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Abstract. Classifying research papers according to their research topics is an
important task to improve their retrievability, assist the creation of smart ana-
lytics, and support a variety of approaches for analysing and making sense of the
research environment. In this paper, we present the CSO Classifier, a new
unsupervised approach for automatically classifying research papers according
to the Computer Science Ontology (CSO), a comprehensive ontology of re-
search areas in the field of Computer Science. The CSO Classifier takes as input
the metadata associated with a research paper (title, abstract, keywords) and
returns a selection of research concepts drawn from the ontology. The approach
was evaluated on a gold standard of manually annotated articles yielding a
significant improvement over alternative methods.
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1 Introduction

Classifying scholarly papers according to the relevant research topics is an important
task that enables a multitude of functionalities, such as: (i) categorising proceedings in
digital libraries, (ii) enhancing semantically the metadata of scientific publications,
(iii) generating recommendations, (iv) producing smart analytics, (v) detecting research
trends, and others [1, 2]. Typically, this is done by either classifying the papers in pre-
existent categories from domain vocabularies, such as MeSH1, PhySH2, and the STW
Thesaurus for Economics3, or by means of topic detection methods, such as proba-
bilistic topic models [3, 4]. The first solution has the significant advantage of relying on
a set of formally-defined research topics associated with human readable labels, but

1 Medical Subject Headings: https://www.nlm.nih.gov/mesh/.
2 PhySH - Physics Subject Headings: https://physh.aps.org.
3 STW Thesaurus for Economics: http://zbw.eu/stw.
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requires a good vocabulary of research topics in the domain. Conversely, the latter
approaches tend to produce noisier and less interpretable results [5].

We recently released the Computer Science Ontology (CSO) [6], a large-scale,
granular, and automatically generated ontology of research areas which includes more
than 14 K research topics and 162 K semantic relationships. CSO has been adopted by
Springer Nature editors to classify proceedings in the field of Computer Science, such
as the well-known LNCS series [2]. We published this resource to make available to all
the relevant communities an open knowledge-base for supporting the development of
further applications. However, many users interested in adopting CSO for character-
izing their data have limited understanding of semantic technologies and how to use an
ontology for annotating documents. Hence, the natural next step was to develop a
classifier that allows all the relevant stakeholders to annotate research papers according
to CSO.

In this paper, we present the CSO Classifier, a new approach for automatically
classifying research papers according to the Computer Science Ontology (CSO). Since
the Computer Science Ontology is not yet routinely used by researchers, it is not
possible to adopt supervised machine learning algorithms that would require a good
number of examples for all the relevant categories. For this reason, we focused instead
on an unsupervised solution that does not require such a gold standard. Similarly to
Song and Roth [7] and other relevant literature [8], we consider this approach unsu-
pervised because it does not require labelled examples, even if it uses word embeddings
produced by processing a large collection of text.

The CSO Classifier takes as input the metadata associated with a scholarly article
(usually title, abstract, and keywords) and returns a selection of research topics drawn
from CSO. It operates in three steps. First, it finds all topics in the ontology that are
explicitly mentioned in the paper. Then it identifies further semantically related topics
by utilizing part-of-speech tagging and world embeddings. Finally, it enriches this set
by including the super-areas of these topics according to CSO.

The CSO Classifier was evaluated on a gold standard of manually annotated
research papers and demonstrated a significant improvement over alternative approa-
ches, such as the classifier previously used by Springer Nature editors to support the
annotation of Computer Science proceedings [9].

In summary, our main contributions are:

1. A new unsupervised approach for classifying papers according to the topics in a
domain ontology;

2. An application based on this approach which automatically annotates papers with
the 14 K research topics in CSO;

3. A novel gold standard including 70 papers in the field of “Semantic Web”, “Natural
Language Processing”, and “Data Mining” annotated by 21 domain experts.

The data produced in the evaluation, the Python implementation of the approaches,
and the word embeddings are publicly available at http://w3id.org/cso/cso-classifier.

The rest of the paper is organised as follows. In Sect. 2, we review the literature
regarding the topic detection in research papers, pointing out the existing gap. In
Sect. 3, we discuss the Computer Science Ontology. In Sect. 4 we describe the new
approach adopted by the CSO Classifier. In Sect. 5 we explain how we generated the
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gold standard and in Sect. 6 we evaluate the CSO Classifier against several alternative
methods. Finally, in Sect. 7 we summarise the main conclusions and outline future
directions of research.

2 Literature Review

The task of characterising research papers according to their topics has traditionally
been addressed either by using classifiers for assigning to the articles a set of pre-
existent categories, or by topic detection methods [3, 4], which generate topics from the
text in a bottom-up style.

The first approach has the advantage to produce clean and formally-defined
research topics, and thus is usually preferred when a good characterization of the
research topics within a domain is available. For instance, Decker [10] introduced an
unsupervised approach that generates paper-topic relationships by exploiting keywords
and words extracted from the abstracts in order to analyse the trends of topics on
different timescales. Mai et al. [11] developed an approach to subject classification
using deep learning techniques and they applied it on a set of paper annotated with the
STW Thesaurus for Economics (*5 K classes) and MeSH (*27 K classes). Similarly,
Chernyak [12] presented a supervised approach for annotating papers in Computer
Science with topics from ACM.

The second class of approaches are based on topics detection methods. One of the
first studies to provide a systematic approach to identifying topics was the Topic
Detection and Tracking (TDT) program developed by DARPA [13]. In the literature
we can find several approaches that apply clustering techniques to identify topics
within a collection of scientific documents [3, 14]. Some approaches rely on just one
type of information, e.g., citations [15] or titles [11], while other approaches combine
multiple types, e.g., abstract and keywords [2, 10], textual content and citation net-
works [16]. Several other methods exploit Latent Dirichlet Analysis (LDA) [17], which
is a three-level hierarchical Bayesian model that retrieves latent patterns in texts, to
model their topics [4]. For instance, Griffiths et al. [4] designed a generative model for
document collections, the author-topic model, that simultaneously modeled the content
of documents and the interests of authors. A main issue of the approaches that rely on
LDA is that they represent topics as a distribution of words and it is often tricky to map
them to topics in a classification, although some approaches have been proposed to do
so [18].

Another set of methods rely just on keywords. For instance, Duvvuru et al. [19]
built a network of co-occurring keywords and subsequently perform statistical analysis
by calculating degree, strength, clustering coefficient, and end-point degree to identify
clusters and associate them to research topics. Some recent approaches use word
embeddings, aiming to quantify semantic similarities between words based on their
distributional properties in samples of text. For example, Zhang et al. [20] applied K-
means on a set of word represented as embeddings. However, all these approaches to
topic detection need to generate the topics from scratch rather than exploiting a domain
vocabulary or ontology, resulting in noisier and less interpretable results [5].
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In sum, we still lack practical unsupervised approaches for classifying papers
according to a granular set of topics. Indeed, most available repositories of scholarly
articles, such as Scopus4, Dimensions5, and Semantic Scholar6 adopt keywords or use
rather coarse-grained representations of research topics. The CSO Classifier was
designed to precisely address this gap and enable high quality automatic classification
of research papers in the domain of Computer Science.

3 The Computer Science Ontology

The Computer Science Ontology is a large-scale ontology of research areas that was
automatically generated using the Klink-2 algorithm [21] on a dataset of 16 million
publications, mainly in the field of Computer Science [22]. Differently from other
solutions available in the state of the art, CSO includes a much larger number of
research topics, enabling a granular characterisation of the content of research papers,
and it can be easily updated by running Klink-2 on recent corpora of publications.

The current version of CSO7 includes 14 K semantic topics and 162 K relation-
ships. The main root is Computer Science; however, the ontology includes also a few
secondary roots, such as Linguistics, Geometry, Semantics, and others.

The CSO data model8 is an extension of SKOS9. It includes four main semantic
relations:

• superTopicOf, which indicates that a topic is a super-area of another one (e.g.,
Semantic Web is a super-area of Linked Data).

• relatedEquivalent, which indicates that two topics can be treated as equivalent for
the purpose of exploring research data (e.g., Ontology Matching and Ontology
Mapping).

• contributesTo, which indicates that the research output of one topic contributes to
another.

• owl:sameAs, this relation indicates that a research concepts is identical to an
external resource. We used DBpedia Spotlight to connect research concepts to
DBpedia.

The Computer Science Ontology is available through the CSO Portal10, a web
application that enables users to download, explore, and provide granular feedback on
CSO at different levels. Users can use the portal to rate topics and relationships, suggest
missing relationships, and visualise sections of the ontology.

4 Scopus - https://www.scopus.com.
5 Dimensions - https://www.dimensions.ai.
6 Semantic Scholar - https://www.semanticscholar.org.
7 CSO is available for download at https://w3id.org/cso/downloads.
8 CSO Data Model - https://cso.kmi.open.ac.uk/schema/cso.
9 SKOS Simple Knowledge Organization System - http://www.w3.org/2004/02/skos.

10 Computer Science Ontology Portal - https://cso.kmi.open.ac.uk .

The CSO Classifier 299

https://www.scopus.com
https://www.dimensions.ai
https://www.semanticscholar.org
https://w3id.org/cso/downloads
https://cso.kmi.open.ac.uk/schema/cso
http://www.w3.org/2004/02/skos
https://cso.kmi.open.ac.uk


CSO currently supports a range of applications including Smart Topic Miner [2], a
tool designed to assist the Springer Nature editorial team in classifying proceedings,
Smart Book Recommender [23], an ontology-based recommender system for selecting
books to market at academic venues, and several others [6]. It has been used in several
research efforts and proved to effectively support a wide range of tasks such as fore-
casting new research topics, exploration of scholarly data, automatic annotation of
research papers, detection of research communities, and ontology forecasting. More
information about CSO and how it was developed can be found in [6].

4 CSO Classifier

The CSO Classifier is a novel application that takes as input the text from abstract, title,
and keywords of a research paper and outputs a list of relevant concepts from CSO. It
consists of two main components: (i) the syntactic module and (ii) the semantic
module. Figure 1 depicts its architecture.

The syntactic module parses the input documents and identifies CSO concepts that
are explicitly referred in the document. The semantic module uses part-of-speech
tagging to identify promising terms and then exploits word embeddings to infer
semantically related topics. Finally, the CSO Classifier combines the results of these
two modules and enhances them by including relevant super-areas. To assist the
description of our approach, we will use the sample paper showed in Table 1 [24] as a
running example.

Fig. 1. Workflow of the CSO Classifier.
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4.1 Syntactic Module

The syntactic module maps n-grams in the text to concepts within CSO. First, the
algorithm removes English stop words and collects unigrams, bigrams, and trigrams.
Then, for each n-gram, it computes the Levenshtein similarity with the labels of the
topics in CSO. Research topics having similarity equal or higher than a threshold (i.e.,
the constant msm) with an n-gram, are selected for the final set of topics, i.e., the
returned topics. In the prototype msm was empirically set to 0.94. This value allows us
to recognize many variations of CSO topics and to handle hyphens between words, i.e.,
“knowledge based systems” and “knowledge-based systems”, and plurals, i.e., “data-
base” and “databases”.

In Table 2 we report the list of topics returned by the syntactic module for the
running example. In contrast with the keyword field, which contains only three terms
(“social networks”, “anonymity”, and “privacy”), the classifier is able to identify a wide
range of pertinent topics, such as “microblogging”, “data mining”, “twitter”, and
“network topology”.

4.2 Semantic Module

The semantic module was designed to find topics that are semantically related to the
paper but may not be explicitly referred to in it. It utilizes word embeddings produced
by word2vec to compute the semantic similarity between the terms in the document
and the CSO concepts.

Table 1. Sample paper that will be analysed by the CSO Classifier [24].

De-anonymizing Social Networks
Authors: A.Narayanan and V. Shmatikov

Abstract: Operators of online social networks are increasingly sharing potentially sensitive information 
about users and their relationships with advertisers, application developers, and data-mining researchers. 
Privacy is typically protected by anonymization, i.e., removing names, addresses, etc. We present a 
framework for analyzing privacy and anonymity in social networks and develop a new re-identification 
algorithm targeting anonymized social-network graphs. To demonstrate its effectiveness on real-world 
networks, we show that a third of the users who can be verified to have accounts on both Twitter, a 
popular microblogging service, and Flickr, an online photo-sharing site, can be re-identified in the 
anonymous Twitter graph with only a 12% error rate. Our de-anonymization algorithm is based purely on 
the network topology, does not require creation of a large number of dummy "sybil" nodes, is robust to 
noise and all existing defenses, and works even when the overlap between the target network and the 
adversary's auxiliary information is small.
Keywords: social networks, anonymity, privacy

Table 2. Topics returned from the syntactic module when processing the paper in Table 1.

microblogging, real-world networks, data privacy, sensitive informations, social 
networks, anonymization, anonymity, online social networks, privacy, twitter, data 
mining, network topology, graph theory
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The semantic module follows four steps: (i) entity extraction, (ii) CSO concept
identification, (iii) concept ranking, and (iv) concept selection.

In the following sections, we will describe how we trained the word embedding
model and illustrate the algorithm.

4.2.1 Word Embedding Generation
We applied the word2vec approach [25, 26] to a collection of text from the Microsoft
Academic Graph (MAG)11 for generating word embeddings. MAG is a scientific
knowledge base and a heterogeneous graph containing scientific publication records,
citation relationships, authors, institutions, journals, conferences, and fields of study. It
is the largest dataset of scholarly data publicly available, and, as of December 2018, it
contains more than 210 million publications.

We first downloaded titles, and abstracts of 4,654,062 English papers in the field of
Computer Science. Then we pre-processed the data by replacing spaces with under-
scores in all n-grams matching the CSO topic labels (e.g., “digital libraries” became
“digital_libraries”) and for frequent bigrams and trigrams (e.g., “highest_accuracies”,
“highly_cited_journals”). These frequent n-grams were identified by analysing com-
binations of words that co-occur together, as suggested in [26] 12. Indeed, while it is
possible to obtain the vector of a n-gram by averaging the embedding vectors of all its
words, the resulting representation usually is not as good as the one obtained by
considering the n-gram as a single word during the training phase. Finally, we trained
the word2vec model, after testing several combinations of parameters13.

4.2.2 Entity Extraction
We assume that research concepts can be represented either by nouns or adjectives
followed by nouns. Considering only these n-grams reduces the number of text chunks
to be analysed, speeds up computation and avoids combinations that usually result in
false positives. Therefore, the classifier tags each word according to its part of speech
(e.g., nouns, verbs, adjectives, adverbs) and then applies a grammar-based chunk parser
to identify chunks of words, expressed by the following grammar:

\JJ: � [ �\NN: � [ þ ð1Þ

where JJ represents adjectives and NN represents nouns.

4.2.3 CSO Concept Identification
At this stage, the classifier processes the extracted chunks and uses the word2vec model
to identify semantically related topics. First, it decomposes the returned chunks in
unigrams, bigrams and trigrams. Then, for each gram, it retrieves from the word2vec
model its top 10 similar words (having cosine similarity higher than 0.7). The CSO

11 Microsoft Academic Graph - https://www.microsoft.com/en-us/research/project/microsoft-academic-
graph/ .

12 In particular, for the collocation analysis, we used min-count = 5 and threshold = 10.
13 The final parameters of the word2vec model are: method = skipgram, embedding-size = 128,

window-size = 10, min-count-cutoff = 10, max-iterations = 5.
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topics matching these words are added to the result set. Figure 2 illustrates this process
more in detail.

When processing bigrams or trigrams, the classifier joins their tokens using an
underscore, e.g., “web_application”, in order to refer to the corresponding word in the
word2vec model. If a n-gram is not available within the vocabulary of the model, the
classifier utilizes the average of the embedding vectors of all its tokens.

A specific CSO concept can be identified multiple times due to two main reasons:
(i) multiple n-grams can be semantically related to the same CSO concept, and (ii) the
same n-gram can appear multiple times within the title, abstract and keywords. For
example, the concept “social_media” can be inferred by several semantically related n-
grams, such as: “social_networking_sites”, “microblogging”, “twitter”, “blogs”, “on-
line_communities”, “user-generated_content”, and others.

4.2.4 Concept Ranking
The previous step may produce a large number of topics (typically more then 70), some
of which only marginally related to the research paper in question. For instance, when
processing the paper in Table 1, some n-grams triggered concepts like “mali-
cious_behaviour” and “gateway_nodes”, that may be considered unrelated. For this
reason, the semantic module weighs the identified CSO concepts according to their
overall relevancy to the paper. The relevance score of a topic is computed as the
product between the number of times it was identified (frequency) and the number of
unique n-grams that led to it (diversity). For instance, if a concept has been identified
five times, from two different n-grams, its final score will equal 10. In addition, if a
topic is directly mentioned in the paper, its score is set to the maximum score found.
Finally, the classifier ranks the topics according to their relevance score.

4.2.5 Concept Selection
The relevance score of the candidate topics typically follow a long-tailed distribution.
In order to automatically select only the relevant topics, the classifier adopts the elbow
method [27]. This technique was originally designed to find the appropriate number of
clusters in a dataset. Specifically, it observes the cost function for varying numbers of
clusters. The best number of clusters is then located at the elbow of the resulting curve.
This point provides a good trade-off between the number of clusters and the percentage
improvement of the cost function.

Figure 3 shows an example of how the elbowmethod automatically identifies the best
cut in the curve of relevance scores, selecting the first 18 topics. In Table 3 we report the
list of topics obtained using the semantic module on the running example. In bold are the
topics that were detected by the semantic module but not by the syntactic module.

Fig. 2. Identification of CSO concepts seman-
tically related to n-grams.

Fig. 3. Distribution of the CSO topic scores
associated to a paper (blue line), and its
elbow (red line). (Color figure online)
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4.3 Combined Output and Enhancement

The CSO Classifier combines the topics returned by the two modules. In this phase, it
first discards the topics returned by the semantic module that appear among the first
n most occurring words in the vocabulary of the embeddings (n=3,000 in the proto-
type). This is done because these very generic terms (e.g., ‘language’, ‘learning’,
‘component’) tend to have a good similarity value with a large number of n-grams,
typically resulting in too many false positives. It then enriches the combined set of
topics by inferring all their direct super topics, exploiting the superTopicOf relationship
within CSO [6]. For instance, when the classifier extracts the topic “machine learning”,
it will infer also “artificial intelligence”. By default, the CSO Classifier includes only
the direct super topics, but it is also possible to infer the list of all their super topics up
to the root, i.e., Computer Science.

In Table 4 we report the list of topics inferred from the topics returned by the
syntactic and semantic module. As we can see there are several other topics that are
pertinent to the paper in Table 1, such as: “security of data”, “authentication”, “world
wide web”, and others.

We take the union of the result sets of the two modules, since this solution max-
imizes the f-measure according to the evaluation (see Sect. 6). However, it is possible
to adopt different strategies to combine the topics produced by the two modules,
resulting in various trade-offs between precision and recall. Intuitively, the topics that
get explicitly referred to in the text, returned by the syntactic module, tend to be more
accurate, but including also the semantically related topics allows for a better recall. We
will further discuss this in Sect. 6.1.

Table 3. Topics returned from the semantic module when processing the paper in Table 1. In
bold the topics missing from the syntactic module in Table 2.

social networks, anonymity, topology, twitter, anonymization, sensitive 
informations, data privacy, online social networks, data mining, privacy, social 
media, social networking sites, graph theory, network architecture, micro-blog, 
online communities, social graphs

Table 4. Topics obtained from the enhancement process when processing the running paper

authentication, theoretical computer science, world wide web, privacy preserving, 
access control, network protocols, complex networks, online systems, network 
security, security of data, computer science
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5 Creation of the Gold Standard

Since the CSO ontology was only released a few months ago, we lacked a dataset of
manually annotated papers that could be used as gold standard. Therefore, we built
such a gold standard by asking 21 domain experts to classify 70 papers in terms of
topics drawn from the CSO ontology. This new gold standard has two objectives. First,
it allows us to evaluate the proposed classifier against baseline methods, and, second, it
provides a resource which will facilitate further evaluations in this area from other
members of the research community.

5.1 Data Preparation

We queried the MAG dataset and selected the 70 most cited papers published in 2007-
2017 within the fields of Semantic Web (23 papers), Natural Language Processing (23
papers), and Data Mining (24 papers)14.

We then contacted 21 researchers in these fields, at various levels of seniority, and
asked each of them to annotate 10 of these papers. We structured the data collection in
order to have each paper annotated by at least three experts, using majority vote to
address disagreements. The papers were randomly assigned to experts, while min-
imising the number of shared papers between each pair of experts.

5.2 Data Collection

We designed a web application to support the domain experts in annotating the papers.
For each paper, the application displayed to the users: title, abstract, keywords (when
available), and the set of candidate topics. The experts were asked to carefully read all
the information and assess a set of candidate topics by dragging them in two different
baskets: relevant and not relevant. They also could input further CSO topics that
according to their judgment were missing from the candidate topics. Each paper was
assigned with an average of 18 ± 9 topics.

We created the initial set of candidate topics by aggregating the output of three
classifiers: the syntactic module (Sect. 4.1), the semantic module (Sect. 4.2), and a
third approach, which was introduced for reducing the bias towards the first two
methods. The latter first splits the input document into overlapping windows of size 10
(same as the training window of the word2vec model), each of them overlapping by 5
words. Then, for each window, it computes the average of the embedding vectors of all
its words, creating an embedding representation of the window, and uses the word2vec
model to identify the top 20 similar words with similarity above 0.6. It then assigns to
each CSO concept a score based on the number of times it is found in the list of similar
words and on the embedding similarity (cosine similarity between the vector repre-
sentation of the window and word embedding). Finally, it sorts them in descending

14 These three fields are well covered by CSO, which includes a total of 35 sub-topics for the Semantic
Web, 173 for Natural Language Processing, and 396 for Data Mining.
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order and prunes the result set using the elbow method [27]. The combination of these
approaches produced a very inclusive set of 41.8 ± 17.5 candidate topics for each
paper.

5.3 Gold Standard

The data collection process produced 210 annotations (70 papers times 3 annotations
per paper). In order to consider the taxonomic relationships of CSO, the resulting set of
topics were semantically enriched by including also their direct super-areas as in [1, 2].

We computed the Fleiss’ Kappa to measure the agreement among the three
annotators on each paper. We obtained an average of 0.451 ± 0.177 indicating a
moderate inter-rater agreement, according to Landis and Koch [28].

We created the gold standard using the majority rule approach. Specifically, if a
topic was considered relevant by at least two annotators, it was added to the gold
standard. Each paper in the gold standard is associated with 14.4 ± 7.0 topics.

6 Evaluation

We evaluated the CSO Classifier against thirteen alternative approaches on the task of
classifying the papers in the gold standard according to CSO topics. Table 5 sum-
marizes their main features and reports their performance.

TF-IDF returns for each paper a ranked list of words according to their TF-IDF
score. The IDF of the terms was computed on the dataset of 4.6 M papers in Computer
Science, introduced in Sect. 4.2.1. TF-IDF-M maps these terms to CSO by returning
all the CSO topics having Levenshtein similarity higher than 0.8 with them.

The following six classifiers use the Latent Dirichlet Allocation (LDA) [17] over
the same corpus and then produce a number of keywords extracted from the distri-
bution of terms associated to the LDA topics. LDA100 was trained on 100 topics,
LDA500 on 500 topics, and LDA1000 on 1000 topics. These three classifiers select all
LDA topics with a probability of at least j and return all their words with a probability
of at least k. LDA100-M, LDA500-M, and LDA1000-M work in the same way, but
the resulting keywords are then mapped to the CSO topics. In particular, they return all
CSO topics that have Levenshtein similarity higher than 0.8 with the resulting set of
terms. We performed a grid search for finding the best values of j and k on the gold
standard and report here the best results of each classifier in term of f-measure.

W2 V-W is the classifier described in Sect. 5.2 in order to produce further can-
didate topics for the domain experts. It processes the input document with a sliding
window and uses the word2vec model to identify concepts semantically similar to the
embedding of the window.

STM is the classifier originally adopted by Smart Topic Miner [2], the application
used by Springer Nature for classifying proceeding in the field of Computer Science. It
works similarly to the syntactic module described in Sect. 4.1, but it detects only exact
matches between the terms extracted from the text and the CSO topics. SYN is the first
version of the CSO classifier, originally introduced in [9], and it is equivalent to the
syntactic module as described Sect. 4.1. SEM consists of the semantic module
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described in Sect. 4.2. INT is a hybrid version that returns the intersection of the topics
produced by the syntactic (SYN) and semantic (SEM) modules. Finally, CSO-C is the
default implementation of the CSO Classifier presented in this paper. As described in
Sect. 4, it produces the union of the topics returned by the two modules.

We assessed the performance of these fourteen approaches by means of precision,
recall and f-measure. When classifying a given paper p, the value of precision pr(p) and
recall re(p) are computed as shown in Eq. 3:

pr pð Þ ¼ cl pð Þ \ gs pð Þj j
cl pð Þ re pð Þ ¼ cl pð Þ \ gs pð Þj j

gs pð Þ ð3Þ

where cl(p) identifies the topics returned by the classifier, and gs(p) the gold standard
obtained for that paper, including the super-areas of the gold standard used to enrich the
user annotations as mentioned in Sect. 5.3. In order to obtain a better comparison
between the different classifiers, we enhanced the results of each method with their
direct super-concepts. The overall precision and recall for a given classifier are com-
puted as the average of the values of precision and recall obtained over the papers. The
f-measure (F1) is the harmonic mean of precision and recall.

6.1 Results

We ran the fourteen classifiers and evaluated their results against the gold standard. In
Table 5 we report the resulting values of precision, recall and f-measure.

The approaches based on LDA and TF-IDF performed poorly and did not exceed
30.1% of f-measure. It should be noted that while a tighter threshold on the Levenshtein
similarity used for matching terms with CSO topics may further raise the precision, the

Table 5. Values of precision, recall, and f-measure for the classifiers. In bold the best results.

Classifier Description Prec. Rec. F1

TF-IDF TF-IDF 16.7% 24.0% 19.7%
TF-IDF-M TF-IDF mapped to CSO concepts 40.4% 24.1% 30.1%
LDA100 LDA with 100 topics 5.9% 11.9% 7.9%
LDA500 LDA with 500 topics 4.2% 12.5% 6.3%
LDA1000 LDA with 1000 topics 3.8% 5.0% 4.3%
LDA100-M LDA with 100 topics mapped to CSO 9.4% 19.3% 12.6%
LDA500-M LDA with 500 topics mapped to CSO 9.6% 21.2% 13.2%
LDA1000-M LDA with 1000 topics mapped to CSO 12.0% 11.5% 11.7%
W2V-W W2V on windows of words (Sect. 5.2) 41.2% 16.7% 23.8%
STM Classifier used by STM, introduced in [2]. 80.8% 58.2% 67.6%
SYN Syntactic module (Sect. 4.1) [9] 78.3% 63.8% 70.3%
SEM Semantic module (Sect. 4.2) 70.8% 72.2% 71.5%
INT Intersection of SYN and SEM 79.3% 59.1% 67.7%
CSO-C The CSO Classifier 73.0% 75.3% 74.1%
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low recall makes these approaches mostly unfit for this task. An analysis on the LDA
topics showed that these tend to be mostly noisy and coarse-grained. They are thus
unable to return several of the most specific CSO topics and often cluster together
distinct CSO topics (e.g., “databases” and “search engines”) in the same LDA topic.
For instance, the LDA topic characterizing papers about Social Networks includes as
top words many generic terms such as users, online, social, profile, trust, and so on. In
general, LDA works quite well at identifying the main topics characterizing large
collection of documents, but it is typically less suitable when trying to infer more
specific research topics, which may be associated with a low number of publications
(50–200), as discussed in [21]. W2V-W performed also poorly in term of both pre-
cision (41.2%) and recall (16.7%).

STM and SYN yielded a very good precision of respectively 80.8% and 78.3%.
Indeed, these methods are good at finding topics that get explicitly mentioned in the
text, which tend to be very relevant. However, they failed to detect some more subtle
topics that are just implied, suffering from a low recall of 58.2% and 63.8%. The
method used to map the terms from the text to the CSO topics plays a key role in the
difference of performance between these two classifiers. Indeed, STM identifies only
concepts that match exactly at least one of the terms extracted from the text. Con-
versely, SYN finds also partial matches, reducing precision but increasing recall.

The semantic module (SEM) lost some precision in comparison with SYN, but
provided a better recall and f-measure. This suggests that it is able to identify further
topics that do not directly appear directly in the paper, but naturally this may also
produce some more false positives. INT yielded a higher precision (79.3%) compared
to the syntactic and the semantic modules (78.3% and 70.8%), but it did not perform
well in term of recall, which dropped from 63.8% and 72.2% to 59.1%.

Finally, the CSO Classifier (CSO-C) outperformed all the other methods in terms
of both recall (75.3%) and f-measure (74.1%).

We compared the performance of the approaches using the McNemar’s test for
correlated proportions. The CSO-C performed significantly better (p < 10−7) than all
the other approaches. In addition, STM [2], SYN [9], SEM, and INT were also sig-
nificantly different from all the other baselines based on TF-IDF and LDA (p < 10−7).
In summary, the CSO Classifier yielded the best overall results. However, it is possible
to obtain a better precision by adopting a purely syntactic method that focus on the
topics that are explicitly referred to in the text.

Another way to obtain a specific trade-off between precision and recall is changing
the method used for selecting the returned topics from the ranked list produced by the
semantic module. Intuitively, selecting the ones with the highest weights will yield a
high precision, while being more inclusive will result in a higher recall. Figure 4 shows
the value of precision, recall, and f-measure obtained by taking the first n topics in the
ranked list. The precision (blue line) decreases while the recall (orange line) increases.
The intersection of these two curves determines the highest value of f-measure (green
line), with a peak of 63.6% when selecting the first 10 topics. It is useful to note that the
elbow method, yielding a f-measure of 71.5%, clearly outperforms this solution based
on a fixed number of returned topics.
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As final step of the analysis, we treated the CSO Classifier as another expert and we
observed how this influenced the inter-rater agreement. The general agreement when
including CSO Classifier slightly lowers to 0.392 ± 0.144 yielding a moderate
agreement with the majority of human experts.

7 Conclusions and Future Work

In this paper, we introduced the CSO Classifier, an application for classifying academic
documents according to the Computer Science Ontology (CSO). The CSO Classifier
analyses the text associated with research papers (title, abstract, and keywords) both on
a syntactic and semantic level and returns a set of pertinent research topics drawn from
CSO. This solution was evaluated on a gold standard of 70 manually annotated articles
and outperformed the alternative approaches in terms of recall and f-measure. The code
of the CSO Classifier and all the relevant material is freely available to the wider
research community.

The approach presented in this paper opens up several interesting directions of
work. On the research side, we will investigate further solutions combining natural
language processing, machine learning, and semantics to improve the performance of
the CSO Classifier. We also plan to explore the application of this approach to other
research fields. In particular, we are currently working on a topic ontology for the
Engineering field and we plan to produce a version of the classifier tailored to this area.
We are also planning to extend it to the field of Medicine, in which we can take
advantage of MeSH as ontology of subjects and the Medline dataset15 for training our
word2vec model.

On the technology transfer side, we will include the CSO Classifier within the
pipelines of the Smart Topic Miner [2] and Smart Book Recommender [23], two
applications we developed to support editorial processes at Springer Nature.

Fig. 4. Average values of precision, recall, and f-measure according to the different sizes of
candidate topic set returned for each paper. (Color figure online)

15 Medline dataset: https://www.nlm.nih.gov/bsd/medline.html .
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