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Abstract. In this chapter, we discuss the control-theoretic approach to
cyber-security. Under the control-theoretic approach, the defender pre-
scribes defense actions in response to security alert information that is
generated as the attacker progresses through the network. This feedback
information is inherently noisy, resulting in the defender being uncertain
of the underlying status of the network. Two complementary approaches
for handling the defender’s uncertainty are discussed. First, we consider
the probabilistic case where the defender’s uncertainty can be quantified
by probability distributions. In this setting, the defender aims to specify
defense actions that minimize the expected loss. Second, we study the
nondeterministic case where the defender is unable to reason about the
relative likelihood of events. The appropriate performance criterion in
this setting is minimization of the worst-case damage (minmax). The
probabilistic approach gives rise to efficient computational procedures
(namely sampling-based approaches) for finding an optimal defense pol-
icy, but requires modeling assumptions that may be difficult to justify in
real-world cyber-security settings. On the other hand, the nondetermin-
istic approach reduces the modeling burden but results in a significantly
harder computational problem.

1 Introduction

The field of control theory studies how one can make a sequence of decisions in
order to most efficiently guide, or control, a system toward a specified objective
subject to some uncertainty regarding the system’s evolution. Some examples of
problems addressed by control theory include maintaining a system’s output at a
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desired set-point in the presence of external disturbances, e.g., an aircraft autopi-
lot system responsible for maintaining speed and altitude in varying weather
conditions, or tracking a path or trajectory subject to measurement noise and
estimation errors, e.g., an autonomous vehicle’s road following algorithm tasked
with translating noisy measurements from multiple sensors into real-time steer-
ing, acceleration, and braking decisions. Depending on the control environment,
the information available for making decisions can take different forms. In some
settings, the current status of the system is directly observable and can be used
in the decision making process. In others, the uncertainty is not only due to the
effect of the control action on the evolution of the system, but also includes the
inability to perfectly observe the system’s status, requiring control decisions to
be made based on noisy observations or measurements. In either setting, sequen-
tial control decisions must be made based on new, potentially noisy, information
that is revealed as the problem evolves. The precise topic that control theory
addresses is the nature of this feedback loop – the influence of control decisions on
the observable output and the dependency of revealed information on the choice
of subsequent control actions – with the end goal of prescribing optimal control
actions, that is, those that achieve the objective at the lowest operational cost.

In this chapter, we study the role of control theory in cyber-security. In par-
ticular, we focus on the (dynamic) defense problem: how a defender can prescribe
actions in real-time as a function of a stream of intrusion information in order
to interfere with, and potentially mitigate, attacks carried out by one or more
adversaries.1 It is worth emphasizing the defining characteristic of control the-
ory, namely the one-sided nature of the decision-making process. As such, the
control-theoretic approach studied in this chapter considers the defender as the
only active decision-maker in the system.2 All other decision-making processes
that may be present in the system, e.g., actions of the attacker(s) or the behavior
of trusted (non-malicious) users, are abstracted into the model of the cyber envi-
ronment. The one-sided nature of the control theoretic approach is in contrast
with the two-sided (or in general, many-sided) decision making environment of
game theory which consists of many agents, each possessing different information
and (at least partially) conflicting objectives. Game-theoretic tools, specifically
how they can be used to address the problems in cyber-security, are discussed
in-depth in Chap. 3. While modeling the cyber-security problem as a control
problem is an approximation of the true problem, it is a valuable first step for
addressing the full complexity of the game-theoretic approach. Indeed, many
of the challenges of the cyber-security problem present in the control-theoretic
approach also exist in the game-theoretic approach.

1 Such systems are referred to as intrusion response systems in the cyber-security
literature; see [1] for a review of the area.

2 In some control settings, the “decision maker” may actually consist of a collection of
agents making decisions based on their own localized information in order to achieve
some common objective. Such problems still fall within the realm of control theory,
due to all agents having an identical objective, but are referred to as decentralized
control problems or team problems [2,3].
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The defense problem presents many challenging requirements from both mod-
eling and computational perspectives. The problem is inherently dynamic, evolv-
ing over time as a function of the defender’s actions and (potentially unob-
servable) events from the cyber environment. New information is continuously
revealed to the defender as the problem evolves, all of which, in general, must be
used in the defender’s decision making process. The model for the cyber envi-
ronment, termed the threat model, must be sufficiently expressive to describe
the complex nature of attacks. In particular, attacks are progressive, consisting
of multiple stages and involving the combination of many vulnerabilities across
multiple network elements, and persistent, with attackers continuing to attempt
to fulfill their objective, using various attack pathways, until they are success-
ful. The defender, in its attempts to interfere with or mitigate attacks, must
be aware of the conflicting effects of its defense decisions on the system. It is
faced with an unavoidable tradeoff between security and availability; performing
system modifications that lower an attack’s chance of success also interfere with
the normal functionality and usability of the system by trusted users. Beyond
modeling challenges, the defense problem presents significant challenges from
a computational perspective. The systems that are targeted by cyber attacks
are large-scale, consisting of many hosts, each containing a wide-range of soft-
ware and operated by a large collection of users. Reasoning about all possible
ways such systems can be attacked often leads to a combinatorial explosion in
complexity. As a result, scalable algorithms must be developed, often requiring
approximations or novel solution techniques (such as sampling methods or sys-
tem decompositions). One must also ensure that algorithms are able to meet the
strict timing requirements of the system by prescribing defense decisions quickly.
Oftentimes, defense decisions have a limited window of usefulness; prescribing a
defense decision too late can be as ineffective as taking no action at all.

The tools offered by control theory are a natural fit for addressing the afore-
mentioned requirements. First, quantifying the status of the system through
assignment of a state allows one to formally describe the evolution of the sys-
tem’s level of security as a function of the defense actions and events from the
cyber environment (e.g., the description of the threat model). Furthermore,
under the state-based approach, one can define an appropriate cost structure
(costs for states and actions) that captures the desired tradeoff between secu-
rity and availability. Defending the system then amounts to determining actions
that ensure the system stays out of undesirable (high-cost) regions of the state
space. In general, the defender’s decisions must be made based on all available
information. The notion of an information state from control theory allows for
a compression of the available information into a summary that is sufficient for
making optimal decisions. Once an appropriate information state for the problem
is identified, one can cast the problem of determining the optimal defense policy
(the sequence of functions mapping the information state to actions) as a set of
sequential optimization problems (via dynamic programming). Computational
concerns can then be more directly addressed by investigating approximations to
the dynamic programming recursion, leading to approximately optimal defense
policies.
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In what follows, we discuss the philosophy behind the control theoretic app-
roach to cyber-security. First, in Sect. 2, we describe the assignment of a state
to quantify the level of security of the system and how this state evolves as a
function of the defender’s actions and the events from the cyber environment.
The defender’s lack of perfect information regarding the state, and how this is
addressed, is discussed in Sect. 3. Section 4 introduces the notion of defense poli-
cies and the computational procedure for obtaining them. Section 5 provides two
model instances of the general control-theoretic approach, differing primarily in
the assumed nature of the uncertainty in the problem (probabilistic vs. non-
deterministic). The general idea of each approach is described, as well as each
model’s benefits and drawbacks. Concluding remarks are provided in Sect. 6.

2 The State-Based Approach to Cyber-Security

At the heart of any control problem is the notion of a state. The state describes
the current operating status of the system, quantifying how the system reacts
to the control input and events from the environment, and influencing how the
control translates to the observable output. Viewing cyber-security as a control
problem first requires that one defines a state that accurately quantifies the
level of security of the system. To this end, the state, denoted by xt ∈ S at any
given time t, should reflect some aspect of the attacker’s current capabilities. For
example, the state could represent the permissions that the attacker possesses
or its progress (in terms of compromised hosts) toward reaching a specific target
host. In Sect. 5, we will define the state in the context of two formal security
models; for the current discussion, however, consider the state to be abstract
representation of the system’s security level.

The next ingredient in the control-theoretic description of cyber-security is
the specification of the control, that is, the defender’s actions. Defense actions
can take a wide variety of forms. One class of such actions is patches. A patch for
a vulnerability renders the corresponding exploit(s) ineffective, offering an effec-
tive strategy for hardening the system and interfering with the attacker’s goal.
Unfortunately, the time between discovery of the vulnerability and the instal-
lation of a patch, termed the vulnerability exposure window, can be upwards of
five months [4].3 As a result, relying solely on patches would inevitably allow
systems to be operational while exposed to vulnerabilities. Alternative defen-
sive measures that operate on faster time-scale than patches are needed. The
defense actions we consider throughout this chapter use known vulnerabilities
and security alert information to actively interfere with the attacker’s progres-
sion. Specifically, a defense action at time t, denoted by ut ∈ A , corresponds
to system modifications that directly influence the ability of the attacker to
induce a state transition, xt → xt+1. For example, a defense action may disable
the precondition of an exploit (such as connectivity between two hosts via a
specific port) in order to block the attacker from using the exploit. While not a
3 For a deeper discussion of this issue, see the related topic of vulnerability disclosure

policies [5].
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permanent solution, these defense strategies can be effective for interrupting an
attack, buying useful time for forensic analysis and the development of a patch.

Defense decisions are made based on the predicted evolution of the state
under various defense actions. In order to carry out such a prediction, one
needs a model for the attacker. The concept of threat modeling [6] from the
computer security community addresses precisely this task. Informally, threat
models describe what the attacker can do given its current capabilities. More
specifically, a threat model describes the various ways in which an attacker can
infiltrate the system (attack vectors/pathways), what resources it finds valu-
able (the attacker’s objectives), and what sort of security information is gener-
ated/detected during an attack (e.g., via intrusion logs). In the context of the
control-theoretic approach of this chapter, the threat model describes how the
state evolves as a function of defense actions and events from the cyber envi-
ronment, as well as what observations are generated during this evolution. For
example, given a set of attacker capabilities (quantified by the current state)
the threat model serves to define what exploits the attacker can attempt and,
given the defense action, an updated set of attacker capabilities and any secu-
rity alerts that may have been generated during the attempt of the exploits. It
is important to note that while the control theoretic approach requires a well-
defined threat model, it need not be completely known a priori. Simultaneous
learning of the model and control of the system based on feedback information
still falls within the realm of control theory (termed adaptive control [7] and
reinforcement learning [8]).

While the defender’s primary objective is to prevent the attacker from reach-
ing its goals, it must also consider the effect of its defense actions on the normal
operation of the system. Defenses that are most effective at interfering with the
attacker also tend to be most disruptive to the normal operation of the system
(e.g., shutting down the email server to block phishing emails). On the other
hand, prioritizing system availability unavoidably preserves attack pathways. In
short, keeping the attacker away from its goals is largely in conflict with main-
taining availability. Quantifying this tradeoff is achieved by assigning costs to
both states and defense actions, via a cost function c(xt, ut). High costs should
be assigned to undesirable states, e.g., the attacker possessing root access on a
critical host, as well as to actions that significantly limit availability. Using the
threat model, the defender can reason about costs of state-action trajectories
which in turn guide the selection of defense actions that achieve the desired
security-availability tradeoff.

3 The Defender’s Information

A fundamental aspect of the dynamic defense problem is that the defender can-
not perfectly observe the attacker’s activity, i.e., the events from the cyber
environment. Instead the defender receives observations, denoted by yt ∈ O,
generated as a function of the underlying events. The monitoring devices that
generate the observations are inherently noisy. For instance, intrusion detection
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systems suffer from both missed detections (generating no security alerts when
something malicious has occurred) and false alarms (triggering security alerts in
the absence of malicious behavior). As a consequence of this imperfect detection,
the defender has uncertainty over the true state of the system.

The control-theoretic concepts of information structure and information
state4 allow one to formalize the defender’s lack of perfect information regarding
the true state. The information structure of a problem is a formal description
of the phrase “who knows what about the system and when” [10]. Under the
centralized control theoretic approach of this chapter, the information struc-
ture of the problem has a straightforward interpretation; it simply describes
the set of variables that the defender knows at any given time. Through-
out the chapter, it is assumed that the information structure satisfies perfect
recall, that is, the defender remembers all of its past observations and defense
decisions. In other words, at time t the defender has access to the history
ht = (u0, y1, . . . , ut−1, yt) ∈ (A × O)t. Given that there is only one decision-
maker, the problem is said to have a strictly classical information structure [11].
This allows one to compress the history into a summary, termed an informa-
tion state and denoted by It, that has a time-invariant domain I [10]. The
information state is sufficient for making optimal decisions, i.e., basing deci-
sions on the information state, rather than the whole history, is without loss
of optimality. Treating the information state as the state of the problem, one
can formulate a completely observable decision problem that admits a dynamic
programming decomposition. The evolution of the information state is dictated
by the new information that is revealed as time progresses (defense actions and
observations).

4 Computation of Defense Policies

The defense action at any given time is computed as a function of the defender’s
current information (given by the information state). Formally, the transla-
tion from information states to defense actions is specified by a defense policy,
denoted by g = (g0, g1, . . . , gT−1), where T is the decision horizon (the finite
horizon case will be considered in this chapter; however T can also be infinite)
and each gt is a function from the given information state It to a distribution
over defense actions, that is, gt : I → Δ(A ). Determining the best defense pol-
icy depends on the defender’s model for how events are generated (i.e., how the
attacker chooses its actions). As will be discussed in more detail in Sect. 5, the
assumed nature of uncertainty in the problem dictates the cost criterion for the
problem. For example, if uncertainty is quantified by probability distributions
and the defender is risk-neutral, the defender’s objective may be to minimize
the total expected cost. On the other hand, under nondeterministic uncertainty,
an appropriate criterion would be to minimize the worst-case cost, termed the
minmax criterion. The best defense policy, termed an optimal defense policy

4 For a deeper discussion of information structures and information states, see [9].
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denoted by g∗ = (g∗
0 , g

∗
1 , . . . , g

∗
T−1), is a policy that minimizes the corresponding

cost criterion.
In general, each defense action has a long-run impact on the evolution of the

system. As such, defense decisions cannot be made in isolation; one must balance
immediate costs with future costs to ensure that early defense decisions don’t
result in the system ending up in an undesirable or vulnerable state. Reasoning
about sequences of actions is a computationally formidable task, especially when
the time horizon, T , is long. Fortunately, results from control theory allow one
to sequentially decompose the long-run optimization problem into a collection
of simpler subproblems. The sequential decomposition, known as dynamic pro-
gramming, relies on a concept known as the principle of optimality [12,13]. A
problem is said to satisfy the principle of optimality if, given a sequence of opti-
mal control actions from time t onward, the remainder of the action sequence
from t+1 onward will still be optimal for the problem that starts from the state
resulting from the action taken at t. The cost of the remainder of the action
sequence from a given state, termed the cost-to-go, is captured by defining a
value function. The value function represents the best that one can do from the
given state. The resulting recursive expression, termed the Bellman (or dynamic
programming) equation is solved in the finite horizon case by starting from the
final decision time and working backwards, a process termed backward induc-
tion. In the infinite horizon case, one must solve a fixed point equation [13]. The
optimal policies are recovered from the value functions by finding the action, for
a given state, that minimizes the cost criterion.

Dynamic programming is the predominant approach for solving centralized
control problems (and thus the dynamic defense problem studied in this chapter);
however, it suffers from computational challenges as the problem size grows. The
main challenge arises from the need to compute and store the value functions for
every possible state. As the state space grows, this procedure becomes increas-
ingly burdensome (referred to as the curse of dimensionality). Due to the very
large state space in many cyber-security settings, the curse of dimensionality
becomes a significant issue for the dynamic defense problem. This problem is
further compounded by the fact that the defender possesses imperfect informa-
tion of the state; the domain of the value functions is thus the set of information
states I , an uncountably infinite space. These challenges preclude the compu-
tation of optimal actions for every possible (information) state. One must resort
to approximations of the dynamic programming recursion, resulting in approxi-
mately optimal defense policies. As will be illustrated in the following section, the
information state of the problem provides guidance for an appropriate approxi-
mation, allowing for scalable and fast computation without significantly impact-
ing decision quality.

5 Some Models from the Literature

There is a large body of research concerning the design of systems that prescribe
automated defenses based on real-time intrusion information. Such systems are
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referred to by various names in the literature: automated intrusion response sys-
tems [14], autonomic & self-protecting systems [15,16], and survivable systems
[17,18], among others [19,20]. The seminal work of [18] was the first to inves-
tigate the design of such a system from a formal, control-theoretic perspective.
More recent work has taken a similar approach, developing control-theoretic
automated defense systems for completely observable [15,16,20] and partially
observable settings [1,19,21–23].

This section will focus on the partially observable setting. In particular, we
investigate two complementary approaches to modeling the defender’s uncer-
tainty: (1) probabilistic uncertainty, and (2) nondeterministic uncertainty. Prob-
abilistic uncertainty quantifies all uncertainty in the problem via probability dis-
tributions. For instance, under a given defense action, the transition from one
state to another is assumed to be dictated by probabilities. The second approach,
nondeterministic uncertainty, considers a more coarse form of uncertainty where
one only knows the possible events and not their specific probabilities. For each
setting, the general decision environment and form of the information state is
described. To aid in exposition, we draw upon two existing models developed in
the literature, namely [1,21] for the probabilistic approach and [22,23] for the
nondeterministic approach. In both cases, solving for an optimal defense pol-
icy is intractable, requiring solution techniques that yield approximate defense
policies. Each section concludes with a general discussion of the benefits and
drawbacks of the respective modeling approach.

5.1 Probabilistic Uncertainty

The first approach assumes that the nature of the defender’s uncertainty is prob-
abilistic. Under probabilistic uncertainty, the state transitions and the generation
of observations are assumed to be dictated by probability distributions. In par-
ticular, the state dynamics follow a controlled Markov chain5 where the control
is the defender’s action, as illustrated by Fig. 1.

An implicit assumption in this setting is that the underlying distributions
characterize, as a function of the defense action, all uncertainty associated with
the attacker’s behavior. In particular, given a current state xt = si and a defense
action ut = a, the transition to the next state xt+1 = sj is given by a fixed
conditional probability pa

ij = P(Xt+1 = sj | Xt = si, Ut = a).6 Further, given
a successor state xt+1 = sj and an action ut = a, an observation yt+1 = ok is
generated according to the conditional probability ra

jk = P(Yt+1 = ok | Xt+1 =
sj , Ut = a).

The above described model is known in the literature as a partially observ-
able Markov decision process (POMDP). It is well known that the informa-
tion state in a POMDP is the conditional probability measure, that is, the
probability mass function on the state space S conditioned on the history

5 This is a special case of a general probabilistic automaton where the dynamics are
assumed to be Markovian.

6 The uppercase notation, Xt, is used to represent a random variable.
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Fig. 1. Under the assumption of probabilistic uncertainty, the state dynamics evolve
probabilistically. We represent this evolution as a controlled Markov chain where the
control is the defense action.

ht = (u0, y1, . . . , ut−1, yt) [24]. The information state (also referred to as the
belief state) is denoted by It = πt ∈ Π = Δ(S ) where Δ(S ) is the proba-
bility simplex on the state space (the space of all probability mass functions
on S ). The belief state π is updated via Bayes rule, as a function of the
new information (ut, yt+1) = (a, o), to π′ = (τ1(π, a, o), . . . , τn(π, a, o)) where
τj(π, a, o) =

∑
i πip

a
ijr

a
jk/

∑
i

∑
j πip

a
ijr

a
jk.

Under probabilistic uncertainty, an appropriate performance metric is that of
total expected discounted cost. The cost for a given defense policy g : Δ(X ) →
Δ(A ) is defined as

C(g) = E

[
T−1∑

t=0

βtc(xt, ut) + βT c(xT )

]

.

where c(·, ·) is the state-action cost, c(·) is the terminal cost (that only depends
on the final state), and β ∈ [0, 1) is a discount factor which serves to place
more weight on immediate costs compared to later costs. The expectation
above is taken with respect to the joint probability distribution on trajectories
(x0, u0, . . . , xT−1, uT−1, xT ) as a result of defense policy g. An optimal defense
policy g∗ is one that minimizes the total expected discounted cost C(g), that
is, g∗ = infg C(g). Recalling the discussion of Sect. 4, optimal defense policies
are computed from the value function. The value function in the probabilis-
tic uncertainty case is defined on the space of beliefs Δ(S ) and is denoted by
V : Δ(S ) → R. Using the likelihoods encoded by the belief and the probabilities
described by the model, one can write the dynamic programming equations, for
every π ∈ Δ(S ) and t = 0, . . . , T − 1, as

V ∗
t (π) = min

a∈A
E

[
c(x, a) + βV ∗

t+1(τ(π, a, y))
]

= min
a∈A

⎧
⎨

⎩

∑

i

πic(si, a) + β
∑

k

∑

j

∑

i

πip
a
ijr

a
jkV ∗

t+1(τ(π, a, ok))
]
⎫
⎬

⎭
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with terminal value function V ∗
T = E

[
c(x)

]
. The solution of the above equations

can, in principle, be obtained via a recursive computational procedure (i.e.,
value iteration) which, in turn, yields a corresponding optimal defense policy g∗.
Unfortunately, due to the scale of real-world cyber-security problems, one must
resort to approximate procedures, as will be described later.

To provide context for the probabilistic approach, we review a model from
the literature. The automated intrusion response system, developed in [1,21],
models how a defender can optimally interfere with the progression of an adver-
sary through a computer network. The progression of the attacker is described
by a directed acyclic graph, termed an attack graph, that encodes the relation-
ships between exploit preconditions (attacker capabilities that are needed to
attempt the exploit) and postconditions (attacker capabilities that are realized
upon success of the exploit). The state of the system at any given time is the
set of currently enabled conditions. As the attacker attempts exploits and moves
through the network, alerts are triggered via an intrusion detection system. The
defender uses these noisy security alerts to construct a belief of the currently
enabled conditions. Using the belief, the defender prescribes actions that induce
system modifications that block exploits from being carried out. While these
system modifications interfere with the progression of the attacker (the evolu-
tion of the state), they are also costly, requiring the defender to tradeoff between
interfering with the attacker’s progression and maintaining system availability.

The novelty of the model developed in [1,21] is the use of attack graphs
to model the active progression of an attacker through a network. Prior work
primarily considered attack graphs in the context of offline vulnerability analysis,
e.g., determining the minimum number of exploits to patch in order to maximize
the number of blocked attack paths [25]. Introducing a state and using the attack
graph to model the dynamics of the state process enables one to build a control
(defense) problem and compute defense policies that optimally interfere with an
attack as it is unfolding.

While one can write down the dynamic programming equations that charac-
terize an optimal policy, offline computation for every possible belief that may
be encountered during runtime is intractable. This is primarily due to the scale
of real-world attack graphs and the size of the resulting state space. To avoid
this challenge (termed the curse of dimensionality) we take advantage of the
fact that the defender’s uncertainty is described by probability distributions.
In particular, the defender is able to forecast future possible attack pathways
(chains of exploits) by sampling from the model’s distributions. By conditioning
on its current belief of the attacker’s capabilities, the defender can reason about
the likelihood (and expected costs) of various state trajectories under different
defense actions. This allows the defender to prescribe defense actions that guide
the system to low cost regions of the state space and reach outcomes that bal-
ance between security and availability. Such an approach is termed an online
defense algorithm [1,26] since one is only concerned with prescribing actions
from the current (belief) state. While the online defense algorithm requires one
to continue to perform computation during runtime, it is much more scalable
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than offline approaches, yielding good quality defense policies in large domains.
Additional details of the algorithm can be found in [1].

The benefit of taking a probabilistic approach to the cyber-security problem
is primarily computational. Quantifying uncertainty via probability distribu-
tions enables the application of scalable computational procedures for comput-
ing defense policies. In particular, (provably convergent) solutions techniques
based on sampling can readily be applied [1,26]. However, the probabilistic app-
roach raises some concerns in real-world cyber-security settings. The primary
concern is the specification of accurate probability parameters for describing the
attacker’s behavior. The usual justification for knowing the parameters in a gen-
eral stochastic control setting is that one has learned them from existing data
and previous runs of the problem. This is difficult to justify in the context of
cyber-security: attacks are targeted and rarely repeated, leading to sparsity of
useful attack data. That said, it is not necessary to specify accurate probabili-
ties for the model to have value. The models can still provide useful qualitative
insights that are not sensitive to the specific parameter values. For example,
the sampling approach can identify, and focus defensive resources on, structural
bottlenecks in the attack graph [1]. These structural properties of the problem
are largely independent of the specific probability values. A secondary concern
is the question of whether the assumed probabilities are informative for future
evolution of the system. This requires that the statistics dictating the attacker’s
behavior do not change in time, e.g., they are stationary, an assumption which
may be difficult to justify in practice. This issue will be discussed in more detail
in the following section.

One approach for addressing the above concerns is to consider a set of models,
as is done in [1]. Consideration of a set of models allows one to capture a wide-
range of attacker behavior by not only updating the estimate of the attacker’s
evolution, but also the estimate of the true model. However, considering a large
set of models further compounds computational difficulties. The appropriate
tradeoff between model expressiveness and computational tractability will likely
be guided by the requirements of specific security settings and deserves further
research.

5.2 Nondeterministic Uncertainty

The probabilistic approach discussed in Sect. 5.1 is not the only way to reason
about uncertainty [27]. A more coarse description of uncertainty, termed non-
deterministic uncertainty, places no assumptions on how events from the cyber
environment are generated. Under nondeterminism, one cannot reason about the
probability of events and thus cannot construct likelihoods of individual states.
One can only reason about the set of possible states that are consistent with the
available information [28–30].7 Due to the lack of probabilities, the defender can-
not differentiate between the set of possible states in the support. As a result,

7 Comparing to the probabilistic approach, one would only keep track of the support
of the distribution and not the likelihoods.
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the defender adopts a worst-case cost criterion. Assuming the worst-case can
be interpreted as the defender preparing for the attacker to perform the most
damaging action (or even further, taking the most conservative viewpoint by
assuming that the attacker is omniscient and is able to compute and execute
this action). Throughout the discussion, we refer to the attacker as nature. We
adopt this terminology since we are not modeling an explicit strategy for the
attacker.8 Throughout this section, a general model from the literature will be
described along with a discussion of its application to a specialized cyber-security
model [22,23].

The general system model consists of a finite set of states, S =
{s0, s1, . . . , sn}, where the state transition xt → xt+1 is due to both the
defender’s action, ut ∈ A , and the event, wt ∈ E , from the cyber environ-
ment. Formally, we describe the dynamical system as a nondeterministic finite
automaton (NFA). For any given state, the transition due to an action-event pair
(ut, wt) = (a, e) ∈ A × E is in general nondeterministic, that is, the state may
transition to one of a set of states, as illustrated by Fig. 2. The distinguishing
feature of the nondeterministic case compared to the probabilistic case is that,
in the latter, the defender cannot reason about the relative likelihood of tran-
sitioning to various successor states and must treat all successor states, from a
given state, as possible.

Fig. 2. Under nondeterministic uncertainty, the state dynamics are modeled by a non-
deterministic finite automaton. For a given action-event pair, (a, e), state transitions
are nondeterministic, meaning a given state can transition to one of a collection of
states.

The state dynamics encoded by the nondeterministic finite automaton are
described by the function ft : S × A × E → S , that is, given an action-event
pair (ut, wt) = (a, e) the state xt = s follows the update xt+1 = ft(s, a, e).
The defender does not perfectly observe the state or nature’s events. Instead, it
receives an observation yt generated as a function of the true underlying state
8 Such settings are sometimes referred to as games against nature in the literature

[31]; however, since no strategy is assumed for the attacker (nature), it is not viewed
as an active decision maker, and thus we view the problem in the context of control
theory.
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and the event, as described by the function lt : S × E → O. A slightly more
general cost function is considered in this section, namely one that depends on
nature’s event in addition to the state-action pair, that is, c : S × A × E →
R+. It is assumed that cost functions are bounded above by c̄ < ∞, that is,
c(s, a, e), c(s) ≤ c̄ for all (s, a, e) ∈ S × A × E . Define C =

[
0, 1−βT+1

1−β c̄
]

as the
possible range of cumulative costs accrued over the duration of the problem.9

The problem of decision-making under nondeterministic uncertainty has been
extensively studied in the literature. Early work, see [32–36], has established a
duality between probabilistic and nondeterministic uncertainty, proposing cost
measures, cost densities, and feared values as analogous concepts to probabil-
ity measures, probability densities, and expected values. Further connections to
robust control and game theory have been established in [34,37]. As illustrated
in the literature, the relevant notion in the nondeterministic case is that of cost,
rather than probabilities. In particular, one should base control decisions on the
(worst-case) cost for reaching each state as opposed to reasoning about their
likelihoods.

An appropriate information state in this setting is the worst-case cost-to-
come statistic of [34,36,37], denoted by It = θt ∈ Θ = (C ∪ {−∞})n, defined
as the maximum possible cost for reaching each state given the current history.
That is, for any given time t, the information state θt consists of a collection
of costs, one for each state, θt = {θt(s)}s∈S , where each θt(s) is defined as the
maximum cost for reaching state s. If state s is not consistent with the current
history then the corresponding θt(s) is assigned a negative infinite value. Given
new information (ut, yt) = (a, o), the information state θt is updated via the
rule θt+1 = μ(θt, a, o). To describe the update, define Ω(s′, a, o) := {(s, e) ∈
S × E | s′ = ft(s, a, e), o = lt(s, e)} as the set of state-event pairs that are
consistent with the new information (ut, yt) = (a, o) given that the system is
in state s′ ∈ S . Each component of the updated information state, θt+1(s′), is
computed by searching over all state-event pairs (s, e) ∈ Ω(s′, a, o) in order to
find the maximal cost for reaching xt+1 = s′ consistent with the new information
(ut, yt) = (a, o). Further details of the information state update in a general
setting can be found in Chap. 6 of [37] and Sect. 3 of [36], as well as in the
context of cyber-security in [23].

Since one does not have access to probability distributions in the nondeter-
ministic setting, the notion of expected value is no longer relevant. An appro-
priate cost criterion in this setting is minimization of the worst-case cost. The
worst-case cost for a given defense policy g : (C ∪ {−∞})n → Δ(A ) is

D(g) = max
z

[
T−1∑

t=0

βtc(xt, ut, wt) + βT c(xT )

]

where the maximization is taken over all feasible trajectories of the form z =
(x0, u0, w0, . . . , xT−1, uT−1, wT−1, xT ) as a result of defense policy g. An optimal
defense policy is one that minimizes the worst-case cost D(g), that is, g∗ =
9 For the infinite horizon case, C =

[
0, c̄

1−β

]
.



Control-Theoretic Approaches to Cyber-Security 25

infg D(g). As before, one can construct a dynamic programming recursion on
the space of information states in order to recursively compute a value function,
denoted by W : (C ∪{−∞})n → R, and a corresponding optimal policy. Defining
Ot as the set of observations that are consistent with the current information
at time t,10 one can write the dynamic programming equations, for each θ ∈
(C ∪ {−∞})n and t = 0, . . . , T − 1, as

W ∗
t (θ) = min

a∈A
max
o∈Ot

[
W ∗

t+1(μ(θ, a, o))
]

with terminal value function W ∗
T (θ) = maxs∈S [c(s) + θ(s)]. Note that, unlike

in the probabilistic case of Sect. 5.1, the cost function is embedded within the
definition of the information state itself and does not explicitly appear in the
dynamic programming equations.

The computational challenges are more pronounced in the nondeterministic
case compared to the probabilistic case. The two main challenges are: (i) com-
plexity of maintaining the information state θt, and (ii) solving the dynamic
programming equations. To address the first challenge, the model of [22,23] con-
sidered a simplified information state in which one only keeps track of the set
of states consistent with the current history. That is, the information state θt is
approximated by the set of states s that have a finite θt(s). The simplification
leads to a much simpler information state but comes at the cost of optimality.
The second challenge, solving the dynamic programming equations, cannot be
addressed by the sampling-based approach outlined in the previous subsection
(since we do not have access to probability distributions). Instead, the prob-
lem is approximated by (spatially) decomposing the system into a collection of
sub-systems. By analyzing the functional dependencies between the state com-
ponents, one can construct a graph that quantifies the strength of the coupling
between states. One can then apply clustering algorithms to partition the graph
into sub-systems, each associated with a local defense policy. Allowing defense
policies to communicate the necessary security information via messages, the
computation of the defense policy can be decomposed into the computation of
multiple local defense policies. This improves scalability and permits computa-
tion in some moderately-sized settings. Additional details of the decomposition
approach can be found in [23].

The main benefit of taking a nondeterministic approach to the defender’s
uncertainty is the increased modeling flexibility. Reasoning over possible transi-
tions and computing the worst-case includes a wide-range of attacker strategies,
even non-stationary behavior. Furthermore, the modeling task is greatly simpli-
fied, compared to the probabilistic approach, as one does not need to make claims
about which states are more or less likely to be realized. The nondeterministic
approach does come with some drawbacks. The main issue is computational –
even after the simplification of the information state to describe the set of con-
sistent states, the space of approximate information states is the power set of
the state space and thus scales poorly. Furthermore, the defense policies com-
puted under the minmax approach can be overly conservative. Indeed, always
10 In other words, Ot is the range of the functions w �→ lt(xt, w).
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assuming the worst possible state transitions is a very pessimistic viewpoint.
This can be problematic as the attacker may prescribes attacks for the sole
purpose of triggering conservative defenses, causing the defender to essentially
carry out a denial-of-service attack on itself. Integrating elements of the prob-
abilistic uncertainty approach into the nondeterministic approach can help to
alleviate this issue. In particular, considering a range of distributions over which
the worst-case is taken (to obtain the least favorable distribution [37]) permits
one to regulate the degree of pessimism in computing defense policies.

6 Concluding Remarks

Fundamental to the control-theoretic approach is the assumption that the
defense problem is one-sided, that is, the defender is the only active decision
maker. As such, the threat model serves to absorb the attacker’s behavior into
the model of the cyber environment. Computational limitations preclude speci-
fication of a complete threat model, that is, a full representation of the system
(e.g., active services/software, all active users and associated privilege levels,
network connectivity, and trust relationships). One must make approximations,
specifying threat models that include coarser state (e.g., attacker privilege levels)
and observation processes (e.g., noisy security alerts from an intrusion detection
system). This unavoidably introduces uncertainty, requiring the defender to esti-
mate the true security status of the system from the observable signals.

Two complementary approaches to handling the defender’s uncertainty have
been discussed, namely probabilistic uncertainty and nondeterministic uncer-
tainty. Probabilistic uncertainty assumes that the defender’s uncertainty can
be quantified by probability distributions. While permitting efficient (sampling-
based) computational procedures for determining defense policies, taking a prob-
abilistic approach requires some assumptions, e.g., stationarity, that may be
difficult to justify in real-world cyber-security settings. Alternatively, the non-
deterministic approach leads to both a simpler modeling task (there is no longer
a requirement to specify probability parameters ) and a more flexible model
(allowing for a description of non-stationary behavior). However, these benefits
come at a cost of a harder computational problem.

The control-theoretic approach discussed in this chapter provides a founda-
tion for extension to more general settings. One natural extension is to consider
the case where the model of the cyber environment is unknown. To address
this problem, standard tools from Bayesian adaptive control and reinforcement
learning [8] may not be sufficient. The main challenge arises from the need to
obtain large quantities of useful attack data. Concepts such as transfer learn-
ing [38] and generalization [39] may be useful for dealing with the sparsity and
reproducibility issues in attack data. Another extension is the consideration of
more complex threat models, primarily allowing for both the attacker and the
defender to be active decision makers. Such a modification results in a game-
theoretic interaction where both the attacker and defender optimally respond to
each other’s actions. The complexities associated with the game-theoretic app-
roach to cyber-security, as well as some foundational results, are presented in
the following chapter.
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optimal decentralized control. In: 51st Annual Conference on Decision and Control
(CDC), pp. 1291–1306. IEEE (2012)

10. Mahajan, A., Mannan, M.: Decentralized stochastic control. Ann. Oper. Res.
241(1–2), 109–126 (2016)

11. Schuppen, J.H.: Information structures. In: van Schuppen, J.H., Villa, T. (eds.)
Coordination Control of Distributed Systems. LNCIS, vol. 456, pp. 197–204.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10407-2 24

12. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
13. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1. Athena Sci-

entific, Belmont (1995)
14. Shameli-Sendi, A., Ezzati-Jivan, N., Jabbarifar, M., Dagenais, M.: Intrusion

response systems: survey and taxonomy. Int. J. Comput. Sci. Netw. Secur. 12(1),
1–14 (2012)

15. Iannucci, S., Abdelwahed, S.: A probabilistic approach to autonomic security man-
agement. In: IEEE International Conference on Autonomic Computing (ICAC),
pp. 157–166. IEEE (2016)

16. S. Iannucci, et al.: A model-integrated approach to designing self-protecting sys-
tems. IEEE Trans. Software Eng. (Early Access) (2018)

17. Lewandowski, S.M., Van Hook, D.J., O’Leary, G.C., Haines, J.W., Rossey, L.M.:
SARA: Survivable autonomic response architecture. In: DARPA Information Sur-
vivability Conference & Exposition II (DISCEX), vol. 1, pp. 77–88. IEEE (2001)

18. Kreidl, O.P., Frazier, T.M.: Feedback control applied to survivability: a host-based
autonomic defense system. IEEE Trans. Reliab. 53(1), 148–166 (2004)

19. Musman, S., Booker, L., Applebaum, A., Edmonds, B.: Steps toward a principled
approach to automating cyber responses. In: Artificial Intelligence and Machine
Learning for Multi-Domain Operations Applications, vol. 11006, pp. 1–15. Inter-
national Society for Optics and Photonics (2019)

20. Speicher, P., Steinmetz, M., Hoffmann, J., Backes, M., Künnemann, R.: Towards
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