
Adaptive Cyber Defenses for Botnet
Detection and Mitigation

Massimiliano Albanese1(B), Sushil Jajodia1, Sridhar Venkatesan2,
George Cybenko3, and Thanh Nguyen4

1 George Mason University, Fairfax, VA, USA
{malbanes,jajodia}@gmu.edu

2 Perspecta Labs, Basking Ridge, NJ, USA
svenkatesan@perspectalabs.com

3 Dartmouth College, Hanover, NH, USA
george.cybenko@dartmouth.edu

4 University of Oregon, Eugene, OR, USA
tnguye11@uoregon.edu

Abstract. Organizations increasingly rely on complex networked sys-
tems to maintain operational efficiency. While the widespread adop-
tion of network-based IT solutions brings significant benefits to both
commercial and government organizations, it also exposes them to an
array of novel threats. Specifically, malicious actors can use networks of
compromised and remotely controlled hosts, known as botnets, to execute
a number of different cyber-attacks and engage in criminal or otherwise
unauthorized activities. Most notably, botnets can be used to exfiltrate
highly sensitive data from target networks, including military intelligence
from government agencies and proprietary data from enterprise networks.
What makes the problem even more complex is the recent trend towards
stealthier and more resilient botnet architectures, which depart from
traditional centralized architectures and enable botnets to evade detec-
tion and persist in a system for extended periods of time. A promising
approach to botnet detection and mitigation relies on Adaptive Cyber
Defense (ACD), a novel and game-changing approach to cyber defense.
We show that detecting and mitigating stealthy botnets is a multi-faceted
problem that requires addressing multiple related research challenges,
and show how an ACD approach can help us address these challenges
effectively.

1 Introduction

Organizations increasingly rely on complex networked systems to maintain oper-
ational efficiency. While the widespread adoption of network-based IT solutions
brings significant benefits to both commercial and government organizations,
it also exposes them to an array of novel threats. For instance, advanced

The work presented in this chapter was support by the Army Research Office under
grant W911NF-13-1-0421.

c© Springer Nature Switzerland AG 2019
S. Jajodia et al. (Eds.): Adaptive Cyber Defense, LNCS 11830, pp. 156–205, 2019.
https://doi.org/10.1007/978-3-030-30719-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30719-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-30719-6_8

Adaptive Cyber Defenses for Botnet Detection and Mitigation 157

persistent threats (APTs) and distributed denial-of-service (DDoS) attacks can
bypass traditional defenses by leveraging an arsenal of diverse and sophisticated
cyber tools. Specifically, malicious actors can use networks of compromised and
remotely controlled hosts, known as botnets, to execute a number of different
cyber attacks and engage in criminal or otherwise unauthorized activities.
Most notably, botnets can be used to exfiltrate highly sensitive data from
target networks, including military intelligence from government agencies and
proprietary data from enterprise networks. In a society that has significantly
shifted from producer of goods to producer of information-centric services,
protecting sensitive and mission-critical data from competitors, state actors,
and organized crime has become increasingly critical for the well-being of many
commercial and government organizations.

What makes the problem even more complex is the recent trend toward
stealthier and more resilient botnet architectures, which depart from traditional
centralized architectures and enable botnets to evade detection and persist in
a system for extended periods of time. Botnets can achieve resilience through
either anti-signature or architectural stealth [40]. Anti-signature stealth entails
the capability of manipulating the characteristics of bot-generated traffic to mask
features that could be observed by signature-based detectors. On the other hand,
architectural stealth entails the capability of establishing an overlay network that
minimizes exposure of malicious traffic to detectors. For these reasons, botnets
have recently gained significant attention in both the industry and the research
community.

One promising approach to botnet detection and mitigation relies on moving-
target defense (MTD), a novel and game-changing approach to cyber defense,
which is part of the broader trend towards Adaptive Cyber Defense (ACD). MTD
has the potential to create asymmetric uncertainty, providing the defender with a
tactical advantage over the attacker [18]. Cyber attacks are typically preceded by
a reconnaissance phase in which adversaries gather critical information about the
target system, including network topology, service dependencies, and unpatched
vulnerabilities. System and network configurations are typically static, and do
not reconfigure, adapt, or regenerate except in deterministic ways to support
maintenance and uptime requirements. In such a static scenario, it is only a
matter of time for malicious actors to acquire accurate knowledge about the
target system, engineer reliable exploits, and plan their attacks. To address this
systemic weakness, MTD techniques are designed to continuously change or shift
a system’s attack surface [18], which has been formally defined as the “subset
of the system’s resources (methods, channels, and data) that can be potentially
used by an attacker to launch an attack” [23]. Continuously reshaping a system’s
attack surface increases complexity and cost for malicious actors, forcing them
to continuously reassess their cyber operations.

In this chapter, we present a holistic, ACD-based approach to botnet
detection and mitigation. To dominate the complexity of the problem, we
decompose it into three related sub-problems, and tackle them individually.
In particular, we presents solutions to (i) optimally deploy a set of detectors,

158 M. Albanese et al.

(ii) identify botnet traffic, and (iii) reduce the overall lifetime of a botnet. We
validate our approach through simulation and experiments, and show that our
solution is effective in mitigating botnet activity.

The remainder of the chapter is organized as follows. Section 2 discusses
related work. Section 3 briefly discusses the threat model and our assumptions,
whereas Sect. 4 provides an overview of the research challenges we are addressing.
Then, Sects. 5, 7, and 8 discuss the three related challenges and corresponding
solutions in detail. Finally, Sect. 9 gives some concluding remarks and indicates
directions for future work.

2 Related Work

In response to botnet-borne threats, researchers have developed many different
detection mechanisms. The performance of these mechanisms primarily depends
on the set of features used to identify malicious traffic. Current research mostly
focuses on studying a combination of packet-based, time-based, and behavior-
based features to isolate bot traffic from the traffic mix [5]. For instance,
BotHunter [16] exploits the sequence of messages between bots and a command
and control (C&C) server in a centralized botnet architecture, while Zhang et al.
exploit a combination of packet-based and time-based features to identify hosts
that may potentially belong to a P2P botnet [49]. However, as the accuracy
of feature-based detection techniques improves over time, botnets respond
with more advanced evasion techniques [38]. On the other hand, architectural
stealth techniques aim at building topology-aware botnets to reduce exposure of
malicious traffic to detectors. They exploit the fact that detection mechanisms
are likely to be deployed on nodes where they can monitor all traffic entering or
exiting the network (e.g., network gateways) or significant volumes of internal
traffic (e.g., routers). Thus, botmasters can design stealthy communication
architectures capable of evading detection techniques such as those described
in [16,49] by minimizing observable bot traffic. To this end, Sweeney studied
the importance of the physical location of bots (referred to as the cyber high
ground) to perform stealthy missions such as data exfiltration, and designed a
P2P botnet that can effectively exfiltrate data from a network’s mission-critical
nodes, while maintaining a small network footprint [40].

In the past, researchers have addressed the issue of scalability in Intrusion
Detection System (IDS) by modeling it as a zero-sum game between the defender
and the attacker [3,20,34,46], where the defender’s objective is to optimally
place a limited number of monitors to protect a set of target servers. The
game-theoretic models in [3,34] develop optimal placement strategies to detect
intrusion attempts by considering all possible routes through which the attack
can reach a target server from a given set of entry points, while the models
in [20,46] develop optimal placement strategies to minimize the attacker’s control
over the target server.

Adaptive Cyber Defenses for Botnet Detection and Mitigation 159

3 Threat Model and Assumptions

In our threat model, the attacker’s ultimate goal is to exfiltrate data from
mission-critical nodes, while remaining stealthy and persisting in the system
for an extend period of time. To this end, we make the following assumptions,
based on previous work by Sweeney [40].

• The attacker can discover the topology of the network, and is aware of what
nodes are mission-critical. Reports by Kaspersky labs [19] and Mandiant [1]
show that threat actors can infiltrate an organization’s network and persist
in the system for several years, mapping out the organization and exfiltrating
sensitive data and valuable intellectual property.

• Exfiltrating large volumes of data generates abnormally large network flows
which in turn may trigger alerts. To avoid detection, the attacker partitions
the data to be exfiltrated into m segments d1, d2, . . . , dm, and transmits these
segments over a temporal span T = 〈t1, t2, . . . , tm〉 ⊆ N

m, i.e., at each time
point ti, the attacker transmits a data segment di to a C&C site. The attacker
is said to have successfully exfiltrated from a mission-critical node if and only
if all the m data segments are exfiltrated by time tm.

• The attacker is aware of the detector placement strategy employed by the
defender.

Fig. 1. Lifecycle of a bot

We model the lifecycle of a bot as shown in Fig. 1. It begins when a benign
system in the target network is compromised by either an external attacker
through a client-side attack or by an existing bot within the network. To
construct a resilient botnet, a new bot scans the network to discover benign
systems to attack. Here, we assume that all the machines within the network
are vulnerable and the corresponding exploits are available to the attacker. A
bot can perform two types of scans: worm-like or stealthy scan. In the worm-
like scanning strategy, the bot sends random discovery probes to systems within
its subnet, similar to the strategy employed by worms to propagate through a
network [45]. These discovery probes include ICMP ping packets and incomplete

160 M. Albanese et al.

TCP handshakes to determine whether a system is hosted at a given IP address
and also to learn the configuration of the system, including OS version, services,
etc. Due to the randomness of these scans, the bots may send discovery probes
to machines that may raise red flags. For example, if a bot on a client machine
sends discovery probes to another client machine, this activity may be flagged
as anomalous in an enterprise network. In the stealthy scanning strategy, on the
other hand, bots first enumerate active connections of the underlying hosts and
then send discovery probes only to these machines. Several classes of malware
employ this mechanism to move laterally through the network [2]. As one of
the attacker’s goals is to be stealthy, independent of the scanning strategy, we
can reasonably assume the existence of an upper bound dmax on the number of
discovery probes that a bot would send over a given period of time.

After enumerating target machines, a bot compromises these machines and
adds them to its list of peers. As mentioned above, we assume that all machines
are vulnerable and can be successfully exploited. We also assume that, in order
to build a resilient botnet, each bot needs a minimum number pmin of peers.
Upon recruiting new machines, the bot begins exchanging update messages with
its peers. These messages inform the attacker about the status of each bot within
the network and also include data stolen from the corresponding host machine.
When an infected host is detected by the defender, it is restored to its original
state. If the number of active peers of a bot drops below the predefined threshold
pmin, then the bot returns to the scanning state to recruit additional machines.
Finally, to facilitate remote control by an attacker, the bots periodically check
if they can reach the C&C server through their peers. If not, they establish a
direct channel with the C&C server.

4 Overview of Research Challenges

Stealthy botnets, due to their ability to evade traditional defenses, are intrinsi-
cally difficult to detect and mitigate. Their very nature makes them extremely
powerful tools in the hands of APT actors, whose primary goal is to remain
undetected and persist within target systems for extended periods of time. From
a defensive perspective, the problem of detecting and mitigating stealthy botnets
can be broken down into three closely related challenges – captured in the
infographic of Fig. 2 – which can be addressed separately, yet in a coordinated
fashion, to dominate the complexity of the problem.

In real-world scenarios, it is unfeasible to monitor all network activity in
depth. Thus, the first challenge is to deploy a limited number of detectors so as
to maximize the likelihood of intercepting botnet-related activity. The second
challenge is to analyze traffic collected by deployed detectors in order to isolate
malicious data flows and identify bots responsible for those flows. This capability
would enable the defender to take down bots and restore compromised hosts to
a secure state. Finally, the third challenge is to reduce the overall lifetime of a
botnet. Taking down some of the bots in a botnet is only a temporary solution, as
residual bots can compromise additional machines to restore the full functionality

Adaptive Cyber Defenses for Botnet Detection and Mitigation 161

Fig. 2. Botnet detection and mitigation in a sample network scenario

of the botnet. In practice, the defender can claim victory only when every bot
has been removed from the system. To achieve this goal, we need to develop
a process that iterates through multiple cycles of data collection, analysis, and
response, until no further botnet activity can be detected.

5 Detector Placement

As mentioned earlier, collecting and analyzing all traffic traversing every router
in a complex network would prove to be a daunting task. Whether the analysis
and detection capabilities are distributed or centralized, this solution would
not only incur a significant computational cost, but could also increase false
positive rates. To address this challenge, we have developed several heuristic
detector placement strategies that select subsets of a network’s nodes based on
their centrality [41]. To this aim, we model a network as a graph, where nodes
correspond to hosts and network devices, and edges represent the connectivity
between them. A centrality measure captures important properties of a graph to
determine how important or central each node is with respect to a given function
or mission, which in our case is the botnet’s mission to exfiltrate data from the
target network to an external server. Centrality measures have found application
in a wide range of domains, from social networks to citation ranking, and a prime
example is PageRank, the algorithm used by Google to measure the importance
of webpages.

Architecturally stealthy botnets are aware of the target network’s topology
and can potentially discover the location of detectors. Based on this information,

162 M. Albanese et al.

attackers attempt to create detector-free paths within the network by compro-
mising additional hosts to be used as proxies. To overcome the limitations of a
purely static solution, we can adopt an MTD approach and periodically alter
the placement of detectors, so as to introduce uncertainty about their location
and force the attacker to perform additional, potentially detectable actions to
maintain a functional botnet.

5.1 Preliminary Definitions

Let G = (V,E) be a graph representing the physical topology of the network,
where V is a set of network elements (e.g., routers and end hosts) and E captures
the connectivity between them. Let N = {h1, h2, ..., hn} be a set of mission-
critical hosts. Let ΠG denote the set of all simple paths π(vi, vj) between any pair
of nodes (vi, vj) ∈ V ×V . Traffic between any two nodes is routed using a routing
algorithm, which can be formally defined as a mapping RA : V ×V → ΠG, such
that

RA(u, v) = 〈u, z1, z2, . . . , zr, v〉,∀(u, v) ∈ V × V

where 〈u, z1, z2, . . . , zr, v〉 ∈ ΠG is the path followed by traffic from u to v. Note
that we slightly abuse notation and, for the sake of presentation, we may treat
a path π ∈ ΠG as a set of nodes. Although most routing algorithms attempt to
route traffic along the shortest path from source to destination, our approach
does not rely on the assumption that traffic is routed along the shortest path,
but rather on the more general assumption that we can predict what paths the
algorithm will select for routing traffic. However, for the sake of presentation,
and without limiting the generality of our approach, we do assume that the
networks being studied implement a shortest path routing algorithm.

In order to exfiltrate data from the set N of mission-critical nodes, the
attacker compromises a set B ⊆ V of network nodes – referred to as bots and
such that B ∩N 	= ∅ – and creates an overlay network to forward captured data
to a remote C&C server.

Definition 1 (Exfiltration Path). Given the set N ⊆ V of mission-critical
nodes for a network G = (V,E) and a set B ⊆ V of nodes controlled by the
attacker, an overlay path is a sequence πo(b0,C&C) = 〈b0, b1, b2, . . . , br,C&C〉
of bots – with b0 ∈ N ∩ B and bi ∈ B for each i ∈ [1, r] – chosen by the
attacker to forward traffic from mission-critical node b0 to a remote C&C site. The
exfiltration path corresponding to an overlay path πo(b0,C&C) is the sequence of
nodes in V traversed by traffic exfiltrated through πo(b0,C&C), and it is defined
as:

πe(b0,C&C)=〈b0, v
0
1 , v0

2 , . . . , v0
l0 , b1, v

1
1 , v1

2 , . . . , v1
l1 , b2, . . . , br, v

r
1, v

r
2, . . . , v

r
lr ,C&C〉

where RA(bi, bi+1) = 〈bi, v
i
1, v

i
2, . . . , v

i
li
, bi+1〉,∀i ∈ [0, r − 1] is the routing path

from bi to bi+1 and RA(br,C&C) = 〈br, v
r
1, v

r
2, . . . , v

r
lr

,C&C〉 is the path from br

to C&C.

Adaptive Cyber Defenses for Botnet Detection and Mitigation 163

Example 1. In the example of Fig. 3, if v5 ∈ B is a bot and the attacker chooses
to exfiltrate traffic through the overlay path πo(v1,C&C) = 〈v1, v5,C&C〉, then
the corresponding exfiltration path is πe(v2,C&C) = 〈v1, v3, v5, v8,C&C〉.

Fig. 3. Example of network graph

For a given set of mission-critical nodes N , the defender’s objective is to
intercept and detect exfiltration traffic. In order to monitor the network for
botnet activity, the defender can deploy detectors on a subset of nodes D ⊂ V .
One of several botnet detection mechanisms can be used to detect botnet activity
[15,16,48,49]. These detection mechanisms leverage the fact that bots need to
communicate with their peers or the C&C server to relay captured data.

Definition 2 (Detection). Given the set N ⊆ V of mission-critical nodes for
a network G = (V,E) and the set B ⊆ V of bots controlled by the attacker, an
exfiltration attempt over an exfiltration path πe = 〈v0, v1, v2, . . . , vr,C&C〉, with
v0 ∈ N ∩ B, is said to be detected iff the exfiltrated traffic traverses a detector
node, that is, ∃d ∈ D s.t. d ∈ πe. A botnet is said to be stealthy with respect
to N , iff no exfiltration path between nodes in N ∩ B and a C&C site can be
detected.

164 M. Albanese et al.

Unfortunately, existing detection mechanisms suffer from false positives and
false negatives, therefore exfiltration attempts may go undetected even when a
detector is placed on a node along the exfiltration path. However, a prudent
attacker will opt for creating more bots in order to establish a detector-free
path, rather than having the traffic routed through detectors, irrespective of
their false negative rate. Based on these considerations, and in order to simplify
the presentation of our analysis, we ignore the accuracy of detectors and assume
that any exfiltration attempt going through a detector node is detected. We will
reconsider the problem of detecting exfiltration traffic later in this chapter.

In order to exfiltrate data from a mission-critical node h ∈ N to a C&C site in
a stealthy manner, the attacker must identify a detector-free path π∗

e(h,C&C) ∈
ΠG, and forward data through it. The set of all detector-free paths represents
the exfiltration surface of the network, which can be formally defined as follows.

Definition 3 (Exfiltration Surface). Given the set N ⊆ V of mission-critical
nodes for a network G = (V,E), let D ⊂ V be a set of detector nodes. The
exfiltration surface of G with respect to D is the set of detector-free paths ψD =
{πe(h,C&C) | h ∈ N ∧ πe(h,C&C) ∈ ΠG ∧ πe(h,C&C) ∩ D = ∅}. We use Ψ to
denote the set of all possible exfiltration surfaces from mission-critical nodes N
to C&C sites.

In [42], we proposed an approach to deploy detectors on selected network
nodes, so as to reduce the exfiltration surface by either completely disrupting
communication between bots and C&C nodes, or at least forcing the attacker to
create more bots, thereby increasing the botnet’s footprint and the likelihood
of detection. As the detector placement problem is intractable, we proposed
heuristics based on several centrality measures. Specifically, we showed that the
iterative mission-betweenness centrality strategy yields the best results. In this
strategy, after a node has been selected as a detector, the mission-betweenness
centrality of all non-detector nodes is recomputed, and the node with the
highest centrality is chosen for placing an additional detector. In practice, this
approach prevents two or more detectors from being placed on the same high-
centrality path. Although this strategy significantly increases an attacker’s effort,
the resulting exfiltration surface is static. Therefore, a persistent attacker can
gather enough information to precompute the exfiltration surface of the target
system and identify a detector-free path to exfiltrate data. We overcome this
limitation by designing detector placement strategies that dynamically change
the exfiltration surface by continually altering the placement of detectors, as
discussed in the following subsections.

5.2 Defender’s Model

In our defender’s model, we consider a resource-constrained setting where the
defender can only deploy k detectors. In practice, an upper bound on the number
of detectors can be determined by considering the number of systems in the
network that can perform detection tasks without impacting the performance of

Adaptive Cyber Defenses for Botnet Detection and Mitigation 165

applications running on them. A dual problem is that of minimizing the number
of detectors needed to satisfy predefined security requirements. In the following,
we formally define the notion of detector placement.

We assume that the defender is aware of the location of potential C&C sites.
For an enterprise network, C&C locations could include any destination outside
the network perimeter. Similarly, for an ISP network, potential C&C sites could
be located outside the administered domain. Furthermore, it has been shown
that certain IP address ranges are known to participate in malicious campaigns
[8,28]. This information can be leveraged to identify potential C&C locations,
but, due to the conservative estimate on the location of potential C&C sites,
simply blacklisting traffic to these locations would adversely affect legitimate
users.

Definition 4 (k-placement). Given a network G = (V,E), a k-placement over
G is a mapping pl : V → {0, 1} such that

∑
v∈V pl(v) = k. Vertices v such that

pl(v) = 1 are called detector nodes. We will use Pk to denote the set of all
possible k-placements.

To address the limitations of a static placement and increase the probability
of detection, we can continually shift the exfiltration surface by dynamically
changing the location of detectors. In our analysis, we discretize time as a finite
sequence of integers T = 〈t1, t2, . . . , tm〉 ⊆ N

m, with m ∈ N, such that for all
1 ≤ i < m, ti < ti+1, and model how placements can evolve over time.

Definition 5 (Temporal k-placement). A temporal k-placement is a function
tp : T → Pk. We will use PT

k to denote the set of all possible temporal k-
placements.

Intuitively, for each time point in T , a temporal k-placement deploys
detectors on k network nodes. In order to create uncertainty for the attacker with
respect to the location of detectors, we choose temporal k-placement functions
by using a probability distribution over all temporal k-placements.

Definition 6 (Temporal probabilistic k-placement). A temporal proba-
bilistic k-placement (tp-k-placement) is a function τ : PT

k → [0, 1] such that∑

tp∈P T
k

τ(tp) = 1.

Example 2. Figure 4 shows an example of temporal probabilistic k-placement
τ for the graph of Fig. 3 and for k = 2. Each table in the figure represents a
different temporal k-placement tp1. Note that

∑
tp∈P T

k
τ(tp) = 1. For any given

temporal k-placement tp, the i-th column in the corresponding table – with
i ∈ {1, 2, . . . ,m} – represents the k-placement pl that tp associates with time
point ti. Note that, for each k-placement pl,

∑
v∈V pl(v) = k. This example

assumes that only certain nodes, namely v3, v4, v5, and v6, can host detectors.

1 For the sake of presentation, we assume that those shown are the only possible
temporal k-placements in PT

k).

166 M. Albanese et al.

Fig. 4. Example of temporal probabilistic k-placement

Let the indicator random variable Iv
ti

be associated with the event that node
v is chosen as a detector at time ti. Given a temporal probabilistic k-placement
τ , the probability with which a node v ∈ V will be chosen as a detector at time
ti can be derived as

prv
ti

= Pr(Iv
ti

= 1 | τ) =
∑

tp∈P T
k s.t. (∃pl∈Pk)(tp(ti)=pl∧pl(v)=1)

τ(tp) (1)

Thus, at time ti, the defender selects k nodes for detector placement by
sampling from the distribution defined by Eq. 1. We denote such a strategy as
Dti

∼ {prv
ti

}v∈V .

5.3 Metrics

To evaluate the performance of a defender strategy, we present two metrics: the
minimum detection probability and the attacker’s uncertainty. The minimum
detection probability provides a theoretical lower bound on the probability that
an exfiltration activity is detected due to the detector placement strategy. On the
other hand, the attacker’s uncertainty is measured as the entropy in the location
of the detectors from the attacker’s point of view: the higher the entropy, the
higher the attacker’s effort required to discover the location of detectors.

5.3.1 Minimum Detection Probability
As mentioned earlier, to be succssfull, the attacker needs to exfiltrate data
segments d1, d2, . . . , dm over a temporal span T = 〈t1, t2, . . . , tm〉 ⊆ N

m,
while remaining undetected. At each time point ti, the defender chooses a
strategy, Dti

∼ {prv
ti

}v∈V and samples k nodes without replacement. Let
Dti

denote the set of detectors at time ti. Following defender’s placement of
detectors, the attacker begins exfiltrating data segment di. For a chosen overlay
path πo(h,C&C), the traffic will traverse the corresponding exfiltration path
πe(h,C&C) = 〈h, vi1 , vi2 , . . . , vil

,C&C〉, with h ∈ N . Therefore, the probability
that the attacker’s exfiltration of data segment di is detected is given by:

detectPr(Dti
, di, πe(h,C&C)) = 1 −

∏

v∈πe(h,C&C)\{h,C&C}

(
1 − prv

ti

)
(2)

Adaptive Cyber Defenses for Botnet Detection and Mitigation 167

Algorithm 1. minimumDetectionProb(G,Dti
, N,C&C)

Input: a connectivity graph G(V, E), a defender strategy, Dti
∼ {prv

ti
}, a set N ⊆ V of mission-

critical nodes, a potential C&C location
Output: the minimum detection probability of strategy Dti

at time ti for graph G(V, E) with
respect to mission-critical nodes N and the potential C&C location

1: H(V ′, E′) ← dual graph of G(V, E), where V ′ = E and (e, f) ∈ E′ iff e and f share a common
vertex v ∈ V

2: b ← ε // an arbitrarily small value
3: for all (e, f) ∈ E′ do
4: v ← the common vertex of e and f in V
5: if prv

ti
< 1 then

6: W ′(e, f) ← logb(1 − prv
ti

)

7: else
8: W ′(e, f) ← ∞
9: end if

10: end for
11: // ∀v ∈ V , let E (v) denote the set {e | e ∈ E ∧ e is incident on v ∈ V }
12: for all h in N do
13: for all e in E (h) do
14: for all c in E (C&C) do
15: S ← length of the shortest path from e to c in H
16: detectPr(h, e, c) ← 1 − bS

17: end for
18: end for
19: detectPr(h) ← min

(e,c)∈E (h)×E (C&C)
(detectPr(h, e, c))

20: end for
21: return min

h∈N
(detectPr(h))

A rational attacker – who is aware of the defender’s strategy – will choose a
path that minimizes the probability of detection. Therefore, the path chosen by
the attacker to exfiltrate di is:

πi∗
e (h,C&C) = argmin

πe(h,C&C)

(detectPr (Dti
, di, πe (h,C&C))) (3)

In other words, Eq. 3 can be used to compute the minimum detection
probability that a defender strategy Dti

can guarantee at time ti. Finally, an
exfiltration activity is said to be detected when any of the m data flows is
detected. Therefore, the minimum probability with which a strategy Dti

detects
an exfiltration activity is given by

eDetectPr
({Dti

}i∈[1,m]

)
= 1 −

∏

di

(

1 − min
πe

(detectPr (Dti
, di, πe))

)

(4)

Given a graph G(V,E), the minimum detection probability of a strategy Dti

at time ti – i.e., min
πe

(detectPr (Dti
, di, πe)) – can be computed using Algorithm1.

At a high-level, the algorithm transforms the graph G(V,E) into a weighted dual
graph H(V ′, E′) in which the edge weights are a function of the probability that
the corresponding vertex in G(V,E) does not host a detector. Specifically, at
time ti, the path detection probability over any path πe(u, v) (given by Eq. 2)

can be re-written as 1 − bS , where S =

(
∑

x∈πe(u,v)

logb

(
1 − prx

ti

)
)

and b is an

168 M. Albanese et al.

arbitrarily small value. Here, bS is the upper bound on the probability that the
path πe(u, v) will be free of detectors. Therefore, each edge in E′ corresponding
to a node v ∈ V is assigned a weight logb(1−prv

ti
). Following this assignment, the

algorithm determines the shortest path length between the vertices in V ′ that
correspond to edges incident on the mission-critical and C&C vertices in V . The
shortest path length represents the maximum probability that data exfiltration
is not detected, and the vertices in V corresponding to edges on this shortest
path form the path πi∗

e (h,C&C).
In particular, after generating the dual graph H(V ′, E′) on Line 1, Algo-

rithm1 assigns weights to all the edges (e, f) ∈ E′ based on the probability
prv

ti
that the corresponding vertex v ∈ V is chosen for detector placement

(Lines 3–10). If a detector is placed on vertex v ∈ V with probability 1, then any
exfiltration over a path that contains v will be detected. A rational attacker will
avoid such paths and hence the algorithm sets the weight of the corresponding
edges in E′ as ∞ (Line 8). On the other hand, if the probability is less than 1,
then the corresponding edge is assigned a weight logb(1 − prv

ti
) (Line 6). Next,

Line 15 computes the length of the shortest path between vertices e and c in
V ′, which correspond to the edges in E that are incident on mission-critical
nodes and C&C, respectively. Finally, Line 16 computes the minimum detection
probability over all the paths from a mission-critical node h ∈ N to C&C that
traverse edges e and c. Line 19 computes the minimum detection probability for
each mission-critical node h by considering all the paths to C&C. Finally, the
minimum detection probability with respect to all mission-critical nodes in N
for graph G(V,E) is computed on Line 21.

In the worst case, Algorithm 1 takes O(|E|2) time to generate the edge-dual
graph H(V ′, E′) as all pairs of edges in E are checked for a common vertex.
As a result, in the worst case |E′| = O(|E|2). Lines 3–10 run in time O(|E′|)
and Line 11 can be computed in time O(|V |2) by traversing the adjacency
matrix of G. To compute the shortest paths between vertices in H (Line 15)
that correspond to mission-critical node h and C&C in G, we can leverage
the Fibonacci heap implementation of Dijkstra’s single-source shortest path
algorithm [10]. The complexity of computing the shortest path lengths for a
node h ∈ N (Lines 13–19) is given by O (E (h) · (|E′| + |V ′| log |V ′|)). Therefore,
in the worst case, the time complexity for computing the shortest path lengths
for all mission-critical nodes is O(|E| · (|E|2 + |E| · log |E|)).

As the time complexity of the algorithm is dominated by the shortest paths
computation, the time complexity is O(|E| · (|E|2 + |E| · log |E|)). The worst-case
time complexity for computing the minimum detection probability is O(|V |6).
However, for practical network topologies, our simulation results indicate that
the processing time does not exceed O(|V |3).

5.4 Attacker’s Uncertainty

Probabilistic deployment of detectors introduces uncertainty for the attacker
with respect to the location of the detectors. Depending upon the nature of the
deployed detector (either active or passive), the attacker may progressively learn

Adaptive Cyber Defenses for Botnet Detection and Mitigation 169

the location of these detectors through probing. For instance, if an enterprise
network deploys an active IDS, a simple probing strategy could consist in sending
malicious packets to a node suspected of hosting a detector and, depending on
whether the node accepts or rejects the packets, the attacker can determine
the node’s detection state. In an ISP network, an attacker can leverage probing
strategies described by Shinoda et al. [35], and by Shmatikov and Wang [36] to
identify the presence of detectors in a network.

The uncertainty introduced by a dynamic placement strategy can be
quantified by measuring the entropy in locating the detectors at any time ti.
Let X−

ti
be the random variable that maps the set V of potential locations to

the corresponding probability of being chosen for detector placement. Therefore,
the entropy due to a strategy Dti

∼ {prv
ti

}v∈V is given by:

H(X−
ti

| Dti
) = −

∑

x∈V

P (X−
ti

= x) log(P (X−
ti

= x)) (5)

where log(P (X−
ti

= x)) = 0, when P (X−
ti

= x) = 0. Note that, based on the
above definition of entropy, higher entropy translates into a greater advantage
for the defender over the attacker.

5.5 Defender’s Strategies

To illustrate the effectiveness of different defender strategies, consider again the
network in Fig. 3, which includes mission-critical nodes N = {v0, v1, v2}. The
attacker’s objective is to exfiltrate data from any node in N to a C&C server. To
protect mission-critical nodes from data exfiltration, we consider the following
strategies for placing k detectors.

• Static Iterative Centrality Placement. In this strategy, the defender chooses
nodes based on the iterative mission-betweenness centrality algorithm pro-
posed in [42]. The defender first computes the mission-betweenness centrality
of a node v as CM (v) =

∑

(s,t)∈N×C&C s.t. v
=t

σst(v)
σst

, where σst is the number of

shortest paths between s and t and σst(v) is the number of those paths that
go through v. Upon computing the mission-betweenness centrality for all the
nodes, the defender chooses the node with the highest centrality for detector
placement. For each subsequent detector placement, the centrality CM (v) of
all non-detector nodes is re-computed and the node with the highest centrality
among the non-detector nodes is picked for placing the next detector. In the
example of Fig. 3, assume that the defender can place k = 2 detectors. Then,
node v9 (or v8) will be chosen to the place the first detector followed by v8

(or v9) to place the second detector.
• Uniform Random Placement. The static nature of the above strategy enables

an attacker to pre-compute the location of detectors and compromise nodes
along a detector-free path. Therefore, in order to create uncertainty about
the exact location of detectors, in this strategy, the defender chooses k nodes
to place detectors uniformly at random.

170 M. Albanese et al.

Fig. 5. Candidate detector locations for the network of Fig. 3, based on the
(a) centrality-weighted strategy, and (b) expanded centrality-weighted strategy

• Centrality-Weighted Placement. Although the uniform random strategy intro-
duces uncertainty for an attacker, it may consider nodes that do not lie on
any simple path between mission-critical nodes and C&C. As a result, the
uniform strategy may provide a low minimum detection probability. In this
strategy, to improve detection guarantees, the defender places k detectors by
randomly choosing nodes according to a probability distribution that weights
nodes based on their mission-betweenness centrality, i.e., nodes with higher
values of CM (v) have more chances of being chosen for detector placement.
For the example shown in Fig. 3, the nodes colored in brown in Fig. 5a are the
only nodes considered for detector placement by this strategy (the darkness
is proportional to the relative weight of the corresponding node).

• Expanded Centrality-Weighted Placement. One of the major drawbacks of
the centrality-weighted strategy is that coverage of the exfiltration surface
is limited. In fact, that strategy considers only the nodes on the set of all
shortest paths between the mission-critical nodes and C&C. In this strategy,
the coverage of the exfiltration surface is expanded by considering all the
nodes on paths that are up to δ times longer than the shortest paths. Let Πe

be the set of all such paths. The revised centrality of a node v is computed as
CE(v) =

∑

(s,t)∈N×C&C s.t. v
=t

σ′
st(v)
σ′

st
, where σ′

st is the number of simple paths in

Πe between s and t and σ′
st(v) is the number of those paths that go through

v. In the example of Fig. 3, when δ = 0.25, the nodes colored in brown in
Fig. 5b will be considered for randomizing the placement.

Adaptive Cyber Defenses for Botnet Detection and Mitigation 171

5.6 Simulation Results

We evaluated the proposed strategies using real ISP network topologies obtained
from the Rocketfuel dataset [37] and synthetic topologies generated using graph-
theoretic properties of typical ISP networks. The Rockfuel dataset provides
router-level topologies for 10 ISP networks. For each network, Table 1 provides a
summary of the total number of routers within the network and the number
of external routers (located outside the ISP) to which the ISP routers are
connected. As connections to external routers are outside the monitored domain,
we considered a worst-case scenario in our simulations and assumed that all the
external routers are potentially routing traffic to C&C servers.

Table 1. Summary of ISP networks from [37]

ASN Name No. of routers No. of ext. routers ASN Name No. of routers No. of ext. routers

1221 Telstra 2998 329 3356 Level3 3447 1827

1239 Sprintlink 8341 1004 3967 Exodus 895 520

1755 Ebone 605 310 4755 VSNL 121 80

2914 Verio 7102 2432 6461 Abovenet 2720 2066

3257 Tiscali 855 444 7018 AT& T 10152 722

To study the influence of network topology on the performance of a strategy,
we evaluated these strategies using simulated medium-scaled ISP networks
comprising 3,000 nodes. At the router level, such networks are known to exhibit
scale-free network properties wherein the degree distribution follows a power-law
distribution. In order to accurately capture the connectivity of an ISP network at
the router level, the BRITE network topology generator [26] was used to generate
these networks. Ten such networks were considered, with mission-critical nodes
varying between 10% and 30% of the network size and 500 C&C locations chosen
at random for each network.

For the ISP networks from the Rocketfuel dataset, we varied the size of the
detector set as a fraction of the number of mission-critical nodes, whereas, for
synthetic topologies, we varied the size of the detector set as a fraction of the
network size. These simulations were intended to study the impact on the amount
of resources that a network administrator might be willing to invest (proportional
to either the number of nodes that need to be protected or the size of the network)
to detect exfiltration. In all our simulations, we set δ = 0.5 for the expanded
centrality-weighted strategy and tested the statistical significance of the results
using paired t-tests at 95% confidence interval. For the sake of presentation, we
show the results for a subset of the topologies from the Rocketfuel dataset.

5.6.1 Minimum Detection Probability
As illustrated in Figs. 6 and 7, the probability of detecting exfiltration attempts
increases linearly with the number of detectors. We observed that variations in

172 M. Albanese et al.

the detection probability for different synthetic networks were less than 1% and
hence, for the sake of presentation, we only show mean values.

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25 30 35 40 45 50

M
in

im
um

 D
et

ec
Ɵo

n
Pr

ob
ab

ili
ty

No. of Detectors (% of Mission-CriƟcal Nodes)

Telstra (1221) - CWS - 10%
Telstra (1221) - ECWS - 10%
Telstra (1221) - CWS - 30%
Telstra (1221) - ECWS - 30%

(a) Telstra

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25 30 35 40 45 50

M
in

im
um

 D
et

ec
Ɵo

n
Pr

ob
ab

ili
ty

No. of Detectors (% of Mission-CriƟcal Nodes)

Sprintlink(1239) - CWS - 10%

Sprintlink(1239) - ECWS - 10%

Sprintlink(1239) - CWS - 30%

Sprintlink(1239) - ECWS - 30%

(b) Sprintlink

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25 30 35 40 45 50

M
in

im
um

 D
et

ec
Ɵo

n
Pr

ob
ab

ili
ty

No. of Detectors (% of Mission-CriƟcal Nodes)

Verio(2914) - CWS - 10%
Verio(2914) - ECWS - 10%
Verio(2914) - CWS - 30%
Verio(2914) - ECWS - 30%

(c) Verio

Fig. 6. Minimum detection probability for different networks using centrality-weighted
(CWS) and expanded centrality-weighted (ECWS) strategies

It can be observed that, independently of the number of mission-critical
nodes and detectors, the centrality-weighted strategy outperforms the expanded
centrality-weighted strategy. This trend can be attributed to the scale-free nature
of the topology in which most of the paths traverse a small portion of the nodes.
As the expanded strategy considers a larger number of paths and distributes
the placement probability across the nodes on these paths, the nodes with
high centrality will be chosen with a lower probability than in the case of the
centrality-weighted strategy. In these simulations, we observed that the static
iterative centrality strategy could not detect exfiltration of data segments in any
of the networks as there was at least one detector-free path between one of the
mission-critical nodes and a C&C location.

5.6.2 Attacker’s Uncertainty
As mentioned earlier, among the detector placement strategies, the static
iterative centrality strategy does not introduce any uncertainty for the attacker,
whilst the uniform random strategy introduces the highest uncertainty in the
location of detectors. To study the attacker’s uncertainty in the location of
detectors due to the proposed strategies, we computed the relative entropy

Adaptive Cyber Defenses for Botnet Detection and Mitigation 173

Fig. 7. Minimum detection probability for different strategies using synthetic
topologies

introduced by the centrality-weighted and the expanded centrality-weighted
strategies w.r.t. the uniform random strategy. As shown in Fig. 8, the centrality-
weighted strategy and its expanded version create a level of uncertainty that
lies in-between the two ends of the entropy spectrum. In particular, as the
expanded strategy potentially considers more nodes, the number of combinations
of detector locations, and hence the uncertainty introduced by it is higher
than the centrality-weighted strategy. Therefore, for ISP networks, the choice
of different centrality-weighted strategies offers a trade-off between entropy and
detection probability.

Fig. 8. Relative increase in entropy for the attacker introduced by different strategies

5.6.3 Processing Time
In this section, we evaluate the performance of Algorithm 1 in computing
the minimum detection probability and the performance of various detector
placement strategies as a function of the network size. For each network size, we
generated 10 ISP-type topologies, with 10% of the nodes being mission-critical
and 500 C&C locations chosen randomly. We varied the number of detectors from
3% to 7% of the network size and observed similar trends in the processing time.
For the sake of presentation, we only show the results when the total number
of detectors is set to 3% of the network size. The processing time was averaged

174 M. Albanese et al.

Fig. 9. Processing time for computing the minimum detection probability using
Algorithm 1.

Fig. 10. Processing time for different detector placement strategies

over the 10 topologies for each network size. All experiments were conducted on
an AMD Opteron processor with 4 GB memory running Ubuntu 12.04.

Although, in theory, the worst-case processing time of Algorithm1 is O(|V |6),
for practical network settings, it can be observed (see trend line in Fig. 9) that
the execution time grows as O(|V |3) with an R2 value of 0.9968. Finally, as
shown in Fig. 10, the dynamic strategies compute the detector locations faster
than its static alternative. This is because, the static iterative centrality strategy
has to re-compute the shortest paths multiple times to determine the location
of the detectors.

6 A Game-Theoretic Approach to Detector Placement

In this section, we consider a game-theoretic approach to design effective
detection placement strategies. We formulate the botnet defense problem as a
Stackelberg security game, thus accounting for the strategic response of attackers
to deployed defenses. We consider two formulations of data exfiltration: (i) uni-
exfiltration, where the source bot routes the stolen data along a single path
designated by the attacker; and (ii) broad-exfiltration, where each bot propagates
the received stolen data to all other bots in the network.

Adaptive Cyber Defenses for Botnet Detection and Mitigation 175

We propose algorithms to compute defense strategies for these data exfil-
tration formulations: ORANI (Optimal Resource Allocation for uni-exfiltration
Interception) and ORABI (Optimal Resource Allocation for Broad-exfiltration
Interception). Both ORANI and ORABI employ the double-oracle method [25]
to control exploration of the exponential strategy spaces available to attacker
and defender. Our main algorithmic contributions lie in defining mixed-integer
linear programs (MILPs) and greedy heuristics for implementing the defender
and attacker’s best-response oracles.

6.1 Game Model: Uni-Exfiltration

Our game model for uni-exfiltration is built on the botnet model introduced in
Sect. 5. We model the botnet defense problem as a Stackelberg security game
(SSG) [21]. In such a game, the defender commits to a mixed (randomized)
strategy to allocate limited security resources to protect important targets.
The attacker then optimally chooses targets with respect to the distribution
of defender allocations.

In the botnet exfiltration game, the attacker attempts to steal sensitive
network data. Compromising a mission-critical node enables the attacker to
steal data from that node. Compromising other nodes in the network helps the
attacker relay the stolen data to a C&C server outside the network, which he
controls, through a sequence of compromised nodes (bots) forming an overlay
path. Routing between consecutive bots on this paths is beyond the attacker’s
control, and the sequence of all nodes traversed by exfiltrated traffic is referred
to as an exfiltration path, as defined Sect. 5.1. In this game model, we consider
the case in which the attacker does not divide stolen data into multiple segments
before relaying it to C&C.

In our Stackelberg game model, the defender moves first by allocating
detection resources, and the attacker responds with a plan for compromise
and exfiltration to evade detection. The defender placement of detectors is
randomized, so any attack plan succeeds with some probability. As formalized
in Definition 2, an exfiltration attempt is detected if there is a detector on the
exfiltration path.

Definition 7 (Strategy Space). The strategy spaces of the players are as
follows:
Defender : The defender has Kd < |V | detection resources available for
deployment on network nodes. We denote by D = {Di | Di ⊆ V, |Di| ≤ Kd}
the set of all pure defense strategies of the defender. Let x = {xi} be a mixed
strategy of the defender where xi ∈ [0, 1] is the probability that the defender
plays Di, and

∑
i xi = 1.

Attacker : The attacker can compromise up to Ka < |V | nodes. We denote by
A = {Aj = (Bj ,Πj) | Bj ⊆ V, |Bj | ≤ Ka,Πj = {πj(c, C&C) | c ∈ Bj ∩ N}} the
set of all pure strategies of the attacker. Each pure strategy Aj consists of: (i) Bj :
a set of compromised nodes; and (ii) Πj : a set of exfiltration paths over Bj .

176 M. Albanese et al.

A simple scenario of the botnet defense game is shown in Fig. 11. The model
specification is completed by defining the payoff structure, which is zero-sum.

Definition 8 (Game Payoff). Each mission-critical node c ∈ N is associated
with a value, r(c) > 0, representing the importance of data stored at that node.
Successfully exfiltrating data from c yields the attacker a payoff r(c), and the
defender receives a payoff −r(c). For prevented exfiltrations, both players receive
zero.

Note that the maximum achievable payoff for a defender is zero, obtained
by preventing all exfiltration attempts. In general terms, let Ua(Di, Aj) denote
the payoff to the attacker if the defender plays Di and the attacker plays Aj .
Since the game is zero-sum, the defender payoff Ud(Di, Aj) ≡ −Ua(Di, Aj). The
payoff can be decomposed across mission-critical nodes, which is formulated as
follows:

Ua(Di, Aj) ≡
∑

c∈N

r(c)h(c) (6)

where h(c) indicates if the attacker successfully exfiltrates data from node c ∈ N :

h(c) =

{
1 if c ∈ Bj and Di ∩ πj(c, C&C) = ∅
0 otherwise

(7)

The expected utility for the attacker when the defender plays mixed-strategy x
is

Ua(x,Aj) =
∑

i
xiU

a(Di, Aj)

which is negated to obtain the expected defender payoff Ud(x,Aj).
A defender mixed strategy that maximizes Ud(x,Aj), given that the attacker

plays a best response and breaks ties in favor of the defender, constitutes a Strong
Stackelberg Equilibrium (SSE) of the game.

6.2 ORANI: An Algorithm for Uni-Exfiltration Games

In zero-sum games, the first mover’s SSE strategy is also a maximin strategy [22].
Therefore, finding an optimal mixed defense strategy can be formulated as
follows:

maxx Ud
∗ (8)

s.t. Ud
∗ ≤ Ud(x,Aj), ∀j (9)

∑

i
xi = 1, xi ≥ 0, ∀i, (10)

where Ud
∗ is the defender’s utility for playing mixed strategy x when the attacker

best-responds. Constraint (9) ensures the attacker chooses an optimal action

Adaptive Cyber Defenses for Botnet Detection and Mitigation 177

Fig. 11. An example scenario of the botnet exfiltration game with (Ka = 4, Kd =
1). Four mission-critical nodes are N = {0, 1, 2, 3}. A possible pure strategy of the
attacker Aj can be: (i) a set of compromised nodes Bj = {0, 2, 5, 7}; and (ii) a set of
exfiltration paths Πj = {πj(0), πj(2)} to exfiltrate data from stealing bots 0 and 2 to
the attacker’s server C&C. These exfiltration paths πj(0) = P (0, 5) ∪ P (5, C&C) and
πj(2) = P (2, 7) ∪ P (7, C&C) relay stolen data via relaying bots 5 and 7 respectively,
where P (0, 5) = (0 → 4 → 5), P (5, C&C) = (5 → 8 → C&C), P (2, 7) = (2 → 6 → 7)
and P (7, C&C) = (7 → 9 → C&C) are routing paths fixed by the network system. If
the defender allocates its one detector to node 9, the attacker fails at exfiltrating data
from node 2 since 9 ∈ πj(2) but succeeds from node 0 since 9 /∈ πj(0).

against x, that is, Ud
∗ = minj Ud(x,Aj) = maxj Ua(x,Aj). Solving (8–10) is

computationally expensive due to the exponential number of pure strategies
of the defender and the attacker. To overcome this computational challenge,
ORANI applies the double-oracle method [17,25]. Algorithm 2 presents a sketch
of ORANI.

ORANI starts by solving a maximin sub-game of (8–10) by considering only
small seed subsets D and A of pure strategies for the defender and attacker (Line
2). Solving this sub-game yields a solution (x∗, a∗) with respect to the strategy
subsets. ORANI iteratively adds new best pure strategies Do and Ao to the
current strategy sets D and A (Lines 3–5). These strategies Do and Ao are chosen
by the oracles to maximize the defender and attacker utility, respectively, against
the current (in iteration) counterpart solution strategies a∗ and x∗. This iterative

178 M. Albanese et al.

Algorithm 2. ORANI Algorithm Overview
Initialize the sets of pure strategies: A = {Aj} and D = {Di} for some j and i;

1: repeat
2: (x∗, a∗) = MaximinCore(D, A)
3: Do = DefenderOracle(a∗)
4: Ao = AttackerOracle(x∗)
5: A = A ∪ {Ao}, D = D ∪ {Do}
6: until converge

process continues until the solution converges: when no new pure strategy can
be added to improve the players’ utilities. At convergence, the latest solution
(x∗, a∗) is an equilibrium of the game [25]. Following this general methodology,
the specific contribution of ORANI is in defining MILPs representing the attacker
and the defender oracle problems in botnet exfiltration games. These problems
are proved to be NP-hard. We thus introduce greedy heuristics to approximately
solve these oracle problems significantly faster. These MILPs and heuristics are
described in detail in [30].

6.3 Data Broad-Exfiltration

In the botnet defense game model with respect to uni-exfiltration (Sect. 6.1), for
each stealing bot, the attacker is assumed to only select a single exfiltration path
from that bot to exfiltrate data. In this section, we study the botnet defense game
model with respect to an alternative data broad-exfiltration. In particular, for
every stealing bot, the attacker is able to broadcast the data stolen by this bot to
all other compromised nodes via corresponding routing paths. Once receiving the
stolen data, each compromised node continues to broadcast the data to all other
compromised nodes. The game model for broad-exfiltration is motivated by the
botnet models studied by Rossow et al. [32]. Overall, there is a higher chance
that the attacker can successfully exfiltrate network data with broad-exfiltration
compared to uni-exfiltration. In the following, we briefly describe the botnet
defense game model with data broad-exfiltration. The corresponding algorithm,
ORABI, to compute an optimal mixed defense strategy is built based upon
the double oracle methodology. The algorithm’s computation and complexity
is described in detail in [30].

In the game model with data broad-exfiltration, the strategy space of the
defender remains the same as shown in Sect. 6.1. On the other hand, since the
attacker now can broadcast the data, we can abstractly represent each pure
strategy of the attacker as a set of compromised nodes Aj ≡ Bj only. Given a
pair of pure strategies (Di, Bj), we need to determine payoffs the players receive.
Note that in the case of broad-exfiltration, given (Di, Bj), the attacker succeeds
in exfiltrating the stolen data from a stealing bot if there is an exfiltration path
among all the possible exfiltration paths over the compromised set Bj from this
bot to C&C which is not blocked by Di. Therefore, the players receive a payoff

Adaptive Cyber Defenses for Botnet Detection and Mitigation 179

computed as in (6) where the binary indicator h(c) for each mission-critical node
c ∈ N is now determined as:

h(c) =

⎧
⎪⎨

⎪⎩

1 if ∃c∈Bj & ∃πj(c, C&C)
s.t. Di∩πj(c, C&C)=∅

0 otherwise

In fact, when players plays (Di, Bj), we can determine if there is an
exfiltration path from a stealing bot c ∈ Bj ∩ N which is not blocked by Di

by using depth or breath-first search over the compromised set Bj , which runs
in polynomial time.

6.4 Experiments

We evaluate both solution quality and runtime performance of our algorithms
compared with previously proposed defense policies. We conduct experiments
based on two different datasets: (i) synthetic network topologies generated using
JGraphT2, capturing scale-free properties [9] of many real-world networks; and
(ii) real-world network topologies derived from the Rocket-fuel dataset [37].
Each data point in our results is averaged over 50 different samples of network
topologies.

6.4.1 Synthetic Network Topology
Data Uni-Exfiltration. We compare six different algorithms: (i) ORANI – both
exact oracles; (ii) ORANI-AttG – exact defender oracle and greedy attacker oracle;
(iii) ORANI-G – both greedy oracles; (iv&v) Centrality-Weighted Placement
(CWP) and Expanded Centrality-Weighted Placement (ECWP) – heuristics
proposed in Sect. 5 to generate a mixed defense strategy based on the centrality
values of nodes in the network; and (vi) Uniform – generating a uniformly-mixed
defense strategy. We consider CWP, ECWP, and Uniform as the three baseline
algorithms.

In the first experiment (Fig. 12(a)), we examine solution quality of the
algorithms with varying number of nodes. In Fig. 12(a), the x-axis is the number
of nodes. The y-axis is the averaged expected utility of the defender obtained by
the evaluated algorithms. The data value associated with each mission-critical
node is generated uniformly at random within [0, 1]. Intuitively, the higher
averaged expected utility an algorithm gets, the better the solution quality of the
algorithm is. Figure 12(a) shows that all of our algorithms, ORANI, ORANI-AttG,
and ORANI-G, defeat the baseline algorithms in obtaining a much higher utility
for the defender.

In our second experiment (Fig. 12(b)), we examine the convergence of the
double oracle used in ORANI. The x-axis is the number of iterations of adding
new strategies for both players until convergence. The y-axis is the average of

2 A free Java graph library available at http://jgrapht.sourceforge.net.

http://jgrapht.sourceforge.net

180 M. Albanese et al.

Fig. 12. Uni-exfiltration: random scale-free graphs

the defender’s expected utility at each iteration with respect to the defender
oracle, the attacker oracle, and the Maximin core. The number of nodes in the
graph is set to 40. Figure 12(b) shows that ORANI converges quickly, i.e., after
approximately 25 iterations. This result implies that there is only a small set
of pure strategies involved in the equilibrium despite an exponential number of
strategies in total. In addition, ORANI can find this set of pure strategies after
a small number of iterations.

In our third experiment (Fig. 12(c)), we investigate runtime performance. In
Fig. 12(c), the x-axis is the number of nodes in the graphs and the y-axis is
the runtime on average in hundreds of seconds. As expected, the runtime of
ORANI grows exponentially when |V | increases. In addition, by using the greedy
heuristics, ORANI-AttG and ORANI-G run significantly faster than ORANI. For
example, ORANI reaches 1333 s on average when |V | = 35 while ORANI-AttG

and ORANI-G reach 1266 and 990 s respectively when |V | = 140.

Data Broad-Exfiltration. In the case of data broad-exfiltration, we compare
eight algorithms: (i) ORABI – both exact oracles; (ii) ORABI-AttG – exact
defender oracle and greedy attacker oracle; (iii) ORABI-G – both greedy oracles;
(iv) ORABI-AttG-Mul – exact defender oracle and greedy-multi attacker oracle;
(v) ORABI-G-Mul – both greedy-multi oracles; and (vi, (vii, (viii) CWP, ECWP,
and Uniform.

Our experimental result on solution quality is shown in Fig. 13(a).
Figure 13(a) shows that all of our five evaluated algorithms obtain a much higher
averaged expected utility for the defender compared to the baseline algorithms.

Adaptive Cyber Defenses for Botnet Detection and Mitigation 181

Fig. 13. Broad-exfiltration: random scale-free graphs

By adding multple new strategies at each iteration, both ORABI-AttG-Mul and
ORABI-G-Mul perform approximately as well as ORABI while outperforming
ORABI-AttG, and ORABI-G.

In addition, Fig. 13(b) shows that our algorithms with greedy heuristics
can scale up to large graphs. For example, when |V | = 1000, the runtime of
ORABI-AttG-Mul, ORABI-G-Mul, ORABI-AttG, and ORABI-G reaches 89, 20, 71,
and 2 s respectively. We conclude that ORABI is the best algorithm for small
graphs while ORABI-AttG-Mul and ORABI-G-Mul are proper choices for large-
scale graphs.

Finally, we investigate the benefit to the attacker from broad-exfiltration
compared to uni-exfiltration. We run ORANI and ORABI on the same set of 50
scale-free graph samples generated by uniformly at random with 20, 30, 40 nodes
in each graph respectively. Among all the samples, there are only 58%, 72%,
and 52% of the 20-node, 30-node, and 40-node graphs respectively for which
the attacker obtains a strictly higher utility by using broad-exfiltration. This
result shows that the attacker does not always benefit from broad-exfiltration.
Despite broad-exfiltration, the data exchange between any pairs of compromised
nodes must follow fixed routing paths specified by the network system, thus
constraining the data exfiltration possibilities.

6.4.2 Real-World Network Topology
Our third set of experiments is conducted on real-world network topologies from
the Rocketfuel dataset [37]. Overall, the dataset provides router-level topologies
of 10 different ISP networks: Telstra, Sprintlink, Ebone, Verio, Tiscali, Level3,
Exodus, VSNL, Abovenet, and AT&T. In this set of experiments, we mainly
focus on evaluating the solution quality of our algorithms compared with the
three baseline algorithms. For each of our experiments, we randomly sample fifty
40-node sub-graphs from every network topology using random walk. In addition,
we assume that all external routers located outside the ISP can potentially
route data to the attacker’s server. Each data point in our experimental results
is averaged over 50 different graph samples. The defender’s averaged expected
utility obtained by the evaluated algorithms is shown in Figs. 14 and 15.

182 M. Albanese et al.

Fig. 14. Uni-exfiltration: defender’s average utility

Fig. 15. Broad-exfiltration: defender’s average utility

Figures 14 and 15 show that all of our algorithms obtain higher defender
expected utility than the three baseline algorithms. Further, the greedy algo-
rithms – ORANI-AttG, ORANI-G, and ORABI-AttG, ORABI-G – are shown to
consistently perform well on all the ISP network topologies compared to the
optimal ones – ORANI and ORABI respectively. In particular, the average
expected defender utility obtained by ORANI-G is only ≈ 3% lower than ORANI

on average over the 10 network topologies.

7 Bot Identification

To identify and remove bots, we have developed a novel network-based detection
scheme, called DeBot, which can identify traffic flows potentially associated
with data exfiltration attempts. The proposed solution intercepts traffic from
different monitoring points and leverages differences in the network behavior of
botnets and benign users to identify suspicious flows. After deploying a number
of detectors or monitors as described earlier, we analyze flow characteristics
to identify suspicious hosts and use periodogram analysis to identify malicious
flows. The fundamental assumption behind the use of periodogram analysis is

Adaptive Cyber Defenses for Botnet Detection and Mitigation 183

that exfiltration traffic tends to be relatively more periodic than normal or
benign traffic. This approach has been evaluated against different architecturally
stealthy botnets in the CyberVAN testbed [7] – developed and maintained
by Vencore Labs – and its performance has been compared to two state-of-
the-art detection techniques, which we refer to as Stealthy P2P Detector and
BSampling. The results indicate that DeBot is effective in detecting botnet
activity and mapping out the botnet’s architecture, and it outperforms existing
solutions with respect to false positive rates. As shown in Fig. 16, the proposed
approach to detect exfiltration by stealthy botnets can be divided into four
phases: preprocessing, observation, refinement, and analysis.

In the preprocessing phase, we compute the rate at which traffic snapshots
should be captured at different monitoring points within the network. We will
refer to this rate as the snapshot rate. In DeBot, the monitoring period T (e.g.,
24 h) is divided into smaller epochs, Δt (e.g., 30 mins). At each epoch in the
observation phase, the detection mechanism randomly chooses a monitoring
point based on the snapshot rates and inspects traffic traversing it during that
epoch. During the monitoring period, DeBot maintains a score for each host,
which is updated based on the similarity of the host’s traffic pattern with other
hosts within its neighborhood. At the end of the observation phase, DeBot
aggregates the scores for each host based on T

Δt traffic snapshots captured from
different vantage points. The aggregated score is then used to identify suspicious
hosts HB by comparing the score of each host with the scores of other hosts
within its neighborhood.

Enterprise
Network

Record flow
staƟsƟcs

Cluster flow records using
OPTICS clustering algorithm

Choose a
monitoring point, M

Intercept and process
traffic traversing M

Update
Similarity Score

IniƟalize similarity
score for each host

Aggregate scores
and filter suspicious

hosts, HB

At the end
of me T

Pre-processing
Phase

Cluster
periodograms and
idenƟfy flows FB

with highly
periodic behavior

Perform Fine-Grained
analysis (e.g., DPI) on

flows FB

Refinement Phase

IdenƟfy mission-
criƟcal nodes and set
of monitoring points

Determine routes
between mission-criƟcal
nodes and C&C locaƟon

Compute centrality of
monitoring points in the

network
Obtain Snapshot Rates

Observa on
Phase

Analysis Phase

Compute periodogram
for each flow from

hosts in HB

Fig. 16. Overview of DeBot

184 M. Albanese et al.

In the refinement phase, DeBot identifies flows corresponding to bot traffic
by exploiting the periodic communication pattern between bots. For each
host in HB , it uses periodogram analysis to identify flows that are relatively
more periodic than other flows and marks them as suspicious. Then, in the
analysis phase, suspicious flows are further analyzed using fine-grained analysis
techniques such as Deep Packet Inspection.

7.1 Preprocessing Phase

The objective of an exfiltration campaign is to periodically transfer sensitive
data to a remote attacker-controlled server. Typically, in an enterprise network,
sensitive data is confined to a few servers which we refer to as mission-critical
servers. Exfiltrated data traverses several intermediate forwarding devices, such
as switches, routers and gateways, before reaching the remote server. Any of these
internal devices can be used as a monitoring point. In the proposed detection
scheme, traffic is mirrored from these devices to a central location for analysis.
In large enterprises, a mirroring mechanism is is usually already in place to
remotely monitor performance.

Given the sparseness of malicious flows, it is critical to identify monitoring
points that are likely to capture such flows. For instance, consider the enterprise
network in Fig. 17, with the sensitive data stored in the file servers in Subnet-1

and Subnet-2. The file servers host redundant copies of the data. To exfiltrate this
data, an attacker may choose one of several botnet communication architectures
with varying degrees of exposure of malicious flows to detectors. For example,
an attacker could compromise one of the clients in Subnet-1, say h1 with IP
192.168.1.2, mount the share drive, and directly transfer sensitive data to C&C.

Fig. 17. Enterprise network example

Adaptive Cyber Defenses for Botnet Detection and Mitigation 185

Due to internal routing policies, the traffic traverses two intermediate devices
– router m6 and firewall m1 – before exiting the network. For the purpose of
presentation, we denote this communication architecture as a path, h1 → m6 →
m1 → C&C. Other possible exfiltration paths include, but not limited to: h3 →
m7 → m6 → m1 → C&C, where h3 is a compromised host in Subnet-2, h1 →
m6 → m7 → m5 → m4 → s9 → m4 → m2 → C&C, in which a database server
s9 was compromised and used as a relay. It can be observed that the percentage
of malicious flows intercepted by different monitoring points depends on the
internal routing policy and the attacker’s choice of communication architecture.

Table 2. Number of flows vs. number of bot flows

Monitoring point No. of unique flows No. of unique bot flows % of bot flows

m1 5,248 0 0

m2 149,392 3,451 2.31

m3 106,448 1,724 1.62

m4 913,680 7,766 0.85

m5 690,748 4,352 0.63

m6 126,156 1,728 1.37

m7 149,580 3,455 2.31

Total 1,146,784 11,124 0.97

Detecting malicious traffic within large networks calls for a scalable detection
mechanism. Although capturing traffic from all monitoring points would ensure
that all malicious flows are intercepted, such approach is not scalable. Therefore,
it is crucial to identify the most effective set of monitoring points so as to limit
the amount of data to be analyzed, whilst ensuring that a sufficient number
of malicious flows are intercepted for the detection mechanism to be able to
distinguish malicious flows from benign flows.

To understand the impact of different monitoring points on processing time
and accuracy of a detection mechanism, we simulated the network scenario of
Fig. 17 in the CyberVAN testbed [7], which can generate benign user traffic.
In the network of Fig. 17, we consider a stealthy botnet with a communication
architecture composed of a server in the DMZ and four compromised hosts, two
in Subnet-1 and two in Subnet-2. The bots exfiltrate data from the file server
and forward it to the server in the DMZ, which aggregates data and relays it
to C&C. Table 2 shows the number of flows intercepted at different monitoring
points during a 12-h monitoring period: when m4 is chosen as a monitoring
point, the detection mechanism processes 6 times more records than m7, while
intercepting only twice as many bot flows as m7. This example shows that the
relationship between the volume of traffic monitored and the number of malicious
flows intercepted is not linear.

186 M. Albanese et al.

To improve the likelihood of intercepting malicious flows in resource-
constrained environments, Venkatesan et al. [41] proposed a dynamic monitoring
strategy that exploits graph-theoretic properties of the network, which is
modeled as a graph G(V,E), with a subset of nodes Mc ⊆ V identified as
mission-critical. For each potential monitoring point m ∈ M ⊂ V , they compute
a new centrality measure, known as the mission-betweenness centrality CM (m),
which is a function of the fraction of shortest paths between mission-critical
nodes and C&C that traverse m. The time horizon is divided into smaller
observation epochs and in each epoch a monitoring point m is chosen with
probability CM (m)∑

m′∈M CM (m′) . As the above strategy only considered monitoring
points on shortest paths, to improve coverage the authors proposed the expanded
centrality-weighted strategy, which also considers monitoring points on paths that
are δ times longer than the shortest paths.

In this work, we adopt the principle behind the dynamic strategy mentioned
above – i.e., choosing monitoring points with high centrality – and modify it to
account for internal routing policies. In [41], the authors assumed that traffic
between systems is routed through the shortest path. However, an enterprise
network is segmented into subnets and the route between any two systems
depends on the routing policies at different monitoring points. Such policies
are influenced by several factors such as network load and security policies. We
use the tracert tool to identify the routes traversed by traffic between two systems
s and t and in turn a set of monitoring points that can intercept that traffic. We
use R to denote the set of all routes between systems in a network.

As mentioned earlier, stealthy botnets reduce exposure to detectors by
compromising additional systems and using them as proxies to relay traffic to
C&C. In an enterprise network, most communication patterns follow a client-
server model. Thus, to avoid suspicious patterns, compromised servers could

Algorithm 3. computeSnapshotRates(M,Mc, S,R)
Input: a set M of potential monitoring points, a set Mc of mission-critical nodes, a set S of potential

proxy servers, and a set R of routes between pairs of nodes in M
Output: the snapshot rate P (m) for each monitoring point m ∈ M
1: for all mc ∈ Mc do
2: R ′

mc
← ∅

3: for all s ∈ S do
4: R ′

mc
← R ′

mc
∪ {R1||R2 | (R1, R2) ∈ Rm,s × Rs,C&C}

5: end for
6: end for
7: CB(m) ← 0, ∀m ∈ M // Initialize mission-betweenness centrality
8: for all mc in Mc do
9: σ(m) ← 0, ∀m ∈ M

10: for all R ∈ R ′
mc

do
11: for all m ∈ M ∩ R do
12: σ(m) ← σ(m) + 1
13: end for
14: end for
15: CB(m) ← CB(m) +

σ(m)
|R ′

mc
| , ∀m ∈ M

16: end for
17: P (m) ← CB(m)

∑

m′∈M
CB(m′) , ∀m ∈ M

18: return P

Adaptive Cyber Defenses for Botnet Detection and Mitigation 187

take the role of a proxies for bots within the network. However, we make a
conservative assumption that all systems (both clients and servers) can act as
proxies for the botnet. This assumption creates a worst-case scenario for the
defender, thereby making it challenging to design a detection mechanism. To
collect large traffic samples of such botnets, we first compute the centrality of
all the monitoring points, similarly to the expanded centrality-weighted strategy
in [41].

We use algorithm computeSnapshotRates (Algorithm 3) to compute the
snapshot rates. For each mission-critical node mc and potential proxy s, the
algorithm first determines all the paths through s by concatenating routes from
m to s, Rm,s, with routes from s to C&C. Here, we conservatively assume that
any destination outside the network is a potential C&C server. The resulting
set of routes R′

m is used to compute the mission-betweenness centrality of each
monitoring point (lines 7–16). Finally, the snapshot rate for each monitoring
point is computed on line 17. Assuming that the topology of the network remains
static during the entire monitoring period, this is a one-time computation. The
snapshot rate of a monitoring point m ∈ M is the probability that m is chosen by
DeBot for analyzing traffic traversing it during an epoch. Randomness introduces
uncertainty for the attacker and increases the cost and complexity of establishing
a stealthy botnet architecture.

7.2 Observation Phase

DeBot identifies suspicious hosts by comparing their network characteristics with
other hosts within their neighborhood. The neighborhood of a host is the set of
hosts that are expected to exhibit similar network characteristics in the absence
of malicious activity. Hosts whose characteristics deviate from their neighboring
hosts are classified as suspicious. In this chapter, without loss of generality, we
assume that hosts in the same subnet exhibit similar behavior, thus a host’s
neighborhood is represented by its subnet. Prior to starting this phase, DeBot
initializes the similarity scores of host pairs, which quantify the similarity in the
network behavior of any two hosts. At the beginning of each observation epoch
Δti, i ∈ [

1, T
Δt

]
, DeBot selects a monitoring point mi based on the snapshot

rates computed in the preprocessing phase. Traffic traversing mi during Δti
is intercepted and statistics of each flow are recorded. In this work, a flow is
uniquely identified by the tuple (src, dst, sport, dport, protocol). Flow statistics are
used as features to cluster flows, and subsequently update the similarity scores
of host pairs based on the number of common clusters between them. Finally,
at the end of the time horizon, DeBot identifies suspicious hosts by comparing
the aggregate behavior of each host with other hosts within its subnet.

For each flow f , DeBot records the median number of packets sent
(pktssent(f)) and received (pktsrecv(f)), and the median number of bytes sent
(bytessent(f)) and received (bytesrecv(f)) during an epoch Δti. We refer to the
tuple 〈pktssent(f), pktsrecv(f), bytessent(f), bytesrecv(f)〉 as the statistics of
flow f . A TCP session is considered a flow when a SYN packet is acknowledged
by a SYN-ACK packet. However, as the traffic snapshot may include incomplete

188 M. Albanese et al.

sessions, a TCP session is included in the flow record table Fi if at least one
packet and its acknowledgment are intercepted during the same epoch. For UDP
packets, only flows in which a request is followed by a response are considered.

To identify flows that exhibit similar network behavior, the flow records
in Fi are clustered using the OPTICS clustering algorithm [4], a density-
based clustering algorithm that, unlike K-means, can identify arbitrarily shaped
clusters by grouping closely-spaced records. OPTICS uses a priority queue to
linearly order the input records so that records that are closely-spaced are placed
together. In OPTICS, a group of records is identified as a cluster if two conditions
hold: (i) it includes at least minPts records; and (ii) for any two records in the
cluster, there is a sequence of records within the cluster such that every pair of
consecutive records is within a distance ε. Records that do not belong to any
cluster are labeled as noise.

As DeBot operates on traffic snapshots, selecting an optimal value for minPts
is crucial to ensure that intercepted bot flows form a cluster and are not treated
as noise. If minPts is too high, the traffic snapshot might not have intercepted
a sufficient number of bot flows to form a cluster, whereas, if it is too low, it
will lead to creation of multiple clusters. Therefore, the choice of minPts is
influenced by both the frequency ν of bot communication and the length Δt
of the observation window. The relationship between the three variables can be
approximated as minPts = κ · Δt

ν where 0 < κ < 1 is a constant. In order to
limit the number of meaningful clusters, minPts is fixed and the length of an
observation epoch is expressed as a function of ν, i.e., Δt = minPts

κ · ν. In order
words, the choice of Δt bounds the frequency with which bots can send/receive
update messages without losing stealth.

As mentioned earlier, DeBot tracks the similarity in network behavior
between hosts. Let N (h) denote the set of hosts in the neighborhood of host h,
and let a scoring function sim(hi, hj) quantify the similarity between two hosts
hi and hj . Before the observation phase, the scoring function is initialized as
sim(hi, hj) = 1,∀hj ∈ N (hi). As noted earlier, in our work all hosts that are in
the same subnet as host h are considered its neighbors. Let Ck denote the set
of flow clusters at the end of an observation epoch Δtk, and let Chi

⊆ Ck be
the subset of clusters containing flows from/to host hi. The scoring function is
updated as follows:

sim(hi, hj) = λ(mk, hi) ·
(|Chi

∩ Chj
|

|Chi
∪ Chj

|
)

+ (1 − λ(mk, hi)) · sim(hi, hj) (11)

where λ(mk, hi) is a scalar-valued function that models the rate at which the
similarity score is updated. To define this function, we first define the visibility
of a monitoring point m as the set of hosts whose incoming and outgoing traffic
traverses m. For instance, in the network of Fig. 17, the visibility of M3 is the
set of hosts in the subnet 192.168.5.0/24. In DeBot, if a host is not visible to

Adaptive Cyber Defenses for Botnet Detection and Mitigation 189

the current monitoring point, then the score is updated at a slower rate. In
particular, the λ() function is defined as:

λ(mk, hi) =
{ 0.5 if hi ∈ visibility(mk)

0.25 otherwise

At the end of the observation phase, the aggregate network score of a host
is computed as the sum of the similarity scores of the host with hosts in its
neighborhood, i.e., agg score(hi) =

∑
hj∈N (hi)

sim(hi, hj). A high aggregate
score implies that the host exhibited network characteristics similar to the
hosts in its neighborhood while a low score implies that the host’s network
characteristics deviated from the other hosts. Based on this rationale, a host
hi is identified as suspicious if its aggregate score is less than μagg(N (hi)) −
σagg(N (hi)), where μagg(N (hi)) and σagg(N (hi)) are, respectively, the mean
and standard deviation of the aggregate scores of hosts in the neighborhood
of hi.

7.3 Refinement Phase

A bot participating in an exfiltration campaign regularly communicates with
its peer bots or C&C to send or receive updates. Table 3 shows the observed
communication frequency of different instances of POS malware. Such periodic
behavior has also been observed in botnets that are known for stealing
credentials, such as Storm, Waldec, and Zeus [32].

In DeBot, we leverage the periodic communication feature of bots to
identify malicious host pairs. To determine whether a host hi is periodically
communicating with another host hj , the communication pattern between hi

and hj is treated as a signal in the time domain and transformed to the frequency
domain using Discrete Fourier Transform (DFT). After the transformation, the
Power Spectrum Density (PSD) of different frequencies is analyzed and compared
with the PSD of other connections generated by host hi to identify periodic
communications. Details are provided in the following subsections.

Table 3. Communication frequency of malware

POS malware Victim Period

BlackPOS [24] Target 10mins

FrameworkPOS [24] Home Depot 60mins + random mins

Backoff [24] UPS 45 s

Punkey [27] CiCi’s Pizza (suspected) 20mins or 45mins

190 M. Albanese et al.

7.3.1 Detecting Periods Using Periodogram Analysis
Let TSi,j = {ts1, ts2, ...} be the set of timestamps at which a connection
was initiated from host hi to hj . The monitoring period [0, T] is divided into
equally-spaced time points Ti,j = {t1, t2, ..., tN}, where tk+1 − tk = Δs and
N = T

Δs . When traffic between two hosts hi and hj is continuously monitored,
the corresponding connection pattern is treated as a signal that has been sampled
at evenly-spaced time intervals, Xhi,hj

(tk),∀tk ∈ Ti,j , defined as:

Xhi,hj
(tk) =

{
1, ∃tsl ∈ TSi,j , tsl ∈ (tk−1, tk+1)
0, otherwise

A Discrete Fourier Transform (DFT) converts a signal in the time domain to
the frequency domain by expressing the signal as a sum of sinusoidal components
using the equation:

Fhi,hj
(ω) =

N∑

k=1

Xhi,hj
(tk)e−iωtk (12)

where ω = 1, ..., N and eiθ = cos(θ) + i · sin(θ). Essentially, the DFT coefficient,
Fhi,hj

(ω), at frequency ω correlates the signal Xhi,hj
with a sequence of sine

and cosine waves at frequency ω – the higher the coefficient value, the greater
the similarity. The strength of each frequency in the signal is computed by
the power spectrum density. Several methods exists to estimate the power
spectral density [39]. In this work, we use the periodogram method as it is
computationally less expensive than other methods. The periodogram of the
time series Xhi,hj

is given by:

Phi,hj
(ω) =

1

N
|Fhi,hj

(ω)|2 =
1

N

[(
N∑

k=1

Xhi,hj
(tk)cos ωtk

)2

+

(
N∑

k=1

Xhi,hj
(tk)sin ωtk

)2]

(13)

Figure 18 shows the periodogram of a sample of Zeus traffic obtained from a
public repository [13]. In this network trace, the bot connected with its peer
bot every 60 s, which, in the periodogram, is represented by the frequency
corresponding to the highest power. Employing the above approach directly in
DeBot, however, presents several limitations:

• Unevenly-spaced observations: Equation 13 assumes that the traffic being
analyzed was sampled at equally-spaced time intervals. However, DeBot
employs a dynamic monitoring strategy which only captures snapshots of
traffic from different monitoring points. Thus, there may be long periods
of unobserved connection patterns between pairs of hosts, and the above
periodogram analysis may not accurately estimate the power of different
frequencies in the signal.

• Detecting periodicity : DFT treats every discrete time series as periodic.
Thus, labeling a connection pattern as periodic based on high peaks in the

Adaptive Cyber Defenses for Botnet Detection and Mitigation 191

Fig. 18. Communication pattern and periodogram of a Zeus bot

periodogram will lead to a large number of false positives. Furthermore,
random fluctuations due to noisy data and spectral leakage due to finite-length
sampling may also produce peaks at frequencies that do not correspond to
the true frequency of the signal.

In addition to addressing the above limitations, the detection mechanism
should be robust in the following two scenarios, which we also address in the
following subsections.

• Random perturbations: As malicious flows are detected based on their
periodicity, bots can evade detection by introducing random perturbations
to the connection pattern.

• False positives: Legitimate applications, such as software updates and email
clients, also generate periodic flows, which may be misclassified as malicious.

7.3.2 Lomb-Scargle Periodogoram
The dynamic monitoring strategy results in sampling traffic between two hosts
hi, hj at time points tk, k = 1, 2, ..N that are not evenly spaced. To study
the periodicity of an unevenly-spaced discrete time series, we use the Lomb-
Scargle periodogram to estimate the power spectrum [33]. The Lomb-Scargle
periodogram modifies the classical periodogram given in Eq. 13 by introducing
a time translation parameter τ :

Phi,hj (ω) =
1

2
·

⎡
⎢⎢⎢⎣

(
N∑

k=1

Xhi,hj (tk)cos ω(tk − τ)

)2

N∑
k=1

cos2ω(tk − τ)

+

(
N∑

k=1

Xhi,hj (tk)sin ω(tk − τ)

)2

N∑
k=1

sin2ω(tk − τ)

⎤
⎥⎥⎥⎦

(14)
where

τ = (1/2ω)tan−1

[(
N∑

k=1

sin(2ωtk)

)
/

(
N∑

k=1

cos(2ωtk)

)]

192 M. Albanese et al.

The power spectrum obtained from Eq. 14 is shown to be statistically
equivalent to the least squares fit of a sinusoidal wave applied to the discrete
time series [33]. High peaks in the resulting periodogram are not sufficient to
conclude that the signal is periodic. Noise in a signal can also produce large
spurious peaks in the periodogram. To extract the candidate periods that are
due to harmonic components in the signal – and not due to noise – a threshold
power-level is determined using significance tests. For a given level of confidence,
a significance test models the pure noise as a Gaussian distribution N (μ, σ) and
determines a threshold power-level z0 below which a power is considered to be
pure noise [11]. Thus, if there are no frequencies whose power is greater than
the threshold z0, then the signal is considered to be non-periodic. One of the
limitations of the significance test is that the threshold is sensitive to the choice
of parameters μ and σ for the Gaussian distribution [11]. Furthermore, existing
non-parametric methods [44] are applicable to evenly-spaced time series and,
thus, cannot be directly adopted in our setting.

7.3.3 Relative-Periodicity
In this work, instead of checking whether the connection pattern from host hi to
host hj is periodic using significance test, we determine if it is relatively periodic
by comparing its periodogram with that of other connection patterns generated
by hi during the monitoring period. Thus, we use the system’s typical network
behavior (instead of white noise) as the baseline to check for periodicity.

Let Phi
= {Phi,hj

(ω)} be the set of periodograms of connection patterns
originating from host hi (obtained using Eq. 14). To determine which peri-
odogram exhibits an anomalously higher periodicity, the periodograms in Phi

are clustered using agglomerative clustering. While clustering, the difference
in periodic structures between two periodograms is assessed using the power
distance metric [44]. The power distance between Phi,hj

and Phi,hk
is computed

by first identifying the set of frequencies ωi,j with the K-highest powers in Phi,hj
.

The power distance is then defined as:

pDist = ||Phi,hj
(ωi,j) − Phi,hk

(ωi,j)||

In our evaluation, we set K = 1000. To ensure that the total energy is
constant, before computing pDist, the powers are normalized as follows:

X(t) =
X(t) − 1

N

N∑

i=1

X(i)
√

N∑

i=1

(

X(t) − 1
N

N∑

i=1

X(i)
) , t = 1, 2, ...N

In the proposed hierarchical cluster analysis of periodograms, the linkage
criteria between sets of periodograms was computed using the Ward’s method.
After building a hierarchical structure of the periodograms, clusters are formed
by the set of periodograms whose pairwise distance is less than a threshold γ.

Adaptive Cyber Defenses for Botnet Detection and Mitigation 193

The value of γ was set to 0.95 · maxd where maxd is the maximum distance
between any two sets of periodograms as determined by the Ward’s method.
Finally, if a cluster contains only one periodogram, the connection pattern of
the corresponding host pair is considered to be relatively periodic. The rationale
behind this approach is that connection patterns corresponding to bot flows are
anomalously more periodic than other connection patterns from the same hosts,
thus the corresponding periodogram will form an individual cluster. The host
pairs (hi, hj) that are identified as relatively periodic are marked as suspicious
for further analysis.

Finally, in the analysis phase, flows generated by host pairs marked as
suspiciously periodic can be analyzed using fine-grained tools such as Deep
Packet Inspection or submitted for manual inspection to the security operations
center.

8 Botnet Lifetime

Ultimately, the defender’s objective is to eradicate a botnet from the network.
Enterprise-scale solutions require protection mechanisms that are both proactive
in preventing the propagation of botnets and reactive in detecting and respond-
ing to bots already present within the network. To address this need and solve
the third challenge mentioned earlier, we propose to deploy—in a defense-in-
depth approach—a mix of two classes of countermeasures, namely honeypots
and network-based detectors. While honeypots are used to detect intrusion
attempts—including a bot’s attempt to compromise another machine—network-
based detection mechanisms can identify (through behavioral analysis) bots that
coexist with benign machines. Both honeypots and network-based detectors can
be treated as resources available to the defender in limited supply due to cost
constraints.

8.1 Reinforcement Learning Model

To optimally and dynamically deploy these mechanisms in an iterative fashion,
and consequently reduce the lifetime of botnets, we developed a solution based
on a reinforcement learning model [43]. Reinforcement learning (RL) is an
algorithmic method for solving sequential decision-making problems wherein
an agent (or decision maker) interacts with the environment to learn how to
respond under different conditions [14]. Formally, the agent seeks to discover a
policy that maps the system state to an optimal action. In our work, the agent
learns a policy that maximizes the total number of bots detected and removed
over time. As the location of bots is unknown prior to the deployment of defense
mechanisms, the agent estimates the short-term and long-term rewards of an
action by monitoring network activity within different network segments. In
particular, the agent monitors the behavior of hosts with respect to potential
attack indicators (e.g., scanning activity and number of outgoing sessions) to

194 M. Albanese et al.

inform the next iteration of detector placement. This approach was compared
to three other strategies, namely:

• a static strategy, which does not modify detector placement over time;
• an MTD centrality-based strategy, which periodically alters detector place-

ment based on topology-driven centrality measures;
• a myopic strategy, which makes placement decisions to optimize short-term

benefits based on feedback from the operating environment.

Fig. 19. Timeline of defender’s and attacker’s actions and observations

The defender’s objective is to maximize the number of bots detected and
removed using a limited number of resources (honeypots and monitors). In
an enterprise, any machine that connects to the target network is susceptible
to compromise and subsequent recruitment as a bot. Hence, determining the
locations for placing defense mechanisms is critical to detect bots and curb
their spread within the network. Furthermore, as bots can propagate through
the network, the placement of these defenses must also dynamically change to
detect bots in different subnetworks. Due to the evolving nature of the threat,
we propose a reinforcement learning approach to guide the defender’s sequential
decision-making process of placing monitors and honeypots over time.

In our model, we consider an infinite horizon wherein the agent makes
decisions on a periodic basis. The time between two consecutive decisions is
referred to as an epoch. A timeline with the sequence of events that occur
between consecutive decisions is shown in Fig. 19. At each decision point, the
agent determines the network segments that will be monitored during the next
epoch. At the beginning of an epoch, as described in Sect. 3, bots perform one
of two detectable activities, depending on the stage in their respective lifecycle:
(i) scanning and subsequently compromising machines within the network (these
bots are referred to as scanning bots), or (ii) exchanging update messages with
their peers and the C&C server (referred to as transmission bots). The agent
observes the network activity for a time period Δtmon ∈ [0, 1]—i.e., for a fraction
of the epoch – during which (i) honeypots may be scanned and compromised
by scanning bots, and (ii) traffic through the monitors is captured for analysis
by a centralized bot detection mechanism. At time t + Δtmon, the detector
processes captured traffic and identifies a set of potential bots. We assume that
the network-based detection mechanism is imperfect, with a known true positive

Adaptive Cyber Defenses for Botnet Detection and Mitigation 195

rate, while inference based on network activity on honeypots is assumed to be
perfect3, with a true positive rate of 1.

After identifying potential bots, the defender removes them by restoring the
corresponding machines to their pristine state. Let Δtclean ∈ [0, 1] be the time4

taken by the detector to process the captured traffic and subsequently remove
the identified bots. In a resource-constrained setting with an imperfect detection
mechanism, the defender may not have detected all the bots in the network. As a
result, undetected bots continue with the next stage in their respective lifecycle.
Bots with an insufficient number of peers will scan the network while bots with
enough peers will exchange messages. The basic elements of the model are defined
below.

Decision Variable. Given N potential monitoring points, for each point the
agent may choose one of the following actions, denoted with symbols m, h, b, and
e respectively: (m) passively monitor traffic traversing that monitoring point; (h)
place a honeypot; (b) place both defense mechanisms; or (e) do nothing. Then,
the set of decisions at time t is represented as a vector xt = (xt

1, x
t
2, ..., x

t
N), where

xt
i ∈ {m,h, b, e}. Note that placing multiple monitors on the same monitoring

point does not provide any additional benefit.

System State. The state of the system should capture the location of bots
within the network. However, as the location of bots is unknown prior to the
placement of defense mechanisms, we derive the state of the system by observing
attack indicators in different segments of the network. Anomalous behaviors –
such as a large number of unsuccessful login attempts, increase in the number
of host scans, and a large number of outgoing sessions – are some of the most
common symptoms of an ongoing attack [47]. Thus, in our model, we determine
the potential locations of bots by observing anomalous behaviors in different
segments of the network. In particular, to estimate the number of bots in different
segments of the network, we track the total number of host scans and the total
number of sessions that were recorded since the latest removal of bots from the
network, i.e., in the time period [t + Δtmon + Δtclean, t + 1) in Fig. 19. These
features can be observed at all monitoring points – not just those where defense
mechanisms have been deployed – with very low overhead.

In a network with N monitoring points, the state St of the system at any
time t can be defined as a 2N -dimensional vector (ψh

1 , ψs
1, ψ

h
2 , ψs

2, ..., ψ
h
N , ψs

N),
where ψh

i and ψs
i are, respectively, the host scans state and the sessions state

of monitoring point i, with i ∈ [1, N]. In this work, we model the host scans
state and the sessions state of each monitoring point as either LOW, MEDIUM
or HIGH. In the presence of benign network activity, determining the accurate
state of each feature (host scans or sessions) at different monitoring points is
challenging. To address this issue, the defender must first establish a baseline
behavior for each feature, for example by counting how many times a feature is
observed during the time period [t + Δtmon + Δtclean, t + 1). If μf

i and σf
i are

3 Attempted access to a honeypot can be assumed an indicator of malicious activity.
4 Both Δtmon and Δtclean are defined as a fraction of an epoch.

196 M. Albanese et al.

the mean and standard deviation of each feature f ∈ {h, s} at monitoring point
i, then the state at any given time t could be defined as:

ψf
i (t) =

⎧
⎨

⎩

HIGH, if Totalfi (t) ≥ μf
i + σf

i

MED, if Totalfi (t) ∈ (μf
i − σf

i , μf
i + σf

i)
LOW, if Totalfi (t) ≤ μf

i − σf
i

(15)

where, Totalfi (t) is total number of observations of feature f that were recorded
during the time period [t + Δtmon + Δtclean, t + 1). In the following, when t is
clear from the context, we will use ψf

i instead of ψf
i (t). The intuition behind

Eq. 15 is that any large deviation from the expected behavior is considered to
be anomalous. It must be noted that the objective of this work is not to design
a specific bot detector, but rather to develop a strategy for placing defense
mechanisms to enable enterprise-scale botnet detection and mitigation. While
fine-tuning the definition of ψf

i will yield more accurate results, it is beyond the
scope of this work.

Reward Function. In an RL model, the choice of an optimal action is influenced
by the immediate reward R(St, xt) of an action. Here, the reward of an action
is defined as the number of bots that are correctly identified. However, taking
an action xt at time t, when the system is in state St, yields a reward that
is measured at a later time, t + Δtmon + Δtclean. This is a class of time-lagged
information acquisition problems, where we do not know the value of the current
state until it is updated after the uncertainty in the bot activity is revealed.
Therefore, the immediate reward of an action is estimated by using information
from recent observations. Such problems occur in real world, such as when travel
and hotel reservation decisions are done today for a future date and the value of
making such decisions is unknown until the date has occurred [12,29,31].

We estimate the number of bots in a network segment by determining
the number of hosts that have deviated from the expected behavior. Similar
to the motivation behind deriving the state of the system, the defender first
establishes a baseline for the network activity of each machine across all
monitoring points. Let μf

mc,i and σf
mc,i be the mean and standard deviation of

feature f for machine mc when observed from monitoring point i. We consider
a simple threshold scheme to decide whether a machine is a potential bot.
Given any machine mc and a monitoring point i, if Totalfmc,i(t) is the total
number of observations of feature f that were recorded during the time period
[t + Δtmon + Δtclean, t + 1), then machine mc is considered a potential bot if
and only if (∃i ∈ [1, N])(Totalfmc,i(t) ≥ μf

mc,i +3 ·σf
mc,i). It should be noted that

this rule to identify suspicious machines can be modified based on the specific
settings of the target network and does not limit the generality of the proposed
RL model.

Post-decision System State. The post-decision system state, Sx
t , is the state

to which the system transitions after the decision xt is taken. Similar to the
reward function, the change in the state of the system can only be observed at

Adaptive Cyber Defenses for Botnet Detection and Mitigation 197

a later time, in this case t + 1. Therefore, we estimate the post-decision state of
the system by determining the expected effect of a decision.

Our estimation is based on the rationale that the objective of placing a
defense mechanism at a monitoring point is to remove bots from that portion
of the network by identifying machines that exhibit anomalous behaviors. In
particular, suppose that machines mc1,mc2, ...,mck are identified as potential
bots from the monitoring point i due to deviations w.r.t. a feature f . Then,
placing a defense mechanism at time t (a honeypot if f is the host scans count,
or a network-based detector if f is the sessions count) is expected to confirm, after
a monitoring period Δtmon, whether the suspected bots are actually bots and,
if so, restore the corresponding machines mcj , j ∈ [1, k] to their pristine state.
As a result of the cleaning process, the agent expects to record μ̂f

mcj ,i,∀j ∈ [1, k]
observations of feature f at the monitoring point i during the time [t+Δtmon +
Δtclean, t+1). Assuming that the machines that are not expected to be affected
by this decision continue with their latest recorded behavior (i.e., the behavior
exhibited during [t − 1 + Δtmon + Δtclean, t)), then the new post-decision state
of monitoring point i for a feature f can be obtained by using Eq. 15, where the

estimated total number of observations of feature f is given by T̂ otal
f

i (t + 1) =
∑

j∈[1,k]

μ̂f
mcj ,i +

∑

j /∈[1,k]

μf
mcj ,i, with μ̂f

mcj ,i being the estimated behavior of machine

mcj after the placement of a defense mechanism. It must be noted that, since the
baseline values (μf

mcj ,i, σ
f
mcj ,i) of all machines at different monitoring points are

established as a preprocessing step, the post-decision state reached by a system
due to an action can be obtained immediately.

Exogenous Information. The exogenous information, or uncertainty, Bt+1 is
the information from the environment that is acquired after decision xt. The
uncertainty is attributed to the co-existence of benign and malicious behavior
within the network, making it challenging to model the evolution of bots. In
the RL model, the uncertainty is captured by observing network activity and
extracting features from different monitoring points.

State Transition Function. The state transition function, defined as St+1 =
τ(St, xt, Bt+1), captures how the system state evolves. However, due to the
absence of a model to predict Bt+1, the state transition probabilities are
unknown. Hence, a reinforcement learning based approach is used to study the
evolution of the system state.

Objective Function. The objective function is defined as the long-run total
discounted value of the states V j(S) as the iteration index j → ∞, which is
derived using the recursive Bellman’s optimality equation [6] below (Eq. 16).
Here, V j(S) is the cumulative sum of discounted R(St, xt) rewards for the
learning phase, whose iterations are indexed from 1 to j. In this work, we consider
a 365-day cycle in which decisions are made at the start of each day. The learning
phase goes through several iterations (indexed with j) of 365-day cycles. As the
value of a state is measured in terms of number of correctly identified bots, the
objective function will be to maximize the long-run total discounted value of

198 M. Albanese et al.

the states V j(S): the higher the value of V j(S), the better the system state.
The model strives to transition from one good state to another by making a
decision that is guided by the highest value of the estimated future states that
are reachable at any given time t.

8.2 Phases of Reinforcement Learning

RL achieves the objective through three phases, namely, exploration, learning,
and learned. The recursive Bellman’s optimality equation that updates the value
of the states is given as follows:

V j(Ŝx
t−1) = (1 − αj)V j(Ŝx

t−1) + αjνj (16)

νj =
[

max
xt∈X

{
R(St, xt) + βV j(Ŝx

t)
}]

(17)

where V j(S) denotes the value of state S at the j-th iteration, Ŝx
t is the estimated

post-decision state reached by the system at state St under the action xt, αj

is the learning parameter that is decayed gradually, X is the set of all feasible
decisions from which the model will choose a decision at every iteration, and β
is the fixed discount factor that allows the state values to converge in a long run.
It should be noted that the value of the estimated post-decision state Ŝx

t−1 is
updated at time t (in Eq. 17) using the estimated reward function and the value of
the estimated post-decision states that can be reached under different actions.
In a classical RL formulation, the immediate real rewards and the immediate
value of the post-decision states at time t are known; hence, the value of the
post-decision state at time t − 1 can be updated using Eqs. 16 and 17. However,
as both the rewards and post-decision states are estimated, we update the value
of the post-decision state only after the real reward for an action is observed.

A snapshot of the state-transition diagram is shown in Fig. 20, in which
Ut denotes the uncertainty (before and after removing bots) after taking an
action, and Ot+1 denotes the features observed at different monitoring points
after removing the bots. The bot removal stage is denoted by Et+1. In this
model, during the learning phase, the choice of an action xt when the system
is in state St is determined by the estimated reward function R(St, xt). After
taking the action xt, the uncertainty Ut+1 unfolds, transitioning the system to
the state St+1. As the uncertainty Ut+1 unfolds (shown in trapezoidal box in

Fig. 20. State transition diagram

Adaptive Cyber Defenses for Botnet Detection and Mitigation 199

Algorithm 4. Exploration and Learning Phase
Input: Baseline values ψf

i of each feature f ∈ {h, s} for each monitoring point i, baseline values

ψf
mc,i for each machine mc, decision space X , initial learning parameter α0 = 0.8 at time t = 0,

discount parameter β = 0.95, number of iterations for learning J = 1000.
Output: State value function, V (S), ∀S
1: V (S) ← 0, ∀S
2: for all j = {1, ..., J} do
3: if j ≤ 0.3 · J then
4: Phase ← Exploration
5: else
6: Phase ← Learning
7: end if
8: for all t = {1, ..., 365} do
9: Observe features from the monitoring points and determine state St

10: if Phase = Exploration then
11: Choose a random defense placement decision, xt

12: else
13: Estimate immediate reward R(St, xt) and post-decision state Ŝx

t , as described in
Section 8.1, ∀xt ∈ X

14: Choose the action x′
t that gives the maximum value in Eq. 17

15: end if
16: if t > 2 then
17: Observe the real reward at t + Δtmon + Δtclean

18: Decay the learning parameter, αj = αj

1+e , where e = j2

1.25·1014+j
// see [14]

19: Update value of post-decision state V j(Ŝx
t−1) using Eq. 16 and Eq. 17 with the real

reward and the value of αj

20: end if
21: end for

22: end for

Fig. 20), bots are removed at stage Et+1 and the agent observes the real reward
which is then used to update the value of the estimated post-decision state Ŝx

t−1.
The three phases of learning are described below.

Exploration Phase. In this phase, the RL algorithm explores several non-
optimal decisions and acquires the value of the system states that are visited.
As described in Algorithm 4, Eq. 16 is used without the max operator in Eq. 17
by taking random decisions for placing defense mechanisms, and the values of
V j(Sx

t) and V j(Ŝx
t−1) are taken from the previously stored values, if the state was

visited, or set to 0 otherwise. Since the algorithm begins with V 0(S) = 0,∀S
at j = 0, exploration helps to populate the values of some of the states that
are visited. Exploration is stopped after a certain number of iterations, which
depends on the size of the state-space and the number of iterations planned for
the learning phase. In our simulation, we stopped exploration after 30% of the
total number of iterations. The idea here is to explore as many states as possible
during the learning phase. A low value of this parameter would imply not enough
states being explored, whereas a high value would lead to non-convergence of
state values during the learning phase. Thus, our choice is reasonable and quite
common for this class of problems.

Learning Phase. In this phase, the algorithm takes near-optimal decisions at
time t, which are obtained from Eq. 17 with the max operator (lines 13 − 14 of
Algorithm 4). The value of the post-decision state at time t − 1 is updated at

200 M. Albanese et al.

time t + 1 as per Eq. 16 with the real rewards. After several iterations, learning
is stopped when convergence of the value of the states is achieved, as measured
in terms of the mean-square error of the stochastic gradient [31].

Learned Phase. This is the implementation phase of the RL. The inputs to this
phase include the value of the states at the time when learning was terminated
and the estimated reward function. In this phase, the RL algorithm takes optimal
decisions at each time t, which is obtained from Eq. 17 with the max operator.
The algorithm then evaluates all its feasible actions and chooses an action that
takes the system to the post-decision state with the highest value.

8.3 Simulation Results

Differently from the myopic strategy, the reinforcement learning strategy also
considers long-term benefits of possible detector placements. Figure 21 shows
how the number of bots in the network changes over time for each of the four
strategies considered. If the number of bots reaches 0, then the botnet has been
completely removed from the system. As expected, the static placement strategy
exhibits the worst performance: once a botnet is established, bots that are not
observable by the static detectors can persist in the network indefinitely. MTD
strategies, on the other hand, provide significantly better protection as they
introduce uncertainty about the location of detectors. The myopic strategy shows

Fig. 21. Comparison between the reinforcement learning strategy and other strategies

Adaptive Cyber Defenses for Botnet Detection and Mitigation 201

a significant improvement over the centrality strategy in reducing the lifetime
of the botnet, because it also considers information obtained from the network.
Finally, among the MTD strategies, the RL approach shows the largest reduction
in the botnet’s lifetime.

9 Conclusions and Future Work

Stealthy botnets pose significant threats due to their ability to evade traditional
defenses and persist in the target system for extended periods of time. Detecting
and mitigating these threats is a multifaceted problem that calls for novel
solutions to address the several interrelated challenges that stealthy bots
introduce. We have shown how the problem can be decomposed into relatively
simpler problems that can be tackled separately, while keeping the big picture
in mind. Essentially, we need to understand where and when to monitor
for potentially suspicious activity, how to look at observed traffic to identify
potentially compromised machines, and how to ensure that each and every bot
has been removed from the network. Moving Target Defense (MTD) has proved
to be a viable and promising approach in tackling these challenges, enabling us
to achieve some interesting results. Of course, the security benefits of deploying
MTD techniques come at a cost for the defender, which can be measured in
terms of increased overhead to maintain availability for legitimate users. The
tradeoff between security and cost can generally be controlled by configuring
the parameters of an MTD technique.

In this chapter, we have presented the key findings of our work on disrupting
stealthy botnets through the use of a novel moving target defense approach.
Specifically, we have targeted botnets that are being used for exfiltrating sensitive
data from mission-critical systems. Defending against such botnets is challenging,
as research has shown how they have become increasingly sophisticated and have
the capability of operating in stealth mode by minimizing their footprint.

In order to defeat exfiltration attempts by modern botnets, we have proposed
a moving target defense approach for placing detectors across the network – in a
resource-constrained environment – and dynamically and continuously changing
the placement of detectors over time. Specifically, we have proposed several
strategies based on centrality measures that capture important properties of
the network. Our objective is to increase the attacker’s effort and likelihood of
detection by creating uncertainty about the location of detectors and forcing the
botmaster to perform additional actions in an attempt to create detector-free
paths through the network.

We have presented two metrics to evaluate the proposed strategies – namely
the minimum detection probability and the attacker’s uncertainty – and an
algorithm to compute the minimum detection probability. We validated our
approach through simulations, and the results confirmed that the proposed
solution can effectively reduce the likelihood of successful exfiltration campaigns.

As part of our work on optimal detector placement, we also proposed a
Stackelberg game model that accounts for the strategic response of attackers

202 M. Albanese et al.

to deployed defenses. We proposed two double-oracle based algorithms, ORANI

and ORABI, to compute optimal defense strategies with respect to data uni-
exfiltration and broad-exfiltration formulations, respectively. We also provided
greedy heuristics to approximate the defender and the attacker best-response
oracles. We conducted experiments based on both random scale-free graphs and
real-world ISP network topologies, demonstrating the advantages of our game-
theoretic solution over previous strategies.

To identify and remove bots, we have developed a novel network-based
detection scheme, called DeBot, which can identify traffic flows potentially
associated with data exfiltration attempts. The proposed solution intercepts
traffic through deployed detectors and leverages differences in the network
behavior of botnets and benign users to identify suspicious flows. We analyze the
characteristics of traffic flows to identify suspicious hosts and use periodogram
analysis to identify malicious flows. The fundamental assumption behind the
use of periodogram analysis is that exfiltration traffic tends to be relatively
more periodic than normal or benign traffic. This approach has been evaluated
against different architecturally stealthy botnets in the CyberVAN testbed and
its performance has been compared to two state-of-the-art detection techniques.
The results indicate that DeBot is effective in detecting botnet activity and
outperforms existing solutions with respect to false positive rates.

Finally, to achieve the defender’s ultimate objective of eradicating a botnet
from the network, we proposed to deploy – in a defense-in-depth approach –
a mix of two classes of countermeasures, namely honeypots and network-based
detectors. While honeypots are used to detect intrusion attempts – including
a bot’s attempt to compromise another machine – network-based detection
mechanisms can identify (through behavioral analysis) bots that coexist with
benign machines. Both honeypots and network-based detectors can be treated
as resources available to the defender in limited supply due to cost constraints.
To optimally and dynamically deploy these mechanisms in an iterative fashion,
and consequently reduce the lifetime of botnets, we developed a solution based
on a reinforcement learning model.

Our future plans include but are not limited to: (i) introducing a probabilistic
model to account for false negatives in the deployed detectors; (ii) defining and
evaluating the performance of the proposed detector placement strategies against
more sophisticated attacker’s strategies; and (iii) casting the model in a game-
theoretic framework to study the Nash equilibria and dominant strategies.

References

1. APT1: Exposing one of China’s cyber espionage units. Technical report, Mandiant,
February 2013

2. Lateral movement: how do threat actors move deeper into your network? Technical
report, Trend Micro (2013)

3. Alpcan, T., Başar, T.: An intrusion detection game with limited observations.
In: Proceedings of the 12th International Symposium on Dynamic Games and
Applications (ISDG 2006), Sophia-Antipolis, France, July 2006

Adaptive Cyber Defenses for Botnet Detection and Mitigation 203

4. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: ordering points
to identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data (SIGMOD 1999), pp. 49–60.
ACM, Philadelphia, May 1999

5. Beigi, E.B., Jazi, H.H., Stakhanova, N., Ghorbani, A.A.: Towards effective feature
selection in machine learning-based botnet detection approaches. In: Proceedings
of the IEEE Conference on Communications and Network Security (IEEE CNS
2014), pp. 247–255. IEEE, San Francisco, October 2014

6. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton
(1957)

7. Chadha, R., et al.: CyberVAN: a cyber security virtual assured network testbed.
In: Proceedings of the 2016 IEEE Military Communications Conference (MILCOM
2016), pp. 1125–1130. IEEE, Baltimore, November 2016

8. Collins, M.P., Shimeall, T.J., Faber, S., Janies, J., Weaver, R., Shon, M.D., Kadane,
J.B.: Using uncleanliness to predict future botnet addresses. In: Proceedings of the
7th ACM SIGCOMM Internet Measurement Conference (IMC 2007), pp. 93–104.
ACM, San Diego, October 2007

9. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the
Internet topology. ACM SIGCOMM Comput. Commun. Rev. 29(4), 251–262
(1999)

10. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM (JACM) 34(3), 596–615 (1987)

11. Frescura, F.A.M., Engelbrecht, C.A., Frank, B.S.: Significance tests for peri-
odogram peaks, June 2007. https://arxiv.org/abs/0706.2225

12. Ganesan, R., Jajodia, S., Shah, A., Cam, H.: Dynamic scheduling of cybersecurity
analysts for minimizing risk using reinforcement learning. ACM Trans. Intell. Syst.
Technol. 8(1) (2016)

13. Garćıa, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet
detection methods. Comput. Secur. 45, 100–123 (2014)

14. Gosavi, A.: Simulation-Based Optimization: Parametric Optimization Techniques
and Reinforcement Learning, Operations Research/Computer Science Interfaces,
vol. 55, 2nd edn. Springer, New York (2003)

15. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In: Proceedings
of the 17th USENIX Security Symposium (USENIX Security 2008), pp. 139–154.
USENIX Association, San Jose, July 2008

16. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: detecting
malware infection through IDS-driven dialog correlation. In: Proceedings of
the 16th USENIX Security Symposium (USENIX Security 2007), pp. 167–182.
USENIX Association, August 2007

17. Jain, M., Korzhyk, D., Vaněk, O., Conitzer, V., Pěchouček, M., Tambe, M.: A
double oracle algorithm for zero-sum security games on graphs. In: Proceedings of
the 10th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS 2011), pp. 327–334. IFAAMAS, Taipei, May 2011

18. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.): Moving
Target Defense: Creating Asymmetric Uncertainty for Cyber Threats, Advances
in Information Security, vol. 54. Springer, New York (2011). https://doi.org/10.
1007/978-1-4614-0977-9

19. Kaspersky Labs: Kaspersky lab and ITU research reveals new advanced
cyber threat, May 2012. http://usa.kaspersky.com/about-us/press-center/press-
releases/kaspersky-lab-and-itu-research-reveals-new-advanced-cyber-threat

https://arxiv.org/abs/0706.2225
https://doi.org/10.1007/978-1-4614-0977-9
https://doi.org/10.1007/978-1-4614-0977-9
http://usa.kaspersky.com/about-us/press-center/press-releases/kaspersky-lab-and-itu-research-reveals-new-advanced-cyber-threat
http://usa.kaspersky.com/about-us/press-center/press-releases/kaspersky-lab-and-itu-research-reveals-new-advanced-cyber-threat

204 M. Albanese et al.

20. Khalil, K., Qian, Z., Yu, P., Krishnamurthy, S., Swam, A.: Optimal monitor
placement for detection of persistent threats. In: Proceedings of the IEEE Global
Communications Conference (IEEE GLOBECOM 2016). IEEE, Washington, DC,
December 2016

21. Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., Tambe, M.: Computing
optimal randomized resource allocations for massive security games. In: Proceed-
ings of the 8th International Conference on Autonomous Agents and Multi-Agent
Systems, pp. 689–696. IFAAMAS, Budapest, May 2009

22. Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg
vs. Nash in security games: an extended investigation of interchangeability,
equivalence, and uniqueness. J. Artif. Intell. Res. 41(2), 297–327 (2011)

23. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng.
37(3), 371–386 (2011)

24. Marschalek, M., Kimayong, P., Gong, F.: POS malware revisited - look what we
found inside your cashdesk. Cyphort labs special report, Cyphort, Inc. (2014)

25. McMahan, H.B., Gordon, G.J., Blum, A.: Planning in the presence of cost functions
controlled by an adversary. In: Proceedings of the 20th International Conference
on Machine Learning (ICML 2003), pp. 536–543. AAAI Press, Washington DC,
August 2003

26. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: an approach to universal
topology generation. In: Proceedings of the 9th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
pp. 346–353. IEEE, Cincinnati, August 2001

27. Merritt, E.: New POS malware emerges - Punkey, April 2015. https://
www.trustwave.com/Resources/SpiderLabs-Blog/New-POS-Malware-Emerges--
Punkey/

28. Moreira Moura, G.C.: Internet Bad Neighborhoods. Ph.D. thesis, University of
Twente, The Netherlands, March 2013

29. Nascimento, J.M., Powell, W.B.: An optimal approximate dynamic programming
algorithm for the lagged asset acquisition problem. Math. Oper. Res. 34(1), 210–
237 (2009)

30. Nguyen, T.H., Wellman, M.P., Singh, S.: A stackelberg game model for botnet
data exfiltration. In: Rass, S., An, B., Kiekintveld, C., Fang, F., Schauer, S. (eds.)
GameSec 2017. LNCS, vol. 10575, pp. 151–170. Springer, Vienna (2017). https://
doi.org/10.1007/978-3-319-68711-7 9

31. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality, 2nd edn. Wiley, Hoboken (2011)

32. Rossow, C., Andriesse, D., Werner, T., Stone-Gross, B., Plohmann, D., Dietrich,
C.J., Bos, H.: SoK: P2PWNED - modeling and evaluating the resilience of peer-
to-peer botnets. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy (S&P 2013), pp. 97–111. IEEE, Berkeley (2013)

33. Scargle, J.D.: Studies in astronomical time series analysis. ii-statistical aspects of
spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982)

34. Schmidt, S., Alpcan, T., Albayrak, Ş., Başar, T., Mueller, A.: A malware detector
placement game for intrusion detection. In: Lopez, J., Hämmerli, B.M. (eds.)
CRITIS 2007. LNCS, vol. 5141, pp. 311–326. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89173-4 26

35. Shinoda, Y., Ikai, K., Itoh, M.: Vulnerabilities of passive internet threat monitors.
In: Proceedings of the 14th USENIX Security Symposium (USENIX Security 2005),
pp. 209–224. USENIX Association, Baltimore, August 2005

https://www.trustwave.com/Resources/SpiderLabs-Blog/New-POS-Malware-Emerges--Punkey/
https://www.trustwave.com/Resources/SpiderLabs-Blog/New-POS-Malware-Emerges--Punkey/
https://www.trustwave.com/Resources/SpiderLabs-Blog/New-POS-Malware-Emerges--Punkey/
https://doi.org/10.1007/978-3-319-68711-7_9
https://doi.org/10.1007/978-3-319-68711-7_9
https://doi.org/10.1007/978-3-540-89173-4_26
https://doi.org/10.1007/978-3-540-89173-4_26

Adaptive Cyber Defenses for Botnet Detection and Mitigation 205

36. Shmatikov, V., Wang, M.H.: Security against probe-response attacks in collabo-
rative intrusion detection. In: Proceedings of the 2007 Workshop on Large Scale
Attack Defense, pp. 129–136. ACM, Kyoto, August 2007

37. Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring ISP topologies
with Rocketfuel. IEEE/ACM Trans. Netw. 12(1), 2–16 (2004)

38. Stinson, E., Mitchell, J.C.: Towards systematic evaluation of the evadability of
bot/botnet detection methods. In: Proceedings of the 2nd USENIX Workshop on
Offensive Technologies. USENIX Association, San Jose, July 2008

39. Stoica, P., Moses, R.L.: Introduction to Spectral Analysis, 1st edn. Prentice Hall,
Upper Saddle River (1997)

40. Sweeney, P.J.: Designing effective and stealthy botnets for cyber espionage and
interdiction: finding the cyber high ground. Ph.D. thesis, Thayer School of
Engineering, Darthmouth College, August 2014

41. Venkatesan, S., Albanese, M., Cybenko, G., Jajodia, S.: A moving target defense
approach to disrupting stealthy botnets. In: Proceedings of the 3rd ACM Workshop
on Moving Target Defense (MTD 2016), pp. 37–46. ACM, Vienna, October 2016

42. Venkatesan, S., Albanese, M., Jajodia, S.: Disrupting stealthy botnets through
strategic placement of detectors. In: Proceedings of the 3rd IEEE Conference
on Communications and Network Security (IEEE CNS 2015), pp. 55–63. IEEE,
Florence, September 2015. Best Paper Runner-up Award

43. Venkatesan, S., Albanese, M., Shah, A., Ganesan, R., Jajodia, S.: Detecting
stealthy botnets in a resource-constrained environment using reinforcement learn-
ing. In: Proceedings of the 4th ACM Workshop on Moving Target Defense (MTD
2017), pp. 75–85. ACM, Dallas, October 2017

44. Vlachos, M., Yu, P., Castelli, V.: On periodicity detection and structural periodic
similarity. In: Proceedings of the 5th SIAM International Conference on Data
Mining (SDM 2005), pp. 449–460. SIAM, Newport Beach, April 2005

45. Wang, Y., Wen, S., Xiang, Y., Zhou, W.: Modeling the propagation of worms in
networks: a survey. IEEE Commun. Surv. Tutorials 16(2), 942–960 (2014)

46. Wellman, M.P., Prakash, A.: Empirical game-theoretic analysis of an adaptive
cyber-defense scenario (preliminary report). In: Poovendran, R., Saad, W. (eds.)
GameSec 2014. LNCS, vol. 8840, pp. 43–58. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-12601-2 3

47. West, M.: Preventing system intrusions. In: Network and System Security, pp.
29–56, , 2nd edn. Syngress (2014)

48. Zeng, Y., Hu, X., Shin, K.G.: Detection of botnets using combined host- and
network-level information. In: Proceedings of the IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN 2010), pp. 291–300. IEEE,
Chicago, June 2010

49. Zhang, J., Perdisci, R., Lee, W., Luo, X., Sarfraz, U.: Building a scalable system
for stealthy P2P-botnet detection. IEEE Trans. Inf. Forensics Secur. 9(1), 27–38
(2014)

https://doi.org/10.1007/978-3-319-12601-2_3
https://doi.org/10.1007/978-3-319-12601-2_3

	Adaptive Cyber Defenses for Botnet Detection and Mitigation
	1 Introduction
	2 Related Work
	3 Threat Model and Assumptions
	4 Overview of Research Challenges
	5 Detector Placement
	5.1 Preliminary Definitions
	5.2 Defender's Model
	5.3 Metrics
	5.4 Attacker's Uncertainty
	5.5 Defender's Strategies
	5.6 Simulation Results

	6 A Game-Theoretic Approach to Detector Placement
	6.1 Game Model: Uni-Exfiltration
	6.2 ORANI: An Algorithm for Uni-Exfiltration Games
	6.3 Data Broad-Exfiltration
	6.4 Experiments

	7 Bot Identification
	7.1 Preprocessing Phase
	7.2 Observation Phase
	7.3 Refinement Phase

	8 Botnet Lifetime
	8.1 Reinforcement Learning Model
	8.2 Phases of Reinforcement Learning
	8.3 Simulation Results

	9 Conclusions and Future Work
	References

