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Abstract. Single image super-resolution (SISR), as an important image pro-
cessing method, has received great attentions from both industry and academia.
Currently, most super-resolution image reconstruction approaches are based on
the deep-learning techniques and they usually focus on the design and opti-
mization of different network models. But they usually ignore the differences
among image texture features and use the same model to train all the input
images, which greatly influence the training efficiency. In this paper, we try to
build a framework to improve the training efficiency through specifying an
appropriate model for each type of images according to their texture charac-
teristics, and we propose MMSR, a multi-model super resolution framework. In
this framework, all input images are classified by an approach called TVAT
(Total Variance above the Threshold). Experimental results indicate that our
MMSR framework brings a 66.7% performance speedup on average without
influencing the accuracy of the results HR images. Moreover, MMSR frame-
work exhibits good scalability.

Keywords: Super resolution � Multi-model � General framework �
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1 Introduction

Super Resolution (SR) technique is used to recover a super-resolution1 image from a
single (or a series of) low-resolution image(s). This technique has been widely used in
the fields including remote sensing, video, medicine and public security, etc. In recent
years, with the wide application of deep learning, more and more researches focus on
the study of single image super resolution (SISR).

Since SRCNN [1] is proposed by Dong et al., deep convolution neural work has
been the basis of other researches of super resolution. This work starts the deep-
learning-based super resolution studies. VDSR [4] is also a revolutionary model in the
development of super resolution, in which the residual block is firstly proposed and

1 To distinguish between the output images and the reference images, the output images are called SR
(Super-Resolution) images and the reference images are called HR (High-Resolution) images in this
paper.
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used in a deep network. SRGAN [8], proposed by Christian Ledig et al., makes use of
the generative adversarial network (GAN) [13] in super resolution for the first time.

There are still several problems and challenges in current super resolution studies.
Firstly, researchers usually use the same model to train and reconstruct all the images,
and they do not pay any attention to the differences of images features. For example,
some images are smooth while other images have more textures. In general, for images
with relatively simple texture features, a simple network model is enough to obtain
satisfactory results, with a relatively short time overhead. Therefore, using the same
model to train all the images will usually increase the time overheads and waste some
computation resources. Secondly, researchers pay all their attentions on the quality of
the result SR images, and they usually ignore the training or reconstruction efficiency.
In fact, in particular scenarios, the efficiency is significant as well, such as scenarios
having high real-time requirements. Thirdly, there is not a satisfactory criterion that can
totally fit how the human eyes feel. MSE-based criteria usually make the output images
too smooth, their visual results are usually not as good as expected.

In this paper, we focused on how to solve the first two problems. We found that
images in the training dataset usually have different texture features. Some images have
simple textures and others have complex textures. And we found that for images with
different texture features, the most appropriate models are usually different. According
to these observations, we proposed a multi-model super resolution (MMSR) framework.
MMSR can choose a suitable network model for each image for training. MMSR
shortens the training time efficiently without decreasing the quality of reconstruction
image. We implement a MMSR framework based on SRGAN [8], and experimental
results indicate that using DIV_2K as the training set, MMSR can reduce 40% training
time on average. Moreover, the MMSR framework shows good stability. The main
contributions of this paper are as follows:

(1) We proposed MMSR, a multi-model super resolution framework. This framework
can choose a suitable model according to the texture characteristics of the input
images. Therefore, it can improve the training efficiency without influencing the
quality of the output SR images.

(2) We proposed TVAT (Total Variance above the Threshold), a method to classify
the training images. This approach can be used to describe the complexity of the
image texture, and it does not introduce extra computational overheads. More-
over, since points with low pixel variations have almost no effect on the calcu-
lation of image texture, they could be removed to improve the accuracy of
classification.

The rest of this paper is organized as follows. Section 2 lists some related works.
Section 3 introduces our MMSR framework and the image classification method in
detail. In Sect. 4, the performance of MMSR is evaluated and experimental results are
given. And finally, in Sect. 5, some conclusions are given.
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2 Related Works

In recent years, deep learning has been applied in many areas of image processing and
analyzing, including super resolution [1–9]. Reference [1] is a pioneer work that
brought super resolution into the deep learning area, in which the authors proposed a
simple three-layer convolutional neural network called SRCNN and each layer
sequentially deals with feature extraction, non-linear mapping, and reconstruction. The
input of SRCNN uses an extra bicubic interpolation to enlarge the resolution of image.
But this approach lacks enough high-frequency information and introduces some extra
computations. Their later work, FSRCNN [2], removes the bicubic process and adds a
deconvolution layer for reconstruction. VDSR [4] is another revolutionary work in the
development of super resolution techniques, because the residual blocks are first used
in its deep network. Almost all the successive researches on super resolution use
residual blocks in their network models. SRGAN [8], proposed by Christian Ledig
et al., makes use of (GAN) in super resolution for the first time.

Before the GAN network is used to solve the super resolution problem, the mean
square error is often used as a loss function when training the network. Although a high
peak signal-to-noise ratio can be obtained in this way, the reconstructed images lose
some high-frequency details, which makes people hardly have a good visual experi-
ence. Figure 1 [8] describes the whole process of SRGAN, which consists of a gen-
eration phase using the Generator Network and an adversary phase using the
Discriminator Network. In the last layer of the discriminator network, SRGAN uses
perceptual loss to guarantee the quality of the output images. Perceptual loss describes
the differences between the generated SR images and the reference HR images. If the
perceptual loss of a SR image is larger than the threshold, the SR image will be
regenerated.

Most current super resolution approaches using deep learning techniques focus on
the optimization of network models as well as the quality of the output SR images.

Fig. 1. Architecture of SRGAN with kernel sizes (k), numbers of feature maps (n) and stride
(s) specified for each convolutional layer [8].
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They did not care much about the efficiency of training, which may cause great waste
of computation resources. Therefore, we propose a multi-model SR framework to
improve the efficiency of training. Our framework is based on SRGAN, because it is a
widely used in current super resolution studies and its reconstruction effect is better
than other models.

Another problem concerned by researchers is how to evaluate the quality of output
SR images. There are generally two categories of metrics. The first one describes the
quality in terms of pixel features, such as MSE (Mean Square Error), PSNR (Peak-
Signal to Noise Ratio), SSIM (Structure Similarity), etc. However, under the guidance
of such metrics, the texture features of images are usually ignored and the output
images tend to be too smooth or too fuzzy. The other one is based on the visual effect of
human eyes, such as NIQE (Natural Image Quality Evaluator) [10] and PI (perceptual
index). Sometimes the output images are shown and judged by the naked eyes.
Obviously, the sharper and the more natural an image is, the better NIQE or PI value it
can gets. In recent researches on super resolution, the second category of metrics
gradually become the mainstream choice. Therefore, in this paper, we choose PI as the
image quality metric. The PI value is calculated using the NIQE method [10].

3 MMSR Framework

In this section, we will first introduce our MMSR framework. The MMSR is composed
of a training module and a reconstruction module. The training module trains the
models with a train image set and the reconstruction module recovery the LR images to
SR images. MMSR has good versatility and different deep learning network models
can be integrated into this framework. Then, we will introduce the image classification
method, the structure of the multi-model training module and the design of the
reconstruction layer in turn.

3.1 Framework Overview

The first part of MMSR is the training module, which is shown in Fig. 2. It consists of
two stages, a classification stage and a multi-model training stage. The classification
stage divides the images into different categories according to their texture features.
The multi-model training stage chooses an appropriate network model for each cate-
gory of images and the classified images will enter the corresponding module for
training. Using the classification module to classify the images can make the training
process more targeted, and also improve the efficiency of training. The main difference
among these network models is mainly that they use different parameters, such as the
number of residual blocks in generator and the number of layers in discriminator.

The second part of MMSR is the reconstruction framework, which is shown in
Fig. 3. It consists of four main parts, i.e. the segmentation layer, the classification
module, the multi-model training module and the reconstruction module. The classi-
fication module and the multi-model training module are the same as those in Fig. 2.
The segmentation layer is used to divide the input LR images to be reconstructed into a
group of fragments. Then, these fragments enter the classification module and are
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classified according to their texture features. After the classification (and network
model assignment), these fragments will enter the corresponding modules for recon-
struction. And finally, the reconstructed fragments are assembled by the reconstruction
layer into a complete SR image.

3.2 Image Classification

In general, different images have different texture features. At present, most of the
deep-learning-based SR approaches do not take the influence of the characteristics of
the image on the training or the reconstruction process into account. This paper pro-
poses a classification method to divide the images into several categories based on their
texture features with low time overheads.

3.2.1 Total Variance Above the Threshold
We tested some images in order to observe the training methods of different fragments
and the features hidden in them. We found that for most images, the more complex the
texture of an image is, the longer the training time it requires. Therefore, we try to
propose a suitable method to describe the texture feature of an image. The simplest way
to describe the texture complexity is usually based on the variance of the whole image.
However, we have found that this method does not work well, because the variance of
some images with relatively uniform texture is large, although the variance of each
point is relatively small. We found the training of these images does not require a very
deep network model, but the method to assign the network models to image categories
requires some training. Therefore, we consider using an innovative method to describe
the variance of the pixel variation between each pixel and its 8 neighbor pixels, as
shown in Fig. 4. In this paper, it is called the variance of single pixel (VSP). All VSPs
in an image larger than a threshold are added together to obtain the total variance above
the threshold (TVAT). The threshold is chosen through tests. We set the threshold to all

Fig. 2. The architecture of training module.

Fig. 3. The architecture of reconstruction module.

MMSR: A Multi-model Super Resolution Framework 201



integers in 0–25 to test the classification effect. We find that when the threshold is set to
5, we can get the best effect, so we choose to set the threshold to 5.

The VSP value of the i-th pixel can be calculated as follows.

VSPi ¼
X8

j¼1
Ri;Gi;Bið Þ � Rj;Gj;Bjð Þð Þ2 ð1Þ

The TVAT value of the whole fragment can be calculated as follows.

TVAT ¼
Xn

i¼1
VSPi � judgeindexi

� �
= cols � rowsð Þ ð2Þ

Here cols and rows represent the number of columns and rows of the fragment
respectively, and judgeindexi is a step function, which is calculated as follows:

judge indexi ¼ 0; VSPi\threshold
1; VSPi � threshold

�
ð3Þ

3.2.2 TVAT Values
In this work, TVAT values are used to guide the image classification. In Table 1, X-Y
means the GAN model has X residual blocks in generator and Y layers in discriminator.
For example, 16-8 means that the GAN model has 16 residual blocks in generator and 8
layers in discriminator. We can find that for most images, the larger the TVAT value is,
the more complicated an image is. However, when the depth of the network increases,
the results do not always get better.

We randomly selected 80 image fragments from DIV_2K image set to test the
recovery quality of these images in different models. We calculated the TVAT of
images and found the following observations, as shown in Fig. 5: when the value of
TVAT is relatively small (i.e. between 0 and 2), a 4-6 model can get the best per-
formance. When the TVAT value is between 2 and 4, the 2-2 and 16-8 models have
better performance. When the value of TVAT is large than 4, the 4-2 and 16-8 models
perform best. Therefore, in this paper we classify images according to their TVAT
values.

Fig. 4. The VSP of a pixel in the 3 � 3 Neighborhood.
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3.3 Multi-model Training Module

After image classification, we need to use different models to train each class of
images, as shown in Fig. 6. We deploy different training models on different GPU
nodes. These models may be completely different kinds of deep learning network
models, or the same kind of models with different depths. This paper chooses the
second way because no matter for simple texture images or complex images, the
recovery quality of SRGAN is better than previous works.

Table 1. The relationship between TVAT and the number of residual blocks in generator and
the number of layers in discriminator in GAN.

Image number TVAT Perceptual index
2-2 4-2 4-6 8-6 16-8 Best

1 0.22316 10.7709 10.7093 8.9474 10.6772 13.4531 4-6
2 0.14125 10.7286 10.2412 9.8015 10.6265 11.0304 4-6
3 5.84019 6.8456 6.7848 6.9019 6.8478 6.4810 16-8
4 0.36391 14.9585 10.4451 14.3677 12.9602 11.1268 4-2
5 1.46280 7.0466 6.9128 7.6555 7.4745 7.7626 4-2
6 4.54511 5.8232 5.7170 6.0661 5.4763 5.3578 16-8
7 4.15810 6.4053 6.4270 6.8263 6.4317 6.6969 2-2
8 2.50022 6.8408 6.9172 6.8703 6.7201 7.0015 8-6
9 0.05513 12.8878 9.0682 14.9559 12.1362 14.2192 4-2
10 3.30724 6.6211 6.2182 6.9568 6.1581 6.1914 16-8
11 3.01382 7.2778 6.9914 6.6588 6.6947 6.5318 16-8
12 0.06423 11.7144 10.3977 10.3883 11.1998 11.4946 4-6
13 4.39549 6.6559 6.5765 6.7881 6.6619 5.8498 16-8
14 0.27429 11.2172 10.5885 9.8657 12.9558 10.6933 4-6
15 0.32317 9.6611 9.0914 8.961 9.6730 9.5313 4-6
16 5.95909 7.7423 7.5606 7.6745 7.7127 7.1994 16-8

Fig. 5. Different network models are suitable for different TVAT values
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3.4 Reconstruction Layer

As shown in Fig. 7, the reconstruction layer is used to recovery fragments into a
complete SR image. Since different fragments will enter different models for training
after an image is segmented, the recovery time of a set of images maybe different. After
all the fragments reach the reconstruction module, the reconstruction module combines
them into a complete SR image.

At the same time, some edge effects may be generated during the process of
assembling the fragments into a complete image. As shown in Fig. 8, some overlapped
image fragments are combined in the reconstruction module and the overlapping
reduces edge effects. In our framework, the size of the overlap part can be adjusted
according to users’ requirements to ensure that the edge effects can be eliminated as
possible.

Fig. 6. Image fragments are input into different models based on their texture features.

Fig. 7. The recovered fragments are combined into a complete SR image.

Fig. 8. The overlapped fragments are combined into a complete SR image.
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4 Experiment Results

4.1 Environment Setup

We construct a cluster which consists of 4 CPU-GPU heterogeneous nodes to evaluate
the performance and scalability of our MMSR framework. The main system parameters
of each node are listed in Table 2.

In this work, DIV_2K image set is used as both train set and test set. As a widely
used image quality metric, the perceptual index (PI) value is used by us to compare
different SR frameworks or models. The PI value can be calculated using following
formula:

Preceptual index ¼ 12 10�Mað ÞþNIQEð Þ ð4Þ

In formula (4), NIQE (Natural Image Quality Evaluator) is based on the con-
struction of a “quality aware” collection of statistical features based on a simple and
successful space domain natural scene statistic (NSS) model. And Ma is an effective
and efficient metric to assess the quality of super-resolution images based on human
perception, it uses three types of low-level statistical features in both spatial and
frequency domains to quantify super-resolved artifacts, and learn a two-stage regres-
sion model to predict the quality scores of super-resolution images. Figure 9 shows that
a lower perceptual index indicates better perceptual quality. We can see that mathe-
matically that distortion and perceptual quality are at odds with each other [10–12].

Table 2. System parameters of each computation node.

HW/SW module Description

CPU Intel® Xeon® E5-2660 v3 @2.6 GHz x 2
GPU NVIDIA Tesla K80 x 2
Memory 64 GB
OS Linux CentOS 7.4
Development Environment Anaconda 3, Pytorch 1.0

Fig. 9. The relationship between perceptual quality and distortion of images
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The advantage of PI value is that different from the traditional image quality
metrics. It can better match the senses of the human eye. Moreover, the GAN model
itself tries to improve the sensory level of SR images. Therefore, using PI value as the
metric can directly reflect the advantages of our MMSR framework.

4.2 Experiment Details

Since we need to classify the images into different parametric models for learning, we
tested the training under different parameters, using the SRGAN model. Firstly, we
input different texture complexity images into different models for training. We noticed
that different types of images have different training effects under different model. In
other words, in a limited training time, the training effect and the depth of the model are
not necessarily positively correlated.

We choose the Python language to implement the framework. The classification
module can divide the image into suitable block. In this experiment, we divide images
into three types according to the TVAT value, and the images are sent to different GPU
nodes to train. Finally, the whole image is merged into SR image. Our training time is
shortened compared with 16-8 SRGAN [8] (i.e. standard SRGAN). The reconstruction
effect of model trained by MMSR will not reduce obviously for most of the pictures,
and the reconstruction effect of some pictures even increase. The training time of these
three methods are listed in Table 3.

We trained all networks on PyTorch [14–16], which is an open source Python
machine learning library based on Torch, used in the field of artificial intelligence. It
can be seen the acceleration ratio of MMSR is about 1.62 on one GPU node. And when
we use three GPU nodes for acceleration, the acceleration ratio of MMSR is about 2.9.

Figure 10 compares the reconstruction quality of MMSR with other methods. The
smaller the value of PI is, the better the visual perception of the result image is, so we
can find that the effect of the bicubic method is relatively poor, and the reconstruction
effect of MMSR is not much different from that of SRGAN, and even achieves better
results for some images (such as 4, 9 and 13).

Table 3. Training time of different methods.

Method Training time (s) Average time (s)

SRGAN (one GPU node) 16415.600
17680.502
17417.912

17171.338

MMSR (one GPU node) 10683.279
10592.480
10598.944

10624.901

MMSR (three GPU nodes) 5921.761
5872.322
5890.451

5894.845
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5 Conclusions

This paper proposes MMSR, a general multi-model framework for super-resolution
image reconstruction. The highlight of our work is to build a general-purpose frame-
work to improve the training or reconstruction efficiency of SR. To implement this
framework, we propose a classification method based on experiments (TVAT) to
classify the training set. This classification method can divide images into several
categories according to their texture characteristics, and we input the images into the
most suitable model to train. Experimental results show that the proposed framework is
efficient to train the models and do not have too much impact on the training effect.
Moreover, because we can use different models in MMSR, our framework has wide
applicability.

References

1. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image
super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10593-2_13

2. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural
network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol.
9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

3. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In: CVPR (2016)

4. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-
resolution. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 3(6), 8 (2016)

5. Mao, X.-J., Shen, C., Yang, Y.-B.: Image restoration using convolutional auto-encoders with
symmetric skip connections. In: The Annual Conference on Neural Information Processing
Systems (NIPS), August 2016

6. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

Fig. 10. The comparison of reconstruction quality of different approaches.

MMSR: A Multi-model Super Resolution Framework 207

http://dx.doi.org/10.1007/978-3-319-10593-2_13
http://dx.doi.org/10.1007/978-3-319-10593-2_13
http://dx.doi.org/10.1007/978-3-319-46475-6_25


7. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In:
IEEE International Conference on Computer Vision (ICCV) (2017)

8. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial
network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

9. Wang, X., Yu, K., Dong, C., Change Loy, C.: Recovering realistic texture in image super-
resolution by deep spatial feature transform. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)

10. The Pirm Challenge on Perceptual Super Resolution. https://www.pirm2018.org/PIRM-SR.
html

11. Blau, Y., Michaeli, T.: The Perception-distortion tradeoff. In: ECCV 2018
12. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P: Image Quality Assessment: From

Error Visibility to Structural Similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information

Processing Systems (NIPS), pp. 2672–2680, March 2014
14. Yegulalp, S.: Facebook brings GPU-powered machine learning to Python. InfoWorld, 19

January 2017
15. Lorica, B.: Why AI and machine learning researchers are beginning to embrace PyTorch.

O’Reilly Media, 3 August 2017
16. Ketkar, N.: Deep Learning with Python, pp. 195–208. Apress, Berkeley (2017)

208 N. Yuan et al.

https://www.pirm2018.org/PIRM-SR.html
https://www.pirm2018.org/PIRM-SR.html

	MMSR: A Multi-model Super Resolution Framework
	Abstract
	1 Introduction
	2 Related Works
	3 MMSR Framework
	3.1 Framework Overview
	3.2 Image Classification
	3.2.1 Total Variance Above the Threshold
	3.2.2 TVAT Values

	3.3 Multi-model Training Module
	3.4 Reconstruction Layer

	4 Experiment Results
	4.1 Environment Setup
	4.2 Experiment Details

	5 Conclusions
	References




