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Chapter 4
Role of Pet Dogs and Cats as Sentinels 
of Human Exposure to Polycyclic Aromatic 
Hydrocarbons
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and Octavio P. Luzardo

Abstract Polycyclic aromatic hydrocarbons (PAHs) are a large group of chemical 
contaminants, predominantly produced via fossil fuel combustion. They spread eas-
ily worldwide, so they are considered as semipersistent pollutants. Many of them 
are considered as carcinogenic or mutagenic compounds, for example, interacting 
directly with DNA. Benzo(a)pyrene (BaP) is the most important and well-known 
PAH. Living beings are exposed everyday through air, water, plastic stuff and smoke 
and almost by food intake, because they are highly lipophilic. In human risk assess-
ments, monitoring these compounds, or their products, in environment, biological 
or food samples has attracted enormous interest. Pets commonly share habitat and 
routine life with humans. In this chapter, the possibility that pets were good senti-
nels of human exposure to PAHs is studied in detail. Concentrations of parental 
PAHs and some metabolites between human and pets have been compared. In the 
case of dogs, their concentrations and profiles of PAHs are very different to those of 
humans when compared. Dogs had lesser concentration of parental compounds and 
higher concentration of their metabolites than humans. Similarly, cats present dif-
ferent concentrations and detection frequencies than humans. Therefore, the scarce 
data available indicate that dogs and cats seem to have different sources of exposi-
tion to PAHs than humans. Although more studies are needed, pets do not seem to 
be good sentinels for human exposure to PAHs.
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4.1  Introduction

Polycyclic aromatic hydrocarbons or polynuclear aromatic hydrocarbons (PAHs) 
are a large class of organic compounds (more than a hundred are known) made from 
carbon and hydrogen, formed by more than two benzene rings fused and organised 
on linear, angular or cluster structure. According to their molecular weight, they can 
be classified as low-molecular-weight PAHs (LMW-PAHs, up to three fused rings) 
or as high-molecular-weight PAHs (HMW-PAHs, minimum of four rings).

Generally, they are colourless, white or yellowish solid at room temperature; 
have low vapour pressure, high melting and boiling points and low water solubility; 
and are hence highly lipophilic (WHO 1998). The most harmful and best-known 
PAH is benzo(a)pyrene (BaP), but there are many other PAHs of concern (Fig. 4.1) 
because of their toxicity, human exposure, occurrence in the environment and scope 
of available information. According to the list of priority pollutants of the United 
States Environmental Protection Agency (USEPA), there are 16 priority PAHs, 
because of their occurrence and the fact that they are continuously emitted to the 
environment (ATSDR 1995). More important are those PAHs that have been identi-
fied as mutagenic/teratogenic/carcinogenic by the Joint FAO/WHO Expert 
Committee on Food Additives (JECFA) (Fig. 4.1). Based on data from oral bioas-
says conducted in mice with coal tar mixtures, the JECFA calculated margin of 
exposure values of 25,000 and 10,000 between the BMDL10 value of 100 μg of 
benzo[a]pyrene/kg bw/day and mean and 95th-percentile intake levels of 4 and 
10 ng/kg bw/d, respectively.

According to their origin, PAHs can be classified as pyrolytic (high temperature), 
petrogenic (high pressure) or biological (synthesised by microorganisms). Besides, 
they can be disguised between anthropogenic (combustion of fossil fuels, princi-
pally) and natural (forest fires, volcanos, fossil fuel formation, vegetal matter 
decomposition) sources, although the latter have a minimal contribution to the total 
environment burden.

Granting that they have no utility per se, PAHs are used as intermediaries in dif-
ferent industries, namely, in the manufacture of pharmaceutical products, polyvinyl 
chloride (PVC) and plasticisers (naphthalene), pigments (acenaphthene, pyrene), 
dyes (anthracene, fluoranthene) and pesticides (phenanthrene) (WHO 1998). 
Nevertheless, production, processing and use of fossil fuels principally coal – and, 
to a lesser extent, oil and natural gas – for industries, heating or transportation in 
cities, are the main source of emission of these contaminants to the environment 
(Cabuk et al. 2014; Villar-Vidal et al. 2014). Concerning traffic, petrol-fuelled vehi-
cles can emit greater amounts of fluoranthene and pyrene, whilst diesel-fuelled 
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vehicles emit naphthalene and acenaphthene. In the case of smoking, cooking or 
burning (of stubble, garbage, tyres or other types of waste), a great variety of differ-
ent compounds are emitted, including the ones already mentioned.

After being formed, these hydrocarbons are dispersed in the environment accord-
ing to their molecular weight and climate conditions (Kozak et al. 2003). Thus, the 
HMW-PAHs can be adsorbed into the organic matter of the soil, water or air, whilst 
the LMW-PAHs will become a part of the gas phase in the atmosphere (Li et al. 
2015). Both can be transported over long distances in several weeks until they are 
precipitated and/or degraded by solar light or microorganisms in the soil or sedi-
ments (Walgraeve et al. 2010). Along the way, they can react with different airborne 

Fig. 4.1 Polycyclic aromatic hydrocarbons for which there is clear evidence of mutagenicity/gen
otoxicity in somatic cells in experimental animals in vivo and, with the exception of benzo(ghi)
perylene, which have also shown clear carcinogenic effects in various types of bioassays in experi-
mental animals

4 Role of Pet Dogs and Cats as Sentinels of Human Exposure to Polycyclic Aromatic…



68

compounds, namely, sulphur oxides, nitrogen oxides or ozone, resulting in no less 
toxic combinations (Li et al. 2015; Walgraeve et al. 2010), like nitro-/oxy-PAHs and 
radicals formation.

4.2  Sources of Exposure and Health Effects

Humans and other living beings can be exposed to PAHs through inhalation or der-
mal/mucosa contact or mainly through water and food intake (Boada et al. 2016; 
Henriquez-Hernandez et  al. 2017b; Hernandez et  al. 2015, 2017; Luzardo et  al. 
2013a; Rodríguez-Hernández et al. 2015b, 2016, 2017). Inhalation is an important 
source in smokers and people who live near or in big cities or industrialised zones, 
where ten times higher concentrations of PAHs than in rural areas can be found (de 
la Gala Morales et  al. 2015; Srogi 2007). Several authors have described higher 
concentration of PAHs in winter than in summer because of increased use of domes-
tic heating (de la Gala Morales et al. 2015; Li et al. 2015; Villar-Vidal et al. 2014).

It has also been described that dermal exposure may be relevant, mainly when 
prolonged or continued contact with products made of petroleum derivatives occurs. 
Recently, the European Union, through the REACH (Registration, Evaluation, 
Authorisation and Restriction of Chemicals) regulation, established new restrictions 
about PAHs in several day-to-day stuffs made of plastics or rubber, which are in 
direct, prolonged or short-term repetitive contact with human skin or mucosa. These 
items should not contain more than 10 mg/kg of the sum of benzo(a)pyrene (BaP), 
benzo(e)pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(j)flu-
oranthene, benzo(k)fluoranthene and dibenzo(a,h)anthracene, or no more than 
1 mg/kg of BaP alone (ECHA 2017).

Although parental PAHs are generally inert, once in the organism, PAHs can be 
metabolised to be eliminated, generally via urine (LMW-PAHs) or faeces (HMW- 
PAHs). By the way, the process may result in active PAH metabolites (m-PAHs) 
capable of forming adducts with the DNA (Boada et al. 2016; Ramesh et al. 2004; 
Rodríguez-Hernández et al. 2015a, Hernandez et al. 2017). The biotransformation 
process is carried out through a series of enzymes like cytochrome P-450, which 
catalyses mainly oxidation, reduction and hydrolysis reactions. In vertebrates, the 
liver is the major contributor in the biotransformation process. However, in other 
organs there are cytochromes, which are able to perform this function according to 
the entryway (i.e. lungs, intestine or skin) (Ramesh et al. 2004). In addition, conjuga-
tion enzymes such as sulphotransferases, epoxide hydrolase, glutathione transferase 
and UDP-glycosyltransferase can metabolise PAHs, producing a variety of phenols, 
catechols, quinones and radical cations. Once they are formed, these compounds 
may produce adverse effects by means of various mechanisms, such as DNA dam-
age diol-epoxides (that give place to formation of adducts), interaction with mem-
branes and oxidative stress (Li et al. 2015; Sikkema et al. 1994; Zhang et al. 2016). 
Given that, some PAHs are described as carcinogenic (c-PAHs), namely, human 
carcinogen BaP (Group 1), whilst others are considered as probably (Group 2A) or 
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possibly carcinogenic (Group 2B) by the International Agency for Research on 
Cancer (IARC 2005). All these compounds have been described as contributing 
causes of breast, bladder, lung, skin or gastrointestinal cancers (Alicandro et  al. 
2016; Boada et al. 2015, 2016; Flesher and Lehner 2016; Korsh et al. 2015).

Often mixtures of hydrocarbons and/or their derivatives (such as nitro-PAH) are 
more harmful, due in part to synergistic properties. In general terms, the lower the 
molecular weight, the lower the carcinogenicity potential, but they are more prone 
to cause acute health effects, such as cardiovascular diseases (thrombosis, haemato-
poietic effects), dyspnoea, asthma (Al-Daghri et  al. 2014), diarrhoea, vomiting, 
nausea and eye, dermal or bronchial irritation or inflammation (Ramesh et al. 2004). 
Moreover, it is well known that some PAHs are endocrine disruptors in animals and 
humans. Neurological, congenital and development problems in the offspring and 
mothers (Jedrychowski et al. 2013; Neal et al. 2008; Oliveira et al. 2017) or immu-
nosuppressant effects (Bolden et al. 2017; Ramesh et al. 2004) have been reported.

4.3  Biomonitoring of Polycyclic Aromatic Hydrocarbons

Given the toxicity and environmental prevalence of these compounds, the monitor-
ing of PAHs is a relevant issue, and there is plenty of interest in control and assess-
ment of these substances in food, environmental compartments, living beings and of 
course humans. Environmental monitoring of these substances is achieved by sam-
pling and analysing samples such as air, water, food or soil (Bucchia et al. 2015; de 
la Gala Morales et al. 2015; García-Álvarez et al. 2014b; Hernandez et al. 2015; 
Kakuschke et al. 2010). Specifically, biomonitoring – the monitoring of these com-
pounds in living beings – is usually considered the best approach as it provides a 
real picture of the exposure of living beings, meaning that it provides an assessment 
of the whole uptake through all exposure routes (Srogi 2007).

The biomonitoring of human populations may be done either by direct measure-
ment in samples taken from study populations or extrapolating the data from the 
environmental exposure of other organisms (bioindicators or sentinels). This bio-
monitoring can be done by directly determining the individual PAHs and/or their 
metabolites, as well as by determining biomarkers of the effect they produce. In the 
case of PAHs, it is common to determine the presence of adducts of PAHs with 
DNA, or the detection of tetrahydroxy-PAHs that can also be measured as an indica-
tor of tissue damage.

For reasons of practicality and ease of collection of samples, it is often consid-
ered that urinary metabolites of PAHs are better bioindicators of exposure, being 
considered the gold standard to determine recent exposure to a single PAH, in par-
ticular when multiple routes of exposure have to be taken into account (Jacob and 
Seidel 2002) or in occupational meaning (Unwin et al. 2006). The main m-PAHs 
that should be included in biomonitoring studies are 1-hydroxynaphthalene 
(1- napthol), 2-hydroxynaphthalene (2-naphthol), 1,2-dihydroxynaphthalene, 
2-hydroxyfluorene (2-FLUO), 3-hydroxyfluorene (3-FLUO), 9-hydroxyfluorene 
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(9-FLUO), 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 
3- hydroxyphenanthrene, 4-hydroxyphenanthrene, 9-hydroxyphenanthrene, 
1-hydroxypyrene (1-PYR) and 3-hydroxybenzo(a)pyrene (3-OHBaP) (Wang et al. 
2014a, b). 1-PYR has been linked to dietary exposures, whilst both 1-PYR and 
2-naphthol are well correlated with smoking in a non-occupational population 
(Nethery et al. 2012; Srogi 2007). Urinary 3-OHBaP may be a suitable biomarker to 
assess BaP genotoxic exposure in humans (Marie-Desvergne et al. 2010; Oliveira 
et  al. 2017). One decisive factor to take into account when determining urinary 
metabolites is sampling time, due to the high rate of biotransformation of these 
compounds (Cathey et al. 2018; Grova et al. 2017a, b). Taken together, those results 
suggest that it is better to use a combination of metabolites, since each metabolite 
gives an information about a single or few parental PAHs (Castano-Vinyals et al. 
2004; Grova et al. 2017b; Hilton et al. 2017; Singh et al. 2008).

Other excretion routes, such as nails, hair, sweat or feathers, amongst others, 
have been also investigated regarding their content in m-PAHs, as a means of deter-
mining long-term exposure to these substances. In fact, some authors have pointed 
out that these matrices are more appropriate for the determination of HMW-PAHs 
(Grova et al. 2017b; Marie-Desvergne et al. 2010).

On the other hand, not only for assessing exposure but also the toxicological 
effect of PAHs, some other authors prefer to determine the amount of PAHs-DNA 
adducts in peripheral white blood cells, or their binding to plasmatic proteins, espe-
cially in occupational studies (Oliveira et al. 2017; Pleil et al. 2010). Other authors 
correlate the level of oxidative stress induced by PAHs as an indirect indicator of the 
carcinogenicity of these compounds (Singh et al. 2008). However, these studies of 
biomarkers have the disadvantage in that the analytical techniques are complex, 
have low sensitivity and do not allow deriving the global exposure to these 
compounds.

Finally, some authors consider that the direct measurement of PAHs in blood is 
the best way to estimate the total body burden and also the most realistic way to 
estimate exposure (Boada et al. 2015; Pleil et al. 2010). It has the disadvantage in 
that sampling is invasive, especially taking into account that WHO recommends that 
biomonitoring studies include mainly children, because it has been estimated that 
children aged 6–11 are the sector of the population most exposed to these com-
pounds (Singh et al. 2013). In addition, and as we said before, it is possible to evalu-
ate human exposure to PAHs indirectly, using bioindicator species. In these cases 
also blood is often the easiest sample to take, so comparison with human levels is 
simpler (Boada et  al. 2015; Bucchia et  al. 2015; Camacho et  al. 2012b, 2014; 
Camacho et al. 2013b; García-Álvarez et al. 2014a, b; Luzardo et al. 2014).

In this sense, studies of the effects of environmental exposures on vegetables or 
animals can corroborate or support epidemiological studies in humans or in the 
environment. In these cases, the levels determined in these easy-to-sample species 
may reflect the exposure of a group of environmentally related species, rather than 
the individual exposure. Thus, the use of microbial bioindicators in order to evaluate 
contamination of some PAHs in agricultural soils (Niepceron et al. 2013) and in the 
gas and aqueous phases (Cho et al. 2014) has been reported. In the same way, moss, 
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lichens and plants have been used as passive phytomonitors instead of the active 
samplers and several studies have found promising results. In wildlife, some authors 
have proposed different species as possible sentinels of exposure. Some inverte-
brates have been studied. Amphipod (Talitrus saltator) appears to be a good bioin-
dicator of this class of organic compounds in supralittoral zone (Ugolini et al. 2012). 
The possibility that molluscs are good bioindicators of the contamination of PAHs 
from the waters or sediments in mudflats of Malaysia (Tavakoly Sany et al. 2014) 
and mangrove oysters (Crassostrea rhizophorae) (Ramdine et  al. 2012) has also 
been reported. Studies on oil spills such as those occurring on the northern Cantabrian 
sea and in Guanabara Bay, Brazil, respectively, concluded that barnacles are good 
indicators for oil spill evolution (Soares-Gomes et al. 2010; Vinas et al. 2009). Other 
species in the highest levels of the food chain have also been described as efficient 
indicators of recent pollution. Fuentes-Rios et  al. (2005) determined that the cat 
shark is a good bioindicator for exposure to PAHs on the Chilean Pacific coast, 
showing good correlation with the concentration of pyrene in water and urinary 
1-PYR. On Atlantic eastern coast and Mediterranean sea, several authors (Bucchia 
et al. 2015; Camacho et al. 2012a, 2013a, 2014, García-Álvarez et al. 2014a) inves-
tigated serum levels of PAHs in different populations of sea turtles (Caretta caretta) 
and bottlenose dolphins (Tursiops truncata) indicating that both species could be 
good indicators of local and recent pollution in the marine environment.

Since the iconic ‘canary in the cage’ began to be used to detect the presence of 
toxic gases in the coal mines, pets and other animals in the human immediate environ-
ment have been used as sentinels of human exposure to many other chemical classes. 
In this case, they were used as an early warning system, since the canary is more 
sensitive to carbon monoxide poisoning than humans and other domestic animals like 
cats, dogs, pigeons or rabbits. Livestock, including bees, cattle, horses, sheep and 
goats, can be good bioindicators for outdoor air, whilst pet cats and dogs can share the 
indoor air, water, food or even household dust. However, daily routine and diet, espe-
cially in people who are occupationally exposed, smokers or on some kind of diets, 
are confounding factors. The different metabolism and elimination capacity amongst 
the species should be also taken into account as confounding factors.

4.4  Pet Dogs as Sentinels forHuman Exposure to PAHs

Pet dogs are particularly interesting as sentinels for human exposure to PAH, given 
that they share the habitat with humans and they respond to toxic assaults similarly 
than their owners (Backer et al. 2001). As far as we know, there is only one research 
article that has assessed exposure to PAHs in dogs and humans to date (Ruiz-Suárez 
et al. 2016). In this study, the authors included blood samples from 87 pet dogs (46 
males and 41 females, 0.5–13  years old) visiting the veterinary hospital of the 
Faculty of Veterinary Medicine of the University of Las Palmas de Gran Canaria 
(Canary Islands, Spain) for routine care. Only clinically normal animals (negative 
stool sample, negative result on a heartworm test and no overt disease) were included 
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in the study, after owners’ consent. In parallel, human blood samples from 60 males 
and 40 females (19–34 years old) were collected from a blood bank during the same 
period that dogs’ samples were drawn. For logistical reasons the researchers could 
not get blood from the owners of the same dogs included in the study. Even so it has 
been estimated that there are about six million domestic dogs in Spain and that more 
than 40% of Spanish homes have at least one dog, so the authors assumed that a 
high percentage of these blood donors share habitat with some dog.

In this research work the authors determined 21 PAHs, including the 13 c-PAHs 
and also 6 common m-PAHs (Table 4.1), by means of solid phase extraction and gas 
chromatography coupled to tandem triple-quadrupole mass spectrometry. In this 
research the authors detected the totality of the PAHs and m-PAHs in any of the 
samples, both in humans and dogs, with the only exception of benzo(a)pyrene, 
which was not detected in none of the dog plasma samples.

The compounds most frequently detected in both species were phenanthrene, 
fluorene and fluoranthene and 2-naphthol, which were present in nearly 100% of 
the samples. The frequencies of detection of the rest of the compounds of this 
chemical group were highly variable and different between the two species 
(Table 4.1). The mean values of ∑PAH21 were much lower in dogs than in humans 
(782.2 vs. 1623.3 ng/g lw, respectively). Regarding the c-PAHs, the authors consid-
ered only seven compounds (PAH7, benzo(a)anthracene, chrysene, benzo(a)pyrene, 
benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene and 
indeno(1,2,3-c,d)pyrene), and the mean values were also much lower in dogs than 
in humans (6.8 vs. 21.9 ng/g lw, respectively). On the opposite, according to the 
authors’ results, it seems that dogs may have a higher capacity of biotransformation 
of these compounds, because in parallel to the lower levels of untransformed PAHs, 
dogs also had higher levels of PAHs metabolites than humans, in whom the rela-
tionship was inverse (∑m-PAH = 198.1 and 131.6 ng/g lw in dogs and humans, 
respectively; p < 0.0001).

The importance of the employment of sentinel species for the assessment of 
human exposure to chemicals has been widely demonstrated for many chemical 
classes, since the sentinel species may reflect the actual human exposure of a given 
population, much more accurately than the comparison to other remote populations. 
However, it does not seem to be the case of pet dogs as sentinels of human exposure 
to PAHs, because the authors of the only study available in this regard found that 
there were many significant differences between these two species (Fig. 4.2), both 
in the levels of many parental compounds and in their metabolites. These results 
suggest that exposure of both species to this contaminant group could be different, 
but also may be indicating that dogs have a higher capacity to metabolise these 
compounds than humans. Obviously, to confirm this point, additional research is 
needed, but these results allowed the authors to hypothesise that the lower levels of 
PAHs detected in the plasma of dogs could be due to a higher rate of biotransforma-
tion and elimination thereof. Furthermore, as shown in Fig. 4.2c, neither the profiles 
of PAHs contamination were similar between dogs and humans, with a clear pre-
dominance of the four-ring compounds in humans and three-ring compounds in 
dogs. In fact, it is noteworthy that some compounds such as pyrene, which was 
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detected in almost 100% of the human samples, were barely detectable in 17% of 
samples from dogs, and yet, others such as acenaphthylene or 1-naphthol were 
much more frequently detected in dog plasma than in human plasma. Thus, in the 
light of the above, the authors concluded that the pet dogs do not seem to be good 
sentinels for human exposure to PAHs.

Table 4.1 Concentrations of individual PAHs and PAHs metabolites concentrations (ng/g lw) in 
dog (n = 87) and human (n = 100) serum samples from the Canary Islands, Spain

Dog serum Human serum

Mean ± SD
Freq. 
(%) Mean ± SD

Freq. 
(%) P∗

Benzo(a)anthracene 4.2 ± 5.1 12.6 6.0 ± 17.9 12.0
Benzo(a)phenanthrene 
(chrysene)

5.4 ± 7.3 10.3 4.4 ± 17.1 13.0

Benzo(a)pyrene n.d. 0.0 4.4 ± 8.5 8.0
Benzo(b)fluoranthene 4.6 ± 5.4 6.9 4.7 ± 9.2 10.0
Benzo(k)fluoranthene 4.3 ± 6.9 11.9 17.9 ± 34.1 36.0 0.0015∗∗

Dibenzo(a,h)anthracene 4.9 ± 6.1 2.3 4.43 ± 7.8 6.0
Indeno(1,2,3-cd)pyrene 5.2 ± 7.4 2.3 5.2 ± 4.4 3.0
Benzo(j)fluoranthene 4.5 ± 5.6 7.9 11.7 ± 3.7 14.0 0.0056∗∗

Benzo(j,k)fluorene 
(fluoranthene)

6.6 ± 4.3 97.7 77.5 ± 26.4 99.0 <0.0001∗∗∗

Dibenzo(a,e)pyrene 5.2 ± 5.6 1.2 4.3 ± 5.3 5.0
Dibenzo(a,h)pyrene 6.3 ± 7.4 2.3 4.5 ± 5.8 6.0
Dibenzo(a,l)pyrene 4.4 ± 6.1 1.2 6.2 ± 5.9 5.0
5-Methylchrysene 6.3 ± 6.1 12.6 7.6 ± 17.9 14.0
Acenaphthene 7.6 ± 25.5 13.8 8.7 ± 19. 2 16.0
Acenaphtylene 51.2 ± 34.4 75.8 12.5 ± 6.3 6.0 <0.0001∗∗∗

Anthracene 4.7 ± 26.2 4.6 6.8 ± 34.1 10.0
Benzo(ghi)perylene n.d. 0.0 4.5 ± 5.2 3.0
Fluorene 76.9 ± 42.5 98.8 42.5 ± 17.2 98.0 <0.0001∗∗∗

Phenanthrene 382.5 ± 0.21 100.0 313.3 ± 137.5 100.0 <0.0001∗∗∗

Pyrene 7.6 ± 17.2 17.2 43.7 ± 25.9 94.0 <0.0001∗∗∗

Naphtalene 34.1 ± 51.6 28.7 34.1 ± 59.6 41.0
1-Naphthol 76.9 ± 69.8 79.3 5.2 ± 17.2 8.0 <0.0001∗∗∗

2-Naphthol 95.1 ± 52.6 96.6 67.2 ± 23.5 98.0 <0.0001∗∗∗

2-OH-Fluorene 5.8 ± 8.5 11.5 7.9 ± 12.3 21.0 0.1623
1-OH-Phenanthrene 17.4 ± 35.6 23.5 4.2 ± 6.6 10.0 0.0459∗

7-OH-Benzo(c)fluorene 51.4 ± 8.5 36.8 4.5 ± 8.5 12.0 0.0089∗∗

1-OH-Pyrene 4.5 ± 17.2 14.9 17.0 ± 43.5 6.0 0.4185
∑PAH7a 6.8 ± 17.2 53.2 21.9 ± 43.5 78.0 0.01∗∗

∑PAH21b 782.2 ± 323.8 100.0 1623.5 ± 799.2 100.0 <0.0001∗∗∗

∑m-PAHc 198.1 ± 110.5 100.0 131.6 ± 148.5 100.0 <0.0001∗∗∗

P∗: Mann-Whitney U test
a∑PAH7, sum of carcinogenic PAHs
b∑PAH21, sum of 21 priority PAHs
c∑m-PAH, sum of 6 PAH metabolites
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4.5  Pet Cats as Sentinels for Human Exposure to PAHs

As far as we know, there is no published study that explored the role of domestic 
cats as sentinels of human exposure to PAHs. However, the cat that lives inside the 
house is usually considered a good bioindicator, even better than the dog, to assess 
the exposure of man to the contaminants present in the domestic environment. This 
is mainly due to their grooming habits, which cause cats to ingest high amounts of 
household dust, with all the load of contaminants associated with it. Thus, in differ-
ent publications, it has been indicated that this pet is ideal for evaluating human 
exposure to different kinds of contaminants. (Bost et al. 2016; Chow et al. 2015; 
Dirtu et al. 2013; Henriquez-Hernandez et al. 2017a). In addition, other studies have 

Fig. 4.2 Levels of PAHs in plasma samples. (a) (main body). Box plots of ∑PAH21 in dogs and 
humans. (a) (inset). Bar graph of ∑PAH7 (carcinogenic PAHs, median and interquartile range) in 
dogs and humans. (b) Box plots of ∑PAH metabolites in dog and humans. (c) Profile of distribu-
tion of PAHs in dogs and humans. The line inside the boxes represents the median, the bottom and 
top of the boxes are the first and third quartiles of the distribution, and the lines extending vertically 
from the boxes indicate the variability outside the upper and lower quartiles. (d) distribution profile 
of PAH in dogs and humans
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shown that dietary exposure to different contaminants (including PAHs) is different 
between dogs and cats (Ruiz-Suarez et al. 2015), so although, as we said earlier, 
dogs do not seem to be good sentinels of human exposure to PAHs, cats present dif-
ferential facts that could make them suitable for this purpose, so this possibility is 
worth investigating.

With the purpose of completing the information in this chapter, we decided to 
shed light on the question whether or not cats would be good sentinels of human 
exposure to PAHs. For this, we collected venous blood from a total of 25 cats that 
were recently admitted for routine health check-ups and vaccination in the clinical 
hospital of the Faculty of Veterinary Medicine of the University of Las Palmas de 
Gran Canaria. In parallel, blood was collected from 25 volunteers from the same 
faculty, from amongst the staff and the students of the same, all of them owners of 
cats (although not from the same cats participating in the study). The serum was 
obtained, and the PAHs were extracted by solid phase extraction following the pro-
cedure described elsewhere (Camacho et al. 2012a). In this work, we included only 
the 16 priority PAHs for the USEPA, whose analysis was performed by gas chroma-
tography coupled to tandem triple-quadrupole mass spectrometry (Luzardo et al. 
2013b). All human volunteers and cat owners provided their written informed con-
sent to participate in this study.

We found only 8 out of the 16 compounds analysed both in humans and cats. In 
addition, acenaphthylene was also detected in cats, but not in humans. The summary 
of the results of this study is shown in Table 4.2. As it can be seen, the most fre-
quently detected compounds were acenaphthene, phenanthrene and fluorene, with 
frequencies of 90% or more in both species. For the rest of the substances, the detec-
tion percentage between both species was highly variable. We want to highlight the 
differences found between cats and humans for chrysene and fluoranthene (percent-
ages of detection of 18.2 vs. 90% and 31.3 vs. 100%, respectively). The median of 
the ∑16PAHs was similar in both species (1.93 vs. 2.08  ng/mL or 232 vs. 
257 ng/g lw, respectively). However, although the total concentrations do not show 
significant differences between both species, when we focus on carcinogenic com-
pounds for EFSA, the outlook changes radically, since these compounds were prac-
tically undetectable in the group of cats, whilst they were present in the group of cat 
owners (Fig. 4.3). Obviously, this is only a preliminary study, and the conclusions 
that derive from it should be taken with caution because of the low sample size. 
However, based on the results obtained, it could not be considered that the cat is the 
ideal sentinel to assess human exposure to PAHs, although it does seem to be better 
than dogs in this sense.

4.6  Conclusions

Based on the scarce existing bibliography and limitations of the study, it can be 
concluded that pet dogs and cats are not good sentinels of human exposure to PAHs. 
The analyses of parental compounds and metabolites in serum and their concentra-
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Table 4.2 Concentrations of polycyclic aromatic hydrocarbons (ng/mL) in the whole series of 
cats (n = 22) and humans (n = 20)

Pet cats Humans

Congener
% 
detection Median

p25th–
p75th

% 
detection Median

p25th–
p75th Pa

Acenaphthylene 63.6 0.02 0.00–0.04 0 – – 0.003
Acenaphthene 100.0 0.56 0.42–0.99 100.0 0.52 0.29–0.79 ns
Anthracene 31.0 0.00 0.00–0.07 80.0 0.13 0.05–0.20 0.008
Benzo(a)anthracene 0 – – 0 – – na
Benzo(a)pyrene 0 – – 0 – – na
Benzo(b)
fluoranthene

0 – – 0 – – na

Benzo(ghi)perylene 0 – – 0 – – na
Benzo(k)
fluoranthene

0 – – 0 – – na

Chrysene 18.2 0.00 0.00–0.00 90.0 0.03 0.01–0.04 0.003
Dibenzo(ah)
anthracene

0 – – 0 – – na

Fluoranthene 31.8 0.00 0.00–0.03 100.0 0.05 0.03–0.07 0.001
Fluorene 100.0 0.16 0.09–0.41 90.0 0.12 0.03–0.21 ns
Indeno(123,cd)
pyrene

0 – – 0 – – na

Naphthalene 18.2 0.00 0.00–0.00 30.0 0.00 0.00–0.07 ns
Phenanthrene 100.0 1.16 0.57–2.30 100.0 1.22 0.68–1.44 ns
Pyrene 13.2 0.00 0.00–0.00 60.0 0.01 0.00–0.04 0.047

Abbreviations: p25th–p75th percentiles 25 and 75 of the distribution, ns non-significant, na not 
applicable
aMann-Whitney U test

Fig. 4.3 Box plot showing the serum levels of sum of all PAHs (panel A) and sum of PAHs 4 
(panel B), amongst cats (n = 22) and humans (n = 20). Sum PAHs included all the 16 congeners 
analysed. Sum of PAHs 4 included only benzo(a)pyrene, benz(a)anthracene, benzo(b)fluoranthene 
and chrysene. P values were calculated with Mann-Whitney U test. The lines connect the medians, 
the boxes cover the 25th to 75th percentiles, and the minimal and maximal values are shown by the 
ends of the bars. Abbreviations: ns, non-significant. ∗∗, p = 0.003
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tions and contamination profiles are not comparable between species. These results 
could indicate that different sources of exposure, such as smoking, occupational 
setting or food intake, in humans exist. In the analysis of PAH metabolites, higher 
levels in dogs suggest that they metabolise them more effectively than humans. 
Despite sharing a home and in some cases diet with humans, pets differ greatly from 
humans to consider them good sentinels for PAHs exposure.
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