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Abstract. Object pose estimation is important for systems and robots
to interact with the environment where the main challenge of this task
is the complexity of the scene caused by occlusions and clutters. A key
challenge is performing pose estimation leveraging on both RGB and
depth information: prior works either extract information from the RGB
image and depth separately or use costly post-processing steps, limiting
their performances in highly cluttered scenes and real-time applications.
Traditionally, the pose estimation problem is tackled by matching feature
points between 3D models and images. However, these methods require
rich textured models. In recent years, the raising of deep learning has
offered an increasing number of methods based on neural networks, such
as DSAC++, PoseCNN, DenseFusion and SingleShotPose. In this work,
we present a comparison between two recent algorithms, DSAC++ and
DenseFusion, focusing on computational cost, performance and applica-
bility in the industry.
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1 Introduction

Estimating the 6D pose of an object is an important task for many applications,
such as the interaction of a robot with the real world [35], automotive [9,22],
augmented and virtual reality for both entertainment and remote maintenance
and training [20,21]. Ideally, a solution should deal with objects of varying shape
and texture, show robustness towards heavy occlusion, sensor noise, and chang-
ing lighting conditions, while achieving the speed requirement of real-time tasks.
Due to the constraints of such applications, it becomes mandatory providing
accurate and fast algorithms that are robust to acquisition noise and occlusions.

In recent years, the scientific community has proposed an increasing num-
ber of approaches to face the pose estimation problem, with a particular focus
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on neural network based methods [14,34]. Deep learning allows to infer the pose
without a complete scene description, reducing the information to store and pro-
cess. Strict space and computational requirements need to be solved on wearable
devices [16] and augmented and virtual reality systems [15,32] where energy con-
sumption is a crucial aspect to optimize.

The advent of cheap RGB-D sensors has enabled methods that infer poses of
low-textured objects even in poorly-lighted environments more accurately than
RGB-only methods: prior works either extract information from the RGB image
and depth separately or use costly post-processing steps, limiting their perfor-
mances in highly cluttered scenes and real-time applications [12]. Nonetheless,
precise depth sensors are usually energy consuming while RGB cameras are
cheap, lightweight and perfectly fit the demands of mobile and wearable tech-
nologies.

Fig. 1. 3D printed model of the electronic component used in the comparisons.

In this paper, we present a comparison among state of the art methods on 6D
pose estimation. Our purpose is to find those techniques that are suitable for real
and industrial applications. Hence, we selected and tested efficient algorithms
which code is publicly available: DSAC++ [4] and DenseFusion [31]. The decision
was led by their promising results on different datasets, their efficiency and
reproducibility. We investigate the performances of those methods by generating
a synthetic dataset in order to estimate the 6D pose of an electronic component
of a control panel (see Fig. 1).

The structure of the paper is as follow. In Sect. 2 a brief review of the liter-
ature is presented, with an in depth and technical description of DSAC++ and
DenseFusion frameworks. Then, we provide qualitative analysis of those methods
in Sect. 3. In the last section, we discuss the results.

2 State of the Art

Object pose estimation and the complementary problem of camera localization
are open problems in computer vision with many practical applications that
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could benefit from their resolution, such as robot manipulation [35], autonomous
vehicles [33], wearable devices [16] and virtual and augmented reality [15,32]. All
these applications usually need lightweight, fast and robust localization systems
that are reliable in cluttered scenes and under heavy object occlusions.

RGB Based. Classical methods rely on detecting and matching keypoints with
known object models [1,19] while other methods address the problem by learning
how to predict the 2D keypoints [23]. Such methods are not reliable when the
system is fed with low resolution images or poor texture information. Despite
many attempts provide interesting results, primarily based on neural architec-
tures [27], the lack of depth information prevent reaching precise results.

Depth or Point Cloud Based. Working on 3D information is another way to
tackle the pose estimation problem. Recent studies proposed a discretization of
the space through voxelization [28] and 3D convolutions [24]. Despite the effec-
tive geometrical representation of the data, storing voxels is often prohibitively
expensive [29]. Many alternatives have been proposed, working on point cloud
data [34] representing urban driving environments. In such cases, depth informa-
tion is usually enough to retrieve all the geometrical properties of the scene but in
indoor tasks (i.e. small object pose estimation), appearance information should
be taken into account. In [31] a 2D-3D sensor fusion architecture is proposed
and described in the next sections.

RGB-D Based. Cheap depth cameras has spawned many RGB-D pose estima-
tors [2,5,6]. The approaches that fuse both appearance and geometrical infor-
mation (i.e. RGB and depth) often rely on 3D reconstruction of the scene [13],
giving grouping hypothesis that are later validated [2]. Newer methods such
as PoseCNN [34] directly estimate 6D poses from image frames where depth is
later fused [18] as additional modules in the network architecture. Despite RGB-
D based algorithms usually require expensive post-processing, they reach high
accuracy and in general outperform RGB-only and depth-only methods.

In this work, we mainly focus on the following methods: DSAC++ [4] and
DenseFusion [31], that we describe in details in the next subsections. For the
sake of completeness, we also provide a brief description of other competitor,
SingleShotPose [30]. We decided to compare those methods because of the fol-
lowing reasons: these are recent and good examples of state of the art approaches,
results are promising for real applications, the source code is available and rea-
sonably easy to adapt and run in near real-time on unseen scenarios.

2.1 DSAC++

DSAC++ is a new, fully differentiable camera localization pipeline which has
only one learnable component, a fully convolutional neural network for scene
coordinate regression. The authors proposed DSAC++ as an upgrade of their
previous work DSAC [3]: they propose a probabilistic selection of the candidate
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Fig. 2. DSAC pipeline overview. The difference in DSAC++ pipeline is that the scoring
is no more performed by a learnable component

poses in order to obtain a differentiable loss function instead of using the deter-
ministic selection based on RANSAC [7]. DSAC was developed with two learn-
able components: one for regression and one for scoring. However, the scoring
CNN tends to overfit and does not generalize well on unseen scenes. DSAC++
uses only one learnable component related to regression (Fig. 2).

The pipeline is the following:

– Hypothesis generation by regression: the regression module is used to
estimate the depth information of the scene. A certain number of 3D points
(n = 4) is selected to solve the PnP problem [8] in order to get an hypothesis h
of the camera pose. This operation is performed m-times to obtain m different
pose hypothesis.

– Hypothesis selection: each hypothesis is ranked through a function s(h)
to build a distribution of scores. Instead of selecting the best hypothesis, the
system propagates the inlier poses distribution.

– Pose refinement: the hypothesis generation is repeated in order to refine
the inliner distribution and the consequent pose estimation.

2.2 DenseFusion [31]

In this work, the authors propose an end-to-end deep learning approach for
6D object pose estimation from RGB-D inputs. The main idea is to fuse the
extracted features from RGB and depth channels at per-pixel level. This per-
pixel fusion scheme enables DenseFusion to explicitly reason about the local
appearance and geometry information, enabling the system to handle occlusion.
The pipeline of the method is shown in Fig. 3 and could be divided as follow:

– Semantic segmentation: the objects in the scene are segmented. The out-
put of this step is a crop of the RGB frame and the corresponding point cloud
extracted from the depth frame;

– Features extraction: RGB crop and point cloud are processed through a
custom fully-convolutional network and a PointNet-based [24] architecture;

– DenseFusion module: color and depth embeddings are fused together and
processed to generate global features of the selection;

– Per-pixel pose estimation: local (per-pixel) and global features are com-
bined and fed into a pose predictor network which returns a per-pixel pose
estimation;

– 6D pose estimation: final pose is the argmax of the output of previous step.
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Fig. 3. Overview of DenseFusion. It generates object segmentation masks and bounding
boxes from RGB images. The RGB colors and point cloud from the depth map are
encoded into embeddings and fused at each corresponding pixel. The pose predictor
produces a pose estimate for each pixel. Predictions are voted to generate the final 6D
pose prediction of the object. Figure is taken from the original paper [31] (Color figure
online)

2.3 SingleShotPose [30]

A state of the art method working on RGB frames is SingleShotPose [30]. The
authors propose a single-shot deep CNN architecture based on YOLO [25,26]
that takes a single RGB frame as input and directly detects the 2D projections
of the 3D bounding box vertices of the objects. Given these 2D coordinates and
the 3D ground control points of the bounding box corners, the 6D pose can be
calculated algebraically with an efficient PnP algorithm [17]. Complete pipeline
is shown in Fig. 4.
SingleShotPose pipeline could be divided in the following main steps:

– Features extraction: a single RGB image is processed with the fully-
convolutional architecture in Fig. 4a;

– 2D prediction: the features volume is subdivided into a 2D regular S × S
grid (Fig. 4c) where each cell contains the predictions of 9 control points
(the projection of the 3D bounding box and its centroid), the predicted class
probabilities and a confidence value. During training, the model predicts the
confidence of the bounding box projection according to Eq. 1:

c(x) =

{
e
α

(
1−DT (x)

dth

)
, if DT (x) < dth

0, otherwise
(1)

where DT (x) is the 2D Euclidean distance, in image space, between the pre-
dicted 2D point x and its ground truth; dth is the cut-off threshold of the
exponential decreasing function.
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Fig. 4. Overview of SingleShotPose: (a) YOLO-based CNN architecture. (b) Example
of input image. (c) The S × S grid showing cells responsible for detecting objects.
(d) Each cell predicts 2D locations of the corners of the projected 3D bounding boxes
in the image. (e) The 3D output tensor from our network. Figure is taken from the
original paper [30].

– Forward pass: at run-time, the network returns the class prediction, its
confidence and the 2D projections of the object 3D bounding box. For big
objects, 2D coordinates are averaged on the occupied cells.

– Pose estimation: the PnP algorithm [17] is used to estimate the 6D pose
from correspondences between the 2D and the 3D coordinates.

3 Experiments

We first describe how we create a dataset with ground-truth information followed
by the experimental protocol. Then, we describe the setup and metrics we used
to perform the evaluation. Qualitative and quantitative results are obtained on
our synthetic dataset.

3.1 Dataset

In order to fairly compare the methods described in Sect. 2, we generated a new
synthetic dataset in Unity1 representing an electronic component of a control
panel (see Fig. 1). We generated an office environment by modelling common
furniture and objects (e.g. chairs, tables, monitor, keyboards): the target object
is located on the central table in the world origin. Since in our data the world
coordinate systems and the object pose are the same, the two problems of camera

1 https://www.unity.com.

https://www.unity.com
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localization and object pose estimation coincide. The dataset consists of 7000
RGB images, with corresponding depth frames and binary object masks (see
Fig. 5). Images are rendered in order to simulate a Microsoft Kinect v1 sensor
pointing to the object centroid, with resolution 640×480 pixels and focal length
of 26 mm, and the camera positions are uniformly sampled from the upper hemi-
sphere of the scene. Each image is associated with the ground-truth pose of the
object in camera space. In Fig. 5 is shown a subset of the rendered viewpoints.

Fig. 5. Top: generated images for target object; from left to right: RGB, depth and
binary mask frames. Bottom: overview of the scene with subset of visited viewpoints
in white. (Color figure online)

3.2 Training

We run the experiments on a Linux machine with 16 GB of RAM, a NVidia RTX
2070 GPU (8 GB of vRAM) with NVidia CUDA 8.0 installed. We managed to
run the original implementation and hyper-parameters of DSAC++ (C++, Lua
5.1) and DenseFusion (Python 3). Due to our hardware limitations, DSAC++
took roughly 5 days for training the complete model on our synthetic dataset.
Testing runs at 200 ms per image. DenseFusion training converged in almost 3
days on the same machine. Testing is faster than DSAC++, requiring 50 ms per
image.



6D Pose Estimation for Industrial Applications 381

3.3 Metrics

To compare the output poses of DSAC++ and DenseFusion, we compute the
error of the rotation and translation components separately. We make use of the
mean absolute error for both rotation (expressed as Euler angles, XYZ format)
and the translation vector. Table 2 shows the averaged results on our synthetic
dataset.

3.4 Evaluation

In our evaluation we have considered three state of the art methods: SingleShot-
Pose, DSAC++ and DenseFusion. The decision was led by their promising results
on different datasets and the availability of the source code. In Table 1 we give
an overview of those methods. Before testing our dataset, we replicated the orig-
inal results of all the methods: results have been successfully replicated on their
datasets and same hyper-parameters. Tests on our data have been run by main-
taining almost the same parameters of the original methods. We aim to train the
models on a new domain and also to evaluate the robustness of the architectures
by maintaining the same training settings.

Table 1. Main differences among the selected state of the art methods.

Input data type Output models Trained on

SingleShotPose [30] RGB One per class LINEMOD [11]

DSAC [3] RGB, RGB-D 2 MS7S [10]

DSAC++ [4] RGB, RGB-D 1 MS7S [10]

DenseFuion [31] RGB-D 1 LINEMOD [11], YCB [34]

SingleShotPose. This method benefits of a RGB-based architecture which is
capable to estimate the 6D pose of an object in the scene. Despite the promising
results on the LINEMOD dataset [11], it quickly becomes clear that the train-
ing procedure is not simple to run: SingleShotPose needs a heavily annotated
dataset, making very difficult to create one. Furthermore, it generates one model
(CNN) for each class, occupying a significant amount of memory. This is a big
limit in a scenario in which we want to minimize the energy and memory con-
sumption, such as when using wearable devices. Since our goal is to simplify at
most the training procedure and reduce the resource usage, we decided to focus
on other methods and left SingleShotPose for future analysis.

DSAC++. It is a RGB-based camera localization method which exploits one sin-
gle architecture to predict the camera pose. From a data generation point of view,
the camera localization problem is simpler than the object pose estimation since
it does not require any segmentation of the scene. Despite the training procedure
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is simple to prepare and run, it takes a long time to converge. Unfortunately, our
tests demonstrated that the generalization capabilities of DSAC++ are limited:
after training the model on our synthetic dataset, numerical results are higher
than expected, showing high prediction errors both in rotation and translation
(1.7 radiants and 2.6 m, respectively). Further experiments need to be run, with
exhaustive cross-validation of both the dataset quality and hyper-parameters set-
tings. We think the insufficient results are due to the poor texture information
in our data: RGB-based methods are known to work well where high-frequency
information is available, such as in presence of rich textures and geometrical
details (when depth frames are usable). For the sake of completeness, we ini-
tially replicated the results of the DSAC++ method, starting with the datasets
they proposed. We focused more on scenes representing small-scale contexts, so
especially on the Microsoft 7-Scenes [10] RGB-D datasets. The results have been
validated correctly, with a precision of camera pose estimation between 1.5 and
3 cm, and around 1◦ of rotation error.

DenseFusion. The last method we analyzed requires RGB and depth frames
and the segmentation of the target object to train a single model for pose esti-
mation. DenseFusion could be considered as a good compromise between space
usage, time complexity and ease of training. Convergence of the new model on
our dataset took several days. Nonetheless, pose estimations are quite accurate,
reducing the average error up to 0.05 radiants on rotation and less than 4 cm on
translation. As additional feature, DenseFusion runs in almost real-time (50 ms
per image) while the competitors run up to 200 ms.

Table 2. Averaged rotation and translation errors of state of the art methods on our
synthetic dataset. Rotation error is in radiants, while translation error is in meters.
Standard deviation is in parenthesis.

Rotation error (rad) Translation error (m)

DSAC++ 1.728 (0.253) 2.594 (1.176)

DenseFuion 0.054 (0.207) 0.038 (0.021)

4 Conclusions

We presented an overview of 6D pose estimation techniques and a compari-
son between some recent algorithms, DSAC++ and DenseFusion, focusing on
performance, ease of training and robustness. Despite RGB-only and depth-
only approaches usually need less information and less complex datasets, RGB-
D methods demonstrated higher accuracy on average. DSAC++ proposes an
intriguing pipeline but our tests demonstrated that its generalization capabilities
are compromised if data is poorly textured (i.e. missing high frequency informa-
tion) and parameters are not precisely tuned. On the other hand, DenseFusion
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showed stronger generalization, faster training and testing time. Results are also
more encouraging without any specific parameter setting. In conclusion, after
our evaluation, DenseFusion appears to be the best choice for 6D object pose
estimation relying on RGB-D data. Its efficient implementation perfectly fits
industrial and real application constraints, where space and time requirements
are strict.

Acknowledge. We thank The Edge Company, Srl for the support to this research.
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