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Abstract Image translation refers to the task of mapping images from a visual
domain to another. Given two unpaired collections of images, we aim to learn a
mapping between the corpus-level style of each collection,while preserving semantic
content shared across the two domains. We introduce xgan, a dual adversarial auto-
encoder, which captures a shared representation of the common domain semantic
content in an unsupervised way, while jointly learning the domain-to-domain image
translations in both directions.We exploit ideas from the domain adaptation literature
and define a semantic consistency loss which encourages the learned embedding to
preserve semantics shared across domains. We report promising qualitative results
for the task of face-to-cartoon translation. The cartoon dataset we collected for this
purpose, “CartoonSet”, is also publicly available as a new benchmark for semantic
style transfer at https://google.github.io/cartoonset/index.html.
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1 Introduction

Image-to-image translation—learning to map images from one domain to another—
covers several classical computer vision tasks such as style transfer (rendering an
image in the style of a given input [4]), colorization (mapping grayscale images to
color images [26]), super-resolution (increasing the resolutionof an input image [13]),
or semantic segmentation (inferring pixel-wise semantic labeling of a scene [18]).
Learning suchmappings requires an underlying understanding of the shared informa-
tion between the two domains. In many cases, supervision encapsulates this knowl-
edge in the form of labels or paired samples. This holds, for instance, for colorization,
where ground-truth pairs are easily obtained by generating grayscale images from
colored inputs.

In thiswork,we consider the task of unsupervised semantic style transfer: learning
tomap an image fromone domain into the style of another domainwithout altering its
semantic content (see Fig. 1). In particular, we experiment on the task of translating
faces to cartoons. Note that without loss of generality, a photo of a face can bemapped
to many valid cartoons, and vice-versa. Semantic style transfer is, therefore, amany-
to-many mapping problem, for which obtaining labeled examples are ambiguous and
costly. Furthermore, in this unsupervised settingwe do not have access to supervision
on shared domain semantic content (e.g., facial attributes such as hair color, eye
color, etc.). Instead, we propose an encoder–decoder structure with a bottleneck
embedding shared across the two domains to capture common semantics as a latent
representation.

Thekey issue is thus to learn an embedding that preserves semantic facial attributes
(hair color, eye color, etc.) between the two domains with little supervision, and to
incorporate it within a generative model to produce the actual domain translations.
Although this chapter specifically focuses on the face-to-cartoon setting, many other

Fig. 1 Semantic style transfer is the task of adapting an image to the visual appearance of another
domain without altering its semantic content given only two unpaired image collections without
pairs supervision (left). We define semantic content as characteristic attributes which are shared
across domains but do not necessarily appear the same at the pixel-level. For instance, cartoons
and faces have a similar range of hair color but with very different appearances, e.g., blonde hair is
bright yellow in cartoons. The proposed xgan applied on the face-to-cartoon task yields a shared
representation that preserves important face semantics such as hair style or face shape (right)
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examples fall under this category: mapping landscape pictures to paintings (where
the different scene objects and their composition describe the input semantics), trans-
forming sketches to images, or even cross-domain tasks such as generating images
from text. We only rely on two unlabeled training image collections or corpora, one
for each domain, with no known image pairings across domains. Hence, we are faced
with a double domain shift, first in terms of global domain appearance, and second
in terms of the content distribution of the two collections.

Recent work [1, 6, 10, 25, 27] report good performance usingGAN-basedmodels
for unsupervised image-to-image translation when the two input domains share sim-
ilar pixel-level structure (e.g., horses and zebras) but fail for more significant domain
shifts (e.g., dogs and cats). Perhaps the best known recent example is CycleGAN [27].
Given two image domains D1 and D2, the model is trained with a pixel-level cycle-
consistency loss which ensures that the mapping g1→2 from D1 to D2 followed by
its inverse, g2→1, yields the identity function; i.e., ., g1→2 ◦ g2→1 = id. We argue
that such a pixel-level constraint is not sufficient in our setting and that we rather
need a constraint in feature space to allow for more permissive transformations of
the pixel input. To this end, we propose xgan (“Cross-GAN”), a dual adversarial
auto-encoder which learns a shared semantic representation of the two input domains
in an unsupervised way, while jointly learning both domain-to-domain translations.
More specifically, the domain translation g1→2 consists of an encoder e1 taking inputs
inD1, followed by a decoder d2 with outputs inD2 (and likewise for g2→1) such that
e1 and e2, as well as d1 and d2, are partially shared across domains.

Themain novelty lies in howwe constrain the shared embedding using techniques
from the domain adaptation literature, as well as a novel semantic consistency loss.
The latter ensures that the domain-to-domain translations preserve the semantic rep-
resentation, i.e., ., that e1 ≈ e2 ◦ g1→2 and e2 ≈ e1 ◦ g2→1. Therefore, it acts as a
form of self-supervision which alleviates the need for paired examples and preserves
semantic feature-level information rather than pixel-level content. In the following
section, we review relevant recent work before discussing the xgan model in more
detail in Sect. 3. In Sect. 4, we introduce CartoonSet, our dataset of cartoon faces
for research on semantic style transfer. Finally, in Sect. 5 we report experimental
results of xgan on the face-to-cartoon task.

2 Related Work

Recent literature suggests twomain directions for tackling the semantic style transfer
task: traditional style transfer and pixel-level domain adaptation. The first approach
is inadequate as it only transfers texture information from a single style image, and
therefore does not capture the style of an entire corpus. The latter category also
fails in practice as it explicitly enforces pixel-level similarity which does not allow
for significant structural change of the input. Instead, we draw inspiration from the
domain adaptation and feature-level image-to-image translation literature.
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Style Transfer. Neural style transfer refers to the task of transferring the texture of
a specific style image while preserving the pixel-level structure of an input content
image [4, 9]. Recently, [14, 15] proposed to instead use a dense local patch-based
matching approach in the feature space, as opposed to global featurematching, allow-
ing for convincing transformations between visually dissimilar domains. Still, these
models only perform image-specific transfer rather than learning a global corpus-
level style and do not provide a meaningful shared domain representation. Further-
more, the generated images are usually very close to the original input in terms of
pixel structure (e.g., edges) which is not suitable for drastic transformations such as
face-to-cartoon.

Domain adaptation. xgan relies on learning a shared feature representation of both
domains in an unsupervised setting to capture semantic rather than pixel informa-
tion. For this purpose, we make use of the domain-adversarial training scheme [3].
Moreover, recent domain adaptation work [1, 2, 22] can be framed as semantic style
transfer as they tackle the problem of mapping synthetic images, easy to generate, to
natural images, which are more difficult to obtain. The generated samples are then
used to train a model later applied to natural images. Contrary to our work, however,
they only consider pixel-level transformations.

Unsupervised Image-to-Image translation. Recent work [6, 10, 25, 27] tackle the
unsupervised pixel-level image-to-image translation task by learning both cross-
domain mappings jointly, each as a separate generative adversarial network, via a
cycle-consistency loss which ensures that applying each mapping followed by its
reverse yields the identity function. This intuitive form of self-supervision leads
to good results for pixel-level transformations but often fails to capture significant
structural changes [27]. In comparison, our proposed semantic consistency loss acts
at the feature-level, allowing for more flexible transformations.

Orthogonal to this line of work is UNIT [7, 16, 19]. This model consists of a
coupled VAEGAN architecture [12, 17] with a shared embedding bottleneck, trained
with pixel-level cycle-consistency. Similar to xgan, it learns a joint feature-level
representation of the two domains, however, UNIT assumes that sharing high-level
layers in the architecture is a sufficient constraint, while xgan’s objective explicitly
introduces the semantic consistency component.

Finally, the Domain Transfer Network (DTN) [23, 24] is closest to our work in
terms of objective and applications. The DTN architecture is a single auto-encoder
trained tomap images from a source to a target domain with self-supervised semantic
consistency feedback. It was also successfully applied to the problem of feature-level
image-to-image translation, in particular to the face-to-cartoon problem. Contrary to
xgan however, the DTN encoder is pretrained and fixed, and is assumed to produce
meaningful embeddings for both the face and the cartoon domains. This assumption
is very restrictive, as off-the-shelf models pretrained on natural images do not usually
generalize well to other domains. In fact, we show in Sect. 5 that a fixed encoder does
not generalize well in the presence of a large domain shift between the two domains.
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Fig. 2 The xgan (A) objective encourages the model to learn a meaningful joint embedding
(B1) (Lrec , and Ldann), which should be preserved through domain translation (B2) (Lsem ), while
producing output samples of good quality (B3) (Lgan and Lteach)

3 Proposed Model: XGAN

Let D1 and D2 be two domains that differ in terms of visual appearance but share
common semantic content. It is often easier to think of domain semantics as a high-
level notion, e.g., semantic attributes, however, we do not require such annotations
in practice, but instead consider learning a feature-level representation that automat-
ically captures these shared semantics. Our goal is thus to learn in an unsupervised
fashion, i.e., ., without paired examples, a joint domain-invariant embedding: seman-
tically similar inputs across domains will be embedded nearby in the learned feature
space.

Architecture-wise, xgan is a dual auto-encoder on domains D1 and D2 Fig. 2A.
We denote by e1 the encoder and by d1 the decoder for domain D1; likewise e2 and
d2 forD2. For simplicity, we also denote by g1→2 = d2 ◦ e1 the transformation from
D1 to D2; likewise g2→1 for D2 to D1.

The training objective can be decomposed into five main components: the recon-
struction loss,Lrec, encourages the learned embedding to encode meaningful knowl-
edge for each domain; the domain-adversarial loss, Ldann , pushes embeddings from
D1 andD2 to lie in the same subspace, bridging the domain gap at the semantic level;
the semantic consistency loss, Lsem , ensures that input semantics are preserved after
domain translation;Lgan is a simple generative adversarial (GAN) objective, encour-
aging the model to generate more realistic samples, and finally, Lteach is an optional
teacher loss that distils prior knowledge from a fixed pretrained teacher embedding,
when available. The total loss function is defined as a weighted sum over these five
loss terms:

Lxgan = Lrec + ωdLdann + ωsLsem + ωgLgan + ωtLteach,
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where the ω hyperparameters control the contributions from each of the individual
objectives. An overview of themodel is given in Fig. 2, and we discuss each objective
in more detail in the rest of this section.

Reconstruction loss, Lrec. Lrec encourages the model to encode enough information
on each domain to perfectly reconstruct the input. More specifically Lrec = Lrec,1 +
Lrec,2 is the sum of reconstruction losses for each domain.

Lrec,1 = Ex∼pD1
(‖x − d1(e1(x))‖2) , likewise for domain D2 (1)

Domain-adversarial loss, Ldann . Ldann is the domain-adversarial loss between D1

andD2, as introduced in [3]. It encourages the embeddings learned by e1 and e2 to lie
in the same subspace. In particular, it guarantees the soundness of the cross-domain
transformations g1→2 and g2→1. More formally, this is achieved by training a binary
classifier, cdann , on top of the embedding layer to categorize encoded images from
both domains as coming from either D1 or D2 (see Fig. 2B1). cdann is trained to
maximize its classification accuracy while the encoders e1 and e2 simultaneously
strive to minimize it, i.e., ., to confuse the domain-adversarial classifier. Denoting
model parameters by θ and a classification loss function by � (e.g., cross-entropy),
we optimize

min
θe1 ,θe2

max
θdann

Ldann, where (2)

Ldann = EpD1
�(1, cdann(e1(x))) + EpD2

� (2, cdann(e2(x)))

Semantic consistency loss, Lsem . Our key contribution is a semantic consistency
feedback loop that acts as self-supervision for the cross-domain translations g1→2

and g2→1. Intuitively, we want the semantics of input x ∈ D1 to be preserved when
translated to the other domain, g1→2(x) ∈ D2, and similarly for the reverse mapping.
However, this consistency property is hard to assess at the pixel-level as we do
not have paired data and pixel-level metrics are suboptimal for image comparison.
Instead, we introduce a feature-level semantic consistency loss, which encourages
the network to preserve the learned embedding during domain translation. Formally,
Lsem = Lsem,1→2 + Lsem,2→1, where

Lsem,1→2 = Ex∼pD1
‖e1(x) − e2(g1→2(x))‖, likewise for Lsem,2→1. (3)

‖ · ‖ denotes a distance between vectors.

GAN objective, Lgan . We find that generating realistic image transformations has
a crucial positive effect for learning a joint meaningful and semantically consistent
embedding as the produced samples are fed back through the encoders when comput-
ing the semantic consistency loss: making the transformed distribution p(g2→1(D2))

as close as possible to the original domain p(D1) ensures that the encoder e1 does
not have to cope with an additional domain shift.
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Thus, to improve sample quality, we add a generative adversarial loss [5] Lgan =
Lgan,1→2 + Lgan,2→1, where Lgan,1→2 is a state-of-the-art GAN objective [5] where
the generator g1→2 is paired against the discriminator D1→2 (and likewise for g2→1

and D2→1). In this scheme, a discriminator D1→2 strives to distinguish generated
samples from real ones inD2, while the generator g1→2 aims to produce samples that
confuse the discriminator. The formal objective is

min
θg1→2

max
θD1→2

Lgan,1→2 (4)

Lgan,1→2 = Ex∼pD2
(log(D1→2(x))) + Ex∼pD1

(log(1 − D1→2(g1→2(x))))

Likewise, Lgan,2→1 is defined for the transformation from D2 to D1.
Note that the combination of theLgan andLsem objectives should subsume the role

of the domain-adversarial loss Ldann in theory. However, Ldann plays an important
role at the beginning of training to bring embeddings across domains closer, as the
generated samples are typically poor and not yet representative of the actual input
domains D1 and D2.

Teacher loss,Lteach .We introduce an optional component to incorporate prior knowl-
edge in the model when available, e.g., in a semi-supervised setting. Lteach encour-
ages the learned embeddings to lie in a region of the subspace defined by the output
representation of a pretrained teacher network, T . In other words, we distils feature-
level knowledge from T and constrains the embeddings to a more meaningful sub-
region, relative to the task on which T was trained. This can be seen as a form of
regularization of the learned embedding. Moreover, Lteach is asymmetric by defi-
nition. It should not be used for both domains simultaneously as each term would
potentially push the learned embedding in two different directions. Formally, Lteach

(applied to domain D1) is defined as

Lteach = Ex∼pD1
‖T (x) − e1(x)‖, (5)

where ‖ · ‖ is a distance between vectors.

3.1 Architecture and Training Procedure

We use a simple mirrored convolutional architecture for the auto-encoder. It con-
sists of five convolutional blocks for each encoder, the two last ones being shared
across domains, and likewise for the decoders (five deconvolutional blocks with the
two first ones shared). This encourages the model to learn shared representations
at different levels of the architecture rather than only in the middle layer. A more
detailed description is given in Table1. For the teacher network, we use the highest
convolutional layer of FaceNet [21], a state-of-the-art face recognition model trained
on natural images.
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Table 1 Overview of the XGAN architecture used in practice. The encoder and decoder have the
same architecture for both domains, and (//) indicates that the layer is shared across domain

Layer Size

Inputs 64x64x3

conv1 32x32x32

conv2 16x16x64

(//) conv3 8x8x128

(//) conv4 4x4x256

(//) FC1 1x1x1024

(//) FC2 1x1x1024

(a) Encoder

Layer Size

Inputs 1x1x1024

(//) deconv1 4x4x512

(//) deconv2 8x8x256

deconv3 16x16x128

deconv4 32x32x64

deconv5 64x64x3

(b) Decoder

Layer Size

Inputs 64x64x3

conv1 32x32x16

conv2 16x16x32

conv3 8x8x32

conv4 4x4x32

FC1 1x1x1

(c) Discriminator

The xgan training objective is to minimize (Eq.1). In particular, the two adver-
sarial losses (Lgan and Ldann) lead to min-max optimization problems requiring
careful optimization. For the GAN loss Lgan , we use a standard adversarial training
scheme [5]. Furthermore, for simplicity we only use one discriminator in practice,
namely, D1→2 which corresponds to the face-to-cartoon path, our target application.
We first update the parameters of the generators g1→2 and g2→1 in one step. We then
keep these fixed and update the parameters for the discriminator D1→2.We iterate this
alternating process throughout the training. The adversarial training scheme forLdann

can be implemented in practice by connecting the classifier cdann and the embedding
layer via a gradient reversal layer [3]: the feed-forward pass is unaffected, however,
the gradient is backpropagated to the encoders with a sign-inversion representing the
min-max alternation. We perform this update simultaneously when computing the
generator parameters. Finally, we train the model with Adam optimizer [11] and an
initial learning rate of 1e-4.

4 The CartoonSet Dataset

Although previouswork has tackled the task of transforming frontal faces to a specific
cartoon style, there is currently no such dataset publicly available. For this purpose,
we introduce a new dataset, CartoonSet,1 which we release publicly to further aid
research on this topic.

Each cartoon face is composed of 16 components including 12 facial attributes
(e.g., facial hair, eye shape, etc), and 4 color attributes (such as skin or hair color)
which are chosen from a discrete set of RGB values. The number of options per
attribute category ranges from 3 to 111, for the largest category, hairstyle. Each

1CartoonSet, https://github.com/google/cartoonset.

https://github.com/google/cartoonset
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of these components and their variation were drawn by the same artist, resulting
in approximately 250 cartoon components artworks and 108 possible combinations.
The artwork components are divided into a fixed set of layers that define a Z-ordering
for rendering. For instance, face shape is defined on a layer below eyes and glasses,
so that the artworks are rendered in the correct order. For instance, hairstyle needs to
be defined on two layers, one behind the face and one in front. There are eight total
layers: hair back, face, hair front, eyes, eyebrows, mouth, facial hair, and glasses. The
mapping from attribute to artwork is also defined by the artist such that any random
selection of attributes produces a visually appealing cartoon without any misaligned
artwork, which sometimes involves handling interaction between attributes, e.g., the
appearance of “short beard” will change depending on the face shape. For example,
the proper way to display a “short beard” changes for different face shapes, which
required the artist to create a “short beard” artwork for each face shape. We create
the CartoonSet dataset from arbitrary cartoon faces by randomly sampling value for
each attribute. We then filter out unusual hair colors (pink, green, etc) or unrealis-
tic attribute combinations, which results in a final dataset of approximately 9, 000
cartoons. In particular, the filtering step guarantees that the dataset only contains
realistic cartoons, while being completely unrelated to the source dataset.

5 Experiments

We experimentally evaluate our xganmodel on semantic style transfer; more specif-
ically, on the task of converting images of frontal faces (source domain) to images
of cartoon avatars (target domain) given an unpaired collection of such samples in
each domain. Our source domain is composed of real-world frontal-face images from
the VGG-Face dataset [20]. In particular, we use an image collection consisting of
18,054 uncropped celebrity frontal face pictures. As a preprocessing step, we align
the faces based on eyes and mouth location and remove the background. The target
domain is the CartoonSet dataset introduced in the previous section. Finally, we ran-
domly select and take out 20% of the images from each dataset for testing purposes,
and use the remaining 80% for training. For our experiments, we also resize all
images to 64 × 64. As shown in Figs. 3 and 4, the two domains vary significantly in

Fig. 3 Random samples from our cartoon dataset, CartoonSet

Fig. 4 Random centered aligned samples from VGG-Face. We preprocess them with automatic
portrait matting to avoid dealing with background noise
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Fig. 5 Selected samples generated by xgan on the VGG-Face (left) to CartoonSet (right) task.
The figure reads row-wise: for each face-cartoon pair, the target image (cartoon) on the right was
generated from the source image (face) on the left

appearance. In particular, cartoon faces are rather simplistic compared to real faces
and do not display as much variety (e.g., noses or eyebrows only have a few shape
options). Furthermore, we observe a major content distribution shift between the two
domains due to the way we collected the data: for instance, certain hair color shades
(e.g., bright red, gray) are overrepresented in the cartoon domain compared to real
faces. Similarly, the cartoon dataset contains many samples with eyeglasses while
the source dataset only has a few (Fig. 5).

Comparison to the DTN baseline. Our first evaluation is a qualitative comparison
between the Domain Transfer Network (DTN) [23] and xgan on the semantic style
transfer problem outlined above. To the best of our knowledge, DTN is the current
state of the art for semantic style transfer given unpaired image corpora from two
domains with significant visual shift. In particular, DTN was also applied to the task
of transferring face pictures to cartoons (bitmojis) in the original chapter.2 Figure6
shows the results of bothDTN and xgan applied to randomVGG-Face samples from
the test set to produce their cartoon counterpart. Evaluation metrics for style transfer
are still an active research topicwith no good unbiased solution yet. Hence,we choose
optimal hyperparameters by manually evaluating the quality of resulting samples,
focusing on accurate transfer of semantic attributes, similarity of the resulting sample
to the target domain, and crispness of samples.

It is clear from Fig. 6 that DTN fails to capture the transformation function that
semantically stylizes frontal faces to cartoons from our target domain. In contrast,
XGAN is able to produce sensible cartoons both in terms of the style domain—the
resulting cartoons look crisp and respect the specific CartoonSet style—and in terms
of semantic similarity to the input samples from VGG-Face. There are some failure
cases such as hair or skin color mismatch, which emerge from the weakly supervised
nature of the task and the significant content shift between the two domains (e.g.,
red hair is overrepresented in the target cartoon dataset). In Fig. 5 we report selected
xgan samples that we think best illustrate its semantic consistency abilities, showing
that the model learns ameaningful shared representation that preserves common face
semantics. Additional random samples are also reported in Fig. 7.

2The original DTN code and dataset is not publicly available, hence, we instead report results from
our implementation applied to the VGG-Face to CartoonSet setting.
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Fig. 6 A qualitative comparison between DTN and xgan. In both cases we present random test
samples for the face-to-cartoon transformation. The tables are organized row-wise where each face
input is mapped to the cartoon face immediately on its right

We believe the failure of DTN is primarily due to its assumption of a fixed joint
encoder for both domains. Although the decoder learns to reconstruct inputs from the
target domain almost perfectly, the semantics are not well preserved across domains
and the decoder yields samples of poor quality for the domain transfer. In fact,
FaceNet was originally trained on real faces inputs, hence there is no guarantee
that it can produce a meaningful representation for CartoonSet samples. In contrast
to our dataset, the target bitmoji domain in [23] is visually closer to real faces, as
bitmojis are more realistic and customizable than the cartoon style domain we use
here. This might explain the original work performance even with a fixed encoder.
Our experiments suggest that using a fixed encoder is too restrictive and does not
adapt well to new scenarios. We also train a DTN with a fine-tuned encoder which
yields samples of better quality than the original DTN. However, this setup is very
sensitive to hyperparameters choice during training and prone to mode collapse.

Comparison to CycleGAN. As we havementioned in the related work section, Cycle-
GAN [27], DiscoGAN [10], and DualGAN [25] form another family of closely
related work for image-to-image translation problems. However, differently from
DTN and the proposed XGAN, these models only consider a pixel-level cycle-
consistency loss and do not use a shared domain embedding. Consequently, they
fail to capture high-level shared semantics between significantly different domains.
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Fig. 7 Random samples obtained by applying xgan on faces and cartoons from the testing set for
both cross-domain mappings

To explore this problem, we experiment with CycleGAN3 on the face-to-cartoon
task. We train a CycleGAN with a pix2pix [8] generator as in the original chapter,
which is close to the generator we use in XGAN in terms of architecture choices and
size (depth and width of the network). As shown in Fig. 8, this approach yields poor
results, which is explained by the explicit pixel-level cycle-consistency loss and the
fact that the pix2pix architecture contains backward connections (U-net) between
the encoder and the decoder; both these features enhance pixel structure similarities
which are not desirable for this task.

3CycleGAN-tensorflow, https://github.com/xhujoy/CycleGAN-tensorflow.

https://github.com/xhujoy/CycleGAN-tensorflow
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Fig. 8 The default CycleGANmodel is not suitable for transformation between domains with very
dissimilar appearances as it enforces pixel-level structural similarities

Ablation study.We conduct a number of insightful ablation experiments on xgan.We
first consider training only with the reconstruction loss Lrec and domain-adversarial
lossLdann . In fact, these form the core domain adaptation component in xgan and, as
we will show, are already able to capture basic semantic knowledge across domains
in practice. Second, we experiment with the semantic consistency loss and teacher
loss. We show that both have complementary constraining effects on the embedding
space which contributes to improving the sample consistency.

We first experiment on xganwith only the reconstruction and domain-adversarial
losses active. These components prompt the model to (i) encode enough information
for each decoder to correctly reconstruct images from the corresponding domain and
(ii) to ensure that the embedding lies in a common subspace for both domains. In
practice in this setting, the model is robust to hyperparameter choice and does not
require much tuning to converge to a good regime, i.e., ., low reconstruction error
and around 50% accuracy for the domain-adversarial classifier. As a result of (ii),
applying each decoder to the output of the other domain’s encoder yields reasonable
cross-domain translations, albeit of low quality (see Fig. 9). Furthermore, we observe
that some simple semantics such as skin tone or gender are overall well preserved
by the learned embedding due to the shared auto-encoder structure. For comparison,
failure modes occur in extreme cases, e.g., when the model capacity is too small, in
which case transferred samples are of poor quality, or when the weight ωd is too low.
In the latter case, the source and target embeddings are easily distinguishable and
the cross-domain translations do not look realistic.

Second,we investigate the benefits of adding semantic consistency inxgan via the
following three components: sharing high-level layers in the auto-encoder leads the
model to capture common semantics earlier in the architecture. In general, high-level
layers in convolutional neural networks are known to encode semantic information.
We performed experiments with sharing only the middle layer in the dual auto-
encoder. As expected, the resulting embedding does not capture relevant shared
domain semantics. Second, we use the semantic consistency loss as self-supervision
for the learned embedding, ensuring that it is preserved through the cross-domain
transformations. It also reinforces the action of the domain-adversarial loss as it
constrains embeddings from the two input domains to lie close to each other. Finally,
the optional teacher loss leads the learned source embedding to lie near the teacher
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Fig. 9 Test results for xgan with the reconstruction (Lrec) and domain-adversarial (Ldann) losses
active only in the training objective Lxgan

Fig. 10 Results of ablating the teacher loss (Lteach ) (top) and semantic consistency loss (Lsem )
(bottom) in the xgan objective Lxgan

output (in our case, FaceNet’s representation layer), which is meant for real faces. It
acts in conjunction with the domain-adversarial loss and semantic consistency loss,
whose role is to bring the source and target embedding distributions closer to each
other.

In Fig. 10 we report random test samples for both domain translations when ablat-
ing the teacher loss and semantic consistency loss, respectively. While it is hard to
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draw conclusions from visual inspections, it seems that the teacher network has
a positive regularization effect on the learned embedding by guiding it to a more
realistic region: training the model without the teacher loss (Fig. 10a) yields more
distorted samples, especially when the input is an outlier, e.g., person wearing a hat,
or cartoons with unusual hairstyle. Conversely, when the semantic consistency is
inactive (Fig. 10b), the generated samples overall display less variety. In particular,
rare attributes (e.g., unusual hairstyle) are not as well preserved as when the semantic
consistency term is present.

Discussions and Limitations. Our initial aimwas to tackle the semantic style transfer
problem in a fully unsupervised framework by combining techniques from domain
adaptation and image-to-image translation:We first observe that using a simple setup
where a partially shared dual auto-encoder is trainedwith reconstruction and domain-
adversarial losses already suffice to produce an embedding that captures basic seman-
tics rather well (for instance, skin tone). However, the generated samples are of poor
quality and fine-grained attributes such as facial hair are not well captured. These
two problems are greatly diminished after adding the GAN loss and the proposed
semantic consistency loss, respectively. Failure cases still exist, especially on non-
representative input samples (e.g., a person wearing a hat) which are mapped to
unrealistic cartoons. Adding the teacher loss mitigates this problem by regularizing
the learned embedding, however, it requires additional supervision and makes the
model dependent on the specific representation provided by the teacher network.

Future work will focus on evaluating xgan on different domain transfer tasks. In
particular, thoughwe introduced xgan for semantic style transfer,we think themodel
goes beyond this scope and can be applied to classical domain adaptation problems,
where quantitative evaluation becomes possible: while the pixel-level transforma-
tions are not necessary for learning the shared embedding, they are beneficial for
learning a meaningful representation across visual domains, when combined with
the self-supervised semantic consistency loop.

6 Conclusions

In this work, we introduced xgan, a model for unsupervised domain translation
applied to the task of semantically consistent style transfer. In particular,we argue that
similar to the domain adaptation task, learning image-to-image translation between
two structurally different domains requires learning a high-level joint semantic rep-
resentation while discarding local pixel-level dependencies. Additionally, we pro-
posed a semantic consistency loss acting on both domain translations as a form of
self-supervision.
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We reported promising experimental results on the task of face-to-cartoon that
outperform the current baseline. We also showed that additional weak supervision,
such as a pretrained feature representation, can easily be added to the model in the
form of teacher knowledge. It acts as a good regularizer for the learned embeddings
and generated samples. This is particularly useful for natural image datasets, for
which off-the-shelf pretrained models are abundant.
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