
Generic Graphical Navigation
for Modelling Tools

Hyacinth Ali, Gunter Mussbacher(B), and Jörg Kienzle

McGill University, Montreal, Canada
hyacinth.ali@mail.mcgill.ca, {gunter.mussbacher,joerg.kienzle}@mcgill.ca

Abstract. To describe the characteristics of software systems, model-
driven engineering (MDE) advocates the use of different modeling lan-
guages and multiple views that modellers need to navigate in the models’
editors to understand and modify the system under development. This
paper introduces a generic navigation mechanism that facilitates naviga-
tion within a model, from one model to other linked models potentially
expressed in a different language, as well as for feature-based devel-
opment and across reuse hierarchies. Furthermore, a proposed naviga-
tion bar visually indicates to the modeller the place of a model in this
structure. To make a modelling language navigable, a language designer
enhances the modelling language at the metamodel level with our generic
navigation capabilities, which include the ability to filter language ele-
ments based on attribute values. We present evidence that the proposed
generic navigation mechanism comprehensively supports model naviga-
tion by analyzing the navigation facilities offered by popular UML mod-
elling tools and a feature-based modelling tool.

Keywords: Navigation · Domain-specific language ·
Multi-view modelling · Features · Reuse · Model-driven engineering

1 Introduction

Model-driven engineering (MDE) [1] advocates the use of different modelling
languages and multiple views to describe the characteristics of software systems
as well as to prescribe their structure and behaviour. The software development
process that is being used establishes conceptual and causal links between mod-
els, potentially crossing different levels of abstraction. While several works have
focused on describing and enforcing these relationships [2–4], graphical navi-
gation support for the user of a modelling tool within and across models has
received only limited attention. This is the case even though studies have shown
the importance of good visualization and navigation mechanisms in both soft-
ware usage and during development [5–7].

With the proliferation of domain-specific modeling languages (DSMLs) [8],
one cannot assume anymore that a fixed set of modeling languages is used to
develop software systems. Rather, a flexible modeling environment needs to be
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 44–60, 2019.
https://doi.org/10.1007/978-3-030-30690-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_3

Generic Graphical Navigation for Modelling Tools 45

provided that allows sets of languages to be integrated as the needs arise. Conse-
quently, the corresponding set of models needs to be navigated. This navigation
is not about generic navigation of models with the Object Constraint Language
(OCL) or similar languages, but rather the navigation of models by the modeller
in the models’ editors.

In this paper, we present a generic approach for language designers and mod-
elling tool developers to specify navigation mappings within a model, from one
model to other linked models potentially expressed in a different language, as
well as for feature-oriented development and across reuse hierarchies. We show
how these mappings can be used to populate a navigation bar with navigation
links that make it easy for a user to traverse models and navigate to related
model elements. We use different colour highlighting to help the user find model
elements within large models, and to inform the user when navigation links cross
model boundaries. We explain how we encoded our generic approach in a meta-
model targeting modelling languages and tools developed as part of the Eclipse
Modelling Framework (EMF), and illustrate intra-model, inter-model, and inter-
language navigation by means of a small example. We further demonstrate how
our navigation approach can be used in a reuse-context and to filter language
elements. Furthermore, we analyze popular UML modelling tools and a feature-
oriented modelling tool with respect to their navigation capabilities. For each
tool, we explain which navigation capabilities they support and show that the
navigation concepts in our proposed metamodel are sufficient to handle them.

In the remainder of this paper, Sect. 2 presents generic language navigation
by means of a running example. Section 3 elaborates our navigation metamodel
and Sect. 4 discusses the navigation capabilities of several UML modelling tools.
We briefly review related work in Sect. 5. The conclusion in Sect. 6 provides a
summary and discusses future work.

2 Generic Language Navigation

MDE advocates the use of models expressed in different languages to capture
the many characteristics of systems. This set of models needs to be navigated
to understand the system under development. In this section, we first motivate
our proposed generic navigation facility with the help of four examples, each
representing a typical navigation situation.

2.1 Single Model Navigation

The first situation concerns the navigation of a single model, i.e., intra-model
(and hence also intra-language) navigation. A complex model may consist of
many model elements, and it is hence desirable to have a concise and easy-to-use
way to find important model elements or navigate model element relationships.

For example, Fig. 1 depicts a class diagram of a bank system and our proposed
navigation bar. Clicking the drop-down arrow under BankClassDiagram pops
up the Classes of the model, listed under the tab Classes. Clicking on a class

46 H. Ali et al.

Fig. 1. Bank class diagram

ClassDiagram
- visibility : VisibilityType

Operation

0..* operations

classes 0..*

0..* attributes

Attribute

- visibility : VisibilityType
- abstract : EBoolean 0..* superTypes

public
protected
private
package

<<enumeration>>
VisibilityType

Fig. 2. Class diagram metamodel, (an excerpt)

reveals the operations and superclasses of the class in the navigation bar. In this
example, we navigate from the class diagram to the class, PensionAccount, and
then to its superclass, Account. Once a class is selected, the background of the
class is highlighted in yellow in the model and centred on the screen, if needed,
for easier identification.

To realize this navigation, several navigation mappings have to be specified
on the class diagram metamodel shown in Fig. 2. The first navigation mapping
has the ClassDiagram metaclass as its source and the classes reference as its
target. The second and third mappings have the Classifier as their source and
the operations rsp. superTypes reference as their target. A reference is used
as the target instead of a metaclass, because one metaclass may have several
relationships with another metaclass.

These three navigation mappings each consist of one hop. However, it may
sometimes be necessary to skip intermediate elements and, e.g., define a naviga-
tion that goes from a class diagram directly to all the operations defined in the
diagram without listing all the classes first. Such a navigation requires multiple
hops, e.g., first from the ClassDiagram to the classes reference and then on
with the operations reference.

The navigation mapping from Classifier to superTypes is different com-
pared to the other mappings, because it is useful to not only show the direct

Generic Graphical Navigation for Modelling Tools 47

Fig. 3. Bank class diagram and sequence diagram of debit operation

superclass of a class, but instead the complete hierarchy of superclasses. For
these situations we provide a closure flag that can be set.

2.2 Multi-view Navigation

The second situation concerns multi-view modeling, i.e., inter-model navigation.
The navigation may involve models of the same type, i.e., intra-language nav-
igation, or models from different languages, i.e., inter-language navigation. An
example of inter-model, intra-language navigation is a sequence diagram that
defines the behaviour of an operation, which sends messages to invoke other
operations. In this case, one may want to navigate from the invocation message
in the first sequence diagram to another sequence diagram showing the detailed
behaviour of the invoked operation. This navigation can be handled the same
way as single model navigation, with the from element being the message and
one hop to its sequence diagram reference. In this case, though, the reference
points to a model element in a different model.

An example for inter-model, inter-language navigation is a class diagram,
where one may want to navigate from an operation declaration in a class to a
sequence diagram defining the behaviour of the operation as shown in Fig. 3. In
this situation, the two languages – the class diagram language and the sequence

48 H. Ali et al.

FeatureDiagram 0..* classes Feature

0..* excludes 0..* requires

0..* children0..1 parent

Fig. 4. Feature diagram metamodel, (an excerpt)

diagram language – are used together in a specific way for a purpose, which we
term perspective in this paper.

In the navigation bar, this connection is also visualized as the “right”
arrow, which opens a drop-down list similar to intra-model navigation. When
debit(amount) under the Operations tab is clicked, a list of other linked mod-
els pops up. Upon clicking the DebitSequenceDiagram tab, as highlighted in
the figure with a red box, the linked sequence diagram is opened. Because this
navigation involves a different type of model, the navigation bar is extended to
display the class diagram model name as well as the sequence diagram model
name to the right.

Navigating back to the class diagram can then simply be achieved by directly
clicking on the class diagram name in the navigation bar. Furthermore, the
sequence diagram has a “left” arrow which also opens a drop-down box to nav-
igate any incoming inter-model navigation mappings in the opposite direction.
For example, a workflow model may establish a mapping from one of its steps
to the same sequence diagram. The “left” arrow then allows navigating from the
sequence diagram to the class diagram or to the workflow model.

We also need to take into account that it is possible to directly open any
model using a file browser. When the above sequence diagram is opened directly
with a file browser (and not through navigation starting with a class diagram),
the navigation bar should still show that the sequence diagram depicts behaviour
that is best understood in the context of the class diagram or workflow model.
To determine which model should be shown in the navigation bar, the boolean
attribute (default) of one of the incoming inter-model mappings is set to true.

The main difference to the intra-language navigation mappings described in
the previous section is that there exists no prior link between the metamodel of
the class diagram language and the metamodel of the sequence diagram language
(assuming that these two metamodels have been developed independently). Con-
sequently, an inter-language mapping involves a from metaclass and a to meta-
class instead of reference hops.

2.3 Software Product Line Navigation

The third situation involves Software Product Line (SPL) development, which
groups related model artifacts with commonalities and variabilities for a given
family of products [9]. In SPL, a feature designates a user-relevant functionality
or system quality that can be present or not in a product. A feature diagram
describes the relationships among features, i.e., the set of feature configurations
that produce valid products.

Generic Graphical Navigation for Modelling Tools 49

Fig. 5. Feature diagram of a bank system

Fig. 6. Account class diagram in CheckingFeature

Figure 4 depicts a metamodel for feature diagrams. A FeatureDiagram basi-
cally has a list of Features with parent/children relationships among them.
Some of these features may be optional, while others are mandatory, and define
requires and excludes relationships to other features. Figure 5 shows an example
feature model for a bank system supporting different kinds of bank accounts.
The features SavingsFeature, CheckingFeature, and MortgageFeature are in an
OR relationship, meaning that at least one of them must be selected in order to
create a valid configuration.

In model-driven SPLs, the structural and behavioural properties of features
are described with models linked to these features. In additive variability, each
feature is realized by one or several models, and to derive a product the realiza-
tion models corresponding to the chosen features are composed with each other.
In negative variability, a so-called 150% model describes the system with all fea-
tures enabled. Each feature is linked to model elements related to the feature,
and to derive a product the model elements that are not linked to any chosen
features are removed from the model.

While negative variability requires a highlighting feature similar to what
is shown in Fig. 1, positive variability requires navigation among models. To
illustrate feature-oriented navigation, we split the bank account class diagram
from Fig. 1 into four smaller class diagrams. These class diagrams can then be
composed (i.e., merged) to produce a bank model with the desired features.

Clicking on the “right” arrow under BankFeatureDiagram first shows the
features and then the models realizing a feature (similar to the sequence diagrams
of operations). Selecting a feature highlights the feature in the feature diagram,
while selecting a model of a feature takes the modeler to the model associated
with this feature as illustrated in Fig. 6.

Figure 6 shows the class diagram that contains the common structure used
by all bank account features. At this time, though, the developer is currently
working on the class diagram in the context of the CheckingFeature. This focus is
depicted in the navigation bar by displaying the name of the CheckingFeature in

50 H. Ali et al.

Fig. 7. Account class diagram in SavingsFeature

Fig. 8. Reuse metamodel, (an excerpt)

the navigation bar instead of the BankFeatureDiagram. The “right” arrow under
CheckingFeature allows navigating to the models associated with the feature, i.e.,
the shared AccountsClassDiagram and the CheckingClassDiagram (which shows
the generalization of the CheckingAccount class). The “left” arrow under the
AccountClassDiagram shows a drop-down list with all other features that also
use this class diagram. For example, when the “SavingsFeature” is clicked, the
name “CheckingFeature” in the navigation bar is changed to “SavingsFeature”,
i.e., a context switch, and clicking the arrow under the “SavingsFeature” shows
the models associated with it as shown in Fig. 7.

In terms of navigation mappings, feature-oriented navigation does not intro-
duce any new kind of mapping. The mappings between a feature diagram and
its features are intra-model mappings already discussed in Sect. 2.1. The map-
pings from features to class diagrams are inter-model, inter-language mappings
already discussed in Sect. 2.2. However, since a feature is treated differently than
other model element in terms of how it is displayed in the navigation bar, a
fromIsNavigationKey flag needs to be set in its navigation mapping.

2.4 Navigation of Reusable Artifacts

The final situation discussed here concerns the use of reusable artifacts dur-
ing software development. Consider the sequence diagram for debit(amount)
in Fig. 9 and assume that a reusable artifact for authentication exists with
a sequence diagram as shown in Fig. 10. When the debit(amount) sequence
diagram reuses the Authentication sequence diagram, the body of the reusing
sequence diagram replaces the box labeled with * in the reused sequence dia-
gram. Consequently, the authentication check is performed before the body of
the reusing sequence diagram. To specify this reuse, a composition specification
needs to be provided that links the debit(amount) sequence diagram with the
Authentication sequence diagram as defined in the metamodel for reuse spec-
ifications (see Fig. 8). The reuse metamodel captures the links between reused

Generic Graphical Navigation for Modelling Tools 51

Fig. 9. Reuse of authentication

Fig. 10. Authentication reuse hierarchy

elements and reusing elements with a mapping. In our example, a mapping is
established between the instance of the SequenceDiagram metaclass represent-
ing the debit operation to the SequenceDiagram metaclass instance representing
the authentication operation. Once such a mapping in the reuse specification
is established, it should be possible to navigate this composition link with the
help of the proposed navigation bar.

To support this navigation, an “R” is displayed under the DebitSequenceDia-
gram in Fig. 9. Clicking on it shows all reuses of this model (or individual model
elements of the model). Once a reuse is selected, the modeler is taken to the
reusable artifact. This involves a context switch, which results in the navigation
bar showing the reused sequence diagram with its default parent (i.e., its class
diagram) and the default parent of the class diagram (i.e., its feature). As shown
in Fig. 10, an “R” at the left of the navigation bar indicates the reuse hierar-
chy that is currently explored (e.g., the reusable artifact Authentication and the
Bank that is reusing it). Clicking on an element in the reuse hierarchy results in
direct navigation to that level.

In terms of navigation mappings, an intra-language mapping needs to be
established (e.g., from the reusing sequence diagram to the reused sequence
diagram). This navigation mapping requires a from element. Furthermore, two
hops are required, which are references. The first hop is identified by the reusing
reference and the second hop is identified by the reused reference. Note, however,
that the reusing reference needs to be traversed in the reverse direction, because

52 H. Ali et al.

the reference is at the side of the source element of the hop (i.e., the reusing
sequence diagram). Since reuse links are treated differently than other navigation
links (due to the required context switch from the reusing artifact to the reused
artifact), the reuse flag needs to be set for this navigation mapping.

2.5 Filtering of Model Elements

A complex model diagram may have a large number of model elements, which
may be overwhelming to show in the navigation bar. To streamline navigation, we
support filtering of model elements. E.g., a modeler may want to find all classes
in a system and show only the public operations of each class. We demonstrate
this mechanism with the class diagram shown in Fig. 1, which depicts a bank
system where the Account class has two public methods and one private method.

Clicking the drop-down arrow under BankClassDiagram in the navigation bar
pops up the Classes of the model. Clicking on a class reveals the operations and
superclasses of the class in the navigation bar. In this example, we navigate from
the class diagram to the class, Account, and then only to its public operations,
credit(amount) and debit(amount).

To realize this filtering mechanism, a filter condition has to be encoded for
the class diagram metamodel shown in Fig. 2. We filter based on an attribute
value of the relevant model element. For example, the filter condition could be
abstract classes, public classes, etc. In Fig. 1, the result based on filtering public
operations is shown. To achieve this, the filter condition specifies the attribute of
the metaclass that the filter should consider (i.e., the visibility attribute of the
Class metaclass), the comparison value (i.e., the enumeration literal public),
and a comparison operator (i.e., EqualTo).

To allow a modeler to dynamically configure which navigation mappings and
associated filters the navigation bar uses to populate its content, it is possible
to activate navigation mappings at runtime through preference settings.

3 Navigation Metamodel

This section describes our navigation metamodel that the designer of a lan-
guage or modelling tool can use to define navigation mappings that configure our
generic navigation bar. We elaborate our metamodel in the context of the Eclipse
Metamodelling Framework (EMF), in which all metamodels are expressed using
the metametamodelling language ECore. As such, any model element that is part
of a language metamodel and could be selected as the source of a navigation link
is encoded as an instance of the class EClass.

As explained with the examples above, for each Perspective1 there are
two broad categories of navigation, namely intra-language and inter-language
navigation, which are indicated by two metaclasses (IntraLanguageMapping

1 Recall that a perspective represents a purpose for using models expressed in one or
several modelling languages during software development.

Generic Graphical Navigation for Modelling Tools 53

Greater
GreaterEqualTo
EqualTo
NotEqualTo
LessEqualTo
Less

<<enumeration>>

ComparisonOperator

- default : EBoolean

- fromIsNavigationKey : EBoolean

InterLanguageMapping

EClass

name : String
closure : EBoolean
reuse : EBoolean

IntraLanguageMapping

Perspective
active : EBoolean

Mapping0..* mappings

{ordered}

EReference Object

operator : ComparisonOperator

Filter

1 to1 from

1 from

1..* hops{ordered}

EAttribute

1 operand1 value

Navigation Metaclasses

Fig. 11. Navigation metamodel

and InterLanguageMapping) in Fig. 11. In intra-language, we navigate from a
model or one of its model elements (represented as EClass) to one or several
elements of the same language by following references. In language metamodels
defined with Ecore, these references are instances of EReference. Since naviga-
tion might involve traversing several references, every IntraLanguageMapping
therefore defines an ordered collection of EReference called hops.

Furthermore, each intra-language mapping has the following three attributes:
name, closure, and reuse. The string attribute name allows the tool designer to
specify the text that should appear in the navigation bar for this navigation. The
boolean closure attribute can be set for any IntraLanguageMapping where the
from EClass is identical to the model element referred to by the last hop. In this
case, the navigation bar will traverse this mapping recursively and display all
reached target model elements. In our example, closure is set when navigating
from a class to its superclasses in order to display the entire superclass hierarchy
in the navigation bar. The boolean reuse identifies an intra-language navigation
mapping that requires a context switch.

In case of inter-language mappings, the navigation involves models of different
software languages, e.g., navigating from an operation definition in a class dia-
gram to the sequence diagram specifying the behaviour of the operation. Hence,
for InterLanguageMappings, the from and to are always instances of EClass,
and each mapping is a 1-to-1 relationship. Finally, the default attribute spec-
ifies whether the source of an inter-language navigation mapping identifies the
default parent of a target model. The fromIsNavigationKey attribute identifies
key model elements (e.g., a feature) that need to be shown in the navigation bar
instead of their model name.

To support filtering of language elements, we attach a Filter to the Mapping
metaclass, which is the superclass of the InterLanguageMapping and Intra-
LanguageMapping navigation mappings. Filtering is always applied on the to
elements in the case of inter-language filtering, or to the elements designated
by the EClass referred to by the last hop in the case of intra-language filtering.
The operator attribute specifies the comparison operator for the filtering using

54 H. Ali et al.

pre-defined enumeration values as shown in Fig. 11. A filter then compares the
attribute value of the operand EAttribute with the value Object designated
by the filter. When several filter conditions are specified for a mapping, they are
combined by an implicit logical AND.

Last but not least, the active attribute in the metaclass Mapping allows the
navigation bar to be customized at runtime. For example, a modeller can toggle
the active attribute to false if at some point he does not wish the operations of
classes to show up in the navigation bar.

Our prototype implementation of the navigation bar ensures that the navi-
gation information is always up-to-date by registering as a listener to all model
elements that are instances of EClass involved in navigation mappings. When-
ever a model is changed, the navigation bar is notified and the navigation links
are adjusted according to the occurrences of the mappings in the model.

4 Evaluation

The Unified Modelling language (UML) [10] is a widely accepted standard for
modelling software intensive systems. In its current version it defines 13 different
diagrams. UML modelling tools facilitate the specification of systems at different
levels of abstraction and from different points of view.

In this section, we analyse the navigation facilities of several popular mod-
elling tools and evaluate whether our navigation metamodel covers them. We
performed a Google search for “most popular UML tools”. From the obtained
list we investigated the top 4, namely: ArgoUML (free), StarUML (free),
Visual Paradigm Enterprise (commercial), and MagicDraw (commercial). We
also selected Papyrus, as a representation of a popular modelling tool based on
EMF, and finally TouchCORE [11], as a representative of a UML modelling
tool that explicitly supports software product line modelling and model reuse.
In each tool, we specified a class diagram, and defined the behavior of some
operations using sequence diagrams or state machines. We then explored how
the tools support navigation. We organize our findings under the topics of intra-
language and inter-language navigation, filtering, element highlighting, naviga-
tion of inheritance hierarchy, feature-oriented navigation, and navigation across
reuse boundaries.

ArgoUML is an open source tool supporting all UML 1.4 diagrams [12].
Intra-Language Navigation in ArgoUML is done with the model explorer, which
shows the list of diagrams and their contained elements. Inter-Language Navi-
gation is limited, but clicking on an element in a diagram in the model explorer
opens the corresponding diagram and highlights the selected element. ArgoUML
supports different kinds of filtering using their own notion of perspective. Each
perspective specifies the kind of model elements to be shown in the explorer.
The tool allows modelers to define their own perspectives using existing rules
by combining existing filter conditions from a provided library. When a model
element is selected in the model explorer, the element is highlighted in blue in
the editor, if it is currently visible on screen. The model explorer can also list
all the model classes and their subclasses to explore the inheritance hierarchy.

Generic Graphical Navigation for Modelling Tools 55

Our proposed generic navigation approach can support all the navigation
facilities that ArgoUML offers. The perspectives of ArgoUML can be represented
as a filter condition in our generic mechanism. For example, the Class-Centric
perspective lists only diagrams and classes in the model explorer. With our
approach, this can be done by setting the active flag of Mapping for all instances
of Class (see Figs. 2 and 11), and deactivating all other mappings.

StarUML is a modelling tool compatible with the UML 2.x standard and
supporting 11 types of diagrams [13]. The tool partially supports intra-language
navigation in the model explorer by right-clicking on a model element and choos-
ing Select In Diagram. The tool supports inter-language navigation using the
model explorer: clicking on a class shows the contained operations. Clicking on
the operation displays the list of associated sequence diagrams, if any. StarUML
has no support for filtering. Each model element in the currently displayed dia-
gram can be highlighted in blue by selecting it in the model explorer. StarUML
partially supports navigation of the inheritance hierarchy in class diagrams by
navigating from a subclass to its parent class. However, it is not possible in
StarUML to visualize the complete inheritance hierarchy of a given class.

Our proposed generic navigation approach can express all the navigation
facilities that StarUML provides. Additionally, our approach supports filtering
and displaying of the entire inheritance hierarchy.

MagicDraw [14] supports all UML diagrams. MagicDraw provides a struc-
tured containment tree which facilitates navigation from a model element to its
related elements. Clicking on a model element displays it in the diagram editor,
switching diagrams if necessary. However, just like in StarUML, the containment
tree in MagicDraw displays the model element definitions separately from the
diagrams in which they are used in. MagicDraw provides full support for inter-
language navigation. A sequence diagram or activity diagram that is linked to an
operation in a class diagram can be navigated to directly from the model element
in the model editor. The tool has several filter conditions under three different
categories, namely: List, Inheritance, and Structural. Each category has multiple
options that can be turned on or off, e.g., Class, Actor, or Association. When a
filter condition is enabled, the corresponding model elements are hidden in the
containment tree. In the containment tree of the model explorer, a superclass
can be navigated to by clicking a plus (+) tab before its subclass.

Our generic approach supports the navigation facilities of MagicDraw. The
filtering in MagicDraw is at the granularity of model element types, i.e., every
model element of a given type is either shown or not shown. Our generic mech-
anism supports this using the active flag in Mapping (see Fig. 11). Unlike our
approach, MagicDraw does not support filtering based on attribute values, e.g.,
to define a filter that displays only abstract classes.

Visual Paradigm Enterprise supports UML 2 and SysML modelling [15].
Visual Paradigm has full support for intra-language navigation within the dia-
gram navigator similar to MagicDraw. The tool also provides excellent support
for inter-language navigation. E.g., when an operation in a class diagram has a
linked sequence or state diagram, an icon is displayed with the class that can be

56 H. Ali et al.

Table 1. Navigation support of UML tools

Tool Intra-

language

Inter-

language

Attribute

filtering

Activation

filtering

Element

highlighting

Inheritance

hierarchy

SPL Model

reuse

ArgoUML Yes Yes No Yes Yes Yes No No

StarUML Partial Yes No No Yes Partial No No

MagicDraw Yes Yes No Yes Yes Partial No No

Visual Paradigm Yes Yes No No Yes Partial No No

Papyrus Yes Yes No Yes Yes Partial No No

TouchCORE Yes Yes No No Yes No Yes Yes

clicked to navigate to the linked diagrams. Visual Paradigm does not support fil-
tering. A modeler can right-click an element in the explorer or diagram navigator
and choose Select In Diagram. This takes the modeler to the diagram containing
the element with the element being highlighted in bold, switching the current
view if necessary. The tool only partially supports inheritance navigation, as a
modeler can only navigate from a class to its direct superclasses.

Papyrus is a UML modelling tool based on EMF that supports many UML
diagrams. The tool supports navigation of elements within a model in the model
explorer, including traversing from a diagram to its elements. Papyrus uses hyper-
links to establish relationships between two diagrams, e.g., between a class and
an activity diagram or a state diagram. The tool displays these inter-language
links under the corresponding model elements in the model explorer. The con-
tents for every model element shown in the diagram editor can be selectively
hidden or shown by enabling or disabling filter options. For example in a class
diagram, classes can be visualized with or without their attributes. Selected
model elements in the model explorer, are highlighted in the diagram editor. Nav-
igating from the model explorer to an element opens up the diagram containing
the element in case it was not previously shown. Papyrus supports navigating
from subclasses to direct superclasses only.

TouchCORE is a modelling tool for concern-oriented software design [11,
16], focussing specifically on feature-driven modularisation as required in SPLs.
It also has explicit support for model reuse, and ships with a library of reusable
models. The tool supports Feature Models, Goal Models, Class Diagrams, State
Diagrams, and Sequence Diagrams. When selected in the model explorer, model
elements in the current diagram are highlighted in orange. The model explorer
allows the modeller to navigate, e.g. from an operation defined in a class diagram
to an attached sequence diagram. TouchCORE does not support filtering of
model elements nor navigation of the inheritance hierarchy. Since TouchCORE
was designed to specifically support SPL, there is excellent support for feature-
oriented navigation, e.g., navigating from a feature in a feature diagram to the
associated realization model(s). Conversely, when visualizing a model in the
model editor, the associated features are displayed and can be navigated to
easily. The tool keeps track of reuse dependencies between models. A modeler
can navigate from a current model to the reused models via the model explorer.

Generic Graphical Navigation for Modelling Tools 57

Evaluation Summary. Table 1 shows a summary of each tool’s navigation
capabilities. Each of the investigated tools has a model explorer, which corre-
sponds to our navigation bar. Our proposed generic mechanism covers all the
navigation means provided by the surveyed tools. No tool offers complete support
for all navigation features provided by our proposed navigation mechanism. Only
one tool supports the navigation of closures: ArgoUML supports the navigation
of the entire inheritance hierarchy in a class diagram. Attribute-based filtering is
not supported in any of the surveyed tools. However, we decided to include this
feature in our proposed metamodel, because many development environments
for programming languages have the ability to filter, e.g., by public elements. Of
course, our proposed metamodel could easily employ a general query expression
language for navigation purposes (e.g., OCL). However, the goal of this work is
to provide the modeller with a succinct set of concepts needed for navigation
in modelling editors instead of offering the full capabilities of languages such as
OCL, which are not needed in this context according to our analysis of popu-
lar UML modelling tools. For the same reason, our proposed metamodel only
supports conjuntive filters and not disjunctive filters.

5 Related Work

Navigation is an important mechanism to traverse, search, and retrieve infor-
mation. Many studies have been done on how to improve navigation in software
applications and web sites.

dos Santos et al. [7] investigate the effects of different types of menus in
web site navigation, assessing the usability as well as performance of 8 different
navigation mechanisms, each with distinctive properties. The study concludes by
putting forward a horizontal menu, which is the base structure of the navigation
bar presented in this paper. Burrel and Sodan [17] analyze six different types
of menus contained in web pages of institutions. Considering the factors layout,
ease of use, clarity of information, and ease of learning, they determine that
navigation consisting of tabs, side navigation bars at the top and vertical menus
on the left are the most favourite. We considered these insights when developing
the navigation bar proposed in this paper. Finally, Muneo Kitajima et al. [18]
present CoLiDeS (Comprehension-based Linked model of Deliberate Search),
which is a model-based design methodology that website developers can follow
to design better navigation for webpages. The main objective is to improve the
user’s success rate while searching for information on typical web sites.

To the best of our knowledge, there has been no prior work specifically on
navigation for graphical modelling tools. Programming IDEs typically offer con-
textual menus that allow a developer to navigate within and across source code
modules, e.g., from a method call to the method declaration. These relationships
are typically inferred from static source code analysis. The following works tar-
get advanced navigation in programming IDEs, and as such can also be applied
for navigation in textual modelling languages.

Mylyn is a task and application lifecycle management (ALM) framework for
the Eclipse IDE [19,20]. In Mylyn, a developer can define tasks and declare which

58 H. Ali et al.

tasks he is currently working on. Mylyn then keeps track of code elements that
are being looked at, created, or modified for each task. The developer can then
use this information for task-based navigation.

Similarly, the FEAT plugin for Eclipse [21] allows the developer to define a
high-level conceptual unit called concern, e.g., a feature, a nonfunctional require-
ment, a design idiom, or an implementation mechanism. When coding, a devel-
oper can deliberately associate code elements to the concern, slowly building up
a concern graph that relates code elements that are scattered throughout multi-
ple source code modules. Subsequently, the developer can use the concern graph
for highlighting and navigation purposes.

6 Conclusion

Model-driven engineering is a conceptual development framework where models
of the system under development are created and manipulated using different
formalisms at different levels of abstraction. Separation of concerns is further
promoted when working with multi-view modelling, software product lines, and
domain-specific modelling languages. While this separation into many interre-
lated models has many benefits, it also makes it harder for the developer to
determine the relevant context when looking at a model, and to navigate from
one model to related ones.

We propose a metamodel that covers two categories of navigation, intra-
language and inter-language navigation. The metamodel allows the designer of
a modelling tool to generically capture the relevant navigation links between
model elements in a set of models manipulated for a given purpose. It is done by
establishing inter-language and intra-language mappings designating the relevant
metaclasses and references in the metamodels of the involved languages. We
illustrate the effectiveness of our navigation metamodel by examples that involve
feature models, class diagrams, and sequence diagrams, but our approach can
be applied to any modelling language that is defined by a metamodel.

We furthermore show how this generic information can be used to visualize
the current context of a model with a navigation bar, and how to populate
the navigation bar with navigation links. When a navigation link is clicked, we
either highlight the chosen model element if that element is located in the current
model, or we navigate to the model that contains the model element and update
the navigation bar to reflect the new context.

We validate that our generic navigation approach covers the navigation facil-
ities provided by current modelling tools by conducting a survey of 6 popular
UML modelling tools.

Our approach is not tool specific and can be applied to any language and mod-
elling environment that uses metamodels. The main benefit is that if a modelling
environment adopts our generic navigation approach, setting up navigation when
adding a new language to an environment becomes greatly simplified. In that
case, language designers do not have to implement intra-navigation support from
scratch during language design, but can customize the navigation bar simply by

Generic Graphical Navigation for Modelling Tools 59

creating the appropriate intra-language mappings. To link the new models with
models expressed in other languages already supported by the modelling envi-
ronment, the corresponding inter-language mappings must be defined. With the
increased adoption of Domain-Specific Languages (DSLs), this approach gives
language designers essential support to rapidly define navigation within models
expressed in the DSL as well as across model boundaries.

As future work, we are planning to examine the navigation facilities of non-
UML modelling tools to ensure that our generic navigation approach can cover
them. Furthermore, we will carry out an empirical user study to evaluate the
usability of the navigation facilities offered by our navigation bar. Finally, we
are planning to integrate our current navigation bar implementation with a
modelling tool that supports language plug-ins.

References

1. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool Publishers, San Rafael (2012)

2. Pfeiffer, R.-H., W ↪asowski, A.: TexMo: a multi-language development environment.
In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.)
ECMFA 2012. LNCS, vol. 7349, pp. 178–193. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31491-9 15

3. Di Ruscio, D., Lämmel, R., Pierantonio, A.: Automated co-evolution of GMF editor
models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS,
vol. 6563, pp. 143–162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19440-5 9

4. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and
change propagating transformation language. In: Malloy, B., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19440-5 11

5. Beard, D.V., II, J.Q.W.: Navigational techniques to improve the display of large
two-dimensional spaces. Behav. Inf. Technol. 9(6), 451–466 (1990)

6. Mackinlay, J.D., Robertson, G.G., Card, S.K.: The perspective wall: detail and
context smoothly integrated. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 173–176. ACM (1991)

7. dos Santos, E.P., de Lara, S., Watanabe, W.M., Fortes, R.P., et al.: Usability
evaluation of horizontal navigation bar with drop-down menus by middle aged
adults. In: Design of Communication Conference, pp. 145–150. ACM (2011)

8. Combemale, B., DeAntoni, J., Baudry, B., France, R.B., Jézéquel, J., Gray, J.:
Globalizing modeling languages. IEEE Comput. 47(6), 68–71 (2014). https://doi.
org/10.1109/MC.2014.147

9. Pohl, K., Böckle, G., van Der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

10. OMG: Unified Modeling Language, 2.5.1, p. 802 (2007)
11. TouchCORE (2018). http://touchcore.cs.mcgill.ca/
12. ArgoUML - Free, opensource UML engineering tool. http://argouml.tigris.org/

index.html
13. StarUML. http://staruml.io/

https://doi.org/10.1007/978-3-642-31491-9_15
https://doi.org/10.1007/978-3-642-31491-9_15
https://doi.org/10.1007/978-3-642-19440-5_9
https://doi.org/10.1007/978-3-642-19440-5_9
https://doi.org/10.1007/978-3-642-19440-5_11
https://doi.org/10.1109/MC.2014.147
https://doi.org/10.1109/MC.2014.147
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
http://touchcore.cs.mcgill.ca/
http://argouml.tigris.org/index.html
http://argouml.tigris.org/index.html
http://staruml.io/

60 H. Ali et al.

14. No Magic Inc.: MagicDraw. https://www.nomagic.com/products/magicdraw
15. Ideal Modeling & Diagramming Tool for Agile Team Collaboration. https://www.

visual-paradigm.com/
16. Alam, O., Kienzle, J., Mussbacher, G.: Concern-oriented software design. In: Mor-

eira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS,
vol. 8107, pp. 604–621. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41533-3 37

17. Burrell, A., Sodan, A.C.: Web interface navigation design: which style of
navigation-link menus do users prefer? In: Proceedings of the 22nd International
Conference on Data Engineering Workshops, pp. 42–42. IEEE (2006)

18. Kitajima, M., Blackmon, M.H., Polson, P.G.: A comprehension-based model of web
navigation and its application to web usability analysis. In: McDonald, S., Waern,
Y., Cockton, G. (eds.) People and Computers XIV-Usability or Else!, pp. 357–373.
Springer, London (2000). https://doi.org/10.1007/978-1-4471-0515-2 24

19. Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-
tivity. In: Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 1–11. ACM (2006)

20. EMF Website. Mylyn. https://www.eclipse.org/mylyn/
21. Robillard, M.P., Murphy, G.C.: Representing concerns in source code. ACM Trans.

Softw. Eng. Methodol. 16(1), 3 (2007)

https://www.nomagic.com/products/magicdraw
https://www.visual-paradigm.com/
https://www.visual-paradigm.com/
https://doi.org/10.1007/978-3-642-41533-3_37
https://doi.org/10.1007/978-3-642-41533-3_37
https://doi.org/10.1007/978-1-4471-0515-2_24
https://www.eclipse.org/mylyn/

	Generic Graphical Navigation for Modelling Tools
	1 Introduction
	2 Generic Language Navigation
	2.1 Single Model Navigation
	2.2 Multi-view Navigation
	2.3 Software Product Line Navigation
	2.4 Navigation of Reusable Artifacts
	2.5 Filtering of Model Elements

	3 Navigation Metamodel
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

