
Pau Fonseca i Casas
Maria-Ribera Sancho
Edel Sherratt (Eds.)

LN
CS

 1
17

53

11th International Conference, SAM 2019
Munich, Germany, September 16–17, 2019
Proceedings

System Analysis 
and Modeling
Languages, Methods, 
and Tools for Industry 4.0



Lecture Notes in Computer Science 11753

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA



More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Pau Fonseca i Casas • Maria-Ribera Sancho •

Edel Sherratt (Eds.)

System Analysis
and Modeling
Languages, Methods,
and Tools for Industry 4.0

11th International Conference, SAM 2019
Munich, Germany, September 16–17, 2019
Proceedings

123



Editors
Pau Fonseca i Casas
Universitat Politècnica de Catalunya
Barcelona, Spain

Maria-Ribera Sancho
Universitat Politècnica de Catalunya
Barcelona, Spain

Edel Sherratt
Aberystwyth University
Aberystwyth, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-30689-2 ISBN 978-3-030-30690-8 (eBook)
https://doi.org/10.1007/978-3-030-30690-8

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6747-9736
https://orcid.org/0000-0002-5904-8709
https://doi.org/10.1007/978-3-030-30690-8


Preface

This book constitutes the refereed proceedings of the 11th International Conference on
System Analysis and Modeling (SAM 2019), held during September 16–17, 2019, in
Munich, Germany.

This year’s edition of SAM was under the theme “Languages, Methods, and Tools
for Industry 4.0.”

In 1784, industry was characterized by the combined use of three elements, the
steam engine, the use of coal as a fuel, and the use of iron. From 1870, major changes
to industry were driven by new sources of energy – gas, oil, and electricity – along with
new materials, new systems of transportation, and the rise of telephone and radio use.
Since 1969, industry has been characterized by greater utilization of the renewable
energy sources, development of rechargeable batteries, of hydrogen batteries, and of
other new energy storage technologies, such as the intelligent grid or electric power
distribution network “smart” (smart Grid). Increased use of transport based on electric
vehicles (all-electric vehicles, as well as fuel cells), using renewable electricity as a
propulsion power, has also played a major role. But remarkably, and related to the
context of this conference, during this period we see the rise of electronics, telecom-
munications, and computers, raising in the programmable logic controllers (PLCs) and
robots.

Now Industry 4.0 represents a qualitative leap in the organization and control of the
entire value chain throughout the life cycle of the manufacture and delivery
of the product. The exponential expansion of this fourth revolution is mainly caused by
the possibility of merging the technology, breaking the limits between the physical and
the digital worlds. This produces a paradigm shift in society. There are plenty of
different technologies that individually have a great impact on the production
processes, but more interestingly, when those technologies act together, they create an
increased force that accelerates the generation of news processes on the industrial
frame. The mainstream adoption of technologies and processes that will soon lead the
upcoming production methods will change the face of the industry in a broad spectrum.

Several consulting firms with the goal to establish a clear definition of what is
Industry 4.0 agree that there is a set of technologies that will lead this revolution, like
Simulation, Cloud computing, 3D printers, among others. The key concept of the
digital twin, a copy of the system that defines the main elements that drive the behavior
of the system along with the system evolution, is to serve as the glue between all the
elements that exist on this system.

A digital twin is a model, and by definition a model uses formal languages and tools
that supports description and the adoption of the model vision in all spheres of the
industry to achieve a holistic approach. In this sense, conferences like SAM 2019
provide an excellent opportunity to depict the main concerns and solutions regarding
the modeling process that will lead the upcoming industrial (r)evolution.



The 12 regular papers (maximum 20 pages) and the 2 work-in-progress papers
(maximum 12 pages), were carefully reviewed and selected from 28 submissions. Each
submissionwas reviewed by at least 2, and on average 2.9, ProgramCommitteemembers.

We had two keynote presentations, from two strong researchers and practitioners
of the area: Antoni Guasch i Petit from the InLab FIB, a research institution of the
Universitat Politècnica de Catalunya, who presented interesting examples and experi-
ences learned from the use of conceptual modeling in critical projects; and Thomas
Weigert, Chief Technology Officer and Vice President at UniqueSoft. This second
keynote presentation contextualized the current trends in model-driven engineering and
was also included in this volume.

As is the usual at SAM conferences, the papers describe innovations, new trends, and
interesting experiences in modeling and analysis of complex systems mainly focused on
ITU-T’s Specification and Description Language (SDL-2010) and Message Sequence
Chart (MSC) notations, but also including system design languages like UML, ASN.1,
TTCN, SysML and the User Requirements Notation (URN). This edition includes
software engineering technologies related to Industry 4.0, such as distributed applica-
tions, interoperability, social and environmental modeling, concurrency, data integrity,
software verification and validation, and automated code generation.

SDL Forum Society

The SDL Forum Society is a not-for-profit organization that, in addition to running the
System Analysis and Modelling (SAM) conference series of events, also:

– Runs the System Design Languages Forum (SDL Forum) series
– Is a body recognized by ITU-T as co-developing system design languages in the

Z.100 series (SDL), Z.120 series (MSC), Z.150 series (URN), and other language
standards

– Promotes the ITU-T System Design Languages

For more information on the SDL Forum Society, see http://www.sdl-forum.org.

July 2019 Pau Fonseca i Casas
Maria-Ribera Sancho

Edel Sherratt

vi Preface

http://www.sdl-forum.org


Organization

Program Committee

Shaukat Ali Simula Research Laboratory, Norway
Daniel Amyot University of Ottawa, Canada
Ludovic Apvrille Telecom ParisTech, France
Tibor Csöndes Ericsson, Hungary
Juergen Dingel Queen’s University, Canada
Joachim Fischer Humboldt University of Berlin, Germany
Antoni Fonseca Polyhedra Tech S.L., Spain
Pau Fonseca i Casas Universitat Politècnica de Catalunya, Spain
Emmanuel Gaudin PragmaDev, France
Abdelouahed Gherbi École de Technology Supérieure,

Université du Québec, Canada
Reinhard Gotzhein University of Kaiserslautern, Germany
Jens Grabowski Georg-August-University of Göttingen, Germany
Jameledine Hassine KFUPM, Saudi Arabia
Oystein Haugen Østfold University College, Norway
Steffen Herbold Universität Göttingen, Germany
Ferhat Khendek Concordia University, Canada
Gabor Kovacs Budapest University of Technology and Economics,

Hungary
Finn Kristoffersen Cinderella ApS, Denmark
Gunter Mussbacher McGill University, Canada
Ileana Ober IRIT, University of Toulouse, France
Iulian Ober IRIT, University of Toulouse, France
Xavier Pi Universitat Oberta de Catalunya, Spain
Andreas Prinz University of Agder, Norway
Rick Reed TSE, UK
Cristina Ruiz Carleton University, Canada
Maria-Ribera Sancho Universitat Politècnica de Catalunya, Spain
Edel Sherratt University of Wales Aberystwyth, UK
Ernest Teniente Universitat Politècnica de Catalunya, Spain
Maria Toeroe Ericsson, Canada
András Vörös Budapest University of Technology and Economics,

Hungary
Gabriel Wainer Carleton University, Canada
Man Zhang Kristiania University College, Norway

Additional Reviewer

Weber, Dorian



Acknowledgements

Organizing a conference is a large undertaking that cannot be carried out alone. The
program co-chairs would like to recognize the dedicated work and the contributions of
many people and organizations. We wish to thank the keynote speakers, the members
of the Program Committee (PC), the members of the SDL Forum Society Board, and
the many postgraduate students and support staff who made this conference possible.

Furthermore, we thank the MODELS Organizing Committee for the effective
support during the preparation and smooth realization of the SAM conference.

We thank Springer for once again publishing the conference proceedings in their
LNCS series.

Finally, and most importantly, we would like to thank the authors of the papers that
provided the content for this conference.

Many thanks to all the speakers, attendees, PC members, and the SDL Forum
Board for making this event a success.



Contents

Keynote Talk

Generating Test Suites to Validate Legacy Systems . . . . . . . . . . . . . . . . . . . 3
Thomas Weigert, Alexander Kolchin, Stepan Potiyenko, Oleg Gurenko,
Aswin van den Berg, Valentyn Banas, Roman Chetvertak,
Roman Yagodka, and Vlad Volkov

Distributed Applications, Metamodeling and Protocols

Deriving Distributed Design Models from Global State
Machines Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Mohammad F. Al-hammouri and Gregor V. Bochmann

Generic Graphical Navigation for Modelling Tools . . . . . . . . . . . . . . . . . . . 44
Hyacinth Ali, Gunter Mussbacher, and Jörg Kienzle

Protocol Syntax Development Using Domain Specific
Modeling Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Goran Rajić and Vlado Sruk

Industry 4.0 Applications

Use of a Pivot Diagram in SysML to Support an Automated
Implementation of a MBSE Design Methodology
in an Industry 4.0 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Régis Plateaux, Olivia Penas, and Farid Louni

Modeling and Code Generation Framework for IoT. . . . . . . . . . . . . . . . . . . 99
Mohammad Sharaf, Mai Abusair, Rami Eleiwi, Yara Shana’a,
Ithar Saleh, and Henry Muccini

Process Enactment with Traceability Support for NFV Systems . . . . . . . . . . 116
Omar Hassane, Sadaf Mustafiz, Ferhat Khendek, and Maria Toeroe

Modeling in Environmental Social and Industrial Systems

On the Structure of Avionics Systems Architecture . . . . . . . . . . . . . . . . . . . 139
Visar Januzaj and Stefan Kugele

Generating Executable Code from High-Level Social
or Socio-Ecological Model Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Themis Dimitra Xanthopoulou, Andreas Prinz, and F. LeRon Shults



Towards a Representation of Cellular Automaton Using Specification
and Description Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Pau Fonseca i Casas

Interoperability

Goal Model Integration: Advanced Relationships
and Rationales Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Malak Baslyman and Daniel Amyot

Union Models: Support for Efficient Reasoning About Model
Families Over Space and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Sanaa Alwidian and Daniel Amyot

Facilitating the Co-evolution of Standards and Models. . . . . . . . . . . . . . . . . 219
Philip Makedonski and Jens Grabowski

Concurrency, Data Integrity

Adapting Integrity Checking Techniques for Concurrent
Operation Executions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Xavier Oriol and Ernest Teniente

Eventual Consistency Formalized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Edel Sherratt and Andreas Prinz

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

xii Contents



Keynote Talk



Generating Test Suites to Validate Legacy
Systems

Thomas Weigert3(B), Alexander Kolchin2, Stepan Potiyenko2, Oleg Gurenko1,
Aswin van den Berg3, Valentyn Banas1, Roman Chetvertak1,

Roman Yagodka1, and Vlad Volkov2

1 ISS, Kyiv, Ukraine
2 V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kyiv, Ukraine

3 Uniquesoft LLC, Palatine, IL, USA
thomas.weigert@uniquesoft.com

http://www.uniquesoft.com

Abstract. Testing of modernized legacy systems is difficult due to
that typically requirements specifications do not exist and that detailed
knowledge of the architecture and design of the system may have been
lost. In this paper we present an approach which derives test suites for
a modernized legacy systems from the legacy code. We extend our ear-
lier presented approach deriving test suites from use case map (UCM)
specifications of a system by transforming the legacy code into a UCM
model. We further discuss enhancements to the test generation process
required to operate on the large models obtained from realistic legacy sys-
tems and to assure that the generated tests are meaningful to the tester.
This approach has been used to validate the modernization of large (in
excess of 20 million lines of code) mainframe applications implemented
in COBOL.

Keywords: System testing · Test generation · Legacy modernization ·
State space reduction

1 Testing Is Hard

While who writes the code for software products often gets all the glory, test-
ing those products is often much harder than producing them in the first place.
When creating tests, the tester must be able to envision the sequences of states
the execution of the software may traverse during its execution. By the state of a
software system we mean the conjunction of the values of all its explicit variables
(the variables that the code defines) as well as all its implicit variables (the vari-
ables that the code induces when executing in the context of its environment).
We refer to a sequence of such states as a trace. A trace that leads from an entry
point into the system to its termination or to points in the program where the
trace keeps repeating represents a possible behavior of the system. The complete
behavior of the system is represented by the sum of all such traces.
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 3–23, 2019.
https://doi.org/10.1007/978-3-030-30690-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_1


4 T. Weigert et al.

Even for simple systems, it is not easy to envision all possible traces. When
a system interacts with other agents in its environment, in particular in an
asynchronous manner, the number of possible traces explodes rapidly due to
the interleaving of its interactions. Nevertheless, a good tester must be able to
envision such traces, especially where these may lead to undesired behaviors.

At some states, the system will require inputs which will determine its sub-
sequent behavior. Such inputs may come from other agents (such as users or
other systems that the system under test interacts with) or they may come from
databases or otherwise reflect persistent data that is obtained. For each trace,
the tester must be able to determine the inputs that are required to trigger this
trace and arrange that during execution of the test these inputs are provided.
If such inputs come from persistent data, the tester must arrange for the data
source to be configured to provide exactly that data.

At other states, the system will produce outputs to its environment which
one can observe. The tester must be able to predict what output the system will
produce at each such state, given the preceding inputs. As such output may be
the result of complex computation, a tester may need to rely on an oracle to
determine the desired outputs.

A test is a sequence of inputs to the system which trigger its execution and
outputs observable during its execution. A test suite is a set of such tests. Much
research has gone into determining criteria that would establish the quality of a
test suite, that is, a measure of the trust we can place in the system to execute
correctly and error-free if all the tests in a test suite have passed (that is, the
predicted outputs were indeed observed when the system was stimulated with the
given inputs). These criteria are usually referred to as coverage criteria. Finding
a test suite that includes all possible traces through the system will usually be
prohibitively large or even theoretically impossible. Coverage criteria help us
to determine whether a test suite covers a sufficiently large subset of the state
space for us to place trust in the software system. It is difficult for the tester to
envision all the important consequences of the system behavior. In practice, we
often find that tests tend to cover some regions of the state space many times
over, while other regions are barely visited or not visited at all. The history
of software engineering provides a seemingly endless stream of examples where
testers failed to envision traces present in the state space leading to disastrous
consequences.

Tests as discussed so far establish that the system behaves as intended with
respect to its functionality, that is: Does the system produce the expected out-
puts given a set of predetermined inputs. Developers are also concerned with
non-functional characteristics of the system, such as how quickly it will produce
these outputs, how many other agents it can interact with before its performance
will become unbearably slow, its resilience when the environment changes in
unexpected ways or when the environment does not provide desired inputs, and
many more. In this paper, we shall not further be concerned with testing for
non-functional system properties.



Generating Test Suites to Validate Legacy Systems 5

A number of languages have been developed to specify test suites [1–5]. In
earlier papers, we have described an approach we have developed to derive tests
from an abstract specification of system behavior [6–9]. In that approach, we
describe system behavior through use case map (UCM) specifications [10,11].
A use case map is a graphical or textual description of the system behavior
in a simple and easy to understand notation. Use case maps have been suc-
cessfully used to specify systems in many domains, from telecommunications to
industrial control. Our approach reasons over a formal model derived from UCM
specifications and generates a set of traces that cover the specification, accord-
ing to chosen coverage criteria [8]. We rely on reachability analysis of the formal
model, and thus are subject to the theoretical limits of this technology. Never-
theless, leveraging well-known techniques as well as our own recently developed
methods of reducing the size of the induced state space, we have been able to
achieve impressive practical results [12–14,39]. Tools which have implemented
our approach have been successfully used to derive test suites for communica-
tions network elements developed by Motorola and Samsung. We have reported
on the results of applying these tools to industrial projects elsewhere [6,8].

Testers will then execute the developed test suites, that is, stimulate the
system under test with the inputs specified in a test, and observe the outputs
that result and compare them to the behavior the test had predicted. Much
engineering work has gone into developing tools that execute test suites against
a system under test. (In industry terminology, “test automation” confusingly
refers to test execution, not to the automation of producing tests.) In particular
in the information technology space, support for test execution has converged on
widely used frameworks, such as Cucumber [5] and Robot [15]. These systems
provide notations to express tests and are able interact with the system under
test to stimulate it and observe its behavior. We will not further discuss test
execution in this paper. Our approach produces test suites that can be executed
by such frameworks.

2 Testing of Modernized Systems

The modernization of legacy systems brings additional challenges for the tester.
For older systems, in particular for legacy mainframe applications which now are
increasingly migrated to Linux client-server systems or to cloud-based systems,
often requirements descriptions do not exist. If any description of system behav-
ior exists, it usually covers only the expected or “sunny-day” scenarios, but is
silent on error or “rainy-day” scenarios.

Therefore, legacy modernization carries a substantial level of risk. Not only
are such systems written in languages which are not familiar to the major-
ity of today’s programmers (e.g., COBOL), but also these languages usually
lack the abstraction capabilities of modern programming languages which pre-
vent many software defects. The consequent extensive usage of global variables
and/or the complex control flow mediated through goto constructs make such
systems hard to understand. The architectures imposed by mainframe middle-
ware such as CICS and IMS, by older storage technologies such as VSAM files



6 T. Weigert et al.

or hierarchical databases, and the need for optimizations imposed by limitations
of past hardware solutions also contribute to the difficulty in analyzing legacy
systems. Alas, the legacy systems that are still in operation today are usually
business critical, representing the heart of the operation of many organizations,
from financial institutions to manufacturing. Any failure of a modernized system
would be unacceptable. To no surprise, there is great reluctance to embark on
such modernizations, even if it promises dramatic reductions in operating and
maintenance expenses.

When testing a modernized system, we need not establish that it satisfies
its requirements. By definition, the legacy system is correct. The main concern
for a modernized system is whether it faithfully reproduces the behavior of the
legacy system, modulo any changes due to the changed operating environment.
This change of focus offers an opportunity: we merely need to establish that
the traces of the modernized system match the traces of the legacy system. The
most reliable source for traces of the legacy system is its code. If there was a
way of inferring the traces from the code of the legacy system and derive a
test suite, then we could subject the modernized system to this test suite and
establish that its behavior matches the behavior of the legacy system. While in
ordinary system development basing tests on the code itself would be a rather
silly undertaking, for legacy modernization it may prove the most viable route.

In order to apply the test case derivation approach discussed earlier [6–8]
to generate test suites for legacy systems, we transform the legacy code into a
model represented as use case maps. This transformation maps the semantics
of the programming language to the means of expression afforded by UCM. We
have augmented the standard UCM syntax with an expression language which
models the update to state variables of the system. For some legacy languages,
such as COBOL, this mapping is complicated due to the possible overlap between
data entities due to constructs such as redefinition or group entities. The use case
map model reduces the computations of the legacy system to either updates to
the system state or to abstract computations summarizing their effect on the
system state.

The state space induced by the code of any realistic legacy system will be
enormous and thus we had to develop further techniques to deal with very large
state spaces. We further found that it is important for the derived traces to reflect
understandable behaviors. Reachability analysis does not consider the causal
relationships that may exist between different states and chooses its traversal of
the state space either randomly or determined by optimizations applied. Often
such traces, while representing admissible behaviors, surprise the tester as they
do not represent system scenarios the tester would normally encounter. Scenarios
that a tester expects might be absent, when they do not further increase coverage
beyond what has already been achieved. It is therefore important to enhance
reachability analysis so that traces are not arbitrarily selected to achieve the
desired coverage level, but that traces reflect well-understood usage scenarios.

In the following, we will discuss the process we realized to derive system test
suites from legacy code. Section 3 discusses the transformation of the legacy code



Generating Test Suites to Validate Legacy Systems 7

to a UCM model. We shall restrict our discussion to legacy systems implemented
in COBOL. The details of the transformation need to reflect the legacy language
but the approach is independent of the language modernized. Section 4 presents
enhancements we developed to handle the enormous state spaces induced by
legacy systems when deriving test cases from a UCM model. We further discuss
a strategy that assure that the derived test cases are meaningful to a tester.

3 Obtaining a Model from Legacy Code

We begin with the observation that for system testing we are usually concerned
with the business logic of the system, that is, the part of the system behavior
that relates to realizing the business purpose of the system. In most systems, the
business logic is only a, sometimes small, subset of the code. Much software has
to be written to implement the business logic in the computational environment
the system executes in. There is code which will obtain the inputs to the system,
which will format and create the outputs from the system, and which ties the
system to the underlying middleware and operating system. There further is
much code handling errors that could arise from erroneous or incorrect inputs or
from undesired behavior of the computing environment. Cross-cutting concerns
may provide other system services not related to the business logic proper, such
as authentication, logging, monitoring, and so on. Isolating the business logic
from the rest of the code will dramatically reduce the state space that needs to
be analyzed.

Next we observe that even throughout the business logic there are aspects
that are of greater interest to the tester than others. Often, when examining the
outputs of the system, we can find parts that are not as important as others.
From their interaction with the legacy systems, testers tend to be aware of the
“important” results of the system. If we focus on the traces of the system which
lead to those “important” results, we will reduce the state space further.

Tests relate stimuli to the system under test to observed outputs. Starting
at the observed outputs, we analyze all exit points from a program to identify
the data that is passed out of the program. Having separated the business logic
from other code of lesser interest, we separate the data output into data that
is “interesting” and such that is not. We can then reduce the set of all possible
execution traces to the set of all possible traces which lead to the selected points
of interest and effect the “interesting” data. The remainder of the code can be
ignored. This code is eliminated through program slicing [16]. We extend slicing
with techniques to separate the business logic implemented in the program from
other code which shall be ignored. The resultant slices are then converted into
a UCM model.

3.1 Control Flow and Data Flow Dependencies

A program slice consists of the statements of a program which have a potential
effect on the values computed at some points of interest; these points of inter-
est are referred to as the slicing criterion. Static slicing [17] is independent of



8 T. Weigert et al.

possible input values of the program, while dynamic slicing [18] is triggered by
specific input values. A slice is computed by analyzing control flow and data flow
dependencies and collecting statements and conditions during traversal of the
program, starting at a statement which satisfies a slicing criterion. Slices could
be computed by traversing the program forward or backward. In this paper,
we rely on backward slicing from points of interest to entry points of the pro-
gram. We consider the slicing criterion to select as “interesting” either output
statements, i.e., statement that pass data from the current program to its envi-
ronment (e.g., display data on the screen or write it to persistent storage) or
termination statements, i.e., statements which terminate the execution of the
current program and pass control to another program or to the caller.

Control flow and data flow dependencies are represented in a program depen-
dency graph (PDG). A PDG is a directed graph which contains a node for each
statement or control predicate in the program, and edges between nodes indi-
cating possible flow of control or data between these nodes [19,20].

Control flow dependencies are defined in terms of postdominance. A PDG
node n is postdominated by node n′ if all paths from n to the end node pass
through node n′. Node n′ is directly control flow dependent on node n if n is not
postdominated by n′ and there is a path between n and n′ such that any other
node on this path is postdominated by n′.

To compute data flow dependencies, for each node n in the PDG two
sets defs(n) and uses(n) are calculated, where defs(n) is a set of variables
defined/written at n, and uses(n) is a set of variables used/read at n. These sets
are calculated using effects analysis, which includes the direct read/write effect
of a statement or control predicate with respect to the semantics of the specific
programming language and points-to analysis based on the context-insensitive
Andersen algorithm [21] with optimizations taken from the Ant and Grasshopper
algorithms [22]. Taking into account the specifics of the COBOL programming
language, read and write effects are defined in terms of a memory model with
start points and offsets. Given defs(n) and uses(n) sets, a node n′ is directly
data flow dependent on node n if there is a variable v ∈ defs(n) ∧ v ∈ uses(n′),
and there is a path between n and n′ without intervening definitions of v.

3.2 PDG-Based Slicing Method

The slicing criterion is typically defined as a pair 〈n, vars(n)〉 where n is a node
in the PDG, and vars(n) is the set of all variables defined or used at n. Control
and data flow dependencies are transitive and introduce dependency chains. A
slice S is computed by collecting all nodes that affect n through a control or data
flow dependency chain. The computation of slices must preserve the reachability
of the slicing criterion: If the slicing criterion is reachable in the original program,
it must be reachable in a program slice. Conversly, if the slicing criterion is not
reachable in the original program, it must not be reachable in a program slice.

Our slicing algorithm is shown in Fig. 1. We improve the precision of the slice
by, instead of considering all effects of each node, narrowing the slicing criterion
to 〈n, varsr(n)〉, where varsr(n) ⊆ vars(n). Correspondingly, we reduce data



Generating Test Suites to Validate Legacy Systems 9

1 Given slicing criterion 〈n, varsr(n)〉 in program P
2 slice S = {n}
3 until the start point is reached do
4 for all new nodes n ∈ S, analyzing dependencies for variables from
5 the set of visited nodes usesr(n) do
6 let N be the set of nodes corresponding to reaching definitions
7 for all variables v ∈ varsr(n)
8 S = S ∪ N
9 let M be the set of nodes corresponding to control dominators

10 of n, considering only business related control predicates in n
11 S = S ∪ M

Fig. 1. PDG-based slicing algorithm

flow dependencies to the nodes which directly or indirectly affect the variables
from varsr, ignoring all other data flow dependencies (lines 6–8). At lines 9–10,
we collect nodes corresponding to dominators of control predicates. Each such
node n introduces an additional set of variables uses(n) which, in turn, adds
the corresponding reaching definition nodes to the slice, significantly increasing
the size of the slice. We divide the control predicates of the legacy program into
two sets: business related control predicates which operate on business variables
and non-business control predicates which do not. Assuming that non-business
control variables do not create business-relevant branches in the path, these
nodes do not have a direct effect on the result of the variables from varsr and
can be ignored. If there are multiple slicing criteria then perform lines 1–11 for
each slicing criterion and form the union of all resultant slices.

The reduced sets defsr(n) and usesr(n) for each PDG node n are calculated
during backward liveness data flow analysis with respect to the reduced set
varsr from the slicing criterion such that usesr(n) ⊆ uses(n) and for every
variable x ∈ usesr(n), there is a variable y ∈ defsr(n), such that y is calculated
from x. Calculating the reduced sets and the mapping between the sets defsr
and usesr is not trivial and is specific to a programming language. However,
any narrowing of the effects greatly reduces the number of dependencies and
improves the precision of the resulting slice. For COBOL, we calculate such
mapping with bytewise precision.

3.3 Interprocedural Data Flow Analysis

The algorithm from Fig. 1 focused on intraprocedural data flow analysis.
COBOL, as many other programming languages, allows the control and data
flow of called procedures to be affected by the calling procedure and vice versa.
Interprocedural slicing obeys control and data flow dependencies between state-
ments from different programs or procedures and preserves statements in the
calling or called procedures. The effect of called procedures may be different
for each unique call due to their context. Computing the slice separately for



10 T. Weigert et al.

each procedure as in [23] gives rise to the “calling context” problem [24] which
may introduce nonexistent execution paths which enter a procedure Q from a
procedure P and exit Q to a procedure different from P . Replacing recursive
calls iteratively by instances of the procedure body does not suffer from the call-
ing context problem [25]. A slice is recomputed for each iteration until no new
statements are added to the slice. However, this algorithm is exponential in the
number of procedures and thus cannot be effectively applied to large systems.

To compute interprocedural static slices we build an extended PDG, similar
to the system dependency graph proposed in [24]. As COBOL procedures (para-
graphs, sections, and nested programs) do not have their own parameters and
all data is global to the program, we do not need to map between formals and
actuals, other than for external program calls. We limit interprocedural slicing to
sections, paragraphs, and nested programs in the scope of a standalone COBOL
program. In addition to intraprocedural dependency edges, the extended PDG
also contains interprocedural dependency edges. Control flow dependency are
extended with an edge between each call node and the entry node of the cor-
responding called procedure. Interprocedural data flow dependencies are calcu-
lated by interprocedural liveness data flow analysis with respect to the variables
listed in a slicing criterion. This analysis is iterative based on the intraprocedu-
ral analysis solved for each procedure for specific interesting variables, analyzing
definition-use dependencies as discussed earlier. With the help of the extended
PDG, interprocedural slicing can be performed using the algorithm in Fig. 1.

Analysis of procedure P starts at the location identified by its reduced slic-
ing criterion. If P contains a call to procedure Q, and this call is reached during
backward traversal of P , we interrupt the analysis of P and compute the intrapro-
cedural liveness analysis of Q starting from its return node, where a variable is
live if it holds a value that is needed to compute the value of a variable in the
list of used variables collected as a result of the liveness analysis before the call
of Q in P was reached. After analysis of Q, we return to P , taking the result of
liveness analysis from the start node of Q as the result of the procedure call. The
analysis is recomputed at each iteration of the data flow analysis, extending the
results from the previous iterations until a fixed point is reached, i.e., until no
new variables are added to the set of a live variables for any node. In the worst
case, all variables defined in the program are considered live. To avoid the calling
context problem, we perform a recursive traversal collecting a call stack, which
consists of all procedures we entered, but have not yet returned from. Each call
node with its specific call stack is considered as a unique call node, and liveness
analysis for the corresponding called procedure has to be recalculated. This call
stack is also used to avoid infinite recursion of procedure calls. This analysis can
be sped up using memoization: we do not recompute the analysis for a called
procedure, if we have already computed it for the same procedure with the same
input data. Instead, we reuse the results of the previous computation.



Generating Test Suites to Validate Legacy Systems 11

3.4 Abstraction of Non-business Procedures

Programs typically contain much code besides their business logic. Separating
business and non-business logic allows to narrow the scope of analysis and reduce
the size of the resulting slice. Unfortunately, in many situations we cannot com-
pletely ignore the non-business logic, as it will affect the results of a business
computation. For example, a program may perform authentication to determine
whether a user is permitted to execute this program. While the system test is not
interested in the details of the authentication, whether the user was authorized
or not is essential as further processing depends on it. Thus, while we can remove
the computation of authentication, we cannot remove its effect. Similarly, utility
routines often are called to obtain values from input and updating variables that
are used in the business logic. We may not be interested in the details of how the
data was obtained, but the business logic critically depends on which variables
in the business logic were updated by the input.

To exclude the unnecessary details of non-business routines, we abstract them
by replacing their calls with their effects. After the computation of the interpro-
cedural slice, we can summarize the effects of each procedure P into two sets: the
set mod(P ) of variables that are modified by P , and the set uses(P ) of variables
that are used by P , taking into account any procedures called by P . Then, each
call of P can be replaced by a set of assignments, where each modified variable
from mod(P ) is assigned in the call of an abstract procedure that takes corre-
sponding variables from uses(P ) as input parameters to produce the new value
of the updated variable.

Such effects can be calculated using the results of interprocedural liveness
analysis computed for slicing, in combination with a reachability analysis com-
puted for each procedure P separately, when for every variable x ∈ uses(P ),
there is at least one node n in P , where the reaching definition for variable x
is the start of P , i.e., its definition is somewhere outside of the program and
for every variable y ∈ mod(P ), at the end of P , there is at least one node in
P which is a reaching definition for variable y that is not the start of P and y
is live in the slice after the call of P . If the summarized effect of P determines
that mod(P ) is empty, this procedure can be safely ignored. Since each call of a
procedure P in each specific context is treated as a unique call, we are able to
perform this analysis separately for each call, taking into account the liveness
results for each specific call which results in more precise summarized effects.

3.5 Conversion to Model

After abstraction, each slice contains only nodes representing guards, assign-
ments of effects to variables, and abstract functions. It is straightforward to
translate the control flow of such slices into UCM models. In order to reason
about this model, we represent it formally as an attributed transition system.

An attributed transition system is a tuple 〈C, c0, E, V, T 〉, where C is a set of
flow locations, c0 ∈ C is the initial location, E is a set of events, V is a finite
set of attributes (variables) with finite value domains and T is a finite set of



12 T. Weigert et al.

Fig. 2. Data definitions in COBOL

transitions. A transition is represented as a tuple 〈c, g, t, a, c′〉 ∈ T , where c ∈ C
is the source location and c′ ∈ C is a destination location, g is a precondition
over V , t ∈ E is an event, and a is a postcondition. Preconditions (guards) are
first order predicate calculus formulae. Postconditions contain assignments to
attributes from V . A state is a tuple 〈c,m〉 where c ∈ C and m is a mapping
from V to values and their definition locations.

A state transition 〈c,m〉 t−→ 〈c′,m′〉 is possible if for a transition
〈c, g, t, a, c′〉 ∈ T the guard g is satisfied for the valuation of m, and the result
of updating m according to a is m′. The semantics of transitions is analogous to
Dijkstra’s guarded commands: if the precondition of some transition t is satisfi-
able in some state s, then the model can perform this transition and moves to a
new state that differs from the previous state by the values of attributes which
where assigned in the postcondition. Attributes may be of integer, boolean, or
enumerated type, or may be arrays of these types.

The emulation of COBOL data, see Fig. 2, is more challenging. Level numbers
from 1 to 49 define a hierarchy of data elements. A data element (analogous to a
variable) can be elementary or a group entities (analogous to a structure which
contains all entities defined below it with a greater level number continuing to an
entity with the same or lower level number). Level 66 defines an alternative name
to a memory area containing another entity or alternative names for sequences
of data entities. Level 77 entities must always be elementary. Level 88 introduces
data values that may be present in the memory denoted by the entity preceding it
(its “parent” entity) along with “condition names” that can be used to set or test
for the presence of these values. Level 88 entities are transformed as follows: First,
all occurrences of level 88 names with unique values are converted to operations
comparing the parent entity with this value or to a corresponding assignment. If a
level 88 entity represents a set of values, it represents a disjunction of comparisons
between the parent entity and one of the values and assignments are performed
only for the first value in the set. While data entities are not typed in the



Generating Test Suites to Validate Legacy Systems 13

modern sense, they must be either numbers in a chosen binary representation or
alphanumeric (analogous to strings). In this discussion, we will focus on integer
data and ignore floating point types.

Every enumerated type is an unordered set of constants with equality and dise-
quality operations. Both arguments must have the same type. To convert vari-
ables into enumerated types, we collect all variables associated through operators
requiring strong type correspondence (assignment, comparison) and all their val-
ues. These variables are merged into “type groups”. All variables in a type group
will be given the same type; their values form elements of this shared type. Vari-
ables which do not fulfill the restrictions required for enumerated types described
below or are used in arithmetic and comparison operations are represented as
integer attributes or are processed bytewise as described below.

Integer variables in binary representation (BINARY, COMPUTATIONAL, or
COMP) are represented as integer attributes. COBOL defines an integer variable
with a PICTURE description of four or fewer digits as occupying 2 bytes; five to
nine digits occupy 4 bytes, and 10 to 18 digits occupy 8 bytes. Integer variables
with a PICTURE description 9(N) or S9(N) are converted to integer attributes
in the same way as binary integers. If all integer variables from a type group
satisfy the restrictions on enumerated types, we transform these integer values
to enumerated type elements and construct a new enumerated type.

Bytewise Representation. COBOL defines a number of operations which prevent
an attribute to be represented as discussed above. For such attributes, we repre-
sent the memory of the COBOL program as an array of integers. Each element
corresponds to a byte in program memory. The following COBOL constructs
require bytewise representation. (i) Redefinitions allow variables to overlap in
memory. Only in trivial cases, where the length of the intersected variables coin-
cides these can be translated to enumerated attributes, but this situation is
rare in practice. (ii) Reference modification allows access to an arbitrary sub-
sequence of bytes in memory. (iii) Concatenation combines values into a single
larger variable. (iv) Any variable, even non-numeric variables, can be compared.
(v) Assignments and comparison are possible between different group entities or
between a group entity and an elementary entity. In the general case, each vari-
able or field can be split to make associated variables consistent. After splitting,
we can compare or assign structures field by field and use enumerated types if the
individual fields satisfy above restrictions. In the worst case, variables can be split
into one-byte fields reducing to bytewise representation. We choose heuristically
between bytewise representation and variable splitting. (vi) When variables asso-
ciated by assignment or comparison have different lengths, different constants
are converted to different elements of the enumerated type. However, when these
variables match due to COBOL semantics, the bytewise representation must be
used. Considering each individual byte in data flow analysis (discussed later
in Sect. 4.1) is inefficient and leads to unreasonable redundancy. Therefore, we
detect blocks of bytes in COBOL memory which possess the following property:
if some statement defines a value for any byte in a particular block, then this



14 T. Weigert et al.

statement defines values for all bytes in that block. We refer to such blocks as
synchronized and treat them as single variables.

4 Deriving Test Suites from Legacy Code

We can apply the method from [8] to derive tests from the UCM model obtained
through the process presented in Sect. 3. However, the large size of the UCM
model generated from the code presents a challenge. [8] relies on reachability
checking to identify the tests required to achieve its coverage criterion. As the
state space for models derived from code is significantly larger than for require-
ments models, efficient state space traversal is of vital interest to automated test
development [12,13,26–35].

Problems with decidability and performance are the main obstacles for reach-
ability analysis, and many different approaches were invented to deal with these
shortcomings: random and combinatorial methods are easy to implement and
have good performance, but result in poor coverage and high redundancy [26,28];
search-based methods [29] attempt to minimize the “distance” between the gen-
erated test population and the desired test coverage objectives measured by
approximation functions. Systematic methods such as model checking or sym-
bolic execution [30–35] extract constraints on program paths through code anal-
ysis, and obtain test data that direct the execution of the program following
these paths. In [36], data dependency is expressed via temporal logic formu-
lae, which allows to perform test generation using model checking approaches,
inheriting related difficulties. Search heuristics can guide program exploration to
the most promising paths in the program [26–29,31,37]. For example, chopped
symbolic execution [33] prunes irrelevant paths with respect to defined points of
interest. However, search heuristics often produce incomplete results. Path merg-
ing [34] combines paths within a function into a summary that can be reused at
subsequent invocations which may reduce the number of paths explored expo-
nentially, but merely shifts the cost to a constraint solver. In contrast to random
or combinatorial methods, search-based and systematic methods can produce
test suites based on small data sets, but algorithms often get stuck enumerating
paths without increasing coverage [31,33].

4.1 Data-Flow Coverage Criteria

Selecting test cases typically relies on structural coverage critera [26,27]. Control-
flow based coverage criteria (such as statement and branch coverage) are too
weak for defect detection, while path coverage is too time-consuming and usu-
ally not realizable: The number of paths grows exponentially with the number
of branches and may become infinite in programs containing loops. Data-flow
coverage may be a reasonable compromise [37,38].

It is also critical that generated traces be meaningful to the tester. If derived
tests are completely unintuitive, testers are not likely to trust a test suite. Gen-
erated test suites that satisfy statement coverage or branch coverage often result



Generating Test Suites to Validate Legacy Systems 15

in unintuitive traces as it is only important that all statements or branches
be covered, but not that they be covered in any manner that is meaningful
to the tester. Tests generated following these coverage criteria are often long
execution sequences or stop after a region of the code is encountered that has
already been covered. For a test to be meaningful, it should observe outputs
which bear some clearly recognizable relation to the test stimuli. Relationships
interpreted as meaningful by a tester are often causal. While causality is not
typically expressed in code, considering data flow often provides a reasonable
approximation. Rapps and Weyuker [38] classify each occurrence of a variable as
a definitional occurrence (the variable is assigned a new value) or a usage occur-
rence (in a computation use, the variable is used in computing the value of some
other variable or itself; in a predicate use the variable is used in a condition that
affects which path the program takes). A DU-path with respect to a variable is
a path starting from the definition of the variable and ending at a usage of this
variable. A DU-path is def-clear with respect to a variable if it does not contain
a redefinition of this variable.

[38] defines a number of test criteria: A test suite satisfies the all-defs crite-
rion, if the test cases include a def-clear path from every definition of a variable
to some use of this variable. A test suite satisfies the all-p-uses or all-c-uses
criterion, if the test cases include a def-clear path from every definition of a
variable to all of its predicate or computational uses, respectively. A test suite
satisfies the all-uses criterion, if the test cases include a def-clear path from every
definition of a variable to every use of that variable. A test suite satisfies the
all-du-paths criterion, if the test cases include all DU-paths for every variable
defined. A test suite satisfies the all-paths criterion, if the tests cases include all
paths of the program.

Ordered by the coverage achieved, the all-paths criterion is the strongest and
the all-defs, all-p-uses, and all-c-uses criteria are the weakest. All-uses subsumes
statement and branch coverage. We choose the all-uses criterion as the most
practical since the number of paths required by all-du-paths or all-paths is too
big or even infinite due to possible loops.

We rely on the model of attributed transition systems introduced in Sect. 3.5:
A path is a sequence of states 〈c0,m0〉 t0−→ 〈c1,m1〉 t1−→ . . . starting from the ini-
tial state 〈c0,m0〉. A state 〈ci,mi〉 is reachable if there is a path from 〈c0,m0〉 to
〈ci,mi〉. The sets defs(c) and uses(c), where c is a location, denote the set of all
variables defined and used (either for computing a value or in a guard), respec-
tively. The expression s.v.def denotes the live definition location of variable v
at state s. The set DU denotes the set of all DU pairs required to be covered;
each pair is denoted as [D : U ]v, where D is a definition location and U a use
location of a variable v. The expression s.loc denotes the location referenced by
state s.

A direct data flow dependency [D : U ]v ∈ p exists if ∃i, j, k : p = {s0 t0−→
s1

t1−→ . . .
tk−1−→ sk} ∧ D = si.loc ∧ U = sj .loc ∧ i < j ∧ v ∈ defs(D) ∧ v ∈

uses(U) ∧ 0 ≤ i < k ∧ 0 < j < k ∧ (i < n ≤ j =⇒ v /∈ defs(sn.loc)). A
direct control flow dependency [D : U ]v

′
v ∈ p exists if ∃i, j, k : p = {s0 t0−→



16 T. Weigert et al.

1 WAIT:={s0}, where s0 is the initial state
2 VISITED:=∅; TRACES:=∅; G:=∅;
3 while WAIT �= ∅ do
4 select s from WAIT;
5 if [d : u]v ∈ DU ∧ [d : u]v /∈ G ⇒ ∃si : si ∈ VISITED ∧
6 restrict(s) ⊆ restrict(si) ∧ si.v.def = s.v.def then
7 continue;
8 add s to VISITED;
9 for all v : v ∈ uses(s.loc) ∧ [s.v.def : s.loc]v ∈ DU do

10 add [s.v.def : s.loc]v to G;
11 add (s, [s.v.def : s.loc]v) to TRACES;

12 for all t, s′ : s t−→ s′ do
13 for all v : v ∈ V :
14 if v ∈ defs(s′.loc) then s′.v.def :=s′.loc;
15 else s′.v.def :=s.v.def ;
16 add s′ to WAIT;
17 return G and TRACES;

Fig. 3. Naive algorithm search(DU)

s1
t1−→ . . .

tk−1−→ sk} ∧ D = si.loc ∧ U = sj .loc ∧ v ∈ defs(D) ∧ v′ ∈ uses(U) ∧
i < j ∧ 0 ≤ i < k ∧ 0 < j < k ∧ ∃c1, c2 : c1 = succ(D) ∧ c2 = succ(D) ∧
c1 �= c2 ∧ c1is postdominated by U ∧ c2is not postdominated by U . A DU-chain
chain(D, v, U, v′) ∈ p exists if ∃i, j, k : p = {s0 t0−→ s1

t1−→ . . .
tk−1−→ sk} ∧ D =

si.loc ∧ U = sj .loc ∧ i < j ∧ ([D : U ]v ∈ p ∧ v = v′ ∨ [D : U ]v
′

v ∈ p ∨ ∃U ′, v′′ :
chain(D, v, U ′, v′′) ∈ p ∧ chain(U ′, v′′, U, v′) ∈ p).

Figure 3 depicts a naive algorithm to generate all-uses coverage. In essence,
this algorithm performs reachability analysis and uses two data structures WAIT
and VISITED to hold states waiting to be examined and states already exam-
ined, respectively. Initially VISITED is empty and WAIT holds the initial state
s0. Lines 4–16 are repeated until WAIT is empty. At line 4 a state is taken from
WAIT, at lines 5–6 it is compared against states encountered earlier, and, if
the state is new, it is placed into VISITED (line 8) to avoid needless further
examination; lines 12–16 generate the successor states. The result sets G and
TRACES are updated at lines 10 and 11 if the current path satisfies the desired
coverage criteria. A well-known problem with the naive algorithm in Fig. 3 is
the large state space explored [13,32,39], which has a size proportional to the
number of model states multiplied with the number of DU pairs.

4.2 Improved Algorithm for DU-Chain Coverage

In [32], test generation is performed using a coverage criterion in the form of a set
of items to be covered and introduces the notion of coverage subsumption, which
allows to truncate the exploration of a path if it does not cover more items than
were previously generated. The method proposed in [35] truncates exploration
of a path as soon as the analysis can determine that continued execution will



Generating Test Suites to Validate Legacy Systems 17

1 s0.prev := ∅; s0.used := ∅; s0.chained := ∅; s0.idems := ∅;
2 WAIT:={s0}, where s0 is the initial state;
3 VISITED:=∅; TRACES:=∅; G:=∅;
4 while WAIT �= ∅ do
5 select s from WAIT;
6 if [d : u]v ∈ DU ∧ [d : u]v /∈ G ⇒ ∃si : si ∈ VISITED ∧
7 restrict(s) ⊆ restrict(si) then
8 if u ∈ si.used then propagate use(〈v, u〉, s);
9 if u ∈ si.chained then propagate chain(〈v, u〉, s);

10 if si.v.def = s.v.def ∨ u /∈ si.used ∨ u /∈ si.chained then
11 add s to si.idems;
12 continue;
13 add s to VISITED;
14 for all v : v ∈ uses(s.loc) do
15 if [s.v.def : s.loc]v ∈ DU then
16 propagate use(〈v, s.loc〉, s);
17 if s.loc ∈ OUTPUTS then
18 propagate chain(〈v, s.loc〉, s, s);
19 for all t, s′ : s t−→ s′ do
20 s′.used := ∅; s′.chained := ∅; s′.idems := ∅;
21 s′.prev := s;
22 for all v : v ∈ V do
23 if v ∈ defs(s′.loc) then s′.v.def :=s′.loc;
24 else s′.v.def :=s.v.def ;
25 add s′ to WAIT;
26 return G and TRACES;

Fig. 4. Improved algorithm: du chain search(DU)

produce effects that have already been seen. This approach collects the set of all
read-accessed (live) variables during the search and compares only states up to
those variables. However, in order to identify the read-set for some state, the
approach requires complete depth-first traversal of all paths after that state.

In [36], data flow-based testing is extended to consider control flow depen-
dencies; this approach allows to make the effect of coverage items observable if
the DU-chain completes at a statement with an observable effect of the coverage
item (e.g., a statement where this item is output to the environment or written
to persistent storage). Following this approach we prolong all generated paths
with respect to a DU-chain. This will guarantee that all generated traces will be
meaningful to the tester by reflecting the dependency chain.

In previous work we presented an algorithm that efficiently computes all-
uses coverage without requiring observability [39]. In this paper, we introduce a
novel on-the-fly algorithm to generate test cases through model-based reachabil-
ity analysis aimed to cover DU-chains. The algorithm guarantees completeness
of the search, yet avoids exhaustive state-space exploration by applying a spe-
cialized decision procedure enabling early termination of path unfolding, which
limits exploration to states which might increase coverage. Our search algorithm



18 T. Weigert et al.

27 while s.prev �= ∅ do
28 if 〈v, loc〉 /∈ s.used then
29 for all i : i ∈ s.idems do add i to WAIT; remove i from VISITED;
30 s.idems := ∅;
31 s.used := s.used ∪ 〈v, loc〉;
32 if v ∈ defs(s.loc) then break;
33 s := s.prev;

Fig. 5. Improved algorithm: propagate use(〈v, loc〉, s)

34 while s �= ∅ do
35 for all v : v ∈ uses(s.loc) ∧ [s.v.def : s.loc]v ∈ DU do
36 add [s.v.def : s.loc]v to G;
37 add (o, [s.v.def : s.loc]v) to TRACES;
38 if 〈v, loc〉 /∈ s.chained then
39 for all i : i ∈ s.idems do add i to WAIT; remove i from VISITED;
40 s.idems := ∅;
41 s.chained := s.chained ∪ 〈v, loc〉;
42 if v ∈ defs(s.loc) then
43 for all z : z ∈ uses(s.loc) do
44 propagate chain(〈z; s.z.def〉, s, o);
45 cfg loc := control dominator(s.loc);
46 for all z : z ∈ uses(cfg loc) do
47 propagate chain(〈z, s.z.def〉, s′ : s′.loc = cfg loc, o);
48 break;
49 s := s.prev;

Fig. 6. Improved algorithm: propagate chain(〈v, loc〉, s, o)

aims to recognize duplication in state exploration early. It is based on dynamic
abstraction [12], which applies early-terminated, yet complete, search with on-
the-fly refinement to the variables of a model and its control flow locations. This
method relies on the fact that if a state has no reachable usage of some variable
or has no reachable observable effect of a required DU pair, then its definition
location does not affect the search for coverage, and consequently, the explo-
ration of any state that only differs in the definition location provably will not
increase coverage and therefore can be pruned from the search. Our approach
also advances [13], where the state refinement procedure is used for control-
flow based cumulative model behavior analysis and [39], where the state-space
reduction technique is applied for DU pairs coverage. The path termination
condition is extended to avoid the unfolding of states which do not increase
coverage: for each state, the algorithm will store information about reachable
usages and observability (i.e., reachability of a statement at which the effect
can be observed) of the considered DU pairs. The algorithm relies on auxiliary
attributes of the state representing used variables (for the DU pair and its chain
to an observable location). These sets will be computed on-the-fly but at the



Generating Test Suites to Validate Legacy Systems 19

moment of state comparison it is unknown whether each set can be enlarged.
Nevertheless, a decision regarding path termination must be made. Therefore,
the algorithm uses a state refinement procedure which may resume a search that
was previously terminated at a state and continue its unfolding. Thus, the state
structure is extended to a tuple 〈loc, val, used, chained, idems, prev〉. Given a
state s, s.loc and s.val are location and valuation as above. The sets s.used and
s.chained store information about the prospect of the search, the set s.idems
keeps track of identical states and is used for resuming terminated paths, and
s.prev holds the previous state on the current path.

Our algorithm consists of three procedures, du chain search (Fig. 4), propa-
gate use (Fig. 5), and propagate chain (Fig. 6). The key change is the extension
of state comparison: The current state will be terminated if it cannot contribute
to the coverage because it (presumably) cannot reach the required usage or
observable effect (lines 6–11). However, this termination is not irreversible: The
set idems is examined later by propagate use and propagate chain at lines 8, 9,
16, and 18 which may place a terminated state into the WAIT set again (lines
29 and 39, respectively) in order to maintain completeness. OUTPUTS is a set
of observable points of interest used as slicing criterion as described in Sect. 3.1.
The procedure propagate use propagates detected uses of variables bottom-up to
their redefinition along the current path, and also adds every encountered state
in idems for which its use has not been propagated into the WAIT set. Simi-
larly, propagate chain propagates detected observations (i.e., the reachability of
output locations) bottom-up to the initial state using reverse dependencies and
updates the WAIT set with every encountered state in idems. Let S denote the
set of reachable states and P the set of feasible paths. This algorithm has the
following main properties:

1. Termination. Asymptotic time is O(max(|T |, |S|) × |DU |).
2. Soundness. The set G will consist only of DU-pairs which belong to feasible

paths leading to an observable effect: [D : U ]v ∈ G =⇒ ∃p : p ∈ P ∧ p =

{s0 t0−→ s1
t1−→ . . .

tk−1−→ sk} ∧ [D : U ]v ∈ p ∧ ∃v′ : chain(D, v, sk.loc, v
′) ∈

p ∧ sk.loc ∈ OUTPUTS
3. Completeness. At termination, the set G will include all DU-pairs which

belong to feasible paths leading to an observable effect: ∃p : p ∈ P ∧ p =
{s0 t0−→ s1

t1−→ . . .
tk−1−→ sk} ∧ [D : U ]v ∈ DU ∧ [D : U ]v ∈ p ∧ ∃v′ :

chain(D, v, sk.loc, v
′) ∈ p ∧ sk.loc ∈ OUTPUTS =⇒ [D : U ]v ∈ G

The search can easily be tuned to different strategies. For example, selection of
the state from WAIT could consider the path depth to realize breadth-first or
depth-first traversal. Note that terminating a path explored by the improved
algorithm results in a large gain, as the number of new paths spawned from
the discarded state can be exponential in the number of reachable branches
encountered in its unfoldings.



20 T. Weigert et al.

5 Summary

This paper described our approach to validating the modernization of legacy
systems. When modernizing a legacy system, their source code may be trans-
lated into a different programming language and the application will usually
be migrated from the original computational environment (often mainframes)
to a more modern environment, such as client/server or cloud environments.
Validation of a modernized system must establish that the new system behaves
exactly as the original system, ignoring any changes required due to the change
in operating environment. As legacy systems often lack descriptions of their
requirements, we derive a test suite to validate the modernized system from the
legacy code.

We have earlier presented an approach to derive test suites from use case
map specifications [6–8]. To apply this approach to the generation of test suites
for legacy systems, we needed the capability to derive a UCM model from the
legacy code and we needed our reachability analysis to have sufficiently high
performance to cope with the very large state space induced by the source code
of legacy systems. We presented our approach in the context of the modernization
of COBOL legacy applications.

To transform the legacy code into a UCM model requires the separation of
the code into low-level code and code which is otherwise not of interest to system
validation and the code that implements the main business logic of the legacy
system. We presented an interprocedural slicing algorithm which, starting from
outputs of the system deemed “interesting” for testing, extracts only those parts
of the source code that impact the interesting outputs. Slicing together with an
abstraction that reduces non-business logic procedures to their effect allows to
represent the legacy code in terms of assignments to attributes of a labelled
transition system and abstract functions over these attributes. Such program
slices can easily be converted to UCM specifications. The COBOL data model
can be represented through attributes of enumerated types, integers, and byte
strings.

This paper further presented a new efficient on-the-fly algorithm for tests
generation to cover all feasible DU pairs in a system. Space exploration-based
methods suffer from the exponential growth of the search space. This algorithm
stores and dynamically refines knowledge about coverage items reached from
each state to prune paths from the remaining exploration, so that a state will
not be explored until it is determined that doing so may increase coverage. The
exploration of a postponed state can later be resumed if such would augment
coverage. This characteristic helps avoid unnecessary exploration and speeds up
termination by several orders of magnitude. While the asymptotic complexity
is not improved and memory consumption is even increased, in many practical
cases this algorithm terminates much earlier.

This algorithm also assures that the derived traces are meaningful to the
tester by producing traces that lead to the observable points of interest that had
been selected as criteria for slicing during business logic isolation.



Generating Test Suites to Validate Legacy Systems 21

This approach is compatible with dynamic abstraction methods [12] which
reduce the state-space using relaxed checking of state equivalence as well as with
partial order reduction methods for redundant interleaving elimination [40]. The
approach was successfully applied to the analysis of legacy code and the gener-
ation of test suites [14]. We have used the presented approach in the validation
of COBOL mainframe applications exceeding 20 million lines of code.

References

1. European Telecommunications Standards Institute. TTCN-3: Core Language. ES
201 873–1 4.11.1 (2019)

2. International Telecommunications Union. Message Sequence Charts Z.120 (2011)
3. Letichevsky, A.A., Kapitonova, J.V., Kotlyarov, V.P., Volkov, V.A., Letichevsky,

A.A., Weigert, T.: Semantics of message sequence charts. In: Prinz, A., Reed, R.,
Reed, J. (eds.) SDL 2005. LNCS, vol. 3530, pp. 117–132. Springer, Heidelberg
(2005). https://doi.org/10.1007/11506843 8

4. Chelinsky, D.: The RSpec Book. The Pragmatic Bookshelf (2010)
5. Wynne, M., Hellesoy, A.: The Cucumber Book. The Pragmatic Bookshelf (2012)
6. Baranov, S., Kotlyarov, V., Letichevsky, A.: An industrial technology of test

automation based on verified behavioral models of requirement specifications for
telecommunication applications. In: Proceedings of the Region 8 IEEE EUROCON
2009 Conference 2009, pp. 122–129 (2009)

7. Baranov, S., Kapitonova, J., Letichevsky, A., Volkov, V., Weigert, T.: Basic pro-
tocols, message sequence charts, and verification of requirements specifications.
Comput. Netw. 49(5), 661–675 (2005)

8. Baranov, S., Kotlyarov, V., Weigert, T.: Verifiable coverage criteria for automated
testing. In: Ober, I., Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 79–89. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25264-8 8

9. Kolchin, A., et al.: An approach to creating concretized test scenarios within test
automation technology for industrial software projects. Autom. Control Comput.
Sci. 47(7), 433–442 (2013)

10. Buhr, R.: Use Case Maps for Object-Oriented Systems. Pearson, London (1995)
11. International Telecommunications Union. User Requirements Notation Z-151

(2018)
12. Kolchin, A.V.: An automatic method for the dynamic construction of abstractions

of states of a formal model. Cybern. Syst. Anal. 46(4), 583–601 (2010)
13. Kolchin, A.V.: Interactive method for cumulative analysis of software formal mod-

els behavior. In: Proceedings of the 11th International Conference on Programming
UkrPROG2018, CEUR-WS, vol. 2139, pp. 115–123 (2018)

14. Guba, A., et al.: A method for business logic extraction from legacy COBOL code
of industrial systems. In: Proceedings of the 10th International Conference on
Programming UkrPROG2016, CEUR-WS, vol. 1631, pp. 17–25 (2016)

15. Robot Framework User Guide. http://robotframework.org/robotframework/#
user-guide

16. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3, 121–189
(1995)

17. Weiser, M.: Program slices: formal, psychological and practical investigations of
an automatic program abstraction method. Ph.D. thesis, University of Michigan,
Ann Arbor (1979)

https://doi.org/10.1007/11506843_8
https://doi.org/10.1007/978-3-642-25264-8_8
http://robotframework.org/robotframework/#user-guide
http://robotframework.org/robotframework/#user-guide


22 T. Weigert et al.

18. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155–163
(1988)

19. Ottenstein, K., Ottenstein, L.: The program dependence graph in a software devel-
opment environment. In: Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, pp.
177–184 (1984)

20. Aho, A., Ullman, J.: Compilers: Principles, Techniques, and Tools. Addison-Wesley,
Boston (2007)

21. Andersen, L.: Program analysis and specialization for the C programming lan-
guage. Ph.D. thesis, DIEM, University of Copenhagen (1994)

22. Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer
analysis for millions of lines of code. In: Programming Language Design and Imple-
mentation (2007)

23. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984)
24. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.

ACM Trans. Program. Lang. Syst. 12(1), 26–61 (1990)
25. Hwang, J., Du, M., Chou, C.: Finding program slices for recursive procedures. In:

Proceedings of the 12th Annual International Computer Software and Application
Conference, Chicago (1988)

26. Su, T., et al.: A survey on data-flow testing. ACM Comput. Surv. 50, 5 (2017)
27. Dssouli, R., et al.: Testing the control-flow, data-flow, and time aspects of commu-

nication systems: a survey. Adv. Comput. 107, 95–155 (2017)
28. Volkov, V., et al.: A survey of systematic methods for code-based test data gener-

ation. Artif. Intell. 2, 71–85 (2017)
29. Campos, J., Ge, Y., Fraser, G., Eler, M., Arcuri, A.: An empirical evaluation of

evolutionary algorithms for test suite generation. In: Menzies, T., Petke, J. (eds.)
SSBSE 2017. LNCS, vol. 10452, pp. 33–48. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66299-2 3

30. Beyer, D., Gulwani, S., Schmidt, D.A.: Combining model checking and data-
flow analysis. Handbook of Model Checking, pp. 493–540. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 16

31. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

32. Hessel, A., Petterson, P.: A global algorithm for model-based test suite generation.
Electr. Notes Theor. Comput. Sci. 190, 47–59 (2007)

33. Trabish, D., Mattavelli, A., Cadar, C.: Chopped symbolic execution. In: Proceed-
ings of ICSE 2018 (2018)

34. Kuznetsov, V., et al.: Efficient state merging in symbolic execution. ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pp.
193–204 (2012)

35. Boonstoppel, P., Cadar, C., Engler, D.: RWset: attacking path explosion in
constraint-based test generation. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 351–366. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78800-3 27

36. Hong, H.S., Ural, H.: Dependence testing: extending data flow testing with control
dependence. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS, vol. 3502,
pp. 23–39. Springer, Heidelberg (2005). https://doi.org/10.1007/11430230 3

37. Kolchin, A., Potiyenko, S., Weigert, T.: Challenges for automated, model-based
test scenario generation. In: Proceedings of the 25th International Conference on
Information and Software Technologies, 12 p. (2019)

https://doi.org/10.1007/978-3-319-66299-2_3
https://doi.org/10.1007/978-3-319-66299-2_3
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-540-78800-3_27
https://doi.org/10.1007/978-3-540-78800-3_27
https://doi.org/10.1007/11430230_3


Generating Test Suites to Validate Legacy Systems 23

38. Rapps, S., Weyuker, E.: Data flow analysis techniques for test data selection. In:
Proceedings of the International Conference of Software Engineering, pp. 272–277
(1982)

39. Kolchin, A.: A novel algorithm for attacking path explosion in model-based test
generation for data flow coverage. In: Proceedings of the IEEE 1st International
Conference on System Analysis and Intelligent Computing, SAIC (2018)

40. Maiya, P., Gupta, R., Kanade, A., Majumdar, R.: Partial order reduction for event-
driven multi-threaded programs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016.
LNCS, vol. 9636, pp. 680–697. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49674-9 44

https://doi.org/10.1007/978-3-662-49674-9_44
https://doi.org/10.1007/978-3-662-49674-9_44


Distributed Applications, Metamodeling
and Protocols



Deriving Distributed Design Models from
Global State Machines Requirements

Mohammad F. Al-hammouri(B) and Gregor V. Bochmann(B)

School of Electrical Engineering and Computer Science (EECS),
University of Ottawa, Ottawa, ON, Canada
{m.alhammouri,bochmann}@uottawa.ca

Abstract. This paper deals with deriving a distributed design model
from a global requirements model written in the notation of Hierarchi-
cal State Machines (HSMs). In this paper, we extend the UML nota-
tion of HSMs to describe the roles (components) that participate in the
actions of each state of the global behaviour. A simple state represents
some local actions, while a hierarchical state usually represents a col-
laboration between several roles (system components). Our global HSM
requirements model describes the sequencing of collaborations and local
actions. We compare this notation with other notations such as UML
Collaborations, Hierarchical Message Sequence Charts (HMSC), Activ-
ity Diagrams, Partial-Order(PO)-Charts and others. Then we explain
how a distributed design model, including all required coordination mes-
sages between the different system components, can be automatically
derived from a global requirements model. We consider the following
sequencing constraints between different collaborations: weak or strict
sequence, alternatives, weak or strict while loop, and concurrency.

Keywords: Distributed applications · Hierarchical state machines ·
Global requirements model · Distributed design models

1 Introduction

Various kinds of modelling notations can be used during the development pro-
cess of distributed systems. In this paper, we are concerned with the transfor-
mation from a global requirement model, which describes the system behaviour
abstractly (defined in terms of local actions to be performed by different system
components), to a distributed design model which describes the behaviour of
each role (component) separately.

Different notations were proposed for describing requirements models. Alur
[1] used Message Sequence Charts (MSCs), and Hierarchical Message Sequence
Chart (HMSC), Castejon [2] proposed the concept of Collaborations and Activity
Diagrams, and PO-Charts in [3].

In this paper, we propose to use the concept of UML Hierarchical State
Machines (HSMs) [4] for modelling the requirements model since it is a well-
known notation and directly supports concurrency (which is not supported by
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 27–43, 2019.
https://doi.org/10.1007/978-3-030-30690-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_2


28 M. F. Al-hammouri and G. V. Bochmann

some of the above notations). In many aspects, the HSM formalism is similar
to HMSC and PO-Charts. A composed state defines a partial order of actions,
very similar to the notation of partial orders of Pratt [5] and Gischer [6]. We
introduce certain extensions to HSMs in order to describe the different roles that
may be involved in the actions performed within one (composed) state, and for
distinguishing between strict and weak sequencing [7].

For deriving a distributed design model from a global requirements model,
an algorithm was described in [8] which assumes that the requirements are given
in the form of a collaboration which consists of several sub-collaborations that
are ordered by strict or weak sequence, alternatives, concurrency, or strict or
weak while loop. The algorithm introduces flow messages (if required) for the
coordination of actions related by a strict sequence as proposed in [9,10]. It
also introduces a choice indication message (cim) to inform a role that does not
participate in some alternative when this alternative is chosen. In order to solve
a problem of race conditions during the termination of a weak loop, it introduces
an additional parameter in all messages of the loop body containing a sequence
number which indicates the number of times the loop has been executed. We
have shown in [11] that in many cases the loop does not exhibit any termination
race, and, in addition, the sequence number is not needed in all messages within
the loop when a termination race exists.

In this paper, we follow these ideas and show how a distributed design model
can be derived from a global requirement model written in our notation of
extended HSMs. The distributed design model obtained by our algorithm con-
tains, for each identified system component, a HSM which contains the local
actions of that component identified in the global requirements and the sending
and reception of the coordination messages generated by our derivation algo-
rithm. These local HSM can be easily implemented by any suitable tool that
generates implementation code from UML HSMs.

We also show in this paper how the general condition for the absence of a
termination race in weak loops can be checked when the global requirements are
given in the form of a HSM.

The paper is organized as follows: In Sect. 2, we present the different concepts
which were proposed for describing the behaviour of a distributed system in a
global view, like collaboration, MSC-Graphs and Hierarchical MSC (HMSC),
Partial Order Charts, and our proposed notation of Hierarchical State Machines
(HSMs). In Sect. 3, we discuss the algorithm for deriving local design models for
the different system components from the requirement model written in HSMs
notation. Section 4 is the conclusion.

2 Describing Distributed Systems in a Global View

Different concepts have been proposed for describing the behaviour of a dis-
tributed system in a global view, which is sometimes referred to as choreography,
in contrast to orchestration which represents a centralized view of the behaviour
[12].



Deriving Design Models from HSMs Global Requirements 29

2.1 Review of Notations for Describing Global Requirements

2.1.1 Collaborations

The UML collaborations concept is proposed by [2] for modelling the global
requirements (behaviour of the distributed system from a global point of view).
A collaboration determines different roles in a distributed environment and dif-
ferent actions executed by those roles. However, this concept does not describe
the dynamic form of the behaviour. For describing the behaviour dynamically,
they propose a decomposition of a collaboration into several sub-collaborations
(each may involve two or more roles), and identify their execution order using the
sequencing primitives of Activity Diagrams: (1) The dynamic behaviour of a col-
laboration is represented by an Activity Diagram, where each activity represents
a sub-collaboration which could involve several roles (or system components).
(2) For each activity, the initiating roles (performing a local action which is not
preceded by another action of this activity) are indicated by a solid circle, and
the terminating roles (performing a local action not followed by an action of
this activity) are indicated by a solid square. (3) Sequencing between activities
is either strict or weak.

Fig. 1. Example of a medical test modelled by (a) a UML Collaboration and (b) an
Activity Diagram.

The example in Fig. 1 (taken from [2]) presents the model of a medical test.
The UML collaboration of Fig. 1(a) shows three roles: doctor terminal (dt), test
unit interfacing the patient (tu), and data logger (dl). The dynamic behaviour is
shown in Fig. 1(b). As we see, the test starts with the DoTest sub-collaboration,



30 M. F. Al-hammouri and G. V. Bochmann

*
m1

r1 r2 r3

m3

m2
a2

(a)

a5

r1 r2
a1

r3

a2

a3

r1

r1 r2
a4

r3
a5

a6

;ws

a1

a3

a4

a6

(c)

m4

r1 r2 r3

r1

m1
a1

a2

a3

r1 r2 r3

a4

a6

a5

m2

m3

m4

(b)

;ws a0
{r1}

a2
{r3} a3

{r2};s
;w a1

{r1} ;s

;w ;w

a5
{r2} a6

{r3};sa4
{r1}

(d)

cs1

cs2

;s

Fig. 2. Example of a weak while loop specification written in the following notations:
(a) MSC (b) MSC-Graphs (c) PO-Charts (d) Hierarchical State Machine

and each sub-collaboration (activity) is associated with the initiating and ter-
minating roles.

2.1.2 MSC-Graphs and Hierarchical MSC

The paper [1] formally defines the semantics of a MSC based on partial orders
[5]. It defines the MSC-Graph notation, which is a directed graph and cor-
responds to the Interaction Overview Diagram in UML [4]. Each node in a
MSC-Graph represents an MSC, and each edge represents the sequential execu-
tion between two MSCs. It is assumed that all edges in a MSC-Graphs repre-
sent either strict sequence (called synchronous concatenation) or weak sequence
(called asynchronous concatenation). The paper also defines Hierarchical MSC
(written HMSC) as an extension of MSC-Graphs, where a node contains either
a MSC or another MSC-Graph and can be used for modelling complex system
specifications.



Deriving Design Models from HSMs Global Requirements 31

2.1.3 Partial Order Charts (PO-Charts)

PO-Charts are proposed by [3] for modelling the specification of distributed
systems. Each PO-Chart is similar to HMSC, except that each node of a PO-
Chart contains a partial order of events (which we call actions) and the roles that
perform these actions. Such partial order is similar to the one in MSC; however,
the arrows between events represent a partial order dependency between local
actions and not necessarily message exchanges like in MSC. See for instance
Fig. 2 which shows (a) an MSC and (b) MSC-Graph (c) the equivalent PO-
chart. The actions (a1 through a6) in the MSC are executed locally by the roles
(r1, r2 or r3) to determine some parameters before messages are sent or to store
locally some received information. These actions correspond to the events in the
PO-charts where their ordering relationships are defined.

In PO-Charts, both weak and strict sequences can be used for representing
the sequential execution between two nodes (each of them is a partial order
with roles). Strict sequence (“ss”) means the initiating roles of the second node
can’t start until the last actions of the terminating roles of the first node have
occurred. Weak sequence (“ws”) enforces the execution order for each role sepa-
rately. However, in HMSC, only one type of sequencing is allowed in one figure,
and therefore, the notation for sequencing was not included. See, for instance,
Fig. 2(b). In this paper, we extend the notation of PO-Charts by indicating which
role does a choice (see for instance the role r1 in the choice node in Fig. 2(c)).
This is useful when comparing PO-Charts with our proposed notation of HSM
(see Sect. 2.2).

2.2 Using Hierarchical State Machines (HSMs) for Describing the
Global Requirements

The state machine concept is a powerful modelling formalism for describing the
behaviour of a part of a system [4]. Hierarchical state machines enable the mod-
elling of complex system behaviour concisely; each state is either a simple state
or a composite state which represents another state machine. Hierarchical state
machines formally define the syntax and semantics of concurrency and nesting
concepts which are not allowed by simple state machine [13]. In this paper, we
assume that a local action (as introduced above) is executed as a “do-action”
of a simple state, and we extend the UML hierarchical state machine notation
in order to define the role that performs the do-action of a simple state. There-
fore a simple state is associated with a single role. This allows us to calculate,
for a composite state, the set of initiating, terminating and participating roles
(which is important for the derivation of a distributed design, as explained in
Sect. 3). This extension of adding roles to the states make it possible to derive a
distributed design model from the given requirements.



32 M. F. Al-hammouri and G. V. Bochmann

Figure 2(d) is an example of a HSMs, which is equivalent to the PO-Chart in
Fig. 2(c). In our notation, we assume that the do-action in a simple state (if it
exists) is the same as the state name. For example, the event a1 in the PO-chart
is realized as a do-action a1 in the HSMs (Fig. 2(d)). We use a notation where
the role of a simple state is between curly brackets. A composite state could have
multiple initiating, participating, and terminating roles (written as IR, PR and
TR, respectively). The transitions between states are “completion transitions”
(in the sense of UML) which means they are executed as soon as the actions of
the state have been completed. They represent either strict or weak sequencing,
written as “;s” or “;w”, respectively.

Figure 3 shows global specifications for different behaviours written in the
HSMs notation. Figure 3(a) shows an example of a weak sequence between
two simple states: a1 and a3, which have r1 and r3 as participating roles,
respectively. The composite state “cs1” in Fig. 3(b) has IR={r1, r2, r3} and the
TR={r1, r2, r3}. Note that the initiating, terminating, and participating roles of
composite states are calculated based on the rules presented in Table 2 in [8].

a3
{r3}a1

{r1} ;w

a2
{r3}a1

{r2} ;s

a4
{r4}a3

{r1} ;s

a5
{r1};w

a6
{r1}a1

{r1}

(a)

(b)

(c)

(d)

a4
{r3}a2

{r2} ;w

cs2

a5
{r3}a3

{r1} ;w

cs3

;s

;s ;s

;s

cs4

a2
{r2}a1

{r1} ;w

cs1

a3
{r3};w a5

{r2}a4
{r1} ;w

cs2
;s

Fig. 3. Global specification for different behaviour expressions written in HSMs nota-
tion: (a) Weak Sequence composition (b) Strict Sequence (c) Alternatives with Strict
Sequence (d) Concurrency

We prefer the notation of extended HSMs for modelling the global system
requirement because the standard HSM are well-known and the derived dis-
tributed design model consist, for each system component, of a standard HSM
model which is relatively easy to implement.



Deriving Design Models from HSMs Global Requirements 33

In fact, our notation is similar to Gischer work [6]; he proposed a state
diagram to model the behaviour of collaborations that consist of several partial
orders. He used the term “process” which corresponds to a composed state in our
notation. He used the same sequencing operators as in our notation, except the
weak sequence. Gischer notation does not show the roles or components involved
in a process. Also, its alternatives are well-structured (see [14]) which is not the
case for the branching structure of state machines.

Request Taxi

Withdraw

Assign

Pick-Up

Meet
Drive & Pay

Goodbye

Withdraw{C} rvClient{M}

Req{C} AcceptReq{M}

AcceptAss{C}

AcceptAss{T}
Assign{M}

AcceptPkUp{C}

startSession{M}
PkUp{T}

MeetReq{T} EnterTxi{C}

Driving{T}

Pay{C} PrintRcp{T}

Gbye{C} Gbye{T} endS{M}

Fig. 4. Taxi example written in Extended HSMs notation and involving three roles:
Manager {M}, Client {C}, and Taxi {T}.

2.3 Example of Using the Notation of Extended HSMs

The example in Fig. 4 shows a requirements model of a taxi application. It defines
the global behavior of a taxi session involving the Manager {M}, a Client {C},
and Taxi {T}. For all simple states, we show the role involved in curly bracket
(as we discussed above). The taxi application involves a single manager who
deals with many clients and many taxis. He establishes a session with a client
and a suitable taxi during the Assign collaboration. The figure shows one of



34 M. F. Al-hammouri and G. V. Bochmann

these sessions. The client can request a taxi by activating the Request Taxi
collaboration or pick up a taxi on the street using the Pick-Up collaboration.
The client may cancel a request using the Withdraw collaboration. When the
client reaches his destination, the taxi session is terminated through the Goodbye
collaboration, and the taxi becomes free for another session.

3 Deriving Distributed Design Models

In this section, we discuss the implementation algorithm for deriving a dis-
tributed design model from a global requirement model written in HSMs nota-
tion.

3.1 Structure of the Global Requirements Model

We make the following assumptions about the structure of the global require-
ments model:

1. A simple state is associated with a single role and contains a do-action that
is performed by that role.

2. A composed state has one of the following forms:
(a) A linear sequence of (possibly composed) states weakly sequenced. See

the example in Fig. 3(a).
(b) A collection of (possibly composed) states connected by strict sequenc-

ing, the connection structure is without loops, but may contain alternative
branching. There are single initial and final states. A state that has sev-
eral outgoing transitions is a choice state and must be a simple state. See
the example in Fig. 3(c).

(c) A strict while loop where the body and follow-up are single (possibly
composed) states and all transitions are strictly sequenced.

(d) A weak while loop where the body and follow-up are single (possibly
composed) states, and the transition from the body leading back to the
initial choice state is weakly sequenced. See the example in Fig. 2(d).

(e) Several concurrent (possibly composed) states. See the example in
Fig. 3(d).

Comments:

– We do not allow for a linear sequence of (composed) states with mixed strict
and weak sequencing, since strict and weak sequencing are not associative
[15] and such a sequence could have an ambiguous meaning.

– We assume that all choices are local, that is, are performed by a single role.
Choices are associated with strict sequencing to ensure consistent choice prop-
agation [16].



Deriving Design Models from HSMs Global Requirements 35

– The important difference of the weak while loop, as compared with loops with
strict sequencing, is the fact that it may have a termination race [11] (see
also Sect. 3.7.1) and that it may lead to an unbounded number of messages
in transit [1].

3.2 Algorithm for Deriving a Design Model from HSMs
Requirements

In the following, we define an algorithm that derives a design model for a
given role rn from a requirement model which is represented by the function
genDM(StateMachine sm, role rn). The inputs for the function are an HSM
sm describing the global requirement model, and the target role rn. The algo-
rithm returns a design model for that role.

The algorithm distinguishes the cases 1 through 2e above (see Sect. 3.1) and
invokes for each case a specific operation which is explained in the following sub-
sections. The function “genDM” is first applied to the whole global requirements
model and is then recursively applied to all its composed states and substates.

For the generation of a design model for a given role (or system component)
from the global requirements, a technique of projection has often be used [2,8,
10,17]. Different notations have been used for the requirements and the local
design model. Using projection, the design model for a role r is obtained by
projecting the global requirement model onto role r, that means, deleting all
events (states) associated with other roles r′ �= r. A design model obtained by
projection without any coordination messages is called basic implementation
[11].

In the presence of weak sequencing, this projection approach is usually com-
bined with the use of a message reception pool which allows the component to
wait for the reception of specific types of messages [8,17], thus avoiding race con-
ditions [18] because the other types of messages will be stored in the reception
pool until they are (later) requested by the local implementation.

In the following sections, we discuss in details, the operations of “genDM”
in each case above.

3.3 Simple State

In the case of simple states, the algorithm keeps the state as is if the role rn
participate in that state, and otherwise replaces it by a dummy state. There is
no recursive call for genDM in the case of the simple state.

3.4 Weak Sequence

The distributed design model for weakly sequenced behaviour does not need
any coordination messages and is only based on the local sequencing by each
role (see, for instance, Fig. 3(a)). Therefore the basic implementation provides a
correct design model.



36 M. F. Al-hammouri and G. V. Bochmann

The function “genDM” in the case of weak sequence will, therefore, operate
as follows. It will generate a state sequence corresponding to the states in sm by
recursively applying “genDM” to the states in which the role r participates and
replacing the other states by dummy states (denoted dms, without any local
actions). The resulting state machine will be the design model for rn, and it
will have the same state structure as in the global design. Figure 5(a) is the
generated design model for r1 in Fig. 3(a). Before generating an implementation
from the design model, we may optimize the resulting model by deleting the
dummy states.

a1

a1(a)

(b)

dms

do/ !fm1 to r2

fin(cs1)

prel(cs2) ?fmx(r2) a4?fmy(r3)

Fig. 5. Local design models for r1 derived from the requirement models: (a) weak
sequence in Fig. 3-a (b) strict sequence in Fig. 3-b

3.5 Strict Sequence and Alternatives

The problem of deriving a local design model from a global behaviour expression
that contains a strict sequence was discussed in [8,9,19]. Coordination messages
(called flow messages (fm) in [8]) were introduced for a strict sequence (C1 ;s C2)
to ensure that all actions in C1 are completed before any actions in C2 can start.
Besides, since these flow messages must be distinguished to avoid ambiguities,
a parameter x is added to each flow messages (fmx) to differentiate between
them. The derivation of a local design model from a global requirements model
containing alternatives has been studied by many authors [8–10,17]. In all these
references, the local choice is assumed, i.e., the choice decision is always made
by a single role. In a non-local choice, several roles are involved in a choice [20].
Different algorithms were proposed for solving non-local choice in a distributed
environment, e.g., a circulating token. Different forms of competing initiatives
were discussed in [2]. Gouda proposed to give different priorities to the different
initiatives to solve this problem [21]. In the following, we assume that all choices
are local. Note that for non-local choice, certain proposals could be easily inte-
grated with our derivation algorithm to solve this problem. We note that the
semantic definition of choice, as given in [16], explicitly shows that the choice
must be followed by a strict sequence. Therefore we discuss here the design
model for strict sequence and alternatives. In the following, we discuss a basic
algorithm for deriving a design model for a given role (component) from the
global requirements in the form of a single sequence of strictly sequenced states,
and then discuss how choices can be integrated into this context.



Deriving Design Models from HSMs Global Requirements 37

Basic derivation algorithm for role rn in the case of a linear strict sequence
of states:

1. Create a local state sl in the local design model for each state sg in the global
requirements. Call the generation function “genDM” to establish the design
model for each local state sl according to the corresponding global state sg.
Calculate for sg the sets of initiating roles (IR), terminating roles (TR), and
participating roles (PR).

2. For each global state sg, except the last state in the sequence, consider the
outgoing transition t (directed from sg to the next state snext). If rn ∈ TRs,
a flow message should be sent to each role in IR of the next state (written
IRsnext) except rn, written as (IRsnext − {rn}), see [8]. For this purpose, a
new state called “final state of s” (written fin(s)), is be created (in the local
design model) containing as do-actions the sending of these flow messages. A
completion transition is created from s to fin(s). We use the term “outflow
state of s” to designate the final state of s, if it exists, or s itself.

3. For each global state sg, except the first state in the sequence, consider the
incoming transition t (from sprev to sg). If rn ∈ IRs, a flow message should
be received from each role in TR of the previous state except rn, written as
(TRsprev −{rn})), see [8]. For this purpose, a new state called “preliminary
state of s” (written prel(s)), is created (in the local design model) contain-
ing no do-action but having an outgoing transitions which is triggered by the
reception of one of the flow messages to be received. If more than one flow
messages are to be received, an additional intermediate state is created for
each additional flow message with an outgoing transition to receive the cor-
responding flow message. These additional states are linked sequentially (in
an arbitrary order – since the reception pool allows the receiving component
to determine in which order it wants to receive these messages) to finally
lead to the state sl. We use the term “inflow state of s” to designate the
preliminary state of s, if it exists, or s itself.

4. For each local state sl in the design model, except the last state in the
sequence, create a completion transition from the outflow state of sl to the
inflow state of snext.

Figure 5(b) shows the generated design model for r1 in the linear strict
sequence in Fig. 3(b). The simple states a1 and a4 is the remaining states (after
deleting the dummy states) from the composite states cs1 and cs2, respectively.

What we explained above for the derivation of strict sequence can also be
applied in the case of alternatives where a choice state (node) may have two or
more outgoing transitions. Consider the requirement model in Fig. 3(c) which
contains alternatives and strict sequence. Based on the derivation rules above
and considering the alternatives, the local design model for r1 is shown in Fig. 6.



38 M. F. Al-hammouri and G. V. Bochmann

a1

do/!fm1 to r2

do/!fm2 to r3

a6

cs2

Prel(a6)

fin-1(a1)

fin-2(a1)
do/!fm3 to r3

dms dms

a3 dms

cs3

?fmn (r3)

?fmz (r3)

?fmm (r2)

Fig. 6. Local design model for r1 derived from the requirement model in Fig. 3(c)

As we see in the figure, for any composite state, the global function “genDM”
is called recursively to evaluate the design model for that state, see for instance
the composite states: cs2 and cs3. For the outgoing transitions from the choice
node, each one will be treated separately based on the rules described before.
In the first alternative, the coordination messages fm1 and fm2 are sent to
IRcs2 = {r2, r3} in the first final state of a1 (denoted fin−1(a1)) (see concurrent
do-actions), and fm3 is sent to the IRcs3 = {r3} in the second alternative (see
state fin − 2(a1)). At state a6 (executed by r1) where the two alternatives are
combined, r1 receives coordination messages from the terminating roles (TR) of
the previous state (in each alternative) in any order. Prel(a6) is the preliminary
state of a6; the receiving of flow messages starts after this state.

It is important to note a problem with choice propagation related to “inactive
choice nodes”. These are (dummy) choice states generated by our algorithm for
the roles that have to follow the choice made by the role executing the choice
node. If the inactive choice node is followed by dummy states (where the role
does not perform any actions), the role may not know which choice should be
taken. An example is shown by the example design model of in Fig. 7(a), where
the role does not know which choice to follow. In certain cases the elimination
of dummy states is sufficient to solve the problem. For instance, eliminating the
first dummy state in the right alternative allows the role to follow the right
choice, as shown in Fig. 7(b).

In general, we propose to solve this problem with choice indication messages
(cim). These messages were proposed in [8] for the case that a role does not
participate in one of the choices and this choice is taken, as in the choice within
the composed state cs2 of in Fig. 7 (see cim2 message in Fig. 7(b)). In general, the
transitions from an inactive choice state must contain the reception of a message.
If this situation cannot be realized by the elimination of dummy states, the
transition in question should be the reception of an additional choice indication
message, as in the left choice in Fig. 7(b) where cim1 must be received.



Deriving Design Models from HSMs Global Requirements 39

dms

a2

cs1

?cim1

cs2

dms

dmsa1

? fmx(ry)

dms

dms

(a) (b)

?fmx(rz)

dms

dms

a2

cs1

cs2

dms

dmsa1

? fmx(ry)

dms

dms

?fmx(rz)

dms dms

?cim2

Fig. 7. (a) Incorrect local design model for the role rn (b) correct design model for rn
(includes the addition of choice indication messages)

3.6 Concurrency and Strict While Loop

The generation of a design model for a composed state that contains several
concurrent substates is systematic. Since there is no interaction between the
activities of the different concurrent substates, the design model for a partic-
ular component r is constructed by creating a composed state for component
r that contains concurrent substates that contain the design model (for r) for
each concurrent substate of the global requirement model in which component
r participates.

The generation of a design model for a composed state that contains a strict
while loop is also systematic. It is sufficient to apply the rules explained in the
previous section to the occurrences of strict sequences and the alternative which
make up the strict while loop.

3.7 Weak While Loop

The derivation of the design model from a requirement model, including a weak
while loop, was studied by many authors [2,8,11,22]. Most of this research was
in the context of requirement models defined in terms of Interaction Diagrams or
MSC. Because of the weak sequencing between subsequent MSCs, the messages
received by a given component could arrive in an unexpected order which is called



40 M. F. Al-hammouri and G. V. Bochmann

a race condition [18]. This problem is usually resolved by making a distinction
between message reception and consumption: a received message is put into a
message pool where it is stored until it is consumed in the order requested by
the component.

However, in the case of a weak while loop, an additional problem may occur.
A weak while loop may be unbounded [1]. In this case, a component may receive
a message terminating the loop when there are still some messages waiting in the
pool to be consumed within a repetition of the body of the loop. The component
cannot decide whether to accept the terminating message for consumption. This
situation was called Termination Race [11]. To solve this problem, it was
proposed to include an additional parameter in the messages of the loop which
indicates how often the body was repeated to date (see for instance, [8,22]).
This solution was improved in [11] by indicating that the sequence number is
not required in many cases, and by minimizing the number of messages that need
such a parameter. In the following, we discuss how to generate a correct design
model for a given component rn for a composed state in the global requirements
model that contains a weak while loop, written in the HSMs notation.

As in the case of the strict while loop, the rules described in Sects. 3.4 and 3.5
can be applied to obtain a basic implementation of the weak while loop, which
must be modified if sequence numbers are required. Algorithm 1 (see below)
can be used to determine whether there is a termination race for this role. If
there is a termination race, the first flow messages received by rn in the loop
body and in the follow-up part should contain a sequence number (written as
?fmx(seq)). Also, the roles that send these messages to rn (in the loop body
and in the follow-up part) should include these sequence numbers in the send
actions (!fmx(seq)). These roles, as well as rn, need a local counter n to record
the number times that the loop was executed. As explained in [11], there are two
ways to implement, in component rn, the consumption of the next message with
the correct sequence number. If the interface to the pool allows the component
to request the consumption of a message with a particular sequence number,
then the component may simply ask for a message of the body with number
(n + 1) or a message of the follow-up with sequence n. For the case that the
pool interface does not allow this choice (but only a choice based on the message
types), an alternate implementation is described in [11,22].

3.7.1 Check for Termination Race

In this section, we determine whether the termination race could happen for
a role rn in a given weak while loop. Based on the results in [11], there is no
termination race for role rn if the first event of rn in the loop body is before the
last event of the loop initiator (ri) inside the loop body. To check the termination
race, we evaluate the function precede(r1, r2, s) (see Algorithm 1). We know that
no termination exists if the result is true, since the meaning of precede(r1, r2, s)
is the following: An action of r1 precedes an action of r2 during the execution of
the behaviour of the composed state s.



Deriving Design Models from HSMs Global Requirements 41

The function precede(r1, r2, s) is evaluated according to the different forms
that the composed state s may take according to the cases mentioned in Sect. 3.1.

Algorithm 1: precede Function
1 Function precede(r1 , r2 , s)
2 switch s do
3 case (1) linear strict sequence of states s1,s s2,s ... ,s sk do
4 precede(r1 , r2 , s) = (∃ i ∈ [1 : k] : precede(r1, r2, si)) OR

(∃ i, j ∈ [1 : k] : i < j, r1 ∈ PRsi and r2 ∈ PRsj);

5 case (2) strict sequence with alternatives do
6 precede(r1, r2, s) = (∀ linear sequences ls allowed by s, we

have precede(r1, r2, ls));

7 case (3) several concurrent substates of the form ccs1 || ccs2 || ...
|| ccsk) do

8 precede(r1, r2, s) = (∃ i in [1 : k] : precede(r1, r2, ccsi))

9 case (4) strict or weak while loop with body and follow-up do
10 precede(r1, r2, s) = precede(r1, r2, s.follow-up) OR
11 (r1 is the loop initiator (ri) and r2 ∈ PRs.follow−up)

12 case (5) linear weak sequence of states s1,w s2,w ... ,w sk do
13 precede(r1, r2, s) = (∃ i ∈ [1 : k] : precede(r1, r2, si)) OR
14 (∃ rx1, rx2, ... rxm ∈ PRs with rx1 = r1 and rxm = r2 and
15 a number of states sy1, sy2, ... sy(m−1) with yi < y(i+ 1) for

i = 1, ... m − 2 such that precede(rxi, rx(i+1), syi) for i = 1, ...
m − 1)

We give in the following a reasoning for the evaluation of the function
precede(r1, r2, s) in the different cases:

– Case (1) – strict sequencing: The function is true if there is a state si in the
sequence for which precede is true or if role r1 participates in one of the states
and role r2 in a subsequent state.

– Case (2) – alternatives: Different linear strict sequences of states are possible.
Since we do not know which one will be executed, precede must be true for
all of them.

– Case (3) – concurrent substates: Since all concurrent substates will be exe-
cuted, it is sufficient that precede be true for one of them.

– Case (4) – while loop: The body may not be executed, while the follow-up
will always be executed.

– Case (5) – weak sequence: Like for strict sequencing, precede may be true
because it is true for one of the substates si. The second possibility relates
to intermediate roles. In the case that m = 3, we have the roles r1, r2 and
an intermediate role rx2. Suppose that y1 = 2 and y2 = 5 (and k = 6).
Then the formula states that precede(r1, r2, s) is true if precede(r1, rx2, s2)
and precede(rx2, r2, s5) are both true. The actions of rx2 in state s2 are before
those in state s5 because of the weak sequencing relationship.



42 M. F. Al-hammouri and G. V. Bochmann

4 Conclusion

This paper deals with deriving a distributed design model from a global require-
ments model written in the notation of Hierarchical State Machines (HSMs). In
this paper, we extend the UML notation of HSMs to indicate the roles (compo-
nents) that participate in the actions of each state of the global behaviour. A
simple state represents some local actions, while a hierarchical state usually rep-
resents a collaboration between several roles (system components). Our global
HSM requirements model describes the sequencing of collaborations and local
actions. We compare this notation with other notations such as UML Collab-
orations, Hierarchical Message Sequence Charts (HMSC), Activity Diagrams,
PO-Charts and others. Then we explain how a distributed design model, includ-
ing all required coordination messages between the different system components,
can be automatically derived from a global requirements model. We consider the
following sequencing constraints between different collaborations: weak or strict
sequence, alternatives, weak or strict while loop, and concurrency.

The local design model generated by our algorithm, for each component, is
an HSM which represents the local actions identified in the requirement model
and executed by this component, and the exchange of the coordination messages
which are generated by our proposed algorithm. These local state machines can
be easily implemented by any suitable tools that generate code from a design
model written in UML HSM. We plan to implement this generation algorithm
in the context of the Umple development environment [23] using the distributed
implementation environment described in [24].

References

1. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9 10

2. Castejón, H.N., von Bochmann, G., Bræk, R.: On the realizability of collaborative
services. Softw. Syst. Model. 12(3), 597–617 (2013)

3. von Bochmann, G.: Conformance testing with respect to partial-order specifica-
tions. In: Wotawa, F., Nica, M., Kushik, N. (eds.) ICTSS 2016. LNCS, vol. 9976,
pp. 3–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47443-4 1

4. Object Managment Group: UML 2.5.1 Specification. Technical report (2017)
5. Pratt, V.: Modeling concurrency with partial orders. Int. J. Parallel Program.

15(1), 33–71 (1986)
6. Gischer, J.L.: The equational theory of pomsets. Theoret. Comput. Sci. 61(2–3),

199–224 (1988)
7. Mauw, S., Reniers, M.A.: High-level message sequence charts. In: SDL 1997: Time

for Testing, pp. 291–306. Elsevier (1997)
8. Bochmann, G.V.: Deriving component designs from global requirements. In: CEUR

Workshop Proceedings, vol. 503, pp. 55–69 (2008)
9. Khendek, F., von Bochmann, G., Kant, C.: New results on deriving protocol speci-

fications from service specifications. In: Proceedings of the ACM SIGCOMM 1989,
pp. 136–145 (1989)

https://doi.org/10.1007/3-540-48320-9_10
https://doi.org/10.1007/978-3-319-47443-4_1


Deriving Design Models from HSMs Global Requirements 43

10. Gotzhein, R., von Bochmann, G.: Deriving protocol specifications from service
specifications including parameters. ACM Trans. Comput. Syst. 8(4), 255–283
(1990)

11. Al-hammouri, M.F., Bochmann, G.: Realizability of service specifications. In:
Khendek, F., Gotzhein, R. (eds.) SAM 2018. LNCS, vol. 11150, pp. 127–143.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01042-3 8

12. Barros, A., Dumas, M., Oaks, P.: Standards for web service choreography and
orchestration: status and perspectives. In: Bussler, C.J., Haller, A. (eds.) BPM
2005. LNCS, vol. 3812, pp. 61–74. Springer, Heidelberg (2006). https://doi.org/10.
1007/11678564 7

13. Badreddin, O., Lethbridge, T.C., Forward, A., Elaasar, M., Aljamaan, H., Garzon,
M.A.: Enhanced code generation from UML composite state machines. In: 2014 2nd
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD), pp. 235–245. IEEE (2014)

14. Wikipedia contributors: structured programming, the free encyclopedia (2019).
https://en.wikipedia.org/wiki/Structured programming. Accessed 4 July 2019

15. Bochmann, G.: Associativity between weak and strict sequencing. In: Amyot, D.,
Fonseca i Casas, P., Mussbacher, G. (eds.) SAM 2014. LNCS, vol. 8769, pp. 96–109.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11743-0 7

16. Toqeer, I.: Modeling and performance analysis of distributed systems with collabo-
ration behaviour diagrams. Ph.D. thesis, University of Ottawa (2014). http://hdl.
handle.net/10393/30950

17. Mooij, A., Romijn, J., Wesselink, W.: Realizability criteria for compositional MSC.
In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 248–262.
Springer, Heidelberg (2006). https://doi.org/10.1007/11784180 20

18. Alur, R., Holzmann, G.J., Peled, D.: An analyzer for message sequence charts. In:
Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1 37

19. Bochmann, G.V.: Deriving protocol specification from service specifications. In:
Proceedings of the SIGCOMM 1986, pp. 144–156 (1986)

20. Ben-Abdallah, H., Leue, S.: Syntactic detection of process divergence and non-
local choice in message sequence charts. In: Brinksma, E. (ed.) TACAS 1997.
LNCS, vol. 1217, pp. 259–274. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0035393

21. Gouda, M.G., Yu, Y.T.: Synthesis of communicating finite-state machines with
guaranteed progress. IEEE Trans. Commun. 32(7), 779–788 (1984)

22. Mustafa, N.M.F., Bochmann, G.V.: Transforming dynamic behavior specifications
from activity diagrams to BPEL. In: Proceedings - 6th IEEE International Sym-
posium on Service-Oriented System Engineering, SOSE 2011, pp. 305–311 (2011)

23. Umple, v 1.29.1 (2018). http://www.umple.org
24. Zakariapour, A.: Model-driven development of distributed systems in umple. Mas-

ter’s thesis, University Of Ottawa (2018). http://hdl.handle.net/10393/37143

https://doi.org/10.1007/978-3-030-01042-3_8
https://doi.org/10.1007/11678564_7
https://doi.org/10.1007/11678564_7
https://en.wikipedia.org/wiki/Structured_programming
https://doi.org/10.1007/978-3-319-11743-0_7
http://hdl.handle.net/10393/30950
http://hdl.handle.net/10393/30950
https://doi.org/10.1007/11784180_20
https://doi.org/10.1007/3-540-61042-1_37
https://doi.org/10.1007/BFb0035393
https://doi.org/10.1007/BFb0035393
http://www.umple.org
http://hdl.handle.net/10393/37143


Generic Graphical Navigation
for Modelling Tools

Hyacinth Ali, Gunter Mussbacher(B), and Jörg Kienzle

McGill University, Montreal, Canada
hyacinth.ali@mail.mcgill.ca, {gunter.mussbacher,joerg.kienzle}@mcgill.ca

Abstract. To describe the characteristics of software systems, model-
driven engineering (MDE) advocates the use of different modeling lan-
guages and multiple views that modellers need to navigate in the models’
editors to understand and modify the system under development. This
paper introduces a generic navigation mechanism that facilitates naviga-
tion within a model, from one model to other linked models potentially
expressed in a different language, as well as for feature-based devel-
opment and across reuse hierarchies. Furthermore, a proposed naviga-
tion bar visually indicates to the modeller the place of a model in this
structure. To make a modelling language navigable, a language designer
enhances the modelling language at the metamodel level with our generic
navigation capabilities, which include the ability to filter language ele-
ments based on attribute values. We present evidence that the proposed
generic navigation mechanism comprehensively supports model naviga-
tion by analyzing the navigation facilities offered by popular UML mod-
elling tools and a feature-based modelling tool.

Keywords: Navigation · Domain-specific language ·
Multi-view modelling · Features · Reuse · Model-driven engineering

1 Introduction

Model-driven engineering (MDE) [1] advocates the use of different modelling
languages and multiple views to describe the characteristics of software systems
as well as to prescribe their structure and behaviour. The software development
process that is being used establishes conceptual and causal links between mod-
els, potentially crossing different levels of abstraction. While several works have
focused on describing and enforcing these relationships [2–4], graphical navi-
gation support for the user of a modelling tool within and across models has
received only limited attention. This is the case even though studies have shown
the importance of good visualization and navigation mechanisms in both soft-
ware usage and during development [5–7].

With the proliferation of domain-specific modeling languages (DSMLs) [8],
one cannot assume anymore that a fixed set of modeling languages is used to
develop software systems. Rather, a flexible modeling environment needs to be
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 44–60, 2019.
https://doi.org/10.1007/978-3-030-30690-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_3


Generic Graphical Navigation for Modelling Tools 45

provided that allows sets of languages to be integrated as the needs arise. Conse-
quently, the corresponding set of models needs to be navigated. This navigation
is not about generic navigation of models with the Object Constraint Language
(OCL) or similar languages, but rather the navigation of models by the modeller
in the models’ editors.

In this paper, we present a generic approach for language designers and mod-
elling tool developers to specify navigation mappings within a model, from one
model to other linked models potentially expressed in a different language, as
well as for feature-oriented development and across reuse hierarchies. We show
how these mappings can be used to populate a navigation bar with navigation
links that make it easy for a user to traverse models and navigate to related
model elements. We use different colour highlighting to help the user find model
elements within large models, and to inform the user when navigation links cross
model boundaries. We explain how we encoded our generic approach in a meta-
model targeting modelling languages and tools developed as part of the Eclipse
Modelling Framework (EMF), and illustrate intra-model, inter-model, and inter-
language navigation by means of a small example. We further demonstrate how
our navigation approach can be used in a reuse-context and to filter language
elements. Furthermore, we analyze popular UML modelling tools and a feature-
oriented modelling tool with respect to their navigation capabilities. For each
tool, we explain which navigation capabilities they support and show that the
navigation concepts in our proposed metamodel are sufficient to handle them.

In the remainder of this paper, Sect. 2 presents generic language navigation
by means of a running example. Section 3 elaborates our navigation metamodel
and Sect. 4 discusses the navigation capabilities of several UML modelling tools.
We briefly review related work in Sect. 5. The conclusion in Sect. 6 provides a
summary and discusses future work.

2 Generic Language Navigation

MDE advocates the use of models expressed in different languages to capture
the many characteristics of systems. This set of models needs to be navigated
to understand the system under development. In this section, we first motivate
our proposed generic navigation facility with the help of four examples, each
representing a typical navigation situation.

2.1 Single Model Navigation

The first situation concerns the navigation of a single model, i.e., intra-model
(and hence also intra-language) navigation. A complex model may consist of
many model elements, and it is hence desirable to have a concise and easy-to-use
way to find important model elements or navigate model element relationships.

For example, Fig. 1 depicts a class diagram of a bank system and our proposed
navigation bar. Clicking the drop-down arrow under BankClassDiagram pops
up the Classes of the model, listed under the tab Classes. Clicking on a class



46 H. Ali et al.

Fig. 1. Bank class diagram

ClassDiagram
- visibility : VisibilityType

Operation

0..* operations

classes    0..*

0..* attributes

Attribute

- visibility : VisibilityType
- abstract : EBoolean 0..* superTypes

public
protected
private
package

<<enumeration>>
VisibilityType

Fig. 2. Class diagram metamodel, (an excerpt)

reveals the operations and superclasses of the class in the navigation bar. In this
example, we navigate from the class diagram to the class, PensionAccount, and
then to its superclass, Account. Once a class is selected, the background of the
class is highlighted in yellow in the model and centred on the screen, if needed,
for easier identification.

To realize this navigation, several navigation mappings have to be specified
on the class diagram metamodel shown in Fig. 2. The first navigation mapping
has the ClassDiagram metaclass as its source and the classes reference as its
target. The second and third mappings have the Classifier as their source and
the operations rsp. superTypes reference as their target. A reference is used
as the target instead of a metaclass, because one metaclass may have several
relationships with another metaclass.

These three navigation mappings each consist of one hop. However, it may
sometimes be necessary to skip intermediate elements and, e.g., define a naviga-
tion that goes from a class diagram directly to all the operations defined in the
diagram without listing all the classes first. Such a navigation requires multiple
hops, e.g., first from the ClassDiagram to the classes reference and then on
with the operations reference.

The navigation mapping from Classifier to superTypes is different com-
pared to the other mappings, because it is useful to not only show the direct



Generic Graphical Navigation for Modelling Tools 47

Fig. 3. Bank class diagram and sequence diagram of debit operation

superclass of a class, but instead the complete hierarchy of superclasses. For
these situations we provide a closure flag that can be set.

2.2 Multi-view Navigation

The second situation concerns multi-view modeling, i.e., inter-model navigation.
The navigation may involve models of the same type, i.e., intra-language nav-
igation, or models from different languages, i.e., inter-language navigation. An
example of inter-model, intra-language navigation is a sequence diagram that
defines the behaviour of an operation, which sends messages to invoke other
operations. In this case, one may want to navigate from the invocation message
in the first sequence diagram to another sequence diagram showing the detailed
behaviour of the invoked operation. This navigation can be handled the same
way as single model navigation, with the from element being the message and
one hop to its sequence diagram reference. In this case, though, the reference
points to a model element in a different model.

An example for inter-model, inter-language navigation is a class diagram,
where one may want to navigate from an operation declaration in a class to a
sequence diagram defining the behaviour of the operation as shown in Fig. 3. In
this situation, the two languages – the class diagram language and the sequence



48 H. Ali et al.

FeatureDiagram 0..* classes Feature

0..* excludes 0..* requires

0..* children0..1 parent

Fig. 4. Feature diagram metamodel, (an excerpt)

diagram language – are used together in a specific way for a purpose, which we
term perspective in this paper.

In the navigation bar, this connection is also visualized as the “right”
arrow, which opens a drop-down list similar to intra-model navigation. When
debit(amount) under the Operations tab is clicked, a list of other linked mod-
els pops up. Upon clicking the DebitSequenceDiagram tab, as highlighted in
the figure with a red box, the linked sequence diagram is opened. Because this
navigation involves a different type of model, the navigation bar is extended to
display the class diagram model name as well as the sequence diagram model
name to the right.

Navigating back to the class diagram can then simply be achieved by directly
clicking on the class diagram name in the navigation bar. Furthermore, the
sequence diagram has a “left” arrow which also opens a drop-down box to nav-
igate any incoming inter-model navigation mappings in the opposite direction.
For example, a workflow model may establish a mapping from one of its steps
to the same sequence diagram. The “left” arrow then allows navigating from the
sequence diagram to the class diagram or to the workflow model.

We also need to take into account that it is possible to directly open any
model using a file browser. When the above sequence diagram is opened directly
with a file browser (and not through navigation starting with a class diagram),
the navigation bar should still show that the sequence diagram depicts behaviour
that is best understood in the context of the class diagram or workflow model.
To determine which model should be shown in the navigation bar, the boolean
attribute (default) of one of the incoming inter-model mappings is set to true.

The main difference to the intra-language navigation mappings described in
the previous section is that there exists no prior link between the metamodel of
the class diagram language and the metamodel of the sequence diagram language
(assuming that these two metamodels have been developed independently). Con-
sequently, an inter-language mapping involves a from metaclass and a to meta-
class instead of reference hops.

2.3 Software Product Line Navigation

The third situation involves Software Product Line (SPL) development, which
groups related model artifacts with commonalities and variabilities for a given
family of products [9]. In SPL, a feature designates a user-relevant functionality
or system quality that can be present or not in a product. A feature diagram
describes the relationships among features, i.e., the set of feature configurations
that produce valid products.



Generic Graphical Navigation for Modelling Tools 49

Fig. 5. Feature diagram of a bank system

Fig. 6. Account class diagram in CheckingFeature

Figure 4 depicts a metamodel for feature diagrams. A FeatureDiagram basi-
cally has a list of Features with parent/children relationships among them.
Some of these features may be optional, while others are mandatory, and define
requires and excludes relationships to other features. Figure 5 shows an example
feature model for a bank system supporting different kinds of bank accounts.
The features SavingsFeature, CheckingFeature, and MortgageFeature are in an
OR relationship, meaning that at least one of them must be selected in order to
create a valid configuration.

In model-driven SPLs, the structural and behavioural properties of features
are described with models linked to these features. In additive variability, each
feature is realized by one or several models, and to derive a product the realiza-
tion models corresponding to the chosen features are composed with each other.
In negative variability, a so-called 150% model describes the system with all fea-
tures enabled. Each feature is linked to model elements related to the feature,
and to derive a product the model elements that are not linked to any chosen
features are removed from the model.

While negative variability requires a highlighting feature similar to what
is shown in Fig. 1, positive variability requires navigation among models. To
illustrate feature-oriented navigation, we split the bank account class diagram
from Fig. 1 into four smaller class diagrams. These class diagrams can then be
composed (i.e., merged) to produce a bank model with the desired features.

Clicking on the “right” arrow under BankFeatureDiagram first shows the
features and then the models realizing a feature (similar to the sequence diagrams
of operations). Selecting a feature highlights the feature in the feature diagram,
while selecting a model of a feature takes the modeler to the model associated
with this feature as illustrated in Fig. 6.

Figure 6 shows the class diagram that contains the common structure used
by all bank account features. At this time, though, the developer is currently
working on the class diagram in the context of the CheckingFeature. This focus is
depicted in the navigation bar by displaying the name of the CheckingFeature in



50 H. Ali et al.

Fig. 7. Account class diagram in SavingsFeature

Fig. 8. Reuse metamodel, (an excerpt)

the navigation bar instead of the BankFeatureDiagram. The “right” arrow under
CheckingFeature allows navigating to the models associated with the feature, i.e.,
the shared AccountsClassDiagram and the CheckingClassDiagram (which shows
the generalization of the CheckingAccount class). The “left” arrow under the
AccountClassDiagram shows a drop-down list with all other features that also
use this class diagram. For example, when the “SavingsFeature” is clicked, the
name “CheckingFeature” in the navigation bar is changed to “SavingsFeature”,
i.e., a context switch, and clicking the arrow under the “SavingsFeature” shows
the models associated with it as shown in Fig. 7.

In terms of navigation mappings, feature-oriented navigation does not intro-
duce any new kind of mapping. The mappings between a feature diagram and
its features are intra-model mappings already discussed in Sect. 2.1. The map-
pings from features to class diagrams are inter-model, inter-language mappings
already discussed in Sect. 2.2. However, since a feature is treated differently than
other model element in terms of how it is displayed in the navigation bar, a
fromIsNavigationKey flag needs to be set in its navigation mapping.

2.4 Navigation of Reusable Artifacts

The final situation discussed here concerns the use of reusable artifacts dur-
ing software development. Consider the sequence diagram for debit(amount)
in Fig. 9 and assume that a reusable artifact for authentication exists with
a sequence diagram as shown in Fig. 10. When the debit(amount) sequence
diagram reuses the Authentication sequence diagram, the body of the reusing
sequence diagram replaces the box labeled with * in the reused sequence dia-
gram. Consequently, the authentication check is performed before the body of
the reusing sequence diagram. To specify this reuse, a composition specification
needs to be provided that links the debit(amount) sequence diagram with the
Authentication sequence diagram as defined in the metamodel for reuse spec-
ifications (see Fig. 8). The reuse metamodel captures the links between reused



Generic Graphical Navigation for Modelling Tools 51

Fig. 9. Reuse of authentication

Fig. 10. Authentication reuse hierarchy

elements and reusing elements with a mapping. In our example, a mapping is
established between the instance of the SequenceDiagram metaclass represent-
ing the debit operation to the SequenceDiagram metaclass instance representing
the authentication operation. Once such a mapping in the reuse specification
is established, it should be possible to navigate this composition link with the
help of the proposed navigation bar.

To support this navigation, an “R” is displayed under the DebitSequenceDia-
gram in Fig. 9. Clicking on it shows all reuses of this model (or individual model
elements of the model). Once a reuse is selected, the modeler is taken to the
reusable artifact. This involves a context switch, which results in the navigation
bar showing the reused sequence diagram with its default parent (i.e., its class
diagram) and the default parent of the class diagram (i.e., its feature). As shown
in Fig. 10, an “R” at the left of the navigation bar indicates the reuse hierar-
chy that is currently explored (e.g., the reusable artifact Authentication and the
Bank that is reusing it). Clicking on an element in the reuse hierarchy results in
direct navigation to that level.

In terms of navigation mappings, an intra-language mapping needs to be
established (e.g., from the reusing sequence diagram to the reused sequence
diagram). This navigation mapping requires a from element. Furthermore, two
hops are required, which are references. The first hop is identified by the reusing
reference and the second hop is identified by the reused reference. Note, however,
that the reusing reference needs to be traversed in the reverse direction, because



52 H. Ali et al.

the reference is at the side of the source element of the hop (i.e., the reusing
sequence diagram). Since reuse links are treated differently than other navigation
links (due to the required context switch from the reusing artifact to the reused
artifact), the reuse flag needs to be set for this navigation mapping.

2.5 Filtering of Model Elements

A complex model diagram may have a large number of model elements, which
may be overwhelming to show in the navigation bar. To streamline navigation, we
support filtering of model elements. E.g., a modeler may want to find all classes
in a system and show only the public operations of each class. We demonstrate
this mechanism with the class diagram shown in Fig. 1, which depicts a bank
system where the Account class has two public methods and one private method.

Clicking the drop-down arrow under BankClassDiagram in the navigation bar
pops up the Classes of the model. Clicking on a class reveals the operations and
superclasses of the class in the navigation bar. In this example, we navigate from
the class diagram to the class, Account, and then only to its public operations,
credit(amount) and debit(amount).

To realize this filtering mechanism, a filter condition has to be encoded for
the class diagram metamodel shown in Fig. 2. We filter based on an attribute
value of the relevant model element. For example, the filter condition could be
abstract classes, public classes, etc. In Fig. 1, the result based on filtering public
operations is shown. To achieve this, the filter condition specifies the attribute of
the metaclass that the filter should consider (i.e., the visibility attribute of the
Class metaclass), the comparison value (i.e., the enumeration literal public),
and a comparison operator (i.e., EqualTo).

To allow a modeler to dynamically configure which navigation mappings and
associated filters the navigation bar uses to populate its content, it is possible
to activate navigation mappings at runtime through preference settings.

3 Navigation Metamodel

This section describes our navigation metamodel that the designer of a lan-
guage or modelling tool can use to define navigation mappings that configure our
generic navigation bar. We elaborate our metamodel in the context of the Eclipse
Metamodelling Framework (EMF), in which all metamodels are expressed using
the metametamodelling language ECore. As such, any model element that is part
of a language metamodel and could be selected as the source of a navigation link
is encoded as an instance of the class EClass.

As explained with the examples above, for each Perspective1 there are
two broad categories of navigation, namely intra-language and inter-language
navigation, which are indicated by two metaclasses (IntraLanguageMapping

1 Recall that a perspective represents a purpose for using models expressed in one or
several modelling languages during software development.



Generic Graphical Navigation for Modelling Tools 53

Greater
GreaterEqualTo
EqualTo
NotEqualTo
LessEqualTo
Less

<<enumeration>>

ComparisonOperator

- default : EBoolean 

- fromIsNavigationKey : EBoolean

InterLanguageMapping

EClass

name : String
closure : EBoolean
reuse : EBoolean

IntraLanguageMapping

Perspective
active : EBoolean

Mapping0..* mappings

{ordered}

EReference Object

operator : ComparisonOperator 

Filter

1 to1 from

1 from

1..* hops{ordered}

EAttribute

1 operand1 value

Navigation Metaclasses

Fig. 11. Navigation metamodel

and InterLanguageMapping) in Fig. 11. In intra-language, we navigate from a
model or one of its model elements (represented as EClass) to one or several
elements of the same language by following references. In language metamodels
defined with Ecore, these references are instances of EReference. Since naviga-
tion might involve traversing several references, every IntraLanguageMapping
therefore defines an ordered collection of EReference called hops.

Furthermore, each intra-language mapping has the following three attributes:
name, closure, and reuse. The string attribute name allows the tool designer to
specify the text that should appear in the navigation bar for this navigation. The
boolean closure attribute can be set for any IntraLanguageMapping where the
from EClass is identical to the model element referred to by the last hop. In this
case, the navigation bar will traverse this mapping recursively and display all
reached target model elements. In our example, closure is set when navigating
from a class to its superclasses in order to display the entire superclass hierarchy
in the navigation bar. The boolean reuse identifies an intra-language navigation
mapping that requires a context switch.

In case of inter-language mappings, the navigation involves models of different
software languages, e.g., navigating from an operation definition in a class dia-
gram to the sequence diagram specifying the behaviour of the operation. Hence,
for InterLanguageMappings, the from and to are always instances of EClass,
and each mapping is a 1-to-1 relationship. Finally, the default attribute spec-
ifies whether the source of an inter-language navigation mapping identifies the
default parent of a target model. The fromIsNavigationKey attribute identifies
key model elements (e.g., a feature) that need to be shown in the navigation bar
instead of their model name.

To support filtering of language elements, we attach a Filter to the Mapping
metaclass, which is the superclass of the InterLanguageMapping and Intra-
LanguageMapping navigation mappings. Filtering is always applied on the to
elements in the case of inter-language filtering, or to the elements designated
by the EClass referred to by the last hop in the case of intra-language filtering.
The operator attribute specifies the comparison operator for the filtering using



54 H. Ali et al.

pre-defined enumeration values as shown in Fig. 11. A filter then compares the
attribute value of the operand EAttribute with the value Object designated
by the filter. When several filter conditions are specified for a mapping, they are
combined by an implicit logical AND.

Last but not least, the active attribute in the metaclass Mapping allows the
navigation bar to be customized at runtime. For example, a modeller can toggle
the active attribute to false if at some point he does not wish the operations of
classes to show up in the navigation bar.

Our prototype implementation of the navigation bar ensures that the navi-
gation information is always up-to-date by registering as a listener to all model
elements that are instances of EClass involved in navigation mappings. When-
ever a model is changed, the navigation bar is notified and the navigation links
are adjusted according to the occurrences of the mappings in the model.

4 Evaluation

The Unified Modelling language (UML) [10] is a widely accepted standard for
modelling software intensive systems. In its current version it defines 13 different
diagrams. UML modelling tools facilitate the specification of systems at different
levels of abstraction and from different points of view.

In this section, we analyse the navigation facilities of several popular mod-
elling tools and evaluate whether our navigation metamodel covers them. We
performed a Google search for “most popular UML tools”. From the obtained
list we investigated the top 4, namely: ArgoUML (free), StarUML (free),
Visual Paradigm Enterprise (commercial), and MagicDraw (commercial). We
also selected Papyrus, as a representation of a popular modelling tool based on
EMF, and finally TouchCORE [11], as a representative of a UML modelling
tool that explicitly supports software product line modelling and model reuse.
In each tool, we specified a class diagram, and defined the behavior of some
operations using sequence diagrams or state machines. We then explored how
the tools support navigation. We organize our findings under the topics of intra-
language and inter-language navigation, filtering, element highlighting, naviga-
tion of inheritance hierarchy, feature-oriented navigation, and navigation across
reuse boundaries.

ArgoUML is an open source tool supporting all UML 1.4 diagrams [12].
Intra-Language Navigation in ArgoUML is done with the model explorer, which
shows the list of diagrams and their contained elements. Inter-Language Navi-
gation is limited, but clicking on an element in a diagram in the model explorer
opens the corresponding diagram and highlights the selected element. ArgoUML
supports different kinds of filtering using their own notion of perspective. Each
perspective specifies the kind of model elements to be shown in the explorer.
The tool allows modelers to define their own perspectives using existing rules
by combining existing filter conditions from a provided library. When a model
element is selected in the model explorer, the element is highlighted in blue in
the editor, if it is currently visible on screen. The model explorer can also list
all the model classes and their subclasses to explore the inheritance hierarchy.



Generic Graphical Navigation for Modelling Tools 55

Our proposed generic navigation approach can support all the navigation
facilities that ArgoUML offers. The perspectives of ArgoUML can be represented
as a filter condition in our generic mechanism. For example, the Class-Centric
perspective lists only diagrams and classes in the model explorer. With our
approach, this can be done by setting the active flag of Mapping for all instances
of Class (see Figs. 2 and 11), and deactivating all other mappings.

StarUML is a modelling tool compatible with the UML 2.x standard and
supporting 11 types of diagrams [13]. The tool partially supports intra-language
navigation in the model explorer by right-clicking on a model element and choos-
ing Select In Diagram. The tool supports inter-language navigation using the
model explorer: clicking on a class shows the contained operations. Clicking on
the operation displays the list of associated sequence diagrams, if any. StarUML
has no support for filtering. Each model element in the currently displayed dia-
gram can be highlighted in blue by selecting it in the model explorer. StarUML
partially supports navigation of the inheritance hierarchy in class diagrams by
navigating from a subclass to its parent class. However, it is not possible in
StarUML to visualize the complete inheritance hierarchy of a given class.

Our proposed generic navigation approach can express all the navigation
facilities that StarUML provides. Additionally, our approach supports filtering
and displaying of the entire inheritance hierarchy.

MagicDraw [14] supports all UML diagrams. MagicDraw provides a struc-
tured containment tree which facilitates navigation from a model element to its
related elements. Clicking on a model element displays it in the diagram editor,
switching diagrams if necessary. However, just like in StarUML, the containment
tree in MagicDraw displays the model element definitions separately from the
diagrams in which they are used in. MagicDraw provides full support for inter-
language navigation. A sequence diagram or activity diagram that is linked to an
operation in a class diagram can be navigated to directly from the model element
in the model editor. The tool has several filter conditions under three different
categories, namely: List, Inheritance, and Structural. Each category has multiple
options that can be turned on or off, e.g., Class, Actor, or Association. When a
filter condition is enabled, the corresponding model elements are hidden in the
containment tree. In the containment tree of the model explorer, a superclass
can be navigated to by clicking a plus (+) tab before its subclass.

Our generic approach supports the navigation facilities of MagicDraw. The
filtering in MagicDraw is at the granularity of model element types, i.e., every
model element of a given type is either shown or not shown. Our generic mech-
anism supports this using the active flag in Mapping (see Fig. 11). Unlike our
approach, MagicDraw does not support filtering based on attribute values, e.g.,
to define a filter that displays only abstract classes.

Visual Paradigm Enterprise supports UML 2 and SysML modelling [15].
Visual Paradigm has full support for intra-language navigation within the dia-
gram navigator similar to MagicDraw. The tool also provides excellent support
for inter-language navigation. E.g., when an operation in a class diagram has a
linked sequence or state diagram, an icon is displayed with the class that can be



56 H. Ali et al.

Table 1. Navigation support of UML tools

Tool Intra-

language

Inter-

language

Attribute

filtering

Activation

filtering

Element

highlighting

Inheritance

hierarchy

SPL Model

reuse

ArgoUML Yes Yes No Yes Yes Yes No No

StarUML Partial Yes No No Yes Partial No No

MagicDraw Yes Yes No Yes Yes Partial No No

Visual Paradigm Yes Yes No No Yes Partial No No

Papyrus Yes Yes No Yes Yes Partial No No

TouchCORE Yes Yes No No Yes No Yes Yes

clicked to navigate to the linked diagrams. Visual Paradigm does not support fil-
tering. A modeler can right-click an element in the explorer or diagram navigator
and choose Select In Diagram. This takes the modeler to the diagram containing
the element with the element being highlighted in bold, switching the current
view if necessary. The tool only partially supports inheritance navigation, as a
modeler can only navigate from a class to its direct superclasses.

Papyrus is a UML modelling tool based on EMF that supports many UML
diagrams. The tool supports navigation of elements within a model in the model
explorer, including traversing from a diagram to its elements. Papyrus uses hyper-
links to establish relationships between two diagrams, e.g., between a class and
an activity diagram or a state diagram. The tool displays these inter-language
links under the corresponding model elements in the model explorer. The con-
tents for every model element shown in the diagram editor can be selectively
hidden or shown by enabling or disabling filter options. For example in a class
diagram, classes can be visualized with or without their attributes. Selected
model elements in the model explorer, are highlighted in the diagram editor. Nav-
igating from the model explorer to an element opens up the diagram containing
the element in case it was not previously shown. Papyrus supports navigating
from subclasses to direct superclasses only.

TouchCORE is a modelling tool for concern-oriented software design [11,
16], focussing specifically on feature-driven modularisation as required in SPLs.
It also has explicit support for model reuse, and ships with a library of reusable
models. The tool supports Feature Models, Goal Models, Class Diagrams, State
Diagrams, and Sequence Diagrams. When selected in the model explorer, model
elements in the current diagram are highlighted in orange. The model explorer
allows the modeller to navigate, e.g. from an operation defined in a class diagram
to an attached sequence diagram. TouchCORE does not support filtering of
model elements nor navigation of the inheritance hierarchy. Since TouchCORE
was designed to specifically support SPL, there is excellent support for feature-
oriented navigation, e.g., navigating from a feature in a feature diagram to the
associated realization model(s). Conversely, when visualizing a model in the
model editor, the associated features are displayed and can be navigated to
easily. The tool keeps track of reuse dependencies between models. A modeler
can navigate from a current model to the reused models via the model explorer.



Generic Graphical Navigation for Modelling Tools 57

Evaluation Summary. Table 1 shows a summary of each tool’s navigation
capabilities. Each of the investigated tools has a model explorer, which corre-
sponds to our navigation bar. Our proposed generic mechanism covers all the
navigation means provided by the surveyed tools. No tool offers complete support
for all navigation features provided by our proposed navigation mechanism. Only
one tool supports the navigation of closures: ArgoUML supports the navigation
of the entire inheritance hierarchy in a class diagram. Attribute-based filtering is
not supported in any of the surveyed tools. However, we decided to include this
feature in our proposed metamodel, because many development environments
for programming languages have the ability to filter, e.g., by public elements. Of
course, our proposed metamodel could easily employ a general query expression
language for navigation purposes (e.g., OCL). However, the goal of this work is
to provide the modeller with a succinct set of concepts needed for navigation
in modelling editors instead of offering the full capabilities of languages such as
OCL, which are not needed in this context according to our analysis of popu-
lar UML modelling tools. For the same reason, our proposed metamodel only
supports conjuntive filters and not disjunctive filters.

5 Related Work

Navigation is an important mechanism to traverse, search, and retrieve infor-
mation. Many studies have been done on how to improve navigation in software
applications and web sites.

dos Santos et al. [7] investigate the effects of different types of menus in
web site navigation, assessing the usability as well as performance of 8 different
navigation mechanisms, each with distinctive properties. The study concludes by
putting forward a horizontal menu, which is the base structure of the navigation
bar presented in this paper. Burrel and Sodan [17] analyze six different types
of menus contained in web pages of institutions. Considering the factors layout,
ease of use, clarity of information, and ease of learning, they determine that
navigation consisting of tabs, side navigation bars at the top and vertical menus
on the left are the most favourite. We considered these insights when developing
the navigation bar proposed in this paper. Finally, Muneo Kitajima et al. [18]
present CoLiDeS (Comprehension-based Linked model of Deliberate Search),
which is a model-based design methodology that website developers can follow
to design better navigation for webpages. The main objective is to improve the
user’s success rate while searching for information on typical web sites.

To the best of our knowledge, there has been no prior work specifically on
navigation for graphical modelling tools. Programming IDEs typically offer con-
textual menus that allow a developer to navigate within and across source code
modules, e.g., from a method call to the method declaration. These relationships
are typically inferred from static source code analysis. The following works tar-
get advanced navigation in programming IDEs, and as such can also be applied
for navigation in textual modelling languages.

Mylyn is a task and application lifecycle management (ALM) framework for
the Eclipse IDE [19,20]. In Mylyn, a developer can define tasks and declare which



58 H. Ali et al.

tasks he is currently working on. Mylyn then keeps track of code elements that
are being looked at, created, or modified for each task. The developer can then
use this information for task-based navigation.

Similarly, the FEAT plugin for Eclipse [21] allows the developer to define a
high-level conceptual unit called concern, e.g., a feature, a nonfunctional require-
ment, a design idiom, or an implementation mechanism. When coding, a devel-
oper can deliberately associate code elements to the concern, slowly building up
a concern graph that relates code elements that are scattered throughout multi-
ple source code modules. Subsequently, the developer can use the concern graph
for highlighting and navigation purposes.

6 Conclusion

Model-driven engineering is a conceptual development framework where models
of the system under development are created and manipulated using different
formalisms at different levels of abstraction. Separation of concerns is further
promoted when working with multi-view modelling, software product lines, and
domain-specific modelling languages. While this separation into many interre-
lated models has many benefits, it also makes it harder for the developer to
determine the relevant context when looking at a model, and to navigate from
one model to related ones.

We propose a metamodel that covers two categories of navigation, intra-
language and inter-language navigation. The metamodel allows the designer of
a modelling tool to generically capture the relevant navigation links between
model elements in a set of models manipulated for a given purpose. It is done by
establishing inter-language and intra-language mappings designating the relevant
metaclasses and references in the metamodels of the involved languages. We
illustrate the effectiveness of our navigation metamodel by examples that involve
feature models, class diagrams, and sequence diagrams, but our approach can
be applied to any modelling language that is defined by a metamodel.

We furthermore show how this generic information can be used to visualize
the current context of a model with a navigation bar, and how to populate
the navigation bar with navigation links. When a navigation link is clicked, we
either highlight the chosen model element if that element is located in the current
model, or we navigate to the model that contains the model element and update
the navigation bar to reflect the new context.

We validate that our generic navigation approach covers the navigation facil-
ities provided by current modelling tools by conducting a survey of 6 popular
UML modelling tools.

Our approach is not tool specific and can be applied to any language and mod-
elling environment that uses metamodels. The main benefit is that if a modelling
environment adopts our generic navigation approach, setting up navigation when
adding a new language to an environment becomes greatly simplified. In that
case, language designers do not have to implement intra-navigation support from
scratch during language design, but can customize the navigation bar simply by



Generic Graphical Navigation for Modelling Tools 59

creating the appropriate intra-language mappings. To link the new models with
models expressed in other languages already supported by the modelling envi-
ronment, the corresponding inter-language mappings must be defined. With the
increased adoption of Domain-Specific Languages (DSLs), this approach gives
language designers essential support to rapidly define navigation within models
expressed in the DSL as well as across model boundaries.

As future work, we are planning to examine the navigation facilities of non-
UML modelling tools to ensure that our generic navigation approach can cover
them. Furthermore, we will carry out an empirical user study to evaluate the
usability of the navigation facilities offered by our navigation bar. Finally, we
are planning to integrate our current navigation bar implementation with a
modelling tool that supports language plug-ins.

References

1. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool Publishers, San Rafael (2012)

2. Pfeiffer, R.-H., W ↪asowski, A.: TexMo: a multi-language development environment.
In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.)
ECMFA 2012. LNCS, vol. 7349, pp. 178–193. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31491-9 15

3. Di Ruscio, D., Lämmel, R., Pierantonio, A.: Automated co-evolution of GMF editor
models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS,
vol. 6563, pp. 143–162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19440-5 9

4. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and
change propagating transformation language. In: Malloy, B., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19440-5 11

5. Beard, D.V., II, J.Q.W.: Navigational techniques to improve the display of large
two-dimensional spaces. Behav. Inf. Technol. 9(6), 451–466 (1990)

6. Mackinlay, J.D., Robertson, G.G., Card, S.K.: The perspective wall: detail and
context smoothly integrated. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 173–176. ACM (1991)

7. dos Santos, E.P., de Lara, S., Watanabe, W.M., Fortes, R.P., et al.: Usability
evaluation of horizontal navigation bar with drop-down menus by middle aged
adults. In: Design of Communication Conference, pp. 145–150. ACM (2011)

8. Combemale, B., DeAntoni, J., Baudry, B., France, R.B., Jézéquel, J., Gray, J.:
Globalizing modeling languages. IEEE Comput. 47(6), 68–71 (2014). https://doi.
org/10.1109/MC.2014.147

9. Pohl, K., Böckle, G., van Der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

10. OMG: Unified Modeling Language, 2.5.1, p. 802 (2007)
11. TouchCORE (2018). http://touchcore.cs.mcgill.ca/
12. ArgoUML - Free, opensource UML engineering tool. http://argouml.tigris.org/

index.html
13. StarUML. http://staruml.io/

https://doi.org/10.1007/978-3-642-31491-9_15
https://doi.org/10.1007/978-3-642-31491-9_15
https://doi.org/10.1007/978-3-642-19440-5_9
https://doi.org/10.1007/978-3-642-19440-5_9
https://doi.org/10.1007/978-3-642-19440-5_11
https://doi.org/10.1109/MC.2014.147
https://doi.org/10.1109/MC.2014.147
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
http://touchcore.cs.mcgill.ca/
http://argouml.tigris.org/index.html
http://argouml.tigris.org/index.html
http://staruml.io/


60 H. Ali et al.

14. No Magic Inc.: MagicDraw. https://www.nomagic.com/products/magicdraw
15. Ideal Modeling & Diagramming Tool for Agile Team Collaboration. https://www.

visual-paradigm.com/
16. Alam, O., Kienzle, J., Mussbacher, G.: Concern-oriented software design. In: Mor-

eira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS,
vol. 8107, pp. 604–621. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41533-3 37

17. Burrell, A., Sodan, A.C.: Web interface navigation design: which style of
navigation-link menus do users prefer? In: Proceedings of the 22nd International
Conference on Data Engineering Workshops, pp. 42–42. IEEE (2006)

18. Kitajima, M., Blackmon, M.H., Polson, P.G.: A comprehension-based model of web
navigation and its application to web usability analysis. In: McDonald, S., Waern,
Y., Cockton, G. (eds.) People and Computers XIV-Usability or Else!, pp. 357–373.
Springer, London (2000). https://doi.org/10.1007/978-1-4471-0515-2 24

19. Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-
tivity. In: Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 1–11. ACM (2006)

20. EMF Website. Mylyn. https://www.eclipse.org/mylyn/
21. Robillard, M.P., Murphy, G.C.: Representing concerns in source code. ACM Trans.

Softw. Eng. Methodol. 16(1), 3 (2007)

https://www.nomagic.com/products/magicdraw
https://www.visual-paradigm.com/
https://www.visual-paradigm.com/
https://doi.org/10.1007/978-3-642-41533-3_37
https://doi.org/10.1007/978-3-642-41533-3_37
https://doi.org/10.1007/978-1-4471-0515-2_24
https://www.eclipse.org/mylyn/


Protocol Syntax Development Using
Domain Specific Modeling Languages

Goran Rajić1(B) and Vlado Sruk2(B)

1 Research and Development, Ericsson Nikola Tesla,
Krapinska 45, 10000 Zagreb, Croatia

goran.rajic@ericsson.com
2 Faculty of Electrical Engineering and Computing, University of Zagreb,

Unska 3, 10000 Zagreb, Croatia
vlado.sruk@fer.hr

Abstract. Traditionally telecommunication protocols were developed
by the use of the ITU languages such as SDL, ASN.1, and ECN. Recently,
many parts of protocols are more and more being developed using model-
driven development tools such as UML. However, in these cases, the syn-
tax of protocol needs to be developed in separate tools creating issues of
interfacing, integration, and maintenance. Additionally, the majority of
today protocols are developed in a way that formal ASN.1 specifications
of its syntax are not provided.

This paper presents domain-specific modeling language (DSML) used
for the specification and development of syntax for a family of Diameter
protocols. We are proposing the use of dedicated DSML tools for the pro-
tocols or family of protocols and its integration with the rest of the pro-
tocol development tool chain. Creating a protocol family-specific DSML
enables more efficient development of protocol syntax since developers
use the syntax for describing protocols that are very close to the nota-
tion used in protocol specification documents, exploit semi-automatic
importers from informal formats and benefit from developed integration
with UML and SDL languages.

Keywords: Communication protocols · Protocol syntax specification ·
Domain-specific modeling languages · Model driven engineering ·
ASN.1

1 Introduction

Many new communication applications and their functional requirements lead
to new protocol definitions and their standardization. At the same time, legacy
protocols, many of them considered as basic infrastructure, often need reimple-
mentation on new target platforms. Such scenarios deal with an artifact base
that should be highly reusable, grounded on a number of platform-dependent
customizations and extra-functional requirements mapping. Today’s competi-
tive market-driven economies dictate engineering process requirements that have
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 61–77, 2019.
https://doi.org/10.1007/978-3-030-30690-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_4&domain=pdf
http://orcid.org/0000-0002-2759-7922
http://orcid.org/0000-0003-0411-3398
https://doi.org/10.1007/978-3-030-30690-8_4


62 G. Rajić and V. Sruk

time-to-market and quality as their main components. These two requirements
are usually being satisfied with the use of software engineering tools and pro-
cesses that properly address variability, scalability, and maintainability of soft-
ware artifacts in question. Such a situation positions protocol stack implemen-
tation as one of the more important tasks in the network infrastructure devel-
opment as well as the development of other types of distributed systems.

Protocol stack development can be roughly divided into two areas: mes-
sage content and format development and protocol semantics development. In
line with the usual computer science and language engineering terminology [4],
abstract content, structure and physical format of protocol messages can be
denoted more commonly as syntax. Consequently, a set of valid messages of a
protocol corresponding to the usual notion of a formal language. Syntax of the
language or valid messages of a protocol can be further divided into the concrete
syntax (CS) and abstract syntax (AS). CS describes the physical representation
of a message in terms of a set of symbols making-up an alphabet of this proto-
col/formal language. AS represents a more structured domain that reflects actual
language abstract content in terms of how small message entities can make-up
compete valid sentences (messages). The semantics of a protocol is determining
actions to be taken by that protocol entity. Actions can be triggered by events
on internal interfaces of a protocol entity or as a response to the received valid or
invalid messages over the communication interface. Results of actions can range
from a change of state of protocol user executed over internal software interface
of protocol entity, change of internal state of protocol entity itself, creating and
sending a message to one or more peer entities as well as any combination of
these activities. Due to the state controlling interpretation of protocol semantics,
in this paper, protocols semantics is commonly referred to as control part of a
protocol.

Historically, the control part of protocol development received comparatively
more attention than the syntax part. This was probably due to perceived and
experienced bigger challenges in the early development procedures of the control
part of protocols. Consequently, considerable body of work addressing control
part of protocol development is created [22,39]. Control part protocol devel-
opment is accordingly standard part of university undergraduate curriculum in
communication sciences majors. All aspects of control part development received
abundant coverage, from the specification of control programs to the range of
analysis techniques used on them including various verification techniques like
model checking and dynamic testing. The use of more advanced software devel-
opment techniques including model-driven engineering methods in the context
of protocol control was investigated and such techniques entered mainstream
practice.

In contrast to this situation, the development of protocol syntax and its inter-
action with the rest of the protocol development process received relatively little
attention. Having well known theoretical base rooted in formal languages and
parsing procedures, protocol syntax development is considered a well-understood
problem with readily available efficient development techniques applicable in the



Protocol Syntax Development Using Domain Specific Modeling Languages 63

industrial design organizations settings. Development of Abstract Syntax Nota-
tion 1 (ASN.1) [19] and Extended Concrete Notation (ECN) [20] formalisms and
related implementation tools delivered to the industry very expressive, versatile
out of the box third-party solutions to the protocol syntax development.

However, new challenges in the development of communications software
for future systems, on which societal infrastructure will increasingly rely on,
are arriving and need to be addressed. Security of developed software, both in
terms of security of individual personal data sets, real-time data streams, access,
and authorization mechanisms as well in terms of service availability - security
of systems from various threats became paramount [33]. Typically, the third-
party supplied solutions for protocol syntax development are lacking technical
transparency to efficiently back-up forthcoming increased security requirements.
Additionally, deployment, integration and variability characteristics of such solu-
tions could be lacking in the support of system-level solutions to the security
issues of today communication systems. In plain words, ASN.1 compilers pro-
duce source code that must be analyzed to be trusted, including part of delivered
protocol encoding/decoding functionality that is requiring binary level verifica-
tion. ASN.1 third party solutions have poor interaction with the architecture
level solution that tries to deal with denial of service type of threats by load
balancing and similar techniques. While one can always fall back to the trust
on the business-to-business level and ensure a sufficient level of trust by using
a combination of legal and business level (jurisdiction selection) measures, more
technical and reliable solutions should be possible.

In this paper, we are proposing techniques that deliver more control to the
development process of protocol syntax while keeping or improving the presently
achieved level of efficiency of the development process and quality of produced
software. We are proposing use of model driven engineering (MDE) [8] and
domain specific modeling languages (DSML) [26,36] for addressing syntax spec-
ification and development of dedicated protocol families or individual protocols.

The structure of this paper is as follows: in Sect. 2 we are reviewing for-
mal and model-based protocol development methods and place our work in this
context. Section 3 describes our proposed methodology and describes its varia-
tions. Section 4 presents Diameter protocols family for which details of its DSML
modeler design is given. Finally, Sect. 5 discuses previous work and conclude the
paper.

2 Formal Protocol Development

Over the course of years, two wide families of languages that have the capability
of and are used for protocol specification and implementation naturally formed.
International Telecommunication Union - Telecommunication sector (ITU-T)
[17] standardization body standardized several languages that address most of
the problem areas of protocol design. Specification and Description Language
(SDL) [21] is an agent-based semantics specification language used as prime
specification and elaboration language in the telecommunication industry. While



64 G. Rajić and V. Sruk

SDL is more oriented to the architectural and data type descriptions, Message
Sequence Chart (MSC) [18], a language from the same family, is used together
with SDL for a more computational, executable specification. ASN.1 language
[19] is used for the specification of the abstract syntax of various data type enti-
ties, with the focus on protocol message specification. Pair language to the ASN.1
is the ECN language [20] that allows for detailed concrete syntax development
in tight relation with the ASN.1 specified abstract syntax. Together with other
ITU-T languages, they form a complete solution for specification, implementa-
tion, and testing of software systems, specifically targeting telecommunication
and protocol development domains. When we are referencing the methodology
and use of languages from this family in this paper, we are using terms like ‘ITU
stack’ and ‘ITU stack languages’. We assume that when we use these two terms
when referencing a specific language or concept from this family, it is (from
functionality needed to be addressed in that specific context) implicitly clear on
what concrete language or concept we mean, or otherwise, it is stated explicitly.

Object Management Group (OMG) [31] organization standardized several
languages that are implementing principles of MDE. Focusing ourselves on the
general-purpose languages we must mention Unified Modeling Language (UML)
[29] as a central MDE language with many standardized extensions. Object
Constraint Language (OCL) [27] is a language for query and expression of con-
straints on UML models with a possibility of application to other languages.
These two languages together with UML’s extension mechanisms [32] and a
number of standardized and user specified profiles [25,30] form a comprehensive
general purpose language base. These OMG languages and their variations with
different application-specific extensions are used in many present-day develop-
ment processes and large development organizations. Using specific extensions
and customizations they enable embedded systems development as well as the
development of communication systems and protocols as its component. Similar
to the previous family of languages, when we are referencing the methodology
and use of languages from this family in this paper we are using terms like ‘OMG
stack’ and ‘OMG stack languages’ and assume it is clear from the usage context
to which specific language we think is we need to address it.

There were a lot of recent developments in the area of OMG stack languages
related to their applicability to the communications systems design [5,25]. Typ-
ically, these contributions introduce several extensions to the standard language
base to improve its usability and expressiveness in the context of communications
systems. Extensions are, usually, done using UML profiles as the most versatile
of UML standard extension mechanisms [25,32]. Some of the developments use
OMG’s standardized design elaboration profiles like MARTE [30] as a base for
further developments. Most of these techniques are focused on the control part
of protocol design improving on UML’s weaknesses, compared to ITU languages.

On the other hand, there is hardly any work that addresses the area of pro-
tocol syntax for the OMG stack. ITU language stack, on the other hand, has a
much better syntax development support. The existence of ASN.1 and ECN lan-
guages with their extensions allow for excellent expressiveness and pragmatics



Protocol Syntax Development Using Domain Specific Modeling Languages 65

of protocol syntax design. This is one of the advantages of ITU stack over the
OMG stack development stack. Such an advantage is retained to the present days
despite many extensions for development productivity added to the OMG stack
tools over time. One solution to this problem would be to follow the same prin-
ciple of adding extensions to the OMG languages to make syntax design in them
more pragmatic. This approach would be realized by developing UML profiles
that extend structural UML specification mechanisms and enable their use for
syntax specification. While certainly possible, this kind of an approach would
result in languages and related tools that rate very badly in their pragmatic
properties. To start with, implementing some formal language for a specifica-
tion of syntax by use of stereotyped classes would have very unnatural, clumsy
concrete syntax.

The present situation of protocol standardization gives little opportunity for
use of formal development properties of ITU stack languages both in the area of
syntax as well as in the control part. Most protocols, both the legacy and new
ones, are specified in an informal way or by some form of fundamental formal
language specification formalism. The control parts of protocols are specified in
an informal, narrative and descriptive form with no or few exceptions. Formally
specified syntax of protocol would be amenable to the automated development
processes using ITU languages supporting tools. Still, most of the protocols do
not use ITU ASN.1 and ECN as specification languages.

The described situation places both ITU and OMG based development stacks
as well as any of their possible combinations in a position that no integrated,
formal and automated protocol syntax development can be done. ITU tools must
translate most of the protocol specifications into ASN.1 and ECN formalisms to
completely take advantage of automatic tools implementing that syntax and
to seamlessly interface with the design of control part of the protocol. Such
translation is a time-consuming and error-prone process as already mentioned
that makes overall benefits of ITU stacks much less attractive.

OMG tools are more and more used for protocol development due to its larger
user base as well as because they are typically implemented in the development
process of embedded communication systems. Developing control part of proto-
cols in OMG tools are acceptable or even more favorable compared to the ITU
stack tools. However, presently, OMG tools have no means to specify syntax effi-
ciently and in a formal way making them amenable to the automated generation
of its implementations. The most common solution is such a situation is the use
of external custom formalism to specify the syntax of a protocol and possibly
use tools related to that formalism that can generate code implementing actual
coding and decoding of messages of a specified protocol. This scenario leads to
the additional requirements on the development process in the form of keeping
track of versions of different artifacts produced. One has protocol specification,
externally produced encoding and decoding code corresponding to that speci-
fication as well as to them related data types making up interface code to the
control part of the code of a protocol. To archive integration of an externally
specified protocol syntax and to it related and generated coding and encoding



66 G. Rajić and V. Sruk

code with the control part of protocol one needs to create custom tools. Another
option is to rely on the manual translation of generated data types corresponding
to the specified abstract syntax of the protocol specification to the data types
corresponding to the implementation of the control part of the protocol.

The described situation is happening in practice, for example, in case of
implementation of radio access stratum protocol terminations in radio base sta-
tions and controllers of 3G/4G/5G cellular network infrastructure. Protocols
such as Radio Resource Control protocol (RRC) [2] and similar protocols of the
3GPP cellular radio access networks are one of a minority of today’s relevant
and used protocols that formally specify its syntax by use of ASN.1 and ECN
languages. Naturally, producing corresponding coding and decoding realization
is done by using dedicated ASN.1 compiler tools typically supplied by third par-
ties. However, these tools produce a programming interface consisting of a set of
complicated data types corresponding to the protocol specification content and
particularities of these external tools. Implementing control part of this proto-
col needs referencing this interface and its content in the form of data types.
So, after specification and generation of protocol syntax, one needs to respec-
ify produced data types in a tool that will specify and implement control part
of those protocols. Since this is error-prone process and additional work to be
done, even in a relatively favorable situation in which we have formal protocol
syntax specification and in OMG stack modeled control part of the protocol, we
are in an unfavorable situation. Such a situation requires additional tool devel-
opment, and integration effort to provide a translation of syntax specification
to the interface data types generated - work that depends on third party tool
semantics. Otherwise, the designer needs to model abstract syntax generated
by external tools in UML and match MDE code generation patterns with one
external syntax tool.

Described not so favorable scenarios of protocol development appear after
decades of development of procedures, formalisms, and tools that should support
seamless communication protocols development. We argue that such a situation
gradually developed due to years of development in two or more separate silos
with the lack of interworking considerations. Methods and tools in silos of ITU,
OMG and other approaches gradually diverged to the point that today inter-
working among them at least on the syntax development level is rarely consid-
ered. In this paper, we present our approach towards the solution of this specific
narrow problem of protocol syntax development. Practical industrial experience
in the development of telecommunications software leads us to the recognition
of the importance of addressing the described situation. Providing methodology
and tools that would allow for formal, automated and integrated development
of protocols would be of great help for concerned development communities.

Following motivation and problem description, this paper proposes a solu-
tion to this situation that enables the integration of formal and informal protocol
specifications with modeling tools that can interface with such formal protocol
specifications and produce consistent corresponding encoding and decoding code.
On the technical implementation level, the proposed solution is based and is in



Protocol Syntax Development Using Domain Specific Modeling Languages 67

line with principles of model-driven engineering and uses domain-specific mod-
eling languages to provide an effective solution to this problem. Our approach
allows both ITU and OMG stacks to seamlessly integrate any new as well as
legacy protocols specified in any format with at least some level of formality.
Such a solution can coexist with the eventual use of ASN.1 tools for the pro-
tocols that have its syntax specified in that format. We automate or partially
automate the creation of formal protocol syntax specifications from standards
documents creating permissive importing tools that partially recognize infor-
mally specified content of that documents. Additionally, we integrate created
tools for protocol syntax specification with the modeling languages of OMG and
ITU stacks where control part of protocols will be developed as well as with tools
that produce coding and encoding functionality corresponding to the protocol
syntax specifications.

The described approach allows for a trade-off between the design effort
invested in the development of proposed tools and the design-time convenience
and efficacy of these tools when they are used for actual protocol development.
Using the DSML approach we have the benefits of domain-specific based devel-
opment paradigm which allows for the above trade-off. One can choose to imple-
ment various tool extensions that streamline the development effort for particular
fragments of protocol development functionally as well for individual protocols
or protocol families. We are mentioning several options to implement different
functionality of protocol syntax development as an illustration:

– automatic import of legacy protocol specifications into the format defined by
this DSML tool

– formal syntax development that is same or very close to the notation of orig-
inal protocol specifications

– literate development of new protocols enabling sharing the same document
that represents tool specification artifact and original protocol specification
document format

– integrated and much more streamlined maintenance and evolution of protocol
specifications.

Since we are using technological space that is of MDE nature, all MDE related
benefits are readily available to our approach, benefits such as:

– platform-independent model (PIM) and platform-specific models (PSM) sep-
aration allowing for multiple target efficiency

– fast and seamless integration with the same technological domain tools as
UML modelers

– the same features availability for ITU stack tools provided, they are imple-
mented on the same technical space as MDE tools.

This paper illustrates the overall process of the development of supportive tooling
for a particular family of protocols. Such an approach would illustrate how the
similar tool support can be created for other protocols or protocol families and
at the same time develops and presents tool support for one important protocol
family, the family of Diameter application protocols [6].



68 G. Rajić and V. Sruk

3 DSML Based Protocol Syntax

Protocol syntax description proposed in this paper is realized using DSML [23]
approach. Domain-specific orientation [23] allows for the specification of domain
concepts with any chosen level of their detail. The model-based approach aspect
gives to our proposal all of the model-based approach advantages. Among other
things, such an approach allows for the PIM based specification. For implementa-
tion purposes, the proposed framework can add PSM orientation. PSM features
are achieved with the addition of separate adornment models to basic semantics
content models. Proposed DSMLs enable creating structures consisting of models
having mutual relations. This DSML feature is achieved by using the mega mod-
eling approach [7]. The next subsection discusses in more detail the architecture
of DSML, it’s model-based layers and the pragmatics of its implementation.

3.1 Model Based Protocol Syntax Design

While one could choose any existing model-based technology as a basis for imple-
mentation, dominant tools implementation for some of the legacy tools is mak-
ing choice obvious. Eclipse platform [37] based EMF framework [35] is currently
being most frequently used one, especially for OMG stack tools implementations.
Its architecture consists of the usual three-four layer modeling setup introducing
the notion of models (M), metamodels (MM) and meta-metamodels (MMM).
These are corresponding to the usual notation of meta-levels named M1, M2,
and M3, in the same order of appearance as in [14]. EMF’s meta-metamodel
is based on the Ecore language that can be seen as the almost ideal imple-
mentation of OMG’s CMOF [28] sublanguage. With this choice, we are giving
to our proposal genericity since OMG’s MOF metamodeling language and its
concepts are well known and theoretically founded. From the pragmatic side,
the choice of EMF is sound since it makes integration with existing tools easier
because many OMG stack tools are made on the same platform. DSML consists
of Ecore compliant MM that describes domain language abstract syntax. Since
it is a modeling language, it enables for graph-based expressiveness and with
the use of OCL or similar constraints, it can provide additional expressiveness
properties. MM content will depend on concepts specific to the protocol but
due to Ecore expressiveness it can express any type of syntax description. One
of the frequently used generic specification formalism is Extended Backus-Naur
Form (EBNF) [16] that has a well-known mapping to modeling and graph-based
languages [15].

3.2 DSML Content and Domain Modeling

The core of the proposed DSML language should consist of an appropriately
chosen concept that corresponds to the important concepts of the domain of
concrete and abstract protocol syntax. This means that classes of the DSML MM
should correspond to the recognized concepts that represent essential elements
of protocol syntax. However, concepts of the domain of protocol syntax can



Protocol Syntax Development Using Domain Specific Modeling Languages 69

be modeled at a different level of details and with more or less inclusions of
specific concepts of the target protocol. The selected level of detail should lead
to the metamodel that is more or less general or more specific to the protocol
in question. There is a trade-off between the reusability of MM and the level of
detail chosen to be provided by MM. When designing new MM for a new DSLM
one can roughly choose between following categories of MM:

– specific protocol
– protocol family-specific
– specification formalism specific
– generic protocol syntax.

Specific protocol MM contains classifiers that are least general and model directly
syntax concepts of that specific protocol. A more general approach is to develop
MM that is protocol family-specific recognizing important concepts of syntax
unique and joint to the family of protocols. Using MM that is specification
formalism specific means that we recognize specific concepts of a generic specifi-
cation formalism used in that protocol such as, for example, some custom com-
bination operators that build more complicated expressions from simple ones.
Finally, generic protocol syntax MM means that it only contains most general
primitives of some theory that has the power to represent syntax at some useful
degree of expressiveness. An example of such style of MM used would be MM
of EBNF formalism. This division of DSML MMs is not strict and serves the
purpose to illustrate possible approaches. Concrete MM for particular DSMLs
addressing specific protocol could use a mix of four singled out approaches. Using
generic protocol syntax MM would mean that we are reusing universal MMs. For
the first time, such MM corresponding to the, for example, EBNF would need
to be created but any other its use would mean reuse with made more or less
small modifications to the original MM. Moving from that kind of MMs to the
specific protocol MMs would mean less and less generic MMs with fewer and
fewer possibilities of its reuse.

The type of metamodeling used for DSML would mainly depend on the type
of protocol for which we are creating DSML. In this paper, we are present-
ing the implementation of the DSML modeler and the corresponding tool-set
for the family of Diameter-based protocols. We selected this protocol class of
DSMLs due to the number of pedagogical reasons. Protocol family-specific type
of MM that was used for its implementation is a good example of reuse possi-
ble in the approach to the protocol syntax proposed in this paper. Most of the
design details and constructs are also applicable to the other classes of syntax
DSMLs and hence give a good overview of issues in protocol DSML design for
all classes. Diameter protocols are a good example of heavy reuse/modularity,
diverse specification formats, and their formal base specification mechanism of
EBNF.

The next section, building on this exposition, describes concrete Diameter
protocol modeler development details as a show-case example. It is obvious that
all solutions, discussions, and issues about this exposition can be applied for any
DSML based protocol front end.



70 G. Rajić and V. Sruk

4 Diameter Protocol Family

Diameter protocol consists of Diameter Base Protocol (DBP) [6] and Diame-
ter Application protocols (DAP) [1,10]. DBP is a generic protocol layer that is
providing basic communication services for all DAPs. Application protocols are
application-specific extensions that define specific syntactic and semantics details
for application at hand. From a practical point of view, DAPs are concrete user
application level protocols. There is one instance of DBP protocol implementa-
tion and there can be many DAP instances that all use single DBP instance.
From a formal specification point of view, both DAPs and DBP are using the
same mechanisms for protocol definition on both semantic and syntactic levels.

The semantics of all the Diameter protocol is specified informally, using nar-
rative, hence with textual descriptions and with little or no automation possibil-
ity. In any case, this is a situation that holds for semantics for almost all protocols
as well as for most programming languages of today. Hence the manual design of
the control part of Diameter is the only option. Usage of the model and formal
driven UML/SDL languages and its extensions are a natural choice in this case.
Syntax of Diameter is defined with decorated EBNF rules that are for this spec-
ification usage specified in [9]. Decorations added to the EBNF are Diameter
specific syntax mechanisms allowing specification of specific syntax fragments
related to the primitive data types and similar typically highly protocol specific
mechanisms. Decorations are not expressed using any of standard formal spec-
ification mechanisms but are integrated with documentation format and follow
the same formatting rules in all Diameter specification documents. This allows
for consistent and formal specification of decorations on the same level as main
formal syntax specifications. Uniform specification documents structure, both
on subsection level as well as on whole document level and its close relation-
ship with the formal part of syntax specification allow for additional usability
gains. All user text parts of specification documents can be stored in corre-
sponding MM that is part of DSML. These models are having content that is
preserving specification document structure with links to related formal syntax
specifications. In turn, this allows for a literate model-based description of pro-
tocol specification allowing for round trip protocol modeling and specification
on the documentation/specification side.

In summary, abstract syntax of Diameter DSML consists of three logical
parts. Two of them, namely formal EBNF representation and its decorations
are closely related and intertwined in one MM. Specification document infor-
mal content in a textual form corresponding to the protocol documentation in
modeling form is represented by a separate MM. These two MMs has seman-
tic mechanisms that realize linking and relation of documentation and formal
syntax specification contained in its models. Figure 1 depicts MM of a Diameter
modeler realizing formal EBNF representation and decorations. The next section
addresses the detailed design of the concrete syntax of the Diameter modeler.



Protocol Syntax Development Using Domain Specific Modeling Languages 71

Fig. 1. Metamodel of Diameter protocol family DSML



72 G. Rajić and V. Sruk

4.1 Diameter DSML Based Modeler

Concrete syntax of protocol representation of DSML modeler is defined in Xtext
[11] as an implementation tool of choice. Based on the design principles of
Xtext, concrete syntax of DSML specification induces abstract syntax/MM of
that DSML. DSML defined syntax naturally reflects the Diameter specification
domain in its abstract content. In the proceeding of this section, we are describ-
ing DSML definition and its relation to constructs in Diameter specification.

Diameter protocol (application) consists of the number of Commands,
Attribute Value Pairs (AVP) and Result Code definitions. The protocol itself
can have many flags and values as the option values. The next code fragment of
the Xtext specification code expresses this fact.

ApplicationDefine : APPLICATION
’<’? name=NAME ’>’?
’{’

options=ApplicationOptions?
( cmdDefs += CommandDefinitions
| avpDefTable += AvpBasicDefines
| avpConcDef += AvpConcreteDefines
| avpResCodeDef += AvpResultCodesConcreteDefines
)*
’}’ ;

All of the elements are spread over-specification document with any order and
documentation structure should store information about their place in documen-
tation MM. Corresponding documentation syntax is having reference to each of
these constructs.

Commands are messages that are having message unique identification and
optional elements inhabiting its header portion. Its content consists of many
AVPs with different multiplicity specified with usual EBNF signs. AVP contained
in command can be AVP defined in own specification document or one that is
referencing AVP definition in other specification. Due to the number of AVPs
and its heavy reuse in Diameter applications, this implementation feature is
important.
CommandDefinition : ’<’ name+=NAME (’,’ nameabrv+=NAME)? ’>’

’::=’
header=CommandHeader
avpS+=( FixedAvpRef

| RequiredAvpRef
| OptionalAvpRef )+ ;

FixedAvpRef : multip=(Qual)? ’<’ avp=[AvpBasicData|NAME] ’>’ ;
RequiredAvpRef : multip=(Qual)? ’{’ avp=[AvpBasicData|NAME] ’}’ ;
OptionalAvpRef : multip=(Qual)? ’[’ ( avp=[AvpBasicData|NAME]

| avptype=AVP
)

’]’ ;

Command’s header data are consisting of application and command identi-
fication numbers and number of option flags. They are defined in specification
documents locally inside the complete command definition.



Protocol Syntax Development Using Domain Specific Modeling Languages 73

CommandHeader : ’<’ ( ’Diameter-Header:’ | ’Diameter Header:’ )
id=INT
flags+=CommandFlags*
(’,’ applicationId=INT)?

’>’ ;
CommandFlags : ’,’ (’REQ’ | ’PXY’ | ’ERR’) ;

AVPs are either referenced from other models or defined locally. If defined locally,
they have a number of standard flags and typed values. These values are defined
locally in one or a few tables for all AVPs defined in the concerned specification.
Those that are not defined in the specification are having informal links to other
defining documents. These links usually take a form of a document and section
references even, in many cases, it can have less formal and precise forms. Due
to that link and reference resolving mechanisms for AVPs and its validation,
proposal, and completion features are useful features to add to the proposed
DSML.

AvpBasicDefines : {AvpBasicDefines}
AVPBASIC
’{’

avpDef+=AvpBasicData*
’}’ ;

AvpBasicData :
( ref=AvpBasicRefs

| name=NAME
code=INT
( INT (’.’ INT)* )?
( standardtype=AvpTypes
| usertype=NAME )
must=AvpFlags
may=AvpFlags
sholdnot=AvpFlags
mustnot=AvpFlags
mayencode=( ’Y’ | ’Yes’ | ’y’ | ’yes’

| ’N’ | ’No’ | ’n’ | ’no’ )?
)

;

Apart from the flag and typed values, locally defined AVPs must have defined
syntax of its content. Its content can be in the form of an ordered collection of
other AVP’s or one of the primitive values, detailed of which are left out here
due to lack of space.

All the DSML modeler concepts are defined with criteria of similarity with
original specification document notation. This allows for low entry effort to using
DSML modeler for protocol implementers already knowledgeable in protocol
domain concepts. At the same time, this approach enables the parallel learning
of protocol and DSML language for new users. The similarity of protocol spec-
ification format and DSML language syntax is at that level of details to enable
direct copying of protocol into the modeler’s editor. Adding DSML introduced
delimiting symbols one can obtain complete DSML syntax from specification
document with minimal effort. Modeler’s syntax is designed with full delimit-
ing and typing capabilities enabling complete safety and precise error detection.
As any syntax/semantics directed modern editor, it supplies users with content
assistance, auto-completion and similar productivity add-ones.



74 G. Rajić and V. Sruk

5 Discussion and Related Work

To the best of our knowledge, there is no prior work comparable to the one
proposed and implemented in this paper. Protocol syntax has a long history,
starting from direct language engineering methods use [3] and culminating with
the use of ITU standardized ASN.1 language with a set of predefined encoding
and custom CS coding language ECN. In the time after ASN.1 and similar
approaches there were several proposals that go in the direction of the use of
domain-specific languages (DSL) [26] in syntax protocol design. However, all of
them propose either host language-internal DSLs or external DSLs staying in
the technical space of classical languages and DSLs. These proposals typically
address protocol design covering all its aspects leaving less space to focusing on
pragmatic properties of syntax development.

Closest to our work is position paper [3] that directly proposes classic DSL
as a means of complete protocol design. They focus more on the behavioral
(control) part of protocol development and go into the direction of dependent
types to increase the expressiveness of specification. Similar comments can be
done for relevant work done in [38]. Recent work [24] that builds on the men-
tioned position paper focuses more on abstract syntax induced data types and
its integration into control part of software development. They extend the action
language of the modeling language to seamlessly integrate control part develop-
ment tools with data types and tools related to the syntax. Being oriented on
the BNF type of syntax only and not addressing the pragmatic properties of
syntax development this work is more complementing our work than addressing
the same problem. Work concerning a more pragmatic side of protocol develop-
ment in the context of MDE is [34] but it only addresses the aspect of platform
dependence and gives solutions in the context of the control part of protocol
development. Finally, one should mention a large body of work done it the area
of data description languages [12,13] where general DSLs to specify more amor-
phous data patterns were developed. Such developments support more Big data
collection type of problems less focusing on strictly formatted protocols and
pragmatics of its formal specification formats.

In this paper, we proposed the use of dedicated DSML developed for individ-
ual protocols and protocol families. Contrary to the previous work, we focused
on the efficiency of the syntax development process and pragmatics of its integra-
tion with tools for the control part of the design. The proposed approach fosters
the development of editors that allow for efficient specification of such protocols
and familiarizes DSML developers and protocol developers with the protocol
syntax details. Reuse of protocols fragments and use of developed importers of
informal syntax fragments enable fast formal specification process for supported
protocols. The integration of a such modelers with UML tools enables efficient
development and integration of control parts of protocols with the syntax part.
Creation of dedicated safe coders and encoders for protocol by use of MDE code
generation is under development. In the future, we plan to improve present pilot
coder and encoder generation tools as well as create support for other protocols
and protocol families. We are also considering developing translation tools from



Protocol Syntax Development Using Domain Specific Modeling Languages 75

developed DSMLs to the ASN.1 code to be able to test and compare crated
coders and parser with the ones generated by currently more trusted ASN.1
generated code.

References

1. 3GPP: Evolved Packet System (EPS); Mobility Management Entity (MME)
and Serving GPRS Support Node (SGSN) related interfaces based on Diam-
eter protocol (2019). https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3197, version 15.8.0

2. 3GPP: NR; Radio Resource Control (RRC); Protocol specification (2019).
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.
aspx?specificationId=3197, version 15.5.1

3. Abbott, M.B., Peterson, L.L.: A language-based approach to protocol implemen-
tation. IEEE/ACM Trans. Netw. 1(1), 4–19 (1993). https://doi.org/10.1109/90.
222903

4. Aho, A., Lam, M., Ullman, J., Sethi, R.: Compilers: Principles, Techniques, and
Tools. Pearson Education, London (2011)

5. Al Dallal, J., Saleh, K.: Synthesizing distributed protocol specifications from a
UML state machine modeled service specification. J. Comput. Sci. Technol. 27
(2012). https://doi.org/10.1007/s11390-012-1293-1

6. Arkko, J., Loughney, J., Zorn, G.: RFC6733 Diameter Base Protocol (2012).
https://tools.ietf.org/html/rfc6733

7. Bézivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proceedings
of the OOPSLA/GPCE: Best Practices for Model-Driven Software Development
Workshop, 19th Annual ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, October 2004, Vancouver, Canada (2004)

8. Bézivin, J.: Model driven engineering: an emerging technical space. In: Lämmel, R.,
Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 36–64. Springer,
Heidelberg (2006). https://doi.org/10.1007/11877028 2

9. Crocker, D., Overell, P.: RFC5234 Augmented BNF for Syntax Specifications:
ABNF (2008). https://tools.ietf.org/html/rfc5234

10. Eronen, P., Hiller, T., Zorn, G.: RFC4072 Diameter Extensible Authentication
Protocol (EAP) Application (2005). https://tools.ietf.org/html/rfc4072

11. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications Companion,
OOPSLA 2010, pp. 307–309. ACM, New York (2010). https://doi.org/10.1145/
1869542.1869625

12. Fisher, K., Mandelbaum, Y., Walker, D.: The next 700 data description languages.
J. ACM 57(2), 10:1–10:51 (2010). https://doi.org/10.1145/1667053.1667059

13. Fisher, K., Walker, D.: The PADS project: an overview. In: Proceedings of the
14th International Conference on Database Theory, ICDT 2011, pp. 11–17. ACM,
New York (2011). https://doi.org/10.1145/1938551.1938556

14. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineer-
ing. Wiley, Chichester (2008)

15. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley Series in Computer Science. Pearson
Education International, London (2003)

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://doi.org/10.1109/90.222903
https://doi.org/10.1109/90.222903
https://doi.org/10.1007/s11390-012-1293-1
https://tools.ietf.org/html/rfc6733
https://doi.org/10.1007/11877028_2
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc4072
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1667053.1667059
https://doi.org/10.1145/1938551.1938556


76 G. Rajić and V. Sruk

16. ISO/IEC JTC 1/SC 22: ISO/IEC 14977:1996 Information Technology - Syntactic
Metalanguage - Extended BNF (1996). https://www.iso.org/standard/26153.html

17. ITU: International Telecommunication Union - Telecommunication standardiza-
tion sector web page (2019). https://www.itu.int/en/ITU-T/Pages/default.aspx.
Accessed 18 July 2019

18. ITU-T: Message Sequence Chart (MSC) (2011). https://www.itu.int/rec/T-REC-
Z.120/en

19. ITU-T: Abstract Syntax Notation One (ASN.1): Specification of basic notation
(2015). https://www.itu.int/itu-t/recommendations/rec.aspx?rec=x.680

20. ITU-T: ASN.1 encoding rules: Specification of Encoding Control Notation (ECN)
(2015). https://www.itu.int/itu-t/recommendations/rec.aspx?rec=x.692

21. ITU-T: Specification and Description Language (SDL) (2016). https://www.itu.
int/rec/T-REC-Z.100/en

22. Kaliappan, P.S., König, H., Kaliappan, V.K.: Designing and verifying commu-
nication protocols using model driven architecture and spin model checker. In:
International Conference on Computer Science and Software Engineering, CSSE
2008, Volume 2: Software Engineering, 12–14 December 2008, Wuhan, China, pp.
227–230 (2008). https://doi.org/10.1109/CSSE.2008.976

23. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling. Wiley-IEEE Computer Soci-
ety Press, Hoboken-Washington, DC (2007)

24. Kistel, T., Vandenhouten, R.: Extended type systems of action languages for the
development of communication protocols. In: 2014 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pp. 3054–3057, October 2014. https://
doi.org/10.1109/SMC.2014.6974395

25. Kumar, B., Jasperneite, J.: UML profiles for modeling real-time communication
protocols. J. Obj. Technol. 9, 178–198 (2010). https://doi.org/10.5381/jot.2010.9.
2.a5

26. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005). https://doi.org/10.1145/
1118890.1118892

27. OMG: Object Constraint Language (2014). https://www.omg.org/spec/OCL
28. OMG: Meta Object Facility (2016). https://www.omg.org/spec/MOF
29. OMG: Unified Modeling Language (2017). https://www.omg.org/spec/UML
30. OMG: UML Profile for MARTE (2018). https://www.omg.org/spec/MARTE
31. OMG: Object Management Group web page (2019). https://www.omg.org/.

Accessed 18 July 2019
32. Pardillo, J.: A systematic review on the definition of UML profiles. In: Petriu, D.C.,

Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 407–422.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 28

33. Rahimi, H., Zibaeenejad, A., Rajabzadeh, P., Safavi, A.A.: On the security of
the 5G-IoT architecture. In: Proceedings of the International Conference on Smart
Cities and Internet of Things, SCIOT 2018, pp. 10:1–10:8. ACM, New York (2018).
https://doi.org/10.1145/3269961.3269968

34. Simonsen, K.: On the use of pragmatics for model-based development of protocol
software. In: Proceedings of the International Workshop on Petri Nets and Software
Engineering, 20–21 June 2011, Newcastle upon Tyne, UK, vol. 723, pp. 179–190
(2011)

35. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Eclipse Series. Pearson Education, Addison-Wesley Professional, Lon-
don (2008)

https://www.iso.org/standard/26153.html
https://www.itu.int/en/ITU-T/Pages/default.aspx
https://www.itu.int/rec/T-REC-Z.120/en
https://www.itu.int/rec/T-REC-Z.120/en
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=x.680
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=x.692
https://www.itu.int/rec/T-REC-Z.100/en
https://www.itu.int/rec/T-REC-Z.100/en
https://doi.org/10.1109/CSSE.2008.976
https://doi.org/10.1109/SMC.2014.6974395
https://doi.org/10.1109/SMC.2014.6974395
https://doi.org/10.5381/jot.2010.9.2.a5
https://doi.org/10.5381/jot.2010.9.2.a5
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://www.omg.org/spec/OCL
https://www.omg.org/spec/MOF
https://www.omg.org/spec/UML
https://www.omg.org/spec/MARTE
https://www.omg.org/
https://doi.org/10.1007/978-3-642-16145-2_28
https://doi.org/10.1145/3269961.3269968


Protocol Syntax Development Using Domain Specific Modeling Languages 77

36. Tolvanen, J.P., Kelly, S.: Integrating models with domain-specific modeling lan-
guages. In: Proceedings of the 10th Workshop on Domain-Specific Modeling, DSM
2010, pp. 10:1–10:6. ACM, New York (2010). https://doi.org/10.1145/2060329.
2060354

37. Vogel, L., Milinkovich, M.: Eclipse Rich Client Platform. Vogella Series. Lars Vogel,
Hamburg (2015)

38. Wang, Y., Gaspes, V.: An embedded language for programming protocol stacks
in embedded systems. In: Proceedings of the 20th ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, PEPM 2011, pp. 63–72. ACM, New
York (2011). https://doi.org/10.1145/1929501.1929511

39. Werner, C., Kraatz, S., Hogrefe, D.: A UML profile for communicating systems.
In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS, vol. 4320, pp. 1–18. Springer,
Heidelberg (2006). https://doi.org/10.1007/11951148 1

https://doi.org/10.1145/2060329.2060354
https://doi.org/10.1145/2060329.2060354
https://doi.org/10.1145/1929501.1929511
https://doi.org/10.1007/11951148_1


Industry 4.0 Applications



Use of a Pivot Diagram in SysML to Support
an Automated Implementation of a MBSE

Design Methodology in an Industry 4.0 Context

Régis Plateaux(&) , Olivia Penas , and Farid Louni

QUARTZ Laboratory, EA7393, SUPMECA, Saint-Ouen, France
{regis.plateaux,olivia.penas,farid.louni}@supmeca.fr

Abstract. In the Industry 4.0 context, the high demand for the integration of
new emerging IT technologies into production systems requires their designers
to find effective ways to manage the impact of these changes during the design
phase, while meeting very tight time constraints. Based on the model trans-
formation concept at the SysML (System Modeling Language) diagrams scale,
we propose to define a pivot language, through the sequence diagram, to
automatically ensure the consistency between the different diagrams used
throughout a MBSE (Model-Based System Engineering) design methodology,
and then to guarantee the consistency of the relative design artefacts. The
transformation rules have been defined between the underlying elements of
SysML and could be modified according to the methodology. Finally, some
rules were implemented in the PTC Modeler tool to validate the approach.

Keywords: MBSE � Pivot language � Design consistency �
SysML methodology � Engineering change management � Industry 4.0

1 Introduction

1.1 Context and Motivations

Current Industry 4.0 developments are encouraging the deployment of cyber-physical
systems (CPS) and in particular cyber-physical production systems (CPPS). Whereas
current production systems are designed as autonomous devices, consisting of several
machines, modules and components, CPS and CPPS design has to integrate multi-
domain systems and increasingly automated equipment with sensors, actuators and a
communication network in an interconnected global environment [19, 33]. Such a
transformation gives rise to a number of issues to be solved for industries that are
looking to take advantage of the numerous performance opportunities offered by such
systems. As a result, to support this transition, system design methodologies have to
include automated design engineering activities [15, 16, 30].

Some recent studies have shown some commonalities between CPS and mecha-
tronic systems considering a multiscale approach [7, 11, 25], particularly with regard to
the design constraints resulting from such systems: heterogeneous and cross-domain
systems, high functional, multi-domain and multi-disciplinary integrated systems, and

© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 81–98, 2019.
https://doi.org/10.1007/978-3-030-30690-8_5

http://orcid.org/0000-0001-7453-7597
http://orcid.org/0000-0002-6363-5754
http://orcid.org/0000-0001-6052-1906
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_5&amp;domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_5


managing dynamic physical interactions [27]. As a result, existing mechatronic design
methodologies can cope with main CP(P)S design constraints.

Traditional system design cycle (analysis of customer needs, generation of derived
requirements, functional analysis leading to the functional architecture, then logical and
physical, as well as the concurrent pre-dimensioning activities allowing the evaluation
of different architectures for the choice of a solution), reveals many discontinuities
when moving from one step to another. The numerous design tools and methodologies
for existing multidisciplinary and notably mechatronic systems initially came from
different fields [3, 6, 28, 34]. Unfortunately, the integration of these tools for a global
validation of the complete system was lacking. Still, models unification can help the
different disciplines involved in design activities to optimize the system as a whole [4].
In fact, the integration of various multi-domain models of mechatronic systems can be
achieved through two main trends: integration within the same tool [29] or through the
interoperability of tools and languages [14, 23]. In parallel, the need to integrate the
collaborative aspects required by the multidisciplinary integration has generated the
development of design methodologies in the context of system engineering [17] and
more particularly of model-based system engineering (MBSE). The integration of these
different multidisciplinary perspectives into numerical models helps to increase the
consistency of data and models across disciplines by improving traceability with
requirements. However, sharing models (or at least common parameters) requires a
semantic referential, common to all disciplines [26]. Therefore, for unifying the
modeling of a multi-domain, multi-level and multiphysical system, such as a mecha-
tronic or CPS system, one solution is to find a generic language/system representation
tool. Actually, many MBSE approaches are based on the semiformal SysML (Systems
Modeling Language) language [8, 9, 21, 32]. Indeed, SysML allows system architects
to specify, analyze the structure and operations, and to define the system and its
subsystems. In addition, it allows to verify and validate the feasibility of a system
before its realization while offering a unique model at the system level. In this context,
each designer can refer to a single model throughout the design cycle and has unique
data that are shared by all other design stakeholders. This language has the advantage
of offering a great semantic richness, because it allows to represent different views of
the system thanks to its different diagrams and is particularly effective in modeling the
requirements, structure, behavior, allocations and constraints of the system [10].

The previously developed methodology [21], named SE-READ (for System
Engineering based Requirements Elicitation and Architecture Design) helps the System
Architects to define the system architecture from stakeholders’ requirements [21]. This
design methodology aims at ensuring a consistent and complete modeling of the
system, generating the System Model (SM). This model is elaborated through two main
phases, each decomposed in several steps representing different specific system
viewpoints (Fig. 1). The first phase is a black box analysis based on an external point
of view of the system, which aims at providing a comprehensive and consistent set of
requirements. The second one is a white box analysis based on an internal point of view
of the system, which progressively leads to the internal architecture and behavior of the
system, based on the previous set of requirements.

82 R. Plateaux et al.



However, the consistency of the design artifacts defined in a SysML model is only
ensured through the MBSE methodology implementing them. Then, how to formalize
the links between the modeling elements, based on a MBSE design methodology and
expressed in SysML diagrams, and then automate the consistent design of new systems
integrating industry 4.0 innovations?

1.2 State of the Art

Many methods and techniques propose some approaches to automatically verify system
requirements based on SysML modeling. They use some profiles or combine their
SysML modeling with simulation tools in order to verify that requirements related to
the system performances or behavior are fulfilled.

Considering the evaluation of the physical behavior of the system and notably
performances requirements verification, research work has focused on the exploitation
of the parametric diagram, coupling it with physical simulation tools [22, 24].

Some authors propose to use Petri nets and Linear time Temporal Logic to for-
malize the specification of the system discrete behavior in SysML and verify the
corresponding specifications [20]. Others authors, often from the software community,
use UML semantics to automatically generate the algorithm or code to be implemented
in software or embedded systems. For example, Apvrille et al. have developed the
TURTLE UML profile (for real-time environment) to verify temporal constraints by
model transformation in the RT-LOTOS simulation environment [2]. In parallel,
Kraemer et al. propose notably to also use the “Petri-like” semantics of activity dia-
grams to define a set of rules leading to event-driven and bounded specifications that
can be automatically implemented by model transformations and efficiently executed
using runtime support systems [18].

Even if numerous research development have dealt with the model transformation,
based on the UML or SysML semantics (notably of the activity diagram) to simulate
and verify the temporal constraints and discrete-event behavior of their system, they do

Fig. 1. SE-READ methodology process

Use of a Pivot Diagram in SysML 83



not address the modeling of other points of view of the system offered by SysML and
still crucial for the generation of the system requirements specification.

Regarding this issue, some authors propose to use a pivot language or model in
order to ensure the interoperability between different formalisms through model
transformations. For example, Boukhari et al. address both heterogeneity of vocabu-
laries and heterogeneity of formalism through a pivot model connected to a common
ontology [5]. Berthomieu et al. develop the pivot language Fiacre, as the target lan-
guage of model transformation engines from various models such as SDL, UML,
AADL, and as the source language of compilers into the targeted verification tool-
boxes, namely CADP and Tina [4]. Finally, Aliyu et al. define a high-level unified
specification language called HiLLS (High Level Language for Systems specification),
a language which, by construction, achieves semantic alignment between three for-
malisms respectively representative of simulation, formal analysis and emulation
practices. In this way, a single model expressed in this language would make it possible
to obtain, by semantic correspondence, the artifacts adapted to the analytical methods
thus integrated [1]. As a result, pivot models or languages coupled with models
transformation appear to be an efficient way to cope with formalisms heterogeneity.

Finally, although SysML, as a semi-formal modeling language, is easy to use to
provide a preliminary specification of a complex system including aspects of archi-
tecture, behavior and requirements, it does not guarantee that the modeling artifacts
generated in the different diagrams of a system model are in line with the MBSE
methodology on which they have been developed. Therefore, we propose to develop a
pivot “diagram” concept to tackle this issue.

1.3 Case Study Description

Manufacturing industry has significantly improved its competitiveness over the last
twenty years thanks to automation. Today, the Industry 4.0 context provides many
possibilities for information, control and monitoring of industrial line machines thanks
to the presence of numerous sensors and measurement and/or control means integrated
into the machines. However, many manufacturing industries still make only limited use
of these opportunities. One of the current challenges is to support these industries in
adapting their production systems, by notably taking into account the new innovations
and constraints of Industry 4.0 in the design or specification of production line
machines.

In this context, the EUGENE collaborative project aims, among other objectives, at
increasing the industrial productivity of a perfume packaging production line, by using
the technologies and approaches developed by Industry 4.0. Thus, one of the chal-
lenges of the project is to improve product quality and production line availability by
specifying machine adaptations on the production line, in order to: (i) make line
maintenance more proactive (more preventive maintenance and less corrective main-
tenance), (ii) limit the impact of real-time measured deviations in the machines, on the
nominal process of the lines, (iii) ensure maximum exploitation of the capacities of the
production lines. The redesign of such production machines may, for example, inte-
grate new functionalities, more communication and detection abilities.

The studied perfume packaging production line is described in Fig. 2.

84 R. Plateaux et al.



We use the modeling of this case study to illustrate the relevance of our approach.
The scenario is used to demonstrate the feasibility of the proposed approach to support
the quick design of new innovative CPPS, in accordance with the increasingly shorter
time-to-market constraints.

The rest of this paper is structured as follows: in Sect. 2, the dependency links
resulting from the chosen illustrative MBSE methodology are described; in Sect. 3, the
formalization process is presented through transformation rules and topological anal-
ysis; in Sect. 4, some implementation elements are provided, based on the previous
case study; in Sect. 5, the approach advantages and limits are discussed; finally, the
conclusions and future work directions are indicated in Sect. 6.

2 Methodology-Based Dependency Links

In this paper, the pivot diagram is used to elicit a comprehensive set of Derived
Requirements from the constraints induced by each SE-READ sub-view of the black
box analysis.

After defining the global mission (or function) of the system, the different lifecycle
phases of the system have to be defined, in order to take into account all the constraints
related to each phase. In this respect, for each lifecycle phase (LCP), a system context
view defines the perimeter of the system and identifies the stakeholders/actors of each
LCP and their external interactions between them and the system. Similarly, for each
LCP, the “user operating modes” view outlines the operating modes of the system
during that phase with respect to the system usage from the external point of view
(by external actors). For each main operating mode, the services/functionalities pro-
vided by the system to the external actors (previously identified in the context view)
have to be defined. In this view, the potential dependence relationships between these
functionalities can be expressed. Finally, each functionality can be described through
some functional scenarios, which represent the temporal sequences of the communi-
cations occurring between the system and the external actors that contribute to the
considered functionality.

The logical process of the structural dependencies between these different views is
given in Fig. 3.

Fig. 2. Packaging production line description

Use of a Pivot Diagram in SysML 85



3 Formalization

SysML is a composite language with more or less high levels of formalization, with
respectively use case and state machine diagrams. Another weakness of SysML is that
the relationships between these 9 diagrams are not completely defined and some added
rules are necessary to ensure the consistency of the model in accordance with the
methodology applied.

3.1 Approach Principles

Our proposal is based on the following idea: using the sequence diagram (SQD), as
pivot “language” to capture all the dependency links (implicit and explicit) between the
different artefacts generated in the various views required by the SE-READ MBSE
design methodology. The idea is to complete SysML links as allocation link partially
does and to capture the dynamic of the creation of the model of the system, in addition
to describe the dynamic of the system. The principles of the approach are described in
Fig. 4.

Two phases are necessary to guarantee the efficiency of this approach: the
automation of the creation of new artefacts (Ci), links and diagrams based on the
methodology rules and the verification phase, where each generated component has to
be checked and updated if necessary. As the elicitation of the requirements is the result
of the analysis of all structural and behavioral diagrams, obtained by the means of SE-
READ methodology, requirements are dynamically generated as the methodology
progresses.

Figure 5 presents the black box down phase allowing an increasing system model
refinement to achieve the SQD operations, before the transition to the white box
analysis.

Life cycle 
Diagram

(STM)

LCP1
(State 1)

LCP i
(State i)

Context 
Diagram i

(BDDi)

Operating 
Modes 

Diagram 
(STMi)

Mode a
(State a)

Mode j
(State j)

Services 
provided
Diagram j

(UCDj)

Functionali
ty 1

(UC1)

Functional
Scenarios 
Diagram 1

(SQD1)

Functionali
ty k

(UCk)

Functional
Scenarios 
Diagram k

(SQDk)

Functionali
ty l

(UCl)

Functional
Scenarios 
Diagram l

(SQDl)

Mode m
(State m)

LCP n
(State n)

Fig. 3. Black box analysis views structure based on the SE-READ methodology.

86 R. Plateaux et al.



During the different phases of the SE-READ methodology black box analysis, new
diagrams and new components have to be created, either due to the refinement
approach or to the elicitation treatments. Then all the interactions associated to the links
between model artefacts will generate a new requirement to manage. Simultaneously, a
traceability link is defined between the artefact/link and the new requirement. The
hierarchical structure of the diagrams managed by the implementation of the SE-READ
methodology in SysML induces then a derived requirements hierarchy (Fig. 6).

Fig. 4. Scheme describing the internal pivot

SQD
(fonct. scenario)

UC
(fonc onality)

Context + UCDState
STD

(LifeCycle + 
modes)

StateD 1 State
Context

UCD

UC1 SQD0

UC2
SQD1

SQD2

Fig. 5. Black Box down phase and its model refinement process.

Fig. 6. Generic elicitation phase of requirements obtained by analyzing each diagram and sub-
diagram of each view.

Use of a Pivot Diagram in SysML 87



Figure 7 presents how the different (dependent) artefacts hierarchically transformed
in the SQD are hierarchically traced as derived requirements.

3.2 Transformation Rules and Topological Analysis

Figure 8 and Table 1 present the topological view between the artefacts and the dia-
grams used based on the SE-READ methodology.

Before defining rules we will formalize the different diagrams used in SysML. We
extend the approach proposed by Hazra et al. [12] formalizing the usecase, sequence
and time diagrams.

Fig. 7. Methodology process viewed with the sequence diagram hierarchy and the requirement
hierarchy associated.

Fig. 8. Partial SysML diagrams/artefacts bipartite graph

88 R. Plateaux et al.



Definition 1. A SE-READ model is defined as a set of SysML diagrams.
M = {RQD, BDD, IBD, UCD, SQD, ACD, PARD) where each type of diagram D

is a set of diagrams Di of type D. We use respectively these acronyms to requirement,
block definition, internal block, use case (UC), sequence, activity and parametric
diagrams.

In this paper, we mainly focus on the UCD and SQD.
Actors were imported from the BDD context into the UCDs. Each actor has to be

used at least once in the set of UCDs associated to this context.
One UCD will be created from one State.
One SuperState will generate one UCD. Their sub-states will be linked to UCs of

the UCD(SuperState) by the means of traceability links.

Definition 2. UCD is a set of {UC, A, R} as respectively finite sets of use cases, actors
and relationships. These relationships could be the association between one actor and
one UC, include or extend between two UCs and the generalization of an actor or a UC.
As the need is mainly to represent interactions between artefacts and not to package
them, the definition of the system boundary is not formalized here.

Definition 3. A SQD(XY) is a SQD generated from the XY diagram. SQD(UCi) is
defined as a finite set of sequence diagrams SQDj linked to a UCi noted SQD(UCi)

j.
SQDUCi = {SQDUCi

j | UCi 2 UC}

Definition 4. SQD(UCi)
j is tuple {Ps, V, L, E, O, S} respectively Ps the set of lifelines

for each participant, V the set of edges linked between two Psi, L the labeling function

Table 1. Associated and generated artefacts in each diagram

Components

Diagrams 
Req Actor Block State System 

Block
Traceability/

Alloca on Associa on UC Time Interfaces

RQD

STD

UCD

SQD

BDD 

IBD

ACD

Use of a Pivot Diagram in SysML 89



assigning each message to vi, E a set of events, O the mapping function ei/vi, S a finite
set of states to which participant goes.

The SE-READ methodology guarantees a part of consistency defined as rules and
automated modelling by following these rules (the developed scripts help the designer
to define and to choose the suitable rule):

• A UCD (Use Case Diagram) is composed of a set of UCs (Use Case).
Rule 1: 8UCi; 9SQDj with j 2 N

�

• For each UC, a SQD (sequence diagram) is produced.
Rule 2: 8association; 9AjnPsi ¼ Aj

• All diagrams have been considered as digraphs.
• Each UC is considered as a node in a digraph (directed graph).
• The weight of nodes (wnd) is evaluated thanks to the following rules:

wnd = N_outer_include + N_inner_extend
where
- N_outer_include is the sum of all « include » links outcoming from the node, 1
in the incidence matrix,
- N_inner_extend is the sum of all extend links incoming into the node, -1 in the
incidence matrix.

• All specializations are unweighted.
• The topology of the UCs allows to define root_UCs. These root_UCs are found

using the weight of each UC. Root_UCs will be the most weighted nodes.
• A root_SQD(root_UC) will integrate all references (InteractionUse) to the SQD(UC)

weighting on this root UC.
• Extension point condition in root diagram will be translated into the root

SQD(root_UC) as an « if » (Alternative) structure.

Every other structure will be possible when using these InteractionUse and
Alternative ones.

• All actors needed in the UCD have to be used in the SQD(UCD).

Then, from the previous topological graph, we have to add specialization links and
define actor leaf nodes and their links with other UC nodes. The root_SQD(root_UC) will
capture all the actors defined in the previous diagram (UCD). Actors of other SQD(UC)

90 R. Plateaux et al.



will be filtered from this diagram cancelling their link to the root_UC. Each UC whose
links have been suppressed becomes the root of a subgraph. The following step is to
apply a label filter to it, e.g. searching actors coming from an extension link, etc.

Our purposes are to validate and verify the whole model from black box to white
box, to increase the ergonomics and to improve traceability. All these additional fea-
tures are possible thanks to the automatic diagram generation.

Regarding the transition between the blackbox and whitebox parts, when an
operation goes through the boundary between external actors and the system, at least
one port and one associated artefact, either a receiver or an emitter will be generated on
the activity diagram.

Regarding the validation of the transformation rules, the SysML properties are
preserved due to the internal pivot language choice but the semantical point of view has
to be verified. SysML as a nine diagrams composite language requires the same
approach as models transformation to unify them.

It is clear that specific objects of modelling have still to be developed such as
history operator needs a specific development to reproduce the behavior of state
machine.

4 Implementation and Case Study

In this section, we describe the different software developments, in the PTC integrity
modeler tool, which have been made based on previous algorithms, and following the
steps included in Fig. 3.

The first script generates the context (BDD) and user modes (STM) diagrams from
the life cycle (STM) diagram.

Using the case study of the perfume production line (PPL), we start with an existing
STM diagram representing the lifecycle of the PPL (Fig. 9).

Use of a Pivot Diagram in SysML 91



Then the algorithm is described in SysML (through a STM diagram) in Fig. 10 and
the developed Visual Basic script (VBS) (Fig. 11).

Error    message

Packages   creation
do : Actors package creation
do : Context package creation
do : User Modes package creation

LCP selection

Diagrams creation
do : Context diagram (BDD) creation
do : User Modes diagram (STM) creation

 Artefacts    creation
do : Actors definition
do : Modes definition

Script1 algorithm

Error    message

Packages   creation
do : Actors package creation
do : Context package creation
do : User Modes package creation

LCP selection

Diagrams creation
do : Context diagram (BDD) creation
do : User Modes diagram (STM) creation

 Artefacts    creation
do : Actors definition
do : Modes definition

/

N o / Y e s /

LCP  s e lec ted/

P ac k ages    c reated/

/

Does a life cycle diagram exist?

creation in the corresponding package

For each LCP

Fig. 10. Algorithm of the first developed Visual Basic script, generating for each lifecycle
diagram state, diagrams of context and user mode.

Fig. 9. Starting point: the case study (PPL) lifecycle diagram (STM).

92 R. Plateaux et al.



The script asks, to the user, the number of actors and modes to be created and then
generates the different modeling parts.

The resulting modeling elements applied on the case study model are presented in
Fig. 12. The name have been defined by default but the user can also introduced.

Fig. 11. Basic VBS code necessary to implement the creation of context diagrams and user
mode into PTC Modeler

Use of a Pivot Diagram in SysML 93



Then, the user customizes the generic elements generated in the package (e.g.
actors’ names) and defines the missing artefacts (system block, associations, transi-
tions, etc.) on the generated diagrams.

Once the context and user modes diagrams completed (Fig. 13), the user can launch
the second script, which creates a use case diagram (UCD) for each state/mode
included in the user modes diagram. In the same manner as script 1, script 2 queries the
selection of the User modes diagram to address, then it creates the Use Cases package,
and generates as many UCDs as the modes contained in the User modes diagram,
before asking for each UCD, the (primary and secondary) actors concerned and the
number of functionalities (UCs) to be created.

Fig. 12. Results of the first script run on the case study model

Fig. 13. Case study model manually customized by the user.

94 R. Plateaux et al.



The resulting diagrams thus generated (Fig. 14) can then be completed by the user
who adds the associations between the UCs and the actors, the name of the UCs, the
possible relations between UCs (generalization, include, extend, etc.).

Finally, the third script queries to select the Use cases package and then creates
from a functional scenario (sequence diagram) for each UC contained in each UCD and
another for the macro functional scenario for each UCD of a given LCP (Fig. 15).

5 Discussions

The use of external existing pivot languages like FIACRE requires some specific tools
to compile the transformation [13]. Therefore to ensure the consistency between the
different views and related SysML diagrams used during the blackbox analysis of a
MBSE design methodology, we have chosen the sequence diagram as pivot language.

Fig. 14. Use Cases diagram generation applied to the PPL system.

Fig. 15. Resulting model after having run the third script

Use of a Pivot Diagram in SysML 95



Even if usually, SysML structural diagrams and behavioral ones are natively linked
by the means of common components to which they relate, the sequence diagram
(SQD), as it offers the most refinement, allows to structurally integrate the depending
modeling elements from various SysML diagrams and so to go beyond the simple
allocation and traceability relationships available in the language. In the black box the
sequence diagram appears as the level of representation where an external interaction
needs internal behavior, the first revealed activities. The SQD is at the boundary with
the white box. We consider the SQD diagram like a cornerstone between these views.

The drawback of this approach is that some diagram elements (like requirement
diagram (ReqD) elements) cannot be captured in SQD, and in the same way, we have
not yet validated this approach to support the view consistency of the MBSE whitebox
analysis. Another limit is that this approach is based on a serial design process that does
not support agile mode that would consist in defining the different views in any
sequence.

6 Conclusions and Future Work

The purpose of our paper is to achieve a continuous structure of heterogeneous SysML
diagrams using a pivot language. The unification of these diagrams has been done
using SQD as pivot diagram. Each of them, excepted requirement diagram, has been
transformed into a specific SQD.

We have presented in this paper a pivot language approach using the Sequence
Diagram (SQD), as pivot diagram to capture, from the multiple views offered by
different SysML diagrams, the dependent modeling elements of the black box analysis
of a MBSE design methodology. The dependency links of the SE-READ methodology
have been described. Then their formalization with the transformation rules capturing
the SE-READ process and implicit diagram relationships has been done. The obtained
SQD diagram brings out a topological structure between the different diagrams used in
the methodology and all the modeling elements of the system model. Finally, the
software implementation in the PTC integrity modeler to support the automation of a
consistent design has been illustrated through an industry 4.0 case study. The current
shortcomings of this approach, linked to its sequential mode and its restriction to only
one part of the design methodology, could be overcome by using the formalism of the
categories applied to ontologies, i.e. ologs, proposed by Spivak [31]. Work is currently
underway to explore this research path.

References

1. Aliyu, H.O., Maïga, O., Traoré, M.K.: Un langage graphique pour la modélisation et
l’analyse des systèmes réactifs. In: 11ème Colloque sur la Modélisation des Systèmes
Réactif (MSR 2017), Marseille, France, 20 p. (2017)

2. Apvrille, L., Courtiat, J.-P., Lohr, C., de Saqui-Sannes, P.: TURTLE: a real-time UML
profile supported by a formal validation toolkit. IEEE Trans. Softw. Eng. 30, 473–487
(2004). https://doi.org/10.1109/TSE.2004.34

96 R. Plateaux et al.

http://dx.doi.org/10.1109/TSE.2004.34


3. Bernardi, M., Bley, H., Schmidt, B.: New approaches for developing mechatronical products
in multidisciplinary teamwork. In: 35th CIRP International Seminar on Manufacturing
Systems, Seoul, Korea (2002)

4. Berthomieu, B., et al.: Fiacre: an Intermediate Language for Model Verification in the
Topcased Environment (2008)

5. Boukhari, I., Bellatreche, L., Jean, S.: An ontological pivot model to interoperate
heterogeneous user requirements. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS,
vol. 7610, pp. 344–358. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
34032-1_35

6. Choley, J.-Y.: Mécatronique : une nouvelle démarche de conception des systèmes
complexes. Technologies et Formations, pp. 29–35 (2006)

7. Choley, J.-Y., Mhenni, F., Nguyen, N., Baklouti, A.: Topology-based safety analysis for
safety critical CPS. Procedia Comput. Sci. 95, 32–39 (2016). https://doi.org/10.1016/j.procs.
2016.09.290

8. Estefan, J.A.: Survey of model-based systems engineering (MBSE) methodologies.
Incose MBSE Focus Group 25, 1–12 (2007)

9. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML - the Systems Modeling
Language. Elsevier/Morgan Kaufmann, Amsterdam; Boston (2008)

10. Friedenthal, S., Moore, A., Steiner, R.: OMG systems modeling language (OMG
SysMLTM) tutorial. In: INCOSE International Symposium, vol. 18, pp. 1731–1862
(2008). https://doi.org/10.1002/j.2334-5837.2008.tb00914.x

11. Guérineau, B., Bricogne, M., Durupt, A., Rivest, L.: Mechatronics vs. cyber physical
systems: towards a conceptual framework for a suitable design methodology. In: 2016 11th
France-Japan 9th Europe-Asia Congress on Mechatronics (MECATRONICS)/17th Interna-
tional Conference on Research and Education in Mechatronics (REM), pp. 314–320 (2016)

12. Hazra, R., Dey, S.: Consistency between use case, sequence and timing diagram for real time
software systems. Int. J. Comput. Appl. 85, 17–23 (2014). https://doi.org/10.5120/14924-
3444

13. Heng, S.: Transformation de modèles UML vers des programmes Fiacre.
LABSTICC/ENSTA Bretagne (2012)

14. Iraqi-Houssaini, M., Kleiner, M., Roucoules, L.: Vers une ingénierie produit collaborative et
interopérable basée sur les modèles. Un cadre général pour l’acquisition des données métier.
Revue des Sciences et Technol. de l’Inf. - Série ISI: Ingénierie des Systèmes d’Inf. 17, 79–94
(2012)

15. Jarratt, T.A.W., Eckert, C.M., Caldwell, N.H.M., Clarkson, P.J.: Engineering change: an
overview and perspective on the literature. Res. Eng. Des. 22, 103–124 (2011). https://doi.
org/10.1007/s00163-010-0097-y

16. Kidd, M.W., Thompson, G.: Engineering design change management. Integr. Manuf. Syst.
11, 74–77 (2000)

17. Kossiakoff, A., Sweet, W.N., Seymour, S.J., Biemer, S.M.: Systems Engineering Principles
and Practice. Wiley, Hoboken (2011)

18. Kraemer, F.A., Herrmann, P.: Reactive semantics for distributed UML activities. Formal
Tech. Distrib. Syst. 17–31 (2010). https://doi.org/10.1007/978-3-642-13464-7_3

19. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC), pp 363–369 (2008)

20. Linhares, M.V., de Oliveira, R.S., Farines, J., Vernadat, F.: Introducing the modeling and
verification process in SysML. In: 2007 IEEE Conference on Emerging Technologies and
Factory Automation (EFTA 2007), pp. 344–351 (2007)

Use of a Pivot Diagram in SysML 97

http://dx.doi.org/10.1007/978-3-642-34032-1_35
http://dx.doi.org/10.1007/978-3-642-34032-1_35
http://dx.doi.org/10.1016/j.procs.2016.09.290
http://dx.doi.org/10.1016/j.procs.2016.09.290
http://dx.doi.org/10.1002/j.2334-5837.2008.tb00914.x
http://dx.doi.org/10.5120/14924-3444
http://dx.doi.org/10.5120/14924-3444
http://dx.doi.org/10.1007/s00163-010-0097-y
http://dx.doi.org/10.1007/s00163-010-0097-y
http://dx.doi.org/10.1007/978-3-642-13464-7_3


21. Mhenni, F., Choley, J.-Y., Penas, O., Plateaux, R., Hammadi, M.: A SysML-based
methodology for mechatronic systems architectural design. Adv. Eng. Inform. 28, 218–231
(2014)

22. Morkevicius, A., Jankevicius, N.: An approach: SysML-based automated requirements
verification. In: 2015 IEEE International Symposium on Systems Engineering (ISSE),
pp. 92–97 (2015)

23. Paviot, T.: Méthodologie de résolution des problèmes d’interopérabilité dans le domaine du
Product Lifecycle Management. Ph.D. thesis, École Centrale Paris (2010)

24. Peak, R.S., Burkhart, R.M., Friedenthal, S.A., Wilson, M.W., Bajaj, M., Kim, I.: 9.3.2
simulation-based design using SysML part 1: a parametrics primer. In: INCOSE
International Symposium, vol. 17, pp. 1516–1535 (2007). https://doi.org/10.1002/j.2334-
5837.2007.tb02964.x

25. Penas, O., Plateaux, R., Patalano, S., Hammadi, M.: Multi-scale approach from mechatronic
to Cyber-Physical Systems for the design of manufacturing systems. Comput. Ind. 86, 52–69
(2017)

26. Plateaux, R., Penas, O., Bricogne, M., Guerineau, J., Rowson, H., Maquin, K.: A semantic
dictionary to support multidisciplinary design collaboration in an extended enterprise
context. In: 20th International Conference on Research and Education in Mechatronics
(REM 2019)/IEEE. Wels, Austria (2019)

27. Plateaux, R., Penas, O., Choley, J., Mhenni, F., Hammadi, M., Louni, F.: Evolution from
mechatronics to cyber physical systems: an educational point of view. In: 2016 11th France-
Japan 9th Europe-Asia Congress on Mechatronics (MECATRONICS)/17th International
Conference on Research and Education in Mechatronics (REM), pp. 360–366 (2016)

28. Sell, R., Tamre, M.: Integration of V-model and SysML for advanced mechatronics system
design. In: The 6th International Workshop on Research and Education in Mechatron-
ics REM, pp. 276–280 (2005)

29. Sharpe, J.E.: Computer tools for integrated conceptual design. Des. Stud. 16, 471–488
(1995)

30. Siddharth, L., Sarkar, P.: A methodology for predicting the effect of engineering design
changes. Procedia CIRP 60, 452–457 (2017). https://doi.org/10.1016/j.procir.2017.03.071

31. Spivak, D.I., Kent, R.E.: Ologs: a categorical framework for knowledge representation.
PLoS ONE 7, e24274 (2012). https://doi.org/10.1371/journal.pone.0024274

32. Thramboulidis, K.: The 3 + 1 SysML view-model in model integrated mechatronics.
J. Softw. Eng. Appl. 03, 109–118 (2010). https://doi.org/10.4236/jsea.2010.32014

33. Wang, L., Törngren, M., Onori, M.: Current status and advancement of cyber-physical
systems in manufacturing. J. Manuf. Syst. 37, 517–527 (2015). https://doi.org/10.1016/j.
jmsy.2015.04.008

34. Yan, H.-S.: A methodology for creative mechanism design. Mech. Mach. Theory 27, 235–
242 (1992)

98 R. Plateaux et al.

http://dx.doi.org/10.1002/j.2334-5837.2007.tb02964.x
http://dx.doi.org/10.1002/j.2334-5837.2007.tb02964.x
http://dx.doi.org/10.1016/j.procir.2017.03.071
http://dx.doi.org/10.1371/journal.pone.0024274
http://dx.doi.org/10.4236/jsea.2010.32014
http://dx.doi.org/10.1016/j.jmsy.2015.04.008
http://dx.doi.org/10.1016/j.jmsy.2015.04.008


Modeling and Code Generation
Framework for IoT

Mohammad Sharaf1(B), Mai Abusair1, Rami Eleiwi2, Yara Shana’a2,
Ithar Saleh2, and Henry Muccini3

1 Computer Science Department, An-Najah National University, Nablus, Palestine
massharaf@yahoo.com, mai.abusair@gmail.com

2 Networks and Security Department, An-Najah National University,
Nablus, Palestine

rami.ilaiwi1997@gmail.com, yaraadnan177@gmail.com,

net.itharsaleh@gmail.com
3 DISIM Department, University of L’Aquila, L’Aquila, Italy

henry.muccini@univaq.it

Abstract. In the Internet of Things (IoT) every physical device has an
embedded technology that interacts with internal and external states.
The heterogeneity of devices and networks complicates the mission of
implementing and integrating the objects in IoT systems. In this paper,
we present our model driven code generation framework, called CAPSml.
The framework enables IoT designers and architects who are using CAPS
environment to transform CAPS software model into ThingML model.
CAPS is an architecture-driven modeling framework for the development
of IoT Systems. ThingML includes modeling language and framework
designed for IoT systems to support code generation for multi-platform
targets.

1 Introduction

Nowadays most systems are relying in their development and evolution on
reusing and customizing open-source components, services and frameworks.
Model-Driven Engineering (MDE) has been widely used in system development.
MDE can enable analysis process, promote communications between system
stakeholders, simplify design process and facilitate software production [1].

IoT technologies aim at integrating objects into a communicating environ-
ment. A significant challenge in IoT system development is to produce a code
that reflects concerns of IoT system specification and design. Accordingly, many
issues in IoT systems life cycle are targeted by researchers. The CAPS has been
realized to model and analyze IoT architectures [2]. ThingML framework adopted
the idea of facilitating code generation for IoT systems [3]. Our approach aims
at covering a full chain of modeling and analyzing using CAPS, and then imple-
menting using the power of ThingML code generation.

This paper proposes CAPSml code generation framework built of top of
CAPS modeling framework [4,5]. The framework follows MDE approach to
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 99–115, 2019.
https://doi.org/10.1007/978-3-030-30690-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_6


100 M. Sharaf et al.

transform SAML-CAPS model into ThingML model. SAML model represents
the software architecture structural and behavioral view in CAPS framework
[6]. ThingML model represents software components and configurations that
describe their interconnection in ThingML framework [3]. The transformation
from SAML to ThingML is performed using CAPSml code generation frame-
work. The aim of CAPSml is to allow IoT developers to mitigate their worries of
learning programming languages that implement their IoT systems. In addition,
the paper suggests a methodology for modeling, transforming and generating
code for IoT systems. It aims to facilitate IoT systems development.

This paper is organized as follows: Sect. 2 presents a brief description for
CAPS. Section 3 presents a brief description for ThingML. Then, Sect. 4 intro-
duces the CAPSml code generation framework. Afterward, Sect. 5 provides the
modeling and code generation methodology. Section 6 shows a case study exam-
ple. Finally, Sect. 7 concludes the work.

2 The CAPS Background

CAPS is a modeling framework that was formerly initiated at The University
of L’Aquila [4,6]. It has a tool for Architecting Cyber-Physical Systems (CPS)
[2,7,8]. The terms CPS and IoT are used interchangeably. They both refer to
the integration of digital capabilities, including systems of physical devices and
network connectivity [9].

CAPS offers a rich modeling framework that performs a separation of con-
cerns among different modeling views. It is designed and implemented taking
into account three architectural views: the software architecture structural and
behavioral view (SAML), see Figs. 1 and 2, respectively, the hardware view
(HWML), and the physical space view (SPML) [6]. Moreover, CAPS tool pro-
vides a graphical user interface for modeling the three views. Accordingly, CAPS
provides abstractions for low-level details of the different views, enhances reuse,
and supports the ability to model the time and space. Moreover, CAPS allows
stakeholders to perform analysis for architectural design decisions at earlier
stages of the CPS development life cycle.

In this paper, we focus on SAML view for the sake of performing code gen-
eration. SAML modeling allows designers to define a software architecture that
is basically constructed of a collection of software Components and Connec-
tions: (i) The Component: It is a unit of computation with internal state and
defined interface. Each Component can contain several modes that specify its
state. The behavior in each Component’s mode is denoted by a set of events,
actions and conditions. The Components can exchange data by passing mes-
sages through message ports. (ii) The Connection: It defines the communication
between Components. It sets the source and target Components for the commu-
nication channel between two message ports of two different Components. For
more information about SAML, refer to the full work in [6].



Modeling and Code Generation Framework for IoT 101

Fig. 1. SAML metamodel: structural concepts [6]

Fig. 2. SAML metamodel: behavioral concepts [6]

3 The ThingML Background

ThingML includes a modeling language combines software modeling constructs
for designing and implementing IoT systems [3]. It has an open-source tool
designed for supporting code generation and a highly customizable multi-
platform code generation framework. ThingML tool targets heterogeneous plat-
forms and has a set of compilers able to transform a ThingML model into fully
operational code, in various languages (e.g. C, Java, Javascript), ready to build
and run.

The ThingML language is based on two fundamental structures [3], see Fig. 3:
(i) Thing: It represents software component. It is an implementation unit, also
referred to as process or component. A Thing can assign properties, functions,
messages and ports. Moreover, it can contain a set of state machines conforming
to the UML state charts. The properties represent the variables that are defined
locally inside the Thing. The functions can be treated as local functions inside
the Thing and can not be accessed from the outside world. The ports are the
only public interface in the ThingML language and they are used to send and
receive messages that are defined within a Thing. Further, the internal behavior
of a Thing is demonstrated using orchestration of composite states that are
expressed using Event-Condition-Action (ECA) fashion. (ii) Configuration: It



102 M. Sharaf et al.

Fig. 3. ThingML model [3]

describes the Things interconnection. It has a set of instances of the pre-defined
Things, and a set of connectors between instances ports.

ThingML was developed based on MDE principles. It is used to develop IoT
systems ranging from research case studies to product development in industry
projects. For more information about ThingML, refer to [3].

4 CAPSml Code Generation Framework

In this section, we will introduce our CAPSml framework that aims to trans-
form SAML model in CAPS into ThingML language. The transformation pro-
cess in CAPSml starts from the ecore and xmi files of SAML. Then, through
several model to text transformations, performed in Acceleo1, the contents of
SAML model is mapped to contents in ThingML model. Finally, a complete
ThingML language is generated automatically and is able to be imported directly
in ThingML framework.

The fundamental part in the code generation framework is the process of
mapping SAML to ThingML. The mapping benefits from the similarities in
concepts between the SAML and ThingML models. Basically, the Component in
SAML meets the Thing in ThingML; both of them declare a computational unit

1 https://www.eclipse.org/acceleo/.

https://www.eclipse.org/acceleo/


Modeling and Code Generation Framework for IoT 103

which includes a set of behavioral elements like actions, events and conditions.
Further, the Connection between the Components in SAML is mapped to the
connector in the Configurations part of the ThingML language.

The CAPSml code generation framework passes through four phases to per-
form model transformation. The preparation, component conversion and con-
nection conversion phases, Sects. 4.1, 4.2 and 4.3, respectively, aim to build the
Acceleo code file. The fourth phase, Sect. 4.4, aims to launch the CAPSml frame-
work to be ready for converting CAPS-SAML model xmi file into ThingML file.
These phases are described in the following sections.

4.1 Preparation Phase

In this phase, we set the URI of the SAML meta model, see Line 2 Fig. 4. Then,
we set the starting point of the conversion at the top class in SAML, which
is the SoftwareArchitecture class shown in Line 4 Fig. 4. From this main class
we can move gradually to all the software elements indicated in SAML meta
model. Further, we set the target name of the file that will have the conversion
results (CAPS.thingml), see Line 7 Fig. 4. Finally, we import a special library in
ThingML language that will be needed for the data types definitions, see Line 8
Fig. 4.

Fig. 4. Code generation preparation

4.2 Component Conversion Phase

In this phase, we map the Component with its elements in SAML to the Thing
and their correspondences in ThingML. The conversion starts from mapping
the Component into Thing, see Fig. 6. Basically, any Component in SAML has
primitive data declarations, ports and modes. These are transformed as follows:

1. Primitive data declarations: They are variables defined and used locally dur-
ing the processes performed inside the Component. Every data declaration is
mapped into property in ThingML language, see Fig. 7. Each property repre-
sents a local variable to be used inside the Thing. It is important to mention
that the real data type in CAPS is converted into float data type in ThingML



104 M. Sharaf et al.

Fig. 5. Messages variables transformation

Fig. 6. Component transformation

Fig. 7. Data declarations variables transformation

that does not define real data type. In addition, variables that are used in
exchanging messages between Components in SAML are mapped to messages
in ThingML. We created a special kind for the Thing, named fragment, used
to define all the variables to be used in components messages exchanging.
Thus, every Component has a message to be sent or received will include the
fragment to be able to use the messages values. Transformation of messages
variables is shown in Fig. 5.

2. Ports: They are used as an interface for the Component. Each Component in
SAML has zero or more message ports. These message ports might be InMes-
sagePort or OutMessagePort. A Connection links the OutMessagePort as a
source to InMessagePort as a target. These ports might receive four different
types of messages; UnicastSendMessage, BroadcastSendMessage, Multicast-
SendMessage or a ReceiveMessage. The InMessagePort in SAML is mapped
to ‘required port’ in ThingML, and the OutMessagePort is mapped to ‘pro-
vided port’ in ThingML. The type of message to be sent through the ports in
ThingML can be determined using ‘sends’ and ‘receives’ elements. In case of
broadcast message, we determine only the data to be sent from the ‘provided
port’ in ‘sends’ and it will reach all connected ports. Otherwise, in unicast



Modeling and Code Generation Framework for IoT 105

Fig. 8. Ports transformation

message, we determine the data to be sent in ‘sends’ and the receiver of the
data in ‘receives’. Moreover, in multicast message, we determine the data to
be sent in ‘sends’ and the group of selected receivers (filtered out from SAML
MultiCastMessage) in ‘receives’. Finally, if the port receives a message, then
we set the port name in the ‘required port’ and we determine the data to be
received in ‘receives’. Figure 8 shows the ports transformations that take in
consideration the different message types.

3. Modes: It represents the behavioral part of the Component. The Component
can have several modes in which the initial mode is determined and the orches-
tration of the entrance and exit for the rest of modes is specified. ThingML
has a corresponding similar concept to modes called states. ThingML has a
statechart that includes one or more states which illustrate the behavioral
execution of the Thing. Each statechart indicates the initial mode in CAPS-
SAML as initial state (statechart init) and other modes as states. Typically,



106 M. Sharaf et al.

each state has an entry source that can be determined through ‘on entry’ in
ThingML. Mode transformation to state is shown in Fig. 10. Every mode has
behavioral elements that describe the concept of the mode’s execution. The
behavioral elements can mainly be events, conditions and actions, and can also
be the links that specify the source and target behavioral elements. Every link
between behavioral elements must consider the event that causes the transi-
tion from a behavioral element to another, the condition to be checked in a
choice and the action to be taken. The action might be nested choice, send
message or behavioral functionality. Every concept in these behavioral ele-
ments has almost its correspondence in ThingML. Accordingly, every event
in CAPS-SAML is mapped to event in ThingML, condition is mapped to
guard, link is mapped to transition, and action in CAPS-SAML can be trans-
lated to action in ThingML (in case the action is send message or choice), see
Fig. 11, or otherwise to function in ThingML. The function can be responsi-
ble of several actions like sensing data, store data, actuating, etc. See Fig. 12
to see behavioral element in the mode turned into function. See Fig. 9 that
summarizes the mapping between Component and Thing elements.

4.3 Connection Conversion Phase

In this phase, we map the Connection concept in SAML to the Configuration
concept in ThingML. The Connection specifies the communication link between
Components ports in SAML. Thus, in the configuration part in ThingML, we
specify for every Component in SAML an instance in ThingML. The Con-
nection between the target and source ports in SAML is mapped to Connec-
tor in ThingML with the required port name => provided port name. See
Fig. 13 for Connection transformation. By the end of this phase, we will have
“CAPSml.mtl” file that contains the Acceleo code required for ThingML code
generation.

Fig. 9. Mapping between Component elements in SAML and Thing elements in
ThingML



Modeling and Code Generation Framework for IoT 107

Fig. 10. Modes transformation

Fig. 11. Choice and messages transformation

4.4 Launching Code Generator Phase

In this phase, we run the Acceleo file that resulted from the first three phases.
Therefore, we build a Java launcher project that import the MTCLauncher



108 M. Sharaf et al.

Fig. 12. Behavioral elements transformation

Fig. 13. Connection transformation

library [10]. The MTCLauncher is a library developed by a researcher, called
Victor Guana, at the University of Alberta [10]. The library allows running
ATL model-to-model transformations, and Acceleo model-to-text transforma-
tions in an isolated fashion and can be executed in a command line outside
Eclipse. It helps in avoiding errors in running Acceleo code in Java environ-
ment. In the launcher project, the SAML metamodel ecore file is included under
metamodel folder, the CAPSml.mtl file is included under the AcceleoTransfor-
mations folder. To start the conversion for any SAML model, we need to open
the launcher project and include the SAML model xmi file under models folder
in the launcher project. Then, we run the project to get the ThingML output



Modeling and Code Generation Framework for IoT 109

file (CAPS.thingml) created under the gen folder. The thingml file will contain
the ThingML language transformed from SAML model.

The CAPSml framework is able to produce a complete thingml file. It acts
as a link between CAPS-SAML and ThingML frameworks. Thus, it enables IoT
designers, who are using SAML-CAPS to model and analyze their IoT systems,
to benefit from the power of ThingML in code generation. The generated thingml
file can be imported in ThingML framework to allow designers to select among
several compilers the one that targets their desirable platform.

5 Modeling and Code Generation Methodology

The modeling and code generation methodology can be used during IoT sys-
tems life cycle. It benefits from CAPS, CAPSml, and ThingML frameworks. It
encompasses three phases illustrated in Fig. 14:

Fig. 14. Modeling and code generation methodology

1. Modeling using CAPS framework: In this phase, the designers architect their
IoT systems. They will benefit from the power of CAPS in modeling and
analyzing IoT systems [11]. Moreover, they will benefit from the graphical
user interface supported by CAPS framework for modeling. The necessary
output from this modeling phase is the SAML model xmi file.

2. Running CAPSml framework: In this phase, the designers run CAPSml frame-
work to transform CAPS-SAML model into ThingML model. The transfor-
mation process automatically starts from the xmi and ecore files of SAML.
Then, the contents of SAML model is mapped to contents in ThingML
model. Finally, a complete ThingML language is generated automatically in
a thingml file.



110 M. Sharaf et al.

3. Running ThingML framework: In this phase, the designers use the thingml file
that resulted from phase two for running the ThingML framework. ThingML
framework allows the designers to select among several compilers the one that
targets their desirable platform.

Following this methodology helps developers to model, analyze and produce
IoT systems. It mitigates the developers problems in learning ThingML language
and thus the programming languages that can be generated using ThingML
framework. In the following section, we show the phases of our methodology on
smart irrigation case study example.

6 Smart Irrigation Case Study

The agriculture is one of the most vital resources of nation’s economy and food’s
production. There are many concerns related to traditional methods of agricul-
ture. For example, the excessive wastage of water during irrigation, wastage of
money, dependency on human resources, etc. IoT can provide smart solutions
for such problems and help in developing agriculture sector in countries.

In this paper, we focus on smart irrigation services. A SAML model is built
using CAPS, presented in Sect. 6.1. By using our CAPSml code generator, the
SAML model will be transformed into ThingML language, presented in Sect. 6.2.
Consequently, using ThingML framework, the ThingML language is used to
generate different target languages, presented in Sect. 6.2.

6.1 Describing a Scenario Using CAPS

We introduce a simple scenario describes the monitoring of soil moisture and
climate condition in order to change the work of the water pump in a filed [12].
This scenario aims at preventing the wastage of water resources [13].

SAML model of the scenario is shown in Fig. 15. It is important to note
that this Figure is a screenshot of modeling using the graphical user interface
supported by CAPS tool. The SAML model is composed of four components:

1. The SenseMoisture component: It is responsible for sensing the soil mois-
ture value. It includes two modes:

– Normal mode: In this mode, the moisture sensor senses the moisture value
from the soil every 100 s. Then, it saves the value in Moisture primitive
variable. After all, it uses the unicast message to send the values to the
Controller component. If the moisture value is more than 3, the SenseMoisture
component enters the Critical mode.

– Critical mode: In this mode, the sensor senses the moisture value every one
second. It saves the value in Moisture primitive variable. Then, it uses the
unicast message to send the value to the Controller component. If the moisture
value is less than 3, the SenseMoisture component enters the Normal mode.

2. The SenseRainfall component: It is responsible for sensing the rainfall. It
includes one mode that is RainFall.



Modeling and Code Generation Framework for IoT 111

Fig. 15. Software architecture of simple scenario in smart irrigation case study

– Rainfall Mode: In this mode, there is an interrupt sensor that senses if there
is a rainfall or not. The value taken from this sensor is kept in a primitive
variable. It uses a unicast message to send the value to the Controller com-
ponent.

3. The Controller component: It is responsible for making decisions to turn
the water pump on or off. It includes one mode that is Controlling.

– Controlling mode: In this mode, the values received from the Moisture and
Rainfall messages are stored in primitive variables. These values are used for
making decisions depending on the current condition. If the Moisture is more
than 3 and less than 4.7 and the weather does not rain, the Controller sends
a message to the water pump to turn it on. While, if the Moisture is more
than 3 and less than 4.7 and the weather is Rainfall, the Controller sends a
message to the water pump to turn it off. Moreover, if the Moisture is less
than 3 the Controller sends a message to the water pump to keep it off.

4. The WaterPumpController component: It is responsible for turning the pump
on or off depending on the decision from the Controller. It includes one mode
that is WaterPump.

– WaterPump mode: It receives a message from the Controller component and
stores it in a primitive variable. The value stored in the primitive variable
specifies if the pump is turned on or off. This value is sent to an actuator. If
the sent value is true, the actuator turns the pump on. If the sent value is
false, the actuator turns the pump off.



112 M. Sharaf et al.

Fig. 16. Example of the Controller component in SAML converted into Controller
Thing in ThingML language

6.2 Code Generation Using CAPSml

In this section, we describe the results of running SAML model on the CAPSml
framework. Then, we show the code generated using ThingML code generation
framework.

Fig. 17. Part of the generated ThingML Configuration

Before running CAPSml framework, we need to specify the model, described
in Fig. 15, in xmi format and the meta model of SAML in ecore format. Then,
to run CAPSml framework launcher project, we need to find the xmi file for
the model generated using CAPS-SAML. After running CAPSml launcher, we
will automatically have a thingml file that has a complete ThingML language
in the gen folder of the launcher project. Figure 16 shows part of converting



Modeling and Code Generation Framework for IoT 113

Fig. 18. Part of the generated Thing fragment

Fig. 19. Part of C++ code generated for Controller Thing/Component

Controller component in SAML into Controller Thing in ThingML language.
Figure 17 shows part of the generated Configuration for the Things in ThingML
language. Figure 18 shows part of the generated Thing fragment that contains
the messages to be exchanged between components.

Consequently, the ThingML language, that resulted from running CAPSml,
was used to run ThingML code generator framework for producing several tar-
get languages. We experimented the code generation using different compilers
supported by ThingML framework. The results show successful transformations
to different targeted languages and platforms. For the sake of space, we present
a snippet for the results of only running Posix compiler in the ThingML frame-
work. Posix Generates C/C++ code for Linux or other Posix runtime envi-
ronments. Figure 19 shows part of the C++ code generated for the Controller
Component/Thing.



114 M. Sharaf et al.

7 Conclusions

In this paper, we presented CAPSml, a code generation framework built on top of
CAPS modeling framework and targets ThingML framework. CAPS framework
offers a graphical user interface that facilitates the production of IoT systems
architecture. While, ThingML offers a code generation framework that brings
MDE to the late design and implementation stages.

CAPSml transforms CAPS model into ThingML language. Thus, CAPS users
can generate code for their models using ThingML framework. Moreover, CAPS
users do not need to learn ThingML modeling language. To show the utilization
of our tool, we ran an example on smart irrigation case study and clarified how
our code generation approach can take place in IoT systems life cycle.

References

1. Ciccozzi, F., Spalazzese, R.: MDE4IoT: supporting the internet of things with
model-driven engineering. Intelligent Distributed Computing X. SCI, vol. 678, pp.
67–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48829-5 7

2. Muccini, H., Sharaf, M.: Caps: a tool for architecting situational-aware cyber-
physical systems. In: 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), pp. 286–289. IEEE (2017)

3. Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: a language and code
generation framework for heterogeneous targets. In: Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Sys-
tems, pp. 125–135. ACM (2016)

4. Sharaf, M., Abughazala, M., Muccini, H., Abusair, M.: An architecture frame-
work for modelling and simulation of situational-aware cyber-physical systems. In:
Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS, vol. 10475, pp. 95–111. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65831-5 7

5. Sharaf, M., Muccini, H., Abughazala, M.: ArIA: arduino code generation based on
the caps. In: Proceedings of the 12th European Conference on Software Architec-
ture: Companion Proceedings, p. 4. ACM (2018)

6. Muccini, H., Sharaf, M.: Caps: architecture description of situational aware cyber
physical systems. In: 2017 IEEE International Conference on Software Architecture
(ICSA), pp. 211–220. IEEE (2017)

7. Sharaf, M., Abughazala, M., Muccini, H., Abusair, M.: CAPSim: simulation and
code generation based on the CAPS. In: Proceedings of the 11th European Confer-
ence on Software Architecture: Companion Proceedings, pp. 56–60. ACM (2017)

8. Sharaf, M., Abughazala, M., Muccini, H., Abusair, M.: Simulating architectures
of situational-aware cyber-physical space. In: Proceedings of the 11th European
Conference on Software Architecture: Companion Proceedings, pp. 66–67. ACM
(2017)

9. Yan, Z., Zhang, P., Vasilakos, A.V.: A survey on trust management for internet of
things. J. Netw. Comput. Appl. 42, 120–134 (2014)

10. Guana, V.: Running Acceleo and ATL Transformations Programmatically. Univer-
sity of Alberta (2016). http://victorguana.blogspot.com/2016/05/running-acceleo-
and-atl-transformations.html

https://doi.org/10.1007/978-3-319-48829-5_7
https://doi.org/10.1007/978-3-319-65831-5_7
http://victorguana.blogspot.com/2016/05/running-acceleo-and-atl-transformations.html
http://victorguana.blogspot.com/2016/05/running-acceleo-and-atl-transformations.html


Modeling and Code Generation Framework for IoT 115

11. Sharaf, M., Abughazala, M., Muccini, H.: Arduino realization of CAPS IoT archi-
tecture descriptions. In: Proceedings of the 12th European Conference on Software
Architecture: Companion Proceedings, p. 6. ACM (2018)

12. Sharaf, M., Abusair, M., Eleiwi, R., Yara, S., Ithar, S., Muccini, H.: Architec-
ture description language for climate smart agriculture systems. In: Proceedings of
the 13th European Conference on Software Architecture: Companion Proceedings.
ACM (2019)

13. Gondchawar, N., Kawitkar, R.: IOT based smart agriculture. Int. J. Adv. Res.
Comput. Commun. Eng. 5(6), 838–842 (2016)



Process Enactment with Traceability Support
for NFV Systems

Omar Hassane1, Sadaf Mustafiz1, Ferhat Khendek1(&),
and Maria Toeroe2

1 ECE, Concordia University, Montreal, Canada
o_assane@encs.concordia.ca, {sadaf.mustafiz,

ferhat.khendek}@concordia.ca
2 Ericsson Inc., Montreal, Canada

maria.toeroe@ericsson.com

Abstract. The Network Functions Virtualization (NFV) paradigm is heading
towards an evolution with the recent zero-touch automation initiative. In par-
ticular, automating the orchestration and management of network services
(NS) could progress rapidly with the help of model-driven engineering methods
and tools. We have earlier proposed an integrated process modelling and
enactment environment, MAPLE, for NS management. In our approach,
enactment is enabled by transformation chaining and megamodelling. In this
paper, we present our extension, MAPLE-T, which incorporates traceability
information generation and analysis support in MAPLE. MAPLE-T allows the
generation of both local and global traceability information during the enactment
of a process model (PM), all of which is retained in the megamodel. The
megamodel enables end-to-end navigation of the source and target artifacts in
the PM and thus allows advanced traceability analysis to be carried out. We
applied MAPLE-T on a NS design process to demonstrate the application of the
change impact analysis feature.

Keywords: Process enactment � Megamodelling � Traceability �
Network Functions Virtualization (NFV)

1 Introduction

With the advent of 5G, the telecommunications industry is faced with opportunities and
challenges which require rapid innovations. Traditional networks have a high depen-
dence on proprietary hardware. Telecoms are moving from such networks to virtualized
networks. Telecoms are leveraging the Network Functions Virtualization
(NFV) paradigm which is a key enabler for 5G. NFV builds on cloud computing and
virtualization technologies which enable the automation of the orchestration and the
management of network services [10, 24].

We believe model-driven engineering (MDE) methods and tools can help with the
automation. As a first step, we have earlier proposed an approach for explicitly
modelling and enacting NFV processes and have applied our work to the NS design
and management process [25–27]. Our NS Management Process Model is compliant

© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 116–135, 2019.
https://doi.org/10.1007/978-3-030-30690-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_7&amp;domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_7


with the NFV reference framework. MAPLE (MAGIC Process Modelling and
Enactment Environment) provides an integrated environment for creating and enacting
process models (PM) with the use of model transformation chains. Transformation
chaining is the preferred technique for modelling the composition of different model
transformations and orchestrating them. MAPLE supports the enactment of heteroge-
neous (cross-technology) transformation chains based on megamodels used for sup-
porting model management, and on composition of transformations. Megamodels
provide complex structures to link all relevant artifacts (models, transformations, and
other metadata) forming a map for model management [15, 16]. We have built MAPLE
in the Eclipse Papyrus environment [12], which is the modeling environment of choice
of the European Telecommunications Standards Institute (ETSI) NFV [13].

Advanced support for discoverability and traceability have been identified as
essential features in virtualizing network services [7]. Traceability support enables
information recovery, origin tracking (for instance, backtracking from design to
requirements artifacts), change impact analysis, change propagation, dependency
visualization, and even defect detection and prediction [9, 33]. Traceability manage-
ment can be effectively carried out with MDE methods and tools [29]. While NFV
would greatly benefit from end-to-end traceability support, there has been very little
done in this regard in this domain.

In this paper, we extend MAPLE with traceability support for NFV systems. We
integrate means for local (transformation-level) and global (process model-level)
traceability information generation and also provide the groundwork for change impact
analysis. We apply our work in the NFV domain to the traceability analysis of the
network service design process in order to assess the impact of changes in the source
models. The vendor-provided virtualized network function (VNF) form the core of a
network service, and any changes in the VNF descriptors (VNFD) can affect the target
artifacts and the process itself. It would be highly beneficial in NFV systems to be able
to assess the impact of a change and to provide feedback.

The rest of this paper is structured as follows: Sect. 2 gives a brief background on
traceability in MDE. Section 3 proposes a model-driven process enactment approach
with traceability support and presents our MAPLE-T environment. Section 4 describes
an application of MAPLE-T in the NFV domain. Section 5 discusses related work and
Sect. 6 concludes with some future work.

2 Background

Traceability is defined as the degree to which a relationship can be established between
two or more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another [2].

Traceability information in MDE can be classified as generic (no semantics retained
with trace links) or specific (domain-dependent with semantically rich links) [4].
Traceability information can be represented as models conforming to an external
metamodel (extra-model traceability), or as part of the traced models (intra-model
traceability) thus requiring the metamodels of the traced models to be extended and
polluted with trace information [32].

Process Enactment with Traceability Support for NFV Systems 117



Traceability metamodelling can follow a pure metamodel approach or a tag-based
approach [32]. In the first approach, all the required trace types along with their usage
semantics are specified at the metamodel level making the traceability metamodel rigid
to change and therefore hard to reuse in other projects. The trace tagging approach uses
a general traceability metamodel which can be annotated with specific tags. This allows
for more flexible traces that can be used in any project, but with weak usage semantics
specified in the metamodel.

When referring to traceability at the model transformation level, the trace links are
between the elements of the source and target artifacts associated with the transfor-
mation. A trace model is created for each transformation. This is referred to as local
traceability or traceability in the small. However, the link between the different trace
models across multiple model transformations (or a model transformation chain) needs
to be created to produce global traceability (or traceability in the large) information.
This enables end-to-end navigation throughout a chain of intermediately created trace
models [6].

In our work, megamodels are used to build traceability support. Megamodelling is
generally used for model management, to provide structures for handling and inter-
relating models [15, 16]. A megamodel may contain heterogeneous models, relations
between them (e.g., transformations) and any other relevant metadata. It can be used to
capture conformance links and also to enable compatibility checks.

3 MAPLE-T Approach

We have earlier proposed an integrated process modelling and enactment approach,
MAPLE [25]. MAPLE supports process modelling with UML Activity Diagrams.
The MAPLE enactment approach is based on model transformation chaining and
megamodelling. We have used megamodels (MgM) to manage all the resources needed
for the enactment. We begin with a process model (PM) and the repository of resources
(metamodels, profiles, model instances, model transformations, programs). In MAPLE,
the MgM was used as a resource repository that aggregates and links all these resources
as well as their metadata. This was quite useful for gathering and managing the relevant
information regarding the transformations that need to be enacted.

An initial megamodel (MgM) is automatically derived based on the resources
registered. When the PM is registered in the MgM, it leads to the creation of a weave
model. This weave model binds the PM and the MgM together. The PM is then mapped
to a model transformation chain, with the help of the MgM and the weave model, and it
can be executed using token-based semantics. The MgM is dynamically updated with
the generated models during enactment. MAPLE is built on top of Eclipse Papyrus. For
further details, the reader can refer to [25]. We propose an extension to our process
enactment approach providing traceability support. Our goal is to go further and use the
MgM for advanced traceability of model transformation chains. The MAPLE-T
approach is shown in Fig. 1. Following the derivation of the megamodel (MgM) and
the construction of the model transformation (MT) chain, the chain execution results in
the generation of artifacts. During this execution, trace models will also be output
(traceability in the small context) and will be retained in the MgM in order to build a

118 O. Hassane et al.



global traceability map (traceability in the large context). The global traceability map
can then be used for traceability analysis. As an add-on, the map can also be used as a
basis for traceability visualization.

3.1 Traceability Support in MAPLE-T

Traceability support for process enactment can be incrementally built in three stages:
(1) traceability information generation, (2) traceability analysis, and (3) traceability
visualization. While traceability information generation is required to proceed with any
analysis or visualization, the latter two stages can be carried out in parallel. This paper
discusses the first two phases: the generation and analysis.

Traceability Generation. The first phase of the project involves building support for
the generation of traceability information and global model management in MAPLE.
Each of the transformations in the MT chain is first augmented such that trace models
are generated as extra artifacts with the execution of each transformation. We refer to
these local trace models as LTrace models.

During enactment, this augmented MT chain is executed, hence generating the
output as defined in each transformation along with the LTrace model for every
transformation. The generated artifacts, including the trace models, are dynamically
added to the MgM during enactment. Each LTrace model in the MgM is connected to
the relevant input and output models. In addition to the links between input and output
models via the LTrace model, the links between the trace models are also saved in the
MgM. The links retained are at the model-level as well as at the model-element level.
This leads to the creation of the global traceability map within the MgM, which we
refer to as the GTrace.

Traceability Analysis. Once we have a repository of traceability information and the
global traceability map, the next step is to discover any useful trace information that
can be analyzed for a given purpose. Whether a piece of trace information is useful is
typically application-dependent. Discovering such trace links is possible when using

Fig. 1. MAPLE-T approach (Color figure online)

Process Enactment with Traceability Support for NFV Systems 119



the trace tagging method [32]. In the MgM, each LTrace model is associated with a
corresponding tag representing the context of the traced transformation. The purpose
behind this tag is to specialize our trace models with application-specific semantics. In
MAPLE-T, the notion of tags has been incorporated at two levels: at transformation
rule level and at transformation level.

3.2 MAPLE-T Functionalities

We describe here the main functionalities provided by MAPLE-T, corresponding to the
red boxes in Fig. 1.

To enact a process model (PM), we need to start by creating the PM. We use the
Eclipse Papyrus Activity Diagram environment to build PMs. In our work, the PM
needs to comply with the ETSI Information Model for NFV [14] as well as the
ETSI NFV Papyrus Guidelines [13]. The PM creation phase is out of the scope of this
paper. For further details, the reader can refer to [25].

Deriving the MgM. In MAPLE, the actions in the PM are implemented with model
transformations. A transformation involves several input and output models, possibly
conforming to different metamodels that can be expressed using heterogeneous tech-
nologies. Moreover, a PM can be implemented with a heterogeneous set of languages
(for instance, ATL, Epsilon, Java, or C), and hence MAPLE supports execution of
cross-technology model transformation chains. Due to this, deploying model man-
agement techniques is essential in MAPLE. As described in [25], we use megamodels
for this purpose. While megamodels have been very useful in MAPLE for managing
resources and for enacting the PM, we wanted to go further and use the MgM for
advanced traceability support. In MAPLE-T, we have introduced new traceability-
related features in the MgM as well as new extensions with respect to the imple-
mentation of these features. To enable traceability at both levels (local and global), our
MgM now supports storing the same resources with different versions over time, i.e.
whenever they are being used or changed. The MgM also retains model instances per
enactment. In addition to that, each transformation resource is now linked with a trace
model - representing local traceability (LTrace models). This LTrace model contains
the trace links for each input and output of the transformation execution and conforms
to an LTrace metamodel which represents local traceability information elements both
at the model element-level and at the attribute-level. The main elements in the LTrace
are mentioned below and also shown in Fig. 2.

– TraceLinkSet: This represents the set of all the traced rules of a transformation
execution as well as all the trace links linking input and output elements of the
traced models.

– TracedRule: This represents the rule responsible for creating/transforming the traced
output model element(s) from the corresponding traced input model element(s).

– TraceLink: This represents the set of input elements and their corresponding output
elements within a rule.

120 O. Hassane et al.



The MgM is derived after registering the resources and the PM. First, a base MgM is
loaded as part of MAPLE-T environment and consists of the metamodels of the built-in
loaders (needed to load resources) and the pre-loaded meta-metamodels (e.g., Ecore)
and their conformance links. This MgM is incrementally updated by registering the
different resources which are part of the project (metamodels/profiles). This is carried
out automatically by going through the project workspace (referred to as workspace
discovery), and as a result an initial MgM is derived at this stage. A base LTrace
metamodel conforming to the Ecore metamodel is also registered in the MgM (see
Fig. 3). Each trace model generated as a byproduct of a transformation execution
conforms to this metamodel.

As the next step, the MgM is refined by carrying out a PM discovery. This involves
updating the MgM with new resources: the PM and the associated transformations.
Since we wanted the MgM to be PM-agnostic, a weave model is automatically created
behind the scenes whenever a PM is registered. The weave model binds all the nec-
essary elements of the PM to their equivalent resources in the MgM.

At this point, the MgM holds all the essential resources which are required for
enactment. During enactment, the LTrace models generated are added to the MgM
which makes it possible to construct the GTrace (part of the MgM).

Building the Transformation Chain. The PM is given translational semantics by
mapping it to a transformation chain. The chain is in essence a schedule with the
required details (sequence of actions, transformations used, inputs and outputs of the
transformations). This allows us to build a generic enacter, instead of having an enacter
for each kind of PM. Having a generic enacter also leaves scope for integrating other
formalisms for modelling the PM.

The translation from a PM to an MT chain is implemented using an ATL trans-
formation which takes relevant inputs (including the MgM and the PM) and produces
the target transformation chain.

This phase of the process has no traceability-related extensions. It would be possible
to augment the transformation chain to build a chain with traceability support. The

Fig. 2. LTrace structure Fig. 3. Base MgM

Process Enactment with Traceability Support for NFV Systems 121



reason we did not proceed in that direction was to provide more flexibility and let the
user enable or disable traceability within MAPLE-T during enactment. Otherwise, we
would end up with a solution which always generates traceability information as a result
of the enactment, which might not be always desirable, as generating trace information
might be unnecessarily cumbersome and time-consuming in some applications.

Executing the Transformation Chain and Generating the Trace Models. In
MAPLE-T, a PM is enacted by executing the underlying MT chain. Similar to UML
Activity Diagrams, the generated chain is given token-based semantics. Therefore, the
enacter developed is based on controlling the tokens and activating the actions when
needed.

However, in order to support both local and global traceability, it was necessary to
integrate means to generate local traces of the transformations chain execution.
Additionally, these trace models are linked in the MgM to construct the global trace-
ability map. The MgM also needs to be updated with these new model instances and
their relationships.

Generating Trace Models. One of the issues we had to address when building a
traceability solution with MAPLE-T was how to actually generate traceability infor-
mation during enactment. One might consider a naive approach in which each model
transformation implementing an action in the PM is refined manually with new
traceability-related rule bindings or blocks of code. In such a case, each transformation
will need to be manually modified to generate new target models for the trace infor-
mation. This approach is clearly not ideal, as extensively refining every transformation
manually results in a very cumbersome process that is in total opposition of our main
vision, which is full automation. For this reason, we adopted an approach that aug-
ments the transformation chain automatically with traceability information (see Fig. 4).
Similar to [22] we used the well-known concept of higher order transformation (HOT),
and we defined an HOT to systematically enrich our transformations with traceability
notions. The HOT takes the transformations parts of the chain and augments them,
resulting in a new chain which has the same flow but with traceability-augmented
transformations. Each transformation ends up having in addition to its original
input/output parameters, a new target parameter representing the trace model to be
generated - the LTrace model.

While MAPLE provides enactment support for a heterogeneous set of transforma-
tion languages (e.g., ATL, Java), MAPLE-T only supports implementations with ATL
transformations at the moment. The HOT implementation augments transformation

Fig. 4. MAPLE-T traceability generation approach

122 O. Hassane et al.



models conforming to the ATL metamodel. Also, the LTrace metamodel is built to
represent trace models produced from the execution of the augmented ATL
transformations.

Updating the MgM. During enactment, the MgM is updated on the fly with the aug-
mented transformation executions and their corresponding input/output instances
including the LTrace models. Once the enactment is done, the MgM is completely
updated with all the newly generated artifacts. At this point, the MgM also provides a
global traceability map, the GTrace. The set of global links as well as the local traces
generated for each transformation form the basis for carrying out traceability analysis in
MAPLE-T.

Analyzing Traceability Information. Following the generation of traceability
information, traceability analysis can be carried out on the basis of the GTrace. For this
purpose, we have incorporated means to analyze trace information within MAPLE-T
which can be easily extended and adapted to the targeted application domain. We have
built a core traceability analysis solution that exposes common traceability analysis
features (via an API). The exposed features allow the generated LTrace models and
GTrace links to be parsed and manipulated, typically with the use of the rule-level and
transformation-level tags that provide richer semantics for the analysis.

We have incorporated traceability analysis support, specifically to carry out change
impact analysis in MAPLE-T, which relies on the proposed traceability generation
means. The change impact analysis is triggered by a request specifying the element or
the model for which the change impact is to be analyzed. The purpose is to determine
how impactful a model or an element is on the whole process (i.e., how impactful it is
on the other involved models, model elements, and transformations) at both the
metamodel and the model levels. The process starts first by filtering all the relevant
information from the GTrace and LTrace models based on what was provided as input
at the metamodel level. Based on this, we can conclude whether the input is impactful
or impactless at the metamodel level. In case it is impactless at the metamodel level,
then it is inferred to be impactless at the model level as well. In this case, it is concluded
that the input model or model element is impactless at both levels and no further
analysis is required. On the other hand, if the input model or model element turns out to
be impactful at the metamodel level, then the decision is not as straightforward as in the
previous case. MAPLE-T then continues to analyze the gathered traceability infor-
mation (LTrace models and GTrace links) at the model level as well. As a result, the
impact decision is further categorized into two outcomes.

– The input is impactful at the model level: This means that the provided input has
been used in the enacted process and changing it requires re-enactment. Addi-
tionally, the solution collects the set of all the impacted resources (models, model
elements, and transformations) and provides them as outputs of the change impact
analysis along with the impact decision.

Process Enactment with Traceability Support for NFV Systems 123



– The input is impactless at the model level: This means that although the type of the
input model/element has an impact on the enacted process, the actual input
model/element instance has never been used and has no impact on that specific
enactment.

4 NFV Application

In this section, we use MAPLE-T to enact an NS design process and to carry out
traceability analysis, in particular, a change impact analysis. The process is a subset of
the NS Design and Deployment PM proposed earlier in [27].

A network service is a composition of network function(s) (NF) and/or other nested
NSs to provide a desired functionality/behaviour (e.g. VoIP). An NF is a functional
block identified by well-defined functional behaviour and external interfaces. NFs
within an NS can be a physical NF (PNF) (e.g. a traditional firewall device) or a virtual
network function (VNF) (e.g. a virtual firewall) decoupled from the infrastructure and
implemented as software that can be deployed on a virtualized infrastructure. The
different NFs/nested NSs within an NS are interconnected with one or more forwarding
graphs (FG) that define the traffic flows between them.

The main goal behind the NS design process (proposed in [26]) is to automatically
design an NS and generate an NS Descriptor (NSD) which is a template used for the
deployment and management of the NS. The process starts by specifying the functional
and non-functional characteristics of the NS as the NS requirements (NSReq). The
functionalities in the NSReq are then decomposed with the help of an NF ontology
(NFOntology) which represents a knowledge-base capturing known NF decomposi-
tions and their architectures. After decomposition to a certain level, VNFs are selected
from a catalog (VNFCatalog) by matching the decomposed functionalities. The traffic
flows in the NS are then defined with the design of the VNF FGs (VNFFGs) and the
NS dimensioned according to the non-functional requirements. The NFOntology may
be updated with new information from NSReq after a successful design, with the
onboarding of new VNFs, and manually by an expert. A VNF is described by a VNFD
which captures all its deployment characteristics. One main element within the VNF is
a VNF component (VNFC) which represents an internal component of the VNF that
provides part of the VNF functionality. A Virtual Deployment Unit (VDU) is the
deployment template or descriptor of the VNFC and it is an element contained within
the VNFD. The generated NSD is compliant to ETSI NFV definition and refers to the
NS constituent descriptors including VNFDs and VNFFG descriptors (VNFFGDs). For
a detailed description of the NS Design process, the reader can refer to [26]. Figure 5
presents the NS design PM.

124 O. Hassane et al.



4.1 Enactment and Traceability Generation with MAPLE-T

In order to enact the NS Design PM, we need to register all the needed
resources/profiles (NSReq, NSD profiles, etc.). As a result, the base MgM (Fig. 3) is
updated with all the registered UML profiles as well as conformance links. Figure 7
shows the initial MgM with UML profiles. Next, we need to register the PM which
automatically registers all the underlying model transformations implementing the
actions in the PM. Consequently, the MgM is updated (see Fig. 8) with the following:
(1) a new resource representing the NS Design PM as a UML activity diagram con-
forming to the UML metamodel (shown in gray), (2) the ATL transformations con-
forming to the ATL metamodel (shown in brown), and also (3) the weave model
containing the MgM and PM mappings (shown in gray). With this MgM, MAPLE-T
has all the necessary resources to enact the PM, and therefore enable NS Design
traceability generation and analysis.

Once all the model instances are specified, an initial transformation chain is built
based on the NS design PM. This transformation chain is then augmented so that each
transformation is able to generate LTrace model instances in addition to its original
output model instance(s) (see Fig. 6).

The execution of this MT chain includes six augmented transformation executions.
The first transformation starts by taking the NSReq model as input and generates an
initial intermediate model as well as the LTrace model corresponding to that trans-
formation execution. In the same way, the execution process continues according to the
order defined in the MT chain. For each subsequent transformation execution, the

Fig. 5. NS design PM [25] Fig. 6. Augmented MT chain

Process Enactment with Traceability Support for NFV Systems 125



LTrace model is generated and the intermediate model incrementally refined until we
end up with our desired models: NSD and updated NFOntology.

The MgM is updated during enactment with actual model instances (see Fig. 8).
The LTrace model instances along with the global links interconnecting them are also
added to the MgM. This results in the construction of our NS Design GTrace. The
subset of the MgM representing the NS Design GTrace is shown in Fig. 9. LTrace
models (e.g., NSReq2SM Trace, SM2NSD Trace) are shown in blue and their inter-
connections are shown with blue dashed links. Each LTrace model (output of a
transformation) is linked with its corresponding model transformation with an object
flow link (solid black line).

Fig. 7. Initial NS design MgM

Fig. 8. Updated NS design MgM (Color figure online)

126 O. Hassane et al.



4.2 Traceability Analysis with MAPLE-T

Now that all the NS Design models are interlinked via LTrace models and GTrace links,
we can automatically trace back and forth between all the involved source and target
resources i.e.; NSReq, Ontology, the VNFCatalog and its constituent VNFDs as well as
the resulting NSD and the updated Ontology. Each LTrace model enables navigation at
the element level of adjacent models. Additionally, the GTrace enables navigation at the

Fig. 9. NS design GTrace (Color figure online)

Process Enactment with Traceability Support for NFV Systems 127



PM level, which means that we can explicitly navigate between distant models as well.
For example, we can directly trace back from the NSD (last element of the NS design
process) to the NSReq (first element of the NS design process).

Because of the foundation set by the local and global traces, it is relatively
straightforward to incorporate the change impact analysis in MAPLE-T. We can
automatically figure out how changing an element of an input model (NSReq, VNFDs
included in the

VNFCatalog, or the NFOntology) can impact the NS Design transformations and
the target (e.g., NSD) models and their elements. Using MAPLE-T, the user selects the
input element for which the change impact is to be determined. The user will then be
provided with the result showing whether the selected element is impactful or not, and
if applicable, a list of all the impacted transformations and models as well as their
elements is provided.

Typically, the VNFPackage is provided by vendors and might be subject to change.
In our case study, we focus specifically on the impact induced by changing a resource
within the VNFPackage, mainly the VNFD. After an NS is deployed, a VNF vendor
might point out that a parameter or set of parameters in a VNFD within the catalog is
erroneous (not describing the VNF properly). In such a scenario, the decision on going
about making a change in the design process and associated artifacts depends on
whether considering the error the running NS instance still is behaving according to the
requirements (NSReq) or not. With our traceability analysis, we can determine whether
the erroneous parameters have an impact on the NS design process and therefore the
generated NSD. This will allow us to evaluate if the running NS instance cannot meet
the NSReq due to the error (e.g. if the erroneous VNFD parameters have an impact on
the design and therefore on the generated NSD) or not, and whether the NS should be
re-designed and re-deployed. In the rest of this section, we discuss both scenarios. In
this analysis, we assume that our NS design approach, the NSReq and the NFOntology
are correct and cannot be the source of errors.

Scenario 1: NS Instance is Behaving According to the Requirements (NSReq). In
this scenario, the assumption is that the NS instance is running as expected according to
the NSReq, no issues have been detected (yet). However, at some point in time, the
VNF vendor indicates that a VNFD involved in the NS design was not correctly
describing the VNF and its instance is used now within the running NS instance.

This implies that some VNFD parameters are erroneous and need to be changed.
The decision of re-designing and re-deploying the NS depends on whether these
parameters have an impact on the NSD.

Parameters are Impactless at the Metamodel Level: In this case, since the erroneous
parameters have no impact on the design and the NS instance is behaving as expected
according to the NSReq, there is no action to take. For instance, the vendor might point
out that the software image descriptor (SwImageDesc) used in the VNFD is erroneous.
After analyzing the change impact of the SwImageDesc element on the NS Design
process, it turns out that it is impactless as shown in Fig. 10(d) since it is never

128 O. Hassane et al.



considered in the design process. Changing this element will never impact the gen-
erated NSD, and therefore there is no need to re-design or re-deploy the NS.

Parameters are Impactful at the Metamodel Level: In this case, the impact at the
model level should be considered.

– Parameters are impactful at the model level: As opposed to the previous case, we
need to consider re-designing the NS even though it is running as expected
according to NSReq. In this case, the erroneous parameters were used to design the
NS and therefore they are impactful. For example, the vendor might report that an
Instantiation Level element (which specifies the number of instances of each VNFC
within the VNF) within the VNFD is erroneous and needs to be corrected. The
change impact analysis of this element finds it impactful (e.g., as shown in Fig. 10
(c)). This means that, while the NS instance shows no problem (yet), this does not
preclude the possibility that the provisioning of VNFC instances is not done inef-
ficiently (e.g. VNFC instances may be over-provisioned) and/or incorrectly (e.g. the
parameter value may not have been used yet), and therefore the re-design of the NS
needs to be considered in this case.

– Parameters are impactless at the model level: In this case, since the parameters are
impactful at the metamodel level but not at the model level, it is not straightforward
to conclude whether the re-enactment of the NS Design is needed or not. A new
parameter value might make a previously impactless parameter impactful after the
change. Using the generated traces to analyze the impact of such parameters might
provide a false negative result, in the sense that the impact analysis will suggest that
changing the parameter would be impactless, even though it is not the case. For
instance, the vendor might indicate that the name of a Vdu element referenced in the
VNFD is erroneous. As shown in Fig. 10(b), the analysis of the change impact of
the Vdu name parameter on the NS Design process suggests that it is impactless.
However, the reason may be that the Vdu with the incorrect name was not selected
because it did not meet the requirements. On the other hand, the correct Vdu name
might point to a VDU, which meets the requirements making the parameter
impactful at the model level as well. In this case if we re-run the NS design
enactment with the changed parameter value and generate new traces, our change
impact analysis will suggest that this element is impactful. Thus, at this point, no
conclusion can be made in this case from the analysis and it is better to re-enact the
NS Design with the changed parameters.

Scenario 2: NS is Not Meeting the Requirements (NSReq). In this scenario the NS
instance is not behaving as expected according to the NSReq. Similar to the previous
scenario, the VNF vendor indicates that a provided VNFD is erroneous and requires
changes. Using MAPLE-T, we can try to determine if the erroneous behaviour of the
NS instance is due to the erroneous VNFD or not.

Process Enactment with Traceability Support for NFV Systems 129



Parameters are Impactless at the Metamodel Level: Since the erroneous parameters of
the VNFD are impactless (case shown in Fig. 10(d)), we can conclude that the erro-
neous behaviour of the NS instance is not due to the erroneous VNFD.

It might be due to other NS management activities (instantiation, configuration,
etc.), but the error did not originate from the VNFD parameters used in the design.

Parameters are Impactful at the Metamodel Level: Similar to the first scenario, we also
consider the impact at the model level.

– Parameters are impactful at the model level (shown by the example in Fig. 10(c)):
This means that the generated NSD is erroneous. Thus, we can infer that the
misbehaviour is possibly due to the incorrectly-designed NS, which was due to
input errors (in the VNFDs). One needs to re-design the NS and re-deploy it.

– Parameters are impactless at the model level: As discussed in the first scenario, this
case is inconclusive. Even if the change impact analysis suggests that the param-
eters are impactless, we cannot know if this result is accurate or if it is a false
negative. The only way we can determine this is to re-enact and generate new traces
(but that is what we are trying to avoid in the first place).

A summary of the two scenarios, their different cases, and analysis results is shown
in Table 1.

(a) Impactful Vdu Element        (b) Impactless Vdu Element

(c) Impactful Instantiation Level Element (d) Impactless SwImageDesc Element

Fig. 10. VNFD change impact results in MAPLE-T

130 O. Hassane et al.



In this section we considered only one NS and analyzed the impact of erroneous
VNFDs on its design and the behavior of its instances. The same analysis applies
similarly to all NSs in which the erroneous VNFDs are involved. Moreover, one may
undertake the huge task of analyzing all designed NSs including NSs where the VNFDs
are not involved as this could be the result of exclusion due to the erroneous VNFDs.
This is along the same lines as reconsidering the design of any NS once a new VNF is
made available, but this might be unrealistic.

5 Related Work

We have covered the state of the art on model-driven enactment support for NFV
systems in [25]. Although there exists some work on model-based approaches in the
NFV literature, to the best of our knowledge there is currently no published work on
model-based traceability generation or/and change impact analysis for NFV systems.

In this section, we discuss some MDE approaches and projects related to process
enactment, transformation chaining and model management with traceability genera-
tion and change impact analysis support.

5.1 Traceability Generation Support

There has been a lot of work done on traceability in MDE, and these are discussed and
summarized in [1, 4, 19, 30, 33]. We only discuss here approaches that specifically
address traceability generation and/or analysis in the context of model management,
process enactment and model transformation chains.

Fritzsche et al. [16, 17] and Jouault et al. [23] have proposed approaches similar to
ours in terms of using model transformation chaining and/or model management via
megamodelling to enable traceability. The former combines both techniques and pro-
poses automatic generation of trace models as byproducts of the execution of aug-
mented ATL transformations. However, the generated trace models lack in details,
since both the higher-order transformation and the corresponding traceability

Table 1. Summary of VNFD change impact analysis results

Impact decision Running NS instance
No problem has been
detected

Problems have been detected

Impactless at both
metamodel and model
levels

No re-design is
required

NS instance misbehaviour does not
originate from the parameter error, no
re-design is required

Impactful at both
metamodel and model
levels

NS needs to be re-
designed (e.g., over-
provisioning)

NS instance misbehaviour may
originate from the parameter error. NS
needs to be re-designed

Impactful at metamodel
level and impactless at
model level

Inconclusive, NS re-
design needs to be
considered

Inconclusive, NS re-design needs to be
considered

Process Enactment with Traceability Support for NFV Systems 131



metamodel used are very basic and do not cover more granular trace information.
While the latter work constructs model element-level traces (referred to as LTraces in
our work) and model-level traces (links within the GTrace in our case) within the
megamodel, no explicit support is provided with regards to process enactment nor
automatic augmentation of transformation chains with traceability information.

von Pilgrim et al. [28] extend UNiTI [31] (an Eclipse-based tool to construct, reuse
and execute transformation chains) with traceability generation support. Although they
assume that the transformations explicitly generate trace models as target models, they
do not mention anything about how the transformations are augmented (manually by
the developer or automatically using a HOT).

In the MegaM@Rt2 ECSEL project [3], they attempt to use a traceability man-
agement approach with megamodels in order to handle and link runtime artifacts with
their corresponding design artifacts. The generated trace models conform to a trace-
ability metamodel which is much more generic than our LTrace metamodel in terms of
the generated trace links. In our case, trace links are contained within model trans-
formation rules (TracedRules). This gives us a more detailed view not only of what
source and target elements are linked but also in which rule at the implementation level
this trace link has been constructed. Moreover, to the best of our knowledge, no support
for transformation chaining nor process enactment was proposed as part of their
documents.

Beyhl et al. [8] presents a framework for retaining and maintaining traceability
links between the artifacts within a hierarchical megamodel. However, no support for
linking distant artifacts using global traceability links has been mentioned in their
approach.

Other work exist which focuses solely on generating local traces as a result of
transformation executions [5, 11, 21, 22, 34] and are not elaborated here.

5.2 Traceability Analysis Support

There has been extensive work carried out on change impact analysis in the require-
ments engineering community [20, 30, 33]. However, these approaches do not support
process enactment and megamodelling techniques.

van Amstel et al. [5] propose TraceVis, a tool which uses traces to visualize the
relationships between traced models. Using their generated traceability visualization,
change impact analysis can be implicitly (manually) inferred from the visualization
results, but no method or approach has been proposed to automatically analyze the
change impact using the generated traces.

Fung et al. [18] presents MMINT-A, a tool built on top of a model management
framework (MMINT) using megamodels, which identifies the impact of software
system changes on their assurance cases. However, it is not clear whether their meg-
amodel has traceability extensions enabling navigation between artifacts at the global
and local levels.

132 O. Hassane et al.



6 Conclusion

In this paper, we presented MAPLE-T, a model-driven traceability information gen-
eration and analysis environment built on top of MAPLE [25], an extensible envi-
ronment which enables model-driven process enactment by interleaving transformation
chaining and model management means. MAPLE-T provides support for automatic
generation of local and global traceability information during process enactment. Our
approach starts with a PM and a set of resources (metamodels, profiles), which are all
registered in an MgM. The PM is then mapped to a transformation chain with the help
of the MgM. When process enactment begins, the transformation chain is augmented
with traceability support on the fly. During enactment of the PM, MAPLE-T executes
the underlying transformations and generates the target models as well as the trace
models (transformation traces). Trace links are generated both at the model-level and at
the model element-level. The generated artifacts are retained in the MgM. The global
trace map (provides traceability information at the PM-level) is also part of the MgM.

We have applied our approach on an NFV case study, namely on the NS design, to
carry out change impact analysis. The goal was to assess whether changes in the
building blocks of a network service, the VNFs, have any impact on the process and the
generated deployment templates. As future work, we intend to use MAPLE-T for
traceability analysis of the NS design, deployment, and management process.

Acknowledgement. The authors would like to thank Navid Nazarzadeoghaz for the discussions
on the NFV application. This work is partly funded by the Natural Sciences and Engineering
Research Council (NSERC) of Canada and Ericsson.

References

1. D4.1: Foundations for model management and traceability. Technical report, MegaM@Rt2,
September 2017

2. ISO/IEC/IEEE International Standard - Systems and Software Engineering – Vocabulary.
ISO/IEC/IEEE 24765:2017(E), pp. 1–541, August 2017

3. D4.3: Model and Traceability Management (MTM) Tool Set – Intermediate version.
Technical report, MegaM@Rt2, November 2018

4. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM
Syst. J. 45(3), 515–526 (2006)

5. van Amstel, M.F., van den Brand, M.G.J., Serebrenik, A.: Traceability visualization in
model transformations with TraceVis. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol.
7307, pp. 152–159. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30476-
7_10

6. Baelen, S.V., Vanhoof, B.: MARTES: Traceability management toolset D2.3. Technical
report, EUREKA - ITEA 04006, September 2007

7. Basilier, H., Darula, M., Wilke, J.: Virtualizing network services - the telecom cloud.
Ericsson Technol. Rev. 91, 1–9 (2014). https://www.ericsson.com/en/ericsson-technology-
review/archive/2014/virtualizing-network-services—the-telecom-cloud

8. Beyhl, T., Hebig, R., Giese, H.: A model management framework for maintaining
traceability links. In: Software Engineering 2013 – Workshopband, pp. 453–457 (2013)

Process Enactment with Traceability Support for NFV Systems 133

http://dx.doi.org/10.1007/978-3-642-30476-7_10
http://dx.doi.org/10.1007/978-3-642-30476-7_10
https://www.ericsson.com/en/ericsson-technology-review/archive/2014/virtualizing-network-services---the-telecom-cloud
https://www.ericsson.com/en/ericsson-technology-review/archive/2014/virtualizing-network-services---the-telecom-cloud


9. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping of
information retrieval approaches to software traceability. Empir. Softw. Eng. 19(6), 1565–
1616 (2014)

10. Chen, Y., Qin, Y., Lambe, M., Chu, W.: Realizing network function virtualization
management and orchestration with model-based open architecture. In: 11th International
Conference on Network and Service Management (CNSM 2015), pp. 410–418. IEEE (2015)

11. Eclipse: ATL EMF Transformation Virtual Machine (ATL EMFTVM). https://wiki.eclipse.
org/ATL/EMFTVM

12. Eclipse: Papyrus. https://eclipse.org/papyrus/
13. ETSI: Network Functions Virtualisation (NFV) Release 2; Information Modeling; Papyrus

Guidelines: ETSI GR NFV-IFA 016 V2.1.1, March 2017
14. ETSI: Network Functions Virtualisation (NFV) Release 2; Management and Orchestration;

Report on NFV Information Model: ETSI GR NFV-IFA 015 V2.1.1, January 2017
15. Favre, J.M., Nguyen, T.: Towards a megamodel to model software evolution through

transformations. Electron. Notes Theor. Comput. Sci. 127(3), 59–74 (2005)
16. Fritzsche, M., Brunelière, H., Vanhooff, B., Berbers, Y., Jouault, F., Gilani, W.: Applying

megamodelling to model driven performance engineering. In: 16th IEEE, ECBS 2009,
pp. 244–253, April 2009

17. Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, A.: Application of
tracing techniques in model-driven performance engineering. In: 4th ECMDA Traceability
Workshop, pp. 1–10 (2008)

18. Fung, N.L.S., Kokaly, S., Di Sandro, A., Salay, R., Chechik, M.: MMINT-A: a tool for
automated change impact assessment on assurance cases. In: Gallina, B., Skavhaug, A.,
Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 60–70. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99229-7_7

19. Galvao, I., Goknil, A.: Survey of traceability approaches in model-driven engineering. In:
IEEE EDOC 2007, p. 313, October 2007

20. Göknil, A., Ivanov, I., van den Berg, K.: Change impact analysis based on formalization of
trace relations for requirements. In: ECMDA Traceability Workshop (ECMDA-TW),
pp. 59–75. No. 274, SINTEF Report, June 2008

21. Guana, V., Stroulia, E.: ChainTracker, a model-transformation trace analysis tool for code-
generation environments. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568,
pp. 146–153. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08789-4_11

22. Jouault, F.: Loosely coupled traceability for ATL. In: ECMDA Workshop on Traceability,
pp. 29–37 (2005)

23. Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., Bézivin, J.: Inter-DSL
coordination support by combining megamodeling and model weaving. In: ACM 25th SAC
2010, pp. 2011–2018, March 2010

24. Mijumbi, R., Serrat, J., Gorricho, J.L., Latre, S., Charalambides, M., Lopez, D.:
Management and orchestration challenges in network functions virtualization. IEEE
Commun. Mag. 54(1), 98–105 (2016)

25. Mustafiz, S., Dupont, G., Khendek, F., Toeroe, M.: MAPLE: An integrated environment for
process modelling and enactment for NFV systems. In: Pierantonio, A., Trujillo, S. (eds.)
ECMFA 2018. LNCS, vol. 10890, pp. 164–178. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-92997-2_11

26. Mustafiz, S., Nazarzadeoghaz, N., Dupont, G., Khendek, F., Toeroe, M.: A model-driven
process enactment approach for network service design. In: Csöndes, T., Kovács, G., Réthy,
G. (eds.) SDL 2017. LNCS, vol. 10567, pp. 99–118. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68015-6_7

134 O. Hassane et al.

https://wiki.eclipse.org/ATL/EMFTVM
https://wiki.eclipse.org/ATL/EMFTVM
https://eclipse.org/papyrus/
http://dx.doi.org/10.1007/978-3-319-99229-7_7
http://dx.doi.org/10.1007/978-3-319-08789-4_11
http://dx.doi.org/10.1007/978-3-319-92997-2_11
http://dx.doi.org/10.1007/978-3-319-92997-2_11
http://dx.doi.org/10.1007/978-3-319-68015-6_7
http://dx.doi.org/10.1007/978-3-319-68015-6_7


27. Mustafiz, S., Palma, F., Toeroe, M., Khendek, F.: A network service design and deployment
process for NFV systems. In: 15th IEEE NCA 2016, pp. 131–139. IEEE Computer Society
(2016)

28. von Pilgrim, J., Vanhooff, B., Schulz-Gerlach, I., Berbers, Y.: Constructing and visualizing
transformation chains. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS,
vol. 5095, pp. 17–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
69100-6_2

29. Santiago, I., Jiménez, A., Vara, J.M., De Castro, V., Bollati, V.A., Marcos, E.: Model-driven
engineering as a new landscape for traceability management: A systematic literature review.
Inf. Softw. Technol. 54(12), 1340–1356 (2012)

30. Santiago, I., Vara, J.M., de Castro, M.V., Marcos, E.: Towards the effective use of
traceability in model-driven engineering projects. In: Ng, W., Storey, V.C., Trujillo, J.C.
(eds.) ER 2013. LNCS, vol. 8217, pp. 429–437. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41924-9_35

31. Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., Berbers, Y.: UniTI: A unified
transformation infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 31–45. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-75209-7_3

32. Vanhooff, B., Van Baelen, S., Joosen, W., Berbers, Y.: Traceability as input for model
transformations. In: ECMDA Traceability Workshop (ECMDA-TW), pp. 37–46. SINTEF
(2007)

33. Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering and model-
driven development. Softw. Syst. Model. 9(4), 529–565 (2010)

34. Yie, A., Wagelaar, D.: Advanced traceability for ATL. In: 1st International Workshop on
Model Transformation with ATL (MtATL 2009) (2009)

Process Enactment with Traceability Support for NFV Systems 135

http://dx.doi.org/10.1007/978-3-540-69100-6_2
http://dx.doi.org/10.1007/978-3-540-69100-6_2
http://dx.doi.org/10.1007/978-3-642-41924-9_35
http://dx.doi.org/10.1007/978-3-642-41924-9_35
http://dx.doi.org/10.1007/978-3-540-75209-7_3
http://dx.doi.org/10.1007/978-3-540-75209-7_3


Modeling in Environmental Social
and Industrial Systems



On the Structure of Avionics Systems
Architecture

Visar Januzaj1,2(B) and Stefan Kugele3

1 RheinMain University of Applied Sciences, Wiesbaden Rüsselsheim, Germany
visar.januzaj@hs-rm.de

2 Technische Universität Darmstadt, Darmstadt, Germany
3 Technical University of Munich, Garching, Germany

stefan.kugele@tum.de

Abstract. Integrated Modular Avionics (IMA) systems, contrary to
classical avionics systems, enable the execution of multiple aircraft func-
tions on the same hardware modules. This leads to reductions, e. g. in cost
and weight, but it becomes also challenging for the design space explo-
ration, in particular due to many system deployment choices. The sys-
tem management concept of IMA systems allows the expert in advance
to manually partition the system into a hierarchical structure, consisting
of groups (or clusters) of closely related system components. To auto-
matically partition the software architecture of such IMA systems, we
introduce an approach based on data mining methods, such as hierarchi-
cal clustering. To determine the closeness between software components,
thus, to cluster components with dense intercommunication, the execu-
tion time interval (period) and the amount of data transmitted during
such intercommunications are used. Leading to favourable effects w.r.t.
network load at the deployment level. Furthermore, we propose a method
to define cut points on the resultant clustering, in order to determine the
final number of clusters, thus, the partitioning of the system.

Keywords: Software architecture · Clustering · Avionics systems ·
System modelling

1 Introduction

While federated avionics systems follow a decentralised approach requiring
unique hardware for aircraft functions, such as flight management or autopi-
lot, to be bound to, in Integrated Modular Avionics (IMA) [3,13] systems the
hardware, so-called cabinet of processors, is shared by multiple aircraft func-
tions. While reductions, e. g. cost, power consumption, and weight, are thereby
achieved, the IMA concept, due to the continuously increased system complex-
ity, is faced with new challenges, such as safety and resource requirements [2,4].
Januzaj and Kugele [7] presented methods for the modelling and the calculations
of system (re-)configurations for IMA systems. There, the software architecture
is hierarchically (cf. Sect. 2.1) partitioned in such a way that closely related
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 139–149, 2019.
https://doi.org/10.1007/978-3-030-30690-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_8&domain=pdf
http://orcid.org/0000-0002-5449-3248
http://orcid.org/0000-0002-9833-4548
https://doi.org/10.1007/978-3-030-30690-8_8


140 V. Januzaj and S. Kugele

Fig. 1. Data mining-based automated architecture partitioning.

applications are grouped to preferably be bound to the same hardware module.
A domain expert manually performs this step. Automated results are, however,
invaluable for the design space exploration, as they can provide an insight into
various, or even improved, solutions which the domain expert might not have
considered [2,4,8].

In this work in progress paper, we introduce an approach to automatically
calculate the partitioning of the software architecture, by replacing the manual
partitioning [7], as depicted in Fig. 1. For this purpose we apply a data min-
ing method [5,15], hierarchical clustering (cf. Sect. 2.2), which represents the
partitioning as a binary tree, a so-called dendrogram. Each branch of the tree,
depending on the cut point, represents a closely related group (or cluster) of
applications. The introduced method is an extension of previous work [6], where
the closeness of applications is based on their degree of intercommunication [14],
given by the execution time interval (period) of their subcomponents (processes
and threads). Therefore, applications with a dense intercommunication are put
into the same cluster, in order to reduce the overall communication between
hardware modules and, thus, the network load/utilisation [4]. This work pro-
vides the following contributions (cf. Sect. 3.2):

(a) Data exchange. Aiming to further minimise the network load, we extend the
former method [6] by considering the amount of transmitted data during
intercommunications between applications.

(b) Cut points. The formerly introduced method [6] does not define any means
for the creation of final clusters, once the hierarchical clustering is per-
formed. Therefore we propose cut points w.r.t. the execution times of pro-
cesses/threads residing in applications, to support the selection of the final
architecture.

2 Preliminaries

In this section, we roughly describe the type of considered IMA systems and the
applied clustering technique.

2.1 Integrated Modular Avionics (IMA)

In this paper, we consider IMA systems based on the NATO Standardization
Agreement (STANAG 4626) and European Standard 4660 that originated from
the ASAAC (Allied Standard Avionics Architecture Council) programme. We
refer to such systems throughout the paper as IMA/ASAAC systems.



On the Structure of Avionics Systems Architecture 141

Fig. 2. ASAAC hierarchy [7].

The system management hierarchy,
consisting of aircraft (AC), integration
area (IA), and resource element (RE) lev-
els, is one of the major concepts intro-
duced by the aforementioned standards.
An example of such a hierarchy is shown
in Fig. 2. While AC represents the top
level that manages the whole underlying
system and RE the lowest level (hardware components), the IA level can consist
of further nested and hierarchically arranged IA levels. Each IA level repre-
sents and manages subsystems of closely related software components (appli-
cations), and is assigned to particular hardware components in the RE level.
Software components of IAs at a higher level in the hierarchy can be bound
to the hardware components (RE level) assigned to the underlying IAs as well.
They may, or may not, have additional hardware components assigned to. The
whole system hierarchy is modelled by a number of blueprints [7], using AADL
(Architecture Analysis and Design Language), a common modelling language
in the avionics domain. The software architecture is modelled in the so-called
application blueprint, where the corresponding requirements (memory, execu-
tion period, (worst-case) execution time, etc.) and communication connectivity
between applications are given. Each application consists of processes/threads
that communicate through in- and out-ports.

2.2 Hierarchical Clustering

Algorithm 1. Hierarchical Clustering
1: function HiClu(X, k)
2: C = initialise(X);
3: D = calculateSimilarity(C);
4: while |C| ≥ k do
5: (Ci,Cj) = getClosest(D);
6: C = C \ {Ci,Cj} ∪ {Ci ∪ Cj};
7: D = calculateSimilarity(C);

Data mining aims at identifying
understandable patterns in data and
extracting knowledge from it [5]. One
of the data mining techniques is
clustering, which partitions a given
dataset X into disjoint groups, so-
called clusters. We assume that X =
{x1, . . . , xn} consists of n = |X| ele-
ments. Such a partitioning/grouping
is called clustering, denoted C. Each cluster Ci ∈ C contains a set of data Ci ⊆ X.
The aim is that the data within a cluster is very similar, whereas the data across
clusters is as dissimilar as possible. Data that is not included in a cluster is
considered as noise (or outlier). Unsupervised data mining techniques, such as
clustering, do not require any prior knowledge about the structure of the data,
nor do they need to know what the result should be. One of many existing clus-
tering methods is hierarchical clustering [15], which represents the clustering
by means of a binary tree, a so-called dendrogram (cf. Fig. 3, right). Due to its
nature, hierarchical clustering does not consider data as noise, as each data item
in its own is a cluster, i. e., a cluster Ci can consist of only one single data item.
An algorithm for hierarchical clustering is given in Algorithm1 (cf. [15]).



142 V. Januzaj and S. Kugele

In the first step (line 2), each data item in X is put into its own clus-
ter C = {Ci | Ci = {xi} , xi ∈ X, i ∈ {1, . . . , |X|}}, thus, initialising C. Sub-
sequently the distances between clusters are calculated (line 3). The distance
represents the similarity1 between data items. Once the similarity between data
items is determined, e. g. using the Euclidean distance, the similarity between
clusters is calculated. There are various methods, such as single link, complete
link, group average, mean distance, Ward’s method, or own methods that can
be applied [15]. The rest of the algorithm (from line 4) performs the following
steps: (i) two most similar clusters are determined (line 5), (ii) these clusters are
merged into a new cluster Cij = Ci ∪ Cj and added to the clustering C (line 6),
and (iii) the similarities w.r.t. the new cluster are calculated (line 7).

The size of C is decreased in each step, until a sought particular number k of
clusters is reached, i. e., |C| = k (line 4). For a given value k = 1 the algorithm
stops only after all clusters are merged into one single cluster.

3 Approach

In this section, we describe the former clustering method [6] and introduce the
extension w.r.t. data transmission and cut points.

3.1 Frequency-Based Clustering

As outlined in Sect. 2.1, in an application blueprint the software architecture
of an IMA/ASAAC system is modelled. The similarity between applications is
based on their degree of intercommunication [6], given by the execution period
of their underlying processes.

Since applications consist of processes, which communicate with each other
and/or processes of other applications, two applications, e. g. a and b in Fig. 3,
can have multiple ways of communication (source → target). If we consider
these communications and their execution period as a weighted directed graph,
then each application would represent a vertex, each communication (through its
associated in- and out-ports) an edge and the weight of each edge would be the
corresponding period. Let A represent the set of all applications of the modelled
system. The set of all edges adjacent to an application a ∈ A is described as
Ea = {(s, t) | s = a ∨ t = a}. Let Ei,j = {Ei ∩ Ej | i �= j} denote the set of all
edges adjacent to only two applications i, j ∈ A. The execution period of a
communication (edge) from the source application s to a target application t
is described by the weight function w(e), with e = (s, t) ∈ Es,t. Let the set of
periods between two applications i and j be defined as: Πi,j = {w(e) | e ∈ Ei,j}.
The similarity between two applications i and j is defined as:

σ (i, j) =
∑

π∈Πi,j

1
π

, i �= j ∧ i, j ∈ A. (1)

1 Note that we use throughout the paper the term similarity instead of distance to
describe the closeness between clusters.



On the Structure of Avionics Systems Architecture 143

Fig. 3. Example dendrogram

The higher the intercommuni-
cation degree between two appli-
cations, the higher their similar-
ity. An example is shown in Fig. 3,
where the applications a and b have
a higher similarity (σ (a, b) = 1/1+
1/1 + 1/1 = 3) than b and c (σ (b, c) = 1/3) and, thus, they are merged first.
The clustering is shown by the dendrogram on the right. The weights on edges
denote the corresponding periods.

As mentioned in Sect. 2.2, besides defining means to calculate the similarity
between data items, in our case applications, it is also required to define the
similarity between two clusters Ci,Cj ∈ C, which is shown below:

σ (Ci,Cj) =
∑

x∈Ci

∑

y∈Cj

σ (x, y) . (2)

Now that the similarity is defined, it is possible to apply Algorithm1 to
cluster the software architecture of IMA/ASAAC system models. However, the
newly defined similarity in (2) is used instead in lines 3 and 7, and X is replaced
by A, the set of all applications of the system. We have to add here, that the
method, and the corresponding extensions introduced in the following section,
can be applied to any architecture model, provided that the required data (about
the connectivity and period) is given. Depending on the chosen value for k, the
clustering is performed as described in Algorithm 1 until k clusters are formed.
An example is depicted in Fig. 4(a), where the clustering process of applications
a, b, c, and d is shown step-by-step.

3.2 Extension

The intercommunication frequency, used in the previous section for similarity
calculation [6], gives indeed a good overview of the structure of the commu-
nication intensity between software components [14]. However, the amount of
data transmitted during such intercommunications is essential to minimise the
network load [4].

Let us again consider the example in Fig. 3, assuming that it represents a
small subset of a larger system. As can be seen, the applications a and b interact
with each other very frequently (every 1 time unit), thus, are connected first
and put into the same cluster. They may, however, only send small data chunks,
e. g. 1 data unit. Application c does not interact with b as frequently (every 3
time units) as a, but the amount of data transferred may be considerably higher,
for instance, 15 data units. From the network load point of view, it would make
more sense to put b and c into the same cluster first. Application a may end up
at some point, though, in the same cluster as b and c, depending on the size of
the system.



144 V. Januzaj and S. Kugele

Fig. 4. Comparison: (a) only period, (b) data included.

Similarity. In order to incorporate the data transmission between applications
into the clustering process, we need to:

(a) redefine, as shown in (3), the similarity between applications defined in (1)
in the previous section and

(b) modify the weight function (cf. Sect. 3.1), i. e., w(e) = d
π , with d representing

the data and π the execution period.

The similarity between clusters, as defined in (2), remains unaffected. Thus, the
new similarity is defined as:

σ (i, j) =
∑

d
π ∈Πi,j

d

π
, i �= j ∧ i, j ∈ A. (3)

In Fig. 4(b) the same graph (system model) as in Fig. 4(a) has been extended
with corresponding amount of transferred data pro period. It can easily be seen,
that now (in the first step) the two most similar applications are, contrary to
Fig. 4(a), a and c. Thus, they are merged first. We see that the final clustering
C2 differs from the clustering C1 in Fig. 4(a) as well.

To compare both cluster methods w.r.t. the data exchange, we calculate the
data transferred in an interval [0,H], and compare the amount of transferred



On the Structure of Avionics Systems Architecture 145

data between clusters created by both methods, (1) and (3). The hyper-period H
is usually used in schedulability analyses of system configurations [7], since within
the interval [0,H] all tasks/processes are executed; thus, all their deadlines are
met. We define H as the least common multiple (lcm) of all periods of the periodic
processes. For our example in Fig. 4, we get H = 30, with H = lcm(2, 3, 5, 10)
for the periods 2 (between d and c), 3 (between c and a), 5 (between a and b),
and 10 (between b and c and between b and d, respectively).

In Fig. 4(a) and (b) the same system is modelled with different levels of
granularity. While both models include the period in which the applications
communicate with each other, the former model lacks the information about the
data transmitted during such communications. For the purpose of comparison,
we use the same data transmission values (cf. Fig. 4(b)) on the final clustering
of both methods. For instance, applications a and b transfer pro period 1 data
unit, b and d 3 data units, and b and c 5 data units.

Since the frequency-based method, applying similarity in (1), does not con-
sider data transmission in its clustering process, we apply the similarity in (3)
to calculate the data transferred within the interval [0,H], i. e., σ (i, j) · H.

Table 1. Comparing clustering
based on (1) and (3).

Clusters CD ACD AC ABC

A 20 – – –
B 24 30 21 –
D – – 15 24

The result of the comparison is given in
Table 1. Note that cluster C is omitted, as it
is connected first in both clusterings. Nonethe-
less, if we compare the amount of data trans-
ferred between clusters C and D from C1, i. e.,
σ (c, d) · H = 1

2 · 30 = 15, and that between clus-
ters A and C from C2, i. e., σ (a, c) · H = 2

3 · 30 =
20, it is easy to notice that the cluster AC (cal-
culated with (3)) has a higher data exchange than the cluster CD (calculated
with (1)). And this is exactly what we want to achieve, in order to reduce the
network load between hardware modules. The same applies to the other clus-
ters of clustering C1, calculated using the frequency-based method [6] defined in
(1). Hence, clustering C1 will have a higher network load (if those clusters are
not mapped on the same hardware module) than clustering C2. Therefore, the
proposed similarity method (3) yields better clustering w.r.t. network load.

Cut Points. In previous work [6], no means are given to determine the final
number of clusters, i. e., the final partitioning of the software architecture, in
order to create the IAs. One can indeed specify a k-value, which is required to be
known in advance, to determine the expected number of clusters. This, however,
depends on the case study, the modelled system, and the domain the method is
applied to, e. g. when the number of bird species is known in advance, and the
dataset describing birds shall be clustered accordingly. Usually, the number of
clusters is not defined a priori; therefore, the final number of clusters is calculated
afterwards, e. g. by defining cut points in the dendrogram. The branches that are
created due to the cutting on the specified points, each define a cluster, thus,
creating the final clustering. Regarding the underlying hardware architecture,
where the software finally will be bound to and executed on, and especially



146 V. Januzaj and S. Kugele

when dealing with IMA/ASAAC systems, we propose a metric to specify cut
points based on requirements, such as period and worst-case execution time,
defined on the software model. As described in Sect. 2.1, each IA consists of a
number of applications that in turn consist of a number of processes, and to
each IA a group of hardware components, specified in the RE level, is assigned
to. Using the processor utilisation2 formula, cf. [10], we propose the following
metric to determine the cut points:

V (Ci) =
∑

a∈Ci

∑

p∈a

wcetp

πp
, (4)

where V (Ci) describes the processor utilisation of the whole cluster Ci, wcetp

the worst-case execution time of a process p residing in application a and πp

the period of p. The cut points are calculated in a depth-first search manner,
by cutting the dendrogram at points where V (Ci) ≤ m is first reached. The
resulting branch is cut and marked as a cluster. The search then continues on
the other uncut branches until no further cuts can be performed. The value
m gives roughly the number of required processors that might be used to exe-
cute the applications of a cluster. Depending on the scheduling algorithm finally
chosen and final binding, this number can vary. Taking into account the execu-
tion time requirements for the cut points, we expect better clustering than by
defining k > 1. The latter may lead to unbalanced clusters w.r.t. the hardware
requirements, making the proposed metric more suitable for IMA/ASAAC sys-
tems and potentially applicable in a hardware/software co-design process. We
have to stress, however, that the proposed metric is not mature enough and it
needs to be further investigated and thoroughly evaluated by comparing it with
other methods, e. g. graph clustering methods, such as normalised cut [15].

An example, of how the proposed cut points method can be applied, is illus-
trated in Fig. 5. For this purpose, we use the same model and its clustering as
in Fig. 4(b). The required data, which is generally included in the application
blueprint [7], about the worst-case execution time of the processes of our sys-
tem can be found on the top right in Fig. 5. This data is partially based on the
data of a flight control system case study [9]. For the sake of clarity, we assume
that the applications in our model consist only of the processes that are used to
communicate with other applications. A detailed calculation (applying (4)) of
utilisations of the clusters A, B, C, and D is given on top of the dendrograms.
The utilisation is similarly calculated for clusters AC and ABC, thus, a detailed
description of the corresponding calculation is omitted. The dotted (red) lines
represent the cut points for the given clustering. There are shown three cut
points scenarios, based on different values for m. In the first scenario (m = 1),
according to the utilisation value V (Ci) ≤ m, we get the clusters AC, B, and
D. These resulting clusters can be each interpreted as a separate IA. To reduce
network load, applications in the cluster/IA AC are to be executed on/bound to
the same hardware module, defined in the RE level. Depending on the chosen
2 The utilisation U(z) is usually used to check the schedulability of tasks bound to a

processor z, e. g. for U(z) ≤ 1 means that the binding is schedulable for EDF.



On the Structure of Avionics Systems Architecture 147

a

A

b

B

d

D

c

C

a : p1 : πp1 = 5; wcetp1 = 2.5

b : p2 : πp2 = 10; wcetp2 = 5

p3 : πp3 = 10; wcetp3 = 5

c : p4 : πp4 = 2; wcetp4 = 1

d : p5 : πp5 = 3; wcetp5 = 1.5

1/5

3/10

1/2

2/3 5/10

V (A) =
wcetp1

πp1

=
2.5
5

=
1
2
, V (B) =

wcetp2
πp2

+
wcetp3

πp3

=
5
10

+
5
10

= 1,

V (C) =
wcetp4

πp4

=
1
2
, V (D) =

wcetp5
πp5

=
1.5
3

=
1
2
,

V (AC) =
1
2
+

1
2
= 1, V (ABC) =

1
2
+ 1 +

1
2
= 2

A C B D

Cut point

(m=1)

A C B D

Cut point

(m=2)

A C B D

Cut point

(m=3)

Fig. 5. Example: cut points calculation. (Color figure online)

hierarchy, the application residing in B can form its own IA with its own assigned
hardware module(s). It can, however, if placed a level higher in the hierarchy,
be assigned to the same hardware module(s) as the applications of the cluster
AC. The same applies to the application residing in D. Once the cut points are
calculated, it is at the discretion of the experienced domain expert to decides
which hierarchy will be finally chosen. For m = 2 we get clusters ABC and D.
Similarly, applications residing in ABC are to be bound to the assigned hardware
module(s) in the RE level. For the application in D applies the same as above.
In the last scenario, for m = 3, all applications are on the same cluster, i. e.,
they form together an IA and are assigned to the same hardware module(s) in
the RE level.

4 Related Work

Apart from data mining, when considered as an integral part of the process
chain [7], our approach overlaps with the research area of design space explo-
ration as well. Due to the broad research spectrum conducted in both areas
and due to space restrictions, we will name just a few. A substantial overview
on design space exploration and optimisation methods is given in [1,11]. Net-
work bandwidth and processor utilisation of avionics systems are minimised
using heuristic bin-packing and metaheuristic algorithms [4]. The optimisation



148 V. Januzaj and S. Kugele

problem for IMA systems, given as a binary program, is solved by applying
branch-an-cut methods [2]. A combination of methods based on Satisfiability
Modulo Theory, Integer Linear Programming, and multi-objective evolutionary
algorithms can be used to optimise the system deployment [9]. For the estimation
of the performance of system configurations, machine learning techniques, such
as neural networks and linear regression, are applied [12]. The applicability of
data mining methods to cluster space mission architectures is successfully shown
in [8]. Hierarchical clustering is used to cluster software components based on
their interaction [14], which is closest to the spirit of our work, besides the work
that we extend [6]. Contrary to our work, however, their degree of interaction
is based on the coupling type (inheritance and data) and not on the amount of
transmitted data and the execution period. Furthermore, no means w.r.t. cut
points are given. Besides that none of the above-mentioned methods deals with
IMA/ASAAC systems, none of them tackles the system deployment at an early
stage of modelling, e. g. in the absence of the hardware architecture.

5 Conclusion

We extend in this paper the method of clustering software architectures intro-
duced in previous work [6], by considering the amount of data that is transmitted
between software components. The aim is to automatically partition the soft-
ware architecture of IMA/ASAAC systems, which is manually performed [7],
and group applications with high data exchange in order to reduce the network
load at system deployment. The viability of our extension is shown by a simple
example (cf. Fig. 4 and Table 1). Furthermore, we propose a method to define
cut points in order to determine the final number of clusters. The proposed
clustering approach can be separately applied on other domains as well, such
as automotive, where similar scenarios exist. This work is a work in progress
and as such still needs further investigation and evaluation, e. g. by applying
clustering validation techniques, such as normalised cut measure [15], to assess
the clustering quality of our proposed method. At this point, we do not consider
requirements regarding software safety levels, dislocality, and redundancy, which
might be addressed in future work.

References

1. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software archi-
tecture optimization methods: a systematic literature review. IEEE Trans. Softw.
Eng. 39(5), 658–683 (2013). https://doi.org/10.1109/TSE.2012.64

2. Annighöfer, B., Thielecke, F.: A systems architecting framework for optimal dis-
tributed integrated modular avionics architectures. CEAS Aeronaut. J. 6(3), 485–
496 (2015). https://doi.org/10.1007/s13272-015-0156-1

3. ARINC 653-1: Avionics application software standard interface, October 2003
4. Dougherty, B., Schmidt, D.C., White, J., Kegley, R., Preston, J.: Deployment opti-

mization for embedded flight avionics systems. In: CrossTalk, p. 31 (2011)

https://doi.org/10.1109/TSE.2012.64
https://doi.org/10.1007/s13272-015-0156-1


On the Structure of Avionics Systems Architecture 149

5. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco (2000)

6. Januzaj, V.: Data mining meets system modelling. In: Proceedings of the 21st
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems MODELS 2018: Companion Proceedings, MODELS 2018, pp. 55–56.
ACM, New York (2018). https://doi.org/10.1145/3270112.3270133

7. Januzaj, V., Kugele, S., Biechele, F., Mauersberger, R.: A configuration approach
for IMA systems. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM
2012. LNCS, vol. 7504, pp. 203–217. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33826-7 14

8. Kinneer, C., Herzig, S.J.I.: Dissimilarity measures for clustering space mission
architectures. In: Proceedings of the 21st ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems ACM/IEEE MODELS 2018,
pp. 392–402. ACM, New York (2018). https://doi.org/10.1145/3239372.3239390

9. Kugele, S., Pucea, G., Popa, R., Dieudonné, L., Eckardt, H.: On the deployment
problem of embedded systems. In: ACM/IEEE International Conference on Formal
Methods and Models for Codesign, MEMOCODE 2015, Austin, TX, USA, 21–23
September 2015, pp. 158–167. IEEE (2015). https://doi.org/10.1109/MEMCOD.
2015.7340482

10. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973). https://doi.org/10.1145/
321738.321743

11. Mehiaoui, A., Wozniak, E., Babau, J.P., Tucci-Piergiovanni, S., Mraidha, C.: Opti-
mizing the deployment of tree-shaped functional graphs of real-time system on dis-
tributed architectures. Autom. Softw. Eng. 26(1), 1–57 (2019). https://doi.org/10.
1007/s10515-018-0244-7

12. Özisikyilmaz, B., Memik, G., Choudhary, A.: Efficient system design space explo-
ration using machine learning techniques. In: 2008 45th ACM/IEEE Design
Automation Conference, pp. 966–969. IEEE (2008). https://doi.org/10.1145/
1391469.1391712

13. RTCA DO-297: Integrated Modular Avionics (IMA) Development Guidance and
Certification Considerations, August 2005

14. Yu, L., Ramaswamy, S.: Verifying design modularity, hierarchy, and interaction
locality using data clustering techniques. In: Proceedings of the 45th Annual South-
east Regional Conference, ACM-SE 45, pp. 419–424. ACM, New York (2007).
https://doi.org/10.1145/1233341.1233417

15. Zaki, M.J., Wagner Meira, J.: Data Mining and Analysis: Fundamental Concepts
and Algorithms. Cambridge University Press, Cambridge (2014)

https://doi.org/10.1145/3270112.3270133
https://doi.org/10.1007/978-3-642-33826-7_14
https://doi.org/10.1007/978-3-642-33826-7_14
https://doi.org/10.1145/3239372.3239390
https://doi.org/10.1109/MEMCOD.2015.7340482
https://doi.org/10.1109/MEMCOD.2015.7340482
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
https://doi.org/10.1007/s10515-018-0244-7
https://doi.org/10.1007/s10515-018-0244-7
https://doi.org/10.1145/1391469.1391712
https://doi.org/10.1145/1391469.1391712
https://doi.org/10.1145/1233341.1233417


Generating Executable Code
from High-Level Social

or Socio-Ecological Model Descriptions

Themis Dimitra Xanthopoulou1(B) , Andreas Prinz1 ,
and F. LeRon Shults2

1 Department of Information and Communication Technology, University of Agder,
Jon Lilletuns vei 9, 4879 Grimstad, Norway

{themis.d.xanthopoulou,andreas.prinz}@uia.no
https://www.uia.no/en/kk/profil/themisdx

2 Institute for Global Development and Social Planning, University of Agder,
Universitetsveien 19, 4630 Kristiansand, Norway

leron.shults@uia.no

Abstract. Agent-Based Modelling has been used for social simulation
because of the several benefits it entails. Social models are often con-
structed by inter-disciplinary teams that include subject-matter experts
with no programming skills. These experts are typically involved in the
creation of the conceptual model, but not the verification or validation
of the simulation model. The Overview, Design concepts, and Details
(ODD) protocol has emerged as a way of presenting a model at a high
level of abstraction and as an effort towards improving the reproducibil-
ity of Agent-Based Models (ABMs) but it is typically written after a
model has been completed. This paper reverses the process and pro-
vides non-programming experts with a user-friendly and extensible tool
called ODD2ABM for creating and altering models on their own. This
is done by formalizing ODD using concepts abstracted from the NetL-
ogo language, enabling users to generate NetLogo code from an ODD
description automatically. We verified the ODD2ABM tool with three
existing NetLogo models.

Keywords: Social model · Metamodel · Code generation ·
Abstraction · Formality · Reproducibility · Verification

1 Introduction

In recent years there has been a rapid rise in the use of the Agent-Based Mod-
elling [1]. ABMs offer unique capabilities and are widely used by a growing
number of scientists and policy professionals [3,6,7,13] with social simulations
as a prominent application.

Hassan et al. [7] have identified four roles typically involved in the devel-
opment of an ABM: the thematician, the modeller, the computer scientist and
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 150–162, 2019.
https://doi.org/10.1007/978-3-030-30690-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_9&domain=pdf
http://orcid.org/0000-0003-2914-0472
http://orcid.org/0000-0002-0646-2877
http://orcid.org/0000-0002-0588-6977
https://doi.org/10.1007/978-3-030-30690-8_9


Code Generation from High-Level Models 151

the programmer. The roles fit well the conceptual model of the model devel-
opment process presented by Sargent in [14]. According to Sargent, a model is
the representation of a real-life system. The thematician, who is the expert in
the problem entity, uses her experience to create the high-level informal model
description or conceptual model of the system, see Fig. 1. The description of the
entities of the system in the conceptual model is formal, and their attributes
and interactions informal. The modeller transforms the description of the con-
ceptual model into a detailed informal model, the simulation model specification
[14], with formalised attributes and informal procedures. The computer scientist
finds an executable approximation or a high-level formal model description. In
this stage, the informal procedures of the previous step become formal. Finally,
the programmer implements the simulation model using a suitable programming
language and platform and providing a detailed formal model.

Rarely can one researcher alone fill all these roles. Moreover, complex models
usually require perspectives from different disciplines and therefore more than
one thematician. These are the reasons why ABMs are typically constructed by
multidisciplinary teams. These teams face several challenges. First of all, com-
munication of the model among such diverse researchers can be difficult [7,13].
Since the product of each development step depends on each individual’s con-
ceptual understanding, different teams may come up with dissimilar simulation
models even if they are working with the same “thematician”. This dissimilar-
ity hinders reproducibility of results, which is one of the pillars of the scientific
method [5].

Fig. 1. Modelling and simulation: roles and stages

One of the ways to ensure reproducibility is to perform verification from one
step to another. Sargent [14] specifies two types of verification: the specification
verification that takes place between the conceptual model and the simulation
model specification and the implementation verification that takes place between
the simulation model specification and the simulation model. The complicating
issue is that subject-matter experts, who build the conceptual model of the
system, are not usually skilled in modelling and computer programming and
cannot perform the verifications. They typically find the executable code obscure
[2]. The definition of the model becomes ‘hidden’ in the code and cannot be
perceived, validated or changed by the experts [2–4,7,13].



152 T. D. Xanthopoulou et al.

Consequently, we want to solve the following problem with this paper: How
can we make ABMs more accessible to subject-matter experts to ensure verifica-
tion and to enable validation of the simulation models? One proposed approach
favours building blocks that could enable non-programming experts to develop
and modify their ABMs [6]. Continuing with this thought, we want to create a
domain-specific language (DSL) and an associated tool allowing subject-matter
experts to create and change simulations models.

The remainder of this paper is structured as follows: Sect. 2 introduces ODD,
NetLogo, and DSLs and provides an overview of related work. Section 3 describes
the process we developed to build each metamodel component, and Sect. 4
discusses the quality of the outcome. Finally, Sect. 5 summarizes the paper.
Throughout the paper, we illustrate the steps of the methodology with the Wolf
Sheep Simple 5 model [15].

2 Background and Related Work

2.1 ODD

Many scholars in the Agent-Based Modelling community have adopted the Over-
view, Design concepts, and Details (ODD) protocol. ODD emerged as an effort to
boost “Communication of Results, Replication, Model Comparison, and Inter-
disciplinary Dialogue” [5]. The ODD description process is an artefact of the
conceptual and the simulation model specification stage as shown in Fig. 1.

The protocol has the following seven thematic sections [5], where each section
contains questions to guide modellers in the provision of related model details.

1. Purpose: explanation of the goal of the model. 2. Entities, State Variables
and Scales: description of the type of entities that comprise the model, their
attributes, and the temporal and spatial scales used in the model. 3. Process
Overview and Scheduling: clarification of the procedures in the model and their
sequence. 4. Design Concepts: discussion of more specific topics of the modelled
system such as the learning ability of entities. 5. Initialization: description of how
the entities and attributes are initialized. 6. Input Data: reference to the type
and specifics of the external data used by the model. 7. Sub-models: explanation
of the sub-processes in the model.

Figure 2 shows the questions for the “Entities, State Variables and Scales”
element of an ODD, retrieved from [5], and provides an example of a specifi-
cation. The modeller must provide the model definition by answering all of the
questions in each of the thematic sections. The emerging document with the
ODD specifications can be quite large, depending on the model it describes.
The answers appear informally, and one can portray the protocol as a group of
informal entities. The questions attempt to cover different perspectives of the
conceptual model to promote a unified impression of what the model entails.
Nowadays, many journals consider the ODD protocol as a prerequisite for the
publication of an ABM model. Although this is a big step towards verifica-
tion, validation and reproducibility of simulation models, the informal character
of the answers allows ambiguities in the model description. Platforms such as



Code Generation from High-Level Models 153

ODD
Element

Questions Specification

Entity,
State
Variables,
and Scales

What kind of entities are in the
model? Do they represent man-
agers, voters, landowners, firms
or something else? By what state
variables or attributes are these
entities characterised? What are
the temporal and spatial resolu-
tions and extents of the model?

The agents represent sheep and wolves,
and the environment is grassland that
they inhabit. Both wolves and sheep
have energy that they use to move
around. On the other hand, the grass
contains energy. The space represents
a grassland and the time is not defined
by the modeller, but, given the model
dynamics, it should be within the life-
time of a sheep.

Fig. 2. Informal ODD: questions and specification

the “ComSES Network OpenABM” mentioned in [8] enable the uploading and
sharing of ABMs in terms of executable code, ODD and other descriptions to
promote model transparency and reuse and to move further towards a scientific
handling of ABMs.

2.2 DSLs and MPS

Domain-specific languages (DSLs) facilitate the efficient development of models
and the production of artefacts. However, it is not enough to define a DSL;
one also needs an appropriate tool to work with the DSL. This is normally
accomplished with a meta-tool that creates a DSL tool out of a DSL description.
Such a meta-tool is called a language workbench.

To build our tool, which we call ODD2ABM, we selected the Meta Pro-
gramming System (MPS), a free platform for the creation of DSLs [9], mainly
because of its user-friendliness. It is also important that MPS provides tabular
and diagrammatic notations in addition to plain text. MPS structures a DSL
description in the aspects of structure, which is the abstract syntax, editor, which
is the concrete syntax, constraints, which is the static semantics, and generator,
which are the dynamic semantics and the definition of the transformation.

2.3 Related Work

Domain-specific languages together with Model Driven Development (MDD) [2]
have often been used to solve problems similar to ours. DSLs aspire to provide
the model definition in a high-level language so that experts can understand and
modify the domain-specific model. MDD aims to automate the processes from
the high-level informal description to the detailed formal description shown in
Fig. 1. The developer defines the transformations from one stage to the other.
The end user inputs specifications in the high-level format and the DSL tool
automatically generates the next stage artefact or the simulation model.



154 T. D. Xanthopoulou et al.

Some researchers have worked on the formalisation of certain aspects of
ABMs, such as interactions [11]. Others have built metamodels that specialise
within specific domains. The MAIA metamodel (Modelling Agent systems based
on Institutional Analysis) covers Social Simulations with Institutional Analysis
and semi-automatic code generation [4]. MDA4ABMS merges both DSL and
MDD methodologies, but the user needs some modelling experience to han-
dle the high-level language, and the tool does not automatically provide the
low-level language artefact [2]. Also, the inclusion of UML (Unified Modelling
Language), which is applied in the methodology, has often been discarded by
other researchers due to its lack of expressiveness [13]. Similarly, the easyABMS
methodology includes UML and does not provide automatic code generation
but takes into account all the modelling and simulation phases and can be used
for general processes [3]. The metamodel introduced by Santos et al. [13] auto-
matically generates code, and has been evaluated as very efficient; however, it
only applies to the adaptive traffic signal control domain. Finally, adaptations
of Multi-Agent methodologies to Agent-Based methodologies have been able to
establish a common high-level formal language, but these do not include auto-
matic code generation [7].

3 Methodology

The central idea is that a user can input the model description in the DSL and the
tool will automatically generate the simulation model in executable code. Apart
from advantages related to the creation or modification time of conceptual and
simulation models, this approach provides built-in verification of the model. The
main reason is that there is a deterministic relationship between input (formally
described conceptual model) and output (executable code or simulation model).
In essence, we automate the transitions from stage one to stage four shown in
Fig. 1. To do that we bring formality to the model description in a way that the
thematician can still handle it and define the model in the DSL.

The goal is to start from simple models, so that we obtain a proof of con-
cept for our idea, and then extend the work to more complex ABMs. The tool
should be easy to use, extensible, and allow automatic code generation from the
model definitions produced by subject-matter experts. Our methodology inte-
grates aspects of MDD and DSL. The DSL ensures user-friendliness and accom-
modates diverse models, while the MDD is used to provide the detailed formal
model in an executable form. Using MPS for the DSL development enables to
shift the focus on the language description. MPS will automatically generate a
neat and efficient DSL tool directly from the language description.

As ODD already is a DSL for social models, a tool that transforms an ODD
to NetLogo would solve our problem. However, ODD is not formal enough for
a direct transformation. Still, we argue that instead of creating our DSL from
scratch, using the methodologies proposed by [3,7,13], we can take advantage
of the accumulated experience of researchers that the ODD incorporates and
make the descriptions more formal already in ODD. Some of the advantages



Code Generation from High-Level Models 155

of using the protocol as a starting point include its existing structure [10] and
its inclusion of Agent-Based Modelling domain concerns that cover the need for
the DSL’s broadness and extensibility enabling us to skip the domain analysis.
Although Santos et al. [13] used the ODD protocol to refine the collection of
concepts for the domain analysis of their case study, researchers have not yet
taken full advantage of it to render ABMs more accessible.

There are more than 80 platforms that accommodate ABMs based on differ-
ent programming languages [1]. Unsurprisingly, all of them display shortcomings.
Our choice for a low-level language and simulation platform is NetLogo [16]. Uri
Wilensky created NetLogo to facilitate the development of Agent-Based Mod-
elling and Simulation. The platform has been widely used in the modelling com-
munity. Not only does NetLogo make it easier for non-programmers to develop
a model [1,6], but it also provides an interface that facilitates simulations and
reduces the amount of time needed to design them. In essence, a person with
no modelling experience can explore a NetLogo model on the platform. Finally,
NetLogo is an open source software with full documentation in [1]. We argue
that NetLogo provides a good starting point as the simulation language of our
tool since it accommodates a variety of models (but not large scale ones) [1].

Using this method, the two remaining challenges are: (1) a formalisation of
the sections of ODD with important information for the simulation, and (2) a
description of the transformation from ODD to NetLogo. The formalisation of
ODD is closely related to the user-friendliness of ODD2ABM. We want to make
our DSL so accessible that it could be used by experts without any programming
experience. This ease of use is intended to encourage and enable such users to
construct and adapt ABMs without overly relying on computer scientists and
coders. Finally, we want to make our DSL capable of incorporating a broad
thematic range of models to ensure robustness.

The two main challenges in the creation of a formal ODD are repetition of
information, and missing information. Missing information is information that
is available in the NetLogo code, but that is not present in the ODD. To include
such information we have to find out whether it can be generated from other
existing information, or whether it must be included into the ODD. Repeated
information could be handled by just ignoring the duplicated parts. However,
it is important that the formal parts of an ODD are reliable and if there is
duplicated information, it has to be synchronized. In MPS, dealing with this
problem involves determining the placement of the information and referring to
it every time the information appears.

One aspect of the tool’s friendliness is its capacity to automatically generate
executable code, a task which has previously required programming skills. Using
MPS, it is straightforward for non-programming experts to run their simulations.
Although we have chosen NetLogo as a target language for the code generation,
there is still a lot of variability in the actual code to be produced. This again
might influence the choice of concepts in the DSL, as we prefer concepts that
are easily implemented.



156 T. D. Xanthopoulou et al.

3.1 Metamodel Elements

To create ODD2ABM in MPS, we needed to define the structure, constraints,
editor, and generation rules of the DSL. ODD itself comes with an editor as
shown in Fig. 2. ODD2ABM uses a similar editor reusing existing elements and
adding new ones when necessary. It was not clear from the start which formal
elements would be needed for ODD. To determine them, we used the systematic
procedure described below. Finally, we created generation rules for automatic
code generation.

3.2 Procedure for Defining the Metamodel Structure

Collection of the ODD Elements and Questions. We selected the ODD
version from Grimm et al. [5]. From this version we gathered the questions related
to each element and registered them.

Selection of NetLogo Models for Concrete Model Instances and Code.
The concrete model instances aim at verifying our procedure. Since this is the
first version of ODD2ABM, we chose to start with simple models from the Net-
Logo library. For each of the models, we had an ODD description and NetLogo
code. In parallel, we consulted the NetLogo dictionary [12] and a chapter focus-
ing on Agent-Based modelling concepts for NetLogo [17]. The dictionary and
the ABM concept overview ensured that the simplicity of the first test models
will not compromise the extensibility and expressivity of our metamodel.

Matching of Each Element with the Corresponding Code. For each
element in the code of the selected models, we attempted to find matching infor-
mation in the ODD description. For example, the answers for the element “Enti-
ties, State variables, and Scales” and the entity sheep of the “Wolf Sheep Simple
5” model (see Fig. 2), match the code “breed [sheep a-sheep]” and “sheep own
[energy]”. Questions such as “What are the temporal and spatial resolutions and
extensions of the model?” are not semantically significant for the code. Using
the final code, we distinguished the ODD elements that produce parts of the
code from those that do not.

Identification of the Parts of NetLogo Code that Cannot Be Extracted
from the ODD Specifications. It is possible that some information, essential
to the code generation and conceptually relevant to the system does not appear in
the ODD specifications. For example, there are three types of entities in NetLogo
(turtles, patches, and links), but the distinction among them is not visible in an
ODD specification. Conceptually, they display different properties. Intuitively,
we categorise entities and we are able to associate each entity with a type, but the
entity name by itself does not reflect this categorisation to enable automation of
the process. We attempted to distinguish between higher-level information and
low-level information, where low-level is part of the simulation model and should



Code Generation from High-Level Models 157

not be included in an ODD. The method to accomplish this was to formulate
the information on the level of the ODD and check its conceptual validity.

Creation of Questions in the ODD Language to Accommodate Code
Generation. To deal with the identified parts from the previous step, we
designed questions to collect the relevant information. To follow up the previous
example, to distinguish patches and turtles, we created questions on whether the
entity is part of the environment or not.

We collected the questions in flow diagrams to visualize the order in which
the user should input the answers. Then, they were incorporated in the editor
description in a text format or in the editor structure. For example, general
entities and environmental entities are placed in different sections of the specifi-
cation, and this is how a question of whether an entity is general or environmental
is reflected in the editor structure.

The same procedure applies to the rest of the model. The answers com-
prise the high-level formal model of Fig. 1, thus enabling code generation. The
specifications with no semantic significance for the code generation, such as the
Purpose statement (see Fig. 3), require an informal textual answer.

Fig. 3. UML class diagram of entities, state variables, and scales

Grouping Questions that Reappear. It is possible to ask the same questions
in multiple positions of ODD. For example, to define environmental attributes
and entity attributes we need the same information. Grouping this information



158 T. D. Xanthopoulou et al.

reduces the time for the DSL development and enhances the visual representation
of the specifications.

Extraction of the DSL Structure from the Diagram. Figure 3 illustrates
part of the concepts of the DSL that relate to the ODD element “Entities, State
Variables and Scales”. Each user input corresponds to either a DSL concept (for
example the concept Entity) or to a DSL concept attribute (for example the
attribute name of the concept Entity).

Registration of Emerging Constraints. We made sure that specifications
are meaningful and did not violate common sense. For this, we extracted the
informal conditions placed on the concepts and formalized them as MPS con-
straints. If we take the example of the entity sheep (Fig. 4) of the “Wolf Sheep
Simple 5” model, we read that it contains the attribute energy of type float.
This will restrict the next line in the specification, which is the definition of the
range of values, i.e. float values. If energy was of type string, then the editor
would request a list of string values. Moreover, the editor will not allow to
specify the range of a blank or unnamed attribute.

Similarly, the attribute type given in “Entities, State Variables, and Scales”
will constrain the value that can be used in the “Initialisation” element. This
way, the editor manages the constraints of the language and provides the user
with the required help and guidance.

In general, there are two types of constraints: value constraints associated
with the description in the specification and reference constraints associated
with references to other parts of the specification (previous inputs).

3.3 Editor

The UML diagrams of the newly formalised ODD structure resemble the dia-
grams of the informal one in the sense that they expand from the seven elements.
The identified questions of the step “Creation of questions in the ODD language
to accommodate code generation” complement the initial ODD structure. The
editor for ODD is providing textual and tabular syntax for the structural ele-
ments of ODD. The original look and feel of ODD is kept by putting the elements
into text as much as possible and keeping the concepts at the same language
level. The editor of MPS provides state-of-the-art editor facilities. Some more
advanced features can be added manually.

It is particularly important when working with ODDs that the required input
is very specific, except for answers with no semantic significance. For example,
we can see in Fig. 4, that the editor description is “Color is defined for the
entity”. The initial text is “Color <Press Alt and Enter to choose to include or
not include color> defined for the entity”. When the user presses Alt and Enter
the only choices are “is” and “is not”.

The MPS editor provides auto-complete to help users identify possible con-
tinuations and lists where they need to define the possible answers, as well as



Code Generation from High-Level Models 159

Fig. 4. Formalised ODD in MPS (MPS editor) (Color figure online)

static checks on the fly in order to avoid wrong inputs. For more complex inputs,
the editor description indicates and checks the right way to configure the text.
The editor does not show text that matches specifications not enabled in the
current model. For example, in the previous example, when the user selects “is
not”, then the part where the user specifies the color method and the specific
color choice, currently visible in Fig. 4, are not shown. The editor appearance is
derived from the questions, which are similar to the corresponding concepts (see
Fig. 3). Overall, the ODD elements are connected as shown in the UML diagram
and the editor provides a rich user interface for creating an ODD document.

3.4 Executable Code Generation

Normally, code generation follows the flow of information as given in the ODD
structure. Depending on the place in the generated code, it might be the case that
information is collected from different parts of the specification. For example,
even though we choose to specify whether an entity has a color in the “Entities
State Variables and Scales” element, MPS uses these specifications to generate
code for the Initialisation part of the editor.

Code generation requires the specification to be statically correct, i.e. all con-
straints should be satisfied. This is checked already in the editor and signalled to
the user. Code generation is disabled as long as there are errors in the specifica-
tion. Utmost care was applied to make sure that the code generation is correct
whenever the specification is statically correct. For example, we can look at the
generated code for the sections in Fig. 4, which is “sheep own [energy]”. The
editor requires the user to assign the attribute “energy” to the entity “sheep”.
If no entity has been defined, it will not be possible to define an attribute for
it. Moreover, the name of the attribute has to be defined in order to enable
generation of correct code.

In general, we can identify two categories of generated code: code that
depends on the model definition and code independent of the specific model,



160 T. D. Xanthopoulou et al.

but dependent on the platform of choice. The second type relates to the sim-
ulation platform we use, which is NetLogo in our case, and is automated for
ODD2ABM.

4 Evaluation

We performed the eight-step procedure outlined in Sect. 3 for the four ODD
elements: “Purpose”, “Entity, State Variables, and Scales”, “Process Overview
and Scheduling”, and “Initialisation” and verified the result using three NetL-
ogo library models. Overall, we moved formality to the first stage of Fig. 1 and
automated the rest of the steps with the metamodel.

4.1 Expressivity and Extension

Since we created our DSL based on relatively simple models, we cannot guarantee
that ODD2ABM covers the range of social models. However, the concepts are
carefully chosen to cover a broad range of applications and possible specifications.
In the future, we will validate the DSL with more complex ABMs and introduce
more specifications. For example, we plan to further develop the interaction part
of our tool, and add the possibility of importing data from files external to the
platform. The extensibility of our DSL is ensured by MPS and the conceptual
framework we adopted.

4.2 ODD and Experts

The clear structure of the ODD protocol enabled us to enrich it as a DSL with
some modifications without losing its accessibility for users with limited pro-
gramming skills. The question remains whether the level of the language is high
enough for thematicians to engage with it. Part of the concern lies in the fact
that the original ODD targets modellers. We all use models (in a general sense)
in our everyday lives. However, the concepts employed in the Agent-Based Mod-
elling community, such as entities and attributes, may not be intuitively clear to
all users. Therefore, even if the tool is very effective for modellers, experts not
familiar with the ODD language may face difficulties in its use. In a next stage
of development we will evaluate the usefulness of ODD2ABM.

5 Summary and Future Steps

The ODD2ABM tool described in this paper serves as a proof of concept for
a methodology that incorporates DSL and MDD, uses the MPS platform, and
enables experts to create and modify their ABMs, thereby providing a new way
to enhance the reproducibility of results. During the construction of this tool, we
were careful to ensure its user-friendliness and extensibility. We selected the ODD
protocol as the basis for our DSL and NetLogo as our low-level language. The



Code Generation from High-Level Models 161

resulting DSL is original in its capabilities and properties as it accommodates
a large range of modelling themes and enables automatic code generation from
a formalized high-level model description. We plan to broaden ODD2ABM so
that it allows more freedom in model creation. A next step would be to survey
experts from different disciplines to discover whether our formalisation of the
ODD protocol needs to be further abstracted.

References

1. Abar, S., Theodoropoulos, G.K., Lemarinier, P., ÒHare, G.M.: Agent based mod-
elling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev.
24, 13–33 (2017). https://doi.org/10.1016/j.cosrev.2017.03.001

2. Garro, A., Parisi, F., Russo, W.: A process based on the model-driven architec-
ture to enable the definition of platform-independent simulation models. In: Pina,
N., Kacprzyk, J., Filipe, J. (eds.) Simulation and Modeling Methodologies, Tech-
nologies and Applications. Advances in Intelligent Systems and Computing, vol.
197, pp. 113–129. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
34336-0 8

3. Garro, A., Russo, W.: Easyabms: a domain-expert oriented methodology for agent-
based modeling and simulation. Simul. Model. Pract. Theory 18(10), 1453–1467
(2010). https://doi.org/10.1016/j.simpat.2010.04.004

4. Ghorbani, A., Bots, P., Dignum, V., Dijkema, G.: MAIA: a framework for devel-
oping agent-based social simulations. J. Artif. Soc. Soc. Simul. 16(2), 9 (2013).
https://doi.org/10.18564/jasss.2166

5. Grimm, V., Polhill, G., Touza, J.: Documenting social simulation models: the
ODD protocol as a standard. In: Edmonds, B., Meyer, R. (eds.) Simulating Social
Complexity. Understanding Complex Systems, pp. 117–133. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-540-93813-2 7

6. Hamill, L.: Agent-based modelling: the next 15 years. J. Artif. Soc. Soc. Simul.
13(4), 11 (2010). https://doi.org/10.18564/jasss.1640

7. Hassan, S., Fuentes-Fernández, R., Galán, J.M., López-Paredes, A., Pavón, J.:
Reducing the modeling gap: on the use of metamodels in agent-based simulation.
In: 6th Conference of the European Social Simulation Association (ESSA 2009),
pp. 1–13 (2009)

8. Janssen, M.A., Alessa, L.N., Barton, M., Bergin, S., Lee, A.: Towards a community
framework for agent-based modelling. J. Artif. Soc. Soc. Simul. 11(2), 6 (2008).
http://jasss.soc.surrey.ac.uk/11/2/6.html

9. JetBrains: MPS Meta Programming System. https://www.jetbrains.com/mps/
10. Klügl, F., Davidsson, P.: AMASON: Abstract Meta-model for Agent-based Sim-

ulatiON. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS
(LNAI), vol. 8076, pp. 101–114. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40776-5 11

11. Kubera, Y., Mathieu, P., Picault, S.: Interaction-oriented agent simulations: from
theory to implementation. In: Proceedings of the 2008 Conference on ECAI 2008:
18th European Conference on Artificial Intelligence, pp. 383–387. IOS Press, Ams-
terdam (2008). http://dl.acm.org/citation.cfm?id=1567281.1567367

12. Netlogo dictionary. https://ccl.northwestern.edu/netlogo/docs/dictionary.html

https://doi.org/10.1016/j.cosrev.2017.03.001
https://doi.org/10.1007/978-3-642-34336-0_8
https://doi.org/10.1007/978-3-642-34336-0_8
https://doi.org/10.1016/j.simpat.2010.04.004
https://doi.org/10.18564/jasss.2166
https://doi.org/10.1007/978-3-540-93813-2_7
https://doi.org/10.18564/jasss.1640
http://jasss.soc.surrey.ac.uk/11/2/6.html
https://www.jetbrains.com/mps/
https://doi.org/10.1007/978-3-642-40776-5_11
https://doi.org/10.1007/978-3-642-40776-5_11
http://dl.acm.org/citation.cfm?id=1567281.1567367
https://ccl.northwestern.edu/netlogo/docs/dictionary.html


162 T. D. Xanthopoulou et al.

13. Santos, F., Nunes, I., Bazzan, A.L.: Model-driven agent-based simulation develop-
ment: a modeling language and empirical evaluation in the adaptive traffic signal
control domain. Simul. Model. Pract. Theory 83, 162–187 (2018). https://doi.org/
10.1016/j.simpat.2017.11.006

14. Sargent, R.G.: Verification and validation of simulation models. J. Simul. 7(1),
12–24 (2013). https://doi.org/10.1057/jos.2012.20

15. Wilensky, U.: Netlogo wolf sheep predation model. Report, Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL
(1997). http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation

16. Wilensky, U.: Netlogo home page. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL (1999). http://ccl.
northwestern.edu/netlogo/

17. Wilensky, U., Rand, W.: The Components of Agent-Based Modeling, 1st edn, pp.
203–282. The MIT Press, Cambridge (2015)

https://doi.org/10.1016/j.simpat.2017.11.006
https://doi.org/10.1016/j.simpat.2017.11.006
https://doi.org/10.1057/jos.2012.20
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/


Towards a Representation of Cellular
Automaton Using Specification
and Description Language

Pau Fonseca i Casas(&)

Universitat Politècnica de Catalunya, Barcelona 08034, CA, Spain
pau@fib.upc.edu

Abstract. Environmental simulation is complex, not only due to the inherent
complexity of the phenomenon that we are facing but also to the fact that the
personnel involved in this kind of projects belongs to different areas and spe-
cialties. In this scenario, the use of a formal language is needed since it sim-
plifies the interaction between the parts. A key element that must be represented
in an environmental simulation model is a Geographical Information System
(GIS) data. This representation often uses Cellular Automaton structures since it
allows to represent, not only the data but also its behavior inside the simulation
model. In this work, we explore the use of SDL, that among other benefits we
can remark that it is an ITU-T standard language and allows a complete
graphical description of the models and several tools allows a semi-automatic
implementation of the models.

Keywords: SDL � Cellular automaton � Formal representation �
Fibonacci function

1 Introduction

The data used on environmental simulation models often can be dynamically modified
by the behavior of the model, and usually, the results of the simulation model are
mainly this dynamic modification of the data. As an example, for a decision support
system related to forest fires [1, 2], the data representing the temperature for a geo-
graphical area can be both an output from the model and an input to the model.
Therefore, the data and its structure is a key element of the model definition. Focusing
on the conceptualization of a simulation model, to be able to do a complete and non-
ambiguous representation of the system is necessary to represent:

1. The structure: that allows depicting the hierarchical decomposition of the model and
the relation between all the different subcomponents and sub-models.

2. Behavior: that details the model processes and activities.
3. Data: that detail, not only the data, but its relationship with the model, and how the

nature of the data modifies the structure of the model itself. On the paper, data
declarations are made using C notation, conform to Z.104 Annex C clause C.1 C
language binding.

© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 163–179, 2019.
https://doi.org/10.1007/978-3-030-30690-8_10

http://orcid.org/0000-0002-6747-9736
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_10&amp;domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_10


For environmental simulation, the problem with the data and its impact on the
structure of the model is specifically how to represent a Cellular Automaton (CA),
because CA are widely used to represent geographical and dynamical information in
environmental simulation models [3–7].

Specification and Description Language (SDL) [8–10], is an ITU-T standard lan-
guage, that allows a graphical, complete and unambiguous representation of a simu-
lation model. The different concepts that the SDL covers are:

1. System structure: from the blocks to the processes and their related hierarchy.
2. Communication: signals, communication paths or channels, parameters that can be

carried by the signals, etc.
3. Behavior: defined by different processes.
4. Data: based on Abstract Data Types (ADT).
5. Inheritance: useful to describe relations between objects and their properties.

In this paper we are focused on how SDL can be useful to describe the data related to
an environmental model, using Inheritance, Data, and Communication in the diagrams.

1.1 Cellular Automaton

For the integration of a simulation model with Geographical Information System
(GIS) data, that is often needed in an environmental model, it is useful to use a CA, due
to its ability to effectively represent large-scale spatial dynamic phenomena [3, 4, 11].

CA is mainly a matrix and a set of rules that defines the matrix modifications over
time. This behavior is completely specified in terms of a local relation. Table 1 shows
one-dimensional CA after successive applications of the Wolfram’s 30th rule. Table 1
shows the 30th rule using Wolfram’s notation, see [12], where for each iteration we
apply again the rule modifying the states of the cell.

Table 1. Rule 30 CA.

Current pattern 111 110 101 100 011 010 001 000

New state for center cell 0 0 0 1 1 1 1 0

Fig. 1. One-dimension CA following Wolfram’s 30th rule. Source Zhiming Wang [CC0]. Each
row in the picture represents an evolution in the CA.

164 P. Fonseca i Casas



However, although this method of representing CA is simple, there are some clear
limitations that we must consider:

1. Only one matrix (or vector in the rule 30 case) is considered, but in environmental
simulation often there are several matrixes that are going to interact between them,

2. The evolution function that defines how the CA evolves is quite simple, the function
can become more complex that cannot be represented with a simple pattern in a
table. As an example of both limitations, in a simulation model representing a
wildfire, it is needed to combine the data that represents the elevation, with the
moisture, the wind direction, and other information, and calculate a complex
function to be able to obtain a new state for the cell [2]. Also, on this function it is
not considered how the time is going to be managed, there is no definition of the
time needed to do the different operations (calculus).

3. The third constraint, that although is solved on our proposed CA is not detailed in
this paper, is that we are restricted to a discrete state space (the matrix) while in
environmental simulation, and specifically if we want to use continuous data (like
the one represented on vector files i.e. representing rivers or territorial divisions), we
must do always a rasterization of the data, losing some information in this process.

To solve these problems, we use a generalization of a cellular automaton that
allows defining different layers on the same cellular automaton. We named this gen-
eralization m:n-CAk, an initial proposal of this can be consulted on [13]. This gener-
alization helps us to understand the complexity of the model we are going to face. Also,
it simplifies the categorization of the different layers we are using, with a classification
based on the existence or the absence of an intrinsic behavior on the layer. Main layers
are those who have defined a specific behavior, this in our methodology is represented
clearly because these layers have an SDL PROCESS representing this. Secondary
layers are a simple matrix of data that are needed to perform a calculation, and because
they do not own a specific behavior are fixed values.

1.2 Multi:N-Dimensional Cellular Automata (m:n-CAk)

A multi:n-dimensional cellular automaton (m:n-CAk) is a generalization of a cellular
automata composed by m layers with n dimensions each one, see (1).

m : n� CAk ð1Þ

Where

• m: is the automaton number of layers.
• n: is the dimension of the different layers.
• k: is the number of main layers (1 by default). If set to 0 we are using a matrix of

cells, but no modification is applied to them.

A layer in an m:n-CAk is a main layer if a transition function K is defined in order
to modify its state. An m:n-CAk automaton presents k main layers. Note that if k = 0
then we have an m:n-1, that is just a matrix of data, if k = 1 we have a usual CA (1:n-

Towards a Representation of Cellular Automaton Using Specification 165



CA is the same as an n-dimensional CA, a two-dimensional CA is represented as 1:2-
CA). Some aspects to consider are:

1. Layers that modify their cell state are called main layers. The maximum number of
main layers is m. The number of main layers is represented by k (m � k). A given
automaton may have more than one main layer. If k = 0 we have just a matrix of
data.

2. The combination function W allows state calculation in a main layer, it depends on
the state of all the other layers of the automaton.

3. It is not needed that the data follows the raster format because all layers share the
same reference system. Thus, vector data may be used in m:n-CAk. The W
function determines the cell state independently of the structure of the layer data.

Vector data are quite usual in GIS, but in contrast to raster data (that is composed
by a matrix containing the values), vector data presents a virtual continuous space that
contains lines, polygons, etc. In this paper, we refer to vector data as an example of
continuous information that can be used in a CA although in the examples we will be
focused, for the sake of simplicity, on the raster case.

Extension of the Definition of a Neighborhood and the Concepts of Vicinity and
Nucleus. In traditional cellular automata, the neighborhood function is defined to
determine which cells are considered in the expression used to change the cell value,
see Table 1. Because we accept vector data (continuous space) in our m:n-CAk layer,
the concept must be redefined without using cells and considering that all the layers
share the same reference system, i.e. all the layers in a m:2-CAk starts on the same
physical position, as example (0,0). Therefore, the space that characterizes a neigh-
borhood must be defined without cell dependency.

From a position x1,..,xn, the vicinity function defines the points to be considered in
the evolution function in new layer-state calculation.

From a position x1,..,xn, the nucleus function defines the environment to be
modified after the evolution function is calculated. The concept of neighborhood is
related to the concept of topology and formalizes a colloquial concept.

In the mathematical definition, a topological space is a nonempty set X with a
defined topology. It is represented as (X, T). If (X, T) is a topological space and p is a
point in X, a subset A of X is a neighborhood of p if an open U of the topology T exists
such that p 2 U � A.

The relationship between mathematical topology and the concepts of vicinity and
nucleus allows us to formalize the ordination of points in layers on two levels. The first
level represents the points considered in the calculation of a new state. The second level
represents the points to be modified once the state changes.

The finest topology on X is the discrete topology, which implies the modification of
points. The coarsest topology on X is the trivial topology, which consists of only two
elements: T = {Ø, X}. In these two cases, the open sets that make up the space are
defined by two topologies, nucleus and vicinity, which represent the points to be
modified through a function Kk, named evolution function, that we will describe later,
and the points to be considered in the calculation of a new state. Mathematical topology
allows the explicit definition of neighborhoods for different points. Hence, in a raster

166 P. Fonseca i Casas



layer (discrete space), a neighborhood can be explicitly defined for each point. For m:n-
CAk automata, these two topologies are defined as follows:

• Vicinity topology defines the set of points (neighborhood) of layer k to be con-
sidered in the calculation of Kk.

• Nucleus topology defines the set of points (neighborhood) of layer k to be modified
by the calculation of Kk.

These two topologies define the neighborhood structures necessary for each point
to establish the vicinity and the nucleus. However, not all neighborhoods can be used to
represent the nucleus or the vicinity, and only one set can be used.

To define the set to be used for a point’s neighborhood, a metric must usually be
defined, based, for instance, on Euclidean distance (2).

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ2 þðx2 � y2Þ2

q
ð2Þ

Distance d(x,y) allows for the definition of neighborhood bases as follows (3)

B x; rð Þ ¼ fy 2 <m=d x; yð Þ\rg ð3Þ

This is the usual topology for RxR [14] and will become one of the most common
topologies for an m:2-CA based on the RxR space defined by the usual distance, note
that this is a continuous space. We can generally define a distance r from the point x by
defining the restrictions of the selected neighborhood. A typical restriction rule is to
calculate the minimum neighborhood that contains all points for which d(x,p) < r. For
instance, in the usual topology presented in (3), B(x,r) is the minimum neighborhood
that satisfies this restriction. In a more general topology, the restriction defines only one
neighborhood for all the sets.

In an m:n-CAk, two restriction rules must be defined: one for the vicinity topology
and one for the nucleus topology. These two restriction rules are used to construct the
vicinity and nucleus functions. We can now define the vicinity and nucleus functions.

• Vicinity function vnm(x1,..,xn) returns the minimum open set of the vicinity
topology for the layer m, that contains point x1,..,xn and includes the maximum
points that satisfy the restriction and the minimum points that do not satisfy the
restriction. If the restriction is defined by the usual distance, it represents a neigh-
borhood that contains the maximum points that satisfy d(t,p) < r and the minimum
points that satisfy d(t,p) � r.

• Nucleus function ncm(x1,..,xn) returns the minimum open set of the nucleus
topology that contains point x1,..,xn and includes the maximum points that satisfy
the restriction and the minimum points that do not satisfy the restriction. Depending
on the type of data in the different layers, the topology nucleus and neighborhood
are defined over Nn or Zn (in the raster case) or Rn (in the vector case). We can
consider however working in other systems like the Complex or the Octonions.

Towards a Representation of Cellular Automaton Using Specification 167



With this redefinition of the vicinity and nucleus central concept in CA, we can go
further to understand how the CA is going to modify its values following a specified
rule

Combination Function (W). Each cell of the matrix that defines an m:n-CAk has a
specific value. We define the number of possible states in the cell for the layer m with
Sm, being a value that is not needed to be constrained in the body of the natural numbers,
one can define Sm on the body of the Real or Octonions numbers (as an example)
without any constraint. To combine the different Sm that belongs to the m:n-CAk is
needed to define a common reference, and a coordinate system, composed by n ele-
ments. With this, we can define the state of the cell in a m:n-CAk as is presented on (4).

Em ncmðx1; ::; xnÞð Þ ¼ Si ð4Þ

The function Em represents the state of each cell (nucleus) in the different layers of
the automaton. Note that if one considers only the state for the main layers, we can note
this with Ek However, this state is not the global state of the automaton. For the
coordinates x1,..,xn the function EG returns the global state of the automaton. To be able
to calculate this EG is needed to define the Combination function (W), that returns the
global state for a position using individual layer states, see (5).

W E1 nc1 x1::xnð Þð Þ;m�1Þ ;Em ncm x1::xnð Þð Þ
� �

¼ EG x1::xnð Þ ð5Þ

The definition of theW function depends on the structure of a given automaton. In a
1:n-CA, this function is the identity function, returning as EG the nucleus of the single
layer that exists (in that case main layer). This can grow in complexity in other
scenarios, see (6).

W E1 nc1 x1::xnð Þð Þð Þ ¼ E1 nc1 x1::xnð Þð Þ ¼ EG x1::xnð Þ ð6Þ

Evolution function (Kj) in an m:n-CAk In common cellular automata, the evolution
function allows modify the Em for each main layer, hence is focused on modify only
the Ek, the main layers. Evolution function (Kj) for a common cellular automata
usually operate recalculating the Ek defining a Δt intervals, or, for a CA that does not
define how to manage time, like the one presented on Fig. 1, calculating the new Ek

from the previous Ek at a single step.
In m:n-CAk automata, space can be represented as being continuous, but also time

evolution can be considered as continuous, hence, the evolution function must also be
(if needed) a continuous function. As we will see in our approach, the formal definition
of the CA is based on SDL that will be agnostic on how the time is going to be updated,
hence is possible to define an Activity Scanning [15] approach to model Kj achieving
if needed a good approximation to a continuous time evolution. In the example pro-
posed in this paper, is not needed to use continuous time, hence Event Scheduling usual
approach will be enough. Kj is defined for main layer k to modify its state using the
combination function W.

168 P. Fonseca i Casas



The relationship between m:n-CA and common CA can now be established, being
m:n-ACk a generalization of a common cellular automaton, since 1:n-CA over Zn

defines a usual CA. We must establish a general method to define the CA structure and
behavior (W and Kj functions). To do so we explore the use of SDL in the next
sections.

1.3 Specification and Description Language

Specification and Description Language (SDL) is a standard object-oriented formal and
graphical language defined by the International Telecommunications Union–
Telecommunications Standardization Sector (ITU–T) (the Comité Consultatif Inter-
national Telegraphique et Telephonique [CCITT]) on the Z. 100 recommendation. On
its origins, SDL was designed for the specification of event-oriented, real-time and
interactive complex systems. These systems might involve different concurrent activ-
ities that use signals to perform communication. SDL is based on the definition of four
levels to describe the structure and the behavior of the models: system, blocks, pro-
cesses and procedures. In SDL blocks and processes are named agents. The outermost
block, the system block, is an agent itself. Figure 2 shows these levels hierarchy.

Although a textual SDL representation is possible (SDL/PR), this paper uses the
graphical representation of the language (named SDL/GR). More details about the
Specification and Description Language can be found in the recommendation Z.100
[16] or at the web site [17]. BLOCKS, PROCESS, and PROCEDURES define the basic
structure and behavior of a simulation model, however, in order to represent envi-
ronmental models, this is not enough. We need some structure in order to represent the
data and its relationship with the simulation model, it is needed to detail, how the
evolution of the simulation model modifies its surrounding data, and how this data
influences on the model behavior. To do this we start with the definition of the cellular
automatons following an m:n-CAk over Nk numbers.

Fig. 2. A structural vision of an SDL model. 4 main different levels exist.

Towards a Representation of Cellular Automaton Using Specification 169



2 Representing m:n-CAk on SDL

In order to solve the representation of CA (and specifically m:n-CAk) with SDL we will
define an AGENT TYPE to represent the layers of the CA, and a method to instantiate
all the needed cells of the model, that will be represented also by a second
AGENT TYPE. This allows representing graphically the interaction between the model
and the data, and between all the layers that compose the CA. Starting with the needed
information on each cell, we must define the neighborhood, the nucleus, the ID of the
current cell, and define a method to modify the value of the matrix that contains the
information of the CA, see Fig. 3. that represents the Kj. Note that the state of the CA
cell, in the case of a main layer, is going to be modified due to the inherent behavior of
the PROCESS, however, one must want to obtain the initial value from the matrix or to
write this value to the matrix that represents this layer.

This process will be rewritten adding the behavior of the Kj that details how the
cell behaves. Once the cell behavior is defined, the next step is to define its structure,
mainly by several layers and cells. Again, this can be done using SDL agents. The layer
is the element that (depending on the dimensions of the cellular automaton) creates all
the needed cells. One can define this number of cells following a process like the one
proposed in Fig. 4.

Fig. 3. Definition of the m:n-CAk on SDL. This PROCESS TYPE will define the nucleus,
neighborhood and the needed PROCEDURES to work with a usual CA, as an example, by default
a Moore neighborhood can be implemented. The specific behavior of the cell, the Evolution
function, must be redefined for each specific case along with the PROCEDURES if needed.

Fig. 4. A method to define the number of instances to be created, see [18]

170 P. Fonseca i Casas



In that case, the modeler must define, for each layer the number of cells that
compose this layer. We prefer to avoid using this approach since we are focused on CA
modeling and each one of the different layers of our CA must be defined using a file
that usually can contain the dataset to be used and modified during the execution of the
model. We propose to use the approach shown in Fig. 5, where the dimensions of the
layers (the number of cells) are obtained from the dataset (represented in the simple
case in a text file), assuring a coherence between the dataset to be used in each layer in
the CA and the conceptual model definition of the CA. Also, we can establish a relation
between the cell number and the PId. With this information later we can simplify send
SIGNALS to a subset of the cells that compose the layer.

We can add mnCALayer to a package named mnCA that will be used to simplify
the definition of a CA in SDL. The cells do not have a specific behavior defined. The
user must define the specific behavior for the cells as is represented in the example of
this paper in Figs. 11 and 12. This is a key element since the modelers can focus on this
diagram in order to understand cellular automaton behavior.

All these agents can be packaged and can be included in any project that needs to
represent a cellular automaton using SDL. As an example, we present the well-known
Game of Life using this, because of its simplicity. The main idea is that for the
representation of a model that uses a cellular automaton it is only needed to write the
behavior of the cells and the relation of the cells with other cells of other layers. All can
be done graphically as we see next (Fig. 6).

Fig. 5. Definition of a m:n-CAk layer on SDL. In this BLOCK the mnCALayerManager creates
all the instances of the cells; each instance receives its number (N) that identifies it on the matrix,
obtained by reading the data file that contains the state for each cell at the initial state. We store
for each N the PId in a table contained in the mnCALayerManager. ChIn will be the usual
communication CHANNEL between the manager and the cells of the CA. ChOut will be used to
send SIGNALS to the redefined evolution function, only if needed, due to the combination
function represented on the layers diagram. Ch01 will be used in case the mnCALayerManager is
asked by some AGENT to obtain the PId of a specific cell “N” of the layer (outside the layer).

Towards a Representation of Cellular Automaton Using Specification 171



2.1 Extending the SDL to Define a Cellular Automaton

When we try to define the behavior of the cellular automaton two main issues need to
be solved, the time management and the multiple instances management.

Fig. 6. Definition of the mnCALayerManager. ReadLayer(N) PROCEDURE modifies N
according to the number of existing layers on the CA.

172 P. Fonseca i Casas



Regarding the time management, we use the feature of SDL-2010 that allows
defining time and priority in the SIGNAL. Every SIGNAL that is output has an optional
parameter that defines the time needed to travel to its destination, and an optional
parameter defining the signal priority with respect to other signal instances in the
destination input queue scheduled, for the same time. From this time parameter and the
value of now at the time the signal is output, an availability time is calculated. It is
needed also to comment that the communication path may include delaying channels, so
this delay must also be added to the calculus. If the availability time is greater than
arrival time, the signal remains unavailable until the availability time is reached. SIG-
NAL instances in the input port are ordered by the time of arrival. If the time parameter
is omitted, then the delay is zero; When a signal is output and no signal priority is
specified, it is given the priority value 0. When there are several signals available with
different signal priority values, the signal with the lowest priority value is selected. The
signals in the input port are scanned in the following order to determine whether there is
a signal that is enabled: first, by the order of the arrival time in the priority inputs, and
then, by the order of the arrival time for other (non-priority) inputs. For those signals that
have the same arrival time, the signal priority determines which signal is processed first.
If two signals have the same signal priority, then the order is arbitrary. In Fig. 7 is
represented a SIGNAL and how it will be used in the context of the paper.

The SIGNAL management in a CA differs from a usual process because all the cells
of the nucleus will be updated by Kj, hence it will be usual to send SIGNALS to a set
of cells (PROCESS). In order to simplify this, we propose to extend the semantics of
SDL allowing to send a SIGNAL to a MNCA that will receive as a parameter a list of
cell arguments. The cell list parameter can be also the keyword ALL, representing that
all the cells of the layer will receive the SIGNAL. On Fig. 8 is shown an example
where a SIGNAL is sent to the same AGENT (itself).

Fig. 7. Defining the delay, and the priority of the SIGNAL on SDL-2010.

Fig. 8. Proposed extensions in order to define the cell that can receive a specific signal when the
AGENT belongs to a cellular automaton. On the left side, we send the Iterate SIGNAL to two
cells, one represented by the variable currCell and cell number 1. On the right side, we send the
Iterate SIGNAL to all the cells on the cellist that mnCAEvolutionFunction owns by default.

Towards a Representation of Cellular Automaton Using Specification 173



On SDL one can send a SIGNAL to a list of destinations using “Iterate TO
mnCACell[currCell] TO mnCACell [1]”, or defining a list of String <PId> to be
processed, but the proposed approach makes clear that the signal is sent to cells of the
current CA (TO MNCA), simplifying its understanding. Also, notice that this extension
can be implemented easily on SDL processing the signals to send one by one from the
list but simplifies the lecture and the definition of the models; also, it allows to obtain
improved codifications for this specific case.

2.2 The Game of Life

The Game of Life is a cellular automaton devised by the British mathematician John
Horton Conway in 1970 [19]. The universe of the Game of Life is an infinite two-
dimensional orthogonal grid of square cells, each of which is in one of two possible
states, alive or dead. Every cell interacts with its eight neighbors.

The rules that define the evolution of the automatons are:

• If the neighborhood of the cell contains less than two live cells, the cell dies.
• If the neighborhood of the cell contains more than three life cells die.
• If the neighborhood of the cell contains three life cells, the cell becomes a living

cell.

This description is not complete, since there is no description on the dimension of
the CA, also, there is no description on the process followed by the CA that can cause
different patterns to emerge. There is also no description on the time needed to do this
modification, that can differ depending on the position. More interestingly, there is no
method to connect with a specific dataset that contains an initial space of states of the
CA or a method to connect with other models that will be using this CA. Although in
this case (that is selected for the sake of simplicity, in order that the reader be used with
the SDL representation), seems that the description of the CA following Wolfram’s of
textual representation is simple, there are clear advantages on the formalization of the
CA. Some examples where without a formalization one cannot represent the behavior
of the CA can be reviewed here [5, 13, 20]. Also, notice that from this description a
codification must be done, a process that can introduce some errors that must be
verified.

The structure of SDL allows to detail if we want to execute each one of the different
cells in different computers. This is a decision that can be represented graphically
because in SDL all the elements contained inside a BLOCK agent can be executed in
parallel. This is what happens in our case, since the element that details this is a
BLOCK, see Fig. 9. Note that this diagram just represents the dimension and the
structure of the CA.

174 P. Fonseca i Casas



Inside the BLOCK agent, we find (in the “Game of Life” case) a complete
description of the behavior that rules the agent’s evolution. Since in a CA every cell
behaves in the same manner, we only need to describe one single Process for eachMain
Layer. Thus, our B_gameOflifeMainLayer example Block will contain a single Process
describing its nature, see Fig. 10. Notice that here one can represent the connection with
other model elements that can interact with the CA during its execution.

In Figs. 11 and 12 we can see a simple example of this representation. A cell has
three possible states: Loading, Death and Alive. Note that the behavior of a cell is the
definition of Kj. Loading state (Fig. 11) is used to initialize the CA, in the example, we
assign the Death state by default with the exception of 5 concrete cells that will
represent a Blister element. Once the model has been loaded, the PROCESS starts

Fig. 9. Definition of a cellular automaton layer on SDL that represents the Conway’s “Game of
Life”. In this simple case, only one main layer exists, however in other cases several layers are
going to interact, and at this level, the formal representation of this interaction will be needed.
This interaction defines the combination function that represents how the information is going to
flow from one layer to another. Here the SIGNALS that will transport the information between
the layers will be defined.

Fig. 10. The definition of the cellular automaton layer. Here we find the main elements that
compose the layer, the cells, and any other PROCESS that must be defined to represent the
dynamic behavior of the cellular automaton. The inherited elements need not be redefined.

Towards a Representation of Cellular Automaton Using Specification 175



iterating via the Iterate signal. Since an iteration represents a step in a CA, we easily
can describe the evolution rules. In the example, we can see the evolution rules of Alive
and Death state in Fig. 12.

To validate the model the experts can concentrate their efforts on the behavior
described on the mnCAEvolutionFunction. Also, the implementation of the model can
be based on the existing SDL tools. It is quite remarkable that the graphical definition
we have of the model is complete and unambiguous. This model was successfully
implemented on SDLPS [21, 22]. Some projects that implement this kind of solution
are [1, 5, 13], where one can review that the definition encompasses not only the usual
description of the rules of the CA, but also, the time needed to do the update on the
cells, the relation of the data in each cell with other datasets, the relation of the CA with
other models and the mechanism to combine the layers, among other elements that
often are not represented in this kind of models.

Fig. 11. Loading state for the Game of Life formalized using SDL.

176 P. Fonseca i Casas



3 Concluding Remarks

Environmental models need geographical information that often must be modified
dynamically. CA are widely used to represent this information and connect it with a
simulation model. Since the behavior of the cellular automaton is a key issue it is
desirable that this behavior can be represented in an unambiguous and formal way.
Some alternatives exist in order to formalize a CA, however, none of them is based on a
complete, unambiguous, standard, graphical and formal language like SDL. This fact
simplifies the verification process of a simulation model since the implementation can
be done automatically by the tools that understand SDL.

Fig. 12. Alive and Death states for the Game of Life formalized using SDL.

Towards a Representation of Cellular Automaton Using Specification 177



In the paper we presented an extension of a CA that allows working with multiple
raster and vector layers in a CA, extending the concept of nucleus and vicinity over a
topological space. Based on this extension we define a new AGENT TYPE that allows
representing CA structure. Also, it allows to automatically use the data sources auto-
matically on the model defining a clean method to keep the dataset that represents each
CA layer updated during the execution of the model.

The proposed extensions for SDL introduce the capability for SDL to become a
language that can face problems related to the environment, where the representation of
the landscape is a key aspect. This becomes more relevant in the frame of Industry 4.0,
and considering that SDL can be a good candidate to become a key language in this
area [23]. The approach simplifies the use of geographical data and CA models in a
simulation model improving Validation and Verification processes. Modelers can see
the different layers (sources of information) that compose the model in a graphical way.
Also, in this graphical representation is represented the relations between all the model
layers. In the mnCALayer this is clearly represented.

We showed a complete example, the Game of Life, to illustrate how SDL can
represent Cellular Automatons; however, this methodology can be used to represent
real complex problems and take advantage of its graphical power, the unambiguity of
the language, its completeness and the existing tools that allows an automatic valida-
tion, verification and generation of code.

A discussion arises regarding the computational complexity of a specific codifi-
cation following this approach since each cell of the CA owns an AGENT. The
codification that one can apply can simplify largely the computational resources needed
and depends if finally, the platform will be a distributed or a sequential one, and in the
case of a parallel architecture if it uses shared memory or not. This discussion, how-
ever, is a discussion that exist in the frame of CA codification (not for this approach),
where the structure of the CA and the natural communication between all the different
parts implies that often the codifications are resource-intensive, and can benefit from a
clear and aseptic formal definition of the CA structure.

References

1. Jové, J.F., Fonseca i Casas, P., Petit, A.G., Casanovas, J.: FireFight: a decision support
system for forest fire containment (2014). https://doi.org/10.1007/978-94-017-9136-6_19

2. Andrews, P.: BehavePlus fire modeling system: past, present, and future. In: Proceedings of
7th Symposium on Fire and Forest Meteorological Society (2007)

3. Benenson, I., Torrens, P.M.: Geosimulation. Wiley, Chichester (2004). https://doi.org/10.
1002/0470020997

4. Andrews, G.: Cellular Automata and Applications, p. 29 (2008)
5. Fonseca, P., Colls, M., Casanovas, J.: A novel model to predict a slab avalanche

configuration using m:n-CAk cellular automata. Comput. Environ. Urban Syst. 35, 12–24
(2011). https://doi.org/10.1016/j.compenvurbsys.2010.07.002

6. Stephen, W.: Statistical-Mechanics-Cellular-Automata-Stephen-Wolfram-Article.pdf (1983).
https://doi.org/10.1103/RevModPhys.55.601

178 P. Fonseca i Casas

http://dx.doi.org/10.1007/978-94-017-9136-6_19
http://dx.doi.org/10.1002/0470020997
http://dx.doi.org/10.1002/0470020997
http://dx.doi.org/10.1016/j.compenvurbsys.2010.07.002
http://dx.doi.org/10.1103/RevModPhys.55.601


7. Yue, H., Hao, H., Chen, X., Shao, C.: Simulation of pedestrian flow on square lattice based
on cellular automata model. Phys. A Stat. Mech. Appl. 384, 567–588 (2007). https://doi.org/
10.1016/j.physa.2007.05.070

8. ITU-T: Specification and Description Language – Data and action language in SDL-2010
(2016)

9. ITU-T: Specification and Description Language – Overview of SDL-2010 (2011)
10. Doldi, L.: SDL Illustrated - visually design executable models (2001)
11. Wainer, G.A.: Advanced Cell-DEVS modeling applications: a legacy of Norbert Giambiasi.

Simulation (2018). https://doi.org/10.1177/0037549718761596
12. Wolfram, S.: A New Kind of Science (2003)
13. Fonseca, P., Casanovas, J.: Simplifying GIS data use inside discrete event simulation model

through M:N-AC cellular automaton. In: International Mediterranean Modeling Multicon-
ference, I3 M 2005, European Modeling Simulation Symposium EMSS 2005, pp. 7–15
(2005)

14. Brendon, G.E.: Topology and Geometry (1993)
15. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis (1991)
16. ITU-T: Z.100. Specification and description language (SDL) (2016)
17. ITU-T: Specification and description language - overview of SDL-2010. http://handle.itu.int/

11.1002/1000/12846%0A
18. Doldi, L.: Validation of Communications Systems with SDL. The Art of SDL Simulation

and Reachability Analysis (2003)
19. Adamatzky, A., Durand-Lose, J.: Collision-Based Computing. Springer, London (2002).

https://doi.org/10.1007/978-1-4471-0129-1
20. Fonseca i Casas, P., Colls, M., Casanovas, J.: Towards a representation of environmental

models using specification and description language-from the fibonacci model to a wildfire
model. In: KEOD (2010)

21. Fonseca i Casas, P.: Using specification and description language to define and implement
discrete simulation models. In: Summer Computer Simulation Conference, SCSC 2010 -
Proceedings of the 2010 Summer Simulation Multiconference, SummerSim 2010, pp. 419–
426 (2010)

22. Fonseca i Casas, P.: SDL distributed simulator. In: 2008 Winter Simulation Conference
(2008). https://doi.org/10.1109/WSC.2008.4736433

23. Sherratt, E., Ober, I., Gaudin, E., Fonseca I Casas, P., Kristoffersen, F.: SDL - the IoT
language (2015). https://doi.org/10.1007/978-3-319-24912-4_3

Towards a Representation of Cellular Automaton Using Specification 179

http://dx.doi.org/10.1016/j.physa.2007.05.070
http://dx.doi.org/10.1016/j.physa.2007.05.070
http://dx.doi.org/10.1177/0037549718761596
http://handle.itu.int/11.1002/1000/12846%250A
http://handle.itu.int/11.1002/1000/12846%250A
http://dx.doi.org/10.1007/978-1-4471-0129-1
http://dx.doi.org/10.1109/WSC.2008.4736433
http://dx.doi.org/10.1007/978-3-319-24912-4_3


Interoperability



Goal Model Integration: Advanced
Relationships and Rationales

Documentation

Malak Baslyman and Daniel Amyot(B)

University of Ottawa and Institut du savoir Montfort, Ottawa, Canada
{mbasl071,damyot}@uottawa.ca

Abstract. Integrating new technology in a business environment raises
many challenges such as ensuring that this technology meets stakeholder
requirements and contributes to organizational goals. However, before
analyzing the impact of technology on requirements and goals, goal
models of the current context and of the proposed technology should
be merged to reflect the whole context. Existing merging approaches
mainly focus on merging partial views of a goal model, which belong
to one context. However, merging different goal models to reflect one
holistic context, such as in technology integration, is not addressed. This
paper presents a Goal Integration Method targeting different initial con-
texts, enabling completeness and consistency analysis of the integrated
goal model, and providing traceability to rationales and decisions made
at integration time. The method introduces advanced relationships and
procedures to capture newly added elements or raised conflicts that may
occur during the integration. The method is presented with the help of
a conceptual model and an algorithm. It also exploits the User Require-
ments Notation with tool support (jUCMNav) for building and inte-
grating goal models. The feasibility of the method is illustrated through
a case study. The method formalizes the integration of multiple goal
models belonging to different contexts, and the accommodation of new
requirements, while providing comprehensive traceability and rationales.

Keywords: Goal-oriented modeling · GRL · Model merging ·
Technology integration · User requirements notation

1 Introduction

In the context of technology integration, important goals are identified by differ-
ent groups, such as technology providers and the organization where the tech-
nology is to be used. Stakeholder and system goals and their relationships can
be captured with models. A global view of the technology-related and context-
related goal models that enables holistic evaluations is needed to assess the
potential impact of technology, before its acquisition and deployment. Integrat-
ing models often means merging partial views of structural or behavioral models,
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 183–199, 2019.
https://doi.org/10.1007/978-3-030-30690-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_11


184 M. Baslyman and D. Amyot

leading to one comprehensive view of the model. Much work has been done on
the merging of behavioral models in the literature. However, goal model merg-
ing is still a challenging task due to many factors such as the usage of different
vocabularies, stakeholder disagreements, semantic correctness, and inconsistency
issues [7,18].

As a sample realistic context, let us assume that a hospital considers using a
new technology to improve care quality. The hospital already has a goal model
of the caregiver, administration, patient, and organizational goals along with
performance objectives. In the absence of a goal model, one can be constructed
according to existing guidelines such as those of Liaskos et al. [14], Akhigbe
et al. [1], or Alwedian et al. [2]. Before deciding on purchasing and deploying
the new technology under consideration, the impact of the candidate technology
on the hospital’s goals should be assessed and answers should be provided to
many questions such as: To what extent will the new technology contribute to
the satisfaction of stakeholders’ goals? Will the performance be affected? How
can we help ensuring that agreement is actually reached? To answer such ques-
tions, the goal model of the technology (produced by the technology provider
or created according to the guidelines previously identified) and the goal model
of the current context should be integrated. Existing work provides insights to
solve, partially, this problem. However, there is no formal method describing
how goal models of different contexts can be integrated and how new elements,
relationships, or impacts, which may be introduced accordingly, will be captured.

The problem space of technology integration, considering goal models, over-
laps the goal model merging domain as well as elicitation and validation aspects.
In this paper, we propose a new Goal Integration Method to describe formally how
goal models of different contexts can be integrated while enabling the analysis of
consistency, completeness, and semantic correctness. The method introduces new
relationships and procedures to follow in the cases of similarity, dissimilarity, and
conflicts in the input models, and new added/changed elements resulting from
the integration. In addition, the method systematically and iteratively validates
the resulting integrated goal model and highlights opportunities for further elic-
itation. It also documents traceability of decisions made during the integration.

Although the ideas introduced here can apply to many goal-oriented modeling
languages, a specific one is used to make the method concrete. We use the Goal-
oriented Requirement Language (GRL) because GRL is part of an international
standard (User Requirements Notation – URN [13]), it enables the modeling of
stakeholders and their goals, and it supports indicators (for quantitative reason-
ing), contribution relationships, metadata, and evaluation strategies with various
propagation algorithms. GRL is also well supported by the jUCMNav tool for
evaluating the satisfaction of goals and actors under selected strategies [3,15].

The Goal Integration Method is used manually with jUCMNav at this time,
but the verification of integration constraints is automated. Additional parts of
the method will be automated in the future, but some parts will still require
the input of experts, e.g., decisions regarding the similarity of model elements
coming from different domains.



Goal Model Integration 185

The rest of the paper is organized as follows: Sect. 2 provides an overview
of related work, while Sect. 3 describes the proposed Goal Integration Method.
Section 4 presents the formalization used to ensure well-formedness and consis-
tency of the proposed method. Section 5 illustrates the usefulness of the integra-
tion method with the help of a healthcare-related case study. Section 6 discusses
some challenges in this area, while Sect. 7 concludes and presents future work.

2 Related Work

Goal models have already been used in the context of technology selection, for
instance for the justice system [2]. However, these approaches often just provide
the goal model of the context of use, without any goal model describing the
intent, stakeholders, benefits, and drawbacks of the new technology itself. Both
models are actually needed for informed decision making.

Much work has been presented in the area of model merging. However, the
focus was mainly on merging behavioral models (such as state machines) rather
than structural models such as goal models [6,9,11,16]. The main challenge
faced in merging structural models is to ensure consistency of definitions and of
relations of combined elements while capturing and preserving correct semantics.
Another challenge is modeling stakeholder disagreements and the evolution of
their requirements over time.

Richards proposed a comprehensive methodology to lead the process of merg-
ing conceptual models [17]. Brunet et al. proposed a framework to define different
merge operators based on algebraic properties [7]. Feng et al. discussed merging
goal models of high semantic similarities using basic decomposition merge pat-
terns [8]. One distinguished work done in goal model merging is from Sabetzadeh
and Easterbrook [18], who proposed a framework that highlights incompleteness
and inconsistency occurring in different partial views, designed by different mod-
elers, of one goal model. They treated multiple views of a goal model as struc-
tured objects to map them back and forth during the merging process. They
also created an algebraic algorithm for merging views to increase scalability and
adaptability. The goal integration approach proposed in this paper is inspired
by their three-way modeling approach.

One important concept that differentiates our method from the others is that
we introduce relationships that go beyond the “similar” and “dissimilar” ones
used by Sabetzadeh and Easterbrook [18] to denote inconsistency and incom-
pleteness. The transitive similarity, conflict, different, new, and approved rela-
tionships in our goal integration method help define finer levels of integration
but require deeper stakeholder engagement to reason about introducing new
elements/relations and resolve conflicts as part of requirements elicitation and
validation. Another key difference is that our approach provides comprehensive
traceability to the integrated goal model during its evolution.

3 Goal Integration Method

This section introduces the method’s conceptual model and relationships.



186 M. Baslyman and D. Amyot

3.1 Conceptual Model

The conceptual model supporting the goal integration (Fig. 1) contains basic
goal modeling concepts. A Goal (or an Indicator) belongs to a GoalModel, can
be associated to a Stakeholder, and can have Links of different types (e.g., Con-
tribution or Decomposition) to other goals. The main novelty here is the Integra-
tionRelation class that identifies relationships between elements to be integrated
in a goal model (see Sect. 3.2). In addition, the Type attribute in the GoalModel
class is added for model consistency checking (to be discussed in Sect. 4).

Fig. 1. Goal Integration Method’s conceptual model

3.2 Relationships and Mapping Procedure

Our goal integration method has five main iterative phases, starting with the
identification of similarities between the models to be merged. Then, the method
requires analysts to identify dissimilarities between the input models. The
method combines the identified similarities and dissimilarities of the input mod-
els into a new Integrated Goal Model (IGM), and then checks the new model to
identify differences, conflicts, and new elements to be added. Table 1 explains
the potential relationships that can be created between goal model elements to
be integrated when applying the method and the condition for each case.

The procedures followed in the five phases are:

– Phase 1 Similarity identification: the inputs of this phase are the goal mod-
els. The analyst, who is assumed to be a modeler and domain expert, identifies
the similarities between the models to be merged, adds similar elements to



Goal Model Integration 187

Table 1. Relationships and mapping conditions of the goal integration method.

Relationship Elements involved Conditions

S: Similar - Stakeholder to Stakeholder
- Goal to Goal
- Task to Task
- Relation to Relation

- Similar elements in the
input goal models (GM1
and GM2) will be added
to a new Similar Integrated
Goal Model (SIGM)
- The SIGM model’s
elements shall be mapped
back to the input models
to ensure coverage and
consistency

TS: Transitive similarity - Goal to Goal
- Task to Task
- Relation to Relation

The root elements element
shall be similar first.

DS: Dissimilar Elements that exist in one
model but not in the other
model: Goal, Task,
Stakeholder, or Relation

The elements will be
tagged (self-relation) with
DS to be investigated for
conflict or different
representation.

C: Conflict - Goal to Goal
- Task to Task
- Relation to Relation

- Similar goals/tasks
with different representa-
tion/relations
- Opposing/invalid effect
of goals/relations in IGM

D: Different - Goal to Goal
- Relation to Relation
- Goals and Relations

- Result of resolving con-
flicts
- Result of refining the
model

N: New - New Goal
- New Stakeholder
- New Relation

Tagged (self-relation) in
merged model when the
element does not exist in
the input models

A: Approved All elements tagged with DS,
C, D, or N

All elements are valid

a new Similar Integrated Goal Model (SIGM), and maps each element in the
SIGM back to the original models through a Similar relationship. In addition,
the sub-elements of the similar root elements should be added to SIGM and
labeled with Transitive Similarity to the original models. If the sub-elements
of similar roots have contradicting decomposition operators (AND or OR) in
the original models, one decomposition operator is added directly to the root
element in the SIGM, and a TemporaryElement is created to hold the other
one (see Sect. 5). As for different vocabularies used by similar elements, the



188 M. Baslyman and D. Amyot

analyst decides which one to keep in the merged model (often the organiza-
tion’s).

– Phase 2 Dissimilarity identification: the procedure followed here is quite
similar to Phase 1. However, dissimilarities are identified and the dissimilar
elements are added to a Dissimilarity Integrated Goal Model (DIGM).

– Phase 3 Model combination: the inputs of this phase are the SIGM and
DIGM. The method combines them in a new Integrated Goal Model (IGM).

– Phase 4 Model investigation: The analyst investigates the IGM model to
identify different semantical or structural changes of the elements, which may
exist or may be introduced, compared to the original models. Such differences
could be changed representations of goals or relations (e.g., a different con-
tribution level), or newly added elements (e.g., a new contribution link). All
different elements have a relationship of type Different, and new elements
are tagged with New. The method also identifies conflicting elements with a
Conflict relationship.

– Phase 5 Model Validation: The analyst and stakeholders collaborate to eval-
uate the IGM and resolve remaining issues. For contribution conflicts, the
Analytic Hierarchy Process (AHP) method can be used to compute contribu-
tion levels [12]. In the end, each element involved in a Conflict, Different, New,
or Dissimilar relation should be approved. Model investigation and validation
can be performed iteratively, resulting in multiple versions of the IGM, until
the fully approved version is obtained.

In Phases 1 and 2, the purpose of mapping the elements from SIGM and DIGM
back to the input models is to help assess coverage and consistency, and to
provide traceability back and forth to the original models. Further requirements
elicitation may also happen in Phase 4 (Model investigation) as differences and
gaps are discovered. All relationships to the original models and rationales are
stored in the approved version of the IGM, as described in the following section.

4 Formalization

We formalized the method using a conceptual model with constraints, a URN
profile with tool support, and a language-independent integration algorithm.

4.1 Goal Integration Conceptual Model Formalization

The goal integration conceptual model introduced in Fig. 1 was formalized using
the UML-based Specification Environment (USE) of Gogolla et al. [10] and OCL
constraints1.

There are several groups of constraints required to ensure coverage and con-
sistency. The first group ensures that all elements of the input SIGM and DIGM
are covered by the integrated goal model (Fig. 1). It is important to check this
constraint, especially in the first version of the IGM, before making any decision
1 The model is available online at https://goo.gl/LLCE3m.

https://goo.gl/LLCE3m


Goal Model Integration 189

about adding, removing, or changing the elements in later versions of the IGM.
The following OCL constraint ensures that all goals of an input model belong
to an integrated goal model (similar OCL constraints were defined for links and
stakeholders). Violations of these constraints would indicate missing elements
(absent from the IGM but present in the SIGM or DIGM).

context Goal
inv GoalCoverage:

goalModel -> select(c : GoalModel | c.Type = GMType::IGM )
-> size() >= 1

Another important group of constraints is needed to check that if there exist
IntegrationRelation instances between two elements, one of these instances has
to be of type A (Approved, see Table 1). This must be checked for goals, link,
and stakeholder elements, as formalized below. Violations of these constraints
indicate integration relations that remain to be approved by the analyst and
stakeholders. OCL constraints similar to the one below exist for links and stake-
holders.

context Goal
inv GoalRelation:

self.integrationrelation.destination.relation->size() >= 1
implies
integrationrelation->select(c : IntegrationRelation | c.type =

IntegrationRelationType::A)
->size() >= 1

Goal elements may have IntegrationRelation with Link and/or Stakeholder
elements. In this case, it is also essential to check that these relations are also
approved, leading to the next two OCL constraints.

context Goal
inv GoalLinkIntegrationRelation:

self.integrationrelation.LinkDestination.relation->size() >= 1
implies
integrationrelation->select(c : IntegrationRelation | c.type =

IntegrationRelationType::A)
->size() >= 1

inv GoalStakeholderIntegrationRelation:
self.integrationrelation.stakeholderDestination.relation->size() >= 1
implies
integrationrelation->select(c : IntegrationRelation | c.type =

IntegrationRelationType::A)
->size() >= 1



190 M. Baslyman and D. Amyot

4.2 URN Profile

This section presents a URN profile for the Goal Integration Method, which
enables the use of URN (and particularly its GRL sub-language) as a concrete
syntax to create goal models as instances of the goal integration conceptual
model of Fig. 1. URN already possesses many of the goal integration concep-
tual model’s elements as well as mechanisms to extend the language with addi-
tional concepts/attributes (using metadata) and relationships (using URN links).
Table 2 shows the mapping between each conceptual model’s element and its cor-
responding URN element.

Table 2. Mapping between the conceptual model elements and URN elements.

Conceptual model element URN element Existence Missing attributes

Goal model GRLgraph Exists Type

Goal IntentionalElement
(of type Goal)

Exists -

Indicator Indicator Exists -

Link Link Exists -

Stakeholder Actor Exists -

Integration Relation (goal model
integration)

URN links Does not
exist

Integration-Relation

As shown in Table 2, almost all the conceptual model elements are covered
by URN elements. The Type attribute of a goal model is captured using meta-
data on a GRLgraph in URN, where the metadata name is “Type” and the
possible values are “Input”, “SIGM”, “DIGM”, or “IGM”. In addition, all rela-
tionships appearing between the goal model integration’s elements (Table 1) are
captured and mapped to URN relations through URN links and metadata on
URN intentional elements. None of the types of relationships exists in URN, fully
or explicitly, as URN does not support goal model integration out of the box.
Therefore, the IntegrationRelation class is captured through URN links and the
type of the relation is stored in the metadata of the URN links and, possibly, of
the intentional elements. The reason for storing the IntegrationRelation type in
additional metadata is that if element1 initially replaces element2, a URN link
is used to capture the integration relation, of type Different. However, once ele-
ment2 is deleted in some version of the integrated goal model, the URN link gets
deleted as well and hence the integration relation will be lost. element1 is tagged,
through metadata, with the integration relations to keep track of all integration
relations that happened so far until the integration gets finally Approved.

We also used some user-selectable rules predefined in jUCMNav to further
ensure the well-formedness of input models at design time such as GRLac-
torNoCycle (a GRL actor must not be part of a containment cycle).



Goal Model Integration 191

4.3 Goal Integration Algorithm

In this section, a part of the algorithm is presented where Phases 1, 2 and 3 from
Sect. 3 are covered. The complete algorithm can be found in [4].

The inputs are two goal models and the output is a goal model that inte-
grates the input models, establish relationships, and allows the modeler to add
new elements. The output integrated goal model is then ready for model inves-
tigation and validation (Phases 4 and 5 from Sect. 3).

Algorithm: GoalIntegration
Inputs: GM1, GM2: GoalModel
Output: IGM: GoalModel

SIGM: GoalModel = new GoalModel // new intermediate similar goal model
DIGM: GoalModel = new GoalModel // new intermediate dissimilar goal model

// Phase 1: identify similar goals in the input models. The order of the input
models is irrelevant
for each G1:Goal in GM1 {

for each G2:Goal in GM2 {
// isSimilar() is a user-defined function of return type Boolean; the function
// requires the analyst to decide whether G1 and G2 are semantically similar.

if (G1.isSimilar(G2)) {
// merge the similar goals into one goal to be added in the SIGM.
// merge() is done by the analyst. Could be G1, or G2, or some hybrid.

G:Goal = merge(G1,G2)
SIGM.add(G)

// create an IntegrationRelation of type Similar between the source
//(goal G in the SIGM) and the destination (G1 in GM1)
IG1:IntegrationRelation = new IntegrationRelation
IG1.type = “S” // Similar
IG1.source = G
IG1.destination = G1

// create an IntegrationRelation of type Similar between the source
//(goal G in the SIGM) and the destination (G2 in GM2)
IG2:IntegrationRelation = new IntegrationRelation
IG2.type = “S” // Similar
IG2.source = G
IG2.destination = G2

}}} // end if/for/for

// Phase 2: add dissimilar goals to DIGM
for each GM:GoalModel in {GM1,GM2} {

for each G:Goal in GM {



192 M. Baslyman and D. Amyot

if (!exists(G.relation.type = “S”)) {
Gds:Goal = G
DIGM.add(G)
IG1:IntegrationRelation = new IntegrationRelation
IG1.type = “DS” // DisSimilar
IG1.source = Gds
IG1.destination = G

}}} // end if/for/for

// Similarities and dissimilarities of stakeholders and links of the input goal
models are identified using a similar approach. See [4] for details.

// Phase 3: create the IGM
for each E:{Goal | Link | Stakeholder} in SIGM { IGM = IGM.add(E) }
for each E:{Goal | Link | Stakeholder} in DSGM { IGM = IGM.add(E) }
// add missing elements (relations: contributions and decompositions) of the
// input models (GM1 and GM2) to the IGM
for each E:{Goal | Link | Stakeholder} in GM1 {

if (!IGM.contains(E)) { IGM = IGM.add(E) }
}
for each E:{Goal | Link | Stakeholder} in GM2 {

if (!IGM.contains(E)) { IGM = IGM.add(E) }
}
return IGM

5 Illustrative Case Study

Montfort Hospital (in Canada) intends to deploy a new Voice Recognition System
(VRS) to replace paper-based documentation/recording of patient information.
Caregivers will record their notes using computers instead of writing or typing
them. The VRS will recognize speech and present it as text for the caregiver
to verify and sign electronically. Then, the recorded information will be fed
automatically to the patient medical record (in the existing MediTech system).
The administrative leaders expect the VRS to be beneficial for caregivers who
prefer not to type directly into MediTech.

Currently, there are three alternatives for documenting patient reports and
information: writing on paper, typing directly into MediTech, and using a voice
recording system. The administrative leaders’ objective is to evaluate the per-
formance of each alternative on goal achievement and needs fulfillment, in order
to choose the best one. The goal model of the current context contains the
stakeholders with their goals and needs, and the contribution of the current doc-
umentation alternatives to the goals. The current model and the VRS model
should be merged to assess the performance of the VRS on the achievement
of stakeholders’ goals. Figures 2 and 3 contain the goal models of the current
context and the proposed VRS before applying the goal integration method.



Goal Model Integration 193

Fig. 2. Current patient report documentation goal model (in GRL)

Fig. 3. Proposed VRS goal model (in GRL)

The first phase in the goal integration method is to identify similarities
between the two goal models and combine the similar elements in the similarity
model (SIGM). The goals “Document patient information” in the hospital actor
and “Record patient information” in the VRS actor are similar. Both are about
documenting patient information; however, the Record patient information goal
is more specified in terms of the technology used to document patient informa-
tion. Therefore, in the similarity model, the Document patient information goal
is used to represent both goals. Similarity relationships are added between the
two goals in the original models and the Document patient information goal in



194 M. Baslyman and D. Amyot

the new similarity model (SIGM). The tasks of the two goals in the hospital
actor and the VRS actor are added to the similarity model too, with TS (tran-
sitive similarity) relationships to the source elements. Figure 4 illustrates the
similarity model. Note that the structural TemporaryTask is used to hold the
AND-decomposition of the subtasks added from the VRS goal model because
it cannot be combined with the subtasks added from the current goal model,
which has a different type of decomposition (OR) with the goal “Document
patient information”. As mentioned in Sect. 3, a TemporaryTask plays a tempo-
rary structural role until it gets replaced with another task that is more related
to the context of the integration, which cannot be done in the similarity model.

Fig. 4. Similarity model (SIGM): the triangle in the circle indicates, in jUCMNav, the
presence of a Similar relation from Document patient info. in this SIGM to Document
patient info. in the current goal model and to Record patient information in the VRS
goal model. The transitive similarity (TS) metadata is also attached to all tasks

The second phase in the goal integration method is to create the dissimilar-
ity model (DSGM). In this case, the actor VRS from the proposed VRS goal
model and all elements in the current context goal model, which are not in
the similarity model, are added to the dissimilarity model (see Fig. 5). Follow-
ing this, the similarity and dissimilarity models are merged in the integrated
goal model (IGM). In the IGM, the actor VRS does not have any goal. In fact,
in the integration context, the VRS is one of the alternatives for documenting
patient information. Therefore, the VRS is modeled as a task and a Different
relationship is added between the VRS task and the VRS actor (IGM-V1, not



Goal Model Integration 195

shown here). In addition, the VRS task replaces the TemporaryTask, which is
not needed anymore.

Fig. 5. Dissimilarity model (DSGM): all elements were tagged with the DS type

After ensuring that there are no conflicts between the merged models in the
IGM, the relationships from the original models (current context and proposed
VRS) are added to the IGM-V1 (Fig. 6), resulting in IGM-V2 (Fig. 7). For all
added relationships in IGM-V2, the representation of the VRS actor as a task
is approved by the domain experts. The added relationships are not different
from the relationships in the original models so no conflict or different context
has occurred. The IGM-V2 was validated with the stakeholders where no issue
was raised. Accordingly, the IGM-V2 is the approved goal model to be used for
evaluation and analysis. The conformance and well-formedness of the resulting
IGM were checked using the USE tool and jUCMNav as suggested in Sect. 4.
It is worth mentioning that real stakeholders and domain experts were not only
involved in the validation phase, but also in all other phases to ensure that the
context is logically correct.

6 Discussion

Our Goal Integration Method integrates goal models of the organization and of
the new candidate technology, in order to reflect the global integration context.
While surveying existing work, we noticed that goal model merging refers to
partial views of a goal model where essentially the same elements exist in both
models but with different vocabularies or with extra information. In our work,
we preferred to use the term integration rather than merge to distinguish the
problem context of our approach from the others. In the technology integration



196 M. Baslyman and D. Amyot

Fig. 6. First version of the integrated goal model, where the VRS is represented as a
task to replace the VRS actor (IGM-V1)

Fig. 7. Second version of the integrated goal model (IGM-V2), where all types of
relations have been approved by the stakeholders.

context, for example, goal models should be integrated in a way that supports the
elicitation of new requirements or goals while capturing introduced or conflicting
relationships, as well as ensuring consistency and completeness of the resulting
integrated goal model. Hence, the output of our integration method is a new
goal model that preserves the semantics and properties of the input models and,
at the same time, brings new realizations to reflect a new context, which is the



Goal Model Integration 197

integration context. However, this does not limit our approach to the technology
integration context only; we see an opportunity for the method to be used in
other goal model merging contexts. Other application domains for our method
include the process integration and decision support contexts [4,5].

In addition, the Goal Integration Method aims to provide a holistic view of
the context (after integration) for a comprehensive analysis and to support deci-
sion making before technology deployment and implementation. For example, in
the illustrative case study, the method presented the VRS as an alternative that
complements three other alternatives. The impact of each alternative, on the
goal model, could be investigated closely using the corresponding KPIs’ (Key
Performance Indicator) data, such as the number of duplicated tasks and others
in Fig. 2. Although no specific contributions were identified here from the VRS
tasks, new ones or modified ones could be identified in other case studies.

Although the proposed method is promising, there are several limitations and
threats to validity. For example, our method requires engaging stakeholders into
multiple iterations of validation, especially in Phases 4 and 5. This is caused
by parts of the goal integration method hitting, iteratively, elicitation of new
requirements and validation of results. On the positive side, the validity of the
intermediate integration results is always assessed with stakeholders; on the other
hand, it could be costly, in terms of effort and time, to engage stakeholders
intensively in the validation the method suggests. In our case study, the Montfort
Hospital collaborators were sufficiently patient and available to validate several
iterations of model integrations (even on larger case studies), but this may not
be always the case in other organizations.

Another limitation relates to tool support. jUCMNav was used effectively
to build the goal models and to check well-formedness rules. However, the tool
does not permit the representation of stakeholder disagreements or the evolu-
tion (different representations) of an element during the integration. This was,
partially, handled through having multiple versions of the integrated goal model
and storing the evolution history in the metadata or URN links of the element.
Much manual work was encountered, which makes the task prone to errors. More
appropriate tool support is needed to accommodate changes happening to goal
models during the integration and to further automate the method, especially
in Phases 1, 2 and 3.

Another challenging point with jUCMNav was the representation of self-
relations such as the relation between the same goal in the original goal model
and dissimilarity model. The relationship was captured using metadata because
URN links from/to the same element are not permitted by the tool, even if
allowed by URN (see Sect. 4).

It is worth mentioning that even though the case study illustrated effectively
the application of the integration method, it may not reflect the complexity of
real-world problems in other contexts [4].



198 M. Baslyman and D. Amyot

7 Conclusion

In this paper, we proposed a new Goal Integration Method to integrate goal mod-
els belonging to different contexts such as technology-related models and orga-
nization models constructed individually and independently by different groups.
The method proposes new relationships to capture the types of changes intro-
duced, i.e., whether a new element was added or the representation of an element
was changed, during the integration. The method also highlights disagreements
and conflicts, helps ensuring consistency and completeness, and provides trace-
ability to rationales and decision made until the final version of the integrated
goal model is obtained. The goal integration method was presented formally
with a conceptual model, OCL constraints, and an algorithm. The interactive
method was implemented with a URN profile, with tool support provided by
jUCMNav (model creation and analysis) and USE (verification of integration
constraints). In addition, the feasibility of the method was successfully assessed
through a Voice Recognition System illustrative case study, in collaboration with
a real hospital.

For future work, we will conduct further evaluation with more complex case
studies to assess scalability and effectiveness, as well as generalization to other
contexts. In addition, we will focus on providing better tool support and investi-
gating the opportunity to further automate the implementation of the method.

Acknowledgment. The authors are thankful to Dr. E. M. Bouattane for his help
with the case study. This work was supported in part by the Saudi Government and
its Ministry of Education, NSERC (Discovery), and the Institut du savoir Montfort.

References

1. Akhigbe, O., et al.: Creating quantitative goal models: governmental experience.
In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp.
466–473. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9 40

2. Alwidian, S., Amyot, D., Babin, G.: Evaluating the potential of technology in
justice systems using goal modeling. In: Aı̈meur, E., Ruhi, U., Weiss, M. (eds.)
MCETECH 2017. LNBIP, vol. 289, pp. 185–202. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59041-7 11

3. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the
next ten years. J. Softw. (JSW) 6(5), 747–768 (2011). https://doi.org/10.4304/
jsw.6.5.747-768

4. Baslyman, M.: Activity-based process integration framework to improve user sat-
isfaction and decision support in healthcare. Ph.D. thesis, University of Ottawa,
Canada (2018). https://doi.org/10.20381/ruor-22359

5. Baslyman, M., Almoaber, B., Amyot, D., Bouattane, E.M.: Activity-based Pro-
cess Integration in Healthcare with the user requirements notation. In: Aı̈meur,
E., Ruhi, U., Weiss, M. (eds.) MCETECH 2017. LNBIP, vol. 289, pp. 151–169.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59041-7 9

6. Ben-David, S., Chechik, M., Uchitel, S.: Merging partial behaviour models with
different vocabularies. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013.

https://doi.org/10.1007/978-3-319-12206-9_40
https://doi.org/10.1007/978-3-319-59041-7_11
https://doi.org/10.1007/978-3-319-59041-7_11
https://doi.org/10.4304/jsw.6.5.747-768
https://doi.org/10.4304/jsw.6.5.747-768
https://doi.org/10.20381/ruor-22359
https://doi.org/10.1007/978-3-319-59041-7_9


Goal Model Integration 199

LNCS, vol. 8052, pp. 91–105. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40184-8 8

7. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A
manifesto for model merging. In: Proceedings of the 2006 International Workshop
on Global Integrated Model Management, pp. 5–12. ACM (2006)

8. Feng, Z., He, K., Peng, R., Wang, J., Ma, Y.: Towards merging goal models of
networked software. In: SEKE, pp. 178–184 (2009)

9. Fischbein, D., Uchitel, S.: On correct and complete strong merging of partial
behaviour models. In: Proceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pp. 297–307. ACM (2008)

10. Gogolla, M., Büttner, F., Richters, M.: Use: a UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1–3), 27–34 (2007)

11. Hackenberg, G., Bytschkow, D.: Towards early emergent property understanding.
In: Proceedings of the 1st Extreme Modeling Workshop at MODELS 2012 (2012)

12. Ishizaka, A., Nemery, P.: Multi-criteria Decision Analysis: Methods and Software.
Wiley, Hoboken (2013)

13. ITU-T: Recommendation Z.151 (10/18) User Requirements Notation (URN) - Lan-
guage definition (2018). https://www.itu.int/rec/T-REC-Z.151/en

14. Liaskos, S., Jalman, R., Aranda, J.: On eliciting contribution measures in goal
models. In: 2012 20th IEEE International Requirements Engineering Conference
(RE), pp. 221–230 (2012). https://doi.org/10.1109/RE.2012.6345808

15. Mussbacher, G., Amyot, D.: Goal and scenario modeling, analysis, and transforma-
tion with jUCMNav. In: 31st International Conference on Software Engineering -
Companion Volume, pp. 431–432. IEEE CS (2009). https://doi.org/10.1109/ICSE-
COMPANION.2009.5071047

16. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
merging of statecharts specifications. In: 29th International Conference on Software
Engineering (ICSE 2007). IEEE CS (2007). https://doi.org/10.1109/ICSE.2007.50

17. Richards, D.: Merging individual conceptual models of requirements. Requir. Eng.
8(4), 195–205 (2003)

18. Sabetzadeh, M., Easterbrook, S.: View merging in the presence of incompleteness
and inconsistency. Requir. Eng. 11(3), 174–193 (2006)

https://doi.org/10.1007/978-3-642-40184-8_8
https://doi.org/10.1007/978-3-642-40184-8_8
https://www.itu.int/rec/T-REC-Z.151/en
https://doi.org/10.1109/RE.2012.6345808
https://doi.org/10.1109/ICSE-COMPANION.2009.5071047
https://doi.org/10.1109/ICSE-COMPANION.2009.5071047
https://doi.org/10.1109/ICSE.2007.50


Union Models: Support for Efficient Reasoning
About Model Families Over Space and Time

Sanaa Alwidian and Daniel Amyot(&)

School of EECS, University of Ottawa, Ottawa, Canada
{salwidia,damyot}@uottawa.ca

Abstract. For a given modeling language, a model family is a set of related
models, with commonalities and variabilities among family members, that
results from the variation/evolution of models over the space and time dimen-
sions. With large model families, the analysis of individual models becomes
cumbersome and inefficient. This paper proposes union models as a paradigm
supporting the representation of model families (for time and space dimensions)
using one generic model. Elements of a union model are annotated with
information about time and space using a new spatio-temporal annotation
language (STAL) in order to distinguish which element belongs to which
model. We demonstrate empirically the usefulness of union models for ana-
lyzing a family of models, all at once, compared to individual models, one
model at a time. Our experiments suggest that the use of union models facilitate
efficient analysis in several contexts.

Keywords: GRL � Model analysis � Model evolution � Model family �
Property checking � Union model

1 Introduction

In Model-Based Engineering (MBE), models are first-class artifacts used to represent
and abstract knowledge and activities that govern a particular domain [1]. Models often
undergo continuous change due to, for example, modifications in requirements or
standards, or enhanced understanding of the domain to be modeled. Such change could
happen over the course of time (i.e., evolution), resulting in one model evolving into a
set of related versions. A model could also vary over the space dimension, where there
could be several variants of the same model, all existing at the same time (e.g., to reflect
different products or configurations). In both scenarios, a family of related models in
the same language, where commonalities and variabilities between family members
exist, is called a model family.

Change in an MBE context is inevitable. Hence, raising awareness to the phe-
nomena of model families is of particular importance, especially in variant-rich
domains such as cyber-physical systems, smart systems, or regulatory environments
(where slightly different regulations need to be modeled for different regulated parties
and jurisdictions). In any of these domains, models that are used to capture the
domain’s dynamic nature are subject to frequent variation and evolution. In other
words, a modeler may start with an initial model version (v0), which over time needs to

© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 200–218, 2019.
https://doi.org/10.1007/978-3-030-30690-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_12&amp;domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_12


be updated into a slightly different version (v1) to reflect a changing requirement. This
version may further evolve into versions v2, v3, and so on. In the space dimension, two
or more modelers may need, at the same time, to create slightly different variations of
an initial model to reflect different spaces called configurations. In such contexts,
modelers often end up having a family of model versions and/or variations. Analyzing
and reasoning about such models requires the modeler to load into a tool, analyze, and
report on analysis results of each individual model, separately. This is a time-
consuming and laborious process that becomes more critical as the number of models
to analyze gets larger.

To alleviate these challenges, we propose to capture the set of individual models in
a family using one generic model called union model (MU). MU represents the union of
all elements found in all family members, in both the space and time dimensions. The
purpose behind the creation of MU is to support efficient reasoning and analysis of a
family of models, all at once, compared to analyzing individual models separately. At
the core of MU is the annotation of elements, which we realize by proposing a spatio-
temporal annotation language (STAL). The main purpose of STAL is to annotate
elements of MU with information about space and time, so as to distinguish which
element belongs to which member model in the model family.

The rest of this paper is organized as follows: Sect. 2 discusses the motivation
behind our work. Section 3 provides necessary background and formalisms that we
rely on to formalize union models. In Sect. 4, we discuss how union models are
formalized, constructed, and annotated. The potential benefits of using union models
for reasoning and analysis are discussed in Sect. 5. Section 6 reports on experiments
conducted to validate the potential efficiency of union models. Related work is dis-
cussed in Sect. 7. Finally, Sect. 8 concludes the paper and provides future directions.

2 Motivation

To explain and motivate our approach, we use a simple proof-of-concept example of a
smart home environment, where we use the Goal-oriented Requirement Language
(GRL) [2, 3] as a modeling language. In a smart home environment, stakeholders’
goals, importance of goals, means to achieve goals and relationships between goals
(e.g., contributions or decompositions) vary. This variation stems mainly from the
existence of different configurations of a smart home that also evolve over time. In this
example, we distinguish between two different configurations:

• Configuration A (confA): A smart home that is lived in by students who spend about
8 h of the day out of home.

• Configuration B (confB): A smart home that is lived in by retired senior persons
(most likely sick), who spend most of their daytime and nighttime at home.

In these two configurations (see Fig. 1), a student’s goals are slightly different from
a senior’s goals. For example, a student is more concerned about getting fresh air in her
room by opening windows so as to reduce energy consumption (since a student’s
budget is usually tight). A retired senior, on the other hand, may focus more on getting
her room’s atmosphere refreshed using the most convenient option (regardless of cost),

Union Models: Support for Efficient Reasoning about Model Families 201



e.g., by having the ventilator turned on most of the time. Also, the importance of
achieving the “refresh air inside” goal differs between a senior person (100) and a
student (80). Furthermore, to keep a senior’s smart home secure, the home central
operator could give the illusion that the house is lived in using several options, one of
them being to keep lights always on. However, this may not be a feasible option for a
student, since turning lights on all the time consumes energy beyond a student’s budget
affordability.

In addition to these “space-based” variations, goal models (in both configurations)
could also evolve over time. In this example, we illustrate the evolution of models after
several months (however, evolution could also happen over shorter periods of times).
In such time-based evolution, goals and the means to achieve them (i.e., tasks) may
differ between version 1 (produced in the summer) and version 2 (produced in the
winter), due to changes in temperature, humidity, daylight duration, etc.

For a student’s smart home (i.e., confA), the importance of goals/tasks and their
impacts (i.e., contribution values) on other goals evolved from version 1 to version 2.
For instance, the importance of task “Open window” in version 1 is 90 while it is 20 in
version 2, as a student is able to open the window more often in the summer (assuming
these models were produced in a Nordic country). Also, the impact of opening a
window on the goal “energy saved wisely” is higher in the summer version (with
contribution value = 90) than in the winter version (60). Finally, opening a window
often in the summer has a higher negative impact on the “increased privacy” softgoal.

The previous evolutions are also applicable in the senior smart home environment
(i.e., confB). As Fig. 1 shows, the “Open window” task is almost neglected at winter
time (with importance = 10) compared to summer time (importance = 60). This is
because a senior person is more vulnerable to get cold in the winter. Also, in version 2

Version 2Version 1

Va
ri

ab
ili

ty
 o

ve
r 

sp
ac

e 
(c

on
fig

ur
at

io
n)

Student 
smart 
home

Senior 
smart 
home

Variability over time (evolution)

Fig. 1. Goal model family for smart home environments varying according to space and time

202 S. Alwidian and D. Amyot



(winter), the possibility for seniors to get depressed and anxious is higher (due to snow
fall and short daylight duration). In this version, a smart home operator may calm the
senior down by turning on soft music.

One important challenge implied by Fig. 1 is related to the complexity and effort
required to analyze such family of models. Note that past versions may require analysis
in case old versions of a product remain used by customers in the field. Assume a
modeler plans to conduct satisfaction analysis (using the GRL forward propagation
algorithm [2]) on each individual model, by assigning initial values to particular leaf
goals, in order to study the impact of its satisfaction on the satisfaction of upper-level
goals. She would end up running the same evaluation algorithm four times (in this
example only), even though there are many common elements and computations
among the four models. Intuitively, if there are M individual models in a model family,
and each model has E elements, then the complexity of running a satisfaction propa-
gation algorithm on all models would be in order of M � O(E). Such complexity
becomes more significant if there are hundreds of models (or more), with hundreds of
elements (or more) in each model. Moreover, the effort of loading a model into a tool,
analyzing the model, saving analysis results, and then moving to the next model is not
negligible in practice.

We aim to improve analysis complexity and reduce the effort of analyzing model
families in arbitrary modeling languages (not only goal models), for both the space and
time dimensions. This objective motivates us to find a way of representing model
families other than using separate individual models. In this paper, we propose the use
of a union model (MU) as a single generic model that captures the entirety of a model
family (in both dimensions of variability), in a comprehensive and exact way, such that
all (and only) individual members of a family can be represented and analyzed.

3 Foundations

This section introduces relevant notations and background concepts related to graph-
based modeling and propositional logic encodings.

3.1 Graph-Based Formalization of (Meta)Models

We formalize metamodels (resp. models) as type graphs (resp. typed graphs), as
illustrated in Fig. 2.

Metamodel

ModelTyped Graph

Type Graph represents

represents

typed by conforms to

Fig. 2. Relationship between (meta)models and their graph representation

Union Models: Support for Efficient Reasoning about Model Families 203



The following definitions, based on previous work by Ehrig et al. [4], are used as a
basis for further formal definitions of model families and their union models.

Definition 1–Graph: A graph is a tuple G = (NG, EG, srcG, tgtG), where NG is a set of
graph nodes (or vertices), EG is a set of graph edges, and functions srcG, tgtG: EG!NG

associate to each edge a source and a target node, respectively, such that e: x ! y
denotes an edge e with srcG(e) = x and tgtG(e) = y.

In graph theory (as in typed programming languages, where each element is
assigned a type), it is often useful to determine the well-formedness of a graph by
checking whether it conforms to a so-called type graph. A type graph is a distinguished
graph containing all the relevant types and their interrelations [4]. This is analogous to
the relationship between models and metamodels in MDE [5], where each model needs
to conform to a metamodel, as depicted in Fig. 2.

Definition 2–Type graph (metamodel): A type graph TG is a distinguished graph,
where TG = (NTG, ETG, srcTG, tgtTG), and NTG and ETG are types of nodes and edges.

Definition 3–Typed graph (model): A typed graph is a triple Gtyped = (G, type, TG)
such that G is a graph (Def. 1) and type: G ! TG is a graph morphism called the
typing morphism. For example, the state machine model shown in Fig. 3 (right) is
typed with the metamodel shown in Fig. 3 (left).

The vocabulary (or scope) of a typed graph Gtyped is a set Voc = {NG[EG} of its
typed nodes and edges [4]. For example, the vocabulary of the model in Fig. 3 (right)
consists of nodes S1 and S2 of type State, node T1 of type Transition, and edges L1
and L2 of types src association (referred next as srcAssoc) and tgt association (referred
next as tgtAssoc), respectively. We refer to the set of nodes and edges that are in the
vocabulary of a model as the elements of that model.

3.2 Propositional Encoding of Models

In order to facilitate reasoning about models, and also to define a simple graph union,
we represent typed graphs (i.e., models) as logical propositions. To encode a model in
propositional logic, we first map elements in their vocabulary into propositional vari-
ables and then conjoin them. The mapping of graph elements into propositional vari-
ables is performed according to the following naming conventions:

• A node element n2NG of type t2NTG is mapped to a propositional variable “n-t”.
Formally: n-t iff 9n2NG ^ type(n) = t

Fig. 3. Type graph (left) and typed graph (right)

204 S. Alwidian and D. Amyot



• An edge element e2EG of type t2ETG with source node x and target node y is
mapped to a propositional variable “e-x-y-t”. Formally: e-x-y-t iff 9e2EG ^ type
(e) = t ^ srcG (e) = x ^ tgtG (e) = y.

For instance, the propositional encoding (PE) of the model (m) in Fig. 3 (right) is
the conjunction of its propositional variables, described as follows:

4 Union Models

The union model MU of a model family (MF) is the union of all elements in all
individual models of that family. The subsequent sections formally define union
models (based on Defs. 1 to 3 and Sect. 3.2), and discuss how to construct an MU and
how to distinguish its elements by means of annotations using our annotation language
(STAL).

4.1 Union Model Formalism

Definition 4–Union Model (MU): Let MF be a model family with two models (i.e.,
typed graphs), such that MF = {G1, G2}, where G1 = ((NG1, EG1, srcG1, tgtG1),
typeG1, TG) and G2 = ((NG2, EG2, srcG2, tgtG2), typeG2, TG). Their union model is a
typed graph MU = ((NU, EU, srcU, tgtU), typeU, TG), such that: NU = NG1 [ NG2,
EU = EG1 [ EG2, and the functions srcU, tgtU, and typeU are:

We can apply the above definition of graph union to sets of typed graphs of arbitrary
sizes. Note however that even if the typed graphs used to construct union models are
well-formed, there is no guarantee that their MU is also a well-formed model. In fact, a
union model MU could respect the typing constraints imposed by the TG, but not the
multiplicity constraints of attributes or association ends, or OCL constraints. We have
already highlighted this general issue in [6], which is outside the scope of this paper.

4.2 Union of Propositional Encodings of Models

Given the propositional encoding of models discussed in Sect. 3.2, the union operation
simply becomes the union of the propositional encodings of individual models.

Union Models: Support for Efficient Reasoning about Model Families 205



Definition 5–Proposition Encoding Union (PEU): Let MF = {G1, G2} be a model
family, where G1 and G2 are typed graphs with the same metamodel TG, and PE(G1)
and PE(G2) be their propositional encodings, such that they satisfy these conditions:

• Cond. 1: If two nodes have the same name and type, then these nodes are con-
sidered identical. We assume here that each node and each edge have its own
unique identifier. For simplicity, we express this identity by means of a unique
name.

• Cond. 2: If two edges have the same name and type and connect between the same
source and target nodes, then edges are considered identical.

Then, the union of their propositional encoding becomes: .
Again, provided that the two conditions are satisfied, we can generalize the

propositional encoding union (Def. 5) to a set of arbitrary encoded models.

4.3 Spatio-Temporal Annotation Language (STAL)

The challenging part of constructing a union model is not in the union operation itself
(as expressed in Def. 5), but in being able to distinguish to which models a particular
element belongs. To address this challenge, we propose a spatio-temporal annotation
language (STAL) to annotate elements of each individual model with space/time
information in the form of <vernum, confinfo> , where vernum denotes the version
number of a particular model (e.g., 1st version, and so on), while confinfo denotes space
dimension-related information (e.g., smart home configuration, organization type or
size, etc.).

Syntax and Semantics of STAL. In the time dimension, models can evolve (inde-
pendently and asynchronously) over distinct timepoints. Since timepoints can be
corelated and compared, they naturally form a chronological order. Given this inherent
chronological nature of models’ evolution, a sequence of versions of a particular model
can be annotated with sequential version numbers: ver1, ver2, ver3… vern. This creates
an implicit temporal validity between model versions. For instance, we can say that
ver1 happened before ver2. The timing information embedded with the vernum format in
STAL could represent version numbers or dates, or ranges thereof.

The space dimension, on the other hand, is different and somewhat more complex.
This stems from the fact that the space dimension is flat and has neither a chronological
order nor a hierarchical nature (except in very specific domains, such as in provinces
and their cities). In STAL, we use the naming conventions confX, confY, …, confZ
(instead of conf1, conf2, …, confn) to reflect the lack of ordering semantics.

If a configuration is simple, we use its syntactical description as a name for that
configuration. For example, in Fig. 1, we used the names confA = “Student smart
home” and confB = “Senior Smart home” as the names of the two different configu-
rations of smart homes. However, it is worth mentioning that information about con-
figurations could be composite (i.e., consists of several pieces of information). For
example, if we want to model different configurations or types of smart houses (similar
to TYPE1, TYPE2, and TYPE3 in [7]), where each type refers to a home of a specific
size, location, and occupant kind, then we need to take these information into

206 S. Alwidian and D. Amyot



consideration. For instance, TYPE1 refers to homes that are of medium size, located in
Ontario, and meant for seniors. To represent this type of composite information in
STAL, in a way that keeps annotated models as simple as possible, we propose the use
of look-up tables (see Table 1), which provide mappings between configuration names
and their real descriptions. Please note that in this example, the numbering suffixes of
TYPEs do not hold any ordering meanings and they are just descriptions of the
configuration.

Annotating the Propositionally-Encoded Models. We annotate the propositional
encodings of model elements with information about their versions and/or configura-
tions. For example, assume that the model m in Fig. 3 (right) represents a second
version (ver2) and a configuration X (confX) of a particular model. Then, the propo-
sitional encoding of m with annotation PE(mannot) of this model becomes:

Given a set of annotated, propositionally-encoded models and based on Def. 5, the
union of these models is the union of their annotated propositional variables:

Annotating the Union of Propositionally-Encoded Models with STAL. In a model
family, it is possible one model element belongs to several or all family members. For
instance, assume that there is a model family with one model configuration (confA) that
evolves into five versions (i.e., ver1 to ver5). Assume also a node n that belongs to the
five versions of that model. Now, to construct a union model, we need to unify the
annotated propositional variables of these five versions. In this case, n will be annotated
in the union model with five annotations: <ver1, confA> , <ver2, confA>, <ver3,
confA>, <ver4, confA>, <ver5, confA>. Such style may lead to large amounts of
annotations.

To simplify annotations of union models, STAL represents a sequence of version
annotations as a range of values ([start:end]). In the above example, the annotation of
n becomes <[ver1: ver5], confA> . Many sequences can also be used, e.g., for ver1 to

Table 1. Mapping configurations to their descriptions

Configuration Description

TYPE1 Size = Medium, Location = Ontario, Occupants = Seniors
TYPE2 Size = Large, Location = Ontario, Occupants = Students
TYPE3 Size = Medium, Location = Quebec, Occupants = Seniors

Union Models: Support for Efficient Reasoning about Model Families 207



ver7 skipping ver4, we get:<[ver1: ver3] [ver5: ver7], confA> . If an element belongs to
all versions and all configurations of a family, we annotate it with the keyword ALL.

Example. We use a simple state machine example, with two versions of a model, as
shown in Fig. 4. The union model combining these two versions is expressed as
follows:

In this paper, we limit ourselves to simple type graphs, where attributes of model
elements have to be expressed structurally with named nodes and edges. In future
work, we will also assess the benefits of extending the definitions of basic type and
typed graphs with explicit attributes, for instance using Ehrig’s attributed type graphs
(or E-graphs) [4], where special edges are used for attributes.

5 Reasoning and Analysis with Union Models

This section explores the research question: How efficient is reasoning and analysis
with a group of models, all at once, using MU in comparison to the use of individual
models? To answer this research question, we consider three reasoning tasks (RTs),
namely: property checking (which is already known in the literature), trend analysis,
and significance analysis (which we proposed for this work). Then we compare the
performance of the three RTs using MU as opposed to using individual models.

Although these kinds of analyses can still be performed using individual models
(several times, one model at a time), our objective is to try to make these analyses more
efficient using MU. In addition, we aim to reduce the effort of loading each model into a
tool, analyzing the model, saving analysis results, and then moving to the next model,
especially that this effort cannot be neglected with a large number of models. These
manual steps are however not considered in our results, so our results are conservative.

RT1: Property Checking. Property checking on models aims to verify if a model
satisfies a particular property or not. Given a model m and a property p, the result of
property checking is either True if m satisfies p, or False otherwise. For instance, a
modeler may want to check whether a group of state machine diagrams contains self-
looping edges or not, or she may check if there exist two or more different actors in a

L1: src
S2:State

L2: tgt
S1:State T1:Trans

L1: src
S2:State

L2: tgt
S1:State T2:Trans

ver1

ver2

Fig. 4. Two versions of a state machine diagram

208 S. Alwidian and D. Amyot



GRL model family that contain the same goal. In these scenarios, property checking is
beneficial to help modelers understand, for example, what is common between model
versions or variations that violate a property.

In this paper, we limit ourselves to language-independent, syntactic properties (which
describe the structure of models) other than semantic properties (which describe the
behavior of models, e.g., traces). The rationale behind this scoping is because our
approach aims to be applicable to any metamodel-based modeling language. However,
while there exists a standard approach for defining the syntax of a modeling language
(i.e., through metamodeling), there is no common approach for specifying semantics. So,
we limit our approach to checking those properties related to language syntax, inde-
pendently from any language specificity. Hence, “property” here means “syntactic
property”. To perform property checking, we assume that a property p (expressed in any
constraint language such as FOL or OCL) can be grounded over the vocabulary of
models. Hence, a corresponding propositional formulaUp can be obtained. For example,
given a well-formedness constraint ,
it can be grounded over the vocabulary of the model in Fig. 5. as follows:

It is important to emphasize here that the example in Fig. 5. is just a proof of
concept and it does not adhere to our formalization of typed graphs (Sect. 3). As can be
noted, the example considers the graphical representation of the state machine pre-
sented in the canonical form in Fig. 3. (right), where Transitions T1 and T2 are rep-
resented here as directed edges between states, and not as nodes.

Formally speaking, given the propositional encoding of both models (Sect. 3.2) and
properties, the task of property checking can be defined as follows:

Definition 6–Property Checking: Given model m and a property p, and their
propositional encodings Um and Up, respectively, we check if the expression Um ^ Up
is satisfiable or not using a SAT solver.

RT2: Trend Analysis. The idea of this analysis is to search for a particular element
across members of a model family and study the trend of that element. By “trend” we
mean the behavior of elements over space/time. In other words, a trend analysis studies
how properties of elements change over the course of time or across configurations. For
instance, a modeler may need to search for a particular goal in all members of a GRL
family to conduct a trend analysis about the properties of that goal (e.g., its importance
value, or satisfaction value) and observe how that value changes across model
version/variations to get some insights about its evolution pattern.

Fig. 5. An example of propositional encoding of a property

Union Models: Support for Efficient Reasoning about Model Families 209



RT3: Significance Analysis. We suggest this type of analysis to enable modelers to
check for those elements that are common in all (or part) of versions (i.e., time) or
variations (i.e., space) of a model family. Elements that are common among all models
can be inferred to be essential or significant. For example, if a modeler is investigating
several design options of a particular system, and she needs to know which elements
are significant (i.e., mandatory for design) in all design options, then she would conduct
this analysis once using the MU of the model family she has at hand (instead of doing a
pairwise search on each version/variation of individual models).

6 Experiments

We assess the feasibility of reasoning using MU empirically. We ran experiments with
parameterized random inputs that simulate different settings of various reasoning and
analysis categories. In this paper, we build on the formal semantics of union models
(Sect. 3) and use formalized GRL models and state machine models. However, our
approach is also applicable to other metamodel-based languages.

6.1 Methodology

We ran two experiments (named Exp.1 and Exp.2) to evaluate the feasibility of using
MU with RT1, RT2, and RT3. In Exp.1, we measured the total time needed to perform
one task on each individual model, one model at a time. We refer to this time as Tind. In
Exp.2, we measured the time needed to accomplish the same task with MU. We refer to
this time as TMU. Then, we compute improvements with a metric called time speedup
(as used in [8]), defined originally as: speedup_old = Tind/TMU. However, to be fairer
and more realistic in our experiments (especially for large models), we decided not to
neglect the time needed to construct MU (although it is quite small and can performed
once before being amortized over multiple analyses). We call Tconstruct the time needed
to construct MU, and the time speedup is then calculated as: speedup = Tind/(Tcon-

struct + TMU). A speedup larger than 1 is a positive result, and the larger the speedup, the
better.

For both experiments, we considered the following experimental parameters:
(1) the size of individual models (SIZE), which represents the number of elements (i.e.,
nodes and edges) in each individual model and (2) the number of individual models in
a model family (I). To control the possible combinations of parameters SIZE and I, we
discretized their domains into categories (following Famelis’ methodology [8]). For
parameter SIZE, we defined four categories based on the number of nodes and edges,
as follows: small (S), medium (M), large (L), and extra-large (XL). To calculate the
ranges of each size category, we performed experiments with a seed sequence (0, 5, 10,
20, 40). The boundaries of each category were calculated from successive numbers of
the seed sequence using the formula n � (n + 1). Using the same formula, we cal-
culated the representative exemplar of each category by setting n to be the median of
two successive numbers in the seed sequence. The ranges of the categories and the
selected exemplars for each category are shown in Table 2. These numbers are in line
with our own experience dealing with goal models and state machines of various sizes.

210 S. Alwidian and D. Amyot



We followed the same methodology for the number of individual models, I, using a
seed sequence (0, 4, 8, 12, 16). The four size categories (S, M, L, XL) are shown in
Table 3.

To evaluate the property checking task (RT1), we encoded each annotated indi-
vidual model m in a model family MF as a propositional logic formula Um =

V
ei2PE

(mannot). We also encoded a union model MU of that MF as UMU =
V

ei2PEUannot.
Furthermore, the property to be checked was encoded into a propositional formula
Up. Then, a SAT solver was used to check if the encodings of each of the individual
model and their union model satisfy (or not) the property. In particular, for each
individual model, we constructed a formula Um ^ Up. The property is said to hold in
any model if and only if this formula is satisfiable. Similarly, we constructed the
formula UMU ^ Up and checked whether the property was satisfiable. In both
experiments (using the same computer), we recorded the time it took to check a
property on individual models (Tind) and compared it to the time needed to do the
check on union models (TMU).

6.2 Implementation

To validate our approach, we had a prototype implementation in Python 3.6 to rep-
resent models (GRL and state machine models) as typed graphs (based on Defs. 3 and
4), and construct their MU according to Def. 5. We used NetworkX 2.2 [9] to imple-
ment typed graphs, and we implemented our own union algorithm to construct MU by
adapting NetworkX’s built-in union function as a building block. NetworkX is a
Python package for the creation, manipulation, and study of the structure, dynamics,
and functions of complex graphs [9]. It is enriched with a variety of features from the
support of graph data structures and algorithms to analysis measures to visualization
options. We used NetworkX’s graph generators to randomly generate valid typed
graphs (with different parameters SIZE and I) with likely evolutions. We checked a
sample of the generated graphs manually to make sure that we are generating likely
changes to existing models rather than generating independent models. Then, we
assigned attributes to nodes and edges of these generated graphs to reflect attributions

Table 2. Categories of parameter SIZE (size of a model)

#elements/model (SIZE) (0, 30] (30, 110] (110, 420] (420, 1640]

Exemplar 12 56 240 930
Category S M L XL

Table 3. Categories of parameter I (number of individual members in a model family)

# of individual models (I) (0, 20] (20, 72] (72, 156] (156, 272]

Exemplar 6 42 110 210
Category S M L XL

Union Models: Support for Efficient Reasoning about Model Families 211



and typing information of real models. We then constructed GU from the generated
graphs using our union algorithm. GU is the union of a set of typed graphs, and hence
GU corresponds to MU.

For RT1, we manually generated propositional formulas for state machine diagrams
(both individual models and their MU). We checked the “cyclic composition property”
inspired from [10], which ensures that “the model does not contain self-looping edges”.
A propositional formula was also generated for this property. The propositional
encodings were generated according to the rules discussed in Sect. 3.2, and they were
fed as literals to the MiniSAT solver included in the SATisPY package [11]. SATisPy
is a Python library that aims to be an interface to various SAT solver applications.

6.3 Results

This section is organized according to the experiments conducted to evaluate RT1,
RT2, and RT3. All figures illustrated in this section represent the average results of 15
runs.

Results for RT1. Figure 6 illustrates the time speedup of performing property
checking, first with a set of individual state machine diagrams (represented as typed
graphs) and then with their MU. In this experiment, we checked the satisfiability of the
cyclic composition property (Sect. 6.2). Figure 6 shows that the use of MU for property
checking achieves a significant time speedup compared to performing the same task on
a set of individual models separately. The highest speedup (=365) was observed with a
large number of individual models (i.e., I = L) that are of a small size (i.e., SIZE = S).
The smallest speedup (=2.54), on the other hand, was observed when both I, and SIZE
parameters are of category XL. In addition, for all categories of I, there is a noticeable
pattern of speedup degradation as the number of elements per individual model (i.e.,
SIZE) increases. This is due in part to the increase of Tconstruct as the SIZE increases.
Nevertheless, the speedup never went below 1, which means that even with very large
models (with I = XL and SIZE = XL), the time to perform property checking on a

Fig. 6. Average speedups achieved by using MU to perform property checking (RT1)

212 S. Alwidian and D. Amyot



group of such models (using MU), with considering the time to construct MU, is still
better than performing property checking on individual models.

Results for RT2. In this experiment, we conducted a trend analysis on an element
named GoalX from a set of GRL individual models and their MU. The purpose of this
analysis is to study the trend of this goal’s importance value attribute and analyze how
this value changes over time. To perform this analysis on MU, we simply searched for
and retrieved an element named X of type Goal, annotated with any version number

, where {veri} reflects the set of versions that the element
may belong to. With individual models, the search for and retrieval of X-Goal involve
each individual model, where the (laborious) process in reality involves opening each
individual model, searching about the desired element, observe its importance value,
and close the current model, iteratively for each model. Figure 7 illustrates the time
speedup gained in this experiment. The results illustrated in this figure show a pattern
close to the results of RT1 (i.e., property checking). This is somewhat expected as both
the property checking task and the searching task (which is the core of trend analysis)
have a linear time complexity. From Fig. 7, it can be noticed that the use of MU reduces
the time to search for elements that belong to a group of models instead of traversing
each individual model, separately. The highest speedup (=296) was achieved when
I = XL and SIZE = S, and the lowest (=5.9) when I = S and SIZE = XL. The decrease
pattern of speedup gained in this experiment is almost close to the one illustrated in
Fig. 6.

Results for RT3. Figure 8 shows the time speedup for significance analysis on a set of
GRL models and their MU. In this experiment, we searched for all elements that are
common between all model versions. This is a tedious task, especially when the
number and the size of models increase. Searching a set of M individual models, with
N elements each to find elements in common between all models has a complexity of O
(M � N2). However, with MU, we only use one model to search elements in common,
where the search task is reduced here into searching for elements annotated with
<ALL> . The time speedup gained in this experiment is more significant than in the

Fig. 7. Average speedups achieved by using MU to perform trend analysis (RT2)

Union Models: Support for Efficient Reasoning about Model Families 213



experiments for RT1 and RT2, as the potential gain here is quadratic rather than linear.
Again here, there is a decrease in the speedup as the model SIZE increases.

We noticed in some experiments with particular settings (related to variation of
models, size, number of models in a family) that the time saving achieved from using
MU was a few minutes (about 15 min for some model families).

6.4 Threats to Validity

One major threat to the validity of our empirical evaluation stems from relying on
randomly generated inputs (both graphs and experimental parameters). This threat can
be alleviated by using more realistic parameters, e.g., from real-world model families.

Another threat to validity is related to the experimental parameters, where we used
only SIZE and I. We recognize that we need to examine the impact of the variability of
models on reasoning. For example, we could consider the number of different anno-
tations per element to describe how similar or different the members are. The com-
plexity of a property to be checked might also be another parameter to consider.

Our experiments need to be elaborated further for more complex analysis tech-
niques found in typical goal modeling such as top-down and bottom-up satisfaction
propagation. The results could also be compared to approaches that handle some
variability in the time dimension (only) for goal models, including the work of Aprajita
et al. [12] and of Grubb and Chechik [13]. Furthermore, the current analysis covers two
modeling language (goal models and state machines) and it should be extended to other
types that are more structural (e.g., class diagrams) or behavioral (e.g., process models).

Finally, the usefulness of our approach needs to be assessed and demonstrated with
more significant examples or real-world case studies.

7 Related Work

There are few approaches proposed in the literature to support model families.
Shamsaei et al. [7] defined a generic goal model family (using GRL) for various types
of organizations in a legal compliance domain. They annotate models with information

Fig. 8. Average speedups achieved by using MU to perform significance analysis (RT3)

214 S. Alwidian and D. Amyot



about organization types to specify which ones are applicable to which family member.
Different from our work, the work of [7] handles only variation of models in the space
dimension and does not consider evolution over time. Also, the authors focused only
on maintainability issues and did not propose union models to improve analysis
complexity and reduce analysis effort. Palmieri et al. [14] elaborated further on the
work of [7] to support more variable regulations. The authors integrated GRL and
feature models to handle regulatory goal model families as software product lines
(SPLs), by annotating a goal model with propositional formula related to features in a
feature model. Unlike [7], Palmieri et al. considered further dimensions such as the
organization size, type, the number of people, etc. However, they did not consider
evolution of goal models over time, and did not introduce union models.

Our work has strong conceptual resemblances with the domain of SPL engineering,
which aims to manage software variants to efficiently handle families of software [15].
Although both of our work and the SPL domain have the concept of “families”, their
usages are different. In essence, the goal of SPL engineering is to plan for “proactive
reusability”, which means to strategically maintain a set of modeling artifacts (with
high-level features) to exploit what variants have in common to derive or create new
desirable products. The goal of our work, however, is not to plan for reusability but to
analyze families of models more efficiently using union models.

The notion of a feature is central to variability modeling in SPL, where features are
expressed as variability points. Feature models (FMs) [16] are a formalism commonly
used to model variability in terms of optional, mandatory, and exclusive features
organized in a rooted hierarchy, and associated with constraints over features. FMs can
be encoded as propositional formula defined over a set of Boolean variables, where
each variable corresponds to a feature. FMs characterize the valid combinations of
features as a configuration. A configuration defines, at a conceptual level, one product
which can be extracted from the SPL. Yet, a FM is different from an MU in both usage
and formalism. A FM represents variability at an abstract “feature level” which is
separate from the software artifacts (like a grammar of possible configurations),
whereas MU represents variability of all existing models at the “artifact level” itself.

To express variability, annotative approaches are commonly used in the literature,
as in the work of Czarnecki and Antkiewicz [17], where variability points are repre-
sented as presence conditions. These conditions are propositional expressions over
features. Annotations of features can be used as inputs to a variability realization
mechanism to derive or create a concrete software system as variant of the SPL. Using
a negative variability mechanism [17], annotative approaches define a so-called 150%
model that superimposes all possible variations of for the entire SPL. The 150% model
is used to derive a particular variant, while other irrelevant parts are removed. While
union models have some similarities to 150% models, the usage of both models, the
domains they are used in, and the way of annotating them are different.

The approaches proposed by Seidl et al. [18] and Lity et al. [19] are closely related
to ours. They considered variation of software families in space and time, and explicitly
annotated variability models with time and space information to distinguish between
the different versions and variations of software artifacts. However, this work is done
from the SPL perspective (where FMs are essential), while FMs are not used here.

Union Models: Support for Efficient Reasoning about Model Families 215



Famelis et al. [20] proposed partial models to capture a set of possible alternative
design models with uncertainty. While the idea of capturing models in one partial
model is close to our idea of representing models of a family in one union model, our
proposed approach is different in two major aspects: the context and the purpose. In
essence, we propose union models to enable a more efficient reasoning of multiple
models compared to individual models. Partial models, however, are used to describe
the observable behavior of a system and to reduce design-time uncertainty.

Mussbacher [21] and Aprajita et al. [12] extended the metamodel of GRL to
document explicit changes (additions/deletions) of model elements to specific versions
of a metamodel. Although a model family can then be captured, this approach is
specific to one language and currently incomplete in the kinds of changes to versions it
can accommodate.

Grubb et al. [22] introduced the concepts of “dynamic intentions” into goal models
to model alternatives on multiple time scales. The authors proposed a tool-supported
method for specifying changes in intentions over time which uses simulation for asking
a variety of ‘what if’ questions about models that evolve over time. Unlike our work,
Grubb’s approach is limited to goal models (Tropos and i* in particular), and does not
cover variations of models over the space dimension.

The concept of difference and union/merging of models is well investigated in the
context of version control systems [23, 24]. For instance, Alanen and Porres [25]
proposed an approach to calculate the difference between two models, represented as a
sequence of operations, and then extend the difference calculation to form a union
algorithm. The union algorithm calculates the union of two models based on their
differences from a given original/base model, where two separate modifications are
made to a base model, and the union algorithm combines both differences into one
model by interleaving the operations from the latter difference with the former dif-
ference. For example, given a base model Mbase and two alternative model versions M1

and M2, the union of these models, denoted as Mfinal, is calculated as: Mfinal=

Mbase + (M1 – Mbase) + (M2 – Mbase). This mechanism, known as three-way merge, is
mainly concerned with tracking and highlighting the changes that happen across
models, and calculates the final model based on the differences from the original model,
without backward traceability to the source of the changes. This is different from our
union algorithm, where we calculate the union model by taking all elements that belong
to all versions of models, with an additional feature that annotates elements to indicate
to which version they belong.

8 Conclusion and Future Work

This paper proposed union models as a modeling paradigm to support the represen-
tation of model families (for time and space dimensions) using one generic model.
Elements of a union model are annotated with information about time and space using a
new spatio-temporal annotation language (STAL) in order to distinguish which element
belongs to which model. The paper is contributing a formalization of union models that
simplifies the creation of such models while enabling several types of efficient analyses.

216 S. Alwidian and D. Amyot



Our experiments indeed demonstrate the usefulness of union models for analyzing a
family of models, all at once, compared to individual models.

For future work, we plan to extend our empirical evaluation by having more
experimental inputs, parameters, and tasks, by using existing model families, and also
by considering other categories of analysis techniques (such as GRL top-down prop-
agation) and other modeling languages. We expect that some analysis techniques will
need to be adapted from a single-model context to a model-family context; the cir-
cumstances imposing such adaptation and the effort required to adapt the analysis
techniques need to be identified and better understood. Usable tool support is also
being developed.

Acknowledgement. We would like to thank the anonymous reviewers, as well as Prof. Michalis
Famelis, for their comments and feedback, which helped us improve the presentation of this
paper. We also thank the Ontario Trillium Scholarship program, the NSERC Discovery program,
and the BMO Financial Group Graduate Bursaries for their financial support.

References

1. Micouin, P.: Model Based Systems Engineering: Fundamentals and Methods. Wiley,
Hoboken (2014)

2. ITU-T: Recommendation Z.151 (10/18) User Requirements Notation (URN) – Language
definition (2018). https://www.itu.int/rec/T-REC-Z.151/en

3. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the next ten
years. J. Softw. 6(5), 747–768 (2011)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

5. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
47884-1_16

6. Alwidian, S., Amyot, D.: Relaxing metamodels for model family support. In: 11th
Workshop on Models and Evolution (ME 2017), vol. 2019, pp. 60–64. CEUR-WS (2017)

7. Shamsaei, A., et al.: An approach to specify and analyze goal model families. In: Haugen,
Ø., Reed, R., Gotzhein, R. (eds.) SAM 2012. LNCS, vol. 7744, pp. 34–52. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36757-1_3

8. Famelis, M.: Managing design-time uncertainty in software models. Doctoral dissertation,
University of Toronto, Canada (2016)

9. NetworkX. https://networkx.github.io/. Accessed 05 June 2019
10. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logic to

maintain consistency between UML models. In: Stevens, P., Whittle, J., Booch, G. (eds.)
UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45221-8_28

11. SATisPY Solver. https://github.com/netom/satispy. Accessed 15 June 2019
12. Aprajita, Luthra, S., Mussbacher, G.: Specifying evolving requirements models with

TimedURN. In: Proceedings of the 9th International Workshop on Modelling in Software
Engineering, pp. 26–32. IEEE Press (2017)

Union Models: Support for Efficient Reasoning about Model Families 217

https://www.itu.int/rec/T-REC-Z.151/en
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/3-540-47884-1_16
http://dx.doi.org/10.1007/3-540-47884-1_16
http://dx.doi.org/10.1007/978-3-642-36757-1_3
https://networkx.github.io/
http://dx.doi.org/10.1007/978-3-540-45221-8_28
http://dx.doi.org/10.1007/978-3-540-45221-8_28
https://github.com/netom/satispy


13. Grubb, A.M., Chechik, M.: Modeling and reasoning with changing intentions: an
experiment. In: 2017 IEEE 25th International Requirements Engineering Conference
(RE), pp. 164–173. IEEE CS (2017)

14. Palmieri, A., Collet, P., Amyot, D.: Handling regulatory goal model families as software
product lines. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS,
vol. 9097, pp. 181–196. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-
3_12

15. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-
28901-1

16. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of feature
diagrams. Comput. Netw. 51(2), 456–479 (2007)

17. Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach based on
superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 422–437. Springer, Heidelberg (2005). https://doi.org/10.1007/11561347_28

18. Seidl, C., Schaefer, I., Aßmann, U.: Integrated management of variability in space and time
in software families. In: Proceedings of the 18th International Software Product Line
Conference (SPLC), vol. 1, pp. 22–31. ACM (2014)

19. Lity, S., Nahrendorf, S., Thüm, T., Seidl, C., Schaefer, I.: 175% modeling for product-line
evolution of domain artifacts. In: Proceedings of the 12th International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS), pp. 27–34. ACM (2018)

20. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reasoning with
uncertainty. In: 34th International Conference on Software Engineering (ICSE), pp. 573–
583. IEEE CS (2012)

21. Mussbacher, G.: TimedGRL: specifying goal models over time. In: IEEE International
Requirements Engineering Conference Workshops (REW), pp. 125–134. IEEE CS (2016)

22. Grubb, A.M., Chechik, M.: Looking into the crystal ball: requirements evolution over time.
In: 24th International Requirements Engineering Conference (RE), pp. 86–95. IEEE CS
(2016)

23. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning approaches. Int.
J. Web Inf. Syst. 5(3), 271–304 (2009)

24. Förtsch, S., Westfechtel, B.: Differencing and merging of software diagrams–state of the art
and challenges. In: Filipe, J., Helfert, M., and Shishkov, B. (eds.) Second International
Conference on Software and Data Technologies (ICSOFT), pp. 90–99. INSTICC Press
(2007)

25. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle, J., Booch, G.
(eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45221-8_2

218 S. Alwidian and D. Amyot

http://dx.doi.org/10.1007/978-3-319-19069-3_12
http://dx.doi.org/10.1007/978-3-319-19069-3_12
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/11561347_28
http://dx.doi.org/10.1007/978-3-540-45221-8_2
http://dx.doi.org/10.1007/978-3-540-45221-8_2


Facilitating the Co-evolution of Standards
and Models

Philip Makedonski(B) and Jens Grabowski

Institute of Computer Science, University of Göttingen,
Göttingen, Germany

{makedonski,grabowski}@cs.uni-goettingen.de

Abstract. The Information Model (IM) specified by the Network Func-
tion Virtualisation (NFV) Industry Specification Group (ISG) at the
European Telecommunications Standards Institute (ETSI) provides a
consolidated view of all information elements used in the various inter-
faces defined in the NFV standards. Its purpose is to enable quick identi-
fication of gaps and inconsistencies in the standards and in implementa-
tions of the standards. As the standards are increasing in volume, manual
approaches for ensuring their consistency and their co-evolution with the
IM are becoming unsustainable, especially considering the rapid release
cycles. In this article, we present a model-based approach for facilitating
the co-evolution of standards and models and the current state of its
prototypical implementation put into place to support the work within
the NFV Interfaces and Architecture (IFA) working group. The initial
results from the application of the approach were reported to the NFV
IFA working group and are expected to contribute towards maintaining
the high quality of the standards as they continue to evolve.

Keywords: Model evolution · Validation · Maintenance · Standards ·
Traceability

1 Introduction

Modelling is gaining ground in standardisation. The Network Function Virtuali-
sation (NFV) Industry Specification Group (ISG) at the European Telecommuni-
cations Standards Institute (ETSI) has adopted the Unified Modeling Language
(UML) for the Specification of an Information Model (IM) for NFV. The IM
provides a consolidated view on all information elements used in the various
interfaces defined in the different NFV standards. It enables a quick identifi-
cation of gaps and inconsistencies in the standards and in implementations of
the standards. The IM consolidates information elements from more than 14
different NFV Interfaces and Architecture (IFA) working group Specification
spanning more than 1000 pages that provide input to the information model.
The size of the model has grown to more than 200 classes, 250 data types and
250 associations and continues to grow with the rapid release cycle resulting
from the intense work within the ISG.
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 219–232, 2019.
https://doi.org/10.1007/978-3-030-30690-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_13&domain=pdf
http://orcid.org/0000-0001-7752-0029
http://orcid.org/0000-0003-2994-3531
https://doi.org/10.1007/978-3-030-30690-8_13


220 P. Makedonski and J. Grabowski

While machine readable models can aid the standardization work and pro-
vide added value during both the standards development and the use of the
standards, human readable Specification are still the main outcome of stan-
dardisation. Thus, it is necessary that both the specifications and the models
co-evolve in a consistent manner.

So far the consistency checking and co-evolution of the standards and the
model has been performed manually. This process can be very time consum-
ing, tedious, and error-prone, to the point of becoming unsustainable with the
increasing volume of the standards and the IM, especially considering the rapid
release cycles, and the growing interconnectedness in the domain with differ-
ent organisations coming together to evolve the standards further. At the same
time, having an up-to-date IM becomes more and more important in order to
ensure that the standards are consistent. Thus, some automation of the consis-
tency checking is highly desirable in order to ensure the usefulness of the IM and
enable the maintenance team to focus on the adaptation of the IM. Automation
in this area can also benefit the allocation of highly specialised expertise that is
required to maintain the standards by enabling experts to dedicate more time
on technical matters instead of manual consistency checking.

Since standards are highly (and sometimes also formally) structured doc-
uments, it is feasible to extract a model from the document. This model can
then be checked against the IM at various levels of detail to ensure that any
incoming changes to the documents are reflected in the IM. Additionally, checks
for the internal consistency of both the IM and the documents can be realised
by model constraints, for example. In this article, we outline our approach for
facilitating the co-evolution of standards and models and the current state of its
prototypical implementation put into place to support the work within the NFV
IFA working group, some initial results from the application of the approach, as
well as our vision for future work in this area.

The rest of this article is structured as follows: In Sect. 2, we summarise
some of the background information regarding the peculiarities of the application
domain. In Sect. 3, we present the model-based approach for facilitating the co-
evolution of standards and models. In Sect. 4, we showcase the current state
of the prototypical implementation of the presented approach as well as some
initial findings from its application. In Sect. 5, we discuss related work in the
area. Finally, in Sect. 6, we conclude this article by providing a short summary
and an outlook on future work in this area.

2 Background

The NFV ISG undertakes work in 2-year phases (release cycles) during which
a new release is developed. Within a release cycle, new IFA specifications and
maintenance revisions of existing IFA specifications are typically approved every
six months and provided as new versions within “release drops”. During the
ongoing work on the specifications, the draft versions of the specifications and
the IM need to be continuously aligned. The draft versions are provided for



Facilitating the Co-evolution of Standards and Models 221

discussion during IFA meetings before publication, in order to identify potential
misalignments and be able to take timely corrective actions and coordinate with
the work on other related NFV IFA specifications.

The NFV IM was conceived as means to obtain a consolidated view on all
information elements present in the descriptors and interface specifications. Such
consolidated view enables a quick identification of gaps and inconsistencies in
the standards and implementations of the standards. It also provides means
to check the consistency and validity of new features and changes during the
drafting of related specifications. Thus, the IM is an important tool for ensuring
the consistency among specifications. Having the consolidated IM in a machine-
readable format also eases the sharing of the model with external stakeholders.
By relying on tools and formats commonly used in the broader community, the
use of the ETSI NFV IM as a basis becomes more appealing, as it is easy to
build custom solutions on top of it. To continue to be useful, the IM needs to be
maintained and aligned with changes in the related specifications.

The ETSI NFV specifications are referenced and used by operators, vendors,
and open source communities involved in NFV deployments. The availability
of the ETSI NFV IM representation is essential for the quick development of
high-quality specifications and for making ETSI NFV the industry reference
for management and orchestration standards. Furthermore, it also helps the
faster adoption of ETSI specifications by other standards organizations and open
source projects as it offers a well-defined “entry point” to understand the rela-
tionship among the different concepts, artefacts, functionality, interfaces, etc.

While the information elements described in the IM are focused on the man-
agement of the virtualisation aspects, other models, defined by other organiza-
tions, such as the Open Networking Foundation (ONF), TM Forum, and the 3rd
Generation Partnership Project (3GPP) focus on other aspects in the domain.
To provide an end-to-end model view, interaction points between the IM selected
models from other organizations are described in a separate report (IFA0241).
This allows all organizations to extend their models based on the interaction
points as needed.

3 Methodology

Due, in part, to the increasing overhead associated with the maintenance of the
IM, its latest published version is v3.1.1. In the meantime, two updated ver-
sions of related specifications were prepared, v3.2.1 and v3.3.1. We collected the
updated versions of the relevant specifications since the last published update to
the IM as input material. The specifications included: IFA005, IFA006, IFA007,
IFA008, IFA011, IFA012, IFA013, IFA014, IFA030, IFA031, IFA032 (See footnote
1).

Consequently, we started with more than 2000 pages of standards documents
for the two versions since the last published version of the IM. Luckily, the doc-
uments were also available with change marks. The first step was to investigate
1 See https://www.etsi.org/technologies/nfv.

https://www.etsi.org/technologies/nfv


222 P. Makedonski and J. Grabowski

the extent and type of changes between the versions. This already provided us
with an initial overview, where newer versions of some of the documents only
included minor changes, whereas other documents featured more substantial
modifications. The next step was to migrate the changes to the IM. The first
obvious challenge was to identify where the relevant elements are located. The
IM is structured in different nested packages and there are a total of 64 dia-
grams where the elements may be represented. Due to the lack of traceability
links, this proved to be a rather challenging task. More importantly, it quickly
became apparent that there are more differences between the standards and the
IM than the ones indicated by the change marks. Thus, relying on the change
marks alone would not be sufficient.

Considering the amount of documents that need to be aligned with the IM,
as well as the inherent complexity of the domain and the rapid release cycles,
it became evident that the maintenance process for the IM can benefit from
some automation to quickly identify inconsistencies and enable the maintainers
to focus on the important tasks. Inconsistencies emerge for a number of reasons.
New information elements are added to the standards as part of ongoing main-
tenance activities. Similarly, existing elements are refined where their descrip-
tions and attribute definitions are modified. In rare cases, information elements
are also removed from the standards. Certain information elements are exposed
through multiple interfaces, thus their definitions appear in the specifications
for each of those interfaces and need to be kept consistent whenever changes to
the information elements are introduced. While there is an established process
for mirroring changes to these information elements across all relevant specifica-
tions, given the growing volume of the specifications, it is important to monitor
and ensure the consistency of the mirrored definitions. Both the standards and
the IM abide by certain conventions, which need to be checked and enforced over
time. After examining the standards and the IM further, the following challenges
emerged:

1. Validation of the standards against the IM: whether all elements exist
in the IM (detect new elements), whether the attributes and descriptions
match (detect mismatching attributes and descriptions);

2. Validation of the IM against the standards: whether all elements exist
in the standards (detect obsolete elements), whether elements are described
in multiple standards (detect duplicate specifications);

3. Internal consistency of the standards: whether conventions within the
individual standards are followed, whether there are inconsistencies between
different standards and different versions of standards;

4. Internal consistency of the IM: whether conventions within the IM are
followed, whether the structure of the IM and its elements is consistent;

5. Establish traceability links: document where an element is represented in
the standards, the IM, and the diagrams.

To illustrate these challenges, consider the VnfVirtualLinkResourceInfo infor-
mation element. Comparing its definition in IFA008 v3.2.1, shown in Fig. 1, and
in the IM, shown in Fig. 1, we can observe that the reservationId attribute from



Facilitating the Co-evolution of Standards and Models 223

Table 9.4.5.2-1: Attributes of the VnfVirtualLinkResourceInfo information element 

Attribute Qualifier Cardinality Content Description
virtualLinkInstanceId M 1 Identifier Identifier of this VL instance.  
vnfVirtualLinkDescId M 1 Identifier (Reference to 

VnfVirtualLinkDesc) 
Identifier of the VNF Virtual Link Descriptor 
(VLD) in the VNFD. 

networkResource M 1 ResourceHandle Reference to the VirtualNetwork resource. 
vnfLinkPort M 0..N VnfLinkPortInfo Links ports of this VL. 
metadata M 0..N KeyValuePair Metadata about this resource. 

ETSI GS NFV-IFA 008 V3.2.1 (2019-04)107

9.4.5 VnfVirtualLinkResourceInfo information element 

9.4.5.1 Description 

This information element provides information on virtualised network resources used by an internal VL instance in a 
VNF. 

9.4.5.2 Attributes 

The VnfVirtualLinkResourceInfo information element shall follow the indications provided in table 9.4.5.2-1. 

Fig. 1. VnfVirtualLinkResourceInfo information element in IFA008 (excerpt from stan-
dard)

the IM is not present in the corresponding definition in IFA008 v3.2.1. Assuming
that the standards are the primary point of reference, we might conclude that
it needs to be removed from the IM as the definition in IFA008 v3.2.1 does not
include such attribute. However, a more thorough examination reveals that the
same information element is also defined within IFA007 v3.2.1 and IFA013 v3.2.1.
The corresponding excerpts are shown in Figs. 3 and 4, respectively. Consider-
ing the definitions for VnfVirtualLinkResourceInfo in IFA007 v3.2.1 and IFA013
v3.2.1, we can observe that the reservationId attribute is indeed present in these
definitions. This raises the question which definition is to be considered correct.
Without, further information, it is impossible to tell, so such inconsistencies
need to be discussed with the NFV IFA working group. Alternatively, looking
at the history of changes and the related change requests may reveal further
hints regarding which definition is the correct one. Beyond this obvious incon-
sistency, a closer look reveals further differences in the attribute descriptions,
ranging from the definition of an acronym in the description for the vnfVirtu-
alLinkDescId attribute in IFA007 v3.2.1 to additional information in the net-
workResource attribute description in IFA007 v3.2.1 and additional requirements
in the vnfLinkPort attribute descriptions in IFA007 v3.2.1 and IFA013 v3.2.1.
While such inconsistencies are not very common in the standards and in the
IM, checking for them manually requires substantial effort and might still fail to
detect them due to the sheer volume of content that needs to be continuously
examined.

To address these challenges, we first needed to extract the relevant informa-
tion from the standards. Since the standards have a highly structured format,
we defined a minimal meta-model to capture the essential relevant concepts,
comprising of standards, containing information elements, which in turn contain



224 P. Makedonski and J. Grabowski

Fig. 2. VnfVirtualLinkResourceInfo information element in IM (excerpt from diagram)

attributes. The meta-model is summarised in Fig. 5. Then, we defined a mapping
from the standards to the meta-model, enabling us to construct model instances
from the standards documents. Following a model-based approach allows us
raise the level of abstraction and capitalise on existing modelling technologies
and approaches.

Next, we defined a set of model transformations for establishing traceability
links between the information elements in the standards models, the IM, and
the diagrams, resulting in a trace model. Finally, we defined a set of constraints
for checking the consistency of the IM and the standards models which take
advantage of the trace model in order to address the first four challenges listed
above. The overall approach is summarised in Fig. 6.

4 Implementation and Evaluation

In this section, we discuss the realisation of the approach, its current status, as
well as its initial evaluation.

4.1 Overview

Eclipse and associated technologies were chosen as the base platform for the
implementation as it is one of the most widely used modeling platforms today.
Another reason for the adoption of Eclipse was the fact that the IM has been
specified and maintained in the form of a UML model within the Papyrus mod-
eling environment2, which is also part of the Eclipse ecosystem. In addition to
end-user modelling capabilities, Eclipse also provides Application Programming
Interface (API) for developers allowing the programmatic access of UML mod-
els and resources. Associated modelling technologies, such as implementations
of OCL, provide higher level access to the UML models as well. This enabled us
to inspect and process the IM.



Facilitating the Co-evolution of Standards and Models 225

8.5.5 VnfVirtualLinkResourceInfo information element 

8.5.5.1 Description 

This information element provides information on virtualised network resources used by an internal VL instance in a 
VNF. 

8.5.5.2 Attributes 

The VnfVirtualLinkResourceInfo information element shall follow the indications provided in table 8.5.5.2-1. 

Table 8.5.5.2-1: Attributes of the VnfVirtualLinkResourceInfo information element 

Attribute Qualifier Cardinality Content Description
virtualLinkInstanceId M 1 Identifier Identifier of this VL instance.  
vnfVirtualLinkDescId M 1 Identifier (Reference 

to 
VnfVirtualLinkDesc) 

Identifier of the VNF Virtual Link Descriptor 
(VLD) in the VNFD. 

networkResource M 1 ResourceHandle Reference to the VirtualNetwork resource. 

Information about the resource is available 
from the Virtualised Network Resource 
Management interface.  

reservationId M 0..1 Identifier The reservation identifier applicable to the 
resource. It shall be present when an 
applicable reservation exists. 

metadata M 0..N KeyValuePair Metadata about this resource. 
vnfLinkPort M 0..N VnfLinkPortInfo Links ports of this VL. 

Shall be present when the linkPort is used 
for external connectivity by the VNF (refer to 
VnfLinkPortInfo in clause 8.5.11). 
May be present otherwise. 

Fig. 3. VnfVirtualLinkResourceInfo information element in IFA007 (excerpt from stan-
dard)

8.3.3.6 VnfVirtualLinkResourceInfo information element 

8.3.3.6.1 Description 

This information element provides information on virtualised network resources used by an internal VL instance in a 
VNF. 

8.3.3.6.2 Attributes 

The VnfVirtualLinkResourceInfo information element shall follow the indications provided in table 8.3.3.6.2-1. 

Table 8.3.3.6.2-1: Attributes of the VnfVirtualLinkResourceInfo information element 

Attribute Qualifier Cardinality Content Description
virtualLinkInstanceId M 1 Identifier Identifier of this VL instance.  
vnfVirtualLinkDescId M 1 Identifier (Reference 

to 
VnfVirtualLinkDesc) 

Identifier of the VNF VLD in the VNFD. 

networkResource M 1 ResourceHandle Reference to the VirtualNetwork resource. 
reservationId M 0..1 Identifier The reservation identifier applicable to the 

resource. It shall be present when an 
applicable reservation exists. 

vnfLinkPort M 0..N VnfLinkPortInfo Links ports of this VL. Shall be present 
when the linkPort is used for external 
connectivity by the VNF (refer to 
VnfLinkPortInfo in clause 8.3.3.20). May 
be present otherwise. 

metadata M 0..N KeyValuePair Metadata about this resource. 

Fig. 4. VnfVirtualLinkResourceInfo information element in IFA013 (excerpt from stan-
dard)



226 P. Makedonski and J. Grabowski

Fig. 5. Minimal meta-model for capturing relevant information from standards

The standards are available in Word and Portable Document Format (PDF)
formats. Apache POI3 provides API for accessing the contents of various kinds of
documents, among which also Word documents. We defined a custom mapping
by using the Apache POI API to extract relevant information from the standards
documents and construct standards model instances. The meta-model for the
standards documents was also defined in Papyrus.

The transformation scripts were defined by means of the Epsilon Object
Language (EOL)4 [10] and the Epsilon Transformation Language (ETL) 5 [11].
EOL is a domain-specific language for creating, querying, and modifying models.
It supports the access and modification of multiple models. ETL is a domain-
specific language for hybrid, rule-based model transformations built on top of
EOL. It provides common transformation capabilities, as well as the ability to
transform many input to many output models. The transformations are defined
by means of both declarative and imperative transformation specifications, allow-
ing for sophisticated transformation logic, as well as abstraction and reuse. Based
on previous experiences, we selected the Epsilon family of languages as the most
convenient solution. The constraints were realised with the help of the Epsilon
Validation Language (EVL) (See footnote 5). EVL provides means for the imple-
mentation of add-on constraints and extends the capabilities of OCL, e.g. by
providing additional facilities for the specification of guards on constraints.

4.2 Current Status

We implemented the essential steps for the mapping, transformation, and valida-
tion as a prototype. To support the ongoing maintenance work of the NFV IFA
working group, we provided a basic Graphical User Interface (GUI) indicating
the main aspects of interest. An example of the GUI is shown in Fig. 7. On the
top right, a document browser allows the users to select the standard that needs
to be evaluated and inspected. After the users select a standard, its content is
loaded in a hierarchical tree in the top middle portion of the GUI. Matched
information elements are highlighted with green background. Mismatched infor-
mation elements are highlighted with red background. Additionally in the bot-
tom right area of the GUI a list of all the mismatched information elements is
2 See https://www.eclipse.org/papyrus/.
3 See https://poi.apache.org.
4 See https://www.eclipse.org/epsilon/doc/eol/.
5 See https://www.eclipse.org/epsilon/doc/etl/.

https://www.eclipse.org/papyrus/
https://poi.apache.org
https://www.eclipse.org/epsilon/doc/eol/
https://www.eclipse.org/epsilon/doc/etl/


Facilitating the Co-evolution of Standards and Models 227

Fig. 6. Approach overview

provided for reference. The large number of mismatched information elements
is due to the fact that IFA032 is a new standard currently under development.
Upon selecting an information element in the content area, its content is shown
in the bottom portion of the GUI for quick reference. Additionally, if there is a
matching element in the IM, it is automatically selected in the IM tree shown on
the top right area of the GUI, and its description and the diagrams in which it is
displayed are shown in the middle right area of the GUI. The bottom part of the
GUI shows detailed matching information for the attributes found in the stan-
dard (bottom left) and the corresponding attributes found in the IM (bottom
right), both in a tabular and textual format. The mismatching attributes and
their characteristics are highlighted in red in the tabular format. The textual
format is used for a textual comparison (bottom middle part), providing a quick
overview of all the changes in one place. In this case we can immediately notice
that the attribute endTime may have been renamed to stopTime. This way the
users can quickly inspect and compare the descriptions of the elements as well as
their attributes. They are also directed to the relevant diagrams where they may
want to perform further inspection or modification of the IM. Finally, on the
very top, a search bar enables the users to check for similarly named elements
in the IM in order to verify that a mismatched element is really missing rather
than renamed.



228 P. Makedonski and J. Grabowski

Fig. 7. User Interface Example (prototype) (Color figure online)

The current version of the implementation does not yet support fully auto-
mated inspection of attributes as well as bi-directional validation. In particular,
it does not indicate whether there are duplicated clauses in multiple documents
describing the same element of the IM, or whether certain elements of the IM
are no longer present in the standards. We are working to add support for these
consistency checks to the prototypical implementation in order to streamline the
work of the NFV IFA working group further and ensure the high quality and
consistency of both the standards and the IM.

The extraction of the models from the standards relies on consistent struc-
ture of the documents. Thus, some constraints were defined to check whether
the models are extracted properly, e.g. whether attributes can be extracted reli-
ably. These constraints revealed inconsistencies in the table headings and clause
names in some cases. During the study and validation of the IM, some issues
with the way associations were displayed within diagrams in Papyrus became
apparent. In some cases, the same association is displayed with swapped labels
for the multiplicities (and roles) at the respective ends. An example is illustrated
in Fig. 8. This can be confusing to both users and maintainers of the IM. Upon
further investigation it became apparent that in some of the cases, in an effort to
get the correct labels to be displayed, the IM was modified in a way that resulted
in inconsistencies with the standards. As part of the study, we determined that
the actual problem arose due to mismatching the source and target shapes in the
diagram model. It is still unclear whether this occurred due to bugs in Papyrus
or due to compatibility issues between different versions. This observation led to
the definition of a constraint checking for such inconsistencies.



Facilitating the Co-evolution of Standards and Models 229

Fig. 8. Inconsistent association label display

4.3 First Results

During the manual inspection and with the help of the prototypical implemen-
tation of the approach we collected some initial findings demonstrating how the
proposed approach can be useful. The initial findings indicated the following
inconsistencies:

Inconsistent naming: different naming was used in some cases, which pre-
sented some challenges for the naming conventions which we relied on for the
identification of the relevant clauses within the standards documents, e.g. dif-
ferent suffixes, Network Service Descriptor vs Nsd, VNFD vs Vnfd;
Inconsistent descriptions: differences in the descriptions and attributes of
related elements may need some alignment upon further examination;
New/Mismatched elements: we identified 40 new information elements, ini-
tial search did not yield reliable matches for similarly named and similarly struc-
tured elements in the IM, these elements need further inspection, many of them
are the result of recent activities within NFV IFA;
Typos/Renames: we identified 6 elements that appear to be renamed or con-
tain typos both in the standards and in the IM;
Potentially duplicated elements: we identified multiple elements which are
described in multiple standards (this is part of the working procedures at NFV
IFA), these need to be aligned where applicable, with the implementation of the
approach helping to keep track of these for future changes.



230 P. Makedonski and J. Grabowski

These findings are reported to the IFA working group and corresponding
corrective actions are being discussed in order to improve the quality and align-
ment of both the standards documents and the IM. The consistency checking
will be extended and applied continuously in order to support the maintenance
and co-evolution of the standards and the IM throughout the next releases.

5 Related Work

The work described in this article touches upon two main areas: traceability
among different artefacts and the co-evolution of related artefacts. In the area of
traceability, there is a significant body of research over the past couple of decades
ranging from defining the problem itself [9] to applying various techniques in
order to partially automate the identification of traceability links [1,3,4,6,8] and
defining guidelines and best practices for automating traceability [5,12]. Estab-
lishing traceability among artefacts is a common problem in software engineer-
ing, while linking code to documentation [1] and tests to code [13] are two tasks
that have received substantial attention in research, most of the existing work
is related to tracing requirements throughout the software development process.
More recently, research has also been focusing on traceability in model-based
and model-driven development [4,8,14]. Our work has a lot in common with
previous approaches. We refine some of the techniques to the specific domain of
co-evolution of standards and models. Standards are requirements specifications,
thus the application of requirements traceability approaches is appropriate.

Regarding co-evolution of artefacts, some work has been done on the co-
evolution of code and tests [7,14], as well as the co-evolution of different compo-
nents [2,15]. Our work is concerned with the co-evolution of related standards
and models. It is similar to the co-evolution of related components where a family
of standards can be perceived as related components, however some peculiarities
still require adaptation and refinement of existing approaches.

6 Conclusion

The NFV IM provides a consolidated view on all information elements present
in the interface specifications, enabling a quick identification of gaps and incon-
sistencies in the implementations of the standards. With the increasing volume
of the NFV IFA specifications, the maintenance of the IM required considerable
overhead. This lead to an increasing risk that the IM falls behind and becomes
less useful for the further development of the specifications.

We proposed a model-based approach to aid the maintenance of both the
IM and the specifications by automating some of the consistency checks and
establishing traceability links between the specifications, the IM and the rele-
vant diagrams for the IM. With the help of a prototypical implementation of the
approach, we obtained some promising initial results, indicating potential incon-
sistencies in the IM and the specifications as a first step towards the continued
maintenance of the IM.



Facilitating the Co-evolution of Standards and Models 231

The approach its realisation enable the NFV IFA working group to maintain
its rapid release cycle and continue to deliver high quality specifications, despite
the increasing volume of both the specifications and the IM. With the help of the
prototypical implementation, the IM can be maintained and developed further
in a timely manner and with lower overhead, increasing the confidence in the
specifications and paving the way to their adoption.

Future work includes the specification and realisation of further consistency
checks, as well as the refinement of existing consistency checks. From a user’s
point of view, it is desirable to include support for comparing suspected dupli-
cates, annotations enabling users to mark intentional deviations in certain cases,
as well as the generation of change logs for documenting and tracking the progress
of the alignment. Ultimately, some automation for the alignment is also desir-
able, in order to relieve the maintainers from transferring trivial updates from the
specifications to the IM, such as fixing typos, updating descriptions, or renaming
attributes. In a broader context, this work can be a first step towards a more
generic approach for similar scenarios in supporting the evolution and mainte-
nance of standards as highly structured and formalised documents.

Acknowledgements. Part of the work discussed within this article has been funded
by the ETSI in the context of the Specialist Task Force (STF) 570.

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.: Information retrieval models
for recovering traceability links between code and documentation. In: Proceedings
2000 International Conference on Software Maintenance, pp. 40–49, October 2000.
https://doi.org/10.1109/ICSM.2000.883003

2. Berardinelli, L., Biffl, S., Maetzler, E., Mayerhofer, T., Wimmer, M.: Model-
based co-evolution of production systems and their libraries with AutomationML.
In: 2015 IEEE 20th Conference on Emerging Technologies Factory Automation
(ETFA), pp. 1–8, September 2015. https://doi.org/10.1109/ETFA.2015.7301483

3. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability. Empirical Softw. Eng.
19(6), 1565–1616 (2014). https://doi.org/10.1007/s10664-013-9255-y

4. Cleland-Huang, J., Hayes, J.H., Domel, J.M.: Model-based traceability. In: 2009
ICSE Workshop on Traceability in Emerging Forms of Software Engineering, pp.
6–10, May 2009. https://doi.org/10.1109/TEFSE.2009.5069575

5. Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S.: Best prac-
tices for automated traceability. Computer 40(6), 27–35 (2007). https://doi.org/
10.1109/MC.2007.195

6. David, J., Koegel, M., Naughton, H., Helming, J.: Traceability ReARMed. In: 2009
33rd Annual IEEE International Conference on Computer Software and Appli-
cations (COMPSAC 2009), vol. 1, pp. 340–348 (2009). https://doi.org/10.1109/
COMPSAC.2009.52

7. Ens, B., Rea, D., Shpaner, R., Hemmati, H., Young, J.E., Irani, P.: ChronoTwigger:
a visual analytics tool for understanding source and test co-evolution. In: 2014 Sec-
ond IEEE Working Conference on Software Visualization, pp. 117–126, September
2014. https://doi.org/10.1109/VISSOFT.2014.28

https://doi.org/10.1109/ICSM.2000.883003
https://doi.org/10.1109/ETFA.2015.7301483
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1109/TEFSE.2009.5069575
https://doi.org/10.1109/MC.2007.195
https://doi.org/10.1109/MC.2007.195
https://doi.org/10.1109/COMPSAC.2009.52
https://doi.org/10.1109/COMPSAC.2009.52
https://doi.org/10.1109/VISSOFT.2014.28


232 P. Makedonski and J. Grabowski

8. Galvao, I., Goknil, A.: Survey of traceability approaches in model-driven engi-
neering. In: 11th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2007), p. 313, October 2007. https://doi.org/10.1109/EDOC.
2007.42

9. Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability prob-
lem. In: Proceedings of IEEE International Conference on Requirements Engineer-
ing, pp. 94–101, April 1994. https://doi.org/10.1109/ICRE.1994.292398

10. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006). https://doi.org/10.1007/11787044 11. (cited by 0118)

11. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69927-9 4

12. Maro, S., Anjorin, A., Wohlrab, R., Steghöfer, J.: Traceability maintenance: factors
and guidelines. In: 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 414–425, September 2016

13. Parizi, R.M., Lee, S.P., Dabbagh, M.: Achievements and challenges in state-of-
the-art software traceability between test and code artifacts. IEEE Trans. Reliab.
63(4), 913–926 (2014). https://doi.org/10.1109/TR.2014.2338254

14. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering
and model-driven development. Softw. Syst. Model. 9(4), 529–565 (2010). https://
doi.org/10.1007/s10270-009-0145-0

15. Yu, L.: Understanding component co-evolution with a study on Linux. Empirical
Softw. Eng. 12(2), 123–141 (2007). https://doi.org/10.1007/s10664-006-9000-x

https://doi.org/10.1109/EDOC.2007.42
https://doi.org/10.1109/EDOC.2007.42
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1109/TR.2014.2338254
https://doi.org/10.1007/s10270-009-0145-0
https://doi.org/10.1007/s10270-009-0145-0
https://doi.org/10.1007/s10664-006-9000-x


Concurrency, Data Integrity



Adapting Integrity Checking Techniques
for Concurrent Operation Executions

Xavier Oriol(B) and Ernest Teniente

Department of Service and Information System Engineering,
Universitat Politècnica de Catalunya – BarcelonaTech, Barcelona, Spain

{xoriol,teniente}@essi.upc.edu

Abstract. One challenge for achieving executable models is preserving
the integrity of the data. That is, given a structural model describing the
constraints that the data should satisfy, and a behavioral model describ-
ing the operations that might change the data, the integrity checking
problem consists in ensuring that, after executing the modeled opera-
tions, none of the specified constraints is violated.

A multitude of techniques have been presented so far to solve the
integrity checking problem. However, to the best of our knowledge, all of
them assume that operations are not executed concurrently. As we are
going to see, concurrent operation executions might lead to violations
not detected by these techniques.

In this paper, we present a technique for detecting and serializing
those operations that can cause a constraint violation when executed
concurrently, so that, previous incremental techniques, exploiting our
approach, can be safely applied in systems with concurrent operation
executions guaranteeing the integrity of the data.

Keywords: Integrity checking · Concurrent operations · UML/OCL

1 Introduction

One of the main challenges for achieving executable models is ensuring data
integrity [1]. That is, given a structural model describing the data and its
integrity constraints, such as an UML diagram with OCL invariants; and a
behavioral model describing the operations that can change this data, like
OCL operation contracts for instance, the integrity checking problem consists in
assessing whether the particular execution of a given operation in the current
data state may induce a constraint violation. The difficulty of this problem is
clear since, in the context of SQL databases, the integrity checking problem was
already defined more than 25 years ago (under the form of SQL assertions check-
ing [2]) and, still, none of the current major database management systems has
implemented a solution for it (Oracle, SQL Server, DB2, PostgreSQL, MySQL).

As an example, consider the structural model described in Fig. 1, written in
UML/OCL, of a system for managing a research group. In this system, we have
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 235–248, 2019.
https://doi.org/10.1007/978-3-030-30690-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_14


236 X. Oriol and E. Teniente

some researchers who work in some projects. Moreover, some of these researchers
lead some of these projects, although a project might have a maximum of two
leaders. The OCL invariants states that researchers and projects are identified by
their name (ResercherPK, and ProjectPK invariants), a leader of a project is also
a member of the project (LeaderIsMember invariant), and that the salary of a
leader of a project is higher than the salary of all its members (LeaderEarnsMore
invariant). Note that these constraints might be violated because of the actions
of the operations, as they are specified in the behavioral model.

Project
name: String

Researcher
name: String
salary: Integer 1..2    *

1..*    *WorksIn

Leads
leader

member

context Researcher inv ResearcherPK:
Researcher.allInstances()->isUnique(name)

context Project inv ProjectPK:
Project.allInstances()->isUnique(name)

context Project inv LeaderIsMember:
self.member->includesAll(self.leader)

context Project inv LeaderEarnsMore:
self.leader->forAll(l|self.member->forAll(m|l.salary >= m.salary))

Fig. 1. Structural model of a research group management system

In Fig. 2, we show a fragment of the behavioral model for this system. In this
model, we show the operation contracts, written in OCL, of four operations.
The first one is required for adding new researchers (hireResearcher), the second
one for assigning a leader to a project (addLeader), the third one for including
a member in a project (addMember), and the last one for removing a member
from a project (removeMember)1.

Depending on the current state of the information base, executing some of
these operations with certain parameters can lead to a constraint violation. For
instance, if we execute addLeader with parameters Mary and ModelsProject, but
Mary is not currently a member of ModelsProject, the execution of the operation
violates the LeaderIsMember constraint. The difficulty of this problem scales
rapidly when complicating the operations and constraints involved.

To solve this problem, several proposals have been made in the modeling
community based on incremental techniques [3–7]. Briefly, incremental integrity
checking techniques are based on the idea that, assuming that the current data
1 This behavioral schema is oversimplified in purpose for the seek of facilitating the
explanation of the method. More in general, our method can deal with operations
applying several insertions/deletions at the same time, and not just one. In addition,
our method is independant with the preconditions defined, thus, more complicated
contracts are allowed. The unique requirement, as it will be explained laterly, is that
OCL postconditions should be rewrittable in first-order logics (i.e., no aggregation
nor transitive closure are allowed in postconditions).



Inc. Checking OCL Constraints with Aggregates Through SQL Queries 237

Op hireResearcher(name: String, salary: Integer)
post: Researcher.allInstances()->exists(r|r.oclIsNew() and r.name = name and r.salary = salary)

Op addLeader(rName: String, pName: String)
pre: Researcher.allInstances().name->includes(rName)
pre: Project.allInstances().name->includes(pName)
post: Project.allInstances()->select(p|p.name = pName).leader.name->includes(rName)

Op addMember(rName: String, pName: String)
pre: Researcher.allInstances().name->includes(rName)
pre: Project.allInstances().name->includes(pName)
post: Project.allInstances()->select(p|p.name = pName).member.name->includes(rName)

Op removeMember(rName: String, pName: String)
pre: Researcher.allInstances().name->includes(rName)
pre: Project.allInstances().name->includes(pName)
post: Project.allInstances()->select(p|p.name = pName).member.name->excludes(rName)

Fig. 2. Behavioral model of a research group management system

state satisfies all the constraints, they check whether the data updated by an
operation execution leads to a violation without inspecting the rest of the data.
For instance, following our previous example, we would only need to check
whether Mary is a member of ModelsProject and, thus, there is no need to check
other project leaders such as John, since John is not affected by the update.

However, to the best of our knowledge, all the presented techniques assume
that operations are executed isolatedly, and thus, are not able to detect integrity
violations when two operations executed concurrently interacts in a way that
cause a constraint violation. For instance, assume that in our current data state
Mary is a member of ModelsProject. In this situation, executing the operation to
make Mary a leader of the project does not violate a constraint. In the same sit-
uation, executing, instead, an operation to remove Mary from the ModelsProject
does not violate a constraint either. However, when executing both operations
simultaneously, both interacts in a way to reach a new state in which Mary leads
a project where she is not a member of. Thus, they raise a constraint violation.

This means that, right now, if we use the previous incremental techniques
with systems that admit concurrent operation executions, some violations are
going to be missed (i.e., previous incremental checking techniques are not com-
plete when considering concurrency). Clearly, the problem can be solved by
forcing all the operations to be executed in a serialized manner, but this might
heavily penalize the runtime efficiency of the system.

Fortunately, not all operations must be executed in a serialized manner
to avoid these violations. Indeed, not all operations can interact to cause a
constraint violation. For instance, operations addLeader and removeMember
can interact to violate LeaderIsMember and must be serialized, but operations
addLeader and hireResearcher cannot interact to violate any constraint, and
thus, can be executed concurrently.

In this paper, we define a method for identifying, and serializing, those oper-
ation executions that can interact to cause a constraint violation, permitting the
rest of operations to be executed concurrently. In this way, we allow using the



238 X. Oriol and E. Teniente

previous incremental techniques in systems with concurrent operations, without
the penalization of serializing every execution, neither loosing completeness. Our
technique has been implemented in a tool [8] for executing UML/OCL models,
thus, showing that it is feasible in practice. In any case, since the core of our
technique is fully based on logics, it can be adapted and implemented in other
model executor tools using UML/OCL [9,10] or other modeling languages, pro-
vided that they can be translated into logics. In particular, our technique can be
adapted to first-order expressive languages (aka relational algebra equivalent)
such as SQL, and SPARQL.

It is worth to mention that our work is, somehow, similar to the one in [11]. In
particular, [11] detects operations invoked in a wrong order due to CRUD incon-
sistencies (e.g. reading some information deleted). We argue that our method
and theirs can be combined, since both deal with different problems due to con-
currency. Note, additionally, that our work is about checking a constraint on
runtime assuming concurrency, and not on verifying/validating the models at
compile time such as [12].

2 Basic Concepts and Notation

We review some key concepts and the basics of the notation used in the paper.

Terms, Atoms and Literals. A term t is either a variable or a constant. An
atom is formed by a n-ary predicate p together with n terms, i,e. p(t1, ..., tn). We
may write p(t) for short. If all the terms t of an atom are constants, we call the
atom to be ground. A literal l is either an atom p(t), a negated atom ¬p(t), or a
built-in literal ti ω tj , where ω is an arithmetic comparison (i,e. <,≤,=,≥,>,�=).

Derived/Base Predicates. A predicate p is said to be derived if the boolean
evaluation of an atom p(t) depends on some derivation rules, otherwise, it is said
to be base. A derivation rule has the form: ∀t. p(tp) ← φ(t) where tp ⊆ t. In the
formula, p(tp) is an atom called the head of the rule and φ(t) is a conjunction
of literals called the body. We suppose all derivation rules to be safe (i.e. all the
variables appearing in the head or in a negated or built-in literal of the body
also appears in a positive literal of the body) and non-recursive. Given several
derivation rules with predicate p in its head, p(t) is evaluated to true if and only
if one of the bodies of such derivation rules is evaluated to true.

Logic Formalization of the UML Schema. As proposed in [13] we formalize
each class C in the class diagram with attributes {A1, . . . , An} by means of a
base atom c(Oid,A1, ..., An), each association R between classes {C1, . . . , Ck}
by means of a base atom r(C1, . . . , Ck) and, similarly, each association class R
between classes {C1, . . . , Ck} and with attributes {A1, . . . , An} by means of a
base atom r(Oid,C1, . . . , Ck, A1, . . . , An).

Roughly speaking, when an object/relation encoded as P (x) exists in some
data state, the ground literal P (x) evaluates to true in such data state. Con-
versely, when an object/relation encoded as P (x) does not exists in some data
state, the ground literal P (x) evaluates to false in such data state.



Inc. Checking OCL Constraints with Aggregates Through SQL Queries 239

3 Our Approach

Our approach is based on the notion of structural events. A structural event is an
elementary change in the population of the data, that is, an insertion or deletion
of a class/association instance. For instance, inserting Leads(Mary, ModelsPro-
ject), or deleting WorksIn(Mary, ModelsProject) are structural events. For our
purposes, we encode insertion structural events with the prefix ins, and dele-
tion structural events with the prefix del, e.g., the previous structural events
are encoded as ins Leads(Mary, ModelsProject), and del WorksIn(Mary, Model-
sProject), respectively. Attribute updates can be seen as an insertion/deletion of
the same object.

Executing an operation leads to structural events in the data, and these struc-
tural events might change the evaluation of a constraint, that is, the structural
events might violate a constraint, or even repair a constraint that was going to be
violated. For instance, executing the operation addLeader causes the structural
event ins Leads that might violate LeaderIsMember ; on the contrary, executing
the operation add Member causes the structural event ins WorksIn that might
repair such violation.

The operations that must be serialized depend on the time where the chosen
integrity checking technique takes place. In essence, the integrity checking tech-
niques can be applied before executing the structural events (such as [3]), which
we refer as precondition-time checking ; or after it (such as [7]), which we refer as
postcondition-time checking. In the first case, we need to serialize two operations
O1, O2 that can interact to cause a violation; on the second, we need to serialize
two operations O1 and O2 if the structural events of O1 might compensate the
effects of O2, since a rollback of O1 might affect the consistency of O2.

For instance, consider the operations addLeader, removeMember, and
addMember from our running example. Using a preconditiom-time checking,
the operations addLeader and removeMember should never be applied concur-
rently since they might interact to cause a constraint violation, and the checking
technique will not realize of it since it makes the analysis separately. Note, how-
ever, that a postcondition-time checking will find the violation since, at the
time of performing the analysis, both operations have been executed and all
their effects are in the information system (and thus, at the time of checking
the consistency of the data, the postcondition-time checking can find a leader
not being a member of its project). However, in the case of a postconditiom-
time checking, the operations that should not be executed (or at least analyzed)
together are addMember and addLeader, since a rollback (or not) of the first
might imply a violation (or not) of the second operation. Indeed, if we execute
addMember and addLeader, and analyze together the consistency of the data,
we might find that addLeader does not violate the LeaderIsMember constraint
because the operation addMember adds the new leader as a member for the
project, but if addMember violates any other constraint and must rollback, this
rollback makes addLeader violate the LeaderIsMember. Thus, we should analyze
the consistency of addLeader after the consistency analysis of addMember. Note
that this problem does not occur in precondition-time checking techniques.



240 X. Oriol and E. Teniente

Formally, when dealing with integrity checking in systems with concurrent
operations, we identify two kinds of concurrency interactions between operations
that must be taken into account:

– Potential concurrency violation. There is a potential concurrency violation
between two operations O1 and O2 if, for some constraint C, the structural
events applied by O1 and O2 might violate C.

– Potential concurrency compensation. There is a potential concurrency com-
pensation from O1 to O2 if, for some constraint C, the structural events
applied by O1 might repair a violation of C caused by the structural events
of O2.

In the case of precondition-time checking, we must serialize two opera-
tions O1 and O2 if they have a potential concurrency violation; in the case
of postcondition-time checking, two operations O1 and O2 must be serialized if
O1 has a potential concurrency compensation with O2.

In this paper we focus on detecting this kind of interactions, and we suggest
a serialization to deal with the problems they can carry out. Other approaches
different than serialization, or a more refined versions of serialization, can be
studied, but they are left for further work.

To detect this kind of interactions, we apply the following steps: (1) given all
the operation contracts O, we detect the kind of structural events applied by each
operation O ∈ O, (2) given all constraints C, we detect all the kind of structural
events that can violate/repair each C ∈ C, (3) for each pair of operations O1,
O2, and each constraint C, we use the structural events to analyze if there is
any kind of interaction between them w.r.t. C. Note that all these analysis can
be performed at compile time since they purely rely on the model specification
of the operations and constraints.

3.1 Detecting the Kind of Structural Events Applied by Some
Operation

Given an OCL operation contract, it is possible to identify, at compile time,
which are the kind of structural events applied by the operation [14,15]. For our
purposes, we rely on the approach of [14] to detect them. In essence, the idea
behind this approach is to translate any operation contract to an equivalent
logic formula that, intuitively, states that executing of an operation implies the
application of certain structural events.

In particular, the previous operations from Fig. 2 can be encoded by means
of the following logic formulas:

ins_Researcher(R, Name , Salary) :- hireResearcher(Name , Salary)
ins_Leads(R, P) :- addLeader(RN, PN), Researcher(R, RN, S),Project(P, PN)
del_WorksIn(R, P) :- removeMember(RN, PN), Researcher(R, RN, S),Project(P, PN)
ins_WorksIn(R, P) :- addMember(RN, PN), Researcher(R, RN, S),Project(P, PN)

Intuitively, the first formula states that invoking the operation hireResearcher
with parameters Name, Salary causes the structural event of ins Researcher(R,



Inc. Checking OCL Constraints with Aggregates Through SQL Queries 241

Name, Salary) to happen, where R is a new object identifier value. The second
one states that, when invoking the operation addLeader with parameters RN
and PN, there is a structural event ins Leads(R, P) provided that R and P are
the researcher and project identified by RN and PN, respectively. Similarly, the
third formula states that, when invoking the operation removeMember, there is
a del WorksIn(R,P) structural event.

The rationale behind such translations can be sketched as follows. OCL oper-
ations such as includes, and includesAll, when used in a postcondition, are used
to specify insertions on associations [15]. The source of such operations represent
the association where the insertion takes place, and the body of such operations
represents the value/s inserted. Thus, the logic translation consists in, roughly
speaking, (1) identifying these OCL operations, (2) generate an insertion rule
for each one of them, and (3) put, in the generated logic rule, the OCL logic
translation of the objects where the insertion takes place. For this last step, we
have to translate into logics the source of the OCL operation (i.e., the objects
where the insertion takes place), and translate the body of the OCL operation
(i.e., the objects inserted). That is, if the source/body of the OCL operation is
an object/s x, we have to build an OCL logic translation that retrieves all those
x. In general, if OCL obtains some objects x by means of n navigation steps,
the logic translation consists in a conjunction of n non-ground ordinary literals,
each one representing one step of the navigation. A similar approach is taken
with OCL oclIsNew() and excludes operations as detailed in [14].

Thus, and thanks to this translation which is already implemented [16], the
structural events implied by each operation become explicit in the head of each
rule. Hence, we can build a program that reads this translation, and realizes that
executing hireResearcher implies the structural event ins Reseracher, addLeader
implies ins Leads, and removeMember implies del WorksIn.

Note that, in general, an operation will apply more than one kind of structural
event when executed. For instance, we could specify an operation that creates a
new researcher and adds his membership associations. In this case, and following
[14], an operation is translated into several logic formulas, each one implying a
different structural event. Thus, the structural events implied by such operation
is the union of all the structural events appearing in all the formulas.

3.2 Detecting the Structural Events that Violate/Repair a
Constraint

Given a constraint C, it is possible to determine, at compile time, which are the
kind of structural events that might violate a constraint, and also those that
may repair it [7,17]. For our purposes, we use the approach defined in [17] since
it is based on logics in a similar way as we did in previous section.

In essence, we first translate the UML and OCL constraints into logic denials,
that is, logic formulas stating the condition that rise a constraint violation.
Following, for instance, the automatic translation of UML/OCL constraints to
denials defined in [13], our running example would bring the following logic
formulas:



242 X. Oriol and E. Teniente

:- Researcher(R1, N, S1), Researcher(R2, N, S2), R1<>R2
:- Project(P1, N), Project(P2, N), P1<>P2
:- Leads(R,P), not(WorksIn(R,P))
:- WorksIn(R,P), Leads(L,P), Researcher(R,RN,RS), Researcher(L,LN,LS),RS>LS

The first and second formulas, encode that, if there are two different
researchers or projects with the same name, there is a constraint violation. The
third one states a constraint violation if R leads a project P where s/he does
not work in. The last formula asserts a violation if for some project P , there is
a leader L that earns less than a worker R.

The rationale behind such translations can be summarized as follows. Like in
the previous section, every OCL value/set expression that retrieves an object/s x
is translated into a conjunction of ordinary literals. This conjunction of ordinary
literals contains a variable x that, roughly speaking, represents any object x
that can be retrieved from the navigation. Then, every OCL boolean operator
that combines two OCL value/set expressions to retrieve a boolean value is
translated as two conjunctions of ordinary literals (one for each OCL value/set
expression) together the translation of the OCL operator. In the easiest case,
like an OCL equality operator, the translation consists in a logic built-in literal.
Other cases require more complex treatment, like the definition of derivation
rules, as detailed in [13].

Given the logic formulas, we can realize which structural events might make
these formulas true (and thus, rise a violation), and which of them might make
them false (and thus, repair the violation).

To do so, we rely on the event rule equivalences [18]. The event rule equiva-
lences define when a structural event makes a literal true/false in the new state
of the data after applying the events. In particular, consider PN to be the literal
P evaluated in the new data state. Then, the event rule equivalences tells us
that:

PN (x) ≡ ins P (x) ∨ (P (x) ∧ ¬del P (x))

¬PN (x) ≡ del P (x) ∨ (¬P (x) ∧ ¬ins P (x))

Intuitively, the literal P (x) is true in the new state after applying the struc-
tural events if we have inserted P (x) through some insertion structural event,
or P (x) was already true in the data state and we have not deleted it. Similarly,
¬P (x) is true in the new state after applying the structural events if we have
deleted P (x) through some deletion structural event, or P (x) was already false
in the data state and we have not inserted it.

Applying the previous equivalences to our logic denials, by means of apply-
ing all the possible literal substitutions (aka unfoldings) given by the event
rule equivalences, we obtain what we call event-dependency constraints (EDCs),
that is, denials that tells which structural events rise a constraint violation. For
instance, for the first denial we obtain:



Inc. Checking OCL Constraints with Aggregates Through SQL Queries 243

:- ins_Researcher(R1, N, S1), ins_Researcher(R2, N, S2), R1<>R2
:- ins_Researcher(R1,N,S1), Researcher(R2,N,S2), not del_Researcher(R2,N,S2),

R1<>R2
:- Researcher(R1,N,S1), not del_Researcher(R1,N,S1), ins_Researcher(R2,N,S2),

R1<>R2
:- Researcher(R1,N,S1), not del_Researcher(R1,N,S1), Researcher(R2,N,S2),

not del_Researcher(R2,N,S2), R1<>R2

The first EDCs states that there is a constraint violation if we apply two
different structural events for inserting a researcher with the same name. The
second and third one specify that if we insert a new researcher with a name N ,
and this name N belongs to some researcher in the current data, but we do not
remove this researcher, there is a constraint violation. Finally, the last rule tells
us that if we have two researchers with the same name and we do not remove
any of them, there is a constraint violation.

Intuitively, the structural events that appear positively in an EDC are the
structural events that might cause a violation, while those that appear negatively
in an EDC are the structural events that might repair the violation (since they
make the body of the EDC, which detects the violation, to evaluate to false).
For instance, ins Researcher is a structural event that can cause a violation of
the ResearcherPK constraint, while del Researcher is a structural event that can
repair it.

It is worth to highlight that the number of EDCs obtained from one denial
grows exponentially with the length of the denial encoding. However, some opti-
mizations can be applied to reduce the number and size of the denials [3]. Indeed,
considering the classical optimization that the initial data state does not violate
any constraint, and that there is homomorphism between denials two and three,
the unique EDCs required are:

:- ins_Researcher(R1, N, S1), ins_Researcher(R2, N, S2), R1<>R2
:- ins_Researcher(R1,N,S1), Researcher(R2,N,S2), not del_Researcher(R2,N,S2),

R1<>R2

3.3 Detecting Operations and Constraints Interactions Through
the Structural Events

At this point, we want to analyze, using the structural events previously deter-
mined, which kind of interactions might have two operations w.r.t. some con-
straint. To do so, and benefiting from the fact that all our approach is based
on logics, we are going to use an unfolding technique. In essence, our idea is to
unfold the body of the EDCs obtained in Sect. 3.2, which tells us which struc-
tural events cause a violation/repair, with the rules from Sect. 3.1, which speci-
fies which structural events are implied by the operations. As a result, we obtain
some new rules that directly define which operations can violate/repair some
constraint.

For instance, if we unfold the previous EDCs with the logic rules that tells
that hiring a researcher makes an insertion structural event of a researcher, we
obtain:



244 X. Oriol and E. Teniente

:- hireResearcher(N, S1), hireResearcher(N, S2)
:- hireResearcher(N, S1), Researcher(R2,N,S2), not (del_Researcher(R2,N,S2)),

R1<>R2

Intuitively, the first rule states that two executions of hireResearcher can
interact to rise a constraint violation (i.e., a violation of ResearcherPk con-
straint). The second rule tells us that, hireResearcher might be compensated
with an operation that deletes researchers. However, since there is no operation
to delete researchers, there is no interaction according to this rule.

We now bring an example of a detection of a compensation interaction. Con-
sider the EDCs obtained from the LeaderIsMember constraint:

:- ins_Leads(R,P), del_WorksIn(R,P)
:- ins_Leads(R,P), not (WorksIn(R,P)), not (ins_WorksIn(R,P))
:- Leads(R,P), not (del_Leads(R,P)), del_WorksIn(R,P)

Intuitively, the first EDC states that there is a violation if we insert that R
is going to lead a project P s/he is leaving. The second asserts a violation if we
insert that R is going to lead a project P s/he is not working in and that he is
not going to work in. Finally, the third EDC detects a violation if we delete R
from working in P , when R is leading P and we do not delete R as a leader of
P .

Then, when unfolding the EDCs according to the rules from Sect. 3.1, which
encodes the operations behavior, we have:

:- addLeader(RN ,PN), Researcher(R, RN , S), Project(P, PN), removeMember(RN,PN)

:- addLeader(RN ,PN), Researcher(R, RN , S), Project(P, PN), not(WorksIn(R,P)),

not (addMember(RN ,PN))

Roughly speaking, these rules are saying which operations can interact to
cause/compensate a violation. For instance, the first rule says that, when apply-
ing the addLeader operation, between a researcher with name RN and project
named PN , over a database that contains that researcher and project, while
applying the operation or removeMember with the same parameters, then, there
is a constraint violation. Differently, the second rule says that, when applying
the addLeader operation with the same parameters, over a database where the
researcher does not work for the project, and without applying the addMember
operation, then, there is another constraint violation.

In general, two operations that appears positively in the same denial have
a potential concurrent violation, whereas two operations, where one appears
in a negated literal, have a potential concurrent compensation. Indeed, we can
identify that the operations addLeader and removeMember has a potential con-
current violation interaction with LeaderIsMember, since they both appear pos-
itively in the body of the first denial, while addLeader and addMember has a
potential compensation interaction, since addMember appears negatively and
addLeader positively in the same denial. Hence, addLeader and removeMem-
ber should be serialized for precondition-time checking techniques, whereas
addMember and addLeader should be serialized (preferably in this order) for
postcondition-time techniques.



Inc. Checking OCL Constraints with Aggregates Through SQL Queries 245

Finally, we can summarize all the above with the following statement: a
precondition-time checking technique should serialize those operations appearing
positively in the unfolded EDCs, whereas a postcondition-time checking technique
should serialize those operations appearing, one as a positive literal and the other
as a negative literal, in the unfolded EDCs.

4 Implementation

We have implemented our approach in OpExec [8], an artifact-centrict business
process model executor. Briefly, this tool is capable of loading the structural
and behavioral models of the system at compile time, encoded in logics, and, at
runtime, execute the operations invoked by the user into a relational database.

In OpExec, we integrated an implementation of a precondition-time check-
ing technique [19]. This technique assumed that all operations were executed
isolatedly, i.e., not concurrently, and thus, required an automatic serialization
technique as the one we have discussed in this paper.

The implementation of our technique is summarized in Fig. 3. In OpExec, a
user loads, in compile time, the structural and behavioral models into a Con-
troller. Then, when the user wants to execute the models, the user uses the Con-
troller to create a ProcessExecutor. The ProcessExecutor contains an artifactID,
which is an id number to identify all the information related to such process. At
runtime, the user invokes an operation from the behavioral model through the
ProcessExecutor. This processExecutor, then, creates an OperationExecThread,
which is a new Thread that will execute the operation invoked by the user into
the database.

The integrity checking part is implemented in the OperationExecThread
which, intuitively, checks whether its structural events are going to violate any
constraint according to the current contents of the data. In case that there is
any constraint violation, the OperationExecThread does not commit any change
into the database, otherwise, the database is updated accordingly.

In order to enable multiple users invoke OpExec concurrently, and to guar-
antee that the integrity checking part detects all possible violations, we imple-
mented the OperationExecThreadManager. When a new OperationExecThread
is created, this Thread is enqueued in the OperationExecThreadManager, which
is responsible of executing it as soon as it is safe to execute it, i.e., when it is
guaranteed that it will not interact, with any other currently running Opera-
tionExecThread, to cause a violation.

The technique discussed in our paper is fully implemented in the Opera-
tionExecThreadManager class. That is, at compile time, it receives the models
and performs our interaction analysis to detect which operations can collabo-
rate to raise a constraint violation. Then, at runtime, if we try to execute an
operation which might interact with another operation which is currently being
executed, the OperationExecThreadManager delays the execution of the first
untill the second has finished.



246 X. Oriol and E. Teniente

User

Controller

models

ProcessExecutor

artifactID

OperationExecThreadOperationExecThreadManager

operationExecThreadQueue

1. Loads models
(compilation time)

2. Creates
ProcessExecutor

2.1 creates

1.1 creates

3. Calls operation/s on ProcessExecutor

3.1 creates
3.2 enqueues

3.3. executes

Database

3.4 executes

Operation
Executor 
Library

derivationRules

Fig. 3. Architecture of a model executor with an integrity checking technique

Although our implementation is thought for a precondition-time integrity
checking, we understand that it might not be difficult to adapt it to work with
a postcondition-time integrity checking such as those presented in [4–7].

5 Conclusions

We have presented an approach for adapting integrity checking techniques to sys-
tems with concurrent operations. Indeed, current integrity checking techniques
do not take into account concurrent operation executions and, as we have seen,
this concurrency might cause violations which cannot be detected by these tech-
niques.

To solve this situation, we have defined an approach for identifying which
operations can bring problems to the integrity checking techniques when exe-
cuted concurrently. As we have seen, the kind of operations that might bring
problems depend on the kind of integrity checking technique applied. On the
one hand, integrity checking techniques performed at precondition time should
avoid concurrent executions of operations that might collaborate to cause a vio-
lation. On the other, integrity checking techniques performed at postcondition
time should avoid analysing concurrently two operations if one compensates a
violation from the other. Our approach can detect both kinds of interactions
and thus, can be applied for both kinds of integrity checking techniques. To
show the feasibility of our approach, we have implemented it in the OpExec
model executor.



Inc. Checking OCL Constraints with Aggregates Through SQL Queries 247

As further work, we would like to highlight the necessity of defining a
UML/OCL benchmark for experimenting with concurrent operations, and thus,
enable comparative efficiency experiments with other methods.

References

1. Olivé, A., Cabot, J.: A research agenda for conceptual schema-centric development.
In: Krogstie, J., Opdahl, A.L., Brinkkemper, S. (eds.) Conceptual Modelling in
Information Systems Engineering, pp. 319–334. Springer, Berlin (2007). https://
doi.org/10.1007/978-3-540-72677-7 20

2. ANSI Standard: The SQL 92 Standard (1992)
3. Oriol, X., Teniente, E.: Incremental checking of OCL constraints with aggre-

gates through SQL. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L.,
López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 199–213. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25264-3 15

4. Bergmann, G.: Translating OCL to graph patterns. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp.
670–686. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11653-2 41

5. Uhl, A., Goldschmidt, T., Holzleitner, M.: Using an OCL impact analysis algorithm
for view-based textual modelling. ECEASST 44 (2011)

6. Groher, I., Reder, A., Egyed, A.: Incremental consistency checking of dynamic con-
straints. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp.
203–217. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12029-
9 15

7. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9), 1459–1478 (2009)

8. De Giacomo, G., Oriol, X., Estañol, M., Teniente, E.: Linking data and BPMN
processes to achieve executable models. In: Dubois, E., Pohl, K. (eds.) CAiSE
2017. LNCS, vol. 10253, pp. 612–628. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59536-8 38

9. Object Management Group (OMG): Unified Modeling Language (UML) Super-
structure Specification, version 2.4.1 (2011). http://www.omg.org/spec/UML/

10. Object Management Group (OMG): Object Constraint Language (UML), version
2.4 (2014). http://www.omg.org/spec/OCL/

11. Combi, C., Oliboni, B., Weske, M., Zerbato, F.: Conceptual modeling of inter-
dependencies between processes and data. In: Proceedings of the 33rd Annual
ACM Symposium on Applied Computing. SAC 2018, New York, NY, USA. ACM,
pp. 110–119 (2018)

12. Przigoda, N., Hilken, C., Wille, R., Peleska, J., Drechsler, R.: Checking concurrent
behavior in UML/OCL models. In: 18th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MoDELS 2015, Ottawa, ON,
Canada, 30 September–2 October 2015, pp. 176–185 (2015)

13. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas
with OCL constraints. ACM TOSEM 21(2), 13 (2012)

14. Queralt, A., Teniente, E.: Reasoning on UML conceptual schemas with operations.
In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp.
47–62. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02144-2 9

https://doi.org/10.1007/978-3-540-72677-7_20
https://doi.org/10.1007/978-3-540-72677-7_20
https://doi.org/10.1007/978-3-319-25264-3_15
https://doi.org/10.1007/978-3-319-11653-2_41
https://doi.org/10.1007/978-3-642-12029-9_15
https://doi.org/10.1007/978-3-642-12029-9_15
https://doi.org/10.1007/978-3-319-59536-8_38
https://doi.org/10.1007/978-3-319-59536-8_38
http://www.omg.org/spec/UML/
http://www.omg.org/spec/OCL/
https://doi.org/10.1007/978-3-642-02144-2_9


248 X. Oriol and E. Teniente

15. Cabot, J.: From declarative to imperative UML/OCL operation specifications. In:
Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS,
vol. 4801, pp. 198–213. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75563-0 15

16. Oriol, X.: Verificació i validació d’esquemes conceptuals UML/OCL amb operacions
(2012)

17. Oriol, X., Teniente, E., Tort, A.: Computing repairs for constraint violations in
UML/OCL conceptual schemas. Data & Knowl. Eng. 99, 39–58 (2015). Selected
Papers from the 33rd International Conference on Conceptual Modeling (ER 2014)

18. Olivé, A.: Integrity constraints checking in deductive databases. In: Proceedings of
the 17th International Conference on Very Large Data Bases (VLDB), pp. 513–523
(1991)

19. Oriol, X., Teniente, E., Rull, G.: TINTIN: a tool for incremental integrity checking
of assertions in SQL server. In: Proceedings of the 19th International Conference
on Extending Database Technology, EDBT 2016, Bordeaux, France, 15–16 March
2016, pp. 632–635 (2016)

https://doi.org/10.1007/978-3-540-75563-0_15
https://doi.org/10.1007/978-3-540-75563-0_15


Eventual Consistency Formalized

Edel Sherratt1(B) and Andreas Prinz2

1 Department of Computer Science, Aberystwyth University,
Aberystwyth SY23 3DB, Wales, UK

eds@aber.ac.uk
2 Department of ICT, University of Agder, Grimstad, Norway

Andreas.Prinz@UIA.no

Abstract. Distribution of computation is well-known, and there are
several frameworks, including some formal frameworks, that capture dis-
tributed computation. As yet, however, models of distributed computa-
tion are based on the idea that data is conceptually centralized. That
is, they assume that data, even if it is distributed, is consistent. This
assumption is not valid for many of the database systems in use today,
where consistency is compromised to ensure availability and partition
tolerance. Starting with an informal definition of eventual consistency,
this paper explores several measures of inconsistency that quantify how
far from consistency a system is. These measures capture key aspects of
eventual consistency in terms of distributed abstract state machines. The
definitions move from the traditional binary definition of consistency to
more quantitative definitions, where the classical consistency is given by
the highest possible level of consistency. Expressing eventual consistency
in terms of abstract state machines allows models to be developed that
capture distributed computation and highly available distributed data
within a single framework.

Keywords: Distributed state · Eventual consistency · Formality ·
Abstract state machine

1 Introduction

Over time, and particularly since the invention of the Internet, computation has
more and more become distributed. Today, almost all computation is achieved
by cooperating computing entities communicating over a network. There are
numerous frameworks to support distributed computing, and formal methods
have provided the means to study distributed computation in depth.

In the public Internet, data is central to computation. This represents a
change from the earliest days, where computers were thought of primarily as
computing engines. Nowadays, persistent data forms the heart of almost all
computation. In terms of distribution, the leading idea is still that we want
to distribute the computation. This means both distribution of processing and
distribution of data.
c© Springer Nature Switzerland AG 2019
P. Fonseca i Casas et al. (Eds.): SAM 2019, LNCS 11753, pp. 249–265, 2019.
https://doi.org/10.1007/978-3-030-30690-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30690-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-30690-8_15


250 E. Sherratt and A. Prinz

Current formal models of distributed computation [2,8,10,16,17,21–23] rely
on data given by a centralized state, i.e. data that is not distributed. However,
reality is different [1,25]. This is also captured in the Java memory model [19].
Data really is distributed and it is possible to have several copies of the same
data that are not consistent.

This means we need to come to an agreement about distributed state in
addition to distributed computation, see also [24]. Both of them are closely
connected. When we talk about distributed state, we want to do this on the right
level of abstraction. This is needed in order to be able to handle the complexity
involved. The abstraction cannot mean that we have to look into all the existing
copies of data entities and their updates by connected servers. This is obviously
too detailed. It is also not enough to look at a centralized data model - that
would be too coarse. The right level of abstraction lets us see possible states of
the data without going too deep into detail of how these come about.

In noSQL databases, such an understanding is evolving and it is revolving
around the term of eventual consistency. This means that data can be stored
in the system with a certain amount of inconsistency, but that this is resolved
over time and finally, the system is consistent. This paper aims at making this
idea more formal, based on an understanding of state changes in the presence of
distributed data.

We base our discussion on the model of Abstract State Machines (ASM) [8],
because they provide a high-level and abstract view of computation. ASM can
be considered formalized pseudo-code, such that ASM programs are readable
even without much introduction. ASM are using a centralized state model, and
we will combine this model with data that is distributed over several locations.

This paper starts with an introduction of eventual consistency and abstract
state machines in Sect. 2. In Sect. 3, we define distributed state in ASM. After
than, we look into ways to quantify inconsistency in Sect. 4. Afterwards, we
define eventual consistency in Sect. 5. We discuss related work in Sect. 6 before
we conclude in Sect. 7.

2 Background

2.1 Distributed Data and Eventual Consistency

A first idea of handling data for distributed computation is to store it in one
place, and allowing multiple agents at different locations to access this data.
This kind of data is called centralized data and is how data is managed in
classical relational databases. Coordination of access to the data and timely
fulfilment of client requests relies on effective transaction management. Enlarging
the database is costly, as it normally requires migrating to a larger, expensive
database server.

An alternative to the single-server, centralized relational database is a dis-
tributed database, where as well as splitting the data across servers, some data
items are replicated. Distribution is designed to optimize performance against



Eventual Consistency Formalized 251

expected client requirements, and extra processing is needed to ensure that repli-
cated data remains consistent. In this way, we still keep the conceptual idea of
centralized data, and leave detailed management of distributed, possibly repli-
cated, data to the implementation. This is the place where the classical SQL
databases are. From a users point of view, such a database should work as if
the data was stored in one place. The famous ACID (atomicity, consistency,
isolation, durability) rules for transaction processing ensure that this is the case.

The implementation itself will typically manage transactions so that a change
is not committed before enough information is put into the system. This way,
conflicting changes are avoided. Here, it is possible to choose whether the com-
plexity should be on the read or on the write or shared between the two. It
is important to notice that the read and write activities are finished when the
database is in a consistent state and the returned value is correct. However, in
case of much access and poor connectivity, client applications may find it slow
or impossible to use the data.

Finally, based on the kind of application, we can relinquish the demand for
absolute consistency. Now we are working with a truly distributed system, which
is sometimes not connected, and which handles the data such that the user is
not aware of connectivity problems. Of course, in this model, conflicting changes
are possible, and they have to be sorted out at some point in time. The typical
method for sorting out conflicting changes is timestamps, i.e. the later one of
two changes is the more current one. Now the complexity of handling updates is
moved partly out of the agents, and dealt with by their environment1. This allows
for quick access to the database, but it means that there has to be an underlying
process of cleaning up the database while the agents are doing something else.

The term eventual consistency is often used to describe how consistency is
compromised in NoSQL databases, but its roots go back to the creation of the
internet domain name system (DNS) created by Paul Mockapetris2 in 1983.

Here is one definition of eventual consistency.

“Eventual consistency is a characteristic of distributed computing systems
such that the value for a specific data item will, given enough time without
updates, be consistent across all nodes3.”

Eventual consistency compromises consistency in a distributed data store
for availability and network partition tolerance. The need for compromise was
famously articulated as the CAP Theorem or Brewer’s Theorem [14] which states
that you can have at most two of

– Consistency
– Availability
– Partition tolerance
1 In the conceptually centralized model, the read and write handling is also moved

out of the agent code, but it is still inside the agent activity, which is not completed
until everything is sorted out.

2 https://internethalloffame.org/official-biography-paul-mockapetris.
3 https://whatis.techtarget.com/definition/eventual-consistency.

https://internethalloffame.org/official-biography-paul-mockapetris
https://whatis.techtarget.com/definition/eventual-consistency


252 E. Sherratt and A. Prinz

in a shared-data system. Conventional, relational database systems apply the
ACID (atomicity, consistency, isolation, durability) rules for transaction pro-
cessing to ensure consistency. They sacrifice partition tolerance or availability to
ensure consistency.

Availability is not negotiable in the internet DNS, and distribution is also
essential to ensure scalability, and so consistency is compromised in the DNS in
order to ensure availability and network partition tolerance. Brewer [14] coined
the term BASE (basic availability, soft state, eventual consistency) to describe
the rules for transaction processing applied in the DNS and more recently in
several NoSQL database systems.

This way, eventual consistency is tightly coupled with the concept of a soft
state, i.e. a state that is changed even without user agent interactions. The soft
state repairs consistency problems until the state becomes consistent.

2.2 Abstract State Machines

The basic definitions of locations and updates in abstract state machines (ASMs)
are as follows. Variations of these definitions can be found in many sources,
including, but not limited to [3,4,6–9].

At its most basic, an abstract state machine (ASM) consists of abstract states
with a transition rule, or ASM program, that specifies how the ASM transitions
through its states.

An ASM has a signature of symbols and a base set of values. The symbols
of the signature are function symbols. Each function symbol has an arity. The
symbols are interpreted over the base set so that a symbol with arity zero is
interpreted as a single element of the base set, and a symbol with arity n is
interpreted as an n-ary function over the base set. Expressions (terms) of the
signature are constructed in the usual way, and are interpreted recursively over
the base set.

Names can be classified with respect to change. Names like True, False and
undef, whose interpretation is the same in all the states of an abstract state
machine, are called static names, while all other names (called dynamic names)
are subject to updates. Dynamic names can again be classified with respect
to which agents are allowed to change them, which will be explained later. To
support readability, new symbols can be defined as abbreviations for complex
terms. In SDL such symbols are called derived names [18].

The signature includes the predefined names True, False and Undefined, and
three distinct values of the base set serve as interpretations for these. The inter-
pretations of True and False are called truth values. Function symbols whose
interpretations deliver truth values are called predicate names.

Unary predicate names can serve as sort names, whose interpretations classify
base set elements as belonging to the sort in question.

An interpretation of the symbols over the base set defines a state of the ASM.
An ASM program is composed of assignments, if statements, forall state-

ments, and several more statement kinds. We will not formally introduce all



Eventual Consistency Formalized 253

the kinds, but rather refer to [8]. ASM is designed to look like pseudo-code and
normally ASM programs can be read without further explanation.

The main means of change in a program is an assignment, taking the form
exp := e, meaning that the value (object) represented in a given state by the
expression exp is changed to the value (object) represented in the given state by
the expression e. More generally, expressions at the left-hand side of an update
can take the form exp = f(e1, . . . , en), where f is an n-ary function symbol and
ei are expressions.

The ASM model is a dynamic model. Starting from an initial state, an
abstract state machine repeatedly produces new states from existing states by
updating the interpretation of its symbols. Such a sequence of states is called a
run of the ASM. The transition (or move or step) from one state to the next is
specified as a set of updates to locations, where an update is the change to the
current state imposed by an assignment.

More precisely, a function symbol f with a tuple of elements a that serves
as an argument of f identifies a location. The term f(a) identifies a location
and evaluates to a value in a state. In a subsequent state, the value of that
location may have changed, and f(a) may evaluate to a new value. In that case,
an update indicates what the new value will be, and is expressed using the values
of terms in the current state. Updates are written as triples (f, a, b), to indicate
that f(a) = b will be true in the new state.

2.3 Distributed ASM

The abstract state machine model is very flexible and only asserts that state
changes are given based on the current state. From here, a natural extension is
to look into several ASM agents, each with an ASM program providing state
changes. The agents share the (global) state and they start in a common initial
state. Because the agents only use part of the state, they would normally not
see the complete state, but only the part that is visible based on their signature.
Therefore, we can distinguish different kinds of function names for a distributed
agent: monitored functions are only read by the agent and updated by other
agents or the environment, controlled functions are only visible to the agent
itself and can be considered private, while shared functions are joint between
different agents for reading and writing.

The execution model of ASM ensures that the agents do not clash in their
updates of shared locations. The important idea here is that the underlying
memory model is a global model with all locations being in principle available
to all agents.

For the sake of the discussion in Sects. 3 and 5, we also assume the availability
of a synchronized global time, which is accessed using the monitored function
NOW. In reality, it is not possible to completely synchronize time in a distributed
system, but here it is enough when time drift between two agents is smaller than
their communication delay. This can be achieved using the NTP protocol [20].
There is also an assumption that time-stamps are never accidentally the same.
Although that seems like a strong assumption, it is easily implemented by either



254 E. Sherratt and A. Prinz

sorting the servers issuing time-stamps and using this to sort out the time-stamp
order, or to just use an ordering on the values to do the same. In practice, both
these solutions, and others, are used [1]. This means we can safely assume that
the time-stamps used by different agents are disjoint.

3 Abstract State Machine Model of Distributed State

3.1 Distributed, Duplicated Persistent Data

We start by looking at the user or client view of the database. The following def-
initions use the ASM method to model multiple agents that read, write, update
and delete data that is duplicated, distributed and persistent. The definitions
of communicating ASMs provided by Börger and Raschke [9], are modified to
take account of duplicated data. This provides a basis for defining soft state as
meaning that an update to a location is propagated to all copies. Based on this,
several definitions of inconsistency are explored in Sect. 4.

Useful concepts that have already been developed, and that are relevant to
consistency in a persistent data store with multiple ASM clients, include:

– persistent queries [5,6]
– independent concurrent ASMs [27]
– communicating ASMs [9]
– communicating concurrent ASMs with shared memory [26]

Consider a distributed algorithm with several ASM agents, where the agents’
persistent data is stored in a distributed database. The database management
system (DBMS) can be a classical distributed SQL or a distributed NoSQL
DBMS. The DBMS distributes its data across a number of servers, which can be
viewed as nodes in a network. Data and functionality is replicated across server
nodes, and storage is increased by adding more nodes, an approach called hori-
zontal scaling. To optimise availability and partition tolerance, the requirement
for consistency is relaxed to a requirement for eventual consistency.

Actions are performed by ASM agents following their ASM programs. Client
agents issue requests to the DBMS, and DBMS server agents retrieve or update
some of the replicated data in response to the client request. DBMS server
agents also generate requests to other servers to propagate updates so as to
make updated values available on those other servers.

Each location has multiple copies (replicas) on different DBMS servers. We
consider servers to be agents themselves.

domain Location
domain Server ⊆ Agent
static replicas: Location → P Server
shared value: Server, Location → Value
shared timestamp: Server, Location → Time

We also define the latest timestamp amongst all the replicas of a location.



Eventual Consistency Formalized 255

derived maxTime(loc) ≡ maxr∈replicas(loc)timestamp(r,loc)

We assume that different values for a location have different timestamps. This
is obviously true when the different values come from different agents, as times-
tamps of different agents are disjoint. If the different values come from the same
agent, then they have to come from different steps, as it is an inconsistency
to assign two different values to the same location in the same step. However,
because time advances, the timestamps of different steps of the same agent are
different.

As discussed above, each location has a value that was allocated at a time
that is universally comparable. Within a set of replicas, there will be a most
recent update, defined as an update with the latest timestamp.

Server agents run a soft state update program which is detailed in the next
subsection. The client programs run their code, which includes reads and writes
of locations. This is the usual ASM handling, where for a given agent with its
ASM program, an update set is determined. The update set is the set of writes,
while the reading of values is given by the reads of locations. The replicas of
shared variables are handled in the definition of read and write.

Connectivity between servers is of interest insofar as an update of a replica
on one server is visible to another server. This is modelled using a monitored
function connected.

monitored connected : Agent, Agent → Boolean

From the perspective of a client agent, database handling is an activity conducted
by the environment, and the actions of DBMS agents are perceived as updates
to shared or monitored locations.

Client agents can read values, where reading is a function providing a value.
In reality, reading a value might be more than a function with an immediate
outcome, and will rather have several steps that might or might not provide a
result. For the discussion in this paper, it is sufficient to consider immediate
results and keep a refinement into action sequences for later.

Reading in the presence of replicas means to read selected replicas and to
use the value with the most recent time stamp among them. We abstract the
possible replicas to be read with a predicate ReadPolicyOK, which represents an
unspecified database policy that limits the subsets of replicas that need to be
consulted for reading by a client agent.

static ReadPolicyOK: PServer, Location → Boolean

Read(loc) ≡
choose S ⊆ replicas(loc)
with ReadPolicyOK(S,loc) ∧ ∀s ∈ S : connected(SELF,s)
do

choose s0 ∈ S
with maxs∈S(timestamp(loc,s)) = timestamp(loc, s0)



256 E. Sherratt and A. Prinz

do
value(s0, loc)

Client agents can also write a value, which means a state is changed. This way,
writing is an activity. Again, writing will normally be an activity with many
steps, which we abstract here to just one step. These updates bring all the repli-
cas to the latest value. Like ReadPolicyOK, the function WritePolicyOK checks
a subset of the replicas for validity to be updated, and allows write operations
to be specified independently of the underlying database activity.

static WritePolicyOK : P Server, Location → Boolean

Write(loc,val) ≡
choose S ⊆ replicas(loc)
with WritePolicyOK(S,loc) ∧ ∀s ∈ S : ConnectedReplica(SELF,s)
do
forall s ∈ S do

value(s,loc):= val
timestamp(s,loc):= NOW

As an example, in a client program there might be an assignment x:= y+z. This
means, y and z are handled with Read(y) and Read(z), respectively. The variable
x gets a new value (lets assume 42) and this is handled with Write(x,42).

An example for read and write policies could be that reading requires two
replicas while writing requires all replicas. This would mean the following.

ReadPolicyOK example(S,l) ≡ S ⊆ replicas(l)∧ | S |≥ 2
WritePolicyOK example(S,l) ≡ S = replicas(l)

3.2 Replicas and Updates

The DBMS has also an internal view on the data. DBMS agents handle the soft
state and update locations in the background. The duplicates of the different
locations are considered to be one from the client perspective, but the DBMS
handles them individually and keeps consistency high. The state of the system
and the different values present are later used to define eventual consistency.

We define a background process that improves consistency in the system by
updating the values to newer versions. The abstract program that the DBMS
agents are running in parallel to the client agents is as follows.

SoftStateUpdate ≡
choose l ∈ Location with SELF ∈ replicas(l) do
choose r ∈ replicas(l) with SELF 	= a ∧ connected(SELF, r)

∧timestamp(r,l) > timestamp(SELF,l)
do

value(SELF,l):= value(r,l)
timestamp(SELF,l):= timestamp(r,l)



Eventual Consistency Formalized 257

4 Defining Inconsistency Formally

Eventual consistency means that from any starting state, in the absence of client-
initiated updates, the system will reach a consistent state. Classical consistency
is a qualitative measure, which can be true or false.

To model eventual consistency, we need a more quantitative measure of con-
sistency as a way to express how far our system is from consistency. This will
allow to express how a mechanism like SoftStateUpdate will, given sufficient time
without client-initiated updates, cause the system to become consistent. There-
fore, we do not measure consistency, but inconsistency.

In the following, we present alternative measures of inconsistency, some based
on the count of outdated values, and others on the age of outdated values. To
serve as a meaningful model of eventual consistency, a measure of inconsistency
should have the following properties.

– P1: Inconsistency should decrease when values become less outdated. This
could happen, for example, by a DBMS agent executing SoftStateUpdate.

– P2: Inconsistency should increase when a new value is introduced incom-
pletely as a consequence of a client’s request. In this case, the value is updated
only in some replicas, which outdates the remaining values. Inconsistency
should not change when consistent locations are updated consistently.

– P3: Changes to the network partitioning should not influence inconsistency.
When replicas of a location become disconnected from one another, DBMS
activities will not be able to reverse increases in inconsistency caused by client
activities, such that the inconsistency does not decrease.

4.1 Total and Sufficient Consistency

Before defining measures of consistency, we first define total consistency, the ideal
state which, given sufficient time, the system as a whole will reach in the absence
of client-initiated updates. We then define sufficient consistency, a condition that
means that each client read will yield the most recent value even though there
might be inconsistencies in the data.

Total consistency is a state in which all the members in a set of replicas
have equal values, and those equal values all have the latest timestamp. Please
remember that the same timestamp implies the same value.

Definition 1 (Total consistency). All replicas of a location have the same
time stamp and the same value.

TotallyConsistent(loc) ≡
∀s0 ∈ replicas(loc) • maxTime(loc) = timestamp(s0, loc)

Sufficient consistency is then defined as stating that there might be different
values for a location in the system, but these are not visible to clients due to the
read policy.



258 E. Sherratt and A. Prinz

Definition 2 ((Sufficient) consistency). All possible reads of a location lead
to the same, most recent, available value.

Consistent(loc) ≡
∀S ⊆ replicas(loc) • ReadPolicyOK(S,loc) →

maxTime(loc) = maxs∈S(timestamp(s,loc))

4.2 Consistency as a Count of Inconsistent Replicas

In a distributed database system, consistency means having the same value for
each location regardless of which server provides the value. For such a system,
the number of extra, inconsistent replicated values in the system is a good mea-
sure of inconsistency. These extra values are the extra values that might be
externally available to client agents. For distributed databases, there might be
other hidden values in the system that are not yet presented to the users before
their update operation is finished, but such values are at the level of the DBMS
implementation and will not be considered further here.

Definition 3 (Outdated Values). The measure of consistency in a distributed
system is the total number of outdated values in the system. These are values
that do not have the latest timestamp.

OutdatedValueCount(loc) ≡
| {r ∈ replicas(loc) : timestamp(r,loc) 	= maxTime(loc)} |

OutdatedValues ≡ ∑
l∈Location OutdatedValueCount(l)

When an old value is updated to the latest value, OutdatedV alues decreases,
as needed for P1. It does not decrease when the update goes to a new, but not
the latest value. P2 is true as an incomplete client-initiated update will cause
OutdatedV alues to increase. The measure is independent of the network thus
making P3 trivially true.

A second measure of consistency is presented below that takes account of the
connectivity of the servers. It is not meaningful to expect nodes to be updated
as long as they are disconnected from the current value.

Definition 4 (Outdated Reachable Values). The measure of consistency in
a distributed system is the number of outdated values that are reachable from the
most up-to-date replicas but that are not (yet) up to date.

OutdatedReachableValueCount(loc) ≡
| {r ∈ replicas(loc) : timestamp(r,loc) 	= maxTime(loc)∧

∃ r′ ∈ replicas(loc) • timestamp(r′, loc) = maxTime(loc)∧
connected(r′, r)} |

OutdatedReachableValues ≡∑
l∈Location OutdatedReachableValueCount(l)



Eventual Consistency Formalized 259

Corollary 1.
OutdatedReachableValues ≤ OutdatedValues

When everything is connected, this measure is the same as the previous one.
When some parts are disconnected, then OutdatedReachableValues captures the
connected part of the network. Again, P1 and P2 are true as long as they are
in the connected parts, as we can assume that values cannot be updated in the
unconnected parts. Still, OutdatedReachableValues is not a satisfactory measure
of inconsistency because partitioning the network actually leads to increased
consistency according to this measure, making P3 invalid.

Therefore we consider a measure that takes account of network partitioning.

Definition 5 (Outdated Isolated Values). The measure of inconsistency in
a distributed system is the number of outdated values that are isolated from the
most recent update of a location, and so cannot be made consistent by the DBMS
propagation mechanism characterized by SoftStateUpdate.

OutdatedIsolatedValueCount(loc) ≡
| {r ∈ replicas(loc) : timestamp(r,loc) 	= maxTime(loc)∧

∃r′ ∈ replicas(loc) : timestamp(r′, loc) = maxTime(loc)∧
not connected(r′, r)} |

OutdatedIsolatedValues ≡ ∑
l∈Location OutdatedIsolatedValueCount(l)

Corollary 2.
OutdatedIsolatedValues ≤ OutdatedValues

Corollary 3.
OutdatedIsolatedValues + OutdatedReachableValues = OutdatedValues

Inconsistency as measured by OutdatedIsolatedValues will not increase as a con-
sequence of DBMS activities. However, the measure does not capture the fact
that DBMS activities will increase consistency within connected parts of the
system. Thus, P1 is not true. In fact, there are cases where also P2 and P3 are
invalid for OutdatedIsolatedValues.

Combining OutdatedIsolatedValues with OutdatedReachableValues provides a
measure that fulfils all three of the required properties of a meaningful measure
of inconsistency. OutdatedV alues is such a combination and therefore provides
the most meaningful of the measures of inconsistency explored above.

4.3 Time-Based Measures of Inconsistency

Instead of counting inconsistent replicas of locations, the measures explored
below describe inconsistency in terms of the time delay of the inconsistent replica
values.



260 E. Sherratt and A. Prinz

Definition 6 (Least Consistency Time). For a location l, the consistency
time is NOW in case the location is consistent. Otherwise, it is the latest
timestamp with a value for this location. This leads to a measure of consistency
that is the sum of distances between NOW and the consistency times of all the
locations in the system.

ConsistencyTime(loc) ≡
if Consistent(loc) then NOW else maxTime(loc)

LeastConsistencyTime ≡ ∑
l∈Location (NOW - ConsistencyTime(l))

When an inconsistent location is made consistent, LeastConsistencyTime
decreases, as needed for P1. It does not decrease when the update goes to a
new, but not the latest value. It also does not decrease when there are still other
outdated values around for the location. P2 is not true, because applying an
incomplete client-initiated update to an inconsistent state will cause LeastCon-
sistencyTime to decrease. As the measure is independent of the network, P3 is
valid.

As this definition uses only the oldest update to a location, it does not take
into account changes to other outdated values. An alternative time-based mea-
sure of inconsistency is the distance in time to the latest timestamp for all the
replicas of a location. This is a measure of how out of date the replicas are.

Definition 7 (Delta Consistency Time). The timestamp differences for all
the replicas of a location.

ConsistencyDelta(loc) ≡∑
r∈replicas(loc) maxTime(loc) - timestamp(r,loc)

DeltaConsistencyTime ≡ ∑
l∈Location ConsistencyDelta(l)

DeltaConsistencyTime is a measure of the delay in propagating updates across
all the replicas of a location. It improves with each improvement for any outdated
value, such that P1 is true for all cases. It also fulfils P2 in all cases. Finally,
as it is not considering the network, it also fulfils P3. DeltaConsistencyTime is
more detailed than the other inconsistency measures.

5 Formal Definition of Eventual Consistency

5.1 Eventual Consistency

The previous definitions allow a formalization of eventual consistency as follows.

Definition 8 (Eventual Consistency). A DBMS, in particular its soft state
update functionality, is eventually consistent when its DeltaConsistencyTime is
decreasing if there are no client-initiated updates and OutdatedReachableValues
is not zero.



Eventual Consistency Formalized 261

This definition of eventual consistency demands that in the absence of other
updates, the predicate TotallyConsistent will eventually hold for all locations in
the system. In reality, the data is already consistent when the predicate Consis-
tent holds, such that users will experience consistency earlier than that.

This is related to the other parts of the DBMS who provide as much as
possible consistency already without the soft state.

The definition of eventual consistency and the use of DeltaConsistencyTime
in particular also allows a comparison of different DBMS mechanisms and data-
base configurations with respect to consistency.

Please note that this definition of eventual consistency does not define the
consistency of a state, but the possible behaviours of a DBMS.

5.2 SoftStateUpdate Implies Eventual Consistency

Theorem 1. The abstract soft state update functionality given in Sect. 3 pro-
vides eventual consistency. This means, in the absence of client-initiated updates,
DeltaConsistencyTime decreases due to DBMS propagation of updated values
across replicas.

Proof. Let OutdatedReachableValues> 04. This means that there is at least one
location l0 that has an outdated value. Let r0 be a replica with the up-to-
date value, and r1 be the outdated replica. We can choose r0 and r1 such that
connected(r0, r1) because OutdatedReachableValues> 0.

Now the conditions for l, r, and SELF in SoftStateUpdate are fulfilled by
l0, r0, and r1. SoftStateUpdate will run on r1, because it is a DB server and
keeps replicas. This means that SoftStateUpdate for r1 does not produce an
empty update set, but changes the value of at least one location. This will
decrease DeltaConsistencyTime by the time difference between the old and the
new value. �

5.3 Example for Eventual Consistency

We consider the independent read - independent write (IRIW) algorithm A [10]
with four agents a1, . . . , a4 as follows.

a1 : x := 1
a2 : y := 1
a3 : Read(x);Read(y)
a4 : Read(y);Read(x)
initially x = y = 0

We consider three database servers db1, db2, db3, keeping a replica of x and y
each and running the SoftStateUpdate program. The user agents use the Read for
reading values (a3 and a4) and the Write for storing the assignments of values

4 Obviously, this also implies that DeltaConsistencyT ime > 0.



262 E. Sherratt and A. Prinz

(a1 and a2). We visualize the system state by the three replicated values for x
and y, such that the initial state is (x = (0, 0, 0), y = (0, 0, 0)).

First, we look at a database policy where writing and reading are allowed
already on just one replica. We run first a1 and a2 in parallel at time 1. They
store the values for x and y in db1 and db2, respectively. This leads to the system
state (x = (1, 0, 0), y = (0, 1, 0)) with DeltaConsistencyT ime = 4. Now a3 and
a4 read in parallel, where a3 consults db1 and a4 consults db2. This gives the result
x = 1, y = 0 for a3 and x = 0, y = 1 for a4. As [10] argues, this is not sequentially
consistent. However, still db1, db2, and db3 are active with SoftStateUpdate. All
of them can update at least one location, leading to (x = (1, 1, 1), y = (1, 1, 0))
and DeltaConsistencyT ime = 1. The server db3 can do one more update step,
before everything is consistent.

Now we look at the case where two replicas are needed with reading and for
writing. The previous scenario is not possible now, as now the system is sequen-
tially consistent. Still, we run first a1 and a2 in parallel. They store the values for
x and y as follows: (x = (1, 1, 0), y = (0, 1, 1)) with DeltaConsistencyT ime = 2.
Now a3 and a4 read in parallel, and independent of their choice of servers, they
both get the result x = 1, y = 1. The server db2 is already up-to-date, but
db1 and db3 run SoftStateUpdate, leading to (x = (1, 1, 1), y = (1, 1, 1)) and
DeltaConsistencyT ime = 0.

Please observe that in the second case, the system is consistent all the time,
even though DeltaConsistencyTime is not 0. However, the soft state functionality
does not stop before everything is updated to the latest value.

In the case of partitions, not all needed updates are possible and have to be
delayed until the connection is restored.

6 Related Work

Bosneag and Brockmeyer [11] developed a formalism that enabled specification
of different forms of consistency for a given data object. Like the work presented
here, their approach is rooted in state machine models. Eventual consistency is
defined as the fact that in the absence of updates, all replicas of a data item
converge towards identical copies of each other. A history reduction operator is
defined based on whether or not operations in a history can be reordered without
affecting the end state that is reached, and a proof is given that any algorithm
that respects the history reduction operator will achieve eventual consistency.

The definitions provided here differ from [11] in that they deal with a measure
of distance from consistency rather than on dependencies between operations.
We maintain that this more abstract view of eventual consistency, which does
not need to refer to execution traces, provides a better basis for reasoning about
whether or not a database management system can be said to ensure eventual
consistency.

Burckhardt [15] provides ways to reason about the consistency of protocols
in terms of consistency guarantees, ordering guarantees and convergence guaran-
tees. Reasoning is in terms of states, where the current state is viewed as a graph



Eventual Consistency Formalized 263

of prior operations. Formal models are presented for protocol definitions and for
executions in distributed systems, and proofs are provided to show that imple-
mentations meet consistency guarantees. This goes far beyond the definitions
presented here, but has the disadvantage that it relies on a specially developed
formalism for specifying the observable behaviour of a system. Our work has the
advantage that it builds on the established ASM formalism, and so can be used
immediately to reason about existing specifications.

Bouajjani, Enea and Hamza [12,13] define eventual consistency as a property
over traces observed by an external witness. Eventual consistency is grounded in
the notions of safety and liveness, and is defined in terms of finite prefixes of a
global interpretation of method calls in a system where the result of a call is well-
defined (safety), and where there exists a global interpretation of all the method
calls in an infinite trace. This facilitates reasoning about speculative updates
and rollbacks, both of which are essential to a practically useful definition of
eventual consistency. Again, our definitions do not refer to histories or execution
traces, and so provide a more appropriate level of abstraction for reasoning about
eventual consistency than was previously available.

In summary, the work presented here differs from previous work in that
it builds on an existing ASM formalism and so can be used to reason about
existing specifications without the need to translate those into a new formalism.
It differs also in that it focuses on measures of distance from the desired state of
consistency rather than on execution traces of a distributed system. This enables
reasoning about consistency at a more appropriate level of abstraction than
was previously possible. Finally, the ASM formalism also provides the semantic
foundation for SDL [17], which provides an opportunity to provide automated
support for verifying eventual consistency by building on existing tools.

7 Conclusion

Different definitions aimed at quantifying consistency in a distributed database
with replicated data were presented above.

Some of the definitions are based on counts of inconsistent replicas of loca-
tions in the distributed system. These definitions capture the idea that client-
initiated updates will make the database system less consistent, and that DBMS
activities to propagate updates across replicas will make the system more con-
sistent.

Other definitions are based on calculating how out-of-date some replicas are.
Those definitions also capture the concept of a distributed database system that
becomes less consistent with client updates and more consistent as updates are
propagated by the DBMS.

However, none of the definitions fully captures the implications of network
failure and partitioning. This is not necessarily a problem, but indicates that
further metrics are needed to cover those aspects of distributed databases with
eventual consistency.

For sure, distributed persistent data is essential to distributed computation,
and the ASM formalism supports formal modelling of persistent distributed



264 E. Sherratt and A. Prinz

datastores with replicated values. Moreover, it enables such datastores to be
seamlessly modelled alongside independent client and DBMS server agents.

Overall, a foundation has been laid to conduct deeper investigation of even-
tual consistency than has previously been possible.

References

1. Apache Software Foundation: Apache Cassandra 4.0 - Web Page and Documenta-
tion (2019). http://cassandra.apache.org/

2. Best, E.: Semantics of Sequential and Parallel Programs. Prentice Hall, Upper
Saddle River (1996)

3. Blass, A., Gurevich, Y.: Ordinary interactive small-step algorithms I. ACM Trans.
Comput. Logic 7(2), 363–419 (2006)

4. Blass, A., Gurevich, Y., Rosenzweig, D., Rossman, B.: Interactive small-step algo-
rithms II: abstract state machines and the characterization theorem. Logical Meth-
ods Comput. Sci. 3(4) (2007). https://doi.org/10.2168/LMCS-3(4:4)2007

5. Blass, A., Gurevich, Y.: Persistent queries. CoRR abs/0811.0819 (2008). http://
arxiv.org/abs/0811.0819

6. Blass, A., Gurevich, Y.: Persistent queries in the behavioral theory of algorithms.
ACM Trans. Comput. Logic (TOCL) 12(2), 16:1–16:43 (2011). https://doi.org/10.
1145/1877714.1877722

7. Börger, E., Cisternino, A. (eds.): Advances in Software Engineering. LNCS, vol.
5316. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89762-0

8. Börger, E., Stärk, R.: Abstract State Machines - A Method for High-Level System
Design and Analysis. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-
18216-7

9. Börger, E., Raschke, A.: Modelling Companion for Software Practitioners.
Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-56641-1

10. Börger, E., Schewe, K.D.: Concurrent abstract state machines. Acta Inf. 53(5),
469–492 (2016). https://doi.org/10.1007/s00236-015-0249-7

11. Bosneag, A.M., Brockmeyer, M.: A unified formal specification for a multi-
consistency replication system for DHTs. In: 12th IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems (ECBS 2005), pp.
33–40. IEEE (2005)

12. Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic
replication systems. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2014, pp. 285–296. ACM,
New York (2014). https://doi.org/10.1145/2535838.2535877

13. Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic
replication systems. ACM SIGPLAN Not. 49(1), 285–296 (2014). https://doi.org/
10.1145/2578855.2535877

14. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2000, p. 7. ACM, New York (2000). https://doi.org/10.1145/343477.343502

15. Burkhardt, S.: Principles of eventual consistency. Found. Trends Program. Lang.
1, 1–150 (2014)

16. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978). https://doi.org/10.1145/359576.359585

http://cassandra.apache.org/
https://doi.org/10.2168/LMCS-3(4:4)2007
http://arxiv.org/abs/0811.0819
http://arxiv.org/abs/0811.0819
https://doi.org/10.1145/1877714.1877722
https://doi.org/10.1145/1877714.1877722
https://doi.org/10.1007/978-3-540-89762-0
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/s00236-015-0249-7
https://doi.org/10.1145/2535838.2535877
https://doi.org/10.1145/2578855.2535877
https://doi.org/10.1145/2578855.2535877
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/359576.359585


Eventual Consistency Formalized 265

17. ITU-T: Specification And Description Language SDL (Z.100 Series). International
standard, International Telecommunication Union, Telecommunication Standard-
ization Sector (2016–2018)

18. ITU-T: Specification and Description Language – Overview of SDL-2010, Annex
F1: SDL-2010 formal definition: General overview. International standard, Inter-
national Telecommunication Union, Telecommunication Standardization Sector
(2016–2018)

19. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. SIGPLAN Not. 40(1),
378–391 (2005). https://doi.org/10.1145/1047659.1040336

20. Mills, D.L.: A brief history of NTP time: memoirs of an internet timekeeper.
SIGCOMM Comput. Commun. Rev. 33(2), 9–21 (2003). https://doi.org/10.1145/
956981.956983

21. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

22. Mironov, A.M.: Theory of processes. CoRR abs/1009.2259 (2010). http://arxiv.
org/abs/1009.2259

23. Object Management Group (OMG): OMGR© Unified Modeling LanguageR© (OMG
UMLR©), Version 2.5.1. OMG Document Number formal, 05 December 2017.
http://www.omg.org/spec/UML/2.5.1

24. Prinz, A.: Distributed computing on distributed memory. In: Khendek, F.,
Gotzhein, R. (eds.) SAM 2018. LNCS, vol. 11150, pp. 67–84. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01042-3 5

25. Prinz, A., Sherratt, E.: Distributed ASM - pitfalls and solutions. In: Aı̈t-Ameur,
Y., Schewe, K.D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 210–215. Springer, Berlin
(2014). https://doi.org/10.1007/978-3-662-43652-3 18

26. Schewe, K., Prinz, A., Börger, E.: Concurrent computing with shared replicated
memory. CoRR abs/1902.04789 (2019). http://arxiv.org/abs/1902.04789

27. Sherratt, E.: Relativity and abstract state machines. In: Haugen, Ø., Reed, R.,
Gotzhein, R. (eds.) SAM 2012. LNCS, vol. 7744, pp. 105–120. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36757-1 7

https://doi.org/10.1145/1047659.1040336
https://doi.org/10.1145/956981.956983
https://doi.org/10.1145/956981.956983
https://doi.org/10.1007/3-540-10235-3
http://arxiv.org/abs/1009.2259
http://arxiv.org/abs/1009.2259
http://www.omg.org/spec/UML/2.5.1
https://doi.org/10.1007/978-3-030-01042-3_5
https://doi.org/10.1007/978-3-662-43652-3_18
http://arxiv.org/abs/1902.04789
https://doi.org/10.1007/978-3-642-36757-1_7


Author Index

Abusair, Mai 99
Al-hammouri, Mohammad F. 27
Ali, Hyacinth 44
Alwidian, Sanaa 200
Amyot, Daniel 183, 200

Banas, Valentyn 3
Baslyman, Malak 183
Bochmann, Gregor V. 27

Chetvertak, Roman 3

Eleiwi, Rami 99

Fonseca i Casas, Pau 163

Grabowski, Jens 219
Gurenko, Oleg 3

Hassane, Omar 116

Januzaj, Visar 139

Khendek, Ferhat 116
Kienzle, Jörg 44
Kolchin, Alexander 3
Kugele, Stefan 139

Louni, Farid 81

Makedonski, Philip 219
Muccini, Henry 99
Mussbacher, Gunter 44
Mustafiz, Sadaf 116

Oriol, Xavier 235

Penas, Olivia 81
Plateaux, Régis 81
Potiyenko, Stepan 3
Prinz, Andreas 150, 249

Rajić, Goran 61

Saleh, Ithar 99
Shana’a, Yara 99
Sharaf, Mohammad 99
Sherratt, Edel 249
Shults, F. LeRon 150
Sruk, Vlado 61

Teniente, Ernest 235
Toeroe, Maria 116

van den Berg, Aswin 3
Volkov, Vlad 3

Weigert, Thomas 3

Xanthopoulou, Themis Dimitra 150

Yagodka, Roman 3


	Preface
	SDL Forum Society

	Organization
	Acknowledgements
	Contents
	Keynote Talk
	Generating Test Suites to Validate Legacy Systems
	1 Testing Is Hard
	2 Testing of Modernized Systems
	3 Obtaining a Model from Legacy Code
	3.1 Control Flow and Data Flow Dependencies
	3.2 PDG-Based Slicing Method
	3.3 Interprocedural Data Flow Analysis
	3.4 Abstraction of Non-business Procedures
	3.5 Conversion to Model

	4 Deriving Test Suites from Legacy Code
	4.1 Data-Flow Coverage Criteria
	4.2 Improved Algorithm for DU-Chain Coverage

	5 Summary
	References

	Distributed Applications, Metamodeling and Protocols
	Deriving Distributed Design Models from Global State Machines Requirements
	1 Introduction
	2 Describing Distributed Systems in a Global View
	2.1 Review of Notations for Describing Global Requirements
	2.2 Using Hierarchical State Machines (HSMs) for Describing the Global Requirements
	2.3 Example of Using the Notation of Extended HSMs

	3 Deriving Distributed Design Models
	3.1 Structure of the Global Requirements Model
	3.2 Algorithm for Deriving a Design Model from HSMs Requirements
	3.3 Simple State
	3.4 Weak Sequence
	3.5 Strict Sequence and Alternatives
	3.6 Concurrency and Strict While Loop
	3.7 Weak While Loop

	4 Conclusion
	References

	Generic Graphical Navigation for Modelling Tools
	1 Introduction
	2 Generic Language Navigation
	2.1 Single Model Navigation
	2.2 Multi-view Navigation
	2.3 Software Product Line Navigation
	2.4 Navigation of Reusable Artifacts
	2.5 Filtering of Model Elements

	3 Navigation Metamodel
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Protocol Syntax Development Using Domain Specific Modeling Languages
	1 Introduction
	2 Formal Protocol Development
	3 DSML Based Protocol Syntax
	3.1 Model Based Protocol Syntax Design
	3.2 DSML Content and Domain Modeling

	4 Diameter Protocol Family
	4.1 Diameter DSML Based Modeler

	5 Discussion and Related Work
	References

	Industry 4.0 Applications
	Use of a Pivot Diagram in SysML to Support an Automated Implementation of a MBSE Design Methodology in an Industry 4.0 Context
	Abstract
	1 Introduction
	1.1 Context and Motivations
	1.2 State of the Art
	1.3 Case Study Description

	2 Methodology-Based Dependency Links
	3 Formalization
	3.1 Approach Principles
	3.2 Transformation Rules and Topological Analysis

	4 Implementation and Case Study
	5 Discussions
	6 Conclusions and Future Work
	References

	Modeling and Code Generation Framework for IoT
	1 Introduction
	2 The CAPS Background
	3 The ThingML Background
	4 CAPSml Code Generation Framework
	4.1 Preparation Phase
	4.2 Component Conversion Phase
	4.3 Connection Conversion Phase
	4.4 Launching Code Generator Phase

	5 Modeling and Code Generation Methodology
	6 Smart Irrigation Case Study
	6.1 Describing a Scenario Using CAPS
	6.2 Code Generation Using CAPSml

	7 Conclusions
	References

	Process Enactment with Traceability Support for NFV Systems
	Abstract
	1 Introduction
	2 Background
	3 MAPLE-T Approach
	3.1 Traceability Support in MAPLE-T
	3.2 MAPLE-T Functionalities

	4 NFV Application
	4.1 Enactment and Traceability Generation with MAPLE-T
	4.2 Traceability Analysis with MAPLE-T

	5 Related Work
	5.1 Traceability Generation Support
	5.2 Traceability Analysis Support

	6 Conclusion
	Acknowledgement
	References

	Modeling in Environmental Social and Industrial Systems
	On the Structure of Avionics Systems Architecture
	1 Introduction
	2 Preliminaries
	2.1 Integrated Modular Avionics (IMA)
	2.2 Hierarchical Clustering

	3 Approach
	3.1 Frequency-Based Clustering
	3.2 Extension

	4 Related Work
	5 Conclusion
	References

	Generating Executable Code from High-Level Social or Socio-Ecological Model Descriptions
	1 Introduction
	2 Background and Related Work
	2.1 ODD
	2.2 DSLs and MPS
	2.3 Related Work

	3 Methodology
	3.1 Metamodel Elements
	3.2 Procedure for Defining the Metamodel Structure
	3.3 Editor
	3.4 Executable Code Generation

	4 Evaluation
	4.1 Expressivity and Extension
	4.2 ODD and Experts

	5 Summary and Future Steps
	References

	Towards a Representation of Cellular Automaton Using Specification and Description Language
	Abstract
	1 Introduction
	1.1 Cellular Automaton
	1.2 Multi:N-Dimensional Cellular Automata (m:n-CAk)
	1.3 Specification and Description Language

	2 Representing m:n-CAk on SDL
	2.1 Extending the SDL to Define a Cellular Automaton
	2.2 The Game of Life

	3 Concluding Remarks
	References

	Interoperability
	Goal Model Integration: Advanced Relationships and Rationales Documentation
	1 Introduction
	2 Related Work
	3 Goal Integration Method
	3.1 Conceptual Model
	3.2 Relationships and Mapping Procedure

	4 Formalization
	4.1 Goal Integration Conceptual Model Formalization
	4.2 URN Profile
	4.3 Goal Integration Algorithm

	5 Illustrative Case Study
	6 Discussion
	7 Conclusion
	References

	Union Models: Support for Efficient Reasoning About Model Families Over Space and Time
	Abstract
	1 Introduction
	2 Motivation
	3 Foundations
	3.1 Graph-Based Formalization of (Meta)Models
	3.2 Propositional Encoding of Models

	4 Union Models
	4.1 Union Model Formalism
	4.2 Union of Propositional Encodings of Models
	4.3 Spatio-Temporal Annotation Language (STAL)

	5 Reasoning and Analysis with Union Models
	6 Experiments
	6.1 Methodology
	6.2 Implementation
	6.3 Results
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgement
	References

	Facilitating the Co-evolution of Standards and Models
	1 Introduction
	2 Background
	3 Methodology
	4 Implementation and Evaluation
	4.1 Overview
	4.2 Current Status
	4.3 First Results

	5 Related Work
	6 Conclusion
	References

	Concurrency, Data Integrity
	Adapting Integrity Checking Techniques for Concurrent Operation Executions
	1 Introduction
	2 Basic Concepts and Notation
	3 Our Approach
	3.1 Detecting the Kind of Structural Events Applied by Some Operation
	3.2 Detecting the Structural Events that Violate/Repair a Constraint
	3.3 Detecting Operations and Constraints Interactions Through the Structural Events

	4 Implementation
	5 Conclusions
	References

	Eventual Consistency Formalized
	1 Introduction
	2 Background
	2.1 Distributed Data and Eventual Consistency
	2.2 Abstract State Machines
	2.3 Distributed ASM

	3 Abstract State Machine Model of Distributed State
	3.1 Distributed, Duplicated Persistent Data
	3.2 Replicas and Updates

	4 Defining Inconsistency Formally
	4.1 Total and Sufficient Consistency
	4.2 Consistency as a Count of Inconsistent Replicas
	4.3 Time-Based Measures of Inconsistency

	5 Formal Definition of Eventual Consistency
	5.1 Eventual Consistency
	5.2 SoftStateUpdate Implies Eventual Consistency
	5.3 Example for Eventual Consistency

	6 Related Work
	7 Conclusion
	References

	Author Index



