
Xiaoxin Tang · Quan Chen ·
Pradip Bose · Weiming Zheng ·
Jean-Luc Gaudiot (Eds.)

LN
CS

 1
17

83

16th IFIP WG 10.3 International Conference, NPC 2019
Hohhot, China, August 23–24, 2019
Proceedings

Network and
Parallel Computing

Lecture Notes in Computer Science 11783

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Xiaoxin Tang • Quan Chen • Pradip Bose •

Weiming Zheng • Jean-Luc Gaudiot (Eds.)

Network and
Parallel Computing
16th IFIP WG 10.3 International Conference, NPC 2019
Hohhot, China, August 23–24, 2019
Proceedings

123

Editors
Xiaoxin Tang
Shanghai University of Finance
and Economics
Shanghai, China

Quan Chen
Shanghai Jiao Tong University
Shanghai, China

Pradip Bose
IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

Weiming Zheng
Tsinghua University
Beijing, China

Jean-Luc Gaudiot
University of California
Irvine, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-30708-0 ISBN 978-3-030-30709-7 (eBook)
https://doi.org/10.1007/978-3-030-30709-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© IFIP International Federation for Information Processing 2019, corrected publication 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-30709-7

Preface

These proceedings contain the papers presented at the 2019 IFIP International Con-
ference on Network and Parallel Computing (NPC 2019), held in Hohhot, Inner
Mongolia, China, from August 23–24, 2019. The goal of the conference is to establish
an international forum for engineers and scientists to present their ideas and experi-
ences in network and parallel computing.

A total of 107 submissions were received in response to our call for papers. These
papers originate from Australia, Asia (China, Japan), Europe, and North America
(USA). Each submission was sent to at least three reviewers. Each paper was judged
according to its originality, innovation, readability, and relevance to the expected
audience. Based on the reviews received, 36 full papers (about 33%), including
8 papers published as Special Issue papers of the International Journal of Parallel
Programming, 5 papers published as Speicial Issue papers of Tsinghua Science and
Technology, and 23 papers published as LNCS proceedings were retained. A number
of strong papers that could not be accepted to the full-paper track were considered for
the short-paper tracks. Finally, we selected 14 short papers. These papers cover
traditional areas of network and parallel computing, including parallel applications,
distributed algorithms, parallel architectures, software environments, and distributed
tools.

We share the view that, during the past decade, the tools and cultures of
high-performance computing and big data analytics are diverging to the detriment of
both, and the international community should find a unified path that can best serve the
need of a broad spectrum of major application areas. Unlike other tools, which are
limited to particular scientific domains, computational modeling and data analytics are
applicable to all areas of science and engineering, as they breathe life into the
underlying mathematics of scientific models.

We sincerely appreciate the work and effort of the authors in preparing their
submissions for review, and addressing the reviewers’ comments before submitting the
camera-ready copies of their accepted papers, and attending the conference to present
and discuss their work. We also want to thank every member of the NPC 2019
Organizing Committee and Steering Committee for their help in putting together such
an exciting program. Finally, we thank all the attendees.

August 2019 Xiaoxin Tang
Quan Chen
Pradip Bose

Weiming Zheng
Jean-Luc Gaudiot

Organization

Organizing Committee

General Co-chairs

Jean-Luc Gaudiot University of California Irvine, USA
Weiming Zheng Tsinghua University, China

Program Co-chairs

Pradip Bose IBM T.J. Watson Research Center, USA
Quan Chen Shanghai Jiao Tong University, China

Publications Chair

Xiaoxin Tang Shanghai University of Finance and Economics, China

Publicity Chairs

Takatsugu Ono Kyushu University, Japan
Stéphane Zuckerman Université de Cergy-Pontoise, France
Karthik V. Swaminathan IBM T.J. Watson Research Center, USA

Web Chair

Zijun Li Shanghai Jiao Tong University, China

Advisory Committee

Steering Committee

Kemal Ebcioglu (Chair) Global Supercomputing, USA
Hai Jin (Vice Chair) Huazhong University of Science and Technology,

China
Chen Ding University of Rochester, USA
Jack Dongarra University of Tennessee, USA
Guang R. Gao University of Delaware, USA
Zhiwei Xu Institute of Computing Technology, China
Tony Hey Science and Technology Facilities Council, UK
Guojie Li Institute of Computing Technology, China
Yoichi Muraoka Waseda University, Japan
Viktor Prasanna University of Southern California, USA
Daniel Reed University of Iowa, USA
Weisong Shi Wayne State University, USA
Ninghui Sun Institute of Computing Technology, China

Program Committee

Jidong Zhai Tsinghua University, China
Feng Zhang Renmin University of China, China
Guoyang Chen Alibaba Group US Inc., USA
Dezun Dong National University of Defense Technology, China
Kejiang Ye SIAT, Chinese Academy of Sciences, China
Yunlan Wang Northwestern Polytechnical University, China
Shanjiang Tang Nanyang Technological University, Singapore
Zheng Wang Lancaster University, UK
Dingwen Tao The University of Alabama, USA
Li Shen National University of Defense Technology, China
Lin Gu Huazhong University of Science and Technology,

China
Zhibin Yu Shenzhen Institute of Advanced Technology, China
Yungang Bao Institute of Computing Technology (ICT), CAS, China
Zhijia Zhao University of California Riverside, USA
Stéphane Zuckerman ETIS Laboratory, France
Weihua Zhang Fudan University, China
Dejun Jiang Institute of Computing Technology, CAS, China
Wenli Zheng Shanghai Jiao Tong University, China
Deze Zeng The University of Aizu, Japan
Jingwen Leng Shanghai Jiao Tong University, China
Chao Li Shanghai Jiao Tong University, China
Yu Hua Huazhong University of Science and Technology,

China
Xiaochun Ye Institute of Computing Technology, CAS, China
Hailong Yang Beihang University, China
Guangzhong Sun University of Science and Technology of China, China
Lei Wang National University of Defense Technology, China
Shuang Song The University of Texas at Austin, USA
Shengli Pan China University of Geosciencs, China
Huimin Cui Institute of Computing Technology, CAS, China
Xuanhua Shi Huazhong University of Science and Technology,

China
Muzhou Xiong China University of Geosciences, China
Ang Li Pacific Northwest National Lab, USA
Di Wu Sun Yat-Sen University, China
Amelie Chi Zhou Shenzhen University, China
Parimala Thulasiram University of Manitoba, Canada
Bin Ren Pacific Northwest National Laboratory, USA
Dong Li University of California, Merced, USA
Chuliang Weng Huawei Shannon Lab, China
Yingwei Luo Peking University, China
Songwen Pei University of Shanghai for Science and Technology,

China

viii Organization

Tao Zhang Shanghai University, China
Bo Wu Colorado School of Mines, USA
Keiji Kimura Waseda University, Japan

Organization ix

Contents

Graph Computing

GraphScSh: Efficient I/O Scheduling and Graph Sharing
for Concurrent Graph Processing. 3

Shang Liu, Zhan Shi, Dan Feng, Shuo Chen, Fang Wang,
and Yamei Peng

Game-Based Multi-MD with QoS Computation Offloading for Mobile
Edge Computing of Limited Computation Capacity 16

Junyan Hu, Chubo Liu, Kenli Li, and Keqin Li

NOC and Networks

KLSAT: An Application Mapping Algorithm Based on Kernighan–Lin
Partition and Simulated Annealing for a Specific WK-Recursive
NoC Architecture . 31

XiaoJun Wang, Feng Shi, and Hong Zhang

Modeling and Analysis of the Latency-Based Congestion Control
Algorithm DX . 43

Wanchun Jiang, Lijuan Peng, Chang Ruan, Jia Wu, and Jianxin Wang

Distributed Quality-Aware Resource Allocation for Video Transmission
in Wireless Networks. 56

Chao He, Zhidong Xie, and Chang Tian

Neural Networks

PRTSM: Hardware Data Arrangement Mechanisms for Convolutional
Layer Computation on the Systolic Array. 69

Shuquan Wang, Lei Wang, Shiming Li, Tian Shuo, Shasha Guo,
Ziyang Kang, Shuzheng Zhang, and Weixia Xu

PParabel: Parallel Partitioned Label Trees for Extreme Classification 82
Jiaqi Lu, Jun Zheng, and Wenxin Hu

Statistical Analysis and Prediction of Parking Behavior 93
Ningxuan Feng, Feng Zhang, Jiazao Lin, Jidong Zhai, and Xiaoyong Du

Big Data+Cloud

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 107
Yang Song, Yunchun Li, Shuhan Wu, Hailong Yang, and Wei Li

BGElasor: Elastic-Scaling Framework for Distributed Streaming Processing
with Deep Neural Network. 120

Weimin Mu, Zongze Jin, Junwei Wang, Weilin Zhu, and Weiping Wang

High Performance DDoS Attack Detection System Based
on Distribution Statistics . 132

Xia Xie, Jinpeng Li, Xiaoyang Hu, Hai Jin, Hanhua Chen, Xiaojing Ma,
and Hong Huang

DDP-B: A Distributed Dynamic Parallel Framework for Meta-genomics
Binary Similarity. 143

Mengxian Chi, Xu Jin, Feng Li, and Hong An

Optimal Resource Allocation Through Joint VM Selection and Placement
in Private Clouds . 156

Hongkun Chen, Feilong Tang, Linghe Kong, Wenchao Xu,
Xingjun Zhang, and Yanqin Yang

A Parallel Multi-keyword Top-k Search Scheme over Encrypted
Cloud Data. 169

Maohu Yang, Hua Dai, Jingjing Bao, Xun Yi, and Geng Yang

N-Docker: A NVM-HDD Hybrid Docker Storage Framework to Improve
Docker Performance . 182

Lin Gu, Qizhi Tang, Song Wu, Hai Jin, Yingxi Zhang, Guoqiang Shi,
Tingyu Lin, and Jia Rao

HPC

MMSR: A Multi-model Super Resolution Framework 197
Ninghui Yuan, Zhihao Zhu, Xinzhou Wu, and Li Shen

HiPower: A High-Performance RDMA Acceleration Solution
for Distributed Transaction Processing . 209

Runhua Zhang, Yang Cheng, Jinkun Geng, Shuai Wang, Kaihui Gao,
and Guowei Shen

Emerging Topics

LDAPRoam: A Generic Solution for Both Web-Based
and Non-Web-Based Federate Access . 225

Qi Feng and Wei Peng

xii Contents

Characterizing Perception Module Performance and Robustness
in Production-Scale Autonomous Driving System . 235

Alessandro Toschi, Mustafa Sanic, Jingwen Leng, Quan Chen,
Chunlin Wang, and Minyi Guo

Memory and File System

Spindle: A Write-Optimized NVM Cache for Journaling File System 251
Ge Yan, Kaixin Huang, and Linpeng Huang

Two-Erasure Codes from 3-Plexes. 264
Liping Yi, Rebecca J. Stones, and Gang Wang

Deep Fusion: A Software Scheduling Method for Memory Access
Optimization. 277

Yimin Zhuang, Shaohui Peng, Xiaobing Chen, Shengyuan Zhou,
Tian Zhi, Wei Li, and Shaoli Liu

Optimizing Data Placement on Hierarchical Storage Architecture
via Machine Learning . 289

Peng Cheng, Yutong Lu, Yunfei Du, Zhiguang Chen, and Yang Liu

Short Papers

I/O Optimizations Based on Workload Characteristics for Parallel
File Systems. 305

Bing Wei, Limin Xiao, Bingyu Zhou, Guangjun Qin, Baicheng Yan,
and Zhisheng Huo

Energy Consumption of IT System in Cloud Data Center: Architecture,
Factors and Prediction . 311

Haowei Lin, Xiaolong Xu, and Xinheng Wang

Efficient Processing of Convolutional Neural Networks on SW26010 316
Yi Zhang, Bing Shu, Yan Yin, Yawei Zhou, Shaodi Li, and Junmin Wu

ADMMLIB: A Library of Communication-Efficient AD-ADMM
for Distributed Machine Learning . 322

Jinyang Xie and Yongmei Lei

Energy-Aware Resource Scheduling with Fault-Tolerance
in Edge Computing . 327

Yanfen Xue, Guisheng Fan, Huiqun Yu, and Huaiying Sun

DIN: A Bio-Inspired Distributed Intelligence Networking. 333
Yufeng Li, Yankang Du, Chenhong Cao, and Han Qiu

Contents xiii

A DAG Refactor Based Automatic Execution Optimization Mechanism
for Spark . 338

Hang Zhao, Yu Rao, Donghua Li, Jie Tang, and Shaoshan Liu

BTS: Balanced Task Scheduling Strategy Based on Multi-resource
Prediction and Allocation in Cloud Environment. 345

Yongzhong Sun, Kejiang Ye, Wenbo Wang, and Cheng-Zhong Xu

DAFL: Deep Adaptive Feature Learning for Network Anomaly Detection . . . 350
Shujian Ji, Tongzheng Sun, Kejiang Ye, Wenbo Wang,
and Cheng-Zhong Xu

SIRM: Shift Insensitive Racetrack Main Memory . 355
Hongbin Zhang, Bo Wei, Youyou Lu, and Jiwu Shu

PDRM: A Probability Distribution Based Resource Management
for Batch Workloads in Heterogeneous Cluster . 361

Jun Zhou, Dan Feng, and Fang Wang

Collaborating CPUs and MICs for Large-Scale LBM Multiphase
Flow Simulations . 366

Chuanfu Xu, Xi Wang, Dali Li, Yonggang Che, and Zhenghua Wang

Multiple Algorithms Against Multiple Hardware Architectures:
Data-Driven Exploration on Deep Convolution Neural Network 371

Chongyang Xu, Zhongzhi Luan, Lan Gao, Rui Wang, Han Zhang,
Lianyi Zhang, Yi Liu, and Depei Qian

A Parallel Retinex Image Enhancement Algorithm Based on OpenMP. 376
Shixiong Cheng, Bin Liu, Dongjian He, Jinrong He, Yuancheng Li,
and Yanning Du

Correction to: Efficient Processing of Convolutional Neural Networks
on SW26010 . C1

Yi Zhang, Bing Shu, Yan Yin, Yawei Zhou, Shaodi Li, and Junmin Wu

Author Index . 383

xiv Contents

Graph Computing

GraphScSh: Efficient I/O Scheduling
and Graph Sharing for Concurrent

Graph Processing

Shang Liu1, Zhan Shi1(B) , Dan Feng1, Shuo Chen1, Fang Wang1,
and Yamei Peng2

1 Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan, China

{upup,zshi,dfeng,shuochen,wangfang}@hust.edu.cn
2 Didi, Inc., Beijing, China

1014280613@qq.com

Abstract. With the increasing need for analyzing graph data, graph
systems have to efficiently deal with concurrent graph processing (CGP)
jobs. However, existing platforms are inherently designed for a single
job, they incur the high cost when CGP jobs are executed. In this
work, we observed that existing systems do not allow CGP jobs to share
graph structure data of each iteration, introducing redundant accesses to
same graph. Moreover, all the graphs are real-world graphs with highly
skewed power-law degree distributions. The gain from extending multiple
external storage devices is diminishing rapidly, which needs reasonable
schedulings to balance I/O pressure into each storage. Following this
direction, we propose GraphScSh that handles CGP jobs efficiently on
a single machine, which focuses on reducing I/O conflict and sharing
graph structure data among CGP jobs. We apply a CGP balanced par-
tition method to break graphs into multiple partitions that are stored in
multiple external storage devices. Additionally, we present a CGP I/O
scheduling method, so that I/O conflict can be reduced and graph data
can be shared among multiple jobs. We have implemented GraphScSh in
C++ and the experiment shows that GraphScSh outperforms existing
out-of-core systems by up to 82%.

Keywords: Graph processing · CGP jobs · Graph sharing ·
I/O scheduling

1 Introduction

In the past decade, graph analysis has become important in a large variety
of domains. Due to the increasing need to analyze graph structure data, it is
common that Concurrent Graph Processing (CGP) jobs are executed on same
processing platforms, in order to acquire different information from same graphs.
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-30709-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_1&domain=pdf
http://orcid.org/0000-0002-7798-1121
https://doi.org/10.1007/978-3-030-30709-7_1

4 S. Liu et al.

Fig. 1. The number of CGP jobs.

Fig. 2. The utilization of map apps.

For example, Facebook uses Apache Giraph [6] to execute various graph algo-
rithms, such as the variants of PageRank [12], SSSP [10], etc. Figure 1 depicts
the number of CGP jobs over a large Chinese social network [17]. The stable
distribution shows that more than 83.4% of the time has at least two CGP jobs
executed simultaneously. At the peak time, over 20 CGP jobs are submitted to
the same platform. Also, Fig. 2 shows the usage of Chinese map Apps in a week
of 2017. We can observe that each map App is used by each user more than
five times within a week. Particularly, Amap App [2] ranks the first and handles
over 10 billion route plannings every week, that is to say, it is used more than
60 thousand times per minute on average.

The existing processing systems can process a single graph job efficiently.
They improve the efficiency either by fully utilizing the sequential usage of mem-
ory bandwidth, or by achieving a better data locality and less redundant data
accesses, like GraphChi [8], X-Stream [13], GridGraph [20] and Graphene [9],
PreEdge [11], etc. However, these systems are usually designed for a single graph
processing job, which are much more inefficient when executing multiple CGP
jobs. The inefficiencies include I/O conflict and repeated access to same graph
structure data.

GraphScSh 5

Fig. 3. Power-law degree distribution.

I/O Conflict: When multiple CGP jobs are executed over same graph, it is
commonplace that these jobs visit same partition data, resulting in I/O conflict
among multiple jobs. Fortunately, extending multiple external storage devices is
possible to reduce this conflict, which can distribute multiple I/O of CGP jobs to
multiple external storage devices. However, graphs derived from real-world phe-
nomena, like social networks and the web, typically have highly skewed power-
law degree distributions [1], which implies that a small subset of vertices connects
to a large fraction of the graph. Figure 3 depicts the pow-degree distribution of
graph from LiveJournal [14], which is a free online community with almost 10
million members. The highly skewed characteristic of graph challenges the above
assumption and make it more difficult. Although using multiple storage devices
reduces I/O conflict, this conflict is still the bottleneck of overall performance.

Data Access Problems: Graph processing jobs are usually operated on two
types of data [9]: graph structure data and graph state data. The graph structure
data mainly consists of vertices, edges, and the information associated with each
edge. The graph state data, such as ranking scores for PageRank, is computed
within each iteration and consumed in the next iteration. The graph structure
data usually occupies a large volume of the memory, whose proportions are
varying from 71% to 83% for different datasets [19]. However, existing graph
platforms do not allow CGP jobs to share the graph structure data in memory,
resulting in redundant access to the graph from external storage. Furthermore,
existing out-of-core systems leverage various mechanisms to utilize the sequential
usage of memory bandwidth and achieve a better data locality, such as PSW in
GraphChi, Edge-Centric in X-Stream and 2-level hierarchical partitioning in
GridGraph, etc. Unfortunately, CGP jobs destroy these optimized mechanisms
above, increasing overhead of randomized access significantly.

In this paper, we propose GraphScSh, a graph processing system based on
multiple external storage devices. Our design concentrates on reducing I/O con-
flict and sharing the graph structure data among CGP jobs. Specifically, the
graph structure data is divided into multiple external storage devices evenly by
CGP balanced partition method. The subgraph of each partition can match the

6 S. Liu et al.

size of memory well, which reduces the overhead of frequent swap operations.
Furthermore, we present a new CGP I/O scheduling method based on multiple
external storage and graph sharing, so that I/O conflict can be reduced and the
graph can be shared among multiple CGP jobs.

The system GraphScSh has been implemented in C++. To demonstrate the
efficiency of our solutions, we conducted extensive experiments with our system
GraphScSh and compared its performance with state-of-the-art systems Grid-
Graph over different combinations of CGP jobs. The experiments show that
overall performance of GraphScSh outperforms GridGraph by up to 82%.

The rest of this paper is organized as follows. The design details of GraphScSh
are presented in Sect. 2, including CGP balanced partition schema, and CGP I/O
scheduling method. Section 3 gives the specific implementation of our system
GraphScSh, followed by experimental evaluation in Sect. 4. We then describe
related work in Sect. 5 and conclude in Sect. 6.

2 Our Proposed Approach

To reduce the I/O conflict and the redundant access to graph efficiently, we
propose GraphScSh based on multiple external storage devices, which is designed
to reduce I/O conflict and share the graph structure data among CGP jobs.

2.1 CGP Balanced Partition

Partition 1 Partition 2 Partition 3 ... Partition n-1 Partition n

Vertex Set 1 Vertex Set 2 Vertex Set 3 Vertex Set
 n-1 Vertex Set n...

Edge Set 1 Edge Set 2 Edge Set 3 Edge Set
n-1 Edge Set n...

Fig. 4. Partitioning schema of GraphScSh.

The existing partitioning methods are usually designed for a single job. When
CGP jobs are executed, we cannot make sure that partitioning size of all jobs
match the size of memory, resulting in frequently swap-in and swap-out opera-
tions. We propose a new partitioning method to process CGP jobs, as shown in
Fig. 4.

The graph is divided into n partitions, and each partition includes a vertex
set and an edge set. Within a vertex set, the index id of vertices is continuous.
The edge set of a partition consists of all edges whose source vertex is in the
partition’s vertex set. When GraphScSh executes graph algorithms, each parti-
tion size depends on both memory configuration and number of CGP jobs, so

GraphScSh 7

that data of each vertex set can be fit into memory. Additionally, GraphScSh
leverages multiple external devices to store the graph data. For the load bal-
ance, different partitions are stored in multiple storage devices and the number
of edges for each partition is same. The position disk id of each partition in
multiple external storage can be described as,

disk id = partition id%disk num (1)

where partition id is the id of graph partition, disk num is the number of exter-
nal storage.

2.2 CGP I/O Scheduling

Based on the above partitioning method, we break graph structure data into
multiple partitions evenly which are stored in multiple external storage devices.
To reduce the I/O conflict and share the graph among CGP jobs, we propose
a CGP I/O scheduling method based on CGP Balanced Partition method. The
scheduling method includes two strategies for load balance and graph sharing.

First, we count the total number of jobs in each external storage and select
one external storage that has the fewest jobs as the target, for loading balance.
During execution of CGP jobs, system records partition id that each job visits.
The position of graph partition is computed according to the mapping between
partitions and the external storage. For example, there are n jobs executed, where
m jobs visit the first external storage for graph, and (n− 1 −m) jobs access the
second external storage. If m > (n− 1)/2, the second one will be selected as the
target, otherwise the first will be targeted. Assume that the number of external
storage is k, where the number of jobs is n− 1, n− 2, ..., n− k, the storage with
the fewest jobs will be targeted.

Second, we leverage synchronous field to reduce total number of I/O as much
as possible to share the same graph, as Fig. 5 shows. The sync field mainly
records information about the mapping from graphs to memory, including map-
ping address mmap addr [18], the number edge num of edges, and the descriptor
fd of file. In addition, the field must include the total number unit num of jobs
and determines whether to remove the mapping of partition according to it.
Specifically, according to unit num, the system decides if partition data has
been mapped into the memory according to the sync field. If unit num = 0,
the partition is not visited by jobs and should be filled into memory through
mapping. Otherwise, the partition has been loaded into memory by other jobs,
and the current job visits partition by the address of field.

unit_num mmap_addr edge_num fd

Fig. 5. Sync field of graph.

8 S. Liu et al.

The specific process of CGP I/O scheduling method includes several steps.
Suppose that the number of the external storage is k, the concurrent graph job
is A, the I/O scheduling of CGP jobs contains the following steps:

– According to synchronous information of CGP jobs and mapping information
between partition and disk, the system counts the number of jobs executed
in each external storage as n1, n2, ..., nk, respectively.

– According to synchronous information of CGP jobs and mapping information
between partition and disk, the system counts the number of partitions in each
external storage, as s1, s2, ..., sk, respectively, and records partition id.

– The system sorts the external storage according to the values of n1, n2, ...,
nk. Then the corresponding id of the external storage is added into set U ,
where the number of jobs in each external storage is in ascending order.

– The system decides each external storage of U one by one. If the set si of
one external storage i contains a partition that has not been accessed, the
external storage i is selected as the target.

– If the partition data in memory has been processed by job A, A will visit each
storage in U to find the data which has not been used. If the data exists, the
corresponding external storage will be as the target and the current iteration
ends.

Assume that the total execution time of a graph job is T , its computation
time is Tc and its I/O wait time is Tw. When N jobs are executed on the same
graph, the computation time of jobs is TC1, TC2...TCN respectively, and I/O wait
time is Tw. The total execution time of existing systems can be described as,

To = max(TC1, TC2, ...TCN) + NTw (2)

where TC−MAX = max(TC1, TC2, ...TCN). So the total time can be described as,

To = TC−MAX + NTw (3)

Suppose that the number of external storage devices is D. Based on loading
balancing, the I/O pressure is balanced into each external storage. Therefore,
the number of jobs running on each device is N/D. The new total execution
time can be described as,

Tmulti−disks = TC−MAX + Tw ∗ N/D (4)

the total number of I/O is from NTW to N/D ∗ TW . The new total execution
time is described as,

TG = max(TC−MAX , Tw) (5)
We can see that the new I/O Scheduling outperforms the existing methods by
up to (N − N/D) theoretically.

3 GraphScSh Implementation

We have implemented our system GraphScSh in C++. Figure 6 illustrates the
modules of GraphScSh, including graph management, mapping management,
data structure, operation module, and graph algorithms. We mainly focus on
two parts in this section: operation module and graph algorithms.

GraphScSh 9

File
File

File

Graph
management

Graph
algorithms

PageRank

get_next_edge()

Operation
module

scatter() gather()

Data
Structure

state update

synchronization

partition_mmapMapping
management

partition_munmap WCC

BFS

SSSP

Fig. 6. Modules of GraphScSh.

3.1 Operation Module

The function of this module is achieved by operations of Scatter and Gather. In
Scatter phase, it accesses to graph in streaming way by function get next edge()
and generates the updated information according to state data. In Gather phase,
it read updated data and updates the state data. The Traversal operation is
the kernel operation and implements by the function get next edge(). First,
the function needs to determine partitions of graph whether to be visited. If
false, the next edge data will be accessed. Then, get next edge() decides all
partition of this iteration whether to be visited. If true, the next iteration will
be started. If false, the function findNextPartition() will be activated to find
the next partition to visit. The implementation details of FindNextPartition are
described in Algorithm 1.

Algorithm 1. Details of FindNextPartition
Input:

The partition set of graph unaccess partition;

The set of external storage U ;

The visited partition set of graph s1, s2, ..., sk;

Output:

The next partition to be visited partition index;

1: for i in U do

2: if ∃p ∈ unaccess partition, p ∈ si then

3: partition index = p ;

4: return;

5: else

6: continue;

7: end if

8: end for

9: for p in unaccess partition do

10: partition index = p ;

11: break;

12: end for

10 S. Liu et al.

3.2 Implementations of Graph Algorithm

We define Graph as the base class, which provides a programming interface
for graph algorithms. Class Graph defines five virtual functions, including
initUnit() for initialization, output() for outputting result, reset() for cleaning
after one iteration, Scatter(), and Gather(). The function initUnit() initializes
the related work of graph algorithms, for example, the out-degree of each ver-
tex in PageRank. The function reset() resets partition sets that workers have
visited, and the number of partitions that each external storage has accessed.
Algorithms 2 and 3 give examples to show how to implement graph algorithms
on GraphScSh, which uses edge-centric Scatter-Gather model to run graph
algorithms.

Algorithm 2. PageRank Scatter
1: for each edge e of graph do
2: update t upt;
3: if update bitset[e.dst]= false then
4: upt.id = e.dst;
5: upt.value = e.src.value/e.src.degree;
6: add upt to update buf ;
7: end if
8: end for

Algorithm 3. PageRank Gather
1: for each update u of upt buffer do
2: if update bitset[u.id]= false then
3: aux[upt.id].tmp+ = u.value;
4: end if
5: end for
6: for each element ele of aux do
7: if update bitset[ele.index − start]=false then
8: tmp = init wgt + 0.85 ∗ ele.tmp;
9: if fabs(ele.tmp − tm) < 0.00000001 then

10: update bitset[ele.index − start]=true;
11: else
12: ele.res = tmp;
13: end if
14: ele.tmp = 0;
15: end if
16: end for

GraphScSh 11

4 Experimental Evaluation

4.1 Experiment Environment and Datasets

The hardware platform used in our experiments is a single machine containing
6-core 1.60 GHz Intel(R) Xeon(R) CPU E5-2603. Its memory is 8 GB and has
two SSDs with 300 GB. The program is compiled with g++ version 11.0.

In our experiments, four popular graph algorithms are employed as bench-
marks: (1) breadth-first search (BFS) [3]; (2) PageRank (PR) [12]; (3) weakly
connected component (WCC) [7]; (4) single-source shortest path (SSSP) [10].
The datasets used for these graph algorithms are real-world graphs and gen-
erated graphs described in Table 1. Where Twitter [14] is from online social
networks and edges represent interactions between people. R-MAT, SW, and
ER are generated based on power-law [4], small-world model [15] and ER model
[5] respectively.

Table 1. Data sets properties

DataSets Vertexes Edges Average degree Description

Twitter 61.6 M 1.5 B 23.8 Social networks from Twitter

R-MAT26 67.1 M 1.1 B 16 Power-law degree distributions

ER26 67.1 M 1.1 B 16 Random degree distributions

Table 2. Execution time of algorithms on GridGraph(s)

Data Sets BFS WCC PageRank

Twitter 768.84 883.07 3630.38

R-MAT26 409.27 349.27 2389

ER26 482.22 223 596.33

4.2 Comparison with GridGraph

To compare the performance of GridGraph and GraphScSh, we simultaneously
submit multiple jobs to each system. The partition number of GraphScSh is set
same as GridGraph, and different datasets have a different number of partitions.
The execution time of various graph processing algorithms has been computed, as
Table 2 depicted. For better comparing the performance of systems, CGP jobs
consist of two graph algorithms with same converge speed based on different
datasets. To acquire better integrity, experiments are designed under different
degree of parallelism (DOP) [16].

12 S. Liu et al.

(a) The DOP is 2 (b) The DOP is 3 (c) The DOP is 4

Fig. 7. The comparison of runtime on Twitter for GraphScSh and GridGraph

Twitter: First, for graph dataset Twitter, we evaluate the total execution time
and the speed-up ratio of various CGP jobs (e.g. the DOP is 2, 3 and 4, respec-
tively, as Fig. 7(a), (b) and (c). In general, for different combinations of CGP
jobs, the execution time of GraphScSh is less than that of GridGraph, and the
speed-up ratio grows up as DOP increases. Under the same DOP but a different
combination, the longer execution time of CGP jobs is, the greater GraphScSh
outperforms GridGraph. Specifically, when two systems are executed on dataset
Twitter, the combinations of 2WCC, 3WCC, and 4WCC are accelerated by
56.93%, 65.75%, and 70.8% respectively. Because CGP jobs are executed on the
GridGraph, resulting in the I/O conflict greatly.

RMAT26: Next, we execute different combinations of CGP jobs on RMAT26
to compare GridGraph and GraphScSh, as Fig. 8(b) and (c) show. When the
DOP is 3 or 4, the performance of GraphScSh is better than that of GridGraph.
In particular, with the increase DOP, the speed-up ratio grows up gradually. For
example, GraphScSh outperforms GridGraph by 34%, 40.5% and 45.6% under
the combinations of 2BFS, 3BFS, and 4BFS, respectively.

ER26: Besides, from Fig. 9(a), (b) and (c), we can observe that the total exe-
cution time of GraphScSh is much less than those of GridGraph over dataset
ER26. For example, for the combinations of 2PR, 3PR and 4PR, GraphScSh
outperforms GridGraph by 64.67%, 76.03% and 82%, respectively. Under the
same DOP, the difference that GraphScSh executes different combinations of
CGP jobs is smaller than that of GridGraph. It also means that GraphScSh
with GSSC and MSGL is suitable to cope with CGP jobs.

(a) The DOP is 2 (b) The DOP is 3 (c) The DOP is 4

Fig. 8. The comparison of runtime on R-MAT26 for GraphScSh and GridGraph

GraphScSh 13

(a) The DOP is 2 (b) The DOP is 3 (c) The DOP is 4

Fig. 9. The comparison of runtime on ER26 for GraphScSh and GridGraph

5 Related Work

With the explosion of graph scale, lots of graph processing systems are created
to achieve high efficiency for graph analysis. They improve the efficiency either
by a prefetcher for graph algorithms, or by full utilizing the sequential usage of
memory bandwidth.

PrefEdge [11] is a prefetcher for graph algorithms that parallelises requests
to derive maximum throughput from SSDs. PrefEdge combines a judicious dis-
tribution of graph state between main memory and SSDs with an innovative
read-ahead algorithm to prefetch needed data in parallel. GraphChi [8] a disk-
based system for computing efficiently on graphs with billions of edges. By
using a novel parallel sliding windows method, GraphChi is able to execute
several advanced data mining, graph mining, and machine learning algorithms
on very large graphs, using just a single consumer-level computer. X-Stream [13]
is novel in using an edge-centric rather than a vertex-centric implementation of
this model, and streaming completely unordered edge lists rather than perform-
ing random access. GridGraph [20] is an out-of-core graph engine using a grid
representation for large-scale graphs by partitioning vertices and edges to 1D
chunks and 2D blocks respectively, which can be produced efficiently through a
lightweight range-based shuffling.

Unfortunately, when CGP jobs are executed on these systems above, they
incur the extra high cost (e.g., inefficient memory use and high fault tolerance
cost). Following this observation, Seraph [17] is designed to handle with CGP
jobs based on a decoupled data model, which allows multiple concurrent jobs
to share graph structure data in memory [19]. Based on this observation that
there are strong spatial and temporal correlations among the data accesses issued
by different CGP jobs because these concurrently running jobs usually need to
repeatedly traverse the shared graph structure for the iterative processing of each
vertex, CGraph [19] proposed a correlations-aware execution model. Together
with a core-subgraph based scheduling algorithm, CGraph enables these CGP
jobs to efficiently share the graph structure data in memory and their accesses
by fully exploiting such correlations.

14 S. Liu et al.

6 Conclusion

This paper introduces GraphScSh, a large scale graph processing system that can
support CGP jobs running on a single machine with multiple external storage
devices. GraphScSh adopts a CGP balanced partition method to break graphs
into multiple partitions that are stored in multiple external storage devices.
In addition, we present a CGP I/O scheduling method, so that I/O conflict
can be reduced and the same graph can be shared among multiple CGP jobs.
Experimental results depict that our approach significantly outperforms existing
out-of-core systems when running CGP jobs. In the future, we will research to
further optimize our solution with a snapshot mechanism for efficient graph
processing.

Acknowledgments. This work is supported by NSFC No. 61772216, 61821003,
U1705261, Wuhan Application Basic Research Project No. 2017010201010103, Fund
from Science, Technology and Innovation Commission of Shenzhen Municipality No.
JCYJ20170307172248636, Fundamental Research Funds for the Central Universities.

References

1. Dasgupta, A., Hopcroft, J.E., McSherry, F.: Spectral analysis of random graphs
with skewed degree distributions. In: FOCS 2004 (2004)

2. BDR: http://www.bigdata-research.cn/content/201801/635.html
3. Beamer, S., Asanovic, K., Patterson, D.A.: Direction-optimizing breadth-first

search. In: SC 2012 (2012)
4. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph

mining. In: SDM 2004 (2004)
5. Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae Debrecen 6,

290 (1959)
6. Apache Giraph: http://giraph.apache.org/
7. Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., Kalnis, P.: Mizan:

a system for dynamic load balancing in large-scale graph processing (2013)
8. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: large-scale graph computation

on just a PC. In: OSDI 2012 (2012)
9. Liu, H., Huang, H.H.: Graphene: fine-grained IO management for graph computing.

In: FAST 2017 (2017)
10. Maleki, S., Nguyen, D., Lenharth, A., Garzarán, M.J., Padua, D.A., Pingali, K.:

DSMR: a parallel algorithm for single-source shortest path problem. In: ICS (2016)
11. Nilakant, K., Dalibard, V., Roy, A., Yoneki, E.: PrefEdge: SSD prefetcher for large-

scale graph traversal (2014)
12. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:

bringing order to the web. Technical report (1999)
13. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centric graph processing

using streaming partitions. In: SOSP 2013 (2013)
14. SNAP: http://snap.stanford.edu/data/index.html
15. Watts, D., Strogatz, S.: Collective dynamics of small world networks. Nature 393,

440–442 (1998)
16. Wikipedia: https://en.wikipedia.org/wiki

http://www.bigdata-research.cn/content/201801/635.html
http://giraph.apache.org/
http://snap.stanford.edu/data/index.html
https://en.wikipedia.org/wiki

GraphScSh 15

17. Xue, J., Yang, Z., Qu, Z., Hou, S., Dai, Y.: Seraph: an efficient, low-cost system
for concurrent graph processing. In: HPDC 2014 (2014)

18. Lin, Z., Kahng, M., Sabrin, K.Md., et al.: MMap: fast billion-scale graph compu-
tation on a pc via memory mapping. In: Big Data, pp. 159–164 (2014)

19. Zhang, Y., et al.: CGraph: a correlations-aware approach for efficient concurrent
iterative graph processing. In: ATC 2018 (2018)

20. Zhu, X., Han, W., Chen, W.: GridGraph: large-scale graph processing on a single
machine using 2-level hierarchical partitioning. In: ATC 2015 (2015)

Game-Based Multi-MD with QoS
Computation Offloading for Mobile Edge

Computing of Limited Computation
Capacity

Junyan Hu1,2, Chubo Liu1,2(B), Kenli Li1,2, and Keqin Li1,2,3(B)

1 College of Computer Science and Electronic Engineering, Hunan University,
Changsha 410082, Hunan, China

{junyanhu,liuchubo,lkl,likq}@hnu.edu.cn
2 National Supercomputing Center in Changsha, Changsha 410082, Hunan, China

3 Department of Computer Science, State University of New York,
New Paltz, NY 12561, USA

lik@newpaltz.edu

Abstract. Mobile edge computing (MEC) is becoming a promising
paradigm of providing cloud computing capabilities to the edge net-
work, which can serve mobile devices (MDs) with computation-intensive
and delay-sensitive tasks. Facing with high requirements of many MDs,
it’s essential for MEC with limited computation capacity to serve more
MDs with QoS. For each mobile device, it is also desirable to have a low
energy consumption with an expected deadline. To solve above problems,
we propose a Game-based Computation Offloading (GCO) algorithm,
which includes the task offloading profile and the transmission power
controlling with the method of non-cooperative game. Our mechanism
maximizes the number of served MDs with deadline, as well as mini-
mizing the energy consumption of each MD whose task is executed on
MEC. Specifically, Given the allocation of transmission power, a Greedy-
Pruning algorithm is proposed to determine the number of tasks executed
on MEC. Besides, each MD adopts his/her transmission power control-
ling strategy to compete the computation resource of MEC or minimize
the energy consumption. A game model for illustrating the problem of
task offloading is formulated to find a proper transmission power for each
task and is proved the existence of Nash equilibrium solution. Exper-
iments are simulated to evaluate the proposed algorithm in terms of
effectiveness evaluation.

Keywords: Mobile edge computing · Nash equilibrium ·
Non-cooperative game theory · Task offloading · Power controlling

1 Introduction

Nowadays, Mobile Devices (MDs) are indispensable part in our daily life
[1,2]. With the popularity of smart MDs, many new computation-intensive and

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 16–27, 2019.
https://doi.org/10.1007/978-3-030-30709-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_2

Multi-MD and MEC Computiation Offloading System 17

delay-sensitive applications have higher demands on quality of service (QoS) [3].
However, the limited resources of MDs e.g., battery, computation capacity, can-
not meet their own needs. Therefore, how to meet the high QoS requirements of
multiple MDs with low energy consumption is an urgent problem to be solved.

Mobile edge computing (MEC) provides high-bandwidth, high-computing
resources for nearby MDs to meet the high QoS demands for computation-
intensive and latency-sensitive applications via edge network [4,5]. For a multi-
device MEC system with multiple parallel computation tasks requiring com-
puting resources, MEC can be viewed as a small cloud with limited resources
(processing speed, CPU cycle). Facing with resource requests from numerous
devices, MEC should propose a resource allocation strategy that maximizes the
number of served MDs with QoS requirements. For each MD, it has an expected
value of delay, and on this basis, it is desirable to have a minimum energy con-
sumption. The transmission rate and the received computation resource of each
MD are affected by other MDs. Thus, if there are many devices that offload their
tasks, the QoS experience of each MD will be deduced. In order to compete the
resource for CPU cycle, a suitable transmission power controlling strategy mech-
anism for each MD should be proposed.

The remainder of the paper is organized as follows. In Sect. 2, we introduce
the related work. Section 3 describes the system model and presents the problem
that needs to be solved. In Sect. 4, we consider the problem as a non-cooperative
game and propose Algorithm GCO to compute the Nash equilibrium solution. In
Sect. 5, extensive experiments results indicate the feasibility of our algorithms.
We conclude the works of this paper in Sect. 6.

2 Related Work

Task offloading for user requirements in MEC has been studied by many scholars
and most of studies are analyzed from computational offloading, latency, storage,
and energy efficiency. [6–8] are considered from optimizing the energy consump-
tion of users. In [6], Chen et al. computed the energy harvesting for MEC by
using Lyaponuv Optimization method. Besides, some works and models con-
sidered from guaranteeing the deadline or minimizing average delay [9–12]. Fan
et al. proposed an application aware workload scheduling mechanism for IoT
based on MEC to minimize the average delay of application resource requests
in [10]. [11] solved the problem of minimizing delay by using the method of one-
dimensional search. And then in [13] and [14], Zhang and Chen et al. considered
the proportional overhead on power consumption and latency. In addition, [15–
17] optimized the transmission to achieve the offloading balance in the MEC by
controlling the transmission power. In [15], Rodrigues et al. proposed a workload
balance strategy for cloudlets to minimize the cost by using Transmission Power
Control (TPC). In [16], Mao et al. minimized the weighted sum of the execution
delay and energy consumption by optimizing the transmission. Different from
above all, our work considers not only from the view of serving the maximum
number of MDs with deadline constraint, but also from the perspective of each
MD’s minimum energy consumption.

18 J. Hu et al.

Game theory plays an increasingly important method in MEC [18–21]. In [18],
Chen et al. analyzed the multi-task offloading problem for MEC under the con-
dition of multi-channel from the view of game theory. In [21], by using the theory
of Minority Games, Ranadheera et al. proposed a novel distributed server acti-
vation mechanism for computation offloading which guaranteed energy-efficient
activation of servers as well as satisfaction of users quality-of-experience (QoE)
requirements in terms of latency. Heuristically, our work introduces an adaptive
transmission power mechanism in the competing process for limited-computation
resources provided by MEC. We formulate a non-cooperative game-based mech-
anism for MEC’s offloading decision making and MDs’ power control.

3 System Model

We denote N = {1, 2, . . . , N} as the set of N MDs, each of which has
computation-intensive and time-sensitive task to be completed. Let τn be the
task of n, and the requirement of MD τn can be denoted as a tuple (cn, dn, Tn),
where cn denotes the total number of required CPU cycles, dn denotes the size of
the input task data, and Tn denotes the expected time required to complete task
τn. The task can be computed either locally on the mobile device or remotely
executed on MEC via computation offloading. Therefore, we denote the decision
profile X = {x1, x2, . . . , xN} as the set of indicator function for N MDs, where
xn ∈ {0, 1}. If the task of MD n is computed on MEC S, xn = 1, otherwise,
xn = 0. Besides, we denote J as the set of mobile devices, where J = {n|xn = 1}.
Here we consider the computational capacity of MEC S, denoted as C, is limited.
If a MD prepares to offload his task to MEC S, the energy and time consumption
of communication and computation are considered.

3.1 Communication Model

If MD n offloads task τn to remotely edge execution, the input data should
be transmitted to MEC servers of S. Given the decision profile X and J , the
communication rate of MD n (n ∈ J) via the wireless channel can be denoted as

rn(X, P) = B log2(1 +
pnGn

η0 + Σi∈J\{n}piGi
). (1)

Here B is the channel bandwidth, and for simplicity, we only consider one chan-
nel. P = {p1, p2, . . . , pN} is the transmission power profile of all MDs and each
pn can be chosen from the internal [pn, pn]. Further, Gn, related to the environ-
ment and the distance, denotes the channel gain between MD n and MEC S
and η0 is the background noise power. In (1), let In = Σi∈J\{n}piGi be the sum
of interference from other MDs who belong to set J . Note that the transmission
rate can be affected not only the transmission power of itself but also the MDs
which offload tasks to MEC S.

Multi-MD and MEC Computiation Offloading System 19

3.2 Computation Model

If task τn of mobile device n is offloaded to MEC S to execute, i.e., xn = 1, the
completion time will contain communication time and computation time. We
define the completion time as

tn,off =
dn

rn(X, P)
+

cn

fn
=

dn

B log2(1 + pnGn

η0+Σi∈J\{n}piGi
)

+
cn

fn
, (2)

where fn is the computation capability (i.e., CPU cycles per second) assigned
to MD n by the MEC S. Therefore, the energy consumption can be denoted as

En,off (X,P) =
pndn

B log2(1 + pnGn

η0+Σi∈J\{n}piGi
)
. (3)

3.3 MEC’s Resource Allocation Strategy

From the perspective of MEC S with limited resource, serving as many MDs as
possible is its primary goal. We consider distributed resource allocation for MDs,
and model it as max

X
|J | with the constraints tn ≤ Tn, n ∈ J and

∑
n∈J fn ≤ C,

where | · | is the number of elements in set ·.
Theorem 1. The issue max

X
|J | that maximize the number of tasks with QoS

executed on MEC is NP-hard.

Algorithm 1. Greedy-Pruning algorithm

Require: N , P, G, B, C.
Ensure: J , fn(J).
1: J ← N , J1 ← {∅}, J2 ← {∅};

2: Calculate each f
′
n(J) (n ∈ J) based on Eq. (4);

3: while (
∑

k∈J f
′
k(J) > C) do

4: J1 ← J1

⋃{arg min
i

∑

j∈J\{i}
f

′
j (J\{i})};

5: while (J1 �= J2) do
6: J2 ← J1;
7: for (l ∈ J2) do
8: J1 ← (J1\{l})

⋃

{arg min
i

∑

j∈�J1\{l}
N \{i}

f
′
j (�J1\{l}

N \{l})};

9: J ← N\J1;
10: return J , fn(J).

In order to solve the problem max
X

|J |, we propose a Greedy-Pruning algo-

rithm (Algorithm 1). Let f
′
n(J) be the critical point of computation capability

that MD n needs.

20 J. Hu et al.

fn(J) ≥ cn

Tn − dn

γn(X,P)

= f
′
n(J). (4)

Assuming
∑

n∈N f
′
n ≤ C, then there is J = N . Otherwise, MEC S needs to

filter out some MDs to maximize the number of beneficial MDs with QoS. In
Algorithm 1, J is the set of MDs to be selected, and J1 is the set of MDs to be fil-
tered out. In the outer while loop of the line 3–9, once

∑
k∈J f

′
k(J) > C, an appro-

priate MD will be added to J1 to check whether the condition
∑

k∈ ˜J f
′
k(J̃) ≤ C

is satisfied, where J̃ is the updated J . In each round of preparation to remove
a MD to J1, we use min

∑
j∈ ˜J f

′
j(J̃) as the objective function. But removing

MD i in J that minimizes
∑

j∈J\{i} f
′
k(J\{i}) directly does not guarantee that

updated J is globally optimal. If there is always

l = arg min
i

∑

j∈(J∪{l})\{i}
f

′
j((J ∪ {l})\{i}). (5)

for any MD (l ∈ N\J), J is optimal.

3.4 Power Control Strategy of Mobile Device

In this section, we explore that how to minimize each MD’s energy consumption
within the expected delay range. As can be seen from Eq. (2), tn,off decreases as
pn increases. Given F and the expected time Tn required to complete the task
τn, tn,off ≤ Tn can be introduced as follows

pn ≥ (2
dn

(Tn− cn
fn

)B − 1)(
η0 + In

Gn
) = p

′
n. (6)

We denote p
′
n as the critical power of MD n. If p

′
n > pn, MD n will not choose

to execute his task τn on MEC. We assume p
′
n ≤ pn and consider the energy

consumption of MD n in the internal [max{p
′
n, pn}, pn].

In each round, MD n, who does not execute his task τn on the MEC, can
increase pn to provide his own competitiveness. This leads to two outcomes:
removing one of the other MDs in J or adding to the set J directly.

Removing one of the other MDs in J : Increasing pn to p1n and satisfying the
conditions

arg min
k

∑

j∈J3

f
′
j(J3\{k}) �= n, (J3 = J ∪ {n}),

min
k

∑

j∈J3

f
′
j(J3\{k}) ≤ C.

(7)

Adding to the set J directly: Increasing pn to p2n and satisfying the condition
∑

j∈J∪{n}
f

′
j(J ∪ {n}) = C. (8)

Multi-MD and MEC Computiation Offloading System 21

Considering the energy consumption and pn ≤ pn, we define p̃n =
min{p1n, p2n, pn}, where p̃n is the updated pn in next round. We denote P̃ =
(p̃1, p̃2, . . . , p̃N). We propose a Binary search algorithm (Calculate P̃(·)) to
update pn.

4 Game Formulation and Analyses

4.1 Game Formulation

Let P−n = (p1, · · · , pn−1, pn+1, · · · , pN) be the transmission power profile of all
MDs except MD n. Let Pn be the set of power and decision making strategies for
MD n, i.e., pn ∈ Pn. Given other MDs’ transmission power P−n, MD n would
like to select a proper decision pn to compete the computation resource of MEC
S and minimize his own energy consumption, under the condition of satisfying
QoS. The objective function of MD n can be written as follows min En(X, P).
The strategy set of MEC S is X and his objective function is maximizing the
beneficial number of MDs |J |. Then, the multi-device computation offloading
game can be represented as G, where G = {(Pn)n∈N ,X ; (En)n∈N , |J |}.

Algorithm 2. Calculate P̃(·)
Require: N , P, G, B, C, J , ε.

Ensure: P̃.
1: for n ∈ J do
2: p̃n = pn;
3: for n ∈ N\J do
4: l1pn ← pn, r1pn ← pn;
5: l2pn ← pn, r2pn ← pn;
6: while (|r1pn − l1pn > ε|) do

7: mid1 ← l1pn+r1pn
2

;
8: if Conditions in Eq. (7) are satisfied then
9: r1pn ← mid1;

10: else
11: l1pn ← mid1;
12: p1

n ← r1pn;
13: while (|r2pn − l2pn > ε|) do

14: mid2 ← l2pn+r2pn
2

;
15: if Condition in Eq. (8) is satisfied then
16: r2pn ← mid2;
17: else
18: l2pn ← mid2;
19: p2

n ← r2pn;
20: p̃n = min{p1

n, p2
n, pn};

21: return P̃.

For all MDs, P∗ = {p∗
1, . . . , p

∗
N} is the optimal countermeasure strategy. That

is to say, for MD n and any pn ∈ Pn, there is En(pn,P∗
−n) ≥ En(p∗

n,P∗
−n). For

MEC S and any X = (x1, x2, . . . , xN), |J(X∗)| ≥ |J(X)|.

22 J. Hu et al.

4.2 Nash Equilibrium Existence Analysis

Theorem 1. Given N , G, B, C, and pn ≥ max{p′
n, pn}, non-cooperative game

strategies for N MDs and MEC S M = (N , {Pn}n∈N , {En,off};S,X , |J |) have
a Nash equilibrium 〈P∗,X∗〉, (p∗ ∈ Pn,X∗ ∈ X).

Proof. We easily know that ∂En,off (X,P)
∂pn

> 0 (pn > 0). Based on Eq. (1) we can
obtain that

∂2rn(X, P)
∂p2n

= − BG2
n

ln 2(η0 + In + pnGn)2
. (9)

En,off (X, P) is taken the second derivative with respect to pn, and it yields that

∂2En,off

∂p2n
=

dnB2Gn

(η0 + In)μr3n ln 2
[(−1 − 1

μ
) log2 μ +

2
ln 2

(1 − 1
μ

)], (10)

where μ = η0+In+pnGn

η0+In
and μ > 1.

Let function g(x) = (−1 − 1
x) log2 x + 2

ln 2 (1 − 1
x). We analyse function g(x),

and its derivative for x is

g
′
(x) =

−x + ln 2 log2 x + 1
x2 ln 2

. (11)

Let function s(x) = −x + ln 2 log2 x. When x ≥ 1, s(x) is monotonically
decreasing, and s(x) ≤ s(1) = 0. Therefore, when x ≥ 1, g

′
(x) < 0, g(x)

is monotonically decreasing, and g(x) ≤ g(1) = 0. Because μ > 1, the sec-
ond derivative of En,off (X, P) with respect to pn is always less than 0, i.e.,
∂2En,off

∂p2
n

≤ 0 (pn ≥ max{p′
n, pn}). Based on ∂En,off (X,P)

∂pn
> 0 and the power

variable of each MD is a closed interval, En,off (X,P) takes the minimal value
when pn = max{p

′
n, pn}. Thus, p∗

n = max{p′
n, pn}, and for any pn ≥ p∗

n, there
always is En(pn,P∗

−n) ≥ En(p∗
n,P∗

−n).
For MEC S, J∗ is the first set in Algorithm Greedy-pruning that satisfies the

following conditions: (1)
∑

k∈J∗ f
′
k(J∗) ≤ C; (2) for any MD l ∈ N\J∗, there is

always
l = arg min

i

∑

j∈(J∗∪{l})\{i}
f

′
j((J

∗ ∪ {l})\{i}).

Then, the maximum number of beneficial MDs with QoS will no longer decrease.
Therefore, for any offloading scheduling profile X ∈ X satisfying the conditions
tn ≤ Tn, n ∈ J and

∑
n∈J fn ≤ C, there always will be |J(X)| =

∑

n∈N
xn ≤

|J(X∗)| =
∑

n∈N
x∗

n.

4.3 Nash Equilibrium Solution Computation

We propose a Game-based Computation Offloading (GCO) Algorithm3 to find
the equilibrium solution.

Multi-MD and MEC Computiation Offloading System 23

Algorithm 3. Game-based Computation Offloading (GCO)

Require: N , P, P, G, B, C, ε, δ.
Ensure: P, J, X.
1: N (0) ← N ;
2: s ← 1;
3: pn(0) ← P(N (s − 1));
4: 〈J(0), fn(J(0))〉 ← GP(N (0), pn(0), G, B, C);
5: t ← 0;
6: while |P (t + 1) − P (t)| < δ do

7: pn(t + 1) ← Calculate P̃(N (t), pn(t), G, B, C, J(t), ε);
8: 〈J(t + 1), fn(J(t + 1))〉 ← GP(N (s), pn(t + 1), G, B, C);
9: t ← t + 1;

10: J ← J(t);
11: N (s) ← N (s − 1);
12: while (N (s) �= N (s − 1)) do
13: s ← s + 1;
14: loop steps 3 to 11;
15: return P, J, X.

5 Simulations

5.1 Simulation Settings

We evaluate the system performance of the proposed GCO based on the inter-
action of MEC S and multiple mobile devices in this section. We consider 50
MDs in this system. The size of the input task data dn of each MD n is ran-
domly selected from the interval (0, 2] MB and the total number of required
CPU cycles cn = dn · wn, where wn is the workload requirements of task τn

(wn ∈ [100, 500] cycles/bit). Similarly, the expected Time Tn of MD n also
follows a uniform distribution with (0, 3]s. The minimum transmission power
pn is 100 mW, and the maximum value is randomly selected from the interval
[1000, 3000] mW. We consider MEC S has a coverage range of 50 m. The com-
putational capacity C of MEC S is 1GHz. The bandwidth B = 10 MHz and
the background noise power η0 = −100 dBm. Based on the wireless interference
model for urban cellular radio environment, the channel gain Gn = disα

n, where
disn is the distance between MD n and the MEC S and α = −4 is the path loss
factor.

5.2 Convergence of Algorithm GCO

Figures 1 and 2 illustrate the convergence process of transmission power for each
MD by executing our proposed GCO algorithm. With the number of iterations
increasing, the transmission power of each MD is increasing and then the curve
reaches to a stable value. During the process of computing, some MDs will
withdraw the resource competition if the transmission power is higher than their
accepted maximum value, i.e., pi > pi. Figure 2 is the transmission power curve
of MDs who cancel to compete the computation resource of MEC S. Moreover,
we can know that the transmission power can be obtained after 6 iterations,
which shows high efficiency of our proposed algorithm.

24 J. Hu et al.

Fig. 1. Change of transmission power and beneficial MDs in the iterative process.

Figures 3 and 4 is a curve of the number of MDs who obtain computing
resources provided by MEC S and a bar graph of the average energy consumption
during the iterative process, respectively. At the beginning, each MD’s transmis-
sion power is set as the initial value, i.e., the minimum value. The number of
MDs with QoS served by the MEC S with limited computing resources is 23 and
the average energy consumption is about 70. Each MD increases its transmission
power to complete for the computing resources of MEC S, which causes the aver-
age energy consumption to rise during the iteration, as shown in Fig. 4. In Fig. 3,
after several rounds of mutual negotiation between MDs, the number of MDs
who can use the computing resources provided by MEC S gradually increases
and maintains stable at the value 29 as the number of iterations increases.

Fig. 2. Change of transmission power and non-beneficial MDs in the iterative process.

Multi-MD and MEC Computiation Offloading System 25

Fig. 3. The process change of number of beneficial MDs.

Fig. 4. The process change of average energy consumption.

5.3 Performance Evaluation

The performance of GCO algorithm is evaluated from two respects: the number
of iterations and the execution time. The variable is the number of MDs N ,
which increases by 10 from 10 to 50. For each N , we repeat the experiment
many times. The experimental results are shown in Figs. 5 and 6.

Figures 5 and 6 show the number curve of iterations and iterative time curve
of Algorithm GCO as the number of MDs increases, respectively. The blue line
is an average curve in each figure. In Fig. 5, the general trend of the curve
increases linearly and slowly. Besides, even if the number of MDs is 50, the
average number of iterations is very small. In Fig. 6, as the scale of MDs increases,
the computation overhead curve increases in a polynomial. The red dashed line
is the trend line of the computation overhead curve, which is a second order
polynomial. The fitting degree of the trend line and the time curve is 0.9908.
When the number of MDs reaches 50, the average overhead is 225 ms, which is
rapid and shows the high efficiency of our proposed algorithm.

26 J. Hu et al.

Fig. 5. Average iterative times of different scales of MDs. (Color figure online)

Fig. 6. Computation Overhead of different scales of MDs. (Color figure online)

6 Conclusions

Our study focuses on the task offloading problem of one MEC and multiple MDs
with delay deadlines. From the perspective of non-cooperative game theoretical
method, the number of served MDs with delay deadline and the energy consump-
tion of all tasks executed on MEC S are alternately optimized. We prove the
existence of Nash equilibrium solution and propose GCO algorithm to solve it.
Besides, the convergence of the algorithm is also analyzed. Extensive simulated
experiments results validate and show the feasibility of our proposed method.

Acknowledgments. The research was partially funded by the National Key R&D
Program of China (Grant No. 2018YFB1003401), the Program of National Natural
Science Foundation of China (Grant No. 61751204).

References

1. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey.
IEEE Internet Things J. 5(1), 450–465 (2018)

Multi-MD and MEC Computiation Offloading System 27

2. Porambage, P., Okwuibe, J., Liyanage, M., Taleb, T., Ylianttila, M.: Survey on
multi-access edge computing for internet of things realization. IEEE Commun.
Surv. Tutor. 20, 2961–2991 (2018)

3. Ning, Z., Wang, X., Huang, J.: Mobile edge computing-enabled 5G vehicular net-
works: toward the integration of communication and computing. IEEE Veh. Tech-
nol. Mag. 14, 54–61 (2018)

4. Kai, W., Hao, Y., Wei, Q., Min, G.: Enabling collaborative edge computing for
software defined vehicular networks. IEEE Netw. 32, 112–117 (2018)

5. Guo, H., Liu, J.: Collaborative computation offloading for multiaccess edge com-
puting over fibercwireless networks. IEEE Trans. Veh. Technol. 67(5), 4514–4526
(2018)

6. Chen, W., Dong, W., Li, K.: Multi-user multi-task computation offloading in green
mobile edge cloud computing. IEEE Trans. Serv. Comput. 99, 1 (2018)

7. Yang, L., Zhang, H., Ming, L., Guo, J., Hong, J.: Mobile edge computing empow-
ered energy efficient task offloading in 5G. IEEE Trans. Veh. Technol. 67, 6398–
6409 (2018)

8. Feng, W., et al.: Joint offloading and computing optimization in wireless powered
mobile-edge computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797
(2017)

9. Min, C., Hao, Y.: Task offloading for mobile edge computing in software defined
ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)

10. Qiang, F., Ansari, N.: Application aware workload allocation for edge computing
based IoT. IEEE Internet Things J. 5(3), 2146–2153 (2018)

11. Liu, J., Mao, Y., Zhang, J., Letaief, K.B.: Delay-optimal computation task schedul-
ing for mobile-edge computing systems. In: IEEE International Symposium on
Information Theory, April 2016

12. Xiang, S., Ansari, N.: Latency aware workload offloading in the cloudlet network.
IEEE Commun. Lett. 21(7), 1481–1484 (2017)

13. Jiao, Z., et al.: Energy-latency trade-off for energy-aware offloading in mobile edge
computing networks. IEEE Internet Things J. 5, 2633–2645 (2018)

14. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for
mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24, 2795–2808 (2016)

15. Rodrigues, T.G., Suto, K., Nishiyama, H., Kato, N., Temma, K.: Cloudlets activa-
tion scheme for scalable mobile edge computing with transmission power control
and virtual machine migration. IEEE Trans. Comput. 67, 1287–1300 (2018)

16. Mao, Y., Zhang, J., Letaief, K.B.: Joint task offloading scheduling and transmit
power allocation for mobile-edge computing systems. In: Wireless Communications
and Networking Conference (2017)

17. Tao, X., Ota, K., Dong, M., Qi, H., Li, K.: Performance guaranteed computation
offloading for mobile-edge cloud computing. IEEE Wirel. Commun. Lett. 6(6),
774–777 (2017)

18. Xu, C., Lei, J., Li, W., Fu, X.: Efficient multi-user computation offloading for
mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2016)

19. Hu, X., Wong, K.K., Yang, K.: Wireless powered cooperation-assisted mobile edge
computing. IEEE Trans. Wirel. Commun. 17(4), 2375–2388 (2018)

20. Li, K.: A game theoretic approach to computation offloading strategy optimization
for non-cooperative users in mobile edge computing. IEEE Trans. Sustain. Comput.
99, 1 (2018)

21. Ranadheera, S., Maghsudi, S., Hossain, E.: Computation offloading and activation
of mobile edge computing servers: a minority game. IEEE Wirel. Commun. Lett.
7, 688–691 (2018)

NOC and Networks

KLSAT: An Application Mapping
Algorithm Based on Kernighan–Lin

Partition and Simulated Annealing for a
Specific WK-Recursive NoC Architecture

XiaoJun Wang1,2(B) , Feng Shi1(B) , and Hong Zhang2(B)

1 Beijing Institute of Technology, Beijing 100081, China
wxjred9915@163.com, bitsf@bit.edu.cn

2 Henan University of Economics and Law, Zhengzhou 450046, Henan, China
gracezxkl@126.com

Abstract. Application mapping is a critical phase in NoC design
because of the running time, the network latency and the power con-
sumption. In order to reduce these problems of applications running on
multicore architecture, we propose a novel application mapping algo-
rithm, called KLSAT mapping algorithm. It is used for the triplet-based
architecture (TriBA) topology which is WK-recursive based networks
well conform to a modular design due to the properties of regularity and
scalability. The KLSAT mapping algorithm exploits the advantage of
both the Kernighan–Lin partitioning algorithm and simulated annealing
algorithm to reduce the overall power consumption and network latency.
Compared to the random mapping algorithm, the experiment results
reveal that the solutions generated by the proposed mapping algorithm
reduce average power consumption and network latency by 6.4%, 12.2%
in mapping 27 cores and 29.5%, 26.7% in mapping 81 cores respectively.

Keywords: WK-recursive network · Kernighan–Lin algorithm ·
Simulated annealing algorithm · Application mapping ·
Network-on-Chip

1 Introduction and Motivation

On-chip communication plays one of the crucial roles in multicore architecture
topology design. Network-on-Chip (NoC) has been proposed to reduce the power
consumption and the network latency limitations of bus-based on-chip multicore
architecture [1,2]. There are several factors affecting the NoC performance, such
as the network topology, the routing algorithm, application mapping. So the
network-on-chip (NoC) topology design is an important factor in the on-chip
multicore architecture. Our team proposed the triplet-based multicore architec-
ture (TriBA) on-chip network is a kind of the multicore WK-recursive network
[3,4], which has several advantages such as scalability, regularity, locality and
hierarchy.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 31–42, 2019.
https://doi.org/10.1007/978-3-030-30709-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_3&domain=pdf
http://orcid.org/0000-0002-1665-4629
http://orcid.org/0000-0001-8870-5408
http://orcid.org/0000-0002-8129-7728
https://doi.org/10.1007/978-3-030-30709-7_3

32 X. Wang et al.

Definition 1: Given a WK-recursive NoC topology with NL (L ≥ 0) cores (in
here N = 3), the core’s ID number is encoded in the sequence aLaL−1aL−2· · · a1a0,
where ai∈1, 2,· · · , N (0 ≤ i ≤L − 1) which contains the level number and the core
number after partition at leveli and the value of ai means the position of the
level number. The Fig. 1 shows TriBA NoC topology as L = 1, 2.

Fig. 1. TriBA multicore network topology with L= 1, 2

TriBA network topology has smaller degree, bisection width, smaller network
diameter and less number of total links than 2DMesh topology with the same
number of cores. It indicates any of TriBA’s cores can spend less time to send
a data package to other cores. Meanwhile, TriBA has a less total links which
means capacity of low power consumption. The researches [5,6] elaborate that
on-chip multicore processors such as the power consumption of Terascale and
MIT RAW with respect to the whole on-chip power are 30%, 40% respectively.
So another crucial challenge in NoC is how associate the IP cores implementing
tasks of an application to reduce the power consumption. This is application
mapping algorithm which is a crucial design decision to improve the perfor-
mance of the overall multicore architecture at an early design phase. In this
paper, we propose a mapping heuristic algorithm (KLSAT mapping algorithm)
that is based on Kernighan–Lin (KL) algorithm, simulated annealing (SA) algo-
rithm and the WK-recursive multicore architecture TriBA to reduce the overall
power consumption and network latency. KL algorithm can reduce the fact net-
work communication cost by placing frequently communicating cores closely.
SA algorithm is a kind of mapping algorithm for exploiting optimization and
searching solutions that originates from the annealing in engineering. TriBA [7]
(Triplet-based architecture) is a novelty WK-recursive on-chip multicore archi-
tecture with the characteristic of scalability and locality.

2 Related Work

Several previous works have been proposed to use specially designed applica-
tion mapping algorithms, for example Kernighan-Lin partitioning algorithm and
simulated annealing algorithm, to improve the different NoC architectures per-
formance or reduce power consumption and network latency.

KLSAT 33

Sahu et al. proposed several mapping algorithms which extends the basic
Kernighan-Lin bi-partitioning algorithm to enhance the static and dynamic per-
formances of three different NoC architectures [8]. Authors explored the oppor-
tunities in optimizing application mapping based on Kernighan-Lin algorithms
for express channel-based on-chip network [9]. Manna et al. presented a KL bi-
partitioning based approach to perform mapping the core graph of an application
onto 2DMesh-based NoC architecture [10]. In [11], the authors proposed an appli-
cation mapping algorithm for the mesh-of-tree network topology. Authors repre-
sented core mapping procedure based on the Kernighan-Lin graph bi-partitioning
algorithm to select Through-Silicon-Via positions [12].

However, the KL mapping algorithm has its limitations and the resulted
mappings generated by the KL algorithm may not be global optimal solution.
It differs from KL algorithm, the SA algorithm has been observed to perform
better application mappings. SA is one heuristic algorithm that has been used
in a set of previous works for solving the application mapping problems [13–21].
Compared with KL mapping algorithm, the significant strength of SA is the
ability of finding the global optimum solution.

Hu and Marculescu first used the SA algorithm in application mapping
problem to evaluate the Branch and Bound application mapping algorithm on
2DMesh NoC [13]. In [14], the authors proposed algorithms using the simulated
annealing and tabu search with communication-weighted model for obtaining
low energy. The authors proposed an application mapping technique based on
particle swarm optimization combined with simulated annealing for comparison
of the performance of Zmesh with that of other NoC topologies [15]. In [16],
the authors proposed two heuristics mapping algorithm based on the simulated
annealing method for solving the capacitated version of the location-routing
problem. The authors [17] used SA algorithm with two functions to map appli-
cation onto multiprocessor system-on-chip (MPSoC). Bo et al. [18] proposed
SA algorithm by using the Nelder-Mead simplex method for selecting a set of
parameters applied. Tosun et al. [19] presented a mapping algorithm based on
simulated annealing for energy- and communication-aware mapping problems
of mesh-based NoC architecture. In [20], the authors proposed a heuristic algo-
rithm CHMAP to solve the application mapping problem on the mesh topology
to reduce energy consumption. In [21], an optimized mapping algorithm based on
simulated annealing, which allocates tasks that have big communication volume
to adjacent places on the mesh, was proposed for reducing the energy consump-
tion of applications running on multicore architecture.

Based on the above mentioned reasons, the novelty of our proposed KLSAT
mapping algorithm employs the advantages of KL algorithm and SA algorithm
for mapping application onto TriBA multicore architecture. Firstly, we use with
a Kernighan-Lin tri-partitioning algorithm which idea is come from the ref-
erence [22]. The modified Kernighan-Lin tri-partitioning algorithm which fits
for the triplet-based characteristic of TriBA ensures the communication value
among cores in the same partition is maximum value and the communication
value among cores between partitions is minimum value. Secondly, we employ a

34 X. Wang et al.

SA algorithm to find the final optimal mapping. To the best of our knowledge,
the KLSAT mapping algorithm is the first work that employes the modified
KL algorithm and SA algorithm onto TriBA, which satisfies the performance
requirement of the application mapping and minimizes the average power con-
sumption and network latency. Our experimental results show that, compared
to the random mapping algorithm, the KLSAT mapping algorithm reduces the
average power consumption and network latency by 6.4%, 12.2% in mapping 27
cores and 29.5%, 26.7% in mapping 81 cores respectively.

3 Problem Formulations

In this section we focus on minimizing the power consumption associated to the
application mapping.

3.1 Power Consumption Model

Ye et al. [23] proposed a power consumption model for evaluating the power
consumption of switch fabrics in network routers. For the on-chip multicore
architecture, however, links between nodes should also be included in the power
consumption model. So Hu and Marculescu [24] proposed a modified power
consumption model for the on-chip multicore architecture. By evaluating the
difference of the power consumption of various components on-chip multicore
architecture, Hu and Marculescu found that the power consumed by buffering
and internal wires is negligible compared with switch and link. Thus, the power
consumption model can be reduced to:

Ebit = ESbit + ELbit (1)

where ESbit and ELbit represent the energy consumed by switch and link respec-
tively. So, the power consumption of sending one bit from node i to node j can
be ex-pressed as following:

Ei,j
bit = nhops × ESbit + (nhops − 1) × ELbit (2)

where nhops is the number of routers the bit passes on its way along a path from
node i to node j.

So the total power consumption of the NoC is the sum of weight value of all
edges as following:

Etotal =
E∑

i,j

∑

bit

Ei,j
bit (3)

3.2 Definition of Application Mapping

The goal of application mapping algorithms is to assign a given task to a specific
core in the NoC to match the certain requirement such as minimizing the network
latency and power consumption.

KLSAT 35

Definition 2: The task core graph is a weighted edge graph, C(V, E). A
vertex vi ∈ V represents a task and the weighted edge ei,j ∈ E represents the
communication bandwidth between the cores vi and vj . Commi,j denotes the
weighted value of edge ei,j , which indicates the bandwidth constraints of the
communication from vertex vi to vertex vj .

Definition 3: The NoC topology graph is a multicore interconnects architec-
ture graph T(U, F). A vertex ui ∈ U represents a node in multicore NoC topology
and the directed edge fi,j ∈ F indicates a physical link for directed communicat-
ing between the vertices ui and uj . Bwi,j denotes the weighted value of the edge
fi,j , which shows the available communication bandwidth across the edge fi,j .

The application mapping algorithm can be formulated as the following one-
to-one mapping function:

Mapping algorithm: given a task core graph C(V, E) and the NoC topology
graph T(U, F), find the function:

map: V → U , such that, map(vi) = uj , ∀ vi ∈ V, ∃ uj ∈ U, | V | ≤ | U |
∀ vi ∈ V, map(vi)=U
∀ vi �= vj , map(vi) �= map(vj)
Number(V)≤Number(U)
Minimam(Etotal).

4 The Proposed KLSAT Mapping Algorithm

In this section, we present the proposed KLSAT mapping algorithm which
includes the Kernighan-Lin partitioning algorithm and simulated annealing algo-
rithm to minimize the overall communication cost among all of cores. The goal
of KL partitioning algorithm is to partition a task graph into subsets recursively
and get the minimum value of the communication costs between the subsets. So
we use the KL partitioning algorithm to obtain the first stage optimal solution as
the initial solution as the input of the next stage SA algorithm. The simulated
annealing algorithm is an effective global optimization algorithm which simu-
lates the physical annealing process of solid and solves large scale combinatorial
optimization problems. Along with the Metropolis acceptance criterion is intro-
duced to the optimization process, the result of the simulated annealing achieves
an approximate global optimal solution. So, we apply the simulated annealing
algorithm and obtain the optimal mapping solutions at the second stage.

The KL partitioning algorithm is applied to recursively partition the core
graph. Firstly, all cores are in one partition group at level-0. At level-1, there
are three partition subsets, naming partition number 1, 2 and 3, each partition
containing one third the nodes of the core graph. At level-2, nine partitions are
generated (three each from partition-1, partition-2 and partition-3 of level-1)
having partition number 11, 12, 13, 21, 22, 23, 31, 32 and 33. This continues until
there are 3 cores left in each partition for TriBA. Because the initial partitioning
determines the KL algorithm partitioning results, in this paper, this algorithm
runs several times for the best result with different randomly generated initial
partitions which is used for subsequent mapping and iterative improvement.

36 X. Wang et al.

Figure 2 shows an example with N = 27 and how the IP-sets are merged. By
merging three IP-sets, it finds the best contact between boundaries.

Fig. 2. An example of trinomial merging iteration (N = 27)

Algorithm 1. KL Tri-Partitioning(C)
Input: Core graph C=(V, E)
Output: Partition number of each core at each level of partitioning

if |V|≤3 then
return

end if
best tri-partition = NULL
best cost = ∞
for i = 0 to L do

tri-partition = KL Tri(C)
if cost(tri-partitionl best cost then

best cost = cost (tri-partition)
best tri-partition = tri-partition

end if
end for
Generate graphs C1, C2 and C3 based on best tri-partition
KL Tri-Partitioning(C1)
KL Tri-Partitioning(C2)
KL Tri-Partitioning(C3)

Now the next stage, each of these 3-core subsets is assigned to the appropriate
basic unit of the multicore architecture TriBA, L is the level of TriBA and the
number of cores is 3L. Although these 3-core subsets are attached to the nearby
basic unit arbitrarily, it is still great opportunity to resolve an optimization
solution by the proposed KLSAT mapping algorithm.

KLSAT Mapping Algorithm:
When the temperature initialization of the system is completed, the KLSAT

mapping algorithm executes two nested loops. After the external loop with KL
partition algorithm reaching the global minima, the internal loop refines and
finds the optimal local solution. The number of external loop iterations is lim-
ited to U2 as suggested in [14]. The internal loop randomly selects two nodes in a

KLSAT 37

L-level subset and swaps them to determine a new solution. Then the algorithm
calculates whether the new solution is better than the old solution. If it is, the
new solution replaces the current solution. Otherwise, the algorithm automati-
cally generates a random variable γ (0 ≤γ≤1), and compares with the acceptance
probability function (−ΔP)/Temperature. If the value of the function result is
higher than γ, the new solution is accepted. The acceptance probability is high
at high temperatures. However, with the temperature of the system lowing, the
acceptance probability decreases. We limit the iteration of the internal loop to L2

consecutive rejects and the Temperature is more than 0.01. When each internal
loop completed, temperature of the system decreases and the algorithm starts a
new loop accepting the new solution as our initial solution for the next iteration.

Algorithm 2. Algorithm KLSAT mapping Task mapping algorithm based on
simulated annealing
Input: Core Graph C= (V, E), Topology Graph T=(U, F), U=3L, M=400L2

Partition ID (partition number) for each core at each level of KL Tripartition algo-
rithm and simulated annealing algorithm

Output: Addressing number of each core in term of Q(level, C) S = KL Tripartion(C)
P=KL Tri(C) Sbest = S Pbest = P Temperature = 1000L
for i=0 to U2 do

R = 0
while R<L2 and Temperature>0.01 do

S’=neighbor(S)
P’=KL-Tri(S’)
Δ P=P–P’
Generates a random variable γ
if ΔP≤0 or γ≤ e(-ΔP)/Temperature then

P = P’
R = 0

else
R++

end if
if R=0 and PlPbest then

Sbest = S
Pbest = P

end if
end while
Decrement Temperature

end for
Q=MAPPING(C)
return Q

We produce a mapping by using MAPPING (G) algorithm. At each level
of tri-partitioning, we assign a partition number 1, 2 and 3 to each subset by
turn. These numbers have been utilized in the address assignment process in the
MAPPING (G) algorithm. In the mapping algorithm, these 3-core subsets are

38 X. Wang et al.

assigned according to the output results generated by KLSAT mapping algo-
rithm. After the mapping algorithm completed, each core has an assigned (level
number, subset number) to identify its mapping position on the on-chip multi-
core TriBA.

At last the KLSAT mapping algorithm completed, we obtain the global opti-
mal solution. All of task cores are mapped onto the corresponding position of
TriBA multicore architecture.

Fig. 3. An example for KLSAT mapping algorithm ((a) an example task graph, (b)
communication cost of random mapping, (c) communication cost of KLSAT mapping)

In Fig. 3, we present an example of our KLSAT mapping algorithm.
Figure 3(a) shows an example of task graph with communication weighted
between nodes. Figure 3(b) and (c) shows communication cost with random map-
ping and KLSAT mapping. The communication cost of mapping with random
mapping is calculated as Commcost = 1815. And with KLSAT mapping, the
communication cost becomes Commcost = 1240, which is accepted as the new
solution. The KLSAT mapping algorithm continues executing the iteration pro-
cess until the predefined terminated condition value is reached.

5 Experimentation and Results

5.1 Simulator and Benchmarks

In this paper, we used Gem5 as our simulator to evaluate the KLSAT mapping
algorithm, which is widely used as a configurable architecture simulator for mul-
ticore on-chip architecture-related research. In Gem5, the Orion [25] model is
used to evaluate the power consumption of the various NoC topologies. Mean-
while, the benchmarks of PARSEC [26] are used in the following experiments.
We use the WK-recursive NoC TriBA topology as the NoC topology, which is
a regular topology with better NoC topology characteristics such as smaller
network diameter, less total links and lower node degree than the 2DMesh
topology. We compare the KLSAT mapping algorithm with several other algo-
rithms on the TriBA NoC architectures: (1) BL TriBA (the baseline): which
maps the tasks onto the TriBA NoC topology randomly; (2) KL TriBA: KL
mapping algorithm on the TriBA structure; (3) SA TriBA: which is the conven-
tional simulated annealing algorithm on TriBA NoC structure; (4) KLSAT: our
proposed mapping algorithm on TriBA NoC structure.

KLSAT 39

5.2 Results and Analysis

Based on the previous research experience, we set the initial parameters of the
algorithm as follows: M = 4000, temperature0 = 5000, terminated temperature
ε = 0.01. We implement the algorithm in Matlab R2013b environment. Host CPU
is Intel Core i7 3.40 GHz, 8 GB memory and operating system is Windows 7. Host
has 8 processor cores and the sizes of the target machine are 27 and 81.

The network latency of TriBA multicore architecture normalized to the base-
line case shows in Figs. 4 and 5. Due to the various communications character-
istics of these benchmarks, the network latency of experimental results varies
significantly. For 27 cores of TriBA, compared to the baseline case, KL TriBA,
SA TriBA and KLSAT mapping algorithm decrease the network latency by the
average 2.9, 6.1 and 12.2% respectively. In the experimental result of TriBA with
81 cores, the differences between four mapping algorithms are more significant
because the communication overheads among cores are dramatically increased.
The KLSAT mapping algorithm decreases the network latency by an average of
26.7% compared to the baseline as shown in Fig. 5.

Fig. 4. Network latency of the four algorithms with 27 cores

Figure 6 shows the power consumption of TriBA with 27 cores. The power
consumption is normalized to the BL TriBA random mapping algorithm. As
shown in the Fig. 6, the BL TriBA random mapping algorithm consumes the
highest power consumption while the KLSAT mapping algorithm has the least
power, with an average of 6.4% than the random mapping. Figure 7 shows the
experimental results of TriBA’s power consumption with 81 cores. For 81 cores
of TriBA, compared to the baseline case, KL TriBA, SA TriBA and KLSAT
mapping algorithm decrease the power consumption by the average 12.0, 23.1
and 29.5% respectively. In this experimental result, the power savings of KLSAT
mapping algorithm in Fig. 7 is more significant than that in the 27 cores of
TriBA architecture in Fig. 6. Overall, KLSAT mapping algorithm saves power
consumption by an average of 29.5% compared to the baseline and achieves
better performance compared to KL TriBA and SA TriBA.

40 X. Wang et al.

Fig. 5. Network latency of the four algorithms with 81 cores

Fig. 6. Power consumption of the four algorithms with 27 cores

Fig. 7. Power consumption of the four algorithms with 81 cores

The reason is that KLSAT mapping algorithm has a smaller chance to get
trapped in local optimum than random mapping algorithm because we add KL
partition as the initial solution in the KLSAT mapping algorithm. Because KL
partition algorithm combines the triplet-based characteristic of TriBA to make

KLSAT 41

more communication transfer among three cores which have the characteris-
tic of local full interconnect flavor. In consequence, the solution generated by
the KLSAT mapping algorithm has less network communication cost and lower
power consumption than the other mapping algorithms.

In general, the KLSAT mapping algorithm sharply decreases the number
of iterations, the power consumption and network latency, compared with the
random mapping algorithm. Our proposed KLSAT algorithm achieves better
performance than both the KL algorithm and the simulated annealing algorithm.

6 Conclusion

One of the important research fields on NoC is the design of the application
mapping algorithms. Several different mapping algorithms have been presented
to reduce network latency, lower power consumption, satisfy bandwidth con-
straint or minimize on-chip area and so on. This paper focused on a new mapping
algorithm based on KL partition algorithm and the simulated annealing algo-
rithm in order to generate better performance in application mapping problems.
We designed and implemented an application mapping algorithm on multicore
architecture TriBA for performance simulation based on KL partition algorithm
and simulated annealing, and verified the KLSAT mapping algorithm by exper-
iments. Our experimental results show that the algorithm has significant reduc-
tion in the number of iterations, the network latency and the power consumption.
It also shows that the algorithm can solve the large-scale problem.

References

1. Dally, W., Towles, B.: Route packets, not wires: on-chip interconnection networks.
In: DAC 2001, pp. 684–689, June 2001

2. Benini, L., Micheli, G.: Networks on chips: a new SoC paradigm. IEEE Trans.
Comput. 35(1), 70–78 (2002)

3. Farahabady, M., Sarbazi-Azad, H.: The WK-recursive pyramid: an efficient network
topology. In: PAAN 2005, pp. 6–11, December 2005

4. Wang, Y., Juan, S.: Hamiltonicity of the basic WK-recursive pyramid with and
without faulty nodes. J. Theor. Comput. Sci. 562(C), 542–556 (2015)

5. Taylor, M.B., Lee, W., Miller, J., et al.: Evaluation of the raw microprocessor: an
exposed-wire-delay architecture for ILP and streams. ACM SIGARCH Comput.
Archit. News 32(2), 2–13 (2004)

6. Hoskote, Y., Vangal, S., et al.: A 5-GHz mesh interconnect for a teraflops processor.
IEEE Micro 27(5), 51–61 (2007)

7. Shi, F., Ji, W., et al.: A triplet-based computer architecture supporting parallel
object computing. In: IEEE ASSAP 2007, pp. 192–197, July 2007

8. Sahu, P., Manna, N., Shah, N., Chattopadhyay, S.: Extending Kernighan-Lin par-
titioning heuristic for application mapping onto network-on-chip. J. Syst. Archit.
60(7), 562–578 (2014)

9. Zhu, D., Chen, L., Yue, S., Pedram, M.: Application mapping for express channel-
based networks-on-chip. In: DATE 2014, pp. 1–6, March 2014

42 X. Wang et al.

10. Manna, K., Choubey, V., et al.: Thermal variance-aware application mapping for
mesh based network-on-chip design using Kernighan-Lin partitioning. In: PDGC
2014, pp. 274–279. IEEE, December 2014

11. Fang, J., Yu, L., et al.: KLGA: an application mapping algorithm for mesh-of-tree
(MoT) architecture in network-on-chip design. J. Supercomputing 71(11), 4056–
4071 (2015)

12. Manna, K., Teja, V., Chattopadhyay, S., et al.: TSV placement and core mapping
for 3D mesh based network-on-chip design using extended Kernighan-Lin Parti-
tioning. In: VLSI 2015, pp. 392–397. IEEE, July 2015

13. Hu, J., Marculescu, R.: Energy- and performance-aware mapping for regular NoC
architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(4), 551–
562 (2005)

14. Marcon, C., Moreno, E., Calazans, L., Moraes, F.: Comparison of network-on-chip
mapping algorithms targeting low energy consumption. IET Comput. Digit. Tech.
2(6), 471–482 (2008)

15. Prasad, N., Mukherjee, P., Chattopadhyay, S., et al.: Design and evaluation of
ZMesh topology for on-chip interconnection networks. J. Parall. Distrib. Comput.
113(2), 17–36 (2018)

16. Dong, Z., Yang, B., Hu, P., et al.: An efficient global energy optimization approach
for robust 3D plane segmentation of point clouds. ISPRS J. Photogra. Remote
Sens. 137(1), 112–133 (2018)

17. Orsila, H., Salminen, E., Timo, D.: Best practices for simulated annealing in mul-
tiprocessor task distribution problems. Tech. 4(2), 197–198 (2008)

18. Yang, B., Liang, G., et al.: Parameter-optimized simulated annealing for applica-
tion mapping on networks-on-chip. In: LIO 2012, pp. 307–322 (2012)

19. Tosun, S., Ozturk, O., Ozkan, E., Ozen, M.: Application mapping algorithms
for mesh-based network-on-chip architectures. J. Supercomputing 71(3), 995–1017
(2015)

20. Cheng, C., Chen, W.: Application mapping onto mesh-based network-on-chip using
constructive heuristic algorithms. J. Supercomputing 72(11), 1–14 (2016)

21. Zhong, L., Sheng, J., et al.: An optimized mapping algorithm based on simulated
annealing for regular NoC architecture. In: ASIC 2011, pp. 389–392. IEEE, October
2011

22. Larsson, T., Jesper, F.: Direct graph k-partitioning with a Kernighan-Lin like
heuristic. Oper. Res. Lett. 34(6), 621–629 (2006)

23. Ye, T., Benini, L., Micheli, G.: Analysis of power consumption on switch fabrics in
network routers. In: DAC 2002, pp. 524–529, June 2002

24. Hu, J., Marculescu, R.: Energy-aware mapping for tile-based NoC architectures
under performance constraints. In: ASPDAC 2003, pp. 233–239. IEEE (2003)

25. Kahng, A., Li, B., Peh, L., Samadi, K.: ORION 2.0: a power-area simulator for
interconnection networks. IEEE Trans. Very Large Scale Integr. Syst. 20(1), 191–
196 (2012)

26. Bienia, C., Li, K.: PARSEC 2.0: a new benchmark suite for chip-multiprocessors.
In: AWMBS 2009, pp. 1–9. IEEE (2009)

Modeling and Analysis
of the Latency-Based Congestion

Control Algorithm DX

Wanchun Jiang(B), Lijuan Peng, Chang Ruan, Jia Wu, and Jianxin Wang

School of Computer Science and Engineering, Center South University,
Changsha 410083, Hunan, China

{jiangwc,ruanchang,jxwang}@csu.edu.cn

Abstract. Nowadays, low latency has become one of the primary goals
of congestion control in data center networks. To achieve low latency,
many congestion control algorithms have been proposed, wherein DX is
the first latency-based one. Specifically, DX tackles the accurate latency
measurement problem, reduces the flow completion time and outper-
forms the de facto DCTCP algorithm significantly in term of median
queueing delay. Although the advantages of DX have been confirmed by
experimental results, the behaviors of DX have not been fully revealed.
Accordingly, some drawbacks of DX under special environment are unex-
plored. Therefore, in this paper, we conduct fluid-flow analysis over DX,
deducing sufficient condition for the stability of DX and revealing the
behaviors of DX. Analytical results uncover two problems of DX: (1)
it has poor throughput when either the base RTT is very large or the
number of flows is relatively small; (2) it suffers from large queueing
delay when either the base RTT is relatively small or the number of
flows is very large. These results are instructive to the improvement and
deployment of DX. Simulation results based on NS-3 verify our analytical
results.

Keywords: Congestion control · Fluid-flow analysis · Stability ·
Latency

1 Introduction

Nowadays, low latency becomes one of the primary goals of designing conges-
tion control algorithms for the data center network. To achieve low latency,
accurate and fine-grained feedback signals are needed to represent the degree of
congestion. Recently, many congestion control algorithms have been proposed
[1,5,10,12]. Generally speaking, most of them employ the following feedback

Supported by the Projects of Hunan Province Science and Technology Plan in China
under Grant No. 2016JC2009.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 43–55, 2019.
https://doi.org/10.1007/978-3-030-30709-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_4

44 W. Jiang et al.

signals: the packet loss, the explicit in-network feedback like ECN, and the
latency-based feedback. Compared to the other two signals, latency-based feed-
back signals have the following advantages. The endpoint can detect the fine-
grained degree of congestion, or even estimate the switch queue-size [10,12] by
measuring the Round Trip Time (RTT) and the base RTT. Moreover, the in-
network support is never required.

However, the latency-based feedback signal is difficult to be measured accu-
rately [1]. This is because most kernel implementations can only track RTTs at
the granularity of 1ms [9], while the RTT is only a few hundreds of microseconds
in the data center network. Recently, DX, the latency-based congestion control
algorithm proposed for data center networks, tackles the measurement problem
of RTT and has good performance. By setting its operating point close to zero,
DX can reduce the flow completion time and outperform the de facto DCTCP
algorithm significantly in term of median queueing delay.

In this paper, we model and analyze the DX algorithm because (1) DX is the
up-to-date latency-based congestion control algorithm while other state-of-art
algorithms such as ExpressPass and NDP are not. As a latency-based algorithm,
DX has very good performance, which are validated by experimental results in
[6]. (2) Although some advantages of DX have been confirmed by experimental
results, the behaviors of DX have not been explored theoretically. (3) Moreover,
existing analytical work on congestion control cannot be applied to the window-
based latency-based DX algorithm. In details, we first model DX with the fluid-
flow method and linearize the fluid-flow model such that the Nyquist stability
criterion [6] can be applied to the model. Subsequently, we deduce the sufficient
condition for the stability of DX. In this way, the influence of some parameters,
such as the number of flows and the RTT, on the stability of DX can be exhibited.
Moreover, we theoretically uncover a special behavior of DX under the condition
of a large number of flows and small RTT. Finally, we implement DX in NS-3
simulator to confirm our analytical results.

In total, our analytical results mainly reveal two problems of DX. (1) DX has
poor throughput when the DX system is unstable when either the base RTT is
very large or the number of flows is relatively small. (2) DX suffers from large
queueing delay when either the base RTT is relatively small or the number of
flows is very large. Under these conditions, DX enters into the special stable state.
It implies that DX should not be employed under these kinds of environments.
We believe these results are instructive to the improvement and deployment of
DX in practical data center network.

2 Background and Related Work

In this section, we first introduce the DX algorithm in brief, and then present
the related work on the theoretical analysis of congestion control algorithms.

Modeling and Analysis of DX 45

2.1 The DX Algorithm

DX is a window-based congestion control algorithm, which uses the latency-
based feedback signal to determine the congestion window should be increased
or decreased. Similar to TCP, its congestion avoidance algorithm follows the
Additive Increase Multiplicative Decrease (AIMD) style. The DX algorithm is
characterized by dropping the queue size down to zero quickly as soon as it
observes congestion. In the following, we introduce the DX algorithm in detail.

The main DX algorithm is composed of two parts: one is measuring the
latency accurately, the other one is a congestion control algorithm for adjusting
the congestion window. For accurately measure queueing delay, [10] exhibits
sources of measurement errors and their magnitude and their elimination
technique.

The congestion control algorithm of DX works as follows. In each RTT, DX
measures the queueing delay, which is the difference between the base RTT
and a sample RTT. If the queueing delay is not 0, DX considers the network is
congested. Otherwise, DX considers that there is no congestion. Mathematically,
the window adaption algorithm of DX is as follows:

W (t + 1) =

{
W (t) + 1, if Q(t) = 0,
W (t)(1 − Q(t)

U(t)), if Q(t) > 0,
(1)

where W (t) is the window size at time t, Q(t) represents the average queueing
delay measured by DX in current RTT. U(t) is a self-updated coefficient.

U(t) =
R0 · W (t)
W (t) − 1

, (2)

where R0 is the base RTT. The self-updated coefficient U(t) is deduced in con-
sideration of high utilization and the number of flows in the network.

According to Eq. (1), DX decreases the congestion window as soon as it
detects the network congestion according to Q(t). Therefore, DX keeps the near-
zero queueing delay.

2.2 Related Work

Although there are many theoretical works on congestion control algorithms,
such as those in [7,11,13], we focus on those works analyzing the state-of-art
congestion control algorithms for data center networks in this paper.

Analysis on Non-latency-Based Algorithms. DCTCP [1] is a famous con-
gestion control algorithm using ECN. In [2], Alizadeh et al. develop a fluid-
flow model of DCTCP and analyze its stability by the Bode Stability Criterion
[6]. The analysis insights guide the configurations of design parameters like the
threshold. DCQCN is the latest protocol which outperforms DCTCP in terms
of reducing the flow completion time. In [14], the authors analyze its stability
condition using the same method as DCTCP.

46 W. Jiang et al.

All these algorithms for data center works are based on non-latency conges-
tion signals, while DX adopts the latency-based feedback signal. Therefore, the
theoretical analysis of these algorithms cannot be directly applied to DX.

Analysis on Latency-Based Algorithms. TIMELY [12] is an end-to-end,
rate-based congestion control algorithm that uses changes in RTT as a conges-
tion signal. In [14], the author finds that TIMELY has no unique fixed point.
To analyze the stability of TIMELY, they modify the algorithm. Its stability
condition is analyzed through the Nyquist Stability Criterion [6].

Similar to TIMELY, DX is also a latency-based transport protocol. Different
from TIMELY, DX is a window-based algorithm and adjusts the congestion
window according to the queueing delay. In [10], authors show that DX exhibits
very good performance by extensive experiments. However, to the best of our
knowledge, there is no theoretical work on the window-based latency-based DX
up to now, which motivates us to perform this investigation.

3 Analysis of DX

In this section, we first build a fluid-flow model for the DX algorithm and then
analyze its stability based on its linearized version.

3.1 Modeling

Considering the oversubscribed link and the applications like MapReduce [4],
we assume that the sources are homogeneous and flows arrive according to the
Poisson process, the same as [2,3,8]. In other words, we assume that all sources
have identical sending rates and RTTs, and the RTT equals to τ seconds.

Suppose that N sources share a single link of capacity C. Let W (t) denote
the congestion window, R0 represent the fixed base RTT, and Q(t) be the queue-
ing delay. Let p denote the probability of Q(t) > 0. Although in practice, the
probability p is time-varying. We find that p is close to a constant in the stable
state, as shown in the simulation results under the condition of varying p in
Sect. 4. Therefore, we assume that p is constant for the simplicity of analysis.
With this assumption, we plug the Eq. (2) into Eq. (1), and can model the DX
algorithm as follows by using the method of [11].

dW (t)
dt

=
seg ∗ (1 − p)

R0 + Q(t − τ)
− Q(t − τ)(W (t) − seg)

R0(R0 + Q(t − τ))
p, (3)

dQ(t)
dt

=

{
NW (t)

C(R0+Q(t−τ)) − 1 if Q(t) > 0,

max{0, NW (t)
C(R0+Q(t−τ)) − 1} if Q(t) = 0.

(4)

The Eq. (3) describes the dynamic evolution of the window size W (t). The Eq. (4)
models the evolution of the queueing delay Q(t).

Modeling and Analysis of DX 47

3.2 Stability Analysis

We analyze the stability of DX based on its fluid-flow model (3) and (4). Assume
that the equilibrium point of DX is (W0, Q0). At the equilibrium point, we have
Ẇ (t) = 0 and Q̇(t) = 0. Referring to Eqs. (3) and (4), we have

seg ∗ R0(1 − p) = pQ0(W0 − seg). (5)

NW0 = C(R0 + Q0). (6)

Substituting Eq. (6) into Eq. (5), we can get the following expression of Q0

Q0 =
p(N ∗ seg − CR0) +

√
Δ

2Cp
, (7)

where
Δ = (CpR0 − pN ∗ seg)2 + 4CpNR0 ∗ seg ∗ (1 − p). (8)

Next, we will linearize the fluid-flow model around the equilibrium point
(W0, Q0) to obtain

˙δW = a1δW + a2δQ(t − τ),
˙δQ = b1δW + b2δQ(t − τ),

(9)

where
δW =̇W − W0,
δQ=̇Q − Q0,

(10)

and
a1 = − Q0p

R0(R0+Q0)
, a2 = 2p∗seg−pW0−seg

(Q0+R0)2
,

b1 = N
C(R0+Q0)

, b2 = − NW0
C(R0+Q0)2

.
(11)

To obtain the characteristic equation, we compute the Laplace transform of
(9). Then we can obtain the transfer function of the linear time-delayed system

G(s) = e−sτ a1b2 − a2b1 − b2s

s(s − a1)
. (12)

Then, we apply the Bode Stability Criteria [6] to the transfer function (12).
Specifically, define the frequency characteristic function G(jω) = G(s)|s=jω of
the system, we have

G(jω) = A(ω)ejϕ(ω), (13)

where

|A(ω)|2 =
b22[ω

2 + (a1 − a2b1
b2

)2]
ω2(ω2 + a2

1)
, (14)

ϕ(ω) = −π

2
− ωτ + arctan

ω

a1
+ arctan

ωb2
a1b2 − a2b1

, (15)

48 W. Jiang et al.

where A(ω) is amplitude - frequency characteristics and ϕ(ω) is phase-frequency
characteristic. Assume that ωc is the cross-over frequency which makes L(ωc) =
0, i.e., A(ωc) = 1. From Eq. (14), we have

ωc =

√
b22 − a2

1 +
√

(a2
1 − b22)2 + 4(a1b2 − a2b1)2

2
. (16)

Note that ϕ(0) = −π
2 . According to Bode Stability Criteria [6], the DX sys-

tem is stable when ϕ(ωc) > −π, i.e., we have the following theorem in summary.

Theorem 1. The DX system is stable if the delay satisfies

τ <
1
ωc

(arctan
ωc

a1
+ arctan

ωcb2
a1b2 − a2b1

+
π

2
), (17)

where ωc is defined in (16), and a1, b1, a2 and b2 are defined in (11).

(a) Varying N (b) Varying C (c) Varying R0

Fig. 1. The variation of the boundary of τ with different N , C, R0.

Theorem 1 implies that the stability of the DX system holds just when τ is
limited. The boundary of τ is associated with both the bottleneck bandwidth
C and the number of flows N . In fact, according to Eq. (17), the boundary
of τ decreases when either the bandwidth C increases or the number of flows
decreases. In order to verify the result, we assume that the value of p is 0.95, the
bandwidth C is 10 Gbps, the number of flows is 50, the packet size seg is 1500
and the base RTT R0 is 80 µs by default. Figure 1 shows the variation of the
boundary of τ with different N , C, R0 respectively. In Fig. 1(a), when N is small,
the boundary of τ is small and accordingly Theorem 1 is probably not satisfied.
Consider this condition, we do not know whether the DX system is stable. When
DX becomes unstable, it will suffer from large queue-size oscillation and poor
link utilization. However, when N is large, Theorem 1 is satisfied, i.e., the DX
system is stable. In Fig. 1(b) and (c), when C or R0 changes, similar results can
be obtained according to Theorem 1. This is also why the evaluation of DX in
[10] always shows good performance.

In total, Theorem 1 reveals the problem that DX may become unstable and
have poor throughput when either the base RTT is very large or the number of
flows is relatively small.

Modeling and Analysis of DX 49

3.3 A Special Stable State

When we conduct the stability analysis of the DX algorithm, we do not consider
the limitation on the congestion window size. In fact, the window size of the
DX cannot be less than a segment in real networks. When there are too many
flows, i.e., when N∗seg

R0
> C, the aggregated sending rate of all flows are always

larger than the bandwidth C. As a result, Q would be always greater than 0.
Meanwhile, the congestion window of every flow is already at the minimum value
1 and cannot be decreased again. In other words, although the queueing delay is
still greater than 0 in this scenario, the window size cannot be adjusted by the
congestion control algorithm.

To obtain the stable point in this situation, W (t) is kept invariant and its
value is always a segment, which can be plugged into the Eq. (4). We can get
the new model.

dW (t)
dt

= 0,

dQ(t)
dt

=

{
N∗seg

C(R0+Q(t−τ)) − 1 if Q(t) > 0,

max{0, N∗seg
C(R0+Q(t−τ)) − 1} if Q(t) = 0,

we can get the fixed point (W ∗, Q∗) as follows.

W ∗ = seg,

Q∗ =
N ∗ seg − CR0

C
.

We find that the system is absolutely stable when N ≥ CR0
seg , and this special

stable state is different from the stable state under N < CR0
seg . In the stable state,

the queueing delay will always drop to zero when N < CR0
seg , so the stable state

in this case still has the jitter. But if N ≥ CR0
seg , the window size does not change

and the queueing delay will increase with the increasing number of flows. We
can summarize this phenomenon as the following theorem.

Theorem 2. When the condition N ≥ CR0
seg is satisfied, the DX system enters

a special stable state where

(1) The system is stable;
(2) The congestion window of every flow is unchanged with size 1;
(3) The link is fully utilized.

Obviously, the queueing delay would increase under this case. In other words,
Theorem 2 reveals the problem that DX would suffer from large queueing delay
when either the base RTT is relatively small or the number of flows is very large.

50 W. Jiang et al.

4 Evaluation

In this section, we validate our theoretical analysis by NS-3 simulations. First, we
evaluate the accuracy of our model by comparing the numerical solution of the
model conclusion by Matlab 2014a with NS-3 simulation results. Subsequently,
we validate our assumption about the probability p by simulations. Next, we
examine the conclusion on the special stable state in Theorem 2. Finally, the
theoretical conclusion in Theorem 1 is validated by several experiments with the
changing parameter.

We use a many-to-one network topology with 10 Gbps link capacity in our
experiments. The switch buffer is set to be 256 KB. To validate the stability of
a system, we use the metric of the link utilization. If a system is stable, the link
utilization keeps a high level since the queue length at switch cannot be zero.
We also show the queueing delay and queue size in a few experiments.

Note that in all experiments, we do not explore all values exhaustively for
a parameter due to practical consideration. Specifically, the concurrent number
of flows, which occupy the link fully, can not surpass the number of ports of a
switch (often less than 96). The commonly deployed maximum bandwidth is not
greater than 40 Gbps in data center networks, and the base RTT is less than
500µs [1].

Table 1. Probability of decreasing windows

RTT
N

10 20 30 40 50 60 70 80 90 100

80µs 0.79599 0.887787 0.934742 0.956067 0.973239 0.982844 0.995288 0.999902 0.999896 0.999891
200µs 0.782627 0.835583 0.869653 0.898591 0.914323 0.922147 0.933485 0.944501 0.953232 0.960271
400µs 0.743014 0.827145 0.876389 0.881062 0.889631 0.890585 0.898752 0.901909 0.913419 0.920201

4.1 Model Validation

Although we model the DX system in Sect. 3, how well the model can match the
behavior of practical DX is yet unknown. We answer this question by comparing
the queue length obtained by the model with that by running with the NS-3
code of DX. Before that, we first check the assumption that the probability of
decreasing windows or Q(t) > 0, i.e., p, is constant in the stable state.

We select the scenario where the system enters a stable state and a special
stable state, and test the change of p with N ranging from 10 to 100 when
the base RTT (R0) is 80µs, 200µs, 400µs, as shown in Table 1. According to
Theorem 1, we know that when R0 is 80µs, 200µs, or 400µs, the system stability
conditions are N > 30, N > 50 or N > 140, respectively. Meanwhile, if the R0 is
80µs and N is greater than 70, the system is in a special stable state. According
to our measurement of p, all values of p are greater than 0.9 when the system
is stable. When the system enters a special stable state, the value of p is even

Modeling and Analysis of DX 51

greater than 0.99. Using the average value 0.95, p represents those values in the
two states basically. This is the reason why we set p as a constant.

Next, we examine the accuracy of our whole model. Figure 2(a) and (b)
are respectively the evolution of the queue length under the condition of
N = 50, R0 = 20µs, where DX is in the special stable state, and N = 50,
R0 = 80µs, where the behaviors of DX are described by Eqs. (12) and (13).
The results of the fluid-flow model are close to the simulation results of NS-3.
Therefore, the accuracy of our model for DX is good.

4.2 The Special Stable State

Through the stability analysis in Sect. 3.3, there is a special stable state under the
condition of a large number of flows or small base RTT , according to N < CR0

seg in
Theorem 2. When the DX system enters the special stable state, the utilization
can even achieve 99.9% and the window size of each flow keeps 1. In this scenario,
we will verify this conclusion.

(a) Special stable case (b) The stable case

Fig. 2. Comparison of the numerical results of fluid flow model with NS-3 simulation.

(a) N = 50. (b) R0 = 80µs.

Fig. 3. The three states of DX.

52 W. Jiang et al.

We first set the number of flows to be 50 and the bottleneck bandwidth
10 Gbps. Figure 3(a) shows the three states of DX including the special stable,
the stable and the unstable states with varying R0. In the special stable state,
the link utilization is 99.9%. We observe that the transition from the stable
state to the unstable state is smooth. In fact, the boundary between these two
states is not absolute. This is because of we model and analysis DX with some
assumptions, like homogeneous sources. In this case, the τ calculated according
to Theorem 1, corresponding to the boundary line, is not the absolute upper
bound of maintaining the stable state of DX.

Second, we set the base RTT to be 80µ s and test the link utilization with
varying N . When the number of flows exceeds the threshold (67 in Fig. 3(b)), the
system enters the special stable state. Although the window sizes of these flows
should be reduced due to the queueing delay, there is a limit on the window sizes,
which cannot be lower than 1. As a result, the injected traffic may be greater
than the bandwidth delay product, resulting in the queue at the switch cannot
be drained up and high utilization.

Next, we inspect the special stable state further by taking deep study into
the experiment detail. In Fig. 4(a) and (b), we show the dynamic change of the
average congestion window (cwnd) of flows with increasing N when R0 is 120µs,
and with increasing R0 when N is 50. We calculate the corresponding conditions
are N ≥ 100 and R0 ≤ 60 for entering the special stable state, respectively. From
Fig. 4, we can see that the average window size is indeed 1 when the conditions
are satisfied, which means that the system enters the special stable state. Besides,
according to our analysis, the queueing delay may increase with a larger number
of flows. Figure 5 shows the change of the queueing delay when N is larger
than 70. We omit the result of N < 70 since the DX system enters a special
stable state when N ≥ 67 in this scenario. These simulation results verify our
theoretical conclusions in Theorem 2, that is, the special stable state can lead to
high network utilization but possible high queueing delay. Further, we plot the
Cumulative Distribution Function (CDF) of the queue size in Fig. 6. When N is

(a) R0 = 120µs. (b) N = 50.

Fig. 4. Comparison of the size of the average congestion window.

Modeling and Analysis of DX 53

Fig. 5. The queueing delay changes with
increasing N in the special stable state

Fig. 6. The CDF of the queue size with
the different base RTT

fixed, the system will enter the special stable state for smaller R0, resulting in
that DX has the larger queue size or queueing delay for small R0. In this figure,
the queue size is constantly larger than 30 when R0 = 20µs.

4.3 Stability Criterion

According to the analysis in Sect. 3 and Theorem 1, the system stability is
affected by the number of flows N , R0 and C. Further, the larger N or the
smaller the R0 or the smaller the C, the more stable the system. To verify this
conclusion, we just change one parameter and keep other parameters invariant
to investigate its sole influence on the stability of DX in our simulations.

Varying R0 In this test, we fix the network parameter N as 50 and vary
the base RTT R0 from 20µs, 120µs to 320µs. According to Theorem 1, we
calculate the upper bound of R0 for keeping the DX system stable as 145µs.
We observe that the larger R0 is, the lower the link utilization is, which ranges
from 99.91%, 96.11% to 89.1%. The low link utilization means that the system
becomes more unstable. This is consistent with the theoretical result.

Varying N In this test, we vary N from 10, 50 to 100 with fixed R0 120µs.
The link utilization increases from 94.81%, 96.11% to 98.53% when N becomes
larger and larger. Our theoretical conclusion is that when N is larger than 42,
DX is stable according to Theorem 1. From the increase of the link utilization,
our theoretical analysis is basically correct.

Varying C In this test, the bottleneck bandwidth C is changed from 1 Gbps,
10 Gbps to 40 Gbps. We set N as 50 and the base RTT R0 as 120µs. In par-
ticular, the link utilization decreases from 99.86%, 96.11% to 86.44%. When C
is 40 Gbps, the utilization is lowest, which means that the system suffers from
unstable. This confirms the theoretical analysis that the larger bandwidth will
lead to the instability of the system in Sect. 3.

54 W. Jiang et al.

5 Conclusion

In this paper, we perform a theoretical analysis of DX, which is the up-to-date
latency-based algorithm in data center network and has a better performance
than the well-known DCTCP. Current investigations on DX are based on exper-
iments and its theoretical analysis is spare. We establish the fluid-flow model of
the DX system. By linearizing the fluid model and using the stability criterion of
the linear system, we derive the stability condition of the DX system. According
to our analysis, we found that the stability of the system is proportional to the
number of flows, as well as inversely proportional to the propagation delay and
the bottleneck bandwidth. In particular, there is a special stable state when N
is too large or RTT is too small. Through the analysis, we find that DX has
poor throughput when either the base RTT is very large or the number of flows
is relatively small. Besides, DX suffers from large queueing delay when either
the base RTT is relatively small or the number of flows is very large. Finally, we
verify the conclusion in the NS-3 simulation. Our analysis takes a step forward
for understanding DX deeply and can be helpful to deploy DX in the data center
network or design new latency-based protocols built on DX.

References

1. Alizadeh, M., et al.: Data center TCP (DCTCP). ACM SIGCOMM Comput. Com-
mun. Rev. 40, 63–74 (2010)

2. Alizadeh, M., Javanmard, A., Prabhakar, B.: Analysis of DCTCP: stability, conver-
gence, and fairness. In: Proceedings of the ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems, pp. 73–84. ACM
(2011)

3. Alizadeh, M., Kabbani, A., Atikoglu, B., Prabhakar, B.: Stability analysis of QCN:
the averaging principle. In: Proceedings of the ACM SIGMETRICS Joint Interna-
tional Conference on Measurement and Modeling of Computer Systems, pp. 49–60.
ACM (2011)

4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

5. Gao, P.X., Narayan, A., Kumar, G., Agarwal, R., Ratnasamy, S., Shenker, S.:
pHost: distributed near-optimal datacenter transport over commodity network fab-
ric. In: ACM Conference on Emerging Networking Experiments & Technologies
(2015)

6. Golnaraghi, F., Kuo, B.: Automatic control systems. Complex Variables 2, 1–1
(2010)

7. Hollot, C.V., Misra, V., Towsley, D., Gong, W.: Analysis and design of controllers
for AQM routers supporting TCP flows. IEEE Trans. Autom. Control 47(6), 945–
959 (2002)

8. Jiang, W., Ren, F., Shu, R., Wu, Y., Lin, C.: Sliding mode congestion control for
data center ethernet networks. IEEE Trans. Comput. 64(9), 2675–2690 (2015)

9. Lee, C., Park, C.: Accurate latency-based congestion feedback for datacenters. In:
USENIX ATC, pp. 403–415 (2015)

10. Lee, C., Park, C., Jang, K., Moon, S., Han, D.: DX: latency-based congestion
control for datacenters. IEEE/ACM Trans. Networking 25(1), 335–348 (2017)

Modeling and Analysis of DX 55

11. Misra, V., Gong, W.B., Towsley, D.: Fluid-based analysis of a network of AQM
routers supporting TCP flows with an application to red. ACM SIGCOMM Com-
put. Commun. Rev. 30, 151–160 (2000)

12. Mittal, R., et al.: TIMELY: RTT-based congestion control for the datacenter. ACM
SIGCOMM Comput. Commun. Rev. 45, 537–550 (2015)

13. Srikant, R.: The Mathematics of Internet Congestion Control. Springer, New York
(2012)

14. Zhu, Y., Ghobadi, M., Misra, V., Padhye, J.: ECN or Delay: lessons learnt from
analysis of DCQCN and TIMELY. In: Proceedings of the 12th International on
Conference on Emerging Networking Experiments and Technologies, pp. 313–327.
ACM (2016)

Distributed Quality-Aware Resource
Allocation for Video Transmission

in Wireless Networks

Chao He1,2, Zhidong Xie1,2(B), and Chang Tian1

1 College of Communications Engineering,
Army Engineering University of PLA, Nanjing 210007, China

xzd313@163.com
2 National Innovation Institute of Defense Technology,

Academy of Military Sciences of PLA, Beijing 100071, China

Abstract. The rapid development of wireless networks makes it more
convenient for people to enjoy high quality multimedia. However, video
applications are throughput-demanding, and relatively, radio resource
always seems insufficient. Hence, a distributed algorithm is designed in
this paper to allocate the limited wireless resource among multiple users
for video streaming. In order to specify multimedia service from other
ordinary data transmission, the QoE-oriented utility function is consid-
ered first. Then, a potential game model is formulated and all the video
receivers can update their rate strategies with very little information
exchange. By this kind of updating, the bandwidth allocation could be
achieved intelligently. The algorithm converges to a set of correlated
equilibria. Numeric simulation results indicate that it brings remarkable
benefits to both the resource provider and the video users.

Keywords: Distributed algorithm · Resource allocation · QoE ·
Potential game

1 Introduction

The massive layout of different wireless networks makes handheld devices more
and more pervasive. Meanwhile, High Definition (HD) and Ultra High Definition
(UHD) multimedia gradually bring people high-grade visual experience. When
delivered in wireless network, high definition videos need more available band-
width. Although they have been greatly compressed by video coding algorithms,
such as H.265/HEVC, wireless networks still can not afford the burdens when
users become abundant. Thus, it’s very crucial to properly allocate the limited
bandwidth resource to different video terminals.

This work was funded by the Project of Natural Science Foundations of China (No.
91738201 and 61401507).

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 56–65, 2019.
https://doi.org/10.1007/978-3-030-30709-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_5

Distributed Resource Allocation for Video Transmission 57

Some literatures solved the rate allocation problems by improving the Qual-
ity of Service (QoS) and formulating them as optimization problems [1,7,18].
Meanwhile, we can find that game theory has been widely used in tackling with
these issues and gotten very good effects. [17] established a two-level game frame-
work, with an evolutionary game for underlying service and a differential game
for upper bandwidth selection. [9] proposed a Stackelberg dynamic game model
to get the optimal allocated resources. [4] modeled resource competition as the
process of replicator dynamics and formulated a decentralized way to deal with
task offloading. However, some of them were not about video transmission, or
some of the utility functions could not effectively describe the Quality of Expe-
rience (QoE) of video application. Some others [3,5,11,13] studied the QoE and
solved the allocation problems of handing off and interface selection, etc. Com-
pared with game theory, they often followed a traditional optimization-based
approach. [16] formulated the issue as a cooperative bargaining problem of game
theory. It also took both the QoE and fairness into account. But they need a
proxy server to allocate the bandwidth collaboratively. Thus, the robust of the
system may mainly depend on the server which could be invaded and influenced
easily.

In this paper, we propose a distributed rate allocation framework and con-
struct a potential game model so that the bandwidth can be allocated in a
reasonable and efficient way. The total utility of all users is our primary consid-
eration and we fully consider the users’ experience. After several iteration, the
algorithm will converge to correlated equilibria and each receiver will choose and
keep a proper transmission rate. The rest of this paper is organized as follows. In
Sect. 2, we describe the system in detail and discuss our preliminary goal. Also,
the utility function is introduced here. In Sect. 3, we model the problem as a
potential game and prove the existence of correlated equilibrium. Section 4 fol-
lows the way of regret-matching to solve the model. The experimental results and
some discussions are settled in Sect. 5. And we draw the conclusions in Sect. 6.

2 System Model and Utility Function

2.1 System Model

Figure 1 presents the typical scenario we discuss. There are N Unmanned Aerial
Vehicles (UAV) flying in the coverage of the same access point (AP) and all
of them are equipped with Wireless Cameras (WC). Thus, the UAV platforms
have the functions of recording and compressing videos, and then, they send the
encoded videos to the Video Processing Center (VPC) via the wireless network.
All videos are finally edited there together for all kinds of commercial purposes.
Because the AP is owned by a Network Service Provider (NSP), as the receiver
of the communication, the VPC should lease the wireless channels from the NSP.
In order to gain good total video experience, the limited wireless resource should
be allocated properly among the UAVs.

Suppose Cband is the total constant throughput provided by the AP. ri
denotes the channel rate for the i-th WC (WCi), which varies from the minimum

58 C. He et al.

Fig. 1. Video transmission network

rate constraint Rmin
i to the maximum one Rmax

i , i = 1, 2, ..., N . R= [r1, r2,...,rN]
denotes the rate vector of the N WCs and the utility function vector is
U= [u1, u2,...,uN], correspondingly. In order to send back high quality video,
each WC intends to magnify their own utilities:

max ui

s.t. Rmin
i ≤ ri ≤ Rmax

i

0 ≤
N∑

i=1

ri ≤ Cband

(1)

2.2 QoE-Based Utility

In ordinary data transmission, the utility is always formulated as the function
of QoS. However, users and service providers focus more on the QoE. Peak
Signal to Noise Ratio (PSNR) is a typical video quality assessment (VQA) metric
based on the error statistics of pixel domain. Some studies regarded the mapping
relation between PSNR and Mean Opinion Score (MOS) as a straight line [8,15].
But figures in [10,14] show that the mapping is closer to a sigmoid function.
Anyhow, an effective expression of PSNR could properly describe the variation
trend of video MOS. Furthermore, PSNR has the lowest complexity among many
evaluation methods [10], which makes it more convenient to use in real-time
services. In this paper, we adopt the formula in [2] and the utility of video of
WCi can be expressed as

ui = PSNR(ri) − P (ri)

= a + b ·
√

ri

c
(1 − c

ri
) − P (ri)

(2)

Distributed Resource Allocation for Video Transmission 59

where P (ri)=θ · ri

Cband is the price the VPC pays for the channel leasing of WCi

and θ is the price constant.

3 Potential Game Based Resource Allocation

From the view of individual, the WCi intends to maximize its channel rate so that
its QoE will be favorable. However, it’s not allowed too much channel occupation,
because the whole bandwidth the NSP can provide is limited and the VPC
has to concentrate on maximizing the total utility rather than the single ones.
This makes the problem complex. In this paper, we regard it as decentralized
process and model the problem as a potential game. The game is denoted as G =
[Ω, {Ri}i∈Ω , {Ui}i∈Ω], where Ω= {1, 2, ..., N} is the set of players. Ri represents
the strategy of the i-th player and Ui is the utility correspondingly. It’s hoped
that, by very little information exchange, everyone can choose proper strategy
and no one will break the equilibrium.

In this section, we construct a potential function as: I =
∑N

i=1 ui and the
problem can be presented as:

max I=
N∑

i=1

{a + b ·
√

ri

c
(1 − c

ri
)} − P (

N∑

i=1

ri)

s.t. Rmin
i ≤ ri ≤ Rmax

i

0 ≤
N∑

i=1

ri ≤ Cband

(3)

where P (
N∑

i=1

ri)=θ.

N∑

i=1
ri

Cband means the price the VPC pays for all the N channel

leasing. The more the bandwidth is occupied in the AP, the more the VPC should
pay for it, which will cut its benefits in another way. On the other hand, NSP
can also effectively guarantee the quality of the network and avoid congestion
by changing the price.

Proposition 1. Each WC selfishly switches its rate strategy will lead to a near
optimal solution to the whole utility of the VPC and the game G we propose is
a standard potential game.

Proof. We set another rate strategy for WCi as r′
i. Because the potential function

I is the sum of the single utilities, we can get

ΔI = I(ri) − I(r′
i) = u(ri) − u(r′

i) = Δu (4)

The variation of the potential function equals to the difference value of the utility
function. According to [12], we know that game G is a standard potential game.

60 C. He et al.

Proposition 2. The correlated equilibrium uniquely exists in this model.

Proof. From Eq. (3), we can get the partial derivative of the potential function

∂I(ri)
∂ri

=
b

2
√

cri
+

b
√

c

2
√

ri
3 − θ

Cband
(5)

As b
2
√

cri
+ b

√
c

2
√

ri
3 > 0 and θ

Cband > 0, there exists ri=r̃i, which makes Eq. (5)
identically equal to zero.

Then, we get the second-order partial derivative of Eq. (3) at ri=r̃i

∂2I(ri)
∂r2i

∣∣∣∣
ri=r̃i

= − b

4
√

c
√

r̃i
3 − 3b

√
c

4
√

r̃i
5 (6)

Because b

4
√

c
√

r̃i
3 > 0 and 3b

√
c

4
√

r̃i
5 > 0, we can get ∂2I(ri)

∂r2
i

∣∣∣
ri=r̃i

< 0. The results

show that, if WCi doesn’t choose the data rate r̃i, a higher total utility will not
be obtained.

4 Resource Allocation Algorithm

Literature [6] discussed a simple adaptive procedure leading to correlated equi-
librium and provided the way of “regret-matching”. According to this method,
and also on the basis of the game model we build above, a distributed algorithm
can be obtained to reach correlated equilibrium as follow:

Initialization: At the initial time when t = 1, each WC can get the minimum
rate of the video to start its strategy. As a matter of fact, the rate can be
selected arbitrarily within the range. Meanwhile, a strategy space {R space} is
formulated.

Iterative Update Process:

Strategy Update: At the time t ≥ 2, each WC calculates the utility of the current
strategy ri and the utility for choosing another strategy r′

i. The average difference
between ri and r′

i needs to be calculated as:

Lt
i(ri, r

′
i) =

λ

t
Lλ

i (ri, r
′
i) +

1
t
[ut

i(r
′
i) − ut

i(ri)] (7)

where λ denotes for time and λ ≤ t. Then Rt
i(ri, r

′
i) = max{Lt

i(ri, r
′
i), 0} and it’s

a measure of “regretting” [6].

Distributed Resource Allocation for Video Transmission 61

Strategy Decision: Suppose ri is chosen by player i at time t. Then, at time t+1,
the strategy will be reconsidered and it will follow the probability distribution:

⎧
⎨

⎩

πt+1
i (r′

i) = 1
μRt

i(ri, r
′
i) ∀r′

i �= ri

πt+1
i (ri) = 1 − ∑

r′
i �=ri

πt+1
i (r′

i) (8)

where μ > 0 is large enough. According to the distribution, we can choose a
more proper strategy within the space {R space} who has a higher possibility.
After multiple iterations, the results won’t be changed and the equilibrium will
be achieved.

5 Simulation Results and Analyses

We conduct some simulations to evaluate the scheme we propose. It’s assumed
that 3 UAVs fly in the AP’s coverage area as Fig. 1. They shoot and record
independently and send back 3 different compressed videos, Carphone, Coast-
guard and Football to the VPC. The minimum and maximum rates are shown
in Table 1 and their different styles are also listed.

Table 1. Parameters of different videos

Rmin
i (kb/s) Rmax

i (kb/s) Style

Carphone 20.2554 322.0153 Medium motion and smooth scene

Coastguard 28.4987 878.8011 Medium motion and complex scene

Football 286.311 1720 Fast or complex motion

Figure 2 plots the real-time video transmission rates and the total utilities
of the three when the channel adopts two different bandwidth values. We can
find that when Cband = 20Mbps, which means the channel can offer sufficient
bandwidth, each video can be encoded and transmitted at the maximum of their
rates. The faster and the complexer the videos are, the more resource they will
occupy. While the resource is insufficient, Cband = 2Mbps, video Carphone and
Coastguard should decrease their rates correspondingly, so that the whole utility
can still maintain at a proper level. The utility of our distributed algorithm is
very close to the optimal one who takes the global information exchanges. From
Fig. 2 we also find that after about 20 iterations, all the curves become smooth
and steady, which means the system converges to the equilibrium in a very short
time by our scheme.

The total bandwidth of the channel can obviously affect the results of resource
allocation. Figure 3 shows the final results at different values of Cband. From
the aspect of different video styles, we can find that the slight insufficience of
bandwidth will first influence the videos which are fast and complex, while the

62 C. He et al.

medium and smooth videos are affected relatively less. When the channel con-
dition becomes much worse, less than 1Mbps, all the videos have to reduce their
rates. Correspondingly, the total utility increases along with the total bandwidth
and the results of our scheme are very close to the optimal solutions at different
rates.

Not only the bandwidth of the channel, but also the price parameter θ can
influence the results. In Fig. 4, we vary the price factor θ and keep the total
channel bandwidth at 3Mbps. When θ increases, the rate of Football decreases
obviously. When it’s greater than 3.5, Coastguard’s rate also reduces. From the
total utility curves, we can find the decrease, too. Thus, the NSP, as the resource
provider, can easily control both the bandwidth allocation and the robust of the
network by adjusting the price parameter.

0 20 40 60 80 100 120

Number of Iterations

0

200

400

600

800

1000

1200

1400

1600

1800

F
lo

w
 R

at
e

(k
bp

s)

Cband=20Mbps

Carphone
Coastguard
Football

0 20 40 60 80 100 120

Number of Iterations

24

24.5

25

25.5

26

26.5
T

he
 A

m
ou

nt
 o

f T
ot

al
 U

til
ity

Cband=20Mbps

Our proposed algorithm
Optimal solution

0 20 40 60 80 100 120

Number of Iterations

100

200

300

400

500

600

700

800

900

1000

1100

F
lo

w
 R

at
e

(k
bp

s)

Cband=2Mbps

Carphone
Coastguard
Football

0 20 40 60 80 100 120

Number of Iterations

22

22.2

22.4

22.6

22.8

23

23.2

23.4

T
he

 A
m

ou
nt

 o
f T

ot
al

 U
til

ity

Cband=2Mbps

Our proposed algorithm
Optimal solution

Fig. 2. Number of iterations versus flow rate and total utility

Distributed Resource Allocation for Video Transmission 63

0 1 2 3 4 5 6 7 8

The Total Bandwidth Provided by the AP (Mbps)

0

200

400

600

800

1000

1200

1400

1600

1800

F
lo

w
 R

at
es

 o
f E

ac
h

V
id

eo
s

af
te

r
E

qu
ili

br
ia

 (
kb

ps
)

Carphone
Coastguard
Football

0 1 2 3 4 5 6 7 8
The Total Bandwidth Provided by the AP (Mbps)

19

20

21

22

23

24

25

26

T
he

 A
m

ou
nt

 o
f T

ot
al

 U
til

ity

Our proposed algorithm
Optimal solution

Fig. 3. The influence of total bandwidth Cband

Cband=3Mbps

1 1.5 2 2.5 3 3.5 4 4.5 5

The price factor

0

200

400

600

800

1000

1200

1400

1600

1800

F
lo

w
 R

at
es

 o
f E

ac
h

V
id

eo
s

af
te

r
E

qu
ili

br
ia

 (
kb

ps
)

Carphone
Coastguard
Football

1 1.5 2 2.5 3 3.5 4 4.5 5

The Price Factor

22.5

23

23.5

24

24.5

25

25.5

T
he

 A
m

ou
nt

 o
f T

ot
al

 U
til

ity

Cband=3Mbps

Our proposed algorithm

Fig. 4. The influence of price parameter θ

6 Conclusion

Both the dramatic growth of mobile users and the improvement of video qual-
ity has made the bandwidth competition of wireless network much fiercer. In
this paper, a distributed algorithm was designed to allocate the limited resource
among multiple users in order to gain a better total QoE utility of all videos. A
model based on potential game theory was constructed and a distributed algo-
rithm was leveraged to solve it. The results could rapidly converge to a set of cor-
related equilibria. Simulation implied that the proposed strategy could provide
a favorable way to solve the resource allocation problem for video transmission.

References

1. Bai, X., Li, Q., Tang, Y.: A low-complexity resource allocation algorithm for indoor
visible light communication ultra-dense networks. Appl. Sci. 9(7), 1391 (2019)

64 C. He et al.

2. Choi, L.U., Ivrlac, M.T., Steinbach, E., Nossek, J.A.: Sequence-level models for
distortion-rate behaviour of compressed video. In: IEEE International Conference
on Image Processing 2005, vol. 2, pp. II-486, September 2005. https://doi.org/10.
1109/ICIP.2005.1530098

3. Deng, Z., Liu, Y., Liu, J., Zhou, X., Ci, S.: QoE-oriented rate allocation for
multipath high-definition video streaming over heterogeneous wireless access net-
works. IEEE Syst. J. 11(4), 2524–2535 (2017). https://doi.org/10.1109/JSYST.
2015.2430893

4. Dong, C., Wen, W.: Joint optimization for task offloading in edge computing: an
evolutionary game approach. Sensors 19(3), E740 (2019)

5. Elgabli, A., Elghariani, A., Aggarwal, V., Bell, M.: QoE-aware resource allocation
for small cells. In: 2018 IEEE Global Communications Conference (GLOBECOM),
pp. 1–6, December 2018. https://doi.org/10.1109/GLOCOM.2018.8647828

6. Hart, S., Mas-Colell, A.: A simple adaptive procedure leading to correlated equi-
librium. Econometrica 68(5), 1127–1150 (2000)

7. Jiang, Q., Leung, V.C.M., Tang, H., Xi, H.: QoS-guaranteed adaptive bandwidth
allocation for mobile multiuser scalable video streaming. IEEE Wireless Commun.
Lett., 1 (2018). https://doi.org/10.1109/LWC.2018.2889078

8. Khan, S., Duhovnikov, S., Steinbach, E., Kellerer, W.: MoS-based multiuser mul-
tiapplication cross-layer optimization for mobile multimedia communication. Adv.
MultiMedia 2007(1), 6 (2007). https://doi.org/10.1155/2007/94918

9. Liu, B., Xu, H., Zhou, X.: Stackelberg dynamic game-based resource allocation in
threat defense for Internet of Things. Sensors 18(11), 4074 (2018)

10. Moorthy, A.K., Seshadrinathan, K., Soundararajan, R., Bovik, A.C.: Wireless
video quality assessment: a study of subjective scores and objective algorithms.
IEEE Trans. Circ. Syst. Video Technol. 20(4), 587–599 (2010). https://doi.org/10.
1109/TCSVT.2010.2041829

11. Sarma, A., Chakraborty, S., Nandi, S.: Deciding handover points based on context-
aware load balancing in a WiFi-WiMAX heterogeneous network environment.
IEEE Trans. Veh. Technol. 65(1), 348–357 (2016). https://doi.org/10.1109/TVT.
2015.2394371

12. Scutari, G., Barbarossa, S., Palomar, D.P.: Potential games: a framework for vec-
tor power control problems with coupled constraints. In: 2006 IEEE International
Conference on Acoustics Speech and Signal Processing Proceedings, vol. 4, p. IV,
May 2006. https://doi.org/10.1109/ICASSP.2006.1660950

13. Senouci, M.A., Souihi, S., Hoceini, S., Mellouk, A.: QoE-based network interface
selection for heterogeneous wireless networks: a survey and e-health case proposal.
In: 2016 IEEE Wireless Communications and Networking Conference, pp. 1–6,
April 2016. https://doi.org/10.1109/WCNC.2016.7564979

14. Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: Study of
subjective and objective quality assessment of video. IEEE Trans. Image Process.
19(6), 1427–1441 (2010). https://doi.org/10.1109/TIP.2010.2042111

15. Thakolsri, S., Kellerer, W., Steinbach, E.: QoE-based cross-layer optimization of
wireless video with unperceivable temporal video quality fluctuation. In: 2011 IEEE
International Conference on Communications (ICC), pp. 1–6, June 2011. https://
doi.org/10.1109/icc.2011.5963296

16. Yuan, H., Wei, X., Yang, F., Xiao, J., Kwong, S.: Cooperative bargaining game-
based multiuser bandwidth allocation for dynamic adaptive streaming over HTTP.
IEEE Trans. Multimedia 20(1), 183–197 (2018). https://doi.org/10.1109/TMM.
2017.2724850

https://doi.org/10.1109/ICIP.2005.1530098
https://doi.org/10.1109/ICIP.2005.1530098
https://doi.org/10.1109/JSYST.2015.2430893
https://doi.org/10.1109/JSYST.2015.2430893
https://doi.org/10.1109/GLOCOM.2018.8647828
https://doi.org/10.1109/LWC.2018.2889078
https://doi.org/10.1155/2007/94918
https://doi.org/10.1109/TCSVT.2010.2041829
https://doi.org/10.1109/TCSVT.2010.2041829
https://doi.org/10.1109/TVT.2015.2394371
https://doi.org/10.1109/TVT.2015.2394371
https://doi.org/10.1109/ICASSP.2006.1660950
https://doi.org/10.1109/WCNC.2016.7564979
https://doi.org/10.1109/TIP.2010.2042111
https://doi.org/10.1109/icc.2011.5963296
https://doi.org/10.1109/icc.2011.5963296
https://doi.org/10.1109/TMM.2017.2724850
https://doi.org/10.1109/TMM.2017.2724850

Distributed Resource Allocation for Video Transmission 65

17. Zhu, K., Niyato, D., Wang, P.: Optimal bandwidth allocation with dynamic service
selection in heterogeneous wireless networks. In: 2010 IEEE Global Telecommuni-
cations Conference GLOBECOM 2010, pp. 1–5, December 2010. https://doi.org/
10.1109/GLOCOM.2010.5683238

18. Zhu, L., Zhan, C., Hu, H.: Transmission rate allocation for reliable video trans-
mission in aerial vehicle networks. In: 2018 14th International Wireless Communi-
cations Mobile Computing Conference (IWCMC), pp. 30–35, June 2018. https://
doi.org/10.1109/IWCMC.2018.8450454

https://doi.org/10.1109/GLOCOM.2010.5683238
https://doi.org/10.1109/GLOCOM.2010.5683238
https://doi.org/10.1109/IWCMC.2018.8450454
https://doi.org/10.1109/IWCMC.2018.8450454

Neural Networks

PRTSM: Hardware Data Arrangement
Mechanisms for Convolutional Layer
Computation on the Systolic Array

Shuquan Wang(B), Lei Wang, Shiming Li, Tian Shuo, Shasha Guo,
Ziyang Kang, Shuzheng Zhang, and Weixia Xu

National University of Defense Technology, Changsha, China
wangshuquan3@163.com

Abstract. The systolic array is an array of processing units which share
the inner data flow. Since the 2D systolic array fits the operation of mul-
tiplication and accumulation (MAC) naturally, there are many groups
which use the systolic array to accelerate the computation of DNN (Deep
Neural Network). However, the performance of the systolic array is lim-
ited by the data bandwidth. Some groups solve this problem with the
method of loop tiling and care little about the pixel reuse potential of the
convolutional layer. In this paper, we propose a novel method of PRTSM
(Pixels Reuse with Time and Spatial Multiplexing) which reuses the pix-
els of the input feature map with time and spatial multiplexing. With it,
we can significantly reduce the pressure of bandwidth and save the time
of data preparing for convolutional layers on the systolic array. We pro-
pose three algorithms for this method and implement the corresponding
hardware mechanisms on Xilinx FPGA XCVU440. Experiments show
that our hardware mechanisms can reduce at least 72.03% of the off-
chip traffic. The mechanisms proposed by this paper can reach a peak
performance of 64.034 GOPS with a frequency of 167 MHz.

Keywords: DNN · FPGA · Systolic array ·
Hardware data arrangement

1 Introduction

The systolic array is an array of processing units which share the inner data flow.
With the development of DNN acceleration technique, many groups use the 2D
systolic array to improve the efficiency of processing element (PE) [1–3]. How-
ever, the performance of the systolic array is limited by the data communication
bandwidth. Here, we give an example of the systolic array with 8× 8 PEs (pixel
width: 16-bit, weight width: 16-bit). Each time, both pixels and weights should

Supported by organization x.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 69–81, 2019.
https://doi.org/10.1007/978-3-030-30709-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_6

70 S. Wang et al.

be fetched. If the work frequency is 100 MHz, the systolic array needs 200 Gbps
(8×8×16×2×100) to make a full use of the PEs. However, the best performance
of DDR4 is 6.4 Gbps. Concerning the fact we typically use much more PEs and
design a higher work frequency, the gap of speed will be getting bigger. That
increases the pressure of bandwidth. On the other hand, the operation of convo-
lution is a data-intensive operation. There are many overlapped parts between
different convolutional operations. We can not store all the data on the hardware
accelerator because of the limited on-chip store space. Facing this, many groups
prefer to use the tiling method to reduce the pressures of bandwidth and on-chip
storage. However, this tiling method ignores the potential of pixels reuse in the
convolutional layer. On the other hand, the systolic array fetches the pixels one
by one. The pixels of the input feature map have to be reordered so that they
can fulfill the timing requirement of the systolic array. This procedure is called
data arrangement. We typically use software to reorder the pixels on the host.
However, this leads to a lot of additional data traffic.

Here, we give an example of 6 × 6 input feature map with a convolutional
kernel of 3× 3 and set the pixel to be 16-bit. The stride of convolution is 1. The
total data we need is 576 bit (6× 6× 16). However, the systolic array processes
pixels in sequence. We need to reorder these pixels based on the convolutional
operation. The final data we transform in the data channel is 2304 bit ((6− 3 +
1)× (6−3+1)×3×3×16). Most of the data come from the overlapped parts of
different convolution operations. The method of tiling has no idea to reduce this
additional off-chip traffic. Facing this, we propose a new method PRTSM (Pixels
Reuse with Time and Spatial Multiplexing) and reorder the pixels on-chip. With
it, we can reduce the off-chip traffic significantly. In our scheme, the hardware
accelerator fetches one input feature map every time. We reorder these pixels to
build up the final input sequence.

So far, there are a few of works focusing on the data arrangement optimization
for DNN hardware accelerator [6,7], especially for the systolic array. Google’s
TPU [7] shows a scheme of WS but does not give many details about how the
intermediate data is set up for the computation of the next layer. [6] proposed a
method of data mapping for CNN accelerator but didn’t show the procedure of
data arrangement. Concerning this, we propose three algorithms to reorder the
pixels so that these pixels can be used by the systolic array directly. The main
contributions of this paper are as follows.

– We propose three reordering algorithms which reuse the pixels of the input
feature map to found the input data flows for convolutional layers on the
systolic array;

– We implement the corresponding hardware mechanisms with Xilinx FPGA
XCVU440. These mechanisms can accomplish the task of pixels reordering.

Experiments show that the algorithms we propose can reuse at least 71% of
overlapping pixels. The corresponding mechanisms can reduce at least 72.03%
of off-chip traffic with a power of less than 5.623 W. The best throughput of our
mechanisms is 64.034 GOPS with a working frequency of 167 MHz. Note, since

PRTSM: Hardware Data Arrangement Mechanisms for Systolic Array 71

this work is a follow-up of SNN (Spiking Neural Network) accelerator, we denote
the pixel with 1-bit. Our mechanisms can be configured in other representation
schemes (for example 16-bit). The baselines are a straightforward algorithm we
proposed and [14].

2 Related Works

The research of using the systolic array to accelerate DNN is getting popu-
lar. Bao et al. [3] proposed a reconfigurable macro-pipelined systolic accelerator
architecture and implemented 32-PE accelerator on Xilinx ML605. Samajdar et
al. [1] proposed a software simulator called SCALE-Sim to explore the micro-
architectural features and parameters configuration optimization. Zhang et al.
[2] analyzed the impact of permanent faults on the systolic array based neural
network accelerator. They proposed two strategies to improve the fault-tolerant
rate of DNN accelerator with a negligible drop in classification accuracy. So far,
most of works focused on the functional design and performance optimization
[8–10]. They paid a little attention to the optimization of overlapped pixels reuse
for DNN on the systolic array. Some groups try to arrange the computation order
efficiently. Qiu et al. [11] proposed a scheme which focused on the loop opera-
tions. Chen et al. [12] try to reduce off-chip traffic with the help of input feature
map compression. Their scheme is limited by the number of zeros. The others
try to mine the data reuse across the layers. Alwani et al. [13] proposed fused-
layer CNN to reuse the intermediate output feature map tiles. Their scheme
needs a double feature map buffer for input-output feature map exchanging.
Azizimazreah et al. [14] proposed a scheme of shortcut mining which reuses the
input feature maps in the residual networks. They decoupled the logical-physical
banks and made a difficulty on the control logic design. Many works are focusing
on the area of hardware accelerator optimization. However, a few of them try to
reuse the pixels in the inner part of the convolutional layer.

3 Background and Preliminaries

3.1 Tiling and Optimization

The systolic array fetches pixels in sequence and computes the dot product with
pixels (activations) and weights. All the pixels must be ordered in the right way
so that they can calculate with the corresponding weights. The input feature
map has to be reordered. However, the systolic array doesn’t have this function.
We should reorder the input feature map with software. This leads to a blow-up
of pixels, which aggravates the problem of bandwidth limitation. Facing this,
many groups choose to split the feature map into many tiles. Each time, the
systolic array processes one tile. However, this method destroys the potential
of pixels reusing in the convolutional layer. Here, we define the pixels which
belong to the same convolution kernel area as one kernel block. There are many
overlapped parts between different kernel blocks (see Fig. 1). These pixels can

72 S. Wang et al.

Fig. 1. The left figure shows the detail of pixels reordering and the right shows the
principle of our design. Unlike the tiling method (shown in the right-up subfigure), we
fetch one input feature map rather than one tile and reorder the pixels on-chip.

be reused. We divide the situations of pixels reusing in two forms, i.e., horizontal
and vertical. We can reuse columns of pixels in the horizontal direction and rows
in the vertical direction. Here, we can not use the classic tiling method.

We propose a new scheme which has two steps. First, we change the manner
of data fetching. Each time, the systolic array fetches one input feature map
completely. For the first convolutional layer of DNN, one input feature map
corresponds to one output feature map. The change of data fetching manner
leads to a little waste of on-chip storage. As for the convolutional layers in the
middle of DNN, many feature maps correspond to one output feature map. We
should store the intermediate results on-chip which waste a lot of storage space.
The input feature map should be split. Unlike the classic tiling method, we only
split one input feature map into smaller feature maps. These smaller feature
maps still have the potential of pixels reuse. Second, we should reorder the input
feature map on-chip. We need a hardware mechanism to reorder these pixels to
fulfill the timing requirement of MAC computation. We decide to reorder the
pixels in a kernel block form. The motivation of this paper is reordering pixels
as soon as possible and reuses pixels if possible.

3.2 Unfold Data Arrangement

The baseline of our data arrangement scheme is a straightforward algorithm
which is called unfold data arrangement (see Algorithm 1). For discussion con-
venience, we introduce Eq. (1) [15], where F denotes the size of feature map is
F ×F , F

′
represents the size of output feature map is F

′ ×F
′
, Z represents the

zero padding and S denotes the stride. Here, we use three numbers (F/S/K)
to denote the parameters of the feature map. We denote the number of pixels
in one feature map with Npixel which equals F × F and the number of kernel
blocks with Nkernel which equals F

′ × F
′
. i denotes the index of current pixel

PRTSM: Hardware Data Arrangement Mechanisms for Systolic Array 73

and j denotes the index of current kernel block. We use KernelB to denote the
kenel block.

F
′
=

F −K + Z

S
+ 1 (1)

Algorithm 1. Unfold Data Arrangement
1: set i = 0; j = 0;
2: repeat
3: repeat
4: if Pixeli belongs to KernelBj then
5: Buffer P ixeli;
6: i = i + 1;
7: end if
8: until i > Npixel

9: Pop KernelBj into the systolic array;
10: j = j + 1;
11: until j > Nkernel

We assume the input feature map has been stored on-chip. The size of the
reordering buffer equals the size of kernel block, i.e., K×K. The reordering buffer
fetches the pixels one by one. If the pixel belongs to the current kernel block,
it will be buffered. When the reordering buffer gets all the pixels of the current
kernel block, it pops these pixels into the systolic array. The time complexity
of this algorithm is O(mn) where n equals (F

′
)2 and m equals K2. The space

complexity is O(m).
The hardware mechanism of the unfold data arrangement algorithm has three

modules, i.e., RAM, reordering buffer, and fetching address generator. The fetch-
ing address generator generates the fetching addresses so that the reordering
buffer can fetch the pixels in a given order. Since we store the input feature
map in one RAM, the operation of pixels reordering is limited by the reading
channel number of RAM. Here, we get two variants, i.e., the unfold data arrange-
ment mechanism with one reading channel (UnFoldR1) and the mechanism with
two reading channels (UnFoldR2). Besides, this algorithm has two weaknesses.
First, it works in a serial manner, which means it processes the pixels one by one.
Second, it reuses little of the pixels. Since there are overlapped parts between
different kernel blocks, we should fetch these pixels again and again. To solve
these problems, we propose three improved algorithms.

4 Data Arrangement Algorithm

4.1 Fold Data Arrangement

To reuse as many pixels as we can, we propose the fold data arrangement algo-
rithm (see Algorithm 2). We fetch all the pixels of the input feature map once

74 S. Wang et al.

Algorithm 2. Fold Data Arrangement
1: set i = 0; j = 0;
2: repeat
3: Fetch P ixeli into the Buffers based on the arrange information;
4: if KernelBj gets all the pixels then
5: All buffers pop the pixels in their first banks i.e. pop KernelBj ;
6: The pixels in the rest banks move to their former banks one by one;
7: j = j + 1;
8: end if
9: i = i + 1;

10: until j > Nkernel

and reorder them with the help of the arrange information. Here, we divide the
kernel block into many places. Each place corresponds to one pixel. The arrange
information is a piece of information which denotes the places where the pixel
is needed. We use one buffer to store all the pixels of the same place in different
kernel blocks. The number of buffers equals K ×K. If the current pixel corre-
sponds to the place of one kernel block, we buffer it in the corresponding buffer.
Each column of buffer banks corresponds to one kernel block. We reorder several
kernel block in parallel. When one kernel block gets all the pixels, we pop them
into the systolic array. The time complexity is O(n) while the space complexity
is O(m lg n). The hardware implementation of the fold data arrangement algo-
rithm is shown (see Fig. 2). This mechanism has five parts, i.e., fetching address
generator, RAM, switch logic, reordering buffer, and the arrange information
related part. The switch logic is used to push the pixel into the right buffer. The
decision is made with the help of the arrange information. Since the arrange
information can be generated by software or hardware and stored on-chip or
off-chip, we get three variants. The first variant is we use software to generate
the arrange information and store them on-chip (FoldS). The second is we fetch
the arrange information and pixels from the off-chip in pair (FoldN). The third
is we use hardware module to generate the arrange information (FoldH). The
reordering buffer has K2 small buffers. Note, the bank number of each buffer
is decreased. Each buffer has a bank index pointer to denote the current bank.
When a new pixel is arranged into the current buffer, the buffer stores it in the
current bank. When one kernel block gets all the pixels, all the buffers pop their
first banks. The rest pixels are passed to their former banks one by one.

4.2 Half-Fold Data Arrangement Variant 1

To reorder the pixels as soon as possible, we propose the half-fold data arrange-
ment algorithm. We divide the situations of pixels reusing in two forms, i.e.,
horizontal and vertical. It means we reuse columns of pixels in the horizontal
direction and rows in the vertical direction. Here, we get two variants. The first
variant is that we only reuse pixels in the horizontal direction (see Algorithm 3).

PRTSM: Hardware Data Arrangement Mechanisms for Systolic Array 75

Fig. 2. The detail of fold data arrangement mechanism. The left figure shows the
architecture and the right shows the state of reordering buffer (input feature: 6 × 6,
kernel: 3 × 3, stride: 1).

We organize all the kernel blocks in the same row into one group. All the groups
are reordered in parallel. Each time, we fetch one pixel. When we found the first
kernel block, the procedure is similar to the fold data arrangement algorithm.
However, when the kernel block gets all the pixels, we copy these pixels rather
than pop them to the systolic array. When we found the next kernel block, we
reuse some pixels which belong to the previous kernel block. The time complex-
ity is O(lg n) while the space complexity is O(m lg n). Another variant is we
reuse pixels in both the horizontal and vertical direction, which is discussed in
the next section.

Fig. 3. The detail of half-fold data arrangement variant 1 mechanism (HalfFoldV1).

The hardware implementation of the fold data arrangement algorithm is
shown (see Fig. 3). Here, we define a series of hardware modules as one hardware
lane. One hardware lane processes one group. Each hardware lane has four parts,
i.e., fetching address generators, RAMs, Buffers, and switch logic. We use K
small buffer to found reordering buffer. Each small buffer has K banks. Each
small buffer corresponds to one RAM and fetching address generator. We reuse
the pixels with internal data moving in the small buffer. The internal data moving
stride of the pixels in the small buffer is based on S.

76 S. Wang et al.

Algorithm 3. Half-Fold Data Arrangement Variant 1
1: set i = 0; j = 0;

2: Organize all the kernel blocks in the same row into one group.

3: #Process each group in parallel.

4: Reorder pixels to found the KernelB1 as same as Unfold Data Arrangement Algorithm;

5: if j > 0 then

6: repeat

7: repeat

8: if Pixeli belongs to KernelBj and it′s a new pixel; then

9: Buffer Pixeli;

10: i = i + 1;

11: end if

12: until i > Npixel

13: Reuse some pixels of the former kernel block with internal data moving;

14: if KernelBj gets all the pixels; then

15: Copy KernelBj into the systolic array;

16: end if

17: j = j + 1;

18: until j > Nkernel

19: end if

4.3 Half-Fold Data Arrangement Variant 2

Variant 2 is shown (see Algorithm 4). Unlike the Variant 1, we organize a series
of rows of kernel blocks into one group called one big group. Then, we process
them in parallel. Here, we denote the number of big groups with G. One hard-
ware lane processes one big group. There are some changes. First, we use pixels
block to speed up the procedure of kernel block founding. In Variant 1, we fetch
the pixels one by one. Here, we can fetch the pixels in block form. Second, we
reuse the pixels block between different kernel blocks rows. Since there are some
overlapping parts in the vertical direction, we reuse these pixels with the help
of the history buffer. When we process a new row of kernel blocks, we reuse
some pixels in the previous row. The time complexity is O(lg n) while the space
complexity is O(m lg n). The hardware lane is also different (see Fig. 4). First,
we use a specific RAM to store the pixels block. Second, we carefully design the
switch logic to make a switch between pixel input and pixels block input. Third,
the small buffer has been designed to support the operation of updating all the
banks one time. Besides, we use a history buffer to buffer the pixels block of the
former rows.

Fig. 4. The detail of half-fold data arrangement variant 2 mechanism (HalfFoldV2).

PRTSM: Hardware Data Arrangement Mechanisms for Systolic Array 77

Algorithm 4. Half-Fold Data Arrangement Variant 2
1: set i = 0; j = 0;

2: Organize several groups (defined in Variant 1) into one big group.

3: #Process each big group in parallel.

4: Found KernelB1 similar to the V ariant 1. Each time, fetch one pixels block.

5: Found the rest kernel blocks of the first row like V ariant 1.

6: #The rest rows of kernel blocks.

7: if start a new row of kernel blocks then

8: repeat

9: Reuse some pixels blocks of the former kernel blocks row;

10: Reuse some pixels of the former kernel block;

11: Fetch new pixels to found the KernelBj ;

12: Copy KernelBj into the systolic array;

13: j = j + 1;

14: until j > Nkernel

15: end if

5 Experimental Setup and Result

We implement all the data arrangement mechanisms at the RTL level with
Verilog. We use Vivado 2016.4 for synthesizing and choose FPGA XCVU440 for
implementation. For the concerning of performance exploration, we implement
all the data arrangement mechanisms in a parameter configurable manner. Since
this work is the follow-up of SNN accelerator, the pixel width is 1 bit. Our
mechanisms can be configured in other representation schemes (for example
16-bit). The baselines are UnFoldR1, UnFoldR2 and [14].

5.1 Power Efficiency and Hardware Consumption

The detail of power consumption is shown in Table 2. As it shows, HalfFoldV 1
wastes the most with a power consumption of 5.62 W. The detail of power effi-
ciency is shown (see Fig. 5). For different feature maps, fold data arrangement
mechanisms work the best while HalfFoldV 1 works the worst. Though it works
worse comparing to the others (except HalfFoldV 1), HalfFoldV 2 works better
than HalfFoldV 1.

Since 229/2/7 (one layer of ResNet152) is the biggest among all the convolu-
tional layers, which leads to the biggest hardware consumption, we choose it to be
the evaluation target. G is F

′
/2, which leads to the biggest hardware consump-

tion among all the settings of HalfFoldV 2. As it shows in Table 1, HalfFoldV 1
wastes the most of hardware resource while UnFoldR1 wastes the least. Since
we don’t store the pixels and arrange information on-chip, FoldN needs little
RAM. We find HalfFoldV 1 wastes the most of RAM while HalfFoldV 2 gets a
14× reduction. We also notice that HalfFoldV 2 needs the most of LUT, which
is caused by the complexity of switch logic circuit.

78 S. Wang et al.

Fig. 5. The detail of power efficiency. Fig. 6. The detail of reordering latency.

Table 1. Hardware resource consumption (229/2/7).

Mechanism UnFoldR1 UnFoldR2 FoldS FoldH FoldN HalfFoldV1 HalfFoldV2

LUT 195 4803 430 238 125 17421 20543

LUTRAM 0 4096 9953 0 0 0 488

FF 145 270 0 9721 9651 20235 13479

BRAM 2 0 90 2 0 392 28

DSP 1 2 0 0 0 0 0

5.2 Latency and Data Reuse Rate

The latency of one input feature map reordering is defined with Cycles/
Frequency. The total cycles needed for one feature map and the working
frequency is shown in Table 1. As it shows, HalfFoldV 1, HalfFoldV 2 and
UnFoldR2 get the best working frequency of 167 MHz while FoldS and FoldH
get the worst. The detail of reordering latency is shown (see Fig. 6). HalfFoldV 1
works the best. As for HalfFoldV 2, it depends on the parameter G. When we
set the G to be F

′
/2, we get the best latency of HalfFoldV 2. When we set

the G to be 2, we get the worst latency of HalfFoldV 2. All the latencys of
HalfFoldV 2 are better than the others (except HalfFoldV 1).

Table 2. Total cycles, Frequency and Power.

Mechanism Cycles Frequency (MHz) Power

UnFoldR1/UnFoldR2 K2(F
′
)2, K2(F

′
)2/2 125/167 2.68/2.77

FoldS/H/N F 2 100/100/125 2.94/2.7/2.71

HalfFoldV1 FK 167 5.62

HalfFoldV2 ((F
′
/G − 1)S+K)(F −K+1) 167 3.03

PRTSM: Hardware Data Arrangement Mechanisms for Systolic Array 79

The data reuse rate R is defined with Eq. (2), where Drest denotes the
overlapping pixels which the mechanism can not reuse, Doverlap denotes the
total overlapping pixels which equals (F

′
)2K2 − F 2. The detail of data reuse

rate is shown (see Table 3). We make a comparison between HalfFoldV 1 and
HalfFoldV 2 (see Fig. 7). When G equals F

′
, the data reuse rate of HalfFoldV 2

equals the one of HalfFoldV 1. When G equals 1, HalfFoldV 2 turns to be a
form of fold data arrangement mechanism, and its data reuse rate becomes 100%.

R = (Doverlap −Drest)/Doverlap × 100% (2)

Fig. 7. Comparation of HalfFoldV 1/V 2.

Table 3. Data reuse rate.

Mechanism Data reuse rate

UnFoldR1/2 0%

FoldS/H/N 100%

HalfFoldV1
(F

′
)2K2−F2−(F

′
K−F)F

(F ′)2K2−F2

HalfFoldV2
(F

′
)2K2−F2−(G−1)(K−S)F

(F ′)2K2−F2

5.3 Comparison with State-of-the-Art

Here, we set the pixel width to be 16 bit (as same as [13,14]). We use the
layer of 229/2/7 for evaluation. We can reduce 100% overlapping pixels with
FoldS, FoldH and FoldN , 78.8% with HalfFoldV 1 and 89.6% with
HalfFoldV 2(G = 2). If we treat the total data to be the off-traffic and concern
convolutional layers only, we can reduce 91.5% of the off-chip traffic with FoldS,
FoldH and FoldN , 72.03% with HalfFoldV 1 and 73.39% with HalfFoldV 2.
All of them are better than [13] with a reduction of 26% and [14] with 43%.
We can get at least 1.67× improvement. We compare the working frequency
with [14]. HalfFoldV 1 and HalfFoldV 2 work with a frequency of 167 MHz,
while [14] with 150 MHz. Here, one operation denotes placing one pixel to the
corresponding place of kernel block. We can get a throughput of 51.14 GOPS
(HalfFoldV 2) and 64.03 GOPS (HalfFoldV 1). Though they are lower than
[14], our throughput is limited by the number of reordering operations in one
convolutional layer. We also compare the on-chip RAM resource consumption
with [14]. Our mechanisms waste at most 392 slices of BRAM while [14] needs
3210 BRAM. Our mechanisms waste a lower scale of RAM resource.

80 S. Wang et al.

6 Conclusions

With the development of DNN research, the systolic array based accelerator
is becoming more and more popular. The input data arrangement for convolu-
tional layers on the systolic array turns to be a problem. Concerning this, we
propose three algorithms and implement all the hardware mechanisms on FPGA
XCVU440. We finally find that the HalfFoldV 2 mechanism gets a good balance
between reordering speed and hardware resource consumption. It can work in
a frequency of 167 MHz and reach the peak performance of 51.14 GOPS while
reducing at least 73.39% of off-chip traffic. We can get a better throughput of
64.03 GOPS (HalfFoldV 1). In the future, we will make further research on
pixels reusing.

References

1. Samajdar, A., Zhu, Y., Whatmough, P., et al.: SCALE-Sim: Systolic CNN Accel-
erator (2018)

2. Zhang, J., Gu, T., Basu, K., et al.: Analyzing and mitigating the impact of per-
manent faults on a systolic array based neural network accelerator (2018)

3. Bao, W., Jiang, J., Fu, Y., et al.: A reconfigurable macro-pipelined systolic acceler-
ator architecture. In: 2011 International Conference on Field-Programmable Tech-
nology, FPT 2011, New Delhi, India, 12–14 December 2011. IEEE (2011)

4. Chen, Y.-H., Krishna, T., Emer, J., Sze, V.: Eyeriss: an energy-efficient reconfig-
urable accelerator for deep convolutional neural networks. In: International Solid-
State Circuits Conference, Ser. ISSCC (2016)

5. Sze, V., Chen, Y.H., Yang, T.J., et al.: Efficient processing of deep neural networks:
a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

6. Du, Z., Fasthuber, R., Chen, T., et al.: ShiDianNao: shifting vision processing closer
to the sensor. In: ACM/IEEE International Symposium on Computer Architecture
(2015)

7. In-Datacenter Performance Analysis of a Tensor Processing Unit (2017)
8. Razip, M.I.M., Junid, S.A.M.A., Halim, A.K., et al.: Sequence alignment using sys-

tolic array for an accelerator. In: Power Engineering and Optimization Conference.
IEEE (2014)

9. Razip, M.I.M., Al Junid, S.A.M., Halim, A.K., et al.: Sequence alignment using
systolic array for an accelerator (2014)

10. Ito, M.: A power-efficient FPGA accelerator: systolic array with cache-coherent
interface for pair-HMM algorithm. In: Low-Power and High-Speed Chips (2016)

11. Qiu, J., et al.: Going deeper with embedded FPGA platform for convolutional neu-
ral network. In: Proceedings of the 24th ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (2016)

12. Chen, Y., Emer, J., Sze, V.: Eyeriss: a spatial architecture for energy-efficient
dataflow for convolutional neural networks. In: Proceedings of 43rd Annual Inter-
national Symposium on Computer Architecture (2016)

13. Alwani, M., Chen, H., Ferdman, M., Milder, P.: Fused-layer CNN accelerators. In:
Proceedings of the 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (2016)

PRTSM: Hardware Data Arrangement Mechanisms for Systolic Array 81

14. Azizimazreah, A., Chen, L.: Shortcut mining: exploiting cross-layer shortcut
reuse in DCNN accelerators. In: 2019 IEEE International Symposium on High-
Performance Computer Architecture

15. Ma, Y., Kim, M., Cao, Y., Vrudhula, S., Seo, J.: End-to-end scalable FPGA accel-
erator for deep residual networks. In: IEEE International Symposium on Circuits
and Systems (2017)

PParabel: Parallel Partitioned Label
Trees for Extreme Classification

Jiaqi Lu1, Jun Zheng2, and Wenxin Hu2(B)

1 School of Computer Science and Software Engineering, East China Normal
University, 3663 Zhong Shan Rd. N., Shanghai, China

2 The Computer Center, East China Normal University,
3663 Zhong Shan Rd. N., Shanghai, China

wxhu@cc.ecnu.edu.cn

Abstract. Extreme classification consists of extreme multi-class or
multi-label predictions, whose objective is to learn classifiers that can
label each data point with the most relevant labels. Recently, some
approaches such as 1-vs-all method have been proposed to accomplish the
task. However, their training time is linear with the number of classes,
which makes them unrealistic in real-world applications such as text and
image tagging. In this work, we are motivated to present a two-stage
thread-level parallelism which is based on Partitioned Label Trees for
Extreme Classification (Parabel). Our method is able to train the tree
nodes in different parallel ways according to their number of labels. We
compare our algorithm with recent state-of-the-art approach on some
publicly available real-world datasets which have up to 670,000 labels.
The experimental results demonstrate that our algorithm achieves the
shortest training time.

Keywords: Extreme multi-label classification ·
Thread-level parallelism · OpenMP

1 Introduction

Extreme classification was coined by John Langford1 and Manik Varma2 in 2013.
It is the emerging research field in machine learning which solves classification
problems in presence of a large number of categories (which are also called classes
or labels) [8]. And the number of these categories is often more than 105. To be
specific, extreme classification consists of extreme multi-class (only one label is
correct) or multi-label predictions (more than one label is relevant to the given
item).

In this work, we focus on extreme multi-label classification where the label
set has dimensionality of the order of hundreds of thousands or even millions,
1 http://hunch.net/∼jl/.
2 http://manikvarma.org/.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 82–92, 2019.
https://doi.org/10.1007/978-3-030-30709-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_7&domain=pdf
http://hunch.net/~jl/
http://manikvarma.org/
https://doi.org/10.1007/978-3-030-30709-7_7

PParabel: Parallel Partitioned Label Trees for Extreme Classification 83

because this task has been of more and more significance in real-world applica-
tions such as text tagging. The goal in extreme multi-label classification is to
learn a classifier which can annotate a new instance with relevant labels from
the extremely large label set. Take web tagging as an example, the pages in
Wikipedia are all tagged with several relevant labels. Extreme multi-label clas-
sification can be used to learn a classifier to automatically label new pages by
training on the existing pages. Furthermore, extreme multi-label classification
can effectively address machine learning problems in web-scale data mining, such
as recommendation systems and ad landing pages’ queries [1,10,11]. Due to its
capability for dealing with web-scale data, extreme multi-label classification has
attracted more and more attention in recent years.

The popular approaches to extreme multi-label classification can be divided
into two categories, namely 1-vs-all approaches [2,9,12,13] and tree-based
approaches [5,6,10,11]. 1-vs-all approaches train a classifier for each label and
they usually take months to train on large datasets on a standard desktop [11].
It is intolerable since extreme multi-label classification has been applied in
real-world applications such as recommendation systems and ad landing pages’
queries which are required to quickly predict the labels of items and give users
an immediate answer. To overcome this, DiSMEC [2] and PPDSparse [12] take
advantage of distributed systems and partition the training jobs on several com-
puting nodes. Although it is effective, the cost of hardware is heavy. Taking
dataset, WikiLSHTC-325K3, as an example, it has 1,778,351 training instances
and 325,056 categories. On this dataset, DiSMEC needs 3 h train on 1000 cores.
While for PPDSparse, it takes much shorter training time (i.e. 353 s on 100
cores). If we reduce the hardware cost and train on a single core, tree-based
approaches can train much faster. For example, PfastreXML [5] only needs 7.42 h
on a single core relative to 749 h for DiSMEC. However, tree-based approaches
have not been parallel to accelerate the training process. So is Parabel which is
the fastest 1-vs-all approach built with tree structure [11]. To overcome this, we
analyze the data independence between nodes and propose PParabel method to
accelerate the training process which is the fastest method on one core [11].

Our contributions are shown as follows:

• We analyze the hierarchy of Parabel and find that each label only exists in
one node on the same level which means nodes on the same level have data
independence. With data independence, we can make the training process
parallel at each level.

• We parallelize the training process in two stages. In the first stage, we par-
allelize the training process of nodes on the same level. In the second stage,
we parallelize the k-means in nodes with OpenMP according to the number
of labels in nodes.

• We conduct our training process in a thread-level parallelism way and apply
OpenMP to accelerate our training. We can enable PParabel work on stan-
dard desktops to minimize hardware costs.

3 http://manikvarma.org/downloads/XC/XMLRepository.html.

http://manikvarma.org/downloads/XC/XMLRepository.html

84 J. Lu et al.

• We shorten the training time from one day to just one hour without appending
more machines.

The rest of the paper is organized as follows. Section 2 introduces the existing
approaches to extreme multi-label classification. Section 3 describes the detail of
our proposed PParabel method. Section 4 reports our experiments and we will
analyze the results. At the end of this paper, we conclude our work and indicate
future directions.

2 Related Work

The existing approaches to solving the extreme multi-label classification task
can be divided into four categories, namely 1-vs-all approaches [2,9,12,13],
label-embedding approaches [3,4,14], tree-based approaches [5,6,10,11] and deep
learning based approaches [7].

1-vs-all approaches: 1-vs-all approaches train a separate classifier per label
on the whole dataset. This kind of approach leads to training time linear in the
number of classes. Therefore, when it comes to big datasets, the training costs
can be heavy [11]. But this kind of method ignores the relevance between labels
which makes each label independent and easy to be parallelized. DiSMEC [2]
and PPDSparse [12] took advantage of the irrelevance between labels and scaled
the training progress in large-scale distributed settings. Despite it can make the
method easy to be parallelized, the cost of hardware is heavy.

Label-embedding approaches: Label-embedding approaches make the
assumption that label matrix is low-rank. Therefore, it can be projected into
low dimensional space. In this way, effective number of labels can be reduced.
However, since the training points follow a power-law distribution, it will lead to
low accuracy [2]. Moreover, embedding approaches need long time for training
and prediction even on small embedding dimensions, let alone large datasets.

To overcome these limitations, SLEEC [3] was proposed. It learned local
embedding instead of global embedding. To be specific, it used kNN method
to preserve nearest neighbors in the label space. However, SLEEC ignores to
model the label structure. [15] proposed a deep embedding method for extreme
multi-label classification to overcome this. The deep embedding method uses
label graph to depict the label structure. In the label graph, an edge exists if
the two labels are active at the same sample. With the label graph established,
DeepWalk method is used to make word2vec representation for all nodes in the
graph. Then the distance between features and labels can be computed and all
the training points can be clustered.

Tree-based approaches: Tree-based approaches usually have two types: deci-
sion trees and label trees. FastXML [10] is a state-of-the-art classifier for extreme
multi-label classification. It recursively partitioned a parent’s feature space
between its children. To learn the hierarchy, FastXML optimizes the normal-
ized Discounted Cumulative Gain (nDCG).

Another popular tree-based approach is PfastreXML [5]. The algorithm
replaces the nDCG loss with its propensity scored variant. It also assigns higher

PParabel: Parallel Partitioned Label Trees for Extreme Classification 85

rewards for accurate tail label predictions. In this way, it can improve tail
label prediction which is the most challenging factor of extreme multi-label
classification.

Unlike the above two methods, Parabel [11] learned a few balanced label
hierarchies. The root node of each hierarchy contains the whole set of labels.
Each label tree recursively partitions the nodes into two balanced nodes until
the number of labels in the leaf nodes is smaller than a threshold. When it comes
to leaf nodes, a classifier will be learned for each label. It can be conducted on a
single core with the shortest training time while matching its prediction accuracy
with other methods. Although Parabel learned balanced label trees in a parallel
way, it didn’t optimize the node partition process in a parallel way to save time.

Deep learning based approaches: Deep learning based approach is a new way
for extreme multi-label classification. Although it has achieved great success in
other areas, it has not been applied to extreme classification until 2017. The first
attempt is XML-CNN [7]. It utilizes the CNN model to learn a rich number of
feature representations. Unlike the traditional CNN model, XML-CNN adopts
a dynamic max pooling scheme to get more than one feature. Therefore, it can
capture more fine-grained features.

Nowadays, the most popular approach is 1-vs-all approach since we can make
log-time training and prediction. But how can we reduce the hardware cost and
accelerate the training process is still a problem. Therefore, we are motivated to
propose our solution in the next section.

3 Methodology: Parallel Partitioned Label Trees
(PParabel)

Our method is designed to accelerate the node partition process parallel. There
are two main components in our method, label trees and idle threads. Label
trees are used for training the model. Internal nodes in label trees are processed
parallel in idle threads. Figure 1 shows the main structure of PParabel. The pro-
posed method is described in the algorithmic format in Algorithm 1. Detailed
information is shown as follows. As we all know, every node in the tree which
is learnt by Parabel is partitioned into two groups, and not a single label can

Fig. 1. The main structure of PParabel.

86 J. Lu et al.

be appeared in two groups. In other words, the split of different nodes is inde-
pendent. Therefore, we can use its independence to make Parabel parallel. Each
node is carried on a single thread.

For each label tree, we load feature matrix X = x1, x2, . . . , xn and label
matrix Y = y1, y2, . . . , yn. Then we represent the label representation in the way
Parabel did. We average the feature vectors of instances which are positive to
the label as the representation of label. With all labels represented, we put all
label representations in the root node and start partitioning. We parallelize the
partition process in a two-stage way which will be discussed in Sects. 3.1 and
3.2. For each node partition, we apply k-means to split the node into two nodes.
We first randomly choose two label representations as centroids. After that, we
calculate the distance between centroids and labels. For nodes on top levels,
we parallelize the calculating distance with OpenMP. If it is not converged, we
calculate the new centroids and repeat the k-means clustering. When the k-
means clustering is converged, we split the labels into two nodes according to
the resulting clusters. All these child nodes will be sent to idle threads to further
split. The partition process will not stop until the number of labels in any leaf
nodes is smaller than a threshold.

We also implement a two-stage parallelization which executes different strate-
gies according to different nodes on different levels. In the following, we will
elaborate more details about the two-stage parallelization. The first stage par-
allelization is applied to all nodes. The second is applied to nodes on top levels.

Algorithm 1. PParabel - Parallel Partitioned Label Trees for Extreme Classi-
fication
Input: Feature matrix X, label matrix Y
Output: Balanced tree with the number of leaf nodes’ labels smaller than a thresh-
old

1: Load single copy of feature matrix X=x1,x2,...,xn and label matrix Y=y1,y2,...,yn
2: Compute the label representation by averaging the feature vectors of instances

which are positive to the label.
3: while the number of labels in any leaf node is larger than the threshold do
4: if node is on top levels then
5: Calculate the distance between the cluster centroids and labels with OpenMP.
6: else
7: Execute K-means in its own thread
8: end if
9: Partition the internal node into new nodes node1,node2,... according to the

resulting clusters.
10: Assign the new nodes node1,node2,... to idle threads
11: end while
12: Sort all nodes in an ascending order according to their numbers.
13: return balanced tree

PParabel: Parallel Partitioned Label Trees for Extreme Classification 87

3.1 First-Stage Parallelization

In this stage, training process of each node is carried on a single thread. And we
parallelize the training process of nodes on the same level. The notion behind
is that each node is split into two nodes with totally different labels. When it
comes to splitting these two child nodes, they do not affect each other. In other
words, siblings do not have data dependency.

3.2 Second-Stage Parallelization

Since each tree node is halved, the training time of child nodes will also be
halved. In other words, the time child nodes take for training should be half of
the time their parent takes. We make the analysis to demonstrate this and we
will discuss this in Sect. 4.3. To maximize the usage of threads and speedup the
training process, we parallelize the k-means, which is used to split the parent
node into two parts, for the nodes on top layers with OpenMP. Here, we set the
first five layers as top layer. Since calculating the distance between labels and
cluster centroids is the most time consuming step in k-means, we parallelize this
process with OpenMP. For the rest nodes which are on the sixth or after sixth
layers, since their label sets are not large enough and there is no idle thread,
they do not need to parallelize the k-means.

4 Experiments

4.1 Dataset Description

Table 1. Dataset Statistics

Dataset Number of
train points

Number of
test points

Label
dimensionality

Feature
dimensionality

EURLex-4K 15,539 3,809 3,993 5,000

WikiLSHTC-325K 1,778,351 587,084 325,056 1,617,899

Wiki-500K 1,813,391 783,743 501,070 2,381,304

Amazon-670K 490,449 153,025 670,091 135,909

We carry out experiments on publicly available datasets from the Extreme Clas-
sification repository4. The detailed information of these datasets is shown in
Table 1. All these datasets are processed from their original sources such as
Wikipedia and Amazon. To figure out the effectiveness of the algorithm on dif-
ferent scale dataset, we choose one small dataset (EURLex-4K with 3,993 labels)
and three large scale datasets (WikiLSHTC-325K, Wiki-500K and Amazon-
670K) which include hundreds of thousands labels along with million train
points.
4 http://manikvarma.org/downloads/XC/XMLRepository.html.

http://manikvarma.org/downloads/XC/XMLRepository.html

88 J. Lu et al.

4.2 Evaluation Metrics

We use precision at k and speedup as the metrics for comparison. Precision
at k is a commonly used metrics in extreme multi-label classification to show
the classification accuracy. And speedup is used to show the effectiveness of the
parallelization. For a predicted score vector ŷ ∈ RL and the ground truth label
vector y ∈ {0, 1}L, the precision at k is defined as:

P@k :=
1
k

∑

l∈rankk (̂y)

yl (1)

The speedup is defined as:

S =
Ts

Tp
(2)

where Ts is the time that the experiment takes in a serial way and Tp is the
time that the experiment takes in a parallel way. Higher value of S means more
effectiveness of the algorithm.

4.3 Results

Fig. 2. Average training time of each tree level for four datasets.

PParabel: Parallel Partitioned Label Trees for Extreme Classification 89

Figure 2 shows the average split time of each level. As we can see, the average
split time of second-layer nodes is about half of the root node. The average
split time of third-layer nodes is about half of the second-layer nodes. So are
the forth layer and fifth layer. When it comes to layers after fifth layer, the
split time is almost the same. The reason is that the original label set has been
divided into more than 32 parts and the k-means process in these nodes can be
quickly converged. As we can see, k-means process is the most time consuming
step in top level nodes. When it comes to other levels, a large number of node
partition is the most time consuming step. Therefore, we can parallelize the
k-means process with OpenMP on top levels to accelerate the training.

All experiments are run on two Intel Xeon E5-2620 v4 2.10 GHz CPUs. Each
CPU has 8 physical cores. There are no hyper threads per core. While the pro-
posed method is based on Parabel, the precision@k and speedup are calculated
between the Parabel, PParabel and fastXML. For Parabel and PParabel, the
number of balanced trees trained is three and two algorithms use squared hinge
loss. But fastXML trains fifty trees in order to achieve high accuracy. Table 2
shows the results on extreme classification datasets. It turns out that the pre-
diction accuracy of PParabel is almost the same as Parabel. It is much better
than fastXML which trains much more trees to increase the accuracy. Since we

Fig. 3. Speedup of different threads on four datasets.

90 J. Lu et al.

Table 2. Results on extreme classification datasets.

Method P1(%) P3(%) P5(%) Training

time (hr)

Method P1(%) P3(%) P5(%) Training

time (hr)

EURLex-4K Wiki-500K

fastXML 71.36 59.90 50.39 0.0590 fastXML 49.27 33.30 25.63 27.72

Parabel 82.25 68.71 57.53 0.0136 Parabel 68.52 48.42 38.55 6.37

PParabel-t=2 81.31 68.33 57.04 0.0070 PParabel-t=2 67.97 48.83 38.02 3.88

PParabel-t=3 0.0054 PParabel-t=3 2.75

PParabel-t=4 0.0041 PParabel-t=4 1.96

PParabel-t=5 0.0034 PParabel-t=5 1.53

PParabel-t=6 0.0029 PParabel-t=6 1.43

PParabel-t=7 0.0027 PParabel-t=7 1.30

PParabel-t=8 0.0024 PParabel-t=8 1.19

PParabel-t=9 0.0022 PParabel-t=9 1.09

PParabel-t=10 0.0019 PParabel-t=10 1.02

PParabel-t=11 0.0019 PParabel-t=11 0.96

PParabel-t=12 0.0018 PParabel-t=12 1.01

PParabel-t=13 0.0017 PParabel-t=13 0.995

PParabel-t=14 0.016 PParabel-t=14 1.09

PParabel-t=15 0.0015 PParabel-t=15 1.12

WikiLSHTC-325K Amazon-670K

fastXML 49.75 33.10 24.45 4.556 fastXML 36.99 33.28 30.53 2.263

Parabel 65.04 43.23 32.05 0.651 Parabel 44.90 39.81 35.99 0.302

PParabel-t=2 64.08 42.54 31.46 0.585 PParabel-t=2 44.38 39.28 35.44 0.174

PParabel-t=3 0.458 PParabel-t=3 0.117

PParabel-t=4 0.248 PParabel-t=4 0.109

PParabel-t=5 0.178 PParabel-t=5 0.082

PParabel-t=6 0.163 PParabel-t=6 0.071

PParabel-t=7 0.154 PParabel-t=7 0.065

PParabel-t=8 0.138 PParabel-t=8 0.059

PParabel-t=9 0.129 PParabel-t=9 0.055

PParabel-t=10 0.125 PParabel-t=10 0.051

PParabel-t=11 0.126 PParabel-t=11 0.049

PParabel-t=12 0.119 PParabel-t=12 0.047

PParabel-t=13 0.120 PParabel-t=13 0.0426

PParabel-t=14 0.119 PParabel-t=14 0.0428

PParabel-t=15 0.110 PParabel-t=15 0.040

just parallelize the partition process before learning classifiers, the precision@k
should be the same theoretically. However, choosing random starting points may
result in different clustering results. This may explain why precision@k of Para-
bel and PParabel are slightly different.

Table 2 also shows the training time of three algorithms which run on these
datasets. It can be seen that as the number of threads increases, the training
time of PParabel gets shorter and shorter. But when the number of threads
increases more than 10, the training time will not decrease much. We can also
reduce the training time from 27 h to 1 h just using one machine. It is great to
shorten the training time while using much fewer machines.

PParabel: Parallel Partitioned Label Trees for Extreme Classification 91

Figure 3 shows the speedup of different threads on four datasets. The number
of threads for PParabel varies from 2 to 15. Both Parabel and fastXML are run
with a single thread. We set the maximum threads 15 since we want to make
sure that every thread can work on different processor separately which make
parallelization happen. PParabel uses multi-threads, while Parabel and fastXML
use just one thread. And all these experiments are run in this situation.

The maximum speedup of Parabel is around 9 which is achieved in EURLex-
4K dataset. And the maximum speedup of fastXML is around 57 which is
achieved in Amazon-670K dataset. As it can be seen, the speedup gain per
thread is getting down with the number of threads increasing. The reason is
that to protect the data consistency, we need to block other completed threads
until the current thread finishes writing. When the number of threads increases,
the chance of being blocked is getting bigger and bigger which wastes a lot of
time to communicate. Therefore, the speedup gain per thread is getting down
with the number of threads increasing. But the speedup is achieved almost lin-
early with the threads number increasing. In this consideration, to maximize the
performance, the optimal number of threads is around 15.

5 Conclusion

In this paper, we have discussed the hardware cost and training time of four typ-
ical kinds of approaches to extreme multi-label classification. In order to reduce
the hard-ware cost and speedup the training process, we have proposed PPara-
bel algorithm based on Parabel. Our main contribution is employing a two-stage
thread-level parallelism. Moreover, we analyze the data independence of nodes
on the same level to make sure the training process can be successfully paral-
lelized. The experiment results show that our method is successful to accelerate
the training process. All our experiments are conducted on a standard desk-
top. However, the speedup is achieved almost linearly with the thread number
increasing. In the future work, we will study more sufficient approaches in thread
level.

Acknowledgement. We thank all viewers who provided the thoughtful and construc-
tive comments on this paper. The third author is the corresponding author. We are
grateful to Dr. Manik Varma and his group for their preprocessed datasets. We also
thank ECNU Public Platform for Innovation (001) for their equipment to carry out
our experiments.

References

1. Agrawal, R., Gupta, A., Prabhu, Y., Varma, M.: Multi-label learning with millions
of labels: recommending advertiser bid phrases for web pages. In: Proceedings of
the 22nd International Conference on World Wide Web (WWW), pp. 13–24. ACM,
New York (2013)

92 J. Lu et al.

2. Babbar, R., Schölkopf, B.: DiSMEC: distributed sparse machines for extreme multi-
label classification. In: Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining (WSDM), pp. 721–729. ACM, New York (2017)

3. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for
extreme multi-label classification. In: Proceedings of the 28th International Con-
ference on Neural Information Processing Systems (NIPS), vol. 1, pp. 730–738.
MIT Press Cambridge, MA (2015)

4. Choromanska, A.E., Langford, J.: Logarithmic time online multi-class prediction.
In: Proceedings of the 28th International Conference on Neural Information Pro-
cessing Systems (NIPS), vol. 1, pp. 55–63. MIT Press Cambridge, MA (2015)

5. Jain, H., Prabhu, Y., Varma, M.: Extreme multi-label loss functions for recom-
mendation, tagging, ranking & other missing label applications. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pp. 935–944. ACM, New York (2016)

6. Jasinska, K., Dembczynski, K., Busa-Fekete, R., Pfannschmidt, K., Klerx, T.,
Hullermeier, E.: Extreme F-measure maximization using sparse probability esti-
mates. In: Proceedings of the 33rd International Conference on Machine Learn-
ing(ICML), vol. 48, pp. 1435–1444 (2016)

7. Liu, J., Chang, W.C., Wu, Y., Yang, Y.: Deep learning for extreme multi-label text
classification. In: Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), pp. 115–124. ACM,
New York (2017)

8. Mouhamadou, M.C.: Efficient extreme classification. Data Structures and Algo-
rithms. [cs.DS]. Université Pierre et Marie Curie - Paris VI (2014)

9. Niculescu-Mizil, A., Abbasnejad, E.: Label filters for large scale multilabel classi-
fication. In: Proceedings of the 20th International Conference on Artificial Intelli-
gence and Statistics (AISTATS), pp. 1448–1457 (2017)

10. Prabhu, Y., Varma, M.: FastXML: a fast, accurate and stable tree- classifier for
extreme multi-label learning. In: Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pp. 263–272.
ACM, New York (2014)

11. Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., Varma, M.: Parabel: partitioned
label trees for extreme classification with application to dynamic search advertising.
In: Proceedings of the 2018 World Wide Web Conference (WWW), pp. 993–1002.
International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva (2018)

12. Yen, I.E.H., Huang, X., Dai, W., Ravikumar, P., Dhillon, I., Xing, E.: PPDsparse:
a parallel primal-dual sparse method for extreme classification. In: Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pp. 545–553. ACM, New York (2017)

13. Yen, I.E.H., Huang, X., Zhong, K., Ravikumar, P., Dhillon, I.S.: PD- Sparse: a
primal and dual sparse approach to extreme multiclass and multilabel classification.
In: Proceedings of the 33rd International Conference on Machine Learning (ICML),
vol. 48, pp. 3069–3077. JMLR.org (2016)

14. Yu, H., Jain, P., Kar, P., Dhillon, I.S.: Large-scale multi-label learning with missing
labels. In: Proceedings of the 31st International Conference on Machine Learning
(ICML), vol. 32, pp. I-592–I-601. JMLR.org (2014)

15. Zhang, W., Yan, J., Wang, X., Zha, H.: Deep extreme multi-label learning. In:
proceedings of the 2018 ACM on International Conference on Multimedia Retrieval
(ICMR), pp. 100–107. ACM, New York (2018)

Statistical Analysis and Prediction
of Parking Behavior

Ningxuan Feng1, Feng Zhang1(B), Jiazao Lin2, Jidong Zhai3,
and Xiaoyong Du1

1 Key Laboratory of Data Engineering and Knowledge Engineering (MOE),
and School of Information, Renmin University of China, Beijing 100872, China

fengzhang@ruc.edu.cn
2 Department of Information Management, Peking University, Beijing 100871, China

3 Department of Computer Science and Technology, Tsinghua University,

Beijing 100084, China

Abstract. In China, more and more families own cars, and parking
is also undergoing a revolution from manual to automatic charging. In
the process of parking revolution, understanding parking behavior and
making an effective prediction is important for parking companies and
municipal policymakers.

We obtain real parking data from a big parking company for parking
behavior analysis and prediction. The dataset comes from a shopping
mall in Ningbo, Zhejiang, and it consists of 136,973 records in 396 days.
Specifically, we mainly explore the impact of weather factors on park-
ing behavior. We study several models, and find that the random forest
model can make the most accurate parking behavior prediction. Exper-
iments show that the random forest model can reach 89% accuracy.

Keywords: Prediction model · Regression · Weather condition

1 Introduction

Currently, China has more than 217 million cars, and has a huge demand for
parking lots [12]. It becomes very important to improve the utilization of parking
space because the cars have faster growth. It also increases the demand for devel-
oping intelligent parking system, which can provide better parking management
and higher profits for the owners of parking lots.

In the past few years, several parking-related types of research have been
conducted to improve parking from different perspectives. For example, some
studies [4,23,27,28,31] aim to provide parking information to drivers for free
parking; Fang and others [7] proposed an algorithm to allocate cars to parking
grid, aiming to improve the utilization of parking space.

The requirement of parking space is an important part of intelligent parking;
the studies above considered the prediction of the requirement. However, few

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 93–104, 2019.
https://doi.org/10.1007/978-3-030-30709-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_8

94 N. Feng et al.

of them involve weather conditions in parking prediction. In daily life, weather
condition has a remarkable impact on our travel plan.

In this paper, we analyze the parking behaviors with weather considered,
and then explore various models for parking prediction. In detail, we obtain real
parking dataset from a big parking company for parking behavior analysis and
prediction. The dataset comes from a shopping mall in Ningbo, Zhejiang, and it
consists of 136,973 records in 396 days. We consider the influence of temperature,
humidity, rainfall and wind speed. We use the Anova test [9] to analyze different
categorical features, and test the correlation between all numerical features by
pair plot. Moreover, we also separate workdays from holidays.

For the parking behavior prediction, we have explored linear regression [26],
ridge regression [14], Lasso regression [10], decision tree [24], and random for-
est [15] to depict parking behaviors with weather considered. We find that the
random forest is the most suitable model for parking behavior analysis and pre-
diction. Experiments show that it achieves 94% accuracy; its root mean square
error (RMSE) can be narrowed down to 0.1662, which is smaller than the other
models.

2 Background

2.1 Parking Behavior

Parking behavior refers to the range of actions and mannerisms related to park-
ing. In this paper, we mainly refer to the number of parking each day. In our
life, traveling out with cars and demand for off-car activities lead to parking
behavior. The purpose of parking can be business, shopping or accommodation.
Parking behavior has increased significantly in recent years because of the rapid
growth of the number of cars.

The parking behavior is changeable because it can be affected by many fac-
tors, especially weather. When it rains heavily, people would more likely to
choose traveling out with cars if the activity is necessary. There are also other
important determinants for travel plan related to parking behavior. For example,
in holidays, the location of the parking lot also has a great influence on parking
behavior.

2.2 Motivation

Prediction is meaningful in many fields, not only in computer architecture
[16,32], but also in parking behavior [18,21,29]. Parking behavior plays an impor-
tant role in the city’s traffic management. Policymakers can optimize the traffic
control strategy in real time based on parking behavior, such as changing the
duration of some traffic lights. For parking lot managers, accurate prediction of
parking behavior helps develop policies that can improve parking space utiliza-
tion and get more benefits.

Predicting parking behavior makes a lot of sense. Several related works have
been developed in recent years [1,18,21,29]. These studies proposed models to

Statistical Analysis and Prediction of Parking Behavior 95

predict parking space availability and occupancy, which partially depicts parking
behavior. However, none of them consider the influence of weather condition on
parking behavior. This paper is the first to involve weather in parking behavior
analysis and prediction.

2.3 Challenges

To conduct an extensive study of parking behavior, we face three major chal-
lenges.

Challenge 1: Irregular Data. The data we used to train the prediction model
is disorganized. To eliminate the effect of impurity, we need to fully understand
the data, and conduct specified data cleaning.

Challenge 2: Various Weather Factors. Weather condition is composed of
many detailed factors, such as temperature, humidity, and wind speed. They all
affect the prediction accuracy of parking space demand.

Challenge 3: Model Selection. Since there is no research before for weather-
related parking behavior analysis and prediction, it is difficult to select the most
appropriate model for training.

3 Solution Overview

3.1 Experimental Setup

In this paper, our parking dataset is composed of the parking records of
21-Wharf shopping mall parking lot in Ningbo City, Zhejiang Province, China.
The dataset spans 13 months from March 1st, 2018 to March 31th, 2019. It con-
sists of 136,973 parking records. For each parking records, we obtain parking
information including the starting time, the ending time, and the selected park-
ing space identity number. We regard the parking record with a duration less
than five minutes as noise data. The weather dataset is weather-by-hour data
for Ningbo. For each hour, we got precipitation, temperature, relative humidity,
and wind speed. We also add some extra categorical features into the dataset
that may potentially influence the analysis and prediction. These features include
holiday, month, year, weathersit (decided by precipitation), weekday, and season.

3.2 Analysis and Prediction Framework of Parking Behavior

As stated in Sect. 2.3, we have three major challenges, irregular data, various
weather factors, and model selection. For the first challenge, we visualize the
data to assess the distribution of features, and then present a regularization to
reduce the effect of impurity. For the second challenge, we implement a feature
selection module to find out whether all the features are necessary for training,
and eliminate the outliers. As to the last challenge, we explore five models for
park behavior prediction.

96 N. Feng et al.

The analysis and prediction framework consists of three modules, (1) data
preprocessing module, used for data visualization and regularization (Sect. 4), (2)
feature selection module, used to clean data and select major features (Sect. 5),
and (3) parking space modeling, which explores related models.

4 Preprocessing Methodology

In order to perform an overall analysis of the relevance, we first perform visu-
alization for both parking records and the related features. The features can
be divided into two categories: numerical features and categorical features. The
numerical features include temperature, wind speed, and humidity, which can
be represented as numbers. The categorical features are features that belong to
some categories, such as season, working day or holiday, and weather categories
(sunny, windy, rainy, and so on).

4.1 Numerical Features

In this part, we analyze the numerical features and use temperature, wind speed,
and humidity for illustration. We first normalize features using Eq. 1, and then
check for Gaussian distribution [22]. According to our observation, the distribu-
tion of these features is in accordance with Gaussian distribution.

Xnorm =
X −Xmin

Xmax −Xmin
(1)

We show the scatter plot of numerical features versus car parking count
(denoted as cnt) in Fig. 1. Figure 1(a) exhibits the relation between normalized
temperature and cnt. It shows that as the temperature increases, the cnt also
increases, and the relation between temperature and cnt has a positive rela-
tionship, though there are some outliers.

Fig. 1. Linear regression model fit of numerical features to cnt. The line represents
the regression trend.

Figure 1(b) shows a scatter plot of normalized wind speed versus cnt. We
can see that when we compare the feature alone with cnt, the distribution is

Statistical Analysis and Prediction of Parking Behavior 97

little scattered with concentration mainly on the lower side of the normalized
wind speed.

The scatter plot of humidity versus cnt in Fig. 1(c) shows that as humidity
increases, cnt decreases, which implies that people tend to avoid parking cars
in 21-Wharf shopping mall when the humidity is high.

4.2 Categorical Features

In this part, we explore categorical features, including season, year, month, hol-
iday, and weathersit. We show the relation of categorical features versus cnt in
Fig. 2.

(a) Season vs cnt. (b) Month vs cnt. (c) Weathersit vs cnt.

Fig. 2. The relation between categorical features and cnt.

For the feature of the season, it has four categories: spring, summer, fall,
and winter. Our dataset includes both March 2018 and March 2019, so we have
about 120 days of spring, and 90 days for the other seasons. The season-related
variation of car parking in Fig. 2(a) reveals that cnt in winter is much less than
that in the other seasons. This phenomenon infers that people may not willing
to travel out in winter.

The feature year has two values, 2018 and 2019. Our dataset has more days
from 2018 than from 2019, because there are nine months in 2018 and four
months in 2019 in our dataset. However, we find that the year 2019 has more
car parking on average than the year 2018 does, which probably relates to the
call of low-carbon traveling.

As to the feature of month, Fig. 2(b) shows that some months have fewer car
parking, such as January, February, and December. It indicates that people tend
not to drive out in these months, which is consistent with the phenomenon of
season.

The number of holidays is less than that of working days in our dataset.
We count the average of the parking times, cnt, for holidays and working days.
Our analysis shows low cnt for working days than for holidays, which indicates
that people travel out with cars more on holidays considering this parking lot.

For the influence from the categorical feature of weathersit, we consider three
categories: sunny, light rainy, and heavy rainy, as shown in Fig. 2(c). Our dataset
has more sunny days than rainy days. However, we count the average of cnt,
and it shows that cnt are higher in heavy rain than in the others.

98 N. Feng et al.

5 Feature Selection

In order to choose the right set of predictors, we need to perform feature selection
before applying predictors to our model. Although more features imply more
information on our dataset, they also lead to higher variance. In this section, we
start with the outlier analysis.

5.1 Outlier Analysis

Outliers are the data points that differ greatly from other observations, which
should be removed from our dataset. In our study, we use the method in [2]
to delete those data. Specially, the data points with less than 1.5 interquartile
range times the 25th percentile, or more than 1.5 interquartile range times the
75th percentile, are treated as outliers. We visualise the numerical features with
(such as cnt) and without (such as fixed cnt) outliers in Fig. 3.

Fig. 3. Numerical features with and without outliers.

In addition, please note that the location of the parking lot also plays an
important role in parking behavior. Because we only analyze one parking lot, we
do not consider the location influence. We leave it to our future work.

5.2 Feature Analysis

We first show the pair plot for all numerical features in Fig. 4 to see the corre-
lation between a pair of variables. Figure 4 shows that each pair of variables is
uniformly distributed, no evident linear correlation between any pair of variables.
In a word, each numerical feature is independent of the others.

As the target variable cnt is continuous (we turn it to continuous in the
normalization of Sect. 4.1), we perform Anova (analysis of variance) [9] validation
for checking the variation in the target variable explained by the categorical

Statistical Analysis and Prediction of Parking Behavior 99

Fig. 4. Pair polt for all numerical features.

feature set. Considering 95% confidence interval, feature variables with p-value
more than 0.05 shall be discarded.

We demonstrate the Anova for all categorical features in Table 1. The
F-statistic represents the variation between sample means divided by the vari-
ation within the samples. It is the probability of the observed result the same
as the one obtained in the experiment, assuming the null hypothesis [9] is true.
Low P-values are indications of strong evidence against the null hypothesis. It
can be seen from Table 1 that no feature has P-value more than 0.05.

Table 1. Anova results on categorical dataset.

Categorical feature Season Year Month Holiday Weekday Weathersit

F-statistic 211.46 893.92 1089.08 87.31 608.05 304.70

P-value 1.26e−42 5.70e−132 8.42e−151 9.26e−20 5.18e−100 5.90e−58

After the introduction of data preprocessing and feature selection, we have
normalized the numerical features, eliminated the effects of the outlier and
selected a workable set for our training. Next, we shall explore the parking
behavior prediction with various models.

100 N. Feng et al.

6 Parking Behavior Prediction

In this section, we are exploring models that can predict cnt with those numerical
and categorical features.

6.1 Modeling Methods

Regression is widely used for prediction. In this part, we explore the following
models to demonstrate their efficacy in parking behavior prediction.

– Linear Regression Model [26]. Given a set {yi, xi1, . . . , xip}ni=1, a linear
regression model assumes that the relationship between the dependent vari-
able y and the p-vector of regressors x is linear. We also consider two general-
ized linear regression models: ridge regression [14] and Lasso regression [10].

– Decision Tree [24]. A decision support tool that uses a tree-like model of
decisions and their possible consequences.

– Random Forest [15]. An ensemble learning method for classification, regres-
sion, and other tasks that are operated by constructing multitudes of decision
trees.

6.2 Model Evaluation

In this part, we use linear regression, decision tree, and random forest models
for parking behavior prediction, and use Eq. 2 to verify the model accuracy. The
dataset covers 396 days. We randomly select 75% days (297 days) as training
data, and 25% days (99 days) for validation.

accuracy =
|cntreal − cntpredicted|

cntreal
(2)

Linear Regression Model. We first perform an Ordinary Least Squares
regression (OLS) model [25] shown in Table 2. The three features with the highest
absolute value of coefficient are temperature, humidity, and wind speed. Their
coefficients are positive, which means that when these three features are high,
the parking lot has a higher utilization. In addition, the coefficient of tempera-
ture is 0.148, which is less than the coefficient of wind speed (0.166); this shows
that wind speed has a higher impact on cnt than temperature does.

We show the output of the predictor using linear regression in Fig. 5(a). The
accuracy of linear regression is 78%. In addition, ridge regression model [14]
and Lasso regression model [10] are used to regularize the linear regression.
We calculate the R-square and RMSE (Root Mean Squared Error) to test the
predictors. For the ridge regression model, the best alpha is 0.1, the R-square
is 0.3672, and the RMSE is 0.1714. We acquire similar results for the Lasso
regression model with best alpha 0.001, R-square 0.3656, and RMSE 0.1719.

Statistical Analysis and Prediction of Parking Behavior 101

Table 2. OLS regression results.

Feature coef std err t P >|t| [0.025 0.975]

Season −0.0694 0.014 −5.121 0.000 −0.096 −0.043

Year −0.0090 0.033 −0.268 0.789 −0.075 0.057

Month 0.0205 0.005 4.328 0.000 0.011 0.030

Holiday 0.0892 0.024 3.768 0.000 0.043 0.136

Weekday 0.0238 0.005 4.429 0.000 0.013 0.034

Weathersit 0.0045 0.031 0.145 0.885 −0.057 0.066

Temperature 0.1483 0.050 0.2962 0.003 0.050 0.0247

Humidity 0.3534 0.079 4.496 0.000 0.199 0.508

Wind speed 0.1664 0.077 2.167 0.031 0.015 0.318

(a) Predicted result from linear model. (b) Predicted result from decision tree model.

(c) Predicted result from random forest model.(d) Feature ranking from random forest model.

Fig. 5. Predicted results. Data index refers to the index of records in the test set.

Decision Tree. We also use a decision tree model for our predictor. The output
of the predictor using the decision tree model is shown in Fig. 5(b). Its accuracy
is 72%. The R-square of the predictor is 0.2747, while the RMSE is 0.1818. We
can see that the predictor using a decision tree model has a worse result than
the predictor using a linear regression model does.

102 N. Feng et al.

Random Forest. We now explore a predictor using the random forest model.
The maximum depth of the random tree regressor is set to eight, and the amount
of estimators is set to 100. The output of the predictor using the random forest is
shown in Fig. 5(c). Its accuracy is 89%. The R-square of the predictor is 0.3941,
while the RMSE is 0.1662. It can be seen that the predictor using a random
forest model is more suitable for the parking behavior prediction.

We then show the ranking of features using random forest model in Fig. 5(d).
We can see that season is the most important features, and weathersit, which
relates to precipitation, is also important to the model. Among the numerical
features, the feature temperature has the most significant impact on the target
variable cnt.

6.3 Results

As presented in Sect. 6.2, we have implemented five regression models (three
linear regression models, a decision tree model, and a random forest model) for
park behavior prediction. The decision tree model gives the worst result; its
accuracy is only 72%. The linear regression model achieves an accuracy of 78%.
The random forest model presents the best result; its accuracy is 89%.

7 Related Work

Urban Freight Parking Demand Prediction. Alho and others [3] proposed a
prediction method for urban freight parking demand using ordinary least squares
(OLS) linear regression and generalized linear models (GZLMs). This work helps
parking lot managers to prediction the demand for parking space for freight cars.

Prediction of Parking Space Availability. Parking space availability predic-
tion [18,21,30] is an indispensable part for intelligent parking system. Caicedo
and others [5] proposed a method for predicting space availability in an IPR
architecture for parking facility information systems.

Prediction of Parking Space Occupancy. Pierce and others [20] proposed a
framework, SFpark, aiming to solve the problems created by charging too much
or too little for curb parking. Simhon and others [29] extended SFpark with
a machine learning approach for better prediction. Chen [6] studied parking
occupancy prediction and pattern analysis. Hossinger and others [11] developed
a real-time occupancy model of short-term parking zones. Florian and others [8]
presented a model for predicting parking occupation.

Influencing factors of Parking Space Usage. There are many works about
influencing factors of parking space usage, including pricing strategy, traffic con-
dition, and parking lot locations. Pierce and others [19] provided an evaluation
of pricing parking by demand. Ottosson and others [17] studied the sensitivity
of on-street parking demand in response to price changes. Lam and others [13]
proposed a bilevel programming model to determine the minimum supply of
parking spaces.

Statistical Analysis and Prediction of Parking Behavior 103

8 Conclusion

In this paper, we have analyzed parking behavior with weather conditions con-
sidered. We exhibit our method about how to perform preprocessing and feature
selection from data, and also explore different regression models for parking
behavior prediction. Experiments show that the random forest model has the
best results, which achieves 89% accuracy.

Acknowledgments. This work is partially supported by the National Key R&D Pro-
gram of China (Grant No. 2017YFB1003103), National Natural Science Foundation of
China (Grant No. 61722208, 61732014, 61802412). Feng Zhang is the corresponding
author (fengzhang@ruc.edu.cn).

References

1. Abdullatif, A., Masulli, F., Rovetta, S.: Tracking time evolving data streams for
short-term traffic forecasting. Data Sci. Eng. 2(3), 210–223 (2017)

2. Aggarwal, C.C.: Outlier Analysis. Data Mining, pp. 237–263. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-14142-8 8

3. Alho, A.R., Silva, J.D.A.E.: Freight-trip generation model: predicting urban freight
weekly parking demand from retail establishment characteristics. Transp. Res. Rec.
2411(1), 45–54 (2014)

4. Banti, K., Louta, M., Karetsos, G.: ParkCar: a smart roadside parking application
exploiting the mobile crowdsensing paradigm. In: 2017 8th International Confer-
ence on Information, Intelligence, Systems & Applications (IISA), pp. 1–6. IEEE
(2017)

5. Caicedo, F., Blazquez, C., Miranda, P.: Prediction of parking space availability in
real time. Expert Syst. Appl. 39(8), 7281–7290 (2012)

6. Chen, X.: Parking occupancy prediction and pattern analysis. Dept. Comput. Sci.,
Stanford Univ., Stanford, CA, USA, Technical Report CS229-2014 (2014)

7. Fang, J., Ma, A., Fan, H., Cai, M., Song, S.: Research on smart parking guidance
and parking recommendation algorithm. In: 2017 8th IEEE International Confer-
ence on Software Engineering and Service Science (ICSESS), pp. 209–212. IEEE
(2017)

8. Florian, M., Los, M.: Impact of the supply of parking spaces on parking lot choice.
Transp. Res. Part B: Methodol. 14(1–2), 155–163 (1980)

9. Girden, E.R.: ANOVA: Repeated Measures, No. 84. Sage, Thousand Oaks (1992)
10. Hans, C.: Bayesian lasso regression. Biometrika 96(4), 835–845 (2009)
11. Hössinger, R., Widhalm, P., Ulm, M., Heimbuchner, K., Wolf, E., Apel, R.,

Uhlmann, T.: Development of a real-time model of the occupancy of short-term
parking zones. Int. J. Intell. Transp. Syst. Res. 12(2), 37–47 (2014)

12. Kong, D., Li, F., Zhang, B.: Design and implementation of intelligent management
system for urban road parking. In: Journal of Physics: Conference Series, vol. 1087,
p. 062061. IOP Publishing (2018)

13. Lam, W.H., Tam, M., Yang, H., Wong, S.: Balance of demand and supply of parking
spaces. In: 14th International Symposium on Transportation and Traffic Theory
Transportation Research Institute (1999)

14. Le Cessie, S., Van Houwelingen, J.C.: Ridge estimators in logistic regression. J.
Roy. Stat. Soc.: Ser. C (Appl. Stat.) 41(1), 191–201 (1992)

https://doi.org/10.1007/978-3-319-14142-8_8

104 N. Feng et al.

15. Liaw, A., Wiener, M., et al.: Classification and regression by randomForest. R.
News 2(3), 18–22 (2002)

16. Liu, L., Yang, S., Peng, L., Li, X.: Hierarchical hybrid memory management in OS
for tiered memory systems. IEEE Trans. Parallel Distrib. Syst. (2019)

17. Ottosson, D.B., Chen, C., Wang, T., Lin, H.: The sensitivity of on-street parking
demand in response to price changes: a case study in Seattle, WA. Transp. Policy
25, 222–232 (2013)

18. Pflügler, C., Köhn, T., Schreieck, M., Wiesche, M., Krcmar, H.: Predicting the
availability of parking spaces with publicly available data. Informatik 2016 (2016)

19. Pierce, G., Shoup, D.: Getting the prices right: an evaluation of pricing parking by
demand in San Francisco. J. Am. Plann. Assoc. 79(1), 67–81 (2013)

20. Pierce, G., Shoup, D.: SFpark: pricing parking by demand (2013)
21. Quinn, J.: System and method for predicting parking spot availability, February

28 2008. US Patent App. 11/849,493
22. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von

Luxburg, U., Rätsch, G. (eds.) ML-2003. LNCS (LNAI), vol. 3176, pp. 63–71.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9 4

23. Roman, C., Liao, R., Ball, P., Ou, S., de Heaver, M.: Detecting on-street parking
spaces in smart cities: performance evaluation of fixed and mobile sensing systems.
IEEE Trans. Intell. Transp. Syst. 19(7), 2234–2245 (2018)

24. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.
IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

25. Seabold, S., Perktold, J.: Statsmodels: econometric and statistical modeling with
python. In: 9th Python in Science Conference (2010)

26. Seber, G.A., Lee, A.J.: Linear Regression Analysis, vol. 329. Wiley, Hoboken (2012)
27. Shahzad, A., Choi, J.Y., Xiong, N., Kim, Y.G., Lee, M.: Centralized connectivity

for multiwireless edge computing and cellular platform: a smart vehicle parking
system. Wirel. Commun. Mob. Comput. 2018, 1–23 (2018)

28. Shin, J.H., Kim, N., Jun, H.b., Kim, D.Y.: A dynamic information-based park-
ing guidance for megacities considering both public and private parking. J. Adv.
Transp. 2017, 1–19 (2017)

29. Simhon, E., Liao, C., Starobinski, D.: Smart parking pricing: A machine learning
approach. In: 2017 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 641–646. IEEE (2017)

30. Tayade, Y., Patil, M.: Advance prediction of parking space availability and other
facilities for car parks in smart cities. Int. Res. J. Eng. Technol. 3(5), 2225–2228
(2016)

31. Tilahun, S.L., Di Marzo Serugendo, G.: Cooperative multiagent system for park-
ing availability prediction based on time varying dynamic markov chains. J. Adv.
Transp. 2017, 1–14 (2017)

32. Zhang, F., et al.: An adaptive breadth-first search algorithm on integrated archi-
tectures. J. Supercomput. 74(11), 6135–6155 (2018)

https://doi.org/10.1007/978-3-540-28650-9_4

Big Data+Cloud

ASTracer: An Efficient Tracing Tool
for HDFS with Adaptive Sampling

Yang Song, Yunchun Li, Shuhan Wu, Hailong Yang(B), and Wei Li

School of Computer Science and Engineering, Beihang University,
Beijing 100191, China

{yangsoon,lych,wushuhan,hailong.yang,liw}@buaa.edu.cn

Abstract. Existing distributed tracing tools such as HTrace use static
probabilistic samplers to collect the function call trees for performance
analysis, which may fail to capture important but less executed function
call trees and thus miss the opportunities for performance optimization.
To address the above problem, we propose ASTracer, a new distributed
tracing tool with two adaptive samplers. The advantage of adaptive sam-
plers is that they can adjust the sampling rate dynamically, which is able
to capture comprehensive function call trees and in the meanwhile main-
tain the size of trace file acceptable. In addition, we propose an auto-
tuning mechanism to search for the optimal parameter settings of the
adaptive samplers in ASTracer. The experiment results demonstrate the
adaptive samplers are more effective in tracing the function call trees
compared to probabilistic sampler. Moreover, we provide several case
studies to demonstrate the usage of ASTracer in identifying potential
performance bottlenecks.

Keywords: HDFS · Distributed tracing tool · Adaptive sampling

1 Introduction

With the rapid development of the computing technologies, cloud computing
has been widely adopted in large scale applications. Understanding the behav-
ior of distributed systems and tracing the performance bottlenecks is becoming
more complicated in the scenario of cloud computing. This is because services
are deployed on different nodes, which is particularly difficult to locate abnor-
mal behaviors within the massive volume of log files. Therefore, the distributed
tracing tools are proposed to solve the above problems, which can be used to
trace function calls in distributed systems to help users understand the system
behaviors and analyze performance bottleneck. Currently, distributed tracing
tools are widely used inside the large Internet service providers.

Moreover, popular big data analyzing frameworks such as Spark and Hadoop
universally use distributed file systems such as HDFS [5] to store the large
amount of data. Targeting HDFS, Htrace [1] is a distributed tracing tool for

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 107–119, 2019.
https://doi.org/10.1007/978-3-030-30709-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_9

108 Y. Song et al.

guiding the performance analysis and optimization of HDFS. Although tracing
every function call within HDFS seems ideal for performance analysis, the huge
volume of trace data generated would make the data analysis infeasible. There-
fore, Htrace relies on probabilistic samplers to collect a subset of all possible
traces. The sampler used in Htrace determines the way how the function calls
are collected based on probability.

The drawback with Htrace probabilistic sampler is that it determines to
sample a call tree at the root node based on probability, therefore it decides
either to sample the entire call tree or nothing. In some cases, such design
of probabilistic sampler leads to low sampling rate, and thus fails to pro-
vide enough information of the function calls for the developers, especially the
information of the abnormal functions. For instance, Table 1 shows the execu-
tion statistics of several functions for nweight in Hibench [8]. Some functions
(e.g., DFSOutputStream#writeChunk) are executed for a large number of times,
but take a quite short time to execute. Whereas, some functions (e.g., FileSys-
tem#createFileSystem) are executed for only a few times, but take a long time to
execute, which are more likely to be the performance bottlenecks. However, when
using probabilistic samplers in Htrace, the low sampling rate is more likely to
ignore these functions. At the same time, some function calls may be called more
frequently than others, which may generate very large the trace file that buries
the abnormal behaviors with tremendous less useful information. For instance,
Table 2 shows the number of calls of several function for kmeans in Hibench. The
function DFSInputStream#byteArrayRead has been executed for a large number
of times, which greatly increases the size of the trace file.

Table 1. The execution statistics of several functions in nweight.

Function name Number of callsTimemean(ms)Timestd(ms)

DFSOutputStream#writeChunk 3489 0.042 0.350

DFSOutputStream#write 400 1.520 1.882

BlockSender#sendPacket (transferTo) 177 31.717 75.610

BlockSender#doSendBlock 48 121.145 156.751

DFSOutputStream#close 40 267.175 229.670

FileSystem#createFileSystem 20 1244.350 641.715

Table 2. The number of calls for several functions in kmeans.

Function name Number of calls

DFSInputStream#byteArrayRead 1644123

DFSOutputStream#writeChunk 4963

BlockReaderRemote2#readNextPacket 251

ClientNamenodeProtocol#getFileInfo 219

DFSInputStream#fetchBlockAt 131

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 109

To solve the above problems, we propose a new tracing tool ASTracer for
HDFS. The ASTracer extends HTrace with two adaptive samplers, which records
the number of function calls at the root node of the call tree in the sampler, and
generates sampling decisions for different root nodes based on the recorded infor-
mation. For instance, ASTracer limits the sampling rate of the call tree that is
executed frequently, and ensures that the call trees that are executed less fre-
quently have at least the minimum number of samples. Because the sampling
decision is made for each call tree, it guarantees to capture the execution infor-
mation of more functions. Moreover, ASTracer reduces the number of samples
from the frequently executed call trees, which is effective to compress the size of
the trace file. In addition, we propose several metrics from various aspects such
as efficiency, storage and sampling quality to evaluate the effectiveness of the
proposed samplers. Compared to the probabilistic samplers, ASTracer is able to
capture more function call relationships while maintaining a small size of trace
file.

Specifically, the main contributions of this paper are as follows:

– We propose ASTracer, a new distributed tracing tool with two adaptive sam-
plers for increasing the coverage of function call sampling, as well as main-
taining the size of the trace file acceptable.

– We design an auto-tuning mechanism to search for the optimal parameter
settings within ASTracer, which eliminates the overhead of human effort and
time cost of exhaustive search.

– We present several important metrics from various apsects, including effi-
ciency, storage and sampling quality to evaluate the effectiveness of the pro-
posed samplers in ASTracer.

– We provide a case study by applying ASTracer to analyze representative
workloads, which identifies potential performance bottlenecks and gives guid-
ance for performance optimization.

The rest of this paper is organized as follows: Sect. 2 introduces the back-
ground of distributed tracing tools as well as the motivation of this paper.
Section 5 presents the related work on the samplers of distributed tracing sys-
tems. We present the design and implementation of our ASTracer with two adap-
tive samplers, as well as the automatic tuning method for the sampler parameters
in Sect. 3. We evaluate the effectiveness of ASTracer in Sect. 4, and conclude this
paper in Sect. 6.

2 Background and Motivation

2.1 HDFS

HDFS is a distributed file system proposed in Hadoop, but it is also used in other
distributed computing frameworks such as Spark. HDFS is highly fault-tolerant
and suitable for deployment on commodity clusters. It provides functionalities
such as error checking and automatic data recovery. The HDFS cluster adopts

110 Y. Song et al.

the master-slave model, which consists of a NameNode and several DataNodes.
The NameNode is responsible for managing the namespace, storing metadata,
etc., whereas the DataNode performs operations such as creating, deleting, and
copying the blocks under the scheduling of the NameNode in order to meet the
requests from the Client.

2.2 Distributed Tracing Tool

To cope with the complicated tracing demand in the distributed systems, Google
proposes Dapper [14] that builds the tracing tool based on call tree and span.
Another typical tracing tool is Xtrace [7], which is able to provide a compre-
hensive view of the system service behaviors. However, it is incapable to handle
distributed systems at very large scale. Currently, the widely used distributed
tracing tools include Zipken [2], Jaeger [3] and Htrace [1]. Among them, Htrace
is a tracing tool specially designed for HDFS. The design of Htrace is based on
the following concepts: (1) a Span object represents a function being traced. (2)
TraceScopes manages the life time of Span objects, and the Tracers are responsi-
ble for creating a TraceScope. Tracer determine whether to sample a function call
by calling Sampler. (3) Spanreciver is a collector, which is responsible for receiv-
ing Span objects sent from Tracer and serializing trace data. In this paper, we
leverage the LocalFileSpanReciver to periodically write sampling data to trace
files.

2.3 Motivation

Certain call trees in HDFS application may be executed frequently. Sampling
such call trees is not only unnecessary, but also consumes significant computa-
tion and storage resources. In addition, generating large trace files could severely
degrade the performance of the running application. Moreover, the huge volume
of the trace data is also difficult to analyze. However, there are few research
works focusing on the design of adaptive samplers in distributed tracing tools,
especially in the field of big data application. The samplers in Dapper [14] all
adopt a global sampling rate. Zipkin [2] supports more samplers such as counting
sampler and boundary sampler, however it fails to consider the execution behav-
iors of different call trees. Jaeger [3] also misses the dynamic sampling functions
in its current implementation [4]. Htrace [1] only provides probabilistic sampling
and equidistant sampling that are infeasible to change during the tracing.

It is clear that there is still much work to do for improving the effectiveness of
samplers used in distributed tracing tool. For instance, how to improve the cov-
erage of call trees during sampling, and in the meanwhile reduce the size of the
trace file. With detailed function call trees sampled, especially when abnormal
behaviors happened during the execution, the developers can effectively iden-
tify the performance bottlenecks and optimize accordingly. All the above needs
motivate this paper.

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 111

3 The Design and Implementation of ASTracer

3.1 The Design Overview

The design overview of ASTracer is shown in Fig. 1. First, the HDFS application
is instrumented. When the application is executed, ASTracer decides whether
to sample certain call trees. The samplers in ASTracer make sampling decisions
for the root nodes of each call trees, which can be approximated as sampling the
call tree. In ASTracer, we use the record table to record how many times each
call tree has been called. The sampler determines whether to sample a call tree
based on the number of occurrences of the call tree.

Sampler

Application

ASTracer

Sampler

source
call tree

SpanReciver

update

decision maker

record
A 12

B 213

C 3417sampled
call tree

Instrumentation

Fig. 1. The design overview of ASTracer.

To solve the problem of missing call tree with global sampling rate, ASTracer
adjusts the sampling rate dynamically according to the number of occurrences
of the call trees. The workloads that contain a large number of iterations, the
number of occurrences of different call trees could differ by even 5 to 6 orders of
magnitude. Sampling such workloads requires dynamically adjusting the sample
rate in order to capture enough call trees without generating too large trace files.

The sampler works in the following way within ASTracer. The sampler is
consulted for sampling decision when the root node of a function call tree is
traced by the Tracer in ASTracer. The sampler updates the record and then
generates a sampling decision based on the record.

3.2 Bump Sampler

Bump sampler uses the bump function to generate the sampling decision with
probability. The advantage for using the bump function is that the sampling
probability changes significantly when the input variable exceeds a certain
threshold. With this property, we can guarantee that each function has a high
probability of being sampled before a specified threshold. However, after exceed-
ing the threshold, the sampling rate drops dramatically.

The bump function used in the bump sampler is shown in Eq. 1, where x
represents the number of times a function is being called. The property of the

112 Y. Song et al.

bump function is that when the number of occurrence of a function is small, the
sampling probability is almost 1. However, when a function is being called more
often, the sampling rate starts to decrease rapidly. In order to avoid the non-
sampling problem with the functions that are being called for a large number
of times in the later, we set a minimum sampling rate. Moreover, in order to
prevent the frequently executed functions being sampled too less, we create a
new thread when instantiating the sampler, and reset the number of function
calls in the record table to be 0 every second.

f(x) = 1 − e− λ2

x2 (1)

The bump sampler works as follows. It first checks whether the record of
the function already exists in the record table. If not, a new entry is created,
in which the number of function calls is initialized to 0. If there is a record of
the function, the bump function is used to generate a new sample rate based
on the number of function calls. Then, the number of calls to this function is
increased by one and the record is updated. The algorithm determines whether
the sampling rate is lower than the lowest sampling rate. If so, the sampling rate
is set to the lowest. The threshold for the number of function calls as well as the
lowest sampling rate can be customized by the users.

3.3 Token Bucket Sampler

Token bucket sampler is based on the idea of token buckets [9]. The design of
token bucket sampler is to maintain a bucket with a certain number of tokens.
The number of tokens in the bucket only vary within the range of 0 and bucket
capacity. Each time a function is called, the tokens in the bucket are decremented
by one. The tokens are replenished to the bucket at a certain rate.

In our token bucket sampler, we set a bucket for the root node of each call
tree during workload execution. When the sampler is consulted, it first looks up
the bucket to see if there are any tokens left, updates the tokens according to
the policy of the token bucket, and decides whether to sample. Instead of using
the static sampling rate, it decides whether to sample based on the remaining
tokens in the bucket. The advantage of this sampler is that frequently occurring
call trees are suppressed, and the call trees that occur less frequently are almost
always taken. In particular, when a function call occurs in a burst for a short
time period, the sampler can effectively compress the number of samples taken.

The token bucket sampler works as follows. It first checks whether there is an
entry for the function in the table. If not, a new entry is created and initialized.
Based on whether there is at least one token for the function remained in the
token bucket, the token is updated according to the time elapsed from the last
execution, however without exceeding the bucket capacity. The bucket capacity
as well as the rate for replenishing tokens can be customized by the users.

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 113

3.4 Auto Tuning the Sampler Parameters

Since the optimal parameter settings for the samplers vary across different appli-
cations as well as distributed systems, it is more effective to use an auto-tuning
mechanism to search for the optimal parameter settings for the samplers in
ASTracer. Therefore, we propose an auto-tuning mechanism using the simulated
annealing algorithm [10].

The objective function f(x) as shown in Eq. 2. For bump sampler,
x = (λ, threshold), whereas for token bucket sampler, x = (bucket size,
increase step). The entropy(x) represents the information entropy of the sam-
pling result. The larger the entropy is, the more information the trace col-
lects. The dist(x) measures the similarity between the sampled results and the
full instrumented results, which uses the Euclidean distance. The smaller the
Euclidean distance is, the higher the similarity is.

f(x) =
dist(x)

entropy(x)
(2)

The constraints to the objective function f(x) is shown in Eq. 3, where Sp0.1

indicates the trace size sampled using 0.1 probability, and S represents the trace
size sampled by the adaptive sampler after the parameter auto-tuning. That is,
while ensuring a small size of compressed trace file, it will not lose too much
information.

0.1 · Sp0.1 ≤ S ≤ Sp0.1 (3)

The parameter auto-tuning using the simulated annealing algorithm works as
follows. First, it generates a random initial solution x and calculates its objective
function f(x). A new solution x′ is then proposed by adding a perturbation,
and then a new objective function f(x′) is calculated. If the constraint is not
met, a new solution x′ is re-proposed. In order to choose a better solution, let:
δf = f(x)−f(x′) , if δf ≤ 0, replace x with x′. However, in order to prevent the
algorithm trapping in a local optimal solution, it is necessary to accept a sub-
optimal solution with certain probability. The simulating annealing algorithm
accepts x′ with probability p = e− δf

T , where T is the current temperature to
control the acceptance probability of a sub-optimal solution. The above process
iterates until the upper limit is reached. Then the temperature T is decreased
and the number of iterations is reset. The above procedure is repeated until the
condition is met.

The optimal parameter settings of the samplers after auto-tuning using the
simulated annealing algorithm are shown in Sect. 4.1.

4 Evaluation

4.1 Experimental Setup

Our experiments are conducted on a cluster with five nodes, which includes
one master node, three slave nodes, and one client node running HDFS v2.8.3.

114 Y. Song et al.

Each node is equipped with 2 Intel Xeon E5-5620 processors and 16 GB DDR3
memory. The operating system on each node is 64 bit CentOS v6.5. We collect
trace file from the Client and Namenode for result analysis. Representative work-
loads are selected in Table 3 to demonstrate the robustness of ASTracer. To the
best of our knowledge, there is no public tracing tool available on HDFS except
for Htrace. Therefore, we compare with the static samplers in Htrace with the
sampling rate set to 0.1 and 0.01, which is commonly used in literature [14]. The
parameter settings for the samplers in ASTracer are also shown in Table 3.

Table 3. The parameter settings in ASTracer.

Probability sampler Bump sampler Token bucket sampler

Sampling rate λ Threshold Bucket size Replenish rate

dfsioe read 0.1 128 0.022 1047 21

dfsioe write 0.1 215 0.020 2595 9

terasort 0.1 552 0.014 3728 12

wordcount 0.1 1034 0.013 5002 14

kmeans 0.1 3490 0.010 21035 19

pagerank 0.1 102 0.021 1083 116

4.2 Evaluation Metrics

To better evaluate the samplers in ASTracer, we propose the five metrics includ-
ing execution time (ET), trace file compression ratio (TFCR), sampling coverage
(SC), sample similarity (SS) and information entropy (IEn), to measure the effec-
tiveness of the samplers from different aspects. We provide a brief description
about SS and IEn in the following subsections.

Sample Similarity represents the similarity to the trace results with call trees
all sampled. The calculation of SS is as follows: for a sampler B, assume that
it samples function m and function n. Then we use the feature vector FB =
((meanm, stdm), (meann, stdn)) to represent the sampling characteristics of the
sampler, and FA represents the feature vector with call trees all sampled. After
that, we calculate the Euclidean distance between FA and FB as shown in Eq. 4,
where n represents the number of all functions. A closer Euclidean distance
means higher similarity.

SS = dist(FA ,FB)

=

√
√
√
√

n∑

k=1

[

(Ak.mean − Bk.mean)2 + (Ak.std − Bk.std)2
] (4)

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 115

Information Entropy can be used to describe the information uncertainty in
a system [13]. The higher uncertainty means higher information entropy. IEn is
calculated using Eq. 5. The three properties of information entropy are mono-
tonicity, non-negativeness and additivity. According to monotonicity, the more
likely a sample occurs, the less information it carries. In other words, the sam-
ples with low probability to occur are more valuable to us. Whereas the non-
negativity and additivity ensure that we should focus on high-value samples.

H(X) = −
∑

x∈X
p(x) log p(x) (5)

The calculation information entropy is as follows: for a sample result, it
calculates the execution time (countx) for each function as well as the total
number of calls for all functions (C =

∑

x∈X countx,). Then, it calculates the
frequency of each function p(x) = countx/C and applies p(x) to Eq. 5.

4.3 Sampler Evaluation

To reduce the impact of system noise, we run each workload for 10 times under
each evaluating metric and report the mean of the results. The results are shown
in Fig. 2.

Fig. 2. The evaluation results with different samplers under different metrics. The leg-
end always, p0.01, p0.1, bump and tbuckt mean the methods of sampling all functions,
with probability 0.01, with probability 0.1, bump sampler and token bucket sampler
respectively. The execution time, trace file compression ratio, function and call tree of
all sampling methods are normalized to always.

In terms of execution time, because our sampler uses ConcurrentHashMap
to store information for parallel accesses, it has less impact on the performance
of the workload. Compared to the workload execution time without the sampler,

116 Y. Song et al.

the average sampling latency with bump sampler and token bucket sampler is
6.99% and 5.49% respectively across different workloads, whereas the average
sampling latency with probability sampler (rate = 0.1) is 7.92%.

In terms of trace file compression ratio, compared to collecting all samples,
the trace file size generated by ASTracer is compressed to about 5%, probability
sampler (rate = 0.1) is approximately 10%. ASTracer significantly reduces the
number of samples of functions that performs too many times, so the size of the
trace is also reduced considerably. Note that reducing the number of samples
seldom leads to insufficient information about such functions. In addition, we
can adjust the sampler parameters to achieve the optimal results.

In terms of sampling coverage, our samplers can capture more functions and
call trees, whereas probabilistic samplers fail to capture more functions as the
sampling rate decreases. Compared to collecting all samples, both bump sampler
and token bucket sampler can achieve close to 100% coverage across different
workloads, whereas the average coverage of the probabilistic sampler is 72%.

In terms of information entropy, our adaptive samplers reduce the sam-
pling rate of some high-probability functions and improves the sampling rate
of some low-probability functions, therefore it can obtain more information. The
average information entropy of the bump sampler and token bucket sampler
across different workloads is 2.03 and 2.02, whereas the probabilistic sampler
(rate = 0.1) only achieves 1.21.

In terms of sample similarity, when comparing to itself, the SS is 0 when
all call trees are sampled. Therefore, the sampler with SS close to 0 is better.
The average SS of the bump sampler and token bucket sampler across different
workloads is 5.20 and 5.40 respectively, whereas the SS of probabilistic sampler
(rate = 0.1) is 6.80. Therefore, the adaptive samplers preserve more statistical
characteristics of the samples than probabilistic sampler.

4.4 Case Study

In this section, we provide several case studies using AStracer to identify several
abnormal function calls with workloads in Hibench.

In general, all calls to the DFSInputStream#byteArrayRead function in
Hibench are considered as abnormal. After analyzing the execution time dis-
tribution of this function, we observe that the 75% percentile of execution time
is less than 0.1 ms, however the maximum execution time is as long as 100 ms.
This indicates that when the workloads read data, the size of data block is
extremely unbalanced.

The machine learning algorithm such as kmeans requires multiple iterations,
and thus calls the DFSInputStream#byteArrayRead function frequently. Table 4
shows the sampled function information of kmeans. We can see that the DFSIn-
putStream#byteArrayRead function is called more often and the execution time
is unbalanced. Therefore, the problem of data skew has a significant impact on
the performance of such workload.

Pagerank is an algorithm for measuring the importance of a particular web
page. In particular, pagerank is a computation intensive workload. A lot of work

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 117

Table 4. The sampled functions of kmeans and pagerank.

Workload Function Number

of calls

Timemean

(ms)

Timestd

(ms)

Timemedian

(ms)

Timemax

(ms)

kmeans DFSInputStream#byteArrayRead 22635 0.041 1.042 0.1 120

ClientNamenodeProtocol#getFileInfo 219 1.01 4.712 1 70

ClientNamenodeProtocol#addBlock 22 12.10 9.310 12.5 52

pagerank DFSInputStream#byteArrayRead 1713 0.149 0.804 0 24

DFSOutputStream#write 1726 0.162 0.417 0 5

ClientNamenodeProtocol#create 247 8.846 12.022 7 106

is used to build directed graphs through link relationships. The number of func-
tion calls to DFSInputStream#byteArrayRead and DFSInputStream#write is
much fewer than other workloads as shown in Table 4. In addition, the execu-
tion time is quite even across function calls. Therefore, the I/O operations are
unlikely to become a performance bottleneck.

We also observe that the execution time of the Client (e.g., ClientNamenode-
Protocol#create and ClientNamenodeProtocol#getFileInfo) varies significantly
as shown in Table 4, which obtains the metadata from NameNode via RPC.
Although such function is only called for a few times, its execution time is usu-
ally long and thus could become the potential performance bottleneck. Whereas,
Htrace fails to capture the above information and thus loses the opportunity for
performance optimization.

5 Related Work

In the design and optimization of samplers for distributed systems, the Dapper
experience from Google [14] emphasizes the dynamic adjustment of the sampling
strategy for different workloads, which reduces the sampling rate under high load
conditions, and increases the sampling rate under low load conditions to ensure
that the coverage of the trace. In addition, Liu et al. [11] use Htrace to analyze
the performance of HDFS, and propose a compressed tree algorithm to reduce
the size of the trace file, however their algorithm can only be used for offline
compression.

Jaeger [3] is a distributed tracing system developed by Uber. It is used to
monitor the health of the system. Its implementation is based on Dapper. Jaeger
is mainly composed of jaeger-client, jaeger-agent and jager-collector. The jaegar-
agent is responsible for forwarding the recorded data to the jaegar-collector. And
it can dynamically adjust the sampling frequency.

Adaptive features are widely studied in performance analysis and tracing sys-
tems [6,12,15]. The main idea of these works is based on the runtime information,
dynamically adjusting the pre-set parameters to achieve a certain purpose. How-
ever, there is little research work on sampling. Therefore, this paper attempts to
introduce adaptive sampling into the tracing system in order to achieve better
sampling results.

118 Y. Song et al.

Different from existing works, this paper proposes adaptive samplers by
extending the tracing system Htace. Each time the sampler is called, the number
of calls to the function (the root node of the call tree) is recorded. According to
this record, the sampler can adjust its sampling rate according to the dynamic
strategies.

6 Conclusion

In this paper, we propose a new distributed tracing tool ASTracer with two
adaptive samplers that adjusts the sampling rate dynamically to improve the
effectiveness of function tracing from various aspects. The experiment results
show that our proposed samplers are better than the probabilistic sampler under
various evaluating metrics. Moreover, we provide several case studies to apply
ASTracer in identifying the performance bottlenecks with representative work-
loads.

Acknowledgement. This work is supported by National Key Research and Develop-
ment Program of China (Grant No. 2016YFB1000304) and National Natural Science
Foundation of China (Grant No. 61502019). Hailong Yang is the corresponding author.

References

1. https://github.com/apache/incubator-retired-htrace/
2. https://zipkin.io/
3. https://www.jaegertracing.io/
4. https://github.com/jaegertracing/jaeger/issues/365/
5. Borthakur, D.: The hadoop distributed file system: architecture and design.

Hadoop Project Website 11(2007), 21 (2007)
6. Ehlers, J., van Hoorn, A., Waller, J., Hasselbring, W.: Self-adaptive software system

monitoring for performance anomaly localization. In: Proceedings of the 8th ACM
International Conference on Autonomic Computing, pp. 197–200. ACM (2011)

7. Fonseca, R., Porter, G., Katz, R.H., Shenker, S., Stoica, I.: X-trace: a pervasive
network tracing framework. In: Proceedings of the 4th USENIX Conference on
Networked Systems Design & Implementation, p. 20. USENIX Association (2007)

8. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite:
characterization of the MapReduce-based data analysis. In: 2010 IEEE 26th Inter-
national Conference on Data Engineering Workshops, ICDEW 2010, pp. 41–51.
IEEE (2010)

9. Humayun, F., Babar, M.I.K., Zafar, M.H., Zuhairi, M.F., et al.: Performance anal-
ysis of a token bucket shaper for MPEG4 video and real audio signal. In: 2013 IEEE
International Conference on Smart Instrumentation, Measurement and Applica-
tions (ICSIMA), pp. 1–4. IEEE (2013)

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

11. Liu, Y., Li, Y., Zhou, H., Zhang, J., Yang, H., Li, W.: A fine-grained perfor-
mance bottleneck analysis method for HDFS. In: Zhang, F., Zhai, J., Snir, M., Jin,
H., Kasahara, H., Valero, M. (eds.) NPC 2018. LNCS, vol. 11276, pp. 159–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05677-3 17

https://github.com/apache/incubator-retired-htrace/
https://zipkin.io/
https://www.jaegertracing.io/
https://github.com/jaegertracing/jaeger/issues/365/
https://doi.org/10.1007/978-3-030-05677-3_17

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 119

12. Mos, A., Murphy, J.: COMPAS: adaptive performance monitoring of component-
based systems. In: Proceedings of 2nd ICSE Workshop on Remote Analysis and
Measurement of Software Systems. Citeseer (2004)

13. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

14. Sigelman, B.H., et al.: Dapper, a large-scale distributed systems tracing infrastruc-
ture (2010)

15. Wert, A., Schulz, H., Heger, C.: AIM: adaptable instrumentation and monitoring
for automated software performance analysis. In: Proceedings of the 10th Interna-
tional Workshop on Automation of Software Test, pp. 38–42. IEEE Press (2015)

BGElasor: Elastic-Scaling Framework
for Distributed Streaming Processing

with Deep Neural Network

Weimin Mu1,2, Zongze Jin1,2(B), Junwei Wang1,2, Weilin Zhu2,
and Weiping Wang2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{muweimin,jinzongze,wangjunwei}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

{zhuweilin,wangweiping}@iie.ac.cn

Abstract. In face of constant fluctuations and sudden bursts of data
stream, elasticity of distributed stream processing system has become
increasingly important. The proactive policy offers a powerful means to
realize the effective elastic scaling. The existing methods lack the latent
features of data stream, it leads the poor prediction. Furthermore, the
poor prediction results in the high cost of adaptation and the instabil-
ity. To address these issues, we propose the framework named BGElasor,
which is a proactive and low-cost elastic-scaling framework based on
the accurate prediction using deep neural networks. It can capture the
potentially-complicated pattern to enhance the accuracy of prediction,
reduce the cost of adaptation and avoid adaptation bumps. The exper-
imental results show that BGElasor not only improves the prediction
accuracy with three kinds of typical loads, but also ensure the end-to-
end latency on QoS with low cost.

Keywords: Data stream processing · Load prediction ·
Deep neural network · Gated recurrent units · Elasticity

1 Introduction

With the rapid development of the Internet and the rise of the Internet of Things
(IoT), various software and sensors continuously generate massive amounts of
continuous data streams. Distributed stream processing systems (DSPSs) [1–5]
offer a powerful means to carry out data stream processing applications (DSPAs).
The Quality of Service (QoS) is important for the DSPAs, which is commonly
measured through end-to-end latency and throughput. For example, when an
intrusion occurs, determining and warning operations should be made in a cer-
tain time window. Nevertheless, data streams have the characteristics of load

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 120–131, 2019.
https://doi.org/10.1007/978-3-030-30709-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_10

BGElasor: Elastic-Scaling Framework for DSP with DNN 121

varying and sudden burst. In this case, to ensure the QoS requirements of the
DSPAs, the elasticity of the DSPSs has become more and more important.

Many researches have focused on improving the elasticity of the DSPSs. They
can be divided into two classes, one is based on the reactive policy and the
other one is based on the proactive policy. Although the reactive policy [6–8] is
widely used by many DSPSs, it results in some severe issues, such as the QoS
degradation and the frequent scaling actions. The elastic scaling happens when
the performance of DSPAs does not match the work load.

To address these problems of the reative policy, many researchers propose the
proactive policy. With the proactive policy, the scaling actions are executed in
advance based on the prediction result of some performance metrics. The existing
predicting methods are mainly based on time-series models and some machine
learning methods. Traditional time series models, such as MA, ARIMA [9], and
Holt-Winters [10] have been widely used. Meanwhile, some methods based on
machine learning are often used to predict. Zacheilas et al. [11] provides an
adaptive algorithm based on the prediction of the load and latency in upcoming
time windows using Gaussian Processes. Repantis et al. [12] proposes a hot-spot
prediction technique based on the linear regression for the purpose of alleviating
application hot-spots in the DSPA. Hidalgo et al. [13] proposes a method to
adjust the parallelism of the operators using Markov chain model. However, these
methods lack the latent features of data stream, it leads the poor prediction.
The reason is that they can not capture the nonlinear characteristics of drastic
fluctuating data stream [14,15] well. Furthermore, the poor prediction results in
the high cost of the elastic scaling and the instability.

In order to statisfy the QoS of the DSPAs well, in this paper, we propose
a proactive and low-cost elastic-scaling framework based on the accurate pre-
diction using deep neural networks. In summary, our paper makes following
contributions.

– We propose the framework named BGElasor, which is a proactive and
low-cost elastic-scaling framework based on the accurate prediction using
deep neural networks. It can capture the potentially-complicated pattern to
improve the accuracy of prediction, reduce the cost and frequency of the
elastic scaling.

– As far as we know, our work is the first to use the bidirection gated recurrent
units neural networks (BiGRU) to catch the features of the fluctuations of
the data stream and build the prediction module (Predictor) to predict the
input rate of operators in the DSPSs.

– Besides, we propose a cost-based elastic-scaling algorithm, named CBA and
build the elastic scaling module (ElasticityController). It invokes Predictor for
multiple time windows ahead of the current state and finds the right point
to increase (scale-out) or decrease (scale-in) the parallelism degree of each
operator with low cost.

– Finally, our BGElasor runs on DataDock, which is our data stream processing
system. The experimental results show that BGElasor not only improve the
accuracy of prediction on three kinds of typical loads, but also ensure the
end-to-end latency on the QoS.

122 W. Mu et al.

The rest of our paper is organized as follows. In Sect. 2, we introduce the back-
ground, including model of the data stream processing, our distributed stream
processing system, DataDock. Section 3 mainly describes the design of BGEla-
sor. We show experimental results of our framework in Sect. 4. Finally, Sect. 5
concludes our paper.

2 Background

In this section, we first present the model of the data stream processing. Then
we present our data stream processing system, DataDock.

2.1 DSP Model

A DSPA over data stream is usually organized as a directed acyclic graph G
= (O, S), where O is the operator set and S is the stream set. An operator
o ∈ O represents a sort of computation logic, such as filter, join, aggregate or
user-define function. Src and Sink are two special operators in G, which are
responsible for spouting source streams and collecting final results, respectively.
A stream s ∈ S is a directed arc (op, oc), op, oc ∈ O, where op and op are
the producer and consumer respectively of s. When a DSPA is submitted to
the underlying cluster to execute, its logic operator graph will be transformed
into the execution graph, in which each operator o is parallelized into multiple
instances I o = {o1, ..., oα} , where α ∈ N

+ is the parallelism.

2.2 DataDock

DataDock is our distributed data stream processing system implemented in Java.
It is mainly aimed at satisfying the heterogeneous data preprocessing require-
ments. In order to ensure that the system executes efficiently, DataDock only
retains core functions of a DSPS, such as the DSPA definition, the job scheduling.

Fig. 1. Architecture of DataDock.

BGElasor: Elastic-Scaling Framework for DSP with DNN 123

As shown in Fig. 1. DataDock offer users an user interface (UI) to define the
DSPA. The JobManager receives a DSPA and turns it into an execution graph.
Then the execution graph is scheduled to execute in a set of TaskManagers. The
TaskManager runs on a node and is responsible for local resource allocation and
instance management. During the execution, the TaskManager continuously col-
lects the performance metrics of each operator instance and reports them to the
JobManager. The MetricCollector is in charge of gathering these metrics and
storing into MetricDatabase. At the runtime, DataDock allows the instances to
quickly discard input data to make sure the latest data receives priority process-
ing. For the fault tolerance, DataDock adopts the similar fault-tolerant policy
as Storm to ensure that each event is processed at least once.

3 Framework

3.1 Overview

We show our framework BGElasor as shown in Fig. 2, it contains two important
modules, the Predictor and the ElasticityController. We use the Predictor to
predict the input rate of all operators. Then we refer the results of the prediction
and use the ElasticityController to adjust the parallelism of operators.

Fig. 2. The architecture of BGElasor

At the runtime, Predictor runs periodically and reconstructs the input rate
model for each operator using BiGRU. Then we use the ElasticityController to
update the execution graph based on predictions given by Predictor. At last, we
use the JobManager to schedule according to the lastest execution graph.

124 W. Mu et al.

3.2 Predictor

In this section, we build the Predictor to predict the input rate of each opera-
tor based on BiGRU. The Predictor contains three parts, the model input, the
prediction networks and the model output.

Model Input. At the runtime, our model is trained offline. The Predictor peri-
odically reads input rate metrics over the past b time period of each operator
from MetricDatabase and normalizes them to the range [0, 1] with the Min-Max
scaler.

For the prediction of input rates sequences, formally, we use t to denote
the current time and use o to denote the operator whose input rates will be
predicted. We use b and f to denote the length of historical time window and
the length of future time window respectively. v(o, t) denotes the input rates
of o at time t, so, we use (v(o, t − b), v(o, t − b + 1), ..., v(o, t)) to denote the
input rates sequence of o over the past b time period, that is, the input of our
predictor. Correspondingly, (v(o, t + 1), (v(o, t + 2), ..., (v(o, t + f)) denotes the
input rates sequence of o in the future f time period, which is the output of the
Predictor.

For example, assuming the current time is t, the model input is Xt = (v(o,
t − b), v(o, t − b + 1), ..., v(o, t)), the label at t is yt = (v(o, t + 1), (v(o, t + 2),
..., (v(o, t + f)), and each element ranges between [0, 1]. Similarly, the model
input at time t + 1 is Xt+1 = (v(o, t-b + 1), v(o, t − b + 2), ..., v(o, t + 1)) and
correspondingly the label is yt+1 = (v(o, t + 2), (v(o, t + 3), ..., (v(o, t + f + 1)).

Prediction Networks. In face of drastic fluctuating characteristics of data
stream, methods based on deep neural networks have shown better performance,
compared with existing methods, for their powerful nonlinear generalization abil-
ities. Long short-term memory neural networks (LSTM) and gated recurrent
units neural networks (GRU) are two popular deep neural networks to predict
the trends of the time-series. Compared with LSTM, the training process of
GRU is more efficient, which is more suitable for the scenario of the data stream
processing. But there is one shortcoming of GRU. Since it is only able to process
the data in one direction ignoring the continuity of data changes, GRU can only
capture the partial features of metrics. And its bidirection version, BiGRU, uses
two separate hidden layers to process data in two directions to obtain more infor-
mation in the time dimension during the training stage. To achieve the higher
accuracy, we use BiGRU to predict the input rate.

The BiGRU formulation is as follows:

Ft = σ(WF xt + UFFt−1 + bF) (1)
Bt = σ (WBxt + UBBt+1 + bB) (2)
yt = σ (VFFt + VBBt + bo) (3)

W F and U F denote the input-to-forward layer weight matrices. W B and
UB are the weight matrices of the output-to-backward weight matrices layer.

BGElasor: Elastic-Scaling Framework for DSP with DNN 125

bF , bB and bo denote biases of forward, backward and output layer, respectively.
σ denotes the nonlinear activation function, such as Sigmoid function and Rec-
tified Linear Unit.

Model Output. We first use BiGRU hidden layers to construct the BiGRU
network. As mentioned in above sections, BiGRU can capture both forward and
backward dependencies to make full use of the input data and learn the complex
and comprehensive features. Then, we add a dense layer to transform high-
dimensional data into the low-dimensional data to make predictions. During the
training process, we use the mean square error (MSE) as the loss function which
is computed using the following equation:

MSE =
1
n

n∑

i=1

(xi − x̂i)
2 (4)

3.3 ElasticityController

In this section, we build the ElasticityController. The ElasticityController can
ensure the end-to-end latency with the minimum elastic-scaling cost. It contains
two parts, the Cost Model and Cost-Balance-Algorithm (CBA).

Cost Model. We build a cost model to evaluate the total cost of all elastic-
scaling actions for an operator from the current epoch C to the future epoch F.
The cost is defined as:

Wo(n) = po

tF∑

tC

no·t +
tF−1∑

tC

(pu
oCu

o·t(n) + pd
oC

d
o·t(n) + pr

oC
r
o·t(n)) (5)

Cu
o·t(n) = max (0, no·(t+1) − no·t) (6)

Cd
o·t(n) = |min (0, no·(t+1) − no·t)| (7)

Cr
o·t(n) =

{
0 no·(t+1) = no·t
1 no·(t+1) �= no·t

(8)

Wo(n) is the total cost. po is the cost of system resources used by the single
instance for each operator o. no·t is the instance number of operator o at time t.
pu

o is the startup-cost of a single o instance. pd
o is the shutdown-cost of a single o

instance. Cu
o·t(n) is the startup times of instances of o.Cd

o·t(n) is the stop times
of instances of o. pr

o is the cost of each re-routing. Cr
o·t(n) is o’s re-routing times.

To satisfy the end-to-end latency, we ensure that the processing capability of
each operator is not less than the data input rate. In other word, po ≥ ino at
any time.

126 W. Mu et al.

The processing capability of o is expressed as po = λono, where λo is
the capability of one instance of o. We know that Wo·base(n) =

∑tF
tC

ponbase,
ΔW (n) = Wo(n)−Wo·base(n) and Δno = no −nbase. The Cost Mode is defined
as:

min ΔWo(n) = po

tF∑

tC

Δno·t +
tF−1∑

tC

(pu
oCu

o·t(n) + pd
oC

d
o·t(n) + pr

oC
r
o·t(n))

s.t. Δno ≥ 0

(9)

Cost-Balance-Algorithm. As mentioned above, we get the cost expression
ΔWo for operator o. The aim of the optimization should be min(ΔWo) with
the constraint: Δno ≥ 0(∀o ∈ O,∀t ∈ T). In order to address this issue, we
propose the Cost-Balance-Algorithm (CBA). CBA improves the basic simple
proactive elasticity algorithm by taking the cost of instance operations (e.g. re-
routing and startup/shutdown) into account. CBA balances these three parts of
the cost to guarantee lower system cost. CBA is divided into 3 steps. Firstly,
we only consider computing capability to find the optimal scheduling timetable.
Secondly, we refer the cost of re-routing to optimize timetable. At last, we refer
startup and stop cost to optimize timetable. In CBA, the act denotes the result
of the previous step and the input for the next step.

4 Experiments

4.1 Settings and Datasets

Settings. Our evaluations run on a cluster consisting of ten machines. These
machines are all comprised of two eighteen-core Intel Xeon E5-2697 2.30 GHz
CPUs, 256 GB memory, and 500 GB disks. One of the machines is used as Job-
Manager and MetricDataBase, seven machines are used as TaskManagers, and
the remaining machines with NVIDIA TESLA P4 GPUs are used to train and
evaluate our prediction models.

Datasets. We collect the input rates records from our online DataDock
system in 60 days as the dataset and you can download our dataset at
https://github.com/alexmu/DSP-R-BGElasor. The dataset contains three type
loads, which are stable load, periodic load and fluctuating load, as shown in
Fig. 3. We divide them into three sets: a training set (from the beginning to the
40th day), a validation set (from the 40th day to the 50th day) and the test set
(the 50th day to the last day). The training set is used to train prediction models,
the validation set is used to optimize hyper-parameters and prevent overfitting,
and the test set is used to evaluate the effectiveness of the prediction models.

https://github.com/alexmu/DSP-R-BGElasor

BGElasor: Elastic-Scaling Framework for DSP with DNN 127

(a) Stable Load (b) Periodic Load (c) Fluctuating Load

Fig. 3. Three types of data stream load.

Algorithm 1. CBA
Step 1

1: for cur : seq : prediction.non-reducings do
2: if cur < act[cur-1].max then
3: act[cur-1].up(roundUp((cur- act[cur-1].max)/p))
4: end if
5: end for
6: for cur : seq : prediction.reducings do
7: if cur < act[cur].min then
8: act[cur].down(takeDown((act[cur].max - cur)/p))
9: end if

10: end for

Step 2

1: for cur : seq.reverse : prediction.non-reducings do
2: if act[cur].hasAct then
3: cost0 = pr, cost1 = act[cur].upNum * t
4: act.mv(cur → cur-1) when cost0 > cost1
5: end if
6: end for
7: for cur : seq : prediction.reducings do
8: if act[cur].hasAct then
9: cost0 = act[cur].downNum * t, cost1 = pr

10: act.mv(cur → cur+1) when cost0 > cost1
11: end if
12: end for

Step 3

1: act.setHasChanged()
2: while act.hasChanged do
3: for (down, up, ΔT) ∈ act.adjacency do
4: min num = min(down.num , up.num)
5: cost0 = (pd +pu) * min num + pr

6: cost1 = p * min num * ΔT
7: act[down, up].cancelAct(min num) when cost0 > cost1
8: end for
9: end while

10: return act

128 W. Mu et al.

4.2 Predictor Evaluation

In this section, we compare the prediction performance of different algorithms,
including ARIMA, SVR, LSTM, GRU, BiLSTM and BiGRU. We use the Root
Mean Square Errors (RMSE) and Mean Absolute Errors (MAE) as the evalua-
tion metrics.

RMSE =

√
1
n

∑n

i=1
(xi − x̂i)

2 and MAE =
1
n

∑n

i=1
|xi − x̂i|

where x i is the observed input rate, and x̂i is the predicted input rate. All
the compared models in this section are trained and tested multiple times to
eliminate outliers, and the results of them presented are averaged to reduce
random errors.

The experimental results are shown in Table 1. In our experiment, to balance
the results of results, we repeat 10 times and get the results. For the stable load,
the models all get low RMSE and MAE results. For periodic load, deep learning
models significantly outperform other traditional models, such as ARIMA and
SVR, because neural networks can learn more latent features from historical
data. For the fluctuating load, the traditional linear function can not deal with
the situation better, because the data load changes drastically. But the neural
networks, which leverage nonlinear representations, can extract the hidden fea-
tures from the time series data and detect the load change more accurately. And
in our experiments, our model achieves the best performance.

Table 1. The RMSE and MAE of each models

Model Load Type

Stable load Periodic load Fluctuate load

RMSE MAE RMSE MAE RMSE MAE

ARIMA 0.207 0.156 1.252 0.888 1.001 0.713

SVR 0.163 0.127 0.789 0.589 0.720 0.504

LSTM 0.141 0.113 0.541 0.397 0.639 0.433

GRU 0.124 0.098 0.531 0.381 0.637 0.434

BiLSTM 0.119 0.094 0.529 0.385 0.624 0.426

BiGRU 0.101 0.081 0.490 0.341 0.581 0.401

4.3 ElasticityController Evaluation

We evaluate the ElasticityController from three aspects, the total cost, the adap-
tation frequency and the latency guarantee. We compare CBA with 2 other
algorithms, the Standard Reactive Elasticity Algorithm (SREA) and the Sim-
ple Proactive Elasticity Algorithm (SPEA). SREA considers only the current
load and adjusts the instance number reactively. SPEA considers the load of the
current epoch and the next epoch.

BGElasor: Elastic-Scaling Framework for DSP with DNN 129

Total Cost. In this part, we evaluate the total cost of the three algorithms.
Firstly, we get the instance number of operators o at the same epoch with three
algorithms. Then we use the data prediction result to generate the scheduling
process. At last, we calculate the cost of each time and get the total cost of the
experiment.

Fig. 4. Scheduling result

In Fig. 4, we set po = 8000, pu
o = 5000, pd

o = 5000 and pr
o = 100. The Fig. 4(a)

represents the processing capacity. The Fig. 4(b) represents the relative cost of
each algorithm. The value is compared with the baseline of SPEA to get the
relative cost. The Fig. 4(c) represents the total relative cost. The baseline is the
same as Fig. 4(d).

When we consider both epoch 0 and 1, we find that the SPEA and CBA cost
more than SREA because SPEA and CBA take the prediction into account.
CBA considers the cost of the instance startup or shutdown and sometimes does
not stop and start instances. Thus CBA costs less than SPEA.

Adaptation Frequency. In this part, we evaluate the adaptation frequency of
the three algorithms. We collect the numbers of the instance number change at
each epoch. The result is shown in Fig. 5(a).

SREA considers only the current load, so it starts or stops instances later than
the others from epoch 1 to epoch 10. However, after the epoch 10, SREA starts
and stops more instances because of the sudden input rate fluctuation. Compared

130 W. Mu et al.

Fig. 5. Adaptation frequency and end-to-end latency

with SPEA, CBA takes the cost of instance startup and shutdown into account,
so it is not necessary to deal with the instance startup and shutdown during the
input rate fluctuation. So CBA changes less than SPEA.

End-to-end Latency Guarantee. In this part, we focus on the latency guaran-
tee. We use the DataDock to compare three algorithms and record the end-to-end
latency of each algorithm. The result is shown in Fig. 5(b).

CBA and SPEA take the prediction into account and start instances before
input rate rises, so they deal with the data fast and stably. SREA only starts
instances when the input rate is beyond the processing capacity. It results in the
processing waiting everytime when input rate rises beyond processing capacity.
So SREA is unstable. In our experiments, CBA outperforms the others.

5 Conclusion

In this paper, we propose a framework, BGElasor, contains two important mod-
ules, the Predictor and the ElasticityController. The Predictor based on BiGRU
to get the precise prediction result of the input rate of each operator. Then we
refer the results of prediction and use the ElasticityController to adjust the par-
allelism of operators. Experiments on the real load demonstrate our framework
is better than the state-of-the-art methods, which not only improves the predic-
tion accuracy with three kinds of the data loads, but also ensure the end-to-end
latency on the QoS with the low cost.

References

1. Arasu, A., et al.: STREAM: the stanford stream data manager. IEEE Data Eng.
Bull. 26(1), 19–26 (2003)

2. Abadi, D.J., et al.: The design of the borealis stream processing engine. In: CIDR
2005, Second Biennial Conference on Innovative Data Systems Research, pp. 277–
289 (2005)

BGElasor: Elastic-Scaling Framework for DSP with DNN 131

3. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing
platform. In: ICDMW 2010, The 10th IEEE International Conference on Data
Mining Workshops, pp. 170–177 (2010)

4. “Storm.” http://storm.apache.org/
5. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:

Apache flinkTM: stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38(4), 28–38 (2015)

6. Fernandez, R.C., Migliavacca, M., Kalyvianaki, E., Pietzuch, P.R.: Integrating
scale out and fault tolerance in stream processing using operator state manage-
ment. In: Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2013, pp. 725–736 (2013)

7. Gulisano, V., Jiménez-Peris, R., Patiño-Mart́ınez, M., Soriente, C., Valduriez, P.:
Streamcloud: an elastic and scalable data streaming system. IEEE Trans. Parallel
Distrib. Syst. 23(12), 2351–2365 (2012)

8. Gedik, B., Schneider, S., Hirzel, M., Wu, K.: Elastic scaling for data stream pro-
cessing. IEEE Trans. Parallel Distrib. Syst. 25(6), 1447–1463 (2014)

9. Herbst, N.R., Huber, N., Kounev, S., Amrehn, E.: Self-adaptive workload classifi-
cation and forecasting for proactive resource provisioning. In: ACM/SPEC Inter-
national Conference on Performance Engineering, ICPE 2013, pp. 187–198 (2013)

10. Balkesen, C., Tatbul, N., Özsu, M.T.: Adaptive input admission and management
for parallel stream processing. In: The 7th ACM International Conference on Dis-
tributed Event-Based Systems, DEBS 2013, pp. 15–26 (2013)

11. Zacheilas, N., Kalogeraki, V., Zygouras, N., Panagiotou, N., Gunopulos, D.: Elas-
tic complex event processing exploiting prediction. In: 2015 IEEE International
Conference on Big Data, Big Data 2015, pp. 213–222 (2015)

12. Repantis, T., Kalogeraki, V.: Hot-spot prediction and alleviation in distributed
stream processing applications. In: The 38th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2008, pp. 346–355 (2008)

13. Hidalgo, N., Wladdimiro, D., Rosas, E.: Self-adaptive processing graph with oper-
ator fission for elastic stream processing. J. Syst. Softw. 127, 205–216 (2017)

14. Xing, Y., Hwang, J., Çetintemel, U., Zdonik, S.B.: Providing resiliency to load vari-
ations in distributed stream processing. In: Proceedings of the 32nd International
Conference on Very Large Data Bases, pp. 775–786 (2006)

15. Xing, Y., Zdonik, S.B., Hwang, J.: Dynamic load distribution in the borealis stream
processor. In: Proceedings of the 21st International Conference on Data Engineer-
ing, ICDE 2005, pp. 791–802 (2005)

http://storm.apache.org/

High Performance DDoS Attack
Detection System Based on Distribution

Statistics

Xia Xie(B), Jinpeng Li, Xiaoyang Hu, Hai Jin, Hanhua Chen, Xiaojing Ma,
and Hong Huang

National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab,

Cluster and Grid Computing Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China

shelicy@hust.edu.cn

Abstract. Nowadays, web servers often face the threat of distributed
denial of service attacks and their intrusion prevention systems can-
not detect those attacks effectively. Many existing intrusion prevention
systems detect attacks by the state of per-flow and current process-
ing speed cannot fulfill the requirements of real-time detection due to
the high speed traffic. In this paper, we propose a powerful system
TreeSketchShield which can improve sketch data structure and detect
attacks quickly. First, we discuss a novel structure TreeSketch to obtain
statistics of network flow, which utilizes the stepped structure of binary
tree to map the distribution and reduces the complexity of the statistic
calculation. Second, we present a two-level detection scheme that could
make a compromise between the detection speed and detection accu-
racy. Experimental results show that our method can process more than
100,000 records per second. The false alarm rate can achieve 2% to 25%
performance improvement.

Keywords: DDoS attack · Intrusion prevention system ·
Sketch data structure · Real-time

1 Introduction

People have enjoyed numerous high-quality services when the Internet technolo-
gies develop rapidly. Indeed, Distributed Denial of Service (DDoS) attacks have
been mentioned more and more frequently since it adds huge burden to Internet
services. In a DDoS attack, legitimate users’ access to information or network
resource are discarded, because the server cannot afford such numerous requests
generated by a huge amount of compromised computers. Theses compromised
computers can be controlled by attackers and ordered to perform some malicious
tasks unintentionally. With the advancement of modern technology and the com-
plexity of networking environment, this tendency is becoming more serious than
before.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 132–142, 2019.
https://doi.org/10.1007/978-3-030-30709-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_11

High Performance DDoS Attack Detection System 133

According to the Kaspersky lab research, more than 1/3 organizations in
the world have suffered DDoS attacks in 2017, compared to just 17% in 2016.
To detect DDoS attacks, many intrusion detection and prevention systems have
been proposed. However, these systems usually make a compromise between
scalability and accuracy. For example, fine grain traffic monitoring can increase
the detection accuracy, but cannot scale well. There are many other schemes
to detect anomalies based on the statistics of the traffic state, such as entropy-
computing [1], deep learning [2]. These methods have high accuracy in detec-
tion but the calculation is too heavy to be applied. Since the Internet traffics
increase rapidly every year, it is foreseeable that monitoring numerous network
traffics in real-time is becoming more and more difficult in anomaly detection.
Though dimensionality reduction may be an effective method to process such
huge amount of data, it requires complicated computation, and thus can not be
applied on a large scale in real-time detection.

Recently, a sort of methods based on sketch have been raised to deal with
anomaly detection. Sketch is an effective data structure, which is used to store
a summary of a large data set for space efficiency. However, these methods are
either very computationally intensive or requiring a large amount of storage
capacity, which limits their application in intrusion prevention systems.

In this paper, we address a new system TreeSketchShield, which can process
the statistics of network traffic and can support a two-level detection to defend
against DDoS attacks. The remaining parts are listed as follows: in Sect. 2, we
introduce the related works about how to prevent DDoS attacks; in Sect. 3, a brief
overview of the detection is discussed; in Sect. 4, we introduce the architecture
and implementation of our system. We evaluate the whole system in Sect. 5 and
draw a conclusion in Sect. 6.

2 Related Work

The purpose of DDoS attacks is to make the Internet servers or network resource
unavailables to its normal users. This is usually implemented by masquerading the
normal flash crowd requests. Flash crowd means special situations many different
users access a website at the same time, causing sudden huge access pressure on the
website or database that could make the website inaccessible [3]. Based on these
characteristics, most signature-based intrusion detection and prevention systems
are difficult to effectively identify DDoS attacks. To distinguish the DDoS traffic
and the normal flash crowds, researchers proposed a series of schemes. Xie et al.
[4] observed that these attackers launched application-level DDoS attacks in the
flow pattern similar to normal traffics. By using an access matrix, they could iden-
tify the spatial-temporal characteristics about the normal traffics. Besides that, a
hidden semi-markov model was used to present the dynamics access pattern for
detecting these DDoS attacks. Chonka et al. [5] proposed a model based on chaos
theory to distinguish a normal traffic flow from the attack traffic flow. A novel sys-
tem based on neural network was raised to detect anomalous traffic. In order to
detect abnormal traffics, Rahmani et al. [6] utilized joint entropy to record the

134 X. Xie et al.

characteristics of the traffic flows. They used connection coherence to identify the
links of packets and the quantity of connections for both normal and abnormal
traffic flow. Their result showed that the aggregated traffic with a DDoS attack
was nearly doubled compared with normal traffics.

However, these schemes only considered about how to find the DDoS traf-
fic in a flash crowds and ignored the issue that the detection speed could not
meet the requirement of the increasing network traffic sometime. When a DDoS
attack occurs suddenly and violently, in order to minimize the loss and mitigate
the impact on normal users’ access, a security system is in need to quickly dis-
cover and defend against those attacks. The sketch data structure can reduce
the dimension of multidimensional data streams. With efficiently estimating the
initial signal [7,8], high-speed network links are very effective in detecting DDoS
attacks with the sketch data structure when people deal with huge network traf-
fic, especially under flooding attacks. Currently, there are many methods for
detecting huge network traffic anomalies based on sketch [9–11].

Since sketches do not preserve the detailed information about the malicious
hosts, we cannot use them to mitigate DDoS attacks. To solve this problem,
Schweller et al. [12] proposed a reverse hashing scheme, which could be used
to identify the keys of malicious flows from reversible sketches. Liu et al. [13]
proposed an online DDoS detection scheme which adopted the sketch structure
to cope with problems raised by DDoS attacks and used the distinction of IP
addresses to pinpoint victims. Wang et al. [14] proposed an efficient system
SkyShield to combine sketch data structure and special distance to detect DDoS
attacks. Moreover, abnormal sketches are used to help identify malicious hosts
with a DDoS attack.

These methods are based on the sketch data structure to make statistics,
and they often use the distribution distance of the traffic attribution to detect
the DDoS attacks. Even though these sketch-based schemes can well mitigate
DDoS attacks, the high frequency of statistics cause not only high calculation
cost but also the upping false alarm rate. Another problem needed to be solved
is to meet the requirement of reducing computational complexity and decrease
the time interval of detection.

Because the internet traffic flow grows rapidly, it is difficult to meet the
challenge that DDoS detection technologies should handle requests as much as
possible within affordable response time. Moreover, to achieve real-time detec-
tion, the time of calculating statistics needs to be set very short and this could
result in the increasing of false alarm rate due to the insufficient statistic of
network traffic.

3 Background

In this section, we give a brief overview of the detection based on the sketch
data structure.

The process of the detection based on the sketch data structure is depicted
in Fig. 1. First, the intput streaming passes through the filter layer. In the filter

High Performance DDoS Attack Detection System 135

layer, a bloom filter is used to filter incoming requests. Malicious requests iden-
tified by the blacklist will be filtered and recorded. This can be explained by the
fact that a large number of requests is needed to initiate a valid DDoS attack.
Therefore, sketch-based detection can identify malicious hosts using the volume
of the malicious requests. Second, the detection employs the divergence between
Sketch1 and Sketch2 to signal an abnormal situation that are raised by a large
number of requests from malicious hosts. In this step, sketch-based detection
conducts the detection cyclically with a fixed time interval ΔT . During a detec-
tion cycle, any access received by this system will be aggregated into Sketch1,
and their IP addresses are set as the input keys. Another Sketch2 is used to
store the results of Sketch1 in the last normal mode. Finally, at the end of each
detection cycle, the divergence d(Sketch1, Sketch2) is calculated and compared
to a threshold θt. If d(Sketch1, Sketch2) exceeds θt, the system is considered to
be suffering a DDoS attack and an alarm needs to be raised.

Fig. 1. Overview of sketch-based detection

Sketch-based schemes are based on the statistic of network traffic to detect
DDoS attacks. However, the statistical time interval of each detection cycle can-
not be set too short. On the one hand, the statistic of distribution will become
incomplete due to the insufficiency of the time length, which leads high false
alarm rate. The high frequency of statistics generate high calculation costs and
cause long time delay. For above reasons, the speed of sketch-based detection
cannot meet the requirement of real-time monitoring.

Besides sketch-based detection, other methods are also discussed. For exam-
ple, the bloom filter can be used to add the requests from malicious hosts into the
blacklist, which is implemented by its special data structure. Sketch is another
data structure that can efficiently compute raw signals by reducing high dimen-
sional data streams to low dimensions. We can deal with the statistics of traffic
and then detect DDoS attacks by it. When DDoS attack occurs, the distribu-
tion of bucket values in a sketch is unstable compared with the normal situation
due to the steadiness of the normal network traffic. Therefore, we can use the
divergence between Sketch1 and Sketch2 to detect DDoS attacks efficiently.

136 X. Xie et al.

4 System Design and Implementation

In this section, we introduce the structure of TreeSketchShield and describe the
difference with sketch-based detection, then we explain how to implement it.

4.1 Process of TreeSketchShield

TreeSketchShield is depicted in Fig. 2. Similar to the sketch-based detection, the
intput streaming first goes through the filter layer. But in the detection phase,
the detection process is divided into the coarse grain detection and fine grain
detection. The first one is used to quickly detect whether there is an abnormal
traffic, while the last one determines whether the abnormal traffic is a real DDoS
attack traffic. The principle of this scheme is that short statistical interval in
coarse grain detection can reduce the computation time and the long statistical
interval of fine grain detection can decrease the rate of false alarm.

Fig. 2. Process of TreeSketchShield

In the step of coarse grain detection, a novel structure TreeSketch is employed,
and the statistical time interval of detection cycle is set very short. All requests
received and their corresponding IP addresses are saved as key-value pairs, which
will be aggregated into TreeSketch1. Then TreeSketch2 is ready to store the
results generated in TreeSketch1 during the last normal mode. As soon as the
detection cycle is end, the divergence d(TreeSketch1, T reeSketch2) will be cal-
culated and compared to a threshold θt. If d(TreeSketch1, T reeSketch2) exceeds
θt, the fine grain detection will start. In the step of fine grain detection, the time
interval of detection cycle is set longer and the fine grain detection uses the
sketch data structure instead of the TreeSketch to deal with the statistic. If
the distance exceeds the value of threshold, the alarm will be raised. After the
detection, TreeSketchShield uses the volume of all buckets in fine grain detection
to identify malicious hosts. Compared to the sketch-based detection, a special
two-level detection and a novel structure are adopted to decrease the false alarm
rate and improve the detection speed in TreeSketchShield.

High Performance DDoS Attack Detection System 137

4.2 TreeSketch

The TreeSketch data structure is shown in Fig. 3. TreeSketch is a special data
structure with H rows of size K, while the source data stream is composed with
key-value pairs. For every row in the TreeSketch, there is a binary tree and their
leaf nodes are associated with different hash functions. When a key-value pair
comes, the value will be added into the leaf nodes corresponding to the key.
Besides, values in child nodes will be added up and stored in their parent nodes.

Fig. 3. TreeSketch data structure

In the sketch data structure, the attribute change is mapped to the sketch
which represents the compact summaries of a data stream. The attribute is
signed by each row of the sketch. It will result in a high computational cost. To
avoid this problem, we use the trapezoidal data structure to map the attribute
which is based on the TreeSketch. Different from the divergence calculation
between sketches, when computing the divergence of TreeSketches, we do not
need to calculate each button in every row of the TreeSketch in order. Denoting
the attribution of i-th row in the TreeSketch as a vector 〈ni1, ni2, ..., niK〉, each
row of TreeSketch is a binary tree and nij presents the first node in j-th layer of
the binary tree. Let Ni =

∑K
j=1 nij represents all the requests received. Denote

Pi = 〈pi1, pi2, ..., piK〉 for the corresponding row, where pij = nij/Ni means the
probability that an incoming request is mapped into the j-th bucket of the i-th
vector. Denote Qi = 〈qi1, qi2, ..., qiK〉 are the probability similar to Pi, then the
distance d(Pi, Qi) can be calculated. The metric is that when the server cannot
afford these numerous requests, the clients will receive little responses from the
server, which could bring about the traffic attribute change. As shown in Fig. 3,
each layer of an row in TreeSketch contains the next estimation of distribution.
If there is any abnormity in the leaf layer, it will cause the upper node to be
abnormal and the abnormality will continuously present to the root node.

4.3 Cycle Synchronization of Detection

In the detection of TreeSketchShield, the difference of statistical time between
coarse grain detection and fine grain detection leads to the out-of-synchronization
problem at both detection points. As shown in Fig. 4, when a cycle of coarse grain

138 X. Xie et al.

detection is finished and an alarm is raised, a cycle of fine grain detection is still
going on. To solve this problem, we employ a sliding time window scheme to keep
the pace between two detections. Figure 5 shows that in the fine grain detection,
the interval time of each cycle is unchanged but the sliding distance of each cycle is
set to a short time. This scheme makes the detection combine the sufficient statis-
tic and the speedy computation, which decreases the false alarm rate and reaches
the real-time detection at the same time.

Fig. 4. Cycle of the two-level detection with different interval time

Fig. 5. Cycle of the two-level detection with sliding time window

5 Evaluation

In this section, we design a comparative experiment to evaluate the performance
of TreeSketchShield about the detection speed and detection accuracy between
TreeSketchShield and sketch-based detection. The experiments are tested on a
local machine equipped with 2.5 GHz I5-7300HQ CPU, 24 GB RAM.

High Performance DDoS Attack Detection System 139

Table 1. Summary of datasets

Dataset Requests Hosts Attacks

Dataset0611 4,315,622 5,400 40

Dataset0630 5,332,901 5,880 40

Dataset0710 5,834,324 5,563 45

Fig. 6. The accuracy performance of detection while the sliding time window is 5 s

5.1 Datasets

At first, we introduce these datasets used in this experiment. These datasets are
generated from WordCup98 [15], which records all requests from April 30, 1998
to July 26, 1998. The website received nearly 1.3 billion requests during this
time. Each dataset in this experiment is composed of access logs of two days
in the WordCup98 dataset. To assess the performance of the TreeSketchShield,
the data from 1998/06/11 to 1998/06/12 is denoted as Dataset0611, the data
from 1998/06/30 to 1998/07/01 as Dataset0630, and the data from 1998/07/10
to 1998/07/11 as Dataset0710. Table 1 presents a brief summary of the datasets.

5.2 Performance

We employ the False Rejection Rate (FRR) and the False Acceptance Rate
(FAR) to evaluate the performance of DDoS attacks detection. FAR measures the
proportion of normal requests that are mistakenly identified as DDoS attacks in
all requests, and FRR is the probability of wrongly identifying normal requests
as DDoS attacks in all attacks. We make a comparison between the perfor-
mance of sketch-based detection and TreeSketchShield on three datasets, with
the parameters set as: α = 0.3, β = 0.4, λ = 3, k = 16384,H = 8.

Figure 6 shows the FRR and the FAR on the three datasets with the sliding
time window set as 5 s. In Dataset0611, TreeSketchShield is equal to SkyShield
in terms of FRR, which is 5%, but the FAR has decreased from 40% to 38%. In
Dataset0630, TreeSketchShield’s FRR is 7.5%, the same as SkyShield’s, and the

140 X. Xie et al.

Fig. 7. The accuracy performance of detection while the sliding time window is 10 s

Fig. 8. The accuracy performance of detection while the sliding time window is 15 s

FAR is much lower than that of SkyShield, from 44% to 27%. In Dataset0710, the
FRR of both methods is 6.7%, but the TreeSketchShield’s FAR dropped from 46%
to 33%. This is because the TreeSketch data structure decreases the sensitivity
of attribute detection. The result shows that TreeSketchShield is better than
sketch-based detection in the accuracy of DDoS attack detection.

Figures 7 and 8 shows the results when the sliding time window is set as
10 s and 15 s respectively. According to the experimental results of these three
datasets, the TreeSketchShield system reduces the FAR by 5%−20% on the basis
of ensuring the FRR.

We also employ the number of requests per second to evaluate the through-
put of detection. Figure 9 shows the performance of sketch-based detection and
TreeSketchShield on three datasets. We can see the throughput ofTreeSketchShield
is more than 100,000 records per second. Moreover, compared with sketch-
based detection, the average throughput of TreeSketchShield is 8 times faster in

High Performance DDoS Attack Detection System 141

Fig. 9. The throughput performance of detection

Dataset0611, 10 times faster in Dataset0630, and 10 times faster in Dataset0710
respectively. The result shows that TreeSketchShield is better than sketch-based
detection in processing speed.

6 Conclusion and FutureWork

In this paper, we address a new defense system TreeSketchShield, which can
detect DDoS attacks quickly. First, a novel structure TreeSketch is addressed,
which can greatly reduce the complexity of statistical calculations of net-
work flow. Then a two-level detection scheme is designed to decrease the false
alarm rate. TreeSketchShield still needs to be improved: first, although the
FAR is decreased, it is still unacceptable. The reason is that the statistic of
TreeSketchShield adopts the partial substitution strategy, which reduces the sen-
sitivity of detection; Second, TreeSketchShield increases the memory consump-
tion when obtaining statistics of net flow. In the future, we will continue to
improve the structure to eliminate the rate of missing DDoS alarm and decrease
the memory consumption of detection.

Acknowledgements. This work is supported in part by the National Key Research
and Development Program of China under grant No. 2016QY02D0302, the Fundamen-
tal Research Funds for the Central Universities (HUST No. 3020210111).

References

1. Osanaiye, O., Choo, K.K.R., Dlodlo, M.: Distributed denial of service (DDoS)
resilience in cloud: review and conceptual cloud DDoS mitigation framework. J.
Netw. Comput. Appl. 67, 147–165 (2016)

2. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against dis-
tributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor.
15(4), 2046–2069 (2013)

3. Yu, S., Zhou, W., Jia, W., Guo, S., Xiang, Y., Tang, F.: Discriminating DDoS
attacks from flash crowds using flow correlation coefficient. IEEE Trans. Parallel
Distrib. Syst. 23(6), 1073–1080 (2012)

4. Xie, Y., Yu, S.: Monitoring the application-layer DDoS attacks for popular web-
sites. IEEE/ACM Trans. Netw. 17(1), 15–25 (2009)

142 X. Xie et al.

5. Chonka, A., Singh, J., Zhou, W.: Chaos theory based detection against network
mimicking DDoS attacks. IEEE Commun. Lett. 13(9), 717–719 (2009)

6. Rahmani, H., Sahli, N., Kammoun, F.: Joint entropy analysis model for DDoS
attack detection. In: Proceedings of the 5th International Conference on Informa-
tion Assurance and Security, pp. 267–271 (2009)

7. Ben, U., Bremler, A., Levy, H.: Vulnerability of network mechanisms to sophisti-
cated DDoS attacks. IEEE Trans. Comput. 62(5), 1031–1043 (2013)

8. Tang, J., Cheng, Y., Hao, Y., Song, W.: SIP flooding attack detection with a
multi-dimensional sketch design. IEEE Trans. Dependable Secur. Comput. 11(6),
582–595 (2014)

9. Liu, Y., Chen, W., Guan, Y.: A fast sketch for aggregate queries over high-speed
network traffic. In: Proceedings of the IEEE International Conference on Computer
Communications, pp. 2741–2745 (2012)

10. Gangam, S., Sharma, P., Fahmy, S.: Pegasus: precision hunting for icebergs and
anomalies in network flows. In: Proceedings of the IEEE International Conference
on Computer Communications, pp. 1420–1428 (2013)

11. Wang, P., Guan, X., Zhao, J., Tao, J., Qin, T.: A new sketch method for measuring
host connection degree distribution. IEEE Trans. Inf. Forensics Secur. 9(6), 948–
960 (2014)

12. Schweller, R., et al.: Reverse hashing for high-speed network monitoring: algo-
rithms, evaluation, and applications. In: Proceedings of the IEEE International
Conference on Computer Communications, pp. 1–12 (2006)

13. Liu, H., Sun, Y., Kim, M.: Fine-grained DDoS detection scheme based on bidi-
rectional count sketch. In: Proceedings of the 20th International Conference on
Computer Communications and Networks, pp. 1–6 (2011)

14. Wang, C., Miu, T.N., Luo, X., Wang, J.: SkyShield: a sketch-based defense system
against application layer DDoS attacks. IEEE Trans. Inf. Forensics Secur. 13(3),
559–573 (2018)

15. Worldcup98 (2016). http://ita.ee.lbl.gov/html/contrib/WorldCup.html

http://ita.ee.lbl.gov/html/contrib/WorldCup.html

DDP-B: A Distributed Dynamic Parallel
Framework for Meta-genomics

Binary Similarity

Mengxian Chi(B), Xu Jin(B), Feng Li, and Hong An(B)

University of Science and Technology of China, Hefei, China
{mxchi10,jinxu,fli186}@mail.ustc.edu.cn, han@ustc.edu.cn

Abstract. Great efforts have been made on meta-genomics in the field
of new species exploration in the past decades. With the development
of next-generation sequencing technology, meta-genomics datasets have
been produced as large as dozens of hundreds of gigabytes or even several
terabytes, which brings a severe challenge to data analysis. Besides, con-
ventional meta-genomics comparing algorithms may not take full advan-
tage of powerful computing capacity from parallel computing techniques
due to lack of parallelism. In this paper, we propose DDP-B, a dis-
tributed dynamic parallel framework for meta-genomics binary similarity
analysis, to overcome these limitations. In this framework, we introduce
a binary distance algorithm for meta-genomics similarity measurement
and develop different levels of parallel granularity of the algorithm uti-
lizing MPI, OpenMP, and SIMD techniques. Moreover, we establish a
dynamic scheduling method to deliver asynchronous parallel computing
tasks and design a distributed cluster to deploy the dynamic parallel sys-
tem, which completes 2.97K pairs of meta-genomics vectors comparison
per second and achieves an 134.79x speedup versus the baseline in the
optimal condition. Our framework shows stable scalability when assigned
larger workloads.

Keywords: Meta-genomics · Big data · Parallel computing ·
Binary distance · Dynamic scheduling · Distributed scalability

1 Introduction

Great efforts have been made on exploring new species in the last several decades
since the Woese significant work [23]. Meta-genomics [25], which involves the
total DNA sequences extracted directly from the natural environment (e.g.
ocean, soil, and the human body) samples, occasionally preserves the molec-
ular signatures of potential unexplored or undiscovered microorganisms [24].

The work is supported by the National Key Research and Development Program of
China (Grants No. 2016YFB1000403).

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 143–155, 2019.
https://doi.org/10.1007/978-3-030-30709-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_12

144 M. Chi et al.

Many novel techniques such as cultivation-independent shotgun genomics and
next-generation sequencing [16] have been widely applied in this domain and
dramatically aggrandized the scale of sequencing data as well as the speed of
genome sequencing. As a result, meta-genomics datasets could be as large as
dozens of hundreds of gigabytes or even several terabytes, which makes it a
typical big data problem.

On the other hand, the rise of large scale computing clusters brings huge
opportunities for meta-genomics research [2]. High-performance clusters support
parallel computing and scalable architectures at multiple levels, which delivers
extraordinary powerful performance theoretically. However, most of the con-
ventional meta-genomics similarity algorithms barely take the most of high-
performance parallel computing because there is a lack of excavation and uti-
lization of their parallelism and scalability, which turns out the major limitations
to deploy the algorithms on high-performance clusters. Moreover, the vast data
scale brings a severe challenge to data storage and transmission in the field of
high-performance computing.

Recently, binary distance measurements have been comprehensively applied in
the field of biology [11], ethnology [6], and taxonomy [21]. Furthermore, genome
sequence compressing methods (such as Hash map [18]) have contributed sig-
nificantly to reducing the scale of meta-genomics datasets and enabling efficient
search of massive sequences collections. Genome sequence data could be converted
from character strings into binary vectors by the Hash map. As a result, we can
measure the genome similarity through binary distance methods [5].

In this paper, we introduce a binary distance coefficient based comparing
algorithm to measure meta-genomics similarity. The binary vectors generated
from meta-genomics sequences is still too long (even more than 108 bits) to cal-
culate the binary distance coefficient straightforward. To develop the algorithm
efficiently, we divide a whole binary vector into 64-bit sub-sequences and process
the calculation with Intel intrinsic instructions [15], which is easy to be paralleled
as an atomic operation. Besides, we develop the binary similarity algorithm with
hierarchical parallelism taking advantage of multiple parallel techniques such as
SIMD [13], OpenMP [3], and MPI [10]. The hybrid parallel optimization delivers
an 87.9x speedup compared with the original baseline.

Moreover, the data loading procedure is difficult to accelerate because of
the memory read/write speed limitation, which constrains further optimization
of the algorithm. And with the growth of data size, how to balance the work-
loads among large scale distributed clusters becomes a huge challenge [20]. To
overcome these challenges, we design a dynamic scheduling system based on
a master-slave structure and deploy it on a 9-node cluster. The scheduler dis-
tributes parallel computing tasks to the unoccupied worker nodes dynamically
so that the communication and computation are decoupled and the data loading
time is overlapped with computing time. As a result, we achieve a 7.5x speedup
with 8 worker nodes under basic workload, which is close to linear accelera-
tion. Meanwhile, we design a grouping strategy to organize worker nodes into
extensive worker groups based on the workloads. Every worker group will be
reorganized automatically if the workload exceeds its capacity. We achieve an

DDP-B 145

extra speedup benefit under 4 times of basic workload (15.55x versus 9.27x),
which exhibits our framework having stable scalability under larger workloads.

With all the above contributions, we propose DDP-B, a distributed dynamic
framework taking advantage of multiple parallel levels for a binary similarity
algorithm. We deliver 2.97K pairs of meta-genomics similarity comparison per
second and achieve an 134.8x speedup overall in the optimal condition using this
framework.

The rest of the paper is organized as follows. Section 2 introduces related work
as well as the background of our research. Section 3 explains our methodologies in
detail. Section 4 presents the implementation and experimental results. Section 5
delivers a conclusion of whole work and discusses future research.

2 Background

In this section, we introduce some related techniques concerning genome com-
paring algorithms.

2.1 Genome Sequences Alignment

The next-generation sequencing techniques usually gather massively short
genome reads and then align them into longer reads. Experimental evidence
shows that a whole chromosome sequence usually covers millions to billions of
base pairs [7,22]. Though it is difficult to compare the chromosomes from end to
end because we can hardly find the exact beginning of them, there is a require-
ment to investigate the similarity between whole long genome reads. The main
reason is that quite a few similar basic genome functional units may be carried
by the chromosomes of many different organisms. So it is not easy to figure out
whether the short reads belong to different species.

Fig. 1. Meta-genomics compares the new collected query genome list with the reference
datasets, and extracts the genome sequences with low similarity to investigate whether
there is a possibility of unknown species existing.

As meta-genomics sequences are captured from the environment randomly, it
is almost impossible to extract every single microorganism’s information through
biological techniques. However, computer-aided analysis technology provides a

146 M. Chi et al.

feasible method for the study of meta-genomics. Taking advantage of the redun-
dant and overlapping information generated by genome sequencing techniques,
genome fragments (also mentioned as reads by biologists) can be assembled into
longer reads (also called contigs) and finally spliced into a chromosome sequence
[14]. Consequently, meta-genomics research would be transformed into sequence
alignment tasks [19]. We can speculate on the possibility of the existence of
unknown organisms based on the results of sequence alignment. Potential undis-
covered species information will be dug out through genome sequence compare
processing if there exists a quite different sequence compared with every known
reference sequence. Figure 1 shows the meta-genomics comparing processing.

2.2 K-mer, Hash Map, and Binary Distance

The conventional comparing algorithms designed to quantitatively evaluate the
similarity among meta-genomics based on computing system usually regard
genome sequences as character strings (i.e. representing DNA’s four bases with
‘A’, ‘G’, ‘C’, and ‘T’ and assembling them into strings in order.) and compare
these strings to measure the similarities among genomes. Therefore, numerous
algorithms of string similarity comparison have been applied on meta-genomics,
which can be roughly divided into two categories: exact matching (such as Boyer
Moore Algorithm and Shift Or Algorithm [4]) and approximate matching (such
as Edit Distance and Haiming Distance [17]).

Except for the naive sequence comparing algorithm, there are also many other
distinguished methods obtaining remarkable achievements [4,17]. Among them,
K-mer similarity [1] is widely applied in bioinformatics which generates k-length
sub-sequences of a long read step by step, therefore, we could just compare the
much shorter K-mers. Although an L-length read still produces L−k+1 K-mers,
we could focus on the distinct K-mers, so that the scale of the datasets will be
reduced appreciably.

Besides, K-mers of a whole genome sequence can be mapped into a binary
vector using Hash map algorithms. Figure 2 shows the detail of K-mers Hashing
conversion. The vector’s i-th position will be set to 1 only if the Hash value of
the K-mer equals to i, which is expressed as

V ec[i] =

{
1, Hash(K-mer) = i
0, others

(1)

Fig. 2. Convert K-mers into binary vector. The vector’s i-th position will be set to 1
only if the Hash value of the K-mer equals to i.

DDP-B 147

Therefore, the meta-genomics similarity problem is transformed into a binary
distance problem. Choosing the appropriate Hash function is not within the
scope of this paper. We focus the research on how to take advantage of the
parallelism and the scalability of the binary distance algorithm.

3 Methodologies

3.1 Binary Distance Coefficient

The binary distance method can be regarded as an approximate matching algo-
rithm and applied on the domain of meta-genomics with two major advan-
tages: (1) the inaccuracy results are almost surely generated during the genome
sequencing procedure limited by the transcription properties of genetic informa-
tion, so that the approximate methods can provide sufficient effectiveness; (2)
data size and computational complexity are likely to be obviously reduced so
that the approximate algorithms usually perform more efficiently. In the field of
binary distance research, the Jaccard coefficient [12] is one of the most famous
measurements and the Forbes coefficient [8] is proposed for clustering ecolog-
ically related species especially, so that the Forbes coefficient could reveal the
genome similarity quantitatively. In this paper, we define a modified Forbes-II
coefficient to measure the similarity score between the genome binary vectors.

SM−FII
=

na− (a + b)(a + c)
(a + b)2 + (a + c)2 − (a + b)(a + c)

(2)

where the definitions of n, a, b, c, and d are referred to Table 1. The coefficient
SM−FII

is only related to the parameters n, a, (a + b), (a + c). In other words,
the binary distance between two genome vectors depends on the length of two
vectors, the number of bit set to 1 (abbreviated as bit-1) inside the bit-wise
logic AND result from two vectors, and the number of bit-1 inside each vector
respectively.

Table 1. Vec 1, 2 are two n-length binary vectors, a is the number of attributes where
the values of Vec 1 and Vec 2 are both 1, b is the number of attributes where the value
of Vec 1 and Vec 2 is (0,1), c is the number of attributes where the value of Vec 1 and
Vec 2 is (1,0), and d is the number of attributes where both Vec 1 and Vec 2 have 0.

& Vec 1

1 0 Sum

Vec 2 1 a b a+b

0 c d c + d

Sum a + c b+d n = a + b + c + d

148 M. Chi et al.

Algorithm 1. Binary Coefficient Calculating Parallel Hierarchy
Phase 0:
Receive Query[pi:pj][0 : n], Allocate QueryBit[pi:pj] ← {0}
#pragma omp parallel
for m in [pi : pj] do

#pragma simd
QueryBit[m] += popcnt(Query[m][0 : n])

end for
Phase 1: Send Ready Signal
Phase 2:
Receive RefV ec[qi][0 : n], Allocate RefBit[qi] ← 0, AndBit[qi][pi : pj] ← {0}
Allocate SM−FII [qi][pi:pj]

← {0}
#pragma simd
RefBit[qi] += popcnt(RefV ec[qi][0 : n])
#pragma omp parallel
for m in [pi : pj] do

#pragma simd
AndBit[qi][m] += popcnt(Query[m][0 : n] & RefV ec[qi][0 : n])

end for
Calculate SM−FII [qi][pi:pj]

Phase 3: Send SM−FII [qi][pi:pj]
, Ready Signal

3.2 Parallel Hierarchy Design

Therefore, how to count the number of bit-1 inside a binary vector becomes the
first challenge. Here we evaluate three counting methods: left shift, look-up table,
and popcnt. The left shift method shifts the vector to the left continuously and
counts the number of bit-1 according to the sign bit. The look-up table means
preparing a table consisting of the number of bit-1 in advance and looking for
the exact number based on the binary vector’s decimal form. Both of them are
inefficient because they are both at a computation complexity of O(n) for an
n-bit vector. Besides, the look-up table method requires an extra O(2n) memory
consumption.

Intrinsic Instruction Optimization. Fortunately, Intel intrinsic instructions
provides an operator to count the number of bit-1 inside a 64-bit unsigned integer
(named popcnt) bound with an assembly instruction. So that the theoretical
computation complexity of this operation is O(1) for a 64-bit vector. We have
measured all the above methods and find that the performance of the popcnt
is at least 2x faster than the other two methods. Moreover, popcnt is easy to
parallelize as an atomic operation. Therefore, we use the popcnt operator to
calculate the number of bit-1 inside vectors.

Data-Level Parallel. Since the length of binary genome vectors usually exceeds
the capacity of the popcnt operator (64-bit), we need to separate a whole vector
into several 64-bit sub-vectors. Here we utilize the SIMD (Single Instruction
Multiple Data) vectoring techniques to deal with two 64-bit binary sub-vectors

DDP-B 149

simultaneously as the Intel AVX (Advanced Vector Extensions) supplies 128-bit
registers. This method could deliver a 2x speedup theoretically.

Thread-Level Parallel. When comparing long-winded binary vectors, we allo-
cate the popcnt and bit-wise AND operations to multiple threads uniformly
as the two operations are both regular and aligned. Here we apply compiler
directives of OpenMP (Open Multi-processing) to provide multi-threading par-
allel with a portable, scalable model. Meanwhile, we fork and synchronize the
threads dynamically to balance the workloads among threads.

Overall, we accumulate each parameter and organize the binary distance coef-
ficient computation through different levels of parallel granularity. Algorithm1
shows the detail of the parallel hierarchy to calculate the distance coefficient.

3.3 Distributed Dynamic Schedule Design

We construct the dynamic scheduling system based on two major components
in this system: Master Node and Slave Nodes. The communication interface
between the master node and the slave nodes is established by MPI (Message
Passing Interface). Figure 3 shows the distributed scalable dynamic programming
architecture and exhibits the detail of control flow. And we will describe the
behavior of the master node detailedly in the following content.

Master Node. It is the core module of our distributed dynamic system. The
master node is responsible for managing all worker groups, fetching binary vec-
tors from reference and query lists, broadcasting vectors to targeted worker

Fig. 3. Distributed scalable dynamic programming. The left part shows the data flow
path of dynamic scheduling. The right part shows the worker group structure and FIFO
ready queue.

150 M. Chi et al.

groups, and gather all comparing results from them. We design two kernels for
the master node: Ready Queue and Scheduler.

Ready Queue is a two-way first-in-first-out (FIFO) queue, preserving the
standby state information of worker groups. A new ready worker group will be
pushed back to the end of the ready queue, while an assigning worker group will
be popped up from the top.

Scheduler is the controller unit and decides all behaviors of the master node.
The control flow can be divided into four asynchronous phases as below. The
scheduler will scan through these phases until all the comparing tasks distributed
and all calculating results gathered.

– Phase 0: Scheduler fetches the query vectors while the query list is not empty
and then broadcasts them to all worker groups. Every worker group will keep
a complete copy of the query list.

– Phase 1: Every worker group sends a ready signal to scheduler asynchronously
after receiving all the query vectors. Scheduler pushes the worker group ID
into the end of the FIFO ready queue once receives the response signal from
the worker.

– Phase 2: Scheduler pops a worker group ID from the ready queue and dis-
tributes one reference vector to the popped worker group while the reference
list is not empty.

– Phase 3: After finishing the comparing task, the worker group sends the sim-
ilarity results as well as a ready signal back to the scheduler. The scheduler
will save the results with a tag and push the ready worker into the queue
again.

Slave Nodes. This is the workload module which undertakes all the calculating
tasks. We construct slave nodes as a set of scalable worker groups. Slave nodes
have a flexible structure and can be recombined according to the real workload
in practice.

Worker Group. It is assembled with one or more worker nodes to keep a complete
copy of the query list with all memory consumption. And we separate the whole
query list into k subsets if there are k worker nodes in one worker group. Every
worker group will be reorganized automatically if the scale of query data exceeds
this group’s capacity.

Worker Node. We make each worker node keep a subset of the query list in
its local memory. At Phase 3, every worker node compares one piece of refer-
ence vector with all the query vectors in the subset to calculate the similarity
coefficient following Algorithm 1.

Grouping Strategy. Distributed heterogeneous clusters grouping strategy could
be regarded as a typical knapsack problem (which is an NP-complete problem),
so we will leave it for further research. For simplicity of implementation, in this
paper we adopt a naive grouping strategy to organize worker nodes, i.e. we will
add worker node one by one from scratch into a worker group until the worker
group’s capacity is enough to hold a whole copy of query list.

DDP-B 151

4 Experiment Results

4.1 Implementation

In order to deploy our framework, we adopt a 9-nodes cluster to build a dynamic
system with 1 master node and 8 worker nodes. There are two CPU sockets on
each node, 8 physical cores with hyper-threading enabled in each CPU. Every
worker group has one worker node in default. The master node is connected with
every worker node by Infiniband. Other hardware and software information is
provided in Table 2.

Table 2. Hardware and software information

Item Description

CPU Intel(R) Xeon(R) E5-2660 @ 2.2 GHz * 2

Memory DDR3 1333MHz 96GB

Hard disk SAS HDD 300 GB

Network Intel Ethernet Adapter I350 with 1 Gb/s

Connection Mellanox QDR Infiniband 40 Gb/s

Operating system CentOS 7.2-1511 Linux 3.10.0

MPI Intel MPI 2017.0.098

The binary vectors are aligned at 3×108-bit length, which is supplied by DOE
Joint Genome Institute [9]. As mentioned in Sect. 3.2, we separate each vector
into 4.69M 64-bit sub-vectors. So one SM−FII

coefficient computation requires
about 4.69M bit-wise ANDs, 14.06M popcnts, and 18.75M accumulations (37.5M
operations altogether). We set both query list and reference list to 203 vectors
so that the traverse comparison requires 1.55T operations. Every experiment
is repeated three times and adopted the average results to avoid environmental
instability. The serial computing baseline completes 22.07 coefficients calculating
per second.

4.2 Performance Analysis

We summarize the runtime performance of the distributed dynamic program-
ming system in a parallel hierarchy.

Multi Threads. Figure 4 shows the multi-threading performance optimized on
a single node. We observe that the speedup curve has a sub-linear growth trend
when threads number goes from one to eight. And then, it will convergence and
even suffer performance damage after that. As mentioned above, every CPU has
eight physical cores. Hence CPU may be overloaded when forked into more than
eight threads which increases the overhead of thread switching. The multithread-
ing delivers 4.2x speedup with 16 threads compared with baseline.

152 M. Chi et al.

Fig. 4. Single Node Performance. The bar chart uses exponential coordinates for clarity.

Fig. 5. Multi Nodes Single Thread Performance. The master node is not counted.

Fig. 6. Hybrid Parallel Performance. The bar chart shows the speedup ratio compared
with single node single thread baseline.

Multi Nodes. Moreover, we evaluate the data loading time and coefficient
computing time consumption separately. Although the data loading procedure
is not time-consuming, it is difficult to parallelize this part because of the memory
read/write speed limitation. However, we can efficiently overlap this procedure
with computing in multi-nodes architecture. Figure 5 shows the benefits from
multi-nodes single thread parallel. The speedup curve demonstrates a favorable

DDP-B 153

accelerating trend and this method delivers 7.5x speedup compared with baseline
as a result.

Hybrid Parallel. Then we nest MPI and OpenMP programming techniques
to take the most of this distributed dynamic architecture. Figure 6 exhibits the
comprehensive results with a various number of nodes as well as threads. The
optimized performance trends similarly with those mentioned above two orthog-
onal strategies. System performance increases with the number of nodes as well
as threads but will degenerate when too many threads assigned on one worker
node. The optimal performance is achieved on 8 nodes 16 threads, which gives
an 87.9x speedup compared with the baseline.

Table 3. SIMD performance

8 nodes 16 threads With/SIMD With SIMD Speedup

Time 21.25 s 13.85 s 1.5x

Table 4. Scalability under larger workloads

Query vecs Reference vecs 1 node 16 threads
with SIMD

8 nodes 16 threads
with SIMD

Speedup

203 203 128.42 s 13.85 s 9.27x

203 812 506.54 s 32.58 s 15.55x

SIMD. We investigate the SIMD optimization as well as the scalability of our
system. Table 3 shows that an extra 1.5x speedup obtained by the SIMD on
multi-nodes multi threads condition approaching the theoretical 2x peek.

Scalability. Furthermore, we enlarge the reference data size to examine the
scalability of the system. As Table 4 shows, our system achieves a 15.55x speedup
under a larger workload while the original speedup is 9.27x when we keep 16
threads on every worker node and scale the number of worker nodes from 1 to 8
which exhibits super-linear scalability.

In a summary, we accomplish 2.97K binary coefficients calculating per second
which gives an 134.8x speedup compared with baseline as well as 111.6 GOPS
(Giga Operations per Second) at the condition of 8 worker nodes, 16 threads per
worker node with SIMD applied.

5 Conclusion

In the filed of computer-aid meta-genomics research, how to design similarity
measurement algorithms with high efficiency remains an enormous challenge.

154 M. Chi et al.

In this paper, we propose PPD-B, a distributed dynamic parallel framework
based on a binary similarity coefficient to support the meta-genomics analysis.
Our framework modifies the Forbes coefficient to quantitatively evaluate the sim-
ilarity among Hashed meta-genomics binary vectors and utilizes a hierarchical
parallel architecture to optimize the computing process of coefficients computa-
tion. The experimental results show that the framework operates efficiently and
achieves an 134.8x speedup compared with the baseline. And we design a scal-
able distributed dynamic programming system scheduling the whole system to
decouple the communication and computation, which proven stable scalability
on large workloads. Our work can be a novel standard instance implicating for
designing efficient meta-genomics algorithms on distributed parallel clusters.

In the future, we plan to further research on several respects: assembling
heterogeneous machines into our dynamic architecture with balanced workloads,
which can be regarded as a typical knapsack problem; applying our system on
multi-core accelerators or processors such as GPUs and Sunway to accelerate
our algorithm; investigating more efficient binary similarity measurements and
related Hash algorithms; and comparing our framework with prospective meta-
genomics similarity analysis systems in terms of performance and effectiveness.

References

1. Bernard, G., Greenfield, P., Ragan, M.A., Chan, C.X.: k-mer similarity, networks
of microbial genomes, and taxonomic rank. mSystems 3(6), e00257–18 (2018)

2. Buyya, R., et al.: High Performance Cluster Computing: Architectures and Systems
(Volume 1), vol. 1, p. 999. Prentice Hall, Upper Saddle River (1999)

3. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Portable Shared Memory
Parallel Programming, vol. 10. MIT Press, Cambridge (2008)

4. Charras, C., Lecroq, T.: Handbook of Exact String Matching Algorithms. Citeseer
(2004)

5. Choi, S.S., Cha, S.H., Tappert, C.C.: A survey of binary similarity and distance
measures. J. Syst. Cybern. Inform. 8(1), 43–48 (2010)

6. Driver, H.E., Kroeber, A.L.: Quantitative Expression of Cultural Relationships,
vol. 31. University of California Press, Berkeley (1932)

7. Fleischmann, R.D., et al.: Whole-genome random sequencing and assembly of
haemophilus influenzae RD. Science 269(5223), 496–512 (1995)

8. Forbes, S.A.: On the local distribution of certain Illinois fishes: an essay in statis-
tical ecology, vol. 7. Illinois State Laboratory of Natural History (1907)

9. Grigoriev, I.V., et al.: The genome portal of the department of energy joint genome
institute. Nucleic Acids Res. 40(D1), D26–D32 (2011)

10. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI message passing interface standard. Parallel Comput. 22(6),
789–828 (1996)

11. Hubalek, Z.: Coefficients of association and similarity, based on binary (presence-
absence) data: an evaluation. Biol. Rev. 57(4), 669–689 (1982)

12. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes
et des jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)

13. Jeong, H., Kim, S., Lee, W., Myung, S.H.: Performance of SSE and AVX instruction
sets. arXiv preprint arXiv:1211.0820 (2012)

http://arxiv.org/abs/1211.0820

DDP-B 155

14. Li, D., Liu, C.M., Luo, R., Sadakane, K., Lam, T.W.: Megahit: an ultra-fast single-
node solution for large and complex metagenomics assembly via succinct de bruijn
graph. Bioinformatics 31(10), 1674–1676 (2015)

15. Lomont, C.: Introduction to Intel advanced vector extensions. Intel White Paper,
pp. 1–21 (2011)

16. Metzker, M.L.: Sequencing technologies-the next generation. Nat. Rev. Genet.
11(1), 31 (2010)

17. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
(CSUR) 33(1), 31–88 (2001)

18. Ondov, B.D., et al.: Mash: fast genome and metagenome distance estimation using
minhash. Genome Biol. 17(1), 132 (2016)

19. Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F.: Vsearch: a versatile open
source tool for metagenomics. PeerJ 4, e2584 (2016)

20. Schroeder, B., Gibson, G.: A large-scale study of failures in high-performance com-
puting systems. IEEE Trans. Dependable Secur. Comput. 7(4), 337–350 (2009)

21. Sneath, P.H.A.: The principles and practice of numerical classification. Numer.
Taxon. 573, 263–268 (1973)

22. Wilming, L.G., Gilbert, J.G., Howe, K., Trevanion, S., Hubbard, T., Harrow,
J.L.: The vertebrate genome annotation (vega) database. Nucleic Acids Res.
36(suppl 1), D753–D760 (2007)

23. Woese, C.R., Fox, G.E.: Phylogenetic structure of the prokaryotic domain: the
primary kingdoms. Proc. Natl. Acad. Sci. 74(11), 5088–5090 (1977)

24. Woyke, T., Rubin, E.M.: Searching for new branches on the tree of life. Science
346(6210), 698–699 (2014)

25. Wrighton, K.C., et al.: Fermentation, hydrogen, and sulfur metabolism in multiple
uncultivated bacterial phyla. Science 337(6102), 1661–1665 (2012)

Optimal Resource Allocation Through
Joint VM Selection and Placement

in Private Clouds

Hongkun Chen1, Feilong Tang1(B), Linghe Kong1, Wenchao Xu2,
Xingjun Zhang3, and Yanqin Yang2

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

tang-fl@cs.sjtu.edu.cn
2 Department of Computer Science and Technology, East China Normal University,

Shanghai, China
3 School of Computer Science and Technology, Xi’an Jiaotong University,

Xian, China

Abstract. It is the goal of private cloud platforms to optimize the
resource allocation process and minimize the expense to process tasks.
Essentially, resource allocation in clouds involves two phases: virtual
machine selection (VMS) and virtual machine placement (VMP), and
they can be jointly considered. However, existing solutions separate VMS
and VMP, therefore, they can only get local optimal resource utilization.
In this paper, we explore how to optimize the resource allocation glob-
ally through considering VMS and VMP jointly. Firstly, we formulate
the joint virtual machine selection and placement (JVMSP) problem,
and prove its NP hardness. Then, we propose the Resource-Decoupling
algorithm that converts the JVMSP problem into two independent sub-
problems: Max-Capability and Min-Cost. We prove that the optimal solu-
tions of the two sub-problems guarantees the optimal solution of the
JVMSP problem. Furthermore, we design the efficient Max-Balanced-
Utility and Extent-Greedy heuristic algorithms to solve Max-Capability
and Min-Cost, respectively. We evaluate our proposed algorithms on
datasets with different distributions of resources, and the results demon-
strate that our algorithms significantly improve the resource utilization
efficiency compared with traditional solutions and existing algorithms.

Keywords: Resource allocation · VM selection · VM placement ·
Resource utilization efficiency · Private clouds

1 Introduction

With the rise of cloud services, it is becoming increasingly common for enterprises
to build their own cloud platforms. Typically, there are two phases in the resource
allocation process of modern cloud platforms [2], being virtual machine selection

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 156–168, 2019.
https://doi.org/10.1007/978-3-030-30709-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_13

Optimal Resource Allocation Through Joint VM Selection and Placement 157

Task Set

13 tasks to

be processed

VM Selection

VM1
VM2

VM Set

VM Placement

PM1 PM2

PM Set

CPU MEM Cap1 Cap2

VM1 2 2 3 5
VM2 3 3 6 9

VM Parameters

CPU MEM Cost
PM1 4 4 2
PM2 6 5 3

PM Parameters

[Cap1]: VM’s capability on PM1 [Cap2]: VM’s capability on PM2

(a) A simple VM selection and placement problem in clouds

5U/5T

VM1

5U/5T

VM1

PM2

3U/3T

VM1
PM1

cost = 5

(1) VMS-Optimal Scheme

3U/3T

VM1

3U/3T

VM1

PM1

3U/3T

VM1

3U/3T

VM1

PM1

1U/3T

VM1

0U/3T

VM1

PM1

cost = 6

(2) VMP-Optimal Scheme

9U/9T

VM2

4U/5T

VM1

PM2

[U]: used capability

[T]: total capability

cost = 3

(3) Global Optimal Scheme

(b) Different schemes to solve the problem

Fig. 1. VM selection and placement in clouds

(VMS) and virtual machine placement (VMP), respectively. The VMS phase
aims to select proper VMs to process the tasks, and the VMP phase places the
selected VMs on proper PMs.

Although such a division of roles provides a clear organization of cloud
resources and is widely used in existing public clouds, it is actually not very
suitable for private clouds. For a public cloud, VMS scheme is decided by users
or their brokers and VMP by the platform, therefore, they have to be separated.
However, for a private cloud, where the platform has the opportunity to decide
the VMS scheme, such a functional division only results in inefficient resource
utilization. We use the following example to demonstrate our point of view.

Suppose there is a simple private cloud platform, where there are two dif-
ferent types of VMs and PMs, with their parameters of CPU, memory, task
processing capability and cost shown in Fig. 1(a). In particular, different PMs
have different costs, when the same VM is placed on different PMs, it has dif-
ferent task processing capabilities due to the different hardware configurations
of PMs. Now, there are 13 tasks is to be processed, and we need to figure out a
VM selection scheme and a VM placement scheme so that all the tasks can be
processed with a minimum cost. We compare the possible schemes in Fig. 1(b).

158 H. Chen et al.

• VMS-Optimal Scheme. This scheme first makes sure VM selection is optimal,
and the VM utilization rate is (3 + 5 + 5)/13 = 100%. While the average PM
utilization rate is (6/10 + 6/9)/2 = 63.33%. The total cost is 2 + 3 = 5.

• VMP-Optimal Scheme. This scheme first makes sure VM placement is opti-
mal, and the average PM utilization rate is 100%. While the resulting VM
utilization rate is 13/18 = 72.22%. The total cost is 2 + 2 + 2 = 6.

• Global-Optimal Scheme. This scheme solves the problem from a global per-
spective. Although both VMS and VMP scheme are not locally optimal, it
gives a global optimal solution. The resulting VM utilization rate is 92.86%,
and the average PM utilization rate is 91.67%. The total cost is 3.

From the above example, we observe that a separated consideration of VMS
and VMP may lead to significant resource wastage in either of the two stages.
Even if these two stages can individually achieve their own local optimal solu-
tions, they can not guarantee a global optimal solution.

In this paper, we convert the original joint VM selection and placement
(JVMSP) problem into two independent sub-problems Max-Capability and Min-
Cost, making it decoupled as a result, by our proposed Resource-Decoupling
algorithm. By applying this algorithm, we can obtain the global optimal solution
of entire JVMSP problem by solving the two sub-problems independently. In
summary, the main contributions of this paper can be summarized as follows.

1. We propose a novel approach that considering VMS and VMP jointly for
resource allocation in private clouds, and formulate the resulting JVMSP
problem. We prove that the JVMSP problem is a NP-hard problem.

2. We propose the Resource-Decoupling algorithm which can obtain the global
optimal solution of the JVMSP problem. It decouples the JVMSP problem
into two independent sub-problems Max-Capability for maximizing task pro-
cessing capabilities of PMs and Min-Cost for minimizing the cost.

3. We propose the efficient Max-Balanced-Utility algorithm by considering both
variance and utility to solve the Max-Capability sub-problem, and the efficient
Extent-Greedy algorithm to solve the Min-Cost sub-problem.

2 Related Work

The VMS and the VMP mechanisms are studied separately in previous
researches. We briefly review these related studies as follows.

Virtual Machine Placement. The related algorithms proposed to solve the
VMP problem can be categorized by their mathematical ideas. Among them,
solving VMP problem by bin-packing algorithms [1] is the most straightforward
way. Besides, linear programming and stochastic integer programming strategy
[4] are other common methods. Finally, a large part of the research works use the
heuristic strategy [5], from the simple best-fit strategy and greedy-based method
to the genetic algorithm and PSO-based algorithm. As the comparison algorithm

Optimal Resource Allocation Through Joint VM Selection and Placement 159

used in this paper, the authors applied the classic PageRank algorithm in VMP
problem in [10]. They compared many state-of-the-art heuristics and showed the
proposed PageRankVM brings very good performance.

Virtual Machine Selection. The VMS problem involves many aspects in
resource management of clouds. Usually, it is regarded as a sub-problem of
the whole dynamic VM consolidation process, where it is used to select VMs
for migration [11]. Besides, VMS strategy is also used by the cloud brokers to
select proper VMs among multiple cloud resource providers [8]. VMS problem
also exists in pay-per-use related deployments, where proper resources are to be
selected for specific applications and are charged to application providers [3]. In
this paper, VMS helps to decide a set of VMs with different types and quantities,
so that the tasks can be processed with minimum VM resource wastage.

3 Problem Statement

3.1 Problem Formulation

We firstly list the notations used in problem formulation in Table 1. Particularly,
we use the PM’s market price as the cost in this paper, which aims to help the
private cloud owners process the tasks with minimum economic expenses.

Table 1. Notations for problem formulation

Inputs Explanations

T Amount of total tasks, T ≥ 0

V Total VM types, V ∈ N+ and v ∈ {1, 2, · · · , V }
P Total PM types, P ∈ N+ and p ∈ {1, 2, · · · , P}
D Resource dimensions, D ∈ N+ and d ∈ {1, 2, · · · , D}
s = {sdv} VM scales, sdv is the vth-type VM’s resource value on dimension d

t = {tpv} VM capabilities, tpv is the vth-type VM’s capability on pth-type
PM

S = {Sd
p} PM scales, Sd

p is the pth-type PM’s resource value on dimension d

C = {Cp} PM costs, Cp is the pth-type PM’s usage cost

K = {Kp} Maximum quantities, Kp is the pth-type PM’s maximum
quantity

Outputs Explanations

N = {nv} VM selection scheme, nv is the vth-type VM number

M = {mp} PM selection scheme, mp is the pth-type PM number

G = {gvi } Placement scheme, gvi is the vth-type VM number on the ith PM,
use î to represent the ith PM’s type, where i ∈ {1, 2, · · · , |M |}

160 H. Chen et al.

The JVMSP problem is formed through jointly considering VMS and VMP
problem. In order to analyze their relationship from the mathematical point of
view, we first formulate VMS and VMP problems, and then jointly consider
them to formulate the JVMSP problem.

VMS Formulation. The VMS problem aims to select proper VMs N to process
all the tasks T with minimum cost, as shown in Eq. (1). The optimization goal
shows the total cost of all the selected VMs, where f(sv) is the cost of VM with
scale v. The constraint shows the selected VMs’ capabilities are enough for all
the tasks.

min.
{N}

V∑

v=1

nv · f(sv) s.t.
V∑

v=1

nv · tv ≥ T (1)

VMP Formulation. The VMP problem aims to find a PM scheme M and the
mappings G so that all the VMs N can be placed on PMs with minimum cost, as
shown in Eq. (2). We optimize the total cost of all the PMs, where f(Sp) is the
cost to use a pth-type PM. The constraints shows all the VMs are needed to be
placed, and for every PM, the placed VMs can not exceed its resource capacity.

min.
{M,G}

P∑

p=1

mp · f(Sp) s.t.
|M |∑

i=1

gvi = nv and

V∑

v=1

gvi · sdv ≤ Sd
î

(2)

JVMSP Formulation. The optimization goal for JVMSP problem is formu-
lated in Eq. (3), where we aim to decide proper VMs N and proper PMs M as
well as the placement method G so that all the tasks can be processed and the
total cost is minimum.

min.
{N,M,G}

P∑

p=1

mp · Cp (3)

The constraints are shown in Eq. (4). The first constraint shows the selected
VMs’ capabilities are enough for all the tasks. The second one shows the selected
PM’s quantity of each type is limited by its maximum available number. The
third one makes sure all of the selected VMs are placed on PMs. The last one
shows every PM’s resources should be enough for all the VMs placed on it.

|M |∑

i=1

V∑

v=1

gvi · tîv ≥ T mp ≤ Kp

|M |∑

i=1

gvi = nv

V∑

v=1

gvi · sdv ≤ Sd
î

(4)

3.2 Complexity Analysis

It is easy to know that VMP problem is NP-hard as Eq. (2) is equivalent to a
multidimensional bin-packing problem, and VMS problem is also NP-hard as
Eq. (1) is equivalent to a dual problem of a bin-packing problem. We now show
the complexity of JVMSP problem by proving the theorem below.

Optimal Resource Allocation Through Joint VM Selection and Placement 161

Theorem 1. JVMSP is NP-hard, and it is harder than either VMP or VMS.

Proof. The theorem can be proved by a reduction from both VMP problem and
VMS problem to JVMSP problem.

Firstly, we show that VMS can be reduced to JVMSP. Suppose we apply a
placement scheme for PMs (i.e., fix G), and use Tp to denote the capability for
each type of PM. Then, the last constraint in Eq. (4) is satisfied and the first
constraint becomes

∑
p Tp · mp ≥ T . Moreover, variable N can be canceled by

removing the third constraint. That finally becomes a VMS problem. Therefore,
VMS problem is nothing but a special case of the associated JVMSP problem
where variable G is set to be a constant.

Secondly, we show that VMP can be reduced to JVMSP. Similarly, suppose
we apply a selection scheme for VMs (i.e., fix N) so that all the tasks can
be processed, which essentially makes M a function of G. Then, the problem
becomes determining M and G to optimize Eq. (3) under Eq. (4) without the
first constraint (N is fixed to meet this constraint), which is obviously a VMP
problem. Therefore, VMP problem is also a special case of the associated JVMSP
problem where variable M is set to be a function of variable G.

4 Joint VM Selection and Placement

4.1 JVMSP Problem Conversion

Traditional solutions greedily split resource allocation into VMS and VMP
phases. In this way, even if VMS and VMP can individually achieve their own
optimal solutions, it does not guarantee a global optimal solution.

We propose the Resource-Decoupling algorithm to derive the global optimal
solution, as shown in Algorithm1. Specifically, the Resource-Decoupling algo-
rithm converts the JVMSP problem into two sub-problems Max-Capability and
Min-Cost. Max-Capability aims to determine an optimal placement scheme for a
given PM so that it has the maximum task processing capability. And Min-Cost
aims to select the well-placed PMs to process tasks so that the cost is minimum.
Line 2 in Algorithm 1 shows we obtain the placement scheme [n̂1

p, · · · , n̂v
p] and the

maximum capability T̂p for a PM of type p by solving the Max-Capability prob-
lem. Line 4 shows we obtain the PM selection scheme [m̂1, · · · , m̂p] to process
all the tasks with a minimum cost by solving the Min-Cost problem.

The Resource-Decoupling algorithm decouples the JVMSP problem into two
independent sub-problems. Now, we prove that the optimal solutions of the two
sub-problems guarantees the optimal solution of the JVMSP problem.

Theorem 2. Resource-Decoupling will give an optimal solution for JVMSP
problem if the Max-Capability and Min-Cost sub-problems’ solutions are optimal.

162 H. Chen et al.

Algorithm 1. Resource-Decoupling
Input: T, V, P,D, s, t, S, C,K
Output: N = {nv},M = {mp}, G = {gvi }

1 for p = 1, 2, · · · , P do

2 [n̂1
p, · · · , n̂v

p], T̂p ← Max-Capability(Sp, {sdv}, {tpv})
3 end

4 [m̂1, · · · , m̂p] ← Min-Cost({T̂p}, {Kp}, T, {Cp})
5 Construct M by {m̂p}, G by {n̂v

p}, N by G
6 return N, M, G

Proof. We use {T̂p} and {m̂p} to denote the optimal solutions of the Max-
Capability and Min-Cost sub-problems, and Ĉ =

∑
p m̂pCp to denote the corre-

sponding cost. Now, we only need to show that Ĉ is minimum among all other
C ′ =

∑
p m

′
pCp which satisfies

∑
p m

′
pT

′
p ≥ T , where m′

p and T ′
p are the constant

results obtained from any other strategies.

Let’s first consider the optimization problem shown in Eq. (5). Now xp becomes
a variable to be optimized. We use ms

p to denote the optimal solution for xp, and
Cs to denote the corresponding optimal cost. Then, it’s obvious that Cs ≤ C ′,
because ms

p is the optimal case among all other m′
p.

min.

P∑

p=1

xp · Cp s.t.
P∑

p=1

xp · T ′
p ≥ T (5)

Let’s now consider another optimization problem shown in Eq. (6). Now yp
is also a variable to be optimized, and we can see the optimal solution for yp is
just m̂p (by the definition of m̂p), and the corresponding optimal cost is Ĉ. As
T̂p ≥ T ′

p for any PM type p (by the definition of T̂p), it’s not hard to see that the
optimal cost of Eq. (6) is smaller than or equal to the optimal cost of Eq. (5),
i.e., Ĉ ≤ Cs. Therefore, we have Ĉ ≤ Cs ≤ C ′.

min.

P∑

p=1

yp · Cp s.t.
P∑

p=1

yp · T̂p ≥ T (6)

4.2 Algorithm for Max-Capability Sub-problem

The Max-Capability problem takes a PM with scale Sp, a VM candidate set with
different scales {sdv} and the task processing capabilities {tpv} as inputs. It needs
to choose proper VMs to place on the PM, where we use [n̂1

p, · · · , n̂v
p] to denote

the selected VM quantities of different types, and T̂p to denote the corresponding
task processing capability of this PM after the placement.

The Max-Capability is essentially a bin-packing problem and can be optimally
solved by the dynamic programming method. However, the time complexity is
very high. In this paper, we propose a heuristic algorithm, where two main factors

Optimal Resource Allocation Through Joint VM Selection and Placement 163

the balance of PM and the utility of VM are considered. The balance of PM aims
to avoid using resource excessively in one dimension. Specifically, for each type
of VM, we define V (v) = V ar(Rd + sdv/S

d) to measure the equilibrium effect it
brings to the PM, where Sd and Rd is the PM’s total and remaining resource,
and sdv is the vth-type VM’s resource on dimension d. The utility of VM aims to
choose the VM which brings more task processing capability while consuming

less PM resource. We define U(v) = tv/
d

√∏D
d=1 s

d
v to measure the utility of a

given VM, where tv is the vth-type VM’s capability.

Algorithm 2. Max-Balanced-Utility
Input: s, t, Sp

Output: n̂p = [n̂1
p, · · · , n̂v

p], T̂p

1 for repeat R times do
2 while PM is not fully placed do
3 for each type of VM do
4 calculate V (v) and U(v)
5 end
6 Sort the different types of VMs by V (v) and drop the tail
7 Generate probabilities for the remaining VMs by U(v)
8 Select a VM by their probabilities, deploy the VM on PM

9 end

10 Update T̂p and n̂p if the placement scheme has a larger Tp

11 end

12 return n̂p, T̂p

The Max-Balanced-Utility algorithm is described in Algorithm 2, which works
in the following steps. Firstly, for a given PM, it calculates V (v) and U(v) for
each type of VM (lines 4–5). Secondly, it sorts the VMs’ types by descending
V (v), retain the best VM types in a certain proportion, and assign a possibility
for each type of VM according to their U(v) (lines 7–8). Thirdly, it randomly
chooses a VM according to the probabilities and repeat the above process until
the PM is fully placed. Finally, for the same PM, it repeats the placing strategy
R times to get the best scheme.

4.3 Algorithm for Min-Cost Sub-problem

The Min-Cost problem aims to determine a PM selection scheme from the well-
placed PMs to process all the tasks with minimum cost. Specifically, it takes the
capabilities {T̂p}, costs {Cp}, and maximum PM numbers {Kp} as inputs. The
goal is to determine the quantities {mp} for each type of PM.

We propose the Extent-Greedy algorithm to solve the Min-Cost problem, as
shown in Algorithm 3. It firstly divides the task processing capability of each
PM by its cost to get its extent {extp} and then uses the extent to decide the

164 H. Chen et al.

Algorithm 3. Extent-Greedy

Input: {T̂p}, {Cp}, {kp}, T
Output: {m̂p}, cost

1 Calculate the extent for each type of PM by extp = T̂p/Cp.
2 Sort PM types by their extents {extp}.
3 for the sorted PM types do
4 for available pm number of this type do
5 Select the PM, update {m̂p}, cost and remaining tasks
6 if there no are tasks remained then
7 Re-select the last PM, update {m̂p}, cost
8 return {m̂p}, cost
9 end

10 end

11 end

selection order of the PMs (line 1–2) until the selected PMs are enough for tasks.
Note that for the selection of the last PM, on the premise that its resources are
enough for the remaining tasks, we select the one with the minimum cost rather
than the one with the maximum extent to avoid resource wastage.

Actually, the Extent-Greedy algorithm will give a solution for M in Eq. (7)
if Max-Capability is optimally solved, where [s 1, s 2, · · · , s P] is the sorted PM
types in Algorithm 3, K is the maximum number and T is the capability for a
certain type of PM. In Eq. (7), s a is a boundary of the sorted PM types, ahead
of which all the PMs are selected with the maximum available number (ms x),
behind of which only one PM with the least enough capability is selected (ms b).
Use C to denote the cost derived from Eq. (7), we have the Theorem 3.

M =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ms x = Ks x, x for any 1 ≤ x < a

ms a = �(T −
a−1∑

i=1

Ks iTs i)/Ts a�

ms b = 1, a ≤ b ≤ P

(7)

Theorem 3. Co is a lower bound of the global minimum cost for JVMSP.

Co = C − Cs b +
Cs a

Ts a
(T −

a∑

i=1

ms iTs i) (8)

Proof. Firstly, it is easy to see that Co = C when T =
∑a

i=1 ms iTs i. Because
the PMs are selected by the sorted extent order and no extra capabilities are
wasted. Secondly, we consider the general case where T >

∑a
i=1 ms iTs i. We

know that C−Cs b is the global minimum cost for
∑a

i=1 ms iTs i tasks as stated
above. For the remaining tasks, the extent of the most efficient available PMs
is Cs a/Ts a. Therefore, at least another (T − ∑a

i=1 ms iTs i)Cs a/Ts a cost is
needed to process the remaining tasks, which finally explains the lower bound
of the minimum cost show in the above theorem.

Optimal Resource Allocation Through Joint VM Selection and Placement 165

In the evaluation part, we will evaluate algorithms by comparing their costs
with the lower bound of global minimum cost Co.

5 Performance Evaluations

5.1 Datasets

The data in our datasets is made up of two parts, VM scales and PM scales,
respectively. For VM scales, we combine the VM sizes in the trace-based dataset
Google-Cluster [12] and the VM sizes in public cloud Amazon EC2 [7]. For
PMs, we configure a number of servers with different specifications, and use
their marked prices [6] as their costs. The PMs and VMs are with different ratio
types (general type, high-performance type, large-memory type, large-storage
type), and for each type there are different sizes of resources. We then divide
the PMs and VMs into 9 different PM sets and 9 different VM sets so that they
can form different datasets. Their types and quantities are recorded in Table 2.

Table 2. PM and VM sets used in experiments

Set index 1 2 3 4 5 6 7 8 9

PM type 18 36 54 72 90 108 126 144 162

PM quantity 1423 2825 4215 5592 6923 8245 9592 10853 12211

VM type 56 112 168 224 280 336 392 448 512

VM quantity 6129 10947 16317 21381 26511 32295 38526 43383 48741

5.2 Compared Algorithms

To evaluate the performance of our proposed framework and algorithms, we
construct four different schemes to solve the JVMSP problem in Table 3, where

• Scheme1 uses our proposed framework and algorithms. It is our proposed
scheme for efficient resource allocation in private clouds.

• Scheme2 uses the PageRankVM as the placement strategy. We use it as a
comparison scheme to evaluate the different placement strategies.

• Scheme3 uses the Function-Separated framework. We use it as a comparison
scheme to evaluate the different resource allocation frameworks.

• Scheme4 uses the Function-Separated framework, and it adopts the First-Fit-
Decreasing strategy for placement. It is treated as the baseline.

166 H. Chen et al.

Table 3. Comparison schemes to solve JVMSP problem

Scheme Framework Selection strategy Placement strategy

1 Resource-Decoupling Extent-Greedy Max-Balanced-Utility

2 Resource-Decoupling Extent-Greedy PageRankVM [10]

3 Function-Separated [2] Min-Waste PageRankVM [10]

4 Function-Separated [2] Min-Waste First-Fit-Decreasing [9]

(a) Four schemes’ costs results (b) Cost optimality ratio results

Fig. 2. Four compared schemes’ cost results to solve the JVMSP problem

5.3 Results and Analysis

We perform the different schemes in Table 3 to solve the JVMSP problem by
applying them on the dataset formed by PM set 5 and VM set 5 in Table 2.
We perform 50 groups of simulations on the dataset by setting each simulation
a different available PMs quantities and tasks inputs. We define the Cost Opti-
mality Ratio as Co/Calg to measure the proximity of the algorithm-derived cost
to the global optimal cost, where Co is the lower bound of minimum cost shown
in Theorem 3 and Calg is the algorithm’s cost. The results are shown in Fig. 2

By comparing scheme2 and scheme3 in Fig. 2(b), we can see that the
Feedback-Decoupling framework improves the performance of JVMSP’s solution
up to 15.5% in average compared with the traditional resource management
method Besides, by comparing scheme1 and scheme2, we can see that our pro-
posed Max-Balanced-Utility placement strategy improves the solution another
10% when compared with PageRankVM. Overall, our proposed scheme improves
the resource allocation efficiency 43% compared with the baseline.

We further evaluate the adaptability of our proposed framework and algo-
rithms by applying the schemes on different datasets, and their results are shown
in Fig. 3. The results show that scheme1 and scheme2 remain more stable and
higher performance in all of the cases compared with scheme3 and scheme4,
which illustrates that our proposed framework and algorithms outperform the
traditional separated resource allocation methods in different datasets. In partic-
ular, with the number of PM and VM types increasing, our algorithms derive bet-
ter allocation schemes, while the traditional methods tend to have more uncer-
tainty on their performance. Finally, increasing PM types reduces the cost more

Optimal Resource Allocation Through Joint VM Selection and Placement 167

(a) PM set 5, VM set 1-9 (b) VM set 5, PM set 1-9 (c) PM and VM set 1-9

Fig. 3. Four compared schemes’ adaptability on different distribution of datasets

significantly compared with increasing VM types for our proposed framework,
and increasing both PM and VM types is to some extent equivalent to combining
the effects of increasing them separately.

6 Conclusion and Future Work

This paper presents a global perspective to optimize the resource allocation
in private cloud platforms, where we combine the original separated VMS and
VMP processes, and formulate the joint VM selection and placement (JVMSP)
problem. We analyze the hardness of the JVMSP problem and convert it into two
sub-problems. A theoretical proof is provided to show the relationship between
the JVMSP problem’s optimal solution and its two sub-problems’. Besides, for
each sub-problem, we provide a heuristic algorithm. Future work can be done
to define other forms of cost function, so that this work can be applied to deal
with other optimization goals more than economic expense in private clouds.

Acknowledgments. This work was supported in part by the National Natural Sci-
ence Foundation of China projects under Grants 61832013 and 61672351, and in part
by the Huawei Technologies Co., Ltd. project under Grant YBN2018125107.

References

1. Babu, K.R., Samuel, P.: Virtual machine placement for improved quality in IAAS
cloud. In: 2014 Fourth International Conference on Advances in Computing and
Communications, pp. 190–194. IEEE (2014)

2. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28(5), 755–768 (2012)

3. Blaisse, A.P., Wagner, Z.A., Wu, J.: Selection of virtual machines based on clas-
sification of MapReduce jobs. In: 2015 IEEE 35th International Conference on
Distributed Computing Systems Workshops (ICDCSW), pp. 82–86. IEEE (2015)

168 H. Chen et al.

4. Chaisiri, S., Lee, B.S., Niyato, D.: Optimal virtual machine placement across multi-
ple cloud providers. In: IEEE Asia-Pacific Services Computing Conference, APSCC
2009, pp. 103–110. IEEE (2009)

5. Dashti, S.E., Rahmani, A.M.: Dynamic VMS placement for energy efficiency by
PSO in cloud computing. J. Exp. Theor. Artif. Intell. 28(1–2), 97–112 (2016)

6. Dell: Dell PowerEdge Servers. https://www.dell.com/en-us/work/shop/dell-
poweredge-servers/sc/servers. Accessed 4 Feb 2019

7. EC2, A.: Amazon EC2 instance types. https://aws.amazon.com/ec2/instance-
types. Accessed 4 Feb 2019

8. Gahlawat, M., Sharma, P.: VM selection framework for market based federated
cloud environment. In: 2015 International Conference on Computing, Communi-
cation and Automation, pp. 695–698. IEEE (2015)

9. Johnson, D.S.: Near-optimal bin packing algorithms (1973)
10. Li, Z., Shen, H., Miles, C.: PageRankVM: a PageRank based algorithm with anti-

collocation constraints for virtual machine placement in cloud datacenters. In: 2018
IEEE 38th International Conference on Distributed Computing Systems (ICDCS),
pp. 634–644. IEEE (2018)

11. Melhem, S.B., Agarwal, A., Goel, N., Zaman, M.: Minimizing biased VM selection
in live VM migration. In: 2017 3rd International Conference of Cloud Computing
Technologies and Applications, pp. 1–7. IEEE (2017)

12. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the
Third ACM Symposium on Cloud Computing (SOCC), p. 7. ACM (2012)

https://www.dell.com/en-us/work/shop/dell-poweredge-servers/sc/servers
https://www.dell.com/en-us/work/shop/dell-poweredge-servers/sc/servers
https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com/ec2/instance-types

A Parallel Multi-keyword Top-k Search
Scheme over Encrypted Cloud Data

Maohu Yang1, Hua Dai1,2(B), Jingjing Bao1, Xun Yi3, and Geng Yang1,2

1 Nanjing University of Posts and Telecommunications, Nanjing 210023, China
yangmh1234@163.com, {daihua,yangg}@njupt.edu.cn, jing874444051@163.com

2 Jiangsu Security and Intelligent Processing Lab of Big Data, Nanjing 210023, China
3 Royal Melbourne Institute of Technology University, Melbourne 3001, Australia

xun.yi@rmit.edu.au

Abstract. With searchable encryptions in the cloud computing, users
can outsource their sensitive data in ciphertext to the cloud that provides
efficient and privacy-preserving multi-keyword top-k searches. However,
most existing top-k search schemes over encrypted cloud data are the
centralize schemes which are limited in large scale data environment.
To support scalable searches, we propose a parallel multi-keyword top-k
search scheme over encrypted cloud data. In this scheme, the fragment-
based encrypted inverted index is designed, which is indistinguishable
and can be used for parallel searching. On the basis of such indexes,
a Map-Reduce-based distributed computing framework is adopted to
implement the parallel multi-keyword top-k search algorithms. Security
analysis and experiment evaluation show that the proposed scheme is
privacy-preserving, efficient and scalable.

Keywords: Cloud computing · Inverted index ·
Multi-keywords top-k search · Parallel computing ·
Searchable encryption

1 Introduction

With the rapid development of computer technology and internet application,
data in many areas are growing exponentially, thus the demand for large and
scalable storage and computation is becoming urgent. More and more enter-
prises and individuals outsource their storage and computation to the cloud for
using data anytime and anywhere and saving costs of hardware and software [1].

Supported by the National Natural Science Foundation of China under the grant
Nos. 61872197, 61572263, 61672297 and 61872193; the Postdoctoral Science Foun-
dation of China under the Grand No. 2019M651919; the Natural Research Founda-
tion of NJUPT under the grand No. NY217119; the Natural Science Foundation of
Anhui Province under the grant No. 1608085MF127; the University Natural Science
Foundation of Anhui Province under the grant No. KJ2017A419.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 169–181, 2019.
https://doi.org/10.1007/978-3-030-30709-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_14

170 M. Yang et al.

However, while enjoying the benefits of cloud computing, users have to face the
risk that sensitive outsourced data could be leaked or abused because cloud ser-
vice providers can access the data without authorization. Therefore, data owners
usually encrypt data before outsourcing [2]. Although encryption preserves the
security of data, it also affects the data availability. In this scenario, searchable
encryptions (SE) [3–18] that guarantee the security and availability of data have
been proposed.

At present, most solutions are based on the vector space model (VSM) and
TF-IDF model which extract keywords of documents into “points” in multi-
dimensional space and describe the relevance scores between documents and
search keywords. The top-k documents are determined by comparing the rele-
vance scores. However, if a scheme calculates the relevance scores between every
document and the search keywords, it will cost a large amount of time and
computing resources. To improve search efficiency, researchers have provided a
variety of schemes. Song et al. [3] proposed the first SE scheme where users need
to traverse entire documents while searching, and the search time is proportional
to the amount of data set. Goh et al. [4] proposed a search scheme based on the
Bloom Filter. Curtmola et al. [5] proposed an efficient SE scheme based on the
inverted index, but using this scheme could expose the privacy of keywords.

Cao et al. [6] proposed a new structure to adapt to multi-keyword search,
but it’s search time increases exponentially when document size grows. Xia
et al. [8] proposed a secure and dynamic multi-keyword ranked search scheme
which can reduce the large inner product calculation by pruning function. Jiang
et al. [9] proposed a secure ciphertext search scheme based on the inverted index,
which avoids calculating the relevance scores of irrelevant documents. Chen
et al. [10] proposed a method based on data mining, which can achieve linear
time complexity with the exponential growth of the document set. Our previ-
ous work [11] also proposed a hierarchical agglomerative clustering tree index
scheme, which can perform an effective and verifiable ranked search.

However, the above existing schemes need to load the complete indexes into
memory at one time for performing search. Because the index size is proportional
to the number of documents, when the scale of documents grows to a certain
level, the memory will be overflow. Moreover, the indexes of those schemes should
be kept in integrity and cannot be segmented, which also limits their scalability.
To conquer such limitation, we propose a parallel privacy-preserving top-k search
(PPTS) scheme, which can meet the requirements of large scale data. First, we
propose a fragment-based encrypted inverted index model. In data preprocessing
and outsourcing phase, the indistinguishable fragment-based encrypted inverted
indexes are constructed and outsourced to the cloud together with the encrypted
documents. In the search phase, the Map-Reduce-based distributed computing
framework is adopted and the parallel multi-keyword top-k search algorithms are
proposed. After that, we analyze the security of PPTS and perform experiments
to evaluate its efficiency.

The contributions of this paper are: (1) We present the fragment-based
encrypted inverted index model which is indistinguishable through adding ran-
dom paddings. (2) By adopting the Map-Reduce-based distributed computing

A Parallel Multi-keyword Top-k Search Scheme over Encrypted Cloud Data 171

framework, the parallel multi-keyword top-k search algorithms are proposed.
(3) We analyze the security and evaluate the search performance. The result
shows that the proposed scheme can realize parallel search while preserving data
privacy.

2 Models and Problem Formulation

2.1 Notations and Preliminaries

– D: The document set, D = {d1, d2, ..., dn}. ˜D is the encrypted form.
– n: The number of documents in D.
– W : The dictionary, namely, the set of keywords, denoted as W =

{

w1,

w2, ..., wm

}

.
– m: The number of keywords in W .
– Q: The query consisting of a set of the search keywords, Q = {w1, w2, ..., wq}.
– Vdi

: The m-dimensional document vector of di. ˜Vdi
is the encrypted form.

– V : The document vector set, V = {Vd1 , Vd2 , ..., Vdn
}. ˜V is the encrypted form.

– Vq: The m-dimensional query vector for Q. ˜Vq is the encrypted form.
– TD: The trapdoor for the search request.
– RS: The result of the search.
– Pi,j : The posting corresponding to the document dj containing keyword wi,

Pi,j = <id(dj), Vdj
>. ˜Pi,j is the encrypted form.

– PLi: The posting list of keyword wi, PLi = {Pi,1, Pi,2, ..., Pi,δ}. ˜PLi is the
encrypted form.

– δ: The number of postings in PLi.
– ε: The fragmentation parameter.
– F : The fragmented documents of D according to ε, F = {F1, F2, ..., Ft}.
– t: The number of fragments of F .
– β: The number of posting list in Fi.

Vector Space Model (VSM) and TF-IDF Model. The VSM and TF-IDF
are widely used in multi-keyword privacy-preserving top-k search [6–13]. The
term frequency (TF) refers to the number of times a given keyword or term
appears in documents, while the inverse document frequency (IDF) is equal to
the total number of documents in the set divided by the number of documents
containing a given keyword. VSM is used to convert a given document di and
search keywords Q into vectors Vdi

and Vq. The calculation of those vectors can
be referred to [6–13].

Secure Inner Product Operation. This scheme uses the secure inner prod-
uct operation to calculate the inner product of two encrypted vectors without
knowing the plaintext value. The basic idea of this is as follows. Assuming that
p and q are two n-dimensional vectors and M is a random n × n-dimensional
invertible matrix. M is treated as the secure key. The encrypted form of p and
q are denoted as p̃ and q̃ respectively, where p̃ = pM−1 and q̃ = qMT . Then we

172 M. Yang et al.

have p̃ · q̃ = (pM−1) · (qMT) = pM−1(qMT)T = pM−1Mq = p ·q, i.e. p̃ · q̃ = p ·q.
Therefore, we have that the inner product of two encrypted vectors equals the
inner product of the corresponding two plaintext vectors.

Inverted Index. Inverted index can be used to quickly find those documents
containing a given keyword by mapping to improves search efficiency. It consists
of dictionary and posting list. The dictionary is a collection of all keywords that
appeared in the D. Each index item in inverted index records a keyword and a
pointer to the posting list, which is the entry of posting. The posting list records
a list of all documents that contain a specified keyword. Each record in the
posting list is a posting that describes the information of the document.

2.2 System Model

The system model is shown in Fig. 1, which is the same as [6–11,14–16]. It
includes three different entities. Data owners (DO) are responsible for con-
structing fragment-based encrypted inverted indexes (˜I), and outsourcing the
encrypted indexes and documents to the cloud server (CS). CS provide the search
service in parallel according to the search request submitted by data users (DU).
DU construct a search trapdoor based on its needs and send it to CS, then wait
for CS to return the search results.

Fig. 1. The system model

2.3 Problem Description

We adopt the “Honest-but-Curious” threat model. In this model, CS honestly
and correctly executes instructions in the designated protocol. However, CS can
analyze stored data and try to snoop on sensitive information.

The search result of PPTS is represented as RS. Vq is the query vector of Q.
Vdi

and Vdj
respectively represent the document vector of di and dj . Then, RS

meets the requirement:

|RS| = k ∧ ∀di, dj(di ∈ RS ∧ dj ∈ (D − RS)) → Vdi
· Vq > Vdj

· Vq.

A Parallel Multi-keyword Top-k Search Scheme over Encrypted Cloud Data 173

The PPTS should satisfy three goals. First, the contents are directly seen
by CS only include encrypted documents, indexes, and trapdoors, that is, the
confidentiality of documents, indexes and trapdoors cannot be leaked. Second,
PPTS can handle the search requirements of large document sets in parallel with
Map-Reduce parallel search framework. Third, PPTS should fully guarantee
the accuracy of search, that is, to improve the efficiency without reducing the
accuracy.

2.4 Search Framework

To clearly describe the scheme proposed in this paper, we define a framework
for the PPTS scheme. As shown in Fig. 2, the search model is composed of five
modules: GenKey, Setup, BuildIndex, GenTrapdoor, and Search.
– Genkey: DO generate the key for encryption, and share it with DU.
– Setup: DO preprocess the document set D, generate a document vector for

each document, and encrypt the D.
– BuildIndex: DO fragment the D and then construct an indistinguishable

inverted index to provide the CS to perform the search service.
– GenTrapdoor: DU generate a trapdoor based on the search keywords.
– Search: CS perform the top-k search service in parallel according to the TD

and ˜I, and return the RS that satisfy the condition to the DU.

Fig. 2. PPTS search framework

3 Parallel Privacy-Preserving Top-k Search Scheme

3.1 Fragment-Based Encrypted Inverted Indexes Model

Definition 1. Document Fragmentation. The document set D is divided into
equal lengths according to the parameter ε. The generated fragmented docu-
ments are denoted as F = {F1, F2, ..., Ft}, satisfying Formula 3 and 4.

|F1| = |F2| = ... = |Ft−1| = ε, 1 ≤ |Ft| ≤ ε (1)

174 M. Yang et al.

D = F1 ∪ F2 ∪ ... ∪ Ft (2)

where |X| represent the number of elements contained in the list or set X.

Definition 2. Parameter-(δ, β). δ is the maximum number of documents con-
taining a certain keyword wj in a certain fragment Fi. And β is the maximum
number of keywords contained in a certain fragment of the F .

{

δ = max{|Fv,j | | 1 < v < t, 1 < j < m}
β = max{|Wv| | 1 < v < t, 1 < j < m} (3)

where Fv,j ⊂ Fv is the document set containing the keywords wj in fragment
Fv, and Wv ⊂ W is the keywords set contained in fragment Fv.

Definition 3. Fragment-based Encrypted Inverted Indexes. ˜I = {˜I1, ˜I2, ..., ˜It}.
Here, ˜Iv ∈ ˜I is an encrypted inverted index corresponding to fragment Fv. Each
row in ˜Iv is <tagj , ˜PLj>, corresponding to a keyword wj . tagj is a hash-based
message authentication code of wj generated by key c, tagj = hash(c, wj). ˜PLj

is the encrypted posting list of wj . To protect the private information of keyword
frequencies, we make the index ˜Iv corresponding to a fragment Fv ∈ F has the
same number of rows and the posting list in each row has the same number of
posting. Thus, the generated indexes ˜I indistinguishable. The construction of
the index ˜Iv is given as follows:

(1) For any di ∈ Fv,j , the corresponding posting ˜Pj,i =< id(di), ˜Vdi
> is gen-

erated to form the ˜PLj . Here, id(di) is the id information of document di.
If |Fv,j | < δ, δ − |Fv,j | different artificial padding ˜Pj,s =< id(ds), ˜Vds

′ >

are constructed to add to the ˜PLj . ds represents a randomly selected doc-
ument that satisfies ds ∈ Fv − Fv,j . Vds

′ represents a randomly generated
m-dimensional vector, and the values of each dimension are as follows:

Vds

′[k] =

{

0, k 	= j

rand(min{Vdi
[k]}), k = j ∧ di ∈ Fv,j

(4)

(2) For any wj ∈ Wv, the corresponding row <tagj , ˜PLj> is generated accord-
ing to the above steps to form the ˜Iv. If |Wv| < β, β−|Wv| different artificial
rows <tags, ˜PLs> are constructed to add to the ˜Iv. tags is generated by
randomly selected keyword ws, where ws ∈ W − Wv. ˜PLs is composed of δ
artificial padding generated by the above steps.

We take an example to explain the above definitions. We assume D = {di|i =
1, ..., 10} and W = {w1, w2, w3}. D is divided to F1 = {d1, d2, d3, d4}, F2 =
{d5, d6, d7, d8}, F3 = {d9, d10}. Then, δ = 3 and β = 3 are calculated. Finally,
the indexes ˜I = {˜I1, ˜I2, ˜I3} are generated as shown in Fig. 3.

A Parallel Multi-keyword Top-k Search Scheme over Encrypted Cloud Data 175

Fig. 3. Example of ˜I

3.2 Data Preprocessing and Outsourcing

The data preprocessing and outsourcing of PPTS are mainly performed by DO
which include three algorithms: GenKey, Setup and BuildIndex.

K ← GenKey(1λ): On input a security parameter λ, the key generation
algorithm output the key K. DO randomly generate the key sk, c ∈ {0, 1}λ, an
m-dimensional vector S and two m×m invertible matrices M1, M2. Finally, the
key K = (sk, c, S,M1,M2) is formed. K is shared between DO and DU but is
private to CS.

(˜V , ˜D) ← Setup(D): On input the document set D, this algorithm output the
encrypted document vector set ˜V and encrypted document set ˜D. DU encrypts
document di into ˜di using sk. Then DU generate document vector Vdi

according
to VSM and TF-IDF models. The key S is used to split the document vector
Vdi

into V
′
di

and V
′′
di

according to the following formula, and then the reversible
matrices M1 and M2 are used to encrypt Vdi

to ˜Vdi
= (MT

1 V
′
di

,MT
2 V

′′
di

). Finally,
the generated ˜di and ˜Vdi

are added to ˜D and ˜V respectively.
{

V
′
di

[j] = V
′′
di

[j] = Vdi
[j], S[j] = 0

V
′
di

[j] + V
′′
di

[j] = Di[j], S[j] = 1
(5)

˜I ← BuildIndex(K, D, ˜V , ε): This algorithm is run by DU to generate
encrypted indexes. Its inputs are the key K, the document set D, the encrypted
document vector set ˜V , and the fragmentation parameter ε, and output the ˜I.
Procedures of this algorithm is shown in Algorithm1 where DO first divides D
into fragments and then builds an encrypted index for each fragment. Since the
operations on each fragment are exactly the same after fragmented, the data
preprocessing stage can be executed in parallel. Finally, DO outsource the ˜D
and ˜I to CS.

176 M. Yang et al.

Algorithm 1. BuildIndex(K, ˜V ,D, ε)
1 Calculate the value of Parameter-(δ, β);
2 for each Fv ∈ F do
3 for each wj ∈ Wv do
4 for each di ∈ Fv,j do

5 add ˜Pj,i =< id(di), ˜Vdi > to ˜PLj ;
6 end

7 while |˜PLj | < δ do

8 add artificial padding ˜Pj,s =< id(ds), ˜Vds
′ > to ˜PLj ;

9 end

10 add < tagj , ˜PLj > to ˜Iv;

11 end

12 while |˜Iv| < β do

13 add artificial row < tags, ˜PLs > to ˜Iv ;
14 end

15 add ˜Iv to ˜I;

16 end

17 return ˜I

3.3 Map-Reduce-Based Top-k Search

The Map-Reduce-based top-k search phase of PPTS is performed by DU and
CS. DU generate a search trapdoor TD and submit it to CS. CS perform the
Map operation according to TD to obtain the k documents most relevant to
each fragment, and then perform Reduce operation to merge and rank the pre-
viously acquired documents to generate the final top-k results. This phase mainly
contains two polynomial-time algorithms: GenTrapdoor and Search.

TD ← GenTrapdoor(K, Q, k): This algorithm takes a plaintext query con-
taining the key K, the search keyword set Q, and the number of documents to
be returned k, and outputs the encrypted query as a trapdoor TD. Its goal is to
protect the keyword information in the query from CS. The construction process
of TD as the following steps:

(1) The query vector Vq is constructed according to Q. If wi ∈ Q, the IDF of
wi is stored in Vq[i], otherwise, the value of Vq[i] is 0. Then, according to
the following formula, Vq is split into two vectors V

′
q and V

′′
q . Finally, V

′
q

and V
′′
q are encrypted with reversible matrices M1 and M2 to obtain the

encrypted query vector ˜Vq = (M−1
1 Vq

′,M−1
2 Vq

′′).
{

V
′
q [j] + V

′′
q [j] = Vq[j], S[j] = 0

V
′
q [j] = V

′′
q [j] = Vq[j], S[j] = 1

(6)

(2) The hash-based message authentication code tagi of wi is calculated and
constitutes the set T = {tagi | tagi = hash(c, wi) ∧ wi ∈ Q}.

A Parallel Multi-keyword Top-k Search Scheme over Encrypted Cloud Data 177

(3) Output TD = (T, ˜Vq, k).

Algorithm 2. Search.Map(˜Iv, TD)

1 for each < tagj , ˜PLj >∈ ˜Iv do
2 if tagj ∈ T then

3 for each ˜Pj,i ∈ ˜PLj do

4 if Score(˜Vdi ,
˜Vq) > minScore{RSi} then

5 if |RSi| = k then
6 Delete the document with the lowest relevance score in RSi;
7 end

8 add < id(di), Score(˜Vdi ,
˜Vq) > to RSi;

9 end

10 end

11 end

12 end
13 return RSi

RS ← Search(˜I, TD): When CS receives the trapdoor TD, it performs the
top-k search in parallel on the basis of the indexes ˜I, and then returns the result
encrypted documents. The standard Map-Reduce model is adopted to find the
top-k relevant documents. In the Map stage, local top-k result is obtained in each
fragment. In the Reduce phase, all local top-k results are merged to obtain the
global top-k result is calculated. Detailed procedures are shown in Algorithms 2
and 3.

Algorithm 3. Search.Reduce(RS1, RS2, ..., RSt)
1 for each RSv do

2 if RSv.Score(˜Vdi ,
˜Vq) > minScore{RS} then

3 if |RS| = k then
4 Delete the document with the lowest relevance score in RS;
5 end

6 Obtain the ˜di according to id(di), and add it to the RS;

7 end

8 end
9 return RS

According to the structure of index and the top-k search algorithms, we have
that each encrypted inverted index for a fragment is independent and the top-
k search follows the Map-Reduce model. Thus, the proposed search scheme is
scalable. It means that, when the volume of outsourced data grows, the search
efficiency can be preserved by adding servers.

178 M. Yang et al.

4 Security Analysis

This chapter mainly elaborates PPTS from two aspects of security and efficacy.
Security is to analyze the confidentiality of documents, indexes, and trapdoors.
Efficacy is to analyze the scalability of PPTS, and prove that it has the capability
of parallel search and can store large document sets.

Theorem 1. PPTS satisfies privacy requirements.

Proof. First, the symmetric encryption algorithm is used to encrypt documents
in PPTS, which can protect the privacy of documents when the key is not leaked.
Second, the security of the ˜I is guaranteed by random mapping of keywords, fill-
ing redundant values and matrix encryption. Because of the characteristics of
the hash-based message authentication code, attackers cannot recover keyword
information according to the codes. The document vectors and query vectors
are encrypted by matrix encryption technology. Therefore, it can be fully proved
that the indexes and trapdoors of PPTS are confidential. In addition, the prob-
lem of correlation between similar trapdoors can be solved by randomly adding
redundant values to the search trapdoors.

Theorem 2. PPTS has parallel execution capability.

Proof. First, the indexes ˜I is designed according to the parallel computing frame-
work Map-Reduce, that is, both Map and Reduce phases can be executed in
parallel. Second, HDFS as a distributed file system can store large data. On the
Hadoop cluster, DO do not need to pay attention to the details of data storage
and transmission. It only needs to submit the ˜D and the ˜I to Hadoop to pro-
vide a secure, stable and effective search service for DU, which has very high
practicability. Also, the execution capability can be linearly improved by server
expansions, providing almost unlimited processing power.

Theorem 3. The accuracy and privacy of search are not affected by artificial
paddings and rows.

Proof. We assume that ˜Pj,s =< id(ds), ˜Vds
′ > is an artificial padding added to

˜PLj corresponding to the keyword wj . ∀di ∈ Fv,j satisfies the following equation:

Score(Vds

′, Vq) = Vds
· Vq = rand(min{Vdi

[j]}) × Vq[j] < Score(Vdi

′, Vq) (7)

Therefore, the relevance score corresponding to the padding must be lower than
any document in Fv,j . When searching, DU only focuses on the documents with
the highest relevance score, so the added paddings will not affect the accuracy of
the search results. By adding paddings and rows, the posting list corresponding
to each keyword is equal in length and to each fragment equal in width. There-
fore, it is impossible to judge whether it is artificial padding or row based on the
length of the posting list. Because ds /∈ Fv,j ∧ ds ∈ Fv, ds has uniqueness and
indistinguishability in posting list PLj . As a result, the added paddings will not
affect the privacy of the search results.

A Parallel Multi-keyword Top-k Search Scheme over Encrypted Cloud Data 179

5 Performance Evaluation

To evaluate the performance of PPTS, we implement it on the Hadoop plat-
form and compared time cost with SPTS. Here, SPTS is a sequential privacy-
preserving top-k search scheme running on a single server. In other words, SPTS
use one server to search each ˜Iv ∈ ˜I sequentially. We extent the New York Times
Dataset [19] to generate our experimental dataset which has 3,600,000 documents
and 228,623 keywords are extracted. We implement the schemes using Java in
Hadoop platform with three servers. Each server has 3.2 GHz, 8-core CPU, 16 G
memory and 1 T hard disk. Default parameters are n = 3,600,000, |Q| = 15,
k = 5, and ε = 30,000 which are the number of documents, search keywords,
search documents and fragmentation parameter respectively.

In the following experiments, we evaluate the time cost of searches where
one of the parameters n, k, and |Q| changes and the other parameters adopt the
default values. The results are shown in Figs. 4, 5 and 6.

Figures 4, 5 and 6 all show that the proposed PPTS outperforms SPTS in the
time cost of ranked searches, and the former saves at least 80% of the time cost
compared with the latter. The reason is that both PPTS and SPTS are based
on the inverted index. In the inverted index, the number of candidate posting
corresponding to search keywords is positively correlated with the number of
documents and search keywords, but is not affected by the value of search docu-
ments. As the number of documents or search keywords increases, more resources
are needed to calculate the relevance score. SPTS only use a single server with
limited processing power, which can possibly reach its processing bottleneck and
make the search speed slower and slower. However, PPTS use multiple servers to
perform the search at the same time, and the task pressure is shared on multiple
servers, so the time cost will not increase too much.

Fig. 4. Number of documents n (×106) Fig. 5. Number of search documents k

180 M. Yang et al.

Fig. 6. Number of search keywords |Q|

6 Conclusion

In this paper, we propose a parallel privacy-preserving top-k search scheme over
encrypted cloud data. In this scheme, the fragment-based encrypted inverted
index is designed, which is indistinguishable and can be used for parallel search-
ing. On the basis of such indexes, the Map-Reduce-based distributed computing
framework is adopted and the parallel multi-keyword top-k search algorithms are
proposed. Security analysis and experiment evaluation show that the proposed
scheme is privacy-preserving, efficient and scalable.

References

1. González, L.M.V., Rodero-Merino, L., Caceres, J., Lindner, M.A.: A break in the
clouds: towards a cloud definition. Comput. Commun. Rev. 39(1), 50–55 (2008)

2. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., et al. (eds.) FC
2010. LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14992-4 13

3. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on
encrypted data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley,
California, USA, pp. 44–55, May 2000

4. Goh, E.: Secure indexes. IACR Cryptology ePrint Archive, vol. 2003, p. 216 (2003)
5. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R. : Searchable symmetric

encryption: improved definitions and efficient constructions. In: Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, pp. 79–88 (2006)

6. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In: 30th IEEE International Conference
on Computer Communications, Joint Conference of the IEEE Computer and Com-
munications Societies, INFOCOM 2011, pp. 829–837, April 2011

7. Sun, W., Wang, B., Cao, N., Li, M., Lou, W.: Verifiable privacy-preserving multi-
keyword text search in the cloud supporting similarity-based ranking. IEEE Trans.
Parallel Distrib. Syst. 25(11), 3025–3035 (2014)

8. Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked
search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2),
340–352 (2016)

https://doi.org/10.1007/978-3-642-14992-4_13
https://doi.org/10.1007/978-3-642-14992-4_13

A Parallel Multi-keyword Top-k Search Scheme over Encrypted Cloud Data 181

9. Jiang, X., Yu, J., Yan, J., Hao, R.: Enabling efficient and verifiable multi-keyword
ranked search over encrypted cloud data. Inf. Sci. 403, 22–41 (2017)

10. Chen, C., Zhu, X., Shen, P., Hu, J., Guo, S.: An efficient privacy-preserving ranked
keyword search method. IEEE Trans. Parallel Distrib. Syst. 27(4), 951–963 (2016)

11. Zhu, X., Dai, H., Yi, X., Yang, G., Li, X.: MUSE: an efficient and accurate verifi-
able privacy-preserving multikeyword text search over encrypted cloud data. Secur.
Commun. Netw. 2017, 1 923 476:1–1 923 476:17 (2017)

12. Fu, Z., Wu, X., Guan, C., Sun, X., Ren, K.: Toward efficient multi-keyword fuzzy
search over encrypted outsourced data with accuracy improvement. IEEE Trans.
Inf. Forensics Secur. 11(12), 2706–2716 (2016)

13. Ge, X., Yu, J., Hu, C., Zhang, H., Hao, R.: Enabling efficient verifiable fuzzy
keyword search over encrypted data in cloud computing. IEEE Access 6, 45 725–
45 739 (2018)

14. Guo, C., Zhuang, R., Chang, C., Yuan, Q.: Dynamic multi-keyword ranked search
based on bloom filter over encrypted cloud data. IEEE Access 7, 35 826–35 837
(2019)

15. Sun, W., et al.: Privacy-preserving multi-keyword text search in the cloud support-
ing similarity-based ranking. In: 8th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS 2013, Hangzhou, China, pp. 71–82, May
2013

16. Yang, Y., Zhan, Y., Liu, J., Liu, X., Yuan, F., Zhong, S.: Chinese multi-keyword
fuzzy rank search over encrypted cloud data based on locality-sensitive hashing. J.
Inf. Sci. Eng. 35(1), 137–158 (2019)

17. Zhang, R., Xue, R., Yu, T., Liu, L.: Dynamic and efficient private keyword search
over inverted index-based encrypted data. ACM Trans. Internet Technol. 16(3),
21:1–21:20 (2016)

18. Wang, H., Dong, X., Cao, Z.: Secure and efficient encrypted keyword search for
multi-user setting in cloud computing. Peer-To-Peer Netw. Appl. 12(1), 32–42
(2019)

19. B. D: New York times dataset[db/ol] (2018). http://developer.nytimes.com/docs

http://developer.nytimes.com/docs

N-Docker: A NVM-HDD Hybrid Docker
Storage Framework to Improve

Docker Performance

Lin Gu1, Qizhi Tang1, Song Wu1(B), Hai Jin1, Yingxi Zhang2, Guoqiang Shi2,
Tingyu Lin2, and Jia Rao3

1 National Engineering Research Center for Big Data Technology and System
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,

School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China

wusong@hust.edu.cn
2 State Key Laboratory of Intelligent Manufacturing System Technology,

Beijing 100854, China
3 The University of Texas at Arlington, Arlington, TX 76019, USA

Abstract. Docker has been widely adopted in production environment,
but unfortunately deployment and cold-start of container are limited by
the low speed of disk. The emerging non-volatile memory (NVM) tech-
nology, which has high speed and can store data permanently, brings
a new chance to accelerate the deployment and cold-start of container.
However, it is expensive to replace the whole hard disk driver (HDD)
with NVM. To achieve the fastest deployment and cold-start with low-
est cost, we conduct in-depth analysis on the Top-134 images in Docker
Hub and obtain two main insights as: (1) the storing latency of layered
image has become the bottleneck of container deployment; (2) only a
few image layers are required for container cold-start. Based on these
two findings, we propose a NVM-HDD hybrid docker storage frame-
work as N-Docker. It can effectively accelerate container cold-start by
detecting the bottleneck layers as well as cold-start required layers and
storing them into NVM for faster container startup with limited NVM
capacity. Experimental results show that N-Docker can accelerate the
container deployment by 1.21X and cold-start by 2.96X. Compared to
NVM-Docker, which stores all images into NVM, N-Docker achieves the
same performance improvements while reducing the usage of NVM by
88.22%.

Keywords: Container deployment · Container cold-start · Docker ·
Image · NVM

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 182–194, 2019.
https://doi.org/10.1007/978-3-030-30709-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_15

N-Docker 183

1 Introduction

Docker [2] is a lightweight virtualization system, with the advantages of con-
tinuous integration, version control, portability and fast migration, which has
been widely used in industry. Different from virtual machines [5], containers
share the operating system kernel with the underlying host, which enables rapid
deployment with low performance overhead. Docker packages everything needed
by an application as an image, including runtime tools, system tools, and sys-
tem dependencies. Images are layered and read-only, and adopt copy-on-write to
reduce the usage of storage space. Despite being lightweight, container’s startup
is much slower in practice due to deploying image and file-system provisioning
bottlenecks. The startup of non-local containers includes two processes: deploy-
ment and cold-start.

The non-local containers images must be first downloaded from remote reg-
istry, then stored in local disk [9]. Note that the image downloading latency
is usually determined by the image size, network dynamics and available
bandwidth. To cope with slow downloading, a method based on peer-to-peer
is adopted by some cluster management systems (such as Tupperware [12],
Borg [15] etc.) to accelerate the distribution of package. Slacker [10] acceler-
ates container deployment by lazily pulling image data when needed. Unfortu-
nately, these pioneer work all focus on reducing the downloading latency, but
fail to take the image storing latency into consideration. When the image layers
are downloaded, they must be stored layer by layer sequentially into local disk.
Note that the upper layer downloading may complete first but still have to wait
for the lower ones, leading to a long storing latency after the network download
is completed. Our analysis shows that with a network speed of 100 Mbps, image
storing accounts for at least 23.5% of container deployment latency, and should
be carefully analysed and studied to improve the overall deployment latency.

After successful deployed in local disks, the containers are ready to be
launched to provide certain services with a cold-start latency. It widely agrees
that containers are usually short-lived and dynamically activated/deactivated
according to real time service demands such as serverless computing, hence the
long cold-start latency severely hinders the service quality [7]. Moreover, the
cold-start latency of launching multiple container simultaneously increases sig-
nificantly with the container number. For example, launching 20 containers is
about 7 times slower than launching 1 container [16]. According to the stud-
ies conducted by Google Borg [15], the median task cold-start latency is 25 s,
and above 80% of the latency is caused by the slow I/O speed of local disk. To
mitigate this problem, Akkus et al. [7] try to lower the function instances from
container to separate process to share libraries with other functions of an appli-
cation. Oakes et al. [13] create a cache of pre-warmed Python interpreters to
speed-up the I/O process. However, they either weaken the function isolation by
sharing libraries or are designed for specialized system with limited application
scenarios.

184 L. Gu et al.

Facing the above problems, it is desired to design a container acceleration
framework to speed up both deploying and cold-start without loss of gener-
ality. Recently, the development of new hardware, i.e. non-volatile memory
(NVM) [17], brings a new opportunity. NVM shows excellent characteristics of
non-volatility, byte addressing, and superior reading performance. However, due
to the high cost of NVM, its size is usually limited, which makes it impossible
to store all images in NVM. To make full use of the limited NVM resource, and
accelerate the deployment and cold-start of container, we should carefully select
the image layers and schedule the NVM resource accordingly.

To address this issue, we conduct an in-depth analysis on bottlenecks of
container deployment and cold-start on the Top-134 images downloaded more
than 1 million times on the Docker Hub [3]. Based on our analysis, we propose
a N-Docker framework to optimize the deployment and cold-start of container
with limited NVM resource. The main contributions of this paper are as follows:

– We analysis the deployment and cold-start on the Top-134 images and find
two key issues of container startup: (1) container deployment latency can be
greatly reduced by improving the image layer storing; (2) container cold-start
only requires a small part of files in the image. Based on these two findings, we
discuss the opportunity and challenges of adapting NVM to speedup container
startup.

– A N-Docker framework is designed to improve container deployment and cold-
start. We focus on the storing layers and leverage NVM to accelerate its
storing. Furthermore, we detect and write the hot image files required by
container cold-start to NVM in order to reduce cold-start latency.

– We implement N-Docker, a NVM-HDD hybrid docker storage framework.
The experimental results demonstrate that N-Docker achieves the same per-
formance as NVM-Docker. Moreover, N-Docker can reduce the size usage of
NVM by 88.22%. Compared to traditional Docker which stores all images in
hard disk, N-Docker can speed up the deployment and cold-start of containers
by 1.21X and 2.96X separately.

The rest of this paper is organized as follows. We discuss the design and
implementation of N-Docker in Sect. 2. In Sect. 3 we evaluate the effectiveness of
N-Docker as well as the overhead. In Sect. 4 we discuss the related work. Finally,
Sect. 5 concludes this paper.

2 Design and Implementation

2.1 Opportunities and Challenges from Emerging NVM

Container technique has been widely used in the industry during the past few
years [12,15]. In this section, we introduce the deployment and cold-start of
container in detail and discuss the opportunities of NVM.

Time-Consuming Image Deploying. Before a container can be started up,
its image has to be downloaded and stored from the Internet first. In detail,

N-Docker 185

the data downloaded from the Internet is just some compressed files, which will
be decompressed and stored as layered image later. We do a lot of research on
the Top-134 images downloaded more than 1 million times on the Docker Hub
and find that the average deployment latency of the Top-134 images is about
20.7 s, and find that storing latency accounts for 23.4% of deploying time. As a
result, the storing latency should also be considered during container deployment
acceleration.

Slow Container Cold-Start. Similarly, container cold-start is also slower in
practical cases due to the poor performance of local disk I/O. We do comprehen-
sive analysis and research on the Top-134 images and find out only a few base
files in the large image, called Hot Image File (HIF), are required during the
cold-start for different types of containers. The HIF usually includes bin files,
system dependencies, application files, and execution engines, and will be access
when a container is launched.

Now the server platform supports NVM in the form of NVDIMMs [6]. How-
ever, naively store the whole image into the NVM is not realistic in practical
cases, since the price of NVM devices is relatively high. To this end, we must
take the characteristics of container into consideration to accelerate container
startup with limited NVM resource. Through the above analysis and discussion,
we conclude that the deployment and cold-start of container are the main bottle-
neck of container startup. In this section, we introduce N-Docker, a NVM-HDD
hybrid docker storage framework, to speed up its deployment and cold-start.

Disk NVM

Layer-aware
Storage Strategy

HIF-baesd cold-start
Acceleration

Registry

Instance

Instance

LBL LAL
Hot Image Files

Container Instance

Pull

Optimization One

Optimization Two

 Cold Image Files

Instance

Instance

Run

Fig. 1. N-Docker overview

2.2 Overview

According to the previous researches of the process on container deployment,
analysis of the files used for container cold-start and the characteristics of NVM,
we design N-Docker based on the following three objectives:

186 L. Gu et al.

– Container deployment acceleration: In general, we can accelerate the
container deployment by storing the images in NVM. However, considering
the capacity limitation of NVM devices, we design a container deployment
strategy to store the bottleneck layers in NVM instead of the entire images
in NVM during the process of container deployment.

– Container cold-start improvement: Similarly, to improve the container
cold-start via NVM, we also need detect and store the HIF in NVM, achieving
fast container cold-start and high NVM resource utility at the same time.

– Generality and transparency: In terms of generality, N-Docker should
support a wide range of workflows to accelerate deployment and cold-start. As
for transparency, N-Docker should support these workflows without modifying
the application or weaken the isolation.

Figure 1 describes the overview of the N-Docker architecture. It is clear that N-
Docker has two core components. According to the finding that storing image is
one of the reasons for the slow deployment of containers, we design Layer-aware
Storage Strategy (LASS) to store partial image in NVM during the deployment
of container. Based on the finding that the cold-start of container only needs
Hot Image Files, we propose the HIF-based Cold-start Acceleration (HBCSA)
method to acquire HIF, store them in NVM, and write other cold image files
back to hard disk.

2.3 Layer-Aware Storage Strategy

To achieve container deployment acceleration, we design LASS which speeds up
the deployment of container while reducing the space usage of NVM. The latency
of container deployment is mainly resulted from the download image and storing
image. In order to speed up container deployment, we take NVM instead of the
traditional disks to store the images. However, the capacity of NVM is usually
limited, since it is more expensive in the price. So it is not economical to store
all images in NVM. Our goal is to minimize usage of NVM while enabling rapid
container deployment.

During the image deployment, there are three threads downloading different
layers of one image parallelly. A ChainID is attached to each downloaded layer
to identify a layer, and its value is calculated by sha256 algorithm according
to layer’s diffID and its parent chainID. Therefore, image layers must be stored
layer by layer sequentially into local disk. The different layer sizes usually lead
to different download latency. That is, one layer may still in download while
the others have finished. We refer to the layer being downloaded lastly as Last
Downloading Layer (LDL), which is usually the largest layer. As shown in Fig. 3,
the lower image layers of LDL is called layers below LDL (LBL) and its status
is Pull complete, which has already been downloaded and stored in the hard
disk. The higher image layer above LDL is called Layers above LDL (LAL)
and its status is Download Complete, which has been downloaded while not yet
stored in the hard disk. The storing of LAL will be postponed until LDL has
been downloaded and stored due to layer sequential storing. Once the LDL is

N-Docker 187

downloaded, LAL and LDL will be stored together, which may lead to high
latency of intensive writes after the network download is completed. To address
this issue, we design LASS which can identify LDL and only store LDL and LAL
in NVM.

Layer-Aware Storage Strategy Design. To take advantages of fast I/O
speed of NVM with a constrained capacity, we need design LASS to determine
the layers that should be stored in NVM and disk, towards the goal of fastest
storing and fewest NVM usage. Hereafter, we investigate different schemes and
find the optimal strategy. To answer this question, we use a Boundary Layer
(BL) to divide the layers of one image into two parts, namely Ln (above BL)
and Ld (below BL) with the sizes of Sn and Sd, to be stored in NVM and local
disk, respectively. BL stores in NVM and its size is Sbl. We suppose that an
image has N layers, LDL is the Kth layer and BL is the Mth layer. In order to
find the optimal layer aware storage strategy, we introduce two indicators as the
criteria to evaluate the performance of different strategies, namely TTotal (the
total latency of container deployment) and UTotal (the total NVM usage of con-
tainer deployment). TTotal and UTotal are calculated according to the equations
as follows.

TTotal = TD + TDisk + TNVM (1)

As shown in Eq. 1, TTotal consists of three parts. TD represents the latency
caused by the download image. TDisk and TNVM are the latencies storing image
in hard disk and storing image in NVM after the network download is completed,
separately.

TDisk =
{

0 M ≤ K
α ∗ (SLDL + SLAL − Sn − Sbl) M > K

(2)

TDisk is equal to the total image size written to the hard disk after the network
download is finished divided by the hard disk write speed. As shown in Eq. 2,
α is the reciprocal of the hard disk write speed. When the network download is
completed, LBL has been stored. Therefore, if BL is LBL or LDL, TDisk is 0. If
BL is LAL, layers between LDL and BL store in disk after network download is
completed.

TNVM =
{

β ∗ (SLDL + SLAL) M ≤ K
β ∗ (Sbl + Sn) M > K

(3)

TNVM is equal to the total image size written to NVM after the network
download is completed divided by the NVM write speed. As shown in Eq. 3, β
is the reciprocal of NVM write speed. After network download is completed, if
BL is LBL or LDL, layers between LDL and the highest layer store in NVM. If
BL is LAL, layers between BL and the highest layer store in NVM.

TTotal =
{

TD + β ∗ (SLDL + SLAL) M ≤ K
TD + α ∗ (SLDL + SLAL − Sbl − Sn) + β ∗ (Sbl + Sn) M > K

(4)

UTotal = Sbl + Sn (5)

188 L. Gu et al.

Combining 1, 2, and 3, we can easily get Eq. 4. Since the write speed of
NVM is several orders of magnitude faster than that of hard disks, it is assumed
that α � β. Equation 5 shows that UTotal is the space usage of NVM, which is
another performance indicator. Because we only care about latency caused by
storing image, we set TD as a constant. Our goal is to minimize UTotal on the
premise of minimizing TTotal. According to the location of boundary layers, we
design the following three strategies as shown in Fig. 2.

Strategy 1 set the Boundary Layer as the LBL. At this time, M < K and
SLDL + SLAL < Sbl + Sn. The result is shown in Eq. 6. TT otal is the sum of TD

and the latency caused by storing SLAL to NVM, and UTotal is Sn.{
TTotal = TD + β ∗ (SLDL + SLAL)
UTotal = Sbl + Sn

(6)

Strategy 2 takes LAL as the Boundary Layer. At this time, M > K. The
result is shown in Eq. 7. Because α � β, the delay TTotal of strategy 2 is higher
than that of strategy 1, so strategy 1 is better than strategy 2.{

TTotal = TD + α ∗ (SLDL + SLAL − Sbl − Sn) + β ∗ (Sbl + Sn)
UTotal = Sbl + Sn

(7)

Strategy 3 selects the LDL as the Boundary Layer. At this time, M = K,
Sbl +Sn = SLDL +SLAL. The result is shown in Eq. 8. The strategy 3’s TTotal is
the same as the strategy 1. In strategy 1, SLDL+SLAL < Sbl+Sn. So the UTotal

of strategy 3 is smaller than strategy 1, strategy 3 is better than strategy 1.{
TTotal = TD + β ∗ (SLDL + SLAL)
UTotal = SLDL + SLAL

(8)

It is easy to conclude that strategy 3 is the best choice with the lowest latency.
On the premise of enabling rapid deployment of containers, the usage of NVM
is minimized. Therefore, we adopt strategy 3 and set the Boundary Layer as
LDL, as shown in Fig. 3. While LBL are storing, other image layers are also
being downloaded from the network. We chose to store LBL in disk to reduce
the usage of NVM. When LAL and LDL are being stored, the network download
process has ended. At this time, the latency of container deployment depends
entirely on the storing LDL and LAL. We store LDL and LAL in NVM. As a
result, containers deployment is significantly accelerated.

Disk

NVM

Layer1

Layer2

LayerK-1(BL)

LayerK(LDL)

LayerK+1

LayerN-1

LayerN

LBL

LAL

 Ld

 Ln

Disk

NVM

Layer1

Layer2

LayerK-1

LayerK(LDL)

LayerK+1(BL)

LayerN-1

LayerN

LBL

LAL

 Ld

 Ln

Disk

NVM

Layer1

Layer2

LayerK-1

LayerK(LDL-BL)

LayerK+1

LayerN-1

LayerN

LBL

LAL

 Ld

 Ln

Strategy 1 Strategy 2 Strategy 3

Fig. 2. Strategy overview

Disk NVM

Layer1(Pull Complete)

Layer2(Pull Complete)

Layer3(Pull Complete)

Layer4(Downloading-LDL)

Layer5(Download Complete)

Layer6(Download Complete)

Layer7(Download Complete)

LBL

LAL

Store

Store

Fig. 3. Image storage

N-Docker 189

2.4 HIF-Based Cold-Start Acceleration

To achieve fast cold-start, we propose HBCSA to speed up the cold-start of
containers while reducing the usage of NVM. Note that containers cold-start
only requires HIFs, hence only storing the HIFs in NVM devices during cold-
start can speedup the cold-start. To accelerate the cold-start of container for the
first time, we execute static analysis to identify image layers including HIFs, and
store them in NVM during the deployment of container. The other is dynamic
analysis. HIFs obtained by static analysis are redundant. Therefore, we execute
dynamic analysis to obtain accurate HIFs during the cold-start of container.
Static and dynamic analysis are detailed separately as follows.

Static Analysis. In the process of deploying the image, if the layer contains
HIFs, the whole layer will be stored in NVM to obtain some HIFs initially.
Dockerfile consists of a series of commands which can be obtained by a simple
“string parsing” method. From Sect. 2.1, we can know that the HIFs include Bin
files, system dependencies, application files, and execution engines. Bin files and
system dependencies account for a small proportion of the total HIFs. And the
image layers containing bin files or system dependencies are generally large. So an
image layer that contains only bin files or system dependencies is stored in Disk
without wasting NVM resources. For an image layer containing the execution
engine or application files, we choose to store it in NVM as a coarse-grained
HIFs.

Dynamic Analysis. Once the container cold-start is finished, the application
files in need will be loaded into memory. Dynamic analysis mainly analyzes
the necessary files and file dependencies in the image by tracking system calls,
changes of files or directories, and running of processes. These files are HIFs.
In order to improve the utilization rate of NVM, we only store HIFs in NVM,
with other image files brushed back to the hard disk. In this way, the utilization
rate of NVM is greatly improved, and the cold-start speed of the container is
also accelerated. Compared with the traditional architecture, HIFs will not be
replaced back to disk due to memory collection in the multi-container scenario
with the same host. In this way, container running reduce the disk I/O overhead
caused by missing page interruptions. When a container is suspended for a period
of time or restarted, it can start running faster by reducing I/O latency caused
by page missing interruptions.

3 Evaluation

We implement N-Docker, a NVM-HDD Hybrid Docker Storage Framework to
accelerate container deployment and cold-start. In order to evaluate the perfor-
mance of N-Docker, we conduct a comparative experiment between N-Docker
and native Docker, and a comparative experiment between N-Docker and NVM-
Docker. Our experiments are based on 134 images in Docker hub, which are
downloaded more than 1 million times.

190 L. Gu et al.

3.1 Experiment Setup

Environment. Table 1 provides a detailed description of memory configuration.
We simulate NVM as a fast block device [4] and install ext4 with DAX (direct
access) [1] on it. The machines interconnect with each other in 1 Gbps network.
We implement N-Docker based on Ubuntu 16.04 and Docker 18.06-ce.

Table 1. Memory configuration

DRAM NVM

Capacity 4G 4G

Channels 1 2

Bandwidth 8GB/s 3.6 GB/s (Read)

1.3 GB/s (Write)

Read/Write Latency (Normalized to DRAM) 1 4.4x (Read)

1 12x (Write)

3.2 Deployment

N-Docker divides the image into two parts, one of which is stored in NVM
and the other is stored in Disk. In this section, to compare the performance
of N-Docker with that of NVM-Docker, we deploy Top-134 containers through
N-Docker and NVM-Docker respectively. The experimental results of container
deployment latency are shown in Fig. 4. As can be seen from the figure, the
deployment latency of NVM-Docker container in each category is larger than
that of N-Docker by more than 97%. Therefore, it can be concluded that N-
Docker divides the image into two parts without incurring additional latency.
The space usages of NVM of N-Docker and NVM-Docker are shown in Fig. 5.
With regards to the category of distro, N-docker uses the same space size of
NVM as NVM-Docker. The main reason is that the distro category is the basic
image, and the only one layer or the first layer accounts for most of the entire
image size. In this case, we store the entire image in NVM. The category of web
fwk, which has the most decrease in NVM usage, has a 38.5% decrease in NVM
usage. The reason for it is that the LDL of this category of image is located
further back in the image layer, and more image layers are stored in DISK. In
addition, N-Docker’s container deployment is almost as fast as NVM-Docker.
On average, N-Docker’s NVM usage is 28.53% less than NVM-Docker.

In Sect. 2, we have seen the latency of various container deployments, with
downloading latency accounting for 76.6% and storing latency accounting for
23.4%. In this section, we evaluate the performance of N-Docker in container
deployment by deploying Top-134 containers separately through N-Docker and
Docker. Experimental results are shown in Fig. 4. The most significant drop in
container deployment latency is 26.7% for the category of distro, as the entire

N-Docker 191

image of distro is stored in NVM. The percentage of image layer stored in NVM
is the highest in all categories, and the benefits brought by accelerating con-
tainer deployment through NVM is the largest. The lowest reduction in container
deployment latency is 19.3% for the category of web fwk, since the percentage
of image layer stored in NVM by web fwk is the lowest in all categories, and
the benefits of accelerating container deployment through NVM is the least. On
average, N-Docker’s container deployment latency is 21.14% lower than Docker’s.
We speed up the entire container deployment process by reducing the latency of
storing images. So we evaluate the latency caused by NVM-Docker, N-Docker
and Docker in the process of storing images. The results are shown in Fig. 6.
On average, the latency of the N-Docker storing image after the network down-
load is finished is reduced by 90.3% compared to Docker, and is comparable to
NVM-Docker.

0
10
20
30
40

Ti
m

e
(s

)

Categories of Images

NVM-Docker N-Docker Docker

Fig. 4. Deployment time

0
200
400
600
800

Si
ze

 (M
)

Categories of Images

N-Docker NVM-Docker

Fig. 5. NVM usage in docker
deployment

0
2
4
6
8

Ti
m

e
(s

)

Categories of Images

NVM-Docker N-Docker Docker

Fig. 6. Storing image time

3.3 Cold-Start

We store Hot Image Files in NVM to speed up the cold-start of the container.
In order to verify that the Hot Image Files selected by our scheme is indeed the
file necessary for container cold-start, we conduct the experiments on the Top-
134 containers’s cold-start through N-Docker and NVM-Docker. The result of
cold-start latency is shown in Fig. 7, which demonstrates that N-Docker’s cold-
start latency is only 2% slower than NVM-Docker. The space usage of NVM is
shown in Fig. 8. As can be seen from the figure, the largest reduction in NVM
usage is 97.12 % for the category of distro, as the distro class is the basic image.
The vast majority of such images are auxiliary tools, package managers, and
dependencies. The files needed for by the category of distro are very few. The
minimum reduction in NVM usage is 70.12% for the category of web server.
This type of container contains more executable files, configuration files and the
underlying execution engine. Taking the JVM as an example of execution engine,
common versions of JVM exceed 100M, which makes Hot Image File larger. In
summary, the Hot Image File used by N-Docker contains almost all the files
necessary for container cold-start, and the NVM’s usage of N-Docker is 88.22%
less than NVM-Docker.

In order to evaluate the cold-start performance of N-Docker, we compare the
cold-start latency of containers by N-Docker and Docker. As shown in Fig. 7,
the maximum reduction of cold-start delay is 76.1% for distro container. The

192 L. Gu et al.

reason for it is that containers of the distro category are the simplest, which
requires only a small number of files and then builds an independent execution
environment. The cold-start latency of containers in the distro category is mainly
resulted from the overhead of I/O. Containers of the distro category get higher
promotion by using NVM to store Hot Image Files to speed up container cold-
start. The minimum reduction in container cold-start latency is 62.6% in the
category of web server, as containers in the category of web servers are the most
complex. Such containers’s cold-start requires not only building an independent
execution environment, but also starting the server’s daemon process. Therefore,
accelerating container cold-start by taking NVM devices to store Hot Image
Files gets the least benefits. On average, N-Docker can reduce the latency of the
containers’s cold-start by 33.8%, compared to that of Docker.

0.
11 2.
3

0.
66 1.
46

14
.9

3.
37

2.
22

0.
11 2.
3

0.
68 1.
49

15

3.
44

2.
27

0.
46 6.

5

2.
3 3.
98

43

9.
8

6.
57

0
5

10
15
20
25
30
35
40
45
50

distro db language web
server

web fwk other all

Ti
m

e
(s

)

Categories of Images

NVM-Docker N-Docker Docker

Fig. 7. Cold-start time

5.
04 59

.0
7

51
.4

7 14
1.

4

26
.9

5

96
.5

8

57
.4

717
4.

95 32
6.

32

70
7

47
3.

17

70
6

49
8.

2

48
7.

57

0
100
200
300
400
500
600
700
800

distro db language web
server

web fwk other all

Si
ze

 (M
)

Categories of Images

N-Docker NVM-Docker

Fig. 8. NVM usage

4 Related Work

This research work is to accelerate container deployment and cold-start based
on emerging NVM. The slow deployment and cold-start of containers has also
been widely discussed by other researchers.

Deployment: Some cluster management systems, such as Tupperware [12],
Borg [15], use peer-to-peer technique to reduce the load on the central repository
and speed up packet distribution. However, they are not applicable to Docker
images. Slacker [10] accelerates container deployment by reducing network I/O,
which lazily pulls image data when needed. However, slacker needs a longer time
to build image and a greater demand for storage in the registry. Cider [9] changes
the working node’s local Docker storage to an all-nodes-sharing network storage,
allowing image data to be loaded on demand when deploying containers.

Cold-start: CNTR [14] divides the traditional image into two parts: the “fat”
image contains complete functions, while the “slim” image contains only the
core files needed by common user-case. CNTR reduces image size, which makes
Docker lighter. However, CNTR incurs overhead for some benchmarks. Uniker-
nel [11] uses the library OS [8] to screen out the required operating system
components to construct a lighter-weight executable application operating sys-
tem. But Unikernels cannot debug and require static linking tools in the library

N-Docker 193

OS. SAND [7] weakens the function instances from container-level isolation to
separate process-level to share libraries, which only require to be loaded into
container once, with other functions of an application. SOCK [13] create a cache
of pre-warmed Python interpreters to avoid that Python runtime is initialized
repeatedly.

Existing work does not consider storing image during container deployment,
weaken function’s isolation or cannot be applied to general containers for cold-
start acceleration.

5 Conclusion

Rapid deployment and cold-start of container are very important, such as in the
serverless computing scenario. To achieve this goal, we leverage the emerging
NVM device and design N-Docker, a NVM-HDD hybrid docker storage frame-
work. N-Docker stores LAL and LDL in NVM during container deployment and
Hot Image Files in NVM during container cold-start. Through extensive exper-
iments, we validate the efficiency of N-Docker by the fact that it can accelerate
the median container deployment by 1.21X and cold-start by 2.96X with very
few NVM. Compared to NVM-Docker, which stores all images in NVM, the pro-
posed N-Docker achieves the same performance improvements while reducing
the usage of NVM by 88.22%.

References

1. Add support for NV-DIMMs to ext4. https://lwn.net/Articles/613384/
2. Docker. https://www.docker.com/
3. Docker hub. https://hub.docker.com/u/library/
4. Emulate persistent memory. http://pmem.io/2016/02/22/pm-emulation.html
5. Linux kernel virtual machine. https://www.linux-kvm.org/page/MainPage
6. Nvdimm. https://www.micron.com/products/dram-modules/nvdimm
7. Akkus, I.E., et al.: SAND: towards high-performance serverless computing. In:

Proceedings of the 2018 USENIX Annual Technical Conference, pp. 923–935 (2018)
8. Belay, A., Bittau, A., Mashtizadeh, A.J., Terei, D., Mazières, D., Kozyrakis, C.:

Dune: Safe user-level access to privileged CPU features. In: Proceedings of the
10th USENIX Symposium on Operating Systems Design and Implementation, pp.
335–348. USENIX Association (2012)

9. Du, L., Wo, T., Yang, R., Hu, C.: Cider: a rapid docker container deployment
system through sharing network storage. In: Proceedings of 19th International
Conference on High Performance Computing and Communications, pp. 332–339.
IEEE (2017)

10. Harter, T., Salmon, B., Liu, R., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.:
Slacker: fast distribution with lazy docker containers. In: Proceedings of the 14th
USENIX Conference on File and Storage Technologies, pp. 181–195. USENIX Asso-
ciation (2016)

11. Madhavapeddy, A., Scott, D.J.: Unikernels: the rise of the virtual library operating
system. Commun. ACM 57(1), 61–69 (2014)

12. Narayanan, A.: Tupperware: containerized deployment at facebook (2014)

https://lwn.net/Articles/613384/
https://www.docker.com/
https://hub.docker.com/u/library/
http://pmem.io/2016/02/22/pm-emulation.html
https://www.linux-kvm.org/page/MainPage
https://www.micron.com/products/dram-modules/nvdimm

194 L. Gu et al.

13. Oakes, E., et al.: Sock: rapid task provisioning with serverless-optimized containers.
In: Proceedings of the 2018 USENIX Annual Technical Conference, pp. 57–70.
USENIX Association (2018)

14. Thalheim, J., Bhatotia, P., Fonseca, P., Kasikci, B.: CNTR: lightweight OS con-
tainers. In: Proceedings of the 2018 USENIX Annual Technical Conference, pp.
199–212. USENIX Association (2018)

15. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with Borg. In: Proceedings of the 10th
European Conference on Computer Systems, p. 18. ACM (2015)

16. Wang, L., Li, M., Zhang, Y., Ristenpart, T., Swift, M.: Peeking behind the curtains
of serverless platforms. In: Proceedings of the 2018 USENIX Annual Technical
Conference, pp. 133–146. USENIX Association (2018)

17. Xu, J., et al.: NOVA-fortis: a fault-tolerant non-volatile main memory file system.
In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 478–
496. ACM (2017)

HPC

MMSR: A Multi-model Super Resolution
Framework

Ninghui Yuan, Zhihao Zhu, Xinzhou Wu, and Li Shen(&)

School of Computer, National University of Defense Technology,
Changsha 410073, Hunan, China

lishen@nudt.edu.cn

Abstract. Single image super-resolution (SISR), as an important image pro-
cessing method, has received great attentions from both industry and academia.
Currently, most super-resolution image reconstruction approaches are based on
the deep-learning techniques and they usually focus on the design and opti-
mization of different network models. But they usually ignore the differences
among image texture features and use the same model to train all the input
images, which greatly influence the training efficiency. In this paper, we try to
build a framework to improve the training efficiency through specifying an
appropriate model for each type of images according to their texture charac-
teristics, and we propose MMSR, a multi-model super resolution framework. In
this framework, all input images are classified by an approach called TVAT
(Total Variance above the Threshold). Experimental results indicate that our
MMSR framework brings a 66.7% performance speedup on average without
influencing the accuracy of the results HR images. Moreover, MMSR frame-
work exhibits good scalability.

Keywords: Super resolution � Multi-model � General framework �
Classification

1 Introduction

Super Resolution (SR) technique is used to recover a super-resolution1 image from a
single (or a series of) low-resolution image(s). This technique has been widely used in
the fields including remote sensing, video, medicine and public security, etc. In recent
years, with the wide application of deep learning, more and more researches focus on
the study of single image super resolution (SISR).

Since SRCNN [1] is proposed by Dong et al., deep convolution neural work has
been the basis of other researches of super resolution. This work starts the deep-
learning-based super resolution studies. VDSR [4] is also a revolutionary model in the
development of super resolution, in which the residual block is firstly proposed and

1 To distinguish between the output images and the reference images, the output images are called SR
(Super-Resolution) images and the reference images are called HR (High-Resolution) images in this
paper.

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 197–208, 2019.
https://doi.org/10.1007/978-3-030-30709-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_16

used in a deep network. SRGAN [8], proposed by Christian Ledig et al., makes use of
the generative adversarial network (GAN) [13] in super resolution for the first time.

There are still several problems and challenges in current super resolution studies.
Firstly, researchers usually use the same model to train and reconstruct all the images,
and they do not pay any attention to the differences of images features. For example,
some images are smooth while other images have more textures. In general, for images
with relatively simple texture features, a simple network model is enough to obtain
satisfactory results, with a relatively short time overhead. Therefore, using the same
model to train all the images will usually increase the time overheads and waste some
computation resources. Secondly, researchers pay all their attentions on the quality of
the result SR images, and they usually ignore the training or reconstruction efficiency.
In fact, in particular scenarios, the efficiency is significant as well, such as scenarios
having high real-time requirements. Thirdly, there is not a satisfactory criterion that can
totally fit how the human eyes feel. MSE-based criteria usually make the output images
too smooth, their visual results are usually not as good as expected.

In this paper, we focused on how to solve the first two problems. We found that
images in the training dataset usually have different texture features. Some images have
simple textures and others have complex textures. And we found that for images with
different texture features, the most appropriate models are usually different. According
to these observations, we proposed a multi-model super resolution (MMSR) framework.
MMSR can choose a suitable network model for each image for training. MMSR
shortens the training time efficiently without decreasing the quality of reconstruction
image. We implement a MMSR framework based on SRGAN [8], and experimental
results indicate that using DIV_2K as the training set, MMSR can reduce 40% training
time on average. Moreover, the MMSR framework shows good stability. The main
contributions of this paper are as follows:

(1) We proposed MMSR, a multi-model super resolution framework. This framework
can choose a suitable model according to the texture characteristics of the input
images. Therefore, it can improve the training efficiency without influencing the
quality of the output SR images.

(2) We proposed TVAT (Total Variance above the Threshold), a method to classify
the training images. This approach can be used to describe the complexity of the
image texture, and it does not introduce extra computational overheads. More-
over, since points with low pixel variations have almost no effect on the calcu-
lation of image texture, they could be removed to improve the accuracy of
classification.

The rest of this paper is organized as follows. Section 2 lists some related works.
Section 3 introduces our MMSR framework and the image classification method in
detail. In Sect. 4, the performance of MMSR is evaluated and experimental results are
given. And finally, in Sect. 5, some conclusions are given.

198 N. Yuan et al.

2 Related Works

In recent years, deep learning has been applied in many areas of image processing and
analyzing, including super resolution [1–9]. Reference [1] is a pioneer work that
brought super resolution into the deep learning area, in which the authors proposed a
simple three-layer convolutional neural network called SRCNN and each layer
sequentially deals with feature extraction, non-linear mapping, and reconstruction. The
input of SRCNN uses an extra bicubic interpolation to enlarge the resolution of image.
But this approach lacks enough high-frequency information and introduces some extra
computations. Their later work, FSRCNN [2], removes the bicubic process and adds a
deconvolution layer for reconstruction. VDSR [4] is another revolutionary work in the
development of super resolution techniques, because the residual blocks are first used
in its deep network. Almost all the successive researches on super resolution use
residual blocks in their network models. SRGAN [8], proposed by Christian Ledig
et al., makes use of (GAN) in super resolution for the first time.

Before the GAN network is used to solve the super resolution problem, the mean
square error is often used as a loss function when training the network. Although a high
peak signal-to-noise ratio can be obtained in this way, the reconstructed images lose
some high-frequency details, which makes people hardly have a good visual experi-
ence. Figure 1 [8] describes the whole process of SRGAN, which consists of a gen-
eration phase using the Generator Network and an adversary phase using the
Discriminator Network. In the last layer of the discriminator network, SRGAN uses
perceptual loss to guarantee the quality of the output images. Perceptual loss describes
the differences between the generated SR images and the reference HR images. If the
perceptual loss of a SR image is larger than the threshold, the SR image will be
regenerated.

Most current super resolution approaches using deep learning techniques focus on
the optimization of network models as well as the quality of the output SR images.

Fig. 1. Architecture of SRGAN with kernel sizes (k), numbers of feature maps (n) and stride
(s) specified for each convolutional layer [8].

MMSR: A Multi-model Super Resolution Framework 199

They did not care much about the efficiency of training, which may cause great waste
of computation resources. Therefore, we propose a multi-model SR framework to
improve the efficiency of training. Our framework is based on SRGAN, because it is a
widely used in current super resolution studies and its reconstruction effect is better
than other models.

Another problem concerned by researchers is how to evaluate the quality of output
SR images. There are generally two categories of metrics. The first one describes the
quality in terms of pixel features, such as MSE (Mean Square Error), PSNR (Peak-
Signal to Noise Ratio), SSIM (Structure Similarity), etc. However, under the guidance
of such metrics, the texture features of images are usually ignored and the output
images tend to be too smooth or too fuzzy. The other one is based on the visual effect of
human eyes, such as NIQE (Natural Image Quality Evaluator) [10] and PI (perceptual
index). Sometimes the output images are shown and judged by the naked eyes.
Obviously, the sharper and the more natural an image is, the better NIQE or PI value it
can gets. In recent researches on super resolution, the second category of metrics
gradually become the mainstream choice. Therefore, in this paper, we choose PI as the
image quality metric. The PI value is calculated using the NIQE method [10].

3 MMSR Framework

In this section, we will first introduce our MMSR framework. The MMSR is composed
of a training module and a reconstruction module. The training module trains the
models with a train image set and the reconstruction module recovery the LR images to
SR images. MMSR has good versatility and different deep learning network models
can be integrated into this framework. Then, we will introduce the image classification
method, the structure of the multi-model training module and the design of the
reconstruction layer in turn.

3.1 Framework Overview

The first part of MMSR is the training module, which is shown in Fig. 2. It consists of
two stages, a classification stage and a multi-model training stage. The classification
stage divides the images into different categories according to their texture features.
The multi-model training stage chooses an appropriate network model for each cate-
gory of images and the classified images will enter the corresponding module for
training. Using the classification module to classify the images can make the training
process more targeted, and also improve the efficiency of training. The main difference
among these network models is mainly that they use different parameters, such as the
number of residual blocks in generator and the number of layers in discriminator.

The second part of MMSR is the reconstruction framework, which is shown in
Fig. 3. It consists of four main parts, i.e. the segmentation layer, the classification
module, the multi-model training module and the reconstruction module. The classi-
fication module and the multi-model training module are the same as those in Fig. 2.
The segmentation layer is used to divide the input LR images to be reconstructed into a
group of fragments. Then, these fragments enter the classification module and are

200 N. Yuan et al.

classified according to their texture features. After the classification (and network
model assignment), these fragments will enter the corresponding modules for recon-
struction. And finally, the reconstructed fragments are assembled by the reconstruction
layer into a complete SR image.

3.2 Image Classification

In general, different images have different texture features. At present, most of the
deep-learning-based SR approaches do not take the influence of the characteristics of
the image on the training or the reconstruction process into account. This paper pro-
poses a classification method to divide the images into several categories based on their
texture features with low time overheads.

3.2.1 Total Variance Above the Threshold
We tested some images in order to observe the training methods of different fragments
and the features hidden in them. We found that for most images, the more complex the
texture of an image is, the longer the training time it requires. Therefore, we try to
propose a suitable method to describe the texture feature of an image. The simplest way
to describe the texture complexity is usually based on the variance of the whole image.
However, we have found that this method does not work well, because the variance of
some images with relatively uniform texture is large, although the variance of each
point is relatively small. We found the training of these images does not require a very
deep network model, but the method to assign the network models to image categories
requires some training. Therefore, we consider using an innovative method to describe
the variance of the pixel variation between each pixel and its 8 neighbor pixels, as
shown in Fig. 4. In this paper, it is called the variance of single pixel (VSP). All VSPs
in an image larger than a threshold are added together to obtain the total variance above
the threshold (TVAT). The threshold is chosen through tests. We set the threshold to all

Fig. 2. The architecture of training module.

Fig. 3. The architecture of reconstruction module.

MMSR: A Multi-model Super Resolution Framework 201

integers in 0–25 to test the classification effect. We find that when the threshold is set to
5, we can get the best effect, so we choose to set the threshold to 5.

The VSP value of the i-th pixel can be calculated as follows.

VSPi ¼
X8

j¼1
Ri;Gi;Bið Þ � Rj;Gj;Bjð Þð Þ2 ð1Þ

The TVAT value of the whole fragment can be calculated as follows.

TVAT ¼
Xn

i¼1
VSPi � judgeindexi

� �
= cols � rowsð Þ ð2Þ

Here cols and rows represent the number of columns and rows of the fragment
respectively, and judgeindexi is a step function, which is calculated as follows:

judge indexi ¼ 0; VSPi\threshold
1; VSPi � threshold

�
ð3Þ

3.2.2 TVAT Values
In this work, TVAT values are used to guide the image classification. In Table 1, X-Y
means the GAN model has X residual blocks in generator and Y layers in discriminator.
For example, 16-8 means that the GAN model has 16 residual blocks in generator and 8
layers in discriminator. We can find that for most images, the larger the TVAT value is,
the more complicated an image is. However, when the depth of the network increases,
the results do not always get better.

We randomly selected 80 image fragments from DIV_2K image set to test the
recovery quality of these images in different models. We calculated the TVAT of
images and found the following observations, as shown in Fig. 5: when the value of
TVAT is relatively small (i.e. between 0 and 2), a 4-6 model can get the best per-
formance. When the TVAT value is between 2 and 4, the 2-2 and 16-8 models have
better performance. When the value of TVAT is large than 4, the 4-2 and 16-8 models
perform best. Therefore, in this paper we classify images according to their TVAT
values.

Fig. 4. The VSP of a pixel in the 3 � 3 Neighborhood.

202 N. Yuan et al.

3.3 Multi-model Training Module

After image classification, we need to use different models to train each class of
images, as shown in Fig. 6. We deploy different training models on different GPU
nodes. These models may be completely different kinds of deep learning network
models, or the same kind of models with different depths. This paper chooses the
second way because no matter for simple texture images or complex images, the
recovery quality of SRGAN is better than previous works.

Table 1. The relationship between TVAT and the number of residual blocks in generator and
the number of layers in discriminator in GAN.

Image number TVAT Perceptual index
2-2 4-2 4-6 8-6 16-8 Best

1 0.22316 10.7709 10.7093 8.9474 10.6772 13.4531 4-6
2 0.14125 10.7286 10.2412 9.8015 10.6265 11.0304 4-6
3 5.84019 6.8456 6.7848 6.9019 6.8478 6.4810 16-8
4 0.36391 14.9585 10.4451 14.3677 12.9602 11.1268 4-2
5 1.46280 7.0466 6.9128 7.6555 7.4745 7.7626 4-2
6 4.54511 5.8232 5.7170 6.0661 5.4763 5.3578 16-8
7 4.15810 6.4053 6.4270 6.8263 6.4317 6.6969 2-2
8 2.50022 6.8408 6.9172 6.8703 6.7201 7.0015 8-6
9 0.05513 12.8878 9.0682 14.9559 12.1362 14.2192 4-2
10 3.30724 6.6211 6.2182 6.9568 6.1581 6.1914 16-8
11 3.01382 7.2778 6.9914 6.6588 6.6947 6.5318 16-8
12 0.06423 11.7144 10.3977 10.3883 11.1998 11.4946 4-6
13 4.39549 6.6559 6.5765 6.7881 6.6619 5.8498 16-8
14 0.27429 11.2172 10.5885 9.8657 12.9558 10.6933 4-6
15 0.32317 9.6611 9.0914 8.961 9.6730 9.5313 4-6
16 5.95909 7.7423 7.5606 7.6745 7.7127 7.1994 16-8

Fig. 5. Different network models are suitable for different TVAT values

MMSR: A Multi-model Super Resolution Framework 203

3.4 Reconstruction Layer

As shown in Fig. 7, the reconstruction layer is used to recovery fragments into a
complete SR image. Since different fragments will enter different models for training
after an image is segmented, the recovery time of a set of images maybe different. After
all the fragments reach the reconstruction module, the reconstruction module combines
them into a complete SR image.

At the same time, some edge effects may be generated during the process of
assembling the fragments into a complete image. As shown in Fig. 8, some overlapped
image fragments are combined in the reconstruction module and the overlapping
reduces edge effects. In our framework, the size of the overlap part can be adjusted
according to users’ requirements to ensure that the edge effects can be eliminated as
possible.

Fig. 6. Image fragments are input into different models based on their texture features.

Fig. 7. The recovered fragments are combined into a complete SR image.

Fig. 8. The overlapped fragments are combined into a complete SR image.

204 N. Yuan et al.

4 Experiment Results

4.1 Environment Setup

We construct a cluster which consists of 4 CPU-GPU heterogeneous nodes to evaluate
the performance and scalability of our MMSR framework. The main system parameters
of each node are listed in Table 2.

In this work, DIV_2K image set is used as both train set and test set. As a widely
used image quality metric, the perceptual index (PI) value is used by us to compare
different SR frameworks or models. The PI value can be calculated using following
formula:

Preceptual index ¼ 12 10�Mað ÞþNIQEð Þ ð4Þ

In formula (4), NIQE (Natural Image Quality Evaluator) is based on the con-
struction of a “quality aware” collection of statistical features based on a simple and
successful space domain natural scene statistic (NSS) model. And Ma is an effective
and efficient metric to assess the quality of super-resolution images based on human
perception, it uses three types of low-level statistical features in both spatial and
frequency domains to quantify super-resolved artifacts, and learn a two-stage regres-
sion model to predict the quality scores of super-resolution images. Figure 9 shows that
a lower perceptual index indicates better perceptual quality. We can see that mathe-
matically that distortion and perceptual quality are at odds with each other [10–12].

Table 2. System parameters of each computation node.

HW/SW module Description

CPU Intel® Xeon® E5-2660 v3 @2.6 GHz x 2
GPU NVIDIA Tesla K80 x 2
Memory 64 GB
OS Linux CentOS 7.4
Development Environment Anaconda 3, Pytorch 1.0

Fig. 9. The relationship between perceptual quality and distortion of images

MMSR: A Multi-model Super Resolution Framework 205

The advantage of PI value is that different from the traditional image quality
metrics. It can better match the senses of the human eye. Moreover, the GAN model
itself tries to improve the sensory level of SR images. Therefore, using PI value as the
metric can directly reflect the advantages of our MMSR framework.

4.2 Experiment Details

Since we need to classify the images into different parametric models for learning, we
tested the training under different parameters, using the SRGAN model. Firstly, we
input different texture complexity images into different models for training. We noticed
that different types of images have different training effects under different model. In
other words, in a limited training time, the training effect and the depth of the model are
not necessarily positively correlated.

We choose the Python language to implement the framework. The classification
module can divide the image into suitable block. In this experiment, we divide images
into three types according to the TVAT value, and the images are sent to different GPU
nodes to train. Finally, the whole image is merged into SR image. Our training time is
shortened compared with 16-8 SRGAN [8] (i.e. standard SRGAN). The reconstruction
effect of model trained by MMSR will not reduce obviously for most of the pictures,
and the reconstruction effect of some pictures even increase. The training time of these
three methods are listed in Table 3.

We trained all networks on PyTorch [14–16], which is an open source Python
machine learning library based on Torch, used in the field of artificial intelligence. It
can be seen the acceleration ratio of MMSR is about 1.62 on one GPU node. And when
we use three GPU nodes for acceleration, the acceleration ratio of MMSR is about 2.9.

Figure 10 compares the reconstruction quality of MMSR with other methods. The
smaller the value of PI is, the better the visual perception of the result image is, so we
can find that the effect of the bicubic method is relatively poor, and the reconstruction
effect of MMSR is not much different from that of SRGAN, and even achieves better
results for some images (such as 4, 9 and 13).

Table 3. Training time of different methods.

Method Training time (s) Average time (s)

SRGAN (one GPU node) 16415.600
17680.502
17417.912

17171.338

MMSR (one GPU node) 10683.279
10592.480
10598.944

10624.901

MMSR (three GPU nodes) 5921.761
5872.322
5890.451

5894.845

206 N. Yuan et al.

5 Conclusions

This paper proposes MMSR, a general multi-model framework for super-resolution
image reconstruction. The highlight of our work is to build a general-purpose frame-
work to improve the training or reconstruction efficiency of SR. To implement this
framework, we propose a classification method based on experiments (TVAT) to
classify the training set. This classification method can divide images into several
categories according to their texture characteristics, and we input the images into the
most suitable model to train. Experimental results show that the proposed framework is
efficient to train the models and do not have too much impact on the training effect.
Moreover, because we can use different models in MMSR, our framework has wide
applicability.

References

1. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image
super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10593-2_13

2. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural
network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol.
9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

3. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In: CVPR (2016)

4. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-
resolution. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 3(6), 8 (2016)

5. Mao, X.-J., Shen, C., Yang, Y.-B.: Image restoration using convolutional auto-encoders with
symmetric skip connections. In: The Annual Conference on Neural Information Processing
Systems (NIPS), August 2016

6. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

Fig. 10. The comparison of reconstruction quality of different approaches.

MMSR: A Multi-model Super Resolution Framework 207

http://dx.doi.org/10.1007/978-3-319-10593-2_13
http://dx.doi.org/10.1007/978-3-319-10593-2_13
http://dx.doi.org/10.1007/978-3-319-46475-6_25

7. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In:
IEEE International Conference on Computer Vision (ICCV) (2017)

8. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial
network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

9. Wang, X., Yu, K., Dong, C., Change Loy, C.: Recovering realistic texture in image super-
resolution by deep spatial feature transform. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)

10. The Pirm Challenge on Perceptual Super Resolution. https://www.pirm2018.org/PIRM-SR.
html

11. Blau, Y., Michaeli, T.: The Perception-distortion tradeoff. In: ECCV 2018
12. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P: Image Quality Assessment: From

Error Visibility to Structural Similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information

Processing Systems (NIPS), pp. 2672–2680, March 2014
14. Yegulalp, S.: Facebook brings GPU-powered machine learning to Python. InfoWorld, 19

January 2017
15. Lorica, B.: Why AI and machine learning researchers are beginning to embrace PyTorch.

O’Reilly Media, 3 August 2017
16. Ketkar, N.: Deep Learning with Python, pp. 195–208. Apress, Berkeley (2017)

208 N. Yuan et al.

https://www.pirm2018.org/PIRM-SR.html
https://www.pirm2018.org/PIRM-SR.html

HiPower: A High-Performance RDMA
Acceleration Solution for Distributed

Transaction Processing

Runhua Zhang1,2,3, Yang Cheng2, Jinkun Geng2, Shuai Wang2, Kaihui Gao2,
and Guowei Shen1,3(B)

1 Department of Computer Science and Technology, Guizhou University,
Guiyang, Guizhou, China

gwshen@gzu.edu.cn
2 Department of Computer Science and Technology, Tsinghua University,

Beijing, China
{zhangrh18,cheng-y16,s-wang17,gkh18}@mails.tsinghua.edu.cn,

steam1994@163.com
3 CETC Big Data Research Institute Co. Ltd., Chengdu, China

Abstract. The increasing complex tasks and growing size of data have
necessitated the application of distributed transaction processing (DTP),
which decouples tasks and data among multiple nodes for jointly pro-
cessing. However, compared with the revolutionary development of com-
putation power, the network capability falls relatively behind, leaving
communication as a more distinct bottleneck. This paper focuses on the
recent emerging RDMA technology, which can greatly improve commu-
nication performance but cannot be well exploited in many cases due to
improper interactive design between the requester and responder. Our
research finds that the typical implementation of confirming per work
request (CPWR) triggers considerable CPU involvement, which further
degrades the overall performance of RDMA communication. Targeting
at this, we propose HiPower, which leverages a batched confirmation
scheme with lower CPU utilization, to improve high-frequency commu-
nication efficiency. Our experiments show that, compared with CPWR,
HiPower can improve the communication efficiency by up to 75% and
reduce CPU cost by up to 79%, which speeds up the overall FCT (Flow
Completion Time) by up to 14% on real workflow (Resnet-152).

Keywords: RDMA · Distributed transaction processing ·
Batched confirmation · One-by-one confirmation

1 Introduction

Distributed transaction processing (DTP) has become a practical problem with
extensive study in system building. Generally speaking, performance optimiza-
tion for DTP systems can be summarized as computation acceleration and com-
munication acceleration. In the past decades, the computation power has been

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 209–221, 2019.
https://doi.org/10.1007/978-3-030-30709-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_17

210 R. Zhang et al.

greatly improved due to the rapid development of hardware accelerators, such
as GPUs and TPUs [16]. Whereas the communication capability, although also
making some progress, cannot match the speed of computation enhancement
and is left as the major bottleneck in DTP. A series of related works have shown
that network performance now has a substantial impact on the efficiency of DTP
[2,15,16]. Considering this, the recent emerging RDMA technology is widely con-
cerned and is believed to remedy the communication deficiency in DTP.

There are two types of RDMA operations (i.e., one-sided RDMA and two-
sided RDMA) widely used today. Between them, the former one is more pursued
in DTP scenarios, because it directly accesses the memory of remote server with-
out involving kernel and remote CPUs, which has been widely implemented in
some applications like the Key-Value system [5,17], etc. However, pure one-sided
RDMA is not suitable for the distributed applications that the receiver needs to
perceive data. Some current RDMA designs use the native RDMA WRITE WITH IMM
operation to ensure that the receiver can perceive data, which also have some
distinct drawbacks, and we argue as follows:

First, one-by-one message confirmation triggers much CPU overhead. Con-
cretely speaking, the RDMA WRITE WITH IMM operation first writes user-data to
the remote memory in a context-oblivious way and then uses the immediate
value to notify the receiver. The receiver can get the address of user-data writ-
ten before from the immediate value. It provides higher communication perfor-
mance than two-sided RDMA and TCP/IP. However, CPU is involved in the
confirmation of each message, which incurs much overhead and affects the overall
communication performance, especially when CPU resource is scarce or burnt
for other processing logic. The performance drawbacks can become more distinct
in many-to-one primitives like gather or high-frequency one-to-one transmission
scenarios.

Second, one-by-one recycling reusable memory is an inefficient way with high-
concurrent communication flows. In order to support concurrent operations and
avoid the expensive cost of temporary registration1, both sender and receiver
register multiple MRs for data transmission. The receiver sends feedback to the
sender after getting the user-data, which means the memory can be reused.
Usually, the feedback can be achieved by two-sided RDMA. However, too many
send/receive operations cause unacceptable communication overhead on both
sides.

Targeting at the drawbacks, we design HiPower, which uses a batched con-
firmation mechanism to improve communication performance and reduce CPU
utilization. Compared with existing works, HiPower enjoys three main advan-
tages to achieve faster communication.

(1) More efficient message confirmation. HiPower allows the receiver to
perceive messages through a well-designed bitmap and reduce the number
of RECV operations, thereby reducing CPU involvement and improving
communication efficiency.

1 The cost includes the time to register MRs and exchange necessary information of
MRs.

HiPower 211

(2) More economic reusability and better quality of service (QoS).
HiPower also uses the bitmap flag to represent batched reusable MRs, which
can effectively improve the memory utilization, as well as improve the con-
currency. In addition, HiPower guarantees better quality of service through
pre-registered reusable memory pools.

(3) Strong compatibility and usability. HiPower is implemented as a middle
layer between distributed applications and RDMA communication libraries,
thus it keeps transparency to the upper layer and provides performance
boosts for various DTP applications.

The rest of this paper is organized as follows: Sect. 2 briefly introduces the
background and motivation of our work. Section 3 describes the design details of
HiPower. Section 4 shows the results of the experiment and proves the outper-
formance of HiPower. Section 5 includes the related work and, Sect. 6 concludes
the paper.

2 Background and Motivation

2.1 Typical Communication Pattern in DTP

DTP partitions a task among multiple servers for data processing and synchro-
nization. Figure 1 illustrates the typical DTP architectures in practice, includ-
ing Parameter Server (PS)-based, Ring-based, Map/Reduce-based, etc. Recent
studies have shown that the performance of a single GPU has improved by 35×
compared to that in previous years [16], but communication can hardly match
the speed. Among the typical architectures for DTP tasks, the communication
bottleneck is becoming more distinct. In order to mitigate the communication
bottleneck, high-performance communication methods represented by RDMA
are gaining more attention in the field of DTP. However, RDMA suffers from a
couple of essential drawbacks, and requires us to carefully design to well embrace
communication capabilities [3,10,11,19].

Server Client

(a) PS (b) Ring

Shu e

(c) Map/Reduce

Fig. 1. Distributed transaction processing architecture

212 R. Zhang et al.

2.2 Background on RDMA

RDMA is well known for its zero-copy and kernel-bypass features, when com-
pared with the TCP counterpart. Traditional TCP cannot serve high-speed
dataflow well since it involves complicated kernel processing and at least two
copies. In contrast, RDMA sinks the protocol stack to hardware and thus avoids
the overhead of context switching. RDMA supports both one-sided and two-sided
communication operations. As for one-sided RDMA, user-level applications can
directly access the memory of a remote node. Note that the remote node is
unaware and do not need CPU to involve. RDMA WRITE and RDMA READ are two
typical one-sided operations. As for two-sided RDMA, operations must appear
in pairs. More specifically, the RDMA RECV operation should be prepared before
launching an RDMA SEND operation. One-sided operations achieve higher perfor-
mance than two-sided operations [11].

Fig. 2. The whole process of RDMA WRITE WITH IMM operation.

Our research observes that one-sided RDMA operations can effectively solve
the communication bottleneck of practical applications like key-value store sys-
tems. For example, a client submits data to the server, which can be achieved by
RDMA WRITE with a hash algorithm. The server can be seen as a memory-based
database and don’t need to perceive data. However, pure one-sided RDMA is not
suitable for some DTP applications like Distributed machine learning (DML) or
Distributed data processing because the receiver needs to perceive data. Most
of current designs use RDMA WRITE WITH IMM operations for data transfer and
notification. The RDMA WRITE WITH IMM operation first writes user-data to the
remote memory in an unaware way and then uses the immediate value to notify
the receiver. The receiver can obtain the storage address of user-data from the

HiPower 213

immediate value. It provides higher communication performance than two-sided
RDMA and TCP/IP. Figure 2 presents the workflow of this operation.

However, in order to receive the immediate value, the receiver needs to pre-
pare the RDMA RECV event in advance as the two-sided RDMA. It means that the
CPU needs to participate in the confirmation of each message, which triggers
much CPU overhead and affects the overall communication performance to some
extent. It becomes more serious in many-to-one primitives (e.g. Gather) or high-
frequency one-to-one transmission scenarios. High CPU overhead is unacceptable
to us for the reason that a large number of distributed applications are deployed
in the cloud, where strong hardware is provided to speed up computation. Recent
studies have shown that the CPU is a precious commodity in cloud service [13].
It’s necessary to reduce CPU participation. In addition, in order to support con-
current operations and avoid the expensive cost of temporary registration, both
sender and receiver register multi-MRs for data transmission. The receiver sends
feedback to the sender after getting the user-data, which means the memory can
be reused. Usually, the feedback can be achieved by two-sided RDMA. However,
too many send/receive operations incur significant communication overhead on
both sides.

3 Design for HiPower

In HiPower, we focus on improving the communication performance in DTP
based on one-sided RDMA WRITE operation, which has been proved higher effi-
ciency than the two-sided RDMA WRITE operation in previous works [5,11,17].

3.1 HiPower Overview

There are two roles involved in HiPower: the requester and the responder. The
requester acts as a data generator, which will transport user-data to the respon-
der. The responder acts as a data consumer and will process the user-data it
received. The architecture of HiPower is shown in Fig. 3.

Requester side Responder side

memory 2

memory n-1

memory n

memory 1

1 2 n-1 n

memory 2'

memory n-1'

memory n'

memory 1'

n' n-1' 2' 1'

2. RDMA READ

RDMA WRITE

BitMap BitMap

1. Query

Available
memories

User message

4. Write/copy

Written
memories

3. Select one

5. Update

Processed data

1. Query

3. Select one

4. Process

5. Update

Registered Memory Registered Memory

Fig. 3. The architecture of HiPower

214 R. Zhang et al.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

1 1 0 0

1 1 1 1

1 1 0 0

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

1 1 1 1

0 0 1 1

Bitmap Bitmap

BitmapBitmap

Requester Responder Requester Responder

Fig. 4. The design of bitmap.

Both the requester and the responder first perform initialization operations
and then take further actions according to their business logic. At the initializa-
tion stage, both requester and responder register a number of Memory Regions
(MR). Every MR in each side is associated with a mirrored one in the peer’s side
with a unique id, respectively. These MRs can be registered in the CPU or GPU
memory, which we call MRs-Pool. As shown in Fig. 4, we use an extra MR called
bitmap0 on each side to record the transmission state of local MRs. Meanwhile,
we use an extra MR called bitmap1 on each side to record the transmission state
of the peer’s MRs. Each item in the bitmap is associated with one local mem-
ory. There are two different states for each item. The state of each item will be
converted once the related memory is changed.

The requester launches the RDMA READ operation to query the state of remote
bitmap0 and saves it to local bitmap1 and then compares local bitmap0 with
bitmap1 to collect all available MRs. For the requester, the MR is available
only if the state of local bitmap0’s item is same as the state of local bitmap1’s
item. To limit the frequency of querying event and better overlap computation
and communication, we put the reusable MRs of the responder into a pool and
perform the RDMA READ operation again when the number of reusable MRs in
the pool below a certain threshold (e.g., 40% of the total MRs). The requester
can select one or more available MRs and then posts the RDMA WRITE operation.
RNIC writes user-data to the related MR of the responder directly and updates
the state of local bitmap0’s item. Last, the requester sends an end-flag to the
responder after all the transfers are completed.

The responder queries the bitmap0 of the requester by launching a RDMA READ
operation and saves it to local bitmap1 and then compares local bitmap0 with
bitmap1 and finds all MRs that have stored user-data. Different from the
requester, the MR carries user-data only if the state of requester bitmap1’s item
is different from the state of local bitmap0’s item. The Responder also puts the
MRs into a pool and then processes them according to its business logic.

HiPower 215

3.2 Remarkable Advantages of HiPower

The bitmap design in HiPower enjoys three remarkable advantages compared to
the baseline solutions, which we summarize as follows.

Batched Confirmation and Recycle Mechanism. In order to perceive the
user-data, RNIC needs to confirm each packet and Requester needs to recycle
reusable memory, which incurs a large amount of CPU utilization and signif-
icantly affects the communication efficiency. HiPower mitigates this problem
with batched confirmation and recycles mechanism, which can perceive multiple
data-MRs and obtain multiple reusable MRs with the bidirectional RDMA READ
operation. The reusable MRs will be put into a pool, which can be directly
obtained from the pool when the next RDMA WRITE operation is performed. The
Responder also puts the MRs into a pool and then processes them according to
its business logic.

Strong Quality of Service. Native RDMA lacks quality of service (QoS). For
example, as for many-to-one communication under the PS architecture, both
parties need to temporarily register memory and exchange memory informa-
tion for further communication. At this point, the parameter server needs to
temporarily register lots of MRs for multiple senders. If the available physical
memory is insufficient, registration operations will fail. The application will not
be aware of the physical memory state in time when the memory resource is
released. HiPower guarantees QoS of the entire system by pre-registering mem-
ory and reusing the MRs more efficiently. As for larger DTP applications, the
amount of MRs can be allocated according to the size of actual physical memory,
business requirements and the ratio of sender/receiver.

Low Consumption for Memory. Bitmap0 of requester and responder will be
modified and read at the same time. Our design avoids mutex locks and further
reduced system overhead. To further mitigate the effects of query overhead, each
bitmap occupies only one MR, and the size of each item is only 1 bit. Therefore,
the time complexity of single processing is O(C) and the total time complexity
is O(Cn)2, which is acceptable for most practical DTP cases.

4 Implementation and Evaluation

4.1 Experiment Setting

We deployed the comparative experiment on 5 servers. Each server is equipped
with a Mellanox ConnectX-3 40 Gbps NIC, two Intel Xeon E5 CPUs (each CPU
has 16 physical cores) and 64 GB DRAM. We implement both HiPower and

2 C is a constant, which denotes the number of MRs pre-registered. n denotes the
number of executions of RDMA READ.

216 R. Zhang et al.

Vanilla with 4500 lines of C++ codes and run the prototypes in Ubuntu 16.04.
More specifically, as for Vanilla, we use RDMA WRITE WITH IMM to transfer user-
data and the responder confirms them in turn. Then, we launch two-sided RDMA
to feedback the message of reusable memory. As for HiPower, we use RDMA WRITE
to transfer user-data. Next, we use RDMA READ with the bitmap to confirm user-
data and recycle reusable memory. For fairness, we use the same size memory
pool for HiPower and Vanilla. The threshold is set to 50% of the total MRs.

We conduct our experiments with three commonly-used types of communi-
cation primitives: one-to-one, one-to-many (broadcast), many-to-one (gather).
As for broadcast and gather primitives, we choose one server as the master and
the other four servers as workers. We evaluate the performance of the two pro-
totypes using CPU-based and GPUDirect RDMA-based memory transport and
take throughput, latency and CPU utilization as our metrics to evaluate the
performance of both prototypes. We also use a practical DML application (i.e.
ResNet-152 model training) as the benchmark to further compare the perfor-
mance between HiPower and baseline solutions.

4.2 Experiment Result and Analysis

One-to-One Communication Pattern. One-to-One communication plays a
vital role in ring-based architecture. In other words, each pair of adjacent servers
in a ring-based architecture can be considered as one-to-one communication.

The comparison of CPU-based and GDR-based throughput performance can
be illustrated in Fig. 5(a) and (d). The experimental results show that our
batched confirmation strategy makes HiPower achieve a higher throughput per-
formance than Vanilla, especially for data sizes below 4 KB. We calculate the
average throughput of HiPower and Vanilla in one million iterations. In CPU-
based transmission scenario, as for 512B and 1 KB packets, vanilla’s throughput
is 11.5 Gbps and 23.3 Gbps respectively, while HiPower’s throughput is 20.1 Gbps
and 29.9 Gbps respectively. Test performance based on GDR transmission sce-
narios is slightly inferior to the former, which improve throughput performance
by 11.2% and 43% respectively. As for data sizes above 4 KB, the throughput
performance of HiPower and Vanilla is basically the same. However, in most
cases, HiPower’s requester and responder CPU utilization are significantly lower
than that of vanilla. We will discuss it in detail later. In addition, we use qperf
[1] to measure the performance of TCP/IP on RNIC/40 Gbps. The throughput
performance of TCP/IP is mostly lower than HiPower and Vanilla.

The comparison of CPU-based and GDR-based latency performance can be
illustrated in Fig. 5(b) and (e). TCP/IP’s latency is always higher than both
HiPower and Vanilla. As for both CPU-based and GPU-based transmission
scenario, HiPower has lower latency for packets below 4 KB than Vanilla. As
the packet size grows, HiPower and Vanilla’s latency continues to shrink, but
HiPower’s latency is never higher than vanilla.

Figure 5(c) and (f) take a closer look at the requester/CPU utilization com-
parison and responder/CPU utilization comparison of HiPower and Vanilla. Both
of them contain two transmission scenarios. As for requester, HiPower has lower

HiPower 217

(a) Throughput comparison
results base on RDMA

(b) Latency comparison
results base on RDMA

(c) Requester CPU utilization
comparison results

(d) Throughput comparison
results base on GDR

(e) Latency comparison
results base on GDR

(f) Responder CPU utilization
comparison results

Fig. 5. One-to-one performance comparison.

CPU utilization than Vanilla. Among them, Vanilla’s CPU utilization includes
RDMA WRITE WITH IMM operation and RDMA RECV operation. HiPower’s CPU uti-
lization includes RDMA WRITE and RDMA READ operations. As for data sizes below
4 KB, HiPower launches more WRITE operations than Vanilla, but the CPU
utilization is lower because Vanilla needs to continuously perform RDMA RECV
operations to obtain reusable memory messages. On the contrary, HiPower only
needs one RDMA READ operation to get multiple reusable memory, which greatly
reduces CPU overhead. As for the data size between 4 KB and 256 KB, it can
be further verified. The throughput performance of HiPower and Vanilla are
basically the same, and the extra CPU utilization comes from inefficient recy-
cling scheme. HiPower can reduce the frequency of RDMA READ operations so
that each reclaim can acquire multiple reusable memories while ensuring that
the sender has enough reusable memory. As for the data size above 256 KB,
Vanilla’s RDMA RECV operation slows down, so their CPU utilization is basically
the same. As for responder, Vanilla’s CPU utilization includes RDMA RECV opera-
tion and RDMA SEND operation while HiPower only has the RDMA READ operation,
HiPower saves half of the CPU utilization compared to Vanilla in CPU-based
and GDR-based transmission scenarios. The main reason is that HiPower avoids
lots of RDMA SEND and RDMA RECV (Used to receive imm value) operations.

218 R. Zhang et al.

(a) Gather throughput
comparison results

(b) Gather CPU utilization
comparison results

(c) Latency comparison
results

(d) Broadcast throughput
comparison results

(e) Broadcast CPU utilization
comparison results

Fig. 6. Broadcast and gather performance comparison.

Incast Communication Pattern. Incast communication mainly includes
broadcast and gather. Map operations in the Map/reduce architecture and
parameter update operations in the PS architecture can be viewed as broad-
cast [7]. Parameter syncing operations in the PS architecture can be viewed as
gather.

We further use the incast pattern to compare the communication perfor-
mance of the two prototypes, and the throughput performance comparison is
illustrated in Fig. 6(a) and (d) respectively. In the experiment, we found that
the throughput of each worker in the gather scenario is close to 1/n of the mas-
ter server’s total throughput in the broadcast scenario (where n represents the
number of workers) and never exceeds the total throughput. The total through-
put in the broadcast scenario is slightly higher than the one-to-one scenario. As
for broadcast and gather, we try to send packets in a faster way, which trigger
the PFC pause frame3 and the throughput is no longer increasing. One major
reason is that the Receiver queue buffer has reached the upper limit. This phe-
nomenon is unavoidable when the rate of packet delivery is too fast. In this paper,
we are more concerned about the maximum performance that two prototypes

3 PFC (Priority-based Flow Control), priority-based flow control. The upstream device
is notified to suspend the delivery by sending a Pause frame to prevent the buffer
from overflowing.

HiPower 219

can achieve in the incast pattern. Experimental results show that the batched
confirmation scheme can detect user-data and reusable memory more quickly.
As for broadcast, HiPower improves the throughput performance of 8.9%–70%
and 5.9%–75% compared to Vanilla in CPU-based and GDR-based scenarios
respectively. As for gather, HiPower improves the throughput performance of
7.8%–68% and 5.2%–72% compared to Vanilla in CPU-based and GDR-based
scenarios respectively.

The latency comparison is illustrated in Fig. 6(c). In our experiments, we
found that the latency for each stream (four in total) in the gather scenario is
higher than the latency of each worker in the broadcast scenario (four in total).
When transmitting packets over 4 KB, the latency is greatly increased, and each
stream’s latency is about four times of one-to-one. Similar to one-to-one com-
munication Pattern, HiPower has lower latency for packets below 4 KB. As the
packet size grows, the latency gap between HiPower and Vanilla shrinks, but
HiPower’s latency is never higher than vanilla.

For incast communication pattern, we pay more attention to the CPU uti-
lization of the master server in both the gather and broadcast scenario, which are
illustrated in Fig. 6(b) and (e). As for the gather server, HiPower can save up to
79% CPU utilization than Vanilla in both the CPU-based and GPU-based sce-
narios. When transferring large size packets, HiPower’s CPU utilization is com-
parable to that of Vanilla. As for the broadcast server, compared with Vanilla,
HiPower can save 20% and 15% CPU utilization in CPU-based and GPU-based
scenarios respectively.

Case Study on ResNet-152. We conduct another experiment with a DML
application (i.e. Resnet-152) to evaluate how HiPower performs on real workflow.
We transport traffic flow of training ResNet [9] among the distributed cluster.

ResNet is a classic deep learning model and has won the champaign of
ILSVRC2016, it inspires the model designer exploring deeper neural network
for higher accuracy. How to design a DL model for high accuracy is beyond our
discussing in this scope and e only focus on how to accelerate the training phase
among the distributed cluster.

We choose ResNet-152 as our benchmark application, which contains 152
layers and 60 million parameters (organized in 514 blocks) in all. Most of these
blocks are less than 4 KB and the maximum one is no more than 8 MB. To
remove the bottleneck of the network, the 60 million parameters (i.e. 240 MB)
must be synchronized within 0.15 s each iteration4. Bandwidth consumption will
increase when training the ResNet-152 model with more nodes or by the smaller
batch size, which brings a heavier burden to the network.

We compare the performance of our proposed prototype with the Vanilla and
find that the FCT (Flow completion time) of HiPower is about 64 ms, FCT of
Vanilla is about 73 ms. The HiPower shows 14% gains.

4 It is derived from NVcaffe rc 0.17 with GPU supported. The input size is
224 * 224 * 224 * 3 and the batch size is 16. It is trained by P100. The forward stage
cost 0.1 s, and backward cost about 0.15 s.

220 R. Zhang et al.

5 Related Work

Optimizations of RDMA Transmission. RDMA is a popular hardware-
based solution. It aims to provide high-performance transport services but
requires careful configuring and deep understanding. Recent study [4,12] gives a
comprehensive analysis of RDMA verbs from a low-level perspective (e.g. PCIe,
NIC and etc.) and offers guidelines on how to use RDMA verbs efficiently. Frey,
et.al. [6] have also explored the hidden cost in using the RDMA verbs from the
hardware-resources view. Taking task’s workflow and RDMA verbs into con-
sideration has been proved to be effective in many scenarios (e.g. Key-Value
Stores, File System and etc.). Pilaf [17] optimizes the get operation using mul-
tiple RDMA READ commands at the client side. Recently, RDMA has also been
used in distributed machine learning. Yi, et.al. [2] focus on improving transport
performance in distributed machine learning. They implemented a zero-copy
RDMA-based transport service. Many works are explored to find the hidden
obstacles in the application of RDMA such as PFC issues [8] etc. RDMA opti-
mizations have brought benefits to computer systems, and this motivates us to
start rethinking the design with RDMA in building high-performance transport
services.

Mitigation of Communication Overheads in DTP. Distributed transac-
tion processing has become the standard practice and there have been extensive
studies focusing on mitigating the communication overheads in DTP. Commu-
nication compression technique can be well incorporated in the DTP process.
Since most of the data transmitted by DTP are compressible numbers, such
as zero, small integers and 32-bit foats with high precision, the communication
costs can be reduced by using compression algorithms. Li et al. [14] compress
the sparse matrix by eliminating most zeros values and Wei et al. [18] used a
16-bit float to replace 32-bit float value to improve the utilization of bandwidth.
The effectiveness of these compression-based solutions are also demonstrated in
the recent works for mitigation of communication overheads in DTP.

6 Conclusion

This paper proposes HiPower, which is a novel RDMA-accelerated solution
for distributed transaction processing (DTP). Compared with existing works,
HiPower leverages an elaborate bitmap design to execute batched transmis-
sion and confirmation, thus can efficiently improve communication efficiency
and reduce CPU utilization for DTP tasks. HiPower can adjust dynamically to
fit more complicated scenarios such as CPU-based computing and GPU-based
computing. Our evaluations prove the effectiveness of DTP and the experimen-
tal results show that HiPower can achieve higher throughput performance and
lower latency while consuming lower CPU utilization. Besides, HiPower can also
reduce 14% FCT in ResNet-152 training compared to existing works (CPWR),
which implies great potential performance gains to more practical applications.

HiPower 221

Acknowledgement. This work is supported by the National Natural Science Foun-
dation of China (No. 61802081), the Guizhou Provincial Natural Science Foundation
(No. 20161052, No. 20183001).

References

1. qperf - measure RDMA and IP performance. Technical report, Johann George
(2009). https://linux.die.net/man/1/qperf

2. How to compile, use and configure rdma-enabled tensorflow. Technical report,
HKUST and Tensorflow community (2018). https://github.com/tensorflow/
tensorflow/tree/master/tensorflow/contrib/verbs

3. Chen, H., et al.: Fast in-memory transaction processing using RDMA and HTM.
In: TOCS 2017 (2017)

4. Dragojevic, A., Narayanan, D., Castro, M.: RDMA reads: to use or not to use?
IEEE Data Eng. Bull. (2017)

5. Dragojević, A., Narayanan, D., Hodson, O., et al.: FaRM: fast remote memory. In:
NSDI 2014 (2014)

6. Frey, P.W., Alonso, G.: Minimizing the hidden cost of RDMA. In: 2009 29th IEEE
International Conference on Distributed Computing Systems (2009)

7. Geng, J.: CODE: incorporating correlation and dependency for task scheduling in
data center. In: ISPA 2017 (2017)

8. Guo, C., et al.: RDMA over commodity ethernet at scale. In: SIGCOMM 2016
(2016)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR 2016 (2016)

10. Kalia, A., Kaminsky, M., Andersen, D.G.: FaSST: fast, scalable and simple dis-
tributed transactions with two-sided (RDMA) datagram RPCs. In: OSDI 2016
(2016)

11. Kalia, A., Kaminsky, M., Andersen, D.G.: Using RDMA efficiently for key-value
services. In: SIGCOMM 2015 (2015)

12. Kaminsky, A.K.M., Andersen, D.G.: Design guidelines for high performance
RDMA systems. In: ATC 2016 (2016)

13. Kim, D., et al.: HyperLoop: group-based NIC-offloading to accelerate replicated
transactions in multi-tenant storage systems. In: SIGCOMM 2018 (2018)

14. Li, M., Andersen, D.G., Smola, A.J., Yu, K.: Communication efficient distributed
machine learning with the parameter server. In: Advances in Neural Information
Processing Systems, pp. 19–27 (2014)

15. Lu, X., Rahman, M.W.U., Islam, N., Shankar, D., Panda, D.K.: Accelerating spark
with RDMA for big data processing: early experiences. In: Hot Interconnects 2014
(2014)

16. Luo, L., Nelson, J., Ceze, L., Phanishayee, A., Krishnamurthy, A.: Parameter hub:
a rack-scale parameter server for distributed deep neural network training. In:
SOCC 2018 (2018)

17. Mitchell, C., Geng, Y., Li, J.: Using one-sided {RDMA} reads to build a fast,
CPU-efficient key-value store. In: ATC 2013 (2013)

18. Wei, J., et al.: Managed communication and consistency for fast data-parallel itera-
tive analytics. In: Proceedings of the Sixth ACM Symposium on Cloud Computing

19. Wei, X., Dong, Z., Chen, R., Chen, H.: Deconstructing RDMA-enabled distributed
transactions: hybrid is better! In: OSDI 2018 (2018)

https://linux.die.net/man/1/qperf
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/verbs
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/verbs

Emerging Topics

LDAPRoam: A Generic Solution for Both
Web-Based and Non-Web-Based

Federate Access

Qi Feng and Wei Peng(&)

East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
{qfeng,wpeng}@admin.ecnu.edu.cn

Abstract. Identity federation technology has been widely used in recent years.
But the solution for federate access is totally different between the Web-Based
and Non-Web-Based scenarios. Furthermore, it is highly limited for lack of
support from Non-Web-Based scenarios now. This paper proposes a generic
federate access solution based on LDAP roaming, which can provide reliable
identity roaming in any internet service. To service providers, our solution is
transparent and looks like a LDAP. The paper first presents the difficulties in
realizing LDAP roaming and discusses offers solutions to the implementation of
LDAP roaming. Then it evaluates the easy integration and usability of LDAP
roaming. Finally it compares the Generic Solution with the existing federal
access solution.

Keywords: Identity federation � Non-Web-Based � LDAP � SAML � Eduroam

1 Introduction

A consensus of resource sharing based on identity federation has been gradually
reached [1]. However, the existing solutions for federate access, such as SAML [2]
based on Web-based, cannot be applied under non-Web-Based scenarios.
Although SAML can use the ECP mode to support applications on Non Browser, it is
still limited for reliance on session and working on HTTP. The same is true of the case
of the AAA-based identity federation, for example, eduroam [3], which does not
depend on web, still asks for EAP to send authentication and accounting messages. Due
to the lack of attributes, AAA-Based identity federation only appears in eduroam, but is
hardly applicable under non-Web-Based scenarios, such as the console access (e.g., via
SSH [4]) common in HPE.

Besides, the user experience of the two federate accesses is completely different.
In SAML, users need to select their own home IdP on discovery service and input the
username and password to finish the access, while in eduroam they should take
user@domain as the username. In fact, the federations based on the two federate
accesses are also different. In China, SAML Federation—CARSI contains 77 IdP
members, almost comes from school libraries, while eduroam contains 235 IdP
members, almost all of whom come from the network center or information technology
center. This causes bad user experience and is not what we have expected either.

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 225–234, 2019.
https://doi.org/10.1007/978-3-030-30709-7_18

http://orcid.org/0000-0001-8595-9533
http://orcid.org/0000-0001-7183-3374
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_18

In this paper, we introduce a generic solution suitable for both Web-Based and Non
Web-Based federate accesses. We put the point on the coupling degree of federate
access and service provider. The lower degree, the smaller differences for experience. If
the authentication solution is completely transparent to the service provider, the latter
cannot perceive the existence of federation authentication for there is no difference
between Web-Based and Non-Web-Based service and the authentication experience
will be consistent.

Taking eduroma as a model, users can add @domain as a suffix after the username,
i.e. username@example.org, to roam to their home organization LDAP [5] and finish
the LDAP authentication process, which is transparent to the service provider. The
roaming LDAP federation can be regarded as a virtual LDAP which is shown in Fig. 1.
The service provider does not need to participate in the details of the federate access; it
only needs to support the LDAP protocol. In view of the extensive support of LDAP
protocol, this solution will be very friendly to the service provider and will be easy to
integrate.

It looks similar to the radius proxy structure of eduroam. Considering the partic-
ularity protocol of LDAP, the coincident attribute in the federation, and privacy pro-
tection of user information, we choose a net structure similar to SAML federation
instead of the tree structure of eduroam federation. We also use the asymmetric
encryption technology to form the trust relationship. It allows encrypting passwords by
using the public key, which can help to prevent service providers from obtaining any
plaintext of the password. We construct an independent service, LDAPRoam, as a
proxy for the actual LDAP at the back, which can forward authentication requests of
roaming.

Fig. 1. LDAPRoam as a virtual LDAP

226 Q. Feng and W. Peng

The contributions of this paper are:

• The concept of LDAP roaming. This Identity federation is transparent to the service
provider and supports identity roaming for internet services anywhere.

• The architecture of LDAP roaming. This solves the difficulties of LDAP protocol
application in federate access.

• Evaluated LDAPRoam from the perspective of usability and easy integration, and
compared it with the existing federate access solutions.

2 Related Works

There are many Web-Based identity federation technologies, such as SAML, OAuth
[6], and OpenID [7]. Most of the time, they all rely on browsers. In Shibboleth project
(SAML-Based), ECP [8] (Enhanced Client or Proxy) is proposed to work in a non-
browser environment. However, due to the ECP needs supported by client modifica-
tion, there is little “real world” support other than Shibboleth.

In some specific Non-Web-Based scenarios, such as roaming of wireless networks,
the AAA-Based technology is an option. Eduroam is a case that has been widely used
in educational and scientific research institutions. Users can roam the authentication
back to their own organization when accessing the eduroam network. Eduroam uses
hierarchical Radius architecture. The roaming authentication request are protected by
EAP methods, such as PEAP/EAP-MS-CHAPv2. Although the accounting request can
also carry attributes [9], the standard of Radius attributes is designed for network
accounting, which cannot meet the authorization requirements in several general sce-
narios. So, the federate access solution coming from AAA-Based cannot be applied in
scenarios other than network authentication.

ABFAB [10] is the outcome of a project named Moonshot. The project is created to
serve the programs built on Non-Web-Based services. The solution of this project is to
extend eduroam to support SAML assertion. So ABFAB requires that application
clients must support GSS-API [11]. Although many protocols are already supporting
GSS-API (e.g., via ssh, nfs, ftp), the application client is still asked for modifications
that intrude too deep, in order to turn on the function. The goal of Moonshot is to push
all these changes into a standard and require updating at the clientend, but this is
obviously unrealistic in the short run. This means that there is little possibility for
ABFAB to be implemented at present.

FedKERB [12] and ABFAB have similar structures. FedKERB adds a KDC
component in order to support Kerberos, which makes it difficult to change things on
the client. Therefore, this solution is also very hard to be promoted.

Jens Köhler’s [13] work is similar to ours. They also proposed an LDAP-based
solution to keep it transparent to the service provider. However, in its solution, the
attribute is acquired through SAML ECP, which also requires that the IdP and appli-
cation client must support ECP first. Therefore, there are still difficulties in popularizing
and implementing this solution.

LDAPRoam 227

Our solution does not require any modification on the application client, and all
identity privacy and passwords can be well protected through external plugins, thus
providing the maximum possibility for promote solution.

3 Challenges

Because the authentication and authorization mode of LDAP is very different from
Radius, there are many challenges in LDAP-based roaming.

1. It must allow users to input plaintext passwords indirectly. It also cannot make extra
modifications on application clients.

2. A trust relationship must be established between LDAP when providing roaming
services, to avoid any possible hijacking in the process.

3. LDAP authentication is usually divided into two steps: Search and Bind. This may
cause the loss of roaming domain name information in the second Bind step.

4. Since Bind must occur after Search, there is an unauthorized Search behavior. If
there is no restriction, it may result in a leakage of user information on Search step.

5. There may be different attribute categories among different LDAP nodes, which
need to be standardized using some methods.

We will describe in detail how to overcome these challenges in Sect. 4.

4 Solution

As mentioned in Sect. 3, the first challenge is the security of transmission. In the radius
proxy structure of eduroam, there are intermediate forwarding nodes. Though pass-
words are well protected by client-side encryption, attribute information (e.g., user-
name) can still be obtained by intermediate nodes, into which additional attributes can
even be inserted. In fact, we have no choice but to believe that the intermediate
forwarding node can be trusted. We also need to prevent possible cheating from
middleman, which requires encryption. Since eduroam architecture itself does not
support encryption, it needs another way to assist, such as connecting the radius nodes
through the GRE tunnel.

Therefore, we draw on the experience from the SAML federation structure, a mesh
point-to-point interconnection structure. The whole federation maintains a main
metadata, which contains the basic information and certificate information of each
LDAPRoam node.

The certificate is issued by LDAPRoam through sending the private key. Figure 2
shows the differences between LDAPRoam and eduroam architectures.

Through the asymmetric encryption system of the certificate and private key within
the mesh point-to-point structure, the security of the whole transmission is well
guaranteed. Firstly, there is no intermediate nodes in the point-to-point structure and
the data transmission path has been minimized. Secondly, the private key-certificate
system based on asymmetric encryption can not only prevent the request message from

228 Q. Feng and W. Peng

being hijacked by the middleman through verifying the certificate, but also ensure that
the request message comes from the trusted initiator by verifying the signature.

The second challenge is password protection. The password must be directly input
from the service provider’s client because there are no invasive changes taken by the
service provider. When we are roaming in eduroam, we can directly type the password
on the trusted operating systems (OS), because the OS usually uses mschapv2
encryption method to ensure that the password is securely encrypted at the beginning.
But we cannot give the same trust to these third-party service provider clients. But in
our mesh point-to-point structure, this problem is very easy to solve. We only need to
encrypt the password through the public key of the other node. Then this password can
only be decrypted after roaming to the destination. This process does not require any
modification of the service provider’s client. In fact, even if modified, it cannot be
trusted as well. Using an external plugin is helpful to encrypt the password forms and
keep user experience unchanged. The automatic filling of plugin forms has been ver-
ified by many password managers (e.g., via 1Password).

The third challenge is the authentication mode of LDAP. Unlike the AAA mode,
which sends the user name and challenge message directly, LDAP uses DN (distin-
guished name) in Bind operation, while the username is an LDAP attribute, such as uid
or sAMAccountName. Therefore, for an LDAP application, the standard practice is
usually divided into two steps:

• First, search the DN of items by taking that username as the query condition of the
attribute filter

• Second, bind with the DN and the password to verify whether the authentication is
successful.

Figure 3 shows the difference on authentication between AAA and LDAP.

Fig. 2. Different structures with eduroam and LDAPRoam

LDAPRoam 229

In the second step of LDAP authentication, the DN information no longer contains
the roaming domain name of the user. In order to forward the Bind-Request correctly to
the appropriate node, we need maintain not only the correspondence between DN and
LDAPRoam service but between domain and LDAPRoam service. For example, the
roaming domain name of alice@a.example.org is example.org, and the DN record in
LDAP of this account is cn=alice, dc=a, dc=example, dc=org. Then we need to map
dc=a, dc=example, dc=org and a.example.org to the same LDAPRoam node. These
information will be published by LDAPRoam to Metadata for other nodes to query.

The fourth challenge is the unauthorized LDAP Search. Due to the two-step nature
of LDAP authentication, Bind must occur after Search. We cannot evade unauthorized
LDAP Search behaviors. However, it is obviously inappropriate to return unauthorized
user attributes to roaming LDAP. Our solution is to introduce the concept of autho-
rization validity into LDAPRoam, and generate a cache record with valid authorization
for users to have a successful Bind. The roaming party is allowed to query the user
attribute within the validity period of authorization; otherwise only DN will be
returned. This may lead to some abnormality of LDAP Client which does not meet the
standards, but it has no influence on clients implemented according to the standards.

The fifth challenge is the standardization of attributes. The attribute standard among
different LDAP may be completely different. Although there are a series of RFC
standards for LDAP attributes, the understanding of the attribute fields may still be
inconsistent. At least between OpenLDAP and Active Directory, the default field for
the username is totally different. OpenLDAP usually uses uid, while Active Directory
uses sAMAccountName. Moreover, since the details of LDAPRoam are transparent to
the application, service providers have no way to adapt this attribute relationship to
specific LDAPRoam nodes. In SAML federation, IdP can map attributes into specific
attribute names and oid strings when it queries them, which makes the attribute
exchange within SAML follow the fixed standards. LDAPRoam also uses the same
method of mapping attribute relationships by LDAPRoam nodes to shield attribute
differences among different LDAP. Same as SAML2, LDAPRoam nodes protect the

Fig. 3. Different authentication process with AAA and LDAP

230 Q. Feng and W. Peng

identity privacy of users and reduce unnecessary provision by releasing attributes when
roaming in various nodes.

Figure 4 shows the overall architecture of LDAPRoam. The LDAPRoam node
provides an LDAP-style interface for application clients, which makes authentication
roaming transparent to the service provider. LDAPRoam uses RESTful API interface to
simplify roaming message processing between each other. All LDAPRoam nodes
synchronize Metadata information at a regular time to obtain basic information and
certificate information of each node in the federation. When LDAPRoam queries the
attributes from Backend-LDAP, the authoritative data source, it will make an attribute-
map according to the attribute standard of the federation.

Table 1 shows the LDAPRoam field information provided in metadata.

Fig. 4. LDAPRoam structure

Table 1. Metadata field for LDAPRoam.

Field Value Comment

domain_name ldap.b.example.org Server domain name
served_domain [“b.example.org”] Served domains
base_dn “dc=b, dc=example, dc=org The basedn
certification “nLmIuZXhhbXB….” The certification
bind_endpoint “https://ldap.b.example.org/api/v1/bind“ Bind API endpoint
search_endpoint “https://ldap.b.example.org/api/v1/search” Search API endpoint

LDAPRoam 231

https://ldap.b.example.org/api/v1/bind
https://ldap.b.example.org/api/v1/search

5 Evaluations

Whether the solution can be effectively promoted depends on the simplicity of
deployment. Our solution does not require any changes from the service provider. For
identity providers, they only need to deploy a LDAPRoam service.

For service provider, we have two modes, full trust mode and limit trust mode.

• In the Full trust mode, it is safe to users to directly enter the username and password
to service providers that are usually government agencies. A typical application
scenario is that a fully trusted service provider encapsulates the interface again, such
as oAuth2, in order to support other service providers to interface. This mode can
well solve the federate access requirements in some cookie limited scenarios. For
example, the embedded browser in Alipay cannot be used normally in SAML2,
because the cookies are completely disabled. But the LDAPRoam solution
encapsulated by oAuth2 can solve this problem well.

• In Limit trust mode, in order to protect our password security. We must first encrypt
the password through a plugin or tool, and then submit the encrypted password to
the client of the service provider.

We compared the differences between LDAPRoam and other federation access
solution, and listed the differences in several dimensions, mainly based on the seven
requirement and the level of support provided by Alejandro Pérez-Méndez [14].
Table 2 lists the comparison with current mainstream solutions and Table 3 lists the
comparison with other experimental solution.

Table 2. Comparison between mainstream federate access solutions.

Topic LDAPRoam Eduroam SAML2 (shibboleth)

R1 – Authentication
in the IdP

Roam back to IdP EAP and AAA
proxy back to IdP

Redirect to IdP
Portal

R2 – High level
authorization

LDAP attribute
search

Limit support with
radius attribute

SAML2 assertion
from the IdP

R3 – Data transport
security

Asymmetrical
encryption, point to
point

EAP Tunnel, with
intermediate node

Asymmetrical
encryption, point to
point

R4 – Single Sign On Not support Not support Support
R5 – Re-use of
instructures and
standards

Based on LDAP,
TLS and RSA

Based on EAP and
AAA

Based on SAML2

R6 – Usability Username/password Username/password Username/password
R7 – Identity
Privacy

Attribute map
control

EAP Tunnel and
pseudonyms

Attribute map
control

Web-Based Support Not support Support
Non Web-Based
APP (Full trusted)

Send password
directly

Password encrypt,
such as mschapv2

Must modify the
client

Non Web-Based
APP (limit trusted)

Send password
encrypt

Password encrypt,
such as mschapv2

Must modify the
client

232 Q. Feng and W. Peng

LDAPRoam can provide good support in all other dimensions except SSO.
Compared with the current mainstream solutions, LDAPRoam combines the advan-
tages of eduroam and SAML2, and can support both web-based and Non Web-Based
applications with the same user experience. Compared with other experimental solu-
tions, LDAPRoam does not require service provider clients to make any modifications,
which is very helpful for practical application and promotion.

Taking HPC as an example, it is usually necessary to provide federation access on
web-sites and give support for users’ console access (i.e. ssh). As an HPC service with
a long history, it is obviously unrealistic to require all users to upgrade their SSH
clients in order to provide federate access. Now the solution of LDAPRoam can be
operated and implemented easily without damaging the users’ privacy interests.

6 Conclusion

In this paper, we introduce the concept of LDAPRoam, which combines the advantages
of SAML2 alliance and eduroam alliance. We discuss many challenges that the model
faces, and give solutions by designing and adapting the particularity of the LDAP
protocol. After evaluation, the roaming solution of LDAPRoam is highly suitable for
deployment and promotion. We have already implemented the experimental roaming
verification between East China Normal University and the Information Center of

Table 3. Comparison between experimental federate access solutions.

Topic LDAPRoam ABFAB FedKERB

R1 –

Authentication in
the IdP

Roam back to IdP EAP, AAA and
GSS-API

EAP, AAA and GSS-
API

R2 – High level
authorization

LDAP attribute
search

SAML2 assertion
from the IdP

SAML2 assertion
from the IdP

R3 – Data transport
security

Asymmetrical
encryption, point to
point

EAP Tunnel and
RadSec

EAP Tunnel and
RadSec

R4 – Single Sign
On

Not support Not support Based on Kerberos

R5 – Re-use of
instructures and
standards

Based on LDAP,
TLS and RSA

Based on EAP,
AAA and GSS-API

Based on EAP, AAA,
GSS-API and
Kerberos

R6 – Usability Username/password Username/password Username/password
R7 – Identity
Privacy

Attribute map
control

EAP Tunnel and
pseudonyms

EAP Tunnel and
pseudonyms

Web-Based Support Support Support
Non Web-Based
APP (Full trusted)

Send password
directly

Must modify the
client

Must modify the
client

Non Web-Based
APP (limit trusted)

Send password
encrypt

Must modify the
client

Must modify the
client

LDAPRoam 233

Shanghai Municipal Education Commission through LADPRoam. It is planned to carry
out the promotion step by step. In a wide range of situations, the application still needs
further observation and verification.

References

1. Torres, J., Nogueira, M., Pujolle, G.: A survey on identity management for the future
network. IEEE Commun. Surv. Tutor. 15(2), 787–802 (2013)

2. Cantor, S., Kemp, J., Philpott, R., Eve, M.: Assertions and Protocols for the OASIS Security
Assertion Markup Language (SAML) v2.0, OASIS Standard, March 2005

3. Wierenga, K., et al.: Deliverable DJ5.1.4: Inter-NREN Roaming Architecture. Description
and Development Items, GN2 JRA5. GEANT2, September 2006

4. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) protocol architecture, IETF RFC 4251,
January 2006

5. Sermersheim, J.: Lightweight Directory Access Protocol (LDAP): The Protocol, IETF RFC
4511, June 2006

6. Hardt, D.: The OAuth 2.0 Authorization Framework, IETF RFC 6749, October 2012
7. OpenID Connect Core 1.0 incorporating errata set 1. https://openid.net/specs/openid-

connect-core-1_0.html. Accessed 08 Nov 2014
8. ECP-Shibboleth Concepts. https://wiki.shibboleth.net/confluence/display/CONCEPT/ECP.

Accessed 05 Apr 2016
9. Rigney, C.: RADIUS Accounting, IETF RFC 2866, June 2000
10. Application Bridging for Federated Access Beyond Web (ABFAB) IETF Working

Group. https://datatracker.ietf.org/wg/abfab/charter/. Accessed 30 Sept 2016
11. Linn, J.: Generic Security Service Application Program Interface Version 2, Update 1,

IETF RFC 2743, January 2000
12. Pereniguez, F., Marin-Lopez, R., Kambourakis, G., et al.: PrivaKERB: a user privacy

framework for Kerberos. Comput. Secur. 30(6/7), 446–463 (2011)
13. Köhler, J., Simon, M., Nussbaumer, M., Hartenstein, H.: Federating HPC access via SAML:

towards a plug-and-play solution. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC
2013. LNCS, vol. 7905, pp. 462–473. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38750-0_35

14. Perez-Mendez, A., Pereniguez-Garcia, F., Marin-Lopez, R., et al.: Identity federations
beyond the web: a survey. IEEE Commun. Surv. Tutor. 16(4), 2125–2141 (2014)

234 Q. Feng and W. Peng

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://wiki.shibboleth.net/confluence/display/CONCEPT/ECP
https://datatracker.ietf.org/wg/abfab/charter/
http://dx.doi.org/10.1007/978-3-642-38750-0_35
http://dx.doi.org/10.1007/978-3-642-38750-0_35

Characterizing Perception Module
Performance and Robustness

in Production-Scale Autonomous
Driving System

Alessandro Toschi1, Mustafa Sanic1, Jingwen Leng1(B), Quan Chen1,
Chunlin Wang2, and Minyi Guo1

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China

{aleto 95,leng-jw,chen-quan,guo-my}@sjtu.edu.cn, mtsanic@gmail.com
2 Chuxiong Normal University, Chuxiong City, China

wcl@cxtc.edu.cn

Abstract. Autonomous driving is a field that gathers many interests
in academics and industry and represents one of the most important
challenges of next years. Although individual algorithms of autonomous
driving have been studied and well understood, there is still a lack of
study for those tasks in a production-scale system. In this work, we pro-
file and analyze the perception module of the open-source autonomous
driving system Apollo, developed by Baidu, in terms of response time and
robustness against sensor errors. The perception module is fundamental
to the proper functioning and safety of autonomous driving, which relies
on several sensors, such as LIDARs and cameras, for detecting obstacles
and perceiving the surrounding environment. We identify the computa-
tion characteristics and potential bottlenecks in the perception module.
Furthermore, we design multiple noise models for the camera frames and
LIDAR cloud points to test the robustness of the whole module in terms
of accuracy drop against a noise-free baseline. Our insights are useful for
future performance and robustness optimization of autonomous driving
system.

Keywords: Autonomous driving · Robustness analysis ·
Performance profiling · Deep neural networks

1 Introduction

Autonomous driving is becoming one of the most important applications. We
must understand the key characteristics of autonomous driving to build proper
architectures and systems for it. There are prior efforts in that direction, but they
mainly focus on individual tasks/kernels and rely on the usage of an autonomous

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 235–247, 2019.
https://doi.org/10.1007/978-3-030-30709-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_19

236 A. Toschi et al.

driving simulator, such as CARLA [1] or OpenPilot [2]. In other words, detailed
knowledge about a production-scale autonomous driving software system is still
a missing piece to the puzzle of understanding autonomous driving.

Motivated by that challenge, this work studies Apollo (version 3.5) [3], which
is an open-sourced production-scale autonomous driving software, developed by
Baidu. It has many complex and realistic modules, each of which targets a high-
level feature of autonomous driving, such as perception, prediction, planning, as
shown in Fig. 1. Modules are described by their input/output (I/O) relationship
to other modules, modelled as stages of a pipeline, and not to be intended as
monolithic pieces of software, so they can be further decomposed as a set of
inner components, following the same architecture and design philosophy. The
communication, among modules and components, is data-driven and is enabled
by a runtime framework, named Cyber [4], that implements the publisher & sub-
scriber architecture. Each component can write and read on multiple channels,
and the messages are serialized using Google Protocol Buffer [5].

Fig. 1. Apollo software architecture

Among the many modules in Apollo, the perception module, which is built
to perceive the environment, is the entry point to all the following modules. The
module uses multiple sensors, including Full-HD cameras and LIDARs, and is
also very computation-intensive as it relies on multiple deep neural networks
(DNNs). The whole system depends on the accuracy of such algorithms and
detectors to ensure responsiveness and safety. Thus, the perception module needs
to be trustable. This paper focuses on the perception module through perfor-
mance and robustness analysis.

We study the response time of different components in the perception module
because it is critical for the predictability and accuracy of the entire system. The
response time of each module has been set to 100 ms, which has been adopted
as the standard maximum response time since it should ensure a proper and
safe reaction to any possible situation. Besides that, response time is also crucial
for many dynamic processing routines that use time-deltas to perform online
corrections and discard past data. Exceeding these time requirements can lead
to a potential loss of useful information that may affect the accuracy of the
system. Different from prior efforts on individual sensors [6], our studies focus
on the separate and concurrent processing in the presence of multiple sensors,
which Apollo uses for safe and reliable output.

Characterizing Perception Module Performance and Robustness 237

The robustness of perception module is also crucial for the autonomous driv-
ing system as failures in the module would cause disastrous consequences [7].
Meanwhile, DNN models are model-driven, and therefore, not all the possible
scenarios are predictable in the training phase of machine learning algorithms,
especially [8]. As such, we extend the robustness analysis methodology from
recent efforts [9,10] to create noise models for both the camera and LIDAR
sensors. We use them to test the robustness of DNN models deployed in the
perception module.

Our performance analysis complies with prior work on that DNN models
take the majority of the average response time, and therefore, they are great
candidates for architectural specialization. However, prior work fails to recog-
nize the importance of the CPU owing to the pre- and post-processing that only
exists in a production-scale system. The robustness analysis tested the accuracy
of the perception against camera and LIDAR noise, separately. The loss of accu-
racy has been evaluated on obstacles, lanes and the outcome of the experiments
highlighted that even if detectors deteriorates, the whole module mitigates the
noise thanks to the presence of the fusion component, which, combining the data
coming from multiple sensors, can alleviate the effects.

The paper is organized as follows: in Sect. 2, a comprehensive view of algo-
rithms within the perception module are presented. Section 3 discusses each com-
ponent according to its response time. In Sect. 4, noise models and robustness
experiments are introduced moreover, later in Sect. 5, conclusions are provided.

2 Perception Module Description

The perception module, as presented in Fig. 2, is composed of several compo-
nents. The fusion camera detection is in charge of detecting obstacles, lanes and
tracking them through past frames. The LIDAR segmentation identifies obstacles
from cloud points, which are further classified and tracked by LIDAR recogni-
tion. The output of the LIDAR recognition and the fusion camera detection is
now homogenous to be fused into a single coherent detection, taking into account
all the obstacles, by the fusion component, which represents the last component
of the module.

Fig. 2. Perception software architecture

238 A. Toschi et al.

Fig. 3. Obstacle camera pipeline

2.1 Camera Sensor and Computation

The objective of the fusion camera detection is to detect obstacles within camera
frames, such as vehicles, pedestrians, lanes, and keep the reference of previous
obstacles to track them over frames. Detection is achieved by applying camera
frames to an obstacle camera pipeline, that is shown in Fig. 3.

Lanes detection is performed using the state-of-art convolutional neural net-
work (CNN) Spatial CNN [11], which outperformed other lanes detector. The
main feature of the network is that exploits spatial relationship among pixels,
being able to identify straight shaped objects, such as lanes, even if obstructed.
Lanes post-processing is necessary to extract, from the raw output of the neural
network, the coefficients of the polynomial that approximate each lane together
with lane edge points. The points and coefficients belong to the image plane,
so another post-processing operation is to project them first upon the car and
ground planes and then to combine the two projections, obtaining the three-
dimensional representation, which refers to world coordinates.

Obstacles detection is achieved using a CNN based on YOLO [12,13] that
has been enhanced to identify the obstacles bounding boxes in three dimensions.
Similar to lanes detection, each bounding box is further projected onto world
coordinates by the obstacle post-processor.

Obstacles tracking consists of two main steps: prediction, in which previous
obstacles positions and bounding boxes are updated according to time-delta,
between the current iteration and the past one, and the car pose through an
Adaptive Kalman Filter; association, in which the tracker tries to associate past
obstacles to the new obstacles found by the detector, using the frame similarities
as a metric, and eventually discard old obstacles.

2.2 LIDAR Sensor and Computation

The LIDAR is a sensor able to measure distances, using light impulses, gen-
erating a three-dimensional representation of the neighboring environment. A
LIDAR message is a cluster of cloud points; usually, the size of the cluster
is around one hundred thousand points. A cloud point represents a three-
dimensional point, expressed in LIDAR coordinates, and a light intensity value,
which corresponds to the object reflectance [14].

The computation regarding the LIDAR sensor is divided between two com-
ponents: LIDAR segmentation and LIDAR recognition, as shown in Fig. 2.

Characterizing Perception Module Performance and Robustness 239

LIDAR Segmentation. The LIDAR segmentation [15] is the process that
detects obstacles, within the surrounding environment, given the cloud points
coming from the LIDAR. The pre-processing filters illegal values and discards
points that are outside the Region of Interest (RoI) respect the car position.
The segmentation is performed using a CNN, so the filtered cloud points need
to be converted into feature maps manageable by the neural network. The con-
version into feature maps projects the (x, y) coordinates of cloud points over a
quantized two-dimensional grid. The CNN is composed of a custom-design con-
volutional auto-encoder, which selects only the most semantic information for
the segmentation, and then a classifier detects the obstacles attributes such as
center position, height and class probability. Finally, a bounding box is built
for each obstacle, by finding a 6-edge polygon of cloud points, which completely
wraps the obstacle.

LIDAR Recognition. The LIDAR recognition [15] is in charge of tracking
LIDAR obstacles over time. Similar to, the tracking of camera obstacles, each
LIDAR obstacle tries to match to an existing obstacle by constructing a bipartite
graph, in which to each obstacle is associated with its distance from existing
tracks, and then the assignment problem is solved using the Hungarian algorithm
[16]. Later, the class assigned to each obstacle is further assigned, taking into
consideration past matched obstacles to reducing the class switch during the
whole observation.

2.3 Fusion

The fusion component associates and merges obstacles’ bounding boxes, com-
ing from LIDARs and cameras and then updates the motion state of each
obstacle. The bounding box [17], at time step k, is represented as a vector
x(k) = [x(k), y(k), θ(k), v(k), ω(k), a(k), w(k), l(k), h(k)]T , where (x, y) is the
center position, θ is the heading angle, v is the linear velocity, ω is the angular
velocity, a is the acceleration and w, l, h define the width, length and height of
the 3D box. The association among bounding boxes is achieved by minimizing
the Euclidean distance of the center positions, using the Hungarian algorithm
[16]. The motion state is estimated through an Adaptive Kalman Filter with
constant acceleration model using the velocity and position provided by bound-
ing boxes [15]. The fusion algorithm implemented is not sequential; observations
from sensors are not treated equally since the component defines a main fusion
sensor, which triggers the fusion action. The main fusion sensor is configurable
and observations dispatched from it cause the execution, determining the fusion
frequency. Measurements from other sensors are cached in an ordered queue,
according to timestamps. When a new main fusion sensor’s message arrives, the
component assesses the reliability of cached measurements by checking the time-
deltas, between the new message and their timestamps, discarding those who are
above a threshold.

240 A. Toschi et al.

3 Performance Analysis

The objective of the performance analysis is to characterize the perception mod-
ule, using the response time as a metric, to understand the computational effort
required by each task. The study is a useful guide to figure out how a real
autonomous driving system is designed and its response to real-world scenarios
(Table 1).

Table 1. Neural network parameters - a summary of the neural networks present in
the perception module.

Network Input size Layers Parameters

SCNN [11] 640 × 480 × 3 143 convolutional
3 deconvolutional

13.68 M

YOLO [12,13] 1440 × 800 × 3 34 convolutional 6.54 M

Segmentation
Sect. 2.2
Custom design

864 × 864 × 4 15 convolutional
10 deconvolutional

2.97 M

Experimental Setup. In our simulation, we configure the perception module
to use one camera sensor and one LIDAR sensor. The hardware platform we
study includes an Intel i7 8700 CPU and an NVIDIA GTX 1080TI GPU, which
aligns with Apollo’s officially recommended system Nuvo-6108GC [18]. The rec-
ommended system uses an Intel i7 6700 CPU and an NVIDIA GTX 1080 GPU.
We compile the code with optimization enabled and GPU support. For the input
data to the perception module, we use various scenarios taken from the Kitti
dataset [19]. The dataset includes both camera frames and cloud points.

Figures 4 and 5 show our performance analysis result. Figure 4(a) shows the
execution time breakdown of the fusion camera detector component, where the
DNN computation (for lane detector and obstacle detector) accounts for the
97.26% of the whole component response time. In contrast, Fig. 4(b) shows the
execution time breakdown of the LIDAR segmentation component, where the
DNN computation (for segmentation) only accounts for the 50.55% of the whole
component response time. The pre-processing of clout points (one-by-one filter-
ing of cloud points) on the CPU takes about the other half.

Figure 4(c) and (d) show the execution time for the LIDAR recognition and
fusion component, respectively. Those components run on the CPU and their
execution time is much less than the previous two components. However, unlike
the constant processing time of the previous two components, the execution time
of LIDAR recognition and fusion component highly depend on the number of
objects in the frame, which may make their real time processing more challeng-
ing. Figure 5 shows the averaged response time with standard deviation for all
computation tasks in the perception module.

Characterizing Perception Module Performance and Robustness 241

In summary, we make the following observations from the results:

O1 The GPU is an crucial architecture for the autonomous driving system since
it enables the acceleration of DNNs. It is impossible to use only the CPU to
meet the 100 ms because of the heavy computation requirement of DNNs.

O2 The CPU tasks (pre-processing in Fig. 4(b), LIDAR recognition in (c), and
fusion in (d)) still take a large portion of the response time. Specific plat-
form solutions, like NVIDIA Jetson, are built to fit the requirements of
autonomous driving using ARM CPUs, which do not provide the same power
as the high-end consumer CPU, i.e. the Intel i7 8700 [20]. As such, the CPU
may become the bottleneck for the system.

O3 The DNN computation makes the response time highly predictable and can
be assumed as constant due to the lower variance exposed by such tasks.

(a) Fusion Camera Detector (b) LIDAR Segmentation

(c) LIDAR Recognition (d) Fusion

Fig. 4. These plots display the average response time, expressed in milliseconds, over
the scenarios, highlighting the significant tasks where necessary.

242 A. Toschi et al.

Fig. 5. Averaged response time (logarithmic scale) with standard deviation for different
computation tasks in the perception module.

O4 The LIDAR pre-processing can still approximate as a constant task since
the number of cloud points varies very little over different frames. But the
LIDAR recognition and fusion component highly depend on the number
of obstacles, either current and past. As such, it may be desirable to pro-
vide computation sprinting mechanism based on the number of obstacles to
smooth those modules’ response time.

The analysis opens the possibility to explore the relationship among GPU
and multiple sensors to identify the proper scheduling policy to adopt in case
of race, or the thermal and power impact related to the number of sensors. The
study pointed out that neural network computation is statically executed for each
frame, without exploiting similarities among them to approximate the outcomes
and lighten the workload. Another possibility to diminish the calculation is to
share the first convolutional layers among similar neural networks, operating on
homogenous input, and then differentiate them according to their functions.

4 Robustness Analysis

Prior work [21,22] studies the DNN robustness by inject noise into the GPU
architectural states and has shown DNN models are inherently resilient to the
architectural transient errors. Unlike those work, we directly inject noise to the
different sensors to study the DNN robustness. We set up three experiments
to test the accuracy of the obstacles detection, LIDAR segmentation and lanes
detection, against camera and LIDAR noise.

We conduct two experiments regard the camera noise, and one experiment
regards the LIDAR noise, the trials, for obstacle detection and LIDAR segmen-
tation, using scenarios from the Kitti dataset [19], while the lanes experiment
use the TuSimple dataset [23]. The accuracy is evaluated using the F1 met-
ric, which takes into account the presence of false positives and false negatives.

Characterizing Perception Module Performance and Robustness 243

A true positive is a matching having an Intersection over Union (IoU) value,
with the respects to the noise-free detection, higher than 0.5 for obstacles and
0.3 for the lanes experiment.

4.1 Noise Models

Our noise models between camera and LIDAR sensors are independent. In the
real world, external factors like weather can impact the camera and LIDRA
sensors simultaneously. Although camera noise models that simulate weather
conditions [24] exist, LIDAR still lacks rigorous noise model definitions. Our
work can be easily extended to use those joint models in the future.

The camera noise has been modelled using two classical image filters: bright-
ness and contrast [25]. The filters can be expressed using the following mathe-
matical function: f(X) = αX + β, where α and β represent the contrast and
the brightness factor, respectively.

The parameters, used in the camera noise experiment, are listed in Table 2,
and an application example of such filters is shown in Figs. 6 and 7.

β = 30 β = 60 β = 90

Fig. 6. Brightness

α = 1.5 α = 2.0 α = 2.5

Fig. 7. Contrast

Table 2. Camera noise model parameters

Filter Values

Brightness 30.0 60.0 90.0 0.0 0.0 0.0

Contrast 1.0 1.0 1.0 1.5 2.0 2.5

244 A. Toschi et al.

The LIDAR noise model is composed of two filters: drop filter and Gaussian
noise. The drop filter simulates a cloud point loss by randomly discarding a fixed
percentage of cloud points, 25% and 50% in this study. The Gaussian noise is
applied to cloud points coordinates to simulate a measurement error, having zero
mean and a standard deviation of 0.1, which represents a deviation of 10 cm.

p = [x, y, z] p′ = p + ε ε ∼ N (0, 0.12I3) (1)

4.2 Experiments

The first experiment involves obstacles detection; the camera noise is injected
to camera frames to evaluate the accuracy of camera detection and fusion com-
ponent. The main fusion sensor is set to be the camera, so, LIDAR cloud points
are provided without alteration. Similar to the previous, the second experiment
modifies cloud points according to LIDAR noise model. The accuracy evaluation
accounts LIDAR segmentation together with the fusion component, having set
LIDAR as main fusion sensor. The last experiment focuses on lane detection and
concerns only the camera detection evaluation since the fusion component is not
implicated in this task.

Fig. 8. Accuracies of camera and fusion components based on camera filters.

The experiments show similar behavior; however, there are several points
they differ.

O6 The number of obstacles detected by LIDAR is higher than those of the
camera, due to the narrower perspective and range of the camera view.
The different perspective explains why LIDAR noise compromises more the
fusion accuracy than the camera noise, proving that Apollo perception heav-
ily relies on LIDAR.

O7 Figures 8 and 9 suggest that obstacles fusion makes the overall component
more noise resistant. Moreover, this feature causes further modules to expe-
rience less noise by limiting propagation.

Characterizing Perception Module Performance and Robustness 245

Fig. 9. Accuracies of LIDAR and fusion
components based on LIDAR filters.

Fig. 10. Accuracies of lane detection
based on camera filters.

O8 Figures 6 and 7 show that as brightness and contrast values increase, it gets
harder to detect lanes, especially under the sunlight, due to the tendency
of the image to become whiter. Figure 10 presents that contrast filter has
a more significant impact on the accuracy of lane detection. The accuracy
drops below 45% when the contrast value reaches 2.5.

The results show that the system is susceptible to vision disruptions. Fur-
ther exploration should involve more complex simulation environments, popu-
lated by multiple sensors and validated using rigorous fault injection tools, like
the recently proposed model [26], capable of generating faults covering different
granularity, such as GPU bit flipping, obstacle obscuration, output alteration
within ranges. Efforts should be spent to develop an enhanced version of the
fusion component that dynamically changes the main fusion sensor according to
the encountered scenario. Finally, it should be advantageous to study the effects
of weather conditions on cloud points, to provide reproducible noise models
to help the training phase; besides, data augmentation techniques should be
adopted to counteract the effects of noise.

5 Conclusion

This work presents the performance and robustness analysis of the perception
module belonging to a production-ready autonomous driving system. The per-
formance analysis, focuses on the average response time, composed by neural
networks and multiple sensors, which require acceleration via GPU to meet tem-
poral constraints. This analysis demonstrated that neural networks take most of
the calculation time and are fixed system, which cannot be dynamically adapted
over similar inputs to reduce the inference time. The robustness analysis deter-
mines how accurate the camera and LIDAR are when they encounter challenging
situations. The models proposed in this paper are similar to real events, such

246 A. Toschi et al.

as brightness, contrast and measurement error. The analysis illustrated that the
camera component is majorly affected by contrast, which causes detection of
lanes and obstacles to be compromised. The robustness analysis also highlighted
a new role for the fusion component within the module, which reduces the noise
propagation to the following modules.

Acknowledgement. This work is supported by National Key R&D Program of China
(2018YFB1305900); the National Natural Science Foundation of China under Grant
(61702328 and 61602301); Microsoft Research Asia Research Grant.

References

1. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. arXiv preprint arXiv:1711.03938 (2017)

2. CommaAI: Openpilot: Open source driving agent (2019). https://github.com/
commaai/openPilot

3. Baidu: Apollo open platform (2019). https://github.com/ApolloAuto/apollo
4. Baidu: Apollo cyber (2019). https://github.com/ApolloAuto/apollo/tree/master/

docs/cyber
5. Google: Protocol buffers (2008). https://developers.google.com/protocol-buffers/
6. Lin, S.-C., et al.: The architectural implications of autonomous driving: constraints

and acceleration. ACM SIGPLAN Not. 53, 751–766 (2018)
7. Jack Stewart, W.: People keep confusing their Teslas for self-driving cars (2018).

https://www.wired.com/story/tesla-autopilot-crash-dui/
8. Tencent Keen Security Lab: Experimental security research of Tesla autopi-

lot (2019). https://keenlab.tencent.com/en/whitepapers/Experimental Security
Research of Tesla Autopilot.pdf

9. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261 (2019)

10. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing
of deep learning systems. In: Proceedings of the 26th Symposium on Operating
Systems Principles, pp. 1–18. ACM (2017)

11. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: spatial CNN for traffic
scene understanding. In: Thirty-Second AAAI Conference on Artificial Intelligence
(2018)

12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

13. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271
(2017)

14. National Ocean Service: What is lidar? (2018). https://oceanservice.noaa.gov/
facts/lidar.html

15. Baidu: Apollo 3D obstacles perception (2019). https://github.com/ApolloAuto/
apollo/blob/master/docs/specs/3d obstacle perception.md

16. Kuhn, H.W.: The hungarian method for the assignment problem. Nav. Res. Logist.
Q. 2(1–2), 83–97 (1955)

http://arxiv.org/abs/1711.03938
https://github.com/commaai/openPilot
https://github.com/commaai/openPilot
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo/tree/master/docs/cyber
https://github.com/ApolloAuto/apollo/tree/master/docs/cyber
https://developers.google.com/protocol-buffers/
https://www.wired.com/story/tesla-autopilot-crash-dui/
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
http://arxiv.org/abs/1903.12261
https://oceanservice.noaa.gov/facts/lidar.html
https://oceanservice.noaa.gov/facts/lidar.html
https://github.com/ApolloAuto/apollo/blob/master/docs/specs/3d_obstacle_perception.md
https://github.com/ApolloAuto/apollo/blob/master/docs/specs/3d_obstacle_perception.md

Characterizing Perception Module Performance and Robustness 247

17. Cho, H., Seo, Y.-W., Kumar, B.V., Rajkumar, R.R.: A multi-sensor fusion system
for moving object detection and tracking in urban driving environments. In: 2014
IEEE International Conference on Robotics and Automation (ICRA), pp. 1836–
1843. IEEE (2014)

18. Neousys: Nuvo-6108gc series (2019). https://www.neousys-tech.com/en/product/
application/rugged-embedded/nuvo-6108gc-gpu-computing

19. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: The kitti vision benchmark suite
(2015). http://www.cvlibs.net/datasets/kitti

20. Michael Larabel, Phoronix: NVIDIA’s Jetson AGX Xavier Carmel perfor-
mance vs. low-power x86 processors (2019). https://www.phoronix.com/scan.php?
page=article&item=nvidia-xavier-carmel&num=1

21. Jha, S., et al.: Kayotee: a fault injection-based system to assess the safety and
reliability of autonomous vehicles to faults and errors. In: 3rd IEEE International
Workshop on Automotive Reliability & Test (2018)

22. Jha, S., Banerjee, S.S., Cyriac, J., Kalbarczyk, Z.T., Iyer, R.K.: AVFI: fault injec-
tion for autonomous vehicles. In: 2018 48th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks Workshops (DSN-W), pp. 55–56.
IEEE (2018)

23. TuSimple: Tusimple dataset (2019). https://github.com/TuSimple/tusimple-
benchmark/issues/3

24. Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. In: ACM Transac-
tions on Graphics (TOG), vol. 25, pp. 996–1002. ACM (2006)

25. Rubaiyat, A.H.M., Qin, Y., Alemzadeh, H.: Experimental resilience assessment
of an open-source driving agent. In: 2018 IEEE 23rd Pacific Rim International
Symposium on Dependable Computing (PRDC), pp. 54–63. IEEE (2018)

26. Jha, S., et al.: ML-based fault injection for autonomous vehicles: a case for Bayesian
fault injection, June 2019

https://www.neousys-tech.com/en/product/application/rugged-embedded/nuvo-6108gc-gpu-computing
https://www.neousys-tech.com/en/product/application/rugged-embedded/nuvo-6108gc-gpu-computing
http://www.cvlibs.net/datasets/kitti
https://www.phoronix.com/scan.php?page=article&item=nvidia-xavier-carmel&num=1
https://www.phoronix.com/scan.php?page=article&item=nvidia-xavier-carmel&num=1
https://github.com/TuSimple/tusimple-benchmark/issues/3
https://github.com/TuSimple/tusimple-benchmark/issues/3

Memory and File System

Spindle: A Write-Optimized NVM Cache
for Journaling File System

Ge Yan, Kaixin Huang, and Linpeng Huang(B)

Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

{bueryg,kaixinhuang,lphuang}@sjtu.edu.cn

Abstract. Journaling techniques are widely employed in modern file
systems to guarantee crash consistency. However, journaling usually leads
to system performance decrease due to the frequent storage accesses it
entails. Architects can utilize emerging non-volatile memory (NVM) as
a persistent cache or journaling device to reduce the storage accesses
of journaling file systems. Yet problems such as double writes, metadata
write amplification and heavy transaction ordering overhead still exist in
current solutions. Therefore, we propose Spindle, a write-optimized NVM
cache to address these challenges. Spindle decouples data and metadata
accesses by processing data in DRAM while pinning metadata in NVM.
With redesigned metadata log and state switch mechanism, Spindle elim-
inates double writes and relieves metadata write amplification. Moreover,
Spindle adopts a lightweight transaction scheme to guarantee crash con-
sistency and reduce transaction ordering overhead. Experimental results
reveal that Spindle achieves up to 47% throughput improvement com-
pared with state-of-the-art design.

Keywords: File system · Non-volatile memory · Journaling ·
Data consistency

1 Introduction

Crash consistency is a significant feature that enables file systems to recover to
a consistent state after unexpected system crashes or power failures. Journaling
is a prevalent technique adopted by modern file systems, such as ext4 [11] and
JFS [1], to maintain crash consistency. For example, redo journaling first writes
the modified data to the journal area during the committing of a transaction.
After the redo log is successfully committed, the modified data can be written
to its desired location via checkpointing.

Although journaling can guarantee crash consistency, it significantly degrades
system performance due to the heavy overheads entailed by frequent storage
accesses. Precisely, journaling needs to write two blocks (i.e., the committed
block and the checkpointed block) for every modified block and hence results in
double disk I/Os. This problem is known as double writes of journaling.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 251–263, 2019.
https://doi.org/10.1007/978-3-030-30709-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_20

252 G. Yan et al.

Disk

Unmodified inode

Modified inode

Data Cache Metadata Cache

Modified data

Commit

Replace

NVM

DRAM

Replace

Fig. 1. Architecture of Spindle

Many in-memory file systems, such as BPFS [2], SCMFS [16], PMFS [4],
NOVA [18], and HMVFS [20], have been proposed to utilize NVM as a replace-
ment of disk. Since NVM provides persistency, byte-addressability and DRAM-
like latency, these file systems avoid the bottleneck of disk I/O and provide high
performance. However, two factors limit the utilization of these file systems in
real environments. First, the price of NVM is predicated to be much higher than
that of traditional storage (e.g., HDD and SSD). Second, current NVM tech-
nologies without broad application may be less stable than traditional storage.

To overcome the concerns discussed above, some researchers have investigated
using NVM as a middle layer to accelerate disk-based file systems. For instance,
UBJ [6] utilizes NVM to build a buffer cache united with the journaling layers;
Tinca [15] proposes a transactional NVM cache with high performance and crash
consistency. Although these systems utilize the low latency of NVM and the
low cost of disk, write amplification and heavy transaction ordering overhead
still exist due to their block-based updating strategy. Concretely, UBJ commits
data in-place in NVM by freezing data and later checkpoints them to the disk.
When updating a frozen block, UBJ can not overwrite it but must do it in
a copy-on-write (COW) way, which incurs double writes on the critical path.
Tinca does role switch to change the roles of modified blocks committed to the
NVM cache. However, it does not differentiate metadata blocks from data blocks
and metadata write amplification remains unsolved. Besides, it needs massive
executions of cache line flush (e.g., clflush) and memory fence (e.g., mfence) to
change the roles of modified blocks involved in the committing transaction.

With such observations, we propose Spindle, a write-optimized NVM cache
for journaling file systems, as shown in Fig. 1. The key design of Spindle is decou-
pling data and metadata accesses. Data is processed in DRAM and committed
to the NVM cache in the unit of block. Yet metadata is pinned in NVM and
updated in the unit of inode. Such a design fully utilizes the byte-addressability
of NVM and different updating granularities of data and metadata. Our main
contributions can be summarized as follows.

Spindle: A Write-Optimized NVM Cache for Journaling File System 253

• We propose a novel design to decouple data and metadata accesses by process-
ing data in DRAM while pinning metadata in NVM at runtime. By redesign-
ing the log and updating strategy of metadata, Spindle can efficiently reduce
metadata writes to relieve metadata write amplification.

• We provide a lightweight transaction scheme to guarantee the consistency of
data and metadata. Utilizing state switch and COW updating, Spindle can
avoid double writes and reduce the transaction ordering overhead.

• We implement Spindle on ext4 file system and evaluate its performance with
several benchmarks. Experimental results show that Spindle achieves up to
47% throughput improvement compared with state-of-the-art design.

The remainder of this paper is organized as follows. Section 2 introduces the
background and motivation. Sections 3 and 4 describe the design and implemen-
tation of Spindle, respectively. Section 5 evaluates Spindle. We discuss related
work in Sect. 6 and conclude this paper in Sect. 7.

2 Background and Motivation

2.1 NVM-based Systems

Emerging non-volatile memory technologies, such as STT-RAM [14], ReRAM
[17], PCM [19], and 3D-XPoint [3], exhibit high storage density and low
power consumption. Moreover, they can provide persistency, byte-addressability,
DRAM-like latency and throughput. These properties enable architects to build
fast and persistent systems with NVM.

Current NVM-based file systems can be classified into two categories. The
first kind utilizes NVM as a replacement of disk, such as BPFS [2], SCMFS
[16], PMFS [4], NOVA [18] and HMVFS [20]. Since the storage is substituted by
NVM, these systems can exploit the properties of NVM to provide low latency
and high throughput. The other one exploits NVM as a persistent cache or
journaling device to improve the performance of disk-based file systems, such as
UBJ [6] and Tinca [15]. In these systems, data is temporarily stored in NVM for
fast accesses and eventually flushed to disk when data replacement is executed.

2.2 Crash Consistency

File systems should guarantee the consistency of data and metadata due to
unpredictable power failures and system crashes. In-place updating is unfavored
by file systems because a crash amid the updating process may cause inconsis-
tency issue. Copy-on-write (COW) and journaling are two prevalent techniques
for crash consistency. COW updates data out of place and substitutes the original
data by changing respective metadata. Unlike COW, journaling does not change
the metadata of a file but reserves backup copies of data for crash recovery.

The consistency of file system can be classified into metadata consistency,
data consistency and version consistency. At the low level, metadata consis-
tency only provides the consistency of metadata, while the consistency of data

254 G. Yan et al.

Journal Area

Disk

Data Area

DRAM

Commit Checkpoint

Unmodified inode
Modified data

Modified inode

Fig. 2. Double writes and metadata write amplification

is ignored. At a higher level, data consistency guarantees that both data and
metadata of a file system are consistent. Version consistency is an even higher
level that ensures an old version of the file can be retrieved. This paper targets
data consistency that can recover both data and metadata to a consistent state.

2.3 Motivation

Double Writes of Journaling. In journaling file systems, a committed block
and corresponding checkpointed block have the same contents, but write opera-
tions are done twice. This problem is known as double writes of journaling. When
NVM is provided as a persistent cache for disk-based file systems, double writes
of journaling will lead to double memory copies and double executions of cache
line flush and memory fence. Since data blocks in the NVM cache are flushed to
the disk eventually, double writes of journaling also entail amplified disk I/O.
Therefore, performance can get benefits if double writes can be eliminated.

Metadata Write Amplification. Metadata is organized in the unit of block
according to the design of traditional journaling file systems. Partial-updated
metadata results in whole-block write that seriously amplifies data I/O. For
example, Tinca [15] writes data and metadata into NVM in the unit of block
without differentiation. Suppose that an inode is 256B and a block is 4 KB,
Tinca needs to write 4 KB data into NVM when only one inode is modified in
the metadata block. Such a strategy leads to 16× execution time compared to
solely updating an inode of 256B. Moreover, it squanders the byte-addressability
of NVM. Therefore, it is desirable to reduce metadata write amplification to
improve the overall performance. Figure 2 illustrates the issues of double writes
and metadata write amplification in journaling file systems.

Transaction Ordering Overhead. Current CPU may reorder writes to the
memory to optimize system performance [12]. A crash that happens amid
reordered writes may cause inconsistency issue. For example, modification of
file metadata should be performed after the updating of file data. If metadata is
modified before the updating of file data and a crash happens, then the file will

Spindle: A Write-Optimized NVM Cache for Journaling File System 255

be inconsistent. To maintain the desired writing order, one widely-used method
is to use regular store instructions (e.g., mov) followed by cache line flush and
memory fence. Tinca adopts this method and entails massive executions of cache
line flush and memory fence to change the roles of modified blocks.

3 Design

3.1 Cache Layout

As shown in Fig. 1, Spindle1 consists of a data cache and a metadata cache.

Data Cache. Details of the data cache are depicted in Fig. 3(a). The data
cache is made up of three components: the ring buffer, the data cache entries
and cached data blocks. The ring buffer is used to coordinate a transaction and
can be viewed as an array of 16-byte elements. Two pointers, Head and Tail,
are provided to use the ring buffer in a round-robin way. Data cache entries with
16-byte elements are used for address mapping and crash recovery. The last part
contains cached data blocks delivered by the file system.

Metadata Cache. Figure 3(b) shows the layout of metadata cache. The first
part is a metadata log area with the granularity of inode size. After the metadata
log area, there are multiple metadata cache entries that have the same structure
with entries in the data cache. The ring buffer entries, data and metadata cache
entries consist of an 8-byte disk block number and an 8-byte NVM block number.
The major difference between these entries is that metadata cache entries are
designed for metadata blocks while the others are used by data blocks. The last
part is an area with cached metadata blocks.

A metadata block can be divided into many sub-blocks of inode size. Each
running transaction in Spindle has a modified data block list and an original
metadata sub-block list. When a metadata sub-block is going to be updated, we
copy it to the log area and link it to the metadata sub-block list. Then we can
perform in-place updates on the sub-block. When a transaction is successfully
committed, related metadata sub-blocks in the log area can be removed.

3.2 Lightweight Transaction

Spindle provides a lightweight transaction scheme to ensure the consistency of
file data. In particular, it exploits state switch and COW updating to avoid
double writes on the critical path.

State Switch. In journaling file systems, a disk block has the state of being
committed or checkpointed. When it is written to the journal, its state is com-
mitted. After it is flushed to its original location, its state becomes checkpointed.
We utilize state switch to change the state of a cached data block. In our sys-
tem, a data block with a ring buffer entry has the state of being committed,
1 The memory hierarchy looks like a spindle with the data cache and the metadata

cache interposed between DRAM and the disk.

256 G. Yan et al.

Unmodified data Modified data
Unmodified inode

Modified inode

(b) Metadata Cache Layout

Cached Metadata BlocksMetadata Log

(a) Data Cache Layout
Cached Data BlocksRing Buffer

Disk Block No. NVM Block No.

Metadata Cache Entries

Data Cache Entries

Disk Block No. NVM Block No.

Disk Block No. NVM Block No.

Fig. 3. Data and metadata cache layout of Spindle

which indicates it is involved in a committing transaction. After the transaction
is successfully committed, corresponding ring buffer entry can be removed and
the data block is switched to checkpointed state.

COW Updating. We adopt COW to write data into the data cache. Before
writing a data block, we first search the data cache entries. If it has been cached,
we copy its data cache entry to the ring buffer. Then we write the data to a new
NVM block and update the data cache entry to point to the newly written block.
If the block has not been cached, we create a new ring buffer entry with its disk
block number and a special NON tag. Subsequently, we write the data to a new
NVM block and create a new data cache entry. During the committing of a
transaction, a cached data block may have two versions at the same time. Once
the committing is successfully completed, the old one can be removed and the
newly written one remains as persistent cached data.

Transaction Committing. We follow the routine of traditional journaling file
systems to coalesce multiple blocks in a transaction. Since the NVM cache pro-
vides persistency that a file system desires, the committing of a transaction does
not entail disk I/O when free data and metadata blocks can be found in the
NVM cache. Before the committing of a transaction, Head and Tail point to the
same entry in the ring buffer. Figure 4 illustrates the committing of a transaction,
which can be summarized as follows.

(1) Write ring buffer entry. We search the block with the modified data
block’s disk block number. If it has been cached (i.e., cache hit), we copy its
data cache entry to the ring buffer. Otherwise (i.e., cache miss), we create
a new ring buffer entry with the disk block number and a special NON tag.

(2) Write data block and data cache entry. We write the data to a new
NVM block and update corresponding data cache entry (cache hit) or create
a new one (cache miss).

(3) Update Tail pointer. We move tail pointer forward by one.

Spindle: A Write-Optimized NVM Cache for Journaling File System 257

(a) Before Committing

D
R

A
M

B’

Running
transaction

1018227

A’

Cached Metadata Blocks
127

1105 127
278325

Metadata Log
Metadata

Cache Entries

705
Data Cache EntriesRing Buffer

N
V

M

Cached Data Blocks

Modified Data Blocks

B’

Committing
transaction

1018227

A’

Cached Metadata Blocks
127

1105 127
278325

Metadata Log
Metadata

Cache Entries

A
705

Head

Cached Data Blocks

Modified Data Blocks
A’ B’
619 611

Tail

(b) During Committing

Head
Tail

Data Cache EntriesRing Buffer

227 705

227 705
NON1018

227 619
6111018

A

D
R

A
M

N
V

M

278

278

Fig. 4. Transaction committing of Spindle

(4) Update Head pointer. We repeat (1)–(3) until no block is left in the com-
mitting transaction. At last, we set Head to be identical to Tail.

When Head is equal to Tail, the committing is completed and the old data blocks
can be recycled. Since metadata sub-blocks are first copied to the metadata log
area and then in-place updated, we just need to remove the metadata sub-blocks
in the log area.

3.3 Data Replacement

The NVM cache can not hold all the data of a file system due to its limited
capacity. Therefore, we choose to write cold blocks back to disk. Data replace-
ment is triggered when there is no free data or metadata block in the NVM
cache. The replacement strategies for data and metadata are different.

(1) For data, the access unit and replacement unit is the same (i.e., block). We
utilize the least-recently-used (LRU) algorithm to select the victim block.
But there is an extra limit: data blocks involved in the running or commit-
ting transaction are not allowed to be swapped out.

(2) For metadata, the access unit is inode while the replacement unit is block.
To select the victim, we maintain a counter for every cached metadata block.
When any inode of a metadata block is accessed, the counter of that block
is increased by one. If free metadata blocks can not be found in the cache,
the block with the least counter value is chosen as the victim.

3.4 Crash Recovery

During crash recovery, we first scan the data and metadata cache entries to build
an in-DRAM hash table. Then we scan the ring buffer and process cache entries

258 G. Yan et al.

involved in the unfinished committing transaction. Since crash could happen
before the moving of Tail, we need to scan an extra entry behind Tail. For
every ring buffer entry during the scan, we search the data cache entries with its
disk block number. If the ring buffer entry’s NVM block number is valid (i.e., not
a NON tag), the block with this number has been cached and corresponding data
cache entry exists. Otherwise, the block has not been cached. For the two cases,
we search in the data cache entries. If the data cache entry exists, we revoke
it (valid) or delete it (invalid) according to its ring buffer entry. If it does not
exist, nothing needs to be done. After all related ring buffer entries have been
scanned and processed, we set Head to be identical to Tail. Eventually, we scan
the metadata log area to revoke the modified metadata sub-blocks.

Note that Head is not modified until the last step of the recovery. There-
fore, any failure during the recovery does not affect the consistency of file data,
because the recovery can be redone as long as the ring buffer entries can be
retrieved. As for metadata, its consistency is maintained when it is successfully
copied to the log area hence a crash during the recovery does not affect the
consistency of metadata.

4 Implementation

We implement Spindle on ext4 file system. The implementation mainly includes
in-memory structures, data cache and metadata cache.

In-Memory Structures. A cuckoo hash table is used to accelerate the search
with a disk block number for a data or metadata cache entry. Moreover, two
LRU lists are managed in DRAM to select the victim to evict. Besides, bitmaps
of data and metadata cache are also stored in DRAM. Since these structures can
be reconstructed during system reboot, we do not keep them in NVM.

Data Cache. The data cache is implemented based on JBD2 [11]. We alter
JBD2’s interfaces to realize Spindle’s characteristics. In particular, JBD2’s
descriptor block, revoke block and commit block are substituted by the ring
buffer, data cache entries, Head and Tail pointers. Since the consistency of
cached data and metadata is guaranteed when the transaction is successfully
committed, the checkpointing function is removed from JBD2.

Metadata Cache. Implementation of the metadata cache primarily consists of
three parts. First, metadata fetching and flushing is redesigned. Since metadata
is not flushed to the disk unless under space pressure, we modify the implementa-
tion of ext4-handle-dirty-metadata to prevent metadata from being written
back to disk. Second, the allocation and reclamation of metadata is renovated.
Utilizing NVM as the metadata cache, we add a set of functions to allocate/free
memory from/to the metadata cache. Third, the updating of metadata is sub-
stituted by our inode-based updating strategy.

Spindle: A Write-Optimized NVM Cache for Journaling File System 259

5 Evaluation

5.1 Setup

We implement Spindle on Linux 4.18.1 and use ext4 file system as our code
base. All experiments are performed on an Intel Xeon E5 server with 98 GB
DRAM and 1 TB HDD. The competitor we use to compare against Spindle is
Tinca, which also utilizes NVM as a persistent cache to improve the perfor-
mance of journaling file systems. Since Tinca is not open-source, we develop a
prototype for it according to its implementation [15]. We use ext4 file system
to evaluate Tinca’s performance and set the default cache mode as writeback.
Since real NVM devices are not available to us yet, we add read/write latencies
(50ns/180ns) to DRAM to simulate the NVM device. In the evaluation, 8 GB
DRAM is used to simulate the NVM cache of Tinca and Spindle. For Spindle,
we use 1 GB NVM as the metadata cache and the left 7 GB NVM as the data
cache. Characteristics of the benchmarks in our evaluation are summarized in
Table 1. All the results are averaged over five runs.

Table 1. Benchmark characteristics

Benchmark Read/write ratio Request size Dataset size Running time

Fio 0/10,3/7,5/5,7/3,10/0 4 KB 16 GB 20 min

Fileserver 1/2 16 KB 20 GB 30 min

Webproxy 5/1 16 KB 20 GB 30 min

Varmail 1/1 16 KB 20 GB 30 min

5.2 Microbenchmarks

Figure 5 shows the performance of Tinca and Spindle on Fio benchmark. As
the write percentage declines from 100% (random write) to 0% (random read),
the throughputs of Tinca and Spindle increase simultaneously. This is because
writes will trigger data replacement to write cold data to disk. When the ratio of
writes decreases, less disk writes are performed and the throughputs get promo-
tion. Spindle outperforms Tinca with 1.13×–1.30× throughput under different
read/write ratios. Concretely, Spindle achieves 30.0% throughput improvement
for random writes and this is mainly due to the reduced cache line flush and
memory fence. As for random reads, massive small metadata updates are exe-
cuted and Spindle can effectively reduce metadata writes through its redesigned
metadata updating strategy. The number of clflush per write operation is pre-
sented in Fig. 5(b). It can be observed that Spindle reduces up to 32.6% cache
line flushes over Tinca. Although read operations only update the file metadata
such as access time, Tinca needs to update extra cache entry and execute several
clflush to change the role of a modified data block, which makes its transaction
committing takes longer time than Spindle.

260 G. Yan et al.

(a) Fio Throughput (b) clflush per write operation

0

100

200

300

400

500

600

random write 3/7 5/5 7/3 random read

Th
ro

ug
hp

ut
(M

B/
s)

Read/Write Ra o

Tinca
Spindle

0

10

20

30

40

50

60

70

random write 3/7 5/5 7/3

cl
flu

sh
 p

er
 w

rit
e

op
er

a
on

Read/Write Ra o

Tinca

Spindle

Fig. 5. Fio performance

The performance gaps are caused by two major differences between Tinca
and Spindle: (1) Tinca writes metadata into NVM in the unit of block while
Spindle updates metadata in the unit of inode. (2) Tinca needs to change the
role of every modified block and entails extra cache line flush and memory fence.

5.3 Macrobenchmarks

We select fileserver, webproxy, and varmail as the macrobenchmarks to evaluate
Spindle’s performance. Figure 6 presents the throughputs of Tinca and Spindle
under different file sizes.

Fileserver is a write-intensive workload that simulates a file server with oper-
ations like file creates, appends, writes, reads and deletes. We observe that for
small files, the throughput improvement (40.7%) of Tinca is more striking. This
is because metadata write amplification is more obvious for small writes. As the
file size grows, the reduction of cache line flush, memory fence and metadata
writes is counteracted by the writes of data.

Webproxy is a read-intensive workload that frequently reads the entire file. In
such workload, Spindle can get few benefits from the clflush reduction as writes
takes up only 16.7% in all read and write operations. However, webproxy entails
massive small metadata updates and Spindle could benefit from its redesigned
metadata updating strategy thus achieving up to 47% throughput improvement.

(a) Fileserver (b) Webproxy (c) Varmail

0

300

600

900

1200

1500

1800

4K 16K 64K 256K

Th
ro

ug
hp

ut
(M

B/
s)

mean file size

Tinca

Spindle

0

100

200

300

400

500

4K 16K 64K 256K

Th
ro

ug
hp

ut
(M

B/
s)

mean file size

Tinca

Spindle

0

80

160

240

320

400

4K 16K 64K 256K

Th
ro

ug
hp

ut
(M

B/
s)

mean file size

Tinca

Spindle

Fig. 6. Filebench performance

Spindle: A Write-Optimized NVM Cache for Journaling File System 261

Varmail simulates the activity of an email server and performs a fsync after
every file appending write. Both Spindle and Tinca do not need to write data to
disk when there are free data and metadata blocks in the NVM cache. However,
Tinca needs to write whole metadata blocks into NVM so its throughputs are
20.9%–33.5% lower than that of Spindle.

In conclusion, for read-intensive workloads like webproxy, Spindle benefits
from its inode-based metadata updating strategy as it effectively reduces meta-
data write amplification; for write-intensive workloads like fileserver and varmail,
the lightweight transaction scheme of Spindle plays an important role. Since
writes to the NVM demands strict ordering, Spindle can effectively reduce the
executions of clflush and mfence to promote system performance.

6 Related Work

Using flash-based SSD to develop devices with transactional supports or accel-
erate HDD-based systems has been explored. Nitro [9] utilizes data compres-
sion and deduplication into SSD cache to accelerate primary storage. LightTx
[10] tries to reduce the transactional cost while providing better performance.
TxFlash [13] utilizes the COW characteristic of NAND flash to provide trans-
action interface. However, these works focus on the flash-based SSD and do not
take the emerging NVM into consideration.

Besides, many works utilize NVM to accelerate disk-based file systems. UBJ
[6] is a buffer cache that commits in-place in NVM by freezing data and later
checkpoints them to disk. Lee et al. [7] proposes to store modified data in the
NVM cache and improve performance with space-efficient management tech-
niques. Tinca [15] is a transactional NVM cache that utilizes the role switch
mechanism to reduce write amplification of journaling file systems.

Managing NVM with in-memory file systems has been investigated as well.
SCMFS [16] utilizes existing memory management to do the block management
and keep space contiguous for each file. PMFS [4] avoids the overheads of block-
based storage and enables direct persistent memory access with memory mapped
I/O. Lee et al. [8] and Hwang et al. [5] propose tree structures that are optimized
for non-volatile memory systems. These works indicate the promising potential
of NVM in the future.

7 Conclusion

In this paper, we propose Spindle, a write-optimized NVM cache for journaling
file systems. It decouples data and metadata accesses to update them in differ-
ent granularities. Spindle adopts redesigned metadata log and metadata updat-
ing strategy to relieve metadata write amplification. Moreover, it utilizes state
switch and COW updating to write data only once in the critical path. Besides,
a novel committing protocol is proposed to reduce the transaction ordering over-
head. Experiment results confirm that Spindle achieves up to 47% throughput
improvement compared with state-of-the-art design.

262 G. Yan et al.

Acknowledgement. This work is supported by National Key Research & Develop-
ment Program of China (Grant No. 2018YFB10033002), the National Nature Science
Foundation of China (Grant No. 61472241).

References

1. Best, S.: JFS overview (2000)
2. Condit, J., et al.: Better I/O through byte-addressable, persistent memory. In: Pro-

ceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
pp. 133–146. ACM (2009)

3. Dadmal, U.D., Vinkare, R.S., Kaushik, P., Mishra, S.: 3D X point technology. Int.
J. Electron. Commun. Soft Comput. Sci. Eng. (IJECSCSE) 13–17 (2017)

4. Dulloor, S.R., et al.: System software for persistent memory. In: Proceedings of the
Ninth European Conference on Computer Systems, p. 15. ACM (2014)

5. Hwang, D., Kim, W.H., Won, Y., Nam, B.: Endurable transient inconsistency in
byte-addressable persistent B+-TREE. In: FAST, pp. 187–200 (2018)

6. Lee, E., Bahn, H., Noh, S.H.: Unioning of the buffer cache and journaling layers
with non-volatile memory. In: FAST, pp. 73–80 (2013)

7. Lee, E., Kang, H., Bahn, H., Shin, K.G.: Eliminating periodic flush overhead of file
I/O with non-volatile buffer cache. IEEE Trans. Comput. 65(4), 1145–1157 (2016)

8. Lee, S.K., Lim, K.H., Song, H., Nam, B., Noh, S.H.: WORT: write optimal radix
tree for persistent memory storage systems. In: FAST, pp. 257–270 (2017)

9. Li, C., Shilane, P., Douglis, F., Shim, H., Smaldone, S., Wallace, G.: Nitro: a
capacity-optimized SSD cache for primary storage. In: ATC, pp. 501–512 (2014)

10. Lu, Y., Shu, J., Guo, J., Li, S., Mutlu, O.: LightTX: a lightweight transactional
design in flash-based SSDs to support flexible transactions. In: 2013 IEEE 31st
International Conference on Computer Design (ICCD), pp. 115–122. IEEE (2013)

11. Mathur, A., Cao, M., Bhattacharya, S., Dilger, A., Tomas, A., Vivier, L.: The
new ext4 filesystem: current status and future plans. In: Proceedings of the Linux
symposium, vol. 2, pp. 21–33 (2007)

12. Pelley, S., Chen, P.M., Wenisch, T.F.: Memory persistency. In: ACM SIGARCH
Computer Architecture News, vol. 42, pp. 265–276. IEEE Press (2014)

13. Prabhakaran, V., Rodeheffer, T.L., Zhou, L.: Transactional flash. In: OSDI, vol. 8
(2008)

14. Sun, Z., et al.: Multi retention level STT-RAM cache designs with a dynamic
refresh scheme. In: Proceedings of the 44th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pp. 329–338. ACM (2011)

15. Wei, Q., Wang, C., Chen, C., Yang, Y., Yang, J., Xue, M.: Transactional NVM
cache with high performance and crash consistency. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, p. 56. ACM (2017)

16. Wu, X., Reddy, A.: Scmfs: a file system for storage class memory. In: Proceedings
of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, p. 39. ACM (2011)

17. Xu, C., Niu, D., Muralimanohar, N., Jouppi, N.P., Xie, Y.: Understand-
ing the trade-offs in multi-level cell reram memory design. In: 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2013)

18. Xu, J., Swanson, S.: NOVA: a log-structured file system for hybrid volatile/non-
volatile main memories. In: FAST, pp. 323–338 (2016)

Spindle: A Write-Optimized NVM Cache for Journaling File System 263

19. Yoon, D.H., Chang, J., Schreiber, R.S., Jouppi, N.P.: Practical nonvolatile
multilevel-cell phase change memory. In: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis,
p. 21. ACM (2013)

20. Zheng, S., Huang, L., Liu, H., Wu, L., Zha, J.: HMVFS: a hybrid memory versioning
file system. In: 2016 32nd Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–14. IEEE (2016)

Two-Erasure Codes from 3-Plexes

Liping Yi(B), Rebecca J. Stones(B), and Gang Wang(B)

College of Computer Science, Nankai University, Tianjin, China
{yiliping,becky,wgzwp}@nbjl.nankai.edu.cn

Abstract. We present a family of parity array codes called 3-PLEX for
tolerating two disk failures in storage systems. It only uses exclusive-or
operations to compute parity symbols. We give two data/parity layouts
for 3-PLEX: (a) When the number of disks in array is at most 6, we
use a horizontal layout which is similar to EVENODD codes, (b) other-
wise we choose hybrid layout like HoVer codes. The major advantage of
3-PLEX is that it has optimal encoding/decoding/updating complex-
ity in theory and the number of disks in a 3-PLEX disk array is less
constrained than other array codes, which enables greater parameter
flexibility for trade-offs in storage efficiency and performances.

Keywords: Latin squares · Array codes · Storage efficiency ·
Computational complexity · Data/parity layout

1 Introduction

As a fault-tolerant technology, erasure codes have been widely used to ensure
the reliability of storage systems. According to whether encoding/decoding is
based on exclusive-or operations, erasure codes can be roughly divided into two
categories: Reed-Solomon codes and parity array codes. The common property
of these codes is that they tolerate two simultaneous disk failures, but they
also have their own trade-offs in terms of storage efficiency and computational
complexity.

Traditional Reed-Solomon code [12] is based on finite field operations which
results in high computational complexity. Quite a few studies have tried to
improve the computational performance of RS codes by using special hardware
or dedicated algorithms. For example, the modified Cauchy RS code [13] replaces
the finite field operation with exclusive-or operation, but it still has higher com-
putational complexity than array codes. Although RS codes have the above
shortcoming, it is the only erasure code that can achieve arbitrary fault toler-
ance, and it is an MDS code [2] which means it has optimal storage efficiency.
Another advantage of RS codes is that there is no assumption on the number of
disks which enables it to be applied in more scenarios.

Parity array codes arrange data/parity blocks according to the structure of
arrays [5]. Compared with RS codes, since array codes are completely based on

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 264–276, 2019.
https://doi.org/10.1007/978-3-030-30709-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_21&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_21

Two-Erasure Codes from 3-Plexes 265

exclusive-or operations, its encoding and decoding algorithms are relatively sim-
ple and easy to implement. According to the data/parity layout, array codes
can be divided into three types: (a) horizontal codes (such as EVENODD
[1], RDP [3], etc.), (b) vertical codes (X-Code [16], WEAVER [8], etc.), and
(c) hybrid codes (HoVer [9]). All of these array codes tolerate two faults.

EVENODD code [1] as the original horizontal array code, provides an effi-
cient means to tolerate double disk failures in RAID architecture. Figure 1-a
shows an example of EVENODD with five data disks and two parity disks.
EVENODD code only uses two individual parity disks (stores horizontal pari-
ties and secondary diagonal parities respectively) to achieve two fault tolerance
and the implementation of EVENODD code does not require any hardware
modification of the standard RAID-5 controller [1]. It’s also a MDS code with
optimal storage efficiency. Another advantage of EVENODD is that the number
of disks of EVENODD disk array is adjustable. The array size of EVENODD
is (n − 1) × (n + 2), where n is the number of data disks. Although its encod-
ing definition requires prime n, it can also achieve arbitrary number of disks
by horizontal shortening. Since EVENODD code defines a special check sum S
(the XOR-sum of “D4”s in Fig. 1-a), its computational complexity is higher than
other array codes.

D0 D1 D2 D3 D4 P0 Q0

D1 D2 D3 D4 D0 P1 Q1

D2 D3 D4 D0 D1 P2 Q2

D3 D4 D0 D1 D2 P3 Q3

D0 D3 D1 D4 P2 Q0

D3 D1 D4 D2 P0 Q3

D1 D4 D2 D0 P3 Q1

D4 D2 D0 D3 P1 Q4

D32 D43 D04 D10 D21

D23 D34 D40 D01 D12

D14 D20 D31 D42 D03

P0 P1 P2 P3 P4

Q0 Q1 Q2 Q3 Q4

D1 D2 D3 D4 D5

P23 P34 P45 P51 P12

D3 D4 D0 D1 D2 P1

D2 D3 D4 D0 D1 P2

D1 D2 D3 D4 D0 P3

Q0 Q1 Q2 Q3 Q4

a. EVENODD b. RDP c. X-Code d. WEAVER e. HoVer

Fig. 1. Array codes of 5 data blocks

RDP (Row-Diagonal Parity) code [3] is another horizontal array code whose
array size is (p− 1) × (p+ 1) (where p is a controlling parameter which must be
a prime number greater than 2). RDP code replaces the special check sum S of
EVENODD with a missing diagonal and uses a “parity dependent” architecture
(where row parities also contribute to the calculation of diagonal parities), which
reduces the computational complexity compared with EVENODD. Figure 1-b
illustrates a RDP disk array with four data disks and two parity disks. Corbett
et al. [3] proved that both encoding/decoding and updating complexity of RDP
is almost optimal.

Updating complexity is an important metric of array codes; we generally
use the number of blocks required to be updated when a data block is updated
to measure updating complexity. In a storage system with frequent updating
operations, higher updating complexity will lead to worse performance. In order
to alleviate this problem, vertical array codes have been proposed.

X-Code [16] is the first vertical array code which tolerates two disk failures.
The array size of X-Code is n × n (where n is a prime); the first n − 2 rows are
filled with data blocks, and the last two rows store parity blocks, i.e., each disk

266 L. Yi et al.

stores both data and parity blocks. X-Code computes the XOR sum of all data
blocks on the diagonals of slope 1 and −1 to generate parity blocks, hence the
name X-Code. Figure 1-c depicts an example of X-Code with 5 disks. This special
structure enables X-Code to achieve optimal computational complexity. X-Code
is also an MDS code, and thus it has optimal storage efficiency. An important
limitation of X-Code is that the number of disks in X-Code array must be a
prime and it cannot admit arbitrary array sizes using horizontal shortening like
EVENODD. If we impose simple horizontal shortening on a X-Code to break
through its constraint of array size, the original relationship between data blocks
and corresponding parity blocks will be destroyed, thereby losing the ability to
tolerate two erasures.

WEAVER code [8] is another typical vertical array code. There are four types
of WEAVER codes proposed in [8], and only WEAVER(n, k, t) when k = t = 2
can tolerate two disk failures. The array size of WEAVER(n, 2, 2) is 2×n, the first
row only stores data blocks and the last row is filled with parity blocks. Figure 1-d
shows an example of WEAVER(n, 2, 2) with five disks. WEAVER code computes
parity blocks by calculating XOR sum of two adjacent data blocks like weav-
ing, hence named WEAVER. The definition of encoding enables WEAVER to
have no constraint in array size, which makes up for the deficiency of X-Code.
Besides, a key advantage of WEAVER is that it can achieve up to twelve fault
tolerance by adjusting parameters. It also has optimal computational complex-
ity. Nonetheless, the main disadvantage of WEAVER code is that it has low
storage efficiency (up to 50%). In other words, WEAVER code has a trade-off
among storage efficiency, fault tolerance and computational complexity.

Hybrid array codes combine the advantages of horizontal and vertical array
codes. HoVer code [9] with (v+ r)× (h+n) array size is a representative hybrid
array code, hence named HoVer (Horizontal and Vertical). Figure 1-e shows an
example of HoVer code with 5×8 array size. The advantages of HoVer code is that
it’s a near-MDS code, which means it has high but not optimal storage efficiency,
no limitation of array size, parameter flexibility enables it to achieve higher fault
tolerance, and its updating complexity is optimal. However, the encoding and
decoding complexity become higher as the number of disks increases, so HoVer
code also has a trade-off between storage efficiency and encoding/decoding speed.

Hafner [8] pointed out that there is no perfect array code, and each code has a
trade-off among fault tolerance, storage efficiency and computational complexity.
In this paper, we aim to find an array code with a better trade-off.

We follow ideas in e.g. [4–7] describing methods of using Latin squares to
construct array codes. Motivated by these methods, this paper proposes a new
double-erasure array code named 3-PLEX based on Latin squares. The advan-
tages of 3-PLEX are that it has optimal computational complexity and no con-
straint of array size. The storage efficiency of 3-PLEX is always 60%. In other
words, 3-PLEX also has a trade-off between storage efficiency and performances.

This paper is organized as follows: we give the relationship between Latin
squares and k-plex in Sect. 2. Then, we describe the encoding procedure of 3-
PLEX with mathematical definition in Sect. 3. In Sect. 4, we present the decoding

Two-Erasure Codes from 3-Plexes 267

procedure with proof for two fault tolerance. In Sect. 5, we compare 3-PLEX and
other array codes. In Sect. 6, we describe an implementation and performance
tests of 3-PLEX based on NCFS. Section 7 summarizes the correspondence and
presents some future works.

2 Latin Squares and k-plexes

A k-plex of order n is an n × n matrix whose symbols belong to a set of size n,
with the following properties:

– each row contains k distinct symbols and n − k empty positions,
– each column contains k distinct symbols and n − k empty positions, and
– each symbol occurs exactly k times.

Latin squares are k-plexes of order n when k = n, and thus k-plexes generalize
Latin squares [14]. A 1-plex embedded in a Latin square is called a transversal.
The union of 3 disjoint transversals forms a 3-plex, and we use this method to
construct 3-plexes. Figure 2-a is a Latin square of order 5 containing the 3-plex
of order 5 in Fig. 2-b. Figure 2-c indicates to obtain a 3-PLEX code.

5
5

5

1
1

3

3

2

4
3

4
2 4

2

a. DCLS of order 5 b. 3-plex of order 5

5

1

1

2

2 4

4

4

31

1

5

2

3

3

5

d
d

d
1d

d

d
d

d

d
d

d

d

d
d

d

c. 3-PLEX code with 5 data disks

5
5

5
5

5

3
3

3
3

3

1
1

1
1

4
4

4
4

2

2
2

1

2

2 4

 1

1
1

Fig. 2. The relationship among DCLS, 3-plex and 3-PLEX code

In this paper, we construct 3-plexes from diagonally cyclic Latin squares
(DCLSs), which we define as a Latin square having forward broken diagonals
which have a constant increment from top to bottom (this is slightly different
from the standard definition [15]). Each broken diagonal in the Latin square in
Fig. 2-a increases by 2 (we highlight two forward broken diagonals). In a DCLS,
the union of any three forward broken diagonals is a 3-plex. For simplicity, we
use back-circulant Latin squares (i.e., constant broken antidiagonals) as DCLSs.
DCLSs only exist when n is odd, although 3-plexes exist for all orders n ≥ 3.

3 Encoding

Assuming that there are n data disks, in Sect. 3.1 we discuss how to arrange the
parity blocks. We also assume each block occupied the space of 1 bit. In actual
storage, each block may occupy 1 byte or more of disk space, which will not affect

268 L. Yi et al.

the encoding procedure of 3-PLEX. Similar to other array codes [1,3,9,16], the
parity blocks in 3-PLEX code can also be computed by calculating the XOR
sum of data blocks on the diagonal with slope 1 or −1. Figure 2 shows how to
map a 3-plex of order 5 to a 3-PLEX code with five data disks. Data blocks
in a 3-PLEX array correspond to symbols in the 3-plex marked with the same
colors. The data blocks placed in the same column are stored in the same disk in
the 3-PLEX disk array. Note that data blocks are placed consecutively on each
disk rather than arranged in line with the data layout of 3-PLEX code, i.e., the
empty positions denoted ‘.’ do not actually exist. To guarantee 3-PLEX with
two-fault tolerance, we encode data blocks in 3-PLEX array to row parity blocks
and diagonal parity blocks respectively like EVENODD code.

3.1 Data/Parity Layout

Before giving the definition of the encoding procedure, we need to choose one
appropriate data/parity layout of 3-PLEX. There are three layouts introduced
previously: horizontal, vertical, and hybrid layout. The storage efficiency and
encoding/updating complexity of the three layouts of 3-PLEX are same, and
only decoding complexity will be meaningfully affected by data/parity layout,
therefore in order to attain the lowest decoding complexity, we need to adapt a
proper data/parity layout.

Let’s take a 3-PLEX code of order 5 as a running example. Figure 3 plots
three data/parity layouts of 3-PLEX. The row parity blocks are shaded light
gray, and the diagonal parity blocks are shaded dark gray and represented by
the same number as their data blocks. In real storage systems, typically blocks
in each layout compose a stripe, and blocks in the same column form a stripe
unit as the basic storage unit. Stripe units in a stripe are stored on different
disks. A storage system contains many stripes. In addition, the empty positions
in each array layout do not exist actually and blocks in the same column are
consecutively stored practically. Thus, data blocks and parity blocks have differ-
ent sizes in horizontal layout and hybrid layout. This will not cause unbalance in
storage because data and parity blocks from different stripes typically are evenly
distributed over all the disks in a modern distributed storage system. Moreover,
encoding/decoding/updating computation will be performed correctly as long
as we keep track of the relationship between data blocks and parity blocks.

We compute the average number of exclusive-or operations required to recon-
struct two failed disks to measure the decoding complexity of 3-PLEX with
different data/parity layouts separately. For horizontal layout, we calculate the
decoding complexity from threes cases: (a) when two data disks fail, the decod-
ing complexity is 12, (b) when one data disk and one parity disk fail: 6 + 2n
(where n is the number of data disks), and (c) when two parity disks fail: 4n.
Hence, the mean decoding complexity of reconstructing two disk failure is 6+2n.
In terms of vertical layout, we find it can not support two fault tolerance after
theoretical analysis. As for hybrid layout, we compute the decoding complexity
in two ways: (a) two hybrid disks fail: 14, and (b) one hybrid disk and row parity
disk fail: 24+2n. Thus, the horizontal layout has lower decoding complexity than

Two-Erasure Codes from 3-Plexes 269

2 3 5
2 4 5

4 1 2
4 1 3
5 1 3
1 2 3 4 5
1 2 3 4 5

2 3 5 1
2 4 5 2

4 1 2 3
4 1 3 4
5 1 3 5
1 2 3 4 5

2 3 5 1 1

2 4 5 2 2

4 1 2 3 3

4 1 3 4 4

5 1 3 5 5

a. Horizontal layout b. Vertical layout c. Hybrid layout

Fig. 3. Three alternative data/parity layouts of 3-PLEX

the hybrid layout when n < 6, otherwise the hybrid layout has lower decoding
complexity. For simplicity, we focus on 3-PLEX with horizontal layout.

3.2 Encoding Procedure

Let ai,j be the data/parity block at the ith row and jth column (i ∈ {0, 1, . . . , n−
1} and j ∈ {0, 1, . . . , n + 1}), then the parity blocks of 3-PLEX code with hori-
zontal layout can be calculated according to the following rules:

ai,n =
n−1⊕
j=0

ai,j , (1)

ai,n+1 =
n−1⊕
j=0

a〈i−j〉n,j . (2)

where n is the number of data disks and 〈x〉n = x mod n. For simplicity, we
choose a 3-plex from three non-consecutive forward diagonals so that the differ-
ence between the indices of two of the three is indivisible by 3.

In order to make the encoding rules defined by (1) and (2) easy to understand,
we give an encoding example of 3-PLEX with horizontal layout and order five
showed in Fig. 4-a.

2 3 5 1 1

2 4 5 2 2

4 1 2 3 3

4 1 3 4 4

5 1 3 5 5

2 3 5 1 1

2 4 5 2 2

4 1 2 3 3

4 1 3 4 4

5 1 3 5 5
a. Two consecutive failed data disks b. Two inconsecutive failed data disks

Fig. 4. Two sub-cases of two failed data disks

270 L. Yi et al.

To illustrate the encoding rules of 3-PLEX by taking the first row parity
block a0,5 and the first diagonal parity block a0,6 illustrated in Fig. 4-a as specific
examples:

a0,5 = a0,1 ⊕ a0,2 ⊕ a0,4

a0,6 = a4,1 ⊕ a3,2 ⊕ a2,2

Other row or diagonal parity blocks can be calculated with same manner. In
addition, it’s easy to see that the number of data blocks in each row parity group
and diagonal parity group is same, i.e., the number of exclusive-or operations
required to compute one row parity block and one diagonal parity block is equal.
This feature explains why the encoding/updating complexity of horizontal and
hybrid layouts are identical.

4 Decoding and Proof for Two Fault Tolerance

When a single disk of failure occurs in 3-PLEX, lost data blocks of failed disk can
be directly reconstructed through row parity or diagonal parity. In this Section,
a corresponding decoding algorithm is given to prove that 3-PLEX code has the
ability to correct two disk failures.

Assuming columns c1 (disk c1) and c2 (disk c2) fail in the 3-PLEX array, we
describe the decoding algorithm split into four cases:

Case: c1 = n; c2 = n+1. I.e., both of the parity disks fail. This case is equivalent
to re-encoding all data blocks, hence the decoding algorithm is the same as the
encoding procedure.

Case: c1 < n; c2 = n. I.e., one data disk and the row parity disk fail simul-
taneously. In this case, the invalid data disk should be first recovered through
diagonal parity blocks and surviving data blocks, and then the failed row parity
disk can be reconstructed according to the encoding rules of row parity. Hence,
the decoding algorithm can be derived on the basis of (1) and (2):

ai,c1 = (
n−1⊕
j=0

a<i−j>n,j) ⊕ ai,n+1, j �= c1,

ai,n = ai,c2 =
n−1⊕
j=0

ai,j .

Case: c1 < n; c2 = n + 1. I.e., one data disk and the diagonal parity disk
fail simultaneously. This situation is similar to the previous case. we can directly
reconstruct failed data disk using row parity blocks and survival data blocks, then
failed diagonal disk can be recovered according to (2). Therefore, the decoding
algorithm of this case can be derived from (1) and (2):

ai,c1 = (
n−1⊕
j=0

ai,j) ⊕ ai,n, j �= c1,

ai,n+1 = ai,c2 =
n−1⊕
j=0

a<i−j>n,j .

Two-Erasure Codes from 3-Plexes 271

Case: c1 < c2 < n. I.e., two data disks fail simultaneously. We divide this case
into two sub-cases which are illustrated in Fig. 4: the two failed data disks are
(a) consecutive, (b) not consecutive. For case (a), since any consecutive two data
disks only have at most one common row filled with data blocks, we recover the
two data blocks in this special row (if it exists) according to diagonal parity; we
mark these two data blocks blue in Fig. 4. The remaining data blocks are only
one failed data blocks in their respective rows, and are thus simply recovered
via row parity, marked in green in Fig. 4. As for case (b), we recover the failed
data blocks marked green on the basis of row parity, and we also recover data
blocks marked blue according to diagonal parity. After the blue data blocks are
recovered, then we use row parity blocks and other related survival data blocks
to recover the last unrepaired data blocks marked red. Hence, the decoding
algorithm of situation (b) can be derived according to (1) and (2):

ai,c1 =
(n−1⊕
j=0

a<i−j>n,j

) ⊕ ai,n+1, j �= c1,

ai,c2 =
(n−1⊕
j=0

ai,j
) ⊕ ai,c1 ⊕ ai,n.

Since the decoding algorithms above are all derived from encoding rules
defined by (1) and (2), we conclude that 3-PLEX code has two fault tolerance.

5 Comparison with Existing Schemes

In this section, we compare 3-PLEX code with array codes proposed in [1,3,8,
9,16] in terms of fault tolerance, storage efficiency, encoding/decoding/updating
complexity and constraint of array size.

Fault Tolerance: fault tolerance is a basic indicator for measuring erasure
codes. Table 1 lists the fault tolerance and requirements for the number of data
disks of multiple erasure codes. RS code is the only code applied in practice
that can support arbitrary fault tolerance, but it has higher computational com-
plexity. Although HoVer code also can achieve arbitrary fault tolerance, its high

Table 1. Comparison of multiple erasure codes in fault tolerance

Erasure code Fault tolerance The number of data disks

RS Arbitrary Depends on the length of code words

EVENODD 2 Prime

RDP 2 Prime−1

X-Code 2 Prime

WEAVER ≤ 12 No constraints

HoVer Arbitrary No constraints

3-PLEX 2 No constraints

272 L. Yi et al.

fault tolerance will significantly influence storage efficiency and computational
complexity. EVENODD, RDP and X-Code can only tolerant two simultaneous
disks failures, and they also have array size limitation. WEAVER code can sup-
port up to 12 fault tolerance due to its special definition, however there is no
systematic construction method for WEAVER codes and most of them need to
determine the encoding rules using special search technology, hence WEAVER
code has worse scalability. 3-PLEX code proposed in this paper has been proved
that it has two fault tolerance.

5 15 2010
The number of disks

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ef
fic

ie
nc

y

HoVer(r=3)
HoVer(r=4)
EVENODD
RDP
X-Code
WEAVER
3-PLEX

Fig. 5. Storage efficiency

5 15 2010
The number of disks

0

0.2

0.4

0.6

0.8

1

1.2

En
co

di
ng

 c
om

pl
ex

ity HoVer(r=3)
HoVer(r=4)
EVENODD
RDP
X-Code
WEAVER
3-PLEX

Fig. 6. Encoding complexity

5 15 2010
The number of disks

2

4

6

8

10

U
pd

at
in

g
co

m
pl

ex
ity

HoVer
EVENODD
RDP
X-Code
WEAVER
3-PLEX

Fig. 7. Updating complexity

3 5 15 2010
The number of disks

0.5

1

1.4

D
ec

od
in

g
co

m
pl

ex
ity

HoVer(r=3)
HoVer(r=4)
EVENODD
RDP
X-Code
WEAVER
3-PLEX

Fig. 8. Decoding complexity

Storage Efficiency: Storage efficiency is the proportion of data blocks among
all blocks, and is another important criterion for evaluating erasure codes. In
Fig. 5, we see that WEAVER(n, 2, 2) code has the lowest storage efficiency (50%)
which is a trade-off between storage efficiency with other indicators. The storage
efficiency of 3-PLEX code is always 60% which is higher than WEAVER(n, 2, 2)

Two-Erasure Codes from 3-Plexes 273

code. Since EVENODD, RDP, and X-Code are MDS codes, and HoVer is a near-
MDS code, they have (near) optimal storage efficiency. Therefore, 3-PLEX also
has a trade-off between storage efficiency and the other performance metrics.

Encoding Complexity: Encoding overhead of erasure codes determines practi-
cability, and hence is an important indicator for evaluation. We generally use the
number of exclusive-or operations required to generate one single parity block
during encoding procedure to measure the encoding complexity. Figure 6 plots
the encoding complexity vs. the number of disks. In order to facilitate the obser-
vation of the relationship between practical encoding complexity and theoretical
optimal encoding complexity (the generation of a single parity block requires
n − 1 exclusive-or operations in theory), we use the ratio of practical and the-
oretical optimal encoding complexity as the ordinate, i.e., integer 1 in ordinate
indicates that the encoding complexity is theoretically optimal. It can be seen
from Fig. 6 that the encoding complexity of WEAVER code and 3-PLEX code
is equal and lowest compared to other array codes. HoVer, X-Code and RDP
codes reach the optimal encoding complexity in theory. Since the encoding proce-
dure of EVENODD code involves a special checksum S, its encoding complexity
approaches but is not theoretical optimal as the number of disks increases.

Updating Complexity: A large number of small IO operations increases the
updating overhead of a storage system, hence updating complexity is an impor-
tant parameter for judging the performance of erasure codes. Updating com-
plexity is usually represented by the average number of parity blocks needing
recalculation after updating one data block. Figure 7 illustrates the variation
in updating complexity of the various array codes as the number of data disks
increases. Except for EVENODD code, the updating complexity of other array
codes is 2 which implies these array codes have optimal updating complexity.
Since EVENODD requires the special checksum S due to the calculation of diag-
onal parity blocks, when one data block on this special diagonal is updated, S
also will be updated and all diagonal parity blocks need to be updated, this is
the reason why EVENODD’s updating complexity is higher than other array
codes.

Decoding Complexity: The decoding complexity of erasure codes directly
affects the availability and reliability of a storage system. Therefore, decoding
complexity is another key indicator for evaluating erasure codes. We usually use
the number of exclusive-or operations required to recover a single failed block
during decoding procedure to measure decoding complexity. We use the ratio of
practical and theoretical optimal decoding complexity as ordinate of Fig. 8 and
integer 1 indicates that the decoding complexity of corresponding array code
is optimal in theory. We see in Fig. 8 that 3-PLEX, WEAVER(n, 2, 2), X-Code
and RDP code all reach or approach the theoretical optimal decoding complexity.
Also due to the existence of S, EVENODD’s decoding complexity is higher than
other array codes but also close to be optimal in theory.

274 L. Yi et al.

To summarize, 3-PLEX code exchanges lower computational complexity with
some storage space, i.e., there is a trade-off between storage efficiency and the
other performance metrics.

6 Implementation and Performance

2 4 6 8 10 12 14 16 18 20
The number of disks

0

2

4

6

8

10

12

14

E
xe

cu
tio

n
tim

e

3-PLEX
EVENODD
RS

Fig. 9. Single fault reconstruction time of 3-PLEX, EVENODD and RS code

In this section, we implement the encoding and decoding algorithm of 3-PLEX
code on Network-Coding-Based Distributed File System (NCFS) [10]. We focus
on measuring the decoding complexity of repairing after single disk failure of
each erasure code on NCFS [11]. We deploy NCFS on the virtualized Linux
platform with 8 cores (2 GHz) of CPU, 16G of memory, 200G of HDD, and use
actual execution time of reconstructing one failed disk to represent the decoding
complexity of each erasure codes. For each erasure code, we respectively measure
its execution time of decoding 100 times when the total number of disks in this
code ranges from 3 to 20 and calculate the average of the results of 100 times
to record the decoding time. Figure 9 plots the test results for RS, EVENODD
and 3-PLEX code.

We observe that 3-PLEX code has the lowest decoding complexity, EVEN-
ODD code follows, and RS code has the highest decoding complexity. As we
assume that the capacity of each disk is 100 MB, it seems that 3-PLEX code has
a marginal improvement over EVENODD code illustrated in Fig. 9. If each disk
stores far greater than 100 MB of data, the advantage of 3-PLEX code will be
more obvious. Another conclusion we draw is that the decoding complexity of the
three erasure codes becomes gradually stable as the number of disks increases to
15. Both of the two conclusions are consistent with the performance analysis in
theory. In addition, we observe that performances of each code in the simulated

Two-Erasure Codes from 3-Plexes 275

storage system are in agreement with the theoretical analysis in Sect. 5, which
indicates that the theoretical performance comparison analysis of the codes in
Sect. 5 is reliable.

7 Conclusions

In this paper, we present a novel erasure code called 3-PLEX code which can
tolerate two disk failures. It has optimal computational complexity and no con-
strains of array size. It exchanges low computational complexity with storage
efficiency, i.e., there is a trade-off between storage efficiency and performances.
In addition, since the idea for 3-PLEX code generated from Latin squares, we
can continue to research the following aspects: (a) study 3-plex and orthogonal
3-plexes to extend 3-PLEX code with higher fault tolerance, (b) adjust the val-
ues of k and n to find a k-PLEX code that can achieve a better trade-off in fault
tolerance, storage efficiency and performances.

References

1. Blaum, M., Brady, J., Bruck, J., Menon, J.: EVENODD: an efficient scheme for
tolerating double disk failures in RAID architectures. IEEE Trans. Comput. 44(2),
192–202 (1995)

2. Blaum, M., Roth, R.M.: On lowest density MDS codes. Trans. Inform. Theory
45(1), 46–59 (1999)

3. Corbett, P., et al.: Row-diagonal parity for double disk failure correction. In: Pro-
ceedings of the FAST, pp. 1–14 (2004)

4. Gang, W., Sheng, L., Xiaoguang, L., Jing, L.: Representing X-Code using latin
squares. In: Proceedings of the PRDC, pp. 177–182 (2009)

5. Gang, W., Xiaoguang, L., Sheng, L., Guangjun, X., Jing, L.: Constructing double-
erasure HoVer codes using Latin squares. In: Proceedings of the ICPADS, pp.
533–540 (2008)

6. Gang, W., Xiaoguang, L., Sheng, L., Guangjun, X., Jing, L.: Constructing libera-
tion codes using Latin squares. In: Proceedings of the PRDC, pp. 73–80 (2008)

7. Gang, W., Xiaoguang, L., Sheng, L., Guangjun, X., Jing, L.: Generalizing RDP
codes using the combinatorial method. In: Proceedings of the NCA, pp. 93–100
(2008)

8. Hafner, J.L.: WEAVER codes: Highly fault tolerant erasure codes for storage sys-
tems. In: Proceedings of the FAST, vol. 5 (2005)

9. Hafner, J.L.: HoVer erasure codes for disk arrays. In: Proceedings of the DSN, pp.
217–226 (2006)

10. Hu, Y., Yu, C.M., Li, Y.K., Lee, P.P., Lui, J.C.: NCFS: on the practicality and
extensibility of a network-coding-based distributed file system. In: Proceedings of
the NetCod, pp. 1–6. IEEE (2011)

11. Huang, C., Xu, L.: Star: an efficient coding scheme for correcting triple storage
node failures. Trans. Comput. 57(7), 889–901 (2008)

12. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes, vol. 16.
North Holland (1977)

276 L. Yi et al.

13. Plank, J.S.: Optimizing Cauchy Reed-Solomon codes for fault-tolerant storage
applications. University of Tennessee, Technical Report CS-05-569 (2005)

14. Wanless, I.M.: A generalisation of transversals for Latin squares. Electron. J. Com-
bin. 9(1), r12 (2002)

15. Wanless, I.M.: Diagonally cyclic Latin squares. Euro. J. Combin. 25, 393–413
(2004)

16. Xu, L., Bruck, J.: X-Code: MDS array codes with optimal encoding. IEEE Trans.
Inform. Theory 45, 272–276 (1999)

Deep Fusion: A Software Scheduling
Method for Memory Access Optimization

Yimin Zhuang1,2(B), Shaohui Peng1,2, Xiaobing Chen1,2, Shengyuan Zhou1,2,
Tian Zhi1,2, Wei Li1,3, and Shaoli Liu1,3

1 SKL of Computer Architecture, Institute of Computing Technology, CAS,
Beijing, China

{zhuangyimin,pengshaohui18z,chenxiaobing,zhousy,zhitian,
liwei2017,liushaoli}@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
3 Cambricon Tech. Ltd, Shanghai, China

Abstract. Deep neural networks (DNNs) have been considered to be the
state-of-the-art artificial intelligence methods in a very broad range of
applications. However, DNNs are compute intensive and memory inten-
sive which are difficult to be employed in practical scenarios. Due to
their favorable parallel computing ability, a series of DNN accelerators
have been proposed. However, the improvement of on-chip computing
capacity and the increasing number of parameters in the neural net-
works make access to memory a bottleneck. In this paper, we analyze
the existing DNN algorithms. We observe that the special structure of
neural networks makes it have two useful characteristics, which are uni-
lateral directivity and local independence. Based on these characteris-
tics, we propose a general software scheduling method to reduce memory
access cost. Based on the experimental results, our method can reduce
32% memory access cost and achieve a speedup of 1.6x in average on our
experiment platform and the best result is in ResNet-50, which is up to
56% and 2.62x.

Keywords: Fusion · Reuse · On-chip Memory

1 Introduction

Deep neural networks (DNNs) are ubiquitous in a very broad range of applica-
tions, such as speech recognition [1], object detection [2,3], semantic segmenta-
tion [4] and so on. With the continuous development of DNNs both the number
of neurons and synapsis increases exponentially. As a result, the operations of
computing and memory accessing will grow far beyond the hardware processing
capability especially for the embedded systems. A large number of solutions have
been proposed by the researchers to address this limitation, such as pruning [5],

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 277–288, 2019.
https://doi.org/10.1007/978-3-030-30709-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_22

278 Y. Zhuang et al.

data compressing [6], low-precision quantization [7], etc. However, the existing
general processor platforms (such as CPU, FPGA, DSP, etc.) are still difficult
to fully meet the requirements of practical applications.

Some researchers considered the general characteristics of DNN algorithms
and designed neural network accelerators [11–13]. DianNao [8] is a dedicated
accelerator which makes advantages of the data locality and computational prop-
erties of DNNs. DaDianNao [9] adopts time-division multiplexing of neurons to
acquire high performance. EIE [10] utilizes sparse data to speed up the process of
computation. Generally, DNN accelerators prefer to add private on-chip memory
for performance improvement. Data is loaded from DRAM to on-chip memory
and then the results are stored back to DRAM after computation. However, for
most of the neural network accelerators, a large increase in the computational
resources will aggravates the shortage of memory bandwidth and resource con-
tention of on-chip network. The data transmission latency between internal and
external storage will make up a large portion in the program execution time.

In this work, we propose a general software scheduling method to optimize the
memory access by making advantages of both unidirectional data transportation
and local data independence. Besides, we propose an on-chip memory reuse
method to expand the on-chip memory size.

The paper is organized as follows. In Sect. 2, we show the bottleneck that
we face of memory access and the optimization potential of DNNs. In Sect. 3,
we introduce the details of our method. The experimental methodology and
experimental results are presented in Sect. 4. Section 5 makes a conclusion at
last.

2 Motivation

2.1 Memory Access Bottleneck

Most DNN algorithms are computational and memory intensive. A number of
accelerators which can offer high compute capability have been proposed to solve
the computationally intensive problem. As a matter fact, the current mainstream
neural network accelerators have TFLOPS-level operation capability which is far
beyond the bandwidth of the current external memory. However, most of these
work assume away the question of memory access. To illustrate this problem,
we analyze the amount of computation and memory access for all layers in
ResNet-18 [21].

As shown in Fig. 1, the ratio of computation to memory access for each
layer is different in ResNet-18 which need different requirement for bandwidth
and compute capability. Taking the element-wise layer as example, we need a
bandwidth of 12 GB/s if our compute capability is 1 GFLOPS. Meanwhile, the
requirement of bandwidth is only 10 MB/s for convolution layers with the same
compute capability of 1 GFLOPS. Although the hardware architecture of neu-
ral network accelerators is well-designed to make a balance between memory
bandwidth and computation capability, they will never reach their full potential

Deep Fusion: A Software Scheduling Method 279

without software optimization. We further statistics the proportion of compu-
tation and memory access for each layer in the whole ResNet-18. As shown in
Table 1, more than 95% of data transmission account is in certain layers includ-
ing convolution layers, BatchNorm layers, scale layers, ReLU layers and eltwise
layers. However, the computation amount of these layers is small except convo-
lution layers, which is less than 1% in the whole network. Thus, the bottleneck
of memory access is serious in these layers.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Memory Access (Bytes) Computa on (operators)

Fig. 1. Compute-to-global-memory-access ratio for each layer in ResNet-18

2.2 Potential of Optimization

To solve this bottleneck, we further analyze the characteristics of DNN algo-
rithms. We can neutralize the inhomogeneity between memory access and com-
putation of different layers by fusing multiple layers together because of the
important characteristic of unilateral directivity in DNN algorithms. Since the
dataflow of DNNs is unilateral, multiple layers can be computed together. Neu-
rons are stored on-chip and are considered as input neurons for one hidden layer.
The output neurons are still stored on-chip and are used as input neurons for
next hidden layers. Besides, we can obviate a large number of data transmission
from DRAM to on-chip memory or on-chip memory to DRAM. We observe that
more than 99.6% data transmission can be reduced in ResNet-18 if all layers can
be fused together.

However, it is almost unavailable to fuse all layers in real neural networks.
Among the reasons for this state of affairs, one may cite the mismatch between
the size of on-chip memory and neurons, the small on-chip memory size limited
by the hardware overhead and the vast on-chip memory size needed to cache the
intermediate data of the fused layers. Another important characteristic of DNN
algorithms to relieve this problem is local independence. Each point of output
neurons in one layer only depends on a defined region of input neurons. Hence, the
neurons can be tiled into pieces and we can compute each piece separately. Thus,

280 Y. Zhuang et al.

Table 1. Proportion of computation and memory access for each layer in ResNet-18

Layer Computation amount Memory accessing amount

Convolution 99.55% 45.59%

BatchNorm 0.15% 15.27%

Scale 0.15% 15.24%

ReLU 0.06% 13.10%

Pooling 0.05% 2.92%

Eltwise 0.02% 6.41%

InnerProduct 0.03% 1.46%

SoftMax 0.00% 0.01%

we can fuse more layer with the same on-chip memory size. And combining the
aforementioned features, we further propose an on-chip memory reuse method.
We will present the detail of our method in the following section.

2.3 Existing Works

Some works which fuse the active layers after the convolution layers have been
done in some mainstream machine learning frameworks, including MXNet [14]
and Tensorflow [15,16]. However, the compute capacity is much higher than
bandwidth in most accelerators. The ratio in GPU V100 is 10x and it is much
greater in other accelerators. Thus, it is meaningful to fuse more layers. Manoj
Alwani et al. [17] proposed a method to fuse multiple convolution layers, but
it aims at hardware implementation. As a result, it is not general and flexi-
ble enough. Thus, a general software scheduling method with deeper fusion is
important to solve the bottleneck of memory access.

3 Optimization Method

In this section, we propose a software scheduling method on neural network
accelerators. The method consists of two mainly parts. One is layer fusion by
software which can greatly reduce the demand of memory access. The other is
on-chip memory reuse method, which can solve the large memory space required
by layer fusion and the limitation of on-chip memory size in the accelerators.
We will tile the data of each layer into pieces, then for each calculation, we get
a piece of output from corresponding pieces of input, as shown in Fig. 2. We will
describe our method in detail in this section.

3.1 Layer Fusion

At first, we show the details of the software scheduling method. To make the
program of software more flexible, we decoupled the fusion process into two
phases. One phase is operational-related shape deduction (SD) and the other
phase is operational-independent shape transfer (ST).

Deep Fusion: A Software Scheduling Method 281

Shape Decuc on

Layer N

Layer N-1

Shape Decuc on

Shape Transfer

Fig. 2. An example for layer fusion process

SD. Shape deduction is to get the coordinate relationship between input data
and output data. Most of layers in DNNs have four dimensions including batch,
height, width and channel. In this subsection, for simplicity, we use the shape
deduction between height dimension and width dimension as an example. For
other dimension or dimensions greater than four, the method is almost the same.
Besides, we prefer to infer shape from output shape to input shape, because
sometimes there is redundant data for input data which will affect the shape
deduction.

We use Range(W) to represent an interval and W ∈ [wb, we). Similarly, we
can use Range(X,Y) to represent a range on a two-dimensional plane. Hence,
we can use the following expressions to represent the process of shape deduction.

Range(Wi,Hi) = kernel(Wo,Ho)

Where kernel(·) is the function of shape deduction, Range(Xi, Yi) is coordi-
nate range of input data and Range(Xo, Yo) is the coordinate range of output
data. The shape deduction is related to the operators of each layer. For differ-
ent layers, the deduction formulas are different. We take some typical layers as
examples and we use xxx kernel to distinct different kernel functions. Here xxx
is usually an abbreviation of layer name.

Convolution/Pool. Convolution and pool are the most typical layers in DNNs.
There are some basic parameters in these operators, such as kernel size, stride,
etc. We use kh, kw, sh and sw as abbreviations.

282 Y. Zhuang et al.

Range(Wi,Hi) = cvpl kernel(Range(Wo,Ho)) :
(Wib ,Wie) = (Wob ∗ sw,Woe ∗ sw + kw)
(Hib ,Hie) = (Hob ∗ sh,Hoe ∗ sh + kh)

Pad. Pad operator generally occurs in convolution or pooling layers. However,
pad operator will change the shape of data, thus we make it as a separate layer.

Range(Wi, Hi) = pad kernel(Range(Wo, Ho)) :

Wib (Wie) =

⎧
⎪⎨

⎪⎩

0 if Wob (Woe) < pad left

Wob (Woe) − pad left if pad left ≤ Wob (Woe) ≤ W + pad left

W if Wob (Woe) > W + pad left

Hib (Hie) =

⎧
⎪⎨

⎪⎩

0 if Hob (Hoe) < pad up

Hob (Hoe) − pad up if pdf up ≤ Hob (Hoe) ≤ H + pad up

H if Hob (Hoe) > H + pad up

BatchNorm/Scale/Active. For these layers, they will not change the shape of
data, thus it makes shape deduction directly.

Range(Wi,Hi) = elt kernel(Range(Wo,Ho)) :
(Wib ,Wie) = (Wob ,Woe)
(Hib ,Hie) = (Hob ,Hoe)

ST. In shape deduction phase, each layer only focuses on the coordinate of
output data and returns the coordinate of the input data. In shape transfer
phase, it will call the kernel function defined in shape deduction phase. The
coordinate of output data will be set as input to the kernel function of current
layer and the result of kernel function will be passed to the kernel function of
the previous layer. Thus, we will get all coordinate information of all layer be
fused after we go through all these layers. The pseudocode is shown in Fig. 3.

ShapeTransfer (Range (Xo ,Yo)) :
Coordinates [FusionLayerNum] = Range (xo ,Yo)
For (LayerIndex=FusionLayerNum−1; LayerIndex>=0; LayerIndex−−):

Coordinates [LayerIndex]= ke rne l (Coordinates [LayerIndex+1])
Return coo rd ina t e s ;

Fig. 3. Pseudocode for shape transfer

Deep Fusion: A Software Scheduling Method 283

3.2 On-Chip Memory Reuse

Although layer fusion can greatly reduce the requirements of memory access, it is
limited by the size of on-chip memory. In this part, we analyze the characteristics
of DNN at first, and then introduce the on-chip memory reuse method which
makes use of the characteristics to break the memory limitation.

Base on the characteristic of unilateral directivity for DNNs, once the input
data of one layer has been used and this data does not need by other layers,
the memory space of this data can be reused. Besides, the shape of data can be
gotten in advance in most of inference phase, which makes data reused on-chip
is available.

The process of data distribution can be represented in a simplified sequence.
Here, we only care about the point when the memory usage status changes, and
we define the equivalent life time of each data from the allocate point to the free
point. To illustrate this process more clearly, an example sequence is shown in
left side of Fig. 4.

Ram A

Ram B

Ad
dr

es
s

Ram C

Alloc A

Alloc B

Alloc C

Free A

Free B

Free C

life me

max memory usage

Fig. 4. The left side shows an example of memory distribution sequence. The right
side shows a possible memory distribution result.

Figure 4 also shows an intuitive memory reuse method. We consider two data
dependent if there is overlap between the life times of these two data. Otherwise,
the memory space can be shared by these two data. As what we show in Fig. 4,
ram A and ram B are dependent, and ram B and ram C are dependent too. But
for ram A and ram C, they are independent, thus they share the same memory
space.

The intuitive memory reuse method can save a large number of space, but
it is limited by the data size. Once the size of input data or the size of output
data is larger than on-chip memory size, we cannot fuse more layers.

To make these cases can be fused, we propose a deep memory reuse method.
Base on the characteristics of local independence, when a local part of input
data has been used to get a local part of output data, the memory space of this
local part can reused. Thus, even if the life time of input data and output data
has overlap, the output data can reuse part of memory space of the input space.
The most special case is some element wise layers, such as add, BatchNorm,

284 Y. Zhuang et al.

scale, etc. The input data and output data of these layers have the same size
and can share the same memory space.

To illustrate the point more clearly for general cases, we take a concrete
example of convolution layer which is shown in Fig. 5.

The horizontal axis in Fig. 5 is the growth of output data in H and W
dimension. Here, we consider the multiplication of height and width as one
dimension. For the calculation of each point, we get the address of first point
in the piece of data we need and the address of current output point. Then, we
join these points into two lines, as shown in Fig. 5. For each point, the memory
space for those input data whose address is below the input address line can be
reused, because these data have been used to calculate the output data before
current point.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80 90 100

Ad
dr

es
s (

by
te

)

Height * Width

output address floor of output address ceil of output address

input address floor of input address ceil of output address

Fig. 5. The height, width and channel of input data and output data for this con-
volution is [8, 64, 3] and [3, 31, 16] and the sizes of kernel and stride are 4 × 4 and
2 × 2.

Even the life time of output data and input data is overlapped, they can still
share a part of memory space. As shown in Fig. 5, the address range of input
data is from 2096 (bytes) to 8240 (byte) and that of output data is from 0 (byte)
to 5952 (byte). Thus, we reduce 31% memory usage in this case.

3.3 Fusion Method

Combining the methods above, we will show the implementation of our fusion
method in this part. Figure 6 is an executive flow chart of our method. For each
fusion, we first tile output data of the last layer into pieces. Then we do shape
transfer for each piece and in the phase of shape transfer, it will call the kernel
functions defined by each fused layer to do shape deduction. We then allocate
memory space for all data. If the memory distribution is well-done, we can try

Deep Fusion: A Software Scheduling Method 285

to fuse the next layer. Otherwise, we shrink the tiled size and try to do shape
transfer and memory distribution again. If the tiled size is the smallest tiled size,
it means the current layer cannot be fused and returns the already fused layer
list.

This process can be done before networks execution and we can get the
coordinate and memory address for each piece of data. According to these infor-
mation, we can execute the entire network through the specific instruction set or
opcodes provided by the accelerators. The pseudocode is shown in Fig. 7. The in
and out are the first input data and last output data for current fused list. The
compute function is defined by each layer according to their own algorithms.
The input data is loaded from DRAM and all middle data is stored on-chip. The
output data is stored back to DRAM when we get a piece of final results.

Tile Output

Shape Transfer

Memory Distribu on

Fuse Next Layer

Shrink Tile Size

success

Cannot Fuse

Return Fused List

Y

N

Y

N

Fig. 6. Flowchart of layer fusion method

Execution (in , out) :
For (i = 0 ; i < PiecesNum ; i ++):

mid data = Load (in [i])
For (j = 0 ; j < FusionLayerNum ; j ++):

mid data = compute<i>(mid data)
out [i] = mid data

s t o r e (out [i])

Fig. 7. Pseudocode for execution

286 Y. Zhuang et al.

4 Experiment

4.1 Experiment Methodology

We design a prototype accelerator as our experiment platform. The structure of
the prototype refers to the design of DaDianNao [9]. In our experiment platform,
we limit the bandwidth between DRAM and on-chip memory to 1.5 GB/s. the
compute capability of the prototype accelerator is 200 GFLOPS and we set 768
KB size of on-chip memory.

We choose five typical NN models as the benchmarks to evaluate our method,
i.e. VGG-19 [18], GoogLeNet [19], InceptionV3 [20], ResNet-18 [21] and ResNet-
50 [21]. Besides, we evaluate our optimization in the prototype accelerator, and
compare the result of the memory access reduction and execution time improve-
ment between the method without optimization, with only layer fusion and with
both layer fusion and on-chip memory reuse.

4.2 Layer Fusion Result

We take the results of the method without optimization as the baseline. Then we
test two methods with only layer fusion and with both layer fusion and on-chip
memory reuse. The results are presented in Figs. 8 and 9.

10
0.0

0%

10
0.0

0%

10
0.0

0%

10
0.0

0%

10
0.0

0%

87
.55

%

73
.34

% 82
.96

%

61
.29

%

46
.30

%

84
.40

%

65
.02

% 74
.45

%

54
.42

%

43
.44

%

V G G - 1 9 I N C E P T I O N - V 3 G O O G L E N E T R E S N E T - 1 8 R E S N E T - 5 0

ME
MO

RY
 A

CC
ES

S R
ED

UC
TIO

N

without optimization only layer fusion both layer fusion and on-chip memory reuse

Fig. 8. Ratio of memory access reduction w.r.t the baseline.

Figure 8 shows the result of memory access reduction rate compared with
baseline. We get more than 15% reduction of memory access in our bench-
marks, especially for ResNet-50 which acquires 56% reduction. The performance
improvement of execution time has similar tendency as shown in Fig. 9. We get
at least 1.26x performance improvement in VGG-19 and at most 2.62x perfor-
mance improvement in ResNet-50. Besides, we can get a better effect which is
more than 5% improvement in average for both memory access reduction and
performance by using on-chip memory reuse in addition.

Deep Fusion: A Software Scheduling Method 287

1x 1x 1x 1x 1x
1.19x

1.44x

1.22x

1.79x

2.44x

1.26x

1.59x

1.37x

1.93x

2.62x

V G G - 1 9 I N C E P T I O N - V 3 G O O G L E N E T R E S N E T - 1 8 R E S N E T - 5 0

SP
EE

DU
P

without optimization only layer fusion both layer fusion and on-chip memory reuse

Fig. 9. Speedup w.r.t. the baseline (execution time).

We find that the result in VGG-19 is not much better than other networks.
Then we further analyze the fusion status in VGG-19. We observe that the most
layers in VGG-19 is convolution layers and the kernel size of all these layers is
3x3 which result in a large synapse data size. However, synapse is shared by all
input data in convolution layers. Thus, if we tile input data into pieces, each
piece of data need the same synapse data and these synapse data will take up
an independent memory space. The memory space is run out of soon if we fuse
more convolution layers. If we have much more on-chip memory space, we can
layer out more synapse data or we can reuse the space of synapse data if the
input data is not tiled into pieces. However, it is a tradeoff between performance
and the area of accelerators.

5 Conclusion

The development of neural network accelerators makes DNNs run faster and
faster, but the slowly development of bandwidth for DRAM makes accelerators
stuck in a memory access bottleneck. It is very important to solve this problem
to utilize accelerators more effective.

In this paper, we propose a new software scheduling method to optimize
memory access. It mainly consists of two parts, one is layer fusion and the other
is on-chip memory reuse. They utilize the properties of DNNs. That is unilat-
eral directivity and local independence. Based on the experimental results, our
method achieves 32% memory access reduction and 1.6x speedup in average. To
get a better performance, we can expand the amount of space on chip, however,
it is a tradeoff between performance and the area of accelerators.

Acknowledgment. This work is partially supported by the National Key Research
and Development Program of China (under Grant 2017YFB1003104), the NSF of
China (under Grants 61432016, 61532016, 61672491, 61602441, 61602446, 61732002,
61702478, 61732007 and 61732020), Beijing Natural Science Foundation (JQ18013),
the 973 Program of China (under Grant 2015CB358800), National Science and Tech-
nology Major Project (2018ZX01031102), the Transformation and Transfer of Scien-

288 Y. Zhuang et al.

tific and Technological Achievements of Chinese Academy of Sciences (KFJ-HGZX-
013), Key Research Projects in Frontier Science of Chinese Academy of Sciences
(QYZDB-SSW-JSC001) , Strategic Priority Research Program of Chinese Academy
of Science (XDB32050200, XDC01020000) and Standardization Research Project of
Chinese Academy of Sciences (BZ201800001).

References

1. Xiong, W., et al.: Achieving human parity in conversational speech recognition.
In: IEEE/ACM Transactions on Audio, Speech, and Language Processing, p. 99
(2016)

2. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region pro-
posal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

3. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement (2018)
4. Noh, H., Hong, S., Han, B.: Learning Deconvolution Network for Semantic

Segmentation (2015)
5. Han, S., et al.: Learning both Weights and Connections for Efficient Neural

Networks (2015)
6. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-

works with pruning, trained quantization and huffman coding. Fiber 56(4), 3–7
(2015)

7. Jacob, B., et al.: Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference (2017)

8. Chen, T., et al.: DianNao: a small-footprint high-throughput accelerator for
ubiquitous machine-learning. ACM Sigplan Not. 49(4), 269–284 (2014)

9. Chen, Y., et al.: DaDianNao: A Machine-Learning Supercomputer (2014)
10. Han, S., et al.: EIE: efficient inference engine on compressed deep neural network.

ACM Sigarch Comput. Archit. News 44(3), 243–254 (2016)
11. Shen, Y., Ferdman, M., Milder, P.: Escher: a CNN accelerator with flexible buffer-

ing to minimize off-chip transfer. In: 2017 IEEE 25th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM) IEEE Com-
puter Society (2017)

12. Chen, Y.-H., et al.: Eyeriss: an energy-efficient reconfigurable accelerator for deep
convolutional neural networks. IEEE J. Solid-State Circuits 52(1), 127–138 (2017)

13. Liu, S., et al.: Cambricon: an instruction set architecture for neural networks. In:
ACM/IEEE International Symposium on Computer Architecture (2016)

14. Chen, T., et al.: MXNet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems. Statistics (2015)

15. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning (2016)
16. Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems (2016)
17. Alwani, M., et al.: Fused-Layer CNN Accelerators. In: IEEE/ACM International

Symposium on Microarchitecture (2016)
18. Simonyan, K., Andrew Z.: Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556 (2014)
19. Szegedy, C., et al.: Going Deeper with Convolutions (2014)
20. Xia, X., Cui, X., Bing, N.: Inception-v3 for flower classification. In: International

Conference on Image (2017)
21. He, K., et al.: Deep Residual Learning for Image Recognition (2015)

http://arxiv.org/abs/1409.1556

Optimizing Data Placement
on Hierarchical Storage Architecture

via Machine Learning

Peng Cheng1,2, Yutong Lu3(B), Yunfei Du3, Zhiguang Chen3, and Yang Liu4

1 College of Computer, National University of Defense Technology, Changsha, China
peng.cheng@nscc-gz.cn

2 State Key Laboratory of High Performance Computing, Changsha, China
3 National Supercomputer Center in Guangzhou, School of Data

and Computer Science, Sun Yat-Sen University, Guangzhou, China
{yutong.lu,yunfei.du,zhiguang.chen}@nscc-gz.cn
4 Department of Computer Science and Technology,

Tsinghua University, Beijing, China
liuyang2011@tsinghua.edu.cn

Abstract. As storage hierarchies are getting deeper on modern high-
performance computing systems, intelligent data placement strategies
that can choose the optimal storage tier dynamically is the key to realize
the potential of hierarchical storage architecture. However, providing a
general solution that can be applied in different storage architectures and
diverse applications is challenging. In this paper, we propose adaptive
storage learner (ASL), which explores the idea of using machine learning
techniques to mine the relationship between data placement strategies
and I/O performance under varied workflow characteristics and system
status, and uses the learned model to choose the optimal storage tier
intelligently. We implement a prototype and integrate it into an existing
data management system. Empirical comparison based on real scientific
workflows tests shows that ASL is capable of combining workflow char-
acteristics and real-time system status to make optimal data placement
decisions.

Keywords: Storage optimization · Machine learning ·
Hierarchical storage · Data placement

1 Introduction

With the converging of High-Performance Computing (HPC) and big data, mas-
sive datasets are produced and analyzed by HPC systems. For example, the large
N-body simulation that evolved more than a trillion particles on the BG/Q
Mira system generates approximately 5PB of raw outputs [1]. The exascale
deep learning on the Summit system analyzes 3.5TB climate data [2] to detect
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 289–302, 2019.
https://doi.org/10.1007/978-3-030-30709-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_23&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_23

290 P. Cheng et al.

extreme weather. As scientific workflows become more complex and more data-
intensive, supporting these workflows on HPC systems present serious challenges
in I/O performance [3,4].

To improve the I/O performance, many modern HPC systems use middle-
ware or heterogeneous storage devices to expand the storage subsystem in a
hierarchical manner. Memory-based staging solutions, such as DataSpaces [5],
use memory space of compute nodes to stage intermediate data. Shared burst
buffer strategy, such as Cori system [6], uses SSDs near I/O nodes and Cray
DataWarp software [7] to implement a shared staging area for coupling applica-
tions. Local burst buffer strategy, such as Summit system [8], equips per-node
attached SSD for each compute node to buffer intermediate data locally. Mean-
while, current research on storage class memories (SCM) is expected to be able
to add additional layers to the memory and storage hierarchy in future HPC
systems [9].

Due to the largely different latency, bandwidth and capacity of heterogeneous
storage devices, different data placement strategies could lead to wildly varying
I/O performance. However, existing storage systems usually apply one-layout-
fits-all strategy or leave the burden of making data placement decisions to users
[10]. Such fixed and manual data placement might result in the inefficient use
of hierarchical storage architecture because of load imbalance [11] and resource
contention [12]. Previous works [13,14] provide workflow-aware data placement
mechanism but depend on user-provided hints, which is infeasible for complex
workflows. While Stacker [15] leverages hierarchical n-grams model to predict
upcoming read request and guide data prefetching, smart data placement deci-
sions across different storage tiers remain to be researched.

In this paper, we propose adaptive storage learner (ASL), which explores the
idea of leveraging machine learning techniques to mine the relationship between
data placement strategies and I/O performance under varied workflow charac-
teristics and system status, and uses the learned model to choose the optimal
storage tier dynamically during the workflow execution. Compared with previous
works, ASL focus on scientific workflows and enables intelligent data placement
strategy to make the most benefit of hierarchical storage architecture without
any user-provided hints. We provide a prototype implementation of ASL and
integrate it with Alluxio [16] data management system. Our evaluations of two
scientific workflows validate the effectiveness of ASL in combining workflow char-
acteristics and real-time system status to make optimal data placement decisions.
While this paper focuses on optimizing data placement across different storage
tiers, the idea of training a classification model to guide storage optimization
can be applied in different scenarios. Our contributions in this paper can be
summarized as follows.

– A workflow simulator with I/O performance model that reflects the changing
workloads, heterogeneous storage devices, and varying configurations.

– A classification model that leverages workflow characteristics and system sta-
tus to make optimal data placement decisions.

Optimizing Data Placement on Hierarchical Storage Architecture 291

– A prototype implementation that manages data on tiered storage architecture
and enables intelligent data management decisions.

– An extensive evaluation with two scientific workflows on a typical HPC
system.

The rest of this paper is organized as follows. Section 2 presents a brief back-
ground and the motivation of this paper. We explore the idea of training a
classification model for storage optimization in Sect. 3 and present the design
and implementation in Sect. 4. We validate the effectiveness of ASL in Sect. 5.
Section 6 discusses some related studies currently existing in the literature. We
conclude the paper and talk about future works in Sect. 7.

2 Background and Motivation

Scientific workflows: A scientific workflow is the assembly of complex sets of
scientific data processing activities with data dependencies between them [17].
Due to the repetitive nature of scientific discovery, scientific workflow manage-
ment system (SWfMS) like Pegasus [18] and Swift [19] are increasingly used
in HPC environments to manage the complex simulations and analyses. Work-
flow description file contains the necessary information about the entire work-
flow, including the tasks to be executed and data-flow/control-flow dependen-
cies between these tasks. SWfMSs take the description of the abstract workflow
as input and coordinate and execute workflow tasks over available computing
resources.

Motivation: Data placement strategies on hierarchical storage architecture can
be divided into horizontal placement (how data are distributed inside a storage
layer) and vertical placement (how data are distributed across different storage
layers). In this paper, we focus on vertical data placement since heterogeneous
storage devices show largely different latency, bandwidth, and capacity. While
different data placement strategies could lead to wildly varying I/O performance,
existing data management systems [15,16] often apply the one-layout-fits-all
strategy that uses the top storage tier (e.g., memory tier) as the performance
tier and uses lower storage tier (e.g., SSD tier or HDD tier) as capacity tier.
However, such fixed data placement strategy might result in the inefficient use
of hierarchical storage architecture. Firstly, serious load imbalance occurs since
the fixed data placement strategy keeps staging data to a specific storage layer,
while other storage layers keep unused [11]. Secondly, as the available space of
that layer gets insufficient, backend data migration requests need to move data
to lower tiers. The resource contention between regular write requests and
backend data migration requests could even lead to almost 70% performance
degradation [12].

3 Training Classification Model for Storage Optimization

The basic idea that guides our design is that both data access patterns and
real-time system status should be taken into consideration to make the optimal

292 P. Cheng et al.

data placement decision. For example, if the top storage layer has plenty of space
to stage all the intermediate data during the execution of scientific workflows,
choosing the top storage layer to serve every write request will provide supe-
rior I/O performance. Otherwise, only data will be accessed by subsequent task
immediately can be written into the top storage layer, and other data should be
written to the lower storage layer to keep load balance. While setting these rules
manually may perform well for some applications, providing a general solution
that can be applied in different storage architectures and diverse applications is
challenging. In this paper, we propose Adaptive Storage Learner (ASL), which
explore the idea of using machine learning techniques to solve this challenge.

3.1 Problem Definition

Selecting the optimal storage layer can be regarded as a multi-classification prob-
lem. We want to learn a model that takes parameters related to workflow char-
acteristics and system status as input and predicts the optimal storage layer for
each output file. We maintain three principles to train the prediction model:

– Both workflow characteristics and real-time system status are taken into con-
sideration to make the optimal data placement decision.

– The optimization goal of the prediction model is not to minimize the I/O time
of a single task, but to minimize the overall I/O time of the entire workflow
by leveraging data access patterns and preventing resource contention. In
other words, the optimal storage tier for an output file may not be the fastest
storage tier, even if there is plenty of space currently.

– We set the granularity of a data placement decision to a file instead of each
write request since dividing a file across a slow and a fast tier may lead to
the problem that a slow tier becomes the bottleneck.

To train such a multi-classification model, we first identify parameters that affect
I/O performance.

3.2 Parameters Affecting I/O Performance

Scientific workflows might demonstrate different I/O performance based on the
workflow characteristics and system specifications. We summarize three sets of
parameters that might affect the I/O performance and explain some of them
because of space limitations.

Workflow Characteristics: These parameters include the scale of the work-
flow, the control-flow dependencies and data-flow dependencies between tasks.
Specifically, data-flow dependencies contain data access pattern information of
each output file. As previous works have demonstrated [14], data access patterns
can be leveraged to improve I/O performance. For example, staging a file that
will be accessed immediately to the top storage tier can reduce the data read
time. Compared with previous works depend on user-provided hints to iden-
tify the data access patterns, we don’t set any rules manually but provide all

Optimizing Data Placement on Hierarchical Storage Architecture 293

these information to the prediction model and let the model learns from it. All
these parameters are statically determined before running a workflow and can
be retrieved by parsing the workflow description file.

Runtime Storage Information: These parameters describe the storage infor-
mation of generated intermediate files during the workflow execution, such as
the size of each intermediate file and the storage tier that file resides. All these
parameters are collected during the execution of the workflow.

Table 1. Variables contained in each I/O record

Variable Description

V1 ID of the current output file

V2 Type of current task

V3 Number of tasks of the current type

V4 Number of input files of the current task

V5 Number of output files

V6 Number of tasks that is dependent with current output file

V7 Minimum distance between the output file and dependent tasks

V8 Total size of input files of the current task

V9 The remaining capacity of the memory storage tier

V10 The remaining capacity of the SSD storage tier

V11 The remaining capacity of the HDD storage tier

Prediction The optimal storage tier

System Status: These parameters are specifications of the system where the
workflow runs, including the deployment of the storage subsystem, the perfor-
mance metrics of different storage tier, etc. All these parameters affect the I/O
performance of a given workflow. While parameters like bandwidth and latency
of each storage tier can be obtained statically, parameters like the remaining
capacity of each storage tier require real-time monitoring.

3.3 Collecting I/O Records

After identifying parameters that affect the I/O performance, we are able to col-
lect the I/O records during the workflow execution. We model these parameters
into 11 variables listed in Table 1. Each I/O record represents a data placement
decision for a given output file under the conditions described by 11 variables.
Specifically, V1 and V2 are used to identify the data producer for each file cre-
ate request. V3-V7 reflect the workflow characteristics and V8-V11 describe the
real-time storage information and system status.

It’s deserved to be mentioned that the size of each output file will definitely
influence the I/O performance, but we abandon it to avoid the contradiction

294 P. Cheng et al.

against the usage of the prediction model. The goal of the prediction model is
to make data placement decisions before data are written to the target storage
tier. However, the size of an output file can be calculated only after the write
operation is finished. A compromise solution is to train another regression model
to predict the size of the output file, but we do not implement it in our current
work.

Collecting I/O records is complicated and cumbersome for two reasons.
Firstly, all the I/O records need to be labeled since multi-classification prob-
lem requires supervised learning. In other words, each record must be labeled
with the target storage tier explicitly before they can be used to train the pre-
diction model. Secondly, recall the principle that the optimization goal of the
prediction model is to minimize the overall I/O time of the entire workflow by
leveraging data access patterns and preventing resource contention. This prin-
ciple exacerbates the complexity of labeling records since impropriate training
data leads to the inaccurate prediction model.

To solve this challenge, we extend a workflow simulator [20] to simulate
the I/O performance and label the I/O records automatically. In general, the
extended workflow simulator has the following design considerations:

Tiered Storage Architecture: we add hybrid storage module consists of three
storage tiers to model the I/O performance. Specifically, the specification of each
storage tier is set based on real system tests. Detailed configurations are discussed
in Sect. 5.

Simulation Rules: Several rules are set empirically to simulate the actual I/O
performance. These include: the location of data contribute to the maximum
read/write bandwidth, the bandwidth degradation once the available space of a
storage tier exhausted. We do not list all the rules here because of space limits. To
validate the effectiveness of the simulation, we compare the simulated I/O time
and the actual I/O time of the Binary-Tree workflow [21]. Figure 1 illustrates the
result of each type of task. When storage tier is set to memory, SSD, and HDD,
the I/O time generated by workflow simulator are noted as Sim-Mem, Sim-SSD,
and Sim-HDD, respectively. Similarly, the I/O time of running workflows on
the real system is noted as Real-Mem, Real-SSD, and Real-HDD. Overall, the
difference between simulation and real system tests is less than 10%.

Genetic Algorithm (GA): To search the optimal combinations of storage
tiers for a given workflow, we implement a genetic algorithm in the workflow
simulator. We treat a candidate storage tier combination as an individual, and
the storage tier of each output file is represented as 2 genes (since each gene is
a Boolean variable, at least two genes are needed to represent 3 storage tiers).
The GA starts from a population of randomly generated individuals and evolves
in an iterative process. The overall I/O time of a workflow is used to calculate
the fitness of each individual. An individual is qualified to have the next gen-
eration only when its fitness is no less than the average fitness. The iterative
crossover and mutation between qualified individuals improve the quality of the
represented solution. Finally, the best individual is chosen to be the optimal
combinations of storage tiers.

Optimizing Data Placement on Hierarchical Storage Architecture 295

We randomly chose 58 workflows with varying scales and I/O characteristics
from the synthetic workflow dataset [22]. We ran these workflows on top of the
simulator and collect 3810 labeled I/O records.

3.4 Model Training

Gradient boosting algorithm with Classification and Regression Tree (CART)
as base learners is used to train the prediction/classification model. While there
are lots of machine learning algorithms, including logistic regression and support
vector machines, we chose CART as the basic learner for two reasons. Firstly,
CART is easy to understand and interpret. Secondly, the prediction overhead
of CART is negligible. Since a single CART model might suffer from the poor
generality, we use the gradient boosting technique, which averages over multiple
CART classifiers and produces the final prediction, to enhance its generalization
ability. The final prediction model can be treated as an ensemble of CART
models.

Fig. 1. Accuracy of simulation output Fig. 2. ASL architecture overview

4 Design and Implementation

We design and implement a prototype of ASL that uses the prediction model
presented in Sect. 3 to make optimal data placement decisions.

Figure 2 presents the architecture overview of ASL. ASL acts as a middleware
integrated with an existing data management system that can manage data on
tiered storage architecture. The key component of ASL includes workflow parser,
real-time system monitor and storage predictor. The workflow parser extracts
workflow characteristics form the workflow description file before running a given
workflow. The real-time system monitor collects system status during the work-
flow execution. For each file create request, the storage predictor combines work-
flow characteristics and system status to make data placement decisions.

Parser and Monitor: To enable workflow-aware storage optimization, we
implement a workflow parser that extracts workflow characteristics from the

296 P. Cheng et al.

workflow description file. The extracted data are stored in multiple in-memory
data structures and transform into variables V3-V7 as listed in Table 1. Although
the workflow description file contains lots of valuable information, information
like the size of a specific input file and the remaining capacity of each storage tier
can only be collected during the workflow execution. The system monitor is used
to collect such information dynamically. The dynamically collected information
transformed into variables V8-V11 as listed in Table 1.

Prediction: The storage predictor uses the prediction model to make the
data placement decision for every incoming file create request. Specifically, the
decision-making process can be summarized into the following steps: 1. After
receiving the file create request, the storage predictor verifies the type of the
current task based on the name of the created file and the extracted work-
flow description info. 2. Retrieving workflow characteristics and system status
from the workflow parser and the system monitor, respectively. 3. Constructing
variables related to workflow characteristics and system status and feed these
variables to the prediction model. 4. Predicting the optimal storage tier for the
newly created file. As in the case of new workflows, the storage predictor can
also predict the result since none of the input variables depend on historical
information.

Implementation: We have implemented a prototype of ASL and integrated it
with Alluxio. The workflow parser is implemented as a command line utility. All
the parsed workflow dependent information are sent to Alluxio master, which
manage the metadata of the storage system and serve metadata requests. We
add extra modules to manage workflow dependent data structures. The system
monitor and the storage predictor are also implemented in Alluxio master to
guide data placement for every incoming file create request.

5 Evaluation

To demonstrate the effectiveness of ASL, we evaluate its performance on a typical
HPC system with real scientific workflows.

5.1 Experimental Setup

Our testbed consists of 32 nodes configured in one rack on the on data analytics
cluster of the Tianhe-2 system [23]. Each node is equipped with two 2.20 GHz
Intel Xeon E5-2692-v2 processors (24 cores per node), 64 GB of RAM and one
PCIe 1.5TB SSD. Alluxio is used to manage data on top of heterogeneous storage
devices. Specifically, two nodes are used as the master nodes to manage the global
metadata, and the other 30 nodes are used as the workers to stage data into local
memories or per-node attached SSDs. We allocate 2–15 GB RAM of each node
to constitute the memory storage tier. The per-node attached SSDs constitute
the SSD storage tier, and the underlying Lustre file system acts as the HDD
storage tier. Detailed specifications of each storage tier under the management
of Alluxio are listed in Table 2.

Optimizing Data Placement on Hierarchical Storage Architecture 297

We use Binary tree workflow [21] and GenBase workflow [24] to validate
the effectiveness of ASL. These workflows are also used to train the prediction
model, but none of the simulated workflow scales are used during the real-system
evaluation. All intermediate data are staged into hierarchical storage architecture
managed by Alluxio.

5.2 Decision-Making Under Varied Workflow Scales

Firstly, we validate the effectiveness of ASL in making optimal data placement
decisions based on workflow characteristics. We set capacity of memory storage
layer to 300 GB and vary the scales of workflows. For GenBase workflow with
80k*80k input data scales, 120 GB of raw data are processed and will generate
more than 400 GB intermediate data. While the initial storage configuration of
each run is fixed, we evaluate the performance of four data placement strategies.
Staging all data into memory storage tier and SSD storage tier are noted as
Memory and SSD, respectively. Selecting the memory or the SSD tier for each
file randomly is noted as Random. Using the predictor and make data placement
decision intelligently is noted as ASL. Since the SSD storage tier is sufficient to
stage all the intermediate data during the evaluation, HDD tier is not used in
consideration of I/O performance. Figure 3 shows the performance of the Binary-
Tree and the GenBase workflow.

For the Binary-Tree workflow, when data size is smaller than 300 GB, mem-
ory storage layer has enough space to stage all the intermediate data. As a

Table 2. Storage configurations under the management of Alluxio

Tier Allocated Capacity Write BW Read BW

Memory Tier 60–450GB 950 MB/s 1100MB/s

SSD Tier 1200GB 800 MB/s 850MB/s

HDD Tier 1200GB 500 MB/s 550MB/s

(a) Binary-Tree workflow (b) GenBase workflow

Fig. 3. Performance of varied scales workflows

298 P. Cheng et al.

result, Memory strategy performs better than SSD and Random strategy. As
data size keeps increasing, Memory strategy migrates data from the memory tier
to the SSD tier to make room for the newly created file. The resource contention
between regular write request and backend data migration request leads to per-
formance degradation. Since SSD tier has enough space to stage all intermediate
data during our evaluations, resource contention problem does not occur in SSD
strategy. The Random strategy alleviates the load imbalance problem to some
extent, but data access patterns of workflows are not taken into consideration.

(a) Binary-Tree workflow (b) GenBase workflow

Fig. 4. Performance of varied memory capacity

Contrast to these strategies, ASL combines information including available
space of each storage layer, input size of the current task, and distance of depen-
dent task to choose the optimal storage tier for each intermediate file. When
the memory storage tier has plenty of space to stage all the intermediate data,
ASL choose the memory tier as the primary storage tier to minimize the data
access time. As data size increases and the memory storage tier gets exhausted,
ASL leverages the hidden data access pattern info and only stage data that will
be accessed by subsequent tasks intermediately to the memory tier to prevent
resource contention. As a result, ASL shows the best performance in all cases. For
the GenBase workflow, ASL shows similar performance with Memory strategy
at first and outperforms other strategies as data size increases.

5.3 Decision-Making Under Varied System Status

Secondly, we validate the effectiveness of ASL in making optimal data place-
ment decisions based on system status. The scales of Binary-Tree and GenBase
workflow are set to 400 GB and 60k*60k, respectively. We vary the capacity of
the memory storage tier from 60 GB to 420 GB and show the result in Fig. 4.
For the Binary-Tree workflow, when the capacity of the memory storage tier is
less than 240 GB, Memory strategy performs the worst because of the serious
load imbalance and resource contention. As available capacity keeps increasing,

Optimizing Data Placement on Hierarchical Storage Architecture 299

Memory strategy shows better performance. While SSD strategy shows stable
performance as expected, Random strategy performs better as memory capac-
ity increases. In comparison, ASL performs the best by making optimal data
placement decision based on workflow characteristics and system status. For
the GenBase workflow, since 60k*60k input data scale generates almost 250 GB
intermediate data, ASL performs the best at first and shows similar performance
with Memory strategy as the capacity of memory tier is larger than 300 GB.

In summary, our evaluations validate the effectiveness of ASL in combining
workflow characteristics and real-time system status to make intelligent data
placement decisions.

6 Related Work

As storage hierarchies are getting deeper on HPC systems, managing data on
tiered storage architecture are getting increased attention. Data Elevator [12]
enables asynchronously data flushing from burst buffer to the PFS, but different
storage layers are managed separately. Heterogeneity-Aware Tiered Storage [25]
and OctopusFS [11] extend HDFS to support tiered data storage architecture.
They propose data placement and retrieval policies based on I/O throughput and
capacity of storage devices, however, data access patterns are not used to make
data management decisions. While Alluxio [16] and UniStor [26] provide a uni-
fied view across different storage layers, both of them lack the ability to choose
the optimal storage tier dynamically. Multi-tiered data staging framework [13],
Hermes [27] and TDMS [14] provide application-aware data placement mech-
anism but depend on user-provided hints to identify the data access patterns.
Compared with these works, we treat selecting the optimal storage tier as a
multi-classification problem and use machine learning techniques to make data
placement strategies intelligently.

Many efforts have been made to enable adaptive and intelligent storage opti-
mization. Stacker [15] chooses hierarchical n-grams model to predict upcoming
read request and guide data prefetching on hierarchical storage architecture.
Since stripe size and the distribution of correlated blocks dominate the aggre-
gate bandwidth of parallel file systems, Dong Dai et al. [28] explored the idea
of using word embedding technique to mine the block correlations. Erica Tomes
et al. [29] combined graph coloring, bin packing, and network flow techniques
to distribute correlated data blocks to different storage servers adaptively. Com-
pared with these works, we focus on data placement and load balance across dif-
ferent storage hierarchies. Ziggurat [30] profiles the application’s access stream
online to predict the behavior of individual writes and chooses non-volatile main
memory or disks to serve the write request. While the classification criteria in
Ziggurat is set empirically, ASL does not depend on any manual rules and com-
bine both workflow characteristics and real-time system status to choose the
optimal storage tier.

300 P. Cheng et al.

7 Conclusion

Due to the largely different performance characteristics of hierarchical storage
layers and the variety of scientific workflows, providing a general solution that
can make intelligent data placement decisions is challenging. In this paper, we
explore the idea of using machine learning techniques to solve this challenge.
We propose that selecting the optimal storage layer under varied workflow char-
acteristics and system status can be regarded as a multi-classification problem.
We implement a workflow simulator to collect labeled I/O records automatically
and use the gradient boosting algorithm with CART as base learners to train
the classification model. We implement a prototype and integrate it into Alluxio
system. Our evaluations on two scientific workflows validate the effectiveness of
using machine techniques to optimize I/O performance. In our current imple-
mentation, the prediction model is not modified once it is deployed. In future
work, we plan to collect histories records of workflows and update the model
dynamically.

Acknowledgment. This work was supported by the National Key R&D Program of
China under Grant No. 2017YFB0202204 and No. 2017YFB0202201, the National Sci-
ence Foundation of China under Grant NO.U1811464, and the Program for Guangdong
Introducing Innovative and Entrepreneurial Teams under Grant NO. 2016ZT06D211.

References

1. Habib, S., et al.: Hacc: simulating sky surveys on state-of-the-art supercomputing
architectures. New Astron. 42, 49–65 (2016)

2. Kurth, T., et al.: Exascale deep learning for climate analytics. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage,
and Analysis, SC 2018, Dallas, TX, USA, 11–16 November 2018, pp. 51:1–51:12
(2018)

3. Miyoshi, T., et al.: Big data assimilation toward post-petascale severe weather
prediction: an overview and progress. Proc. IEEE 104(11), 2155–2179 (2016)

4. Liu, N., Cope, J., Carns, P.H., Carothers, C.D., Ross, R.B., et al.: On the role
of burst buffers in leadership-class storage systems. In: IEEE 28th Symposium on
Mass Storage Systems and Technologies, MSST 2012, 16–20 April 2012, Asilomar
Conference Grounds, pp. 1–11. Pacific Grove, CA, USA (2012)

5. Docan, C., Parashar, M., Klasky, S.: Dataspaces: an interaction and coordina-
tion framework for coupled simulation workflows. Cluster Comput. 15(2), 163–181
(2012)

6. Bhimji, W., Bard, D., Romanus, M.: Accelerating science with the nersc burst
buffer early user program. In: LBNL LBNL-1005736, May 2016

7. Cray. Datawarp user guide s-2558-5204, June 2016. http://docs.cray.com/books/
S-2558-5204/S-2558-5204.pdf

8. Oak Ridge National Laboratories. Summit user guide, May 2019. https://www.
olcf.ornl.gov/for-users/system-user-guides/summit

9. Swami, S., Mohanram, K.: Reliable non-volatile memories: techniques and mea-
sures. IEEE Des. Test 99, 1 (2017)

http://docs.cray.com/books/S-2558-5204/S-2558-5204.pdf
http://docs.cray.com/books/S-2558-5204/S-2558-5204.pdf
https://www.olcf.ornl.gov/for-users/system-user-guides/summit
https://www.olcf.ornl.gov/for-users/system-user-guides/summit

Optimizing Data Placement on Hierarchical Storage Architecture 301

10. Li, H., Ghodsi, A., Zaharia, M., Shenker, S., Stoica, I.: Tachyon: reliable, mem-
ory speed storage for cluster computing frameworks. In: Proceedings of the ACM
Symposium on Cloud Computing, pp. 6:1–6:15. Seattle, WA, USA (2014)

11. Kakoulli, E., Herodotou, H.: Octopusfs: a distributed file system with tiered stor-
age management. In: Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD 2017, pp. 65–78 (2017)

12. Dong, B., Byna, S., Wu, K.P., Johansen, H., Johnson, J.N., Keen, N.: Data eleva-
tor: low-contention data movement in hierarchical storage system. In: 23rd IEEE
International Conference on High Performance Computing (HiPC 2016), pp. 152–
161. Hyderabad, India (2016)

13. Jin, T., et al.: Exploring data staging across deep memory hierarchies for cou-
pled data intensive simulation workflows. In: 2015 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2015, pp. 1033–1042 (2015)

14. Cheng, P., Lu, Y., Du, Y., Chen, Z.: Accelerating scientific workflows with tiered
data management system. In: IEEE International Conference on High Performance
Computing and Communications (2018)

15. Subedi, P., Davis, P.E., Duan, S., Klasky, S., Kolla, H., Parashar, M.: Stacker:
an autonomic data movement engine for extreme-scale data staging-based in-situ
workflows. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC 2018), pp. 73:1–73:11 (2018)

16. Alluxio Inc., Alluxio overview, May 2019. https://docs.alluxio.io/os/user/stable/
en/Overview.html

17. Deelman, E., Gannon, D., Shields, M.S., Taylor, I.J.: Workflows and e-science: an
overview of workflow system features and capabilities. Future Gener. Comp. Syst.
25(5), 528–540 (2009)

18. Deelman, E., et al.: Pegasus, a workflow management system for science automa-
tion. Future Gener. Comput. Syst. 46, 17–35 (2015)

19. Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.: Swift: a
language for distributed parallel scripting. Parallel Comput. 37(9), 633–652 (2011)

20. Chen, W., Deelman, E.: Workflowsim: a toolkit for simulating scientific workflows
in distributed environments. In: 8th IEEE International Conference on E-Science,
pp. 1–8 (2012)

21. Hazekamp, N., et al.: Combining static and dynamic storage management for data
intensive scientific workflows. IEEE Trans. Parallel and Distrib. Syst. 99, 1 (2018)

22. Pegasus. Pegausus syntheticworkflows, February 2019. https://download.pegasus.
isi.edu/misc/SyntheticWorkflows.tar.gz

23. Liao, X., Xiao, L., Yang, C., Yutong, L.: Milkyway-2 supercomputer: system and
application. Front. Comput. Sci. 8(3), 345–356 (2014)

24. Taft, R., Vartak, M., Satish, N.R., Sundaram, N., Madden, S., Stonebraker, M.:.
Genbase: a complex analytics genomics benchmark. In: Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data (SGIMOD
2014). ACM (2014)

25. Krish, K.R., Anwar, A., Butt, A.R.: hats: a heterogeneity-aware tiered storage
for hadoop. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pp. 502–511 (2014)

26. Wang, T., Byna, S., Dong, B., Tang, H.: Univistor: integrated hierarchical and
distributed storage for HPC. In: IEEE International Conference on Cluster Com-
puting, CLUSTER 2018, Belfast, UK, 10–13 September 2018, pp. 134–144 (2018)

https://docs.alluxio.io/os/user/stable/en/Overview.html
https://docs.alluxio.io/os/user/stable/en/Overview.html
https://download.pegasus.isi.edu/misc/SyntheticWorkflows.tar.gz
https://download.pegasus.isi.edu/misc/SyntheticWorkflows.tar.gz

302 P. Cheng et al.

27. Kougkas, A., Devarajan, H., Sun, X.H.: Hermes: a heterogeneous-aware multi-
tiered distributed I/O buffering system. In: Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC
2018), pp. 219–230 (2018)

28. Dai, D., Bao, F.S., Zhou, J., Shi, X., Chen, Y.: Vectorizing disks blocks for efficient
storage system via deep learning. Parallel Comput. 82, 75–90 (2019)

29. Tomes, E., Rush, E.N., Altiparmak, N.: Towards adaptive parallel storage systems.
IEEE Trans. Comput. 67(12), 1840–1848 (2018)

30. Zheng, S., Hoseinzadeh, M., Swanson, S.: Ziggurat: a tiered file system for non-
volatile main memories and disks. In: 17th USENIX Conference on File and Storage
Technologies, FAST 2019, Boston, MA, 25–28 February 2019, pp. 207–219 (2019)

Short Papers

I/O Optimizations Based on Workload
Characteristics for Parallel File Systems

Bing Wei1,2, Limin Xiao1,2(B), Bingyu Zhou1,2, Guangjun Qin1,2(B),
Baicheng Yan1,2, and Zhisheng Huo1,2

1 State Key Laboratory of Software Development Environment,
Beihang University, Beijing, China

{weibing,xiaolm,qingj}@buaa.edu.cn
2 School of Computer Science and Engineering, Beihang University, Beijing, China

Abstract. Parallel file systems usually provide a unified storage solu-
tion, which fails to meet specific application needs. In this paper, we pro-
pose an extended file handle scheme to address this problem. It allows
the file systems to specify optimizations for individual file or directory
based on workload characteristics. One case study shows that our pro-
posed approach improves the aggregate throughput of large files and
small files by up to 5% and 30%, respectively. To further improve the
access performance of small files in parallel file systems, we also propose
a new metadata-based small file optimization method. The experimental
results show that the aggregate throughput of small files can be effec-
tively improved through our method.

Keywords: Parallel file systems · Workload characteristics ·
Extended file handle · Small file optimizations

1 Introduction

Applications with different workload characteristics usually have different access
requirements for storage resources. The unified storage solution of parallel file
systems fails to meet specific application needs. Many approaches [2–4] have
been proposed to address this issue. However, these approaches cannot meet the
following three requirements at the same time: (1) flexible management of I/O
optimizations; (2) dynamical selection of I/O optimizations; (3) adaptive adjust-
ment of I/O optimizations at runtime. In this paper, we propose an extended file
handle (EFH) scheme to meet the above-mentioned requirements. The serving
process of an I/O request can be customized with the EFH; hence, the cor-
responding optimization information can be achieved. To further improve the
access performance of small files, we describe performance trade-off between
small file load and metadata load based on the metadata-based method [5]. The
steady trade-off model and the burst load trade-off model are established to
determine the small file threshold. Small files are migrated across file system
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 305–310, 2019.
https://doi.org/10.1007/978-3-030-30709-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_24&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_24

306 B. Wei et al.

servers based on load condition, thereby improving the access performance of
small files while avoiding overload on metadata servers.

The rest of this paper is organized as follows: Sect. 2 describes the design
of extended file handle. Section 3 presents the small file optimization method.
Section 4 presents the experimental results and discussions. Section 5 presents
the conclusions.

2 Design of Extended File Handle

We describe the definition of the EFH model in this section. An example of
extended file handle structure is shown in Fig. 1, an EFH consists of five elements,
including logical file handle, real file handle, version, optimization indices, and
handle types. The logical file handle is used to uniquely identify a file. It is
assigned by using a simple random distribution method when creating a file.
The real file handle is the unique identifier of a file in the file system.

Fig. 1. An example of extended file handle structure.

The EFH version number is used for consistency maintenance. The 32-bit
optimization index element indicates which optimization type is enabled. Each
bit corresponds to an optimization type. If the bit is set to 1, then the corre-
sponding optimization type is enabled; otherwise, it is not enabled. As a result,
the I/O optimizations can be managed in fine grain. The handle types are used
to record the customized configuration parameters for corresponding optimiza-
tion type. The high 5-bit of a handle type records the index of optimization type
that is corresponding to the handle type and the low 59-bit of a handle type
records the corresponding configuration parameters. The EFH is stored in the
directory entry that is stored on the metadata servers. Multi-type optimization
information is managed with small memory overhead.

We abstract the processing of an I/O request across file system servers as a
file I/O path. A proper file I/O path is selected based on the extended file handle.

I/O Optimizations Based on Workload Characteristics 307

The process of selecting I/O path consists of four modules: EFH buffer, EFH
parser, decision maker, and I/O path set. The recently used EFHs are cached
in the EFH buffer. The main job of the EFH parser is to parse the EFH and
transfer the parsed information to decision maker. The decision maker selects the
proper I/O path based on the EFH parsed information to serve the I/O request.
The I/O path set contains all the available I/O paths on the server. When
changing the optimizations, enabling or updating a handle type may involve
updating data between client-side and server-side. The version number of an
EFH is incremented by 1 if updating successfully.

3 Small File Optimization Method

The steady trade-off model determines the small file threshold based on the long-
term running status of system. The information of unused space capacity and
the load of the metadata server is periodically collected to calculate the global
threshold (Glt), which is used to determine the threshold for a specific file and
can be calculated by the following equation:

Glt =

⎧
⎪⎨

⎪⎩

Glpre−t − xGlpre−t Caunused ≥ Cat

Max(Glmax, Glpre−t + yGlpre−t) Baio < Balow−t, Caunused < Cat

Glpre−t − zGlpre−t Baio ≥ Balow−t, Caunused < Cat

(1)

Caunused is the ratio of unused space capacity to the total space capacity. Cat

is the threshold of unused space capacity. Glpre−t is the global threshold of the
previous moment. Parameters x, y, and z are empirical adjustment parameters.
Baio is the ratio of the current I/O bandwidth to the maximum I/O bandwidth.
Bahigh−t and Balow−t are the high and low load threshold, respectively. Glmax

is the given maximum global threshold.
The migration frequency of a file is used to avoid frequent migrations of small

files. The target threshold (Ftarget−t) for a file is the larger one between Glmax

and the fine-adjusted threshold. It can be calculated by the following equation:

Ftarget−t = Max(Glmax,
(θ + Frem)Glt

θ
) (2)

Frem is the migration frequency and θ is the empirical adjustment parameter.
Once receiving the access request of a small file that is stored on a metadata
sever, the target threshold for the file is calculated by Eqs. 1 and 2. If the file size
exceeds the target threshold, the file will be migrated to other servers. Reversely,
if a file stored on a data server is truncated to a size below the target threshold,
the file will be migrated to a metadata server.

The burst trade-off model determines the small file threshold in the burst
load situation. The exponential smoothing method (ESM) calculates prediction
value by the following equation:

E(t) = λV (t − 1) + (1 − λ)E(t − 1) (3)

308 B. Wei et al.

E(t) and E(t-1) are the prediction values for the moment t and t-1, respec-
tively. λ is the smoothing parameter. V(t-1) is the observed value for the moment
t-1. The prediction load can be easily calculated by Eq. 3. However, the predic-
tion accuracy is low because of lacking of the consideration of the current I/O
request status. A burst load sensing model (BLS-ESM) based on ESM is pro-
posed to improve the prediction accuracy.

The I/O scheduler in the metadata server is used to determine the execution
order of the I/O requests that are sent from the clients, and the requests that
cannot be served at the current moment are blocked in the queue. St−2,t−1 is the
amount of requested data that is served in the queue between moment t-2 and
t-1. S′

t−2,t−1 is the total amount of data that is blocked in the queue between
moment t-2 and t-1. The probability of burst load at the moment t can be
calculated by the following equation:

Ri−1 =
S′
t−2,t−1

St−2,t−1
(4)

The larger the Ri−1, the greater the possibility of a burst load, and vice
versa. Therefore, the predicted value at the moment t can be calculated by the
following equation:

Glt =

{
(Ri−1 − 1 + λ)V (t − 1) + (1 − λ)E(t − 1) Ri−1 /∈ (μ, ν)
λV (t − 1) + (1 − λ)E(t − 1) Ri−1 ∈ (μ, ν)

(5)

In the above equation, μ represents the low threshold of the burst load and
ν represents the high threshold of the burst load. BLS-ESM is used to calculate
the small file load prediction value at next moment for the metadata server.

4 Evaluation

Our experiments were conducted on a 5-node cluster of machines. Each machine
was configured with two 20-core 2.2 GHz Intel Xeon 4114 CPUs, 128 GB of
memory, two 7.2 K RPM 4 TB disks, and the Centos7 operating system. Each
machine was configured with 5 virtual machines, which had the same config-
uration. The network was 1-Gigabit Ethernet. Our proposed approaches were
conducted in PVFS [1].

4.1 Case Study: Directory Hint Optimization

We used traces pweb [6] and pgrep [6] to test data I/O performance for the
three approaches, including default PVFS, PVFS-EFH (EFH), and directory
hint (DH) [7]. Figure 2 shows the aggregate throughput of the three above-
mentioned approaches when replaying the two traces. EFH improves the aggre-
gate throughput over PVFS in terms of small files for the two trace by up to
11% and 30%, respectively. Meanwhile, EFH improves the aggregate throughput
over PVFS in terms of large files by up to 5% for pweb and has no significant
impact on large files for pgrep.

I/O Optimizations Based on Workload Characteristics 309

Fig. 2. The aggregate throughput of data I/O: (a) small files of pweb; (b) large files of
pweb; (c) small files of pgrep; (d) large files of pgrep.

4.2 Testing Small File Optimization Methods

We used IOR [8] benchmark to test the performance of small file optimization
methods. Figure 3 shows the aggregate throughput of the original metadata-
based method (OMB) [5] and our method under single metadata server. When
increasing the number of client processes from 2 to 20, the metadata performance
degradations for OMB and our method are 62% and 11%, respectively; the small
file performance improvement for OMB and our method are 150% and 196%,
respectively.

Fig. 3. The aggregate throughput: (a) metadata; (b) small files.

5 Conclusion

To meet the various requirements of multiple applications on storage resources,
we propose an extended file handle scheme, which allows parallel file systems
to specify customized optimizations for each file or directory based on workload
characteristics. Our approach enables fine-grained management of selecting I/O
optimizations for serving multiple workloads. We propose an adaptive optimiza-
tion method to further improve small file performance. Performance trade-off
between small file load and metadata load is achieved by our proposed method.

310 B. Wei et al.

Acknowledgment. This work was supported by the National key R&D Program of
China under Grant NO. 2017YFB1010000, the National Natural Science Foundation of
China under Grant No. 61772053, the Science Challenge Project, No. TZ2016002, and
the fund of the State Key Laboratory of Software Development Environment under
Grant No. SKLSDE-2017ZX-10.

References

1. Ross, R.B., Thakur, R.: PVFS: a parallel file system for Linux clusters. In: Proceed-
ings of the 4th Annual Linux Showcase and Conference, pp. 391–430 (2000)

2. Isaila, F.: Collective I/O tuning using analytical and machine learning models. In:
2015 IEEE International Conference on Cluster Computing. pp. 128–137. IEEE
(2015)

3. Zhang, S., Catanese, H.: The composite-file file system: decoupling the one-to-one
mapping of files and metadata for better performance. In: 14th USENIX Conference
on File and Storage Technologies. pp. 15–22 (2016)

4. Byna, S., Chen, Y.: Parallel I/O prefetching using MPI file caching and I/O signa-
tures. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. pp.
44. IEEE (2008)

5. Carns, P., Lang, S.: Small-le access in parallel le systems. IEEE IPDPS 2009, 1–11
(2009)

6. Uysal, M., Acharya, A.: Requirements of I/O systems for parallel machines: An
application-driven study (1998)

7. Kuhn, M., Kunkel, J.M.: Dynamic le system semantics to enable metadata opti-
mizations in PVFS. Concurr. Comput. Pract. Exper. 21(14), 1775–1788 (2009)

8. LNCS Homepage. https://sourceforge.net/projects/ior-sio. Accessed 16 May 2019

https://sourceforge.net/projects/ior-sio

Energy Consumption of IT System
in Cloud Data Center: Architecture,

Factors and Prediction

Haowei Lin1, Xiaolong Xu1(B), and Xinheng Wang2

1 Jiangsu Key Laboratory of Big Data Security and Intelligent Processing,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China

{1218043318,xuxl}@njupt.edu.cn
2 University of West London, London W55RF, UK

Henry.Wang@uwl.ac.uk

Abstract. In recent years, as cloud data center has grown constantly
in size and quantity, the energy consumption of cloud data center has
increased dramatically. Therefore, it is of great significance to study the
energy-saving issues of cloud data centers in depth. Therefore, this paper
analyzes the architecture of energy consumption of IT system in cloud
data centers and proposes a new framework for collecting energy con-
sumption. Based on this framework, the factors affecting energy con-
sumption are studied, and various parameters closely related to energy
consumption are selected. Finally, the RBF neural network is used to
model and predict the energy consumption of the cloud data centers,
which is aim to prove the accuracy of the framework for collecting energy
consumption and influencing factors. The experimental results show that
these parameters under the framework for collecting energy consump-
tion have better accuracy and adaptability to the prediction of energy
consumption in cloud data centers than the previous model of energy
consumption prediction.

Keywords: Cloud computing · Cloud data center ·
Energy consumption · Prediction · Architecture

1 Introduction

In recent years, cloud data centers are facing more and more traffic demands,
resulting in the continuous formation and expansion of cloud data centers around
the world [1]. Although their economic profits are increasing, huge energy con-
sumption has also received more and more attention. Since cloud computing can

This work was jointly supported by National Key Research and Development Program
of China under Grant 2018YFB1003702, Jiangsu Key Laboratory of Big Data Security
& Intelligent Processing, and the Talent Project in Six Fields of Jiangsu Province under
Grant 2015-JNHB-012.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 311–315, 2019.
https://doi.org/10.1007/978-3-030-30709-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_25

312 H. Lin et al.

realize the flexibility and scalability of computing resources [2], and the sheer
size of its scale, the problem about energy consumption of cloud data centers
has changed from decentralized way in the past to the current centralized app-
roach [3,4]. In order to optimize the use of energy consumption in cloud data
centers, it is necessary to establish a high-precision prediction model of energy
consumption for cloud data centers.

In view of the above situation, the RBF neural network is used to model and
predict the energy consumption of the cloud data centers, which is aim to prove
the accuracy of the framework for collecting energy consumption and influencing
factors.

2 Architecture

The framework for collecting energy consumption of IT system proposed in this
paper is extended on the basis of the framework for collecting energy consump-
tion of IT system proposed by Zhao, Z. [5] in 2016, and is improved in the details.
Figure 1 is the framework for collecting energy consumption of IT system.

Fig. 1. The framework for collecting energy consumption of IT system

The framework can be divided into physical layer, resource management layer,
virtual layer and application layer. The physical layer is located at the bottom
of the framework of cloud environment and is divided into physical resources
for building cloud environments and power tester. The physical resources used
to build the cloud environment is the infrastructure built by the cloud environ-
ment, which are the fundamental source of energy consumption of the IT system,
and the main target of cloud data center energy consumption prediction. The
resource management layer is located above the physical layer and is divided
into the operating system, cloud computing resource management service and
system data collector. The virtual layer is the third layer of the framework of
cloud environment and is to provide users with virtualization platforms and vir-
tualized resources. The application layer is located above the virtual layer and is
to run the required application according to different requirements on the virtual
machine that the users applies for.

Energy Consumption of IT System in Cloud Data Center 313

3 Factors Affecting Energy Consumption of IT System

The key innovations presented in this paper are: By decomposing the energy
consumption of IT system of the cloud data center and selecting better factors
affecting energy consumption to train the RBF neural network, the prediction
ability of the RBF neural network model is better than the previous model of
energy consumption of IT system, which is aim to prove that these factors play
a crucial role in the energy consumption of IT systems.

Modeling energy consumption based on system usage is a usual method of
energy modeling. According to the related research [6], the top six system param-
eters in power consumption of virtual machine have a significant nonlinear rela-
tionship with the energy consumption of virtual machine, which are user mode
runs using the percentage of total CPU time, core state runs using the percent-
age of total CPU time, memory utilization, the total amount of I/O transfer per
physical device per second, number of pages missing per second of system, and
the physical machine load of each physical device. Moreover, because there is a
massive scale of the data in the cloud data center, this paper will eliminate the
number of pages missing per second of system, which affects the model of energy
consumption minimally.

Through experiments, it is found that if the system information is collected
for only this part of the equipment, not only can the burden of equipment which
collect system information be reduced, but also a predictive model with higher
fitting degree can be obtained.

As the experiments showed, we found that the energy consumption of IT
systems is extremely sensitive to changes in the energy consumption in a few
seconds nearby. Therefore, in the case of maintaining the energy object model
with strong objectivity and robustness, and improving the accuracy of the energy
consumption model, this paper keeps the modeling method of randomly disturb-
ing the training samples, and adds the energy consumption in the time of last
unit to the data set of the training model.

4 Application and Experiments

This paper compared the data from the above experiments from two aspects.
On the one hand, we observed the result about whether the training data of the
RBF neural network included the compute nodes that enter the virtual layer.
On the other hand, we observed the result about whether the training data of
the RBF neural network included energy consumption data in the time of last
unit.

The data of this experiment were all analyzed using RBF neural network.
The same part of the training data included the system information data of
the control nodes, the network nodes, and the compute nodes that entered the
virtual layer and the energy consumption in the time of last unit. The different
parts were that the first training data did not include the compute nodes that did
not enter the virtual layer, and the second training data included the compute

314 H. Lin et al.

(a) With and without the compute nodes
that entered the virtual layer.

(b) With and without energy consumption
data in the time of last unit.

Fig. 2. The training results of the RBF neural network

Table 1. Error comparison in two cases

Model P1 P2 P3

The sum of squared errors 38.415 43.827 63.181

The relative error 4.2% 4.8% 6.9%

nodes that did not enter the virtual layer. In Fig. 2(a), the predicted value P1
was the training situation of the training data that did not include the compute
nodes that did not enter the virtual layer; the predicted value P2 was the training
situation of the training data that included the compute nodes that did not enter
the virtual layer.

Although the prediction result of P1 at a few special points was extremely
extreme, the predicted value P1 had a better fit with the actual value in com-
parison with the predicted value P2.

As shown in Table 1, we found that there was better predicted effect of the
RBF neural network model, which was trained by the training data that did
not include the compute nodes that did not enter the virtual layer. From this
experiment, we found that when predicting energy consumption in a cloud envi-
ronment, it was correct to use the system data of the control nodes, the network
nodes, and the compute nodes that entered the virtual layer as the training data.

The data of this experiment were all analyzed using RBF neural network.
The same part of the training data included the system information data of the
control nodes, the network nodes, and the compute nodes that entered the virtual
layer. The different parts were that the first training data included the energy
consumption in the time of last unit, and the second training data did not include
the energy consumption in the time of last unit. In Fig. 2(b), the predicted value
P1 was the training situation of the training data that included the energy
consumption in the time of last unit; the predicted value P3 was the training
situation of the training data that did not include the energy consumption in
the time of last unit.

Although the prediction result of P1 at a few special points was extremely
extreme, the predicted value P1 had a better fit with the actual value in com-
parison with the predicted value P3.

Energy Consumption of IT System in Cloud Data Center 315

As shown in Table 1, we found that there was better predicted effect of the
RBF neural network model, which was trained by the training data that included
the energy consumption in the time of last unit. From this experiment, we found
that when predicting energy consumption in a cloud environment, it was correct
to use the energy consumption in the time of last unit as the part of training
data.

5 Conclusion

This paper analyzes the architecture of energy consumption of IT system in cloud
data centers and proposes a new framework for collecting energy consumption.
Based on this framework, the factors affecting energy consumption are studied,
and various parameters closely related to energy consumption are selected.

Acknowledgement. This work was jointly supported by National Key Research and
Development Program of China under Grant 2018YFB1003702, Jiangsu Key Labora-
tory of Big Data Security & Intelligent Processing, and the Talent Project in Six Fields
of Jiangsu Province under Grant 2015-JNHB-012.

References

1. Yeganeh, H., Salahi, A., Pourmina, M.A.: A novel cost optimization method for
mobile cloud computing by capacity planning of green data center with dynamic
pricing. Can. J. Electric. Comput. Eng. 42(1), 41–51 (2019)

2. Wang, L., Gelenbe, E.: Adaptive dispatching of tasks in the cloud. IEEE Trans.
Cloud Comput. 6(1), 33–45 (2018)

3. Li, C., Ruijin, Z., Li T.: Enabling distributed generation powered sustainable high-
performance data center. In: IEEE 19th International Symposium on High Perfor-
mance Computer Architecture, pp. 35–46 (2013)

4. Valentini, G.L., Lassonde, W., Khan, S.U.: An overview of energy efficiency tech-
niques in cluster computing systems. Cluster Comput. 16(1), 3–15 (2013)

5. Zhou Z.: Energy Consumption Acquisition and Prediction Method for Cloud Com-
puting Services. PhD thesis, East China Normal University, Shanghai, China (2016)

6. Hao X.: Research on Neural Network Based Virtual Machine’s Power Prediction
Mode. PhD thesis, Beijing University of Posts And Telecommunications, Beijing,
China (2015)

Efficient Processing of Convolutional
Neural Networks on SW26010

Yi Zhang1(B), Bing Shu2, Yan Yin1, Yawei Zhou1, Shaodi Li1,
and Junmin Wu1

1 University of Science and Technology of China, Hefei, Anhui, China
colezhan@mail.ustc.edu.cn

2 Jiangnan Institute of Computing Technology, Wuxi, Jiangsu, China

Abstract. Artificial intelligence has developed rapidly in recent years.
Deep neural networks are the basis of many artificial intelligence applica-
tions. How to accelerate the computational processing of deep neural net-
works is very important. To explor the potential for accelerating the pro-
cess deep neural networks on various hardware platforms, we propose a
convolutional neural network optimization method based on the Weight-
Stationary for SW26010 processor. We re-circulate convolution loops and
use hybrid DMA transmission mode to increase memory bandwidth and
reduce memory access overhead. On top of those, further optimizations
are done based on register communication, asynchronous DMA trans-
fer double buffering, instruction scheduling and other schemes. Finally,
we achieve a double-precision convolution performance over 2.4 Tflops,
achieving 81% of the processor’s peak performance. In multiple parame-
ters, we achieve a proforamnce acceleration of 2.4 − 4.0× speedup com-
pared to the Tesla K80 GPU with cuDNNv7.

Keywords: SW26010 processor · Convolutional neural networks ·
Weight-stationary · Parallel model · Many-core architecture ·
Deep learning

1 Introduction

Deep neural networks (DNNs) are the foundation of many modern artificial
intelligence (AI) applications. The high accuracy of DNNs is at the expense of
high computational complexity and requires more computing power. In order
to satisfy the computational requirements of DNNs, various acceleration hard-
ware such as graphics processing units (GPU) [1] and FPGA [2] are applied to

The original version of this chapter was revised: Errors in section 2.2 and 3.3 have been
corrected. The correction to this chapter is available at https://doi.org/10.1007/978-
3-030-30709-7 38
Supported by the National Key Research and Development Program of China under
Grant 2018YFB1003601.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 316–321, 2019.
https://doi.org/10.1007/978-3-030-30709-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_26&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_26
https://doi.org/10.1007/978-3-030-30709-7_38
https://doi.org/10.1007/978-3-030-30709-7_38

Efficient Processing of Convolutional Neural Networks on SW26010 317

DNNs processing. Exploring DNNs calculation acceleration on various hardware
platforms is a very valuable job. The SW26010 heterogeneous multicore proces-
sor is the processor chip of the Sunway TaihuLight supercomputer. In order to
explore the combination of DNNs and SW26010, accelerate the processing of
DNNs on SW26010, we first optimize the computational processing of the con-
volutional neural network (CNN), a common form of DNNs on SW26010, and
plan to expand to more forms in future. The main contributions of this work are
as follows:
• We design a convolution algorithm based on the idea of Weight-Stationary

and map it to SW26010.
• We analyze the DMA memory access characteristics of SW26010, use hybrid

DMA transmission mode instead of bstride DMA transmission mode to
increase memory bandwidth.

• We use an instruction scheduling method to reduce the idling time of com-
putation units.

• We finally achieve over 2.4 Tflops double-precision convolution performance
on SW26010, achieving 81% of the processor’s peak performance.

2 Background and Related Work

2.1 Convolutional Neural Networks(CNN)

CNN is a common form of deep neural networks. In most CNNs, the operation
of the convolutional layer occupies the largest portion of the total computa-
tion (more than 90%). The main operation of the convolutional layer is high-
dimensional convolution. Let D be the input image, F be the convolutional filter,
O be the output. Using the variable definitions in Fig. 1, the algorithm formula
for convolution operations [1] can be expressed as follows:

O[n, k, p, q] =
C−1∑

c=0

R−1∑

r=0

S−1∑

s=0

F [k, c, r, s] ·D[n, c, p + r, q + s] (1)

2.2 Related Work

SW26010 Heterogeneous Many-core Processor is manufactured by the Shang-
hai High Performance IC Design Center through independent technology(see
Fig. 2). As an emerging hardware platform, SW26010 has less work on efficient
processing of DNNs. The authors of swDNN [3] have developed deep learning
framework swCaffe [4] and deep learning acceleration library swDNN [3] for
SW26010. However, swDNN does not consider the balance between memory
access and computation, their double buffering scheme cannot completely cover
the cost of memory access and their instruction scheduling scheme is not the
best. In order to address these problems, we design a new algorithm based on
the Weight-Stationary to balance the memory access and calculation, achieve
almost complete cover-up of the memory access cost, and we also draw on the-
efficient instruction scheduling provided by swDNN. Finally we get very good
performance by these optimization.

318 Y. Zhang et al.

3 Optimization of CNN on SW26010

3.1 Mapping CNN to SW26010

Considering the memory access characteristics of the SW26010 processor, the
efficiency of accessing the main memory from the CPE using global read/store
(gld/gst) is extremely low. The calculated data should be prefetched into the
CPE’s local memory (LDM) by means of DMA transfer when designing the algo-
rithm. At the same time, considering the limited size of the LDM, it is necessary
to keep the data reuse as much as possible when designing the algorithm.By
analyzing the convolution algorithm, we can find that there are two forms of
data reuse: one is the Output-Stationary, that is, output matrix is always kept
in the LDM. When the matrix multiplication and addition operation associated
with output matrix is completed, output matrix will be written back to the main
memory. Another form of data reuse is the Weight-Stationary, which converts
the loop’s order, always keeps weight matrix in the LDM, reads in and reads
out the output matrix in stages to complete the convolution calculation. We
finally choose to design the algorithm based on the Weight-Stationary, it can
reduce bandwidth requirements and adapt to the SW26010’s limited bandwidth

Algorithm 1. CNN on SW26010 with double buffering
1: Load O to the CPEs, O are bcp start matrixs(from(0, 0)to(bcp, 0)) of size n× k
2: load D to the CPEs, D is n× c start matrix in(0, 0)
3: for cr = 0 : bcr : R do
4: for cs = 0 : S do
5: Load F to the CPEs,F are bcr matrixs(from(cr, cs)to(cr+bcr, cs)) of size k×c

6: for cp = 0 : bcp : P do
7: for cq = 0 : Q do
8: Load next O to the CPEs for next computation, O are bcp

matrixs(from(cp, cq)to(cp + 2bcp, cq)) of size n× k
9: for ch = cp : cp + bcp + bcr − 1 do

10: Load next D to the CPEs for next computation, D is n × c matrix
in(ch + 1, cq + cs)

11: if ch >= cp + cr and ch < cp + cr + R then
12: Ocp,cq+ = Dch,cq+S × Fcr,cs

13: end if
14: sync
15: end for
16: Store current O to the CPEs, O are bcp matrixs(from(cp, cq)to(cp +

bcp, cq)) of size n× k
17: sync
18: end for
19: end for
20: end for
21: end for

Efficient Processing of Convolutional Neural Networks on SW26010 319

and memory. And we also use double buffering for the data transmission. The
optimized algorithm is as Algorithm 1.

3.2 DMA Transfer Optimization

To map GEMM onto the processor array, we use matrix block multiplication
to block the input and output data in an 8x8 array structure, to transfer data
from main memory to LDM through the DMA, it is necessary to perform DMA
stride transmission, resulting in low DMA transmission rate. But by the analysis
of Algorithm 1, we can find that the DMA stride transmission will be used to
transfer the output matrix O back to the main memory only when the matrix
multiplication and addition is completed, and the rest of the O’s transmission
can use a continuous DMA transmission mode. Therefore, we use a hybrid DMA
transmission mode mixed with stride transmission and continuous transmission
to improve the program’s memory access bandwidth.

Para Meaning
N Number of images in mini-batch
C Number of input feature maps
H Height of input image
W Width of input image
K Number of output feature maps
R Height of filter kernel
S Width of filter kernel
P Height of output feature maps
Q Width of output feature maps

Fig. 1. Convolutional parameters Fig. 2. The general architecture of the
SW26010 processor

3.3 Instruction Scheduling

An important feature of the SW26010 is its dual instruction pipeline. Floating-
point instructions and register communication instructions can be issued simul-
taneously by dual instruction pipeline. In some specific scenarios, great perfor-
mance gains can be achieved by instruction scheduling, which was used in the
design of swDNN [3] and swDGEMM [5]. After comparison, we selected the
instruction scheduling provided by swDNN. Through the instruction scheduling
method, the execution cycle of the instruction stream is reduced from 26 to
17, the overall operation efficiency of the program is greatly improved https://
github.com/feifeibear/swDNNv1.0.

4 Results and Analysis

We use a number of sets of parameters to test our program performance and
compare it to the K80 GPU using cuDNNv7. The final test results are shown in

320 Y. Zhang et al.

Figs. 3, 4 and 5. Finally, we achieve a double-precision convolution performance
over 2.4 Tflops, achieving 81% of the processor’s peak performance, which is
higher than swDNN [3]’s measured performance (only 54%) shown in their paper,
and under different convolution filters, the performance is still stable(see Fig. 3).
Compared to the K80 using cuDNNv7, we achieve 2.4 − 4.0× acceleration.

0
300
600
900

1200
1500
1800
2100
2400
2700

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pe
rf

or
m

an
ce

(g
flo

ps
)

filter kernal size

our work K80+cuDNNv7

Fig. 3. Performance with different filter
kernal (batchsize=128, output=64*64)

1900

2100

2300

2500

2700

128*128 128*256 128*384 256*128 256*256 256*384 384*128 384*256 384*384

Pe
rf

or
m

an
ce

(g
flo

ps
)

n*c

16*16 32*32 64*64

Fig. 4. Performance with different output
size (batchsize=128, r=s=3)

0
300
600
900

1200
1500
1800
2100
2400
2700

Pe
rf

or
m

an
ce

(g
flo

ps
)

parameters (n*c)

our work k80+cuDNNv7

Fig. 5. Performance with different n× c (batchsize=128, output=64*64, r=s=3)

5 Conclusion

In this article, we present an efficient acceleration scheme for CNNs on SW26010
and finally achieve a double-precision convolution performance over 2.4 Tflops,
achieving 81% of the processor’s peak performance. In multiple parameters, we
achieve a proforamnce acceleration of 2.4− 4.0× speedup compared to the Tesla
K80 GPU with cuDNNv7.

References

1. Chetlur, S., et al.: cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

2. Chen, Y., Chen, T., Xu, Z., Sun, N., Temam, O.: Diannao family: energy-efficient
hardware accelerators for machine learning. Commun. ACM 59(11), 105–112 (2016)

http://arxiv.org/abs/1410.0759

Efficient Processing of Convolutional Neural Networks on SW26010 321

3. Fang, J., Fu, H., Zhao, W., Chen, B., Zheng, W., Yang, G.: swdnn: a library for
accelerating deep learning applications on sunway taihulight. In: 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pp. 615–624. IEEE
(2017)

4. Li, L., et al.: swcaffe: A parallel framework for accelerating deep learning applications
on sunway taihulight. In: 2018 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 413–422. IEEE (2018)

5. Jiang, L., et al.: Towards highly efficient dgemm on the emerging sw26010 many-core
processor. In: 2017 46th International Conference on Parallel Processing (ICPP), pp.
422–431. IEEE (2017)

ADMMLIB: A Library
of Communication-Efficient AD-ADMM

for Distributed Machine Learning

Jinyang Xie(B) and Yongmei Lei(B)

School of Computer Engineering and Science, Shanghai University, Shanghai, China
{jyxie,lei}@shu.edu.cn

Abstract. Alternating direction method of multipliers (ADMM) has
recently been identified as a compelling approach for solving large-scale
machine learning problems in the cluster setting. To reduce the syn-
chronization overhead in a distributed environment, asynchronous dis-
tributed ADMM (AD-ADMM) was proposed. However, due to the high
communication overhead in the master-slave architecture, AD-ADMM
still cannot scale well. To address this challenge, this paper proposes the
ADMMLIB, a library of AD-ADMM for distributed machine learning.
We employ a set of network optimization techniques. First, hierarchical
communication architecture is utilized. Second, we integrate ring-based
allreduce and mixed precision training into ADMMLIB to further effec-
tively reduce the inter-node communication cost. Evaluation with large
dataset demonstrates that ADMMLIB can achieve significant speed up,
up to 2x, compared to the original AD-ADMM implementation, and the
overall communication cost is reduced by 83%.

Keywords: Asynchronous ADMM · Consensus optimization ·
Distributed machine learning

1 Introduction

With the ever-increasing sizes of datasets and models, machine learning model
training often takes so long time. Due to the single machine’s limited computing
resources, it is reasonable to distribute large scale machine learning workloads
across multiple computing nodes. Distributed machine learning (ML) jobs often
involve solving a non-convex, decomposable and regularized optimization prob-
lem. Distributed optimization is becoming a prerequisite for solving large scale
ML problems. The alternating direction method of multipliers (ADMM) [1] is an
optimization technique by decomposing the original problem into subproblems
for parallel iterations. Usually, ADMM was implemented in master-slave archi-
tecture, in which a master coordinates the computation of a set of distributed

Supported by the National Natural Science Foundation of China under grant No.
U1811461.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 322–326, 2019.
https://doi.org/10.1007/978-3-030-30709-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_27&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_27

ADMMLIB 323

workers. To reduce the synchronization overhead, recently, the synchronous dis-
tributed ADMM has been extended to the asynchronous setting [2,8]. Asyn-
chronous updates would improve the computation efficiency of the distributed
ADMM.

A major performance bottleneck of AD-ADMM is the high communication
overhead due to the following factors. First, large-scale ML are trending to learn
large models with tens or hundreds of millions of parameters, generating a large
amount of network traffic for distributed training. Second, under the master-
slave architecture, a single incoming link to the master is shared across multiple
workers, causing network congestion. Hence, it is important to reduce the com-
munication overhead when scaling AD-ADMM to large-scale clusters.

In our work, we focus directly on the problem of improving the performance
and scalability of the AD-ADMM. We employ a set of network optimization tech-
niques, such as hierarchical communication architecture, ring-based allreduce
and mixed precision training, to achieve load balancing and reduce communica-
tion overhead. We build a library named ADMMLIB integrating our optimiza-
tion techniques. ADMMLIB manages details of parallelism, synchronization and
communication. It provides simple programming interfaces for users to imple-
ment scalable AD-ADMM.

2 Related Work

Because of the demand for faster training of ML model, several frameworks have
been proposed, such as Petuum [7]. The standard distribution strategy in ML
is data parallelism. To implement the data-parallel model training, there are
two design choices: the parameter server (PS) [3] approach using master-slave
architecture and the ring-based allreduce [4] approach with P2P architecture. In
PS, a logical parameter server aggregates model updates from all workers and
broadcasts to all workers. One bottleneck of the PS is the high communication
cost on the central server. In the ring-based allreduce, all the nodes are organized
as a logical ring, and each node communicates with two of its peers. Ring-based
allreduce is an algorithm with constant communication cost. Recent literature
[5] has shown clear benefits of the ring-based allreduce. Distributed ADMM has
been widely studied as an alternative method for distributed stochastic gra-
dient descent algorithms. Recently [1] proved that the ADMM is suitable for
distributed optimization problems. [8] has considered a version of asynchronous
ADMM to speed up the ADMM. [2] added a penalty term based on [8] to improve
the convergence efficiency of non-convex problems. [6] uses hierarchical communi-
cation structure to improve the communication efficiency of distributed ADMM.

3 ADMMLIB: System Design and Optimization

3.1 Hierarchical Communication Architecture

Although master-slave architecture has been widely used in the ADMM, it is not
quite suitable for large scale machine learning. As shown in Fig. 1, ADMMLIB

324 J. Xie and Y. Lei

adopts hierarchical communication architecture (HCA) to scale up to multicores
on a single node, as well as scale out to multiple nodes in a cluster.

To scale up, ADMMLIB start a number of worker threads on each node and
each worker thread is assigned to a dedicated CPU core. ADMMLIB also starts
a coordinator thread on each node, and ADMMLIB will choose a coordinator as
the master coordinator. Each worker only communicates with the coordinator
on the same node. Coordinators communicate with each other to coordinate the
computation of all workers in the cluster, therefore ADMMLIB can scale out to
multiple nodes.

Fig. 1. Overview of ADMMLIB architecture.

Each worker i owns a train dataset partition and is responsible for updating xi

and yi. xi and yi represent local model variable and dual variable [1], respectively.
After sending up-to-date (xi, yi) to the coordinator on the same node, worker will
block until they receive the updated z. z represents the global model variable [1].
Each coordinator takes charge of caching the latest (xi, yi) from workers. And
each coordinator maintains its own copy of z. Replicas are kept consistent by
exchanging data between coordinators. Specifically, when a coordinator receiving
update from worker i, it reports to the master coordinator. Therefore, the master
coordinator can know the status of all workers in the cluster. Once the partial
barrier and bounded delay conditions [8] are satisfied, the master coordinator
will inform all coordinators to perform an allreduce operation to update z.

Compared with the master-slave architecture, HCA can balance the load,
because each coordinator (including the master coordinator) only needs to man-
age a small subset of workers.

3.2 Improvements on Internode Communication Strategies

The simple architecture of ADMMLIB also makes it easy to identify the limiting
factors to scaling. Optimizing inter-node communication overhead is clearly the
key to scaling.

Most of the inter-node communication overhead comes from the allreduce
operation. Out of the possible allreduce implementation strategies, we choose the

ADMMLIB 325

ring-based allreduce algorithm. If the input data is m bytes, ring-based allreduce
equally partition data into Nn chunks, Nn is the number of coordinators. Each
coordinator sends and receives m/Nn bytes of data 2(Nn − 1) times to complete
an allreduce operation. Thus, the total communication time is independent of
the number of nodes. Ring-based allreduce distributes the communication cost
across all Nn nodes to avoid a node becoming a performance bottleneck.

Model training is not very demanding for high-precision calculations. Com-
pared to double-precision, using single-precision or even half-precision can
increase arithmetic throughput without decreasing accuracy. Low precision train-
ing also helps to reduce communication overhead and memory storage require-
ment since the same number of values could be stored using fewer bits. We use
mixed-precision training strategy in ADMMLIB. When optimizing xi, yi and z,
ADMMLIB uses single-precision or double-precision parameters, depending on
the user’s choice. When caching and transferring parameters, ADMMLIB uses
single precision to reduce memory usage and communication cost.

4 Experiment

In this section, we evaluate the performance and scaling efficiency of ADMMLIB.
For comparison, we also use the multi-threading technique to implement the AD-
ADMM in master-slave architecture, we call this system MAD-ADMM. We use a
cluster of 5 computing nodes interconnected with a Gigabit Ethernet. Each node
has two Intel E5-2690 CPU (2.9 GHz/8core) processors and 64 GB memory. In
the experiment, we solve sparse logistic regression problem. We consider a large
dataset: URL1. The URL has more than 2 million samples and 3 million features.

Fig. 2. Performance and scaling efficiency comparisons between ADMMLIB and MAD-
ADMM.

We set up three experiments with 16, 32 and 64 workers, respectively. First,
we test the performance of ADMMLIB. We compare two systems by running
them to reach 20 iterations, and we recorded the computation time and network
waiting time of the two systems. Figure 2(a) shows the performance comparison.
It can be seen from Fig. 2(a) that as scaling increases the level of parallelism and

1 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html#url.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#url

326 J. Xie and Y. Lei

(consequently) reduces the computation time of the two systems, the network
waiting time of ADMMLIB changes little, however the network waiting time in
the MAD-ADMM increases linearly. Therefore, ADMMLIB outperforms MAD-
ADMM. ADMMLIB can reduce network waiting time by 62.9% when testing
with 32 workers and reduce network waiting time by 83% when testing with 64
workers. Figure 2(b) shows the scaling efficiency (taking the performance of 16
workers as the baseline). ADMMLIB has higher scaling efficiency thanks to the
efficient ring-based allreduce algorithm. For 32 workers, we improved the scaling
out efficiency from 62.8% to 77.1%. For 64 workers, we improved the scaling out
efficiency from 30.2% to 57.5%.

5 Conclusion

Aiming at building a scalable and high-performance distributed model train-
ing system based on the AD-ADMM, this paper uses hierarchical communica-
tion architecture, ring-based allreduce algorithm and mixed precision training to
reduce communication overhead and memory usage. Experiments show our sys-
tem has higher performance and scalability than the original AD-ADMM imple-
mentation. But scalability of our system still does not reach ideal efficiency. In
future work, we will try to optimize the sub-question solving efficiency to solve
this problem.

References

1. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Found. Trends R© Mach. Learn. 3(1), 1–122 (2011)

2. Chang, T.H., Hong, M., Liao, W.C., Wang, X.: Asynchronous distributed admm for
large-scale optimization-part I: algorithm and convergence analysis. IEEE Trans.
Signal Process. 64(12), 3118–3130 (2016)

3. Li, M., et al.: Scaling distributed machine learning with the parameter server. In:
11th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14), pp. 583–598 (2014)

4. Patarasuk, P., Yuan, X.: Bandwidth optimal all-reduce algorithms for clusters of
workstations. J. Parallel Distrib. Comput. 69(2), 117–124 (2009)

5. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in
tensorflow. arXiv preprint arXiv:1802.05799 (2018)

6. Wang, S., Lei, Y.: Fast communication structure for asynchronous distributed
ADMM under unbalance process arrival pattern. In: Kůrková, V., Manolopoulos,
Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139,
pp. 362–371. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6 36

7. Xing, E.P., et al.: Petuum: a new platform for distributed machine learning on big
data. IEEE Trans. Big Data 1(2), 49–67 (2015)

8. Zhang, R., Kwok, J.: Asynchronous distributed ADMM for consensus optimization.
In: International Conference on Machine Learning, pp. 1701–1709 (2014)

http://arxiv.org/abs/1802.05799
https://doi.org/10.1007/978-3-030-01418-6_36

Energy-Aware Resource Scheduling
with Fault-Tolerance in Edge Computing

Yanfen Xue1,2, Guisheng Fan1(B), Huiqun Yu1, and Huaiying Sun1

1 Department of Computer Science and Engineering,
East China University of Science and Technology, Shanghai, China

{gsfan,yhq}@ecust.edu.cn
2 Shanghai Key Laboratory of Computer Software Evaluating and Testing,

Shanghai, China

Abstract. Edge computing extends computation and storage resources
to the edge of the network, which largely improve the performance prob-
lem of cloud computing incurred by the bandwidth limitation. And it still
needs to address the challenges of energy and reliability. In this paper,
we propose an energy-aware fault-tolerant resource scheduling algorithm
to improve system reliability while minimizing the energy consumption.
We allocate resources by reliability and energy-aware resource schedul-
ing method for tasks firstly. Then, CPU temperature prediction and time
between failures (TBF) prediction are used to trigger proactive fault tol-
erance mechanism (VM migration). The experimental results show that
the reliability is greatly improved and energy consumption generated by
VM migration is not very large compared to other methods.

Keywords: Edge computing · Fault tolerance · Energy consumption ·
Resource scheduling

1 Introduction

Recently, edge computing is seen as an effective solution to the problem of more
larger data, which has the advantages of shorter response time and service qual-
ity [1]. However, the problems of reliability are still urgent to be solved. The
existing fault-tolerant methods can be divided into two categories: reactive and
proactive methods. It is well known that reactive schemes will produce low aver-
age utilization of resources when the application behavior is highly dynamic.
Instead of a reactive scheme, the proactive scheme that adopts a scheme of fault
prediction [2–5] can effectively improve the utilization of resources. However,
they only consider a single factor when predicting failures, which greatly affects
the accuracy of the prediction results.

In this paper, we jointly consider the CPU temperature and time between
failures (TBF) of the host to achieve fault prediction and propose an energy-
aware fault-tolerant resource scheduling algorithm to improve the reliability
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 327–332, 2019.
https://doi.org/10.1007/978-3-030-30709-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_28&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_28

328 Y. Xue et al.

while reducing the energy consumption. Specifically, we use the reliability and
energy-aware resource scheduling [2] to allocate resources for tasks firstly. During
the tasks execution, the fault tolerance mechanism (VM migration) will be trig-
gered once the temperature reaches the upper threshold or the predicted failure
time.

The rest of this paper is organized as follows. The system model is presented
in Sect. 2 and follow is the resource scheduling algorithm. The simulation exper-
iments are conducted in Sect. 4. Section 5 summarizes the paper.

2 Fault-Tolerance Resource Scheduling Model

As shown in Fig. 1, the system is mainly divided into two layers. The Users
Layer is the producer and consumer of data. The Edge Cloud Layer is the data
processing layer that consists of physical resources. Users submit their applica-
tion to Edge Cloud layer. Then, the physical resources are allocated to tasks by
resource management system (RSM). And in order to improve the reliability of
system, the system can migrate the running VM from the deteriorating host to
other host by RSM.

In this paper, we use the Bag-of-Task (BoT) application which consists
of a set of independent tasks. The tasks in each BoT are defined as T =
{taski|1 ≤ i ≤ n}. li is the length of the task taski, which directly affects
the execution time, T ex

i . Each task taski is allocated to a virtual machine
vmj ∈ V M . Each virtual machine vmj run a set of tasks Tj ∈ T . In addi-
tion, N = {nodek|1 ≤ k ≤ x} denotes the set of the physical hosts on the edge
cloud.

Fig. 1. The System Architecture

2.1 Failure Prediction Model

CPU Temperature Prediction: We use the simulation prediction function
model of CPU temperature [3] as one of the methods to predict the host failure
time as follow:

Energy-Aware Resource Scheduling with Fault-Tolerance in Edge Computing 329

f(t|A,ω, ti, ti+1) =

⎧
⎨

⎩

et 0 ≤ t ≤ ti
eti ti ≤ t ≤ ti+1

A sin(ωt − ωti+1) + eti ti+1 ≤ t ≤ ti+2

(1)

where i is the positive integer set; ti is a fixed value calculated by eti = 35; eti

is the temperature when CPU is idle, which is always 35 ◦C; ti+1 is a random
value; ti+2 is calculated by ti+2 = π/ω + ti+1; A is the amplitude(lower than
68 ◦C); ω represents the duration of the CPU execution load.

Time Between Failures Prediction: In addition to the CPU temperature pre-
diction, the method called exponential smoothing [2] is used to predict the TBF.
Suppose there is a set of TBFs for the host nodek, TBF k = {tbf t|1 ≤ t ≤ n}.
Then, the prediction corresponding to tbf t+1 can be calculated as :

(tbfk)
′
t+1 =

{
α × (tbfk)t + ((1 − α) × (tbfk)

′
t), n > 1

(tbfk)
′
t otherwise

(2)

where (tbfk)t is the actual value of the TBF, (tbfk)
′
t is the predicted value of

the TBF at time t. α is the smoothing constant.

Algorithm 1. Reliability and Energy-aware Resource Scheduling Algorithm
Input: Bag of Tasks, B
Output: The result of tasks allocation

1: Sorting R by the ratio of the mean time between failures to the power
2: for j = 1 to |V | do
3: get the number of CPU cores required of the VM, VMcoresj

4: for k = 1 to |R| do
5: if Rk.predictedtoFail()! = true and Coresk ≥ VMcoresj then
6: Allocate VM vmj to the host Rk

7: Coresk = Coresk − VMcoresj

8: EndIF
9: EndFor

10: EndFor

2.2 Energy Consumption Model

Let vmj be the VM running on nodek with utilization uj . Then the energy
consumption of the task taski running on vmj can be calculated as

Eij = (Pk(uj) × T ex
ij) + Eextraij

(3)

where Eextraij
is the energy generated by VM migration, which can be calcu-

lated by the VM migration overhead model in [2], Similar to [6], Pk(uj) can be
calculated by,

Pk(uj) = Pmink
+ (Pmaxk

− Pmink
) × uj (4)

330 Y. Xue et al.

where Pmin and Pmax is the power of node at minimum utilization and maximum
utilization, respectively. The utilization uj of the VM vmj is the sum of the
tasks utilization ui which is calculated by normalizing the task length li with
the maximum length lmax in B.

3 Energy-Aware Fault-Tolerant Resource Scheduling
Algorithm

Given the set of tasks BoT B and the resource configurations of data center.
Algorithm 1 is used to configure resources for tasks. Firstly, the Best Fit Bin
Packing algorithm [2] is used to allocate the tasks to the VM. Then, the reliability
and energy-aware strategy is used to configure physical resources for VMs (lines
1–10). During task execution, once the temperature of the node reaches the
upper threshold or the predicted fault time, the VM migration will be triggered.
The VM running on deteriorating node selects another node through Algorithm
1 to implement the migration.

4 Performance Evaluation

We do the simulation experiments by extending the simulator ‘CloudSim’ [3] and
download the Grid5000 failure dataset from Fault Tracking Archive (FTA) [2]
and select the clusters, G1/site1/c1, as the edge cloud data center. Parameter
configuration model in [2] is used to match the configuration for each node and
generation the BoTs workload which consist of tasks between 2000 and 3000.
In order to evaluate the performance of the proposed algorithm (Tem/Tbf), we
compare our method with other fault-tolerant strategies. Specifically, we denote
‘NoFT’ as the method with no fault tolerance mechanism. ‘Restr’, ‘Pre-Tem’,
‘Pre-Tbf’, ‘Tem/Tbf’ as the method with resubmission, CPU temperature, TBF,
CPU temperature and TBF prediction as the fault tolerant strategy, respectively.

(a) Task Completion Rate (b) Number of Failed Tasks

Fig. 2. The task completion rate under different fault-tolerant strategies

Energy-Aware Resource Scheduling with Fault-Tolerance in Edge Computing 331

(a) Total Energy Consumption (b) Extra Energy by using Fault-
Tolerant strategies

Fig. 3. The energy consumption under different fault-tolerant strategies

4.1 Experimental Results

Figure 2 shows the task completion rate and the energy consumption is given
in Fig. 3. We can see that the task completion rate and energy consumption
is the highest when using Restr method. And among using fault prediction as
the fault-tolerant strategy, the extra energy by using Tem/Tbf prediction is only
30 Kwh higher than the other two cases. If using task completion rate to measure
the reliability of the system, it is the most reliable by using Restr method, but
the excessive energy which will greatly influence interests of operators. And
when using Tem/Tbf method, the reliability is much higher than the other two
proactive strategies and the increased energy is not large. Therefore, the method
we proposed(Tem/Tbf) is more effective.

5 Conclusions

In this paper, we study how to improve the reliability of the edge cloud system
while reducing energy consumption as much as possible. We use the reliability
and energy-aware resource scheduling algorithm to allocate physical resources
for tasks firstly. Then, CPU temperature prediction and time between failures
prediction are used to achieve fault tolerance. Comparison with other fault-
tolerant strategies, the method we proposed is more effective.

Acknowledgements. This work was partially supported by the NSF of China under
Grant nos. 61702334 and 61772200, Shanghai Pujiang Talent Program under Grant
no. 17PJ1401900, Shanghai Municipal Natural Science Foundation under Grant nos.
17ZR1406900 and 17ZR1429700, Action Plan for Innovation on Science and Tech-
nology Projects of Shanghai under Grant no. 16511101000, Collaborative Innovation
Foundation of Shanghai Institute of Technology under Grant no. XTCX2016-20, and
Educational Research Fund of ECUST under Grant no. ZH1726108.

332 Y. Xue et al.

References

1. Mukherjee, M., Shu, L., Wang, D., et al.: Survey of fog computing: fundamental, net-
work applications, and research challenges. IEEE Commun. Surv. Tutorials 20(3),
1826–1857 (2018)

2. Sharma, Y., Si, W., Sun, D., et al.: Failure-aware energy-efficient VM consolidation
in cloud computing systems. Future Gener. Comput. Syst. 94, 620–633 (2019)

3. Liu, J., Wang, S., Zhou, A., et al.: Using proactive fault-tolerance approach to
enhance cloud service reliability. IEEE Trans. Cloud Comput. 6(4), 1191–1202
(2018)

4. Charity, T.J., Hua, G.C.: Resource reliability using fault tolerance in cloud comput-
ing. In: 2016 2nd International Conference on Next Generation Computing Tech-
nologies (NGCT), Dehradun, pp. 65–71 (2016)

5. Liu, J., Wang, S., Zhou, A., et al.: PFT-CCKP: a proactive fault tolerance mech-
anism for data center network. In: 2015 IEEE 23rd International Symposium on
Quality of Service (IWQoS), Portland, pp. 79–80 (2015)

6. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for Cloud computing. Future Gener.
Comput. Syst. 28(5), 755–768 (2012)

DIN: A Bio-Inspired Distributed
Intelligence Networking

Yufeng Li1, Yankang Du2(&), Chenhong Cao1, and Han Qiu2

1 School of Computer Engineering and Science, Shanghai University,
Shanghai 200023, China

2 National Digital Switching System Engineering and Technology R&D Center,
Zhengzhou 450002, China
duyankang@163.com

Abstract. Software-Defined Networking (SDN) is a promising method to
simplify network management and facilitate network evolution. However, SDN
is a logically centralized technology with global network-wide view. It faces the
problem of scalability and reliability. In this paper, we propose a novel method
termed as Distributed Intelligence Networking (DIN). DIN optimizes network
management based on distributed coordination of multiple forwarding nodes
like the coordination in bird flocking motion, it is a fully physically and logically
distributed structure based on neighbor network-wide view. This architecture
naturally has the advantage of scalability and reliability.

Keywords: Software-Defined Networking �
Distributed Intelligence Networking � Neighbor network-wide view

1 Introduction

Software Defined Networking (SDN) offers the chance to introduce Artificial Intelli-
gence (AI) to reduce operational costs and to improve performance and user experience
[1]. Its main features are the centralized global network-wide view, programmability,
and separation of the data plane and control plane. Now SDN has become a promising
method and gets great attention.

As the network size increases, the centralized controller faces to many challenges
[2, 3]. Firstly, there will be a bottleneck in the real-time communication capability of
the controller with the network scale expanding. Secondly, for large scale networks, the
controller needs to be able to process millions of flows per second without sacrificing
the service quality. Thirdly, this control plane usually encounters the risk of single
point failure. This will disconnect the controller and the forwarding elements.

Many research works have been done to overcome those issues [4–6]. DevoFlow
[4] and Software-Defined Counters (SDC) [5] reduced the overhead of the control
plane by delegating some work to the forwarding elements. Maestro [6] makes efforts
on designing and deploying high performance controllers to increase the performance
of the control plane.

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 333–337, 2019.
https://doi.org/10.1007/978-3-030-30709-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_29&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_29

In this paper, we attempt to present a novel architecture termed as the Distributed
Intelligence Networking (DIN). DIN optimizes network intelligence based on dis-
tributed coordination of neighbor forwarding elements, and acts like the flocking
motion such as bird flocking in nature [7]. This can achieve global network coordi-
nation and optimization with distributed controller and distributed neighbor network-
wide view.

2 Flocking Motion Introduction

Flocking motion exists in the nature in the form of flocks of birds, schools of fish, and
so on. The study of consensus problem in flocking motion offers an alternative way to
design the intelligent, coordinated and complex systems.

As shown in Fig. 1, DIN has the same physically distributed architecture as SDN
flat architecture. However, its logical view is quite different from the SDN flat archi-
tecture as described in Onix [8] and HyperFlow [9]. For our proposed DIN, it does not
need to maintain the global network-wide view. Each controller in DIN only needs to
perceive the state of the neighbor controller. The DIN controller makes decisions based
on the coordination control protocol, and adjusts its resources to achieve global
coordinated behavior to realize intelligent improvement of network management,
performance optimization and service quality.

3 Architecture of DIN

There are two conditions to apply flocking motion to the Internet intelligence network.
First, network individuals should have basic intelligent attributes. The network indi-
viduals can perceive the neighbor information, make decisions according to the control
protocol, and make independent adjustments according to the decisions. Second, the
network reaches convergence by coordinating among individuals based on the control
protocol. This would show global intelligent behavior.

Figure 2 illustrates the architecture of the DIN forwarding node. The node archi-
tecture is divided into data-plane, control-plane and application-plane. The data-plane
of DIN nodes, like the data-plane of SDN forwarding node, performs basic store and

HyperFlow logical view DIN logical view

HyperFlow physical architecture DIN physical architecture

Fig. 1. Physical architecture and logical view in HyperFlow and DIN.

334 Y. Li et al.

forwarding function. Besides this, it also has the data-plane adjustment function such as
rate-limiting, traffic scheduling and so on.

The nodes of DIN can be implemented based on the existing SDN node structure.
The DIN network works as follows: DIN node perceives the Coordination Situation
(CoS) which means the current node situation, node resource and service request. By
doing so, a neighbor network-wide view can be formed. Then it sends the CoS to the
DIN control protocol. The DIN control protocol makes service decisions and issues
adjustment commands to the data plane through NOS. The data plane adjusts resources
for network services as ordered.

4 An Example for the DIN Protocol

A general Internet end-to-end service path is shown in Fig. 3, in which IP flows pass
through forwarding nodes hop by hop and get a certain service.

A leader-followers multi-agent system is a particularly interesting topic in dis-
tributed multi-agent coordination theory, where the leader is an agent whose motion is
followed by the other agent.

If we take the node labeled 0 in Fig. 3 as the leader, the other nodes indexed by
1; . . .; n are the followers.

C
on

tr
ol

 p
la

ne
D

at
a

pl
an

e

Forwarding elements

Southbound Interface(OpenFlow,e.g.) East/Westbound
Interface(SDNi,e.g.)

East/Westbound
Abstraction layerSouthbound Abstraction layer

East/Westbound
Mechanisms&Protocols Device Manager Not ification Manager

Shortest Path Forwarding Security Mechanisms

Topology Manager Stats Manager

Northbound Interface(REST,e.g.) Programing Languages

A
pl

lic
ai

to
ns

Routing ProtocolsLoad BalancersDIN Control ProtocolManagement
Applications

Fig. 2. DIN forwarding node architecture based on SDN

0 (0)x

1(0)x

2 (0)x 1(0)nx −

(0)nx0 ()x t

1()x t
2 ()x t 1()nx t−

()nx t

Fig. 3. A general end-to-end service path in network

DIN: A Bio-Inspired Distributed Intelligence Networking 335

According to [10], the network can be controllable if it works under a coordination
protocol with the dynamics of each agent

_xi tð Þ ¼ ui tð Þ; i ¼ 1; . . .; n; ð1Þ

In protocol (1), the neighbor node service delay xj tð Þ and the communication delay
Tji serve as the node i perception information CoS, ui tð Þ is the decision rule, thus the
node i conforming to DIN architecture can drive the node resource to adjustment and
reach consensus on the service delay of the leader.

In this section, two example control protocols are designed based on DIN archi-
tecture, one is leader-followers delay guarantee protocol, and the other is leaderless
delay guarantee protocol.

5 Simulation Results

As presented in Fig. 3, considering a leader-followers DIN network with control
protocol (1), the topology is structured by

0 ! 1 $ 2 $ 3 $ 4 $ 5 $ 6

Node 0 works as leader with x0ð0Þ ¼ 25 which is equal to R. It is assumed that the
couplings gain is identical and equal to 5. All communication delays are set to 0.2. The
initial states xið0Þði ¼ 1; 2; . . .; 6Þ of the system are different, and each is chosen
randomly.

Simulation results of (1) are plotted in Fig. 4. It is shown that under the two
conditions without and with communication delay among nodes, all nodes along the
path tend to reach a group consensus and remain stable at the initial service delay of the
leader. That is to say, with the leader node providing the service level x0ð0Þ required by
the user, each following DIN node will automatically adjust under the protocol (1), and
tend to converges to x0ð0Þ of the leader.

(a) Without delays (b) With delays

45

40

35

30

25

20

15

10

05

0 5 10 15 20

45

40

35

30

25

20

15

10

05

0 10 20 30 40 50

Fig. 4. Simulation results for leader-followers delay guarantee protocol without and with
communication delays.

336 Y. Li et al.

We can also see that the convergence speed that Fig. 4(b) is obvious lower than the
one of Fig. 4(a). This is mainly caused by communication delay among nodes.

Certainly, when the stable state of the group is broken at node i with xi deviating the
stable value x0ð0Þ, the protocol (1) will start a new round of coordination and tend to
reach the group consensus again.

6 Conclusion

Inspired by the flocking motion in nature, this paper makes a preliminary exploration of
the distributed coordination and control mechanism of Internet resources. We propose
an intelligent network resource coordination and fitting scheme called DIN.

The characteristic and advantage of DIN is that it can keep distributed structure in
physics and logic while introducing intelligent genes to the network. At present, for
large-scale application, SDN moves from single controller to multi-controller, but the
scalability and reliability problems caused by the global network-wide view and cen-
tralized control of SDN have not been solved well. The DIN proposed in this paper can
be implemented completely based on the SDN node structure and specification, and can
be deployed jointly with SDN, which can provide a new solution for improving the
scalability and reliability of SDN.

Acknowledgments. This research was supported by the Research and Development Program in
Key Areas of Guangdong Province under Grants 2018B010113001, and the National Natural
Science Foundation of China under Grants 61502528.

References

1. Kim, H., Feamster, N.: Improving network management with software defined networking.
IEEE Commun. Mag. 51(2), 114–119 (2013)

2. Xie, J., Guo, D., Hu, Z., et al.: Control plane of software defined networks: a survey.
Comput. Commun. Rev. 67(1), 1–10 (2015)

3. Yeganeh, S., Tootoonchian, A., Ganjali, Y.: On scalability of software-defined networking.
IEEE Commun. Mag. 51(2), 136–141 (2013)

4. Curtis, A.R., Mogul, J.C., Tourrilhes, J., et al.: DevoFlow: scaling flow management for high
performance networks. Comput. Commun. Rev. 41(4), 254–265 (2011)

5. Mogul, J.C., Congdon, P.: Hey, you darned counters! Get off my asic!. In: Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, New York, USA, pp. 25–
30 (2012)

6. Cai, Z., Cox, A.L., Ng, T.S.E.: Maestro: A System for Scalable OpenFlow Control. Rice
University, Technical report (2011)

7. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)
8. Koponen, T., Casado, M., et al.: Onix: a distributed control platform for large-scale

production networks. In: Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, Berkeley, USA, pp. 1–6 (2010)

9. Tootoonchian, A., Ganjali, Y.: HyperFlow: a distributed control plane for OpenFlow. In:
Proceedings of the 2010 Internet Network Management Conference on Research on
Enterprise Networking, USA (2010)

10. Rahmani, A., Ji, M., Mesbahi, M., et al.: Controllability of multi-agent systems from a
graph-theoretic perspective. SIAM J. Control. Optim. 48(1), 162–186 (2009)

DIN: A Bio-Inspired Distributed Intelligence Networking 337

A DAG Refactor Based Automatic Execution
Optimization Mechanism for Spark

Hang Zhao1, Yu Rao1, Donghua Li1, Jie Tang1(&),
and Shaoshan Liu2

1 South China University of Technology University,
Guangzhou 510641, People’s Republic of China

cstangjie@scut.edu.cn
2 PerceptIn, Fremont, USA

Abstract. In today’s big data era, traditional disk-based MapReduce big data
framework encountered bottlenecks due to its lower memory utilization and
inefficient orchestration of complex tasks. With the advantage of fully use
memory resources, Spark provides a lot of data manipulate operators and use
DAG to express the dependences. Spark split entire job to multi-stage according
to DAG and schedule them in a distributed execution environment, which better
adapted to the new characteristic of big data processing. However, Spark didn’t
consider the resource requirement of different operators and schedule them
indiscriminately, which could cause load imbalances on different nodes in the
cluster and cause some node become bottlenecks due to its extraordinary
resource consumption. In the past, solve this problem need developers to have a
lot of experience of Spark and write code sophisticated. In this paper, we pro-
posed a DAG refactor based automatic execution optimization mechanism for
Spark. The experimental results show that the DAG refactor mechanism can
greatly improve Spark performance by up to 8.8X without misinterpretation of
original program semantics.

keywords: Big data � Spark � Semantic DAG � DAG refactor

1 Introduction

With the development of information technology, massive data has been generated
every day [1]. Traditional big data processing framework, such as Hadoop, use disk to
store intermediate data, always encounter disk I/O bottleneck. Spark use RDD (Resi-
lient Distributed Dataset) to store intermediate data and use Linages to archive fault-
tolerate [2], which could archive significant performance improvement compared to
Hadoop. Therefore, a lot of applications have implemented in Spark, such as Deep
Learning [3], smart city [4, 5], and automatically vehicle.

Spark provides a lot of data manipulate operators and use DAG (Directed Acyclic
Graph) to express the dependences, then Spark split entire job to multi-stage according
to DAG and schedule them in a distributed execution environment. However, extensive
experimentations show that different operators have different running characteristic,
while Spark didn’t consider the resource requirement of different operators and

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 338–344, 2019.
https://doi.org/10.1007/978-3-030-30709-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_30&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_30

schedule them indiscriminately. In this paper, we proposed a DAG refactor based
automatic execution optimization mechanism for Spark. This mechanism could
reconstruct the DAG of original program automatically into another structure with
higher execution efficiency. With the automatic DAG refactor, the overall system
resource utilization can be effectively improved and task execution time can be greatly
reduced.

2 DAG in Spark

As shown in Fig. 1, in Spark, DAGScheduler divides the Job into several stages
according to the wide or narrow depends of RDD. The DAGScheduler packages each
stage into a TaskSet and hands it over to TaskScheduler, which will dispatch task to
Executors. During scheduling, the SchedulerBackend is responsible for providing
available resources.

Spark provides a rich set of data manipulation operators to build complex pro-
cessing logic, them can be divided into two categories: (1) Transformation operator,
mainly used to describe the conversion relationship between RDD, such as map, filter,
and union in the Fig. 2. (2) Action operator, which will trigger Spark to submit job,
such as groupByKey and join in Fig. 2.

3 Observation on Spark Operator

Spark offers great flexibility to application developers by its rich operators set. How-
ever, there still lacks theoretical and experimental research on Spark operators. In this
paper, we explore different characteristics of operators in Spark through a large number
of experiments and get the observation below: (1) Spark operators can be classified into
computation intensive operators and Shuffle intensive operators according to the
characteristics of operators. (2) Performance of application varies greatly when dif-
ferent operators contributed to the same semantic. (3) Performance of application varies
greatly when execution sequence of operators changes. (4) Data volume decides the
execution performance and usage of each operator.

Fig. 1. The architecture of Spark. Fig. 2. Wide vs narrow dependencies

A DAG Refactor Based Automatic Execution Optimization Mechanism for Spark 339

4 Automatic DAG Refactor Mechanism

In scheduling, Spark only considers the narrow-dependency or wide-dependency of
operators in stages division. It is prone to overlook different resource requirements and
runtime feature of operators. Thus resulted schedule decisions can not fully mine the in-
memory computing potential. In this paper, we propose a Spark automatic optimization
framework based on DAG refactor to take care of such sophisticated work and make
execution more efficient automatically.

4.1 System Design

The automatic DAG refactor mechanism proposed is shown as Fig. 3. The mechanism
can reconstruct DAG by modification of RDD dependency and the user-defined exe-
cution function. It mainly includes a general DAG refactor module and an extensible
DAG refactor rule library.

4.2 DAG Refactor Rules Library

In this paper, we extracted the characteristics of different operators in Spark running
process through a large number of experiments. Then, conclude the replacement rules
of Spark operator, and form a Spark operator replacement rule library through the
analysis of characteristics of Spark operator and semantic analysis of DAG. All
replacement rules are shown in Table 1.

Fig. 3. System architecture diagram

Table 1. Replacement rules

Rules Scope of application

map -> mapPartitions User function overhead too large
foreach -> foreachPartitions User function overhead too large

groupByKey + map -> reduceByKey Shuffle data too large
groupByKey + mapPartitions -> reduceByKey Shuffle data too large
reduce -> treeReduce/treeAggregate Driver side performance bottleneck

aggregate -> treeAggregate Driver side performance bottleneck
reduce-side join -> map-side join Has a broadcastable table

map + filter -> filter + map Data reduction after filter
filter -> filter + coalesce Data skew occurs after Filter
union + distinct -> distinct + union + distinct Very much duplicate data

340 H. Zhao et al.

5 Implementation in Spark

5.1 DAG Refactor

The implementation of proposed DAG refactor mechanism mainly by modifying the
function handleJobSubmitted in the DAGScheduler to handle job submission, and the
job submitted by the user can be extracted. Then call the DAGRefactor component to
refactor user job, form a refactored job, and finally replace the original job with
refactored job, and then continue to execute by the Spark.

5.2 DAGRefactor Design and Implementation

The DAGRefactor class diagram is shown in Fig. 4. Origin_job and refactored_job
store the original job and refactored job after refactor respectively; adjacency_table and
inverse_adjacency_table are intermediate variables of running process, which are used
to store the adjacency table and inverse adjacency table of DAG; rule_list lists defin-
able refactor rules, it is convenient to add more refactor schemes later.

Depending on their functionality, DAGRefactor provides modules such as DAG
Analyse, Rules Match, Refactored Check, DAG Rewrite, and DAG Refactor Rules
Library, and provides separate function interfaces for different modules.

6 Experiments and Evaluation

6.1 Evaluation Environment

By running Spark in real environment, the improvement of DAG refactor strategy
proposed in this paper can be evaluated and analyzed. Spark is based on its 2.3.0
version and we set 4 Spark worker instances, each have 4 CPU cores and 6 GB
memory.

Fig. 4. DAGRefactor class diagram

A DAG Refactor Based Automatic Execution Optimization Mechanism for Spark 341

6.2 SQL

Spark-SQL is a typical scenario of foreach operator. First, we made experiment by
using foreach operation to inserting 1,000,000 rows and 100,00 rows respectively.
Next, we empty the database and proposed framework make refactor by using fore-
achPartitions operator. Table 2 shows experimental results, compared with foreach
implementation, foreachPartitions gives 8.8X speedup at best meanwhile consumes
less bandwidth, and no data loss.

6.3 Data Aggregation

Data aggregate summarizes all records of RDDs in two phases. As shown in Fig. 5,
30 s later, the limited computing resources of driver results in slow execution and diver
becomes a performance bottleneck, resulting in total execution time of up to 55 s.

Without changing other variables, proposed framework refactor aggregate operator
into treeAggregate operator. As shown in Fig. 6, treeAggregate operator adopted a
tree-like aggregation strategy in the second phase, thus keeping CPU utilization at a
high level consistently. It took only 27 s to complete all tasks and reduced execution
time by 51%.

6.4 Merge and Deduplication

We tested the refactor improvement of merging operations and deduplication opera-
tions of two RDDs, i.e. A.union(B).distinct() is rewritten to A.distinct().union(B.distinct
()).distinct(). Figures 7 and 8 shows the resource consumption respectively. It can be
seen that by refactor, total running time of program is reduced from 51 s to 47 s, and
performance is improved by 7.8%.

Table 2. Comparison of foreach and foreachPartitions

Executor * core Time (s) CPU Bandwidth Data loss

foreach (1000K) 4 * 4 457.494 10% 0–50 Mbps 79%
foreachPartitions (1000K) 4 * 4 52.089 5% 15 Mbps 0%
foreach (100K) 2 * 1 260.193 5% 6 Mbps 0%
foreachPartitions (100K) 2 * 1 54.054 5% 2 Mbps 0%

Fig. 5. aggregate resource consumption Fig. 6. treeAggregate resource consumption

342 H. Zhao et al.

7 Relation Works

Spark provides rich operators and uses them to organize computational logic, but
research on Spark operators is still relatively rare. [6] studied the input-output ratio of
different operators, to estimate the size of intermediate data in computing process. [7]
talked about incremental calculation, studied the difference between different operators
when data increments. According to the difficulty of operator multiplexing, its divided
operators into two types: indirect multiplexing which can be directly multiplexed and
deduced by predicate. At the same time, implemented FQ-Tree-based reusable frag-
ment matching and DAG refactor. For scheduling shuffle class operators, [8] analyzed
memory scheduling algorithm in Spark Shuffle phase. Considering the un-balanced
memory requirements of different task, fair memory allocation scheduling algorithm
can not meet the demand well, proposed an adaptive scheduling algorithm that could
dynamically adjust the memory allocation of tasks based on overflow historically.

8 Conclusions

In this paper, the different characteristics of different operators in Spark are studied by
experiment. With this observation, we design and implement a DAG refactor based
automatic execution optimization mechanism for Spark. With a large number of
experimental analysis of operators in Spark, we summarize several rules for DAG
refactor, which can directly optimize the calculation of related operators. Experiments
show that the proposed DAG refactor based automatic execution optimization mech-
anism can improve Spark performance up to 8.8X by DAG refactor without destroying
original program semantics.

References

1. Pempek, T.A., Yermolayeva, Y.A., Calvert, S.L.: College students’ social networking
experiences on Facebook. J. Appl. Dev. Psychol. 30(3), 227–238 (2009)

2. Zaharia, M., Chowdhury, M., Das, T., et al.: Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In: Usenix Conference on Networked Systems
Design and Implementation, p. 2. USENIX Association (2012)

3. Hamilton, M., Raghunathan, S., Matiach, I., et al.: MMLSpark: Unifying Machine Learning
Ecosystems at Massive Scales. arXiv preprint arXiv:1810.08744 (2018)

Fig. 7. union + distinct resource consumption Fig. 8. distinct + union + distinct resource
consumption

A DAG Refactor Based Automatic Execution Optimization Mechanism for Spark 343

http://arxiv.org/abs/1810.08744

4. Agafonov, A., Yumaganov, A.: Short-term traffic flow forecasting using a distributed spatial-
temporal k nearest neighbors model. In: 2018 IEEE International Conference on Compu-
tational Science and Engineering (CSE), pp. 91–98. IEEE (2018)

5. Nasiri, H., Nasehi, S., Goudarzi, M.: A survey of distributed stream processing systems for
smart city data analytics. In: Proceedings of the International Conference on Smart Cities and
Internet of Things, p. 12. ACM (2018)

6. Bae, J., Jang, H., Jin, W., et al.: Jointly optimizing task granularity and concurrency for in-
memory mapreduce frameworks. In: 2017 IEEE International Conference on Big Data (Big
Data), pp. 130–140. IEEE (2017)

7. KanJing: The research of key techniques of incremental computing for DAG-based
framework. Beijing University of Technology (2017)

8. Chen, Y.: Analysis and optimization of memory scheduling algorithm of spark shuffle.
Zhejiang University (2016)

344 H. Zhao et al.

BTS: Balanced Task Scheduling Strategy
Based on Multi-resource Prediction

and Allocation in Cloud Environment

Yongzhong Sun1, Kejiang Ye1(B), Wenbo Wang2, and Cheng-Zhong Xu3

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, China

{yz.sun1,kj.ye}@siat.ac.cn
2 Khoury College of Computer Sciences, Northeastern University,

Seattle, WA 98109, USA
wang.wenbo@husky.neu.edu

3 Faculty of Science and Technology, University of Macau, Macau, China
czxu@um.edu.mo

Abstract. Cloud computing is a new computing paradigm equipped
with large-scale servers to satisfy diverse application demands. Managing
and scheduling various application tasks on cloud servers is very chal-
lenging. In this paper, we propose a Balanced Task Scheduling (BTS)
strategy by combining multi-objective particle swarm optimization and
time series prediction model to achieve a better load balance among cloud
servers. We not only consider the current server load which is used by
most existing scheduling methods, but also take the future load change
prediction into account. Experiments on the public Alibaba cluster trace
with 1310 servers show that the proposed strategy can achieve a more
balanced resource utilization.

Keywords: Load balancing · Workload prediction · Task scheduling

1 Introduction

Despite the adoption of various resource management systems that use typi-
cal scheduling algorithms based on instantaneous resource availability during
the scheduling, the ability to reliably distribute application tasks among cloud
servers remains deficient. According to the analysis of Alibaba cluster data [3],
cloud servers have a significant spatial imbalance and time imbalance. Due to
the limits of existing task scheduling methods, this paper proposes a balanced
task scheduling strategy based on multi-resource prediction and allocation to
achieve a better load balance among cloud servers.

The main contributions of this paper are: (i) According to the load feedback
sampled periodically, we forecast the future load of servers through a time series
prediction model - Prophet [7]. Then we use a multi-objective particle swarm

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 345–349, 2019.
https://doi.org/10.1007/978-3-030-30709-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_31&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_31

346 Y. Sun et al.

optimization algorithm - OMOPSO [8] to determine the mapping relationship
between the tasks and the servers from the predicted load, actual load, and load
threshold. (ii) We use the Alibaba cluster trace with 1310 servers as the test
dataset to evaluate the prediction accuracy and also perform the load balance
analysis to verify the effectiveness of the task scheduling strategy. Experimental
results show that the proposed strategy can achieve a more balanced CPU and
memory utilization.

2 Problem Description

Definition 1. Server and its resource utilization vector. The data center has
n servers Si, i ∈ [1, n]. Vector

−−→
Scur
i = (Scur

i,CPU , S
cur
i,Mem) represents the current

resource utilization of different servers in the data center, Scur
i,CPU is the current

CPU utilization of server Si, Scur
i,Mem is the current memory utilization of server

Si. Vector
−−→
Snxt
i = (Snxt

i,CPU , S
nxt
i,Mem) represents the predicted resource utilization

of different servers in the data center at the next time.

Definition 2. Batch task and its resource occupancy rate. The number of batch
tasks that need to be deployed to the server at a given time is m, Bj , j ∈ [1,m]
represents a batch task, Bj,CPU is the CPU requirement of Bj , Bj,Mem is the
memory requirement of Bj .

Definition 3. Batch tasks to servers deployment matrix. The deployment rela-
tionship between the batch tasks and servers can be expressed as a matrix
E = (eij)n×m. When batch task Bj is deployed to server Si, eij = 1, other-
wise eij = 0.

Definition 4. Server and its current utilization estimate. For server Si,
its current CPU utilization estimate is the sum of Scur

i,CPU and the CPU
resource requested for all batch tasks deployed on it: EST cur

i,CPU = Scur
i,CPU +

∑m
j=1 eijBj,CPU . In the same way, its current memory utilization estimate is

EST cur
i,Mem = Scur

i,Mem +
∑m

j=1 eijBj,Mem.

Definition 5. Server and its next-period utilization estimate. Assume that the
batch tasks currently deployed are not finished in the next period. For server
Si, its next-period CPU utilization estimate ESTnxt

i,CPU is the sum of Snxt
i,CPU

and the CPU resource requested for all the batch tasks currently deployed on
it: ESTnxt

i,CPU = Snxt
i,CPU +

∑m
j=1 eijBj,CPU . Its next-period memory utilization

estimate ESTnxt
i,Mem = Snxt

i,Mem +
∑m

j=1 eijBj,Mem.

Problem Model. By introducing the above definitions, the server load balanc-
ing problem can be modeled as a multi-objective optimization problem, whose
objective functions:

min(Kcur
Res) = min

⎛

⎜
⎝

√
√
√
√ 1

n

n∑

i=1

(

EST cur
i,Res − 1

n

n∑

i=1

EST cur
i,Res

)2
⎞

⎟
⎠ ,

Res ∈ {CPU,Mem}

(1)

BTS: Balanced Task Scheduling Strategy 347

Kcur
Res is the standard deviation of the current resource utilization estimate

for servers of the data center.
The constraint functions are as follows:

n∑

i=1

eij = 1, j = 1, 2, ...,m (2)

indicating that each batch task can only be deployed on one server.

EST cur
i,Res = Scur

i,Res +
m∑

j=1

eijBj,Res < Ti,Res (3)

ESTnxt
i,Res = Snxt

i,Res +
m∑

j=1

eijBj,Res < Ti,Res (4)

represent that when the batch tasks are deployed on the servers, the current and
next-period resource utilization cannot exceed the server resource threshold. The
resource threshold of server Si is Ti,Res.

3 Experimental Evaluation

The cluster data released by Alibaba in 2017 is used as the experimental data. It
contains 12-h trace information of 1,310 machines, including machine resource
usage and batch task workload.

We use the logistic regression model of Prophet for prediction. The model
parameters are as follows: capacity is 100%, changepoint range is 100%, change-
point prior scale is 0.2, and n changepoint is automatically set by the model.
The sliding window mechanism was applied to predict the workload and the
length of the window is set to 8.

We first verify the prediction accuracy of the proposed method. Figure 1
shows the actual load and predicted load of a server (id = 600) in the sampling
period. The figure shows that the prediction can fit the fluctuation of the machine
load very well.

Then, we evaluate the effectiveness of balanced scheduling strategy. We select
4 load sampling time periods from Alibaba cluster data, using the first 5,000
batch tasks in all servers for rescheduling in each time period.

We find the solution to problem (1) by the OMOPSO algorithm under con-
straints (2)(3)(4). By tracking 4 load sampling timestamps, we get the actual
resource utilization Scur

i,CPU and Scur
i,Mem of the machines, and we get the predicted

value Snxt
i,CPU and Snxt

i,Mem of future resource utilization through the Prophet
model. The resource utilization threshold Ti,CPU and Ti,Mem of server Si are set
to 70% and 90% respectively. The parameters for particle swarm optimization
are set as follows: w = rand(0.1, 0.5), c1, c2 = rand(1.5, 2.0), r1, r2 = (0.0, 1.0),
polupationSize = 50 and maxEvalution = 1000.

The load balancing effect is tested by calculating the standard deviation of
the load of cloud servers, and the results are shown in Table 1, where Korig

CPU and

348 Y. Sun et al.

(a) CPU utilization (b) Memory utilization

Fig. 1. Actual and predicted load comparison of machine id 600

Korig
Mem represent the standard deviation of the CPU load and memory load of

the machines when the original scheduling strategy is adopted. In the case of
using the proposed scheduling strategy, the load balance of each experimental
group is improved compared with the original scheduling strategy.

Table 1. Load balancing effect of two scheduling strategies

Group Kcur
CPU Korig

CPU ΔKCPU Kcur
Mem Korig

Mem ΔKMem

A 6.899 7.255 −0.356 10.376 11.179 −0.803

B 6.409 6.816 −0.407 11.715 12.351 −0.636

C 7.140 7.969 −0.829 10.726 11.195 −0.469

D 7.167 7.520 −0.353 12.265 12.884 −0.619

4 Related Work

The intelligent algorithms such as simulated annealing algorithm [9], genetic
algorithm [6] and particle swarm optimization [4] are powerful in solving the
task scheduling problem under multi-resource constraints. LD et al. [1] propose
a dynamic load balancing algorithm HBB-LB based on bees’ foraging behavior,
aiming to achieve load balancing across VMs to maximize throughput. The pri-
ority of the task in the waiting sequence in the node is considered to minimize
the waiting time of the task in the queue. Li et al. [2] propose a cloud task
scheduling policy based on Load Balancing Ant Colony Optimization (LBACO)
algorithm. The algorithm selects the best resource to perform a task based on
the resource state and the size of a given task in the cloud environment. It bal-
ances the overall system and minimizes the completion time for a given set of
tasks. Ramezani et al. [5] propose a Task-based System Load Balancing method
using Particle Swarm Optimization (TBSLB-PSO) that achieves system load

BTS: Balanced Task Scheduling Strategy 349

balancing by only transferring extra tasks from an overloaded VM instead of
migrating the entire overloaded VM. It significantly reduces the time taken for
the load balancing process.

5 Conclusion

In order to solve the load balancing problem, this paper proposes a task schedul-
ing strategy based on the combination of multi-objective particle swarm opti-
mization and time series prediction model. The goal of this strategy is to improve
load balancing among the cloud servers, and the impact of the current and future
load of the servers on task scheduling is also considered. The experiments based
on Alibaba cluster trace with 1310 servers show that this scheduling strategy can
effectively achieve the goal of reasonable task allocation with a more balanced
resource utilization.

Acknowledgment. This work is supported by the National Key R&D Program of
China (No. 2018YFB1004804), National Natural Science Foundation of China (No.
61702492), Shenzhen Discipline Construction Project for Urban Computing and Data
Intelligence, and Shenzhen Basic Research Program (No. JCYJ20170818153016513).

References

1. Ld, D.B., Krishna, P.V.: Honey bee behavior inspired load balancing of tasks in
cloud computing environments. Appl. Soft Comput. 13(5), 2292–2303 (2013)

2. Li, K., Xu, G., Zhao, G., Dong, Y., Wang, D.: Cloud task scheduling based on load
balancing ant colony optimization. In: 2011 Sixth Annual China Grid Conference,
pp. 3–9. IEEE (2011)

3. Lu, C., Ye, K., Xu, G., Xu, C.Z., Bai, T.: Imbalance in the cloud: an analysis on
Alibaba cluster trace. In: 2017 IEEE International Conference on Big Data (Big
Data), pp. 2884–2892. IEEE (2017)

4. Ramezani, F., Lu, J., Hussain, F.: Task scheduling optimization in cloud computing
applying multi-objective particle swarm optimization. In: Basu, S., Pautasso, C.,
Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 237–251. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1 17

5. Ramezani, F., Lu, J., Hussain, F.K.: Task-based system load balancing in cloud
computing using particle swarm optimization. Int. J. Parallel Program. 42(5), 739–
754 (2014)

6. Sharma, N.K., Reddy, G.R.M.: Novel energy efficient virtual machine allocation at
data center using genetic algorithm. In: 2015 3rd International Conference on Signal
Processing, Communication and Networking (ICSCN), pp. 1–6. IEEE (2015)

7. Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimiza-
tion using crowding, mutation and ∈-dominance. In: Coello Coello, C.A., Hernández
Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4 35

8. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2018)
9. Yuan, H., Bi, J., Tan, W., Li, B.H.: Temporal task scheduling with constrained

service delay for profit maximization in hybrid clouds. IEEE Trans. Autom. Sci.
Eng. 14(1), 337–348 (2017)

https://doi.org/10.1007/978-3-642-45005-1_17
https://doi.org/10.1007/978-3-540-31880-4_35

DAFL: Deep Adaptive Feature Learning
for Network Anomaly Detection

Shujian Ji1,2, Tongzheng Sun1, Kejiang Ye1(B), Wenbo Wang3,
and Cheng-Zhong Xu4

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, China

{sj.ji,tz.sun,kj.ye}@siat.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Khoury College of Computer Sciences, Northeastern University,

Seattle, WA 98109, USA
wang.wenbo@husky.neu.edu

4 Faculty of Science and Technology, University of Macau, Macau, China
czxu@um.edu.mo

Abstract. With the rapid development of the Internet and the grow-
ing complexity of the network topology, network anomaly has become
more diverse. In this paper, we propose an algorithm named Deep Adap-
tive Feature Learning (DAFL) for traffic anomaly detection based on
deep learning model. By setting proper feature parameters θ on the neu-
ral network structure, DAFL can effectively generate low-dimensional
new abstract features. Experimental results show the DAFL algorithm
has good adaptability and robustness, which can effectively improve the
detection accuracy and significantly reduce the detection time.

Keywords: Network anomaly detection · Deep learning ·
Feature learning

1 Introduction

Network attack is a serious problem in the Internet environment. With the rapid
development of the Internet and the growing complexity of the network topology,
network anomaly has become more diverse. Network anomaly detection is an
effective way to deal with different network attacks [1].

Machine learning is a common method for anomaly detection in the network
environment, such as Naive Bayes, Support Vector Machine and other shallow
learning technologies [2,3]. Although these technologies have improved the detec-
tion accuracy to a certain extent, they also face some limitations. For example,
expert knowledge is required for data processing, and a large amount of time is
needed for data training. Recently, deep learning based methods [4–6] are pro-
posed for anomaly detection due to the better feature learning ability. However,
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 350–354, 2019.
https://doi.org/10.1007/978-3-030-30709-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_32&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_32

DAFL: Deep Adaptive Feature Learning for Network Anomaly Detection 351

they improved the detection accuracy, without taking into account the training
time and execution time in high-speed networks.

In this paper, we propose an algorithm named Deep Adaptive Feature Learn-
ing (DAFL) which can utilize the feature learning ability of deep learning and
the advantages of transfer learning. The contributions of this paper are sum-
marized as follows: (i) the algorithm can determine the structure of the neural
network according to the dimension of data. (ii) By combining deep learning
with shallow machine learning, DAFL improves the classification performance
of anomaly detection and greatly reduces the training time.

2 DAFL Algorithm

We design the DAFL algorithm to determine the number of layers of the network
hidden layer and the number of neurons in each layer according to the dimensions
of the input data, and construct a pre-trained learning model that can adapt to
the dimension of data features, as shown in Algorithm 1.

Algorithm 1. Deep Adaptive Feature Learning
Require: training sample v, feature parameter θ, learning rate η, list N
Ensure: pre-train model xW + b
1: D = data dimension of v, layer number: l = �D/5�
2: initalize n1 = D, calculate neurons number of each layer: nl = �θ ∗ D�
3: for i = 2 to l − 1 do
4: neurons: ni = �D/i2� + �θ ∗ D�, save ni to N
5: end for
6: for i = 1 to l do
7: use N to build network with l-th layers and ni neurons.
8: output layer: S(x) = 1

1+e−x

9: end for
10: for all vi do
11: calculate the actual output of the neuron v

′
i

12: δk = v
′
i(1 − v

′
i)(vi − v

′
i)

13: hidden layer h error gradient: δh = v
′
h(1 − v

′
h)Whkδk

14: update the weights: Wij = Wij+ΔWij , ΔWij = ηOiδj , update the bias: bj =
bj+ηδj

15: end for

In order to balance the training speed and accuracy of the deep learning
model, we design a feature parameter θ (from 0.1 to 1) as the control value in
the DAFL algorithm to make the high hidden layer generate abstract features of
different dimensions. As shown in Fig. 1, combining the deep network structure
based on DAFL with different conventional shallow machine learning classifiers
can be used as the detection model.

352 S. Ji et al.

(a) Pre-train DBN model by using
DAFL

(b) Use the remain structure to gen-
erate new feature

Fig. 1. The design of DAFL

3 Experiment

We conduct experiments with NSL-KDD [7] dataset to evaluate our proposed
algorithm. By comparing the performance of the original data and the data
processed by the DAFL algorithm on the classifier, we can verify the validity of
DAFL.

Table 1. Models performance in NSL-KDD dataset

Model Accuracy Precision Recall F1 − score Time(s)

Support Vector Machine (SVM) 97.26% 98.03% 96.06% 97.19% 91.73 s

DAFL SVM (θ = 0.8) 99.17% 99.49% 98.74% 99.15% 8.72 s

K-Nearest Neighbors (KNN) 99.02% 99.34% 98.88% 99.15% 107.19 s

DAFL KNN (θ = 0.8) 99.21% 99.41% 98.89% 99.19% 13.62 s

Logistic Regression (LR) 95.05% 95.26% 94.05% 94.98% 1.98 s

DAFL LR (θ = 0.8) 99.15% 99.36% 98.82% 99.13% 0.40 s

Decision Tree (DT) 98.94% 98.98% 98.75% 98.93% 1.19 s

DAFL DT (θ = 0.8) 99.67% 99.72% 99.58% 99.65% 0.47 s

Naive Bayes (NB) 88.82% 86.72% 89.24% 88.66% 0.10 s

DAFL NB (θ = 0.8) 98.77% 95.25% 99.75% 97.70% 0.06 s

Experiments show that the classifier achieves the best result when the fea-
ture parameter is set to 0.8. Table 1 shows the changes of classifier performance
metrics when DAFL is applied to the classifier on the NSL-KDD dataset. It is
worth noting that the accuracy in the NB classifier increased from 88.92% to
98.77%, and the recall increased from 89.24% to 99.75%. In terms of detection
time, the classifier that has been processed by the DAFL algorithm has a signif-
icant reduction in detection time. The most obvious change is that the time of
the SVM classifier is reduced from 91.73 s to 8.72 s, and the detection time of the
KNN classifier is reduced from 107.19 s to 13.62 s. Figure 2 shows the accuracy
and time saving percentage on NSL-KDD.

DAFL: Deep Adaptive Feature Learning for Network Anomaly Detection 353

(a) Classifiers’ accuracy perfor-
mance comparison on NSL-KDD

(b) NSL-KDD time saving after
DAFL

Fig. 2. Accuracy and time saving on NSL-KDD

(a) PCA visualization for NSL-KDD (b) PCA visualization for NSL-
KDD after DAFL

Fig. 3. PCA visualization for NSL-KDD before and after DAFL

We perform data scatter visualization by PCA method for normal traffic and
abnormal traffic in the dataset in Fig. 3. It is obvious that the DAFL algorithm
can separate the normal traffic and abnormal traffic.

4 Related Work

There are a lot of work on network anomaly detection. Ibrahimi et al. used clas-
sification algorithms such as linear discriminant analysis (LDA) and principal
component analysis (PCA) to classify abnormal network traffic [8]. Alrawashdeh
et al. used Restricted Boltzmann Machine (RBM) to perform unsupervised fea-
ture reduction [9]. Potluri et al. proposed an accelerated DNN structure for iden-
tifying network data anomalies [10]. Kang et al. proposed an intrusion detection
system based on deep neural network [11]. Our research group also proposed
different algorithms and tool for network anomaly detection [1,4–6].

5 Conclusion

In this paper, we propose a DAFL algorithm for network anomaly detection that
can determine the number of hidden layers and the number of neurons in each

354 S. Ji et al.

hidden layer according to the dimension of the original data. Using the idea of
transfer learning, we remove the output layer of the neural network and use the
residual structure to generate new data with abstract features as input of other
machine learning classifiers. The experimental results show that the method
achieves good results, and has a certain degree of robustness and adaptability.

Acknowledgment. This work is supported by the National Key R&D Program of
China (No. 2018YFB1004804), National Natural Science Foundation of China (No.
61702492), Shenzhen Discipline Construction Project for Urban Computing and Data
Intelligence, and Shenzhen Basic Research Program (No. JCYJ20170818153016513).

References

1. Lin, P., Ye, K., Xu, C.-Z.: NetDetector: an anomaly detection platform for net-
worked systems. In: IEEE International Conference on Real-time Computing and
Robotics. IEEE (2019)

2. Shon, T., Kim, Y., Lee, C., Moon, J.: A machine learning framework for network
anomaly detection using SVM and GA. In: Proceedings from the Sixth Annual
IEEE SMC Information Assurance Workshop, pp. 176–183. IEEE (2005)

3. Amor, N.B., Benferhat, S., Elouedi, Z.: Naive Bayes vs decision trees in intru-
sion detection systems. In: Proceedings of the 2004 ACM Symposium on Applied
Computing, pp. 420–424. ACM (2004)

4. Lin, P., Ye, K., Xu, C.-Z.: Dynamic network anomaly detection system by using
deep learning techniques. In: Da Silva, D., Wang, Q., Zhang, L.J. (eds.) CLOUD
2019. LNCS, vol. 11513, pp. 161–176. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-23502-4 12

5. Zhu, M., Ye, K., Wang, Y., Xu, C.-Z.: A deep learning approach for network
anomaly detection based on AMF-LSTM. In: Zhang, F., Zhai, J., Snir, M., Jin,
H., Kasahara, H., Valero, M. (eds.) NPC 2018. LNCS, vol. 11276, pp. 137–141.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05677-3 13

6. Zhu, M., Ye, K., Xu, C.-Z.: Network anomaly detection and identification based
on deep learning methods. In: Luo, M., Zhang, L.-J. (eds.) CLOUD 2018. LNCS,
vol. 10967, pp. 219–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94295-7 15

7. NSL-KDD (1999). https://iscxdownloads.cs.unb.ca/iscxdownloads/NSL-KDD
8. Ibrahimi, K., Ouaddane, M.: Management of intrusion detection systems based-

KDD99: analysis with LDA and PCA. In: 2017 International Conference on Wire-
less Networks and Mobile Communications (WINCOM), pp. 1–6. IEEE (2017)

9. Alrawashdeh, K., Purdy, C.: Toward an online anomaly intrusion detection system
based on deep learning. In: 2016 15th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 195–200. IEEE (2016)

10. Potluri, S., Diedrich, C.: Accelerated deep neural networks for enhanced intru-
sion detection system. In: 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1–8. IEEE (2016)

11. Kang, M.-J., Kang, J.-W.: Intrusion detection system using deep neural network
for in-vehicle network security. PloS one 11(6), e0155781 (2016)

https://doi.org/10.1007/978-3-030-23502-4_12
https://doi.org/10.1007/978-3-030-23502-4_12
https://doi.org/10.1007/978-3-030-05677-3_13
https://doi.org/10.1007/978-3-319-94295-7_15
https://doi.org/10.1007/978-3-319-94295-7_15
https://iscxdownloads.cs.unb.ca/iscxdownloads/NSL-KDD

SIRM: Shift Insensitive Racetrack
Main Memory

Hongbin Zhang1, Bo Wei2, Youyou Lu1, and Jiwu Shu1(B)

1 Tsinghua University, Beijing, China
{zhanghb,luyy09,shujw}@mail.tsinghua.edu.cn
2 Hangzhou Dianzi University, Hangzhou, China

weibo@hdu.edu.cn

Abstract. Racetrack memory (RM) is a potential DRAM alternative
due to its high density and low energy cost and comparative access
latency with SRAM. On this occasion, we propose a shift insensitive race-
track main memory architecture SIRM. SIRM provides uniform access
latency to upper system, which make it easy to be managed. Experi-
ments demonstrate that RM can outperform DRAM for main memory
design with higher density and energy efficiency.

Keywords: Racetrack memory · Shift insensitive · Main memory

1 Introduction

Recently, racetrack memory (RM), which is also known as domain wall memory
(DWM), has attracted significant attention of researchers. Previous research has
demonstrated that this approach can achieve ultra-high density by integrating
multiple domains in a tape-like nanowire [1–3]. In addition, it provides SRAM-
comparable access latency and high write endurance [4]. In racetrack memory,
each cell has a similar architecture and access pattern to an STT-RAM cell. Each
racetrack contains one or more access ports, and the data aligned with each port
can be read/write by these accessing ports. In order to access other bits that are
not aligned with a port, a shift operation must be performed to move these bits
to the nearest access port. Owing to the comparable access latency of a SRAM,
RM is a promising candidate for on-chip memory or caching [5]. Furthermore,
data placement mechanisms for optimizing its access latency and energy cost
have been researched intensively [6,7]. All of these studies have focused on how
to significantly reduce the shift intensity, either at the system or compiler level,
in order to leverage the density, shift latency, and energy cost.

There are also approaches to compose racetrack as the main memory. A
shift-sense address mapping policy (SSAM) has been proposed for reducing
shift operations in racetrack-based main memory systems [8]. SSAM significantly
reduces shift intensity by employing a specified address mapping policy. How-
ever, SSAM also introduces complexity to the memory management and system

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 355–360, 2019.
https://doi.org/10.1007/978-3-030-30709-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_33&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_33

356 H. Zhang et al.

design because each request may have a different number of shift steps or length
and the read/write latency varies.

In this work, we propose an improved solution for RM serving as main mem-
ory, shift insensitive racetrack main memory (SIRM) which successfully hide shift
operations, and provide a uniform read/write interface to upper system. With
its inherent advantages, SIRM can provide higher density, superior performance,
and lower energy main memory compared with DRAM.

2 Motivation

In order to achieve higher bandwidth, modern commodity DRAM generally work
according to DDR standard [11] in most computer architecture. The most impor-
tant performance of DDR is data rate, or data burst latency. As previous work
point out [1], the shift latency of RM array is related to the tape length, number
of access ports and overlap layout. We propose a specific RM array with appro-
priate design and keep the shift latency equal or smaller than the DRAM burst
cycle, then the shift latency will be covered by the DRAM burst time interval.
So SIRM has a good scalability to fit for different DDR standard, which will be
discussed in Sect. 4. We design the main memory architecture with multiple RM
arrays. Together with SIAM which provides a pipeline mechanism to read data
from adjacent racetrack, the shift operation will be hidden under the memory
level and invisible to upper system. We design and implement SIRM according
to this idea and testify its effectiveness.

3 The Shift Insensitive Racetrack Main Memory Design

3.1 Basic Array of RM

Prior work [1] proposes an organization with overlapped RM cells, called Macro
Unit (MU), as a basic building block of RM array, as shown in Fig. 1(a). In this
section, we mainly discuss the shift latency caused by MU structure and their
application in SIRM.

Fig. 1. The RM based main memory Architecture. (a) RM Macro Cells; (b) Overview
of a bank; (c) A RM subarray; (d) A Macro Unit;

SIRM: Shift Insensitive Racetrack Main Memory 357

The basic array composed by MUs with different parameters has different shift
latency. Theoretically, the longer the racetrack is, the longer shift latency is. The
more access ports the racetrack has, she shorter shift latency is. And the more
racetracks MU has, the longer the shift latency is because it needs more energy to
sense the data out. According to [1], the area optimized solution for RM data array
is MU-64-32-4. According to [8], the MU-64-32-4 and MU-64-16-4 have similar
performance. This paper use MU-64-32-4 as basic MU to simulate main memory.
MU-64-32-4 has 4 racetracks, 32 access ports and each racetrack has 64 storage
domains and 8 access ports. In order to compose an appropriate RM data array
which has comparable shift latency with DRAM burst cycle, we simulate several
RM data array with different capacity and test their performance with NVsim
[10]. According to the result, we choose 8 MB as the basic size of array because
data shows that the 8 MB array cost 1.25 ns to read data and shift a step, which
is equal to the burst cycle of DDR4-1600 MHz modules, which has a I/O bus of
1600 MHz. Theoretically, the RM array can provide the same read latency with
DDR4-1600 and shift operations will be covered.

In this paper, according to Microns data sheet [9], we extend this model to
simulate a 128 Mb RM memory chip with 16 banks, and 256B row buffer in
45 nm technology, which is the most advanced one we can get. The RM device
level parameters in this paper are similar to the previous work [1].

3.2 Main Memory Architecture

A single rank of main memory contains multiple memory chips, which typically
has 4, 8 or 16 data output pins [12]. As shown in Fig. 1, a RM based chip can be
organized as three levels: bank, mat, and subarray. Bank is the top level unit, mat
is the building block of bank, and subarray is the elementary structure. Subarray
is composed by 8 RMU that is described in Fig. 2. One RMU is composed by 16
MU and a MU has a structure of 64-32-4 as described above. Then, one RMU
has 4K bits and an subarray has 32K bytes. One bank has 256 subarray and
8M bits. One chip has 16 banks and 128M bits. Multiple RMUs in one subarray
share the same corresponding periphery circuitry in order to shrink the energy
cost.

3.3 Shift Insensitive Address Mapping

We propose SIAM policy to cover the shift operation through pipeline operation.
We take the part of subarray to simplify the discussion. As is shown in Fig. 2, an
array has eight RMUs in lateral and each RMU has 64 * 8 bytes in vertical. Data
are numbered in cacheline which has 64bytes. For example, cacheline1 is num-
bered one and cacheline8 is numbered eight. As conventional, data is addressed
sequentially along the RMU, as Fig. 2(1) shown. In SSAM, data are addressed
across the RMUs and cacheline is spread across RMUs as Fig. 2(2) shown. In
SIAM, data also is addressed in cacheline, but each of them is distributed along
the diagonal across RMUs as Fig. 2(3) shown. Each cacheline is divided into eight
parts and can be read through eight phase in pipeline. As described above, we

358 H. Zhang et al.

design the racetrack array which has the exact shift latency equal or smaller than
the burst time span in DDR4-1600. Thus, one cacheline can be read out through
eight phase, costing the same latency just as DRAM read the data through eight
bursts. Then, the shift operations are covered to the upper system.

Fig. 2. Shift Insensitive Address Mapping.

4 Experimental Results

4.1 Experimental Setup

We evaluate the SIRM with a full system cycle accurate simulator gem5 [13].
For workload, we select 13 workloads from Parsec3 benchmarks.

4.2 Comparison of Experimental Results

(1) Performance Evaluation: We compare the normalized performance
between DRAM, SSAM and SIRM in Fig. 3. The results are normalized
to baseline of DRAM main memory. SIRM and SSAM has obvious shorter
access time than DRAM because of the RM’s access characteristic. The
SIRM has similar or better access latency than SSAM in most benchmarks
except facesim and x264. Mainly because these two program is data cen-
tric and the CPU read several words from memory each time, just as we
discussed in the fourth section.

(2) Energy Evaluation: We compare normalized energy overhead between
DRAM, SSAM and SIRM in Fig. 3. All results are normalized to baseline
of DRAM main memory. It is obvious that SIRM reduced much energy than
DRAM and SSAM in most benchmarks. For facesim and x264, the energy
cost is similar with SSAM, mainly because SIRM uses more shift operation
than other benchmarks.

SIRM: Shift Insensitive Racetrack Main Memory 359

Fig. 3. Normalized memory access time and energy decrease.

5 Conclusion

Racetrack memory is attractive because of its high density and comparable
read/write latency with SRAM, and non-volatility. It has the potential to be the
replacement of DRAM. In this work, we presents a SIRM architecture based on
specific RM array design, SIAM policy and special timing restriction in pipeline.
In SIRM, the shift operations are covered and shift latency is insensitive to
system level, which make RM memory easy to be managed by operating sys-
tem. Experimental results show that in most applications SIRM can outperform
DRAM or SSAM based racetrack main memory in performance and energy effi-
ciency.

References

1. Zhang, C., et al.: Quantitative modeling of racetrack memory, a tradeoff among
area, performance, and power. In: Proceedings of the 20th Asia and South Pacific
Design Automation Conference, Chiba, Japan, January 2015, pp. 100–105 (2015)

2. Zhang, Y., et al.: Perspectives of racetrack memory for large-capacity on-chip mem-
ory: from device to system. IEEE Trans. Circ. Syst. 63(5), 629–638 (2016)

3. Sun, G., et al.: From device to system: cross-layer design exploration of racetrack
memory. In: Proceedings of the 18th Design, Automation and Test in Europe
(DATE), Grenoble, France, 9–13 March 2015, pp. 1018–1023 (2015)

4. Parkin, S.S., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory.
Science 320(5873), 190–194 (2008)

5. Venkatesan R, et al.: TapeCache: a high density, energy efficient cache based on
domain wall memory. In: Proceedings of the 2012 ACM/IEEE International Sym-
posium on Low Power Electronics and Design, pp. 185–190. ACM (2012)

6. Mao, H., et al.: Exploring data placement in racetrack memory based scratch-
pad memory. In: Proceedings of the 4th IEEE Non-Volatile Memory System and
Applications Symposium, Hong Kong, China, August 2015, pp. 1–5 (2015)

7. Chen, X., et al.: Optimizing data placement for reducing shift operations on
Domain Wall Memories. In: Design Automation Conference, pp. 1–6. ACM (2015)

8. Hu, Q., et al.: Exploring main memory design based on racetrack memory tech-
nology. In: Proceedings of the 26th ACM Great Lakes Symposium on VLSI
(GLSVLSI), Boston, MA, USA, 18–20 May 2016, pp. 397–402 (2016)

360 H. Zhang et al.

9. Micron. 8Gb: x4, x8, x16 DDR4 SDRAM Description (2016). www.micron.com
10. Dong, X., et al.: NVSim: a circuit-level performance, energy, and area model for

emerging nonvolatile memory. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst.
31(7), 994–1007 (2012)

11. https://en.wikipedia.org/wiki/DDR4 SDRA#Mcite note-JESD79-3F-3
12. Jacob, B., et al.: Memory Systems: Cache, DRAM, Disk. Morgan Kaufmann, San

Francisco (2010)
13. Binkert, N., Beckmann, B., Black, G., et al.: The gem5 simulator. SIGARCH Com-

put. Archit. 39, 1–7 (2011)

www.micron.com
https://en.wikipedia.org/wiki/DDR4_SDRA#Mcite_note-JESD79-3F-3

PDRM: A Probability Distribution Based
Resource Management for Batch

Workloads in Heterogeneous Cluster

Jun Zhou1,2,3, Dan Feng1,2,3(B), and Fang Wang1,2,3

1 School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan 430074, China

{JunZhou,dfeng,wangfang}@hust.edu.cn
2 Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China

3 Key Laboratory of Information Storage System,
Engineering Research Center of data storage systems and Technology,

Ministry of Education of China, Wuhan, China

Abstract. Resource consumption prediction and dynamic resource pro-
vision based on historical consumption are common methods to improve
cluster resource utilization, however they have to face the challenge of
fluctuation in resource consumption for accurate prediction. We propose
PDRM, an efficient resource management scheme based on resource con-
sumption probability distribution for batch workloads to deal with this
dilemma. Based on the common sense that the same type of tasks have
similar resource consumption on the same node, we get the resource
consumption probability distribution of each type of task to describe
the fluctuations in its resource consumption. Based on the resource con-
sumption distribution function, we can allocate resources precisely for
tasks. Experimental results demonstrate that PDRM achieves good per-
formance for various application in the heterogeneous cluster. PDRM
can effectively improve resource utilization and reduce job completion
time.

Keywords: Resource management · Big data · Gaussian distribution ·
Heterogeneous

1 Introduction

Low resource utilization is a common issue in cloud platforms. Reiss et al. [5]
shows that a Google cluster achieves CPU utilization of 25–35% and memory
utilization of 40%. Quasar [3] indicates that the CPU utilization is consistently
below 20%, and the memory utilization is (40–50%) on a production cluster
at Twitter. Fluctuation of resource consumption and complex heterogeneous
environment bring much more challenges to resource allocation in cloud cluster.
It is difficult to match resource allocation precisely with resource consumption,
and resources are usually over allocated to guarantee task execution.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 361–365, 2019.
https://doi.org/10.1007/978-3-030-30709-7_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_34&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_34

362 J. Zhou et al.

In this paper, we propose PDRM, a resource management scheme based on
task resource consumption probability distribution. The main idea of PDRM
is to adopt the probability distribution of resource consumption to quantify
the fluctuation of resource consumption for accurate resource allocation, so
as to improve resource utilization and reduce task running time. We evaluate
PDRM, and results show that it improves job execution efficiency and resource
utilization.

2 Related Work

Several recent researches have tried to address the issue of improving effi-
ciency in allocating resources to applications with varying degree of success. (1)
Dynamic Resource Provisioning. Mohan et al. [4] have proposed dynamic
resource management solutions for applications. These research works are used
for resource management of long term services, but not suitable for batch work-
loads. However the batch workload, which consists of a large number of short
tasks usually completed in minutes or seconds, is too important to be ignored.
(2) Resource Provisioning with an Appropriate Configuration. CherryP-
ick [1] builds a performance model with Bayesian Optimization to distinguish
the optimal or a near-optimal configuration from the rest. MrMoulder [2] adopts
optimization technique to tuning Hadoop configuration parameter settings. They
mostly focus on improving of application performance and pay less attention to
the resource utilization of the cluster. (3) Harvesting Idle Resource from
Colocated Jobs. Zhang et al. [6] schedules related batch tasks on servers to
colocate with latency-critical jobs. The main idea is harvesting idle resource from
other jobs, but it can’t harvest idle resources from the job itself. (4) Charac-
terizing and Classifying Workloads. Quasar [3] classifies any new incoming
application, assign the application proper resources in a datacenter. Classifica-
tion techniques cannot fully reflect the differences in resource consumption of
various tasks.

3 Motivation

Existing research assumes that the resource consumption of the task is the same
as the historical consumption. However, the resource consumption of repeated
tasks will fluctuate instead of being absolutely the same. The main reason for
fluctuations in resource consumption is that the complexity of the algorithm
on different input data content is different. It may cause deviations in resource
consumption prediction. Therefore, we have conducted in-depth research on the
similarity of resource consumption. We repeat running a variety of different
batch workloads with different data sets. We extract resource consumption for
all types of tasks when the application is running. It shows that the resource
consumption of the same tasks on the same cluster node are similar, and the
resource consumption fluctuates within a certain range. By counting the num-
ber of tasks in different resource consumption intervals, we can obtain the task

PDRM: A Probability Distribution Based Resource Management 363

resource consumption probability distribution. The probability distribution of
resource consumption is in accordance with the Gaussian distribution, and the
Gaussian distribution is fitted well.

4 PDRM Design

By extracting resource consumption of big data applications, we can get the
task consumption probability distribution. Based on the distribution function of
resource consumption, we propose an accurate resource allocation scheme, called
PDRM.

We use Task0 to denote a type of task, the resource allocation vector of
Task0 is expressed as [ra10, ra20, ..., ram0]T and the resource consumption vec-
tor of Task0 is expressed as [rc10, rc20, ..., rcm0]T , where m is the total number
of the types of resource, rai0(i ∈ N, 1 ≤ i ≤ m) is the amount of the class i
resource allocated to Task0 and rci0(i ∈ N, 1 ≤ i ≤ m) is the class i resource
consumed by Task0. We perform a Gaussian fitting on the class i resource con-
sumption of Task0, and the Gaussian distribution satisfied by rci0 is expressed
as Nio(μio, σ

2
io), where μio is the mean of rci0 and σ2

io is the variance of the proba-
bility distribution of rci0. The cumulative distribution function of the probability
distribution of rci0 is

Fi0(x) =
∫ x

−∞

1√
2πσ2

i0

e
−

(x − μi0)2

2σ2
i0 dx. (1)

The probability that rci0 is less than rai0 can be denoted as Pi0 = Fi0(rai0).
The success ratio of Task0 can be expressed as min{P10, P20, ..., Pm0}. Con-
versely, only when the resource allocated for the class i resource rai0 is not less
than F−1

i0 (Psuccess), the success rate of Task0 could reach Psuccess.
The resource allocation of class i resource for Taskj is raij . Psuccess is the

probability that Taskj can be successfully completed. The failed task will be
restarted with the default resource allocation which is much larger than the
actual consumption of the task to ensure successful execution. The Expectation
resource allocation of class i resource for Taskj expressed as E(raij) = raij +
(1−Psuccess)raij default, where raij default is the default resource allocation. The

average resource utilization of class i resource on a node is uti =

∑n
j=1 μij∑n

j=1 E(raij)
.

When the derivative of uti is 0, uti takes the maximum value. By solving the
formula (uti)′ = 0, we can get the solution of optimal resource utilization and
set the values of Psuccess. Then, we get the resource allocation vector for each
type of task.

5 Evaluation

We implement PDRM as a component on Hadoop Yarn. In this section, we
demonstrate the effectiveness of our approach on a heterogeneous cluster.

364 J. Zhou et al.

We choose four representative applications on Hadoop to show different
resources requirement: Terasort, WordCount, TextSearch, and TriangleOfOri-
ented. We select 6 physical nodes to build a heterogeneous environment, named
NODE0-NODE5. NODE0 is the master node, NODE1-NODE5 are the slave
nodes. NODE0-NODE3 have the same physical configuration (two Intel Xeon
E2620 6x cores 2.1 GHz CPUs, 16 GB memory). The number of virtual cores
available for container allocation on each node is 8. As a comparative instance
of CPU heterogeneity, NODE4 has two Intel Xeon E5620 4x cores 2.4 GHz CPUs.
As a comparative instance of Memory heterogeneity, the memory available for
container allocation on NODE5 is 3 GB, while the memory available on other
nodes are 8 GB.

5.1 Job Completion Time of Heterogeneous Applications

Fig. 1. Job completion time.

In this experiment, we evaluate the effective-
ness of PDRM for reducing job completion time.
Figure 1 shows the job completion times with
different resource allocation schemes. It can be
observed that PDRM reduces the job com-
pletion time by 30.4%, 24.3%, 25.1%, 24.7%
compared to the default for Terasort, Word-
Count, TextSearch, TriangleOfOrineted, respec-
tively. PDRM resource allocation schemes can
effectively reduce job completion time.

5.2 Resource Allocation Ratio and Resource Consumption Ratio
of Heterogeneous Cluster

In this experiment, we compare the resource allocation ratio and the resource
consumption ratio of different nodes in heterogeneous clusters under the default
and PDRM. We normalize the node available resources to 1. We run Terasort on
the heterogeneous cluster, the resource allocation ratio and resource consumption
ratio of NODE1, NODE4 and NODE5 are shown in Figs. 2 and 3, respectively.
It can be seen that the resource allocation ratio of PDRM is less than the that
of the default, but the resource consumptions ratio of PDRM are greater that
of the default.

The performance of NODE1 and NODE4 are limited by the CPU resources.
With the PDRM resource allocation scheme, the CPU resources of NODE1 and
NODE4 can achieve higher utilization. The CPU processing power of NODE4
is lower than that of NODE1. The NODE4 CPU can maintain high utiliza-
tion, but the NODE4 memory resource utilization is less than NODE1. The
performance of NODE5 is limited by the memory resources. NODE5 has less
memory resources than NODE1. With PDRM resource allocation scheme, the
memory resources of NODE5 can achieve higher utilization, far greater than that
of NODE1. PDRM can improve resource utilization, and the scarce resources of
nodes can be efficiently utilized in heterogeneous clusters.

PDRM: A Probability Distribution Based Resource Management 365

Fig. 2. CPU resource ratio. Fig. 3. Memory resource ratio.

6 Conclusion

The resource consumption probability distribution of the task can well describe
the fluctuation of resource consumption. We propose PDRM, a resource alloca-
tion scheme based on the probability distribution of task resource consumption.
Through experimental verification, PDRM can reduce job completion time by
over 25%. What’s more, PDRM can minimize the gap between resource allo-
cation and resource consumption, and make efficient use of scarce resources in
heterogeneous clusters.

References

1. Alipourfard, O., Liu, H.H., Chen, J., Venkataraman, S., Yu, M., Zhang, M.: Cher-
ryPick: adaptively unearthing the best cloud configurations for big data analytics.
In: 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 2017), pp. 469–482. USENIX Association, Boston (2017)

2. Cai, L., Qi, Y., Wei, W., Wu, J., Li, J.: mrMoulder: a recommendation-based adap-
tive parameter tuning approach for big data processing platform. Future Gener.
Comput. Syst. 93(1), 570–582 (2019)

3. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware cluster
management. In: Proceedings of the 19th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pp. 127–144.
ACM, New York (2014)

4. Mohan, A., Kaseb, A.S., Lu, Y., Hacker, T.: Adaptive resource management for
analyzing video streams from globally distributed network cameras. IEEE Trans.
Cloud Comput. 1 (2018)

5. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity and
dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the Third
ACM Symposium on Cloud Computing, pp. 7:1–7:13. ACM, New York (2012)

6. Zhang, Y., Prekas, G., Fumarola, G.M., Fontoura, M., Goiri, I.n., Bianchini, R.:
History-based harvesting of spare cycles and storage in large-scale datacenters. In:
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, pp. 755–770. USENIX Association, Berkeley (2016)

Collaborating CPUs and MICs
for Large-Scale LBM Multiphase

Flow Simulations

Chuanfu Xu(B), Xi Wang, Dali Li, Yonggang Che, and Zhenghua Wang

College of Computer Science, National University of Defense Technology,
Changsha 410073, People’s Republic of China

xuchuanfu@nudt.edu.cn

Abstract. This paper highlights the use of the OpenMP4.5 accelera-
tor programming model to collaborate CPUs and Intel Many Integrated
Cores (MIC) co-processors for large-scale LBM multiphase flow simula-
tionson the Tianhe-2 supercomputer. To enhance the collaborative effi-
ciency among intra-node CPUs and co-processors, we propose a flexi-
ble load balance model with heterogeneous domain decomposition for
CPU-MIC task allocation, as well as asynchronous offloading to overlap
operations of CPUs and multiple MICs. Tests for 3D multi-phase (liquid
and gases) problem (about 100 Billion lattices) simulating drop impact
with gravity effect using D3Q19 Lattice Boltzmann discretization and
Shan-Chen BGK single relaxation time collision model are presented,
achieving a weak parallel efficiency of above 80% in going from 128 to
2048 compute nodes.

Keywords: Heterogeneous parallel computing ·
Lattice Boltzmann methods · Many-core processor ·
OpenMP4.5 accelerator programming model

1 Introduction

Lattice Boltzmann Methods (LBM) regard fluids as Newtonian fluids from a
microscopic perspective, divide flow field into small lattices (mass points), and
simulate fluid evolution dynamics through collision models (lattices collision
and streaming) [1]. Currently, LBM has been increasingly used for real-world
flow problems with complex geometries and various boundary conditions. Large-
scale LBM simulations with increasing resolution and extending temporal range
require massive high performance computing resources. It is therefore essential
and practical to port LBM codes onto modern supercomputers, often featur-
ing many-core accelerators/coprocessors (GPU, Intel MIC, or specialized ones).

Supported by NSFC under Grant No. 61772542.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 366–370, 2019.
https://doi.org/10.1007/978-3-030-30709-7_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_35&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_35

Collaborating CPUs and MICs for Large-Scale LBM Flow Simulations 367

These heterogeneous processors can dramatically enhance the overall perfor-
mance of HPC systems with remarkably low total cost of ownership and power
consumption, but the development and optimization of large-scale applications
are also becoming exceptionally difficult. Accelerator programming models such
as OpenMP4.X [2], OpenACC and Intel Offload aim to provide performant and
productive heterogeneous computing through simple compiler directives. Among
them, OpenMP4.X is especially attractive since it incorporates accelerator pro-
gramming with traditional shared memory multithreading into a unified high-
level model, and supports major languages (C++, C and Fortran...) and devices
(CPU, GPU, MIC, ARM, DSP...).

In this paper, we parallelize an LBM code openlbmflow and highlight the use
of OpenMP4.5 for large-scale CPU-MIC collaboration on the Tianhe-2 super-
computer [3]. A load balance model with heterogeneous domain decomposition
is proposed for CPU-MIC task allocation. We use asynchronous offloading to
minimize the cost of halo exchanges and significantly overlap CPU-MIC compu-
tation/communication. Our collaborative approach achieves a speedup of up to
5.0X compared to the CPU-only approach. Tests for 3D multi-phase (liquid and
gases) problem (about 100 Billion lattices) simulating drop impact with gravity
effect using D3Q19 Lattice Boltzmann discretization and Shan-Chen BGK single
relaxation time collision model are presented, achieving a weak scaling efficiency
of above 80% in going from 128 to 2048 compute nodes.

Fig. 1. Code skeleton for CPU-MIC collaboration with asynchronous offloading and
overlapping of CPU-MIC computation/communication using OpenMP directives.

368 C. Xu et al.

2 CPU-MIC Collaboration and Performance Results

openlbmflow is an LBM code written in C that can simulate both 2D/3D single-
phase or multi-phase flow problems with periodic and/or bounce-back boundary
conditions. It mainly consists of three phases: initialization, time iteration, and
post-processing. During the initialization phase, the geometry of the flow field,
flow density and the distribution function are initialized. The time iteration
phase includes three important procedures: inter-particle force calculation (as
well as velocity and density), collision and streaming. In the post-processing
phase, simulation results are collected and saved according to a user-specified
iteration interval.

We decompose the original computational domain along the three dimen-
sions evenly into many blocks and distribute them among MPI processes. On
each compute node, each block is divided into 4 sub-blocks with one calcu-
lated by CPUs and the other three offloaded to the three coprocessors. Figure 1
illustrates the intra-node collaborative programming approach. Before time-
marching loops, we use omp declare target directive to declare variables or
functions which are both available on CPU and MIC (line 1–3). We use omp
target data directive with map clause to pre-allocate device memory and per-
form initialization of global flow variables and data transfer buffers on each
MIC (line 5–10). We design a unified In/Out-buffer for PCI-e data transfer
among intra-node CPUs and coprocessors. In each iteration, boundary lattices
on CPUs are gathered into the Inbuffer, and transferred to different MICs
using map clause with array section syntax (line 15–17). Before MIC calcula-
tion, we scatter boundary lattices from the Inbuffer and update halo lattices
on MICs (line 18). After MIC calculation, boundary lattices on MICs will be
gathered into the Outbuffer and transferred back to CPUs (line 20–21). We
use OpenMP nowait to asynchronously dispatch kernels on MIC and overlap
CPU-MIC computation/communication. We synchronize CPU-MIC computa-
tion using the taskwait directive to ensure that both sides have finished their
computations before updating halo lattices on CPUs and MPI communications.
We use a parameter r to represent the workload ratio on CPU side and r can
be configured by profiling openlbmflow ’s sustainable performance on both sides.

Fig. 2. Performance of CPU+1MIC (left) and 2MICs (right) with problem size 256 ×
256 × 256.

Collaborating CPUs and MICs for Large-Scale LBM Flow Simulations 369

We use icc 17.0.1 from Intel composer 2017.1.132 in out tests. Our hetero-
geneous code was compiled in double precision with option “-qopenmp -O3 -
fno-alias -restrict -xAVX”. MPICH2-GLEX was used for MPI communications.
Figure 2(left) demonstrates the performance of CPU+1MIC with overlapping of
both CPU/MIC computation and PCI-e data transfer. We decompose the costs
into CPU gather/scater, CPU calculation and CPU-MIC synchronization. Due
to overlapping, the synchronization cost decreases with increasing workloads on
CPUs, and disappears when r = 0.2, indicating a perfect overlapping. Afterwards
further increasing r will improve the cost of CPU calculation and degrade the over-
all performance. The maximum speedup was improved to about 2.5 due to the
enhanced overlapping. For CPU+2MICs (Fig. 2(right)), the maximum speedup
is about 2.88 (r = 0.09), only about 15.2% enhancement compared to the
CPU+1MIC simulation. This is mainly due to a relatively small total workload,
and the collaborative overhead exceeds more than half of the whole execution time.

Fig. 3. Performance of CPU+3MICs with problem size of 512 × 256 × 256 (left) and
large-scale weak scalability on CPU+MIC nodes (right).

In Fig. 3(left), the maximum speedups are 3.93 (r = 0.08) and 4.81 (r = 0.07)
for the problem set 512× 256× 256 with CPU+3MICs. Because the sustainable
performance of openlbmflow on a MIC outperforms much of that on two CPUs,
only less than 10% of the whole workload is allocated to CPUs for collabora-
tive simulations with multiple MICs. Due to the limited device memory capacity
(8 GB) on Xeon Phi 31S1P, the maximum problem size for each MIC is about
256 × 256 × 256. As a result, we couldn’t achieve ideal load balance in het-
erogeneous simulations. Figure 3(right) reports the weak scalability results for
CPU+MIC collaborative simulations. Although large-scale heterogeneous simu-
lations involve quite complicated interactions, efficiencies stay well above 80%.
This is comparable to that of large-scale CPU-only simulations and demonstrates
the effectiveness of the overlapping optimization.

3 Related Work

Few researches about parallelizing scientific codes using the new OpenMP4.X
accelerator programming model on heterogeneous supercomputers are reported,
but many researchers have shown the experiences of porting LBM codes onto

370 C. Xu et al.

GPUs or MICs using other programming models. Paper [4] ported a GPU-
accelerated 2D LBM code onto Xeon Phi, and compared with previous imple-
mentations on state-of-the-art GPUs and CPUs. Paper [5] implemented a LBM
program using the portable programming model OpenCL, and evaluated its per-
formance on multi-core CPUs, NVIDIA GPUs as well as Intel Xeon Phi. In [6],
researchers have also parallelized openlbmflow on the Tianhe-2 supercomputer
and collaborate CPUs and MICs using Intel Offload programming model. The
performance was preliminary evaluated in single precision. To summarize, cur-
rent reports only involve simple LBM models on small MIC clusters. Paper [7]
Collaborated CPU and GPU for large-scale high-order CFD simulations with
complex grids on the TianHe-1A supercomputer. This is the first paper, to our
best knowledge, reporting CPU-MIC collaborative LBM simulations using com-
plex 3D multi-phase flow models with OpenMP4.5.

4 Conclusions

In this paper, we developed a CPU+MIC collaborative software openlbmflow for
3D Lattice Boltzmann multiphase flow simulations on the Tianhe-2 supercom-
puter based on the new OpenMP accelerator programming model. The software
successfully simulated a 3D multi-phase (liquid and gases) problem (100 billion
lattices) using D3Q19 and Shan-Chen BGK models on 2048 Tianhe-2 nodes,
demonstrating a highly efficient and scalable CPU+MIC collaborative LBM sim-
ulation with a weak scaling efficiency of above 80%. For future work, besides fine
tuning of the software, we are planning to port openlbmflow onto China’s self-
developed many-core processors/coprocessors based on the power-efficient high
performance ARM architecture.

References

1. Succi, S., Benzi, R., et al.: The lattice Boltzmann equation: a new tool for compu-
tational fluid-dynamics. Phys. D Nonlinear Phenom. 47, 219–230 (1991)

2. Martineau, M., Price, J., McIntosh-Smith, S., Gaudin, W.: Pragmatic performance
portability with OpenMP 4.x. In: Maruyama, N., de Supinski, B.R., Wahib, M.
(eds.) IWOMP 2016. LNCS, vol. 9903, pp. 253–267. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45550-1 18

3. Xiangke, L., Liquan, X., Canqun, Y.: MilkyWay-2 supercomputer: system and appli-
cation. Front. Comput. Sci. 8(3), 345–356 (2014)

4. Crimi, G., Mantovani, F., Pivanti, M., Schifano, S.F., Tripiccione, R.: Early expe-
rience on porting and running a Lattice Boltzmann code on the Xeon-Phi co-
processor. Procedia Comput. Sci. 18, 551–560 (2013)

5. McIntosh-Smith, S., Curran, D.: Evaluation of a performance portable lattice Boltz-
mann code using OpenCL. In: International Workshop on OpenCL, pp. 1–12 (2014)

6. Dali, L., Chuanfu, X., Yongxian, W., Zhifang, S., et al.: Parallelizing and optimiz-
ing large-scale 3D multi-phase flow simulations on the Tianhe-2 supercomputer.
Concurr. Comput. Pract. Exp. 28, 1678–1692 (2015)

7. Chuanfu, X., Xiaogang, D., Lilun, Z., et al.: Collaborating CPU and GPU for large-
scale high-order CFD simulations with complex grids on the TianHe-1A supercom-
puter. J. Comput. Phys. 278, 275–C297 (2014)

https://doi.org/10.1007/978-3-319-45550-1_18
https://doi.org/10.1007/978-3-319-45550-1_18

Multiple Algorithms Against Multiple
Hardware Architectures: Data-Driven

Exploration on Deep Convolution
Neural Network

Chongyang Xu1, Zhongzhi Luan1, Lan Gao1, Rui Wang1(B), Han Zhang2,
Lianyi Zhang2, Yi Liu1, and Depei Qian1

1 Beihang University, Beijing, China
{xuchongyang1995,07680,lan.gao,wangrui,yi.liu,depeiq}@buaa.edu.cn

2 Science and Technology on Special System Simulation Laboratory,
Beijing Simulation Center, Beijing, China

xia mei2000@163.com, yzhang117@163.com

Abstract. With the rapid development of deep learning (DL), various
convolution neural network (CNN) models have been developed. More-
over, to execute different DL workloads efficiently, many accelerators
have been proposed. To guide the design of both CNN models and hard-
ware architectures for a high-performance inference system, we choose
five types of CNN models and test them on six processors and mea-
sure three metrics. With our experiments, we get two observations and
conduct two insights for the design of CNN algorithms and hardware
architectures.

Keywords: Convolutional neural network · Hardware architecture ·
Performance evaluation

1 Introduction

CNN models have large computation and consume much energy, putting signif-
icant pressure on CPUs and GPUs. To execute CNN models more efficiently,
many specific accelerators are proposed (e.g., Cambricon-1A [11] and TPU [9]).

Due to the complexity of both sides, it is challenging to design high-
performance processors for various CNN models and design CNN models with
different types of processors. To tackle this, we perform a lot of evaluations,
and we get two observations. Based on observations, we get two insights for the
design of CNN algorithms and hardware architectures.

Following of this paper includes related work, experiments methodology,
experiments result and analysis, conclusion and acknowledgements.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 371–375, 2019.
https://doi.org/10.1007/978-3-030-30709-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_36&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_36

372 C. Xu et al.

2 Related Work

Related evaluation work of CNN inference systems is as follows.
AI benchmark [7] measures only latency and one type of processors.

Fathom [2] and SyNERGY [13] test two different types of processors and one
metric. However, they do not compare the same type of processors with differ-
ent versions. DjiNN and Tonic [3] measure the latency and throughput. They
only use one CPU and one GPU without comparing different versions of same
processor. BenchIP [16] and [9] use three metrics and three types of processors.
BenchIP focuses on the design of hardware and use prototype chips instead of
production level accelerators. [9] focus the performance of hardware architec-
ture only, we give insights for the design of both CNN models and hardware
architectures.

3 Experiment Methodology

In this section, we present the principles of workloads choosing, processors choos-
ing, and software environment. We also give details of measurement.

Table 1. Selected models

Model Conv FC Weights (106) Gflops Input size Dataset

AlexNet [5] 5 3 60.1 0.62 227 × 227 × 3 Imagenet [14]

MobileNetv1 [6] 27 1 4.2 0.57 227 × 227 × 3 Imagenet

ResNet50 [4] 49 1 25.6 3.89 227 × 227 × 3 Imagenet

Vgg16 [15] 13 3 138.3 15.47 227 × 227 × 3 Imagenet

Yolov2 [12] 19 0 67.4 17.51 416 × 416 × 3 COCO [10]

Table 2. Selected processors and software environment

Processor GHz TDP (W) #TFLOPS/s #core GB/s Numeric library

CPU-E5 2.40 240 2.15 28 76.8 Intel MKL 2017 update 4

CPU-I5 3.40 65 0.20 4 34.1 Intel MKL 2017 update 4

GPU-P100 1.33 300 9.30 3584 732 Cuda8, CuDNN7

GPU-970 1.05 145 3.50 1664 224 Cuda8, CuDNN7

Cambricon - - 1.92 1 27.8 Libipu

TPU - - 180.00 8 600 -

Workloads are chosen from widely used tasks, with different layers, of differ-
ent depths, of different size and of different topology as shown in Table 1.

Hardware architectures are chosen from scenarios such as user-oriented situ-
ation, datacenter usage and mobile devices as shown in Table 2, (1) Intel Xeon
E5-2680 v4, (2) Intel Core I5-6500, (3) Nvidia TESLA P100, (4) Nvidia GeForce

Multiple Algorithms Against Multiple Hardware Architectures 373

GTX 970, (5) Cambricon is a typical neural processor and the actual processor is
HiSilicon Kirin 970 SoC in Huawei Mate 10. and (6) TPUv2, a publicly available
DL accelerator from Google Cloud.

The same frame framework (tensorflow v1.6 [1]) and pre-trained models (.pb
file) are used except Cambricon. Cambricon has its inference API and model
format. Tensorflow 1.8 is provided for TPU by Google Cloud.

Three metrics are measured. Latency, the average milliseconds spent for an
image. Throughput, the average images processed in a second. Energy efficiency,
the amount of computation when a processor consumes 1 joule of energy.

To measure latency, we (1) load 100 images into memory and perform pre-
processing, (2) run once to warm up, (3) infer one image each time, record time
of 100 times inference and compute average latency. It is similar to throughput
but using 1000 images and inferring one batch each time. Max throughput is
achieved by tuning batch size. Measuring energy efficiency is similar to measur-
ing the maximum throughput. Power is sampled via sysfs powercap interface at
1 Hz, nvidia-smi at 10 Hz on CPU and GPU respectively. We take energy con-
sumption as energy consumed when the processor is under workload minus when
the processor is idle. For Cambricon, we use MC DAQ USB-2408.

4 Experiment Results and Analysis

Figure 1 shows the result. As shown in Fig. 1, for most cases, the more is the
computation, the higher is the latency or lower is the throughput. However,
there are exceptions; we summarize them into two observations.

0 200 400 600 800

MobileNet

AlexNet

ResNet-50

VGG-16

YOLOv2

GEOMEAN

Throughput(#sample/s)

GPU-P100 GPU-970 TPU CPU-E5 Cambricon CPU-I5
0 100 200 300

MobileNet

AlexNet

ResNet-50

VGG-16

YOLOv2

GEOMEAN

1/Latency(s-1)

(a) Latency (b) Throughput

0 20 40 60 80 100 120

MobileNet

AlexNet

ResNet-50

VGG-16

YOLOv2

GEOMEAN

Energy Efficiency(GFlops/J)

(c)Energy Efficiency

Fig. 1. Measured data. The longer the bar is, the better the performance is.

Observation 1: CNN models that have more computation may not incur
higher latency or lower throughput. Models have more computation are expected
to take more computing time, thus have higher latency and lower throughput.
However, in Fig. 1(a), on CPU-E5, AlexNet with more computation has lower
latency than MobileNetv1; on GPU-P100, Vgg16, AlexNet with more computa-
tion has lower latency than ResNet50, MobileNetv1 respectively.

374 C. Xu et al.

Observation 2: Optimizations on CNN models are only applicable to specific
processors. As shown in Fig. 1(a), MobileNetv1 has lower latency than AlexNet
on CPU-I5 but higher latency on CPU-E5. MobileNetv1 is an optimized model
but only performs well on a less powerful CPU.

To explain these two observations, we measure latency breakdown by layer types
and functions, the result is shown in Fig. 2.

0
2
4
6
8

10
12
14
16
18
20

m
s

0

20

40

60

80

100

E5-
alexnet

E5-
mobilnet

i5-alexnet i5-
mobilnet

m
s

Add BiasAdd Const Conv2D

DWConv FusedBN LRN MatMul

MaxPool Relu Relu6 other

(a) GPU latency break down according to layer type (b) CPU latency break down according to layer type

0

50

100

E5-Alexnet I5-Alexnet E5-
Mobilenet

I5-
Mobilenet

m
s

__kmp_hyper_barrier_release __kmp_yield

__sched_yield __schedule

__switch_to _raw_spin_lock

Entry_SYSCALL_64 Entry_SYSCALL_64_fastpath

__memcpy_avx_unaligned Simple_reorder_impl

LaunchDepthwiseConv Mkl_blas_avx2_xsgemv_n

ref_batch_normaliza on_fwd_t ref_pooling_fwd

na ve_write_msr_safe Other

(c) CPU latency break down according to func on

Fig. 2. Experiments for Observations

For Observation 1, as shown in Fig. 2(a), (b) BatchNorm layers have large
execution time with low computation, which cause higher latency of MobileNetv1
than AlexNet on CPU-E5, higher latency of ResNet50 and MobileNetv1 than
Vgg16 and AlexNet respectively on GPU-P100. Thus, we give Insight 1.

Insight 1: BatchNorm layers have a low ratio of computation but a dispropor-
tionately high ratio of computing time on CPUs and GPUs. This suggests a
trade-off between using more BatchNorm layers to achieve faster convergence
for training [8] and using less BatchNorm to achieve faster inference.

For Observation 2, as shown in Fig. 2(c), for MobileNetv1, the runtime over-
head (kmp yield(), sched yield(), switch to(), raw spin lock(), etc) on CPU-E5
occupies more than 40ms of 86.8ms in total, while the runtime overhead on
CPU-I5 is about 20ms of 68.8ms in total. More cores of CPU-E5 increase the
runtime overhead of DL frameworks.

Insight 2: The runtime overhead of modern DL frameworks increases with the
increment of the core number on CPU. This suggests improving the computing
capability of individual cores rather than increasing the number of cores to reduce
latency.

5 Conclusion

In this work, we choose five CNN models and six processors and measure the
latency, throughput, and energy efficiency. We present two observations and
conclude two insights. These insights might be useful for both algorithms and
hardware architectures designers.

Multiple Algorithms Against Multiple Hardware Architectures 375

– For algorithm designers, they need to balance the usage of BatchNorm layers
for which can accelerate the training process but slow down inference.

– For hardware designers, BatchNorm layers deserve more attention; to reduce
latency, it is more critical to improve the computing capability of individual
cores than increasing the number of cores.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China under grant 2017YFB0203201. This work is also sup-
ported by the NSF of China under grant 61732002.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI
2016 (2016)

2. Adolf, R., Rama, S., Reagen, B., Wei, G.Y., Brooks, D.: Fathom: reference work-
loads for modern deep learning methods. In: IISWC 2016 (2016)

3. Hauswald, J., et al.: DjiNN and tonic: DNN as a service and its implications for
future warehouse scale computers. In: ISCA 2015 (2015)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2016)

5. Hinton, G.E., Krizhevsky, A., Sutskever, I.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
(2012)

6. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

7. Ignatov, A., et al.: AI benchmark: Running deep neural networks on android smart-
phones. In: European Conference on Computer Vision (2018)

8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: ICML 2015 (2015)

9. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit.
In: ISCA 2017 (2017)

10. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

11. Liu, S., et al.: Cambricon: an instruction set architecture for neural networks. In:
ACM SIGARCH Computer Architecture News (2016)

12. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2017)

13. Rodrigues, C.F., Riley, G.D., Luján, M.: Fine-grained energy profiling for deep
convolutional neural networks on the Jetson TX1. CoRR abs/1803.11151 (2018)

14. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115, 211–252 (2015)

15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

16. Tao, J.H., et al.: BenchIP: benchmarking intelligence processors. J. Comput. Sci.
Technol. 33, 1–23 (2018)

http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1409.1556

A Parallel Retinex Image Enhancement
Algorithm Based on OpenMP

Shixiong Cheng1, Bin Liu1,2,3(&), Dongjian He2,3,4, Jinrong He5,
Yuancheng Li6, and Yanning Du7

1 College of Information Engineering, Northwest A&F University,
Yangling, Shaanxi, China

liubin0929@nwsuaf.edu.cn
2 Key Laboratory of Agricultural Internet of Things, Northwest A&F University,
Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China

3 Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent
Service, Northwest A&F University, Yangling 712100, Shaanxi, China

4 College of Mechanical and Electronic Engineering,
Northwest A&F University, Yangling, Shaanxi, China
5 College of Mathematics and Computer Science,

Yan’an University, Yan’an, Shaanxi, China
6 School of Computer Science and Technology,

Xi’an University of Science and Technology, Xi’an, China
7 School of Computer Science and Engineering,
Xi’an University of Technology, Xi’an, China

Abstract. Retinex image enhancement algorithm occupies an important posi-
tion in eliminating image uneven exposure, low contrast, and smog influence.
However, with the increasing of image resolution, the real-time performance of
the serial Retinex algorithm has not satisfied the requirements of practical
applications. This paper proposes an OpenMP-based parallel Retinex algorithm.
The parallelism of the Retinex algorithm is first identified by theoretical analyses.
Then, the time-consuming sub-algorithms such as Gaussian convolution and
exponential transformation, of the serial algorithm are designed and executed in
parallel. On Tianhe-2 supercomputer platform, the experimental results show that
the speedup of the parallel algorithm is significantly improved, and the test image
set achieves an average speedup of 12. It indicates that the parallel algorithm can
satisfy the needs of real-time processing in image enhancement field.

Keywords: Image enhancement � Parallel algorithm � Retinex � OpenMP �
Agricultural image

1 Introduction

Image enhancement algorithms are basic work in many areas especially in the public
security, biomedical field, health service, and marine information field, where signifi-
cant achievements have been made in [1–3]. At present, researchers have proposed a
great diversity of parallel image processing algorithms, such as CUDA-based image
enhancement algorithms [4], and image processing algorithms based on multicore

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 376–381, 2019.
https://doi.org/10.1007/978-3-030-30709-7_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_37&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_37

DSP [5]. However, as one of the most important images processing technologies, the
serial single-scale Retinex (SSR) algorithm is still too slow to finish the image
enhancement tasks within an acceptable time.

In order to solve above problem, this paper proposes the parallel SSR image
enhancement algorithm based on OpenMP. The parallel SSR image enhancement
algorithm is implemented on the Tianhe-2 supercomputer using the OpenMP pro-
gramming model, which is evaluated and achieves an average speedup of 12. The
experimental results show that the proposed parallel algorithm can fulfill the needs of
real-time processing in image enhancement field.

2 Parallel Design and Implementation

2.1 Parallelism Analyses

SSR algorithm enhances an image through the implementation of sub-algorithms such
as Gaussian template, Gaussian convolution, and exponential transformation. As the
data processed by these sub-algorithms is independent of each other, SSR algorithm
has good parallelism. As illustrated in Fig. 1, the following three aspects are presented
to analyze the parallelism of the serial SSR algorithm.

Parallelism 1: the blurred image estimating the incident illumination component is
generated by Gaussian convolution operations. During this, each pixel is not associated
with others. So, the image can be divided into sub-blocks for parallel computing.

Parallelism 2: the size of the Gaussian template is determined by the input
parameters. When the Gaussian weight is normalized, each pixel is divided respectively
by the sum of the weights, This process can be calculated in parallel.

Parallelism 3: the operation of exponential transformation can be also executed in
parallel because there is no data dependence directly in those operations.

2.2 Parallel Design and Implementation of SSR Algorithm

In this section, parallel design of these sub-algorithms are firstly illustrated in Fig. 2
and then parallel implement are presented.

Parallel Design and Implementation of Gaussian Convolution. The subsequent
operation of image segmentation into different data blocks is independent in Gaussian
convolution serial algorithm. This is consistent with the parallel characteristics of
OpenMP because no dependence between the data of non-direct adjacent pixels in the
image. And a two-dimensional Gaussian function G(x, y) could be written as the

Color Original
image is read

Estimating
incident

illumination
component

Generating a
Gauss ian
tempalte

Restoring
enhanced

image
Image is saved

Parallelism1 Parallelism2 Parallelism3

Start End

Fig. 1. The parallelism of single-scale Retinex algorithm

A Parallel Retinex Image Enhancement Algorithm 377

product of two one-dimensional Gaussian functions G(x) and G(y), meaning that
G(x, y) can be calculated serially by convolution of G(x)d(y) and G(y)d(x). However
each of one-dimensional Gaussian functions G(x) could be executed in parallel. So the
two-dimensional Gaussian convolution can be generated serially by two one-
dimensional Gaussian convolutions performed respectively in parallel in the X and
Y directions. And for example, there is an image which size is 7 � 7, and the con-
volution kernel is 3 � 3. It can be seen that the convolution operation requires 9
multiplications for each element in the image, so the total number of multiplication
operations executed in sequential algorithm is 7 � 7 � 9 = 441 times. In contrast,
parallel execution requires only 2 � 7 � 9 = 126 operations in the case of sufficient
threads. And the execution time will be reduced and the speed will be increased
compared with sequential algorithm.

Parallel Design and Implementation of Gaussian Template. The Gaussian template
generation is mainly divided into two steps. The first step is that the weight sum is
calculated serially, and the second step is that the normalization Gaussian template is
generated in parallel. Supposing a 3 by 3 normalization Gaussian template is generated
in serial algorithm with one thread and needs to be executed 9 times. However, in the
case of parallelized execution with 9 threads, it only needs to be executed once.

Parallel Design and Implementation of Exponential Transformation. The original
image and the Gaussian blurred image are set to the logarithmic domain to obtain a
logarithmic image. The function of exponential transformation is to extend the image’s
high gray level and compress the low gray level. The most critical step in the expo-
nential transformation is the linear mapping of each value. Assuming that the image
size is 1000 � 1000, it takes a lot of time to go through the linear mapping. If linear
mapping is performed in parallel using 24 threads, the image only needs to perform
1737 operations rather than 1,000,000 in the serial algorithm. Therefore, it is very
profitable to perform each worthy linear mapping in parallel.

Start Image data is
read Pretreatment

Logarithmic
space

difference

merge

Exponential
transformation

Exponential
transformation

Main
thread

Image
is saved end

merge

Line
convolution

Child thread 1

Gauss ian
convolution

Thread 1

Thread N

Child thread n

Child thread 1

Child thread n

Line
convolution

Gauss ian
template

Gauss ian weight matrix

Gauss ian weight matrix

Main
thread

Thread 1

Thread N

normalization

Fig. 2. Parallel design of single-scale Retinex algorithm

378 S. Cheng et al.

3 Experimental Results and Performance Analysis

3.1 Experimental Environment and Test Set

The experiment is performed on Tianhe-2 supercomputer equipped with 16000 nodes,
which each note has three coprocessors, two Xeon E5-2692 processors, 24 cores and
64 GB of memory. The experimental environment is shown in Table 1. In this section,
10 different sizes of pictures are used to demonstrate the speedup performance of the
parallel algorithm, the minimum size is 1730 � 883, the maximum is 4000 � 3000,
and the format is JPG. These pictures are all agricultural images, including apples,
pears, kiwis, farmland and mountain forests. They are from the shooting of the
Dajiang UAV. The image test set is shown in Table 2.

3.2 Speedup Comparison

The running time of serial and parallel algorithms respectively in Table 3 which Th
represents thread. Within a certain range, the parallel SSR algorithm shortens the image
processing time with the number of OpenMP threads increasing, and the average
speedup is increased by about 12. After the parallel SSR algorithm are executed in
parallel from dual thread to 24 thread, the speedup is obviously improved, and the
parallel SSR algorithm can achieve near linear acceleration. The speedup curve is
shown in Fig. 3. This experiment was carried out on a single node of Tianhe-2
supercomputer, each node had 24 cores, and the speedup reached a peak at 24 threads,
making full use of the performance of multi-core. The speedup start to reduce at 32
threads because the number of threads at this time exceeds the number of CPU cores,
but the processing time is still better than the serial algorithm. And the experimental
results show that the speedup of the proposed parallel algorithm is significantly
improved, and can satisfy the needs of real-time processing in image enhancement
field.

Table 1. Experimental environment

Name Description

Computer Tianhe-2 Supercomputer
Processor Intel Xeon E5-2692V2

Coprocessor Intel Xeon phi
OS Red Hat 4.4.7-4
Compiler GCC 4.4.7

Cmake Cmake-3.2.2
OpenCv OpenCv-2.4.9

Table 2. Image test set

No Description Resolution Size

img1 Farmland 1 1767 � 885 620 KB
img2 Farmland 2 1730 � 883 261 KB

img3 Qingyang Apple 2448 � 3264 2.20 MB
img4 Ruixue Apple 2784 � 1856 1.09 MB
img5 Ruiyang Apple 3088 � 2056 2.07 MB

img6 Kiwi 1 3264 � 2448 2.19 MB
img7 Kiwi 2 3264 � 2448 1.03 MB

img8 Farmland 3 4000 � 3000 4.36 MB
img9 Mountain 1 4000 � 3000 5.38 MB
img10 Mountain 2 4000 � 3000 4.72 MB

A Parallel Retinex Image Enhancement Algorithm 379

4 Conclusion

This paper proposes a parallel SSR algorithm based on OpenMP. Compared to the
serial Retinex algorithm, the proposed parallel algorithm can achieve an average
speedup of 12, which represents a significant decrease in execution time. Experimental
results show that the proposed parallel algorithm can acquire a significant increase in
speedup and can better meet the requirements of real-time processing of the image
enhancement algorithm in the image processing field.

Acknowledgment. This research is supported by the National Natural Science Foundation of
China under Grant No. 61602388, by the Natural Science Basic Research Plan in Shaanxi
Province of China under Grant No. 2017JM6059, by the Fundamental Research Funds for the
Central Universities 2452019064, by the China Postdoctoral Science Foundation under Grant
No. 2017M613216, by the Postdoctoral Science Foundation of Shaanxi Province of China under
Grant No. 2016BSHEDZZ121, by the Fundamental Research Funds for the Central Universities
under Grants No. 2452016081, by the Key Program of the National Natural Science Foundation
of China under Grant No. 61834005, by China Postdoctoral Science Foundation No. 2018M6
33585, by Natural Science Basic Research Plan in Shaanxi Province of China No. 2018JQ6060,
by the Natural Science Basic Research Plan in Shaanxi Province of China under Grant
No. 2015JM6355, and by Doctoral Starting up Foundation of Yan’an University YDBK2019-06.

References

1. Salazar-Colores, S., Cabal-Yepez, E., Ramos-Arreguin, J.M., Botella, G., Ledesma-Carrillo,
L.M., Ledesma, S.: A fast image dehazing algorithm using morphological reconstruction.
IEEE Trans. Image Process. 28(5), 2357–2366 (2019)

2. Muslim, H.S.M., Khan, S.A., Hussain, S., Jamal, A., Qasim, H.S.A.: A knowledge-based
image enhancement and denoising approach. Comput. Math. Organ. Theory 25, 108–121
(2018)

3. Bhowmik, M., Ghoshal, D., Bhowmik, S.: An Improved method for the enhancement of
under ocean image. In: 2015 International Conference on Communications and Signal
Processing, Melmaruvathur, India, pp. 1739–1742. IEEE (2015)

Table 3. Comparison of running time (s)

Name Serial 2Th 4Th 8Th 16Th 24Th 32Th

img1 7 4.71 2.442 1.279 0.726 0.542 0.627

img2 7 4.59 2.501 1.341 0.784 0.531 0.681

img3 39 24.799 12.746 6.733 3.897 2.86 3.445

img4 24 15.977 7.944 4.202 2.325 1.719 1.816

img5 30 19.089 9.985 5.128 2.888 2.072 2.39

img6 39 24.151 12.443 6.995 3.667 2.624 2.809

img7 39 24.437 12.281 6.609 3.619 2.626 2.837

img8 58 38.306 21.468 10.172 5.65 4.188 5.065

img9 59 36.762 18.923 9.598 5.549 4.779 4.743

img10 59 38.968 18.781 10.13 5.525 4.089 4.243 2threads 4threads 8threads 16threads 24threads 32threads
0

2

4

6

8

10

12

14

16

S
pe

ed
up

 img1
 img2
 img3
 img4
 img5
 img6
 img1

Fig. 3. Speedup comparison

380 S. Cheng et al.

4. Li, H., Xie, W.H., Wang, X.G., Liu, S.S., Gai, Y.Y., Yang, L.: GPU implementation of multi-
scale retinex image enhancement algorithm. In: 2016 IEEE/ACS 13th International
Conference of Computer Systems and Applications, Agadir, Morocco, pp. 1–5. IEEE (2016)

5. Wang, G., Liu, X.: A parallel image processing platform based on multi-core DSP. In: 2017
IEEE/ACIS 16th International Conference on Computer and Information Science, Wuhan,
China, pp. 775–779. IEEE (2017)

A Parallel Retinex Image Enhancement Algorithm 381

Correction to: Efficient Processing
of Convolutional Neural Networks

on SW26010

Yi Zhang, Bing Shu, Yan Yin, Yawei Zhou, Shaodi Li,
and Junmin Wu

Correction to:
Chapter “Efficient Processing of Convolutional Neural
Networks on SW26010” in: X. Tang et al. (Eds.):
Network and Parallel Computing, LNCS 11783,
https://doi.org/10.1007/978-3-030-30709-7_26

In the originally published version of this chapter, in section 2.2 and 3.3, in the second
to last sentence “swDGEMM” was corrected to “swDNN”. Furthermore, in the last
sentence of 3.3, “16” was corrected to “17”, and a reference to https://github.com/
feifeibear/swDNNv1.0 has been added.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-30709-7_26

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, p. C1, 2019.
https://doi.org/10.1007/978-3-030-30709-7_38

http://dx.doi.org/10.1007/978-3-030-30709-7_26
https://github.com/feifeibear/swDNNv1.0
https://github.com/feifeibear/swDNNv1.0
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_38&domain=pdf
http://dx.doi.org/10.1007/978-3-030-30709-7_26
https://doi.org/10.1007/978-3-030-30709-7_38

Author Index

An, Hong 143

Bao, Jingjing 169

Cao, Chenhong 333
Che, Yonggang 366
Chen, Hanhua 132
Chen, Hongkun 156
Chen, Quan 235
Chen, Shuo 3
Chen, Xiaobing 277
Chen, Zhiguang 289
Cheng, Peng 289
Cheng, Shixiong 376
Cheng, Yang 209
Chi, Mengxian 143

Dai, Hua 169
Du, Xiaoyong 93
Du, Yankang 333
Du, Yanning 376
Du, Yunfei 289

Fan, Guisheng 327
Feng, Dan 3, 361
Feng, Ningxuan 93
Feng, Qi 225

Gao, Kaihui 209
Gao, Lan 371
Geng, Jinkun 209
Gu, Lin 182
Guo, Minyi 235
Guo, Shasha 69

He, Chao 56
He, Dongjian 376
He, Jinrong 376
Hu, Junyan 16
Hu, Wenxin 82
Hu, Xiaoyang 132
Huang, Hong 132
Huang, Kaixin 251

Huang, Linpeng 251
Huo, Zhisheng 305

Ji, Shujian 350
Jiang, Wanchun 43
Jin, Hai 132, 182
Jin, Xu 143
Jin, Zongze 120

Kang, Ziyang 69
Kong, Linghe 156

Lei, Yongmei 322
Leng, Jingwen 235
Li, Dali 366
Li, Donghua 338
Li, Feng 143
Li, Jinpeng 132
Li, Kenli 16
Li, Keqin 16
Li, Shaodi 316
Li, Shiming 69
Li, Wei 107, 277
Li, Yuancheng 376
Li, Yufeng 333
Li, Yunchun 107
Lin, Haowei 311
Lin, Jiazao 93
Lin, Tingyu 182
Liu, Bin 376
Liu, Chubo 16
Liu, Shang 3
Liu, Shaoli 277
Liu, Shaoshan 338
Liu, Yang 289
Liu, Yi 371
Lu, Jiaqi 82
Lu, Youyou 355
Lu, Yutong 289
Luan, Zhongzhi 371

Ma, Xiaojing 132
Mu, Weimin 120

Peng, Lijuan 43
Peng, Shaohui 277
Peng, Wei 225
Peng, Yamei 3

Qian, Depei 371
Qin, Guangjun 305
Qiu, Han 333

Rao, Jia 182
Rao, Yu 338
Ruan, Chang 43

Sanic, Mustafa 235
Shen, Guowei 209
Shen, Li 197
Shi, Feng 31
Shi, Guoqiang 182
Shi, Zhan 3
Shu, Bing 316
Shu, Jiwu 355
Shuo, Tian 69
Song, Yang 107
Stones, Rebecca J. 264
Sun, Huaiying 327
Sun, Tongzheng 350
Sun, Yongzhong 345

Tang, Feilong 156
Tang, Jie 338
Tang, Qizhi 182
Tian, Chang 56
Toschi, Alessandro 235

Wang, Chunlin 235
Wang, Fang 3, 361
Wang, Gang 264
Wang, Jianxin 43
Wang, Junwei 120
Wang, Lei 69
Wang, Rui 371
Wang, Shuai 209
Wang, Shuquan 69
Wang, Weiping 120
Wang, Wenbo 345, 350
Wang, Xi 366
Wang, XiaoJun 31
Wang, Xinheng 311
Wang, Zhenghua 366

Wei, Bing 305
Wei, Bo 355
Wu, Jia 43
Wu, Junmin 316
Wu, Shuhan 107
Wu, Song 182
Wu, Xinzhou 197

Xiao, Limin 305
Xie, Jinyang 322
Xie, Xia 132
Xie, Zhidong 56
Xu, Cheng-Zhong 345, 350
Xu, Chongyang 371
Xu, Chuanfu 366
Xu, Weixia 69
Xu, Wenchao 156
Xu, Xiaolong 311
Xue, Yanfen 327

Yan, Baicheng 305
Yan, Ge 251
Yang, Geng 169
Yang, Hailong 107
Yang, Maohu 169
Yang, Yanqin 156
Ye, Kejiang 345, 350
Yi, Liping 264
Yi, Xun 169
Yin, Yan 316
Yu, Huiqun 327
Yuan, Ninghui 197

Zhai, Jidong 93
Zhang, Feng 93
Zhang, Han 371
Zhang, Hong 31
Zhang, Hongbin 355
Zhang, Lianyi 371
Zhang, Runhua 209
Zhang, Shuzheng 69
Zhang, Xingjun 156
Zhang, Yi 316
Zhang, Yingxi 182
Zhao, Hang 338
Zheng, Jun 82
Zhi, Tian 277
Zhou, Bingyu 305

384 Author Index

Zhou, Jun 361
Zhou, Shengyuan 277
Zhou, Yawei 316

Zhu, Weilin 120
Zhu, Zhihao 197
Zhuang, Yimin 277

Author Index 385

	Preface
	Organization
	Contents
	Graph Computing
	GraphScSh: Efficient I/O Scheduling and Graph Sharing for Concurrent Graph Processing
	1 Introduction
	2 Our Proposed Approach
	2.1 CGP Balanced Partition
	2.2 CGP I/O Scheduling

	3 GraphScSh Implementation
	3.1 Operation Module
	3.2 Implementations of Graph Algorithm

	4 Experimental Evaluation
	4.1 Experiment Environment and Datasets
	4.2 Comparison with GridGraph

	5 Related Work
	6 Conclusion
	References

	Game-Based Multi-MD with QoS Computation Offloading for Mobile Edge Computing of Limited Computation Capacity
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Communication Model
	3.2 Computation Model
	3.3 MEC's Resource Allocation Strategy
	3.4 Power Control Strategy of Mobile Device

	4 Game Formulation and Analyses
	4.1 Game Formulation
	4.2 Nash Equilibrium Existence Analysis
	4.3 Nash Equilibrium Solution Computation

	5 Simulations
	5.1 Simulation Settings
	5.2 Convergence of Algorithm GCO
	5.3 Performance Evaluation

	6 Conclusions
	References

	NOC and Networks
	KLSAT: An Application Mapping Algorithm Based on Kernighan–Lin Partition and Simulated Annealing for a Specific WK-Recursive NoC Architecture
	1 Introduction and Motivation
	2 Related Work
	3 Problem Formulations
	3.1 Power Consumption Model
	3.2 Definition of Application Mapping

	4 The Proposed KLSAT Mapping Algorithm
	5 Experimentation and Results
	5.1 Simulator and Benchmarks
	5.2 Results and Analysis

	6 Conclusion
	References

	Modeling and Analysis of the Latency-Based Congestion Control Algorithm DX
	1 Introduction
	2 Background and Related Work
	2.1 The DX Algorithm
	2.2 Related Work

	3 Analysis of DX
	3.1 Modeling
	3.2 Stability Analysis
	3.3 A Special Stable State

	4 Evaluation
	4.1 Model Validation
	4.2 The Special Stable State
	4.3 Stability Criterion

	5 Conclusion
	References

	Distributed Quality-Aware Resource Allocation for Video Transmission in Wireless Networks
	1 Introduction
	2 System Model and Utility Function
	2.1 System Model
	2.2 QoE-Based Utility

	3 Potential Game Based Resource Allocation
	4 Resource Allocation Algorithm
	5 Simulation Results and Analyses
	6 Conclusion
	References

	Neural Networks
	PRTSM: Hardware Data Arrangement Mechanisms for Convolutional Layer Computation on the Systolic Array
	1 Introduction
	2 Related Works
	3 Background and Preliminaries
	3.1 Tiling and Optimization
	3.2 Unfold Data Arrangement

	4 Data Arrangement Algorithm
	4.1 Fold Data Arrangement
	4.2 Half-Fold Data Arrangement Variant 1
	4.3 Half-Fold Data Arrangement Variant 2

	5 Experimental Setup and Result
	5.1 Power Efficiency and Hardware Consumption
	5.2 Latency and Data Reuse Rate
	5.3 Comparison with State-of-the-Art

	6 Conclusions
	References

	PParabel: Parallel Partitioned Label Trees for Extreme Classification
	1 Introduction
	2 Related Work
	3 Methodology: Parallel Partitioned Label Trees (PParabel)
	3.1 First-Stage Parallelization
	3.2 Second-Stage Parallelization

	4 Experiments
	4.1 Dataset Description
	4.2 Evaluation Metrics
	4.3 Results

	5 Conclusion
	References

	Statistical Analysis and Prediction of Parking Behavior
	1 Introduction
	2 Background
	2.1 Parking Behavior
	2.2 Motivation
	2.3 Challenges

	3 Solution Overview
	3.1 Experimental Setup
	3.2 Analysis and Prediction Framework of Parking Behavior

	4 Preprocessing Methodology
	4.1 Numerical Features
	4.2 Categorical Features

	5 Feature Selection
	5.1 Outlier Analysis
	5.2 Feature Analysis

	6 Parking Behavior Prediction
	6.1 Modeling Methods
	6.2 Model Evaluation
	6.3 Results

	7 Related Work
	8 Conclusion
	References

	Big Data+Cloud
	ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling
	1 Introduction
	2 Background and Motivation
	2.1 HDFS
	2.2 Distributed Tracing Tool
	2.3 Motivation

	3 The Design and Implementation of ASTracer
	3.1 The Design Overview
	3.2 Bump Sampler
	3.3 Token Bucket Sampler
	3.4 Auto Tuning the Sampler Parameters

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	4.3 Sampler Evaluation
	4.4 Case Study

	5 Related Work
	6 Conclusion
	References

	BGElasor: Elastic-Scaling Framework for Distributed Streaming Processing with Deep Neural Network
	1 Introduction
	2 Background
	2.1 DSP Model
	2.2 DataDock

	3 Framework
	3.1 Overview
	3.2 Predictor
	3.3 ElasticityController

	4 Experiments
	4.1 Settings and Datasets
	4.2 Predictor Evaluation
	4.3 ElasticityController Evaluation

	5 Conclusion
	References

	High Performance DDoS Attack Detection System Based on Distribution Statistics*-10pt
	1 Introduction
	2 Related Work
	3 Background
	4 System Design and Implementation
	4.1 Process of TreeSketchShield
	4.2 TreeSketch
	4.3 Cycle Synchronization of Detection

	5 Evaluation
	5.1 Datasets
	5.2 Performance

	6 Conclusion and Future Work
	References

	DDP-B: A Distributed Dynamic Parallel Framework for Meta-genomics Binary Similarity
	1 Introduction
	2 Background
	2.1 Genome Sequences Alignment
	2.2 K-mer, Hash Map, and Binary Distance

	3 Methodologies
	3.1 Binary Distance Coefficient
	3.2 Parallel Hierarchy Design
	3.3 Distributed Dynamic Schedule Design

	4 Experiment Results
	4.1 Implementation
	4.2 Performance Analysis

	5 Conclusion
	References

	Optimal Resource Allocation Through Joint VM Selection and Placement in Private Clouds*-10pt
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Problem Formulation
	3.2 Complexity Analysis

	4 Joint VM Selection and Placement
	4.1 JVMSP Problem Conversion
	4.2 Algorithm for Max-Capability Sub-problem
	4.3 Algorithm for Min-Cost Sub-problem

	5 Performance Evaluations
	5.1 Datasets
	5.2 Compared Algorithms
	5.3 Results and Analysis

	6 Conclusion and Future Work
	References

	A Parallel Multi-keyword Top-k Search Scheme over Encrypted Cloud Data
	1 Introduction
	2 Models and Problem Formulation
	2.1 Notations and Preliminaries
	2.2 System Model
	2.3 Problem Description
	2.4 Search Framework

	3 Parallel Privacy-Preserving Top-k Search Scheme
	3.1 Fragment-Based Encrypted Inverted Indexes Model
	3.2 Data Preprocessing and Outsourcing
	3.3 Map-Reduce-Based Top-k Search

	4 Security Analysis
	5 Performance Evaluation
	6 Conclusion
	References

	N-Docker: A NVM-HDD Hybrid Docker Storage Framework to Improve Docker Performance
	1 Introduction
	2 Design and Implementation
	2.1 Opportunities and Challenges from Emerging NVM
	2.2 Overview
	2.3 Layer-Aware Storage Strategy
	2.4 HIF-Based Cold-Start Acceleration

	3 Evaluation
	3.1 Experiment Setup
	3.2 Deployment
	3.3 Cold-Start

	4 Related Work
	5 Conclusion
	References

	HPC
	MMSR: A Multi-model Super Resolution Framework
	Abstract
	1 Introduction
	2 Related Works
	3 MMSR Framework
	3.1 Framework Overview
	3.2 Image Classification
	3.2.1 Total Variance Above the Threshold
	3.2.2 TVAT Values

	3.3 Multi-model Training Module
	3.4 Reconstruction Layer

	4 Experiment Results
	4.1 Environment Setup
	4.2 Experiment Details

	5 Conclusions
	References

	HiPower: A High-Performance RDMA Acceleration Solution for Distributed Transaction Processing
	1 Introduction
	2 Background and Motivation
	2.1 Typical Communication Pattern in DTP
	2.2 Background on RDMA

	3 Design for HiPower
	3.1 HiPower Overview
	3.2 Remarkable Advantages of HiPower

	4 Implementation and Evaluation
	4.1 Experiment Setting
	4.2 Experiment Result and Analysis

	5 Related Work
	6 Conclusion
	References

	Emerging Topics
	LDAPRoam: A Generic Solution for Both Web-Based and Non-Web-Based Federate Access
	Abstract
	1 Introduction
	2 Related Works
	3 Challenges
	4 Solution
	5 Evaluations
	6 Conclusion
	References

	Characterizing Perception Module Performance and Robustness in Production-Scale Autonomous Driving System
	1 Introduction
	2 Perception Module Description
	2.1 Camera Sensor and Computation
	2.2 LIDAR Sensor and Computation
	2.3 Fusion

	3 Performance Analysis
	4 Robustness Analysis
	4.1 Noise Models
	4.2 Experiments

	5 Conclusion
	References

	Memory and File System
	Spindle: A Write-Optimized NVM Cache for Journaling File System
	1 Introduction
	2 Background and Motivation
	2.1 NVM-based Systems
	2.2 Crash Consistency
	2.3 Motivation

	3 Design
	3.1 Cache Layout
	3.2 Lightweight Transaction
	3.3 Data Replacement
	3.4 Crash Recovery

	4 Implementation
	5 Evaluation
	5.1 Setup
	5.2 Microbenchmarks
	5.3 Macrobenchmarks

	6 Related Work
	7 Conclusion
	References

	Two-Erasure Codes from 3-Plexes
	1 Introduction
	2 Latin Squares and k-plexes
	3 Encoding
	3.1 Data/Parity Layout
	3.2 Encoding Procedure

	4 Decoding and Proof for Two Fault Tolerance
	5 Comparison with Existing Schemes
	6 Implementation and Performance
	7 Conclusions
	References

	Deep Fusion: A Software Scheduling Method for Memory Access Optimization
	1 Introduction
	2 Motivation
	2.1 Memory Access Bottleneck
	2.2 Potential of Optimization
	2.3 Existing Works

	3 Optimization Method
	3.1 Layer Fusion
	3.2 On-Chip Memory Reuse
	3.3 Fusion Method

	4 Experiment
	4.1 Experiment Methodology
	4.2 Layer Fusion Result

	5 Conclusion
	References

	Optimizing Data Placement on Hierarchical Storage Architecture via Machine Learning
	1 Introduction
	2 Background and Motivation
	3 Training Classification Model for Storage Optimization
	3.1 Problem Definition
	3.2 Parameters Affecting I/O Performance
	3.3 Collecting I/O Records
	3.4 Model Training

	4 Design and Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Decision-Making Under Varied Workflow Scales
	5.3 Decision-Making Under Varied System Status

	6 Related Work
	7 Conclusion
	References

	Short Papers
	I/O Optimizations Based on Workload Characteristics for Parallel File Systems
	1 Introduction
	2 Design of Extended File Handle
	3 Small File Optimization Method
	4 Evaluation
	4.1 Case Study: Directory Hint Optimization
	4.2 Testing Small File Optimization Methods

	5 Conclusion
	References

	Energy Consumption of IT System in Cloud Data Center: Architecture, Factors and Prediction
	1 Introduction
	2 Architecture
	3 Factors Affecting Energy Consumption of IT System
	4 Application and Experiments
	5 Conclusion
	References

	Efficient Processing of Convolutional Neural Networks on SW26010
	1 Introduction
	2 Background and Related Work
	2.1 Convolutional Neural Networks(CNN)
	2.2 Related Work

	3 Optimization of CNN on SW26010
	3.1 Mapping CNN to SW26010
	3.2 DMA Transfer Optimization
	3.3 Instruction Scheduling

	4 Results and Analysis
	5 Conclusion
	References

	ADMMLIB: A Library of Communication-Efficient AD-ADMM for Distributed Machine Learning*-10pt
	1 Introduction
	2 Related Work
	3 ADMMLIB: System Design and Optimization
	3.1 Hierarchical Communication Architecture
	3.2 Improvements on Internode Communication Strategies

	4 Experiment
	5 Conclusion
	References

	Energy-Aware Resource Scheduling with Fault-Tolerance in Edge Computing
	1 Introduction
	2 Fault-Tolerance Resource Scheduling Model
	2.1 Failure Prediction Model
	2.2 Energy Consumption Model

	3 Energy-Aware Fault-Tolerant Resource Scheduling Algorithm
	4 Performance Evaluation
	4.1 Experimental Results

	5 Conclusions
	References

	DIN: A Bio-Inspired Distributed Intelligence Networking
	Abstract
	1 Introduction
	2 Flocking Motion Introduction
	3 Architecture of DIN
	4 An Example for the DIN Protocol
	5 Simulation Results
	6 Conclusion
	Acknowledgments
	References

	A DAG Refactor Based Automatic Execution Optimization Mechanism for Spark
	Abstract
	1 Introduction
	2 DAG in Spark
	3 Observation on Spark Operator
	4 Automatic DAG Refactor Mechanism
	4.1 System Design
	4.2 DAG Refactor Rules Library

	5 Implementation in Spark
	5.1 DAG Refactor
	5.2 DAGRefactor Design and Implementation

	6 Experiments and Evaluation
	6.1 Evaluation Environment
	6.2 SQL
	6.3 Data Aggregation
	6.4 Merge and Deduplication

	7 Relation Works
	8 Conclusions
	References

	BTS: Balanced Task Scheduling Strategy Based on Multi-resource Prediction and Allocation in Cloud Environment
	1 Introduction
	2 Problem Description
	3 Experimental Evaluation
	4 Related Work
	5 Conclusion
	References

	DAFL: Deep Adaptive Feature Learning for Network Anomaly Detection
	1 Introduction
	2 DAFL Algorithm
	3 Experiment
	4 Related Work
	5 Conclusion
	References

	SIRM: Shift Insensitive Racetrack Main Memory
	1 Introduction
	2 Motivation
	3 The Shift Insensitive Racetrack Main Memory Design
	3.1 Basic Array of RM
	3.2 Main Memory Architecture
	3.3 Shift Insensitive Address Mapping

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Comparison of Experimental Results

	5 Conclusion
	References

	PDRM: A Probability Distribution Based Resource Management for Batch Workloads in Heterogeneous Cluster
	1 Introduction
	2 Related Work
	3 Motivation
	4 PDRM Design
	5 Evaluation
	5.1 Job Completion Time of Heterogeneous Applications
	5.2 Resource Allocation Ratio and Resource Consumption Ratio of Heterogeneous Cluster

	6 Conclusion
	References

	Collaborating CPUs and MICs for Large-Scale LBM Multiphase Flow Simulations
	1 Introduction
	2 CPU-MIC Collaboration and Performance Results
	3 Related Work
	4 Conclusions
	References

	Multiple Algorithms Against Multiple Hardware Architectures: Data-Driven Exploration on Deep Convolution Neural Network
	1 Introduction
	2 Related Work
	3 Experiment Methodology
	4 Experiment Results and Analysis
	5 Conclusion
	References

	A Parallel Retinex Image Enhancement Algorithm Based on OpenMP
	Abstract
	1 Introduction
	2 Parallel Design and Implementation
	2.1 Parallelism Analyses
	2.2 Parallel Design and Implementation of SSR Algorithm

	3 Experimental Results and Performance Analysis
	3.1 Experimental Environment and Test Set
	3.2 Speedup Comparison

	4 Conclusion
	Acknowledgment
	References

	Correction to: Efficient Processing of Convolutional Neural Networks on SW26010
	Correction to: Chapter “Efficient Processing of Convolutional Neural Networks on SW26010” in: X. Tang et al. (Eds.): Network and Parallel Computing, LNCS 11783, https://doi.org/10.1007/978-3-030-30709-7_26

	Author Index

