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Preface

This special volume contains selected contributions from the Finite Elements in
Flow (FEF) conference held in Rome in April 2017: http://congress.cimne.com/
fef2017/.

The overarching objective of the FEF 2017 conference, in a similar vein to the
previous editions, was to provide a forum for the exchange of ideas and recent
results in finite element-type methods for applications in fluid dynamics and related
areas. Both the methodological and the applicative goals of the FEF series have
broadened over recent editions, extending beyond traditional finite element methods
and traditional fluid mechanics. Indeed, FEF 2017 attracted many participants using
numerical techniques other than finite element methods or considering applications
other than fluid dynamics, often with multiphysics couplings.

The volume “Numerical Methods for Flows” brings together up-to-date con-
tributions in applied mathematics, numerical analysis, numerical simulation, and
scientific computing related to fluid mechanics problems. The authors are world-
leading scientists who participated in the FEF 2017 conference and accepted our
invitation to contribute a chapter. All papers were selected after anonymous peer
review. Comprising 30 chapters, the book presents the state of the art in topics
relating to numerical simulation for flows and provides very interesting insights
and perspectives regarding current and future methodological and numerical devel-
opments in computational science. The contributions are organised from the most
methodological ones to the most application-oriented ones in computational fluid
dynamics, and the book will meet the needs of both researchers and graduate
students.

We thank the contributors and the reviewers for their outstanding work and would
like to express our gratitude to the International Association for Computational
Mechanics for granting us the privilege of organizing the 19th edition of the FEF
conference series. We also cordially thank the administration of Sapienza University
of Rome for providing the splendid venue, as well as Professor Maurizio Falcone for
his help and contacts with the Department of Mathematics “Guido Castelnuovo” at
the university. We furthermore gratefully acknowledge the administrative support of
CIMNE and, in particular, Mr. Alessio Bazzanella. Finally, we would like to thank
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vi Preface

the editorial board of Lecture Notes in Computational Science and Engineering
for hosting this special volume in the series and offer special thanks to Francesca
Bonadei and Francesca Ferrari of Springer Milan for their constant support during
the preparation of the volume.

Eindhoven, The Netherlands Harald van Brummelen
Rome, Italy Alessandro Corsini
Milan, Italy Simona Perotto
Triste, Italy Gianluigi Rozza
March 2019
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Simulation of Complex High Reynolds
Flows with a VMS Method and Adaptive
Meshing

Luisa Silva, David Chalet, Thierry Coupez, Audrey Durin, Tristan Launay,
and Christelle Ratajczack

Abstract The whistling noise phenomenon, which is related to vortexes appearance
in high Reynolds air flows in ducts, implies a very precise description of the
flow at the very small scales, especially near the solid walls, on which boundary
layer division may occur. In this work, the Variational Multiscale method has been
coupled to automatic anisotropic adaptive meshing, allowing the capture of very
complex flows at high Reynolds number. The adaptive procedure is based on the
error evaluation on several chosen quantities (phase location, velocity, velocity
direction changes) and it provides the capture of very thin flow motions, even close
to the walls or boundaries. Simulations of flows on resonator-like geometries have
been performed, reputed to whistle for certain flow rates. A method to qualitatively
discriminate whistling from non-whistling flow rates has been implemented, based
on the appearance of certain vortexes on the obtained flow patterns.

Keywords Anisotropic adaptive meshing · Computational fluid dynamics · VMS
solver · Finite elements · Parallel computing

L. Silva (�) · T. Coupez
High Performance Computing Institute (ICI), École Centrale de Nantes, Nantes, France
e-mail: luisa.rocha-da-silva@ec-nantes.fr ; thierry.coupez@ec-nantes.fr

D. Chalet · A. Durin
Hydrodynamics, Energetics & Atmospheric Environment Laboratory (LHEEA), École Centrale
de Nantes, Nantes, France
e-mail: david.chalet@ec-nantes.fr; audrey.durin@ec-nantes.fr

T. Launay · C. Ratajczack
Mann+Hummel, Research Center of Laval, Laval, France
e-mail: tristan.launay@mann-hummel.com; christelle.ratajczack@mann-hummel.com

© Springer Nature Switzerland AG 2020
H. van Brummelen et al. (eds.), Numerical Methods for Flows,
Lecture Notes in Computational Science and Engineering 132,
https://doi.org/10.1007/978-3-030-30705-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30705-9_1&domain=pdf
mailto:luisa.rocha-da-silva@ec-nantes.fr
mailto:thierry.coupez@ec-nantes.fr
mailto:david.chalet@ec-nantes.fr
mailto:audrey.durin@ec-nantes.fr
mailto:tristan.launay@mann-hummel.com
mailto:christelle.ratajczack@mann-hummel.com
https://doi.org/10.1007/978-3-030-30705-9_1


2 L. Silva et al.

1 Introduction

Resonator type devices are used in inlet and exhaust systems of internal combustion
engines to reduce the running noises. They are constituted of chambers connected
to the pipe through openings which allow reducing the pressure (and thus the noise),
but are paradoxically subject to whistling issues.

Generally, these unwanted sounds are caused by vortex shedding [1]. When
a fluid flows around a solid object, a fluid boundary layer is formed around it.
Pushed by the main flow, this boundary layer will create a rotating vortex. Behind
the object, two vortexes are released alternatively and a vortex street is formed.
Vortexes generate aerodynamic sound, and can be described as acoustic sources
and integrated in an acoustical study through an equivalent force field, as described
by Lighthill [2], where the general problem discussed was how to estimate the
sound emitted from such a given fluctuating flow. The authors consider two major
assumptions: the first one is that the propagation of fluctuations in the flow is not
considered; the second is that the reaction of produced sound on the flow itself is
neglected. It is worth noticing that this reaction of the sound on flow is expected
when a resonator (a chamber) is close to the flow, but this theory is not applicable
to supersonic flows. In reality, the acoustic perturbation will interact with the flow
and potentially existing solids. It can be thus amplified or dissipated, or create new
vortexes interacting with unstable shear layers, leading to complex coupled cases.

For example, in classical open cavity or side-branch cases [3–5], a thin shear
layer is created when air is blown above the orifice. If there is an existing acoustic
perturbation, it will interact with the shear layer, generating vortexes that will in
return interact with the acoustic field, absorbing the acoustical energy, or amplifying
it by a feed-back loop phenomenon in the cavity. To obtain whistle, the velocity at
which the vortexes will cross the orifice have to match the resonance frequency of
the cavity so that the latter will whistle at certain air flow rates. The final frequency
of the noise is given by the resonator, which is the cavity itself. Recent studies of
silencer whistling [5, 6] have shown that the same phenomenon occurs with the shear
layers above the resonator holes. In an experimental study of a perforated straight-
through pipe type muffler, other authors [7] have visualized the flow, showing that
the air is flowing out the tube into the chamber through almost all the holes, except
the last one, through which the air was strongly flowing back from the chamber
into the tube. They have also found that the fluctuating velocities near the last row
of holes show peaks at frequencies corresponding to the noise generated, and have
concluded that the whistling noise generated by the perforated straight-through pipe
type muffler is caused by the turbulent air flow passing through the last row of
holes, and that it is strongly correlated with the resonance of the tail pipe and/or
the cavity. A turbulent flow is characterized by chaotic fluctuations of velocity and
pressure appearing at high Reynolds number. Whereas Reynolds number increase, a
bifurcation is created and the flow develops a turbulent behaviour, irregular both
in space and time. There is no analytic solution of a turbulent flow. Efforts are
focusing on the numerical research. A direct solution would be to solve Navier–
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Stokes equation with appropriate boundary and initial conditions. That is called
Direct Numerical Simulation (DNS). Nevertheless, the extent of the scales that
must be solved in time and space is very large and beyond the power domain of
today’s computers. Because of that, the DNS method is always limited to moderate
Reynolds numbers. There are two alternative solutions, the Large Eddy Simulation
methods (LES) and the Reynolds Averaged Navier–Stokes equations (RANS). The
first of these approaches consists in filtering the flow scales in order to fully solve
the large scale structures while the effect of the small scales are modelled and are
not explicitly computed (unlike in the VMS method, see below). Nevertheless, this
method remains very costly. In the other hand, the RANS method averages the
equations in time and space, suppressing totally the fluctuations and leading to a set
of equations less costly. Nevertheless, as the RANS method does not solve the small
scales, closure models are required to take into account the effects of turbulence.

In this study, a Variational Multiscale Method [8] (VMS, see below) was used and
coupled with adaptive meshing [9]. In this method, the scales under the mesh size are
described through stabilization terms. These ones are implicitly computed, unlike in
the LES method where the physical models taking into account the small scale are
explicitly computed. Combining the VMS method with adaptive meshing allows a
reduction of the “approximated” part of the small scale in the computation (reducing
the mesh size), which brings it close to a DNS method. The full methodology is
based on an implicit boundary approach [10], established within a massively parallel
framework [11, 12].

2 Whistling Study Through CFD

2.1 Numerical Resolution of the Navier–Stokes Equations

The fluid motion is described by the non-linear Navier–Stokes equations. The
discrete Galerkin problem implies solving the mixed problem: find the discrete
velocity-pressure pair (vh, ph) ∈ (Vh,Qh) for (wh, qh) ∈ (Vh,0,Qh) such that

(ρ∂tvh,wh)+ (ρvh · ∇vh,wh)+ (2με(vh) : ε(wh))− (ph,∇ · wh) =
(fh,wh)+ (hN ,wh)ΓN

(∇ · vh, qh) = 0
(1)

where ΓN is the part of the boundary where boundary conditions are imposed.
To avoid numerical instabilities, the Variational MultiScale (VMS) method [8] is
used, by applying an orthogonal decomposition of the functional spaces, to get
Ṽ = Vh ⊕ V′ and Q̃ = Qh ⊕Q′. Taking ṽ = vh + v′ ∈ Ṽ and p̃ = ph + p′ ∈ Q̃,
we decompose the velocity and the pressure fields respectively into two scales: the
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resolvable coarse scale and the unresolvable fine one, which we model to provide
additional stabilization. After simplification, one gets

(ρ(∂tvh + vh · ∇vh),wh)Ω + (2με(vh) : ε(wh))Ω − (ph,∇ · wh)Ω − (fh,wh)Ω
︸ ︷︷ ︸

Galerkin

+
∑

K∈Ω
τK(ρ(∂tvh + vh · ∇vh)+∇ph − fh, ρvh · ∇wh)K

︸ ︷︷ ︸

Upwind stabilization

+
∑

K∈Ω
τK(ρ(∂tvh + vh · ∇vh)+∇ph − fh, ρvh · ∇qh)K

︸ ︷︷ ︸

Pressure stabilization

(2)

+
∑

K∈Ω
(τc∇ · vh,∇ ·wh)K

︸ ︷︷ ︸

Grad-div stabilization

= 0

Stabilisation parameters computation has been detailed in [9]. One important
point is that in the definitions of such parameters one needs to compute the
local mesh size, hK , which usually refers to the element diameter. This choice
is not optimal when we use an anisotropic mesh and, for example, in convection
dominated problems, we will use the element diameter computed in the flow
direction.

2.2 Immersed Boundaries and Automatic Anisotropic
Adaptation

One unique mesh is defined for both fluid and solid domains [10], and only one set
of the Navier–Stokes equations is used to solve the problem. The geometrical mesh
built to solve it through the previously described VMS method is iteratively adapted
by using the interpolation error theory [13]. In this way, the mesh discretization takes
into account, the velocity direction variations, the velocity magnitude and phase
functions describing the boundaries. With this methodology, even the small vortexes
developed by the solution will be captured and boundary layers at the fluid solid
interface. In this context, the solid domain is also discretized (and has its own phase
function), supposing that it is a rigid body, with zero velocity. This is achieved by
weakly imposing this condition in the formulation.



Simulation of Adaptive and Complex High Reynolds Flows 5

3 Whistling Simulations

3.1 Vortex Detection

In the following examples, appearance of a vortex will indicate under which criteria
whistling will occur. Several criteria exist in the literature allowing the location of
a vortex core in a flow, but we have chosen to compute λ2, the second eigenvalue
of the summation of the squares of the symmetric and antisymmetric components
of the velocity gradient. This criterion or vortex detection is based on the fact that,
in a vortex, pressure tends to have a local minimum in the axe of the circulatory
motion of the vortex when the centrifugal force is balanced by the pressure force
(cyclotrophic balance). In this case, the vortex zones are the ones where λ2 is large
and to well identify it, one plots the isovalue 0 of λ2 a line in 2D or as a surface in
3D. More details are given in [14].

3.2 Validation in a Simple Air Flow Benchmark

Simulations of flows in straight pipes (2D and 3D) at high Reynolds number have
been performed to check the accuracy of our method. Theoretical values used for
comparison are presented in [15]. A similar validation for adaptive finite element
approximations has been performed in [16].

The pipe measures 78 cm long and has a 3.5 cm diameter, and its section is
centered in y = 0. Numerical probes are placed in the radial direction. We simulate
the flow with an imposed bulk velocity of 48 m/s (Re = 1054, considering the pipe
diameter as the length scale), which corresponds to the 155kg/h flow rate measured
during the whistling experiments on the silencer prototypes, which will be described
hereafter. Density of the air is 1.255 kg/m3 and its viscosity is 1.85e−5 Pa s.

Expressions for the velocity profile across the section are different for the
sublayers close to the boundary. A central layer represents 80% of the thickness,
where the axial velocity is not so much affected by the conditions at the wall. The
internal layer (inner region) is defined as the thickness where the later is much
affected by the wall conditions. One may distinguish three zones in this internal
layer: the viscous sub-layer, near the wall, where the flow is laminar. Its thickness
grows in the flow direction until reaching an instability, in a buffer zone, and then
one attains a third region, the logarithmic sublayer.

Figure 1 shows the computed and theoretical axial velocity profiles, as a function
of the radial position, in 2D (left) and in 3D (right). Probes are located at x = 65 cm,
z = 0 in 3D and at y values that include all the described layers. The obtained mean
values in time are computed on 100 times steps with dt = 10−4 s.

In 2D, one observes that the velocity error is maximal near the buffer zone in
which there is no “real” theoretical value, and where we thus cannot estimate the
error. Out of the buffer zone, the error does not exceed 10% except on two probes:
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Fig. 1 Pipe flow: theoretical and computed mean velocities in 2D (left, a) and in 3D (right, b)

Flow Flow

Fig. 2 Holes repartition in the tube (left) with a visualization of the eccentric chamber (right)

in the center of the flow for the pressure (15%) and in the logarithmic zone for the
velocity (27%). In 3D, the velocity error is maximal in the buffer zone but also in
the logarithmic zone (15–33%). In this zone, the velocity gradient is less strong than
in the viscous sub-layer, leading to bigger mesh sizes, but it is still strong enough to
lead to numerical errors. Nevertheless, overall results remain satisfying.

3.3 Industrial Application

Whistling simulations have been performed on a prototype reproducing the typical
conditions in silencers. In fact, it is a simple pipe connected to a chamber through
holes. The holes repartition can be used to describe the geometric characteristics of
the silencer in a simple way. It is worth noticing that the chamber is not symmetric
(due to the holes repartition) as described in Fig. 2. If there is no specification, the
2D visualization below are performed doing a slice of the geometry along the flow
direction, passing through the second and the eighth horizontal row of holes (Fig. 2,
on the left).
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The tube is characterized by a 30.5 mm input diameter and 35 mm output
diameter. As depicted in Fig. 2, the eccentric chamber is connected to the pipe
by using different holes. Flow simulations were performed on these complex
geometries for a 100 kg/h and a 155 kg/h rate flows for which it is supposed not
to whistle and to whistle, respectively. The Reynolds number are equal to 7.104 and
105, depending on the mass flow rate. According to the analytical models described
above for 3D tubes, the characteristic thickness of the shear layer near the walls
is comprised between 7.10−6 and 10−5 m. As a consequence, the minimal mesh
size is set to 10−7 m and the maximal mesh size is set to 5.10−3 m. The number
of mesh nodes needed to achieve the computations varies from one simulation to
another. The maximal number we have reached is 8 × 106, and it has necessitated
792 cores to run. The computations generally last about 1 day, without considering
the pre-processing (geometry format conversion, immersion, etc.).

In the following paragraphs, the computation time step is 10−4 s. A uniform
velocity is imposed on the pipe input and a zero pressure is imposed on the pipe
output. This velocity is gradually increased to reach 100 kg/h or 155 kg/h. It is
worth noticing that the boundary conditions (velocities, pressure, zero velocity in the
solid) are imposed through a strong imposition method i.e. the values are imposed
at the nodes. On the following pictures, the air direction is from the left to the
right. In both cases, we do not find the pattern described previously. As described
in Fig. 3 (λ2 plots), there are no strong vortexes in the flows. Nevertheless, at
155 kg/h, before the flow is stabilized, there is an important perturbation occurring
just after the last row of holes, as depicted in Fig. 4. We can visualize it both with
the λ2 and pressure criteria. This observation shows similarities with the phenomena
experimentally observed by Kojima et al. [7]. To sum up, a vortex zone was found
at 155 kg/h, but only during the transitory flow before stabilization.

Fig. 3 λ2 = −1000 isovalue contours and colored pressure values for 100 kg/h (top) and 155 kg/h
(bottom)
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Fig. 4 λ2 = −1000 isovalue contours and colored pressure values for 155 kg/h (transient period)

4 Conclusions and Perspectives

Simulations of turbulent air flow in different geometries at several flow rates have
been performed, using a parallel scientific computation library, based on an adaptive
monolithic finite element approach.

In particular, an industrial resonator prototype has been studied, and we have
noticed that there is an area just below the last row of holes that seems to generate
vortexes, especially above a certain flow rates and in transitory regimes, information
that is in agreement with observations coming from experiments performed by
Kojima and co-authors [7].

Since whistling comes from acoustic perturbations caused by vortexes, but also
from acoustic amplification, we can try to avoid it suppressing the geometric cause
of the appearance of vortexes. Future work concerns shape optimization, to be able
to “break” the vortexes, without new potential acoustic perturbations.

Acknowledgements The work in this article has been done in a joined International Teaching
and Research Chair entitled “Innovative Intake and Thermo-management Systems” between
MANN+HUMMEL and Ecole Centrale de Nantes.
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Comparison of Coupled and Decoupled
Solvers for Incompressible Navier–Stokes
Equations Solved by Isogeometric
Analysis

Bohumír Bastl, Marek Brandner, Jiří Egermaier, Hana Horníková,
Kristýna Michálková, Jan Šourek, and Eva Turnerová

Abstract This paper is devoted to the problem of solving the steady incompress-
ible Navier–Stokes equations discretized by the Galerkin method on the spaces
generated by the B-spline/NURBS basis functions, which is called isogeometric
analysis. Two pressure-correction methods are presented for the solution of the
incompressible flow in the benchmark backward facing step and also in Kaplan
water turbine as conforming multipatch domains. The velocity and pressure under-
relaxation is considered and the computational examples are compared with the
coupled approach.

Keywords Incompressible Navier–Stokes equations · Isogeometric analysis ·
B-spline/NURBS objects · Pressure-correction methods · Coupled method ·
Decoupled methods

1 Introduction

The development of numerical methods for simulating fluid flows is fundamental
in practice. Classical numerical methods, which are used to find approximate
solutions of incompressible fluid flow, are finite difference methods, finite volume
methods, finite element methods, spectral methods etc. Recently, a modification
of the FEM based on B-spline/NURBS objects appeared (cf. [5]). This approach
is known as isogeometric analysis and it is similar to FEM, only triangular/te-
trahedral meshes typically used in FEM are replaced by meshes composed of
parts of B-spline/NURBS surfaces/volumes representing a computational domain.
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This is more suitable for consequent computations, because it allows to avoid
the time-consuming step of generating triangular/tetrahedral meshes and performs
computations directly. Moreover, since the discretization of a computational domain
is always exact, this approach reduces errors in the computational analysis and is
more suitable for the formulation of automatic shape optimization algorithms.

The mathematical model for incompressible fluid flow simulation is based
on the Navier–Stokes equations, two approaches are compared—coupled and
decoupled. The “coupled” scheme means that one large linear system, arising
from the discretization of the weak formulation via continuous Galerkin (and
discontinuous Galerkin for non-conforming meshes) method, is solved for all
components of velocity and pressure together. In practical examples, this usually
leads to large linear systems which are difficult to solve. Direct solvers are time-
and memory-consuming, iterative solvers without suitable preconditioners are very
time-consuming. One possible approach to overcome this obstacle is to use the
“decoupled” scheme which allows to compute components of velocity and pressure
independently by solving smaller linear systems. However, this approach is not
suitable in cases, when periodic (cyclic) boundary conditions with respect to rotation
are specified, or when terms representing rotation of a computational domain need
to be added.

2 NURBS Objects

NURBS objects are standard objects in geometric modelling for shape represen-
tation of curves, surfaces or volumes. A NURBS volume of degree (p, q, r) is
determined by a control net of (m + 1) × (n + 1) × (l + 1) control points Pijk ,
with weights wijk , i = 0, . . . ,m, j = 0, . . . , n, k = 0, . . . , l and three knot
vectors U = (u0, . . . , um+p+1), V = (v0, . . . , vn+q+1), W = (w0, . . . , wl+r+1).
The parameterization is then

v(u, v,w) =
∑m

i=0
∑n

j=0
∑l

k=0 Ni,p(u)Nj,q (v)Nk,r (w)wijkPijk
∑m

i=0
∑n

j=0
∑l

k=0 Ni,p(u)Nj,q (v)Nk,r (w)wijk

, (1)

whereNi,p(u),Nj,q(v) and Nk,r (w) are B-spline basis functions (see [5]) of degrees
p, q and r corresponding to the knot vectors U, V and W, respectively. In the case
of B-spline volumes all weights wijk of control points Pijk are equal.

In isogeometric analysis, the B-spline/NURBS basis which generates the geom-
etry of the computational domain is refined (if needed) and used as basis for the
solution space.
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3 Mathematical Model

The mathematical simulation of viscous incompressible Newtonian fluid flow is
based on the Navier–Stokes equations. Let Ω ⊂ Rd be a bounded domain, d the
number of spatial dimensions, with boundary ∂Ω consisting of two disjoint parts
∂ΩD and ∂ΩN . The steady incompressible Navier–Stokes problem can be written
as

(u · ∇)u− νΔu+∇p = f in Ω,

∇ · u = 0 in Ω,

u = gD on ∂ΩD,

ν ∂u
∂n − np = gN on ∂ΩN,

(2)

where u is the flow velocity, p is the kinematic pressure, ν is the kinematic viscosity
and f is a source function.

3.1 Weak Formulation

In order to derive the weak formulation of the problem, we define the solution space
V and the test function space V0 as follows

V = {u ∈ H 1(Ω)d | u = gD on ∂ΩD}, V0 = {v ∈ H 1(Ω)d | v = 0 on ∂ΩD}.
(3)

By multiplying the first equation of (2) by a test function v ∈ V0 and the second
equation by a test function q ∈ L2(Ω) and using Green’s theorem we obtain the
weak formulation: find u ∈ V and p ∈ L2(Ω) such that

ν
∫

Ω

∇u : ∇v+ ∫
Ω

(u · ∇u)v − ∫
Ω

p∇ · v = ∫
Ω

f · v+ ν
∫

∂ΩN

gN · v, ∀v ∈ V0,

∫

Ω

q∇ · u = 0, ∀q ∈ L2(Ω).

(4)

Let us assume that the boundary integral in (4) is equal to zero in the rest of the
text. To treat the non-linearity in the convective term we employ Picard’s method,
where the problem is solved iteratively and the non-linear term is linearized using
the solution from the previous step. In the k-th iteration we look for uk+1 ∈ V and
pk+1 ∈ L2(Ω) such that

ν
∫

Ω

∇uk+1 : ∇v+ ∫
Ω

(uk · ∇uk+1)v− ∫
Ω

pk+1∇ · v = ∫
Ω

f · v, ∀v ∈ V0,

∫

Ω

q∇ · uk+1 = 0, ∀q ∈ L2(Ω).

(5)
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When we choose the initial velocity u0 to be zero, then we obtain the solution of the
Stokes problem in the first iteration.

3.2 Solution Methods

In this section we describe two approaches we use to find the approximate solution
of the discrete problem.

3.2.1 Coupled Approach

A straightforward way is to assemble the whole linear system and find its solution
using some direct or iterative method for solving linear systems. As already
mentioned, direct solvers are rather inapplicable for large problems because of very
high time and memory requirements. On the other hand, iterative methods with
standard available preconditioners are not very efficient, hence, the implementation
of special preconditioners for Navier–Stokes equations is required. This is a topic
for future work. For the time being, we are left with direct solvers.

3.2.2 Decoupled Approach

An alternative to solving the original stationary system, is to search for a steady-state
solution of a time-dependent system of equations in the semi-discrete form (discrete
in time) on which we apply the pressure-correction method on the continuous level.
In this method, velocity and pressure fields are computed separately. Thanks to
decoupling of the system we solve several smaller systems instead of one large
system in each time step. Of course, this method can also be used for unsteady
computations with sufficiently small time step. In the following we summarize two
versions of the pressure-correction algorithm which we have implemented.

Pressure-Correction Method 1
In each iteration we perform the following steps:

1. We search for an intermediate velocity field u∗ using the pressure from the
previous iteration

u∗ − un

Δt
+ (un · ∇)u∗ − νΔu∗ + ∇pn = f. (6)

The intermediate velocity field does not satisfy the condition ∇ · u∗ = 0.
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2. We compute a pressure correction p′ from

Δp′ = 1

Δt
∇ · u∗. (7)

Additional boundary conditions for the pressure have to be introduced.
3. We compute a velocity correction u′ as

u′ = −Δt ∇p′. (8)

4. We update the intermediate velocity field and the pressure field with the
computed corrections

un+1 = u∗ + u′, pn+1 = pn + p′. (9)

The new velocity field satisfies the condition ∇ · un+1 = 0.

This algorithm can be found for example in [1, 4]. In the pressure update step (9)
a so-called explicit under-relaxation is often used: pn+1 = pn + αpp

′ with αp ∈
〈0, 1〉, which allows to get a convergent scheme.

Pressure-Correction Method 2
In each iteration we define the pressure increment as

ψn+1 = pn+1 − pn + ν∇ · un+1. (10)

Then we perform the following steps:

1. We compute the new velocity field un+1 from

un+1 − un

Δt
+ (un · ∇)un+1 +∇(pn + ψn) = f. (11)

2. We compute new pressure increment ψn+1 from

Δψn+1 = 1

Δt
∇ · un+1. (12)

3. We update the pressure with the computed correction

pn+1 = pn + ψn+1 − ν∇ · un+1. (13)

This version of the pressure-correction method is used for example in [6]. To be
concise we do not describe the weak formulations of both decoupled methods. For
more detailed information on this kind of methods, see [2].
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The velocity under-relaxation is also included in both decoupled methods above.
However, it is the implicit relaxation (see [4]), i.e., the relaxation parameter αu is
related to Δt by the formula Δt = αu

1−αu .

3.3 Discretization

To discretize problem (5) by means of the Galerkin method we define finite
dimensional spaces V h ⊂ V, V h

0 ⊂ V0 and Wh ⊂ L2(Ω) together with their
bases. We are looking for a discrete solution uh ∈ V h and ph ∈ Wh such that
the solution uh is written as a linear combination of basis functions Ru

i ∈ V h and
the solution ph as a linear combination of basis functions R

p
i ∈ Wh, where Ru

i

and R
p
i are B-spline/NURBS basis functions obtained from the B-spline/NURBS

description of the computational domain. The spatial discretization of the coupled
case is described in [3] in more details, the derivation of the discrete problem for the
decoupled case is analogous.

4 Computational Examples

In this section we present some numerical results obtained by the isogeometric
Navier–Stokes solver which we implemented. First, we compare the coupled and
decoupled approach on a 3D backward facing step example. Then we compare
the performance of the methods for flow in the geometry of Kaplan turbine which
involves periodic boundary conditions and rotation of the domain.

4.1 Backward Facing Step

The first test case carried out is a flow in the 3D backward facing step. It consists of
three patches with conforming interfaces. The discrete problem has 22,734 degrees
of freedom, it means that in the coupled case we solve a system with matrix of size
22,734× 22,734. The kinematic viscosity ν = 0.005. A parabolic velocity profile
with maximum magnitude equals to 1 is set as the inlet boundary condition.

In Figs. 1 and 2, we compare the number of iterations and solution time for both
decoupled methods described above, where the relaxation parameters αu and αp are
chosen from the interval (0.3, 1.0). More precisely, the calculations were obtained
for the relaxation factors which vary independently from 0.3 to 1.0 by step 0.1, then
the graphs represent interpolate functions. Remember that velocity and pressure
under-relaxation is considered for the pressure-correction method 1, but only the
velocity under-relaxation is considered for the pressure correction method 2.
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Fig. 1 Number of iterations (left) and solution time [s] (right) as a functions of relaxation
parameters αu and αp solved by pressure-correction method 1 for backward facing step benchmark

Fig. 2 Number of iterations (blue) and solution time (orange) as a functions of relaxation
parameter αu solved by the pressure-correction method 2 for the backward facing step

The calculations were terminated when the norm of the solution change was
smaller than ε = 10−4 and all linear systems are solved with sparse LU
decomposition method without reordering. Note that the pressure system was also
solved using sparse LU decomposition, where Cholesky decomposition might also
be used. From the results shown in Figs. 1 and 2 it can be seen that the fastest
convergence is achieved for αu ≈ 0.6 and αp ≈ 0.4 for the pressure-correction
method 1 and αu = 0.4 for the pressure-correction method 2.

Let us choose relaxation parameter αu = 0.6 and αp = 0.4 for the first projection
method and αu = 0.4 for the second projection method and compare both decoupled
approaches with the coupled method in Table 1. It is obvious that the coupled
approach required the least number of iterations but the longest solution time.
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Table 1 Backward facing step: comparison of the solution methods

Solver Number of iterations Total time (s) Average time/iter.

Coupled 13 981 75.46

Decoupled1 77 81 1.05

Decoupled2 110 114 1.04

Table 2 Kaplan turbine: comparison of the solution methods for ω = 0/56

Solver Number of iterations Total time (s) Average time/iter.

Coupled 4/9 57/124 14.25/13.78

Decoupled1 219/517 774/2540 3.53/4.91

Decoupled2 44/202 160/967 3.64/4.79

4.2 Kaplan Turbine

The second test case is geometrically more complicated as periodic boundary
conditions are set and rotation of the runner blades is considered for the flow in
a Kaplan water turbine. It consists of three patches with conforming interfaces. The
discrete problem has 15,683 degrees of freedom. The solution was computed for a
fluid with ν = 0.1 and constant velocity profile at the inlet. The axis of rotation is
considered as x-axis with the angular velocity ω.

The numerical experiments were computed similarly to the backward facing step
case according to the relaxation parameters. Let us choose αu = 0.7 and αp = 0.6
and compare both decoupled approaches with the coupled method for the angular
velocity ω = 0 and ω = 56 in the Table 2. Although the solve time per iteration
of the coupled method is much longer, the total time of the coupled method is more
favourable as the number of the decoupled iterations is high.

It should be noted that nonzero off-diagonal blocks appear in the matrix
formulation as the periodic conditions or rotation is considered (the velocity
components are interconnected). In this case, one approach is to solve the equations
for the interconnected components of velocity in a coupled way (the results are
in the Table 2), but we lose the advantage of the decoupled methods. Another
approach is to move the off-diagonal blocks to the right-hand side of the system
by multiplying them with the corresponding components of the velocity solution
from the previous step. Then we perform several inner iterations in each step of the
method. In this case, the pressure-correction method 1 converges after 702s and the
pressure-correction method 2 converges after 117s solving the fluid flow problem
without rotation (note that as the inner iterations converge, the number of decoupled
iterations is the same as for the first approach written in the Table 2). However, none
of the decoupled methods converges if rotating flow is considered.
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5 Conclusion

Two pressure-correction methods have been described and compared with the
coupled method for the backward facing step benchmark and flow in a Kaplan water
turbine. It has been shown that the benefit of the decoupled method is provided
only if no periodic conditions or rotation is considered. Moreover, according to
the results, the decoupled methods become less stable with rotation. Therefore, the
coupled method still provides advantage for our computing purposes in the water
turbines.

Acknowledgement This work has been supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 678727.
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High-Order Isogeometric Methods
for Compressible Flows

I: Scalar Conservation Laws

Andrzej Jaeschke and Matthias Möller

Abstract Isogeometric analysis was applied very successfully to many problem
classes like linear elasticity, heat transfer and incompressible flow problems but its
application to compressible flows is very rare. However, its ability to accurately
represent complex geometries used in industrial applications makes IGA a suitable
tool for the analysis of compressible flow problems that require the accurate
resolution of boundary layers. The convection-diffusion solver presented in this
chapter, is an indispensable step on the way to developing a compressible solver for
complex viscous industrial flows. It is well known that the standard Galerkin finite
element method and its isogeometric counterpart suffer from spurious oscillatory
behaviour in the presence of shocks and steep solution gradients. As a remedy,
the algebraic flux correction paradigm is generalized to B-Spline basis functions
to suppress the creation of oscillations and occurrence of non-physical values in the
solution. This work provides early results for scalar conservation laws and lays the
foundation for extending this approach to the compressible Euler equations in the
next chapter.

Keywords Isogeometric analysis · Compressible flows · Algebraic flux
correction

A. Jaeschke (�)
Institute of Turbomachinery, Łódź University of Technology, Łódź, Poland
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1 Introduction

Isogeometric analysis (IGA) was proposed by Hughes et al. in [1]. Since its birth
it was successfully applied in a variety of use case scenarios ranging from linear
elasticity and incompressible flows to fluid-structure interaction problems [2]. There
were, however, not many approaches to apply this method to compressible flow
problems [3, 4]. Although this application did not gain the attention of many
researches yet, it seems to be a promising field. Flow problems are usually defined
on domains with complex but smooth shapes, whereby the exact representation of
the boundary is indispensable due to the crucial influence of boundary layers on the
flow behaviour. This is where IGA has the potential to demonstrate its strengths.

It is a well known fact that standard Galerkin finite element schemes (FEM)
suffer from infamous instabilities when applied to convection-dominated problems,
such as compressible flows. The same unwanted behaviour occurs for IGA-based
standard Galerkin schemes [2] making it necessary to develop high-resolution
high-order isogeometric schemes that overcome these limitations. From the many
available approaches including the most commonly used ones, i.e., the streamline
upwind Petrov–Galerkin (SUPG) method introduced by Brooks and Hughes in [5],
we have chosen for the algebraic flux correction (AFC) methodology, which was
introduced by Kuzmin and Turek in [6] and refined in a series of publications [7–
13]. The family of AFC schemes is designed with the overall goal to prevent the
creation of spurious oscillations by modifying the system matrix stemming from
a standard Galerkin method in mass-conservative fashion. This algebraic design
principle makes them particularly attractive for use in high-order isogeometric
methods.

2 High-Resolution Isogeometric Analysis

This section briefly describes the basic construction principles of high-resolution
isogeometric schemes for convection-dominated problems based on an extension of
the AFC paradigm to B-Spline based discretizations of higher order.

2.1 Model Problem

Consider the stationary convection-diffusion problem [2]

−dΔu(x))+∇ · (vu(x)) = 0 in Ω (1)

u(x) = β(x) on � (2)
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1

1

0 1

1

0

Fig. 1 Unit square (left) and deformed domain (right) modeled by tensor-product quadratic B-
Spline basis functions defined on the open knot vector Ξ = [0, 0, 0, 0.5, 1, 1, 1]

with diffusion coefficient d = 0.0001 and constant velocity vector v = [√2,
√

2].
The problem is solved on the two domains depicted in Fig. 1.

Starting from the open knot vector Ξ = [0, 0, 0, 0.5, 1, 1, 1], quadratic B-
Spline basis functions Na,2(ξ) are generated by the Cox-de-Boor recursion formula
[14]:

p = 0 : Na,0(ξ) =
{

1 if ξa ≤ ξ < ξa+1,

0 otherwise,
(3)

p > 0 : Na,p(ξ) = ξ − ξa

ξa+p − ξa
Na,p−1(ξ)+ ξa+p+1 − ξ

ξa+p+1 − ξa+1
Na+1,p−1(ξ), (4)

where ξa are the entries in the knot vector Ξ . Their tensor product construction
yields the bivariate B-Spline basis functions ϕ̂j (ξ, η) = Na(ξ)Nb(η) (with index
map j �→ (a, b)), which are used to define the computational geometry model

x(ξ, η) =
∑

j

cj ϕ̂j (ξ, η), (ξ, η) ∈ Ω̂ = [0, 1]2 (5)

with control points cj ∈ R
2 indicated by dots in Fig. 1. The mapping φ : Ω̂ → Ω

converts parametric values ξ = (ξ, η) into physical coordinates x = (x, y). The
mapping should be bijective in order to possess a valid ‘pull-back’ operator φ−1 :
Ω → Ω̂ .

For simplicity the boundary conditions are prescribed in the parametric domain:

β(x = φ(ξ )) =
{

1 if η ≤ 1
5 − 1

5ξ

0 otherwise.
(6)
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2.2 Galerkin Method

Application of the Galerkin method to (1)–(6) yields: Find uh ∈ Sh such that

d

∫

Ω

∇uh · ∇vhdx+
∫

Ω

∇ · (vu)hvh)dx =
∫

Ω

Rvhdx (7)

for all test functions vh ∈ V h that vanish on the entire boundary Γ due to the
prescription of Dirichlet boundary conditions. In the framework of IGA the discrete
spaces Sh and V h are spanned by multivariate B-Spline basis functions {ϕj (x)}.

Using Fletcher’s group formulation [15], the approximate solution uh and the
convective flux (vu)h can be represented as follows [12]:

uh(x) =
∑

j

ujϕj (x), (vu)h(x) =
∑

j

(vjuj )ϕj (x). (8)

Substitution into (7) and replacing vh by all basis functions yields the matrix form

(S −K)u = r, (9)

where u is the vector of coefficients ui used in the expansion of the solution (8) and
the entries of the discrete diffusion (S = {sij }) and convection (K = {kij }) operators
and the discretized right-hand side vector (r = {ri}) are given by

kij = −vj · cij , cij =
∫

Ω

∇ϕjϕidx, (10)

sij = d

∫

Ω

∇ϕj · ∇ϕidx, ri =
∫

Ω

Rϕidx. (11)

The above integrals are assembled by resorting to numerical quadrature over the
unit square Ω̂ = [0, 1]2 using the ‘pull-back’ operator φ−1 : Ω → Ω̂ . For the
entries of the physical diffusion matrix the final expression reads as follows [4]:

sij = d

∫

Ω̂

∇ξ ϕ̂j (ξ ) ·G(ξ )∇ξ ϕ̂j (ξ)dξ , (12)

where the geometric factor G(ξ ) is given in terms of the Jacobian J = Dφ:

G(ξ ) = | detJ (ξ )|J−1(ξ )J−(ξ ). (13)

It should be noted that expression (12) can be interpreted as the discrete counterpart
of an anisotropic diffusion problem with symmetric diffusion tensor dG(ξ) that is
solved on the unit square Ω̂ using tensor-product B-Splines on a perpendicular grid.
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2.3 Algebraic Flux Correction

The isogeometric Galerkin method (9) is turned into a stabilized high-resolution
scheme by applying the principles of algebraic flux correction (AFC) of TVD-type,
which were developed for lowest-order Lagrange finite elements in [7, 10].

In essence, the discrete convection operator K is modified in two steps:

1. Eliminate negative off-diagonal entries from K by adding a discrete diffusion
operator D to obtain the modified discrete convection operator L = K +D.

2. Remove excess artificial diffusion in regions where this is possible without
generating spurious wiggles by applying non-linear anti-diffusion: K∗(u) =
L+ F̄ (u).

Discrete Diffusion Operator The optimal entries of D = {dij } are given by [6]:

dij = dji = max{0,−kij ,−kji}, dii = −
∑

j �=i
dij , (14)

yielding a symmetric operator with zero column and row sums. The latter enables
the decomposition of the diffusive contribution to the ith degree of freedom

(Du)i =
∑

j �=i
fij , fij = dij (uj − ui), (15)

whereby the diffusive fluxes fij = −fji are skew-symmetric by design [6].
In a practical implementation, operator D is not constructed explicitly, but the

entries of L := K are modified in a loop over all pairs of degrees of freedoms
(i, j) for which j �= i and the basis functions have overlapping support suppϕ̂i ∩
suppϕ̂j �= ∅. For univariate B-Spline basis functions of order p, we have suppϕ̂i =
(ξi , ξi+p+1), where ξi denotes the ith entry of the knot vector Ξ . Hence, the loops
in (14) and (15) extend over all j �= i with |j − i| ≤ p in one spatial dimension,
which can be easily generalized to tensor-product B-Splines in multiple dimensions.

The modified convection operator L = K+D yields the stabilized linear scheme

(S − L)u = r. (16)

Anisotropic Physical Diffusion The discrete diffusion matrix S might also cause
spurious oscillations in the solution since it is only ‘harmless’ for lowest order finite
elements under the additional constraint that triangles are nonobtuse (all angles
smaller than or equal to π/2) and quadrilaterals are nonnarrow (aspect ratios smaller
than or equal to

√
2 [16]), respectively. Kuzmin et al. [12, 17] propose stabilization

techniques for anisotropic diffusion problems, which can be applied to (12) directly.
It should be noted, however, that we did not observe any spurious wiggles in all our
numerical tests even without any special treatment of the diffusion matrix S.
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Nonlinear Anti-diffusion According to Godunov’s theorem [18], the linear
scheme (16) is limited to first-order accuracy. Therefore a nonlinear scheme must be
constructed by adaptively blending between schemes (9) and (16), namely [7, 10]:

(S −K∗(u))u = r. (17)

Here, the nonlinear discrete convection operator reads

K∗(u) = L+ F̄ (u) = K +D + F̄ (u), (18)

which amounts to applying a modulated anti-diffusion operator F̄ (u) to avoid the
loss of accuracy in smooth regions due to excessive artificial diffusion. The raw anti-
diffusion,−D, features all properties of a discrete diffusion operator, and hence, its
contribution to a single degree of freedom can be decomposed as follows [7, 10]:

fi(u) := (F̄ (u)u)i =
∑

j �=i
αij (u)dij (ui − uj ), (19)

where αij (u) = αji(u) is an adaptive flux limiter. Clearly, for αij ≡ 1 the anti-
diffusive fluxes will restore the original Galerkin scheme (9) and αij ≡ 0 will
lead to the linear scheme (16). Kuzmin et al. [7, 10] proposed a TVD-type multi-
dimensional limiting strategy for lowest-order Lagrange finite elements, which
ensures that the resulting scheme (17) yields accurate solutions that are free of
spurious oscillations. The flux limiter was extended to non-nodal basis functions
in [4] and utilized for computing the numerical results presented in Sect. 3.

Like with the diffusion operator D, we do not construct K∗(u) explicitly but
include the anti-diffusive correction f̄(u) = {f̄i(u)} into the right-hand side [7, 10]

(S − L)u = r+ f̄(u). (20)

The nonlinear scheme can be solved by iterative defect correction [7] possibly
combined with Anderson acceleration [19] or by an inexact Newton method [20].

Non-nodal degrees of freedom make it necessary to first project the prescribed
boundary values (6) onto the solution space Sh so that the coefficients of the degrees
of freedoms that are located at the Dirichlet boundary part can be overwritten
accordingly. Since the standard L2 projection can lead to non-physical under- and
overshoots near discontinuities and steep gradients, the constrained data projection
approach proposed in [11] for lowest order nodal finite elements is used.

3 Numerical Results

This section presents the numerical results for the model problem (1)–(6), which
were computed using the open-source isogeometric analysis library G+Smo [21].
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The tensor-product B-Spline basis (4 × 4 basis functions of degree p = 2)
that was used for the geometry models depicted in Fig. 1 was refined by means
of knot insertion [2] to generate 18 × 18 quadratic B-Spline basis functions for
approximating the solution. It should be noted that this type of refinement, which
is an integral part of the Isogeometric Analysis framework, preserves the shape of
the geometry exactly. Consequently, the numerical solution does not suffer from
an additional error stemming from an approximated computational domain as it
is the case for, say, higher-order Lagrange finite elements defined on simplex or
quadrilateral meshes.

For the diffusion coefficient d = 0.0001 and the considered basis the element
Péclet number is equal to Peh ≈ 555, which states that the problem is highly
convection-dominated. For the deformed geometry, the actual value varies slightly
from one ‘element’ to the other but stays in the same order of magnitude.

The numerical solution that was computed on the unit square is depicted in Fig. 2
(left), whereas the approximate solution for the deformed geometry is shown on the
right. In both cases the minimum and maximum bounds of the exact solution, that is,
umin = 0 and umax = 1 are preserved by the numerical counterpart, which results
from the successful application of the AFC stabilization of TVD-type.

It should be noted that the internal layer is smeared stronger than the boundary
layer, which is due to the constrained L2 projection of the Dirichlet boundary data
into the space Sh. The discontinuous profile (6) along the left boundary cannot be
represented exactly by quadratic B-Splines, and hence, it is smeared across multiple
‘elements’. A possible remedy is to locally reduce the approximation order to p = 1
by inserting a knot at the boundary location ηb = 1/5 and increasing its multiplicity
to mb = 2, which will reduce the continuity to Cp−mb = C0 locally. The varying
thickness of the boundary layer on the deformed geometry stems from the fact the
distance of the rightmost vertical internal ‘grid line’ to the boundary also varies.

Fig. 2 Numerical solutions computed on the unit square (left) and deformed domain (right)
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4 Conclusions

The high-resolution isogeometric scheme presented in this work for the stationary
convection-diffusion equation is a first step to establish isogeometric methods
for convection-dominated problems and, in particular, compressible flows, which
are addressed in more detail in chapter “High-Order Isogeometric Methods for
Compressible Flows. II: Compressible Euler Equations”. This chapter extends the
family of algebraic flux correction schemes to quadratic B-Spline discretizations
thereby demonstrating that the algebraic design principles that were originally
derived for low-order nodal Lagrange finite elements carry over to non-nodal Spline
basis functions.

Ongoing research focuses on the extension of this approach to truncated hier-
archical B-Splines [22] possibly combined with the local increase of the knot
multiplicities, which seems to be a viable approach for refining the spline spaces
Sh and V h adaptively in the vicinity of shocks and steep gradients to compensate
for the local reduction of the approximation order by algebraic flux correction
(h-refinement) and to prevent excessive spreading of these localized features
(continuity reduction).
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II: Compressible Euler Equations
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Abstract This work extends the high-resolution isogeometric analysis approach
established in chapter “High-Order Isogeometric Methods for Compressible Flows.
I: Scalar Conservation Laws” (Jaeschke and Möller: High-order isogeometric
methods for compressible flows. I. Scalar conservation Laws. In: Proceedings of
the 19th International Conference on Finite Elements in Flow Problems (FEF
2017)) to the equations of gas dynamics. The group finite element formulation
is adopted to obtain an efficient assembly procedure for the standard Galerkin
approximation, which is stabilized by adding artificial viscosities proportional to
the spectral radius of the Roe-averaged flux-Jacobian matrix. Excess stabilization
is removed in regions with smooth flow profiles with the aid of algebraic flux
correction (Kuzmin et al., Flux-corrected transport, chapter Algebraic flux cor-
rection II. Compressible Flow Problems. Springer, Berlin, 2012). The underlying
principles are reviewed and it is shown that linearized FCT-type flux limiting
(Kuzmin, J Comput Phys 228(7):2517–2534, 2009) originally derived for nodal
low-order finite elements ensures positivity-preservation for high-order B-Spline
discretizations.
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1 Introduction

Compressible fluid flow problems have traditionally been solved by low-order
finite element and finite volume schemes, which were equipped with stabilization
techniques like, e.g., SUPG, FCT/TVD and nonlinear shock-capturing, in order
to resolve flow patterns like shock waves and contact discontinuities without
producing nonphysical undershoots and overshoots. A recent trend in industrial
CFD applications especially involving turbulent flows is the use of high-order
methods, which enable a more accurate representation of curved geometries and
thus a better resolution of boundary layers and, in general, provide better accuracy
per degree of freedom (DOF). Moreover, high-order methods have a favorable
compute-to-data ratio, which makes them particularly attractive for use on modern
high-performance computing platforms, where memory transfers are typically the
main bottleneck.

Despite the huge success of isogeometric analysis (IGA) [1] in structural
mechanics, incompressible fluid mechanics and fluid-structure interaction, publica-
tions on its successful application to compressible flows are rare [2–4]. This may be
attributed to the challenges encountered in developing shock-capturing techniques
for continuous high-order finite element methods. In this work we present an
isogeometric approach for solving the compressible Euler equations within an IGA
framework, thereby adopting the concept of algebraic flux correction (AFC) as
stabilization technique [5, 6]. In particular, we show that the linearized FCT-type
limiting strategy introduced in [7, 8] carries over to B-Spline discretizations.

2 High-Resolution Isogeometric Analysis

This section briefly describes the design principles of our IGA-AFC scheme and
highlights the novelties and main differences to its nodal finite element counterpart.
For a comprehensive description of FEM-AFC the reader is referred to [5, 6].

2.1 Governing Equations

Consider the d-dimensional compressible Euler equations in divergence form

∂U

∂t
+∇ · F(U) = 0. (1)

Here, U : Rd → R
d+2 denotes the state vector of conservative variables

U = [U1, . . . , Ud+2
] = [ρ, ρv, ρE

]
, (2)
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and F : Rd+2 → R
(d+2)×d stands for the tensor of inviscid fluxes

F =
⎡

⎢

⎣

F 1
1 . . . F d

1
...

. . .
...

F 1
d+2 . . . F d

d+2

⎤

⎥

⎦ =
⎡

⎣

ρv
ρv⊗ v+ pI

ρEv+ pv

⎤

⎦ (3)

with density ρ, velocity v, total energy E, and I denoting the d-dimensional identity
tensor. For an ideal polytropic gas, the pressure p is given by the equation of state

p = (γ − 1)
(

ρE − 0.5ρ|v|2
)

, (4)

where γ denotes the heat capacity ratio, which equals γ = 1.4 for dry air. The
governing equations are equipped with initial conditions prescribed at time t = 0

U(x, 0) = U0(x) in Ω, (5)

and boundary conditions of Dirichlet and Neumann type, respectively

U = G(U,U∞) on �D, n · F = Fn(U,U∞) on �N. (6)

Here, n is the outward unit normal vector and U∞ denotes the vector of ‘free stream’
solution values, which are calculated and imposed as outlined in [6].

2.2 Spatial Discretization by Isogeometric Analysis

Application of the Galerkin method to the variational form of the first-order
conservation law system (1) yields the following system of semi-discrete equations
[6]

∑

j

(∫

Ω

ϕiϕjdx
)

dUj

dt
−
∑

j

(∫

Ω

∇ϕiϕjdx
)

· Fj +
∫

Γn

ϕiFn ds = 0, (7)

where Fj (t) := F(Uj (t)) denotes the value of (3) evaluated at the j -th solution
coefficient Uj(t) at time t . This approach is known as Fletcher’s group formulation
[9], which amounts to expanding Uh ≈ U and Fh ≈ F into the same basis {ϕj },
that is

Uh(x, t) =
∑

j

Uj (t)ϕj (x), Fh(x, t) =
∑

j

Fj (t)ϕj (x). (8)
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To further simplify the notation, let us define the consistent mass matrix MC :=
{mij } and the discretized divergence operator C := {cij } as follows

mij =
∫

Ω

ϕiϕj dx, cij =
∫

Ω

ϕi∇ϕj dx. (9)

Then the semi-discrete system (7) can be written in compact matrix form as

MC
dUk

dt
−

d
∑

l=1

[

Cl
]

F l
k + Sk(U) = 0, (10)

where superscript l = 1, . . . , d refers to the l-th spatial component of the discrete
divergence operator C and the tensor of inviscid fluxes F, respectively, and subscript
k = 1, . . . , d + 2 stands for the component that corresponds to the k-th variable.
Here, Sk(U) accounts for the contribution of boundary fluxes; see [6] for more
details.

As explained in Sections 2.1 and 2.2 of chapter “High-Order Isogeometric
Methods for Compressible Flows. I: Scalar Conservation Laws” [10], we adopt
tensor-product B-Spline basis functions for approximating the numerical solu-
tion (8) and modeling the domain Ω . As a consequence, the integrals in (9) are
evaluated by introducing the ‘pull-back’ operator φ−1 : Ω → Ω̂ and applying
numerical quadrature on the reference domain Ω̂ = [0, 1]d as it is common practice
in the IGA community.

2.3 Temporal Discretization by Explicit Runge–Kutta Methods

The semi-discrete system (10) is discretized in time by an explicit strong stability
preserving (SSP) Runge–Kutta time integration schemes of order three [11]

MU(1) = MUn +ΔtR(Un) (11)

MU(2) = 3

4
MUn + 1

4

(

MU(1) +ΔtR(U(1))
)

(12)

MUn+1 = 1

3
MUn + 2

3

(

MU(2) +ΔtR(U(2))
)

, (13)

whereM = I⊗MC is the block counterpart of the mass matrix and R(U) represents
all remaining terms involving inviscid and boundary fluxes. If MC is replaced by
its row-sum lumped counterpart (see below) then the above Runge–Kutta schemes
reduce to scaling the right-hand sides by the inverse of a diagonal matrix.
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2.4 Algebraic Flux Correction

The Galerkin method (7) is turned into a high-resolution scheme by applying
algebraic flux correction of linearized FCT-type [8], thereby adopting the primitive
variable limiter introduced in [7]. The description is intentionally kept short and
addresses mainly the extensions of the core components of FEM-AFC to IGA-AFC.

Row-Sum Mass Lumping A key ingredient in all flux correction algorithms for
time-dependent problems is the decoupling of the unknowns in the transient term
of (7) by performing row-sum mass lumping, which turned out to be one of the main
problems in generalizing FEM-AFC to higher order nodal Lagrange finite elements
since the presence of negative off-diagonal entries leads to singular matrices. The
following theorem shows that IGA-AFC is free of this problem by design.

Theorem 1 All diagonal entries and the non-zero off-diagonal entries of the
consistent mass matrix MC are strictly positive if tensor-product B-Spline basis
functions ϕj are adopted. Hence, the row-sum lumped mass matrix ML := diag(mi)

is unconditionally invertible with strictly positive diagonal entries

mi :=
∑

j

∫

Ω

ϕi(x)ϕj (x) dx =
∑

j

∫

Ω̂

ϕ̂i(ξ )ϕ̂j (ξ ) | detJ (ξ )| dξ > 0. (14)

Proof Since the forward mapping φ : Ω̂ → Ω must be bijective for its inverse
φ−1 : Ω → Ω̂ to exist, the determinant of J = DΦ is unconditional non-zero. The
strict positivity of B-Spline basis function over their support completes the proof.

��
Galerkin Flux Decomposition [6] The contribution of the residual R(U) to a
single DOF, say, i can be decomposed into a sum of solution differences between Ui

and Uj , where j extends over all DOFs for which the mass matrix satisfies mij �= 0:

Ri =
∑

j

cji · Fj =
∑

j �=i
eij · (Fj − Fi ) =

∑

j �=i
eij · Aij (Uj − Ui). (15)

Here, eij = 0.5(cji − cij ) and Aij = A(Ui,Uj ) denotes the flux-Jacobian matrix
A(U) = ∂F(U)/∂U evaluated for the density averaged Roe mean values [12].

The derivation procedure utilizes the partition of unity property of basis
{ϕj }, which remains valid for tensor-product as well as THB-Splines [13] thus
enabling adaptive refinement. The underlying tensor-product construction makes it
possible to fully unroll the ‘j �= i loop’ by exploiting the fact that the support
of univariate B-Spline functions of order p extends over a knot span of size
p + 1.
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Artificial Viscosities [6] Expression (15) is augmented by artificial viscosities

R̃i := Ri +
∑

j �=i
Dij (Uj − Ui), Dij := ‖eij‖Rij |Λij |R−1

ij (16)

where Λij and Rij are matrices of eigenvalues and eigenvectors of Ãij , respectively.

Linearized FCT Algorithm [8] Row-sum mass lumping and application of
stabilizing artificial viscosities lead to the positivity-preserving predictor scheme

ML
dŨ

dt
= R̃(Ũ), (17)

which is advanced in time by the SSP-RK procedure (11)–(13) starting from the
end-of-step solution Un of the previous time step. The solution Ũn+1 and the
approximation U̇n+1 ≈ M−1

L R̃(Ũn+1) are used to linearize the antidiffusive fluxes

Fij = mij

(

U̇n+1
i − U̇n+1

j

)

+ D̃n+1
ij

(

Ũn+1
i − Ũn+1

j

)

, Fji = −Fij , (18)

where D̃n+1
ij = Dij (Ũ

n+1
i , Ũn+1

j ) stands for the evaluation of the viscosity operator
at the density-averaged Roe mean values based on the predicted solution.

The philosophy of FCT schemes is to multiply Fij by a symmetric correction
factor 0 ≤ αij ≤ 1 to obtain the amount of constrained antidiffusive correction

F̄i =
∑

j �=i
αijFij , (19)

which can be safely added to the coefficients of the positivity-preserving predictor

Un+1
i = Ũn+1

i + Δt

mi

F̄i (20)

without generating spurious oscillations in the updated end-of-step solution. The
flux limiting procedure developed in [7] calculates individual correction factors αu

ij

for user-definable scalar control variables u(U), e.g., density and pressure since
ρ > 0 and p > 0 implies ρE > 0 following directly from the equation of state (4).
A safe choice for the final correction factor in (19) is to set αij = min{αρ

ij , α
p
ij }.

It should be noted that the original limiting procedure has been designed for low-
order nodal finite elements, where it ensures that the nodal values of the end-of-step
solution are bounded from below and above by the local minimal/maximal nodal
values of the positivity-preserving predictor. That is, the following holds for all i:

ũmin
i := min

j �=i ũj ≤ un+1
i ≤ max

j �=i ũj =: ũ
max
i . (21)
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The piece-wise linearity of P1 finite elements ensures, that the corrected solution
does not exceed the imposed bounds inside the elements. This is not the case for
higher-order Lagrange FEM, but can be easily shown for B-Spline based FEM:

Theorem 2 If the flux limiter [7] is applied to the weights of the B-Spline expansion

ũ(x) =
∑

j

ũjϕj (x) (22)

then the flux corrected end-of-step solution (of the control variable u)

un+1(x) =
∑

j

un+1
j ϕj (x) (23)

remains bounded from below and above by the bounding functions

ũ
max
min (x) =

∑

j

ũ
max
min
j ϕj (x). (24)

Proof Assume that for some x∗ ∈ Ω we have that un+1(x∗) > ũmax(x∗). Then

0 > ũmax(x∗)− un+1(x∗) =
∑

j

[ũmax
j − un+1

j ]
︸ ︷︷ ︸

≥0

ϕ(x∗)
︸ ︷︷ ︸

≥0

≥ 0, (25)

which is a contradiction. A similar argument holds for the lower bound. ��

3 Numerical Results

The proposed IGA-AFC approach has been applied to Sod’s two dimensional shock
tube problem [14], which has been solved on the unit square domain and the VKI U-
bend test case geometry proposed in [15]. In both cases, tensor-product bi-quadratic
B-Splines combined with the third-order SSP-Runge Kutta time stepping scheme
have been employed. Density and pressure have been adopted as control variables
and the final correction factors have been computed as their minimum.

Benchmark I Figure 1 (left) shows the numerical solution sampled along the line
y = 0.5. The solution was computed on the unit square, which was discretized by
66× 66 equidistantly distributed B-Spline basis functions and marched forward in
time with time step size Δt = 0.0005 until the final time T = 0.231 was reached.
This small time-step size was needed to prevent the highly oscillatory Galerkin
scheme from breaking down completely. The density and pressure profiles that were
computed by IGA-AFC stay within the physical bounds and show a crisp resolution
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Fig. 1 Numerical solution to Sod’s shock tube problem at T = 0.231 computed on the unit square
(left) and the VKI U-bend test case geometry (right) with bi-quadratic B-Spline basis functions

of the shock wave and the expansion fan. However, the contact discontinuity is
smeared over several layers, which needs to be improved in forthcoming research.

Benchmark II Figure 1 (right) shows part of the density profile that is obtained
from simulating Sod’s shock tube problem on the VKI U-bend geometry [15] with
all other settings remaining unchanged except for the time step size Δt = 0.001.
The black contour lines indicate the location of the three characteristic wave
types, i.e., the rarefaction wave, the contact discontinuity and the shock wave
from left to right. As in the rectangular case, the IGA-AFC scheme succeeds
in preserving the positivity of the control variables (ρ and p, and consequently
ρE), thereby demonstrating its practical applicability on non-equidistant curved
‘meshes’. For illustration purposes the computational mesh has been approximated
and illustrated by white lines to give an impression of the mesh width, which varies
locally.

It should be noted that the C1 continuous parameterization of the curved
boundary by a quadratic B-Spline function yields a unique definition of the outward
unit normal vector n(x) = n(φ(ξ )) in every point on the boundary Γ . Moreover, n
is a continuous function of the boundary parameter values ξ . As a consequence,
the approximate solution is free of ‘numerical artifacts’, which often occur for
polygonal boundary representations in P1/Q1 finite elements, where the C0 ‘kinks’
between two consecutive boundary segments serve is microscopic compression or
expansion corners and, moreover, give rise to undetermined normal vectors in the
nodes. In practice, this problem is often overcome by averaging the local normal
vectors of the adjacent boundary segments but, still, the so-defined normal vector is
not a continuous function of the boundary parameterization, which is the case for
IGA.
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4 Conclusions

In this work, we have extended the high-resolution isogeometric scheme presented
in chapter “High-Order Isogeometric Methods for Compressible Flows. I: Scalar
Conservation Laws” [10] to systems of conservation laws, namely, to the compress-
ible Euler equations. The main contribution is the positivity proof of the linearized
FCT algorithm for B-Spline based discretizations, which provides the theoretical
justification of our IGA-AFC approach. Future work will focus on reducing the
diffusivity of the flux limiter and using THB-Splines [13] to perform adaptive
refinement

Acknowledgement This work has been supported by the European Unions Horizon 2020 research
and innovation programme under grant agreement No. 678727.
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Simulations of Non-hydrostatic Flows
by an Efficient and Accurate p-Adaptive
DG Method

G. Tumolo and L. Bonaventura

Abstract We review recent results in the development of a class of accurate,
efficient, high order, dynamically p-adaptive Discontinuous Galerkin methods for
geophysical flows. The proposed methods are able to capture phenomena at very
different spatial scales, while minimizing the computational cost by means of a
dynamical degree adaptation procedure and of a novel, fully second order, semi-
implicit semi-Lagrangian time discretization. We then present novel results of
the application of this technique to high resolution simulations of idealized non-
hydrostatic flows.

Keywords Semi-Lagrangian · Semi-implicit time discretization · Discontinuous
Galerkin · p-Adaptivity · Atmospheric flows

1 Introduction

Discontinuous Galerkin methods have been increasingly applied to the simulation
of geophysical flows over the last two decades. High order finite element methods
imply however stringent stability restrictions on explicit time discretization meth-
ods, thus increasing sensibly the computational cost of their effective application to
large scale geophysical problems. Implicit methods have been successfully applied
to reduce this cost [3]. In recent works by the authors [7–9], a comprehensive
strategy for the reduction of the computational cost of DG methods for geophysical
applications has been proposed. This strategy successfully reduces the computa-
tional cost by a combination of two techniques. On one hand, a semi-implicit,
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semi-Lagrangian time discretization is employed, that allows the use of much longer
time steps than explicit schemes, while retaining full second order accuracy in time.
This is achieved by a semi-Lagrangian extension of the TR-BDF2 method for ODE
problems, whose accuracy and stability properties have been analysed theoretically
in [4] for the more standard ODE version and confirmed empirically for the semi-
Lagrangian extension in [8]. This approach is complemented by a dynamically
adaptive choice of the polynomial degree used in each element. Results in [8, 9],
have shown that, on Cartesian meshes, this adaptive strategy reduces the number
of degrees of freedom and the associated computational cost by a factor of up
to 50% in two-dimensional tests, while retaining the same level of accuracy as
the non adaptive discretization. A mass conservative variant was then introduced
in [7], where this approach was also extended to logically Cartesian meshes with
non uniform element size, retaining high order accuracy in spite of the mesh
non uniformity. In this paper, we will present results of the application of this
adaptive technique to idealized high resolution non-hydrostatic flows, that constitute
typical benchmarks for modern dynamical cores of NWP and climate models. These
represent, to the best of our knowledge, the first dynamically adaptive simulations
of lee wave phenomena presented in the literature. The results show that the method
is able to capture phenomena at very different spatial scales and at the same time
to reduce significantly the computational cost with respect to standard high order
discretizations.

2 Outline of the Numerical Method

We consider here a version of the fully compressible, non-hydrostatic Euler
equations of motion on a vertical (x, z) plane. We refer to [2] for a complete
derivation. Notice that the same equation set has been employed in a number of
Met Office meteorological models [1]. Here, p0 denotes a reference pressure value,
Θ = T

( p
p0

)−R/cp is the potential temperature, p is the pressure, Π = ( p
p0

)R/cp

is the Exner pressure, while cp, cv, R are the constant pressure and constant
volume specific heats and the gas constant of dry air, respectively. Hydrostatic
reference profiles have been introduced so thatΠ(x, y, z, t) = π∗(z)+π(x, y, z, t),
Θ(x, y, z, t) = θ∗(z) + θ(x, y, z, t) and cpθ

∗ dπ∗
dz
= −g, where g denotes the

acceleration of gravity. The Coriolis force is omitted for simplicity. As a result, the
model equations can be written as

DΠ

Dt
= −(cp/cv − 1)Π∇

(

∂u

∂x
+ ∂w

∂z

)

, (1)

Du

Dt
= −cpΘ ∂π

∂x
, (2)
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Dw

Dt
= −cpΘ ∂π

∂z
+ g

θ

θ∗
, (3)

Dθ

Dt
= −dθ∗

dz
w. (4)

Notice that u,w denote the horizontal and vertical velocity components, respec-
tively, while the Lagrangian derivative is defined as

D

Dt
= ∂

∂t
+ u

∂

∂x
+ w

∂

∂z
.

The semi-implicit, semi-Lagrangian discretization of the model equations is based
on the application of the so called TR-BDF2 method. We refer to [4] for the
complete references on the history and properties of the method and to [8] for
the details of its semi-Lagrangian extension. It is sufficient to recall here that the
method is second order accurate and unconditionally absolutely stable (A-stable)
for any value of the stability parameter γ ∈ [0, 1]. A stronger stability property that
implies complete asymptotic dissipation of high frequency modes (L-stability) is
only guaranteed for the optimal value γ = 1−√2/2. We denote by E (tn,Δτ) the
numerical evolution operator representing the approximation of the flow trajectory
that is the basis of the semi-Lagrangian method. We also denote by γ the averaging
parameter employed by the time discretization method. Firstly, a trapezoidal rule
stage is computed, so as to obtain:

πn+2γ + γΔt
(

cp/cv − 1
)

Πn∇ · un+2γ

= −π∗ + E
(

tn, 2γΔt
) [

Π − γΔt
(

cp/cv − 1
)

Π ∇ · u] , (5)

un+2γ + γΔt cpΘ
n ∂π

∂x

n+2γ

= E(tn, 2γΔt)

[

u− γΔt cpΘ
∂π

∂x

]

, (6)

wn+2γ + γΔt

(

cpΘ
n ∂π

∂z

n+2γ

− g
θn+2γ

θ∗

)

= E(tn, 2γΔt)

[

w − γΔt

(

cpΘ
∂π

∂z
− g

θ

θ∗

)]

, (7)

θn+2γ + γΔt
dθ∗

dz
wn+2γ = E(tn, 2γΔt)

[

θ − γΔt
dθ∗

dz
w

]

. (8)

Notice that this first stage could also be performed by the off-centered trapezoidal
rule without decreasing the overall second order accuracy of the method [4]. The
second stage consists in the semi-Lagrangian counterpart of the BDF2 method
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applied to (1)–(4), so as to obtain:

πn+1 + γ2Δt
(

cp/cv − 1
)

Πn+2γ∇ · un+1

= −π∗ + (1− γ3)[E
(

tn,Δt
)

Π] + γ3[E
(

tn + 2γΔt, (1− 2γ )Δt
)

Π], (9)

un+1 + γ2Δt cpΘ
n+2γ ∂π

∂x

n+1

= (1− γ3)[E
(

tn,Δt
)

u] + γ3[E
(

tn + 2γΔt, (1− 2γ )Δt
)

u], (10)

wn+1 + γ2Δt

(

cpΘ
n+2γ ∂π

∂z

n+1

− g
θn+1

θ∗

)

= (1− γ3)[E
(

tn,Δt
)

w] + γ3[E
(

tn + 2γΔt, (1− 2γ )Δt
)

w], (11)

θn+1 + γ2Δt
dθ∗

dz
wn+1 (12)

= (1− γ3)[E
(

tn,Δt
)

θ ]γ3[E
(

tn + 2γΔt, (1− 2γ )Δt
)

θ ].

For each of the two stages, a spatial discretization by the DG approach outlined
in [8] is carried out first. Notice that this approach yields a discretization that
is not mass conservative. A mass conservative variant is outlined instead in [7].
The discretization can employ any unstructured mesh of quadrilaterals and could
be easily extended to triangular meshes as well. Subsequently, substitution of the
potential temperature and velocity degrees of freedom into the Exner pressure
equation along the lines of the strategy derived from [2] yields a single linear
system for the Exner pressure values for each stage. As remarked in [8], the total
computational effort required by the solution of these two systems is only marginally
larger than that required the solution of a single system as resulting from an
off-centered Crank Nicolson method. Considering the superior accuracy of the TR-
BDF2 method with respect to the off-centered Crank Nicolson method, the proposed
approach is significantly more efficient. Some estimates of the computational gains
will be given in Sect. 3. These estimates are to be considered approximate and
prudential, since we have been working so far with a preliminary, proof-of-concept
and non optimized implementation. For example, in the present implementation the
polynomial degree can be different for each prognostic variable, but is still bound to
be the same in all spatial directions. A more advanced implementation is currently
being developed, which will allow to choose different degrees independently in each
direction, thus further reducing the computational costs, especially in the case of the
highly anisotropic meshes usually employed in atmospheric modelling.
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3 Numerical Results

A number of classical benchmarks have been considered in order to assess the
accuracy and efficiency of the proposed method. Several results have been reported
in [8]. In this paper, we will exclusively focus on dynamically adaptive runs.
Notice that, in all tests, the purely inviscid equations were considered. Thanks to
the intrinsic numerical diffusion introduced by the L-stable time discretization,
no explicit diffusion or filtering was required to run any of the reported tests.
Intrinsic numerical diffusion is also introduced by the interpolation step of the
semi-Lagrangian method, but this is much less significant due to the high order of
the polynomial approximations employed. In the description of all the tests, a key
parameter to measure the efficiency of the semi-implicit approach are the values
of the acoustic Courant number, defined as the maximum of cspΔt/h, where cs
denotes the speed of sound, h the element size and p the polynomial degree. As
a first more quantitative assessment of the accuracy of the proposed method, the
normalized vertical momentum flux was computed. This non dimensional quantity
is a standard diagnostic for non-hydrostatic model performance, see e.g. [6] for a
precise definition and reference analytic values, as well as [2] and the literature
references therein to similar assessments. We first consider a linear lee wave
benchmark, with isothermal reference profiles

θ∗(z) = T0 exp

(

N2

g
z

)

π∗(z) = 1− g2

cpT0N2

[

1− exp

(

−N2

g
z

)]

with T0 = 300 K, and a Brunt-Väisäla frequency of N = 0.0179 s−1. The mountain
has aspect ratio 10−4. Profiles of the horizontally averaged vertical momentum
flux, normalized with its theoretical value, are displayed in Fig. 1, showing that
convergence is achieved as the steady state is approached. In this test case,
the minimum size of the elements is 2 km in each direction and the maximum
polynomial degree is p = 4 for all prognostic variables. A time step of Δt = 7 s
yields in this case maximum acoustic Courant number 7 in the horizontal direction
and 9 in the vertical direction, respectively.

A more challenging test was run on a domain 40 km wide and 20 km high, setting
T0 = 273 K, and a Brunt-Väisäla frequency of N = 0.02 s−1. The mountain aspect
ratio was approximately 0.5, so that non-hydrostatic and nonlinear effects were
not negligible. An absorbing layer starting at height 9 km has been used to avoid
spurious reflections from the top boundary. Profiles of the horizontally averaged
vertical momentum flux, normalized with its theoretical value, are displayed in
Fig. 2. In this test, convergence to the theoretical value 0.65 is only starting to
occur over the simulated time span. Plots of the horizontal velocity, vertical velocity
and local polynomial degree at time 5 h are displayed in Figs. 3, 4, and 5. In this
test case, the minimum size of the elements is 200 m in each direction and the
maximum polynomial degree is p = 4 for all prognostic variables, which entails
a maximum acoustic Courant number 13 in the horizontal direction and 25 in the
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Fig. 1 Convergence of vertical momentum flux in linear hydrostatic lee wave test, z in meters

Fig. 2 Convergence of vertical momentum flux in nonlinear, nonhydrostatic lee wave test, z in
meters
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Fig. 3 Nonlinear nonhydrostatic lee wave test: horizontal velocity, x, z in meters

Fig. 4 Nonlinear nonhydrostatic lee wave test: vertical velocity, x, z in meters
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Fig. 5 Nonlinear nonhydrostatic lee wave test: local polynomial degrees for horizontal velocity,
x, z in meters

vertical direction, respectively, highlighting the potential of the method in terms of
stability. It is also clearly visible how the dynamical adaptation criterion is able to
track automatically the lee wave pattern.

Finally, the warm/cold bubble test case proposed in [5] was run. The compu-
tational domain was 1 km wide and 1 km high and 50 elements were used in each
direction. Only in this test, the maximum polynomial degree was p = 4 for pressure
and potential temperature and p = 5 for the velocity variables, which entails,
for a time step of Δt = 1 s, a maximum acoustic Courant number equal to 87
in both directions. Notice that degree adaptation was carried out independently on
the degrees used for pressure and potential temperature, while degrees for velocity
were chosen always one unit larger than those of pressure. Plots of the potential
temperature perturbation and of the local polynomial degree are displayed in Figs. 6,
7, 8, 9, 10 and 11 at different stages of the bubbles evolution. Also in this case,
the dynamical adaptation criterion is able to track the pattern of the bubbles,
reducing the number of degrees of freedom employed for potential temperature
to approximately 30% of the number required by a corresponding non adaptive
simulation when setting a tolerance of order 10−3 for the adaptation criterion on the
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Fig. 6 Double bubble test case: potential temperature perturbation, initial stage, x, z in meters

Fig. 7 Double bubble test case: local polynomial degrees for potential temperature, initial stage,
x, z in meters
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Fig. 8 Double bubble test case: potential temperature perturbation, intermediate stage, x, z in
meters

Fig. 9 Double bubble test case: local polynomial degrees for potential temperature, intermediate
stage
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Fig. 10 Double bubble test case: potential temperature perturbation, final stage

Fig. 11 Double bubble test case: local polynomial degrees for potential temperature, final stage
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same variable (we refer to [9] for details about the adaptation criterion). On the other
hand, the relative error with respect to a reference non adaptive solution for potential
temperature was of order 10−2, thus showing that a major decrease in computational
cost can be achieved without significantly affecting the solution accuracy. Further
numerical experiments were run with maximum acoustic Courant number up to
200. For these very large values, the method is still stable and reproduces most of
the fine scale structures, but some impact of the implicit numerical diffusion starts
to be visible and some among the smallest scale vortices are not resolved any more.

4 Conclusion

We have reviewed some recent results in the development of accurate, efficient, high
order, dynamically p-adaptive Discontinuous Galerkin methods for geophysical
flows. In particular, we have concentrated on the application of these techniques to
high resolution simulations of non-hydrostatic flows. This comprehensive strategy
for the reduction of the computational cost of DG methods for geophysical appli-
cations successfully reduces the computational cost by a combination of a semi-
implicit, semi-Lagrangian time discretization with dynamical degree adaptivity. The
methods proposed by the authors are able to capture phenomena at different spatial
scales, while minimizing the computational cost, as shown by numerical results
in several important benchmarks. These include the first dynamically adaptive
simulations of lee wave phenomena presented in the literature. A more advanced
implementation and the development of an effective parallelization strategy are
presently under way.
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Abstract We propose a semi-Lagrangian method for the numerical solution of
the incompressible Navier–Stokes equations. The method is based on the Chorin–
Temam fractional step projection method, combined with a fully semi-Lagrangian
scheme to approximate both advective and diffusive terms in the momentum
equation. A standard finite element method is used instead to solve the Poisson
equation for the pressure. The proposed method allows to employ large time
steps, while avoiding the solution of large linear systems to compute the velocity
components, which would be required by a semi-implicit approach. We report
numerical results obtained in two dimensions using triangular meshes on classical
benchmarks, showing good agreement with reference solutions in spite of the very
large time step employed.
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1 Introduction

In this paper, we propose a fully semi-Lagrangian (SL) scheme for the approxima-
tion of the incompressible Navier–Stokes equations (NSE) in two space dimensions

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

∂u
∂t
+ (u · ∇)u− νΔu+∇p = 0 (x, t) ∈ Ω × (0, T ) ,

∇ · u = 0 (x, t) ∈ Ω × (0, T ) ,

u (x, t) = b (x, t) (x, t) ∈ ∂Ω × (0, T ) ,

u (x, 0) = u0 (x) x ∈ Ω.

(1)

Here the unknowns are the velocity field u : Ω × [0, T ] → R
2 and the pressure

p : Ω × [0, T ] → R, T is the final solution time, Ω ⊂ R
2 is an open bounded

domain, u0 : Ω × [0, T ] → R
2 an initial velocity field, b : ∂Ω × [0, T ] → R

2 a
boundary condition such that

∫

∂Ω n · bdγ = 0 (with n external normal of ∂Ω).
In the proposed approach, the classical Chorin–Teman projection method [7, 12]

is combined with a semi-Lagrangian approach for the discretization of both advec-
tion and diffusion terms, thus extending to the primitive variable formulation of the
NSE the method presented in [5] in the case of the vorticity–streamfunction formu-
lation. For the approximation of momentum advection, a classical semi-Lagrangian
approach is employed, see e.g. the review in [8]. However, a novel implicit approach
for the fully nonlinear approximation of the characteristic lines is proposed, which
allows to simplify this part of the computation and to avoid linearization of the
momentum advection terms. For the approximation of the diffusion terms, we follow
the approach introduced in [3]. A conservative variant of the same approach has also
been presented in [4]. The proposed technique allows the use of large time steps,
while avoiding the solution of large linear systems for the velocity components
that is required by implicit or semi-implicit approaches. Furthermore, it is easily
extensible to full three-dimensional problems. A review of more conventional
Lagrange-Galerkin approaches for the NSE equation is reported in [2].

2 The Fully Semi-Lagrangian Scheme

We define a time grid tn = nΔt , n = 0, . . . , NT , where NT denotes the number of
time steps and Δt = T/NT is the time step. In its time-discrete version, the classical
Chorin–Temam projection method consists of two steps. First, an intermediate
velocity field un+1/2 is computed by solving the momentum equation without the
pressure term, which, using an explicit Euler time stepping, reads

un+1/2 − un

Δt
= − (un · ∇)un + νΔun, (2)

un+1/2|∂Ω = bn+1.
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Next, in order to project the intermediate velocity un+1/2 on the space of solenoidal
vector fields, a suitable pressure term Pn+1 is computed as

−ΔPn+1 = − (Δt)−1∇ · un+1/2, (3)

n · ∇Pn+1|Γ = 0,

and the velocity field is then updated as

un+1 = un+1/2 −Δt∇Pn+1.

Higher order extensions and improvements of the original approach are reviewed
e.g. in [10]. In our novel, fully semi-Lagrangian approach, Eq. (2) is replaced by

u
n+1/2
i = 1

4

4
∑

k=1

I
[

un
]
(

xi − u
n+1/2
i Δt + δk

)

. (4)

Here, u
n+1/2
i denotes the fully discrete approximation of un+1/2 at the mesh node

xi , I [un] denotes the interpolation operator applied to the fully discrete field un
i

and the displacements δk, associated to the diffusive term, are defined as

δk =
(±δ

0

)

for k = 1, 2, δk =
(

0
±δ
)

for k = 3, 4 (5)

with δ = √4νΔt (see a complete description and justification of this approach
in [3, 5]). Notice that, while the characteristic line associated to the advection
process is approximated by a straight line, the displacement value resulting from
this approach is fully coupled to the value of the velocity field at time level n + 1

2 .

This requires some fixed point iterations to determine each u
n+1/2
i , which are

however completely decoupled across the computational mesh and can be computed
independently for each mesh node. Notice also that, as already remarked in [3, 5],
the resulting method is only first order in time. However, higher order accuracy
extensions can be achieved by multi-stage approaches like those presented in
[1, 13].

The handling of boundary conditions also follows the procedure outlined in
[5]. Denoting zi = xi − u

n+1/2
i Δt, whenever this position vector lies outside

of the computational domain, it is redefined to coincide to the closest boundary
point, according to what is usually done in most semi-Lagrangian approaches.
Concerning the parabolic displacements, if for some k the vector zi+δk lies outside
the computational domain, the corresponding δk is redefined so that it lies at the
intersection of the boundary with the straight line connecting zi + δk and zi , as
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Fig. 1 Redefinition of displacements and weights at the boundary

sketched in Fig. 1. In these cases, formula (4) is replaced by

u
n+1/2
i =

4
∑

k=1

αkI
[

un
]
(

xi − u
n+1/2
i Δt + δk

)

, (6)

in which, keeping the notation of Fig. 1, the weights αk and the coordinates of the
displacements are defined as

δ− = δM, δ+ = 4Δtν

δM
, α− = 1

2

δ+

δ+ + δ−
, α+ = 1

2
− α−. (7)

3 Numerical Tests

The proposed scheme has been implemented in Matlab. Triangular meshes have
been generated using the function initmesh of the Matlab PDE toolbox. A
triangle-based cubic interpolation, implemented in the cubic option of the Matlab
function griddata, has then been used to reconstruct the solution at the foot
of the characteristic lines. The Poisson equation (3) has been approximated by
the linear finite element method and solved using the corresponding Matlab PDE
toolbox solver. Two numerical simulations have been carried out corresponding to
two classical benchmarks for the NSE, specifically, the lid-driven cavity flow and
the flow around a cylinder.

The lid-driven cavity flow benchmark was considered in the same configuration
discussed in [5, 6]. In this test, the phenomena of interest are taking place especially
at the corners of the domain. Therefore, the mesh was refined in these regions, thus
leading to relatively high values for the Courant number CΔx = Δt‖u‖∞/Δx and
the parabolic stability parameter PRe

Δx = Δt/(ReΔx2), see Table 1. The stream
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Table 1 Mesh time step data, Courant numbers and parabolic stability parameter in the case Re =
100 and Re = 1000 for the lid-driven cavity test

Vertices Δxmax Δxmin Δt CΔxmax CΔxmin P 100
Δxmax

P 100
Δxmin

P 1000
Δxmax

P 1000
Δxmin

6469 2.0e−2 4.1e−3 5.0e−2 2.5 12 1.2 29 1.2e−2 2.9

21,221 1.0e−2 2.4e−3 2.5e−2 2.5 10 2.5 43 2.5e−1 4.3
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Fig. 2 Stream function contours at time T = 50 in the Re = 100 case (left) and in the Re = 1000
case (right)
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Fig. 3 Mesh on the state domain Ω

function contours in the cases Re = 100 and Re = 1000 are reported in Fig. 2,
showing good agreement with the reference solutions presented in [6].

For the flow around the cylinder, the configuration presented in [11] was
considered. More specifically, the domain is a rectangular channel Ω of height H =
0.41 and length L = 2.2 in non-dimensional units, with a circular hole of diameter
D = 0.1 placed slightly off the cylinder axis. A parabolic normal velocity profile
uin = 4Umx2(H−x2)/H

2 is imposed at the inflow boundary, while a homogeneous
Dirichlet condition is imposed on the upper and lower part of the boundary and
on the boundary of the obstacle, whereas on the rightmost outflow part of the
boundary a parabolic normal velocity profile, chosen as on the inflow boundary,
has been imposed. The kinematic viscosity was taken to be ν = 10−3 m2/s. The
computational mesh employed is shown in Fig. 3. The Reynolds number is defined
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for this problem as Re = 2UmD/3ν. Two different tests were carried out. In the
first, a value Um = 0.3 m/s was employed, which yields Re = 20, for which a
steady flow is observed. In the other test, Um = 1.5 m/s was considered, which
yields Re = 100, for which an unsteady flow is observed. In Table 2, we show the
mesh parameters and Reynolds numbers chosen in our simulation, together with the
corresponding Courant numbers and parabolic stability constants. In Figs. 4 and 5,
respectively, the time evolution of the norm of the numerical solution u is shown at
time T = 0.75, 1.5, 2.25, 3 for the case Re = 20 and at time T = 1, 3, 5, 8 for the
case Re = 100. Figure 4 shows the stationary regime reached by the velocity u in
the case Re = 20. Figure 5 shows instead the vortex shedding in the case Re = 100.
We compute the pressure drop ΔP = PA−PB between two points A = (0.15, 0.2)
and B = (0.25, 0.2) on the front and on the back of the cylinder, respectively, and
we compare it with reference values taken from [9]. For the case Re = 20, the

Table 2 Mesh time step data, Courant numbers and parabolic stability parameter for the test of a
flow around a cylinder

Re Δxmax Δxmin Δt CΔxmax CΔxmin PRe
Δxmax

PRe
Δxmin

20 2.0e−2 4.1e−3 3.0e−2 0.45 2.20 3.70 89

100 2.0e−2 4.1e−3 1.0e−2 0.75 3.60 0.25 5.9
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Fig. 4 Norm of the numerical solution u with Re = 20 at time T = 0.75, T = 1.5, T = 2.25,
T = 3



A Fully Semi-Lagrangian Method for the Navier–Stokes Equations in Primitive. . . 61

0.4 2

1.5

1

0.5

0
2

1.5

1

0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

0.3

0.2

0.1

00 0.5 1 1.5 2
0.4

0.3

0.2

0.1

00 0.5 1 1.5 2
0.4

0.3

0.2

0.1

00 0.5 1 1.5 2
0.4

0.3

0.2

0.1

00 0.5 1 1.5 2

Fig. 5 Norm of the numerical solution u with Re = 100 at time T = 1, 3, 5, 8

reference pressure drop is ΔPref = 0.1175 and the pressure drop resulting from
our computation is ΔPsim = 0.1122. For the case Re = 100, the reference and
simulated pressure drops are ΔPref = 2.4800 and ΔPsim = 2.4823, respectively.

4 Conclusions and Future Developments

The classical Chorin–Teman projection method has been combined with a semi-
Lagrangian approach for the discretization of both advection and diffusion terms,
along the lines of [3], thus extending to the primitive variable formulation of the
NSE the method presented in [5] in the case of the vorticity–streamfunction formu-
lation. Furthermore, a novel implicit approach for the fully nonlinear approximation
of the characteristic lines has been employed, which allows to simplify this part
of the computation and to avoid linearization of the momentum advection terms.
Numerical results show that the proposed technique allows to obtain accurate results
even when using very large time steps, at the same time avoiding the solution of
large linear systems for the velocity components, as required by implicit or semi-
implicit approaches. While only first order in time, the proposed approach can be
extended to higher order accuracy by multi-stage approaches like those presented
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in [1, 13]. Also extensions to three-dimensional problems and discontinuous finite
element formulations will be considered in the future.
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Abstract This paper illustrates the application of error estimates based on k-
exactness of approximation schemes for building mesh adaptive approaches able
to produce better numerical convergence to continuous solution. The cases of k = 1
and k = 2, i.e. second-order and third-order accurate approximations with steady
and unsteady flows are considered.
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1 Introduction

The purpose of mesh adaptation research is, thanks to an improved accuracy, to
be able to compute new phenomena and also to master the numerical uncertainties
which have been up to now unsufficiently controlled. An important strategy is to
minimize the approximation error with respect to the mesh. A central question
is then to find a good representation of the approximation error. A family of
approximations plays a particular role in Computational Fluid Dynamics. The k-
exact approximations provide a zero error when the exact solution is a polynomial
of degree k. They involve finite elements like continuous and discontinuous Galerkin
and ENO finite-volume approximations. Typically, k-exact approximations have a
truncation error of order k + 1.

The purpose of this paper is to adapt mesh using error estimates for a few k-exact
approximations in CFD.

We focus on methods which prescribe an anisotropic mesh under the form of a
parametrization of it by a Riemannian metric. A Riemannian metric is a continuous
symmetric matrix field defined on the computational domain Ω , for example in two
dimensions:

M : Ω ⊂ R
2 → R

22
x �→M(x) = R(x)t

(

1
Δξ(x)2 0

0 1
Δη(x)2

)

R(x).

Notation R holds for a rotation for prescribing mesh stretching directions and
Δξ,Δη for prescribing mesh size in these directions. A mesh obeying these
prescriptions is called a unit mesh for M. We observe that the very complex and
discrete thing which is a mesh is replaced by a continuous function to be found as
the minimum of a numerical error. Then we have to organise a process

Metric→ Mesh and discrete solution→ Error→ New metric

which can be thought of as either a pure discrete process, or the discretization
of a continuous process. Let us recall why metrics are particularly adapted to 1-
exact approximations. These approximations involve most second-order methods
based on continuous P1 finite-element approximation, namely Galerkin, SUPG,
Residual distribution and vertex-centered MUSCL approximations. First, the P1-
interpolation error plays a central role in error estimates. Second, this interpolation
error can be converted in terms of the mesh metric. We recall, following [20, 21],
the main features of the continuous metric-based analysis initiated in several papers
like [2, 10, 12]. For a function u defined on the computational domain, we use the
continuous interpolation error u − πMu instead of the discrete interpolation error
u−ΠMu:

u− πMu = |tr(M− 1
2 |Hu|M− 1

2 )| ; |u− πMu| ≈ const.|u−ΠMu|, (1)
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where Hu is the Hessian of u and M also denotes a unit mesh for metric M. We
consider minimizing:

j (M) = ‖u− πMu‖L1(Ωh)
, (2)

and we define as optimal metric the one which minimizes the right-hand side under
the constraint of a total number of vertices equal to a parameter N . After solving
analytically this optimization problem, we get—solely using the fact that H is a
positive symmetric matrix—the unique optimal (ML1(x))x∈Ω as:

ML1 = N

(∫

Ω

(det(Hu))
1
4

)−1

(det(Hu))
−1
4 Hu. (3)

Knowing the continuous function u, we can derive the continuous optimal metric.
In practice, u is solution of a PDE and the whole process of computing u and
then deriving the optimal metric is operated by a fixed point iteration involving the
generation of a mesh according to the metric, the solution of the PDE on the mesh
and the building of a discrete metric.

In this paper, we discuss three types of functional j and the extension to higher-
order approximations. For most cases, we propose to evaluate the method by
measuring the mesh-adaptive convergence order α, defined by:

error = O(N−
α

dim ), (4)

where N is the total number of nodes and dim the dimension of computational
domain, and α = k + 1 for a k-exact approximation.

2 Features-, Goal-, Norm-Oriented Formulations

These formulations are presented for the continuous case and applied to the second-
order accurate particular case of P 1 approximations on triangles and tetrahedra.

2.1 Feature-Based (FB) Adaptation

The continuous feature-based anisotropic method (2)–(3) is generally defined by
replacing the local interpolation error by the application of the recovered Hessian of
the solution times a local mesh size defined by the continuous metric, see [3, 10, 12,
16, 18, 22, 24].

A typical example is the prediction of the sonic boom signature of a supersonic
aircraft (see [22] for specific features). Let us consider the C25D geometry of
the workshop [1]. We use the Mach number M as sensor, i.e. j (M) = ‖M −
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Fig. 1 Lowboom C25 computation with a feature-based mesh adaptation: cut plane x = 30 (left)
and on symmetry plane (right)

πMM‖L1(Ωh)
. Cuts of mesh and solution are depicted in Fig. 1. The FB approach

is particularly attractive due to its simplicity and its ability in taking into account
physical aspects through the choice of the sensors. However, for systems, the choice
of sensors is extremely sensitive.

2.2 The Goal-Oriented (GO) Formulation

The GO mesh adaptation focuses on deriving the optimal mesh for computing a
prescribed scalar quantity of interest (QoI). Many papers deals with a posteriori
goal-based error formulation to drive adaptivity, using adjoint formulations or
gradients, e.g. [13, 25]. We investigate a priori based GO formulations for steady
and unsteady problems. Loseille et al. [23] derived the goal-based error estimate in a
steady context for Euler flows, showing that the QoI error estimate is expressed as a
weighted interpolation error on solution flow fields. This leads to an optimal metric
computed as a sum of Hessians of Euler fluxes weighted by gradient components
of the adjoint state and permits to focus on the capture of important features with
respect to the chosen functional, such as sonic boom print at ground, see Fig. 2.

2.3 Numerical Corrector and Norm-Oriented (NO)
Formulation

Given a discrete problem, a mesh (of metric) Mh and the discrete solution Wh

computed with the mesh, we call “numerical corrector” a discrete field W ′h such
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Fig. 2 A typical comparison of feature-based (left) and goal-oriented (right) mesh adaptation for
the computation of sonic boom. On left the whole flow is captured, on right, focus is put on the
shock structures influencing the boom path at bottom

that the sum Wh +W ′h is a significantly more accurate approximation of the exact
solution than Wh. In other words, W ′h is a good approximation of the error. Clearly,
W ′h is useful for estimating the error, for correcting it, and for building a norm-
oriented mesh adaptation algorithm.

A trivial way to compute W ′h could be to first compute an extremely accurate
and extremely costly Wh/2k (k large) solution computed on a mesh Mh/2k obtained
by dividing k times the elements of Mh, and finally to put W ′h = Wh/2k − Wh.
But the interesting feature of a numerical corrector should be that its computational
cost is not much higher than the computational cost of Wh. We describe now a
corrector evaluation of low computational cost relying on the application of a Defect
Correction principle and working on the initial mesh Mh:

Ψh(Wh +W
′
h,DC) ≈ −Rh/2→hΨh/2(Rh→h/2Wh) ; W ′h,DC = W

′
h,DC − (πhWh −Wh),

where πhWh − Wh is a recovery-based evaluation of the interpolation error (see
[23] for details). The notation Rh/2→h holds for the transfer (extension by linear
interpolation) operator from the twice finer meshMh/2 to the initial mesh Mh, while
Rh→h/2 holds for the transfer operator from the initial mesh Mh to the twice finer
mesh Mh/2. The finer-mesh residual Ψh/2(Wh) can be assembled by defining the
sub-elements of Mh/2 only locally around any vertex of Mh. Applications of this
method to the Navier–Stokes model can be found in [15]. We present an application
with the Euler model used for sonic boom prediction. We consider again the C25
geometry. The important input is the pressure signature at one-body length below
the aircraft. Figure 3 depicts the pressure signal and the local error bar, from the
non-linear corrector, for a tailored mesh (mesh aligned with the Mach cone) and
for adapted meshes. The tailored mesh calculation may seem converged but the
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Fig. 3 Flow around a lowboom C25 geometry: Pressure levels (red) and non-linear corrector
(black) error intervals for the pressure (z = 0, y = −C). Top: on an adhoc tailored mesh. Bottom:
on a self-adaptive mesh (right). On right figure, the good convergence is indicated by much smaller
intervals
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corrector remains large. The right-hand side shows a more coherent convergence,
with a much smaller corrector.

We can now introduce the NO formulation. We base it on the L2-norm of
approximation error. It consists in the minimization of the following expression with
respect to the mesh M:

j (M) = ||W −WM||2L2(Ω)
with ΨM(WM) = 0. (5)

Introducing g = W − WM, we get a formulation similar to a GO formulation
j (M) = (g,W − WM). The central idea of NO is to replace g by the numerical
corrector W ′h as defined in this section. The rest of the NO process follows the GO
algorithm with g = W ′h. The whole NO adaptation algorithm finally writes:

Step 1: solve state equation for W
Step 2: solve corrector equation for W ′h
Step 3: solve adjoint equation for W∗
Step 4: evaluate optimal metric as a function of W and W∗
Step 5: generate unit mesh for Mopt,norm and go to Step 1.

In order to give an idea of how this NO works, we consider as benchmark a
test case from [14] featuring a 2D boundary layer (Fig. 4). The Laplace equation is
solved with a RHS inducing the boundary layer depicted in the figure. FB and NO
mesh-adaptive methods are compared by displaying the convergence curve related
to Criterion (4). In abscissae the number of nodes used for computing the discrete
solution uh is shown, and in ordinates the L2-norm of the approximation error u −
uh which is measured from the known analytic solution. When the FB method is
applied, a tremendous improvement of the error is obtained with 128 vertices, then a
uniform element division and further FB adaptation are applied in alternation. While
the element division is applied, the error is as expected divided by 4. In contrast, for
512, 1024, 2048, . . . vertices (abscissae in the figure), the effect of FB adaptation

Fig. 4 Elliptic test case of a 2D boundary layer. A comparison between uniform refinement
(“FMG”), feature/Hessian-based, and norm-oriented mesh adaptation methods: error |u − uh|L2

in terms of number of vertices
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is to increase the error, and the second-order convergence is lost. On the contrary,
with this test case, each NO mesh-adaptation phase improves (even slightly) the
error norm, producing an asymptotic numerical convergence of order two.

3 Estimates for k-Exact Approximations

Due to their error size and characteristics (dispersion, dissipation), second-order
accurate approximations are unable to compute many phenomena. For smooth
contexts, high-order methods bring crucial improvements.

3.1 Higher-Order (HO) Estimates

Main existing HO schemes satisfy the so-called k-exactness property expressing the
fact that if the exact solution is a polynomial of order k then the approximation
scheme will give the exact solution as answer. The assembly of these schemes
involves a step of polynomial reconstruction (e.g., ENO schemes), or of polynomial
interpolation (e.g., Continuous/discontinuous Galerkin). The main part of the error
can then be expressed in terms of a (k + 1)-th term of a Taylor series where the
spatial increment is related with local mesh size. We want to stress that this is the
key of an easy extension of metric-based adaptation to HO schemes. We illustrate
this with the computation of 2D Euler flows. Considering a triangulation of the
computational domain and its dual cells Ci built with triangle medians, the exact
solution W of Euler equations verifies (omitting initial conditions):

B(W,V0) = 0, ∀ V0 ∈ V0 = {V0 constant by cell}, with

B(W,V0) =
∫ T

0

∑

i

Ei(W,V0)dt +
∫ T

0

∫

∂Γ

FΓ (W) · nV0dΓ dt

Ei(W,V0) =
∫

Ci

V0
∂π0W

∂t
dΩ + 1

2

∑

j

∫

∂Ci∩∂Cj

V0(F(W)|∂Ci
+F(W)|∂Cj

) · ndσ.

Here we denote by π0 the operator replacing a function by its mean on each cell,
F the Euler fluxes, and the second sum is taken over the cells j neighboring cell
i. Let us define a quadratic Central-ENO scheme [4, 19]. The computational cost
of this scheme is rather large but acceptable for 2D calculations (its extension to
3D is even more computationally expensive). This scheme is based on a quadratic
reconstruction on any integration cell Ci using the means of the variable on cells
around Ci . Let us denote by R0

2 the global reconstruction operator mapping the
constant-by-cell discrete field into its quadratic-by-cell reconstruction. The CENO
scheme writes in short:
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Find W0 constant by cell s.t. B(R0
2W0, V0) = 0, ∀ V0 constant by cell.

A representative functional of goal-oriented error is:

δj = (g,R0
2π0W − R0

2W0).

Lemma 1 (Carabias et al. [9]) Introducing the adjoint state W∗0 ∈ V0, solution
of:

∂B

∂W
(R0

2W0)(R
0
2V0,W

∗
0 ) = (g,R0

2V0), ∀ V0 ∈ V0, (6)

we have the following equivalence:

(g,R0
2π0W − R0

2W0) ≈ ∂B

∂W
(W)(R0

2π0W −W,W∗0 ). �� (7)

This estimate is typical of a k-exact variational scheme and permits to express the
error as a Taylor term of rank k + 1, rank 3 in our case, with respect to directional
mesh size δx, which we replace by the power 3/2 of a quadratic term:

δj � sup
δx

T(δx)3 ≈
(

sup
δx
|H̃ |(δx)2

) 3
2 ∀δx ∈ R

2. (8)

In [9] we fit the second-order tensor H̃ to the third-order tensor T by least-squares,
and the optimal metric is computed in a similar way to the second-order accurate
case. An a priori better option for accounting higher-order interpolation error, not
tested here, is to apply the strategy of [11].

Remark The a priori estimate of Lemma 1 is inspired by the a posteriori estimates
of Barth and Larson [5] in which the authors explain that the analysis extends
to many k-exact approximations of high-order. This is also true for the present a
priori analysis. In particular, the analogous estimate for a k-exact discontinuous Pk-
Galerkin approximation writes:

(g,ΠkW −Wk) ≈ ∂B

∂W
(W)(ΠkW −Wk,W

∗
k ), (9)

where Wk and W∗k are the DGk discrete state and adjoint and Πk the elementwise
interpolation of degree k. ��
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3.2 High-Order Accurate Unsteady Mesh Adaptation

We illustrate the use of the above estimate (6)–(8) with an application to an unsteady
flow. For many propagation phenomena, the discretisation grid (space and time)
necessary for a complete representation is very heavy. We consider here an acoustic
wave propagation based on the Euler equations.

In order to apply an unsteady mesh adaptation, we adopt the so-called Global-
Fixed-Point algorithm [6]. In short, the time interval is divided in nadap sub-
intervals. After a computation of state and adjoint on the whole time interval, an
optimal space-time metric is evaluated as a set of spatial metrics for each of the
time sub-intervals.

In Fig. 5, the propagation of a noise from a road (bottom left) to a balcony (near
top, right) around an anti-noise wall (middle of bottom) is computed. The functional
is the pressure integral on an interval of the balcony. Since a few wavelengths are
emitted at the noise source, the mesh adaptation process will concentrate on the part
of the wave train which will hit the balcony. This dramatically reduces the region of
the computational domain which needs to be refined. With 30,980 vertices (mean of
the 20 meshes used over the time interval) the resolution is about 10 points per half
wave and would require five millions vertices if the mesh were a uniform mesh of
same maximal fineness. As for Criterion (4), we have measured for this case α =
2.45, which is not satisfactory with respect to the theoretical order of approximation,
which is 3, but already carries an important improvement with respect to analogous
adaptation based on a second-order finite-volume approximation, see [8].

Fig. 5 Goal Oriented unsteady calculation of nonlinear acoustics propagation with third-order
goal-oriented adaptation. Pressure at three different time levels and the corresponding meshes
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4 Conclusions

The k-exact analysis described in this note allows us to express errors in terms
of interpolation errors. This holds for various k-exact approximations like FVM,
FEM, DG, ENO. This also holds for three types of adaptation strategies, namely
the feature-based, the goal-oriented, and the norm-oriented. Applications with P1-
Galerkin and P2-CENO approximations are demonstrated. This method can be
complemented with a special treatment of singularities, [17], and combined with
a FMG process, [7].
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Abstract In this work we propose numerical approximations of the Boltzmann
equation that are consistent with the Euler and Navier–Stoke–Fourier solutions. We
conceive of the Euler and the Navier–Stokes–Fourier equations as moment approx-
imations of the Boltzmann equation in renormalized form. Such renormalizations
arise from the so-called Chapman-Enskog analysis of the one-particle marginal in
the Boltzmann equation. We present a numerical approximation of the Boltzmann
equation that is based on the discontinuous Galerkin method in position dependence
and on the renormalized-moment method in velocity dependence. We show that
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1 Introduction

The Boltzmann equation provides a description of the molecular dynamics of fluid
flows based on their one-particle phase-space distribution. However, the Boltzmann
equation also encapsulates all conventional continuum flow models in the sense that
its hydrodynamic-limit solutions correspond to solutions of the compressible Euler
and Navier–Stokes equations [3, 11], the incompressible Euler and Navier–Stokes
equations [14, 18], the incompressible Stokes equations [19] and the incompressible
Navier–Stokes–Fourier system [17]; see [24] for an overview.

Numerical approximation of the Boltzmann equation poses a formidable chal-
lenge, on account of its high-dimensional phase-space setting since the one-particle
marginal depends on time, position and microscopic velocity [7]. Therefore, in
D spatial dimensions, the one-particle phase-space is 2D + 1 dimensional. How-
ever, when interest is restricted to the continuum flow regime, lower-dimensional
continuum flow models may be used. Continuum flow models, such as Euler and
Navier–Stokes, may be understood as weighted velocity averages of the Boltzmann
equation [7]. Such an averaging engenders a system of evolution equations for the
moments of the one-particle distribution.

The relationship between the Boltzmann equation and the continuum flow
models may be used to design numerical schemes for the latter. Such schemes have
been developed for the compressible Euler and Navier–Stokes–Fourier equations;
see for example [8, 9] for the so-called kinetic flux-vector splitting methods
following the Chapman-Enskog expansion, [20, 22] for the so-called gas-kinetic
schemes that follow a Hilbert expansion. In [4] the Boltzmann equation was used to
design a discontinuous Galerkin finite element method for the compressible Euler
equations and the so-called 10-moment systems.

In this work we construct entropy stable discontinuous Galerkin finite element
(DGFE) moment methods to approximate solutions of the compressible Euler and
Navier–Stokes–Fourier equations. We show that such compressible equations can
be conceived of as renormalized solutions of the Boltzmann equation, where the
renormalization map is derived from the Chapman-Enskog analysis. In comparison
with previous work in [8, 9] we show that the discontinuous Galerkin approximation
only requires the upwinded distribution to result in an entropy stable numerical
method. In comparison to the work in [4] for the compressible Euler equations we
do not require Gauss-quadrature methods to approximate the edge-wise integrals,
instead all such integrals presented in this work are carried out analytically.

The remainder of this work is organized as follows. Section 2 introduces the
Boltzmann equation and its properties that facilitate the Chapman-Enskog analysis
to derived the compressible Euler and Navier–Stokes–Fourier equations. Section 3
introduces the reinterpretation of the compressible Euler and Navier–Stokes–Fourier
equations as Galerkin approximations of a renormalized Boltzmann equation.
Section 3 proceeds to construct DGFE methods for the compressible equations
and shows that the resulting methods are entropy stable. In Sect. 4 we demonstrate
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the proposed method by numerically simulating the lid-driven cavity benchmark.
Finally, Sect. 5 presents a concluding discussion.

2 The Boltzmann Equation

We study the evolution of the so-called one-particle marginal, denoted by f and
governed by

∂tf + vi∂xi f = C(f ), (1)

where the collision operator f �→ C(f ) acts only on the velocity, v = (v1, . . . , vD),
dependence of f locally at each time t and position x. We consider a class of
collision operators f �→ C that possess certain conservation, dissipation and
symmetry properties, viz., conservation of mass, momentum and energy, dissipation
of appropriate entropy functionals and invariance under Galilean transformations.
These fundamental properties are treated in further detail below. Our treatment of
these properties is standard (see, for instance, [16]) and is presented merely for
coherence and completeness.

2.1 Properties of the Collision Operator

To elaborate the conservation properties of the collision operator, let 〈·〉 denote
integration in the velocity dependence of any scalar, vector or matrix valued
measurable function over D-dimensional Lebesgue measure. A function ψ : RD →
R is called a collision invariant of C if

〈ψ C(f )〉 = 0 ∀f ∈ D(C), (2)

where D(C) ⊂ L1(RD,R≥0) denotes the domain of C. Equation (1) associates a
scalar conservation law with each collision invariant:

∂t 〈ψf 〉 + ∂xi 〈viψf 〉 = 0. (3)

We require that {1, v1, . . . , vD, |v|2} are collision invariants of C and that the span
of this set contains all collision invariants, i.e.

〈ψ C(f )〉 = 0 ∀f ∈ D(C) ⇔ ψ ∈ span{1, v1, . . . , vD, |v|2} =: I. (4)
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To elucidate the conservation laws in (3), we introduce a parametrization of the
moment densities and fluxes according to

〈f 〉 = ρ, (5a)

〈vif 〉 = ρui, (5b)

〈|v|2f 〉 = ρ|u|2 + (D + 2)ρθ, (5c)

〈vivj f 〉 = ρuiuj + ρθδij + σij , (5d)

〈|v|2vif 〉 = ρ|u|2ui + (D + 2)ρθui + σij uj + qi, (5e)

where ρ, u, θ , σ and q denote the macroscopic fluid density, velocity, temperature,
stress and heat flux respectively, and δij denotes the Kronecker delta. We infer
that the moments 〈f 〉, 〈vif 〉 and 〈|v|2f 〉, correspond to the mass density, the
(components of) momentum-density and energy-density, respectively. Accordingly,
the conservation law (3) implies that solutions of (1) conserve mass, momentum and
energy, i.e. solutions of (1) satisfy

∂tρ + ∂xi (ρui) = 0 (6a)

∂t (ρuj )+ ∂xi (ρuiuj + ρθ + σij ) = 0 (6b)

∂t (ρ|u|2 +Dρθ)+ ∂xi (ρ|u|2ui + (D + 2)ρθui + σij uj + qi) = 0. (6c)

Note that the system of conservation laws (6) is not closed since there are (D2 +
3D)/2 independent variables and only D+2 relations. The closure of (6) requires a
constitutive modeling assumption that characterizes σij and qi in terms of ρ, ui and
θ .

The entropy dissipation property of C follows from the local dissipation relation
assumption

〈ln(f ) C(f )〉 ≤ 0 ∀f ∈ D(C). (7)

Note that equality in (7) holds if and only if ln(f ) ∈ I in accordance with (4). In
addition, we assume that for every f ∈ D(C) the following equivalences hold:

C(f ) = 0 ⇔ 〈ln(f ) C(f )〉 = 0 ⇔ ln(f ) ∈ I (8)

Relation (7) leads to an abstraction of Boltzmann’s H-theorem for (1): weighting the
Boltzmann equation (1) with ln(f ), which is the derivative of the entropy f ln(f )−
f , asserts that solutions of the Boltzmann equation (1) satisfy the local entropy-
dissipation law:

∂t 〈f ln(f )− f 〉 + ∂xi 〈vi(f ln(f )− f )〉 = 〈ln(f ) C(f )〉 ≤ 0 . (9)
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The first equivalence in (8) characterizes local equilibria of C by vanishing entropy
dissipation. By virtue of (4), the second equivalence indicates that the form of such
local equilibria is given by the so-called Maxwellian distributions

M(ρ,u,θ)(v) := ρ

(2πθ)
D
2

exp

(

−|v − u|2
2θ

)

(10)

for some (ρ,u, θ) ∈ R>0 × R
D ×R>0, therefore it holds that logM ∈ I.

The assumed symmetry properties of the collision operator pertain to commuta-
tion with translational and rotational transformations. In particular, for all vectors
u ∈ R

D and all orthogonal tensors O : RD → R
D , we define the translation

transformation Tu : D(C) → D(C) and the rotation transformation TO : D(C) →
D(C) by:

(Tuf )(v) = f (u− v) ∀f ∈ D(C) (11)

(TOf )(v) = f (O∗v) ∀f ∈ D(C) (12)

with O∗ the Euclidean adjoint of O. Note that the above transformations act on the
v-dependence only. It is assumed that C possesses the following symmetries:

C(Tuf ) = TuC(f ), C(TOf ) = TOC(f ). (13)

The symmetries (13) imply that (1) complies with Galilean invariance, i.e. if
f (t, x, v) satisfies the Boltzmann equation (1), then so do f (t, x − ut, v − u) and
f (t,O∗x,O∗v).

2.2 Properties of the Linearized Collision Operator

Deriving the Euler and Navier–Stokes–Fourier equations from (1) involves a
perturbation analysis, and consequent linearization, of (1) about Maxwellian dis-
tributions (10). To facilitate such an analysis we elaborate the properties of the
collision operator linearized about and modulated by M in the direction of g

LM(g) = ∂δC(M+ δg)|δ=0

M . (14)

The conservation, dissipation and symmetry properties of L follow from those of C
[16]. The fact that conservation laws (3) are retained in the linearized setting of (1)
follows from the vanishing of the variation of C(M) over all Maxwellians since
C(M) = 0, therefore I ⊂ ker(L).
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The entropy dissipation of (1) in the linearized setting follows from the local
dissipation relation

〈gMLM(g)〉 = 1

2
∂2
δ2〈 ln(M(1+ δg))C(M(1+ δg))〉|δ=0 ≤ 0. (15)

The first equality in (15) follows from the fact that the first and second variations
of C(M) over all Maxwellians vanish. The last inequality follows from (7) and (8)
which show that the relation in (7) attains a maximum when f =M.

To elucidate the Galilean symmetry of LM, consider the orthogonal transforma-
tion [16] OO ≡ TuTOT −1

u . It follows from linearizing (13) about M that

OOLMg = LMOOg (16)

In addition, to guarantee invertibility of LM, we assume that LM satisfies a
Fredholm alternative under the following conditions

(i) ker(LM) ≡ I,
(ii) LM is self adjoint,

(iii) ker(LM) ⊕ rng(LM) is a Hilbert space with an inner product weighted with
M.

2.3 Hydrodynamic Limits

We conclude this section by deriving moment-closure approximations to the
macroscopic conservation laws (3) that lead to the compressible Euler and Navier–
Stokes equations. To that end we consider an asymptotic expansion of f that
solves (1) in re-scaled form given by

f (t, x, v) = fε(t̂ , x̂, v), with (t̂, x̂) = (εt, εx), (17)

where we take ε to be the so-called Knudsen number which is a measure of
rarefaction of the fluid flow. The re-scaled Boltzmann equation (1) reads

∂t̂ fε + vi∂x̂i fε =
1

ε
C(fε) (18)

where we assume that

ε  1 (19)
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to derive a continuum description of fluid dynamics. To that end, we consider a
Chapman-Enskog expansion of fε in powers of ε:

fε(t̂, x̂, v) =M(fε)
∑

k≥0

εkgk(t, x̂, v̂) for i = 0, 1, . . . ,D,D + 1, (20)

where the fluctuations gk are functions of v that also depend on (t̂ , x̂) through
ρ(t̂, x̂), u(t̂ , x̂), and θ(t̂, x̂), and their x̂-derivatives evaluated at (t̂ , x̂). Furthermore,
M(fε) is the local Maxwellian conforming to (10) with the same invariant moments
as fε :

〈ψjM(fε)〉 = 〈ψjfε〉. (21)

where ψ0 = 1, ψj = vj (j ∈ {1, . . . ,D}), ψD+1 = |v|2. We aim to derive
fluid dynamic equations governing the evolution of the invariant moments from the
leading order terms in (20).

Remark 1 We implicitly assume that the coefficients gk in (20) are smooth and
rapidly decaying for |v| → ∞.

Constraints for the expansion (20) follow from the conservation of moments
〈ψifε〉 in the sense that 〈ψifε〉 satisfy the formal system of conservation laws of
the form (3):

∂t̂ 〈ψjfε〉 + ∂x̂i 〈viψjfε〉 = 0. (22)

Closure of (22) would correspond to a system of macroscopic conservation laws
that govern the evolution of the fluid density, momentum and energy. The closure
of (22), corresponding to the compressible Euler and Navier–Stokes equations, is
obtained by substituting (20) into (18) and comparing the leading order coefficients
of ε.

2.4 Euler Equations

The leading order terms yield

C(Mg0) = 0 !⇒ g0[〈ψifε〉(t̂ , x̂)](v) = 1 (23)

Therefore, the leading order conservation laws (22) formally satisfy

∂t̂ 〈ψjM(fε)〉 + ∂x̂i 〈viψjM(fε)〉 = 0 up to O(ε). (24)
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Neglecting higher order coefficients of ε, (24) reduces to the compressible Euler
equations [16]

∂tρ + ∂xi (ρui) = 0 (25a)

∂t (ρuj )+ ∂xi (ρuiuj + ρθδij ) = 0 (25b)

∂t (ρ|u|2 +Dρθ)+ ∂xi (ρ|u|2ui + (D + 2)ρθui) = 0. (25c)

One may note that the closure relation (23) corresponds to an ideal gas.

2.4.1 Navier–Stokes–Fourier Equations

The first correction to (23) is governed by

(∂t̂ + vi∂x̂i )M(fε) = ε−1C
(

M(fε) (1+ εg1)+O(ε2)
)

+O(ε) !⇒ (∂t̂ + vk∂x̂k ) lnM(fε)

= LM(fε)(g1)+O(ε). (26)

From the assumptions in Sect. 2.2 we note that the evolution of lnM(fε) is
contained in I⊥. Therefore, introducing the orthogonal projection ΠI onto I [16],

ΠI(g) = 〈Mg〉
ρ
+ (v − u) · 〈(v − u)Mg〉

ρθ
+
( |v − u|2

2θ
− D

2

)

2

D

〈( |v − u|2
2θ

− D

2

)

Mg

〉

,

(27)

we can simplify relation (26) by noting that

LM(g1) = (Id −ΠI)
vk∂x̂kM

M +O(ε) (28a)

= 1

2θ
Aij (v − u)

(

∂x̂i uj + ∂x̂j ui − 2
∂x̂k uk

D
δij

)

+ Bi(v − u)
∂x̂i θ

θ
+O(ε),

(28b)

where

Aij (v) = vivj − |v|
2

D
δij , Bi(v) =

( |v|2
2θ
− D + 2

2

)

vi . (29)

The solution to (28a) is written as

g1 = L−1
M(Id−ΠI)

vk∂x̂kM
M +O(ε), (30)
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where the well-posedness of (30) is guaranteed by the assumptions on LM in
Sect. 2.2. Therefore, the next correction to the compressible Euler equations (24)
is

∂t̂ 〈ψjM(fε)〉 + ∂x̂i 〈viψjM(fε)〉 + ε∂x̂i 〈viψjM(fε)g1〉 = 0 up to O(ε2),

(31)

where we used (21). Neglecting higher order coefficients of ε, (31) reduces to the
compressible Navier–Stokes–Fourier equations

∂tρ + ∂xi (ρui) = 0 (32a)

∂t (ρuj )+ ∂xi (ρuiuj + ρθδij ) = ε∂xi σij (32b)

∂t (ρ|u|2 +Dρθ)+ ∂xi (ρ|u|2ui + (D + 2)ρθui) = ε∂xi (σij uj + qi), (32c)

To elucidate the fluid-dynamic interpretation of the first order correction g1 we
infer from (5d) and (5e) that

σij = −
〈

Aij (v − u)ML−1
MAkl(v − u)

〉

2θ

(

∂x̂kul + ∂x̂l uk − 2
∂x̂mum

D
δkl

)

,

(33a)

qi = −
〈

Bi(u− v)ML−1
MBj (v − u)

〉

∂x̂j θ, (33b)

where we have used the observation that L−1
M preserves the even or odd symmetry

of a function. This symmetry preservation follows from the special case O = −Id
in (13). Therefore, 〈Aij (v − u)ML−1

MBi(v − u)〉 and 〈Bi(v − u)ML−1
MAij (v −

u)〉 vanish identically, since odd central moments of M vanish. Using the Galilean
symmetry of LM and tr(A) = 0, the relations in (33) may be simplified to read

σij = −ω
(

∂xj ui + ∂xi uj − 2
∂xkuk

D
δij

)

, ω =
〈

Aij (v − u)ML−1
MAij (v − u)

〉

(D − 1)(D − 2)
(34a)

qi = −γ ∂xi θ, γ = 〈Bi(u− v)ML−1
MBi(u− v)〉

(34b)

where ω and γ denote the viscosity and heat conduction, respectively.

Remark 2 The closure relation in (34) represents Fourier’s law of heat conduction
[13] for q and the Newtonian stress tensor for a compressible fluid that satisfies
Stokes hypothesis [25].
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Remark 3 Higher order corrections to the compressible Navier–Stokes may be
formally derived from subsequent terms in (20). However these further corrections
are, in general, not well posed.

In this work, we restrict our interest to the standard BGK collision operator [5],
viz.

C(f ) = τ−1(Mf − f ), (35)

where Mf denotes the local Maxwellian (10) having the same invariant moments
as f and τ is the relaxation rate. The corresponding viscosity and heat conduction
are [6]

ω = τρθ, γ = D + 2

2
τρθ. (36)

3 Velocity-Space-Time Galerkin Approximation

In this section we reinterpret the compressible Euler (25) and Navier–Stokes–
Fourier (32) equations as Galerkin approximations, in velocity dependence, of the
Boltzmann equation in renormalized form. We show that such a reinterpretation
provides a natural way to stabilize the corresponding formulations and to weakly
impose boundary conditions. In the spatial dependence we present an isogeometric
analysis as well as a discontinuous Galerkin finite element approximation.

3.1 Velocity Discretization of a Renormalized Boltzmann
Equation

The Galerkin approximation is based on a moment-system approximation in
velocity dependence. In contrast to the moment system approximation in [1, 2], we
consider moment-closure approximations that correspond to the Chapman-Enskog
analysis (20).

Our semi-discretization of the Boltzmann equation with respect to the velocity
dependence is based on velocity moments of the one-particle marginal. These
velocity moments are defined over R

D , and therefore we regard finite dimen-
sional approximations of f (t, x, v) in (1) that are integrable over RD in velocity
dependence. To that end, we consider a Galerkin subspace approximation of
the Boltzmann equation in renormalized form, where the renormalization maps
to integrable functions. To elucidate the renormalization, let M denote an M-
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dimensional subspace of D-variate polynomials and let {mi(v)}Mi=1 represent a
corresponding basis. We consider the renormalization map β :M→ F, where

FM := {f ∈ D(C) : mf ∈ L1(RD), vmf ∈ L1(RD,RD), mC(f ) ∈ L1(RD) ∀m ∈M
}

.

(37)

The leading order term (23) in the Chapman-Enskog analysis (20) may be
understood as a renormalization map that conforms to

βE(v) = ez(v) (38)

such that βE : I→ FI, where

z = ln
ρ

(2πθ)
D
2

− |u|
2

2θ
+ ui

θ
vi − |v|

2

2θ
. (39)

Therefore, the Euler equations (25) system can then be written in the Bubnov-
Galerkin form:

Find z ∈ L
(

(0, T )×Ω;I) : ∂t 〈mβE(v)〉 + ∂xi 〈mviβE(v)〉 = 0

∀m ∈ I a.e. (t, x) ∈ (0, T )×Ω. (40)

where L
(

(0, T ) × Ω;I) represents a suitable vector space of functions from
the considered time interval (0, T ) and spatial domain Ω into I. The usual
symmetry and conservation properties of the Boltzmann equation are generally
retained in (40) by the choice of the subspace I, namely that I constitutes the
collision invariants (see (4)), and is closed under the actions of Tu and TO ; cf. (13).
Entropy conservation follows directly from Galerkin orthogonality in (40) with
lnβE(v) = z ∈ I, therefore we have that

∂t 〈η(z)〉 + ∂xi 〈viη(z)〉 = 0. (41)

where

η(z) = zez − ez. (42)

The first order distribution with (30) in the Chapman-Enskog analysis (20) may
be understood as a renormalization map that conforms to

βNS(v) = eΠI(z(v))(1+ (Id−ΠI)z(v)) (43)
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such that βNS :M→ FM, where

z = ln
ρ

(2πθ)
D
2

− |u|
2

2θ
+ ui

θ
vi − |v|

2

2θ
− σij

2ρθ2
(vi − ui)(vj − uj )

+ qi

ρθ2

( |v − u|2
(D + 2)θ

− 1

)

(vi − ui) (44)

and M ⊂ span{1, vi , vivj , |v|2vi} such that z only depends on ρ, u, θ and their
derivatives; see (20). Therefore, the Navier–Stokes–Fourier equations (32) system
can then be written in the Petrov-Galerkin form:

Find z ∈ L
(

(0, T )×Ω;M) : ∂t 〈mβNS(v)〉 + ∂xi 〈mviβNS(v)〉 = 0

∀m ∈ I a.e. (t, x) ∈ (0, T )×Ω. (45)

To show entropy dissipation for the Navier–Stokes–Fourier equations we sim-
plify the relation in (45) using (21) to read

∂t 〈meΠIz〉 + ∂xi 〈mvie
ΠIz〉 + ∂xi 〈mvie

ΠIz(1−ΠI)z〉 = 0. (46)

We use the Galerkin orthogonality with ΠI(z) ∈ I to write

∂t
〈

η(ΠIz)
〉+ ∂xi

〈

viη(ΠIz)
〉 = − 〈(ΠIz

)

vi∂xi
(

eΠIz(1−ΠI)z
)〉

. (47)

The right hand side of (47) may be rewritten using chain rule to read

〈(

ΠIz
)

vi∂xi
(

eΠIz(1−ΠI)z
)〉 = ∂x

〈

vi
(

ΠIz
)

eΠIz(1−ΠI)z
〉

− 〈(eΠIz(1−ΠI)z
)

vi∂xi
(

ΠIz
)〉

. (48)

Recalling (30), we rewrite the ultimate term of (48) as

〈(

eΠIz(1−ΠI)z
)

vi∂xi
(

ΠIz
)〉 =

〈

vi∂xi
(

ΠIz
)

eΠIzL−1
Mvj ∂xj

(

ΠIz
)
〉

≤ 0

(49)

where the inequality follows from (15). Collecting the relations in (48) and (49)
into (47) yields the entropy dissipation relation

∂t
〈

η(Πz)
〉+ ∂xi

〈

viη(ΠIz)
〉+ ∂xi

〈

vi
(

ΠIz
)

eΠIz(1−ΠI)z
〉 ≤ 0. (50)
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3.2 Space-Time Discontinuous Galerkin Approximation

In this section we present the space-time Galerkin approximation to the Euler
and Navier–Stokes–Fourier equations in (40) and (45) written as velocity Galerkin
approximations of a renormalized Boltzmann equation. We use the discontinuous
Galerkin approximation to discretize the position and time dependence. We show
that using the upwind distribution [1], and the corresponding numerical flux, the
resulting DGFE moment approximation is entropy stable.

Let H := {h1, h2, . . .} ⊂ R>0 denote a strictly decreasing sequence of mesh
parameters whose only accumulation point is 0. Consider a corresponding mesh
sequence T H, viz., a sequence of covers of the domain by non-overlapping element
domains κ ⊂ Ω . We impose on T H the standard conditions of regularity, shape-
regularity and quasi-uniformity with respect to H; see, for instance, [10] for further
details. To introduce the DGFE approximation space, let Pp(κ) denote the set of
D-variate polynomials of degree at most p in an element domain κ ⊂ R

D and by
In ≡]tn, tn+1[ the n-th time-interval in the time-domain (0, T ), with n ∈ Z≥0, such
that 0 < t1 < t2 < · · · < T . For any h ∈ H, we indicate by V h,p((0, T ) ×Ω) the
DGFE approximation space

V h,p((0, T )×Ω) = {g ∈ L2((0, T )×Ω) : g|κ×In ∈ Pp(κ × In), ∀κ ∈ T h},
(51)

and by V h,p(·,M) the extension of V h,p(·) to M-valued functions.
To facilitate the presentation of the DGFE formulation, we introduce some

further notational conventions. For any h ∈ H, we indicate by Ih = {int(∂κ ∩ ∂κ̂) :
κ, κ̂ ∈ T h, κ �= κ̂} the collection of inter-element edges, by Bh = {int(∂κ ∩ ∂Ω) :
κ ∈ T h} the collection of boundary edges and by Sh = Bh ∪ Ih their union. With
every edge we associate a unit normal vector νe. The orientation of νe is arbitrary
except on boundary edges where νe = n|e. For all interior edges, let κe± ∈ T h be
the two elements adjacent to the edge e such that the orientation of νe is exterior
to κ+. We define the edge-wise jump and mean operators according to:

[[c]] =
{

(c+ν+ + c−ν−) if e ∈ Ih

(c − cB) if e ∈ Bh
, {{c}} =

{

1
2 (c+ + c−) if e ∈ Ih

1
2 (c + cB) if e ∈ Bh

(52)

where the subscripts (·)+ and (·)− refer to the restriction of the traces of (·)|κ+ and
(·)|κ− to e.
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3.2.1 Semi-discrete Discontinuous Galerkin Approximation

To derive the semi-discrete DGFE formulation for either of the closed moment
systems (40) or (45), we note that for any ψ ∈ V h,p((0, T )×Ω,M) there holds

∑

κ∈T h

∫

κ

〈ψ ∂tβ(g)〉 +
∑

κ∈T h

∫

κ

〈ψ ∂xi viβ(g)〉 = 0, (53)

where β may be either βE or βNS in (38) or (43), respectively. Using the product
rule and integration by parts, (53) can be reformulated in weak form. The terms in
the second sum in the left hand side of (53) can be recast into

∫

κ

〈ψ ∂xi viβ(g)〉 =
∫

∂κ

〈ψ vi ν
κ
i β̂(g; vν)〉 −

∫

κ

〈viβ ∂xiψ〉, (54)

where β(g) is replaced by any β̂(g; vν) in compliance with the consistency
condition:

[[β(g)]] = 0 ⇒ 〈viνκi β̂(g; vν)〉 = 〈viνκi β(g)〉. (55)

Implicit in the identity in (54) is the assumption that β is sufficiently smooth within
the elements to permit integration by parts and define traces on ∂κ . The edge
distribution β̂(g; vν) is defined edge-wise and on each edge e and depends on g

only via g±, viz. the restrictions of the traces of g|κ± to e. The function ψviν
κ
i β̂(g)

in the ultimate expression in (54) can be conceived of as an upwind-flux weighted
by the jump in ψ since

∑

κ∈T h

∫

∂κ

〈ψ vi ν
κ
i β̂(g)〉 =

∑

e∈Sh

∫

e

〈v · [[ψβ̂(g; vν)]]〉 (56)

It is to be noted that the domain of both the upwind-flux and the jump [[ψ]] is
e × R

D . On boundary edges, the external distribution corresponds to exogenous
data in accordance with boundary conditions. Substituting (54) and (56) into (53)
yields

∑

κ∈T h

∫

κ

〈ψ ∂tβ(g)〉 +
∑

e∈Sh

∫

e

〈v · [[ψβ̂(g; vν)]]〉 −
∫

κ

〈viβ ∂xiψ〉 = 0. (57)

The edge distributions β̂ in (71a) must be constructed such that the consistency
condition (55) holds and that the formulation (72) is stable in some appropriate
sense. We select the upwind edge distribution β(ĝ) [1] corresponding to:

β
(

ĝ(vν)
) =

{

β(g+) if vν+ > 0

β(g−) if vν− > 0.
(58)



Entropy Stable Discontinuous Galerkin Finite Element Moment Methods for. . . 89

3.2.2 Entropy Stability

To show the entropy stability of (57) with the Euler renormalization (38) we use
Galerkin orthogonality to write

∑

κ∈T h

∫

κ

〈z ∂tβE(z)〉 +
∑

e∈Sh

∫

e

〈v · [[zβE(ẑ(vν))]]〉 −
∑

κ∈T h

∫

κ

〈viβE(z) ∂xi z〉 = 0.

(59)

The last term of (59) can be recast into

∫

κ

〈viβE(z) ∂xi z〉 =
∫

∂κ

〈vνzβE(z)〉 −
∫

κ

〈viz ∂xiβE(z)〉. (60)

Recalling that η′(z) = zβ ′E(z), the last term in the right member of (60) can be
reformulated as

∫

κ

〈viz ∂xiβE(z)〉 =
∫

κ

∂xi 〈viη(z)〉 =
∫

∂κ

〈vνη(z)〉. (61)

Collecting the results in (59)–(61)

dt

∫

Ω
〈η(z)〉 +

∫

∂Ω
〈vnη(ẑ)〉 =

∑

e∈Sh

∫

e
〈v · [[z(βE(z)− βE(ẑ)

)− (η(z)− η(ẑ)
)]]〉 ≤ 0,

(62)

where we used the fact that [[η(ẑ)]] vanishes on the interior edges by the continuity
of ẑ, and its aggregated contribution coincides with the boundary integral in the left
member of (62). Furthermore, the last inequality follows from the convexity of η(z)
with respect to β(z); see [1] for more details.

To show the entropy stability of (57) with the Navier–Stokes–Fourier renormal-
ization (43) we use the Galerkin orthogonality to write

∑

κ∈T h

∫

κ

〈(ΠIz) ∂te
ΠIz〉 +

∑

e∈Sh

∫

e

〈v · [[(ΠIz)βNS(ẑ)
)]]〉 −

∑

κ∈T h

∫

κ

〈viβNS(z) ∂xi (ΠIz)〉 = 0.

(63)

The last term of (63) can be recast into

∫

κ

〈viβNS(z) ∂xi (ΠIz)〉 =
∫

∂κ

〈vν(ΠIz)βNS(z)〉 −
∫

κ

〈vi(ΠIz) ∂xiβNS(z)〉.
(64)
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The last term in the right member of (64) can be reformulated as

∫

κ

〈vi(ΠIz) ∂xiβNS(z)〉 =
∫

∂κ

〈vνη(ΠI)〉 +
∫

κ

〈vi(ΠIz) ∂xi e
ΠIz(Id−ΠI)z

〉

.

(65)

The last term of (65) can we rewritten using (48) and (49) as

∫

κ

〈vi(ΠIz) ∂xi e
ΠIz(Id−ΠI)z

〉 =
∫

∂κ

〈

vν
(

ΠIz
)

eΠIz(1−ΠI)z
〉

−
∫

κ

〈

vi∂xi
(

ΠIz
)

eΠIzL−1
Mvj ∂xj

(

ΠIz
)
〉

.

(66)

Collecting the results in (64)–(65) into (63)

dt

∫

Ω

〈η(z)〉 +
∫

∂Ω

〈vn(η(ẑ)+
(

ΠIz
)

eΠIz(1−ΠI)z)〉

=
∑

e∈Sh

∫

e

〈v · [[ΠIz
(

eΠIz − eΠIẑ
)− (η(ΠIz)− η(ΠIẑ)

)]]〉

+
∫

κ

〈

vi∂xi
(

ΠIz
)

eΠIzL−1
Mvj ∂xj

(

ΠIz
)
〉

≤ 0, (67)

where we used the fact that [[η(ΠIẑ)]] vanishes on the interior edges by the
continuity of ẑ, and its aggregated contribution coincides with the boundary integral
in the left member of (67). Furthermore, the last inequality follows from non-
positivity of the last term of the right member of (67) (see (15)) and from the
convexity of η(z) with respect to ez; see [1] for more details.

3.2.3 Fully-Discrete Discontinuous Galerkin Approximation

To approximate (57) in time we introduce the time integration

∑

n

∑

κ∈T h

∫

κ×In
〈ψ ∂tβ(g)〉 +

∑

n

∑

e∈Sh

∫

e×In
〈v · [[ψβ̂(g; vν)]]〉 −

∑

n

∫

κ×In
〈viβ(g) ∂xi ψ〉 = 0.

(68)

The summands of the first term of the left hand side of (68) can be recast into

∫

κ×In
〈ψ ∂tβ(g)〉 =

∫

κ

〈ψ(tn+1− ) β(g(tn+1− ))− ψ(tn+) β(g(tn−))〉 −
∫

κ×In
〈β ∂tψ〉,

(69)
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where tn+ and tn− denote the one-sided limit to tn from above and below, respectively.
Implicit to the identity (69) is the assumption that β is sufficiently smooth within
the time interval to permit integration by parts. Hence, any solution to (40) or (45)
that is sufficiently regular in the aforementioned sense satisfies

a(g;ψ) = s(g;ψ) ∀ψ ∈ V h,p((0, T )×Ω,M), (70)

with

a(g;ψ) =
∑

n

∑

κ∈T h

∫

κ

〈ψ(tn+1− ) β(g(tn+1− ))− ψ(tn+) β(g(tn−))〉

+
∑

n

∑

κ∈T h

∫

∂κ×In
〈ψ vi ν

κ
i β̂(g; vν)〉

−
∑

n

∑

κ∈T h

∫

κ×In
〈β(g) ∂tψ + viβ(g) ∂xiψ〉,

(71a)

s(g;ψ) =
∑

n

∑

κ∈T h

∫

κ×In
〈ψC(β(g))〉. (71b)

The DGFE discretization of (40) or (45) is obtained by replacing g in (70) by an
approximation g

h,p

M in V h,p((0, T )×Ω,M) according to

Find g
h,p

M ∈ V h,p((0, T )×Ω,M) : a(gh,pM ;ψ) = s(g
h,p

M ;ψ) ∀ψ ∈ V h,p((0, T )×Ω,I).

(72)

4 Numerical Results

To illustrate the approximation properties of the DGFE moment approxima-
tions (70) with the proposed renormalization map (43) for the Navier–Stokes–
Fourier, we compute the transient solution of the lid-driven cavity problem [15].
We Consider a two-dimensional computational domain with length L = 1 m in
both the x and y directions. The top wall moving with a tangential x-direction
velocity of ulid = 50 m s−1 and the remaining three walls are stationary. All the
walls have are set at a reference temperature Tref = 273 K. We set the gas constant
to R = 208 J/kg K in accordance with its value for Argon. The initial temperature
is set to Tref. For simplicity, we take reference values for the viscosity and heat
conduction (36), ωref and γref, corresponding to Reynolds number

Re = ρref ulidL

ωref
= 10000. (73)



92 M. R. A. Abdelmalik and H. van Brummelen

We use a discontinuous Galerkin finite-element approximation spaces of poly-
nomial degree 2 in position dependence and 0 in time dependence. We solve the
DGFE approximation (70) using the Newton procedure for each time-step. We
use a time-step 4.8τ × 104 and discretize the domain using a 50 × 50 grid. It is
noteworthy that the linearization of (72) for the Newton procedure is significantly
facilitated by basing the numerical flux on the upwind distribution according
to (58). Traditionally, a DGFE approximation of (25a) and (32a) is equipped with
an approximate Riemann solver, e.g. according to Godunov’s scheme [12], Roe’s
scheme [23] or Osher’s scheme [21], to construct a numerical flux. However, these
numerical flux functions generally depend in an intricate manner on the left and
right states via the eigenvalues and eigenvectors of the flux Jacobian, Riemann
invariants, etc., which impedes differentiation of the resulting semi-linear form.
Determining the derivative of the upwind distribution in (58) and, in turn, of
the semi-linear form (72) is a straightforward operation. Moreover, the velocity
integrals introduced in the DGFE moment approximation (72) does not add to the
computational complexity since such integrals may be precomputed analytically.

The left and right panels of Fig. 1 show the evolution of the magnitude of the
velocity and temperature contours, overlaid with velocity and heat flux streamlines,
respectively. One can observe the typical roll-up of the primary vortex as time
progresses, and the local temperature increase in areas of large shear deformation
due to viscous dissipation. Figure 2 shows the results after the solution has reached a
steady state. Noteworthy in the steady result are the secondary vortices in the bottom
left and right corners and the top left corner.

5 Conclusions

In this work we have presented the compressible Euler and Navier–Stokes–Fourier
equations as a Galerkin approximation of a renormalized Boltzmann equation.
Such a reinterpretation allows the expression of these compressible equations as
scalar kinetic systems. The scalar structure of the resulting equations allowed us to
construct discontinuous Galerkin finite element methods for the compressible Euler
and Navier–Stokes–Fourier equations using edge-wise upwinded distributions. We
have shown that the resulting discontinuous Galerkin finite element moment method
is entropy stable. Finally, we demonstrated the approximation properties of the
proposed method by simulating the lid-driven cavity benchmark.
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Fig. 1 Evolution of the Navier–Stokes–Fourier solution of the lid-driven cavity test case. Left
pane shows the contours of the magnitude of the macroscopic velocity overlaid with macroscopic
velocity streamlines and right pane shows the temperature contours overlaid with heat flux
streamlines. The results are plotted at 4.8τ × 105 (top), 1.4τ × 106 (middle) and 2.9τ × 106

time steps (bottom)
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Fig. 2 Long-time solution of the Navier–Stokes–Fourier system for the lid-driven cavity test case
plotted at time 6.2τ × 106. Left pane shows the contours of the magnitude of the macroscopic
velocity overlaid with macroscopic velocity streamlines and right pane shows the temperature
contours overlaid with heat flux streamline
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Space-Time NURBS-Enhanced Finite
Elements for Solving the Compressible
Navier–Stokes Equations

Michel Make, Norbert Hosters, Marek Behr, and Stefanie Elgeti

Abstract This article considers the NURBS-Enhanced Finite Element Method
(NEFEM) applied to the compressible Navier–Stokes equations. NEFEM, in con-
trast to conventional finite element formulations, utilizes a NURBS-based compu-
tational domain representation. Such representations are typically available from
Computer-Aided-Design tools. Within the NEFEM, the NURBS boundary defini-
tion is utilized only for elements that are touching the domain boundaries. The
remaining interior of the domain is discretized using standard finite elements.
Contrary to isogeometric analysis, no volume splines are necessary.

The key technical features of NEFEM will be discussed in detail, followed by a
set of numerical examples that are used to compare NEFEM against conventional
finite element methods with the focus on compressible flow.

Keywords Spline-based methods · NURBS-enhanced finite elements ·
Stabilized space-time finite elements · Compressible Navier–Stokes equations

1 Introduction

Geometries in engineering applications are commonly designed with the use of
Computer-Aided-Design (CAD) tools. In general, these tools utilize Non-Uniform
Rational B-Splines (NURBS) to accurately represent complex geometric domains
by means of surface splines. When performing numerical analysis on such domains,
it is common practice to first discretize the domain into finite sub-domains or
elements. This discretization process, typically results in loss of the exact geometry.
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An alternative approach, known as Isogeometric Analysis (IGA), was proposed
in [6]. The key idea of IGA is to use the NURBS basis functions not only for the
geometric representation, but also for the numerical solution itself. By doing so,
numerical analysis can be applied to the CAD model directly without the loss of
geometric accuracy caused by discretizing the computational domain. Numerical
analysis of fluid flow problems, however, commonly involves complex three-
dimensional volume domains. Parametrizing such domains using closed volume
splines can be challenging.

An alternative was proposed in [9], and further extended for space-time finite
elements and free-surface flows in [10]. This method was then modified for
interface-coupled problems in [4]. This approach suggests to use standard finite
elements in the interior of the computational domain supplemented with so-called
NURBS-enhanced finite elements along domain boundaries. These elements make
use of NURBS to accurately represent complex geometries. The NURBS-Enhanced
Finite Element Method (NEFEM) allows for maintaining as much as possible the
proven computational efficiency of standard finite element methods, while utilizing
the accurate geometric representation provided by the NURBS.

In this work, we apply NEFEM to supersonic flow problems. For this type of
problems, accurate geometry representation can be important, especially due to the
presence of shock waves and their interaction with solid walls.

2 Quasi-Linear Form of the Navier–Stokes Equations

Before presenting the NEFEM concept, first the governing Navier–Stokes equations
are presented. For this, let Ωt ⊂ R

nsd and t ∈ (0, T ) be the spatial and temporal
domains respectively, and let Γt denote the boundary of Ωt . Here, nsd represents
the number of spatial dimensions. The model problem can now be written as a
generalized advective-diffusive system:

∂U
∂t
+ ∂Fi

∂xi
− ∂Ei

∂xi
= 0 on Ωt ∀ t ∈ (0, T ), (1)

where U = (ρ, ρu1, ρu2, ρu3, ρe)
T is the solution vector. ρ, ui , and e represent

the density, velocity components, and total energy per unit mass respectively. For
the three-dimensional case, the Euler and viscous flux vectors Fi and Ei are defined
as:

Fi =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

uiρ

uiρu1 + δi1p

uiρu2 + δi2p

uiρu3 + δi3p

ui(ρe + p)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, Ei =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
τi1

τi2

τi3

−qi + τikuk

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (2)
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where qi , τik , p, and δ represent the heat flux, viscous stress tensor, pressure, and
the Kronecker delta respectively. The boundary and initial conditions are given by:

U · ed = gd on (Γt )gd , d = 1 . . . ndof ∀ t ∈ (0, T ), (3)

(niEi ) · ed = hd on (Γt )hd , d = 1 . . . ndof ∀ t ∈ (0, T ), (4)

U(x, 0) = U0(x) on Ω0, (5)

where (Γt )gd and (Γt )hd are the subsets of Γt , ed is a basis in R
ndof , and ndof is the

number of degrees of freedom. The quasi-linear form of Eq. (1) is written as:

∂U
∂t
+ Ai

∂U
∂xi
− ∂

∂xi

(

Kh
ij

∂U
∂xj

)

= 0 on Ωt ∀ t ∈ (0, T ), (6)

where Ai = ∂Fi

∂U represent the Euler Jacobians, and Kh
ij

∂U
∂xj
= Ei the diffusivity

matrices. Ai and Kh
ij are defined according to the set of solution variables (conser-

vation variables in this case). For a detailed discussion on the various variable sets
and corresponding Ai and Kh

ij matrices see, e.g. [3].

3 Stabilized Space-Time Finite Element Formulation

Following [1], the deformable spatial domain/stabilized space-time (DSD/SST)
finite element formulation is derived for the quasi-linear form in Eq. (6).

In order to construct the finite element function spaces for the DSD/SST for-
mulation, the time interval (0, T ) is decomposed into subintervals In = (tn, tn+1),
where tn and tn+1 are part of the ordered series: 0 = t0 < t1 < · · · < tN = T .
Additionally, we define Ωn = Ωtn , and Γn = Γtn . Qn now represents a so-called
space-time slab, which is the domain enclosed by Ωn, Ωn+1 and Pn. Here, Pn is the
surface described by the boundary Γt along interval In (see Fig. 1).

Similar to Γt given in Sect. 2, Pn can be decomposed into (Pn)gd and (Pn)hd .
The discrete finite element space-time function spaces for the trial and weighting

Fig. 1 Space-time slab with
space-time element Qe

n. The
space-time slab is enclosed
by spatial domains Ωn and
Ωn+1 together with Pn Pn

Ωn

Ωn+1

Qe
n

t
y

x
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functions U and W are given by:

(Sh
U )n =

{

Uh|Uh ∈
[

H 1h(Qn)
]ndof

, Uh · ed = ghd on (Pn)g,d , d = 1 . . . ndof
}

,

(7)

(Vh
W )n =

{

Wh|Wh ∈
[

H 1h(Qn)
]ndof

, Wh · ed = 0 on (Pn)h,d , d = 1 . . . ndof
}

.

(8)

Using the Streamline-Upwind Petrov–Galerkin (SUPG) formulation, the weak form
of Eq. (6) states: given (Uh)−n , find Uh ∈ (Sh

U )n, such that ∀Wh ∈ (Vh
W )n:

∫

Qn

Wh ·
(

∂Uh

∂t
+ Ah

i ·
∂Uh

∂xi

)

dQ+
∫

Qn

(

∂Wh

∂xi

)

·
(

Kh
ij

∂Uh

∂xj

)

dQ+

(nel )n
∑

e=1

∫

Qe
n

τmom

[

(Ah
k )

T ∂Wh

∂xk

]

·
[

∂Uh

∂t
+ Ah

i

∂Uh

∂xi
− ∂

∂xi

(

Kh
ij

∂Uh

∂xj

)]

dQ+

(nel )n
∑

e=1

∫

Qe
n

τDC

(

∂Wh

∂xi

)

·
(

∂Uh

∂xi

)

dQ+
∫

Ωn

(Wh)+n ·
(

(Uh)+n − (Uh)−n
)

dΩ =
∫

(Pn)h

W · hhdP. (9)

Here, the first two integrals on the left-hand side and the integral on the right-
hand side represent the standard Galerkin form. The third and fourth left-hand side
integrals represent the SUPG stabilisation and shock-capturing terms respectively.
Continuity over the time-slab interface Ωn is weakly imposed by the jump term, i.e.,
the fifth left-hand side integral in Eq. (9). Here, the ± subscripts refer to the upper
and lower time-slab solutions at time n. Equation (9) is solved sequentially for all
space-time slabs Q1,Q2, . . . ,QN−1 with initial condition (Uh)−0 = U0.

For τmom in the SUPG stabilization term in Eq. (9), the formulation proposed
in [5] was used. The shock-capturing parameter τDC used in this work, is similar
to that given in [8], which is a modification of the original definition presented
in [5]. For brevity, a detailed discussion on the stabilization and shock-capturing
formulations is omitted. For an extensive discussion on DSD/SST finite elements
for compressible flow problems including SUPG-stabilization and shock-capturing,
please refer to [7].

4 NURBS-Enhanced Finite Elements

In this section, the NURBS-enhanced finite element method as proposed in [4] will
be presented. The key idea of this method, is to use a NURBS definition of the
computational domain to enhance the finite elements along the domain boundary.
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Fig. 2 The computational
domain defined by a NURBS
curve C(ξ) expressed by
means of parametric
coordinate ξ and a control
polygon. The
NURBS-enhanced elements
are located along the NURBS
boundary. The standard
elements are located in the
remaining interior part of the
domain C(ξ) Enhanced

Element

Standard
Element

On all remaining elements in the interior of the domain a standard finite element
formulation is used (cf. Fig. 2).

Before discussing how the boundary elements make use of the NURBS boundary,
let us first define a NURBS-curve of degree p. Such a curve is composed of
piecewise rational basis functions Rp

i (ξ), and control points Bi . The curve is then
expressed by means of parametric coordinate ξ ∈ (0, 1) as follows:

C(ξ) =
n
∑

i=1

Rp
i (ξ)Bi , (10)

where n denotes the total number of control points.
The elements that touch the NURBS domain boundary make use of a non-linear

mapping between a reference element and the element in physical coordinates. This
mapping, was proposed in [4] as Triangle-Rectangle-Triangle (TRT) mapping. The
mapping Φ(s, r) is given by:

Φ(s, r) = (1− s − r)x3 + (s + r)C
(

s ξ1 + r ξ2

s + r

)

. (11)

Here, s and r are the parametric coordinates of the triangular reference element,
x3 denotes the physical coordinate of the interior node, and ξ1 and ξ2 are the
parametric coordinates of the NURBS curve at which the element boundary nodes
are located. A graphical representation of this mapping is shown in Fig. 3.

By using the TRT mapping, the NURBS definition can be incorporated into
the numerical analysis. As a result, the distribution of the integration points is
determined from the exact geometry and not the erroneous discretized geometry
(cf. Fig. 4).

Furthermore, the shape functions corresponding to the interior nodes of the
boundary elements remain zero along the NURBS (cf. Fig. 4). This has the advan-
tage that there is no contribution of the interior nodes when considering Dirichlet
boundaries or boundary integrals. Especially for interface-coupled problems this
can be important, where Dirichlet boundaries and boundary integrals are used to
compute the coupling conditions [4].
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ϑ

λ

s

r

C(ξ)x1(ξ1)

x3

x2(ξ2)

Φ(s, r) = Ψ Θ−1

ΨΘ

Ωref
Ωe

Fig. 3 Triangle-Rectangle-Triangle (TRT) mapping, as used in the NEFEM formulation

L(x, y)

x

y

1

0

x y

Fig. 4 Left: interior shape function, L(x, y), on an NEFEM element using TRT mapping. Right:
distribution of integration points on an NEFEM element

For the numerical integration additional quadrature points are used for the
NEFEM elements. This is necessary in order to properly capture the geometric
description provided by the NURBS. Since only a small portion of the computa-
tional domain is discretized using the enhanced elements the additional computa-
tional effort is kept to a minimum [9].

5 Numerical Examples

To demonstrate the performance of the NEFEM in comparison to standard finite
elements (SFEM), two test cases are considered next: (1) 2D supersonic viscous
flow around a cylinder; (2) 2D transonic inviscid flow around a NACA0012 airfoil.

5.1 Cylinder Flow

The supersonic flow around a 2D cylinder is computed using the NEFEM and the
SFEM. The flow conditions and the computational domain are shown in Table 1 and
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Table 1 Flow conditions for
the supersonic flow around
the cylinder

Flow conditions

Mach 1.7

Re 2.0× 105

ρin 1.0

uin 1.0

vin 0.0

ein 1.1179

2R

NURBS Geometry
Control Polygon

25R

50R25R

25R

Control Points

u2 = 0

u2 = 0

u1 = 0, u2 = 0

Fig. 5 Computational domain and boundary conditions for a supersonic flow around a 2D cylinder
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Fig. 6 Left: contour lines of the pressure coefficient for NEFEM and SFEM. Right: pressure
coefficient along the cylinder wall with angular coordinate θ

Fig. 5 respectively. For the NEFEM computations, the cylinder is represented by a
second order NURBS-curve (cf. Fig. 5).

The flow solution for both methods, presented by means of the pressure
coefficient, Cp, is given in Fig. 6. In this figure, it can be seen that the NEFEM
and the SFEM result in similar flow solutions. However, small differences can
be observed when looking at the pressure coefficients along the cylinder wall.
These differences could be a result of the improved geometry representation within
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Table 2 Grids used for the
grid refinement study

Grid # nen nenwall

0 6.72K 64

1 26.88K 128

2 107.52K 256

3 430.08K 512

4 1.72M 1028

hwall

re
l. 

er
ro

r 
(C

D
)

10-310-210-1
10-3

10-2

10-1

SFEM
NEFEM

Fig. 7 Grid convergence for supersonic flow around a cylinder. Results are relative to that of grid
4 in Table 2

the NEFEM. Overall, the pressure coefficient along the cylinder wall is in good
agreement with the reference solution [2], as shown in Fig. 6.

To demonstrate the performance of the NEFEM compared to the SFEM, a grid
refinement study is performed in which the drag coefficient, CD , is compared. The
grids used in the study are presented in Table 2.

The relative error in CD in Fig. 7 shows a similar convergence rate for both
methods. It can be seen, however, that the NEFEM has a reduced error for all grids.

5.2 NACA0012 Airfoil

The transonic inviscid flow around a 2D NACA0012 airfoil is computed using
the NEFEM and the SFEM. The flow conditions and computational domain are
shown in Table 3 and Fig. 8 respectively. The airfoil is represented by a fourth-order
NURBS curve and is positioned with a zero degree angle of attack (cf. Fig. 8).
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Table 3 Flow conditions for
the transonic flow around the
NACA0012 airfoil

Flow conditions

Mach 0.8

ρ 1.0

u 1.0

v 0.0

e 3.29

Fig. 8 Computational
domain and boundary
conditions for a supersonic
flow around a NACA0012
airfoil

c

NURBS Geometry
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Control Points
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15c

20c

The flow solutions obtained with the NEFEM and the SFEM, are presented
by means of the pressure coefficient Cp in Fig. 9. Again, it can be observed that
both methods result in similar flow solutions. Additionally the results are in close
agreement with the reference solution provided by Vassberg and Jameson [11].

In Fig. 9, the jump in Cp along the airfoil wall is a result of the transition from
supersonic to subsonic flow conditions. It can be seen that the location of this jump
slightly differs between the NEFEM and the SFEM results. As for the cylinder test
case, the differences between the NEFEM and the SFEM could potentially be a
result of the improved geometry representation within the NEFEM.
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Fig. 9 Left: contour lines of the pressure coefficient Cp for NEFEM and SFEM. Right: pressure
coefficient along the airfoil wall

6 Concluding Remarks

This paper discussed the NEFEM in the context of compressible flow problems.
For this method, the DSD/SST formulation was used together with the TRT
mapping. Using this mapping, the NURBS definition of the domain boundary was
incorporated within the shape functions and numerical integration for the elements
touching these boundaries.

The NEFEM was then tested and compared against the SFEM. Two test cases
involving 2D viscous and inviscid flows were considered. Overall the methods
showed good agreement with the reference solutions. Small differences between the
NEFEM and SFEM solutions along solid walls in the flow domain were observed.
These could be attributed to the improved geometry representation accounted for in
the NEFEM. This observation could be a suitable starting point for future research
on the benefits of the NEFEM over the conventional methods.
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Fluid Flow Simulation from Geometry
Data Based on Point Clouds

Simon Santoso, Hassan Bouchiba, Luisa Silva, Francois Goulette,
and Thierry Coupez

Abstract It is nowadays a real challenge to perform fluid flow simulation from
human-acquired data, in particular when the geometries are reduced to a set of
3D points without any connectivity. Assuming that a sufficient set of points can
represent the underlying geometries with a high level of details, we present in this
paper a method to perform CFD computations directly from the point cloud raw
data. Using an error estimator, a level-set function is built directly from the point
cloud, which bypass the explicit surface reconstruction step. The level-set is then
used in a mesh-adaptation procedure to optimize the representation of the distance
field near the its zero value. Secondly, we use the immersion volume method to
define the boundary conditions at nodes. Finally, we used a VMS finite element
solver to perform the fluid flow calculation. We finally present computations on 3D
point clouds self-acquired in urban environments.

Keywords Point cloud geometry · Finite element for flow · Anisotropic adaptive
meshing · Immersed boundary method

1 Introduction

Due to the ongoing recent progress of the 3D scanning technologies, real world
geometries can be described with a higher and higher level of details [7]. Never-
theless, it is still a challenge to use the point clouds provided by these instruments
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to perform fluid flow computations. Indeed, the surface definition and the domain
representation for a suitable discretization are at least technical and often unfeasible.
The common way to create a volume mesh from a given surface is the body-fitted
mesh approach which requires in a first step the reconstruction of the manifold’s
surface. A number of techniques have been developed to reconstruct the surface of
the manifold are for instance in [11] and [8]. The next step consists in the generation
of a surface mesh which must be used as a boundary constraint of a volume mesh
[6, 9]. The body-fitted mesh approach from the only data of point clouds is difficult
to implement and rarely free of human interaction. Indeed, points clouds are usually
massive, polluted with statistical noise, without information on the topology of the
manifold, moreover, the surface reconstruction and mesh generation steps often
relies on a slow optimization process. We explore here another route, by combining
the embedded boundary techniques with an anisotropic adaptive meshing process.
This approach helps to simplify the mesh generation problem by avoiding the
need of an explicit reconstruction of the surfaces [3]. It is based on the implicit
representation of the interfaces with the help of a Level-Set function whose zero
represents the surfaces to be reconstructed [12]. The Level-Set function is defined
by the Euclidean distance to a boundary. The distance is then signed whether one
point is inside or outside the domain, allowing to define the physical parameters
and also to impose boundary conditions. Embedded boundary approaches rely
on the continuity of the surface. One of the difficulties to overcome, is that the
distance to the points clouds is not defining a zero level that could represent a
continuous manifold. The proposed solution is to thicken the point cloud in an
anisotropic way in order to avoid holes and to smooth asperities. In this paper the
point clouds are immersed directly in the computational domain and the distance
function calculation is designed in a non euclidean way in order to account for the
discrete nature of the sampling of the surfaces. A local metric is introduced in order
to reduce the apparent distance between neighbouring points of the sampling and
the desired thickness of the surface in a pseudo normal direction. The proposed
strategy bypasses the explicit reconstruction of the surface and allows computations
to be performed on real objects by using an adaptive anisotropic mesh procedure
and a stabilized finite element method to solve the incompressible Navier–Stokes
equations.

The paper is structured as follows. Section 2 is a review of the immersion volume
method. Section 3 highlights the immersion method for point clouds and introduced
the metric used in the distance function calculation. Section 4 describes an error
estimation to compute the metric. Last section provides numerical examples.

2 Volume Immersion

This section describes the volume immersion method and introduces some useful
notations.
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Fig. 1 Phase function for ε = 0.005, 0.002, 0.001

Let Ω ∈ R
D . We denote his frontier as ∂Ω . We define the signed distance

function such as:

∀x ∈ R
D , α(x) =

{

d(x, ∂Ω) if x ∈ Ω

−d(x, ∂Ω) otherwise
(1)

where d is the Euclidean distance. In the scope of [3] the phase function is defined
by:

∀x ∈ R
D , uε(x) = ε tanh

(

α(x)
ε

)

(2)

The phase function varies between +ε and −ε in the vicinity of the immersed
boundary and Fig. 1 shows how it depends on ε. From the phase function we define
a smooth Heaviside function by:

∀x ∈ R
D , Hε(x) = 1

2

(

1+ uε(x)
ε

)

(3)

Hε is equal to 0 outside of Ω and equal to 1 inside with a smooth transition. The
physical parameters entering in the flow calculation are defined with the help of Hε

by simple geometrical mixing. A physical parameter is defined as a continuous field
q in the whole domain from the two values it can takes on each side of the interface
by:

∀x ∈ R
D , q(x) = q1Hε(x)+ q2

(

1−Hε(x)
)

(4)

ε is thus a regularization parameter that controls the discontinuity at the interface
between domains. In the same manner it enables to enforce weakly the boundary
conditions.
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The efficiency of IVM has already been proven [5] but the approach is limited to
a continuous definition of the geometries for which it is possible to determine the
interior and the exterior of a domain without ambiguity. A point cloud can represent
complex geometries with high degree of precision, but without connectivity of the
points it defines a surface from a point-wise point of view. In order to extend the
embedded approach to a point-wise surface definition, we introduce a distance to
a point cloud. The next sections highlight the issue due to the immersion of points
clouds with Euclidean distance and give a definition of the distance to a points
cloud.

3 Immersion of Point Clouds

This section gives some details on the immersion of point clouds. First, we highlight
the issues caused by the use of the Euclidean distance applied to point clouds. Then,
we give a solution to bypass those issues by introducing a metric field. This metric
field is computed thanks to the neighbourhood of each point of P. It also defines an
approximated tangent plane and orthogonal direction. Finally, we will give a method
to adapt this neighborhood to homogenize the error made on the approximation of
the orthogonal direction.

3.1 Distance Function to a Set of Points

A straightforward use of the Euclidean distance to a set of points shows limitations.
Let P ∈ (RD)N be a points cloud.

P = {pi ∈ R
D, i = 1, .., N)}

We denote as pij the vector−−→pipj = pj − pi and εc the sampling distance of P:

εc = max
pi

min
pj ,j �=i

|pij | (5)

The following example (Fig. 2) shows that if ε < εc
2 then holes appears in the

phase function. On the contrary, if ε > εc
2 , then asperities are created. The fact that

we want to build a closed frontier makes the condition ε > εc
2 mandatory. It is then

needed to reduce asperities in the orthogonal direction and a normal direction at each
point pi is required to control its contribution in the distance function. The main idea
here is to change the distance calculation by taking into account the direction of a
target point to the sampling.

Let us consider the point cloud such as a Riemannian object equipped with a
pointwise metric Mi associated to each point pi . As Mi is a symmetric positive-
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Fig. 2 Function phase of a 16 points-discretized circle of radius R = 0.05 m for ε > εc
2 and

ε < εc
2 . εc % 0.0195 m

definite tensor, it contains several useful information. Indeed, the eigen-direction of
the smallest eigenvalue gives the minor axe of the quadric associated to Mi . It then
gives the orthogonal direction at point pi . The space spanned by the other directions
gives the tangent plane. In a Riemannian space, the distance function is given by:

∀x ∈ R
Dd(x,P) = (Mixpi , xpi )

1
2 where pi is the closest point of x (6)

In the euclidean geometry context, every Mi is equal to the identity tensor ID . The
isovalue curve associated to ID are spheres. Minor and major axes are associated
to the same eigenvalue equal to 1. Reducing asperities is equivalent to reducing
the length of the minor axe. As the inside and the outside of P must be defined,
we are unable to sign the distance function. That is why, we introduce the smooth
Dirac function which can be seen as a spatial derivative of the smooth Heaviside
function.

∀x ∈ R
D , δε(x) = 1

2ε
(1− (

uε(x)
ε

)2) (7)

δε tends to 1
2ε near the points clouds and is equal to 0 anywhere else. As a result,

this function is a good representation of a surface. The boundary conditions can
now be applied by considering a threshold 0 < s < 1

2ε and a mixing of the fluid
parameters. In practice, we use s = 1

4ε .

3.2 Unit Metric Construction

We follow the work introduced in [2]. In this paper, the author builds a unit metric
field for each point of a connected mesh. We extend this method to the point clouds
by introducing an arbitrary neighbourhood of the points. The unit metric field, Mi ,
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at point pi is set by:

∀pj ∈P, (Mipij ,pij ) = 1 !⇒
∑

pj∈Ni

(Mipij ,pij ) =
∑

pj∈Ni

1 (8)

where Ni is a neighbourhood of pi . Then:

Mi :
⎛

⎝

∑

pj∈Ni

pij ⊗ pij

⎞

⎠ = |Ni | where |Ni | is the cardinal of Ni (9)

The length distribution tensor at each point pi and denoted as Xi is then defined by:

Xi = 1

|Ni |
∑

pj∈Ni

pij ⊗ pij (10)

When every pij are aligned then, det(Xi ) = 0, we can define the metric at the point
pi by:

Mi = |Ni |
D

(X+ ε2n× n)−1
i (11)

where the pseudo normal n is associated with the direction of the eigenvector of the
smallest eigenvalue. Indeed, it is shown in [8] that the tangent plane associated to
Xi is the best plane that fits the neighborhood of pi . As Xi and Mi have the same
eigen-directions, we are ensured Mi is well oriented.

3.3 Definition of the Neighbourhood

The construction of the field metric is depending on the choice of the neighborhood.
The literature exhibits two mains methods: Choose the K-nearest neighbors or every
points contained in a ball of radius R to be defined. This two parameters are arbitrary
defined and are the same for every point of P. Based on the work of [10], this
subsection gives a method to choose a ball of radius R to minimize the error made
on the computation of the normal n. For the sake of clarity, we will develop the
construction of the error estimator only in 2D. We denote as n∗ the real normal at pi

of the sampled surface. We can choose a base where n∗ = [0 1]T . We introduce λ−
as the smallest eigenvalue and n = [e 1]T the associated vector and e is the error to
be evaluated. We have:

Xn =
(

A B

B C

)[

e

1

]

= λ−
[

e

1

]

(12)
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We assume that A >> C such that Tr(X) % A. Mitra et al. [10] show that:

e = − (A+ C − 2λ−)B
(A− λ−)2 + B2

(13)

Using the trace Tr(X) and the discriminant Δ of the characteristic polynomial of X,
λ− can be written:

λ− = Tr(X)−√Δ
2

(14)

The numerator of e can be written:

A+ C − 2λ− = Tr(X)− 2× Tr(X)−√Δ
2

= √Δ (15)

The denominator of e can be written:

(A−λ−)2+B2 = A2−ATr(X)+A√Δ+Tr(X)2

4
− 1

2
Tr(X)

√
Δ+Δ

4
+B2 (16)

As Tr(X) % A, several approximations can be done:

A2 − ATr(X) % 0 (17)

Δ = (A− C)2 + 4B2 % Tr(X)2 + B2 (18)

A
√
Δ % Tr(X)

√
Δ (19)

Finally, the denominator of e can be approximated by:

(A− λ)2 + B2 % Tr(X)
√
Δ+Δ

2
(20)

The error e is then majored by:

|e| ≤ 2

Tr(X)+√Δ |B| (21)

We now have to major B to complete the error estimation. As P is a discretization
of a (D− 1)-manifold, we assume that it exists a C2 function g such as y = g(x) in
the neighborhood of pi . A Taylor-expansion at pi gives us:

∀pj ∈ Ni , yj = g(pi +pij ) = g(pi )+∇g(pi )
︸ ︷︷ ︸

=0

pij + 1

2
(H(pi )pij ,pij )+ o(||pij ||2)

(22)
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where H(pi ) is the Hessian at pi of the sampled surface.
Since all pj are contained in a ball of center pi of radius R then ||pij || ≤ R. We

finally have:

|B| ≤ R × R2

2
||H(pi )|| ≤ ||H(pi )||R

3

2
(23)

The error e can finally be bounded by:

e ≤ M(R)||H(pi)||R
3

2

where M(R) = 2
Tr(X)+√Δ in 2D and M(R) =

√

Tr(X)2+2I2
I 2

2
in 3D (I2 is the second

invariant of the length distribution tensor). We estimate the Hessian tensor with the
following relation:

H(pi ) = 2

D − 1

⎛

⎜

⎝

∑

pj∈Ni

pij ⊗ pij

∑

pj∈Ni

yj

⎞

⎟

⎠

−1

(24)

This estimation is subject to discussion. Indeed, this relation tends to mean
curvatures in each eigen-direction of H(pi ). As the curvature in 2D is a single
scalar, this estimation is efficient, but there are 2 curvatures in 3D, and the norm
can be ill-estimated if one curvature is negligible compared to the other one. The
construction of the previous error estimator allows to build an iterative scheme to
minimize the error for every pi . Starting from an initial radius R0 and a targeted
error e, the following iterative scheme adapt the radius to minimize the error.

Rk+1 =
(

e

||Hk||M(Rk)

) 1
3

(25)

If the error e is too small for the sampling distance, we choose to define the
neighborhood as the K-nearest neighbor of pi where K is user defined.

4 A Numerical Example

We show in this section the capability of our method to perform CFD on a complex
point sampled surface. The following point cloud has been acquired with the help
of a LIDAR and represents a part of the Rue Madame in Paris. Figure 3 shows the
acquired point cloud: The presence of holes in the point cloud is due to objects in the
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Fig. 3 Acquired point cloud of the Madame Street

Fig. 4 Computed Streamlines using our method of surface reconstruction

street such as cars, trees or bystanders. We reconstructed the Dirac function with the
help of our algorithm described in the last section. The targeted error is equal to e =
0.2. A wind comes from the right side of the street with a velocity of 0.1 m/s and we
study the streamlines of the flow. We use the mesh adaptation method [2] in order to
adapt the mesh around the iso-zero of the distance function. The computation of the
flow is made with the use of the Variational Multiscale Method [1]. Figure 4 shows
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Fig. 5 Computed Streamlines using IMLS reconstruction method

those streamlines. We can see that the Dirac function is a good representation of the
sampled surface. The quality of the computation we may proceed will be altered by
the presence of holes. The streamlines can deviate, especially on the left side, due
to the presence of holes. We can consider two methods to fill the holes. The first
one is to use a higher ε but we noticed the fact that it can create asperities. It is also
possible to use another reconstruction method that fill the holes such as the Implicit
Moving Least Square Method (IMLS) [4]. The same computation is performed with
the previous reconstruction technique. Figure 5 shows the streamlines of the wind
when holes are filled. The IMLS method is a time-consuming method. Our method
is more direct but the quality of the computation is extremely dependent of the
quality of the point cloud.

5 Conclusion

In this paper, we propose to extend the embedded boundary approaches (Immersed
boundary or immersed volume techniques) directly to a point cloud. This approach
bypasses the need of the surface mesh reconstruction from the raw data of the
3D points. A length distribution tensor field is associated with the point cloud
and calculated with the help of an error estimator giving rise to a pseudo normal
direction. This estimator is based on an invariant metric and on the computation of
the norm of the estimated Hessian matrix. CFD simulation can be achieved directly
from the point cloud by combining the proposed approach to a mesh adaptation
process and a finite element solver using the Variational Multiscale Method to
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perform CFD. The process is easy to implement and it opens the door to fluid flow
calculation from human-acquired point cloud data.
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Thermomechanically-Consistent
Phase-Field Modeling of Thin Film Flows

Christopher Miles, Kristoffer G. van der Zee, Matthew E. Hubbard,
and Roderick MacKenzie

Abstract We use phase-field techniques coupled with a Coleman–Noll type pro-
cedure to derive a family of thermomechanically consistent models for predicting
the evolution of a non-volatile thin liquid film on a flat substrate starting from mass
conservation laws and the second law of thermodynamics, and provide constraints
which must be met when modeling the dependent variables within a constitutive
class to ensure dissipation of the free energy. We show that existing models derived
using different techniques and starting points fit within this family. We regularise a
classical model derived using asymptotic techniques to obtain a model which better
handles film rupture, and perform numerical simulations in 2 and 3 dimensions
using linear finite elements in space and a convex splitting method in time to
investigate the evolution of a flat thin film undergoing rupture and dewetting on
a flat solid substrate.

Keywords Thin films · Thermomechanical consistency · Coleman–Noll
procedure · Phase-field model · Thin-film rupture · Dewetting · Free-energy
dissipation · Rational mechanics

1 Introduction

The ability to accurately predict the evolution of the morphology of a thin film has a
large range of applications, from the linings of mammalian lungs in biophysics and
lava flows in geology [11] to the fabrication of thin-film solar cells [6]. In the last
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case, it is particularly key to know the final morphology of the film, as dewetting
of the film on the substrate, driven by a combination of evaporation and interaction
energies such as disjoining pressures can cause poor surface coverage, resulting in
low device efficiency [3].

There are two main methods for developing a model to describe thin film
evolution. The first method is an asymptotic approach which assumes density,
viscosity and thermal conductivity are negligible in the vapour phase of the system,
and employs a long-wave approximation where it is assumed that the gradients
of the height and temperature functions are small in the area considered. This
methodology is demonstrated in full complexity by Burelbach et al. [1]. This method
is rigorous in its derivation in the sense that the resulting thin-film equations are
obtained from the bulk fluid equations. However, the resulting thin-film model may
have difficulty handling film rupture, when the height of the film becomes zero at a
point, and a hole forms.

The second method is an energy-gradient dynamics approach directly applied to
the film height, in which it is postulated that the energy of the system dissipates
according to gradient dynamics, and that the film grows towards an equilibrium
which is achieved at the minimal energy. Thiele [14] uses this method to build on
the work in [12] to describe phenomena such as dewetting and evaporation in thin
films. While this model is less rigorously derived, it is able to naturally cope with
film rupture.

In this paper, we introduce a general derivation for a family of thin-film flow
models based on the classical theory of thermomechanics and the Coleman–Noll
procedure [2, 7]. We derive the family of models using as a starting point the
fundamental axioms of conservation of mass and the second law of thermody-
namics. Following [5], we stipulate that the free energy of the film Ψ depends on
the film’s height and its gradient, Ψ = ̂Ψ (h,∇h). We then derive constraints on
the remaining constitutive variables, and allow these to additionally depend on the
variational derivative μ of the total free energy and its gradient, ∇μ. This ensures
energy dissipation for allowed choices made by the modeler. We show that the
above-mentioned models developed in [14] and [1] fit into our framework despite
having been derived from different starting points and with different techniques.
Finally, numerical simulations show how a small perturbation in a flat film evolves.
In order to enable the more rigorously derived asymptotic model to progress past
the point of film rupture, we use phase-field techniques to regularise this model
within our framework, and thereby guarantee consistency with the second law of
thermodynamics, i.e. free energy dissipation.

This paper is structured as follows. In Sect. 2 we derive a basic framework for thin
film models. We follow phase-field arguments to derive a family of simple models
to describe the evolution of thin films while ensuring energy dissipation in Sects. 3
and 4. In Sect. 5, we show that the model derived in [1] fits into this family when
evaporation is not taken into consideration. In Sect. 6, the model is regularised and
discretised using linear finite elements and numerical experiments are carried out.
Finally, concluding remarks are made in Sect. 7.
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2 Axioms

There are two key principles behind our derivation of a model for describing the
dynamics of a thin film on a flat substrate. First, by considering the conservation of
mass of a thin liquid film on a horizontal substrate D ⊂ R

n−1 where n = 2 or 3, we
derive an equation for the height function of the film h(x, t) for x ∈ D, t ≥ 0.

We follow the standard argument of considering the horizontal flux j across an
arbitrary sub-domain of the thin film, Ω ⊂ D, such as presented in [8]. We consider
the film to have constant density ρ = 1, and that rate of mass lost across the interface
of the film (due to evaporation for example) is given by R. From this, we obtain the
conservation of mass equation

∂h

∂t
+∇ · j = −R. (1)

The constitutive classes of j and R are chosen below.
The second key principle is a mechanical version of the second law of thermody-

namics. This states that the increase in free energy of an arbitrary control volume Ω
increases at a rate no greater than the work done on the region [7]. For some energy
functional F(Ω) = ∫Ω E dx, this can be written as

d

dt
F(Ω) = W (Ω)−D (Ω) , (2)

where W (Ω) contains the work done on Ω and the free energy flux through the
boundary ∂Ω , and D (Ω) ≥ 0 is the dissipation of the free energy.

The total energy density is given by E = Ψ +Ξ , where Ψ is the Helmholtz free
energy density of the system, and Ξ is a function encapsulating energies from other
sources, including kinetic energy, energy from magnetic fields and thermal energy
[16]. The constitutive class of Ψ , and the composition of Ξ are a choice to be made
by the modeler. In this work, we take Ξ ≡ 0, since non-zeroΞ requires independent
study.

3 Constitutive Dependence

Phase-field type models are driven by the variational derivative of the free energy
functional. We follow arguments made in [5] and consider the Helmholtz free energy
density Ψ to depend on h and its gradient, that is to say

Ψ = ̂Ψ (h,∇h) , (3)
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and the total energy functional is given by

F(Ω)[h] :=
∫

Ω

̂Ψ (h,∇h) dx. (4)

The variational derivative μ of F is defined as

μ = δF

δh
= ∂ĥΨ −∇ ·

(

∂∇ĥΨ
)

. (5)

An example of a classical choice for this energy which applies here is

̂Ψ (h,∇h) = W(h) + σ 2

2
|∇h|2 , (6)

with corresponding variational derivative

μ = W ′(h)− σ 2Δh, (7)

whereW(h) is a free energy function depending only on the height h, and the second
term is a surface energy contribution.

We now define a constitutive class for j and R in Eq. (1) by postulating that these
variables are dependent on h, the variational derivative μ, and the gradients of these
variables, that is to say

j =̂j (h,∇h,μ,∇μ) , (8)

R = ̂R (h,∇h,μ,∇μ) . (9)

Having set up the constituent classes for the dependent variables in the model,
we now derive constraints such that the second law of thermodynamics (2) holds.

4 Deriving Constraints

We follow the procedure outlined in [5]. Using that Ψ = ̂Ψ (h,∇h) the left hand
side of (2) equals:

d

dt

(∫

Ω

̂Ψ (h,∇h) dx
)

=
∫

Ω

(

∂ĥΨ ∂th+ ∂∇ĥΨ · ∂t (∇h)
)

dx, (10)
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where ∂x is the partial derivative with respect to x. Switching the time and space
derivatives in the last term of (10), integrating by parts, and using (5) we obtain

d

dt

(∫

Ω

̂Ψ (h,∇h)dx
)

=
∫

Ω

μ∂th dx +
∫

∂Ω

∂th∂∇ĥΨ · n ds. (11)

We can now substitute (1) into (11), and integrating by parts the term involving
μ∇ · j gives

d

dt

∫

Ω

Ψ dx = −
∫

Ω

(μR − j.∇μ) dx +
∫

∂Ω

(−μj+ ∂th∂∇ĥΨ
) · n ds. (12)

Comparing (12) to (2), we identify the domain integral to be the dissipation D(Ω)

and the boundary integral to be W(Ω), which are natural identifications, similar as
in earlier work [7].

Thus, a family of models that suitably describes the evolution of a thin film on a
solid substrate while ensuring energy dissipation is given by

∂h

∂t
+∇ ·̂j = −̂R, (13)

wherêj and ̂R are chosen to be as in (8) and (9) and

μ̂R −̂j · ∇μ ≥ 0, (14)

with μ = ∂ĥΨ −∇ ·
(

∂∇ĥΨ
)

.

5 Choices and Connections

In this section, we show that the family of models described above is consistent with
existing models for thin film evolution when the modeler makes particular choices
for the constitutive relations.

Thiele’s model [14] for a non-volatile case is given by

∂h

∂t
= ∇ ·

[

Mc(h)∇ δF

δh

]

, (15)

where Mc(h) ≥ 0 is the mobility function for the thin film and δF/δh is given
in (5), with F given in (4). It is clear that this model fits into the framework (13) with
̂R(h,∇h,μ,∇μ) = 0 and̂j(h,∇h,μ,∇μ) = −Mc(h)∇μ, and with these choices
it is also clear that constraint (14) is satisfied, implying the dissipation D(Ω) =
∫

Ω Mc(h)|∇μ|2 ≥ 0.
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We now show that the model derived using asymptotic approaches by Burelbach
et al. [1] also satisfies these requirements. Equation for a non-volatile case (R = 0)
given in [1] is

∂h

∂t
+ S∇ ·

(

h3∇Δh
)

+ ∇ ·
([

Ah−1
]

∇h
)

= 0, (16)

where A ≥ 0 is a non-dimensionalised version of the Hamaker constant, S ≥ 0 is
the non-dimensionalised surface tension, and Δ = ∇ · ∇.

Using the chain rule ∇f (h) = f ′ (h)∇h, with f (h) = h−3, (16) can be re-
written as

∂h

∂t
+ ∇ ·

[

−Sh3

σ 2 ∇
(

Aσ 2

3S
h−3 − σ 2Δh

)]

= 0. (17)

By considering ̂Ψ (h,∇h) as in (6), and choosing

W(h) = −Aσ 2

6S
h−2, (18)

we observe that (17) can be rewritten in terms of the variational derivative μ given
in (7), as

∂h

∂t
+ ∇ ·

[

−Sh3

σ 2
∇μ
]

= 0. (19)

Hence, by choosing ̂R(h,∇h,μ,∇μ) = 0 and̂j(h,∇h,μ,∇μ) = −Sh3σ−2∇μ
we see that the model fits the family defined in (13), with dissipation

D(Ω) =
∫

Ω

Sh3

σ 2
|∇μ|2 dx ≥ 0, (20)

for h ≥ 0.
A point of interest here is that the so-called disjoining pressure Π(h) chosen in

the derivation of the model (16) is given by Π(h) = −kW ′(h) = Ah−3 for constant
k = 3S

σ 2 , and so is directly proportional to −W ′(h), see also [15].

6 Regularisation of the Asymptotic Model

A characteristic of model (16) is that it breaks down as the film ruptures since
h−1 → ∞. In typical numerical simulations this breakdown is observed by h

becoming negative. To enable simulations to continue past the point of rupture one
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Fig. 1 Graphs of the original mobility m(h) (left) and free energy W(h) (right), along with the
regularised versions of these functions

can regularise the bulk free energyW(h) and the mobility function m(h) = Sh3σ−2

as follows.
The dotted lines in Fig. 1 show the non-regularisedm(h) and W(h). To regularise

the mobility, we force m(h) = 0 for h ≤ 0 (Fig. 1, left). To handle W(h), we choose
a small ε > 0 and construct W(h) to be quadratic for h < ε, and remain as given
in (18) for h ≥ ε. We require the minimum of W(h) to be at h = 0 and for the
function to be continuous with a continuous derivative. The regularised function is
given by

W(h) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1

6ε4h
2 − 1

3ε2 if h < ε,

−1

6
h−2 if h ≥ ε.

(21)

and is shown in Fig. 1, right. This regularization leads to a potential W(h) that is
similar to those used in thin-film models with so-called pre-cursor films (although
in our case the minimum of W(h) is located at h = 0 instead of the pre-cursor film
thickness); see for more details, e.g. [13].

To perform numerical simulations we use a linear finite element discretisation
in space for h and μ in (19) and (7), employing homogeneous Neumann boundary
conditions and triangular elements for the case of n = 3. For the time discretisation
we use a convex splitting method in which the non-linear term is split as W(h) =
W+(h) +W−(h) with W+(h) being convex and W−(h) being concave. It is shown
in [5] that if W+(h) is treated implicitly and W−(h) explicitly then the method is
energy stable. In addition, if ∃LW > 0 such that |W ′′(h)| ≤ LW ∀h then there exists
a convex split with W+(h) = LWh2/2. This is a useful property as it results in the
implicit terms being linear, removing the need to use a non-linear solver. Also, we
use a semi-implicit treatment of the mobility term m(h).
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Fig. 2 Left: Simulation with n = 2 of the regularised asymptotic model showing film rupture in
the domain D = [−π√2, π

√
2]. Right: Simulation with n = 3 showing how a small perturbation

in a flat thin film can result in a hole forming. Only half the domain D = [−π√2, π
√

2]×[0, π√2]
is shown to visualise the dewetted area and the final time of T = 6.25

Figure 2 shows examples of numerical solutions for n = 2 (left) and n = 3
(right). σ, S and A are taken to be 1. For n = 2, ε = 0.1 and Δt = 0.00032, with an
initial condition of h(x, 0) = 1 − 0.1 cos(x/

√
2). For n = 3, ε = 0.5, Δt = 0.025

and h(x, y, 0) = 1− 0.05(cos(x/
√

2)+ cos(y/
√

2)). The chosen initial conditions
represent a small perturbation in a flat film.

It is clear that the small perturbation in the film grows until the film ruptures, at
which point a hole forms and grows via dewetting.

7 Conclusion

In this work a family of thermomechanically consistent models for predicting the
evolution of a non-volatile thin liquid film on a flat substrate was derived from mass
conservation laws and the second law of thermodynamics, and it was shown that
existing models fit within this family. In particular, this allows for regularisations
that can be applied to modeling choices to better handle film rupture and dewetting.

In [13–15] more complex thin-film processes are described that require a change
in the energy functional W(h), but the general form of the equation remains
unchanged. Similarly, Lyushnin et al. [10] postulate a different choice of W(h) to
simulate fingering instabilities. Further, it can be shown that other existing models,
such as those developed in [4, 9] fit the framework, covering a wide range of
applications from introducing a regime to account for slip to the growth of dry
regions.

Current work being undertaken is directed at investigating volatile thin films,
where R �≡ 0 in (1), as well as multiphase extensions, which can be used to simulate
the evolution of a substance mixed with a volatile solvent, as in the fabrication of
thin-film solar cells.
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On the Sensitivity to Model Parameters
in a Filter Stabilization Technique
for Advection Dominated
Advection-Diffusion-Reaction Problems

Kayla Bicol and Annalisa Quaini

Abstract We consider a filter stabilization technique with a deconvolution-based
indicator function for the simulation of advection dominated advection-diffusion-
reaction (ADR) problems with under-refined meshes. The proposed technique has
been previously applied to the incompressible Navier-Stokes equations and has
been successfully validated against experimental data. However, it was found that
some key parameters in this approach have a strong impact on the solution. To
better understand the role of these parameters, we consider ADR problems, which
are simpler than incompressible flow problems. For the implementation of the
filter stabilization technique to ADR problems we adopt a three-step algorithm
that requires (1) the solution of the given problem on an under-refined mesh, (2)
the application of a filter to the computed solution, and (3) a relaxation step. We
compare our deconvolution-based approach to classical stabilization methods and
test its sensitivity to model parameters on a 2D benchmark problem.

Keywords Advection-diffusion-reaction problems · Nonlinear filtering ·
Approximate deconvolution

1 Introduction

We adapt to time-dependent advection-diffusion-reaction (ADR) problems a filter
stabilization technique proposed in [12] for evolution equations and mostly devel-
oped for the Navier-Stokes equations [4, 12, 22]. This technique applied to the
Navier-Stokes equations has been extensively tested on both academic problems
[4, 12, 22] and realistic applications [2, 26]. It was found in [2] that key parameters
in this approach have a strong impact on the solution. In order to understand the role
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of these key parameters, we apply the filter stabilization technique in the simplified
context of ADR problems.

It is well known that the Galerkin method for advection dominated ADR
problems can lead to unstable solutions with spurious oscillations [6, 8, 10, 15, 16,
18, 24]. The proposed stabilization technique cures these oscillations by using an
indicator function to tune the amount and location of artificial viscosity. The main
advantage of this technique is that it can be easily implemented in legacy solvers.

2 Problem Definition

We consider a time-dependent advection-diffusion-reaction problem defined on a
bounded domain Ω ∈ R

d , with d = 2, 3, over a time interval of interest (0, T ]:

∂tu− μΔu+ ∇ · (bu)+ σu = f in Ω × (0, T ], (1)

endowed with boundary conditions:

u = uD on ∂ΩD × (0, T ], (2)

μ∇u · n = g on ∂ΩN × (0, T ], (3)

and initial condition u = u0 in Ω × {0}. Here ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩
∂ΩN = ∅ and uD , g, and u0 are given. In (1)–(3), μ is a diffusion coefficient, b is
an advection field, σ is a reaction coefficient, and f is the forcing term. For the sake
of simplicity, we consider μ, b, and σ constant.

Let L be a characteristic macroscopic length for problem (1)–(3). To
characterize the solution of problem (1)–(3), we introduce the Péclet number:
Pe = ||b||∞L/(2μ). We will assume that the problem is convection dominated, i.e.
||b||∞ ' μ, which implies large Péclet numbers. Notice that the role of the Pe for
advection-diffusion-reaction problems is similar to the role played by the Reynolds
number for the Navier-Stokes equations.

In order to write the variational formulation of problem (1)–(3), we define the
following spaces:

V =
{

v : Ω → R, v ∈ H 1(Ω), v = uD on ∂ΩD

}

,

V0 =
{

v : Ω → R, v ∈ H 1(Ω), v = 0 on ∂ΩD

}

.

and bilinear form

b(u,w) = (μ∇u,∇w)Ω + (∇ · (bu),w)Ω + (σu,w)Ω. (4)
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The variational form of problem (1)–(3) reads: Find u ∈ V such that

(∂tu,w)Ω + b(u,w) = (f,w)Ω + (g,w)∂ΩN , ∀w ∈ V0. (5)

The conditions for existence and unicity of the solution of problem (5) can be found,
e.g., in [24, Chapter 12].

For the time discretization of problem (5), we consider the backward Euler
scheme for simplicity. Let Δt ∈ R, tn = nΔt , with n = 0, . . . , NT and T =
NTΔt . We denote by yn the approximation of a generic quantity y at the time tn.
Problem (5) discretized in time reads: given u0 = u0, for n ≥ 0 find un+1 ∈ V such
that

1

Δt
(un+1, w)Ω + b(un+1, w) = 1

Δt
(un,w)Ω + (f n+1, w)Ω + (gn+1, w)∂ΩN ,

(6)

∀w ∈ V0. We remark that time discretization approximates problem (5) by a
sequence of quasi-static problems (6). In fact, we can think of Eq. (6) as the
variational formulation of problem:

Ltu
n+1 = f n+1

t , (7)

where

Ltu
n+1 = −μΔun+1 +∇ · (bun+1)+

(

σ + 1

Δt

)

un+1, f n+1
t = un

Δt
+ f n+1.

With regard to space discretization, we use the Finite Element method. Let Th =
{K} be a generic, regular Finite Element triangulation of the domain Ω composed
by a set of finite elements, indicated by K . As usual, h refers to the largest diameter
of the elements of Th. Let Vh and V0,h be the finite element spaces approximating
V and V0, respectively. The fully discrete problem reads: given u0

h, for n ≥ 0 find
un+1
h ∈ Vh such that

1

Δt
(un+1

h ,w)Ω + b(un+1
h ,w) = 1

Δt
(unh,w)Ω + (f n+1

h ,w)Ω + (gn+1
h ,w)∂ΩN ,

(8)

∀w ∈ V0,h, where u0
h, f n+1

h , and gn+1
h are appropriate finite element approximations

of u0, f n+1, and gn+1, respectively. It is known that the solution of problem (8) con-
verges optimally to the solution of problem (5). However, the Finite Element method
can perform poorly if the coerciveness constant of the bilinear form (4) is small in
comparison with its continuity constant. In particular, the error estimate can have
a very large multiplicative constant if μ is small with respect to ||b||∞, i.e. when
Pe is large. In those cases, the finite element solution uh can be globally polluted
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with strong spurious oscillations. To characterize the solution of problem (8), we
introduce the local counterpart of the Péclet number: Peh = ||b||∞h/(2μ).

Several stabilization techniques have been proposed to eliminate, or at least
reduce, the numerical oscillations produced by the standard Galerkin method in case
of large Pe. In the next section, we will go over a short review of these stabilization
techniques before introducing our filter stabilization method in Sect. 3.

2.1 Overview of Stabilization Techniques

We will restrict our attention to stabilization techniques that consists of adding a
stabilization term bs(u

n+1
h ,w) to the left-hand side of time-discrete problem (6).

In the following, we will use τ to denote a stabilization parameter that can depend
on the element size h and the equation coefficients. Parameter τ takes different
values for the different stabilization schemes. We will use the broken inner product
(·, ·)K =∑K(·, ·), where

∑

K denotes summation over all the finite elements.
Perhaps the easiest way to stabilize problem (6) is by introducing artificial

viscosity either in the whole domain, leading to bs(u
n+1
h ,w) = (τ∇un+1

h ,∇w)K ,
or streamwise, leading to bs(u

n+1
h ,w) = (τb · ∇un+1

h ,b · ∇w)K . See, e.g., [16, 24].
In this way, the effective Peh becomes smaller. The artificial viscosity τ in these
schemes is proportional to h. The drawbacks of these schemes are that they are first
order accurate only and not strongly consistent. An improvement over the artificial
viscosity schemes is given by the strongly consistent stabilization methods. In fact,
strong consistency allows the stabilized method to maintain the optimal accuracy.

Let us introduce the residual for problem (7) and the skew-symmetric part of
operator Lt :

R(un+1
h ) = f n+1

t − Ltu
n+1
h , LSSv = 1

2
∇ · (bv)+ 1

2
b · ∇v.

One of the most popular strongly consistent stabilized finite element methods is the
Streamline Upwind Petrov-Galerkin (SUPG) method [6], for which bs(u

n+1
h ,w) =

−(τR(un+1
h ), LSSw)K . The Galerkin Least Squares (GLS) method [18] is a

generalization of the SUPG method: bs(u
n+1
h ,w) = −(τR(un+1

h ), Ltw)K . The
Douglas-Wang method [10] replaces Ltw in the GLS method with −L∗t w, where
L∗t is the adjoint of operatorLt . Thus, we have: bs(u

n+1
h ,w) = (τR(un+1

h ), L∗t w)K .
For the SUPG, GLS, and Douglas-Wang methods, τ = δhK/|b| for δ > 0. Finally,
we mention a method based on the Variational Multiscale approach [15] called
algebraic subgrid scale (ASGS), for which bs(u

n+1
h ,w) = (τR(un+1

h ), L∗t w)K . The
difference between the Douglas-Wang and ASGS method consists in the choice for
parameter τ . One possibility for τ in the ASGS method is τ = [4μ/h2

K+2|b|/hK+
σ ]−1 (see [8]).
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Table 1 Stabilization term bs(u
n+1
h ,w) for some stabilization methods

Stabilization method bs(u
n+1
h ,w)

Not strongly consistent Artificial viscosity (τ∇un+1
h ,∇w)K

Streamline upwind (τb · ∇un+1
h ,b · ∇w)K

Strongly consistent Streamline upwind Petrov-Galerkin −(τR(un+1
h ), LSSw)K

Galerkin least-squares −(τR(un+1
h ), Ltw)K

Douglas-Wang (τR(un+1
h ), L∗t w)K

Variational multiscale, ASGS (τR(un+1
h ), L∗t w)K

We report in Table 1 a summary of the methods in this overview. All of
the strongly consistent stabilization techniques come with stability estimates that
improve the one that can be obtained for the Galerkin method. See [6, 8, 10, 15, 18,
24].

3 A Filter Stabilization Technique

We adapt to the time-dependent advection-diffusion-reaction problem defined in
Sect. 2 a filter stabilization technique proposed in [12]. For the implementation of
this stabilization technique we adopt an algorithm called evolve-filter-relax (EFR)
that was first presented in [22]. The EFR algorithm applied to problem (7) with
boundary conditions (2)–(3) reads: given un

(i) Evolve: find the intermediate solution vn+1 such that

Ltv
n+1 = f n+1

t in Ω, (9)

vn+1 = uD on ∂ΩD, (10)

μ∇vn+1 · n = g on ∂ΩN. (11)

(ii) Filter: find vn+1 such that

vn+1 − δ2∇ · (a(vn+1)∇vn+1) = vn+1 in Ω, (12)

vn+1 = uD on ∂ΩD, (13)

μ∇vn+1 · n = 0 on ∂ΩN. (14)

Here, δ can be interpreted as the filtering radius (that is, the radius of the
neighborhood were the filter extracts information) and a(·) ∈ (0, 1] is a scalar
function called indicator function. The indicator function has to be such that
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a(vn+1) % 1 where vn+1 does need to be filtered from spurious oscillations,
and a(vn+1) % 0 where vn+1 does not need to be filtered.

(iii) Relax: set

un+1 = (1− χ)vn+1 + χvn+1, (15)

where χ ∈ (0, 1] is a relaxation parameter.

The EFR algorithm has the advantage of modularity: since the problems at steps
(i) and (ii) are numerically standard, they can be solved with legacy solvers without
a considerable implementation effort. Algorithm (9)–(15) is sensitive to the choice
of key parameters δ and χ [2, 3]. A common choice for δ is δ = h. However, in
[2] it is suggested that taking δ = h might lead to excessive numerical diffusion
and it is proposed to set δ = hmin, where hmin is the length of the shortest edge in
the mesh. As for χ , in [22] the authors support the choice χ = O(Δt) because it
guarantees that the numerical dissipation vanishes as h → 0 regardless of Δt . In
[2] the value of χ is set with a heuristic formula which depends on both physics and
discretization parameters.

Remark 3.1 The choice of the filtering radius δ is still an open problem when
dealing with non-uniform grids. As we mentioned before, it is a common choice
to set δ = h, where h usually refers to the largest diameter of the elements of the
mesh. When using this choice with non-uniform grids, the region where the filter has
a significant effect would not be guaranteed to be confined within a single element
and may include also one (or more) neighboring elements for the smallest elements.
This could lead to excessive numerical diffusion. In order to avoid this issue, in
Sect. 4 we use uniform, structured grids.

Different choices of a(·) for the Navier-Stokes equations have been proposed
and compared in [5, 19, 22, 25]. Here, we focus on a class of deconvolution-based
indicator functions:

a(u) = aD(u) = |u−D(F(u))| , (16)

where F is a linear, invertible, self-adjoint, compact operator from a Hilbert space
V to itself, and D is a bounded regularized approximation of F−1. In fact, since
F is compact, the inverse operator F−1 is unbounded. The composition of the two
operators F and D can be interpreted as a low-pass filter.

A possible choice for D is the Van Cittert deconvolution operator DN , defined as

DN =
N
∑

n=0

(I − F)n.

The evaluation of aD with D = DN (deconvolution of order N) requires then to
apply the filter F a total of N + 1 times. Since F−1 is not bounded, in practice N
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is chosen to be small, as the result of a trade-off between accuracy (for a regular
solution) and filtering (for a non-regular one).

We select F to be the linear Helmholtz filter operator FH [14] defined by

F = FH ≡
(

I − δ2Δ
)−1

.

It is possible to prove [11] that

u−DN(FH (u)) = (−1)N+1δ2N+2ΔN+1FN+1
H u. (17)

Therefore, aDN (u) is close to zero in the regions of the domain where u is smooth.
Indicator function (16) with D = DN and F = FH has been proposed in [4] for
the Navier-Stokes equations. Algorithm (9)–(15) with indicator function (16) is also
sensitive to the choice of N [2, 3].

In order to compare our approach with the stabilization techniques reported
in Sect. 2.1, let us assume that problem (1) is supplemented with homogeneous
Dirichlet boundary conditions on the entire boundary, i.e. ∂ΩD = ∂Ω and uD = 0
in (2). Let us start by writing the weak form of Eq. (9):

(Ltv
n+1, w) =

(

f n+1
t , w

)

Ω
. (18)

Next, we apply operator Lt to Eq. (12) and write the corresponding weak form,
using also Eq. (18):

(Ltv
n+1, w)− (∇ · (μ∇vn+1), L∗t w) =

(

f n+1
t , w

)

Ω
, μ = δ2a(vn+1).

(19)

Here, μ is the artificial viscosity introduced by our stabilization method. Now, we
multiply Eq. (18) by (1 − χ) and add it to Eq. (19) multiplied by χ . Using the
relaxation step (15), we obtain:

(Ltu
n+1, w)− χ(∇ · (μ∇vn+1)), L∗t w) =

(

f n+1
t , w

)

Ω
, (20)

The second term at the left-hand side in (20) is the stabilization term added by the
filter stabilization technique under consideration. Notice that Eq. (20) is a consistent
perturbation of the original advection-diffusion-reaction problem. The perturbation
vanishes with coefficient χ , which goes to zero with the discretization parameters
(recall that a possible choice is χ = O(Δt)). Using (15) once more, we can rewrite
the stabilization term as:

bs(u
n+1, w) = −(∇ · (μ∇un+1), L∗t w)+ (1− χ)(∇ · (μ∇vn+1), L∗t w). (21)
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We see that the stabilization term here does not depend only on the end-of-step
solution un+1. We remind that usually δ = h. Thus, as h→ 0 the artificial viscosity
μ in (19) vanishes. It is then easy to see that the filter stabilization technique we
consider is consistent, although not strongly.

4 Numerical Results

We consider a benchmark test proposed in [20]. The prescribed solution is given by:

u(x, y, t) =16 sin(πt)x(1− x)y(1− y)

·
[

1

2
+ arctan(2μ−1/2(0.252 − (x − 0.5)2 − (y − 0.52)))

π

]

, (22)

in Ω = (0, 1) × (0, 1) and in time interval (0, 0.5]. We set σ = 1, μ = 10−5,
and b = [2, 3]T , which yield Pe = 1.5 · 105. Solution (22) is a hump changing its
height in the course of the time. The internal layer in solution (22) has size O(

√
μ).

The forcing term f in (1) and the initial condition u0 follow from (22). We impose
boundary condition (2) with uD = 0 on the entire boundary, which is consistent
with exact solution (22). We use this test to compare the solution computed by the
EFR method with the solution given by other methods, and to show the sensitivity
of the solution computed by the EFR method to parameters N and δ. The sensitivity
to χ will be object of future work. All the computational results have been obtained
with FEniCS [1, 13, 23].

We take Δt = 10−3. We consider structured meshes with 5 different refinement
levels " = 0, · · · , 4 and P2 finite elements. Triangulation Th" of Ω consists of n2

"

sub-squares, each of which is further divided into 2 triangles. The associated mesh
size is h" =

√
2/n". In Table 2, we report n" and Peh for each of the meshes under

consideration. We see that even on the finest mesh, the local Péclet number is much
larger than 1. Table 2 gives also the value of χ used for the EFR method on the
different meshes.

Since the problem is convection-dominated and the solution has a (internal) layer,
the use of a stabilization method is necessary. See Fig. 1(left) for a comparison of
the solution at t = 0.5 computed on mesh " = 0 with the standard Galerkin element
method, the SUPG method, and the EFR method with δ = 1/n" and N = 0.We

Table 2 Number of partitions n" for each side, local Péclet number Peh, and value of χ for the
EFR method for the meshes associated to 5 different refinement levels

Refinement level " = 0 " = 1 " = 2 " = 3 " = 4

n" 25 50 100 200 400

Peh 8485.3 4242.6 2121.3 1060.7 530.3

χ 1 1/2 1/4 1/16 1/256



A Filter Stabilization Technique for ADR Problems 139

Fig. 1 Left: Solution at t = 0.5 computed on mesh " = 0 with (a) the standard Galerkin method,
(b) the SUPG method, and (c) the EFR method with δ = 1/n" and N = 0. Right: L2 and H 1

norms of the error for u at t = 0.5 given by the standard Galerkin method (E), the SUPG method,
and the EFR method plotted against the refinement level

see that the solution obtained with the non-stabilized method is globally polluted
with spurious oscillations. Oscillations are still present in SUPG method (mainly
at the top of the hump and in the right upper part of the domain), but they are
reduced in amplitude. The amplitude of the oscillations is further reduced in the
solution computed with the EFR method. The other strongly consistent stabilization
methods reported in Sect. 2.1 give results very similar to the SUPG methods. For
this reason, those results are omitted. Figure 1(right) shows the L2 and H 1 norms of
the error for the solution at t = 0.5 plotted against the mesh refinement level ". We
observe that the EFR method gives errors comparable to those given by the SUPG
method on the coarser meshes. When the standard Galerkin method gives a smooth
approximation of the solution, e.g. with mesh " = 4, the errors given by the EFR
method are comparable to the errors given by the standard Galerkin method. In fact
although mesh " = 4 is characterized by Peh = 530.3, the L2-error is 4.5 · 10−4

and the solution (not shown for space constraints) does not display oscillations.
In Fig. 2, we report the minimum value (left) and maximum value (right) of

the solution at t = 0.5 computed by the standard Galerkin method, the SUPG
method, and EFR method with δ = 1/n" and N = 0 plotted against the refinement
level ". The SUPG method does not eliminate the under- and over-shoots given by
a standard Galerkin method but it reduces their amplitude. It is well-known that
all finite element methods that rely on streamline diffusion stabilization produce
under- and over-shoots in regions where the solution gradients are steep and not
aligned with the direction of b. From Fig. 2, we see that the EFR method gives
under- and overs-shoots of smaller or comparable amplitude when compared to
the SUPG method. In some practical applications, such imperfections are small in
magnitude and can be tolerated. In other cases, it is essential to ensure that the
numerical solution remains nonnegative and/or devoid of spurious oscillations. This
can be achieved with, e.g., discontinuity-capturing or shock-capturing techniques
[7, 9, 17, 21]. However, this is outside the scope of the present work.
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Fig. 2 Minimum value (left) and maximum value (right) of the solution at t = 0.5 computed by
the standard Galerkin method (E), the SUPG method, and the EFR method with δ = 1/n", N = 0,
and χ = 1 plotted against the refinement level

Fig. 3 Left: L2 and H 1 norms of the error for u at t = 0.5 given by the EFR method with δ = 1/n"
and N = 0, 1, 2, 3 plotted against the refinement level. Right: zoomed-in view around " = 0, 1

Next, we focus on the EFR algorithm and vary the order of the deconvolution
N . In Fig. 3(left) we show L2 and H 1 norms of the error for u at t = 0.5 given by
the EFR method with δ = 1/n" and N = 0, 1, 2, 3 plotted against the refinement
level. The only visible difference when N varies is for the finer meshes, with both
errors slightly decreasing as N is increased. Figure 3(right) displays a zoomed-in
view of Fig. 3(left) around " = 0, 1. It shows that also for the coarser meshes the
errors get slightly smaller when N increases. We recall that indicator function (16)
with D = DN requires to apply the Helmholtz filter N + 1 times. So, the slightly
smaller errors for large N come with an increased computational time.

In Fig. 4, we report the indicator function at t = 0.5 for δ = 1/n" and N =
0, 1, 2, 3. In all the cases, the largest values of the indicator function are around the
edge of the hump. Moderate values are aligned with the direction of b. While we
see some differences in the indicator functions for N = 0 and N = 1, for N > 1
the indicator function does not seem to change substantially.

Finally, we fix N = 0 and vary δ. In Fig. 5(left) we show L2 and H 1 norms of
the error for u at t = 0.5 given by the EFR method with δ = c/n", c = 1,

√
2, 2, 5,
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Fig. 4 Indicator function on mesh " = 2 at t = 0.5 for δ = 1/n" and N = 0, 1, 2, 3

Fig. 5 Left: L2 and H 1 norms of the error for u at t = 0.5 given by the EFR method with N = 0
and δ = c/n" , c = 1,

√
2, 2, 5, plotted against the refinement level. Right: solution at t = 0.5

computed by the EFR method with δ = 5/n" on mesh " = 0

plotted against the refinement level. Notice that c = √2 corresponds to the choice
δ = h, while c = 1 corresponds to δ = hmin. In [2], it was found that δ = hmin

makes the numerical results (for a Navier-Stokes problem on unstructured meshes)
in better agreement with experimental data. Our results confirm that δ = hmin is the
best choice. In fact, it minimizes the error and gives optimal convergence rates.
Higher values of c, i.e. c > 1, seem to spoil the convergence rate of the EFR
method. From Figs. 3(left) and 5(left) we see that the computed solution is much
more sensitive to δ than it is to N . Figure 5(right) shows the solution at time t = 0.5
computed by the EFR method with δ = 5/n" on mesh " = 0. Remember that δ
is the filtering radius, i.e. the radius of the circle over which we average (in some
sense) the solution. Thus, it is not surprising that for a large value of δ the EFR
method has an over-smoothing effect.

5 Conclusions

We considered a deconvolution-based filter stabilization technique recently pro-
posed for the Navier-Stokes equations and adapted it to the numerical solution
of advection dominated advection-diffusion-reaction problems with under-refined
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meshes. Our stabilization technique is consistent, although not strongly. For the
implementation of our approach we adopted a three-step algorithm called evolve-
filter-relax (EFR) that can be easily realized within a legacy solver. We showed that
the EFR algorithm is competitive when compared to classical stabilization methods
on a benchmark problem that features an analytical solution. However, special care
has to be taken in setting the filtering radius δ in order to avoid over-smoothing.

Acknowledgement This research has been supported in part by the NSF under grants DMS-
1620384.
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One-Dimensional Line SIAC Filtering
for Multi-Dimensions: Applications
to Streamline Visualization

Jennifer K. Ryan and Julia Docampo-Sanchez

Abstract Smoothness-Increasing Accuracy-Conserving (SIAC) filters for Discon-
tinuous Galerkin (DG) methods are designed to increase the smoothness and
improve the convergence rate of the DG solution through post-processing. These
advantages can be exploited during flow visualization, for example by applying the
SIAC filter to DG data before streamline computations. However, introducing these
filters in engineering applications can be challenging since the filter is based on a
convolution over an area of [(r + " + 1)h]d, where d is the dimension, h is the
uniform element length, and r and " depend on the construction of the filter. This
can become computationally prohibitive as the dimension increases. However, by
exploiting the underlying mathematical framework, this problem can be overcome
in order to realize a technique that allows for appropriate filtering along a streamline
curve. Numerical experiments of such an idea were proposed in Walfisch et al. (J
Sci Comput 38(2):164–184, 2009). Here, we review the introduction of the Line
SIAC post-processing filter by Docampo et al. (SIAM J Sci Comput 39(5):A2179–
A2200, 2017), which showed how the underlying mathematics can be exploited to
make the SIAC filter more tractable and illustrate the promise of LSIAC in assisting
in streamline visualization.
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1 Introduction and Motivation

The goal of a numerical simulation is to provide an approximate solution of a
model designed to understand a physical problem such as flow past an aircraft
or weather forecasting. Hence, it is necessary to apply visualisation techniques
that extract and evaluate the information from the numerical solution. Vector field
visualisation through streamlines is a popular post-processing technique employed
to understand fluid flow behaviour. Streamlines, curves everywhere tangent to the
velocity field, are described by an Ordinary Differential Equation (ODE) which can
be solved using many techniques including Runge-Kutta methods [1]. However,
the theoretical error estimates of these methods rely on Taylor series and therefore
assume smooth field conditions. Vector fields obtained through a DG method present
constraints since the solution is only continuous inside each element. A suitable
solver for computing streamlines over non-smooth fields has to be able to detect,
locate and effectively step over a discontinuity [6]. This can be achieved through
a Predictor-Corrector method [7, 10] or by controlling the error through adaptive
step size methods such as the Runge-Kutta-Fehlberg solvers [4, 5]. The downside of
these methods is that they require intense computations since detecting and passing
over a discontinuity implies increasing the number of evaluations per iteration.

Alternatively, Smoothness-Increasing Accuracy-Conserving (SIAC) filters can
be applied to obtain a local smooth solution where a relatively simple ODE solver
can be implemented. Furthermore, since the filtered solution usually reduces the
error from the DG approximation, the new filtered velocity field should lead to
more accurate field lines [17, 18]. An example streamline calculation is illustrated
in Fig. 1a. In this figure, three different streamlines are shown, with the exact
streamline in black, the streamline obtained using DG in blue, and the SIAC
filtered DG solution in red. For the top two streamlines, all three calculations
coincide. For the bottom streamline, the calculation using DG data without post-
processing deviates from the exact streamline. However, the SIAC post-processed
streamline remains close to the exact streamline. Traditionally, the post-processor
for a 2D field is a tensor product of one-dimensional functions. This can pose
computational challenges as the area required to post-process one point in d-
dimensions is [(r + " + 1)h]d , where r and " depend on the construction of the
filter and h is the uniform mesh size. This is illustrated in Fig. 1b for d = 2.
Each colored quadrilateral represents a section where Gaussian quadrature needs
to be performed. Line SIAC significantly reduces the computational support as it is
performed along a one-dimensional line. In addition to visualizing streamlines, Line
SIAC post-processing can be of assistance when visualizing vorticity [8].

Applying SIAC filters for flow visualisation implies combining different kernel
types. For example, during streamline computations, since particles can move across
the entire field, the filter has to be able to post-process points at the boundaries of
the computational domain. In previous experiments, numerical results were given
for the one dimensional boundary filters. The error plots suggested that these filters
are not as effective as the symmetric filters when reducing the error from the
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Fig. 1 (a) Plot of streamlines. (b) An illustration of the computational support size of the 2D
kernel in order to post-process one point. Each colored quadrilateral represents a section where
Gaussian quadrature needs to be performed

DG approximation [2]. Numerical results for Line filters suggest that alternative
orientations to those for which superconvergence can be proven still lead to error
reduction. This was observed for the cases where the filter was oriented using the
flow direction or when symmetries from the initial condition were used to choose
the orientation [3]. The results showed that for such alignments, the filtered solution
presented lower errors than the original one. This can be exploited further near the
boundaries, rotating the filter conveniently to fit a symmetric kernel, thus avoiding
shifting its support. Here, we present one investigation of the potential of Line
SIAC filters for accuracy enhancement during flow visualisation. Further results are
presented in [2].

2 Background

Traditionally, Smoothness-Increasing Accuracy-Conserving filtering has been
designed to recover smoothness and extract up to 2p+ 1 order accuracy [9, 12, 14–
16]. The post-processing filter is applied to the given data at the final time,

u#h(x, T ) =
1

Hd

∫

Rd

K(r+1,")
(

x1 − y1

H

)

· · ·K(r+1,")
(

xd − yd

H

)

︸ ︷︷ ︸

Tensor product kernel

uh(y, T )
︸ ︷︷ ︸

Input data

dy,

(1)
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Fig. 2 (a) The first three B-splines (ψ(1)(x) in blue, ψ(2)(x) in red, and ψ(3)(x) in green). (b) The
SIAC kernel for piecewise linear data using three B-splines of order two

where y = (y1, y2, . . . , yd) represents the cartesian coordinate system. The
convolution kernel, K(r+1,")(x), consists of a linear combination of r+1 B-Splines
of order " :

K(r+1,")(η) =
r
∑

γ=0

cγ
︸︷︷︸

weights

ψ(")(η − xγ )
︸ ︷︷ ︸

B-Splines

. (2)

The weights in the kernel are designed to ensure that the post-processor is consistent
and maintains the first r moments. The order of the B-spline, ", effectively
determines the amount of oscillations allowed in the error as well as allowing for
continuity of "− 2. This leads to a kernel support size of [(r + "+ 1)H ]d, where d
is the dimension, and H is the filter scaling which is typically the uniform mesh size
(cf. Fig. 1b). In Fig. 2a, an illustration of the first three B-splines is given. In Fig. 2b,
the symmetric kernel for piecewise linear data using three B-splines of order two is
given.

3 Line SIAC Filters: Reducing the Filter Dimension

Although the tensor product kernel has been shown to aid in reducing the errors and
improve the ability to visualize streamlines resulting from DG solutions [17], the
computational cost can be prohibitive with dimension. Instead, a Line SIAC filter is
proposed to handle such applications.

The 2D Line SIAC filter is essentially a rotated 1D SIAC filter applied along
a prescribed direction, Γ (t) = t (cos θ, sin θ) + (x, y), where θ is a fixed angle
and (x, y) is the evaluation point. The Line SIAC kernel is constructed as a linear
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combination of these (scaled) B-Splines:

K
(r+1,")
Γ,H (t) =

( r2 )
∑

γ=−( r2 )
cγψ

(")
H (t − γ ), ψ

(")
H (t − γ ) = 1

H
ψ(")

(

t

H
− γ

)

.

(3)

The 2D convolution for the Line SIAC filter in cartesian coordinate is given by:

u#(x, y) = 1

H

∫

Γ

KΓ,H

(

t

H

)

uh(Γ (t))dt, (4)

where, again, we have used that Γ (t) = t (cos θ, sin θ)+ (x, y) and ||Γ ′(t)|| = 1.

4 Numerical Results

In the following experiments, the potential of Line filters for accuracy enhancement
is demonstrated. More complete results that include comparisons to tensor product
and boundary filters are given in [2].

We present the potential of the Line SIAC filter by applying it to the following
field:

z = x + iy, u = Re(r), v = −Im(r),

where the field, CF1, was given by:

r =(z− (0.74+ 0.35i))(z− (0.68− 0.59i))(z− (−0.11− 0.72i)) (5)

(z− (−0.58+ 0.64i))(z− (0.51− 0.27i))(z− (−0.12+ 0.84))2. (6)

This field has been studied before for 2D symmetric filtering in [17] and for
more general filters in [9, 11]. The computational domain used for the simulations
corresponded to Ω = [−1, 1] × [−1, 1], using two uniform quadrilateral meshes
made of 40 × 40 and 80 × 80 elements respectively. The unfiltered solutions
were obtained by performing the L2-projection of the function onto a piecewise
polynomial basis which mimics a DG solution at the initial time.

This experiment was done over a DG approximation using P
1 polynomials. The

filtered solutions were obtained using a K
(3,2)
H symmetric Line filter with scaling

H = √2h, h being the DG mesh size. The flow based filters were calculated
in the following way: the first orientation (at streamline seed) was chosen to be
3π/4. The rest of the points were post-processed using the direction given by the
last two computed streamline points. Both the unfiltered and filtered streamlines
were computed using the RK2 method with time step dt = 0.01. The final time
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was determined by the exact streamline, corresponding to the last point inside
the computational domain or when a streamline reached zero velocity. The exact
streamlines were obtained by implementing the RK4 method with time step dt =
1e−5 directly on the analytic velocity fields. The choice for the angle relies on the

fact that for the proof of superconvergence, the rotation angle is θ = arctan
(

hx
hy

)

.

For a mesh made of uniform square elements, this implies θ = π/4 or θ = 3π/4.
In addition, since other orientations also allowed for error reduction, filters oriented
using flow information have also been implemented.

Figure 3 shows streamlines belonging to the velocity field CF1 (Eq. (5)) using
three different filter orientations based on the underlying mesh (θ = π/4, 3π/4)
and the flow direction. Observe how the flow based filters produced a diverging
streamline for the lower seed (starting at a critical point) even after mesh refinement.
The π/4 and 3π/4 filtered streamlines converge towards the exact curve. Note that
the π/4 Line filter performs better since for a coarse mesh (40 × 40 elements),
the filtered streamline moved away from the exact solution initially and eventually
converged towards the exact streamline.

Table 1 shows two error estimates; the first is a local error computed as a
maximum error from each iteration,

max
n=0:N en = max

n=0:N d(pn, p̃n), (7)

where d(p, p̃) denotes the Euclidean distance, pn and p̃n the exact and approximate
solutions respectively. The global error corresponds to the difference between the
solutions at final time. The errors in this table show that even when both the
filtered and unfiltered streamlines converge, the filtered solution has generally lower
values. Regarding the differences between both filters, the numbers are very similar,
especially after mesh refinement. The results suggest that both the π/4 and 3π/4
orientations are suitable for effective post-processing. These orientations should
be chosen (whenever possible) instead of flow aligned filters since the latter ones
require longer and more complicated computations and do not seem to produce
more accurate streamlines.

5 Conclusions and Future Work

In this article, a small exploration into the applications of Line filtering during flow
visualisation. A more detailed exploration is given in [2]. The Line SIAC filter
has demonstrated the ability of these filters to recover smoothness and increase the
accuracy from the original DG solution. Here, the filters have been applied to more
general vector fields (including singularities) and the results suggest that this post-
processor enhances the accuracy from the original solution, leading in this case to
more accurate streamlines.
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Fig. 3 Streamlines along CF1 (Eq. (5)) for two meshes (N = 40 × 40 and N = 80× 80) before
and after applying different symmetric Line Filters (LFs) using the RK2 solver with dt = 0.01.
The plots where the exact curve cannot be seen is because it overlaps with the filtered streamline
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Table 1 Maximum Distance (MD) taken as the greatest point distance between each iteration
and Global Errors (GE) measuring the point distance at final time comparing unfiltered and filtered
streamlines for Line filters over the CF1 velocity field and two different meshes (N = 40×40 and
N = 80× 80)

CF1

Line filtering: H = √2h

Unfiltered θ = π/4 θ = 3π
4

Seed MD GE MD GE MD GE

N = 40× 40

(−0.6,−0.651) Diverged 2.1e−01 3.0e−02 DIV DIV

(−0.6,−0.192) 4.0e−03 9.7e−04 6.1e−03 1.6e−04 3.1e−02 8.9e−05

(−0.8,−0.3) 4.1e−02 4.1e−02 3.8e−02 3.8e−02 2.2e−02 2.2e−02

N= 80× 80

(−0.6,−0.651) Diverged 4.3e−02 7.3e−03 4.1e−02 7.7e−03

(−0.6,−0.192) 2.6e−03 1.2e−04 5.5e−04 9.6e−06 1.3e−03 5.2e−06

(−0.8,−0.3) 3.6e−02 3.6e−02 2.7e−02 2.7e−02 2.9e−02 2.9e−02

Line filters using the symmetric kernel show excellent performance and the
low computational times associated with them make them great candidates for
engineering applications. The experiments suggested that mesh resolution has a
strong effect on Line filters. For coarse meshes, this limitation can be overcome
by increasing the order and number of B-Splines employed to build the Line kernel,
producing a solution that matches the quality of the one obtained through the Tensor
Product filter results obtained in [2].

Further, the experiments suggest that these filters (in particular filters along the
streamline) can be suitable for accuracy enhancement during flow visualisation. In
many cases where the unfiltered streamline diverged from the exact solution, the
filtered curve converged back towards the exact curve. From this study it was not
possible to conclude whether a particular orientation or type of boundary filter could
give optimal results because there are many possible configurations. For instance,
there is no guarantee that the kernel scalings used here (h = h, H = √2h) are the
appropriate ones for flow aligned filters. In fact, it could be possible that since the
rotation angle changes, the kernel scaling should also vary within the filter location.
This will be addressed in future work.

To make LSIAC feasible for practical applications, the methodology for selecting
both the kernel rotation and scaling should be robust enough so that the filter
can be applied in general settings including non-linear solutions and unstructured
meshes. Although SIAC filtering has shown to improve results over unstructured
grids [8, 13], developing a solid theoretical background for such problems is an
ongoing work. Furthermore, the reliance of the kernel scaling and rotation on the
flux function needs to be established. Finally, the appropriate pairing between theory
and efficient implementation should include a study of different implementations in
order to ensure efficient computation.
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Abstract We present a high performance computing framework for finite element
simulation of blood flow in the left ventricle of the human heart. The mathemat-
ical model is described together with the discretization method and the parallel
implementation in Unicorn which is part of the open source software framework
FEniCS-HPC. We show results based on patient-specific data that capture essential
features observed with other computational models and imaging techniques, and
thus indicate that our framework possesses the potential to provide relevant clinical
information for diagnosis and medical treatment. Several other studies have been
conducted to simulate the three dimensional blood flow in the left ventricle of the
human heart with prescribed wall movement. Our contribution to the field of cardiac
research lies in establishing an open source framework modular both in modelling
and numerical algorithms.
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1 Introduction

Cardiac disease is the number one cause of death in the world [28], and therefore
the understanding of normal cardiac function and diseases is vital. Today, computer
simulation is emerging as an important tool in enhancing our understanding of
the heart and offers the potential to serve as decision support in diagnostics and
treatment.

It may be desirable to embed the various micro- and macro-scopic properties
of the heart in one computational framework as e.g. the electrical excitation, the
cardiac muscle contraction or fluid mechanics of the blood flow. Coupling several
parts into one model is associated with challenges as e.g. handling different scales
[21] or high computational costs. However, depending on the problem, we do not
need such an extensive simulation model, but instead one specific aspect of the heart
function can be identified and examined, separately.

For cardiologists it is a highly aspired goal to non-invasively detect cardiac
dysfunction. Analyzing the ventricular wall motion using echocardiography is
a common way, but abnormalities may not be detectable in an early stage of
pathology. Therefore, metrics based on intraventricular blood flow have come into
focus, and their potential as an alternative approach is investigated and debated (see
e.g. [2, 3, 13]).

In this paper, we present an Arbitrary Lagrangian-Eulerian (ALE) finite element
framework for patient-specific simulation of the blood flow in the left ventricle
of a human heart, embedded in the modular framework offered by the open
source software Unicorn [11, 12] for high performance finite element simulations.
Preliminary work has been presented in conferences and workshops [25]. We use
an approach with prescribed wall motion where the input is a set of snapshots in
time of a deforming surface mesh that describes the dynamics of the endocardium.
This set of surface meshes can come from a cardiac wall model, or patient-specific
measurements. Here, we illustrate the framework for a dataset developed at Umeå
University [1, 25]. The model geometry in the form of a surface triangulation is
generated from ultrasound measurements of the position of the endocardial wall
of the left ventricle (LV) at a number of snapshots in time during the cardiac
cycle, from which intermediate states are constructed by interpolation. A three
dimensional volume mesh is deformed in time to fit these LV surface meshes using
mesh smoothing algorithms. Finally, an ALE space-time finite element method
is used to simulate the blood flow by solving the incompressible Navier-Stokes
equations. Velocity and pressure boundary conditions are set to model the inflow
from the mitral valve and outflow through the aortic valve.

Several studies have been conducted to simulate the three dimensional blood flow
in the left ventricle of the human heart based on medical imaging. Our contribution
to the field of cardiac research lies in combining patient-specific measurements and
parallel computing in a framework which allows a thorough validation based on
an extensive number of individuals. To our knowledge, the current image based
models only have been studied for single, or maximal 30 patients [6]. This paper
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presents the mathematical and numerical approach using one geometry as example,
but the workflow from clinical image acquisition based on echocardiography,
surface segmentation, volume mesh generation and numerical simulation has been
automated and applied on more than 100 test cases [19, 20]. Furthermore, since
the open-source software FEniCS-HPC provides a problem solving environment
where partial differential equations (PDE) are automatically converted to low level
source code, complex multiphysics problems can be implemented by users without
profound knowledge of HPC concepts or coding experience. Thus, our model can
be extended in a modular way, modular in terms of simple implementation of
mathematical and numerical methods due to automatic code generation as well as
combination of different models such as including fluid-structure interaction (FSI)
[10] or adaptivity [4].

We structure the rest of the paper as follows. Section 2 specifies our Heart Solver
in terms of the basic mathematical equations and the finite element method including
the parallel implementation. The results of our simulations are presented in Sect. 3.
We conclude the paper with a summary and outlook towards future work.

2 Computational Model

2.1 The Mathematical Model

The human heart is a muscular organ on the scale of a fist and consists of four
chambers, the two atria and the two ventricles [17]. The left ventricle possesses
the mitral and the aortic valves which ensure unidirectional flow. The opening and
closing of the valves are mainly controlled by the pressure gradient between the
ventricle and the adjacent chamber.

The cardiac cycle in our model lasts for a period of 1.124 s and is divided into
the basic stages of diastole, systole, isovolumetric relaxation and isovolumetric
contraction. In diastole, the muscles of the ventricle are relaxed and the blood is
flowing from the atrium into the ventricle, and in systole the muscles are contracted
and the blood is ejected from the ventricle to the aorta. In the isovolumetric
relaxation, both valves are closed and the pressure drops rapidly, whereas during
the isovolumetric contraction both valves are closed but the pressure rises quickly.
Presently, no geometrical models of the mitral and aortic valves are included in the
model. Instead, the four stages are modeled by varying the boundary conditions at
marked regions on the surface of the LV model. In diastole and systole the pressure
is set to the atrial respectively aortic pressure according to a given pressure curve
at the opened valves. At the closed valves a no-slip boundary condition is applied
which means that the blood has the same velocity as the wall. For the isovolumetric
phases boundary conditions for the velocity and the pressure are set for the whole
surface. The fine structure of the inner wall (trabeculation) is not taken into account.
Since the flow is incompressible, and we know the volume rate and the area of
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the mitral opening, the magnitude of the inflow velocity can be derived. Based on
clinical observations, a flat inflow profile perpendicular to the mitral opening is set
as an inflow boundary condition during diastole.

The simulation starts when the ventricle has reached its maximum volume and
the initial velocity is set to zero. Thus, the simulation has to be run over a few
cycles to get a flow field independent of the initial conditions. Even though non-
Newtonian characteristic can be observed, in large vessels the blood can be modelled
as a Newtonian fluid [27] to capture the main flow features. Thus, to calculate the
blood flow in the LV we use the incompressible Navier-Stokes equations.

In this paper, our geometry model of the LV is based on ultrasound measurements
of the position of the inner wall at different levels in the short-axis view of the
LV of one single healthy individual. Additional measurements of distances in the
long-axis view complete the basic geometry of the LV. The movement of the heart
wall during one heart cycle which lasts about 1 s is not uniform. Thus, 12 surface
meshes describing the inner wall of the chamber at different snapshots in time are
constructed by using subdivision techniques [1]. Since the computational mesh must
be updated at every time step, a local ALE coordinate map is used in the space-time
discretization of the Navier-Stokes equations accounting for the mesh velocity in the
convective term as described in [10]. To attain a continuous movement of the wall,
these surface meshes are interpolated in time by applying Hermite interpolation, and
mesh smoothing algorithms are used to adjust the volume mesh to this boundary
motion.

Let Ωt ⊂ R
3 be a time-dependent domain with t ∈ I := [0, t̃]. Vectors

and matrices are indicated with bold letters. Given the initial values and boundary
conditions, we want to determine velocity u(x, t) : Ωt → R

3 and pressure
p(x, t) : Ωt → R such that:

ρ(u̇+ ((u−m) · ∇)u)− μΔu+∇p = 0 (x, t) ∈ Ωt × I, (1a)

∇ · u = 0 (x, t) ∈ Ωt × I, (1b)

where m denotes the mesh velocity in the ALE formulation. At the boundary m
is given by the velocity of the prescribed wall motion, and within the volume
m is equal to the velocity of the mesh smoothing algorithm which is applied
for maintaining the quality of the mesh. We set the dynamic viscosity to μ =
0.0027 Pa s and the blood density to ρ = 1060 kg/m3 [5].

2.2 Finite Element Approximation

We introduce a sequence of discrete time steps 0 := t0 < t1 < · · · < tN := t̃ where
In := (tn−1, tn] is an time interval of length kn := tn − tn−1.

T n = {K} specifies the spatial discretization of Ωtn , and hn identifies the
minimal diameter of the cell elements K ∈ T n. We also introduce the space-time
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slab Sn := Ωtn × In and the finite dimensional space of piecewise linear functions
Wn ⊂ H 1(Ωtn), where

H 1(Ωtn) : = {v ∈ L2(Ωtn)| ∂v
∂xk
∈ L2(Ωtn) , k = 1, 2, 3} (2)

Wn : = {v ∈ C(Ωtn)|v ∈ P 1(K),∀K ∈ T n}, (3)

Wn
0 : = {v ∈ Wn| v = 0 on ∂Ωtn} (4)

Wn
0 : = [Wn

0 ]3. (5)

We identify the discrete solution for velocity and pressure as Û = (U, P ), the
discrete mesh velocity as M, and the test function as v̂ = (v, q). In time, we choose
U to be piecewise linear and P, v and q to be piecewise constant.

We now formulate the spatially and temporally discretised finite element formu-
lation of the continuum model (1) with homogeneous Dirichlet boundary conditions
for the velocity: for each space-time slab Sn, find (Un, P n) := (U(tn), P (tn)) with
Un ∈Wn

0 and Pn ∈ Wn, such that:

((ρ/kn)(Un − Un−1)+ (ρ(Ūn −Mn) · ∇)Ūn, v)+ (μ∇Ūn,∇v)− (P n,∇ · v)
(6)

+ SDδ(Ūn,Mn, P n, v, q, ρ) = 0,

for ∀(v, q) ∈Wn
0 ×Wn, where Ūn = 1

2 (U
n + Un−1) and

(v,w) =
∑

K∈T n

∫

K

v ·w dx, (7)

By using the midpoint quadrature rule in time, we obtain a Crank-Nicholson time-
stepping scheme. We apply a simplified Galerkin/least-square method, to stabilise
the convection dominated problem, where the time derivative term is dropped since
the test functions are piecewise constant in time:

SDδ(Ūn,Mn, P n, v, q, ρ) = (8)

(δ1ρ(((Ūn −Mn) · ∇)Ūn +∇Pn), ρ((Ūn −Mn) · ∇)v+∇q)
+ (δ2∇ · Ūn,∇ · v).

The stabilisation parameters are chosen as δ2 = κ2ρh
n|Un−1| and δ1 =

κ1ρ
−1(1/(kn)2 + |Un−1 −Mn−1|2/(hn)2)−1/2 as defined in [9], where κ1, κ2 are

problem independent positive constants of order O(1). The timestep size kn is set to
be constant such that a CFL number of 0.1 is achieved at the initial time point. This
is a conservative, but robust choice.
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2.3 Computational Tools

Our Heart Solver is implemented in the HPC branch [14] of the open source Finite
Element Method (FEM) library DOLFIN [22] and the adaptive flow solver Unicorn
[12], which are components of FEniCS, a computing platform for automated
solution of PDEs. The framework has been shown to scale well [14] and is used to
efficiently solve large scale industrial problems [4, 15]. The simulations in this paper
were performed on Povel and Beskow located at PDC Center for High Performance
Computing at KTH Royal Institute of Technology. Povel is a cluster that offers
170 nodes and each node is equipped with four Six-Core AMD Opteron 8425HE
processors and 2 GB of RAM. The nodes are connected using QDR Infiniband.
Beskow is a Cray XC40 system consisting of 1676 compute nodes, where each
node has two cpus (Intel E5-2698v3) with 16 cores.

3 Results

A detailed compilation of the results on convergence study and illustration of the
modular capacity of the framework exemplified by the simple implementation of r-
adaptivity can be found in [26]. We here only discuss the results regarding parallel
efficiency and the fluid dynamics.

3.1 Parallel Efficiency

The software has proven to scale well for PDEs with fixed geometries, both strongly
and weakly, for a wide range of architectures and applications, as shown in [12].
To show parallel efficiency for our LV model with a moving boundary, strong
scalability tests are performed on Povel. In the case of ideal strong scaling, doubling
the number of cores for the same simulation would halve the computational time.
The mean time is measured to advance one step in time with the whole Heart Solver.

The measurements are conducted on two meshes of different size and the results
for both meshes are presented in Fig. 1. In the first case the solver runs with a mesh
containing 417′126 vertices on 1, 24, 48 and 96 cores, and in the second case a mesh
with 1′578′505 vertices is used to run on 96, 192 and 384 cores. Since in the case of
the small mesh the time can be measured up to the serial case, one can see that the
computation time on the local mesh cannot compensate for the communication cost.
This clarifies also why we achieve better scaling results when starting at 96 cores,
for the bigger mesh, where the communication cost is always present.
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Fig. 1 Strong scalability: The mean performance time (blue) to advance one step in time with the
whole Heart Solver is compared to linear speed up (black). (a) Heart Solver (417′126 vertices). (b)
Heart Solver (1′578′505 vertices)

3.2 Hemodynamics

To identify cardiac diseases in an early stage by using non-invasive methods,
is an aim of clinical cardiologists. Medical imaging of the heart as Doppler-
echocardiography or color Doppler M-mode is a non-invasive method that can be
used to gain information, but it might be difficult to correctly interpret the data due to
lack of high temporal or spatial resolution [23]. CFD can therefore play an important
role to complement such techniques to identify quantities indicating cardiac disease.

The blood flow in systole is an outward pushed flow and does not show
significantly notable features. The diastolic flow however forms characteristic
vortices as depicted in Fig. 2 which we want to describe in detail. A vortex can
roughly be described as a mass of fluid flowing around a common axis. Studies are
conducted to establish a link between the vortex formation and cardiac function
in either normal or pathologic conditions, and different indexes to quantify the
characterization of vortex rings in the LV have been proposed and are debated, see
e.g. [8, 24]. To analyze the evolution of the mitral vortex ring in our simulations, we
apply the λ2-method [16], where vortex structures are identified and visualized by
extreme negative isosurface values. We use the open source code Saaz to calculate
λ2 for our simulations [18]. It is difficult to determine a threshold Θλ2 for the
isosurface of λ2. Here, we manually adjust Θλ2 until we can differentiate coherent
vortex structures.

After the isovolumetric relaxation period, diastole can be divided into 3 phases:
the rapid filling phase, diastasis and atrial systole [7]. During the rapid filling phase
a strong jet flows from the mitral opening into the LV chamber and generates a
torus-shaped, well-defined vortex ring (Fig. 2a). This mitral vortex ring (MVR) is
fully developed as the filling reaches its peak as shown in Fig. 2b. As the mitral
vortex moves towards the apex, it impinges and slides along the LV wall (Fig. 2c).
This interaction causes an elongation and rotation of the vortex ring. At the end of
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Mitral vortex formation during diastole, visualized using Θλ2 = −10000. (a) 2.701 s, (b)
2.761 s, (c) 2.801 s, (d) 2.851 s, (e) 3.001 s, (f) 3.327 s

the early filling phase the flow then slows down and the MVR is broken down into
small-scale structures (Fig. 2d). A new vortex ring between the mitral and aortic
valve can now be observed in the subsequent time period (diastasis), see Fig. 2e.
In this region, the blood stream is split and is either redirected towards the apex
or towards the aortic outflow tract. Finally, due to the atrial contraction, a second
vortex ring is generated at the ventricular basal level (Fig. 2f).

The complex flow pattern clearly shows the importance of applying a three-
dimensional, patient-specific geometry when studying the hemodynamics in the LV
chamber.

4 Conclusion

In this paper, we have presented a numerical model to simulate the blood flow in the
left ventricle based on patient-specific data using high performance computing. The
flow problem is solved by a stabilized finite element method using an open source
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software. The results are comparable to observations done with other numerical
models and imaging techniques and indicate that our approach possesses the
potential to provide relevant information for diagnosis and medical treatment. The
novelty of our approach is an open source patient-specific ALE Finite Element
framework for simulating the blood flow in the LV of a human heart using HPC,
modular both in modelling and numerical algorithms. In order to address limitations
of our current model, our future work will be focused on integration of the actual
movement of the cardiac valves, and automated generation of 3D geometries from
experimental data with uncertainty quantification.
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Phase Field-Based Incompressible
Two-Component Liquid Flow Simulation

Babak Sayyid Hosseini and Matthias Möller

Abstract In this work, we consider a Cahn–Hilliard phase field-based computa-
tional model for immiscible and incompressible two-component liquid flows with
interfacial phenomena. This diffuse-interface complex-fluid model is given by the
incompressible Navier–Stokes–Cahn–Hilliard (NSCH) equations. The coupling of
the flow and phase field equations is given by an extra phase induced surface
tension force term in the flow equations and a fluid induced transport term in the
Cahn–Hilliard (CH) equations. Galerkin-based isogeometric finite element analysis
is applied for space discretization of the coupled system in velocity–pressure–phase
field–chemical potential formulation. For the approximation of the velocity and
pressure fields, LBB compatible non-uniform rational B-spline spaces are used
which can be regarded as smooth generalizations of Taylor–Hood pairs of finite
element spaces. The one-step θ -scheme is used for the discretization in time.
For the validation of the two-phase flow model, we present numerical results for
the challenging Rayleigh-Taylor instability flow problem in two dimensions and
compare them to reference results.

Keywords Two-phase flow · Cahn–Hilliard phase field model ·
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1 Introduction

Multiphase flows comprise flow of materials with different phases (i.e. gas, liquid,
etc.), or materials with different chemical properties in the same phase, such
as oil and water. In two-phase flows, being the most common multiphase flow
configuration involving two distinct fluids, the fluids are segregated by a very thin
interfacial region where surface tension effects and mass transfer due to chemical
reactions may appear. Multiphase flows are ubiquitous in nature and industrial
systems and are quite challenging from the point of view of mathematical modeling
and simulation due to the complex physical interaction between the involved
fluids including topological changes and the complexity of having to deal with
unknown moving fluid-fluid interfaces. As for methodologies to address the moving
interface problem, there are various methods such as volume-of-fluid, front tracking,
immersed boundary, level-set and phase field methods (cf. [5, 8]).

In this work we use a phase field diffuse interface method based on the Cahn–
Hilliard equation and apply Isogeometric Analysis for the discretization of the
involved equations. Particularly for two-phase flows, Diffuse-interface models have
gained a lot of attention due to their ability to easily handle moving contact
lines and topological transitions without any need for reinitialization or advective
stabilization. On a general note, diffuse interface models allow the modeling of
interfacial forces as continuum forces with the effect that delta-function forces
and discontinuities at the interface are smoothed by smearing them over thin yet
numerically resolvable layers. The phase field method—also known as the diffuse
interface model—is based on models of fluid free energy and offers a systematic
physical approach by describing the interface in a physical rather than in a numerical
sense. One principal advantage of diffuse interface models is their ability to describe
topological transitions like droplet coalescence or break-up in a natural way. In
the phase field framework, the interface is modeled by a function ϕ(x, t) which
represents the concentration of the fluids. The function ϕ(x, t), also referred to as
the order parameter, or the phase field, attains a distinct constant value in each phase
and rapidly, but smoothly, changes in the interface region between the phases. For a
binary fluid, a usual assumption is that ϕ takes values between −1 and 1, or 0 and
1. The relaxation of the order parameter is driven by local minimization of the fluid
free energy subject to the phase field conservation. As a result, complex interface
dynamics such as coalescence or segregation can be captured without any special
procedures [1, 9].

The outline of this article is as follows: In Sect. 2 we briefly introduce the
mathematical model used in this work. It serves as a basis for Sect. 3 that is dedicated
to the presentation of the weak forms and discretization aspects of the mathematical
model with Isogeometric Analysis. We present our numerical results in Sect. 4 and
conclude the article with a short summary in Sect. 5.
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2 Navier–Stokes–Cahn–Hilliard Two-Phase Flow Model

Let Ω = (Ω1 ∪ Ω2) ⊂ R
n be an arbitrary open domain, with n = 2 or 3 and

let its boundary ∂Ω be sufficiently smooth (e.g. Lipschitz continuous). Moreover,
let Γ denote the interface between the different fluids or phases occupying the
subdomains Ω1 and Ω2 and let n be the outward (Ω1 → Ω2) unit normal at the
interface. The NSCH variable density, variable viscosity incompressible two-phase
flow model (1) is obtained by the extension of the Navier–Stokes equations with a
surface tension force term η∇ϕ, written in its potential form, and a fluid induced
transport term v · ∇ϕ in the Cahn–Hilliard equations ((1c) + (1d)).

ρ(ϕ)

(

∂v
∂t
+ (v · ∇)v

)

−∇ · σ (ϕ) = ρ(ϕ)g+ η∇ϕ in ΩT , (1a)

∇ · v = 0 in ΩT , (1b)

∂ϕ

∂t
+ v · ∇ϕ − ∇ · (m(ϕ)∇η) = 0 in ΩT , (1c)

η − β
dψ(ϕ)

dϕ
+ α∇2ϕ = 0 in ΩT , (1d)

ϕ(x, 0) = ϕ0(x), v(x, 0) = v0(x) in Ω, (1e)

∂ϕ

∂n
= ∂η

∂n
= 0, v = vD on (∂ΩT )D, (1f)

(

−pI+ μ(ϕ)
(

∇v+ (∇v)T
))

· n = t on (∂ΩT )N . (1g)

Above, ΩT = Ω × (0, T ), (∂Ω)D is the Dirichlet part of the domain boundary,
σ (ϕ) = −pI + μ(ϕ)

(∇v+ (∇v)T
)

denotes the (variable viscosity) fluid Cauchy
stress tensor, t is the prescribed traction force on the Neumann boundary (∂Ω)N , g
is the gravitational force field and p is the pressure variable acting as a Lagrange
multiplier in the course of enforcing the incompressibility condition. This basically
corresponds to the model presented by Ding et al. [2] which can be seen as a
generalization of “Model H” [4, 6] for the case of different densities and viscosities.
In contrast to “Model H”, a surface tension force term in potential form η∇ϕ has
replaced the divergence of the phase induced stress tensor −σ̂ ε (∇ϕ ⊗∇ϕ). The
latter, that is, −σ̂ ε div (∇ϕ ⊗∇ϕ), represents the phase induced force. In Eq. (1d),
α and β are functions of the surface energy density σ̂ and the interfacial region
thickness ε.

In the Cahn–Hilliard equations ((1c) + (1d)), ϕ ∈ [−1, 1] is a measure of phase
and it holds ϕ(x) = 1 (respectively ϕ(x) = −1) if and only if fluid 1 (respectively
fluid 2) is present at point x. η represents the chemical potential and the nonlinear
functions m(ϕ) and ψ(ϕ) model the concentration dependent mobility and fluid
components’ immiscibility, respectively.
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3 Variational Formulation and Discretization

We use Isogeometric Analysis for the approximation of the solution of the coupled
equation system (1). Inspired by operator splitting techniques, it is solved in two
consecutive stages in order to alleviate numerical treatment. More specifically, given
a flow field v, we first solve the phase field equations ((1c) + (1d)) in order to update
the phase ϕ and chemical potential information η. The second step eventually uses
these information to compute the surface tension force and the phase dependent
values of density ρ(ϕ(x)) and viscosity μ(ϕ(x)) in the course of the solution of the
Navier–Stokes equations ((1a) + (1b)). As time integrator for both systems, we use
the one-step θ -scheme with θ = 1 or θ = 0.5 yielding the first order implicit Euler
or second order Crank-Nicolson scheme, respectively. For the approximation of the
velocity and pressure functions in the Navier–Stokes equations, we use LBB-stable
Taylor–Hood-like B-spline/NURBS1 space pairs V̂TH

h /Q̂TH
h which are defined in

the parametric spline domain Ω̂ as

V̂TH
h ≡ V̂TH

h (p,α) =Np1+1,p2+1
α1,α2

= N p1+1,p2+1
α1,α2

×N p1+1,p2+1
α1,α2

,

Q̂T H
h ≡ Q̂TH

h (p,α) = N p1,p2
α1,α2

.
(2)

Above,N p1+1,p2+1
α1,α2

denotes a tensor product bivariate NURBS space of polynomial
degrees pi + 1 and continuities αi , i = 1, 2, with respect to parametric spline
domain directions ξi . We refer to Hosseini et al. [7] for a detailed description of
the above spline spaces. In all performed computations we used a C 0 N2,2

0,0/N
1,1

0,0
NURBS space pair for the approximation of the velocity and pressure functions.
This corresponds to the Isogeometric counterpart of a Q2Q1 Taylor–Hood space
which is well known from the finite element literature. The degree and continuity
of the discrete spaces used for the approximation of the Navier–Stokes velocity and
Cahn–Hilliard phase and chemical potential functions are set to be identical. In the
sequel we picture the individual solution stages and outline the spatial and temporal
discretization of the involved equations.

Step 1: Cahn–Hilliard Equation For the treatment of the nonlinearity in the
advective Cahn–Hilliard equation, we seek for the current approximation of the
solution uk = (ϕk, ηk) small perturbations δu = (δϕ, δη), such that

ϕk+1 = ϕk + δϕ,

ηk+1 = ηk + δη
(3)

1Non-Uniform Rational B-splines (NURBS).
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satisfy the nonlinear partial differential equations ((1c) + (1d)). Under the premise
that δϕ is sufficiently small, we linearize the nonlinear function ψ ′(ϕ) as:

ψ ′(ϕk+1) = ψ ′(ϕk)+ ψ ′′(ϕk) δϕ +O((δϕ)2) ≈ ψ ′(ϕk)+ ψ ′′(ϕk) δϕ. (4)

After the time discretization by the one-step θ -scheme, we arrive at

ϕn+1 − ϕn

Δt
+ θ

(

(v · ∇)ϕn+1 −∇ ·m∇ηn+1
)

+(1− θ)
(

(v · ∇)ϕn − ∇ ·m∇ηn) = 0 in ΩT ,

ηn+1 − β ψ ′(ϕn+1)+ α∇2ϕn+1 = 0 in ΩT ,

(5)

where the boundary terms have not been displayed for the sake of lucidity. Above,
in the spirit of Picard iteration, the nonlinear mobility function m(ϕ) is evaluated
with respect to the already available values of the phase field, that is, ϕn. This
linearization allows us to treat it as a constant which simplifies its numerical
treatment.

The variational form of the problem reads: Find ϕ(x, t) and η(x, t) ∈H 1(Ω)×
(0, T ), such that ∀q, v ∈H 1

0 (Ω) it holds:

∫

Ω

ϕn+1 − ϕn

Δt
q dx+ θ

(∫

Ω

(v · ∇)ϕn+1 q +m∇ηn+1 · ∇q dx−
∫

∂Ω

n ·m∇ηn+1 q ds

)

+(1− θ)

(∫

Ω

(v · ∇)ϕn q +m∇ηn · ∇q dx−
∫

∂Ω

n ·m∇ηn q ds

)

= 0,

∫

Ω

ηn+1 v dx−
∫

Ω

β
dψ(ϕn+1)

dϕ
v dx−

∫

Ω

α∇ϕn+1 · ∇v dx+
∫

∂Ω

n · α∇ϕn+1 ds = 0.

(6)

The application of (3) and (4) on (6) yields:

∫

Ω

(ϕk + δϕ − ϕn) q dx+ θΔt

∫

Ω

(v · ∇)(ϕk + δϕ) q +m∇(ηk + δη) · ∇q dx

+(1− θ)Δt

∫

Ω

(v · ∇)ϕn q +m∇ηn · ∇q dx = 0,

∫

Ω

(ηk + δη) v dx−
∫

Ω

β
(

ψ ′(ϕk)+ ψ ′′(ϕk) δϕ
)

v dx−
∫

Ω

α ∇(ϕk + δϕ) · ∇v dx = 0.

(7)

In Eq. (7), the indices n and k refer to the solution from the last time step and the
current Newton-iterate, respectively. (δϕ, δη) is associated with the Newton-update.
Gathering all terms with the unknowns δϕ and δη on the left hand side, we obtain
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the following expressions

∫

Ω

δϕ q
︸︷︷︸

M

+ θΔt

⎛

⎝(v · ∇)δϕ q
︸ ︷︷ ︸

C

+m∇δη · ∇q
︸ ︷︷ ︸

D

⎞

⎠ dx =

∫

Ω

− ϕk q
︸︷︷︸

M

− θΔt

⎛

⎝(v · ∇)ϕk q
︸ ︷︷ ︸

C

+m ∇ηk · ∇q
︸ ︷︷ ︸

D

⎞

⎠ dx

+
∫

Ω

ϕn q
︸︷︷︸

M

− (1− θ)Δt

⎛

⎝(v · ∇)ϕn q
︸ ︷︷ ︸

C

+m∇ηn · ∇q
︸ ︷︷ ︸

D

⎞

⎠ dx,

∫

Ω

δη v
︸︷︷︸

M

dx−
∫

Ω

β ψ ′′(ϕk) δϕ v
︸ ︷︷ ︸

N

dx−
∫

Ω

α ∇δϕ · ∇v
︸ ︷︷ ︸

D

dx =

−
∫

Ω

ηk v
︸︷︷︸

M

dx+
∫

Ω

β ψ ′(ϕk) v
︸ ︷︷ ︸

n

dx+
∫

Ω

α ∇ϕk · ∇v
︸ ︷︷ ︸

D

dx.

(8)

The corresponding discrete system for the Newton-iteration may now be written in
matrix form as

q

v

(

M+ θΔtC θΔtmD
−αD− βN M

)

︸ ︷︷ ︸

J

(

δϕ

δη

)

=

( −M− θΔtC −θΔtmD
αD −M

)(

ϕk

ηk

)

+
(

0
βn

)

+
(

M− (1− θ)ΔtC −(1− θ)ΔtmD
0 0

)(

ϕn

ηn

)

︸ ︷︷ ︸

−F

(9)

and solved for δu in order to update the unknowns as (ϕk+1, ηk+1) = (ϕk, ηk) +
(δϕk, δηk).

Step 2: Navier–Stokes Equations This step involves the numerical approximation
of the solution of the unsteady variable density and variable viscosity Navier–Stokes
equations extended by a surface tension force term. The initial condition for the
velocity field is required to satisfy ∇ · v0 = 0. With b denoting the body force
term, the variational formulation of the problems ((1a) + (1b)) reads: Find v(x, t) ∈
H 1

0 (Ω) × (0, T ) and p(x, t) ∈ L2(Ω)/R × (0, T ), such that for all (w, q) ∈
H 1

0 (Ω)×L2(Ω)/R it holds

{

(w, vt )+ a(w, v)+ c(v;w, v)+ b(w, p) = (w,b)+ (w, t)(∂Ω)N ,

b(q, v) = 0.
(10)
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Replacement of the linear-, bilinear- and trilinear-forms with their respective
definitions and application of integration by parts yields

∫

Ω
ρ(ϕ)w · vt dΩ

︸ ︷︷ ︸

(w,vt )

+
∫

Ω
μ(ϕ)∇w :

(

∇v+ (∇v)T
)

dΩ
︸ ︷︷ ︸

a(w,v)

+
∫

Ω
ρ(ϕ)w · v · ∇v dΩ

︸ ︷︷ ︸

c(v;w,v)

=

∫

Ω
∇ · wp dΩ

︸ ︷︷ ︸

b(w,p)

−
∫

Ω
q ∇ · v dΩ

︸ ︷︷ ︸

b(q,v)

+
∫

Ω
ρ(ϕ)w · b+ w · η∇ϕ dΩ

︸ ︷︷ ︸

(w,b)

+

∫

(∂Ω)N

μ(ϕ)w ·
((

∇v+ (∇v)T
)

· n
)

d(∂Ω)N −
∫

(∂Ω)N

w · np d(∂Ω)N

︸ ︷︷ ︸

(w,t)(∂Ω)N

.

(11)

A downcast of the variational formulation (10) to the discrete level gives rise to the
problem statement

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

Find vh ∈H 1
0 (Ω) ∩VT H

h × (0, T ) and ph ∈ L2(Ω)/R∩QTH
h × (0, T ), such that

∀(wh, qh) ∈H 1
0 (Ω) ∩ VTH

h ×L2(Ω)/R ∩QTH
h

(wh, vht )+ a(wh, vh)+ c(vh;wh, vh)+ b(wh, ph) = (wh,bh)+ (wh, th)(∂Ω)N

b(qh, vh) = 0,

(12)

with superscript h dubbing the mesh family index. Using Isogeometric Taylor-Hood
finite elements and the one-step θ -scheme for the respective discretizations in space
and time, we obtain the following discrete system

( 1
Δt

M(ϕn+1)+ θ(D(ϕn+1)+ C(vn+1, ϕn+1)) G
GT 0

)

︸ ︷︷ ︸

Sl

(

vn+1

pn+1

)

︸ ︷︷ ︸

un+1

=

( 1
Δt

M(ϕn)− (1− θ)(D(ϕn)+ C(vn, ϕn)) 0
0 0

)

︸ ︷︷ ︸

Sr

(

vn

pn

)

︸ ︷︷ ︸

un

+ θ fn+1(ηn+1, ϕn+1)
︸ ︷︷ ︸

bn+1

+ (1− θ)fn(ηn, ϕn)
︸ ︷︷ ︸

bn

,

(13)

where M,D,C,G, and GT denote the mass, rate of deformation, advection,
gradient, and divergence matrices, respectively. The body and the surface tension
force terms are discretized altogether into f. For the treatment of the nonlinearity in
the Navier–Stokes equations ((1a) + (1b)), we use the Newton-iteration

J(uk, ϕk) δu = −F(uk,un, ηk, ηn, ϕk, ϕn), (14a)

uk+1 = uk + δu, (14b)
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whose right-hand side is set to be the residual of Eq. (13), that is,

F(un+1,un, ηn+1, ηn, ϕn+1, ϕn) = Sl un+1 − Sr un − bn+1 − bn. (15)

For a detailed description of the setup of the Jacobian J in Eq. (14), we refer to [7].
The linear equation systems arising from the discretization of the Cahn–Hilliard
and Navier–Stokes equations are solved with direct solvers. For the solution of
corresponding 3D problems involving larger systems, iterative solvers are advisable.

4 Application to the Rayleigh-Taylor Instability Problem

The Rayleigh-Taylor instability is a two-phase instability which occurs whenever
two fluids of different density are accelerated against each other. Any perturbation
along the interface between a heavy fluid (FH ) on top of a lighter fluid (FL),
both subject to a gravitational field, gives rise to the phenomenon of Rayleigh-
Taylor instability. The initial perturbations progress from an initial linear growth
phase into a non-linear one, eventually developing “mushroom head” like structures
moving upwards and thinning “spikes” falling downwards. Assuming negligible
viscosity and surface tension, the instability is characterized by the density disparity,
measured with the Atwood number A = (ρH − ρL)/(ρH + ρL). For the validation
of our results, we will consider the works of Tryggvason [10] and Guermond et al.
[3] as reference. The former investigated the initial growth and long-time evolution
of the instability for incompressible and inviscid flows with zero surface tension at
A = 0.5. Guermond et al., on the other hand, studied this instability problem at the
same Atwood number, however, taking viscous effects additionally into account.

The setup of the problem is described by a rectangular computational domain
[0, d] × [0, 4d], where an initial wavy interface segregates a heavier fluid in the
upper domain part from a lighter fluid on the lower part. The initial interface is
described by the function

y(x) = 2d + 0.1d cos(2πx/d)

representing a planar interface superimposed by a perturbation of wave number
k = 1 and amplitude 0.1d . Note that setting the surface tension coefficient σ̂

to 0, effectively downgrades the Cahn–Hilliard equations ((1c) + (1d)) to a pure
transport equation well known from the level-set context. This, in turn, implies to
pass on both the physical benefits inherent to phase field models and to the automatic
recreation of the smooth transition of the phase field in the interface region. In
order to circumvent these issues, we chose to set the surface tension coefficient
to the small, yet non-zero value 0.01. As for the remaining simulation parameters
we set d = 1, ρH = 3, ρL = 1, μH = μL = 0.0031316 and g = 9.80665,
giving rise to A = 0.5 and Re = ρHd3/2g1/2/μH = 3000. At the top and
bottom boundaries we use the no-slip boundary condition, whereas the free slip
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boundary condition is imposed on the vertical walls. Figure 1 depicts our results
for the temporal evolution of the interface computed in the time interval [0, 1.5]
with Δt = 0.001, h = 2−7, ε = 0.005 and D = 0.00004. As anticipated, the
heavier fluid on top starts to fall through the lighter fluid and gradually develops
spikes which are subject to strong deformations. When it comes to the comparison
of the vortex structure with the “inviscid” results of Tryggvason and the “viscous”
results of Guermond et al., our viscous solution exhibits a satisfactory agreement
with both, especially with the latter mentioned. Note that the data provided by the
above references are computed with respect to individual scalings of the involved
PDE variables in order to obtain nondimensional variables. Therefore, comparisons
require the time scales of the respective simulations to be mapped to each other.
Since, in contrast to the reference results, we did not perform any rescaling, our
time t is mapped to Tryggvason’s time t̃ via the relation t = √d/(A g) t̃ .

We continue the validation of our results with a quantitative analysis and conduct
a comparison of the tip of the rising and falling fluids with the inviscid and
viscous results provided by Tryggvason and Guermond et al., respectively. The
results, depicted in Fig. 2, are in good agreement with both references whose data
have individually been translated along the y-axis to facilitate comparisons. The
upper curve referring to the tip of the rising fluid shows a better correlation with
the data provided by Tryggvason while our curve for the falling fluid seems to
perfectly match the results of Guermond. As for space and time discretization,
for the results depicted in Fig. 2, Guermond uses P2 − P1 finite elements on a
49577 P2 nodes mesh with a time step size Δt̃ = 5 × 10−4. Tryggvason on
the other hand uses a Lagrangian-Eulerian vortex method on a 64 × 128 grid.
Our results depicted in Figs. 1, 2 and 3, are obtained using a fully implicit time
integration (θ = 1) in combination with a space discretization based on a C 0

N2,2
0,0/N

1,1
0,0 NURBS space pair for the approximation of the velocity and pressure

functions. For mesh refinement levels h ∈ {2−5, 2−6, 2−7} the above choice
of space discretization yields {(33410, 4257), (132354, 16705), (526850, 66177)}
(velocity, pressure) degrees of freedom, respectively. Note that with the above
mentioned relation between t and t̃ , our time step Δt = 0.001 is mapped to
Δt̃ = 0.0022143.

The analysis is finally concluded with the examination of the interface structure
at a randomly selected fixed time t = 0.79031. As shown in Fig. 3, the results
are mesh and time converged for three consecutive mesh refinement levels h ∈
{2−5, 2−6, 2−7} and time step sizes Δt ∈ {0.004, 0.002, 0.001}, respectively. The
main difference between the figures is in the level of detail of the vortices. Besides,
the y-coordinates of the tip of the rising and falling fluids slightly differ from
one mesh refinement level to the other and are thus regarded as weakly resolution
dependent. Apart from that no significant differences can be observed.
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Fig. 1 The evolution of a single wavelength initial condition in the Rayleigh-Taylor instability
simulation. Snapshots refer to times t ∈ {0, 0.17, 0.33, 0.5, 0.67, 0.83, 1, 1.17, 1.33, 1.5} from top
left to bottom right
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Fig. 2 The y-coordinate of the tip of the rising and falling fluid versus time

Fig. 3 Rayleigh-Taylor instability simulation at time t = 0.79031 with θ = 1,D = 0.00004, σ̂ =
0.01. Left: Mesh converged results for Δt = 0.0035, (h = 2−5, ε = 0.02), (h = 2−6, ε =
0.01), (h = 2−7, ε = 0.005). Right: Time converged results for Δt ∈ {0.004, 0.002, 0.001}, h =
2−5, ε = 0.02

5 Summary and Conclusions

We presented a phase field-based computational model for immiscible and incom-
pressible two-component liquid flows based on the incompressible Navier–Stokes–
Cahn–Hilliard equations. The Cahn–Hilliard equation was reformulated so as to
introduce the chemical potential as an additional unknown handled by an extra
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equation. A weak formulation of the complex-fluid problem together with a
derivation of its analytical Jacobian were presented providing enough information
for hassle-free reproducibility of this work. Numerical results were presented for
the Rayleigh-Taylor instability flow problem, based on Isogeometric finite element
analysis of the weak formulation of the NSCH problem. The Rayleigh-Taylor
instability problem has become a popular test case for numerical methods intended
to study multiphase or multimaterial problems. Using the setup and reference results
of Tryggvason [10] and Guermond et al. [3], we analyzed the evolution of a single
wavelength interface perturbation. Qualitative comparisons of the interface shapes
and quantitative analysis of the positions of the tip of the rising and falling fluid
rendered our approximations to be in good correlation with the above references.
Moreover, we showed our results to be mesh converged, since the produced data
associated with different mesh resolutions are well comparable except for the high
resolution features such as the roll-up spirals emerging at higher mesh refinement
levels.
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A Study on the Performance Portability
of the Finite Element Assembly Process
Within the Albany Land Ice Solver

Jerry Watkins, Irina Tezaur, and Irina Demeshko

Abstract This paper presents a performance analysis of the finite element assembly
process of the Albany Land Ice solver. The analysis shows that a speedup over
traditional MPI-only simulations is achieved on multiple architectures including
Intel Haswell CPUs, Intel Xeon Phi Knights Landing and IBM POWER8/NVIDIA
P100 platforms. A scalability study also shows that performance remains reasonably
close among all architectures. These results are obtained on a single codebase
without architecture-dependent code optimizations by utilizing abstractions in
shared memory parallelism from the Kokkos library and is part of an ongoing
process of achieving performance portability for the Albany Land Ice code.

Keywords Land ice · Performance portability · Kokkos · Finite element
assembly · GPUs · KNLs

1 Introduction

High resolution simulations of the evolution of the polar ice sheets play a crucial
role in the ongoing effort to develop more accurate and reliable regional and
global integrated Earth-system models (ESMs) for probabilistic sea-level projec-
tions. These types of simulations often require a massive amount of memory and
computation from large supercomputing clusters to provide sufficient accuracy and
resolution. The current list of fastest supercomputers [34] shows a diverse set of
computing platforms typically including multicore/manycore processors and GPU
accelerators. This heterogeneity in supercomputing architectures has become the
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norm and will continue to be a challenge for software developers as the high
performance computing (HPC) community moves towards exascale. In order to
take full advantage of available resources, performance portability has become an
increasingly important subject for the simulation of ice sheets.

The term “performance portability” is difficult to define and there is no consensus
on a clear definition [19]. In general, performance portability for an application
means that a reasonable level of performance is achieved across a wide variety
of computing architectures with the same source code. Here, “performance”
and “variety” are admittedly subjective. In [22, 23], Pennycook et al. quantified
performance portability through performance efficiencies based on hardware and
application performance for a given set of hardware platforms. For the purposes
of this paper, performance portability will be characterized by execution time and
scalability efficiencies for multicore/manycore processors and GPUs.

There have been a number of approaches to performance portability for applica-
tions including directives such as OpenMP and OpenACC, and frameworks such
as Kokkos [9], RAJA [14] and OCCA [17]. Performance portability for finite
element assembly has also been executed on a variety of different software packages
including Hiflow3 [1] and Firedrake/FEniCS/PyOP2 [16, 26, 27]. These packages
are discussed briefly in [7] where the authors present the performance portability
strategy used within the Albany multiphysics, finite element code [29].

Current generation ice sheet modeling [6, 11, 15, 28, 36] has seen a dramatic
increase in fidelity partly due to the inability of previous generation ice sheet models
to accurately predict dynamic behavior [31]. While the models have improved,
a majority of codes rely solely on Message Passing Interface (MPI) libraries to
achieve performance gains which limits the achievable performance on the latest
supercomputing architectures, for example, supercomputers with GPUs. GPUs
could provide a substantial amount of performance for ice sheet modeling if
properly utilized [4]. Though it may be tempting to construct highly optimized
implementations for each emerging architecture, this type of software development
will become increasingly harder to maintain as future HPC architectures become
increasingly more complex. This motivates the need for fundamental abstractions to
be present at the application level during code development.

Towards the development of a fully performance portable implementation of a
land ice model, this paper provides an analysis of the performance portability of
the finite element assembly process within the Albany Land Ice solver. We show
that this process can be executed on many different architectures including Intel
Haswell CPUs, Intel Xeon Phi Knights Landing (KNL) and NVIDIA P100 GPUs
and a speedup is achieved over traditional MPI-only simulations through the use of
abstractions in shared memory parallelism from Kokkos. A scalability study is also
presented, showing that the process is able to achieve a high level of performance
when scaling to multiple devices on the latest supercomputing clusters, the National
Energy Research Scientific Computing Center’s (NERSC) Cori and Sandia National
Laboratories’ (SNL’s) internal testbed called Ride.

The remainder of this paper is organized as follows. In Sect. 2, a description
of the Albany Land Ice code is given along with a brief discussion on the finite
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element assembly process. Section 3 provides a performance analysis via device
comparisons and scalability studies to verify the performance portability of the code.
Conclusions are drawn from these results in Sect. 4.

2 Albany Land Ice

Ice sheets and glaciers are typically modeled as an incompressible fluid in a low
Reynolds number regime with a power-law viscous rheology. More specifically, it
is widely accepted that the momentum balance of the ice is governed by a nonlinear
Stokes flow system of partial differential equations1 (PDEs). Here, we utilize a
simplified first-order approximation [8, 30] to this so-called full Stokes model,
referred to as the “Blatter-Pattyn” model [3, 20], or simply the “first-order (FO)
Stokes model”. For a detailed description of the model, the reader is referred to
[32].

2.1 Numerical Implementation Within the Albany Code

The FO Stokes model is discretized in an open-source,2 C++, multi-physics,
unstructured grid, implicit, parallel, scalable and robust finite element code base
known as Albany [29]. Albany makes heavy use of numerous computational
libraries from the open-source3 Trilinos suite [12], which are “glued” together
within this code through the use of Template-Based Generic Programming (TBGP)
[21].

The FO Stokes-based momentum balance land-ice solver in Albany is referred
to as Albany Land Ice. For a detailed description of Albany Land Ice (previously
known as Albany/FELIX), the reader is referred to [32]. The key methods imple-
mented in Albany Land Ice are summarized below.

• Classical Galerkin finite element method (FEM) discretization: In Albany Land
Ice the classical Galerkin FEM was selected to discretize the FO Stokes model for
its flexibility in using unstructured meshes (e.g., grids with increased resolution
in areas of large velocity gradients such as in the vicinity of outlet glaciers)
and straightforward implementation of the basal sliding boundary condition. The
STK package of Trilinos was used for mesh database structures and mesh I/O.
The Intrepid2 package of Trilinos was used as a finite element shape function
library with general integration kernels.

1The interested reader is referred to Appendix A of [32] for the nonlinear Stokes flow equations.
2Available on github: https://github.com/SNLComputation/Albany.
3Available on github: https://github.com/trilinos/Trilinos.

https://github.com/SNLComputation/Albany
https://github.com/trilinos/Trilinos
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• Newton’s method with automatic differentiation (AD) Jacobians: Once the
large, sparse system of nonlinear algebraic equations for the ice velocities is
created following discretization by the FEM, the fully-coupled nonlinear system
is solved using damped Newton’s method. An analytic Jacobian matrix is
computed at each iteration of Newton’s method using AD, available through the
Sacado package of Trilinos.

• Iterative linear solver with ILU or AMG preconditioning: Within each Newton
iteration detailed above, a number of linear systems arise. These systems are
solved using a preconditioned iterative method (CG or GMRES, both available
through the Belos package of Trilinos). Although the model is symmetric,
and hence amenable to the CG iterative linear solver, it was found that faster
convergence can be obtained with the GMRES iterative linear solver for some
problems (e.g., simulations of the AIS). Two options for the preconditioner
are considered: an ILU additive Schwarz preconditioner with 0 overlap and 0
level-of-fill, and a recently proposed (introduced in [32, 33]; detailed in [35])
AMG preconditioner, constructed based on the idea of semi-coarsening (i.e.,
coarsening only in the structured dimension, in this case z–dimension). These
preconditioners are available through the Ifpack and ML packages of Trilinos,
respectively.

• Adjoint-based optimization for ice sheet initialization: To calculate the ice
sheet initial conditions, namely the basal sliding and basal topography fields,
we formulate and solve a PDE-constrained optimization problem that mini-
mizes the mismatch between model output and observations (detailed in [24]).
The optimization is performed using the Limited–memory Broyden–Fletcher–
Goldfarb–Shanno (LBFGS) method [37], as implemented in the ROL Rapid
Optimization Library of Trilinos. The cost function gradients with respect to the
parameter fields are computed using adjoints.

• Performance portability: Albany follows an “MPI+X” programming model
where MPI is used for distributed memory parallelism and the Kokkos library
[9] of Trilinos is used for shared memory parallelism. This enables performance
portability across a variety of different multicore/manycore processors and GPU
accelerators under a single codebase. Abstractions are used to obtain optimal
data layouts and hardware features, reducing the complexity of application code.
Further implementation details can found in [7].

The accuracy of the Albany Land Ice FO Stokes solver has been verified
extensively using the method of manufactured solutions and canonical land ice
benchmarks, as well as by performing a mesh convergence study using a realistic
Greenland Ice Sheet (GIS) geometry [32]. In order to enable dynamic simulations
of ice sheet evolution as well as coupling to Earth System Models (ESM), Albany
Land Ice has been coupled to two existing codes which solve the thickness and
temperature evolution equations (conservation of mass and energy, respectively),
namely the Community Ice Sheet Model (CISM) [5] and the Model for Prediction
Across Scales (MPAS) [18]. The resulting models, termed CALI and MALI,
respectively, have been used to perform large-scale realistic simulations of the
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Greenland and Antarctic Ice Sheets [13, 25], and, in the case of CALI, validated
using real data from two NASA satellites [10, 25].

2.2 Finite Element Assembly

A dynamic land-ice simulation is comprised of numerous steady-state stress-
velocity diagnostic solves. Each diagnostic solve can be split into two major parts:
the linear solver and the finite element assembly. Performance portability for linear
solvers is a widely researched topic and Albany utilizes Trilinos to obtain the
latest solvers suitable for solving ice sheet problems. This paper focuses on the
performance portability of the finite element assembly process for which there have
been relatively fewer studies. Figure 1 shows the main work flow for a single
nonlinear iteration of the Albany Land Ice solver. The finite element assembly
process can be further split into the following components where the goal is use
the global solution to obtain a global residual and Jacobian for the linear solver:

• Import: Imports the global solution from a nonoverlapping data structure where
each MPI rank owns a unique part of the solution to an overlapping data structure
where some data exists on multiple ranks. This gives each rank access to relevant
solution data without any further communication. In this case, the solution is the
ice velocity vector.

• Gather: Gathers solution values from an overlapping data structure to an element
local data structure where data is indexed according to element and local node.
This process also includes the gathering of geometry and field data.

• Interpolate: Interpolates the solution and solution gradient from nodal points to
quadrature points. Other field variables may also require interpolation.

Import

Gather Interpolate Evaluate Scatter

ExportSolve
Solution Residual

Jacobian

Fig. 1 A flow chart showing the main work flow for a single nonlinear iteration of the Albany
Land Ice solver. Finite element assembly begins and ends with distributed memory assembly
(DMAssembly) (in yellow) which constructs data structures which run more efficiently during the
linear solver and finite element assembly phases. This is also where MPI communication occurs.
The remaining shared memory assembly (SMAssembly) processes (in blue) perform global and
local assembly and are parallelized over elements using Kokkos parallel_for
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• Evaluate: Evaluates the residual, Jacobian and source terms. These operators are
templated in order to take advantage of automatic differentiation for analytical
Jacobians. In this case, the FO Stokes model is evaluated.

• Scatter: Scatters residual and Jacobian values from an element local data
structure to an overlapping data structure. Kokkos atomic_fetch_add is
used to avoid race conditions during global assembly.

• Export: Exports the residual and Jacobian from an overlapping data structure to
a nonoverlapping data structure where information is updated across MPI ranks.
This global structure allows for efficient use of linear solvers.

Import and Export are handled by the Tpetra package [2] of Trilinos and uses both
MPI and Kokkos to construct the overlapping and nonoverlapping data structures.

Kokkos utilizes execution and memory spaces to determine where routines are
executed and where memory is stored. For this work, the KokkosSerial execution
space is used for MPI-only simulations, OpenMP is used for MPI+OpenMP and
Serial and Cuda is used for MPI+GPU. The memory in element local data
structures is contiguous along elements for GPUs (LayoutLeft) and strided
along elements for CPUs (LayoutRight). CUDA UVM is used to avoid manual
memory transfers between host and device and CUDA-Aware MPI is used to
provide direct GPU to GPU communication. Both of these features our abstracted in
Kokkos and Tpetra, respectively. These configurations are described in more detail
in [7] where a similar configuration was used with the exception of CUDA-Aware
MPI.

3 Performance Analysis

The performance of Albany Land Ice is quantified by performing architecture
comparisons of wall-clock time and scalability studies on geometry using two
tetrahedral meshes. These are described in Table 1 and an example of the coarser
mesh is shown in Fig. 2. In this study, a no-slip boundary condition is chosen
on the lower surface instead of a basal friction (slip) boundary condition because
performance portability for the latter has not been completed yet.

The performance analysis focuses on the finite element assembly process of the
residual and Jacobian needed for the linear solver. In Albany Land Ice, this process
is approximately 50% of the total time to converge the solution to steady state. The
wall-clock time is averaged over 100 global assembly evaluations.

Table 1 Greenland ice sheet
mesh resolutions

Mesh Resolution Number of elements

GIS4k-20k 4–20 km 1,505,790

GIS1k-7k 1–7 km 14,397,900
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Fig. 2 Surface of the 1,505,790 element tetrahedral mesh of our GIS geometry (referred to as
GIS4k-20k). The mesh is constructed from 10 layers of the bottom surface

3.1 Architectures

Albany Land Ice is used to simulate the flow of ice on two supercomputing clusters:
Cori and Ride. A summary of the hardware, software and compiler information for
each configuration can be found in Table 2.

The code is compiled using Kokkos Serial and OpenMP on Cori and Serial
and Cuda on Ride. In this study, MPI ranks are mapped to cores and OpenMP
threads are mapped to hardware threads. These were found to be the optimal

Table 2 Cluster and build configurations

Name Cori (HW) Cori (KNL) Ride (P100)

CPU Intel Xeon E5-2698 v3
(“Haswell”)

Intel Xeon Phi 7250
(“Knights Landing”)

IBM POWER8
(8-core)

# of cores 16 68 8

Threads/core 2 4 8

GPU None None NVIDIA Tesla P100

Node arch 2 CPUs 1 CPU 2 CPUs + 4 GPUs

Memory/node 128 GB DDR4 96 GB DDR4 + 16 GB
MCDRAM

512 GB DDR4

Interconnect Cray aries Cray aries Mellanox ConnectX-4
IB

Compiler Intel 18.0.1.163 Intel 18.0.1.163 gcc 5.4.0

MPI cray-mpich 7.6.2 cray-mpich 7.6.2 openmpi 1.10.4

NVCC None None 8.0.44
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configurations when utilizing MPI and OpenMP. Mapping MPI ranks to hardware
threads reduces performance due to scheduling issues, as multiple ranks compete
for the resources on a single core. Mapping OpenMP threads to cores also reduces
performance since those cores could have been utilized for coarser grain parallelism
(i.e. MPI). For the simulations using GPUs, each MPI rank is assigned a single core
and GPU; therefore, there are CPU cores which are not being utilized within a node.

The following naming convention is used to describe the different mappings for
each simulation,

r (MPI+ jX) , X ∈ {OMP,GPU}, (1)

where r is the number of MPI ranks, j is the number of OpenMP threads or GPUs
per rank and X is the architecture used for shared memory parallelism (e.g. OMP
for OpenMP).

3.2 Architecture Comparison

An architecture comparison is performed in order to quantify the performance of
the finite element assembly process among different computing platforms. Figure 3
plots the wall-clock time against different devices for the GIS4k-20k mesh described
in Table 1 where the devices considered are the Haswell, KNL and P100 GPU.

Fig. 3 A device comparison of finite element assembly wall-clock times (averaged over 100
evaluations) for Kokkos Serial, OpenMP and Cuda execution spaces on the GIS4k-20k mesh.
A speedup is achieved across all execution spaces. In this case, the P100 (case f ) performs the best
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3.3 Scalability Study

A scalability study is performed in order to quantify the performance among
different processors when scaling to multiple devices or larger problems. Strong
scaling is used to determine how well the code utilizes additional resources to
achieve a faster simulation of the same problem. Strong scaling efficiency is given
by ((t1/td)/d)100% where t is the wall-clock time, d is the number of devices and
(t1/td) is the speedup which, ideally, is proportional to the number devices. Figure 4
shows the wall-clock time on up to 32 devices for the GIS4k-20k mesh while Table 3
reports the efficiency on up to 32 devices for Haswell, KNL and P100.

Weak scaling is used to determine how well the code is able to maintain
the same wall-clock time when simulating larger problems with a propor-
tionally larger amount of resources. Weak scaling efficiency is given by
(((t1/N1)/(td/Nd))/d)100% where N is the number of elements. Here, N is used
to normalize the time with respect to the number of elements in the problem. Table 3
summarizes the resulting efficiencies for each case where the finer GIS1k-7k mesh
is used as the larger problem in the weak scalability study.

The strong and weak scaling efficiencies in Table 3 shows that all cases are able
to maintain a reasonable amount of performance across multiple devices. In this
study, the Haswell performs best for strong scaling while the KNL performs best

Fig. 4 Strong scalability wall-clock time on up to 32 devices (Haswell, KNL, P100) on the GIS4k-
20k mesh. The wall-clock time among architectures remains similar on up to 32 devices

Table 3 A comparison of scalability efficiencies where one device is used as a reference

Device Device configuration Strong scalinga Weak scalingb

Haswell 16(MPI+2OMP) 62.1% 88.8%

KNL 68(MPI+4OMP) 49.9% 94.5%

P100 1(MPI+GPU) 35.7% 69.2%
aStrong scaling performed on 32 devices (512 HW cores, 2176 KNL cores, 32 GPUs)
bWeak scaling performed on 10 devices (160 HW cores, 680 KNL cores, 10 GPUs)
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for weak scaling. In both scalability studies, the P100 performs the worst due to the
higher demand in distributed memory assembly. Despite the loss in strong scaling
efficiency in the KNL and P100, Fig. 4 shows that the wall-clock time remains
similar among all architectures when scaling on up to 32 devices.

It’s important to note that the results only show the performance of the finite
element assembly process. A performance portable linear solver is needed to obtain
a more accurate performance analysis of Albany Land Ice.

4 Conclusions

In this paper, the finite element assembly process within an Albany Land Ice solver
is presented and analyzed in order to study how well the code performs on a
variety of difference computing architectures. A performance analysis showed that
the assembly process performs reasonable well on Intel Haswell CPUs, Intel Xeon
Phi KNLs and NVIDIA P100 GPUs on a single code base without architecture-
dependent code optimizations. By utilizing GPUs and hardware threads for shared
memory parallelism, a speedup over traditional MPI-only simulations is shown
across all architectures. A scalability study showed that performance remained
reasonably close among all architectures. The study also identified deficiencies in
distributed memory assembly on GPU architectures which is a subject of future
optimization within the Tpetra package in Trilinos.

Since performance portability is subjective, obtaining a performance portable
implementation of a land ice solver remains an ongoing process. Future work
will focus on optimizing the current implementation to obtain better performance
across all architectures through code refactoring and hierarchical parallelism. Other
possible optimizations which remain to be studied include explicit vectorization on
CPUs, multiple CUDA instances on GPUs for better node utilization and explicit
data management to minimize memory transfers. Performance portability for linear
solvers is also an ongoing research topic within Trilinos.

Acknowledgements This work was supported under the Biological and Environmental Research
(BER) Scientific Discovery through Advanced Computing (SciDAC) Partnership: a collaboration
between the Advanced Scientific Computing Research (ASCR) and BER programs funded by
the U.S. Department of Energy’s Office of Science. The refactoring of Albany to a Kokkos
programming model was also supported by Frameworks, Algorithms and Scalable Technologies
for Mathematics (FASTMath) SciDAC Institute.

This research used resources of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.



Performance Portability of Finite Element Assembly in Albany Land Ice 187

References

1. Anzt, H., Augustin, W., Baumann, M., Bockelmann, H., Gengenbach, T., Hahn, T., Heuveline,
V., Ketelaer, E., Lukarski, D., Otzen, A., et al.: Hiflow3–a flexible and hardware-aware parallel
finite element package. Preprint Series of the Engineering Mathematics and Computing Lab, 6
(2010)

2. Baker, C.G., Heroux, M.A.: Tpetra, and the use of generic programming in scientific
computing. Sci. Program. 20(2), 115–128 (2012)

3. Blatter, H.: Velocity and stress fields in grounded glaciers: a simple algorithm for including
deviatoric stress gradients. J. Glaciol. 41(138), 333–344 (1995)

4. Brædstrup, C.F., Damsgaard, A., Egholm, D.L.: Ice-sheet modelling accelerated by graphics
cards. Comput. Geosci. 72, 210–220 (2014)

5. CISM/The Community Ice Sheet Model. https://cism.github.io/index.html. Accessed 30 April
2018

6. Cornford, S.L., Martin, D.F., Graves, D.T., Ranken, D.F., A.M., Brocq, L., Gladstone, R.M.,
Payne, A.J., Ng, E.G., Lipscomb, W.H.: Adaptive mesh, finite volume modeling of marine ice
sheets. J. Comput. Phys. 232(1), 529–549 (2013)

7. Demeshko, I., Watkins, J., Tezaur, I.K., Guba, O., Spotz, W.F., Salinger, A.G., Pawlowski, R.P.,
Heroux, M.A.: Toward performance portability of the Albany finite element analysis code using
the Kokkos library. Int. J. High Perform. Comput. Appl. 33(2), 332–352 (2019)

8. Dukowicz, J.K., Price, S.F., Lipscomb, W.H.: Consistent approximations and boundary
conditions for ice-sheet dynamics from a principle of least action. J. Glaciol. 56(197), 480–
496 (2010)

9. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore performance porta-
bility through polymorphic memory access patterns. J. Parallel Distrib. Comput. 74(12),
3202–3216 (2014)

10. Evans, K.J., Kennedy, J.H., Lu, D., Forrester, M.M., Price, S., Fyke, J., Bennett, A.R., Hoffman,
M.J., Tezaur, I., Zender, C.S., Vizcaíno, M.: LIVVkit 2.1: automated and extensible ice sheet
model validation. Geosci. Model Dev. 12(3), 1067–1086 (2019)

11. Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve,
R., Malinen, M., Martín, C., Råback, P., et al.: Capabilities and performance of Elmer/Ice, a
new-generation ice sheet model. Geosci. Model Dev. 6(4), 1299–1318 (2013)

12. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B.,
Long, K.R., Pawlowski, R.P., Phipps, E.T., et al.: An overview of the Trilinos project. ACM
Trans. Math. Softw. 31(3), 397–423 (2005)

13. Hoffman, M.J., Perego, M., Price, S.F., Lipscomb, W.H., Zhang, T., Jacobsen, D., Tezaur, I.,
Salinger, A.G., Tuminaro, R. and Bertagna, L.: MPAS-Albany Land Ice (MALI): a variable-
resolution ice sheet model for Earth system modeling using Voronoi grids. Geosci. Model Dev.
11(9), 3747-3780 (2018)

14. Hornung, R.D., Keasler, J.A.: The RAJA portability layer: overview and status. Technical
report, Lawrence Livermore National Lab. (LLNL), Livermore (2014)

15. Larour, E., Seroussi, H., Morlighem, M., Rignot, E.: Continental scale, high order, high spatial
resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res.
Earth Surf. 117(F1) (2012)

16. Markall, G.R., Slemmer, A., Ham, D.A., Kelly, P.H.J., Cantwell, C.D., Sherwin, S.J.: Finite
element assembly strategies on multi-core and many-core architectures. Int. J. Numer. Methods
Fluids 71(1), 80–97 (2013)

17. Medina, D.S., St-Cyr, A., Warburton, T.: OCCA: a unified approach to multi-threading
languages. arXiv preprint arXiv:1403.0968 (2014)

18. MPAS-Albany Land Ice. https://mpas-dev.github.io/land_ice/land_ice.html. Accessed 30 April
2018

19. Neely, J.R.: DOE centers of excellence performance portability meeting. Technical report,
Lawrence Livermore National Lab. (LLNL), Livermore (2016)

https://cism.github.io/index.html
https://mpas-dev.github.io/land_ice/land_ice.html


188 J. Watkins et al.

20. Pattyn, F.: A new three-dimensional higher-order thermomechanical ice sheet model: basic
sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res.
Solid Earth 108(B8) (2003)

21. Pawlowski, R.P., Phipps, E.T., Salinger, A.G.: Automating embedded analysis capabilities
and managing software complexity in multiphysics simulation, part I: template-based generic
programming. Sci. Program. 20(2), 197–219 (2012)

22. Pennycook, S.J., Sewall, J.D., Lee, V.W.: A metric for performance portability. arXiv preprint
arXiv:1611.07409 (2016)

23. Pennycook, S.J., Sewall, J.D., Lee, V.W.: Implications of a metric for performance portability.
Futur. Gener. Comput. Syst. 92, 947–958 (2017)

24. Perego, M., Price, S., Stadler, G.: Optimal initial conditions for coupling ice sheet models to
Earth system models. J. Geophys. Res. Earth Surf. 119(9), 1894–1917 (2014)

25. Price, S.F., Hoffman, M.J., Bonin, J.A., Howat, I.M., Neumann, T., Saba, J., Tezaur, I., Guerber,
J., Chambers, D.P., Evans, K.J., et al.: An ice sheet model validation framework for the
Greenland ice sheet. Geosci. Model Dev. 10(1), 255–270 (2017)

26. Rathgeber, F., Markall, G.R., Mitchell, L., Loriant, N., Ham, D.A., Bertolli, C., Kelly, P.H.J.:
PyOP2: a high-level framework for performance-portable simulations on unstructured meshes.
In: 2012 SC Companion High Performance Computing, Networking, Storage and Analysis
(SCC), pp. 1116–1123. IEEE, Piscataway (2012)

27. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, Fabio, A., McRae, T.T., Bercea,
G.-T., Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by
composing abstractions. ACM Trans. Math. Softw. 43(3), 24 (2017)

28. Rutt, I.C., Hagdorn, M., Hulton, N.R.J., Payne, A.J.: The Glimmer community ice sheet model.
J. Geophys. Res. Earth Surf. 114(F2) (2009)

29. Salinger, A.G., Bartlett, R.A., Bradley, A.M., Chen, Q., Demeshko, I.P., Gao, X., Hansen, G.A.,
Mota, A., Muller, R.P., Nielsen, E., et al.: Albany: using component-based design to develop
a flexible, generic multiphysics analysis code. Int. J. Multiscale Comput. Eng. 14(4), 415–438
(2016)

30. Schoof, C., Hindmarsh, R.C.A.: Thin-film flows with wall slip: an asymptotic analysis of
higher order glacier flow models. Q. J. Mech. Appl. Math. 63(1), 73–114 (2010)

31. Solomon, S.: Climate Change 2007-the Physical Science Basis: Working Group I Contribution
to the Fourth Assessment Report of the IPCC, vol. 4. Cambridge University Press, Cambridge
(2007)

32. Tezaur, I.K., Perego, M., Salinger, A.G., Tuminaro, R.S., Price, S.F.: Albany/FELIX: a parallel,
scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for
advanced analysis. Geosci. Model Dev. 8(4), 1197 (2015)

33. Tezaur, I.K., Tuminaro, R.S., Perego, M., Salinger, A.G., Price, S.F.: On the scalability of the
Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale simulations of
the Greenland and Antarctic ice sheets. Proc. Comput. Sci. 51, 2026–2035 (2015)

34. TOP500 Project: November 2017 TOP500 list. https://www.top500.org/lists/2017/11/.
Accessed 5 April 2018

35. Tuminaro, R., Perego, M., Tezaur, I., Salinger, A., Price, S.: A matrix dependent/algebraic
multigrid approach for extruded meshes with applications to ice sheet modeling. SIAM J. Sci.
Comput. 38(5), C504–C532 (2016)

36. Winkelmann, R., Martin, M.A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., Lev-
ermann, A.: The Potsdam parallel ice sheet model (PISM-PIK)-part 1: model description.
Cryosphere 5(3), 715 (2011)

37. Wright, S., Nocedal, J.: Numerical optimization. Springer Science, vol. 35, pp. 67–68.
Springer, Berlin (1999)

https://www.top500.org/lists/2017/11/


A Multimesh Finite Element Method
for the Stokes Problem

August Johansson, Mats G. Larson, and Anders Logg

Abstract The multimesh finite element method enables the solution of partial
differential equations on a computational mesh composed by multiple arbitrarily
overlapping meshes. The discretization is based on a continuous–discontinuous
function space with interface conditions enforced by means of Nitsche’s method.
In this contribution, we consider the Stokes problem as a first step towards
flow applications. The multimesh formulation leads to so called cut elements in
the underlying meshes close to overlaps. These demand stabilization to ensure
coercivity and stability of the stiffness matrix. We employ a consistent least-squares
term on the overlap to ensure that the inf-sup condition holds. We here present the
method for the Stokes problem, discuss the implementation, and verify that we have
optimal convergence.
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1 Introduction

Consider the Stokes problem

−Δu+ ∇p = f in Ω, (1)

div u = 0 in Ω, (2)

u = 0 on ∂Ω, (3)

for the velocity u : Ω → R
d and pressure p : Ω → R in a polytopic domain

Ω ⊂ R
d , d = 2, 3.

The Stokes problem is considered here as a first step towards a multimesh
formulation for multi-body flow problems, and ultimately fluid–structure interaction
problems, in which each body is discretized by an individual boundary-fitted mesh
and the boundary-fitted meshes move freely on top of a fixed background mesh.
The applications for such a formulation are many, e.g., the simulation of blood
platelets in a blood stream, the optimization of the configuration of an array of
wind turbines, or the investigation of the effect of building locations in a simulation
of urban wind conditions and pollution. Common to these applications is that the
multimesh method removes the need for costly mesh (re)generation and allows the
platelets, wind turbines or buildings to be moved around freely in the domain, either
in each timestep as a part of a dynamic simulation, or in each iteration as part of an
optimization problem.

The multimesh formulation presented here is a generalization of the formulation
presented and analyzed in [5] for two domains. For comparison, the multimesh
discretization of the Poisson problem for arbitrarily many intersecting meshes is
presented in [6] and analyzed in [8].

2 Notation

We first review the notation for domains, interfaces, meshes and overlaps used to
formulate the multimesh finite element method. For a more detailed exposition, we
refer to [6].

Notation for domains

Let Ω = ̂Ω0 ⊂ R
d , d = 2, 3, be a domain with polytopic boundary (the

background domain).
Let ̂Ωi ⊂ ̂Ω0, i = 1, . . . , N be the so-called predomains with polytopic
boundaries (see Fig. 1).
Let Ωi = ̂Ωi \⋃N

j=i+1
̂Ωj , i = 0, . . . , N be a partition of Ω (see Fig. 2).
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̂Ω0
̂Ω2

̂Ω1
(a)

̂Ω0

̂Ω1

̂Ω2̂Ω0

(b)

Fig. 1 (a) Three polygonal predomains. (b) The predomains are placed on top of each other in an
ordering such that ̂Ω0 is placed lowest, ̂Ω1 is in the middle and ̂Ω2 is on top

Ω0 Ω1 Ω2

Fig. 2 Partition of Ω = Ω0 ∪Ω1 ∪Ω2. Note that Ω2 = ̂Ω2

Γ1

Γ2

(a)

Γ21

Γ20

(b)

Fig. 3 (a) The two interfaces of the domains in Fig. 1: Γ1 = ∂ ̂Ω1\̂Ω2 (dashed line) and Γ2 = ∂ ̂Ω2
(filled line). Note that Γ1 is not a closed curve. (b) Partition of Γ2 = Γ20 ∪ Γ21

Remark 1 To simplify the presentation, the domains Ω1, . . . ,ΩN are not allowed
to intersect the boundary of Ω .

Notation for interfaces

Let the interface Γi be defined by Γi = ∂ ̂Ωi \⋃N
j=i+1

̂Ωj , i = 1, . . . , N − 1 (see
Fig. 3a).
Let Γij = Γi ∩Ωj , i > j be a partition of Γi (see Fig. 3b).
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Notation for meshes

Let ̂Kh,i be a quasi-uniform [3] premesh on ̂Ωi with mesh parameter hi =
maxK∈̂Kh,i

diam(K), i = 0, . . . , N (see Fig. 4a).

Let Kh,i = {K ∈ ̂Kh,i : K ∩ Ωi �= ∅}, i = 0, . . . , N be the active meshes (see
Fig. 4b).
The multimesh is formed by the active meshes placed in the given ordering (see
Fig. 5b).
Let Ωh,i =⋃K∈Kh,i

K , i = 0, . . . , N be the active domains.

Notation for overlaps

Let Oi denote the overlap defined by Oi = Ωh,i \Ωi , i = 0, . . . , N − 1.
Let Oij = Oi ∩Ωj = Ωh,i ∩Ωj , i < j be a partition of Oi .

̂Kh,0
̂Kh,2

̂Kh,1

(a)

Kh,0 Kh,2Kh,1

(b)

Fig. 4 (a) The three premeshes. (b) The corresponding active meshes (cf. Fig. 1)

K0
K1

K2

(a)

̂Kh,0

(b)

Fig. 5 (a) Given three ordered triangles K0, K1 and K2, the overlaps are O01 in green, O02 in
red and O12 in blue. (b) The multimesh of the domains in Fig. 1b consists of the active meshes in
Fig. 4b
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3 Multimesh Finite Element Method

To formulate the multimesh finite element for the Stokes problem (1) and (2), we
assume for each (active) mesh Kh,i the existence of a pair of inf-sub stable spaces
Vh,i × Qh,i , i = 0, 1, . . . , N , away from the interface. To be precise, we assume
inf-sup stability in ωh,i ⊂ Ωh,i in the sense of (5) below, where ωh,i is close to Ωi

in the sense that Ωh,i \ ωh,i ⊂ Uδ(Γi), where

Uδ(Γi) =
⋃

x∈Γi

Bδ(x) (4)

and Bδ(x) is a ball of radius δ centered at x. In other words, Uδ(Γi) is the tubular
neighborhood of Γ with thickness δ. In the numerical examples, we let ωh,i be the
union of elements in Kh,i with empty intersection with Γij , j > i.

The inf-sup condition may expressed on each submesh ωh,i by

‖pi − λωh,i (p)‖ωh,i � sup
v∈Wh,i

(div v, p)ωh,i

‖Dv‖ωh,i

, (5)

where pi = p|Ωh,i , λωh,i (p) is the average of p over ωh,i and Wh,i is the subspace
of Vh,i defined by

Wh,i = {v ∈ Vh,i : v = 0 on Ωh,i \ ωh,i}. (6)

We now define the multimesh finite element space as the direct sum

Vh ×Qh =
N
⊕

i=0

Vh,i ×Qh,i , (7)

where Vh and Qh consist of piecewise polynomial of degree k and l, respectively.
This means that an element v ∈ Vh is a tuple (v0, . . . , vN), and the inclusion Vh ↪→
L2(Ω) is defined by v(x) = vi (x) for x ∈ Ωi . A similar interpretation is done for
q ∈ Qh. We consider here Taylor-Hood elements [3] with k ≥ 2, l = k − 1, for
which the condition (5) is fulfilled, but non-conforming elements are also possible.

We now consider the following asymmetric finite element method: Find
(uh, ph) ∈ Vh×Qh such that Ah((uh, ph), (v, q)) = lh(v) for all (v, q) ∈ Vh×Qh,
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where

Ah((u, p), (v, q)) = ah(u, v)+ sh(u, v)+ bh(u, q)+ bh(v, p)+ dh((u, p), (v, q)),

(8)

ah(u, v) =
N
∑

i=0

(Dui , Dvi )Ωi
(9)

−
N
∑

i=1

i−1
∑

j=0

(

(〈(Du) · ni〉, [v])Γij
+ ([u], 〈(Dv) · ni〉)Γij

)

+
N
∑

i=1

i−1
∑

j=0

β0h
−1([u], [v])Γij

,

sh(u, v) =
N−1
∑

i=0

N
∑

j=i+1

β1([Dui], [Dvi])Oij , (10)

bh(u, q) = −
N
∑

i=0

(div ui , qi)Ωi
+

N
∑

i=1

i−1
∑

j=0

([ni · u], 〈q〉)Γij
, (11)

dh((u, p), (v, q)) =
N
∑

i=0

δh2(Δui −∇pi,Δvi +∇qi)Ωh,i\ωh,i
, (12)

lh(v) =
N
∑

i=0

(f , vi )Ωi
−

N
∑

i=0

δh2(f ,Δvi +∇qi)Ωh,i\ωh,i
. (13)

Here, β0 and β1 are stabilization parameters that must be sufficiently large to ensure
that the bilinear form Ah is coercive; cf. [5] for an analysis of the two-domain case.

For simplicity, we use the global mesh size h here and throughout the presen-
tation. If the meshes are of substantially different sizes, it may be beneficial to
introduce the individual mesh sizes hi in (12) and the average h−1

i + h−1
j in (9).

Note that since Γi is partitioned into interfaces Γij relative to underlying meshes,
the sums of the interface terms are over 0 ≤ j < i ≤ N . In contrast, the sums of
the overlap terms are over 0 ≤ i < j ≤ N since the overlap Oi is partitioned into
overlaps Oij relative to overlapping meshes.

The jump terms on Oij and Γij are defined by [v] = vi − vj , where vi and vj
are the finite element solutions (components) on the active meshes Kh,i and Kh,j .
The average normal flux is defined on Γij by

〈ni · ∇v〉 = (ni · ∇vi + ni · ∇vj )/2. (14)

Here, any convex combination is valid [4].
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The proposed formulation (8) is identical to the one proposed in [5] with
sums over all domains and interfaces. Also note the similarity with the multimesh
formulation for the Poisson problem presented in [6], the difference being the
additional least-squares term dh (and the corresponding term in lh) since we only
assume inf-sup stability in ωh,i , see (5) and the discussion above. If we do not
assume inf-sup stability anywhere (e.g. if we would use a velocity-pressure element
of equal order), the least-squares term should be applied over the whole domain as
in [10]. Please cf. [10] for the use of a symmetric dh.

Other stabilization terms may be considered. By norm equivalence, the stabiliza-
tion term sh(u, v) may alternatively be formulated as

sh(u, v) =
N−1
∑

i=0

N
∑

j=i+1

β2h
−2([u], [v])Oij

. (15)

where β2 is a stabilization parameter; see [8].
Note that the finite element method weakly approximates continuity in the sense

that [uh] = 0 and [ni · ∇uh] = 0 on all interfaces.

4 Implementation

We have implemented the multimesh finite element method as part of the software
framework FEniCS [2, 9]. One of the main features of FEniCS is the form language
UFL [1] which allows variational forms to be expressed in near-mathematical
notation. However, to express the multimesh finite element method (8), a number
of custom measures must be introduced. In particular, new measures must be
introduced for integrals over cut cells, interfaces and overlaps. These measures are
then mapped to quadrature rules that are computed at runtime. An overview of these
algorithms and the implementation is given in [7].

To express the multimesh finite element method, we let dX denote the integration
over domains Ωi , i = 0, . . . , N , including cut cells. Integration over Γij and Oij are
expressed using the measures dI and dO, respectively. We let dC denote integration
over Ωh,i \ ωh,i . Now the multimesh finite element method for the Stokes problem
may be expressed as

a_h = inner(grad(u), grad(v))*dX \
- inner(avg(grad(u)), tensor_jump(v, n))*dI \
- inner(avg(grad(v)), tensor_jump(u, n))*dI \
+ beta_0/h * inner(jump(u), jump(v))*dI

s_h = beta_1 * inner(jump(grad(u)), jump(grad(v)))*dO
b_h = lambda v, q: inner(-div(v), q)*dX \

+ inner(jump(v, n), avg(q))*dI
d_h = delta*h**2 * inner(-div(grad(u)) + grad(p), \

-div(grad(v)) - grad(q))*dC
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Fig. 6 A sequence of N meshes are randomly placed on top of a fixed background mesh of the
unit square shown here for N = 2, 4 and 32 using the coarsest refinement level

This makes it easy to implement the somewhat lengthy form (8), as well as
investigate the effect of different stabilization terms.

5 Numerical Results

To investigate the convergence of the multimesh finite element method, we solve
the Stokes problem in the unit square with the following exact solution

u(x, y) = 2π sin(πx) sin(πy) · (cos(πy) sin(πx),− cos(πx) sin(πy)), (16)

p(x, y) = sin(2πx) sin(2πy), (17)

and corresponding right hand side. We use PkPk−1 Taylor–Hood elements with
k ∈ {2, 3, 4} and we use N ∈ {1, 2, 4, 8, 16, 32} randomly placed domains as
in [6] (see Fig. 6). Due to the random placement of domains, some domains are
completely hidden and will not contribute to the solution. For N = 8, this is the
case for one domain, for N = 16, three domains and for N = 32, four domains are
completely hidden. This is automatically handled by the computational geometry
routines. Convergence results are presented in Fig. 7 as well as in Table 1.

6 Discussion

The results presented in Table 1 and Fig. 7 show the expected order of convergence
for the velocity in the L2(Ω) norm (k+ 1), for the velocity in the H 1

0 (Ω) norm (k),
and for the pressure in the L2(Ω) norm (k).

A detailed inspection of Fig. 7 reveals that, as expected, the multimesh discretiza-
tion yields larger errors than the single mesh discretization (standard Taylor–Hood
on one single mesh). The errors introduced by the multimesh discretization are
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Fig. 7 Convergence results for k = 2, 3 and 4 (left to right) using up to 32 meshes (single mesh
results are N = 0). From top to bottom we have the velocity error in the L2(Ω) norm, the velocity
error in the H 1

0 (Ω) norm, and the pressure error in the L2(Ω) norm. Results less than 10−8 are not
included in the convergence lines due to limits in floating point precision

Table 1 Error rates for eL2 = ‖u−uh‖L2(Ω), eH 1
0
= ‖u−uh‖H 1

0 (Ω) and eL2 = ‖p−ph‖L2(Ω)

k = 2 k = 3 k = 4

N eL2 eH 1
0

eL2 eL2 eH 1
0

eL2 eL2 eH 1
0

eL2

0 2.9952 1.9709 2.1466 4.0289 2.9966 3.0028 4.9508 3.9844 4.2286

1 2.9750 1.9658 1.9291 4.1153 3.0912 3.1932 4.8861 4.0006 4.0587

2 3.2764 2.1472 2.5036 3.9087 2.9021 2.8489 4.8677 4.0416 4.0832

4 3.6666 2.5971 2.8597 4.3996 3.3125 3.3957 5.2741 4.0966 4.1609

8 3.0359 1.9697 2.1163 4.3412 3.2258 3.4213 4.8840 3.9409 4.0169

16 3.4131 2.3298 2.4794 4.5033 3.3907 3.5910 5.4702 3.9664 4.0729

32 3.2832 2.1505 2.3255 4.4196 3.2922 3.4362 5.7538 4.3191 4.2848

one to two orders of magnitude larger than the single mesh error. However, the
convergence rate is optimal and it should be noted that the results presented here
are for an extreme scenario where a large number of meshes are simultaneously
overlapping; see Fig. 6. For a normal application, such as the simulation of flow
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around a collection of objects, each object would be embedded in a boundary-
fitted mesh and only a small number of meshes would simultaneously overlap (in
addition to each mesh overlapping the fixed background mesh), corresponding to
the situation when two or more objects are close.

The presented method and implementation demonstrate the viability of the
multimesh method as an attractive alternative to existing methods for discretization
of PDEs on domains undergoing large deformations. In particular, the discretization
and the implementation are robust to thin intersections and rounding errors, both
of which are bound to appear in a simulation involving a large number of meshes,
timesteps or configurations.

Acknowledgements August Johansson was supported by the Research Council of Norway
through the FRIPRO Program at Simula Research Laboratory, project number 25123. Mats G.
Larson was supported in part by the Swedish Foundation for Strategic Research Grant No. AM13-
0029, the Swedish Research Council Grants Nos. 2013-4708, 2017-03911, and the Swedish
Research Programme Essence. Anders Logg was supported by the Swedish Research Council
Grant No. 2014-6093.

References

1. Alnæs, M.S., Logg, A., Oelgaard, K.B., Rognes, M.E., Wells, G.N.: Unified form language: a
domain-specific language for weak formulations of partial differential equations. ACM Trans.
Math. Softw. 40 (2014). https://doi.org/10.1145/2566630

2. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring,
J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100)
(2015). https://doi.org/10.11588/ans.2015.100.20553

3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer,
New York (2008). https://doi.org/10.1007/978-0-387-75934-0

4. Hansbo, A., Hansbo, P., Larson, M.G.: A finite element method on composite grids based
on Nitsche’s method. ESAIM-Math. Model. Num. 37(3), 495–514 (2003). https://doi.org/10.
1051/m2an:2003039

5. Johansson, A., Larson, M.G., Logg, A.: High order cut finite element methods for the Stokes
problem. Adv. Model. Simul. Eng. Sci. 2(1), 1–23 (2015). https://doi.org/10.1186/s40323-015-
0043-7

6. Johansson, A., Kehlet, B., Larson, M.G., Logg, A.: MultiMesh finite element methods: solving
PDEs on multiple intersecting meshes. Comput. Methods Appl. Mech. Eng. 343, 672–689
(2019). https://doi.org/10.1016/j.cma.2018.09.009

7. Johansson, A., Kehlet, B., Logg, A.: Construction of quadrature rules on general polygonal and
polyhedral domains in cut finite element methods (in preparation, 2018)

8. Johansson, A., Larson, M.G., Logg, A.: MultiMesh finite elements with flexible mesh sizes.
Submitted to CMAME (2019). arXiv preprint. https://arxiv.org/abs/1804.06455

9. Logg, A., Mardal, K.A., Wells, G.N., et al.: Automated Solution of Differential Equations
by the Finite Element Method. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-
23099-8

10. Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A stabilized Nitsche overlapping mesh
method for the Stokes problem. Numer. Math. 1–29 (2014). https://doi.org/10.1007/s00211-
013-0603-z

https://doi.org/10.1145/2566630
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1051/m2an:2003039
https://doi.org/10.1051/m2an:2003039
https://doi.org/10.1186/s40323-015-0043-7
https://doi.org/10.1186/s40323-015-0043-7
https://doi.org/10.1016/j.cma.2018.09.009
https://arxiv.org/abs/1804.06455
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/s00211-013-0603-z
https://doi.org/10.1007/s00211-013-0603-z


A Variational Multi-Scale Anisotropic
Mesh Adaptation Scheme
for Aerothermal Problems

Youssef Mesri, Alban Bazile, and Elie Hachem

Abstract We propose a new mesh adaptation technique to solve the thermal
problem of the impingement jet cooling. It relies on a subscales error estimator
computed with bubble functions to locate and evaluate the PDE-dependent approx-
imation error. Then, a new metric tensor H new

aniso based on the subscales error
estimator is suggested for anisotropic mesh adaptation. We combine the coarse
scales anisotropic interpolation error indicator with the subscales error estimator
allowing us to take into account the anisotropic variations of the solution but also
the sub-grid information. The results show that the resulting meshes of this parallel
adaptive framework allow to capture the turbulently generated flow specificities of
the impingement jet cooling and in particular, the secondary vortexes.

Keywords Mesh adaption technique · Impingement jet cooling · VMS error
estimator · Navier–Stokes equations · Heat transfer equations

1 Introduction

The simulation of aerothermal problems requires a significant amount mesh ele-
ments to ensure highly accurate solutions. Consequently, engineers are continuously
looking for a trade-off between high precision level and prohibitive computational
costs. A practical way to reconcile high precision with feasible computational
costs consists in distributing the computational loads over the domain in space.
Indeed, mesh adaptation allows to improve efficiency of numerical methods by local
modifications of the mesh. This technique requires an error analysis on the mesh to
locate the areas and the directions that need a large number of elements. In the
past, a significant work was therefore made on error estimates. In particular, for
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anisotropic mesh adaptation, the interpolation based error indicator has been well
developed. From the interpolation error analysis, several recent results in [1] and
references therein have brought renewed focus on metric-based mesh adaptation
where the underling metric is derived from a recovered Hessian.

Despite the practical advantages of the Hessian based anisotropic mesh adap-
tation technique, the proposed interpolation based error indicators are usually
not sharp enough to capture the fine scale features related to the dynamic flow
solution [2]. To take them into account, we need to consider the PDE-dependent
approximation error. As illustrated in [3], multiscale error estimators are usually
well suited to estimate variational finite element errors. However, the development
of such error estimators requires a mathematical framework for the error analysis.
This framework can be provided by the Variational Multiscale method (VMS) that
we use to stabilize our continuous finite element scheme. The VMS approach
introduced in [4] consists in the splitting of the solution into a resolved part
(i.e. coarse scales) and an unresolved part (i.e. subscales). The resolution of the
unresolved part gives a direct access to the sub-mesh scale information of the
solution and allows us to compute an approximation error estimator without solving
any additional equation.

In this paper, we propose a subscales error estimator for the convective-diffusive
thermal problem of the impingement jet cooling. This subscale error estimator is
computed using a linear combination of bubble functions to establish a pointwise
computation of the error. It has been developed by Irisarri et al. for 2D transport
equation in [5]. Results on the estimated localization of the subscales error for the
impingement jet cooling are presented in the last section.

Furthermore, we propose a new metric tensor H new
aniso for anisotropic mesh adap-

tation. This metric is built on the combination of both the coarse scales interpolation
error indicator and the subscale error estimator. Doing so, the new anisotropic metric
tensor H new

aniso allows to take into account the anisotropic variations of the solution
on the mesh and also relies upon the sub-grid information of the solution.

2 Numerical Methods for the Thermal Resolution
of the Impinging Jet Cooling

The aerothermal impinging jet cooling problem is solved by coupling incompress-
ible Navier–Stokes equations and the convection-diffusion heat transfer equation.
The solutions (v, p) of the unsteady incompressible Navier–Stokes equations are
obtained thanks to a Variational MultiScale (VMS) finite element solver [6] and
the temperature u solution of the heat transfer problem is obtained by using the
Streamline Upwind Petrov-Galerkin (SUPG) finite element scheme [7]. In the
following, the focus is on the Variational Multiscale error analysis of the thermal
problem to derive an a posteriori error estimator.
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2.1 Variational Multi-Scale Scheme
for the Convection-Diffusion Equation

We describe the convection-diffusion problem as the following:

{

Lu = −aΔu+ v · ∇u = f in Ω

u = g on Γg
(1)

where L is a linear differential operator. f is the source term of the equation; g is
the value of the Dirichlet boundary condition; a is the diffusion coefficient and v the
velocity field.
The variational formulation of Eq. (1) is given by:

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

Find u ∈ S = {u ∈ H 1(Ω) | u = g on Γg} such that:

a(w, u) = (w, f ), ∀w ∈ V = {w ∈ H 1(Ω) | w = 0 on Γg}
where a(., .) is a bilinear form, and (., .) the L2(Ω) inner product.

(2)

Applying the Finite Element Method (FEM), we mesh the domain into nel non-
overlapping elements Ωe. We write Ω̃ and Γ̃ as:

Ω̃ =
nel
⋃

e=1

Ωe Γ̃ =
nel
⋃

e=1

Γe \ Γ (3)

With these definitions, we apply the standard Galerkin method:

⎧

⎨

⎩

Find uh ∈ S h = {uh ∈ S | uh|Ωe ∈ P1, ∀Ωe ∈ Ω̃} such that,

a(wh, uh) = (wh, f ), ∀wh ∈ V h = {uh ∈ V | uh|Ωe ∈ P1, ∀Ωe ∈ Ω̃}
(4)

It is well known that this formulation is unstable and leads to spurious oscillations
when the convective term of the equation is dominant. For this reason, we stabilize
the formulation using the SUPG scheme. To do so, for all terms in Eq. (4), we
replace the weighting function wh by a new weighting function wh + τev · ∇wh.
This modification of the formulation is usually interpreted as adding more weight
upstream and reducing it downstream. It adds an artificial weighted diffusion along
the streamline direction. Concerning the choice of the stabilizing parameter τe, we
refer for example to Codina in [6].

Remark 1 In order to study the error of this numerical scheme, we use the
Variational Multiscale analysis. In fact, it has to be noted that the SUPG scheme
can be considered as a particular form of the generalized VMS formulation. Indeed,
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the stabilizing term can also be seen as the effect of the subscales on the coarse
scales. Hughes gives more details about this concordance in [4].

In the VMS formalism, the solution and test functions spaces are decomposed
into two sub-spaces: a mesh scale subspace (or coarse scales) (S h,V h) and an
under-mesh scale subspace (or subscales) (S ′,V ′) such that S = S h ⊕ S ′ and
V = V h ⊕ V ′. Therefore, we can decompose the solution and test functions as
follows:

u = uh + u′, uh ∈ Sh, u′ ∈ S ′
w = wh +w′, wh ∈ Wh, w′ ∈ S ′ (5)

Thanks to the orthogonality between the coarse scales subspace and the subscales
subspace, the variational form can be split into a coarse scales sub-problem and a
subscales sub-problem [6]:

a(wh, uh)+ a(wh, u
′) = (wh, f ) ∀wh ∈ V h

a(w′, uh)+ a(w′, u′) = (w′, f ) ∀w′ ∈ V ′ (6)

We start by solving the subscales sub-problem (second equation). For smooth
functions on the element interior but rough across the inter-element boundaries, the
integration by parts leads to the following equation:

a(w′, u′) = −a(w′, uh)+ (w′, f )
a(w′, u′) = −(w′,Luh − f )− (w′, [Buh])Γ̃ ∀w′ ∈ V ′ (7)

where the jump term [.] represents the difference of the fluxes on both sides of the
element boundaries and B the trace operator of L on Γ̃ . An analytic solution of
problem (7) can be found in [5].

2.2 A Posteriori Error Estimation on Solution’s Subscales

The subscale u′ is computed thanks to a pointwise error estimation as in [5]. It
uses a set of bubble functions as a substitution of the subscales Green’s functions.
This computation method consists in decomposing the error into two components
according to the nature of the residuals:

u′(x) = u′bub(x)+ u′poll(x). (8)

where x is the space coordinates vector. The first term u′bub is the internal residual
error and it is related to the local internal residual, f −Luh, inside the elements. As
we will see later, this part of the error is modeled locally thanks to a set of bubble
functions. The second term u′poll is the inter-element error. It represents the pollution
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error due to sources of errors outside the element. It is negligible when considering
convection-dominated regime [5]. Consequently, in this paper we will consider only
the internal residual error. This error component is expressed with a combination of
bubble functions:

u′(x) ≈ u′bub(x) =
nbub
∑

i=1

cbi bi(x) (9)

Considering bubbles functions of order 3, we have:

u′bub(x) = cb1b1(x)+ cb2b2(x)+ cb3b3(x) (10)

with cbi unknown coefficients to be determined.
The definition of the first bubble function b1(x) is the following:

b1(x) = (d + 1)d+1
d+1
∏

i=1

λ̂i (11)

where d is the dimension of the problem and λ̂i are the barycentric coordinates in
the reference element. The next bubble functions b2(x) and b3(x) are built by adding
the monomials of the Pascal triangle with center in the barycenter ce = (ξe, ηe) of
the element. For example, in 2D, in the reference element: Ωref = {(ξ, η) : 0 ≤
ξ ≤ 1; 0 ≤ η ≤ 1− ξ}, as in [2], we choose the following bubble functions:

b1(ξ, η) = 27× ξη(1− ξ − η)

b2(ξ, η) = 27× ξη(1− ξ − η)(ξ − ξb)

b3(ξ, η) = 27× ξη(1− ξ − η)(η − ηb)

(12)

with ce = (ξb, ηb), ξb = 1/3 and ηb = 1/3.
Then, approximating u′bub(x) by a Taylor series and neglecting the second order

terms, we have an expression of u′bub(x) close to the centroid ci of the element. It
allows us to compute the coefficients cbi of Eq. (10) by identification of each term
with the terms of the Taylor development. Making the assumption that the residual
f − Luh ∈ P0 (constant by element), we only keep the first term of Eq. (10).
Therefore, the internal residual can be expressed as follows:

u′bub(x) = b1(x)(f −Luh)(ci ) (13)

Developing the residual with the convection-diffusion operator L, we have:

u′bub(x) = b1(x)(f (ci )+ aΔuh(ci )− v · ∇uh(ci )) (14)
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Then, uh ∈ P1, therefore,∇uh(ci ) is a constant inside the element and Δuh(ci ) = 0.
For this reason, we finally get:

u′bub(x) = b1(x)(f (ci )− v · ∇uh(ci )) (15)

The above computation of the error estimator is pointwise. In fact, the error
estimator is given at each point x of the domain. However, to include the error
information in the mesh adaptation, the error is evaluated at the integration points
of the bubble function inside each element.

3 Mesh Adaptation

To describe the new anisotropic mesh adaptation techniques developed in this paper,
we start by a reminder on the Hessian based anisotropic mesh adaptation. Then, a
combination between the interpolation error indicator and the previous subscales
error estimator is proposed. From it, we derive a new metric tensor H new

aniso that
allows to drive the remeshing mechanics.

3.1 Principles of Hessian Based Anisotropic Mesh Adaptation

To start, let us consider a certain triangulation Ωh. We can derive an upper bound
of the approximation error using an interpolation error analysis in the Lp norm.
Referring to [1] and references therein, this upper bound is expressed thanks to
the recovered Hessian of the approximated solution uh. In fact, using P1 linear
elements, we usually cannot compute directly the Hessian of the solution. Instead,
we compute an approximation called the recovered Hessian matrix HR(uh(x)).
However, the recovered Hessian matrix is not a metric because it is not positive
definite. Therefore, we define the following metric tensor:

Haniso = RΛRT (16)

where R is the orthogonal matrix built with the eigenvectors (ei)i=1,d of HR(uh(x))

and Λ = diag(|λ1|, . . . , |λd |) is the diagonal matrix of absolute value of the
eigenvalues of HR(uh(x)). The eigenvalues are then classified in ascending order
and we have:

|λd | > . . . > |λ1| (17)
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Following the work of Mesri et al. in [1], we can introduce the following local error
indicator in the Lp norm:

ηΩe = d|Ωe|
1
p |λd(x0)|h2

d (18)

where |λd(x0)| is the maximum eigenvalue of HR(uh(x)) at the center x0 of the
element Ωe, |Ωe| is the volume of the element and hd is the length of the element
in direction d .

3.2 A New Anisotropic Mesh Adaptation Technique Based on
the Subscales Error Estimator

In this section, we propose a new anisotropic mesh adaptation technique. It uses
a new anisotropic local error indicator ηΩe,new that takes into account (1) the
interpolation error indicator and (2) the subscales error estimator. To do so, we
derive a new anisotropic metric tensor H new

aniso that allows to take into account the
anisotropic variations of the solution on the mesh but also relies on the subscales
error estimator.

We consider the previous anisotropic local error indicator defined in Eq. (18).
Now, the unknown of the re-meshing problem is hd,new . In fact, we want the new
mesh size to take into account the subscale error estimates. Thus, we propose a new
anisotropic local error indicator:

ηΩe,new = d|Ωe|
1
p × |λd(x0)| × ||u

′||L∞(Ωe)

u′TOL

× h2
d,new (19)

From here, we can define the new anisotropic metric tensor as:

H new
aniso = RΛRT = ||u

′||L∞(Ωe)

u′TOL

|λ1|e1 ⊗ e1 + . . .+ ||u
′||L∞(Ωe)

u′TOL

|λd |ed ⊗ ed

(20)

Doing so, we keep the anisotropic effects from the solution variations but we
isotropically scale this effect by the subscales error estimator. With this new error
indicator and following the same proof than in Mesri et al. [1], we define a new
optimization problem under the constraint of a fixed number of elements as follows:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

minimizes
h1,Ωe,new,...,hd,Ωe,new

F (h1,Ωe,new, . . . , hd,Ωe,new) =
∑

Ωe∈Ωh

(ηΩe,new)
p

subject to NΩ ′h = C−1
0

∑

Ωe∈Ωh

∫

Ωe

d
∏

i=1

1

hi,Ωe,new

dΩe
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where C0 is the volume of a regular tetrahedron. The solution of this optimization
problem is the vector of the new mesh sizes h1,Ωe,new, . . . , hd,Ωe,new in the eigen
vectors directions e1, e2, e3.

4 Results and Discussions

4.1 Test Case Description

We consider in this paper, the study of an unconfined three dimensional turbulent
isothermal round jet, impinging normally on a hot plate. The configuration of
the impingement jet is given on Fig. 1. It represents a 2D slice view of the 3D
computation. The geometrical and physical parameters used in this paper are given
on Table 1. Referring to previous works on the subject [8], the nozzle to plate
distance H is 2 times the jet diameter D = 26 mm and the injection Reynolds
number is Reinj = 23000.

Fig. 1 Geometry and boundary conditions of the impinging jet cooling



A Variational Multi-Scale Anisotropic Mesh Adaptation Scheme for. . . 207

Table 1 Problem parameters Parameter Numerical value

Uc 19.3 m/s

Ub 15.9 m/s

Reinj 23,000

ηf luid 18e−6 m2/s

D 0.026 m

H 0.052 m

Lplate 0.520 m

Ltube 0.572 m

Tinit 300 K

Tplate 330 K

p0 0 Pa

At initialization, the velocity is null everywhere in the domain except on the
boundary conditions. A mean velocity profile is imposed at the inlet and the bulk
velocity is given by:

Ub = Reinj × ηf luid

D
(21)

with ηf luid the air kinematic viscosity (see Table 1). Following the work of Cooper
et al. in [8], the axial velocity is expressed using a specific power law profile for
turbulent pipe flows. In the direction z, we have:

U(r) =
(

1− 2r

D

)1/7.23

× Ub

0.811+ 0.038(log(Re)− 4)
(22)

where r represents the distance to jet center axis. As in experimental studies [8],
the initial, ambient and jet temperatures are equals and taken at Tinit = 300 K. The
plate is treated as an isothermal wall with a temperature of Tplate = 330 K.

In this section, we evaluate the efficiency of our new mesh adaptation techniques
in the resolution of the thermal problem of the impingement jet cooling.

4.2 Flow Dynamics, Localization of the Subscales Error
and Resulting Meshes

The fundamental phenomenon that occurs during the impingement jet cooling
concerns the rebound of the primary structures when the jet impacts the hot plate.
This rebound takes place during the transitional flow and therefore, requires an
unsteady resolution of the problem (see Fig. 2). In particular, it generates secondary
vortexes in the opposite direction near the wall that have an important impact on the
convective heat transfers. In fact, the injection of cold air induced by the secondary
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Primary vortex 

Secondary vortex 

Cold air injection 

Nusselt secondary peak 

Solid Tube 

Primary vortex 

Fig. 2 Unsteady computation of the primary vortex rebound

vortex enhances the cooling and generates a secondary peak in the Nusselt number
distribution. Therefore, it is necessary that mesh adaptation captures accurately the
thermal exchanges that take place in the secondary vortexes.

On Fig. 3, we observe that the proposed subscales error estimator ||u
′||L∞ (Ωe)

u′TOL

allows us to locate the unresolved part of the thermal solution. Then, thanks to
our new anisotropic mesh adaptation technique, the mesh is adapted anisotropically
according to this sub-scale information. Doing so, it allows us to capture accurately
and dynamically the structure of the secondary vortexes during the unsteady
resolution. The different adaptive simulations have been performed in parallel on
our Lab’s cluster. It consists of 2000 Intel Xeon cores (E5-2670 and E5-2680 chips)
interconnected with infiniband network.

5 Conclusions

We proposed a multiscale error estimator to drive anisotropic mesh adaptation
procedure for finite element flow problems. This new error estimator relies on
the combination of both an interpolation based anisotropic error indicator and
a subscales error estimator. The results show that this combination allows to
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Secondary vortexes:

Fig. 3 Localization of the subscales error and new anisotropic mesh adaptation

get relevant anisotropically adapted meshes that capture complex turbulent flow
structures which are the secondary vortexes generated by the single impingement jet
simulation. Furthermore, the re-definition of the re-meshing optimization problem
allows us to include the sub-grid information in mesh adaptation with respect to the
constraint of a fixed number of elements. The proposed anisotropic error estimator
has been integrated in a parallel adaptive finite element framework to deal with
realistic 2D and 3D aerothermal flow [9].
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Density-Based Inverse Homogenization
with Anisotropically Adapted Elements

Nicola Ferro, Stefano Micheletti, and Simona Perotto

Abstract The optimization of manufacturable extremal elastic materials can be car-
ried out via topology optimization using the homogenization method. We combine
here a standard density-based inverse homogenization technique with an anisotropic
mesh adaptation procedure in the context of a finite element discretization. In this
way, the optimized layouts are intrinsically smooth and ready to be manufactured.

Keywords Topology optimization · Inverse homogenization · Metamaterials ·
SIMP method · Anisotropic mesh adaptation · Finite elements

1 Introduction

The design of performant and light structures has been gaining popularity for the
last years thanks to the rise and development of Additive Manufacturing (AM)
techniques. Differently from subtractive methods, AM enjoys great versatility in
the achievable shapes and presents very few limitations.

In this framework, topology optimization (TO) has proved to be the reference
mathematical method suitable for designing innovative and performant structures
of engineering interest. Essentially, it consists in the allocation of material in the
so-called design domain, ensuring the optimization of a given functional and, at
the same time, the satisfaction of design requirements. The final result of TO is an
optimized structure, where areas of full material and void alternate so that the new
topology guarantees the desired production specifications.

With a particular focus on the linear elastic problem, it is observed that the
stiffness of an optimal designed structure, subject to given loads and constraints,
is increased by inserting small substructures [2]. Consequently, different authors
have investigated the possibility of employing topology optimization at a microscale
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as well, aiming at yielding optimized microstructures (metamaterials) [24, 26].
The ultimate goal is to combine the microscopic optimized structures with a
standard TO performed at the macroscale. This link is made possible by employing
homogenization techniques, which are widely used to incorporate the information
provided by the microscale into macroscale models [1, 3, 20].

In this work, we enrich such an approach by resorting to a numerical dis-
cretization of the linear elastic problem based on a standard finite element solver
combined with a mesh adaptation procedure. In particular, in Sect. 2, we briefly
present a density-based approach for a generic topology optimization problem.
In Sect. 3, the homogenization procedure is presented. We distinguish between a
direct and an inverse method, consisting in prescribing the desired macroscopic
effective values in order to retrieve the optimal microstructure. Section 4 is devoted
to the numerical approximation and to the anisotropic setting used for the finite
element discretization. In particular, we examine the mathematical tool employed to
anisotropically adapt a two-dimensional mesh to the problem at hand, coupling such
a procedure with the inverse homogenization technique. In Sect. 5, some numerical
results are provided in order to assess the proposed algorithm, and finally some
conclusions are drawn in Sect. 6.

2 A Density-Based Method for Topology Optimization

We consider the SIMP formulation for topology optimization to address the
structural optimization problem [2]. In this context, the optimal layout of a material
is determined in terms of an auxiliary scalar field, say ρ, defined over the domain
Ω . In particular, ρ is a relative density belonging to L∞(Ω, [0, 1]), determining
presence of full material (ρ = 1) or void (ρ = 0). The optimization problem is
set once the objective function C and the design requirements are defined, while
a balance equation S constrains the optimization. Then, in order to account for
changes in the topology, the state equation S is properly modified to include the
density variable in the formulation. The final optimization problem thus reads

min
ρ∈L∞(Ω)

C(ρ) :

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

State equation S(ρ) is satisfied

Boundary conditions
∫

Ω ρ dΩ ≤ α|Ω |
ρmin ≤ ρ ≤ 1,

(1)

where α is the maximum volume fraction we wish to ensure in the final configura-
tion, and ρmin is a lower bound for the density, to avoid the possible ill-posedness of
S.

In particular, S is chosen accordingly to the physical phenomenon under
investigation, i.e., to the application at hand. For instance, for the optimization of
elastic structures, the state equation can be represented by the linear elastic equation,
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whereas, when considering the optimization of the energy dissipation of a steady
flow, one can identify S with the Stokes equations. In the specific case of the
present work, we deal with the optimization of the design of elastic microstructures.
A homogenized version of the elastic equations will represent the reference state
equation as detailed in the following section. Concerning the inclusion of the density
variable in the state equation, a suitable power law of ρ is usually employed to weigh
the main physical constants in S, such as the standard Lamé constants, λ and μ, for
the elastic problem or the inverse permeability of the fluid for the Stokes equations.

3 The Homogenization Procedure

The homogenization method is an asymptotic technique whose goal is to assign
macroscopic effective properties to microscopic entities, which are arranged
periodically. This approach plays a crucial role in multiscale simulations since
it allows one to deal with the macroscale only, the effects of the microscale being
inherited through homogenization. The technique has been widely investigated
both theoretically [3, 20] and numerically [1], and it is a well-established
practice.

In this section, we analyze also the converse technique, known as inverse
homogenization [14, 19, 21, 22]. This can be formulated as a control problem or,
specifically, as a topology optimization problem. The aim is to find the optimal
arrangement of material at the microscale so that desired effective properties are
guaranteed at the macroscale. Notice that the flow of information is opposite with
respect to the classical homogenization. The macroscale is fixed or prescribed,
whereas the microscale is modified to match the desired requirements.

3.1 The Direct Method

Direct homogenization has been employed in different fields of application to
modify the macroscale model according to the microscale layout [6, 12, 20]. This
technique relies on the periodic arrangement of a microstructure which constitutes
the base cell, Y . Such elementary entity represents the domain of interest and it is
analyzed in order to retrieve its effect on the macroscale.

Let us consider the linear elasticity equation [11]

−∇ · σ(u) = f in Ω, (2)

where Ω ⊂ R
2 is the domain under investigation at the macroscale, f is the

volumetric forcing term, u = [u1, u2]T is the displacement field, and σ is the stress
tensor. For the sake of generality, we stick to the convention of denoting by Eijkl
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the fourth-order stiffness tensor, so that the stress tensor has components

σij = Eijklεkl with εkl = 1

2

(

∂uk

∂xl
+ ∂ul

∂xk

)

,

where xl , with l = 1, 2, are the spatial coordinates, εkl are the components of
the strain tensor ε, and we have adopted the Einstein notation to manage index
summation.

The homogenization technique relies on the repetition of the base cell Y . In
order to preserve this physical feature, we impose periodic boundary conditions.
In this way, we enforce that the displacement field u is equal in correspondence
with opposite boundaries [5].

Then, the actual objective becomes to compute the homogenized (or effective)
stiffness tensor, EH , representing a macroscopic mean value of the tensor E,
after neglecting the microscale fluctuations E∗. To this end, we resort to an
asymptotic expansion of the displacement field u with respect to the base cell size,
considering only the first two terms. Then, following [3, 21], it can be shown that
the homogenized tensor EH is given by

EH
ijkl =

1

|Y |
∫

Y

Eijpq(ε
0,kl
pq − ε∗,klpq ) dY, (3)

where |Y | is the measure of the cell Y , ε0,kl identifies a fixed strain field, chosen
among the four linearly independent possible fields (k, l being equal to 1, 2), while
ε∗,kl ∈ V is the Y-periodic fluctuation strain, i.e., the weak solution to the equation

∫

Y

Eijpqε
∗,kl
pq εij (v) dY =

∫

Y

Eijpqε
0,kl
pq εij (v) dY, ∀v ∈ V, (4)

V ⊂ [H 1(Y )]4 being a periodic Sobolev function space. Thus, by combining (3)
and (4), we obtain the final form of the effective stiffness tensor [1, 21]

EH
ijkl =

1

|Y |
∫

Y

Epqrs(ε
0,kl
pq − ε∗,klpq )(ε

0,ij
rs − ε

∗,ij
rs ) dY. (5)

Equations (4) and (5) constitute the state equations to be employed in the inverse
homogenization technique, as detailed in the following section.

3.2 The Inverse Method

We refer to inverse homogenization as to the procedure concerning the design
of a base cell, Y , whose contribution to the macroscale, according to the direct
homogenization process in the previous section, is prescribed [19, 22]. In order to
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modify the formulation of the direct method, we have to account for variations in
the initial distribution of material in the base cell. This goal can be pursued via
topology optimization, yielding optimized structures according to specific, user-
defined, constraints and objectives.

The same paradigm as in Sect. 2 is now exploited to incorporate the cell design in
the homogenization problem. Let us fix the objective function, J, as a control over
the quadratic deviation between the computed value of the homogenized stiffness
tensor, EH , and the requested one, EW , i.e.,

J =
∑

ijkl

(EH
ijkl(ρ)− EW

ijkl )
2.

Hence, the minimization of J should lead to a micro-design, whose macro-features
are the ones desired by the user [22]. Thus, the final system for the micro-
optimization is obtained by solving the following problem

min
ρ∈L∞(Y )

J(ρ) :

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

(4)ρ − (5)ρ are satisfied

+ Periodicity conditions
∫

Y ρ dY ≤ α|Y |
ρmin ≤ ρ ≤ 1,

(6)

where (4)ρ − (5)ρ represent Eqs. (4) and (5) after replacing Eijkl with ρpEijkl , in
order to include the design variable ρ in the formulation, p being a penalization
exponent.

4 The Numerical Discretization

Problem (6) can be numerically solved via a finite element discretization [7]. After
introducing a conforming tessellation Th = {K} of Y , with K the generic triangle,
we denote by V r

h the associated finite element spaces of piecewise polynomials of
degree r > 0, with h the maximum diameter of the mesh elements.

The topology optimization problem discretized via a finite element scheme is
known to suffer from several numerical issues [15, 23]. Some of these can be tackled
with a suitable choice of the spaces employed to discretize displacement and density
or via filtering techniques. Here, we propose to contain any post-processing phase
by exploiting the intrinsic smoothness of the optimized density field yielded using
ad-hoc meshes. In particular, we choose to discretize problem (6) on a sequence
of anisotropically adapted grids and, consequently, we modify the optimization
algorithm to deliver smooth and, essentially, directly manufacturable structures.
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4.1 The Anisotropic Setting

We resort to an anisotropic adaptive procedure driven by the density field ρ, which
is expected to sharply change from 0 to 1 in correspondence with the boundaries
of the structure. The expected strong gradients across the material-void interface
justify the employment of anisotropic meshes as an ideal tool to sharply describe
the directional features of the density field.

We follow a metric-based procedure in order to generate the optimal mesh
to discretize the problem [10]. Essentially, the adaptation procedure relies on an
a posteriori error estimator, merging the error information with the geometric
properties of the grid. In particular, we employ an anisotropic variant of the
Zienkiewicz-Zhu estimator [25], to evaluate the H 1-seminorm of the discretization
error, which is expected to be the most effective measure for detecting the material-
void interface. Following [16], the elementwise contribution to the anisotropic error
estimator is

η2
K =

1

λ1,Kλ2,K

2
∑

i=1

λ2
i,K

(

rTi,K GΔK

(

E∇
)

ri,K
)

, (7)

where λ1,K and λ2,K are the lengths of the semi-axes of the ellipse circumscribed to
element K , while r1,K and r2,K represent the directions of such axes. The quantity
E∇ =

[

P(∇ρh) − ∇ρh
]

ΔK
is the recovered error associated with the density ρ,

where P(∇ρh)|ΔK = |ΔK |−1∑
T ∈ΔK

|T |∇ρh|T denotes the recovered gradient
computed on the patch ΔK of the elements sharing at least a vertex with K , | · |
being the measure operator, and ∇ρh is the gradient of the discrete density [9, 17].
Finally, GΔK(·) ∈ R

2×2 is the symmetric positive semidefinite matrix with entries

[GΔK(w)]i,j =
∑

T ∈ΔK

∫

T

wi wj dT with i, j = 1, 2, (8)

for any vector-valued function w = (w1, w2)
T ∈ [L2(Ω)]2. Then, the global error

estimator is given by η2 =
∑

K∈Th

η2
K .

The mesh adaptation is carried out by minimizing the number of elements of
the adapted mesh, while requiring an upper bound TOLAD to the global error
estimator η together with an error equidistribution criterion. This gives rise to
an elementwise constrained optimization problem which admits a unique analytic
solution. Specifically, by introducing the aspect ratio sK = λ1,K/λ2,K ≥ 1
measuring the deformation of element K , the adapted grid is characterized by the
following quantities

s
adapt
K = √g1/g2, radapt1,K = g2, radapt2,K = g1,



Density-Based Inverse Homogenization with Anisotropically Adapted Elements 217

where {gi, gi}i=1,2 are the eigen-pairs associated with the scaled matrix
̂GΔK(E∇) = GΔK (E∇)/|ΔK |, with g1 ≥ g2 > 0, {gi}i=1,2 orthonormal vectors.

Finally, imposing the equidistribution, i.e., η2
K = TOLAD2/#Th, with #Th the

mesh cardinality, we obtain the geometric information identifying the new adapted
mesh, i.e.,

λ
adapt
1,K = g

−1/2
2

(

TOLAD2

2#Th |̂ΔK |
)1/2

, λ
adapt
2,K = g

−1/2
1

(

TOLAD2

2#Th |̂ΔK |
)1/2

,

radapt1,K = g2, radapt2,K = g1,

(9)

with |̂ΔK | = |ΔK |/(λ1,Kλ2,K).

4.2 The Adaptive Algorithm

The algorithm employed to merge the topology optimization of the base cell Y

with the mesh adaptation procedure described above is here presented. We name
it microSIMPATY algorithm since it is inspired by the algorithm SIMPATY in [18].

In Algorithm 1, optimize is a numerical routine for the inverse topology
optimization, which stops whenever the maximum number of iterations, Mit, is
exceeded, or the prescribed tolerance, TOPT, is satisfied. Beside the objective
function J(ρ), the corresponding derivative with respect to ρ is required by the
optimize algorithm, as well as other possible constraints to be imposed, with
the associated derivatives. Such sensitivities are analytically computed following
a Lagrangian approach [4]. Function adapt is a routine performing the mesh
adaptation starting from the metric derived in (9). The algorithm is terminated
by two stopping criteria, one based on the number of iterations, the other on the
stagnation of the number of elements between two consecutive mesh adaptations to
within CTOL.

Algorithm 1 microSIMPATY

Input : CTOL, TOLAD, TOPT, kmax, ρmin, T(0)
h

1: Set: ρ0
h , k = 0, errC = 1+ CTOL

2: while errC > CTOL & k < kmax do
3: ρk+1

h = optimize(ρk
h,Mit, TOPT, ρmin,J(ρ),∇ρJ(ρ), . . .);

4: T
(k+1)
h = adapt(T(k)

h , ρk+1
h ,TOLAD);

5: errC = |#T(k+1)
h − #T(k)

h |/#T(k)
h ;
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5 Numerical Results

The following numerical verification has been carried out with FreeFem++ [13],
which provides the users with built-in functions for both optimization [8] and
metric-based mesh adaptation. In both the considered test cases, we deal with the
design of a 1[m] ×1[m] base cell with negative Poisson ratio ν = λ/[2(λ + μ)],
corresponding to E1122. We choose p = 4 for the penalization exponent in (6). The
material employed has Young modulus equal to 0.91[Pa] and Poisson ratio ν = 0.3.
Finally, ρ0

h is set to |sin(2πx1) sin(2πx2)|.
Case 1 In Fig. 1, the results for EW

1122 = −1 are shown. We require a volume
fraction α = 0.3, we start with an initial structured mesh consisting of 1800
elements, and we pick TOLAD = 10−5, CTOL = 10−4, TOPT = 10−3,
ρmin = 10−4, kmax = 20, while the maximum number of iterations,
Mit, is set to 35 for the first three iterations and to 10 for the next ones.
The algorithm stops after 20 iterations, delivering a structure with EH

1122 =−0.65. The final design thus obtained is comparable with the one in [14,
Figure 3], while the quality of the solution is increased when resorting to the
microSIMPATY algorithm, no filtering techniques being required. In Fig. 1,
bottom-right, we show the last adapted grid. Notice that the elements are highly
stretched and concentrated in correspondence with the void-solid interface.

Fig. 1 Optimized microstructure for EW
1122 = −1: 4 × 4 periodic arrangement of the base cell

(left), base cell (top-right) and corresponding adapted mesh (bottom-right)
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Fig. 2 Optimized microstructure for EW
1122 = −0.7: 4 × 4 periodic arrangement of the base cell

(left), base cell (top-right) and corresponding adapted mesh (bottom-right)

The cardinality of such final mesh is 2620 and its maximum aspect ratio is
97.76.

Case 2 The second case concerns the optimization of a micro-design with EW
1122 =−0.7 and α = 0.5 (see [21, Figure 2.17]). As for the previous test, we perform 20

iterations, starting from a structured mesh of 1800 elements and picking the same
parameters as in the previous case, except for Mit, which is now set to 35 at the
first iteration, to 25 until the fifth one, and to 15 for the later iterations. The results
in Fig. 2 show a very smooth solution, where intermediate densities are very limited
to a thin boundary layer, whose quality is enhanced by the adapted grid. In the
final mesh, the directionalities of the density field are properly detected, making
4266 elements enough for a sharply-defined solution, with a maximum value for the
aspect ratio equal to 85.58. The final structure delivers an effective Poisson ratio
equal to −0.54.

6 Conclusions

In this work, we presented an algorithm to optimize microstructures according to
user-defined requirements, based on the inverse homogenization method, properly
merged with an anisotropic mesh adaptation procedure.



220 N. Ferro et al.

The structures derived in Sect. 5 are consistent with the ones available in the
literature and exhibit a remarkable smoothness along structure boundaries, the
thin material/void layers being sharply detected by the adapted mesh. This feature
confirms the benefits due to microSIMPATY algorithm.

Nevertheless, the optimization process depends on several parameters to be
accurately tuned in order to meet user requirements. For this reason, we plan to
perform a more rigorous investigation in such a direction, especially to make the
homogenized stiffness tensor closer to the requested one.

Finally, with a view to real applications, we are extending the algorithm to a 3D
framework.
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Bathymetry Reconstruction Using
Inverse Shallow Water Models: Finite
Element Discretization and
Regularization

Hennes Hajduk, Dmitri Kuzmin, and Vadym Aizinger

Abstract In the present paper, we use modified shallow water equations (SWE)
to reconstruct the bottom topography (also called bathymetry) of a flow domain
without resorting to traditional inverse modeling techniques such as adjoint meth-
ods. The discretization in space is performed using a piecewise linear discontinuous
Galerkin (DG) approximation of the free surface elevation and (linear) continuous
finite elements for the bathymetry. Our approach guarantees compatibility of the
discrete forward and inverse problems: for a given DG solution of the forward SWE
problem, the underlying continuous bathymetry can be recovered exactly. To ensure
well-posedness of the modified SWE and reduce sensitivity of the results to noisy
data, a regularization term is added to the equation for the water height. A numerical
study is performed to demonstrate the ability of the proposed method to recover
bathymetry in a robust and accurate manner.

Keywords Bathymetry reconstruction · Shallow water equations ·
Continuous/discontinuous Galerkin method · Inverse problem

1 Introduction

The shallow water equations are among the most popular mathematical models for
applications in environmental fluid mechanics. The geometry of a computational
domain for SWE simulations of coastal, riverine, and estuarine flow problems
can be determined using inexpensive and highly accurate measurement techniques
for boundaries corresponding to coastlines and the free surface. However, the
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resolution and accuracy of experimental data for the bottom topography (also called
bathymetry) of many regions are very poor. As an alternative to direct measure-
ments, the missing bathymetry data can be reconstructed by solving a (modified)
SWE system as originally proposed in [7, 8]. The bathymetry enters the momentum
equations as a source term which has a strong influence on the accuracy of simula-
tions. In many applications such as tsunami predictions, numerical results are highly
sensitive to errors in bathymetry data. The most common measurement techniques
for bathymetry and their respective limitations (see [14, 18]) are as follows:

• Surveys by ships are suitable only for local measurements in small regions;
• LiDAR/LaDAR (Light/Laser Detection And Ranging) using equipment installed

on ships or aircraft is expensive and has limited coverage;
• Multi-spectral satellite imaging is only practical for shallow and clear water.

Discussions of other issues associated with direct bathymetry measurements can be
found, e.g., in [14, 16, 20]. In the present paper, we explore the possibility of using
SWE-based models for bathymetry reconstruction from the water surface elevation
which is much easier to measure remotely (e.g. by satellite altimetry). The proposed
approach involves solving a degenerate hyperbolic inverse problem, in which the
roles of the free surface elevation and the bottom topography are interchanged
[12]. The first proof of concept for bathymetry reconstructions by this technique
was proposed by Gessese et al. in [8] using a finite difference discretization of a
one-dimensional SWE system for stationary sub- and transcritical configurations.
A generalization to the 2D case was presented in [7] and further developed in [9, 10].
The main objective of the present work is the design of a special finite element
discretization that ensures compatibility of the forward and the inverse problems.
We also address the ill-posedness issue by adding a regularization term which also
improves the reconstruction quality in the presence of noise.

2 Formulation of the Forward and Inverse Problems

The shallow water equations are derived from the incompressible Navier-Stokes
equations using the hydrostatic pressure assumption and averaging in the vertical
direction [5, 19]. The result is the system of conservation laws

∂H

∂t
+∇ · (Hu) = 0 , (1)

∂(Hu)

∂t
+∇ · (Huu)+ g

2

∂H 2

∂x
+ g H

∂b

∂x
+ τbfHu− fc Hv = 0 , (2)

∂(Hv)

∂t
+∇ · (Hvu)+ g

2

∂H 2

∂y
+ g H

∂b

∂y
+ τbfHv + fc Hu = 0 , (3)
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where u = [u, v]T is the depth-averaged velocity, and H = ξ − b is the total
water height, that is, the difference between the free surface elevation ξ and the
bathymetry b both measured with respect to the same level. The terms depending
on τbf and fc are due to the bottom friction and the Coriolis force, respectively. In
a compact form, the SWE system can be written as

∂U
∂t
+∇ · F(U) = S(U,∇b), (4)

where

U =
[

H

Hu

]

, F(U) =
[

Hu

Hu⊗ u + gH 2

2 1

]

, S(U,∇b) =
⎡

⎣

0
fc Hv − τbfHu− gH ∂b

∂x

−fc Hu− τbfHv − gH ∂b
∂y

⎤

⎦ .

In the context of bathymetry reconstruction, the forward and inverse problems
require numerical solution of system (1)–(3). In the forward problem, the free
surface elevation is given by ξ = H + b, where b is a known bathymetry. The
bathymetry gradient which appears in (2), (3) is known as well, so the source term
g H ∇b depends linearly on H . In the inverse problem, the bathymetry is unknown
and defined by b = ξ − H , where ξ is given. Since the gravitational force term
of the inverse momentum equation contains the unknown bathymetry gradient, the
inverse problem exhibits entirely different mathematical behavior. As a consequence
of swapping the roles of ξ and b, system (1)–(3) becomes degenerate hyperbolic and
more difficult to solve (see [12] for an in-depth analysis of the potentially ill-posed
inverse problem).

The possible lack of uniqueness can be cured by adding a regularization
term of the form εΔb to (1). This regularization resembles the Brezzi-Pitkäranta
stabilization method [3] for equal-order numerical approximations to the velocity
and pressure in the incompressible Navier-Stokes equations; however, in the setting
of the shallow water equations, such a term would induce artificial currents in the
presence of bathymetry gradients. The Laplacian can be replaced by a total variation
regularization term [4] or another anisotropic diffusion operator. In this work, we
define the regularization term at the discrete level in terms of finite element matrices
(see below).

3 Discretization of the SWE System

Let Ω ⊂ R
2 be a bounded Lipschitz domain with a polygonal boundary. Given

a conforming triangulation Th := {T1 , . . . , TK } of Ω , we define the DG space
Vh := {vh ∈ L2(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th} and the corresponding continuous
Galerkin (CG) space Wh := Vh ∩ C0(Ω) . The space Vh is spanned by 3K
piecewise-linear basis functions ψkj , k = 1, . . . ,K, j = 1, 2, 3. The dimension of
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Wh equals the number of vertices x1, . . . , xL of Th. The Lagrange basis functions
ϕ1, . . . , ϕL have the property that ϕi(xj ) = δij , i, j = 1, . . . , L.

System (1)–(3) is discretized using the space Vh for H,Hu, ξ and the space Wh

for b. Since the number of equations must be equal to the number of unknowns, the
variational forms of the discrete forward and inverse problems differ in the choice
of the test function space for the continuity equation. Time integration is performed
using an explicit second-order SSP Runge-Kutta scheme [11], i.e., Heun’s method.

Space Discretization of the Forward Problem
In the semi-discrete forward problem, we seek the coefficients of surface elevation
ξh ∈ Vh and momentum (Hu)h ∈ (Vh)

2. In practice, it is more convenient to
formulate the semi-discrete forward problem in terms of Uh = [Hh, (Hu)h]T ∈
(Vh)

3 and calculate the surface elevation ξh = Hh + bh ∈ Vh by adding the known
continuous bathymetry bh ∈ Wh to the discontinuous water height Hh ∈ Vh. For
any element T − ∈ Th and any test function vh ∈ (Vh)

3, the (element-local) DG
form of system (4) is given by [1, 12]

∫

T −
vh · ∂tUh dx −

∫

T −
∇vh : F(Uh) dx

+
∫

∂T −
vh ·̂F(U−h ,U+h ; νT −) ds =

∫

T −
vh · S(Uh,∇bh) dx , (5)

where νT − is the unit outward normal and ̂F(U−h ,U+h ; νT −) is a numerical flux
defined in terms of the one-sided limits U±h (see [12] for details). In the numerical
study below, we use the Roe flux or the Lax-Friedrichs flux.

Summing over all elements, we obtain a semi-discrete problem of the form

(vh, ∂tHh)+ aH (vh,Uh) = fH (vh) ∀vh ∈ Vh, (6)

(vh, ∂t (Hu)h)+ au (vh,Uh) = (vh,Sh(Uh,∇bh))+ fu(vh) ∀vh ∈ (Vh)
2,

(7)

where (·, ·) is the L2 scalar product on Ω . The forms aH (·, ·) and au(·, ·) consist of
volume integrals depending on ∇vh : F(Uh) and jump terms depending on (v+h −
v−h ) ·̂F(U−h ,U+h ; νT −). The linear forms fH (·) and fu(·) contain the contribution of
weakly imposed boundary conditions.

Space Discretization of the Inverse Problem
In the inverse problem, the water height Hh ∈ Vh is uniquely determined by the 3K
known coefficients of the surface elevation ξh ∈ Vh and L unknown coefficients
of the bathymetry bh ∈ Wh. Hence, the dimension of the test function space for
system (6), (7) exceeds the number of unknowns. Substituting ξh − bh for Hh, we
replace the continuity equation (6) by

(wh, ∂t bh)− aH (wh,Uh) = (wh, ∂t ξh)− fH (wh) ∀wh ∈Wh, (8)
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while keeping the momentum equation (7) unchanged. This yields a system of
L + 6K equations for L + 6K unknowns. Since Wh is a subspace of Vh, a DG
approximation Uh = [Hh, (Hu)h]T satisfying (6), (7) will satisfy (7), (8) as well.
If the given surface elevation ξh corresponds to a solution of the discrete forward
problem, the underlying bathymetry bh must be a (possibly non-unique) solution of
the discrete inverse problem.

Pseudo-Time Stepping and Regularization
Any explicit SSP Runge-Kutta time discretization of system (8), (7) can be
expressed as a convex combination of forward Euler updates. Let M = (mij ) denote
the consistent mass matrix with entries mij = (ϕi, ϕj ), i, j = 1, . . . , L, where ϕi
are the continuous Lagrange basis functions spanning the space Wh. Row-sum mass
lumping yields the diagonal approximation ML = (miδij ), where mi = (ϕi, 1). To
deal with the issue of ill-posedness, we march the bathymetry bh ∈Wh to a steady
state using the regularized matrix form

ML

bn+1 − bn

Δt
= R(Un

h)+ ε(M−ML)b
n (9)

of a generic forward Euler step for pseudo-time integration of (8). The first term on
the right-hand side of the above linear system is defined by

Ri(Un
h) =

(

ϕi,
ξn+1
h − ξnh

Δt

)

+ aH
(

ϕi,Un
h

)− fH (ϕi), (10)

where Δt is the pseudo-time step. The regularization term ε(M − ML)b
n has the

same form as the pressure stabilization term proposed by Becker and Hansbo [2]
for a finite element discretization of the Stokes system. In our experience, the use
of a discrete Laplace operator in place of M − ML produces similar results. We
envisage that the use of anisotropic diffusion operators such as the one employed
in [4] for total variation-based image denoising purposes can lead to more accurate
reconstructions of small-scale features.

4 Numerical Results for the Inverse Problem

Our numerical discretization utilizes the FESTUNG toolbox [6, 15, 17] and is
described in detail in [13]. We consider the domain Ω = (0, 1 km) × (0, 1 km)

and utilize a triangular unstructured grid with Δx = 40 m to solve the forward and
inverse problems on a time interval of 3 h with Δt = 0.1 s. The employed parameter
settings are g = 9.81 m/s2, fc = 3 · 10−5 s−1, cf = 10−3 s−1. Bathymetry for
solving the forward problem is specified as a rather complex yet smooth function
(see [12] and Fig. 1). The boundary conditions are as follows: in both problems,
the normal fluxes are set to zero on the upper and lower boundary, and the flux
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Fig. 1 Computational domain and mesh (left), exact bathymetry (right)

Hu = [4 0]T is prescribed on the left (or inflow) boundary. In the forward problem,
ξ ≡ 0 is used at the outlet, whereas in the inverse problem, the bathymetry is
prescribed at the inlet.

First, we solve the forward problem with the initial condition ξ ≡ 0 and
Hu ≡ [4 0]T . The steady-state result (as presented in [12]) is subsequently used
as input for the inverse problem, where the initial bathymetry is set to b ≡ −2, and
initial momentum is as in the forward problem. Running the code until the change in
bathymetry between pseudo-time steps becomes sufficiently small, we obtain a very
accurate reconstruction (the L∞ error is 7.85 · 10−6 m). Excellent results are also
obtained if a non-stationary free surface elevation is used as input for the inverse
problem, similarly to the example considered in [12].

To study the effect of noisy input data on the free surface elevation, we add
random perturbations ranging in (−10−4 m, 10−4 m) to the free surface values in
each grid vertex. Figure 2 (left) shows a typical reconstruction result for such a case.
The amplification of data errors in the reconstruction indicates the ill-posedness
of the inverse problem, and further study shows that the reconstruction error is
even worse on refined grids. However, interesting effects can be observed if one
substitutes the ‘noisy’ result shown in Fig. 2 (left) as the bathymetry for the forward
problem: a surface elevation field differing from the original perturbed steady state is
produced. Remarkably, using this new steady state as input for the inverse problem
results in the exact same oscillatory steady-state bathymetry as in Fig. 2 (left). We
attribute this phenomenon to the space relation Wh ⊂ Vh: proper reconstruction of
free surface elevation ξh ∈ Vh from a solution bh ∈Wh of the inverse problem may
be impossible due to the larger DG space Vh. On the other hand, the continuous
bathymetry seems to be uniquely determined by the free surface and the inflow
boundary condition as long as the velocities are non-zero—which is an encouraging
result.
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Fig. 2 Bathymetry reconstruction from noisy data without (left) and with (right) artificial diffusion

Finally, we demonstrate how to improve the oscillatory reconstruction via
inclusion of diffusive terms: so far the parameter ε was set to zero. From heuristic
testing we found the best possible reconstruction is possible with ε = 0.08 m2/s.
The result can be seen in Fig. 2 (right); it indicates that the influence of flawed
data can be filtered out by our regularization approach. Furthermore, we are able to
reduce the required number of pseudo-time-stepping iterations by a factor of around
15 due to the smoothing properties of the artificial diffusive term. Corresponding
results for reconstruction from noisy surface elevation were obtained on refined
grids. However, the regularization parameter ε has to be chosen much larger. In some
cases, the steady-state convergence behavior can also be improved by decreasing
the pseudo-time step. In our experience, promising results can be obtained even for
ε→ 0.

5 Conclusion and Outlook

The main highlight of this work is a combined CG-DG finite element method for
SWE-based reconstruction of bottom topography from surface elevation data. The
use of a continuous finite element space Wh ⊂ Vh for the bathymetry produces
a realistic number of constraints and ensures compatibility to the DG scheme for
the hyperbolic forward problem. A regularization term is added to the discretized
continuity equation of the inverse problem to obtain stable steady state solutions.
The presented numerical examples demonstrate the potential of the proposed
methodology. Further work is required to study the sensitivity of results to the choice
of the regularization parameter and definition of the artificial diffusion operator.
These studies may involve theoretical investigations, as well as applications to rivers
with well-explored bathymetry and/or comparison to laboratory experiments.
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Enabling Scalable Multifluid Plasma
Simulations Through Block
Preconditioning

Edward G. Phillips, John N. Shadid, Eric C. Cyr, and Sean T. Miller

Abstract Recent work has demonstrated that block preconditioning can scalably
accelerate the performance of iterative solvers applied to linear systems arising
in implicit multiphysics PDE simulations. The idea of block preconditioning is
to decompose the system matrix into physical sub-blocks and apply individual
specialized scalable solvers to each sub-block. It can be advantageous to block into
simpler segregated physics systems or to block by discretization type. This strategy
is particularly amenable to multiphysics systems in which existing solvers, such as
multilevel methods, can be leveraged for component physics and to problems with
disparate discretizations in which scalable monolithic solvers are rare. This work
extends our recent work on scalable block preconditioning methods for structure-
preserving discretizatons of the Maxwell equations and our previous work in MHD
system solvers to the context of multifluid electromagnetic plasma systems. We
argue how a block preconditioner can address both the disparate discretization,
as well as strongly-coupled off-diagonal physics that produces fast time-scales
(e.g. plasma and cyclotron frequencies). We propose a block preconditioner for
plasma systems that allows reuse of existing multigrid solvers for different degrees
of freedom while capturing important couplings, and demonstrate the algorithmic
scalability of this approach at time-scales of interest.
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1 Introduction

This work considers the development of a robust preconditioning strategy for
linear systems arising as a result of discretization and linearization (e.g. Newton’
or fixed-point iteration) of implicit multifluid continuum plasma models. The
model considered includes a set of Euler equations for each tracked species–
which may include electrons and various ion and neutral species–coupled together
through electromagnetic source terms. The electromagnetics are governed by the
Maxwell equations with current defined by the fluid momenta [6, 16, 36]. The
equations are nonlinear and may be strongly coupled, manifesting in dynamics
over numerous length- and time-scales which may range over many orders of
magnitude in practice [8]. Consequently, time-scales of interest in a simulation
can be much longer than those dictated by explicit time-stepping methods, and
in these cases implicit methods may be the only feasible way to obtain timely
solutions. When implicit methods are applied, operators corresponding to fast time-
scales with respect to the discrete time-step give rise to stiff modes in the linear
system, and linear solvers must account for these time-scales to obtain scalable,
robust performance. To further complicate the situation, fast time-scales in the
plasma system often come from off-diagonal interactions between electromag-
netic and fluid degrees of freedom. Additionally, edge and face discretizations
may be employed for the electromagnetics in order to enforce Gauss’ law (∇ ·
B = 0) to machine precision [20, 27]. With fluids discretized by nodal finite
elements, this mixed discretization poses an additional challenge to linear solvers,
as monolithic preconditioners [1, 25, 34, 35] are difficult to adapt to disparate
discretizations.

Block preconditioners, which segregate the system matrix by physical degrees of
freedom, are well-suited to address the particular difficulties of multifluid plasma
systems. They allow segregation based on discretization type such that scalable
solvers for particular discretizations may be leveraged. By additionally segregating
according species, block preconditioning allows for the additional flexibility of
treating large disparities in mass ratio as would be the case for electrons, ions and
heavy neutral species. Finally, important off-diagonal coupling can be captured in
Schur complement operators on the block diagonal of the preconditioner. By devis-
ing effective and inexpensive (in terms of CPU time and memory) approximations
to Schur complements, stiff off-diagonal physics can be represented in a partitioned
way. Block preconditioners have been shown to be an effective tool in solving linear
systems arising from mixed discretizations of the Navier-Stokes equations [4, 5, 13]
and the Maxwell equations [2, 15, 32], as well as multiphysics systems such as
magnetohydrodynamics [3, 9–11, 26, 30, 31].

We proceed by first defining a simplified PDE model for multifluid electro-
magnetic plasmas that we analyze here, followed by a brief discussion of the
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compatible discretization. We then propose a block preconditioner for the resulting
linear systems, analyzing it in terms of time-scales and keeping in mind the
need for performant sub-solves. This is followed by some results demonstrating
the robustness and scalability of the preconditioning methodology and conclu-
sions.

2 Governing Equations and Discretization

The complex structure of multifluid plasma systems is manifest even in simplified
models. For simplicity of presentation, we restrict this work to consider collisionless
two-fluid plasmas. The governing equations for such plasmas can be written as

∂(Mα)
∂t
+ ∇ · (Mα ⊗ uα + pαI)− qα

mα
ρα(E+ uα × B) = 0, (1a)

∂ρα
∂t
+∇ · (Mα) = 0, (1b)

∂(εE)
∂t
−∇ ×

(

1
μ

B
)

+
∑

α

qα
mα

Mα = 0, (1c)

∂B
∂t
+∇ × E = 0, (1d)

where α = e, i represent electrons and ions [6, 16, 36]. The unknowns are density
ρα , momentum Mα = ραuα , electric field E, and magnetic induction B. Physical
parameters include species mass mα, species charge qα, permittivity of free space
ε, and permeability of free space μ. For this study, a simplifying assumption of an
isentropic equation of state is made such that the pressure is defined as a function of
density as

pα = ργ
α , (2)

where the heat capacity ratio γ is a constant. More complex equations of state may
be used which introduce an energy equation and additional time-scales, but with
the isentropic simplification, key complexities of the multifluid plasma model are
retained in a reduced set of equations. Note that if the involutions

∇ · B = 0, ∇ · E = ρc =
∑

α

qα
mα

ρα, (3)

are satisfied at time t = 0, then they are implicitly satisfied by Eqs. (1) for all time.
While these equations do not involve the collisional time-scales of a full 5-

moment model, there are still several time-scales represented as summarized in
Table 1. The light wave time-scale arises from the coupling between E and B. The
advection time-scales are produced by a diagonal coupling/interaction related to
the operator ∇ · (Mα ⊗ uα). Sound waves arise due to the coupling of momentum
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Table 1 Time-scales in the
isentropic, collisionless
model and their associated
CFLs

Physical phenomenon CFL notation CFL definition

Light wave CFLEM c Δt
Δx

Species advection CFLuα

Δt
Δx
||ūα ||

Species sound wave CFLsα
Δt
Δx

√

γ ρ̄
γ−1
α

Species plasma oscillation CFLωp,α
Δt

√

ρ̄αqe
2

εmα
2

Species cyclotron frequency CFLωc,e
Δt
||B̄||qα
mα

and density through the density gradient. The plasma oscillation time-scales come
from the coupling between momentum and electric field. Finally, the cyclotron
frequencies arise from the operator qα

mα
Mα × B. Each of these time-scales has an

associated approximate explicit stability bound (CFL) which can be obtained from
physical parameters, discretization parameters (mesh size Δx and time-step Δt),
and linearized solution fields in a Newton iteration (ρ̄α, ūα, B̄). In general, electron
time-scales tend to be faster than ion time-scales due to the larger mass of ions,
and the separation of these time-scales is directly related to the mass ratio mi

me
.

Interesting to note is that the light wave and advection CFLs are proportional to 1
Δx

whereas the plasma oscillation and cyclotron CFLs are independent of the spatial
discretization. This means that the relative speed of different physics is dependent
on mesh refinement as well as physical constants. It is clear then that time-scales
may range over many orders of magnitude and that they may be ordered differently
depending on the problem and the discretization, and a robust preconditioner must
be resilient to these changes.

Consider a finite element discretization of Eqs. (1) in which equal order
Lagrangian nodal elements are used for momenta and densities, Nédélec edge
elements [28, 29] for the electric field, and Raviart-Thomas face elements [33] for
the magnetic induction. When discretized in time using a multistage or multistep
implicit integrator and applying a Newton linearization, a linear system of the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Fe G
Me
ρe 0 0 Q

Me

E Q
Me

B
B Qρ 0 0 0 0
0 0 Fi G

Mi
ρi Q

Mi

E Q
Mi

B
0 0 B Qρ 0 0

QE
Me

0 QE
Mi

0 QE −K̂t

0 0 0 0 K QB

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ΔMe

Δρe

ΔMi

Δρi

ΔE
ΔB

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

RMe

Rρe

RMi

Rρi

RE

RB

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4)

must be solved at each Newton step, where the component linear operators are
defined in Table 2.
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Table 2 Discrete operators appearing in the time discretized Newton linearization of the multi-
fluid plasma equations and the corresponding continuous operators

Discrete operator Semi-discrete operator

FαMα
1
Δt

Mα +∇ · (Mα ⊗ ūα + ūα ⊗Mα)− qα
mα

Mα × B̄

Gαρα ∇ · (ρα ūα ⊗ ūα)+ γ ρ̄
γ−1
α ∇ρα + γ∇

(

ρ̄
γ−1
α

)

ρα − qα
mα

ρα Ē

Q
Mα

E E − qα
mα

ρ̄αE

Q
Mα

B B − qα
mα

M̄α × B

BMα ∇ ·Mα

Qρρα
1
Δt

ρα

QE
Mα

Mα
qα
mα

Mα

QEE ε
Δt

E

−K̂tB −∇ ×
(

1
μ

B
)

KE ∇ × E

QBB 1
Δt

B

Bars indicate the value of the solution at the previous Newton step

3 Block Preconditioner Definition

As noted above, one advantage of block preconditioning is that degrees of free-
dom may be segregated based on discretization type. As such, we define the
vector of nodal degrees of freedom that consists of the hydrodynamic unknowns
f= (Me, ρe,Mi , ρi). Then, system (4) can be rewritten as

⎛

⎝

Ff Qf
E Qf

B
QE

f QE −K̂t

0 K QB

⎞

⎠

⎛

⎝

Δf
ΔE
ΔB

⎞

⎠ =
⎛

⎝

Rf

RE

RB

⎞

⎠ , (5)

or Ax = b. This 3× 3 block structure has been selected to allow optimal multilevel
solvers to be applied to the nodal, edge, and face degrees of freedom. The Ff block
can be sub-blocked according to species and/or momentum versus density, or a
monolithic nodal multigrid method can be applied to Ff as a whole.

Strategically taking advantage of the block structure B is eliminated from both
the electric field (E) and hydrodynamics (f) equations. This is achieved discretely
by adding K̂tQ−1

B times the B equation to the E equation, and −Qf
BQ
−1
B times the
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B equation to the F equation. At the level of the preconditioner, this is analogous to
observing that

A =
⎛

⎝

I 0 Qf
EQ
−1
B

0 I −K̂tQ−1
B

0 0 I

⎞

⎠

⎛

⎝

Ff Qf
E −Qf

EQ
−1
B K 0

QE
f SE 0

0 K QB

⎞

⎠ , (6)

where the electric field Schur complement is defined as

SE = QE + K̂tQ−1
B K. (7)

This is exactly the Schur complement associated with a compatible discretization
of the Maxwell equations, and several specialized solvers have been developed
for operators of this type [7, 18, 19, 22, 23, 32]. Note that it is impractical to use
the exact inverse Q−1

B in Qf
EQ
−1
B K and SE, so, in practice, we use a diagonal

approximation of Q−1
B . The use of a diagonal approximation to mass matrices is

motivated by the fact that nodal mass matrices are spectrally equivalent to their
diagonal [37] and that edge and face mass matrices have approximately the same
magnitude as their diagonal [32]. Looking at the rightmost matrix in (6), one can
associate each of the time-scales in Table 1 with an operator. The light wave is
captured in the Schur complement SE, advection is contained in Ff, and plasma
frequencies come about through the 2× 2 interaction of the f and E operators. It is
also evident that cyclotron dynamics are not manifest in the off-diagonal operators,
but only in the Ff operator. As noted above a further decoupling of the fluid species
by a mass ratio ordering is also possible since the lower mass electron species will
have much less inertia and react much faster to a strong electric and/or magnetic
field.

The final step in devising the preconditioner is to account for the plasma
oscillation time-scales. This can be achieved by eliminating E from the F equation,
via

A =
⎛

⎝

I S−1
E (Qf

E −Qf
EQ
−1
B K) Qf

EQ
−1
B

0 I −K̂tQ−1
B

0 0 I

⎞

⎠

⎛

⎝

Sf 0 0
QE

f SE 0
0 K QB

⎞

⎠ , (8)

where the fluid Schur complement is

Sf = Ff −QE
f S
−1
E (Qf

E −Qf
EQ
−1
B K). (9)

The difficulty with Sf lies in the embedded inverse of SE which is not well-
approximated by a diagonal if CFLEM is large. If CFLEM  1, then it can be
shown that SE ≈ QE and that Qf

EQ
−1
B K is negligible compared to Qf

E. In that case

Sf ≈ Ff −QE
f Q
−1
E Qf

E, (10)
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which is the Schur complement obtained from the electrostatic coupling between
only f and E, and thus represents the plasma oscillation time-scales. It can be shown
that, for a particular species α, −QE

Mα
Q−1

E Q
Mα

E Mα is a discretization of

Δt
ε

qα
2

mα
2 ρ̄αMα, (11)

a semi-discrete operator directly capturing the plasma frequency. Thus, the addi-
tional terms in (9) can be viewed as perturbations of the linear plasma oscillation
when light waves are not resolved. Furthermore, the magnitudes of operators can be
analyzed to show that

||QE
Mα

S−1
E Q

Mα

E || ≈ Δt
ε

qα
2

mα
2 ρ̄α

[

1+ CFL2
EM

]−1
, (12)

meaning that as CFLEM increases, the relative contribution of the perturbed plasma
oscillation operator to the fluid Schur complement should decrease. In this sense,
Sf is well approximated by (10) when CFLEM is small, and the perturbation to
Ff need not be approximated well when CFLEM is large. Given this analysis, a
diagonal approximation of SE is justified inside of Sf. That way, for small CFLEM ,
where SE is approximately the mass operator QE, the approximation is good, and
when CFLEM is large, the approximation is lower fidelity, but the magnitude of
QE

f S
−1
E (Qf

E −Qf
EQ
−1
B K) is much smaller.

In summary, we use an approximation of the lower triangular factor in (8) as the
preconditioner, i.e.

P =
⎛

⎝

Ŝf 0 0
QE

f ŜE 0
0 K QB

⎞

⎠ ,

ŜE = QE + K̂t Q̄−1
B K,

Ŝf = Ff −QE
f S̄
−1
E (Qf

E −Qf
EQ̄
−1
B K),

(13)

where bars over linear operators indicate diagonal approximations. For sub-block
solvers, a basic multigrid method with an inexpensive smoother suffices for the
mass matrix QB, and we use the augmentation-based Maxwell solver described
in [32] for ŜE. While this method was designed specifically for the case of large
CFLEM , any of the multigrid methods described in [7, 18, 19, 22, 23] may be used
for ŜE. Many options are available for solving the system Ŝf. In many cases, it may
be advantageous to use a block method for this subsystem as this allows treatment
of fast species differently from slow species. For collisional plasmas, additional
terms coupling the different species appear within Ŝf, and a carefully defined Schur
complement can handle these effects. For warm plasmas, energy is another required
degree of freedom in the f vector, and off-diagonal acoustic time-scales appear.
Monolithic multilevel methods [25, 34, 35] are applicable to Ŝf because all degrees
of freedom are co-located. These methods are also appealing because they do not
require physics-specific analysis to define effective Schur complements. For the
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proof of concept in this work, a monolithic AMG is used in a fairly black box fashion
to solve the Ŝf system.

4 Computational Results

In this section, we demonstrate the effectiveness and scalability of the proposed
preconditioner on two test problems. The dynamics of interest in the first test
problem operates at time-scales close to the speed of light with stiff modes
associated with plasma and cyclotron frequencies. The second test problem is driven
by ion-acoustic dynamics, and the limiting time-scale is associated with light waves.
For both cases, the nonlinear stopping criterion is a relative reduction of 10−3

of the nonlinear residual. Preconditioned GMRES is used with a relative residual
stopping tolerance of 10−4. The physics driver is the application code Drekar
[35] which is built on the Trilinos framework[17]. In particular, Nédélec edge
elements and nodal elements are provided by the discretization package Intrepid
and degrees of freedom are managed by the Panzer package. The Aztec [21]
implementation of GMRES is used as the linear solver. Block preconditioners are
implemented using the Teko package [12], and the ML package [14] is employed
for all multilevel subsolves. One V-cycle is used for each AMG solve. Four Gauss-
Seidel smoother sweeps are used for mass matrix solves. As in [32], an overlapping
domain decomposition smoother with an ILU(0) on each subdomain was needed
for the augmented edge solve used in approximating Ŝ−1

E . A monolithic AMG

[25, 34, 35] was applied to approximate Ŝ−1
f . In this case, the eight fluid degrees of

freedom (Mex,Mey,Mez, ρe,Mi x ,Mi y,Mi z, ρi ) are co-located allowing a single
coarse grid hierarchy to be constructed for all of them. An overlapping domain
decomposition ILU(0) smoother was also applied for this routine.

4.1 Current Pulse Test Problem

This test problem represents a cold, collisionless two-fluid plasma driven by an
external current pulse. The domain is [−3000, 3000] × [87000, 93000] with two
elements in the z-direction. The current pulse is Gaussian in space and time in the
z-direction, defined as

Jz = J0e
−||x−x0||2/"e−||t−t0||/τ , (14)

where J0 = 5.0 × 104 is the magnitude of the current, x0 = (0, 90000, 0)
is the center of the pulse, " = 15,625 governs the spatial width of the pulse,
t0 = 1.5×10−6 is the time of the pulse peak, and τ = 5.0×10−7 governs the pulse
width in time. These parameters define a strong, fast pulse over a large length-scale.
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Additionally, a background magnetic field and a density gradient in the y-direction
are supplied as initial conditions

B =
⎛

⎝

2.9× 10−4

1.2× 10−4

0

⎞

⎠ ,

ρe = meN(y), ρi = miN(y),

N(y) = 8.8× 1014 + 8.7× 1014 sin
(

π
2
y−94500

10500

)

,

(15)

such that solutions are not grid aligned. Realistic values qe = −1.6 × 10−19 and
me = 9.1× 10−31 are used with qi = −qe and a mass ratio mi/me = 1000. For a
cold plasma the pressure is set to zero, such that there are no sound speed dynamics.
A snapshot of the electron and ion momenta is plotted in Fig. 1. It can be seen that
the plasma expands out from the current pulse in the center of the domain following
the magnetic field.

A fixed time-step of Δt = 5.0 × 10−8 is used such that the current pulse is
well resolved in time. A sequence of uniform meshes with Δx = 240 on the
coarsest mesh and Δx = 7.5 on the finest mesh was used to obtain the following
results. Given these parameters, the various CFL conditions for this problem are
summarized in Table 3. When CFL values fall in ranges, they are largest for the
finest grid. It can be seen that for this problem, the stiffest time-scale is always
the electron plasma frequency. The ion plasma frequency and electron cyclotron
frequency are also stiff, but not to the same degree. Because of the large length-
scale of this problem, the speed of light and electron advection are resolved on
almost all meshes. A weak scaling study of the block preconditioner proposed above
is summarized in Table 4. For this study, the number of processors was increased
keeping 1250 elements on each processor. The problem was run for 50 time-steps,

Fig. 1 Magnitude of electron and ion momenta for current pulse test problem at t = 2.5× 10−6



240 E. G. Phillips et al.

Table 3 Time-scales in the
test problems

Time-scale Pulse problem Soliton problem

CFLEM [6.25 × 10−2, 2.0] 62.5

CFLue
[3.75 × 10−2, 1.2] 0.075

CFLui
[3.75 × 10−5, 1.2 × 10−3] 0.05

CFLse 0 0.05

CFLsi 0 1.0

CFLωp,e
1.2 × 102 [0.78,30.0]

CFLωp,i
3.8 [0.16,6.0]

CFLωc,e
2.7 [0.094,3.0]

CFLωc,i
2.7 × 10−3 [0.0038,0.12]

Table 4 Preconditioner weak scaling for current pulse test problem

Processors Total DOFs
Average GMRES
iterations

Average setup
time

Average solve
time

1 18,618 30.36 3.3 3.4

4 72,218 35.93 5.3 5.0

16 284,418 29.75 7.2 9.0

64 1,128,818 28.81 7.5 9.4

256 4,497,618 18.93 8.0 7.0

1024 17,955,218 18.84 8.6 8.0

and averages are taken over all linear solves. It can be seen that preconditioner
performance improves in terms of iteration count as the problem size increases.
Computation time, in terms of both preconditioner setup and apply time increases
slowly with problem size. Both of these increase by a factor of less than 3 when the
problem size is increased by a factor of 1024.

4.2 Soliton-Like Test Problem

The second test problem operates at time-scales comparable to those found in MHD
simulations in which the dynamics of interest are much slower than the speed of
light. This problem is a 2D isentropic variation on the soliton problem defined in
[24]. The domain is [0, 12]2 and an initial perturbation in the densities

ρα = mα

(

1+ e−10||x−x0||2
)

(16)
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Fig. 2 Ion density plotted along y = 0 at t = 0, 0.3, 0.6, 0.9 for the soliton-like problem

drives the dynamics, where x = (6, 6). The masses are set to me = 0.04 and
mi = 1. Physical parameters are set such that the speed of light is c = 250 and
the plasma frequencies are ωp,e = 25 and ωp,i = 1. The adiabatic index is set to
γ = 2 such that the electron speed of sound is 0.2 and the ion speed of sound is 4.0.
Snapshots of the ion density are plotted in Fig. 2. We consider a sequence of meshes
with Δx = 0.48 on the coarsest mesh and Δx = 0.015 on the finest mesh.

The dynamics of this problem are dominated by the ion-acoustic wave, and
as such we resolve these dynamics by fixing CFLsi = 1, resulting in the CFLs
reported in Table 3. It can be seen that the light wave is always stiff, and that the
electron plasma frequency CFL is almost always greater than 1. The results of a
weak scaling study are presented in Table 5. Again, we can see very good scaling
in terms of iteration count and a slight increase in computation time as the mesh is
refined.
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Table 5 Preconditioner weak scaling for soliton-like test problem

Processors Total DOFs
Average GMRES
iterations

Average setup
time

Average solve
time

1 17, 500 40.81 3.6 4.7

4 70, 000 32.77 6.6 5.4

16 280, 000 28.46 7.6 9.3

64 1, 120, 000 31.64 8.0 10.9

256 4, 480, 000 31.31 8.9 12.5

1024 17, 920, 000 33.45 10.0 16.4

5 Conclusion

In this work, we have proposed a new block preconditioning strategy for a multifluid
continuum plasma model. This preconditioner is informed by an analysis of the
linear operators that couple electromagnetics to fluid dynamics. By analyzing
the linear algebra as it relates to physical time-scales in the system, we have
argued for the use of particular Schur complement approximations, allowing us
to use the augmentation based Maxwell solver detailed in [32] as well as a fully
coupled algebraic multilevel solver for the fluid degrees of freedom. While the
plasma model considered neglects collisional terms, the preconditioner accounts
for electromagnetic, plasma frequency, and cyclotron frequency time-scales. Our
computational results have demonstrated the effectiveness and scalability of the
proposed preconditioner in two different regimes: the large length-scale regime in
which light waves are resolved but plasma and cyclotron frequency are fast and
approaching the MHD limit in which the electromagnetics result in the stiffest
modes. Future work will extend this method to collisional regimes and models
including more complex equations of state and provide a more comprehensive set of
numerical examples. This work may also be expanded by treating different species
separately, thus allowing for cheaper fluid solves that are more informed by the
time-scales of particular plasma species.
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The Effort of Increasing Reynolds
Number in Projection-Based Reduced
Order Methods: From Laminar
to Turbulent Flows

Saddam Hijazi, Shafqat Ali, Giovanni Stabile, Francesco Ballarin,
and Gianluigi Rozza

Abstract We present in this double contribution two different reduced order
strategies for incompressible parameterized Navier-Stokes equations characterized
by varying Reynolds numbers. The first strategy deals with low Reynolds number
(laminar flow) and is based on a stabilized finite element method during the offline
stage followed by a Galerkin projection on reduced basis spaces generated by a
greedy algorithm. The second methodology is based on a full order finite volume
discretization. The latter methodology will be used for flows with moderate to
high Reynolds number characterized by turbulent patterns. For the treatment of the
mentioned turbulent flows at the reduced order level, a new POD-Galerkin approach
is proposed. The new approach takes into consideration the contribution of the eddy
viscosity also during the online stage and is based on the use of interpolation. The
two methodologies are tested on classic benchmark test cases.

Keywords Stabilised RB methods · SUPG · Turbulence modelling · Projection
based model reduction · Data driven model reduction · Viscous flows

1 Introduction

Nowadays we see an increasing need for numerical simulation of fluid dynamics
problems with high Reynolds number. These problems come from different types of
applications and fields. This pushes the scientific community to offer new techniques
and approaches which can meet also the demand of industry to simulate higher
Reynolds number fluid problems [11]. Today, in several situations, there is a need
to perform simulations in a multi-query contest (e.g. optimization, uncertainty
quantification) with an extremely reduced computational time as a requirement
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(real-time control). Therefore, in such situations, the resolution of the governing
PDEs using standard discretization techniques may become unaffordable. Hence,
reduced order modelling has become an important tool to reduce the computational
complexity. This is a double contribution containing two related topics dealing
with the efforts of increasing Reynolds number in viscous flows and being able
to guarantee stable reduced order methods in parametric problems.

This chapter is organized as follows: in Sect. 2 we define the steady Navier-
Stokes equations in strong formulation. In Sect. 3 we present residual based
stabilized reduced basis method for parameterized Navier-Stokes problem charac-
terized by low Reynolds number. Section 4 deals with POD-Galerkin reduction for
parameterized Navier-Stokes problem in case of higher Reynolds number. In Sect. 5
we show some numerical results for both strategies. Finally in Sect. 6 we summarize
the main outcomes of this chapter and we outline some perspectives.

2 Projection Based ROMs

In this section some basic notions of projection based ROMs [13] are recalled.
Firstly, the mathematical problem deals with the steady Navier-Stokes equations,
and reads as follows:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(u · ∇)u− ν%u+∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = Uin on ∂ΩIn,

u = 0 on ∂Ω0,

(ν∇u− pI)n = 0 on ∂ΩOut ,

(1)

where u(x) and p(x) are the velocity and pressure fields respectively, Ω ⊂ R
2 is a

bounded domain, while ∂Ω = ∂ΩIn∪ ∂Ω0 ∪ ∂ΩOut is the boundary of the domain
formed by three parts ∂ΩIn, ∂Ω0 and ∂ΩOut which correspond to the inlet, the
physical walls and the outlet respectively, Uin is the velocity at the inlet part of the
boundary, and ν is the viscosity of the fluid. Then the problem reads find u(x) and
p(x) which satisfy (1) and lie respectively in the following spaces V = [H 1(Ω)]d ,
and Q = L2

0(Ω). See [29] for more details.
In the context of this work, the main goal is studying how the flow fields change

as a result of the variation of certain parameters. For this reason a parameterized
version of (1) will be considered. The set of parameters is denoted by μ where this
vector of parameters lies in the parameter space P, note that P is compact set in
R
p with p being the length of the vector μ. The parameters can be geometrical or

physical or a combination of them [7]. The objective is to be able to compute the
velocity and pressure fields for every parameter value inside the parameter space.
The cost of doing that operation resorting on full order methods can be prohibitive.
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For this reason ROMs [7, 12, 18, 30] have been developed, as an approach to achieve
the objective of computing efficiently and accurately the flow fields, when the input
parameters are being varied.

One key assumption in ROMs is that the dynamics of the system under study
is governed by a reduced number of dominant modes. In other words, the solution
to the full order problem lies in a low dimensional manifold that is spanned by the
previously mentioned modes [18]. Consequently the velocity and pressure fields
can be approximated by decomposing them into linear combination of global basis
functions φi (x) and χi(x) (which do not depend on μ) multiplied by unknown
coefficients ai(μ) and bi(μ), for velocity and pressure respectively, then this
approximation reads as follows:

u(x;μ) ≈
Nu
∑

i=1

ai(μ)φi (x), p(x;μ) ≈
Np
∑

i=1

bi(μ)χi(x). (2)

The reduced basis spaces Vrb = span {φi}Nu

i=1 and Qrb = span {χi}Np

i=1 can be
obtained either by Reduced Basis (RB) method with a greedy approach [18],
using Proper Orthogonal Decomposition (POD) [35], by The Proper Generalized
Decomposition [15], or by Dynamic Mode Decomposition [33]. In the next two
sections we will consider RB and POD methods.

3 Stabilized Finite Element RB Reduced Order Method

In this section, we present a RB method for parameterized steady Navier-Stokes
problem [30] which ensures stable solution [2]. Our focus in this section is to deal
with flows at low Reynolds number with particular emphasis on inf-sup stability at
reduced order level.

We know that the Galerkin projection on RB spaces does not guarantee
the fulfillment of equivalent reduced inf-sup condition [31]. To fulfill this
condition we have to enrich the RB velocity space with the solutions of a
supremizer problem [5, 32]. In this work we propose a residual based stabilization
technique which circumvents the inf-sup condition and guarantees stable RB
solution. This approach consists in adding some stabilization terms into the
Galerkin finite element formulation of (1) using equal order (Pk/Pk; k = 1, 2)
velocity pressure interpolation, and than projecting onto RB spaces. As the
results in Sect. 5 will show, residual based stabilization methods improves
the stability of Galerkin finite element method without compromising the
consistency.

We start with introducing two finite-dimensional subspaces Vh ⊂ V, Qh ⊂ Q

of dimension Nu and Np, respectively, being h related to the computational mesh
size. The Galerkin finite element approximation of the parameterized problem (1)
with the addition of stabilization terms reads as follows: for a given parameter
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value μ ∈ P, we look for the full order solution (uh(μ), ph(μ)) ∈ Vh ×Qh such
that

{

a(uh, vh;μ)+ c(uh,uh, vh;μ)+ b(vh, ph;μ) = ξh(vh;μ) ∀ vh ∈ Vh,

b(uh, qh;μ) = ψh(qh;μ) ∀ qh ∈ Qh,

(3)

which we name as the stabilized Galerkin finite element formulation, where
a(., .;μ) and b(., .;μ) are the bilinear forms related to diffusion and pressure-
divergence operators, respectively and c(., ., .;μ) is the trilinear form related to the
convective term. The stabilization terms ξh(vh;μ) and ψh(qh;μ) are defined as:

ξh(vh;μ) := δ
∑

K

h2
K

∫

K

(−νΔuh + uh · ∇uh +∇ph,−γ νΔvh + uh · ∇vh),

ψh(qh;μ) := δ
∑

K

h2
K

∫

K

(−νΔuh + uh · ∇uh +∇ph,∇qh),
(4)

where K is an element of the domain, hK is the diameter of K , δ is the stabilization
coefficient such that, 0 < δ ≤ C (C is a suitable constant) needs to be chosen
properly [9, 24]. For γ = 0, 1,−1, the stabilization (4) is respectively known as
Streamline Upwind Petrov Galerkin (SUPG) [10], Galerkin least-squares (GLS)
[20] and Douglas-Wang (DW) [14].

Next step is to construct the RB spaces Vrb and Qrb, for velocity and pressure,
respectively. These spaces are constructed using the greedy algorithm [18] and may
or may not be enriched with supremizer [2]. In order to control the condition number
of RB matrix, the basis functions φi (x) and χi(x) for RB velocity and pressure,
respectively are orthonormalized by using the Gram-Schmidt orthonormalization
process [18].

Now we write the RB formulation, i.e, we perform a Galerkin projection of (3)
onto the RB spaces. Therefore the reduced problem reads as follows: for any μ ∈ P,
find (uN(μ), pN(μ)) ∈ Vrb ×Qrb such that

{

a(uN, vN ;μ)+ c(uN,uN, vN ;μ)+ b(vN, pN ;μ) = ξN(vN ;μ) ∀ vN ∈ Vrb,

b(uN, qN ;μ) = ψN(qN ;μ) ∀ qN ∈ Qrb,

(5)

where ξN(vN ;μ) and ψN(qN ;μ) are the reduced order counterparts of the stabi-
lization terms defined in (4). We call (5) as the stabilized RB formulation.

The Galerkin projection of (3) onto RB spaces can also be performed without
adding the stabilization terms in RB formulation. Therefore we have two options
here [28]; the first option is the offline-online stabilization, where we apply
the Galerkin projection on stabilized formulations in both the offline and the
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online stages, and the second option is offline-only stabilization, where we apply
stabilization only in the offline stage and then we perform the online stage using
the standard formulation. Finally, combining these two options with the supremizer
enrichment [32], we come up with the following four options to discuss [2]:

• offline-online stabilization with supremizer;
• offline-online stabilization without supremizer;
• offline-only stabilization with supremizer;
• offline-only stabilization without supremizer.

In Sect. 5.2 the first three options are implemented. An extension of the work
presented in this section to unsteady problems is currently in progress [3].

4 Finite Volume POD-Galerkin Reduced Order Model

In this section, the treatment of flow with high Reynolds number will be addressed.
The starting point is with the POD-Galerkin projection method in the first sub-
section, and then the ROM for turbulent flows will be proposed in the second
subsection.

4.1 POD-Galerkin Projection Method

POD is a very popular method for generating reduced order spaces. It is based on
constructing a reduced order space which is optimal in the sense that it minimizes
the projection error (the L2 norm of the difference between the snapshots and their
projection onto the reduced order basis). After generating the POD space one can
project (1) into that space. This approach is called POD-Galerkin projection which
has been widely used for building ROMs for variety of problems in Computational
Fluid Dynamics (CFD) [1, 4, 8, 16, 21, 27].

The POD space is obtained by solving the following minimization problem:

VPOD = arg min
1

Ns

Ns
∑

n=1

||un −
Nu
∑

i=1

(un,φi )L2(Ω)φi ||2L2(Ω)
, (6)

where un is a general snapshot of the velocity field which is obtained for the sample
μn and Ns is the total number of snapshots. The minimization problem can be
solved by performing Singular Value Decomposition (SVD) on the matrix formed
by the snapshots, or by computing a correlation matrix whose entries are the scalar
product between the snapshots and then performing eigenvalue decomposition on
that correlation matrix, for more details we refer the reader to [23, 36].
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The next step in building the reduced order model is to project the momentum
equation of (1) onto the POD space spanned by the velocity POD modes, namely:

(φi , (u · ∇)u− νΔu+∇p)L2(Ω) = 0. (7)

Inserting the approximations (2) into (7) yields the following system:

νBa− aT Ca− Hb = 0, (8)

where a and b are the vectors of coefficients ai(μ) and bi(μ) , respectively, while
the other terms are computed as follows:

Bij =
(

φi , Δφj

)

L2(Ω)
, (9)

Cijk =
(

φi ,∇ · (φj ⊗ φk))
)

L2(Ω)
, (10)

Hij =
(

φi ,∇χj
)

L2(Ω)
. (11)

For better understanding of the treatment of the nonlinearity introduced by the
convective term the reader may refer to [36]. To close the system (8) an additional
number ofNp equations is needed since there are just Nu equations but with Nu+Np

unknowns. The continuity equation cannot be directly used to close the system since
the snapshots which are obtained using the full order solver are already divergence
free, and the velocity POD modes which are obtained using those snapshots have the
same property. This problem can be overcome by two possible approaches, the first
one is to use Poisson equation for pressure to get the needed additional equations
such that one can close the system. Poisson equation for pressure can be derived
by just taking the divergence of the momentum equation and then exploiting the
continuity equation. The second possible approach, is the supremizer stabilization
method [5, 32] which has been already mentioned in Sect. 3. The latter approach has
been developed for finite volume discretization method as well and one can refer to
[35] for more details on that. The supremizer approach will ensure that the velocity
modes are not all divergence free. One can project the continuity equation onto the
space spanned by the pressure modes, which results in the following system:

{

νBa− aT Ca− Hb = 0,
Pa = 0,

(12)

where the new matrix is P, is computed as follows:

Pij =
(

χi,∇ · φj

)

L2(Ω)
. (13)

Concerning the treatment of boundary conditions, a lifting function method is
employed. A new set of snapshots with homogeneous boundary condition is created.
For the selection of an appropriate lifting function, several options are available such
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as snapshots average or the solution to a linear problem. We decided here to rely on
the latter approach. For more details one can refer to [36].

4.2 POD-Galerkin Reduced Order Model for Turbulent Flows

In this subsection, the main goal is to focus on flows which have higher Reynolds
number than those considered in the Sect. 3. In these flows the turbulence phe-
nomenon is present. The full order discretization technique used in this case for
solving (1) is the Finite Volume Method (FVM) [26, 37] which is widely used in
industrial applications. One advantage of the FVM is that the equations are written
in conservative form, and therefore the conservation law is ensured at a local level.

The turbulence modelling is employed using k−ω turbulence model [25] which
is a two equations model, is used to ensure the stability of the simulation. In
this model the eddy viscosity νt depends algebraically on two variables k and
ω respectively stand for the turbulent kinetic energy and the specific turbulent
dissipation rate. The values of these two variables are computed solving two
additional PDEs. The new set of equations to be solved is the Reynolds Averaged
Navier-Stokes (RANS) equations which read as follow:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(u · ∇)u = ∇ ·
[

−pI+ (ν + νt )
(∇u+ (∇u)T

)− 2
3kI
]

,

∇ · u = 0,

νt = f (k, ω), in Ω

Transport-Diffusion equation for k,

Transport-Diffusion equation for ω.

In order to build a reduced order model for the new set of equations one can extend
the previous assumption (2) to the eddy viscosity field, namely:

νt (x;μ) ≈
Nνt
∑

i=1

gi(μ)ηi(x),

The eddy viscosity modes ηi are computed similarly to those of velocity and
pressure. Following the procedure explained in Sect. 4.1 one can project the
momentum equation onto the spatial bases of velocity. The continuity equation is
projected onto the spatial bases of pressure with the use of a supremizer stabilization
approach. In contrast, k − ω transport-diffusion equations are not used in the
projection procedure, this makes the reduced order model general and independent
of the turbulence model used in the full order simulations.
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The resulting system is the following:

{

ν(B+ BT)a− aTCa+ gT(CT1 + CT2)a− Hb = 0,

Pa = 0,
(14)

Where the new terms with respect to the dynamical system in (12) are computed as
follows:

BTij =
(

φi ,∇ · (∇φT
j )
)

L2(Ω)
, (15)

CT 1ijk =
(

φi , ηj%φk)
)

L2(Ω)
, (16)

CT 2ijk =
(

φi ,∇ · ηj (∇φT
k )
)

L2(Ω)
. (17)

One can see that a new set of coefficients gi has been introduced. These coefficients
are used in the approximation of the eddy viscosity fields, and in order to compute
them an interpolation procedure using Radial Basis Functions (RBF) [22] has been
used in the online stage. After that one can solve the system (14) for the vectors of
coefficients a and b.

In the remaining part of this subsection, the interpolation method used to
compute the coefficients of the reduced viscosity will be explained in further
details. The starting point consists of the set of samples used in the offline stage
Xμ = {μ1,μ2, . . . ,μNs}. The associated outputs yi are the coefficients resulted
from the projection of the viscosity snapshots that correspond to each μi onto the

viscosity spatial modes [ηj ]Nνt

j=1. The goal is to interpolate the known coefficients
by making the use of RBF ζi for i = 1, . . . , Ns . One may assume that Y has the
following form:

Y (x) =
Ns
∑

j=1

wjζj (‖x − xj‖2), (18)

where wj are some appropriate weights. In order to interpolate the known data, the
following property is required:

Y (xi) = yi, for i = 1, 2, . . . , Ns. (19)

In other words,

Ns
∑

j=1

wjζj (‖xi − xj‖2) = yi, for i = 1, 2, . . . , Ns. (20)

The latter system can be solved to find the weights. The procedure dealing with
what concerns the use of RBF interpolation is summarized in the following box for
both offline and online stages.
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In the context of this work, RBF is used according to the following algorithm.
The methodology has two parts, the first is within the offline stage in which
the interpolant RBF is constructed. The second part, which takes place during

the online stage, consists into the evaluation of the coefficients [gi]Nνt

i=1 using
the latter mentioned RBF methodology.
Offline Stage
Input: The set of samples for which the offline stage has been run
Xμ = {μ1,μ2, . . . ,μNs}, with the corresponding eddy viscosity snapshots
νt 1, νt 2, . . . , νtNs

, the number of eddy viscosity modes to be used in the
reduction during online phase Nνt and finally i = 1 which is an index to
be used during the stage.
Goal: for i = 1, 2, . . . , Nνt construct gi(μ) =∑Ns

j=1 wi,j ζi,j (‖μ− μj‖2)

Step 1
Compute the eddy viscosity modes [ηk]Nνt

k=1 using POD as mentioned before.
Step 2
Compute the following coefficients

gi,j = (νt j , ηi)L2(Ω), for j = 1, 2, . . .Ns . (21)

Step 3
Solve the following linear system for the vector of weights wi = [wi,j ]Ns

j=1

Ns
∑

j=1

wi,j ζi,j (‖μk − μj‖2) = gi,k, for k = 1, 2, . . . , Ns. (22)

Step 4
Store the weights [wi,j ]Ns

j=1 and construct the scalar coefficients gi(μ).
Step 5
If i = Nνt terminate, otherwise set i = i + 1 and go to Step 2.
Online Stage
As Input we have the new parameter value μ∗ and the goal is to compute

g(μ∗) = [gi(μ∗)]Nνt

i=1

Which is done simply by computing gi(μ
∗) = ∑Ns

j=1 wi,j ζi,j (‖μ∗ − μj‖2)

for i = 1, 2, . . . , Nνt

After computing the coefficients of the viscosity reduced order solution [gi]Nνt

i=1
then it will be possible to solve the reduced order system (14). Afterwards, one can
compute the reduced order solution for both velocity and pressure using (2). From
now on this approach will be referred to as POD-Galerkin-RBF ROM. The POD-
Galerkin-RBF model will be tested on a simple benchmark test case of the backstep
in steady setting, with the offline phase being done with a RANS approach. For
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the application of this model on more complex cases involving unsteady RANS
simulations the reader may refer to [19].

5 Numerical Results

In this section we present numerical results for both reduced order modelling
strategies presented in the previous sections. In Sect. 5.1 we present the numerical
results for low Reynolds number using stabilized RB method developed in Sect. 3
for steady Navier-Stokes equations. Section 5.2 is based on the results for POD-
Galerkin-RBF on a backward facing step problem. In both cases we consider only
physical parameters.

5.1 Stabilized Finite Element Based ROM Results

In this test case, we apply the stabilized RB model developed in Sect. 3 for the
Navier-Stokes problem to the lid driven-cavity problem with only one physical
parameter μ which denotes the Reynolds number. We consider only the first three
options and we have done several test cases to compare the three options. Fourth
option is the worst option and is not reported here. The stabilization option that
we consider here is the SUPG stabilization, corresponding to γ = 0 in (4). The
computational domain is shown in Fig. 1 and the boundary conditions are

u1 = 1, u2 = 0 on ∂ΩIn and u = 0 on ∂Ω0 (23)

Fig. 1 Unit cavity domain Ω

for RB problem with
boundaries identified
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(a) (b)

(c)

Fig. 2 SUPG stabilization: FE and RB solutions for velocity at Re = 200. (a) FE velocity. (b) RB
velocity (offline-online). (c) RB velocity (offline-only)

The mesh of this problem is non-uniform with 3794 triangles and 1978 nodes,
whereas the minimum and maximum size elements are hmin = 0.0193145 and
hmax = 0.0420876, respectively. All the numerical simulations for this case are
performed using FreeFem++ [17] and RBniCS [6].

Figure 2 shows the FE velocity (left), RB velocity obtained using offline-online
stabilization (center), and the RB velocity obtained for offline-only stabilization
(right). From these solutions we see that the FE and RB solutions are similar.

Figure 3 plots the FE pressure (left), RB pressure obtained using offline-online
stabilization (center), and the RB pressure obtained for offline-only stabilization
(right). These results show that the RB pressure with offline-online stabilization is
stable but RB solution obtained by offline-only stabilization is highly oscillatory
even with the supremizer enrichment. All these solutions are obtained for equal
order linear velocity pressure interpolation P1/P1. Similar results can be shown for
P2/P2 [2].
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(a) (b)

(c)

Fig. 3 SUPG stabilization: FE and RB solutions for pressure at Re = 200. (a) FE pressure. (b)
RB pressure (offline-online). (c) RB pressure (offline-only)

Figure 4 illustrates the error between FE and RB solutions for velocity (left)
and pressure (right). We show the comparison between offline-online stabilization
with/without supremizer and offline-only stabilization with supremizer. These
comparison shows that the offline-online stabilization is the most appropriate way
to stabilize and the enrichment of RB velocity space with supremizer may not
be necessary. We are getting even a better approximation of the velocity without
the supremizer, which is polluted a little bit by the supremizer. However in case
of pressure, supremizer is improving the accuracy in the case of offline-online
stabilization. All the results here are presented for equal order linear velocity
pressure interpolation P1/P1.

In Table 1 we summarize the computational cost of offline and online stage
for different choices of FE spaces, parameter detail, FE and RB dimensions. From
this table we can see that the offline-online stabilization without supremizer is less
expensive as compared to offline-online stabilization with supremizer.
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Fig. 4 Error between FE and RB solutions: velocity (left) and pressure (right), obtained by
different options using SUPG stabilization. (a) Velocity errors. (b) Pressure errors

Table 1 Computational details of steady Navier-Stokes problem with physical parameter only

Physical parameter μ (Reynolds number)

Range of μ [100,500]

Online μ 200

FE degrees of freedom 13,218 (P1/P1)

52,143 (P2/P2)

RB dimension Nu = Ns = Np = 7

Offline time (P1/P1) 1182 s (offline-online stabilization with supremizer)

842 s (offline-online stabilization without supremizer)

Offline time (P2/P2) 2387 s (offline-online stabilization with supremizer)

2121 s (offline-online stabilization without supremizer)

Online time (P1/P1) 74 s (with supremizer)

65 s (without supremizer)

Online time (P2/P2) 131 s (with supremizer)

108 s (without supremizer)

5.2 Finite Volume POD-Galerkin-RBF ROM Results

In this subsection the numerical results for the reduced order model obtained
using the POD-Galerkin-RBF approach are shown. The finite volume C++ library
OpenFOAM R© (OF) [38] is used as the numerical solver at the full order level. At
the reduced order level the reduction is done using the library ITHACA-FV [34]
which is based on C++.

We have tested the proposed model on the benchmark case of the backstep see
Fig. 5. The test is performed in steady state setting, the two considered parameters
are both physical and consist into the magnitude of the velocity at the inlet and
the inclination of the velocity with respect to the inlet. In addition a comparison is
presented between the results obtained using the newly developed POD-Galerkin-
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RBF approach with the POD-Galerkin option that is not using RBF in the online
stage.

The interest of this test is in reducing the Navier-Stokes equations in the case of
turbulent flows or flows with high Reynolds number. In this case the value of the
Reynolds number is around 104, while the physical viscosity ν is equal to 10−3.
μ = [μ1, μ2] is the vector of the parameters with μ1 being the magnitude of the
velocity at the inlet and μ2 the inclination of the velocity with respect to the inlet
which is measured in degrees. Samples for both parameters are generated as 20
equally distributed points in the ranges of [0.18, 0.3] and [0, 30] respectively. The
training of the reduced order model is done with the generated 400 sample points in
the offline stage. The Reynolds number as mentioned before is of order of 104 and
ranges from 9.144× 103 to 1.524× 104.

In Fig. 5 one can see the computational domain that has been used in this work.
The characteristic length d and is equal to 50.8 m. In the full order problem the
boundary conditions for velocity and pressure are set as reported in Table 2.

In the reduced order model the supremizer approach has been used to stabilize
pressure. In Table 3 one can see the cumulative eigenvalues for velocity, pressure,
supremizer (which is denoted by S) and viscosity.

During the online phase another set of samples has been used to check the
reduced order model which is a cross validation test of the model. The value
of the parameter vector given in the online phase is denoted by μ∗i where i =
1, . . . , Nonline−samples . The samples which were used in the cross validation have
been chosen inside the ranges of the samples used in the offline stage. For the sake
of better evaluation of the model the online samples have been chosen such that
they are as far as possible in the parameter space from those used to educate the
model. After taking that criterion into consideration the samples used in the online
phase happened to be equally distributed in the ranges of [0.20826, 0.28405] and
[5.5368, 29.221] for μ1 and μ2, respectively. Seven samples were used for μ1 and
six for μ2.

Fig. 5 The computational domain used in the numerical simulations, d is equal to 50.8 m

Table 2 Boundary conditions

Inlet Outlet Lower and upper walls

u uin = [μ1cos(μ2), μ1sin(μ2)] ∇u · n = 0 u = 0
p ∇p · n = 0 p = 0 ∇p · n = 0
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Table 3 Cumulative
eigenvalues

N modes u p S νt

1 0.971992 0.868263 0.899488 0.985703

2 0.993017 0.998541 0.996392 0.998884

3 0.997589 0.999915 0.999767 0.999673

4 0.999196 0.999963 0.999929 0.999880

5 0.999545 0.999985 0.999965 0.999926

6 0.999828 0.999997 0.999988 0.999971

7 0.999914 0.999999 0.999996 0.999986

8 0.999952 0.999999 0.999998 0.999992

9 0.999978 1.000000 0.999999 0.999995

10 0.999986 1.000000 0.999999 0.999997

Recall that in this case the parameters were basically the two components of the
velocity at the inlet. Therefore two lifting fields were computed which correspond
to the full order solution for the velocity field with unitary boundary condition. The
first and second lifting fields are the steady state solutions with the velocity at the
inlet being U = (1, 0) and U = (0, 1), respectively. These two fields are added to
the velocity modes.

The RBF functions for the turbulent viscosity are chosen to be Gaussian
functions. The system (14) has been solved for each online sample μ∗i in the online
phase and the fields have been constructed. The ROM fields obtained by solving (14)
have been compared to those resulted from solving the POD-Galerkin system (12),
which does not take into consideration the contribution of the eddy viscosity.

In Fig. 6 one can see the velocity fields obtained by the full order solver, ROM
velocity field obtained by the POD-Galerkin approach and ROM velocity obtained
by the new POD-Galerkin-RBF model. In Fig. 7 there is the same comparison but
for the pressure fields. In both figures the online sample which has been introduced
to both reduced order models is the one with μ∗ = (0.22089, 24.484), which
corresponds to the velocity vector at the inlet to be U = (0.20103, 0.091548).
The reduction has been made with seven modes for velocity, pressure, supremizer
and eddy viscosity (just considered in the POD-Galerkin-RBF model). One can
see that the POD-Galerkin-RBF model is able to capture the dynamics efficiently.
It has successfully reconstructed the full order solution from both qualitative and
quantitative aspects. On the other hand, it is quite clear that the classical POD-
Galerkin model, which does not consider the contribution of the eddy viscosity
in its formulation fail to give an accurate reproduction of the full order solution,
especially close to the top and to the outlet for the velocity field and at the inlet for
the pressure field.

Looking on the results from a quantitative point of view, in the POD-Galerkin-
RBF model we have values of 0.00612 and 0.02957 for the relative error in L2 norm
for velocity and pressure, respectively, while the POD-Galerkin model has errors of
0.37967 and 2.2296. Table 4 shows a comparison between the two models in terms
of the error over all the samples used in the online phase (average and maximum



260 S. Hijazi et al.

(a)

(b)

(c)

Fig. 6 Velocity fields: (a) shows the ROM Velocity obtained by POD-Galerkin-RBF ROM model,
while in (b) one can see the ROM Velocity (without viscosity incorporated in ROM), and finally
in (c) we have the FOM Velocity

value). Figures 8 and 9 show the error as function of the two parameters when one
of them is fixed and the other is varied.

6 Conclusion and Perspectives

In this chapter we have proposed two different ROM strategies for the incompress-
ible parameterized Navier-Stokes equations to deal from low to higher Reynolds
number, respectively. In case of low Reynolds number, we have used a stabilized
FE discretization technique at the full order level and then we performed Galerkin
projection onto RB spaces, obtained by a greedy algorithm. We have compared the
offline-online stabilization approach with supremizer enrichment in context of RB
inf-sup stability. Based on numerical results, we conclude that a residual based
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(a) (b)

(c)

Fig. 7 Pressure fields: (a) shows the ROM Pressure obtained by POD-Galerkin-RBF ROM model,
while in (b) one can see the ROM Pressure (without viscosity incorporated in ROM), and finally
in (c) we have the FOM Pressure

Table 4 Relative L2 error for velocity and pressure fields: Average is taken over all samples used
in the online phase, while maximum represents the worse case among the samples

u with RBF p with RBF u without RBF p without RBF

Average relative error 0.0073 0.0276 0.2592 1.5412

Maximum relative error 0.0104 0.0475 0.3810 2.3616

POD-Galerkin-RBF model results are compared to those of the normal POD-Galerkin one

stabilization technique, if applied in both offline and online stage (offline-online
stabilization), is sufficient to ensure a stable RB solution and therefore we can avoid
the supremizer enrichment which consequently reduces the online computation cost.
Supremizer may help in improving the accuracy of pressure approximation. We
also conclude that a stable RB solution is not guaranteed if we stabilize the offline
stage and not the online stage (offline-only stabilization) even with supremizer
enrichment.

For higher Reynolds number, the test case was the backstep benchmark test
case, we have used the FV discretization technique at the full order level. At the
reduced order level, we have used a POD-Galerkin projection approach taking into
consideration the contribution of the eddy viscosity. The newly proposed approach
involves the usage of radial basis functions interpolation in the online stage. The
model has been tested on the benchmark case of the backstep, the results showed
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Fig. 8 The L2 relative error for velocity fields as function of the parameters. In (a) the error is
plotted versus the inclination of the velocity at the inlet. While in (b) the error is plotted versus the
magnitude of the velocity at the inlet
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Fig. 9 The L2 relative error for pressure fields as function of the parameters. In (a) the error is
plotted versus the inclination of the velocity at the inlet. While in (b) the error is plotted versus the
magnitude of the velocity at the inlet

that the proposed model has successfully reduced RANS equations. On the other
hand, the classical POD-Galerkin approach has not been able to reduce the equations
accurately in the same study case.

For the future work, we aim to extend the POD-Galerkin-RBF approach to work
also on unsteady Navier-Stokes equations. In addition, one important goal is to
reduce problems where the offline phase is simulated with LES.
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Optimization Based Particle-Mesh
Algorithm for High-Order
and Conservative Scalar Transport

Jakob M. Maljaars, Robert Jan Labeur, Nathaniel A. Trask,
and Deborah L. Sulsky

Abstract A particle-mesh strategy is presented for scalar transport problems
which provides diffusion-free advection, conserves mass locally (i.e. cellwise) and
exhibits optimal convergence on arbitrary polyhedral meshes. This is achieved by
expressing the convective field naturally located on the Lagrangian particles as a
mesh quantity by formulating a dedicated particle-mesh projection based via a PDE-
constrained optimization problem. Optimal convergence and local conservation are
demonstrated for a benchmark test, and the application of the scheme to mass
conservative density tracking is illustrated for the Rayleigh–Taylor instability.
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1 Introduction

Tracing back to the particle-in-cell (PIC) method developed by Harlow et al. [1],
hybrid particle-mesh methods attempt to combine a particle-based approach with a
mesh-based approach, exploiting the distinct advantages of each framework. Hence,
Lagrangian particles are conveniently used in the convective part of the problem,
whereas a mesh is particularly efficient to account for the dynamic interactions
between particles.

Despite many successful applications to model, e.g., dense particulate flows [2],
history-dependent materials [3], and free-surface flows [4–6], some fundamental
issues remain pertaining to such a hybrid particle-mesh strategy. In particular,
formulating an accurate and conservative coupling between the scattered particle
data and the mesh is a non-trivial issue. Existing approaches generally either
compromise conservation in favor of accuracy [3] or vice versa [7–9].

This contribution outlines a particle-mesh algorithm which fundamentally over-
comes the aforementioned issue as it conserves the transported quantity both
globally and locally (i.e. cellwise), while preserving extensions to arbitrary order
accuracy. Key to the approach is the formulation of the particle-mesh projection
in terms of a PDE-constrained minimization problem in such a way that, from
a mesh-perspective, the transported Lagrangian particle field weakly satisfies an
advection equation. The formulation for this optimization problem relies on the use
of a hybridized discontinuous Galerkin (HDG) method.

For brevity, we present our method for a scalar hyperbolic conservation law
on closed (i.e. no inflow or outflow through the boundaries) or periodic domains.
Making combined use of particles and a mesh for this problem has the distinct
advantage in that it allows handling the advection term free of any artificial diffu-
sion. Forthcoming work will present the method in a particle-mesh operator splitting
context for the advection-diffusion equation and the incompressible Navier–Stokes
equations, also including in- and outflow boundaries [10].

The remainder is organized as follows. Section 2 introduces the governing
equations, some definitions, and states the problem. Presenting the PDE-constrained
particle mesh interaction and proving conservation constitute the main part of
Sect. 3. In Sect. 4, we demonstrate the performance of the scheme in terms of
accuracy and conservation, and apply the scheme for mass conservative density
tracking in multiphase flows. Finally, Sect. 5 summarizes our findings.

2 Governing Equations and Problem Statement

2.1 Governing Equations

We now define the hyperbolic conservation law on the space-time domain'×I for a
scalar quantity ψh. Under the simplifying assumption that the solenoidal advective
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field a : ' × I → R
d has a vanishing normal component at the boundary (i.e.

a · n = 0 on ∂'), this problem reads: given the initial condition ψ0 : '→ R, find
the scalar quantity ψ : '× I → R such that

∂ψ

∂t
+∇ · aψ = 0 in '× I, (1a)

(a · n)ψ = 0 on Γ 0
N × I, (1b)

ψ(x, t0) = ψ0 in ', (1c)

where the notation Γ 0
N reflects that in the scope of this paper we only consider

boundaries with vanishing normal velocity (i.e. a · n = 0) for the sake of brevity.
Hence, note that Γ 0

N coincides with the domain boundary ∂'. For the more generic
case, including inflow and outflow boundaries, reference is made to upcoming work
[10].

Problem Eq. (1) is solved using a set of scattered, Lagrangian particles, and our
aim is to express fields as flux degrees of freedom on an Eulerian background mesh
from this set of moving particles in an accurate and physically correct manner.
To state this problem mathematically in Sect. 2.3, we first introduce some notation
related to the Lagrangian particles and the Eulerian mesh.

2.2 Definitions

Let Xt define the configuration of Lagrangian particles in the domain ' at a time
instant t

Xt := {xp(t) ∈ '}Np

p=1, (2)

in which xp denotes the spatial coordinates of particle p, and Np is the number of
particles.
Furthermore, a Lagrangian scalar field on the particles is defined as

*t :=
{

ψp(t) ∈ R
}Np

p=1 , (3)

where ψp denotes the scalar quantity associated with particle p.
Next, we define an Eulerian mesh as the triangulation T := {K} of ' into open,

non-overlapping cells K . A measure of the cell size is denoted by hK , and the
outward pointing unit normal vector on the boundary ∂K of a cell is denoted by
n. Adjacent cells Ki and Kj (i �= j ) share a common facet F = ∂Ki ∩ ∂Kj . The
set of all facets (including the exterior boundary facets F = ∂K ∩ ∂') is denoted
by F .
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The following scalar finite element spaces are defined on T and F :

Wh :=
{

wh ∈ L2(T ), wh|K ∈ Pk(K) ∀ K ∈ T
}

, (4)

Th :=
{

τh ∈ L2(T ), τh|K ∈ Pl(K) ∀ K ∈ T
}

, (5)

W̄h :=
{

w̄h ∈ L2(F), w̄h|F ∈ Pk(F ) ∀ F ∈ F
}

, (6)

in which P(K) and P(F) denote the spaces spanned by Lagrange polynomials on
K and F , respectively, and k ≥ 1 and l = 0 indicating the polynomial order. The
latter is chosen to keep the discussion concise, and reference is made to [10] for the
more generic case l ≥ 0. Also, note that W̄h is continuous inside cell facets and
discontinuous at their borders.

Importantly, we henceforth distinguish between Lagrangian particle data and
Eulerian mesh fields by using the subscripts p and h, respectively.

2.3 Problem Statement

We now formulate the two core components comprising our algorithm: solving
Eq. (1) in a Lagrangian, particle-based framework, and projecting the Lagrangian
quantities to a locally conservative Eulerian mesh field via a particle mesh-
projection.

In a Lagrangian, particle-based frame of reference, the advection problem Eq. (1)
is solved straightforwardly by decomposing the problem into two ordinary differen-
tial equations for the particle scalar quantity and the particle position, given by

ψ̇p(t) = 0, (7a)

ẋp(t) = a(xp(t), t), (7b)

where ψ̇p(t) and ẋp(t) are the total derivatives at time t of the scalar quantity and the
position of particle p, respectively. From Eq. (7a) it readily follows that the scalar
valued particle property remains constant over time, i.e. ψp = ψp(0) = ψ0(xp).
Furthermore, any appropriate time integration method can be used to integrate
Eq. (7b) in time, which will not be subject of further discussion. Finally, as a result
of our simplifying assumption that a · n = 0 at the exterior boundary Γ 0

N , we do not
consider the inflow and outflow of particles through exterior boundaries, and we
refer to [10] for a further discussion of this topic.

Instead, we focus on the reconstruction of a locally conservative mesh field
ψh ∈ Wh from the scattered particle data ψp ∈ *t in a subsequent particle-mesh
projection step. Abstractly, this projection PE : *t → Wh can be denoted as

ψh(x, t) = PE

(

ψp(t)
)

. (8)
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Our specific aim is to formulate the projection operator PE in such a way that local
conservation is guaranteed, in the sense that the integral of ψh over each element is
invariant.

3 PDE-Constrained Particle-Mesh Interaction

3.1 Formulation

In order to define the projection operator PE , we take as our starting point a local
least squares minimization problem [9]

min
ψh∈Wh

J =
∑

p

1

2

(

ψh(xp(t), t) − ψp

)2
. (9)

With Wh a discontinuous function space, this approach allows for an efficient
cellwise implementation, and gives accurate results provided that the particle
configuration satisfies unisolvency (Definition 2.6 in [11]) with respect to Wh. The
latter requirement practically implies that the particle locations in a cell are not
collinear, and the number of particles in a cell is bounded from below by the number
of local basis functions. In the remainder of this work we assume that this criterion is
met, so as to focus on a more important issue concerning Eq. (9) in that conservation
of the quantity ψh cannot be guaranteed a priori.

In order to achieve conservation, Eq. (9) is extended by imposing the additional
constraint that the projection has to satisfy a hyperbolic conservation law in a
weak sense. To cast this into an optimization problem, the functional in Eq. (9) is
augmented with terms multiplying Eq. (1a) with a Lagrange multiplier λh ∈ Th.
After integration by parts and exploiting that gradients of the Lagrange multiplier
vanish on K for l = 0, the minimization problem may be stated: given a particle
field ψp ∈ *t , and a solenoidal velocity field a, find the stationary points of the
Lagrangian functional

L(ψh, ψ̄h, λh) =
∑

p

1

2

(

ψh(xp(t), t) − ψp(t)
)2 +

∑

K

∮

∂K

1

2
β
(

ψ̄h − ψh

)2
dΓ

+
∫

'

∂ψh

∂t
λhd'+

∑

K

∮

∂K\Γ 0
N

a · nψ̄hλhdΓ +
∮

Γ 0
N

a · nψhλhdΓ, (10)

The first two terms at the right-hand side in this equation are recognized as a
regularized least squares projection, and the last three terms constitute a weak form
of the advection problem Eq. (1), with the Lagrange multiplier λh ∈ Th as the
weight function. Furthermore, the unknown facet-based field ψ̄h ∈ W̄h, resulting
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from integration by parts, determines the interface flux, and is crucial in providing
the required optimality control. The additional term containing β > 0 penalizes
the jumps between ψh and ψ̄h on cell interfaces, thereby avoiding the problem of
becoming singular in cases with vanishing normal velocity a · n.

Equating the variations of Eq. (10) with respect to the three unknowns
(ψh, λh, ψ̄h) ∈ (Wh, Th, W̄h) to zero yields the semi-discrete optimality system.
An in-depth derivation can be found in [10]. Here we suffice to present the resulting
fully-discrete system, thus assuming that the particle field ψp ∈ *t , the particle
positions xn+1

p ∈ Xt after the Lagrangian advection, and the mesh field at the
previous time level ψn

h ∈ Wh are known.
Variation with respect to the scalar field ψn+1

h ∈ Wh yields the co-state equation

∑

p

(

ψn+1
h (xn+1

p )− ψp

)

wh(xn+1
p )−

∑

K

∮

∂K

β
(

ψ̄n+1
h − ψn+1

h

)

whdΓ

+
∫

'

wh

%t
λn+1
h d'+

∮

Γ 0
N

a · nλn+1
h whdΓ = 0 ∀wh ∈ Wh. (11a)

Variation with respect to the Lagrange multiplier λn+1
h ∈ Th yields the discrete state

equation

∫

'

ψn+1
h − ψn

h

%t
τhd'+

∑

K

∮

∂K\Γ 0
N

a · nψ̄n+1
h τhdΓ +

∮

Γ 0
N

a · nψn+1
h τhdΓ = 0 ∀τh ∈ Th.

(11b)

And variation with respect to the facet variable ψ̄n+1
h ∈ Wh results in the optimality

condition

∑

K

∮

∂K

a · nλn+1
h w̄hdΓ +

∑

K

∮

∂K

β
(

ψ̄n+1
h − ψn+1

h

)

w̄hdΓ = 0 ∀w̄h ∈ W̄h.

(11c)

Solving Eq. (11) for (ψn+1
h , λn+1

h , ψ̄n+1
h ) ∈ (Wh, Th, W̄h) yields the reconstructed

field ψn+1
h ∈ Wh.
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3.2 Conservation

Next, we will show that from the perspective of the Eulerian field the particle-mesh
projection via Eq. (11) indeed conserves mass, both in a global and a local sense. To
this end, consider the discrete state equations (Eq. (11b)) and set τh = 1. Exploiting
the single-valuedness of the facet flux variable ψ̄ at the facets F ∈ F , we readily
obtain

∫

'

ψn+1
h − ψn

h

%t
d' = −

∑

K

∮

∂K\Γ 0
N

a · n ψ̄n+1
h dΓ −

∮

Γ 0
N

a · nψn+1
h dΓ = 0, (12)

where we made use of the fact that the flux term vanishes at opposing sides of
interior facets, and the flux at facets on the exterior boundary vanishes due to our
earlier simplification that a · n = 0 on Γ 0

N .
Local mass conservation follows when setting τh = 1 on an interior cell K and

τh = 0 on ' \K , resulting in

∫

K

ψn+1
h − ψn

h

%t
d' = −

∮

∂K

a · nψ̄n+1
h dΓ. (13)

Thus, the storage over an element balances the net ingoing advective flux through
the cell boundary ∂K which proves local conservation in terms of the numerical flux
on F .

3.3 Numerical Implementation

The optimality system Eq. (11) leads to a seemingly large global system. However,
this system is amenable to an efficient implementation via static condensation by
eliminating the unknowns local to a cell, i.e. (ψh, λh) ∈ (Wh, Th), in favor of the
global control variable ψ̄n+1

h ∈ W̄h, leading to a much smaller global system which
is to be solved for ψ̄n+1

h only. The local unknowns ψn+1
h and λn+1

h can be found in
a subsequent backsubstitution step [9, 12].

We emphasize that our PDE-constrained particle-mesh projection hinges on the
single-valued facet flux variable ψ̄h, acting as the control variable to our optimiza-
tion procedure. This imperative ingredient is naturally provided by employing a
HDG-framework (see, e.g., [12–14]).
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4 Numerical Examples

In Sect. 4.1, the convergence and conservation of the scheme is studied for a
benchmark test for which an analytical solution is available. Section 4.2 illustrates
how the scheme can be applied as a tool for mass conservative density tracking in
multiphase flows.

4.1 Convergence Study: Translation of Periodic Pulse

Following LeVeque [15], the translation of a sinusoidal profile ψ(x, 0) =
sin 2πx sin 2πy on the bi-periodic unit square is considered. The velocity field
a = [1, 1] is used, so that at t = 1 the initial data should be recovered. The
β-parameter is set to 1e-6, and a simple Euler scheme suffices for exact particle
advection. Using different polynomial orders k = 1, 2, 3, the accuracy of the
method is assessed at t = 1 by refining the mesh and the time step. We assign
approximately a safe number of 28 particles per cell initially in order to comply
with the unisolvency criterion. Furthermore, the time step corresponds to a CFL-
number of approximately 1. The errors as well as the convergence rates are tabulated
in Table 1. Optimal convergence rates of order k + 1 are observed, thus revealing
the accuracy of our approach.

Table 1 also shows the local mass conservation error at t = 1, with this error for
a time level n+ 1 being defined as

ε%φK =
⎛

⎜

⎝

∑

K

⎛

⎝

∫

K

ψn+1
h − ψn

h

%t
d'+

∮

∂K

a · nψ̄n+1
h dΓ

⎞

⎠

2
⎞

⎟

⎠

1/2

. (14)

As expected, mass is conserved locally in terms of the facet flux. Global mass
conservation is readily verified by noting that the facet flux term cancels at opposing
sides of the facets.

Table 1 Translating pulse: overview of model runs with the associated L2-error ‖ψ − ψh‖, the
convergence rate and the local mass conservation error ε%φK at time t = 1

(k, l) = (1, 0) (k, l) = (2, 0) (k, l) = (3, 0)

Cells %t Error Rate ε%φK Error Rate ε%φK Error Rate ε%φK

128 0.1 6.0e−2 – 1.3e−15 4.3e−3 – 4.5e−15 3.3e−4 – 1.3e−15

512 0.05 1.6e−2 1.9 7.7e−16 5.5e−4 3.0 3.1e−16 2.1e−5 4.0 7.1e−16

2048 0.025 3.9e−3 2.0 4.3e−16 6.9e−5 3.0 2.5e−16 1.3e−6 4.0 4.4e−16

8192 0.0125 9.8e−4 2.0 2.7e−16 8.6e−6 3.0 2.3e−16 8.2e−8 4.0 3.5e−16
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4.2 Application: Mass Conservative Rayleigh–Taylor
Instability

We next illustrate how the above presented scheme can be used for a mass
conservative multiphase scheme in which particles are used for the tracking of
sharp interfaces. As an example, we take the Rayleigh–Taylor instability test from
[16] with an Atwood number of 0.5 and a Reynolds number of 256. In addition to
a PDE-constrained particle-mesh strategy for tracking the density fields, we also
track specific momentum at the particle level and enforce incompressibility and
viscous forces via a Stokes step at the mesh. Details of such a particle-mesh operator
splitting approach for the Navier–Stokes equations can be found in [10]. A regular
and symmetric mesh with 60 × 240 × 4 cells is used. Initially, approximately 20
particles per cell are assigned, and we note that advecting the particles through a
pointwise divergence free velocity field obviates the need for a particle reseeding
strategy [9, 10]. Furthermore, we use polynomial orders (k, l) = (1, 0) and use a
timestep %t = 1e−3. Particles are advected using an explicit, three-stage Runge–
Kutta scheme [17]. The evolution of the initial perturbation is visually assessed in
Fig. 1. The sharp interface between the two phases is maintained and the interface
shape is qualitatively in good agreement with [16]. Most importantly, computations
confirm that the total mass remains constant to machine precision.
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Fig. 1 Rayleigh–Taylor: time evolution of density field at particle level for Re = 256. (a) t = 0.
(b) t = 0.25. (c) t = 0.5. (d) t = 0.75. (e) t = 1.0
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5 Conclusions

We outlined a particle-mesh projection which enables the reconstruction of high-
order accurate and diffusion-free mesh fields from a set of scattered Lagrangian
particles. By casting the problem as a PDE-constrained optimization problem
discrete conservation principles can be derived. Importantly, in the presented
optimization strategy the advective flux was expressed in terms of a flux variable
at the facet which provides the required optimality control. Such a facet function is
typical to an HDG approach, and comes with the additional benefit that the resulting
scheme can be implemented efficiently via static condensation. The scheme was
assessed in terms of accuracy and conservation, and we highlighted a potential
application to multiphase flows.
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Krylov Smoothing for Fully-Coupled
AMG Preconditioners for VMS Resistive
MHD

Paul T. Lin, John N. Shadid, and Paul H. Tsuji

Abstract This study explores the use of a Krylov iterative method (GMRES)
as a smoother for an algebraic multigrid (AMG) preconditioned Newton–Krylov
iterative solution approach for a fully-implicit variational multiscale (VMS) finite
element (FE) resistive magnetohydrodynamics (MHD) formulation. The efficiency
of this approach is critically dependent on the scalability and performance of the
AMG preconditioner for the linear solutions and the performance of the smoothers
play an essential role. Krylov smoothers are considered an attempt to reduce the
time and memory requirements of existing robust smoothers based on additive
Schwarz domain decomposition (DD) with incomplete LU factorization solves on
each subdomain. This brief study presents three time dependent resistive MHD test
cases to evaluate the method. The results demonstrate that the GMRES smoother
can be faster due to a decrease in the preconditioner setup time and a reduction
in outer GMRESR solver iterations, and requires less memory (typically 35% less
memory for global GMRES smoother) than the DD ILU smoother.
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1 Introduction

The resistive magnetohydrodynamics (MHD) model describes the dynamics of
charged fluids in the presence of electromagnetic fields and is used as a base-level
continuum plasma model. Resistive MHD models find application in fundamental
plasma physics phenomena, fusion science technology applications and astrophysi-
cal phenomena [12]. The MHD system is strongly coupled, highly nonlinear and
characterized by coupled physical phenomena that induce a very large range of
time-scales in the response of the system. These characteristics make the scalable,
robust, accurate, and efficient computational solution of these systems extremely
challenging. In this context fully-implicit formulations, coupled with effective
robust iterative solution methods, become attractive, as they have the potential to
provide stable, higher-order time-integration of these complex multiphysics systems
when long dynamical time-scales are of interest (see e.g. [7, 8, 20, 21]).

Krylov iterative linear solver algorithms are among the fastest and most robust
iterative solvers for a wide variety of applications [13, 18]. The key factor influ-
encing the robustness and efficiency of these solution methods is the choice of
preconditioner. Among current preconditioning techniques multilevel type methods
(e.g. two-level domain decomposition, multigrid and algebraic multigrid (AMG))
have been demonstrated to provide scalable solutions to a wide range of challenging
linear systems [23]. Multigrid scalability and performance is critically dependent on
both the projection and the smoothers. This study focuses on the latter, specifically
the performance of smoothers based on a Krylov type iterative method (e.g.
GMRES) applied to the fully-coupled Newton–Krylov algebraic multigrid precon-
ditioned solution approach described in [21]. In this context the solution of the
discrete system developed by a fully-implicit backward differentiation (BDF) type
formulation of a variational multiscale (VMS) finite element spatial discretization
of the resistive MHD system is considered [21].

In the context of fully-coupled direct-to-steady-state solution methods for VMS
CFD and MHD large linear non-symmetric systems, experience has indicated that
robust, and therefore more expensive, smoothing methods are required [19–21]
and local incomplete LU factorizations (ILU) have been shown to be an effective
smoother [14, 19, 21]. This robustness however comes at a price since these methods
are expensive and require large setup time and larger memory requirements to
compute the ILU factors. We consider the case of transient resistive MHD problems
and carry out an initial assessment of AMG preconditioned Krylov methods based
on a few well known standard stationary iterative methods (e.g. Jacobi, Gauss-
Seidel, etc.) and the recursive application of a Krylov method used as a smoother.

Previous work employing Krylov smoothers with multigrid for SPD problems
has considered scalar elliptic problems and elasticity problems [1, 3, 4, 16].
There has been considerably less previous work employing Krylov smoothers for
Helmholtz problems [10] and for nonsymmetric systems; for example [2] has
considered Krylov smoothers for the convection-diffusion equation. Additionally
and independently we have considered Krylov smoothers for the MHD equations
[15]; the present study is an extension of this work.
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2 Resistive MHD Model Equations and Discretization

The governing equations considered in this study are the 3D resistive iso-thermal
MHD equations including dissipative terms for the momentum and magnetic
induction equations [12]. This model provides a continuum description of charged
fluids in the presence of electromagnetic fields. The system of equations in residual
form:

Rm = ∂(ρu)
∂t

+∇ · [ρu⊗ u− 1

μ0
B⊗B+ (P + 1

2μ0
‖B‖2)I−μ[∇u+∇uT ]] = 0

RP = ∂ρ

∂t
+∇ · [ρu] = 0

RI = ∂B
∂t
+∇ ·

[

u⊗ B− B⊗ u− η

μ0

(

∇B− (∇B)T
)

+ ψI
]

= 0.

Here u is the plasma velocity; ρ is the ion mass density; P is the plasma pressure;
B is the magnetic induction (also termed the magnetic field) that is subject to the
divergence-free involution ∇ · B = 0. In this formulation the Lagrange multiplier,
ψ is introduced to allow numerical enforcement of the divergence involution as a
constraint, Rψ = ∇ · B = 0 [9, 21]. This study focuses on the variable density
low-Mach-number compressible case. A finite element (FE) discretization of the
stabilized equations gives rise to a system of coupled, nonlinear, non-symmetric
algebraic equations, the numerical solution of which can be very challenging. These
equations are linearized using an inexact form of Newton’s method. The result
of stabilization is that two weak form Laplacians, a discrete “pressure Laplacian”
and “Lagrange multiplier Laplacian” are introduced on the block diagonals for the
continuity equation and the solenoidal constraint on the magnetic field (Lagrange
multiplier equation). These non-zero blocks allow approximate inversion of the
discrete algebraic system with ILU and Gauss-Seidel type methods for transient
problems (see [21] for a more detailed description).

3 Fully-Coupled Newton–Krylov Multigrid Preconditioned
Solution Approach

Numerical discretization of the governing equations produces a large sparse,
strongly-coupled nonlinear system. Although fully-coupled Newton–Krylov tech-
niques [5], where a Krylov solver is used to solve the linear system generated by a
Newton’s method, are robust, efficient solution of the large sparse linear system that
must be solved for each nonlinear iteration is challenging [13]. The performance,
efficiency and scalability of the preconditioner is critical [13]. It is well known in
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the literature that Schwarz domain decomposition preconditioners do not scale due
to lack of global coupling [6, 17]. Multigrid methods are one of the most efficient
techniques for solving large linear systems [23]. As we have described our Newton–
Krylov preconditioned by algebraic multigrid solution method in detail in our
previous work [14, 21], we provide only a very brief description here. We employ
a nonsmoothed aggregation multigrid approach with uncoupled aggregation. For
systems of partial differential equations (PDEs), aggregation is performed on the
graph where all the PDEs per mesh node is represented by a single vertex. The
discrete equations are projected to the coarser level employing a Galerkin fashion
with a triple matrix product, A"+1 = R"A"P", where R" restricts the residual from
level " to level "+1, A" is the discretization matrix on level " and P" prolongates the
correction from level "+1 to ". We typically employ both pre- and post-smoothing
on each level of the multigrid V-cycle.

The Trilinos framework provides the preconditioned Newton–Krylov method
and preconditioners used for this work. Krylov methods are provided by the
Aztec [24] library and the multigrid cycles and grid transfers are provided by
ML [11].

As mentioned in the introduction, we were interested in evaluating Krylov
smoothers compared with our standard ILU smoother for our MHD test cases.
For our Newton–Krylov solution approach, a GMRES solver is employed that is
preconditioned by multigrid with ILU smoother. Because our test cases matrices are
nonsymmetric, the choice of GMRES [18] for the Krylov smoother for our initial
evaluations is appropriate. When the Krylov/GMRES smoother is employed, there
are two “levels” of Krylov methods and possibly two “levels” of preconditioners.
Because the preconditioner is changing due to the GMRES smoother, it is necessary
to employ a GMRES approach such as GMRESR [25] for the “outer” GMRES
Krylov method that is then preconditioned by multigrid. Each level of the multigrid
V-cycle employs a GMRES smoother, which is denoted as the “inner” GMRES. This
“inner” GMRES can also be preconditioned, e.g. by a standard relaxation approach
such as point or block Jacobi or Gauss-Seidel.

4 Results and Discussion

4.1 3D Taylor-Green MHD Turbulent Vortex Decay

The first transient MHD test case is a Taylor-Green vortex generalized to MHD
as described in [22], with Reynolds number Re = 1800 and magnetic Reynolds
number Rem = 1800. We employ the full VMS formulation as described in [22].
Table 1 presents a weak scaling study for three different mesh sizes: 1283, 2563

and 5123 elements cubed (16.8M, 134M and 1.1 billion DOFs) run on 256, 2048
and 16,384 cores respectively (one MPI process per core) of a linux cluster that
consists of dual-socket Intel Xeon 2.6 GHz 8-core Sandy Bridge processors. 20
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Table 1 Taylor-Green turbulent MHD vortex decay test case weak scaling for 16.8M, 134M and
1.1B DOFs run on 256, 2048 and 16,384 cores of an Intel Xeon linux cluster

Smoother GMRESR Time(s) Memory

Mesh Prec iterations/Δt Prec setup Solve Linear solve (MB)

1283 elem SGS 87.7 18 730 748 1050

(16.8M DOFs): ILU(0)overlap=1 14.2 263 97 360 1440

256 cores GMRES noprec 15.4 22.7 267 290 917

bkJac 13.1 35 238 273 927

ptGS 13.6 24 413 437 917

bkGS 12.0 34 539 573 930

2563 elem SGS Failed

(134M DOFs): ILU(0)overlap=1 20.2 311 134 445 1440

2048 cores GMRES noprec 18.7 23.5 328 352 920

bkJac 15.7 41.3 306 348 933

ptGS 16.9 26.8 516 542 920

bkGS 17.1 40.9 954 995 936

5123 elem ILU(0)overlap=1 37.3 414 276 690 1520

(1.1B DOFs): GMRES noprec 31.0 34 590 624 1000

16,384 cores bkJac 21.9 51 482 533 1020

ptGS 20.0 47 1176 1223 1023

Columns 4–8: GMRESR iterations per time step (sum of “outer” GMRESR iterations over the
Newton steps in a time step), total preconditioner setup time (“prec time”), total linear system
solve time (“solve”), sum of total preconditioner setup and solve time (“linear solve”) which is
the metric for comparing the different smoothers, and maximum high water memory over MPI
processes

time steps were used for all the simulations, and weak scaling was performed
with fixed CFL (CFL ≈ 0.5). A BDF3 time integration approach was employed.
We refer to the linear system solve time or preconditioned iteration time (i.e.
not including preconditioner setup) as the “solve” time. The “linear solve” time
is the sum of this “solve” time and the preconditioner setup time. Results are
presented for various smoothers: sub-domain Symmetric Gauss-Seidel (SGS) with
no overlap, ILU(0) with overlap of 1 (“ILU(0)overlap=1”) and GMRES smoother
with no preconditioner (“noprec”) as well as block Jacobi (“bkJac”), point Gauss-
Seidel (“ptGS”), and block Gauss-Seidel (“bkGS”). The fourth column is the outer
GMRESR iterations per time step, and is the sum of the GMRESR iterations over
the Newton steps within the time step. The eighth column is the maximum high
watermark memory usage over the MPI processes. In general, standard relaxation
smoothers are not sufficiently robust for our MHD test cases, and we seldom
employ them. For the 16.8M DOFs case, the outer GMRESR iterations per time
for SGS smoother is considerably higher than the other smoothers, which makes
it uncompetitive compared with the standard ILU smoother (more than double
the linear solve time). When the mesh is uniformly refined to 134M DOFs, with
SGS smoother the outer GMRESR Krylov solver no longer converges (convergence
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stalls). Therefore we do not consider the SGS smoother for the 1.1B DOFs case
or for any further test cases in this work. For the standard ILU smoother, the
cost for smoother setup (time to compute the ILU factors) is very expensive, and
considerably larger than the solve time. For the GMRES smoothers, while the setup
time is inexpensive compared to ILU, the solve time is considerably more expensive
compared to the ILU smoother. GMRES smoother with either no preconditioner
or block Jacobi preconditioner is 20 and 25% faster (for linear solve time) than
the standard ILU smoother respectively, while requiring only 66% of the memory.
For all the cases involving the GMRES smoother, five iterations of GMRES are
employed. Other than for the SGS smoother for which the outer GMRESR Krylov
solver no longer converges (convergence stalls), the trends for the 134M DOFs case
are similar to the 16.8M DOFs case.

For the 1.1B DOFs on 16,384 cores case, the GMRES smoother with either no
preconditioner or block Jacobi preconditioner is 10 and 23% faster (for linear solve
time) than the standard ILU smoother respectively, while requiring only 66% of
the memory. For ILU smoother, the factorization is expensive, but once the factors
are obtained, applying the factors is considerably less expensive. For the GMRES
smoother, the preconditioner setup is inexpensive, but the solve time is expensive. It
is a trade-off between the expensive ILU factorization for setup versus the expensive
solve for GMRES smoother. The GMRES smoother can considerably lower the
number of outer GMRESR iterations, but cost per iteration is not inexpensive.

4.2 3D Island Coalescence

The island coalescence problem follows the unstable evolution of two 3D current
tubes (in the cross plane—islands) embedded in a sheared magnetic field Harris
sheet and is described in detail in [21].

Table 2 presents a weak scaling study for the test case described in [21] with
Lundquist number 103 for 643 element cube mesh (2.1M DOFs), 1283 element cube
mesh (16.9M DOFs) and 2563 element cube mesh (135M DOFs) run on 64, 512
and 4096 cores of an Intel Xeon 2.6 GHz Sandy Bridge linux cluster. For this study,
the time step is fixed at 0.1 and run to simulation time 4.0 (40 time steps). Each
time the mesh is refined, the CFL is doubled. For the 2563 element cube mesh the
time scale for Alfven wave is associated with CFLA = ( B√

ρμ0
Δt)/Δx ≈ 15. For

the 643 element cube mesh, all the Krylov smoothers are faster than the standard
ILU smoother, with the GMRES smoother with no preconditioner or block Jacobi
preconditioner being 40–50% faster. Here the GMRES smoother is faster than the
standard ILU smoother. As with the two coarser meshes, for the 135M DOFs case,
the global GMRES smoother is faster than the standard ILU smoother (30–35%
reduction in time) while only requiring 65% of the memory.
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Table 2 Island coalescence test case weak scaling study for 2.1M, 16.9M and 135M DOFs run
on 64, 512 and 4096 cores

Smoother GMRESR Time(s) Memory

Mesh Prec iterations/Δt Prec setup Solve Linear solve (MB)

643 elements ILU(0)overlap=1 11.9 410 62 472 917

(2.1M DOFs): GMRES noprec 17.5 25 244 270 631

64 cores bkJac 12.9 42 204 246 631

1283 elements ILU(0)overlap=1 15.1 455 96 552 907

(16.9M DOFs): GMRES noprec 21.6 30 378 407 645

512 cores bkJac 14.6 50 362 412 632

2563 elements ILU(0)overlap=1 15.5 528 110 638 922

(135M DOFs): GMRES noprec 21.8 67 380 448 666

4096 cores bkJac 15.5 88 317 406 653

Fig. 1 2D compressible tearing mode test case. Colored contours and isolines of the current Jz
are shown at times t = 0, 50, 75, 100, 110, 125, 150

4.3 2D Compressible Tearing Mode

The final test problem is a 2D low flow-Mach number compressible tearing mode
simulation that follows the unstable evolution of a thin current sheet formed by
a sheared magnetic field (Harris sheet) within a initially stationary velocity field
[8]. The domain is a rectangle [0,4] × [0,1] and the computation is for a Lundquist
number of 103. The thin current sheet becomes unstable and forms a magnetic island
structure as presented in Fig. 1 with the x-axis oriented in the vertical direction.

Table 3 presents a weak scaling study for the 2D tearing mode for a sequence
of four meshes (232k, 1.3M, 5.1M and 20.5M DOFs run on 36, 144, 576 and 2304
cores of an Intel Xeon 2.1 GHz 18-core Broadwell linux cluster). All were run to the
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same simulation time of t = 150 with the fast magnetosonic CFL fixed at 75. The
ILU(2) with overlap=1 smoother struggled for the 1.3M DOFs test case, and would
not converge for subsequent refinements of the mesh. The GMRES smoother was
considerably more robust, with good convergence for the sequence of meshes, with
the no preconditioner case performing considerably better than the block Jacobi
preconditioner (the former taking half the time per time step as the latter).

5 Conclusions

In this study, we evaluated the use of Krylov smoothers for multigrid as an
alternative smoother to our robust but expensive in terms of time and memory
standard ILU smoother for our fully-coupled Newton–Krylov algebraic precondi-
tioned multigrid solution approach for large-scale VMS resistive MHD simulations.
Our study considered three transient MHD simulations, but more test cases need
to be considered. The GMRES smoother can be faster due to reduction in outer
GMRESR solver iterations and requires less memory (typically 35% less memory
for GMRES smoother) than our standard ILU smoother. The GMRES smoother
was considerably more robust than the ILU smoother for the third test case. Our
next steps are to evaluate the Krylov smoother at very large scales, explore other
Krylov methods, and try to better analyze mathematically the behavior of the Krylov
smoothers.
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Double Layer Potential Density
Reconstruction Procedure for 3D Vortex
Methods

Ilia K. Marchevsky and Georgy A. Shcheglov

Abstract A new approach is developed for the no-slip boundary condition in
vortex methods. The procedure of double layer potential density reconstruction is
considered, which consist of two steps. Firstly the integral equation with respect to
vortex sheet intensity is solved, which expresses the equality between the tangential
components of flow velocity limit value and the body surface velocity. It is solved by
using a Galerkin approach. Secondly, the least-squares procedure is implemented,
which permits to find nodal values of the potential. It is shown that the developed
algorithm makes it possible to improve significantly the quality of solution for the
bodies with very complicated geometry and low-quality surface meshes. It can be
useful for CFD applications and visual effects reproducing in computer graphics.

Keywords Vortex method · Boundary integral equation · Double layer
potential · Vortex sheet · Singularity exclusion · Least squares method

1 Introduction

Vortex methods are a well-known tool for unsteady incompressible flows simulation
and coupled FSI-problems solution in number of engineering applications [1, 3].
These methods are also useful in computer graphics in visual effects simulation [9].
One of the key problems in vortex method development is connected to boundary
condition satisfaction with high accuracy. The aim of this paper is to develop a new
numerical approach to improve the existing numerical schemes of vortex methods.
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2 Integral Equations Arising in Vortex Methods

The problem of 3D incompressible flow simulation around an immovable body is
considered. The governing equations are the Navier–Stokes equations with no-slip
boundary conditions on the body surface K and perturbation decay conditions.

It is well-known from physical point of view, that in order to take into account
the presence of the body in the flow, it is possible to replace it with the vortex sheet
of unknown intensity γ (r), placed on the body surface, r ∈ K , which generates
the velocity field Vγ (r). Then the summary velocity field is the superposition of
the incident flow velocity V∞, velocity field, generated by vorticity inside the flow
domain VΩ(r), and the introduced field Vγ (r):

V(r) = V∞ + VΩ(r)+ Vγ (r).

From mathematical point of view, the velocity Vγ potential can be expressed
through unknown double layer potential density g(r) [4]:

Φ(r) =
∮

K

g(ξ )
∂

∂n(ξ )
1

4π |r− ξ |dSξ .

Note, that the velocity field, which corresponds to this potential

Vγ (r) = ∇Φ(r) =
∮

K

g(ξ )
∂

∂n(r)
∂

∂n(ξ )
1

4π |r− ξ |dSξ , (1)

also can be written down in the following form [4]:

Vγ (r) = ∇Φ(r) =
∮

K

γ (ξ )× (r− ξ )

4π |r− ξ |3 dSξ , (2)

where vector γ (r) = −Gradg(r)×n(r); Grad is surface gradient operator. One can
notice, that the expression (2) coincides with the Biot–Savart law for incompressible
flows. So the potential g(r) is closely connected with vortex sheet intensity γ (r).
The velocity V(r) is discontinuous at the body surface; its limit value is

V−(r) = V(r)− Grad g(r)
2

= V(r)− γ (r)× n(r)
2

, r ∈ K.

Taking into account the no-slip boundary condition in the form V− = 0 at the body
surface, we obtain form (1) and (2) two forms of the integral equation:

∮

K

g(ξ )
∂

∂n(r)
∂

∂n(ξ )
1

4π |r− ξ |dSξ −
Grad g(r)

2
= −(V∞ + VΩ(r)

)

, r ∈ K,

(3)



Double Layer Potential Density Reconstruction Procedure for 3D Vortex Methods 289

or
∮

K

γ (ξ )× (r− ξ )

4π |r− ξ |3 dSξ − γ (r)× n(r)
2

= −(V∞ + VΩ(r)
)

, r ∈ K. (4)

It is proven in [2], that in order to satisfy these equations, it is enough to satisfy
the corresponding equations, being projected either on surface normal unit vector or
on tangential plane.

3 Double Layer Potential Density Direct Reconstruction

The most common approach to solve the problem is Eq. (3) projection on normal
unit vector, that leads to the hypersingular integral equation with respect to the
double layer potential. Its solution is normally found as piecewise-constant double
layer density on surface mesh, which consists of polygonal panels. The efficient
numerical formulae for the Hadamard principal values calculation of hypersingular
integrals are suggested by Lifanov [4].

Note, that the i-th polygonal panel with double layer potential density gi = const
put exactly the same contribution V(i)

γ to the velocity field Vγ (r) as closed vortex
filament, placed on the panel circumfery, with circulation Γi = gi . So the vorticity
on the body surface automatically becomes represented as closed vortex lines, that
corresponds to the Helmholtz fundamental theorems [7].

Numerical experiments show that such approach works satisfactory for flow
simulations around smooth airfoils of rather simple shape, when the surface mesh is
close to uniform. However, even in this case the direction of vortex lines on the body
surface is determined by the mesh, and can differ significantly from the true vorticity
surface distribution. This can lead to significant error in velocity field reconstruction
in the neighborhood of the body surface, especially in the case of unsteady flow
simulation around the body being followed with vorticity generation on the surface
(the so-called vorticity flux model) [1].

The mentioned problems can be overcome by closed vortex filament (vortex
loop) reconstruction. Positions and circulations of such vortex loops can be found
according to the following algorithm [8, 9]:

1. the double layer potential density values are calculated at the surface triangular
mesh vertices; if the surface mesh consists of polygonal cells, they should be split
into triangular sub-panels, maybe by introducing additional nodes;

2. the double layer potential surface distribution is reconstructed by FEM-type
interpolation using 1-st order shape functions;

3. vortex loops are generated along the level lines of this potential; vortex loops
circulations are determined by the difference between potential density values at
the neighboring level lines.
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Such an approach works perfect, for example, in computer graphics applica-
tions [9], where it is enough to provide only qualitative results and high accuracy is
not required. Its usage for flow simulation and hydrodynamic forces calculation is
restricted, again, to rather simple body geometries and uniform meshes [8].

4 Vortex Sheet Intensity Reconstruction

Another way to satisfy the boundary condition is developed in [2]. It supposes
projection of (4) on the tangential plane, leading to the integral equation of the 2-nd
kind

n(r)×
(∫

K

γ (ξ , t)× (r− ξ )

4π |r− ξ |3 × n(r)dSξ

)

− γ (r, t)× n(r)
2

= f(r, t), r ∈ K,

(5)

where the right-hand side f(r, t) is a known vector function, which depends on the
vortex wake influence and the incident flow velocity:

f(r, t) = −n(r)×
(
(

V∞ + VΩ(r)
)× n(r)

)

.

Note, that the kernel of Eq (5) is unbounded when |r − ξ | → 0, so in order
to solve it numerically with rather high accuracy the following assumptions are
introduced:

1. The body surface is discretized into N triangular panels Ki with areas Ai and
unit normal vectors ni , i = 1, . . . , N .

2. The unknown vortex sheet intensity on the i-th panel is assumed to be a constant
vector γ i , i = 1, . . . , N , which lies in the plane of the i-th panel, i. e., γ i ·ni = 0.

3. The integral equation (5) is satisfied on average over the panel, or, the same, in a
Galerkin sense: its residual is orthogonal to the basis function which is equal to
the 1 on the j -th panel and equal to 0 on all other panels.

According to these assumptions the discrete analogue of (5) can be derived:

1

Ai

N
∑

j=1

∫

Ki

(∫

Kj

ni ×
(

γ j × (r− ξ)

4π |r− ξ |3 × ni

)

dSξ

)

dSr − γ i × ni

2
= (6)

= 1

Ai

∫

Ki

f(r, t)dSr , i = 1, . . . , N.



Double Layer Potential Density Reconstruction Procedure for 3D Vortex Methods 291

To write down (6) in the form of a linear algebraic system we choose a local
orthonormal basis on every cell (τ (1)

i , τ
(2)
i , ni ), where tangent vectors τ

(1)
i , τ

(2)
i

can be chosen arbitrarily (in the plane of the cell, orthogonal one to the other) and
τ
(1)
i × τ

(2)
i = ni , so

γ i = γ
(1)
i τ

(1)
i + γ

(2)
i τ

(2)
i ,

and we can project (6) for every i-th panel on directions τ
(1)
i and τ

(2)
i [5, 6].

The obtained algebraic system has an infinite set of solutions; in order to select
the unique solution the additional condition for the total vorticity (the integral from
the vorticity over the body surface) should be satisfied:

∫

K

γ (r, t)dSr = 0,

which also should be written down in the discretized form.
The resulting algebraic system is overdetermined. It should be regularized

similarly to [4] by introducing the regularization vector R = (R1, R2, R3)
T :

1

Ai
τ
(1)
i ·

( N
∑

j=1

γ
(1)
j ν

(1)
ij +

N
∑

j=1

γ
(2)
j ν

(2)
ij

)

− γ
(2)
i

2
− R · τ (2)

i =
b
(1)
i

Ai
,

1

Ai

τ
(2)
i ·

( N
∑

j=1

γ
(1)
j ν

(1)
ij +

N
∑

j=1

γ
(2)
j ν

(2)
ij

)

+ γ
(1)
i

2
+ R · τ (1)

i =
b
(2)
i

Ai

,

N
∑

j=1

Aj

(

γ
(1)
j τ

(1)
j + γ

(2)
j τ

(2)
j

)

= 0, i = 1, . . . , N.

(7)

The semi-analytical numerical algorithm is developed [5, 6] for the integrals
calculation in the coefficients

ν
(k)
ij =

∫

Ki

(∫

Kj

τ
(k)
j × (r− ξ )

4π |r− ξ |3 dSξ

)

dSr , b
(k)
i =

∫

Ki

τ
(k)
i · f(r, t)dSr ,

Numerical experiments show that the developed algorithm permits to reconstruct
surface vorticity distribution with rather high accuracy, even on coarse meshes and,
practically even more important, on non-uniform meshes with refinements. The
velocity field, generated by such vorticity, is rather smooth near to the body surface.

In order to use this approach in the above described in Sect. 3 algorithm of the
vortex loops generation, it is necessary to reconstruct the double layer potential at
the vertices of the surface mesh.
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The solution of linear system (7) gives us a piecewise-constant vortex sheet
intensity distribution over the panels. From the other side, the vortex sheet intensity
is the surface gradient of the double layer potential density. It means, that the most
convenient way to double layer potential density recovery is its approximation by
a function, which is piecewise-linear at the panels. To do it, we consider the nodal
values of the potential gj , j = 1, . . . , M to be unknown; M is number if vertices
of the surface mesh. Then the potential density can be recovered by FEM-type
interpolation using 1-st order shape functions. Let us denote the positions of all
the vertices of the surface mesh as ρj , j = 1, . . . , M . The vertices of the i-th
triangular panel have indices pk

i , k = 1, 2, 3. The shape functions, defined over the
i-th panel, coincide with barycentric coordinates on the triangle:

φ
(k)
i (ρ) =

|(ρpl
i
− ρ)× (ρpm

i
− ρ)|

|(ρpl
i
− ρpk

i
)× (ρpm

i
− ρpk

i
)| , ρ ∈ Ki,

where (k, l, m) = (1, 2, 3), or (2, 3, 1) or (3, 1, 2), then the double layer density
over the i-th panel is linear function with respect to ρ has the form

g(ρ) =
3
∑

k=1

gpk
i
φ
(k)
i (ρ), ρ ∈ Ki.

The gradient of the approximate double layer on every i-th panel, multiplied by
the normal unit vector ni gives a constant vector, which in a physical sense provides
an approximate value of the vortex sheet intensity at the corresponding panel:

γ ∗i = −
3
∑

k=1

gpk
i

(

Gradφ(k)
i × ni

)

, ρ ∈ Ki,

where the surface gradients of the shape functions Gradφ(k)
i are constant vectors.

The unknown values gj can be found from the least-squares procedure:

Ψ =
N
∑

i=1

∣

∣γ i − γ ∗i
∣

∣
2 → min

Taking partial derivatives of Ψ with respect to gj , j = 1, . . . , M , and making them
equal to zero, we obtain a linear system of M ×M size with a symmetric matrix.

This system is singular (in practice, due to the truncation errors, it is ill-
conditioned), which follows from the fact that the value of the potential density
can be chosen arbitrary at some arbitrary specified point. To be more specific, we
assume gM = 0. That means that the last row and last column in the least-squares
matrix should be nullified, the diagonal coefficient can be chosen arbitrary (non-
zero); the last coefficient in the right-hand side also should be nullified. The resulting
regularized matrix is symmetric and positive definite.
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5 Numerical Results

Let us consider the results of the double layer potential density reconstruction
according to the “direct” method (see Sect. 3) and to the “indirect” one (through
the vortex sheet intensity recovery intermediate step, see Sect. 4).

The results are shown in Fig. 1 for the sphere discretized into 446 triangular
panels of nearly the same size. The incident flow is directed vertically (upward).
Here the direct and indirect approaches lead to nearly the same results: the level-set
lines are close to horizontal, that corresponds qualitatively to the exact solution.

The “indirect” algorithm permits to obtain rather good results also on coarse and
non-uniform meshes. In Fig. 2 the same sphere is split into 342 panels when the
ratio of the largest panel area to the smallest one is about 32. The quality of the level
lines shape remains high for the “indirect” method, as opposed to the “direct” one.

Fig. 1 Level lines of the double layer potential density, obtained “directly” (left picture) and
“indirectly” (right picture) on the uniform mesh

Fig. 2 Level lines of the double layer potential density, obtained “directly” (left picture) and
“indirectly” (right picture) on the coarse non-uniform mesh



294 I. K. Marchevsky and G. A. Shcheglov

Fig. 3 Level lines of the double layer potential density, obtained “directly” (left picture) and
“indirectly” (right picture) for the wing of finite span model

Fig. 4 Level lines of the double layer potential density for the fish stl-model, obtained by using
the “direct” (left picture) and the “indirect” (right picture) method

The difference between the two approaches is more apparent for bodies of more
complicated geometry. The example of flow around a wing of a finite span is shown
in Fig. 3; the incident flow is directed from left to right. The triangular mesh with
local refinement in neighborhood of the edges was constructed in the Salome open-
source software and consists of 7040 panels.

For essentially non-uniform meshes, for example, obtained from the stl-file,
which consist of large number of “bad” cells (elongated triangles with small angles)
generated in some CAD software, the “indirect” approach makes it possible to
reconstruct the solution with much better quality in comparison to the “direct”
approach (Fig. 4).

6 Conclusion

The developed algorithm permits to improve significantly the quality of the double
layer potential density reconstruction for the bodies with very complicated geometry
and low-quality surface meshes. Its numerical complexity is higher than for the
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“direct” one due to solution of twice-larger linear system to recover vortex sheet
intensity and the least-square problem. The developed approach can be useful for
CFD applications and visual effects reproducing in computer graphics.
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Balancing Domain Decomposition
Method on Additive Schwartz
Framework for Multi-Level
Implementation

Tomonori Yamada and Kazuya Goto

Abstract A new implementation of the balancing domain decomposition (BDD)
method on additive Schwartz framework is proposed in this paper. BDD family is
one of the most effective approaches for parallel computing of large scale structural
finite element analyses. In the balancing domain decomposition by constraints
(BDDC), the coarse grid correction procedure is applied in an additive manner,
while it is applied multiplicatively in original BDD. Here, BDD on additive
Schwartz framework is proposed and its multi-level implementation is discussed.
Detailed computing performance is investigated with some numerical examples.

Keywords Large-scale analysis · Domain decomposition method · Additive
schwartz framework · Multi-level implementation

1 Introduction

In Domain Decomposition Method (DDM), which is one of the most popular paral-
lelized structural finite element analysis methods, effective parallel computation is
made possible by decomposing the analytical domain into multiple subdomains and
by assigning the computation of each subdomain to a processor (to a core, in the
case of a multi-core processors) [1]. High parallelization efficiency can be achieved
especially with iterative substructuring approach [2, 3], where solution for the entire
domain is computed by solving the local stiffness equation at each subdomain while
conducting a global iterative operation to ensure continuity between subdomains.
However, since the number of iterations increases with the number of subdomains,
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methods that combine iterative substructuring and coarse grid correction, a variant
of multigrid method, is widely studied in recent years; such as FETI (Finite Element
Tearing and Interconnecting) [2] and BDD (Balancing Domain Decomposition) [4].
In these methods, convergence rate is reported to be constant for a given element
count per subdomain regardless of the number of subdomains because of the coarse
grid correction [5].

BDD is regarded as a two-level multigrid method where coarse grid correction is
added to the Neumann-Neumann preconditioner [6] in a multiplicative manner, to
make sure that the residuals, which become right-hand sides of the local problems,
are ‘balanced’ [4]. The degrees of freedom in coarse grid correction are rigid body
motion of subdomains, which can be uniquely determined, thus its implementation
for general complex structures is straightforward. In large-scale problems, the size
of coarse grid problem increases as the number of subdomains increases, and
the solution of the coarse grid problem becomes bottleneck due to low parallel
efficiency of this procedure [7].

The BDDC (Balancing Domain Decomposition by Constraints) [8, 9] method
proposed in 2003 is formulated on the additive Schwartz framework, which makes
it relatively simple to implement multi-level variants [10–12], thus it is suitable for
large-scale DOF analyses. In fact, scalable parallel implementation [13] and extreme
scale computation [14] are already available with BDDC. In BDDC, the degrees of
freedom in coarse grid correction are selected from analytical degrees of freedom
as primal constraints. Because of this procedure, the coarse grid matrix in BDDC is
sparser than that of BDD, but the selection of the primal constraints is an important
problem and is not simple to implement for general complex structures.

In this study, we introduce the additive Schwartz framework to BDD and
then implement its three-level variant. The proposed methods are evaluated with
numerical examples, and applicability to large-scale problems are discussed.

2 Overview of Methods

2.1 Iterative Substructuring Method

Simultaneous linear equations obtained by discretizing the governing equation of
structural problems by the finite element method are described as follows:

K u = f, (1)

where K is the positive-definite symmetrical overall stiffness matrix, u is the nodal
displacement vector, and f is the nodal load vector. With iterative substructuring
taking displacement as unknowns, the entire analytical domain is decomposed
into N subdomains without overlapping. By sorting the stiffness matrix, the
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nodal displacement vector, and the nodal load vector into the inside domain DOF
component and the domain boundary DOF component as

Ki =
[

KII i KIBi

KBIi KBBi

]

, ui =
{

uI i

uBi

}

, fi =
{

fI i
fBi

}

, (2)

the stiffness equation for the inside subdomain DOF, which are independent of each
other, can be obtained as follows:

KII i uI i +KIBi uBi = fI i , (3)

where subscripts I and B are the DOF within the subdomain and at the domain
boundary, respectively, and the subscript i denotes the subdomain number.

On the other hand, the stiffness equation for the DOF on the subdomain boundary
can be expressed using the 0-1 matrix RBi , which maps the DOF at each subdomain
boundary onto the DOF for the entire analytical domain boundary.

N
∑

i=1

RBi KBIi uI i +
N
∑

i=1

RBi KBBi RBi
T uB =

N
∑

i=1

RBi fBi (4)

By using Eq. (3) to eliminate each DOF inside the subdomains, Eq. (4) becomes
the equilibrium equation for the DOF on the subdomain boundary, as follows:

S uB = g, (5)

where S and g are the statically condensed matrix (hereinafter referred to as the
Schur complement matrix) and the nodal load vector, respectively. Equation (5) is
referred to as the interface problem in the iterative substructuring method, and it can
be solved by iterations via iterative solvers such as the conjugate gradient method
with a preconditioner.

2.1.1 Neumann-Neumann Preconditioner

The Neumann-Neumann preconditioner [6] is a preconditioning method introduced
to accelerate convergence in iterative substructuring, which takes displacement
as unknowns. Typically, to apply the preconditioning matrix M in the conjugate
gradient method, the following equation must be solved.

M z = r, (6)

where z is the solution vector, and r is the residual vector at each iterative step. For
the statically condensed expression shown in Eq. (5) for the entire analysis domain,
the local Schur complement matrix Si is considered for each subdomain.

Si = KBBi −KBIi KII i
−1 KIBi (7)
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With the Neumann-Neumann preconditioner, the preconditioning matrix can be
defined as below using the local Schur complement matrix for each domain.

MN-N
−1 =

N
∑

i=1

RBi Di Si
+Di

T RBi
T , (8)

where Si
+ is a generalized inverse matrix, and Di is a weighting matrix for domain

decomposition, which is introduced so that the DOF evaluation weight sum for each
subdomain boundary contained in multiple subdomains would equal unity.

2.1.2 BDD

The BDD method [4] can be implemented by applying coarse grid correction
to solutions obtained locally at each subdomain. A coarse problem matrix can
be obtained by utilizing the rigid body motion (translation and rotation) at each
subdomain as follows:

SC = RC
T S RC, (9)

where RC
T is a projection matrix from the subdomain boundary onto the coarse

problem. The overlap onto the Neumann-Neumann preconditioner is conducted in a
multiplicative manner, and the preconditioning matrix can be expressed as follows.

MBDD
−1 = RC SC

−1RC
T + (I− RC SC

−1 RC
T S)MN-N

−1 (I− S RC SC
−1 RC

T )

(10)

When the residual vector r is balanced, or in other words, when the coarse problem
component is not included in the residual vector r, Eq. (10) can be simplified as
below.

MBDD
−1 = (I− RC SC

−1 RC
T S)MN-N

−1 (11)

In three-dimensional structural analyses, the size of the coarse problem matrix
SC becomes the product of the number of subdomains and the 6-DOF rigid body
motion in each subdomain. The preconditioning matrix in the BDD method shown
in Eq. (11) includes the Neumann-Neumann preconditioning matrix MN-N

−1, the
Schur complement matrix S, and the coarse problem inverse matrix SC

−1. There-
fore, the main preconditioning calculation load in the BDD method resides in the
calculation of products of these three matrices with vectors.

Additionally, BDD-DIAG [15] is proposed as a variant of BDD implementation
that does not use the Neumann-Neumann preconditioner, but uses an ordinary
diagonal scaling preconditioner.
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2.2 BDD on Additive Schwartz Framework

In the original BDD, global coarse grid correction is added to the Neumann-
Neumann preconditioner in a multiplicative manner as in Eqs. (10) and (11), to
make sure that the residuals are balanced. The BDD preconditioner on additive
Schwartz framework is defined by simply adding the global coarse grid correction
and the local preconditioner, such as Neumann-Neumann one or diagonal scaling,
as follows:

MADD
BDD

−1 = RC SC
−1 RC

T +MLocal
−1 (12)

Compared to Eq. (11), a multiplication of matrix S is reduced. When the local pre-
conditioner is the Neumann-Neumann one, the convergence rate can be harmed with
additive Schwartz framework because of its mathematical requirement of balanced
residuals. However, diagonal scaling preconditioner could be useful for BDD on
additive Schwartz framework because the balanced residuals are not required in this
case. To confirm the performance of BDD on additive Schwartz framework with
different local preconditioners, numerical benchmarks were conducted in Sect. 3.

2.3 Multi-Level BDD on Additive Schwartz Framework

The increased analysis scale leads to an increase in computational costs of coarse
grid correction in BDD. With the additive framework, multi-level variants can easily
be derived, and thus multi-level implementations of BDDC have been proposed so
far. Multi-level implementation is also straightforward in case of BDD on additive
framework. For instance, a three-level variant can be defined as follows. First, the
coarse problem is defined by decomposing the subdomains into multiple subdomain
groups without overlapping, and by making the rigid body motion components of
each subdomain group the coarse DOF. Second, the middle problem is defined in
each subdomain group, treating rigid body motion components of each subdomain
as the middle DOF. In this case, the following three-level preconditioner is obtained.

MM_ADD
BDD

−1 = RC SC
−1 RC

T + RM SM
−1 RM

T +MN-N
−1, (13)

where SM
−1 is the inverse matrix of the middle problem and RM

T is a projection
matrix from the subdomain boundary onto the middle problem. Here, SM

−1 can be
comuted in each subdomain group independently.
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3 Numerical Examples

3.1 Cubic Model

We conducted a benchmark study on a cube discretized by hexahedral first-order
finite elements. A schematic view of problem setting is illustrated in Fig. 1. The
bottom face is fully constrained, and uniform compressive force is applied to the top
face. The uniform load is 1 MPa, the Young’s modulus is 1 MPa, and the Poisson’s
ratio is 0.3. Structured grid mesh was generated with 1,404,928 elements, 1,442,897
nodes, and 4,328,691 DOF. With 4096 subdomains, each subdomain contains 343
elements, 512 nodes, and 1536 DOF. Calculations were conducted on a Fujitsu
BX900 32 core system. Thread parallelization using OpenMP was not conducted;
the calculation was parallelized for 32 processes using MPI only. 128 subdomains
were assigned to each core.

Table 1 shows a comparison of the number of iterations and computation
time for different combination of local preconditioner (Neumann-Neumann or
DIAG) and the BDD framework (multiplicative (two-level), additive (two-level)
or additive (three-level)). When Neumann-Neumann preconditioner was used as
the local preconditioner (original BDD), number of iterations increased more than
five times by introducing additive framework. The reason of this deterioration of
convergence rate is that the rigid body motion of each subdomain caused by the
Neumann-Neumann preconditioner cannot be eliminated by coarse grid correction

Fig. 1 Domain decomposition of whole analysis domain of cube model
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Table 1 Number of CG loops and computation time (total, preprocessing before iteration starts,
and entire iterations) of cube model

Num. of Time [s]

Local preconditioner Framework CG loops [Ratio] Total Pre. Iter.

Neumann-Neumann Multiplicative (two-level) 13 [1.00] 73.19 68.11 5.08

Additive (two-level) 67 [5.15] 90.15 68.06 22.09

Additive (three-level) 94 [7.23] 32.02 13.19 18.83

DIAG Multiplicative (two-level) 23 [1.77] 72.06 66.16 5.90

Additive (two-level) 24 [1.85] 71.24 66.20 5.04

Additive (three-level) 52 [4.00] 15.15 11.19 3.95

on additive framework without the balanced residuals, thereby negative influence on
the convergence rate was observed.

When comparing the multiplicative framework against the additive one for BDD-
DIAG, the number of iterations was almost identical, but the computation time for
overall iteration decreased because of the reduction in computational volume. And
comparing the results of two-level and three-level additive framework with diagonal
scaling, the computation time for overall iteration decreased in three-level, because
of the reduced computation required for the coarse grid correction, even though the
number of iterations increased.

3.2 Plate Model

We conducted another benchmark study on a plate discretized by hexahedral first-
order finite elements illustrated in Fig. 2. The bottom face is fully constrained,
and uniform shear force is applied to the top face. The uniform load is 1 MPa,
the Young’s modulus is 1 MPa, and the Poisson’s ratio is 0.3. Structured grid
mesh was generated with 1,279,648 elements, 1,229,217 nodes, and 3,687,651DOF.
With 4096 subdomains, each subdomain contains 288 elements, 507 nodes, and
1521 DOF. Calculations were conducted again on a Fujitsu BX900 32 core system
with the same parallel computing setting as cubic model.

Table 2 shows a comparison of the number of iterations and computation time
for different combination of local preconditioner (Neumann-Neumann or DIAG)
and the BDD framework (multiplicative (two-level), additive (two-level) or additive
(three-level)). The same deterioration of convergence rate with Neumann-Neumann
preconditioner on additive framework compared with the multiplicative one was
observed. And again the almost identical iteration counts for diagonal scaling
preconditioner on additive framework compared with the multiplicative one.
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Fig. 2 Domain decomposition of whole analysis domain of plate model

Table 2 Number of CG loops and computation time (total, preprocessing before iteration starts,
and entire iterations) of plate model

Num. of Time [s]
Local preconditioner Framework CG loops [Ratio] Total Pre. Iter.

Neumann-Neumann Multiplicative (two-level) 89 [1.00] 76.57 60.42 16.14

Additive (two-level) 205 [2.30] 96.02 59.95 35.43

Additive (three-level) 313 [3.52] 21.69 5.98 13.03

DIAG Multiplicative (two-level) 60 [0.67] 69.25 59.71 9.54

Additive (two-level) 65 [0.73] 69.26 59.67 9.58

Additive (three-level) 107 [1.20] 7.02 5.30 1.72

4 Conclusions

BDD on additive Schwartz framework and its three-level variant were implemented
and their performance was evaluated. Numerical study indicates the deterioration
of convergence rate with Neumann-Neumann preconditioner on additive Schwartz
framework compared with the multiplicative one. However, BDD with diagonal
scaling preconditioner on additive framework worked well and almost identical
number of iterations was observed compared with the multiplicative one. With the
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three-level variant, although the number of iteration increased, huge reduction in
total computation time was obtained.
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Algebraic Dual Polynomials
for the Equivalence of Curl-Curl
Problems

Marc Gerritsma, Varun Jain, Yi Zhang, and Artur Palha

Abstract In this paper we will consider two curl-curl equations in two dimensions.
One curl-curl problem for a scalar quantity F and one problem for a vector field
E. For Dirichlet boundary conditions n × E = Ê, on E and Neumann boundary
conditions n× curlF = Ê,, we expect the solutions to satisfy E = curlF . When
we use algebraic dual polynomial representations, these identities continue to hold
at the discrete level. Equivalence will be proved and illustrated with a computational
example.

Keywords Spectral element method · Algebraic dual polynomials · Curl-curl
problems

1 Introduction

Numerical methods lead invariably to approximations, but a judicious choice of
finite dimensional function spaces allows one to preserve, at the discrete level,
identities that hold at the continuous level. In this paper we will focus on the finite
dimensional representation of the curl operator; or, to put it more correctly, the curl
operators. This is particularly clear in the two-dimensional setting where one curl
operator maps scalar fields to vector fields and the other curl operator is its adjoint
and therefore maps vector fields to scalar fields.
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Faraday’s and Ampère’s law demonstrate the importance of the curl operator
in electromagnetism. In fluid mechanics the curl operator appears in the relation
between the stream function and the mass fluxes, and the definition of vorticity, [1].

In R
2 we define the curl operators curlF = (∂F/∂y,−∂F/∂x) for a scalar

field F(x, y) and curl E = ∂Ey/∂x− ∂Ex/∂y for a vector field E = (Ex,Ey

)

. We
define the functions space

H(curl;Ω) =
{

E ∈
[

L2(Ω)
]2 ∣
∣ curl E ∈ L2(Ω)

}

, (1)

with associated inner product

(D,E)H(curl) := (D,E)L2 + (curl D, curl E)L2 ,

and the function space

H(curl;Ω) =
{

F ∈ L2(Ω)
∣

∣ curlF ∈
[

L2(Ω)
]2
}

, (2)

with inner product

(F,G)H(curl) := (F,G)L2 + (curlF, curlG)L2 .

The corresponding norms are ‖E‖2
H(curl) = (E,E)H(curl) and ‖F‖2

H(curl) =
(F, F )H(curl).

2 The Equivalent Curl-Curl Dual Problems

In [2] the equivalence between several Dirichlet and Neumann problems is intro-
duced. The main question we want to address in this paper is whether we can
preserve these equivalences at the discrete level. In [3] this equivalence was already
established at the discrete level for the scalar grad-div problem. In this paper we

want to focus on the curl-curl equivalence problem: Given Ê, ∈ H− 1
2 (div; ∂Ω),

[4], find the solution E ∈ H(curl;Ω) of the Dirichlet problem satisfying

{

n×E = Ê, on ∂Ω

curl (curl E)+E = 0 in Ω
, (3)
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and the associated Neumann problem given by: For Ê, ∈ H− 1
2 (div; ∂Ω) find the

solution F ∈ H(curl;Ω) such that

{

n× curlF = Ê, on ∂Ω

curl (curlF)+ F = 0 in Ω
, (4)

where n × E = nxEy − nyEx and n × curlF = −nx∂F/∂x − ny∂F/∂y, which
can also be written as n× curlF = −n · gradF . At the continuous level we know
that these two problems are equivalent in the sense that E solves (3) and F solves
(4) if and only if E = curlF . In addition, we have that

‖E‖H(curl;Ω) = ‖F‖H(curl;Ω) = ‖Ê,‖
H
− 1

2 (div;∂Ω)
. (5)

In this paper we want to present a spectral element formulation for both problems
(3) and (4) such that the equivalence, Eh = curlFh, continues to hold for the
discrete solutions. Moreover, we want to show that we have ‖Eh‖H(curl;Ω) =
‖Fh‖H(curl;Ω).

Methods which preserve the equivalence of the two Dirichlet-Neumann problems
in the discrete setting such that (5) continues to hold, are of importance in DG
methods, such as [5], and hybrid finite element formulations, see [6], for instance.

3 Primal Spectral Element Formulation

Consider the partitioning −1 = ξ0 < ξ1 <, . . . ,< ξN−1 < ξN = 1 of the
interval I = [−1, 1], where ξi are the roots of (1 − ξ2)L′N(ξ), with L′N(ξ) the
derivative of the Legendre polynomial of degreeN . With these nodes ξi we associate
the Lagrange polynomials, hi(ξ), of degree N which satisfy hi(ξj ) = δij . Any
polynomial p of degree N defined on I can be written as

p(ξ) =
N
∑

i=0

pihi(ξ). (6)

Since the Lagrange polynomials are linearly independent, p(ξ) = 0 iff all pi = 0.
The derivative of (6) is given by

p′(ξ) =
N
∑

i=0

pi
dhi

dξ
(ξ) =

N
∑

i=1

(pi − pi−1) ei(ξ), (7)
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where, [7],

ei(ξ) = −
i−1
∑

k=1

dhk

dξ
(ξ).

Note that the dhi/dξ , i = 0, . . . , N , do not form a basis, while the functions ei(ξ),
i = 1, . . . , N do form a basis. Therefore,p′(ξ) = 0 iff pi = pi−1 for i = 1, . . . , N ,
which in turn means that p(ξ) = const , as required. Note that differentiation
of the Lagrange expansion (6) amounts to a linear combination of the expansion
coefficients, (pi −pi−1) in (7) and a representation in a different basis, ei(ξ) in (7).
An important property of the edge polynomials, ei(ξ), is

∫ ξj

ξj−1

ei(ξ) dξ =
{

1 if i = j

0 if i �= j
. (8)

In the two dimensional case we consider (ξ, η) ∈ Ω̂ = [−1, 1]2 ⊂ R
2 and the

partitioning ξi in the ξ -direction as given in the one dimensional case and we choose
the same partitioning in the η-direction, see Fig. 1. Here Ω is a contractible domain
with Lipschitz continuous boundary. For the representation of F we use the tensor
product of the nodal representation

Fh(ξ, η) =
N
∑

i=0

N
∑

j=0

Fi,j hi(ξ)hj (η) = Ψ (0)(ξ, η)F. (9)

Here Ψ (0)(ξ, η) is a row vector with the basis functions and F is a column vector
with the nodal degrees of freedom

Ψ (0)(ξ, η) = [h0(ξ)h0(η) . . . hN(ξ)hN (η)
]

, F =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

F0,0

F1,0
...

FN−1,N

FN,N

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (10)

where Fi,j = Fh(ξi , ηj ). The curl of Fh is then given by

curlFh =
( ∑N

i=0
∑N

j=1(Fi,j − Fi,j−1)hi(ξ)ej (η)
∑N

i=1
∑N

j=0(−Fi,j + Fi−1,j )ei(ξ)hj (η)

)

= Ψ (1)(ξ, η)E1,0F.

(11)
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In (11) we used (7) to represent the curl in a different basis. The basis Ψ (1)(ξ, η)

and the incidence matrix E
1,0 are given by

Ψ (1)(ξ, η) =
[

h0(ξ)e1(η) . . . hN(ξ)eN(η) 0 . . . 0

0 . . . 0 e1(ξ)h0(η) . . . eN(ξ)hN (η)

]

,

(12)

E
1,0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where this incidence matrix corresponds to the layout depicted in Fig. 1, i.e. N =
3. Note that this incidence matrix only contains the entries −1, 0 and 1 and that
the matrix is extremely sparse. The important thing to note is that this incidence
matrix remains unchanged if we map the standard element Ω̂ to an arbitrary curved
element. The basis functionsΨ (1)(ξ, η) do change, but the incidence matrix remains
invariant. This is another reason to decompose a derivative into a part that acts on
the degrees of freedom and new basis functions, as was done in (7).

The mass matrix M
(0) associated with the basis functions (10) is given by

M
(0) =

∫

Ω̂

Ψ (0)Ψ (0) dΩ. (13)
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F1 F2 F3 F4

F5 F6 F7 F8

F9 F10 F11 F12

F13 F14 F15 F16

E1 E2
E3

E4

E5

E6

E7
E8E9E10

E11

E12

η0

η1

η2

η3

ξ0 ξ1 ξ2 ξ3

Fig. 1 Layout of one spectral element: the degrees of freedom for F indicated by the blue points.
The curl of F is represented on the mesh line segments by the arrows crossing the line segments in
the mesh. The boundary condition n× curl F = Ê, is represented by the red outer line segments

Likewise, the mass matrix M
(1) associated with the basis functions (12) is given

by

M
(1) =

∫

Ω̂

Ψ (1)Ψ (1) dΩ. (14)

4 Dual Spectral Element Formulation

4.1 Duality in the Interior of the Domain

In the previous section we expanded the discrete solution in terms of basis functions
hi(ξ)hj (η) for Fh and hi(ξ)ej (η) ⊗ ei(ξ)hj (η) for the curl of Fh, respectively.
With every linear vector space, V, we can associate the space of linear functionals
acting on that spaceL(V,R) = V′, called the algebraic dual space. Let α ∈ V′ and
u ∈ V, then α(u) ∈ R. Because we work in a Hilbert space, the Riesz representation
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theorem tells us that for every α ∈ V′ there exists a unique vα ∈ V such that

α(u) = (vα, u), ∀u ∈ V, (15)

where (·, ·) denotes the inner product in V, [8, 9]. We first apply these ideas to
the degrees of freedom (the expansion coefficients) which also form a linear vector
space. Let Fh and Gh be expanded as in (9)

Fh(ξ, η) = Ψ (0)(ξ, η)F and Gh(ξ, η) = Ψ (0)(ξ, η)G.

Then we define the dual degrees of freedom˜F analogous to (15) by, [3, 10]

˜FG := FM(0)G, ∀G ∈ R
(N+1)2

. (16)

Therefore, the dual degrees of freedom are related to the primal degrees of freedom
by˜F =M

(0)F. The canonical dual basis functions are then given by

˜Ψ (2) := Ψ (0)
M

(0)−1
, (17)

such that
∫

Ω

˜Ψ (2)Ψ (0) dΩ = I, (18)

where I is the identity matrix on R
(N+1)2

. The relation (18) is analogous to the
canonical basis e∗i ∈ V′ with the property e∗i (ej ) = δij , when ei form a basis for V.
If the basis functions change under a transformation, then the dual basis functions
also change and (18) continues to hold.

Let the vector field Eh be expanded as in (11)

Eh(ξ, η) = Ψ (1)(ξ, η)E.

The corresponding dual degrees of freedom are then given by ˜E = M
(1)E

and the associated dual basis is related to the primal basis by ˜Ψ (1)(ξ, η) =
Ψ (1)(ξ, η)M(1)−1

.

4.2 Duality in the Boundary

The construction of a primal and a dual representation in the interior of the domain
Ω̂ can also be applied along the boundary of the domain ∂Ω̂ . We can restrict Fh to
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the boundary of the domain using (9), which gives

Fh
∣

∣

∣

∂Ω̂
=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

Fh
∣

∣

∂Ω̂E
= FN,j hj (η)

Fh
∣

∣

∂Ω̂N
= Fi,Nhi(ξ)

Fh
∣

∣

∂Ω̂W
= F0,j hj (η)

Fh
∣

∣

∂Ω̂S
= Fi,0hj (ξ)

. (19)

This boundary expansion is essentially a one-dimensional expansion, (6), in terms
of the four 1D elements which make up the boundary of a single spectral element.
From this expansion we can compute the associated mass matrix, which for this
boundary integral we will denote by B

(0). With the nodal degrees of freedom on
the boundary, Fb, we can now define the dual degrees of freedom, ˜Eb by setting
˜Eb = B

(0)Fb.
We introduce the matrix T, given by

T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (20)

The matrix T restricts the field Fh to the boundary of the domain. The curl of the

representation ˜E
h

is defined in the weak sense as

∫

Ω̂

F h curl˜E
h

dΩ =
∫

Ω̂

curlFh
˜E

h
dΩ +

∫

∂Ω̂

F h n× ˜Eh
dΓ

= FE1,0
˜E+ FT˜Eb, ∀F, (21)

where ˜Eb are the degrees of freedom along the boundary indicated by the red line
segments in Fig. 1. Note also that minus signs in n×E cancel with the minus signs
originating from the counter-clockwise evaluated boundary integral in (21). Also,

(21) shows that the degrees of freedom for curl ˜E
h

are given by E
1,0˜E+ T

˜Eb.
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5 Discrete Formulation of the Curl-Curl Problem

5.1 The Neumann Problem

The variational formulation of the Neumann problem (4) is given by: Find Fh such
that for all Gh we have

(Gh, Fh)H(curl) = (curl Gh, curl Fh)L2 + (Gh, Fh)L2 = −
∫

∂Ω

GhEh, dΓ,

(22)

where Fh is expanded as in (9). Using (11) for curl Fh, and (13) and (14) for the
mass matrices, we can write the left hand side of (22) as,

(curl Gh, curl Fh)L2 + (Gh, Fh)L2

= GE1,0
M

(1)
E

1,0F+GM(0)F. (23)

The boundary conditions are prescribed on the right hand side with the help of
duality pairing

∫

∂Ω

GhE, dΓ = GTÊh,. (24)

Combining, (23) and (24) in (22), we have,

E
1,0

M
(1)

E
1,0F+M

(0)F = −TÊ,. (25)

5.2 The Dirichlet Problem

The variational formulation for the Dirichlet problem (3) is given by: Find ˜E
h

such

that for all ˜G
h

we have,

(˜G
h
,˜E

h
)H(curl) = (curl ˜G

h
, curl ˜E

h
)L2 + (˜G

h
,˜E

h
)L2 = −

∫

∂Ω

curl˜G
h
Ê, dΓ.

(26)

Here, ˜E
h

is expanded in terms of dual polynomials

˜E
h
(ξ, η) = ˜Ψ (1)(ξ, η)˜E. (27)
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Then the weak formulation (26) can be written as

(curl ˜G
h
, curl ˜E

h
)L2 + (˜G

h
,˜E

h
)L2

= ˜GT
E

1,0
˜M

(2)
E

1,0T
˜E+ ˜GT

˜M
(1)
˜E, (28)

and
∫

∂Ω

curl˜G
h
Ê, dΓ = ˜GT

E
1,0
˜M

(2)
T
T Ê,. (29)

So the weak formulation (26) can be written as

E
1,0
˜M

(2)
E

1,0T
˜E+ ˜M(1)

˜E = −E1,0
˜M

(2)
T
T Ê,. (30)

5.3 The Equivalence Condition

In this part, we prove that the two discrete formulations (25) and (30) are related
by the discrete relation Eh = curlFh, which, in terms of the degrees of freedom is
equivalent to ˜E = M

(1)
E

1,0F. If we substitute this relation in the left hand side of
(30) we get

E
1,0
˜M

(2)
E

1,0T
˜E+ ˜M(1)

˜E = E
1,0
˜M

(2)
E

1,0T
M

(1)
E

1,0F+ ˜M(1)
M

(1)
E

1,0F. (31)

Then we use (25) in the first term on the right hand side and use the fact that
˜M

(1)
M

(1) = I for the second term on the right hand side to get,

E
1,0
˜M

(2)
E

1,0T
˜E+ ˜M(1)

˜E = E
1,0
˜M

(2)(−TT Ê, −M
(0)F)+ E

1,0F. (32)

A further simplification of the bracket terms and using, ˜M(2)
M

(0) = I, we get,

E
1,0
˜M

(2)
E

1,0T
˜E+ ˜M(1)

˜E = −E1,0
˜M

(2)
T
T Ê,, (33)

which shows that˜E satisfies (30), as required.

5.4 Equality of Norms

The degrees of freedom of the curl of Eh are given by (21) and the associated basis
functions in which these degrees are expanded are given by ˜Ψ (2), (17). Therefore
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we have

‖Eh‖2
H(curl) =

(

˜ET
E

1,0 + ÊT,T
)

˜M
(2)
(

T
T Ê, + E

1,0T
˜E
)

+˜ET
˜M

(1)
˜E

˜E=M(1)
E

1,0F=
(

FT
E

1,0T
M

(1)
E

1,0 + ÊT,T
)

˜M
(2)
(

T
T Ê, + E

1,0T
M

(1)
E

1,0F
)

+FT
E

1,0T
M

(1)
˜M

(1)
M

(1)
E

1,0F

(25)= FT
M

(0)
˜M

(2)
M

(0)F+ FT
E

1,0T
M

(1)
E

1,0F

˜M
(2)

M
(0)=I= FT

M
(0)F+ FT

E
1,0T

M
(1)
E

1,0F

= ‖Fh‖2
H(curl),

which demonstrates that also in the finite dimensional setting the norms of Eh and
Fh are the same.

6 Test Case

In this section we show the results for spectral element approximations of (3) and
(4) for Ω ∈ [−1, 1]2, using one spectral element.

We choose an exact solution for scalar F , and the corresponding vector field E,
given by,

Fex = ex + ey ; Eex = (ey,−ex). (34)

The problem (4) is discretized using a primal representation where we prescribe the
Neumann boundary condition,

Ê, = n× (curl Fex). (35)

For the problem (3) we use a dual representation where we prescribe the Dirichlet
boundary conditions,

Ê, = n×Eex . (36)

In Fig. 2 we show the difference between the ξ and η components of vector
field Eh and curl Fh, for a low order spectral element approximation N = 3. The
case N = 3 corresponds to the grid shown in Fig. 1. Here, we choose a very low
order approximation to show that the equivalence of the duality relation derived in
Sect. 5.3 holds true even for low order approximations.
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Fig. 2 Difference in vector field Eh and vector field (curl Fh) for N = 3. Left: ξ -component.
Right: η-component

Table 1 Norms ‖Eh‖H(curl)
and ‖Fh‖H(curl) as a function
of the polynomial degree N

N
∥

∥Fh
∥

∥

H(curl)

∥

∥Eh
∥

∥

H(curl)

1 5.62334036 5.62334036

2 6.28815932 6.28815932

3 6.32851719 6.32851719

4 6.32957061 6.32957061

5 6.32958640 6.32958640

6 6.32958655 6.32958655

7 6.32958656 6.32958656

8 6.32958656 6.32958656

9 6.32958656 6.32958656

The difference observed in Fig. 2 is of the orderO(10−15); the two discrete vector
fields thus agree up to machine precision.

From Sect. 5.4 we know that in the continuous setting, the H(curl)-norm of
vector field E is equal to the H(curl)-norm of scalar field F . For this test case
with exact solution given by (34) we have

‖ Fex ‖H(curl)=
√

‖ Fex ‖2
L2 + ‖ curl Fex ‖2

L2 =
√

8(sinh(2)+ sinh2(1)) = 6.32958656.

(37)

In Table 1 we show the calculated value of these discrete norms for increasing
polynomial degree N of the basis functions. We observe that the discrete norms
are exactly equal to each other and they converge to the theoretical value, (37).
From Sect. 2 we saw that at the continuous level we have ‖E‖H(curl;Ω) =
‖F‖H(curl;Ω) = ‖Ê,‖

H
− 1

2 (div;∂Ω)
. Table 1 reveals that in the discrete setting, we

can now also unambiguously define a norm ‖Ê,‖
H
− 1

2 (div;∂Ω)
on the trace space.
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Fig. 3 Convergence of
‖F − Fh‖H(curl) and
‖E −Eh‖H(curl) as function
of polynomial order N

In Fig. 3 we show the convergence of error of F in H(curl;Ω) norm, and
the convergence of error of E in H(curl;Ω) norm. Both the errors converge
exponentially to machine precision level.

7 Conclusions

The two curl-curl problems introduced in Sect. 2 are equivalent in the sense that
F = curl E and the norms of F and E are the same. In this paper it is proved that
this equivalence continues to hold in finite dimensional spaces, if one of the degrees
of freedom is expressed in terms of primal unknowns, Fh, and the other in dual
degrees of freedom, Eh. Equivalence of the approximate solutions and their norms
is shown in Sect. 5, while in Sect. 6 this was illustrated for a specific test case.
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Multiple-Precision Iterative Methods
for Solving Complex Symmetric
Electromagnetic Systems

Koki Masui, Masao Ogino, and Lijun Liu

Abstract This paper deals with multiple-precision iterative methods for solving the
complex symmetric linear equation derived from high-frequency electromagnetic
field analysis using the edge finite element method. Double-precision iterative
methods for solving this problem are slow to converge. Therefore, we implement a
multiple-precision calculation, specifically, double-double (DD) precision numbers.
The DD-precision complex numbers and arithmetic operations are implemented
using an error-free transformation based on Knuth’s and Dekker’s algorithm.
Moreover, some iterative methods with mixed precision are proposed to reduce com-
putational cost. Using developed systems and the QD library that supports DD and
quad-double arithmetics, some numerical methods are demonstrated experimentally
and their performances are evaluated.

Keywords High precision calculation · Complex symmetric matrices · Iterative
methods · Electromagnetic field analysis

1 Introduction

In solving the complex symmetric linear equations derived from high-frequency
electromagnetic field analysis [1] using the edge finite element method [2], iterative
methods such as the conjugate orthogonal conjugate gradient (COCG) method [3]
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suffer from slow convergence rates. Therefore, to perform electromagnetic field
analysis with high efficiency, there is an urgent need for an effective iterative
method for the complex symmetric linear equation. In addition, software libraries
of multiple-precision arithmetic have been developed and the double-double (DD)
precision number using two IEEE double precision numbers has been widely
researched. Moreover, an optimized implementation of DD arithmetic for modern
computer architecture has been reported [4]. Multiple-precision calculation is
considered to be a useful strategy for improving the convergence behavior of
iterative methods for linear systems. In flow problems, a mixed-precision calculation
Krylov subspace method has been applied to improve the convergence by reducing
round-off error [5].

However, there are few studies on multiple-precision complex number calcu-
lation for electromagnetic field analysis. In this study, we apply multiple-precision
arithmetic in large-scale electromagnetic field analysis and evaluate the convergence
performance and total calculation time through numerical experiments. Specifically,
we develop multiple-precision and mixed-precision iterative methods based on
DD-precision numbers and compare performances using the COCG, conjugate
orthogonal conjugate residual (COCR) [6], and MINRES-like_CS [7] methods.

2 Multiple-Precision Complex Number Calculation

In this study, multiple precision is a precision that is higher than double precision.
The DD precision used in this paper was proposed by Bailey [8] and Briggs [9],
which is based on an error-free transformation based on Knuth’s [10] and Dekker’s
[11] algorithm and uses two double-precision numbers to realize approximately
quad-precision arithmetic. Double-precision floating-point operations are supported
in hardware in most modern computers, but DD-precision operations are imple-
mented in software. Therefore, DD-precision arithmetic requires about 10–20 times
the number of operations required for double-precision arithmetic.

Software libraries that support multiple-precision arithmetic have been devel-
oped; however, there are few libraries that implement multiple-precision complex
number arithmetic. Most libraries handle complex numbers by utilizing a C++
complex class template. This study focuses on the QD library (http://crd-legacy.lbl.
gov/~dhbailey/mpdist/), which is an open source DD calculation library. It provides
DD and quad-double (QD) precision arithmetic, which provides pseudo octuple-
precision floating-point operations using four double-precision numbers. We use the
dd_real and qd_real classes for DD- and QD-precision real numbers, respectively.
Moreover, we can use the complex<dd_real> and complex<qd_real> classes
for DD- and QD-precision complex numbers, respectively. In the C++ language
and QD library, arithmetic operators are overloaded. However, it is difficult to
write efficient code with this approach while considering mixed-precision complex
number arithmetic such as double-precision and DD-precision complex numbers.

http://crd-legacy.lbl.gov/~dhbailey/mpdist/
http://crd-legacy.lbl.gov/~dhbailey/mpdist/
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Therefore, in this study, we develop in-house code in the C language for mixed-
precision complex number calculations of double-precision and DD-precision
complex numbers. In our in-house code, a double-precision complex data type
is defined by two double-precision members for the real and imaginary parts.
Moreover, a DD-precision complex data type is defined by four double-precision
members for the upper and lower bits of the real and imaginary parts.

There are some calculation methods at DD precision for the four arithmetic
operations. To implement DD-precision complex number calculation, we choose
cray_add, which has the same algorithm as sloppy_add, which is implemented
in the QD library, as DD-precision addition and fast_div [12] as DD-precision
division. Two advantages of these methods are that cray_add satisfies the error
limit of the cray format and should yield high performance calculation, and fast_div
does not use DD multiplication; therefore, the calculation cost is less than those of
sloppy_div and accurate_div, which are implemented in the QD library.

3 Mixed-Precision Iterative Methods

For electromagnetic field analysis using the edge finite element method, the
convergence rate and calculation time of the iterative method used to solve the
system of linear equations are of great interest. In this study, a finite element
equation is assumed to be constructed using double-precision arithmetic operations.
In contrast, we use multiple-precision arithmetic operation in the iterative method
for solving the system. In other words, to solve a linear equation Ax = b, the
coefficient matrix A and right-hand-side vector b (i.e., the input to the linear
solver) are double precision, and other vectors are DD precision. For instance, when
calculating sparse matrix-vector multiplication q = Ap, matrix A is made up of
double-precision complex numbers and vectors q and p are DD-precision complex
numbers. Moreover, preconditioning matrix M , derived from coefficient matrix A,
is calculated using double-precision complex numbers. Consequently, we develop
mixed-precision iterative methods, specifically, the COCG, COCR, and MINRES-
like_CS methods are implemented to solve complex symmetric linear systems.

4 Numerical Experiments

Our experiments were carried out on a 64-bit Linux system with a 3.60 GHz Intel
Core i7-7700 CPU and the gcc/g++ ver 6.3.0 compiler. Note that the “-mfma”
compiler option should be used to enable fused multiply-add (FMA) instructions in
DD-precision calculation. We chose TEAM Workshop Problem 29 [13], shown in
Fig. 1. This problem is a standard problem of high-frequency electromagnetic field
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Fig. 1 The model of TEAM
Workshop Problem 29
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analysis. The finite element equation and using edge elements are given as follows
[14]:

∫

Ω

rotEh ·μ−1rotE∗hdΩ−
∫

Ω

(ω2ε
′ − iωσ)Eh ·E∗hdΩ = iω

∫

Ω

Jh ·E∗hdΩ (1)

where Ω is a finite element mesh of an analysis domain with boundary ∂Ω , Eh

[V/m] is the finite element approximation of the electric field, E∗h [V/m] the test
function satisfying E∗h×n = 0 on ∂Ω , Jh [A/m2] is the finite element approximation
of current density, μ [H/m] is the permeability, ε

′
(=80.0 F/m) is the real part of the

complex permittivity, σ (=0.52 S/m) is the electric conductivity, ω = 2πf [rad/s]
is the single angular frequency, f [Hz] is the frequency, n is the outward normal
vector on the boundary, and i is the imaginary unit. To construct the coefficient
matrix of Eq. (1), we used ADVENTURE_Magnetic (http://adventure.sys.t.u-tokyo.
ac.jp/), developed and published by the ADVENTURE project. Equation (1) leads
to a complex symmetric linear system. The number of unknowns of the equation is
134,573 and the number of non-zero elements in the coefficient matrix is 1,129,211.
Let Ax = b be the linear equation to be solved. Then, b is given by computing
b = Ax with x = (1.0 + 1.0i, . . . , 1.0 + 1.0i)T , where the initial guess x0 is zero.
To determine convergence, the stopping condition ‖rn‖2/‖r0‖2 ≤ 10−6 is used.

To solve this problem, we used three kinds of iterative methods, the COCG,
COCR, and MINRES-like_CS methods, and two kinds of preconditioning, IC(0)
decomposition with an acceleration factor [15] and SSOR preconditioning [16].
The acceleration factor of the IC(0) preconditioning and the relaxation coefficient
of the SSOR preconditioning are 1.1 and 0.4, respectively. These values are optimal
values for double-precision determined by numerical experiments. We evaluated

http://adventure.sys.t.u-tokyo.ac.jp/
http://adventure.sys.t.u-tokyo.ac.jp/
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the performances of the iterative methods with either double, mixed, DD, or QD
precision arithmetic. The results of the iteration counts and calculation times are
shown in Table 1 for SSOR preconditioning and Table 2 for IC(0) preconditioning.
We note that, except for the QD calculation, which was done by the QD library, all
other calculations were performed by our in-house code.

As can be seen in Tables 1 and 2, our proposed mixed-precision iterative methods
based on the DD arithmetic reduces the number of iterations to about two-thirds
compared with the double precision calculation. Moreover, our methods converge
within almost the same number of steps as that of DD-precision calculation but
in less computational time. Figures 2, 3, and 4 plot the convergence histories
of IC(0) preconditioning. In all cases, we found that IC(0) preconditioning is
more effective than SSOR preconditioning without the need for precision in the
floating-point operations. In addition, although the COCR and MINRES-like_CS
methods converge faster than the COCG method, the changes in the convergence
and calculation times of the three methods using multiple-precision arithmetic tend

Table 1 Computational performance in solving the TEAM 29 (SSOR preconditioning)

COCG COCR MINRES-like_CS

Iteration counts Time [s] Iteration counts Time [s] Iteration counts Time [s]

Double 21,025 775 11,482 593 12,203 640

Mixed 14,730 1078 8615 808 8960 954

DD 14,691 1248 8245 1144 9003 1643

QD 9721 28,000 6192 40,486 7684 73,106

Table 2 Computational performance in solving the TEAM 29 (IC(0) preconditioning)

COCG COCR MINRES-like_CS

Iteration counts Time [s] Iteration counts Time [s] Iteration counts Time [s]

Double 8421 431 5932 214 6592 519

Mixed 5420 734 3939 533 4117 787

DD 5416 770 3940 565 4180 826

QD 3624 13,633 2559 18,018 2609 26,075

Fig. 2 Convergence history of IC(0) preconditioning for the COCG method
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Fig. 3 Convergence history of IC(0) preconditioning for the COCR method

Fig. 4 Convergence history of IC(0) preconditioning for the MINRES-like_CS method

Fig. 5 Acceleration factor of IC preconditioning vs. iteration counts for the COCG, COCR, and
MINRES-like_CS method

to be the same. Moreover, we confirmed that double-precision is sufficient for the
preconditioning matrix.

Next, we evaluated the effect of the preconditioning parameters and calculation
precision on the iteration count. For IC(0) preconditioning, the value of the
acceleration factor is often chosen between 1.0 and 1.5. Figure 5 shows the
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number of iterations with different acceleration factors. The results of DD became
almost the same as mixed. As these figures show, when the acceleration factor
is 1.1–1.5, the double-precision calculation requires about 40% more steps than
multiple-precision calculation. However, when the acceleration factor is 1.0, which
indicates no acceleration, the iteration takes about 572% more steps to converge
in double-precision arithmetic than in multiple-precision calculation. Especially,
the MINRES-like_CS method with double-precision and no acceleration shows no
convergence behavior in practical computation time. Therefore, applying multiple-
precision calculation could be very helpful for improving the convergence behavior
if an optimum acceleration factor for the IC(0) preconditioning is uncertain.

The SSOR preconditioning has a relaxation coefficient ω as a parameter and it is
necessary to use an optimum value within 0 < ω < 2. Figure 6 shows the iteration
counts for different values of relaxation coefficient. Similarly, the results of DD
became almost the same as mixed. These figures show that using multiple-precision
calculation instead of double-precision arithmetic, we succeeded in suppressing the
increase of the iteration counts, even with different relaxation coefficient values.
Moreover, the change in iteration counts is much less using multiple-precision
calculation than when using double-precision calculation. In terms of computation
time, if we choose the optimum relaxation factor of 0.4 in our experiments, mixed-
precision arithmetic is 1.5 times slower than double-precision operation in all
iterative methods. However, in some cases, the iteration counts in double-precision
calculation are substantially increased. In these situations, mixed-precision cal-
culation is faster than double-precision calculation. That is, our mixed-precision
iterative methods are less influenced by the relaxation coefficient and provide stable
convergence behavior. For both cases of IC(0) and SSOR preconditioning, by using
multiple-precision arithmetic, we succeeded in suppressing the influence of the
relaxation coefficient parameter and obtained a convergent solution for cases that
could not be solved at double precision in practical calculation time. Consequently,
it can be said that the multiple-precision iterative method is a robust method.

Fig. 6 Relaxation factor of SSOR preconditioning vs. iteration counts for the COCG, COCR,
MINRES-like_CS method
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5 Conclusion

In this research, we focused on multiple-precision calculation to speed up the
solution of complex symmetric linear systems of equations derived from high-
frequency electromagnetic field analysis using the edge finite element method.
We developed mixed-precision iterative methods in which the precision of the
coefficient matrix and preconditioning matrix are double-precision and the vectors
are DD precision. The results of our numerical experiments yield the following
findings.

• Multiple-precision calculation such as DD-precision and mixed-precision cal-
culations are more effective than double-precision calculation for reducing the
iteration counts of iterative methods for complex symmetric linear equations in
electromagnetic field analysis.

• From the viewpoint of calculation time, (pseudo) octuple-precision calculation is
unnecessary.

• When the optimum value of the parameter in the preconditioning is uncertain,
it is possible to reduce the influence of this parameter using multiple-precision
arithmetic operation and obtain a convergent solution more quickly.

• When using the same precision, the COCR and MINRES-like_CS methods need
fewer iteration counts than the COCG method.
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Gradient-Based Limiting
and Stabilization of Continuous
Galerkin Methods

Dmitri Kuzmin

Abstract In this paper, we stabilize and limit continuous Galerkin discretiza-
tions of a linear transport equation using an algebraic approach to derivation
of artificial diffusion operators. Building on recent advances in the analysis and
design of edge-based algebraic flux correction schemes for singularly perturbed
convection-diffusion problems, we derive algebraic stabilization operators that
generate nonlinear high-order stabilization in smooth regions and enforce discrete
maximum principles everywhere. The correction factors for antidiffusive element
or edge contributions are defined in terms of nodal gradients that vanish at
local extrema. The proposed limiting strategy is linearity-preserving and provides
Lipschitz continuity of constrained terms. Numerical examples are presented for
two-dimensional test problems.

Keywords Hyperbolic conservation laws · Finite element methods · Discrete
maximum principles · Algebraic flux correction · Linearity preservation

1 Introduction

Bound-preserving discretizations of hyperbolic conservation laws and convection-
dominated transport problems use limiting techniques to enforce discrete maximum
principles. Recent years have witnessed an increased interest of the finite element
community in algebraic flux correction (AFC) schemes [9] based on various
generalizations of flux-corrected transport (FCT) algorithms and total variation
diminishing (TVD) methods. A major breakthrough in the theoretical analysis of
AFC for continuous finite elements was achieved by Barrenechea et al. [3, 5] whose
recent work has provided a set of design principles for derivation of limiters that
lead to well-posed nonlinear problems in the context of stationary convection-
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diffusion equations. Limiting techniques for continuous Galerkin discretizations
of hyperbolic problems were proposed in [2, 7, 12]. As shown in [7, 12], the use
of the standard Galerkin method as the AFC target for hyperbolic conservation
laws may give rise to bounded ripples and nonphysical weak solutions. In fact, the
Galerkin discretization may even produce singular matrices on criss-cross (Union
Jack) meshes [13]. The use of limiters restricts the range of possible solution
values but does not rule out spurious oscillations within this range. In this paper,
we design artificial diffusion operators that introduce high-order stabilization in
smooth regions and enforce preservation of local bounds in the vicinity of steep
fronts. The element or edge contributions to the residual of the nonlinear system
are constrained using limiters defined in terms of nodal gradients rather than nodal
correction factors. This approach leads to a limiting procedure that satisfies all
essential design criteria.

2 Artificial Diffusion Operators

To make the presentation self-contained, we begin with an outline of the basic AFC
methodology [9] for C0 finite element discretizations of the hyperbolic equation

∂u

∂t
+ ∇ · (vu) = 0 in Ω (1)

to be solved in a bounded domain Ω with a Lipschitz boundary Γ . The velocity
field v is assumed to be known. At the inlet Γin = {x ∈ Γ : v · n < 0}, we impose
the boundary condition u = 0 in a weak sense by using the variational formulation

∫

Ω

w
∂u

∂t
dx+

∫

Γ

wumax{0, v · n}ds−
∫

Ω

∇w · (vu)dx = 0, (2)

where n is the unit outward normal and w ∈ H 1(Ω) is an admissible test function.
The numerical solution uh = ∑N

j=1 ujϕj is defined in terms of continuous
piecewise-linear or multilinear Lagrange basis functions ϕj associated with vertices
xj of a mesh (alias triangulation) Th. The standard Galerkin discretization leads to

MC
du

dt
+ Au = 0, (3)

where MC = {mij } is the consistent mass matrix, A = {aij } is the discrete transport
operator, and u = {ui} is the vector of time-dependent nodal values.

Introducing the lumped mass matrix ML = {δij ∑j mij } and a symmetric
artificial diffusion operator D = {dij }, we construct the low-order approximation

ML

du

dt
+ (A−D)u = 0 (4)
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which is provably bound-preserving if
∑

j dij = 0 and dij ≥ max{aij , 0, aji} for
all j �= i [3, 9]. The original Galerkin discretization (3) can be written as

ML
du

dt
+ (A−D)u = f

(

u,
du

dt

)

, fi =
∑

m

f m
i , (5)

where f = {fi} is the antidiffusive part that requires limiting. In edge-based AFC
schemes, fm

i is the contribution of edge m to node i, and there exists a neighbor
node j �= i such that fm

j = −fm
i [3, 7, 9]. In element-based versions, fm

i is the
contribution of element m to node i and

∑

i f
m
i = 0 by definition [10, 12]. In the 1D

case, the decompositions of f into edge and element contributions are equivalent.
In the process of limiting, each component fm

i is multiplied by a solution-
dependent correction factor αm ∈ [0, 1]. This modification leads to the nonlinear
system

ML

du

dt
+ (A−D)u = f̄

(

u,
du

dt

)

, f̄i =
∑

m

αmfm
i . (6)

We define fm
i and αm in the next section. The discretization in time can be

performed using a strong stability preserving (SSP) Runge-Kutta method [6]. Note
that only the backward Euler method is SSP without any restrictions on the time
step.

3 Limiting of Antidiffusive Terms

First and foremost, the definition of correction factors αm should guarantee that the
limited antidiffusive term f̄i be local extremum diminishing (LED), i.e.,

umax
i := max

j∈Ni

uj = ui ⇒ f̄i ≤ 0, (7)

umin
i := min

j∈Ni

uj = ui ⇒ f̄i ≥ 0, (8)

where Ni = {j ∈ {1, . . . , N} : mij �= 0} is the computational stencil of node i.
Obviously, the LED property (7), (8) holds for αm satisfying (cf. [4, 5])

αm ≤ αi := min

{

1,
γi min{umax

i − ui, ui − umin
i }

max{umax
i − ui, ui − umin

i } + εh

}

∀i ∈ Nm, (9)

whereNm is the set of nodes belonging to the element or edge, γi > 0 is a parameter
to be defined in Sect. 3.2, h is the mesh size, and ε is a small positive constant.
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Theoretical and numerical studies of AFC schemes indicate that the use of
linearity-preserving limiters is an essential prerequisite for achieving optimal
accuracy on general meshes [4, 5, 9, 10]. The bound αi in formula (9) is linearity
preserving if αi = 1 whenever uh is linear on the patch Ω̄i = {K ∈ Th : xi ∈ K}
of elements containing an internal node xi ∈ Ω . According to the analysis of
Barrenechea et al. [4, 5], the nodal correction factor αi defined by (9) possesses
this property if

γi ≥ γmin
i := maxxj∈∂Ωi |xi − xj |

dist{xi , ∂Ωconv
i } , (10)

where | · | is the Euclidean norm and Ωconv
i is the convex hull of points xj ∈ Ω̄i .

Implicit time integration requires iterative solution of nonlinear systems and only
converged solutions are guaranteed to be bound preserving. Therefore, convergence
behavior of iterative solvers should also be taken into account. It is essential to
guarantee that each product αmf m

i be a Lipschitz-continuous function of nodal
values. This property is used in proofs of existence and uniqueness for the nonlinear
discrete problem [3, 5] and secures convergence of fixed-point iterations based on
deferred correction methods (see [1, Proposition 4.3]). Faster convergence can be
achieved, e.g., using Anderson acceleration [9] or differentiable LED limiters [2].

3.1 Nonlinear High-Order Stabilization

The straightforward choice αm = mini∈Nm αi of the correction factor αm for fm
i

corresponds to using the oscillatory Galerkin scheme (3) as the limiting target. In
this section, we construct a stabilized AFC scheme using a definition of αm in terms
of limited nodal gradients g∗i such that g∗i = 0 if ui = umax

i or ui = umin
i at an

internal node xi ∈ Ω . Additionally, the gradient recovery procedure should be exact
for linear functions. In Sect. 3.2, we use nodal correction factors αi of the form (9)
to correct a linearity-preserving gradient reconstruction gi and obtain a Lipschitz-
continuous approximation g∗i = αigi satisfying the above requirements.

An element-based AFC scheme with a stabilized high-order target is defined by

αm =
(

min{‖ |∇umh | ‖C(Km), p mini∈Nm |g∗i |}
‖ |∇umh | ‖C(Km) + ε

)q

, (11)

where ‖ · ‖C(K) is the maximum norm. The parameters p ≥ 1 and q ∈ N act as
steepeners that make the limiter less diffusive. By default, we use p = q = 2.

If a local extremum is attained at node i for any i ∈ Nm, then |g∗i | = 0 and,
therefore, αm = 0 in accordance with the LED criterion. If uh is linear on Ω̄i and
the parameter γi is defined by (16), then αi = 1 and, therefore, g∗i = gi = ∇umh .
In general, our formula (11) will produce αm = 1 if the magnitude of ∇umh does
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not exceed that of the smallest nodal gradient by more than a factor of p. Lipschitz
continuity of αmfm

i can be shown following Lohmann’s [11] proofs for edge-based
tensor limiters.

An edge-based counterpart of our gradient-based limiter (11) is defined by

αm =
(

min{p|g∗i · (xi − xj )|, |ui − uj |, p|g∗j · (xi − xj )|}
|ui − uj | + ε

)q

. (12)

A proof of Lipschitz continuity for q ∈ N follows from Lohmann’s analysis [11].
If the gradient is nonsmooth, our method may produce αm < 1 even in the case

when g∗i = gi for all i. In contrast to limiters designed to recover the standard
Galerkin discretization whenever it satisfies the LED constraints, our definition of
αm generates nonlinear high-order dissipation in elements free of local extrema.
On a uniform mesh of 1D linear elements both (11) and (12) lead to a symmetric
limited positive (SLIP) scheme [8] that switches between second- and fourth-order
dissipation.

In predictor-corrector algorithms of FCT type, high-order dissipation can also
be generated by adding nonlinear entropy viscosity [7] or linear gradient-based
stabilization [10, 12]. However, the use of such artificial diffusion operators in
iterative AFC schemes inhibits convergence due to the lack of Lipschitz continuity.

3.2 Recovery of Nodal Gradients

If uh is linear on Ω̄i , then gi = ∇uh(xi ) holds for any weighted average gi of the
one-sided element gradients ∇uh|K(xi ), K ∈ Ω̄i . For example, the global lumped-
mass L2 projection yields the averaged nodal gradient [9]

gi = 1

mi

∑

j∈Ni

cij uj = 1

mi

∑

j∈Ni\{i}
cij (uj − ui), (13)

mi =
∫

Ω

ϕidx, cij =
∫

Ω

ϕi∇ϕjdx. (14)

However, the so-defined gi does not necessarily vanish if a local maximum or
minimum is attained at xi ∈ Ω . To rectify this, we consider the limited gradient

g∗i = αigi = 1

mi

∑

j∈Ni\{i}
cij αi(uj − ui), (15)

where αi is the nodal correction factor defined by (9). The limited gradient
reconstruction g∗i does vanish at local extrema. Lipschitz continuity of αi(uj − ui)

can be shown using Lemma 6 in [3]. Linearity preservation is guaranteed under
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condition (10) since αi = 1 if uh is linear on Ω̄i . The use of the sharp bound
γi := γmin

i defined by (10) requires calculation of the distance to the convex hull and
leads to rather diffusive minmod limiters like the one proposed in [4]. To simplify
the formula for γi and make the LED constraints less restrictive, we define γi as
follows.

The anisotropy of a mesh element K ∈ Th can be characterized by the ratio of
the local mesh size hK = diam(K) and the diameter ρK of the largest ball that fits
into K . A family of triangulations {Th} is called regular if there exists a constant
σ > 0 such that hK

ρK
≤ σ for all K ∈ Th and all h. For triangular elements, ρK

is the diameter of the inscribed circle. Since hK ≥ maxxj∈K |xi − xj | and ρK ≤
dist{xi, ∂K ∩ ∂Ωconv

i } for all K ∈ Ω̄i, condition (10) holds for parameters γi =
γi(s), s ≥ 1 defined by

γi = s
maxK∈Ω̄i

hK

minK∈Ω̄i
ρK

. (16)

A reasonable default setting for iterative AFC schemes is s = 2. The limiter
becomes less diffusive as s is increased but the use of γi ' γmin

i may cause
convergence problems when it comes to iterative solution of nonlinear systems.

3.3 Recovery of Nodal Time Derivatives

By (3) and (6), the term to be limited is given by f (u, u̇) = (ML −MC)u̇ − Du.
Using the Neumann series approximation [7] to M−1

C , we obtain

u̇ =M−1
L (I + (ML −MC)M

−1
L )(f̄ (u, 0)− (A−D)u). (17)

This definition of u̇ makes it possible to determine f̄ (0, u̇) without recalculating
f̄ (u, 0). Moreover, the correct steady state behavior is preserved for u̇ = 0.

In our AFC scheme for time-dependent problems, we limit f m
i (u, 0) using αm

defined in Sect. 3.1. To provide continuity, the contribution of fm
i (0, u̇) is limited

using a correction factor α̇m such that α̇m = 0 if αm = 0 (see below). In the
element-based version of (6), the limited antidiffusive components are given by

f̄ m
i (u, u̇) =

∑

j∈Nm\{i}

[

mm
ij α̇

m(u̇i − u̇j )+ dmij α
m(ui − uj )

]

, i ∈ Nm.

(18)

The coefficients mm
ij and dmij represent the contribution of Km ∈ Th to the global

matrix entries mij and dij , respectively. Algebraic residual correction schemes based
on such decompositions into element contributions can be found in [10, 12].
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The evolutionary part f m
i (0, u̇) is constrained using correction factors of the form

α̇m = min

{

1, βm αm‖|∇umh | ‖C(Km)

‖ |∇u̇mh | ‖C(Km) + ε

}

(19)

such that (α̇m‖ |∇u̇mh | ‖C(Km))/(α
m‖ |∇umh | ‖C(Km)) ≤ βm, where βm > 0

should have units of the reciprocal second s−1. In this work, we use βm =
‖v‖C(Km)/(2hKm).

In the edge-based version of (6), we limit f m
i = fij and f m

j = −fij as follows:

f̄ m
i (u, u̇) = mij α̇

m(u̇i − u̇j )+ dij α
m(ui − uj ), {i, j } =: Nm, (20)

α̇m = min

{

1, βm αm|ui − uj |
|u̇i − u̇j | + ε

}

. (21)

In pseudo-time-stepping schemes for steady-state computations, we use α̇m = 0.

4 Numerical Examples

In Figs. 1 and 2, we present the AFC results for the time-dependent solid body
rotation benchmark and a stationary circular convection test. For the formulation
of the corresponding (initial-)boundary value problems, we refer the reader to
[9, 10]. In this numerical study, we use the element-based version of (6). The
stationary problem is solved using implicit pseudo-time-stepping and a fixed-point
iteration method [9]. The employed parameter settings and discretization parameters
are summarized in the captions. The constrained Galerkin solutions satisfy local

(a) (b)

Fig. 1 Solid body rotation: uniform triangular mesh, 2 × 1282 P1 elements, AFC scheme based
on (11), explicit second-order SSP-RK time-stepping, Δt = 10−3, solutions at T = 2π . (a)
αm(g∗h, s = 5), uh ∈ [0.0, 0.992]. (b) αm(gh) =: α̇m, uh ∈ [−0.029, 1.08]
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(a) (b)

Fig. 2 Circular convection: perturbed triangular mesh, 2× 1282 P1 elements, AFC scheme based
on (11), backward Euler pseudo-time-stepping, steady-state solutions. (a) αm(g∗h, s = 2), uh ∈
[0.0, 1.0]. (b) αm(gh), uh ∈ [−0.082.0, 1.026]

Table 1 Circular convection: L1 convergence history for triangular meshes consisting of 2/h2

cells, P1 approximation, AFC scheme based on (11), s = 2, smooth inflow profile

h Uniform, αm(g∗h) EOC Perturbed, αm(g∗h) EOC Perturbed, αm(gh) EOC

1/32 0.185E−01 0.150E−01 0.141E−01

1/64 0.511E−02 1.85 0.473E−02 1.67 0.446E−02 1.66

1/128 0.117E−02 2.14 0.155E−02 1.61 0.133E−02 1.75

1/256 0.256E−03 2.19 0.499E−03 1.64 0.438E−03 1.60

maximum principles if αm = αm(g∗h) is defined by (11). To assess the amount of
intrinsic high-order stabilization, we also present the numerical solutions obtained
using the target scheme (αm = αm(gh) and α̇m := αm in the unsteady case). The L1

convergence rates for the circular convection test without the discontinuous portion
of the inflow profile are shown in Table 1. The AFC scheme based on αm = αm(g∗h)
exhibits second-order superconvergence on uniform meshes. The convergence rates
on perturbed meshes are comparable to those for αm = αm(gh) and higher than the
optimal order 1.5 for continuous P1 finite element discretizations of (1).
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High Order CG Schemes for KdV
and Saint-Venant Flows

Julie Llobell, Sebastian Minjeaud, and Richard Pasquetti

Abstract Strategies we have recently proposed to efficiently address dispersive
equations and hyperbolic systems with high order continuous Galerkin schemes are
first recalled. Using the Spectral Element Method (SEM), we especially consider the
Korteweg-De Vries equation to explain how to handle the third order derivative term
with an only C0-continuous approximation. Moreover, we focus on the preservation
of two invariants, namely the mass and momentum invariants. With a stabilized
SEM, we then address the Saint-Venant system to show how a strongly non linear
viscous stabilization, namely the entropy viscosity method (EVM), can allow to
support the presence of dry-wet transitions and shocks. The new contribution of the
paper is a sensitivity study to the EVM parameters, for a shallow water problem
involving many interactions and shocks. A comparison with a computation carried
out with a second order Finite Volume scheme that implements a shock capturing
technique is also presented.

Keywords Korteweg-de Vries equation · Shallow water equations · Dispersive
problems · Hyperbolic problems · Spectral element method

1 Introduction

The Spectral Element Method (SEM) allows a high order approximation of partial
differential equations (PDEs) and combines the advantages of spectral methods, that
is accuracy and rapid convergence, with those of the finite element method (FEM),
that is geometrical flexibility. The SEM has proved for a long time to be efficient
for the highly accurate resolution of elliptic or parabolic problems, but hyperbolic
problems and dispersive equations still remain challenging. As relevant examples
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of such problems, here we consider the Korteweg-De Vries (KdV) and the shallow
water equations, and develop some strategies to address them.

The SEM is based on a nodal Continuous Galerkin (CG) approach, such
that the approximation space contains all C0 functions whose restriction in each
element is associated to a polynomial of degree N . More precisely, in the master
element (−1, 1)d , with d for the space dimension, the basis functions are Lagrange
polynomials associated to the (N + 1)d Gauss-Lobatto-Legendre (GLL) points,
which are also used as quadrature points to evaluate the integrals obtained when
using a weak form of the problem. The fact that interpolation and quadrature points
coincide implies that the mass matrix is diagonal. The SEM algorithms that we
describe hereafter make strongly use of this property both (1) to address evolution
problems with explicit (or implicit-explicit) time schemes and (2) to define high
order differentiation operators in the frame of C0-continuous approximations.

We describe in Sect. 2 the algorithms that we have developed for the KdV
equation, which is a well known example of dispersive equation. In Sect. 3 we
consider an hyperbolic system of PDEs, namely the Saint-Venant system, using
for stabilization the Entropy Viscosity Method (EVM). In Sect. 4 we address an
academic but complex Saint-Venant problem to carry out a sensitivity study to the
EVM control parameters. A comparison with results obtained using a Finite Volume
(FV) scheme with shock capturing strategy is presented in Sect. 5, and we conclude
in Sect. 6.

2 SEM Approximation of the KdV Equation

Here we summarize the SEM method that we have developed for the KdV equation.
Details and references may be found in [7].

The KdV problem writes: Find u(x, t), x ∈ Ω and t ∈ R
+, such that

∂tu+ u∂xu+ β∂xxxu = 0 (1)

with the initial condition u(x, t = 0) = u0(x) and, e.g., periodic boundary
conditions (β given parameter). With KdV equation, the main difficulties are (1)
the approximation of the dispersive term β∂xxxu and (2) the preservation of at least
two invariants: mass and energy

I1 =
∫

Ω

u dx , I2 =
∫

Ω

u2 dx , (2)

which is required to get correct results for long time computations. Due to the
presence of the third order derivative term, the standard FEM approximation does
not apply. Indeed, after integration by parts a second order derivative remains on the
unknown function u or on the test function, say w. To overcome such a difficulty,
one generally makes use of a C1-continuous FEM or a Petrov-Galerkin approach
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with C1 test functions. Such approaches generally yield less efficient algorithms,
due to the increase of the bandwidth of the resulting algebraic systems, and are often
not easy to implement, especially in the multidimensional case or when non trivial
boundary conditions are involved. Moreover, the C1-continuity is not sufficient for
PDEs involving higher order derivative terms, since e.g. the C3-continuity would be
required for a fifth order derivative term.

Alternatively, one can introduce new variables. Thus, in the frame of C0-
continuous FEM it is natural to set f = ∂xxu, this is the so-called “natural approach”
mentioned hereafter. Then, if the convection term is treated explicitly, in such a way
it can be assimilated at each time-step to a source term, one obtains the semi-discrete
problem:

M∂tu+ βDf = S

Mf + Bu = 0

with M: mass matrix, B: stiffness matrix and D: Differentiation matrix, and where
the vectors of the grid-point values are denoted in bold. By elimination of f one
obtains:

M∂tu− βDM−1Bu = S . (3)

At this point the problem is that an inversion of the mass matrix is required. Such
an inversion is however trivial if using the SEM, because matrix M is diagonal.
Moreover, the DM−1B algebraic operator is sparse.

In the spirit of Discontinuous Galerkin (DG) methods, one can also use the
following strategy: Set g = ∂xu and f = ∂xg, then a C0-continuous FEM
approximation yields:

M∂tu+ βDf = S

Mf = Dg

Mg = Du .

By elimination of f and g one obtains:

M∂tu+ βD(M−1D)2u = S . (4)

If using the SEM this new differentiation operator can be easily set up. Its bandwidth
is larger than for the previous natural approach, but one can check that its spectral
properties are similar.

Using the natural approach or the DG like one, the present definitions of the
high order differentiation operator are of course not restricted to 1D problems.
When using quadrangular or parrallelipipedic elements, the SEM mass matrices are
also diagonal, since the master element is defined by tensorial product. Moreover,
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a diagonal mass matrix can also be obtained with triangular elements, if using
cubature points of the triangle for both the interpolation and quadrature points, see
e.g. [10] and references herein.

In time, we suggest using high order implicit-explicit (IMEX) Runge-Kutta
(RK) schemes. Then, for stability reasons the dispersive term is handled implicitly
whereas the non linear convective term is handled explicitly, under the usual
Courant-Friedrich-Lewy (CFL) condition.

Concerning the non linear term,
∫

u∂xuw dx, where w is the test function, it
is of interest to exactly compute it by using the GLL quadrature rule associated to
polynomials of degree M such that 2M − 1 = 3N − 1, i.e. M = 3N/2. Indeed, our
numerical experiments have shown that this allows to get satisfactory results without
introducing any stabilization term, see [7]. This is interesting since the stabilizing
effect results from an improvement in the computation of the convective term and
not from the introduction of an artificial dissipation term. The same stabilizing effect
is observed in other contexts, see e.g. [5, 8] where the use of M = N + 1 or M =
N + 2 allows to avoid the spurious oscillations.

As mentioned previously, for KdV equation the preservation of at least two
invariants is important. Indeed, from a physical point of view it gives sense to
the numerical solution since it ensures mass conservation and energy conservation,
and from a mathematical point of view it ensures in some sense the stability of
the method since here the L2 norm of the discrete solution is preserved. As a
direct consequence of the weak formulation together with the accuracy of the GLL
quadrature rule, preserving the mass invariant is natural in the frame of the SEM.
Concerning the energy invariant two approaches have been investigated. First, one
can take into account the two invariants as constraints and introduce Lagrange
multipliers. Second, one can make use of two IMEX schemes, yielding two slightly
different solutions, say at time tn, un1 and un2, and write un as a linear combination
of them: un = (1− λ)un1 + λun2. The mass invariant is then preserved and one must
look for λ such that I2 = Constant , see (2). It turns out that λ solves

S[(u2 − u1)
2]λ2 + 2S[u1(u2 − u1)]λ+ S[u2

1] − I2 = 0

where S[.] stands for a quadrature formula on the grid-points.
The computational price of such an approach is a priory twice greater, since it is

needed to compute un1 and un2 to get un, but this is not true if using embedded IMEX
schemes, that only differ by the final recombination of the intermediate values. The
second IMEX scheme (giving un2) is then generally only first order accurate, but one
can demonstrate that the accuracy of the leading RK scheme (giving un1) is generally
preserved. All details are given in [7].

To conclude this section we consider the KdV equation with β = 0.0222 in the
periodic domain (0, 2) and assume the initial condition u0(x) = cos(πx), see e.g.
[3, 13]. The numerical solution is computed with K = 160 elements, a polynomial
approximation degree N = 5 and a time step τ = 2.5 × 10−4. The contour levels
of the numerical solution in the (x, t)-plane are plotted in Fig. 1 between times 0
and tR at left, and between times 19tR and 20tR at right, where tR ≈ 9.68 is the so
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Fig. 1 Contour levels of the numerical solution in the (x, t)-plane, between times 0 and tR at left,
between times 19tR and 20tR at right

called recurrence time, at which one expects to (approximately) recover the initial
condition.

Additional test-cases, that e.g. show accuracy results in both periodic and non
periodic domains, are provided in [7].

3 EVM-Stabilized SEM of the Saint-Venant System

We consider now a more involved fluid flow model that also constitutes a challeng-
ing problem for high order CG approaches, namely the shallow water equations.
For the paper to be self contained, we give here some details of our EVM-stabilized
approximation of the Saint-Venant system, see [9, 11] for details, references and
examples of applications.
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The Saint-Venant system results from an approximation of the incompressible
Euler equations which assumes that the pressure is hydrostatic and that the
perturbations of the free surface are small compared to the water height. Then, from
the mass and momentum conservation laws and with Ω ⊂ R

2 for the computational
domain, one obtains equations that describe the evolution of the height h : Ω → R

+
and of the horizontal velocity u : Ω → R

2: For (x, t) ∈ Ω × R
+:

∂th+∇ · (hu) = 0

∂t (hu)+∇ · (hu⊗ u+ gh2
I/2)+ gh∇z = 0 (5)

with I, identity tensor, g, gravity acceleration, and where z(x) describes the
topography, assumed such that ∇z  1. Moreover, for the saint-Venant system
there exists a convex entropy (actually the energy E) such that

∂tE +∇ · ((E + gh2/2)u) ≤ 0, E = hu2/2+ gh2/2+ ghz. (6)

so that one may think to implement the EVM for stabilization of the following SEM
discrete approximation.

Set q = hu and let hN(t) (resp. qN(t)) to be the piecewise polynomial
continuous approximation of degree N of h(t) (resp. q(t)). The proposed stabilized
SEM relies on the Galerkin approximation of the Saint-Venant system completed
with viscous terms for both the mass and momentum equations. For any wN,wN

(scalar and vector valued functions, respectively) spanning the same approximation
spaces, in semi-discrete form:

(∂thN + ∇ · qN,wN)N = −(νh∇hN ,∇wN)N

(∂tqN + ∇ · IN(qN ⊗ qN/hN)+ ghN∇(hN + zN ),wN)N = −(νq∇qN,∇wN)N (7)

where νh ∝ νq = ν, with ν: entropy viscosity (in the rest of the paper we simply use
νh = νq ). The usual SEM approach is used here: IN is the piecewise polynomial
interpolation operator, based for each element on the tensorial product of Gauss-
Lobatto-Legendre (GLL) points, and (., .)N stands for the SEM approximation of
the L2(Ω) inner product, using for each element the GLL quadrature formula which
is exact for polynomials of degree less than 2N−1 in each variable. Note that thanks
to using ∇ · IN(gh2

N I/2) ≈ ghN∇hN (while h2
N is generally piecewise polynomial

of degree greater than N), and thus grouping in (7) the pressure and topography
terms, a well balanced scheme is obtained by construction: If qN ≡ 0 and hN �= 0,
then hN+zN = Constant . Of course, a difficulty comes from the required positivity
of hN , as discussed at the end of the present section.

It remains to define the entropy viscosity ν. To this end we make use of an entropy
that does not depend on z but on ∇z, which is of interest, at the discrete level,
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to get free of the choice of the coordinate system. Taking into account the mass
conservation equation (into the entropy equation) one obtains:

∂t Ẽ +∇ · ((Ẽ + gh2/2)u)+ ghu · ∇z ≤ 0, Ẽ = hu2/2+ gh2/2. (8)

At each time-step, we then compute the entropy viscosity ν(x) at the GLL grid
points, using the following three steps procedure:

• Assuming all variables given at time tn, compute the entropy residual, using a
Backward Difference Formula, e.g. the BDF2 scheme, to approximate ∂t ẼN

rE = ∂t ẼN +∇ · IN((ẼN + gh2
N/2)qN/hN)+ gqN · ∇zN

where ẼN = q2
N/(2hN)+ gh2

N/2. Then set up a viscosity νE such that:

νE = β|rE|δx2/ΔE ,

where ΔE is a reference entropy, β a user defined control parameter and δx the
local GLL grid-size, defined such that δx2 equals the surface of the quadrilateral
cell (of the dual GLL mesh) surrounding the GLL point, and using symmetry
assumptions for the points at the edges and vertices of the element.

• Define a viscosity upper bound based on the wave speeds: λ± = u±√gh:

νmax = α max
Ω

(|qN/hN | +
√

ghN )δx

where α is a O(1) user defined parameter (recall that for the advection equation
α = 1/2 is well suited).

• Compute the entropy viscosity:

ν = min(νmax, νE)

and smooth: (1) locally (in each element), e.g. in 1D: (νi−1 + 2νi + νi+1)/4→
νi ; (2) globally, by projection onto the space of the C0 piecewise polynomials
of degree N . Note that operation (2) is cheap because the SEM mass matrix is
diagonal.

The positivity of hN is difficult to enforce as soon as N > 1, so that for problems
involving dry-wet transitions the present EVM methodology must be completed.
The algorithm that we propose is the following: In dry zones, i.e. for any element
Qdry such that at one GLL point minhN < hthresh, where hthresh is a user defined
threshold value (typically a thousandth of the reference height):

• Modify the entropy viscosity technique, by using in Qdry the upper bound first
order viscosity:

ν = νmax in Qdry



348 J. Llobell et al.

• In the momentum equation assume that:

hNg∇(hN + zN) ≡ 0 in Qdry

• Moreover, notice that the upper bound viscosity νmax is not local but global, and
that the entropy scaling ΔE used in the definition of νE is time independent. This
has improved the robustness of the general approach described in [4].

Simulations with dry-wet transitions and comparisons to exact solutions are
given in [11] and [9], for 1D and 2D flows, respectively.

4 Sensitivity Study to the EVM Control Parameters

We address a shallow water problem, the “falling columns” test proposed in [1],
whose solution is characterized by many interactions and shocks. Thus, it constitutes
a good benchmark to check the sensitivity of our SEM model to the control
parameters of the EVM. The flow is governed by the Saint-Venant system (5), in
which the dimensionless gravity acceleration is taken equal to 2. The computational
domain is the square (−1, 1)2, with free slip condition at the boundary. At the initial
time the fluid is at rest, u(t = 0) = 0, and the height is given by:

h(t = 0) = 3+ 1(x−x1)
2<0.152 + 1(x−x2)

2<0.152 + 2 1x2<0.22

with x1 = (0.5, 0.5) and x2 = (−0.5,−0.5), and where 1ω is the indicator function
of subdomain ω.

A first computation has been carried out without the EVM stabilization. As
expected, in this case the computation crashes, since a stabilization is needed when
shocks develop. Computations have been done for the following values of the pair
(α, β): (0.5, ∞), (1, ∞), (0.5, 1), (0.5, 2), (0.5, 3), (1, 3) and (1, 5). Mentioning
β = ∞ means that we simply use a first order viscosity everywhere. Note that
choosing α = 0.5 is very natural, since for an advection equation it yields a O(h)

diffusion term equivalent to the implicit one of the upwind scheme. The three pairs
such that 1 ≤ β ≤ 3 show the influence of β, while keeping α = 0.5. In the two last
tests the stabilization is strengthened, by increasing α up to 1 and β up to 5.

One uses a polynomial approximation of degree N = 5 in each quadrangle of a
regular K = 100× 100 mesh. This yields 255,001 interpolation points in Ω , with
91,001 of them at the quadrangle boundaries. All computations have been made with
a time step τ = 10−4. Such time and space discretizations allow a fair comparison
with FV results in Sect. 5.

The height of the flow at the final time, tf = 1.035, is visualized for the different
simulations in Fig. 2. As desired, the result obtained without EVM but only a first
order viscosity is very smooth, but clearly completely false. If implementing the
EVM, then the correct solution is captured. One observes that strengthening the
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Fig. 2 Visualizations of the height at the final time tf = 1.035 for the (α, β) pairs (0.5,∞), (0.5,
1), (0.5, 2) , (0.5, 3), (1, 3) and (1, 5), from up to down and left to right. For all graphics the color
bar ranges from 2.7 to 4 and the extrema are (2.821, 3.611), (2.690, 4.010), (2.695, 3.967), (2.699,
3.933), (2.701, 3.924) and (2.701, 3.924), respectively
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Fig. 3 Evolution of the maximum and minimum of the height when using the first order (β = ∗)
and the EVM stabilization for different (α, β) pairs. The influence of β is mainly shown in the left
panel and the influence of α in the right one

stabilization allows to filter some spurious oscillations. Note that the presence of
such oscillations is not surprising, since the discontinuities of the initial height
enforces the Gibbs phenomenon. The present study of the influence of the EVM
control parameters is of course very qualitative, and moreover only based of the
height at the final time.

In order to complete such a qualitative study, we show in Fig. 3 the evolutions of
the extrema of the height during the simulation. Clearly, (1) the first order viscosity
result is not correct and (2) the stronger is the EVM-stabilization, the smoother are
the extrema evolutions. Additionally, one observes the EVM-stabilization becomes
too strong for (α = 1, β = 5), since the corresponding curve no longer coincides
with the other EVM ones.

5 Comparison with a Second Order FV Computation

For comparison purposes, we provide in this section the results obtained using a
first order and a second order FV scheme, that can be viewed as an extension to
the 2D and to the second order accuracy of the scheme presented in [2]. These
schemes work on staggered Cartesian grids and, in contrast to the colocalized
approach for conservative system, it make use of a discretization of the physical
variables, the height and the velocity separately, instead of a discretization of the
conservative variables. The height is stored at the cell centers whereas the horizontal
(resp. vertical) component of the velocity is stored at the vertical (resp. horizontal)
edges like in the well-known MAC (Marker-and-Cell) scheme. The numerical fluxes
are derived using the framework of the so-called (kinetic) Boltzmann schemes. In
the spirit of hydrodynamic limits which allow to derive the Euler equations from
Boltzmann equation, the Saint Venant system is seen as the limit of a vector BGK
(Bhatnagar-Gross-Krook) equation, see e.g. [12]. This is a transport equation for a
kinetic variable f (i.e. a variable which depends on (x, t) but also on an auxiliary
“ghost” velocity variable ξ ) with a relaxation term towards a given equilibrium
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state which depends only on ξ and on the zeroth moment of f . This equilibrium
state is especially designed to ensure that, at least formally, the zeroth moment of
f satisfies the Saint-Venant equation when the relaxation parameter goes to zero.
A numerical scheme for the BGK equation is obtained by decoupling into two
successive steps the transport and the relaxation process. A basic upwind scheme
is then used for the (linear) transport step. Finally, we get rid of the “ghost” velocity
variable by integrating the formula with respect to ξ : it provides formula of fluxes for
updating the height and the momentum (see [2]). Note that this formula, which may
be written explicitly, can be viewed as an upwinding of the transported variables
(height and momentum) with respect to the sign of the characteristic velocities,
the pressure being centered. The second order accuracy is reached thanks to a
MUSCL-like (Monotonic Upwind Scheme for Conservation Laws) procedure using
the MinMod limiter. The first order FV scheme is coupled with an explicit Euler
time discretization whereas a second order ERK (explicit Runge-Kutta) scheme is
used with the second order space discretization. All the details can be found in [6].

The results obtained for the height at the final time tf = 1.035 are presented
in Fig. 4. The grid is a 512 × 512 Cartesian mesh and the time step is τ = 10−4,
so that the number of degrees of freedom for the height is 262,144 allowing a fair
comparison with the results obtained using the SEM in Fig. 2. As expected, the result
obtained with the first order FV scheme is smooth and close to the one obtained with
the SEM when adding a first order viscosity whereas using the second FV scheme
allows to recover the correct solution (free of spurious oscillations) very close to the
one obtained with the EVM.

Fig. 4 Visualizations of the height at the final time tf = 1.035 using a first order FV scheme (at
left) and a second order FV scheme (at right). The color bar is the same as in Fig. 2, from 2.7 to 4,
and the extrema are (2.753, 3.754) and (2.700, 4.038), respectively
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6 Conclusion

A lot of numerical methods have been developed in the past, and are still developed,
to address the KdV and Saint-Venant problems. In this spirit, but in contrast with
studies based on the celebrated FV or DG methods, here we have proposed to use
a high order CG method, namely the SEM. For KdV the main advantage of the
SEM is the diagonal structure of the mass matrix. This indeed allows to simply
eliminate intermediate variables and thus set up efficient algorithms. For hyperbolic
problems a stabilization technique is however required. For Saint-Venant flows, we
have investigated the EVM capabilities and additionally provided a sensitivity study
to the EVM parameters as well as a comparison with FV results. Additional tests and
comparisons for less academical problems will be focused on in our future works.
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