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Abstract. Monitoring the state of conservation of a historical violin is a
difficult task. Multiple restorations during centuries have created a very
complex and stratified surface, hard to correctly interpret. Moreover,
the reflectance of the varnishes and the rounded morphology of the vio-
lins can easily produce noise, that can be confused for a real alteration.
To properly compare multi-temporal images of the same instrument a
robust segmentation is needed. To reach this goal we adopted a genetic
algorithm to evolve in this direction our previous segmentation method
based on HSV histogram quantization. As test set we used images of
two important violins held in “Museo del Violino” in Cremona (Italy),
periodically acquired during a six-month period, and images of a sample
violin altered in laboratory to reproduce a long-term evolution.
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1 Introduction

Scientific analysis of artworks is a complex task that involves knowledge of differ-
ent fields, such as materials science, chemistry or physics [12]. Computer science
has an active role too, in particular image processing proved to be very helpful
for researchers and restorers [20]. Notable examples involve the identification of

This work was partially granted by “Fondazione Arvedi-Buschini” of Cremona, Italy.

c© Springer Nature Switzerland AG 2019
M. Cristani et al. (Eds.): ICIAP 2019 Workshops, LNCS 11808, pp. 81–91, 2019.
https://doi.org/10.1007/978-3-030-30754-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30754-7_9&domain=pdf
http://orcid.org/0000-0002-0624-073X
http://orcid.org/0000-0002-5457-7556
http://orcid.org/0000-0003-4286-6331
http://orcid.org/0000-0002-9276-1530
https://doi.org/10.1007/978-3-030-30754-7_9


82 P. Dondi et al.

cracks in paintings [6,15], damage detection [4], image enhancement [13], authen-
tication [16] and even artwork synthesis by deep learning [22].

In this paper we focus on a unique kind of artworks: historical violins. Their
main difference respect to other more “traditional” pieces of art, such as painting
or statues, is that historical musical instruments are both preserved in museums
and played (even today), leading to a greater risk of damages and mechanical
wear. Moreover, the multiple restorations occurred during centuries to maintain
the instruments in use have created a very complex and stratified surface, hard
to interpret. Several analytical techniques are commonly employed for analyz-
ing these musical instruments such as stereomicroscopy, colorimetry, X-ray flu-
orescence (XRF) or Fourier transform infrared (FTIR) spectroscopy [3,11,18].
Among them, UV-induced fluoresce (UVF or UVIFL) photography is particu-
larly effective for a preliminary examination, since it can highlight details of a
violin surface not perceivable with visible light [2].

We previously analyzed UVIFL images of seven important violins made by
Antonio Stradivari between 17th and 18th century, to point out the distribution
of varnishes and materials on their entire surface [7]. Now we are interested in
a more specific task, namely a multi-temporal study of the areas that are more
subject to wear. Our goal is to provide researchers and restorers with a tool
useful for the so-called preventive conservation, i.e. the constant monitoring of
the state of conservation of an artwork to minimize the interventions on it [1].

This kind of monitoring on a historical violin presents various complexities.
First of all, unlike searching areas with an established wear, that have precise
chromatic characteristics [8], in this case we want to identify as fast as possible
the beginning of a new alteration that can occur on any part of the surface both
intact and ruined. Thus, we have no previous knowledge about the type of varia-
tion or a reference ground truth. Secondly, the acquisition is affected by various
kinds of noise that cannot be completely avoided, such as wrong reflections due
to the rounded morphology of the instrument and the high reflectance of the
varnishes, or slightly variations in the positions of the object or of the lamps
between different sessions (violins cannot be rigidly fixed to avoid damages).
These systematic errors do not affect too much a global analysis of the entire
surface, but they become critical when we focus only on specific areas to detect
very small variations. The ideal solution would be a constant monitoring with
various analytical and spectroscopic techniques to have an accurate mapping of
the regions on interest. Unfortunately, this approach is very time consuming,
limiting the number of instruments that can be checked at the same time. A
complete verification with multiple techniques, to confirm the presence of an
alteration, should be done only on the most likely altered areas.

Our idea is to exploit UVIFL images to identify meaningful regions of inter-
est and then decide where and when apply further analyses. For this purpose, we
need a segmentation very robust to environmental noise. Thus, comparing “sta-
ble” segmented images of the same instrument taken at distance of time only
meaningful differences remain (minimization of the false positives). To reach
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this goal, we apply a genetic algorithm approach to evolve in this direction our
previous method based on HSV histogram quantization [7].

The obtained method was tested on UVIFL images of two important violins,
“Vesuvio” (1727) made by Antonio Stradivari and “Carlo IX” (c. 1566) made
by Andrea Amati (previously analyzed during a six-month period using multi-
ple non-invasive analytical techniques [10]) and images of a sample instrument
artificially altered in laboratory. We created a publicly available dataset with
the collected data1.

The paper is structured as follow: Sect. 2 describes the basic principles of
UVIFL photography and our dataset; Sect. 3 summarizes the main characteris-
tics of the previous segmentation method and then describes the proposed evo-
lution; Sect. 4 shows the achieved results; finally, Sect. 5 draws the conclusions
and proposes the next steps.

2 UVIFL Photography and Dataset Specification

UVIFL photography is a non-invasive analytical technique based on the proper-
ties of some materials which, when excited by ultraviolet lights, emit radiations
with longer wavelengths than those of the exciting source. Basically, when these
materials are illuminated with a light in the UV-A range (315–400 nm), like a
Wood’s Lamp, they “produce” characteristic fluorescence colors in the visible
light range (400–700 nm) [21]. Varnishes and substances used for restorations
are generally sensible to UV-A light, thus UVIFL photography is very effective
in Cultural Heritage studies to highlight meaningful features of the surface of an
artwork [12]. In particular, in the case of historical musical instrument, UVIFL
images are used to decide where to apply more precise but slower diagnostic
techniques, like XRF or FTIR [19].

As said in the introduction, we used as test set images of a previous study
[10]. This monitoring program investigated the back plates of the two violins
(Fig. 1), focusing on the top (treble side, C1 and V1) and on the bottom (bass
side, C2 and V2) areas. These two regions are more subject to alterations due
to sweat and mechanical wear since always in direct contact with the musi-
cian when s/he plays the instrument. The two violins were selected based on
their availability and frequency of use during the monitored period: one rarely
played (“Carlo IX”) and the other frequently played (“Vesuvio”). The acquisi-
tion protocol followed the specification defined in our previous works [7,9]. More
precisely UVIFL photos were taken with a Nikon D4 full-frame digital camera
with a 50 mm f/1.4 Nikkor objective, 30 s exposure time, aperture f/8, ISO 400.
Two wood lamp tubes (Philips TL-D 36 W BBL IPP low-pressure Hg tubes,
40 W, emission peak ∼365 nm) provided a uniform UV-A lighting. Images were
acquired at regular intervals for six months for a total of three sessions. We took
both pictures of the entire back plates and macros of the two areas of interest
(three for each area in each session) to be able to detect small alterations on the
surface. To increase the dataset, we also took pictures of a sample violin (SV01)
1 https://vision.unipv.it/research/UVIFL-Dataset/.

https://vision.unipv.it/research/UVIFL-Dataset/
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Fig. 1. Monitored areas [10] of back plates of Andrea Amati “Carlo IX” (c. 1566) and
Antonio Stradivari “Vesuvio” (1727).

artificially altered in laboratory. We focused on the bottom part of the back
plate, starting from a region already ruined and we slowly increased the wear
moving toward the intact varnish. To simulate the effect of sweat and mechani-
cal wear produced by a musician, we scrubbed the surface with a cloth wet with
alcohol. The process was repeated 20 times to reproduce a long-term evolution.
We slightly moved violin and lamps between the various sessions to simulate
random environmental variations.

3 Segmentation Algorithm

3.1 Original Implementation

Our previous classification approaches [7,9] focused on highlighting the distri-
bution of the main fluorescence colors of the entire surface of an instrument,
with the goal to speed-up and make more efficient the standard examination
of UVIFL imagery. Since the surface of each violin can be considered unique,
due to the combination of different varnishes and different restorations, we can-
not have a reference ground truth for every possible condition. For this reason,
to group together similar fluorescence colors in a way that can be coherent for
each instrument, we based our classification method on the physical principles of
UV fluorescence. We designed a histogram quantization method that operates
in HSV color space, where each channel has a different weight in function of
its behavior tested experimentally. More precisely, Hue channel was divided in
12 bins, both Saturation and Value channels in 3 bins, with all ranges equally
spaced, for a total of 108 possible classes. This configuration was chosen as a
compromise between the need to discriminate different fluorescence colors and
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the need to group together similar regions. A pixel p belongs to a class C if its
hue (Hp), saturation (Sp) and value (Vp) are inside the correspondent ranges of
C (Eq. 1).

{Hp ∈ CH , Sp ∈ CS , Vp ∈ CV } → {p ∈ C} (1)

The algorithm proved to be robust to environmental changes such as small
variations in the lamps’ angle of incidence or in the violin positions between
different acquisition sessions. However, this property is valid only if we consider
the entire surface of the violin. High resolution images of details, fundamental
to detect small initial alterations, are inevitably more sensible to environmental
errors.

3.2 Genetic Algorithm Implementation

Our main problem in finding an optimal solution is the limited amount of data:
the acquisition of multi-temporal images of historical violins required several
months to be significant and a continuous access for tests is granted only for few
instruments. We have the artificially created sequence, but we want to verify if it
is possible to train our method only with the “real” data. Since we have too few
images to properly apply a deep-learning approach we chose genetic algorithms
(GA), that can work efficiently even with a limited amount of data and are
widely used in literature for image classification and segmentation [5,14]. The
main steps of a GA are summarized in Algorithm 1.

Algorithm 1. Genetic Algorithm
1: Generate the initial population (P0)
2: while stop condition is false do

a) compute the fitness function (f) for the current population
b) select the fittest individuals (Pf ) as parents
c) create new offspring (On) trough crossover of Pf

d) apply mutation to On

e) generate the new population Pn (Pn = best(Pf ) + On)

3: Choose the fittest solution among the last Pn

We extracted from our previous method the parameters that we want to
evolve to produce a more robust segmentation, and those that we want to main-
tain because more strictly related to the properties of UVIFL photography:

– Hue ranges are still equally spaced, but the number of bins (Hrange) can
change;

– Saturation bins are still 3, but they are no more equally spaced (Slow and
Shigh are respectively the upper and lower thresholds between bins);

– Value bins are still 3, but they are no more equally spaced (Vlow and Vhigh

are respectively the upper and lower thresholds between bins).



86 P. Dondi et al.

The five parameters (Hrange, Slow, Shigh, Vlow and Vhigh) became the genes of
our GA. As usual, in the initial population (P0) genes values were randomly
chosen, but we set the following constraints to avoid degenerated cases (such as
a large unique range): 4 ≤ Hranges ≤ 30; Slow < Shigh; Vlow < Vhigh.

Choosing a good fitness function (f) is the most critical part in a GA. In
our case we want to check if the current set of parameters produces a simi-
lar segmentation for all the images in the training data set (i.e. minimize the
environmental noise). Thus, we performed a histogram comparison among the
obtained segmentations using as index of similarity the alternative formulation
of Pearson’s χ2 test (Eq. 2) put forward by Puzicha et al. [17]. The closer the
value of the distance d is to zero, the greater the similarity between two his-
tograms (H1 and H2). As a consequence, for each individual in the population,
lower the d, higher the f .

d(H1,H2) = 2
∑

i

(H1(i) − H2(i))
2

H1(i) + H2(i)
(2)

During the selection phase, the fittest individuals (Pf ) are identified (half of
the population in this case) as parent for breading. Couple of chosen parents
generate a new individual mixing their genes with crossover. Since in our case
the genes are not all independent from each other, the crossover point/s cannot
be chosen randomly as usually happens in GA. We fixed two crossover points one
after Hranges and one after Shigh. In this way the new offspring always receive
from the parents reasonable couples of genes.

Finally, mutation is applied to the offspring (On) to guarantee the diversity
in the population. Since we have only 5 genes we changed at most one (randomly
chosen) in each new individual applying a random variation in the range [−3,
+3]. The new generation (Pn) is then created merging the fittest individuals of
the previous generation (we applied elitism, thus only the best 20% passed) with
the generated offspring.

For training we used the multi-temporal images of “Carlo IX”. We know
from the previous monitoring [10] that this violin had no alterations during the
six-month period, thus variations in UVIFL images are only due to changes in
environmental conditions that we want to manage. Training images were divided
in three groups accordingly with the regions framed: the entire back plate, the
top left (C1) and the bottom right (C2) areas. We excluded from training one
image for each session of area C2 to be used later during tests. We run the
procedure separately on the three subsets for 10 generations with a population
large 20. Since we had no reference ground truth towards which to converge, the
stop conditions were (i) reaching the maximum number of generations or (ii) the
absence of changes in population for more than two iterations. At the end of the
process we found three different solutions that were slightly different among each
other, optimal only for the specific case. This result was expected because the
input data were few. Thus, we took as a valid global solution the “intersection”
among them, namely not the solution with the best fitness but a valid solution
that appeared in all three cases with minimum difference in parameters:
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Hranges = 14;Slow = 45;Shigh = 55;Vlow = 16;Vhigh = 91.

It can be noticed that value Hranges is closed to the original one (12), instead
thresholds for Saturation and Value changed much more and with an opposite
behavior: Saturation works better with a narrow central bin while the contrary
for Value.

4 Results

We compared the previous and current segmentation on all the remaining multi-
temporal image sequences.

Fig. 2. Segmentation of areas with no alteration (C2 on the left and V1 on the right):
original images with correspondent dataset IDs (first row); previous segmentation [7]
(second row); current one (third row).

Firstly, we analyzed areas C2 and V1 where no meaningful alteration occurred
during the sixth-month monitoring period [10] and thus eventual variations in
the images are only due to environmental noise. In both cases the new approach
outperforms the previous one producing a nearly identical segmentation for all
three sessions (Fig. 2). This is particularly evident by comparing previous and
current outcome in session 3 for area V1. The new method was also able to
partially handle a large wrong reflection in area C2 session 3. Generally, images
with so large reflections are discarded during the acquisition step, since the noise
is evident even by naked eye, we used it in this case only for test purposes.

As similarity metric we chose the χ2 test (Eq. 2) comparing the segmentation
for session 1 (our reference initial state) with those for session 2 and 3 respectively
(Table 1). As expected χ2 values slow down with the new approach and remain
stable between sessions, while with the old one change significantly. The slight
increase in session 3 for area C2 is only due to the presence of the large reflection.

More interesting is the case of area V2 (Fig. 3) that suffered slight alterations
between the three sessions (focused in the region inside the red rectangle). Com-
paring the two segmentations we can notice that alterations are more visible with
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Table 1. Similarity measure (χ2) among sessions for “Carlo IX” and “Vesuvio”

Area S1–S2 S1–S3

Old New Old New

C2 0.29 0.14 4.71 0.32

V1 0.26 0.01 1.59 0.01

V2 0.97 0.23 0.43 0.21

Fig. 3. Segmentation of area V2: sample images of the three sessions (first row), red
circles highlight regions with slight alterations between sessions; previous segmentation
[7] (second row); current one (third row). (Color figure online)

the previous method (second row) respect to the new one (third row). However,
wrong and right variations have the same “weight” with the old method, while
with the new one we achieved a more uniform segmentation less prone to errors.
The quality of the result can be appreciated performing the weighted difference
(Eq. 3) between the first and the third session in the two cases.

diff(s1, s3) =
{

255 if |s1 − s3| ≥ th
0 if |s1 − s3| < th

(3)

We considered only the greatest differences (th = 240) for a better visualiza-
tion and for excluding the effect of small misalignments among pictures. True
Positives (TP) are highlighted in green and False Positives (FP) in red (Fig. 4).
The outcomes clearly show that old approach is very sensitive producing a large
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Fig. 4. Weighted difference between segmentations of Sessions 1 and 3 for V2: previous
segmentation [7] (left); current one (right). True Positives (real alterations) in green
and False Positives (noise) in red. (Color figure online)

Fig. 5. Segmentation of SV01: sample images of the various sessions (first row), not
altered areas highlighted in green, altered areas in red; previous segmentation [7] (sec-
ond row); current one (third row). (Color figure online)

number of FP randomly diffused on the surface, while the new one is more focus
with a significant reduction in the number of FP. This is coherent with our
design principles. We want a segmentation able to highlight reasonable regions
of interest on which perform further analyses, thus, we are not interested in a
perfect detection of all TP pixels (it is enough to roughly highlight the correct
areas), but it is crucial to minimize the FP to avoid unnecessary examinations.
It also worth notice that the value of χ2 is low also for V2 (Table 1) since the
altered area is very small compared with the remaining of the surface that did
not change among sessions.

Finally, we compared the two methods with the artificially created sequence
SV01 (Fig. 5) to test the performances on a long time period. In this case we had
a full control on the setup: we gradually worn out only the bottom part of the
violin (first row, red rectangle), maintaining unaltered the upper region (green
rectangle). Violin and lamps were slightly moved among sessions thus there are
various kinds of noise in all images. Also in this case the current segmentation
prove to be more robust than the previous one: variations are present only in
the red region while the green one is stable among sessions (third row). On the
contrary, the presence of environmental noise in the green region have a high
impact in the older segmentation (second row). In this case the similarity check
is not meaningful, since images significantly change among sessions.



90 P. Dondi et al.

5 Conclusions

In this paper we presented a robust segmentation method useful to perform
comparison among multi-temporal UVIFL images of historical violins. Tests per-
formed showed promising results: the proposed approach was able to efficiently
handle environmental noise without losing meaningful alterations. The multi-
temporal UVIFL images used for the experiments were collected in a public
available dataset, the first of this kind to the best of the authors’ knowledge.

As next step, we plan to increase our dataset with new sample images created
in laboratory to simulate, as faithful as possible, various alteration conditions.
A larger dataset will allow to better assess and refine the proposed segmentation
method. We are also considering the integration with other image processing
techniques to improve the early detection of alterations.
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