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Abstract Learning from small amounts of labeled data is a challenge in the area of
deep learning. This is currently addressed by Transfer Learning, where one learns
the small dataset as a transfer task from a larger source dataset. Transfer Learning
can deliver higher accuracy if the hyperparameters and source dataset are chosen
well. One of the important parameters is the learning rate for the layers of the neural
network. We show through experiments on the ImageNet22k and Oxford Flowers
datasets that improvements in accuracy in range of 127% can be obtained by proper
choice of learning rates. We also show that the images/label parameter for a dataset
can potentially be used to determine optimal learning rates for the layers to get the
best overall accuracy.We additionally validate this method on a sample of real-world
image classification tasks from a public visual recognition API.
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Fig. 1 Impact of data size on learning accuracy

1 Introduction

Deep Learning has become all pervasive in many application domains like Vision,
Speech, and Natural Language Processing [13]. This can be partly attributed to
the availability of fast processing units like GPUs as well as better neural network
designs. The availability of large, open source, general-purpose labeled data has also
helped the penetration of Deep Learning into these domains.

The accuracy obtained on a learning task depends on the quality and quantity of
training data. As Fig. 1 shows, with larger amounts of data, for the same learning
task, one can obtain much better accuracy. In this figure, the accuracy obtained on
various categories of ImageNet22K [5] are shown with the big data being 10x bigger
in size than the small data. While large, open source, general purpose, labeled data is
available, customers often have specific needs for training. For example, a doctormay
be interested in using Deep Learning for Melanoma Detection [4]. The amount of
labeled data available in these specific areas is rather limited. In situations like these,
the training accuracy can be negatively impacted if trained with only this limited
data. To alleviate this problem, one can fall back on Transfer Learning [14, 17].

In Transfer Learning, one takes a model, trained on a potentially large dataset
(called the source dataset) and then learns a new, smaller dataset (called the target
dataset) as a transfer task (T) on it. This can be achieved by fine-tuning the weights of
neurons in the pretrained model using the target dataset. Fine-tuning is a technique
to leverage the information contained in a source dataset by tweaking the weights
of its pretrained network while training the model for a target dataset. It has been
shown that models trained on the source dataset learn basic concepts which will be
useful in learning the target dataset [18].



Improving Transferability of Deep Neural Networks 53

Fig. 2 Impact of base model on transfer learning accuracy

In the area of vision, the neural networks tend to be quite deep in terms of layers
[10]. It has been shown that the layers learn different concepts. The initial layers
learn very basic concepts like color, edges, shapes, and textures while later layers
learn complex concepts [12]. The last layer tends to learn to differentiate between
the labels supported by the source dataset.

The key challenges to Transfer Learning are how, what, and when to transfer [17].
One needs to address key questions like the selection of the source dataset, the neural
network to use, the various hyperparameter settings as well as the type of training
method to apply on the selected neural network and dataset. Figure2 shows the
accuracy obtained while training on the Tool category of ImageNet22K on models
created from different source categories of ImageNet22K like Sports, Animals, Plant
as well as random initialization. As the figure indicates, accuracy varied from −8%
to +67% improvement over the random initialization (no Transfer Learning) case.

When performing Transfer Learning using deep learning, a popular method of
training is using Stochastic Gradient Descent (SGD) [3]. In SGD, the key hyper-
parameters to control the descent are the block size, the step size, and the learning
rate. In the case of Transfer Learning, the learning rate can be set for every layer
of the neural network. This controls how much the weights in each layer change as
training progresses on the target dataset. A lower learning rate for a layer allows the
layer to retain what it has learned from the source data longer. Conversely, a higher
learning rate forces the layer to relearn those weights quicker for the target dataset.
For Transfer Learning, the concepts learned in the early layers tend to have high
value since the source dataset is typically large, and the early layers represent lower
level features that are transferable to the target task. If the rates are large, then the
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weights could change significantly and the neural network could overlearn on the
target task, especially if the target task has a limited amount of training data. The
accuracy that is obtained on the target task depends on the proper selection of all
these parameters.

In this chapter, we study the impact of individualized layer learning rates on the
accuracy of training. We use a large dataset called ImageNet22K [5] and a small
dataset called the Oxford Flowers [15] for our experiments. These experiments are
done on a deep residual network [10]. We show that the number of images per label
plays an important role in the choice of the learning rate for a layer. We also share
preliminary results on real-world image classification tasks which indicate graduated
learning rates across a network, such that early layers change slowly and allow for
better accuracy on the target dataset.

The chapter is organized as follows: InSect. 2,wedescribe relatedwork. InSects. 3
and 4 we describe our experimental setup and present our results, respectively. We
conclude in Sect. 5.

2 Related Work

Several approaches are proposed to deal with the problem of learning with small
amounts of data. These include one-shot learning [8], zero-shot learning [16], mul-
titask learning [1, 7], and generic transfer learning [2, 9, 18].

Multitask learning simultaneously trains the network for multiple related tasks by
finding a shared feature space [1]. An example is NeuralMachine Translation (NMT)
where the same network is used for translation to different languages [7]. In [9] a joint
fine-tuning approach is proposed to tackle the problem of training with insufficient
labeled data. The basic idea is to select a subset of training data from source dataset
(with similar low-level features as target dataset) and use it to augment the training
dataset for target task. Here, the convolutional layers of the resulting network are
fine-tuned for both the source and target tasks. Our work is targeted for scenarios
where source dataset is not accessible and fine-tuning is only possible using a target
dataset.

It was established in [18] that fine-tuning all the layers of the neural network
gives the best accuracy. However, there is no study on the sensitivity of accuracy to
the degree of fine-tuning. In [2] it is experimentally shown for one dataset that the
accuracy of a (fine-tuned) model monotonically increases with increasing learning
rate and then decreases, indicating existence of an optimal learning rate before over-
learning happens. We studied variation in accuracy of model with learning rate used
in fine-tuning for several datasets and observed non-monotone patterns.

Another popular form of Transfer Learning is by using deep feature embeddings
from a neural network to drive binary Support Vector Machines (SVMs) [2, 6]. In
this approach, there are as many SVMs as categories in the target dataset and each
SVM learns to classify a particular label. The feature embeddings can be taken from
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any layer of the neural network but, in general, is taken from the penultimate layer.
This is equivalent of fine-tuning with the learning rate multipliers of all the inner
layers up to the penultimate layer being kept to 0 and the last layer being changed.

3 Experimental Setup

ImageNet22k contains 21841 categories spread across hierarchical categories. We
extracted some of the major hierarchies like sport, garment, fungus, weapon, plant,
animal, furniture, food, person, nature, music, fruit, fabric, tool, and building to
form multiple sources and target domains image sets for our evaluation. Figure3
shows the hierarchies of ImageNet22k dataset that was used and their relative sizes
in terms of number of images. Figure4 shows representative images from some of
these important domains. Some of the domains like animal, plant, person, and food
contain substantially more images (and labels) than categories such as weapon, tool,
or sport. This skew is reflective of real-world situations and provides a natural testbed
for our method when comparing training sets of different sizes.

Fig. 3 Imagenet22k hierarchies used



56 P. Dube et al.

Fig. 4 Representative images from various Imagenet22k hierarchies used in experiments

Each of these domains was then split into four equal partitions. One was used to
train the source model, two were used to validate the source and target models, and
the last was used for the Transfer Learning task. One-tenth of the fourth partition
was used to create a Transfer Learning target. For example, the person hierarchy
has more than one million images. This was split into four equal partitions of more
than 250K each. The source model was trained with data of that size, whereas the
target model was fine-tuned with one-tenth of that data size taken from one of the
partitions. The smaller target datasets are reflective of real Transfer Learning tasks.

We augmented the target datasets by also using the Oxford Flower dataset [15] as
a separate domain. The dataset contains 102 commonly occurring flower types with
8189 images. Out of this, a target dataset of only 10 training images per class was
used. The rest of the data was used for validation.

The training of the source and target models was done using Caffe [11] and a
ResNet-27 model [10]. The main components of this neural network are shown in
Fig. 5. The source models were trained using SGD [3] for 900,000 iterations with a
step size of 300,000 iterations and an initial learning rate of 0.01. The target models
were trained with an identical network architecture, but with a training method with
one-tenth of both iterations and step size. A fixed random seed was used throughout
all training.
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Fig. 5 Major Blocks of the ResNet model used in the experiments

4 Results and Discussion

Fine-tuning theweights involves initializing theweights to the values from the source
model and then adjusting them to reduce the classification loss with the target dataset.
Typically in fine-tuning a source model to a target domain, the practice is to keep
the weights of all the inner layers unchanged and only fine-tune the weights of the
last fully connected layer. The parameter which controls the degree of fine-tuning is
the learning rate. Let I L − n/LL − m be a transfer learning fine-tuning experiment
where the inner layers learning rate (I L) is at n and outer layer learning rate (LL) is
at m, with n < m. We are assuming a uniform learning rate for all the inner layers
for most of the experiments. For those where the inner learning rate was varied, it is
specifically mentioned in the chapter.

4.1 Fine-tuning Last Layer

We first did some experiments to quantify the gains possible by varying the learn-
ing rate of the last layer in fine-tuning while keeping all the inner layers weights
unchanged. Table1 compares the difference in accuracy of trained model for two
different values of learning rate of the last layer, 0.01 and 0.1, corresponding to
experiments I L − 0/LL − 0.01 and I L − 0/LL − 0.1. Observe that the accuracy
is sensitive to the choice of LL and significant gains in accuracy (up to 127%) are
achievable for certain domains by just choosing the best value of LL .

4.2 Fine-tuning Inner Layers

An earlier work [2, 18] has observed that fine-tuning inner layers along with the last
layer can give better accuracy compared to only fine-tuning the last layer. However
their observation was based on limited datasets. We are interested in studying how
the accuracy changes with I L for a fixed LL with the following objectives:
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Table 1 Transfer learning accuracy with varying LL

Target Source LL-0.01 (%) LL-0.1 (%) % Gain

Fabric Garment 13.09 11.33 15.47

Tool Weapon 14.54 14.78 1.63

Oxford Plants 91.06 73.17 24.44

Food Fruit 5.71 5.07 12.52

Fungus Plant 13.12 5.80 127.79

Person Food 4.49 2.81 59.75

Fruit Garment 9.30 10.50 12.92

Music Plant 15.37 9.47 62.22

(i) Identify patterns which can be used to provide guidelines for choosing LL and
I L for a given source/target dataset.

(ii) Find correlation between dataset features like images per label, similarity
between source and target datasets, and the choice of I L/LL .

(iii) Quantify possible gains in accuracy for different datasets by exploring the space
of LL and I L values and hence establish the need to develop algorithms for
identifying the right set of fine-tuning parameters for a given source/target
dataset.

To this end, we conducted experiments varying I L for a fixed LL . We divided the
experiments into two sets based on perceived semantic closeness of source and target
domains. Set A (B) consists of experiments where the source and target datasets are
semantically close (far). Thus we have,

A = { f abrict/garments, toolt/weapons, ox f ordt/plantss,

f oodt/ f rui ts, f ungust/plants}, and
B = {persont/ f oods, f rui tt/garments,musict/plants}

Figures6 and7 show the accuracy obtained by increasing I L bypowers of 10 between
0 and LL for LL = 0.01 and 0.1. So when LL = 0.01(0.1), I L took values in
{0, 0.0001, 0.001, 0.01}({0, 0.0001, 0.001, 0.01, 0.1}).

Two patterns across different experiments are observed: (i) accuracy increases
monotonically with I L and then decreases (ii) accuracy alternates between increase
and decrease cycles. The variation in accuracy with I L can be significant for certain
datasets. Let minm and maxm be the minimum and maximum value of accuracy
obtained when I L is varied at LL = m and βm be defined as:

βm = maxm − minm
minm

× 100 (1)
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Fig. 6 Set A accuracy vs IL
for fixed LL

Fig. 7 Set B accuracy vs IL
for fixed LL

Observe that βm represents the percentage range of possible variation in accuracy
with LL = m and varying I L . Figure8 compares βm for different datasets. All the
datasets exhibit βm > 0, with median values of β0.01(β0.1) being 28.96% (83.52%).
Observe that β0.1 > β0.01 for all the datasets. Also, for same dataset, the range of
variation in accuracy can be quite large or small depending on LL . For example, for
ox f ordt/plants, f ungust/plants , and musict/plants the difference β0.1 − β0.01

is greater than 100 points. Thus, fine-tuning both inner and outer layers gives the
best accuracy. Further the value of I L that maximizes accuracy can be different for
different datasets. The pattern of variation in accuracy with I L/LL is not always
monotone.

Let αm be the value of I L that achieves the best accuracy (maxm) at LL = m for a
dataset. Table2 lists αm for different datasets. The last column in the table shows the
differencemax0.1 − max0.01. Observe that there is no clear winner, for some datasets
keeping LL = 0.1 and then searching for I L gives the best accuracy while for others
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Fig. 8 Range of variation in accuracy with varying I L

Table 2 αm for different datasets under study

Target Source α0.01 α0.1 max0.1 − max0.01 (%)

Fabric Garment 0.0001 0.0001 0.00

Tool Weapon 0.0001 0.1 −1.41

Oxford Plants 0.0001 0.0001 −0.88

Food Fruit 0.01 0.01 0.98

Fungus Plant 0.01 0.01 0.78

Person Food 0.01 0.01 −0.71

Fruit Garment 0.01 0.01 −0.12

Music Plant 0.01 0.01 −2.86

LL = 0.01 performs better. This indicates the need for joint optimization over the
space of LL and I L to get the best accuracy.

We are interested in identifying correlation between source/target dataset features
and αm . The first feature that we consider is images/label in the target dataset. Intu-
itively with more labeled data for the target domain, we can be more aggressive
(i.e., use larger I L and LL) in fine-tuning. Figure9 plots αm versus images/label
in target for m = 0.01 and 0.1. For both these cases we observe that αm increases
with images/label. However there is one anomaly, α0.1 = 0.1 for persont/ f oods ,
though persont has smaller images/label. This seems to allude that other features of
source/target datasets also dictate the choice of learning rates.We are currently inves-
tigating this direction with the hope to develop some functional mapping between
the features of source/target datasets and αm . This knowledge can be leveraged to
develop intelligent algorithms to identify the best learning rate for inner layers and
outer layers for a given source/target dataset.
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Fig. 9 Correlation between αm and images/label

4.3 Graduated Fine-tuning of Inner Layers

We also investigated how the top-1 accuracy varies if the inner layer learning rate
multipliers are not kept at a fixed value but varied.With the assumption that very basic
concepts learned in the earlier layers are more important for transfer learning than
later layers which map to complex concepts, we varied the learning rate multipliers
in steps within the inner layers.

Oxford Flowers Dataset The ResNet-27 we are using for throughout these experi-
ments has inner convolutional layers organized in five stages, conv1 through conv5
as shown in Fig. 5. We can denote the learning rate multiplier for each of these five
stages as I L1 through I L5. We measured the accuracy of fine-tuning when we kept
the inner learning rate multiplier (I L1..I L5) equal across stages, (at a fixed value of
either 1, 2, or 5) and also compared to using a graduated set of values. In this case,
each convolutional stage was assigned a multiplier (like 0, 1, 2, and 5), with conv1
and conv2 using the same (first, smallest) multiplier, and conv3, 4, and 5 using the
successive, larger multipliers. (Meaning I L1 was equal to I L2.) In each case we
set the learning rate multiplier LL of the last layer to 10. Figure10 shows the top-1
accuracy for different I L configurations with Oxford flowers as the target dataset and
plant as the source dataset with the base learning rate at 0.001. As the chart shows,
the best accuracy was achieved when the learning rate multipliers were graduated.

Real-World Image Classification TasksNext, we sought to validate these observa-
tions on training data “in the wild”. IBM operates a public cloud API called Watson
Visual Recognition1 which enables users to train their own image classifier by pro-
viding labeled example images, while images provided to the API are not used to

1https://www.ibm.com/watson/developercloud/visual-recognition/api/v3.

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3.
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Fig. 10 Top-1 accuracy with varying inner LR mult and fixed outer LR mult at 20

train anything aside from that user’smodel. Users can opt-in to allow their image data
to be used to help evaluate changes in the training engine. From the many training
tasks that were opted-in, we took a random sample of 70 tasks. We did not manually
inspect the images, but based on the names given to the labels, we presumed they
represented a wide variety of image types, including industrial, consumer, scientific,
and social domains as shown in Fig. 11. Based on the languages of the class labels, we
had a wide geographic range as well. The average number of training images per task
was about 250, with an average of 5 classes in each, so a mean of 50 image examples
per class. We randomly split these into 80% for training and 20% for validation,
leaving 40 training images per class on average.

For each of the 70 training tasks, we created a baseline model that was a ResNet-
27 initialized with weights from an ImageNet1K model. We set the base learning
rate to 0.001 and the LL to 10. The I L was set to 0. We fine-tuned the network for
20 epochs and computed top-1 accuracy on the held-out 20% of labeled data from
each task. The average top-1 accuracy across the 70 tasks was 78.1%.

For the graduated I L condition, we initialized I L1..I L5 to be {0, 1, 2, 4, 8} and
LL to be 16.We then defined a set of 11 scales, {0.25, 0.5, 1.0, 1.5, 2, 2.5, 3, 4, 5, 7,
10}. The scale is a secondary learning rate multiplier. For example, the final learning
rate at scale 0.5 for conv3 (I L3) and base learning rate 0.001 would be 0.5 ∗ 2 ∗
0.001 = 0.001. The intuition is to combine the scale factors explored in Figs. 6 and
7 with the graduated values of I L1..I L5 explored in Fig. 10.

This combination of scales and learning tasks resulted in 70 ∗ 11 = 770 additional
fine-tuning jobs, which we ran for 20 epochs each. We evaluated the top-1 accuracy
for each of these jobs. We found that if we picked the individual scale which maxi-
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Fig. 11 Distribution of Image Classification Tasks from service API used

mized the accuracy for each job, the mean top-1 accuracy across all tasks improved
from 78.1 to 88.0%, a significant gain. However, to find this maximum exhaustively
requires running 11 fine-tuning jobs for each learning task. So we looked at which
scale was most frequently the optimal one, and it was scale of 0.25. If we limit our-
selves to one fine-tuning job per training task, and always chose this single scale, the
mean top-1 accuracy across jobs had a more modest increase, from 78.1 to 79.7%.

This promising direction needs further investigation; if we could predict the opti-
mal learning rate multiplier scale based on some known characteristic of the training
task, such as number of images per class, or total number of training images, we could
efficiently reach the higher accuracy point established by our exhaustive search.

5 Conclusion

Transfer Learning is a powerful method of learning from small datasets. However,
the accuracy obtained from this method could vary substantially depending on the
choice of the hyperparameters for training as well as the selection of the source
dataset and model. We study the impact of the learning rate and multiplier which can
be set for every layer of the neural network. We present experimental analysis based
on the large ImageNet22K dataset, the small Oxford flower dataset and real-world
image classification datsets and show that the images per label parameter could be
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used to determine what the learning rates. It also seems like continuously varying
the learning rate for inner layers has more promise than keeping them all fixed and
is a worthy direction to pursue.

References

1. Argyriou A, Evgeniou T, Pontil M (2006) Multi-task feature learning. In: Proceedings of the
19th international conference on neural information processing systems. pp 41–48

2. Bhattacharjee B, HillM,WuH, Chandakkar P, Smith J,WegmanM (2017) Distributed learning
of deep feature embeddings for visual recognition tasks. IBM J Res Dev 61(4):1–9. https://doi.
org/10.1147/JRD.2017.2706118

3. BottouL (2010) Large-scalemachine learningwith stochastic gradient descent. In: Proceedings
of COMPSTAT

4. Codella N, Cai J, Abedini M, Garnavi R, Halpern A, Smith JR (2015) Deep learning, sparse
coding, and svm for melanoma recognition in dermoscopy images. In: Proceedings of the 6th
international workshop on machine learning in medical imaging, Vol 9352. Springer, New
York, pp 118–126. https://doi.org/10.1007/978-3-319-24888-2_15

5. Deng J, Dong W, Socher R, Li LJ, Li K, FeiFei L (2009) Imagenet: a large-scale hierarchical
image database. In: IEEE conference on CVPR

6. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep
convolutional activation feature for generic visual recognition. In: Proceedings of the 31st
international conference on international conference on machine learning ( ICML’14), Vol 32.
pp I–647–I–655

7. Dong D, Wu H, He W, Yu D, Wang H (2015) Multi-task learning for multiple language trans-
lation. In: ACL

8. Fei-Fei L, FergusR, Perona P (2006)One-shot learning of object categories. IEEETrans Pattern
Anal Mach Intell 28(4):594–611

9. Ge W, Yu Y (2017) Borrowing treasures from the wealthy: deep transfer learning through
selective joint fine-tuning. In: Computer Vision and Pattern Recognition (CVPR)

10. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE
conference on CVPR

11. Jia Y, Shelhmer E, Donahue J, Kacayev S, long J, Girshick RB, Guadarrama S, Darrell T (2014)
Caffe: convolutional architecture for fast feature embedding. In: ACM Multimedia

12. Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional
neural networks. In: Neural Information Processing Systems

13. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
14. Mou L, Meng Z, Yan R, Li G, Xu Y, Zhang L, Jin Z (2016) How transferable are neural

networks in NLP applications? In: EMNLP
15. Nilsback M, Zisserman A (2008) Automated flower classification over a large number of

classes. In: ICVGIP
16. Palatucci M, Pomerleau D, Hinton G, Mitchell TM (2009) Zero-shot learning with seman-

tic output codes. In: Proceedings of the 22nd international conference on neural information
processing systems. pp 1410–1418

17. Pan SJ, Yang O (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng
18. Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural

networks? In: Advances in Neural Information Processing Systems 27 (NIPS 2014)

https://doi.org/10.1147/JRD.2017.2706118
https://doi.org/10.1147/JRD.2017.2706118
https://doi.org/10.1007/978-3-319-24888-2_15

	Improving Transferability of Deep Neural Networks
	1 Introduction
	2 Related Work
	3 Experimental Setup
	4 Results and Discussion
	4.1 Fine-tuning Last Layer
	4.2 Fine-tuning Inner Layers
	4.3 Graduated Fine-tuning of Inner Layers

	5 Conclusion
	References




