
Chapter 5
DNN Based Approach

Abstract The recent success of Deep Neural Networks (DNN) in several appli-
cation scenarios drove the scientific community to employ this paradigm also for
NILM. Kelly and Knottenbelt compared three alternative DNNs: in the first, they
employed a convolutional layer followed by long short-term memory (LSTM)
layers to estimate the disaggregated signal from the aggregate one. In the second,
a denoising autoencoder composed of convolutional and fully connected layers is
trained to provide a denoised signal from the aggregate one. The third network
estimates the start time, the end time and the mean power demand of each appliance.
The algorithms were evaluated on the UK-DALE dataset and showed superior
performance with respect to the combinatorial optimization and FHMM algorithms
implemented in the Non-intrusive Load Monitoring Toolkit (NILMTK).

Keywords Deep neural network · Denoising autoencoder · Footprint · Active
power · Reactive power

5.1 Neural NILM

The work by Kelly and Knottenbelt [31] compared three different neural network
architectures: in the first, they employed a convolutional layer followed by LSTM
layers [60] to estimate the disaggregated signal from the aggregated one. In
the second, a denoising autoencoder (dAE) composed of convolutional and fully
connected layers is trained to provide a denoised signal from the aggregated one.
The third network estimates the start time the end time, and the mean power demand
of each appliance. The algorithms were evaluated on the UK-DALE dataset and the
results showed that the dAE approach outperforms the alternative neural networks
architectures as well as the FHMM algorithm implemented in the Non-intrusive
Load Monitoring Toolkit (NILMTK) [73].
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5.2 Denoising AutoEncoder Approach

The NILM task can be formulated as a denoising problem by expressing the
aggregated signal as the sum of the power consumption of the appliance of
interest and a noise component that incorporates all the remaining contributions.
In particular, Eq. (2.1) can be reformulated as:

y(t) = y(j)(t) + v(j)(t), (5.1)

for j = 1, 2, . . . , N , where

v(j)(t) =
N∑

i=1
i �=j

y(i)(t) + e(t), (5.2)

represents an overall noise term for the appliance j that comprises both the
measurement noise and the contributions of the other appliances. Thus, for obtaining
y(j)(t), it would be sufficient to remove the noise term v(j)(t) from the aggregate
measurement y(t).

In [31] and similarly in [30], noise removal is performed by means of a dAE, i.e.,
a neural network that is trained to reconstruct a clean signal from its noisy version
presented at the input. Denoising autoencoders have been originally formulated in
the context of representation learning and as an unsupervised training method [97].
The same structure has been later employed to perform actual noise removal, such as
in speech related tasks [98, 99]. An autoencoder can be seen as an encoder network
followed by a decoder network. The encoder provides an internal representation of
the input signal and the decoder transforms it back into the input signal domain. A
common choice consists in creating a network with specular encoder and decoder
topologies. In the context of NILM, for each appliance, an autoencoder is trained to
reconstruct the ground truth y(j)(t) given the aggregated signal y(t).

5.3 Algorithm Improvements

In this section, several algorithmic and architecture improvements to the dAE
approach for NILM are proposed and an exhaustive comparative evaluation with
the AFAMAP (Additive Factorial Approximate Maximum a Posteriori) algorithm
[21] is conducted. In particular, compared to [31] the dAE approach for load
disaggregation is improved by conducting a detailed study on the topology of the
network, and by introducing pooling and upsampling hidden layers, and the rectifier
linear unit (ReLU) activation function [100] in the output layer. Additionally, the
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network output is recombined by using a median filter on the overlapped portions
of the disaggregated signal. The second contribution is an exhaustive performance
comparison between AFAMAP and the dAE approach. Indeed, FHMMs have
been largely employed in the last years since they are an effective approach for
load disaggregation, and AFAMAP, in particular, received noteworthy attention
by the scientific community [101, 102], as described in Sect. 4.1. However, an
exhaustive performance comparison between the two methods has not been yet
conducted. Indeed, the authors of [31] compare their proposed approaches to the
FHMM method implemented in NILMTK [73], but their comparison does not
consider more advanced FHMM algorithms such as AFAMAP [21]. Additionally,
their experiments consider only a noised scenario on a single dataset (UK-DALE).
Here, the evaluation is performed on three datasets, UK-DALE [61], AMPds [58]
and REDD [29] in different conditions: firstly, the algorithms are evaluated on
denoised and noised scenarios. In the denoised scenario, the aggregated signal
is the sum of the power profiles of the appliances that are disaggregated. In the
noised scenario, the aggregated signal comprises also measurement noise and the
contributions of unknown appliances. Successively, the algorithms generalization
capabilities are evaluated by performing disaggregation on the data acquired in a
house not considered in the training phase (unseen scenario). The performance is
evaluated by using both energy-based metrics and state-based metrics [73]: the first,
evaluate the capability of the algorithm to estimate the actual power profile of the
appliances, while the second the capability of estimating whether the appliance is
in the “on” or “off” state. In order to perform the experiments in presence of noise,
a Rest-of-the-World (RoW) model has been introduced in the original AFAMAP
[21] algorithm. This model represents all the appliances but the ones of interest
and makes AFAMAP able to operate in a noised scenario. The obtained results
show that on average the dAE approach outperforms AFAMAP in all the addressed
experimental conditions.

The general network topology proposed here for NILM is shown in Fig. 5.1:
the encoder network (Fig. 5.1a) is composed of one or more one-dimensional
convolutional layers that process the input signal and produce a set of feature maps.
Each convolutional layer is followed by a linear activation function, by a max
pooling layer, and by additional convolutional and pooling layers. Finally, one or
more fully connected layers followed by a ReLU [100] activation function close
the encoder network. The max pooling operation returns the maximum value within
a neighbourhood, and in image processing, it makes the obtained representation
invariant to small translations of the input. In NILM, this translates into being
more independent on the location of an activation inside an analysis window.
Additionally, max pooling reduces the size of the feature maps and the number of
units in the fully connected layers, thus reducing the number of training parameters.
The ReLU activation function calculates the maximum between its input and zero,
and in this case it prevents the occurrence of negative values of the disaggregated
active power. The decoder (Fig. 5.1b) is structured specularly to the encoder, with
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(a)

(b)

Fig. 5.1 Generic autoencoder architecture employed for disaggregation. (a) Encoder network. The
input signal is the aggregated power consumption. (b) Decoder network. The target signal is ground
truth power consumption of each appliance

upsampling layers taking the place of max pooling layers. Compared to [31], several
network topologies are explored, with multiple convolutional stages, max pooling
and upsampling layers are introduced, and the ReLU activation function in the fully
connected layers.

The dAE network is trained to minimize the mean squared error between its
output and the activation of a single appliance. Training is performed by using
the Stochastic Gradient Descent (SGD) algorithm with Nesterov momentum [103],
and with the early-stopping criterion to prevent overfitting. The input data and the
target are normalized in order to improve the learning efficiency.With respect to
the reference work [31], several advancements have been introduced in the training
phase. In particular, during the training phase, the initial value of the learning rate
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is decreased when the performance on a validation set decreases. When this occurs,
training is resumed from the epoch where the performance started decreasing. If
the validation performance remains confined in a certain interval, typically when
the learning process has reached the convergence or the learning rate has become
too little, the early-stopping criterion is used. This is adopted in order to prevent
overfitting.

In the disaggregation phase, the input signal y(t) is analysed by using sliding
windows whose lengths depend on the size of the appliance activations. Windows
are partially overlapped and the output signal is recombined by using a median
filter on the overlapped portions. This differs from what proposed in [31], where
the authors recompose the overlapped portions by calculating their mean value. The
problem with this solution is that when an activation is only partially comprised
in the analysis window, the network tends to underestimate the value of the output
signal. As the window slides, the estimate increases, but averaging the overlapped
portions produces an overall underestimated signal. Differently, by using the median
operation on the overlapped portions, this phenomenon is mitigated, since greater
values are preserved. The overall operation is depicted in Fig. 5.2.

The input signal is normalized following the same technique used in the training
phase, while the disaggregated traces are denormalized after recombining outputs.

5.3.1 Experimental Setup

In order to conduct an exhaustive evaluation on different scenarios, three public
datasets have been chosen. The Almanac of Minutely Power dataset (AMPds) [58]
contains recordings of consumption profiles belonging to a single home in Canada
for a period of 2 years, at 1 min sampling period. The experiments are conducted
by using six appliances: dryer, washing machine, dishwasher, fridge, electric oven
and heat pump. The second dataset, UK-DALE [61], is composed of consumption
profiles recorded in five houses in UK over 2 years, at 6 s sampling period. The
houses consumptions are not equally distributed over this time period, e.g., house 3
contains only the kettle consumptions and some minor appliances recordings, thus
it is not considered in the experiments. The five target appliances considered in all
the experiments are: fridge, washing machine, dish washer, kettle and microwave.
The third dataset, REDD [29], contains aggregate and circuit-level power profiles
of several US households. The sampling period of the aggregate data is 1 s, while
the one of the target profiles is 3 s, thus aggregate data was downsampled in order
to match the sample period of the target profiles. The experiments are conducted
by using four appliances: dryer, dishwasher, fridge and microwave. In the seen
scenario, the data from two houses is used both for training and testing. In the
unseen scenario, the same data is used for training, while testing is performed on
the data of a third house.
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Fig. 5.2 Network outputs recombined by using the mean operation and the median operation
recombination on the overlapped portions. (a) A portion of aggregated data, analysed with sliding
window technique. (b) Output of the dAE for each window. (c) Disaggregated traces comparison
between median and mean recombining methods

The chosen appliances represent the principal contributions to the peak of power
consumption in the aggregated signal, which allows us to consider the denoised
scenario as an approximation of the noised scenario in the traits of higher power
consumption. On the other hand, the noise contribution, assigned to the RoW model,
depends on the number of remaining appliances not modelled and on the total energy
of the main aggregated signal, and this affects the disaggregation performance in the
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noised scenario. The energy ratio (ER), defined as:

ER = ERoW

Emain
=

∑T
t=1 e(t)

∑T
t=1 y(t)

, (5.3)

expresses the energy proportion between the RoW model and the total aggregated
data, and the values for each house in the considered datasets are showed in
Table 5.1.

The datasets are split in different portions for training and testing, and their
dimensions depend on the availability of appliances activations within the dataset.
Regarding the training procedure, within the period specified in Table 5.11, the first
20% of activations are used to compose the validation set, while the remaining 80%
are used for the models training (Table 5.2).

Regarding the ground truth consumption availability, two different scenarios can
be defined. In the seen scenario, the disaggregation is computed on the same houses
used to train the models, but in different period from the training data. In this
scenario, both models, HMM and neural network, are created exploiting the same
portion of training, in order to conduct a fair comparison between the methods.
On the other hand, in the unseen scenario, the disaggregation is computed on the
data related to a house not considered in the training phase. In this scenario, the
ground truth consumptions related to each appliance are not available in the house
where the disaggregation is performed, therefore no training data can be considered
to create the models. The generalization property of the neural network allows to
avoid a training procedure and to use the model trained on a set of data different
from the test, whereas the footprints need to be suitably extracted in order to train
the HMM. One possible approach, in this sense, is represented by the user-aided

Table 5.1 Energy ratio (ER) for each house in the considered datasets

UK-DALE REDD

Dataset AMPds House 1 House 2 House 4 House 5 House 1 House 2 House 3

ER 0.731 0.680 0.564 0.867 0.833 0.634 0.463 0.613

Table 5.2 Definition of the
training, validation and test
sets for the considered
datasets

Dataset Train+Validation Test

AMPds 1 year, 6 months 6 months

UK-DALE

House 1 1 year, 8 months, 3 days 7 days

House 2 4 months, 3 days 7 days

House 4 6 months, 25 days 7 days

House 5 2 months, 3 days 6 days

REDD

House 1 33 days 3 days

House 2 12 days 2 days

House 3 12 days 6 days
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footprint extraction algorithm, described in Sect. 4.4, that describes a procedure for
the extraction of an approximated version of the appliance activations within the
aggregated data when all the appliances are turned off, except the always-on in the
house, i.e., the fridge and the freezer.

The experiments on the UK-DALE dataset have been performed as in [31], both
for the seen and the unseen scenario.

The parameters related to the AFAMAP algorithm are defined as follows: the
frame size is set to 60 min, which is an interval sufficiently large to include the
whole activation for most of the appliances under study. For the ones with a
longer activation, this frame size allows to include a complete operating subcycle,
for which the HMM is still representative. The variance parameters are set to
σ 2

1 = σ 2
2 = 0.01 according to the variance of the experimental data, and the

regularization parameter is set to λ = 1. Table 5.3 presents the number of states,
defined a-priori for each class of appliance. In the denoised scenario no parameters
optimization has been conducted, whereas in the noised scenario, the number of the
RoW states has been varied between the values {6, 8, 10} for both datasets.

The algorithm has been implemented in Matlab, and the CPLEX1 solver has
been adopted to solve the QP problem. The experiments have been conducted on a
working station equipped with an Intel i7 CPU at 3.3 GHz, and 32 GB RAM. The
time required for an experiments depends on the number of samples and the number
of states of the HMM models: because of the different sampling rate between the
datasets, the experiments last from 1 h for AMPds to 3 h for UK-DALE, while the
introduction of the RoW model increases the simulation time up to 2 h for AMPds
and 5 h for UK-DALE.

The parameters related to the dAE approach are defined as follows: each
network receives data in a mini-batch of 64 sequences, and a mean and variance
normalization is computed on the input data. In order to guarantee the same
normalization over the whole dataset, the mean and variance values are computed
from a random sample of the training set, whereas on the target data a min-max
normalization is performed using the maximum power consumption value of the
related appliance. The training data is composed of 50% of actual appliance related
data, and 50% of synthetic data obtained by randomly combining real appliance
activations. The training sequences have been extracted by using NILMTK [73]: this
toolkit provides the method for the power activation extraction from the ground truth
power consumption related to each appliance from both datasets. The data analysing
window of the dAE needs to be enough large to comprise an entire activation of the

Table 5.3 Number of states m related to each class of appliance

Nr. of
Dryer

Washing
Dishwasher Fridge

Electric Heat
Kettle Microwavestates machine oven pump

m 3 4 3 2 3 3 2 2

1https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Table 5.4 Window width (in samples) for the dAE architecture

Dataset Dryer
Washing

Dishwasher Fridge
Electric Heat

Kettle Microwavemachine oven pump

UK-DALE – 1024 1536 512 – – 128 288

AMPds 75 120 210 45 120 90 – –

REDD 1536 – 2304 496 – – – 96

The number of samples depends on the dataset sampling rate

appliance, but not too much to include other contributions, especially for appliances
with short-duration activation. The window width depends on the appliance type, as
described in Table 5.4.

As aforementioned, training has been performed by using the SGD algorithm
with Nesterov momentum set 0.9. The maximum number of epochs has been set to
200 000, and the number of epochs for the variable step size technique has been set
to 20 000. The initial value of the learning rate has been set to 0.1, with a decreasing
factor equal to 10. The variable step size criterion has been applied on the F

(E)
1

calculated on the validation set, and the relative tolerance for early stopping criterion
has been set equal to 0.01. The neural network has been implemented by means
of the Lasagne library,2 built on top of Theano [104]. All the network weights
have been initialized randomly using Lasagne default initialization, without any
layerwise pre-training.

In [31], the network topology is composed of an input and an output convolu-
tional layer with 8 kernels of size 4. The middle layers consist of 3 fully connected
layers with ReLU activation functions, where the number of neurons in the central
layer is equal to 128, whereas for the other layers the number depends on the length
of the input sequence. In the disaggregation phase, a hop size of 16 samples has been
considered. The performance of this work represents the baseline for this approach.
An intensive parameters optimization has been conducted regarding the number of
kernels (N), size of each kernel (S), and the number of neurons in the central layer
(H). The experiments have been conducted using each combination of parameters
within the ranges: N={2, 4, 8, 16, 32, 64}, S={2, 4, 8, 16, 32, 64}, H={8, 16, 32,
64, 128, 256, 512, 1024, 2048}. Kernels larger than the input size have not been
considered. The architecture that achieves the highest performance has been used
as a starting point of an additional campaign of experiment, for which the first
convolutional layer has been preserved, and a second stage, including pooling and
up-sampling layers, has been introduced. The parameters have been varied within
the same ranges defined above.

Max pooling is calculated on a segment with sizes equal to 2 or 4 samples, and
the overlapped portion is either equal to half of the window or not present. For
this new architecture the experiments have been conducted with a full search of the
optimal parameters. The disaggregation phase has been carried out with a sliding

2https://lasagne.readthedocs.io/en/latest/.

https://lasagne.readthedocs.io/en/latest/
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window technique over the aggregated signal, using overlapped window with hop
size in the range {1, 2, 4, 8, 1

4window, 1
2window}, where window represents the

window width defined in Table 5.4.
The number of networks tested for each appliance in three datasets has been

varied from 150 to 200, and this experimental campaign has been conducted on
both denoised and noised scenario, in the seen and unseen conditions.

The experiments have been conducted on nVIDIA K80 GPUs. The training
time varies depending on the network dimension and appliance type: because of
the different sampling rates of the datasets, the experiments require from 2 to 10 h
depending on the size of the training set.

5.3.2 Results

Regarding the AFAMAP algorithm, in the noised scenario, preliminary experiments
have demonstrated that the highest performance is obtained when the number of
states of the RoW model is 6. For the sake of conciseness, only the results for that
number of states are reported.

For the same reason, the results of the entire experimental campaign of the dAE
algorithm will not be reported. For each scenario, the introduction of the second
stage of CNN improves the performance with respect to the single CNN stage for
the majority of appliances, as well as the effectiveness of the pooling layer. The
experiments demonstrated that a hop size with 1 and 2 samples results in the best
performance.

For the AMPds and UK-DALE datasets, the dAE algorithm outperforms
AFAMAP both in the noised and the denoised scenarios, as shown in Tables 5.5,
5.6, Fig. 5.5a, b. More in details, Fig. 5.5 shows the radar charts related to the F

(E)
1

metric for each appliance, and the area inside a line gives an overall performance
indicator of the related approach. On the AMPds dataset, in the denoised case
study, the absolute improvement in terms of F

(E)
1 amounts to + 17.3%, while in

the noised scenario the absolute improvement amounts to + 13.3%. The same
trend can be observed by considering the other metrics. Compared to AFAMAP,
NEP reduces by 2.012 in the denoised scenario, whereas it reduces by 3.819
in the noised scenario. State-based metrics show a similar trend, since, in the
denoised case study, F

(S)
1 improves by + 24.7%, while in the noised case study the

absolute improvement is + 29.8%. Similar remarks apply to MCC. Analysing the
performance of the individual appliances, the dAE algorithm outperforms AFAMAP
for all the appliances in both the denoised and the noised scenario. In terms of F

(E)
1 ,

the highest absolute improvement can be observed for the dishwasher (+ 45.9%)
in the denoised scenario, and for the oven in the noised scenario (+ 48.4%).
Considering the other metrics, the dAE algorithm outperforms AFAMAP for all
the appliances in both scenarios, except for the fridge in the noised scenario, where
AFAMAP achieves lower NEP and higher F

(S)
1 . Indeed, for this appliance in the
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noised scenario, the performance improvement in terms of F
(E)
1 is modest compared

to the other appliances.
Compared to AFAMAP, in the UK-DALE dataset the absolute improvement in

terms of F
(E)
1 is + 4.4% in the denoised case study, and + 48.7% in the noised

scenario. The same trend can be observed by considering the other metrics: NEP
reduces by 0.672 in the denoised scenario and by 11.564 in the noised scenario,
while F

(S)
1 improves by + 11.7% in the denoised case study and by + 36.51% in

the noised case study. MCC increases by 0.166 and by 0.466, respectively, in the
denoised and in the noised scenario. Analysing the performance of the individual
appliances, the dAE algorithm achieves superior performance for all the appliances
in the denoised scenario, except for the washing machine and the microwave, for
which the F

(E)
1 is similar. In the noised scenario, the dAE algorithm outperforms

AFAMAP for all the appliances, with the highest improvement equal to + 69.6%
for the kettle. The same trend can be observed considering the other metrics. In the
noised scenario, the optimization of the network parameters allows to outperform
the dAE architecture presented in [31] for all the appliances, with the highest
improvement of F

(E)
1 equal to + 26.1% for the dishwasher. Considering the other

metrics, the improvement follows the same trends, except for the washing machine
evaluated in terms of NEP, and the dishwasher evaluated in terms of F

(S)
1 and MCC.

Regarding the REDD dataset (Table 5.7), in the denoised scenario the perfor-
mance difference of the dAE algorithm with respect to AFAMAP varies with the
evaluation metric. In particular, in terms of F

(E)
1 and MCC, AFAMAP outperforms

the dAE algorithm, respectively, by 6.5% and 0.007. In terms of MCC, however, the
relative improvement is limited, since it is equal to 0.95%. In terms of NEP and F

(S)
1 ,

the dAE approach outperforms AFAMAP as shown in the experiments with the UK-
DALE and AMPds datasets. This behaviour can be explained by considering that in
the denoised seen scenario the HMM models in AFAMAP are trained by using data
of the same building used in the disaggregation phase, while the network in the dAE
approach is trained by using multiple buildings, and testing is performing on one of
those. This aspect is less relevant in the noised scenario, because in AFAMAP the
RoW model introduces a high variability in the disaggregation solution. Indeed, in
this scenario the dAE approach outperforms AFAMAP regardless of the evaluation
metric.

Generally, the dAE approach reaches higher disaggregation performance since
it allows to reproduce complex activation profiles, which are learned during the
training procedure and are associated to the aggregated profiles, even in the
presence of the noise contribution. As shown in Tables 5.5, 5.6 and 5.7, the highest
performance is reached in the disaggregation of the appliances with higher peak
power consumption, since it allows a better association between the target and the
aggregated input sequence during the training phase. In the HMM based approach,
each state of an appliance model represents one value of power consumption,
which does not allow to represent highly variable or transient phenomena between
the working states of the appliance. Additionally, in the AFAMAP algorithm the
disaggregation solution is obtained by considering all the appliance models at the
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same time, while in the dAE approach each network operates independently from
the others. This may cause a false energy assignment to an appliance, due to the need
to satisfy the constraint that the sum of the reconstructed profiles corresponds to
the aggregated power. In presence of noise, the performance degrades significantly,
since the presence of the RoW, composed of a higher number of states compared
to appliance models, increases the number of admissible solutions and, as a
consequence, the chance of errors in the disaggregated profiles reconstruction.
Moreover, in the AFAMAP algorithm there is no information on the total duration
of the complete activation, since appliance models incorporate only the information
on the working state transition and on the consumption values.

Further evaluations can be carried out by analysing the disaggregated profiles
in denoised and noised scenario. Considering the UK-DALE experiments in seen
scenario, the profiles related to the dishwasher in the house 1 are shown in Fig. 5.3.
The appliance activation is correctly detected by the dAE in both scenarios, without
producing false positives in the disaggregated trace. In the noised scenario, the
reconstructed profiles have a high uncertainty, caused by the presence of noise
in the aggregated power, but the average energy in the activation has a good
correspondence with the ground truth one, which demonstrates the low degradation
of performance compared to the denoised scenario. The same experiment has been
considered for the fridge, whose profiles are shown in Fig. 5.4. The dAE algorithm
recognizes the appliance activation in the denoised scenario, with a less accurate
profile reconstruction in the activation overlapped with other appliances with respect
to the isolated ones. Differently, the performance degrades in the noised scenario,
with an incorrect activation detection and the production of some false positives,
caused by the presence of noise in the aggregated signal.

As aforementioned, the unseen scenario is evaluated by using the UK-DALE and
REDD datasets, due to the availability of recordings from several houses in both.

As in the noised seen scenario, preliminary experiments conducted by varying
the number of states in the RoW model demonstrated that the highest F

(E)
1 is

obtained with 6 states. Similarly, for the dAE algorithm the results of the entire
experimental campaign will not be reported for the sake of conciseness. For each
scenario, the introduction of the second stage of CNN and of the pooling operation
improves the performance with respect to the single CNN stage for the majority of
the appliances. Regarding the hop size in the sliding window disaggregation phase,
as in the seen scenario the highest performance is reached by using 1 and 2 samples.

Similarly to the seen scenario in the UK-DALE dataset, the baseline [31]
performance for each appliance in the noised scenario is outperformed by means of
the optimization of the network parameters, with the highest absolute improvement
of F

(E)
1 equal to + 30.2% for the washing machine. The same trend can be observed

for the other metrics, excepting for the F
(S)
1 and the MCC, where the dishwasher

performance degrades.
For both datasets, the dAE algorithm outperforms AFAMAP in both scenarios, as

shown in Tables 5.9 and 5.8. In the UK-DALE dataset, the absolute improvement in
terms of F

(E)
1 amounts to + 8.6% in the denoised case study, whereas it increases to
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Fig. 5.4 Disaggregated profiles in denoised and noised scenario in UK-DALE dataset, seen case
study, related to the fridge in house 1

+ 50.5% in the noised scenario, demonstrating the superiority of the neural network
based approach with respect to the HMM one, especially in presence of the noise
contribution. The results evaluated with the other metrics confirm the same trend,
with a reduction of NEP equal to 0.543 in the denoised case study and to 5.418 in the
noised case study. Considering the state based metrics, the improvement evaluated
with the F

(S)
1 amounts to + 12.52% in the denoised scenario and + 53.10% in the

noised, as well as regarding the MCC with an absolute improvement of + 0.170 in
the denoised scenario and + 0.594 in the noised scenario. As showed in Fig. 5.5c,
overall the dAE algorithm outperforms AFAMAP both in the denoised and in the
noised scenarios. In particular, the dAE exhibits a noteworthy robustness against the
presence of noise, while the F

(E)
1 of AFAMAP reduces significantly. Observing the

results of each appliance, the highest absolute improvement is obtained for the kettle
and it is equal to + 80.4%. In the denoised scenario, the dAE algorithm outperforms
AFAMAP for all the appliances, with the only exception of the dishwasher where
the F

(E)
1 is 1.6% lower. Considering the other metrics, in the noised scenario, the

performance is improved for all the appliances, while in the denoised scenario the
same trend can be observed, except for the washing machine, which degrades its
performance in terms of NEP, F

(S)
1 and MCC.
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On the REDD dataset, the absolute improvement in terms of F
(E)
1 amounts to

+ 30.20% in the denoised scenario and + 21.18% in the noised scenario. The other
metrics follow the same trends, with a reduction of NEP equal to 1.964 in the
denoised case study and to 1.371 in the noised case study. Considering the state
based metrics, the improvement evaluated with the F

(S)
1 amounts to + 28.3% in the

denoised scenario and + 19.60% in the noised, as well as regarding the MCC with
an absolute improvement of + 0.341 in the denoised scenario and + 0.234 in the
noised scenario. In the REDD dataset, differently from the seen scenario described
above, the dAE algorithm outperforms on each appliance in both scenario, with
the highest improvements in terms of F

(E)
1 of + 53.51% for the microwave, except

for the dryer in the denoised scenario with the state based metrics. The radar chart
represented in Fig. 5.5e shows this improvement, and it represents the performance
loss of both algorithm in the noised scenario with respect to the denoised scenario.

In the unseen scenario the generalization property of the dAE approach allows
to apply the model without the need of training, with a reasonable degradation
of performance. Regarding the AFAMAP algorithm, the approximation introduced
by the footprint extraction procedure causes a lack of correspondence between the
HMM and the appliance working states consumptions, and this results in a higher
performance degradation, particularly in presence of noise where RoW model is
present. This demonstrates the effectiveness of the neural networks approaches in
an unseen scenario, which is the most interesting condition, because it represents a
real-world application of the NILM service. As described in the previous section,
the state based metrics confirm that the dAE produces a more reliable activation
detection, with respect to the HMM based approach, even in an unseen scenario.

5.4 Exploitation of the Reactive Power

Besides machine learning techniques employed in order to solve the NILM problem,
in the literature, neural networks (NNs) have been widely explored to address the
problem of NILM.

Reactive power has already been identified as an exploitable feature to enhance
NILM performances: starting from the seminal work of Hart [15], where the
appliances working states are detected in the complex plan exploiting the active
and reactive power consumption, up to the use of reactive power to train transient-
state models [47, 50], In [105], the authors propose an active learning approach
to significantly reduce the number of training samples needed to achieve high
classification accuracies. In [106], the authors include reactive power trajectories,
on top of which a principal component analyser is built to model each appliance.
Finally, in [107] a recent approach based on finite-state machine modelling is built
on top of real and reactive power signatures.

In this work the problem of NILM is addressed by using a particular family of
NNs, that is the convolutional autoencoder. In particular, following the formalization
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Fig. 5.5 Performance for the different appliances for all the addressed algorithms. The F
(E)
1

(%) is represented. (a) Disaggregation performance on the AMPds dataset, seen scenario.
(b) Disaggregation performance on the UK-DALE dataset, seen scenario. (c) Disaggregation
performance on the UK-DALE dataset, unseen scenario. (d) Disaggregation performance on the
REDD dataset, seen scenario. (e) Disaggregation performance on the REDD dataset, unseen
scenario
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of the problem as a denoising case study, the analysed architecture will be
named denoising autoencoder (dAE) hereafter. As described in Sect. 5.2, denoising
autoencoders architectures were deeply explored and several advancements were
introduced, demonstrating that this approach reaches higher performance with
respect to the FHMM based one [21].

In the majority of the methods discussed above, the signal under analysis in the
disaggregation algorithm is represented by the active aggregate power consumption.
The main focus of this work is the analysis on how the reactive power aggregate
signal, used as input feature, influences the performance of dAEs. To do so, dAEs
have been trained in an asymmetrical configuration, where the input consisted of
both active and reactive aggregate power signals, and the output was solely the active
power appliance trace. The proposed approach has been evaluated on two publicly
available datasets, the Almanac of Minutely Power dataset (AMPds) [58] and the
UK Domestic Appliance-Level Electricity (UK-DALE) [61] dataset. Despite not all
appliances seem to benefit from the introduction of the reactive power feature, the
overall averaged scores show significant improvements in all considered scenarios.

In the present examination, NILM has been formalized and treated as a denoising
problem. In this scenario, the aggregate active power is seen as the superimposition
of the most relevant appliance consumptions, plus a rest-of-the-world noise term, as
described by the (2.1).

This equation highlights that, for each appliance, it is possible to retrieve the
corresponding active power consumption y

(j)
a (t) by removing the noise term from

the whole aggregate signal.
The denoising problem stated above allows us to look at the dAE as a mapping

function f so that:

f : R(L,1) ⇒ R(L,1), (5.4)

where L is the signal’s window length. This means that the denoising function f

takes as argument a one-dimensional signal (the aggregate data) and retrieves, again,
a one-dimensional vector: the disaggregated signal.

In introducing the reactive power signal, the active and reactive signals are
concatenated on the second dimension, therefore the mapping function f will now
follows:

f : R(L,2) ⇒ R(L,1). (5.5)

This solution considers that the dAE will be driven to exploit the correlation
existing between active and reactive consumptions. Invariance on the third axis is
imposed by using one-dimension convolutional kernels, thus the active and reactive
power signals are treated similarly to different colour channels in image processing
tasks with convolutional neural networks.

Other configurations are possible, such as the concatenation on the time axis
or the use of two separated dAE chains. These settings, however, would introduce
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discontinuities in the input data, or, in the latter case, they would increase the
computational complexity of the method. Due to these considerations, the proposed
setting appeared as the best choice to make use of convolutional layers and to avoid
excessive complications of the network topology.

In the present study, data has been pre-processed similarly to [31], where also
the multiple values of L (with reference to Eqs. 5.4 and 5.5) are given for each
appliance. Hereafter, only a short description of the most salient pre-processing
steps is given.

Firstly, for each appliance, active time windows are identified and grouped under
the name of activations. An activation is defined as a time window in which the
appliance consumption exceeds a minimum active power threshold for more than
a minimum ON time. Moreover, if a subsequent consumption peak occurs before a
pre-set minimum OFF time, it will be placed inside the same activation. Finally, all
time windows between two adjacent activations will be grouped as inactive sections.

In constructing the target of an active sequence, one activation is randomly
extracted and shifted: this way the network will be shown multiple perspectives of
the same activation, making the most out of its informative potential. On the other
hand, inactive sequence targets will be synthesized as zero-numbered vectors: its
associated input will be an aggregate time window picked from the inactive section
ensemble. The inactive input window will also be randomly shifted.

Finally, both the active and reactive components are standardized by subtracting
the sequence mean value from each sample, and dividing it by the standard deviation
calculated over the entire dataset:

ỹc(t) = yc(t) − yc,mean

yc,std
, (5.6)

where yc,mean is the active (c = a) and reactive (c = r) sequence mean value,
calculated on L samples, and yc,std is the global standard deviation of the active and
reactive signals. As mentioned in [31], this independent sequence centring does lose
information, but it is able to improve the generalization capabilities of the network.
Target sequences, on the other hand, are simply divided by the maximum power
value of each appliance:

y(i)

a
(t) = y

(i)
a (t)

max y
(i)
a (1 : T )

, (5.7)

where max y
(i)
a (1 : T ) is, for each appliance, the maximum power indicated in [31]

and used in the activation extraction phase.
The dAE topology can be divided into two main stages: an encoder and a

decoder. The first dAE stage, the encoder, takes as input the aggregate signal.
The input is firstly processed by convolutional and pooling layers to extract shift-
invariant features; then, fully-connected layers are used to extract higher-level
feature representations. In the encoding phase, max-pooling is used as sub-sampling
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function. The convolutional layers are composed exploiting linear activation func-
tion, whereas the fully-connected encoding layers are composed exploiting rectifier
linear unit (ReLU). In this book, the encoder is composed of two convolutional
layers and one fully-connected layer. The number of kernels and their size, the
dimension of the max-pooling window and the number of units of the fully-
connected layer have been explored in the experimental phase.

The encoder’s output is fed to the decoder, whose hyper-parameter configuration
and topology mirror the structure of the encoding network. Therefore, the decoder’s
input is firstly processed by fully-connected layers, followed by convolutional and
up-sampling ones. The only noticeable difference between the encoder and the
decoder topologies resides in the activation function: in the decoder, the rectifier
function is used in place of the linear one. We remind that, despite generally being
a symmetrical structure, the decoder output is always a uni-dimensional vector,
meaning that, even when the reactive power is used as input, the output is always
trained to match only the disaggregated active power signal.

Networks are trained with a supervised approach, aiming, for each input time
window, to minimize the mean squared error between the disaggregated output
and the (measured) corresponding appliance consumption. In order to minimize the
mean squared error loss, the stochastic gradient descent algorithm is used, with the
addition of Nesterov momentum [108] to further speed up the training convergence.

During training, networks are also shown synthetic sequences of data. The
synthesis procedure is the same as described in [31], and it consists in randomly
summing appliance activations with random shifts so to generate synthetic aggregate
data. In addition to generating synthetic sequences, the algorithm will also make
sure that active and inactive sequences will be used with a 50-50 ratio.

In order to prevent overfitting and excessive training times, an early-stopping
criterion is used. However, in evaluating the model performance, the model’s
energy-based F1 score is used in place of the mean squared measure. Every time
the model performance is checked on a validation set, the algorithm evaluates if an
improvement has been made over the registered best score. If no improvements are
encountered for a fixed number of training iterations, the difference between the
last score and the best one is calculated; if such difference is higher than a certain
threshold the learning rate is reduced and the training is re-started from the last best-
performing configuration, otherwise the training is stopped. With such approach we
aim at avoiding to stop the training when big score fluctuations occur (possibly)
because the training cost function has not yet reached a stable minimum.

In the disaggregation phase, the whole aggregate signal is processed by the
trained dAEs, which, for each appliance, reconstructs the corresponding consump-
tion. The processing takes place with a sliding window approach, where overlapping
sequences of fixed size are shown to the network, and the respective outputs are
collected. In order to re-combine the overlapping sequences a median filtering
has been used, since in Sect. 5.3 it was found to perform better than the average
recombination used in [31].
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Finally, at the end of the disaggregation phase, all samples are up-scaled by the
same maximum power factor max y

(i)
a (1 : T ) previously used to scale the network

targets.

5.4.1 Experimental Setup

AMPds contains recordings taken in a single house from 21 different power meters,
with a sampling period of 60 s. The time period covered consists of 2 years,
going from April 1, 2012 to March 31, 2014. Additionally to the active power
consumption, AMPds also contains apparent and reactive power signals for the
whole measurement period.

The UK-DALE dataset contains measurements taken in five different houses at
multiple sampling rates. Differently from AMPds, in UK-DALE only active and
apparent power measurements have been recorded, and this does not apply to all
houses: in house three and four the aggregate active power signal was not measured.
Therefore, in this evaluation only data taken from house one, two and five is used,
with the sampling period set to 6 s.

Despite no reactive power measurements are available for the UK-DALE dataset,
in order to retrieve the needed reactive power aggregate signals, the following
relationship has been used:

yr(t) =
√(

yap(t)
)2 − (

ya(t)
)2

, (5.8)

where yr(t), yap(t) and ya(t) represent the reactive, the apparent and the active
power sample in each sequence, respectively. On the AMPds, on the other hand,
reactive power measurements allowed us to evaluate the magnitude of its contribu-
tion over the active power, at appliance level consumption. In particular, as shown
in Table 5.10, reactive over active signal ratios were calculated for each appliance.
What emerges is that the reactive power’s magnitude oscillates between 7.6% and
26.6% of the active one, thus highlighting that, in this scenario, reactive power can
indeed be considered a significant additional feature.

As shown in Table 5.11, data has been divided, for both datasets, into training,
validation and test sets. In particular, after training activations are extracted, 20% of

Table 5.10 Reactive over
active (R/A) power ratios on
the AMPds

Appliance R/A (%)

Dishwasher 7.6

Electric oven 10.3

Fridge 9.5

Heat pump 20.0

Tumble dryer 16.1

Washing machine 26.6
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Table 5.11 Training, validation and test data subdivision by start and end date

Dataset Number of buildings Train+Validation set Test set

AMPds 1 2012-10-01 2012-04-01

2014-04-01 2012-10-01

UK-DALE 1 2013-04-12 2014-10-22

2014-10-21 2014-12-15

2 2013-05-22 2013-09-27

2013-09-26 2013-10-10

5 2014-06-29 2014-09-01

2014-09-01 2014-09-07

Table 5.12 Seen and unseen
building subdivision for the
UK-DALE dataset

Appliance Train/seen test Unseen test

Dishwasher 1, 2 5

Fridge 1, 2 5

Kettle 1, 2 5

Microwave 1, 2 5

Washing machine 1, 5 2

them is used to form validation batches, and the remaining 80% is used to construct
train batches.

For each appliance trained on the UK-DALE dataset, data from one of the three
available houses is excluded from training. This allows to define two different test
cases, namely the seen and the unseen scenarios. By doing so, the aim is to test
more deeply the networks’ ability to generalize, since, in the unseen scenario, the
model is not given the possibility to overfit the corresponding appliance signal. In
Table 5.12 the seen/unseen house subdivision is reported.

Here a description of the parameter setup used in our experiments is given.
Firstly, the window sizes used for each appliance are the same as shown in Sect. 5.3.
These window sizes were identified as best-performing by Kelly and Knottenbelt
in [31]; also all thresholds used during the activation extraction phase are the same
as indicated in Kelly’s article.

At the beginning of the training phase, network parameters are initialized with
a random distribution: control is taken over this and all other random processes
via the pre-setting of the code’s random seed. The network training is conducted
batch-by-batch, with a batch size fixed to 64 sequences, and the same size is used
also for the validation batch. The maximum number of training iterations is fixed to
200,000, and the validation check is performed once every 10 iterations. We choose
2000 to be the maximum number of no-improvement iterations: when reached, the
algorithm will decide whether to stop the training or to reduce the learning rate by
a factor of 10.

In order to evaluate different network topologies, a grid search has been
conducted on the encoder hyperparameters. All the combinations of the following
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hyperparameters have been evaluated:

• first layer kernels: 32, 128;
• kernel window size: 4, 16, 32;
• pooling size: 2, 4;
• fully-connected layer size: 512, 4096.

In addition, the number of kernels in the second convolutional layer is double than
the first layer ones, and the pooling and window sizes are equal in both convolutional
layers. As aforementioned, the topology of the decoder mirrors the one of the
encoders. Considering each appliance and the two datasets, the total number of
experiments run is 528. Moreover, it has to be highlighted that, given the absence
of reactive and apparent power measurements at appliance level for the UK-DALE,
the data synthesis procedure described in Sect. 5.3 has not been possible. Therefore,
only appliances trained on the AMPds made use of the described data augmentation
technique. The activation extraction procedure explained in Sect. 5.3 has been
performed by using the Non-Intrusive Load Monitoring Toolkit (NILMTK) [73].
The experimental framework (available upon request) has been developed in Python
(v. 2.7.10) and Keras (v. 2.1.2) over the Theano [104] backend (v. 0.9.0). Finally, the
hardware setup used to run our experiments were NVIDIA GeForce GTX 970 and
TITAN X graphic processing units.

5.4.2 Results

In Tables 5.14 and 5.13 experimental results obtained on both datasets are reported.
Moreover, to better visualize score trends, the reader can refer to Fig. 5.6, where
radar graphic representations of the scores are showed.

Observing AMPds results, it is possible to notice that all appliances benefit from
the introduction of the reactive power input, the only exception being the electric
oven. By looking at the overall scores, it is possible to identify an improvement of
8.1% if both the active and reactive aggregate signals are used instead of the active-
only input.

Table 5.13 F-score results (%) on the UK-DALE dataset

Appliance
Seen Unseen

Active Active + Reactive Active Active + Reactive

Dishwasher 71.6 83.3 44.3 50.6
Fridge 68.5 70.8 68.9 76.7
Kettle 89.0 89.9 82.1 80.2

Microwave 64.4 80.7 37.0 67.9
Washing machine 35.5 49.8 5.4 23.3
Overall 67.7 76.1 58.0 62.9

Bold values represent the experiment with the higher result, therefore the best algorithm in the
experiment comparison
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Table 5.14 F-score results
(%) on the AMPds

Appliance Active Active + Reactive

Dishwasher 62.9 77.5
Electric oven 66.3 65.0

Fridge 37.4 43.4
Heat pump 72.7 76.3
Tumble dryer 94.8 95.5
Washing machine 34.3 59.5
Overall 62.1 70.2

Bold values represent the experiment with the
higher result, therefore the best algorithm in the
experiment comparison

Fig. 5.6 Performance for the different appliances for the all the addressed algorithms. The
F

(E)
1 (%) is represented. (a) Disaggregation performance on the AMPds dataset, seen scenario.

(b) Disaggregation performance on the UK-DALE dataset, seen scenario. (c) Disaggregation
performance on the UK-DALE dataset, unseen scenario
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Concerning the UK-DALE dataset, improvements can be observed on both the
seen and the unseen scenarios. In particular, for the seen scenario, all appliances
show score improvements ranging from 0.9% for the kettle, to 16.3% for the
microwave, resulting in an overall improvement of 8.4%. On the unseen scenario, on
the other hand, only the kettle showed reduced performance with the introduction of
reactive power: −1.9%. The overall score, however, improves by 4.9%, highlighting
that score increases still outweigh the reduction encountered.

Finally, it is worth highlighting that, given the nature of the proposed algorithm,
an ensemble technique can be employed. As there is no dependence among
appliance models, it is possible to choose the best-performing input configuration,
namely active power only or active and reactive power. A possible strategy for
choosing whether to use the reactive power as additional feature is by observing
the F1 scores obtained in the validation phase. On the AMPds dataset, this solution
translates into using the active power only model for the electric oven, and the
active and reactive power models for the remaining appliances, resulting in a 0.2%
improvement. This also shows that the validation score generally gives a reliable
information on which configuration can be preferred. The ensemble technique has
no effect on the UK-DALE dataset, since the validation scores obtained by using the
active and reactive power models are always higher than the scores obtained with
active power only models.
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