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Abstract The multimesh finite element method enables the solution of partial
differential equations on a computational mesh composed by multiple arbitrarily
overlapping meshes. The discretization is based on a continuous–discontinuous
function space with interface conditions enforced by means of Nitsche’s method.
In this contribution, we consider the Stokes problem as a first step towards
flow applications. The multimesh formulation leads to so called cut elements in
the underlying meshes close to overlaps. These demand stabilization to ensure
coercivity and stability of the stiffness matrix. We employ a consistent least-squares
term on the overlap to ensure that the inf-sup condition holds. We here present the
method for the Stokes problem, discuss the implementation, and verify that we have
optimal convergence.
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1 Introduction

Consider the Stokes problem

−Δu + ∇p = f in Ω, (1)

divu = 0 in Ω, (2)

u = 0 on ∂Ω, (3)

for the velocity u : Ω → R
d and pressure p : Ω → R in a polytopic domain

Ω ⊂ R
d , d = 2, 3.

The Stokes problem is considered here as a first step towards a multimesh
formulation for multi-body flow problems, and ultimately fluid–structure interaction
problems, in which each body is discretized by an individual boundary-fitted mesh
and the boundary-fitted meshes move freely on top of a fixed background mesh.
The applications for such a formulation are many, e.g., the simulation of blood
platelets in a blood stream, the optimization of the configuration of an array of
wind turbines, or the investigation of the effect of building locations in a simulation
of urban wind conditions and pollution. Common to these applications is that the
multimesh method removes the need for costly mesh (re)generation and allows the
platelets, wind turbines or buildings to be moved around freely in the domain, either
in each timestep as a part of a dynamic simulation, or in each iteration as part of an
optimization problem.

The multimesh formulation presented here is a generalization of the formulation
presented and analyzed in [5] for two domains. For comparison, the multimesh
discretization of the Poisson problem for arbitrarily many intersecting meshes is
presented in [6] and analyzed in [8].

2 Notation

We first review the notation for domains, interfaces, meshes and overlaps used to
formulate the multimesh finite element method. For a more detailed exposition, we
refer to [6].

Notation for domains

Let Ω = ̂Ω0 ⊂ R
d , d = 2, 3, be a domain with polytopic boundary (the

background domain).
Let ̂Ωi ⊂ ̂Ω0, i = 1, . . . , N be the so-called predomains with polytopic
boundaries (see Fig. 1).
Let Ωi = ̂Ωi \ ⋃N

j=i+1
̂Ωj , i = 0, . . . , N be a partition of Ω (see Fig. 2).
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Fig. 1 (a) Three polygonal predomains. (b) The predomains are placed on top of each other in an
ordering such that ̂Ω0 is placed lowest, ̂Ω1 is in the middle and ̂Ω2 is on top

Ω0 Ω1 Ω2

Fig. 2 Partition of Ω = Ω0 ∪ Ω1 ∪ Ω2. Note that Ω2 = ̂Ω2
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Fig. 3 (a) The two interfaces of the domains in Fig. 1: Γ1 = ∂ ̂Ω1\ ̂Ω2 (dashed line) and Γ2 = ∂ ̂Ω2
(filled line). Note that Γ1 is not a closed curve. (b) Partition of Γ2 = Γ20 ∪ Γ21

Remark 1 To simplify the presentation, the domains Ω1, . . . , ΩN are not allowed
to intersect the boundary of Ω .

Notation for interfaces

Let the interface Γi be defined by Γi = ∂ ̂Ωi \ ⋃N
j=i+1

̂Ωj , i = 1, . . . , N − 1 (see
Fig. 3a).
Let Γij = Γi ∩ Ωj , i > j be a partition of Γi (see Fig. 3b).
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Notation for meshes

Let ̂Kh,i be a quasi-uniform [3] premesh on ̂Ωi with mesh parameter hi =
max

K∈̂Kh,i
diam(K), i = 0, . . . , N (see Fig. 4a).

Let Kh,i = {K ∈ ̂Kh,i : K ∩ Ωi �= ∅}, i = 0, . . . , N be the active meshes (see
Fig. 4b).
The multimesh is formed by the active meshes placed in the given ordering (see
Fig. 5b).
Let Ωh,i = ⋃

K∈Kh,i
K , i = 0, . . . , N be the active domains.

Notation for overlaps

Let Oi denote the overlap defined by Oi = Ωh,i \ Ωi , i = 0, . . . , N − 1.
Let Oij = Oi ∩ Ωj = Ωh,i ∩ Ωj , i < j be a partition of Oi .

̂Kh,0
̂Kh,2

̂Kh,1

(a)

Kh,0 Kh,2Kh,1

(b)

Fig. 4 (a) The three premeshes. (b) The corresponding active meshes (cf. Fig. 1)

K0
K1

K2

(a)

̂Kh,0

(b)

Fig. 5 (a) Given three ordered triangles K0, K1 and K2, the overlaps are O01 in green, O02 in
red and O12 in blue. (b) The multimesh of the domains in Fig. 1b consists of the active meshes in
Fig. 4b
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3 Multimesh Finite Element Method

To formulate the multimesh finite element for the Stokes problem (1) and (2), we
assume for each (active) mesh Kh,i the existence of a pair of inf-sub stable spaces
Vh,i × Qh,i , i = 0, 1, . . . , N , away from the interface. To be precise, we assume
inf-sup stability in ωh,i ⊂ Ωh,i in the sense of (5) below, where ωh,i is close to Ωi

in the sense that Ωh,i \ ωh,i ⊂ Uδ(Γi), where

Uδ(Γi) =
⋃

x∈Γi

Bδ(x) (4)

and Bδ(x) is a ball of radius δ centered at x. In other words, Uδ(Γi) is the tubular
neighborhood of Γ with thickness δ. In the numerical examples, we let ωh,i be the
union of elements in Kh,i with empty intersection with Γij , j > i.

The inf-sup condition may expressed on each submesh ωh,i by

‖pi − λωh,i
(p)‖ωh,i

� sup
v∈Wh,i

(div v, p)ωh,i

‖Dv‖ωh,i

, (5)

where pi = p|Ωh,i
, λωh,i

(p) is the average of p over ωh,i and Wh,i is the subspace
of Vh,i defined by

Wh,i = {v ∈ Vh,i : v = 0 on Ωh,i \ ωh,i}. (6)

We now define the multimesh finite element space as the direct sum

Vh × Qh =
N

⊕

i=0

Vh,i × Qh,i, (7)

where Vh and Qh consist of piecewise polynomial of degree k and l, respectively.
This means that an element v ∈ Vh is a tuple (v0, . . . , vN), and the inclusion Vh ↪→
L2(Ω) is defined by v(x) = vi (x) for x ∈ Ωi . A similar interpretation is done for
q ∈ Qh. We consider here Taylor-Hood elements [3] with k ≥ 2, l = k − 1, for
which the condition (5) is fulfilled, but non-conforming elements are also possible.

We now consider the following asymmetric finite element method: Find
(uh, ph) ∈ Vh×Qh such that Ah((uh, ph), (v, q)) = lh(v) for all (v, q) ∈ Vh×Qh,
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where

Ah((u, p), (v, q)) = ah(u, v) + sh(u, v) + bh(u, q) + bh(v, p) + dh((u, p), (v, q)),

(8)

ah(u, v) =
N

∑

i=0

(Dui , Dvi )Ωi
(9)

−
N

∑

i=1

i−1
∑

j=0

(

(〈(Du) · ni〉, [v])Γij
+ ([u], 〈(Dv) · ni〉)Γij

)

+
N

∑

i=1

i−1
∑

j=0

β0h
−1([u], [v])Γij

,

sh(u, v) =
N−1
∑

i=0

N
∑

j=i+1

β1([Dui], [Dvi])Oij
, (10)

bh(u, q) = −
N

∑

i=0

(divui , qi)Ωi
+

N
∑

i=1

i−1
∑

j=0

([ni · u], 〈q〉)Γij
, (11)

dh((u, p), (v, q)) =
N

∑

i=0

δh2(Δui − ∇pi,Δvi + ∇qi)Ωh,i\ωh,i
, (12)

lh(v) =
N

∑

i=0

(f , vi )Ωi
−

N
∑

i=0

δh2(f ,Δvi + ∇qi)Ωh,i\ωh,i
. (13)

Here, β0 and β1 are stabilization parameters that must be sufficiently large to ensure
that the bilinear form Ah is coercive; cf. [5] for an analysis of the two-domain case.

For simplicity, we use the global mesh size h here and throughout the presen-
tation. If the meshes are of substantially different sizes, it may be beneficial to
introduce the individual mesh sizes hi in (12) and the average h−1

i + h−1
j in (9).

Note that since Γi is partitioned into interfaces Γij relative to underlying meshes,
the sums of the interface terms are over 0 ≤ j < i ≤ N . In contrast, the sums of
the overlap terms are over 0 ≤ i < j ≤ N since the overlap Oi is partitioned into
overlaps Oij relative to overlapping meshes.

The jump terms on Oij and Γij are defined by [v] = vi − vj , where vi and vj

are the finite element solutions (components) on the active meshes Kh,i and Kh,j .
The average normal flux is defined on Γij by

〈ni · ∇v〉 = (ni · ∇vi + ni · ∇vj )/2. (14)

Here, any convex combination is valid [4].
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The proposed formulation (8) is identical to the one proposed in [5] with
sums over all domains and interfaces. Also note the similarity with the multimesh
formulation for the Poisson problem presented in [6], the difference being the
additional least-squares term dh (and the corresponding term in lh) since we only
assume inf-sup stability in ωh,i , see (5) and the discussion above. If we do not
assume inf-sup stability anywhere (e.g. if we would use a velocity-pressure element
of equal order), the least-squares term should be applied over the whole domain as
in [10]. Please cf. [10] for the use of a symmetric dh.

Other stabilization terms may be considered. By norm equivalence, the stabiliza-
tion term sh(u, v) may alternatively be formulated as

sh(u, v) =
N−1
∑

i=0

N
∑

j=i+1

β2h
−2([u], [v])Oij

. (15)

where β2 is a stabilization parameter; see [8].
Note that the finite element method weakly approximates continuity in the sense

that [uh] = 0 and [ni · ∇uh] = 0 on all interfaces.

4 Implementation

We have implemented the multimesh finite element method as part of the software
framework FEniCS [2, 9]. One of the main features of FEniCS is the form language
UFL [1] which allows variational forms to be expressed in near-mathematical
notation. However, to express the multimesh finite element method (8), a number
of custom measures must be introduced. In particular, new measures must be
introduced for integrals over cut cells, interfaces and overlaps. These measures are
then mapped to quadrature rules that are computed at runtime. An overview of these
algorithms and the implementation is given in [7].

To express the multimesh finite element method, we let dX denote the integration
over domains Ωi , i = 0, . . . , N , including cut cells. Integration over Γij and Oij are
expressed using the measures dI and dO, respectively. We let dC denote integration
over Ωh,i \ ωh,i . Now the multimesh finite element method for the Stokes problem
may be expressed as

a_h = inner(grad(u), grad(v))*dX \
- inner(avg(grad(u)), tensor_jump(v, n))*dI \
- inner(avg(grad(v)), tensor_jump(u, n))*dI \
+ beta_0/h * inner(jump(u), jump(v))*dI

s_h = beta_1 * inner(jump(grad(u)), jump(grad(v)))*dO
b_h = lambda v, q: inner(-div(v), q)*dX \

+ inner(jump(v, n), avg(q))*dI
d_h = delta*h**2 * inner(-div(grad(u)) + grad(p), \

-div(grad(v)) - grad(q))*dC
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Fig. 6 A sequence of N meshes are randomly placed on top of a fixed background mesh of the
unit square shown here for N = 2, 4 and 32 using the coarsest refinement level

This makes it easy to implement the somewhat lengthy form (8), as well as
investigate the effect of different stabilization terms.

5 Numerical Results

To investigate the convergence of the multimesh finite element method, we solve
the Stokes problem in the unit square with the following exact solution

u(x, y) = 2π sin(πx) sin(πy) · (cos(πy) sin(πx),− cos(πx) sin(πy)), (16)

p(x, y) = sin(2πx) sin(2πy), (17)

and corresponding right hand side. We use PkPk−1 Taylor–Hood elements with
k ∈ {2, 3, 4} and we use N ∈ {1, 2, 4, 8, 16, 32} randomly placed domains as
in [6] (see Fig. 6). Due to the random placement of domains, some domains are
completely hidden and will not contribute to the solution. For N = 8, this is the
case for one domain, for N = 16, three domains and for N = 32, four domains are
completely hidden. This is automatically handled by the computational geometry
routines. Convergence results are presented in Fig. 7 as well as in Table 1.

6 Discussion

The results presented in Table 1 and Fig. 7 show the expected order of convergence
for the velocity in the L2(Ω) norm (k + 1), for the velocity in the H 1

0 (Ω) norm (k),
and for the pressure in the L2(Ω) norm (k).

A detailed inspection of Fig. 7 reveals that, as expected, the multimesh discretiza-
tion yields larger errors than the single mesh discretization (standard Taylor–Hood
on one single mesh). The errors introduced by the multimesh discretization are
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Fig. 7 Convergence results for k = 2, 3 and 4 (left to right) using up to 32 meshes (single mesh
results are N = 0). From top to bottom we have the velocity error in the L2(Ω) norm, the velocity
error in the H 1

0 (Ω) norm, and the pressure error in the L2(Ω) norm. Results less than 10−8 are not
included in the convergence lines due to limits in floating point precision

Table 1 Error rates for eL2 = ‖u−uh‖L2(Ω), eH 1
0

= ‖u−uh‖H 1
0 (Ω) and eL2 = ‖p −ph‖L2(Ω)

k = 2 k = 3 k = 4

N eL2 eH 1
0

eL2 eL2 eH 1
0

eL2 eL2 eH 1
0

eL2

0 2.9952 1.9709 2.1466 4.0289 2.9966 3.0028 4.9508 3.9844 4.2286

1 2.9750 1.9658 1.9291 4.1153 3.0912 3.1932 4.8861 4.0006 4.0587

2 3.2764 2.1472 2.5036 3.9087 2.9021 2.8489 4.8677 4.0416 4.0832

4 3.6666 2.5971 2.8597 4.3996 3.3125 3.3957 5.2741 4.0966 4.1609

8 3.0359 1.9697 2.1163 4.3412 3.2258 3.4213 4.8840 3.9409 4.0169

16 3.4131 2.3298 2.4794 4.5033 3.3907 3.5910 5.4702 3.9664 4.0729

32 3.2832 2.1505 2.3255 4.4196 3.2922 3.4362 5.7538 4.3191 4.2848

one to two orders of magnitude larger than the single mesh error. However, the
convergence rate is optimal and it should be noted that the results presented here
are for an extreme scenario where a large number of meshes are simultaneously
overlapping; see Fig. 6. For a normal application, such as the simulation of flow
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around a collection of objects, each object would be embedded in a boundary-
fitted mesh and only a small number of meshes would simultaneously overlap (in
addition to each mesh overlapping the fixed background mesh), corresponding to
the situation when two or more objects are close.

The presented method and implementation demonstrate the viability of the
multimesh method as an attractive alternative to existing methods for discretization
of PDEs on domains undergoing large deformations. In particular, the discretization
and the implementation are robust to thin intersections and rounding errors, both
of which are bound to appear in a simulation involving a large number of meshes,
timesteps or configurations.
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