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Abstract Jointly modeling vision and language is a new research area which has
many applications, such as video segment retrieval and video dense caption. Com-
pared with video language retrieval, video segment retrieval is a novel task that uses
natural language to retrieve a specific video segment from the whole video. One
common method is to learn a similarity metric between video and language fea-
tures. In this chapter, we utilize ensemble learning method to learn a video segment
retrieval model. Our ensemble model aims to combine each single-stream model to
learn a better similarity metric. We evaluate our method on the task of the video clip
retrieval with the new proposed Distinct Describable Moments dataset. Extensive
experiments have shown that our approach achieves improvement compared with
the result of the state-of-art.

Keywords Video segment retrieval · Ensemble learning

1 Introduction

In the past few years, cross-modal retrieval has drawn more attention due to the rapid
development of the Internet. Cross-modal retrieval is a kind of retrievalmethodwhich
involves data from different modalities. It takes data from one modality as a query to
retrieve data from another modality. Traditional retrieval methods only utilize single
modal data. For example, if we use language query to search our interested videos on
the Internet, the language query is only used to match the video caption. However,
cross-modal retrieval can directly retrieve the elements in the video, such as actors,
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Fig. 1 Video segment retrieval is a task to retrieve a video segment from the entire video via
language query. The video segment in red rectangle corresponds to the language query below.
Though both language description A and B describe the same video segments at the same time,
they are constructed with different words and depict the clip in different description perspectives.
Description A describes the movement of the crowd in the video as a whole, and the description B
depicts the movement of a specific person

actions, and objects. Therefore, cross-modal retrieval can help users to search for
information in a more effective way.

In this chapter, we study a novel cross-modal retrieval task which connects video
clips with natural language description. Different from traditional video language
retrieval that focuses on finding the matched entire video with a given description,
we want to retrieve a specific video segment from the entire video with a description.
The difficulty to solve this problem is not only from the differences between each
modality but also from the differences within each modality. Natural language is
usually complicated and ambiguous. As shown in Fig. 1, one video segment can
be described in totally different ways by two viewers. These two descriptions may
be hardly considered to describe the same video scene if we only give these two
sentences to another viewer. Language query A and B depict the video segment in
different perspectives. Query A describes the movement of the crowd in the video
while queryBdepicts themovement of a little child in the crowd.Although sometimes
these two descriptions have the same meaning, they are not entirely made up of the
same words, but of many synonyms. So it is hard to learn a suitable similarity metric
to retrieve video segments with the corresponding language query.

To solve this novel and challenging problem,we utilize ensemble learning to guide
the aggregation of a multi-stream cross-modal retrieval model. Ensemble learning
is a widely used algorithm which combines multiple models to improve the model
performance. To learn a better similarity metric for retrieval task with ensemble
learning, we propose a novel method which integrates ensemble learning to guide
the aggregation of multi-stream retrieval model. We conduct our experiments over
the Distinct Describable Moments (DiDeMo) dataset which consists of more than
10,000 untrimmed videos with an explicit video segment caption and corresponding
time stamps.
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We mainly contribute in the following aspects:

• We propose a multi-stream model to retrieve the specific video segments from the
entire video via text query. Multi-streammodel can learn multiple common spaces
for vision and language features. It could improve the learned similarity metric
with ensemble learning. The combination of the ensemble model is guided by a
language-based aggregation module.

• We conduct experiments on Distinct Describable Moments dataset and assess the
proposed method on top-1 recall (recall@1), top-5 recall (recall@5), and mean
intersection over union (mIoU). The results demonstrate that our proposedmethod
outperforms the state-of-art.

The remainder of this chapter is structured as follows: Sect. 2 introduces related
work in recent years about vision and language understanding. Section3 gives the
detail of the proposed cross-modal retrieval model. Section4 details the experimental
index, experimental setup, and experiment results. Finally, Sect. 5 concludes our
work.

2 Related Work

Localizing moments in a video with natural language is a new research task which
jointly models visual and language information. This task is related to both vision
and language understanding.

2.1 Vision Understanding

Convolution neuron network (ConvNets) has become the most effective and widely
used visual features extractor since [10]won the ImageNet Large ScaleVisualRecog-
nition Challenge (ILSVRC). Their results significantly reduced top-5 error compared
with the second place. Many of the following researches [6, 18, 19] focused on
improving the image recognition accuracy through increasing the depth and width of
the deep network. Inspired by the success of ConvNets in the image domain, various
pretrained ConvNets are transferred to extract features from the videos for video
recognition. However, compared with the still image which only has appearance
information, the video consists of multi-frames and has motion information between
frames. Therefore, it is not suitable to directly use ConvNets trained on still image to
extract video features for the lack of motion information. To integrate the motion into
ConvNets, [17] used two-stream networks to model appearance and motion simul-
taneously. Orthogonal to the two-stream method, [21] exploited the 3D convolution
kernel to concrete the spatial and temporal information across the convolution layers.
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2.2 Language Understanding

Natural language processing is one of the important technologies in artificial intelli-
gence because language is the tool for people to communicate with each other. There
are also many practical natural language applications in daily life, such as semantic
analysis and language translation.

Learning high-quality distributed vector representations is the most fundamental
and important work in NLP task systems. Reference [13] proposedWord2Vec model
to learn embedding representation. They used the correlation of source context words
and the target word to model the syntactic and semantic relationship between word
sequences. Due to the simple model architecture, their Continuous Bag of Words
(CBOW) and Skip-gram models were efficiently trained with one trillion words.
Different from the predictive-based model, GloVe [15] learned geometrical embed-
ding vectors of words based on co-occurrence counts. This method preserved the
semantic analogies and also took the corpus word occurrence statistics into consid-
eration. To keep the ordering and semantic meaning simultaneously, [11] proposed
an unsupervised learning method to learn continuous distributed vector representa-
tions for sentence and document. In this chapter, we use GloVe trained onWikipedia
corpus as our word embedding method.

2.3 Cross-Modal Understanding

Despite deep learning having been widely used and achieving success in vision
and language task individually, it is still a challenge to jointly understand vision
and language. Previous work has focused on tasks, such as image/video caption,
image/video retrieval, and video question answering.

Earlywork on image caption usually used two-stage pipeline to generate sentences
from still image. The semantic content is identified in the first stage and then used
to generate a sentence using a language template. This two-stage pipeline simplified
image caption task to only generate sentence related with some given objects and
actions. Though the category of objects and actions should be elaborately selected,
the limited number of categories is insufficient to model the complex sentence in the
real world. Reference [24] changed this template-based model to a decoder–encoder
structure. They first used deep convolution network to extract visual features from
still image and then decode the fixed-length word embedding vector using Long
Short-Term Memory Network (LSTM) to generate image description. Inspired by
the success of thiswork, [23] introduced the end-to-end structure to the video caption.
The difference between image caption and video caption is how to exploit temporal
information of the video. Tomodel temporal information of the video into description
generation, LSTMcould be used both as an encoder and decoder to generate the video
caption.
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Image/video-sentence retrieval is a cross-domain retrieval task. The core idea is to
find the most related instance via the query from another domain. The query can be
either image/video or semantic description. The common pipeline for cross-domain
retrieval task is to first extract instance features from each domain and then do metric
learning to narrow their similarity. Reference [3] leveraged the meaningful seman-
tic label to improve the image classification model. They computed the similarity
between joint representation of images and labels to help predict novel classes never
before observed.

Reference [8] proposed the Deep Visual-Semantic Alignment (DVSA) model.
They used R-CNN [5] object detector to extract image features and bidirectional
LSTMs to encode sentence features. Instead of directly mapping the vision and
semantic features into the common space, [9] proposed a finer-level bidirectional
retrieval model that embeds the fragment of images and fragment sentences into
the common space. Reference [27] integrated canonical correlation analysis (CCA)
which is a traditional method for cross-modal retrieval into the deep network to
match image and text. Reference [26] researched the domain structure in image–
text embedding. They combined structure-preserving loss function with a bi-ranking
loss to constrain the structure in each domain. Reference [12] proposed multimodal
convolution network (M-CNN) to exploit the intermodal relations. They composed
sentences to different-level semantic fragments to match the image. Reference [14]
utilized visual and textual attention mechanisms to extract essential information
from vision and language. Their dual-path attention model captured the fine-grained
interplay between vision and language. Reference [22] advocated for learning a
visual-semantic hierarchy over image and language.

Reference [16] collected a novel movie dataset with aligned text description—
Large Scale Movie Description Challenge (LSMDC). Reference [20] studied order-
embedding in joint language-visual neural network model architectures for the video
text retrieval. Reference [28] proposed a high-level concept word detector and devel-
oped a semantic attention mechanism to selectively match the language description
with video cue. Though many efforts have been made for video language retrieval, a
few people work on localizing moments of the video via natural language query. The
main obstacle for the video moment retrieval is lack of fine-grained video annotation
that contains both language description and time stamps. Reference [7] collected
over 10,000 unedited, personal videos and annotated video segments with referring
expression. Reference [4] added sentence temporal annotations to Charades, a video
dataset which consists of daily dynamic scenarios. They addressed the video segment
retrieval task by using an object detection framework.

3 Methods

In this section, we introduce our multi-stream video language retrieval model and
explain how to use the language information to ensemble each stream.
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3.1 Model Overview

Generally, a cross-model retrieval includes twomodal inputs, V and S. In our formu-
lation, V represents the video clips and S represents the natural language. The goal
of the retrieval model is to find a common embedding space for V and S. We could
adopt metric learning method to learn each embedding functions F (·) andG (·). The
entire cross-modal retrieval model M could be trained end-to-end with the following
objective:

M̂ = argmin
M

Dθ (F (V ) ,G (S))

where Dθ (·) is a distance function which is used to measure the similarity between
projected features of different domains. Cosine distance and Euclidean distance are
two common distance functions used in the retrieval task.

In our work, we still retain the idea of projecting two domain features into the
same common space. To learn a better similarity metric, we utilize the language
information to aggregate the multi-stream retrieval network.

The overview of our proposed model is shown in Fig. 2. Each stream in the whole
model is a basic cross-modal retrievalmodelwhich tries to project features in different
domains to the same common embedding space. Then we use a language-based
aggregationmodule to obtain the final cross-modal distance. Details of the individual
modules are shown below.

Fig. 2 The whole retrieval model contains k simple retrieval models. Video features and language
query are sent into each stream to compute individual similarity distance Disi . The final distance is
combined with k distance with aggregation module. The aggregation module exploits the semantic
meaning of the query sentence to decide the importance of k basic retrieval model. Notice that our
k video embedding networks share parameters of the first FC layer
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3.2 Video Embedding

To localize the specific video segment from the entire video, we should take both the
vision features and temporal features into consideration.

We construct our vision features using local video features Vlocal and context
video features Vcontext . Local video features reflect what happened within a specific
time span. Though the language query only depicts what occurs in the local video,
context video features are important for it to provide the context information. Context
information tells what happens before and after the specific time span in the video
that could help localize the video segment. In our work, we first use a pretrained
convolution neural network to extract features for each video frame. For a video V
which consists of [1 . . . N ] video frames, we construct video features as

Vcontext = Norm2

(
1

N

N∑
i=1

V i

)

Vlocal = Norm2

(
1

N ′

end∑
i=start

V i

)

where N represents the total number of video frames, start and end represent the start
and end point of the local video segment; notice that 1 ≤ start < end ≤ N . We use
average pooling to aggregate the features in the time span. Then, L2 Normalization
after pooling is applied to rescale the vision features.

Simultaneously, putting local video features and context video features into the
model could weakly help the model learn temporal relation between the video seg-
ment and the entire video.Tomodelmore temporal information that indicateswhether
the video segmentmatches the languagequery,we add a temporal point [Ts , Te]which
represents the time span into video features. The temporal features are also normal-
ized(to [0, 1]) to be in the same numerical scale with video features. Finally, we
concatenate video context features Vcontext , video local features Vlocal , and temporal
features [Ts, Te] to construct input video representation Vinput .

Since a video consists of several still images, we could use knowledge learned
from the image dataset to learn the video information. We use the model pretrained
on ImageNet [10] to extract appearance feature from the video dataset. Appearance
information can represent the object and other attributes in still video frames. In
video recognition, motion feature is also widely used to recognize video action in
the form of optical flow [17]. To model the motion information of videos, we use
a video recognition network [25] to extract motion feature. In our experiments, we
construct our vision features individually with the appearance and motion feature.
Two ensemble retrieval models are trained respectively with appearance and motion
feature and aggregated with late fusion.
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The video embedding network is constructed with two fully connected layers with
ReLU. The first fully connected layer in each video embedding network is shared to
reduce model parameters.

3.3 Language Embedding

The natural language input is a sequence of word embedding vector representing the
text query. To capture the semantic meaning of the sentence, we use the LSTM to
model the query text. We first convert each word in the text query with GloVe [15]
into the word embedding vector. Although the corpus which GloVe is trained on and
is not related to theDiDeMo dataset, we could useGloVe as aword embeddingmodel
for its generalization. Then, the sequence of embedding vectors is put into LSTM to
aggregate the semantic meaning of the sentence. Finally, the last hidden state ht of
LSTM is linear transformed with a fully connected layer to achieve embedded text
features.

3.4 Language-Based Ensemble

The core problem for cross-modal retrieval is to learn a suitable similarity metric. To
address this problem, we take ensemble learning into consideration. In our work, we
propose a multi-stream model with a language-based ensemble. The multi-stream
model contains k basic retrievalmodelswhich are shown inFig. 1. Eachbasic retrieval
model contains one video embedding network and one text embedding network. In
our ensemble module, language query is used to aggregate the learned similarity
metric in each stream. We compute the multi-stream weights with the input sentence
as

Wi (s) = ep
T
i h(s)∑k

j=1 e
pTj h(s)

i ⊆ [1 . . . k] (1)

where s represents the input text query, h (·) is the aggregate function to extract
sentence meaning, and pi denotes the linear transformer. We achieve the aggregated
distance as

Disagg =
k∑

i=1

Wi ∗ Disi (2)

The distance Dis between the input text query and the video segment is computed
in each retrieval stream first.
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Dis = Dθ (s, v, t) (3)

where s is text query. t is the time stamp of the video segment v.
Our ensemble model is trained with triplet loss. Triplet loss aims to bring close the

matched video clip–text pair and push away unmatched pairs. In traditional video-
text retrieval task, a video–text pair is composed of video segments with its text
query. Compared with that, we additionally take the time stamp of the video segment
as a temporal feature. In our experiment, a training pair is denoted as < si , vi , t i >.
si is the text description which describes the video segment vi . t i is the time interval
of this video segment. During training time, we sample negative training pair within
the same video or from another video. According to different sample ways, we define
two triplet losses: inter-video loss and intra-video loss.

Intra-video loss Localizing a video segment from an entire video is a challenging
task because a queried video segmentmay have little differencewith its context video.
To distinguish a queried video segment from its context, negative pair< si , v j , t j >
is sampled within the same video.

Different from traditional video retrieval task which only involves video features
and text features, we integrate the temporal features in our model. The temporal
features depict the position of the video clip throughout the entire video. With intra-
loss, we also model the relationship between temporal features and vision features.
We define intra-video loss as

Lossintra = max
(
0,m − Dθ

(
si , v j , t j

) + Dθ

(
si , vi , t i

))
(4)

where v j is any other possible video segment in the same video. t j denotes the time
point of v j . m is the margin variable for metric learning.

Inter-video loss Compared with intra-loss, inter-video loss is proposed to match
the video segments with correct semantic concepts from other videos. For this pur-
pose, we select a negative pair which has the same time span with the positive pair.
The inter-video loss is defined as

Lossinter = max
(
0,m − Dθ

(
si , vk, t i

) + Dθ

(
si , vi , t i

))
(5)

where vk is one possible video segment in another video. Negative pair has the same
temporal features t i with the anchor video segment vi .

Total loss consists of weighted intra-video loss and inter-video loss.

Lossall = λLossintra + (1 − λ) Lossinter (6)

where λ is the parameter to adjust the importance of these two losses. In our experi-
ment,λ is set to 0.8 for the intra-differencewhich ismore subtle than inter-difference.
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Fig. 3 The final result is obtained with aggregating the results of appearance and motion model in
a late fusion way. Notice that the embedding networks in each model are trained individually

3.5 Late Fusion

For different visual input, we train two different multi-stream retrieval models indi-
vidually: appearance model and motion model. The language-based aggregation
module is only used to aggregate the distance computed in each single-streammodel.
To fuse the results of models trained with appearance and motion feature, we use the
late fusion as shown in Fig. 3. Late fusion formula is defined as

Dis f inal = (1 − η) Disaagg + ηDismagg (7)

where Disaagg and Dismagg are the distance computed with appearance and motion
model, η denotes the late fusion parameter. We set η to 0.5 via experiments on the
validation set.

4 Experiments

In this section, we describe details of our training method and experiment results on
the DiDeMo dataset.

4.1 Experiment Setup

We conduct experiments on the Distinct Describable Moments (DiDeMo) dataset
[7]. DiDeMo consists of over 10,000 videos lasting about 25–30s. They select about
14,000 videos from YFCC100M and eliminate those trimmed videos. The rest of
the videos are then annotated by several annotators. The total number of language
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annotations with referring time point is over 40,000. Each description is verified to
only refer to a single video moment.

The reasonwe chooseDiDeMo as our experiment dataset is that DiDeMo contains
more camera and temporal words than other video description datasets. This means
the video segment in DiDeMo is depicted in multi-views. The complexity of the
language description makes it more challenging to model the semantic information.
It also increases retrieval difficulty that each video only has 2.57 distinct moments
in average.

We report the results of ourmodel on Rank@1 (R@1), Rank@5 (R@5), andmean
intersection over union (mIoU). Each video in DeDiMo is separated into several 5 s
video clips. For example, a 30 s video is broken into six five-second video segments.
These video segments build up 21 possible video segments according to different
time points. Our model is trained to find the most relative video segment from the 21
possible video proposals via the text query. For there are four time annotations for
each video segment, four-choose-three combination is used to find the highest score.

4.2 Implement Details

Details of our training procedure are given below:

Data preprocessingWe use GloVe [15] pretrained on the corpus fromWikipedia
as our word embedding method. The dimension of the embedding vector is 300. As
for visual features, the appearance feature is extracted from f c7 using VGG [18]
pretrained on ImageNet [2]. We also use a video recognition network [25] to extract
motion feature. The two kinds of vision features could capture the video features in
different views. To speed up themodel training, all these features have been extracted
before. The fine-tuning of the features extraction model is not implemented in our
model. Two ensemble retrieval models are trained respectively with appearance and
motion feature and aggregated with late fusion. These two models are denoted as
appearance model and motion model corresponding to their video feature composi-
tion.

Training detailsWe train the entire retrieval model which contains k basic model
with TensorFlow [1]. k is set to 4 in our experiments. For each single-stream retrieval
model, we set their hyperparameters to the same. The LSTM hidden dimension is
1000. Common embedding space is a 100-dimension vector space. The margin m
in the ranking loss function is 0.1. To optimize the whole retrieval model, we apply
stochastic gradient descent (SGD) to minimize the loss function.

It is insufficient to only use the aggregated loss computed by language-based
aggregation module to optimize all k retrieval models. We also train all k retrieval
models with ranking loss computed in each stream. The final loss function we use is



76 X. Yu et al.

Loss f inal = α

k∑
i=1

Lossistream + βLossens (8)

where Lossistream represents the loss in every single stream and is only backpropa-
gated to each stream. Lossens represents the loss computed with aggregated distance.
α and β are two scalar parameters to balance the loss. In our experiment, α and β
are set to 0.5 and 1.0.

4.3 Result

In this part, we evaluate our proposed multi-stream language aggregation retrieval
model on the Distinct Describe Moments dataset and report the results on Rank@1,
Rank@5, and mIoU. The results of our model and baseline model are shown in
Table1. We compare our model with the traditional method CCA and MCN [7].

We notice that CCA performs not as well as other methods. It is a traditional
method to bridge the gap between different domains. The reason for its poor result
is mainly for it cannot distinguish the subtle difference between video segment and
its context. Appearance model in Table1 represents our multi-steam retrieval model
which only uses appearance feature as input. It outperforms CCA in Rank@1 and
Rank@5 with 4.54 and 23.61%, but gets a lower result in mIoU. Compared with the
appearance model, motion model achieves a better result on all the metric: Rank@1
= 27.78%, Rank@5 = 76.82%, and mIoU = 40.67%. This suggests that the motion
feature is important in video tasks. Its better performance also attributes to themotion
feature is extracted with video recognition network.

Our late fusion model achieves the best results: Rank@ = 1:29.39%, Rank@5
= 79.28%, and mIoU = 42.82%. Compared with MCN [7] which only uses single-
stream retrievalmodel, ourmodel leverages the language query information to aggre-
gate the learned similarity metrics of multi-stream network. The late fusion model
outperforms their results on all three evaluation metrics, respectively. The results
show that our multi-stream retrieval network aggregated with language information
learns a better similarity metric compared with single-stream network.

Table 1 Comparison of different methods of DiDeMo

Method Rank@1 Rank@5 mIoU

CCA 18.11 52.11 37.82

MCN [7] 28.10 78.21 41.08

Appearance model 22.65 75.70 33.69

Motion model 27.78 76.82 40.67

Fusion model 29.39 79.28 42.82
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Table 2 Comparison of different ensemble methods

Ensemble method Rank@1 Rank@5 mIoU

Linear ensemble 27.01 76.73 39.62

Ours 27.78 76.82 40.67

Our language-based aggregation module unites each stream model in the spirit of
ensemble learning. In our experiments, we train our aggregation module with a text
query in an end-to-end way. To better analyze the effect of our text embedding mod-
ule, we train a new motion model with another ensemble method. In this ensemble
method, we obtain the final distance by directly inputting distance of each stream to
a fully connected layer. Weights for each stream are trained as parameters of this FC
layer. This ensemble method is denoted as a linear ensemble in our experiment. All
the hyperparameters and optimization methods in this model are set to be the same
with our standard motion model. Difference between these two models is only in the
ensemble module. We compare the results of these two motion models with differ-
ent ensemble methods in Table2. Compared with the linear ensemble method, our
ensemble method achieves better results on all three evaluation metrics. It demon-
strates that it is better to use text information to the aggregate distance in each stream
network.

5 Conclusion

In this chapter, we address the problem of localizing video segments via language
query. Different from retrieving video from a video library, retrieving video segments
should distinguish the subtle difference between corresponding video segments and
other possible video segments within the same video. With a single-stream retrieval
model, it is insufficient to learn a suitable similarity metric for this novel retrieval
task.We proposemulti-steam language aggregation retrieval model, in which seman-
tic information is used to guide the aggregation of every single stream. With the
language-based aggregation module, each single-stream network can be trained to
obtain a better similarity metric. The whole retrieval model is optimized with in-
stream loss and aggregated loss.

Our method outperforms other results on the DiDeMo dataset. Extensive exper-
iments show that under our proposed aggregation module, multi-stream retrieval
model can be effectively combined to accurately measure the distance between video
and text domain. Future work will focus on excavating more video information and
combining appearance and motion feature in a more efficient way.
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