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Preface

Today’s cyber defenses are largely static. They are governed by slow deliberative
processes involving testing, security patch deployment, and human-in-the-loop
monitoring. As a result, adversaries can systematically probe target networks, pre-plan
their attacks, and ultimately persist for long times inside compromised networks and
hosts.

In response to this situation, researchers in recent years have started to investigate
various methods that make networked information systems less homogeneous and less
predictable. The basic idea of Adaptation Techniques (AT) is to engineer systems that
have homogeneous functionalities but randomized manifestations. Homogeneous
functionality allows authorized use of networks and services in predictable,
standardized ways while randomized manifestations make it difficult for attackers to
engineer exploits remotely.

Examples of AT include concepts such as Moving Target Defenses (MTD) as well
as artificial diversity and bio-inspired defenses in order to assess the extent to which
they involve system adaption for security and resiliency purposes. Unfortunately, the
majority of AT research has been focused on developing specific new techniques as
opposed to understanding their overall operational costs, when they are most useful,
and what their possible inter-relationships might be. Moreover, the AT approaches
assume stationary and stochastic, but non-adversarial, environments. Situations with
intelligent peer adversaries operating in and changing a networked environment
produce dynamic behaviors that violate these assumptions, potentially defeating these
adaptations.

This volume aims to synthesize the recent advances made by a large team of
researchers working on the same U.S. Department of Defense Multidisciplinary
University Research Initiative (MURI) project during 2013–2019.1 This project has
developed a new class of technologies called Adaptive Cyber Defense (ACD) by
building on two active but heretofore separate research areas: Adaptation Techniques
and Adversarial Reasoning.

Our research has yielded a rich repertoire of AT methods for introducing diversity
and uncertainty into networks, applications, and hosts.2 Moreover, we have investigated
the criteria for deciding where, when, and how to best employ available AT options.
Such management decisions are complex due to the performance and security tradeoffs
inherent in AT approaches. To address such challenges, this project has harnessed a

1 George Cybenko, Sushil Jajodia, Michael P. Wellman, Peng Liu, “Adversarial and uncertain
reasoning for adaptive cyber defense: Building the cyber foundation (invited paper),” Proc. 10th
Int’l. Conf. on Information Systems Security (ICISS), Springer Lecture Notes in Computer Science,
Vol. 8880, Atul Prakash, Rudrapatna Shyamsundar, eds., Hyderabad, India, December 2014, pages
1–8.

2 See Chapter 1 for a brief summary of advances documented in this book along with the pointers to
the relevant literature.



broad array of Adversarial Reasoning (AR) techniques to identify effective and stable
strategies for deploying AT options in operational systems. AR combines machine
learning, behavioral science, operations research, control theory, and game theory to
address the goal of computing effective strategies in dynamic, adversarial environments.

These techniques force adversaries to continually re-assess, re-engineer, and re-launch
their cyberattacks. By integrating game-theoretic and control-theoretic analyses for
tradeoff analysis, ACD presents adversaries with optimized and dynamically changing
attack surfaces and system configurations, thereby significantly increasing the attacker’s
workloads and decreasing their probabilities of success.

This coherent and focused research effort has yielded: (a) scientific and engineering
principles that enable effective ACD, and (b) prototypes and demonstrations of
technologies embodying these principles in several real-world scenarios.

We are extremely grateful to the numerous participants for their contributions to the
MURI project. In particular, it is a pleasure to acknowledge the authors for their
contributions. Special thanks go to the US Army Research Office (ARO) and Alfred
Hofmann, Vice-President of Publishing at Springer for their support of this volume
summarizing the project. We also wish to thank the Army Research Office for their
financial support under the MURI grant W911NF-13-1-0421.

August 2019 Sushil Jajodia
George Cybenko

Peng Liu
Cliff Wang

Michael Wellman
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Overview of Control and Game Theory
in Adaptive Cyber Defenses

George Cybenko1(B), Michael Wellman2, Peng Liu3, and Minghui Zhu3

1 Dartmouth, Hanover, USA
gvc@dartmouth.edu

2 University of Michigan, Michigan, USA
3 Pennsylvania State University, University Park, USA

Abstract. The purpose of this chapter is to introduce cyber security
researchers to key concepts in modern control and game theory that are
relevant to Moving Target Defenses and Adaptive Cyber Defense. We
begin by observing that there are fundamental differences between con-
trol models and game models that are important for security practition-
ers to understand. Those differences will be illustrated through simple
but realistic cyber operations scenarios, especially with respect to the
types and amounts of data require for modeling. In addition to modeling
differences, there are a variety of ways to think about what constitutes
a “solution.” Moreover, there are significant differences in the compu-
tational and information requirements to compute solutions for various
types of Adaptive Cyber Defense problems. This material is presented in
the context of the advances documented in this book, the various chap-
ters of which describe advances made in the 2012 ARO ACD MURI.

Keywords: Control Theory · Game Theory ·
Adaptive Cyber Defense · Moving Target Defense ·
Autonomous Cyber Operations

1 Moving Target Defenses (MTD)

The computer systems, software applications, and network technologies that
we use today were developed in user and operator contexts that greatly val-
ued standardization, predictability, and availability. Even today, performance
and cost-effectiveness remain dominant market drivers. It is only relatively
recently that security and resilience (not to be confused with fault tolerance)
have become equally desirable properties of cyber systems. As a result, the first
generation of cyber security technologies were largely based on system hardening
through improved software security engineering [7,21] (to reduce vulnerabilities
and attack surfaces) and layering security through defense-in-depth [28,31] (by
adding encryption, access controls, firewalls, intrusion detection systems, and
malware scanners, for example). These security technologies sought to respect
the homogeneity, standardization, and predictability that have been so valued
by the market but at the same time increasing security.
c© Springer Nature Switzerland AG 2019
S. Jajodia et al. (Eds.): Adaptive Cyber Defense, LNCS 11830, pp. 1–11, 2019.
https://doi.org/10.1007/978-3-030-30719-6_1
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Consequently, most of our cyber defenses remain static today. They are gov-
erned by slow and deliberative processes such as software testing [40], episodic
penetration testing [39], security patch deployment [32], and human-in-the-loop
monitoring and analysis of security events [12,24,36].

Adversaries benefit greatly from this situation because they can continuously
and systematically probe targeted systems with the confidence that those sys-
tems will change slowly if at all. Adversaries can afford the time to engineer
reliable exploits and pre-plan their attacks because their targets are essentially
fixed and almost identical. Moreover, once an attack succeeds, adversaries persist
for long times inside compromised networks and hosts because the hosts, net-
works, and services – largely designed for availability and homogeneity – do not
reconfigure, adapt or regenerate except in deterministic ways to support main-
tenance and uptime requirements. This creates serious information and oppor-
tunity asymmetry between IT system defenders and potential attackers [6].

In response to this situation, researchers in recent years have started to inves-
tigate a variety of technologies that can make networked information systems
less homogeneous and less predictable. Among the terms and concepts used to
describe such cyber defense technologies are:

– Diversity: Inspired by biological systems [23], cyber diversity is a general
concept for introducing robustness and resilience into engineered systems by
reducing common failure modes in redundant system components. That is,
the goal is to avoid technology “monocultures” [44,53]. In cyber security
systems, this is typically accomplished by introducing software or network
variants appropriately [10,16,19,30].

– Randomization: One approach to introduce cyber diversity is to randomize
specific components of an information system. Such randomization can be
done at the low level of a system’s address space to defeat certain types
of memory-based exploits [43], at the software level by generating multiple
software variants through compiler randomization [30], instruction set ran-
domization to defeat injected malware [9], or randomization of a network’s
address space [26] or protocols [33], to give just a few examples.

– Moving Target Defenses: Motivated by the observation that a moving target
is harder to hit than a fixed one, the general concept behind Moving Target
Defenses in the cyber domain is that an information system that changes
dynamically during its operation will be more difficult for an attacker to
surveil, reverse engineer and ultimately exploit with sufficient degrees of per-
sistence than a fixed target [27]. Randomization and diversity are two ways
to implement moving target defenses but not all randomization and diversity
techniques necessarily realize moving targets. That is because some implemen-
tations of diversity and randomization do not in fact change during execution
or system recovery after an attack.

A basic goal of Moving Target techniques is to engineer systems that have homo-
geneous functionalities but dynamically different manifestations. Homogeneous
functionality allows authorized use of networks and services in predictable, stan-
dardized ways while randomized manifestations make it difficult for attackers to



Overview of Control and Game Theory in Adaptive Cyber Defenses 3

engineer exploits remotely, let alone parlay one exploit into successful attacks
against a multiplicity of hosts or even the same host after reboot. Ideally, each
compromise of a system deploying a Moving Target Defense would require the
same, significant effort by the attacker who is exploiting the system component
in which the Moving Target Defense is deployed.

Although functionality is preserved, it should be noted that there are intrin-
sic and important tradeoffs between increased security through such means and
increased maintenance overhead for managing systems that are less predicable
and heterogeneous. Moreover, there are also tradeoffs among the classical secu-
rity properties of Confidentiality, Integrity and Availability (CIA) when deploy-
ing some forms of diversity [20]. For example, having N different and diverse web
servers mirroring the same content can increase availability because an attacker
has to bring down all N variants, presumably requiring a workfactor about N
times higher than bringing down any one web server. On the other hand, the N
variants make for a larger attack surface because a breach of any of one of them
can compromise confidentiality.

This is but one example of the kinds of tradeoffs that arise when deploy-
ing diverse moving targets in an operational environment, namely the possible
tradeoffs among security properties valued in the deployment.

In fact, virtually all techniques for increasing security through diversity, ran-
domization and/or moving target defenses involve parameter choices both as
individual standalone techniques and especially so when used in combinations
[5,17,38,52].

Good or optimal choices for such parameter settings requires modeling the
problem, quantifying the model with realistic data and ultimately “solving”
the resulting optimization problem. Because the operating environment, mission
objectives, mission priorities, attacker behaviors and attacker objectives can all
change over time, in fact during exection, moving target deployment solutions
might have to be constantly recomputed.

These aspects of Moving Target Defense are the subject of “Adaptive Cyber
Defenses” technology addressed in the chapters of this book, and explained in
more detail in the following section.

2 Adaptive Cyber Defense: Control and Game Theory
for MTD

Research and development in Moving Target Defense has been significant over
the past few years.

A 2016 survey paper documented at least 100 different types of Moving Tar-
get Defense techniques [14], indicating a significant growth in the number of
techniques compared to a 2013 survey [37] that documented 59 different types
of Moving Target Defenses. In fact, the development of individual Moving Tar-
get Defense Techniques continues at a significant pace today according to a 2018
update to the 2013 survey article [48]. Research on new techniques continues
today [2].



4 G. Cybenko et al.

The variety of Moving Target Defense techniques together with the variety
of options and parameter settings for deploying each individual technique means
that there are several types of decisions that an information system operator
needs to make to effectively use such techniques. Those decisions include:

– Decisions about which single or combination of MTD’s to use;
– Decisions about which MTD parameter settings to use for an individual tech-

nique;
– Decisions about which combination of MTD’s together with their parameter

settings to use (deciding about both of the above simultaneously).

Such decisions are made when MTD’s are first deployed and then should be
continuously reassessed and updated during deployment seeing as operating and
threat conditions change over time. These choices constitute the decision mak-
ing aspect of the “MTD OODA” (Observe-Orient-Decide-Act) Loop [8,13]. The
study of such decisions within the context of MTD’s is called Adaptive Cyber
Defense (ACD) - the topic of this book.

The rigorous, analytic framework for ACD, namely studying the decision
problems arising in MTD-based systems falls within the general scope of Opera-
tions Research [51] but more specifically Control Theory and Game Theory. The
decision problems are especially challenging when there is inherent uncertainty
in the decision-making’s operating environment as is typically the case in cyber
operations.

The key distinction between Control Theory and Game Theory is the nature
of the operating environment and how it is modeled. To illustrate the funda-
mental difference, consider the following simple but representative MTD cyber
defense situation.

In a cloud computing environment, performance of servers and applications
degrade over time (due to memory leaks or other inadequate memory manage-
ment among other reasons, for example). Given availability requirements (such
as the average or minimal number of servers available over time) and histori-
cal data on performance degradation, it is possible to quantitatively formulate
a decision problem regarding schedules for regenerating individual server soft-
ware. Two fundamentally different modeling frameworks in this scenario are
briefly described and compared below.

2.1 Control Theory Models

In this modeling approach, there is a benefit for each time unit that a server is up
and fulfilling requests at various rates and there is a time cost for restarting the
server with a fresh image. For simplicity of exposition, assume that the server
is either working properly or not. During restarts, no requests can be fulfilled
because the server is not working. Moreover, there is a probability distribution
for the time that the server will fail after a restart. That probability distribution,
as well as the value of server uptime and time to restart, are independent of how
many restarts have occured and when they occured. Note that if the system is
not memoryless, the system operator can be inclined to restart a system even



Overview of Control and Game Theory in Adaptive Cyber Defenses 5

before it fails outright because the cost of downtime is higher than the cost
of restarting. This kind of model is common within the cloud server reliability
research literature and can be formulated as a control problem [11,29].

A key aspect of this formulation of the problem is that the operating envi-
ronment in which the system operates is non-adversarial in that the failures are
random and independent of each other.

Moreover, control theoretic formulations typically involve computing min-
ima or maxima of objective functions so that the models can be solved using
optimization techniques such as dynamic programming.

2.2 Game Theory Models

In the game theory modeling approach, the same costs and benefits for cor-
rect server operation hold as in the above control theory model. However, the
server failures are no longer solely the result of natural, benign operation but
are influenced or even explicitly triggered by rational adversaries (the attackers)
who have their own costs and benefits for bringing a server down. The attacker
accrues benefit when the server is down but has a cost for launching an attack,
successful or not, because some effort is required to exploit a novel vulnerability
or to use a new source IP address that is not black-listed.

A key aspect of the game theory formulation of the problem is that the
operating environment in which the system operates is decidedly adversarial
in that the system failures are due to the actions of a rational agent whose
objectives are typically at odds with the system operator’s objective. As in the
above control theory formulation, the system operator can benefit from restarting
a system even before it is fulling compromised in an attack because the cost of
downtime is higher than the cost of restarting.

The concept of solution to a game theoretic formulation of a problem is
typically expressed in terms of equilibria, such as Nash Equilibia. By contrast
with control problems, equilibria in games are typically saddle points in the sense
that they are maxima for one player and minima for another player.

Such game theory-based models can lead to complex analyses in which there
are several open problems [34,46,50].

In both control and game theory, the term “policy” refers to the actions
the operator takes to change system states (for example, a “restart” action will
take the system from the “failed” state to the “normal operation” state for the
operator but for an attacker, the “attack” action will take the targeted system
from the “normal” state to the “failed” state. Given an objective function and
a concept for a “solution” with respect to that objective function, an optimal
policy for each actor is a policy that achieves optimal performance for them with
respect to their concept of solution and their objective function.

In this context, Adaptive Cyber Defense (ACD) is the application of control
and game theory to Moving Target Defenses (MTD). Notwithstanding the above
distinctions, both control and game theory as used in Adaptive Cyber Defense
involve many common ingredients. We list the ingredients below along with brief
descriptions of them as well as pointers to the literature, including chapters in
this book, with detailed approaches (Table 1).
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Table 1. Adaptive Cyber Defense (ACD) ingredients

Ingredient Description Book chapters Other
references

Moving
Target
Defense
Techniques

Adaptive Cyber Defenses involve
the deliberate and rational actions
that an operator can invoke to
protect their systems. Specific
actions considered include possible
network, operating systems and
applications randomizations,
diversity and Moving Target
Defenses. Possible actions include
configuration and parameter
selections for individual
techniques. In its totality, this is
an enormous action space that no
enterprise would consider
deploying altogether so it is more
realistic to consider these
techniques individually or in small
combinations only

Chapter 7 [15]
Chapter 8 [3]

Moving
Target
Defense
Quantification

In order to effectively use Moving
Target Defenses through the
application of control and/or game
theory, it is necessary to quantify
the methods, their effects, their
costs as well as the situation
picture the operating environment
in which they operate. A variety
of efforts have investigated both
empirical and analytic techniques
for such quantifications

Chapter 5 [1]
Chapter 10 [42]

[18,22,41,47]

Adaptive
Cyber
Defense
Control
Models and
Techniques

Decisions about MTD deployment
and operation that are made
under worst-case and/or
stationary operating conditions
are typically modeled as control
problems and therefore solvable
by control techniques

Chapter 2 [35]
Chapter 4 [25]
Chapter 8 [3]
Chapter 9 [4]

Adaptive
Cyber
Defense Game
Models and
Techniques

Decisions about MTD deployment
and operation that are made
under operating conditions that
are adversarial are typically
modeled as game problems and
therefore solvable by techniques
used for solving game models

Chapter 3 [45]
Chapter 6 [49]

[54]
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3 Chapter Summaries

Chapter 1 - Overview of Control and Game Theory in Adaptive Cyber
Defenses. This chapter is an introduction and overview of the structure and
motivation for this book.
Chapter 2 - Control-Theoretic Approaches to Cyber Security. This
chapter reviews control theoretic formulations of cyber security problems, focus-
ing on state-based approaches and modeling of uncertainty.
Chapter 3 - Game-Theoretic Approaches to Cyber Security. This
chapter reviews game theoretic formulations of cyber security problems, focusing
on stochastic dynamic games and modeling of asymmetric information in such
games.
Chapter 4 - Reinforcement Learning in Adaptive Cyber Defense. This
chapter presents reinforcement learning approaches to solving certain control
theoretic formulations of zero-day attack situations.
Chapter 5 - Moving Target Defense Quantification. In order to build and
solve either control or game theoretic formulations of cyber security problems, it
is necessary to quantify various aspects of the attack/defend engagement. This
chapter presents a novel approach to such quantifications.
Chapter 6 - Empirical Game-Theoretic Methods. Empirical game theory
does not start with a stylized .abstract model of an adversarial encounter, using
simulations of such encounters to create increasingly more complex and accurate
models and solutions to the underlying game.
Chapter 7 - Adaptive Cyber Defense Techniques for Memory Protec-
tion. This chapter describes several memory corruption cyber attacks and devel-
ops dynamic adaptive address space layout randomization (ASLR) approaches
to defend against novel attacks.
Chapter 8 - Adaptive Cyber Defense Techniques for Botnet Detection
and Mitigation. This chapter describes the botnet detection and mitigation
problems together with adaptive cyber defense approaches to solving them using
both control and game theoretic formulations.
Chapter 9 - Optimizing Alert Management Processes in Cyber Secu-
rity. This chapter describes the cyber security alert management problem
together with control theory based approaches to optimizing tasks and personnel
assignments in Cyber Security Operations Centers (CSOC).
Chapter 10 - Online and Scalable Adaptive Cyber Security Defense.
This chapter decribes problems related to the online state and parameter esti-
mation and approximation required in certain adaptive defense techniques. The
focus is on using recently developed so-called “sketching” techniques that allow
approximating various structural and statistical properties of data streams using
only limited storage and processing time.

Acknowledgements and Disclaimer. The work presented in this book was support
by the Army Research Office under grant W911NF-13-1-0421. The authors of this
book and other participants in the Adaptive Cyber Defense project are grateful for the
direction and support of Dr. Clifford Wang (U.S. Army Research Office).
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The views and opinions expressed in this book are those of the authors and do not
necessarily reflect the official policy or position of any agency of the U.S. Government.
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set emulation. ACM Trans. Inf. Syst. Secur. (TISSEC) 8(1), 3–40 (2005)

10. Baudry, B., Monperrus, M.: The multiple facets of software diversity: Recent devel-
opments in year 2000 and beyond. ACM Comput. Surv. (CSUR) 48(1), 16 (2015)

11. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1. Athena Sci-
entific Belmont, Belmont (2005)

12. Bhatt, S., Manadhata, P.K., Zomlot, L.: The operational role of security informa-
tion and event management systems. IEEE Secur. Priv. 5, 35–41 (2014)

13. Boyd, J.R.: The essence of winning and losing. Unpublished lecture notes 12(23),
123–125 (1996)

14. Cai, G.L., Wang, B.S., Hu, W., Wang, T.Z.: Moving target defense: state of the art
and characteristics. Front. Inf. Technol. Electron. Eng. 17(11), 1122–1153 (2016)

15. Chen, P., et al.: MTD Techniques for Memory Protection against Zero-Day Attacks
(chap. 7). Springer, New York (2018)

16. Co, M., et al.: Double Helix and RAVEN: a system for cyber fault tolerance
and recovery. In: Proceedings of the 11th Annual Cyber and Information Secu-
rity Research Conference, p. 17. ACM (2016)

17. Collins, M.P.: A cost-based mechanism for evaluating the effectiveness of moving
target defenses. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol.
7638, pp. 221–233. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34266-0 13

https://doi.org/10.1007/978-3-642-34266-0_13
https://doi.org/10.1007/978-3-642-34266-0_13


Overview of Control and Game Theory in Adaptive Cyber Defenses 9

18. Connell, W., Albanese, M., Venkatesan, S.: A framework for moving target defense
quantification. In: De Capitani di Vimercati, S., Martinelli, F. (eds.) SEC 2017.
IAICT, vol. 502, pp. 124–138. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-58469-0 9

19. Cox, B., et al.: N-variant systems: a secretless framework for security through
diversity. In: USENIX Security Symposium, pp. 105–120 (2006)

20. Cybenko, G., Hughes, J.: No free lunch in cyber security. In: Proceedings of the
First ACM Workshop on Moving Target Defense, pp. 1–12. ACM (2014)

21. Devanbu, P.T., Stubblebine, S.: Software engineering for security: a roadmap. In:
Proceedings of the Conference on the Future of Software Engineering, pp. 227–239.
ACM (2000)

22. Farris, K.A., Cybenko, G.: Quantification of moving target cyber defenses. In:
Sensors, and Command, Control, Communications, and Intelligence (C3I) Tech-
nologies for Homeland Security, Defense, and Law Enforcement XIV, vol. 9456, p.
94560L. International Society for Optics and Photonics (2015)

23. Forrest, S., Somayaji, A., Ackley, D.H.: Building diverse computer systems. In:
The Sixth Workshop on Hot Topics in Operating Systems, pp. 67–72. IEEE (1997)

24. Ganesan, R., Jajodia, S., Cam, H.: Optimal scheduling of cybersecurity analysts
for minimizing risk. ACM Trans. Intell. Syst. Technol. (TIST) (TIST) 8(4), (2017).
Article no. 52

25. Hu, Z., Chen, P., Zhu, M., Liu, P.: Reinforcement Learning for Adaptive Cyber
Defense against Zero-day Attacks (chap). 4. Springer, New York (2018)

26. Jafarian, J.H., Al-Shaer, E., Duan, Q.: Openflow random host mutation: trans-
parent moving target defense using software defined networking. In: Proceedings
of the First Workshop on Hot Topics in Software Defined Networks, pp. 127–132.
ACM (2012)

27. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats, vol. 54. Springer,
Cham (2011)

28. Jajodia, S., Noel, S., Kalapa, P., Albanese, M., Williams, J.: Cauldron mission-
centric cyber situational awareness with defense in depth. In: IEEE MILCOM, pp.
1339–1344 (2011)

29. Jung, G., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D., Pu, C.: Performance
and availability aware regeneration for cloud based multitier applications. In:
2010 IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 497–506. IEEE (2010)

30. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 276–291. IEEE
(2014)

31. Lippmann, R., et al.: Validating and restoring defense in depth using attack graphs.
In: IEEE MILCOM, pp. 1–10 (2006)

32. Lippmann, R., Webster, S., Stetson, D.: The effect of identifying vulnerabilities
and patching software on the utility of network intrusion detection. In: Wespi, A.,
Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 307–326. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36084-0 17

33. MacFarland, D.C., Shue, C.A.: The SDN shuffle: creating a moving-target defense
using host-based software-defined networking. In: Proceedings of the Second ACM
Workshop on Moving Target Defense, pp. 37–41. ACM (2015)

34. Marden, J.R., Shamma, J.S.: Game theory and control. Annu. Rev. Control Robot.
Auton. Syst. 1, 105–134 (2018)

https://doi.org/10.1007/978-3-319-58469-0_9
https://doi.org/10.1007/978-3-319-58469-0_9
https://doi.org/10.1007/3-540-36084-0_17


10 G. Cybenko et al.

35. Miehling, E., Rasouli, M., Teneketzis, D.: Control-Theoretic Approaches to
Dynamic Cyber Security (chap. 2). Springer, New York (2018)

36. Novikova, E., Kotenko, I.: Analytical visualization techniques for security infor-
mation and event management. In: 2013 21st Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), pp. 519–525. IEEE
(2013)

37. Okhravi, H., et al.: Survey of cyber moving target techniques. Techical report,
Massachusetts Institute of Technology: Lexington Lincoln Lab (2013)

38. Okhravi, H., Riordan, J., Carter, K.: Quantitative evaluation of dynamic platform
techniques as a defensive mechanism. In: Stavrou, A., Bos, H., Portokalidis, G.
(eds.) RAID 2014. LNCS, vol. 8688, pp. 405–425. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11379-1 20

39. Pfleeger, C.P., Pfleeger, S.L., Theofanos, M.F.: A methodology for penetration
testing. Comput. Secur. 8(7), 613–620 (1989)

40. Potter, B., McGraw, G.: Software security testing. IEEE Secur. Priv. 2(5), 81–85
(2004)

41. Priest, B.W., Vuksani, E., Wagner, N., Tello, B., Carter, K.M., Streilein, W.W.:
Agent-based simulation in support of moving target cyber defense technology devel-
opment and evaluation. In: Proceedings of the 18th Symposium on Communica-
tions & Networking, pp. 16–23. Society for Computer Simulation International
(2015)

42. Priest, B.W., Cybenko, G., Liu, P., Singh, S., Albanese, M.: Online and Scalable
Adaptive Cyber Defense (chap. 10). Springer, New York (2018)

43. Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security, pp. 298–307. ACM (2004)

44. Stamp, M.: Risks Monoculture. Communications of the ACM 47(3), 120 (2004)
45. Tavafoghi, H., Ouyang, Y., Teneketzis, D., Wellman, M.: Game Theoretic

Approaches to Cyber Security: Challenges, Results and Open Problems (chap.
3). Springer, New York (2018)

46. Van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: Flipit: the game of “stealthy
takeover”. J. Cryptol. 26(4), 655–713 (2013)

47. Van Leeuwen, B., Stout, W.M., Urias, V.: Operational cost of deploying moving
target defenses defensive work factors. In: Military Communications Conference,
MILCOM 2015 – 2015 IEEE, pp. 966–971. IEEE (2015)

48. Ward, B.C., et al.: Survey of cyber moving targets, 2nd edn. Technical report, MIT
Lincoln Laboratory Lexington United States (2018)

49. Wellman, M.P., Nguyen, T.H., Wright, M.: Empirical Game-Theoretic Methods
for Adaptive Cyber-Defense (chap. 6). Springer, New York (2018)

50. Wellman, M.P., Prakash, A.: Empirical game-theoretic analysis of an adaptive
cyber-defense scenario (preliminary report). In: Poovendran, R., Saad, W. (eds.)
GameSec 2014. LNCS, vol. 8840, pp. 43–58. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-12601-2 3

51. Winston, W.L., Goldberg, J.B.: Operations Research: Applications and Algo-
rithms, vol. 3. Thomson Brooks/Cole, Belmont (2004)

52. Xu, J., Guo, P., Zhao, M., Erbacher, R.F., Zhu, M., Liu, P.: Comparing different
moving target defense techniques. In: Proceedings of the First ACM Workshop on
Moving Target Defense, pp. 97–107. ACM (2014)

https://doi.org/10.1007/978-3-319-11379-1_20
https://doi.org/10.1007/978-3-319-11379-1_20
https://doi.org/10.1007/978-3-319-12601-2_3
https://doi.org/10.1007/978-3-319-12601-2_3


Overview of Control and Game Theory in Adaptive Cyber Defenses 11

53. Zhang, M., Wang, L., Jajodia, S., Singhal, A., Albanese, M.: Network diversity: a
security metric for evaluating the resilience of networks against zero-day attacks.
IEEE Trans. Inf. Forensics Secur. 11(5), 1071–1086 (2016)
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Abstract. In this chapter, we discuss the control-theoretic approach to
cyber-security. Under the control-theoretic approach, the defender pre-
scribes defense actions in response to security alert information that is
generated as the attacker progresses through the network. This feedback
information is inherently noisy, resulting in the defender being uncertain
of the underlying status of the network. Two complementary approaches
for handling the defender’s uncertainty are discussed. First, we consider
the probabilistic case where the defender’s uncertainty can be quantified
by probability distributions. In this setting, the defender aims to specify
defense actions that minimize the expected loss. Second, we study the
nondeterministic case where the defender is unable to reason about the
relative likelihood of events. The appropriate performance criterion in
this setting is minimization of the worst-case damage (minmax). The
probabilistic approach gives rise to efficient computational procedures
(namely sampling-based approaches) for finding an optimal defense pol-
icy, but requires modeling assumptions that may be difficult to justify in
real-world cyber-security settings. On the other hand, the nondetermin-
istic approach reduces the modeling burden but results in a significantly
harder computational problem.

1 Introduction

The field of control theory studies how one can make a sequence of decisions in
order to most efficiently guide, or control, a system toward a specified objective
subject to some uncertainty regarding the system’s evolution. Some examples of
problems addressed by control theory include maintaining a system’s output at a
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desired set-point in the presence of external disturbances, e.g., an aircraft autopi-
lot system responsible for maintaining speed and altitude in varying weather
conditions, or tracking a path or trajectory subject to measurement noise and
estimation errors, e.g., an autonomous vehicle’s road following algorithm tasked
with translating noisy measurements from multiple sensors into real-time steer-
ing, acceleration, and braking decisions. Depending on the control environment,
the information available for making decisions can take different forms. In some
settings, the current status of the system is directly observable and can be used
in the decision making process. In others, the uncertainty is not only due to the
effect of the control action on the evolution of the system, but also includes the
inability to perfectly observe the system’s status, requiring control decisions to
be made based on noisy observations or measurements. In either setting, sequen-
tial control decisions must be made based on new, potentially noisy, information
that is revealed as the problem evolves. The precise topic that control theory
addresses is the nature of this feedback loop – the influence of control decisions on
the observable output and the dependency of revealed information on the choice
of subsequent control actions – with the end goal of prescribing optimal control
actions, that is, those that achieve the objective at the lowest operational cost.

In this chapter, we study the role of control theory in cyber-security. In par-
ticular, we focus on the (dynamic) defense problem: how a defender can prescribe
actions in real-time as a function of a stream of intrusion information in order
to interfere with, and potentially mitigate, attacks carried out by one or more
adversaries.1 It is worth emphasizing the defining characteristic of control the-
ory, namely the one-sided nature of the decision-making process. As such, the
control-theoretic approach studied in this chapter considers the defender as the
only active decision-maker in the system.2 All other decision-making processes
that may be present in the system, e.g., actions of the attacker(s) or the behavior
of trusted (non-malicious) users, are abstracted into the model of the cyber envi-
ronment. The one-sided nature of the control theoretic approach is in contrast
with the two-sided (or in general, many-sided) decision making environment of
game theory which consists of many agents, each possessing different information
and (at least partially) conflicting objectives. Game-theoretic tools, specifically
how they can be used to address the problems in cyber-security, are discussed
in-depth in Chap. 3. While modeling the cyber-security problem as a control
problem is an approximation of the true problem, it is a valuable first step for
addressing the full complexity of the game-theoretic approach. Indeed, many
of the challenges of the cyber-security problem present in the control-theoretic
approach also exist in the game-theoretic approach.

1 Such systems are referred to as intrusion response systems in the cyber-security
literature; see [1] for a review of the area.

2 In some control settings, the “decision maker” may actually consist of a collection of
agents making decisions based on their own localized information in order to achieve
some common objective. Such problems still fall within the realm of control theory,
due to all agents having an identical objective, but are referred to as decentralized
control problems or team problems [2,3].
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The defense problem presents many challenging requirements from both mod-
eling and computational perspectives. The problem is inherently dynamic, evolv-
ing over time as a function of the defender’s actions and (potentially unob-
servable) events from the cyber environment. New information is continuously
revealed to the defender as the problem evolves, all of which, in general, must be
used in the defender’s decision making process. The model for the cyber envi-
ronment, termed the threat model, must be sufficiently expressive to describe
the complex nature of attacks. In particular, attacks are progressive, consisting
of multiple stages and involving the combination of many vulnerabilities across
multiple network elements, and persistent, with attackers continuing to attempt
to fulfill their objective, using various attack pathways, until they are success-
ful. The defender, in its attempts to interfere with or mitigate attacks, must
be aware of the conflicting effects of its defense decisions on the system. It is
faced with an unavoidable tradeoff between security and availability; performing
system modifications that lower an attack’s chance of success also interfere with
the normal functionality and usability of the system by trusted users. Beyond
modeling challenges, the defense problem presents significant challenges from
a computational perspective. The systems that are targeted by cyber attacks
are large-scale, consisting of many hosts, each containing a wide-range of soft-
ware and operated by a large collection of users. Reasoning about all possible
ways such systems can be attacked often leads to a combinatorial explosion in
complexity. As a result, scalable algorithms must be developed, often requiring
approximations or novel solution techniques (such as sampling methods or sys-
tem decompositions). One must also ensure that algorithms are able to meet the
strict timing requirements of the system by prescribing defense decisions quickly.
Oftentimes, defense decisions have a limited window of usefulness; prescribing a
defense decision too late can be as ineffective as taking no action at all.

The tools offered by control theory are a natural fit for addressing the afore-
mentioned requirements. First, quantifying the status of the system through
assignment of a state allows one to formally describe the evolution of the sys-
tem’s level of security as a function of the defense actions and events from the
cyber environment (e.g., the description of the threat model). Furthermore,
under the state-based approach, one can define an appropriate cost structure
(costs for states and actions) that captures the desired tradeoff between secu-
rity and availability. Defending the system then amounts to determining actions
that ensure the system stays out of undesirable (high-cost) regions of the state
space. In general, the defender’s decisions must be made based on all available
information. The notion of an information state from control theory allows for
a compression of the available information into a summary that is sufficient for
making optimal decisions. Once an appropriate information state for the problem
is identified, one can cast the problem of determining the optimal defense policy
(the sequence of functions mapping the information state to actions) as a set of
sequential optimization problems (via dynamic programming). Computational
concerns can then be more directly addressed by investigating approximations to
the dynamic programming recursion, leading to approximately optimal defense
policies.
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In what follows, we discuss the philosophy behind the control theoretic app-
roach to cyber-security. First, in Sect. 2, we describe the assignment of a state
to quantify the level of security of the system and how this state evolves as a
function of the defender’s actions and the events from the cyber environment.
The defender’s lack of perfect information regarding the state, and how this is
addressed, is discussed in Sect. 3. Section 4 introduces the notion of defense poli-
cies and the computational procedure for obtaining them. Section 5 provides two
model instances of the general control-theoretic approach, differing primarily in
the assumed nature of the uncertainty in the problem (probabilistic vs. non-
deterministic). The general idea of each approach is described, as well as each
model’s benefits and drawbacks. Concluding remarks are provided in Sect. 6.

2 The State-Based Approach to Cyber-Security

At the heart of any control problem is the notion of a state. The state describes
the current operating status of the system, quantifying how the system reacts
to the control input and events from the environment, and influencing how the
control translates to the observable output. Viewing cyber-security as a control
problem first requires that one defines a state that accurately quantifies the
level of security of the system. To this end, the state, denoted by xt ∈ S at any
given time t, should reflect some aspect of the attacker’s current capabilities. For
example, the state could represent the permissions that the attacker possesses
or its progress (in terms of compromised hosts) toward reaching a specific target
host. In Sect. 5, we will define the state in the context of two formal security
models; for the current discussion, however, consider the state to be abstract
representation of the system’s security level.

The next ingredient in the control-theoretic description of cyber-security is
the specification of the control, that is, the defender’s actions. Defense actions
can take a wide variety of forms. One class of such actions is patches. A patch for
a vulnerability renders the corresponding exploit(s) ineffective, offering an effec-
tive strategy for hardening the system and interfering with the attacker’s goal.
Unfortunately, the time between discovery of the vulnerability and the instal-
lation of a patch, termed the vulnerability exposure window, can be upwards of
five months [4].3 As a result, relying solely on patches would inevitably allow
systems to be operational while exposed to vulnerabilities. Alternative defen-
sive measures that operate on faster time-scale than patches are needed. The
defense actions we consider throughout this chapter use known vulnerabilities
and security alert information to actively interfere with the attacker’s progres-
sion. Specifically, a defense action at time t, denoted by ut ∈ A , corresponds
to system modifications that directly influence the ability of the attacker to
induce a state transition, xt → xt+1. For example, a defense action may disable
the precondition of an exploit (such as connectivity between two hosts via a
specific port) in order to block the attacker from using the exploit. While not a
3 For a deeper discussion of this issue, see the related topic of vulnerability disclosure

policies [5].
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permanent solution, these defense strategies can be effective for interrupting an
attack, buying useful time for forensic analysis and the development of a patch.

Defense decisions are made based on the predicted evolution of the state
under various defense actions. In order to carry out such a prediction, one
needs a model for the attacker. The concept of threat modeling [6] from the
computer security community addresses precisely this task. Informally, threat
models describe what the attacker can do given its current capabilities. More
specifically, a threat model describes the various ways in which an attacker can
infiltrate the system (attack vectors/pathways), what resources it finds valu-
able (the attacker’s objectives), and what sort of security information is gener-
ated/detected during an attack (e.g., via intrusion logs). In the context of the
control-theoretic approach of this chapter, the threat model describes how the
state evolves as a function of defense actions and events from the cyber envi-
ronment, as well as what observations are generated during this evolution. For
example, given a set of attacker capabilities (quantified by the current state)
the threat model serves to define what exploits the attacker can attempt and,
given the defense action, an updated set of attacker capabilities and any secu-
rity alerts that may have been generated during the attempt of the exploits. It
is important to note that while the control theoretic approach requires a well-
defined threat model, it need not be completely known a priori. Simultaneous
learning of the model and control of the system based on feedback information
still falls within the realm of control theory (termed adaptive control [7] and
reinforcement learning [8]).

While the defender’s primary objective is to prevent the attacker from reach-
ing its goals, it must also consider the effect of its defense actions on the normal
operation of the system. Defenses that are most effective at interfering with the
attacker also tend to be most disruptive to the normal operation of the system
(e.g., shutting down the email server to block phishing emails). On the other
hand, prioritizing system availability unavoidably preserves attack pathways. In
short, keeping the attacker away from its goals is largely in conflict with main-
taining availability. Quantifying this tradeoff is achieved by assigning costs to
both states and defense actions, via a cost function c(xt, ut). High costs should
be assigned to undesirable states, e.g., the attacker possessing root access on a
critical host, as well as to actions that significantly limit availability. Using the
threat model, the defender can reason about costs of state-action trajectories
which in turn guide the selection of defense actions that achieve the desired
security-availability tradeoff.

3 The Defender’s Information

A fundamental aspect of the dynamic defense problem is that the defender can-
not perfectly observe the attacker’s activity, i.e., the events from the cyber
environment. Instead the defender receives observations, denoted by yt ∈ O,
generated as a function of the underlying events. The monitoring devices that
generate the observations are inherently noisy. For instance, intrusion detection
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systems suffer from both missed detections (generating no security alerts when
something malicious has occurred) and false alarms (triggering security alerts in
the absence of malicious behavior). As a consequence of this imperfect detection,
the defender has uncertainty over the true state of the system.

The control-theoretic concepts of information structure and information
state4 allow one to formalize the defender’s lack of perfect information regarding
the true state. The information structure of a problem is a formal description
of the phrase “who knows what about the system and when” [10]. Under the
centralized control theoretic approach of this chapter, the information struc-
ture of the problem has a straightforward interpretation; it simply describes
the set of variables that the defender knows at any given time. Through-
out the chapter, it is assumed that the information structure satisfies perfect
recall, that is, the defender remembers all of its past observations and defense
decisions. In other words, at time t the defender has access to the history
ht = (u0, y1, . . . , ut−1, yt) ∈ (A × O)t. Given that there is only one decision-
maker, the problem is said to have a strictly classical information structure [11].
This allows one to compress the history into a summary, termed an informa-
tion state and denoted by It, that has a time-invariant domain I [10]. The
information state is sufficient for making optimal decisions, i.e., basing deci-
sions on the information state, rather than the whole history, is without loss
of optimality. Treating the information state as the state of the problem, one
can formulate a completely observable decision problem that admits a dynamic
programming decomposition. The evolution of the information state is dictated
by the new information that is revealed as time progresses (defense actions and
observations).

4 Computation of Defense Policies

The defense action at any given time is computed as a function of the defender’s
current information (given by the information state). Formally, the transla-
tion from information states to defense actions is specified by a defense policy,
denoted by g = (g0, g1, . . . , gT−1), where T is the decision horizon (the finite
horizon case will be considered in this chapter; however T can also be infinite)
and each gt is a function from the given information state It to a distribution
over defense actions, that is, gt : I → Δ(A ). Determining the best defense pol-
icy depends on the defender’s model for how events are generated (i.e., how the
attacker chooses its actions). As will be discussed in more detail in Sect. 5, the
assumed nature of uncertainty in the problem dictates the cost criterion for the
problem. For example, if uncertainty is quantified by probability distributions
and the defender is risk-neutral, the defender’s objective may be to minimize
the total expected cost. On the other hand, under nondeterministic uncertainty,
an appropriate criterion would be to minimize the worst-case cost, termed the
minmax criterion. The best defense policy, termed an optimal defense policy

4 For a deeper discussion of information structures and information states, see [9].
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denoted by g∗ = (g∗
0 , g

∗
1 , . . . , g

∗
T−1), is a policy that minimizes the corresponding

cost criterion.
In general, each defense action has a long-run impact on the evolution of the

system. As such, defense decisions cannot be made in isolation; one must balance
immediate costs with future costs to ensure that early defense decisions don’t
result in the system ending up in an undesirable or vulnerable state. Reasoning
about sequences of actions is a computationally formidable task, especially when
the time horizon, T , is long. Fortunately, results from control theory allow one
to sequentially decompose the long-run optimization problem into a collection
of simpler subproblems. The sequential decomposition, known as dynamic pro-
gramming, relies on a concept known as the principle of optimality [12,13]. A
problem is said to satisfy the principle of optimality if, given a sequence of opti-
mal control actions from time t onward, the remainder of the action sequence
from t+1 onward will still be optimal for the problem that starts from the state
resulting from the action taken at t. The cost of the remainder of the action
sequence from a given state, termed the cost-to-go, is captured by defining a
value function. The value function represents the best that one can do from the
given state. The resulting recursive expression, termed the Bellman (or dynamic
programming) equation is solved in the finite horizon case by starting from the
final decision time and working backwards, a process termed backward induc-
tion. In the infinite horizon case, one must solve a fixed point equation [13]. The
optimal policies are recovered from the value functions by finding the action, for
a given state, that minimizes the cost criterion.

Dynamic programming is the predominant approach for solving centralized
control problems (and thus the dynamic defense problem studied in this chapter);
however, it suffers from computational challenges as the problem size grows. The
main challenge arises from the need to compute and store the value functions for
every possible state. As the state space grows, this procedure becomes increas-
ingly burdensome (referred to as the curse of dimensionality). Due to the very
large state space in many cyber-security settings, the curse of dimensionality
becomes a significant issue for the dynamic defense problem. This problem is
further compounded by the fact that the defender possesses imperfect informa-
tion of the state; the domain of the value functions is thus the set of information
states I , an uncountably infinite space. These challenges preclude the compu-
tation of optimal actions for every possible (information) state. One must resort
to approximations of the dynamic programming recursion, resulting in approxi-
mately optimal defense policies. As will be illustrated in the following section, the
information state of the problem provides guidance for an appropriate approxi-
mation, allowing for scalable and fast computation without significantly impact-
ing decision quality.

5 Some Models from the Literature

There is a large body of research concerning the design of systems that prescribe
automated defenses based on real-time intrusion information. Such systems are



Control-Theoretic Approaches to Cyber-Security 19

referred to by various names in the literature: automated intrusion response sys-
tems [14], autonomic & self-protecting systems [15,16], and survivable systems
[17,18], among others [19,20]. The seminal work of [18] was the first to inves-
tigate the design of such a system from a formal, control-theoretic perspective.
More recent work has taken a similar approach, developing control-theoretic
automated defense systems for completely observable [15,16,20] and partially
observable settings [1,19,21–23].

This section will focus on the partially observable setting. In particular, we
investigate two complementary approaches to modeling the defender’s uncer-
tainty: (1) probabilistic uncertainty, and (2) nondeterministic uncertainty. Prob-
abilistic uncertainty quantifies all uncertainty in the problem via probability dis-
tributions. For instance, under a given defense action, the transition from one
state to another is assumed to be dictated by probabilities. The second approach,
nondeterministic uncertainty, considers a more coarse form of uncertainty where
one only knows the possible events and not their specific probabilities. For each
setting, the general decision environment and form of the information state is
described. To aid in exposition, we draw upon two existing models developed in
the literature, namely [1,21] for the probabilistic approach and [22,23] for the
nondeterministic approach. In both cases, solving for an optimal defense pol-
icy is intractable, requiring solution techniques that yield approximate defense
policies. Each section concludes with a general discussion of the benefits and
drawbacks of the respective modeling approach.

5.1 Probabilistic Uncertainty

The first approach assumes that the nature of the defender’s uncertainty is prob-
abilistic. Under probabilistic uncertainty, the state transitions and the generation
of observations are assumed to be dictated by probability distributions. In par-
ticular, the state dynamics follow a controlled Markov chain5 where the control
is the defender’s action, as illustrated by Fig. 1.

An implicit assumption in this setting is that the underlying distributions
characterize, as a function of the defense action, all uncertainty associated with
the attacker’s behavior. In particular, given a current state xt = si and a defense
action ut = a, the transition to the next state xt+1 = sj is given by a fixed
conditional probability pa

ij = P(Xt+1 = sj | Xt = si, Ut = a).6 Further, given
a successor state xt+1 = sj and an action ut = a, an observation yt+1 = ok is
generated according to the conditional probability ra

jk = P(Yt+1 = ok | Xt+1 =
sj , Ut = a).

The above described model is known in the literature as a partially observ-
able Markov decision process (POMDP). It is well known that the informa-
tion state in a POMDP is the conditional probability measure, that is, the
probability mass function on the state space S conditioned on the history

5 This is a special case of a general probabilistic automaton where the dynamics are
assumed to be Markovian.

6 The uppercase notation, Xt, is used to represent a random variable.
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Fig. 1. Under the assumption of probabilistic uncertainty, the state dynamics evolve
probabilistically. We represent this evolution as a controlled Markov chain where the
control is the defense action.

ht = (u0, y1, . . . , ut−1, yt) [24]. The information state (also referred to as the
belief state) is denoted by It = πt ∈ Π = Δ(S ) where Δ(S ) is the proba-
bility simplex on the state space (the space of all probability mass functions
on S ). The belief state π is updated via Bayes rule, as a function of the
new information (ut, yt+1) = (a, o), to π′ = (τ1(π, a, o), . . . , τn(π, a, o)) where
τj(π, a, o) =

∑
i πip

a
ijr

a
jk/

∑
i

∑
j πip

a
ijr

a
jk.

Under probabilistic uncertainty, an appropriate performance metric is that of
total expected discounted cost. The cost for a given defense policy g : Δ(X ) →
Δ(A ) is defined as

C(g) = E

[
T−1∑

t=0

βtc(xt, ut) + βT c(xT )

]

.

where c(·, ·) is the state-action cost, c(·) is the terminal cost (that only depends
on the final state), and β ∈ [0, 1) is a discount factor which serves to place
more weight on immediate costs compared to later costs. The expectation
above is taken with respect to the joint probability distribution on trajectories
(x0, u0, . . . , xT−1, uT−1, xT ) as a result of defense policy g. An optimal defense
policy g∗ is one that minimizes the total expected discounted cost C(g), that
is, g∗ = infg C(g). Recalling the discussion of Sect. 4, optimal defense policies
are computed from the value function. The value function in the probabilis-
tic uncertainty case is defined on the space of beliefs Δ(S ) and is denoted by
V : Δ(S ) → R. Using the likelihoods encoded by the belief and the probabilities
described by the model, one can write the dynamic programming equations, for
every π ∈ Δ(S ) and t = 0, . . . , T − 1, as

V ∗
t (π) = min

a∈A
E

[
c(x, a) + βV ∗

t+1(τ(π, a, y))
]

= min
a∈A

⎧
⎨

⎩

∑

i

πic(si, a) + β
∑

k

∑

j

∑

i

πip
a
ijr

a
jkV ∗

t+1(τ(π, a, ok))
]
⎫
⎬

⎭
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with terminal value function V ∗
T = E

[
c(x)

]
. The solution of the above equations

can, in principle, be obtained via a recursive computational procedure (i.e.,
value iteration) which, in turn, yields a corresponding optimal defense policy g∗.
Unfortunately, due to the scale of real-world cyber-security problems, one must
resort to approximate procedures, as will be described later.

To provide context for the probabilistic approach, we review a model from
the literature. The automated intrusion response system, developed in [1,21],
models how a defender can optimally interfere with the progression of an adver-
sary through a computer network. The progression of the attacker is described
by a directed acyclic graph, termed an attack graph, that encodes the relation-
ships between exploit preconditions (attacker capabilities that are needed to
attempt the exploit) and postconditions (attacker capabilities that are realized
upon success of the exploit). The state of the system at any given time is the
set of currently enabled conditions. As the attacker attempts exploits and moves
through the network, alerts are triggered via an intrusion detection system. The
defender uses these noisy security alerts to construct a belief of the currently
enabled conditions. Using the belief, the defender prescribes actions that induce
system modifications that block exploits from being carried out. While these
system modifications interfere with the progression of the attacker (the evolu-
tion of the state), they are also costly, requiring the defender to tradeoff between
interfering with the attacker’s progression and maintaining system availability.

The novelty of the model developed in [1,21] is the use of attack graphs
to model the active progression of an attacker through a network. Prior work
primarily considered attack graphs in the context of offline vulnerability analysis,
e.g., determining the minimum number of exploits to patch in order to maximize
the number of blocked attack paths [25]. Introducing a state and using the attack
graph to model the dynamics of the state process enables one to build a control
(defense) problem and compute defense policies that optimally interfere with an
attack as it is unfolding.

While one can write down the dynamic programming equations that charac-
terize an optimal policy, offline computation for every possible belief that may
be encountered during runtime is intractable. This is primarily due to the scale
of real-world attack graphs and the size of the resulting state space. To avoid
this challenge (termed the curse of dimensionality) we take advantage of the
fact that the defender’s uncertainty is described by probability distributions.
In particular, the defender is able to forecast future possible attack pathways
(chains of exploits) by sampling from the model’s distributions. By conditioning
on its current belief of the attacker’s capabilities, the defender can reason about
the likelihood (and expected costs) of various state trajectories under different
defense actions. This allows the defender to prescribe defense actions that guide
the system to low cost regions of the state space and reach outcomes that bal-
ance between security and availability. Such an approach is termed an online
defense algorithm [1,26] since one is only concerned with prescribing actions
from the current (belief) state. While the online defense algorithm requires one
to continue to perform computation during runtime, it is much more scalable
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than offline approaches, yielding good quality defense policies in large domains.
Additional details of the algorithm can be found in [1].

The benefit of taking a probabilistic approach to the cyber-security problem
is primarily computational. Quantifying uncertainty via probability distribu-
tions enables the application of scalable computational procedures for comput-
ing defense policies. In particular, (provably convergent) solutions techniques
based on sampling can readily be applied [1,26]. However, the probabilistic app-
roach raises some concerns in real-world cyber-security settings. The primary
concern is the specification of accurate probability parameters for describing the
attacker’s behavior. The usual justification for knowing the parameters in a gen-
eral stochastic control setting is that one has learned them from existing data
and previous runs of the problem. This is difficult to justify in the context of
cyber-security: attacks are targeted and rarely repeated, leading to sparsity of
useful attack data. That said, it is not necessary to specify accurate probabili-
ties for the model to have value. The models can still provide useful qualitative
insights that are not sensitive to the specific parameter values. For example,
the sampling approach can identify, and focus defensive resources on, structural
bottlenecks in the attack graph [1]. These structural properties of the problem
are largely independent of the specific probability values. A secondary concern
is the question of whether the assumed probabilities are informative for future
evolution of the system. This requires that the statistics dictating the attacker’s
behavior do not change in time, e.g., they are stationary, an assumption which
may be difficult to justify in practice. This issue will be discussed in more detail
in the following section.

One approach for addressing the above concerns is to consider a set of models,
as is done in [1]. Consideration of a set of models allows one to capture a wide-
range of attacker behavior by not only updating the estimate of the attacker’s
evolution, but also the estimate of the true model. However, considering a large
set of models further compounds computational difficulties. The appropriate
tradeoff between model expressiveness and computational tractability will likely
be guided by the requirements of specific security settings and deserves further
research.

5.2 Nondeterministic Uncertainty

The probabilistic approach discussed in Sect. 5.1 is not the only way to reason
about uncertainty [27]. A more coarse description of uncertainty, termed non-
deterministic uncertainty, places no assumptions on how events from the cyber
environment are generated. Under nondeterminism, one cannot reason about the
probability of events and thus cannot construct likelihoods of individual states.
One can only reason about the set of possible states that are consistent with the
available information [28–30].7 Due to the lack of probabilities, the defender can-
not differentiate between the set of possible states in the support. As a result,

7 Comparing to the probabilistic approach, one would only keep track of the support
of the distribution and not the likelihoods.
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the defender adopts a worst-case cost criterion. Assuming the worst-case can
be interpreted as the defender preparing for the attacker to perform the most
damaging action (or even further, taking the most conservative viewpoint by
assuming that the attacker is omniscient and is able to compute and execute
this action). Throughout the discussion, we refer to the attacker as nature. We
adopt this terminology since we are not modeling an explicit strategy for the
attacker.8 Throughout this section, a general model from the literature will be
described along with a discussion of its application to a specialized cyber-security
model [22,23].

The general system model consists of a finite set of states, S =
{s0, s1, . . . , sn}, where the state transition xt → xt+1 is due to both the
defender’s action, ut ∈ A , and the event, wt ∈ E , from the cyber environ-
ment. Formally, we describe the dynamical system as a nondeterministic finite
automaton (NFA). For any given state, the transition due to an action-event pair
(ut, wt) = (a, e) ∈ A × E is in general nondeterministic, that is, the state may
transition to one of a set of states, as illustrated by Fig. 2. The distinguishing
feature of the nondeterministic case compared to the probabilistic case is that,
in the latter, the defender cannot reason about the relative likelihood of tran-
sitioning to various successor states and must treat all successor states, from a
given state, as possible.

Fig. 2. Under nondeterministic uncertainty, the state dynamics are modeled by a non-
deterministic finite automaton. For a given action-event pair, (a, e), state transitions
are nondeterministic, meaning a given state can transition to one of a collection of
states.

The state dynamics encoded by the nondeterministic finite automaton are
described by the function ft : S × A × E → S , that is, given an action-event
pair (ut, wt) = (a, e) the state xt = s follows the update xt+1 = ft(s, a, e).
The defender does not perfectly observe the state or nature’s events. Instead, it
receives an observation yt generated as a function of the true underlying state
8 Such settings are sometimes referred to as games against nature in the literature

[31]; however, since no strategy is assumed for the attacker (nature), it is not viewed
as an active decision maker, and thus we view the problem in the context of control
theory.
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and the event, as described by the function lt : S × E → O. A slightly more
general cost function is considered in this section, namely one that depends on
nature’s event in addition to the state-action pair, that is, c : S × A × E →
R+. It is assumed that cost functions are bounded above by c̄ < ∞, that is,
c(s, a, e), c(s) ≤ c̄ for all (s, a, e) ∈ S × A × E . Define C =

[
0, 1−βT+1

1−β c̄
]

as the
possible range of cumulative costs accrued over the duration of the problem.9

The problem of decision-making under nondeterministic uncertainty has been
extensively studied in the literature. Early work, see [32–36], has established a
duality between probabilistic and nondeterministic uncertainty, proposing cost
measures, cost densities, and feared values as analogous concepts to probabil-
ity measures, probability densities, and expected values. Further connections to
robust control and game theory have been established in [34,37]. As illustrated
in the literature, the relevant notion in the nondeterministic case is that of cost,
rather than probabilities. In particular, one should base control decisions on the
(worst-case) cost for reaching each state as opposed to reasoning about their
likelihoods.

An appropriate information state in this setting is the worst-case cost-to-
come statistic of [34,36,37], denoted by It = θt ∈ Θ = (C ∪ {−∞})n, defined
as the maximum possible cost for reaching each state given the current history.
That is, for any given time t, the information state θt consists of a collection
of costs, one for each state, θt = {θt(s)}s∈S , where each θt(s) is defined as the
maximum cost for reaching state s. If state s is not consistent with the current
history then the corresponding θt(s) is assigned a negative infinite value. Given
new information (ut, yt) = (a, o), the information state θt is updated via the
rule θt+1 = μ(θt, a, o). To describe the update, define Ω(s′, a, o) := {(s, e) ∈
S × E | s′ = ft(s, a, e), o = lt(s, e)} as the set of state-event pairs that are
consistent with the new information (ut, yt) = (a, o) given that the system is
in state s′ ∈ S . Each component of the updated information state, θt+1(s′), is
computed by searching over all state-event pairs (s, e) ∈ Ω(s′, a, o) in order to
find the maximal cost for reaching xt+1 = s′ consistent with the new information
(ut, yt) = (a, o). Further details of the information state update in a general
setting can be found in Chap. 6 of [37] and Sect. 3 of [36], as well as in the
context of cyber-security in [23].

Since one does not have access to probability distributions in the nondeter-
ministic setting, the notion of expected value is no longer relevant. An appro-
priate cost criterion in this setting is minimization of the worst-case cost. The
worst-case cost for a given defense policy g : (C ∪ {−∞})n → Δ(A ) is

D(g) = max
z

[
T−1∑

t=0

βtc(xt, ut, wt) + βT c(xT )

]

where the maximization is taken over all feasible trajectories of the form z =
(x0, u0, w0, . . . , xT−1, uT−1, wT−1, xT ) as a result of defense policy g. An optimal
defense policy is one that minimizes the worst-case cost D(g), that is, g∗ =
9 For the infinite horizon case, C =

[
0, c̄

1−β

]
.
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infg D(g). As before, one can construct a dynamic programming recursion on
the space of information states in order to recursively compute a value function,
denoted by W : (C ∪{−∞})n → R, and a corresponding optimal policy. Defining
Ot as the set of observations that are consistent with the current information
at time t,10 one can write the dynamic programming equations, for each θ ∈
(C ∪ {−∞})n and t = 0, . . . , T − 1, as

W ∗
t (θ) = min

a∈A
max
o∈Ot

[
W ∗

t+1(μ(θ, a, o))
]

with terminal value function W ∗
T (θ) = maxs∈S [c(s) + θ(s)]. Note that, unlike

in the probabilistic case of Sect. 5.1, the cost function is embedded within the
definition of the information state itself and does not explicitly appear in the
dynamic programming equations.

The computational challenges are more pronounced in the nondeterministic
case compared to the probabilistic case. The two main challenges are: (i) com-
plexity of maintaining the information state θt, and (ii) solving the dynamic
programming equations. To address the first challenge, the model of [22,23] con-
sidered a simplified information state in which one only keeps track of the set
of states consistent with the current history. That is, the information state θt is
approximated by the set of states s that have a finite θt(s). The simplification
leads to a much simpler information state but comes at the cost of optimality.
The second challenge, solving the dynamic programming equations, cannot be
addressed by the sampling-based approach outlined in the previous subsection
(since we do not have access to probability distributions). Instead, the prob-
lem is approximated by (spatially) decomposing the system into a collection of
sub-systems. By analyzing the functional dependencies between the state com-
ponents, one can construct a graph that quantifies the strength of the coupling
between states. One can then apply clustering algorithms to partition the graph
into sub-systems, each associated with a local defense policy. Allowing defense
policies to communicate the necessary security information via messages, the
computation of the defense policy can be decomposed into the computation of
multiple local defense policies. This improves scalability and permits computa-
tion in some moderately-sized settings. Additional details of the decomposition
approach can be found in [23].

The main benefit of taking a nondeterministic approach to the defender’s
uncertainty is the increased modeling flexibility. Reasoning over possible transi-
tions and computing the worst-case includes a wide-range of attacker strategies,
even non-stationary behavior. Furthermore, the modeling task is greatly simpli-
fied, compared to the probabilistic approach, as one does not need to make claims
about which states are more or less likely to be realized. The nondeterministic
approach does come with some drawbacks. The main issue is computational –
even after the simplification of the information state to describe the set of con-
sistent states, the space of approximate information states is the power set of
the state space and thus scales poorly. Furthermore, the defense policies com-
puted under the minmax approach can be overly conservative. Indeed, always
10 In other words, Ot is the range of the functions w �→ lt(xt, w).
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assuming the worst possible state transitions is a very pessimistic viewpoint.
This can be problematic as the attacker may prescribes attacks for the sole
purpose of triggering conservative defenses, causing the defender to essentially
carry out a denial-of-service attack on itself. Integrating elements of the prob-
abilistic uncertainty approach into the nondeterministic approach can help to
alleviate this issue. In particular, considering a range of distributions over which
the worst-case is taken (to obtain the least favorable distribution [37]) permits
one to regulate the degree of pessimism in computing defense policies.

6 Concluding Remarks

Fundamental to the control-theoretic approach is the assumption that the
defense problem is one-sided, that is, the defender is the only active decision
maker. As such, the threat model serves to absorb the attacker’s behavior into
the model of the cyber environment. Computational limitations preclude speci-
fication of a complete threat model, that is, a full representation of the system
(e.g., active services/software, all active users and associated privilege levels,
network connectivity, and trust relationships). One must make approximations,
specifying threat models that include coarser state (e.g., attacker privilege levels)
and observation processes (e.g., noisy security alerts from an intrusion detection
system). This unavoidably introduces uncertainty, requiring the defender to esti-
mate the true security status of the system from the observable signals.

Two complementary approaches to handling the defender’s uncertainty have
been discussed, namely probabilistic uncertainty and nondeterministic uncer-
tainty. Probabilistic uncertainty assumes that the defender’s uncertainty can
be quantified by probability distributions. While permitting efficient (sampling-
based) computational procedures for determining defense policies, taking a prob-
abilistic approach requires some assumptions, e.g., stationarity, that may be
difficult to justify in real-world cyber-security settings. Alternatively, the non-
deterministic approach leads to both a simpler modeling task (there is no longer
a requirement to specify probability parameters ) and a more flexible model
(allowing for a description of non-stationary behavior). However, these benefits
come at a cost of a harder computational problem.

The control-theoretic approach discussed in this chapter provides a founda-
tion for extension to more general settings. One natural extension is to consider
the case where the model of the cyber environment is unknown. To address
this problem, standard tools from Bayesian adaptive control and reinforcement
learning [8] may not be sufficient. The main challenge arises from the need to
obtain large quantities of useful attack data. Concepts such as transfer learn-
ing [38] and generalization [39] may be useful for dealing with the sparsity and
reproducibility issues in attack data. Another extension is the consideration of
more complex threat models, primarily allowing for both the attacker and the
defender to be active decision makers. Such a modification results in a game-
theoretic interaction where both the attacker and defender optimally respond to
each other’s actions. The complexities associated with the game-theoretic app-
roach to cyber-security, as well as some foundational results, are presented in
the following chapter.
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Abstract. We formulate cyber security problems with many strategic
attackers and defenders as stochastic dynamic games with asymmetric
information. We discuss solution approaches to stochastic dynamic games
with asymmetric information and identify the difficulties/challenges asso-
ciated with these approaches. We present a solution methodology for
stochastic dynamic games with asymmetric information that resolves
some of these difficulties. Our main results are based on certain key
assumptions about the game model. Therefore, our methodology can
solve only specific classes of cyber security problems. We identify classes
of cyber security problems that our methodology cannot solve and con-
nect these problems to open problems in game theory.

1 Introduction

The high and continually increasing connectivity of modern cyber networks
has resulted in significant improvement in the functionality and efficiency of
our networked systems, but has also created new entry points for attackers,
thus making these systems more vulnerable to intrusion. As noted by Miehling
et al. [23], recent events such as information leakage and theft [7], car hack-
ing [11], and denial of service attacks [6], have highlighted this vulnerability. Such
vulnerability has become an issue of great concern because (i) the operation of
critical infrastructure is increasingly reliant upon (potentially unreliable) net-
worked systems and (ii) cyber attacks are becoming persistent and increasingly
sophisticated. As reported by the Department of Homeland Security’s Industrial
Control Systems Cyber Emergency Response Team (ICS-CERT), attacks on the
critical infrastructure sectors (such as energy, communication, manufacturing,
transportation, and water systems) have remained persistent over the past few
years, with 245 in 2014, 295 in 2015, and 290 in 2016 [28], and many of the
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recent intrusions have had the potential to inflict severe and widespread dam-
age (an increasing number of attacks have reached the system’s control system
layer [28]). Therefore, it is imperative to detect and mitigate cyber attacks so as
to ensure secure operation of society’s critical systems.

Cyber security is a complex problem. The complexity of the problem stems
primarily from the fact that many individuals/agents (attackers, defenders) with
different objectives, and different information about the cyber network’s struc-
ture/topology and security status interact with one another through the network.
At each time instant the cyber network’s security status and each agent’s infor-
mation depend, in general, on exogenous random events (e.g., random failures in
hosts and connections among hosts) and all the agents’ strategies; such strategies
are not common knowledge [1,41] among all agents. Furthermore, the degree to
which each agent achieves his objectives depends on his strategy and all the other
agents’ unknown strategies. Agents can use these these features of the cyber secu-
rity problem to their advantage. For example, an attacker can take undetectable
actions, or detectable actions that do not fully reveal intent; a defender can like-
wise take actions that are not observable by attackers. Under these conditions,
the determination of strategic equilibria—configurations of strategies that leave
no agent any incentive to deviate—is a formidable problem.

In this chapter we propose and present a game-theoretic approach to the
cyber security problem. In Sect. 2 we explain why the formulation of the cyber
security problem as a stochastic dynamic game with asymmetric information
provides a reasonable approach to the problem. Then, in the remainder of the
chapter we present: the game model that captures the salient features of cyber
security problems (Sect. 3); current approaches to stochastic dynamic games with
asymmetric information and the difficulties/challenges associated with them
(Sect. 4); a new approach/methodology that resolves some of these difficulties
along with a discussion of the methodology’s key results (Sect. 5); the literature
on game theory that is relevant to cyber security problems (Sect. 6); some open
problems in game theory that are tightly connected to cyber security (Sect. 7).

The literature on stochastic dynamic games with asymmetric information is
rich in deep ideas and is very technical, therefore, it is not easily accessible. Our
goal in this chapter is to present and explain, in as plain language as possible, the
key ideas behind the approaches to stochastic dynamic games with asymmetric
information along with the main results of our approach to these games. For
this reason we provide an informal presentation of the approaches to and the
results on dynamic games of asymmetric information along with references that
formally describe these approaches and results. The results presented in this
chapter summarize a series of papers describing our work, motivated by issues
in cyber security, on dynamic games with asymmetric information [30,31,36–39].

2 The Cyber Security Problem as a Stochastic Dynamic
Game with Asymmetric Information

As pointed out in the introduction, cyber security is a multi-agent problem
involving attackers and defenders. The salient features of cyber security problems
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are: (i) Attacks are progressive in nature. Attackers are using their capabilities to
attack and capture computers/hosts. Defenders attempt, through their actions,
to retake hosts that are under the attackers’ control and to limit the attackers’
exploits (e.g., by isolating certain hosts from the rest of the network). As a
result of the attackers’ and defenders’ actions, the security status of the network
changes/evolves over time. The evolution is also affected by the occurrence of
random events (e.g., random failures in hosts and connections between hosts) in
the cyber network. (ii) Each agent has different information about the network’s
security status. For example: each defender knows in part the network’s topology,
but does not know the hosts/computers that are under the attackers’ control
and the information of other defenders; each attacker knows the hosts he has
captured, but does not know the network’s topology and the hosts captured by
other attackers. In addition to their private information, attackers and defenders
possess, at any time instant, some common information, consisting of events
which they all observe, such as an attack to a group of servers that is detected and
the detection is common knowledge [2,41] among all attackers and defenders (for
examples of events that are common information see [6,7,11,28]). (iii) Attackers
and defenders are strategic and self-interested: each agent attempts to optimize
his own objective rather than a social/agent-wide objective. (iv) Each agent has
different objectives. An attacker’s objective is to acquire the information he is
looking for and to take control of the cyber network. A defender’s objective is
to protect the information that is stored in the network without compromising
too much the network’s integrity and availability (a defender can protect his
network by turning off the corresponding section of the network, however, such
an action would make that section unavailable to its users).

As a result of the above features, the cyber security problem can be formu-
lated as a dynamic game with asymmetric information where the underlying
system is stochastic and dynamic. The attackers’ and defenders’ different objec-
tives along with their strategic behavior lead to a game. The stochastic and
dynamic nature of the game is due to the fact that the attackers’ and defenders’
information changes over time (it increases over time) and the network’s secu-
rity status evolves randomly over time. The fact that attackers and defenders
possess, at every time instant, private information (in addition to their common
information) results in an asymmetric information structure, thus a game with
asymmetric information.

3 The Game Model

We present a model that captures the salient features of cyber security problems
discussed in the previous section. We consider a stochastic dynamic system the
evolution of which over a time horizon T is affected by the decisions/actions
of N strategic agents along with random events that occur in nature. Such a
system is described by a stochastic difference equation. Specifically, the system’s
state at time t + 1, Xt+1, is a function of its state Xt at time t, the actions
Ai

t, i = 1, 2, . . . , N , of the N strategic agents at t, and random events that
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occur at time t and are statistically independent of the system’s state at t and
the agents’ actions at t. At each time t, each agent has some noisy/imperfect
private information about the system’s evolution up to time t; such infor-
mation is described by noisy observations of Xt and all the agents’ actions
At−1 = (Ai

t−1, i = 1, 2, . . . , N) at time t − 1. Furthermore, all agents have some
noisy/imperfect common information about the system’s evolution up to t; such
information is described by common noisy observations of the system’s state
Xt and all the agents’ actions At−1. We assume that the system’s state, all the
agents’ private and common observations, and all the agents’ actions are finite-
valued. All agents have perfect recall, that is, at any time t, they remember
everything they have observed up to t and all the actions they have taken up to
t − 1. Denote by P i

t agent i’s private information at t and by Ct the agents’
common information at t, i = 1, 2, . . . , N , t = 1, 2, . . . , T . At each time t, agent
i’s action, i = 1, 2, . . . , N , is generated by gi

t, his strategy at t; gi
t is a function of

i’s private information P i
t at t and the common information Ct at t. We denote

by gi agent i’s strategy profile in the T -horizon game; gi is the collection of
strategies gi

t, t = 1, 2, . . . , T . We term the collection of the agents’ strategy pro-
files gi, i = 1, 2, . . . , N , the strategy profile g in the T -horizon game. At each t,
agent i has an instantaneous utility U i

t (Xt, At) that is a function of the system’s
state Xt and all the agents’ actions Ai

t, i = 1, 2, . . . , N . Each strategic agent’s
objective is to determine his strategy profile so as to maximize the expected sum
of his instantaneous utilities from the beginning (time 1) until the end of the
game (time T ).

The state Xt represents the system’s/network’s security status at time t.
The progressive nature of cyber attacks is captured by the fact that Xt evolves
dynamically over time, and its evolution at any time t is affected by the agents’
(attackers’ and defenders’) actions at t and random events that occur in nature
at t, such as network failures, and are independent of the agents’ actions and the
system’s security status. Since cyber security systems are networks consisting of
a finite number of computers, each computer’s security status can be described
by one of a finite number of states and each agent can take at any time t a finite
number of actions, it is reasonable to assume that the system’s state space along
with the observation and action spaces are finite. We assume that all agents
have perfect recall, that is, every agent remembers everything he has seen and
every thing he has done. We will discuss the implication of this assumption
in the analysis of dynamic games with asymmetric information later in this
chapter. We wish to bring to the reader’s attention two important features of
the above-described model. (1) The instantaneous utility of each agent (hence his
overall utility) depends on all agents’ actions that are not all perfectly observable
and are generated by their respective strategies. Therefore, each agent’s choice
of strategy must take into account all the other agents’ choice of strategies,
thus the agents’ strategy choices are inter-dependent. (2) Since the dynamic
system’s evolution over time depends on all the agents’ actions through their
strategy choices, at any time t, each agent’s information, private and common,
depends on all agents’ strategies up to t − 1. These two features of the model
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result in significant difficulties in the analysis of dynamic games with asymmetric
information and in the computation of the appropriate equilibria. We will discuss
these difficulties along with ways of overcoming them in the rest of this chapter.

We conclude this section by presenting an example, drawn from [30,31], that
we will use throughout the chapter to illustrate the ideas and results we present.
Even though the model of the example does not capture all the essential features
of cyber security problems, (the current state of the art on stochastic dynamic
games with asymmetric information cannot be used to solve the cyber security
problem in its full generality), we hope that it will help the reader to understand
and appreciate the difficulties/issues that arise in these games along with the
key ideas of our approach.

An Example
Consider a game, played over a time horizon T , with N agents that are split
into two groups. Group 1 consists of N1 agents, group 2 consists of N2 agents,
N1 + N2 = N . The state of the dynamic system at time t is denoted by Xt =
(X1

t ,X2
t , . . . , XN1

t ). The component Xn
t of the state is privately observed by

agent n in group 1. The private state Xn
t has uncontrolled Markovian dynamics

with given time-invariant matrix of transition probabilities Qn, n = 1, 2, . . . , N1.
At the beginning of time t, each agent n in group 1 observes Xn

t , n = 1, 2, . . . , N1

and takes an action An
t . The actions At = An

t , n = 1, 2, . . . , N1 are announced
to all N agents. After this announcement, agent m, m = 1, 2, . . . , N2, in
group 2 makes a decision Dm

t = (Dm
t (1),Dm

t (2), . . . , Dm
t (N1)). Let Dt =

(D1
t ,D2

t , . . . , DN2
t ) denote the decisions of the agents in group 2 at time t. The

decisions Dt are observed by all N agents. After the decisions Dt are made, all
agents receive noisy observations Y 1

t , Y 2
t , . . . , Y N1

t of the states X1
t ,X2

t , . . . , XN1
t ,

respectively. The utility of agent n, n = 1, 2, . . . , N1, in group 1 is given by
Un,1

t (At,Dt) = (An
t − c)(

∑N2
i=1 Di

t(n)). The utility of agent m, m = 1, 2, . . . , N2,
in group 2 is given by um

t (Yt,Dt, At) = V m
t (Yt,Dt) − (

∑N1
i=1 Dm

t (i)Ai
t), where

V m
t (Yt,Dt) is a given function of Yt and Dt, and Yt = (Y 1

t , Y 2
t , . . . , Y N1

t ).
We assume that the state Xt of the dynamic system, the agents’ actions

At,Dt and the observations Yt, t = 1, 2, . . . , T take values in finite spaces. Fur-
thermore, we assume that the Markov state processes Xn

t , t = 1, 2, . . . , T, n =
1, 2, . . . , , N1, describing the evolution of the dynamic system, and the observa-
tions Yt, conditioned on Xt, t = 1, 2, . . . , T , are all mutually independent.

In this game, the private information of agent n in group 1 at time
t, before any action/decision is made at t, is Pn

t = Xn
1:t, where Xn

1:t =
Xn

1 ,Xn
2 , . . . , Xn

t ,n = 1, 2, . . . , N1. Agents in group 2 have no private infor-
mation at any time. The common information of all N agents at time t is
Ct = A1:t−1,D1:t−1, Y1:t−1,

The action/decision of agent n, n = 1, 2, . . . , N , at time t is a function gn
t of

his private information Pn
t at t and the common information Ct at t. The func-

tions gn
t , t = 1, 2, . . . , T define agent n’s strategy gn in the game. The collection

of strategies gn, n = 1, 2, . . . , N , define the strategy profile played in the game.
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4 Current Approaches to Dynamic Games with
Asymmetric Information and the Associated
Challenges

We provide an informal presentation of the key ideas underlying current
approaches to dynamic games with asymmetric information along with the chal-
lenges associated with these approaches. For a formal presentation of current
approaches to dynamic games with asymmetric information we refer the reader
to [9,25,29].

The fundamental difficulties in the analysis of stochastic dynamic games with
asymmetric information arise from the fact that the agents involved in the game
(e.g. attackers and defenders) are strategic, they possess private information,
their private and common information increase over time, their strategy choices
are inter-dependent, and each agent’s information depends, in general, on the
strategies employed by all other agents.

To address these difficulties, classical approaches to dynamic games with
asymmetric information proceed by taking into account the following considera-
tions. At every instant of time, each agent has to form: (i) An appraisal about the
current state of the (stochastic dynamic) system (e.g., the current security status
of the network) and the other agents’ private information; such an appraisal is
about the history/past of the game. (ii) An appraisal about how other agents
will play in the future so as to evaluate the performance of his strategy choices;
such an appraisal is about the future of the game. Consider any agent, say agent
i; given the other agents’ strategies, at each time t, agent i can utilize his infor-
mation (private and common) at t along with (i) all other agents’ past strategies
up to time t−1 and (ii) all other agents’ future strategies from t up to T to form
these appraisals about the history/past and the future of the game, respectively.

Since each agent has his own objective, each agent’s strategy is his own pri-
vate information, thus, it is not known to other agents. Therefore, each agent
has to form a prediction about the other agents’ strategies. According to Nash’s
idea/model, all agents have a “common prediction about the strategy profile”
played in the game (as stated in Sect. 3, a strategy profile describes all agents’
strategies at all times). Such a prediction strategy profile does not necessar-
ily coincide with the actual strategy profile that is being played in the game.
Thus, it is possible that an agent’s strategy, say agent i’s strategy, is differ-
ent from the prediction strategy profile. Denote by g∗ := (g∗1, g∗2, . . . , g∗N ) the
common prediction about the agents’ strategy profile, where g∗i is the strategy
prediction profile for agent i (his strategy from time 1 up to time T ); denote
by g := (g1, g2, . . . , gN ) the actual strategy profile, that is, the strategy profile
that is being played by the agents, i.e. g∗i �=gi, in the game. Below we discuss
the implications of agent i’s deviation from the prediction strategy profile on all
agents’ behavior. For that matter, we first consider agent i who may want to
deviate from his predicted strategy, then we examine the response of an agent
who faces such a deviation, and finally we discuss how an agent determines his
optimal strategy at each time t for all realizations of his information.
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When agent i chooses a strategy, he needs to know how other agents will
play/react for any choice that is different from the prediction strategy profile
g∗i. Since a deviation from agent i may generate information (e.g. an obser-
vation) that is not expected when the prediction strategy profile g∗ is played
by all agents, (that is, information that has zero probability according to g∗),
the prediction strategy profile g∗ has to determine how agents will act for all
possible realizations of their information, even those realizations that have zero
probability according to it. Then, using g∗, agent i can form an appraisal about
the future of the game for any choice of his own strategy and can evaluate the
performance of that strategy.

By the same rationale, when agent i chooses any strategy gi, he needs to
determine that strategy for all possible realizations of his information, even
those that have zero probability according to the prediction strategy profile
g∗1, g∗2, . . . , g∗(i−1), g∗(i+1), . . . , g∗N . This is because some other agent j, dif-
ferent from i, may deviate from the prediction strategy profile g∗j , therefore,
agent i must foresee such a possible deviation and must determine his response
(according to gi) to these deviations.

To determine his optimal strategy for all realizations of his information (those
that have positive or zero probability under the prediction strategy profile g∗), at
each time t, an agent, say agent i, needs to form an appraisal about the history
of the game at t along with an appraisal about the future of the game under
the assumption that all other agents follow the prediction strategy profile g∗.
To form an appraisal about the history of the game at t, agent i proceeds as
follows. For all realizations of his information up to and including t that have
positive probability under g∗, he uses Bayes’ rule to form this appraisal. For
any realization of information up to and including t that has zero probability
under g∗, agent i cannot rely on the strategy prediction g∗ up to time t − 1
and use Bayes’ rule to form this appraisal. The realization of information of zero
probability under g∗ tells agent i that his original prediction up to time t − 1
is not completely correct, consequently, he needs to revise his original strategy
prediction up to t − 1 and to form a revised appraisal about the history of the
game at t. Therefore, agent i must determine how to revise/form his appraisal
about the history of the game at t for all realizations of his information that
have zero probability under the prediction strategy profile g∗.

In the game theoretic literature [9] the above considerations are formalized as
follows. Each agent’s appraisals, say agent i’s appraisals, about the history and
future of the game are captured by an assessment which consists of a strategy
prediction profile g∗ (that is common to all agents) and a belief μi

t, for each time
t, on the system’s state and the other agents’ private information at t, based
on agent i’s information at t; for each t, the realization of such a belief is, in
general, agent i’s private information. The collection μ := (μi

t, i = 1, 2, . . . , N, t =
1, 2, . . . , T ) of all agents’ beliefs at all times is called a belief system μ. At any
time t and for any realization of agent i’s information at t (such a realization
may have positive or zero probability under the strategy prediction profile g∗)
agent i’s belief at t determines his appraisal about the history of the game at t;
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agent i’s appraisal at t about the future of the game is determined by his belief
μi

t at t and the prediction strategy profile g∗
t:T = (g∗

t , g∗
t+1, . . . , g

∗
T ) from t until

T (the end of the game).
Based on the definition of assessment, game theorists extended the concept

of Nash equilibrium to dynamic games with asymmetric information. An equi-
librium of the dynamic game is defined as a common assessment among the
agents that satisfies the following conditions under the assumption that agents
are rational. (1) Agent i, i = 1, 2, . . . , N , chooses his strategy to maximize his
total expected utility in all continuation games (i.e. the game’s continuation from
t until T for all t = 1, 2, . . . , T −1) given the assessment about the game. Conse-
quently, the prediction about agent i’s strategy that other agents hold must be
a maximizer of agent i’s total expected utility under the assessment about the
game. (2) For all times t, any agent i’s belief at t that is based on a realization
of information that has positive probability under the common assessment must
be equal to the conditional probability, under the strategy prediction profile
of the common assessment, of the system’s state and the other agents’ private
information at t; this conditional probability for agent i is determined via Bayes’
rule when all other agents play according to the common assessment’s prediction
strategy profile. When the realization of agent i’s information at t has zero prob-
ability under the prediction strategy profile of the common assessment, his belief
at t cannot be determined via Bayes’ rule and must be revised. The revised belief
must satisfy a certain set of reasonable conditions so as to be compatible with
agent i’s rationality. Game theorists have proposed various sets of conditions (see
[9,25,29]) to capture the notion of reasonable beliefs that are compatible with
the agents’ rationality. Different sets of conditions for off-equilibrium beliefs, that
is, beliefs along off the equilibrium paths of the game (i.e. paths of zero probabil-
ity under the common strategy prediction component of the assessment) result
in different equilibrium/solution concepts (such as perfect Bayesian equilibria,
sequential equilibria, perfect equilibria, proper equilibria, persistent equilibria,
etc) that have been proposed for dynamic games with asymmetric information
(see [9,25,29] for the definition and meaning of all these equilibrium concepts).

Perfect Bayesian Equilibrium (PBE) [9,42], is an equilibrium concept that
has been widely accepted as an appropriate solution concept for dynamic games
with asymmetric information. A PBE is defined as an assessment (a strategy
prediction g∗ and a belief system μ) that satisfies the sequential rationality and
consistency conditions. The sequential rationality and consistency conditions
for dynamic games with asymmetric information where the underlying system is
dynamic are formally defined in [36]. Here we verbally describe these conditions.

Sequential Rationality. Consider any agent at any time, say agent i at time t.
Given agent i’s information (private and common) at t, his belief at t according
to the assessment, and the prediction of all other agents’ strategies from t until
T according to the assessment, agent i’s strategies that maximize his (total)
expected utility from t until T are the same as his corresponding strategies from
t until T in the assessment.



Game Theoretic Approaches to Cyber Security 37

Sequential rationality requires that the common prediction g∗i about agent i’s
strategy must be an optimal strategy choice for him since it is common knowledge
that he is a rational agent. We note that the sequential rationality condition is
more restrictive than the optimality condition for Bayesian Nash Equilibrium
(BNE) which requires that the optimality condition in italics above should hold
only for t = 1. By the sequential rationality condition we require the optimality
of the strategy prediction g∗ even along paths of the game’s evolution that are off-
equilibrium (i.e. paths that have zero probability under g∗), thus, we rule out the
possibility of non-credible threats. Consider for example an agent who threatens
to play an action that is suboptimal for himself upon the realization of a history
that has zero probability under the strategy prediction g∗ of the assessment. Such
a non-credible threat is ruled out by sequential rationality (hence by PBE) but
is not ruled out by BNE. Sequential rationality gives rise to a set of conditions
that the strategy prediction g∗ must satisfy given the belief system μ of the
assessment. As discussed above, the belief system μ of the assessment should
also be compatible with g∗. The compatibility between the strategy prediction
component of the assessment and the belief system component of the assessment
is captured by the consistency condition.

Consistency. The consistency condition requires that along all equilibrium paths
(that is, game histories that are realized when all agents play an equilibrium
strategy profile) the agents’ beliefs should be updated/evolve according to Bayes’
rule. Along all other paths of the game’s evolution, the consistency condition
requires that if the information received by an agent i at time t has zero probability
under the assessment, agent i’s belief at t must be revised in a “reasonable”
manner.

The work in [36] presents a set of “reasonable” conditions for revising an
agent’s beliefs along off-equilibrium paths of the game’s evolution.

Even though the definition of PBE provides a general formalization of out-
comes that are rationalizable (that is, consistent with agents’ rationality) under
some strategy profile and belief system, computation of PBEs is a formidable
task. There are two major challenges in computing a PBE (g∗, μ). First, there is
an inter-temporal coupling between the agents’ strategy prediction g∗ and the
belief system μ. As discussed before, according to the consistency requirement,
the belief system μ must satisfy a set of conditions given a strategy prediction g∗

(see [36,39]). On the other hand, sequential rationality dictates that a strategy
prediction g∗ must satisfy a set of optimality conditions given the belief system
μ (see [36,39]). Therefore, there is a circular dependency between a strategy pre-
diction g∗ and a belief system μ. For example, by sequential rationality, agent i’s
strategy gi∗

t at time t depends on the agents’ future strategies g∗
t:T , (where t : T

denotes the time interval t, t+1, t+2, . . . , T ), and on the agents’ past strategies
g∗
1:t−1 indirectly through the consistency condition for μi

t. As a result, one has
to determine the strategy prediction g∗ and the belief system μ simultaneously
for the whole time horizon so as to satisfy all the sequential rationality and con-
sistency conditions; consequently, one cannot sequentially decompose over time
the computation of PBEs. Second, since the agents’ are assumed to have perfect
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recall their information (private and common) increases over time, thus, their
strategies have a growing domain over time; this feature of the agents’ strategies
further complicates the computation of PBEs.

We continue discussing the example we introduced at the end of Sect. 3. Here
we illustrate the concepts introduced in this section along with the difficulties
that arise in the determination of equilibrium strategies in dynamic games with
asymmetric information.

An Example (continued)
An assessment of the game is described by a strategy prediction profile
g∗ = (g∗1, g∗2, . . . , g∗N ), that is common to all agents, and a belief system μi

t, i =
1, 2, . . . , N, t = 1, 2, . . . , T . The component g∗i = (g∗i

1 , g∗i
2 , . . . , g∗i

T ) describes the
strategy player i is predicted to play in the game. The strategy g∗i may be
different from the actual strategy gi player i plays in the game. The component
μi

t describes agent i’s belief at time t about the state of the system Xt and the
private information P j

t of all agents j other than i at time t, conditioned on
agent i’s private information P i

t and the common information Ct (the private
and common information for all agents at all times have been specified at the
beginning of this example, at the end of Sect. 3).

At any time t,the beliefs μi
t, i = 1, 2, . . . , N , depend on g1:t−1, the strategies

of all agents up to time t − 1. At each time t, when an agent, say agent i,
determines his best strategy from t up to time T according to the sequential
rationality requirement, he takes into account the strategy prediction profile for
all other agents form t up to T and his belief μi

t. Therefore, the (equilibrium)
strategies and beliefs of all agents are interdependent over time and must all
be determined simultaneously for the whole duration of the game. This fact
highlights one of the major difficulties associated with the current approaches
to stochastic dynamic games with asymmetric information.

As pointed out at the beginning of this example, (end of Sect. 3), the private
information of each agent i in group 1 at time t is P i

t = Xi
1:t, i = 1, 2, . . . , N1.

The common information of all agents at time t is Ct = A1:t−1,D1:t−1, Y1:t−1.
Consequently, the domains of private and common information increase with
time, therefore, for large time horizons T, the computation of equilibria becomes
a formidable task. This fact highlights another difficulty associated with the
current approaches to stochastic dynamic games with asymmetric information.

In the next section we present an approach to dynamic games with asym-
metric information that addresses and partly resolves the above challenges.

5 A Sufficient Information Approach to Stochastic
Dynamic Games with Asymmetric Information

The definition of PBE requires agents to keep track of all the information they
acquire over time and to form beliefs about the private information of all other
agents. In this section we show that agents do not need to keep track of all
their past information to reach an equilibrium; at any time t, they can take
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into account only a subset of the information available at t that is relevant to
the continuation of the game, and ignore the rest of it. Such a selection of the
relevant information is motivated by computational and philosophical reasons:
the resulting strategies are simpler and the corresponding PBE are easier to
compute; furthermore, the simpler strategies proposed in this section offer a
more plausible prediction of the outcome of the interactions among strategic
agents in cyber security games where the underlying system is dynamic (due
to the progressive nature of attacks) and there is significant asymmetry in the
information possessed by the agents (attackers and defenders).

The above discussion motivates the approach to dynamic games with asym-
metric information that we present in this section. The key steps of our approach
are as follows.

1. We present conditions sufficient to guarantee that all the agents involved in
the game can compress their private information in a mutually consistent
manner. Such a mutually consistent compression leads to the notion/concept
of sufficient private information.

2. Using the notion of sufficient private information, we present a compression
of the common information. Such a compression of the common information
leads to the concept of sufficient common information.

3. Using the notions of sufficient private information and sufficient common
information we define a set of strategies termed sufficient information based
strategies (SIB strategies), and a set of PBE termed Sufficient Information
Based Perfect Bayesian Equilibria (SIB-PBE). We show that the set of suffi-
cient information based strategies is closed under the best response correspon-
dence. Thus, we establish the following result: if all agents except one, say
agent i, play sufficient information based strategies, then there exists a suffi-
cient information based strategy for agent i that is a best response to those
strategies. The implication of this result is that one can restrict attention to
SIB strategies to determine SIB-PBE.

4. Using the sufficient common information as an information state we provide a
sequential decomposition of stochastic dynamic games with asymmetric infor-
mation. Such a decomposition leads to an algorithm for the determination of
SIB-PBE. We identify instances of games where SIB-PBE exist.

5.1 Sufficient Private Information

Let Ct denote the agents’ common information at time t, and let P i
t denote agent

i’s private information at t, i = 1, 2, . . . , N .

Sufficient Private Information. We say that the collection St = (Si
t , i =

1, 2, . . . , N), (where each Si
t a function of Ct and P i

t ), is sufficient private infor-
mation for the N agents if the following conditions are satisfied for all agents
and for all times: (i) Each Si

t can be updated recursively, that is, Si
t can be deter-

mined from Si
t−1 and the new information agent i acquires at time t. (ii) St,Ct

and the agents’ actions At at t provide the information sufficient to statistically
determine the sufficient private information St+1 and the common information
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Ct+1. (iii) Agent i’s expected utility at t conditioned on his private information
P i

t , the common information Ct, and the agents’ actions At at t, is the same
as his expected utility at t conditioned on his sufficient private information Si

t ,
the common information Ct and the agents’ actions At at t. Furthermore both
expected conditional utilities at t are independent of agent i’s strategy. (iv)
The information provided by agent i’s private sufficient information Si

t and the
common information Ct is sufficient for agent i to statistically determine/predict
the sufficient private information of all other agents. Furthermore, this statistical
determination/prediction is independent of agent i’s strategy.

The above discussion provides an informal presentation of conditions (i)-(iv);
a formal/mathematical description of these conditions can be found in [36,38,39].

We now provide an intuitive interpretation of the above conditions. Condi-
tion (ii) requires that that agents’ sufficient private information must be rich
enough so that, combined with their common information and actions at any
time t, it leads to the same prediction of the sufficient private information and
the new common information at t + 1 as the one that would be obtained if
agents used all their information at t. Condition (iii) is similar in spirit to one of
the requirements defining an information state in centralized stochastic control
[18]. The essence of conditions (ii) and (iii) is that sufficient private informa-
tion must be a component of a statistic that is sufficient for decision making
purposes. Therefore, sufficient private information must be updated recursively
(condition (i)). The essence of condition (iv) is the following: the agents’ suffi-
cient private information must be defined by a mutually consistent compression
of all the agents’ private information. Such a compression must not entail any
loss of information, as far as an agent’s ability to statistically predict the other
agents’ sufficient private information is concerned; furthermore, such a private
information compression must be robust to agents’ possible unilateral deviations
from the strategy prediction g∗.

We would like to point out that the above conditions do not uniquely deter-
mine the agents’ sufficient private information. These conditions may lead to
many solutions including the trivial one Si

t = P i
t for all agents i, i = 1, 2, . . . , N .

Therefore, an important question is: is there a minimal sufficient private infor-
mation for the agents? The existence of a minimal sufficient private information
for all agents is currently an important open problem.

5.2 Sufficient Common Information

Based on the characterization of sufficient private information, we introduce
the notion of sufficient common information which at any time t is a statis-
tic/compressed version of the common information Ct at t.

Sufficient Common Information. We define the agents’ sufficient common
information at any time t, denoted by Πt, to be the agents’ belief about the
dynamic system’s state Xt at t, and all the agents’ sufficient private information
St at t, conditioned on the common information Ct.

We call Πt the Sufficient Information Based (SIB) belief at t. The agents’
SIB belief at t is computable by all agents, thus, it is common information [1,41]



Game Theoretic Approaches to Cyber Security 41

among all agents. The SIB belief Πt is recursively updated according to a SIB
update rule ψt. Specifically, Πt+1 is determined by Πt and the common informa-
tion that becomes available at t, that is Zt = Ct\C(t−1), according to ψt. If the
realization of the information Zt has non-zero probability according to the strat-
egy prediction g∗, then ψt updates Πt according to Bayes’ rule; if the realization
of Zt has zero probability according to g∗, then Πt+1 is updated according to
ψt in a reasonable manner that is consistent with the agents’ rationality (see
for example [36]). We denote by Πψ = (Πψ

t , t = 1, 2, . . . , T ) the sequence of SIB
beliefs generated by the update rule ψ := (ψt, t = 1, 2, . . . , T ).

The above discussion provides an informal presentation of the concept of suf-
ficient common information. For a formal/mathematical description of sufficient
common information and its update we refer the reader to [36,38,39].

5.3 Sufficient Information-Based Strategies and Sufficient
Information-Based Perfect Bayesian Equilibria

The combination of sufficient private information (Si
t , i = 1, 2, . . . , N, t =

1, 2, . . . , T ) and sufficient common information Πt, t = 1, 2, . . . , T , provides a
mutually consistent compression of the agents’ private and common information,
respectively. Using this information compression we define a class of strategies
σi

t that are based on Si
t and Πt for each agent i at each time t. We call σi

t a
Sufficient Information Based (SIB) strategy for agent i at time t. A collection of
SIB strategies σi

t, i = 1, 2, . . . , N , t = 1, 2, . . . , T , is termed a SIB strategy profile
σ. We note that at any time t the set of SIB strategies is a subset of all possi-
ble strategies agents can choose at t by using all of their private and common
information at t. SIB strategies are simpler than general strategies because they
have a smaller domain than general strategies as they are based on compressed
versions of the agents’ private and common information at any time t. We fur-
ther note that if the dimensionality of Si

t , agent i’s sufficient private information,
i = 1, 2, . . . , N , remains fixed over time then the domain of SIB strategies is time-
invariant. In Sect. 5.5 we present instances of dynamic games with asymmetric
information where the domain of SIB strategies is time-invariant.

Based on the concept of SIB strategies we introduce the concept of Sufficient
Information Based-Perfect Bayesian Equilibrium (SIB-PBE) that is informally
described as follows.

Sufficient Information Based-Perfect Bayesian Equilibrium (SIB-
PBE). A SIB-PBE is a PBE in which all agents play SIB strategies.

For a formal definition of SIB-PBE we need to consider, as in the case of
PBE, a SIB assessment that consists of a SIB strategy prediction profile σ and
a SIB belief system μψ, and to define the sequential rationality and consistency
conditions that σ and μψ must satisfy so that they should specify a SIB-PBE.
A formal definition of SIB-PBE can be found in [36].

The class of SIB assessments needed to formally define a SIB-PBE imposes
two additional restrictions/requirements on the agents’ strategies and beliefs as
compared to the general class of assessments presented in Sect. 4. First, SIB
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assessments require that each agent i, i = 1, 2, . . . , N , must play a SIB strategy
σi instead of a general strategy gi. Second, SIB assessments require that at every
time t each agent i must form a belief about the status of the game using only the
SIB belief Πt along with his sufficient private information Si

t (instead of a general
belief μi

t that is based on his private information P i
t and the common information

Ct). Such restrictions generate the following strategic concerns. First, a strategic
agent does not have to restrict his choice to SIB strategies, he may deviate from
a SIB strategy σi to a non-SIB strategy gi if such a deviation is profitable for
him. Second, at any time t, a strategic agent does not have to limit himself to
forming a belief about the status of the game by using only the SIB belief Πt

and sufficient private information Si
t ; he may want to form a belief using all of

his private information and all the common information if such a belief enables
him to improve his overall expected utility. These concerns are addressed by the
results of our methodology that appear in the next section.

5.4 Main Results

The results we present in this section address the difficulties associated with cur-
rent approaches to dynamic games with asymmetric information, specifically: the
inter-dependence over time between strategies and beliefs (Sect. 4); the growing
domain of the agents’ strategies (Sect. 4); and the strategic concerns arising from
restricting attention to SIB strategies and SIB beliefs (Sect. 5.3). These results
have been derived under the following key assumption, the meaning of which we
discuss in the following subsection.

Key Assumption. At any time t, t = 1, 2, . . . , T , and for any sequence of
all the agents’ actions up to time t − 1 the following conditions are satisfied:
(C1) Every possible value xt of the system state Xt can be realized with positive
probability. (C2) For every agent, every possible value of his private observations
can be realized with positive probability.

We present an informal statement of the four main results of the sufficient
information approach to dynamic games with asymmetric information. A formal
statement of conditions (C1) and (C2) along with a formal statement of the four
main results and their proofs can be found in [36].

Result 1. At any time t, every agent i’s private belief about the state of the
dynamic system and the the private information of all other agents is indepen-
dent of his own strategy.

Result 2. If every agent j �= i plays a SIB strategy σj , then there exists a SIB
strategy σi for agent i that is a best response to the strategies (σj , j �= i).

Results 1 and 2 address the strategic concerns created by focusing on SIB
strategies and SIB beliefs, and, in part, the growing domain of the agents’ strate-
gies. Result 1 shows that no agent can alter his private belief about the state of
the dynamic system and all the other agents’ private information by deviating
from the predicted strategy profile. Thus, when all agents j �= i play according
to a SIB assessment (σ∗, μψ) (where the belief system μψ is determined by the
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update rule ψ described in Sect. 5.2), agent i cannot mislead these agents by play-
ing a strategy gi different from σi∗, thus, creating dual beliefs (one belief that is
based on the SIB assessment (σi∗, μψ) the functional form of which is known to
all agents, and another belief that is based on his private strategy gi that is only
known to him) which he can use to his advantage. Result 2 shows that when all
agents play SIB strategies, no agent can profit by deviating from his SIB strategy
to a non-SIB strategy. Therefore, we can restrict attention to SIB strategies and
attempt to determine PBE within the class of SIB assessments, i.e. SIB-PBE. As
pointed out above, SIB strategies are simpler than general strategies (which, at
any time, are functions of all the private and common information available to an
agent at that time) because they are based on compressed information. However,
SIB strategies do not have, in general, a time-invariant domain. Nevertheless,
there are several instances in practice where SIB strategies have a time-invariant
domain [30,31,37].

Using Results 1 and 2 we can obtain a sequential decomposition of stochastic
dynamic games with asymmetric information. Such a decomposition is described
by the following result.

Result 3. SIB-PBE can be determined by the solution of N coupled dynamic
programs (one for each agent). These dynamic programs determine sequentially
(moving backwards in time) SIB-PBE via the solution (i.e. the Bayesian Nash
equilibria) of a series of T static Bayesian games that have the following form.
For the game at time T , and for any realization πt, si

T = (si
T , i = 1, 2, . . . , N)

of the SIB belief ΠT and the sufficient information ST = (Si
T , i = 1, 2, . . . , N),

respectively, agent i’s utility is the expectation of his original utility U i
T (see

Sect. 3) conditioned on the πT and sT . For the game at time t, t = 1, 2, . . . , T −
1, and for any realization πt, st = (si

t, i = 1, 2, . . . , N) of the SIB belief Πt

and the sufficient private information St = (Si
t , i = 1, 2, . . . , N), respectively,

agent i’s utility is the sum of two terms: (i) the expectation of his original
utility U i

t conditioned on πt and st; and (ii) his expected payoff from time t+1
until time T, due to the continuation of the game, conditioned on πt and st.
The second term of the above sum is a function of the SIB belief Πt+1 (which,
according to Sect. 5.2, is recursively determined form πt and the new common
information Zt+1 acquired at t + 1) and the sufficient private information St+1

(which, according to Sect. 5.1, is recursively determined from st and the new
information the agents acquire at t + 1).

Result 3 shows that for finite horizon stochastic dynamic games with
asymmetric information our approach resolves the difficulty due to the inter-
dependence over time between strategies and beliefs (discussed in Sect. 5.4) by
providing a systematic method for determining the components of SIB-PBE one
at a time, starting at time T and sequentially moving backwards in time. The
N coupled dynamic programs provide an algorithm for determining SIB-PBE.

Results 1 and 2 hold for both finite and infinite horizon games. Under certain
additional assumptions, Result 3 can be extended to infinite horizon games (see
[36,39]).
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Result 4. (i) SIB-PBE exist for zero-sum games. (ii) For nonzero-sum games
there exists at least one SIB-PBE (σ∗, μψ), if the following condition is sat-
isfied. There exists sufficient information S1:N

1:T such that the update rule ψ is
independent of the strategy profile σ∗.

The independence condition of Result 4 is not satisfied for all cyber security
games. In [36] we present several classes of dynamic games with asymmetric
information where the condition of Result 4(ii) is satisfied.

We illustrate the results of our approach to stochastic dynamic games with
asymmetric information through the example introduced in Sect. 3.

An Example (continued)
For the example introduced in Sect. 3, at any time t the sufficient private infor-
mation of agent i in group 1 is Si

t = Xi
t . As pointed out earlier, all agents in

Group 2 have no private information, thus, no sufficient private information. The
sufficient common information for all agents at time t is the belief on the system
state Xt conditioned on the common information Ct = A1:t−1,D1:t−1, Y1:t−1.
Note that the sufficient private information of each agent, and the sufficient
common information for all agents have time invariant domains.

Using the sufficient common information as an information state, we can
show [30,31] that PBE assessments can be determined sequentially in time by a
backward induction algorithm.

Therefore, for the game of the example introduced in Sect. 3, our method-
ology resolves the key difficulties (discussed in Sect. 4) that are associated with
previous approaches to dynamic games with asymmetric information. That is,
it breaks the interdependence over time between strategies and beliefs (through
the sequential decomposition of the game) and discovers, for each agent and each
time, sufficient private information and sufficient common information that have
time invariant domains.

5.5 Discussion of the Main Results

Our main results show that the mutually consistent compression of the agents’
information (private and common) leads to SIB strategies, SIB beliefs, and SIB-
PBE which have several desirable features. Specifically, SIB strategies are simpler
than general strategies, and SIB beliefs, which are common knowledge among
all agents, can serve as information states in the sequential decomposition of
stochastic dynamic games with asymmetric information. In general, the set of
SIB-PBE of a dynamic game is a subset of all PBE of the game. This is because
in a dynamic game agents can incorporate their past irrelevant observations into
their future decisions so as to create rewards (respectively, punishments) that
incentivize them to play (respectively, not to play) specific actions over time. By
compressing the agents’ private and common information, we do not capture such
punishment/reward schemes that are based on past irrelevant observations. An
example of such a situation appears in [36,39] within the context of a repeated
game, where the set of PBE that can not be captured as SIB-PBE are the ones
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that utilize payoff-irrelevant information to create reward/punishment schemes
in the continuation game.

We would like to note that in dynamic games where the agents’ equilibrium
payoffs are unique, we can restrict attention to SIB-PBE because the above-
described punishment/reward schemes do not lead to additional equilibrium
payoffs. One class of such games is the class of zero-sum games (e.g., attacker-
defender games within the context of cyber security where the defender’s only
concern is the network’s security). In a zero-sum game agents have completely
opposite interests, therefore, it is not rational for them to cooperate on the for-
mation of such punishment/reward schemes; we refer the interested reader to
[36,39] for more discussion and the proof of existence of SIB-PBEs in zero-sum
games.

Even though it is true that, in general, the set of PBE of a dynamic game
is larger than the set of SIB-PBE, in our opinion there are reasons on why in
a highly dynamic environments, such as the the environment of cyber security
problems, SIB-PBE are more plausible to arise as an outcome of the game.

First, we argue that in a highly dynamic environment with signif-
icant information asymmetries among agents, the creation/formation of
reward/punishment schemes that utilize the agents’ payoff-irrelevant informa-
tion requires prior complex agreements among the agents. These complex agree-
ments are more likely to occur in games where the underlying system is not highly
dynamic (as in repeated games [19]) and there is no much information asymme-
try among agents. In a highly dynamic environment with significant information
asymmetries among agents (as in cyber security games) the formation of such
complex agreements becomes less likely for the following reasons. First, in these
environments each agent’s individual decision making process is described by a
complex Partially Observable Markov Decision Process (POMDP); thus, strate-
gic agents are less likely to form a prior common agreement (that depends on the
solution of their POMDPs) in addition to solving their individual POMDPs. Sec-
ond, as the information asymmetry among agents increases, reward/punishment
schemes that utilize payoff-irrelevant information require an increasingly com-
plex agreement that is sensitive and not robust to changes in the assumptions
on the information structure of the game. An example illustrating the lack of
robustness of these agreements to changes in the information structure of the
game is provided in [36,39]. The author of [24] provides a general result on
the robustness of the above mentioned reward/punishment schemes in repeated
games; he shows that the set of equilibria that are robust to changes in the game’s
information structure that affect only payoff-irrelevant signals do not include the
set of equilibria that utilize the reward/punishment schemes described above.

Second, the proposed solution concept SIB-PBE can be viewed as a general-
ization/extension of Markov Perfect Equilibrium (MPE) [21] to dynamic games
with asymmetric information. Therefore, a similar set of rationales that support
the notion of MPE also applies to the notion of SIB-PBE as follows. First, the
the set of SIB assessments, as presented in [36,39], describes the simplest form
of strategies capturing the agents’ behavior that is consistent with the agents’
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rationality. Second, the class of SIB-PBE captures the idea that “bygones are
bygones”, which also underlies the requirement of subgame perfection in equilib-
rium concepts for dynamic games. That is, the agents’ strategies in two contin-
uation games that differ only in the agents’ information about payoff-irrelevant
events must be identical. Third, SIB assessments embody the principle that
“minor changes in the past should have minor effects”. This implies that any
perturbation in the specification of the game or in the agents’ past strategies
that are irrelevant to the continuation game should not change drastically the
outcome of the continuation game.

We would like to emphasize that the key assumption of Sect. 5.4 is essential
in establishing the assertions of the main results of the approach presented in
this section. Condition (C1) says that there is enough exogenous uncertainty (i.e
random uncontrollable events) in the system’s evolution so that at each time t
all states in the system’s state space can be reached with positive probability;
condition (C2) says that no agent can infer perfectly another agent’s actions
based only on his private observations; equivalently, condition (C2) says that any
deviation that is detected by a certain agent is also simultaneously detected by all
the other agents. We believe that within the context of cyber security problems
these conditions are fairly reasonable. For example, when the system/network
is heavily used there is a high likelihood that random failures induced by the
heavy load can potentially lead to one of many security states. Furthermore, the
information agents receive from their own (private) sensors can be very noisy,
thus they are not able to perfectly detect other agents’ actions. Nevertheless,
there are instances of cyber security games with many players/agents (attackers
and defendants) where an agent’s deviation may be detected by a subset of the
rest of the agents (this subset of agents use their private information to detect
the deviation). The methodology presented in this section cannot address these
instances. We present some ideas on how to address these instances in Sect. 7.

Even though there are instances of dynamic games with asymmetric infor-
mation where the domain of SIB strategies is time-invariant, e.g. [31,37], the
methodology for information compression presented in this section does not
always result in sufficient private information the domain of which is time-
invariant. Thus, our methodology does not completely resolve the difficulty aris-
ing from the growing domain of the agents’ strategies in dynamic games with
asymmetric information. In Sect. 7, we present some ideas on how to address
this difficulty.

We conclude our discussion by pointing out that the main results 1–3 can be
obtained if we replace the key assumption of Sect. 5.4 with another one where
each agent’s actions are always observable by all other agents. However, such an
assumption is not realistic for cyber security problems.

6 Relevant Literature

The literature on dynamic games with asymmetric information can be divided
into two categories: (1) games where the underlying system is static (repeated
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games); and (2) games where the underlying system is dynamic. There are sig-
nificant philosophical differences between the approaches to games in the above
categories.

Dynamic games where the underlying system is static (repeated games) arise
primarily in economic problems where the environment does not change with
time or evolves very slowly over time. Works on (discounted) repeated games
study primarily their asymptotic properties, specifically their properties when
the horizon is infinite and agents are sufficiently patient (that is the discount fac-
tor is close to 1). In repeated games agents play a stage (static) game repeatedly
over time. The main objectives of the literature on these games are: (i) to analyze
situations where the agents can form self-enforcing punishment/reward mecha-
nisms so as to create additional equilibria that improve the payoffs they obtain
by playing an equilibrium of the stage game over time; and (ii) to characterize
the payoffs corresponding to all the equilibria of the repeated game.

Dynamic games where the underlying system is dynamic arise in engineer-
ing problems where the environment evolves rapidly over time. For example, in
cyber security, the progressive nature of cyber attacks results in a rapidly chang-
ing environment, this is why the underlying system is modeled by a stochastic
difference equation (see Sect. 3). The work existing on games with asymmetric
information where the underlying system is dynamic does not restrict attention
only to situations where the horizon is infinite and agents are sufficiently patient.
The literature addresses situations where the decision problem for each agent,
in the absence of interactions with other agents (i.e. assuming fixed strategies
for the other agents), is a POMDP. Therefore, the determination of a set of
equilibrium strategies is a complex problem. Consequently, it is unlikely that
the agents seek equilibria that result from the formation of self-enforcing pun-
ishment/reward mechanisms that are similar to those used in infinitely repeated
games. Existing approaches to and results on dynamic games with asymmet-
ric information where the underlying system is dynamic demonstrate that the
equilibria of these games have the same features as the equilibria determined by
our approach (see Sect. 5.5). For this reason, in this section we will provide a
detailed description of the literature on stochastic dynamic games with asym-
metric information where the underlying system is dynamic. At the end of the
section we will provide a few key references on dynamic games with asymmetric
information where the underlying system is static.

Stochastic dynamic games with asymmetric information where the under-
lying system is dynamic can be classified into two categories, zero-sum and
nonzero-sum. Cyber security problems are usually modeled as non zero sum
games because the attackers’ and defenders’ objectives are not exactly the oppo-
site of each other (see Sect. 3). For this reason, first we will briefly review the
literature on zero-sum dynamic games and then we will provide a more detailed
discussion of the literature on non zero-sum games.

The works in [3,10,16,17,32] consider dynamic zero-sum games with asym-
metric information. The authors of [3,32] study two-player games with Marko-
vian dynamics and lack of information on one side (that is, one player/agent who
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has perfect knowledge of the game that is being played and one player who has
partial/incomplete knowledge of the game that is being played). The authors of
[10,16] study two-player zero-sum games with Markovian dynamics and lack of
information on both sides (that is, both players possess only partial/incomplete
knowledge of the game that is being played). We would like to point out that
the authors of [3,10,16,32] consider models with specific Markovian dynamics
where each agent observes perfectly a local state that evolves independently of
all other local states conditioned on the agents’ observable actions. Thus, even
if one attempted to formulate cyber security games as dynamic zero-sum games
with asymmetric information, the results of the above mentioned papers could
not provide any answers or insights because in cyber security games the agents’
actions are not, in general, observable, agents have imperfect (noisy) observations
of the system’s/network’s security status, and the game’s information structure
(who knows what and when) is considerably more complex than that of the above
mentioned references. One instance of zero-sum stochastic dynamic games where
the agents’ actions are not observable is analyzed in [26]. The authors of [26]
consider zero-sum games with asymmetric information where the agents, in addi-
tion to having private information, share, at each time instant, some common
information, and they play pure strategies. They prove that if the set of saddle
point equilibria of the above games is non-empty, then the (minmax) value of
these games is the same as the value of the (symmetric) games where the agents’
only information is their common information. They provide an algorithm for
determining the value of the symmetric information games.

The literature on stochastic dynamic non zero-sum games with asymmetric
information, where the underlying system is dynamic, addresses mostly situa-
tions where, in addition to their private information, all agents have some com-
mon information (see [5,12,15,27,30,31,33,35–37,39,40]). References [5,15,35],
consider infinite horizon discounted games where the underlying system is a con-
trolled Markov chain. The approach taken in [5,15,35] is based on the philoso-
phy and ideas used to analyze infinitely repeated games. In the work reported
in [15] the system’s state is perfectly observed by all agents at all times, and
each agent’s actions are his private information (hidden actions); attention is
restricted to Perfect Pubic Equilibria (PPE), that is, equilibria that result in
when agents play only common information-based strategies. The authors of [15]
characterize, under certain assumptions that appear in [15], the set of the agents’
payoffs that correspond to all PPE when all agents are sufficiently patient, that
is, the discount factor δ approaches 1. The authors of [5] consider games where
at each time all agents observe perfectly each others’ actions but each agent has
imperfect private information about the system’s state. They consider PBE as a
solution/equilibrium concept, and characterize, under certain assumptions that
are explicitly stated in [5], the set of the agents’ payoffs corresponding to all
PBE of the game when all agents are sufficiently patient. Sugaya [35] analyzes
instances of games where each agent has imperfect private information about the
system’s state and private monitoring of the other agents’ actions; furthermore,
he assumes that agents communicate with one another via perfect and public



Game Theoretic Approaches to Cyber Security 49

cheap talk. He adopts PBE as the equilibrium/solution concept and character-
izes, under certain assumptions that are explicitly stated in [35], the agents’
payoffs that correspond to all PBEs of the game when the agents are sufficiently
patient. References [12,27,30,31,33,36,37,39,40] analyze finite and/or infinite
horizon discounted dynamic games. In all of these references, the agents’ common
information is used as an instrument for coordination of the agents’ strategies. In
[12,27,30,31,33,37,40], the Common Information Based (CIB) belief (the belief
on the dynamic state state at time t, and all the agents’ private information at t,
based on the agents’ common information at t, t = 1, 2, . . . , T ) is an information
state/sufficient statistic for decision making for each agent at t. In [36,38,39]
the SIB belief Πt, t = 1, 2, . . . , T , defined in Sect. 5.2, is an information state for
decision making for each agent at time t. In the game instances investigated in
[12,27] the CIB belief is independent of the agents’ strategies; in such a situation,
assessments (defined in Sect. 5.4) can be described simply by the agents’ strat-
egy prediction (defined in Sect. 5.4), and an appropriate equilibrium concept is
Common Information Based Markov Perfect Equilibrium that was introduced in
[27]. In the game instances investigated in [30,31,33,40], the CIB beliefs depend
on the agents’ strategies, the agents’ actions are always perfectly observable, and
the agents’ (private) beliefs (defined in Sect. 5.4) are common knowledge [1,41]
among all agents. An appropriate equilibrium concept for these instances of
games is Common Information Based-Perfect Bayesian Equilibrium (CIB-PBE)
that was introduced in [30,31]. In the game instances investigated in [36,37,39]
the agents’ SIB beliefs depend on their strategies, the agents’ actions are not
observable, and the agents’ (private) beliefs are their own private information.
An appropriate solution concept for these game instances is SIB-PBE that was
introduced in [36,39] and presented in Sect. 5.3. Since cyber security games have
asymmetric information, unobservable actions, and the domain of the agents’
strategies’ grows with time, the work of [35] along with the methodology and
results reported in [36,39] and informally presented in Sect. 5 is the literature
that is the most relevant to these games.

Infinitely repeated games have been extensively studied, primarily by
economists. There is a rich literature available on these games; the book by
Mailath and Samuelson, [19], presents the main results on this topic until its
publication date. In this chapter we briefly discuss this literature, because some
of the ideas and philosophy behind the development of key results for this class
of games played a significant role in the development of key results for dynamic
games with asymmetric information where the underlying system is dynamic
[5,15,35]. Infinitely repeated games can be divided into two categories, zero-sum
and non-zero sum.

Infinitely repeated zero-sum games with asymmetric (incomplete) informa-
tion were initially studied by Aumann et al. [2]; an excellent survey and discus-
sion of results on this class of games can be found in [44].

Infinitely repeated non-zero sum games with asymmetric information can
be classified into three categories: games with perfect public monitoring, in
which the agents observe perfectly each others’ actions, and Nash equilibrium or
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perfect equilibrium as a solution concept (see [19,20] and references therein);
games with imperfect public monitoring, in which the agents can observe pub-
lic noisy signals about the action profile and focus on perfect equilibria where
each agent’s continuation strategy depends only on past public signals (see [8,19]
and references therein); and games with imperfect private monitoring, in which
players observe private noisy signals about other players’ actions, and sequen-
tial equilibrium as a solution concept (see [22] for two-player games and [34] for
many-player games, and references therein). In all of the above categories the
authors consider infinitely repeated discounted games and characterize the set
of equilibrium payoffs corresponding to all equilibria in the limit as the discount
factor approaches one.

7 Conclusion

We have argued that cyber security problems are stochastic dynamic games
with asymmetric information where the underlying system is stochastic and
dynamic. We presented current approaches to analyzing dynamic games with
asymmetric information along with the currently available literature and the
challenges/difficulties associated with these approaches. As we pointed out in
Sect. 4, two major difficulties are the interdependence over time between strat-
egy prediction and beliefs, and the increasing domain of the agents’ strategies.
We presented a “sufficient information approach” (Sect. 5) which breaks the
interdependence over time between strategy prediction and beliefs, leads to a
sequential decomposition of the dynamic game and specifies an algorithm for
determining the SIB-PBE of the game; we also identified instances of games
where the sufficient information approach results in a time-invariant domain of
the agents’ strategies. The results of the sufficient information approach were
developed under a key assumption, stated in Sect. 5.4, which in essence says
that any deviation by one agent is either not detected or it is detected simulta-
neously by all other agents and the detection is based on the agents’ common
information.

In cyber security problems the domain of the agents’ strategies increases, in
general, with time. Furthermore, a deviation from one agent may not be detected
at all, or it may be detected at different times by different agents. These two
features of cyber security games cannot be captured by the approach presented in
Sect. 5. In the rest of this section we present some ideas on how to address them,
and we identify open problems in dynamic games with asymmetric information
that are tightly connected to cyber security games.

First, consider the situation where the agents’ sufficient private information
increases with time. In this case assume that each agent has finite memory which
he updates at each time instant; specifically, assume that at any time t part of
each agent’s memory is used to store his private information and another part is
used to store his SIB belief about the system state and all the agents’ (including
himself) private information. At time t + 1, each agent’s private information
is determined by an update rule which combines his private information at t
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and the new information he receives at t + 1; similarly, the SIB belief at time
t+1 is formed by an update rule which combines the SIB belief at t and the new
common information received at t+1. Under these constraints, the objective is to
determine decision strategies (that are based on the agents’ private information
and the SIB belief), private information update rules, and common information
update rules that are in equilibrium.

Next, consider the situation where the key assumption of Sect. 5.4 is relaxed.
In this case the challenge is to create public monitoring structures/mechanisms
that allow each agent to detect deviations from other agents. Within the context
of infinite horizon discounted games (with discount factors close to 1) such moni-
toring structures are presented (i) in [35] for games where the underlying system
is dynamic and is described by a controlled Markov chain, the agents’ actions
are hidden (unobservable) and the agents’ private state observations are imper-
fect (noisy), and (ii) in [34] for repeated games with an information structure
similar to that of [35]. These monitoring mechanisms are described by “review
phases” the duration of which is chosen appropriately so that at the end of each
phase the law of large numbers should hold with high probability, therefore,
allowing agents to detect each others’ deviations (see [34]). Such ingenious mon-
itoring structures work well for infinite horizon games but can not be used in
finite horizon games. The discovery of monitoring structures that allow agents to
detect each others’ deviations in finite horizon games where the key assumption
of Sect. 5.4 is relaxed and the information structure is similar to that of [35] is
a challenging and important open problem that is closely connected to cyber
security games.

To alleviate the difficulties arising when the key assumption of Sect. 5.4 is
relaxed and public monitoring mechanisms are not in place we can focus on
belief-free equilibria. An equilibrium is belief-free if, after each history profile,
each agent’s continuation strategy is optimal independently of his beliefs’ of
the other agents’ history profiles. Game theorists have analyzed and solved
repeated infinite horizon discounted games with private imperfect state infor-
mation, observable actions, and belief-free equilibrium as the solution concept
(see [4,13,14,43] and references therein). The analysis and solution of games
where the underlying system is dynamic, the agents’ private state observations
are imperfect (noisy), actions are hidden, and the solution concept is belief-free
equilibrium, is an important class of open problems. Such problems are tightly
connected to cyber security as they capture several important key features of
cyber security games.
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Abstract. In this chapter, we leverage reinforcement learning as a uni-
fied framework to design effective adaptive cyber defenses against zero-
day attacks. Reinforcement learning is an integration of control the-
ory and machine learning. A salient feature of reinforcement learning
is that it does not require the defender to know critical information
of zero-day attacks (e.g., their attack targets, and the locations of the
vulnerabilities). This information is difficult, if not impossible, for the
defender to gather in advance. The reinforcement learning based schemes
are applied to defeat three classes of attacks: strategic attacks where
the interactions between an attacker and a defender are modeled as a
non-cooperative game; non-strategic random attacks where the attacker
chooses its actions by following a predetermined probability distribu-
tion; and attacks depicted by Bayesian attack graphs where the attacker
exploits combinations of multiple known or zero-day vulnerabilities to
compromise machines in a network.

1 Emerging Adaptive Cyber Defense

A vulnerability is a flaw or weakness that could be exploited to violate system
security policies [1]. Based on vulnerability window [2], vulnerabilities can be
classified as normal vulnerabilities and zero-day vulnerabilities. Normal vulner-
abilities are disclosed to the public and the security patches are published by
the software vendor before any attacker could craft workable exploits. Zero-day
vulnerabilities can be actively exploited before software engineers develop any
patch to fix the vulnerabilities. As a result, zero-day vulnerabilities are particu-
larly dangerous for information and communications technology (ICT) systems
and might cause serious and lasting damage. According to [3], 24–55% of HTTPS
servers in the Alexa Top 1 Million were initially vulnerable to Heartbleed [4],
including GitHub, Stack Overflow, Imgur and 3% of HTTPS sites in the Alexa
Top 1 Million remained vulnerable almost two months after the disclosure of
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Heartbleed. In addition, the number of zero-day vulnerabilities is trending up.
According to the 2016 Internet security threat report [5], 24 new zero-day vul-
nerabilities were found in 2014, while the number increased to 54 in 2015.

Traditional defenses are effective against normal attacks but powerless for
zero-day attacks. In fact, traditional defenses against zero-day attacks are mainly
governed by slow and deliberative processes such as testing and patching. The
threat report [6] pointed out that it took on average 59 days to release available
patches for the top five zero-day vulnerabilities in 2014. The vacancy of effective
defenses and the attackers’ asymmetric time advantage versus the defenders’
time to detect and respond motivate the recent study of moving target defense
(MTD) [7]. MTD techniques dynamically and proactively reconfigure deployed
defenses so as to increase uncertainty and complexity for attackers during vul-
nerability windows. Existing MTD techniques mainly utilize the following two
proactive defense ideas: (1) leveraging software and platform diversity [8–12]
to make zero-day vulnerabilities less exploitable; and (2) dynamically changing
defense postures [13–17] to make defenses less predictable. For example, papers
[8,10,11] randomize the implementations of programs to introduce uncertainty in
the target. The randomization forces attackers to probe each system individually
and substantially raises the bar on exploitation.

Existing MTD techniques require manual efforts to determine which system
configurations should be deployed based on engineering experience. As a result,
they suffer from two main limitations. First, manual selection could be very
time-consuming. For example, the defense technique in [17] requires experienced
security analysts to find out the security-sensitive data structures among all the
data structures before data structure randomization. To achieve it, the analysts
need to carefully go through all the authentication information and function
pointers for a specific program. Secondly, manually selected configurations might
not be able to achieve optimal cost-effectiveness. Also in [17], the authors admit
that it is difficult to balance between security and efficiency. Their technique
cannot guarantee that the randomized data structures are the attacker’s real
targets and the system could suffer as high as 28.8% runtime overhead even only
when 20% of data structures are selected to be randomized.

To address the limitations of MTD, a new concept, adaptive cyber defense
(ACD) [18], has been introduced. ACD integrates MTD with rigorous methodolo-
gies (e.g., game theory, machine learning and control theory) to answer the cru-
cial question: how to optimally deploy available MTD techniques? However, the
question is very challenging to answer especially when facing zero-day attacks.
As discussed, the defender cannot access critical information of zero-day attacks
(e.g., their attack targets, and the locations of the vulnerabilities). The limited
information prevents the defender from choosing optimal defense actions. As a
result, the defender might waste lots of resources on reconfiguring the irrele-
vant parts of the ICT systems and still leave the ICT systems vulnerable. In this
chapter, we will leverage reinforcement learning [19,20] as a unified framework to
address the challenges caused by limited prior information on zero-day attacks.
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2 Reinforcement Learning for Adaptive Cyber Defense

Reinforcement learning is a systematic methodology to tackle scenarios where a
decision-maker interacts with unknown environments. The idea behind reinforce-
ment learning is that the decision-maker learns through continuously interacting
with the environment and receiving feedbacks for chosen actions. The idea is
inspired by human’s nature. Consider a new born baby who sees a fireplace in
the room. The baby approaches the fireplace, and he/she gets warmer. He/she
receives a positive feedback of the action of approaching the fireplace. When
the baby touches the fire, he/she gets hurt, receiving a negative feedback of the
action of touching the fireplace. More generally, the decision-maker starts from
an initial state in the environment (e.g., the initial location of the baby in the
room), and takes an action (e.g., approach, stay still or depart). The decision-
maker transitions to a new state, and receives some feedbacks (e.g., warm, cold
or hurt at current time) from the environment. Reinforcement learning outputs
a loop of state, action and feedbacks so that the decision-maker can achieve
maximum cumulative feedback (e.g., total time that the baby feels warm).

In reinforcement learning, the decision-maker on one hand selects actions
on basis of its past experience (exploitation), and on the other hand tries new
choices (exploration). Essentially, reinforcement learning is trial-and-error learn-
ing. The decision-maker receives feedbacks, which evaluate deployed actions,
and seeks to learn how to select the best action to accomplish a given mis-
sion. The decision-maker only needs to access induced feedbacks but is not
required to know all thefactors which determine feedbacks. So reinforcement
learning is particularly well suited to problems where the decision-maker inter-
acts with a partially unknown environment but can evaluate its actions via
repeated interactions. This intriguing feature well matches the needs of ACD
because observable feedbacks can be generated by the ICT systems due to some
preliminary and universal defenses deployed in the systems. For example, when
defending Heartbleed attacks, the defender cannot predict which part of the
memory is going to be over-read by the attacker. However, when attack requests
read beyond buffer boundaries and touch guard pages [21], segmentation faults
are triggered [22]. Segmentation faults can be observed by the defender and
used to evaluate the cost-effectiveness of previously deployed defenses. On the
other hand, reinforcement learning requires continuous interactions to provide
adequate learning experience. When applied to ACD, reinforcement learning is
limited to scenarios where the attacker probes victim systems for a large number
of times during a relatively long period. Heartbleed attack and data structure
manipulation attack (DSMA) [17] are two examples of continuous attacks. In
particular, Heartbleed attack typically requires hundreds of thousands of prob-
ing (buffer over-read) requests and lasts hours to steal sensitive information like
secret keys. And DSMA typically requires millions of attempts and lasts hours
or even days to execute desired functions.

With the above insights, this chapter aims to design, analyze and evalu-
ate effective ACD schemes by integrating reinforcement learning with MTD
techniques. Figure 1 shows the generic architecture of reinforcement learning
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based ACD. The remaining of the chapter is organized as follows. Section 3 intro-
duces an reinforcement learning algorithm against zero-day strategic attacks.
The introduced algorithm allows the players to identify Nash equilibrium where
each player only uses its own deployed actions and its received utility values in
recent history. Section 4 introduces an adaptive defense against zero-day non-
strategic random attacks. The introduced algorithm can guarantee that the
regret is upper bounded by a logarithmic function of the number of defense
cycles no matter what probability distribution the attacker follows. Section 5
introduces reinforcement learning algorithms on Bayesian attack graphs. The
simulation results confirm that our algorithms enable the defender to identify
effective defense policies when utility functions are unknown.

Fig. 1. Reinforcement learning based ACD.

3 Game Theoretic Reinforcement Learning Against
Strategic Attacks

(Non-cooperative) game theory provides a mathematically rigorous framework
for multiple players to reason about each other and make choices out of their
own interest, without considering the overall outcomes of the game (e.g., rock-
paper-scissor). The notion of Nash equilibrium [23] is a widely-used solution
concept and describes the stable outcome where none can benefit from uni-
lateral deviations. The interactions between an attacker and a defender can be
naturally modeled as a non-cooperative game [24–26] in which the defender aims
to minimize security risk while the attacker aims to maximize damage. And the
solution concept Nash equilibrium provides important guidance of how to deploy
defenses. For examples, [27] proposed a stochastic routing framework to make
packets take random paths from a source to a destination and increase the com-
plexity of connection eavesdropping attacks. [28] developed a deceptive routing
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game which is used to design fake routes in wireless communication networks and
prevent attackers from jamming the legitimate routes. [29] proposed a framework
to design optimal policy of randomizing the IP address space in order to avoid
detection of the real nodes.

Numerical algorithms are synthesized for the players to identify Nash equilib-
ria via repeated interactions. Multi-player games can be categorized into discrete
games and continuous games. In a discrete (resp. continuous) game, each player
has a finite (resp. an infinite) number of action candidates. As for discrete games,
learning algorithms include best-response dynamics, better-response dynamics,
factitious play, regret matching, logit-based dynamics and replicator dynamics.
Please refer to [30–33] for detailed discussion. As an important class of con-
tinuous games, generalized Nash games were first formulated in [34], and see
survey paper [35] for a comprehensive exposition. A number of algorithms have
been proposed to compute generalized Nash equilibria, including, to name a few,
ODE-based methods [36], nonlinear Gauss-Seidel-type approaches [37], iterative
primal-dual Tikhonov schemes [38], and best-response dynamics [39].

However, the calculation of Nash equilibrium in existing work is mainly offline
and requires each player to know its utility function, its opponents’ action space.
In cyber security, this information is hard for the defender to gather when facing
zero-day attacks. For example, the defender may not be aware of the actions the
attacker’s because the attack targets of zero-day vulnerabilities are not available.
Additionally, the defender usually cannot know the structure of its own or the
attacker’s utility function because the impacts of zero-day vulnerabilities are not
available. In this section, we generalize the two-player security game to a multi-
player game where each player aims to maximize its own utility function. And
then we design a reinforcement learning algorithm which allows the players to
compute Nash equilibrium with the limited information. In particular, at each
iteration, each player, on one hand, exploits successful actions in recent history
via comparing received utility values, and on the other hand, randomly explores
any feasible action with a certain exploration rate.

3.1 Game Theoretic Model and Problem Formulation

As mentioned, the interactions between a strategic attacker and a defender can
be modeled as a non-cooperative game where two players seek for conflicting
objectives. To be more generic, we present the following model that characterizes
the interactions of N players in a non-cooperative game. When the player number
is 2, it will reduce to the non-cooperative game between the attacker and the
defender. The model is demonstrated in Fig. 2 and each component in the figure
will be discussed in the following paragraphs.

Players. We consider N players V � {1, · · · , N} and each player has a finite set
of actions. Let Ai denote the action set of player i and ai ∈ Ai denote an action
of player i. Denote S � A1 × · · · × AN as the Cartesian product of the action
sets, where s � (a1, · · · , aN ) ∈ S is denoted as an action profile of the players.
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Fig. 2. Game model

Utility. Under the influence of an action profile, the system generates a utility
value for each player. The utility function for player i ∈ V is defined as ui : S →
R. At the end of iteration t, the utility value ui(t) = ui(s(t)) is measured and
sent to player i.

Informational Constraint. Each player does not know the other players’
action sets or their deployed actions. Besides, each player is unaware of the
structure of its own or the others’ utility functions. At iteration t, each player
only knows its deployed actions and its received utility values in the past; i.e.,
ai(0), · · · , ai(t − 1), ui(0), · · · , ui(t − 1).

Problem Statement. As mentioned, Nash equilibrium describes the stable
outcome of the game and provides important guidance of how to deploy defenses.
However, the calculation of Nash equilibrium usually requires the defender to
know the deployed actions of the attacker and its own utility function. This
information is hard for the defender to gather when facing zero-day attacks. We
aim to synthesize a learning algorithm under which the action profiles of the two
players converge to Nash equilibria. We also quantify the convergence rate of the
proposed algorithm in contrast to asymptotic convergence in existing work.

3.2 Learning Algorithm: The RL Algorithm

We propose a learning algorithm called the RL algorithm under the above infor-
mational constraint, where each player updates its actions only based on its
previous actions and its received utility values. On the one hand, each player
chooses the most successful action in recent history. It represents the exploita-
tion phase. However, the exploitation is not sufficient to guarantee that the
player can choose the best action given others’. So on the other hand, the player
uniformly chooses one action from its action set. It represents the exploration
phase. At iterations t = 0 and t = 1, each player uniformly chooses one action
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from its action set as initialization (Line 3). Starting from iteration t = 2, with
probability 1 − ε̃i(t), player i chooses the action which generates a higher utility
value in last two iterations as current action (Line 8–13). This represents the
exploitation where player i reinforces its previous successful actions. With prob-
ability ε̃i(t), player i uniformly selects an action from its action set Ai (Line
14). This represents the exploration and makes sure that each action profile is
selected infinitely often. Note that sample(Ai) in Line 14 represents uniformly
choosing one element from set Ai.

Algorithm 1. Reinforcement learning (RL) algorithm
1: while 0 ≤ t ≤ 1 do
2: for i ∈ V do
3: ai(t) ← sample(Ai);
4: end for
5: end while
6: while t ≥ 2 do
7: for i ∈ V do
8: With prob. (1 − ε̃i(t)),
9: if ui(t − 1) ≥ ui(t − 2) then

10: ai(t) = ai(t − 1);
11: else
12: ai(t) = ai(t − 2);
13: end if
14: With prob. ε̃i(t), ai(t) ← sample(Ai);
15: end for
16: end while

3.3 Convergence Analysis

We will present the analytical results of the RL algorithm. In particular, we
prove the convergence of the RL algorithm to the set of pure Nash equilib-
ria when the interactions of the players consist of a weakly acyclic game. And
we quantify the convergence rate of the proposed algorithm. But first let us
introduce the notations and assumptions used throughout the section. Denote
by |V| the cardinality of player set, |Ai| the cardinality of action set of player
i and |A|∞ � max

i∈V
|Ai| the maximum cardinality among all action sets. The

exploration rate for player i at iteration t is decomposed into two parts; i.e.,
ε̃i(t) � εi(t) + ei(t) ∈ (0, 1], where εi(t) = γiε

c(t), γi > 0, εc(t) is common
for all the players and ei(t) represents the exploration deviation. Define e(t) �
(e1(t), · · · , eN (t))T , ε̃(t) � (ε̃1(t), · · · , ε̃N (t))T and ε(t) � (ε1(t), · · · , εN (t))T .

And we define er(t) � ||e(t)||N∞/
N∏

i=1

ε̃i(t). Here we denote by || · ||∞ the infinity

norm of a vector. In addition, we also use || · || to represent the L1-norm of a
vector, and ||P || to represent the 1-norm of a matrix.
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Assumption M-1. (1). For each i ∈ V, εi(t) ∈ (0, 1] is non-negative, strictly

decreasing, and lim
t→∞

εi(t) = 0. (2). The sequences {
N∏

i=1

εi(t)} and {
N∏

i=1

ε̃i(t)} are

not summable. (3). lim
t→∞

er(t) = 0.
Assumption 3-1 indicates that the players can choose heterogeneous explo-

ration rates. The exploration rates diminish slowly enough and their deviations
decrease in faster rates than the common part. In the paper [40], it is assumed
that exploration rates εi(t) are identical for all i, diminishing and not summable.
Assumption 3-1 allows for heterogeneous exploration rates and includes homo-
geneous exploration rates in the paper [40] as a special case. Actually, papers
[41,42] adopt heterogenous step-sizes for distributed optimization and game the-
ory. They impose similar assumptions on the step-sizes.

Markov Chain Induced by the RL Algorithm. Denote by Z � S × S the
state space, where each state z(t) � (s(t), s(t+1)) consists of the action profiles
at iteration t and the next iteration. And denote by diag(S ×S) � {(s, s)|s ∈ S}
the diagonal space of Z. By the definition of z(t), the sequence {z(t)}t≥0 forms
a time-inhomogeneous Markov chain, denoted by M. We define P ε̃(t) as the
transition matrix of Markov chain M at iteration t, where each entry P ε̃(t)(z′, z)
represents the transition probability from state z′ to z. Besides, denote by π(t)
the distribution on Z at iteration t.

Now we consider the interactions of the players consist of a weakly acyclic
game. A game is called to be weakly acyclic if from every action profile, there
exists a finite best-response improvement path leading from the action profile to
a pure Nash equilibrium.

Definition 1. An action profile s∗ � (a1
∗, · · · , ai

∗, · · · , aN
∗ ) is a pure Nash equi-

librium if ∀i ∈ V,∀ai ∈ Ai, ui(s∗) ≥ ui(ai, a−i
∗ ).

We will show the convergence of the RL algorithm to the set of pure Nash
equilibria when the game is weakly acyclic. But let us continue introducing the
notations for analysis.

z-tree of Time-Homogenous Markov Chain Mε̃. Given any two distinct
states z′ and z of Markov chain Mε̃, consider all paths starting from z′ and end-
ing at z. Denote by pz′z the largest probability among all possible paths from
z′ to z. A path might contain intermediate states z1, · · · , zk (k = 0 means
there is no intermediate state) between z′ and z. So pz′z is the product of
P ε̃(z′, z1), P ε̃(z1, z2), · · · , P ε̃(zk, z). We define graph G(ε̃) where each vertex of
G(ε̃) is a state z of Markov chain Mε̃ and the probability on edge (z′, z) is pz′z.
A z-tree on G(ε̃) is a spanning tree rooted at z such that from every vertex
z′ �= z, there is a unique path from z′ to z. Denote by Gε̃(z) the set of all z-trees
on G(ε̃). The total probability of a z-tree is the product of the probabilities of
its edges. The stochastic potential of the state z is the largest total probability
among all z-trees in Gε̃(z). Let Λ(ε̃) be the states which have maximum stochas-
tic potential for a particular ε̃ ∈ (0, 1]N . Denote the limit set Λ∗ � lim

ε̃→0
Λ(ε̃).

And the elements in Λ∗ are referred to as stochastically stable states.
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Remark 1. The above notions are inspired by the resistance trees theory [43].
However, the above notions are defined for any ε̃ ∈ (0, 1] instead of ε̃ → 0 in the
resistance trees theory. This allows us to characterize the transient performance
of the RL algorithm. ��

Denote the set of pure Nash equilibria of the game Γ as N (Γ ) and
diag(N (Γ ) × N (Γ )) � {(s, s)|s ∈ N (Γ )}. The following corollary implies that
the action profiles converge to N (Γ ) with probability one.

The following theorem is the main analytical result of this section. It shows
that the state z(t) converges to the set of stochastically stable state with prob-
ability one. Moreover, the convergence rate is quantified using the distance
between π(t) and the limiting distribution π∗; i.e., D(t) � ||π(t) − π∗||. The
formal proof of Theorem1 can be found in [44].

Theorem 1. Let Assumption 3-1 hold and the N -player game Γ be a weakly
acyclic game, the following properties hold for the RL algorithm:

(P1) lim
t→∞

Pr{z(t) ∈ Λ∗} = 1 and Λ∗ ⊆ diag(N (Γ ) × N (Γ ));

(P2) there exist positive integer tmin and positive constant C such that for
any t∗ > tmin and t ≥ t∗ + 1, the following is true:

D(t) ≤ C(||ε(t∗)||∞ + ||ε(t)||∞ + er(t∗)

+ exp(−
t−1∑∑∑

τ=t∗

N∏

i=1

εi(τ)|Ai|) + exp(−
t−1∑∑∑

τ=t∗

N∏

i=1

ε̃i(τ)|Ai|)). (1)

3.4 Evaluation

We evaluate the RL algorithm on a real-world cyber security scenario. The server
containing several zero-day security vulnerabilities. A zero-day attack happens
once that a software/hardware vulnerability is exploited by the attacker before
software the engineers develop any patch to fix the vulnerability. Here the num-
ber of players is 2 and the attacker is equipped with a set of zero-day attack
scripts denoted as A while the defender is equipped with a set of platforms
denoted as D. The defender uses a defensive technique called dynamic plat-
forms [12], which changes the properties of the server such that it is harder
for the attacker to succeed. In particular, the defender periodically restarts the
server, chooses one platform from D and deploys it on the server each time
it restarts the server. The action d(t) is the platform deployed at iteration t.
The attacker periodically chooses one of the attack scripts to attack the server.
Notice that the attack period is often smaller than the defense period because
the defender cannot restart the server too frequently due to the resource con-
sumption of restarting the server. In fact, the defense period is usually a multiple
of the attack period. The attack action at iteration t, denoted as a(t), is a subset
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of the attack scripts and the attack action set A includes all possible subsets.
The order of choosing the attack scripts in one iteration does not matter.

Once an attack action succeeds, the attacker can control the server for a
certain amount of time. And every time the server restarts, the defender takes
over the control of the server. And here we assume the time consumed by the
attack scripts to succeed and the time consumed by restarting the server are
negligible compared with the length of an iteration. The goal of both the attacker
and defender is to gain longer control time of the server. The utility of the
defender ud(d(t), a(t)) is the fraction of the time controlled by the defender
during iteration t and the utility of the attacker ua(d(t), a(t)) is the fraction of
the time controlled by the attacker. Notice that ud(d(t), a(t))+ua(d(t), a(t)) = 1.

Evaluation Setup. In this section, we use Matlab simulations to evaluate
the performance of our algorithm based on real-world platform settings, attack
scripts and server control data [12,45]. The total number of defense actions is 5;
i.e., the defender has five different platforms: Fedora 11 on x86, Gentoo 9 on x86,
Debian 6 on x86, FreeBSD 9 on x86, and CentOS 6.3 on x86. The attacker has
two zero-day attack scripts: TCP MAXSEG exploit, and Socket Pairs exploit.
The defense period is set to be ten times as large as the attack period; i.e., during
one iteration, the attacker launches 10 attack scripts. Since the time consumed by
the attack scripts to succeed is negligible, one attack script enables the attacker
control 1

10 of the iteration if it succeeds. The total number of attack actions is
11; i.e., a1 = (0, 10), a2 = (1, 9), · · · , a11 = (10, 0), where a(t) = (0, 10) means
the attacker launches 0 TCP MAXSEG exploit and 10 Socket Pairs exploits at
iteration t.

Real-World Utility Values. Based on the evaluation setup and the real-world
attack scripts, we first replay different attack actions on different platforms to
get the utility table for the defender and the attacker. The results are shown
in Table 1, where the defender is the row player and the attacker is the column
player. In each cell, the first number represents the utility value to the defender,
and the second number represents the utility value to the attacker.

Nash Equilibrium. By Proposition 1 in [46], we know any 2-player finite game
and its any sub-game (any game constructed by restricting the set of actions to
a subset of the set of actions in the original game) has at least one pure Nash
equilibrium is a weakly acyclic game. From Table 1, we can see any sub-game
has at least one pure Nash equilibrium. Now we want to calculate the pure
Nash equilibrium (equilibria). From Table 1, we can see if the defense strategy
is d4 (deploying Debian 6) or d5 (deploying FreeBSD 9), then the utility of the
defender is 1 (the utility of the attacker is 0) not matter what action the attacker
uses. From Definition 1, we know the combinations of any attacker action and
defense action d4 or d5 are pure Nash equilibria.

Simulation Results. Based on Table 1, we simulate the interactions of the
defender and attacker in Matlab. We choose the exploration rates εd(t) = εa(t) =

1
11t1/2

. The exploration deviations are chosen as ed(t) = 1
110t2 and ea(t) = 1

110t2 .
The duration of each simulation (from the attack begins till the attack ends)
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Table 1. Utility table

Defense actions Attack actions

(0,10) (1,9) (2,8) (3,7) (4,6) (5,5)

d1(Fedora 11) 0,1.0 0.1,0.9 0.2,0.8 0.3,0.7 0.4,0.6 0.5,0.5

d2(Gentoo 9) 1.0,0 0.9,0.1 0.8,0.2 0.7,0.3 0.6,0.4 0.5,0.5

d3(CentOS 6.3) 0,1.0 0.1,0.9 0.2,0.8 0.3,0.7 0.4,0.6 0.5,0.5

d4(Debian 6) 1.0,0 1.0,0 1.0,0 1.0,0 1.0,0 1.0,0

d5(FreeBSD 9) 1.0,0 1.0,0 1.0,0 1.0,0 1.0,0 1.0,0

Defense actions Attack actions

(6,4) (7,3) (8,2) (9,1) (10,0)

d1(Fedora 11) 0.6,0.4 0.7,0.3 0.8,0.2 0.9,0.1 1.0,0

d2(Gentoo 9) 0.4,0.6 0.3,0.7 0.2,0.8 0.1,0.9 0,1.0

d3(CentOS 6.3) 0.6,0.4 0.7,0.3 0.8,0.2 0.9,0.1 1.0,0

d4(Debian 6) 1.0,0 1.0,0 1.0,0 1.0,0 1.0,0

d5(FreeBSD 9) 1.0,0 1.0,0 1.0,0 1.0,0 1.0,0

Fig. 3. Trajectories of attack a(t) and defense d(t) with diminishing exploration rate
εd(t) = εa(t) = 1

11t1/2
.

is 10,000 iterations and we repeat 100 identical simulations. Figure 3 shows the
trajectories of the defense and attack actions in one certain simulation. And
for each simulation, we record the defense action at each iteration. Then at
each iteration t, we have 100 chosen defense actions and we use the number of
each defense action over 100 as the probability of choosing such defense action
at t. The result in Fig. 3 suggests that the defense action converges to the set
{d4, d5}. Notice that the combinations of any attacker action and defense action
d4 or d5 are pure Nash equilibria. Then the simulation results confirm that the
convergence of the action profiles to the set of pure Nash equilibria.
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4 Multi-arm Bandit Against Non-strategic Random
Attacks

In Sect. 3, the attacker is assumed to be a rational decision-maker and willing to
play the game and employ the action at Nash equilibrium. However, Nash equi-
librium has several limitations in terms of practical implementations in security.
First, if the attacker does not want to employ the action at Nash equilibrium,
then the defender may be able to get a higher utility value by deviating from
its action at Nash equilibrium. Second, in the game, the attacker is restricted to
stationary actions. The assumption is easily violated if the attack is unwilling to
settle at any stationary action. Third, the game between the defender and the
attacker is a two-player finite matrix game. For this class of games, mixed Nash
equilibrium always exists but pure Nash equilibrium may not [23]. Notice that
mixed Nash equilibrium could be difficult to implement in practice. And based
on our observation, not all attackers are rational and willing to stick to Nash
equilibrium.

In this section, we investigate a complementary class of attacks which are not
strategic and instead follow predetermined but unknown probability distribu-
tions. Zero-day continuous buffer over-flow attacks, including over-read attacks
(e.g., Heartbleed attacks) and over-write attacks (e.g., non-control data attacks).
The attackers cannot easily get some useful feedback from the system. All they
can do is to keep over-reading/over-writing the memory until some desired infor-
mation is obtained/crafted. The attackers have no explicit utility maximizing
goal. This class of attacks is characterized by the salient feature that a short
period of time is insufficient for the attacker to achieve its goal, and it probes
victim systems for a large number of times during a relatively long period. For
example, DSMAs, one kind of data-oriented attacks that focus on data struc-
tures, typically require millions of attempts and last hours or even days. Another
observation is that the attack frequency is usually fixed for a specific attack
script.

We use multi-arm bandit [47] to model the interactions between the defender
and such attackers. Then an extension of the upper confidence bound (UCB)
algorithm [48] is proposed to practically defeat the attacks by considering utility
errors and delays. In our algorithm, the defender on one hand, exploits successful
actions in history based on their induced average utility values, and on the other
hand, explores the actions that are not chosen sufficiently often.

4.1 System Model and Problem Formulation

Multi-arm bandit provides a mathematically tractable model by extending the
observations of these two classes of attacks. The model involves a server system
and two decision-makers: a defender and an attacker. Each decision-maker has
a set of available actions. Their actions jointly influence the security state of
the server system. Given any pair of defense and attack actions, the server sys-
tem may return some feedbacks to the defender. The feedbacks are used by the
defender to evaluate the cost-effectiveness of previously deployed defense actions.
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This evaluation will guide the defender to deploy future defense actions. Notice
that the attacker is not necessarily aware of the feedbacks or unnecessarily
changes its actions based on the feedbacks

4.1.1 Defender
The defender has a set of defense actions D � {d1, · · · , dn}. The defender period-
ically adjusts defense actions on the basis of the feedbacks provided by the server.
The uniform time interval between two adjustments is denoted as a defense cycle.
In this chapter, we consider only one attacker with a sequence of attack requests
whose duration is denoted by a finite time horizon T and the time horizon T is
a multiple of defense cycles: T � {t1, · · · , tN}. Then for any defense cycle t ∈ T ,
we denote a(t) ∈ A as the attacker’s action.

4.1.2 Attacker
The attacker has a set of attack actions, A � {a1, · · · , am}, but does not neces-
sarily have a utility-maximizing goal. Instead, we extend the attacker’s behav-
ior based on observations of existing DMSA scripts. The attacker associates
each defense action d ∈ D with a predetermined probability distribution DAd,
observes the defender’s current action d(t), and then chooses its action a(t)
according to the probability distribution DAd(t).

4.1.3 Utility
Given a pair of defense and attack actions, the server system can generate some
observable feedbacks. Then we define the feedback as utility in the form of u =
Wrr − Wcc, where r : D × A → R (e.g., the number of failed attack tires), is the
effectiveness and c : D → R (e.g., the overhead induced by the defense action)
is the cost. And the constant weights Wr and Wc are chosen according to the
preference of the defender on security and efficiency. And for defense cycle t, we
denote u(t) = u(d(t), a(t)). The specific utility with respect to specific attacks
will be discussed later. The utility values in all defense cycles are bounded.
More formally, ∀t ∈ T , u(t) ∈ [u−, u+], where u− and u+ are the lower and
upper bounds. Additionally, the bounds are available to the defenders. The server
might not be able to generate the utility value at the end of each defense cycle
due to heavy server load. And the communication between the defender and
the server may suffer from transmission delays [49]. Therefore, at the end of
defense cycle t, the defender receives several utility values of previous defense
cycles; i.e., u(t) =

[
u(t − T1) u(t − T2) · · · u(t − Th(t))

]T , where T1, · · · , Th(t) are
the nonnegative delays, and h(t) is the number of the utility values received
by the defender at t. The utility value of each defense cycle once is received
once. The utility delays are uniformly upper bounded by T ; i.e., ∀t ∈ T,∀i ∈
{1, · · · , h(t)}, Ti ≤ T . We also consider that the received utility values may
contain estimation or transmission errors. The utility error for each defense cycle
t is defined as ε(t). Then for any defense cycle t, the defender receives several
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utility values with errors u′(t) = u(t) +
[
ε(t − T1) · · · ε(t − Th(t))

]T . Similarly,
the utility errors are uniformly upper bounded by ε, i.e., ∀t ∈ T, |ε(t)| ≤ ε.

The extension of the attacker’s behavior and the effect of the utility are
formally described the following assumption.

Assumption 4-1. The utility value in defense cycle t, u(t), is also a random
variable conditional on d(t). That is, defense actions {d1, · · · , dn} can be charac-
terized by utility distributions {vd1 , · · · , vdn

} respectively. And {μd1 , · · · , μdn
}

are the associated expected utility values.

4.1.4 Regret
The regret of a defense algorithm ϕ is the distance between the aggregate utility
value the defender receives if the zero-day attack is known and the aggregate
utility value the defender receives if ϕ is used to defend against the same attack
with limited information. Define an optimal action: d∗ ∈ D with the highest
expected utility value i.e., d∗ � arg max

d∈D
μd. Then the regret is formally defined

as: Rϕ(N) =
N∑

t=1
EU(d∗, Ra(d∗),RSA(d∗))−

N∑

t=1
E1Tu′(t), where

N∑

t=1
E1Tu′(t) =

N∑

t=1

h(t)∑

j=1

E (u(t − Tj) + ε(t − Tj)), 1 = 1h(t) is an h(t) dimensional column vector,

u(t) is the error-free utility value. Then the defender aims to specify a strategy
ϕ to minimize the regret Rϕ(N) without knowing DAd.

4.2 Learning Algorithm: The UCB-Z Algorithm

We propose an adaptive defense algorithm, named the UCB-Z (UCB zero-day)
algorithm, to guide the defender how to periodically update its actions. An
attractive feature of the algorithm is that it only requires the previous defenses
and their induced utility values. Further, the cost-effectiveness of the algorithm
shows that it can provide worst-case cost-effectiveness guarantees among all
possible unknown attacks. The UCB-Z algorithm is an extension of the UCB
algorithm in Multi-armed Bandit problems [47,50]. For the ease of presentation,
T = {t1, · · · , tN} will be referred to as T = {1, · · · , N} in the rest of the section.
Before we introduce the steps of the algorithm, let us introduce a set of notations:

– 1{Π} is an indicator function: 1{Π} = 1 if Π is true and 1{Π} = 0 if Π is
false.

– Td(t) =
t−1∑

τ=1
1{d(τ)=d} is the number of times defense action d has been chosen

by the defense cycle t − 1.

– ∀d ∈ D, μ̄′
d(t) = 1

Td(t)

t−1∑

τ=1
(1Tu′(τ)1{d(τ)=d}) represents the empirical average

utility the defender actually receives by choosing defense action d by the end
of defense cycle t − 1.

– ∀d ∈ D, Id(t) =
(
μ̄′

d(t) + (u+ − u−)
√

2 ln(t)
Td(t)

)
represents the upper confidence

index of action d at the beginning of defense cycle t.
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Algorithm 2. The UCB-Z Algorithm
1: for d ∈ D do
2: Td(1) = 0;
3: μ̄′

d(1) = 0;
4: end for
5: for t = 1; t ≤ N ; t + + do
6: for d ∈ D do
7: if Td(t) == 0 then
8: Id(t) = +∞;
9: else

10: Id(t) = μ̄′
d(t) + (u+ − u−)

√
2 ln(t)
Td(t)

;

11: end if
12: end for
13: d(t) = arg max

d∈D
Id(t);

14: Td(t)(t + 1) = Td(t)(t) + 1;
15: for d ∈ D \ {d(t)} do
16: Td(t + 1) = Td(t)
17: end for
18: Defender receives u′(t);
19: for d ∈ D do

20: μ̄′
d(t + 1) = 1

Td(t+1)

t∑
τ=1

(1Tu′(τ)1{d(τ)=d});

21: end for
22: end for

The true cost-effectiveness of a defense action can be reflected by its expected
utility value. And by the law of large number, we know the expected utility value
is determined by the empirical average utility value if a defense action is chosen
enough times. The UCB-Z algorithm is using average utility value (the first term
of Id(t)) to evaluate how well a defense works. To ensure each defense action can
be chosen enough times, the algorithm adds a penalty term (the second term of
Id(t)). In particular, the penalty term for a particular defense action d explodes
if the action is not chosen sufficiently often. For this case, Id(t) becomes the
largest and action d is chosen again.

At the beginning of the defense cycle t, the index Id(t) of each defense action
(Line 6 to 12) is updated. Especially, for the actions that have never been chosen
before, their indices are set highest value so that they will be chosen with highest
priorities (Line 7 to 8). For the actions that have been chosen before, their indices
are updated on the basis of the empirical average utility values (Line 9 to 11).
Then the new action d(t) with the largest index (Line 13) is chosen the numbers
of times each defense action is updated (Lines 14 to 17). At the end of the defense
cycle t, the utility values u′(t) are received (Line 18) and then the empirical
average utility values of all defense actions are updated. (Line 19 to 21).
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4.3 Cost-Effectiveness Analysis

The common method to evaluate the defense ability is using test-beds and bench-
marks (e.g., SPEC 2006 [51], metasploit [52]). However, test-beds and bench-
marks typically can only explore some of the possible (attack, workload, defense)
scenarios, and the cost-effectiveness could vary a lot under different testing set-
tings. In addition, it may take a long time (e.g., hours) for the evaluation of a
single scenario. This is not acceptable for time-critical missions. To overcome the
shortcomings, we derive an upper bound on the worst-case regret of the UCB-
Z algorithm against all possible attack distributions. More specifically, if the
defender chooses defense actions by following the UCB-Z algorithm, the regret
cannot be larger than the derived upper bound no matter what (unknown) dis-
tribution the attacker follows. This is formalized in Theorem2.

Theorem 2. Under the Assumption 4-1 in Sect. 4.1.3, for any set of util-
ity distributions {vd1 , · · · , vdn

}, the regret of the UCB-Z algorithm after
N defense cycles is upper bounded in the following way:

RUCB−Z ≤ T μd∗ +
∑

d:0<Δd≤2ε

3ε(N − T )

+ 8(u+ − u−)2
∑

d:Δd>2ε

(Δd + ε) ln(N − T + 1)
(Δd − 2ε)2

+

⎛

⎝1 +
2

(u+ − u−)2 8 ln(N−T +1)
(Δd−2ε)2 − 1

⎞

⎠
∑

d:Δd>2ε

(Δd + ε),

where Δd � μd∗ − μd ≥ 0 is the suboptimal parameter of defense action
d ∈ D.

In [47], Lai and Robbins proved that when the utility distributions are
Bernoulli, for any strategy ϕ, the Regret is a lower bounded asymptotically.
That is, lim

N→∞
Rϕ(N) ≥

∑

d:μd<μd∗

Δd ln(N)
D(vd||vd∗ ) , where D(vd||vd∗) �

∑

vd

vd ln vd

vd∗ is

the Kullback-Leibler divergence [53] between the utility distribution vd of any
suboptimal defense action and the utility distribution vd∗ of the optimal defense
action. When the utility distributions are Bernoulli, then the regret is always
larger than the logarithmical bound no matter what strategy ϕ the defender
follows.

The upper bound stated in Theorem2 consists of four terms. The first term
T μd∗ is the regret brought by the utility delays, which is a constant. The second
term is the regret brought by choosing the suboptimal defense actions whose
expected utility values are ε-close to the optimal one’s. If ε < min

d:μd<μd∗
Δd

2 (e.g.,

ε = 0), this term is 0. The third term 8(u+ − u−)2
∑

d:Δd>2ε

(Δd+ε) ln(N−T +1)
(Δd−2ε)2

increases logarithmically in N . The fourth term is the regret brought by choosing
the suboptimal defense actions after they are chosen enough times, and this term
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will decrease to 1 if N increases to infinity. If the utility errors are very small (e.g.,
ε = 0), the upper bound in Theorem2 is a logarithmic upper bound with respect
to N and increases as slow as the lower bound when the utility distributions
are Bernoulli. Therefore, the logarithmic upper bound in Theorem2 is the best
possible upper bound which holds for any utility distribution.

4.4 Co-design with DSMAs

4.4.1 DSMAs
The UCB-Z algorithm may not be directly implemented in current servers. We
need to modify the server (security engineering). We will use DSMAs as the
concrete prototype (shown in Fig. 4) to illustrate the server modification and
show the experiment results.

4.4.2 Attacker
In this section, we investigate the scenario when the attacker exploits DSMAs.
DSMAs [17] iteratively exploit a vulnerability to manipulate specific fields of
one or more data structures. Such attacks require millions of attempts to attack
one or multiple specific data structures, which typically span hours or even days.
In particular, each attack action is a combination of several attack scripts. One
attack script targets some data structure types (a fixed script targets fixed data
structure types). Even when the target fields is protected by static data structure
layout randomization (DSLR) or adaptive DSLR, the attacker can guess the
offset of the fields by using brute force attacks.

Based on the real-world DSMA attack scripts [54], we observe two mathe-
matical features of the real-world attack: (1) the attack frequency is fixed; (2) the
combination of attack scripts is fixed. The attacker cannot avoid being detected
since it cannot ensure trigger no segmentation faults. So to increase the prob-
ability of modifying correct data structures, the attacker would like to change

Fig. 4. The concrete system with DSMAs
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its attack actions. Using probability distributions is a reasonable choice for the
attacker to adjust its actions. We will also extend feature (2) by assuming that
the attacker associates each defense action d ∈ D with a predetermined prob-
ability distribution DAd and updates attack actions (e.g., adjusting the attack
script combination).

4.4.3 Defense
Our defense technique against DSMAs is combining DSLR and canary detection.
In particular, each defense action randomizes a set of data structures at runtime.
In order to generate feedbacks, some 32-bit specific values called canaries are
inserted into the fields of all data structures. Once a canary is polluted, it indi-
cates that a potential modification of the fields in a data structure is discovered.

4.4.4 Cost-Effectiveness Utility
Specific to DSMAs, the most direct quantification of the effectiveness is the
number of failed DSMAs during a defense cycle. As mentioned, a polluted canary
indicates a discovered potential modification. Therefore, we take a bold move by
regarding a polluted canary as one failed DSMA and use the number of polluted
canaries to quantify the effectiveness.

If adaptive DSLR does not incur any cost, the best defense is randomizing
all feasible data structures. However the study of SALADS [17] shows that the
performance overhead is proportional to the number of total randomized data
structures. So we use the number of randomized data structures to quantify the
cost.

4.4.5 Server Modification
To implement UCB-Z Algorithm, the server need to be modified to provide to
“offer” two functions. First, it should provide adaptive DSLR. Second, it should
provide canary detection to provide utility values. Based on our evaluation (see
Sect. 4.5), the memory allocator introduces low runtime overhead and acceptable
memory overhead.

Adaptive DSLR. We modify the server so that it can generate data structure
self-randomization (DSSR) binary. The DSSR binary maintains the metadata
for all the data structure instances, including the base addresses and offsets of
the fields in data structures. The DSSR binary handles randomization with a
dynamic whitelist. The data structures in the dynamic whitelist are randomized
at the beginning of each defense cycle. To properly access the randomized data
structure layout, the read/write operations of data structures are replaced with
a set of DSSR statements [17]. What’s more, all the definitions of the data
structures are randomized at compile-time, and padding bytes are inserted into
the data structures [55].

Canary Detection. The canary detection is executed based on the mem-
ory forensic analysis. A separate thread scans the canaries in the randomized
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data structures and compares current values with a random canary value [56].
The random canary is chosen at the beginning of each defense cycle through
/dev/urandom. To quickly pinpoint the canaries, we maintain an array to record
their addresses along with their binary states. Only canaries with state 1 need
to be checked. After DSSR statements complete the data structure access, the
canary detection checks whether the data structure type is in the whitelist, and
then DSSR statements will update the array for the corresponding canaries.

4.5 Evaluation

We will use real experiments to evaluate our adaptive defense when facing
DSMAs. The evaluation focuses on the effectiveness and overhead of our defense.

Experiment Environment. The experiments are conducted on an Intel(R)
Core(TM) i5 machine with 4 GB memory running Red Hat Linux 7.3 with Linux
kernel version 2.4.18 and we use Apache (1.1.1) compiled with OpenSSL (0.9.6d)
and Glibc (2.2.2) as the vulnerable server. The programs contain 348, 132, and
2329 data structure types, respectively. In the following experiments, we parti-
tion the data structures into five groups equally. We choose the length of the
defense cycle as 5 s. And we measure that the upper bound of utility delays is
5 s and the upper bound of utility errors is 1 under our experiment setting.

Real-World DSMA Scripts. The attacker has four real-world DSMA scripts
[54,57–59]. The attack action set consists of the 4 DSMA scripts. The first script
overwrites a data structure ssl session st and malloc chunk. The second
script overflows the pw uid in data structure passwd to do privilege escalation.
The third script pollutes data structure malloc chunk. The fourth script over-
flows data structure timeval. All the four DSMA scripts use brute force method
to guess the layouts of the target data structures.

Effectiveness. To evaluate how effective our adaptive defense is in real world,
we compare our defense with static DSLR against the four attack scripts. Static
DSLR is a defense against DSMA attacks at compile-time, once the program is
loaded into the memory, the layout of the data structure is fixed. Defense results
are shown in Table 2. The results demonstrate that in two hours, static DSLR
cannot defend against DSMA with brute force attacks. However, our adaptive
defense is robust enough to prevent such attacks.

Runtime Overhead. To evaluate the runtime overhead introduced by adaptive
DSLR, we compare the modified web server Apache (1.1.1) with original one
compiled with GNU GCC. The defense cycles are 1/5/10 s and in each defense
cycle. As Table 3 shown, the average runtime overheads are 6.4%, 3.9%, 2.3% on
average.

Memory Overhead. We also evaluate the memory overhead. We compare the
memory usage of the modified web server with the original web server. The
memory overhead is 2.1% on average, which is mainly introduced by the paddings
and canaries.
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Table 2. Effectiveness (from [60], page 8)

Attack script Data structure Static DSLR Adaptive defense

CVE-1999-0071 [59] timeval × √

CVE-2001-0144 [57] passwd × √

CVE-2002-0656 [54] ssl session st × √

malloc chunk

CVE-2015-0235 [58] malloc chunk × √

Table 3. Runtime overhead

Apache web server compiled with GNU GCC Modified system

Defense cycle Overhead

3756.2 req/s 10 s 3669.8 req/s (2.3%)

5 s 3609.7 req/s (3.9%)

1 s 3515.7 req/s (6.4%)

4.6 Validation of Mathematical Predictions

We will also validate the upper bound in Theorem2. First we simulate the inter-
actions in Matlab, and then compare the regret, aggregate utility with the ones
in Apache experiment.

Matlab Simulation. The Matlab simulations remain the same features as the
vulnerable apache web server in terms of data structure types and instances. And
the attack scripts in simulations remain the same features as CVEs in terms of
targets and attack frequency.

Comparison between Matlab Simulations and Apache Experiments.
We test the UCB-Z algorithm in both Matlab simulation and Apache environ-
ment with the same DSMA which lasts 2 h (1440 defense cycles). The attack is
repeated 20 times and the average regret over 20 repetitions are collected and
compared with the upper bound in Theorem2. Figure 5(a) presents the compari-
son among the Matlab regret, Apache regret, and the UCB-Z upper bound. The
comparison between the aggregate utility of the UCB-Z in Matlab simulation
and Apache experiment is also shown in Fig. 5(b).

Implications. From Fig. 5(a), we can see that the both Matlab regret and
Apache regret are lower than the upper bound. This validates the correctness of
the upper bound in Theorem2, which provides the worst-case cost-effectiveness
of our adaptive defense. From Fig. 5(b), we can see the curve of the aggregate
utility in all Matlab simulation is close to the curve of Apache experiment. This
indicates that our mathematical model has high fidelity of the real-world defense
system. We also compare the time consumption of the Matlab simulation and the
Apache experiment. Under our experiment environment, the Matlab simulation
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(a) (b)

Fig. 5. (a) shows the comparison among regrets of UCB-Z in Matlab simulation,
Apache experiment and the mathematical upper bound; (b) compares the aggregate
utility in Matlab simulation and Apache experiment during 2-h attack

consumes 0.4 s while the experiment in Apache consume 2 h. We can see that
Matlab simulation can save 4 orders of magnitudes of time when we evaluate a
defense against the same attack.

5 Reinforcement Learning on Bayesian Attack Graphs

In Sects. 3 and 4, the attacker manipulates single zero-day vulnerability (or sin-
gle class of vulnerabilities) and targets single ICT system. In this section, we
consider that an intelligent attacker exploits combinations of multiple known or
zero-day vulnerabilities to compromise machines in a network. In particular, we
consider the ACD problem in a computer network where an intelligent attacker
exploits combinations of multiple known or zero-day vulnerabilities to compro-
mise machines in the network. There are two main challenges for the defender:
(1) partial observability: the defender can only observe the states of a subset
of the machines due to limited detection capabilities; (2) unknown utility func-
tions: the defender is only able to access some utility values; i.e., feedbacks, after
some defense actions are taken, but is not able to know the utility functions;
i.e., the mapping from actions and environment to the feedbacks because the
locations and the impacts of zero-day vulnerabilities are not available. Partially
observable Markov decision process (POMDP) [61] has been proposed to address
the first challenge. And a simple version of the ACD problem has been studied
in [62]. This chapter uses Bayesian attack graphs (BAGs) [63–65] to describe
how an intelligent attacker exploits combinations of vulnerabilities to compro-
mise the network. In addition, the ACD problem on a BAG is modeled as a
POMDP problem. POMDP demonstrates the decision making process where
the decision-maker is able to interact with the environment, receive observa-
tions that partially reflect system states. By analyzing about the consequences
of actions and observations on the environment, the decision-maker can estimate
the system state using a probability distribution, which is called belief, over the
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possible system states. Then the decision-maker selects actions on basis of the
beliefs instead of unavailable system states. We propose reinforcement learning
algorithms to solve POMDP problems with unknown utility functions.

5.1 ACD on Bayesian Attack Graphs

In this subsection, we consider an ACD problem where the attacker exploits
multiple vulnerabilities to compromise computer network and the defender tries
to defend a computer network against external intrusions. In particular, we first
use BAGs to model how the attacker attacks the network when there is no
defender. After that, we introduce defense and model the interactions among
the attacker, network and defender.

5.2 Problem Formulation of POMDP

In last subsection, we introduce an ACD problem on BAGs. Essentially, the
problem is an instance of POMDP problems. In this section, we present the
problem formulation of generic POMDP problems. We consider a computer net-
work which consists of multiple machines and each machine has a vulnerability.
The attacker wants to compromise the network by exploiting reachable vulner-
abilities. But each exploit can only succeed with a certain probability. As first
introduced in [63], a BAG can depict the interactions between the attacker and
network, which is formally defined as follows:

Definition 2. A BAG is defined as a tuple G = (N , E ,P). N = {1, ...,K} is
the set of machines. E is the set of directed edges, where each edge is an exploit
and (i, j) ∈ E if machine i can be compromised through machine j. P is the
set of exploit probabilities associated with the edges, where ρij ∈ P represents
the likelihood that exploit (i, j) can succeed; i.e., how likely the attacker can
successfully compromise machine j after he/she compromises machine i.

If (i, j) ∈ E , node i is called an in-neighbor of node j and node j is called
an out-neighbor of node i. The nodes in a BAG can be classified into two cat-
egories: leaf nodes NL ⊆ N and non-leaf nodes. Note that leaf nodes do not
have any in-neighbor. And the probability of a leaf node l ∈ NL is compro-
mised is denoted by ρl. For any non-leaf node i, their in-neighbors are denoted
by D̄i � {j ∈ N|(j, i) ∈ E}. We refer NIST’s Common Vulnerability Scoring
System (CVSS) [66] as a way to capture the principal characteristics of a vul-
nerability and produces a numerical score reflecting its severity. Here we use the
exploitability metrics in CVSS to calculate the value of each ρij and ρl.

System State. The state of machine i ∈ N at time t is either compromised
(value 1) by the attacker or not (value 0); i.e., si

t ∈ {0, 1},∀i ∈ N . Combing
the states of the machines, The system state at time step t is denoted by the
tuple st = (s1t , · · · , sK

t ) ∈ S = {0, 1}K . An example of BAGs is shown in Fig. 6.
In the example, the state of BAG is s = (1, 0, 0, 0) where only machine 1 is
compromised.
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Fig. 6. An example of BAGs. (from [67], page 101)

Attacker’s Action. At the very beginning, the attacker selects a subset of leaf
nodes as entry points. Once some leaf nodes are compromised, the attacker may
use them as stepping stones to exploit their out-neighbors. Since the defense is
absent, once a machine was compromised, it remains compromised. The attacker
stops when all machines are compromised.

The state transitions are autonomous given attacker’s initial actions because
we do not consider defense for the time being. In real world, machine i ∈ N \NL

can be compromised at t under one of two conditions: all of its in-neighbors are
compromised or at least one of its in-neighbors compromised at t−1. The choice
of the condition depends on the type of vulnerability in machine i. Machine i
is an And-machine if it can be compromised only after all of the machines in
D̄i are compromised. Otherwise, Machine i is an Or-machine. Next, we consider
there is a defender in the network, which will make the state transitions a little
more complicated.

Defender’s Actions. The defender’s actions contains two parts: detection and
reimage. Formally, at time step t, the defender’s action is at = (ar

t , a
d
t ) ∈ A ⊂

P(N ) × P(N ), where ar
t are the reimaged machines, ad

t are the monitored
machines and P(N ) is the power set of N .

Concern About High False Positives. High false positives is a common
problem in Intrusion Detection System (IDS) [68]. However, in this chapter,
the detection is assumed to be implemented by manual analysis. Therefore, our
detection does not include any false positive. On the other hand, the defender
can only detect a subset of the machines in the network due to limited resources.

State Transition. State transitions consist of a Markovian process which can be
modeled by conditional probability P (st|st−1, at−1). Here P (sj

t = 1|st−1, at−1)
represents the probability that machine j is compromised at step t when defense
at−1 is taken at state st−1. For an And-machine which was not compromised
nor reimaged, it can only be compromised after all of its in-neighbors are com-
promised. And for an Or-machine which was not compromised nor reimaged,
it can be compromised if at least one of its in-neighbors is compromised. If
the machine was compromised at the previous step, it remains compromised if
it was not reimaged. In all other cases, the probability of this machine being
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compromised is 0. The state transition can be written as follows. If i ∈ N is an
And-machine:

P (si
t = 1|st−1, at−1) =

⎧
⎪⎪⎨

⎪⎪⎩

∏

j∈D̄i

ρji if si
t−1 = 0, sj

t−1 = 1,∀j ∈ D̄i and i �∈ ar
t−1,

1 if si
t−1 = 1 and i �∈ ar

t−1,

0 otherwise.

And if i ∈ N is an Or-machine:

P (si
t = 1|st−1, at−1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
∏

{j∈D̄i|sj
t−1=1}

(1 − ρji) if si
t−1 = 0,∃sj

t−1 = 1 and i �∈ ar
t−1,

1 if si
t−1 = 1 and i �∈ ar

t−1,

0 otherwise.

Observation. Due to limited resources, the defender can only monitor a sub-
set of machines at each time. The states of subset of machines are referred to as
observations. Formally, the observation at time step t is denoted by ot. An obser-
vation kernel Z(·|st, at−1) is used to model observation generation. Z(·|st, at−1)
presents the probability that the defender receives observation o when the sys-
tem state evolves to st after at−1 is taken. In this chapter, we simply use the
states of the machines in ad

t−1 as observation; i.e., ot = (si1
t , · · · , sik

t ), where
i1, · · · , ik ∈ ad

t−1. The observation kernel Z(·|st, at−1) is:

Z(o|st, at−1) =

{
1 if o = (si1

t , · · · , sik
t ) and i1, · · · , ik ∈ ad

t−1,

0 otherwise.
(2)

Utility Function. The defender aims to find a defense policy to keep the net-
work “secure”. Utility functions are introduced to quantify security levels of the
network. At time step t, after taking action at in state st, the defender receives a
utility value ut(st, at) � rt(st, at) − ct(at). Here rt(st, at) represents the reward
of keeping the network secure and ct(at) represents the cost caused by the action
at (e.g., resources required by detection or reimage). In particular, rt(st, at) is
defined according to confidentiality, integrity, and availability (CIA) triad. And
we also take the dynamic environments (e.g., network traffics or machine work-
loads) into account. So the utility functions are also dependent on time. That
is, under different environments, same pair of state-action could lead to different
utility values. Note the defender does not know the utility functions because
he/she is unaware of the dynamic environment.

Defender’s Goal. Before introducing defender’s goal, we first introduce the
defender’s available information at time t: It � (Z, P, o1, a1, · · · , ot−1, at−1, ot).
In particular, the defender knows the observation kernel, transition probability,
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observations and actions up to t. But he/she does not know the system state
trajectory or utility functions. The defender aims to find a defense policy (with
decision rules that map from S to At) over the time horizon T = {0, 1, · · · , N}
to maximize the aggregate utility

∑

t∈T

ut(st, at). Essentially, the problem is an

instance of POMDP problems. In what follows, we first present generic POMDP
problems. Then n Sect. 5.3, we will propose the reinforcement learning algorithm
to solve them.

Definition 3. A POMDP consists of a tuple (T, γ,S,A,At,O, Pt, ut,Z): T �
{1, 2, · · · , N} is the time horizon with N ≤ ∞; γ ∈ (0, 1] is the discount factor;
S is the state space; A is the action space and At ⊆ A is the available action
set at time step t. As a result of choosing action a at state s at time step t, the
agent receives a utility ut(s, a) and the state at next time step is drawn from
a transition probability Pt(·|s, a). O is the observation space, and Z(o|s, a) is
the conditional probability of observing o after the agent takes action a and the
system evolves to state s.

Remark 2. The agent receives ut(st, at) after applying an action at at state st

at time step t. But to emphasize that the agent does not know st, we denote vt

as the utility value received by the agent at time step t.

One might simply take the observation space to be the state space and treat
a POMDP as an MDP. However, the transitions of the observations might not
necessarily be Markovian, because one observation can represent more than one
states. As a result, an optimal policy (with decision rules that map from O to At)
may not be optimal. To address the challenge, the agent maintains a probability
distribution over states called belief state. Let B be the belief state space (the
set of all possible probability distributions over S) and b(s) be the probability
assigned to state s when the belief state is b. The belief state update law is
denoted as SE, whose inputs are the last action at−1, belief state bt−1 and the
current observation ot and the output is the updated belief state bt. By Bayes’
rule, the updated belief state assigns the probability to state s′ as follows:

SE(bt−1, at−1, ot) = Pr(s′|at−1, ot, bt−1)

=
Pr(ot|s′, at−1, bt−1)Pr(s′|at−1, bt−1)

Pr(ot|at−1, bt−1)

=
Z(ot|s′, at−1)

∑

s∈S
Pt−1(s′|s, at−1)bt−1(s)

∑

s′∈S
Z(ot|s′, at−1)

∑

s∈S
Pt−1(s′|s, at−1)bt−1(s)

. (3)

The transition probability from belief state bt−1 to bt ∈ B is defined as follows:

Bt(bt|bt−1, at−1) =
∑

{o∈O|SE(bt−1,at−1,o)=bt}
Pr(o|at−1, bt−1), (4)
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where

Pr(o|at−1, bt−1) =
∑

s′∈S
Z(o|s′, at−1)

∑

s∈S
Pt−1(s′|s, at−1)bt−1(s).

If there is no o ∈ O such that SE(bt−1, at−1, o) = bt, then Bt(bt|bt−1, at−1) = 0.
The process of updating the belief state is proven to be Markovian [61]. That is,
the current belief state only depends on the previous belief state and action.

Given the fact that the state trajectory is unknown and the belief states
provide sufficient statistics of the history [69], the agent would select actions on
the basis of belief states. In POMDP, dt : B → At is the decision rule which
specifies the action choice when the belief state is bt at time step t. Therefore, a
POMDP can be cast as a completely observable MDP where the state space is
the belief state space B and the action space is A. This MDP is formally defined
as a belief-state MDP.

Definition 4. A belief-state MDP consists of a tuple (T, γ,B,A,At, Bt, Ut):
T, γ,A,At are defined in Definition 3; B is belief state space; Bt(·|b, a) is the belief
transition probability at t, Ut(b, a) =

∑

s∈S
b(s)ut(s, a) is the expected immediate

utility from executing action a at state s given the belief state b and Ut is referred
to as the expected immediate utility function at time step t.

With the definition of belief-state MDP, the agent’s problem is formulated
as follows:

max
π∈Π

Jπ
1 (b) = E

[
N∑

t=1

γtUt(bt, at)

]

(PA)

subject to at = dt(bt)
bt ← Bt(·|bt−1, at−1),

where Jπ
1 (b) is the expected discounted total utility from t = 1 to t = N if policy

π is used and the initial belief is b.

5.3 Reinforcement Learning for POMDP

In this subsection, we propose two reinforcement learning algorithms to solve
POMDP problems with unknown utility functions. We first introduce the main
idea and the informal statement of the first algorithm. Then we the computa-
tional complexity is analyzed and a Q-learning based algorithm is proposed to
handle the computational complexity.

5.3.1 Main Idea
As mentioned in the previous section, a POMDP can be cast to a belief-state
MDP and the goal of the agent is to solve Problem (PA). The agent wants to
compute the optimal value functions J∗

t (b) � max
π∈Π

Jπ
t (b),∀t ∈ T . By the principle
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of optimality [70], the optimal value of belief state b is equal to the maximum
sum achieved by a particular action, where the sum consists of instant utility
induced by the action from b and the expected optimal value of next belief state
which is discounted by γ. Therefore, the optimal value function at t can be
calculated backward from the optimal value function at t + 1 as follows:

J∗
t (b) = max

a∈At

[Ut(b, a) + γ
∑

b′∈B
Bt(b′|b, a)J∗

t+1(b
′)]. (5)

And the optimal action d∗
t (b) is the one which achieves the optimal value of

J∗
t (b); i.e.,

d∗
t (b) = arg max

a∈At

[Ut(b, a) + γ
∑

b′∈B
Bt(b′|b, a)J∗

t+1(b
′)].

With the knowledge of utility functions ut, transition probabilities Pt for all
t ∈ T , and observation kernel Z, J∗

t (b) can be calculated offline based on Eq. (5)
for all t ∈ T and b ∈ B.

There are two challenges to perform the backward calculation (5): 1. the
utility functions are unknown; 2. the belief space B, where J∗

t is defined, is
infinite. For challenge 1, we use dynamic programming (DP) to cpmpute the
estimates of the optimal value functions J∗

t . Consider the special case where
Ut, Bt and At are time independent and the time horizon is infinite. The optimal

value functions can be rewritten as J∗(b) � max
π∈Π

E

[ ∞∑

t=1
γtUt(bt, dt(bt))

]

, where

π = (d1, d2, · · · ). Start with any initial estimated value function J0(b), then the
n-th estimated value function is derived from the (n − 1)-th by the recursive
equation:

Jn(b) = max
a∈At

[Ut(b, a) + γ
∑

b′∈B
Bt(b′|b, a)Jn−1(b′)]. (6)

By applying (6) repeatedly over n, Jn will converge to the fixed point J∗ [71].
In this chapter, the time horizon could be finite. Besides, the utility functions
and the transition probabilities are time dependent. Therefore, given fixed Ut, Bt

and At, Jn may not converge to J∗
t . Further, to perform the value iteration (6),

Ut is needed. However, by Definition 4, we cannot directly calculate Ut since the
utility function ut is unknown. To address above two issues, we partition the time
horizon T into M +1 relatively long intervals k0, k1, · · · kM , and we use constant
empirical average utility values Ûm(b, a) to represent the values of Ut(b, a) for
all belief-action pairs (b, a) ∈ B × At when t ∈ km. Instead, we perform the
following value iteration repeatedly in interval km:

Jn
m(b) = max

a∈At

[Ûm(b, a) + γ
∑

b′∈B
Bt(b′|b, a)Jn−1

m (b′)].

Then we select an action that maximizes Jn
m at the n-th time step in interval

km.
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To address the challenge of infinite belief space, we restrict the recur-
sion on a sequence of incrementally expanded subsets of belief space B; i.e.,
{B0, · · · ,Bm, · · · ,BM}. In particular, we start from the initial belief state and
add the new belief states which appear over time. In the rest of the chapter, the
subsets of B are referred to as belief sets. Then one key part in the algorithm
is updating Jn

m(b). In particular, after receiving utility value vt = ut(st, at),
the update law is Jn+1

m (b) = max
a∈At

[Ûm(b, a) + γ
∑

b′∈Bm

Bt(b′|b, a)Jn
m(b′)], for all

b ∈ Bm. To get Jn+1
m (b) for all b ∈ Bm, the agent needs to compute Bt(b′|b, a) for

all b′, b ∈ Bm and all a ∈ At. According to Eqs. (3) and (4), getting Bt(b′|b, a)
for a given b, a and b′ needs O(|O||S|2) products. Then, getting Bt(b′|b, a) for all
b′, b ∈ Bm and all a ∈ At needs O(|O||S|2|Bm|2|At|) products. Even though the
update only takes polynomial time, it could be very time-consuming in practice.

To address the computational complexity, we introduce an intermediate
state-action value function called the Q-function:

Qt(b, a) = Ut(b, a) + γ
∑

b∈B
Bt(b′|b, a)J∗

t+1(b
′).

Qt(b, a) is the aggregate utility for executing action a at time step t and following
the optimal policy π∗ thereafter. The relation between Qt(b, a) and J∗

t (b) is
given by J∗

t (b) = max
a∈At

Qt(b, a). And we estimate the Q-functions Qt instead of

the optimal value functions J∗
t by applying Q-learning [72] in Algorithm 3. In

particular, let Q̂n
m be the n-th estimate of Q-function in interval km, then the

(n+1)-th estimate is updated from Q̂n
m by the recursive equation shown in Line

26 of Algorithm 3. the recursive equation makes a correction of Q̂n
m(bt, at); i.e.,

the value of belief-action pair (bt, at), based on the new empirical average utility
values Ûm(bt, at).

5.3.2 Algorithm Statement
Formally, we define the information set of the agent at time t as It �
(Z, o1, b1, a1, v1, P1, · · · , ot−1, bt−1, at−1, vt−1, Pt−1, ot, bt, Pt). That is, the agent
knows the observation kernel, transition probabilities, belief states, and observa-
tions up to t. Additionally, the agent knows the actions and the received utility
values up to t− 1. But the visited states and utility functions are unknown. The
pseudo-code of the algorithm is listed in Algorithm 3 and the details are shown
as follows.

Let tm denote the first step of the interval km. For the initial interval (Line 4
to 10), the agent uniformly selects an action for each time step (Line 7), records
the belief states that evolve from the last belief (Line 6) and expands the belief set
for interval k1 as B1 (Line 11). During each interval km (m ≥ 1), Ûm is updated
at the beginning and kept constant afterwards (Line 13), where 1{condition} = 1
when condition is true and 1{condition} = 0 otherwise. As mentioned before,
it is infeasible to get the values of function Ûm for all pairs of belief-action
because B is infinite. We only consider the values of Ûm for belief-action pairs
(b, a) ∈ Bm × At. The initial values of J0

m are set for all of belief states b ∈ Bm
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(Line 15). If bt ∈ Bm, then at is chosen to maximize the sum of [Q̂n
m(bt, a) and

εt(a) if the belief state bt is in Bm (Line 19). Otherwise, at is uniformly chosen
from At (Line 21). The action is selected according to the concept of “following
the perturbed leader (FPL)” [73,74], where a diminishing random perturbation
for each action εt(a) is added. Then the agent receives utility value vt (Line
23). Algorithm 3 updates Q̂n+1

m asynchronously (Line 26). That is, it updates
the value of Q̂n+1

m for a single belief-action pair each time step. At the end of
interval km, the belief set for next interval Bm+1 is expanded by adding all new
belief states which appear in interval km into the previous belief set Bm (Line 30).

5.3.3 Discussion
The agent cannot compute the values of Ut(b, a) since the utility functions are
unknown. In fact, the agent can only receive the utility value vt at time step
t. One key insight of Algorithm3 is to use the empirical average utility val-
ues Ûm(b, a) to estimate Ut(b, a) for any belief-action pair (b, a) ∈ Bm × At.
This insight is based on the following reasons. First, the agent can only receive
a collection of utility values in this problem. Second, empirical averages are
most commonly used mathematical measure of central tendency [75]. By using
the empirical average Ûm(b, a), we can estimate the typical value of Ut(b, a)
in the history. Then Ûm(b, a) is used in Q-learning to get the estimate of the
Q-functions. Algorithm3 chooses the most successful action which maximizes
the estimate of Q-functions. It represents the exploitation phase. However, the
empirical averages Ûm(b, a) can deviate from the true values Ut(b, a) greatly. To
address this issue, Algorithm 3 introduces perturbation εn(a) using the idea of
FPL. In particular, Algorithm3 chooses arguments of the maxima of the summa-
tion of εn(a) and Q̂n

m(bt, a). It represents the exploration phase. The perturbation
term εn(a) compensates the scenario where action a is optimal but the value of
Q̂n

m(bt, a) is not maximum. With this perturbation, the algorithm avoids being
trapped in the sub-optimal actions. The perturbation is a diminishing random
vector. As time goes by, the effect of the perturbation will decrease so that
Algorithm 3 will lean more on the exploitation. In order to enforce computa-
tional tractability, the value function computations are restricted to a sequence
of incrementally expanded belief sets. This idea is called point-based [76].

5.4 Evaluation

We setup a test network similar to the one in [64]. The network, which is shown
in Fig. 7, has 7 machines located in two subnets. Then we conduct numerical
simulations to evaluate the performance of our algorithms. The simulations are
based on real-world settings of the ACD problem on BAGs.

The Web server is located in the DMZ network while local desktops, the
Gateway server, SQL server and Admin server are located in the local network.
The firewall is installed to prevent remote access to the internal hosts. All com-
munications to external parties must be passed through the Gateway server.
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Algorithm 3. Point-based Q-FPL
1: Assign initial belief b0 and arbitrarily choose a0;
2: B0 = {b0};
3: Initialize the number of visits of each belief-action pair: T (b, a) = 0, ∀(b, a) ∈ B×A;
4: for t ∈ k0 do
5: Receive observation o1;
6: Update belief state bt = SE(bt−1, at−1, ot);
7: Uniformly select an action at ∈ At and execute at;
8: Receive utility value vt = ut(st, at);
9: T (bt, at) = T (bt, at) + 1;

10: end for
11: B1 = B0 ∪

⋃
t∈k0

{bt};

12: while m ≥ 1 do
13: Ûm(b, a)

=

⎧⎨
⎩

1
T (b,a)

tm−1∑
t=1

vt1{bt=b and at=a}) if T (b, a) > 0

−∞ if T (b, a) = 0

, for all (b, a) ∈ Bm × At;

14: n = 0;
15: Let Q̂n

m(b, a) = Ûm(b, a) for all (b, a) ∈ Bm × At;
16: for t ∈ km do
17: Update belief state bt = SE(bt−1, at−1, ot);
18: if bt ∈ Bm then
19: at ∈ arg max

a∈At

[Q̂n
m(bt, a) + εt(a)];

20: else
21: Uniformly select an action at ∈ At and execute at;
22: end if
23: Receive a utility value vt;
24: Observe ot+1;
25: Update the subsequent belief state bt+1 = SE(bt, at, ot+1);

26: Q̂n+1
m (bt, at) = (1 − βm)Q̂n

m(bt, at) + βm

[
Ûm(bt, at) + max

a′∈At

Q̂n
m(bt+1, a

′)

]
;

27: n = n + 1;
28: T (bt, at) = T (bt, at) + 1;
29: end for
30: Bm+1 = Bm ∪

⋃
t∈km

{bt};

31: m = m + 1;
32: end while

The choices of vulnerabilities are based on [64] and listed in Table 4. These
vulnerabilities can produce multiple attack scenarios. In the evaluation, we use
BAG to simulate one attack scenario where the attacker starts from either the
Gateway server or the Web server and tries to compromise the whole network.
From either the Gateway server or the Web server, local desktop a is accessi-
ble by exploiting MS Video ActiveX buffer overflow. And from the Web server,
local desktop b is accessible by exploiting LICQ buffer overflow. With local user
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privilege, local desktop c can be compromised by exploiting remote login. And
the SQL server can be compromised through any of the three local desktops
by exploiting SQL injection. Finally, with information in local desktop c and
the SQL server, the Admin server can be compromised by exploiting MS SMV
service Stack buffer overflow.

Fig. 7. Test network. (from [67], page 105)

Table 4. Vulnerabilities in the test network. (from [67], page 105)

Machine Vulnerability CVE#

Gateway server Untrusted cookie in OpenSSH 2007-4752

Web server IIS vulnerability in WebDAV service 2009-1535

Local desktop a MS Video ActiveX stack buffer overflow 2009-0015

Local desktop b LICQ buffer overflow 2001-0439

Local desktop c Remote login 2008-3610

SQL server SQL injection 2008-5416

Admin server MS SMV service Stack buffer overflow 2008-4050

BAG. The corresponding BAG of the above attack scenario is illustrated in
Fig. 8. The leaf nodes are Web server and the Gateway server which are acces-
sible to the external attacker. The rest machines are non-leaf nodes. The edges
represent the possible exploits in the network. For example, the local desktop
a can be attacked after either the Gateway server or the Web server is com-
promised. The exploit probabilities are calculated based on the exploitability
metric of CVSS scores. The exploitability metric of CVSS score consists of four
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Fig. 8. BAG of the test network. (from [67], page 106)

components: Access Complexity (AC), Access Vector (AV), Privileges Required
(PR) and User Interaction (UI). More details on CVSS metrics and their scoring
system can be found in the CVSS document [77]. For each (i, j) ∈ E , the exploit
probability is calculated as follows:

ρij = 2 × AV (j) × AC(j) × PR(j) × UI(j),

where AV (j), AC(j), PR(j), and UI(j) are the four exploitability components
of the vulnerability on machine j.

System State. The system state space has |S| = 27 = 128 states. Each state
reflects which machines are compromised.

Attacker’s Knowledge and Action. The attacker wants to compromise the
whole network and desires to compromise as many machines as possible. In the
simulations, the attacker starts with one of the leaf nodes and he/she knows
which compromised machines are recovered by the defender. And if the attacker
has no available machine to exploit for next time step (e.g., if no machine is
compromised, he/she will restart the attack from the leaf nodes again).

Defender’s Action. Recall that the detection is implemented by manual anal-
ysis, therefore, the defender can only mornitor a subset of the machines due to
limited resources. In the simulations, each defender’s action is to detect 3 out of
7 machines and to reimage at most 3 out of 7 machines. Then there are total
|O| = 23 ×

(
7
3

)
= 280 observations and |A| =

(
7
3

)
× (

(
7
0

)
+

(
7
1

)
+

(
7
2

)
+

(
7
3

)
) = 2240

actions.

Utility. In the evaluation, we use time independent utility function u(s, a) =
r(s, a) − c(a) since we do not simulate the network dynamics. The reward part
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is defined based on the CIA triad. In particular, we use the impact metric of
CVSS score to calculate r(s, a) as follows:

r(s, a) = R −
∑

{si∈s|si=1,i 
∈ar}
[IC(i) + II(i) + IA(i)],

where IC(i), II(i), IA(i) are the confidentiality, integrity, and availability impact
score caused by the successful exploitation of the vulnerability on machine i. CIA
triad are commonly considered as the three most crucial components of network
security. Each impact score is a real number scaling from 0 to 10 and a higher
score means that the network is less secure. A constant R is used to represent
the base security level of the network with no compromised machine. In this
network, R = 70. To represent the reward of keeping the network secure, we
subtract the total impact score of compromised machines in the network after
action at is taken from R. Therefore, a higher value of r represents that the
network is more secure, and vice verse. And the cost caused by the defender’s
action is calculated as c(a) =

∑

{i∈ar|si=0}
IA(i), which quantifies the cost induced

by reimaging the clean machines. c(a) is concerned with the availability cost. If a
non-compromised machine is reimaged, some resources on the machine becomes
unavailable for trusted users.

Time Line. Figure 9 describes when the main events and updates happen in the
ACD problem. A time step starts with the defender receiving an observation. At
the beginning of time step t, the network is in state st and the defender updates
its belief state bt. The attacker exploits some available vulnerabilities while the
defender chooses an action based on his/her belief state. After the action is
deployed, the defender receives a utility value vt. Note that in the simulations,
the received utility value is not u(st, at) because the defender cannot measure
the value based on the CVSS scores without knowing full state st. Instead, the
defender uses the following measurement as the utility value vt = v(ot, at) �
R−

∑

{si∈ot|si=1,i 
∈ar
t }

[IC(i)+II(i)+IA(i)]−
∑

{i∈ar
t |si=0 and si∈ot}

IA(i). That is, the

defender can only measure the reward and cost based on the observation and
action.

Based on the evaluation setup, we simulate the interactions among the
attacker, network and defender in Python. All the simulations are conducted
on an Intel(R) Core(TM) i5 machine with 8 GB memory running OS X 10.11.6.
In general, At = A for all t if there is no restriction on the action space (e.g.,
any machine can be reimaged any time in the ACD problem). In the evaluation
of Algorithm 3, we let vt = u(ot, at) and At = A for all t. But note that the
observation ot does not include false positives. Based on this property, we pro-
pose a customized Algorithm 4 which restricts At at time step t based on ot as
follows: only the actions that reimage the compromised machines and avoid the
clean machines in ot will be considered at time step t (Lines 18 to 27).

To show the effectiveness of Algorithms 3 and 4, we compare their perfor-
mances with a baseline policy. The baseline policy uniformly chooses one action
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Fig. 9. Events and updates in ACD problem. (from [67], page 106)

each time step and is referred to as uniform selection policy. The duration of each
simulation (from the attack begins till the attack ends) is 100 time steps and we
repeat 20 identical simulations. And we assume that the defender can receive
the observations without delays. The comparison results are shown in Fig. 10.
We can see the aggregate utilities of Algorithm 4 are always the highest among
all three policies. Besides, the aggregate utilities of Algorithm 3 are higher than
those of uniform selection policy. The uniform selection policy performs worst
because it does not learn anything and only randomly chooses actions, which
could induce only cost at some time steps. In addition, we also compare the
gaps among all three policies over time. Figure 10(b) shows that both Algo-
rithms 3 and 4 increase their leads in general on aggregate utilities compared
with uniform selection policy. We can conclude that both Algorithms 3 and 4
enable the defender to identify effective defense policies when utility functions
are unknown.

In fact, to achieve observations that do not include false positives, IDS alerts
should firstly be examined and correlated by security analysts. It takes some time
to generate the confirmed alerts. Therefore, we consider the defender uses the
observations several time steps ago. In the following simulations, the observations
received by the defender are subject to delays of 4/8 time steps. In particular.

Algorithm 4. Point-based Q-FPL for ACD
...

18: At = A
19: for a ∈ A do
20: if any i ∈ ar such that si ∈ ot and si = 0 then
21: At = A \ {a};
22: else
23: if any si ∈ ot and si = 1 but i 
∈ ar then
24: At = A \ {a};
25: end if
26: end if
27: end for
...
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(a) (b)

Fig. 10. (a) shows the aggregate utilities of three policies; (b) shows the gaps of aggre-
gate utilities between Algorithms 3, 4 and uniform selection policy without observation
delays. (from [67], page 107)

From the results, we can see that as delays increase, the leads of Algorithms 3
and 4 get decrease (Figs. 11 and 12).

We further discuss the differences between Algorithms 3 and 4 via evaluation
results. First, Algorithm 4 outperforms Algorithm 3 in terms of aggregate utili-
ties. Second, the gaps between Algorithms 3 and 4 enlarge but the gaps between
their slops reduce as time goes by. To explain the differences, we have some con-
jectures based on the intuitions of the algorithms. First, the customized Algo-
rithm4 eliminates the actions that conflict with the current observation. Notice
that the observation has no-false-positive feature. That is, the defender would
not reimage clean machines. So it performs better than Algorithm 3. Second,
Algorithm 4 might suffer from the false negatives induced by the observations;

(a) (b)

Fig. 11. (a) shows the aggregate utilities of three policies; (b) shows the gaps of aggre-
gate utilities between Algorithms 3, 4 and uniform selection policy with 4 time steps
delay.
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(a) (b)

Fig. 12. (a) shows the aggregate utilities of three policies; (b) shows the gaps of aggre-
gate utilities between Algorithms 3, 4 and uniform selection policy with 8 time steps
delay.

i.e., clean machines in the current observation are already compromised when
the new action is taken. Then the available action set At for Algorithm 4 might
not contain optimal action at time step t while Algorithm 3 does not rule out
any action at any time. Therefore, as time goes by, the advantage of Algorithm4
might decrease.

6 Conclusion

This chapter designs, analyzes and evaluates effective ACD schemes which inte-
grate reinforcement learning with MTD techniques. We first design an reinforce-
ment learning algorithm against zero-day strategic attacks where the interac-
tions between such an attacker and a defender are modeled as a non-cooperative
game. The proposed algorithm allows the players to identify Nash equilibrium
where each player only uses its own deployed actions and its received utility
values in recent history. We next propose an adaptive defense against zero-day
non-strategic random attacks where the attacker chooses its actions by following
predetermined probability distribution. The proposed algorithm can guarantee
that the regret is upper bounded by a logarithmic function of the number of
defense cycles no matter what probability distributions the attacker follows. We
finally propose reinforcement learning algorithms to defend against a kind of
attacks which exploit combinations of multiple known or zero-day vulnerabili-
ties to compromise machines in a network. The simulation results confirm that
our algorithms enable the defender to identify effective defense policies when
utility functions are unknown.
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Abstract. Moving Target Defense (MTD) has the potential to increase
the cost and complexity for threat actors by creating asymmetric uncer-
tainty in the cyber security landscape. The tactical advantages that MTD
can provide to the defender have led to the development of a vast array
of diverse techniques, which are designed to operate under different con-
straints and against different classes of threats. Due to the diverse nature
of these various techniques and the lack of shared metrics to assess their
benefits and cost, comparing multiple techniques is not a trivial task. We
addressed this gap by designing a framework to enable a uniform app-
roach to the analysis and quantification of MTD techniques. This frame-
work looks at each MTD technique in terms of the attacker’s knowledge
it is capable of compromising, thus enabling direct comparison of any
two techniques or set of techniques.

1 Introduction

Moving Target Defense (MTD) offers a great potential in turning the typical
asymmetry of the cyber security landscape in favor of the defender [13], and
many different techniques have been developed since the term first surfaced in
the literature. However, each of these techniques only addresses a narrow sub-
set of potential attack vectors and different techniques tend to measure their
effectiveness in different and often incompatible ways. Additionally, in order to
provide a comprehensive security solution, multiple MTD mechanisms should be
jointly deployed, but solving this problem requires the development of methods
for selecting an optimal subset of available techniques. Although several surveys
have identified scenarios where certain MTDs might not work well together [22],
or give a qualitative estimate of their effectiveness and cost [10], a quantitative
framework that can accommodate any existing or future MTDs is still needed for
this area of research to progress beyond specialized, isolated solutions. To address
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this pressing need, we have developed a novel framework that captures, through
probabilistic measures, the relationships between available MTDs and the infor-
mation such MTDs are intended to protect from attackers [7]. Our model also
captures the relationships between services, their weaknesses, and the knowledge
required to exploit such weaknesses. Using this model, we can probabilistically
estimate the effectiveness of any given technique or set of techniques, regardless
of how they operate. Indeed, the capability to quantify MTD techniques is crit-
ical to effectively support the control and game theoretic approaches discusses
in Chaps. 1, 2, 3, and 6 of this books.

Our framework presents the following desirable attributes: (i) generality
– the relationships between MTDs and the knowledge they protect defines an
interface that enables to plug any MTD into the framework; (ii) extensibility
– the model can be extended to accommodate future MTDs by introducing
new elements, such as additional knowledge blocks or classes of weaknesses; (iii)
resilience – as the framework addresses generic classes of weaknesses rather
than specific vulnerabilities, the model can address both known and unknown
(zero-day) attacks; (iv) usability – the framework is simple and intuitive, can
be used to compute utility estimates at different levels of granularity, and can
incorporate cost in the estimation of utility.

The remainder of the chapter is organized as follows. Section 2 discusses
related work. Section 3 briefly discusses the threat model and our assumptions.
The proposed framework is presented in detail in Sect. 4 using a simple running
example, whereas a more complex case study is considered in Sect. 4.3. Then,
Sect. 5 discusses two practical applications of the proposed model, and Sect. 6
discusses two other important aspects of the problem, namely the probability of
attack success and the optimal reconfiguration rate of an MTD. Finally, Sect. 7
gives some concluding remarks and discusses potential future work.

2 Related Work

Many different metrics have been proposed to measure the effectiveness of MTDs,
such as attacker’s success rate [4], or metrics for deception, deterrence, and
detectability [12]. Still others utilize multiple metrics (productivity, success, con-
fidentiality, and integrity) for both the attacker and the defender [23], leading to
confusion over the multiple dimensions. However, the majority of these tech-
niques are designed to protect systems against a very narrow set of attack
vectors such as SQL injection [2], data exfiltration [20], and distributed DoS
attacks [15,16]. One expert survey provides a thorough assessment of the effec-
tiveness and cost of many techniques across the spectrum of existing MTDs [10],
but the survey is qualitative in nature and potentially subject to reviewer’s bias.

Cai et al. [3] developed a performance evaluation and comparison model for
existing MTDs based on stochastic Petri Nets. Although more general than most
existing approaches, this model still has some limitations, as the authors focus
on MTD techniques that can be deployed on a web server, whereas the model
we present in this chapter is agnostic of the specific nature of the hosts being
defended or the MTDs being deployed.
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Our work leverages existing work on attack graphs [14], particularly those
approaches that evaluate security by looking at how the probability of a success-
ful attack propagates over an attack graph [21]. The TREsPASS project1 pro-
vides a holistic view of an organization’s information security risk. It provides a
visualization framework that combines the impact of vulnerability exploitation,
physical security breach and social engineering on the target organization. This
framework can be used to analyze several properties of multi-step attacks such
as the required effort or time, and likelihood of success. However, attack graphs
cannot be readily used with every MTD, as they are often tied to specific vulner-
abilities. In fact, several MTDs can drastically alter a system’s attack surface,
requiring to generate an entirely new attack graph every time the MTD changes
the system’s configuration, which is not feasible in practice. To address this
limitation, our framework operates at a higher level of abstraction, and models
general classes of weaknesses rather than implementation-specific vulnerabilities.

3 Threat Model and Assumptions

The general nature of our model lets us make very broad, worst-case assumptions
about the cyber threats we are trying to protect against. In particular, we assume
that attackers can exploit any known attack vector and can potentially discover
zero-day vulnerabilities. Most techniques described in the literature only protect
against a narrow subset of possible attacks and no single MTD can protect
against all possible attack vectors. This is handled in our model by offering the
capability of combining multiple MTDs in a defense-in-depth approach.

We also make the worst-case assumption that no static defense can prevent an
attack, as the attacker has virtually unlimited time to plan and execute an attack
and zero-day exploits can always evade static defenses. Only the deployment of
MTDs may have an effect on the attacker’s success rate, and even when MTDs
are deployed, there is a residual probability of attacker’s success, as no MTD is
perfect and capable of completely preventing an attack.

We assume that attackers can be stopped or at least delayed by preventing
them from acquiring accurate knowledge about the target system. Our primary
focus here is on the reconnaissance phase, when that knowledge is gathered prior
to planning and executing attacks. Our goal can be achieved by either preventing
attackers from accessing that knowledge or delaying them until that knowledge
is no longer useful.

Finally, we make several additional simplifying assumptions throughout the
chapter that we summarize here. Future work will allow us to revise many of our
assumptions in order to further generalize our approach. We assume that ser-
vices and weaknesses are time-invariant, thus no services are added or removed
over time. We also assume that both services and knowledge blocks are inde-
pendent of one another, but our framework could be easily extended to handle
multiple interdependent services. We currently assume that each MTD has a
predefined optimal configuration of its parameters, and that, if multiple MTDs
1 http://www.trespass-project.eu.

http://www.trespass-project.eu
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affect a knowledge block, they do not interact and only the most effective one is
considered.

4 MTD Quantification Framework

In this section, we present the proposed quantification framework, which, as
shown for the motivating example of Fig. 1, consists of four layers: (i) a time-
invariant service layer representing the set S of services to be protected; (ii) a
weakness layer representing the set W of general classes of weaknesses that
may be exploited; (iii) a knowledge layer representing the set K of all possible
knowledge blocks required to exploit those weaknesses; and (iv) an MTD layer
representing the set M of available MTD techniques.

S1
SQL DB

W1
SQL 

Injec on

W2
Buffer 

Overflow

M1
Service 

Rota on

M2
IP Rota on

M3
ASLR

K2
Knows(IP)

K1
Knows(service)

K3
Knows(memory)

Layer 4
MTD

Layer 3
Knowledge

Layer 2
Weakness

Layer 1
Service

Fig. 1. Quantification framework layers

4.1 Mathematical Model

The proposed MTD quantification framework can be formally defined as a 7-
tuple (S ,RSW ,W ,RWK ,K ,RKM ,M ), where: (i) S , W , K , M are the sets
of services, weaknesses, knowledge blocks, and MTD techniques, respectively;
(ii) RSW ⊆ S × W represents relationships between services and the common
weaknesses they are vulnerable to; (iii) RWK ⊆ W ×K represents relationships
between weaknesses and the knowledge blocks required for an attacker to exploit
them; and (iv) RKM ⊆ K × M represents relationships between knowledge
blocks and the MTD techniques that affect them. The proposed model induces
a k-partite graph, with k = 4, G = (S ∪ W ∪ K ∪ M ,RSW ∪ RWK ∪ RKM ).

4.1.1 Layer 1: Service Layer
The first layer represents the set S of services we wish to protect against attacks.
We assume that the services are time-invariant, i.e., the functionality of the
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services does not change over time, and services cannot be taken down to prevent
attacks, as this action would result in a denial-of-service condition. We only
consider one service in the case studies presented in this chapter, but the model
can be easily extended to consider multiple interdependent services, similarly
to how a chain of interdependent vulnerability exploits is modeled in an attack
graph [14,21].

4.1.2 Layer 2: Weakness Layer
The second layer represents the set of weaknesses W that services are vulnerable
to. We choose general classes of weaknesses rather than specific vulnerabilities
because there are too many vulnerabilities to enumerate, some vulnerabilities
are unknown, and, depending on the MTD used (e.g., OS rotation), specific
vulnerabilities may change over time. Using general classes of weaknesses when
building the model makes them time-invariant.

The examples used in this chapter draw these weaknesses primarily from
MITRE’s Common Weakness Enumeration (CWE) project [6], particularly from
those known as the “Top 25 Most Dangerous Software Errors.” Although many
of the top software errors are primarily the result of bad coding practices and
better solved at development time, the top software errors enabling exploits such
as SQL Injection, OS Injection, and Classic Buffer Overflow can be addressed
at runtime by MTDs (e.g., SQLRand) and make for good general categories
of weaknesses. The Microsoft STRIDE Threat Model [11] has also been used
as a source of general threats in MTD research [19] and can fill in areas where
CWE may be lacking. For example, Information Disclosure (eavesdropping) and
Denial of Service are not specifically addressed by CWE. The example of Fig. 1
shows two weaknesses, SQL Injection and Buffer Overflow. More weaknesses,
such as OS Injection, might be included in a more complex example, while other
weaknesses, such as Cross-Site Scripting, would not be applicable to this service.

4.1.3 Layer 3: Knowledge Layer
The third layer represents the knowledge blocks K required to effectively exploit
weaknesses. An attacker may need some of this knowledge (such as a victim’s IP
address) to plan an attack even when no MTD is deployed, whereas other knowl-
edge blocks may be specifically required to attempt circumventing a deployed
MTD. For example, SQLRand [2] adds a keyword to SQL commands, which
must be known for a malicious user to perform SQL injection. We assume that
knowledge blocks are independent and must be acquired using different methods.
For instance, IP address and port number should not be modeled as separate
knowledge blocks because a method to determine one would also reveal the other.

The relationship between the knowledge and weakness layers is many-to-
many. A weakness may require several pieces of knowledge to be exploited, and
a knowledge block may be key to exploiting several weaknesses. This layer may
also be extended as new MTDs – disrupting new and different aspects of an
attacker’s knowledge – are developed.
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In our example, we assume that, in order to execute a SQL Injection attack,
the attacker must gather information about the service (e.g., name and version
of the specific DBMS) and the network configuration (e.g., IP address). In order
to execute a Buffer Overflow attack, an attacker must know the IP address
and some information about the vulnerable memory locations. A higher-fidelity
version of this model may take a knowledge block and break it down into smaller,
more specific items that are specifically targeted by available MTDs.

4.1.4 Layer 4: MTD Layer
The fourth layer of the model represents the set M of available MTDs. As MTD
techniques provide probabilistic security, we model the impact of an MTD Mi

on the attacker’s effort to acquire knowledge Kj by associating a probability
Pi,j – representing the attacker’s success rate – with the relation (Kj ,Mi). As
mentioned in Sect. 3, when only static defenses are deployed (i.e., no MTD), an
attacker will acquire the necessary knowledge without significant effort, which
we model by associating a probability of 1.

For example, if technique M1 in Fig. 1 (Service Rotation) reduces an
attacker’s likelihood of acquiring knowledge block K1 (i.e., correct version of
the service) by 60%, we would label that edge with P1,1 = 0.4. If an MTD delays
an attacker by some factor, we can also express that as a probability that the
attacker will not gather the correct information in a timely manner. For exam-
ple, an MTD that expands addressable memory by a factor of 10 might reduce
the attacker’s probability of success to 0.1, so Pi,j = 0.1. The exact methodol-
ogy for determining the value of Pi,j may vary from MTD to MTD, and we are
investigating this problem as a separate line of research. Although this aspect of
the problem goes beyond the scope of this chapter, we provide a brief discussion
and some details in Sect. 6.1. Specifically, we are developing a general approach
to model the tradeoff between cost and effectiveness of MTD techniques, as we
vary the values of a technique’s tunable parameters and other aspects of the
attacker/defender interaction. Ultimately, this approach will enable us to iden-
tify the optimal configuration for each technique. Therefore, in this chapter,
we assume that such optimal configuration has already been identified for each
available MTD technique, along with the corresponding value of Pi,j and the
corresponding cost.

Expressing MTD effectiveness in terms of the probability an attacker will suc-
ceed in acquiring required knowledge enables us to analyze multiple techniques
using a uniform approach, with a theoretically perfect MTD yielding Pi,j = 0,
and a completely ineffective MTD yielding Pi,j = 1. In our example, we use ser-
vice rotation to disrupt knowledge about the version of the service, and assume
that rotating between 4 services reduces the attacker’s probability of gathering
the correct information to P1,1 = 0.25. We apply an IP address rotation scheme
to mask the victim’s IP address. It has been shown that perfect shuffling reduces
the attacker’s likelihood of guessing the correct IP address by 37% [4]. Using a
conservative estimate, we assume P2,2 = 0.75. Finally, to protect knowledge of
the memory layout, we use a dynamic ASLR scheme. Although dynamic ASLR
only adds a single bit of entropy compared to typical ASLR [18], this further
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delays the attacker, resulting in a probability P3,3 = 0.5 of gathering the correct
information.

4.2 Computing MTD Effectiveness

We compute an MTD’s effectiveness starting from layer 4 of the model and work-
ing our way down the layered model to find the overall probability of attacker’s
success. First, we define P (Kj) as the probability that the attacker has the cor-
rect information about knowledge block Kj , and compute P (Kj) for each Kj in
layer 3, based on the active MTDs deployed to protect Kj . If there is no active
MTD, we assume that the attacker is guaranteed to obtain that information,
i.e., P (Kj) = 1.

In our example, each knowledge block is affected by one MTD only. When
multiple MTDs affect the same knowledge block, we make the simplifying
assumption that the resulting effect is driven by the best-performing MTD.
Thus:

P (Kj) =

{
1, if �Mi ∈ M s.t. (Kj ,Mi) ∈ RKM ∧ active(Mi)

min
Mi∈M s.t. (Kj ,Mi)∈RKM

Pi,j ∧ active(Mi), otherwise (1)

A possible improvement to the model would be to capture the effect of mul-
tiple MTDs acting on the same knowledge block by using a function modeling
either diminishing returns or some other interaction between MTDs.

Next, we determine the probability P (Wk) that an attacker has gained all
the knowledge required to exploit a given weakness Wk. Since each knowledge
block is independent, this is simply the product of the probabilities associated
with all knowledge blocks enabling P (Wk), as shown by Eq. 2.

P (Wk) =
∏

Kj∈K s.t. (Wk,Kj)∈RWK

P (Kj) (2)

In our example, when calculating P (W1) and P (W2) for SQL Injection and
Buffer Overflow, respectively, we obtain P (W1) = 0.25 · 0.75 = 0.1875 and
P (W2) = 0.75 · 0.50 = 0.375.

Finally, we determine the defender’s utility U gained by deploying MTD tech-
niques based on the reduced probability of exploit for each class of weaknesses.
In this work, the utility is defined as a function of the probability P (Sl) that an
attacker can compromise a service Sl by exploiting any of the weaknesses leading
to it. P (Sl) can be computed as the probability of the union of non-mutually
exclusive events, using the Inclusion-Exclusion Principle [5]. With respect to our
running example, P (S1) can be computed as follows:

P (S1) = P (W1 ∪ W2) = P (W1) + P (W2) − P (W1 ∩ W2) (3)

As W1 and W2 are not necessarily independent (as shown in this example),
we cannot assume P (W1 ∩ W2) = P (W1) · P (W2). Instead, we must express
each P (W ) in terms of its corresponding independent knowledge blocks Kj ,
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that is P (W1) = P (K1) · P (K2), P (W2) = P (K2) · P (K3), and P (W1 ∩ W2) =
P (K1) · P (K2) · P (K3), and then express P (S1) as a function of probabilities
P (Kj):

P (S1) = P (K1) · P (K2) + P (K2) · P (K3) − P (K1) · P (K2) · P (K3)

which results in

P (S1) = 0.25 · 0.75 + 0.75 · 0.5 − 0.25 · 0.75 · 0.5 = 0.469

For graphs with 3 or more weaknesses W ∗ ⊆ W , we can expand Eq. 3 to the
generalized form of the Inclusion-Exclusion Principle [5]:

P

( ⋃
Wk∈W ∗

Wk

)
=

|W ∗|∑
i=1

⎛
⎝(−1)i−1 ·

∑
W ′ ∈2W s.t. |W ′ |=i

P

⎛
⎝ ⋂

Wj∈W ′
Wj

⎞
⎠

⎞
⎠

Computing the probability of the union of multiple events is an NP-hard
problem that cannot be solved in better than O(2n) time [5]. However, the
general nature of the weaknesses in layer 2 of the model limits their number –
as opposed to vulnerabilities which may number in the thousands – keeping the
computing time manageable.

After computing P (Sl), we can easily compute the defender’s utility as
U = 1−P (Sl). Besides this simple approach, the utility could be a sigmoid func-
tion of P (Sl) with an inflection point centered around a desired effectiveness.
Such functions are commonly used in autonomic computing [1]. The complete
computation for each of the values in our example is shown in Fig. 2. Note that
this choice of utility function relies upon the expectation that at least some mea-
sure of protection will be guaranteed for at least one knowledge block for each
weakness, otherwise the attacker will be guaranteed to exploit that weakness and
reduce the utility to 0. To handle this issue, utility can be defined as a function
of the probabilities to exploit each weakness.
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SQL DB
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SQL 

Injec on

W2
Buffer 

Overflow

MTD1
Service 

Rota on

MTD2
IP Rota on

MTD3
ASLR
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Knows(IP)
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Knows(service)

K3
Knows(memory)

P1,1 = 0.25 P2,2 = 0.75 P3,3 = 0.5

P(W2) = 0.375P(W1) = 0.188

P(S1) = 0.469
U = 0.531

P(K1) = 0.25 P(K2)= 0.75 P(K3)= 0.5

Fig. 2. Computing MTD effectiveness
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4.3 Evaluation

We now present a more complex example to demonstrate the capabilities of our
model. As seen in Fig. 3, we consider the same basic service but protect against
two additional classes of weaknesses, OS Injection [6] and Eavesdropping (related
to Information Disclosure from the STRIDE model [11]).

In this case study, more fine-grained knowledge blocks have been considered
in order to provide more detail or to fit the specific MTDs selected for the case
study. For example, knowledge block Knows(memory) has been broken down
into separate blocks related to system call mapping, memory address, and stack
direction. Similarly, SQL Injection now explicitly requires knowledge of keywords
appended to SQL commands and some knowledge of the database schema, both
of which are protected by SQLRand. Most importantly, we can now observe the
many-to-many relationships between weaknesses, knowledge blocks, and MTDs,
and conclude that finding the optimal solution is no longer trivial. However, using
approximate yet reasonable values of Pi,j for each MTD and cost constraints,
we can determine the final utility as a function of selected MTDs using the steps
previously shown and find an optimal solution using a problem solving method,
such as stochastic hill climbing or evolutionary methods.
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P(Wk) = probability of a acker having all required knowledge (exploit occurs)

Fig. 3. Case study quantification framework

As a proof of concept, we can take the model in Fig. 3 and perform all the
necessary computations programatically. As mentioned earlier, we are studying
the relationship between cost and effectiveness of MTD techniques as part of
another line of research. For the purpose of this chapter and the evaluation we
are presenting, we obtained qualitative values of Pi,j and cost from an expert
survey [10], which estimates the relative effectiveness and cost of several MTD
techniques by grouping them into coarse-grained categories of Low, Medium, or
High. Whether or not an MTD is active can be treated as a Boolean variable,
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with inactive MTDs implying an attacker’s probability of success of 1 and a cost
of 0. The values from a sample MTD setup are shown in Table 1. The interim
calculations for the probabilities of each knowledge block being acquired and
each weakness being potentially exploited are also shown.

5 Applications

In these section, we discuss two different applications of our framework, showing
how it can be used to compare different MTDs and to select optimal sets of
MTDs to be jointly deployed.

Table 1. Sample case study evaluation

MTD Pi, j Cost Active? Pi, j (effective) Cost (effective)
M1 (Service Rotation) P1,1 0.500 15 No 1.000 0
M2 (Intrusion Tolerant Systems) P2,1 0.900 25 No 1.000 0

P2,4 0.900 1.000
P2,5 0.900 1.000

M3 (SQLRand) P3,2 0.300 20 No 1.000 0
P3,3 0.300 1.000

M4 (IP Rotation/MOTAG) P4,4 0.900 25 No 1.000 0
M5 (OS Rotation) P5,5 0.700 15 No 1.000 0
M6 (Mutable Networks) P6,4 0.500 20 Yes 0.500 20

P6,10 0.500 0.500
M7 (Multivariant Systems) P7,6 0.500 20 No 1.000 0

P7,8 0.500 1.000
M8 (ASLR) P8,7 0.500 10 Yes 0.500 10
M9 (TALENT) P9,5 0.500 20 No 1.000 0

P9,9 0.500 1.000
M10 (Reverse Stack Execution) P10,8 0.500 20 No 1.000 0
M11 (Distraction Cluster) P11,10 0.500 20 No 1.000 0

Knowledge: Total Cost 30
Knows(application) 1.000 Total Budget 120
Knows(keyword) 1.000
Knows(DBschema) 1.000 Cost:
Knows(IP) 0.500 High 25
Knows(OS) 1.000 Medium 15
Knows(syscall mapping) 1.000 Low 5
Knows(mem address) 0.500
Knows(stack dir) 1.000 Effectiveness:
Knows(instr set) 1.000 High 0.3
Knows(path) 0.500 Medium 0.5

Low 0.9
Chance of attack success:
SQL Injection 0.500
OS Injection 0.250
Buffer Overflow 0.250
Easvesdropping 0.250

Chance of attacker success: 0.500
Utility 0.500
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5.1 Comparing MTDs

Given a set M of MTD techniques, we want to identify the technique that
provides the highest overall utility. With respect to the example of Fig. 3, we start
from the baseline deployment, shown earlier in Table 1, including M6 (Mutable
Networks) and M8 (ASLR) to ensure we have a utility value to compare with.
We then measure the updated utility value after individually adding each of the
other MTDs to our baseline deployment. From the results reported in Table 2,
we find that M3 (SQLRand) offers the greatest increase in utility, with M1, M2,
and M3 being the only ones offering any increase at all. To explain these results,
we observe that there is a lower bound on P (S1) that translates into an upper
bound on U , defined by max(P (W1), P (W2), P (W3), P (W4)).

In other words, the overall defense can only be as strong as the protection
against exploitation of its most vulnerable weakness, which in turn benefits from
the deployment of multiple MTDs. Therefore, given the baseline conditions, only
an MTD that affects the most vulnerable weakness will yield any improvement
in our utility value. This procedure could be used iteratively in an attempt to
find an optimal solution in a greedy manner, but there would have to be some
way to handle cases where no MTD adds any utility (such as random selection).

Table 2. Improvement from adding MTDs

MTD M1 (service rotation) M2 (intrusion tolerant systems) M3 (SQLRand) All others

Utility 0.5625 0.513 0.614 0.5

Delta 0.0625 0.013 0.114 0.0

5.2 Selecting Optimal Defenses

Given a set M of MTDs and a budget, we would like to select the optimal set
of MTDs that yield the highest utility with a total cost within the budget. As
we now have a tool to evaluate the utility of any MTD deployment, we can
also solve for the optimal selection of MTDs, given the constraints that the
deployment of each MTD is a Boolean variable (either active or not) and that
the sum of the costs of selected MTDs be under our budget. For the purpose
of evaluating our framework and making the problem interesting, we selected
a value of the budget (120) halfway between 0 and the total cost of deploying
all available MTDs (i.e., 210) in the example of Fig. 3. This choice ensured that
a solution with utility greater than 0 would be found and that approximately
half the MTDs would be chosen as part of the optimal solution. We solved using
the generalized reduced gradient non-linear algorithm [17] with random restarts
to avoid finding local maxima. After solving, we obtained the solution shown in
Fig. 4, with the selected MTDs highlighted with a thicker red outline. Detailed
results, including margins of error for our estimates of effectiveness, are shown
in Table 3.
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We can observe that our choice of a utility function forces the selection of
a variety of MTDs such that each weakness has at least one MTD protecting
one of its knowledge blocks and that protection is evenly distributed over the
4 weaknesses. Visually, we can also observe that an MTD with the ability to
protect multiple knowledge blocks is inherently more powerful than one that
only protects one. However, if its cost is too high or effectiveness too low, it
will still not be chosen as part of an optimal solution. Similarly, an MTD that
only protects one knowledge block may be chosen if it is effective, low-cost, or
affects a knowledge block that still receives relatively weak protection from other
MTDs.
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Fig. 4. Case study optimal configuration

6 Discussion

6.1 Analysis of Attack Success Probability

Estimating the time required for an attacker to gather sufficient knowledge dur-
ing the reconnaissance phase is critical to assess the attacker’s ability to success-
fully compromise a system. As our focus is on disrupting an attacker’s recon-
naissance effort, we can – without loss of generality – define the probability that
an attacker succeeds as the probability to gather sufficient information to plan
and execute an attack, which in turn is a function of the time available to com-
plete the reconnaissance phase. In other words, we are implicitly assuming that,
once accurate information is available to the attacker, the attack will always
be successful. The probability Ps(t) that an attacker succeeds in t time units
is important in determining the required reconfiguration rate, i.e., the rate at
which resources needs to be reconfigured by an MTD mechanism.
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Table 3. Case study optimal configuration

PDTM i, j C Active? Pi,j (effective) C (effective)
M1 (Service Rotation) P1,1 0.500 ± 0.05 15 Yes 0.500 ± 0.05 15
M2 (Intrusion Tolerant Systems) P2,1 0.900 ± 0.05 25 No 1.000 0

P2,4 0.900 ± 0.05 1.000
P2,5 0.900 ± 0.05 1.000

M3 (SQLRand) P3,2 0.300 ± 0.05 20 Yes 0.300 ± 0.05 20
P3,3 0.300 ± 0.05 0.300 ± 0.05

M4 (IP Rotation/MOTAG) P4,4 0.900 ± 0.05 25 No 1.000 0
M5 (OS Rotation) P5,5 0.700 ± 0.05 15 No 1.000 0
M6 (Mutable Networks) P6,4 0.500 ± 0.05 20 Yes 0.500 ± 0.05 20

P6,10 0.500 ± 0.05 0.500 ± 0.05
M7 (Multivariant Systems) P7,6 0.500 ± 0.05 20 Yes 0.500 ± 0.05 20

P7,8 0.500 ± 0.05 0.500 ± 0.05
M8 P)RLSA( 8,7 0.500 ± 0.05 10 Yes 0.500 ± 0.05 10
M9 (TALENT) P9,5 0.500 ± 0.05 20 Yes 0.500 ± 0.05 20

P9,9 0.500 ± 0.05 0.500 ± 0.05
M10 (Reverse Stack Execution) P10,8 0.500 ± 0.05 20 No 1.000 0
M11 (Distraction Cluster) P11,9 0.500 ± 0.05 20 No 1.000 0

Knowledge: Total Cost 105
Knows (1,application) 0.500 ± 021tegduBlatoT50.0
Knows (1,keyword) 0.300 ± 0.05
Knows (1,DBschema) 0.300 ± 0.05 Cost:
Knows (1,IP) 0.500 ± 0.05 High 25
Knows (1,OS) 0.500 ± 0.05 Medium 15
Knows (1, syscall mapping) 0.500 ± 0.05 Low 5
Knows (1, Mem Address) 0.500 ± 0.05
Knows (1,stack dir) 0.500 ± 0.05 Effectiveness:
Knows (1,instr set) 0.500 ± 0.05 High 0.3 ± 0.05
Knows (1,path) 0.500 ± 0.05 Medium 0.5 ± 0.05

Low 0.9 ± 0.05
Chance of attack success:
SQL Injection 0.023 ± 0.006
OS Injection 0.063 ± 0.013
Buffer Overflow 0.063 ± 0.013
Easvesdropping 0.250 ± 0.035

Chance of attacker success: 0.313 ± 0.043
Utility 0.687 ± 0.043

Figure 5 shows two examples of Ps(t), namely, linear and exponential func-
tions. The linear function, Ps(t) = t/Ts, indicates that the probability of attack
success increases linearly with time and reaches 1 (i.e., success) at time Ts. The
exponential function (see for instance Eq. 4) indicates a situation in which the
attacker initially accumulates knowledge at a low rate and then becomes expo-
nentially more knowledgeable over time and succeeds at time Ts.

Ps(t) = 1 − 1 − e(t−Ts)

1 − e−Ts
. (4)
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As an example, consider an IP sweep combined with a port scan, where the
attacker’s goal is to discover the IP address of the machine running a specific
service within the target network. The attack consists in sequentially scanning
all IP addresses in a given range. Assuming an IP space of n addresses and
that t∗ time units are required to scan a single IP, we obtain Ts = n · t∗ and
Ps(t) = t

Ts
= t

n·t∗ . As another example, consider the following DoS attack. The
attacker initially compromises n hosts, which takes t∗ time units. Then, each
of the newly compromised hosts compromises additional n hosts, which takes
additional t∗ time units. At any given time t, the total number of compromised
hosts, including the attacker’s machine, is N(t) = 1+n+n2+ . . .+nk = 1−nk+1

1−n ,
where k = �t/t∗�. We can assume that the attacker’s success probability is
proportional to the aggregate amount of flood traffic that compromised hosts
can send to the victim, compared to the victim’s capacity to handle incoming
traffic. Let V denote the volume of traffic the victim can handle per time unit
and let v denote the amount of traffic each compromised node can send per time
unit. Then,

Ps(t) = min
{

1,
N(t) · v

V

}
= min

{
1,

v

V
· 1 − n�t/t∗�+1

1 − n

}

6.2 Optimal Reconfiguration Rate

As mentioned earlier, we assume that each MTD is deployed with its own prede-
fined optimal configuration. However, we could relax this assumption and further
generalize the framework in order to enable network administrators to not only
find an optimal set of MTDs but also configure them optimally.

The most critical configuration parameter for any MTD is the reconfigura-
tion frequency α, that is the frequency at which the value of a given parameter
(e.g., IP address in IP hopping) is updated. In [8], we presented a quantitative
analytic model for assessing the performance of MTDs in terms of availability of
the resources being periodically reconfigured. In fact, while a resource is being
reconfigured, it is not available to handle service requests, thus impacting over-
all system performance. Based on this model, we also developed a method to

Fig. 5. Probability of success Ps vs. time for Ts = 10
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determine the reconfiguration rate that minimizes the attacker’s probability of
success while meeting performance and stability constraints. Choosing the opti-
mal value of α is a critical problem: in fact, as shown in Fig. 6, a larger value
of α may cause peaks in the system’s response time, whereas a lower value may
not provide enough security.

Fig. 6. Number of available resources and response time

6.3 Extending the Framework

Our framework can accommodate any existing MTD as long as we can identify
the knowledge blocks it affects, the extent to which it disrupts that knowledge,
and how it relates to the weaknesses we plan to protect against. Another impor-
tant feature of our framework is the ability to be extended to accommodate any
future MTD that may be developed. A new MTD that affects existing knowl-
edge blocks may be simply added to the MTD layer of the model, while an MTD
that works in ways we have not yet considered might also require the addition
of new knowledge blocks. Even a new class of weaknesses could be added to the
model if the situation warrants it, making our model “future-proof” against new
developments in cyber threats.

7 Conclusions and Future Work

In this chapter, we have discussed a framework for quantifying moving target
defenses. Our approach to quantifying the benefits of MTDs yields a single,
probability-based utility measure that can accommodate any existing or future
MTD, regardless of their nature. Our multi-layered approach captures the rela-
tionship between MTDs and the knowledge blocks they are designed to protect,
and the relationship between knowledge blocks and generic classes of weaknesses
that can be exploited using that knowledge. We have shown through case stud-
ies that we can compute the joint effectiveness of multiple MTDs as a function
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of their individual effectiveness and, by doing so, we can make informed deci-
sions about which MTD or set of MTDs provide better protection based on the
security requirements or cost constraints.

Although the work presented in this chapter represents a significant step
towards effective MTD quantification, several limitations still exist and will be
addressed as part of our planned future work. Specifically, limitations exist in the
following areas: (i) probability computation – our methods for computing the
probability Pi,j provide rough estimates, so a procedure needs to be developed
to accurately assess the effectiveness of any MTD; (ii) cost modeling – cur-
rently, we adopt a very simple notion of cost, and use cost just as an additional
constraint, whereas a more sophisticated notion of cost could be introduced and
taken into account in the computation of utility values; and (iii) choice of util-
ity function – the proposed utility function is based on the assumption that
all weaknesses need to be at least partially protected by MTDs to prevent the
utility from dropping to 0, therefore, if the risk of leaving a specific weakness
unprotected can be accepted, other classes of utility functions could be explored.
To address these limitations and further refine our model, we plan to work on
several aspects of the framework, as briefly described below.

Implementation and Validation. To validate the model, we plan to deploy
multiple MTDs on our computing infrastructure and then study their effective-
ness both in isolation – in order to determine the value of Pi,j for each MTD –
and jointly – in order to accurately study the combined cost and performance.
Preliminary experiments along this line of research were presented in [9].

Application to Multiple Attack Phases. Our model aims at disrupting an
attacker’s knowledge in the reconnaissance phase of the cyber kill chain. While
this may be the most cost-effective way to approach cyber security, no defense
is perfect, and we need to ensure multiple layers of defense. Some MTDs can
disrupt an attacker’s ability to maintain a foothold in the system, so we plan to
extend our framework to model this additional class of MTDs.

Application to Dependent Services. Our framework currently models only
independent services. Similar to attack graphs, an attacker may need to execute
a sequence of exploits to reach a specific goal. Thus, we plan to extend our
framework by introducing a meta-model that captures the relationships between
services and the MTDs that can protect them from multi-step attacks.

Heuristics. Because of the O(2n) runtime to evaluate utility with the current
model, it may be necessary to develop heuristics to speed up the evaluation in
the case that the number of weaknesses grows to the point where using the model
becomes infeasible.

Confidence Intervals. Because of the level of uncertainty of our probabilistic
values, we may not have a completely accurate utility value. With enough exper-
imental samples, we could introduce confidence intervals into our assertion that
a certain MTD or set of MTDs has a higher utility.
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Abstract. Game-theoretic applications in cyber-security are often
restricted by the need to simplify complex domains to render them
amenable to analysis. In the empirical game-theoretic analysis approach,
games are modeled by simulation, thus significantly increasing the level
of complexity that can be addressed. We survey applications of this app-
roach to scenarios of adaptive cyber-defense, illustrating how the method
operates, and assessing its strengths and limitations.

1 Introduction

Strategic analysis of a cyber-security situation starts with the understanding
that attacker and defender are engaged in an adversarial interaction, driven by
(largely) opposing objectives, and armed with distinct tools for assessing and
shaping the cyber environment. Formalizing these elements almost inevitably
leads the analyst to describe the situation in game-theoretic terms: available
actions and observations of the respective actors (players), and utility functions
representing objectives. Thus, it is not surprising to observe a large expansion
of the literature on game theory applied to cyber-security,1 and an associated
increase in development of tools and applications (Manshaei et al. 2013; Roy
et al. 2010; Sinha et al. 2018).

Many game-theoretic treatments of cyber-security domains start with major
simplifications, due to the analytic complexity of high-fidelity representations of
realistic environments. Analysis of such stylized models can often shed valuable
light on a strategic situation. For example, Edwards et al. (2017) employ a coarse-
grained “blame game” model to identify qualitative considerations for deciding
how and when to attribute responsibility for suspected state-sponsored cyber-
attacks. Simplicity in modeling facilitates reasoning and allows a given model
to cover a broad class of relevant scenarios. Choosing the right abstractions to
isolate exactly the strategic issues of interest is central to the game theorist’s
art, and when done well, it can provide deep insight for decision makers.

There are two significant drawbacks to the stylized approach, however. First,
the models analyzed tend to be generic, and so do not necessarily help for

1 Including dedicated annual conferences, such as GameSec (Bushnell et al. 2018; Rass
et al. 2017a).
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determining particular solutions to specific situations. Work in the framework of
Stackelberg security games (Tambe 2011) has effectively addressed this issue, by
supporting decisions for specified problem instances rather than generic scenar-
ios. Second, for complex scenarios there is danger that the abstractions applied
may discard essential detail, and thus the resulting guidance is incomplete, or
worse—potentially misleading. Cyber-systems are inherently complex environ-
ments, typically involving numerous computationally interacting entities, with
considerable state and complicated patterns of communication and observation.
Experts familiar with the intricacies of such systems are likely to view stylized
game models as toy versions of reality, and thus take a skeptical stance to con-
clusions from such models.

Since any modeling approach will entail some abstraction of the real world,
there is no way for an analysis method to completely avoid this second drawback.
Simplification is a matter of degree, so extending game-theoretic reasoning to
accommodate greater complexity will enable the models to capture more of the
richness of realistic cyber-security situations. This is particularly important for
treatments of adaptive cyber-defense, since the dynamic evolution of configura-
tion and information is the essence of adaptation. To be considered adaptive, a
defense policy must take into account the attack state of the system, in consider-
ation of how successful attacks require a succession of actions to gain knowledge
about and eventually compromise targeted resources (Evans et al. 2011). Incor-
porating dynamics in the game model is therefore an absolute requirement for
this domain. Dynamic information in turn poses significant technical challenges
for game-theoretic methods (Tavafoghi et al. 2019).

One interesting effort to capture complex security dynamics in an abstract
game model is the FlipIt framework introduced by Dijk et al. (2013). In FlipIt,
two players vie for control of a single resource. Each has a single action, which
takes control of the resource at some cost. Neither player can observe when the
other has acted, and so is uncertain about the state of control except at the
instant it performs its own action. Though the FlipIt model is quite abstract, it
captures key elements of system security not well-supported by previous models
(Bowers et al. 2012). Analysis of FlipIt has led to interesting insights about
the interplay of various strategy classes, the value of aggressive play, and the
significance of information advantages. As a stylized model, however, the generic
version of FlipIt misses many relevant features of adaptive cyber-defense and is
not suitable for decision making in a particular situation. Extensions of FlipIt
have covered additional relevant scenario features (Farhang and Grossklags 2016;
Jones et al. 2015; Laszka et al. 2013, 2014; Pham and Cid 2012). These add to
practical realism, but seriously complicate analysis of the FlipIt game, which to
date has eluded complete analytic solution, even in its basic version.

Which brings us finally to the approach described in this chapter: empirical
game-theoretic analysis (EGTA) (Wellman 2016). Rather than build an analytic
model that may be amenable to direct game-theoretic solution, EGTA starts
with a detailed environment model described in procedural form, that is, by a
simulation. We then introduce a set of specific dynamic strategies, and systemat-
ically run simulations over combinations of these strategies. The simulation data
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form the basis for estimating a game model, which can be solved using standard
techniques.

The advantage of simulation is its ability to handle complex, stochastic, and
temporally extended scenarios. This allows us to include realistic features of
adaptive cyber-defense domains, going beyond generic and toy models. In its
iterative form, EGTA also supports exploration, allowing us to address a rich
set of strategic questions without premature simplification, such as isolating all
the key strategic variables in advance. There are also limitations, particularly
regarding the difficulty of generalizing game-theoretic conclusions beyond the
specific environments and strategy instances studied. Overall, we regard EGTA
as a complement to traditional game-theoretic treatments, which sacrifice com-
plexity for generality (within the simplified model).

2 Empirical Game-Theoretic Analysis

The general idea of EGTA is to apply game-theoretic reasoning to models derived
from agent-based simulation. The approach is designed to combine the advantage
of simulation models in accommodating complexity with principles of strategic
analysis expressible in the framework of game theory.

2.1 Basic Steps

The basic steps of EGTA are as follows, illustrated in Fig. 1.

1. Define a space of strategies for each player.
2. Simulate various combinations, or profiles, of agent strategies.
3. Induce or estimate an empirical game model from the accumulated simulated

payoff data.
4. Analyze the resulting empirical game model, for example to identify Nash

equilibria or otherwise characterize solutions of the game.

We elaborate on each step in turn.

Define Strategy Space. In EGTA, we typically constrain attention to a strict
subset of the strategies that could be implemented in principle, for example
imposing a parameterized form for strategies or adopting a particular agent

Fig. 1. Basic steps of empirical game-theoretic analysis. Feedback arrows show common
patterns for iteration.
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architecture. For this reason the available options are sometimes referred to as
heuristic strategies. Though in general, a game may have any number of players,
cyber-security games commonly focus on two: attacker (A) and defender (D).
Let SA and SD denote their respective strategy sets.

Simulate Strategy Profiles. In a cyber-security game, we would simulate
profiles (sA, sD) for various choices of sA ∈ SA and sD ∈ SD. Each simulation
yields a sample payoff vector, giving a numeric representation of the value of
the outcome received by each player from one play of the given profile. Given
stochastic factors in the simulation, we would typically require many samples of
a profile to produce a reliable estimate of the expected payoffs to A and D.

Induce Empirical Game. In the most straightforward implementation of this
step, we estimate a normal-form game model by sampling every profile s ∈
SA × SD a sufficient number of times. The payoff to player A in s, uA(s) is
simply the sample average of A’s payoffs in these simulations (and similarly
uD(s) for player D). If the strategy spaces are very large, machine learning
methods may be employed to generalize over the data to estimate payoffs for
profiles not explicitly simulated (Vorobeychik et al. 2007).2

Analyze Game Model. The goal of analysis is to calculate Nash equilibria or
another chosen solution concept, typically using off-the-shelf techniques. In the
cyber-security context, let us define a mixed profile (σA, σD), with σA ∈ Δ(SA)
a probability distribution over A’s strategy set (and similarly for σD) to be a
joint strategy where each player independently chooses a strategy according to
these distributions. Then (σA, σD) is a Nash equilibrium iff E[uA(σA, σD)] ≥
E[uA(sA, σD)] for all sA ∈ SA, and similarly E[uD(σA, σD)] ≥ E[uD(σA, sD)] for
all sD ∈ SD.

Game analysis may also include reasoning about strategic relationships, such
as dominance or ranking responses to particular opponents. Sensitivity analysis
or statistical reasoning about candidate solutions would also be included in the
game analysis step.

2.2 Iterative EGTA

It would be unusual for an EGTA study to proceed linearly according to steps
1-2-3-4 and complete. In practice, preliminary results at one step may inform
reconsideration or elaboration of work at previous steps, and so the procedure
would be iterative in nature. The key feedback links are shown in Fig. 1.

The simulation of strategy profiles (step 2) generates a collection of payoff
samples. The number of samples required may not be straightforward to deter-
mine in advance. Feedback arrows from the game induction and analysis suggest
that the results of these computations may be relevant in determining whether
the collection is adequate, and if not, where additional simulation-based sam-
pling is required. Such determination can be made on a principled basis through
2 Such generalization is also often needed for the more general case of games where

there are many players (Sokota et al. 2019; Wiedenbeck et al. 2018).
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statistical analysis (Wiedenbeck et al. 2014), considering properties of the data
collected and goals of the game analysis.

The longer feedback arrow from game analysis to strategy space represents
strategy exploration (Jordan et al. 2010). Analysis of an accurate game model
in step 4 gives us solutions to the game defined by the strategy space (SA, SD)
defined in step 1. Since SA and SD are strict subsets of the true strategy sets
available to players A and D, it is quite likely that the solutions found are not
actually equilibria of the true game. We can bolster our confidence by consid-
ering additional strategies, thus defining augmented strategy sets S′

A ⊃ SA and
S′
D ⊃ SD. Solutions to the game over strategy space (S′

A, S′
D) are not actually

guaranteed to be better approximations with respect to the full game (except in
the limit when all strategies are included), but all else equal we expect improve-
ment as more strategies are considered.

Of course, the interesting question in strategy exploration is which strategy
or strategies to add at each iteration. A natural approach is to try to improve
on the current equilibrium, by computing a best response to the other-player
strategy. It turns out that the best response is generally not the optimal strategy
to add in an iterative EGTA procedure (Jordan et al. 2010), as it does not
consider opponent strategies outside the equilibrium, and it may not diversify
the strategy set enough. Nevertheless, it is often a good heuristic, particularly if
some stochastic exploration is conducted as well.

3 Example: A Moving Target Defense Game

We illustrate the EGTA approach to cyber-security by sketching the study of
Prakash and Wellman (2015), which addressed an abstract scenario in moving-
target defense (MTD). MTD covers a broad class of adaptive defenses where
the main object is to defeat the attacker’s ability to gain sufficient knowledge to
compromise or take over a system (Jajodia et al. 2011). There are many MTD
techniques, which accomplish this objective in various ways, generally involv-
ing some adaptation of the system to confuse the attacker or render its exist-
ing knowledge obsolete. We sought an abstract model that could fit the MTD
approach broadly, without committing to a particular technology or system con-
text. We thus adopted an extended version of the FlipIt model (van Dijk et al.
2013) discussed above in Sect. 1. The extension adds some complicating features
present in prior work, such as multiple servers (Laszka et al. 2014) and asym-
metric stealth (Laszka et al. 2013). It also incorporates a progressive concept of
attack, in that unsuccessful attempts to compromise a server yield information
that make subsequent attempts more likely to succeed (absent defender adapta-
tion). This last feature is essential for capturing the primary dynamic of MTD
(Albanese et al. 2019; Evans et al. 2011).

3.1 Game Description

In the specific MTD game studied, an attacker and defender compete for the
control of 10 servers. (We could scale to many more servers with linear growth
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in the simulation time). Servers start out in control of the defender. The key
actions are probe for the attacker, and reimage for the defender. A probe is
essentially an attempt to compromise a server. If it succeeds, the attacker gains
control, and if not, the attacker gains some information (not modeled explicitly)
that increases its chance of succeeding on the next attempt. A reimage action
by the defender takes a server down and resets its state. That is, any progress
the attacker may have made on that server through probing is erased, such that
probe success probability is reduced to its initial value.

The simulation proceeds for T = 1000 time steps. At each time step, the
attacker may decide to probe any subset of the servers, and similarly the defender
may choose some servers to reimage. Each faces a tradeoff, in that their actions
help them achieve their goal of gaining or maintaining control of servers—but at
a cost. For attackers, the probe actions bear an explicit cost, and for defenders
the cost of reimaging is implicit in the downtime (7 time units in our setting)
incurred for performing that action.

The state of the system at any point can be described by which player controls
each server, and if the defender controls: whether it is down or up, and how many
probes the attacker has attempted since the last reimage.

3.1.1 Observation Model
As argued above, cyber-security games are generally characterized by complex
dynamics of state and observations, and this game is no exception. Technically,
when agents cannot reliably observe each other’s actions, the game is said to
exhibit imperfect information. In this game, neither agent can perfectly observe
the other. Precisely characterizing the model of what is and is not observed
by each player is crucial for capturing the strategic interaction in an imperfect
information game.

In the example MTD game, the defender has a partial ability to detect probes
executed on any server, Specifically, if the server is up, the defender detects the
probe with a specified probability, which varies across environment settings.
However, the defender cannot tell whether a detected probe succeeded in com-
promising its target. The defender does of course know when it performs a reim-
age, and it is only at that point (and for the following downtime) that it can be
sure it controls the server.

The attacker, on the other hand, does become aware when a probe succeeds.
It also finds out when a server it controls is retaken by the defender through
reimaging. Therefore, the attacker always knows the state of control of every
server. However, it can only imperfectly track its progress in increasing success
probability through probes, because it cannot tell when a defender reimages a
server not in its control.

3.1.2 Utility
The primary objective of each player is to control servers. This is reflected in
their utility functions, which quantify the value they attribute to any trajectory
of states and actions. In the MTD game, players accrue utility each time period,
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based on the fraction of servers up and in their control, and also the fraction
of servers not in the other player’s control (i.e., either up and in the player’s
control, or not up).

This functional form of the utility function is designed to accommodate a
variety of preference patterns, including objectives from the classic “CIA” (confi-
dentiality, availability, integrity) triad (Pfleeger and Pfleeger 2012). For example,
the confidentiality objective can be expressed through parameters encoding the
defender’s strong aversion to allowing the attacker to control servers. Availability
from the defender’s perspective can be expressed as requiring that a sufficient
fraction of servers are in the defender’s control and not down. We can categorize
attacker utility in an analogous way. An attacker that accrues utility only by
having servers in its control is termed a control attacker, whereas an attacker
that accrues utility by having servers in its control or down is termed a disrupting
attacker.

The utility function also includes threshold parameters governing the level
of contention for servers in the associated environment. For example, by setting
the threshold to 1/2 we impose the constraint that significant utility is accrued
only if at least a majority are in control.

Finally, the utility model accounts for the cost of actions. The attacker pays
a specified cost in utility per probe. The cost of the defender action is expressed
implicitly in the utility function as the difference in utility accrued by servers
being down as opposed to in the defender’s control.

In the best case, a player accrues one utility unit per time period for keeping
servers in their desired state, at no cost. The maximum overall utility for a game
run is therefore T . The minimum is unbounded, as players may take unlimited
costly actions without achieving their objective.

3.1.3 Strategies
In the EGTA approach, we focus on parameterized families of heuristic strategies,
characterized by regular structures and patterns of behavior over time. Defining
this strategy space is the first key step of EGTA (Fig. 1). The heuristic strategies
defined for the MTD game generate actions based on the passage of time, or
observed events in the system. If the actions are triggered by passage of time (in
either a deterministic or probabilistic manner), we call the strategy periodic. The
remaining strategies are triggered by observed events. They may apply actions
to servers based on observations of that server, or based on combinations of
observations across servers.

Specific families of heuristic strategies are defined for both attacker and
defender. Within each family, there may be parametric options, so a large or
even infinite number of possible instances. Overall, we considered 12 distinct
attacker strategies and 20 defender strategies (i.e., |SA| = 12, |SD| = 20). These
include for each player the No-Op strategy, in which the agent never takes any
action.
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Attacker Strategies. We consider two forms of periodic attacker strategy:

• Uniform-Uncompromised. Selects uniformly among those servers under the
defender’s control.

• MaxProbe-Uncompromised. Selects the server that has been probed the most
since last reimage (that the attacker knows about), among those servers under
the defender’s control, breaking ties uniformly.

We also include one non-periodic attacker strategy that generates probe actions
based on the number of servers that an attacker controls.

• Control-Threshold. If the attacker controls less than a threshold fraction of
the servers, it chooses to probe the server that has been probed the most
since last reimage (as far as it is aware) among those it does not currently
control. Ties are broken uniformly among all eligible servers. A minimum
waiting period of one time unit separates any two consecutive actions.

Defender Strategies. We consider periodic defender strategies employing two
different criteria for server selection:

• Uniform. Selects uniformly among all up servers.
• MaxProbe. Selects the server that has been probed most since its last reimage,

breaking ties uniformly.

The non-periodic defender strategies trigger a reimage operation based on probe
activity or inactivity.

• ProbeCount-or-Period (PCP). Reimages a server whenever it detects that a
threshold number of probes since the last reimage, or if it has been probed
at least once but not within the specified period. The rationale for reimaging
a server that is not being probed is that this could be an indication that the
attacker has already compromised it and thus ceased attack.

• Control-Threshold. Analogous to the attacker’s strategy by the same name, we
include a defender strategy that performs a reimage action when the fraction
of servers controlled falls below a threshold. Unlike the attacker, however, the
defender cannot directly observe control state. Instead, the defender estimates
the number of servers compromised based on the probes it has observed since
reimaging on each server.

• Control-Target. Like Control-Threshold, except based on a target rather than
a threshold.

3.2 Simulation and Analysis

We performed EGTA over a variety of environment and agent utility settings.
The experiments covered a variety of environment settings, with systematic anal-
ysis over the possible combinations. Specifically, we varied games over the fol-
lowing features:

• Defender objective: confidentiality or availability.
• Attacker objective: disruption or control.
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• Threshold on server control: low, majority, or high.
• Attacker probe cost: low, medium, or high.
• Defender probe detection: perfect, or imperfect at levels low, medium, or high.

Altogether, these settings define 144 distinct game instances. For 43 of these
instances we conducted a full empirical game analysis: steps 2 through 4 of
Fig. 1. These include all 18 instances with availability defender objective and
perfect probe detection (Fig. 2), and another 18 with availability defender objec-
tive, imperfect probe detection, and medium p;robe cost (Fig. 3). We also ran
seven with confidentiality defenders; as discussed below the confidentiality objec-
tive generally leads to an obvious equilibrium. For steps 2 and 3, we estimated
through repeated simulation the joint payoffs for all 12 × 20 = 240 strategy
profiles (sA, sD). Finally (step 4) we computed Nash equilibria for each game
instance, using the Gambit software package (McKelvey et al. 2014). Most of
the games had multiple equilibria—often similar, but sometimes quite diverse.

Our goal for this analysis was to gain strategic insight into a generic MTD
scenario. As such, we were interested not so much in specifics of individual
equilibria, but rather understanding at a qualitative level the kinds of equilibria
observed. We found that equilibria could be classified into four qualitatively
distinct groups.

1. MaxDef. In a maximal defense equilibrium, the defender reimages so aggres-
sively that it is futile for the attacker to even try to compromise the servers.
Aggressive defense means a frequent periodic reimaging strategy or one that
reimages based on a low-threshold probe trigger. Faced with such an aggres-
sive defense, the attacker plays No-Op. As a result, the attacker gets no utility
and the defender may get near maximum.

2. MaxAtt. We classify a profile as maximal attack if the attacker probes aggres-
sively and in response the defender either plays No-Op or reimages only infre-
quently or ineffectively. This category is the dual of MaxDef, and corresponds
to outcomes that are poor for the defender.

3. Share. We classify an equilibrium profile as a sharing if attack and defense
levels are moderate, and both players are able to achieve their objectives.

4. Fight. Fight equilibria are characterized by robust attack and defense activ-
ity, resulting in persistent contention such that neither player achieves its
objective to a satisfactory degree.

First, we observe that games with confidentiality defenders always have
MaxDef equilibria. Such defenders care only that the attackers do not con-
trol their servers, and they can trivially achieve this objective by frequently
reimaging—essentially keeping the servers down and unavailable. This result
actually shows that a focus purely on confidentiality is not very realistic, so
we devote the main part of our attention to games where defenders have an
availability objective.

Figure 2 presents results for the 18 games where the defender has the avail-
ability objective and can perfectly detect attacker probes. The games cover all
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combinations of settings for attacker objective, probe cost, and utility thresh-
olds for control of servers. As we see, the various game instances lead to different
qualitative categories of equilibria. For the disrupting attacker (table on left),
we have MaxDef equilibria for cases of high threshold or high probe cost. Those
settings are particularly challenging for the attacker, enabling the defender to
effectively deter attack through aggressive reimaging. Since the threshold setting
applies to both players, the high threshold games also have MaxAtt equilibria,
where an aggressive attack can cause the defender to give up. With low thresh-
olds, both players need only achieve their objective with a minority of servers,
so sharing equilibria are possible. Some of the intermediate settings support
fight equilibria, where both players accrue some utility, but neither can keep the
majority of servers in their preferred state on a consistent basis.

For the control attacker (table on right), the objective is more challenging
than disruption. As a result, the defender always has the possibility of deterring
attacks through sufficient aggression in a MaxDef equilibrium. MaxAtt can be
sustained under the high threshold, or with majority threshold and low probe
cost. Sharing equilibria appear for a couple of the low threshold environments,
and fight equilibria in all the high threshold environments.

Results for 18 environments with imperfect probe detection are presented in
Fig. 3. By comparing the two figures, it is obvious that maintaining a MaxDef
equilibrium is much harder when the defender may miss some probes. On the
other hand, degraded detection opens the door for aggressive attack, as Max-
Att and Fight are the only equilibria found in the majority or high threshold
environments. With low threshold, sharing remains possible, and indeed this
equilibrium is most prevalent.

Fig. 2. Qualitative categorization of equilibria across 18 game settings, with availability
defender and perfect probe detection. The left table is for a disruptive attacker, and
the right for a control attacker. In each cell, colored circles indicate which categories
of equilibria are found. (Color figure online)
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3.3 Discussion

This example is meant to illustrate general several features of EGTA for cyber-
security domains. First, that the method can address a strategically complex
scenario, and evaluate a variety of heuristic strategies. Second, that through
systematic exploration, we can uncover regular qualitative patterns of strategic
behavior. Once identified, these patterns can deepen our understanding of the
strategic tradeoffs in the domain. In this case, the findings can all be rationalized
straightforwardly. Cases where multiple behaviors are possible (e.g., instances
with both MaxDef and MaxAtt equilibria) are natural candidates for further
study, toward characterizing refinements that would support one or the other.

4 Survey of Literature

The first application of EGTA to a security domain was the study of privacy
attacks by Duong et al. (2010). This work started from the well-understood fact
that an attacker’s ability to compromise the privacy of a target depends on
the background knowledge it already has about the target. In a scenario with
multiple attackers, a coalition can increase their collective prospects of privacy
breach by sharing background knowledge. There is a tradeoff, however, in that
the value of a successful attack may decrease if it is non-exclusive. The study
employed EGTA to characterize rational sharing in a variety of settings. The
ability to predict sharing is relevant in particular to a database publisher, who
must decide how much to degrade the published information (at a cost) in order
to protect privacy.

A second security domain studied using EGTA by some of the same authors
addressed incentives for compliance with a network security protocol (Well-
man et al. 2013). Compliance is an important strategic problem for security,

Fig. 3. Qualitative categorization of equilibria for imperfect probe detection. Columns
represent three levels where the probability the defender detects a given probe action
is 0.2 (low), 0.5 (med), or 0.7 (high).
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as often participants will have an incentive to free-ride on the security contri-
butions of others (Čagalj et al. 2005; Naghizadeh and Liu 2016). This study
included several methodological innovations, including a systematic procedure
to extend the strategy space through local search, and scaling the number of
agents by exploiting symmetry across multiple roles. Specifically, the work mod-
eled the introduction-based routing protocol (Frazier et al. 2011) on a network
with four kinds of nodes: clients, ISPs, roots, and servers. The game is role-
symmetric, meaning that players corresponding to a given role (in this context,
node type) had the same strategy sets and utility functions, but these generally
varied between roles. This enabled use of an aggregation technique called player
reduction (Wellman et al. 2005), in which a many-player game is approximated
by an empirical game with much fewer players. For example, one reported anal-
ysis simulated a 4956-node network to estimate a game with six players. Results
for that instance are shown in Fig. 4. As we can see, tendency toward compliance
varies by role, and there are qualitatively distinct equilibria. Overall, we found
over several game settings that compliance was not universal, but typically at a
sufficient level to deter attacks.

More recently, we have conducted several EGTA studies within a broader
project on adaptive cyber-defense. The first was the MTD study illustrated in
Sect. 3 (Prakash and Wellman 2015; Wellman and Prakash 2014). The second
employed EGTA to evaluate a moving-target defense against distributed denial
of service (DDoS) attacks (Wright et al. 2016). The defense, called MOTAG,
had originally been designed and modeled in non-game-theoretic terms (Jia
et al. 2013; Venkatesan et al. 2016). Like the MTD game study, the MOTAG

Fig. 4. Top 11 approximate symmetric mixed equilibria for a 4956-node instance of
the introduction-based routing compliance game. Strategies are classified as compliant
or non-compliant. Each row represents a mixed profile, indicating whether the role
plays strategies that are compliant (green), non-compliant (red), or a mixture of these
(yellow). (Color figure online)
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investigation covered a two-player game with 10–20 strategies per player, and
systematically evaluated a set of parametric variations on the game environment
(41 game instances overall). We found that strategy ideas proposed in prior lit-
erature for this setting can be effective under certain conditions, but the ideal
strategies varied considerably across these conditions. The study was helpful for
making these conditions precise, and generally illuminating the strategic land-
scape for DDoS mitigation in the MOTAG framework.

The third EGTA study in this broader project addressed strategic behavior
in domains that can be modeled by attack graphs (Nguyen et al. 2017). The basic
idea of an attack graph model is to represent the progress of an attack in terms of
following paths in a graph of security conditions (Kordy et al. 2014; Phillips and
Swiler 1998). The work in this project specifically builds on a Bayesian frame-
work for attack graphs developed by Miehling et al. (2015). The EGTA study
extended the framework to a game, where at each time the attacker chooses
edges representing available exploits, and a defender chooses nodes to defend.
The strategy sets for both attacker and defender were populated by sophisti-
cated heuristics developed as approximate solution of corresponding optimiza-
tion problems. The study found that these heuristics successfully beat several
baselines, and were robust to variation in the environment settings.

In work outside of this project, Chapman (2016) developed an abstract cyber-
security game based on an extension of hide-and-seek game models. The exten-
sions were motivated by adaptive attack behavior in network security, and ren-
der the model infeasible for analytic solution. Chapman therefore adopted a
simulation-based approach, and appealed to EGTA methods for game-theoretic
treatment. Rass et al. (2017b) likewise appeal to EGTA for a game involving
mitigation of advanced persistent threats, citing uncertainty as a complicating
factor requiring this approach. Qi et al. (2018) model a scenario similar to the
MTD game of Sect. 3 on a switching network using simulation to estimate game
payoffs.

5 Conclusion and Extensions

As established by the MTD example and review of related literature, EGTA has
by now been employed in a wide variety of adaptive cyber-defense applications.
These works demonstrate the value of combining agent-based simulation and
game-theoretic analysis in support of principled strategic reasoning for complex
security domains. In each case, game-theoretic concepts were applied to scenarios
of a complexity far exceeding the capacity of purely analytic methods to tackle.

Results of these analyses in many cases are compelling, though not necessar-
ily definitive. Since by definition an EGTA study restricts attention to chosen
strategies, conclusions are always subject to refutation based on refined analysis.
Moreover, as for any modeling approach, assumptions incorporated in simula-
tion or approximation methods are open for debate, or relaxation in subsequent
studies. Indeed, there remain many areas where improvement in technique could
significantly increase the power and scope of EGTA methodology. Here we briefly
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catalog some of the open issues and opportunities for extensions of EGTA in ser-
vice of cyber-security analysis.

Covering Large Strategy Spaces. For a two-player game, profile space grows
quadratically with strategy sets. This often allows consideration of a rich vari-
ety of attack and defense strategy candidates, albeit far from the full space of
strategies available (typically highly dimensional or even infinite). Moreover, it is
often possible to identify equilibria without evaluating all strategy combinations
(Fearnley et al. 2013), which can sometimes dampen even quadratic growth. Lim-
itations on strategy space become more acute when there are greater than two
players. Though the standard setup in cyber-security domains is attacker versus
defender, some scenarios naturally feature a broader set of strategic actors.

Automating Strategy Search. An effective approach to dealing with limita-
tions on strategy space is to incrementally extend coverage, based on an itera-
tive exploration using feedback from analysis of games of progressively increased
size (Jordan et al. 2010). Given some formal description of the strategy space,
strategy exploration can be automated in terms of a search in that space. Pre-
vious work has employed automated strategy generation for EGTA using local
search (Wellman et al. 2013) or reinforcement learning (Lanctot et al. 2017;
Schvartzman and Wellman 2009; Wright and Wellman 2018). Recent advances
in deep learning have demonstrated breakthrough performance on two-player
board games (Silver et al. 2017), and are demonstrating promise in cyber-security
games as well (Wang et al. 2019; Wright et al. 2019).

Statistical Reasoning About Results. In the EGTA approach, the game
model is estimated or induced from simulation data. The simulations are gen-
erally samples of a stochastic system, which means that results are subject to
sampling error. This error may be mitigated by devoting more resources to sam-
pling, though naturally that presents tradeoffs regarding alternative uses of that
computation (e.g., to exploring more strategies or profiles). There has been some
progress on developing principled methods for statistical reasoning in EGTA
(Vorobeychik 2010; Wiedenbeck et al. 2014), but further work in this area is
needed.

Generalizing Over Environments. The results produced from EGTA studies
apply directly to the game instance modeled by the given simulator. Often in
security settings, guidance about action in a specific instance is exactly what
we care about. However, deriving broad insights about strategic issues in cyber-
securities entails lifting results from specific instances to broad categories of
game scenarios. The current state of art in EGTA is to systematically explore
a range of environments, and attempt to identify patterns in the mapping to
solutions. This approach is illustrated well by the qualitative characterization
of equilibrium patterns in Figs. 2 and 3. Further work should attempt to codify
and automate this systematic search and generalization process.
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Abstract. During the past 25 years, the arms race between attacks
exploiting memory corruption and memory protection techniques has
drawn tremendous attention. This book chapter seeks to give an in-
depth review of the newest research progress made on applying the MTD
methodology to protect memory corruption exploits. The new research
progress also represents the current phase of the arms race in the MTD
perspective. In particular, on one hand, at the frontier of defending
against control-hijacking attacks, we will give an in-depth review on the
shift of defense strategy from static ASLR to dynamic ASLR. On the
other hand, at the frontier of defending against data-oriented attacks,
we will give an in-depth review on the shift of defense strategy from
static DSLR to dynamic DSLR.

1 Introduction

During the past 25 years, the arms race between cyber attacks exploiting mem-
ory corruption vulnerabilities and memory protection techniques has drawn
tremendous attention. It started with control-hijacking attacks exploiting mem-
ory corruption vulnerabilities (e.g., buffer overflow, format string and integer
overflow). In a control-hijacking attack, the adversary manipulates the control
flow objects and shifts the execution to malicious logic. The earliest attacks
hijack the control flow to execute injected code. To defend against those code-
injection attacks, Data Execution Prevention (DEP) [32,43] techniques were
proposed. DEP ensures that a memory page is either writable or executable, but
not both. It should be noted that across this phase of the arms race, Moving
Target Defense (MTD) was not really considered by the defender.

During the next phase of the arms race, as a counteraction against DEP,
adversaries switched from code-injection attacks to code-reuse attacks such
as return-to-libc and Return-Oriented-Programming (ROP). These code-reuse
c© Springer Nature Switzerland AG 2019
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attacks have motivated a very large amount of research on defense. As a result,
two fundamentally important defense technologies have been developed:

– Address Space Layout Randomization (ASLR) randomizes the base addresses
of data and code segments in the memory [5,6,29,33,42].

– Control Flow Integrity (CFI) disables deviations from the target program’s
legit control-flow graph [25].

We note that in this phase, MTD techniques have been playing an essential
role. To date, ASLR has been the most widely-recognized and widely-deployed
defense against code-reuse attacks. The fact that ASLR is nowadays a standard
component of most mainstream operating systems indicates: (a) before MTD was
adopted, the static nature of memory protection had provided the attacker with
an incredible advantage, which had led to ineffective defenses in many ways; (b)
MTD techniques can significantly increase the resiliency of a computer system
when defending against control-hijacking attacks that exploit memory corruption
vulnerabilities.

Although ASLR and CFI are effective when they were invented, the arms race
did not end. In fact, the arms race has been continuing along two branches: the
counterattacks against ASLR as well as CFI and data-oriented attacks. In the
wake of defending control-hijacking attacks, data-oriented attacks [16,27] have
emerged. Data-oriented attacks do not modify control flow objects. Instead, they
read/write security-sensitive data objects for malicious goals [16,27]. Recently,
it has been shown that data-oriented attacks are Turing-complete and can result
in arbitrary behaviors.

Among data-oriented attacks, data structure manipulation attack (DSMA) is
a major category. DSMA exploits memory corruption vulnerabilities to manip-
ulate security sensitive fields in encapsulated data objects (e.g., struct and
class). For example, the attack against openssh (CVE-2001-0144) overwrites
a particular instance of data structure passwd to achieve privilege escalation.
Pioneering research was conducted and shows that DSMA is able to circumvent
the most effective defenses against control-hijacking attacks—DEP, ASLR and
CFI.

To date, only two defense techniques have demonstrated their effectiveness1:
Data Flow Integrity (DFI) [11,38] and Data Structure Layout Randomization
(DSLR) [30,39,45]. DFI maintains the definition-use relationship from the Data
Flow Graph, and checks whether the definition of each data object is legit
at run-time. By theory, DFI can defend against DSMA. However, DFI intro-
duces performance overhead as high as 103% [11], making it impractical for
deployment.

Comparing with DFI, DSLR has similar defense effectiveness but substan-
tially less cost. Several years ago, researchers proposed static DSLR [30,39,45].
At the time of compilation, static DSLR randomly reorders the fields or adds
dummy fields in encapsulated data objects. Static DSLR can prevent DSMA

1 Fine-grained ASLR also provides certain level of effectiveness but it can be easily
circumvented by attacks such as rootkits.
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from correctly locating target fields and further manipulating them. However,
its randomization is fixed at run-time and vulnerable to brute force attacks. Fur-
ther, static DSLR requires manual efforts to determine which data structures can
be randomized.

The goal of this book chapter is to give an in-depth review of the newest
research progress made on applying the MTD methodology to protect memory
against remote exploits. These new research progress also represents the current
phase of the arms race in the MTD perspective. In particular, on one hand, at the
frontier of defending against control-hijacking attacks, we will give an in-depth
review on the shift of defense strategy from static ASLR to dynamic ASLR. On
the other hand, at the frontier of defending against data-oriented attacks, we
will give an in-depth review on the shift of defense strategy from static DSLR
to dynamic DSLR.

The rest of the paper is organized as follows. In Sect. 3, we will give an in-
depth review of the defense side shift from static ASLR to adaptive ASLR. In
Sect. 3, we will give an in-depth review of the defense side shift from static DSLR
to adaptive DSLR. In Sect. 4, we conclude the paper.

Fig. 1. A demonstrative JIT-ROP attack. It proceeds with two phases: ①exploiting a
memory disclosure to read code pages and ② constructing an ROP payload on stack
(from [14], page 3).

2 From Static ASLR to Adaptive ASLR

2.1 The History

Return-Oriented Programming. The era of code injection essentially ends
since the availability of Data Execution Prevention (DEP). In its place comes
Return-Oriented Programming (ROP) [10,12,34,36] attacks. An ROP attack
hijacks the control flow of a program to elaborately chained instruction sequences
(i.e., “gadgets”). It has been proved that ROP attacks are Turing-complete,
which can result in arbitrary operations.
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Static ASLR. Against the threats of ROP attacks, address space layout ran-
domization (ASLR) has been invented. It is a technique that randomizes the
locations of code segments in the address space. The rationale behind ASLR is
as follows. ROP attacks leverages the practice that code segments are loaded
at identical addresses (in different machines). ASLR changes this practice by
introducing non-deterministic to the code layout. Research in the past develops
various techniques to enforce randomization at different granularity, including
segment offset level [42], code page level [6], function level [5,29], and even basic
block or instruction level [33,44]. In the early stage, ASLR techniques enforce
one-time randomization during either code compilation or program loading [5–
7,26,29,33,42,44,46]. As such, they are referred to as static ASLR. Despite of its
effectiveness against conventional ROP, static ASLR is vulnerable to memory-
leakage assisted attacks, in particular Just-In-Time ROP (JIT-ROP) [37].

JIT-ROP Attacks. A JIT-ROP attack consists of two phases: code reading and
code using. In the first phase, it exploits memory disclosure [13,40] to obtain code
from memory and therefore breaks static ASLR. Then the adversary analyzes
the obtained code and identifies valid code gadgets. In the second phase, using
information gained through the first phase, the adversary crafts ROP payloads
and sets up the stack as required by malicious intentions. In the following, we
re-use the figure from [14] to illustrate an JIT-ROP attack.

As is presented in Fig. 1, the adversary first exploits a memory-disclosure
vulnerability to obtain the code page at virtual address 0x5000. He then dis-
assembles this page and finds two gadgets at 0x5012 and 0x5096, respectively.
In the following step, the attacker prepares the stack with payload [0x5012,
0x00000001, 0x5096]. In this payload, 0x5012 and 0x5096 are the addresses of
the above two gadgets and 0x00000001 is the data to be used by the first gadget.
To launch the exploit, the attacker will redirect stack pointer %esp to 0x5012
and PC %eip to 0x5136. This will finally compromise the program execution
and convert the control flow to the gadgets chosen by the attacker.

2.2 The New Age: Dynamic ASLR

As a counteractive movement against JIT-ROP, static ASLR gets further devel-
oped and evolves to dynamic ASLR. Differing from static ASLR, dynamic
ASLR performs adaptive randomization at run-time [8,17,21]. By doing this re-
randomization frequently, dynamic ASLR instantly obsoletes information gath-
ered through memory disclosure, essentially making JIT-ROP in-feasible. To
date, plenty of dynamic ASLR techniques have been designed and implemented.
They share similar threat model and encounter similar challenges. In the fol-
lowing, we first summarize the mainstream dynamic ASLR techniques and then
summarize the threat model as well as the challenges behind.

Mainstream Techniques. Across the literature in the past few years, dynamic
ASLR techniques have been proposed with different design emphases [8,21,24].
TASR [8] applies re-randomization to the memory layout whenever the exe-
cution produces an output. TASR works on C source code and instruments
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the program with information that is required to track pointer locations for
dynamic re-randomization. Isomeron [21] is a hybrid approach. It combines
code randomization and run-time execution-path randomization to mitigate JIT-
ROP. Isomeron requires neither source code nor static analysis. Alternatively,
it relies on dynamic instrumentation to keep track of randomized information
and maintain correct execution semantics. RuntimeASLR [31] prevents clone-
probing based ROP attacks via a semantics-preserving and runtime-based app-
roach. This approach works by re-randomizing the address space of every child
after fork but keeping the parent’s state. To maintain the semantic correctness
after re-randomization, RuntimeASLR devises a pointer tracing mechanism to
identify pointers inside the address space.

A Common Threat Model. Dynamic ASLR techniques share a similar threat
model. In this model, the adversary can construct JIT-ROP exploits. As such,
it assumes that the software has memory disclosure vulnerabilities which can
enable the adversary to leak code memory and also hijack the control flow.

As DEP [32] and ALSR [42] have been applied in most of the modern sys-
tems, the threat model typically assumes these two defense are deployed. In
addition, code layouts are randomized at a fine-grained granularity, making the
registers [33] used and instruction locations within a function [29] or a basic
block [44] different. The reason behind this assumption is that an adversary
may be able to find code pointers (e.g., virtual table entries) in non-executable
memory (e.g., stack and heap), infers the code layout of the rest of the mem-
ory without directly reading them, and finally mounts an indirect JIT-ROP
attack [18].

Finally, the threat model usually excludes data only attacks, since data only
attacks do not rely on knowledge about code layout, which are out of the defense
scope of dynamic ASLR. It also should be noted that binary-compatible tech-
niques usually assume the code is not obfuscated.

Design Challenges. Dynamic ASLR usually encounters two types of chal-
lenge. From the perspective of correctness, adaptive randomization techniques
can easily break the program semantics especially when only binary code is
available. For instance, Remix [17] and TASR [8] require to accurately pinpoint
code pointers. However, locating code pointers in binary is still an open chal-
lenge [31]. From the perspective of performance, adaptive randomization tech-
niques could introduce significant run-time overhead. In particular, techniques
such as Isomeron [21] and RuntimeASLR [31] perform dynamic code instrumen-
tation, incurring substantial slowdown.

2.3 A Representative Adaptive ASLR Technique: Chameleon

In this chapter, we elaborate on a representative technique, Chameleon. Our
goal is to demonstrate the principles behind the design and implementation of
dynamic ASLR. We select Chameleon because of two-fold considerations. One
one side, Chameleon well addresses the aforementioned two challenges. This
makes Chameleon an appropriate example for principle explanation. One the
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other side, Chameleon is fully implemented as a software solution, which has no
requirement on hardware or architecture. This makes Chameleon have broader
applicability than other solutions (e.g., [23,41]).

2.3.1 Chameleon Overview
Recall that a JIT-ROP attack typically leverages memory disclosure vulnera-
bilities to read contents in code pages. Facilitated by information in those code
pages, the attacker then manipulates the stack with an ROP payload which
can convert the execution to perform malicious activities. Chameleon works on
obfuscating the addresses of code pages. As such, we make it in-feasible for the
attacker to obtain the actual addresses of code pages, and thus interrupt reading
on code pages. Differing from previous techniques that aim to stop the attacks
after memory disclosure, Chameleon serves as a first-line defense that counteracts
attacks by preventing code page disclosure directly.

Fig. 2. The high level work-flow of Chameleon (from [14], page 4).

Figure 2 presents the overall design of Chameleon. Technically speaking,
Chameleon introduces a layer between a user space process its page table in
the kernel space. This layer is implemented as a mapping table (i.e., L2L Table),
which maps the virtual address of each code page to a random one that is yet
available. In the original page table, Chameleon replaces the original virtual
address with its mapped target in the L2L Table. When an adversary attempts
on reading a code page using the original virtual address, the memory manage-
ment unit (MMU) will not locate it in the page table and hence, issue a page
fault. Apparently, this interrupts the code reading process and makes JIT-ROP
in-feasible.

Despite its effectiveness, the above scheme breaks the normal execution in
the sense that control flow transfers cannot find the target either. To remedy this
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issue, Chameleon opt to instrument the target binary. Specifically, Chameleon
rewrites the instructions that may break the control flow (i.e., instructions that
transfer program control flow and the last instruction of each page) and guides
them to find the correct targets.

2.3.2 Design and Implementation of Chameleon

As is shown in Fig. 2, Chameleon is designed with two major component. The
first component performs randomization over the page table and thwarts JIT-
ROP attacks. The second component fixes the control flow that is interrupted
by the randomization. For a better understanding of how Chameleon works, we
present the two components with more details.

Page Table Transformation. After the birth of a process but right before its
execution, the OS kernel will already set up the page table and load all the code
segments. In this page table, SALADS searches for all code pages and couples the
virtual address of each code page with a virtual address that is still available. In
the meanwhile, Chameleon also remembers this replacement in the L2L table.
At the high level, the above idea is straightforward. It, however, involves many
details that must be taken into considerations for assurance of randomization.

First, simply mapping a virtual page address to a random unoccupied address
provide insufficient security. In particular, in the case that Chameleon randomizes
a virtual page address to its adjacent page address, an adversary may still succeed
to leak the code page by over-reading a large continuous memory. To address
this problem, Chameleon regulates that a code address is not permitted to map
to neighboring addresses.

Second, the MMU can make the above protection invalid. To be specific,
Chameleon replaces code page addresses with random addresses from an unoc-
cupied space. Once the adversary exploits to read a code page using the original
page address, the MMU will find that this page is file-backed and yet has no cor-
responding page table entry. As a result, the MMU will allocate a physical page
and inserts into the page table with an entry—mapping the attacker-specified
virtual address and the new physical page. It will also load into this physical
page with code from the file. Hence, the reading will succeed regardless of the
page table randomization. Chameleon fixes this flaw by inserting into the page
table with dummy entries. These entries maps each of original code pages to
the NULL physical address. This prevents the MMU to re-allocate page table
entries as above mentioned.

Third, one-time randomization can be bypassed simply by brute-force. The
design of Chameleon mitigates this problem by making the randomization repet-
itive at run-time. In each round of randomization, Chameleon repeats the above
process. In terms of the time to do re-randomization, Chameleon provides two
schemes. On the one hand, it supports re-transformation on the basis of a pre-
defined interval. On the other hand, it can also perform re-randomization on the
occurrence of a system call.

Last but not least, it’s dangerous to re-randomize the code page that is
under execution. Otherwise the synchronization between re-randomization and
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the execution has to be enforced at instruction level, which is practically unac-
ceptable. As a counter-movement against this problem, Chameleon pauses re-
randomization on the code page that is under execution.

Address Translation. In principle, the idea of page table transformation obfus-
cates the addresses of code pages, which effectively prevents the adversaries from
reading contents in code pages. Despite of the security strength, this random-
ization inevitably breaks the normal execution. When the execution needs to
transfer to a new code page, it will neither find the correct address. To handle
this critical issue, Chameleon instruments the target binary to correct address
translation for control flow transfers. We describe more details in the following.

Basically, Chameleon first disassembles the target binary with a customized
algorithm. Then, it rewrites the binary code to replace each of the error-leading
instructions with a translation routine. This routine would keep the execution
correct at run-time. Coordinating with an instrumented binary, the page table
transformation can work smoothly without interruptions. Despite this idea is
intuitive at the high level, there are many hurdles that must be crossed.

Fig. 3. A demonstrative example of code replacement and instrumentation (from [14]
page 7).

First and foremost, disassembling a stripped binary is usually considered
unreliable (in particular in the x86 architecture). To reduce the uncertainty
and enhance reliability, Chameleon reuses the state-of-art disassembling algo-
rithms [22,47]. Going beyond that, Chameleon enforces a strategy towards higher
conservativeness. More specifically, Chameleon skips a code page once it encoun-
ters uncertainty in the disassembling process. To ensure the correctness of exe-
cution, Chameleon prevents randomization over the pages that are not disassem-
bled. This conservative strategy does not significantly reduce the effectiveness of
Chameleon, and more details are explained shortly.

The disassembling provides the basis of instrumentation. However, it’s still
challenging to determine the instrumentation spots. Missing a single error-
leading instruction would introduce exceptions while too much instrumenta-
tion incurs unacceptable cost. Chameleon addresses this issue by leveraging a
design aforementioned. Recall that Chameleon pauses re-randomization on the
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code page that is currently under execution. Therefore, the execution will not be
interrupted before it leaves a page that has been correctly entered. This indicates
that there is only necessity to remedy instructions that may incur cross-page vis-
its. These instructions only include direct jmp, indirect jmp (including indirect
jmp, indirect call and return) and the last instruction in each code page. To
be specific, the design of Chameleon replace each of these instructions with a
pair of push and ret.

In the above design, the push inserts to the stack an address which points to a
routine. This address is then taken by the ret instruction as the destination. At
run-time, this routine corrects the interrupted execution and makes the program
to follow the expected logic.

Implementation of Address Translation. Following the aforementioned
design, Chameleon implements the scheme of address translation on Linux sys-
tems. Here, we explain the important details that are not covered yet.

On the basis of disassembled results, Chameleon replaces each cross-page
instruction with the pair of push and ret. This, which seems to be intuitive, is
however difficult. In a system running the X86 architecture, instructions vary in
size. Our replacement may enlarge the space occupied by the original instruc-
tions. This will manipulate the layout of entire code segment and result in pro-
gram exceptions. Chameleon handles this issue through layout offsetting: ① For
a cross-page instruction that has equal length with the pair of push and ret,
Chameleon simply performs the replacement; ② For a case where the cross-
instruction has larger size than the pair of push and ret, Chameleon rewrites it
with the instruction pair and following padding instructions (nop); ③ Lastly, in
the case where the cross-page instruction is short in size, Chameleon groups the
neighboring instructions prior to this cross-page instruction and replaces this
group to the pair of push and ret. To make up the execution of those neighbor-
ing instructions, Chameleon moves them to the beginning of the aforementioned
routine.

For a better understanding, we demonstrate such a case corresponding to ③ in
Fig. 3. In this case, the cross-page instruction is a call instruction, which consists
of 5 bytes and falls short for the pair of push and ret. To resolve this case,
Chameleon relocates [shl $0x3,%eax] together with [call 0x804d990] out
and fills in [push $0x8002096] and ret. In the trampoline that locates at [push
$0x8002096], Chameleon reallocates the additionally removed instruction [shl
$0x3,%eax].

By enforcing the above implementation, Chameleon makes the execution
transfer from cross-page instructions to the trampoline. To fully mitigate the
side effects of the page table randomization, Chameleon adds into the trampo-
line two extra sets of instructions. One set of instructions are used to store and
restore the execution status (in particular the registers), while the other set of
instructions prepare a subroutine which remedies the address translation. For
the ease of interpretation, we use the example shown in Fig. 3 for illustration
again. In the original code, the execution invokes a function at 0x804d990 via
instruction [call 0x804d990]. This functions later returns back to 0x804ae69.
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Through the aforementioned instrumentation, the execution will be redirected
to the trampoline at $0x8002096. In this trampoline, Chameleon first maintains
the original return address 0x804ae69 on the stack. This is to ensure that the
execution will be correctly returned back and more details will be shortly dis-
cussed. Then, this trampoline saves all the registers via pushf and pusha. Going
beyond that, this trampoline invokes a call to a subroutine usys jit through
a set of three instructions. The beginning two instructions prepare usys jit
with two arguments 0x804d990 and 0x2. In this case, 0x804d990 is the target
address of the original call instruction and 0x02 indicates this translation serves
a call instruction. In addition, this trampoline also invokes a lea instruction,
which pre-allocate space on the stack. This space will later be used to store the
translated target address.

As shown in the above example, the trampoline is placed at a deterministic
location. This requires Chameleon to preserve the locations of all the tram-
polines. To this end, Chameleon inserts those trampolines to head of the code
segment in the target binary. Since the code segment is loaded into fixed memory
location, the addresses of those trampolines are also determined before execu-
tion. Note that enforcing the aforementioned randomization will invalidate this
scheme, Chameleon ensures the trampolines and the code segment are loaded
into different pages and it disables randomization over the trampolines.

In the above case, Chameleon invokes the subroutine usys jit with an argu-
ment carrying the expected target address. This subroutine then accomplishes
the expected address translation. To be more specific, usys jit first verifies
the necessity of translation. For an replaced instruction that does not actually
transfer the control flow to another page (e.g., a conditional jump with a false
condition and an indirect jump that transfers the execution in the same page),
usys jit simply restores the execution status and redirect the execution to the
original address. With regard to an instruction that indeed leads the execution
to another page, usys jit looks up the L2L table with the target address. By
doing so, usys jit learns the after-randomization value of the target address
and then sets this value as the new target for the execution to follow.

For a better view of the above process, we present a demonstrative example
in Fig. 4. In this case, usys jit examines its arguments on the stack and deter-
mines the type of the replaced instruction. Corresponding to this example, the

Fig. 4. The work flow of usys jit. From [14], page
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instruction is a call and it truly has a target in a different page. As a result,
usys jit searches the L2L table, using the original address 0x804d990 as the
index (①). The search result 0xa096990 is stored on stack (②). Following that,
usys jit moves the stack pointer to the location where the registers are stored
and then delivers the execution to a stub (④). This stub recovers all the registers
by retrieving their values from the stack and then transfers the execution to the
translated address. As such, the code page containing the original logic will be
correctly visited and executed.

In the implementation of Chameleon, usys jit needs to interact with the
L2L table in the kernel space. An intuitive reaction is to issue a system call and
perform the interaction. This, however, requires to cross the privilege boundary
between user space and kernel space. To avoid this time consuming process,
Chameleon uses the scheme of virtual Dynamic Shared Object (vDSO) and maps
the L2L table to user space. In this way, usys jit) can access it for address
translation without switch between different privilege levels.

2.4 Evaluation of Adaptive ASLR

2.5 Evaluation Design

To comprehensively evaluate a randomization-based defense, the literature has
developed a de facto evaluation scheme. It typically consists of three require-
ments.

First and foremost, the strength of the defense has to be thoroughly reasoned
under the assumption that memory disclosure occurs, considering that a single
channel of such disclosure could be sufficient to break the entire defense. Note
that this evaluation cannot be accomplished via quantification or experiments,
simply because it’s practically impossible to gain awareness of all the memory
disclosure vulnerabilities.

Second, an adversary may attempt to brute force the randomization and
therefore escape from the defense. This is usually quantified by the number
of attempts required to succeed through brute force. This number essentially
represents the resources that the adversary needs to invest. The requirement of
resources beyond a threshold would make the attack unlikely practical.

Last but not least, the defense needs to be measured from the perspective of
practicality. This is usually achieved by deploying the defense against a set of
standard benchmarks and observing the overhead that the defense brings to the
computation resources.

2.6 Evaluation on Adaptive ASLR

In this chapter, we demonstrate the application of the above measurement in
the case of Chameleon.

Reasoning over Chameleon. As is explained in the threat model, Chameleon
is designed to maintain its security under disclosure of data in the memory.
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Its robustness against memory disclosure is enforced by it’s re-randomization
scheme in an isolated privilege level. All related details are presented in the
sections for design and implementation of Chameleon. We avoid to repeat them
in order to reduce space.

Defense Strength Under Brute Force. To bypass the defense of Chameleon,
an adversary may thrive to brute force the address of a code page and dump the
contents inside. This brute force is evaluated via a theoretical model presented
in [14]. To be more specific, this model divides the entire address space into N
code pages. Out of them, y pages are pertaining to the target program p and
need to be randomized by Chameleon. To construct a successful ROP chain, the
adversary has to collect gadgets from x code pages.

Fig. 5. Memory overhead of Chameleon (from [14] page 10).

Following the above model, the probability for the attacker to capture a code
page in one attempt is y

N . Therefore, N
y attempts are required to dump the first

code page. Continuing that, the attacker needs to issue N−1
y−1 attempts before he

can obtain the second code page and N−(x−1)
y−(x−1) attempts for the xth code page.

Accumulatively, the adversary needs in total N
y + N−1

y−1 + ...+ N−(x−1)
y−(x−1) attempts.

This number is larger than x · N
y .

To better understand the above model, we apply it on an example from
real-world settings. In this example, we assume the operating system is a 64-bit
version of Linux, in which half of the address space is allocated to serve the user
space. According to the statistics with real-world programs, a large program and
its linked libraries usually needs less than 500 code pages. To correctly capture
a code page via brute force, the attacker has to perform at least 242 attempts,

i.e., f(x) ≥ x · r·2n
s

y = x·r·2n
y·s where x = 1. Making this tremendous volumes of

attempts, which may trigger almost the same number of software errors, would
be impossible to be successful without being detected by security facilities such
as Introduction Detection Systems.

Overhead Evaluation. Chameleon introduces extra operations to the target
program, both in the user space and the kernel space. By intuition, this would
bring additional overhead to both of the computation and memory. To verify
the level of overhead that Chameleon introduces, the work [14] presented a thor-
ough evaluation on Chameleon from the perspective of performance overhead.
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It collected a group of programs that are widely used as benchmarks. All the
evaluation experiments are performed on a machine running with Intel(R) Core2
Duo CPU E8400 3.00 GHz and 2 GB RAM.

Chameleon instruments the machine code to correct runtime execution and
it also consistently keeps all the code pages in memory. These two schemes
both increase consumption of memory. To this end, Chameleon is evaluated in
terms of memory overhead. In this experiment, the target programs are first exe-
cuted without Chameleon. Then, all these target programs run with Chameleon
deployed and all their code pages locked in memory.

Figure 5 demonstrates the memory overhead Chameleon introduces to the
target programs. On average, the memory overhead is around 1.38%. This,
in essence, illustrates that the page table randomization in Chameleon barely
reduces the practicality of the target programs from the perspective of memory
consumption.

Table 1. The frequencies at which a program needs to interact with a trampoline.
Note that the figure is at the scale of 103 (from [14], page 9).

Program httpd nginx light-httpd xz gcc bzip2 gobmk h264ref

1,400 4,205 2,129 2 5,792 46,996 2,754 3,949

Program hmmer perlbench sjeng astar omnetpp libquantum specrand mcf

1,010 2,500 3,099 4,278 7,830 20 0.1 897

Fig. 6. Computation overhead of Chameleon in different randomization strategies
(from [14] page 10).

Since Chameleon introduces re-randomization over the page table and address
translation to maintain the correctness of execution, it inevitably slows down the
target programs. Therefore, the work [14] also designs experiments on the com-
putation overhead that Chameleon incurs. To more closely inspect how different
randomization strategies affect the performance overhead, this experiment runs
SPEC CPU2006 benchmark with Chameleon performing code page randomiza-
tion at different frequencies as well as randomization at each system call invoked.
To be more specific, it runs the SPEC benchmarks with recommended setting,
web service applications by using ApachBench with command ab -k -n50000
-c100 HOST/index.html, and compression program xz by performing compres-
sion on a 16MB binary file for 1,000 times.
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The results of the above evaluation is shown as Fig. 6. It can be easily
observed that the performance overhead varies as the randomization strategy
changes. Not surprisingly, Chameleon brings higher overhead while the frequency
of re-randomization increases. Zooming into the evaluation results, we can find
that Chameleon incurs negligible effects on performance in the case of xz and
specrand, even the re-randomization is performed at a very high frequency.
The experiment also counts the number of executions on those trampolines.
The results are presented as Table 1. By associating Fig. 6 and Table 1, we can
learn that Chameleon has reduced intrusiveness to the program when the pro-
gram issues less frequent address translation. In particular, the tests on xz
and specrand visited the trampolines for very few times and correspondingly,
they imposed nearly zero overhead. When the volumes of address translation is
increased, the computation overhead will also grow.

Fig. 7. Privilege escalation in openssh under ASLR and static DSLR (from [15]
page 4).

3 From Static DSLR to Adaptive DSLR

3.1 The History

Control Flow Hijacking. Control flow hijacking has been enabling a wide spec-
trum of popular attacks in the past decades, such as code injection attacks and
ROP attacks. At the high level, control flow hijacking manipulates the targets of
indirect control flow transfers (e.g., return addresses) and converts the execution
to run malicious code that is either injected or chained from the original code.
Note that hijacking the control flow to injected code is less feasible nowadays
due to the deployment of DEP. Therefore, the only option is hijacking the con-
trol flow to code already in the program, which depends on two conditions. On
the one hand, it requires to exploit a vulnerability such as buffer overflow to
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manipulate control flow targets. On the other hand, it needs knowledge about
the location of code that encodes malicious logic.

Code Layout Randomization. To mitigate attacks based on control flow
hijacking, plenty of solutions have been developed to randomize the layout of
code space. The intuition behind is to prevent adversaries from understanding
the location of code in need. These techniques covers a wide spectrum of random-
ization granularity, including segment offset level [42], code page level [6], func-
tion level [5,29], and even instruction level blocks [33,44]. In addition, techniques
developed in the old days are mostly static, which enforce one-time randomiza-
tion during either code compilation or program loading [5–7,26,29,33,42,44,46].
These static techniques are later proven to be vulnerable against memory leak-
age. As a counteractive movement against leakage-assisted control flow hijacking,
static ASLR gets further developed and evolves to dynamic ASLR. Differing
from static ASLR, dynamic ASLR performs adaptive randomization at run-
time [8,17,21]. These technique instantly obsolete information leaked and works
effectively against attacks with memory leakages.

Data-Only Attacks. The development of ASLR, in particular adaptive ASLR,
largely reduces the space of control flow hijacking. This pushes attacks switch to
data-only attacks [16]. Such attacks exploit vulnerabilities to manipulate data
objects other than targets of indirect control flow. In the early stage, the belief
is that data-only attacks can only cause issues such as information leakage and
privilege escalation. Recent research demonstrates that data-only attacks can
achieve arbitrary execution like ROP attacks [28]. As data only attacks require
zero knowledge about code layout, it cannot be thwarted by ASLR techniques.

For a better understanding, we present an example of data-only attack in
Fig. 7. In this example, the adversary exploits a heap overflow in openssh-2.1.1
(CVE-2001-0144) [19] to achieve privilege escalation. To be more specific, he
overflows the buffer h on heap and overwrites the neighboring data structure
pw. By carefully managing the overflow, the attack is able to control two special
members of pw: pw uid and pw gid. As these two fields marks the privilege
level of the seesion user (i.e., the attacker), this attack enables the attacker to
arbitrarily change his privileges. As is indicated by the attack process, it requires
zero knowledge about code layout and hence, can fully work under deployment
of fine-grained adaptive ASLR.

Static Data Space Layout Randomization. Data-only attacks require no
knowledge about code layout. Alternatively, it needs to understand the layout
of data objects. Take the attack against openssh-2.1.1 in Fig. 7 as an example.
To correctly manipulate the privilege fields and avoid corrupt other sensitive
members (e.g., pointers), the attacker has to determine the members inside pw
and their spatial distribution. This characteristic inspires the development of
data space layout randomization (DSLR) [15,30]. The high level idea of DSLR
is to randomizes the space arrangement of data objects as well as their internal
layout. As DSLR interrupts the knowledge that adversaries have about the data
layout, it will significantly raise the bar for data structure manipulation attacks.



144 P. Chen et al.

Extant research of DSLR has been mainly focusing on randomizing internal
layout of data structures. The initial development proposes static DSLR [30].
Static DSLR re-orders the fields or inserts dummy fields in the definition of
data structures. The left part in Fig. 7 shows an example of randomizing data
structure passwd (pw is an instance of passwd).

Despite the effectiveness of static DSLR in mitigating data-only attacks, it
can be bypassed when memory leakage occurs. Here we explain how to launch
the aforementioned privilege escalation (Fig. 7) under static DSLR. Note that
as ASLR has been a standard in mainstream operating systems, we also assume
ASLR is deployed. To begin with, the adversary exploits a memory leakage vul-
nerability (e.g., buffer over-read [37] and side channel [9,35,48]), which enables
him to locate the memory page containing pw and dump the contents in this page
(①). Thereafter, the attacker searches the “signature” of struct passwd. By sig-
nature, we mean the characteristics pertaining to fields in the data structure.
Take pw for an example. The fields pw uid and pw gid identifies privilege lev-
els which usually keep small values; pw passwd, pw name, pw shell, and pw dir
are pointers and their values usually have difference of 16; pw gecos is 0. This
signature matching enables the attacker to locate pw in the leaked page and
then infer the layout after randomization (②). As such, the attacker bypasses
the static DSLR and finally launches the attack (③).

3.2 The New Era: Dynamic DSLR

On account of weakness of static DSLR, recent research advancement moves
towards dynamic DSLR [30]. It permutates the internal layout of data objects in
a similar manner as static DSLR. However, instead of performing the random-
ization only once, dynamic DSLR repeats the randomizing process on demand
at run-time. The goal is to promptly make leaked information outdated.

Despite the promise of dynamic DSLR in battling data-only attacks, there
are not many solutions. Presumably, this is mainly because dynamic DSLR has
to address a strong threat model and overcome plenty of challenges. In the
following, we give more details about the threat model and those challenges.

A Common Threat Model. Solutions of dynamic DSLR are expected to
work under a strong threat model. In this model, the adversaries are able to
exploit memory-related vulnerabilities to manipulate arbitrary data objects. In
addition, the adversaries have channels to leak both code and data pages. Lastly,
the adversaries are further assumed to only perform data-only attacks.

On the defender side, DEP and ASLR are assumed to be deployed by default.
Going beyond that, it requires that code layout is randomized at a fine-grained
granularity, making control flow hijacking less possible. As existing techniques
can barely infer data object from binary code in a reliable manner, dynamic
DSLR typically assumes the availability of source code.

Design Challenges. Design of dynamic DSLR faces similar challenges as that of
dynamic ASLR. On the one hand, it requires fine-grained layout randomization
as well as frequent re-randomization to enforce security. On the other hand, it has
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to maintain both the correctness and performance of the program. Correctness
wise, dynamic DSLR necessarily needs to ensure all permutated data objects
are correctly re-organized when they are accessed. Performance wise, frequent
re-randomization may easily incur high overhead.

3.3 SALADS: A Practical Approach for Adaptive Data Structure
Layout Randomization

To date, only the technique SALADS presented in [15] achieves dynamic DSLR,
following the aforementioned threat model and addressing the above challenges.
As such, we elaborate on the insights and technique details of SALADS.

Fig. 8. System Overview of SALADS. The grey boxes are components introduced by
SALADS on the basis of GNU GCC (from [15] page 5).

3.3.1 SALADS Overview.
The design of SALADS is to randomize the arrangement of fields in encapsulated
data objects of C/C++ programs, including struct and class. In the following
we first explain how this defeats data-only attacks with an example and then
given an overview of the system.

Recall that in the attack as shown in Fig. 7, the adversary learns about the
layout of data objects at Step ② and leverages this information at Step ③. SALADS
aims at disconnecting Step ② and Step ③ by frequently re-randomizing the data
objects. Once the target data object gets re-randomized between the two steps,
the attack will have low chance to succeed. To enforce the above randomization
scheme, SALADS is built as a plug-in on the top of GNU GCC to rewrite the
target program and instrument the logic in need.

At the high level, SALADS follows the architecture as presented in Fig. 8. It
consists of two main components, including a component to extract required
information and another component to do the instrumentation. Given a pro-
gram, SALADS follows several steps to make it a Data Structure Self-Randomizing
(DSSR) program. SALADS starts with parsing the source code to an Abstract Syn-
tax Tree (AST). Taking this AST as input, SALADS runs the extracting compo-
nent to gather information which is used later. Thereafter, the AST is transferred
into GIMPLE representation—the intermediate representation (IR) of GCC. On
the top of the GIMPLE IR, SALADS replaces each of the statements that access
data structures with a Data Structure Self-Randomizing (DSSR) routine (GIM-
PLE Pass-1).
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In the course of execution, this routine will adjust the access to correct loca-
tions and perform re-randomization when necessary. Considering that random-
ization may interrupt certain accesses that SALADS cannot rectify at run-time,
SALADS also inserts special statements before each of such accesses to prevent
randomization. In the rest of this chapter, those accesses are referred to as dan-
gerous accesses. Once the instrumentation is accomplished, SALADS further com-
piles the GIMPLE IR into the final binary (DSSR binary). A DSSR binary is able
to achieve re-randomization/de-randomization by itself at the time of execution.

3.3.2 SALADS Design and Implementation.
In this section, we include the important details of design and implementation
in SALADS. We first explain the types of information SALADS extracts from the
target program and then describe how SALADS relies on those information to
perform instrumentation.

Information Extraction. Prior to instrumentation, SALADS collects two cate-
gories of information, including the definitions of data structures and the use of
external functions. As we will shortly describe, such information is necessary to
the success of randomization/de-randomization.

While SALADS iterates the AST, it records each of the encountered data
structures. Specifically, pertaining to a data structure, SALADS records its type
and its name. Also SALADS maintains information about all the members inside
the data structure, including their names, sizes and offsets in the data struc-
ture. In particular, there are two challenges in determining the offsets. On the
one hand, compiler may follow special rules to align different fields (e.g.,#param
pack(n)). When such rules are specified, SALADS uses them to calculate the
offsets. Otherwise it determines the offsets based on standard alignment rules
(e.g., architecture optimization rules). On the other hand, some arrays inside
data structures have flexible sizes [1] that can only be determined at run-time.
To handle such cases, SALADS places such arrays at the end of the corresponding
data structures and excludes them from randomization.

SALADS also collects the uses of external functions that are not defined by
the target program (e.g., library functions). Those invocations are marked as
dangerous statements, since the external functions may take randomized data
structures as parameters while they are not instrumented to achieve correct
accesses. SALADS determines a function as external function if its definition is
not included in the target program. Going beyond, SALADS identifies functions
that are defined in the target program but exported to other programs. SALADS
labels such functions as dangerous functions, considering that data structures
randomized inside might interrupt the execution of programs that import these
functions. Exported functions can usually be identified with the export table.

Instrumentation for Randomization. Using the information as extracted
above, SALADS performs instrumentation on the GIMPLE IR. At the high
level, this instrumentation replaces each of the data structure accesses with a
DSSR routine. This routine takes charge of correcting the access and makes
re-randomization on demand.
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The instrumentation to achieve randomization takes several steps. At the first
place, SALADS traverses the GIMPLE IR and identify accesses to data structures.
Given a GIMPLE statement, SALADS disassembles it into expressions following
the order from right to left. Note that compound expressions are simplified as
atomic ones. For instance, the expression var1 op var2 is split into var1 and
var2. On encountering an expression which represents an data structure access,
SALADS keeps track of (1) the type and address of the data structure and (2)
the identify of the accessed field. In the case where the access is nested, SALADS
records both of the parent and child access. Take DA->DB.mem for an example.
SALADS sequentially parse the outer access A->B and inner access B.x.

Fig. 9. Initialization and updating of a randomization record (from [15] page 7).

Fig. 10. An example showing how DSSR program generated by SALADS works
(from [15] page 8).

Prior to an access to a data structure, SALADS plants a DSSR routine which
consists of a group of DSSR statements. These statements first conducts a round
of randomization over the involved data structure(s) (if necessary) and then
corrects the access based on the accessing type. If the access is a read, the
DSSR statements store the original value in a temporary variable. Otherwise,
these statements maintains a pointer which points to the randomized location
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of the field. Lastly, SALADS replaces the statement of access with another DSSR
statement which completes the access using the temporary variable or the new
pointer.

For a better understanding about the above instrumentation, we present a
demonstrative example in Fig. 10. To be specific, the source code of the program,
the native GIMPLE IR, and the instrumented GIMPLE IR are presented in
Fig. 10(a), (b) and (c), respectively. It’s worth noting that GIMPLE is a IR
in static single assignment form [4] and it uses temporary variables to store
intermediate values in complex expressions.

In this example, the program allocates a data structure of type TEST on the
heap (line 12 Fig. 10(a)). It corresponds to the GIMPLE statements at line 15
of Fig. 10(c). We next demonstrate how SALADS instruments the access to this
data structure at line 14 in Fig. 10(a). Given that the definition of TEST has
been extracted, SALADS inserts a GIMPLE statement which invokes the Initial-
ize Record procedure (line 18 Fig. 10(c)). Initialize Record takes two arguments
with 0 specifying that this data structure is being accessed for the first time
and p.0 carrying the address of this data structure. Internally, this procedure
records this new data structure by its address and initializes meta-data pertain-
ing to each filed (Fo: original offset; Fr: offset after randomization; Fs: size; Ff :
randomizable or not). The initialization results are demonstrated in Fig. 9(a).

The above initialization is followed by a call to Update Record at line 19
in Fig. 9. Update Record first increments the number of accesses to the data
structure by 1. If the number of accumulated accesses exceeds W m, SALADS
then uses a routine Shuffle(p) to shuffle the layout of the target data structure
and clear the access counter. This process is shown as step-(1) to step-(3) in
Fig. 9. The offsets of fields after randomization are shown in Fig. 9 following
step-(4). Thereafter, SALADS makes a GIMPLE statement which calls Offset Diff
(line 20 Fig. 10(c)). As is depicted as step-(5) in Fig. 9, this function calculates
the difference between the randomized offset and the original offset pertaining to
the target field. In this example, the difference on a is 8. According to that offset
difference, SALADS calculates a temporary pointer D.2058 to hold the correct
location (line 22 Fig. 10(c)) and issues the write to the location referred to by
this pointer (line 23 Fig. 10(c)).

Instrumentation for De-randomization. Randomization on certain data
structures may incur exceptions, even we enable the instrumentation as afore-
mentioned. For instance, passing a randomized data structure to a library func-
tion will likely cause errors, because the library is usually un-instrumented and
hence cannot access the data correctly. In general, there are two categories of
accesses which might be interrupted by SALADS. In the following, we present
their details and explain how SALADS address them.

In program developed in C/C++ language, a pointer is often cast into a
different type. This causes problems to SALADS. For example, a program may
cast a pointer P of type struct X to point Q with type struct Y ( struct
X and struct Y are different). As struct X and struct Y usually have dif-
ferent layout, accessing Y based on the randomization record on X will likely
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cause errors. To handle such cases, SALADS simply discards the randomization
over the data structure pointed to by P. In addition, a C/C++ program may
also assign the address of a field to a pointer (e.g.,int *p=&z.a). Once SALADS
randomizes the location of the field (&z.a), accesses to this field via dereference
on the pointer (p) will be interrupted. In such a case, SALADS simply marks the
de-referenced field (&z.a) as un-randomizable.

Table 2. Defense results of DSSR applications (from [15] page 11).

Programs CVE # Bugs Data structure ASLR& DSLR SALADS

openssl-0.9.6d CVE-2002-0656 KEY ARG [20] ssl session st × √

openssh-2.1.1 CVE-2001-0144 CRC-32 [19] passwd × √

Recall that randomization on data structures passed to external functions
or involved in exported functions is also dangerous. SALADS also handles such
cases. To be more specific, it de-randomizes data structures that are passed into
external functions. Likewise, it prevents randomization over data structures that
are involved in exported functions.

SALADS implements GIMPLE Pass-2 to achieve the above de-randomization.
Before each of the statements that may involve dangerous randomization, it
inserts GIMPLE statements to complete de-randomization or prevent random-
ization.

3.3.3 Evaluation on SALADS

Similar to evaluation on dynamic ASLR techniques, a dynamic DSLR technique
should also be measured following the set of principles we discussed in Sect. 2.4.
For the consideration of space, we omit the details. In the following, we present
the evaluation on SALADS, following the guide of those principles.

Experimental Settings. To measure the idea behind SALADS from the perspec-
tive from both security and practicality, the developers implement SALADS on the
top of gcc-4.5.0 with around 11K lines of extra C code. To serve the evaluation,
they measure SALADS against a set of benchmark vulnerabilities and programs
on a machine running Fedora Core Release 8 with Intel(R) Core(TM) i5 and
4 GB RAM. In the following, we describe how these benchmarks are prepared.

Preparation of Benchmarks. For the goal of security evaluation, the develop-
ers configured a group of two real attacks against the programs under protection
of static DSLR and SALADS. To better mimic the real world, both ASLR and
DEP are enabled. The first attack is the one presented in Fig. 7. The second
attack involves an exploit against a buffer overflow on the array key arg in a
data structure session (of type ssl session st) in openssl [20]. In this attack,
the adversary overflows key arg and injects malicious code. Without random-
ization, the shell code has a constant distance from another field ciphers in
session. This enables the adversary to correctly locate the shell code and jump
to it for malicious intentions.
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For the goal of performance evaluation, the developers collect a set of bench-
mark programs, including SPECInt2000 [3], httpd-2.0.6, openssh-2.1, and
openssl-0.9.6d. SALADS compiles each of them to a DSSR binary. Note that
instead of randomizing all the data structures, their instrumentation only ran-
domly covers 20% of them. They also additionally cover the set of security sen-
sitive data structures that are manually selected.

Fig. 11. Effects of Wm on performance (from [15] page 13).

Effectiveness of DSSR. The results of attacking experiments are shown in
Table 2. As indicated by this table, the combination of ASLR and static DSLR
can be bypassed under the condition of memory leakage. To the contrary, SALADS
successfully defeats both of the attacks. In the attack against openssh, the adver-
sary relies on the location of pw uid to succeed. However, the request from the
attack triggers more than 52 accesses to pw before it finally launch the attacks.
As such, the layout of pw gets re-randomized prior to the final step and prevents
the attacks from succeeding. The attack against openssl is prevented in a sim-
ilar manner—the attacking request triggers over 17 accesses to the target data
structure session and triggers re-randomization before the target data object
is used for exploitation.

Performance Overhead. Recall that SALADS performs a round of re-
randomization after a data structure has been accessed for Wm times. Selection
of Wm is a balance between security and performance. A smaller Wm makes
more frequent re-randomization while introduces higher overhead. The design of

2 SALADS uses 5 as the threshold of accesses to trigger de-randomization. Reasons are
explained in the evaluation on performance of SALADS.
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SALADS relies on empirical tests to determine Wm. To be specific, they run the
SPECInt2000 benchmark under SALADS and observe the changes of performance
overhead as Wm ranges from 1 to 10. The results of averaged performance over-
head are shown in Fig. 11. Not surprisingly, the extend of overhead increases
as Wm becomes larger. In particular, the overhead reduces dramatically while
Wm switches from 4 to 5 and the overhead does not significantly decrease when
Wm gets further larger. This makes SALADS select 5 as Wm by default. All the
evaluation done by the developers are using Wm = 5.

In measuring the performance overhead incurred by SALADS, the developers
run the DSSR versions of SPECInt2000 with the official settings. They also
run httpd under apache benchmark, opensshl under openssl speed [2], and
openssh with a benchmark which uploads 1.5GB test-files using scp [2] for 1000
times. The final results are presented in Fig. 12. On average, the performance
overhead introduced by SALADS ranges from 0.2% to 23.5%. In particular, SALADS
incurs significant overhead when it protects gzip, gap and twolf. The major
reason behind is that these program involves a great many of data structures to
manage and access data objects.

Fig. 12. Performance overhead (from [15] page 15).

Memory Overhead. In addition to performance overhead, the developers also
consider the consumption of memory by SALADS. To achieve this measurement,
the developers count the use of memory at a large number of random moments
during execution of the benchmark programs. The results are demonstrated in
Fig. 13. On average, the memory overhead introduced by SALADS to DSSR
programs ranged from 0.7% (openssh-2.1.1p4) to 6.1% (twolf).
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Fig. 13. Memory overhead (from [15] page 15).

4 Concluding Remarks

During the past 25 years, the arms race between cyber attacks exploiting various
memory corruption vulnerabilities and memory protection techniques has drawn
tremendous attention from the computer security research community. This book
chapter seeks to give an in-depth review of the newest research progress made
on applying the MTD methodology to protect memory against remote exploits.
These new research progress also represents the current phase of the arms race
in the MTD perspective. In particular, (a) at the frontier of defending against
control-hijacking attacks, we give an in-depth review of the defender side shift
(of defense strategy) from static ASLR to dynamic ASLR; (b) at the frontier
of defending against data-oriented attacks, we give an in-depth review of the
defender side shift (of defense strategy) from static DSLR to dynamic DSLR.

Through the in-depth review, we have obtained the following observations:

– Before MTD was adopted in defending memory corruption attacks, the static
nature of old fashioned memory protection had provided the attacker with
an incredible advantage, leading to ineffective defenses in many cases.

– MTD techniques can significantly increase the resiliency of a computer system
when defending against control-hijacking attacks exploiting memory corrup-
tion vulnerabilities.

– MTD techniques may also significantly increase the resiliency of a computer
system when defending against data-oriented attacks exploiting memory cor-
ruption vulnerabilities.

– When defending against control-hijacking attacks, there are a spectrum of
MTD techniques which could be employed. Dynamic ASLR techniques are in
general more effective than static ASLR techniques.
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– When defending against data-oriented attacks, there are a spectrum of MTD
techniques which could be employed. Dynamic DSLR techniques are in gen-
eral more effective than static DSLR techniques.

– Regarding future directions, we believe that ASLR and DSLR techniques will
become more and more adaptive. For example, a new study we conducted
very recently has shown that feedback control can make dynamic DSLR more
cost-effective under zero-day attacks.
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Abstract. Organizations increasingly rely on complex networked sys-
tems to maintain operational efficiency. While the widespread adop-
tion of network-based IT solutions brings significant benefits to both
commercial and government organizations, it also exposes them to an
array of novel threats. Specifically, malicious actors can use networks of
compromised and remotely controlled hosts, known as botnets, to execute
a number of different cyber-attacks and engage in criminal or otherwise
unauthorized activities. Most notably, botnets can be used to exfiltrate
highly sensitive data from target networks, including military intelligence
from government agencies and proprietary data from enterprise networks.
What makes the problem even more complex is the recent trend towards
stealthier and more resilient botnet architectures, which depart from
traditional centralized architectures and enable botnets to evade detec-
tion and persist in a system for extended periods of time. A promising
approach to botnet detection and mitigation relies on Adaptive Cyber
Defense (ACD), a novel and game-changing approach to cyber defense.
We show that detecting and mitigating stealthy botnets is a multi-faceted
problem that requires addressing multiple related research challenges,
and show how an ACD approach can help us address these challenges
effectively.

1 Introduction

Organizations increasingly rely on complex networked systems to maintain oper-
ational efficiency. While the widespread adoption of network-based IT solutions
brings significant benefits to both commercial and government organizations,
it also exposes them to an array of novel threats. For instance, advanced
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persistent threats (APTs) and distributed denial-of-service (DDoS) attacks can
bypass traditional defenses by leveraging an arsenal of diverse and sophisticated
cyber tools. Specifically, malicious actors can use networks of compromised and
remotely controlled hosts, known as botnets, to execute a number of different
cyber attacks and engage in criminal or otherwise unauthorized activities.
Most notably, botnets can be used to exfiltrate highly sensitive data from
target networks, including military intelligence from government agencies and
proprietary data from enterprise networks. In a society that has significantly
shifted from producer of goods to producer of information-centric services,
protecting sensitive and mission-critical data from competitors, state actors,
and organized crime has become increasingly critical for the well-being of many
commercial and government organizations.

What makes the problem even more complex is the recent trend toward
stealthier and more resilient botnet architectures, which depart from traditional
centralized architectures and enable botnets to evade detection and persist in
a system for extended periods of time. Botnets can achieve resilience through
either anti-signature or architectural stealth [40]. Anti-signature stealth entails
the capability of manipulating the characteristics of bot-generated traffic to mask
features that could be observed by signature-based detectors. On the other hand,
architectural stealth entails the capability of establishing an overlay network that
minimizes exposure of malicious traffic to detectors. For these reasons, botnets
have recently gained significant attention in both the industry and the research
community.

One promising approach to botnet detection and mitigation relies on moving-
target defense (MTD), a novel and game-changing approach to cyber defense,
which is part of the broader trend towards Adaptive Cyber Defense (ACD). MTD
has the potential to create asymmetric uncertainty, providing the defender with a
tactical advantage over the attacker [18]. Cyber attacks are typically preceded by
a reconnaissance phase in which adversaries gather critical information about the
target system, including network topology, service dependencies, and unpatched
vulnerabilities. System and network configurations are typically static, and do
not reconfigure, adapt, or regenerate except in deterministic ways to support
maintenance and uptime requirements. In such a static scenario, it is only a
matter of time for malicious actors to acquire accurate knowledge about the
target system, engineer reliable exploits, and plan their attacks. To address this
systemic weakness, MTD techniques are designed to continuously change or shift
a system’s attack surface [18], which has been formally defined as the “subset
of the system’s resources (methods, channels, and data) that can be potentially
used by an attacker to launch an attack” [23]. Continuously reshaping a system’s
attack surface increases complexity and cost for malicious actors, forcing them
to continuously reassess their cyber operations.

In this chapter, we present a holistic, ACD-based approach to botnet
detection and mitigation. To dominate the complexity of the problem, we
decompose it into three related sub-problems, and tackle them individually.
In particular, we presents solutions to (i) optimally deploy a set of detectors,
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(ii) identify botnet traffic, and (iii) reduce the overall lifetime of a botnet. We
validate our approach through simulation and experiments, and show that our
solution is effective in mitigating botnet activity.

The remainder of the chapter is organized as follows. Section 2 discusses
related work. Section 3 briefly discusses the threat model and our assumptions,
whereas Sect. 4 provides an overview of the research challenges we are addressing.
Then, Sects. 5, 7, and 8 discuss the three related challenges and corresponding
solutions in detail. Finally, Sect. 9 gives some concluding remarks and indicates
directions for future work.

2 Related Work

In response to botnet-borne threats, researchers have developed many different
detection mechanisms. The performance of these mechanisms primarily depends
on the set of features used to identify malicious traffic. Current research mostly
focuses on studying a combination of packet-based, time-based, and behavior-
based features to isolate bot traffic from the traffic mix [5]. For instance,
BotHunter [16] exploits the sequence of messages between bots and a command
and control (C&C) server in a centralized botnet architecture, while Zhang et al.
exploit a combination of packet-based and time-based features to identify hosts
that may potentially belong to a P2P botnet [49]. However, as the accuracy
of feature-based detection techniques improves over time, botnets respond
with more advanced evasion techniques [38]. On the other hand, architectural
stealth techniques aim at building topology-aware botnets to reduce exposure of
malicious traffic to detectors. They exploit the fact that detection mechanisms
are likely to be deployed on nodes where they can monitor all traffic entering or
exiting the network (e.g., network gateways) or significant volumes of internal
traffic (e.g., routers). Thus, botmasters can design stealthy communication
architectures capable of evading detection techniques such as those described
in [16,49] by minimizing observable bot traffic. To this end, Sweeney studied
the importance of the physical location of bots (referred to as the cyber high
ground) to perform stealthy missions such as data exfiltration, and designed a
P2P botnet that can effectively exfiltrate data from a network’s mission-critical
nodes, while maintaining a small network footprint [40].

In the past, researchers have addressed the issue of scalability in Intrusion
Detection System (IDS) by modeling it as a zero-sum game between the defender
and the attacker [3,20,34,46], where the defender’s objective is to optimally
place a limited number of monitors to protect a set of target servers. The
game-theoretic models in [3,34] develop optimal placement strategies to detect
intrusion attempts by considering all possible routes through which the attack
can reach a target server from a given set of entry points, while the models
in [20,46] develop optimal placement strategies to minimize the attacker’s control
over the target server.
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3 Threat Model and Assumptions

In our threat model, the attacker’s ultimate goal is to exfiltrate data from
mission-critical nodes, while remaining stealthy and persisting in the system
for an extend period of time. To this end, we make the following assumptions,
based on previous work by Sweeney [40].

• The attacker can discover the topology of the network, and is aware of what
nodes are mission-critical. Reports by Kaspersky labs [19] and Mandiant [1]
show that threat actors can infiltrate an organization’s network and persist
in the system for several years, mapping out the organization and exfiltrating
sensitive data and valuable intellectual property.

• Exfiltrating large volumes of data generates abnormally large network flows
which in turn may trigger alerts. To avoid detection, the attacker partitions
the data to be exfiltrated into m segments d1, d2, . . . , dm, and transmits these
segments over a temporal span T = 〈t1, t2, . . . , tm〉 ⊆ N

m, i.e., at each time
point ti, the attacker transmits a data segment di to a C&C site. The attacker
is said to have successfully exfiltrated from a mission-critical node if and only
if all the m data segments are exfiltrated by time tm.

• The attacker is aware of the detector placement strategy employed by the
defender.

Fig. 1. Lifecycle of a bot

We model the lifecycle of a bot as shown in Fig. 1. It begins when a benign
system in the target network is compromised by either an external attacker
through a client-side attack or by an existing bot within the network. To
construct a resilient botnet, a new bot scans the network to discover benign
systems to attack. Here, we assume that all the machines within the network
are vulnerable and the corresponding exploits are available to the attacker. A
bot can perform two types of scans: worm-like or stealthy scan. In the worm-
like scanning strategy, the bot sends random discovery probes to systems within
its subnet, similar to the strategy employed by worms to propagate through a
network [45]. These discovery probes include ICMP ping packets and incomplete
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TCP handshakes to determine whether a system is hosted at a given IP address
and also to learn the configuration of the system, including OS version, services,
etc. Due to the randomness of these scans, the bots may send discovery probes
to machines that may raise red flags. For example, if a bot on a client machine
sends discovery probes to another client machine, this activity may be flagged
as anomalous in an enterprise network. In the stealthy scanning strategy, on the
other hand, bots first enumerate active connections of the underlying hosts and
then send discovery probes only to these machines. Several classes of malware
employ this mechanism to move laterally through the network [2]. As one of
the attacker’s goals is to be stealthy, independent of the scanning strategy, we
can reasonably assume the existence of an upper bound dmax on the number of
discovery probes that a bot would send over a given period of time.

After enumerating target machines, a bot compromises these machines and
adds them to its list of peers. As mentioned above, we assume that all machines
are vulnerable and can be successfully exploited. We also assume that, in order
to build a resilient botnet, each bot needs a minimum number pmin of peers.
Upon recruiting new machines, the bot begins exchanging update messages with
its peers. These messages inform the attacker about the status of each bot within
the network and also include data stolen from the corresponding host machine.
When an infected host is detected by the defender, it is restored to its original
state. If the number of active peers of a bot drops below the predefined threshold
pmin, then the bot returns to the scanning state to recruit additional machines.
Finally, to facilitate remote control by an attacker, the bots periodically check
if they can reach the C&C server through their peers. If not, they establish a
direct channel with the C&C server.

4 Overview of Research Challenges

Stealthy botnets, due to their ability to evade traditional defenses, are intrinsi-
cally difficult to detect and mitigate. Their very nature makes them extremely
powerful tools in the hands of APT actors, whose primary goal is to remain
undetected and persist within target systems for extended periods of time. From
a defensive perspective, the problem of detecting and mitigating stealthy botnets
can be broken down into three closely related challenges – captured in the
infographic of Fig. 2 – which can be addressed separately, yet in a coordinated
fashion, to dominate the complexity of the problem.

In real-world scenarios, it is unfeasible to monitor all network activity in
depth. Thus, the first challenge is to deploy a limited number of detectors so as
to maximize the likelihood of intercepting botnet-related activity. The second
challenge is to analyze traffic collected by deployed detectors in order to isolate
malicious data flows and identify bots responsible for those flows. This capability
would enable the defender to take down bots and restore compromised hosts to
a secure state. Finally, the third challenge is to reduce the overall lifetime of a
botnet. Taking down some of the bots in a botnet is only a temporary solution, as
residual bots can compromise additional machines to restore the full functionality
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Fig. 2. Botnet detection and mitigation in a sample network scenario

of the botnet. In practice, the defender can claim victory only when every bot
has been removed from the system. To achieve this goal, we need to develop
a process that iterates through multiple cycles of data collection, analysis, and
response, until no further botnet activity can be detected.

5 Detector Placement

As mentioned earlier, collecting and analyzing all traffic traversing every router
in a complex network would prove to be a daunting task. Whether the analysis
and detection capabilities are distributed or centralized, this solution would
not only incur a significant computational cost, but could also increase false
positive rates. To address this challenge, we have developed several heuristic
detector placement strategies that select subsets of a network’s nodes based on
their centrality [41]. To this aim, we model a network as a graph, where nodes
correspond to hosts and network devices, and edges represent the connectivity
between them. A centrality measure captures important properties of a graph to
determine how important or central each node is with respect to a given function
or mission, which in our case is the botnet’s mission to exfiltrate data from the
target network to an external server. Centrality measures have found application
in a wide range of domains, from social networks to citation ranking, and a prime
example is PageRank, the algorithm used by Google to measure the importance
of webpages.

Architecturally stealthy botnets are aware of the target network’s topology
and can potentially discover the location of detectors. Based on this information,
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attackers attempt to create detector-free paths within the network by compro-
mising additional hosts to be used as proxies. To overcome the limitations of a
purely static solution, we can adopt an MTD approach and periodically alter
the placement of detectors, so as to introduce uncertainty about their location
and force the attacker to perform additional, potentially detectable actions to
maintain a functional botnet.

5.1 Preliminary Definitions

Let G = (V,E) be a graph representing the physical topology of the network,
where V is a set of network elements (e.g., routers and end hosts) and E captures
the connectivity between them. Let N = {h1, h2, ..., hn} be a set of mission-
critical hosts. Let ΠG denote the set of all simple paths π(vi, vj) between any pair
of nodes (vi, vj) ∈ V ×V . Traffic between any two nodes is routed using a routing
algorithm, which can be formally defined as a mapping RA : V ×V → ΠG, such
that

RA(u, v) = 〈u, z1, z2, . . . , zr, v〉,∀(u, v) ∈ V × V

where 〈u, z1, z2, . . . , zr, v〉 ∈ ΠG is the path followed by traffic from u to v. Note
that we slightly abuse notation and, for the sake of presentation, we may treat
a path π ∈ ΠG as a set of nodes. Although most routing algorithms attempt to
route traffic along the shortest path from source to destination, our approach
does not rely on the assumption that traffic is routed along the shortest path,
but rather on the more general assumption that we can predict what paths the
algorithm will select for routing traffic. However, for the sake of presentation,
and without limiting the generality of our approach, we do assume that the
networks being studied implement a shortest path routing algorithm.

In order to exfiltrate data from the set N of mission-critical nodes, the
attacker compromises a set B ⊆ V of network nodes – referred to as bots and
such that B ∩N 	= ∅ – and creates an overlay network to forward captured data
to a remote C&C server.

Definition 1 (Exfiltration Path). Given the set N ⊆ V of mission-critical
nodes for a network G = (V,E) and a set B ⊆ V of nodes controlled by the
attacker, an overlay path is a sequence πo(b0,C&C) = 〈b0, b1, b2, . . . , br,C&C〉
of bots – with b0 ∈ N ∩ B and bi ∈ B for each i ∈ [1, r] – chosen by the
attacker to forward traffic from mission-critical node b0 to a remote C&C site. The
exfiltration path corresponding to an overlay path πo(b0,C&C) is the sequence of
nodes in V traversed by traffic exfiltrated through πo(b0,C&C), and it is defined
as:

πe(b0,C&C)=〈b0, v
0
1 , v0

2 , . . . , v0
l0 , b1, v

1
1 , v1

2 , . . . , v1
l1 , b2, . . . , br, v

r
1, v

r
2, . . . , v

r
lr ,C&C〉

where RA(bi, bi+1) = 〈bi, v
i
1, v

i
2, . . . , v

i
li
, bi+1〉,∀i ∈ [0, r − 1] is the routing path

from bi to bi+1 and RA(br,C&C) = 〈br, v
r
1, v

r
2, . . . , v

r
lr

,C&C〉 is the path from br

to C&C.
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Example 1. In the example of Fig. 3, if v5 ∈ B is a bot and the attacker chooses
to exfiltrate traffic through the overlay path πo(v1,C&C) = 〈v1, v5,C&C〉, then
the corresponding exfiltration path is πe(v2,C&C) = 〈v1, v3, v5, v8,C&C〉.

Fig. 3. Example of network graph

For a given set of mission-critical nodes N , the defender’s objective is to
intercept and detect exfiltration traffic. In order to monitor the network for
botnet activity, the defender can deploy detectors on a subset of nodes D ⊂ V .
One of several botnet detection mechanisms can be used to detect botnet activity
[15,16,48,49]. These detection mechanisms leverage the fact that bots need to
communicate with their peers or the C&C server to relay captured data.

Definition 2 (Detection). Given the set N ⊆ V of mission-critical nodes for
a network G = (V,E) and the set B ⊆ V of bots controlled by the attacker, an
exfiltration attempt over an exfiltration path πe = 〈v0, v1, v2, . . . , vr,C&C〉, with
v0 ∈ N ∩ B, is said to be detected iff the exfiltrated traffic traverses a detector
node, that is, ∃d ∈ D s.t. d ∈ πe. A botnet is said to be stealthy with respect
to N , iff no exfiltration path between nodes in N ∩ B and a C&C site can be
detected.
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Unfortunately, existing detection mechanisms suffer from false positives and
false negatives, therefore exfiltration attempts may go undetected even when a
detector is placed on a node along the exfiltration path. However, a prudent
attacker will opt for creating more bots in order to establish a detector-free
path, rather than having the traffic routed through detectors, irrespective of
their false negative rate. Based on these considerations, and in order to simplify
the presentation of our analysis, we ignore the accuracy of detectors and assume
that any exfiltration attempt going through a detector node is detected. We will
reconsider the problem of detecting exfiltration traffic later in this chapter.

In order to exfiltrate data from a mission-critical node h ∈ N to a C&C site in
a stealthy manner, the attacker must identify a detector-free path π∗

e(h,C&C) ∈
ΠG, and forward data through it. The set of all detector-free paths represents
the exfiltration surface of the network, which can be formally defined as follows.

Definition 3 (Exfiltration Surface). Given the set N ⊆ V of mission-critical
nodes for a network G = (V,E), let D ⊂ V be a set of detector nodes. The
exfiltration surface of G with respect to D is the set of detector-free paths ψD =
{πe(h,C&C) | h ∈ N ∧ πe(h,C&C) ∈ ΠG ∧ πe(h,C&C) ∩ D = ∅}. We use Ψ to
denote the set of all possible exfiltration surfaces from mission-critical nodes N
to C&C sites.

In [42], we proposed an approach to deploy detectors on selected network
nodes, so as to reduce the exfiltration surface by either completely disrupting
communication between bots and C&C nodes, or at least forcing the attacker to
create more bots, thereby increasing the botnet’s footprint and the likelihood
of detection. As the detector placement problem is intractable, we proposed
heuristics based on several centrality measures. Specifically, we showed that the
iterative mission-betweenness centrality strategy yields the best results. In this
strategy, after a node has been selected as a detector, the mission-betweenness
centrality of all non-detector nodes is recomputed, and the node with the
highest centrality is chosen for placing an additional detector. In practice, this
approach prevents two or more detectors from being placed on the same high-
centrality path. Although this strategy significantly increases an attacker’s effort,
the resulting exfiltration surface is static. Therefore, a persistent attacker can
gather enough information to precompute the exfiltration surface of the target
system and identify a detector-free path to exfiltrate data. We overcome this
limitation by designing detector placement strategies that dynamically change
the exfiltration surface by continually altering the placement of detectors, as
discussed in the following subsections.

5.2 Defender’s Model

In our defender’s model, we consider a resource-constrained setting where the
defender can only deploy k detectors. In practice, an upper bound on the number
of detectors can be determined by considering the number of systems in the
network that can perform detection tasks without impacting the performance of
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applications running on them. A dual problem is that of minimizing the number
of detectors needed to satisfy predefined security requirements. In the following,
we formally define the notion of detector placement.

We assume that the defender is aware of the location of potential C&C sites.
For an enterprise network, C&C locations could include any destination outside
the network perimeter. Similarly, for an ISP network, potential C&C sites could
be located outside the administered domain. Furthermore, it has been shown
that certain IP address ranges are known to participate in malicious campaigns
[8,28]. This information can be leveraged to identify potential C&C locations,
but, due to the conservative estimate on the location of potential C&C sites,
simply blacklisting traffic to these locations would adversely affect legitimate
users.

Definition 4 (k-placement). Given a network G = (V,E), a k-placement over
G is a mapping pl : V → {0, 1} such that

∑
v∈V pl(v) = k. Vertices v such that

pl(v) = 1 are called detector nodes. We will use Pk to denote the set of all
possible k-placements.

To address the limitations of a static placement and increase the probability
of detection, we can continually shift the exfiltration surface by dynamically
changing the location of detectors. In our analysis, we discretize time as a finite
sequence of integers T = 〈t1, t2, . . . , tm〉 ⊆ N

m, with m ∈ N, such that for all
1 ≤ i < m, ti < ti+1, and model how placements can evolve over time.

Definition 5 (Temporal k-placement). A temporal k-placement is a function
tp : T → Pk. We will use PT

k to denote the set of all possible temporal k-
placements.

Intuitively, for each time point in T , a temporal k-placement deploys
detectors on k network nodes. In order to create uncertainty for the attacker with
respect to the location of detectors, we choose temporal k-placement functions
by using a probability distribution over all temporal k-placements.

Definition 6 (Temporal probabilistic k-placement). A temporal proba-
bilistic k-placement (tp-k-placement) is a function τ : PT

k → [0, 1] such that∑

tp∈P T
k

τ(tp) = 1.

Example 2. Figure 4 shows an example of temporal probabilistic k-placement
τ for the graph of Fig. 3 and for k = 2. Each table in the figure represents a
different temporal k-placement tp1. Note that

∑
tp∈P T

k
τ(tp) = 1. For any given

temporal k-placement tp, the i-th column in the corresponding table – with
i ∈ {1, 2, . . . ,m} – represents the k-placement pl that tp associates with time
point ti. Note that, for each k-placement pl,

∑
v∈V pl(v) = k. This example

assumes that only certain nodes, namely v3, v4, v5, and v6, can host detectors.

1 For the sake of presentation, we assume that those shown are the only possible
temporal k-placements in PT

k ).
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Fig. 4. Example of temporal probabilistic k-placement

Let the indicator random variable Iv
ti

be associated with the event that node
v is chosen as a detector at time ti. Given a temporal probabilistic k-placement
τ , the probability with which a node v ∈ V will be chosen as a detector at time
ti can be derived as

prv
ti

= Pr(Iv
ti

= 1 | τ) =
∑

tp∈P T
k s.t. (∃pl∈Pk)(tp(ti)=pl∧pl(v)=1)

τ(tp) (1)

Thus, at time ti, the defender selects k nodes for detector placement by
sampling from the distribution defined by Eq. 1. We denote such a strategy as
Dti

∼ {prv
ti

}v∈V .

5.3 Metrics

To evaluate the performance of a defender strategy, we present two metrics: the
minimum detection probability and the attacker’s uncertainty. The minimum
detection probability provides a theoretical lower bound on the probability that
an exfiltration activity is detected due to the detector placement strategy. On the
other hand, the attacker’s uncertainty is measured as the entropy in the location
of the detectors from the attacker’s point of view: the higher the entropy, the
higher the attacker’s effort required to discover the location of detectors.

5.3.1 Minimum Detection Probability
As mentioned earlier, to be succssfull, the attacker needs to exfiltrate data
segments d1, d2, . . . , dm over a temporal span T = 〈t1, t2, . . . , tm〉 ⊆ N

m,
while remaining undetected. At each time point ti, the defender chooses a
strategy, Dti

∼ {prv
ti

}v∈V and samples k nodes without replacement. Let
Dti

denote the set of detectors at time ti. Following defender’s placement of
detectors, the attacker begins exfiltrating data segment di. For a chosen overlay
path πo(h,C&C), the traffic will traverse the corresponding exfiltration path
πe(h,C&C) = 〈h, vi1 , vi2 , . . . , vil

,C&C〉, with h ∈ N . Therefore, the probability
that the attacker’s exfiltration of data segment di is detected is given by:

detectPr(Dti
, di, πe(h,C&C)) = 1 −

∏

v∈πe(h,C&C)\{h,C&C}

(
1 − prv

ti

)
(2)
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Algorithm 1. minimumDetectionProb(G,Dti
, N,C&C)

Input: a connectivity graph G(V, E), a defender strategy, Dti
∼ {prv

ti
}, a set N ⊆ V of mission-

critical nodes, a potential C&C location
Output: the minimum detection probability of strategy Dti

at time ti for graph G(V, E) with
respect to mission-critical nodes N and the potential C&C location

1: H(V ′, E′) ← dual graph of G(V, E), where V ′ = E and (e, f) ∈ E′ iff e and f share a common
vertex v ∈ V

2: b ← ε // an arbitrarily small value
3: for all (e, f) ∈ E′ do
4: v ← the common vertex of e and f in V
5: if prv

ti
< 1 then

6: W ′(e, f) ← logb(1 − prv
ti

)

7: else
8: W ′(e, f) ← ∞
9: end if

10: end for
11: // ∀v ∈ V , let E (v) denote the set {e | e ∈ E ∧ e is incident on v ∈ V }
12: for all h in N do
13: for all e in E (h) do
14: for all c in E (C&C) do
15: S ← length of the shortest path from e to c in H
16: detectPr(h, e, c) ← 1 − bS

17: end for
18: end for
19: detectPr(h) ← min

(e,c)∈E (h)×E (C&C)
(detectPr(h, e, c))

20: end for
21: return min

h∈N
(detectPr(h))

A rational attacker – who is aware of the defender’s strategy – will choose a
path that minimizes the probability of detection. Therefore, the path chosen by
the attacker to exfiltrate di is:

πi∗
e (h,C&C) = argmin

πe(h,C&C)

(detectPr (Dti
, di, πe (h,C&C))) (3)

In other words, Eq. 3 can be used to compute the minimum detection
probability that a defender strategy Dti

can guarantee at time ti. Finally, an
exfiltration activity is said to be detected when any of the m data flows is
detected. Therefore, the minimum probability with which a strategy Dti

detects
an exfiltration activity is given by

eDetectPr
({Dti

}i∈[1,m]

)
= 1 −

∏

di

(

1 − min
πe

(detectPr (Dti
, di, πe))

)

(4)

Given a graph G(V,E), the minimum detection probability of a strategy Dti

at time ti – i.e., min
πe

(detectPr (Dti
, di, πe)) – can be computed using Algorithm1.

At a high-level, the algorithm transforms the graph G(V,E) into a weighted dual
graph H(V ′, E′) in which the edge weights are a function of the probability that
the corresponding vertex in G(V,E) does not host a detector. Specifically, at
time ti, the path detection probability over any path πe(u, v) (given by Eq. 2)

can be re-written as 1 − bS , where S =

(
∑

x∈πe(u,v)

logb

(
1 − prx

ti

)
)

and b is an
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arbitrarily small value. Here, bS is the upper bound on the probability that the
path πe(u, v) will be free of detectors. Therefore, each edge in E′ corresponding
to a node v ∈ V is assigned a weight logb(1−prv

ti
). Following this assignment, the

algorithm determines the shortest path length between the vertices in V ′ that
correspond to edges incident on the mission-critical and C&C vertices in V . The
shortest path length represents the maximum probability that data exfiltration
is not detected, and the vertices in V corresponding to edges on this shortest
path form the path πi∗

e (h,C&C).
In particular, after generating the dual graph H(V ′, E′) on Line 1, Algo-

rithm1 assigns weights to all the edges (e, f) ∈ E′ based on the probability
prv

ti
that the corresponding vertex v ∈ V is chosen for detector placement

(Lines 3–10). If a detector is placed on vertex v ∈ V with probability 1, then any
exfiltration over a path that contains v will be detected. A rational attacker will
avoid such paths and hence the algorithm sets the weight of the corresponding
edges in E′ as ∞ (Line 8). On the other hand, if the probability is less than 1,
then the corresponding edge is assigned a weight logb(1 − prv

ti
) (Line 6). Next,

Line 15 computes the length of the shortest path between vertices e and c in
V ′, which correspond to the edges in E that are incident on mission-critical
nodes and C&C, respectively. Finally, Line 16 computes the minimum detection
probability over all the paths from a mission-critical node h ∈ N to C&C that
traverse edges e and c. Line 19 computes the minimum detection probability for
each mission-critical node h by considering all the paths to C&C. Finally, the
minimum detection probability with respect to all mission-critical nodes in N
for graph G(V,E) is computed on Line 21.

In the worst case, Algorithm 1 takes O(|E|2) time to generate the edge-dual
graph H(V ′, E′) as all pairs of edges in E are checked for a common vertex.
As a result, in the worst case |E′| = O(|E|2). Lines 3–10 run in time O(|E′|)
and Line 11 can be computed in time O(|V |2) by traversing the adjacency
matrix of G. To compute the shortest paths between vertices in H (Line 15)
that correspond to mission-critical node h and C&C in G, we can leverage
the Fibonacci heap implementation of Dijkstra’s single-source shortest path
algorithm [10]. The complexity of computing the shortest path lengths for a
node h ∈ N (Lines 13–19) is given by O (E (h) · (|E′| + |V ′| log |V ′|)). Therefore,
in the worst case, the time complexity for computing the shortest path lengths
for all mission-critical nodes is O(|E| · (|E|2 + |E| · log |E|)).

As the time complexity of the algorithm is dominated by the shortest paths
computation, the time complexity is O(|E| · (|E|2 + |E| · log |E|)). The worst-case
time complexity for computing the minimum detection probability is O(|V |6).
However, for practical network topologies, our simulation results indicate that
the processing time does not exceed O(|V |3).

5.4 Attacker’s Uncertainty

Probabilistic deployment of detectors introduces uncertainty for the attacker
with respect to the location of the detectors. Depending upon the nature of the
deployed detector (either active or passive), the attacker may progressively learn
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the location of these detectors through probing. For instance, if an enterprise
network deploys an active IDS, a simple probing strategy could consist in sending
malicious packets to a node suspected of hosting a detector and, depending on
whether the node accepts or rejects the packets, the attacker can determine
the node’s detection state. In an ISP network, an attacker can leverage probing
strategies described by Shinoda et al. [35], and by Shmatikov and Wang [36] to
identify the presence of detectors in a network.

The uncertainty introduced by a dynamic placement strategy can be
quantified by measuring the entropy in locating the detectors at any time ti.
Let X−

ti
be the random variable that maps the set V of potential locations to

the corresponding probability of being chosen for detector placement. Therefore,
the entropy due to a strategy Dti

∼ {prv
ti

}v∈V is given by:

H(X−
ti

| Dti
) = −

∑

x∈V

P (X−
ti

= x) log(P (X−
ti

= x)) (5)

where log(P (X−
ti

= x)) = 0, when P (X−
ti

= x) = 0. Note that, based on the
above definition of entropy, higher entropy translates into a greater advantage
for the defender over the attacker.

5.5 Defender’s Strategies

To illustrate the effectiveness of different defender strategies, consider again the
network in Fig. 3, which includes mission-critical nodes N = {v0, v1, v2}. The
attacker’s objective is to exfiltrate data from any node in N to a C&C server. To
protect mission-critical nodes from data exfiltration, we consider the following
strategies for placing k detectors.

• Static Iterative Centrality Placement. In this strategy, the defender chooses
nodes based on the iterative mission-betweenness centrality algorithm pro-
posed in [42]. The defender first computes the mission-betweenness centrality
of a node v as CM (v) =

∑

(s,t)∈N×C&C s.t. v =t

σst(v)
σst

, where σst is the number of

shortest paths between s and t and σst(v) is the number of those paths that
go through v. Upon computing the mission-betweenness centrality for all the
nodes, the defender chooses the node with the highest centrality for detector
placement. For each subsequent detector placement, the centrality CM (v) of
all non-detector nodes is re-computed and the node with the highest centrality
among the non-detector nodes is picked for placing the next detector. In the
example of Fig. 3, assume that the defender can place k = 2 detectors. Then,
node v9 (or v8) will be chosen to the place the first detector followed by v8

(or v9) to place the second detector.
• Uniform Random Placement. The static nature of the above strategy enables

an attacker to pre-compute the location of detectors and compromise nodes
along a detector-free path. Therefore, in order to create uncertainty about
the exact location of detectors, in this strategy, the defender chooses k nodes
to place detectors uniformly at random.



170 M. Albanese et al.

Fig. 5. Candidate detector locations for the network of Fig. 3, based on the
(a) centrality-weighted strategy, and (b) expanded centrality-weighted strategy

• Centrality-Weighted Placement. Although the uniform random strategy intro-
duces uncertainty for an attacker, it may consider nodes that do not lie on
any simple path between mission-critical nodes and C&C. As a result, the
uniform strategy may provide a low minimum detection probability. In this
strategy, to improve detection guarantees, the defender places k detectors by
randomly choosing nodes according to a probability distribution that weights
nodes based on their mission-betweenness centrality, i.e., nodes with higher
values of CM (v) have more chances of being chosen for detector placement.
For the example shown in Fig. 3, the nodes colored in brown in Fig. 5a are the
only nodes considered for detector placement by this strategy (the darkness
is proportional to the relative weight of the corresponding node).

• Expanded Centrality-Weighted Placement. One of the major drawbacks of
the centrality-weighted strategy is that coverage of the exfiltration surface
is limited. In fact, that strategy considers only the nodes on the set of all
shortest paths between the mission-critical nodes and C&C. In this strategy,
the coverage of the exfiltration surface is expanded by considering all the
nodes on paths that are up to δ times longer than the shortest paths. Let Πe

be the set of all such paths. The revised centrality of a node v is computed as
CE(v) =

∑

(s,t)∈N×C&C s.t. v =t

σ′
st(v)
σ′

st
, where σ′

st is the number of simple paths in

Πe between s and t and σ′
st(v) is the number of those paths that go through

v. In the example of Fig. 3, when δ = 0.25, the nodes colored in brown in
Fig. 5b will be considered for randomizing the placement.
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5.6 Simulation Results

We evaluated the proposed strategies using real ISP network topologies obtained
from the Rocketfuel dataset [37] and synthetic topologies generated using graph-
theoretic properties of typical ISP networks. The Rockfuel dataset provides
router-level topologies for 10 ISP networks. For each network, Table 1 provides a
summary of the total number of routers within the network and the number
of external routers (located outside the ISP) to which the ISP routers are
connected. As connections to external routers are outside the monitored domain,
we considered a worst-case scenario in our simulations and assumed that all the
external routers are potentially routing traffic to C&C servers.

Table 1. Summary of ISP networks from [37]

ASN Name No. of routers No. of ext. routers ASN Name No. of routers No. of ext. routers

1221 Telstra 2998 329 3356 Level3 3447 1827

1239 Sprintlink 8341 1004 3967 Exodus 895 520

1755 Ebone 605 310 4755 VSNL 121 80

2914 Verio 7102 2432 6461 Abovenet 2720 2066

3257 Tiscali 855 444 7018 AT& T 10152 722

To study the influence of network topology on the performance of a strategy,
we evaluated these strategies using simulated medium-scaled ISP networks
comprising 3,000 nodes. At the router level, such networks are known to exhibit
scale-free network properties wherein the degree distribution follows a power-law
distribution. In order to accurately capture the connectivity of an ISP network at
the router level, the BRITE network topology generator [26] was used to generate
these networks. Ten such networks were considered, with mission-critical nodes
varying between 10% and 30% of the network size and 500 C&C locations chosen
at random for each network.

For the ISP networks from the Rocketfuel dataset, we varied the size of the
detector set as a fraction of the number of mission-critical nodes, whereas, for
synthetic topologies, we varied the size of the detector set as a fraction of the
network size. These simulations were intended to study the impact on the amount
of resources that a network administrator might be willing to invest (proportional
to either the number of nodes that need to be protected or the size of the network)
to detect exfiltration. In all our simulations, we set δ = 0.5 for the expanded
centrality-weighted strategy and tested the statistical significance of the results
using paired t-tests at 95% confidence interval. For the sake of presentation, we
show the results for a subset of the topologies from the Rocketfuel dataset.

5.6.1 Minimum Detection Probability
As illustrated in Figs. 6 and 7, the probability of detecting exfiltration attempts
increases linearly with the number of detectors. We observed that variations in
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the detection probability for different synthetic networks were less than 1% and
hence, for the sake of presentation, we only show mean values.
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Fig. 6. Minimum detection probability for different networks using centrality-weighted
(CWS) and expanded centrality-weighted (ECWS) strategies

It can be observed that, independently of the number of mission-critical
nodes and detectors, the centrality-weighted strategy outperforms the expanded
centrality-weighted strategy. This trend can be attributed to the scale-free nature
of the topology in which most of the paths traverse a small portion of the nodes.
As the expanded strategy considers a larger number of paths and distributes
the placement probability across the nodes on these paths, the nodes with
high centrality will be chosen with a lower probability than in the case of the
centrality-weighted strategy. In these simulations, we observed that the static
iterative centrality strategy could not detect exfiltration of data segments in any
of the networks as there was at least one detector-free path between one of the
mission-critical nodes and a C&C location.

5.6.2 Attacker’s Uncertainty
As mentioned earlier, among the detector placement strategies, the static
iterative centrality strategy does not introduce any uncertainty for the attacker,
whilst the uniform random strategy introduces the highest uncertainty in the
location of detectors. To study the attacker’s uncertainty in the location of
detectors due to the proposed strategies, we computed the relative entropy



Adaptive Cyber Defenses for Botnet Detection and Mitigation 173

Fig. 7. Minimum detection probability for different strategies using synthetic
topologies

introduced by the centrality-weighted and the expanded centrality-weighted
strategies w.r.t. the uniform random strategy. As shown in Fig. 8, the centrality-
weighted strategy and its expanded version create a level of uncertainty that
lies in-between the two ends of the entropy spectrum. In particular, as the
expanded strategy potentially considers more nodes, the number of combinations
of detector locations, and hence the uncertainty introduced by it is higher
than the centrality-weighted strategy. Therefore, for ISP networks, the choice
of different centrality-weighted strategies offers a trade-off between entropy and
detection probability.

Fig. 8. Relative increase in entropy for the attacker introduced by different strategies

5.6.3 Processing Time
In this section, we evaluate the performance of Algorithm 1 in computing
the minimum detection probability and the performance of various detector
placement strategies as a function of the network size. For each network size, we
generated 10 ISP-type topologies, with 10% of the nodes being mission-critical
and 500 C&C locations chosen randomly. We varied the number of detectors from
3% to 7% of the network size and observed similar trends in the processing time.
For the sake of presentation, we only show the results when the total number
of detectors is set to 3% of the network size. The processing time was averaged
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Fig. 9. Processing time for computing the minimum detection probability using
Algorithm 1.

Fig. 10. Processing time for different detector placement strategies

over the 10 topologies for each network size. All experiments were conducted on
an AMD Opteron processor with 4 GB memory running Ubuntu 12.04.

Although, in theory, the worst-case processing time of Algorithm1 is O(|V |6),
for practical network settings, it can be observed (see trend line in Fig. 9) that
the execution time grows as O(|V |3) with an R2 value of 0.9968. Finally, as
shown in Fig. 10, the dynamic strategies compute the detector locations faster
than its static alternative. This is because, the static iterative centrality strategy
has to re-compute the shortest paths multiple times to determine the location
of the detectors.

6 A Game-Theoretic Approach to Detector Placement

In this section, we consider a game-theoretic approach to design effective
detection placement strategies. We formulate the botnet defense problem as a
Stackelberg security game, thus accounting for the strategic response of attackers
to deployed defenses. We consider two formulations of data exfiltration: (i) uni-
exfiltration, where the source bot routes the stolen data along a single path
designated by the attacker; and (ii) broad-exfiltration, where each bot propagates
the received stolen data to all other bots in the network.
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We propose algorithms to compute defense strategies for these data exfil-
tration formulations: ORANI (Optimal Resource Allocation for uni-exfiltration
Interception) and ORABI (Optimal Resource Allocation for Broad-exfiltration
Interception). Both ORANI and ORABI employ the double-oracle method [25]
to control exploration of the exponential strategy spaces available to attacker
and defender. Our main algorithmic contributions lie in defining mixed-integer
linear programs (MILPs) and greedy heuristics for implementing the defender
and attacker’s best-response oracles.

6.1 Game Model: Uni-Exfiltration

Our game model for uni-exfiltration is built on the botnet model introduced in
Sect. 5. We model the botnet defense problem as a Stackelberg security game
(SSG) [21]. In such a game, the defender commits to a mixed (randomized)
strategy to allocate limited security resources to protect important targets.
The attacker then optimally chooses targets with respect to the distribution
of defender allocations.

In the botnet exfiltration game, the attacker attempts to steal sensitive
network data. Compromising a mission-critical node enables the attacker to
steal data from that node. Compromising other nodes in the network helps the
attacker relay the stolen data to a C&C server outside the network, which he
controls, through a sequence of compromised nodes (bots) forming an overlay
path. Routing between consecutive bots on this paths is beyond the attacker’s
control, and the sequence of all nodes traversed by exfiltrated traffic is referred
to as an exfiltration path, as defined Sect. 5.1. In this game model, we consider
the case in which the attacker does not divide stolen data into multiple segments
before relaying it to C&C.

In our Stackelberg game model, the defender moves first by allocating
detection resources, and the attacker responds with a plan for compromise
and exfiltration to evade detection. The defender placement of detectors is
randomized, so any attack plan succeeds with some probability. As formalized
in Definition 2, an exfiltration attempt is detected if there is a detector on the
exfiltration path.

Definition 7 (Strategy Space). The strategy spaces of the players are as
follows:
Defender : The defender has Kd < |V | detection resources available for
deployment on network nodes. We denote by D = {Di | Di ⊆ V, |Di| ≤ Kd}
the set of all pure defense strategies of the defender. Let x = {xi} be a mixed
strategy of the defender where xi ∈ [0, 1] is the probability that the defender
plays Di, and

∑
i xi = 1.

Attacker : The attacker can compromise up to Ka < |V | nodes. We denote by
A = {Aj = (Bj ,Πj) | Bj ⊆ V, |Bj | ≤ Ka,Πj = {πj(c, C&C) | c ∈ Bj ∩ N}} the
set of all pure strategies of the attacker. Each pure strategy Aj consists of: (i) Bj :
a set of compromised nodes; and (ii) Πj : a set of exfiltration paths over Bj .



176 M. Albanese et al.

A simple scenario of the botnet defense game is shown in Fig. 11. The model
specification is completed by defining the payoff structure, which is zero-sum.

Definition 8 (Game Payoff). Each mission-critical node c ∈ N is associated
with a value, r(c) > 0, representing the importance of data stored at that node.
Successfully exfiltrating data from c yields the attacker a payoff r(c), and the
defender receives a payoff −r(c). For prevented exfiltrations, both players receive
zero.

Note that the maximum achievable payoff for a defender is zero, obtained
by preventing all exfiltration attempts. In general terms, let Ua(Di, Aj) denote
the payoff to the attacker if the defender plays Di and the attacker plays Aj .
Since the game is zero-sum, the defender payoff Ud(Di, Aj) ≡ −Ua(Di, Aj). The
payoff can be decomposed across mission-critical nodes, which is formulated as
follows:

Ua(Di, Aj) ≡
∑

c∈N

r(c)h(c) (6)

where h(c) indicates if the attacker successfully exfiltrates data from node c ∈ N :

h(c) =

{
1 if c ∈ Bj and Di ∩ πj(c, C&C) = ∅
0 otherwise

(7)

The expected utility for the attacker when the defender plays mixed-strategy x
is

Ua(x,Aj) =
∑

i
xiU

a(Di, Aj)

which is negated to obtain the expected defender payoff Ud(x,Aj).
A defender mixed strategy that maximizes Ud(x,Aj), given that the attacker

plays a best response and breaks ties in favor of the defender, constitutes a Strong
Stackelberg Equilibrium (SSE) of the game.

6.2 ORANI: An Algorithm for Uni-Exfiltration Games

In zero-sum games, the first mover’s SSE strategy is also a maximin strategy [22].
Therefore, finding an optimal mixed defense strategy can be formulated as
follows:

maxx Ud
∗ (8)

s.t. Ud
∗ ≤ Ud(x,Aj), ∀j (9)

∑

i
xi = 1, xi ≥ 0, ∀i, (10)

where Ud
∗ is the defender’s utility for playing mixed strategy x when the attacker

best-responds. Constraint (9) ensures the attacker chooses an optimal action
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Fig. 11. An example scenario of the botnet exfiltration game with (Ka = 4, Kd =
1). Four mission-critical nodes are N = {0, 1, 2, 3}. A possible pure strategy of the
attacker Aj can be: (i) a set of compromised nodes Bj = {0, 2, 5, 7}; and (ii) a set of
exfiltration paths Πj = {πj(0), πj(2)} to exfiltrate data from stealing bots 0 and 2 to
the attacker’s server C&C. These exfiltration paths πj(0) = P (0, 5) ∪ P (5, C&C) and
πj(2) = P (2, 7) ∪ P (7, C&C) relay stolen data via relaying bots 5 and 7 respectively,
where P (0, 5) = (0 → 4 → 5), P (5, C&C) = (5 → 8 → C&C), P (2, 7) = (2 → 6 → 7)
and P (7, C&C) = (7 → 9 → C&C) are routing paths fixed by the network system. If
the defender allocates its one detector to node 9, the attacker fails at exfiltrating data
from node 2 since 9 ∈ πj(2) but succeeds from node 0 since 9 /∈ πj(0).

against x, that is, Ud
∗ = minj Ud(x,Aj) = maxj Ua(x,Aj). Solving (8–10) is

computationally expensive due to the exponential number of pure strategies
of the defender and the attacker. To overcome this computational challenge,
ORANI applies the double-oracle method [17,25]. Algorithm 2 presents a sketch
of ORANI.

ORANI starts by solving a maximin sub-game of (8–10) by considering only
small seed subsets D and A of pure strategies for the defender and attacker (Line
2). Solving this sub-game yields a solution (x∗, a∗) with respect to the strategy
subsets. ORANI iteratively adds new best pure strategies Do and Ao to the
current strategy sets D and A (Lines 3–5). These strategies Do and Ao are chosen
by the oracles to maximize the defender and attacker utility, respectively, against
the current (in iteration) counterpart solution strategies a∗ and x∗. This iterative
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Algorithm 2. ORANI Algorithm Overview
Initialize the sets of pure strategies: A = {Aj} and D = {Di} for some j and i;

1: repeat
2: (x∗, a∗) = MaximinCore(D, A)
3: Do = DefenderOracle(a∗)
4: Ao = AttackerOracle(x∗)
5: A = A ∪ {Ao}, D = D ∪ {Do}
6: until converge

process continues until the solution converges: when no new pure strategy can
be added to improve the players’ utilities. At convergence, the latest solution
(x∗, a∗) is an equilibrium of the game [25]. Following this general methodology,
the specific contribution of ORANI is in defining MILPs representing the attacker
and the defender oracle problems in botnet exfiltration games. These problems
are proved to be NP-hard. We thus introduce greedy heuristics to approximately
solve these oracle problems significantly faster. These MILPs and heuristics are
described in detail in [30].

6.3 Data Broad-Exfiltration

In the botnet defense game model with respect to uni-exfiltration (Sect. 6.1), for
each stealing bot, the attacker is assumed to only select a single exfiltration path
from that bot to exfiltrate data. In this section, we study the botnet defense game
model with respect to an alternative data broad-exfiltration. In particular, for
every stealing bot, the attacker is able to broadcast the data stolen by this bot to
all other compromised nodes via corresponding routing paths. Once receiving the
stolen data, each compromised node continues to broadcast the data to all other
compromised nodes. The game model for broad-exfiltration is motivated by the
botnet models studied by Rossow et al. [32]. Overall, there is a higher chance
that the attacker can successfully exfiltrate network data with broad-exfiltration
compared to uni-exfiltration. In the following, we briefly describe the botnet
defense game model with data broad-exfiltration. The corresponding algorithm,
ORABI, to compute an optimal mixed defense strategy is built based upon
the double oracle methodology. The algorithm’s computation and complexity
is described in detail in [30].

In the game model with data broad-exfiltration, the strategy space of the
defender remains the same as shown in Sect. 6.1. On the other hand, since the
attacker now can broadcast the data, we can abstractly represent each pure
strategy of the attacker as a set of compromised nodes Aj ≡ Bj only. Given a
pair of pure strategies (Di, Bj), we need to determine payoffs the players receive.
Note that in the case of broad-exfiltration, given (Di, Bj), the attacker succeeds
in exfiltrating the stolen data from a stealing bot if there is an exfiltration path
among all the possible exfiltration paths over the compromised set Bj from this
bot to C&C which is not blocked by Di. Therefore, the players receive a payoff
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computed as in (6) where the binary indicator h(c) for each mission-critical node
c ∈ N is now determined as:

h(c) =

⎧
⎪⎨

⎪⎩

1 if ∃c∈Bj & ∃πj(c, C&C)
s.t. Di∩πj(c, C&C)=∅

0 otherwise

In fact, when players plays (Di, Bj), we can determine if there is an
exfiltration path from a stealing bot c ∈ Bj ∩ N which is not blocked by Di

by using depth or breath-first search over the compromised set Bj , which runs
in polynomial time.

6.4 Experiments

We evaluate both solution quality and runtime performance of our algorithms
compared with previously proposed defense policies. We conduct experiments
based on two different datasets: (i) synthetic network topologies generated using
JGraphT2, capturing scale-free properties [9] of many real-world networks; and
(ii) real-world network topologies derived from the Rocket-fuel dataset [37].
Each data point in our results is averaged over 50 different samples of network
topologies.

6.4.1 Synthetic Network Topology
Data Uni-Exfiltration. We compare six different algorithms: (i) ORANI – both
exact oracles; (ii) ORANI-AttG – exact defender oracle and greedy attacker oracle;
(iii) ORANI-G – both greedy oracles; (iv&v) Centrality-Weighted Placement
(CWP) and Expanded Centrality-Weighted Placement (ECWP) – heuristics
proposed in Sect. 5 to generate a mixed defense strategy based on the centrality
values of nodes in the network; and (vi) Uniform – generating a uniformly-mixed
defense strategy. We consider CWP, ECWP, and Uniform as the three baseline
algorithms.

In the first experiment (Fig. 12(a)), we examine solution quality of the
algorithms with varying number of nodes. In Fig. 12(a), the x-axis is the number
of nodes. The y-axis is the averaged expected utility of the defender obtained by
the evaluated algorithms. The data value associated with each mission-critical
node is generated uniformly at random within [0, 1]. Intuitively, the higher
averaged expected utility an algorithm gets, the better the solution quality of the
algorithm is. Figure 12(a) shows that all of our algorithms, ORANI, ORANI-AttG,
and ORANI-G, defeat the baseline algorithms in obtaining a much higher utility
for the defender.

In our second experiment (Fig. 12(b)), we examine the convergence of the
double oracle used in ORANI. The x-axis is the number of iterations of adding
new strategies for both players until convergence. The y-axis is the average of

2 A free Java graph library available at http://jgrapht.sourceforge.net.

http://jgrapht.sourceforge.net
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Fig. 12. Uni-exfiltration: random scale-free graphs

the defender’s expected utility at each iteration with respect to the defender
oracle, the attacker oracle, and the Maximin core. The number of nodes in the
graph is set to 40. Figure 12(b) shows that ORANI converges quickly, i.e., after
approximately 25 iterations. This result implies that there is only a small set
of pure strategies involved in the equilibrium despite an exponential number of
strategies in total. In addition, ORANI can find this set of pure strategies after
a small number of iterations.

In our third experiment (Fig. 12(c)), we investigate runtime performance. In
Fig. 12(c), the x-axis is the number of nodes in the graphs and the y-axis is
the runtime on average in hundreds of seconds. As expected, the runtime of
ORANI grows exponentially when |V | increases. In addition, by using the greedy
heuristics, ORANI-AttG and ORANI-G run significantly faster than ORANI. For
example, ORANI reaches 1333 s on average when |V | = 35 while ORANI-AttG

and ORANI-G reach 1266 and 990 s respectively when |V | = 140.

Data Broad-Exfiltration. In the case of data broad-exfiltration, we compare
eight algorithms: (i) ORABI – both exact oracles; (ii) ORABI-AttG – exact
defender oracle and greedy attacker oracle; (iii) ORABI-G – both greedy oracles;
(iv) ORABI-AttG-Mul – exact defender oracle and greedy-multi attacker oracle;
(v) ORABI-G-Mul – both greedy-multi oracles; and (vi, (vii, (viii) CWP, ECWP,
and Uniform.

Our experimental result on solution quality is shown in Fig. 13(a).
Figure 13(a) shows that all of our five evaluated algorithms obtain a much higher
averaged expected utility for the defender compared to the baseline algorithms.
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Fig. 13. Broad-exfiltration: random scale-free graphs

By adding multple new strategies at each iteration, both ORABI-AttG-Mul and
ORABI-G-Mul perform approximately as well as ORABI while outperforming
ORABI-AttG, and ORABI-G.

In addition, Fig. 13(b) shows that our algorithms with greedy heuristics
can scale up to large graphs. For example, when |V | = 1000, the runtime of
ORABI-AttG-Mul, ORABI-G-Mul, ORABI-AttG, and ORABI-G reaches 89, 20, 71,
and 2 s respectively. We conclude that ORABI is the best algorithm for small
graphs while ORABI-AttG-Mul and ORABI-G-Mul are proper choices for large-
scale graphs.

Finally, we investigate the benefit to the attacker from broad-exfiltration
compared to uni-exfiltration. We run ORANI and ORABI on the same set of 50
scale-free graph samples generated by uniformly at random with 20, 30, 40 nodes
in each graph respectively. Among all the samples, there are only 58%, 72%,
and 52% of the 20-node, 30-node, and 40-node graphs respectively for which
the attacker obtains a strictly higher utility by using broad-exfiltration. This
result shows that the attacker does not always benefit from broad-exfiltration.
Despite broad-exfiltration, the data exchange between any pairs of compromised
nodes must follow fixed routing paths specified by the network system, thus
constraining the data exfiltration possibilities.

6.4.2 Real-World Network Topology
Our third set of experiments is conducted on real-world network topologies from
the Rocketfuel dataset [37]. Overall, the dataset provides router-level topologies
of 10 different ISP networks: Telstra, Sprintlink, Ebone, Verio, Tiscali, Level3,
Exodus, VSNL, Abovenet, and AT&T. In this set of experiments, we mainly
focus on evaluating the solution quality of our algorithms compared with the
three baseline algorithms. For each of our experiments, we randomly sample fifty
40-node sub-graphs from every network topology using random walk. In addition,
we assume that all external routers located outside the ISP can potentially
route data to the attacker’s server. Each data point in our experimental results
is averaged over 50 different graph samples. The defender’s averaged expected
utility obtained by the evaluated algorithms is shown in Figs. 14 and 15.
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Fig. 14. Uni-exfiltration: defender’s average utility

Fig. 15. Broad-exfiltration: defender’s average utility

Figures 14 and 15 show that all of our algorithms obtain higher defender
expected utility than the three baseline algorithms. Further, the greedy algo-
rithms – ORANI-AttG, ORANI-G, and ORABI-AttG, ORABI-G – are shown to
consistently perform well on all the ISP network topologies compared to the
optimal ones – ORANI and ORABI respectively. In particular, the average
expected defender utility obtained by ORANI-G is only ≈ 3% lower than ORANI

on average over the 10 network topologies.

7 Bot Identification

To identify and remove bots, we have developed a novel network-based detection
scheme, called DeBot, which can identify traffic flows potentially associated
with data exfiltration attempts. The proposed solution intercepts traffic from
different monitoring points and leverages differences in the network behavior of
botnets and benign users to identify suspicious flows. After deploying a number
of detectors or monitors as described earlier, we analyze flow characteristics
to identify suspicious hosts and use periodogram analysis to identify malicious
flows. The fundamental assumption behind the use of periodogram analysis is



Adaptive Cyber Defenses for Botnet Detection and Mitigation 183

that exfiltration traffic tends to be relatively more periodic than normal or
benign traffic. This approach has been evaluated against different architecturally
stealthy botnets in the CyberVAN testbed [7] – developed and maintained
by Vencore Labs – and its performance has been compared to two state-of-
the-art detection techniques, which we refer to as Stealthy P2P Detector and
BSampling. The results indicate that DeBot is effective in detecting botnet
activity and mapping out the botnet’s architecture, and it outperforms existing
solutions with respect to false positive rates. As shown in Fig. 16, the proposed
approach to detect exfiltration by stealthy botnets can be divided into four
phases: preprocessing, observation, refinement, and analysis.

In the preprocessing phase, we compute the rate at which traffic snapshots
should be captured at different monitoring points within the network. We will
refer to this rate as the snapshot rate. In DeBot, the monitoring period T (e.g.,
24 h) is divided into smaller epochs, Δt (e.g., 30 mins). At each epoch in the
observation phase, the detection mechanism randomly chooses a monitoring
point based on the snapshot rates and inspects traffic traversing it during that
epoch. During the monitoring period, DeBot maintains a score for each host,
which is updated based on the similarity of the host’s traffic pattern with other
hosts within its neighborhood. At the end of the observation phase, DeBot
aggregates the scores for each host based on T

Δt traffic snapshots captured from
different vantage points. The aggregated score is then used to identify suspicious
hosts HB by comparing the score of each host with the scores of other hosts
within its neighborhood.
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In the refinement phase, DeBot identifies flows corresponding to bot traffic
by exploiting the periodic communication pattern between bots. For each
host in HB , it uses periodogram analysis to identify flows that are relatively
more periodic than other flows and marks them as suspicious. Then, in the
analysis phase, suspicious flows are further analyzed using fine-grained analysis
techniques such as Deep Packet Inspection.

7.1 Preprocessing Phase

The objective of an exfiltration campaign is to periodically transfer sensitive
data to a remote attacker-controlled server. Typically, in an enterprise network,
sensitive data is confined to a few servers which we refer to as mission-critical
servers. Exfiltrated data traverses several intermediate forwarding devices, such
as switches, routers and gateways, before reaching the remote server. Any of these
internal devices can be used as a monitoring point. In the proposed detection
scheme, traffic is mirrored from these devices to a central location for analysis.
In large enterprises, a mirroring mechanism is is usually already in place to
remotely monitor performance.

Given the sparseness of malicious flows, it is critical to identify monitoring
points that are likely to capture such flows. For instance, consider the enterprise
network in Fig. 17, with the sensitive data stored in the file servers in Subnet-1

and Subnet-2. The file servers host redundant copies of the data. To exfiltrate this
data, an attacker may choose one of several botnet communication architectures
with varying degrees of exposure of malicious flows to detectors. For example,
an attacker could compromise one of the clients in Subnet-1, say h1 with IP
192.168.1.2, mount the share drive, and directly transfer sensitive data to C&C.

Fig. 17. Enterprise network example
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Due to internal routing policies, the traffic traverses two intermediate devices
– router m6 and firewall m1 – before exiting the network. For the purpose of
presentation, we denote this communication architecture as a path, h1 → m6 →
m1 → C&C. Other possible exfiltration paths include, but not limited to: h3 →
m7 → m6 → m1 → C&C, where h3 is a compromised host in Subnet-2, h1 →
m6 → m7 → m5 → m4 → s9 → m4 → m2 → C&C, in which a database server
s9 was compromised and used as a relay. It can be observed that the percentage
of malicious flows intercepted by different monitoring points depends on the
internal routing policy and the attacker’s choice of communication architecture.

Table 2. Number of flows vs. number of bot flows

Monitoring point No. of unique flows No. of unique bot flows % of bot flows

m1 5,248 0 0

m2 149,392 3,451 2.31

m3 106,448 1,724 1.62

m4 913,680 7,766 0.85

m5 690,748 4,352 0.63

m6 126,156 1,728 1.37

m7 149,580 3,455 2.31

Total 1,146,784 11,124 0.97

Detecting malicious traffic within large networks calls for a scalable detection
mechanism. Although capturing traffic from all monitoring points would ensure
that all malicious flows are intercepted, such approach is not scalable. Therefore,
it is crucial to identify the most effective set of monitoring points so as to limit
the amount of data to be analyzed, whilst ensuring that a sufficient number
of malicious flows are intercepted for the detection mechanism to be able to
distinguish malicious flows from benign flows.

To understand the impact of different monitoring points on processing time
and accuracy of a detection mechanism, we simulated the network scenario of
Fig. 17 in the CyberVAN testbed [7], which can generate benign user traffic.
In the network of Fig. 17, we consider a stealthy botnet with a communication
architecture composed of a server in the DMZ and four compromised hosts, two
in Subnet-1 and two in Subnet-2. The bots exfiltrate data from the file server
and forward it to the server in the DMZ, which aggregates data and relays it
to C&C. Table 2 shows the number of flows intercepted at different monitoring
points during a 12-h monitoring period: when m4 is chosen as a monitoring
point, the detection mechanism processes 6 times more records than m7, while
intercepting only twice as many bot flows as m7. This example shows that the
relationship between the volume of traffic monitored and the number of malicious
flows intercepted is not linear.
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To improve the likelihood of intercepting malicious flows in resource-
constrained environments, Venkatesan et al. [41] proposed a dynamic monitoring
strategy that exploits graph-theoretic properties of the network, which is
modeled as a graph G(V,E), with a subset of nodes Mc ⊆ V identified as
mission-critical. For each potential monitoring point m ∈ M ⊂ V , they compute
a new centrality measure, known as the mission-betweenness centrality CM (m),
which is a function of the fraction of shortest paths between mission-critical
nodes and C&C that traverse m. The time horizon is divided into smaller
observation epochs and in each epoch a monitoring point m is chosen with
probability CM (m)∑

m′∈M CM (m′) . As the above strategy only considered monitoring
points on shortest paths, to improve coverage the authors proposed the expanded
centrality-weighted strategy, which also considers monitoring points on paths that
are δ times longer than the shortest paths.

In this work, we adopt the principle behind the dynamic strategy mentioned
above – i.e., choosing monitoring points with high centrality – and modify it to
account for internal routing policies. In [41], the authors assumed that traffic
between systems is routed through the shortest path. However, an enterprise
network is segmented into subnets and the route between any two systems
depends on the routing policies at different monitoring points. Such policies
are influenced by several factors such as network load and security policies. We
use the tracert tool to identify the routes traversed by traffic between two systems
s and t and in turn a set of monitoring points that can intercept that traffic. We
use R to denote the set of all routes between systems in a network.

As mentioned earlier, stealthy botnets reduce exposure to detectors by
compromising additional systems and using them as proxies to relay traffic to
C&C. In an enterprise network, most communication patterns follow a client-
server model. Thus, to avoid suspicious patterns, compromised servers could

Algorithm 3. computeSnapshotRates(M,Mc, S,R)
Input: a set M of potential monitoring points, a set Mc of mission-critical nodes, a set S of potential

proxy servers, and a set R of routes between pairs of nodes in M
Output: the snapshot rate P (m) for each monitoring point m ∈ M
1: for all mc ∈ Mc do
2: R ′

mc
← ∅

3: for all s ∈ S do
4: R ′

mc
← R ′

mc
∪ {R1||R2 | (R1, R2) ∈ Rm,s × Rs,C&C}

5: end for
6: end for
7: CB(m) ← 0, ∀m ∈ M // Initialize mission-betweenness centrality
8: for all mc in Mc do
9: σ(m) ← 0, ∀m ∈ M

10: for all R ∈ R ′
mc

do
11: for all m ∈ M ∩ R do
12: σ(m) ← σ(m) + 1
13: end for
14: end for
15: CB(m) ← CB(m) +

σ(m)
|R ′

mc
| , ∀m ∈ M

16: end for
17: P (m) ← CB(m)

∑

m′∈M
CB(m′) , ∀m ∈ M

18: return P
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take the role of a proxies for bots within the network. However, we make a
conservative assumption that all systems (both clients and servers) can act as
proxies for the botnet. This assumption creates a worst-case scenario for the
defender, thereby making it challenging to design a detection mechanism. To
collect large traffic samples of such botnets, we first compute the centrality of
all the monitoring points, similarly to the expanded centrality-weighted strategy
in [41].

We use algorithm computeSnapshotRates (Algorithm 3) to compute the
snapshot rates. For each mission-critical node mc and potential proxy s, the
algorithm first determines all the paths through s by concatenating routes from
m to s, Rm,s, with routes from s to C&C. Here, we conservatively assume that
any destination outside the network is a potential C&C server. The resulting
set of routes R′

m is used to compute the mission-betweenness centrality of each
monitoring point (lines 7–16). Finally, the snapshot rate for each monitoring
point is computed on line 17. Assuming that the topology of the network remains
static during the entire monitoring period, this is a one-time computation. The
snapshot rate of a monitoring point m ∈ M is the probability that m is chosen by
DeBot for analyzing traffic traversing it during an epoch. Randomness introduces
uncertainty for the attacker and increases the cost and complexity of establishing
a stealthy botnet architecture.

7.2 Observation Phase

DeBot identifies suspicious hosts by comparing their network characteristics with
other hosts within their neighborhood. The neighborhood of a host is the set of
hosts that are expected to exhibit similar network characteristics in the absence
of malicious activity. Hosts whose characteristics deviate from their neighboring
hosts are classified as suspicious. In this chapter, without loss of generality, we
assume that hosts in the same subnet exhibit similar behavior, thus a host’s
neighborhood is represented by its subnet. Prior to starting this phase, DeBot
initializes the similarity scores of host pairs, which quantify the similarity in the
network behavior of any two hosts. At the beginning of each observation epoch
Δti, i ∈ [

1, T
Δt

]
, DeBot selects a monitoring point mi based on the snapshot

rates computed in the preprocessing phase. Traffic traversing mi during Δti
is intercepted and statistics of each flow are recorded. In this work, a flow is
uniquely identified by the tuple (src, dst, sport, dport, protocol). Flow statistics are
used as features to cluster flows, and subsequently update the similarity scores
of host pairs based on the number of common clusters between them. Finally,
at the end of the time horizon, DeBot identifies suspicious hosts by comparing
the aggregate behavior of each host with other hosts within its subnet.

For each flow f , DeBot records the median number of packets sent
(pktssent(f)) and received (pktsrecv(f)), and the median number of bytes sent
(bytessent(f)) and received (bytesrecv(f)) during an epoch Δti. We refer to the
tuple 〈pktssent(f), pktsrecv(f), bytessent(f), bytesrecv(f)〉 as the statistics of
flow f . A TCP session is considered a flow when a SYN packet is acknowledged
by a SYN-ACK packet. However, as the traffic snapshot may include incomplete
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sessions, a TCP session is included in the flow record table Fi if at least one
packet and its acknowledgment are intercepted during the same epoch. For UDP
packets, only flows in which a request is followed by a response are considered.

To identify flows that exhibit similar network behavior, the flow records
in Fi are clustered using the OPTICS clustering algorithm [4], a density-
based clustering algorithm that, unlike K-means, can identify arbitrarily shaped
clusters by grouping closely-spaced records. OPTICS uses a priority queue to
linearly order the input records so that records that are closely-spaced are placed
together. In OPTICS, a group of records is identified as a cluster if two conditions
hold: (i) it includes at least minPts records; and (ii) for any two records in the
cluster, there is a sequence of records within the cluster such that every pair of
consecutive records is within a distance ε. Records that do not belong to any
cluster are labeled as noise.

As DeBot operates on traffic snapshots, selecting an optimal value for minPts
is crucial to ensure that intercepted bot flows form a cluster and are not treated
as noise. If minPts is too high, the traffic snapshot might not have intercepted
a sufficient number of bot flows to form a cluster, whereas, if it is too low, it
will lead to creation of multiple clusters. Therefore, the choice of minPts is
influenced by both the frequency ν of bot communication and the length Δt
of the observation window. The relationship between the three variables can be
approximated as minPts = κ · Δt

ν where 0 < κ < 1 is a constant. In order to
limit the number of meaningful clusters, minPts is fixed and the length of an
observation epoch is expressed as a function of ν, i.e., Δt = minPts

κ · ν. In order
words, the choice of Δt bounds the frequency with which bots can send/receive
update messages without losing stealth.

As mentioned earlier, DeBot tracks the similarity in network behavior
between hosts. Let N (h) denote the set of hosts in the neighborhood of host h,
and let a scoring function sim(hi, hj) quantify the similarity between two hosts
hi and hj . Before the observation phase, the scoring function is initialized as
sim(hi, hj) = 1,∀hj ∈ N (hi). As noted earlier, in our work all hosts that are in
the same subnet as host h are considered its neighbors. Let Ck denote the set
of flow clusters at the end of an observation epoch Δtk, and let Chi

⊆ Ck be
the subset of clusters containing flows from/to host hi. The scoring function is
updated as follows:

sim(hi, hj) = λ(mk, hi) ·
( |Chi

∩ Chj
|

|Chi
∪ Chj

|
)

+ (1 − λ(mk, hi)) · sim(hi, hj) (11)

where λ(mk, hi) is a scalar-valued function that models the rate at which the
similarity score is updated. To define this function, we first define the visibility
of a monitoring point m as the set of hosts whose incoming and outgoing traffic
traverses m. For instance, in the network of Fig. 17, the visibility of M3 is the
set of hosts in the subnet 192.168.5.0/24. In DeBot, if a host is not visible to
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the current monitoring point, then the score is updated at a slower rate. In
particular, the λ() function is defined as:

λ(mk, hi) =
{ 0.5 if hi ∈ visibility(mk)

0.25 otherwise

At the end of the observation phase, the aggregate network score of a host
is computed as the sum of the similarity scores of the host with hosts in its
neighborhood, i.e., agg score(hi) =

∑
hj∈N (hi)

sim(hi, hj). A high aggregate
score implies that the host exhibited network characteristics similar to the
hosts in its neighborhood while a low score implies that the host’s network
characteristics deviated from the other hosts. Based on this rationale, a host
hi is identified as suspicious if its aggregate score is less than μagg(N (hi)) −
σagg(N (hi)), where μagg(N (hi)) and σagg(N (hi)) are, respectively, the mean
and standard deviation of the aggregate scores of hosts in the neighborhood
of hi.

7.3 Refinement Phase

A bot participating in an exfiltration campaign regularly communicates with
its peer bots or C&C to send or receive updates. Table 3 shows the observed
communication frequency of different instances of POS malware. Such periodic
behavior has also been observed in botnets that are known for stealing
credentials, such as Storm, Waldec, and Zeus [32].

In DeBot, we leverage the periodic communication feature of bots to
identify malicious host pairs. To determine whether a host hi is periodically
communicating with another host hj , the communication pattern between hi

and hj is treated as a signal in the time domain and transformed to the frequency
domain using Discrete Fourier Transform (DFT). After the transformation, the
Power Spectrum Density (PSD) of different frequencies is analyzed and compared
with the PSD of other connections generated by host hi to identify periodic
communications. Details are provided in the following subsections.

Table 3. Communication frequency of malware

POS malware Victim Period

BlackPOS [24] Target 10mins

FrameworkPOS [24] Home Depot 60mins + random mins

Backoff [24] UPS 45 s

Punkey [27] CiCi’s Pizza (suspected) 20mins or 45mins
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7.3.1 Detecting Periods Using Periodogram Analysis
Let TSi,j = {ts1, ts2, ...} be the set of timestamps at which a connection
was initiated from host hi to hj . The monitoring period [0, T ] is divided into
equally-spaced time points Ti,j = {t1, t2, ..., tN}, where tk+1 − tk = Δs and
N = T

Δs . When traffic between two hosts hi and hj is continuously monitored,
the corresponding connection pattern is treated as a signal that has been sampled
at evenly-spaced time intervals, Xhi,hj

(tk),∀tk ∈ Ti,j , defined as:

Xhi,hj
(tk) =

{
1, ∃tsl ∈ TSi,j , tsl ∈ (tk−1, tk+1)
0, otherwise

A Discrete Fourier Transform (DFT) converts a signal in the time domain to
the frequency domain by expressing the signal as a sum of sinusoidal components
using the equation:

Fhi,hj
(ω) =

N∑

k=1

Xhi,hj
(tk)e−iωtk (12)

where ω = 1, ..., N and eiθ = cos(θ) + i · sin(θ). Essentially, the DFT coefficient,
Fhi,hj

(ω), at frequency ω correlates the signal Xhi,hj
with a sequence of sine

and cosine waves at frequency ω – the higher the coefficient value, the greater
the similarity. The strength of each frequency in the signal is computed by
the power spectrum density. Several methods exists to estimate the power
spectral density [39]. In this work, we use the periodogram method as it is
computationally less expensive than other methods. The periodogram of the
time series Xhi,hj

is given by:

Phi,hj
(ω) =

1

N
|Fhi,hj

(ω)|2 =
1

N

[ (
N∑

k=1

Xhi,hj
(tk)cos ωtk

)2

+

(
N∑

k=1

Xhi,hj
(tk)sin ωtk

)2 ]

(13)

Figure 18 shows the periodogram of a sample of Zeus traffic obtained from a
public repository [13]. In this network trace, the bot connected with its peer
bot every 60 s, which, in the periodogram, is represented by the frequency
corresponding to the highest power. Employing the above approach directly in
DeBot, however, presents several limitations:

• Unevenly-spaced observations: Equation 13 assumes that the traffic being
analyzed was sampled at equally-spaced time intervals. However, DeBot
employs a dynamic monitoring strategy which only captures snapshots of
traffic from different monitoring points. Thus, there may be long periods
of unobserved connection patterns between pairs of hosts, and the above
periodogram analysis may not accurately estimate the power of different
frequencies in the signal.

• Detecting periodicity : DFT treats every discrete time series as periodic.
Thus, labeling a connection pattern as periodic based on high peaks in the
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Fig. 18. Communication pattern and periodogram of a Zeus bot

periodogram will lead to a large number of false positives. Furthermore,
random fluctuations due to noisy data and spectral leakage due to finite-length
sampling may also produce peaks at frequencies that do not correspond to
the true frequency of the signal.

In addition to addressing the above limitations, the detection mechanism
should be robust in the following two scenarios, which we also address in the
following subsections.

• Random perturbations: As malicious flows are detected based on their
periodicity, bots can evade detection by introducing random perturbations
to the connection pattern.

• False positives: Legitimate applications, such as software updates and email
clients, also generate periodic flows, which may be misclassified as malicious.

7.3.2 Lomb-Scargle Periodogoram
The dynamic monitoring strategy results in sampling traffic between two hosts
hi, hj at time points tk, k = 1, 2, ..N that are not evenly spaced. To study
the periodicity of an unevenly-spaced discrete time series, we use the Lomb-
Scargle periodogram to estimate the power spectrum [33]. The Lomb-Scargle
periodogram modifies the classical periodogram given in Eq. 13 by introducing
a time translation parameter τ :

Phi,hj (ω) =
1

2
·

⎡
⎢⎢⎢⎣

(
N∑

k=1

Xhi,hj (tk)cos ω(tk − τ)

)2

N∑
k=1

cos2ω(tk − τ)

+

(
N∑

k=1

Xhi,hj (tk)sin ω(tk − τ)

)2

N∑
k=1

sin2ω(tk − τ)

⎤
⎥⎥⎥⎦

(14)
where

τ = (1/2ω)tan−1

[ (
N∑

k=1

sin(2ωtk)

)
/

(
N∑

k=1

cos(2ωtk)

) ]
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The power spectrum obtained from Eq. 14 is shown to be statistically
equivalent to the least squares fit of a sinusoidal wave applied to the discrete
time series [33]. High peaks in the resulting periodogram are not sufficient to
conclude that the signal is periodic. Noise in a signal can also produce large
spurious peaks in the periodogram. To extract the candidate periods that are
due to harmonic components in the signal – and not due to noise – a threshold
power-level is determined using significance tests. For a given level of confidence,
a significance test models the pure noise as a Gaussian distribution N (μ, σ) and
determines a threshold power-level z0 below which a power is considered to be
pure noise [11]. Thus, if there are no frequencies whose power is greater than
the threshold z0, then the signal is considered to be non-periodic. One of the
limitations of the significance test is that the threshold is sensitive to the choice
of parameters μ and σ for the Gaussian distribution [11]. Furthermore, existing
non-parametric methods [44] are applicable to evenly-spaced time series and,
thus, cannot be directly adopted in our setting.

7.3.3 Relative-Periodicity
In this work, instead of checking whether the connection pattern from host hi to
host hj is periodic using significance test, we determine if it is relatively periodic
by comparing its periodogram with that of other connection patterns generated
by hi during the monitoring period. Thus, we use the system’s typical network
behavior (instead of white noise) as the baseline to check for periodicity.

Let Phi
= {Phi,hj

(ω)} be the set of periodograms of connection patterns
originating from host hi (obtained using Eq. 14). To determine which peri-
odogram exhibits an anomalously higher periodicity, the periodograms in Phi

are clustered using agglomerative clustering. While clustering, the difference
in periodic structures between two periodograms is assessed using the power
distance metric [44]. The power distance between Phi,hj

and Phi,hk
is computed

by first identifying the set of frequencies ωi,j with the K-highest powers in Phi,hj
.

The power distance is then defined as:

pDist = ||Phi,hj
(ωi,j) − Phi,hk

(ωi,j)||

In our evaluation, we set K = 1000. To ensure that the total energy is
constant, before computing pDist, the powers are normalized as follows:

X(t) =
X(t) − 1

N

N∑

i=1

X(i)
√

N∑

i=1

(

X(t) − 1
N

N∑

i=1

X(i)
) , t = 1, 2, ...N

In the proposed hierarchical cluster analysis of periodograms, the linkage
criteria between sets of periodograms was computed using the Ward’s method.
After building a hierarchical structure of the periodograms, clusters are formed
by the set of periodograms whose pairwise distance is less than a threshold γ.
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The value of γ was set to 0.95 · maxd where maxd is the maximum distance
between any two sets of periodograms as determined by the Ward’s method.
Finally, if a cluster contains only one periodogram, the connection pattern of
the corresponding host pair is considered to be relatively periodic. The rationale
behind this approach is that connection patterns corresponding to bot flows are
anomalously more periodic than other connection patterns from the same hosts,
thus the corresponding periodogram will form an individual cluster. The host
pairs (hi, hj) that are identified as relatively periodic are marked as suspicious
for further analysis.

Finally, in the analysis phase, flows generated by host pairs marked as
suspiciously periodic can be analyzed using fine-grained tools such as Deep
Packet Inspection or submitted for manual inspection to the security operations
center.

8 Botnet Lifetime

Ultimately, the defender’s objective is to eradicate a botnet from the network.
Enterprise-scale solutions require protection mechanisms that are both proactive
in preventing the propagation of botnets and reactive in detecting and respond-
ing to bots already present within the network. To address this need and solve
the third challenge mentioned earlier, we propose to deploy—in a defense-in-
depth approach—a mix of two classes of countermeasures, namely honeypots
and network-based detectors. While honeypots are used to detect intrusion
attempts—including a bot’s attempt to compromise another machine—network-
based detection mechanisms can identify (through behavioral analysis) bots that
coexist with benign machines. Both honeypots and network-based detectors can
be treated as resources available to the defender in limited supply due to cost
constraints.

8.1 Reinforcement Learning Model

To optimally and dynamically deploy these mechanisms in an iterative fashion,
and consequently reduce the lifetime of botnets, we developed a solution based
on a reinforcement learning model [43]. Reinforcement learning (RL) is an
algorithmic method for solving sequential decision-making problems wherein
an agent (or decision maker) interacts with the environment to learn how to
respond under different conditions [14]. Formally, the agent seeks to discover a
policy that maps the system state to an optimal action. In our work, the agent
learns a policy that maximizes the total number of bots detected and removed
over time. As the location of bots is unknown prior to the deployment of defense
mechanisms, the agent estimates the short-term and long-term rewards of an
action by monitoring network activity within different network segments. In
particular, the agent monitors the behavior of hosts with respect to potential
attack indicators (e.g., scanning activity and number of outgoing sessions) to
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inform the next iteration of detector placement. This approach was compared
to three other strategies, namely:

• a static strategy, which does not modify detector placement over time;
• an MTD centrality-based strategy, which periodically alters detector place-

ment based on topology-driven centrality measures;
• a myopic strategy, which makes placement decisions to optimize short-term

benefits based on feedback from the operating environment.

Fig. 19. Timeline of defender’s and attacker’s actions and observations

The defender’s objective is to maximize the number of bots detected and
removed using a limited number of resources (honeypots and monitors). In
an enterprise, any machine that connects to the target network is susceptible
to compromise and subsequent recruitment as a bot. Hence, determining the
locations for placing defense mechanisms is critical to detect bots and curb
their spread within the network. Furthermore, as bots can propagate through
the network, the placement of these defenses must also dynamically change to
detect bots in different subnetworks. Due to the evolving nature of the threat,
we propose a reinforcement learning approach to guide the defender’s sequential
decision-making process of placing monitors and honeypots over time.

In our model, we consider an infinite horizon wherein the agent makes
decisions on a periodic basis. The time between two consecutive decisions is
referred to as an epoch. A timeline with the sequence of events that occur
between consecutive decisions is shown in Fig. 19. At each decision point, the
agent determines the network segments that will be monitored during the next
epoch. At the beginning of an epoch, as described in Sect. 3, bots perform one
of two detectable activities, depending on the stage in their respective lifecycle:
(i) scanning and subsequently compromising machines within the network (these
bots are referred to as scanning bots), or (ii) exchanging update messages with
their peers and the C&C server (referred to as transmission bots). The agent
observes the network activity for a time period Δtmon ∈ [0, 1]—i.e., for a fraction
of the epoch – during which (i) honeypots may be scanned and compromised
by scanning bots, and (ii) traffic through the monitors is captured for analysis
by a centralized bot detection mechanism. At time t + Δtmon, the detector
processes captured traffic and identifies a set of potential bots. We assume that
the network-based detection mechanism is imperfect, with a known true positive
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rate, while inference based on network activity on honeypots is assumed to be
perfect3, with a true positive rate of 1.

After identifying potential bots, the defender removes them by restoring the
corresponding machines to their pristine state. Let Δtclean ∈ [0, 1] be the time4

taken by the detector to process the captured traffic and subsequently remove
the identified bots. In a resource-constrained setting with an imperfect detection
mechanism, the defender may not have detected all the bots in the network. As a
result, undetected bots continue with the next stage in their respective lifecycle.
Bots with an insufficient number of peers will scan the network while bots with
enough peers will exchange messages. The basic elements of the model are defined
below.

Decision Variable. Given N potential monitoring points, for each point the
agent may choose one of the following actions, denoted with symbols m, h, b, and
e respectively: (m) passively monitor traffic traversing that monitoring point; (h)
place a honeypot; (b) place both defense mechanisms; or (e) do nothing. Then,
the set of decisions at time t is represented as a vector xt = (xt

1, x
t
2, ..., x

t
N ), where

xt
i ∈ {m,h, b, e}. Note that placing multiple monitors on the same monitoring

point does not provide any additional benefit.

System State. The state of the system should capture the location of bots
within the network. However, as the location of bots is unknown prior to the
placement of defense mechanisms, we derive the state of the system by observing
attack indicators in different segments of the network. Anomalous behaviors –
such as a large number of unsuccessful login attempts, increase in the number
of host scans, and a large number of outgoing sessions – are some of the most
common symptoms of an ongoing attack [47]. Thus, in our model, we determine
the potential locations of bots by observing anomalous behaviors in different
segments of the network. In particular, to estimate the number of bots in different
segments of the network, we track the total number of host scans and the total
number of sessions that were recorded since the latest removal of bots from the
network, i.e., in the time period [t + Δtmon + Δtclean, t + 1) in Fig. 19. These
features can be observed at all monitoring points – not just those where defense
mechanisms have been deployed – with very low overhead.

In a network with N monitoring points, the state St of the system at any
time t can be defined as a 2N -dimensional vector (ψh

1 , ψs
1, ψ

h
2 , ψs

2, ..., ψ
h
N , ψs

N ),
where ψh

i and ψs
i are, respectively, the host scans state and the sessions state

of monitoring point i, with i ∈ [1, N ]. In this work, we model the host scans
state and the sessions state of each monitoring point as either LOW, MEDIUM
or HIGH. In the presence of benign network activity, determining the accurate
state of each feature (host scans or sessions) at different monitoring points is
challenging. To address this issue, the defender must first establish a baseline
behavior for each feature, for example by counting how many times a feature is
observed during the time period [t + Δtmon + Δtclean, t + 1). If μf

i and σf
i are

3 Attempted access to a honeypot can be assumed an indicator of malicious activity.
4 Both Δtmon and Δtclean are defined as a fraction of an epoch.
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the mean and standard deviation of each feature f ∈ {h, s} at monitoring point
i, then the state at any given time t could be defined as:

ψf
i (t) =

⎧
⎨

⎩

HIGH, if Totalfi (t) ≥ μf
i + σf

i

MED, if Totalfi (t) ∈ (μf
i − σf

i , μf
i + σf

i )
LOW, if Totalfi (t) ≤ μf

i − σf
i

(15)

where, Totalfi (t) is total number of observations of feature f that were recorded
during the time period [t + Δtmon + Δtclean, t + 1). In the following, when t is
clear from the context, we will use ψf

i instead of ψf
i (t). The intuition behind

Eq. 15 is that any large deviation from the expected behavior is considered to
be anomalous. It must be noted that the objective of this work is not to design
a specific bot detector, but rather to develop a strategy for placing defense
mechanisms to enable enterprise-scale botnet detection and mitigation. While
fine-tuning the definition of ψf

i will yield more accurate results, it is beyond the
scope of this work.

Reward Function. In an RL model, the choice of an optimal action is influenced
by the immediate reward R(St, xt) of an action. Here, the reward of an action
is defined as the number of bots that are correctly identified. However, taking
an action xt at time t, when the system is in state St, yields a reward that
is measured at a later time, t + Δtmon + Δtclean. This is a class of time-lagged
information acquisition problems, where we do not know the value of the current
state until it is updated after the uncertainty in the bot activity is revealed.
Therefore, the immediate reward of an action is estimated by using information
from recent observations. Such problems occur in real world, such as when travel
and hotel reservation decisions are done today for a future date and the value of
making such decisions is unknown until the date has occurred [12,29,31].

We estimate the number of bots in a network segment by determining
the number of hosts that have deviated from the expected behavior. Similar
to the motivation behind deriving the state of the system, the defender first
establishes a baseline for the network activity of each machine across all
monitoring points. Let μf

mc,i and σf
mc,i be the mean and standard deviation of

feature f for machine mc when observed from monitoring point i. We consider
a simple threshold scheme to decide whether a machine is a potential bot.
Given any machine mc and a monitoring point i, if Totalfmc,i(t) is the total
number of observations of feature f that were recorded during the time period
[t + Δtmon + Δtclean, t + 1), then machine mc is considered a potential bot if
and only if (∃i ∈ [1, N ])(Totalfmc,i(t) ≥ μf

mc,i +3 ·σf
mc,i). It should be noted that

this rule to identify suspicious machines can be modified based on the specific
settings of the target network and does not limit the generality of the proposed
RL model.

Post-decision System State. The post-decision system state, Sx
t , is the state

to which the system transitions after the decision xt is taken. Similar to the
reward function, the change in the state of the system can only be observed at
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a later time, in this case t + 1. Therefore, we estimate the post-decision state of
the system by determining the expected effect of a decision.

Our estimation is based on the rationale that the objective of placing a
defense mechanism at a monitoring point is to remove bots from that portion
of the network by identifying machines that exhibit anomalous behaviors. In
particular, suppose that machines mc1,mc2, ...,mck are identified as potential
bots from the monitoring point i due to deviations w.r.t. a feature f . Then,
placing a defense mechanism at time t (a honeypot if f is the host scans count,
or a network-based detector if f is the sessions count) is expected to confirm, after
a monitoring period Δtmon, whether the suspected bots are actually bots and,
if so, restore the corresponding machines mcj , j ∈ [1, k] to their pristine state.
As a result of the cleaning process, the agent expects to record μ̂f

mcj ,i,∀j ∈ [1, k]
observations of feature f at the monitoring point i during the time [t+Δtmon +
Δtclean, t+1). Assuming that the machines that are not expected to be affected
by this decision continue with their latest recorded behavior (i.e., the behavior
exhibited during [t − 1 + Δtmon + Δtclean, t)), then the new post-decision state
of monitoring point i for a feature f can be obtained by using Eq. 15, where the

estimated total number of observations of feature f is given by T̂ otal
f

i (t + 1) =
∑

j∈[1,k]

μ̂f
mcj ,i +

∑

j /∈[1,k]

μf
mcj ,i, with μ̂f

mcj ,i being the estimated behavior of machine

mcj after the placement of a defense mechanism. It must be noted that, since the
baseline values (μf

mcj ,i, σ
f
mcj ,i) of all machines at different monitoring points are

established as a preprocessing step, the post-decision state reached by a system
due to an action can be obtained immediately.

Exogenous Information. The exogenous information, or uncertainty, Bt+1 is
the information from the environment that is acquired after decision xt. The
uncertainty is attributed to the co-existence of benign and malicious behavior
within the network, making it challenging to model the evolution of bots. In
the RL model, the uncertainty is captured by observing network activity and
extracting features from different monitoring points.

State Transition Function. The state transition function, defined as St+1 =
τ(St, xt, Bt+1), captures how the system state evolves. However, due to the
absence of a model to predict Bt+1, the state transition probabilities are
unknown. Hence, a reinforcement learning based approach is used to study the
evolution of the system state.

Objective Function. The objective function is defined as the long-run total
discounted value of the states V j(S) as the iteration index j → ∞, which is
derived using the recursive Bellman’s optimality equation [6] below (Eq. 16).
Here, V j(S) is the cumulative sum of discounted R(St, xt) rewards for the
learning phase, whose iterations are indexed from 1 to j. In this work, we consider
a 365-day cycle in which decisions are made at the start of each day. The learning
phase goes through several iterations (indexed with j) of 365-day cycles. As the
value of a state is measured in terms of number of correctly identified bots, the
objective function will be to maximize the long-run total discounted value of
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the states V j(S): the higher the value of V j(S), the better the system state.
The model strives to transition from one good state to another by making a
decision that is guided by the highest value of the estimated future states that
are reachable at any given time t.

8.2 Phases of Reinforcement Learning

RL achieves the objective through three phases, namely, exploration, learning,
and learned. The recursive Bellman’s optimality equation that updates the value
of the states is given as follows:

V j(Ŝx
t−1) = (1 − αj)V j(Ŝx

t−1) + αjνj (16)

νj =
[

max
xt∈X

{
R(St, xt) + βV j(Ŝx

t )
}]

(17)

where V j(S) denotes the value of state S at the j-th iteration, Ŝx
t is the estimated

post-decision state reached by the system at state St under the action xt, αj

is the learning parameter that is decayed gradually, X is the set of all feasible
decisions from which the model will choose a decision at every iteration, and β
is the fixed discount factor that allows the state values to converge in a long run.
It should be noted that the value of the estimated post-decision state Ŝx

t−1 is
updated at time t (in Eq. 17) using the estimated reward function and the value of
the estimated post-decision states that can be reached under different actions.
In a classical RL formulation, the immediate real rewards and the immediate
value of the post-decision states at time t are known; hence, the value of the
post-decision state at time t − 1 can be updated using Eqs. 16 and 17. However,
as both the rewards and post-decision states are estimated, we update the value
of the post-decision state only after the real reward for an action is observed.

A snapshot of the state-transition diagram is shown in Fig. 20, in which
Ut denotes the uncertainty (before and after removing bots) after taking an
action, and Ot+1 denotes the features observed at different monitoring points
after removing the bots. The bot removal stage is denoted by Et+1. In this
model, during the learning phase, the choice of an action xt when the system
is in state St is determined by the estimated reward function R(St, xt). After
taking the action xt, the uncertainty Ut+1 unfolds, transitioning the system to
the state St+1. As the uncertainty Ut+1 unfolds (shown in trapezoidal box in

Fig. 20. State transition diagram
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Algorithm 4. Exploration and Learning Phase
Input: Baseline values ψf

i of each feature f ∈ {h, s} for each monitoring point i, baseline values

ψf
mc,i for each machine mc, decision space X , initial learning parameter α0 = 0.8 at time t = 0,

discount parameter β = 0.95, number of iterations for learning J = 1000.
Output: State value function, V (S), ∀S
1: V (S) ← 0, ∀S
2: for all j = {1, ..., J} do
3: if j ≤ 0.3 · J then
4: Phase ← Exploration
5: else
6: Phase ← Learning
7: end if
8: for all t = {1, ..., 365} do
9: Observe features from the monitoring points and determine state St

10: if Phase = Exploration then
11: Choose a random defense placement decision, xt

12: else
13: Estimate immediate reward R(St, xt) and post-decision state Ŝx

t , as described in
Section 8.1, ∀xt ∈ X

14: Choose the action x′
t that gives the maximum value in Eq. 17

15: end if
16: if t > 2 then
17: Observe the real reward at t + Δtmon + Δtclean

18: Decay the learning parameter, αj = αj

1+e , where e = j2

1.25·1014+j
// see [14]

19: Update value of post-decision state V j(Ŝx
t−1) using Eq. 16 and Eq. 17 with the real

reward and the value of αj

20: end if
21: end for

22: end for

Fig. 20), bots are removed at stage Et+1 and the agent observes the real reward
which is then used to update the value of the estimated post-decision state Ŝx

t−1.
The three phases of learning are described below.

Exploration Phase. In this phase, the RL algorithm explores several non-
optimal decisions and acquires the value of the system states that are visited.
As described in Algorithm 4, Eq. 16 is used without the max operator in Eq. 17
by taking random decisions for placing defense mechanisms, and the values of
V j(Sx

t ) and V j(Ŝx
t−1) are taken from the previously stored values, if the state was

visited, or set to 0 otherwise. Since the algorithm begins with V 0(S) = 0,∀S
at j = 0, exploration helps to populate the values of some of the states that
are visited. Exploration is stopped after a certain number of iterations, which
depends on the size of the state-space and the number of iterations planned for
the learning phase. In our simulation, we stopped exploration after 30% of the
total number of iterations. The idea here is to explore as many states as possible
during the learning phase. A low value of this parameter would imply not enough
states being explored, whereas a high value would lead to non-convergence of
state values during the learning phase. Thus, our choice is reasonable and quite
common for this class of problems.

Learning Phase. In this phase, the algorithm takes near-optimal decisions at
time t, which are obtained from Eq. 17 with the max operator (lines 13 − 14 of
Algorithm 4). The value of the post-decision state at time t − 1 is updated at
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time t + 1 as per Eq. 16 with the real rewards. After several iterations, learning
is stopped when convergence of the value of the states is achieved, as measured
in terms of the mean-square error of the stochastic gradient [31].

Learned Phase. This is the implementation phase of the RL. The inputs to this
phase include the value of the states at the time when learning was terminated
and the estimated reward function. In this phase, the RL algorithm takes optimal
decisions at each time t, which is obtained from Eq. 17 with the max operator.
The algorithm then evaluates all its feasible actions and chooses an action that
takes the system to the post-decision state with the highest value.

8.3 Simulation Results

Differently from the myopic strategy, the reinforcement learning strategy also
considers long-term benefits of possible detector placements. Figure 21 shows
how the number of bots in the network changes over time for each of the four
strategies considered. If the number of bots reaches 0, then the botnet has been
completely removed from the system. As expected, the static placement strategy
exhibits the worst performance: once a botnet is established, bots that are not
observable by the static detectors can persist in the network indefinitely. MTD
strategies, on the other hand, provide significantly better protection as they
introduce uncertainty about the location of detectors. The myopic strategy shows

Fig. 21. Comparison between the reinforcement learning strategy and other strategies
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a significant improvement over the centrality strategy in reducing the lifetime
of the botnet, because it also considers information obtained from the network.
Finally, among the MTD strategies, the RL approach shows the largest reduction
in the botnet’s lifetime.

9 Conclusions and Future Work

Stealthy botnets pose significant threats due to their ability to evade traditional
defenses and persist in the target system for extended periods of time. Detecting
and mitigating these threats is a multifaceted problem that calls for novel
solutions to address the several interrelated challenges that stealthy bots
introduce. We have shown how the problem can be decomposed into relatively
simpler problems that can be tackled separately, while keeping the big picture
in mind. Essentially, we need to understand where and when to monitor
for potentially suspicious activity, how to look at observed traffic to identify
potentially compromised machines, and how to ensure that each and every bot
has been removed from the network. Moving Target Defense (MTD) has proved
to be a viable and promising approach in tackling these challenges, enabling us
to achieve some interesting results. Of course, the security benefits of deploying
MTD techniques come at a cost for the defender, which can be measured in
terms of increased overhead to maintain availability for legitimate users. The
tradeoff between security and cost can generally be controlled by configuring
the parameters of an MTD technique.

In this chapter, we have presented the key findings of our work on disrupting
stealthy botnets through the use of a novel moving target defense approach.
Specifically, we have targeted botnets that are being used for exfiltrating sensitive
data from mission-critical systems. Defending against such botnets is challenging,
as research has shown how they have become increasingly sophisticated and have
the capability of operating in stealth mode by minimizing their footprint.

In order to defeat exfiltration attempts by modern botnets, we have proposed
a moving target defense approach for placing detectors across the network – in a
resource-constrained environment – and dynamically and continuously changing
the placement of detectors over time. Specifically, we have proposed several
strategies based on centrality measures that capture important properties of
the network. Our objective is to increase the attacker’s effort and likelihood of
detection by creating uncertainty about the location of detectors and forcing the
botmaster to perform additional actions in an attempt to create detector-free
paths through the network.

We have presented two metrics to evaluate the proposed strategies – namely
the minimum detection probability and the attacker’s uncertainty – and an
algorithm to compute the minimum detection probability. We validated our
approach through simulations, and the results confirmed that the proposed
solution can effectively reduce the likelihood of successful exfiltration campaigns.

As part of our work on optimal detector placement, we also proposed a
Stackelberg game model that accounts for the strategic response of attackers
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to deployed defenses. We proposed two double-oracle based algorithms, ORANI

and ORABI, to compute optimal defense strategies with respect to data uni-
exfiltration and broad-exfiltration formulations, respectively. We also provided
greedy heuristics to approximate the defender and the attacker best-response
oracles. We conducted experiments based on both random scale-free graphs and
real-world ISP network topologies, demonstrating the advantages of our game-
theoretic solution over previous strategies.

To identify and remove bots, we have developed a novel network-based
detection scheme, called DeBot, which can identify traffic flows potentially
associated with data exfiltration attempts. The proposed solution intercepts
traffic through deployed detectors and leverages differences in the network
behavior of botnets and benign users to identify suspicious flows. We analyze the
characteristics of traffic flows to identify suspicious hosts and use periodogram
analysis to identify malicious flows. The fundamental assumption behind the
use of periodogram analysis is that exfiltration traffic tends to be relatively
more periodic than normal or benign traffic. This approach has been evaluated
against different architecturally stealthy botnets in the CyberVAN testbed and
its performance has been compared to two state-of-the-art detection techniques.
The results indicate that DeBot is effective in detecting botnet activity and
outperforms existing solutions with respect to false positive rates.

Finally, to achieve the defender’s ultimate objective of eradicating a botnet
from the network, we proposed to deploy – in a defense-in-depth approach –
a mix of two classes of countermeasures, namely honeypots and network-based
detectors. While honeypots are used to detect intrusion attempts – including
a bot’s attempt to compromise another machine – network-based detection
mechanisms can identify (through behavioral analysis) bots that coexist with
benign machines. Both honeypots and network-based detectors can be treated
as resources available to the defender in limited supply due to cost constraints.
To optimally and dynamically deploy these mechanisms in an iterative fashion,
and consequently reduce the lifetime of botnets, we developed a solution based
on a reinforcement learning model.

Our future plans include but are not limited to: (i) introducing a probabilistic
model to account for false negatives in the deployed detectors; (ii) defining and
evaluating the performance of the proposed detector placement strategies against
more sophisticated attacker’s strategies; and (iii) casting the model in a game-
theoretic framework to study the Nash equilibria and dominant strategies.
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optimal randomized resource allocations for massive security games. In: Proceed-
ings of the 8th International Conference on Autonomous Agents and Multi-Agent
Systems, pp. 689–696. IFAAMAS, Budapest, May 2009

22. Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg
vs. Nash in security games: an extended investigation of interchangeability,
equivalence, and uniqueness. J. Artif. Intell. Res. 41(2), 297–327 (2011)

23. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng.
37(3), 371–386 (2011)

24. Marschalek, M., Kimayong, P., Gong, F.: POS malware revisited - look what we
found inside your cashdesk. Cyphort labs special report, Cyphort, Inc. (2014)

25. McMahan, H.B., Gordon, G.J., Blum, A.: Planning in the presence of cost functions
controlled by an adversary. In: Proceedings of the 20th International Conference
on Machine Learning (ICML 2003), pp. 536–543. AAAI Press, Washington DC,
August 2003

26. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: an approach to universal
topology generation. In: Proceedings of the 9th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
pp. 346–353. IEEE, Cincinnati, August 2001

27. Merritt, E.: New POS malware emerges - Punkey, April 2015. https://
www.trustwave.com/Resources/SpiderLabs-Blog/New-POS-Malware-Emerges--
Punkey/

28. Moreira Moura, G.C.: Internet Bad Neighborhoods. Ph.D. thesis, University of
Twente, The Netherlands, March 2013

29. Nascimento, J.M., Powell, W.B.: An optimal approximate dynamic programming
algorithm for the lagged asset acquisition problem. Math. Oper. Res. 34(1), 210–
237 (2009)

30. Nguyen, T.H., Wellman, M.P., Singh, S.: A stackelberg game model for botnet
data exfiltration. In: Rass, S., An, B., Kiekintveld, C., Fang, F., Schauer, S. (eds.)
GameSec 2017. LNCS, vol. 10575, pp. 151–170. Springer, Vienna (2017). https://
doi.org/10.1007/978-3-319-68711-7 9

31. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality, 2nd edn. Wiley, Hoboken (2011)

32. Rossow, C., Andriesse, D., Werner, T., Stone-Gross, B., Plohmann, D., Dietrich,
C.J., Bos, H.: SoK: P2PWNED - modeling and evaluating the resilience of peer-
to-peer botnets. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy (S&P 2013), pp. 97–111. IEEE, Berkeley (2013)

33. Scargle, J.D.: Studies in astronomical time series analysis. ii-statistical aspects of
spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982)
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Abstract. Alert data management is one of the top functions performed
by a Cyber Security Operation Centers (CSOC). This chapter is focused
on the development of an integrated framework of several tasks for alert
data management. The tasks and their execution are sequenced as fol-
lows: (1) determining the regular analyst staffing of different expertise
level for a given alert arrival/service rate, and scheduling of analysts to
minimize risk, (2) sensor clustering and dynamic reallocation of analysts-
to-sensors, and (3) measuring, monitoring, and controlling the level of
operational effectiveness (LOE) with the capability to bring additional
analysts as needed. The chapter presents several metrics for measur-
ing the performance of the CSOC, which in turn drives the develop-
ment of various optimization strategies that optimize the execution of
the above tasks for alert analysis. It is shown that the tasks are highly
inter-dependent, and must be integrated and sequenced in a framework
for alert data management. For each task, results from simulation studies
validate the optimization model and show the effectiveness of the model-
ing and algorithmic strategy for efficient alert data management, which
in turn contributes to optimal overall management of the CSOCs.

1 Introduction

The desiderata of a CSOC enterprise can broadly be structured into the follow-
ing major elements: (1) all alerts must be investigated in a timely manner, (2)
resources (analysts) must be optimally managed, and (3) desired performance
must be achieved. Alert data management of a CSOC consists of several tasks
that influence the above elements, and it is imperative that the tasks are opti-
mized to achieve the best CSOC performance. Among the different tasks at a
CSOC, this chapter presents three most important tasks, and shows how they
are inter-dependent, integrated, sequenced, and optimized. These tasks include
(1) determining the regular analyst staffing of different expertise level for a given
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alert arrival/service rate, and scheduling of analysts to minimize risk, (2) sensor
clustering and dynamic reallocation of analysts-to-sensors, and (3) measuring,
monitoring, and controlling the level of operational effectiveness (LOE) with the
capability to bring additional analysts as needed.

The framework for alert data management system is shown in Fig. 1. The
framework consists of the CSOC alert analysis block, which is central to the
system. In this block the alerts are analyzed as per Fig. 2, which is described in
Sect. 2. The inputs to the central block are analyst-to-sensor allocation and the
alerts per sensor generated by the IDS and any backlog from the previous shift
of operation. The outputs include the determination of innocuous and significant
alerts, which are further processed as shown in Fig. 2. Additionally, the backlog
of unanalyzed alerts is also measured and monitored, which indicates the LOE
status of the CSOC. There are three optimization models that are integrated in
Fig. 1 and each of them perform an important task. The tasks briefly presented
next while the details are presented later in this chapter. The tasks are sequenced
in the following order which serves as the road map of the integrated model
framework shown in Fig. 1 that is described in this chapter.

Task 1 determines (1) the staffing levels for regular analysts who are cat-
egorized into junior, intermediate and senior analysts based on their level of
expertise, and (2) the analyst schedule over a two-week (14-day) work cycle that
provides adequate analyst expertise mix to handle the alerts in every shift of
operation. Under normal operating condition, the above staffing and scheduling
of analysts would maintain the level of operational effectiveness of a CSOC and
the risk (% of unanalyzed alerts per shift of operation) is minimized and kept at
the desired level of performance. Regular analyst levels can be determined based
on the alert arrival rate for the given number of sensors, and the alert service rate
of each analyst of a particular expertise level using queueing theory [2], which
maintains a baseline queue of alerts at any given time (the number of unanalyzed
alerts which constitutes an acceptable or desired baseline risk). Regular analyst
levels also determine one portion of the analyst budget for alert analysis at a
CSOC. Ideally, a zero baseline risk would be desired but as per queueing theory,
a zero queue length would need many analysts that could be impractical from a
budgetary standpoint. Hence, the queue length for a given arrival rate of alerts
and service rate by hired analysts (number of hires within the budget) is deemed
to be acceptable, against which the CSOC’s LOE performance is measured. An
optimization model as shown at the bottom in Fig. 1 achieves the scheduling
of regular analysts, which is described in [3]. Under continuous CSOC opera-
tion, Task 1 also receives input from Task 3 for any additional analysts that are
needed when the queue length exceeds the desirable level (risk increases and the
LOE degrades). The additional analysts are also scheduled by the optimization
algorithm for scheduling as shown in Fig. 1. The additional analysts constitute
another portion of the analyst budget for alert analysis at a CSOC. In summary,
the schedule optimization block considers the regular and additional analyst staff
and produces a shift schedule for the analysts who must report to work for the
immediate following day (24 h or 2 shifts).
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Fig. 1. Framework for alert data management

Fig. 2. Alert analysis process [1].

Task 2 performs sensor clustering and dynamic reallocation of analysts-to-
sensors as shown in Fig. 1. The sensor grouping and dynamic allocation block
is another optimization model that considers the alert workload expected per
sensor for the next shift of operation (new alerts and backlog alerts per sensor)
and the available number of analysts of various expertise levels that report to
work (output of Task 1) in order to generate groups of sensors and the analyst-
to-sensor allocation. An optimization model determines the analyst to sensor
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mapping such that the tooling and credential expertise to analyze alerts from a
sensor are met along with capability to investigate the rate of alert generation
by the sensor. The output of Task 2 and the alerts per sensor generated by the
IDS and the backlog of alerts are passed into the central analysis block where
alert investigation happens based on the process laid out in Fig. 2. The LOE
performance is monitored as the output of the CSOC alert analysis process,
which leads to Task 3.

Task 3 uses the LOE status as the input or trigger to the LOE optimization,
which outputs the number of additional analysts (on-call) required to handle the
backlog that is above the normal or baseline backlog queue. The optimization
algorithm is a reinforcement learning model which operates in a dynamic mode
to determine the additional number of analysts per shift of operation. The output
of Task 3 is one of the inputs to Task 1 for scheduling the analysts as shown in
Fig. 1. The three tasks are integrated and loop over in order to achieve effective
alert data management of a CSOC.

The chapter is organized as follows. Section 2 describes the major elements
that provide context for the alert data management of a CSOC, which includes
the alert analysis process along with three major characteristics: alert, perfor-
mance (LOE), and resource characteristics. In Sect. 3, the description of an
integrated framework of three optimization models one for each of the above
tasks, and their respective roles in effective alert data management are pre-
sented. Section 4 presents the related literature. Section 5 concludes the chapter
with the major contributions.

2 Alert Analysis Process of a CSOC

Alerts are generated and analyzed by cyber security analysts as shown in Fig. 2.
In the current system, the number of analysts that report to work remains fixed,
and sensors are pre-assigned to analysts. A 12 h shift cycle is used, and analysts
work six days on 12 h shift and one day on 8 h shift, thus working a total of
80 h during a two-week period. There is a very small overlap between shifts
to handover any notes and the work terminal or workstation to the analyst
from the following shift. The type and the number of sensors allocated to an
analyst depend upon the experience level of the analysts. The experience level
of an analyst further determines the amount of workload that they can handle
in an operating shift. The workload for an analyst is captured in terms of the
number of alerts/hr that can be analyzed based on the average time taken to
analyze an alert. In this chapter, three types of analysts are considered (senior
L3, intermediate L2, and junior L1 level analysts), and their workload value is
proportional to their level of expertise.

A cybersecurity analyst must do the following: (1) observe all alerts from the
IDS such as SNORT or a Security Information and Event Management (SIEM)
tool such as ArcSight [4], (2) thoroughly analyze the alerts that are identified
as significant alerts that are pertinent to their pre-assigned sensors, and (3)
hypothesize the severity of threat posed by a significant alert and categorize the
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significant alert under Category 1–9. The description of the categories are given
in Table 1 [5]. If an alert is hypothesized as a very severe threat and categorized
under Cat 1, 2, 4, or 7 (incidents) then the watch officer for the shift is alerted and
a report is generated (see Fig. 2). The Level of Operation Effectiveness (LOE)
of a CSOC is measured at the end of every day of operation.

Table 1. Alert categories [5]

Category Description

1 Root Level Intrusion (Incident): Unauthorized privileged access
(administrative or root access) to a DoD system

2 User Level Intrusion (Incident): Unauthorized non-privileged access
(user-level permissions) to a DoD system. Automated tools, targeted
exploits, or self-propagating malicious logic may also attain these
privileges

3 Unsuccessful Activity Attempted (Event): Attempt to gain unauthorized
access to the system, which is defeated by normal defensive mechanisms.
Attempt fails to gain access to the system (i.e., attacker attempts valid
or potentially valid username and password combinations) and the
activity cannot be characterized as exploratory scanning. Can include
reporting of quarantined malicious code

4 Denial of Service (DOS) (Incident): Activity that impairs, impedes, or
halts normal functionality of a system or network

5 Non-Compliance Activity (Event): This category is used for activity
that, due to DoD actions (either configuration or usage) makes DoD
systems potentially vulnerable (e.g., missing security patches,
connections across security domains, installation of vulnerable
applications, etc.). In all cases, this category is not used if an actual
compromise has occurred. Information that fits this category is the
result of non-compliant or improper configuration changes or handling
by authorized users

6 Reconnaissance (Event): An activity (scan/probe) that seeks to identify
a computer, an open port, an open service, or any combination for later
exploit. This activity does not directly result in a compromise

7 Malicious Logic (Incident): Installation of malicious software (e.g.,
trojan, backdoor, virus, or worm)

8 Investigating (Event): Events that are potentially malicious or
anomalous activity deemed suspicious and warrants, or is undergoing,
further review. No event will be closed out as a Category 8. Category 8
will be re-categorized to appropriate Category 1–7 or 9 prior to closure

9 Explained Anomaly (Event): Events that are initially suspected as being
malicious but after investigation are determined not to fit the criteria for
any of the other categories (e.g., system malfunction or false positive)
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2.1 Alert Characteristics

Alert Generation. The network data collected by the sensors is analyzed by
an IDS or a SIEM, which automatically analyses the data and generates alerts.
Most of the alerts are deemed insignificant by the IDS or SIEM, and about 1%
of the alerts generated are classified as significant alerts.1 The significant alerts
are those with a different pattern in comparison to previously known alerts. The
significant alerts must be further investigated by cybersecurity analysts and
categorized.

Based on the past alert generation rate per day, a historical daily average
alert generation rate can be derived, which is used as a baseline for determin-
ing a static workforce size, their expertise levels, and their daily work schedule.
In reality, the number of alerts generated per sensor per hour varies through-
out the day. On days when the number of alerts generated exceeds the above
historical daily average alert generation rate, the static workforce size cannot
cope with the additional workload, which will result in many alerts that will not
be thoroughly investigated. Consequently, the backlog also increases (LOE is
reduced). Hence, dynamic scheduling of cybersecurity analysts is a critical part
of cybersecurity defense, which includes both the static workforce and a dynamic
(on-call) workforce to meet the everyday varying demands on the workforce for
alert investigation. In this chapter, the alert generation is modeled as a Pois-
son distribution, whereas the variation in alert generation per sensor is modeled
as a Poisson distribution. The sum of the above distributions taken together
will generate the historical daily-average alert generation per day (referred as
the baseline alert generation rate). The parameters of the above distributions
can be altered as needed based on historical patterns in alert generation, and
the dynamic programming model presented in this chapter will adapt and con-
verge to find the optimal dynamic schedules for the analysts that minimizes the
backlog, which is the metric to measure the LOE.

Alert Prediction. The uncertainty in the alert generation rate is the primary
driver for modeling a dynamic (on-call) workforce in addition to the static work-
force that report to work daily. In order to determine the size and expertise
composition of the static workforce, the historical daily-average for alert gen-
eration is used. However, to determine the size of the dynamic (on-call) work-
force on a daily basis, one of the key inputs to the stochastic dynamic pro-
gramming model is the number of additional alerts (over and above historical
daily-average) estimated per sensor for the next day. It should be noted that the
dynamic scheduling of analysts is required not only due to the dynamic increase
in alert traffic generation rate of the sensors but also the detection of very impor-
tant attacks/exploits/vulnerabilities such as the first-time detection of zero-day
attacks and vulnerabilities (e.g., heartbleed vulnerability and exploit), which

1 We arrived at the 1% figure based on our literature search and numerous conversa-
tions with cybersecurity analysts and Cybersecurity Operations Center (SOC) man-
agers. Our model treats this value as a parameter that can be changed as needed.
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could trigger an increase in alert generation rates for the shifts and days fol-
lowing the attack or requires additional monitoring as explained below. When a
new zero-day attack is detected or reported in the news, additional dynamic (on-
call) analysts are required to determine (i) whether such (zero-day) attacks have
already exploited any vulnerability in the network, (ii) what defensive mech-
anisms such as new signatures (or attack detection rules) must be developed
and used to detect (zero-day) attacks, and (iii) what and how attack detection
should be reported to upper level management and other agencies. Hence, work-
load of cybersecurity analysts is increased significantly when zero-day attacks
are detected or reported in the industry, even if the traffic rate of sensors during
this period may not have necessarily increased. This type of significant event
is expected to increase the workload between shifts and the team work of ana-
lysts includes not only thorough inspection of events but also preparing and
sharing reports, and developing new attack detection rules if needed. In this
research, a one-day (one-shift) look-ahead on-call analyst selection model will
be run every day (shift) at an appropriate time such that there is sufficient time
for the dynamic force to report to work prior to the starting of their shift.

The chapter assumes a Poisson distribution for the baseline average hourly
rate of alert generation and a Poisson distribution to introduce variability and
spikes in the hourly rate of alert generation. A prediction model for alert esti-
mation using real-world data collected by the CSOC can replace the Poisson
distribution in practice. To use the dynamic programming model in practice,
the cyber-defense organization could develop statistical models to analyze their
data patterns, and replace the distributions that are used in this chapter for
making hourly alert predictions for each day of operation. The chapter assumes
that the organization has developed a statistical model for alert prediction using
historical actual alert generation data, and has determined that the alert gener-
ation rate comprises of two distributions. Since, real alert data was not available,
the chapter assumes another stream of data to mimic the actual alert generation
rate that draws a single random number using only a Poisson distribution whose
average is the sum of average of the Poisson distributions that was used to gen-
erate the predicted stream of data. In summary, in the real-world, the actual
alert rate will come from the intrusion detection system itself and the predicted
alert rate will come from the statistical alert prediction model developed by the
organization. The avgTTA/hr (LOE status) is estimated using the above rate of
alert generation a explained next.

2.2 Performance Characteristics

Performance Metric: LOE. The readiness level of a CSOC is paramount to
achieving the above mission successfully. The readiness level must be quantified
and measured so that it provides a manager with full understanding of the
impact of the interdependencies between various factors that affect the dynamics
of the CSOC operations, and take corrective actions as needed. Some of these
factors include (1) backlog of alerts that depends on the alert generation and
processing rates, (2) the false positive and negative rates of analysts, (3) the
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optimal allocation of analysts to sensors, (4) optimal scheduling of the analysts
with the right expertise mix in a shift, (5) grouping of sensors, (6) triaging of
alerts, (7) the availability of tooling and credentials of analysts in a shift, and (8)
effective team formation with highest collaborative scores among the analysts.
In this chapter the readiness of the CSOC is defined as the level of operational
effectiveness (LOE) of a CSOC, which is a color-coded scheme that indicates
the timely manner in which an alert was investigated at the CSOC [6]. The
LOE is continuously monitored for every hour of the work shift. Among the
factors given above that affect the LOE of a CSOC, this chapter investigates
two factors, namely, (1) the dynamic optimal scheduling of CSOC analysts to
respond to the uncertainty in the day-to-day demand for alert analysis, and (2)
the dynamic optimal allocation of CSOC analyst resources to the sensors that
are being monitored. Thus, the objective of this research is to maintain the LOE
of a CSOC at the desired level through the dynamic optimal scheduling and
allocation of CSOC analyst resources.

In this chapter, the LOE of a CSOC is monitored as follows. The chapter
identifies a common metric that is influenced by the disruptive factors that affect
the normal operating condition of a CSOC, and this metric is the total time for
alert investigation (TTA) for an alert after its arrival in the CSOC database.
Any delay in data transmission between the IDS and the CSOC is ignored, and
is not part of the TTA metric. In this chapter, it is assumed that an alert will be
immediately queued after it arrives in the CSOC database. The TTA of an alert
consists of the sum of two parts as shown in Fig. 3: (1) waiting time in queue,
and (2) time to investigate an alert, after it has been drawn for investigation by
the analyst. Clearly, when the rate of alert generation increases or a new alert
pattern decreases the throughput of the system or when the CSOC capacity is
reduced by analyst absenteeism the immediate impact is felt in terms of the
delays experienced by the alerts waiting in the queue for investigation. Since all
the alerts must be investigated, the queue length could become very long. The
above means that the alerts stay much longer in the system and the average
TTA calculated for each hour (avgTTA/hr) of operation of the CSOC increases.

The avgTTA/hr is calculated at the end of each hour of CSOC operation
by using the individual values of TTA for all the alerts that completed inves-
tigation during that hour. A baseline value for avgTTA/hr is established for
normal operating condition of the CSOC as shown in Fig. 4. It is a requirement
of the CSOC that the avgTTA/hr remain within a certain upper-bound (four
hours, for example), which is referred as the threshold value for avgTTA/hr.
If the avgTTA/hr is maintained below the threshold during any given hour of
CSOC operation then the LOE is said to be optimal, however, if the avgTTA is
maintained at the baseline value then the LOE is said to be ideal. Different tol-
erance bands are created both below and above the threshold value of avgTTA
to indicate a color-coded representation of LOE status (see Fig. 4).
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Fig. 3. Total time for alert investigation (TTA) [6]

Performance Metric: Notion of Risk per Sensor. A formal definition for
the risk per sensor used in this chapter is presented below. Recently, an optimal
scheduling for the cybersecurity analysts was published to minimize risk, where
risk was measured as a single overall metric for all the sensors by computing the
% of significant alerts that remained unanalyzed by the analysts at the end of
a shift [1,3]. However, the context of the problem in this chapter is different. In
this chapter, the sensors generate a certain number of alerts per shift, however,
in some instances the % of significant alerts among all the alerts generated could
vary between the sensors. In another instance, the % of significant alerts between
two sensors could be the same but the significant alerts of one sensor takes more
time than the other due to a new alert. The consequence of the above is that the
number of alerts per sensor that remain unanalyzed (constitutes risk per sensor)
is uneven among all the sensors at the end of the shift. This condition results
in an imbalance among the risk values obtained from each sensor. In order to
balance the number of unanalyzed alerts among all sensors, this research uses a
modified notion of risk rs per sensor s at any time of observation as follows:

rs = Vs − cs ∀s (1)

where rs is the number of unanalyzed alerts per sensor, which is also the unan-
alyzed alert queue length for a sensor, Vs is the number of alerts generated from
the start of the shift till the time of observation, and cs (alert coverage) is defined

Fig. 4. Color-coded representation of (LOE) [6]
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as the number of alerts thoroughly analyzed by the analysts from the start of
the shift till the time of observation.

It should be clearly noted that at any observation time during the progress of
a shift, the risk per sensor is measured from the number of unanalyzed alerts that
have queued up for that sensor (observable to a shift manager), and the queue
might contain some significant alerts that are detected upon alert investigation.
In other words, one of the metrics to initiate sensor grouping and reallocation
decision at any time during a shift is based upon the magnitude of the unevenness
in the number of alerts that remain unanalyzed per sensor, which is captured by
the alert queue statistics of each sensor. The other metric is analyst utilization.
Furthermore, it should also be noted that the adaptive reallocation model is
both reactive and proactive in the analyst to sensor decision making process. The
model is reactive to the alert queue statistics that is observed for each sensor. The
model assumes that the causes for an imbalance in alert queue length (risk per
sensor) between sensors would persist after reallocation. Hence, the reallocation
model is proactive because it uses the above assumption to compute both the
expected alert and significant alert rates for the remainder time in the shift.
Using the above reactive and proactive computations, the model determines a
new analyst to sensor reallocation decision that will balance the risk per sensor
among all sensors as the shift progresses.

In general, a shift manager would observe the length of the unanalyzed alert
queue that builds up for each sensor, which is defined as rs. An imbalance among
rs for all sensors is used as a metric to perform reallocation.

It is true that unless an alert is thoroughly analyzed, its category or severity
is unknown. Also, the time taken to analyze an alert depends on its category
or severity, whether or not it is a known or a new pattern of alert, and the
expertise level of the analyst. Therefore, at the time of drawing an alert from
the queue for investigation, since its category or severity is unknown, the time
to analyze an alert in this chapter is based upon an average time from a prob-
ability distribution, which can be obtained from historical real world data. The
total time needed to thoroughly analyze all the alerts and significant alerts can
be compared to the total time available, which is based on the current capac-
ity of the organization (number and expertise mix of analysts), their sensor-
to-analyst allocation rules, and shift-schedules, in order to determine the % of
significant alerts that would remain unanalyzed (risk). Such a risk metric could
be used to initiate actions to build analyst capacity for the organization with
optimal number of analysts, expertise mix in a work-shift, sensor-to-analyst allo-
cation, and optimal shift schedules. Hence, the scope of the chapter is focused
on capacity building for a cyber-defense organization through the optimal allo-
cation and scheduling of its analysts, regardless of the type of alert (category
or severity), using the notion that some alerts will need more time than the
others. Several parameters are considered in this chapter to calculate the alert
investigating capacity of the organization, which includes number of sensors, an
average alert generation rate for the sensors, number of analysts, their expertise
level, sensor-to-analyst allocation, analyst time to investigate an alert, and their
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work-shift schedule. The chapter assumes that all the alerts that were thoroughly
investigated were also accurately categorized. It should be noted that as a sec-
ond metric (quality), once a significant alert has been detected by thorough alert
analysis, a different definition of risk can be used to measure the quality of work
performed by capturing the true positive and false negative rates. Furthermore,
the severity of the threat that an alert poses to the organization, and actions
to mitigate the threat can be taken. However, such a definition of risk and the
actions to mitigate are beyond the scope of this chapter.

2.3 Resource Characteristics

The analysts have certain characteristics as well. They differ from each other in
terms of their expertise levels such as junior, intermediate, and senior analysts.
They also have different tooling knowledge and individual credentials (security
clearance levels such as confidential, secret, top secret, and so on) to investi-
gate certain types of alerts. From our conversations with CSOC managers, it
was learnt that tooling knowledge was correlated to the level of expertise. For
example, junior analysts would have access to basic tools while senior analysts
would have access to the entire tool-set. Also, their alert service rate, and false
positives and negatives rate are not the same among them. Typically, higher
expertise is associated with lower false positives and negatives rate. Similarly,
optimal matching of analyst’s tooling knowledge and credentials with sensor
requirements could reduce the number of unanalyzed alerts (backlog). The fol-
lowing are the characteristics of analysts (resources) who investigate alerts.

1. L3 - senior analyst. L3 analysts are assigned 4–5 sensors and they and can
handle on average 12 alerts per hour (5 min/alert).

2. L2 - intermediate analyst. L2 analysts are assigned 2–3 sensors and they can
handle on average 7–8 alerts per hour (8 min/alert).

3. L1 - junior analyst. L1 analysts are assigned 1–2 sensors and they and can
handle on average 5 alerts per hour (12 min/alert).

4. Analysts work in two 12-h shifts, 7 PM–7 AM and 7 AM7 PM. However, the
optimization model can be adapted to 8 h shifts as well.

5. Each analyst on regular (static) schedule works for 80 h in 2 weeks (6 days
in 12-h shift and 1 day in 8-h shift)

6. When a group of analysts are allocated to a group of sensors by the optimiza-
tion algorithm, the alerts generated by that group of sensors are arranged
in a single queue based on their arrival time-stamp, and the next available
analyst within that group will draw the alerts from the queue based on a
first-in-first-out rule.

7. Based on experience, an analyst spends, on average, about the same amount
of time to investigate alerts from the different sensors that are allocated,
which can be kept fixed or drawn from a probability distribution such as
Poisson or Uniform.

8. Analysts of different experience levels can be paired to work on a sensor.
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9. Writing reports of incidents and events during shifts is considered as part of
alert examining work, and the average time to examine the alert excludes
the time to write the report. Analysts spend 80% of their time on alert
analysis and the remaining time on training and writing reports.

10. L1 analysts are not scheduled on-call because the purpose of on-call work-
force is to schedule the most efficient workforce to handle the additional
alerts above the historical daily-average that are generated.

11. Analysts of different experience levels can be paired to work on a sensor.

3 Alert Data Management

The framework for alert data management system is shown in Fig. 1. This section
describes the requirements and modeling assumptions, which is followed by the
detailed description of the tasks.

3.1 Effective Alert Analysis at a CSOC- Requirements

The requirements of the cybersecurity system can be broadly described as fol-
lows. The cybersecurity analyst scheduling system,

1. shall ensure that LOE is maintained at the baseline that is established for
normal operating conditions,

2. shall ensure that an optimal number of staff is available and are optimally
allocated to sensors to meet the demand to analyze alerts,

3. shall ensure that a right mix of analysts are staffed at any given point in time,
and

4. shall ensure that weekday, weekend, and holiday schedules are drawn such
that it conforms to the working hours policy of the organization.

3.2 Effective Alert Analysis at a CSOC - Model Assumptions

The assumptions of the optimization model are as follows.

1. At the end of the shift any unanalyzed alert is carried forward into the next
shift. The backlog indicates the avgTTA/hr, which in turn indicates the LOE
status of the CSOC.

2. All alerts that were thoroughly investigated were also accurately categorized.
Hence, false positives and false negatives are not modeled in this chapter.

3. The optimization model is run for 24-h to determine the sensor-to-analyst
allocation for that day. Simulation statistics on risk and analyst utilization
are calculated at the end of the 24-h day.

In the following, the three tasks are described in detail along with their
optimization models and results. Tasks 1, 2, and 3 loop over as in Fig. 1, which
achieves the effective alert data management in a CSOC.
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3.3 Task 1: Scheduling of Analysts to Minimize Risk

Task Description. The objective of Task 1 is to formulate and test an adap-
tive and dynamic analyst scheduling strategy for effective cyber-defense that is
capable of using an estimate of the varying future alert generation rates and
scheduling an optimal number of cybersecurity analysts at different expertise
levels that minimizes the risk and maintains risk under a pre-determined upper
bound for a set of system defined parameters and constraints.

Simulation and Optimization Model. The scheduling optimization model
takes inputs from (1) a static mixed-integer programming model for obtaining
the minimum number of analysts (static or regular workforce) for a historical
daily-average alert generation rate calculated over the past two-week period, and
(2) a dynamic LOE model (Task 3) based on stochastic dynamic programming
to obtain the minimum number of additional workforce and their expertise level
that is needed (dynamic or on-call workforce) based on the estimated additional
alerts per sensor for the next day. The mathematical details of the models,
algorithms, and implementation guidelines are available in [1,3].

Scheduler Module: The input to the 14-day static scheduling module is the
number of personnel needed per level per day, which is derived from the integer
programming optimization module. An optimal schedule for the static workforce
can be derived based on the following constraints.

1. Each analyst gets at least 2 days off in a week and every other weekend off.
2. An analyst works no more than 5 consecutive days.
3. An analyst works 80 h per two weeks counted over 14 consecutive days

between a Sunday and a Saturday. Both 12 h and 8 h shift patterns are
allowed.

The objective of the static workforce scheduling algorithm is to find the best
days-off schedule and days-on schedule for both 12 h and 8 h shifts for all analysts
in the organization subject to the above scheduling constraints. A mixed integer
programming scheduling model is used to obtain the 14-day static schedule.
During the 14-day schedule, the dynamic programming algorithm would assign
on-call status to those analysts who have the day-off. The number of on-call
analysts that actually report to work in a day is drawn from those who have
been designated with the on-call status.

Results of a Heuristic for Static and Dynamic Workforce Schedul-
ing. The days-off scheduling heuristic is given in [7]. The minimum number of
employees needed W as per the scheduling constraints is given as follows.
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W1 ≥ �k2max(n1, n7)
k2 − k1

� (2)

W2 ≥ �1
5

7∑

j=1

nj� (3)

W3 ≥ max(n1, . . . , n7) (4)
W = max(W1,W2,W3) (5)

where k1 weekends are off in k2 weekends, and n1, . . . , n7 is the number of
employees needed on Sunday, . . . , Saturday respectively. For a sample scenario
of 10 sensors and 6 L1, 6 L2, and 8 L3 analysts required per day (split equally
in two 12 h shifts), k1 = 1, and k2 = 2, and n1, . . . , n7 = 20. The value of W
is 40 (12 L1, 12 L2, and 16 L3), which is the number of employees that the
organization must hire (be on payroll) to meet the days-off constraints given
above. It should be noted that in the above situation, there are no part-time
analysts and all full-time analysts work 12 h shifts (12 ∗ 7 = 84 h in every 14-day
cycle).

Table 2 shows the combined output of the scheduling heuristic for scheduling
static and a fixed dynamic workforce in which X represents days-off for analysts,
and c indicates the days on which on-call analysts are scheduled at each level of
expertise. The issue with fixing the number of people that are on-call per day at
the beginning of the 14-day period is that the cyber defense system is no longer
adaptable to higher alert generation rates that exceed the alert rates covered
by the fixed on-call workforce. In contrast to the above, the dynamic program-
ming algorithm will select the actual number of on-call workforce required for
the next day from the available on-call workforce for that day, which provides
greater scheduling flexibility and adaptability to varying alert generation rates.
L1 (junior) analysts are not scheduled for on-call workforce.

3.4 Task 2: Sensor Clustering and Dynamic Allocation of
Analysts-to-Sensors

Task Description. Understanding the importance and relationship between
sensors, analysts, and shift characteristics leads to the two essential properties
that must be met in performing the grouping of sensors into clusters, and the
allocation of analysts to clusters. The following properties serve as objectives for
Task 2. Property 1: meeting the cluster’s requirement for specific analyst exper-
tise mix of junior, intermediate, and senior analysts, complete tools coverage that
allows the analysts to handle the type of alerts generated by the sensors in the
cluster, and analyst credentials such as security clearances needed for the clus-
ter. Property 1 ensures that a high quality of work performance is maintained.
In other words, a cluster with a sub-optimal mix of expertise, or with analysts
lacking credentials or tooling knowledge is said to perform inefficiently. We define
quality of work performed in terms of metrics such as minimizing false positive
and negative rates. However, it must be noted that the chapter does not measure
the quality metrics directly, instead, it expects the quality of alert analysis to
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be high if the above property is met. Property 2: minimizing and balancing the
number of unanalyzed alerts in each cluster at the end of the daily work-shift
because a large number or an imbalance of unanalyzed alerts among clusters,
due to factors such as lack of analyst credentials or tooling expertise in a cluster,
would pose a security risk to the organization whose network is monitored by
these sensors. Property 2 deals with quantity of unanalyzed alerts and ensures
that the overall number of unanalyzed alerts are minimized. It also ensures that
no cluster has been unduly disadvantaged in the grouping and allocation process
that has resulted in some clusters having a higher number of unanalyzed alerts
over other clusters. The quantity of unanalyzed alerts per cluster is measured in
this chapter and the motivation behind this property is explained below.

Simulation and Optimization Model. Figure 5 shows the framework of the
adaptive model presented in [8], which consists of an optimization and a simula-
tion model. The optimization model used for grouping of sensors to form clusters,
and analyst allocation to the clusters is modeled and solved using mixed integer
programming. Analyst and sensor characteristics are provided as inputs to the
optimization model. A minimum mix of analyst expertise levels, a complete tool-
set coverage, and analyst credential requirements on the clusters are provided
as constraints to the model. The outputs of the optimization model are clusters
(groups of sensors) and the analyst to cluster allocation, which are then provided
as inputs to the simulation model. The simulation model is used for verification
and validation in which a CSOC work-shift is simulated with the analyst and
sensor characteristics used in the optimization model. The number of unanalyzed
alerts that remain per cluster at the end of the shift is measured by replicating
the shift several times in order to achieve a 95% confidence interval.

Results. A case with an increase in alert generation rate is considered. For
other results refer to [8]. Due to an increase in the number of alerts generated
from some sensors in the last few (one or more) shifts, the estimated average
alert generation rate on the respective sensors is increased, though the number of
scheduled analysts from various expertise levels, at the start of the shift, remain
the same as in the nominal case. In this case study, the average alert generation
rate per day on twenty sensors were increased to a range between 100 to 150
significant alerts (i.e. 1% of 10000 to 15000 total alerts).

The outputs for the case with an increase in alert generation rate is shown
in Table 3. It is to be noted that the workload (number of alerts generated) has
increased while the resource capacity (number of alerts that could be analyzed
by analysts) has remained the same as compared to the nominal case. As a
result, there are more number of alerts that remained unanalyzed at the end
of the shift compared to the nominal case. In order to minimize the maximum
number of unanalyzed alerts at the end of the shift among all the clusters, more
number of clusters (11) were created compared to the nominal case (8).

The analyst credential requirement C5, for sensors S17, S19, S38, and S40
is met by allocation of analyst A12 to the cluster Q1, while analyst credential
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Table 2. Scheduling of L1, L2, and L3 level analysts for both static and a fixed dynamic
workforce using days-off scheduling heuristics, X- days-off, and c- on-call [3]

Day → 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Level ↓ Analyst ID ↓ Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

L3 1 x c x x c x x x x

2 x x c x x c x x x

3 x x c x x x c x x

4 x x c x x x c x x

5 x c x x c x x x x

6 x x x c x x c x x

7 x x x x c x x c x

8 x x x c x x x c x

9 c x x x x c x

10 x c x x x x c

11 c x x x x x c

12 c x x x x x c

13 x x c c x x x

14 x x x c c x x

15 x x x c c x x

16 x x c c x x x

Day → 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Level ↓ Analyst ID ↓ Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

L2 1 x c x x c x x x x

2 x x c x x c x x x

3 x x c x x x c x x

4 x x c x x x c x x

5 x c x x c x x x x

6 x x x c x x c x x

7 x x x x c x x c x

8 x x x c x x x c x

9 c x x x x c x

10 x c x x x x c

11 c x x x x x c

12 c x x x x x c

Day → 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Level ↓ Analyst ID ↓ Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

L1 1 x x x x x x x x x

2 x x x x x x x x x

3 x x x x x x x x x

4 x x x x x x x x x

5 x x x x x x x x x

6 x x x x x x x x x

7 x x x x x x x x x

8 x x x x x x x x x

9 x x x x x x x

10 x x x x x x x

11 x x x x x x x

12 x x x x x x x

requirement C4, for sensors S16, S18, S20, S36, S37, and S39 is met by allocation
of analysts A10, A11, and A12 to the clusters Q5, Q6, Q10, and Q11. There is
a complete tool-set coverage, and the minimum mix of analyst expertise levels
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Fig. 5. Adaptive grouping of sensors into clusters and allocation of analysts to clusters
model [8].

is maintained on each of the clusters. The average number of unanalyzed alerts
per cluster at the end of the shift is balanced as shown in Table 3 with 50 as the
maximum average number of unanalyzed alerts that remained on either of the
clusters.

The following meta-principles are derived for sensor grouping and allocation
to analyst optimization model.

1. It was observed from the clusters that the number of alerts per cluster could
vary among them, however, the more important metric is to minimize and
balance the number of unanalyzed alerts among the clusters at the end of the
shift.

2. It was observed that an analyst allocated to only one cluster may not be a
good strategy because if the alert generation rate among the group of sensors
in the respective cluster decreases during the shift, the analyst will be idling.

3. The integrated grouping and allocation methodology was able to generate
optimal sensor to analyst allocation for a given alert generation rate by sensors
and known alert service rate by analysts that met the expertise, tooling, and
credentials requirements of the cluster.

4. It was observed that the maximum number of clusters that could have been
generated (upper-bound, R) is the minimum of the product between the num-
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Table 3. Outputs for increase in alert generation rate [8]

Clusters Groups of sensors Analysts allocated Avg. alerts gen. Avg. alerts unan.

Q1 S17, S19, S38, S40 A2, A4, A6, A12 213 50

Q2 S5, S7 A4, A7, A11 78 50

Q3 S14, S22, S34 A4, A6, A10 122 50

Q4 S1, S13, S21 A1, A6, A11 78 48

Q5 S6, S8, S16, S32 A3, A9, A11, A12 176 50

Q6 S3, S27, S30, S36, S37, S39 A3, A8, A9, A10 297 50

Q7 S2, S11, S23, S31, S35 A1, A9, A12 204 50

Q8 S9, S28 A5, A7, A12 70 50

Q9 S24, S33 A3, A7, A11 93 50

Q10 S4, S10, S20, S25, S29 A5, A6, A12 209 50

Q11 S12, S18, S15, S26 A1, A2, A7, A11 100 50

ber of analysts at each level, and the maximum clusters that could be allo-
cated to an analyst from the respective level.

5. The number of unanalyzed alerts per cluster at the end of the shift can be
brought to zero if and only if there are sufficient numbers of analysts hired
with various levels of expertise, tooling knowledge, and credentials.

6. With limited analyst resource, the goal is to ensure that the number of unan-
alyzed alerts is minimized and balanced among the clusters by meeting the
expertise, tooling, and credentials requirements of the cluster.

3.5 Task 3: Measuring, Monitoring, and Controlling LOE

Task Description. The objective of Task 3, is to develop an intelligent and
adaptive decision support tool for the CSOC manager to take optimal actions
(when and how much) to allocate the additional resources in order to main-
tain an optimal LOE status throughout the 14-day cycle of the CSOC. Due to
the dynamic and sequential decision making framework of the 14-day CSOC
operation, the chapter presents a reinforcement learning (RL)-based model for
representing the manager’s decision making process under uncertainty. The RL
model takes the continuously monitored LOE status of the CSOC operation as
one of its inputs, and takes corrective actions depending on the extent of devia-
tion of the current avgTTA/hr value from the baseline avgTTA/hr value for the
CSOC system. The decisions made by the RL model is compared with greedy
and rule-based uniformly distributed resource actions to demonstrate the supe-
rior decision making ability of the RL model in the face of uncertainties due to
disruptive factors. While the rule-based actions are limited in its use of future
resources in advance (not adaptive), the greedy actions are myopic in nature that
responds to surges in alert backlog by allocating additional resources without
any consideration of the future resource needs. For further details refer to [9].
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Simulation and Optimization Model. A framework for the dynamic LOE
optimization model is provided in Fig. 6. The dynamic optimization model con-
sists of two main blocks - the alert analysis process simulation block, and the
RL-based optimization block, which is executed one after another. As explained
later, the time over the 14-day work cycle is indexed in 1 h time steps. As shown
in Fig. 6, at each time step, the state of the CSOC system is observed, and a
decision is made by the RL agent. The decision is then ratified by the CSOC
manager, and implemented for the next hour of CSOC operation. The details of
the above blocks are presented next.

Simulation Model of Alert Analysis Process: The simulation model of the
alert analysis process consists of four main blocks as shown in Fig. 6. They
include the CSOC system inputs (system parameters and alert generation by
IDS), the uncertain events (both internal and external) that affect the CSOC
system inputs, the alert analysis process block in which the work shift is simu-
lated, and the performance metrics block that captures the LOE status of the
CSOC at each point in time using the avgTTA/hr metric.

Work-day Simulation: A work-day at the CSOC is simulated and each simu-
lation run corresponds to one operation day of 24 h. Alerts are generated using
a Markovian distribution. Analysts are considered as resources, and they inves-
tigate alerts from a single queue of alerts populated by the IDSs in a first-
come-first-served (FCFS) manner. The time taken to investigate an alert by an
analyst, T , is the average time taken based on historical statistics observed in
the organization. In this chapter, T is maintained constant except when a new
alert pattern causes an increase in T , although it could also be drawn from a
probabilistic distribution for each alert. It is assumed that all analysts spend
80% of their effort in a shift toward alert analysis, and the rest of the time
is spent on report writing, training, and on generating signatures. Hence, an
analyst could increase their effort on alert analysis up to 20% when the need
arises, which will increase the service rate of alerts investigated in a day. The
alert analysis process of a CSOC is considered to be in steady state under nor-
mal operating conditions, which means that the average alert arrival rate per
hour, average queue length, average waiting time in queue, and average alert
investigation time are all normal. Hence, a baseline avgTTA/hr value for the
CSOC system can be established using queueing theory, and the LOE status is
ideal as shown in Fig. 4. A threshold value for avgTTA/hr is also established.
The scheduled analyst staffing levels are adequate to maintain a pre-determined
acceptable avgTTA/hr (and LOE status) of the CSOC.

RL-based Optimization Model for Decision Making: The past hour perfor-
mance of the CSOC from the real-world alert analysis process (simulation block
in this chapter), presents the avgTTA/hr and LOE status to the CSOC manager.
Disruptive events, if any, from the past hour are known. It is imperative that
the CSOC manager considers the current avgTTA/hr metric and LOE state of
the system in order to make a decision to add additional resources or do nothing
for the next hour of CSOC operation. The decision is non-trivial because of the
uncertainties in the future disruptive events and the limited additional resource
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that is available to the CSOC manager. Accurate prediction of future disrup-
tive events such as a zero day attack is very hard. However, one can observe
from the history of past events, such as resources that were needed to mitigate
a past disruptive event and the frequency of occurrences of each type of disrup-
tive events, and build a probability distribution that can simulate the arrival
process of real-world uncertain events. By interacting with the unknown envi-
ronment via simulation and by learning from the past decisions, the goal of the
RL-based decision support system is to optimally plan the allocation of addi-
tional resources such that in the long run (over several 14-day cycles), the CSOC
system with an adaptive RL-based decision performs far better (in terms of its
LOE) than making ad hoc or greedy or a rule-based decision.

When a disruptive event occurs, a CSOC manager, in the order of prefer-
ence as determined through our discussions with CSOC managers at the Army
Research Lab, would utilize the remainder 20% of analyst time on alert analysis,
spend some of their own time to assist the analysts in clearing the alert backlog,
and bring on-call analysts to supplement the regular analyst workforce. The RL
model manages the additional resource allocation that follows the CSOC man-
ager’s order of preference, and decides the quantity of additional resource and
the timing of when to allocate the additional resources. For further details refer
to [9].

Fig. 6. Dynamic LOE optimization model framework [9].
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Results. The following section presents the results from an experiment in which
five uncertain disruptive events occurred over the 14-day work cycle. It is reem-
phasized that in the case of an occurrence of an uncertain event, the additional
20% effort for alert analysis, which is available during every hour of the shift
from resources such as analysts and watch officers is utilized first. The on-call
analysts are called upon only if needed as a second source of additional resource.
Figure 7(a–c) shows only the depletion of on-call additional resource. Where ever
the plot is horizontal, it means that the on-call resource was not utilized because
(1) either the backlog was 0 (avg. queue length is 1,175 alerts as in the baseline
case), or (2) that the backlog was low and was cleared by adding the additional
20% analyst effort for alert analysis.

In the greedy approach as shown in Fig. 7(a), the additional resources were
utilized in a myopic manner. An additional resource is called upon only when
the workload that is worth the resource’s time is accumulated. Such a strategy is
commonly employed in various organizations where on-call resources are limited
and expensive. For example, an analyst is called upon as soon as four hours of
workload is accumulated. As shown in Fig. 7(g), since there is a waiting time
for the four hours of workload to accumulate, the LOE (and the alert backlog
as shown in Fig. 7(d)) is observed to climb into the yellow zone. As soon as
the additional resources are assigned, the LOE is restored into the green zone.
However, since this strategy is also myopic (greedy), it can be observed from
Fig. 7(g) that there were no additional resources left after ten days, and the
LOE climbed into the red zone on the eleventh day.

In the rule-based uniformly distributed approach, the following rules are fol-
lowed. The CSOC’s additional resources are evenly distributed at the start of
the 14-day period. As the days progress, any unused resource is rolled over
into the following day. Resources allocated to future days cannot be used in
advance, which sharply differs from the greedy approach that can exhaust as
much resource as needed. The decision to allocate additional resources depends
on the available resource on that day, and it is a reaction to the magnitude of the
uncertain event that occurs. Figure 7(b) shows that there are unused resources
at the end of the 14-day period because resources were evenly distributed and
no major event occurred toward the end of the 14 days that consumed all of the
remaining resources. Due to the rule that future resources could not be used in
advance because they are reserved for future uncertainties, the LOE was found
to have higher variance (see Fig. 7(h)) than the greedy and RL approaches as
shown in Figs. 7(g) and (i), respectively. Despite being better than greedy in
reacting to the uncertainties, the LOE eventually crosses the red band (4-h
avgTTA threshold) with the onset of the 4th uncertain event.

There are two critical decisions that are learned with reinforcement learning,
(i) when to call the additional resources with respect to the time available in the
14-day work cycle, and (ii) how many additional resources to call upon such that
an optimal LOE is maintained over the 14-day work cycle. It can be seen from
Fig. 7(c) that very few resources were utilized until the fourth event on the tenth
day as compared to Figs. 7(a) and (b) in which the additional on-call resources
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were exhausted. As a result, there were fluctuations in the avgTTA values but
the LOE was maintained in the green zone. With the event on the tenth day
(t = 240), the majority of the additional on-call resources were called upon to
keep the LOE in the green zone. With resources still remaining at the end of the
14-day work cycle as shown in Fig. 7(c), it can be observed from Fig. 7(i) that
the LOE was maintained in the green zone throughout the 14-day work cycle.

Fig. 7. 5 uncertain events: (a–c) available additional resource, (d–f) backlog, and (g–i)
AvgTTA (LOE) [9]

4 Related Literature

D’Amico and Whitley [10] identified six analysis roles of cybersecurity analysts:
triage analysis, escalation analysis, correlation analysis, threat analysis, incident
response, and forensic analysis. The amount of time an analyst spends in triage
analysis is a function of the alert generation rate and is bounded by no more than
80% of the analyst’s time (effort) [11]. The rest of the time is spent on writing
reports, updating signatures in the IDS from new alert patterns, and training.
Triage analysis is the fundamental function of a CSOC. In triage analysis, the
large amount of data (alerts) that are generated from IDS using pattern match-
ing techniques [12,13], and automated techniques for malicious behavior [14,15],
are investigated to identify suspicious activities (significant alerts). The thor-
ough analysis of a significant alert requires adequate analyst time, which varies
between analysts depending on their level of expertise and the category of the
alert from the sensor. The alert data received at the CSOC often contains false
positive alerts which lead to wastage of time of the analysts. Similarly, there
could be false negatives (missing alerts) in the alert data due to unknown vul-
nerabilities. The experience of an analyst (expertise level) can help in reducing
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the number of false positives and false negatives in a shift [16]. It is the desider-
ata of a CSOC to adequately staff analysts such that all the generated alerts
are investigated in a timely manner, and to maintain a proper mix of expertise
levels among the analysts allocated to groups of sensors such that the number
of false negatives and false positives are minimized.

Managing a CSOC requires critical decision making on scheduling the opti-
mal number of cybersecurity analysts of various expertise levels and an optimal
allocation to the sensors in a manner that minimizes the risk to the organiza-
tion while meeting the resource, work schedule, and organizational constraints.
Recent work in literature has focused on optimally scheduling the cybersecu-
rity analysts [17] and their allocations to sensors such that the total number of
unanalyzed alerts that remain at the end of the shift is minimized [1,3,18,19],
and on improving the efficiency of cybersecurity analysts [20–22]. In practice, at
several CSOCs, groups of sensors are clustered together and allocated to ana-
lysts for investigation. Sensors have attributes such as historical average alert
generation rates, and analyst credential requirements for monitoring and inves-
tigating issued alerts. By creating clusters of sensors and allocating them to
analysts help in providing context during alert investigation. Analysts allocated
to the same cluster of sensors are able to investigate alerts efficiently from the
respective sensor during an alert campaign by an adversary. The clusters are
adjusted once every few months when a sensor (or a site) is added or removed at
the CSOC. This results in an uneven number of unanalyzed alerts that remain
at the end of the shift on each cluster. The need to cluster sensors has been rec-
ognized, but it has not been implemented often enough, and in a unified manner
that takes human factors (analyst attributes) into consideration. To the best
of the authors’ knowledge, a unified model that creates clusters (groups of sen-
sors), and allocates cybersecurity analysts to the clusters by taking into account
the unique attributes of both, sensors and analysts, to minimize and balance
the work (unanalyzed alerts) that remain at the end of the shift has not been
studied or researched in published literature.

A CSOC is a unique amalgamation of people, processes, and technology. A
CSOC performs many roles in terms of variety of services offered, which are
broadly categorized into reactive, proactive, and security quality management
services [23]. Alert management, incident handling, and vulnerability handling
are categorized under the reactive services, while intrusion detection services [24]
and development of security tools [22] are categorized under the proactive ser-
vices. D’Amico and Whitley [10] conducted a cognitive task analysis to study the
analytical process that transforms data into security situation awareness, which
is categorized as a security quality management service provided by a CSOC. A
complete list of services offered by a CSOC is given in Killcrece et al. [23].

Real-time work schedule adjustments or reactive-scheduling has been studied
for over three decades. Early research work on reactive-scheduling used rolling
horizon technology for the job-shop scheduling [25] while real-time schedule
adjustment in a call center environment had been studied to provide a high level
of customer service [26]. A sequential mixed-integer programming with loose
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bounds has been shown to achieve higher profit improvement than experienced
managers in real-time work schedule adjustment decisions at a quick service
restaurant study [27]. In the hospitality and tourism industry, research efforts
have focused on using mixed-integer programming to solve tour scheduling prob-
lems to minimize labor cost and meet service standards [28,29]. In manufactur-
ing systems, predictive-reactive scheduling has been studied where schedules are
revised in response to real-time events such as machine breakdowns and random
job arrivals [30]. The relationship between situational constraints (schedule or
allocation disruption) and the effect on worker performance has been a topic of
interest in organization studies [31] which relates excessive schedule disruptions
to worker morale and to worker turnovers.

5 Conclusions

The chapter presented an innovative integrated framework for efficient alert data
management, and highlighted three very important tasks and the strategies to
optimize them. The desiderata of a CSOC enterprise can be achieved by the
integrated model in which all alerts could be investigated in a timely manner, the
CSOC resources (analysts) could be optimally managed, and the LOE desired
performance could be achieved. The tasks considered in this chapter are (1)
determining the regular analyst staffing of different expertise level for a given
alert arrival/service rate, and scheduling of analysts to minimize risk, (2) sensor
clustering and dynamic reallocation of analysts-to-sensors, and (3) measuring,
monitoring, and controlling the level of operational effectiveness (LOE) with the
capability to bring additional analysts as needed. The chapter demonstrated the
framework under which the inter-dependent tasks can be integrated, sequenced,
and optimized, which is very useful for CSOC managers to make shift-to-shift
decisions on scheduling analysts, allocation them to sensors, and maintaining
the LOE of the CSOC. The algorithmic details of each optimization model are
available in the cited references under each task, and the best strategy is to
optimize individual tasks such that the outputs of one task are the inputs to
another as described in the introduction to the chapter. As on-going and future
research, trade-off analysis of competing factors would be studied, along with
other tasks such as alert prioritization and team formation in order to increase
the fidelity of the integrated model.
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Abstract. This chapter introduces cyber security researchers to key
concepts in the data streaming and sketching literature that are relevant
to Adaptive Cyber Defense (ACD) and Moving Target Defense (MTD).
We begin by observing the challenges met in the big data realm. Partic-
ular attention is paid to the need for compact representations of large
datasets, as well as designing algorithms that are robust to changes in
the underlying dataset. We present a summary of the key research and
tools developed in the data stream and sketching literature, with a focus
on practical applications. Finally, we present several concrete extensions
to problems related to ACD applications throughout this book, with a
focus on improving scalability.

1 Introduction

Resilience in the face of a changing and uncertain environment is a prime con-
cern motivating the study of Adaptive Cyber Defense (ACD). Practical ACD
solutions must perform actions quickly, often as a reaction to some environmen-
tal stimulus, and usually without a human in the loop. Accordingly, efficient
software and hardware implementations of ACD technologies should be fast,
cheap to deploy, and scale to the size of their problem domain. Furthermore,
they must deliver near-real-time performance. These requirements can be diffi-
cult to achieve when data sizes are large. For example, a technique that relies
on network communication traffic statistics might need to process millions or
even billions of events per hour depending on the size of the underlying net-
work. At this point even data storage becomes tricky, especially on embedded
components.

Several ACD technologies discussed in this book depend upon potentially
large data inputs. Indeed, network-level techniques that depend on the traffic
or topology of a computer network as data inputs are susceptible to many of
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the usual challenges that accompany so-called big data. While there may be a
large number of events serving as input to an ACD system, often the action-
able or “interesting” information is small compared to the entirety of available
data. Indeed, in many cases relatively simple statistics of the data suffice to sup-
port adaptive decision making. Additional aspects of big data analysis for cyber
security can be found in [14].

In particular, consider the problem of detecting changes in network traffic
over the gateway between an enterprise network and the outside world. The
conventional wisdom is to utilize either a sliding window of event logs or to
chunk them into discrete time windows of some fixed length (e.g. 1 h), and com-
pare current statistics to past statistics when attempting to either detect an
interesting network event or diagnose one after the fact.

For example, one might want to keep track of the number of distinct remote
hosts that send and/or receive traffic from each enterprise host. A significant
increase in the number of remote requesters over time could indicate a dis-
tributed denial-of-service attack, especially if other enterprise hosts experience
a similar increase, and even more so if there is significant overlap among the
new remote hosts contributing to each quantity. One could näıvely solve this
problem by maintaining a set for each remote host, which allows not only recov-
ery of the quantity in question but also the computation of the intersections
between different hosts. However, such an approach does not scale to the size
of the Internet, where the memory and time costs become prohibitive. We will
describe data structures and techniques that allow approximate recovery of the
distinct elements, as well as heuristic recovery of their intersection sizes using
exponentially less memory and constant time, a significant improvement over
the näıve approach.

It may also be interesting to keep track of the enterprise hosts sending or
receiving the most data over the proxy, or alternatively the source-destination
pairs that communicate the most data over some time period. Changes in these
statistics indicate changes in the underlying dynamics of the flow of web traffic,
and could be used to detect or diagnose a malicious exfiltration event, or perhaps
a denial-of-service attack. Records of the changes in these orderings over time
also give forensic analysts good places to start looking when diagnosing net-
work events after-the-fact. However, the look-up table enumerating all sources,
destinations, or source-destination pairs to their traffic volume over each, say,
hour, tends to be intractably large in practice. Furthermore, sorting such a data
structure is an expensive process. We will describe data structures and tech-
niques that allow an approximate recovery of these highest volume or so-called
“heavy hitter” elements, which also uses exponentially less memory than the
näıve solution.

Time is a critical element in ACD scenarios. The state of a computer net-
work can change, sometimes rapidly, including not only the network topology
but also the nature of the traffic flow exchanged across the network. Near-real-
time reaction speed demands that data processing update quickly in the face
of burgeoning events. Consequently, batch analyses that require total recompu-
tation in the presence of changes to the underlying data are unsuitable in all
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but the smallest or simplest cases. Consequently, the robustness and efficacy
requirements of ACD solutions demand data processing that updates quickly in
the presence of changes to the underlying data. So-called “online processing”
is the algorithmic solution to this problem, wherein algorithms are assumed to
have only sequential access to data elements. In this model, update time and pass
complexity become important measurements of algorithmic efficiency. In general
single-pass or truly online algorithms are preferred, although algorithms requir-
ing a provably small number of passes may be acceptable in some cases where
the underlying data is small enough to be warehoused. Many problems tradi-
tionally solved with batch algorithms admit to online generalizations, although
sometimes at the expense of additional algorithmic complexity and implemen-
tation difficulty. Unfortunately, many problems are known not to admit online
algorithms, or such algorithms are unknown.

ACD technologies typically do not rely upon the data itself, but instead
on statistics thereof. In fact, a data summary that can be queried for the
desired statistics suffices in many cases. Moreover, coarse approximations are
often acceptable. Any practical summary should furthermore scale weakly with
data size both in terms of time and memory. A further desirable property of
such a data structure is that it admit some form of merge procedure, where
two data structures accumulated over different streams are combined to produce
a data structure that summarizes the concatenation of the two streams. Such
summaries, usually called sketches, are an important object of study in the data
stream model.

Algorithms in the data stream model obtain only sequential access to ele-
ments of the data, possibly in adversarial order, and are typically allowed addi-
tional memory at most logarithmic in the data size. A common generalization
is the turnstile or dynamic data streaming model, which allows updates to the
underlying data structure, e.g. changing the value of an index in a vector, or
removing an edge from a graph. Sketches in the turnstile data streaming model
are called linear sketches, as they amount to linear transforms of the underlying
data. In addition to the measures introduced in the online processing model,
the data stream model further emphasizes memory complexity as an efficiency
metric. Some relaxations allow a provably small number of passes, or expand the
memory complexity to polyloglinear in one dimension of the data. This latter
relaxation of often called the semi-streaming model, and is usually required for
complex structured data such as matrices, tensors, and graphs. In exchange for
small size and low update cost, sketches typically produce approximate results
and are only suitable for answering queries of a particular statistic of the data,
which must be known ahead of time. The scaling particulars depend upon the
desired queries, and some queries are known to be insoluble in sublinear memory.

This chapter will provide a short introduction to streaming and sketching
algorithms and discuss their application to ACD problems, including specific
applications to technologies discussed in other chapters. Section 2 provides a
brief overview of practical and nearly practical sketching technologies. Section 5
discusses some applications of sketching algorithms to ACD technologies, includ-
ing those discussed in other chapters. Section 4 discusses the problem of
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identifying important vertices in large graphs used elsewhere in this book, and
provides some sketch-based solutions for approximating or estimating them.
Finally, Sect. 6 summarizes the contributions of this chapter.

2 Sketching and the Data Stream Model

For the remainder of this chapter we shall refer to data inputs, be they net-
work traffic logs, sensor readings, database records, et cetera, as data streams.
Data streams generalize the phenomenon described above, wherein data inputs
are sufficiently large and latency demands are sufficiently high that challenges
arise in interfacing between the program and the input, computing functions on
large segments of the input, and storing the input in working or disk memory. A
streaming algorithm interacts with the input sequentially, updating some inter-
nal data structure for each input element before discarding it. Consequently,
both the additional memory required by an algorithm and the number of passes
that it takes over the data input become resources just as important as the
number of operations required.

A stream σ = 〈a1, a2, . . . , am〉 is a sequence of elements in the universe U ,
|U | = n. We assume throughout that that the hardware has working memory
storage capabilities o(min{m,n}). Thus, clearly, storing σ in working memory
is not an option. A streaming algorithm A has three primary subroutines: Init,
Process, and Output. Algorithm 1 summarizes such an algorithm. Init ini-
tializes a data structure D that A will maintain. This typically involves both
allocating memory and determining randomness, often in the form of sampling
hash functions from a suitable hash family. As A reads over σ, it calls Process
on each element, updating D. These elements are discarded after they are read.
Output performs some computation over D, returning the desired statistic. We
will sometimes use the notation D(σ) to indicate the data structure state after
A has read over σ. We refer to this process as accumulating D(σ).

Algorithm 1. Stream Algorithm Operations
1: procedure Init
2: Initialize D
3: procedure Process(i ∈ σ) \\pass over σ
4: Apply i to D
5: procedure Output
6: Query D for output

In order to allow A to scale to immense data sizes, it is necessary to maintain
the constraint |D| = o(min{m,n}). Ideally we need only store a constant number
of tokens and counters so that |D| = ˜O(1) = O(log m + log n). Here we use the
tilde to suppress logarithmic factors, and will continue to do so throughout
the rest of the chapter. The logarithmic memory constraint guarantees that
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D’s memory footprint is equivalent to the cost of storing a constant number of
elements of σ.

Unfortunately, logarithmic memory constraints are not always possible. For
example, detecting whether a particular element of U comprises more than half
of a stream σ requires space Ω(min{m,n})! In particular, it is known that many
fundamental properties of complex structured data such matrices and graphs
require memory linear in some dimension of the data [49,51]. In such cases,
the logarithmic requirements of streaming algorithms are sometimes relaxed to
O(npolylog n) memory. In the case of matrices, here n refers to one of the
matrix’s dimensions, whereas for graphs n refers to the number of vertices. This
is usually known as the model, although some authors also use the term to refer to
O(n1+γ) for small γ [28,53]. We will use the former definition in this document.

In addition to restricting the space requirements of A, it is important that
its procedures Process and Output be o(min{m,n}), so that updating and
querying D remains fast. Again, ˜O(1) or even O(1) is the preferred performance.
The particular constraints on the efficiency of these subroutines depends on
the problem, but in general in real-time systems it is important that Process
require time less than the data interarrival time.

By enforcing these constraints on A, we loose the ability to arbitrarily query
the data for different statistics or examine individual elements. Furthermore, for
most problems we must grant that Output returns an approximate statistic.
Here we give up exact computation in favor of Monte Carlo guarantees, where
output is guaranteed to have low error with high probability. However, this loss
of freedom, accuracy and precision is a necessary condition for fast, scalable
analysis of many practical problems. Fortunately, this is not so great a sacrifice
if we know ahead of time what aspects of the input are of interest.

A stream σ is often thought of as updates to a hypothetical frequency vector
f(σ), which holds a counter for each element in U . We will drop the parameter-
ization of f where it is clear. For example, σ could be a stream of IP addresses
querying a server, in which case f is a vector of the number of queries issued
from each source IP. Given our assumptions so far, f is clearly too large to store
directly, although for some problems a sparse representation might be feasible.
Where A and D are as above, we instead accumulate D using A by reading over
σ. D can be thought of as a lossy compression of f that only preserves some
statistic thereof, such as a norm.

Consider the situation where a frequency vector f represents a mutable, per-
sistent object, such as a matrix storing trust scores between machines in a man-
aged network. It would be nice to not have to throw away the accumulated data
structure D and restart A whenever one of the elements of f changes. Accord-
ingly, we commonly generalize the concept of a frequency vector by allowing
that σ applies positive or negative updates to f . We call a stream σ a turnstile
or dynamic stream if its elements are of the form (i, c), where i is an index of
f (an element of U), c ∈ [−L, . . . , L] for some integer L, and (i, c) indicates
that fi ← fi + c. Streaming algorithms that are robust to such changes are
accordingly called turnstile or dynamic in the literature. The setting where only
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positive updates are permitted is usually referred to as the cash register model.
The setting where negative updates exist but all elements of f are guaranteed
to be nonnegative is called the strict turnstile model.

Furthermore, it is often desirable to compare separate streams. Let ◦ be the
concatenation operator on streams. Given stream σ1 and σ2, it is often useful
to determine statistics of f(σ1 ◦ σ2). For example, consider the problem where
σ1 and σ2 are streams of IP address, perhaps visitors to different servers or the
same server over different time periods. It may prove useful to know, for example,
the number of unique visitors between the union of the streams, the �0 norm of
f(σ1 ◦σ2). If we have already accumulated D(σ1) and D(σ2), we would prefer to
not take another pass over σ1 ◦ σ2, especially as we may no longer have access
to them. For A a streaming algorithm, we call its data structure S a sketch if
there is an operator ⊕ such that, for any streams σ1 and σ2,

S(σ1) ⊕ S(σ2) = S(σ1 ◦ σ2). (1)

This property is useful in many practical settings, as we will describe in greater
detail below.

Linear sketches are an important subclass of sketches where S is a linear
function of f(σ) of a dimension fixed by n. More specifically, a linear sketch
transform is a linear transform S : Fn → F �(n), where F is the field over
which f(σ) is a vector and �(n) 	 min{m,n} is the dimension of the transform.
Typically S is drawn from a distribution Π over such transforms. We will abuse
terminology by referring to sketch distributions, sketch transforms, and sketch
data structures as sketches where it is clear which is referenced. In particular,
any turnstile streaming algorithm uses a linear sketch as a data structure [47].

Since linear sketches take values in a vector space, we can perform arithmetic
on them. For streams σ1 and σ2 with frequency vectors f1 and f2, scalars a and
b, and linear sketch transform S,

aS(f1) + bS(f2) = S(af1 + bf2). (2)

Having covered the preliminary concepts, we will now discuss several spe-
cific sketches and sketching algorithms that are useful in practice. This is not a
comprehensive survey of the topic and we will skip over many technical details.
We invite the interested reader to investigate cited sources for greater detail.
In particular, we direct the interested reader toward Muthukrishnan’s survey of
streaming algorithms [53], Mahoney’s survey of randomized matrix algorithms
[49], Woodruff’s excellent book covering sketching in numerical linear algebra
[73], and Feigenbaum et al.’s [28] and McGregor’s [51] surveys of streaming
graph algorithms. Unfortunately, several of these broad sources are now slightly
dated and do not include the newest research, particularly sketching graph algo-
rithms. We will address several of these in Sect. 3.3. See the Guha and McGre-
gor’s resources from their workshop at KDD2018 for a partial bibliography of
recent advances in graph streaming and sketching [33].
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2.1 Estimating Distinct Elements

How many distinct elements are present in a stream? We have already used
counting distinct IP addresses as a motivating example. This problem, estimating
the cardinality of σ when viewing it as a multiset, is a core problem in the stream-
ing literature. We can rephrase it as finding the �0 norm of f(σ), alternatively its
0th frequency moment, given by ‖f(σ)‖0 = F0 = |{i ∈ {1, 2, . . . ,m}|f(σ)i �= 0}|.
It is known that any data structure that provides relative error guarantees for
a multiset with n unique elements requires Ω(n) space [4]. Consequently, inves-
tigators have developed many data structures that provide such relative error
guarantees while admitting a small probability of failure, such as PCSA [30],
LinearCounting [72], MinCount [7], LogLog [24], Multiresolution Bitmap
[26], HyperLogLog [29], and the space-optimal rough-refinement algorithm
of [41].

The HyperLogLog sketch is undoubtedly the most popular of these data
structures in practice, and has attained widespread adoption [29]. The sketch
provides an estimate of the cardinality of a streaming multiset in one pass using
only O(1/ε2 log log n + log n) bits of memory, where the estimate has standard
error 1.04ε. Although there is a known optimal algorithm with space complexity
O(1/ε2 + log n) [41] with relative error ε, it is known to be inefficient in practice
[67]. Consequently, less asymptotically-optimal HyperLogLog-style sketches
tend to be preferred in applications [25].

The HyperLogLog sketch leverages randomness to count distinct elements
of a stream. The sketch relies on the key insight that the binary representation of
a random machine word of size W starts with 0j−11 with probability 2−j . Thus,
if the maximum number of leading zeros in a set of random words is j − 1, then
2j is a good estimate of the cardinality of the set [30]. However, this estimator is
coarse and has high variance. We overcome this by pseudorandomly partitioning
the stream into many substreams. Upon reading i we compute h(i), for h a
hash function from U to {0, 1, . . . , 2W − 1}. The hash family from which h is
drawn should be such that for each element i ∈ U , h(u) is uniformly distributed
in {0, 1, . . . , 2W − 1}. This ensures that h(i) serves as a proxy for a uniform
random number for each i ∈ U . We maintain r = 2p registers (S) for integer p,
where i is mapped to the register indexed by the first p bits of h(i). We then
count the leading number of zeros in the remaining W − p bits of h(i) plus one.
If this value is larger than the value stored in the register, then we overwrite it.
Once we have read all of σ, Sj holds the maximum number of leading zeros to
appear in its substream of hashed values.

To query the cardinality of the stream, we return the bias adjusted harmonic
mean of the estimator present in each register,

˜F0 = αrr
2

⎛

⎝

r−1
∑

j=0

2−Sj

⎞

⎠

−1

, (3)
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where αr is a bias correction term that depends on r given by

αr :=
(

r

∫ ∞

0

(

log2

(

2 + u

1 + u

))r

du

)−1

. (4)

Unfortunately, this estimate is known to suffer from bias when F0 is very small
or very large relative to W . The original authors corrected bias on small cardi-
nalities by replaced the estimate with a different estimator LinearCounting
when ˜F0 falls below a threshold [29]. Subsequent work replaces the estimator (3)
entirely, with either a more robust bias reduction term in the denominator [64]
or a maximum likelihood estimate [25,74]. Subsequent authors corrected the bias
on high cardinalities by increasing the machine word size from 32 to 64 bits [36].

After bias correction, (3) has the guarantee that the standard error | ˜F0−F0| ≤
1.04εF0, where r = O(1/ε2). As each register requires only space O(log log n),
the space complexity of the sketch is thus O(1/ε2 log log n + log n).

While there are optimal sketches that offer better space complexity and error
guarantees, they tend to be impractical to implement when compared with
HyperLogLog, especially because HyperLogLog’s Process and Output
subroutines are so fast and easy to implement [36]. Subsequent literature has
further improved its efficiency. HyperLogLog++ introduced a sparsification
scheme for the register list so that it is compact when few elements have been
read [36], while HyperLogLog-TailCut significantly reduces the number of
bits required for each register [74].

HyperLogLog sketches have seen significant use in applications. For exam-
ple, as has been used as an example above, HyperLogLog sketches are useful
for probabilistically counting the number of unique visitors to a server. Fur-
thermore, while they are not linear sketches, HyperLogLog sketches admit a
composition operator of the type (1), which is taking the element-wise maximum
of the registers of a collection of sketches sharing the same hash function. This
property affords queries of the sort “how many unique IP addresses visited a
collection of servers” given a sketch for each server.

One failing of HyperLogLog and other popular cardinality sketches such as
MinCount is that they are not robust to negative updates. Linearity is a desir-
able property, in particular for answering queries of the form “how many unique
IP addresses visited each member of a collection of servers” given a sketch for
each server. So-called Hamming norm sketches address this concern utilizing a
dimension-reducing linear transform composed of elements independently sam-
pled from stable distributions [19]. Unfortunately, this reliance upon a very large
matrix is a space liability that is only overcome by applying pseudorandom num-
ber generators for space bounded computation [57] and generating each element
on-the-fly as needed. This results in an impractically slow Process time.

Failing linearity, others have examined instead estimating the intersection
of accumulated cardinality sketches. A näıve estimator computes estimates of
each stream and their union and estimates the intersection using the inclusion-
exclusion priciple. However, this can result in negative estimates, and exhibits
high variance. Ting shows promising results for a different cardinality sketch
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MinCount, which permits combinatorial queries concerning the unions and
intersections of MinCount sketches due to their closed union and intersection
operations [67]. Cohen et al. and Ertl independently developed maximum like-
lihood estimators for HyperLogLog intersections that do not yield a closed
intersection operator [18,25]. Unfortunately, as might be expected all of these
estimators exhibit high variance on small intersections, which limits their utility.

2.2 Approximate Counting

How many times has an element been encountered? Alternately, what are the
top k most frequent elements in a collection? Queries of f(σ)i are common
in applications, for example: “how many times has an IP address queried this
server?” However, storing f(σ) is out of question.

Perhaps surprisingly, there are ˜O(1) sketches that can approximately answer
queries of the above type. CountMinSketch is one such sketch, and perhaps
the most popular in applications [20]. The hashing scheme in CountMinS-
ketch is in some ways similar to a counting Bloom filter [27], although it differs
in key respects. First consider an array of counters S of length r coupled with a
hash function h drawn from a 2-universal hash family (e.g. multipy-shift hashing
[23]) mapping U onto {1, 2, . . . , r}. When (i, c) ∈ σ is observed, we set add c to
Sh(i). Similarly, upon querying i we return Sh(i). However, this method clearly
has high variance due to hash function collisions, since Sh(i) =

∑

j:h(j)=h(i) fj .
We overcome this variance by parallelizing the approach. The true Count-

MinSketch S consists of k arrays of counters of length r, as well as k hash
functions mapping U onto {1, 2, . . . , r}. When (i, c) ∈ σ is observed, we add c
to Sj,hk(j) for each j ∈ {1, 2, . . . , k}. When we query an accumulated Count-
MinSketch for a particular index i, it returns minj∈k Sj,hj(i).

Surprisingly enough, this estimate turns out to be quite good in general.
For a true frequency vector f , let ˜f be the hypothetical vector consisting of all
frequency estimates for elements of U . Then CountMinSketch guarantees that
for all i ∈ {1, 2, . . . ,m}, ˜f −f ∈ [0, ε(‖f‖1 −fi)] with probability 1−δ. Here, the
accuracy and precision parameters ε and δ are such that r = O(1/ε2) and k =
O(log(1/δ)), so that CountMinSketch has space complexity ˜O(1/ε log(1/δ)).
Hence, the size of CountMinSketch is only logrithmically dependent upon the size
of its input. It is also worth noting that the hash functions need only be pairwise
independent, and so there are practical implementations of CountMinSketch.

CountMinSketch is a linear sketch on strict turnstile streams. The slightly
more complicated CountSketch is a linear sketch on arbitrary turnstile
streams, although it is slightly less space efficient. We will not go into the details
of CountSketch here, inviting the interested reader to examine [15].

While the returned estimate is biased and may be an overestimate, subse-
quent modifications seek to correct for this bias by subtracting a bias estimate
and taking the median, rather than the min [22], or by taking account of the cur-
rent estimate when inserting a new observation [31]. In particular, CountMinS-
ketch’s error guarantees are tightest on heavy hitters - the highest frequency
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indices of f . Thus, one can probabilistically obtain the heavy hitters of a stream
by maintaining a heap while accumulating a CountMinSketch with high cer-
tainty. Charikar et al. provide algorithmic details for such a heap-based heavy
hitter recovery algorithm using CountSketch [15]. If the stream is guaranteed
to be a cash register stream, then one could instead use CountMinSketch for
a space savings of O(1/ε). Although the maximum size of this heap depends
upon the distribution of f , so long as this distribution is not nearly uniform
the algorithm depends only logarithmically on n. Moreover, as the only data
structures are CountSketch and a heap, the algorithm can be implemented
efficiently.

CountMinSketch and similar variants are widely used to collect frequency
statistics in applications. In particular, their linearity makes them suitable for
comparing statistics between disparate streams, such as finding heavy hitters -
the most frequent elements - as well as changes over time or between streams as
a form of anomaly detection. CountMinSketch has seen use in many different
application areas, including network anomaly detection [20], counting kmers
in genomics [76], and finding corpora statistics in natural language processing
[31]. We will apply CountMinSketch to recovering the heavy hitters of the
degree distribution on graphs in Sect. 4.1. CountSketch-type sketches are also
a common subroutine in more complex sketching algorithms.

2.3 Approximating Norms

One of the richest veins in the sketching literature is the approximation of various
norms of f(σ). Indeed, the HyperLogLog sketch in Sect. 2.1 can be thought
of as a non-linear estimate of the �0 norm of f . Moreover, the �1 norm of f(σ) is
trivial to accumulate in a pass over σ. The literature on approximating streaming
and sketching �p norms is much too voluminous to do justice to it here [4,37,38,
56]. We will instead discuss one of the early successes in approximating the �2
norm, sometimes called the TugOfWar sketch.

TugOfWar is deceptively simple. Consider a single counter x and a hash
function h mapping U to {−1, 1}. While reading (i, c) ∈ σ, we simply add h(i)c
to x. Surprisingly enough, |x| is an unbiased estimator of ‖f(σ)‖22. Of course,
the variance is large.

It is worth noting here that h implicitly defines a linear transformation s =
(h(1), h(2), . . . , h(m)) so that x = 〈s, f〉. If we repeat this operation with r
independent hash functions, we have defined a random r × m matrix S that
produces a vector x = Sf when accumulated over σ. It is not immediately
obvious that this is an improvement, as the matrix S is still large. Fortunately,
the hash function h need only be drawn from a 4-universal hash family (e.g.
via tabulation hashing [63]), meaning that we can efficiently compute elements
of S as they are needed rather than storing it in memory. In fact, 1√

r
‖x‖2 ∈

[(1 − ε)‖f‖2, (1 + ε)‖f‖2] with probability greater than 2
3 , where r = O(1/ε2).

The distribution over projections defined by h and S shares many similarity with
the famous Johnson Lindenstrauss Lemma, which has seen extensive application
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in dimentionality reduction by way of random projections [39]. By repeating
this procedure in parallel t = O(log(1/δ)) times and taking the median, we can
guarantee the same error bounds with a 1 − δ probability of failure, using only
˜O(1/ε2 log(1/δ)) space.

The TugOfWar is clearly a linear sketch, as it amounts to a linear func-
tion on f . Thus, it can be used to answer interesting queries such as find-
ing the norm of the difference between different streamed vectors f1, f2 by
Sf1 − Sf2 = S(f1 − f2). Such queries can be useful for detecting when there are
large changes in the frequency distribution on, for example, visitors to a server
or destinations queried over a proxy. Like CountSketch, TugOfWar and
related norm approximation sketches are commonly used as subroutines of more
sophisticated sketching algorithms. There exist similar algorithms for estimating
�p norms for other values of p [4,37,38,56], as well as matrix norms [46,48].

3 Advanced Sketching Applications

Section 2 and the references therein provide an incomplete accounting of the
history of data sketching on elementary statistics of unstructured data streams.
However, structured data such as matrices or graphs arise naturally in many
applications. Handling such data in the streaming model often requires a greater
degree of finesse than the applications described so far. This section and the
included references shall serve as an incomplete overview of more advanced
applications of data sketching. The reader may note that many of the sketches
described make use of data structures from Sect. 2 as building blocks. Further-
more, many of these algorithms are, by necessity, in the semi-streaming data
model. Consequently, they require polyloglinear memory in some dimension of
the structured data. This means that, while they improve upon the memory
requirements of a RAM algorithm (e.g. quadratic in the case of square matri-
ces), the improvement is not so drastic as seen throughout Sect. 2. Consequently,
many of these algorithms have not seen the same degree of adoption in practice.

3.1 Approximate Numerical Linear Algebra

Linear transformations such as that used in TugOfWar above that approxi-
mately preserves the �2 norm by a multiplicative factor of ε while performing
dimensionality reduction are commonly referred to as (1 ± ε)-�2 subspace embed-
dings, or more concisely just subspace embeddings [55]. Indeed, the implicit
transformation defined by the CountMinSketch and its variants also form
subspace embeddings, and are used to great effect in the sublinear approxima-
tion of computations on large matrices in the literature [17,73]. Subspace embed-
dings allow us to approximately perform several linear algebraic operations that
might otherwise be intractable to compute näıvely. The general strategy for such
algorithms is to apply subspace embeddings to project the largest dimension of
all involved matrices and vectors into a much smaller dimensional space, and
then solve the original problem on these smaller matrices. Consequently, these
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methods achieve the most gain on matrices where one dimension is much larger
than the other, such as highly overconstrained linear regressions of the sort that
often arise in machine learning.

We will here briefly summarize some of these results. Throughout, we will
consider that a stream σ accumulates a frequency matrix M(σ), a natural gen-
eralization of a frequency vector f(σ). We will drop parameters where it is clear
what is accumulated. For a subspace embedding S of M , we will write SM to
denote the matrix accumulated by reading over updates to M in σ and applying
the transformation S. We will also take for granted that S can be applied to M
in time O(nnz(M)), where nnz(M) is the number of nonzero entries of M . Note
below that ‖ ·‖F is the matrix Fröbenius norm, the sum of element-wise squares.

For the purposes of this section we will take as a given that r × n subspace
embeddings S can be computed and stored efficiently without going deeply into
detail. Moreover, we will assume that there are distributions Π over such matri-
ces such that for any n × d matrix A, S ∈R Π is an �2 subspace embedding for
A with high probability. In practice, such transformations are defined implicitly
by hash functions in the style of the transformations in Sects. 2.2 and 2.3. These
hash functions need be sampled from a k-universal hash family for some small
k. A k-universal family of hash functions H mapping X to Y have the property
that, for any h ∈R H and any x1, x2, . . . xk ∈ X , h(x1), h(x2), . . . , h(xk) is uni-
formly distributed in Y. Efficient k-universal families are known for most small
values of k [63,70]. In particular, the reliance upon k-universal hash families
allows the computation of �2 subspace embeddings without relying upon per-
fectly random or fully independent hash functions, significantly reducing both
the time required to apply transformations as well as their memory footprint.

Consider the problem of multiplying two matrices A ∈ R
n×d and B ∈ R

n×d′
,

producing the d × d′ matrix C = AT B. If n is large, then C becomes expensive
to compute, even using efficient linear algebra software kernels. Let S be drawn
from r × n subspace embedding distribution. By accumulating SA and SB, we
can instead return the product (SA)T SB = AT ST SB. Here we project the
tall matrices A and B into the lower row dimension r 	 n using the random
projection S, and perform the multiplication on these smaller projections. We
are guaranteed to obtain the property ‖AB − AT ST SB‖F ≤ ε‖A‖F ‖B‖F with
probability 1 − δ. This algorithm requires only ˜Θ((d + d′)ε−2 log(1/δ)) space
where r = O(ε−2 log(1/δ)). Note that the space depends on the dimensions of A
and B that are not sketched. Thus, if the matrices are nearly square, then the
space complexity of this algorithm is polylogarithmic in n. Hence, this and the
subsequent algorithms we will discuss are properly classified as semi-streaming
algorithms.

Another common problem involving tall matrices is linear regression, a sub-
routine that arises naturally in many analyses including machine learning. Given
matrix A ∈ R

n,d and b ∈ R
n, we want to find the x ∈ R

d that solves the opti-
mization problem x∗ = argminy∈Rd‖Ay − b‖2. Although there is a closed-form
solution for �2 linear regression, it can still prove infeasibly expensive in the
presence of enough constraints. Similar to the multiplication solution, we can
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sublinearize this problem by applying an r × n subspace embedding S to both
A and b and solve the embedded problem x̃ = argminy∈Rd‖SAy − Sb‖2. We
are guaranteed to obtain the property ‖SAx̃ − Sb‖2 ≤ (1 + ε)‖Ax∗ − b‖2 with
probability 1 − δ using ˜Θ(d2ε−1 log(1/δ)) space where r = O(ε−1 log(1/δ)).

We give a final example in the rank-k estimation of a matrix A. In this
problem, the object is to find the matrix of rank at most k that most closely
approximates A. Call this matrix Ak. If error is measured in the Fröbenius
norm, then one can solve this problem by computing the singular value decom-
position (SVD) of A = UΣV T and returning the matrix composed of the top
k singular vectors and values, which we will denote UkΣkVk. This is a common
query, particularly when performing data analysis or dimensionality reduction
such as PCA. It is possible to sublinearize this process using mutliple subspace
embeddings in a single pass. However, the space complexity of the best known
algorithm is not tight, and it is not considered practical [16]. Fortunately, there
is a known optimal 2-pass algorithm that we will briefly present. The object of
this algorithm is to produce a matrix ˜Ak that fulfills the guarantee

‖A − Ãk‖F ≤ (1 + ε)‖A − Ak‖F (5)

with probability 1 − δ. Such an ˜Ak is produced as follows, where S is an appro-
priate r × n subspace embedding, r = O(ε−1 log(1/δ)):

1. Accumulate SA in one pass over σ.
2. Compute UT , an orthonormal basis for the rowspace of SA.
3. Accumulate AU in a second pass over σ.
4. Compute [AU ]k, the k-truncated SVD of AU .
5. Return (factored) [AU ]kUT .

An immediate observation of this algorithm is that it is not sublinear in n.
Indeed, the space complexity of the algorithm is Õ(kε−1(n+d) log(1/δ)), strictly
classifying it as a semi-streaming algorithm. However, if one simply must find
a low-rank approximation, or a substitute for the k-truncated SVD of a large
matrix A, then this algorithm provably provides a nearly space-optimal solution.

As an addendum to this line of reasoning, often what one needs when com-
puting the k-truncated SVD of a matrix is a decomposition of the principal
directions of the action of the matrix when treated as a linear transformation.
Properties of the singular vectors of such a matrix are often used in applications
to draw conclusions about the data in the matrix. Consequently, in many appli-
cations a simpler approximation to the k-truncated SVD may suffice, including
those that are not strictly rank k. One such gadget is provided using two sub-
space embeddings, r × n S and d × rε−2 R, accumulating SA, AR, and SAR
in one pass over σ. The matrix AR(SAR)+SA satisfies the error condition (5),
although it may have rank greater than k [16]. Here M+ = V Σ−1UT is the
Moore-Penrose pseudo inverse of the matrix M with SVD UΣV T . The advan-
tage of using the factors AR, (SAR)+, and SA is that they are (roughly) of the
form of an SVD and can be computed relatively quickly and in one pass over σ.
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3.2 Approximate Norm-Aware Sampling

Frequently one might want to sample some element or elements from a stream.
However, it is not immediately clear how to randomly sample over elements
in turnstile streams. In general, we want to sample an element from σ that is
returned with probability proportional to the norm of the frequency vector f .
More precisely, we want to return element i with probability |fi|p

‖f‖p
p

for some p ≥ 0.
We call such a sample an �p sample of f .

Returning a strict �p sample certainly requires Ω(n) memory. Fortunately,
there are �p sampling sketches that instead return element i with probability
(1 ± ε) |fi|p

‖f‖p
p

with failure probability 1 − δ. The particulars of these sketches
are somewhat involved, and so we will not cover them in detail here. We suggest
that the interested reader to investigate [5,40,52]. Suffice to say that the sketches
are linear over turnstile streams. The best known �1 sampling sketches require
O(ε−1 log ε−1 log2 n log δ−1) space, while the best known �0 sampling sketches
require O(log2 n log δ−1) space [40]. Note that both have only a polylogarithmic
dependence on n, and �0-sampling sketches can achieve arbitrary sampling pre-
cision at no additional cost. Interestingly, the main ingredients in these sketches
are applications of CountSketch and TugOfWar, which are discussed in
Sects. 2.3 and 2.2.

As these sampling sketches are linear, we can perform arithmetic with them.
That is, if we have two streams over the same universe with frequency vectors
f, f ′ and S is a sketch matrix drawn from such a sampling distribution, then
Sf + Sf ′ = S(f + f ′), allowing us to sample probabilistically from f + f ′.
Although these sampling algorithms are certainly difficult to implement and are
not as computationally efficient as those already widely adopted in applications,
such as those discussed in Sects. 2.1, 2.2, and 2.3, they can provide powerful
insights into large data streams. Furthermore, their linearity means that they
can be used to sample from immense vectors stored in distributed memory uti-
lizing a MapReduce computation strategy. Each processor that owns part of the
vector applies the same sketch transform to it, whereupon all of the sketches are
sent to a central processor that adds them together and performs the sampling
procedure. In particular, we will see applications of sampling sketches in Sect. 3.3
where they are used to sublinearly answer questions about graph structure, as
well as a more practical example in Sect. 4 where they are used in the sampling
of random walks on scale-free graphs.

3.3 Approximate Graph Structure

Just like generalizing a stream to update a frequency matrix as discussed in
Sect. 3.1, we can also generalize the concept of a data stream as updates to the
edges of a graph. There is a large body of work covering streaming graph algo-
rithms where σ is a sequential scan over an edge set. This can also be interpreted
as a stream of updates to the graph’s adjacency matrix A (or its Laplacian L,
or vertex-edge incidence matrix B). Much of the literature on streaming graphs
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focuses on a less general type of stream, where edges are updated only once
and there are no negative updates [28]. See [51] for a good if somewhat out-
dated overview of this literature. However, many practical problems, including
many discussed elsewhere in this document, depend on graphs that are subject
to change. In such a stream, every update modifies the weight of an edge in
the graph, possibly bringing it into existence or removing it from the graph by
increasing its weight from zero or reducing its weight to zero, respectively. For-
tunately, recent research [1,2,43] has solved a number of basic graph problems
on evolving graphs in the semi-streaming model by way of linear sketches.

We will not go into great detail on the particulars of these algorithms,
and will instead explain their general approach. In a recent series of papers,
Ahn, Guha, and McGregor used �0- and �1-sampling sketches on the columns of
the vertex-edge incidence matrix to solve or approximating a number of semi-
streaming graph problems [1,2]. Their approach depends on �p sampling sketches
as discussed in Sect. 3.2. Here assume that we have a turnstile stream defining
G = (V,E) where |V | = n and |E| = m. Consider the vertex-edge incidence
matrix B of G, defined as

B(x,y),z =

⎧

⎪

⎨

⎪

⎩

1 if x = z

−1 if y = z

0 else.
(6)

Each column of B lists a vertex’s participation in edges in E. For x ∈ V , let
B:,x denote the corresponding column. The graph sparsification algorithms all
proceed along the following basic premise. Sample a series of �0 sampling sketches
S1, S2, . . . , St, for some t = O(log n). Algorithms depending on �1 sampling are
similar. First, read the stream defining B (which can be adapted from an edge
stream) and sketch each column of B using each of S1, S2, . . . , St. If x ∈ V , then
B:,x is a vector whose nonzero entries point to edges of which it is an endpoint.
Thus, S1(B:,x) can recover a uniformly sampled neighbor of x, say y, with high
probability. Then, S2(B:,x) + S2(B:,y) = S2(B:,x + B:,y) can sample a neighbor
of the supervertex (x + y), since the row values indexed by the edge (x, y) are
cancelled out when adding the two row vectors by the definition of B. New
sketches are required for each contraction, as otherwise the samples will not be
independent and the guarantees of the sampling fails. The sparisification of the
graph so obtained constitutes a random logarithmically-sized subtree of G. This
pattern permits the approximation of many of G’s structural properties, possibly
over several passes, using semi-streaming memory.

Particular applications include answering graph queries such as deciding
whether a graph is connected, k-connected, or bipartite, as well as approximating
the weight of its minimum spanning tree. Somewhat more memory Õ(n1+γ) for
γ an accuracy parameter permits the computation of approximate spanning sub-
graphs that can approximate distances, exactly computing the minimum span-
ning tree, and approximating the maximum weight matching over several passes
[1,2]. A separate O(ε1,2npolylog n) algorithm suffices to return Ũ ⊆ V that is
has density at least (1 − ε) of the maximum density subset of V [69].
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It is important to note that these algorithms are not especially practical.
For many real-world graphs where E is not too much bigger than V , sketching
the graphs in this way actually requires more memory to store than just storing
G explicitly. Furthermore, the reliance on such a large number of �p sampling
sketches incurs a significant performance overhead. The discovery of a more
practical �p sampling sketch would greatly improve the computational footprint
of these algorithms, but it is unlikely that the memory overhead tradeoff will
be worthwhile for all but the most dense graphs. A practical implementation of
these algorithms using existing tools would likely instead explicitly store sparse
representations of B:,x for each x ∈ V until a given size threshold is reached, at
which point a sampling sketch S is initialized based upon the held vector and
maintained under subsequent updates. The tree-sampling stage of the algorithms
would proceed as normal, augmented with behavior when explict and sketch rep-
resentations of column vectors are merged. These algorithms are largely included
for completeness, as well as to contrast the applications in Sect. 4.

Another application of sketching algorithms to graphs is the approximation
of sparse subgraphs that preserve some property of the original graph, especially
its Laplacian. The use case for such algorithms is the production of sparse sub-
graphs that can be used in further analyses while incurring reduced overhead
by pruning edges. Algorithms of this type are more practical, as the upfront
cost associated with the sketching procedure can yield significant savings on
downstream, expensive, measurements so long as some error is tolerable. While
a thorough discussion of such algorithms is out of scope for this document,
we invite the interested reader to read [43] or Woodruff’s treatment in Chap. 5
of [73].

Cardinality sketches also have applications to estimating some graph proper-
ties. For example, consider accumulating a HyperLogLog sketch of the adja-
cency set of each vertex in a graph. Using these sketches, one can estimate the
degrees of each vertex. However, one can also combine them to estimate other,
less trivial graph properties. Indeed, the HyperANF algorithm uses Hyper-
LogLog sketches to estimate the n-hop or n-th degree neighborhood sizes of all
vertices [10]. These quantities are useful for several applications, such as edge
prediction in social networks [34] and coarse probabilistic distance calculations
[10,54]. By utilizing cardinality sketch intersection estimators, one can also esti-
mate local features such as edge- and vertex-local triangle counts, although the
variance inherent in such estimators applied to small intersections implies that
estimates will only be reliable on elements with a nontrivial triangles density [62].

Unfortunately, while these cardinality sketch-based approaches are more
practical than their sampling-sketch based siblings, they are not linear and
so cannot handle negative updates. Of course, implementing them with linear
Hamming-norm sketches obviates this problem, but at the cost of once again
producing algorithms that are not practicable.
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4 Identification of Important Vertices in Massive Graphs

A common task in the analysis of a graph G = (V,E), where |V | = n and |E| =
m, is the identification of vertices or edges that are “important”. Quantifications
of importance depend heavily upon the qualities being considered, and preferred
methods tend to vary from problem domain to problem domain.

Centrality indices are one major class of importance quantifications. A cen-
trality index is any map C that assigns to every v ∈ V a nonnegative score
C(v). The particulars of C are usually assumed to be conditioned only on the
structure of G. Consequently, we can identify the centrality index on G as a
function CG : V → R≥0. For x ∈ V , we will call CG(x) the centrality of x in
G. Typically, for x, y ∈ V , CG(x) > CG(y) implies that x is more important
than y in G with respect to the property that C measures. However, such point
queries are not particularly informative. In most applications, what is desired
are the top k centrality vertices of G, which we will call the vertex heavy hitters.
We will generally drop the subscript from C when it is clear from context. It is
important to note that if G changes, so does the mapping C. At times, we will
write C(G) or C(V ) to denote the set of all centrality scores of the vertices in G.

Centrality indices tend toward three distinct types: indices that rely upon
distance-based measures, such as degree centrality and closeness centrality, spec-
tral measures, such as eigencentrality and its variants Katz’s index and PageR-
ank, and path-based measures such as betweenness centrality [11]. Researchers
have considered more exotic centrality indices that rely on metadata, such as
vertex and edge colorings [42]. Such notions of centrality, while interesting, are
out of scope for this document.

Throughout the rest of this section we will discuss to what extent sketching
algorithms can improve the scalability of a few popular centrality indices. In
general when computing C(V ) one is primarily interested in the top k vertices for
some given k, as these are the most important vertices with respect to the index
in question. Consequently, we can focus on the recovery of these “heavy hitters”
instead of attempting to produce a score for each x ∈ V . In the subsequent
sections we will investigate approaches to doing so for two popular centrality
indices, degree centrality and betweenness centrality.

4.1 Streaming Degree Centrality Heavy Hitters via CountSketch

Degree centrality is perhaps the oldest and most basic notion of centrality. In
an undirected and unweighted graph, the degree centrality of a vertex is simply
calculated as its number of neighbors. If the graph is weighted, degree centrality
is usually generalized to the sum of the weights of its incident edges. In either
case, we will assume the degree centrality of vertex x ∈ V is equal to the sum
of the xth row of the adjacency matrix A. In a directed graph, the indegree
(outdegree) centrality of vertex x is the number of incoming (outgoing) edges to
(from) x, conventionally corresponding to the xth column (row) of A.
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DC(x) = |{(u, v) ∈ E | x ∈ {u, v}}| = ‖Ax,:‖1 = ‖A:,x‖1 (7)
IDC(x) = |{(u, v) ∈ E | x = v}| = ‖Ax,:‖1 (8)

ODC(x) = |{(u, v) ∈ E | x = u}| = ‖A:,x‖1 (9)

Though simple, degree centrality is still widely used as a benchmark in many
applications [11]. Indeed, it is competitive with more sophisticated notions of
centrality in some contexts [68]. Moreover, indegree centrality is known to corre-
late well with PageRank, making it a decent proxy when computing PageRank
is not practical [68].

Given an edge stream updating adjacency matrix A, it is a simple to inter-
polate it as a stream updating a vector v storing the valency of every vertex
in the graph. If computing indegree, simply convert an update (x, y, c) to (y, c),
where (y, c) is interpreted as “add c to vy”. Outdegree is similar, and if G is
undirected one simply applies both updates. This formulation places us in the
vector turnstile model. Moreover, the accumulated vector v is such that vx is
exactly the degree centrality of vertex x.

Fortunately, this formulation allows us to directly apply CountSketch, as
discussed in Sect. 2.2 and use its heap accumulation algorithm to approximately
obtain the degree centrality heavy hitters of G. So long as G is not nearly regular,
which scale-free graphs that arise in most applications are certainly not, the space
complexity of this procedure is only logarithmic in n and can be applied quickly
to σ in one pass.

4.2 Estimating Betweenness Centrality Heavy Hitters with κ-Path
Centrality and Sampling Sketches

Degree centrality is a rather basic measure of vertex importance. What can be
done for more complex measures? The betweenness of a vertex is defined in terms
of the proportion of shortest paths that pass through it. Thus, a vertex with high
betweenness is one that connects many other vertices to each other - such as a
boundary vertex connecting tightly-clustered subgraphs. For x, y, z ∈ V , suppose
that λy,z is the number of shortest paths from y to z and λy,z(x) is the number
of such paths that include x. Then the betweenness centrality of x is calculated
as

BC(x) =
∑

x
∈{y,z}
λy,z 
=0

λy,z(x)
λy,z

. (10)

An implementation of betweenness centrality must solve the all pairs all shortest
paths problem, which is a resource-hungry process. Moreover, there is no known
algorithm for computing the betweenness centrality of a single vertex using less
space or time than the best algorithm for computing the betweenness centrality
for all of the vertices. The celebrated Brandes algorithm, the best known algo-
rithm for solving betweeness centrality, requires Θ(nm) time (Θ(nm + n2 log n)
for weighted graphs) and θ(m) space [12].
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A significant number of algorithms have arisen that attempt to alleviate this
time cost by approximating the betweenness centrality of some or all vertices
have been proposed. Some of these approaches depend on adaptively sampling
and computing all of the single-source shortest paths of a small number of ver-
tices [6,13], while others sample shortest paths between random pairs of vertices
[65,75]. A recent advancement incrementalizes the latter approach to handle
evolving graphs [9]. Still other approaches drive down the approximation time
by reasoning about sampled hypergraphs [35,75].

Fortunately, researchers have directed much effort in recent years toward
maintaining the betweenness centrality of the vertices of evolving graphs [32,71].
The most recent of these approaches keep an eye toward parallelization across
computing clusters to maintain scalability [45].

If the evolving graph in question is sufficiently small that storing it in working
or even distributed memory is feasible, then existing solutions suffice to solve the
problem in a reasonably efficient fashion. However, none of the existing solutions
adapt well to the semi-streaming model, as they each require Ω(m) memory.
Indeed, directly approximating betweenness centrality, even for a single vertex,
seems likely to be infeasible using o(m) memory.

Often, κ-path centrality is an attempt to obtain the top-k betweenness cen-
tral vertices by way of relaxing the computations [3]. The κ-centrality of a vertex
x is the probability that a random simple path of length at most k over all other
source vertices y passes through x. Here a simple path is a series of adjacent ver-
tices such that no vertex appears more than once. That is, a simple path has no
loops. There is a randomized algorithm for approximating the κ-path centrality
of the vertices of a graph that amounts to simulating T = 2κ2n1−2α ln n random
simple paths over G and maintaining a counter for each vertex. Here α is an accu-
racy parameter. The authors demonstrate that on several real-world scale-free
networks, vertices with high approximate κ-path centrality empirically correlate
well with vertices with high betweenness centrality [44]. Moreover, this algorithm
is much more efficient than most other attempts to approximate betweenness
centrality, as it sidesteps the need to compute any solutions to single source all
shortest paths, as it instead samples random walks.

Furthermore, this κ-path centrality algorithm is similar in some respects to
those in Sect. 3.3 in that it mostly depends upon sampling. The algorithm is
given in Algorithm 2.

The algorithm is mostly the same as the κ-path centrality algorithm, with the
exception that sampling is performed approximately using sampling sketches.
We can make this algorithm much more practical by distributing it using a
Pregel-like model [50]. In a Pregel-like model, vertex adjacency information is
distributed among the processors in a cluster. Computation proceeds in a series
of passes, where in each pass the processors perform some computations and
then communicate. This computation scheme can be made much more efficient
in practice by allowing the communication to occur asynchronously [59]. In a
data stream setting, each processor is responsible for streams that define the
adjacency vectors for some subset of vertices, and each pass corresponds to
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Algorithm 2. Sublinear κ-Path Centrality
1: T ← 2κ2n1−2α ln n
2: P ← T empty paths
3: L ← T uniform samples from {1, 2, . . . , κ}
4: C ← n empty counters
5: for i ∈ {1, 2, . . . , T} do
6: Pi,1 ← a vertex uniformly sampled from V

7: for j ∈ {1, 2, . . . , κ − 1} do \\loop corresponds to a pass over σ
8: for i ∈ {1, 2, . . . , T} do
9: if j ≤ Li then

10: S ← an �0-sampling sketch
11: accumulate SAPi,j , ignoring elements in Pi,: \\simple paths
12: Pi,j+1 ← sample from SAPi,j

13: CPi,j+1 ← CPi,j+1 + 1

14: return Cx/2κn−2α ln n for each x ∈ V

processors taking a pass over some of their vertex adjacency streams. Otherwise,
the algorithm is mostly the same. The only significant change is that, at the start
of the jth iteration of the outer loop, the current holder of Pi,: must transmit it
to the processor holding Pi,j . There is also a reduce step wherein the processors
sum up C. Note that, instead of performing a näıve sum of C, we could instead
communicate each local copy of C to a single processor who treats the incoming
communication as a data stream and maintains a k-heap, returning the k-heavy
hitters of C if the heavy hitters are all that is desired.

This approach maintains the error guarantees of the original κ-path cen-
trality algorithm at the expense of a small probability of failure, which can be
superceded by allowing that multiple passes over streams may be required. It
can also be relaxed so that only vertices with vertex adjacency list size over a
certain threshold need be sketched. In a scale free graph, most vertices will be
small, but some will have degree that is a nontrivial fraction of n [8]. For most
practical purposes it is only these large vertices that need be sketched. For a
procedure that depends on high betweenness centrality vertices on a very large
graph, this procedure will provide an estimate of these heavy hitters using fewer
resources. It also avoids the practical problems of storing these large vectors in
distributed memory over the compute cluster in delegates [60]. [61] describes
and analyzes this and other related algorithms based upon the semi-streaming
sampling of random walks.

5 Examples of Sketching Applied to Adaptive Cyber
Defense

We will quickly summarize some of the Adaptive Cyber Defenses discussed
throughout this chapter, as well as discussing other applications to the work
presented in other chapters in this document. We opened Sect. 1 with a high-
level discussion of various analyses of network traffic summary statistics and how
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they can be applied to ACDs. We will now discuss some of these problems in
terms of the technologies introduce in Sect. 2.

5.1 Distinct IP Addresses Accessing a Server

HyperLogLog sketches, as discussed in Sect. 2.1, permit a practical solution
to the problem of maintaining the number of distinct IP addresses that send
and/or receive packets to/from a managed server. By maintaining such a data
structure for each managed host over every, say, hour, one can maintain a com-
prehensive log of the approximate volume of traffic flowing into or out of an
enterprise network. Although the HyperLogLog data structure does not per-
mit the recovery of the actual IP addresses, sketches accumulated on different
servers can be combined to obtain an approximation of the number of distinct
IP addresses that interacted with either server. We can also use estimators of
the sketch intersections to estimate the number of distinct IP addresses that
visit both servers as discussed in Sect. 2.1. Recall, however, that this estimate
has high variance when the intersection is small. If the number of distinct ele-
ments of both servers and their union is large compared to the intersection (i.e.
there is little to no overlap), then the relative error in the approximation of the
individual and union values may be much larger than the ground truth inter-
section. However, if the intersection is large, we will be able to probabilistically
recover it albeit with higher variance than the directly approximated elements.
This means that the approach is most suitable for identifying and approximating
the overlap heavy hitters - those pairs of servers whose IP partner intersections
are the largest. Fortunately, for problems such as detecting DDoS attacks or
botnets, it is exactly these pairs of servers who share a large number of common
communication partners in which we are interested. Maintaining such a list of
heavy hitters may prove useful for forensic analysis of such an event, allowing
analysts to prioritize the server logs that are most likely to contain the relevant
information, as well as contributing to the discovery of such events in the first
place by tracking changes.

5.2 Data Flow Volumes

We also discussed the desirability of the maintaining the approximate counts
of IP source, destination, and source-destination data flow volume in Sect. 1,
which we can approximately accomplish using CountMinSketch. Say that we
want to monitor the volume of traffic flowing over each IP source-destination
pair on the boundary between an enterprise network and the Internet. While
maintaining a dictionary data structure for each window is clearly intractable, we
can instead maintain a logarithmically-sized CountMinSketch data structure
for each window. By accumulating the data structure with a heap as discussed in
Sect. 2.2, we can obtain a list of the top k heavy hitters for each time windows.
Changes in these lists indicate changes in the underlying dynamics of the network
activity, which can include DoS attacks, exfiltration events, or significant changes
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in the enterprise mission (e.g. new public-facing server launched, etc). Cormode
and Muthukrishnan describe many other applications in [21].

Maintaining a norm of the implicit frequency vector defined by each time
window can prove useful for such detection schemes as well, in concert with the
heavy hitter lists. Significant changes to, say, the �2 norm of the frequency vector
from one time period to another indicates a change in the distribution of flow
over communicating pairs, such as an increase in the traffic communicated by a
small number of pairs. Combined with the heavy hitters obtained via Count-
MinSketch, norms obtained by TugOfWar as discussed in Sect. 2.3 or other
norm sketching algorithms can both alert analysts to the presence of anomalous
behavior as well as assist them in focusing their attention on likely sources of
the anomalous behavior.

5.3 Identifying Attack Patterns

Of course, any ACD that depends upon linear algebraic operations such as linear
regression and are also subject to immense scale could benefit from approximate
numerical linear algebra tools discussed in Sect. 3.1.

Malicious actors have several atomic cyber attacks at their disposal. A 2014
survey coarsely categorizes cyber attacks into the following four categories:

• Denial of Service (DoS): Attackers issue malicious requests that consume
computing or memory resources of a service, degrading the performance of
legitimate requests.

• Probing: Attackers scan a network to gather information and identify vulner-
able hosts as future targets.

• Remote to Local (User) Attacks (R2L): Attackers compromise a machine
remotely by exploiting a software or configuration vulnerability. Attacks of
this type are typically employed when attackers do not have an account on
the target machine.

• Priviledge Escalation: Attackers exploit vulnerabilities or problematic config-
urations to gain root access on a machine on which they own an account.

Atomic cyber attacks of the above type are typically single steps in a larger
playbook.

The recognition of playbook and cyber-attack patterns or attack paths is a
daily task in cyber security operation centers. Although zero-day attacks are
difficult to detect, experts can often forensically identify the attack path along
which a zero-day exploit occurred, and the automated identification of such
paths can help to detect zero-day attacks more quickly [66]. Attack paths are
effectively graphs representing possible series of attacks and otherwise benign
actions that culminate in an attacker’s achieving some goal.

There can be many branching and intersecting paths in such an attack path,
and an instance in the wild might even include loops. Figure 1 shows an example
attack path relating the insertion of malware. This attacker must perform one
of many possible series of atomic actions that result in gaining access to the
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Fig. 1. A sample attack path for malware insertion after the attacker has gained an
unprivileged foothold on a network. One of many possible series of atomically benign
actions coupled with expressly malicious moves results in the deployment of malware
on a targeted system.
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target IT system, crafting a malware payload, gaining privileges, and deploying
the payload onto a target resource.

The process of performing cyber-attack pattern matching involves inferring
discrete events into vertices and edges to build such a graph and identifying
when it matches a specified pattern such as Fig. 1. These discrete events are
inferred from machine logs of various types, e.g. firewall logs, IDS logs, audit
logs, web logs, et cetera. However, it is not always clear how to map these obser-
vations onto a given pattern graph. While some of this ambiguity can be handled
with supervised machine learning, real-time systems will encounter novel obser-
vations and may not have a human in the loop. Consequently, it is necessary to
maintain many parallel graph instantiations to handle different interpretations
of individual logs. Each of these instantiations is subject to edge updates based
upon future observations, including edge deletions if an interpretation is inval-
idated. Moreover, the log files themselves must often in practice be treated as
data streams, as they may be quite large compared to system memory.

Consequently, collecting approximate graph structure of these parallel instan-
tiations may prove to be attractive in practice, particularly if they are sufficiently
large and there are sufficiently many that storing them in system memory is
inconvenient. Spectral sparsifications of the type discussed in Sect. 3.3 are par-
ticularly attractive, particularly if we treat the collection of parallel graphs as a
single largely disconnected graph. As the literature on streaming dynamic graphs
is still quite young, we expect that more advances relevant to ACD problems
will emerge in the future.

5.4 Identifying Important Machines

Consider a simple problem, where a security analyst wants to determine which
machines in a enterprise network are the most critical for maintaining mission
function. One way of measuring this criticality is to identify it with degree -
i.e. the important machines are those with many connections. Such machines
might host critical services, e.g. mail servers and databases. One could apply
the CountSketch approach discussed in Sect. 4.1 in order to obtain the degree
sketch heavy hitters from a single pass over a description of the network.

Consider that the analyst might want to differentiate between vertices that
are connected to mostly user terminals (who have low degree) from those who
are also connected to other high-degree vertices, i.e. other backbone services.
The latter type of machine is clearly more “core” to the network, and is of more
interest to an analyst. Consider the pth neighborhood size of a vertex x, i.e.
the number of unique vertices that can be reached by following p edges starting
at x. In a security context, ranking vertices by neighborhood size might be a
more robust quantification of importance, as it can capture local dependencies
that span more than one hop. However, the CountSketch approach does not
generalize to handle the estimation of pthe neighborhood sizes.

Note that instead of utilizing a CountSketch instance to estimate G’s
degree centrality like in Sect. 4.1, we can instead maintain a HyperLogLog
instance for each vertex x ∈ V . We will call this data structure DegreeSketch.
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A DegreeSketch instance D is a distributed dictionary that maps vertices to
HyperLogLog sketches, so that D[x] is the sketch associated with x ∈ V . Upon
reading in a description of G, D[x] can be used to estimate the degree of x. By
its nature D can be easily distributed across a set of networked processors P,
where each processor P ∈ P is responsible for storing the sketches associated
with a partition of V .

DegreeSketch gives us a much tighter estimate for the degree of each ver-
tex than the CountSketch-based approach. However, it also requires memory
linear in the size of V . Due to constant associated with the HyperLogLog
sketches, this requires more memory than simply maintaining a counter for each
vertex, while introducing error! However, the power of DegreeSketch comes
from the fact that the HyperLogLog sketches are composable. Let ˜∪ be the
union operator for HyperLogLog sketches. Given access to E, we can compute
a second-degree sketch D2[x] via

D2[x] =
˜

⋃

y:xy∈E
D[y]. (11)

That is, a union of the HyperLogLog sketches for each vertex adjacent to x
allows us to directly estimate the second neighborhood size of x. If we have Dp,
where Dp[x] is a HyperLogLog estimating the pth neighborhood size of x,
then we can similarly estimate the (p + 1)th neighborhood size via the sketch
produces via

Dp+1[x] =
˜

⋃

y:xy∈E
Dp[y]. (12)

Obtaining the pth neighborhood size estimates in this way requires p passes
over a stream defining G, and uses only O

(

n
ε2 log log n + log n

)

memory, where
the HyperLogLog sketches have standard error 1.04ε. This approach permits
the analyst to estimate the local pth nieghborhood sizes for massive graphs
cheaply. Circling back to the original discussion, this approach allows the analyst
to cheaply compute identify backbone machines in a network given access to the
network’s description, even if it is impractically large.

A fully distributed version of this algorithm is presented in full in [61], and
is inspired by the ANF [58] and HyperANF [10] algorithms.

6 Conclusion

We have discussed many of the scalability challenges that arise in the practice of
ACDs, particularly at the network level, and provided a survey of the sketching
tools available to meet these challenges. We hope that, rather than highlighting
a particular technique, this chapter serves as a resource for developing scalable
ACD technologies. In particular, we have argued that sketch-based analyses can
summarize large batches of data while preserving information relevant both to
the automated detection of anomalies as well as information helpful for pointing
forensic analysts in the right direction.
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In order to meet these efficiency gains, sketches give up random access to
the source data and provide only Monte Carlo approximation guarantees on
their output. Fortunately, for many ACD applications, such as detecting macro-
level changes in network traffic, approximation is generally acceptable. While
many of the approaches we have discussed require only a single pass over the
data stream, we have also discussed a few problems for which no practicable
single-pass algorithm is known, and have instead discussed multi-pass sublin-
ear algorithms. Although these multi-pass algorithms are necessarily much less
reactive, they may still prove useful in practice for batch analysis. For example,
we have shown that technologies that depend upon the SVD of a very large
matrix or approximately finding the top betweenness centrality-indexed vertices
in a graph can benefit from sketching algorithms, which still lower the space and
sometimes time overhead compared to exact methods.

Though we have discussed many of the prominent practical sketching tech-
nologies available in this chapter, there is too large a literature of streaming and
sketching algorithms to completely summarize here. The many survey papers we
have referenced should serve as good starting places for examining this literature.

As we have discussed, however, not all queries are soluble using data stream-
ing and sketching approaches. Indeed, many seemingly benign queries, such as
“does a particular element comprise more than half of a data stream?”, “do two
sets have a null intersection?”, or “does a graph contain at least one triangle?”
require space linear in the size of the input. Thus, the techniques discussed in
this chapter are no magic bullet for arbitrarily improving the performance of a
piece of technology. Care must be taken when selecting the questions to ask of
a data set, as the answers may not always be forthcoming.
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