)

Check for
updates

Process Enactment with Traceability Support
for NFV Systems

Omar Hassanel, Sadaf Mustaﬁzl, Ferhat Khendekl(g),
and Maria Toeroe’

! ECE, Concordia University, Montreal, Canada
o_assane@encs. concordia. ca, {sadaf.mustafiz,
ferhat. khendek}@concordia. ca
2 Ericsson Inc., Montreal, Canada
maria.toeroe@ericsson. com

Abstract. The Network Functions Virtualization (NFV) paradigm is heading
towards an evolution with the recent zero-touch automation initiative. In par-
ticular, automating the orchestration and management of network services
(NS) could progress rapidly with the help of model-driven engineering methods
and tools. We have earlier proposed an integrated process modelling and
enactment environment, MAPLE, for NS management. In our approach,
enactment is enabled by transformation chaining and megamodelling. In this
paper, we present our extension, MAPLE-T, which incorporates traceability
information generation and analysis support in MAPLE. MAPLE-T allows the
generation of both local and global traceability information during the enactment
of a process model (PM), all of which is retained in the megamodel. The
megamodel enables end-to-end navigation of the source and target artifacts in
the PM and thus allows advanced traceability analysis to be carried out. We
applied MAPLE-T on a NS design process to demonstrate the application of the
change impact analysis feature.

Keywords: Process enactment - Megamodelling - Traceability -
Network Functions Virtualization (NFV)

1 Introduction

With the advent of 5G, the telecommunications industry is faced with opportunities and
challenges which require rapid innovations. Traditional networks have a high depen-
dence on proprietary hardware. Telecoms are moving from such networks to virtualized
networks. Telecoms are leveraging the Network Functions Virtualization
(NFV) paradigm which is a key enabler for 5G. NFV builds on cloud computing and
virtualization technologies which enable the automation of the orchestration and the
management of network services [10, 24].

We believe model-driven engineering (MDE) methods and tools can help with the
automation. As a first step, we have earlier proposed an approach for explicitly
modelling and enacting NFV processes and have applied our work to the NS design
and management process [25-27]. Our NS Management Process Model is compliant

© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 116-135, 2019.
https://doi.org/10.1007/978-3-030-30690-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_7

Process Enactment with Traceability Support for NFV Systems 117

with the NFV reference framework. MAPLE (MAGIC Process Modelling and
Enactment Environment) provides an integrated environment for creating and enacting
process models (PM) with the use of model transformation chains. Transformation
chaining is the preferred technique for modelling the composition of different model
transformations and orchestrating them. MAPLE supports the enactment of heteroge-
neous (cross-technology) transformation chains based on megamodels used for sup-
porting model management, and on composition of transformations. Megamodels
provide complex structures to link all relevant artifacts (models, transformations, and
other metadata) forming a map for model management [15, 16]. We have built MAPLE
in the Eclipse Papyrus environment [12], which is the modeling environment of choice
of the European Telecommunications Standards Institute (ETSI) NFV [13].

Advanced support for discoverability and traceability have been identified as
essential features in virtualizing network services [7]. Traceability support enables
information recovery, origin tracking (for instance, backtracking from design to
requirements artifacts), change impact analysis, change propagation, dependency
visualization, and even defect detection and prediction [9, 33]. Traceability manage-
ment can be effectively carried out with MDE methods and tools [29]. While NFV
would greatly benefit from end-to-end traceability support, there has been very little
done in this regard in this domain.

In this paper, we extend MAPLE with traceability support for NFV systems. We
integrate means for local (transformation-level) and global (process model-level)
traceability information generation and also provide the groundwork for change impact
analysis. We apply our work in the NFV domain to the traceability analysis of the
network service design process in order to assess the impact of changes in the source
models. The vendor-provided virtualized network function (VNF) form the core of a
network service, and any changes in the VNF descriptors (VNFD) can affect the target
artifacts and the process itself. It would be highly beneficial in NFV systems to be able
to assess the impact of a change and to provide feedback.

The rest of this paper is structured as follows: Sect. 2 gives a brief background on
traceability in MDE. Section 3 proposes a model-driven process enactment approach
with traceability support and presents our MAPLE-T environment. Section 4 describes
an application of MAPLE-T in the NFV domain. Section 5 discusses related work and
Sect. 6 concludes with some future work.

2 Background

Traceability is defined as the degree to which a relationship can be established between
two or more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another [2].

Traceability information in MDE can be classified as generic (no semantics retained
with trace links) or specific (domain-dependent with semantically rich links) [4].
Traceability information can be represented as models conforming to an external
metamodel (extra-model traceability), or as part of the traced models (intra-model
traceability) thus requiring the metamodels of the traced models to be extended and
polluted with trace information [32].

118 O. Hassane et al.

Traceability metamodelling can follow a pure metamodel approach or a tag-based
approach [32]. In the first approach, all the required trace types along with their usage
semantics are specified at the metamodel level making the traceability metamodel rigid
to change and therefore hard to reuse in other projects. The trace tagging approach uses
a general traceability metamodel which can be annotated with specific tags. This allows
for more flexible traces that can be used in any project, but with weak usage semantics
specified in the metamodel.

When referring to traceability at the model transformation level, the trace links are
between the elements of the source and target artifacts associated with the transfor-
mation. A trace model is created for each transformation. This is referred to as local
traceability or traceability in the small. However, the link between the different trace
models across multiple model transformations (or a model transformation chain) needs
to be created to produce global traceability (or traceability in the large) information.
This enables end-to-end navigation throughout a chain of intermediately created trace
models [6].

In our work, megamodels are used to build traceability support. Megamodelling is
generally used for model management, to provide structures for handling and inter-
relating models [15, 16]. A megamodel may contain heterogeneous models, relations
between them (e.g., transformations) and any other relevant metadata. It can be used to
capture conformance links and also to enable compatibility checks.

3 MAPLE-T Approach

We have earlier proposed an integrated process modelling and enactment approach,
MAPLE [25]. MAPLE supports process modelling with UML Activity Diagrams.
The MAPLE enactment approach is based on model transformation chaining and
megamodelling. We have used megamodels (MgM) to manage all the resources needed
for the enactment. We begin with a process model (PM) and the repository of resources
(metamodels, profiles, model instances, model transformations, programs). In MAPLE,
the MgM was used as a resource repository that aggregates and links all these resources
as well as their metadata. This was quite useful for gathering and managing the relevant
information regarding the transformations that need to be enacted.

An initial megamodel (MgM) is automatically derived based on the resources
registered. When the PM is registered in the MgM, it leads to the creation of a weave
model. This weave model binds the PM and the MgM together. The PM is then mapped
to a model transformation chain, with the help of the MgM and the weave model, and it
can be executed using token-based semantics. The MgM is dynamically updated with
the generated models during enactment. MAPLE is built on top of Eclipse Papyrus. For
further details, the reader can refer to [25]. We propose an extension to our process
enactment approach providing traceability support. Our goal is to go further and use the
MgM for advanced traceability of model transformation chains. The MAPLE-T
approach is shown in Fig. 1. Following the derivation of the megamodel (MgM) and
the construction of the model transformation (MT) chain, the chain execution results in
the generation of artifacts. During this execution, trace models will also be output
(traceability in the small context) and will be retained in the MgM in order to build a

Process Enactment with Traceability Support for NFV Systems 119

global traceability map (traceability in the large context). The global traceability map
can then be used for traceability analysis. As an add-on, the map can also be used as a
basis for traceability visualization.

e, T

B BE S
= B 1=

=%
Models (e.g. MMs/Profiles)

Analyze I

Derive NS S &> > Artifacts Trace Artifacts
MgM CERTRRE Info
Process Model (PM) Megamodel Transformation Chain Models

(MgM)

Fig. 1. MAPLE-T approach (Color figure online)

3.1 Traceability Support in MAPLE-T

Traceability support for process enactment can be incrementally built in three stages:
(1) traceability information generation, (2) traceability analysis, and (3) traceability
visualization. While traceability information generation is required to proceed with any
analysis or visualization, the latter two stages can be carried out in parallel. This paper
discusses the first two phases: the generation and analysis.

Traceability Generation. The first phase of the project involves building support for
the generation of traceability information and global model management in MAPLE.
Each of the transformations in the MT chain is first augmented such that trace models
are generated as extra artifacts with the execution of each transformation. We refer to
these local trace models as LTrace models.

During enactment, this augmented MT chain is executed, hence generating the
output as defined in each transformation along with the LTrace model for every
transformation. The generated artifacts, including the trace models, are dynamically
added to the MgM during enactment. Each LTrace model in the MgM is connected to
the relevant input and output models. In addition to the links between input and output
models via the LTrace model, the links between the trace models are also saved in the
MgM. The links retained are at the model-level as well as at the model-element level.
This leads to the creation of the global traceability map within the MgM, which we
refer to as the GTrace.

Traceability Analysis. Once we have a repository of traceability information and the
global traceability map, the next step is to discover any useful trace information that
can be analyzed for a given purpose. Whether a piece of trace information is useful is
typically application-dependent. Discovering such trace links is possible when using

120 O. Hassane et al.

the trace tagging method [32]. In the MgM, each LTrace model is associated with a
corresponding tag representing the context of the traced transformation. The purpose
behind this tag is to specialize our trace models with application-specific semantics. In
MAPLE-T, the notion of fags has been incorporated at two levels: at transformation
rule level and at transformation level.

3.2 MAPLE-T Functionalities

We describe here the main functionalities provided by MAPLE-T, corresponding to the
red boxes in Fig. 1.

To enact a process model (PM), we need to start by creating the PM. We use the
Eclipse Papyrus Activity Diagram environment to build PMs. In our work, the PM
needs to comply with the ETSI Information Model for NFV [14] as well as the
ETSI NFV Papyrus Guidelines [13]. The PM creation phase is out of the scope of this
paper. For further details, the reader can refer to [25].

Deriving the MgM. In MAPLE, the actions in the PM are implemented with model
transformations. A transformation involves several input and output models, possibly
conforming to different metamodels that can be expressed using heterogeneous tech-
nologies. Moreover, a PM can be implemented with a heterogeneous set of languages
(for instance, ATL, Epsilon, Java, or C), and hence MAPLE supports execution of
cross-technology model transformation chains. Due to this, deploying model man-
agement techniques is essential in MAPLE. As described in [25], we use megamodels
for this purpose. While megamodels have been very useful in MAPLE for managing
resources and for enacting the PM, we wanted to go further and use the MgM for
advanced traceability support. In MAPLE-T, we have introduced new traceability-
related features in the MgM as well as new extensions with respect to the imple-
mentation of these features. To enable traceability at both levels (local and global), our
MgM now supports storing the same resources with different versions over time, i.e.
whenever they are being used or changed. The MgM also retains model instances per
enactment. In addition to that, each transformation resource is now linked with a trace
model - representing local traceability (LTrace models). This LTrace model contains
the trace links for each input and output of the transformation execution and conforms
to an LTrace metamodel which represents local traceability information elements both
at the model element-level and at the attribute-level. The main elements in the LTrace
are mentioned below and also shown in Fig. 2.

— TraceLinkSet: This represents the set of all the traced rules of a transformation
execution as well as all the trace links linking input and output elements of the
traced models.

— TracedRule: This represents the rule responsible for creating/transforming the traced
output model element(s) from the corresponding traced input model element(s).

— TraceLink: This represents the set of input elements and their corresponding output
elements within a rule.

Process Enactment with Traceability Support for NFV Systems 121

Process

Transformation:)
Rule 1: from ModelA!ElementA1 ! b
to ModelB!ElementB1 | N
MODEL-A : Rule 2: from ModelAlElementA2 | MODEL-B - UML N
Element-A1 —s to ModelB!ElementB2 ‘—| Element-B1 b -

Element-A2 l Element-B2 a4 v

LTrace:
TraceLinkSet
TracedRule: Rule 1 - /
TraceLink: ’
input: ElementA1 ATL 2
output:ElementB1 ’
TracedRule: Rule 2 ’
TraceLink:
input: ElementA2
output: ElementB2 LTrace I Core wetamodel

Conformance Link

Fig. 2. LTrace structure Fig. 3. Base MgM

The MgM is derived after registering the resources and the PM. First, a base MgM is
loaded as part of MAPLE-T environment and consists of the metamodels of the built-in
loaders (needed to load resources) and the pre-loaded meta-metamodels (e.g., Ecore)
and their conformance links. This MgM is incrementally updated by registering the
different resources which are part of the project (metamodels/profiles). This is carried
out automatically by going through the project workspace (referred to as workspace
discovery), and as a result an initial MgM is derived at this stage. A base LTrace
metamodel conforming to the Ecore metamodel is also registered in the MgM (see
Fig. 3). Each trace model generated as a byproduct of a transformation execution
conforms to this metamodel.

As the next step, the MgM is refined by carrying out a PM discovery. This involves
updating the MgM with new resources: the PM and the associated transformations.
Since we wanted the MgM to be PM-agnostic, a weave model is automatically created
behind the scenes whenever a PM is registered. The weave model binds all the nec-
essary elements of the PM to their equivalent resources in the MgM.

At this point, the MgM holds all the essential resources which are required for
enactment. During enactment, the LTrace models generated are added to the MgM
which makes it possible to construct the GTrace (part of the MgM).

Building the Transformation Chain. The PM is given translational semantics by
mapping it to a transformation chain. The chain is in essence a schedule with the
required details (sequence of actions, transformations used, inputs and outputs of the
transformations). This allows us to build a generic enacter, instead of having an enacter
for each kind of PM. Having a generic enacter also leaves scope for integrating other
formalisms for modelling the PM.

The translation from a PM to an MT chain is implemented using an ATL trans-
formation which takes relevant inputs (including the MgM and the PM) and produces
the target transformation chain.

This phase of the process has no traceability-related extensions. It would be possible
to augment the transformation chain to build a chain with traceability support. The

122 O. Hassane et al.

reason we did not proceed in that direction was to provide more flexibility and let the
user enable or disable traceability within MAPLE-T during enactment. Otherwise, we
would end up with a solution which always generates traceability information as a result
of the enactment, which might not be always desirable, as generating trace information
might be unnecessarily cumbersome and time-consuming in some applications.

Executing the Transformation Chain and Generating the Trace Models. In
MAPLE-T, a PM is enacted by executing the underlying MT chain. Similar to UML
Activity Diagrams, the generated chain is given token-based semantics. Therefore, the
enacter developed is based on controlling the tokens and activating the actions when
needed.

However, in order to support both local and global traceability, it was necessary to
integrate means to generate local traces of the transformations chain execution.
Additionally, these trace models are linked in the MgM to construct the global trace-
ability map. The MgM also needs to be updated with these new model instances and
their relationships.

Generating Trace Models. One of the issues we had to address when building a
traceability solution with MAPLE-T was how to actually generate traceability infor-
mation during enactment. One might consider a naive approach in which each model
transformation implementing an action in the PM is refined manually with new
traceability-related rule bindings or blocks of code. In such a case, each transformation
will need to be manually modified to generate new target models for the trace infor-
mation. This approach is clearly not ideal, as extensively refining every transformation
manually results in a very cumbersome process that is in total opposition of our main
vision, which is full automation. For this reason, we adopted an approach that aug-
ments the transformation chain automatically with traceability information (see Fig. 4).
Similar to [22] we used the well-known concept of higher order transformation (HOT),
and we defined an HOT to systematically enrich our transformations with traceability
notions. The HOT takes the transformations parts of the chain and augments them,
resulting in a new chain which has the same flow but with traceability-augmented
transformations. Each transformation ends up having in addition to its original
input/output parameters, a new target parameter representing the trace model to be
generated - the L'Trace model.

HoT -
o Exec i
M Augment with A " Artifacts Rediscover &
s Tracing Eementedn Add to MgM
= E Chain -

Transformation Chain Augmented Models Updated MgM

Trangs;?:]atlon (including trace models)

Fig. 4. MAPLE-T traceability generation approach

While MAPLE provides enactment support for a heterogeneous set of transforma-
tion languages (e.g., ATL, Java), MAPLE-T only supports implementations with ATL
transformations at the moment. The HOT implementation augments transformation

Process Enactment with Traceability Support for NFV Systems 123

models conforming to the ATL metamodel. Also, the LTrace metamodel is built to
represent trace models produced from the execution of the augmented ATL
transformations.

Updating the MgM. During enactment, the MgM is updated on the fly with the aug-
mented transformation executions and their corresponding input/output instances
including the LTrace models. Once the enactment is done, the MgM is completely
updated with all the newly generated artifacts. At this point, the MgM also provides a
global traceability map, the GTrace. The set of global links as well as the local traces
generated for each transformation form the basis for carrying out traceability analysis in
MAPLE-T.

Analyzing Traceability Information. Following the generation of traceability
information, traceability analysis can be carried out on the basis of the GTrace. For this
purpose, we have incorporated means to analyze trace information within MAPLE-T
which can be easily extended and adapted to the targeted application domain. We have
built a core traceability analysis solution that exposes common traceability analysis
features (via an API). The exposed features allow the generated LTrace models and
GTrace links to be parsed and manipulated, typically with the use of the rule-level and
transformation-level tags that provide richer semantics for the analysis.

We have incorporated traceability analysis support, specifically to carry out change
impact analysis in MAPLE-T, which relies on the proposed traceability generation
means. The change impact analysis is triggered by a request specifying the element or
the model for which the change impact is to be analyzed. The purpose is to determine
how impactful a model or an element is on the whole process (i.e., how impactful it is
on the other involved models, model elements, and transformations) at both the
metamodel and the model levels. The process starts first by filtering all the relevant
information from the GTrace and LTrace models based on what was provided as input
at the metamodel level. Based on this, we can conclude whether the input is impactful
or impactless at the metamodel level. In case it is impactless at the metamodel level,
then it is inferred to be impactless at the model level as well. In this case, it is concluded
that the input model or model element is impactless at both levels and no further
analysis is required. On the other hand, if the input model or model element turns out to
be impactful at the metamodel level, then the decision is not as straightforward as in the
previous case. MAPLE-T then continues to analyze the gathered traceability infor-
mation (LTrace models and GTrace links) at the model level as well. As a result, the
impact decision is further categorized into two outcomes.

— The input is impactful at the model level: This means that the provided input has
been used in the enacted process and changing it requires re-enactment. Addi-
tionally, the solution collects the set of all the impacted resources (models, model
elements, and transformations) and provides them as outputs of the change impact
analysis along with the impact decision.

124 O. Hassane et al.

— The input is impactless at the model level: This means that although the type of the
input model/element has an impact on the enacted process, the actual input
model/element instance has never been used and has no impact on that specific
enactment.

4 NFV Application

In this section, we use MAPLE-T to enact an NS design process and to carry out
traceability analysis, in particular, a change impact analysis. The process is a subset of
the NS Design and Deployment PM proposed earlier in [27].

A network service is a composition of network function(s) (NF) and/or other nested
NSs to provide a desired functionality/behaviour (e.g. VoIP). An NF is a functional
block identified by well-defined functional behaviour and external interfaces. NFs
within an NS can be a physical NF (PNF) (e.g. a traditional firewall device) or a virtual
network function (VNF) (e.g. a virtual firewall) decoupled from the infrastructure and
implemented as software that can be deployed on a virtualized infrastructure. The
different NFs/nested NSs within an NS are interconnected with one or more forwarding
graphs (FG) that define the traffic flows between them.

The main goal behind the NS design process (proposed in [26]) is to automatically
design an NS and generate an NS Descriptor (NSD) which is a template used for the
deployment and management of the NS. The process starts by specifying the functional
and non-functional characteristics of the NS as the NS requirements (NSReq). The
functionalities in the NSReq are then decomposed with the help of an NF ontology
(NFOntology) which represents a knowledge-base capturing known NF decomposi-
tions and their architectures. After decomposition to a certain level, VNFs are selected
from a catalog (VNFCatalog) by matching the decomposed functionalities. The traffic
flows in the NS are then defined with the design of the VNF FGs (VNFFGs) and the
NS dimensioned according to the non-functional requirements. The NFOntology may
be updated with new information from NSReq after a successful design, with the
onboarding of new VNFs, and manually by an expert. A VNF is described by a VNFD
which captures all its deployment characteristics. One main element within the VNF is
a VNF component (VNFC) which represents an internal component of the VNF that
provides part of the VNF functionality. A Virtual Deployment Unit (VDU) is the
deployment template or descriptor of the VNFC and it is an element contained within
the VNFD. The generated NSD is compliant to ETSI NFV definition and refers to the
NS constituent descriptors including VNFDs and VNFFG descriptors (VNFFGDs). For
a detailed description of the NS Design process, the reader can refer to [26]. Figure 5
presents the NS design PM.

Process Enactment with Traceability Support for NFV Systems 125

resource: 2SMDirectatl

IN /IMSBasedExample/NSReqIMS-VoiceOverPuml

OUT /tmp/UML_SM73b58c210331dcf3.uml
OUTI /Out/NSReq2SM _Trace.uml

|

resource Transformations/SM20ntology.atl
INI MSBasedExample/NFOmtologyIMS1 am
IN AmpUML SM73b50c210331def3.uml
OUT hmp/UML_SM691deS8267769ea2.uml
OUTI /Ou/SM20ntology_Trace.uml

|

resource ransformations/GeneratingFG.atl
IN AmplUML_SM69(dcS8267769ea2umi
OUT mplUML_SM336857c6300be460.uml
OUTI /OuGeneratingFG_Trace.um

INL MSBasedExample/VNFCatalog_IMS1uml
I /MSBasedExampe/ProtocolStackIMSLuml

|

resource. Transformations/SM2NSD 4t
OUT Amp/UML_NSD69cS7687964974ct uml
Nl /IMSBasedExample/ProfocolStackIMS 1 uml
IN fump/UML_SM336857e63b0be460.uml
OUTI mp/UML_SM20cedd133¢17fd11.uml
OUT2 /Ou/SM2NSD_Trace.umi

ESN

resource /Transformations/Ontology Update atl
IN /IMSBasedExample/NFOntologyIMS1 uml
IN2 fmp/UML_NSDE9C87687964974ct uml

INI /mp/UML_SM336857c63b0be460.uml

OUT /IMSBasedExample/NFOntologyIMS2019.uml
OUTI /Out/NFOntologyUpdate_Trace.uml

N2 /IMSBasedExample/ProtocolStackIMS Luml
N /tmp/UML_NSD69c87687964974cf uml
OUT /IMSBasedExample/NSD2019.uml

OUTI /IMSBasedExample/SM2019:uml

OUT2 /OutNSDRefinement_Trace.uml

INI Jtmp/UML_$

Fig. 5. NS design PM [25] Fig. 6. Augmented MT chain

4.1 Enactment and Traceability Generation with MAPLE-T

In order to enact the NS Design PM, we need to register all the needed
resources/profiles (NSReq, NSD profiles, etc.). As a result, the base MgM (Fig. 3) is
updated with all the registered UML profiles as well as conformance links. Figure 7
shows the initial MgM with UML profiles. Next, we need to register the PM which
automatically registers all the underlying model transformations implementing the
actions in the PM. Consequently, the MgM is updated (see Fig. 8) with the following:
(1) a new resource representing the NS Design PM as a UML activity diagram con-
forming to the UML metamodel (shown in gray), (2) the ATL transformations con-
forming to the ATL metamodel (shown in brown), and also (3) the weave model
containing the MgM and PM mappings (shown in gray). With this MgM, MAPLE-T
has all the necessary resources to enact the PM, and therefore enable NS Design
traceability generation and analysis.

Once all the model instances are specified, an initial transformation chain is built
based on the NS design PM. This transformation chain is then augmented so that each
transformation is able to generate LTrace model instances in addition to its original
output model instance(s) (see Fig. 6).

The execution of this MT chain includes six augmented transformation executions.
The first transformation starts by taking the NSReq model as input and generates an
initial intermediate model as well as the LTrace model corresponding to that trans-
formation execution. In the same way, the execution process continues according to the
order defined in the MT chain. For each subsequent transformation execution, the

126 O. Hassane et al.

LTrace model is generated and the intermediate model incrementally refined until we
end up with our desired models: NSD and updated NFOntology.

The MgM is updated during enactment with actual model instances (see Fig. 8).
The LTrace model instances along with the global links interconnecting them are also
added to the MgM. This results in the construction of our NS Design GTrace. The
subset of the MgM representing the NS Design GTrace is shown in Fig. 9. LTrace
models (e.g., NSReq2SM Trace, SM2NSD Trace) are shown in blue and their inter-
connections are shown with blue dashed links. Each LTrace model (output of a
transformation) is linked with its corresponding model transformation with an object
flow link (solid black line).

[Esia] [55] [] [eses] A E S S

N o L e
o] i o
SN _,f'/
=l

Fig. 7. Initial NS design MgM

[Z]uML Profile [[]Core Metamodel [T In/Out instance [HTransformation = Conformance Link—> Transformation
Input/Out link

Fig. 8. Updated NS design MgM (Color figure online)

Process Enactment with Traceability Support for NFV Systems 127

Transformation

I:] Core Metamodel

D Model Instances
-~ Trace Link

——> Transformation
Input/Out link

<Trace>

[Foomtmmencre |

ll o}
<Trace>, <Trace> |

]]

Fig. 9. NS design GTrace (Color figure online)

4.2 Traceability Analysis with MAPLE-T

Now that all the NS Design models are interlinked via LTrace models and GTrace links,
we can automatically trace back and forth between all the involved source and target
resources i.e.; NSReq, Ontology, the VNFCatalog and its constituent VNFDs as well as
the resulting NSD and the updated Ontology. Each LTrace model enables navigation at
the element level of adjacent models. Additionally, the GTrace enables navigation at the

128 O. Hassane et al.

PM level, which means that we can explicitly navigate between distant models as well.
For example, we can directly trace back from the NSD (last element of the NS design
process) to the NSReq (first element of the NS design process).

Because of the foundation set by the local and global traces, it is relatively
straightforward to incorporate the change impact analysis in MAPLE-T. We can
automatically figure out how changing an element of an input model (NSReq, VNFDs
included in the

VNFCatalog, or the NFOntology) can impact the NS Design transformations and
the target (e.g., NSD) models and their elements. Using MAPLE-T, the user selects the
input element for which the change impact is to be determined. The user will then be
provided with the result showing whether the selected element is impactful or not, and
if applicable, a list of all the impacted transformations and models as well as their
elements is provided.

Typically, the VNFPackage is provided by vendors and might be subject to change.
In our case study, we focus specifically on the impact induced by changing a resource
within the VNFPackage, mainly the VNFD. After an NS is deployed, a VNF vendor
might point out that a parameter or set of parameters in a VNFD within the catalog is
erroneous (not describing the VNF properly). In such a scenario, the decision on going
about making a change in the design process and associated artifacts depends on
whether considering the error the running NS instance still is behaving according to the
requirements (NSReq) or not. With our traceability analysis, we can determine whether
the erroneous parameters have an impact on the NS design process and therefore the
generated NSD. This will allow us to evaluate if the running NS instance cannot meet
the NSReq due to the error (e.g. if the erroneous VNFD parameters have an impact on
the design and therefore on the generated NSD) or not, and whether the NS should be
re-designed and re-deployed. In the rest of this section, we discuss both scenarios. In
this analysis, we assume that our NS design approach, the NSReq and the NFOntology
are correct and cannot be the source of errors.

Scenario 1: NS Instance is Behaving According to the Requirements (NSReq). In
this scenario, the assumption is that the NS instance is running as expected according to
the NSReq, no issues have been detected (yet). However, at some point in time, the
VNF vendor indicates that a VNFD involved in the NS design was not correctly
describing the VNF and its instance is used now within the running NS instance.

This implies that some VNFD parameters are erroneous and need to be changed.
The decision of re-designing and re-deploying the NS depends on whether these
parameters have an impact on the NSD.

Parameters are Impactless at the Metamodel Level: In this case, since the erroneous
parameters have no impact on the design and the NS instance is behaving as expected
according to the NSReq, there is no action to take. For instance, the vendor might point
out that the software image descriptor (SwlmageDesc) used in the VNFD is erroneous.
After analyzing the change impact of the SwimageDesc element on the NS Design
process, it turns out that it is impactless as shown in Fig. 10(d) since it is never

Process Enactment with Traceability Support for NFV Systems 129

considered in the design process. Changing this element will never impact the gen-
erated NSD, and therefore there is no need to re-design or re-deploy the NS.

Parameters are Impactful at the Metamodel Level: In this case, the impact at the
model level should be considered.

— Parameters are impactful at the model level: As opposed to the previous case, we
need to consider re-designing the NS even though it is running as expected
according to NSReq. In this case, the erroneous parameters were used to design the
NS and therefore they are impactful. For example, the vendor might report that an
Instantiation Level element (which specifies the number of instances of each VNFC
within the VNF) within the VNFD is erroneous and needs to be corrected. The
change impact analysis of this element finds it impactful (e.g., as shown in Fig. 10
(c)). This means that, while the NS instance shows no problem (yet), this does not
preclude the possibility that the provisioning of VNFC instances is not done inef-
ficiently (e.g. VNFC instances may be over-provisioned) and/or incorrectly (e.g. the
parameter value may not have been used yet), and therefore the re-design of the NS
needs to be considered in this case.

— Parameters are impactless at the model level: In this case, since the parameters are
impactful at the metamodel level but not at the model level, it is not straightforward
to conclude whether the re-enactment of the NS Design is needed or not. A new
parameter value might make a previously impactless parameter impactful after the
change. Using the generated traces to analyze the impact of such parameters might
provide a false negative result, in the sense that the impact analysis will suggest that
changing the parameter would be impactless, even though it is not the case. For
instance, the vendor might indicate that the name of a Vdu element referenced in the
VNEFD is erroneous. As shown in Fig. 10(b), the analysis of the change impact of
the Vdu name parameter on the NS Design process suggests that it is impactless.
However, the reason may be that the Vdu with the incorrect name was not selected
because it did not meet the requirements. On the other hand, the correct Vdu name
might point to a VDU, which meets the requirements making the parameter
impactful at the model level as well. In this case if we re-run the NS design
enactment with the changed parameter value and generate new traces, our change
impact analysis will suggest that this element is impactful. Thus, at this point, no
conclusion can be made in this case from the analysis and it is better to re-enact the
NS Design with the changed parameters.

Scenario 2: NS is Not Meeting the Requirements (NSReq). In this scenario the NS
instance is not behaving as expected according to the NSReq. Similar to the previous
scenario, the VNF vendor indicates that a provided VNFD is erroneous and requires
changes. Using MAPLE-T, we can try to determine if the erroneous behaviour of the
NS instance is due to the erroneous VNFD or not.

130 O. Hassane et al.

Parameters are Impactless at the Metamodel Level: Since the erroneous parameters of
the VNFD are impactless (case shown in Fig. 10(d)), we can conclude that the erro-
neous behaviour of the NS instance is not due to the erroneous VNFD.

Element : "Vdu:vdu-VC"

Impact at Metamodel level: "Impactful”

Impact at model level: "Impactful”

Impacted Transformations: "GeneratingFG, SM2NSD, OntologyUpdate, NSDRefinement"

Impacted Models: "UML_SM7c2c99aa0e919d4a, UML_SM397f225df51cece2,

UML_NSD3910346eb2782300, SMAP, NSDescriptor, NewOntology"

Impacted Model Elements: "UML_SM7c2c99aa0e919d4alFunctionality[VoiceCall],
UML_SM397225df51cece2!Functionality[VoiceCall],

UML_SM397225df51cece2!ArchBlock{AS], Element : "Vdu:vdu-Mess"
UML_SM397f225df51cece2!NonFunctionalRequirement{NFR3(MCS:8), Impact at Metamodel level:
NFR1(T:400)], SMAPIArchDep(AS-S, AS-HSS, AS- IMSLoc), "Impactful”

SMAP!Interfacelnfo(AS-ISC, AS-HSS, AS- SH),NSDIVNFD(AS),

: Impact at model level: "Impactless”
NSDescriptor!VNFFGD[VNFFGD CONTROL PLANE]

NSDescriptor!NFPD[NFP-VoiceCall1],NSDescriptor!NsD NsDf-NsDf - NSD: VolP (From : Impacted Transformations: “Null

PreVNFFG 1-AFG 8-FFG 1)-001],NSDescriptor!VNFProfile(AS), NSDescriptor!VnfDf VnfDf1), Impacted Models: "Null

NSDescriptor!InsLvl(InsLvL2) * Impacted Model Elements: “Null"
(a) Impactful Vdu Element (b) Impactless Vdu Element

Element : "InstantiationLevel:InsLvl1 (from VNFD)"
Impact at Metamodel level: "Impactful”
Impact at model level: "Impactful”

Impacted Transformations: "GeneratingFG, SM2NSD, OntologyUpdate, NSDRefinement" Element : "SwimageDesc

Impacted Models: "UML_SM7c2c99aa0e919d4a, UML_SM397f225df51cece2, !lmpaCt at M"etamOdel level:

UML_NSD3910346eb2782300, SMAP, NSDescriptor, NewOntology" Impactless

Impacted Model Elements: "UML_SM7c2c99aa0e919d4alFunctionality[VoiceCall], Impact at model level: “Impactless”
UML_SM397f225df51cece2!Functionality[VoiceCall], Impacted Transformations: "Null"
UML_SM397f225df51cece2!ArchBlock[AS], Impacted Models: "Null"

UML_SM397f225df51cece2!NonFunctionalRequirement{NFR3(MCS:8),

NFR1(T:400)], NSDescriptor!VNFFGD[VNFFGD CONTROL PLANE]
,NSDescriptor!NFPD[NFP-VoiceCall1],NSDescriptor!NsDf| NsDf-NsDf - NSD: VolIP (From :
PreVNFFG 1-AFG 8-FFG 1)-001],NSDescriptor!VNFProfile(AS), NSDescriptor!VnfDf(VnfDf1),
NSDescriptor!InsLvl(InsLvL2) "

Impacted Model Elements: “Null"

(¢) Impactful InstantiationLevel Element (d) Impactless SwimageDesc Element

Fig. 10. VNFD change impact results in MAPLE-T

It might be due to other NS management activities (instantiation, configuration,
etc.), but the error did not originate from the VNFD parameters used in the design.

Parameters are Impactful at the Metamodel Level: Similar to the first scenario, we also
consider the impact at the model level.

— Parameters are impactful at the model level (shown by the example in Fig. 10(c)):
This means that the generated NSD is erroneous. Thus, we can infer that the
misbehaviour is possibly due to the incorrectly-designed NS, which was due to
input errors (in the VNFDs). One needs to re-design the NS and re-deploy it.

— Parameters are impactless at the model level: As discussed in the first scenario, this
case is inconclusive. Even if the change impact analysis suggests that the param-
eters are impactless, we cannot know if this result is accurate or if it is a false
negative. The only way we can determine this is to re-enact and generate new traces
(but that is what we are trying to avoid in the first place).

A summary of the two scenarios, their different cases, and analysis results is shown
in Table 1.

Process Enactment with Traceability Support for NFV Systems 131

Table 1. Summary of VNFD change impact analysis results

Impact decision

Running NS instance

No problem has been
detected

Problems have been detected

Impactless at both
metamodel and model
levels

Impactful at both
metamodel and model
levels

Impactful at metamodel
level and impactless at
model level

No re-design is
required

NS needs to be re-
designed (e.g., over-
provisioning)
Inconclusive, NS re-
design needs to be
considered

NS instance misbehaviour does not
originate from the parameter error, no
re-design is required

NS instance misbehaviour may
originate from the parameter error. NS
needs to be re-designed

Inconclusive, NS re-design needs to be
considered

In this section we considered only one NS and analyzed the impact of erroneous
VNFDs on its design and the behavior of its instances. The same analysis applies
similarly to all NSs in which the erroneous VNFDs are involved. Moreover, one may
undertake the huge task of analyzing all designed NSs including NSs where the VNFDs
are not involved as this could be the result of exclusion due to the erroneous VNFDs.
This is along the same lines as reconsidering the design of any NS once a new VNF is
made available, but this might be unrealistic.

5 Related Work

We have covered the state of the art on model-driven enactment support for NFV
systems in [25]. Although there exists some work on model-based approaches in the
NFV literature, to the best of our knowledge there is currently no published work on
model-based traceability generation or/and change impact analysis for NFV systems.

In this section, we discuss some MDE approaches and projects related to process
enactment, transformation chaining and model management with traceability genera-
tion and change impact analysis support.

5.1 Traceability Generation Support

There has been a lot of work done on traceability in MDE, and these are discussed and
summarized in [1, 4, 19, 30, 33]. We only discuss here approaches that specifically
address traceability generation and/or analysis in the context of model management,
process enactment and model transformation chains.

Fritzsche et al. [16, 17] and Jouault et al. [23] have proposed approaches similar to
ours in terms of using model transformation chaining and/or model management via
megamodelling to enable traceability. The former combines both techniques and pro-
poses automatic generation of trace models as byproducts of the execution of aug-
mented ATL transformations. However, the generated trace models lack in details,
since both the higher-order transformation and the corresponding traceability

132 O. Hassane et al.

metamodel used are very basic and do not cover more granular trace information.
While the latter work constructs model element-level traces (referred to as LTraces in
our work) and model-level traces (links within the GTrace in our case) within the
megamodel, no explicit support is provided with regards to process enactment nor
automatic augmentation of transformation chains with traceability information.

von Pilgrim et al. [28] extend UNiITI [31] (an Eclipse-based tool to construct, reuse
and execute transformation chains) with traceability generation support. Although they
assume that the transformations explicitly generate trace models as target models, they
do not mention anything about how the transformations are augmented (manually by
the developer or automatically using a HOT).

In the MegaM @Rt2 ECSEL project [3], they attempt to use a traceability man-
agement approach with megamodels in order to handle and link runtime artifacts with
their corresponding design artifacts. The generated trace models conform to a trace-
ability metamodel which is much more generic than our LTrace metamodel in terms of
the generated trace links. In our case, trace links are contained within model trans-
formation rules (TracedRules). This gives us a more detailed view not only of what
source and target elements are linked but also in which rule at the implementation level
this trace link has been constructed. Moreover, to the best of our knowledge, no support
for transformation chaining nor process enactment was proposed as part of their
documents.

Beyhl et al. [8] presents a framework for retaining and maintaining traceability
links between the artifacts within a hierarchical megamodel. However, no support for
linking distant artifacts using global traceability links has been mentioned in their
approach.

Other work exist which focuses solely on generating local traces as a result of
transformation executions [5, 11, 21, 22, 34] and are not elaborated here.

5.2 Traceability Analysis Support

There has been extensive work carried out on change impact analysis in the require-
ments engineering community [20, 30, 33]. However, these approaches do not support
process enactment and megamodelling techniques.

van Amstel et al. [5] propose TraceVis, a tool which uses traces to visualize the
relationships between traced models. Using their generated traceability visualization,
change impact analysis can be implicitly (manually) inferred from the visualization
results, but no method or approach has been proposed to automatically analyze the
change impact using the generated traces.

Fung et al. [18] presents MMINT-A, a tool built on top of a model management
framework (MMINT) using megamodels, which identifies the impact of software
system changes on their assurance cases. However, it is not clear whether their meg-
amodel has traceability extensions enabling navigation between artifacts at the global
and local levels.

Process Enactment with Traceability Support for NFV Systems 133

6 Conclusion

In this paper, we presented MAPLE-T, a model-driven traceability information gen-
eration and analysis environment built on top of MAPLE [25], an extensible envi-
ronment which enables model-driven process enactment by interleaving transformation
chaining and model management means. MAPLE-T provides support for automatic
generation of local and global traceability information during process enactment. Our
approach starts with a PM and a set of resources (metamodels, profiles), which are all
registered in an MgM. The PM is then mapped to a transformation chain with the help
of the MgM. When process enactment begins, the transformation chain is augmented
with traceability support on the fly. During enactment of the PM, MAPLE-T executes
the underlying transformations and generates the target models as well as the trace
models (transformation traces). Trace links are generated both at the model-level and at
the model element-level. The generated artifacts are retained in the MgM. The global
trace map (provides traceability information at the PM-level) is also part of the MgM.
We have applied our approach on an NFV case study, namely on the NS design, to
carry out change impact analysis. The goal was to assess whether changes in the
building blocks of a network service, the VNFs, have any impact on the process and the
generated deployment templates. As future work, we intend to use MAPLE-T for
traceability analysis of the NS design, deployment, and management process.

Acknowledgement. The authors would like to thank Navid Nazarzadeoghaz for the discussions
on the NFV application. This work is partly funded by the Natural Sciences and Engineering
Research Council (NSERC) of Canada and Ericsson.

References

1. D4.1: Foundations for model management and traceability. Technical report, MegaM @Rt2,
September 2017

2. ISO/IEC/IEEE International Standard - Systems and Software Engineering — Vocabulary.
ISO/IEC/IEEE 24765:2017(E), pp. 1-541, August 2017

3. D4.3: Model and Traceability Management (MTM) Tool Set — Intermediate version.
Technical report, MegaM @Rt2, November 2018

4. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM
Syst. J. 45(3), 515-526 (2006)

5. van Amstel, M.F., van den Brand, M.G.J., Serebrenik, A.: Traceability visualization in
model transformations with TraceVis. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol.
7307, pp. 152-159. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30476-
7_10

6. Baelen, S.V., Vanhoof, B.: MARTES: Traceability management toolset D2.3. Technical
report, EUREKA - ITEA 04006, September 2007

7. Basilier, H., Darula, M., Wilke, J.: Virtualizing network services - the telecom cloud.
Ericsson Technol. Rev. 91, 1-9 (2014). https://www.ericsson.com/en/ericsson-technology-
review/archive/2014/virtualizing-network-services—the-telecom-cloud

8. Beyhl, T., Hebig, R., Giese, H.: A model management framework for maintaining
traceability links. In: Software Engineering 2013 — Workshopband, pp. 453—457 (2013)

http://dx.doi.org/10.1007/978-3-642-30476-7_10
http://dx.doi.org/10.1007/978-3-642-30476-7_10
https://www.ericsson.com/en/ericsson-technology-review/archive/2014/virtualizing-network-services---the-telecom-cloud
https://www.ericsson.com/en/ericsson-technology-review/archive/2014/virtualizing-network-services---the-telecom-cloud

134

9.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

O. Hassane et al.

Borg, M., Runeson, P., Ardo, A.: Recovering from a decade: a systematic mapping of
information retrieval approaches to software traceability. Empir. Softw. Eng. 19(6), 1565—
1616 (2014)

Chen, Y., Qin, Y., Lambe, M., Chu, W.: Realizing network function virtualization
management and orchestration with model-based open architecture. In: 11th International
Conference on Network and Service Management (CNSM 2015), pp. 410—418. IEEE (2015)
Eclipse: ATL EMF Transformation Virtual Machine (ATL EMFTVM). https://wiki.eclipse.
org/ATL/EMFTVM

Eclipse: Papyrus. https://eclipse.org/papyrus/

ETSI: Network Functions Virtualisation (NFV) Release 2; Information Modeling; Papyrus
Guidelines: ETSI GR NFV-IFA 016 V2.1.1, March 2017

ETSI: Network Functions Virtualisation (NFV) Release 2; Management and Orchestration;
Report on NFV Information Model: ETSI GR NFV-IFA 015 V2.1.1, January 2017

Favre, J.M., Nguyen, T.: Towards a megamodel to model software evolution through
transformations. Electron. Notes Theor. Comput. Sci. 127(3), 59-74 (2005)

Fritzsche, M., Bruneli¢re, H., Vanhooft, B., Berbers, Y., Jouault, F., Gilani, W.: Applying
megamodelling to model driven performance engineering. In: 16th IEEE, ECBS 2009,
pp- 244-253, April 2009

Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, A.: Application of
tracing techniques in model-driven performance engineering. In: 4th ECMDA Traceability
Workshop, pp. 1-10 (2008)

Fung, N.L.S., Kokaly, S., Di Sandro, A., Salay, R., Chechik, M.: MMINT-A: a tool for
automated change impact assessment on assurance cases. In: Gallina, B., Skavhaug, A.,
Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 60-70. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99229-7_7

Galvao, 1., Goknil, A.: Survey of traceability approaches in model-driven engineering. In:
IEEE EDOC 2007, p. 313, October 2007

Goknil, A., Ivanov, L., van den Berg, K.: Change impact analysis based on formalization of
trace relations for requirements. In: ECMDA Traceability Workshop (ECMDA-TW),
pp- 59-75. No. 274, SINTEF Report, June 2008

Guana, V., Stroulia, E.: ChainTracker, a model-transformation trace analysis tool for code-
generation environments. In: Di Ruscio, D., Varrd, D. (eds.) ICMT 2014. LNCS, vol. 8568,
pp. 146-153. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08789-4_11
Jouault, F.: Loosely coupled traceability for ATL. In: ECMDA Workshop on Traceability,
pp- 29-37 (2005)

Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., Bézivin, J.: Inter-DSL
coordination support by combining megamodeling and model weaving. In: ACM 25th SAC
2010, pp. 2011-2018, March 2010

Mijumbi, R., Serrat, J., Gorricho, J.L., Latre, S., Charalambides, M., Lopez, D.:
Management and orchestration challenges in network functions virtualization. IEEE
Commun. Mag. 54(1), 98-105 (2016)

Mustafiz, S., Dupont, G., Khendek, F., Toeroe, M.: MAPLE: An integrated environment for
process modelling and enactment for NFV systems. In: Pierantonio, A., Trujillo, S. (eds.)
ECMFA 2018. LNCS, vol. 10890, pp. 164-178. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-92997-2_11

Mustafiz, S., Nazarzadeoghaz, N., Dupont, G., Khendek, F., Toeroe, M.: A model-driven
process enactment approach for network service design. In: Csondes, T., Kovacs, G., Réthy,
G. (eds.) SDL 2017. LNCS, vol. 10567, pp. 99-118. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68015-6_7

https://wiki.eclipse.org/ATL/EMFTVM
https://wiki.eclipse.org/ATL/EMFTVM
https://eclipse.org/papyrus/
http://dx.doi.org/10.1007/978-3-319-99229-7_7
http://dx.doi.org/10.1007/978-3-319-08789-4_11
http://dx.doi.org/10.1007/978-3-319-92997-2_11
http://dx.doi.org/10.1007/978-3-319-92997-2_11
http://dx.doi.org/10.1007/978-3-319-68015-6_7
http://dx.doi.org/10.1007/978-3-319-68015-6_7

217.

28.

29.

30.

31.

32.

33.

34.

Process Enactment with Traceability Support for NFV Systems 135

Mustafiz, S., Palma, F., Toeroe, M., Khendek, F.: A network service design and deployment
process for NFV systems. In: 15th IEEE NCA 2016, pp. 131-139. IEEE Computer Society
(2016)

von Pilgrim, J., Vanhooff, B., Schulz-Gerlach, I., Berbers, Y.: Constructing and visualizing
transformation chains. In: Schieferdecker, 1., Hartman, A. (eds.) ECMDA-FA 2008. LNCS,
vol. 5095, pp. 17-32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
69100-6_2

Santiago, 1., Jiménez, A., Vara, J.M., De Castro, V., Bollati, V.A., Marcos, E.: Model-driven
engineering as a new landscape for traceability management: A systematic literature review.
Inf. Softw. Technol. 54(12), 1340-1356 (2012)

Santiago, 1., Vara, J.M., de Castro, M.V., Marcos, E.: Towards the effective use of
traceability in model-driven engineering projects. In: Ng, W., Storey, V.C., Trujillo, J.C.
(eds.) ER 2013. LNCS, vol. 8217, pp. 429-437. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41924-9_35

Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., Berbers, Y.: UniTl: A unified
transformation infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 31-45. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-75209-7_3

Vanhooff, B., Van Baelen, S., Joosen, W., Berbers, Y.: Traceability as input for model
transformations. In: ECMDA Traceability Workshop (ECMDA-TW), pp. 37-46. SINTEF
(2007)

Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering and model-
driven development. Softw. Syst. Model. 9(4), 529-565 (2010)

Yie, A., Wagelaar, D.: Advanced traceability for ATL. In: 1st International Workshop on
Model Transformation with ATL (MtATL 2009) (2009)

http://dx.doi.org/10.1007/978-3-540-69100-6_2
http://dx.doi.org/10.1007/978-3-540-69100-6_2
http://dx.doi.org/10.1007/978-3-642-41924-9_35
http://dx.doi.org/10.1007/978-3-642-41924-9_35
http://dx.doi.org/10.1007/978-3-540-75209-7_3
http://dx.doi.org/10.1007/978-3-540-75209-7_3

	Process Enactment with Traceability Support for NFV Systems
	Abstract
	1 Introduction
	2 Background
	3 MAPLE-T Approach
	3.1 Traceability Support in MAPLE-T
	3.2 MAPLE-T Functionalities

	4 NFV Application
	4.1 Enactment and Traceability Generation with MAPLE-T
	4.2 Traceability Analysis with MAPLE-T

	5 Related Work
	5.1 Traceability Generation Support
	5.2 Traceability Analysis Support

	6 Conclusion
	Acknowledgement
	References

