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Abstract “By reading only the title and abstract, do you think this research will
be accepted in an AI conference?” A common impromptu reply would be “I don’t
know but I have an intuition that this research might get accepted”. Intuition is often
employed by humans to solve challenging problems without explicit efforts. Intu-
ition is not trained but is learned from one’s own experience and observation. The
aim of this research is to provide intuition to an algorithm, apart from what they
are trained to know in a supervised manner. We present a novel intuition learning
framework that learns to perform a task completely from unlabeled data. The pro-
posed framework uses a continuous state reinforcement learning mechanism to learn
a feature representation and a data-label mapping function using unlabeled data.
The mapping functions and feature representation are succinct and can be used to
supplement any supervised or semi-supervised algorithm. The experiments on the
CIFAR-10 database show challenging cases where intuition learning improves the
performance of a given classifier.
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1 Introduction

Intuition refers to knowledge acquiredwithout inference and/or the use of reason [25].
Philosophically, there are several definitions for intuition and themost popularly used
one is “Thoughts that are reached with little apparent effort, and typically without
conscious awareness” [11] and is considered as the opposite of a rational process.
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From a machine learning perspective, training a supervised classifier is a rational
process where it is trained with labeled data allowing it to learn a decision boundary.
Also, traditional unsupervised learningmethods do notmap the learnt patterns to their
corresponding class labels. Semi-supervised approaches bridge this gap by leverag-
ing unlabeled data to better perform supervised learning tasks. However, the final
task (say, classification) is performed only by a supervised classifier using labeled
datawith some additional knowledge fromunsupervised learning. The notion of intu-
ition would mean that the system performs tasks using only unlabeled data without
any supervised (rational) learning. In other words, intuition is a context-dependent
guesswork that can be incorrect at certain times. In a typical learning pipeline, the
concept of intuition can be used for a variety of purposes starting from training data
selection up to and including decision-making. Heuristics are the simplest form of
intuition that bypass or is used in conjunction with rational decisions to obtain quick
approximate results. For example, heuristics can be used in (1) choosing the new data
points in an online active learning scenario [6], (2) for feature representation [7], (3)
feature selection [10], or (4) choice of classifier and its parameters [4].

Table1 shows the comparison of existing popular machine learning paradigms.
Supervised learning attempts to learn an input–output mapping function on a feature

Table 1 Comparison of existing popular machine learning paradigms along with the proposed
intuition learning paradigm
Paradigm Input data Learnt function Comments

Supervised [3] <data, label> data-label mapping

Unsupervised [3] <data> data clusters

Semi-supervised [5] <data, label>, unlabeled
data

data-label mapping unlabeled data follow the
same distribution

Reinforcement [14] reward function (or value) state, action policy need a teacher to provide
reward

Active [24] <data, label> data-label mapping, new
data selection

need human annotator
(Oracle) or expert
algorithm to provide labels
for new data

Transfer [22] <sourceData,
sourceLabel>,
<targetData, targetLabel>

targetData—targetLabel
mapping

transfer can be data
instances, classification
parameters, or features

Imitation [18] sourceData,
sourceData-sourceLabel
mapping

targetData—targetLabel
mapping

need a teacher to provide
reward

Self taught [23] <data, label>, unlabeled
data

data-label mapping unlabeled data need not
follow the same distribution
and label as data

Deep learning [2] <data, label>, unlabeled
data

data-label mapping complex architecture to
learn robust data
representations

Intuition data, unlabeled data, reward
function (or value)

data-label mapping unlabeled data need not
follow the same
distribution, need a reward
function
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space using a set of labeled training data. Transfer learning aims to improve the
target learning function using the knowledge in source (related) domain and source
learning tasks [22]. Many types of knowledge transfer such as classification param-
eters [17], feature representations [9], and training instances [12] have been tested
to improve the performance of supervised learning tasks. Semi-supervised learning
utilizes additional knowledge from unlabeled data, drawn from the same distribution
and having the same task labels as the labeled data. Many of the research works have
focused on unsupervised feature learning, i.e., to create a feature subspace using
the unlabeled data, to which the labeled data can be projected to obtain a new fea-
ture representation [5]. In 2007, Raina et al. [23] proposed a framework termed as
“Self-taught learning” to create the generic feature subspace using sparse autoen-
coders irrespective of the task labels. Self-taught learning dismisses the same class
label assumption of semi-supervised learning and forms a generic high-level feature
subspace from the unlabeled data, where the labeled data can be projected.

As shown in Fig. 1, we postulate a framework of supplementing intuition deci-
sions at the decision level to a supervised or semi-supervised classifier. The decisions
drawn by the reinforcement learning block in Fig. 1 are called intuition because they
are learnt only using the unlabeled data with an indirect reward from a teacher. Exist-
ing algorithms, broadly, require training labels for building a classifier or borrows
the classifier parameters from an already trained classifier. Direct or indirect training
is not always possible as obtaining data labels are very costly. To address this chal-
lenge, we propose a novel paradigm for unsupervised task performance mechanism
learnt from cumulative experience. Intuition is modeled as a learning framework,
which provides the ability to learn a task completely from unlabeled data. By using
continuous state reinforcement learning as a classifier, the framework learns to per-
form the classification task without the need for explicit labeled data. Reinforcement
learning helps in adapting a randomly initialized feature space to the specific task
at hand, where a parallel supervised classifier is used as a teacher. As the proposed
framework is able to learn a mapping function from the input data to the output class
labels, without the requirement for explicit training, it functions similar to human
intuition and we term this approach as Intuition Learning.

1.1 Research Contributions

This research proposes a novel intuition learning framework to enable algorithms
learn a specific classification or regression task completely from unlabeled data. The
major contributions of this research are as follows:

– A continuous state reinforcement learning-based classification framework is pro-
posed to map input data to output class label, without the explicit use of training.

– A residual Q-learning-based function approximation method for learning the fea-
ture representation of task-specific data. A novel reward function which does not
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Fig. 1 Comparing the different learning paradigms such as supervised, semi-supervised, and trans-
fer learningwith the proposed intuition learning paradigm. Intuition learning transfer the knowledge
to perform classification from unlabeled data using reinforcement learning
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require class labels is designed to provide feedback to the reinforcement-based
classification system.

– A context-dependent addition framework is proposed, where the result of the
intuition framework can be supplemented based on the confidence of the trained
supervised or semi-supervised mapping function.

2 An Intuition Learning Algorithm

The basic idea of the proposed intuition learning framework is presented in Fig. 2.
Given a large set of unlabelled data, different kinds of feature representations are
extracted to describe the data, irrespective of the task in hand. To further leverage
the knowledge interpretation from unlabeled data, a continuous state reinforcement
learningmechanism is used to perform the given classification task.As reinforcement
is a continuous learning process, using a reward-based feedback mechanism, the
classification task improves with time. The reinforcement learning, on one hand acts
as a classifier, while on the other hand continuously adapts the feature representation
with respect to the given task. Thus, given multiple tasks, the proposed intuition
learning framework can adapt the generic feature space to be consistent with the
corresponding task.

Let {(I (1)
l , y(1)), (I (2)

l , y(2)), . . . , (I (m)
l , y(m))} be the set ofm labeled training data

drawn i.i.d. from a distribution D. The labeled data are represented as {(x (1)
l , y(1)),

(x (2)
l , y(2)), . . . , (x (m)

l , y(m))}, where x (i)
l ∈ Rn is the feature representation of the

Fig. 2 A block diagram outlining on how a feature space can be adapted using reinforcement
learning algorithm with feedback from a supervised classifier trained on limited task-specific data
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data I (i)
l and y(i) ∈ [1, 2, . . . ,C] denotes the class label corresponding to x (i)

l . Let
the set of unlabeled data be {I (1)

u , I (2)
u , . . . , I (p)

u }, where the subscript u represents
that they are unlabeled data. Contrary to self-taught learning [23], we do not assume
that the labeled and unlabeled data should be drawn from the same distribution D or
have the same class labels, however, they should be derived from the same modality.
Given a set of labeled and large unlabeled data, the aim of intuition learning is to
learn a hypothesis h′ : (X → R) ∈ [1, 2, . . . ,C] that predicts the labels for a given
input representation of data drawn. However, the hypothesis h′ is learnt without the
direct use of labels y(i) and is used as a supplement for the hypothesis h learnt using
(x (1)

l , y(1)) in a supervised (or semi-supervised) manner.

2.1 Adapting Feature Representation

From a large set of unlabeled data, many different kind of feature representations are
extracted. Each representation may correspond to a different property of the data that
we try to capture. For image data, the features could be color, texture, and shapewhile
for text data, the features could be n-grams, bag-of-words, and word embeddings.
The features can also be a set of different color features or set of hierarchical n-
grams. If the large set of unlabeled data is seen as the world (or the universal set), the
features are the different observations made by the algorithm from the world. Similar
to human intuition, the set of feature representations extracted are task-independent,
and later depending on the learning task a subset of these features could be dominantly
used. This task-independent feature space is similar to the human intuition learnt by
observing the environment.

Figure3 provides a detailed description of the proposed intuition learning frame-
work. From the set of unlabeled data Iu , we extract r different kinds of feature repre-
sentations, {Xu1 , Xu2 , . . . , Xur }, where Xui = {x (1)

ui , x (2)
ui , . . . , x (p)

ui }, where x ( j)
ui ∈ Rni .

For every feature representation q ∈ [1, 2, . . . , r ], we cluster the representation
[x (1)

uq , x (2)
uq , . . . , x (p)

uq ] into C clusters1 using k-means clustering. The centroid of each

cluster for the i th feature representation is given as [z1u(i)
, z2u(i)

, . . . , zCu(i)
]. This feature

collection of [z1u(q), z
2
u(q), . . . , z

C
u(q)], for q = [1, 2, . . . , r ] is called as Intuition-based

Feature Subspace (IFS), as it clusters the entire set of unlabeled data into groups,
based on every observation (feature).

1The best adaption results are obtained when we fix C to be the number of classes we have in the
learning task.
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Fig. 3 Overall scheme of the proposed intuition learning algorithm that aids a supervised classifier

2.2 Classification Using Reinforcement Learning

For a given set of m labeled training data, {I (1)
l , I (2)

l , . . . , I (m)
l }, the set of r fea-

tures (as used for the unlabeled data) are extracted as [x (1)
lq

, x (2)
lq

, . . . , x (m)
lq

], where
q = [1, 2, . . . , r ]. The extracted features are then projected onto the Intuition-based
Feature Subspace (IFS) by calculating the distance of features from the correspond-
ing cluster centroids shown as,

s(i)
q = ||x (i)

lq
− z( j)

uq ||2 (1)

for j = [1, 2, . . . ,C], q = [1, 2, . . . , r ], and i = [1, 2, . . . ,m]. The representation
of the data i is given by concatenating the distances corresponding to all the features,

s(i) = [s(i)
1 , s(i)

2 , . . . , s(i)
r ] (2)

The obtained representation is succinct with a fixed length dimension of rC × 1,
where r is the number of different feature types extracted andC is the number of clus-
ters. In essence, every value represents the distance from a cluster centroid. Also, in a
typical semi-supervised (or self-taught) learning scheme, the mapping between intu-
ition based representation and the output class labels, {(s(1), y(1)), (s(2), y(2)), . . . ,

(s(m), y(m))} is learnt in a supervised manner. However, in the proposed intuition
learning, we attempt to learn the data-label mapping without using the class labels,
using reinforcement learning. The aim of reinforcement learning is to learn an action
policy π : s → a, where s ∈ S is the current state of the system and a is the action
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performed in that state. As the setup involves a continuous state environment, the
optimal action policy is learnt using a model free, off-policy Temporal Difference
(TD) algorithm called Q-learning, where Q(s, a)-value denotes the effectiveness of
a state-action pair. The T D(0) Q-learning algorithm is given by,

Q(st , a) = Q(st , a) + α

[
rt + γ max

a′ Q(st+1, a
′) − Q(st , a)

]
(3)

where rt ∈ Rn is the immediate reward obtained for performing action a in state
st , γ ∈ [0, 1] is the factor with which the future rewards are discounted and α ∈
[0, 1] is the learning rate. In our problem, reinforcement learning is formulated as a
classification problem, where IFS is the current state s and action a is the output label
to be predicted, the policy π learns the data-label relation for the given data. Due
to the large, probabilistic, and continuous definition of the space s, the Q-values are
approximated using a universal function approximation, i.e., a neural network [26].

Q(s, a) = ψ(s, a, θ) =
∑
i

φi (s, a).θi = φT (s, a).θ (4)

where φ is the approximation function. Using residual Q-learning algorithm [21],
the free parameters θ are updated as follows:

θt+1 = θt + α.ψ.Δψ (5)

θt+1 = θt + α

[
rt + γ max

a′ Q(st+1, a
′) − Q(st , a)

]

×
[
βγ

∂

∂θ
max
a′ Q(st+1, a

′) − ∂

∂θ
Q(st , a)

] (6)

where β is a weighting factor called the Bellman residual. Baird [1] guaranteed the
convergence of the above approximate Q-learning function, the details of which are
skipped for the sake of brevity. ε− exploration strategy is adopted, where, in every
state a random action is preferred with a probability of ε. As observed in [16], “the
crucial factor for a successful approximate algorithm is the choice of the parametric
approximation architecture and the choice of the projection (parameter adjustment)
method(s)”.The choice of reward function employed is highly important and directly
implies the effectiveness of adaption, which is explained in the next section.

2.3 Design of Reward Function

The Intuition-based Feature Subspace (IFS) is defined by the cluster centroid points
obtained using unlabeled data for every feature q as [z(1)

uq , z(2)
uq , . . . , z(C)

uq ], where
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q = [1, 2, . . . , r ]. This space provides an organized definition of how the entire set of
unlabeled data is observed and inferred. From the various features of the labeled train-
ing data [(x (1)

lq
, y(1)), (x (2)

lq
, y(2)), . . . , (x (m)

lq
, y(m))], where q ∈ [1, 2, . . . , r ], the cen-

troid points for every feature and every class are calculated as, [z(1)
lq

, z(2)
lq

, . . . , z(C)
lq

],
whereq = [1, 2, . . . , r ]. This space, called theLabeled dataFeature Subspace (LFS),
formed by these centroid points provide us the inference of the particular learning
task to be performed. It is to be noted that:

– Apart from unlabeled data, every labeled training data (and even testing data) gets
incrementally added to the IFS, as the observed data affects the overall under-
standing of features.

– The aim of incremental learning is to shape the I FS as close as possible to LF
while learning the feature-label mapping using reinforcement learning.

The incremental update of the I FS happens for the i th training example belonging
to j th class, as shown in the following equation:

z( j)
uq = z( j)

uq +
(
x (i)
lq

− z( j)
uq

n j
q

)
(7)

for q = [1, 2, . . . , r ], where n j
q is the number of data points in the j th cluster for qth

feature. Further, to make effective learning from this incremental update, the reward
function is defined as a function of the distance between the current IFS and LFS, as
follows:

rt =
(
||z( j)

uq ,t − z( j)
lq

||2
)−1

(8)

for q = [1, 2, . . . , r ], j = [1, 2, . . . ,C] at a given time t .

2.4 Context-Dependent Addition Mechanism

Intuition learning framework acts as a supplement to (and not complementing) super-
vised learning. The need for intuition arises only when the confidence of supervised
learner falls below a particular threshold. Therefore, a context-dependent mecha-
nism is designed to leverage supervised learning using intuition only when required.
For given labeled training data {I (1)

l , I (2)
l , . . . , I (m)

l }, some handwritten or unsuper-
vised features are extracted, {(x (1)

l , y(1)), (x (2)
l , y(2)), . . . , (x (m)

l , y(m))} and a super-

vised model is learnt, Hs :
(
x (i)
l → ŷs

)
. Based on the supervised learning algo-

rithm, the classification confidence is computed for the i th data point and is given
as con f (i)

s = [cs(i)
1 , cs(i)

2 , . . . , cs(i)
C ]. The mechanism to calculate the classification

confidence depends on the supervised learning model used. Similarly, the intuition
learning can be represented as Hint : (

s(i) → ŷint
)
and the classification confidence
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is the output of the last layer of the value function approximation neural architec-
ture, given as con f (i)

int = [cint (i)1 , cint (i)2 , . . . , cint (i)C ]. A label switching mechanism
is performed to give the final predicted label, ŷ, as follows:

ŷ =
{
ŷs, Δ > th

ŷnew, otherwise
(9)

where th is the threshold for using intuition and the condition for context Δ is
calculated as follows:

Δ = max
j

(
cs(i)

j

)
− max

l �= j

(
cs(i)

l

)
(10)

In such cases where intuition is used to boost the confidence of supervised classifier
the new label is computed as follows:

cnew(i)
k = λ.cs(i)

k + (1 − λ).cint (i)k (11)

ŷnew = argmax
j

(
cnew(i)

j

)
(12)

where λ is the trade-off parameter between intuition and supervised learning. Thus,
in simple words, we add the feeling of intuition to an algorithm. The entire approach
is summarized as an algorithm in Algorithm 1.

Algorithm 1 Intuition Learning Algorithm

1: Input: Labeled Data: {(I (1)
l , y(1)), (I (2)

l , y(2)), . . . (I (m)
l , y(m))}, Unlabeled Data:

{I (1)
u , I (2)

u , . . . I (p)
u }, maxNumberOfEpochs

2: repeat
3: for i = 1 to m do � Extract r different types of features
4: {[x (1)

u1 , x (2)
u1 , . . . , x (p)

u1 ], [x (1)
u2 , x (2)

u2 , . . . , x (p)
u2 ], . . . , [x (1)

ur , x (2)
ur , . . . , x (p)

ur ]} ←
{I (1)

u , I (2)
u , . . . I (p)

u } � Cluster data into C groups based on each feature
5: [z1uq , z2uq , . . . , zCuq ], ∀ q = [1, 2, . . . , r ] � Compute the current state

6: s(i)
q = ||x (i)

lq
− z juq ||2, ∀ j = [1, 2, . . . ,C], ∀q = [1, 2, . . . , r ], ∀i = [1, 2, . . . ,m]

� Approximate the current state Q-value
7: Q(s, a) = ψ(s, a, θ) = ∑

i φi (s, a).θi � Update θ
8: θt+1 = θt + α.ψ.Δψ � Compute reward value

9: rt =
(
||z juq ,t − z jlq ||2

)−1 ∀q = [1, 2, . . . , r ], ∀ j = [1, 2, . . . ,C]
10: end for
11: until maxNumberOfEpochs or Δψ < thresh � Test phase
12: For I (i)

t , calculate β, ŷs , ŷnew
13: if Δ > thresh then
14: ŷ ← ŷs
15: else
16: ŷ ← ŷnew , as shown in Eqs. 11, 12.
17: end if
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3 Experimental Analysis

3.1 Dataset

The proposed intuition learning algorithm is applied for 10-class classification prob-
lem using the CIFAR-10 database [15]. The database contains 60,000 color images
labeled, each of size 32 × 32 pertaining to 10 classes (i.e., 6,000 images per class).
There are 50,000 training images and 10,000 test images. The data set contains small
size images, leading to limited and noisy information content and it provides the
most relevant case study to demonstrate the effectiveness of the proposed paradigm.
The STL-10 database [7] is used as the unlabeled image data set having one million
colored images of size 96 × 96. As shown in Table2 six different feature repre-
sentations are extracted from the images. These features comprehensively comprise
the various types of features that could be extracted from image data. For all the
experiments, five times random cross-validation is performed and the best model
accuracy is reported for all the experiments. Sample images from CIFAR-10 and
STL-10 datasets are shown in Fig. 4.

3.2 Interpreting Intuition-Based Feature Subspace

The primary aim of the approach is to construct the feature subspace completely from
unlabeled data and to adapt it to a specific learning task. Figure5 shows the clusters
of entire unlabeled data corresponding to every feature extracted. The concatenation
of the feature spaces put together in Fig. 5a represents the IFS. Figure5b shows
the adapted task-specific feature subspace after performing 300 epochs of learning
with the given labeled data. Figure5c shows the amount of update in the cluster after
adding an image, by calculating the dissimilarity between the cluster centroid, before
and after the addition of the image. Cluster dissimilarity is calculated for the r − th
feature representation as follows:

Table 2 Details of different features extracted from the image data

Type Feature Dimension Parameters

Color Color harris [27] 10 × 2 σg = 1.5, σa = 5

Color Color
autocorrelograms [13]

64 × 1 Quantization level, m = 64

Local texture Local binary pattern
(LBP) [19]

59 × 4 N = 8, R = 1

Global texture GIST [20] 512 × 1 nθ = 8, nblock = 4

Saliency Region covariances [8] 32 × 32 r = 3,σ = 1.2,m = 1/10

Shape Multilayer
autoencoder [28]

10 × 1 size =
[10, 110, 110, 340, 340, 1024, 1024]
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Fig. 4 Sample set labeled images from CIFAR-10 database and unlabeled images from STL-10
database

(a)

(b)

(c)

Fig. 5 Image showing the data clusters for each of the extracted feature and grid depicts the cluster
density at local regions. a shows the IFS of all the unlabeled data, b shows the adapted task-specific
feature space after 300 epochs of learning, and c shows the amount of change happening in the
cluster after the addition of an image. Best viewed in color

Cdis =
C∑
j=1

1

Dj
.||z( j)

ur |(t+1) − z( j)
ur |(t)||2 (13)

where Dj is the density of the j th cluster. It can be visually observed from the plot
that, shape, gist, and LBP feature spaces are updated (learns) after the addition of
each image, indicating that these features contribute more towards the classification
task. However, both color Harris and autocorrelogram features are not much updated
by the training data.
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3.3 Performance Analysis

It is to be noted that intuition learning framework is used to supplement any super-
vised or semi-supervised learning mechanism. In this research, we show the results
in the following scenario:

1. Using two supervised learning algorithms (backpropagation neural network and
multi-class SVM) with Uniform Circular Local Binary Pattern (UCLBP) [19] as
features. Labeled data, [(x (1)

lq
, y(1)), (x (2)

lq
, y(2)), . . . , (x (m)

lq
, y(m))], from CIFAR-

10 is used to train the supervised algorithms.
2. Using a semi-supervised learning algorithm, with neural network as classifier and

UCLBP features trained on CIFAR-10 dataset. The semi-supervised algorithm
used for comparison is one approach for self-taught learning [23], with unlabeled
data from STL-10 dataset, {(s(1), y(1)), (s(2), y(2)), . . . , (s(m), y(m))}.

3. Using a intuition learning framework only, having the intuition-based task-
specific feature representation combined with a continuous state reinforcement
learning (Q-learning) in Eq.4 for classification.

4. Using a supervised intuition framework, where the output of the supervised learn-
ing algorithm and the intuition learning framework is combined using the context-
dependent addition mechanism in Eq.12.

5. Using a semi-supervised intuition framework, where the output of the semi-
supervised learning algorithm and the intuition learning framework is combined
using the context-dependent addition mechanism.

The optimized values of various parameters used in our framework are as fol-
lows:α = 0.99, γ = 0.95,β = 0.2, th = 0.9,λ = 0.5, and ε = 0.05. Preprocessing
of features is done using z-score normalization. All the experiments are performed
on a Intel Xeon E5 − 2640 0, 2.50GHz, 64GB RAM server.

As already discussed, intuition has a better significance in challenging problems
with limited training data. Tables3, 4, and 5 show the performance of the proposed
intuition learning in comparison with other learning methods, by varying the train-

Table 3 The performance accuracy (%) of supervised intuition learning is compared with super-
vised (neural network) and semi-supervised (self-taught) learning methods. The significance of
intuition is studied by varying the amount of available training data. 5 times random cross-validation
is performed and the best modelś performance is reported

Training size Supervised Semi-supervised Supervised intuition

10000 38.90 29.64 36.19

5000 37.13 24.34 34.78

3000 14.12 17.07 25.65

1000 10.34 16.54 19.61
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Table 4 The influence of supplementing intuition to supervised and semi-supervised algorithm is
shown by improvement in the performance accuracy (%)

Training size Intuition Intuition supervised Intuition
semi-supervised

10000 12.11 36.19 29.21

5000 10.00 34.78 23.85

3000 10.00 25.65 22.49

1000 08.99 19.61 20.53

Table 5 The performance accuracy (%) of supervised and supervised intuition framework using
SVM classifier is studied

Training size Supervised Intuition supervised

10000 44.57 41.83

5000 43.21 40.77

3000 13.56 17.48

1000 06.19 09.78

(a) (b)

Fig. 6 Examples of a success and b failure cases of the proposed intuition learning. AL = actual
ground truth label, SL = label predicted by the supervised neural network learner, and IL = label
predicted when intuition is combined with supervised neural network learner

ing size as parameter.2 It can be observed that with enough training data, super-
vised algorithms (both neural network and SVM) yield the best classification per-
formance. However, with decrease in the size of training data, the performance of
all the three algorithms, supervised, semi-supervised, and intuition learning reduces.
The results show that in such a scenario, incorporating intuition with supervised
or semi-supervised algorithm yields improved results. This supports our hypothesis
that adding intuitionwould improve the performance fromunder challenging circum-
stances such as limited training data. Similarly from a human’s perspective, under

2For a given training size, the same subset of images is used across all the classifiers to avoid any
training bias.
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Fig. 7 A plot between the cumulative errors across each epoch empirically showing the learning
effectiveness of the residual Q-learning performed in Eq.6

the presence of all data and information, one may take correct decisions. However,
when the background training data information is limited, intuition learning helps.
Further, some key analysis are summarized below:

1. To study the effectiveness of residual learning in Eq.6, training error over suc-
cessive epochs is plotted, as shown in Fig. 7, for a training size of 10000. It can
be observed that the training error gradually decreases and remains constant after
300 epochs, indicating that maximum training capacity has been achieved, with
minimum training error.

2. The computation time required for intuition learning depends on the complexity
of r features that are extracted. However, for one sample, under the assumption
that the feature extraction happens off-line, the overall intuition decision and
feature space can be generated in 0.082 s while the supervised decision can be
taken in ∼4s on an average. This shows that intuition is much faster requiring
little effort than supervised decision-making.

3. In Fig. 6, some success and failure example cases are shown where (a) intuition
helps incorrectly classifying a data but supervised learning fails and (b) data
was incorrectly classified because of intuition. As previously discussed, intuition
can go wrong sometimes. Upon analyzing the first horse example in failure case
(Fig. 6b), it is observed that horses are clustered more towards brown color in the
autocorrelogram color feature space. However, as the horse shown in the images
is white in color, it gets clustered along with cat and misclassified by intuition
learning.
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4 Conclusion

Inspired from human capabilities of instinct reasoning, this research presents a intu-
ition learning framework that supplements a classifier for improved performance,
especially with limited training data. Intuition is modeled as a continuous state rein-
forcement learning, that adapts to a particular task using large amount of unlabeled
data and limited task-specific data. The performance of intuition is shown in a 10 class
image classification problem, in comparison with supervised, semi-supervised, and
reinforcement learning. The results indicate that the application of intuition improves
the performance of the classifier with limited training data.
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