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Abstract. Game-theoretic applications in cyber-security are often
restricted by the need to simplify complex domains to render them
amenable to analysis. In the empirical game-theoretic analysis approach,
games are modeled by simulation, thus significantly increasing the level
of complexity that can be addressed. We survey applications of this app-
roach to scenarios of adaptive cyber-defense, illustrating how the method
operates, and assessing its strengths and limitations.

1 Introduction

Strategic analysis of a cyber-security situation starts with the understanding
that attacker and defender are engaged in an adversarial interaction, driven by
(largely) opposing objectives, and armed with distinct tools for assessing and
shaping the cyber environment. Formalizing these elements almost inevitably
leads the analyst to describe the situation in game-theoretic terms: available
actions and observations of the respective actors (players), and utility functions
representing objectives. Thus, it is not surprising to observe a large expansion
of the literature on game theory applied to cyber-security,1 and an associated
increase in development of tools and applications (Manshaei et al. 2013; Roy
et al. 2010; Sinha et al. 2018).

Many game-theoretic treatments of cyber-security domains start with major
simplifications, due to the analytic complexity of high-fidelity representations of
realistic environments. Analysis of such stylized models can often shed valuable
light on a strategic situation. For example, Edwards et al. (2017) employ a coarse-
grained “blame game” model to identify qualitative considerations for deciding
how and when to attribute responsibility for suspected state-sponsored cyber-
attacks. Simplicity in modeling facilitates reasoning and allows a given model
to cover a broad class of relevant scenarios. Choosing the right abstractions to
isolate exactly the strategic issues of interest is central to the game theorist’s
art, and when done well, it can provide deep insight for decision makers.

There are two significant drawbacks to the stylized approach, however. First,
the models analyzed tend to be generic, and so do not necessarily help for

1 Including dedicated annual conferences, such as GameSec (Bushnell et al. 2018; Rass
et al. 2017a).
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determining particular solutions to specific situations. Work in the framework of
Stackelberg security games (Tambe 2011) has effectively addressed this issue, by
supporting decisions for specified problem instances rather than generic scenar-
ios. Second, for complex scenarios there is danger that the abstractions applied
may discard essential detail, and thus the resulting guidance is incomplete, or
worse—potentially misleading. Cyber-systems are inherently complex environ-
ments, typically involving numerous computationally interacting entities, with
considerable state and complicated patterns of communication and observation.
Experts familiar with the intricacies of such systems are likely to view stylized
game models as toy versions of reality, and thus take a skeptical stance to con-
clusions from such models.

Since any modeling approach will entail some abstraction of the real world,
there is no way for an analysis method to completely avoid this second drawback.
Simplification is a matter of degree, so extending game-theoretic reasoning to
accommodate greater complexity will enable the models to capture more of the
richness of realistic cyber-security situations. This is particularly important for
treatments of adaptive cyber-defense, since the dynamic evolution of configura-
tion and information is the essence of adaptation. To be considered adaptive, a
defense policy must take into account the attack state of the system, in consider-
ation of how successful attacks require a succession of actions to gain knowledge
about and eventually compromise targeted resources (Evans et al. 2011). Incor-
porating dynamics in the game model is therefore an absolute requirement for
this domain. Dynamic information in turn poses significant technical challenges
for game-theoretic methods (Tavafoghi et al. 2019).

One interesting effort to capture complex security dynamics in an abstract
game model is the FlipIt framework introduced by Dijk et al. (2013). In FlipIt,
two players vie for control of a single resource. Each has a single action, which
takes control of the resource at some cost. Neither player can observe when the
other has acted, and so is uncertain about the state of control except at the
instant it performs its own action. Though the FlipIt model is quite abstract, it
captures key elements of system security not well-supported by previous models
(Bowers et al. 2012). Analysis of FlipIt has led to interesting insights about
the interplay of various strategy classes, the value of aggressive play, and the
significance of information advantages. As a stylized model, however, the generic
version of FlipIt misses many relevant features of adaptive cyber-defense and is
not suitable for decision making in a particular situation. Extensions of FlipIt
have covered additional relevant scenario features (Farhang and Grossklags 2016;
Jones et al. 2015; Laszka et al. 2013, 2014; Pham and Cid 2012). These add to
practical realism, but seriously complicate analysis of the FlipIt game, which to
date has eluded complete analytic solution, even in its basic version.

Which brings us finally to the approach described in this chapter: empirical
game-theoretic analysis (EGTA) (Wellman 2016). Rather than build an analytic
model that may be amenable to direct game-theoretic solution, EGTA starts
with a detailed environment model described in procedural form, that is, by a
simulation. We then introduce a set of specific dynamic strategies, and systemat-
ically run simulations over combinations of these strategies. The simulation data
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form the basis for estimating a game model, which can be solved using standard
techniques.

The advantage of simulation is its ability to handle complex, stochastic, and
temporally extended scenarios. This allows us to include realistic features of
adaptive cyber-defense domains, going beyond generic and toy models. In its
iterative form, EGTA also supports exploration, allowing us to address a rich
set of strategic questions without premature simplification, such as isolating all
the key strategic variables in advance. There are also limitations, particularly
regarding the difficulty of generalizing game-theoretic conclusions beyond the
specific environments and strategy instances studied. Overall, we regard EGTA
as a complement to traditional game-theoretic treatments, which sacrifice com-
plexity for generality (within the simplified model).

2 Empirical Game-Theoretic Analysis

The general idea of EGTA is to apply game-theoretic reasoning to models derived
from agent-based simulation. The approach is designed to combine the advantage
of simulation models in accommodating complexity with principles of strategic
analysis expressible in the framework of game theory.

2.1 Basic Steps

The basic steps of EGTA are as follows, illustrated in Fig. 1.

1. Define a space of strategies for each player.
2. Simulate various combinations, or profiles, of agent strategies.
3. Induce or estimate an empirical game model from the accumulated simulated

payoff data.
4. Analyze the resulting empirical game model, for example to identify Nash

equilibria or otherwise characterize solutions of the game.

We elaborate on each step in turn.

Define Strategy Space. In EGTA, we typically constrain attention to a strict
subset of the strategies that could be implemented in principle, for example
imposing a parameterized form for strategies or adopting a particular agent

Fig. 1. Basic steps of empirical game-theoretic analysis. Feedback arrows show common
patterns for iteration.
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architecture. For this reason the available options are sometimes referred to as
heuristic strategies. Though in general, a game may have any number of players,
cyber-security games commonly focus on two: attacker (A) and defender (D).
Let SA and SD denote their respective strategy sets.

Simulate Strategy Profiles. In a cyber-security game, we would simulate
profiles (sA, sD) for various choices of sA ∈ SA and sD ∈ SD. Each simulation
yields a sample payoff vector, giving a numeric representation of the value of
the outcome received by each player from one play of the given profile. Given
stochastic factors in the simulation, we would typically require many samples of
a profile to produce a reliable estimate of the expected payoffs to A and D.

Induce Empirical Game. In the most straightforward implementation of this
step, we estimate a normal-form game model by sampling every profile s ∈
SA × SD a sufficient number of times. The payoff to player A in s, uA(s) is
simply the sample average of A’s payoffs in these simulations (and similarly
uD(s) for player D). If the strategy spaces are very large, machine learning
methods may be employed to generalize over the data to estimate payoffs for
profiles not explicitly simulated (Vorobeychik et al. 2007).2

Analyze Game Model. The goal of analysis is to calculate Nash equilibria or
another chosen solution concept, typically using off-the-shelf techniques. In the
cyber-security context, let us define a mixed profile (σA, σD), with σA ∈ Δ(SA)
a probability distribution over A’s strategy set (and similarly for σD) to be a
joint strategy where each player independently chooses a strategy according to
these distributions. Then (σA, σD) is a Nash equilibrium iff E[uA(σA, σD)] ≥
E[uA(sA, σD)] for all sA ∈ SA, and similarly E[uD(σA, σD)] ≥ E[uD(σA, sD)] for
all sD ∈ SD.

Game analysis may also include reasoning about strategic relationships, such
as dominance or ranking responses to particular opponents. Sensitivity analysis
or statistical reasoning about candidate solutions would also be included in the
game analysis step.

2.2 Iterative EGTA

It would be unusual for an EGTA study to proceed linearly according to steps
1-2-3-4 and complete. In practice, preliminary results at one step may inform
reconsideration or elaboration of work at previous steps, and so the procedure
would be iterative in nature. The key feedback links are shown in Fig. 1.

The simulation of strategy profiles (step 2) generates a collection of payoff
samples. The number of samples required may not be straightforward to deter-
mine in advance. Feedback arrows from the game induction and analysis suggest
that the results of these computations may be relevant in determining whether
the collection is adequate, and if not, where additional simulation-based sam-
pling is required. Such determination can be made on a principled basis through
2 Such generalization is also often needed for the more general case of games where

there are many players (Sokota et al. 2019; Wiedenbeck et al. 2018).
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statistical analysis (Wiedenbeck et al. 2014), considering properties of the data
collected and goals of the game analysis.

The longer feedback arrow from game analysis to strategy space represents
strategy exploration (Jordan et al. 2010). Analysis of an accurate game model
in step 4 gives us solutions to the game defined by the strategy space (SA, SD)
defined in step 1. Since SA and SD are strict subsets of the true strategy sets
available to players A and D, it is quite likely that the solutions found are not
actually equilibria of the true game. We can bolster our confidence by consid-
ering additional strategies, thus defining augmented strategy sets S′

A ⊃ SA and
S′
D ⊃ SD. Solutions to the game over strategy space (S′

A, S′
D) are not actually

guaranteed to be better approximations with respect to the full game (except in
the limit when all strategies are included), but all else equal we expect improve-
ment as more strategies are considered.

Of course, the interesting question in strategy exploration is which strategy
or strategies to add at each iteration. A natural approach is to try to improve
on the current equilibrium, by computing a best response to the other-player
strategy. It turns out that the best response is generally not the optimal strategy
to add in an iterative EGTA procedure (Jordan et al. 2010), as it does not
consider opponent strategies outside the equilibrium, and it may not diversify
the strategy set enough. Nevertheless, it is often a good heuristic, particularly if
some stochastic exploration is conducted as well.

3 Example: A Moving Target Defense Game

We illustrate the EGTA approach to cyber-security by sketching the study of
Prakash and Wellman (2015), which addressed an abstract scenario in moving-
target defense (MTD). MTD covers a broad class of adaptive defenses where
the main object is to defeat the attacker’s ability to gain sufficient knowledge to
compromise or take over a system (Jajodia et al. 2011). There are many MTD
techniques, which accomplish this objective in various ways, generally involv-
ing some adaptation of the system to confuse the attacker or render its exist-
ing knowledge obsolete. We sought an abstract model that could fit the MTD
approach broadly, without committing to a particular technology or system con-
text. We thus adopted an extended version of the FlipIt model (van Dijk et al.
2013) discussed above in Sect. 1. The extension adds some complicating features
present in prior work, such as multiple servers (Laszka et al. 2014) and asym-
metric stealth (Laszka et al. 2013). It also incorporates a progressive concept of
attack, in that unsuccessful attempts to compromise a server yield information
that make subsequent attempts more likely to succeed (absent defender adapta-
tion). This last feature is essential for capturing the primary dynamic of MTD
(Albanese et al. 2019; Evans et al. 2011).

3.1 Game Description

In the specific MTD game studied, an attacker and defender compete for the
control of 10 servers. (We could scale to many more servers with linear growth
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in the simulation time). Servers start out in control of the defender. The key
actions are probe for the attacker, and reimage for the defender. A probe is
essentially an attempt to compromise a server. If it succeeds, the attacker gains
control, and if not, the attacker gains some information (not modeled explicitly)
that increases its chance of succeeding on the next attempt. A reimage action
by the defender takes a server down and resets its state. That is, any progress
the attacker may have made on that server through probing is erased, such that
probe success probability is reduced to its initial value.

The simulation proceeds for T = 1000 time steps. At each time step, the
attacker may decide to probe any subset of the servers, and similarly the defender
may choose some servers to reimage. Each faces a tradeoff, in that their actions
help them achieve their goal of gaining or maintaining control of servers—but at
a cost. For attackers, the probe actions bear an explicit cost, and for defenders
the cost of reimaging is implicit in the downtime (7 time units in our setting)
incurred for performing that action.

The state of the system at any point can be described by which player controls
each server, and if the defender controls: whether it is down or up, and how many
probes the attacker has attempted since the last reimage.

3.1.1 Observation Model
As argued above, cyber-security games are generally characterized by complex
dynamics of state and observations, and this game is no exception. Technically,
when agents cannot reliably observe each other’s actions, the game is said to
exhibit imperfect information. In this game, neither agent can perfectly observe
the other. Precisely characterizing the model of what is and is not observed
by each player is crucial for capturing the strategic interaction in an imperfect
information game.

In the example MTD game, the defender has a partial ability to detect probes
executed on any server, Specifically, if the server is up, the defender detects the
probe with a specified probability, which varies across environment settings.
However, the defender cannot tell whether a detected probe succeeded in com-
promising its target. The defender does of course know when it performs a reim-
age, and it is only at that point (and for the following downtime) that it can be
sure it controls the server.

The attacker, on the other hand, does become aware when a probe succeeds.
It also finds out when a server it controls is retaken by the defender through
reimaging. Therefore, the attacker always knows the state of control of every
server. However, it can only imperfectly track its progress in increasing success
probability through probes, because it cannot tell when a defender reimages a
server not in its control.

3.1.2 Utility
The primary objective of each player is to control servers. This is reflected in
their utility functions, which quantify the value they attribute to any trajectory
of states and actions. In the MTD game, players accrue utility each time period,
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based on the fraction of servers up and in their control, and also the fraction
of servers not in the other player’s control (i.e., either up and in the player’s
control, or not up).

This functional form of the utility function is designed to accommodate a
variety of preference patterns, including objectives from the classic “CIA” (confi-
dentiality, availability, integrity) triad (Pfleeger and Pfleeger 2012). For example,
the confidentiality objective can be expressed through parameters encoding the
defender’s strong aversion to allowing the attacker to control servers. Availability
from the defender’s perspective can be expressed as requiring that a sufficient
fraction of servers are in the defender’s control and not down. We can categorize
attacker utility in an analogous way. An attacker that accrues utility only by
having servers in its control is termed a control attacker, whereas an attacker
that accrues utility by having servers in its control or down is termed a disrupting
attacker.

The utility function also includes threshold parameters governing the level
of contention for servers in the associated environment. For example, by setting
the threshold to 1/2 we impose the constraint that significant utility is accrued
only if at least a majority are in control.

Finally, the utility model accounts for the cost of actions. The attacker pays
a specified cost in utility per probe. The cost of the defender action is expressed
implicitly in the utility function as the difference in utility accrued by servers
being down as opposed to in the defender’s control.

In the best case, a player accrues one utility unit per time period for keeping
servers in their desired state, at no cost. The maximum overall utility for a game
run is therefore T . The minimum is unbounded, as players may take unlimited
costly actions without achieving their objective.

3.1.3 Strategies
In the EGTA approach, we focus on parameterized families of heuristic strategies,
characterized by regular structures and patterns of behavior over time. Defining
this strategy space is the first key step of EGTA (Fig. 1). The heuristic strategies
defined for the MTD game generate actions based on the passage of time, or
observed events in the system. If the actions are triggered by passage of time (in
either a deterministic or probabilistic manner), we call the strategy periodic. The
remaining strategies are triggered by observed events. They may apply actions
to servers based on observations of that server, or based on combinations of
observations across servers.

Specific families of heuristic strategies are defined for both attacker and
defender. Within each family, there may be parametric options, so a large or
even infinite number of possible instances. Overall, we considered 12 distinct
attacker strategies and 20 defender strategies (i.e., |SA| = 12, |SD| = 20). These
include for each player the No-Op strategy, in which the agent never takes any
action.
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Attacker Strategies. We consider two forms of periodic attacker strategy:

• Uniform-Uncompromised. Selects uniformly among those servers under the
defender’s control.

• MaxProbe-Uncompromised. Selects the server that has been probed the most
since last reimage (that the attacker knows about), among those servers under
the defender’s control, breaking ties uniformly.

We also include one non-periodic attacker strategy that generates probe actions
based on the number of servers that an attacker controls.

• Control-Threshold. If the attacker controls less than a threshold fraction of
the servers, it chooses to probe the server that has been probed the most
since last reimage (as far as it is aware) among those it does not currently
control. Ties are broken uniformly among all eligible servers. A minimum
waiting period of one time unit separates any two consecutive actions.

Defender Strategies. We consider periodic defender strategies employing two
different criteria for server selection:

• Uniform. Selects uniformly among all up servers.
• MaxProbe. Selects the server that has been probed most since its last reimage,

breaking ties uniformly.

The non-periodic defender strategies trigger a reimage operation based on probe
activity or inactivity.

• ProbeCount-or-Period (PCP). Reimages a server whenever it detects that a
threshold number of probes since the last reimage, or if it has been probed
at least once but not within the specified period. The rationale for reimaging
a server that is not being probed is that this could be an indication that the
attacker has already compromised it and thus ceased attack.

• Control-Threshold. Analogous to the attacker’s strategy by the same name, we
include a defender strategy that performs a reimage action when the fraction
of servers controlled falls below a threshold. Unlike the attacker, however, the
defender cannot directly observe control state. Instead, the defender estimates
the number of servers compromised based on the probes it has observed since
reimaging on each server.

• Control-Target. Like Control-Threshold, except based on a target rather than
a threshold.

3.2 Simulation and Analysis

We performed EGTA over a variety of environment and agent utility settings.
The experiments covered a variety of environment settings, with systematic anal-
ysis over the possible combinations. Specifically, we varied games over the fol-
lowing features:

• Defender objective: confidentiality or availability.
• Attacker objective: disruption or control.
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• Threshold on server control: low, majority, or high.
• Attacker probe cost: low, medium, or high.
• Defender probe detection: perfect, or imperfect at levels low, medium, or high.

Altogether, these settings define 144 distinct game instances. For 43 of these
instances we conducted a full empirical game analysis: steps 2 through 4 of
Fig. 1. These include all 18 instances with availability defender objective and
perfect probe detection (Fig. 2), and another 18 with availability defender objec-
tive, imperfect probe detection, and medium p;robe cost (Fig. 3). We also ran
seven with confidentiality defenders; as discussed below the confidentiality objec-
tive generally leads to an obvious equilibrium. For steps 2 and 3, we estimated
through repeated simulation the joint payoffs for all 12 × 20 = 240 strategy
profiles (sA, sD). Finally (step 4) we computed Nash equilibria for each game
instance, using the Gambit software package (McKelvey et al. 2014). Most of
the games had multiple equilibria—often similar, but sometimes quite diverse.

Our goal for this analysis was to gain strategic insight into a generic MTD
scenario. As such, we were interested not so much in specifics of individual
equilibria, but rather understanding at a qualitative level the kinds of equilibria
observed. We found that equilibria could be classified into four qualitatively
distinct groups.

1. MaxDef. In a maximal defense equilibrium, the defender reimages so aggres-
sively that it is futile for the attacker to even try to compromise the servers.
Aggressive defense means a frequent periodic reimaging strategy or one that
reimages based on a low-threshold probe trigger. Faced with such an aggres-
sive defense, the attacker plays No-Op. As a result, the attacker gets no utility
and the defender may get near maximum.

2. MaxAtt. We classify a profile as maximal attack if the attacker probes aggres-
sively and in response the defender either plays No-Op or reimages only infre-
quently or ineffectively. This category is the dual of MaxDef, and corresponds
to outcomes that are poor for the defender.

3. Share. We classify an equilibrium profile as a sharing if attack and defense
levels are moderate, and both players are able to achieve their objectives.

4. Fight. Fight equilibria are characterized by robust attack and defense activ-
ity, resulting in persistent contention such that neither player achieves its
objective to a satisfactory degree.

First, we observe that games with confidentiality defenders always have
MaxDef equilibria. Such defenders care only that the attackers do not con-
trol their servers, and they can trivially achieve this objective by frequently
reimaging—essentially keeping the servers down and unavailable. This result
actually shows that a focus purely on confidentiality is not very realistic, so
we devote the main part of our attention to games where defenders have an
availability objective.

Figure 2 presents results for the 18 games where the defender has the avail-
ability objective and can perfectly detect attacker probes. The games cover all
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combinations of settings for attacker objective, probe cost, and utility thresh-
olds for control of servers. As we see, the various game instances lead to different
qualitative categories of equilibria. For the disrupting attacker (table on left),
we have MaxDef equilibria for cases of high threshold or high probe cost. Those
settings are particularly challenging for the attacker, enabling the defender to
effectively deter attack through aggressive reimaging. Since the threshold setting
applies to both players, the high threshold games also have MaxAtt equilibria,
where an aggressive attack can cause the defender to give up. With low thresh-
olds, both players need only achieve their objective with a minority of servers,
so sharing equilibria are possible. Some of the intermediate settings support
fight equilibria, where both players accrue some utility, but neither can keep the
majority of servers in their preferred state on a consistent basis.

For the control attacker (table on right), the objective is more challenging
than disruption. As a result, the defender always has the possibility of deterring
attacks through sufficient aggression in a MaxDef equilibrium. MaxAtt can be
sustained under the high threshold, or with majority threshold and low probe
cost. Sharing equilibria appear for a couple of the low threshold environments,
and fight equilibria in all the high threshold environments.

Results for 18 environments with imperfect probe detection are presented in
Fig. 3. By comparing the two figures, it is obvious that maintaining a MaxDef
equilibrium is much harder when the defender may miss some probes. On the
other hand, degraded detection opens the door for aggressive attack, as Max-
Att and Fight are the only equilibria found in the majority or high threshold
environments. With low threshold, sharing remains possible, and indeed this
equilibrium is most prevalent.

Fig. 2. Qualitative categorization of equilibria across 18 game settings, with availability
defender and perfect probe detection. The left table is for a disruptive attacker, and
the right for a control attacker. In each cell, colored circles indicate which categories
of equilibria are found. (Color figure online)
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3.3 Discussion

This example is meant to illustrate general several features of EGTA for cyber-
security domains. First, that the method can address a strategically complex
scenario, and evaluate a variety of heuristic strategies. Second, that through
systematic exploration, we can uncover regular qualitative patterns of strategic
behavior. Once identified, these patterns can deepen our understanding of the
strategic tradeoffs in the domain. In this case, the findings can all be rationalized
straightforwardly. Cases where multiple behaviors are possible (e.g., instances
with both MaxDef and MaxAtt equilibria) are natural candidates for further
study, toward characterizing refinements that would support one or the other.

4 Survey of Literature

The first application of EGTA to a security domain was the study of privacy
attacks by Duong et al. (2010). This work started from the well-understood fact
that an attacker’s ability to compromise the privacy of a target depends on
the background knowledge it already has about the target. In a scenario with
multiple attackers, a coalition can increase their collective prospects of privacy
breach by sharing background knowledge. There is a tradeoff, however, in that
the value of a successful attack may decrease if it is non-exclusive. The study
employed EGTA to characterize rational sharing in a variety of settings. The
ability to predict sharing is relevant in particular to a database publisher, who
must decide how much to degrade the published information (at a cost) in order
to protect privacy.

A second security domain studied using EGTA by some of the same authors
addressed incentives for compliance with a network security protocol (Well-
man et al. 2013). Compliance is an important strategic problem for security,

Fig. 3. Qualitative categorization of equilibria for imperfect probe detection. Columns
represent three levels where the probability the defender detects a given probe action
is 0.2 (low), 0.5 (med), or 0.7 (high).
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as often participants will have an incentive to free-ride on the security contri-
butions of others (Čagalj et al. 2005; Naghizadeh and Liu 2016). This study
included several methodological innovations, including a systematic procedure
to extend the strategy space through local search, and scaling the number of
agents by exploiting symmetry across multiple roles. Specifically, the work mod-
eled the introduction-based routing protocol (Frazier et al. 2011) on a network
with four kinds of nodes: clients, ISPs, roots, and servers. The game is role-
symmetric, meaning that players corresponding to a given role (in this context,
node type) had the same strategy sets and utility functions, but these generally
varied between roles. This enabled use of an aggregation technique called player
reduction (Wellman et al. 2005), in which a many-player game is approximated
by an empirical game with much fewer players. For example, one reported anal-
ysis simulated a 4956-node network to estimate a game with six players. Results
for that instance are shown in Fig. 4. As we can see, tendency toward compliance
varies by role, and there are qualitatively distinct equilibria. Overall, we found
over several game settings that compliance was not universal, but typically at a
sufficient level to deter attacks.

More recently, we have conducted several EGTA studies within a broader
project on adaptive cyber-defense. The first was the MTD study illustrated in
Sect. 3 (Prakash and Wellman 2015; Wellman and Prakash 2014). The second
employed EGTA to evaluate a moving-target defense against distributed denial
of service (DDoS) attacks (Wright et al. 2016). The defense, called MOTAG,
had originally been designed and modeled in non-game-theoretic terms (Jia
et al. 2013; Venkatesan et al. 2016). Like the MTD game study, the MOTAG

Fig. 4. Top 11 approximate symmetric mixed equilibria for a 4956-node instance of
the introduction-based routing compliance game. Strategies are classified as compliant
or non-compliant. Each row represents a mixed profile, indicating whether the role
plays strategies that are compliant (green), non-compliant (red), or a mixture of these
(yellow). (Color figure online)
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investigation covered a two-player game with 10–20 strategies per player, and
systematically evaluated a set of parametric variations on the game environment
(41 game instances overall). We found that strategy ideas proposed in prior lit-
erature for this setting can be effective under certain conditions, but the ideal
strategies varied considerably across these conditions. The study was helpful for
making these conditions precise, and generally illuminating the strategic land-
scape for DDoS mitigation in the MOTAG framework.

The third EGTA study in this broader project addressed strategic behavior
in domains that can be modeled by attack graphs (Nguyen et al. 2017). The basic
idea of an attack graph model is to represent the progress of an attack in terms of
following paths in a graph of security conditions (Kordy et al. 2014; Phillips and
Swiler 1998). The work in this project specifically builds on a Bayesian frame-
work for attack graphs developed by Miehling et al. (2015). The EGTA study
extended the framework to a game, where at each time the attacker chooses
edges representing available exploits, and a defender chooses nodes to defend.
The strategy sets for both attacker and defender were populated by sophisti-
cated heuristics developed as approximate solution of corresponding optimiza-
tion problems. The study found that these heuristics successfully beat several
baselines, and were robust to variation in the environment settings.

In work outside of this project, Chapman (2016) developed an abstract cyber-
security game based on an extension of hide-and-seek game models. The exten-
sions were motivated by adaptive attack behavior in network security, and ren-
der the model infeasible for analytic solution. Chapman therefore adopted a
simulation-based approach, and appealed to EGTA methods for game-theoretic
treatment. Rass et al. (2017b) likewise appeal to EGTA for a game involving
mitigation of advanced persistent threats, citing uncertainty as a complicating
factor requiring this approach. Qi et al. (2018) model a scenario similar to the
MTD game of Sect. 3 on a switching network using simulation to estimate game
payoffs.

5 Conclusion and Extensions

As established by the MTD example and review of related literature, EGTA has
by now been employed in a wide variety of adaptive cyber-defense applications.
These works demonstrate the value of combining agent-based simulation and
game-theoretic analysis in support of principled strategic reasoning for complex
security domains. In each case, game-theoretic concepts were applied to scenarios
of a complexity far exceeding the capacity of purely analytic methods to tackle.

Results of these analyses in many cases are compelling, though not necessar-
ily definitive. Since by definition an EGTA study restricts attention to chosen
strategies, conclusions are always subject to refutation based on refined analysis.
Moreover, as for any modeling approach, assumptions incorporated in simula-
tion or approximation methods are open for debate, or relaxation in subsequent
studies. Indeed, there remain many areas where improvement in technique could
significantly increase the power and scope of EGTA methodology. Here we briefly
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catalog some of the open issues and opportunities for extensions of EGTA in ser-
vice of cyber-security analysis.

Covering Large Strategy Spaces. For a two-player game, profile space grows
quadratically with strategy sets. This often allows consideration of a rich vari-
ety of attack and defense strategy candidates, albeit far from the full space of
strategies available (typically highly dimensional or even infinite). Moreover, it is
often possible to identify equilibria without evaluating all strategy combinations
(Fearnley et al. 2013), which can sometimes dampen even quadratic growth. Lim-
itations on strategy space become more acute when there are greater than two
players. Though the standard setup in cyber-security domains is attacker versus
defender, some scenarios naturally feature a broader set of strategic actors.

Automating Strategy Search. An effective approach to dealing with limita-
tions on strategy space is to incrementally extend coverage, based on an itera-
tive exploration using feedback from analysis of games of progressively increased
size (Jordan et al. 2010). Given some formal description of the strategy space,
strategy exploration can be automated in terms of a search in that space. Pre-
vious work has employed automated strategy generation for EGTA using local
search (Wellman et al. 2013) or reinforcement learning (Lanctot et al. 2017;
Schvartzman and Wellman 2009; Wright and Wellman 2018). Recent advances
in deep learning have demonstrated breakthrough performance on two-player
board games (Silver et al. 2017), and are demonstrating promise in cyber-security
games as well (Wang et al. 2019; Wright et al. 2019).

Statistical Reasoning About Results. In the EGTA approach, the game
model is estimated or induced from simulation data. The simulations are gen-
erally samples of a stochastic system, which means that results are subject to
sampling error. This error may be mitigated by devoting more resources to sam-
pling, though naturally that presents tradeoffs regarding alternative uses of that
computation (e.g., to exploring more strategies or profiles). There has been some
progress on developing principled methods for statistical reasoning in EGTA
(Vorobeychik 2010; Wiedenbeck et al. 2014), but further work in this area is
needed.

Generalizing Over Environments. The results produced from EGTA studies
apply directly to the game instance modeled by the given simulator. Often in
security settings, guidance about action in a specific instance is exactly what
we care about. However, deriving broad insights about strategic issues in cyber-
securities entails lifting results from specific instances to broad categories of
game scenarios. The current state of art in EGTA is to systematically explore
a range of environments, and attempt to identify patterns in the mapping to
solutions. This approach is illustrated well by the qualitative characterization
of equilibrium patterns in Figs. 2 and 3. Further work should attempt to codify
and automate this systematic search and generalization process.
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