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Prescription and non-prescription drugs have improved the 
health and well-being of humans. Yet, the potential for altera-
tions in drug performance and/or changes in nutritional status 
exist. A drug interaction is a situation in which a substance 
affects the kinetics of a drug or produces a new side effect. 
Bioactive components in some food have the potential to 
interact with drugs and either reduce or enhance pharmaceu-
tical effects. Dietary supplements, herbals, and botanicals may 
contribute additional interactions with drugs. Typically, drug–
nutrient interactions are considered adverse side effects [1–4].

The International Dietetics & Nutrition Terminology Ref-
erence Manual [5] defines a food-medication interaction 
as an ‘undesirable or harmful interaction(s) between food 
and over-the-counter medications, prescribed medica-
tions, herbals, botanicals and/or dietary supplements 
that diminishes, enhances, or alters the effect of nutri-
ents and/or medications.’

Identification of potential risk for drug–nutrient interactions 
is an essential component of the comprehensive nutrition 
assessment performed during the nutrition care process. The 
likelihood of interactions may be increased when the patient 
is malnourished, has an underlying illness, takes botanical 
and herbal supplements, consumes alcohol daily, has food 
allergies or food intolerances, follows a restrictive therapeu-
tic diet, has health beliefs that limit food choices, takes more 
than two medications, does not follow medication instruc-
tions, and/or is a growing child or older adult. Individuals 
with acute and chronic inflammatory conditions are at risk 
for sub-optimal serum albumin levels. Albumin is the most 
important drug-binding protein in the body. Hypoalbumin-
emia diminishes the number of drug-binding receptor sites 
and may result in reduced drug bioavailability [3].

It is in the patient’s best interest to minimize drug–nutri-
ent interactions. Patients who avoid these interactions are 
more likely to experience the drug’s intended effect and less 
prone to discontinue taking the drug earlier than recom-
mended. Avoiding drug-induced nutrient deficiencies helps 
to maintain nutritional status, avoid falls, and injuries that 
may be caused in part by nutrient imbalances [6, 7].

Not all patients have optimal nutritional status when a 
new drug is recommended. The undernourished individual 
may have nutrient insufficiencies that evolve into frank defi-
ciencies due to a drug-induced adverse effect. Malnutrition 
with loss of lean muscle mass is of concern because of altera-
tions in protein-binding, drug distribution and drug elimina-
tion. Drug distribution is the movement of an active drug 
from the bloodstream to the site of effect. It is affected by a 
number of factors, including lipophilicity and plasma protein 
binding. Drug elimination includes metabolism and excre-
tion of the drug.

Malnourished individuals experience loss of fat mass, 
skeletal muscle mass and visceral muscle mass. The altered 

body composition has the potential to reduce transport pro-
teins and regulatory hormones involved in drug distribution. 
The loss of visceral muscle mass contributes to the changes in 
cardiac output, reduced blood flow to the liver and reduced 
glomerular filtration rate that may alter drug elimination 
[8–10].

Individuals taking drugs for a long duration who experi-
ence insidious weight loss may be taking drug dosages based 
on a higher body weight. These individuals are at higher risk 
for drug–nutrient interactions. In obese patients, there is a 
risk for accumulation of fat-soluble drugs or a prolonged 
clearance of drugs resulting in increased risk for drug 
toxicity.

15.1   Effect of Food and Nutrients on Drug 
Kinetics and Efficacy

Food and dietary supplements may alter drug kinetics and 
bioavailability. The bioavailability of a drug is the amount of 
the drug that reaches systemic circulation. Drugs taken orally 
have a lower bioavailability than drugs administered intrave-
nously.

The presence of food and nutrients in the stomach and 
small intestine may increase, decrease or have no effect on 
the bioavailability of the drug. For example, immediate-
release bisphosphonates, such as alendronate sodium, taken 
with food, significantly reduce drug absorption [11]. 
However, delayed-release bisphosphonates, such as risedro-
nate delayed-release, may be taken before or after a meal 
without significantly reducing drug absorption [12].

Furanocoumarins found in grapefruit segments, grape-
fruit juice, Seville oranges, tangelos, minneolas, and other 
exotic oranges inhibit the actions of cytochrome P450 
enzymes required for oxidative metabolism of numerous 
drugs. This interaction is of greatest concern for oral drugs 
with low bioavailability. Moreover, the effects of grapefruit 
segments and grapefruit juice on the actions of cytochrome 
P450 enzymes can last up to 72 hours [3, 4].

The presence of food and nutrients in the gut may 
enhance the drug bioavailability. For example, the absorption 
of cefuroxime axetil (antibiotic) is increased when taken with 
a meal versus a fasting state [13]. The bioavailability of iron 
sulfate supplements is enhanced if taken with food or with 
ascorbic acid. However, certain food components and nutri-
ents may inhibit iron absorption, including high phytate 
foods, bran, fiber supplements, coffee, tea, dairy products, 
and calcium supplements [14, 15].

Drug bioavailability may be altered when achlorhydria 
or hypochlorhydria persists either due to the action of 
another drug or because of a medical condition. Drugs used 
to treat chronic acid suppression raise the pH of the stom-
ach. The higher pH prevents drugs such as ketoconazole 
(antifungal) from reaching its optimal effect [3, 4]. 
. Table 15.1 summarizes common effects of food and nutri-
ents on drug kinetics.
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15.2   Effect of Drugs on Food and Nutrient 
Kinetics and Nutrition Status

Drugs have the potential to alter food and nutrient intake 
and kinetics. Nutrients are essential for metabolic processes, 
and micronutrients reserves, or pools, are quickly depleted 
when the metabolic rate is increased, absorption and utiliza-
tion of key nutrients are reduced, or excretion of nutrients is 
increased.

Drugs have the potential to impact nutrition status in 
many ways. Many prescription and non-prescription drugs 
reduce appetite, which reduces total nutrient intake. Other 
drugs increase the appetite for all food or specific categories 
of foods, e.g., refined carbohydrates, resulting in excessive 
energy and refined sugar intake. Moreover, drugs can reduce 
the absorption of key nutrients in the gastrointestinal tract in 
a variety of ways, including altering the stomach pH, binding 
the nutrient into an unusable form, and damaging the 
absorptive surfaces.

Drugs may increase the metabolism of nutrients, thereby 
increasing requirements and depleting nutrient reserves. 
Moreover, drugs may block the conversion of a pre-vitamin 
to its active form. Key nutrients may be lost in urine and 
feces. Drugs may increase or decrease urinary excretion. An 
increase in urinary excretion is typically due to a reduction in 

reabsorption of the nutrient. Drugs that decrease normal 
nutrient excretion of sodium may result in water retention.

Drugs that cause damage to the absorptive surfaces have 
the greatest potential to affect nutrient absorption. Common 
offenders include chemotherapeutic agents, nonsteroidal 
anti-inflammatory drugs, and prolonged antibiotic therapy. 
. Table  15.2 summarizes potential drug-induced nutrient 
deficiencies.

15.3   Role of the Nutrition Professional

Malnutrition and nutrient deficiencies are often viewed as 
problems unique to developing countries and regions of the 
world affected by environmental disasters, famine, or politi-
cal unrest. However, malnutrition and nutrient deficiencies 
are seen globally. Malnutrition diagnoses may be overlooked 
because the medical team is not mindful of the potential for 
nutrient losses to occur. It is essential to recognize that some 
drug-induced nutrient insufficiencies and deficiencies are 
insidious and others develop quickly. Drug-induced nutrient 
deficiencies are compounded by malnutrition. The early 
signs and symptoms of nutrient insufficiencies and deficien-
cies are often nonspecific and may be overlooked or misdiag-
nosed. Laboratory assessments used concurrently with 

       . Table 15.1 Common effect of food and nutrients on drug kinetics

Drug Food, macronutrient or 
micronutrient

Potential food–drug interaction

Antibiotics Milk Calcium and magnesium in milk may complex with drug and 
reduce bioavailability [16–18]

Anticonvulsants Grapefruit juice, grapefruit 
segments, Seville oranges, 
tangelos, minneolas, and other 
exotic oranges

Reduce bioavailability by inhibiting the actions of the cytochrome 
P450 3A enzymes [19]

Antihypertensives Licorice Licorice may cause hypermineralocorticoidism with sodium 
retention, increased potassium loss, edema, increased blood pressure 
and depression of the renin-angiotensin-aldosterone system [20]

Calcium channel drugs with 
Calcium Channe l drugs 
HMG-CoA Reductase Inhibitors

Grapefruit juice, grapefruit 
segments, Seville oranges, 
tangelos, minneolas, and other 
exotic oranges

Reduce bioavailability by inhibiting the actions of the cytochrome 
P450 3A enzymes required for oxidative metabolism of numerous 
drugs [3, 4, 19]

Celiprolol (beta-blocker) Orange juice Hesperidin, present in orange juice, is responsible for the decreased 
absorption [21]

Monoamine oxidase inhibitors Tyramine-containing foods Consuming foods containing tyramine with MAOI may trigger a 
hypertensive crisis [22]

Psychotropics Grapefruit juice Components in grapefruit juice interfere with the intestinal efflux 
transporter P-glycoprotein (P-gp) [23, 24]

Warfarin Foods rich in vitamin K Inconsistent intakes of vitamin K rich foods may alter the effective-
ness and safety of warfarin [25, 26]

Cranberry juice Consumption of cranberry juice is reported to alter the effective-
ness and safety of warfarin in some individuals [27, 28]

Drug–Nutrient Interactions
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       . Table 15.2 Common effects of drugs on food and nutrient kinetics

Drug category Macronutrient or 
micronutrient loss

Potential consequences of food–drug interaction

Antacids, magne-
sium and aluminum, 
calcium carbonate, 
proton pump 
inhibitors (PPI)

Calcium, magne-
sium, phosphorus, 
folic acid, copper, 
iron, vitamin B12

Increased stomach pH and reduced absorption of key nutrients that are best absorbed in 
the duodenum with a low pH including folic acid [29], calcium, phosphorus, copper, and 
iron [30, 31]

It is unclear how PPI’s promote hypomagnesemia [30–32]

Aluminum can bind the phosphate in small intestine, thus lowering serum levels. The body 
responds by releasing calcium and phosphorus stores from the bones. Calcium levels are 
tightly controlled in the blood. Excess calcium is excreted in the urine [30]

Increased pH impairs the body’s ability to cleave vitamin B12 from its protein carrier in order 
to be transported via intrinsic factor (IF). IF is synthesized by the parietal cells in the stomach 
in the presence of a low pH. An increased pH reduces the synthesis of IF, which will result in 
reduced absorption of vitamin B12 [33]

Antiarrhythmic: 
digoxin

Magnesium Digoxin promotes increased renal excretion of magnesium [34]

Antibiotics, 
sulfonamide 
combination drugs

Folic acid May interfere with folic acid metabolism if taken for a prolonged period of time [35]

Antibiotics, 
fluoroquinolones

Magnesium, iron, 
zinc, calcium

Drug binds to iron, magnesium, zinc, and calcium creating insoluble complexes [36, 37]

Antibiotics, 
tetracyclines

Magnesium, iron, 
zinc, calcium, 
vitamin K, B 
complex vitamins

Drugs binds to iron, magnesium, zinc, and calcium creating insoluble complexes. May 
reduce bacterial synthesis of vitamin K2, menaquinone, in the colon. Long-term use may 
result in depletion of B vitamin stores [38]

Anticonvulsants Vitamin B6, vitamin 
B12, folate

May interfere with vitamin B6, vitamin B12, and folate absorption, resulting in lower serum 
levels [39, 40]

Anticonvulsants Biotin May accelerate catabolism of biotin resulting in lower serum levels [41]

Anticonvulsants Vitamin D Lower serum levels reported possibly related to low bone density and osteomalacia [42]

Anticonvulsants Calcium Reduced absorption possibly related to vitamin D deficiency [43]

Anticonvulsants Vitamin K Drugs may decrease half- life of vitamin K and impair its key functions [44, 45].

Antihyperglycemic 
metformin

Vitamin B12 Metformin appears to inhibit the absorption of vitamin B12 [46]

Antihypertensive: 
ACEI angiotensin- 
converting enzyme 
inhibitor; ARB, 
angiotensin 
receptor blocker

Zinc ACEI and ARB therapy has been shown to increase urinary excretion of zinc [47]

Antihypertensive: 
ACEI angiotensin- 
converting enzyme 
inhibitor; ARB, 
angiotensin 
receptor blocker

Potassium ACEI and ARBs are associated with increased serum potassium, which may or may not be 
offset by the reduction of potassium due to loop diuretics [48, 49]

Antihypertensive: 
hydralazine

Vitamin B6, copper Hydralazine may interfere with vitamin B6 metabolism. It may promote increased excretion 
of copper [50, 51]

Antihypertensive: 
RAAS renin- 
angiotensin- 
aldosterone system

Potassium RAAS have the potential to cause hyperkalemia by interfering with the production and 
secretion of aldosterone [52–56]

Antimanic: lithium Sodium Lithium may increase sodium excretion [57]
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       . Table 15.2 (continued)

Drug category Macronutrient or 
micronutrient loss

Potential consequences of food–drug interaction

Antineoplastic: 
methotrexate

Folic acid Methotrexate is a folic acid antagonist that interferes with nutrient utilization [58, 59]

Antiplatelet agents Iron, folic acid, 
sodium, potas-
sium, vitamin B12

Long-term use associated with reduced levels of iron, folic acid, sodium, potassium, vitamin 
B12 [60, 61]

Antipsychotics, 
phenothiazine class, 
tricyclic antidepres-
sants

Riboflavin Drug increases the excretion of riboflavin that may lead to deficiency in individuals with 
insufficient riboflavin intakes [62]

Antitubular: 
isoniazid

Vitamin B6, niacin 
(B3), vitamin D, 
calcium, phos-
phate

Drug may deplete vitamin B6 and niacin stores resulting in peripheral neuropathy and 
pellagra [63, 64]

May impair vitamin D metabolism and consequently reducing calcium and phosphate 
absorption [65]

Beta-adrenergic 
blockers (beta-
blockers)

Potassium Beta-blockers have the potential to cause hyperkalemia by causing redistribution of 
potassium from the intracellular space into the serum [66, 67]

Beta-2 agonists Magnesium, 
potassium

Reduced serum levels of magnesium and potassium reported. The degree of deficiency is 
exacerbated when beta-2 agonist is taken with theophylline [68, 69]

Bile acid seques-
trants

Vitamins A, D, E, K, 
beta-carotene, iron

Bile acid sequestrants bind fat soluble vitamins, beta- carotene, and iron [70]

Bile acid seques-
trants

Magnesium, iron, 
calcium, zinc and 
folic acid

Alterations in calcium, magnesium, and zinc metabolism may be explained by inadequate 
vitamin D absorption in the duodenum followed by an increased secretion of parathyroid 
hormone [71]

Bronchodilator: 
theophylline

Vitamin B6, 
potassium, 
magnesium

Reduced levels of pyridoxal phosphate may be related to altered tryptophan metabolism or 
impaired vitamin B6 utilization. Reduced levels of potassium and magnesium have been 
reported, possibly related to increase urinary excretion [72–75]

Colchicine 
(antigout)

Vitamin B12 In animals, colchicine may reduce vitamin B12 absorption and efficiency of ileal receptor 
sites leading to a vitamin B12 insufficiency or deficiency [76, 77]

Diuretics: loop Sodium Loop diuretics reduce sodium reabsorption in the proximal tubule. Patients who are 
prescribed a sodium- restricted diet as part of medical management of hypertension are at 
greater risk of hyponatremia [57]

Diuretics: loop Potassium Loop diuretics reduce potassium reabsorption at the site of action and enhance potassium 
secretion in the distal tubules of the nephron. In addition, aldosterone can also contribute 
to hypokalemia after administration of loop diuretics [78]

Diuretics: loop Magnesium Loop diuretics reduce magnesium reabsorption in the loop of Henle and proximal tubule. It 
is also dependent on sodium and chloride concentrations. Magnesium depletion promotes 
the efflux of potassium from cells and subsequent urinary excretion [79–81]

Diuretics: loop Thiamine Long-term use is associated with reduced levels of thiamine. Loop diuretics promote 
thiamine losses up to twice baseline loss. Increased loss is associated with an increase in 
urine flow rate, but it is not related to sodium excretion. Up to 1/3 of CHF patients were 
found to be thiamine deficient [82–88]

Diuretics: loop Zinc Long-term use of loop diuretics reduce zinc reabsorption in the proximal tubule [89]

Diuretics: loop Calcium Loop diuretics reduce calcium reabsorption in the proximal tubule. It is also dependent on 
sodium and chloride concentrations [90]

Diuretics: thiazide Calcium Thiazide diuretics reduce calcium reabsorption in the proximal tubule. It is also dependent 
on sodium and chloride concentrations [90]

(continued)
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nutrition-focused physical exams are essential tools to detect 
drug-induced nutrient insufficiencies and deficiencies.

The nutrition professional’s approach to detect drug-
induced nutrient insufficiencies and deficiencies is deter-
mined by the patient’s health history. For example, patients 
who are starting on a new drug are looked at prospectively. 
The nutrition professional uses clinical judgment to predict 
the potential for drug-induced nutrient insufficiencies and 
deficiencies by identifying specific strategies and interven-
tions to prevent or compensate for nutrient losses. Moreover, 
foods or food intake patterns associated with reduced drug 
absorption are identified and discussed as part of patient 
education. The nutrition professional will monitor the readi-
ness of the patient to incorporate specific strategies and 
interventions as well as the health outcomes. Adjustments in 
the interventions are often required.

Patients who have been on specific drugs for an extended 
period of time are assessed retrospectively. The nutrition pro-
fessional uses clinical judgment to detect signs and symp-
toms of drug-induced nutrient insufficiencies and deficiencies 
using historical data. Trends in laboratory results may indi-
cate suspected nutrient insufficiencies that are confirmed 
with nutrition-focused physical exam. Specific interventions 
are recommended by the nutrition professional to compen-
sate for nutrient losses. Monitoring and evaluation of changes 

in nutrition status are essential to determine the efficacy of 
interventions.

The nutrition professional does not work in a vacuum. As 
a member of an integrative healthcare team, the nutrition 
professional provides valuable insight and findings to 
improve the health and well-being of patients.
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