
Union Models: Support for Efficient Reasoning
About Model Families Over Space and Time

Sanaa Alwidian and Daniel Amyot(&)

School of EECS, University of Ottawa, Ottawa, Canada
{salwidia,damyot}@uottawa.ca

Abstract. For a given modeling language, a model family is a set of related
models, with commonalities and variabilities among family members, that
results from the variation/evolution of models over the space and time dimen-
sions. With large model families, the analysis of individual models becomes
cumbersome and inefficient. This paper proposes union models as a paradigm
supporting the representation of model families (for time and space dimensions)
using one generic model. Elements of a union model are annotated with
information about time and space using a new spatio-temporal annotation
language (STAL) in order to distinguish which element belongs to which
model. We demonstrate empirically the usefulness of union models for ana-
lyzing a family of models, all at once, compared to individual models, one
model at a time. Our experiments suggest that the use of union models facilitate
efficient analysis in several contexts.

Keywords: GRL � Model analysis � Model evolution � Model family �
Property checking � Union model

1 Introduction

In Model-Based Engineering (MBE), models are first-class artifacts used to represent
and abstract knowledge and activities that govern a particular domain [1]. Models often
undergo continuous change due to, for example, modifications in requirements or
standards, or enhanced understanding of the domain to be modeled. Such change could
happen over the course of time (i.e., evolution), resulting in one model evolving into a
set of related versions. A model could also vary over the space dimension, where there
could be several variants of the same model, all existing at the same time (e.g., to reflect
different products or configurations). In both scenarios, a family of related models in
the same language, where commonalities and variabilities between family members
exist, is called a model family.

Change in an MBE context is inevitable. Hence, raising awareness to the phe-
nomena of model families is of particular importance, especially in variant-rich
domains such as cyber-physical systems, smart systems, or regulatory environments
(where slightly different regulations need to be modeled for different regulated parties
and jurisdictions). In any of these domains, models that are used to capture the
domain’s dynamic nature are subject to frequent variation and evolution. In other
words, a modeler may start with an initial model version (v0), which over time needs to

© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 200–218, 2019.
https://doi.org/10.1007/978-3-030-30690-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_12

be updated into a slightly different version (v1) to reflect a changing requirement. This
version may further evolve into versions v2, v3, and so on. In the space dimension, two
or more modelers may need, at the same time, to create slightly different variations of
an initial model to reflect different spaces called configurations. In such contexts,
modelers often end up having a family of model versions and/or variations. Analyzing
and reasoning about such models requires the modeler to load into a tool, analyze, and
report on analysis results of each individual model, separately. This is a time-
consuming and laborious process that becomes more critical as the number of models
to analyze gets larger.

To alleviate these challenges, we propose to capture the set of individual models in
a family using one generic model called union model (MU). MU represents the union of
all elements found in all family members, in both the space and time dimensions. The
purpose behind the creation of MU is to support efficient reasoning and analysis of a
family of models, all at once, compared to analyzing individual models separately. At
the core of MU is the annotation of elements, which we realize by proposing a spatio-
temporal annotation language (STAL). The main purpose of STAL is to annotate
elements of MU with information about space and time, so as to distinguish which
element belongs to which member model in the model family.

The rest of this paper is organized as follows: Sect. 2 discusses the motivation
behind our work. Section 3 provides necessary background and formalisms that we
rely on to formalize union models. In Sect. 4, we discuss how union models are
formalized, constructed, and annotated. The potential benefits of using union models
for reasoning and analysis are discussed in Sect. 5. Section 6 reports on experiments
conducted to validate the potential efficiency of union models. Related work is dis-
cussed in Sect. 7. Finally, Sect. 8 concludes the paper and provides future directions.

2 Motivation

To explain and motivate our approach, we use a simple proof-of-concept example of a
smart home environment, where we use the Goal-oriented Requirement Language
(GRL) [2, 3] as a modeling language. In a smart home environment, stakeholders’
goals, importance of goals, means to achieve goals and relationships between goals
(e.g., contributions or decompositions) vary. This variation stems mainly from the
existence of different configurations of a smart home that also evolve over time. In this
example, we distinguish between two different configurations:

• Configuration A (confA): A smart home that is lived in by students who spend about
8 h of the day out of home.

• Configuration B (confB): A smart home that is lived in by retired senior persons
(most likely sick), who spend most of their daytime and nighttime at home.

In these two configurations (see Fig. 1), a student’s goals are slightly different from
a senior’s goals. For example, a student is more concerned about getting fresh air in her
room by opening windows so as to reduce energy consumption (since a student’s
budget is usually tight). A retired senior, on the other hand, may focus more on getting
her room’s atmosphere refreshed using the most convenient option (regardless of cost),

Union Models: Support for Efficient Reasoning about Model Families 201

e.g., by having the ventilator turned on most of the time. Also, the importance of
achieving the “refresh air inside” goal differs between a senior person (100) and a
student (80). Furthermore, to keep a senior’s smart home secure, the home central
operator could give the illusion that the house is lived in using several options, one of
them being to keep lights always on. However, this may not be a feasible option for a
student, since turning lights on all the time consumes energy beyond a student’s budget
affordability.

In addition to these “space-based” variations, goal models (in both configurations)
could also evolve over time. In this example, we illustrate the evolution of models after
several months (however, evolution could also happen over shorter periods of times).
In such time-based evolution, goals and the means to achieve them (i.e., tasks) may
differ between version 1 (produced in the summer) and version 2 (produced in the
winter), due to changes in temperature, humidity, daylight duration, etc.

For a student’s smart home (i.e., confA), the importance of goals/tasks and their
impacts (i.e., contribution values) on other goals evolved from version 1 to version 2.
For instance, the importance of task “Open window” in version 1 is 90 while it is 20 in
version 2, as a student is able to open the window more often in the summer (assuming
these models were produced in a Nordic country). Also, the impact of opening a
window on the goal “energy saved wisely” is higher in the summer version (with
contribution value = 90) than in the winter version (60). Finally, opening a window
often in the summer has a higher negative impact on the “increased privacy” softgoal.

The previous evolutions are also applicable in the senior smart home environment
(i.e., confB). As Fig. 1 shows, the “Open window” task is almost neglected at winter
time (with importance = 10) compared to summer time (importance = 60). This is
because a senior person is more vulnerable to get cold in the winter. Also, in version 2

Version 2Version 1

Va
ri

ab
ili

ty
 o

ve
r

sp
ac

e
(c

on
fig

ur
at

io
n)

Student
smart
home

Senior
smart
home

Variability over time (evolution)

Fig. 1. Goal model family for smart home environments varying according to space and time

202 S. Alwidian and D. Amyot

(winter), the possibility for seniors to get depressed and anxious is higher (due to snow
fall and short daylight duration). In this version, a smart home operator may calm the
senior down by turning on soft music.

One important challenge implied by Fig. 1 is related to the complexity and effort
required to analyze such family of models. Note that past versions may require analysis
in case old versions of a product remain used by customers in the field. Assume a
modeler plans to conduct satisfaction analysis (using the GRL forward propagation
algorithm [2]) on each individual model, by assigning initial values to particular leaf
goals, in order to study the impact of its satisfaction on the satisfaction of upper-level
goals. She would end up running the same evaluation algorithm four times (in this
example only), even though there are many common elements and computations
among the four models. Intuitively, if there are M individual models in a model family,
and each model has E elements, then the complexity of running a satisfaction propa-
gation algorithm on all models would be in order of M � O(E). Such complexity
becomes more significant if there are hundreds of models (or more), with hundreds of
elements (or more) in each model. Moreover, the effort of loading a model into a tool,
analyzing the model, saving analysis results, and then moving to the next model is not
negligible in practice.

We aim to improve analysis complexity and reduce the effort of analyzing model
families in arbitrary modeling languages (not only goal models), for both the space and
time dimensions. This objective motivates us to find a way of representing model
families other than using separate individual models. In this paper, we propose the use
of a union model (MU) as a single generic model that captures the entirety of a model
family (in both dimensions of variability), in a comprehensive and exact way, such that
all (and only) individual members of a family can be represented and analyzed.

3 Foundations

This section introduces relevant notations and background concepts related to graph-
based modeling and propositional logic encodings.

3.1 Graph-Based Formalization of (Meta)Models

We formalize metamodels (resp. models) as type graphs (resp. typed graphs), as
illustrated in Fig. 2.

Metamodel

ModelTyped Graph

Type Graph represents

represents

typed by conforms to

Fig. 2. Relationship between (meta)models and their graph representation

Union Models: Support for Efficient Reasoning about Model Families 203

The following definitions, based on previous work by Ehrig et al. [4], are used as a
basis for further formal definitions of model families and their union models.

Definition 1–Graph: A graph is a tuple G = (NG, EG, srcG, tgtG), where NG is a set of
graph nodes (or vertices), EG is a set of graph edges, and functions srcG, tgtG: EG!NG

associate to each edge a source and a target node, respectively, such that e: x ! y
denotes an edge e with srcG(e) = x and tgtG(e) = y.

In graph theory (as in typed programming languages, where each element is
assigned a type), it is often useful to determine the well-formedness of a graph by
checking whether it conforms to a so-called type graph. A type graph is a distinguished
graph containing all the relevant types and their interrelations [4]. This is analogous to
the relationship between models and metamodels in MDE [5], where each model needs
to conform to a metamodel, as depicted in Fig. 2.

Definition 2–Type graph (metamodel): A type graph TG is a distinguished graph,
where TG = (NTG, ETG, srcTG, tgtTG), and NTG and ETG are types of nodes and edges.

Definition 3–Typed graph (model): A typed graph is a triple Gtyped = (G, type, TG)
such that G is a graph (Def. 1) and type: G ! TG is a graph morphism called the
typing morphism. For example, the state machine model shown in Fig. 3 (right) is
typed with the metamodel shown in Fig. 3 (left).

The vocabulary (or scope) of a typed graph Gtyped is a set Voc = {NG[EG} of its
typed nodes and edges [4]. For example, the vocabulary of the model in Fig. 3 (right)
consists of nodes S1 and S2 of type State, node T1 of type Transition, and edges L1
and L2 of types src association (referred next as srcAssoc) and tgt association (referred
next as tgtAssoc), respectively. We refer to the set of nodes and edges that are in the
vocabulary of a model as the elements of that model.

3.2 Propositional Encoding of Models

In order to facilitate reasoning about models, and also to define a simple graph union,
we represent typed graphs (i.e., models) as logical propositions. To encode a model in
propositional logic, we first map elements in their vocabulary into propositional vari-
ables and then conjoin them. The mapping of graph elements into propositional vari-
ables is performed according to the following naming conventions:

• A node element n2NG of type t2NTG is mapped to a propositional variable “n-t”.
Formally: n-t iff 9n2NG ^ type(n) = t

Fig. 3. Type graph (left) and typed graph (right)

204 S. Alwidian and D. Amyot

• An edge element e2EG of type t2ETG with source node x and target node y is
mapped to a propositional variable “e-x-y-t”. Formally: e-x-y-t iff 9e2EG ^ type
(e) = t ^ srcG (e) = x ^ tgtG (e) = y.

For instance, the propositional encoding (PE) of the model (m) in Fig. 3 (right) is
the conjunction of its propositional variables, described as follows:

4 Union Models

The union model MU of a model family (MF) is the union of all elements in all
individual models of that family. The subsequent sections formally define union
models (based on Defs. 1 to 3 and Sect. 3.2), and discuss how to construct an MU and
how to distinguish its elements by means of annotations using our annotation language
(STAL).

4.1 Union Model Formalism

Definition 4–Union Model (MU): Let MF be a model family with two models (i.e.,
typed graphs), such that MF = {G1, G2}, where G1 = ((NG1, EG1, srcG1, tgtG1),
typeG1, TG) and G2 = ((NG2, EG2, srcG2, tgtG2), typeG2, TG). Their union model is a
typed graph MU = ((NU, EU, srcU, tgtU), typeU, TG), such that: NU = NG1 [NG2,
EU = EG1 [EG2, and the functions srcU, tgtU, and typeU are:

We can apply the above definition of graph union to sets of typed graphs of arbitrary
sizes. Note however that even if the typed graphs used to construct union models are
well-formed, there is no guarantee that their MU is also a well-formed model. In fact, a
union model MU could respect the typing constraints imposed by the TG, but not the
multiplicity constraints of attributes or association ends, or OCL constraints. We have
already highlighted this general issue in [6], which is outside the scope of this paper.

4.2 Union of Propositional Encodings of Models

Given the propositional encoding of models discussed in Sect. 3.2, the union operation
simply becomes the union of the propositional encodings of individual models.

Union Models: Support for Efficient Reasoning about Model Families 205

Definition 5–Proposition Encoding Union (PEU): Let MF = {G1, G2} be a model
family, where G1 and G2 are typed graphs with the same metamodel TG, and PE(G1)
and PE(G2) be their propositional encodings, such that they satisfy these conditions:

• Cond. 1: If two nodes have the same name and type, then these nodes are con-
sidered identical. We assume here that each node and each edge have its own
unique identifier. For simplicity, we express this identity by means of a unique
name.

• Cond. 2: If two edges have the same name and type and connect between the same
source and target nodes, then edges are considered identical.

Then, the union of their propositional encoding becomes: .
Again, provided that the two conditions are satisfied, we can generalize the

propositional encoding union (Def. 5) to a set of arbitrary encoded models.

4.3 Spatio-Temporal Annotation Language (STAL)

The challenging part of constructing a union model is not in the union operation itself
(as expressed in Def. 5), but in being able to distinguish to which models a particular
element belongs. To address this challenge, we propose a spatio-temporal annotation
language (STAL) to annotate elements of each individual model with space/time
information in the form of <vernum, confinfo> , where vernum denotes the version
number of a particular model (e.g., 1st version, and so on), while confinfo denotes space
dimension-related information (e.g., smart home configuration, organization type or
size, etc.).

Syntax and Semantics of STAL. In the time dimension, models can evolve (inde-
pendently and asynchronously) over distinct timepoints. Since timepoints can be
corelated and compared, they naturally form a chronological order. Given this inherent
chronological nature of models’ evolution, a sequence of versions of a particular model
can be annotated with sequential version numbers: ver1, ver2, ver3… vern. This creates
an implicit temporal validity between model versions. For instance, we can say that
ver1 happened before ver2. The timing information embedded with the vernum format in
STAL could represent version numbers or dates, or ranges thereof.

The space dimension, on the other hand, is different and somewhat more complex.
This stems from the fact that the space dimension is flat and has neither a chronological
order nor a hierarchical nature (except in very specific domains, such as in provinces
and their cities). In STAL, we use the naming conventions confX, confY, …, confZ
(instead of conf1, conf2, …, confn) to reflect the lack of ordering semantics.

If a configuration is simple, we use its syntactical description as a name for that
configuration. For example, in Fig. 1, we used the names confA = “Student smart
home” and confB = “Senior Smart home” as the names of the two different configu-
rations of smart homes. However, it is worth mentioning that information about con-
figurations could be composite (i.e., consists of several pieces of information). For
example, if we want to model different configurations or types of smart houses (similar
to TYPE1, TYPE2, and TYPE3 in [7]), where each type refers to a home of a specific
size, location, and occupant kind, then we need to take these information into

206 S. Alwidian and D. Amyot

consideration. For instance, TYPE1 refers to homes that are of medium size, located in
Ontario, and meant for seniors. To represent this type of composite information in
STAL, in a way that keeps annotated models as simple as possible, we propose the use
of look-up tables (see Table 1), which provide mappings between configuration names
and their real descriptions. Please note that in this example, the numbering suffixes of
TYPEs do not hold any ordering meanings and they are just descriptions of the
configuration.

Annotating the Propositionally-Encoded Models. We annotate the propositional
encodings of model elements with information about their versions and/or configura-
tions. For example, assume that the model m in Fig. 3 (right) represents a second
version (ver2) and a configuration X (confX) of a particular model. Then, the propo-
sitional encoding of m with annotation PE(mannot) of this model becomes:

Given a set of annotated, propositionally-encoded models and based on Def. 5, the
union of these models is the union of their annotated propositional variables:

Annotating the Union of Propositionally-Encoded Models with STAL. In a model
family, it is possible one model element belongs to several or all family members. For
instance, assume that there is a model family with one model configuration (confA) that
evolves into five versions (i.e., ver1 to ver5). Assume also a node n that belongs to the
five versions of that model. Now, to construct a union model, we need to unify the
annotated propositional variables of these five versions. In this case, n will be annotated
in the union model with five annotations: <ver1, confA> , <ver2, confA>, <ver3,
confA>, <ver4, confA>, <ver5, confA>. Such style may lead to large amounts of
annotations.

To simplify annotations of union models, STAL represents a sequence of version
annotations as a range of values ([start:end]). In the above example, the annotation of
n becomes <[ver1: ver5], confA> . Many sequences can also be used, e.g., for ver1 to

Table 1. Mapping configurations to their descriptions

Configuration Description

TYPE1 Size = Medium, Location = Ontario, Occupants = Seniors
TYPE2 Size = Large, Location = Ontario, Occupants = Students
TYPE3 Size = Medium, Location = Quebec, Occupants = Seniors

Union Models: Support for Efficient Reasoning about Model Families 207

ver7 skipping ver4, we get:<[ver1: ver3] [ver5: ver7], confA> . If an element belongs to
all versions and all configurations of a family, we annotate it with the keyword ALL.

Example. We use a simple state machine example, with two versions of a model, as
shown in Fig. 4. The union model combining these two versions is expressed as
follows:

In this paper, we limit ourselves to simple type graphs, where attributes of model
elements have to be expressed structurally with named nodes and edges. In future
work, we will also assess the benefits of extending the definitions of basic type and
typed graphs with explicit attributes, for instance using Ehrig’s attributed type graphs
(or E-graphs) [4], where special edges are used for attributes.

5 Reasoning and Analysis with Union Models

This section explores the research question: How efficient is reasoning and analysis
with a group of models, all at once, using MU in comparison to the use of individual
models? To answer this research question, we consider three reasoning tasks (RTs),
namely: property checking (which is already known in the literature), trend analysis,
and significance analysis (which we proposed for this work). Then we compare the
performance of the three RTs using MU as opposed to using individual models.

Although these kinds of analyses can still be performed using individual models
(several times, one model at a time), our objective is to try to make these analyses more
efficient using MU. In addition, we aim to reduce the effort of loading each model into a
tool, analyzing the model, saving analysis results, and then moving to the next model,
especially that this effort cannot be neglected with a large number of models. These
manual steps are however not considered in our results, so our results are conservative.

RT1: Property Checking. Property checking on models aims to verify if a model
satisfies a particular property or not. Given a model m and a property p, the result of
property checking is either True if m satisfies p, or False otherwise. For instance, a
modeler may want to check whether a group of state machine diagrams contains self-
looping edges or not, or she may check if there exist two or more different actors in a

L1: src
S2:State

L2: tgt
S1:State T1:Trans

L1: src
S2:State

L2: tgt
S1:State T2:Trans

ver1

ver2

Fig. 4. Two versions of a state machine diagram

208 S. Alwidian and D. Amyot

GRL model family that contain the same goal. In these scenarios, property checking is
beneficial to help modelers understand, for example, what is common between model
versions or variations that violate a property.

In this paper, we limit ourselves to language-independent, syntactic properties (which
describe the structure of models) other than semantic properties (which describe the
behavior of models, e.g., traces). The rationale behind this scoping is because our
approach aims to be applicable to any metamodel-based modeling language. However,
while there exists a standard approach for defining the syntax of a modeling language
(i.e., through metamodeling), there is no common approach for specifying semantics. So,
we limit our approach to checking those properties related to language syntax, inde-
pendently from any language specificity. Hence, “property” here means “syntactic
property”. To perform property checking, we assume that a property p (expressed in any
constraint language such as FOL or OCL) can be grounded over the vocabulary of
models. Hence, a corresponding propositional formulaUp can be obtained. For example,
given a well-formedness constraint ,
it can be grounded over the vocabulary of the model in Fig. 5. as follows:

It is important to emphasize here that the example in Fig. 5. is just a proof of
concept and it does not adhere to our formalization of typed graphs (Sect. 3). As can be
noted, the example considers the graphical representation of the state machine pre-
sented in the canonical form in Fig. 3. (right), where Transitions T1 and T2 are rep-
resented here as directed edges between states, and not as nodes.

Formally speaking, given the propositional encoding of both models (Sect. 3.2) and
properties, the task of property checking can be defined as follows:

Definition 6–Property Checking: Given model m and a property p, and their
propositional encodings Um and Up, respectively, we check if the expression Um ^ Up
is satisfiable or not using a SAT solver.

RT2: Trend Analysis. The idea of this analysis is to search for a particular element
across members of a model family and study the trend of that element. By “trend” we
mean the behavior of elements over space/time. In other words, a trend analysis studies
how properties of elements change over the course of time or across configurations. For
instance, a modeler may need to search for a particular goal in all members of a GRL
family to conduct a trend analysis about the properties of that goal (e.g., its importance
value, or satisfaction value) and observe how that value changes across model
version/variations to get some insights about its evolution pattern.

Fig. 5. An example of propositional encoding of a property

Union Models: Support for Efficient Reasoning about Model Families 209

RT3: Significance Analysis. We suggest this type of analysis to enable modelers to
check for those elements that are common in all (or part) of versions (i.e., time) or
variations (i.e., space) of a model family. Elements that are common among all models
can be inferred to be essential or significant. For example, if a modeler is investigating
several design options of a particular system, and she needs to know which elements
are significant (i.e., mandatory for design) in all design options, then she would conduct
this analysis once using the MU of the model family she has at hand (instead of doing a
pairwise search on each version/variation of individual models).

6 Experiments

We assess the feasibility of reasoning using MU empirically. We ran experiments with
parameterized random inputs that simulate different settings of various reasoning and
analysis categories. In this paper, we build on the formal semantics of union models
(Sect. 3) and use formalized GRL models and state machine models. However, our
approach is also applicable to other metamodel-based languages.

6.1 Methodology

We ran two experiments (named Exp.1 and Exp.2) to evaluate the feasibility of using
MU with RT1, RT2, and RT3. In Exp.1, we measured the total time needed to perform
one task on each individual model, one model at a time. We refer to this time as Tind. In
Exp.2, we measured the time needed to accomplish the same task with MU. We refer to
this time as TMU. Then, we compute improvements with a metric called time speedup
(as used in [8]), defined originally as: speedup_old = Tind/TMU. However, to be fairer
and more realistic in our experiments (especially for large models), we decided not to
neglect the time needed to construct MU (although it is quite small and can performed
once before being amortized over multiple analyses). We call Tconstruct the time needed
to construct MU, and the time speedup is then calculated as: speedup = Tind/(Tcon-

struct + TMU). A speedup larger than 1 is a positive result, and the larger the speedup, the
better.

For both experiments, we considered the following experimental parameters:
(1) the size of individual models (SIZE), which represents the number of elements (i.e.,
nodes and edges) in each individual model and (2) the number of individual models in
a model family (I). To control the possible combinations of parameters SIZE and I, we
discretized their domains into categories (following Famelis’ methodology [8]). For
parameter SIZE, we defined four categories based on the number of nodes and edges,
as follows: small (S), medium (M), large (L), and extra-large (XL). To calculate the
ranges of each size category, we performed experiments with a seed sequence (0, 5, 10,
20, 40). The boundaries of each category were calculated from successive numbers of
the seed sequence using the formula n � (n + 1). Using the same formula, we cal-
culated the representative exemplar of each category by setting n to be the median of
two successive numbers in the seed sequence. The ranges of the categories and the
selected exemplars for each category are shown in Table 2. These numbers are in line
with our own experience dealing with goal models and state machines of various sizes.

210 S. Alwidian and D. Amyot

We followed the same methodology for the number of individual models, I, using a
seed sequence (0, 4, 8, 12, 16). The four size categories (S, M, L, XL) are shown in
Table 3.

To evaluate the property checking task (RT1), we encoded each annotated indi-
vidual model m in a model family MF as a propositional logic formula Um =

V
ei2PE

(mannot). We also encoded a union model MU of that MF as UMU =
V

ei2PEUannot.
Furthermore, the property to be checked was encoded into a propositional formula
Up. Then, a SAT solver was used to check if the encodings of each of the individual
model and their union model satisfy (or not) the property. In particular, for each
individual model, we constructed a formula Um ^ Up. The property is said to hold in
any model if and only if this formula is satisfiable. Similarly, we constructed the
formula UMU ^ Up and checked whether the property was satisfiable. In both
experiments (using the same computer), we recorded the time it took to check a
property on individual models (Tind) and compared it to the time needed to do the
check on union models (TMU).

6.2 Implementation

To validate our approach, we had a prototype implementation in Python 3.6 to rep-
resent models (GRL and state machine models) as typed graphs (based on Defs. 3 and
4), and construct their MU according to Def. 5. We used NetworkX 2.2 [9] to imple-
ment typed graphs, and we implemented our own union algorithm to construct MU by
adapting NetworkX’s built-in union function as a building block. NetworkX is a
Python package for the creation, manipulation, and study of the structure, dynamics,
and functions of complex graphs [9]. It is enriched with a variety of features from the
support of graph data structures and algorithms to analysis measures to visualization
options. We used NetworkX’s graph generators to randomly generate valid typed
graphs (with different parameters SIZE and I) with likely evolutions. We checked a
sample of the generated graphs manually to make sure that we are generating likely
changes to existing models rather than generating independent models. Then, we
assigned attributes to nodes and edges of these generated graphs to reflect attributions

Table 2. Categories of parameter SIZE (size of a model)

#elements/model (SIZE) (0, 30] (30, 110] (110, 420] (420, 1640]

Exemplar 12 56 240 930
Category S M L XL

Table 3. Categories of parameter I (number of individual members in a model family)

of individual models (I) (0, 20] (20, 72] (72, 156] (156, 272]

Exemplar 6 42 110 210
Category S M L XL

Union Models: Support for Efficient Reasoning about Model Families 211

and typing information of real models. We then constructed GU from the generated
graphs using our union algorithm. GU is the union of a set of typed graphs, and hence
GU corresponds to MU.

For RT1, we manually generated propositional formulas for state machine diagrams
(both individual models and their MU). We checked the “cyclic composition property”
inspired from [10], which ensures that “the model does not contain self-looping edges”.
A propositional formula was also generated for this property. The propositional
encodings were generated according to the rules discussed in Sect. 3.2, and they were
fed as literals to the MiniSAT solver included in the SATisPY package [11]. SATisPy
is a Python library that aims to be an interface to various SAT solver applications.

6.3 Results

This section is organized according to the experiments conducted to evaluate RT1,
RT2, and RT3. All figures illustrated in this section represent the average results of 15
runs.

Results for RT1. Figure 6 illustrates the time speedup of performing property
checking, first with a set of individual state machine diagrams (represented as typed
graphs) and then with their MU. In this experiment, we checked the satisfiability of the
cyclic composition property (Sect. 6.2). Figure 6 shows that the use of MU for property
checking achieves a significant time speedup compared to performing the same task on
a set of individual models separately. The highest speedup (=365) was observed with a
large number of individual models (i.e., I = L) that are of a small size (i.e., SIZE = S).
The smallest speedup (=2.54), on the other hand, was observed when both I, and SIZE
parameters are of category XL. In addition, for all categories of I, there is a noticeable
pattern of speedup degradation as the number of elements per individual model (i.e.,
SIZE) increases. This is due in part to the increase of Tconstruct as the SIZE increases.
Nevertheless, the speedup never went below 1, which means that even with very large
models (with I = XL and SIZE = XL), the time to perform property checking on a

Fig. 6. Average speedups achieved by using MU to perform property checking (RT1)

212 S. Alwidian and D. Amyot

group of such models (using MU), with considering the time to construct MU, is still
better than performing property checking on individual models.

Results for RT2. In this experiment, we conducted a trend analysis on an element
named GoalX from a set of GRL individual models and their MU. The purpose of this
analysis is to study the trend of this goal’s importance value attribute and analyze how
this value changes over time. To perform this analysis on MU, we simply searched for
and retrieved an element named X of type Goal, annotated with any version number

, where {veri} reflects the set of versions that the element
may belong to. With individual models, the search for and retrieval of X-Goal involve
each individual model, where the (laborious) process in reality involves opening each
individual model, searching about the desired element, observe its importance value,
and close the current model, iteratively for each model. Figure 7 illustrates the time
speedup gained in this experiment. The results illustrated in this figure show a pattern
close to the results of RT1 (i.e., property checking). This is somewhat expected as both
the property checking task and the searching task (which is the core of trend analysis)
have a linear time complexity. From Fig. 7, it can be noticed that the use of MU reduces
the time to search for elements that belong to a group of models instead of traversing
each individual model, separately. The highest speedup (=296) was achieved when
I = XL and SIZE = S, and the lowest (=5.9) when I = S and SIZE = XL. The decrease
pattern of speedup gained in this experiment is almost close to the one illustrated in
Fig. 6.

Results for RT3. Figure 8 shows the time speedup for significance analysis on a set of
GRL models and their MU. In this experiment, we searched for all elements that are
common between all model versions. This is a tedious task, especially when the
number and the size of models increase. Searching a set of M individual models, with
N elements each to find elements in common between all models has a complexity of O
(M � N2). However, with MU, we only use one model to search elements in common,
where the search task is reduced here into searching for elements annotated with
<ALL> . The time speedup gained in this experiment is more significant than in the

Fig. 7. Average speedups achieved by using MU to perform trend analysis (RT2)

Union Models: Support for Efficient Reasoning about Model Families 213

experiments for RT1 and RT2, as the potential gain here is quadratic rather than linear.
Again here, there is a decrease in the speedup as the model SIZE increases.

We noticed in some experiments with particular settings (related to variation of
models, size, number of models in a family) that the time saving achieved from using
MU was a few minutes (about 15 min for some model families).

6.4 Threats to Validity

One major threat to the validity of our empirical evaluation stems from relying on
randomly generated inputs (both graphs and experimental parameters). This threat can
be alleviated by using more realistic parameters, e.g., from real-world model families.

Another threat to validity is related to the experimental parameters, where we used
only SIZE and I. We recognize that we need to examine the impact of the variability of
models on reasoning. For example, we could consider the number of different anno-
tations per element to describe how similar or different the members are. The com-
plexity of a property to be checked might also be another parameter to consider.

Our experiments need to be elaborated further for more complex analysis tech-
niques found in typical goal modeling such as top-down and bottom-up satisfaction
propagation. The results could also be compared to approaches that handle some
variability in the time dimension (only) for goal models, including the work of Aprajita
et al. [12] and of Grubb and Chechik [13]. Furthermore, the current analysis covers two
modeling language (goal models and state machines) and it should be extended to other
types that are more structural (e.g., class diagrams) or behavioral (e.g., process models).

Finally, the usefulness of our approach needs to be assessed and demonstrated with
more significant examples or real-world case studies.

7 Related Work

There are few approaches proposed in the literature to support model families.
Shamsaei et al. [7] defined a generic goal model family (using GRL) for various types
of organizations in a legal compliance domain. They annotate models with information

Fig. 8. Average speedups achieved by using MU to perform significance analysis (RT3)

214 S. Alwidian and D. Amyot

about organization types to specify which ones are applicable to which family member.
Different from our work, the work of [7] handles only variation of models in the space
dimension and does not consider evolution over time. Also, the authors focused only
on maintainability issues and did not propose union models to improve analysis
complexity and reduce analysis effort. Palmieri et al. [14] elaborated further on the
work of [7] to support more variable regulations. The authors integrated GRL and
feature models to handle regulatory goal model families as software product lines
(SPLs), by annotating a goal model with propositional formula related to features in a
feature model. Unlike [7], Palmieri et al. considered further dimensions such as the
organization size, type, the number of people, etc. However, they did not consider
evolution of goal models over time, and did not introduce union models.

Our work has strong conceptual resemblances with the domain of SPL engineering,
which aims to manage software variants to efficiently handle families of software [15].
Although both of our work and the SPL domain have the concept of “families”, their
usages are different. In essence, the goal of SPL engineering is to plan for “proactive
reusability”, which means to strategically maintain a set of modeling artifacts (with
high-level features) to exploit what variants have in common to derive or create new
desirable products. The goal of our work, however, is not to plan for reusability but to
analyze families of models more efficiently using union models.

The notion of a feature is central to variability modeling in SPL, where features are
expressed as variability points. Feature models (FMs) [16] are a formalism commonly
used to model variability in terms of optional, mandatory, and exclusive features
organized in a rooted hierarchy, and associated with constraints over features. FMs can
be encoded as propositional formula defined over a set of Boolean variables, where
each variable corresponds to a feature. FMs characterize the valid combinations of
features as a configuration. A configuration defines, at a conceptual level, one product
which can be extracted from the SPL. Yet, a FM is different from an MU in both usage
and formalism. A FM represents variability at an abstract “feature level” which is
separate from the software artifacts (like a grammar of possible configurations),
whereas MU represents variability of all existing models at the “artifact level” itself.

To express variability, annotative approaches are commonly used in the literature,
as in the work of Czarnecki and Antkiewicz [17], where variability points are repre-
sented as presence conditions. These conditions are propositional expressions over
features. Annotations of features can be used as inputs to a variability realization
mechanism to derive or create a concrete software system as variant of the SPL. Using
a negative variability mechanism [17], annotative approaches define a so-called 150%
model that superimposes all possible variations of for the entire SPL. The 150% model
is used to derive a particular variant, while other irrelevant parts are removed. While
union models have some similarities to 150% models, the usage of both models, the
domains they are used in, and the way of annotating them are different.

The approaches proposed by Seidl et al. [18] and Lity et al. [19] are closely related
to ours. They considered variation of software families in space and time, and explicitly
annotated variability models with time and space information to distinguish between
the different versions and variations of software artifacts. However, this work is done
from the SPL perspective (where FMs are essential), while FMs are not used here.

Union Models: Support for Efficient Reasoning about Model Families 215

Famelis et al. [20] proposed partial models to capture a set of possible alternative
design models with uncertainty. While the idea of capturing models in one partial
model is close to our idea of representing models of a family in one union model, our
proposed approach is different in two major aspects: the context and the purpose. In
essence, we propose union models to enable a more efficient reasoning of multiple
models compared to individual models. Partial models, however, are used to describe
the observable behavior of a system and to reduce design-time uncertainty.

Mussbacher [21] and Aprajita et al. [12] extended the metamodel of GRL to
document explicit changes (additions/deletions) of model elements to specific versions
of a metamodel. Although a model family can then be captured, this approach is
specific to one language and currently incomplete in the kinds of changes to versions it
can accommodate.

Grubb et al. [22] introduced the concepts of “dynamic intentions” into goal models
to model alternatives on multiple time scales. The authors proposed a tool-supported
method for specifying changes in intentions over time which uses simulation for asking
a variety of ‘what if’ questions about models that evolve over time. Unlike our work,
Grubb’s approach is limited to goal models (Tropos and i* in particular), and does not
cover variations of models over the space dimension.

The concept of difference and union/merging of models is well investigated in the
context of version control systems [23, 24]. For instance, Alanen and Porres [25]
proposed an approach to calculate the difference between two models, represented as a
sequence of operations, and then extend the difference calculation to form a union
algorithm. The union algorithm calculates the union of two models based on their
differences from a given original/base model, where two separate modifications are
made to a base model, and the union algorithm combines both differences into one
model by interleaving the operations from the latter difference with the former dif-
ference. For example, given a base model Mbase and two alternative model versions M1

and M2, the union of these models, denoted as Mfinal, is calculated as: Mfinal=

Mbase + (M1 – Mbase) + (M2 – Mbase). This mechanism, known as three-way merge, is
mainly concerned with tracking and highlighting the changes that happen across
models, and calculates the final model based on the differences from the original model,
without backward traceability to the source of the changes. This is different from our
union algorithm, where we calculate the union model by taking all elements that belong
to all versions of models, with an additional feature that annotates elements to indicate
to which version they belong.

8 Conclusion and Future Work

This paper proposed union models as a modeling paradigm to support the represen-
tation of model families (for time and space dimensions) using one generic model.
Elements of a union model are annotated with information about time and space using a
new spatio-temporal annotation language (STAL) in order to distinguish which element
belongs to which model. The paper is contributing a formalization of union models that
simplifies the creation of such models while enabling several types of efficient analyses.

216 S. Alwidian and D. Amyot

Our experiments indeed demonstrate the usefulness of union models for analyzing a
family of models, all at once, compared to individual models.

For future work, we plan to extend our empirical evaluation by having more
experimental inputs, parameters, and tasks, by using existing model families, and also
by considering other categories of analysis techniques (such as GRL top-down prop-
agation) and other modeling languages. We expect that some analysis techniques will
need to be adapted from a single-model context to a model-family context; the cir-
cumstances imposing such adaptation and the effort required to adapt the analysis
techniques need to be identified and better understood. Usable tool support is also
being developed.

Acknowledgement. We would like to thank the anonymous reviewers, as well as Prof. Michalis
Famelis, for their comments and feedback, which helped us improve the presentation of this
paper. We also thank the Ontario Trillium Scholarship program, the NSERC Discovery program,
and the BMO Financial Group Graduate Bursaries for their financial support.

References

1. Micouin, P.: Model Based Systems Engineering: Fundamentals and Methods. Wiley,
Hoboken (2014)

2. ITU-T: Recommendation Z.151 (10/18) User Requirements Notation (URN) – Language
definition (2018). https://www.itu.int/rec/T-REC-Z.151/en

3. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the next ten
years. J. Softw. 6(5), 747–768 (2011)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

5. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
47884-1_16

6. Alwidian, S., Amyot, D.: Relaxing metamodels for model family support. In: 11th
Workshop on Models and Evolution (ME 2017), vol. 2019, pp. 60–64. CEUR-WS (2017)

7. Shamsaei, A., et al.: An approach to specify and analyze goal model families. In: Haugen,
Ø., Reed, R., Gotzhein, R. (eds.) SAM 2012. LNCS, vol. 7744, pp. 34–52. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36757-1_3

8. Famelis, M.: Managing design-time uncertainty in software models. Doctoral dissertation,
University of Toronto, Canada (2016)

9. NetworkX. https://networkx.github.io/. Accessed 05 June 2019
10. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logic to

maintain consistency between UML models. In: Stevens, P., Whittle, J., Booch, G. (eds.)
UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45221-8_28

11. SATisPY Solver. https://github.com/netom/satispy. Accessed 15 June 2019
12. Aprajita, Luthra, S., Mussbacher, G.: Specifying evolving requirements models with

TimedURN. In: Proceedings of the 9th International Workshop on Modelling in Software
Engineering, pp. 26–32. IEEE Press (2017)

Union Models: Support for Efficient Reasoning about Model Families 217

https://www.itu.int/rec/T-REC-Z.151/en
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/3-540-47884-1_16
http://dx.doi.org/10.1007/3-540-47884-1_16
http://dx.doi.org/10.1007/978-3-642-36757-1_3
https://networkx.github.io/
http://dx.doi.org/10.1007/978-3-540-45221-8_28
http://dx.doi.org/10.1007/978-3-540-45221-8_28
https://github.com/netom/satispy

13. Grubb, A.M., Chechik, M.: Modeling and reasoning with changing intentions: an
experiment. In: 2017 IEEE 25th International Requirements Engineering Conference
(RE), pp. 164–173. IEEE CS (2017)

14. Palmieri, A., Collet, P., Amyot, D.: Handling regulatory goal model families as software
product lines. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS,
vol. 9097, pp. 181–196. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-
3_12

15. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-
28901-1

16. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of feature
diagrams. Comput. Netw. 51(2), 456–479 (2007)

17. Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach based on
superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 422–437. Springer, Heidelberg (2005). https://doi.org/10.1007/11561347_28

18. Seidl, C., Schaefer, I., Aßmann, U.: Integrated management of variability in space and time
in software families. In: Proceedings of the 18th International Software Product Line
Conference (SPLC), vol. 1, pp. 22–31. ACM (2014)

19. Lity, S., Nahrendorf, S., Thüm, T., Seidl, C., Schaefer, I.: 175% modeling for product-line
evolution of domain artifacts. In: Proceedings of the 12th International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS), pp. 27–34. ACM (2018)

20. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reasoning with
uncertainty. In: 34th International Conference on Software Engineering (ICSE), pp. 573–
583. IEEE CS (2012)

21. Mussbacher, G.: TimedGRL: specifying goal models over time. In: IEEE International
Requirements Engineering Conference Workshops (REW), pp. 125–134. IEEE CS (2016)

22. Grubb, A.M., Chechik, M.: Looking into the crystal ball: requirements evolution over time.
In: 24th International Requirements Engineering Conference (RE), pp. 86–95. IEEE CS
(2016)

23. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning approaches. Int.
J. Web Inf. Syst. 5(3), 271–304 (2009)

24. Förtsch, S., Westfechtel, B.: Differencing and merging of software diagrams–state of the art
and challenges. In: Filipe, J., Helfert, M., and Shishkov, B. (eds.) Second International
Conference on Software and Data Technologies (ICSOFT), pp. 90–99. INSTICC Press
(2007)

25. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle, J., Booch, G.
(eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45221-8_2

218 S. Alwidian and D. Amyot

http://dx.doi.org/10.1007/978-3-319-19069-3_12
http://dx.doi.org/10.1007/978-3-319-19069-3_12
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/11561347_28
http://dx.doi.org/10.1007/978-3-540-45221-8_2
http://dx.doi.org/10.1007/978-3-540-45221-8_2

	Union Models: Support for Efficient Reasoning About Model Families Over Space and Time
	Abstract
	1 Introduction
	2 Motivation
	3 Foundations
	3.1 Graph-Based Formalization of (Meta)Models
	3.2 Propositional Encoding of Models

	4 Union Models
	4.1 Union Model Formalism
	4.2 Union of Propositional Encodings of Models
	4.3 Spatio-Temporal Annotation Language (STAL)

	5 Reasoning and Analysis with Union Models
	6 Experiments
	6.1 Methodology
	6.2 Implementation
	6.3 Results
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgement
	References

