
Towards a Representation of Cellular
Automaton Using Specification
and Description Language

Pau Fonseca i Casas(&)

Universitat Politècnica de Catalunya, Barcelona 08034, CA, Spain
pau@fib.upc.edu

Abstract. Environmental simulation is complex, not only due to the inherent
complexity of the phenomenon that we are facing but also to the fact that the
personnel involved in this kind of projects belongs to different areas and spe-
cialties. In this scenario, the use of a formal language is needed since it sim-
plifies the interaction between the parts. A key element that must be represented
in an environmental simulation model is a Geographical Information System
(GIS) data. This representation often uses Cellular Automaton structures since it
allows to represent, not only the data but also its behavior inside the simulation
model. In this work, we explore the use of SDL, that among other benefits we
can remark that it is an ITU-T standard language and allows a complete
graphical description of the models and several tools allows a semi-automatic
implementation of the models.

Keywords: SDL � Cellular automaton � Formal representation �
Fibonacci function

1 Introduction

The data used on environmental simulation models often can be dynamically modified
by the behavior of the model, and usually, the results of the simulation model are
mainly this dynamic modification of the data. As an example, for a decision support
system related to forest fires [1, 2], the data representing the temperature for a geo-
graphical area can be both an output from the model and an input to the model.
Therefore, the data and its structure is a key element of the model definition. Focusing
on the conceptualization of a simulation model, to be able to do a complete and non-
ambiguous representation of the system is necessary to represent:

1. The structure: that allows depicting the hierarchical decomposition of the model and
the relation between all the different subcomponents and sub-models.

2. Behavior: that details the model processes and activities.
3. Data: that detail, not only the data, but its relationship with the model, and how the

nature of the data modifies the structure of the model itself. On the paper, data
declarations are made using C notation, conform to Z.104 Annex C clause C.1 C
language binding.

© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 163–179, 2019.
https://doi.org/10.1007/978-3-030-30690-8_10

http://orcid.org/0000-0002-6747-9736
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_10

For environmental simulation, the problem with the data and its impact on the
structure of the model is specifically how to represent a Cellular Automaton (CA),
because CA are widely used to represent geographical and dynamical information in
environmental simulation models [3–7].

Specification and Description Language (SDL) [8–10], is an ITU-T standard lan-
guage, that allows a graphical, complete and unambiguous representation of a simu-
lation model. The different concepts that the SDL covers are:

1. System structure: from the blocks to the processes and their related hierarchy.
2. Communication: signals, communication paths or channels, parameters that can be

carried by the signals, etc.
3. Behavior: defined by different processes.
4. Data: based on Abstract Data Types (ADT).
5. Inheritance: useful to describe relations between objects and their properties.

In this paper we are focused on how SDL can be useful to describe the data related to
an environmental model, using Inheritance, Data, and Communication in the diagrams.

1.1 Cellular Automaton

For the integration of a simulation model with Geographical Information System
(GIS) data, that is often needed in an environmental model, it is useful to use a CA, due
to its ability to effectively represent large-scale spatial dynamic phenomena [3, 4, 11].

CA is mainly a matrix and a set of rules that defines the matrix modifications over
time. This behavior is completely specified in terms of a local relation. Table 1 shows
one-dimensional CA after successive applications of the Wolfram’s 30th rule. Table 1
shows the 30th rule using Wolfram’s notation, see [12], where for each iteration we
apply again the rule modifying the states of the cell.

Table 1. Rule 30 CA.

Current pattern 111 110 101 100 011 010 001 000

New state for center cell 0 0 0 1 1 1 1 0

Fig. 1. One-dimension CA following Wolfram’s 30th rule. Source Zhiming Wang [CC0]. Each
row in the picture represents an evolution in the CA.

164 P. Fonseca i Casas

However, although this method of representing CA is simple, there are some clear
limitations that we must consider:

1. Only one matrix (or vector in the rule 30 case) is considered, but in environmental
simulation often there are several matrixes that are going to interact between them,

2. The evolution function that defines how the CA evolves is quite simple, the function
can become more complex that cannot be represented with a simple pattern in a
table. As an example of both limitations, in a simulation model representing a
wildfire, it is needed to combine the data that represents the elevation, with the
moisture, the wind direction, and other information, and calculate a complex
function to be able to obtain a new state for the cell [2]. Also, on this function it is
not considered how the time is going to be managed, there is no definition of the
time needed to do the different operations (calculus).

3. The third constraint, that although is solved on our proposed CA is not detailed in
this paper, is that we are restricted to a discrete state space (the matrix) while in
environmental simulation, and specifically if we want to use continuous data (like
the one represented on vector files i.e. representing rivers or territorial divisions), we
must do always a rasterization of the data, losing some information in this process.

To solve these problems, we use a generalization of a cellular automaton that
allows defining different layers on the same cellular automaton. We named this gen-
eralization m:n-CAk, an initial proposal of this can be consulted on [13]. This gener-
alization helps us to understand the complexity of the model we are going to face. Also,
it simplifies the categorization of the different layers we are using, with a classification
based on the existence or the absence of an intrinsic behavior on the layer. Main layers
are those who have defined a specific behavior, this in our methodology is represented
clearly because these layers have an SDL PROCESS representing this. Secondary
layers are a simple matrix of data that are needed to perform a calculation, and because
they do not own a specific behavior are fixed values.

1.2 Multi:N-Dimensional Cellular Automata (m:n-CAk)

A multi:n-dimensional cellular automaton (m:n-CAk) is a generalization of a cellular
automata composed by m layers with n dimensions each one, see (1).

m : n� CAk ð1Þ

Where

• m: is the automaton number of layers.
• n: is the dimension of the different layers.
• k: is the number of main layers (1 by default). If set to 0 we are using a matrix of

cells, but no modification is applied to them.

A layer in an m:n-CAk is a main layer if a transition function K is defined in order
to modify its state. An m:n-CAk automaton presents k main layers. Note that if k = 0
then we have an m:n-1, that is just a matrix of data, if k = 1 we have a usual CA (1:n-

Towards a Representation of Cellular Automaton Using Specification 165

CA is the same as an n-dimensional CA, a two-dimensional CA is represented as 1:2-
CA). Some aspects to consider are:

1. Layers that modify their cell state are called main layers. The maximum number of
main layers is m. The number of main layers is represented by k (m � k). A given
automaton may have more than one main layer. If k = 0 we have just a matrix of
data.

2. The combination function W allows state calculation in a main layer, it depends on
the state of all the other layers of the automaton.

3. It is not needed that the data follows the raster format because all layers share the
same reference system. Thus, vector data may be used in m:n-CAk. The W
function determines the cell state independently of the structure of the layer data.

Vector data are quite usual in GIS, but in contrast to raster data (that is composed
by a matrix containing the values), vector data presents a virtual continuous space that
contains lines, polygons, etc. In this paper, we refer to vector data as an example of
continuous information that can be used in a CA although in the examples we will be
focused, for the sake of simplicity, on the raster case.

Extension of the Definition of a Neighborhood and the Concepts of Vicinity and
Nucleus. In traditional cellular automata, the neighborhood function is defined to
determine which cells are considered in the expression used to change the cell value,
see Table 1. Because we accept vector data (continuous space) in our m:n-CAk layer,
the concept must be redefined without using cells and considering that all the layers
share the same reference system, i.e. all the layers in a m:2-CAk starts on the same
physical position, as example (0,0). Therefore, the space that characterizes a neigh-
borhood must be defined without cell dependency.

From a position x1,..,xn, the vicinity function defines the points to be considered in
the evolution function in new layer-state calculation.

From a position x1,..,xn, the nucleus function defines the environment to be
modified after the evolution function is calculated. The concept of neighborhood is
related to the concept of topology and formalizes a colloquial concept.

In the mathematical definition, a topological space is a nonempty set X with a
defined topology. It is represented as (X, T). If (X, T) is a topological space and p is a
point in X, a subset A of X is a neighborhood of p if an open U of the topology T exists
such that p 2 U � A.

The relationship between mathematical topology and the concepts of vicinity and
nucleus allows us to formalize the ordination of points in layers on two levels. The first
level represents the points considered in the calculation of a new state. The second level
represents the points to be modified once the state changes.

The finest topology on X is the discrete topology, which implies the modification of
points. The coarsest topology on X is the trivial topology, which consists of only two
elements: T = {Ø, X}. In these two cases, the open sets that make up the space are
defined by two topologies, nucleus and vicinity, which represent the points to be
modified through a function Kk, named evolution function, that we will describe later,
and the points to be considered in the calculation of a new state. Mathematical topology
allows the explicit definition of neighborhoods for different points. Hence, in a raster

166 P. Fonseca i Casas

layer (discrete space), a neighborhood can be explicitly defined for each point. For m:n-
CAk automata, these two topologies are defined as follows:

• Vicinity topology defines the set of points (neighborhood) of layer k to be con-
sidered in the calculation of Kk.

• Nucleus topology defines the set of points (neighborhood) of layer k to be modified
by the calculation of Kk.

These two topologies define the neighborhood structures necessary for each point
to establish the vicinity and the nucleus. However, not all neighborhoods can be used to
represent the nucleus or the vicinity, and only one set can be used.

To define the set to be used for a point’s neighborhood, a metric must usually be
defined, based, for instance, on Euclidean distance (2).

d x; yð Þ ¼
ffi
ðx1 � y1Þ2 þðx2 � y2Þ2

q
ð2Þ

Distance d(x,y) allows for the definition of neighborhood bases as follows (3)

B x; rð Þ ¼ fy 2 <m=d x; yð Þ\rg ð3Þ

This is the usual topology for RxR [14] and will become one of the most common
topologies for an m:2-CA based on the RxR space defined by the usual distance, note
that this is a continuous space. We can generally define a distance r from the point x by
defining the restrictions of the selected neighborhood. A typical restriction rule is to
calculate the minimum neighborhood that contains all points for which d(x,p) < r. For
instance, in the usual topology presented in (3), B(x,r) is the minimum neighborhood
that satisfies this restriction. In a more general topology, the restriction defines only one
neighborhood for all the sets.

In an m:n-CAk, two restriction rules must be defined: one for the vicinity topology
and one for the nucleus topology. These two restriction rules are used to construct the
vicinity and nucleus functions. We can now define the vicinity and nucleus functions.

• Vicinity function vnm(x1,..,xn) returns the minimum open set of the vicinity
topology for the layer m, that contains point x1,..,xn and includes the maximum
points that satisfy the restriction and the minimum points that do not satisfy the
restriction. If the restriction is defined by the usual distance, it represents a neigh-
borhood that contains the maximum points that satisfy d(t,p) < r and the minimum
points that satisfy d(t,p) � r.

• Nucleus function ncm(x1,..,xn) returns the minimum open set of the nucleus
topology that contains point x1,..,xn and includes the maximum points that satisfy
the restriction and the minimum points that do not satisfy the restriction. Depending
on the type of data in the different layers, the topology nucleus and neighborhood
are defined over Nn or Zn (in the raster case) or Rn (in the vector case). We can
consider however working in other systems like the Complex or the Octonions.

Towards a Representation of Cellular Automaton Using Specification 167

With this redefinition of the vicinity and nucleus central concept in CA, we can go
further to understand how the CA is going to modify its values following a specified
rule

Combination Function (W). Each cell of the matrix that defines an m:n-CAk has a
specific value. We define the number of possible states in the cell for the layer m with
Sm, being a value that is not needed to be constrained in the body of the natural numbers,
one can define Sm on the body of the Real or Octonions numbers (as an example)
without any constraint. To combine the different Sm that belongs to the m:n-CAk is
needed to define a common reference, and a coordinate system, composed by n ele-
ments. With this, we can define the state of the cell in a m:n-CAk as is presented on (4).

Em ncmðx1; ::; xnÞð Þ ¼ Si ð4Þ

The function Em represents the state of each cell (nucleus) in the different layers of
the automaton. Note that if one considers only the state for the main layers, we can note
this with Ek However, this state is not the global state of the automaton. For the
coordinates x1,..,xn the function EG returns the global state of the automaton. To be able
to calculate this EG is needed to define the Combination function (W), that returns the
global state for a position using individual layer states, see (5).

W E1 nc1 x1::xnð Þð Þ;m�1Þ ;Em ncm x1::xnð Þð Þ
� �

¼ EG x1::xnð Þ ð5Þ

The definition of theW function depends on the structure of a given automaton. In a
1:n-CA, this function is the identity function, returning as EG the nucleus of the single
layer that exists (in that case main layer). This can grow in complexity in other
scenarios, see (6).

W E1 nc1 x1::xnð Þð Þð Þ ¼ E1 nc1 x1::xnð Þð Þ ¼ EG x1::xnð Þ ð6Þ

Evolution function (Kj) in an m:n-CAk In common cellular automata, the evolution
function allows modify the Em for each main layer, hence is focused on modify only
the Ek, the main layers. Evolution function (Kj) for a common cellular automata
usually operate recalculating the Ek defining a Δt intervals, or, for a CA that does not
define how to manage time, like the one presented on Fig. 1, calculating the new Ek

from the previous Ek at a single step.
In m:n-CAk automata, space can be represented as being continuous, but also time

evolution can be considered as continuous, hence, the evolution function must also be
(if needed) a continuous function. As we will see in our approach, the formal definition
of the CA is based on SDL that will be agnostic on how the time is going to be updated,
hence is possible to define an Activity Scanning [15] approach to model Kj achieving
if needed a good approximation to a continuous time evolution. In the example pro-
posed in this paper, is not needed to use continuous time, hence Event Scheduling usual
approach will be enough. Kj is defined for main layer k to modify its state using the
combination function W.

168 P. Fonseca i Casas

The relationship between m:n-CA and common CA can now be established, being
m:n-ACk a generalization of a common cellular automaton, since 1:n-CA over Zn

defines a usual CA. We must establish a general method to define the CA structure and
behavior (W and Kj functions). To do so we explore the use of SDL in the next
sections.

1.3 Specification and Description Language

Specification and Description Language (SDL) is a standard object-oriented formal and
graphical language defined by the International Telecommunications Union–
Telecommunications Standardization Sector (ITU–T) (the Comité Consultatif Inter-
national Telegraphique et Telephonique [CCITT]) on the Z. 100 recommendation. On
its origins, SDL was designed for the specification of event-oriented, real-time and
interactive complex systems. These systems might involve different concurrent activ-
ities that use signals to perform communication. SDL is based on the definition of four
levels to describe the structure and the behavior of the models: system, blocks, pro-
cesses and procedures. In SDL blocks and processes are named agents. The outermost
block, the system block, is an agent itself. Figure 2 shows these levels hierarchy.

Although a textual SDL representation is possible (SDL/PR), this paper uses the
graphical representation of the language (named SDL/GR). More details about the
Specification and Description Language can be found in the recommendation Z.100
[16] or at the web site [17]. BLOCKS, PROCESS, and PROCEDURES define the basic
structure and behavior of a simulation model, however, in order to represent envi-
ronmental models, this is not enough. We need some structure in order to represent the
data and its relationship with the simulation model, it is needed to detail, how the
evolution of the simulation model modifies its surrounding data, and how this data
influences on the model behavior. To do this we start with the definition of the cellular
automatons following an m:n-CAk over Nk numbers.

Fig. 2. A structural vision of an SDL model. 4 main different levels exist.

Towards a Representation of Cellular Automaton Using Specification 169

2 Representing m:n-CAk on SDL

In order to solve the representation of CA (and specifically m:n-CAk) with SDL we will
define an AGENT TYPE to represent the layers of the CA, and a method to instantiate
all the needed cells of the model, that will be represented also by a second
AGENT TYPE. This allows representing graphically the interaction between the model
and the data, and between all the layers that compose the CA. Starting with the needed
information on each cell, we must define the neighborhood, the nucleus, the ID of the
current cell, and define a method to modify the value of the matrix that contains the
information of the CA, see Fig. 3. that represents the Kj. Note that the state of the CA
cell, in the case of a main layer, is going to be modified due to the inherent behavior of
the PROCESS, however, one must want to obtain the initial value from the matrix or to
write this value to the matrix that represents this layer.

This process will be rewritten adding the behavior of the Kj that details how the
cell behaves. Once the cell behavior is defined, the next step is to define its structure,
mainly by several layers and cells. Again, this can be done using SDL agents. The layer
is the element that (depending on the dimensions of the cellular automaton) creates all
the needed cells. One can define this number of cells following a process like the one
proposed in Fig. 4.

Fig. 3. Definition of the m:n-CAk on SDL. This PROCESS TYPE will define the nucleus,
neighborhood and the needed PROCEDURES to work with a usual CA, as an example, by default
a Moore neighborhood can be implemented. The specific behavior of the cell, the Evolution
function, must be redefined for each specific case along with the PROCEDURES if needed.

Fig. 4. A method to define the number of instances to be created, see [18]

170 P. Fonseca i Casas

In that case, the modeler must define, for each layer the number of cells that
compose this layer. We prefer to avoid using this approach since we are focused on CA
modeling and each one of the different layers of our CA must be defined using a file
that usually can contain the dataset to be used and modified during the execution of the
model. We propose to use the approach shown in Fig. 5, where the dimensions of the
layers (the number of cells) are obtained from the dataset (represented in the simple
case in a text file), assuring a coherence between the dataset to be used in each layer in
the CA and the conceptual model definition of the CA. Also, we can establish a relation
between the cell number and the PId. With this information later we can simplify send
SIGNALS to a subset of the cells that compose the layer.

We can add mnCALayer to a package named mnCA that will be used to simplify
the definition of a CA in SDL. The cells do not have a specific behavior defined. The
user must define the specific behavior for the cells as is represented in the example of
this paper in Figs. 11 and 12. This is a key element since the modelers can focus on this
diagram in order to understand cellular automaton behavior.

All these agents can be packaged and can be included in any project that needs to
represent a cellular automaton using SDL. As an example, we present the well-known
Game of Life using this, because of its simplicity. The main idea is that for the
representation of a model that uses a cellular automaton it is only needed to write the
behavior of the cells and the relation of the cells with other cells of other layers. All can
be done graphically as we see next (Fig. 6).

Fig. 5. Definition of a m:n-CAk layer on SDL. In this BLOCK the mnCALayerManager creates
all the instances of the cells; each instance receives its number (N) that identifies it on the matrix,
obtained by reading the data file that contains the state for each cell at the initial state. We store
for each N the PId in a table contained in the mnCALayerManager. ChIn will be the usual
communication CHANNEL between the manager and the cells of the CA. ChOut will be used to
send SIGNALS to the redefined evolution function, only if needed, due to the combination
function represented on the layers diagram. Ch01 will be used in case the mnCALayerManager is
asked by some AGENT to obtain the PId of a specific cell “N” of the layer (outside the layer).

Towards a Representation of Cellular Automaton Using Specification 171

2.1 Extending the SDL to Define a Cellular Automaton

When we try to define the behavior of the cellular automaton two main issues need to
be solved, the time management and the multiple instances management.

Fig. 6. Definition of the mnCALayerManager. ReadLayer(N) PROCEDURE modifies N
according to the number of existing layers on the CA.

172 P. Fonseca i Casas

Regarding the time management, we use the feature of SDL-2010 that allows
defining time and priority in the SIGNAL. Every SIGNAL that is output has an optional
parameter that defines the time needed to travel to its destination, and an optional
parameter defining the signal priority with respect to other signal instances in the
destination input queue scheduled, for the same time. From this time parameter and the
value of now at the time the signal is output, an availability time is calculated. It is
needed also to comment that the communication path may include delaying channels, so
this delay must also be added to the calculus. If the availability time is greater than
arrival time, the signal remains unavailable until the availability time is reached. SIG-
NAL instances in the input port are ordered by the time of arrival. If the time parameter
is omitted, then the delay is zero; When a signal is output and no signal priority is
specified, it is given the priority value 0. When there are several signals available with
different signal priority values, the signal with the lowest priority value is selected. The
signals in the input port are scanned in the following order to determine whether there is
a signal that is enabled: first, by the order of the arrival time in the priority inputs, and
then, by the order of the arrival time for other (non-priority) inputs. For those signals that
have the same arrival time, the signal priority determines which signal is processed first.
If two signals have the same signal priority, then the order is arbitrary. In Fig. 7 is
represented a SIGNAL and how it will be used in the context of the paper.

The SIGNAL management in a CA differs from a usual process because all the cells
of the nucleus will be updated by Kj, hence it will be usual to send SIGNALS to a set
of cells (PROCESS). In order to simplify this, we propose to extend the semantics of
SDL allowing to send a SIGNAL to a MNCA that will receive as a parameter a list of
cell arguments. The cell list parameter can be also the keyword ALL, representing that
all the cells of the layer will receive the SIGNAL. On Fig. 8 is shown an example
where a SIGNAL is sent to the same AGENT (itself).

Fig. 7. Defining the delay, and the priority of the SIGNAL on SDL-2010.

Fig. 8. Proposed extensions in order to define the cell that can receive a specific signal when the
AGENT belongs to a cellular automaton. On the left side, we send the Iterate SIGNAL to two
cells, one represented by the variable currCell and cell number 1. On the right side, we send the
Iterate SIGNAL to all the cells on the cellist that mnCAEvolutionFunction owns by default.

Towards a Representation of Cellular Automaton Using Specification 173

On SDL one can send a SIGNAL to a list of destinations using “Iterate TO
mnCACell[currCell] TO mnCACell [1]”, or defining a list of String <PId> to be
processed, but the proposed approach makes clear that the signal is sent to cells of the
current CA (TO MNCA), simplifying its understanding. Also, notice that this extension
can be implemented easily on SDL processing the signals to send one by one from the
list but simplifies the lecture and the definition of the models; also, it allows to obtain
improved codifications for this specific case.

2.2 The Game of Life

The Game of Life is a cellular automaton devised by the British mathematician John
Horton Conway in 1970 [19]. The universe of the Game of Life is an infinite two-
dimensional orthogonal grid of square cells, each of which is in one of two possible
states, alive or dead. Every cell interacts with its eight neighbors.

The rules that define the evolution of the automatons are:

• If the neighborhood of the cell contains less than two live cells, the cell dies.
• If the neighborhood of the cell contains more than three life cells die.
• If the neighborhood of the cell contains three life cells, the cell becomes a living

cell.

This description is not complete, since there is no description on the dimension of
the CA, also, there is no description on the process followed by the CA that can cause
different patterns to emerge. There is also no description on the time needed to do this
modification, that can differ depending on the position. More interestingly, there is no
method to connect with a specific dataset that contains an initial space of states of the
CA or a method to connect with other models that will be using this CA. Although in
this case (that is selected for the sake of simplicity, in order that the reader be used with
the SDL representation), seems that the description of the CA following Wolfram’s of
textual representation is simple, there are clear advantages on the formalization of the
CA. Some examples where without a formalization one cannot represent the behavior
of the CA can be reviewed here [5, 13, 20]. Also, notice that from this description a
codification must be done, a process that can introduce some errors that must be
verified.

The structure of SDL allows to detail if we want to execute each one of the different
cells in different computers. This is a decision that can be represented graphically
because in SDL all the elements contained inside a BLOCK agent can be executed in
parallel. This is what happens in our case, since the element that details this is a
BLOCK, see Fig. 9. Note that this diagram just represents the dimension and the
structure of the CA.

174 P. Fonseca i Casas

Inside the BLOCK agent, we find (in the “Game of Life” case) a complete
description of the behavior that rules the agent’s evolution. Since in a CA every cell
behaves in the same manner, we only need to describe one single Process for eachMain
Layer. Thus, our B_gameOflifeMainLayer example Block will contain a single Process
describing its nature, see Fig. 10. Notice that here one can represent the connection with
other model elements that can interact with the CA during its execution.

In Figs. 11 and 12 we can see a simple example of this representation. A cell has
three possible states: Loading, Death and Alive. Note that the behavior of a cell is the
definition of Kj. Loading state (Fig. 11) is used to initialize the CA, in the example, we
assign the Death state by default with the exception of 5 concrete cells that will
represent a Blister element. Once the model has been loaded, the PROCESS starts

Fig. 9. Definition of a cellular automaton layer on SDL that represents the Conway’s “Game of
Life”. In this simple case, only one main layer exists, however in other cases several layers are
going to interact, and at this level, the formal representation of this interaction will be needed.
This interaction defines the combination function that represents how the information is going to
flow from one layer to another. Here the SIGNALS that will transport the information between
the layers will be defined.

Fig. 10. The definition of the cellular automaton layer. Here we find the main elements that
compose the layer, the cells, and any other PROCESS that must be defined to represent the
dynamic behavior of the cellular automaton. The inherited elements need not be redefined.

Towards a Representation of Cellular Automaton Using Specification 175

iterating via the Iterate signal. Since an iteration represents a step in a CA, we easily
can describe the evolution rules. In the example, we can see the evolution rules of Alive
and Death state in Fig. 12.

To validate the model the experts can concentrate their efforts on the behavior
described on the mnCAEvolutionFunction. Also, the implementation of the model can
be based on the existing SDL tools. It is quite remarkable that the graphical definition
we have of the model is complete and unambiguous. This model was successfully
implemented on SDLPS [21, 22]. Some projects that implement this kind of solution
are [1, 5, 13], where one can review that the definition encompasses not only the usual
description of the rules of the CA, but also, the time needed to do the update on the
cells, the relation of the data in each cell with other datasets, the relation of the CA with
other models and the mechanism to combine the layers, among other elements that
often are not represented in this kind of models.

Fig. 11. Loading state for the Game of Life formalized using SDL.

176 P. Fonseca i Casas

3 Concluding Remarks

Environmental models need geographical information that often must be modified
dynamically. CA are widely used to represent this information and connect it with a
simulation model. Since the behavior of the cellular automaton is a key issue it is
desirable that this behavior can be represented in an unambiguous and formal way.
Some alternatives exist in order to formalize a CA, however, none of them is based on a
complete, unambiguous, standard, graphical and formal language like SDL. This fact
simplifies the verification process of a simulation model since the implementation can
be done automatically by the tools that understand SDL.

Fig. 12. Alive and Death states for the Game of Life formalized using SDL.

Towards a Representation of Cellular Automaton Using Specification 177

In the paper we presented an extension of a CA that allows working with multiple
raster and vector layers in a CA, extending the concept of nucleus and vicinity over a
topological space. Based on this extension we define a new AGENT TYPE that allows
representing CA structure. Also, it allows to automatically use the data sources auto-
matically on the model defining a clean method to keep the dataset that represents each
CA layer updated during the execution of the model.

The proposed extensions for SDL introduce the capability for SDL to become a
language that can face problems related to the environment, where the representation of
the landscape is a key aspect. This becomes more relevant in the frame of Industry 4.0,
and considering that SDL can be a good candidate to become a key language in this
area [23]. The approach simplifies the use of geographical data and CA models in a
simulation model improving Validation and Verification processes. Modelers can see
the different layers (sources of information) that compose the model in a graphical way.
Also, in this graphical representation is represented the relations between all the model
layers. In the mnCALayer this is clearly represented.

We showed a complete example, the Game of Life, to illustrate how SDL can
represent Cellular Automatons; however, this methodology can be used to represent
real complex problems and take advantage of its graphical power, the unambiguity of
the language, its completeness and the existing tools that allows an automatic valida-
tion, verification and generation of code.

A discussion arises regarding the computational complexity of a specific codifi-
cation following this approach since each cell of the CA owns an AGENT. The
codification that one can apply can simplify largely the computational resources needed
and depends if finally, the platform will be a distributed or a sequential one, and in the
case of a parallel architecture if it uses shared memory or not. This discussion, how-
ever, is a discussion that exist in the frame of CA codification (not for this approach),
where the structure of the CA and the natural communication between all the different
parts implies that often the codifications are resource-intensive, and can benefit from a
clear and aseptic formal definition of the CA structure.

References

1. Jové, J.F., Fonseca i Casas, P., Petit, A.G., Casanovas, J.: FireFight: a decision support
system for forest fire containment (2014). https://doi.org/10.1007/978-94-017-9136-6_19

2. Andrews, P.: BehavePlus fire modeling system: past, present, and future. In: Proceedings of
7th Symposium on Fire and Forest Meteorological Society (2007)

3. Benenson, I., Torrens, P.M.: Geosimulation. Wiley, Chichester (2004). https://doi.org/10.
1002/0470020997

4. Andrews, G.: Cellular Automata and Applications, p. 29 (2008)
5. Fonseca, P., Colls, M., Casanovas, J.: A novel model to predict a slab avalanche

configuration using m:n-CAk cellular automata. Comput. Environ. Urban Syst. 35, 12–24
(2011). https://doi.org/10.1016/j.compenvurbsys.2010.07.002

6. Stephen, W.: Statistical-Mechanics-Cellular-Automata-Stephen-Wolfram-Article.pdf (1983).
https://doi.org/10.1103/RevModPhys.55.601

178 P. Fonseca i Casas

http://dx.doi.org/10.1007/978-94-017-9136-6_19
http://dx.doi.org/10.1002/0470020997
http://dx.doi.org/10.1002/0470020997
http://dx.doi.org/10.1016/j.compenvurbsys.2010.07.002
http://dx.doi.org/10.1103/RevModPhys.55.601

7. Yue, H., Hao, H., Chen, X., Shao, C.: Simulation of pedestrian flow on square lattice based
on cellular automata model. Phys. A Stat. Mech. Appl. 384, 567–588 (2007). https://doi.org/
10.1016/j.physa.2007.05.070

8. ITU-T: Specification and Description Language – Data and action language in SDL-2010
(2016)

9. ITU-T: Specification and Description Language – Overview of SDL-2010 (2011)
10. Doldi, L.: SDL Illustrated - visually design executable models (2001)
11. Wainer, G.A.: Advanced Cell-DEVS modeling applications: a legacy of Norbert Giambiasi.

Simulation (2018). https://doi.org/10.1177/0037549718761596
12. Wolfram, S.: A New Kind of Science (2003)
13. Fonseca, P., Casanovas, J.: Simplifying GIS data use inside discrete event simulation model

through M:N-AC cellular automaton. In: International Mediterranean Modeling Multicon-
ference, I3 M 2005, European Modeling Simulation Symposium EMSS 2005, pp. 7–15
(2005)

14. Brendon, G.E.: Topology and Geometry (1993)
15. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis (1991)
16. ITU-T: Z.100. Specification and description language (SDL) (2016)
17. ITU-T: Specification and description language - overview of SDL-2010. http://handle.itu.int/

11.1002/1000/12846%0A
18. Doldi, L.: Validation of Communications Systems with SDL. The Art of SDL Simulation

and Reachability Analysis (2003)
19. Adamatzky, A., Durand-Lose, J.: Collision-Based Computing. Springer, London (2002).

https://doi.org/10.1007/978-1-4471-0129-1
20. Fonseca i Casas, P., Colls, M., Casanovas, J.: Towards a representation of environmental

models using specification and description language-from the fibonacci model to a wildfire
model. In: KEOD (2010)

21. Fonseca i Casas, P.: Using specification and description language to define and implement
discrete simulation models. In: Summer Computer Simulation Conference, SCSC 2010 -
Proceedings of the 2010 Summer Simulation Multiconference, SummerSim 2010, pp. 419–
426 (2010)

22. Fonseca i Casas, P.: SDL distributed simulator. In: 2008 Winter Simulation Conference
(2008). https://doi.org/10.1109/WSC.2008.4736433

23. Sherratt, E., Ober, I., Gaudin, E., Fonseca I Casas, P., Kristoffersen, F.: SDL - the IoT
language (2015). https://doi.org/10.1007/978-3-319-24912-4_3

Towards a Representation of Cellular Automaton Using Specification 179

http://dx.doi.org/10.1016/j.physa.2007.05.070
http://dx.doi.org/10.1016/j.physa.2007.05.070
http://dx.doi.org/10.1177/0037549718761596
http://handle.itu.int/11.1002/1000/12846%250A
http://handle.itu.int/11.1002/1000/12846%250A
http://dx.doi.org/10.1007/978-1-4471-0129-1
http://dx.doi.org/10.1109/WSC.2008.4736433
http://dx.doi.org/10.1007/978-3-319-24912-4_3

	Towards a Representation of Cellular Automaton Using Specification and Description Language
	Abstract
	1 Introduction
	1.1 Cellular Automaton
	1.2 Multi:N-Dimensional Cellular Automata (m:n-CAk)
	1.3 Specification and Description Language

	2 Representing m:n-CAk on SDL
	2.1 Extending the SDL to Define a Cellular Automaton
	2.2 The Game of Life

	3 Concluding Remarks
	References

