that G is the intersection graph of S.
One quickly sees that all graphs have intersection models (e.g., by choosing,
for every v ∈ V (G), Sv as the edges incident to v). Thus, one often considers
restrictions either on the host set (i.e., the domain from which the elements of
the Sv’s can be chosen), collection S, and/or on the individual sets Sv.

In this paper we consider classes of intersection graphs where the sets are
taken from a topological space, (path) connected, and pairwise non-crossing.
A set S is (path) connected when any two of its points can be connected by
a curve within the set (note: a curve is a homeomorphic image of a closed
interval). Notice that, when the topological space is a graph, connectedness is
precisely the usual connectedness of a graph and curves are precisely paths. Two
connected sets S1, S2 are said to be non-crossing when both S1\S2 and S2\S1

are connected. Our focus will be on intersection graphs of non-crossing paths.

The full version of this article with the appendix referred to herein is on arxiv.org [3].
S. Chaplick—Research supported by DFG grant WO 758/11-1.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 311–324, 2019.
https://doi.org/10.1007/978-3-030-30786-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_24&domain=pdf
http://orcid.org/0000-0003-3501-4608
https://arxiv.org/
https://doi.org/10.1007/978-3-030-30786-8_24

312 S. Chaplick

The most general case of intersection graphs of non-crossing sets which have
been studied are those of non-crossing connected (NC-C) sets in the plane [23].
These were considered together with another non-crossing class, the intersection
graphs of disks in the plane or simply disk graphs. The recognition of both
NC-C graphs and disk graphs is NP-hard [23]. More recently [22], disk graph
recognition was shown to complete for the existential theory of the reals (∃R)1.

One of the simplest cases of connected sets one can consider are those which
reside in R, i.e., the intervals of R. The corresponding intersection graphs are
precisely the well studied interval graphs. Moreover, imposing the non-crossing
property on these intervals leads to the proper interval graphs2. It has often been
considered how to generalize proper interval graphs to more complicated hosts,
but simple attempts to do so involving the property that the sets are proper
are often uninteresting. For example, the intersection graphs of proper paths in
trees or proper subtrees of a tree are easily seen as the same as their non-proper
versions. We will see that the non-crossing property leads to natural new classes
which generalize proper interval graphs.

We formalize the setting as follows. For graph classes S and H, a graph G is
an S-H graph when each v ∈ V (G) has an Sv ∈ S such that:

– the graph H =
⋃

v∈V (G) Sv is in H, and
– uv is an edge of G if and only if Su ∩ Sv �= ∅.

Additionally, we say that ({Sv}v∈V (G),H) is an S-H model of G where H is
the host and each Sv is a guest. We further state that G is a non-crossing-S-H
(NC-S-H) graph when the sets Sv are pairwise non-crossing. In this context the
proper interval graphs are the NC-path-path graphs.

Many classes of S-H graphs have been studied in the literature; see, e.g., [29].
Some of these are described in the table below together with the complexity of
their recognition problems and whether a forbidden induced subgraph character-
ization (FISC) is known. The table utilizes the following terminology. A directed
tree (d.tree) is a tree in which every edge uv has been assigned one direction. A
rooted tree (r.tree) is a directed tree where there is exactly one source node. A
survey of path-tree graph classes is given in [30].

Graph class Guest Host Recognition FISC?

1 Interval path path O(n + m) [8] yes [26]
2 Rooted path tree (RPT) path r.tree O(n + m) [11] open
3 Directed path tree (DPT) path d.tree O(nm) [5] yes [33]
4 Path tree (PT) path tree O(nm) [36] yes [27]
5 Chordal tree tree O(n + m) [35] by definitiona

aA graph is chordal when it has no induced cycles of length four or more.

1 Note: all ∃R-hard problems are NP-hard, see [28] for an introduction to ∃R.
2 Usually defined as having no interval strictly contained within any other.

Intersection Graphs of Non-crossing Paths 313

Results and Outline. We study the non-crossing classes corresponding to
graph classes 1–4 given in the table. Section 2 provides background and notation
concerning intersection models. In Sect. 3 we provide forbidden induced subgraph
characterizations for the non-crossing classes corresponding to 1–4 and certify-
ing linear time recognition algorithms for them. Interestingly, this implies that
one can test whether a chordal graph contains a claw in linear time. Then, for
NC-path-tree graphs, in Sect. 4, we solve the minimum dominating set (MDS)
problem in linear time by showing that there is an independent set which is
also an MDS and using a known algorithm [12]. In Sect. 5, we show that 2-
connectedness implies that each plane drawing of the NC-path-tree model leads
to a distinct Hamiltonian cycle (HC) which can also be found in linear time, and
a similar necessary condition implies the presence of Hamiltonian path (HP).
For the MDS, HC and HP problems, we use the special structure of NC-path-
tree models obtained in Sect. 3.1. Notably, the MDS problem is NP-complete on
PT graphs [2], and split graphs3 [9], but it is polynomial time solvable on RPT
graphs [2]. Also, the HC and HP problems are NP-complete on strongly chordal
split graphs [31], and DPT graphs [32], but easily solved on proper interval
graphs [1]. We conclude with avenues for further research.

2 Preliminaries

Notation. Unless explicitly stated otherwise, all the graphs we discuss in this
work are connected, undirected, simple, and loopless. For a graph G with a
vertex v, we use NG(v) to denote the neighborhood of v, and NG[v] to denote
the closed neighborhood of v, i.e., NG[v] = NG(v) ∪ {v}. The subscript G will
be omitted when it is clear. For a subset S of V (G), we use G[S] to denote the
subgraph of G induced by S. For a set of graphs F , we say that a graph G is
F-free when G does not contain any F ∈ F as an induced subgraph.

For graph classes S and H, and an S-H model ({Sv}v∈V (G),H) of a graph
G, we use the following notation. We refer to elements of V (G) as vertices and
use symbols u and v to refer them whereas we call elements of V (H) nodes and
use x, y, and z to refer to them. For a node x of H we use Gx to denote the
set of vertices v in G where Sv contains x. Observe that every set Gx induces a
clique in G. Note that Sect. 3.1 defines the terms terminal, junction, and mixed
that are also used in later sections of the paper.

Several special graphs are named and depicted in Fig. 1 along with models
of them. We will refer to these throughout this paper.

Twin-Free Graphs. For a graph G, two vertices x and y are called twins when
they have the same closed neighborhood, i.e., N [x] = N [y]. Note that, for the
MDS problem, it is an easy exercise to show that it suffices to consider twin-
free graphs. Also, as the vertex set of a graph can be easily partitioned into its

3 A graph is a split graph when its vertices can be partitioned into a clique and an
independent set. It is easy to see that split graphs are chordal.

314 S. Chaplick

net claw (K1,3 nus-3)

Fig. 1. Some small graphs and tree models of them. In the models the nodes of the
host graph are given as darkly shaded circles and its edges are lightly shaded corridors
connecting them. Each subset Sv is depicted by a tree (or single point) overlaid on the
drawing of the host graph.

equivalence classes of twins in linear time, one can distill the relevant twin-free
induced subgraph of G in linear time.

Chordality and Clique Trees. This area is deeply studied and while there
are many interesting results related to our work, we only pick out a few concepts
and results which are useful in this paper. The starting point is that the chordal
graphs are well-known to be the tree-tree graphs [16].

For a chordal graph G, a clique tree T of G has the maximal cliques of G as
its vertices, and for every vertex v of G, the set Kv of maximal cliques which
contain v induces a subtree of T . In other words, it is a tree-tree model of G
whose nodes are in bijection with the maximal cliques of G. Clique trees are very
useful when discussing models where the host graph is a tree. When a graph has
a tree-tree [16], path-tree [18], path-d.tree [30], path-r.tree [17], or path-path [14]
model, then it also has one that is a clique tree. Such results are summarized
in [29].

We establish similar clique tree results for the corresponding NC graphs when
the guests are paths. However, note that when the guests are trees, we cannot
rely on clique trees. For example, the claw is an NC-tree-tree graph, but it does
not have an NC-tree-tree model that is a clique tree (see Fig. 1). We discuss this
further in the conclusions.

An important property of clique trees for our linear time algorithms is the
following. For a chordal graph G,

∑
v∈V (G) |Kv| ∈ O(n + m) [20]. This implies

that the total size of a clique tree T is O(n+m). So, any algorithm that is linear
in the size of T is also linear in the size of G. Additionally, one can produce a
clique tree of a chordal graph in linear time [15].

3 Non-crossing Paths in Trees: Structure and Recognition

This section concerns classes of intersection graphs of non-crossing paths in trees;
namely, NC-path-tree, NC-path-d.tree, NC-path-r.tree, and NC-path-path. We
first note that the claw (K1,3) is not an NC-path graph regardless of the host.

Observation 1. If G is an NC-path graph, then G is claw-free.

Proof. Suppose G contains a claw with central vertex u and pendant vertices a,
b, c. Let P be a path-H model of G where P = {Pv}v∈V (G). Clearly, Pa ∩ Pu,

Intersection Graphs of Non-crossing Paths 315

Pb∩Pu and Pc∩Pu are disjoint. As such, at most two of them include an endpoint
of Pu. Thus, for some d ∈ {a, b, c}, Pu\Pd is disconnected. �

This section proceeds as follows. The NC-path-tree graphs are shown to
be the claw-free chordal graphs and the structure of NC-path-tree models is
described. From this structure, we then show that NC-path-d.tree = NC-path-
r.tree = (claw, 3-sun)-free chordal. This provides, as a nearly direct consequence,
the classic result that proper interval graphs are precisely the (claw, 3-sun, net)-
free chordal graphs [34]. We conclude with linear time certifying recognition
algorithms for NC-path-tree and NC-path-r.tree graphs.

3.1 The Structure of NC-Path-Tree Models

In this subsection we explore the structure of NC-path-tree models and prove our
FISCs along the way. We first take a slight detour to claw-free chordal graphs and
prove the FISC of NC-path-tree graphs. In doing so we obtain the first insight
into NC-path-tree models. Namely, that it suffices to consider clique trees and
that the clique trees of these graphs are unique (see Theorem 2). We then take
a closer examination of these clique NC-path-tree models and carefully describe
the nodes they contain – this will be used repeatedly in the rest of the paper.

Theorem 2. A graph G is claw-free chordal iff it is an NC-path-tree graph.
Moreover, G has a unique clique tree and it is an NC-path-tree model.

Proof. ⇐ Observation 1 and chordal graphs being tree-tree graphs imply this.
⇒ Let T be a clique tree of a claw-free chordal graph G. We first show that every
subtree Tv must be a path, and then we show that these paths are non-crossing.
These two claims prove the characterization. The uniqueness of the clique tree
of every claw-free chordal graph has been shown previously [24].

Claim 1. For every v ∈ V (G), Tv is a path.

Suppose Tv is not a path. Then Tv contains some claw x0, x1, x2, x3 with center
x0. However, since Gxj

is a maximal clique (for each j ∈ {0, 1, 2, 3}), for each
i ∈ {1, 2, 3}, there is vi ∈ Gxi

\Gx0 . Thus v, v1, v2, v3 induces a claw in G.

Claim 2. The set {Tv : v ∈ V (G)} is non-crossing.

Suppose that Tu intersects Tv but does not include either end of Tv. Let x1

and x2 be the endpoints of Tv. Now there must be v1 ∈ Gx1\NG(u) and v2 ∈
Gx2\NG(u). That is, v, u, v1, v2 induces a claw in G.
 �

We now study the structure of the clique NC-path-tree model ({Pv}v∈V (G), T)

of a graph G. We introduce some terminology. A node x of T is called a terminal
when it is a leaf of every path which contains it, i.e., x is not an internal node
of any Pv. For example, the leaves of T are terminals. Similarly, a node x of T
is a junction when it is an internal node of every path which contains it, i.e., x
is not a leaf of any Pv. A node of T which is neither a terminal nor a junction is
called mixed. We now present the main lemma describing T in these terms and
an observation connecting these terms with certain induced subgraphs of G.

316 S. Chaplick

Lemma 1. For an NC-path-tree graph G, let ({Pv}v∈V (G), T) be its clique NC-
path-tree model. A node x of T must satisfy the following properties:

1. If x is mixed, then x has degree two.
2. If x is a junction, then (i) x has degree 3 and (ii) x’s neighbors are terminals.
3. If x has degree four or more, then x is a terminal.

Proof. 1. Suppose that x has degree at least 3, is a leaf of Pv, and is an internal
node of Pu. Further, let y be the unique neighbor of x in Pv. We see that Pu

includes y (otherwise, Pv and Pu cross). Let y′ be the neighbor of x in Pu\Pv

and let y′′ be a neighbor of x which is not in Pu. Since G is connected, there
exists u′ ∈ Gx ∩ Gy′′ . Furthermore, x is not a leaf of Pu′ (otherwise, Pu crosses
Pu′). Thus, similarly to Pu, y belongs to Pu′ . Now, since Gx and Gy are maximal
cliques, there is u′′ ∈ Gx\Gy. Thus for Pu′′ to neither cross Pu nor Pu′ it must
include both y′ and y′′. However, this means Pu′′ and Pv cross.

2. Suppose that x is a junction and let y1, . . . , yk be the neighbors of x. Since x
is a junction, for every v ∈ Gx, Pv contains exactly two yi’s. Thus, if k = 2, then
Gx ⊆ Gy1 – contradicting T being a clique tree. Now suppose k ≥ 3 and consider
v ∈ Gx where (w.l.o.g.) Pv contains y1 and y2. Since G is connected, there must
be v′ ∈ Gx ∩Gy3 . Furthermore, (w.l.o.g.) Pv′ contains y1 (otherwise, Pv and Pv′

cross). Now, since Gx and Gy1 are maximal cliques, there is v′′ ∈ Gx\Gy1 . Notice
that Pv′′ must contain y2 and y3 in order for Pv′′ to cross neither Pv nor Pv′ .
Finally consider any u ∈ Gx\{v, v′, v′′}. Notice that, in order for Pu to not cross
any of Pv, Pv′ , or Pv′′ , it must contain at least two of y1, y2, y3. In particular,
if k ≥ 4, then Gx ∩ Gy4 = ∅ – contradicting G being connected. Thus, k = 3
(establishing (i)).

Now, suppose that y1 is not a terminal. By 1. and 2.(i), y1 is either a junction
with degree 3 or mixed with degree 2.

Case 1: y1 is a junction with neighbors x, z1, z2. Notice that each of Pv

and Pv′ must contain exactly one of z1 or z2. Moreover, w.l.o.g. they both must
contain z1 otherwise they will cross. However, since y1 is a junction, we have
vertices w,w′, w′′ such that Pw ⊇ {x, y1, z1}, Pw′ ⊇ {x, y1, z2} and Pw′′ ⊇
{z1, y1, z2}. Moreover, both Pw and Pw′ must contain either y2 or y3. Regardless
of this choice, we end up with a crossing between either Pw′ and Pv or Pw′ and
Pv′ . Thus, junctions cannot be neighbors.

Case 2: y1 has degree 2 and is mixed. Let z be the neighbor of y1 other
than x and let w be a vertex of G where y1 is not a leaf of Pw, i.e., w.l.o.g.
Pw ⊇ {z, y1, x, y2}. Notice that, Pv′ must also contain z otherwise Pv′ and Pw

would cross. Similarly, since Pv′ now contains z, Pv must also contain z otherwise
Pv and Pv′ would cross. However, now a vertex u ∈ Gy1\Gz must have Pu = {y1}
but then Pu crosses Pw. Thus, no neighbor of a junction is mixed.

3. This follows immediately from 1. and 2.(i).
 �

Observation 3. For an NC-path-tree graph G, let ({Pv : v ∈ V (G)}, T) be its
clique NC-path-tree model. Let x be a node of T of degree at least three.

Intersection Graphs of Non-crossing Paths 317

1. If x is a junction, then G contains a 3-sun. Also, if G is twin-free, |Gx| = 3.
2. If x is a terminal, then G contains a net.

Proof. 1. As in the proof of Lemma 1.2.(i) a junction x in T has three neighbors
y1, y2, y3 and vertices v, v′, v′′ ∈ Gx such that Pv ⊇ {y1, x, y2}, Pv′ ⊇ {y1, x, y3}
and Pv′′ ⊇ {y2, x, y3}. Additionally, since x, y1, y2, y3 are maximal cliques, there
are vertices u1, u2, u3 ∈ V (G) such that ui ∈ Gx\Gyi

for each i ∈ {1, 2, 3}.
Moreover, all of these vertices are distinct due to their paths being incomparable.
Thus, by considering the 3-sun and its clique tree model given in Fig. 1, it is now
easy to see that G[v, v′, v′′, u1, u2, u3] is a 3-sun. Furthermore, since y1, y2, y3 are
terminals, the paths Pv, Pv′ , Pv′′ are the only distinct paths which are possible
for vertices in Gx. In other words, every vertex in Gx\{v, v′, v′′} is a twin of one
of v, v′, or v′′.

2. Let y1, y2, y3 be distinct neighbors of x. Since G is connected and x, y1, y2, y3
are maximal cliques, we have vi ∈ Gx∩Gyi

and ui ∈ Gyi
\Gx for each i ∈ {1, 2, 3}.

The vi’s are distinct since x is a terminal, and the ui’s are distinct since their
paths are disjoint. Thus, by considering the net and its clique tree model given
in Fig. 1, it is easy to see that G[v1, v2, v3, u1, u2, u3] is a net.
 �

3.2 Restricted Host Trees

Here we relate and characterize the classes of NC-path-d.tree, NC-path-r.tree,
and NC-path-path graphs as stated in the next two theorems. The proofs are in
the appendix and follow from Theorem2, Lemma 1, and Observation 3.

Theorem 4. A graph G is (claw, 3-sun)-free chordal if and only if it is NC-
path-r.tree. Moreover, a graph has an NC-path-d.tree model if and only if it has
a clique NC-path-r.tree.

Theorem 5. A graph G is (claw, 3-sun, net)-free chordal if and only if it is
NC-path-path, i.e., proper interval.

3.3 Recognition Algorithms

From our characterizations, there are straightforward polynomial-time certifying
algorithms for the classes of NC-path-tree and NC-path-r.tree graphs. Specifi-
cally, since these classes are characterized as chordal graphs with an additional
finite set of forbidden induced subgraphs, we can apply a linear time certifying
algorithm for chordal graphs [35], and then apply brute-force search for our addi-
tional forbidden induced subgraphs. If no forbidden induced subgraph is found,
we can simply construct the unique clique tree of the given graph and it will
be an NC-path-tree (or NC-path-r.tree) model as needed to positively certify
membership in our classes. However, we can do this more carefully and obtain
linear time certifying algorithms as in the next theorem.

Theorem 6. The classes NC-path-tree and NC-path-r.tree (=NC-path-d.tree)
have linear-time certifying algorithms.

318 S. Chaplick

Proof. Recall that the size
∑

v∈V (G) |Kv| of a clique tree is O(n + m) (we use
this implicitly throughout the following). First, we run a linear-time certifying
algorithm for chordal graphs, e.g., [35]. Then, we construct a clique tree T in
linear-time [15]. We then annotate the clique tree to mark, for each vertex, for
each maximal clique K in Kv, if K is a leaf or an internal node of the model
of v. If some vertex v uses ≥3 cliques as leaves, we produce a claw as in Claim
1 of the proof of Theorem 2. If there is a mixed node x of degree ≥3, then we
proceed as in the proof of Lemma 1.1. This provides us a pair of paths which
cross in linear time. Then, proceeding as in Claim 2 in the proof of Theorem2,
we identify a claw. Now all of the nodes of degree ≥3 are either terminals or
junctions, and we mark them as such. So, if there is a junction x with degree
≥4, we proceed as in Lemma 1.2.(i) to identify a pair of paths which cross and
as before to find a corresponding claw. Furthermore, if a junction x neighbors a
non-terminal y, we proceed as in Lemma 1.2.(i) to identify a pair of paths which
cross and (again) a corresponding claw.

Now, no crossing between two paths can involve a node of degree ≥ 3. So,
it remains just to ensure no crossings occur between such nodes. In particular,
since the neighbors of all junctions are terminals, such a crossing must occur on
a path connecting two terminals (where all nodes in between are mixed). Let
x1, . . . , xk be such a path. Clearly, this path of cliques represents an interval
graph. Moreover, we will find a pair of crossing paths on it precisely when this
interval graph is not a proper interval graph. Conveniently, this problem is known
to be solvable in linear time [10]. However, to obtain linear time in total (when
processing all such paths) we need to be a bit careful. Namely, rather than
simply checking whether each G[

⋃k
i=1 Gxi

] is a proper interval graph, for each
such path we create the following auxiliary graph G′. The vertex set of G′ is
{u1, uk} ∪ ⋃k−1

i=2 Gxi
. In G′, for each i ∈ {2, . . . , k − 1}, Gxi

is a clique. Also, u1

is adjacent to Gx1 ∩Gx2 and uk is adjacent to Gxk−1 ∩Gxk
. In this way, the size

of G′ can easily be seen as linear in the size of G[
⋃k−1

i=2 Gxi
]. Moreover, since we

only consider paths connecting terminals, each vertex and edge of G is contained
in at most one G′. Finally, observe that G′ is interval and is a proper interval
graph if and only if each G[

⋃k−1
i=2 Gxi

] is as well. Thus, running the certifying
algorithm for proper interval graphs on G′ will provide a claw when G′ is not a
proper interval graph, and such a claw is easily mapped back to a claw in G.

This completes the case of NC-path-tree graphs. For NC-path-r.tree graphs,
we additionally look for junctions and proceed as in Observation 3.1. �

4 Minimum Dominating Set

Recall that a dominating set in a graph G is a subset D of V (G) such that
every vertex is either in D or adjacent to a vertex in D. The MDS problem is
NP-complete on PT graphs [2], and split graphs [9], and line graphs of planar
graphs [37] (which are of course claw-free). Interestingly, the minimum indepen-
dent dominating set (MIDS) problem can be solved on chordal graphs in linear
time [12]. We will show that, for NC-path-tree graphs, the size of an MIDS is the

Intersection Graphs of Non-crossing Paths 319

same as the size of an MDS. Thus, by using [12], we can solve the MDS problem
on NC-path-tree graphs in linear time. We assume graphs are twin-free here.

Theorem 7. For any NC-path-tree graph G, there is an independent dominat-
ing set that is also a minimum dominating set. Moreover, such an independent
dominating set can be found in linear time.

Proof. Let ({Pv}v∈V (G), T) be the clique NC-path-tree model of G. We root T

at a leaf r and call the result
−→
T . For each node x of

−→
T , let p(x) denote the parent

of x. Now, if there is an MDS D of G where each node x has |D ∩Gx| ≤ 1, then
D is an independent set. For an MDS D, let

−→
T (D) be the subtree of

−→
T that

contains the root and consists strictly of nodes with |D∩Gx| ≤ 1 (if |D∩Gr| ≥ 2,
set

−→
T := ∅). Let D be an MDS of G where

−→
T (D) is maximal (

−→
T (D) not strictly

contained in
−→
T (D′) for any other MDS D′) and secondly, for each node x of−→

T \−→
T (D) where p(x) ∈ V (

−→
T (D)), |D ∩ Gx| is minimized.

Suppose that there is a node in
−→
T \−→

T (D), and let x be a node of
−→
T \−→

T (D)
whose parent is in

−→
T (D) (if

−→
T (D) is empty, we set x = r). By our choice of

x, |Gx ∩ D| ≥ 2, and |D ∩ Gp(x)| ≤ 1. We consider the three cases regarding x,
namely, x being mixed, a terminal, or a junction.

Case 1: x is mixed. Note that x has exactly one child. Let z be the closest
descendant of x that is a terminal, and Px,z = (x = x1, . . . , xk = z) be the
(x, z)-path in

−→
T . Note that, by Lemma 1, each xi (2 ≤ i < k) is mixed and has

degree two. For each vertex u of D∩Gx, Pu contains a prefix P ∗(u) of this path.
Let u be a vertex of D ∩ Gx where |P ∗(u)| is maximum. Since |Gp(x) ∩ D| ≤ 1,
u cannot belong to Gp(x) as otherwise replacing D by {u} ∪ (D\(D ∩Gx) would
result in a smaller dominating set. Similarly, D∩ (Gx\Gp(x)) = {u} as otherwise
replacing D by {u} ∪ (D ∩ Gp(x)) ∪ (D\(D ∩ Gx)) would result in a smaller
dominating set. Thus, D ∩Gx = {u, v} where v is a vertex of Gp(x). Now, let u′

be any vertex of Gx1\Gx. In order for the path Pu′ of u′ to not cross Pu, Pu′

must contain P ∗(u)\{x1}. Now, replacing u by u′ in D results in an MDS D′

where
−→
T (D′) strictly contains

−→
T (D), contradicting the choice of D.

Case 2: x is a junction. Let y1 and y2 be the two children of x. Recall that, as
G is twin-free, by Lemma 1, Gx contains exactly three vertices v1, v2, v1,2 and
these vertices have the paths (p(x), x, y1), (p(x), x, y2), and (y1, x, y2) respec-
tively. Since |D ∩ Gp(x)| ≤ 1, D does not contain both of v1 and v2. So, since
|D ∩ Gx| ≥ 2, w.l.o.g., suppose that D contains v1 and v1,2. However, now, as
y2 is a terminal, replacing v1,2 by any vertex of Gy2\Gx results in a new MDS
D′ in which

−→
T (D′) is strictly larger than

−→
T (D) as T (D) ∪ {x} ⊆ T (D′).

Case 3: x is a terminal. Note that, since |D∩Gx| ≥ 2, D cannot contain a vertex
v where Pv = (x) as this would contradict the minimality of D. So, since x is a
terminal, for every vertex v ∈ D∩Gx, Pv must contain exactly one neighbor of x.
Let y1, . . . , yt be the children of x where |D ∩ Gx ∩ Gyi

| ≥ 1.
Suppose some yi is a junction. Let z1 and z2 be the children of yi, and

let u1, u2, u1,2 be the vertices of Gyi
where Pu1 = (x, yi, z1), Pu2 = (x, yi, z2),

320 S. Chaplick

Pu1,2 = (z1, yi, z2) respectively. Suppose, w.l.o.g., that u1 is in D. Now, either
there is v ∈ D ∩ (Gx\Gyi

), or u2 is also in D. In both cases replacing, u1 with
u1,2 leads to a contradiction in our choice of D (either due to the maximality of−→
T (D) or due to the second condition). Thus, no yi is a junction.

So, y1 is not a junction. We observe that |D ∩ Gx ∩ Gy1 | = 1 as follows.
Suppose we have u, u′ ∈ D ∩Gx ∩Gy1 . Then, since x is a terminal and y1 is not
a junction, w.l.o.g., Pu contains Pu′ , i.e., we must have u = u′. Note that, for
each u∗ ∈ Gy1\Gx, in order for Pu∗ to not cross Pu, Pu∗ must extend as least as
far down

−→
T as Pu. Now, since |D∩Gx| ≥ 2 there is a vertex v which is either in

D ∩Gx ∩Gp(x) or in D ∩Gx ∩Gy2 . Thus, due to the presence of v, by replacing
u with u∗ we obtain a new MDS that contradicts our choice of D. �

5 Hamiltonian Cycles and Paths

As mentioned before the HC and HP problems are NP-complete on DPT graphs
and split graphs. They are also NP-complete on line graphs of bipartite graphs,
i.e., (claw, diamond, odd-hole)-free graphs [25]. In contrast, we show that, like
proper interval graphs [1], 2-connectivity suffices for Hamiltonicity in NC-path-
tree graphs, but additionally, every tracing of a clique NC-path-tree model pro-
vides a distinct HC of its graph. We similarly characterize the presence of an HP.

Theorem 8. An NC-path-tree graph G has a Hamiltonian cycle if and only if
it is 2-connected and has at least three vertices. Also, for each plane layout of
G’s clique NC-path-tree model T , we obtain a distinct a Hamiltonian cycle of G.

Proof. We build on the fact that 2-connected proper interval graphs are not only
Hamiltonian but have an HC with quite special structure, established in [1], and
described as follows. Consider a proper interval graph G. Let x1, . . . , xk be the
maximal cliques G ordered according to the clique NC-path-path model of G.
Further, let u1 be a vertex of Gx1\Gx2 and let uk be a vertex of Gxk

\Gxk−1 .
When G is 2-connected there are internally disjoint (u1, uk)-paths P1 and P2

such that every vertex of G belongs to either P1 or P2. In essence, we will see
(through an auxiliary multigraph Q constructed below) that such paths also
occur in 2-connected NC-path-tree graphs by considering the proper interval
graphs occurring between terminals.

Now consider a 2-connected NC-path-tree graph G and its clique NC-path-
tree model T . Recall that, as we noted when designing our certifying algo-
rithm for NC-path-tree graphs, for a path x1, . . . , xk in T where x1 and xk

are terminals and each inner node is mixed, the graph G[
⋃k

i=1 Gxi
] is a proper

interval graph. Moreover, since G is 2-connected, each such subgraph is also 2-
connected. Additionally, the graph G′ created from G[

⋃k
i=1 Gxi

] as before is also
2-connected. However, there is one special case where we use a slightly different
auxiliary graph (otherwise we simply use the G′ defined before). When k = 2,
the graph G′ is the clique Gx1 ∩Gxk

together with new vertices u1 and uk where
N(u1) = N(uk) = Gx1 ∩ Gxk

. Now, it is easy to see that our graphs G′ are

Intersection Graphs of Non-crossing Paths 321

2-connected and proper interval, and since u1 and uk are not adjacent, we have
two non-empty disjoint paths that both start with a vertex of Gx1 ∩ Gx2 , and
end with a vertex of Gxk−1 ∩ Gxk

.
We now consider the case when a neighbor y of x is a junction before com-

pleting our construction of the HC. Let the other two neighbors of the junction
y be x′ and x′′. Due to the fact that x, x′, x′′ are all terminals, the vertices of
Gy form three equivalence classes A,A′, A′′ of twins, where each vertex in A
is represented by the path x, y, x′, each vertex in A′ is represented by the path
x′, y, x′′, and each vertex in A′′ is represented by the path x′′, y, x. Namely, using
A,A′, A′′ we can “traverse” from x to x′, from x′ to x′′, and from x′′ back to x.

Based on the above observations, we can now build our HCs. To do this we
will trace the outline of T by using the paths guaranteed by the above arguments.
This trace can be described by a multigraph Q formed on the terminals of T
where each Eulerian tour of Q will correspond to a distinct HC of G. Namely,
for each terminal x, and each neighbor y of x:

– if y is a terminal, then in Q, x and y are connected by two edges (representing
the two paths present in the corresponding G′).

– if y is a mixed node and z is the terminal so that y occurs on the (x, z)-path
in T , then, in Q, x and z are connected by two edges (representing the two
paths present in the corresponding G′).

– if y is a junction and x′ and x′′ are its two other neighbors, then in Q, we
have the edges xx′ and xx′′.

– finally, if Gx contains vertices that do not belong to any other Gx′ (e.g., when
x is a leaf of T), we also add a self-loop to x and map to this self-loop the
vertices of Gx\(

⋃
x′∈N(x) Gx′).

We note the following properties of Q to complete the proof. The edges of Q
partition the vertices of G and each edge xy corresponds to a path in G where
the first vertex belongs Gx and the last vertex belongs to Gy. Furthermore, Q is
Eulerian, each Eulerian cycle C provides an HC, and C describes a plane layout
of T , i.e., a cyclic order of the edges around each node of T so that C traces the
outline of this plane layout of T . Note that, each such plane layout will often
arise from multiple Eulerian cycles in Q, but no two distinct layouts arise from
the same cycle. �

The block-cutpoint tree BC(G) of a graph G contains a node for each cut-
vertex of G, a node for each maximal 2-connected subgraph (block) of G, and
its edge set is {cB : c is a cut-vertex, and B is a block of G containing c}. It
is well-known that BC(G) can be computed in linear time [21], and is indeed
always a tree. Clearly, if G has an HP, BC(G) is a path. We show that this is
sufficient to have an HP in NC-path-tree graphs. The main idea is to observe
where the cut-vertices occur in the model and then reuse our Eulerian structure
Q from the previous proof (see the appendix for the proof).

Theorem 9. An NC-path-tree graph G contains a Hamiltonian path if and only
if its block-cutpoint tree is a path.

322 S. Chaplick

6 Concluding Remarks

A natural next step would be to study the NC-tree-tree graphs. But, it is not
safe to simply work with clique trees in this case as the claw requires the use of a
non-clique tree model. We conjecture that the NC-tree-tree graphs can be char-
acterized as chordal graphs avoiding finite set of forbidden induced subgraphs.

Other host domains have been considered in the literature. Notice that similar
to proper interval graphs being NC-path-path graphs, the proper circular arc
graphs are precisely the NC-path-cycle graphs. A simple host graph class which
generalizes both trees and cycles is that of cacti. A cactus is a connected graph
in which every 2-connected component is a single vertex, a single edge or a
chordless cycle. The intersection graphs of subtrees of a cactus were studied by
Gavril [19]. So, one might consider the NC-path/tree/cactus-cactus graphs.

Finally, an alternative view of host domains has been considered quite
recently through the notion of H-graphs [4,6,7,13], i.e., for a fixed graph H, a
graph G is an H-graph when it is an intersection graph of connected subgraphs
of a subdivision of H. Here, interval graphs are the K2-graphs and circular arc
graphs are the K3-graphs. While there is a natural notion of proper H-graphs [4]
(which indeed restrict H-graphs for every H), the more restrictive non-crossing
H-graphs might have a nicer structure and lead to easier (and faster) algorithms.

References

1. Bertossi, A.A.: Finding Hamiltonian circuits in proper interval graphs. Inf. Process.
Lett. 17(2), 97–101 (1983). https://doi.org/10.1016/0020-0190(83)90078-9

2. Booth, K.S., Johnson, J.H.: Dominating sets in chordal graphs. SIAM J. Comput.
11(1), 191–199 (1982). https://doi.org/10.1137/0211015

3. Chaplick, S.: Intersection graphs of non-crossing paths. CoRR abs/1907.00272
(2019)

4. Chaplick, S., Fomin, F.V., Golovach, P.A., Knop, D., Zeman, P.: Kernelization of
graph hamiltonicity: proper H -graphs. In: Friggstad, Z., Sack, J.-R., Salavatipour,
M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 296–310. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-24766-9 22

5. Chaplick, S., Gutierrez, M., Lévêque, B., Tondato, S.B.: From path graphs to
directed path graphs. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp.
256–265. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-
7 24

6. Chaplick, S., Töpfer, M., Voborńık, J., Zeman, P.: On H -topological intersection
graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520,
pp. 167–179. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-
6 13

7. Chaplick, S., Zeman, P.: Combinatorial problems on H-graphs. In: EUROCOMB,
vol. 61, pp. 223–229 (2017). https://doi.org/10.1016/j.endm.2017.06.042

8. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of
interval graphs. SIAM J. Discrete Math. 23(4), 1905–1953 (2009). https://doi.
org/10.1137/S0895480100373455

9. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete
Appl. Math. 9(1), 27–39 (1984). https://doi.org/10.1016/0166-218X(84)90088-X

https://doi.org/10.1016/0020-0190(83)90078-9
https://doi.org/10.1137/0211015
https://doi.org/10.1007/978-3-030-24766-9_22
https://doi.org/10.1007/978-3-642-16926-7_24
https://doi.org/10.1007/978-3-642-16926-7_24
https://doi.org/10.1007/978-3-319-68705-6_13
https://doi.org/10.1007/978-3-319-68705-6_13
https://doi.org/10.1016/j.endm.2017.06.042
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1016/0166-218X(84)90088-X

Intersection Graphs of Non-crossing Paths 323

10. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403
(1996). https://doi.org/10.1137/S0097539792269095

11. Dietz, P.F.: Intersection graph algorithms. Ph.D. thesis, Cornell University (1984)
12. Farber, M.: Independent domination in chordal graphs. Oper. Res. Lett. 1(4), 134–

138 (1982). https://doi.org/10.1016/0167-6377(82)90015-3
13. Fomin, F.V., Golovach, P.A., Raymond, J.: On the tractability of optimization

problems on H-graphs. In: ESA. LIPIcs, vol. 112, pp. 30:1–30:14. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.ESA.
2018.30

14. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15,
835–855 (1965)

15. Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl,
M. (ed.) WG 1995. LNCS, vol. 1017, pp. 358–371. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60618-1 88

16. Gavril, F.: The intersection graphs of subtrees of trees are exactly the chordal
graphs. J. Comb. Theory Ser. B 16, 47–56 (1974)

17. Gavril, F.: A recognition algorithm for the intersection graphs of directed paths
in directed trees. Discrete Math. 13(3), 237–249 (1975). https://doi.org/10.1016/
0012-365X(75)90021-7

18. Gavril, F.: A recognition algorithm for the intersection of graphs of paths in trees.
Discrete Math. 23, 211–227 (1978)

19. Gavril, F.: Intersection graphs of helly families of subtrees. Discrete Appl. Math.
66, 45–56 (1996)

20. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete
Mathematics. Elsevier, Amsterdam (2004)

21. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipu-
lation. Commun. ACM 16(6), 372–378 (1973). https://doi.org/10.1145/362248.
362272

22. Kang, R.J., Müller, T.: Sphere and dot product representations of graphs. Discrete
Comput. Geom. 47(3), 548–568 (2012)

23. Kratochv́ıl, J.: Intersection graphs of noncrossing arc-connected sets in the plane.
In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 257–270. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-62495-3 53

24. Kumar, P., Madhavan, C.: Clique tree generalization and new subclasses of chordal
graphs. Discrete Appl. Math. 117(1–3), 109–131 (2002). https://doi.org/10.1016/
S0166-218X(00)00336-X

25. Lai, T., Wei, S.: The edge hamiltonian path problem is NP-complete for bipar-
tite graphs. Inf. Process. Lett. 46(1), 21–26 (1993). https://doi.org/10.1016/0020-
0190(93)90191-B

26. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals
on a real line. Fundam. Math. 51(1), 45–64 (1962)

27. Lèvêque, B., Maffray, F., Preissmann, M.: Characterizing path graphs by forbidden
induced subgraphs. J. Graph Theory 62, 4 (2009)

28. Matousek, J.: Intersection graphs of segments and ∃R. CoRR abs/1406.2636 (2014).
http://arxiv.org/abs/1406.2636

29. McKee, T., McMorris, F.: Intersection Graph Theory. SIAM (1999)
30. Monma, C.L., Wei, V.K.: Intersection graphs of paths in a tree. J. Comb. Theory

Ser. B 41(2), 141–181 (1986)
31. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156(1–

3), 291–298 (1996). https://doi.org/10.1016/0012-365X(95)00057-4

https://doi.org/10.1137/S0097539792269095
https://doi.org/10.1016/0167-6377(82)90015-3
https://doi.org/10.4230/LIPIcs.ESA.2018.30
https://doi.org/10.4230/LIPIcs.ESA.2018.30
https://doi.org/10.1007/3-540-60618-1_88
https://doi.org/10.1016/0012-365X(75)90021-7
https://doi.org/10.1016/0012-365X(75)90021-7
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/362248.362272
https://doi.org/10.1007/3-540-62495-3_53
https://doi.org/10.1016/S0166-218X(00)00336-X
https://doi.org/10.1016/S0166-218X(00)00336-X
https://doi.org/10.1016/0020-0190(93)90191-B
https://doi.org/10.1016/0020-0190(93)90191-B
http://arxiv.org/abs/1406.2636
https://doi.org/10.1016/0012-365X(95)00057-4

324 S. Chaplick

32. Narasimhan, G.: A note on the hamiltonian circuit problem on directed path
graphs. Inf. Process. Lett. 32(4), 167–170 (1989). https://doi.org/10.1016/0020-
0190(89)90038-0

33. Panda, B.S.: The forbidden subgraph characterization of directed vertex
graphs. Discrete Math. 196(1–3), 239–256 (1999). https://doi.org/10.1016/S0012-
365X(98)00127-7

34. Roberts, F.S.: On nontransitive indifference. J. Math. Psychol. 7(2), 243–258
(1970). https://doi.org/10.1016/0022-2496(70)90047-7

35. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021

36. Schäffer, A.A.: A faster algorithm to recognize undirected path graphs. Discrete
Appl. Math. 43, 261–295 (1993). https://doi.org/10.1016/0166-218X(93)90116-6

37. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math.
38(3), 364–372 (1980)

https://doi.org/10.1016/0020-0190(89)90038-0
https://doi.org/10.1016/0020-0190(89)90038-0
https://doi.org/10.1016/S0012-365X(98)00127-7
https://doi.org/10.1016/S0012-365X(98)00127-7
https://doi.org/10.1016/0022-2496(70)90047-7
https://doi.org/10.1137/0205021
https://doi.org/10.1016/0166-218X(93)90116-6

Reconfiguring Hamiltonian Cycles
in L-Shaped Grid Graphs

Rahnuma Islam Nishat(B) and Sue Whitesides

Department of Computer Science,
University of Victoria, Victoria, Canada

{rnishat,sue}@uvic.ca

Abstract. Given a pair of 1-complex Hamiltonian cycles C and C′ in
an L-shaped grid graph G, we show that one is reachable from the other
under two operations, flip and transpose, while remaining in the family
of 1-complex Hamiltonian cycles throughout the reconfiguration. Oper-
ations flip and transpose are local in G. We give a reconfiguration algo-
rithm that uses O(|G|) operations.

Keywords: Hamilton cycle · Reconfiguration · Grid graph · Algorithm

1 Introduction

An L-shaped grid graph G is a finite, embedded, vertex-induced subgraph of
the 2D integer grid, determined by an L-shaped orthogonal polygon drawn on
the grid together with the grid vertices in its closure. The L-shaped polygon
has six edges serving as the six boundaries of G and exactly one reflex corner
vertex as shown in Fig. 1(a). In this paper we study reconfiguration of 1-complex
Hamiltonian cycles in G, where a cycle is 1-complex if it connects each vertex
of G to a boundary with a turn-free subpath. See Fig. 1(b).

Many kinds of reconfiguration problems have been proposed (e.g., [5,8,11,
16]), where one structure is to be transformed to another by applying a given
set of operations. Hamiltonian cycle problems on grid graphs have been studied
both combinatorially (e.g., [9,10,15]) as well as with regard to computational
complexity (e.g., [1,7,17]). We initiated the study of reconfiguration problems
for Hamiltonian cycles in grid graphs in a previous paper [13], where we stud-
ied rectangular grid graphs. Here we take the essential next step towards more
general grid graphs by dealing with a single reflex corner.

Takaoka [16] has recently shown that the problem of deciding whether there
is a sequence of “switch” operations between two given Hamiltonian cycles is
PSPACE-complete for chordal bipartite graphs, strongly chordal split graphs,
and bipartite graphs with maximum degree 6. In contrast to our work, the graph

R. I. Nishat—Travel supported by a grant from Faculty of Graduate Studies, University
of Victoria.
S. Whitesides—Research supported in part by NSERC.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 325–337, 2019.
https://doi.org/10.1007/978-3-030-30786-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_25

326 R. I. Nishat and S. Whitesides

(a)

reflex corner

a(0, 0) b

c

d

e

f
W

NN

NE

FN

FE

S
(b)y

x

Fig. 1. (a) An L-shaped grid graph G with labeled corners and boundary edges. (b) A
reconfiguration problem on G: can the first 1-complex Hamiltonian cycle be reconfig-
ured to the second by flips and transposes?

classes he considered are not necessarily grid graphs or embedded. In [13], we
defined two simple local operations flip and transpose for Hamiltonian cycles
on embedded grid graphs and showed that any two given 1-complex Hamilto-
nian cycles in a rectangular grid graph are connected by a sequence of flip and
transpose operations.

Grid graphs are used in path planning problems for robots and machine
tools that must vacuum, explore, mill, or print material in a region that can be
overlaid by a grid graph (e.g., [6,12]). A Hamiltonian path or cycle problem arises
when each vertex should be visited only once. The combinatorial enumeration of
Hamiltonian paths and cycles in grid graphs has found application in polymer
science (e.g., [3,14]). We are particularly interested in 1-complex Hamiltonian
cycles in grid graphs because they can be used to reduce turn costs and travel
time in milling problems and traveling salesman tours; also they may improve
accuracy of robot navigation (e.g., [2,4,18]).

This paper presents a reachability result for a problem posed in [13]. Namely,
we show that there is a sequence of O(|G|) flip and transpose operations between
any two 1-complex Hamiltonian cycles in G, via canonical forms we define in
Sect. 2. The rest of the paper is organized as follows. Section 2 defines terminology
and presents a key lemma. Sections 3 and 4 give algorithms to transform a 1-
complex Hamiltonian cycle to a canonical form. Section 5 handles reconfiguration
between any two canonical forms, thus yielding the main result of the paper.
Section 6 concludes with some open problems.

2 Preliminaries

Let G be an L-shaped grid graph with reflex corner d, embedded on the integer
grid as shown in Fig. 1(a), so that vertex a is at the origin (0, 0) of a coordinate
system with positive y downward. A rectangular grid graph G′ is defined by a
rectangle drawn on the 2D integer grid together with the grid vertices in its

Reconfiguring Hamiltonian Cycles in L-Shaped Grid Graphs 327

closure. G′ is a rectangular subgrid of G if the rectangle defining G′ belongs
to the closure of the L-shaped polygon defining G. Similarly, an L-shaped grid
graph G′′ is an L-shaped subgrid of G if the polygon defining G′′ belongs to the
closure of the L-shaped polygon for G.

For a vertex v of G, x(v) and y(v) denote its x– and y–coordinates. Row j is
the set of vertices of G with y-coordinate j, and Column i is the set of vertices
of G with x-coordinate i. A horizontal track thj is the rectangle determined by
the pair of Rows j and j + 1; a vertical track tvi is the rectangle determined by
the pair of Columns i and i + 1. We call Columns 0 and x(e) the west (W) and
far-east (FE) boundaries; Rows 0 and y(e) are the near-north (NN) and south
(S) boundaries. The vertices on Column x(d) from b to d (inclusive) comprise the
near-east (NE) boundary and the vertices on Row y(d) from d to f (inclusive)
comprise the far-north (FN) boundary. The words “near” and “far” evoke the
closeness of a boundary to the origin. See Fig. 1(a). The definitions of flip and
transpose are recalled from [13] in Fig. 2.

a b

c d

e f

a b

c d

e f

a g

c h

e i

b

d

f

a g

c h

e i

b

d

f

flip transpose

(a) (b)

Fig. 2. On a Hamiltonian cycle C in a grid graph: (a) a flip interchanges path a, c, d, b
with edge (a, b), and interchanges edge (e, f) with path e, c, d, f ; (b) a transpose inter-
changes path f, d, b, g, h, i with edge (f, i), and interchanges edge (a, c) with path
a, b, g, h, d, c.

A cookie c of a 1-complex Hamiltonian cycle C of G is a path in C that
begins and ends on boundaries of G, has no intermediate points on boundaries,
and has exactly two bends. Observe that each internal vertex of G lies on some
cookie of C, and also that the endpoints of a cookie must be adjacent grid points
on the same boundary of G. Thus we have six types of cookies: NN, FN, S, NE,
FE and W. We say cookies are from one of the four axis-aligned directions: W
cookies from west, NE and FE from east, NN and FN from north, and S from
south. The size of a cookie is the distance it extends along its track tr.

A zip operation Z = ziptp(tr, sz) in a Hamiltonian cycle C of G is a sequence
of zero or more transpose operations followed by zero or more flip operations in
track tr such that the size of the desired cookie of type tp in track tr is sz after
the zip. We define the zone of Z to be the closed 1 × sz rectangle that contains
the desired cookie (see Fig. 3). For the next definition, consider the two closed
line segments s and s′ that are 1

2 -unit translates of the sz-length sides of the
zone, such that s and s′ are outside the zone and each has one endpoint on the
tp boundary. We call them the two sidelines of the zone.

328 R. I. Nishat and S. Whitesides

Definition 1 (Zippability). The zone of Z = ziptp(tr, sz) is zippable if (i)
at least one of its sidelines does not intersect any cookie of C, (ii) any cookie
perpendicular to tr that intersects the zone covers exactly 4 internal vertices of
G in the zone, and (iii) any cookie of C of type tp in tr has size ≤ sz.

(a)

tr

s

s

(b) (c) (d)
tp boundary

sz

zone

s ss s

Fig. 3. Here, zones are shown in gray. Zones in (a)–(b) are zippable, but in (c)–(d) are
not zippable. The complete cycle C is not shown. Sidelines are shown dashed.

The following lemma justifies the terminology.

Lemma 1. Let C be a 1-complex Hamiltonian cycle in an L-shaped grid graph
G and let Z = ziptp(tr, sz) be a zip operation. If the zone of Z is zippable, then
C can be transformed with at most sz flips and transposes to another 1-complex
Hamiltonian cycle C ′ such that C ′ has a cookie of type tp and size sz in tr.

It is easy to see that performing a flip or transpose operation preserves Hamil-
tonicity, but the resultant Hamiltonian cycle need not be 1-complex. However,
in this paper, all flips and transposes are performed on 1-complex Hamiltonian
cycles in the context of zip operations with zippable tracks. From Lemma1 we
note the following.

Remark 1. Performing a zip operation in a zippable zone on a 1-complex
Hamiltonian cycle results in another 1-complex Hamiltonian cycle.

Definition 2. A canonical Hamiltonian cycle C in an L-shaped grid graph
is a 1-complex Hamiltonian cycle that has at most two sets of cookies, where
within each set, all are of the same type and size. (See Fig. 8 of Sect. 5).

3 1-Complex Cycles to Canonical Forms: Special Cases

From now on, “cycle” C means a 1-complex Hamiltonian cycle in an L-shaped
grid graph unless otherwise stated. In this section, we consider some special
cases defined by forbidding certain cookie types in cycle C. We give algorithms
that reconfigure these special cases of the input cycle to a canonical form. These
algorithms are used in Sect. 4 to handle the general case. The algorithms in
this section are sweep algorithms whose details depend on parities. All sweeps
throughout the paper are inclusive of their end positions and are designed to
ensure that the zippability conditions hold. Hence, intermediate cycles remain
1-complex Hamiltonian. The algorithms share the same proof of correctness,
given in Sect. 3.4.

Reconfiguring Hamiltonian Cycles in L-Shaped Grid Graphs 329

a b

d f

c e

(a) (b) (c)

a b

d f

c e

a b

d

c
e

Fig. 4. Special cases of 1-complex cycles with no cookies of type (a) W, (b) NE or FE,
(c) NN or FE, respectively. See Sects. 3.1, 3.2 and 3.3, respectively.

3.1 1-Complex Cycles Without W Cookies

Let C be a cycle no W cookies (see Fig. 4(a)). We give an algorithm that we call
XW to reconfigure C to a canonical Hamiltonian cycle C of G. We consider four
cases (see Fig. 5) based on the parities of x(d) and x(e):

(a) (b) (c) (d)

a a a a bbbb

d d
d

d f

f
ff

e e e ecccc

Fig. 5. The intermediate Hamiltonian cycles after the first sweep in Cases 1–4, respec-
tively. For Case 1, the intermediate cycle is already the final canonical cycle.

1. x(e) and x(d) are both odd. We do one sweep across G from Column 1 to
Column x(e)− 1, filling alternate vertical tracks with two sets of S cookies of
sizes y(e) − 1 and y(e) − y(d) − 1, respectively.

2. x(e) is odd and x(d) is even. We do two sweeps. The first is eastward from
Column 1 to Column x(e) − 1, leaving two sets of S cookies, one set with
size y(e) − 1 and the other with size y(e) − y(d) − 1, and also one set of
NE cookies of unit size covering the internal vertices of Column x(d) − 1
from Row 1 through Row y(d). Therefore, y(d) must be even in this case.
Otherwise, if y(d) were odd then the 1-complex Hamltonian cycle produced
by the zip operations done so far would leave some internal vertex in Column
x(d) − 1 between Rows 1 and y(d) uncovered, contradicting Remark 1 and
Hamiltonicity of C. The second sweep then expands the unit size NE cookies
toward the W boundary, namely a downward sweep from Row 1 to Row y(d)
fills alternate tracks with NE cookies of size x(d) − 1, which shortens the S
cookies to size y(e) − y(d) − 1. The final cycle has one set of NE cookies of
size x(d) − 1 and one set of S cookies of size y(e) − y(d) − 1.

330 R. I. Nishat and S. Whitesides

3. x(e) is even and x(d) is odd. We do two sweeps, similar to Case 2. The first
sweep is eastward from Column 1 to Column x(e)−1 and leaves two sets of S
cookies, of sizes y(e)−1 and y(e)−y(d)−1, and one set of FE cookies of unit
size that covers the internal vertices of Column x(e) − 1. By logic similar to
Case 2, y(e)−y(d) must be even in this case. The second sweep then expands
these unit size FE cookies to Column x(d), namely a downward sweep from
Row y(d)+1 to the S boundary partially fills alternate horizontal tracks with
FE cookies of size x(e) − x(d). The final cycle has one set of FE cookies of
size x(e) − x(d) and one set of S cookies of size y(e) − 1.

4. x(e) and x(d) are both even. We do two sweeps. The first sweep is eastward
from Column 1 to Column x(e) − 1 and leaves two sets of S cookies, of sizes
y(e) − 1 and y(e) − y(d) − 1, and also one set of NE cookies of unit size
that covers the vertices of Column x(d) − 1 from Row 1 through Row y(d),
and also one set of unit size FE cookies that covers the internal vertices of
Column x(e) − 1. Thus, reasoning as above, y(d) and y(e) must be even.
Figure 6 shows the first few steps of the eastward sweep. The second sweep
is downward from Row 1 to Row y(e) − 1 and expands the unit size NE and
FE cookies westward to Column 1.

a

e

a b

d f

c e

a b

d f

c e

b

d f

c

. . .

Fig. 6. First few steps of the eastward sweep in Case 4, in which x(e) and x(d) are
found to be even in the course of the sweep. The sweeping track is highlighted in pink.
(Color figure online)

3.2 1-Complex Cycles Without Any NE or FE Cookies

Let C be a 1-complex Hamiltonian cycle of G without any NE or FE cookies (see
Fig. 4(b)). We give an algorithm we call XNEFE to reconfigure C to a canonical
Hamiltonian cycle. We consider four cases based on the parities of x(d) and x(e):

1. x(e) and x(d) are both odd. We do one sweep westward from Column x(e)−1
to Column 1 that fills alternate vertical tracks with two sets of S cookies of
sizes y(e) − y(d) − 1 and y(e) − 1, respectively.

2. x(e) and x(d) are both even. We do two sweeps. The first sweep is westward
from Column x(e) − 1 to Column 1 and leaves two sets of S cookies, of sizes
y(e) − y(d) − 1 and y(e) − 1, and also one set of W cookies of unit size that
covers the internal vertices of Column 1. In this case, y(e) must be found to

Reconfiguring Hamiltonian Cycles in L-Shaped Grid Graphs 331

be even as a consequence of Remark 1 and the Hamiltonicity of C. The second
sweep expands the unit size W cookies eastward to Column x(d)−1, namely a
downward sweep from Row 1 to Row y(e)−1 partially fills alternate horizontal
tracks with a set of W cookies of size x(d) − 1. The final cycle has one set of
W cookies of size x(d) − 1 and one set of S cookies of size y(e) − y(d) − 1.

3. x(e) is even and x(d) is odd. We do two sweeps. The first is westward from
Column x(e) − 1 to Column 1 and leaves one set of S cookies of size y(e) −
y(d)− 1 and one set of NN cookies of size y(d), and also one set of W cookies
of unit size that covers the vertices of Column 1 from Row y(d) + 1 to Row
y(e) − 1. In this case, reasoning as above, y(e) − y(d) must be found to be
even. The second sweep expands the unit size W cookies eastward to Column
x(e)− 1: a downward sweep from Row y(d) + 1 to Row y(e)− 1 partially fills
alternate horizontal tracks with W cookies of size x(e)−1. The final cycle has
one set of NN cookies of size y(d) and one set of W cookies of size x(e) − 1.

4. x(e) is odd and x(d) is even. We do two sweeps. The first is westward from
Column x(e) − 1 to Column 1 and leaves one set of S cookies of size y(e) −
y(d)− 1 and one set of NN cookies of size y(d), and also one set of W cookies
of unit size. The W cookies cover the vertices of Column 1, but this time the
vertices from Row 1 to Row y(d) are covered by W cookies. Reasoning as in
the previous cases, y(d) must be found to be even. The second sweep expands
the unit size W cookies eastward to Column x(d)− 1: an upward sweep from
Row y(d) to Row 1 fills alternate tracks with W cookies of size x(d)− 1. The
final cycle has one set of S cookies of size y(e) − y(d) − 1 and one set of W
cookies of size x(d) − 1.

3.3 1-Complex Cycles Without Any NN or FE Cookies

Let C be a 1-complex Hamiltonian cycle of G without any NN or FE cookies
(see Fig. 4(c)). We give an algorithm called XNNFE that sweeps downward from
Row 1 either to Row y(d) (if y(d) is odd) or to Row y(d) + 1 (if y(d) is even),
and fills alternate horizontal tracks with W cookies of size x(d)−1. This removes
any initial NE cookies in C. Let C ′ be the 1-complex Hamiltonian cycle after
this sweep. Since C ′ does not have any NN, NE or FE cookies, we can then call
Algorithm XNEFE on C ′ as a procedure.

3.4 Proof of Correctness

The following theorem establishes the correctness of the Algorithms XW,
XNEFE and XNNFE.

Theorem 1. Let C be a 1-complex Hamiltonian cycle in an L-shaped grid graph
G. Algorithms XW, XNEFE and XNNFE compute canonical Hamiltonian cycles
of G using O(|G|) flips and transposes such that the forbidden cookie types do
not appear in the canonical cycles. Also the intermediate cycle computed after
each operation remains 1-complex Hamiltonian.

332 R. I. Nishat and S. Whitesides

Proof Sketch. Our algorithms consist of a sequence of zips. By Lemma1 we have
a 1-complex Hamiltonian cycle during and after each zip operation. It is easy to
see that the forbidden cookie types do not appear at any step of the algorithms,
and by Remark 1 the cycle remains 1-complex Hamiltonian after each operation.
Now we check zippability of the sweeps. In the first sweep in all three algorithms,
the zone of the first zip in any loop is next to a boundary of forbidden cookie
type, and hence is zippable. The zones of the remaining zip operations that follow
in the same loop all have the same size, so we can advance the sideline by 2 and
it still does not intersect any cookies. Thus, zippability holds for all the zips of
the first sweep. The second sweep (if it is carried out) is orthogonal to the first
sweep and expands cookies of unit size. The zone of the first zip in any loop of
the sweep would have a sideline either next to the NN boundary of G or between
Rows y(d) and y(d) + 1, so the zippability conditions hold. The zips that follow
in the same loop of the sweep have zones that are zippable. Since each of the
algorithms performs at most two zips in any track (horizontal or vertical) of G,
a total of O(|G|) flips and transposes is done. ��

4 1-Complex Cycles to Canonical Forms: General Case

Let C be a 1-complex Hamiltonian cycle in an L-shaped grid graph G. Now we
consider the general case when C has cookies from all four directions (east, west,
north, and south); otherwise (possibly after repositioning G to make e the origin
and a the bottom right corner) C falls into a special case of Sect. 3. The problem
we want to solve algorithmically is as follows.

Problem Π(C): Given a 1-complex Hamiltonian cycle C in a rectangular or
L-shaped grid graph G, reconfigure C to a canonical Hamiltonian cycle C of G.

Our algorithm for solving Π(C) runs in three steps. First it creates certain
subproblems of Π(C). Then it solves the subproblems using the algorithms from
Sect. 3 and [13]. Finally, it merges the solutions to the subproblems to obtain C.
Below, a subscript on Π indicates the shape of C and G, e.g., ΠL(C), ΠR(C).

Creating the Subproblems. To create the particular subproblems of Π(C)
required by our algorithm, we use properties of C given in the next lemma.

Lemma 2 (Splitting track). Let C be a 1-complex Hamiltonian cycle in an
L-shaped grid graph G, where C has cookies from all four directions. Then there
is a track tr of G whose interior intersects no cookies of C and such that tr has
cookies to each side. (We call tr a splitting track of C.)

Proof Sketch. We sweep a vertical line i eastward from Column 1 to Column
x(e) − 1 until one of the following two events occurs.

1. Sweepline i intersects cookies from both east and west directions.
Then it is easy to show that there is a pair of cookies from east and west such
that if one of them is in track thj then the other is in thj+2, where 1 ≤ j ≤ y(e)−4.
Then the horizontal track thj+1 is a splitting track.

Reconfiguring Hamiltonian Cycles in L-Shaped Grid Graphs 333

2. Sweepline i does not intersect any W cookies. If tvi−1 does not
contain any cookies, then it is a splitting track. Otherwise, tvi−1contains at least
one cookie from the north or south, say without loss of generality, the south. Let
the size of the S cookie be k. Then track thy(e)−k−1 is a splitting track. ��

We now identify the subproblems we need. Let tvi be a splitting track of C.
We remove the two cycle edges (u′, u′′) and (v′, v′′) of C at the two ends of tvi
on boundaries of G, to partition C into two disjoint paths P ′

u′v′ and P ′′
u′′v′′ . Let

the subgrids of G that contain P ′ and P ′′ be G′ and G′′, where G′ is to the
left of tvi and G′′ is to the right. Now add a copy of Column i from u′ to v′

(inclusive) one unit to the right of G′ to create the augmented vertex-induced
grid graph (G′)+. Join u′ to v′ by a path through the new vertices to obtain a
Hamiltonian cycle C ′ of (G′)+. Note that if i ≥ x(d) then (G′)+ is L-shaped;
otherwise it is rectangular. Similarly obtain a Hamiltonian cycle C ′′ of (G′′)+,
the vertex-induced grid graph created from G′′ by adding a column to its left.
One of (G′)+ and (G′′)+ is rectangular and the other is L-shaped. The columns
added to create (G′)+ and (G′′)+ are their augmented boundaries.

Definition 3. The subproblems Π(C ′) and Π(C ′′) are the subproblems of
Π(C) we need. One of them has the form ΠL(CL) and the other has the form
ΠR(CR).

We now explain how the subproblems Π(C ′) and Π(C ′′) will be used to
solve Π(C). Clearly CL and CR have no cookies from the augmented boundaries.
Suppose we can solve ΠL(CL) and ΠR(CR), obtaining canonical cycles CL and
CR, such that CL and CR have no cookies from the augmented boundaries.
Then we can merge CL and CR by removing the paths along the augmented
boundaries and adding back edges (u′, u′′) and (v′, v′′) to obtain a new 1-complex
Hamiltonian cycle C1 of G. (We will later show that C1 can easily be reconfigured
to a canonical form, as C1 fails to have certain cookie types.)

In addition to the goal of creating subproblems whose solutions are easy to
merge, we would also like to achieve a second goal, namely to create subproblems
that can be solved with the algorithms of Sect. 3 and [13]. To achieve these two
goals, we choose a splitting track that is either the leftmost vertical splitting track
(if it exists) or the southernmost horizontal splitting track. As will be seen, this
enables us to achieve the two goals above. The next algorithm generates all the
subproblems needed to solve Π(C).

Algorithm Split: Find the leftmost vertical splitting track if it exists (e.g.,
Fig. 7(a) and (b)); otherwise, find the southernmost horizontal splitting track,
creating two subproblems ΠR(CR) and ΠL(CL). If CL has cookies from all four
directions, find a splitting track for CL and replace ΠL(CL) with two subprob-
lems ΠR(C ′

R) and ΠL(C ′
L).

Theorem 2. Let C be a 1-complex cycle of an L-shaped grid graph G such that
C has cookies from all four directions. Then Algorithm Split creates from Π(C)
in O(|G|) time either the subproblems ΠR(CR) and ΠL(CL), or the subproblems

334 R. I. Nishat and S. Whitesides

ΠR(CR), ΠL(C ′
L) and ΠR(C ′

R); here each of CR and C ′
R has at most three types

of cookies, and each of CL and C ′
L falls into one of the cases of Sect. 3.

(b)(a) (c)

a b

c e

fd

a b

c e

fd

CL

CR

a b

c e

fd

(d)

a b

c e

fd
CL

CR

CR
CR

CL
CLCR CR

Fig. 7. (a)–(b) Π(C) splits into ΠL(CL) and ΠR(CR). (c) The two splitting tracks of
C and CL intersect, and (d) the splitting tracks do not intersect.

Proof Sketch. It is easy to see that Split generates either (i) ΠL(CL) and
ΠR(CR), or (ii) ΠR(CR), ΠL(C ′

L) and ΠR(C ′
R). In (i), CL has no cookies from

a direction perpendicular to its splitting track, and hence falls into a special
case from Sect. 3. In (ii), it can be shown that the splitting tracks of C and CL

must be perpendicular to each other, as otherwise the splitting track choice is
contradicted. If the two splitting tracks intersect, then NN and W cookies do
not appear in C ′

L (see Fig. 7(c)); otherwise the splitting tracks do not intersect
and NN and FE cookies do not appear in C ′

L (see Fig. 7(d)). In either case C ′
L

falls into a special case. It can be checked that each of CR and C ′
R has at most

three types of cookies since their augmented boundaries do not have cookies. ��

Solving the Subproblems. To solve ΠR(CR) and ΠR(C ′
R), we apply the algo-

rithm for rectangular 1-complex cycles with no east cookies from [13] to get
canonical forms CR and C

′
R, where each of them has either a set of west cook-

ies or a set of north cookies. Since CR has exactly one augmented boundary,
we position CR such that the augmented boundary is the east boundary, as
there are no cookies from that boundary. However, C ′

R can have two perpen-
dicular augmented boundaries (see Fig. 7(c)). In that case, we position C ′

R such
that the augmented boundaries are its east and south boundaries, so that the
C

′
R produced by the algorithm [13] does not have cookies from the augmented

boundaries. Since CL falls into one of the special cases of Sect. 3 (possibly after
repositioning G), we apply the appropriate algorithm to get a canonical form
CL that does not have cookies from the augmented boundaries.

Merging the Solutions to the Subproblems. We merge the solutions CL of
ΠL(CL) and CR of ΠR(CR), output by the algorithms, as follows. We remove
the augmented boundaries from CL and CR to get two Hamiltonian paths in
the original subgrids of G on both sides of the splitting track. We join the paths
using the boundary edges at the ends of the splitting track to obtain a 1-complex
Hamiltonian cycle C1 of G. C1 has at most three sets of cookies as CL and CR

Reconfiguring Hamiltonian Cycles in L-Shaped Grid Graphs 335

have at most two sets and one set of cookies, respectively. Thus C1 cannot have
cookies from all four directions and must fall into a special case of Sect. 3. We
then apply the appropriate algorithm on C1 to obtain a canonical Hamiltonian
cycle C of G. If Π(C) was split into three subproblems ΠR(CR), ΠL(C ′

L) and
ΠR(C ′

R), we first merge canonical forms C′
L and C

′
R as above to obtain CL. Then

we merge CL and CR to obtain C of G.

Theorem 3. Let C be a 1-complex Hamiltonian cycle of an L-shaped grid graph
G. Then ΠL(C) can be solved using O(|G|) flips and transposes.

Proof. By Theorem2, Split creates at most three subproblems, with O(|G|) flips
and transposes. The subproblems are solved by algorithms that apply O(|G|)
flips and transposes in total as seen above. It is easy to see that the merging of
the solutions to the subproblems uses O(|G|) flips and transposes. ��

5 Reconfiguration Between Any Pair of 1-Complex
Cycles

Problem Π(C1, C2):Given any pair of 1-complex Hamiltonian cycles C1 and
C2 of a rectangular or L-shaped grid graph G,reconfigure C1 to C2 using flips
and transposes.

To solve ΠL(C1, C2), we first solve ΠL(C1) and ΠL(C2) yielding C1 and C2.
Now we give an algorithm for ΠL(C1,C2), a special case of ΠL(C1, C2).

Let G be an L-shaped grid graph. By definition, any canonical cycle C of G
has at most two sets S1 and S2 of cookies, where the cookies of each set are of
the same type and size. If there are exactly two sets of cookies then there is a
unique track tr between the rectangular regions covered by S1 and S2. Note that
tr must be a splitting track of C. We call tr the canonical splitting track of C.
It is easy to see that tr is either tvx(d)−1 (Fig. 8(a)) or thy(d) (Fig. 8(b)–(c)).

(b) (c)(a) (d)

NN

NE

FE

S

W

a a
a

c c c

b b
b

d

d

d f

f

f

eee

a

c

b

d f

e

Fig. 8. Some canonical Hamiltonian cycles, canonical splitting tracks shown grey.

Let C1 and C2 have the same canonical splitting track tr = tvx(d)−1. We
remove the edges of C1 in tr that are on boundaries of G (i.e., NN, NE and
S boundaries) to partition C1 into two disjoint paths, P ′ from vx(d)−1,0 to
vx(d)−1,y(e) to the left of tr and P ′′ from d to vx(d),y(e) to the right of tr. Let G′

336 R. I. Nishat and S. Whitesides

and G′′ be the rectangular subgrids of G that contain P ′ and P ′′. We generate
the augmented vertex-induced grid graphs (G′)+ and (G′′)+ by adding a copy of
Column x(d) − 1 one unit to the right of G′ and a copy of Column x(d) from d
to vx(d),y(e) (inclusive) to the left of G′′, respectively. Note that both (G′)+ and
(G′′)+ are rectangular. We then join the two endpoints of P ′ through the new
vertices of (G′)+ and the endpoints of P ′′ through the new vertices of (G′′)+ to
obtain canonical Hamiltonian cycles C′

1 of (G′)+ and C
′′
1 of (G′′)+. In a similar

way we obtain canonical Hamiltonian cycles C
′
2 and C

′′
2 from C2 such that C

′
1

covers the same rectangular subgrid of G as C′
2 covers, and such that C′′

1 covers
the same rectangular subgrid of G as C

′′
2 covers. We say that ΠR(C′

1,C
′
2) and

ΠR(C′′
1 ,C′′

2) are the two subproblems of ΠL(C1,C2).

Theorem 4. Let C1 and C2 be canonical Hamiltonian cycles of an L-shaped
grid graph G. Then ΠL(C1,C2) can be solved with O(|G|) flips and transposes.

Proof Sketch. We consider two cases: C1 and C2 have the same canonical split-
ting track, or not. In the second case, as a subgoal, we reconfigure C1 to some
canonical Hamiltonian cycle C3 of G such that C3 and C2 have the same canon-
ical splitting track. We then solve ΠL(C3,C2). ��
Theorem 5 Main Result. Let C1 and C2 be any two 1-complex Hamiltonian
cycles of an L-shaped grid graph G. Then ΠL(C1, C2) can be solved with O(|G|)
flips and transposes such that the cycle remains 1-complex Hamiltonian after
each operation.

Proof By Theorem3, C1 and C2 can be reconfigured to canonical cycles C1 and
C2 of G using O(|G|) flips and transposes in total. By Theorem4, ΠL(C1,C2)
can be solved also using O(|G|) flips and transposes. By Remark 1, the cycle
remains 1-complex Hamiltonian after each operation. ��

6 Conclusion

Our main result is Theorem5: any 1-complex Hamiltonian cycle in an L-shaped
grid graph is reachable from any other in O(|G|) flips and transposes while
staying in the family of 1-complex Hamiltonian cycles. As L-shaped grids have a
reflex corner, this may provide a key step for continuing the study of Hamiltonian
cycles in general orthogonal grid graphs. Open problems include generalization
to higher dimensions and to other grids, study of Hamiltonian paths, exploration
of fixed parameter approaches based on the bend complexity k ≥ 1 of the cycle as
a parameter [13] (here, we studied k=1), and determination of the complexity
of the decision problem for the existence of k-complex Hamiltonian cycles in
various grid graphs.

Reconfiguring Hamiltonian Cycles in L-Shaped Grid Graphs 337

References

1. Afrati, F.: The hamilton circuit problem on grids. RAIRO - Theor. Inf. Appl. -
Informatique Theorique et Applications 28(6), 567–582 (1994)

2. Arkin, E.M., Bender, M.A., Demaine, E.D., Fekete, S.P., Mitchell, J.S.B., Sethia,
S.: Optimal covering tours with turn costs. SIAM J. Comput. 35(3), 531–566
(2005). https://doi.org/10.1137/S0097539703434267

3. des Cloizeaux, J., Jannik, G.: Polymers in Solution: Their Modelling and Structure.
Clarendon Press, Oxford (1987)

4. Fellows, M., et al.: Milling a graph with turn costs: a parameterized complexity
perspective. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 123–134.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7 13

5. Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of
boolean satisfiability: computational and structural dichotomies. SIAM J. Comput.
38(6), 2330–2355 (2009)

6. Gorbenko, A., Popov, V., Sheka, A.: Localization on discrete grid graphs. In: He,
X., Hua, E., Lin, Y., Liu, X. (eds.) Computer, Informatics, Cybernetics and Appli-
cations: CICA 2011. LNEE, vol. 107, pp. 971–978. Springer, Dordrecht (2012).
https://doi.org/10.1007/978-94-007-1839-5 105

7. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs.
SIAM J. Comput. 11(4), 676–686 (1982)

8. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12), 1054–1065 (2011)

9. Jacobsen, J.L.: Exact enumeration of hamiltonian circuits, walks and chains in two
and three dimensions. J. Phys. A: Math. Gen. 40, 14667–14678 (2007)

10. Keshavarz-Kohjerdi, F., Bagheri, A.: Hamiltonian paths in l-shaped grid graphs.
Theor. Comput. Sci. 621, 37–56 (2016)

11. Mizuta, H., Ito, T., Zhou, X.: Reconfiguration of steiner trees in an unweighted
graph. IEICE Trans. Fund. Electr. E100.A(7), 1532–1540 (2017)

12. Muller, P., Hascoet, J.Y., Mognol, P.: Toolpaths for additive manufacturing of
functionally graded materials (FGM) parts. Rapid Prototyp. J. 20(6), 511–522
(2014)

13. Nishat, R.I., Whitesides, S.: Bend complexity and hamiltonian cycles in grid
graphs. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 445–
456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4 37

14. Bodroz̃a Pantić, O., Pantić, B., Pantić, I., Bodroz̃a Solarov, M.: Enumeration
of hamiltonian cycles in some grid graphs. MATCH - Commun. Math. Comput.
Chem. 70, 181–204 (2013)

15. Pettersson, V.: Enumerating hamiltonian cycles. Electr. J. Comb. 21(4) (2014).
P4.7

16. Takaoka, A.: Complexity of hamiltonian cycle reconfiguration. Algorithms 11(9),
140(15p) (2018)

17. Umans, C., Lenhart, W.: Hamiltonian cycles in solid grid graphs. In: 38th Annual
Symposium on Foundations of Computer Science, FOCS 1997, pp. 496–505 (1997)

18. Winter, S.: Modeling costs of turns in route planning. Geoinformatica 6(4), 345–
361 (2002)

https://doi.org/10.1137/S0097539703434267
https://doi.org/10.1007/978-3-642-16926-7_13
https://doi.org/10.1007/978-94-007-1839-5_105
https://doi.org/10.1007/978-3-319-62389-4_37

Color Refinement, Homomorphisms,
and Hypergraphs

Jan Böker(B)

RWTH Aachen University, Aachen, Germany
boeker@informatik.rwth-aachen.de

Abstract. Recent results show that the structural similarity of graphs
can be characterized by counting homomorphisms to them: the Tree
Theorem states that the well-known color-refinement algorithm does not
distinguish two graphs G and H if and only if, for every tree T , the
number of homomorphisms Hom(T,G) from T to G is equal to the cor-
responding number Hom(T,H) from T to H (Dell, Grohe, Rattan 2018).
We show how this approach transfers to hypergraphs by introducing a
generalization of color refinement. We prove that it does not distinguish
two hypergraphs G and H if and only if, for every connected Berge-
acyclic hypergraph B, we have Hom(B,G) = Hom(B,H). To this end,
we show how homomorphisms of hypergraphs and of a colored variant of
their incidence graphs are related to each other. This reduces the above
statement to one about vertex-colored graphs.

Keywords: Graph isomorphism · Color refinement ·
Hypergraph homomorphism numbers

1 Introduction

A result by Lovász [8] states that a graph can be characterized up to isomor-
phism by counting homomorphisms from all graphs to it, i.e., two graphs G
and H are isomorphic if and only if, for every graph F , the number of homo-
morphisms Hom(F,G) from F to G is equal to the number of homomorphisms
Hom(F,H) from F to H. Equivalently, using the notion of the homomorphism
vector HOM(G) := (Hom(F,G))F∈G of G, where G denotes the class of all graphs,
we have that two graphs G and H are isomorphic if and only if their homomor-
phism vectors HOM(G) and HOM(H) are equal. However, the problem of com-
puting the entries of a homomorphism vector is #P-complete as it generalizes
some well-known counting problems [10, Section 5.1]. Hence, Dell, Grohe, and
Rattan [6] considered restrictions HOMF (G) := (Hom(F,G))F∈F of homomor-
phism vectors to classes of graphs F for which these entries can be computed
efficiently: under some complexity-theoretic assumption, for a recursively enu-
merable class of graphs F , counting homomorphisms from the graphs in F is
possible in polynomial time if and only if F has bounded treewidth [5]. This
yields some surprisingly clean results, e.g., for the class T of all trees, the Tree
c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 338–350, 2019.
https://doi.org/10.1007/978-3-030-30786-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_26&domain=pdf
http://orcid.org/0000-0003-4584-121X
https://doi.org/10.1007/978-3-030-30786-8_26

Color Refinement, Homomorphisms, and Hypergraphs 339

Theorem states that the homomorphism vectors HOMT (G) and HOMT (H) of
two graphs G and H are equal if and only if G and H are not distinguished
by color refinement, a well-known heuristic algorithm for distinguishing non-
isomorphic graphs (e.g. [7]).

“Graph matching” is a term used in machine learning for the problem of
measuring the similarity of graphs (e.g., [3]), where it has its applications in
pattern recognition. However, there is no universally agreed-upon notion of sim-
ilarity, and a popular notion, the graph edit distance, describing the cost of
transforming one graph into another by adding and deleting vertices and edges,
is not only hard to compute but also does not reflect the structural similarity
of two graphs very well [10, Section 1.5.1]. Restricted homomorphism vectors
offer an alternative way of comparing the structural similarity of graphs since,
after suitably scaling them, they can be compared using standard vector norms.
As demonstrated in [6], one can also define an inner product on these homo-
morphism vectors, which yields a mapping that is known as a graph kernel in
machine learning (e.g., [13]). Graph kernels can be used to perform classification
on graphs, and to this end, should capture the similarity of graphs well while
still being efficiently computable. Similarly to homomorphism vectors, state-of-
the-art graph kernels are usually based on counting certain patterns in graphs,
e.g., walks or subtrees.

The original observation by Lovász [8], stating that a graph can be character-
ized up to isomorphism by counting homomorphisms from all graphs, dates back
to the 1960s and has led to the theory of graph limits in the recent past [10]. Only
very recently, the importance of homomorphism counts for many graph-related
counting problems has been recognized [4]: for example, subgraph counts are just
linear combinations of homomorphism counts. Even more recent is the approach
of characterizing the structural similarity of graphs by counting homomorphisms
from restricted classes of graphs [6], which shows that well-known characteriza-
tions, e.g., the color-refinement algorithm, can also be stated in terms of homo-
morphism counts.

1.1 Overview

Color refinement is a simple and efficient but incomplete algorithm for distin-
guishing non-isomorphic graphs. The algorithm iteratively computes a coloring
of the vertices of a graph, and we say that color refinement distinguishes two
graphs if it computes different color patterns for them. The Tree Theorem [6]
states that color refinement can be characterized by counting homomorphisms
from trees, i.e., for all graphs G and H, we have HOMT (G) = HOMT (H) if and
only if color refinement does not distinguish G and H. By making use of the
initial coloring, color refinement can easily be adapted to vertex-colored graphs.
This enables a straight-forward generalization of the Tree Theorem by counting
(color-respecting) homomorphisms from vertex-colored trees to vertex-colored
graphs. Formally, if we let CT denote the class of all vertex-colored trees, then
for all vertex-colored graphs G and H, we have HOMCT (G) = HOMCT (H) if

340 J. Böker

and only if color refinement does not distinguish G and H. We refer to this
generalization as the Colored Tree Theorem.

A possible (although rather conservative) generalization of the notion of a
tree to hypergraphs is that of a connected Berge-acyclic hypergraph. A hyper-
graph is called connected and Berge-acyclic if its incidence graph is connected
and acyclic, respectively. Similarly to the case of (vertex-colored) graphs, we
obtain a surprisingly clean answer when counting homomorphisms from hyper-
graphs in the class BA of connected Berge-acyclic hypergraphs.

Theorem 1. For all hypergraphs G and H, the following are equivalent:

(1) HOMBA(G) = HOMBA(H).
(2) Color refinement does not distinguish G and H.

Of course, color refinement in the usual sense is only defined on (vertex-
colored) graphs, which is why we propose a generalization of it to hypergraphs
in Sect. 2.1; Theorem 1 refers to this generalization. As this generalization turns
out to be equivalent to the usual color-refinement algorithm applied to a colored
variant of a hypergraph’s incidence graph, we are able to “reduce” Theorem1 to
the Colored Tree Theorem instead of adapting the proof of [6]. Here, the interest-
ing (and laborious) part is to show how homomorphisms between hypergraphs
are related to homomorphisms between their colored incidence graphs and how
counts of these can be obtained from each other. This leads to the notion of
an incidence homomorphism between hypergraphs in Sect. 2.2, which is used to
prove Theorem 1 in Sect. 2.3. Our approach does not only directly generalize to
hypergraphs that possibly have parallel edges, but is also simplified by doing so;
we nevertheless obtain the corresponding statement about simple hypergraphs
as a corollary in Sect. 2.4.

With Theorem 1, one might wonder how the Tree Theorem generalizes to
directed graphs. An obvious candidate for a class of directed graphs to count
homomorphisms from is the class of connected directed acyclic graphs (DAGs)
since a connected DAG can be seen as the directed concept corresponding to a
tree. Surprisingly, counting homomorphisms from DAGs is already too expressive
and characterizes an arbitrary directed graph up to isomorphism. This result is
already implicit in the second homomorphism-related work of Lovász [9], which
is concerned with the cancellation law among finite relational structures, and we
briefly revisit it in Sect. 3.

1.2 Preliminaries

N denotes the set of non-negative integers. For n ∈ N, we let [n] := { 1, . . . , n }.
A multiset is denoted using the notation {{ 0, 1, 1 }}. All relational structures that
we consider are finite, and we use standard graph-theoretic terminology and
notation without explicitly introducing it, e.g., for any graph-like structure G,
the sets of its vertices and edges are denoted by V (G) and E(G), respectively.
Unless explicitly specified otherwise, the terms graph and directed graph refer
to simple graphs and simple directed graphs, respectively, while for the sake of

Color Refinement, Homomorphisms, and Hypergraphs 341

brevity, the term hypergraph is used for hypergraphs that may have parallel edges.
Formally, a hypergraph is a tuple G = (V,E, f) where V is a set of vertices, E
a set of edges, and f : E → 2V \ { ∅ } the incidence function assigning a non-
empty set of vertices to every edge, where we usually write fG to denote f . If
f is injective, i.e., if G does not have parallel edges, then we call G a simple
hypergraph. The incidence graph of a hypergraph G is the bipartite graph I(G)
with V (I(G)) := V (G) ∪̇ E(G) and E(I(G)) := { ve | v ∈ fG(e) for e ∈ E(G) }.

We work with infinite matrices, which are functions A : I × J → R where I
and J are countable and locally finite posets. The product A · B : I × J → R

of two infinite matrices A : I × K → R and B : K × J → R is defined via
(A · B)ij :=

∑
k∈K Aik · Bkj for all i ∈ I, j ∈ J as long as these sums are finite;

otherwise, we leave it undefined, which means that this product is not associative,
and we follow the convention that this operator is right-associative to reduce the
amount of needed parentheses. An infinite matrix A is called lower triangular
and upper triangular if we have Aij = 0 for all i, j with j �≤ i and Aij = 0 for
all i, j with i �≤ j, respectively. As in the finite case, forward substitution yields
that lower and upper triangular infinite matrices with non-zero diagonal entries
have left inverses [6] that again are lower and upper triangular, respectively. For
simplicity, we usually refer to infinite matrices just as matrices.

Since we allow hypergraphs to have parallel edges, a function on vertices
is not sufficient to specify a homomorphism between hypergraphs: a homo-
morphism from a hypergraph F to a hypergraph G is a pair (hV , hE) of
mappings hV : V (F) → V (G) and hE : E(F) → E(G) such that we have
hV (fF (e)) = fG(hE(e)) for every e ∈ E(F), and Hom(F,G) denotes the number
of homomorphisms from F to G. Note that, if F and G are simple hypergraphs,
then the mapping hE on edges is already uniquely determined by hV . For a hyper-
graph G, its homomorphism vector is denoted by HOM(G), and the restriction of
HOM(G) to a class of hypergraphs F is denoted by HOMF (G). For every isomor-
phism class of hypergraphs, we fix a representative and call it the isomorphism
type of the hypergraphs in the class. We view Hom as an infinite matrix indexed
by the isomorphism types, which are sorted by the sums of their numbers of
vertices and edges, where ties are resolved arbitrarily. Then, for a hypergraph G,
its homomorphism vector HOM(G) can be viewed as a column of Hom. We use
similar notation for other types of mappings without explicitly introducing it.

Since, to count homomorphisms from a non-connected graph, one can count
homomorphisms from its components instead, we usually restrict ourselves to
homomorphism counts from connected graphs. The same holds for directed
graphs and hypergraphs. Aut is the diagonal matrix whose diagonal entry
Aut(G,G), which we usually denote just by Aut(G), contains the number of
automorphisms of the connected hypergraph G.

2 Hypergraphs

We only outline the main ideas of our proofs in this section. The actual proofs
can be found in the preprint of this paper [1].

342 J. Böker

2.1 Hypergraph Color Refinement

Color refinement colors the vertices of a graph G by setting CG
0 (v) := 1 for every

v ∈ V (G) and CG
i+1(v) := {{CG

i (u) | u ∈ NG(v) }} for every v ∈ V (G) and every
i ≥ 0. In a hypergraph, the adjacency of a vertex v is not fully determined by
the set of its neighbors, i.e., the set of vertices that share an edge with v, as this
does not state how v is connected to them. To capture also this information, we
rather look at the edges v is incident to: a coloring of the vertices of a hypergraph
induces a coloring of its edges. For a hypergraph G, we define HCG

0 (v) := 1 for
every v ∈ V (G) and

HCG
i+1(v) := {{ {{HCG

i (u) | u ∈ fG(e) }} | e ∈ E with v ∈ fG(e) }}

for every v ∈ V (G) and every i ≥ 0. Color refinement distinguishes two hyper-
graphs G and H if there is an i ≥ 0 such that the colorings are unbalanced, i.e.,
that we have {{HCG

i (v) | v ∈ V (G) }} �= {{HCH
i (v) | v ∈ V (H) }}.

Thus, two vertices of the same color get different colors in a refinement round
if they have a different number of incident edges of an induced color c. Note that
such an induced color of an edge is a multiset since distinct vertices of the same
edge may have the same color. It is not hard to see that, when interpreting a
graph as a hypergraph, the two definitions are equivalent: an inductive argument
yields that excluding the color of v ∈ V (G) itself from the color {{HCG

i (u) | u ∈
fG(e) }} induced on the edge e ∈ E with v ∈ fG(e) does not make a difference.
Then, the only difference is that each color of a neighbor is placed into its own
multiset in the more general definition.

v1 v2 v3

e1 e2
v HC0(v) HC1(v)
v1 1 {{ {{ 1, 1 }}, {{ 1, 1, 1 }} }}
v2 1 {{ {{ 1, 1 }}, {{ 1, 1, 1 }} }}
v3 1 {{ {{ 1, 1, 1 }} }}

v1

e1 e2

v1 v2 v1 v2 v3

Fig. 1. Color refinement on a hypergraph and the length-one “walk-hypergraph” from
v1

Figure 1 shows an example of color refinement on a hypergraph, which is
represented by its incidence graph, where the vertices and edges are depicted
as circles and squares, respectively; this distinction is not made in the incidence
graph itself. To justify our notion of color refinement, we observe its relation to
color refinement on the incidence graph of a hypergraph, which also colors its
edges: In a first step, every edge gets assigned the colors of its incident vertices.
In a second step, every vertex gets assigned the colors of its incident edges. Hence,

Color Refinement, Homomorphisms, and Hypergraphs 343

a single step of color refinement on a hypergraph corresponds to two steps of
color refinement on its incidence graph.

Another way to see this is by considering the tree unfoldings implicitly con-
structed by color refinement; the color of a vertex v after i refinement rounds
can be interpreted as the isomorphism type of the tree obtained by taking all
length-i walks from v simultaneously. The proof of the Tree Theorem utilizes
this by “redirecting” tree homomorphisms to these tree unfoldings. Analogously,
we can think of the colors of hypergraph color refinement as Berge-acyclic hyper-
graphs, cf. Fig. 1, which can also be thought of as the tree unfoldings obtained
by twice the number of steps of color refinement on the incidence graph of the
hypergraph.

However, to formally obtain an equivalence between the two notions, we have
to deal with the fact that the additional colors of the edges present in color refine-
ment on an incidence graph may obscure unbalanced vertex partitions, which
may happen since an incidence graph does not indicate whether one of its ver-
tices is actually a vertex or an edge of the hypergraph, i.e., vertices of the one
hypergraph may be confused with edges of the other. To avoid this, we differ-
entiate these right from the beginning by defining the colored incidence graph
Ic(G) of a hypergraph G, which is the vertex-colored graph obtained by taking
the incidence graph I(G) and coloring the elements of V (G) and E(G) with two
different colors, say 1 for V (G) and 2 for E(G). In general, for color refinement
on a vertex-colored graph, one has to include a vertex’s old color in the new one
in every refinement round to guarantee that we indeed obtain a refinement. How-
ever, a simple inductive argument yields that this is not necessary for colored
incidence graphs.

Lemma 1. For all hypergraphs G and H, the following are equivalent:

(1) Color refinement does not distinguish G and H.
(2) Color refinement does not distinguish Ic(G) and Ic(H).

2.2 Incidence Homomorphisms

Recall that a hypergraph is connected and Berge-acyclic if and only if its inci-
dence graph is a tree. With the Colored Tree Theorem, Lemma 1 already yields
that two hypergraphs G and H are not distinguished by color refinement if and
only if HOMCT (Ic(G)) = HOMCT (Ic(H)), i.e., we already have a characterization
of color refinement by counting homomorphisms from vertex-colored trees to the
hypergraphs’ incidence graphs. This motivates a “reduction” to prove Theorem1,
i.e., instead of adapting the proof of the Tree Theorem by defining an unfolding
of a hypergraph into a Berge-acyclic one, we relate homomorphisms between
colored incidence graphs back to homomorphisms between hypergraphs.

To this end, we first re-formulate HOMCT (Ic(G)) = HOMCT (Ic(H)) in hyper-
graph terms. Observe that, at this point, it is convenient that we consider hyper-
graphs with parallel edges because, when interpreting a colored tree as an inci-
dence graph of a hypergraph, it may very well have parallel edges, or more

344 J. Böker

precisely, parallel loops. Thus, when taking the step from vertex-colored trees to
hypergraphs, the only noteworthy special case is the colored tree corresponding
to an empty edge, which does not have a corresponding hypergraph as empty
edges are disallowed by definition.

However, just interpreting vertex-colored trees as hypergraphs does not suf-
fice as, for hypergraphs G and H, the homomorphisms between the colored
incidence graphs Ic(G) and Ic(H) do not necessarily correspond to homomor-
phisms between G and H. While every homomorphism (hV , hE) from G to H
gives us a corresponding homomorphism hV ∪ hE from Ic(G) to Ic(H), the con-
verse does not hold: a homomorphism from Ic(G) to Ic(H) does not have to
map the vertices of an edge of G to a full edge of H but only to a subset of
such an edge, cf. Fig. 2. To capture this behavior in terms of hypergraphs, for
hypergraphs G and H, we call a pair (hV , hE) of mappings hV : V (G) → V (H)
and hE : E(G) → E(H) satisfying hV (fG(e)) ⊆ fH(hE(e)) for every e ∈ E(G)
an incidence homomorphism from G to H. That is, the equality in the defini-
tion of a homomorphism is relaxed to an inclusion, which also means that every
homomorphism is an incidence homomorphism.

Observe that we have a one-to-one correspondence between the incidence
homomorphisms from G to H and the homomorphisms from Ic(G) to Ic(H).
In particular, if we let InHom(G,H) denote the number of incidence homomor-
phisms from G to H, we have InHom(G,H) = Hom(Ic(G), Ic(H)). This lets us
express the requirement HOMCT (Ic(G)) = HOMCT (Ic(H)) in terms of connected
Berge-acyclic hypergraphs, where a simple interpolation argument takes care of
the colored tree corresponding to an empty edge.

Lemma 2. For all hypergraphs G and H, the following are equivalent:

(1) InHOMBA(G) = InHOMBA(H).
(2) Color refinement does not distinguish G and H.

2.3 Homomorphisms from Berge-Acyclic Hypergraphs

With Lemma 2, it remains to show that counting incidence homomorphisms from
BA is equivalent to counting homomorphisms from BA. To this end, we call an
incidence homomorphism (hV , hE) from a hypergraph G to a hypergraph H
locally injective, locally surjective, and locally bijective if, for every e ∈ E(G), the
restriction hV |fG(e) : fG(e) → fH(hE(e)) of hV to the vertices of e is injective,
surjective, and bijective, respectively. Note that this definition only concerns
the mapping hV and not hE , i.e., hE may still map multiple edges to the same
edge as long as the restriction of hV to each of these edges is injective. For a
connected hypergraph G and a hypergraph H, we denote the number of locally
injective incidence homomorphisms by LoInjInHom(G,H) and, since an incidence
homomorphism is locally surjective if and only if it is a homomorphism, the
number of locally bijective incidence homomorphisms by LoInjHom(G,H).

The main work is spread across three lemmas: Together, Lemmas 3 and 5 “bal-
ance” incidence homomorphisms to locally bijective incidence homomorphisms

Color Refinement, Homomorphisms, and Hypergraphs 345

by first relating incidence homomorphisms to locally injective incidence homo-
morphisms and then, from there on, to locally bijective incidence homomor-
phisms. Analogously to Lemmas 3, 4 relates homomorphisms to locally injective
homomorphisms or, in other words, locally bijective incidence homomorphisms.

u1 u2 u3

d1 d2

{u1, u2, u3 }

d1 d2

v1 v2 v3

e1 e2

Fig. 2. Decomposition of an incidence homomorphism into a locally merging homo-
morphism and a locally injective incidence homomorphism

While our goal is to relate incidence homomorphisms to locally surjective
incidence homomorphisms, we are forced to take the detour that is local injec-
tivity due to the way we prove Lemma 5: We fill up edges that are mapped
non-surjectively by adding leaves, i.e., vertices that are part of exactly one edge.
Without this injectivity, which we achieve by merging vertices within an edge
that are mapped to the same vertex, these added leaves may be mapped to the
same vertex again causing us to overcount endlessly. With local injectivity, also
achieving local surjectivity is possible as a locally bijective incidence homomor-
phism has to map an edge to an edge of exactly the same size. Thus, if we use
leaves to fill up an edge to the size of the target edges, we do not overcount as we
do not count incidence homomorphisms where adding fewer leaves would have
sufficed. Note that, in our setting, it is crucial that we only consider such a local
form of injectivity; we have to make sure the Berge-acyclicity is preserved when
merging vertices.

To relate incidence homomorphisms to locally injective incidence homomor-
phisms, we define locally merging homomorphisms, which only allow vertices to
be mapped to the same vertex if they are part of the same edge. To this end,
we first define the relation ≡hV

⊆ V (G) × V (G) for an incidence homomorphism
(hV , hE) between two hypergraphs G and H by letting u ≡hV

v if there is a walk
v0, e1, . . . , vk from u to v in G with hV (vi−1) = hV (vi) for every i ∈ [k]. Clearly,
≡hV

is an equivalence relation, and for all u, v ∈ V (G), we have that u ≡hV
v

implies hV (u) = hV (v). We call a homomorphism (hV , hE) between hypergraphs
G and H locally merging if

(1) hV (u) = hV (v) if and only if u ≡hV
v for all u, v ∈ V (G),

(2) hV is surjective, and
(3) hE is bijective,

346 J. Böker

and, for connected hypergraphs G and H, we let LoMeHom(G,H) be the number
of such homomorphisms from G to H.

By decomposing incidence homomorphisms into locally merging homomor-
phisms and locally injective incidence homomorphisms as in Fig. 2, we obtain
Lemma 3. The crucial argument is the fact that the intermediate hypergraph is
uniquely determined by (hV , hE), i.e., every decomposition of (hV , hE) has to
use the same intermediate hypergraph. Note that, by merging vertices to obtain
the intermediate hypergraph, parallel loops may be created even when decompos-
ing an incidence homomorphism between simple hypergraphs. Moreover, these
parallel loops may have to be mapped to different edges, making it impossible to
merge them into a single loop. Since, for such a decomposition, automorphisms
of the intermediate hypergraph can be used to obtain a different decomposition,
we have to divide by the number of automorphisms. Note that the identity of
Lemma 3 is stated for arbitrary connected hypergraphs; once it is needed, we
restrict it to Berge-acyclic ones.

Lemma 3. We have InHom = LoMeHom · Aut−1 · LoInjInHom. The matrix
LoMeHom is invertible and lower triangular.

For the special case of homomorphisms, i.e., locally surjective incidence homo-
morphisms, the proof of Lemma 3 also directly yields Lemma 4.

Lemma 4. We have Hom = LoMeHom · Aut−1 · LoInjHom.

{ · }

d1 d2

vd11 { · } vd21vd12

d1 d2

v1 v2 v3

e1 e2

Fig. 3. Decomposition of a locally injective incidence homomorphism into a leaf-adding
incidence homomorphism and a locally injective homomorphism

To prove Lemma 5, we define leaf-adding incidence homomorphisms, which
are embeddings of a hypergraph into another one that has no additional vertices
or edges with the exception of leaves. For this, we need the notion of a strong
incidence homomorphism between hypergraphs G and H, which is an incidence
homomorphism (hV , hE) from G to H that additionally satisfies the inclusion
h−1
V (fH(hE(e)) ∩ im(hV)) ⊆ fG(e) for every e ∈ E(G); it is actually not hard to

Color Refinement, Homomorphisms, and Hypergraphs 347

see that this is equivalent to requiring that the corresponding homomorphism
between the colored incidence graphs Ic(G) and Ic(H) is a strong homomorphism.
We call an incidence homomorphism (hV , hE) between hypergraphs G and H
leaf-adding if

(1) (hV , hE) is a strong incidence homomorphism,
(2) hV is injective,
(3) hE is bijective, and
(4) the vertices V (H) \ im(hV) are leaves of H,

and, for connected hypergraphs G and H, we let LeafAddInHom(G,H) be the
number of leaf-adding incidence homomorphisms from G to H. Similarly to
the proof of Lemma 3, the proof of Lemma5 decomposes locally injective inci-
dence homomorphisms into leaf-adding incidence homomorphisms and locally
injective homomorphisms as in Fig. 3. Again, this identity is proven for arbi-
trary connected hypergraphs, and we restrict it to Berge-acyclic ones once it is
needed.

Lemma 5. We have LoInjInHom = LeafAddInHom·Aut−1·LoInjHom. The matrix
LeafAddInHom is invertible and upper triangular.

We have all we need to prove that counting incidence homomorphisms from
BA is equivalent to counting homomorphisms from BA. Combining Lemmas 3
and 5 yields InHom = LoMeHom · Aut−1 · LeafAddInHom · Aut−1 · LoInjHom, and
Lemma 4 states that we have Hom = LoMeHom · Aut−1 · LoInjHom. Even with
the invertibility of LoMeHom and LeafAddInHom, the proof of Lemma 6 is not
trivial as the inverse of the upper triangular matrix LeafAddInHom is still an
upper triangular matrix, and hence, left multiplication with it may be undefined.
This, however, can be avoided by considering finite submatrices as in [6]. This
proof finishes our “reduction” and, hence, the proof of Theorem1 as it follows
immediately from Lemmas 2 and 6.

Lemma 6. For all hypergraphs G and H, the following are equivalent:

(1) InHOMBA(G) = InHOMBA(H).
(2) HOMBA(G) = HOMBA(H).

2.4 Simple Hypergraphs

For a restriction of Theorem 1 to simple hypergraphs, consider a homomorphism
(hV , hE) from a hypergraph G to a simple hypergraph H. If e, e′ ∈ E(G) are
parallel edges of G, i.e., fG(e) = fG(e′), then we have fH(hE(e)) = hV (fG(e)) =
hV (fG(e′)) = fH(hE(e′)), which implies hE(e) = hE(e′) since H does not have
parallel edges. That is, parallel edges of G have to be mapped to the same edge
of H since a homomorphism’s mapping on edges is determined by its mapping
on vertices up to parallel edges. Hence, if we consider the simple hypergraph G′

obtained by merging parallel edges of G, then there is a one-to-one correspon-
dence between the homomorphisms from G to H and these from G′ to H, and in

348 J. Böker

particular, we have Hom(G,H) = Hom(G′,H). Thus, for a simple hypergraph,
it suffices to count homomorphisms from simple hypergraphs, and we obtain
Corollary 1, where SBA denotes the class of all connected Berge-acyclic simple
hypergraphs.

Corollary 1. For all simple hypergraphs G and H, the following are equivalent:

(1) HOMSBA(G) = HOMSBA(H).
(2) Color refinement does not distinguish G and H.

For incidence homomorphisms, however, the situation is not as clear as these
may map parallel edges to non-parallel ones. However, with an interpolation
argument, it is possible to prove that such a restriction can be made.

Lemma 7. For all simple hypergraphs G and H, the following are equivalent:

(1) InHOMSBA(G) = InHOMSBA(H).
(2) Color refinement does not distinguish G and H.

3 Directed Graphs

To prove that counting homomorphisms from DAGs suffices to characterize arbi-
trary directed graphs up to isomorphism, one could proceed in a similar fashion
to [6], i.e., by defining an unfolding of a directed graph into a DAG and then prov-
ing the equivalence of counting homomorphisms and unfolding numbers. This
way, one obtains a characterization that is more intuitive than that of homomor-
phism counts, and one could show that an isomorphism between the directed
graphs can be extracted from an isomorphism between appropriate unfoldings.
However, as the class of DAGs can also be defined in terms of homomorphism
numbers, a proof using the algebraic properties of homomorphism counts turns
out to be much simpler.

Lovász’s second homomorphism-related work [9] concerns the cancellation
law among finite relational structures. For the case of graphs, this asks whether
a graph K cancels out from the tensor products G ⊗ K ∼= H ⊗ K, i.e., whether
it satisfies the implication G⊗K ∼= H ⊗K =⇒ G ∼= H for all graphs G and H.
Note that the tensor product G ⊗ H of two graphs G and H is the graph with
vertex set V (G) × V (H) that has an edge between (u, u′) and (v, v′) if and only
if uv ∈ E(G) and u′v′ ∈ E(H). Lovász gives the answer that this implication
holds if and only if K is not bipartite. Moreover, from his work on the general
case of finite relational structures, it follows that the transitive tournament

−→
Kn

on n vertices satisfies the cancellation law for directed graphs as long as n ≥ 3.
To see how the cancellation law is related to homomorphism counts, observe

that the class of DAGs can be defined as the class of all directed graphs that
have a homomorphism into a transitive tournament. Formally, if we let A denote
the class of DAGs and define An := {G | Hom(G,

−→
Kn) > 0 } for every n ∈ N,

then we have A = ∪n∈NAn. Then, using the facts that two directed graphs G

Color Refinement, Homomorphisms, and Hypergraphs 349

and H are isomorphic if and only if we have Hom(F,G) = Hom(F,H) for every
directed graph F [8] and that Hom(F,G ⊗ H) = Hom(F,G) · Hom(F,H) holds
for all directed graphs F , G, and H [9], we get that

G ⊗ −→
Kn

∼= H ⊗ −→
Kn

⇐⇒ ∀F. Hom(F,G ⊗ −→
Kn) = Hom(F,H ⊗ −→

Kn)

⇐⇒ ∀F. Hom(F,G) · Hom(F,
−→
Kn) = Hom(F,H) · Hom(F,

−→
Kn)

⇐⇒ HOMAn
(G) = HOMAn

(H)

holds for all directed graphs G and H and every n ∈ N. That is, tensor products
with

−→
Kn are directly related to counting homomorphisms from An.

With the work of Lovász [9], this yields that two directed graphs G and H are
isomorphic if and only if, for every DAG D, we have Hom(D,G) = Hom(D,H).
More precisely, we obtain the even stronger statement that it suffices to count
homomorphisms from the DAGs in A3, i.e., from DAGs where the longest
directed walk has length two. For the case of undirected graphs, an analogous
argument with the complete graph on three vertices K3, which is not bipartite,
yields that arbitrary graphs can be characterized up to isomorphism by counting
homomorphisms from all three-colorable graphs.

4 Conclusion

We have proven a generalization of the Tree Theorem for hypergraphs. To this
end, we have introduced a generalization of the color refinement algorithm for
hypergraphs, which has lead to the notion of an incidence homomorphism. By
showing how incidence homomorphisms are related to homomorphisms, we have
“reduced” the case of hypergraphs to the case of vertex-colored graphs. For the
case of directed graphs, we have revisited a result of Lovász, which shows that
the class of DAGs is already too expressive to obtain an analogue of the Tree
Theorem.

The central open question posed by our generalization of the Tree Theorem
is whether it can further be generalized; the Tree Theorem can be generalized
to the k-dimensional Weisfeiler-Leman algorithm (k-WL), a generalization of
color refinement that colors k-tuples instead of single vertices, and the class of
all graphs of treewidth at most k. More precisely, two graphs G and H are not
distinguished by k-WL if and only if Hom(F,G) = Hom(F,H) for every graph
F of treewidth at most k [6]. An attempt to generalize our result could be to
consider k-WL on the colored incidence graphs of hypergraphs as proposed in a
recent preprint by Brooksbank et al. [2], in which case, however, our reduction
does not generalize as we cannot restrict the identities of Lemmas 3 and 4 to
hypergraphs whose incidence graphs have treewidth at most k; merging vertices
of a graph may increase its treewidth even when the merged vertices are part
of the same neighborhood. A way of interpreting this is that the treewidth of
the incidence graph of a hypergraph G is not a meaningful notion for G since it
mixes up the vertices and edges of G.

350 J. Böker

Besides the generalization to k-WL, there are other natural questions: Is there
a linear-algebraic characterization of hypergraph color refinement like there is
for graphs [11,12]? Do homomorphisms from hypergraph analogues of paths and
cycles yield characterizations similar to the ones for graphs [6]?

References

1. Böker, J.: Color refinement, homomorphisms, and hypergraphs. CoRR abs/
1903.12432 (2019, preprint). http://arxiv.org/abs/1903.12432

2. Brooksbank, P.A., Grochow, J.A., Li, Y., Qiao, Y., Wilson, J.B.: Incorporating
weisfeiler-leman into algorithms for group isomorphism. CoRR abs/1905.02518
(2019). http://arxiv.org/abs/1905.02518

3. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(3), 265–298 (2004)

4. Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting
small subgraphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, pp. 210–223. ACM (2017)

5. Dalmau, V., Jonsson, P.: The complexity of counting homomorphisms seen
from the other side. Theor. Comput. Sci. 329(1), 315–323 (2004). https://doi.
org/10.1016/j.tcs.2004.08.008. http://www.sciencedirect.com/science/article/pii/
S0304397504005560

6. Dell, H., Grohe, M., Rattan, G.: Lovász meets Weisfeiler and Leman. In: Chatzi-
giannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th International
Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 107, pp. 40:1–40:14. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

7. Grohe, M., Kersting, K., Mladenov, M., Schweitzer, P.: Color refinement and
its applications. In: An Introduction to Lifted Probabilistic Inference. Cam-
bridge University Press (to appear). https://www.lics.rwth-aachen.de/global/
show document.asp?id=aaaaaaaaabbtcqu

8. Lovász, L.: Operations with structures. Acta Math. Hung. 18(3–4), 321–328 (1967)
9. Lovász, L.: On the cancellation law among finite relational structures. Periodica

Math. Hung. 1(2), 145–156 (1971)
10. Lovász, L.: Large Networks and Graph Limits. American Mathematical Society

(2012)
11. Tinhofer, G.: Graph isomorphism and theorems of birkhoff type. Computing 36(4),

285–300 (1986). https://doi.org/10.1007/BF02240204
12. Tinhofer, G.: A note on compact graphs. Discrete Appl. Math. 30(2), 253–264

(1991). https://doi.org/10.1016/0166-218X(91)90049-3. http://www.sciencedirect
.com/science/article/pii/0166218X91900493

13. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph
kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

http://arxiv.org/abs/1903.12432
http://arxiv.org/abs/1905.02518
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1016/j.tcs.2004.08.008
http://www.sciencedirect.com/science/article/pii/S0304397504005560
http://www.sciencedirect.com/science/article/pii/S0304397504005560
https://www.lics.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabbtcqu
https://www.lics.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabbtcqu
https://doi.org/10.1007/BF02240204
https://doi.org/10.1016/0166-218X(91)90049-3
http://www.sciencedirect.com/science/article/pii/0166218X91900493
http://www.sciencedirect.com/science/article/pii/0166218X91900493

3-Colorable Planar Graphs Have
an Intersection Segment Representation

Using 3 Slopes

Daniel Gonçalves(B)

LIRMM, Université de Montpellier & CNRS,
Montpellier, France
goncalves@lirmm.fr

Abstract. In his PhD Thesis E.R. Scheinerman conjectured that planar
graphs are intersection graphs of segments in the plane. This conjecture
was proved with two different approaches. In the case of 3-colorable pla-
nar graphs E.R. Scheinerman conjectured that it is possible to restrict
the set of slopes used by the segments to only 3 slopes. Here we prove
this conjecture by using an approach introduced by S. Felsner to deal
with contact representations of planar graphs with homothetic triangles.

Keywords: Planar graphs · Segment intersections

1 Introduction

In this paper, we consider intersection representations for planar graphs. A seg-
ment representation of a graph G maps every vertex v ∈ V (G) to a segment v
of the plane so that two segments u and v intersect if and only if uv ∈ E(G).
Although this graph family is simply defined, it is not easy to manipulate. Actu-
ally, even if this class of graphs is small (there are less than 2O(n log n) such graphs
with n vertices [12]) a segment representation may be long to encode (in the rep-
resentations of some of these graphs the endpoints of the segments need at least
2

√
n bits to be coded [10]). There are also interesting open problems concerning

this class of graphs. For example, we know that deciding whether a graph G
admits a segment representation is NP-hard, indeed it is ∃R-complete [9] but
it is still open whether this problem belongs to NP or not. Here we focus on
segment representations for planar graphs.

In his PhD Thesis, Scheinerman [13] conjectured that every planar graph
has a segment representation. This conjecture attracted a lot of attention. de
Fraysseix and Ossona de Mendez [5] proved it for a large family of planar graphs,
the planar graphs having a 4-coloring in which every induced cycle of length 4
uses at most 3 colors. In particular, this implies the conjecture for 3-colorable

This research is partially supported by the ANR GATO, under contract ANR-16-CE40-
0009.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 351–363, 2019.
https://doi.org/10.1007/978-3-030-30786-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_27&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_27

352 D. Gonçalves

planar graphs. Then Chalopin and the author finally proved this conjecture [2].
Recently, a much simpler proof was provided by the author, Isenmann, and
Pennarun [7]. Here we focus on segment representations of planar graphs with
further restrictions.

In his PhD Thesis, Scheinerman [13] proved that every outerplanar graph
has a segment representation where only 3 slopes are used, and where parallel
segments do not intersect. Let us call such a representation a 3-slopes segment
representation. This result led Scheinerman conjecture [14] (see also [5]) that such
representation exists for every 3-colorable planar graph. Later, several groups
proved a related result on bipartite planar graphs [3,6,8]. They proved that every
bipartite planar graph has a 2-slopes segment representation, with the extra
property that segments do not cross each other. Let us call such a representation
a 2-slopes contact segment representation. More recently de Castro et al. [1]
considered a particular class of 3-colorable planar graphs. They proved that
every triangle-free planar graph has a 3-slopes contact segment representation.
Such a contact segment representation cannot be asked for any 3-colorable planar
graph. Indeed, up to isomorphism, the octahedron has only one 3-slopes contact
segment representation depicted in Fig. 1, and one can easily check that this
representation does not extend to the (3-colorable) graph obtained after gluing
a copy of an octahedron in each of its faces. However, we will use 3-slopes contact
segment representations in the proof of our main result.

Theorem 1. Every 3-colored planar graph has a 3-slopes segment representa-
tion such that parallel segments correspond to the color classes.

Fig. 1. The octahedron and a 3-slopes contact representation. It is unique, up to vertex
automorphism, up to scaling, and once the slopes are set. (Color figure online)

As every 3-colored planar graph is the induced subgraph of some 3-colored
triangulation we only consider the case of triangulations in the following. In
Sect. 2 we review some basic definitions. Section 3 is devoted to the so-called tri-
angular contact schemes. It is shown that every 3-colorable triangulation admits
such a scheme. Then, those schemes are used in Sect. 4 to build 3-slopes segment
representations. Finally, we conclude with some remarks on 4-slopes segment
representations.

Planar Graphs with a 3 Slopes Segment Representation 353

2 Terminology

A triangulation is a plane graph where every face has size three. Unless stated
otherwise, in this paper triangulations are simple, that means without loops nor
multiple edges. A triangulation T , simple or not, is Eulerian if every vertex
has even degree. It is folklore that these triangulations are the 3-colorable tri-
angulations. Actually these triangulations are uniquely 3-colorable (up to color
permutation). Hence their vertex set V (T) is canonically partitioned into three
independent sets A, B and C. In the following we will denote the vertices of
these sets respectively ai with 0 ≤ i < |A|, bj with 0 ≤ j < |B|, and ck with
0 ≤ k < |C|. In such a triangulation T any face is incident to one vertex ai, one
vertex bj , and one vertex ck, and these vertices appear in this order either clock-
wisely or counterclockwisely. In the following, the vertices of the outerface are
always denoted a0, b0 and c0, and they appear clockwisely in this order around T .
As the orders of two adjacent faces are opposite, the dual graph of T is bipartite.
Given an Eulerian triangulation T with face set F (T), let us denote by F1(T)
and F2(T) (or simply F1 and F2 if it is clear from the context) the face sets
partitioning F (T), such that no two adjacent faces belong to the same set, and
such that F2(T) contains the outer-face. Note that by construction for any face
f ∈ F1(T) (resp. f ∈ F2(T)) its vertices ai, bj and ck appear in clockwise (resp.
counterclockwise) order around f . Note that the vertices a0, b0 and c0 appear
in clockwise order around T , but in counterclockwise order w.r.t. the outer face.
Let n = |V (T)|. As T is a triangulation, by Euler’s formula it has 2n − 4 faces.
Hence, as T ’s dual is bipartite and 3-regular, |F1(T)| = |F2(T)| = n − 2.

In the following we build 3-slopes segment representations. The 3 slopes used
are expected to be distinct, but apart from that the exact 3 slopes considered
do not matter. Indeed, for any two triples of slopes, (s1, s2, s3) and (s′

1, s
′
2, s

′
3),

there exists an affine map of the plane turning any 3-slopes segment representa-
tion using slopes (s1, s2, s3) into a 3-slopes segment representation using slopes
(s′

1, s
′
2, s

′
3). We denote −→a ,

−→
b , and −→c the vectors corresponding to slopes of the

sets A, B, and C respectively. The magnitude of these vectors is chosen such
that −→a +

−→
b + −→c =

−→
0 .

3 TC-Representations and TC-Schemes

We begin with the definition of particular 3-slopes contact representations illus-
trated in Fig. 2.

Definition 1. A Triangular 3-slopes segment Contact representation (TC-
representation for short) is a 3-slopes contact segment representation using the
same slopes as −→a ,

−→
b , and −→c , and where:

– Three segments a0, b0, and c0, form a triangle which contains all the other
segments.

– Every inner region is a triangle, whose each side is contained in a segment of
the representation.

354 D. Gonçalves

Fig. 2. (left) Vectors −→a ,
−→
b , and −→c . (middle) A TC-representation with various types of

intersection points. (right) Its induced graph, where gray faces are particular degenerate
faces. One has size six, and there are two faces of size three that correspond to the
same intersection point.

– Two parallel segments intersect on at most one point, their endpoint.

Definition 2. Let the plane graph M(R) induced by a TC-representation R be
the map whose vertices correspond to the segments of the representation, and
where two vertices are adjacent if and only if the corresponding segments form a
corner of one of the inner triangles. The orders of the neighbors around a vertex
v correspond to the order of the segments around v.

Note that the plane graph induced by a TC-representation has several prop-
erties. For example, two parallel segments correspond to non-adjacent vertices.
The slopes hence define a 3-coloring of the graph. Note also that the dual graph of
M(R) is bipartite. Indeed such a map has two types of faces, one set contains the
(triangular) faces corresponding to the inner regions of the TC-representation,
and the other set contains the outerface and the faces corresponding to intersec-
tion points. Let us denote the latter faces degenerate faces, and note that those
faces have size three or six. A size six face (ai, bj , ck, ai′ , bj′ , ck′) comes from
the intersection point of six segments, and as those six segments go in distinct
directions they do not intersect elsewhere, so this cycle has no chord in M(R).
Finally note that going clockwise in any inner region one successively follows
α−→a , α

−→
b , and then α−→c , for some not necessarily positive value α.

Definition 3. A TC-representation R is a TC-scheme of an Eulerian triangu-
lation T if M(R) is a subgraph of T with the same outer-face as T and such that
the vertices and edges of V (T) \ V (M(R)) lie inside degenerate faces of M(R)
(see Fig. 3).

Actually as in M(R), the inner faces around any vertex alternate among degen-
erate and non-degenerate. This implies that every edge of M(R) bounds a non-
degenerate face, and a face that is degenerate or that is the outerface. We thus
have the following.

Planar Graphs with a 3 Slopes Segment Representation 355

Fig. 3. From left to right. A TC-representation R; its induced map M(R), where gray
faces are the degenerate faces; and two triangulations having R as TC-scheme.

Remark 1. A TC-representation R is a TC-scheme of T if and only if the non-
degenerate faces of M(R) and its outerface are faces of T .

The main ingredient in the proof of Theorem1 is the following.

Theorem 2. Every Eulerian triangulation T has a TC-scheme, and this scheme
is unique.

To prove this theorem we proceed by the following steps. We first model
TC-schemes of T by means of a system of linear equations and we sketch out
why this linear system always has a unique solution.

3.1 The Linear System Model

In a TC-representation all the triangles are homothetic. Let us define the size of
a triangle as its relative size with respect to the outer-triangle. We may require
that the outer-triangle has size 1, the triangles with a corner on the left have
positive sizes, while the triangles with a corner on the right have negative sizes.
The variables of our linear system correspond to the sizes of the triangular
regions. So for each face f ∈ F1 we have a variable xf . Informally, the value
of xf will prescribe the size and shape of the corresponding triangle in a TC-
representation. If xf < 0, xf = 0, or if xf > 0 the corresponding triangle has a
corner on the right, is missing, or has a corner on the left, respectively.

Let us denote by F1(v) the subset of faces of F1 incident to v. As the outer
triangle has size 1 and contains the other triangles, the faces in F1(a0) should
have non-negative sizes, and they should sum up to 1 (see Fig. 4 left). We hence
consider the following constraint.

∑

f∈F1(a0)

xf = 1 (a0)

We add no constraint about the sign of these sizes. Note that similar constraints
hold for b0 and c0.

∑

f∈F1(b0)

xf = 1 (b0)

356 D. Gonçalves

∑

f∈F1(c0)

xf = 1 (c0)

Similarly, around an inner segment of a TC-representation all the triangles
on one side have same size sign, which is opposite to the other side. Furthermore,
by summing all these sizes one should obtain 0 (see Fig. 4 right). Hence, for any
inner-vertex u we consider the following constraint.

∑

f∈F1(u)

xf = 0 (u)

+ 0.33

+ 0.17

+ 0.5
+ 0.33

+ 0.17
− 0.25

− 0.25

a

b

0

i

Fig. 4. (left) The size of the triangles around a0. (right) The size of the triangles around
some inner vertex bi.

In the following, Equ. (aj) will refer to Eq. (u) where vertex u is replaced
by aj . Note that every face f ∈ F1 is incident to exactly one vertex of A, one
vertex of B, and one vertex of C. Hence by summing Eqs. (a0), (a1),. . . ,(a|A|),
one obtains that

∑
f∈F1

xf = 1. The same holds with Eqs. (b0), (b1),. . . ,(b|B|),
or with Eqs. (c0), (c1),. . . ,(c|C|). Equations (b0) and (c0) are hence implied by
the others and thus we do not need to consider them anymore. Let us denote by
L the obtained system of n − 2 linear equations on |F1| = n − 2 variables.

Let us define the set V ′ = V \ {b0, c0} of size n − 2. Finding a solution to L
is equivalent to finding a vector S ∈ R

F1 (that is a vector indexed by elements
of F1) such that MS = I, where M ∈ R

V ′×F1 (a square matrix indexed by
elements of V ′ × F1) and I ∈ R

V ′
are defined by

M(xi, f) =
{

1 if f ∈ F1(xi)
0 otherwise. I(xi) =

{
1 if xi = a0

0 otherwise.

Given some bijective mappings gV ′ : [1, . . . , n−2] −→ V ′ and gF1 : [1, . . . , n−
2] −→ F1, one can index the elements of M by pairs (i, j) ∈ [1, . . . , n − 2] ×
[1, . . . , n − 2], and thus define the determinant of M . By the following lemma, L
has a solution vector S, and this solution is unique.

Lemma 1. The matrix M is non-degenerate, i.e. det(M) �= 0.

The full proof of this lemma is inspired by the work of Felsner [4] on contact
representations with homothetic triangles. The proof is not provided in this
extended abstract but the main idea is to consider the bipartite graph TM with

Planar Graphs with a 3 Slopes Segment Representation 357

independent sets V ′ and F1 such that v ∈ V ′ and f ∈ F1 are adjacent if and
only if v and f are incident in T . Note that M is the biadjacency matrix of TM .
From the embedding of T one can easily embed TM in such a way that all the
inner faces have size 6, and such that a0 is on the outerboundary.

Note that every perfect matching of TM (if any) corresponds to a permu-
tation σ on [1, . . . , n − 2] (we say σ belongs to the permutation group Sn−2)
defined by σ(g−1

F1
(f)) = g−1

V ′ (v), for any edge vf of the perfect matching. If the
obtained permutation is even we call such perfect matching positive, otherwise
it is negative. From the Leibniz formula for the determinant,

det(M) =
∑

σ∈Sn−2

sgn(σ)
∏

i∈[1,...,n−2]

M(gV ′(σ(i)), gF1(i)),

one can see that det(M) counts the number of positive perfect matchings of TM

minus its number of negative perfect matchings.

Claim. The graph TM admits at least one perfect matching.

Given a graph G and a perfect matching M of G, an alternating cycle C is a
cycle of G with edges alternating between M and E(G)\M . Note that replacing
in M the edges of M ∩C by the edges of C \M yields another perfect matching.
We call such operation a cycle exchange. It is folklore that the set of perfect
matchings of a graph are linked by cycle exchanges. Actually, for TM one can
restrict itself to cycles of length six.

Claim. All the perfect matchings of TM are linked by 6-cycle exchanges.

This implies that the perfect matchings of TM are either all positive, or all
negative. Thus det(M) �= 0. The following lemma (not proved in this extended
abstract) allows us to conclude the proof of Theorem 2.

Lemma 2. Every Eulerian triangulation T admits a TC-scheme R that corre-
sponds to the solution of its linear system L.

4 3-Slopes Segment Representations

In this section we use Theorem 2 to prove the main theorem of the article, Theo-
rem 1. As already mentioned it is sufficient to prove it for Eulerian triangulations.
Given an Eulerian triangulation T , let us denote a1, b1 and c1 the vertices form-
ing a face with vertices b0 and c0, with a0 and c0, and with a0 and b0, respectively.
Theorem 1 follows from the following technical proposition.

Proposition 1. For every ε > 0, every Eulerian triangulation T admits a 3-
slopes segment representations R such that:

– The segments a0, b0, and c0 form a triangle Δ of size 1 (its sides are obtained
by following −→a ,

−→
b , and −→c).

358 D. Gonçalves

Fig. 5. (left) A 3-slopes segment representation inside an hexagon. (right) A scheme
representing its shape.

– Every segment is contained in the hexagon centered on Δ, obtained by suc-
cessively following (1 − ε)−→a , −2ε−→c , (1 − ε)

−→
b , −2ε−→a , (1 − ε)−→c , and −2ε

−→
b

(see Fig. 5).

Given such representation R, we define the shape of R as the triplet
(sa, sb, sc) of sizes in R (w.r.t. the outer-triangle) of the triangles corresponding
to a1b0c0, a0b1c0, a0b0c1, respectively. Note that if ε is chosen sufficiently small,
that is for ε < 1, as the vertices a1, b1, and c1 have neighbors that are inner
vertices, a1, b1, and c1 intersect Δ, and we have sa > 0, sb > 0, and sc > 0.

Proof. We proceed by induction as we assume that the proposition holds for any
Eulerian triangulation with less vertices. The initial case of this induction, when
|V (T)| = 3 clearly holds.

Given an Eulerian triangulation T with at least four vertices, we consider a
TC-scheme R of T (given by Theorem 2), and by successively resolving degener-
ate points (i.e. intersection points of at least three segments) from left to right,
we eventually reach the sought representation. Here resolving means that the
segments of a 3-degenerate point (resp. a 6-degenerate point) are moved to form
a triangle (resp. a polygon) inside which we are going to draw a 3-slopes rep-
resentation of the graph corresponding to this degenerate face of M(R), this is
possible by using the induction on this smaller graph. The degenerate points
of R are resolved from left to right. This means that at a given stage of this
process there is a vertical line (parallel with

−→
b) V such that on its left there is

no intersection point of three or more segments. This implies that on the left of
V the representation handles some small perturbations: one can slightly move
the segments without changing the intersections.

Let V be the leftmost vertical line containing degenerate points. We resolve
those degenerate points by slightly moving segments on the left of or on V, while
maintaining the right side of the representation unchanged. We consider different
cases according to the degenerate points on V.

If V contains a 3-degenerate point p in the interior of a (vertical) segment bj

and at the end of two segments ai and ck lying on the left of V, the situation is

Planar Graphs with a 3 Slopes Segment Representation 359

Fig. 6. (left) A 3-degenerate point on V (middle) Small perturbation of R (right) The
addition of a representation inside the new triangle.

rather simple. Move these segments a little to the left and slightly prolong them
to intersect bj (see Fig. 6). As there is no degenerate point on the left of V these
moves can be done while maintaining the existing intersections and avoiding new
intersections. If aibjck is not a face of T , consider the triangulation T ′ induced
by the vertices in the cycle aibjck of T . By induction T ′ has a representation
that can be drawn inside the newly formed triangle bordered by the segments
ai, bj and ck.

Fig. 7. (left) A double 3-degenerate point on V (right) Small perturbation of R.

If V contains a double 3-degenerate point p in the interior of a (vertical) segment
bj, the situation is similar to the previous one. Move the segments on the left
of V as depicted in Fig. 7. If the new triangle is not a face of T , we add a
representation inside. We are now left with a simple 3-degenerate point at p.
This corresponds to the following case.

If V contains a 3-degenerate point p in the interior of a (vertical) segment bj

and at the end of two segments, ai and ck, lying on the right of V, one can move
bj slightly to the right or slightly to the left and resolve these points without
changing the right part of the representation. The choice of moving bj to the
right or to the left is explained in the next paragraph, but we can assume this
move to be arbitrarily small. Whatever the direction bj is moved one has to

360 D. Gonçalves

Fig. 8. (left) A 3-degenerate point on V (middle) Slightly moving bj to the right (right)
Slightly moving bj to the left.

prolong ai and ck to have all the intersections, between these segments or with
bj (see Fig. 8). Note that in order to preserve the representation on the right
of V the segments ai and ck are not moved, they are only prolonged around p.
Again, if aibjck is not a face of T , we draw a representation inside the newly
formed triangle. Note that if bj moves to the right, the triangle bordered by ai,
bj and ck has negative size, but it suffices to apply a homothety with negative
ratio to obtain a representation that can be drawn inside.

Consider now the degenerate points at the end of a (vertical) segment bj of V.
Let b1,b2, . . . ,bt be a maximal sequence of segments on V such that bj and
bj+1 intersect on a point. We are going to move these segments alternatively to
the right and to the left, for example the segments with even index are moved
to the left while the ones with odd index are moved to the right. The exact
magnitude of these moves will be set later, but first note that the 3-degenerate
points in the interior of the segments bj with 1 ≤ j ≤ t can be dealt if the move
of bj is sufficiently small (see previous cases). Consider the intersection point p
between bj and bj+1. The case of b1 and bt’s end is similar and it is not detailed
here.

Fig. 9. (left) A double 3-degenerate point on V (middle) & (right) Small moves that
resolve this point.

If there is a segment ai going through p. It is shown in Fig. 9 how to resolve
these two overlapped 3-degenerate points, in order to create two triangles, where

Planar Graphs with a 3 Slopes Segment Representation 361

one can add a small representation if needed. The case where there is a segment
ck going through p is similar.

Fig. 10. From left to right: a 6-degenerate point on V. Resolution if there is no chord
in bjacbj+1a

′c′ with the shape of R′. Resolution if none of bjc, ca
′, or a′bj is a chord,

with the shape of R′. Resolution if ac′ and ca′ are chords, with the shape of R2.

Assume now that six segments intersect at p. Let bj be the one below p, and
let a, c, bj+1, a′, and c′ be the other ones around p clockwisely. Let us assume
wlog that bj has to move to the left, while bj+1 has to move to the right. The
degenerate face corresponding to p is bounded by these six vertices and there
are several cases according to whether there are chords among them in T (see
Fig. 10).

If there is no chord inside the cycle bjacbj+1a
′c′ we consider the subgraph of

T induced by the vertices on and inside this cycle, add we add the edges abj+1,
bj+1c

′, and ac′ outside the cycle, and we denote by T ′ the obtained simple Eule-
rian triangulation. By the induction we know that T ′ admits a 3-slope segment
representation R′, and let (sa, sb, sc) be the shape of R′. We resolve the point
by moving the segments as depicted in Fig. 10, and the magnitude of each of
these moves is prescribed by the shape (sa, sb, sc) in order to allow us to copy
R′ inside the triangle formed by a, bj+1, and c′. Then we shorten a, bj+1, and
c′ to avoid intersections among them. Actually, the case where none of abj+1,
bj+1c

′, or ac′ is a chord is similar.
If none of bjc, ca′, or a′bj is a chord of bjacbj+1a

′c′ we proceed similarly.
The only difference is that we add the edge bjc, ca′, or a′bj outside bjacbj+1a

′c′

to obtain T ′, and that we have to perform a homothety with negative ratio to
include R′.

Finally, if there are two opposite chords on bjacbj+1a
′c′, say ac′ and ca′,

we consider two triangulations. Let T1 be the one inside the cycle c′bja and let
T2 be the one obtained from the interior of the 5-cycle acbj+1a

′c′ by adding
the edges abj+1 and bj+1c

′. By the induction we know that T1 and T2 admit
3-slopes segment representations R1, and R2, and let (sa, sb, sc) be the shape
of R2. We resolve the point by moving the segments as depicted in Fig. 10, and

362 D. Gonçalves

the magnitude of each of these moves, except for bj, is prescribed by the shape
(sa, sb, sc) in order to allow us to copy R2 inside the triangle formed by a, bj+1,
and c′. Then we shorten a, and bj+1 to avoid the intersections corresponding
to abj+1 and bj+1c

′. The segment bj is moved sufficiently to the left to avoid
the interior of the triangle containing R2. Then R1 is drawn inside the triangle
bordered by bj, a and c′. This is possible because R2 does not intersect this
triangle.

Finally note that the moves of bj and bj+1 are opposite but of proportional
magnitudes (up to some constant depending on the shapes (sa, sb, sc) of R′ or
R2). So it is clear that we can simultaneously move all the segments bj on V.
This concludes the proof of the lemma.

5 Conclusion

West [15] and de Fraysseix and Ossona de Mendez [5] independently ask for a
generalization of Scheinerman’s Conjecture.

Conjecture 1. Planar graphs that are k-colorable admit a k-slopes segment rep-
resentation.

The case k = 1 is trivial. We have seen that the case k = 2 holds with 2-slopes
contact representations. We have seen that the case k = 3 also holds. For the final
case k = 4 we would like to apply the same approach as here. This means that
we would like to go through a TC-representation of the considered triangulation,
and then resolve its degenerate points. There are at least two obstacles for this
approach. The first one is to find an order on the degenerate points to resolve
them. The left to right approach does not seem sufficient here. The second one
is connected to degenerate points p such that going clockwisely around p we
successively cross segments a, b, c, d, and a again. In that case its is impossible,
restricting ourselves to small perturbations to create a region bordered by a,
b, c, and d in the clockwise or counterclockwise order. To avoid this issue we
want 4-colorings (i.e. 4-slopes assignements) of planar graphs with particular
properties.

Conjecture 2. Planar graphs admit a {1, 2, 3, 4}-coloring such that there is no
induced C4 colored with colors 1, 2, 3 and 4 in clockwise order.

Examples show that one cannot extend this condition to non-induced 4-cycles. A
positive answer to this conjecture would imply that simple signed planar graphs
have chromatic number at most 4, positively answering a conjecture of Máčajová,
Raspaud, and Škoviera [11].

Acknowledgements. The author is thankful to Marc de Visme for fruitful discussions
on this topic, and to Pascal Ochem for bringing [11] to his attention.

Planar Graphs with a 3 Slopes Segment Representation 363

References

1. de Castro, N., Cobos, F., Dana, J.C., Márquez, A., Noy, M.: Triangle-free pla-
nar graphs as segment intersection graphs. J. Graph Algorithms Appl. 6(1), 7–26
(2002)

2. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of seg-
ments in the plane: extended abstract. In: Proceedings of the Forty-first Annual
ACM Symposium on Theory of Computing, pp. 631–638 (2009)

3. Czyzowicz, J., Kranakis, E., Urrutia, J.: A simple proof of the representation of
bipartite planar graphs as the contact graphs of orthogonal straight line segments.
Inform. Process. Lett. 66(3), 125–126 (1998)

4. Felsner, S.: Triangle contact representations. In: Midsummer Combinatorial Work-
shop (2009)

5. de Fraysseix, H., Ossona de Mendez, P.: Representations by contact and intersec-
tion of segments. Algorithmica 47, 453–463 (2007)

6. de Fraysseix, H., de Mendez, P.O., Pach, J.: Representation of planar graphs by
segments. Colloq. Math. Soc. János Bolyai 63, 109–117 (1994). Intuitive Geometry
(Szeged, 1991)

7. Gonçalves, D., Isenmann, L., Pennarun, C.: Planar Graphs as L-intersection or
L-contact graphs. In: Proceedings of SODA, pp. 172–184 (2018)

8. Hartman, I.B.-A., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Math.
87(1), 41–52 (1991)

9. Kratochv́ıl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Combin.
Theory. Ser. B 52, 67–78 (1991)

10. Kratochv́ıl, J., Matoušek, J.: Intersection graphs of segments. J. Combin. Theory.
Ser. B 62, 180–181 (1994)

11. Máčajová, E., Raspaud, A., Škoviera, M.: The chromatic number of a signed graph.
Electr. J. Comb. 23(1), P1, 1–14 (2016)

12. Pach, J., Solymosi, J.: Crossing patterns of segments. J. Combin. Theory. Ser. A
96, 316–325 (2001)

13. Scheinerman, E.R.: Intersection classes and multiple intersection parameters of
graphs. Ph.D., Thesis, Princeton University (1984)

14. Scheinerman, E.R.: Private communication to D. West (1993)
15. West, D.: Open problems. SIAM J. Discrete Math. Newslett. 2(1), 10–12 (1991)

The Exponential-Time Complexity
of Counting (Quantum)
Graph Homomorphisms

Hubie Chen1, Radu Curticapean2,3(B), and Holger Dell3

1 Department of Computer Science and Information Systems,
Birkbeck University of London, London, UK

2 Basic Algorithms Research Copenhagen (BARC), Copenhagen, Denmark
3 IT University of Copenhagen, Copenhagen, Denmark

racu@itu.dk

Abstract. Many graph parameters can be expressed as homomorphism
counts to fixed target graphs; this includes the number of independent
sets and the number of k-colorings for any fixed k. Dyer and Green-
hill (RSA 2000) gave a sweeping complexity dichotomy for such prob-
lems, classifying which target graphs render the problem polynomial-
time solvable or #P-hard. In this paper, we give a new and shorter
proof of this theorem, with previously unknown tight lower bounds
under the exponential-time hypothesis. We similarly strengthen com-
plexity dichotomies by Focke, Goldberg, and Živný (SODA 2018) for
counting surjective homomorphisms to fixed graphs. Both results cru-
cially rely on our main contribution, a complexity dichotomy for evalu-
ating linear combinations of homomorphism numbers to fixed graphs. In
the terminology of Lovász (Colloquium Publications 2012), this amounts
to counting homomorphisms to quantum graphs.

Keywords: Graph homomorphisms · Exponential-time hypothesis ·
Counting complexity · Complexity dichotomy ·
Surjective homomorphisms

1 Introduction

The classification program in counting complexity strives to identify compre-
hensive classes of counting problems that are well-behaved enough to allow
for exhaustive complexity classifications [4–7,9,16]. Particularly good candi-
dates for such classes are counting variants of the Constraint Satisfaction Prob-
lem (#CSP) [3,4]. In the general #CSP, a problem instance is defined by a set
of variables V = {v1, . . . , vn}, each taking values from a domain D. The com-
putational task is to determine the number of assignments a : V → D from

Hubie Chen acknowledges the support of Spanish Project TIN2017-86727-C2-2-
R. Radu Curticapean was partly supported by ERC grant SYSTEMATICGRAPH
(No. 725978) and VILLUM Foundation grant 16582 while working on this project.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 364–378, 2019.
https://doi.org/10.1007/978-3-030-30786-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_28

The Complexity of Counting Quantum Graph Homomorphisms 365

variables to domain elements, subject to the requirement that a satisfies a set of
constraints that are part of the input. Each constraint is applied to a tuple of
variables and restricts the admissible assignments to that tuple.

In this full generality, the #CSP framework can easily express #P-hard
problems such as counting satisfying assignments to Boolean formulas in
CNF, or counting the proper k-colorings of graphs G, for fixed k ∈ N. For
instance, to count k-colorings, interpret the vertices of G as variables over the
domain {1, . . . , k} and constrain variable pairs corresponding to adjacent vertices
to have distinct assignments.

Among other properties, the complexity of #CSP depends on the types of
constraints present in the instance. This motivates the study of #CSP(F) for
fixed constraint sets F , where only instances with constraints from F are allowed
as input. After a wealth of research, a full dichotomy for these problems is
known by now: For every finite set F , the problem #CSP(F) has been shown
to be either polynomial-time solvable or #P-hard, with an explicit decidable
dichotomy criterion [5,17]. Dichotomies are known even in weighted settings [7]
that arise in statistical physics in the context of partition functions.

1.1 Graph Homomorphisms

The full dichotomy for #CSP(F) was predated by numerous results for special
cases, with a particular focus on graph homomorphisms [6,16,24]. Given graphs
G and H, a homomorphism from G to H is a function h : V (G) → V (H) such
that any edge uv ∈ E(G) is mapped to an edge h(u)h(v) ∈ E(H). Homomor-
phisms from G to H are sometimes also called H-colorings of G, since they
generalize q-colorings for fixed q ∈ N by taking H = Kq.

We write Hom(G,H) for the number of homomorphisms from G to H.
For a fixed graph H, the computational problem Hom(�,H) asks to compute
Hom(G,H) on input a graph G. This is indeed a particular #CSP(F) problem:
Viewing V (G) as variables and V (H) as domain, a homomorphism h corresponds
to an assignment from variables to domain elements that respects certain con-
straints on variable pairs: If u and v are connected by an edge in G, then its
assignments h(u) and h(v) must be such that h(u)h(v) is an edge of H. Following
this interpretation, it can be seen that the class of problems Hom(�,H) for fixed
H correspond exactly to #CSP(F) problems where F contains only a single
constraint, and this constraint depends only (symmetrically) on two variables.

Despite these restrictions, many interesting counting problems on graphs
can be expressed as the Hom(�,H) for suitable choices of H. This includes the
number of independent sets in a graph, the number of k-colorings for fixed k, and
certain partition functions from statistical physics. In a seminal result, Dyer and
Greenhill proved a full classification for the complexity of Hom(�,H) when H is
an undirected graph that may contain self-loops. In the following, we say that
a graph is reflexive if every vertex features a self-loop, and we say that it is
irreflexive if no vertex does. Note that bipartite graphs are irreflexive.

366 H. Chen et al.

Theorem 1 (Dyer and Greenhill [16]). Let H be a fixed undirected graph.
If each connected component of H is a bipartite complete graph or a reflexive
complete graph, then Hom(�,H) can be computed in polynomial time. Otherwise
the problem is #P-hard, even on irreflexive input graphs.

This exhaustive dichotomy was extended in numerous ways, including a set-
ting where H has edge-weights and the weight of a homomorphism is the prod-
uct of edge-weights in the image, counted with multiplicities [6,8,24]: Given an
input graph G, the task is to determine the sum of weights of all homomorphisms
from G to H, a quantity that occurs naturally in statistical physics. The case of
directed graphs was also fully classified [7,15]. Furthermore, a variant was inves-
tigated that asks to determine the number of homomorphisms modulo a fixed
prime [18,22,23], but a full dichotomy was not yet obtained for such problems.

Our Contribution: New proof of Theorem 1 with tight lower bound under ETH.
Using techniques originally introduced by Lovász [27], we significantly shorten
the proof of Theorem 1. Our new proof also gives tight conditional lower bounds
on the running times needed to solve the #P-hard cases: For a k-vertex graph H
and an n-vertex graph G, the quantity Hom(G,H) can be computed in time
roughly O(kn) using exhaustive search. It was shown by Cygan et al. [13] that
Hom(G,H) cannot be computed in time exp(o(n log k)) when both G and H are
input, unless the widely-believed exponential-time hypothesis (ETH) by Impagli-
azzo and Paturi [25] fails. However, this result leaves open the possibility of
exp(o(n))-time algorithms for particular fixed graphs H for which Hom(�,H) is
#P-hard. We rule out such algorithms under ETH. In fact, we only require the
counting exponential-time hypothesis #ETH, introduced in [14]. This makes the
result slightly stronger, since ETH implies #ETH.

Theorem 2. For every hard graph H in Theorem 1, the problem Hom(�,H)
cannot be computed in exp(o(n)) time on n-vertex input graphs unless #ETH
fails. This holds even for bipartite and irreflexive inputs with O(n) edges.

1.2 Surjective Homomorphisms

Focke, Goldberg, and Živný [20] used Theorem 1 as a starting point to classify
the complexity of counting homomorphisms with surjectivity constraints. We call
a homomorphism h from G to H surjective if its image contains every vertex
and every edge of H. That is, for every vertex v ∈ V (H), the preimage h−1(v) is
non-empty, and for every edge st ∈ E(H), there is at least one edge between the
sets h−1(s) and h−1(t) in G. This notion can be relaxed by requiring surjectivity
only on a subset of the vertices and edges of H. For instance, vertex-surjective
homomorphisms only require every vertex to be hit. Likewise, a compaction is a
vertex-surjective homomorphism from G to H that hits all non-loop edges of H.

The above authors proved a dichotomy theorem for counting vertex-surjective
homomorphisms to fixed graphs H [20], discovering that the dichotomy crite-
rion for these problems coincides with that for standard homomorphisms. They
proved a similar dichotomy for counting compactions and showed that there are
significantly fewer polynomial-time solvable cases.

The Complexity of Counting Quantum Graph Homomorphisms 367

Theorem 3 (Focke, Goldberg, and Živný [20]). Let H be a fixed graph. The
problem VertSurj(�,H) is polynomial-time solvable if every connected component
of H is a complete bipartite graph or a reflexive complete graph. The problem
Comp(�,H) is polynomial-time solvable if every component of H is an irreflexive
star or a reflexive complete graph of size at most two. In all other cases, the
problems are #P-hard, even on irreflexive inputs.

Our Contribution: Simplified and strengthened version of Theorem 3. We define
a problem that jointly generalizes the problems VertSurj(�,H) and Comp(�,H)
in a natural way. To this end, we consider target graphs H in which some edges
and vertices of H are marked. A partially surjective homomorphism then is
a homomorphism h whose image includes all marked objects of H; we write
PartSurj(G,H) for their number. With appropriate choices of markings, this
can be seen to generalize various quantities, such as homomorphisms, surjective
and vertex-surjective homomorphisms, and compactions. We obtain the follow-
ing complexity dichotomy, from which Theorem 3 easily follows.

Theorem 4. Let H be a graph in which some edges and/or vertices are marked,
and let D(H) be the set of graphs obtainable from H by deleting marked objects.

– If every graph in D(H) is a disjoint union of bipartite complete graphs and
reflexive complete graphs, then PartSurj(�,H) is polynomial-time solvable.

– Otherwise, PartSurj(�,H) is #P-hard and cannot be computed in exp(o(n))
time on n-vertex input graphs unless #ETH fails. This holds even for bipartite
and irreflexive inputs with O(n) edges.

1.3 Our Techniques: Homomorphisms to Quantum Graphs

While the class of homomorphism problems Hom(�,H) to fixed H subsumes
many interesting counting problems for graphs, there are also natural problems
that cannot be expressed in this framework. This includes the number of perfect
matchings in a graph [21,28]. To give another example that is more similar to
homomorphism counts, recall that counting 3-colorings in a graph is expressible
as Hom(�,K3). However, counting surjective 3-colorings (colorings that use all
three colors) cannot be expressed as Hom(�,H) for a fixed graph H. This is
because, for any graph G, the number of surjective 3-colorings is

VertSurj(G,K3) = Hom(G,K3) − 3 · Hom(G,K2) + 3 · Hom(G,K1). (1)

However, the expression of a graph parameter as a linear combination of homo-
morphism counts Hom(�,H) is known to be unique, see [27, Exercise 5.51], ruling
out the existence of a graph H with VertSurj(�,K3) = Hom(�,H).

More generally, the uniqueness of such expressions implies that closing the
class of homomorphism counts under point-wise linear combinations gives a
strictly richer class of graph parameters. Following Lovász’s terminology [27,

368 H. Chen et al.

Chapter 6], we call these graph parameters homomorphism counts to quantum
graphs. Here, a quantum graph H is a formal linear combination

H =
∑

H∈C
αHH

for a finite set of constituent graphs C where each H ∈ C has an associated
coefficient αH ∈ Q. The canonical linear extension of homomorphism counts to
quantum graphs H then reads

Hom(G,H) =
∑

H∈C
αH · Hom(G,H).

In other words, every finite (point-wise) linear combination of homomorphism
counts to fixed graphs can be expressed as a homomorphism count to a fixed
quantum graph. The computational problem Hom(�,H) for fixed H is to com-
pute Hom(G,H) for a given input G.

As exemplified in (1), problems that do not immediately appear to be linear
combinations of homomorphism counts may in fact be expressible in this format.
For instance, all partially surjective homomorphism counts can be expressed as
linear combinations of ordinary homomorphism counts.

Our Contribution: Dichotomy for homomorphisms to quantum graphs. We prove
that the complexity of counting homomorphisms to fixed graphs enjoys a very
favorable monotonicity property. (A similar phenomenon was already observed
for linear combinations of homomorphism counts from fixed graphs [10,12].)

Let H be a fixed quantum graph that is properly normalized, that is, its
constituents are pairwise non-isomorphic and all coefficients are non-zero. Then,
for any constituent H of H, the problem Hom(�,H) reduces to Hom(�,H) under
polynomial-time Turing reductions. That is, given access to an oracle that deliv-
ers the quantity Hom(G′,H) on any query G′, we can compute Hom(G,H) for
any input graph G and any constituent H of H. In particular, if Hom(�,H) is
#P-hard, then any linear combination of homomorphism counts containing the
summand Hom(�,H) is #P-hard.

Moreover, to determine Hom(G,H) for an n-vertex graph G, our reduction
only needs to query graphs G′ with n + c vertices, with c depending only on
H. This makes the reduction very suitable in the exponential-time setting: An
algorithm with running time O(bn) for Hom(�,H) would imply O(bn) time algo-
rithms for any constituent problem Hom(�,H). We use the complexity mono-
tonicity of quantum graphs to obtain our final dichotomy theorem:

Theorem 5. Let H =
∑k

i=1 αiHi be a fixed quantum graph, where H1, . . . , Hk

are fixed pairwise non-isomorphic graphs and α1, . . . , αk ∈ Q \ {0} are fixed.

– If the problem Hom(�,Hi) can be solved in polynomial time for every i ∈ [k],
then so can Hom(�,H).

The Complexity of Counting Quantum Graph Homomorphisms 369

– If there is some i ∈ [k] such that Hom(�,Hi) is #P-hard, then so is
Hom(�,H). In this case, unless #ETH fails, Hom(�,H) cannot be solved
in time exp(o(n)), even for bipartite and irreflexive input graphs with O(n)
edges.

The quantum graph H in this theorem may have negative coefficients; if H
has only positive coefficients, the #P-hardness of Hom(�,H) can already be
derived from Theorem 1.

Organization of the Paper

After introducing notions related to homomorphisms and exponential-time com-
plexity in Sect. 2, we prove the dichotomy theorem for homomorphisms to quan-
tum graphs (Theorem 5) in Sect. 3. Using the complexity monotonicity of homo-
morphism numbers to quantum graphs, we sketch the proof of the exponential-
time Dyer–Greenhill theorem (Theorem 2) in Sect. 4. Finally, we derive the
dichotomy for partially surjective homomorphisms (Theorem 4) in Sect. 5. Due
to lack of space, some proofs are deferred to the full version.

2 Preliminaries

Let G be the set of all unlabeled and undirected finite graphs. These graphs
may have self-loops but no parallel edges. In the remainder of this section, let
G,H ∈ G. We denote the vertex set of G with V (G) and the edge set with E(G).

Homomorphisms and Graph Algebra: Let Hom(G,H) be the number of homo-
morphisms from G to H, that is, functions h : V (G) → V (H) such that any
edge uv ∈ E(G) is mapped to an edge h(u)h(v) ∈ E(H). For fixed H, we write
Hom(�,H) for the graph parameter that maps input graphs G to Hom(G,H).

Our proofs rely on a result of Borgs et al. [2, Lemma 4.2], who show that the
graph function Hom, when viewed as a matrix, has certain non-singular finite
submatrices. We use the following extension, which we derive from the original
result in the full version.

Lemma 6. For any set of pairwise non-isomorphic graphs H1, . . . , Hk, there
exist irreflexive graphs F1, . . . , Fk such that the k × k matrix M with M [i, j] =
Hom(Fi,Hj) is invertible.

Even though H1, . . . ,Hk may feature self-loops, the lemma guarantees the exis-
tence of irreflexive graphs F1, . . . , Fk. In fact, these graphs can even be guaran-
teed to be 3-colorable.

Our proofs also rely upon two binary operations on graphs (which can be
viewed as graph products) and their effects on homomorphism counts: The dis-
joint union of graphs, and its “dual”, the tensor product.

370 H. Chen et al.

Definition 7. Let A,B be graphs on disjoint vertex sets. The disjoint union
A ∪ B has vertex set V (A) ∪ V (B) and consists of a copy of A and one of B.

The tensor product A ⊗ B is the graph on vertex set V (A) × V (B) where
(u, v) and (u′, v′) are adjacent if and only if (u, u′) ∈ E(A) and (v, v′) ∈ E(B).

From a matrix perspective, the adjacency matrix of A∪B is a block matrix with
blocks corresponding to A and B, and the adjacency matrix of A ⊗ B is the
Kronecker product of the respective adjacency matrices. The following identities
hold for all vertex-disjoint graphs G,F,A,B:

Hom(G ∪ F,A) = Hom(G,A) · Hom(F,A) , and (2)
Hom(G,A ⊗ B) = Hom(G,A) · Hom(G,B). (3)

If additionally G is connected, then we also have

Hom(G,A ∪ B) = Hom(G,A) + Hom(G,B). (4)

The proofs are elementary and can be found in [27, (5.28)–(5.30)].

Exponential-Time Complexity: The counting exponential time hypothesis
(#ETH) of Dell et al. [14], adapted from the decision setting of Impagliazzo,
Paturi, and Zane [25,26], asserts that there is no exp(o(m)) time algorithm to
count the satisfying assignments of a given 3-CNF formula with m clauses. We
use the following stringent type of polynomial-time reduction:

Definition 8 (Linear Reduction). Let f, g : G → Q be two graph parameters.
We write f � g if there is a polynomial-time Turing reduction from f to g that,
on input a graph with m edges, queries only graphs with at most O(m) edges.

Note that � is a reflexive and transitive relation; it is called size-preserving
reducibility in [19, p. 422]. If f � g, then an algorithm with running time
exp(o(m)) for g on m-edge graphs would imply one for f .

3 Counting Homomorphisms to Quantum Graphs

We are ready to prove Theorem 5, the dichotomy for counting homomorphisms
to quantum graphs. We establish the theorem via the following proposition on
the complexity monotonicity for counting homomorphisms to quantum graphs.

Proposition 9 (Complexity Monotonicity). Fix any quantum graph

H =
k∑

j=1

αjHj

with non-isomorphic graphs H1, . . . , Hk and coefficients α1, . . . , αk ∈ Q \ {0}.
For every fixed j ∈ [k], we then have

Hom(�,Hj) � Hom(�,H).

Furthermore, if the input graph G for Hom(�,Hj) is irreflexive, then all queries
for Hom(�,H) are irreflexive as well.

The Complexity of Counting Quantum Graph Homomorphisms 371

Proof. Without loss of generality, let j = 1. By Lemma 6, there exist irreflexive
graphs F1, . . . , Fk such that the matrix M with M [i, j] = Hom(Fi,Hj) is invert-
ible. On input a graph G, we first construct the graphs G ∪ Fi for all i ∈ [k].
By (2), we obtain the following linear equation for every i ∈ [k]:

Hom(G ∪ Fi,H) =
k∑

j=1

αj Hom(G,Hj) · M [i, j]. (5)

The set of these equations for all i ∈ [k] forms a linear equation system b = Mx,
with bi = Hom(G ∪ Fi,H) for all i ∈ [k] and xj = αj Hom(G,Hj) for all j ∈ [k].
Thus if G is the input and we wish to compute Hom(G,H1) using the oracle for
Hom(�,H), we use the following procedure:

1. Compute the vector b ∈ Qk using k queries to Hom(�,H).
2. Output the number (M−1b)1/α1.

This indeed yields Hom(G,H1), because α1 Hom(G,H1) = (M−1b)1 and α1 �= 0
hold. Since H1, . . . , Hk is fixed, we can hard-code the constants αj and graphs Fj ,
for j ∈ [k], as well as the matrix M−1 into the reduction. The reduction itself
runs in linear time to prepare the queries G ∪ Fi. Given as input an m-edge
graph G, it only issues queries on graphs with m + C edges, where C is a fixed
constant depending only on H. If G is irreflexive, then so are all query graphs
G ∪ Fi for i ∈ [k], since all Fi are irreflexive. �

Theorem 5 follows easily from Proposition 9 and Theorem 2.

4 Revisiting the Dyer-Greenhill Dichotomy

We outline our new proof of Theorem 1 and classify the complexity of Hom(�,H).
Our proof also gives a tight lower bound under #ETH, resulting in Theorem 2.

Throughout this section, let us say that a graph H is hom-easy if every
connected component of H is either a complete bipartite graph Ka,b for a, b ∈ N
or a reflexive complete graph K◦

q for q ∈ N. It is straightforward to check
that Hom(�,H) can be solved in linear time if H is a hom-easy graph. If H is
not hom-easy, we call H hom-hard. In the remainder of the section, we show
how to establish the #P-hardness of Hom(�,H) for hom-hard graphs H in three
steps.

1. Ensuring bipartiteness: Rather than working directly with H, we proceed
to its bipartite double cover H ⊗ K2. Recall from (3) that

Hom(G,H ⊗ K2) = Hom(G,H) · Hom(G,K2)

holds for all graphs G. Since K2 is hom-easy, we can compute Hom(G,K2) in
linear time, and this readily implies Hom(�,H ⊗ K2) � Hom(�,H).

Hence, it suffices to establish hardness of Hom(�,H ⊗ K2) for the bipartite
graph H ⊗ K2. Note that H ⊗ K2 is hom-hard if H is hom-hard.

372 H. Chen et al.

2. Isolating 2-neighborhoods: Similar to the original proof [16], we succes-
sively isolate induced subgraphs from H ⊗ K2 until reaching a hard base case.

Given a bipartite graph B and v ∈ V (B), let Bv denote the subgraph induced
by vertices of distance at most 2 from v. We show Hom(�,Bv) � Hom(�,B) for
all v ∈ V (B) by using the monotonicity for quantum graph homomorphisms.
This reduction may happen to be useless for some vertices v ∈ V (B), as Bv may
be a complete bipartite graph Ka,b or B itself. If this holds for all v ∈ V (B), we
call B an impasse.

Starting at B = H ⊗K2, we repeatedly pick a vertex v ∈ V (B) and set B :=
Bv until reaching an impasse P . We show that the vertices in the above process
can be chosen to ensure that P is not a Ka,b. Since Hom(�, P) � Hom(�,H⊗K2)
follows, it remains to prove hardness for this impasse P .

3. Exploded four-vertex paths: A structural argument shows that any
impasse P that is not a Ka,b is in fact a 4-vertex path P (a1, a2, a3, a4) in
which the i-th vertex is replaced by a positive number ai of clones. For example,
P (1, 3, 4, 2) is the following graph:

Due to space limitations, we defer the hardness proof for Hom(�, P) with
P = P (a1, a2, a3, a4) for arbitrary fixed integers a1, a2, a3, a4 to the full version.
The reduction proceeds from the #P-hard problem of counting independent sets,
for which #ETH rules out 2o(m) time algorithms [11].

In the special case P = P (1, 1, 1, 1), a simple reduction is possible: Note that
P = ⊗ holds, and hence

Hom(G,P) = Hom(G,) · Hom(G,).

Since Hom(G,) counts precisely the independent sets of G, and Hom(G,)
can be computed in linear time, the reduction is immediate.

Overall, given a hom-hard graph H, the three steps outlined above identify a
graph P = P (a1, a2, a3, a4) for a1, a2, a3, a4 ∈ N such that

Hom(�, P) � . . . � Hom(�,H ⊗ K2) � Hom(�,H). (6)

By establishing hardness of Hom(�, P), we thus prove hardness of Hom(�,H).

Details of Step 2: Successively Isolating 2-Neighborhoods

In the remainder of this section, we provide more details for the second step—
details for the other steps are deferred to the full version.

After the first step, we may assume H to be bipartite, but not a com-
plete bipartite graph Ka,b. We find a hom-hard impasse P with Hom(�, P) �
Hom(�,H) by transitioning successively to proper induced subgraphs of H, in a

The Complexity of Counting Quantum Graph Homomorphisms 373

manner similar to the bipartite case of [16, Theorem 1.1]. In the following, we
describe one step of this process.

Let B be a bipartite graph; initially B = H ⊗ K2. For any vertex v ∈ V (B),
recall that Bv is the subgraph of B induced by vertices at distance at most 2
from v. We prove that Hom(�,Bv) � Hom(�,B) holds. To this end, we first show
in Lemma 10 how to compute the sum

∑
v∈V (B) Hom(G,Bv) on input G with an

oracle for Hom(�,B). Combining this with Proposition 9, we will then extract
Hom(G,Bv) for any fixed vertex v ∈ V (B) from the sum in Proposition 11.

Lemma 10. Let B be a bipartite graph and let G be a connected bipartite graph
with bipartition V (G) = L ∪ R. Let Ga

L be derived from G by adding an “apex”
vertex a that is adjacent to all of R, and let Ga

R be derived by adding an apex
vertex a adjacent to all of L. Then

Hom(Ga
L, B) + Hom(Ga

R, B) =
∑

v∈V (B)

Hom(G,Bv) . (7)

Proof. For any v ∈ V (B), we write Hom(Ga
L, B | a → v) for the number of

homomorphisms from Ga
L to B that map a to v, with an analogous definition

for Ga
R. We observe that

Hom(Ga
L, B) + Hom(Ga

R, B)

=
∑

v∈V (B)

Hom(Ga
L, B | a → v) + Hom(Ga

R, B | a → v) , (8)

because the set of homomorphisms h from Ga
L to B can be partitioned according

to the image h(a) = v and the same applies to homomorphisms from Ga
R. In the

remainder of the proof, we establish that, for all v ∈ V (B),

Hom(Ga
L, B | a → v) + Hom(Ga

R, B | a → v) = Hom(G,Bv). (9)

Together with (8), this implies (7). To prove (9), fix any vertex v ∈ V (B).
We say that a homomorphism h from Ga

L or Ga
R to B is an extension of a

homomorphism g from G to Bv if h agrees with g on all of V (G), and h also
maps the additional vertex a in Ga

L or Ga
R to v.

We first claim that any homomorphism h from Ga
L or Ga

R to B with h(a) = v
is an extension of some homomorphism g from G to Bv. Secondly, we claim that
for any homomorphism g from G to Bv, there is precisely one homomorphism h
from either Ga

L or Ga
R to B that is an extension of g. Then (9) follows.

For the first claim, let h be a homomorphism from Ga
L to B with h(a) = v.

(The argument for homomorphisms from Ga
R is analogous.) Then h maps R to

the neighborhood of v in B: Since a has edges to all of R in Ga
L, there must be

edges from h(a) = v to all of h(R) in B. Furthermore, since G is connected, h(L)
is contained in the neighborhood of h(R). It follows that the entire image of h
is contained in Bv, so the restriction g of h to V (G) is a homomorphism from G
to Bv. Hence h is an extension of g, proving the first claim.

374 H. Chen et al.

For the second claim, let X be the bipartition side of Bv not containing
v. Consider a homomorphism g from G to Bv. Since G is connected, either g
maps R to X, or g maps L to X.

1. In the first case, we can extend g to a map h from Ga
L to B via h(a) = v, and

we show that h is indeed a homomorphism: By definition, g preserves edges
on G and the image of G is the subgraph Bv of B. Since g maps R to X,
and X is the neighborhood of v in Bv by definition of Bv, we see that h maps
the edges aw for w ∈ R in Ga

L to edges of Bv. Thus h is an extension of g.
Furthermore, the map h′ from Ga

R to B obtained from g by setting h′(a) = v
is not a homomorphism, since v and R are all mapped to X, which is an
independent set in Bv.

2. In the second case, we can extend g to a homomorphism h from Ga
R to B as

above. By a symmetric argument, h maps the edges aw for w ∈ L in Ga
R to

edges of Bv. Thus h is an extension of g.

Hence, the homomorphisms h from Ga
L and Ga

R to B are extensions of homo-
morphisms g from G to Bv, and each g has precisely one extension from either
Ga

L or Ga
R. This establishes (9), thus concluding the proof. �

With Lemma 10 at hand, we can readily reduce Hom(�,Bv) to Hom(�,B).

Proposition 11. For every bipartite graph B and every vertex v ∈ V (B), we
have Hom(�,Bv) � Hom(�,B).

Proof. Let G be the input for Hom(�,Bv). Without loss of generality, we can
assume that G is connected and bipartite with V (G) = L ∪ R.

Let Ga
L and Ga

R be the graphs derived from G in Lemma 10. Both have O(n)
vertices and O(n + m) edges, with n = |V (G)| and m = |E(G)|. By (7),

Hom(Ga
L, B) + Hom(Ga

R, B) =
∑

v∈V (B)

Hom(G,Bv) .

We can compute the left-hand side with an oracle for Hom(�,B). On the right-
hand side, no graphs cancel when collecting terms for isomorphic graphs Bv, as
all coefficients in the sum are 1. Since B is fixed, all graphs and coefficients are
fixed, and Proposition 9 gives Hom(�,Bv) � Hom(�,B). �

To prove hardness of Hom(�,H), we start with B := H and establish hardness
of Hom(�,B) by reduction from Hom(�,Bv) for some v ∈ V (B) such that Bv is
hom-hard and has less vertices than B. This is possible unless B is an impasse
or hom-easy. We verify in the full version that any hom-hard impasse is actually
an exploded 4-vertex path.

Lemma 12. Let B be bipartite and connected, but not a Ka,b. Assume that
for every v ∈ V (B), the graph Bv is either a Ka,b or equal to B. Then B is
isomorphic to P (a1, a2, a3, a4) for positive integers a1, a2, a3, a4.

The Complexity of Counting Quantum Graph Homomorphisms 375

Thus, repeated applications of Proposition 11 give a reduction from
Hom(�, P) to Hom(�,H) with P = P (a1, a2, a3, a4) for some positive integers
a1, a2, a3, a4. In the full version, we conclude the hardness proof for Hom(�,H)
by establishing hardness of counting homomorphisms to P (a1, a2, a3, a4) for all
fixed positive integers a1, a2, a3, a4.

5 Counting Partially Surjective Homomorphisms

Finally, we prove a dichotomy for PartSurj(�,H), thus establishing Theorem 4.
For a fixed graph H with marked vertices and edges, let D(H) denote the
set of graphs obtainable from H by deleting marked objects. We first show
in Lemma 13 that PartSurj(�,H) can be expressed as a linear combination of
functions Hom(�, F) for F ∈ D(H). Then we apply Theorem 5 to classify the
complexity of these linear combinations.

Lemma 13. For every graph H with markings, there is a quantum graph F =∑
F∈D(H) αFF such that PartSurj(G,H) = Hom(G,F) holds for all graphs G.

After collecting for isomorphic graphs, we have αH = 1 and αF < 0 for every
graph F ∈ D(H) obtained by deleting at most one marked edge from H.

Lemma 13 is shown in the full version; it is a simple consequence of the
inclusion-exclusion principle. Using it in combination with Theorem 5, we obtain
the classification for partially surjective homomorphisms.

Proof of Theorem 4. By Lemma 13, there is a quantum graph F with con-
stituents from D(H) such that PartSurj(G,H) = Hom(G,F). It follows that
PartSurj(�,H) and Hom(�, F) are the same problem.

Recall the notions of hom-easy and hom-hard graphs from Sect. 4. If every
graph F ∈ D(H) is hom-easy, then Hom(�, F) is polynomial-time solvable. Oth-
erwise, there are hom-hard graphs F ∈ D(H), and it only remains to find one
with αF �= 0 in order for Theorem 5 to yield the hardness of Hom(�, F).

If H itself is hom-hard, then we pick F = H and obtain αF �= 0 by Lemma 13.
Otherwise, H is hom-easy, so every connected component of H is a K◦

q or a Ka,b.
We check that only one marked edge e∗ needs to be deleted from H to obtain a
hom-hard graph F ∈ D(H):

– If H contains a component C with marked edges and C = K◦
q for q ≥ 3 or

C = Ka,b for a, b > 1, we can choose e∗ to be any marked edge in C.
– If H contains a component C = K◦

2 with at least one marked self-loop, we
can choose e∗ to be any marked self-loop in C.

If neither of these conditions applies to H, then it can be checked that D(H)
contains only hom-easy graphs. Thus, if D(H) contains any hom-hard graphs at
all, then there is an edge e∗ such that F = H − e∗ is hom-hard. Lemma 13 then
implies αF �= 0, so Theorem 5 gives hardness of Hom(�, F). �

To conclude, we note that Theorem 3 can be easily derived from Theorem 4.

376 H. Chen et al.

6 Conclusion

We consider Theorem 2 as an initial step towards a fine-grained understanding of
general #CSP problems, and we believe that our shortened proof can be used to
simplify and strengthen other dichotomy results for #CSP following in the wake
of Dyer and Greenhill’s seminal result [16]. Techniques based on quantum graphs
might also advance the state of the art for open problems regarding approximate
and modular homomorphism counting.

An interesting open problem is to improve Theorem 2 to more precise running
time bounds under the strong exponential-time hypothesis. Doing so however
is challenging, as non-trivial improvements upon the running time O(kn) are
possible for some #P-hard patterns H. For example, Björklund et al. [1] prove
that the number of proper k-colorings, which is equal to Hom(G,Kk), can be
computed in time 2n · nO(1) for any k ∈ N.

References

1. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polyno-
mial in vertex-exponential time. In: 49th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2008, 25–28 October 2008, Philadelphia, PA, USA,
pp. 677–686. IEEE Computer Society (2008). https://doi.org/10.1109/FOCS.2008.
40

2. Borgs, C., Chayes, J.T., Kahn, J., Lovász, L.: Left and right convergence of graphs
with bounded degree. Random Struct. Algorithms 42(1), 1–28 (2013). https://doi.
org/10.1002/rsa.20414

3. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 646–661. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-70575-8 53

4. Bulatov, A.A., Dalmau, V.: Towards a dichotomy theorem for the counting con-
straint satisfaction problem. In: Proceedings of 44th Symposium on Foundations
of Computer Science (FOCS 2003), 11–14 October 2003, Cambridge, MA, USA,
pp. 562–571 (2003). https://doi.org/10.1109/SFCS.2003.1238229

5. Bulatov, A.A., Dyer, M.E., Goldberg, L.A., Jalsenius, M., Jerrum, M., Richerby,
D.: The complexity of weighted and unweighted #CSP. J. Comput. Syst. Sci. 78(2),
681–688 (2012). https://doi.org/10.1016/j.jcss.2011.12.002

6. Bulatov, A.A., Grohe, M.: The complexity of partition functions. Theor. Comput.
Sci. 348(2–3), 148–186 (2005). https://doi.org/10.1016/j.tcs.2005.09.011

7. Cai, J.-Y., Chen, X.: Complexity of counting CSP with complex weights. J. ACM
64(3), 19:1–19:39 (2017). https://doi.org/10.1145/2822891

8. Cai, J.-Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: a
dichotomy theorem. SIAM J. Comput. 42(3), 924–1029 (2013). https://doi.org/
10.1137/110840194

9. Cai, J.-Y., Lu, P., Xia, M.: The complexity of complex weighted boolean #CSP.
J. Comput. Syst. Sci. 80(1), 217–236 (2014). https://doi.org/10.1016/j.jcss.2013.
07.003

https://doi.org/10.1109/FOCS.2008.40
https://doi.org/10.1109/FOCS.2008.40
https://doi.org/10.1002/rsa.20414
https://doi.org/10.1002/rsa.20414
https://doi.org/10.1007/978-3-540-70575-8_53
https://doi.org/10.1109/SFCS.2003.1238229
https://doi.org/10.1016/j.jcss.2011.12.002
https://doi.org/10.1016/j.tcs.2005.09.011
https://doi.org/10.1145/2822891
https://doi.org/10.1137/110840194
https://doi.org/10.1137/110840194
https://doi.org/10.1016/j.jcss.2013.07.003
https://doi.org/10.1016/j.jcss.2013.07.003

The Complexity of Counting Quantum Graph Homomorphisms 377

10. Chen, H., Mengel, S.: Counting answers to existential positive queries: a complexity
classification. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, 26
June–01 July 2016, pp. 315–326 (2016). https://doi.org/10.1145/2902251.2902279

11. Curticapean, R.: Block interpolation: a framework for tight exponential-time count-
ing complexity. Inf. Comput. 261(Part), 265–280 (2018). https://doi.org/10.1016/
j.ic.2018.02.008

12. Curticapean, R., Dell, H., Marx D.: Homomorphisms are a good basis for counting
small subgraphs. In: Hatami, H., McKenzie, P., King, V., (eds.) Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, 19–23 June 2017, pp. 210–223. ACM (2017). https://doi.
org/10.1145/3055399.3055502

13. Cygan, M., et al.: Tight bounds for graph homomorphism and subgraph iso-
morphism. In: SODA, pp. 1643–1649. SIAM (2016). https://doi.org/10.1137/1.
9781611974331.ch112

14. Dell, H., Husfeldt, T., Marx, D., Taslaman, N., Wahlen, M.: Exponential time
complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms
10(4), 21:1–21:32 (2014). https://doi.org/10.1145/2635812

15. Dyer, M.E., Goldberg, L.A., Paterson, M.: On counting homomorphisms to
directed acyclic graphs. J. ACM 54(6), 27 (2007). https://doi.org/10.1145/
1314690.1314691

16. Dyer, M.E., Greenhill, C.S.: The complexity of counting graph homomorphisms.
Random Struct. Algorithms 17(3–4), 260–289 (2000). https://doi.org/10.1002/
1098-2418(200010/12)17:3/4〈260::AID-RSA5〉3.0.CO;2-W

17. Dyer, M.E., Richerby, D.: An effective dichotomy for the counting constraint sat-
isfaction problem. SIAM J. Comput. 42(3), 1245–1274 (2013). https://doi.org/10.
1137/100811258

18. Faben, J., Jerrum, M.: The complexity of parity graph homomorphism: an ini-
tial investigation. Theory Comput. 11, 35–57 (2015). https://doi.org/10.4086/toc.
2015.v011a002

19. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES. Springer, Hei-
delberg (2006). https://doi.org/10.1007/3-540-29953-X

20. Focke, J.,Goldberg, L.A., Živný, S.: The complexity of counting surjective homo-
morphisms and compactions. In: Czumaj, A. (ed.) Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, 7–10 January 2018, pp. 1772–1781. SIAM (2018). https://doi.
org/10.1137/1.9781611975031.116

21. Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity,
and homomorphism of graphs. J. Am. Math. Soc. 20(1), 37–51 (2007). https://
doi.org/10.1090/S0894-0347-06-00529-7

22. Göbel, A., Goldberg, L.A., Richerby, D.: The complexity of counting homomor-
phisms to cactus graphs modulo 2. TOCT 6(4), 17:1–17:29 (2014). https://doi.
org/10.1145/2635825

23. Göbel, A., Goldberg, L.A., Richerby, D.: Counting homomorphisms to square-
free graphs, modulo 2. TOCT 8(3), 12:1–12:29 (2016). https://doi.org/10.1145/
2898441

24. Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for
partition functions with mixed signs. SIAM J. Comput. 39(7), 3336–3402 (2010).
https://doi.org/10.1137/090757496

25. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

https://doi.org/10.1145/2902251.2902279
https://doi.org/10.1016/j.ic.2018.02.008
https://doi.org/10.1016/j.ic.2018.02.008
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1137/1.9781611974331.ch112
https://doi.org/10.1137/1.9781611974331.ch112
https://doi.org/10.1145/2635812
https://doi.org/10.1145/1314690.1314691
https://doi.org/10.1145/1314690.1314691
https://doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W
https://doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W
https://doi.org/10.1137/100811258
https://doi.org/10.1137/100811258
https://doi.org/10.4086/toc.2015.v011a002
https://doi.org/10.4086/toc.2015.v011a002
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1137/1.9781611975031.116
https://doi.org/10.1137/1.9781611975031.116
https://doi.org/10.1090/S0894-0347-06-00529-7
https://doi.org/10.1090/S0894-0347-06-00529-7
https://doi.org/10.1145/2635825
https://doi.org/10.1145/2635825
https://doi.org/10.1145/2898441
https://doi.org/10.1145/2898441
https://doi.org/10.1137/090757496
https://doi.org/10.1006/jcss.2000.1727

378 H. Chen et al.

26. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/
jcss.2001.1774

27. Lovász, L.: Large networks and graph limits, volume 60 of colloquium publications.
American Mathematical Society (2012). https://www.ams.org/bookstore-getitem/
item=COLL-60

28. Schrijver, A.: Graph invariants in the edge model. In: Grötschel, M., Katona, O.H.,
Sági, G. (eds.) Building Bridges. BSMS, vol. 19, pp. 487–498. Springer, Berlin
(2008). https://doi.org/10.1007/978-3-540-85221-6 16

https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://www.ams.org/bookstore-getitem/item=COLL-60
https://www.ams.org/bookstore-getitem/item=COLL-60
https://doi.org/10.1007/978-3-540-85221-6_16

Minimal Separators in Graph Classes
Defined by Small Forbidden Induced

Subgraphs

Martin Milanič1,2 and Nevena Pivač1(B)

1 University of Primorska, IAM, Muzejski trg 2, 6000 Koper, Slovenia
martin.milanic@upr.si, nevena.pivac@iam.upr.si

2 University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia

Abstract. Minimal separators in graphs are an important concept in
algorithmic graph theory. In particular, many problems that are NP-
hard for general graphs are known to become polynomial-time solvable
for classes of graphs with a polynomially bounded number of minimal
separators. Several well-known graph classes have this property, includ-
ing chordal graphs, permutation graphs, circular-arc graphs, and circle
graphs. We perform a systematic study of the question which classes
of graphs defined by small forbidden induced subgraphs have a poly-
nomially bounded number of minimal separators. We focus on sets of
forbidden induced subgraphs with at most four vertices and obtain an
almost complete dichotomy, leaving open only two cases.

Keywords: Minimal separator · Hereditary graph class ·
Forbidden induced subgraph

1 Introduction

The main concept studied in this paper is that of a minimal separator in a graph.
Given a graph G, a minimal separator in G is a subset of vertices that separates
some non-adjacent vertex pair a, b and is inclusion-minimal with respect to this
property (separation of a and b). Minimal separators in graphs are important
for reliability analysis of networks [42], for sparse matrix computations, via their
connection with minimal triangulations (see [20] for a survey), and are related
to other graph concepts such as potential maximal cliques [4]. Many graph algo-
rithms are based on minimal separators, see, e.g., [1–4,9,12,23,26,35].

The work is supported in part by the Slovenian Research Agency (I0-0035, research
program P1-0285 and research projects J1-9110, N1-0102, and a Young Researchers
grant). Part of the work was done while M. M. was visiting Osaka Prefecture University
in Japan, under the operation Mobility of Slovene higher education teachers 2018–2021,
co-financed by the Republic of Slovenia and the European Union under the European
Social Fund.

c© Springer Nature Switzerland AG 2019
I. Sau and D. M. Thilikos (Eds.): WG 2019, LNCS 11789, pp. 379–391, 2019.
https://doi.org/10.1007/978-3-030-30786-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30786-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-30786-8_29

380 M. Milanič and N. Pivač

In this work we focus on graphs with “few” minimal separators. Such graphs
enjoy good algorithmic properties. Many problems that are NP-hard for general
graphs become polynomial-time solvable for classes of graphs with a polyno-
mially bounded number of minimal separators. This includes Treewidth and
Minimum Fill-In [5], Maximum Independent Set and Feedback Vertex

Set [14], Distance-d Independent Set for even d [32] and many other prob-
lems [13]. It is therefore important to identify classes of graphs with a polyno-
mially bounded number of minimal separators. Many known graph classes have
this property, including chordal graphs [38], chordal bipartite graphs [28], weakly
chordal graphs [4], permutation graphs [1,24], circular-arc graphs [12,23,28],
circle graphs [23,25,28], etc. Moreover, a class of graphs has a polynomially
bounded number of minimal separators if and only if it has a polynomially
bounded number of potential maximal cliques [5].

We perform a systematic study of the question which classes of graphs defined
by small forbidden induced subgraphs have a polynomially bounded number of
minimal separators. We focus on sets of forbidden induced subgraphs with at
most four vertices and obtain an almost complete dichotomy, leaving open only
two cases, the class of graphs of independence number at most three that are
either C4-free or {claw, C4}-free. Our approach combines a variety of tools and
techniques, including constructions of graph families with exponentially many
minimal separators, applications of Ramsey’s theorem, study of the behavior of
minimal separators under various graph operations, and structural characteriza-
tions of graphs in hereditary classes.

Statement of the Main Result

Given two non-adjacent vertices a and b in a graph G, a set S ⊆ V (G) \ {a, b}
is an a, b-separator if a and b are contained in different components of G − S.
If S contains no other a, b-separator as a proper subset, then S is a minimal
a, b-separator. We denote by SG(a, b) the set of all minimal a, b-separators. A
minimal separator in G is a set S ⊆ V (G) that is a minimal a, b-separator for
some pair of non-adjacent vertices a and b. We denote by SG the set of all
minimal separators in G and by s(G) the cardinality of SG. The main concept
of study in this paper is the following property of graph classes.

Definition 1. We say that a graph class G is tame if there exists a polynomial
p : R → R such that for every graph G ∈ G, we have s(G) ≤ p(|V (G)|).

Given a set F of graphs, we say that a graph G is F-free if no induced
subgraph of G is isomorphic to a member of F . Given two sets F and F ′ of
graphs, we write F � F ′ if the class of F-free graphs is contained in the class of
F ′-free graphs, that is, if every F-free graph is also F ′-free.

Observation 1. Let F and F ′ be two sets of graphs such that F � F ′. If the
class of F ′-free graphs is tame, then so is the class of F-free graphs.

Minimal Separators in Hereditary Graph Classes 381

It is well known and not difficult to see that relation F � F ′ can be checked
by means of the following criterion, which becomes particularly simple for finite
sets F and F ′.

Observation 2 (Folklore). For every two sets of graphs F and F ′, we have
F � F ′ if and only if every graph from F ′ contains an induced subgraph isomor-
phic to a member of F .

Our main result is Theorem 3. It deals with graph classes defined by sets of
forbidden induced subgraphs having at most four vertices. The relevant graphs
are named as in Fig. 1.

4P1 P2 + 2P1 P3 + P1

P4 C4 K4K3 + P1 paw diamond

2P2K33P1

claw

Fig. 1. Graphs on at most 4 vertices appearing in the statement of the main theorem.

Theorem 3. Let F be a set of graphs with at most four vertices such that F �=
{4P1, C4} and F �= {4P1, claw, C4}. Then the class of F-free graphs is tame if
and only if F � F ′ for one of the following sets F ′:

(i) F ′ = {P4} or F ′ = {2P2},
(ii) F ′ = {F, paw} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw},
(iii) F ′ = {F,K3 + P1} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw},
(iv) F ′ = {F,K4} for some F ∈ {4P1, P2 + 2P1, P3 + P1},
(v) F ′ = {F,C4} for some F ∈ {P2 + 2P1, P3 + P1},
(vi) F ′ = {4P1, C4, diamond}.

Theorem 3 can be equivalently stated in a dual form, characterizing minimal
classes of F-graphs that are not tame.

Theorem 4. Let F be a set of graphs with at most 4 vertices such that F �=
{4P1, C4} and F �= {4P1, C4, claw}. Then the class of F-free graphs is not tame
if and only if F ′ � F for one of the following sets F ′:

(i) F ′ = {3P1, diamond},
(ii) F ′ = {claw, K4, C4, diamond},
(iii) F ′ = {K3, C4}.

382 M. Milanič and N. Pivač

= 1

= 2

= 3

= 4

. 2P2 .. P4 .

4P1, K4 P2 + 2P1, K4 P3 + P1, K4 K3, C4

4P1, paw P2 + 2P1, paw P3 + P1, paw

claw, paw 4P1, K3 + P1 P2 + 2P1, K3 + P1

claw, K3 + P1P2 + 2P1, C43P1, diamond

P3 + P1, K3 + P1P3 + P1, C44P1, C4

4P1, claw, C44P1, C4, diamond

claw, K4, C4, diamond

Fig. 2. Overview of the main result. (Color figure online)

In Fig. 2 we give an overview of maximal tame and minimal non-tame classes
of F-free graphs, where F contains graphs with at most four vertices. Maxi-
mal tame classes correspond to sets F of forbidden induced subgraphs depicted
in green ellipses, while minimal non-tame classes correspond to sets depicted
in red ellipses (in gray-scale printing, green and red appear in brighter, resp.,
darker ellipses). The two open cases are dashed. A similar figure with respect to
boundedness of the clique-width can be found in [8].

Related Work. To the best of the authors’ knowledge, this work represents the
first systematic study of the problem of classifying hereditary graph classes with
respect to the existence of a polynomial bound on the number of minimal sepa-
rators of the graphs in the class. Dichotomy studies for many other problems in
mathematics and computer science are available in the literature in general, as
well as within the field of graph theory, for properties such as boundedness of the
clique-width [6–8,11], price of connectivity [19], and polynomial-time solvabil-
ity of various algorithmic problems such as Chromatic Number [16,27,29],
Graph Homomorphism [21], Graph Isomorphism [39], and Dominating

Set [30].

Structure of the Paper. We collect the main notations, definitions, and pre-
liminary results in Sect. 2. In Sect. 3 we present several families of graphs with
exponentially many minimal separators. In Sect. 4, we study the effect of various
graph operations on the number of minimal separators. Our main result, given
by Theorems 3 and 4, is proved in Sect. 5. Due to space limitations, most proofs
are omitted in this extended abstract.

Minimal Separators in Hereditary Graph Classes 383

2 Preliminaries

All graphs in this paper will be finite, simple, undirected, and will have at least
one vertex. A vertex v in a graph G is universal if it is adjacent to every other
vertex in the graph, and simplicial if its neighborhood is a clique. Given a graph
G and a set S ⊆ V (G), we denote by NG(S) the set of all vertices in V (G) \ S
having a neighbor in S. For a vertex v ∈ V (G), we write NG(v) for NG({v})
and NG[v] for NG(v) ∪ {v}. Two vertices u and v are said to be true twins if
NG[u] = NG[v]. A graph is co-connected if its complement is connected. Given
two graphs F and G, we write F ⊆i G if F is an induced subgraph of G. A graph
class G is hereditary if it is closed under vertex deletion, or, equivalently, if there
exists a set F of graphs such that G is exactly the class of F-free graphs. A graph
G is the join of two vertex-disjoint graphs G1 and G2, written G = G1 ∗ G2, if
V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ {xy | x ∈ V (G1) and y ∈
V (G2)}. As usual, we denote by Pn, Cn, Kn the path, the cycle, and the complete
graph with n vertices, respectively. For positive integers m,n, we denote by
Km,n the complete bipartite graph with m and n vertices in the two parts of the
bipartition. For undefined terms related to graphs and graph classes, we refer
the reader to [17,40].

An important ingredient for some of our proofs will be the following classical
result [37].

Ramsey’s Theorem. For every two positive integers k and �, there exists a
least positive integer R(k, �) such that every graph with at least R(k, �) vertices
contains either a clique of size k or an independent set of size �.

Given a graph G and a set S ⊆ V (G), a component C of the graph G − S is
S-full if every vertex in S has a neighbor in C, or, equivalently, if NG(V (C)) =
S. The following well-known lemma characterizes minimal separators (see, e.g.,
[12,17,22]).

Lemma 1. Given a graph G = (V,E), a set S ⊆ V is a minimal separator in
G if and only if the graph G − S contains at least two S-full components.

Corollary 1. Let S be a minimal separator in a graph G. Then for every v ∈ S
the set S \ {v} is a minimal separator in G − v.

The following result shows that the class of P4-free graphs is tame.

Theorem 5 (Nikolopoulos and Palios [33]). If G is a P4-free graph, then
s(G) < 2/3|V (G)|.

We will also need the following result about the structure of paw-free graphs.
A graph G is complete multipartite if there is some positive integer k such that
the vertex set of G can be partitioned into k parts such that two vertices are
adjacent if and only if they belong to different parts.

Theorem 6 (Olariu [34]). A connected paw-free graph G is either K3-free or
complete multipartite.

384 M. Milanič and N. Pivač

We conclude this section with a straightforward but useful simplification of
the defining property of tame graph classes.

Lemma 2. A graph class G is tame if and only if there exists a non-negative
integer k such that s(G) ≤ |V (G)|k for all G ∈ G.

An easy consequence of Lemma 2 is the fact that any union of finitely many
tame graph classes is tame.

3 Graph Families with Exponentially Many Minimal
Separators

In this section we identify some families of graphs with exponentially many mini-
mal separators. We give two constructions with structurally different properties.
The first construction, explained in Sect. 3.1, involves families of graphs of arbi-
trarily large maximum degree but without arbitrarily long induced paths. The
second construction, explained in Sect. 3.2, involves two families of graphs with
small maximum degree but with arbitrarily long induced paths. In both cases,
we make use of line graphs.

3.1 Theta Graphs and Their Line Graphs

Given positive integers k and �, the k, �-theta graph is the graph θk,� obtained
as the union of k internally disjoint paths of length � with common endpoints
a and b. For every positive integer �, we define a family of graphs Θ� in the
following way: Θ� = {θk,� | k ≥ 2}. Note that � refers to the length of each of
the a, b-paths and not to the number of paths, which is unrestricted.

Observation 7. For every integer � ≥ 3, the class Θ� is not tame.

Corollary 2. If G is a class of graphs such that Θ� ⊆ G for some � ≥ 3, then G
is not tame.

Consider now the family of line graphs of theta graphs. More precisely, given
positive integers k and �, let Lk,� denote the line graph of θk,� and let L� =
{Lk,� | k ≥ 2}.

Observation 8. For every integer � ≥ 2, the class L� is not tame.

Corollary 3. If G is a class of graphs such that L� ⊆ G for some � ≥ 2, then G
is not tame.

Corollary 4. The class of {3P1, diamond}-free graphs is not tame.

Minimal Separators in Hereditary Graph Classes 385

3.2 Elementary Walls and Their Line Graphs

Let r, s ≥ 2 be integers. An r × s-grid is the graph with vertex set {0, . . . , r −
1} × {0, . . . , s − 1} in which two vertices (i, j) and (i′, j′) are adjacent if and
only if |i − i′| + |j − j′| = 1. Given an integer h ≥ 2, an elementary wall of
height h is the graph Wh obtained from the (2h + 2) × (h + 1)-grid by deleting
all edges with endpoints (2i + 1, 2j) and (2i + 1, 2j + 1) for all i ∈ {0, 1, . . . , h}
and j ∈ {0, 1, . . . ,
(h − 1)/2�}, deleting all edges with endpoints (2i, 2j − 1)
and (2i, 2j) for all i ∈ {0, 1, . . . , h} and j ∈ {1, . . . ,
h/2�}, and deleting the two
resulting vertices of degree one. Note that an elementary wall of height h consists
of h levels each containing h bricks, where a brick is a cycle of length six.

Grids contain exponentially many minimal separators [41]. A similar con-
struction works for walls.

Proposition 1. For every integer h ≥ 2, an elementary wall of height h has at
least 2h minimal separators.

Another useful family with exponentially many minimal separators is given
by the line graphs of elementary walls.

Proposition 2. For every even integer h ≥ 2, the graph L(Wh) has at least
2h/2 minimal separators.

Corollary 5. The class of {claw, K4, C4, diamond}-free graphs is not tame.

4 Graph Operations

We now discuss the effect of various graph operations on the number of mini-
mal separators. The set of minimal separators of a disconnected graph can be
computed from the sets of minimal separators of its components, and a similar
statement holds for graphs whose complements are disconnected. The correspon-
dences are as follows, see [36, Theorem 3.1].

Theorem 9. If G is a disconnected graph, with components G1, . . . , Gk, then
SG = {∅} ∪ ⋃k

i=1 SGi
. If G is the join of graphs G1, . . . , Gk, then S ∈ SG if

and only if there exists some i ∈ {1, . . . , k} and some Si ∈ SGi
such that S =

Si ∪ (V (G) \ V (Gi)).

Using this theorem we can derive the following corollaries.

Corollary 6. Let G be a hereditary class of graphs and let G′ be the class of
connected graphs in G. Then G is tame if and only if G′ is tame.

Corollary 7. Let G be a hereditary class of graphs and let G′ be the class of
co-connected graphs in G. Then G is tame if and only if G′ is tame.

McKee observed in [31] that if G1 is an induced subgraph of G2, then every
minimal separator of G1 is contained in a minimal separator in G2. The proof
actually shows that the following monotonicity property holds.

386 M. Milanič and N. Pivač

Proposition 3. If G1 is an induced subgraph of G2, then s(G1) ≤ s(G2).

In view of Proposition 3, it is natural to ask how large can the gap s(G2) −
s(G1) be if the graphs G1 and G2 are not “too different”, for example, if G1 is
obtained from G2 by deleting only one vertex. In the following three propositions
we identify three properties of a vertex v in a graph G such that deleting v either
leaves the minimal separators unchanged or decreases it by one.

Proposition 4. Let G be a graph with at least two vertices and let v be a uni-
versal vertex in G. Then s(G) = s(G − v).

Proposition 5. Let G be a graph having a pair of true twins v, w with v �= w.
Then s(G) = s(G − v).

Proposition 6. Let G be a graph with at least two vertices and let v be a sim-
plicial vertex in G. Then s(G − v) ≤ s(G) ≤ s(G − v) + 1 .

5 Proof of Theorem 3

In this section we sketch the proof of Theorem 3. We do this in several steps.
We start with a proposition giving a necessary condition for a set F of graphs
so that the class of F-free graphs is tame.

Proposition 7. Let F be a finite set of graphs such that for every F ∈ F we
have F �i P4, F �i 2P2. If, in addition, all graphs in F contain cycles or all of
them are of girth more than 5, then the class of F-free graphs is not tame.

The following sufficient condition is derived using Ramsey’s theorem.

Proposition 8. For every two positive integers k and �, the class of {P2 +
kP1,K� + P2}-free graphs is tame.

Proof. By Observations 1 and 2, we may assume that k ≥ 2 and � ≥ 2. Then
R(�, k) ≥ 2. Let G be a {P2 + kP1,K� + P2}-free graph. We will prove that
for every minimal separator S in G, there exists a set X ⊆ V (G) such that
|X| ≤ R(�, k) − 1 and S = NG(X). Clearly, this will imply that G has at
most

(|V (G)|
R(�,k)−1

)
= O (|V (G)|R(�,k)−1

)
minimal separators. Let S be a minimal

separator in G and let C and D be two S-full components of G − S. Since
NG(V (C)) = NG(V (D)) = S, it suffices to show that |V (C)| ≤ R(�, k) − 1 or
|V (D)| ≤ R(�, k) − 1. Suppose that this is not the case. Then |V (C)| ≥ R(�, k)
and |V (D)| ≥ R(�, k). By Ramsey’s theorem, this implies that there exists a set
Z ⊆ V (C) such that Z is either a clique of size � or an independent set of size
k. But then Z together with a pair of adjacent vertices from D induces either a
K� + P2 or P2 + kP1, respectively. Both cases lead to a contradiction. �

The next proposition simplifies the cases with P3 + P1 ∈ F .

Minimal Separators in Hereditary Graph Classes 387

Proposition 9. Let F be a set of graphs such that P3 + P1 ∈ F and let
F ′ = (F \ {P3 + P1}) ∪ {3P1}. Then the class of F-free graphs is tame if and
only if the class of F ′-free graphs is tame.

We now consider various families of forbidden induced subgraphs with at
most four vertices. Propositions 8 and 9 can be used to prove the following.

Proposition 10. For every F ∈ {4P1, P2 + 2P1, P3 + P1, claw}, the class of
{F,K3 + P1}-free graphs is tame.

The next result follows from a structural property of {3P1, C4}-free graphs
proved by Choudum and Shalu [10].

Proposition 11. The class of {P3 + P1, C4}-free graphs is tame.

The next two propositions are proved using a structural analysis of graphs
in the respective classes.

Proposition 12. The class of {P2 + 2P1, C4}-free graphs is tame.

Proposition 13. The class of {4P1, C4, diamond}-free graphs is tame.

Propositions 8 and 9 can be used to prove the following.

Proposition 14. For every F ∈ {4P1, P2 +2P1, P3 +P1}, the class of {F,K4}-
free graphs is tame.

Proposition 15. For every F ∈ {4P1, P2 + 2P1, P3 + P1, claw} the class of
{F, paw}-free graphs is tame.

Proof. Let G be an {F,paw}-free graph. By Corollary 6, we may assume that G is
connected. Theorem 6 implies that G is either K3-free, or complete multipartite.
If G is K3-free, then G is also K4-free and Proposition 14 applies. If G is complete
multipartite, then G is P4-free, and Theorem 5 applies. �

The next proposition can be proved by showing that in a 2P2-free graph G,
every minimal separator S is of the form NG(v) for some vertex v ∈ V (G).

Proposition 16. The class of 2P2-free graphs is tame.

We now have all the ingredients ready to prove Theorem 3.

Proof (of Theorem 3). Let F be a set of graphs on at most 4 vertices such that
F �= {C4, 4P1} and F �= {4P1, C4, claw}. If F ′ is a set of graphs satisfying one
of the conditions (i)–(vi) then the class of F ′-free graphs is tame by Theorem 5
and Propositions 10, 11, 12, 15, 13, 14, and 16. Thus, if F � F ′ for some set of
graphs satisfying one of the conditions (i)–(vi) , then the class of F-free graphs,
being a subclass of the tame class of F ′-free graphs, is tame, too.

Suppose now that for all sets F ′ in (i)–(vi) we have F �� F ′. We want to prove
that the class of F-free graphs is not tame. Since F �� {2P2} and F �� {P4}, it

388 M. Milanič and N. Pivač

follows that if F ⊆i 2P2 or F ⊆i P4, then F /∈ F . Let A = {K3, C4, K3 + P1,
paw, diamond, K4}, B = {3P1, 4P1, P2 + 2P1, P3 + P1, claw}. Since F does not
contain any induced subgraph of either 2P2 or P4, we infer that F ⊆ A∪B. Since
Proposition 7 implies that the class of F-free graphs is not tame if all graphs
in F contain cycles or all of them are acyclic, we may assume that F contains
two graphs F1 and F2 such that F1 contains a cycle and F2 is acyclic. Clearly,
F1 ∈ A and F2 ∈ B.

We claim that F ∩ {K3, K3 + P1, paw} = ∅. Indeed, if F ∈ {K3, K3 + P1,
paw}, then {F, F2} ⊆ F , which implies that F � F ′ for F ′ = {F ′, F ′′} where
F ′ ∈ {4P1, P2 + 2P1, P3 + P1, claw} and F ′′ ∈ {paw, K3 + P1}, contrary to the
assumptions on F . It follows that F1 ∈ F ∩ A ⊆ {K4, C4, diamond}.

Suppose that K4 ∈ F . If there exists a graph F ∈ F ∩ {3P1, 4P1, P2 +
2P1, P3 + P1}, then F � F ′ where F ′ satisfies condition (iv), a contradiction.
It follows that F2 ∈ F ∩ B ⊆ {claw}, that is, F2 is the claw. We also have
F \ {K4, claw} ⊆ {C4, diamond}. Consequently, {claw, K4, C4, diamond} � F .
By Corollary 5, the class of {claw, K4, C4, diamond} is not tame and hence by
Observation 1, neither is the class of F-free graphs.

From now on, we assume that K4 �∈ F . Suppose that C4 ∈ F . If
{3P1, P2 + 2P1, P3 + P1} ∩ F �= ∅, then F � F ′ where F ′ satisfies condition
(v), a contradiction. It follows that F2 ∈ F ∩ B ⊆ {4P1, claw}. Suppose first
that 4P1 ∈ F ∩B. If the diamond is not in F , then F �= {4P1, C4} or F �= {4P1,
claw, C4}, which is impossible. Thus, the diamond is in F , which implies that
{4P1, C4, diamond} ⊆ F , hence F � F ′ where F ′ satisfies condition (vi), a
contradiction. We conclude that 4P1 �∈ F , which implies that F ∩ B = {claw}.
Consequently, F ⊆ {claw, C4, diamond}, which implies that {claw, K4, C4,
diamond} � F . By Corollary 5, the class of {claw, K4, C4, diamond} is not
tame and hence by Observation 1, neither is the class of F-free graphs.

From now on, we assume that C4 �∈ F . It follows that F1 ∈ F ∩ A ⊆
{diamond}, that is, F ∩ A = {diamond}. Clearly, F2 ∈ F ∩ B ⊆ {3P1, 4P1,
P2 + 2P1, P3 + P1, claw}, which implies that every graph in F ∩ B contains an
induced 3P1. Consequently, {3P1, diamond} � F . From Corollary 4 it follows
that the class of {3P1, diamond}-free graphs is not tame and by Observation 1,
neither is the class of F-free graphs.

This completes the proof. �

6 Conclusion

In this work we considered graphs with “few” minimal separators. Our main
result was an almost complete dichotomy for the property of having a poly-
nomially bounded number of minimal separators within the family of graph
classes defined by forbidden induced subgraphs with at most four vertices. Two
exceptional families for which the problem is still open are the class of {4P1, C4}-
free graphs and the class of {4P1, claw, C4}-free graphs. Note that the class of
{4P1, C4}-free graphs and their complements was already of interest to Erdős,
who offered $20 to determine whether the vertex set of every {4P1, C4}-free

Minimal Separators in Hereditary Graph Classes 389

graph can be covered by 4 cliques (which was resolved in the affirmative by
Nagy and Szentmiklóssy, see [18]). Moreover, the class of {4P1, C4}-free graphs
is one of the only three graph classes defined by a set of four-vertex forbidden
induced subgraphs for which the complexity of coloring is still open [15].

Our results have algorithmic consequences. In particular, the algorithmic
metatheorem due to Fomin et al. [13] implies that for any tame graph class
(in particular, for any graph class corresponding to one of the green ellipses in
Fig. 2), the following optimization problem is solvable in polynomial time for
graphs in the class. Let ϕ be a counting monadic second order logic formula and
t ≥ 0 be an integer. For a given graph G, the task is to find a set |X| ⊆ V (G)
maximizing |X|, subject to the following: there is a set U ⊆ V (G) such that
X ⊆ U , the subgraph of G induced by U is of treewidth at most t, and the
structure (G[U],X) models ϕ.

Some of the results given here (for example Proposition 8) are not restricted
to forbidden induced subgraphs of at most four vertices, and they might prove
useful for developing more general dichotomy studies related to minimal separa-
tors. In this respect, an interesting and challenging question would be to develop
a dichotomy result for graph classes characterized by two forbidden induced sub-
graphs.

Note Added in Proof. Soon after this work was presented at WG 2019, the
authors resolved the two open questions regarding the classes of {4P1, C4}-free
and {4P1, claw, C4}-free graphs, by proving that both graph classes are tame.
Furthermore, as kindly communicated to us by Daniel Lokshtanov, the same
result was also obtained independently and at about the same time by Peter
Gartland. He actually proved a more general result stating that any class of
C4-free graphs of bounded independence number is tame.

References

1. Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and pathwidth of permutation
graphs. SIAM J. Discrete Math. 8(4), 606–616 (1995)

2. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. upper bounds.
Inform. Comput. 208(3), 259–275 (2010)

3. Bodlaender, H.L., Rotics, U.: Computing the treewidth and the minimum fill-in
with the modular decomposition. Algorithmica 36(4), 375–408 (2003)

4. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal
separators. SIAM J. Comput. 31(1), 212–232 (2001)

5. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor.
Comput. Sci. 276(1–2), 17–32 (2002)

6. Brandstädt, A., Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding the clique-
width of H-free split graphs. Discrete Appl. Math. 211, 30–39 (2016)

7. Brandstädt, A., Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding the clique-
width of H-free chordal graphs. J. Graph Theory 86(1), 42–77 (2017)

8. Brandstädt, A., Engelfriet, J., Le, H.O., Lozin, V.V.: Clique-width for 4-vertex
forbidden subgraphs. Theory Comput. Syst. 39(4), 561–590 (2006)

9. Chiarelli, N., Milanič, M.: Linear separation of connected dominating sets in
graphs. Ars Math. Contemp. 16, 487–525 (2019)

390 M. Milanič and N. Pivač

10. Choudum, S.A., Shalu, M.A.: The class of {3K1, C4}-free graphs. Australas. J.
Comb. 32, 111–116 (2005)

11. Dabrowski, K.K., Paulusma, D.: Classifying the clique-width of H-free bipartite
graphs. Discrete Appl. Math. 200, 43–51 (2016)

12. Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On the vertex ranking problem
for trapezoid, circular-arc and other graphs. Discrete Appl. Math. 98(1–2), 39–63
(1999)

13. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations
and CMSO. SIAM J. Comput. 44(1), 54–87 (2015)

14. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: STACS 2010: 27th International Symposium on Theoretical Aspects of Com-
puter Science. Leibniz International Proceedings Informatics (LIPIcs), vol. 5, pp.
383–394. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2010)

15. Fraser, D.J., Hamel, A.M., Hoàng, C.T., Maffray, F.: A coloring algorithm for
4K1-free line graphs. Discrete Appl. Math. 234, 76–85 (2018)

16. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computa-
tional complexity of coloring graphs with forbidden subgraphs. J. Graph Theory
84(4), 331–363 (2017)

17. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Annals of Dis-
crete Mathematics, vol. 57, 2nd edn. Elsevier, Amsterdam (2004)

18. Gyárfás, A.: Problems from the world surrounding perfect graphs. In: Proceedings
of the International Conference on Combinatorial Analysis and its Applications,
(Pokrzywna, 1985), vol. 19, pp. 413–441 (1988, 1987)

19. Hartinger, T.R., Johnson, M., Milanič, M., Paulusma, D.: The price of connectivity
for cycle transversals. European J. Comb. 58, 203–224 (2016)

20. Heggernes, P.: Minimal triangulations of graphs: a survey. Discrete Math. 306(3),
297–317 (2006)

21. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory Ser. B
48(1), 92–110 (1990)

22. Kloks, T., Kratsch, D.: Finding all minimal separators of a graph. In: Enjalbert,
P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 759–768.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57785-8 188

23. Kloks, T., Kratsch, D., Wong, C.K.: Minimum fill-in on circle and circular-arc
graphs. J. Algorithms 28(2), 272–289 (1998)

24. Kloks, T. (ed.): Treewidth Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

25. Kloks, T.: Treewidth of circle graphs. Int. J. Found. Comput. Sci. 7(02), 111–120
(1996)

26. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal
triple-free graphs. Theor. Comput. Sci. 175(2), 309–335 (1997)

27. Král’, D., Kratochv́ıl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs
without forbidden induced subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG
2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45477-2 23

28. Kratsch, D.: The structure of graphs and the design of efficient algorithms. Habil-
itation thesis, Friedrich-Schiller-Universität, Jena (1996)

29. Lozin, V.V., Malyshev, D.S.: Vertex coloring of graphs with few obstructions. Dis-
crete Appl. Math. 216(part 1), 273–280 (2017)

30. Malyshev, D.S.: A complexity dichotomy and a new boundary class for the dom-
inating set problem. J. Comb. Optim. 32(1), 226–243 (2016). https://doi.org/10.
1007/s10878-015-9872-z

https://doi.org/10.1007/3-540-57785-8_188
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/3-540-45477-2_23
https://doi.org/10.1007/3-540-45477-2_23
https://doi.org/10.1007/s10878-015-9872-z
https://doi.org/10.1007/s10878-015-9872-z

Minimal Separators in Hereditary Graph Classes 391

31. McKee, T.A.: Requiring that minimal separators induce complete multipartite sub-
graphs. Discuss. Math. Graph Theory 38(1), 263–273 (2018)

32. Montealegre, P., Todinca, I.: On Distance-d independent Set and other problems
in graphs with “few” Minimal Separators. In: Heggernes, P. (ed.) WG 2016. LNCS,
vol. 9941, pp. 183–194. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53536-3 16

33. Nikolopoulos, S.D., Palios, L.: Minimal separators in P4-sparse graphs. Discrete
Math. 306(3), 381–392 (2006)

34. Olariu, S.: Paw-free graphs. Inform. Process. Lett. 28(1), 53–54 (1988)
35. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal

graph embeddings. Discrete Appl. Math. 79(1–3), 171–188 (1997)
36. Pedrotti, V., de Mello, C.P.: Minimal separators in extended P4-laden graphs.

Discrete Appl. Math. 160(18), 2769–2777 (2012)
37. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. s2–30(4),

264–286 (1929)
38. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination

on graphs. SIAM J. Comput. 5(2), 266–283 (1976)
39. Schweitzer, P.: Towards an isomorphism dichotomy for hereditary graph classes.

Theory Comput. Syst. 61(4), 1084–1127 (2017)
40. Spinrad, J.P.: Efficient Graph Representations, Fields Institute Monographs, vol.

19. American Mathematical Society, Providence (2003)
41. Suchan, K.: Minimal Separators in Intersection Graphs. Master’s thesis, Akademia

Górniczo-Hutnicza im. Stanis�lawa Staszica w Krakowie (2003)
42. Zab�ludowski, A.: A method for evaluating network reliability. Bull. Acad. Polon.

Sci. Sér. Sci. Tech. 27(7), 647–655 (1979)

https://doi.org/10.1007/978-3-662-53536-3_16
https://doi.org/10.1007/978-3-662-53536-3_16

Author Index

Aichholzer, Oswin 120
Alecu, Bogdan 135
Angelini, Patrizio 205
Atminas, Aistis 135

Bamas, Étienne 66
Bekos, Michael A. 205
Belmonte, Rémy 285
Bergé, Pierre 79
Biedl, Therese 258
Biniaz, Ahmad 258
Bliznets, Ivan 148
Böker, Jan 338
Bousquet, Nicolas 162

Cardinal, Jean 120
Chakraborty, Dibyayan 232
Chaplick, Steven 311
Chen, Hubie 364
Curticapean, Radu 364

Das, Sandip 232
Dell, Holger 364
Disser, Yann 175
Donkers, Huib 106
Ducoffe, Guillaume 14
Dyer, Martin 298

Esperet, Louis 66

Feldmann, Andreas Emil 175

Ganian, Robert 190
Gonçalves, Daniel 351
Greenhill, Catherine 298
Gronemann, Martin 205

Hagerup, Torben 93
Hanaka, Tesshu 285
Harutyunyan, Ararat 40
Hatanaka, Tatsuhiko 162
Hatzel, Meike 53
Høgemo, Svein 218

Husić, Edin 271
Huynh, Tony 120

Irvine, Veronika 258
Ito, Takehiro 162

Jain, Kshitij 258
Jansen, Bart M. P. 27, 106

Kindermann, Philipp 258
Klimm, Max 175
Knauer, Kolja 120
Könemann, Jochen 175
Kozma, László 27

Lampis, Michael 40, 285
Lozin, Vadim 40, 135
Lubiw, Anna 258

Milanič, Martin 271, 379
Monnot, Jérôme 40
Mouscadet, Benjamin 79
Mühlenthaler, Moritz 162
Mukherjee, Joydeep 232
Müller, Haiko 298
Mütze, Torsten 120

Nasre, Meghana 244
Nederlof, Jesper 27
Nimbhorkar, Prajakta 244
Nishat, Rahnuma Islam 325

Okrasa, Karolina 1
Ono, Hirotaka 285
Ordyniak, Sebastian 190
Otachi, Yota 285

Pivač, Nevena 379
Pulath, Nada 244

Rabinovich, Roman 53
Rimmel, Arpad 79
Rzążewski, Paweł 1

Sagunov, Danil 148
Steiner, Raphael 120
Symvonis, Antonios 205

Telle, Jan Arne 218
Tomasik, Joanna 79

Vågset, Erlend Raa 218
Vogtenhuber, Birgit 120

Whitesides, Sue 325
Wiederrecht, Sebastian 53

394 Author Index

	Preface
	Organization
	The Long Tradition of WG
	Abstracts of Invited Talks
	Logic and Random Graphs
	Unavoidability and Universality of Digraphs
	Parameterized Algorithms for Geometric Graphs via Decomposition Theorems
	Contents
	Subexponential Algorithms for Variants of Homomorphism Problem in String Graphs
	1 Introduction
	2 Weighted Homomorphism Problem
	3 Locally Injective and Locally Bijective Homomorphism
	4 Locally Surjective Homomorphism
	5 Consequences for Pt-free Graphs
	6 Further Research Directions
	References

	The 4-Steiner Root Problem
	1 Introduction
	2 Preliminaries
	3 Structure Theorems
	3.1 Playing with the Root
	3.2 Well-Structured 4-Steiner Roots

	4 A Special Rooted Clique-Tree
	5 A Family of Subtrees for the Clique-Intersections
	5.1 Case of Minimal Separators
	5.2 Case of a Leaf Node
	5.3 Case of an Internal Node

	6 Deciding the Partial Solutions to Store
	7 The Dynamic Programming
	References

	Hamiltonicity Below Dirac's Condition
	1 Introduction
	2 Preliminaries
	3 Relaxing the Cardinality-Constraint (Theorem1)
	4 Relaxing the Degree-Constraint (Theorem2)
	5 Conclusion
	References

	Maximum Independent Sets in Subcubic Graphs: New Results
	1 Introduction
	2 Preliminaries
	3 From Large Cycles to Extended Large Cycles
	4 Destroying Large Extended Cycles
	4.1 Graph Reductions
	4.2 Applying Graph Reductions to Large Extended Cycles

	5 Conclusion
	References

	Cyclewidth and the Grid Theorem for Perfect Matching Width of Bipartite Graphs
	1 Introduction
	1.1 Preliminaries

	2 Directed Treewidth and Cyclewidth
	2.1 Cyclewidth: A Branch Decomposition for Digraphs
	2.2 Cyclewidth and Cylindrical Grids

	3 Perfect Matching Width
	3.1 Perfect Matching Width and Directed Cycles
	3.2 The Bipartite Matching Grid

	4 Conclusion
	References

	Local Approximation of the Maximum Cut in Regular Graphs
	1 Introduction
	1.1 Our Results
	1.2 Definitions

	2 Many Rounds for Deterministic Constant Factor Approximation in Regular Graphs
	2.1 Directed Cut

	3 Matching the Approximation Ratio When d Is Odd
	3.1 Weak-Coloring
	3.2 A Simpler and Faster Algorithm
	3.3 Directed Cuts

	4 Conclusion
	4.1 FLIP
	4.2 SLOCAL vs LOCAL Model in the Deterministic Setting

	References

	Fixed-Parameter Tractability of Counting Small Minimum (S,T)-Cuts
	1 Introduction
	2 Definitions and Notation
	3 Framework: Drainage and Menger's Paths
	3.1 Construction of the Drainage
	3.2 Menger's Paths

	4 Counting Minimum Edge (S,T)-Cuts in Undirected Graphs
	4.1 Dams and Dry Areas
	4.2 A Characterization of Minimum Cuts with Dry Instances
	4.3 Description of the Algorithm

	5 Conclusion
	References

	Fast Breadth-First Search in Still Less Space
	1 Introduction
	1.1 Space-Bounded Computation
	1.2 The Breadth-First-Search Problem
	1.3 Recent Work and Our Contribution

	2 Preliminaries
	3 The Representation of the Vertex Colors
	3.1 Containers and Their Structure and Operations
	3.2 The In-place Chain Technique for Containers

	4 BFS Algorithms
	4.1 The Basic Algorithm
	4.2 A Time-Space Tradeoff
	4.3 BFS with nlog2 3+O(logN) Bits

	References

	A Turing Kernelization Dichotomy for Structural Parameterizations of F-Minor-Free Deletion
	1 Introduction
	2 Preliminaries
	3 Lower Bound
	4 A Polynomial Turing Kernelization
	5 Conclusion
	References

	Flip Distances Between Graph Orientations
	1 Introduction
	2 Problems and Main Results
	3 Open Problems
	References

	Graph Functionality
	1 Introduction
	2 Graphs of Small Functionality
	2.1 Graphs of Bounded Clique-Width
	2.2 Permutation Graphs
	2.3 Intersection Graphs

	3 Graphs of Large Functionality
	4 Concluding Remarks and Open Problems
	References

	On Happy Colorings, Cuts, and Structural Parameterizations
	1 Introduction
	2 Preliminaries
	3 Structural and Distance-to-Triviality Parameters
	4 Obtaining W[2]-Hardness
	5 Maximum Happy Vertices and Node Multiway Cut
	6 Polynomial Kernel for Maximum Happy Vertices
	References

	Shortest Reconfiguration of Matchings
	1 Introduction
	2 Approximation Hardness of Matching Distance
	3 Matching Distance in Bipartite Graphs is FPT
	3.1 Overview of the Algorithm
	3.2 Proof of Lemma5: Reduction to Directed Steiner Tree

	4 Exact Distance and Diameter
	References

	Travelling on Graphs with Small Highway Dimension
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Related Work

	2 Structure of Graphs with Highway Dimension 1
	3 Approximation Schemes
	4 Conclusions
	References

	The Power of Cut-Based Parameters for Computing Edge Disjoint Paths
	1 Introduction
	2 Preliminaries
	2.1 Edge Disjoint Path Problem
	2.2 Treecut Width

	3 The Simple Edge Disjoint Paths Problem
	4 An Algorithm for EDP on Graphs of Bounded Treecut Width
	5 Kernelizing EDP Parameterized by Feedback Edge Set
	References

	Geometric Representations of Dichotomous Ordinal Data
	1 Introduction
	2 Realizability When k 3
	3 Realizability in the Dichotomous Setting
	4 Conclusions
	References

	Linear MIM-Width of Trees
	1 Introduction
	2 Classifying Linear MIM-Width of Trees
	3 Rooted Trees, k-critical Nodes and Labels
	4 Computing the Linear MIM-Width of Trees and Finding an Optimal Layout
	References

	Approximating Minimum Dominating Set on String Graphs
	1 Introduction
	2 Proof of Lemma1 and Theorem4
	3 Proof of Theorem3
	4 Proof of Theorem1 and Theorem2
	5 Conclusion
	References

	Classified Rank-Maximal Matchings and Popular Matchings – Algorithms and Hardness
	1 Introduction
	2 Construction of the Flow Network
	2.1 Properties of the Flow Network

	3 Algorithm for Laminar CRMM
	3.1 Rank-Maximality of the Output

	4 Hardness for Non-laminar Classifications
	References

	Maximum Matchings and Minimum Blocking Sets in Theta-6-Graphs
	1 Introduction
	1.1 Background
	1.2 Preliminaries

	2 Bounding the Size of a Matching
	3 Relationship Between Blocking Sets and Matchings
	4 Conclusions, Additional Properties, Open Problems
	References

	A Polynomial-Time Algorithm for the Independent Set Problem in {P10,C4,C6}-Free Graphs
	1 Introduction
	2 Preliminaries
	3 Minimal Augmenting Even-Hole-Free Graphs
	4 Maximum Independent Set in {P9,C4, C6}-Free Graphs
	5 Maximum Independent Set in {P10, C4, C6}-Free Graphs
	References

	Independent Set Reconfiguration Parameterized by Modular-Width
	1 Introduction
	2 Preliminaries
	2.1 TAR(k) Rule
	2.2 TJ and TS Rules
	2.3 Modular-Width

	3 FPT Algorithm for Modular-Width Under TAR
	3.1 Computing a Largest Reachable Set
	3.2 Reachability

	4 FPT Algorithm for Modular-Width Under TS
	References

	Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth
	1 Introduction
	1.1 Independent Set Problems
	1.2 Preliminaries

	2 Markov Chains
	2.1 Mixing Time
	2.2 Canonical Paths Method
	2.3 Glauber Dynamics

	3 Pathwidth and Bipartite Pathwidth
	4 Canonical Paths for Independent Sets
	5 Recognisable Subclasses of Cp
	5.1 Claw-Free Graphs
	5.2 Graphs with No Fork or Complete Bipartite Subgraph
	5.3 Graphs Free of Armchairs, Stirrers and Tripods

	6 Conclusions and Further Work
	References

	Intersection Graphs of Non-crossing Paths
	1 Introduction
	2 Preliminaries
	3 Non-crossing Paths in Trees: Structure and Recognition
	3.1 The Structure of NC-Path-Tree Models
	3.2 Restricted Host Trees
	3.3 Recognition Algorithms

	4 Minimum Dominating Set
	5 Hamiltonian Cycles and Paths
	6 Concluding Remarks
	References

	Reconfiguring Hamiltonian Cycles in L-Shaped Grid Graphs
	1 Introduction
	2 Preliminaries
	3 1-Complex Cycles to Canonical Forms: Special Cases
	3.1 1-Complex Cycles Without W Cookies
	3.2 1-Complex Cycles Without Any NE or FE Cookies
	3.3 1-Complex Cycles Without Any NN or FE Cookies
	3.4 Proof of Correctness

	4 1-Complex Cycles to Canonical Forms: General Case
	5 Reconfiguration Between Any Pair of 1-Complex Cycles
	6 Conclusion
	References

	Color Refinement, Homomorphisms, and Hypergraphs
	1 Introduction
	1.1 Overview
	1.2 Preliminaries

	2 Hypergraphs
	2.1 Hypergraph Color Refinement
	2.2 Incidence Homomorphisms
	2.3 Homomorphisms from Berge-Acyclic Hypergraphs
	2.4 Simple Hypergraphs

	3 Directed Graphs
	4 Conclusion
	References

	3-Colorable Planar Graphs Have an Intersection Segment Representation Using 3 Slopes
	1 Introduction
	2 Terminology
	3 TC-Representations and TC-Schemes
	3.1 The Linear System Model

	4 3-Slopes Segment Representations
	5 Conclusion
	References

	The Exponential-Time Complexity of Counting (Quantum) Graph Homomorphisms
	1 Introduction
	1.1 Graph Homomorphisms
	1.2 Surjective Homomorphisms
	1.3 Our Techniques: Homomorphisms to Quantum Graphs

	2 Preliminaries
	3 Counting Homomorphisms to Quantum Graphs
	4 Revisiting the Dyer-Greenhill Dichotomy
	5 Counting Partially Surjective Homomorphisms
	6 Conclusion
	References

	Minimal Separators in Graph Classes Defined by Small Forbidden Induced Subgraphs
	1 Introduction
	2 Preliminaries
	3 Graph Families with Exponentially Many Minimal Separators
	3.1 Theta Graphs and Their Line Graphs
	3.2 Elementary Walls and Their Line Graphs

	4 Graph Operations
	5 Proof of Theorem 3
	6 Conclusion
	References

	Author Index

