
Modeling and Code Generation
Framework for IoT

Mohammad Sharaf1(B), Mai Abusair1, Rami Eleiwi2, Yara Shana’a2,
Ithar Saleh2, and Henry Muccini3

1 Computer Science Department, An-Najah National University, Nablus, Palestine
massharaf@yahoo.com, mai.abusair@gmail.com

2 Networks and Security Department, An-Najah National University,
Nablus, Palestine

rami.ilaiwi1997@gmail.com, yaraadnan177@gmail.com,

net.itharsaleh@gmail.com
3 DISIM Department, University of L’Aquila, L’Aquila, Italy

henry.muccini@univaq.it

Abstract. In the Internet of Things (IoT) every physical device has an
embedded technology that interacts with internal and external states.
The heterogeneity of devices and networks complicates the mission of
implementing and integrating the objects in IoT systems. In this paper,
we present our model driven code generation framework, called CAPSml.
The framework enables IoT designers and architects who are using CAPS
environment to transform CAPS software model into ThingML model.
CAPS is an architecture-driven modeling framework for the development
of IoT Systems. ThingML includes modeling language and framework
designed for IoT systems to support code generation for multi-platform
targets.

1 Introduction

Nowadays most systems are relying in their development and evolution on
reusing and customizing open-source components, services and frameworks.
Model-Driven Engineering (MDE) has been widely used in system development.
MDE can enable analysis process, promote communications between system
stakeholders, simplify design process and facilitate software production [1].

IoT technologies aim at integrating objects into a communicating environ-
ment. A significant challenge in IoT system development is to produce a code
that reflects concerns of IoT system specification and design. Accordingly, many
issues in IoT systems life cycle are targeted by researchers. The CAPS has been
realized to model and analyze IoT architectures [2]. ThingML framework adopted
the idea of facilitating code generation for IoT systems [3]. Our approach aims
at covering a full chain of modeling and analyzing using CAPS, and then imple-
menting using the power of ThingML code generation.

This paper proposes CAPSml code generation framework built of top of
CAPS modeling framework [4,5]. The framework follows MDE approach to
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 99–115, 2019.
https://doi.org/10.1007/978-3-030-30690-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_6


100 M. Sharaf et al.

transform SAML-CAPS model into ThingML model. SAML model represents
the software architecture structural and behavioral view in CAPS framework
[6]. ThingML model represents software components and configurations that
describe their interconnection in ThingML framework [3]. The transformation
from SAML to ThingML is performed using CAPSml code generation frame-
work. The aim of CAPSml is to allow IoT developers to mitigate their worries of
learning programming languages that implement their IoT systems. In addition,
the paper suggests a methodology for modeling, transforming and generating
code for IoT systems. It aims to facilitate IoT systems development.

This paper is organized as follows: Sect. 2 presents a brief description for
CAPS. Section 3 presents a brief description for ThingML. Then, Sect. 4 intro-
duces the CAPSml code generation framework. Afterward, Sect. 5 provides the
modeling and code generation methodology. Section 6 shows a case study exam-
ple. Finally, Sect. 7 concludes the work.

2 The CAPS Background

CAPS is a modeling framework that was formerly initiated at The University
of L’Aquila [4,6]. It has a tool for Architecting Cyber-Physical Systems (CPS)
[2,7,8]. The terms CPS and IoT are used interchangeably. They both refer to
the integration of digital capabilities, including systems of physical devices and
network connectivity [9].

CAPS offers a rich modeling framework that performs a separation of con-
cerns among different modeling views. It is designed and implemented taking
into account three architectural views: the software architecture structural and
behavioral view (SAML), see Figs. 1 and 2, respectively, the hardware view
(HWML), and the physical space view (SPML) [6]. Moreover, CAPS tool pro-
vides a graphical user interface for modeling the three views. Accordingly, CAPS
provides abstractions for low-level details of the different views, enhances reuse,
and supports the ability to model the time and space. Moreover, CAPS allows
stakeholders to perform analysis for architectural design decisions at earlier
stages of the CPS development life cycle.

In this paper, we focus on SAML view for the sake of performing code gen-
eration. SAML modeling allows designers to define a software architecture that
is basically constructed of a collection of software Components and Connec-
tions: (i) The Component: It is a unit of computation with internal state and
defined interface. Each Component can contain several modes that specify its
state. The behavior in each Component’s mode is denoted by a set of events,
actions and conditions. The Components can exchange data by passing mes-
sages through message ports. (ii) The Connection: It defines the communication
between Components. It sets the source and target Components for the commu-
nication channel between two message ports of two different Components. For
more information about SAML, refer to the full work in [6].



Modeling and Code Generation Framework for IoT 101

Fig. 1. SAML metamodel: structural concepts [6]

Fig. 2. SAML metamodel: behavioral concepts [6]

3 The ThingML Background

ThingML includes a modeling language combines software modeling constructs
for designing and implementing IoT systems [3]. It has an open-source tool
designed for supporting code generation and a highly customizable multi-
platform code generation framework. ThingML tool targets heterogeneous plat-
forms and has a set of compilers able to transform a ThingML model into fully
operational code, in various languages (e.g. C, Java, Javascript), ready to build
and run.

The ThingML language is based on two fundamental structures [3], see Fig. 3:
(i) Thing: It represents software component. It is an implementation unit, also
referred to as process or component. A Thing can assign properties, functions,
messages and ports. Moreover, it can contain a set of state machines conforming
to the UML state charts. The properties represent the variables that are defined
locally inside the Thing. The functions can be treated as local functions inside
the Thing and can not be accessed from the outside world. The ports are the
only public interface in the ThingML language and they are used to send and
receive messages that are defined within a Thing. Further, the internal behavior
of a Thing is demonstrated using orchestration of composite states that are
expressed using Event-Condition-Action (ECA) fashion. (ii) Configuration: It



102 M. Sharaf et al.

Fig. 3. ThingML model [3]

describes the Things interconnection. It has a set of instances of the pre-defined
Things, and a set of connectors between instances ports.

ThingML was developed based on MDE principles. It is used to develop IoT
systems ranging from research case studies to product development in industry
projects. For more information about ThingML, refer to [3].

4 CAPSml Code Generation Framework

In this section, we will introduce our CAPSml framework that aims to trans-
form SAML model in CAPS into ThingML language. The transformation pro-
cess in CAPSml starts from the ecore and xmi files of SAML. Then, through
several model to text transformations, performed in Acceleo1, the contents of
SAML model is mapped to contents in ThingML model. Finally, a complete
ThingML language is generated automatically and is able to be imported directly
in ThingML framework.

The fundamental part in the code generation framework is the process of
mapping SAML to ThingML. The mapping benefits from the similarities in
concepts between the SAML and ThingML models. Basically, the Component in
SAML meets the Thing in ThingML; both of them declare a computational unit

1 https://www.eclipse.org/acceleo/.

https://www.eclipse.org/acceleo/


Modeling and Code Generation Framework for IoT 103

which includes a set of behavioral elements like actions, events and conditions.
Further, the Connection between the Components in SAML is mapped to the
connector in the Configurations part of the ThingML language.

The CAPSml code generation framework passes through four phases to per-
form model transformation. The preparation, component conversion and con-
nection conversion phases, Sects. 4.1, 4.2 and 4.3, respectively, aim to build the
Acceleo code file. The fourth phase, Sect. 4.4, aims to launch the CAPSml frame-
work to be ready for converting CAPS-SAML model xmi file into ThingML file.
These phases are described in the following sections.

4.1 Preparation Phase

In this phase, we set the URI of the SAML meta model, see Line 2 Fig. 4. Then,
we set the starting point of the conversion at the top class in SAML, which
is the SoftwareArchitecture class shown in Line 4 Fig. 4. From this main class
we can move gradually to all the software elements indicated in SAML meta
model. Further, we set the target name of the file that will have the conversion
results (CAPS.thingml), see Line 7 Fig. 4. Finally, we import a special library in
ThingML language that will be needed for the data types definitions, see Line 8
Fig. 4.

Fig. 4. Code generation preparation

4.2 Component Conversion Phase

In this phase, we map the Component with its elements in SAML to the Thing
and their correspondences in ThingML. The conversion starts from mapping
the Component into Thing, see Fig. 6. Basically, any Component in SAML has
primitive data declarations, ports and modes. These are transformed as follows:

1. Primitive data declarations: They are variables defined and used locally dur-
ing the processes performed inside the Component. Every data declaration is
mapped into property in ThingML language, see Fig. 7. Each property repre-
sents a local variable to be used inside the Thing. It is important to mention
that the real data type in CAPS is converted into float data type in ThingML



104 M. Sharaf et al.

Fig. 5. Messages variables transformation

Fig. 6. Component transformation

Fig. 7. Data declarations variables transformation

that does not define real data type. In addition, variables that are used in
exchanging messages between Components in SAML are mapped to messages
in ThingML. We created a special kind for the Thing, named fragment, used
to define all the variables to be used in components messages exchanging.
Thus, every Component has a message to be sent or received will include the
fragment to be able to use the messages values. Transformation of messages
variables is shown in Fig. 5.

2. Ports: They are used as an interface for the Component. Each Component in
SAML has zero or more message ports. These message ports might be InMes-
sagePort or OutMessagePort. A Connection links the OutMessagePort as a
source to InMessagePort as a target. These ports might receive four different
types of messages; UnicastSendMessage, BroadcastSendMessage, Multicast-
SendMessage or a ReceiveMessage. The InMessagePort in SAML is mapped
to ‘required port’ in ThingML, and the OutMessagePort is mapped to ‘pro-
vided port’ in ThingML. The type of message to be sent through the ports in
ThingML can be determined using ‘sends’ and ‘receives’ elements. In case of
broadcast message, we determine only the data to be sent from the ‘provided
port’ in ‘sends’ and it will reach all connected ports. Otherwise, in unicast



Modeling and Code Generation Framework for IoT 105

Fig. 8. Ports transformation

message, we determine the data to be sent in ‘sends’ and the receiver of the
data in ‘receives’. Moreover, in multicast message, we determine the data to
be sent in ‘sends’ and the group of selected receivers (filtered out from SAML
MultiCastMessage) in ‘receives’. Finally, if the port receives a message, then
we set the port name in the ‘required port’ and we determine the data to be
received in ‘receives’. Figure 8 shows the ports transformations that take in
consideration the different message types.

3. Modes: It represents the behavioral part of the Component. The Component
can have several modes in which the initial mode is determined and the orches-
tration of the entrance and exit for the rest of modes is specified. ThingML
has a corresponding similar concept to modes called states. ThingML has a
statechart that includes one or more states which illustrate the behavioral
execution of the Thing. Each statechart indicates the initial mode in CAPS-
SAML as initial state (statechart init) and other modes as states. Typically,



106 M. Sharaf et al.

each state has an entry source that can be determined through ‘on entry’ in
ThingML. Mode transformation to state is shown in Fig. 10. Every mode has
behavioral elements that describe the concept of the mode’s execution. The
behavioral elements can mainly be events, conditions and actions, and can also
be the links that specify the source and target behavioral elements. Every link
between behavioral elements must consider the event that causes the transi-
tion from a behavioral element to another, the condition to be checked in a
choice and the action to be taken. The action might be nested choice, send
message or behavioral functionality. Every concept in these behavioral ele-
ments has almost its correspondence in ThingML. Accordingly, every event
in CAPS-SAML is mapped to event in ThingML, condition is mapped to
guard, link is mapped to transition, and action in CAPS-SAML can be trans-
lated to action in ThingML (in case the action is send message or choice), see
Fig. 11, or otherwise to function in ThingML. The function can be responsi-
ble of several actions like sensing data, store data, actuating, etc. See Fig. 12
to see behavioral element in the mode turned into function. See Fig. 9 that
summarizes the mapping between Component and Thing elements.

4.3 Connection Conversion Phase

In this phase, we map the Connection concept in SAML to the Configuration
concept in ThingML. The Connection specifies the communication link between
Components ports in SAML. Thus, in the configuration part in ThingML, we
specify for every Component in SAML an instance in ThingML. The Con-
nection between the target and source ports in SAML is mapped to Connec-
tor in ThingML with the required port name => provided port name. See
Fig. 13 for Connection transformation. By the end of this phase, we will have
“CAPSml.mtl” file that contains the Acceleo code required for ThingML code
generation.

Fig. 9. Mapping between Component elements in SAML and Thing elements in
ThingML



Modeling and Code Generation Framework for IoT 107

Fig. 10. Modes transformation

Fig. 11. Choice and messages transformation

4.4 Launching Code Generator Phase

In this phase, we run the Acceleo file that resulted from the first three phases.
Therefore, we build a Java launcher project that import the MTCLauncher



108 M. Sharaf et al.

Fig. 12. Behavioral elements transformation

Fig. 13. Connection transformation

library [10]. The MTCLauncher is a library developed by a researcher, called
Victor Guana, at the University of Alberta [10]. The library allows running
ATL model-to-model transformations, and Acceleo model-to-text transforma-
tions in an isolated fashion and can be executed in a command line outside
Eclipse. It helps in avoiding errors in running Acceleo code in Java environ-
ment. In the launcher project, the SAML metamodel ecore file is included under
metamodel folder, the CAPSml.mtl file is included under the AcceleoTransfor-
mations folder. To start the conversion for any SAML model, we need to open
the launcher project and include the SAML model xmi file under models folder
in the launcher project. Then, we run the project to get the ThingML output



Modeling and Code Generation Framework for IoT 109

file (CAPS.thingml) created under the gen folder. The thingml file will contain
the ThingML language transformed from SAML model.

The CAPSml framework is able to produce a complete thingml file. It acts
as a link between CAPS-SAML and ThingML frameworks. Thus, it enables IoT
designers, who are using SAML-CAPS to model and analyze their IoT systems,
to benefit from the power of ThingML in code generation. The generated thingml
file can be imported in ThingML framework to allow designers to select among
several compilers the one that targets their desirable platform.

5 Modeling and Code Generation Methodology

The modeling and code generation methodology can be used during IoT sys-
tems life cycle. It benefits from CAPS, CAPSml, and ThingML frameworks. It
encompasses three phases illustrated in Fig. 14:

Fig. 14. Modeling and code generation methodology

1. Modeling using CAPS framework: In this phase, the designers architect their
IoT systems. They will benefit from the power of CAPS in modeling and
analyzing IoT systems [11]. Moreover, they will benefit from the graphical
user interface supported by CAPS framework for modeling. The necessary
output from this modeling phase is the SAML model xmi file.

2. Running CAPSml framework: In this phase, the designers run CAPSml frame-
work to transform CAPS-SAML model into ThingML model. The transfor-
mation process automatically starts from the xmi and ecore files of SAML.
Then, the contents of SAML model is mapped to contents in ThingML
model. Finally, a complete ThingML language is generated automatically in
a thingml file.



110 M. Sharaf et al.

3. Running ThingML framework: In this phase, the designers use the thingml file
that resulted from phase two for running the ThingML framework. ThingML
framework allows the designers to select among several compilers the one that
targets their desirable platform.

Following this methodology helps developers to model, analyze and produce
IoT systems. It mitigates the developers problems in learning ThingML language
and thus the programming languages that can be generated using ThingML
framework. In the following section, we show the phases of our methodology on
smart irrigation case study example.

6 Smart Irrigation Case Study

The agriculture is one of the most vital resources of nation’s economy and food’s
production. There are many concerns related to traditional methods of agricul-
ture. For example, the excessive wastage of water during irrigation, wastage of
money, dependency on human resources, etc. IoT can provide smart solutions
for such problems and help in developing agriculture sector in countries.

In this paper, we focus on smart irrigation services. A SAML model is built
using CAPS, presented in Sect. 6.1. By using our CAPSml code generator, the
SAML model will be transformed into ThingML language, presented in Sect. 6.2.
Consequently, using ThingML framework, the ThingML language is used to
generate different target languages, presented in Sect. 6.2.

6.1 Describing a Scenario Using CAPS

We introduce a simple scenario describes the monitoring of soil moisture and
climate condition in order to change the work of the water pump in a filed [12].
This scenario aims at preventing the wastage of water resources [13].

SAML model of the scenario is shown in Fig. 15. It is important to note
that this Figure is a screenshot of modeling using the graphical user interface
supported by CAPS tool. The SAML model is composed of four components:

1. The SenseMoisture component: It is responsible for sensing the soil mois-
ture value. It includes two modes:

– Normal mode: In this mode, the moisture sensor senses the moisture value
from the soil every 100 s. Then, it saves the value in Moisture primitive
variable. After all, it uses the unicast message to send the values to the
Controller component. If the moisture value is more than 3, the SenseMoisture
component enters the Critical mode.

– Critical mode: In this mode, the sensor senses the moisture value every one
second. It saves the value in Moisture primitive variable. Then, it uses the
unicast message to send the value to the Controller component. If the moisture
value is less than 3, the SenseMoisture component enters the Normal mode.

2. The SenseRainfall component: It is responsible for sensing the rainfall. It
includes one mode that is RainFall.



Modeling and Code Generation Framework for IoT 111

Fig. 15. Software architecture of simple scenario in smart irrigation case study

– Rainfall Mode: In this mode, there is an interrupt sensor that senses if there
is a rainfall or not. The value taken from this sensor is kept in a primitive
variable. It uses a unicast message to send the value to the Controller com-
ponent.

3. The Controller component: It is responsible for making decisions to turn
the water pump on or off. It includes one mode that is Controlling.

– Controlling mode: In this mode, the values received from the Moisture and
Rainfall messages are stored in primitive variables. These values are used for
making decisions depending on the current condition. If the Moisture is more
than 3 and less than 4.7 and the weather does not rain, the Controller sends
a message to the water pump to turn it on. While, if the Moisture is more
than 3 and less than 4.7 and the weather is Rainfall, the Controller sends a
message to the water pump to turn it off. Moreover, if the Moisture is less
than 3 the Controller sends a message to the water pump to keep it off.

4. The WaterPumpController component: It is responsible for turning the pump
on or off depending on the decision from the Controller. It includes one mode
that is WaterPump.

– WaterPump mode: It receives a message from the Controller component and
stores it in a primitive variable. The value stored in the primitive variable
specifies if the pump is turned on or off. This value is sent to an actuator. If
the sent value is true, the actuator turns the pump on. If the sent value is
false, the actuator turns the pump off.



112 M. Sharaf et al.

Fig. 16. Example of the Controller component in SAML converted into Controller
Thing in ThingML language

6.2 Code Generation Using CAPSml

In this section, we describe the results of running SAML model on the CAPSml
framework. Then, we show the code generated using ThingML code generation
framework.

Fig. 17. Part of the generated ThingML Configuration

Before running CAPSml framework, we need to specify the model, described
in Fig. 15, in xmi format and the meta model of SAML in ecore format. Then,
to run CAPSml framework launcher project, we need to find the xmi file for
the model generated using CAPS-SAML. After running CAPSml launcher, we
will automatically have a thingml file that has a complete ThingML language
in the gen folder of the launcher project. Figure 16 shows part of converting



Modeling and Code Generation Framework for IoT 113

Fig. 18. Part of the generated Thing fragment

Fig. 19. Part of C++ code generated for Controller Thing/Component

Controller component in SAML into Controller Thing in ThingML language.
Figure 17 shows part of the generated Configuration for the Things in ThingML
language. Figure 18 shows part of the generated Thing fragment that contains
the messages to be exchanged between components.

Consequently, the ThingML language, that resulted from running CAPSml,
was used to run ThingML code generator framework for producing several tar-
get languages. We experimented the code generation using different compilers
supported by ThingML framework. The results show successful transformations
to different targeted languages and platforms. For the sake of space, we present
a snippet for the results of only running Posix compiler in the ThingML frame-
work. Posix Generates C/C++ code for Linux or other Posix runtime envi-
ronments. Figure 19 shows part of the C++ code generated for the Controller
Component/Thing.



114 M. Sharaf et al.

7 Conclusions

In this paper, we presented CAPSml, a code generation framework built on top of
CAPS modeling framework and targets ThingML framework. CAPS framework
offers a graphical user interface that facilitates the production of IoT systems
architecture. While, ThingML offers a code generation framework that brings
MDE to the late design and implementation stages.

CAPSml transforms CAPS model into ThingML language. Thus, CAPS users
can generate code for their models using ThingML framework. Moreover, CAPS
users do not need to learn ThingML modeling language. To show the utilization
of our tool, we ran an example on smart irrigation case study and clarified how
our code generation approach can take place in IoT systems life cycle.

References

1. Ciccozzi, F., Spalazzese, R.: MDE4IoT: supporting the internet of things with
model-driven engineering. Intelligent Distributed Computing X. SCI, vol. 678, pp.
67–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48829-5 7

2. Muccini, H., Sharaf, M.: Caps: a tool for architecting situational-aware cyber-
physical systems. In: 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), pp. 286–289. IEEE (2017)

3. Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: a language and code
generation framework for heterogeneous targets. In: Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Sys-
tems, pp. 125–135. ACM (2016)

4. Sharaf, M., Abughazala, M., Muccini, H., Abusair, M.: An architecture frame-
work for modelling and simulation of situational-aware cyber-physical systems. In:
Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS, vol. 10475, pp. 95–111. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65831-5 7

5. Sharaf, M., Muccini, H., Abughazala, M.: ArIA: arduino code generation based on
the caps. In: Proceedings of the 12th European Conference on Software Architec-
ture: Companion Proceedings, p. 4. ACM (2018)

6. Muccini, H., Sharaf, M.: Caps: architecture description of situational aware cyber
physical systems. In: 2017 IEEE International Conference on Software Architecture
(ICSA), pp. 211–220. IEEE (2017)

7. Sharaf, M., Abughazala, M., Muccini, H., Abusair, M.: CAPSim: simulation and
code generation based on the CAPS. In: Proceedings of the 11th European Confer-
ence on Software Architecture: Companion Proceedings, pp. 56–60. ACM (2017)

8. Sharaf, M., Abughazala, M., Muccini, H., Abusair, M.: Simulating architectures
of situational-aware cyber-physical space. In: Proceedings of the 11th European
Conference on Software Architecture: Companion Proceedings, pp. 66–67. ACM
(2017)

9. Yan, Z., Zhang, P., Vasilakos, A.V.: A survey on trust management for internet of
things. J. Netw. Comput. Appl. 42, 120–134 (2014)

10. Guana, V.: Running Acceleo and ATL Transformations Programmatically. Univer-
sity of Alberta (2016). http://victorguana.blogspot.com/2016/05/running-acceleo-
and-atl-transformations.html

https://doi.org/10.1007/978-3-319-48829-5_7
https://doi.org/10.1007/978-3-319-65831-5_7
http://victorguana.blogspot.com/2016/05/running-acceleo-and-atl-transformations.html
http://victorguana.blogspot.com/2016/05/running-acceleo-and-atl-transformations.html


Modeling and Code Generation Framework for IoT 115

11. Sharaf, M., Abughazala, M., Muccini, H.: Arduino realization of CAPS IoT archi-
tecture descriptions. In: Proceedings of the 12th European Conference on Software
Architecture: Companion Proceedings, p. 6. ACM (2018)

12. Sharaf, M., Abusair, M., Eleiwi, R., Yara, S., Ithar, S., Muccini, H.: Architec-
ture description language for climate smart agriculture systems. In: Proceedings of
the 13th European Conference on Software Architecture: Companion Proceedings.
ACM (2019)

13. Gondchawar, N., Kawitkar, R.: IOT based smart agriculture. Int. J. Adv. Res.
Comput. Commun. Eng. 5(6), 838–842 (2016)


	Modeling and Code Generation Framework for IoT
	1 Introduction
	2 The CAPS Background
	3 The ThingML Background
	4 CAPSml Code Generation Framework
	4.1 Preparation Phase
	4.2 Component Conversion Phase
	4.3 Connection Conversion Phase
	4.4 Launching Code Generator Phase

	5 Modeling and Code Generation Methodology
	6 Smart Irrigation Case Study
	6.1 Describing a Scenario Using CAPS
	6.2 Code Generation Using CAPSml

	7 Conclusions
	References




