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Preface

Research on Smart Grids has recently focused on the energy monitoring issue, with
the objective to maximize the user consumption awareness in building contexts on
the one hand, and to provide a detailed description of customer habits to the utilities
on the other. One of the hottest topics in this field is represented by Non-Intrusive
Load Monitoring (NILM), which refers to those techniques aimed at decomposing
the consumption aggregated data acquired at a single point of measurement into the
diverse consumption profiles of appliances operating in the electrical system under
study.

This work reports on a state-of-the-art study of the most promising NILM
methods, with an overview of the publically available dataset used for this purpose,
as well as a list of all the evaluation metrics used in this research field. Of the
proposed methods, those based on the Hidden Markov Model (HMM) and the
Deep Neural Network (DNN) have been shown to be the best performing and most
interesting from the future improvement point of view. In this work, one method
for each category has been selected and the performance improvement achieved is
described.

In the HMM based approaches, the Additive Factorial Approximate MAP
(AFAMAP) algorithm has shown outstanding capabilities and, therefore, it is
nowadays regarded as a reference model. In this work, the AFAMAP algorithm has
been extended, by means of a differential forward model, thus complementing the
existing differential backward model. Furthermore, an aggregated data examination
method has been employed, with the aim of detecting inadmissible working state
combinations of appliances, as well as the constraints setting based on the reactive
power disaggregation feedback. In a second step, an alternative formulation of the
same algorithm is presented, in order to deal with Additive Factorial Hidden Markov
Models (FHMM) framework based on bivariate HMM whose emitted symbols
are the joint active-reactive power signals. The experiments were conducted on
the AMPds dataset, in noised and denoised conditions. Additionally, a user-aided
footprint extraction procedure is presented as a facilitated procedure in order to
obtain a clean footprint from the aggregated power signal in a real scenario.
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In the DNN based approaches, the Denoising Autoencoder (dAE) represents
one of the best performing approaches. In this work, this method is extended
and improved by conducting a detailed study on the topology of the network,
and by intelligently recombining the disaggregated output with a median filter.
An exhaustive comparative evaluation is conducted with respect to the AFAMAP
algorithm. The experiments have been conducted on the AMPds, UK-DALE, and
REDD datasets in seen and unseen scenarios both in presence and in absence of
noise. Furthermore, the same method is explored when the input size is increased,
including the reactive power component near the active power consumption.

Ancona, Italy Roberto Bonfigli
Ancona, Italy Stefano Squartini
June 2019
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Chapter 1
Introduction

Abstract In the recent years, the public awareness on energy saving themes has
been constantly increasing. Indeed, the consequences of global warming are now
tangible and studies have demonstrated that they are directly related to human
activities and their inefficient use of energy and natural resources. The response of
governments and public institutions to counteract this trend is to promote policies
for reducing energy waste and intelligently use natural resources. The electricity
grid is a key component in this scenario: the original electromechanical grid, where
the information flow was one-directional, is transforming into the new digital smart
grid where the information flows from the energy provider to distributed sensors
and generator stations and vice versa. Part of this change involves the integration of
smart meters in the grid in order to provide detailed consumption information both
to the consumers and to the energy provider.

Keywords Energy awareness · Smart grids · Consumer · Energy provider ·
Non-intrusive load monitoring

In the recent years, the public awareness on energy saving themes has been
constantly increasing. Indeed, the consequences of global warming are now tangible
and studies have demonstrated that they are directly related to human activities
and their inefficient use of energy and natural resources [1–3]. The response of
governments and public institutions to counteract this trend is to promote policies
for reducing energy waste and intelligently use natural resources. The electricity
grid is a key component in this scenario: the original electromechanical grid, where
the information flow was one-directional, is transforming into the new digital smart
grid [4] where the information flows from the energy provider to distributed sensors
and generator stations and vice versa. Part of this change involves the integration of
smart meters in the grid in order to provide detailed consumption information both
to the consumers and to the energy provider.

Indeed, recent studies demonstrated that this fine-grained information is able to
provide significant energy savings [5]. On the consumers side, the knowledge of
the energy consumption of individual appliances establishes a virtuous behaviour
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2 1 Introduction

towards a wiser use of electric energy [6, 7]. Studies showed that this can lead
to savings greater than 12% with specific appliance feedback and personalized
recommendations [5, 8–11]. On the energy provider side, fine-grained information
enables the prediction of the power demand, the application of management policies
and the prevention of overloading or blackouts over the energy network [12].

Providing detailed consumption information without installing several dedicated
meters requires intelligent methods able to infer the energy consumed by individual
appliances with minimal metering points. Non-intrusive load monitoring (NILM)
denotes the class of methods and algorithms able to perform this task by using the
electrical parameters measured in a single-point [5, 13, 14]. Originally developed in
the seminal work by Hart [15], NILM has been an active area of research in the last
years. The most promising approaches recently presented in the literature are based
on machine learning algorithms, and their general scheme consists in extracting
significant features from the measured electrical parameters and then estimating
the appliance specific active power signal by using a supervised or unsupervised
algorithm [13, 16].

As aforementioned, machine learning techniques have become a popular choice
for NILM, since they showed significant disaggregation performance: in particular
hidden Markov models (HMMs) [17–29] and Neural Networks (NN) [30–34],
despite other approaches as graph-based signal processing [35], Support Vector
Machines (SVM) [36], k-Nearest Neighbours [36] and Decision Trees [37] have
been successfully employed for NILM. This book is focused on the first two
categories.

The majority of the approaches employ the active power (Pa) consumption, but
other signals can be also effectively used, in order to have a better representation
of the electric load, such as reactive power (Pr). This book is focused on the
exploitation and the integration of the reactive component of the power consumption
within the approaches under study, in order to improve their performance.

The outline of the book is the following. In Chap. 2, the NILM is introduced, with
an update state of the art of the approaches in literature and the dataset publicly
available for the experiments. Chapter 3 describes the fundamental notion on the
hidden Markov Model and neural network paradigm, entering in details for the
models parameters meaning and the training algorithm for their estimation. The
details of the proposed disaggregation algorithm are presented in Chaps. 4 and 5,
respectively, AFAMAP [21] and the denoising Auto Encoder [31]. In both chapters,
the improvement of the method and the experimental setup are described, with a
discussion on the related results. For both the approaches, the integration of the
reactive power component has been proposed. Finally, Chap. 6 concludes this book
and presents future developments.



Chapter 2
Non-intrusive Load Monitoring

Abstract The issues relating to the energy conservation and efficiency have gained
a role of great importance, from the point of view of both the consumer and
the energy provider. Furthermore, over the years, the infrastructures for energy
distribution have undergone an ageing process, which have led to the study of
the possibility in smart grids implementation, in which a set of information from
detection and network management systems can be transmitted in addition to
energy.

Useful information, about the characteristics and operating behaviour of an
electrical system, can be obtained by means of the power consumption analysis, in
order to predict the power demand (load forecasting), to apply management policies
and to avoid overloading or blackouts over the energy network. Similarly, from the
user perspective, the lifestyle of the people in a house can be predicted by the energy
consumption analysis, allowing to implement policies for advantageous time tariffs.

Over the years, several studies have demonstrated that the energy consumption
awareness (i.e., which appliances are operating at a certain time instant and
how much electrical power they are consuming) influences the user behaviour.
Specifically, the awareness conducts to moderate energy consumption, resulting in
monetary savings and reduction of the energy required to the provider. Furthermore,
applying this consideration to commercial or industrial environments, it may
provide larger energy saving.

In the struggle to improve the energy efficiency of residential environments,
the availability of information about the appliances in use can support automated
optimization approaches.

Load monitoring has become a challenging problem, and several techniques have
been studied to solve it. This work is focused on Non-Intrusive Load Monitoring
(NILM) algorithms, which aim to separate the aggregated energy consumption
signal, measured in a single centralized point, in the individual signals from
each appliance, using a simple hardware but smart software algorithms. This
solution replaces a distributed smart socket grid inside the house, resulting in lower
implementation costs and less invasive solutions for the end user.
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4 2 Non-intrusive Load Monitoring

Keywords Non-intrusive load monitoring · State of the art · Hidden Markov
model · Deep neural network · Energy dataset · Evaluation metric

2.1 Problem Statement

The NILM problem can be formulated as follows: let y(t) be the aggregated signal
measured at the time index t . Without lack of generality, here it is supposed that y(t)

represents the active power. y(t) can be expressed as the sum of the active power
contributions of each appliance:

y(t) =
N∑

i=1

y(i)(t) + e(t), (2.1)

where N is the number of appliances, y(i)(t) is the individual contribution of
appliance i and e(t) is a noise term. The NILM problem is, thus, the task of
finding the individual appliance contributions y(i)(t) given only the aggregated
measurement y(t). In a denoised scenario [27], the term e(t) is zero, while in a
noised scenario e(t) can comprise both measurement noise and the contributions of
other appliances (e.g., unknown or always-on appliances). The noise term can be
treated as a single additional appliance or as an actual noise contribution.

The NILM is classified as a Blind Source Separation (BSS) problem. Specifically,
it is categorized as a single-channel overcomplete BSS, since the signals, i.e. the
power consumptions, flow through the electric line from the multiple loads to
the unique sensor, i.e. the smart meter. In the case of analysing the active power
consumption, the meter samples the aggregate current flowing in the electric line,
and multiplying it with the voltage values, which is approximately a fixed value, it
allows to calculate the aggregate power consumption. In order to exploit the reactive
power data, both current and voltage have to be sampled in the electric line, in
order to recover the phase between them, which is the crucial information for the
reactive power calculation. The introduction of the second meter allows to reach
a higher level of representation of the problem, which reverse in a more accurate
disaggregation results.

2.2 State of the Art

This section presents an overview of the recent literature on NILM.
Several approaches are proposed in the literature, which could be gathered

in two main categories, as discussed in [44] (Fig. 2.1): load classification and
source separation. In the former, the disaggregation is achieved by a first step of
signature detection, which corresponds to the activation of a specific appliance,
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Fig. 2.1 NILM paradigm: the overall power load, given as input, is disaggregated in output
signals, each one representing an appliance contribution (i.e., dishwasher, microwave and washing
machine)

and a second step of event classification by means of appliance model, previously
trained over some training data. In the latter approach, the disaggregation is achieved
by recovering the source signals, which in this case correspond to the electrical
consumption of each appliance in the network.

For the load disaggregation purpose, defining how the specific appliance in
the circuit can be identified within the aggregated signal is fundamental: for this
reason a signature is defined as a particular trait over the aggregated signal that
can be associated to a specific appliance, which can be exploited to permit the
disaggregation goal.

For different application, signature is defined in different ways. Two main
signature categories can be found in the literature: steady-state and transient
signature. The former [15, 17, 18, 21, 22, 24–26, 31–33, 35] relates to changing
operation state of the appliance (i.e., when an appliance is turned on/off), which is
reflected on the power characteristics: the value of power measurement is stable in
time until the appliance changes operation state, thus this kind of signature can be
captured with low frequency sampling (respectively in the order of Hz). Neverthless,
if rapid state changes occurs, the low resolution may result unsuitable. The latter
[13, 16, 34, 45–50] is based on the transient phenomena between steady states:
high frequency noise in electrical current or voltage, as a result of an appliance
changing operation state, can be exploited to recognize the different appliances. For
this purpose, a high sampling rate is required (respectively in the order of kHz),
with a more complex and costly hardware equipment [16]. This explains why the
scientific community devoted particular attention to steady-state approaches.

The necessity of the user intervention for creating appliance models distinguishes
supervised from unsupervised approaches [51]. The first implies the availability of
the individual signals of each appliance. In a real operating scenario, this translates
into requiring support by the user, that should sequentially switch on the appliance
of interest and switch off the remaining [15]. In this book, this requirement has
been partially reduced by allowing selected appliances (e.g., the fridge) to remain
operational while signatures of the other appliances are being created, as described
in Sect. 4.4. The latter have been the preferred choice in the literature, since
they represent the most convenient approach for end-users. Unsupervised tech-
niques provide the means to automate the learning process, thus being completely
transparent to the user. Furthermore, they are capable of dynamically adapting to
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the power system changes over time (i.e., addition, removal, or substitution of
appliance) [52]. However, their major shortcoming is represented by the inability
to apply an appropriate label to the disaggregated signals. Different approaches try
to overcome these limitations by exploiting the information contained on a generic
labelled dataset and generalizing to unseen household data by using an unsupervised
algorithm [18].

A comparison between the steps required for a supervised and an unsupervised
approach is depicted in Fig. 2.2: in order to achieve the load disaggregation purpose,
for the former approach individual appliance data are necessary to create models
used by the NILM algorithm, while for the latter approach no information other
than the aggregate data is required. Although various techniques have been already
presented in the literature, which obtain reasonable performance, most of them are
based on supervised algorithms (i.e., require individual appliance data for model
training, prior to the system deployment), thus their functioning depends on the
user intervention and the a-priori knowledge of the power system parameters in
which they are working. In order to prevent these inconveniences, unsupervised
NILM techniques have been developed: these approaches do not require individual
appliance data and the models information is captured only using the aggregated
load, without the user intervention. Furthermore, the unsupervised approaches are
independent from the number of the appliances forming the aggregated load and

Source
modelling

NILM
algorithm

Aggregate

Appliance 1

Appliance K

Source
modelling

NILM
algorithm

Aggregate

Appliance 1

Appliance K

Appliance 1

Appliance K

(a)

(b)

Training sets

Fig. 2.2 Comparison of supervised (a) and unsupervised (b) method
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capable of dynamically adapt to the power system changes over time (i.e., addition,
removal or substitution of appliance).

For a recent review and a taxonomy, please refer to [13, 16, 53, 54]. In [55]
different approaches are described, also with an overview over metering equipment
for data logging.

Some techniques are publicly available implemented within the NILMTK toolkit
[56] and the NILM Eval framework [57].

Among unsupervised approaches, the ones based on FHMMs have been devoted
particular attention in the last years. One of the earliest works on the topic has
been presented in [17] by Kim and colleagues. The key idea is to model each
appliance with independent parallel HMM each contributing to the aggregate power.
The framework is assessed by using the steady-state real power signal, but it
allows multidimensional features as input. In [18], the authors employ HMMs in
a Bayesian framework in order to combine multiple models and form a general
model of an appliance. Labelled data are required in the training phase and then
appliance specific models are tuned on aggregate data without requiring user
intervention. In the literature, particular attention has been devoted to the algorithm
proposed by Kolter and Jaakkola [21], since it showed noteworthy performance
with a reasonable computational complexity. The Additive Factorial Approximate
Maximum a Posteriori (AFAMAP) algorithm is an efficient method, based on
an optimization problem, for the inference of the working states combination
in the Factorial Hidden Markov Model framework. The authors introduced the
AFAMAP algorithm, where they constrain the posterior probability to require only
one HMM change state at any given time. Semi-Markov models are combined with
Hierarchical Dirichlet Process in [28] for inferring both the state complexity of the
models and the duration of the distributions. The authors use the active power as
input feature and evaluate the performance on the five most consuming appliances of
the REDD dataset [29]. Makonin and colleagues in [27] proposed the sparse Viterbi
algorithm for disaggregating the active power online and in real-time. Sparse Viterbi
exploits the matrix sparsity in HMMs and it was evaluated on the AMPds [58]
and REDD [29] datasets. Aiad and Lee [51] augmented FHMMs with additional
chains for modelling possible interactions among the appliances. The algorithm
operates on the active power input feature and it was evaluated on the REDD
dataset. The work in [22] introduces an FHMM model with unbounded number of
chains, and states for each chain as well. In [23] the authors introduce Hierarchical
FHMM with the aim of overcoming the device independence assumption and the
one-at-time condition. The algorithm operates on the steady-state active power
signal by clustering the signals of correlated devices and then by training HMM
models on the identified clusters (denoted as “super devices”). In the disaggregation
phase, inference is performed with AFAMAP on the super devices, and the result
is mapped back to the original device by using the state relation table learned
during the training phase. Compared to the original AFAMAP algorithm on the
REDD and Pecan datasets, the method proposed by the authors provides significant
performance improvements. Zhong et al. [24] incorporate domain knowledge in
the FHMM in the form of signal aggregate constraint. In the NILM scenario, this
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translates into constraining the total energy consumed in a day by an appliance to be
close to a predefined value. The algorithm was assessed on the Household Electricity
Survey dataset and compared to the Additive Factorial HMM and the AFAMAP
algorithms. The results showed that the method indeed achieves better performance
in terms of disaggregation error. In a different work [25], the same authors introduce
interleaved factorial non-homogeneous hidden Markov model (IFNHMM), where
the transition probabilities of the models are supposed time variant in order to
represent the different pattern of usage of an appliance during the day. In addition,
at each time step only one chain is allowed to change. The algorithm presented
in [26] combines FHMM and Subsequence Dynamic Time Warping (SDTW). The
FHMM is employed in the first stage to identify only the ON and OFF state of
each appliance. SDTW, then, is applied iteratively to extract the final output. The
authors propose both a supervised and semi-supervised version of the algorithm,
with the latter employing the aggregate signal and consumption diaries to extract
the appliance signatures.

The works presented above perform load disaggregation by using the active
power as the only input feature. Differently, in [20], the authors propose a structural
variational approximation method and they evaluated the combination of five
features: active and reactive power, power factor, and the active and reactive
power standard deviation calculated in a window of five samples. The algorithm
is evaluated in a “denoised scenario”, for different combinations of low-power
appliances (e.g., laptop, desk lamp, LCD monitor). Instead of using only electrical
parameters, in [59] the authors proposed the inclusion of contextual information
represented by the timing-usage statistics and the presence of the user in the house.
The disaggregation algorithm is based on AFAMAP and Conditional FHMMs, and
the experiments are conducted on the Tracebase dataset augmented with synthetic
contextual information.

Among the techniques appeared in the literature, Deep Neural Networks (DNN)
have been devoting particular attention in the last years, since they exhibited
noteworthy performance for load disaggregation [31–33]. In [32], the authors
proposed an approach based on Long Short-Term Memory (LSTM) neural networks
[60]. The algorithm consists in training a neural network for each appliance in
order to predict a sample of the disaggregated active power from a segment of
aggregated data. Neural networks have been combined with HMMs in [33]: the
emission probabilities of the HMM are modelled by a Gaussian distribution for state
representing the single load, and by a DNN for state representing the aggregated
signal. Similarly to [32], LSTMs have been also employed in [31], this time
combined with convolutional layers at the input of the network to extract the features
of the signal directly from raw data. In the same paper, NILM is treated also as a
noise reduction problem, where the clean signal is represented by the disaggregated
appliance profile, and the noise signal by the remaining profiles and the measure-
ment noise. Noise reduction is performed by using a denoising autoencoder (dAE)
composed of convolutional and fully connected layers that estimates the appliance
profile from the aggregated noisy signal. An additional approach proposed in [31]
uses a neural network that estimates the start time, the end time and the mean
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power demand of each appliance. In the experiments conducted by the authors
on the UK recording Domestic Appliance-Level Electricity dataset (UK-DALE)
[61], they demonstrated that the most performing approach is represented by the
dAE network, that outperformed both the other DNN architectures, and the FHMM
method proposed in [29].

A different approach has been proposed in [62], where the algorithm employs
motif mining to identify recurring events. In particular, based on the a-priori
knowledge of the number of devices, it operates by firstly removing the appliances
that are always on. Then, it identifies the steady-states power levels with a Dirichlet
process Gaussian Mixture Model, and it detects repetitive sequences of power level
changes. The probabilistic sequential mining stage discovers devices with several
sequential power levels. The algorithm operates by firstly clustering power levels
according to the time of day and day of the week. Finally, the motif mining stage
finds repetitive episodes in the time series. On average, the results obtained on
the REDD dataset showed a superior performance with respect to the AFAMAP
algorithm [21]. In [35], the authors propose a graph signal processing (GSP)
approach that does not require training data. The GSP paradigm is employed for
event detection, clustering and feature matching.

Although in the majority of the approaches the active power (Pa) consumption
is employed, other signals can be also effectively used, in order to have a better
representation of the electric load, such as reactive power (Pr ) consumption, current
(I ) and voltage (V ) signal. Besides using the raw signal, better performance can
be achieved introducing a feature extraction stage, in order to represent information
at a higher level: different kind of ensemble averages (i.e., mean, variance) or the
application of transform operator (i.e., Fourier, Wavelet, ST, Hilbert) are the main
features employed. In addition, other quantities can be extracted to represent specific
information about the appliance usage, such as cycling frequency and temporal
duration usage, or indicator representative of the appliance electric circuit, such as
current/voltage harmonic distortion.

2.3 Datasets

Every problem to be solved with machine learning and data mining techniques
requires the availability of data for algorithm parametrization: the ability to access
public dataset, representative of a real scenario, allows to test the approaches, in
order to evaluate the effective benefit in real applications, and to compare the
performance of existing approaches on a common comparison basis. In order
to evaluate the effectiveness of the algorithms and the performance about the
disaggregation task, both aggregate and appliance specific data, which represent the
ground truth, are required.

Comparison between the datasets, highlighting their main characteristics, such
as duration, number of houses and signal sampling frequency is shown in Table 2.1.
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This comparative table is an extension of the proposed one in [56], with an update
considering the recent datasets published in the last year.

From a geographic point of view, in most cases the datasets are recorded
in the USA, with some examples for European countries (i.e., Germany, United
Kingdom, Austria, Italy, Switzerland and Portugal), besides Canada and India.
The recording coming from different country could lead to mismatching between
electric quantity (i.e., the RMS voltage value is 220 V in Europe and 110 V in
the USA), thus attention needs to be paid when different datasets are used in the
same system development. It can be noticed that the consumption recordings last
several days or few months for many contributions. Nevertheless, several datasets
contain recordings one or more years long: in these cases it is possible to study
the human behaviour over a long time, comprising the effect of seasonal changes on
consumption. In addition, only in [67, 72] a high number of houses is present, which
lead to studies about power circuit behaviour in different households. Regarding the
sampling frequency of the aggregate data and specific appliance signals, there is
a common trend about using a sampling interval between 1 s and 1 min. Only in
[29, 63, 73] a higher sampling frequency, in order of kHz, is used, which allows
the development of more sophisticated algorithm: the availability of a higher data
resolution allows to examine transient phenomena, which can be used for a more
complete description of the problem.

In [56] an open source toolkit is presented, called NILMTK, useful to evaluate
NILM algorithms in a simple way over different datasets. The toolkit contains a
data importer for each dataset, a set of preprocessing and statistics functions, a list
of some disaggregation algorithms and a set of metrics to evaluate the performance
of such algorithms. The complete processing pipeline is reported in Fig. 2.3.

2.4 Evaluation Metrics

The metrics chosen for the performance evaluation have to represent both the
aspects of the disaggregation problem: the classification of the switching activity
of the appliances and the accuracy of the disaggregated profiles compared to the
ground truth appliance consumption [73].

In order to evaluate both aspects of the NILM problem, algorithms have been
evaluated by using the following metrics:

• Energy-based Precision (P (E)), Recall (R(E)), and F1-Measure (F (E)
1 ) [21];

• Normalized Disaggregation Error (NDE) [21];
• Normalized Error in Assigned Power (NEP) [73];
• State-based Precision (P (S)), Recall (R(S)), F1-Measure (F (S)

1 );
• Matthews Correlation Coefficient (MCC) [73, 74].

Energy-based Recall measures the part of the power consumption that has been
correctly classified, whereas the Precision measures the amount of power assigned
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REDD

Data interface

Model
BLUED

UK-DALE NILMTK-DF

Statistics

Preprocessing

Training

Disaggregation Metrics

Fig. 2.3 The processing pipeline of NILMTK. Courtesy of Batra et al.

to an appliance that actually belongs to it. Considering the i-th appliance, P
(E)
i and

R
(E)
i are calculated as follows:

P
(E)
i =

∑T
t=1 min

(
ŷ(i)(t), y(i)(t)

)
∑T

t=1 ŷ(i)(t)
, R

(E)
i =

∑T
t=1 min

(
ŷ(i)(t), y(i)(t)

)
∑T

t=1 y(i)(t)
, (2.2)

where ŷ(i)(t) is the disaggregated power consumption signal, y(i)(t) is the ground
truth appliance power consumption signal and T is the total number of samples. In
order to evaluate the total performance of the disaggregation algorithm, the metric
average across the appliances is computed as follows:

P (E) = 1

N

N∑

i=1

P
(E)
i , R(E) = 1

N

N∑

i=1

R
(E)
i . (2.3)

The F1-Measure is calculated as the geometric mean between Precision and Recall:

F
(E)
1 = 2

P (E) R(E)

P (E) + R(E)
. (2.4)

The Normalized Disaggregation Error (NDE) [21] provides a direct measure
of the ability of the algorithm of reconstructing the active power profiles, and it is
defined as:

NDE =
√√√√
∑T

t=1
∑N

i=1

(
y(i)(t) − ŷ(i)(t)

)2
∑T

t=1
∑N

i=1

(
ŷ(i)(t)

)2 . (2.5)

The Normalized Error in Assigned Power (NEP) measures the deviation of
the estimated power ŷ(i)(t) from the true power y(i)(t) normalized by the total
energy consumption of the appliance. Considering appliance i, NEP is calculated
as follows:
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NEPi =
∑T

t=1 |y(i)(t) − ŷ(i)(t)|
∑T

t=1 y(i)(t)
. (2.6)

State-based metrics are defined based on the actual and predicted state of
an appliance. More in details, considering appliance i, true positives (TP), false
positives (FP), false negatives (FN) and true negatives (TN) are defined as follows:

TPi =
T∑

t=1

AND(x(i)(t) = on, x̂(i)(t) = on), (2.7)

FPi =
T∑

t=1

AND(x(i)(t) = off, x̂(i)(t) = on), (2.8)

FNi =
T∑

t=1

AND(x(i)(t) = on, x̂(i)(t) = off), (2.9)

TNi =
T∑

t=1

AND(x(i)(t) = off, x̂(i)(t) = off), (2.10)

where x(i)(t) and x̂(i)(t) are, respectively, the actual and the predicted state of
appliance i at the time index t . Appliance i is considered in the “on” state if y(i)(t)

exceeds a predefined threshold. Generally, the threshold varies with the appliance
and it assumes the same value used for extracting the activations within the ground
truth power consumption [31]. State-based Precision and Recall are defined as:

P
(S)
i = TPi

TPi + FPi

, R
(S)
i = TPi

TPi + FNi

, (2.11)

In the case of multi-state models, e.g. HMM or FSM, the state based metric
considers the ability of the system to infer the exact state of evolution of each
HMM in the model: for the i-th appliance, the multiclass confusion matrix is built
by comparing, for each time instant t = 1, 2, . . . , T , the disaggregation variables
ξ (i)(t) value assumed in the problem solution, with the exact evolution state x(i)(t),
defined as the ground truth. Each class corresponds to a state j = 1, . . . , mi of the
i-th HMM. Since that the values in ξ (i)(t) are not-integral, the computed confusion
matrix is soft weighted, similar to the fuzzy-logic [75]. For each class, the Precision
P

(j)
i and Recall R

(j)
i are computed, then the average between the classes evaluates
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the medium performance for each HMM:

P
(S)
i = 1

mi

mi∑

j=1

P
(j)
i , R

(S)
i = 1

mi

mi∑

j=1

R
(j)
i . (2.12)

Finally, state-based F1-Measure is given by:

F
(S)
1 = 2P (S)R(S)

P (S) + R(S)
, with P (S) = 1

N

N∑

i=1

P
(S)
i , R(S) = 1

N

N∑

i=1

R
(S)
i .

(2.13)

The Matthews Correlation Coefficient is defined as:

MCCi = TPiTNi − FPiFNi√
(TPi + FPi )(TPi + FNi )(TNi + FPi )(TNi + FNi )

, (2.14)

and

MCC = 1

N

N∑

i=1

MCCi . (2.15)

MCC assumes values in the range [−1, 1], with +1 representing perfect prediction,
0 random prediction and −1 total disagreement between the ground truth and the
prediction.

In the case of the metrics are evaluated for a signal window wf with f =
1, 2, . . . , F , the metrics are averaged over the windows, since the performance is
evaluated over the entire dataset:

P
{(S),(E)}
i = 1

F

F∑

f =1

P
{(Sf ),(Ef )}
i , R

{(S),(E)}
i = 1

F

F∑

f =1

R
{(Sf ),(Ef )}
i . (2.16)

2.5 Remarks

Regarding the datasets, the difference among the many appeared in the literature is
highlighted, in terms of amount of recorded data, number of houses and sampling
frequency. All these parameters, together with the characteristics of the available
smart meter providing the aggregate consumption data in the operating scenario,
strongly influence the choice of the NILM technique and therefore the dataset for
algorithm design and optimization must be carefully selected.



Chapter 3
Background

Abstract The computers are able to perform complex calculus operations in a
short amount of time. However computers cannot compete with humans in dealing
with: common sense, ability to recognize people, objects, sounds, comprehension
of natural language, ability to learn, categorize, generalize.

Therefore, why does the human brain show to be superior w.r.t common
computers for these kind of problems? Is there any chance to mimic the mechanisms
characterizing the way of working of our brain in order to produce more efficient
machines?

In the field of signal analysis, the aim is the characterization of such real-world
signals in terms of signal models, which can provide the basis for a theoretical
description of a signal processing system. They are potentially capable of letting
us learn a great deal about the signal source, without having to have the source
available.

Therefore, in this chapter two families of modelling technique are described,
i.e., the hidden Markov models (HMM) and the Deep Neural Network (DNN).
After a theoretical description, the algorithms used for their parameter estimation
are described, with a focus on the most widely model structure used in the field of
the NILM.

Keywords Machine learning · Hidden Markov Model · Baum Welch algorithm ·
Deep neural network · Stochastic gradient descent

3.1 Hidden Markov Model (HMM)

Within the multiple technique available, there are several possible choices for what
type of signal model is used for characterizing the properties of a given signal. The
most widely used categorization gathers the methods in deterministic models and
statistical models. In this chapter, it is interesting to explore the statistical models,
which try to characterize only the statistical properties of the signal.
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The underlying assumption of the statistical model is that the signal can be
well characterized as a parametric random process, and that the parameters of the
stochastic process can be determined (estimated) in a precise, well-defined manner.
One type of stochastic signal model is the hidden Markov model (HMM). This
model is based on some theoretical fundamentals. The treatise followed in this
chapter is inspired by Rabiner [76].

Firstly, a discrete Markov process need to be introduced. It is a system which may
be described at any time as being in one of a set of m distinct states, S1, S2, . . . , Sm.
The time instants associated with state changes are defined as t = 1, 2, . . ., while
the actual state at time t as x(t).

In a discrete, first order, Markov chain, this probabilistic description is truncated
to just the current and the predecessor state:

Pr[x(t) = Sj |x(t − 1) = Si, x(t − 2) = Sk, . . .] = Pr[x(t) = Sj |x(t − 1) = Si].
(3.1)

In those processes, the right-hand side of the equation is independent of time.
Additionally, a set of state transition probabilities Pij is defined in the form:

Pij = Pr[x(t) = Sj |x(t − 1) = Si] for 1 ≤ i, j ≤ m. (3.2)

The state transition coefficients follow the properties:

m∑

j=1

Pij = 1 with Pij ≥ 0 (3.3)

since they obey to standard stochastic constraints.
The notation to denote the initial state probabilities is the following:

φi = Pr[x(1) = Si] for 1 ≤ i ≤ m (3.4)

The model defined above is classified as an observable Markov chain, since the
output of the process is the set of states at each instant of time. The extension to
hidden Markov models (HMM) introduces the fundamental that the observation
is a probabilistic function of the state, i.e., the resulting model (which is called a
hidden Markov model) is a doubly embedded stochastic process with an underlying
stochastic process that is not observable (it is hidden), but can only be observed
through another set of stochastic processes that produce the sequence of observa-
tions.

Therefore, the elements which constitute an HMM are the following:

• m, the number of states in the model. The states are interconnected in such a way
that any state can be reached from any other state (e.g., an ergodic model). The
individual states are denoted as S = {. . .}, and the state at time t as x(t).
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• s, the number of distinct observation symbols per state, i.e., the discrete alphabet
size. The individual symbols are denoted as U = {μ1, μ2, . . . , μs}.

• The state transition probability distribution P = {Pij }, where:

Pij = Pr[x(t + 1) = Sj |x(t) = Si] for 1 ≤ i, j ≤ m (3.5)

For the special case where any state can reach any other state in a single step, we
have Pij > 0 for all i, j . For other types of HMMs, we would have Pij = 0 for
one or more (i, j) pairs.

• The observation symbol probability distribution in state j , M = {Mj(k)}, where:

Mj(k) = Pr[μk at t |x(t) = Sj ] for 1 ≤ j ≤ m, 1 ≤ k ≤ s (3.6)

• The initial state distribution φ = {φi}, where:

φi = Pr[x(1) = Si] for 1 ≤ i ≤ m (3.7)

The HMM can be used as a generator to give an observation sequence:

Y = {y(1), y(2), . . . , y(T )} (3.8)

where each observation y(t) is one of the symbols from U , and T is the number of
observations in the sequence.

A complete specification of an HMM requires the definition of two model
parameters (m and s), specification of observation symbols, and of the three
probability measures P , M and φ

λ = (P,M, φ). (3.9)

The probability of the observation sequence, Y , given the model λ, i.e., Pr(Y |λ)

for the state sequence X = {x(1), x(2), . . . , x(T )} is defined as:

Pr(Y |X, λ) =
T∏

t=1

Pr(y(t)|x(t), λ)

= Mx(1)(y(1))Mx(2)(y(2)) · · · Mx(T )(y(T )) (3.10)

in which it is assumed the statistical independence of observations.
The probability of such a state sequence X is defined as:

Pr(X|λ) = φx(1) Px(1)x(2) Px(2)x(3) · · · Px(T −1)x(T ). (3.11)

Therefore, the joint probability of Y and X is:

Pr(Y,X|λ) = Pr(Y |X, λ) P r(X|λ) (3.12)
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The probability of Y (given the model) is obtained by summing this joint
probability over all possible state sequences X:

Pr(Y |λ) =
∑

allX

P r(Y |X, λ) P r(X|λ)

=
∑

x(1),x(2),...,x(T )

φx(1)Mx(1)(y(1))Px(1)x(2)

×Mx(2)(y(2)) · · · Px(T −1)x(T )Mx(T )(y(T )) (3.13)

and an efficient procedure to solve the problem is the Forward-Backward procedure.
The forward variable αt (i) is defined as:

αt (i) = Pr({y(1), y(2), · · · , y(t)}, x(t) = Si |λ) (3.14)

and the probability of the partial observation sequence, {y(1), y(2), · · · , y(t)} (until
time t) and state Si at time t , given the model λ, is solved exploiting αt (i)

inductively, following the procedure:

1. Initialization:

α1(i) = φiMi(y(1)) for 1 ≤ i ≤ m. (3.15)

2. Induction:

αt+1(j) =
[

m∑

i=1

αt (i)Pij

]
Mj(y(t + 1)) for 1 ≤ t ≤ T − 1, 1 ≤ j ≤ m.

(3.16)

3. Termination:

Pr(Y |λ) =
m∑

i=1

αT (i). (3.17)

On the other hand, a backward variable βt (i) is defined as:

βt (i) = Pr({y(t + 1), y(t + 2), · · · , y(T )}|x(t) = Si, λ) (3.18)

and the probability of the partial observation sequence from t + 1 to the end,
given state Si at time t and the model λ, is solved exploiting the βt (i) inductively,
following the procedure:

1. Initialization:

βT (i) = 1 for 1 ≤ i ≤ m. (3.19)
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2. Induction:

βt (i) =
m∑

i=1

PijMj (y(t + 1))βt+1(j) for t = T − 1, T − 2, . . . , 1, 1 ≤ i ≤ m

(3.20)

The corresponding state sequence has to be chosen.
Additionally, finding the optimal state sequence X = {x(1), x(2), . . . , x(T )}

associated with the given observation sequence is defined exploiting several possible
optimality criteria.

The variable γt (i) defines the probability of being in state Si at time t , given the
observation sequence Y , and the model λ:

γt (i) = Pr(x(t) = Si |Y, λ) (3.21)

= αt (i)βt (i)

P r(Y |λ)
= αt (i)βt (i)∑m

i=1 αt (i)βt (i)
(3.22)

where αt (i) accounts for the partial observation sequence {y(1), y(2), · · · , y(t)}
and state Si at t , while βt (i) accounts for the remainder of the observation sequence
{y(t + 1), y(t + 2), · · · , y(T )} given state Si at t . The normalization factor
Pr(Y |λ) = ∑m

i=1 αt (i)βt (i) makes
∑m

i=1 γt (i) = 1.
The most widely used criterion is to find the single best state sequence

(path) X = {x(1), x(2), · · · , x(T )} for the given observation sequence Y =
{y(1), y(2), · · · , y(T )}, i.e., to maximize Pr(X|Y, λ) which is equivalent to
maximizing Pr(X, Y |λ). This criterion is satisfied by the Viterbi algorithm. The
quantity δt (i) is defined as the best score (highest probability) along a single path,
at time t , which accounts for the first t observations and ends in state Si :

δt (i) = max
{x(1),x(2),··· ,x(t−1)}

Pr[{x(1), x(2), · · · , x(t) = i}, {y(1), y(2), · · · , y(t)}|λ],
(3.23)

and, by induction:

δt+1(j) = [max
i

δt (i)Pij ]Mj(y(t + 1)) (3.24)

To actually retrieve the state sequence, we need to keep track of the argument
which maximized δt+1(j), for each t and j , via the array ψt(j). The procedure
follows the steps:

1. Initialization:

δ1(i) = φiMi(y(1)) for 1 ≤ i ≤ m (3.25)

ψ1(i) = 0 for 1 ≤ i ≤ m (3.26)
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2. Recursion:

δt (j) = max
1≤i≤m

[δt−1(i)Pij ]Mj(y(t)) for 2 ≤ t ≤ T , 1 ≤ j ≤ m (3.27)

ψt(j) = arg max
1≤i≤m

[δt−1(i)Pij ] for 2 ≤ t ≤ T , 1 ≤ j ≤ m (3.28)

3. Termination:

Pr∗ = max
1≤i≤m

[δT (i)] (3.29)

x(T )∗ = arg max
1≤i≤m

[δT (i)] (3.30)

4. Path (state sequence) backtracking:

x(t)∗ = ψt+1(q
∗
t+1) for t = T − 1, T − 2, . . . , 1 (3.31)

3.1.1 Baum-Welch Algorithm

Finally, a method to adjust the model parameters (P,M, φ) to maximize the
probability of the observation sequence given the model Pr(Y |λ) is defined.
Given any finite observation sequence as training data, there is no optimal way of
estimating the model parameters. One solution is to choose λ = (P,M, φ) such that
Pr(Y |λ) is locally maximized using an iterative procedure such as the Baum-Welch
method.

The variable ξt (i, j) is defined as the probability of being in state Si at time t ,
and state Si , at time t + 1, given the model and the observation sequence:

ξt (i, j) = Pr(x(t) = Si, x(t + 1) = Sj |Y, λ)

= αt (i)PijMj (y(t + 1))βt+1(j)

P r(Y |λ)

= αt (i)PijMj (y(t + 1))βt+1(j)∑m
i=1

∑m
j=1 αt (i)PijMj (y(t + 1))βt+1(j)

(3.32)

where the numerator term is just Pr(x(t) = Si, x(t+1) = Sj , Y |λ) and the division
by Pr(Y |λ) gives the desired probability measure.

Since
∑T −1

t=1 γt (i) represents the expected number of transitions from Si , and∑T −1
t=1 ξt (i, j) the expected number of transitions from Si to Sj , the two variables

γt (i) and ξt (i, j) are related by summing over j :

γt (i) =
m∑

j=1

ξt (i, j). (3.33)
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Using the concept of counting event occurrences, the estimated parameters are
defined as follows:

φi = γ1(i) (3.34)

P ij =
∑T −1

t=1 ξt (i, j)
∑T −1

t=1 γt (i)
(3.35)

Mj(k) =
∑T

t=1,s.t.y(t)=μk
γt (j)

∑T
t=1 γt (j)

(3.36)

The model λ is more likely than the model λ in the sense that Pr(Y |λ) > Pr(Y |λ),
i.e., we have found a new model λ from which the observation sequence is more
likely to have been produced. If λ is iteratively used in the place of λ and repeat
the reestimation calculation, the probability of Y being observed from the model
can be improved, until some limiting point is reached. The final result of this
reestimation procedure is called a maximum likelihood estimate of the HMM. It
has to be highlighted that the forward-backward algorithm leads to local maxima
only.

The Baum-Welch reestimation equations are essentially identical to the EM steps
for this particular problem, and the stochastic constraints of the HMM parameters
are automatically satisfied at each iteration:

m∑

i=1

φi = 1 (3.37)

m∑

j=1

P ij = 1 for 1 ≤ i ≤ m (3.38)

s∑

k=1

Mj(k) = 1 for 1 ≤ j ≤ m (3.39)

3.1.2 Factorial HMM

In an HMM, information about the past is conveyed through a single discrete
variable, e.g., the hidden state. A generalization of HMMs in which this state is
factored into multiple state variables and is therefore represented in a distributed
manner.

An HMM encodes information about the history of a time series in the value
of a single multinomial variable, e.g., the hidden state, which can take on one of
m discrete values. This multinomial assumption supports an efficient parameter
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estimation algorithm, the Baum-Welch algorithm, which considers each of the m

settings of the hidden state at each time step.
An HMM with a distributed state representation let the model automatically

decompose the state space into features that decouple the dynamics of the process
that generated the data, therefore the task of modelling time series that are known a
priori to be generated from an interaction of multiple, loosely-coupled processes.

The treatise followed in this chapter is inspired by Ghahramani and Jordan [77].
The generalization of the HMM state representation let the state be represented

by a collection of state variables:

x(t) = {x(1)(t), . . . , x(i)(t), . . . , x(N)(t)}, (3.40)

where N is the number of underlying distributed variables, each of which can take
on mi values.

This model is defined as Factorial Hidden Markov model (FHMM), as the state
space consists of the cross product of these state variables. The number of state
combination is equal to

∏N
i=1 mi .

A natural structure to consider is one in which each state variable evolves
according to its own dynamics, and is a priori uncoupled from the other state
variables:

Pr(x(t)|x(t − 1)) =
N∏

i=1

Pr(x(i)(t)|x(i)(t − 1)) (3.41)

The observation at time step t can depend on all the state variables at that time
step. For continuous observations, as a linear Gaussian, the observation y(t) is a
random vector whose mean is a linear function of the state variables. Representing
the state variables x(i)(t) as [mi × 1] vectors, where each of the mi discrete values
corresponds to a 1 in one position and 0 elsewhere. The probability density for a
[n × 1] observation vector y(t):

Pr(y(t)|x(t)) = |C|− 1
2 (2π)−

n
2 exp

{
−1

2
(y(t) − μ(t))′C−1(y(t) − μ(t))

}
,

(3.42)

where

μ(t) =
N∑

i=1

W(i)x(i)(t). (3.43)

Each W(i) matrix is an [n × mi] matrix whose columns are the contributions to
the means for each of the settings of x(i)(t), C is the [n × n] covariance matrix, ′
denotes matrix transpose, and | · | is the matrix determinant operator.
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The inference problem consists of computing the probabilities of the hidden
variables given the observations. This problem can be solved efficiently via the
forward-backward algorithm. In some cases, it is desirable to infer the single most
probable hidden state sequence. This can be achieved via the Viterbi algorithm.

The learning problem consists of learning the parameters for a given structure.
The parameters of a factorial HMM can be estimated via the Expectation Maxi-
mization (EM) algorithm, which in the case of classical HMMs is known as the
Baum-Welch algorithm. This procedure iterates between a step that fixes the current
parameters and computes posterior probabilities over the hidden states (the E step)
and a step that uses these probabilities to maximize the expected log likelihood of
the observations as a function of the parameters (the M step). The exact M step
for factorial HMMs is simple and tractable, whilst the exact E step for factorial
HMMs is computationally intractable. Rather than computing the exact posterior
probabilities, one can approximate them using a Monte Carlo sampling procedure,
avoid the sum over exponentially many state patterns at some cost in accuracy.
Within many possible sampling schemes, the Gibbs sampling is the simplest. A
second approach is the Completely factorized variational inference, which results
to be both tractable and deterministic. A third approximation, the Structured
variational inference, is both tractable and preserves much of the probabilistic
structure of the original system.

3.2 Deep Neural Network (DNN)

A biological Neural Networks is a big set of specialized cells (neurons) connected
among them, which memorize and process information, thus controlling the body
activities they belong to.

The neuron model is composed of:

• Dendrite, as the input terminal.
• Cell body (Nucleus), as the processing core.
• Axon, as the output way-out.
• Synapses, as the output terminal (with weight).

The neuron properties can be described in:

• Local simplicity, since the neuron receives stimuli (excitation or inhibition) from
dendrites and produces an impulse to the axon which is proportional to the
weighted sum of the inputs.

• Global complexity, since the human brain possesses O(1010) neurons, with more
than 10K connections each.

• Learning, since the strength of connections (synaptic weights) can change when
the network is exposed to external stimuli, even though the network topology is
relatively fixed.

• Distributed control, since each neuron reacts only to its own stimuli.
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• Tolerance to failures, since performance slowly decreases with the increase of
failures.

The biological Neural Networks are able to solve very complex tasks in few time
instants (like memorization, recognition, association and so on.)

The Artificial Neural Networks (ANNs) are defined as Massively parallel dis-
tributed processors made up of simple processing units having a natural propensity
for storing experiential knowledge and making it available for use [78].

An ANN resembles the brain in two aspects:

1. Knowledge is acquired by the network from its environment through a learning
process.

2. Synaptic weights are used to store the acquired knowledge.

A neuron is an information-processing unit that is fundamental to the operation
of a neural network. The model of a neuron is composed of three basic elements of
the neural model:

• A set of synapses, or connecting links, each of which is characterized by a weight
or strength of its own, wkj .

• An adder for summing the input signals, weighted by the respective synaptic
strengths of the neuron; the operations described here constitute a linear com-
biner.

• An activation function for limiting the amplitude of the output of a neuron.
Typically, the normalized amplitude range of the output of a neuron is written
as the closed unit interval [0,1], or, alternatively, [-1,1].

The neural model also includes an externally applied bias, denoted by bk .
Therefore, the mathematical description of neuron activity can be defined as:

uk =
m∑

j=1

wkjxj (3.44)

yk = ϕ (uk + bk) (3.45)

where:

• x1, x2, · · · , xm are the input signals.
• wk1, wk2, · · · , wkm are the respective synaptic weights of neuron k.
• uk is the linear combiner output due to the input signals.
• bk is the bias.
• ϕ(·) is the activation function.
• yk is the output signal of the neuron.

The types of non-linear activation functions ϕ(v) are:

• The threshold function, commonly referred to as a Heaviside function.

ϕ (v) = 1 if v ≥ 0, (3.46)
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ϕ (v) = 0 if v < 0. (3.47)

• The sigmoid function, which is defined as a strictly increasing function that
exhibits a graceful balance between linear and non-linear behaviour. An example
of the sigmoid function is the logistic function.

ϕ (v) = 1

1 + exp (−av)
(3.48)

• The hyperbolic tangent (tanh), which is simply a scaled and shifted version of
the sigmoid function.

ϕ(v) = 1 − e−2v

1 + e−2v
(3.49)

• The Rectifier Linear Unit (ReLU ).

ϕ(v) = max(0, v) (3.50)

• The sof tmax, which is used on the last layer of a classifier setup: the outputs of
the softmax layer represent the probabilities that a sample belongs to the different
classes. Indeed, the sum of all the output is equal to 1.

ϕ(vk) = evk

∑K
j=1 evj

for k = 1, . . . , K (3.51)

The manner in which the neurons of a neural network are structured is intimately
linked with the learning algorithm used to train the network. There, the network
architectures (structures) are defined. In general, two different classes of network
architectures are identified: the Multilayer Feed-forward Networks (FFNN) and the
Convolutional Neural Networks (CNN).

The Multilayer Feed-forward Networks is characterized by the presence of one
or more hidden layers, whose computation nodes are correspondingly called hidden
neurons (or hidden units). The term hidden refers to the fact that this part of the
neural network is not seen directly from either the input or output of the network.
The function of hidden neurons is to intervene between the external input and the
network output in some useful manner. By adding one or more hidden layers, the
network is enabled to extract higher-order statistics from its input. The MLP is a
well-known kind of artificial neural network introduced in 1986 [79]. Each node
applies an activation function over the weighted sum of its inputs. The units are
arranged in layers, with feed-forward connections from one layer to the next. The
stochastic gradient descent with error back-propagation algorithm is used for the
supervised learning of the network. In the forward pass, input examples are fed to
the input layer, and the resulting output is propagated via the hidden layers towards
the output layer. At the backward pass, the error signal originating at the output
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neurons is sent back through the layers and the network parameters (i.e., weights
and biases) are tuned. A single neuron can be formally described as:

g(x) = ϕ

⎛

⎝
m∑

j=1

wjxj + b

⎞

⎠, (3.52)

where x ∈ R
m×1, the bias b is an externally applied term and ϕ(·) is the non-linear

activation function. Thus, the mathematical description of a one-hidden-layer MLP
is a function f : Rm → R

m′
, where m′ is the size of the output vector y, so:

y = f (x) = ϕ (b2 + W2 (ϕ (b1 + W1 · x))), (3.53)

where Wi and bi are the respective synaptic weight matrix and the bias vector of
the i-th layer. The behaviour of this architecture is parametrized by the connection
weights, which are adapted during the supervised network training.

The Convolutional neural networks are feed-forward neural networks similar to
multilayer perceptron, with some special layers. Convolution kernels process the
input data matrix by dividing it in local receptive fields, a region of the same size of
the kernel, and sliding the local receptive field across the entire input. Each hidden
neuron is thus connected to a local receptive field, and all the neurons form a matrix
called feature map. The weights in each feature map are shared: all hidden neurons
are aimed to detect exactly the same pattern just at different locations in the input
image. The main advantage of this network is the robust pattern recognition system
characterized by a strong immunity to pattern shifts. Pooling layer just reduces the
dimension of the matrix by a rule: a submatrix of the input is selected, and the output
is the maximum value of this submatrix. The pooling process introduces tolerance
against shifts of the input patterns. Together with convolution layer it allows the
CNN to detect if a particular event occurs, regardless of its deformation or its
position. CNN is a feed-forward neural network [80] usually composed of three
types of layers: convolutional layers, pooling layers and layers of neurons. The
convolutional layer performs the mathematical operation of convolution between
a multi-dimensional input and a fixed-size kernel. Successively, a non-linearity
is applied element-wise. The kernels are generally small compared to the input,
allowing CNNs to process large inputs with few trainable parameters. Successively,
a pooling layer is usually applied, in order to reduce the feature map dimensions.
One of the most used is the max-pooling whose aim is to introduce robustness
against translations of the input patterns. Finally, at the top of the network, a layer
of neurons is applied. This layer does not differ from MLP, being composed by a set
of activation and being fully connected with the previous layer. For clarity, the units
contained in this layer will be referred to as Hidden Nodes (HN). Denoting with
Wk ∈ R

k1×km the k-th kernel and with bk ∈ R
m1×m2 the bias vector of a generic
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convolutional layer, the k-th feature map hk ∈ R
m1×m2 is given by:

hk = ϕ

(
m3∑

d=1

Wk ∗ um + bk

)
, (3.54)

where ∗ represents the convolution operation, and um ∈ R
m1×m2 is a matrix of

the three-dimensional input tensor u ∈ R
m1×m2×m3 . The dimension of the k-th

feature map hk depends on the zero padding of the input tensor: here, padding
is performed in order to preserve the dimension of the input, i.e., hk ∈ R

m1×m2 .
Commonly, (3.54) is followed by a pooling layer in order to be more robust against
patterns shifts in the processed data, e.g. a max-pooling operator that calculates the
maximum over a p1 × p2 matrix is employed.

The Deep Learning is a class of machine learning techniques that exploits many
layers of non-linear information processing for supervised or unsupervised feature
extraction and transformation, and for pattern analysis and classification. Artificial
Neural Networks are often referred to as deep when they have more than one or two
hidden layers.

3.2.1 Stochastic Gradient Descent (SGD)

Most deep learning training algorithms involve optimization of some sort. The most
widely used is the gradient based optimization, which belongs to the first order type.
The treatise followed in this chapter is inspired by Goodfellow et al. [81].

Optimization is the task of minimizing some function f (x) by altering x: f (x)

is called objective function, but in the case when it has to be minimized, it is also
call the cost function, loss function or error function. The aim of the optimization is
reached doing small change ε in the input x, to obtain the corresponding change in
the output f (x):

f (x + ε) ≈ f (x) + ε f ′(x). (3.55)

This formulation is based on the calculation of the derivative f ′(x). The gradient
descent is the technique based on the reduction of f (x) by moving x in small
steps with the opposite sign of the derivative. The aim is to find the minimum of
the cost function: when f ′(x) = 0, the derivative provides no information about
which direction to move, therefore this point is defined as stationary points. A local
minimum is a point where f (x) is lower than at all neighbouring and it is no longer
possible to decrease f (x) by making infinitesimal steps. The absolute lowest value
of f (x) is a global minimum.

For the concept of minimization to make sense, there must still be only one
(scalar) output. For functions that have multiple inputs f : Rn → R, the concept of
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partial derivatives is introduced. The gradient ∇xf (x) is the vector containing all
the partial derivatives.

The method of steepest descent or gradient descent states that f decreases by
moving in the direction of negative gradient.

x′ = x − ε ∇xf (x), (3.56)

where ε is the learning rate, a positive scalar determining the size of the step.
Large training sets are necessary for good generalization, but large training sets

are also more computationally expensive. The cost function decomposes as a sum
over training example of per-example loss function: i.e., the negative conditional
log-likelihood of the training data is defined as:

J (θ) = E(L(x, y, θ)) = 1

m

m∑

i=1

L(x(i), y(i), θ), (3.57)

where L is the per-example loss L(x, y, θ) = − log p(y|x; θ). The gradient descent
requires computing:

∇θJ (θ) = 1

m

m∑

i=1

∇θL(x(i), y(i), θ). (3.58)

The computational cost of this operation is proportional to the number of example
m, therefore as the training set size grows the time to take a single gradient step
becomes prohibitively long.

Stochastic gradient descent (SGD) is an extension of the gradient descent
algorithm: the insight is that the gradient is an expectation estimated using a
small set of samples. On each step of the algorithm, a sample of example B =
{x(1), . . . , x(m′)}, called minibatch, is drawn uniformly from the training set. The
minibatch size m′ is typically chosen to be a relatively small number of examples.

The estimate of the gradient is: g = 1
m′ ∇θ

m′∑
i=1

L(x(i), y(i), θ) using examples from

the minibatch B. The SGD algorithm then follows the estimated gradient downhill:

θ ← θ − ε g (3.59)

where ε is the learning rate.

3.2.2 Autoencoder

An autoencoder is a kind of neural network typically consisting of only one hidden
layer, trained to set the target values to be equal to the inputs.
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Given an input set of examples X , autoencoder training consists in finding
parameters θ that minimize the reconstruction error.

Defining h the number of hidden units, and m the number of input units, output
units, features size:

• h = m → Basic Autoencoder (AE);
• h < m → Compression Autoencoder (CAE);
• h > m and Gaussian Noise → Denoising Autoencoder (DAE);

3.2.2.1 Basic Autoencoder

A basic AE—a kind of neural network typically consisting of only one hidden
layer—sets the target values to be equal to the input. It is used to find common data
representation from the input [82, 83]. Formally, in response to an input example
x ∈ R

m, the hidden representation h(x) ∈ R
h is defined:

h(x) = f (W1x + b1), (3.60)

where f (z) is the non-linear activation function applied component-wisely, W1 ∈
R

h×m is a weight matrix and b1 ∈ R
h is a bias vector.

The network output maps the hidden representation h(x) back to a reconstruction
y ∈ R

m:

y = f (W2h(x) + b2), (3.61)

where W2 ∈ R
m×h is a weight matrix and b2 ∈ R

m is a bias vector.
Given an input set of examples X , AE training consists in finding parameters

θ = {W1, W2, b1, b2} that minimize the reconstruction error, which corresponds to
minimizing the following objective function:

J (θ) =
∑

x∈X
‖x − y‖2 . (3.62)

The minimization is usually realized by stochastic gradient descent as in the training
of neural networks.

3.2.2.2 Compression Autoencoder

In the case of having the number of hidden units h smaller than the number of input
units m, the network is forced to learn a compressed representation of the input.
For example, if some of the input features are correlated, then this compression
autoencoder (CAE) is able to learn those correlations and reconstruct the input data
from a compressed representation.
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3.2.2.3 Denoising Autoencoder

The denoising AE (DAE) [84] forces the hidden layer to retrieve more robust
features and prevent it from simply learning the identity. In such a configuration
the AE is trained to reconstruct the original input from a corrupted version of it.
Formally, the initial input x is corrupted by means of additive isotropic Gaussian
noise in order to obtain: x′|x ∼ N(x, σ 2I). The corrupted input x′ is then mapped,
as with the AE, to a hidden representation, defined as:

h(x′) = f (W′
1x′ + b′

1), (3.63)

from which the original signal is reconstructed as follows:

y = f (W′
2h(x′) + b′

2). (3.64)

The parameters θ ′ = {W′
1, W′

2, b′
1, b′

2} are trained to minimize the average
reconstruction error over the training set, to have y reach as close as possible to
the uncorrupted input x, which corresponds to minimizing the objective function.



Chapter 4
HMM Based Approach

Abstract Approaches based on hidden Markov models (HMMs) have been devoted
particular attention in the last years. AFAMAP (Additive Factorial Approximate
Maximum a Posteriori) has been introduced in Kolter and Jaakkola to reduce the
computational burden of FHMM. The algorithm bases its operation on additive and
difference FHMM, and it constrains the posterior probability to require only one
HMM change state at any given time.

Keywords Hidden Markov Model · Working state · Power consumption ·
Active power · Factorial Hidden Markov Model · Rest-of-the-world model ·
Constrained optimization · Reactive power · Finite State Machine · Footprint

Each appliance is modelled as an n-variate HMM, i.e., an HMM whose emitted
symbols are represented by n values. More in details, each HMM is represented by
the following parameters [76]:

• the number of states m ∈ Z+;
• the hidden states x ∈ {S1, S2, . . . , Sm};
• the symbols emitted μj ∈ R

n, where j = 1, . . . , s;
• the symbol emission probability matrix Ms×m;
• the state transition probability matrix P ∈ [0, 1]m×m;
• the starting state probability vector φ ∈ [0, 1]m.

In this book, it is assumed that each state of the HMM corresponds to a working
state of the appliance, i.e., x ∈ {ON1, ON2, . . . , OFF}, so that the number of
states m is equal to the number of symbols s and M ≡ Im×m (degenerate
HMM). Furthermore, the values composing the emitted symbols represent the power
consumption of the appliance: since the components are defined in an orthogonal
space, the power consumptions which best fit with this constraint are the active and
reactive power. Therefore, n = 2 and for the sake of clarity in the remainder of this
section it will be omitted since the individual active and reactive power components
will be made explicit. For example, each symbol is defined as μj = [μa,j μr,j ]T ,
where the subscripts a and r distinguish the active and reactive components. In
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the remainder of this section, there will be additionally treated the analysis in the
unidimensional space, with n = 1, exploiting only one of the two components. For
each appliance, the quantities to be estimated are the number of states m, the values
of μj for each state, the state transition probability matrix P and the starting state
probability vector φ. Estimation of m and of μj will be addressed in Sect. 4.1.1.

Regarding the state transition probability matrix P , each entry Pij represents the
probability of transitioning from state i to state j . Thus, Pij can be estimated with a
Maximum Likelihood criterion by calculating the number of times state i transitions
to state j and normalizing by the total number of transitions from state i. Formally:

Pij = Cij∑m
j ′=1 Cij ′

, (4.1)

where Cij is the number of transitions from state i to state j . Typically, the greatest
values in the matrix are located in the diagonal, meaning that the probability of
remaining in the same state is higher compared to the probability of transitioning to
another state. Table 4.1 shows a typical transition probability matrix related to an
appliance with four working states. The highest values in the matrix are the ones
located on the diagonal, which represent the probability of remaining in the same
state, with respect to the transition to another one: indeed, for the states where the
permanence time is low, this value is lower than the one of the state where the
permanence time is higher. The highest value is the one related to the OFF state,
because the activation of the appliance occurs after a long time in which it is turned
off.

In addition, the OFF state corresponds to the initial state, since the footprint starts
just before the turning on instant, thus φ = [0 0 · · · 0 1]T .

An example of a four-state appliance model is shown in Fig. 4.1, where the arc
between two states is the probability of transition Pij , while the arc starting and
closing on the same state represents the probability Pii of permanence in each state.

The probability value which tends to zero denotes that the transition is unlikely.
In practice, it is recommended to avoid zero probability value, because it is evaluated
in log scale in the AFAMAP algorithm, and it tends to infinity. It is recommended
to fix the value to a little quantity, e.g., � 10−5.

Table 4.1 An example of the
HMM transition probability
matrix

Destination state

Start state ON1 ON2 ON3 OFF

ON1 0.832 0.085 0.081 0.002

ON2 0.080 0.690 0.202 0.028

ON3 0.012 0.028 0.916 0.045

OFF 3.1e−05 2.7e−05 0.002 0.998
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Fig. 4.1 An example of a
four-state HMM

4.1 Additive Factorial Approximate Maximum A Posteriori
(AFAMAP)

FHMMs have been introduced in [77] as an extension of HMMs to model
time series that depend on multiple hidden processes. Starting from the work of
Kim and colleagues [17], FHMMs have been largely employed for NILM and
several approaches have been proposed in the literature [18, 22, 24, 27, 85, 86].
Among them, AFAMAP [21] represents an effective algorithm able to achieve high
performance with a reasonable computational cost.

AFAMAP has been proposed in [21] as an efficient disaggregation algorithm
based on FHMMs. In this algorithm, an additional model which relies on the same
HMMs composing the Additive FHMM (AFHMM) is introduced. It is based on
a differential version of the aggregated signal, resulting in a Differential FHMM
(DFHMM). The inference on the set of states of multiple HMMs can be computed
through the Maximum A Posteriori (MAP) algorithm and a relaxation towards real
values is taken into account, leading to a convex Quadratic Programming (QP)
optimization problem. The disaggregation process is performed by analyzing the
aggregated power divided in non-overlapping frames.

The reference work [21] describes an unsupervised approach to data disaggre-
gation: in fact, an unsupervised procedure aimed to the extraction of the device
load signature is paired with the disaggregation algorithm, referred to as AFAMAP
(Additive Factorial Approximate Maximum a Posteriori). In this work, the aim is to
investigate and to improve the disaggregation algorithm. Differently to the reference
work, however, a supervised approach is used to create the HMMs, based on the
circuit level power consumption signature. The signal can be obtained, clearly, from
the aggregated data under the condition that the appliances run one at a time [15].

The theoretical approach towards disaggregation is based on the work of Kolter
and Jaakkola [21]. In this work the system is modelled relying on Additive Factorial
Hidden Markov Model (AFHMM), for which the value of each aggregated power
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sample corresponds to a combination of working states of the appliances into the
system.

Also, in this approach, the assumption that at most one HMM may change its
state at any given time is made, which holds true if the sampling time is reasonably
short. In this case, the transition on the aggregate power, when moving from a
sample to the next, corresponds to the state change of a particular HMM.

Because of that, the differential signal, built from the aggregated power, can be
modelled as the result of a Differential Factorial Hidden Markov Model (DFHMM),
which relies on the same HMM models comprising the AFHMM.

By combining the two models, the inference on the set of states of multiple
HMMs can be computed through the Maximum A Posteriori (MAP) technique,
which takes the form of a Mixed Integer Quadratic Programming (MIQP) optimiza-
tion problem.

One of the shortcomings of this approach is the non-convex nature of the prob-
lem, because of the integer nature of the variables: in this case, a relaxation towards
real values is taken into account, leading to a convex Quadratic Programming (QP)
optimization problem. Thus, the Additive Factorial Approximate MAP (AFAMAP)
approach is obtained.

In a real case scenario, the modelled output may not match with the observed
aggregated signal, due to electrical noises, very small loads, or leakages. In that case,
the issue is addressed by defining a robust mixture component in both AFHMM and
DFHMM, named z(t) and Δz(t), respectively.

When a denoised scenario [87] is considered, i.e., all the contributions to the
aggregated energy demand are known, the robust mixture component is missing.
When a noised scenario is considered, the robust mixture component is not used,
and all the contributions are modelled as an additional appliance represented by
the RoW model, which will be introduced in Sect. 4.1.2. This approach provides
further advantages, since appliances with lower power consumption values risk to
be modelled with working states associated to similar consumption values. This
can lead the algorithm to an erroneous assignment of the disaggregation output
between similar models. Furthermore, the authors in [21] demonstrated that the
disaggregation performance degrades as the number of appliances increases. Thus,
representing several appliances with a single model eases the disaggregation task.

In the reference work [21], the parameter n defines the problem dimensionality:
in its presentation, it is assumed n = 1, because the algorithm uses only the active
power data to characterize the observed aggregated signal.

Specifically, the parameters of the problem follows:

• N ∈ Z+ is the number of HMMs in the system;
• y(τ) ∈ R is the observed aggregated output (in denoised environments y(τ) =∑N

i=1 y(i)(τ ), where y(i)(τ ) corresponds to the true appliance output);
• σ 2

1/2 ∈ R is the observation variance.

The differential signal is referred to as Δyb(τ) = y(τ) − y(τ − 1).



4.1 Additive Factorial Approximate Maximum A Posteriori (AFAMAP) 35

For the i-th HMM the parameters are:

• mi ∈ Z+ is the number of states;
• x(i)(τ ) ∈ {

S1, . . . , Smi

}
is the HMM state at time instant τ (x(i)(τ ) ≡ Smi

corresponds to the OFF state);
• μ

(i)
j ∈ R is the j -th state mean value;

• φ
(i)
b ∈ [0, 1]mi is the initial states distribution;

• P
(i)
b ∈ [0, 1]mi×mi is the transition matrix.

The aggregated signal y(τ) is analysed using a windowing technique, where τ ∈
wf = [(f −1)T +1, . . . , f T ] for f = 1, 2, . . . , F . The window wf is the timebase
for the algorithm and, for convenience, a new temporal variable is introduced by
defining the relation t = τ − (f − 1)T , for t = 1, 2, . . . , T , with T ∈ Z+. After
the analysis of all the F windows, the disaggregated signals ŷ(i)(t) are recomposed
using the inverse relation τ = t + (f − 1)T .

In the optimization problem, the variables are defined as:

Q =
{
Q(x(i)(t)) ∈ R

mi ,Q(x(i)(t − 1), x(i)(t)) ∈ R
mi×mi

}
,

for which the Q(x(i)(t))j variable is the indicator of the state assumed at time instant
t , while the Q(x(i)(t − 1), x(i)(t))j,k variable is the indicator of the state transition
from previous to actual time instant, for the i-th HMM.

The AFAMAP algorithm is shown in Fig. 4.2.

Fig. 4.2 The AFAMAP algorithm
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In (4.2) the error terms are defined as:

E′(t) =
(
y(t) −

N∑

i=1

mi∑

j=1

{
μ

(i)
j Q(x(i)(t))j

})2
, (4.4)

E′′(t) =
N∑

i=1

mi∑

j=1
k=1
k �=j

{ (
Δyb(t) − Δμ

(i)
k,j

)2
Q(x(i)(t − 1), x(i)(t))j,k

}
, (4.5)

E′′′(t) = D

(
Δyb(t)

σ2
, λ

)(
1 −

N∑

i=1

mi∑

j=1
k=1
k �=j

Q(x(i)(t − 1), x(i)(t))j,k

)
. (4.6)

The QP optimization problem is defined in the form:
Minimize

1

2
vT Hv + f T v, (4.7)

subject to the constraint:

Aeqv = beq, (4.8)

lb ≤ v ≤ ub. (4.9)

The variables of the problem are represented by the vector v, which is composed
of several subsets, based on the time instant t and the appliance index (i):

v =
⎡

⎢⎣
Θ(1)

...

Θ(T )

⎤

⎥⎦ , Θ(t) =
⎡

⎢⎣
Ψ (1)(t)

...

Ψ (N)(t)

⎤

⎥⎦ , Ψ (i)(t) =
[
ξ (i)(t)

β(i)(t)

]
,

ξ (i)(t) =
⎡

⎢⎣
Q(x(i)(t))1

...

Q(x(i)(t))mi

⎤

⎥⎦ , β(i)(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q(x(i)(t − 1), x(i)(t))1,1
...

Q(x(i)(t − 1), x(i)(t))1,mi

...

Q(x(i)(t − 1), x(i)(t))mi,1
...

Q(x(i)(t − 1), x(i)(t))mi,mi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the variables for the state are represented in ξ (i)(t), and the variables for the
backward transition in β(i)(t).
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Fig. 4.3 Additive FHMM
model

Fig. 4.4 Differential FHMM
model

The parameters of the problem fill up the elements of H and f , according to the
structure of the v vector, whereas Aeq and beq are used to represent the consistent
constraints between the state and the transition variables. The vectors lb and ub

define the lower and upper boundaries of the solution: because of the nature of the
variables [21], the lower boundary is equal to 0, whereas the upper boundary to 1,
for all the elements in v (Fig. 4.3).

In Aeq the constraint about Q(x(i)(t − 1), x(i)(t)) with t = 1 has to be removed
since there is no information about Q(x(i)(t)) at the previous time instant, thus
falling back to the constraint 0 · Q(x(i)(t − 1), x(i)(t)) = 0 (Fig. 4.4).

4.1.1 Appliance Modelling

The working states power level estimation consists in obtaining representative
power level distributions related to each appliance state, i.e., the values of the
emitted symbols μj . In a realistic scenario, this is obtained by using a set of
examples of an appliance typical consumption cycle. This information can be
extracted by observing the aggregate power signal, under the assumption that only
one appliance at time is operating [15].
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In particular, this stage involves the extraction of a footprint of the appliance, i.e.,
the active and reactive power signals comprised between the power on (transition
from the OFF state to an ON state) and the power off (transition from an ON state
to the OFF state). This is performed by firstly identifying these instants by means
of an Appliance Activity Detector (AAD). Basically, it consists in detecting when
the active power level signal exceeds a certain threshold or not (typical values are
in the order of 20 W). Isolated occurrences of power levels below the threshold are
managed by employing a hangover technique: it is a counter, which decreases its
value for each sample the signal is below the threshold. If the signal returns over the
threshold before the end of the counter, the footprint is considered continued. The
typical value is 5–10 min. The diagram of the footprint extraction stage is shown in
Fig. 4.5a.

The power value and the temporal information of the OFF state cannot be
obtained by analysing the signal extracted with the AAD. The value is reasonably
assumed 0 W and 0 VAR for the active and reactive power signals, respectively. The
temporal information, i.e., the typical interval intercurring between the OFF state
and an ON state, has to be specified a-priori for each appliance based on the typical
usages (e.g., once in an hour, three times in a day, etc.).

Different uses of the appliance in its life cycle from the user lead to the need
of model representation of every combination of usage, under the assumption that
the working state of the appliance are predetermined and not varying from different
usage: reasonably, the working cycle of a washing machine is always the same (e.g.,
pre-washing, water heating, washing, rinsing and spinning), indifferently from the

Footprint 1

Appliance i

Footprint K

...Training Set

Appliance i

Thresholding Hangover

Appliance Activity Detector

(a) Footprint extraction block scheme.

Histogram Clustering
Transition
Probability
estimation

Footprint 1

Appliance i

Footprint K

... HMM

Appliance i

(b) Model training block scheme.

Fig. 4.5 Diagram of the footprint extraction procedure (a) and of the training phase of the
appliance models (b)
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order of execution, thus the number of working state is predetermined for every
appliance.

Complex appliances (e.g., washing machines, dishwashers) are characterized
by several working cycles and the extraction of a single footprint might not be
completely representative of its operation. This motivates the need to acquire
several footprints for each appliance. Furthermore, even though only one footprint
is sufficient to explore all the working states of an appliance, multiple footprints
allow to employ more data for the power level extraction phase, particularly useful
for those power levels characterized by a short duration.

The estimation of the power level associated to a state of the HMM relies
on the appliance consumption data, which is not composed of discrete values of
consumption, but it presents a continuous variability in the values. In order to find
the averaged values of the signal, within the period of permanence in the same
working state, a clustering procedure is adopted, and the k-means [88] has been
selected as the algorithm.

Since the OFF state information is not present in the data, the number of clusters
is set to (m − 1). After identifying the clusters, the power levels associated to each
HMM state are represented by their centroids.

The clustering operation is not directly performed on the footprints extracted with
the AAD. Indeed, after extracting the footprint, a bivariate histogram composed of
100 bins per kW and per kVAR is used to analyse the probability distribution of
the active and reactive power signals. The number of bins is empirically chosen
after analysing some footprints of the training set in order to obtain a sufficiently
detailed histogram able to provide a good trade-off between variance and bias of the
density estimate. Additionally, power levels with a low number of occurrences are
excluded from the successive processing. More in details, bins having a number of
occurrences below the threshold are considered of lower relevance, thus the related
observations are discarded. This technique allows to obtain the number of working
states m, which is determined by observing the number of clusters obtained in the
final bivariate histograms. An example is shown in Fig. 4.6, where the histogram
before and after the thresholding operation is shown. It refers to the dishwasher
consumption in the AMPds dataset. Additionally, it reduces a limitation of the
clustering algorithm: k-means does not employ the information on the samples
distribution in the cluster, since it selects the centroid which satisfies the rule of
convergence over all data. Discarding bins with low occurrences forces k-means
to select the centroids with higher probability and to discard local clusters with
lower probability, that could result in erroneous centroids. Furthermore, it allows to
discriminate close clusters which can be confused as a single one: indeed, transients
between near clusters produce samples comprised between the cluster with higher
occurrences, which merge the two clusters in a single one.

Figure 4.7 represents the relationship between the cluster obtained on the
consumption values in the footprints, and the footprint itself. It is related to the
washing machine of the household 1, in the ECO dataset. In this case, the univariate
modelling case, representing the active power consumption, is considered. The
histogram, depicted in Fig. 4.7a, represents the probability density function of the
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Fig. 4.6 An example of a two-dimensional histogram of the active and reactive power signals
related to the dishwasher in the dataset AMPds
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Fig. 4.7 Washing machine in ECO, household 1. (a) Histogram of the power consumption values.
(b) Footprint and clusters associated to the working states
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samples belonging to each state, which is correlated to the mean consumption value
of the same state and its variability, as shown in Fig. 4.7b.

The diagram of the clustering and of the model training stage is shown in
Fig. 4.5b.

In general, clusters present different characteristics depending on the magnitude
of their centroid. Typically, the ones characterized by high values (e.g., 3000 W) are
highly variable, since they depend on the appliance usage by the user, e.g., the water
temperature chosen in the washing machine or the rinsing cycle of the dishwasher
affects the maximum power consumption. On the other hand, clusters characterized
by low power value (e.g., 300 W) have lower variability, since deviation from the
centroid is mainly caused by intermediate working stages of the appliance, and they
do not depend on the usage.

Figure 4.8 shows an example of the inference procedure conducted on the
active power signal only, denoted as Pa , and on the joint active–reactive power
signals, denoted as (Pa, Pr). The signals are related to the washing machine in
the AMPds dataset. In particular, Fig. 4.8a shows the active power signal and the
cluster membership of each sample when k-means operates on the Pa signal only.
Figure 4.8b, c show, respectively, the same active power signal and the reactive
power signal, but the cluster membership is related to the outcome of k-means
operating on the joint (Pa, Pr). Figure 4.8d shows at the bottom the 1-D Pa line
with the clusters obtained when k-means operates on the Pa signal only and at the
top the (Pa, Pr) plane with the clusters obtained when k-means operates on the joint
(Pa, Pr) signals. In the figure, each cluster is depicted as an interval or as an ellipse
whose size is twice the standard deviation of the cluster centred at its centroid. The
number of clusters is different between the active power and the active and reactive
power cases: in the first case 4 clusters can be identified, whereas the addition of the
reactive power allows to distinguish 5 clusters. As shown in the figure, 2 clusters
share the same value of active power, but differ in the reactive component. Using
the reactive power, thus, allows to have a better representation of the working states
of the appliance, therefore reducing the admissible combination of working states
in the aggregated data.

Since the pause interval between two footprint is not recorded, the user has to
establish the time interval between two appliance activations, e.g., the typical time
of use in the daytime or the number of activations per day of the appliance, in order
to calculate the OFF interval and to use this value for the calculation of the transition
probability related to the OFF state.

4.1.2 Rest-of-the-World Model

In a real case scenario, a noise contribution can be observed on the aggregated
signal, due to electrical noises in the system, very small loads, leakages. This
contribution can be considered as a source of power consumption, additionally to
the appliances which the system tries to disaggregate, therefore it can be modelled
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(a)

(b)

Fig. 4.8 Washing machine footprint and clusters in the dataset AMPds. (a) Footprint (Pa) and
cluster membership of each sample with k-means operating on Pa . (b) Footprint (Pa) and related
clusters with k-means operating on (Pa, Pr ). (c) Footprint (Pr ) and related clusters with k-means
operating on (Pa, Pr ). (d) Clusters in the (Pa, Pr ) plane (above) and the Pa line (below)



4.1 Additive Factorial Approximate Maximum A Posteriori (AFAMAP) 43

(c)

(d)

Fig. 4.8 (continued)
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with an HMM, as described in Sect. 4.1.1, leading to a noise model or Rest-of-the-
World (RoW) model. The number of working states is a parameter which depends
on the application scenario, therefore it has to be explored in the experimental phase,
nevertheless it would be greater than the number of states defined for the appliances,
since it represents a set of multiple load working at the same time. The data used for
training this model can be extracted by observing the aggregate power signal, when
all the appliances of interest are switched off and all the remaining equipment in the
house are working.

Referring to Eq. (2.1), the training signal used to create the RoW model is the
residual power consumption from the aggregated data, excluding the appliances
power consumption:

e(t) = y(t) −
N∑

i=1

y(i)(t). (4.10)

In the case where the dataset comprises always-on appliances, since no operating
cycle or footprint is defined in this case the RoW model does not include the OFF
working state, as showed in Fig. 4.9.

(a)

(b)

Fig. 4.9 The denoised aggregated power and the RoW signal, compared to the main aggregated
power, in the AMPds. (a) Noised aggregated power vs denoised aggregated power. (b) Noised
aggregated power vs RoW signal
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The consumption values in the working states of the RoW model are extracted
algorithmically using the k-means, even if there are no evident consumption values
clusters, determined by any working state.

4.2 Algorithm Improvements

In the reference approach, the DFHMMs are obtained as the difference, in terms
of power consumption, between the current and the previous sample (referred
to as backward transition), so that a change in the state of an HMM can be
evaluated against the change in the aggregated power consumption. Similarly, an
additional evaluation, based on the next against the current sample (referred to as
forward transition), is carried out. Furthermore, a smarter employment of the solver
boundaries is evaluated, starting from a more accurate analysis of the aggregated
power or using heterogeneous information, as the reactive power consumption of
the electrical system.

Since the AFAMAP algorithm operates offline, it is possible to further extend the
model by taking into account the transition from the current to the next state. The
original DFHMM [21] is computed by looking backward from the current sample
to the previous one, and thus it can be addressed to as Backward DFHMM. The new
differential FHMM is computed by looking forward, as showed in Fig. 4.10, and
thus is referred to as Forward FHMM.

The formulation of the new model, also, differs from the original one, only in the
index order. The new variables define the problem, as follows:

Q =
{
Q(x(i)(t)) ∈ R

mi ,Q(x(i)(t + 1), x(i)(t)) ∈ R
mi×mi

}
,

Fig. 4.10 The forward differential FHMM
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where the variables are indicators of the transition from the next to the current state:
Q(x(i)(t))j = 1 ⇔ x(i)(t) = Sj , and Q(x(i)(t + 1), x(i)(t))j,k = 1 ⇔ x(i)(t +
1) = Sj , x

(i)(t) = Sk . The consistent constraints between the state variables and
transition variables need to be satisfied:

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q :

mi∑
j=1

Q(x(i)(t))j = 1

mi∑
k=1

Q(x(i)(t + 1), x(i)(t))j,k = Q(x(i)(t + 1))j

mi∑
k=1

Q(x(i)(t + 1), x(i)(t))k,j = Q(x(i)(t))j

0 ≤ Q(x(i)(t))j ,Q(x(i)(t + 1), x(i)(t))k,j ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.11)

Therefore, the new cost function is derived from the Forward DFHMM, based on
the forward differential aggregated signal Δyf (t) = y(t) − y(t + 1), as follows:

1

2σ3
2

T −1∑

t=1

E
′′′′

(t) + 1

2

T −1∑

t=1

E
′′′′′

(t)

+
T −1∑

t=1

N∑

i=1

mi∑

j=1
k=1

{
Q(x(i)(t + 1), x(i)(t))j,k

(
− log Pf

(i)
k,j

) }

+
N∑

i=1

mi∑

j=1

{
Q(x(i)(T ))j (− log φf

(i)
j )
}
,

(4.12)

where the error terms in (4.12) are defined as:

E
′′′′

(t) =
N∑

i=1

mi∑

j=1
k=1
k �=j

{ (
Δyf (t) − Δμ

(i)
k,j

)2
Q(x(i)(t + 1), x(i)(t))j,k

}
, (4.13)

E
′′′′′

(t) = D

(
Δyf (t)

σ3
, λ

)(
1 −

N∑

i=1

mi∑

j=1
k=1
k �=j

Q(x(i)(t + 1), x(i)(t))j,k

)
. (4.14)

The transition matrix P
(i)
f represents the probability of state change from the next

to the current time instant: this parameter is equivalent to the typical representation
of the transition matrix (i.e., the probability of state change from the previous time
instant to the actual) evaluated after flipping the signal, thus it can be derived by
using the available algorithm for HMM training. The parameter φ

(i)
f represents the
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final state distribution, that is the initial state distribution starting from the end of
the signal.

Since the duality in the forward and backward representation of the AFHMM
(i.e., it is derived from the same observed signal, but in opposite directions), the
problem definition using only one of the two versions of the DFHMM leads to the
already known performance. Considering simultaneously both versions of DFHMM
may lead to performance improvements: for this reason the forward differential
function (4.12) is added to the reference formulation (4.25), thus leading to a new
optimization problem.

The variable vector v in the QP problem accounts for the new terms, following
the same structure introduced in Sect. 4.1:

Ψ (i)(t) =
⎡

⎣
ξ (i)(t)

β(i)(t)

φ(i)(t)

⎤

⎦ , φ(i)(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q(x(i)(t + 1), x(i)(t))1,1
...

Q(x(i)(t + 1), x(i)(t))1,mi

...

Q(x(i)(t + 1), x(i)(t))mi,1
...

Q(x(i)(t + 1), x(i)(t))mi,mi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the new term φ(i)(t) represents the variables for the forward transition.
The introduction of the new variables leads to an alteration of the problem

constraints, represented by the parameters Aeq and beq , and the variable boundaries
lb and ub. In Aeq the constraint about Q(x(i)(t + 1), x(i)(t)) with t = T has to be
removed since there is no information about Q(x(i)(t)) at the following time instant,
thus falling back to the constraint 0 · Q(x(i)(t + 1), x(i)(t)) = 0.

In order to solve the optimization problem, different solutions, which satisfy the
constraints, need to be evaluated before the solver finds the optimal one. As such, the
values of v that are not compatible with the given set of samples can be discarded,
to restrict the search domain and improve the search efficiency.

On purpose, the lower and upper boundaries of the variable v are selected
beforehand in order to prevent that the solver investigates those combinations of
states that do not match the value of the aggregated power consumption. The
selection method is similar to the one proposed in [89].

If several runs of a single appliance are evaluated, although the same working
states are identified, the signature tends to differ from a run to the other. For this
reason, the appliance power consumption can be modelled as a stochastic process
and, therefore, the output value y(i)(t), relative to a working state x(i)(t) of an
appliance, can be modelled as a gaussian variable, described by a mean value and a
variance value:

y(i)(t)|x(i)(t) ∼ N
(
μ

(i)

x(i)(t)
, σ

(i)

x(i)(t)

2)
. (4.15)
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In regard to this, the power signal is replaced by a simplified model that presents a
constant power consumption, corresponding to the mean value of the working state
power value, with a superimposed noisy contribution, described by the variance
value in the working state.

Since the aggregated data y(t) is assumed to correspond with the sum of
the power consumption of each appliance, it can be modelled as a gaussian
variable, described by a mean value and a variance value equivalent to the sum
of the corresponding values of each appliance, under the assumption of statistical
independence between the appliances:

y(t)|x(1:N)(t) ∼ N
(

N∑

i=1

μ
(i)

x(i)(t)
,

N∑

i=1

σ
(i)

x(i)(t)

2
)

. (4.16)

This simplified model results in a number of admissible combinations of working
states equal to

∏N
i=1 mi . It allows to evaluate which combination of working states

fits the power value for each sample of the aggregated data, thus discarding the
incompatible ones. The effectiveness interval for each combination is centred in
mean value, and its width is twice the value of the standard deviation. For some
combinations, which have similar mean value or great variance, the effectiveness
intervals result overlapped: for those cases, if the power value falls in this region,
both the combinations are considered valid.

Based on this observation, it is possible to manipulate the boundaries of the QP
problem domain. For instance, if two HMMs are considered, M1 and M2, whose
power levels are M1 = {70, 0} and M2 = {100, 20, 0}, respectively, the different
combined power levels are {0, 20, 70, 90, 100, 170}, each one with its own variance
value. This example is represented in Fig. 4.11. Considering a few different values
of aggregated power, e.g., y(t) = {20, 95, 140}, it can be observed that y(t) = 20 is
obtained as the combination (x(1)(t) = S2, x

(2)(t) = S2), therefore the allowed
constraints are defined as:

PDF

aggregate power
[W]

  0           20                70         90   100         140         170

Fig. 4.11 A sketch of the different probability density functions (PDF) for each aggregated power
value produced by the combination of all appliances states power levels
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[
0
1

]
≤ ξ (1)(t) ≤

[
0
1

]
,

⎡

⎣
0
1
0

⎤

⎦ ≤ ξ (2)(t) ≤
⎡

⎣
0
1
0

⎤

⎦.

If y(t) = 95, the value falls in an overlapped interval, belonging to the
combinations (x(1)(t) = S2, x

(2)(t) = S1) and (x(1)(t) = S1, x
(2)(t) = S2),

thus, the allowed constraints are defined as:

[
0
0

]
≤ ξ (1)(t) ≤

[
1
1

]
,

⎡

⎣
0
0
0

⎤

⎦ ≤ ξ (2)(t) ≤
⎡

⎣
1
1
0

⎤

⎦ ,

whereas if y(t) = 140, no combination is corresponding, thus the boundaries
remain as default.

Clearly, the same process can be applied to bound the β(i)(t) and φ(i)(t).
In regard to this, however, since transitions are related to the steady states, the
evaluation of the steady states is enough to bound both kinds of variables.

Even though disaggregation is aimed for the aggregated power consumption, in
most cases the focus is centred on the active power alone. Nonetheless, given the
generality of the AFAMAP algorithm, targeting the reactive aggregated power is
also possible. In regard to this, in the present work, the application of the AFAMAP
algorithm to the aggregated reactive power has been investigated as well, based on
the fact that reactive power is a common trait of the power signature of a residential
appliances subset.

In the current scenario, the disaggregation of the reactive power samples is
carried out, in order to collect additional information about the activity states of
the appliances. This information, in turn, is used to further define the lower and
the upper boundaries of the states in the active power disaggregation. Similarly to
the active power case, the HMMs are modelled for each appliances starting from
the signature in the reactive power and the AFAMAP algorithm is run by using the
aggregated reactive power signal as input.

Following the basic knowledge in circuit theory, an electrical load with a reactive
component (i.e., an appliance) which has a reactive power consumption greater than
0 is necessarily turned on, therefore the boundaries of the problem in active power
disaggregation are assigned as follows:

⎡

⎣
0
0
0

⎤

⎦ ≤ ξ (i)(t) ≤
⎡

⎣
1
1
0

⎤

⎦.

Although when the reactive power consumption is 0, the active component could
be both null or greater than 0, depending on whether the appliance is turned off
or only the load passive component is working. Therefore, the boundaries of the
problem in active power disaggregation are set as default.
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4.2.1 Experimental Setup

The dataset used for the experiments is the Almanac of Minutely Power dataset
(AMPds) [58]: it contains recordings of consumption profiles belonging to a single
home in Canada for a period of 2 years at 1 min sampling rate. It provides active and
reactive power at appliance level, unlike most of the dataset in which only the active
power is provided at appliance level, as described in Sect. 2.3: this information
is crucial to test the new approach based on the reactive power disaggregation
as constraint. Analysing the contents of the dataset, it can be noticed that the
usage of the appliances is homogeneous throughout the entire period, therefore
the experiments are evaluated on 6 months of data, which can be considered a
representative of the entire dataset. To create the HMM models of the appliances, the
training requires at least one signature per appliance, although multiple signatures
lead to a more general model. In the proposed work, a subset of the data, spanning
over 14 days, has been deemed sufficient to collect all the signatures required
to train all the HMMs. The HMM are trained in accordance with the Baum-
Welch algorithm, after determining the ground truth state over the time: those
are obtained through a clustering procedure, in which every cluster represents a
power consumption level of the appliance, thus a state of the HMM. This process
is achieved using the k-means algorithm, in which the number of the clusters is
imposed in a supervised manner, starting from the knowledge of the operating
states of the appliance. The power level mean and the variance values are achieved
by means of a gaussian variable fitting procedure over the samples belonging to
each cluster. To satisfy the condition of denoised system, the aggregated data
is synthetically composed by summing the appliance level power signals. The
experiments are conducted by using the appliances at higher contribution, therefore
6 appliances have been chosen: dryer, washing machine, dishwasher, fridge, oven
and heat pump. The simulations are conducted in Matlab environment and the
CPLEX solver is used to solve the QP problem. The value of starting probability
φ

(i)
b of the i-th HMM is imposed to assume the certainty for the OFF state for

f = 1, whereas for the consecutive windows, 1 < f ≤ F , it is imposed to assume
the value of the last sample ξ (i)(T ) of the previous window, in order to ensure the
contiguity of the solution on the window border. The value of the ending probability
φ

(i)
f , instead, is uniformly imposed in every state, since no information from the

consecutive window is available. Different experiments are conducted varying the
size of the windows between the values T ∈ {10, 30, 60, 90, 120} min, and the
effectiveness of the innovative aspect is evaluated: the introduction of the forward
term in the cost function, the selection of the boundaries related to the aggregated
power level and to the disaggregation output of the reactive power. The variance
parameters are defined with σ1

2 = σ2
2 = σ3

2 = 0.01 according to the variance
of the experimental data and the regularization parameter λ = 1.
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4.2.2 Results

The results of the experiments, based on the scenario described in Sect. 4.2.1, are
presented in the current section.

In Fig. 4.12, the AFAMAP disaggregated power consumption profiles of the
appliances are compared against the corresponding true outputs, provided by the
dataset: in the figure a time span of 10 h, corresponding to 600 samples, is consid-
ered. At the bottom, the energy distribution over the same period, expressed among
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Fig. 4.12 Appliances consumption: estimated AFAMAP disaggregation output against original
signals
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the appliances in terms of percent value, is compared between the reconstructed and
the true appliances consumption.

The signals reveal that the appliances which show a high steady power consump-
tion are easily recognized, whereas the appliances with complex working cycles,
or with several power levels, are more difficult to detect. Indeed, whenever several
appliances present similar consumption levels, many combinations may satisfy the
problem constraints, thus additional information is required to identify the active
appliances. For instance, in Fig. 4.12, the oven and the fridge are seldom recognized,
whereas the detection of the dryer and the washing machine are partially more
successful.

The evaluation of the algorithm performance is carried out by means of the
metrics proposed in Sect. 2.4. Although the focus of the present work is on the
AFAMAP algorithm, the dataset being used and the proposed training method
are different with respect to [21], therefore a direct comparison against the results
proposed in the reference work is not possible. To overcome this shortcoming, the
baseline has been created anew, by means of the AFAMAP algorithm, the AMPds
dataset and the proposed training method.

The disaggregation results computed by means of the metrics are reported in
Fig. 4.13: in Fig. 4.13a the state based metric is presented, whereas the energy based
metric is proposed in Fig. 4.13b. The results are shown for different values of the
time window length. Clearly, since all the results exceed 0.5, the plots have been
drawn from 0.5 onwards.

Both plots show that the best results are achieved using the shortest time window.
On a different note, however, not every configuration improves in the same way.

Focusing on the state based metrics, it is possible to observe that the AFAMAP
baseline shows a significant performance improvement with the decreasing of the
window length, except when passing from the 30 to 10 min window size. On the
contrary, the forward differential model shows an improvements at the shorter
window size, resulting in the best performance in the unbounded problem solution,
with an F

(S)
1 of 0.738 and an improvement of 1% with respect to the baseline.

Fixing the boundaries of the problem, in every simulation case, gives the benefit
on the disaggregation results: the profile based method gives a considerable perfor-
mance improvements with every window size, but the highest relative improvement
can be noted at the smallest size, resulting to an F

(S)
1 of 0.863 and a relative

improvement of 18%.
Alternatively, the boundaries can be set based on the reactive power disaggrega-

tion feedback: the results, showed in Table 4.2, demonstrate that the reactive power
reaches high performance in disaggregation. This is due to the high difference in
the reactive components of each appliance, which involves a strong distinction in
the creation of the HMM, therefore allowing a highly reliable disaggregation. The
usage of this information results in a performance improvement for every window
size, more considerable at the smallest size: in general, the usage of the reactive
power feedback gives benefits to the disaggregation, with an F

(S)
1 of 0.802 and a

relative improvement of 9.7%, therefore less than the profile based constraints.
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(a)

(b)

Fig. 4.13 Disaggregation performance on AMPds dataset using 6 appliances, with different
algorithm configuration. (a) State based metric: F

(S)
1 . (b) Energy based metric: F

(E)
1
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Table 4.2 Disaggregation results on reactive power

Window size

Metric 10 min 30 min 60 min 90 min 120 min

State based: F
(S)
1 0.922 0.877 0.869 0.867 0.865

Energy based: F
(E)
1 0.935 0.883 0.877 0.875 0.874

The configuration used is: AFAMAP + Forward differential

Clearly, the same trends presented about the state based metrics still hold
true when evaluating with the energy based metrics. The most notably difference
between the two plots, in fact, is that the rate of improvement of the algorithms
when decreasing the time window length: indeed, the forward differential model
introduction results to an F

(E)
1 of 0.771 and a relative improvement of 1.2% with

respect to the baseline, whereas the profile based setting of the boundaries results
to an F

(E)
1 of 0.878 with a relative improvement of 15.2% and the reactive power

based method to an F
(E)
1 of 0.832 with an improvement of 9.2%.

The forward differential model seems to be beneficial only with the shortest time
window: it may be a direct consequence of the problem formulation alteration.
Indeed, the introduction of additional variables increases the size of the problem,
therefore the computational burden, for which the solver demonstrates worst
performance, as it happens for the baseline approach with larger window size.

Despite this, the improvements achieved adding the differential forward infor-
mation to the model are restricted to the application scenario: since the algorithm
operates on a per-sample basis, for each appliance behaviour two state changes
unlikely happen across three contiguous samples, thus the forward difference cannot
provide a substantial support to the inference of the actual working state.

The errors in the disaggregation phase are caused by the multiplicity of states
combinations which can correspond to the same value of the aggregated data: for
this reason the use of boundaries allows to exclude some solutions that are not
eligible, therefore facilitates the solver to find the exact solution to the problem.
Nevertheless, the variation over time of the power consumption associated to
a specific appliance working state causes an unwanted variability, i.e., a noise
component, in the achieved solution.

4.3 Exploitation of the Reactive Power

In this section, a disaggregation algorithm based on FHMMs and active and
reactive power measured at low sampling rates is proposed. The HMM models
of the appliances and the proposed solution for obtaining their parameters from a
training dataset are described. Load disaggregation is performed by proposing a
reformulated version of the Additive Factorial Approximate Maximum a Posteriori
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(AFAMAP) algorithm [21] that allows a straightforward extension to the bivariate
case. The experimental evaluation has been conducted on the Almanac of Minutely
Power dataset (AMPds) dataset [58] in noised and denoised scenarios, and the
proposed solution has been compared to AFAMAP based on the active power only
and to two variants of Hart’s algorithm [15] both based on active and reactive
power. The results show that in terms of energy based F1-Measure (F (E)

1 ) the
proposed approach provides a significant performance improvement with respect
to the comparative methods.

Apart from [20], the aforementioned approaches employ the active power as the
sole electrical parameter for NILM, despite some algorithmic frameworks have been
formulated for operating on multidimensional feature vectors [21]. The reactive
power has been employed since the very first work by Hart [15] and in more recent
works based on the same principles [90–94] or on transient-state analysis [46–
50]. However, to the best of author’s knowledge, the only work that employs both
the active and reactive power in the FHMM framework is the work by Zoha and
colleagues [20].

Following a similar philosophy, a disaggregation algorithm based on FHMMs
that uses both the active and reactive power is proposed. However, differently
from [20], where the disaggregation algorithm is based on the structural variational
approximation method and on the Viterbi algorithm, in the proposed approach
the active power is disaggregated by reformulating the AFAMAP algorithm for
the bivariate case. As demonstrated in [21], this allows the introduction of a
Differential FHMM (DFHMM) that improves the performance and reduces the
computational cost. Thus, differently from [20], here the reactive power component
is introduced also in the DFHMM. More in details, the proposed solution belongs to
the family of supervised approaches based on steady-state signals acquired from
low frequency measurements. The reactive power is introduced in the FHMM
framework by employing bivariate hidden Markov appliance models whose emitted
symbols are represented by active and reactive power pairs. Differently from
[20], the entire procedure for obtaining the bivariate HMM appliance models is
described. The parameters are estimated by clustering the appliance disaggregate
signals and the bivariate optimization problem is solved by proposing an alternative
formulation of AFAMAP [21] for disaggregating appliances consumption profiles.
The proposed approach differs from the one presented in Sect. 4.2, since there the
reactive power was employed alone in an initial disaggregation stage whose output
served as a constraint for the subsequent disaggregation of the active power only.
The proposed approach has been compared to the original AFAMAP algorithm
[21], which employs the active power only, and to Hart’s algorithm [15], which
employs both the active and reactive power. In order to deal with the occurence of
multiple appliance combination, two implementation of Hart’s algorithm have been
developed: in the first, the final combination is selected randomly. In the second, it
is selected by choosing the most probable combination calculated on a training set.
The experiments have been conducted on the Almanac of Minutely Power dataset
(AMPds) [58], containing recordings of consumption profiles belonging to a single
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home for a period of 2 years at 1 min sampling rate. Both the “noised” and the
“denoised” scenarios have been addressed, and the results show that the proposed
approach outperforms both AFAMAP and Hart’s algorithm.

Finally, in [20] the experiments are conducted on low-power appliances only in
a “denoised scenario”, while here the “noised” is also considered.

In the following, the superscript (i) denotes terms related to HMM i, while
subscripts a or r denote terms related to the active and reactive power components,
respectively. The subscript c ∈ {a, r} denotes a term related to the active or to the
reactive power component. The parameters of the problem are the following:

• N ∈ Z+ is the number of HMMs in the system;
• y(τ ) ∈ R

n is the observed aggregate output, where τ = 1, 2, . . . , ϒ is the sample
index and ϒ is the total number of samples;

• Σ1 ∈ R
n×n is the observation covariance matrix related to the AFHMM;

• Σ2 ∈ R
n×n is the observation covariance matrix related to the DFHMM;

• Δy(τ ) = y(τ ) − y(τ − 1) is the differential signal.

As aforementioned, all the contribution to the aggregated power are considered,
thus:

y(τ ) =
N∑

i=1

y(i)(τ ), (4.17)

where y(i)(τ ) corresponds to the ground truth consumption of the appliances and
the noise. Recalling the notation of Chap. 4, the parameters of the i-th HMM at the
sample index τ are:

• mi ∈ Z+ is the number of states;
• x(i)(τ ) ∈ {

S1, . . . , Smi

}
is the HMM state at time instant τ , where Smi

corresponds to the OFF state (if present);
• μ

(i)
j is the emitted symbol in the j -th state, where j = 1, 2, . . . , mi ;

• φ(i) ∈ [0, 1]mi is the initial states probability distribution;
• P (i) ∈ [0, 1]mi×mi is the state transition probability matrix.

The aggregate signal y(τ ) is analysed using non-overlapping frames of length T .
Each frame yf (τ ), where f = 1, 2, . . . , F , is defined as

yf (τ ) =
{

y(τ ) if τ = (f − 1)T + 1, . . . , f T ,

0 otherwise.
(4.18)

After the analysis of all the F = ϒ/T frames, the disaggregated signals ŷ
(i)

(τ ) are
reconstructed as follows:

ŷ
(i)

(τ ) =
F∑

f =1

ŷ
(i)
f (τ ). (4.19)
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In the following, the algorithm is formulated for a single frame of the signal and for
convenience, a new temporal variable t is defined with the relation t = τ −(f −1)T ,
for t = 1, 2, . . . , T , with T ∈ Z+.

In [21], the parameter n defines the problem dimensionality: the authors use only
the active power data to characterize the observed aggregated signal ya(t), therefore
they assumed n = 1. In this work, both the active and the reactive power are used
for disaggregation, therefore n = 2 and the problem variables are decomposed in
two components:

yf (t) =
[
ya,f (t)

yr,f (t)

]
, μ

(i)
j =

[
μ

(i)
a,j

μ
(i)
r,j

]
, (4.20)

Σ1 =
[

σ 2
a,1 σa,r,1

σr,a,1 σ 2
r,1

]
, Σ2 =

[
σ 2

a,2 σa,r,2

σr,a,2 σ 2
r,2

]
. (4.21)

Since the statistical independence between the active and reactive power compo-
nents is supposed, the covariance terms σa,r and σr,a are zero in both Σ1 and Σ2,
and the same problem formalization as the n = 1 case can be used, introducing
additional variables and constraining them each other. For the generic power
component c, the variables in the optimization problem are defined as follows:

Qc =
{
Qc(x

(i)(t)) ∈ R
mi ,Qc(x

(i)(t − 1), x(i)(t)) ∈ R
mi×mi

}
. (4.22)

In the vector Qc(x
(i)(t)), the element Qc(x

(i)(t))j indicates the state assumed
at time instant t , while in the matrix Qc(x

(i)(t − 1), x(i)(t)) the element
Qc(x

(i)(t − 1), x(i)(t))jk indicates the state transition from previous to the current
time instant.

This problem statement is a reformulated version of the algorithm proposed in
[21]: since the original algorithm allows to operate with multivariate dimension,
the variables associated to the state represent all the components. When only one
dimension is considered, the variables Qa is only associated at the active power
level consumption. This problem statement instead started from the univariate
formulation, and the algorithm is extended to n = 2 by using twice the optimization
variables, thus introducing the Qr variable set, and an additional minimization func-
tion. Moreover, the supplementary variables need to be constrained to the original
ones in order to assume the same value during the optimization process, representing
the bivariate resolution problem with a univariate problem formalization:

{
Qa(x

(i)(t))j − Qr(x
(i)(t))j = 0,

Qa(x
(i)(t − 1), x(i)(t))jk − Qr(x

(i)(t − 1), x(i)(t))jk = 0.
(4.23)

A numerically safer definition of the constraints can be defined using a tolerance α

and inequalities:
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{
−α ≤ Qa(x

(i)(t))j − Qr(x
(i)(t))j ≤ α,

−α ≤ Qa(x
(i)(t − 1), x(i)(t))jk − Qr(x

(i)(t − 1), x(i)(t))jk ≤ α,
(4.24)

where j, k = 1, . . . , mi .

Algorithm 1 The proposed disaggregation algorithm
1: Input:

• yf (t), for t = 1, 2, . . . , T ;

•
{
μ(i),P (i),φ(i)

}
, for i = 1, 2, . . . , N ;

• σ 2
c,1, σ 2

c,2;
• λ: regularisation parameter, described in [21].

2: Minimise over {Qc ∈ Lc ∩ Oc}

∑

c∈{a,r}

{
1

2σ 2
c,1

T∑

t=1

E′
c(t) + 1

2σ 2
c,2

T∑

t=2

E′′
c (t) + 1

2

T∑

t=2

E′′′
c (t)+

+
T∑

t=2

N∑

i=1

mi∑

j=1
k=1

{
Qc(x

(i)(t − 1), x(i)(t))jk

(
− log P

(i)
kj

) }
+

+
N∑

i=1

mi∑

j=1

{
Qc(x

(i)(1))j (− log φ
(i)
j )
}}

(4.25)

3: Output:

ŷ
(i)
c,f (t) =

mi∑

j=1

μ
(i)
c,jQc(x

(i)(t))j (4.26)

where i = 1, 2, . . . , N and t = 1, 2, . . . , T .

The final algorithm is shown in Algorithm 1. In Eq. (4.25), the error terms are
defined as:

E′
c(t) =

⎛

⎝yc,f (t) −
N∑

i=1

mi∑

j=1

μ
(i)
c,jQc(x

(i)(t))j

⎞

⎠
2

, (4.27)

E′′
c (t) =

N∑

i=1

mi∑

j=1
k=1
k �=j

{(
Δyc,f (t) − Δμ

(i)
c,kj

)2
Qc(x

(i)(t − 1), x(i)(t))jk

}
, (4.28)
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E′′′
c (t) = D

(
Δyc,f (t)

σc,2
, λ

)

⎛

⎜⎜⎜⎜⎝
1 −

N∑

i=1

mi∑

j=1
k=1
k �=j

Qc(x
(i)(t − 1), x(i)(t))jk

⎞

⎟⎟⎟⎟⎠
. (4.29)

The QP optimization problem is defined as follows:
Minimize

1

2
vT Hv + f T v, (4.30)

subject to the constraints:

Aeq v = beq, (4.31)

lb ≤ v ≤ ub. (4.32)

The variables of the problem are represented by the vector v = [va vr ]T whose
components are defined as follows:

vc =
⎡

⎢⎣
Θ(1)

...

Θ(T )

⎤

⎥⎦ , Θ(t) =
⎡

⎢⎣
Ψ (1)(t)

...

Ψ (N)(t)

⎤

⎥⎦ , Ψ (i)(t) =
[
ξ (i)(t)

β(i)(t)

]
, (4.33)

ξ (i)(t) =
⎡

⎢⎣
Qc(x

(i)(t))1
...

Qc(x
(i)(t))mi

⎤

⎥⎦ , β(i)(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qc(x
(i)(t − 1), x(i)(t))1 1

...

Qc(x
(i)(t − 1), x(i)(t))1 mi

...

Qc(x
(i)(t − 1), x(i)(t))mi 1

...

Qc(x
(i)(t − 1), x(i)(t))mi mi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.34)

where the variables for the state are represented in ξ (i)(t), and the variables for
the transition in β(i)(t).

The parameters of the problem, e.g., the HMMs parameters and the aggregated
power signal, comprise the elements of H and f , according to the structure of
the v vector. In a QP problem, the coefficient of the quadratic terms in the cost
function is defined in H , as a symmetric matrix. In the proposed approach, since the
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independence between the active and reactive power is assumed, there are no joint
quadratic terms, therefore H is structured as follows:

H =
[
H a 0
0 H r

]
. (4.35)

Differently, the coefficients of the linear terms are expressed in f = [f a f r ]T ,
whereas Aeq and beq are used to represent the consistent constraints between the
state and the transition variables. The vectors lb and ub define the lower and upper
boundaries of the solution: because of the nature of the variables [21], the lower
boundary is equal to 0, whereas the upper boundary to 1, for all the elements in v.

Additional constraints to QP problem need to be considered, in order to impose
the inequality constraints between the optimization variables. Duplicating the
constraints of Eq. (4.24):

{
−α ≤ Qa(x

(i)(t))j − Qr(x
(i)(t))j ,

Qa(x
(i)(t))j − Qr(x

(i)(t))j ≤ α,
(4.36)

{
−α ≤ Qa(x

(i)(t − 1), x(i)(t))jk − Qr(x
(i)(t − 1), x(i)(t))jk,

Qa(x
(i)(t − 1), x(i)(t))jk − Qr(x

(i)(t − 1), x(i)(t))jk ≤ α,
(4.37)

results in the following optimization constraint:

Aineq v ≤ bineq . (4.38)

This is needed only for the joint active–reactive problem, since, solving only for
the active power, the related unique variable is not constrained to other variables.
Indeed, in Eq. (4.25) only the active power terms need to be considered. Further
details on the terms H , f , Aeq , beq , lb, ub, Aineq and bineq are provided in 4.3.1.

As aforementioned, the aggregate signal is analysed in frames of length T . In the
first frame, the value of starting probability vector φ(i) = [0 0 · · · 0 1], i.e., the
appliance is initially assumed in the OFF state. In the subsequent frames, the value
of φ(i) depends on the last state assumed in the previous frame in order to ensure
the contiguity of the solution at the border. Thus, if the last state assumed in the
previous frame is j , the corresponding element of φ(i) is set to 1, while the others
are set to 0. This information is represented by the value of the solution ξ (i)(t) in
the last sample t = T .
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4.3.1 AFAMAP Formulation

This subsection provides further details on the algorithm formulation presented in
Sect. 4.3. In particular, the following terms of the QP problem are described: H , f ,
Aeq , beq , lb, ub, Aineq and bineq .
The matrix H is structured as follows:

H =
[
H a 0
0 H r

]
, (4.39)

where H c ∈ {H a,H r} is given by:

Hc =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
σ2
c,1

HΘ(1) . . . 0

.

.

.

.
.
.

.

.

.

0 . . . 1
σ2
c,1

HΘ(T )

⎤

⎥⎥⎥⎥⎥⎥⎦
, HΘ(t) =

⎡

⎢⎢⎢⎢⎣

H
Ψ (1 1)(t)

. . . H
Ψ (1 N)(t)

.

.

.

.
.
.

.

.

.

H
Ψ (N 1)(t)

. . . H
Ψ (N N)(t)

⎤

⎥⎥⎥⎥⎦
, (4.40)

and

H
Ψ (i j)(t)

=
[
H

ξ(i j)(t)
0

0 0

]
, H

ξ(i j)(t)
=

⎡

⎢⎢⎢⎢⎢⎣

μ
(i)
c,1 μ

(j)
c,1 . . . μ

(i)
c,1 μ

(j)
c,mj

.

.

.

.
.
.

.

.

.

μ
(i)
c,mi

μ
(j)
c,1 . . . μ

(i)
c,mi

μ
(j)
c,mj

⎤

⎥⎥⎥⎥⎥⎦
. (4.41)

Regarding the vector f , in Sect. 4.3 it has been defined as follows:

f = [
f a f r

]T
, (4.42)

where f c ∈ {f a,f r} is given by the sum of five terms:

f c = −f c,1 − 1

σ 2
c,1

f c,2 − f c,3 + 1

2

1

σ 2
c,2

f c,4 − 1

2
f c,5, (4.43)

where

f c,1 =

⎡

⎢⎢⎢⎢⎣

f 1,Θ(1)
0
.
.
.

0

⎤

⎥⎥⎥⎥⎦
, f 1,Θ(1) =

⎡

⎢⎢⎢⎢⎣

f
1,Ψ (1)(1)

.

.

.

f
1,Ψ (N)(1)

⎤

⎥⎥⎥⎥⎦
, f

1,Ψ (i)(1)
=
[
f

1,ξ(i)(1)
0

]
, f

1,ξ(i)(1)
=

⎡

⎢⎢⎢⎢⎣

log φ
(i)
1

.

.

.

log φ
(i)
mi

⎤

⎥⎥⎥⎥⎦
, (4.44)

f c,2 =

⎡

⎢⎢⎢⎣

f 2,Θ(1)

.

.

.

f 2,Θ(T )

⎤

⎥⎥⎥⎦ , f 2,Θ(t) =

⎡

⎢⎢⎢⎢⎣

f
2,Ψ (1)(t)

.

.

.

f
2,Ψ (N)(t)

⎤

⎥⎥⎥⎥⎦
, f

2,Ψ (i)(t)
=
[
f

2,ξ(i)(t)
0

]
, f

2,ξ(i)(t)
=

⎡

⎢⎢⎢⎢⎣

yc,f (t) μ
(i)
c,1

.

.

.

yc,f (t) μ
(i)
c,mi

⎤

⎥⎥⎥⎥⎦
, (4.45)
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f c,3 =

⎡

⎢⎢⎢⎢⎣

0
f 3,Θ(2)

.

.

.

f 3,Θ(T )

⎤

⎥⎥⎥⎥⎦
, f 3,Θ(t) =

⎡

⎢⎢⎢⎢⎣

f
3,Ψ (1)(t)

.

.

.

f
3,Ψ (N)(t)

⎤

⎥⎥⎥⎥⎦
, f

3,Ψ (i)(t)
=
[

0
f

3,β(i)(t)

]
, f

3,β(i)(t)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

log P
(i)
1 1

.

.

.

log P
(i)
mi 1

.

.

.

log P
(i)
1 mi
.
.
.

log P
(i)
mi mi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.46)

f c,4 =

⎡

⎢⎢⎢⎢⎣

0
f 4,Θ(2)

.

.

.

f 4,Θ(T )

⎤

⎥⎥⎥⎥⎦
, f 4,Θ(t) =

⎡

⎢⎢⎢⎢⎣

f
4,Ψ (1)(t)

.

.

.

f
4,Ψ (N)(t)

⎤

⎥⎥⎥⎥⎦
, f

4,Ψ (i)(t)
=
[

0
f

4,β(i)(t)

]
, (4.47)

f
4,β(i)(t)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k
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.
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(i)
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.

k
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1 mi
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.48)

k(i)(t) =

⎡

⎢⎢⎢⎢⎢⎣

0 . . .
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Δyc,f (t) −

(
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(i)
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))2
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.

.

.
.
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.
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.
(
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(i)
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))2
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⎤

⎥⎥⎥⎥⎥⎦
(4.49)

f c,5 =

⎡

⎢⎢⎢⎢⎣

0
f 5,Θ(2)
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.

.

f 5,Θ(T )

⎤
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⎤

⎥⎥⎥⎥⎦
, f
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=
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0
f

5,β(i)(t)

]
, (4.50)

f
5,β(i)(t)

=
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, (4.51)

where:

D(y, λ) = min

{
1

2
y2, max

{
λ|y| − λ2

2
,
λ2

2

}}
. (4.52)
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The matrix Aeq is defined as follows:

Aeq =
[
Aeq,a 0

0 Aeq,r

]
, Aeq,c =

⎡

⎢⎢⎢⎣

Aeq,Θ(1) · · · 0

.

.

.

.
.
.

.

.

.
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⎥⎥⎥⎦ , (4.53)

Aeq,Θ(t) =

⎡
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A
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A
eq,β

(i)
1b

(t)
=

⎡

⎢⎢⎣

−1 · · · 0 0 · · · 0

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

0 · · · −1 0 · · · 0

⎤

⎥⎥⎦ , A
eq,β

(i)
1f

(t)
=

⎡

⎢⎢⎣

0 · · · 0 0 · · · 0

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

0 · · · 0 0 · · · 0

⎤

⎥⎥⎦ (4.56)

A
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A
eq,β

(i)
2f

(t)
=

⎡

⎢⎢⎣

−1 · · · 0 1 · · · 0 · · · 1 · · · 0

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

0 · · · −1 0 · · · 1 · · · 0 · · · 1

⎤

⎥⎥⎦ , (4.59)

The vector beq has the following form:

beq = [
beq,a beq,r

]T
, (4.60)

beq,c =

⎡
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b
eq,ξ(i)(t)

= [
1
]
, b
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=
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⎤

⎥⎥⎦ , (4.62)

lb =
⎡

⎢⎣
0
...

0

⎤

⎥⎦ , ub =
⎡

⎢⎣
1
...

1

⎤

⎥⎦ (4.63)
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The matrix Aineq is given by:

Aineq =

⎡

⎢⎢⎢⎣

Aineq,Θ(1)

.

.

.
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A
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, (4.64)

A
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]
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(4.65)
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(4.66)

Finally, the vector bineq is given by:

bineq =
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α
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α

⎤

⎥⎥⎦ (4.67)

As described in Sect. 4.3, the dimensionality of the variables vector and, accord-
ingly, of each elements of the QP problem is defined as follows:

• vc: l-dimensional vector;
• H c: [l × l] symmetric matrix;
• f c: l-dimensional vector;
• Aeq,c: [m × l] matrix;
• beq,c: m-dimensional vector;
• lb,ub: 2 l -dimensional vector;
• Aineq : [2 l × 2 l] matrix;
• bineq : 2 l-dimensional vector;

where l = T ·∑N
i=1(mi + m2

i ) and m = T ·∑N
i=1(1 + 2mi).

4.3.2 Experimental Setup

The proposed approach has been compared with the algorithm presented by Hart in
[15], since it employs both the active and the reactive power to model the appliance
working behaviour and it employs those electrical parameters for disaggregation.
This section provides an overview of its basic operating principles as well as
additional details on its implementation. In addition, the algorithm originally
presented in [15] has been improved for handling the occurrence of multiple
solutions by means of a MAP technique.
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Hart’s algorithm models each appliance as a Finite State Machine (FSM). Each
FSM is represented by the following parameters:

• the number of states m ∈ Z+;
• the finite states x ∈ {S1, S2, . . . , Sm};
• the symbols emitted μj ∈ R

n, where j = 1, . . . , m;
• state transition matrix T ∈ {0, 1}m×m.

As in the proposed approach, each state of the FSM corresponds to a working state
of the appliance and n = 2, i.e., the symbol emitted in the j -th state is defined
as μj = [μa,j μr,j ]T . A tolerance parameter βj = [βa,j βr,j ]T is associated to
the emitted symbol in the j -th state, in order to define the effectiveness interval for
the emitted symbol. The interval width is 2 βj and it is centred in μj . For each
appliance, the quantities to be estimated are the number of states m, the values of
μj and βj for each state and the state transition matrix T .

In order to model the power consumption of an appliance as a stochastic
process, under the assumption of multiple independent causes to the circuital
power dissipation, the central limit theorem might be invoked. Therefore, the power
consumption y(i)(t) of the i-th appliance at time instant t , related to the working
state x(i)(t), can be modelled as a bivariate Gaussian variable, described by a mean
vector μx(i)(t) and a covariance matrix Σx(i)(t):

y(i)(t)|x(i)(t) ∼ N (
μx(i)(t),Σx(i)(t)

)
. (4.68)

Following this approach, the consumption signal is replaced by a simplified model
that represents a constant power consumption, corresponding to the mean value of
the working state power value, with a superimposed noisy contribution, described
by the variance value in the working state. Under the assumption of statistical
independence between the active and reactive power components, the covariance
matrix Σx(i)(t) is diagonal:

Σx(i)(t) =
[
σ 2

a,x(i)(t)
0

0 σ 2
r,x(i)(t)

]
, (4.69)

where σ 2
a,x(i)(t)

and σ 2
r,x(i)(t)

represent, respectively, the variance of the active and
reactive power in the cluster. The inference procedure is carried out independently
for the two components. Therefore, at each state,

y(i)
c (t)|x(i)(t) ∼ N

(
μc,x(i)(t), σ

2
c,x(i)(t)

)
. (4.70)

The number of states mi is defined in the clustering phase, described in Sect. 4.1.1,
assuming that each cluster corresponds to a state in the FSM model: the estimation
of the mean and the variance values for each component is performed with
the Maximum Likelihood criterion on the clusters data. Each component of the
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Fig. 4.14 Block diagram of the clustering and of the model training stages of Hart’s algorithm

tolerance parameter βc,j , associated to the respective component of the emitted
symbol μc,j , is set equal to the standard deviation σc,j of the Gaussian distribution.

Regarding the state transition matrix T , each entry Tij represents the admissibil-
ity of the transition from state i to state j , using the value Tij = 1 if the transition
is allowed and Tij = 0 otherwise. This value is inferred from the ground truth state
evolution of each appliance consumption. Since this model does not represent the
evolution in time of a signal, the permanence in the state is not represented, therefore
the variable Tii is set to 1. The diagram of the clustering and of the model training
stage is shown in Fig. 4.14.

Since the aggregated data yc(t) is assumed to correspond with the sum of
the power consumption of each appliance, it can be modelled as a Gaussian
variable, described by a mean value and a variance value equivalent to the sum
of the corresponding values of each appliance, under the assumption of statistical
independence among the appliances:

yc(t)|x(1:N)(t) ∼ N
(

N∑

i=1

μc,x(i)(t),

N∑

i=1

σ 2
c,x(i)(t)

)
. (4.71)

This variable represents the Probability Density Function (PDF) of the working
states combinations and it allows to evaluate which combination of working states
fits the power value for each sample of the aggregated data. The number of
admissible combinations of working states is equal to

∏N
i=1 mi .

Following the same rule defined for each appliance symbol, the effectiveness
interval for each combination is centred in mean value, and its width is twice the
value of the standard deviation. For some combinations, which have similar mean
value or great variance, the effectiveness intervals are overlapped: for those cases, if
the power value falls in this region, both the combinations are considered valid.

The aggregate power data is analysed sample by sample: for each value,
the effectiveness intervals in which the sample falls are selected. The related
state combination might be admissible or not, depending on the previous state
combination selected. Therefore, for each FSM, from the knowledge of the previous
state selected, the admissible transition is evaluated through the transition matrix
Tij : the FSMs which do not make any variation in the state from the previous
combination are not evaluated, then if the transition is not admissible for at least one
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FSM, the selected combination is discarded. The starting combination is evaluated
on the first sample, without the evaluation on the transition from any previous state.
If no combination is admissible, the previous state is maintained for each FSM. If the
aggregated data sample does not fall within any combination interval, the previous
state is maintained for each FSM.

In this way, the time series of the state evolution is reconstructed for each FSM.
The disaggregation consists in using the related power level consumption assigned
to each state of the FSM, thus reconstructing the power consumption profile for each
appliance. The general scheme of the disaggregation phase is shown in Fig. 4.15.

In order to deal with the noise presence in the aggregated data, an FSM version of
the noise model defined in Sect. 4.1.2 is considered, additionally to the FSM models
representing the appliances.

In order to make a fair comparison of algorithms, representing an appliance, both
kinds of model have the same number of states, values of power consumption and
standard deviation of the gaussian variable. The values are resumed in Table 4.3.

In [15], the author did not describe the technique adopted for dealing with the
occurrence of multiple solutions during the disaggregation phase. Two different
approaches for dealing with the problem are adopted. The first consists in supposing

Fig. 4.15 Diagram of the
load disaggregation phase

Appliance 1

FSM

...

Windowing

Handle multiple
solutions

Verify the validity 
of each combination

Determine
state combinations

...

Table 4.3 Number of states mi related to each class of appliance

Problem Washing Electric Heat
dimensionality Dryer machine Dishwasher Fridge oven pump

Univariate 3 4 3 2 3 3

Bivariate 3 5 4 2 4 3
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...
HMM

...

...

Fig. 4.16 Diagram of the load disaggregation phase

that each combination of appliances is equally probable, thus the ambiguity is
solved by choosing a random combination sampled from a uniform distribution.
This algorithm will be denoted as “Hart” in the remainder of this book.

The second approach consists in adopting a MAP technique [58]: the posterior
probability of each combination is calculated from the training data, and it is
multiplied to the Gaussian PDF, resulting in the posterior PDF. The value of the
posterior PDF in the aggregate data sample is denoted as the posterior likelihood.
The combination with the higher posterior likelihood value is then chosen as the
most probable combination. This alternative of Hart’s algorithm will be denoted as
“Hart w/ MAP” in the remainder of this book.

The general scheme of the disaggregation phase is shown in Fig. 4.16. The
algorithm is based on the work proposed by Kolter and Jaakkola [21], where the
problem is modelled in the Additive Factorial Hidden Markov Model (AFHMM)
framework.

Basically, this consists in modelling the value of each aggregated power sample
as a combination of working states of the appliances. In [21], an assumption is
made that at most one HMM changes its state at any given time, which holds true
if the sampling time is reasonably short. In this case, a transition on the aggregate
power, when moving from a sample to the next, corresponds to a state change of
a particular HMM. As a consequence, a differential signal can be modelled as the
result of a Differential Factorial Hidden Markov Model (DFHMM), which relies
on the same HMM models comprising the AFHMM. The DFHMM models the
observation output as the difference between the states combination of the HMMs
in two consecutive time instants. By combining the additive and differential models,
the inference on the set of states of multiple HMMs can be computed through the
Maximum A Posteriori (MAP) algorithm, which takes the form of a Mixed Integer
Quadratic Programming (MIQP) optimization problem. One of the shortcomings of
this approach is the non-convex nature of the problem, due to the integer nature of
the variables: therefore, a relaxation towards real values is taken into account, which
allows the solution to assume any value in the range [0, 1], instead of the binary
solution, leading to a convex Quadratic Programming (QP) optimization problem.
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In a real case scenario, the modelled output may not match with the observed
aggregated signal, due to electrical noises, very small loads or leakages. In that
case, the issue is addressed by defining a robust mixture component both in the
AFHMM and in the DFHMM. This component is missing in this book, since all the
contributions to the aggregated power are modelled. Indeed, each appliance and the
noise is represented by its HMM.

The dataset used for the experiments is the Almanac of Minutely Power dataset
(AMPds) [58]: it contains recordings of consumption profiles belonging to a single
home in Canada for a period of 2 years, at 1 min sampling rate. Additionally to the
aggregated power consumption, it provides active and reactive power at appliance
level, unlike most of the dataset, in which the appliances consumption is described
by the only active power, as showed in Sect. 2.3: this information is crucial in order
to create the appliance models and test the new approach.

The experiments are conducted by using the six appliances which contribute
the most to the power consumption: dryer, washing machine, dishwasher, fridge,
electric oven and heat pump. Regarding the significance of the reactive components
of the appliances taken into consideration, the following values have been extracted
from the datasets: (128.25 W, 7.96 VAR) for the fridge, (4545.91 W, 413.75 VAR)
and (248.11 W, 408.94 VAR) for the dryer, (909.11 W, 203.44 VAR), (531.10 W,
14.37 VAR),(146.80 W, 3.60 VAR) and (137.54 W, 96.47 VAR) for the washing
machine, (753.07 W, 33.31 VAR), (137.96 W, 35.86 VAR) and (14.42 W, 52.55
VAR) for the dishwasher, (3187.67 W, 136.63 VAR),(125.68 W, 121.67 VAR) and
(89.54 W, 50.62 VAR) for the electric oven, (1798.83 W, 320.95 VAR) and (37.23 W,
17.03 VAR) for the heat pump. As shown by these values, the appliances evaluated
in the experiments have a significant contribution of reactive power that make them
suitable for evaluating the performance of the proposed approach. Analysing the
contents of the dataset, the usage of the appliances proves to be homogeneous
throughout the entire period, therefore the experiments are evaluated on 6 months
of data, which can be considered a representative of the entire dataset. A subset
of the data, spanning over 14 days, has been considered sufficient to collect all
the signatures required to train all the HMMs. This represents the training set in
Fig. 4.5b.

Two different scenario are defined in this work, according to [87]. The noised
scenario employs the aggregated power consumption in the dataset as the aggregated
signal, therefore it includes the noise term. In this case, the training data used
to create the noise model are obtained subtracting the ground truth consumption
signals, related to the appliances of interest, from the aggregated power, whereas in
the denoised scenario the aggregated data are synthetically composed by summing
the ground truth appliance power signals in the dataset, determining the absence of
the noise term.

The proposed approach and Hart’s algorithm are able to disaggregate both the
active and the reactive power, however the performance metrics has been calculated
on the active power only in order to compare it with the univariate formulation of
AFAMAP. Furthermore, the active power is the physical quantity directly related to
the cost in the bill, therefore it is the most relevant component to be analysed.
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The frame size is set to T = 60 min, which is an interval sufficiently large to
include a complete activation for the most of appliances under study. This value is
considered within the windowing operation in Fig. 4.16, where the f -th frame is
considered in the disaggregation. For the ones which have a longer activation, this
value allows to include a complete operating subcycle, for which the HMM is still
representative. The variance parameters are set to σ 2

c,1 = σ 2
c,2 = 0.01 according

to the variance of the experimental data, and the regularization parameter is set to
λ = 1.

The algorithm has been implemented in Matlab and the CPLEX1 solver has
been used to solve the QP problem. The amount of time required to disaggregate
a frame of 60 min on a personal computer equipped with an Intel i7 CPU running
at 3.3 GHz and 32 GB of RAM is about 30 s. The performance is compared to the
univariate formulation of AFAMAP and to Hart’s algorithm presented in Sect. 4.3.2.
The tolerance parameter is set α = 10−6.

Table 4.3 presents the number of states, defined a-priori for each class of
appliance. For appliances with similar consumption value in active power, different
values of reactive power are associated: this phenomenon allows to reduce the
number of state combination in the aggregate power, when passing from the
univariate to the bivariate approach, improving the disaggregation performance.

The number of states in the noise model has been varied in the range {4, 6, 8, 10},
both in the univariate and bivariate approaches, in order to find the most performing
model.

4.3.3 Results

In this section, the results of the experiments related to the denoised scenario will
be shown. Since the aggregated power signal depends on which and how many
appliances are considered, the experiments have been conducted by varying the
number of appliances, in order to evaluate the disaggregation performance for
different problem complexities. In particular, different test sets, each composed
of every combination of N appliances have been created. For each test set, the
total number of experiments is

( 6
N

)
, with N = 2, . . . , 5 and the final metrics are

calculated averaging between the single experiments overall performance. Before
calculating the final energy based F1-Measure (F (E)

1 ), the Precision (P (E)) and
Recall (R(E)) are averaged between the experiments. Differently, the final NDE

is the average between the single experiment value.
In Fig. 4.17, the disaggregated appliances active power (D) are compared to the

corresponding ground truth (GT): in the figure, for each appliance, an adequate
time span is considered, in order to evaluate the performance on a single or
multiple activations. The bottom of the figure shows the comparison of the appliance

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Fig. 4.17 Algorithms comparison: AFAMAP vs Hart vs proposed approach. For each algorithm,
the disaggregation output (D) is compared against the ground truth (GT) signals

contribution to the total energy in the aggregated signal, between the disaggregation
outputs and the ground truth consumptions. The left side of the figure shows the
disaggregation profiles resulting from the univariate formulation of the AFAMAP
algorithm, the central shows the active power component resulting from the Hart’s
algorithm, and the right side shows profiles related to the proposed approach
(Table 4.4).

The overall disaggregation results are reported in Fig. 4.18, where the F
(E)
1

is reported in Fig. 4.18a and the NDE in Fig. 4.18b. The values are related to
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Fig. 4.17 (continued)

Table 4.5, where the absolute improvements of the proposed approach with respect
to the AFAMAP and the Hart’s algorithm are shown. The proposed approach
reaches the best performance in each case study, with F

(E)
1 of 87.0 and NDE equal

to 0.209 in the 2 appliances case, and with F
(E)
1 of 69.4 and NDE equal to 0.347 in

the 6 appliances case, The proposed approach reaches the best performance in each
case study, with F

(E)
1 of 87.0 and NDE equal to 0.209 in the 2 appliances case, and

with F
(E)
1 of 69.4 and NDE equal to 0.347 in the 6 appliances case.
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Fig. 4.17 (continued)

The radar chart in Fig. 4.19 shows the F
(E)
1 for each appliance. It refers to

the experiment including all the 6 appliances, where the area of each coloured
line is proportional to the F

(E)
1 of the related algorithm, averaged across the

appliances. The values are related to Table 4.4, where the absolute improvements
of the proposed approach with respect to the AFAMAP and the Hart’s algorithm are
shown.

As shown in the plots, the appliances presenting a high steady power consump-
tion are easily recognized, whereas the appliances with complex working cycles, or
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Fig. 4.18 Disaggregation performance on AMPds dataset for all the addressed algorithms. (a)
Comparison of the disaggregation performance in terms of F

(E)
1 for different number of appliances.

(b) Comparison of the disaggregation performance in terms of NDE for different number of
appliances

with several power levels, are more difficult to detect. For instance, the dryer, the
electric oven and the heat pump are successfully reconstructed, whereas the washing
machine, the dishwasher and the fridge are partially erroneously reconstructed.
Indeed, in the univariate formulation, whenever several appliances present similar
consumption levels, many combinations may satisfy the problem constraints and the
algorithm chooses an erroneous solution for disaggregation. Comparing the results
with the proposed bivariate approach, the multiple combinations of the solution are
reduced due to the component constraint to be satisfied by the algorithm, which
leads to the correct solution and, consequently, to a better profile disaggregation
of the active power component. For instance, although the appliances with higher
power level maintain a successful disaggregation, the fridge and the dishwasher
improve the correspondence with the ground truth signals. The washing machine
partially improves the disaggregation performance in the activation period, whereas
introduces some false energy assignation. The disaggregated profiles of Hart’s
method show that, for some appliances, the FSM is a modelling technique which
allows a better representation for the appliances with sharply defined steady states,
e.g., the fridge and the heat pump, but a worse representation for appliances with
highly variable activity, e.g., the electric oven.

The more confident are the disaggregated profiles with respect to the ground
truth signal, the better is the estimation of the energy consumption percentage dis-
tribution among the appliances: indeed, for the proposed approach, the consumption
distribution has a better correspondence with the ground truth ones, with respect
to the AFAMAP algorithm. For instance, the disaggregated profiles related to the
fridge results to be more confident, which reflects on the increase of the energy
assignation, whereas the dishwasher and the electric oven ones results to have a
false energy assignation during the OFF period, corresponding to a decrease of
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Fig. 4.19 Performance in terms of F
(E)
1 (%) for the different appliances in the “6 appliances” case

study: (a) denoised scenario, (b) noised scenario

the related energy contributions. Regarding the washing machine, some errors are
introduced, therefore the energy assignation is erroneously increased. Regarding
the dryer and the heat pump the energy contributions are maintained, because of the
correspondence between the algorithms disaggregation performance. In the Hart’s
method, the improvements in the heat pump and the fridge are reflected on a better
correspondence between the energy contributions, but the absence of the constraint
between the aggregate power amount and the sum of the disaggregated profiles leads
to an unassigned percentage of the total energy (represented as the grey portion).

Regarding the performance of the individual appliances, the major improvements
with respect to AFAMAP are observed in the electric oven, the fridge and the
dishwasher, with a relative increase of the F

(E)
1 of +88.2%, +65.9% and +28.6%,

and a variation in the NDE of −0.192, −0.143, −0.239, respectively. This is due to
a more accurate correspondence between the disaggregated output and the ground
truth, as already shown in the disaggregation output plots. On the contrary, the
performance is almost unchanged for the washing machine, the dryer and the heat
pump. With respect to the Hart’s algorithm, the proposed approach shows a high
improvement additionally for the dryer, with an absolute increase of F

(E)
1 equal

+64.3% and a variation in the NDE of −0.569, whereas it shows a substantial loss
for the fridge, with a decrease of F

(E)
1 equal −22.9% and a variation in the NDE

of +0.065. This demonstrates that the HMM modelling results more effective with
a higher number of states. Since moving from the univariate to the bivariate model
leads to a greater number of states, this also demonstrates the effectiveness of the
proposed approach. Compared to the Hart’s algorithm with the MAP stage, the
performance on each appliance reduces their gain, particularly for the dishwasher
and the dryer, with a decrease of F

(E)
1 equal to −0.7% and an increase of +3.9%

and a variation in the NDE of −0.322 and −0.252 up to the heat pump, where a
loss of performance is shown, with an absolute increase in the F

(E)
1 of −15.8% and

a variation in the NDE of −0.034. The washing machine remains the appliance
with the worst disaggregation performance: the reason is the model complexity,
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since it is the appliance with the highest number of states, both in the univariate
and bivariate representation. Observing the radar chart, the area under the curve
related to the proposed approach is increased with respect to AFAMAP and Hart’s
algorithm, resulting in an average performance improvement, whereas it is slightly
higher with respect to the Hart’s algorithm version with the MAP stage. The average
performance of the system increases, resulting in a relative improvement of F

(E)
1

equal to +14.9%, +21.8% and +2.5%, and a variation in the NDE of −0.024,
−0.552, −0.194 with respect to AFAMAP, the Hart’s algorithm and the version
with MAP stage, respectively.

Concerning with the experiments for different number of appliances, the results
show that, lowering the number of appliances, the performance improves in the
FHMM-based algorithms, while in the Hart’s algorithm it reaches a peak with 4
appliances, after that the performance decreases. Regarding the Hart’s algorithm
version with the MAP stage, the performance decreases gradually with a lower
number of appliance.

Compared to AFAMAP and to Hart’s algorithm, the proposed approach provides
a significant performance improvement also when the problem complexity is
minimal, i.e., when the number of appliances is 2. The higher absolute increase from
AFAMAP occurs with 6 appliances, whereas it decreases lowering the complexity
of the problem: this demonstrates that the proposed approach resolves more
ambiguities in the NILM solution when the number of combinations of working
states is higher.

Regardless of the number of appliances, the performance of Hart’s algorithm
is lower compared to the proposed approach, because of the less descriptive
capabilities of the FSM appliance model with respect to the HMM one. The
comparative evaluation with the Hart’s version with the MAP stage proves that,
even if this approach exploits the information on the most probable solution in case
of ambiguity, which is an ideal condition, the proposed approach reaches better
performance. Furthermore, the proposed algorithm provides an optimum solution
on a frame of T samples, which takes into account both the short-term and long-
term dependencies of the signal. This differs in Hart’s algorithm that finds the
solution by processing the aggregate signal sample-by-sample. For this method,
the performance decreases reducing the number of the appliances: a motivation
behind this phenomenon can reside in the fact that the MAP stage of the Hart’s
algorithm chooses a solution with higher probability, but which results incorrect for
the majority of the experiments, specially with few combinations.

In this section, the results of the experiments related to the noised scenario will
be shown. Differently from the denoised scenario, the aggregated power signal
does not vary with the appliances considered, therefore only the results with all
the appliances will be shown. Regarding the number of states of the noise model,
the experiments demonstrated that, for each approach, the best value is 4, except for
the Hart’s algorithm with the MAP stage, for which the best results are reached with
10 states. For the sake of conciseness, only the results for the best configuration will
be reported in this section.
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The overall disaggregation results are reported in Fig. 4.18, on the last column,
in order to make a comparative evaluation with the denoised scenario. The values
are related to Table 4.6 on the Overall column, where the absolute improvements of
the proposed approach with respect to the AFAMAP and the Hart’s algorithm are
shown. The proposed approach reaches the best overall performances, with F

(E)
1

of 54.1 and NDE equal to 0.504, despite the Hart’s algorithm version with the
MAP stage showing a higher NDE value. This discordance will be motivated in
the analysis. The radar chart in Fig. 4.19b shows the F

(E)
1 for each appliance. The

values are related to Table 4.6.
Differently from the denoised scenario, the major improvement, with respect to

AFAMAP, is observed for the dryer, with an F
(E)
1 relative improvement of +35.9%,

and a variation in the NDE of −0.033, whereas the improvements are reduced for
the remaining appliances. This proves the effectiveness of the transition from the
univariate to the bivariate formulation of the problem, even in the presence of noise.

With respect to Hart’s algorithm, the proposed approach shows a higher improve-
ment for the dryer, the dishwasher and the heat pump with an improvement of
+131.7%, +228.2%, +71.7%, and a variation in the NDE of −0.610, −0.884,
−0.462. Differently, Hart’s algorithm with the MAP stage achieves a higher F

(E)
1 ,

and the relative difference of F
(E)
1 for the heat pump, the electric oven and the dryer

is −19.4%, −12.2%, −6.8%, while in terms of NDE the difference is +0.036,
−0.044, +0.019. This demonstrates that the HMM modelling leads to performance
improvements with respect to the FSM modelling even in the presence of noise, but
considering the MAP stage this improvement is substantially reduced. The washing
machine is still the appliance with the worst disaggregation performance, following
the trend of the denoised scenario. Observing the radar chart, the area under the
curve related to the proposed approach is increased with respect to AFAMAP and
Hart’s algorithm, resulting in an average performance improvement, whereas it is
comparable with respect to the Hart’s algorithm version with the MAP stage, due to
unbalancing between the appliances.

The average performance of the system increases, resulting in an F
(E)
1 absolute

improvement of +25.5%, +51.1% and +6.7%, and a variation in the NDE of
−0.155, −0.533, +0.040 with respect to AFAMAP, the Hart’s algorithm and the
version with MAP stage, respectively.

Comparing those results to the denoised scenario ones, the overall performance
is lower, due to the introduction of the noise contribution in the aggregated power,
except for the Hart’s algorithm with the MAP stage: despite the F

(E)
1 showing a

degradation of performance, the NDE decreases, meaning that this version of the
algorithm maintains the trend showed with the increase of the number of appliances.
In fact, the noised scenario can be defined as the denoised scenario using the noise
model additionally to the appliances models, therefore the MAP stage introduces
additional advantages, leading to a performance improvement. The MAP stage
exploits additional information which are not introduced within the AFHMM, but
represents an almost ideal FSM based case study.
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4.4 Footprint Extraction Procedure

Among different NILM approaches, the supervised ones reach better performance
[52, 55], that is, the resulting disaggregated signals have a better correspondence
with the true appliance energy consumption. Therefore, those methods results to be
more reliable for the final user.

The supervised section in the NILM algorithms corresponds to the appliance
modelling stage, as showed in Fig. 4.20b, where the training phase is carried out. A
model is created starting from the appliance level consumption (e.g., training set),
in order to represent each appliance in a parametric way, and its parameters are used
in the NILM algorithm in order to disaggregate the portion of the aggregated power
consumption related to each appliance, as represented in Fig. 4.20c.

Fig. 4.20 The supervised
NILM chain. (a) The
footprint extraction stage. (b)
The appliance modelling
stage. (c) The disaggregation
algorithm stage Aggregate

Footprint
extraction

Appliance 1

Appliance N

Training sets

(a)

Appliances
modelling

Appliance 1

Training sets Models

Appliance 1

Appliance NAppliance N

(b)

NILM
algorithm

Aggregate

Models

Appliance 1

Appliance N

Appliance 1

Appliance N

Disaggregated

(c)
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The power consumption profile of an appliance can be depicted as the repeating
of a working cycle, alternated by time intervals when the appliance is turned off.
The repetition rate, related to the length of the off-intervals, depends on the user
consumption habit.

Therefore, in order to analyze the consumption features of an appliance, it is
sufficient to extract the working cycle in the appliance level consumption, defined
as the footprint, and to exploit it as training set in the appliance modelling stage.

This stage of the supervised NILM chain is named footprint extraction, as
showed in Fig. 4.20a.

In literature, different approaches have been proposed to extract the appliance
working cycle features from the aggregated data. An unsupervised method, based
on spectral clustering, is proposed in [21]: the most different activation occurrences,
which can be denoted in the aggregated power, are saved; then, they are grouped
between the most similar, using the clustering technique. A bayesian approach is
used in [18, 19]: a generic bayesian model for the appliance category is defined;
then, it is fitted on the activation within the aggregated power, using a threshold
schema on the likelihood function. Most of those approaches have limitations,
concerning the aggregated power, where the appliance activation can be overlapped
and it can cause trouble in the extraction phase.

To overcome this, in a real scenario, the user interaction with the system can be
considered, in order to improve the reliability of the footprint extraction: in those
cases, the user needs a facilitated procedure to determinate the appliance activation
instant and an easy way to interact with the energy monitoring system. Therefore,
in this work a user-aided footprint extraction procedure is proposed.

The easiest way to extract the footprint from the aggregated power is to use
the appliance alone, turning off all the other devices in the electrical network, as
described in [15]. This approach results to be the more reliable for the user, thus it
is adopted in the presented work.

The appliance modelling stage employs the footprint, in order to represent the
appliance consumption behaviour: despite several works dealing with model for the
classification, such as SVM, k-NN [36] or deep neural networks [31], the hidden
Markov Model (HMM) is a widespread modelling technique [17, 22, 28], since it is
able to represent the behaviour of the appliance in working states and to regulate the
transition with a probability value. This representation is close to the real appliance
mode of operation, where each working state corresponds to a power consumption
value.

In this work, the disaggregation algorithm is based on HMM, in particular the
AFAMAP (Additive Factorial Approximate Maximum a Posteriori) algorithm [21]
is used.

The unavailability of the appliance level consumption, for extracting the foot-
print, represents one of the main issues in the NILM supervised approach. In
real scenarios, only the aggregated power consumption is available to the user.
Therefore, the footprint extraction stage aims to extract the appliance footprint from
the aggregated power: this work aims to investigate the performance of a footprint
extraction procedure based on the HMM and AFAMAP algorithm.
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Fig. 4.21 Alike and different footprints for the same appliance, in ECO. (a) Dryer, household 1.
(b) Dishwasher, household 2

A working cycle of an appliance is the interval between the power on and the
power off by the user. In this time interval, the appliance power consumption signal
is defined as footprint. Some examples of footprint taken from the ECO dataset [57]
are shown in Fig. 4.21, that reports the power consumption traces recorded from the
appliances located inside different Swiss households.

The usage of an appliance differs every time, especially in the case of equipments
with different usage modes: e.g., the operating cycles of a washing machine can
be set in a different way each time, or the operation of the dishwasher may vary
according to the selected rinsing cycle. The different usage mode of the same
appliance reflects on different footprint, as shown in Fig. 4.21b: the power levels
in the two footprint of the dishwasher are the same, but they appear in different
orders, which demonstrate that the working state comprising the appliance working
cycle is unique, but they are employed in different orders, based on the user habits.
Therefore, it is necessary to record different occurrence of the appliance footprint,
in order to explore the different user habits in the appliance usage.

On the other hand, this aspect is not significant for appliances with easier working
principle and a less complex circuit composition. In this case, the usage pattern of
the appliance cannot be different in times, thus the footprint appears to be similar in
each occurrence, as shown in Fig. 4.21a: the footprint of the dryer follows the same



84 4 HMM Based Approach

trend in time, which demonstrates the unique working cycle of the appliance and
the unique way of usage by the user.

The footprint extraction is a necessary step in supervised NILM algorithms. In
this context, the user exploits the aggregated power sensing system. An easy method
to record the appliance footprint is to switch off all the appliances in the household
and to turn on only the appliance of interest [15]. In this way, the aggregated power
consumption corresponds to the appliance one.

The appliance switch on and off are detected by using a threshold schema on
the active power consumption: when the value exceeds a threshold, the current is
flowing in the circuit and the appliance is turned on, whereas when the value is
below, the appliance is turned off. A threshold equal to the value of 50 W is a good
choice for most datasets, nevertheless this value depends on the type of appliance
and the activation power consumption. The samples between those two events are
saved as the power consumption data related to the footprint. Multiple usages of the
same appliance define different occurrences of the footprint.

In a household not all appliances can be turned off, e.g., the fridge and the
freezer have to be continuously powered in order to maintain the food inside in
safe condition. As shown in Fig. 4.22a, b, their power consumption is continuous in
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Fig. 4.22 Power consumption of continuously turned on appliances, in ECO. (a) Fridge, house-
hold 1. (b) Freezer, household 1. (c) Fridge-freezer combination, household 1
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time, with a periodic working cycle. In this scenario, the aggregated consumption
presents a continuous component, resulting from the sum of the fridge and
freezer consumption, as shown in Fig. 4.22c. This signal can be modelled as the
consumption of a unique model, representing the combination fridge-freezer as a
composed appliance.

The presence of this component in the aggregated power does not allow to
acquire a clean footprint of the appliance of interest, since all the appliances power
signals are summed up on the aggregated power. Therefore, the footprint results to
be corrupted and a procedure to clean it is needed.

In order to clean a corrupted footprint, a procedure to separate the fridge-freezer
consumption from the appliance footprint one is needed.

The fridge-freezer contribution can be recorded on the aggregated power turning
off all the other appliances in the household: in this way, the characterization of the
fridge-freezer combination is not afflicted by noise or other appliances consumption,
thus the extracted model results to be highly reliable and accurate.

The steps to be followed are the following:

1. the consumption of the fridge-freezer combination is recorded, in an adequate
span of time to collect enough data for the modelling;

2. a corrupted version of the appliance of interest footprint is acquired;
3. the extraction procedure is applied to the recorded footprint, using the a priori

knowledge of the fridge-freezer model and a generic model of the appliance.

The process of signal separation can be interpreted as a disaggregation problem
with 2 sources: therefore, the same NILM algorithm, which is executed after the
footprint extraction and the appliance modelling step, can be exploited for the
footprint extraction step as well. In order to obtain the disaggregated traces, the
NILM algorithm requires both the model of the fridge-freezer combination and of
the appliance of interest. The first one is available, whereas the appliance model is
not available, because the footprint extraction step precedes the appliance modelling
step. Therefore, it is necessary to provide a generic model, which represents the
class related to the appliance of interest, and which is suitably fitted on the specific
appliance features, e.g., a priori knowledge of the maximum power consumption, in
order to represent it as good as possible. This procedure introduces an uncertainty in
the appliance modelling stage, which might be the cause of the error in the footprint
extraction stage.

In this work, the NILM algorithm chosen for the disaggregation step is the
AFAMAP proposed by Kolter and Jaakkola [21]: the algorithm requires the HMM
of each appliance that contributes to the aggregated power signal.

From the analysis carried out in Sect. 4.4, the availability of the HMM of both the
fridge-freezer combination and the appliance of interest is necessary. The first one
is obtained from the corresponding consumption recorded, thus it is a model with
high reliability: as showed in Fig. 4.22c, it is a model with 4 working states, derived
from the composition of the 2 working states of the fridge and the freezer, whereas,
for the appliance of interest, the model is not available, since it is derived after
the footprint extraction step. Therefore, a generic HMM is exploited: it is obtained
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from a reference dataset, under the assumption that all the appliances of the same
category act in the same way, while passing from a working state to another, so that
the transition probability matrix results the same for each appliance in the category.
Furthermore, it is assumed that the number of the working states is the same for
all the appliances of the same category, since the working cycle of the appliance
type observed in the footprint: therefore, the number of states is defined a priori for
the appliance type, such as described in Table 4.3. In this approach, the univariate
modelling case of the appliances consumption behaviour is considered.

For the appliances with a number of working states greater than 2, it is
assumed that the consumption values are proportional to each other: therefore, the
consumption values in the model are scaled based on the nominal (maximum) value,
which is given a priori to the algorithm.

In this way, the HMM represents the appliance as good as possible, omitting
the approximation on the consumption values of the middle working state and the
approximation on the transition probability matrix.

After the AFAMAP algorithm execution, two disaggregated consumption pro-
files are obtained: the appliance one corresponds to the extracted footprint. Starting
from this, the HMM representing the appliance is created, which is used in the
disaggregation algorithm to solve the NILM problem.

In order to reach a good generalization in the HMM creation, the availability of
different appliance footprints is necessary, as described in Sect. 4.4: this process
allows to mitigate the errors introduced in the footprint extraction phase. A
suggested value of occurrences to record is in the order of 10.

In Fig. 4.23 the flowchart of the footprint extraction algorithm is depicted. The
diagram is composed of two sections: in the left one, the contribution of the fridge-
freezer combination is recorded, from which the HMM is obtained; in the right one,

START 1

recording
fridge-freezer
activations

training
model

HMM
fridge-freezer

END 1

START 2

recording
appliance
activation

disaggregation
HMM

appliance
category

nominal
(maximum)

value

fridge-freezer
consumption

appliance
consumption

training
model

HMM
appliance

END 2

scaling

Fig. 4.23 Footprint extraction algorithm flowchart
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the appliance activations are recorded, to obtain the footprint and the related HMM.
This procedure is repeated for each appliance footprint recorded, which needs to be
extracted.

4.4.1 Experimental Setup

The experiments have been conducted using different datasets: the first one for the
generic model extraction, and the second one for testing the footprint extraction
algorithm. The disaggregation experiments have been conducted on the same
dataset, to evaluate the effectiveness of the footprint extraction algorithm, compared
to the use of the true appliance level consumption, to create the appliance model.

The general model has been extracted using the AMPds dataset [58]. The
experiments on footprint extraction and disaggregation are conducted on the ECO
dataset [57], considering the households 1 and 2, whose appliances are:

• household 1: dryer, washing machine;
• household 2: dishwasher, oven.

The experiments include the fridge-freezer combination, present in each household.

4.4.2 Results

Figure 4.24 shows two examples of extracted footprints, compared to the original
ones. In both cases, a good correspondence between the temporal trends can be
noticed, which denotes that the model representing the fridge-freezer combination
has a high reliability and it allows to extract the appliance footprint contribution in
a suitable way. However, for several portions of the footprint, the correspondence
with the power level is not correct: this might be due to the incorrect power levels
of the general model, which are obtained from a scaling operation with respect
to the nominal consumption value. Indeed, the error is introduced in the middle
power levels, while for the maximum power level the correspondence is exact. In the
entire process, the uncertainty introduced from the disaggregation algorithm, used
to separate the footprint from the consumption of the fridge-freezer combination,
needs to be considered.

The experiments have been conducted on a portion of 30 days of the ECO
dataset. To evaluate the effectiveness of the footprint extraction procedure, the
disaggregation results have been evaluated using:

• the models created by using the appliance level consumption, available in the
dataset (true footprint);

• the models created by using the extracted footprint, following the procedure
described in Sect. 4.4.



88 4 HMM Based Approach

Fig. 4.24 Comparison between the true and the extracted footprint for some appliances. (a)
Washing machine in ECO, household 1. (b) Dishwasher in ECO, household 2

The disaggregation results have been evaluated using the Precision (P ) and
Recall (R) metrics, defined in Sect. 2.4 in state and energy based sense. To compare
the performance of the entire disaggregation system, the F-score (F1) metric
averaged across the appliances (Overall) has been used.

The parameters used in the AFAMAP algorithm were the same employed in
Sect. 4.2. The disaggregation window parameter has been set T = 60 min.

The disaggregation results are showed in Tables 4.7 and 4.8. For both metrics,
the algorithms achieve good performance: the best results are reached in the
household 2 experiment, with an F

(S)
1 of 0.898 and F

(E)
1 of 0.956. This is due

to the relatively simple problem studied in those cases: a disaggregation problem
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Table 4.7 Disaggregation performance in ECO, household 1

Fridge- Washing
Metric freezer Dryer machine Overall Footprint

State based P (S) 0.506 0.657 0.909 0.691 True

R(S) 0.568 0.821 0.948 0.779

F
(S)

1 0.536 0.730 0.928 0.732

P (S) 0.483 0.622 0.880 0.661 Extracted

R(S) 0.531 0.788 0.937 0.752

F
(S)

1 0.506 0.695 0.908 0.704

Energy based P (E) 0.955 0.488 0.849 0.764 True

R(E) 0.815 0.972 0.978 0.922

F
(E)

1 0.879 0.650 0.909 0.835

P (E) 0.953 0.422 0.809 0.728 Extracted

R(E) 0.790 0.976 0.982 0.916

F
(E)

1 0.864 0.589 0.887 0.811

Bold values represent the higher performance in the algorithm comparison. Thus, the algorithm
with bold values is the best algorithm in the experiment

Table 4.8 Disaggregation performance in ECO, household 2

Fridge-
Metric freezer Dishwasher Oven Overall Footprint

State based P (S) 0.741 0.926 0.977 0.881 True

R(S) 0.781 0.980 0.984 0.915

F
(S)

1 0.760 0.952 0.980 0.898

P (S) 0.735 0.855 0.972 0.854 Extracted

R(S) 0.773 0.974 0.982 0.910

F
(S)

1 0.754 0.911 0.977 0.881

Energy based P (E) 0.983 0.873 0.973 0.943 True

R(E) 0.944 0.983 0.984 0.970

F
(E)

1 0.963 0.925 0.979 0.956

P (E) 0.981 0.816 0.975 0.924 Extracted

R(E) 0.939 0.982 0.988 0.970

F
(E)

1 0.960 0.891 0.982 0.946

Bold values represent the higher performance in the algorithm comparison. Thus, the algorithm
with bold values is the best algorithm in the experiment
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with only 3 appliances, with highly distinguishable values of power consumption,
reveals to be solvable with high accuracy. The experiments in Table 4.8 show a better
performance with respect to Table 4.7: the reason is the appliances footprints and the
resulting HMMs composition. Indeed, the second problem is composed of models
with a lower number of states (e.g., 3 states for the dishwasher, 3 states for the oven,
with respect to the 3 states for the dryer and 4 states for the washing machine), thus
the disaggregation problem results to be simpler in the resolution, and the overall
performance reaches higher values. This trend was already introduced from the
author of the disaggregation algorithm [21], who shows that the higher is the number
of states related to the HMM, the higher is the complexity of the problem definition,
and lower is the disaggregation performance due to the more difficult resolution.
Regarding the first problem, the fridge-freezer combination has the consumption
values close to the dryer ones, which leads to an ambiguity during the problem
resolution and a lower performance for the total problem. In general, the appliance
with the better performance is the one with the higher power consumption value: for
the first problem the washing machine, for the second one the oven.

In both experiments the results corresponding to the true footprint show higher
performance with respect to the extracted footprints ones: it means that the footprint
extraction procedure introduces an error in the appliance modelling stage, which
results in an error during the disaggregation algorithm resolution. Nevertheless, the
results of the extracted footprint experiments show performance with an admissible
relative loss: for the household 1 experiment, the relative loss results of 3.83% in
state based sense, and 2.87% in energy based sense, while for the household 2
experiment, it results of 1.89% in state based sense, and 1.05% in energy based
sense.

In conclusion, the models obtained after the footprint extraction procedure show
a good correspondence with the original ones, which means that the footprint
extraction is sufficiently reliable. Therefore, the footprint extraction algorithm
introduced in this work provides a convenient procedure to the user for modelling
the appliance at the cost of an acceptable loss in disaggregation performance.



Chapter 5
DNN Based Approach

Abstract The recent success of Deep Neural Networks (DNN) in several appli-
cation scenarios drove the scientific community to employ this paradigm also for
NILM. Kelly and Knottenbelt compared three alternative DNNs: in the first, they
employed a convolutional layer followed by long short-term memory (LSTM)
layers to estimate the disaggregated signal from the aggregate one. In the second,
a denoising autoencoder composed of convolutional and fully connected layers is
trained to provide a denoised signal from the aggregate one. The third network
estimates the start time, the end time and the mean power demand of each appliance.
The algorithms were evaluated on the UK-DALE dataset and showed superior
performance with respect to the combinatorial optimization and FHMM algorithms
implemented in the Non-intrusive Load Monitoring Toolkit (NILMTK).

Keywords Deep neural network · Denoising autoencoder · Footprint · Active
power · Reactive power

5.1 Neural NILM

The work by Kelly and Knottenbelt [31] compared three different neural network
architectures: in the first, they employed a convolutional layer followed by LSTM
layers [60] to estimate the disaggregated signal from the aggregated one. In
the second, a denoising autoencoder (dAE) composed of convolutional and fully
connected layers is trained to provide a denoised signal from the aggregated one.
The third network estimates the start time the end time, and the mean power demand
of each appliance. The algorithms were evaluated on the UK-DALE dataset and the
results showed that the dAE approach outperforms the alternative neural networks
architectures as well as the FHMM algorithm implemented in the Non-intrusive
Load Monitoring Toolkit (NILMTK) [73].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
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to Non-Intrusive Load Monitoring, SpringerBriefs in Energy,
https://doi.org/10.1007/978-3-030-30782-0_5

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30782-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-30782-0_5


92 5 DNN Based Approach

5.2 Denoising AutoEncoder Approach

The NILM task can be formulated as a denoising problem by expressing the
aggregated signal as the sum of the power consumption of the appliance of
interest and a noise component that incorporates all the remaining contributions.
In particular, Eq. (2.1) can be reformulated as:

y(t) = y(j)(t) + v(j)(t), (5.1)

for j = 1, 2, . . . , N , where

v(j)(t) =
N∑

i=1
i �=j

y(i)(t) + e(t), (5.2)

represents an overall noise term for the appliance j that comprises both the
measurement noise and the contributions of the other appliances. Thus, for obtaining
y(j)(t), it would be sufficient to remove the noise term v(j)(t) from the aggregate
measurement y(t).

In [31] and similarly in [30], noise removal is performed by means of a dAE, i.e.,
a neural network that is trained to reconstruct a clean signal from its noisy version
presented at the input. Denoising autoencoders have been originally formulated in
the context of representation learning and as an unsupervised training method [97].
The same structure has been later employed to perform actual noise removal, such as
in speech related tasks [98, 99]. An autoencoder can be seen as an encoder network
followed by a decoder network. The encoder provides an internal representation of
the input signal and the decoder transforms it back into the input signal domain. A
common choice consists in creating a network with specular encoder and decoder
topologies. In the context of NILM, for each appliance, an autoencoder is trained to
reconstruct the ground truth y(j)(t) given the aggregated signal y(t).

5.3 Algorithm Improvements

In this section, several algorithmic and architecture improvements to the dAE
approach for NILM are proposed and an exhaustive comparative evaluation with
the AFAMAP (Additive Factorial Approximate Maximum a Posteriori) algorithm
[21] is conducted. In particular, compared to [31] the dAE approach for load
disaggregation is improved by conducting a detailed study on the topology of the
network, and by introducing pooling and upsampling hidden layers, and the rectifier
linear unit (ReLU) activation function [100] in the output layer. Additionally, the
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network output is recombined by using a median filter on the overlapped portions
of the disaggregated signal. The second contribution is an exhaustive performance
comparison between AFAMAP and the dAE approach. Indeed, FHMMs have
been largely employed in the last years since they are an effective approach for
load disaggregation, and AFAMAP, in particular, received noteworthy attention
by the scientific community [101, 102], as described in Sect. 4.1. However, an
exhaustive performance comparison between the two methods has not been yet
conducted. Indeed, the authors of [31] compare their proposed approaches to the
FHMM method implemented in NILMTK [73], but their comparison does not
consider more advanced FHMM algorithms such as AFAMAP [21]. Additionally,
their experiments consider only a noised scenario on a single dataset (UK-DALE).
Here, the evaluation is performed on three datasets, UK-DALE [61], AMPds [58]
and REDD [29] in different conditions: firstly, the algorithms are evaluated on
denoised and noised scenarios. In the denoised scenario, the aggregated signal
is the sum of the power profiles of the appliances that are disaggregated. In the
noised scenario, the aggregated signal comprises also measurement noise and the
contributions of unknown appliances. Successively, the algorithms generalization
capabilities are evaluated by performing disaggregation on the data acquired in a
house not considered in the training phase (unseen scenario). The performance is
evaluated by using both energy-based metrics and state-based metrics [73]: the first,
evaluate the capability of the algorithm to estimate the actual power profile of the
appliances, while the second the capability of estimating whether the appliance is
in the “on” or “off” state. In order to perform the experiments in presence of noise,
a Rest-of-the-World (RoW) model has been introduced in the original AFAMAP
[21] algorithm. This model represents all the appliances but the ones of interest
and makes AFAMAP able to operate in a noised scenario. The obtained results
show that on average the dAE approach outperforms AFAMAP in all the addressed
experimental conditions.

The general network topology proposed here for NILM is shown in Fig. 5.1:
the encoder network (Fig. 5.1a) is composed of one or more one-dimensional
convolutional layers that process the input signal and produce a set of feature maps.
Each convolutional layer is followed by a linear activation function, by a max
pooling layer, and by additional convolutional and pooling layers. Finally, one or
more fully connected layers followed by a ReLU [100] activation function close
the encoder network. The max pooling operation returns the maximum value within
a neighbourhood, and in image processing, it makes the obtained representation
invariant to small translations of the input. In NILM, this translates into being
more independent on the location of an activation inside an analysis window.
Additionally, max pooling reduces the size of the feature maps and the number of
units in the fully connected layers, thus reducing the number of training parameters.
The ReLU activation function calculates the maximum between its input and zero,
and in this case it prevents the occurrence of negative values of the disaggregated
active power. The decoder (Fig. 5.1b) is structured specularly to the encoder, with
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(a)

(b)

Fig. 5.1 Generic autoencoder architecture employed for disaggregation. (a) Encoder network. The
input signal is the aggregated power consumption. (b) Decoder network. The target signal is ground
truth power consumption of each appliance

upsampling layers taking the place of max pooling layers. Compared to [31], several
network topologies are explored, with multiple convolutional stages, max pooling
and upsampling layers are introduced, and the ReLU activation function in the fully
connected layers.

The dAE network is trained to minimize the mean squared error between its
output and the activation of a single appliance. Training is performed by using
the Stochastic Gradient Descent (SGD) algorithm with Nesterov momentum [103],
and with the early-stopping criterion to prevent overfitting. The input data and the
target are normalized in order to improve the learning efficiency.With respect to
the reference work [31], several advancements have been introduced in the training
phase. In particular, during the training phase, the initial value of the learning rate
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is decreased when the performance on a validation set decreases. When this occurs,
training is resumed from the epoch where the performance started decreasing. If
the validation performance remains confined in a certain interval, typically when
the learning process has reached the convergence or the learning rate has become
too little, the early-stopping criterion is used. This is adopted in order to prevent
overfitting.

In the disaggregation phase, the input signal y(t) is analysed by using sliding
windows whose lengths depend on the size of the appliance activations. Windows
are partially overlapped and the output signal is recombined by using a median
filter on the overlapped portions. This differs from what proposed in [31], where
the authors recompose the overlapped portions by calculating their mean value. The
problem with this solution is that when an activation is only partially comprised
in the analysis window, the network tends to underestimate the value of the output
signal. As the window slides, the estimate increases, but averaging the overlapped
portions produces an overall underestimated signal. Differently, by using the median
operation on the overlapped portions, this phenomenon is mitigated, since greater
values are preserved. The overall operation is depicted in Fig. 5.2.

The input signal is normalized following the same technique used in the training
phase, while the disaggregated traces are denormalized after recombining outputs.

5.3.1 Experimental Setup

In order to conduct an exhaustive evaluation on different scenarios, three public
datasets have been chosen. The Almanac of Minutely Power dataset (AMPds) [58]
contains recordings of consumption profiles belonging to a single home in Canada
for a period of 2 years, at 1 min sampling period. The experiments are conducted
by using six appliances: dryer, washing machine, dishwasher, fridge, electric oven
and heat pump. The second dataset, UK-DALE [61], is composed of consumption
profiles recorded in five houses in UK over 2 years, at 6 s sampling period. The
houses consumptions are not equally distributed over this time period, e.g., house 3
contains only the kettle consumptions and some minor appliances recordings, thus
it is not considered in the experiments. The five target appliances considered in all
the experiments are: fridge, washing machine, dish washer, kettle and microwave.
The third dataset, REDD [29], contains aggregate and circuit-level power profiles
of several US households. The sampling period of the aggregate data is 1 s, while
the one of the target profiles is 3 s, thus aggregate data was downsampled in order
to match the sample period of the target profiles. The experiments are conducted
by using four appliances: dryer, dishwasher, fridge and microwave. In the seen
scenario, the data from two houses is used both for training and testing. In the
unseen scenario, the same data is used for training, while testing is performed on
the data of a third house.
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Fig. 5.2 Network outputs recombined by using the mean operation and the median operation
recombination on the overlapped portions. (a) A portion of aggregated data, analysed with sliding
window technique. (b) Output of the dAE for each window. (c) Disaggregated traces comparison
between median and mean recombining methods

The chosen appliances represent the principal contributions to the peak of power
consumption in the aggregated signal, which allows us to consider the denoised
scenario as an approximation of the noised scenario in the traits of higher power
consumption. On the other hand, the noise contribution, assigned to the RoW model,
depends on the number of remaining appliances not modelled and on the total energy
of the main aggregated signal, and this affects the disaggregation performance in the
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noised scenario. The energy ratio (ER), defined as:

ER = ERoW

Emain
=
∑T

t=1 e(t)
∑T

t=1 y(t)
, (5.3)

expresses the energy proportion between the RoW model and the total aggregated
data, and the values for each house in the considered datasets are showed in
Table 5.1.

The datasets are split in different portions for training and testing, and their
dimensions depend on the availability of appliances activations within the dataset.
Regarding the training procedure, within the period specified in Table 5.11, the first
20% of activations are used to compose the validation set, while the remaining 80%
are used for the models training (Table 5.2).

Regarding the ground truth consumption availability, two different scenarios can
be defined. In the seen scenario, the disaggregation is computed on the same houses
used to train the models, but in different period from the training data. In this
scenario, both models, HMM and neural network, are created exploiting the same
portion of training, in order to conduct a fair comparison between the methods.
On the other hand, in the unseen scenario, the disaggregation is computed on the
data related to a house not considered in the training phase. In this scenario, the
ground truth consumptions related to each appliance are not available in the house
where the disaggregation is performed, therefore no training data can be considered
to create the models. The generalization property of the neural network allows to
avoid a training procedure and to use the model trained on a set of data different
from the test, whereas the footprints need to be suitably extracted in order to train
the HMM. One possible approach, in this sense, is represented by the user-aided

Table 5.1 Energy ratio (ER) for each house in the considered datasets

UK-DALE REDD

Dataset AMPds House 1 House 2 House 4 House 5 House 1 House 2 House 3

ER 0.731 0.680 0.564 0.867 0.833 0.634 0.463 0.613

Table 5.2 Definition of the
training, validation and test
sets for the considered
datasets

Dataset Train+Validation Test

AMPds 1 year, 6 months 6 months

UK-DALE

House 1 1 year, 8 months, 3 days 7 days

House 2 4 months, 3 days 7 days

House 4 6 months, 25 days 7 days

House 5 2 months, 3 days 6 days

REDD

House 1 33 days 3 days

House 2 12 days 2 days

House 3 12 days 6 days
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footprint extraction algorithm, described in Sect. 4.4, that describes a procedure for
the extraction of an approximated version of the appliance activations within the
aggregated data when all the appliances are turned off, except the always-on in the
house, i.e., the fridge and the freezer.

The experiments on the UK-DALE dataset have been performed as in [31], both
for the seen and the unseen scenario.

The parameters related to the AFAMAP algorithm are defined as follows: the
frame size is set to 60 min, which is an interval sufficiently large to include the
whole activation for most of the appliances under study. For the ones with a
longer activation, this frame size allows to include a complete operating subcycle,
for which the HMM is still representative. The variance parameters are set to
σ 2

1 = σ 2
2 = 0.01 according to the variance of the experimental data, and the

regularization parameter is set to λ = 1. Table 5.3 presents the number of states,
defined a-priori for each class of appliance. In the denoised scenario no parameters
optimization has been conducted, whereas in the noised scenario, the number of the
RoW states has been varied between the values {6, 8, 10} for both datasets.

The algorithm has been implemented in Matlab, and the CPLEX1 solver has
been adopted to solve the QP problem. The experiments have been conducted on a
working station equipped with an Intel i7 CPU at 3.3 GHz, and 32 GB RAM. The
time required for an experiments depends on the number of samples and the number
of states of the HMM models: because of the different sampling rate between the
datasets, the experiments last from 1 h for AMPds to 3 h for UK-DALE, while the
introduction of the RoW model increases the simulation time up to 2 h for AMPds
and 5 h for UK-DALE.

The parameters related to the dAE approach are defined as follows: each
network receives data in a mini-batch of 64 sequences, and a mean and variance
normalization is computed on the input data. In order to guarantee the same
normalization over the whole dataset, the mean and variance values are computed
from a random sample of the training set, whereas on the target data a min-max
normalization is performed using the maximum power consumption value of the
related appliance. The training data is composed of 50% of actual appliance related
data, and 50% of synthetic data obtained by randomly combining real appliance
activations. The training sequences have been extracted by using NILMTK [73]: this
toolkit provides the method for the power activation extraction from the ground truth
power consumption related to each appliance from both datasets. The data analysing
window of the dAE needs to be enough large to comprise an entire activation of the

Table 5.3 Number of states m related to each class of appliance

Nr. of
Dryer

Washing
Dishwasher Fridge

Electric Heat
Kettle Microwavestates machine oven pump

m 3 4 3 2 3 3 2 2

1https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Table 5.4 Window width (in samples) for the dAE architecture

Dataset Dryer
Washing

Dishwasher Fridge
Electric Heat

Kettle Microwavemachine oven pump

UK-DALE – 1024 1536 512 – – 128 288

AMPds 75 120 210 45 120 90 – –

REDD 1536 – 2304 496 – – – 96

The number of samples depends on the dataset sampling rate

appliance, but not too much to include other contributions, especially for appliances
with short-duration activation. The window width depends on the appliance type, as
described in Table 5.4.

As aforementioned, training has been performed by using the SGD algorithm
with Nesterov momentum set 0.9. The maximum number of epochs has been set to
200 000, and the number of epochs for the variable step size technique has been set
to 20 000. The initial value of the learning rate has been set to 0.1, with a decreasing
factor equal to 10. The variable step size criterion has been applied on the F

(E)
1

calculated on the validation set, and the relative tolerance for early stopping criterion
has been set equal to 0.01. The neural network has been implemented by means
of the Lasagne library,2 built on top of Theano [104]. All the network weights
have been initialized randomly using Lasagne default initialization, without any
layerwise pre-training.

In [31], the network topology is composed of an input and an output convolu-
tional layer with 8 kernels of size 4. The middle layers consist of 3 fully connected
layers with ReLU activation functions, where the number of neurons in the central
layer is equal to 128, whereas for the other layers the number depends on the length
of the input sequence. In the disaggregation phase, a hop size of 16 samples has been
considered. The performance of this work represents the baseline for this approach.
An intensive parameters optimization has been conducted regarding the number of
kernels (N), size of each kernel (S), and the number of neurons in the central layer
(H). The experiments have been conducted using each combination of parameters
within the ranges: N={2, 4, 8, 16, 32, 64}, S={2, 4, 8, 16, 32, 64}, H={8, 16, 32,
64, 128, 256, 512, 1024, 2048}. Kernels larger than the input size have not been
considered. The architecture that achieves the highest performance has been used
as a starting point of an additional campaign of experiment, for which the first
convolutional layer has been preserved, and a second stage, including pooling and
up-sampling layers, has been introduced. The parameters have been varied within
the same ranges defined above.

Max pooling is calculated on a segment with sizes equal to 2 or 4 samples, and
the overlapped portion is either equal to half of the window or not present. For
this new architecture the experiments have been conducted with a full search of the
optimal parameters. The disaggregation phase has been carried out with a sliding

2https://lasagne.readthedocs.io/en/latest/.

https://lasagne.readthedocs.io/en/latest/
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window technique over the aggregated signal, using overlapped window with hop
size in the range {1, 2, 4, 8, 1

4window, 1
2window}, where window represents the

window width defined in Table 5.4.
The number of networks tested for each appliance in three datasets has been

varied from 150 to 200, and this experimental campaign has been conducted on
both denoised and noised scenario, in the seen and unseen conditions.

The experiments have been conducted on nVIDIA K80 GPUs. The training
time varies depending on the network dimension and appliance type: because of
the different sampling rates of the datasets, the experiments require from 2 to 10 h
depending on the size of the training set.

5.3.2 Results

Regarding the AFAMAP algorithm, in the noised scenario, preliminary experiments
have demonstrated that the highest performance is obtained when the number of
states of the RoW model is 6. For the sake of conciseness, only the results for that
number of states are reported.

For the same reason, the results of the entire experimental campaign of the dAE
algorithm will not be reported. For each scenario, the introduction of the second
stage of CNN improves the performance with respect to the single CNN stage for
the majority of appliances, as well as the effectiveness of the pooling layer. The
experiments demonstrated that a hop size with 1 and 2 samples results in the best
performance.

For the AMPds and UK-DALE datasets, the dAE algorithm outperforms
AFAMAP both in the noised and the denoised scenarios, as shown in Tables 5.5,
5.6, Fig. 5.5a, b. More in details, Fig. 5.5 shows the radar charts related to the F

(E)
1

metric for each appliance, and the area inside a line gives an overall performance
indicator of the related approach. On the AMPds dataset, in the denoised case
study, the absolute improvement in terms of F

(E)
1 amounts to + 17.3%, while in

the noised scenario the absolute improvement amounts to + 13.3%. The same
trend can be observed by considering the other metrics. Compared to AFAMAP,
NEP reduces by 2.012 in the denoised scenario, whereas it reduces by 3.819
in the noised scenario. State-based metrics show a similar trend, since, in the
denoised case study, F

(S)
1 improves by + 24.7%, while in the noised case study the

absolute improvement is + 29.8%. Similar remarks apply to MCC. Analysing the
performance of the individual appliances, the dAE algorithm outperforms AFAMAP
for all the appliances in both the denoised and the noised scenario. In terms of F

(E)
1 ,

the highest absolute improvement can be observed for the dishwasher (+ 45.9%)
in the denoised scenario, and for the oven in the noised scenario (+ 48.4%).
Considering the other metrics, the dAE algorithm outperforms AFAMAP for all
the appliances in both scenarios, except for the fridge in the noised scenario, where
AFAMAP achieves lower NEP and higher F

(S)
1 . Indeed, for this appliance in the
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noised scenario, the performance improvement in terms of F
(E)
1 is modest compared

to the other appliances.
Compared to AFAMAP, in the UK-DALE dataset the absolute improvement in

terms of F
(E)
1 is + 4.4% in the denoised case study, and + 48.7% in the noised

scenario. The same trend can be observed by considering the other metrics: NEP
reduces by 0.672 in the denoised scenario and by 11.564 in the noised scenario,
while F

(S)
1 improves by + 11.7% in the denoised case study and by + 36.51% in

the noised case study. MCC increases by 0.166 and by 0.466, respectively, in the
denoised and in the noised scenario. Analysing the performance of the individual
appliances, the dAE algorithm achieves superior performance for all the appliances
in the denoised scenario, except for the washing machine and the microwave, for
which the F

(E)
1 is similar. In the noised scenario, the dAE algorithm outperforms

AFAMAP for all the appliances, with the highest improvement equal to + 69.6%
for the kettle. The same trend can be observed considering the other metrics. In the
noised scenario, the optimization of the network parameters allows to outperform
the dAE architecture presented in [31] for all the appliances, with the highest
improvement of F

(E)
1 equal to + 26.1% for the dishwasher. Considering the other

metrics, the improvement follows the same trends, except for the washing machine
evaluated in terms of NEP, and the dishwasher evaluated in terms of F

(S)
1 and MCC.

Regarding the REDD dataset (Table 5.7), in the denoised scenario the perfor-
mance difference of the dAE algorithm with respect to AFAMAP varies with the
evaluation metric. In particular, in terms of F

(E)
1 and MCC, AFAMAP outperforms

the dAE algorithm, respectively, by 6.5% and 0.007. In terms of MCC, however, the
relative improvement is limited, since it is equal to 0.95%. In terms of NEP and F

(S)
1 ,

the dAE approach outperforms AFAMAP as shown in the experiments with the UK-
DALE and AMPds datasets. This behaviour can be explained by considering that in
the denoised seen scenario the HMM models in AFAMAP are trained by using data
of the same building used in the disaggregation phase, while the network in the dAE
approach is trained by using multiple buildings, and testing is performing on one of
those. This aspect is less relevant in the noised scenario, because in AFAMAP the
RoW model introduces a high variability in the disaggregation solution. Indeed, in
this scenario the dAE approach outperforms AFAMAP regardless of the evaluation
metric.

Generally, the dAE approach reaches higher disaggregation performance since
it allows to reproduce complex activation profiles, which are learned during the
training procedure and are associated to the aggregated profiles, even in the
presence of the noise contribution. As shown in Tables 5.5, 5.6 and 5.7, the highest
performance is reached in the disaggregation of the appliances with higher peak
power consumption, since it allows a better association between the target and the
aggregated input sequence during the training phase. In the HMM based approach,
each state of an appliance model represents one value of power consumption,
which does not allow to represent highly variable or transient phenomena between
the working states of the appliance. Additionally, in the AFAMAP algorithm the
disaggregation solution is obtained by considering all the appliance models at the
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same time, while in the dAE approach each network operates independently from
the others. This may cause a false energy assignment to an appliance, due to the need
to satisfy the constraint that the sum of the reconstructed profiles corresponds to
the aggregated power. In presence of noise, the performance degrades significantly,
since the presence of the RoW, composed of a higher number of states compared
to appliance models, increases the number of admissible solutions and, as a
consequence, the chance of errors in the disaggregated profiles reconstruction.
Moreover, in the AFAMAP algorithm there is no information on the total duration
of the complete activation, since appliance models incorporate only the information
on the working state transition and on the consumption values.

Further evaluations can be carried out by analysing the disaggregated profiles
in denoised and noised scenario. Considering the UK-DALE experiments in seen
scenario, the profiles related to the dishwasher in the house 1 are shown in Fig. 5.3.
The appliance activation is correctly detected by the dAE in both scenarios, without
producing false positives in the disaggregated trace. In the noised scenario, the
reconstructed profiles have a high uncertainty, caused by the presence of noise
in the aggregated power, but the average energy in the activation has a good
correspondence with the ground truth one, which demonstrates the low degradation
of performance compared to the denoised scenario. The same experiment has been
considered for the fridge, whose profiles are shown in Fig. 5.4. The dAE algorithm
recognizes the appliance activation in the denoised scenario, with a less accurate
profile reconstruction in the activation overlapped with other appliances with respect
to the isolated ones. Differently, the performance degrades in the noised scenario,
with an incorrect activation detection and the production of some false positives,
caused by the presence of noise in the aggregated signal.

As aforementioned, the unseen scenario is evaluated by using the UK-DALE and
REDD datasets, due to the availability of recordings from several houses in both.

As in the noised seen scenario, preliminary experiments conducted by varying
the number of states in the RoW model demonstrated that the highest F

(E)
1 is

obtained with 6 states. Similarly, for the dAE algorithm the results of the entire
experimental campaign will not be reported for the sake of conciseness. For each
scenario, the introduction of the second stage of CNN and of the pooling operation
improves the performance with respect to the single CNN stage for the majority of
the appliances. Regarding the hop size in the sliding window disaggregation phase,
as in the seen scenario the highest performance is reached by using 1 and 2 samples.

Similarly to the seen scenario in the UK-DALE dataset, the baseline [31]
performance for each appliance in the noised scenario is outperformed by means of
the optimization of the network parameters, with the highest absolute improvement
of F

(E)
1 equal to + 30.2% for the washing machine. The same trend can be observed

for the other metrics, excepting for the F
(S)
1 and the MCC, where the dishwasher

performance degrades.
For both datasets, the dAE algorithm outperforms AFAMAP in both scenarios, as

shown in Tables 5.9 and 5.8. In the UK-DALE dataset, the absolute improvement in
terms of F

(E)
1 amounts to + 8.6% in the denoised case study, whereas it increases to
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Fig. 5.4 Disaggregated profiles in denoised and noised scenario in UK-DALE dataset, seen case
study, related to the fridge in house 1

+ 50.5% in the noised scenario, demonstrating the superiority of the neural network
based approach with respect to the HMM one, especially in presence of the noise
contribution. The results evaluated with the other metrics confirm the same trend,
with a reduction of NEP equal to 0.543 in the denoised case study and to 5.418 in the
noised case study. Considering the state based metrics, the improvement evaluated
with the F

(S)
1 amounts to + 12.52% in the denoised scenario and + 53.10% in the

noised, as well as regarding the MCC with an absolute improvement of + 0.170 in
the denoised scenario and + 0.594 in the noised scenario. As showed in Fig. 5.5c,
overall the dAE algorithm outperforms AFAMAP both in the denoised and in the
noised scenarios. In particular, the dAE exhibits a noteworthy robustness against the
presence of noise, while the F

(E)
1 of AFAMAP reduces significantly. Observing the

results of each appliance, the highest absolute improvement is obtained for the kettle
and it is equal to + 80.4%. In the denoised scenario, the dAE algorithm outperforms
AFAMAP for all the appliances, with the only exception of the dishwasher where
the F

(E)
1 is 1.6% lower. Considering the other metrics, in the noised scenario, the

performance is improved for all the appliances, while in the denoised scenario the
same trend can be observed, except for the washing machine, which degrades its
performance in terms of NEP, F

(S)
1 and MCC.
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On the REDD dataset, the absolute improvement in terms of F
(E)
1 amounts to

+ 30.20% in the denoised scenario and + 21.18% in the noised scenario. The other
metrics follow the same trends, with a reduction of NEP equal to 1.964 in the
denoised case study and to 1.371 in the noised case study. Considering the state
based metrics, the improvement evaluated with the F

(S)
1 amounts to + 28.3% in the

denoised scenario and + 19.60% in the noised, as well as regarding the MCC with
an absolute improvement of + 0.341 in the denoised scenario and + 0.234 in the
noised scenario. In the REDD dataset, differently from the seen scenario described
above, the dAE algorithm outperforms on each appliance in both scenario, with
the highest improvements in terms of F

(E)
1 of + 53.51% for the microwave, except

for the dryer in the denoised scenario with the state based metrics. The radar chart
represented in Fig. 5.5e shows this improvement, and it represents the performance
loss of both algorithm in the noised scenario with respect to the denoised scenario.

In the unseen scenario the generalization property of the dAE approach allows
to apply the model without the need of training, with a reasonable degradation
of performance. Regarding the AFAMAP algorithm, the approximation introduced
by the footprint extraction procedure causes a lack of correspondence between the
HMM and the appliance working states consumptions, and this results in a higher
performance degradation, particularly in presence of noise where RoW model is
present. This demonstrates the effectiveness of the neural networks approaches in
an unseen scenario, which is the most interesting condition, because it represents a
real-world application of the NILM service. As described in the previous section,
the state based metrics confirm that the dAE produces a more reliable activation
detection, with respect to the HMM based approach, even in an unseen scenario.

5.4 Exploitation of the Reactive Power

Besides machine learning techniques employed in order to solve the NILM problem,
in the literature, neural networks (NNs) have been widely explored to address the
problem of NILM.

Reactive power has already been identified as an exploitable feature to enhance
NILM performances: starting from the seminal work of Hart [15], where the
appliances working states are detected in the complex plan exploiting the active
and reactive power consumption, up to the use of reactive power to train transient-
state models [47, 50], In [105], the authors propose an active learning approach
to significantly reduce the number of training samples needed to achieve high
classification accuracies. In [106], the authors include reactive power trajectories,
on top of which a principal component analyser is built to model each appliance.
Finally, in [107] a recent approach based on finite-state machine modelling is built
on top of real and reactive power signatures.

In this work the problem of NILM is addressed by using a particular family of
NNs, that is the convolutional autoencoder. In particular, following the formalization
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Fig. 5.5 Performance for the different appliances for all the addressed algorithms. The F
(E)
1

(%) is represented. (a) Disaggregation performance on the AMPds dataset, seen scenario.
(b) Disaggregation performance on the UK-DALE dataset, seen scenario. (c) Disaggregation
performance on the UK-DALE dataset, unseen scenario. (d) Disaggregation performance on the
REDD dataset, seen scenario. (e) Disaggregation performance on the REDD dataset, unseen
scenario
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of the problem as a denoising case study, the analysed architecture will be
named denoising autoencoder (dAE) hereafter. As described in Sect. 5.2, denoising
autoencoders architectures were deeply explored and several advancements were
introduced, demonstrating that this approach reaches higher performance with
respect to the FHMM based one [21].

In the majority of the methods discussed above, the signal under analysis in the
disaggregation algorithm is represented by the active aggregate power consumption.
The main focus of this work is the analysis on how the reactive power aggregate
signal, used as input feature, influences the performance of dAEs. To do so, dAEs
have been trained in an asymmetrical configuration, where the input consisted of
both active and reactive aggregate power signals, and the output was solely the active
power appliance trace. The proposed approach has been evaluated on two publicly
available datasets, the Almanac of Minutely Power dataset (AMPds) [58] and the
UK Domestic Appliance-Level Electricity (UK-DALE) [61] dataset. Despite not all
appliances seem to benefit from the introduction of the reactive power feature, the
overall averaged scores show significant improvements in all considered scenarios.

In the present examination, NILM has been formalized and treated as a denoising
problem. In this scenario, the aggregate active power is seen as the superimposition
of the most relevant appliance consumptions, plus a rest-of-the-world noise term, as
described by the (2.1).

This equation highlights that, for each appliance, it is possible to retrieve the
corresponding active power consumption y

(j)
a (t) by removing the noise term from

the whole aggregate signal.
The denoising problem stated above allows us to look at the dAE as a mapping

function f so that:

f : R(L,1) ⇒ R(L,1), (5.4)

where L is the signal’s window length. This means that the denoising function f

takes as argument a one-dimensional signal (the aggregate data) and retrieves, again,
a one-dimensional vector: the disaggregated signal.

In introducing the reactive power signal, the active and reactive signals are
concatenated on the second dimension, therefore the mapping function f will now
follows:

f : R(L,2) ⇒ R(L,1). (5.5)

This solution considers that the dAE will be driven to exploit the correlation
existing between active and reactive consumptions. Invariance on the third axis is
imposed by using one-dimension convolutional kernels, thus the active and reactive
power signals are treated similarly to different colour channels in image processing
tasks with convolutional neural networks.

Other configurations are possible, such as the concatenation on the time axis
or the use of two separated dAE chains. These settings, however, would introduce
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discontinuities in the input data, or, in the latter case, they would increase the
computational complexity of the method. Due to these considerations, the proposed
setting appeared as the best choice to make use of convolutional layers and to avoid
excessive complications of the network topology.

In the present study, data has been pre-processed similarly to [31], where also
the multiple values of L (with reference to Eqs. 5.4 and 5.5) are given for each
appliance. Hereafter, only a short description of the most salient pre-processing
steps is given.

Firstly, for each appliance, active time windows are identified and grouped under
the name of activations. An activation is defined as a time window in which the
appliance consumption exceeds a minimum active power threshold for more than
a minimum ON time. Moreover, if a subsequent consumption peak occurs before a
pre-set minimum OFF time, it will be placed inside the same activation. Finally, all
time windows between two adjacent activations will be grouped as inactive sections.

In constructing the target of an active sequence, one activation is randomly
extracted and shifted: this way the network will be shown multiple perspectives of
the same activation, making the most out of its informative potential. On the other
hand, inactive sequence targets will be synthesized as zero-numbered vectors: its
associated input will be an aggregate time window picked from the inactive section
ensemble. The inactive input window will also be randomly shifted.

Finally, both the active and reactive components are standardized by subtracting
the sequence mean value from each sample, and dividing it by the standard deviation
calculated over the entire dataset:

ỹc(t) = yc(t) − yc,mean

yc,std
, (5.6)

where yc,mean is the active (c = a) and reactive (c = r) sequence mean value,
calculated on L samples, and yc,std is the global standard deviation of the active and
reactive signals. As mentioned in [31], this independent sequence centring does lose
information, but it is able to improve the generalization capabilities of the network.
Target sequences, on the other hand, are simply divided by the maximum power
value of each appliance:

y(i)

a
(t) = y

(i)
a (t)

max y
(i)
a (1 : T )

, (5.7)

where max y
(i)
a (1 : T ) is, for each appliance, the maximum power indicated in [31]

and used in the activation extraction phase.
The dAE topology can be divided into two main stages: an encoder and a

decoder. The first dAE stage, the encoder, takes as input the aggregate signal.
The input is firstly processed by convolutional and pooling layers to extract shift-
invariant features; then, fully-connected layers are used to extract higher-level
feature representations. In the encoding phase, max-pooling is used as sub-sampling
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function. The convolutional layers are composed exploiting linear activation func-
tion, whereas the fully-connected encoding layers are composed exploiting rectifier
linear unit (ReLU). In this book, the encoder is composed of two convolutional
layers and one fully-connected layer. The number of kernels and their size, the
dimension of the max-pooling window and the number of units of the fully-
connected layer have been explored in the experimental phase.

The encoder’s output is fed to the decoder, whose hyper-parameter configuration
and topology mirror the structure of the encoding network. Therefore, the decoder’s
input is firstly processed by fully-connected layers, followed by convolutional and
up-sampling ones. The only noticeable difference between the encoder and the
decoder topologies resides in the activation function: in the decoder, the rectifier
function is used in place of the linear one. We remind that, despite generally being
a symmetrical structure, the decoder output is always a uni-dimensional vector,
meaning that, even when the reactive power is used as input, the output is always
trained to match only the disaggregated active power signal.

Networks are trained with a supervised approach, aiming, for each input time
window, to minimize the mean squared error between the disaggregated output
and the (measured) corresponding appliance consumption. In order to minimize the
mean squared error loss, the stochastic gradient descent algorithm is used, with the
addition of Nesterov momentum [108] to further speed up the training convergence.

During training, networks are also shown synthetic sequences of data. The
synthesis procedure is the same as described in [31], and it consists in randomly
summing appliance activations with random shifts so to generate synthetic aggregate
data. In addition to generating synthetic sequences, the algorithm will also make
sure that active and inactive sequences will be used with a 50-50 ratio.

In order to prevent overfitting and excessive training times, an early-stopping
criterion is used. However, in evaluating the model performance, the model’s
energy-based F1 score is used in place of the mean squared measure. Every time
the model performance is checked on a validation set, the algorithm evaluates if an
improvement has been made over the registered best score. If no improvements are
encountered for a fixed number of training iterations, the difference between the
last score and the best one is calculated; if such difference is higher than a certain
threshold the learning rate is reduced and the training is re-started from the last best-
performing configuration, otherwise the training is stopped. With such approach we
aim at avoiding to stop the training when big score fluctuations occur (possibly)
because the training cost function has not yet reached a stable minimum.

In the disaggregation phase, the whole aggregate signal is processed by the
trained dAEs, which, for each appliance, reconstructs the corresponding consump-
tion. The processing takes place with a sliding window approach, where overlapping
sequences of fixed size are shown to the network, and the respective outputs are
collected. In order to re-combine the overlapping sequences a median filtering
has been used, since in Sect. 5.3 it was found to perform better than the average
recombination used in [31].
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Finally, at the end of the disaggregation phase, all samples are up-scaled by the
same maximum power factor max y

(i)
a (1 : T ) previously used to scale the network

targets.

5.4.1 Experimental Setup

AMPds contains recordings taken in a single house from 21 different power meters,
with a sampling period of 60 s. The time period covered consists of 2 years,
going from April 1, 2012 to March 31, 2014. Additionally to the active power
consumption, AMPds also contains apparent and reactive power signals for the
whole measurement period.

The UK-DALE dataset contains measurements taken in five different houses at
multiple sampling rates. Differently from AMPds, in UK-DALE only active and
apparent power measurements have been recorded, and this does not apply to all
houses: in house three and four the aggregate active power signal was not measured.
Therefore, in this evaluation only data taken from house one, two and five is used,
with the sampling period set to 6 s.

Despite no reactive power measurements are available for the UK-DALE dataset,
in order to retrieve the needed reactive power aggregate signals, the following
relationship has been used:

yr(t) =
√(

yap(t)
)2 − (

ya(t)
)2

, (5.8)

where yr(t), yap(t) and ya(t) represent the reactive, the apparent and the active
power sample in each sequence, respectively. On the AMPds, on the other hand,
reactive power measurements allowed us to evaluate the magnitude of its contribu-
tion over the active power, at appliance level consumption. In particular, as shown
in Table 5.10, reactive over active signal ratios were calculated for each appliance.
What emerges is that the reactive power’s magnitude oscillates between 7.6% and
26.6% of the active one, thus highlighting that, in this scenario, reactive power can
indeed be considered a significant additional feature.

As shown in Table 5.11, data has been divided, for both datasets, into training,
validation and test sets. In particular, after training activations are extracted, 20% of

Table 5.10 Reactive over
active (R/A) power ratios on
the AMPds

Appliance R/A (%)

Dishwasher 7.6

Electric oven 10.3

Fridge 9.5

Heat pump 20.0

Tumble dryer 16.1

Washing machine 26.6
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Table 5.11 Training, validation and test data subdivision by start and end date

Dataset Number of buildings Train+Validation set Test set

AMPds 1 2012-10-01 2012-04-01

2014-04-01 2012-10-01

UK-DALE 1 2013-04-12 2014-10-22

2014-10-21 2014-12-15

2 2013-05-22 2013-09-27

2013-09-26 2013-10-10

5 2014-06-29 2014-09-01

2014-09-01 2014-09-07

Table 5.12 Seen and unseen
building subdivision for the
UK-DALE dataset

Appliance Train/seen test Unseen test

Dishwasher 1, 2 5

Fridge 1, 2 5

Kettle 1, 2 5

Microwave 1, 2 5

Washing machine 1, 5 2

them is used to form validation batches, and the remaining 80% is used to construct
train batches.

For each appliance trained on the UK-DALE dataset, data from one of the three
available houses is excluded from training. This allows to define two different test
cases, namely the seen and the unseen scenarios. By doing so, the aim is to test
more deeply the networks’ ability to generalize, since, in the unseen scenario, the
model is not given the possibility to overfit the corresponding appliance signal. In
Table 5.12 the seen/unseen house subdivision is reported.

Here a description of the parameter setup used in our experiments is given.
Firstly, the window sizes used for each appliance are the same as shown in Sect. 5.3.
These window sizes were identified as best-performing by Kelly and Knottenbelt
in [31]; also all thresholds used during the activation extraction phase are the same
as indicated in Kelly’s article.

At the beginning of the training phase, network parameters are initialized with
a random distribution: control is taken over this and all other random processes
via the pre-setting of the code’s random seed. The network training is conducted
batch-by-batch, with a batch size fixed to 64 sequences, and the same size is used
also for the validation batch. The maximum number of training iterations is fixed to
200,000, and the validation check is performed once every 10 iterations. We choose
2000 to be the maximum number of no-improvement iterations: when reached, the
algorithm will decide whether to stop the training or to reduce the learning rate by
a factor of 10.

In order to evaluate different network topologies, a grid search has been
conducted on the encoder hyperparameters. All the combinations of the following
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hyperparameters have been evaluated:

• first layer kernels: 32, 128;
• kernel window size: 4, 16, 32;
• pooling size: 2, 4;
• fully-connected layer size: 512, 4096.

In addition, the number of kernels in the second convolutional layer is double than
the first layer ones, and the pooling and window sizes are equal in both convolutional
layers. As aforementioned, the topology of the decoder mirrors the one of the
encoders. Considering each appliance and the two datasets, the total number of
experiments run is 528. Moreover, it has to be highlighted that, given the absence
of reactive and apparent power measurements at appliance level for the UK-DALE,
the data synthesis procedure described in Sect. 5.3 has not been possible. Therefore,
only appliances trained on the AMPds made use of the described data augmentation
technique. The activation extraction procedure explained in Sect. 5.3 has been
performed by using the Non-Intrusive Load Monitoring Toolkit (NILMTK) [73].
The experimental framework (available upon request) has been developed in Python
(v. 2.7.10) and Keras (v. 2.1.2) over the Theano [104] backend (v. 0.9.0). Finally, the
hardware setup used to run our experiments were NVIDIA GeForce GTX 970 and
TITAN X graphic processing units.

5.4.2 Results

In Tables 5.14 and 5.13 experimental results obtained on both datasets are reported.
Moreover, to better visualize score trends, the reader can refer to Fig. 5.6, where
radar graphic representations of the scores are showed.

Observing AMPds results, it is possible to notice that all appliances benefit from
the introduction of the reactive power input, the only exception being the electric
oven. By looking at the overall scores, it is possible to identify an improvement of
8.1% if both the active and reactive aggregate signals are used instead of the active-
only input.

Table 5.13 F-score results (%) on the UK-DALE dataset

Appliance
Seen Unseen

Active Active + Reactive Active Active + Reactive

Dishwasher 71.6 83.3 44.3 50.6
Fridge 68.5 70.8 68.9 76.7
Kettle 89.0 89.9 82.1 80.2

Microwave 64.4 80.7 37.0 67.9
Washing machine 35.5 49.8 5.4 23.3
Overall 67.7 76.1 58.0 62.9

Bold values represent the experiment with the higher result, therefore the best algorithm in the
experiment comparison
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Table 5.14 F-score results
(%) on the AMPds

Appliance Active Active + Reactive

Dishwasher 62.9 77.5
Electric oven 66.3 65.0

Fridge 37.4 43.4
Heat pump 72.7 76.3
Tumble dryer 94.8 95.5
Washing machine 34.3 59.5
Overall 62.1 70.2

Bold values represent the experiment with the
higher result, therefore the best algorithm in the
experiment comparison

Fig. 5.6 Performance for the different appliances for the all the addressed algorithms. The
F

(E)
1 (%) is represented. (a) Disaggregation performance on the AMPds dataset, seen scenario.

(b) Disaggregation performance on the UK-DALE dataset, seen scenario. (c) Disaggregation
performance on the UK-DALE dataset, unseen scenario
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Concerning the UK-DALE dataset, improvements can be observed on both the
seen and the unseen scenarios. In particular, for the seen scenario, all appliances
show score improvements ranging from 0.9% for the kettle, to 16.3% for the
microwave, resulting in an overall improvement of 8.4%. On the unseen scenario, on
the other hand, only the kettle showed reduced performance with the introduction of
reactive power: −1.9%. The overall score, however, improves by 4.9%, highlighting
that score increases still outweigh the reduction encountered.

Finally, it is worth highlighting that, given the nature of the proposed algorithm,
an ensemble technique can be employed. As there is no dependence among
appliance models, it is possible to choose the best-performing input configuration,
namely active power only or active and reactive power. A possible strategy for
choosing whether to use the reactive power as additional feature is by observing
the F1 scores obtained in the validation phase. On the AMPds dataset, this solution
translates into using the active power only model for the electric oven, and the
active and reactive power models for the remaining appliances, resulting in a 0.2%
improvement. This also shows that the validation score generally gives a reliable
information on which configuration can be preferred. The ensemble technique has
no effect on the UK-DALE dataset, since the validation scores obtained by using the
active and reactive power models are always higher than the scores obtained with
active power only models.



Chapter 6
Conclusions

Abstract In this book, the Machine Learning approaches for Non-Intrusive Load
Monitoring have been studied. Within all the techniques explored by the scientific
community, this work has been focused on the hidden Markov model based and the
deep neural network based, since their capability and promising performance at the
forefront of the improvements could be introduced.

Keywords Conclusion · Future works · Performance improvement · Gaussian
mixture models · Neural rest-of-the-world model

In this book, the Machine Learning approaches for Non-Intrusive Load Monitoring
have been studied. Within all the techniques explored by the scientific community,
this work has been focused on the hidden Markov model based and the deep neural
network based, since their capability and promising performance at the forefront of
the improvements could be introduced.

For the HMM based approaches, firstly the appliance modelling and all the
related aspects have been introduced, therefore the AFAMAP algorithm and its
method improvements have been described. Specifically, the variation on the
formulation has been detailed for the exploitation of the reactive power. The
algorithm has been tested on both denoised and noised scenario, by means of
the usage of the Rest-of-the-world model. The last aspect discussed deals with a
facilitated procedure for the footprint extraction related to a specific appliance from
the aggregated data.

For the DNN based approaches, the dAE has been introduced and the opti-
mization in the model training phase and in architecture has been described. In
addition, the recombining technique in the disaggregation phase has been improved.
The algorithm has been tested in both denoised and noised scenario, for which a
different optimization procedure has been conducted, as well as in the case of seen
and unseen scenario. As last aspect, the exploitation of the reactive power has been
considered in the network architecture, providing its own optimization procedure in
all the considered scenario.
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In Chap. 2, an updated review of the state of the art regarding the NILM
algorithms is presented, together with an updated list of available datasets, which
are typically used for parameter tuning and evaluation purposes. For what concern
the NILM methods addressed in this review, they were first divided into two main
categories: load classification and source separation algorithms. This reflects the
nature of the method for the disaggregation and the limits or the improvements
which could be explored, despite the same problem statement. It is pointed out that
most of the contributions make use of the sole active power signal, and only few
methods use the reactive power (or the phase difference between the voltage/current
phasors). Exploiting this information can be beneficial to obtain a performing
disaggregation action, but, on the other hand, requires a specific hardware able to
provide the needed measurements. Clearly, a direct comparison between all methods
presented is not immediately possible, due to the difference in terms of performance
criteria and involved datasets. Indeed, the metrics used in those works could vary,
representing different aspects of the obtained results. In terms of performance,
the most promising methods appeared to be the HMM models, which are widely
used for their capability to represent the appliance consumption behaviour with a
relatively easy training procedure. On the other hand, the DNN based method have
been recently emplyed in NILM with promising performance, following the recent
success in various Computational Intelligence fields.

In Chap. 3 the Machine Learning approaches, adopted in NILM methods, have
been described.

The AFAMAP algorithm [21], resulting one of the most performing and com-
putationally efficient among the HMM based approaches, has been described
in Chap. 4. The appliance models based on HMM have been introduced and
the procedure for estimating their parameters has been described. This consists
in the extraction of the footprint of the appliance by means of an Appliance
Activity Detector and in the estimation of the power levels of each working
state by clustering the appliance footprint with the k-means algorithm. The same
procedure is used to compose the Rest-of-the-World model for the testing of
the FHMM algorithms in the noised scenario. AFAMAP is revised in order to
improve its performance through a more exhaustive exploitation of the information
pertaining to the appliance activity. The proposed algorithm exploits both additive
and differential FHMM to model the activity of the appliances. At each time
step, the best combination of appliances working state is chosen to represent the
actual aggregated consumption: as a result of the optimization process, a set of
coefficients are returned to weight the appliances working state and compose the
own disaggregated consumption. The revised algorithm, however, takes into account
additional elements. In regard to the FHMM model, a forward differential model is
paired to the reference backward differential FHMM, thus not only the transition
from the previous state to the current one is included, but also the transition from
the current state to the next one. In addition, the use of solver boundaries is
explored: firstly, the setting has been related to the admissible state combination
of the aggregated power; alternatively, the reactive power disaggregation output
has been used to select the boundaries, endorsing the heterogeneous data usage
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effectiveness. Later, active and reactive power have been introduced in Additive
Factorial HMM for non-intrusive load monitoring. The disaggregation algorithm
is an alternative formulation of the AFAMAP developed in order to deal with the
bivariate formulation of the problem. As a result, the algorithm is able to output the
disaggregated profiles in the active and reactive power components. The proposed
approach has been compared to the univariate formulation of AFAMAP and to the
algorithm presented by Hart in [15]. The latter is based on Finite State Machine
appliance models and it employs both the active and reactive power. The algorithm
has been improved for handling the occurrence of multiple solutions by means
of a MAP technique. The experiments have been conducted on the AMPds [58]
dataset, which provides the ground truth appliance consumption both in the active
and reactive power components. The results showed that, in a denoised scenario, the
proposed approach outperforms both the comparative methods, with an absolute F1-
Measure improvement of + 14.9% and + 2.5% in the 6 appliances case study. As
last aspect, a footprint extraction procedure has been introduced as a solution for the
appliance modelling in real NILM scenarios. Indeed, in order to create the appliance
model and to use this in the disaggregation algorithm, the user needs to record the
appliance consumption profile. A facilitated procedure is needed, in order to obtain
a clean footprint from the aggregated power signal in real scenario: therefore, a
user-aided footprint extraction procedure is defined. The solution introduced here
relies on the availability of a general model for the appliance category to obtain
the clean footprint. This is the starting point of the modelling stage: in this work
the AFAMAP algorithm has been used. The resulting models have been tested in
a disaggregation problem, and they have been compared with the same problem
solved using the true appliance model, i.e., the models created using the actual
footprint from the appliance level consumption. The results have showed a moderate
performance reduction compared to the ideal case due to the footprint extraction
stage. For those reasons, the footprint extraction procedure introduced in this work
can be considered as an effective method for the user employment in a real NILM
scenario.

In Chap. 5, a DNN architecture based on the denoising autoencoder topology
has been proposed. Compared to the work by Kelly and Knottenbelt [31] several
improvements have been introduced. In the training phase, the variable step size
has been adopted, with an early stopping criterion based on the performance metric
calculated on the validation set. In the disaggregation phase, the median filter has
been applied to combine the overlapped portion of signal in the sliding window
analysis of the aggregated power data. In order to achieve the best performance,
for each network an optimization of the network parameters has been conducted,
starting from the reference architecture and introducing a second layer of CNN and
a pooling stage to compress the size of the output. The proposed approach has been
compared to the AFAMAP [21] algorithm. This algorithm has been adopted for
the noised scenario with the introduction of RoW model. The experiments have
been conducted on the AMPds [58], on the UK-DALE [61] and on the REDD
[29] datasets, evaluating both the denoised and noised scenario. Furthermore, the
availability of recordings from more than one building in the UK-DALE and in
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the REDD datasets allowed to evaluate the algorithms on an unseen scenario.
The results showed that the proposed approach outperforms the comparative
methods in the overall average between the appliance, both in denoised and noised
scenario. Regarding the unseen scenario, the performance demonstrated that the
generalization property of the dAE allowed acceptable degradation of performance,
with respect to the AFAMAP algorithm, in which the footprint extraction stage
introduced errors in the HMM modelling phase.

Moreover, the use of reactive aggregate power has been analysed for enhancing
dAE performances. A grid search has been conducted on different dAE hyper-
parameters, and networks have been evaluated on the AMPds [58] and on the
UK-DALE [61] and in different scenarios. Improvements on the overall F

(E)
1 have

been registered in both datasets, namely +8.1% on the AMPds, and +8.4% and 4.9%
on the UK-DALE dataset. This allows us to conclude that the reactive power indeed
provides significant information for NILM with dAEs.

6.1 Future Research Topics

Since the high interest regarding the consumption reduction and the recent improve-
ment in the smart grid researches, the interest on improving those method will be
certainly maintained, pointing out as good results as a distributed network of smart
plug. For this reason, future works will be oriented on different aspect, related to
each algorithm discussed above.

Regarding the AFAMAP algorithm, a more reliable appliance model will be con-
sidered in order to improve the representation of the working states, e.g., the usage
of Gaussian Mixture Model (GMM) within the HMM allows the representation of
a more suitable power level density distribution with respect to a simple Gaussian
distribution. Furthermore, additional information about the working states duration
will be introduced, allowing the discrimination of HMMs with similar transition
probabilities but different time in the switching activity. This translates into a
fully exploitation of the differential model. Additionally, an observation window
of longer duration could be introduced in the differential model.

Regarding the appliance modelling stage, an unsupervised clustering technique
will be introduced to automatically detect the number of power levels, e.g.,
regarding appliances which do not belong to the categories considered. Regarding
the disaggregation and solver algorithms, binary variables will be introduced in the
problem formalization, leading to a Mixed Integer Quadratic Program (MIQP), in
order to impose the variable to assume binary results and not integer values as in
fuzzy logic, which can lead to ambiguous evaluation in the HMM state evolution.
Finally, further experiments will be conducted in order to compare the proposed
solution to other approaches recently presented in the literature [26, 27, 35].

Regarding the user-aided footprint extraction procedure, the separation of the
model representing the fridge-freezer combination in the single component will be
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evaluated, since the AFAMAP algorithm shows a better working in the problem
resolution using models with lower number of states. Moreover, more experiments
will be performed using different datasets in literature, in which a more detailed
study about the generalization performance can be carried out, specially for the
generic model selection.

For the dAE approach, the introduction of a constraint between the neural model
output will be considered, in order to assume the equality between the aggregated
data and the sum of the profiles reconstructed, in the denoised scenario. In order
to apply this constraint in the noised scenario, the introduction of the neural based
RoW model will be required.

Regarding the exploitation of the reactive power in the dAE algorithm, future
works will be focused on the investigation regarding the appliance which degrades
performance. Moreover, the reactive power consumption as target for each architec-
ture will be considered, in order to allow the benefit from correlations between the
active and reactive target signals.
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