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Preface

In many real-world vision applications, there are very few or even no labeled
samples, while an unrelated general domain is often available with a large number
of labeled examples. For example, ImageNet contains millions of loosely labeled
images over a large number of general classes of objects. On the other hand, a
medical researcher may be interested in retrieving brain cancer fMRI scans closer to
the patient’s brain scan image. Such data may not be available in large volumes or
may be expensive to put forth the effort to annotate their collections by themselves.
The problem of a lack of training samples can be challenging because of the sig-
nificant statistical distribution difference between the feature distributions of
training samples from the known available domain and the application domain.
Researchers have often resorted to many techniques such as fine-tuning, hard
mining, transfer learning, and domain adaptation to effectively use the large training
samples from one domain and still get benefits in the targeted application domain to
explicitly handle variations in feature distributions.

In this edited volume, we address various challenges of domain adaptation for
visual understanding through the following chapters. We start with a review of
available methods in domain adaptation in general. The second chapter, by
Issam H. Laradji and Reza Babanezhad, describes domain adaptation with deep
metric learning. In the area of image-to-image translation, a novel unsupervised
method called XGAN is presented in the third chapter, by Amélie Royer,
Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri, Forrester
Cole, and Kevin Murphy. In the area of improving transferability of deep neural
networks, Parijat Dube, Bishwaranjan Bhattacharjee, Elisabeth Petit-Bois, and
Matthew Hill present an interesting way to find out which dataset in the base
training is useful in target results, in the fourth chapter. Xinyan Yu, Ya Zhang, and
Rui Zhang present an interesting idea in the fifth chapter, for when the target
domain is in the area of video retrieval. In order to estimate the discrepancy
between the source and the target domain, Mohammad Mahfujur Rahman, Clinton
Fookes, Mahsa Baktashmotlagh, and Sridha Sridharan present a quantitative
method in the sixth chapter. In order to enhance facial action recognition, Nishant
Sankaran, Deen Dayal Mohan, Nagashri N. Lakshminarayana, Srirangaraj Setlur,
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and Venu Govindaraju present their ideas in the seventh chapter. An interesting
concept of learning intuition, generalizing the idea of domain adaptation, is covered
in eighth chapter, by Anush Sankaran, Mayank Vatsa, and Richa Singh. In the final
chapter, by Xiyu Kong, Qiping Zhou, Yunyu Lai, Muming Zhao, and Chongyang
Zhang, a novel interpolation-based tracking model is presented to address the
tracking model degradation problem of existing CF-based methods.

As can be seen, these articles cover a wide range of domain adaptation topics for
various vision applications such as object recognition, face recognition, and action
and event recognition. We hope the diversity of the topics help the readers
understand the challenges in domain adaptation and related problems.

New Delhi, India Richa Singh
New Delhi, India Mayank Vatsa
Baltimore, USA Vishal M. Patel
Yorktown Heights, USA Nalini Ratha
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Domain Adaptation for Visual
Understanding

Soumyadeep Ghosh, Richa Singh, Mayank Vatsa, Nalini Ratha
and Vishal M. Patel

Abstract Advances in visual understanding in the last two decades have been aided
by exemplary progress in machine learning and deep learning methods. One of the
principal issues of modern classifiers is generalization toward unseen testing data
which may have a distribution different to that of the training set. Further, classifiers
need to be adapted to scenarios where training data is made available online. Domain
adaptation based machine learning algorithms cater to these specific scenarios where
the classifiers are updated for inclusivity and generalizability. Such methods need to
encompass the covariate shift so that the trainedmodel gives appreciable performance
on the testing data. In this chapter, we categorize, illustrate, and analyze different
domain adaptation based machine learning algorithms for visual understanding.

Keywords Domain adaptation · Deep learning · Image classification
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1 Introduction

In the last two decades, visual understanding has been at the forefront of machine
learning applications. Several applications of computer vision and visual under-
standing have been explored such as face recognition [1–7] and segmentation [8],
object tracking [9], scene understanding [10], gesture recognition [11], shape recon-
struction and understanding [12], multimodal representation learning [8], image
retrieval [13], and activity recognition [14]. The advancements in the applications
of visual understanding have been possible due to the availability of training data,
computing resources, and development of modern deep learning algorithms.

One of the fundamental assumptions of any pattern recognition algorithm is that
the training and testing data are drawn from the same distribution. Considering the
explosive increase of data available on the Internet (throughwebsites such asYoutube
and Flickr), it is not difficult to collect a large amount of data to train a system for
visual understanding. However, such a multisource pool of data may result in the
variation of training and testing distribution for the model being trained. To take an
example, for object detection, a model is trained to detect objects in an indoor setting
while testing can be done in outdoor scenarios. Due to the variation of background
and illumination, testing performance can be poor using a model which is trained
on data acquired in indoor settings. To illustrate with another example, in order
to train a model for face recognition, the data on which training is performed is
expected to be similar (in terms of a scenario of image acquisition) to the data
on which the model would be evaluated. In this context, the type of data can be
defined in terms of the covariates or variation in the modality/type of data. For face
recognition, covariates refer to the resolution [15, 16], spectrum of image capture
(visible/NIR/thermal) [17, 18], pose, illumination [19], expression, age [20], and
disguise [21, 22]. As shown in Fig. 1, all variations in data are due to the fact that
images can be captured under different acquisition scenarios. Therefore, any variation
in the distribution of the training and testing sets would have an impact on the testing
performance for a model [23–27]. In addition to this, the bias in a learning algorithm
is also a related phenomenon. For instance, a model trained on faces of adults could
give very different results when tested on the face images of babies [28, 29]. This
observation on models trained in a different distribution to that of the testing data is
seen across all applications of visual understanding.

The outline of this chapter is as follows. In Sect. 2, we start with a brief discussion
on transfer learning and discuss its different types in Sect. 3. We illustrate domain
adaptation and its applications in Sect. 4. Paradigms which are similar or related
to domain adaptation are discussed in Sect. 4.3, followed by a summary and future
research directions in Sect. 5.
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Fig. 1 The domain difference in training and testing sets. Upper row a: High-resolution NIR
image, b: Low-resolution NIR image, c: High-resolution visible spectrum (VIS) image, and d:
Low-resolution VIS image with poor illumination. Lower row a–d: Corresponding images of the
same subject/class in controlled scenarios where the model is trained. The upper row shows all the
different modalities of the test data, which is very different from the training data, which leads to
unsatisfactory testing performance

2 Background: Transfer Learning

Any conventional machine learning algorithm [30–32] is designed with a basic
assumption that the training and testing data belong to the same distribution. How-
ever, in several cases, not enough data is available such that the model can be trained.
In such cases, the drift in training and testing sets can arise because of variations in
domains, feature, or new task. A broad set of techniques that allow the model learned
on a different domain or for a different task, to be adapted to the new domain/task
falls under the purview of transfer learning.

2.1 Notations and Definitions

In the context of transfer learning, we define two primary aspects of a classification
paradigm, namely, domain and task. The data on which training is performed is
known as the source domain Ds and that of testing is known as the target domain
Dt . A domain consists of two components, namely, a feature/sample space X and
the marginal distribution P(X). The source domain can be represented as Xs =
{xs1, xs2 . . . xsn} and the target domain is Xt = {xt1, xt2 . . . xtm} on which the model
would be evaluated. The source domain is thus given by Ds = {Xs, P(Xs)} and the
target domain by Dt = {Xt , P(Xt )}. The task τ is given by the labels Y of the data,
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which defines the categories for classification and a predictive function g(.) which
is to be learned from the training data. Thus the source task τs = {Ys, g(.)}, and the
target task τt = {Yt , g(.)} may be same or different. In cases where the domains are
different, the feature spaces and/or the marginal distributions may be different.

2.2 Transfer Learning

In a particular setting, given a source domain Ds , target domain Dt , source task τs
and target task τt , transfer learning represents the set of techniques which is used to
learn an effective predictive function g(.), where one or both of Ds �= Dt and τs �= τt
holds true. While learning this predictive function, we may utilize all of the source
domain data Xs and the source domain label space Ys . In addition to this, we may
have very few target domain data Xt and its corresponding label space Yt available,
which might help to adapt the function gs which was learnt using Ds and τs alone.

Approaches for Transfer Learning This domain difference between the training
and testing data is popularly known as domain or covariate shift [33] in related
literature. This domain shift is relevant in real-life deployment settings for visual
applications. A product developed for a certain scenario, if used under different
settings with respect to the domain of data may produce unsatisfactory results. Let
us take the example of a model trained on the source domain data Ds , and tested
on the target domain Dt . In such a case, there are two approaches to improve upon
the model trained using Ds . The first is to retrain the entire model using data which
has a distribution similar to Dt . The second is to adapt the model so that it gives
satisfactory performance on Dt as well. The former option might not be viable under
situations where data pertaining to Dt is scarce. The second option has been heavily
investigated by domain adaptation methods. Some of these methods may involve a
small set of training data from Dt , which can be utilized to update the model trained
using Ds . In domain adaptation, as discussed later which is a special case of transfer
learning, the source and the target task remain the same but the data distribution of
the train and the test sets differ (Fig. 1).

3 Categories of Transfer Learning

Depending on the availability and suitability of Ds , Dt , τs , and τt , we can classify
transfer learning approaches into several categories (Fig. 2). Each of these categories
cater to a particular train–test scenario for classification.
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Fig. 2 Classification of transfer learning techniques (adapted from [34])

3.1 Inductive Transfer Learning

Scenarios where the source and the target tasks are different, fall under the purview of
inductive transfer learning. The difference in the tasksmay be attributed to a different
label space (different categories/classes in train and test sets), or a different condi-
tional probability distribution P(yi/xi ) where yi ∈ Yt and xi ∈ Xt . This conditional
probability distribution is attributed to the distribution of the supervised samples, and
depends on the amount of labeled data for each class. Zero-shot learning [35–37] is
one of the most prominent examples for inductive transfer learning, where the label
space (and hence the task) of the training and testing data are completely disjoint. A
similar paradigm is multitask learning, where abundant data in the source domain
is available and the model attempts to learn both the source and the target tasks. In
addition to that, multitask learning also does not assume any scarcity of data in either
the source or the target domain. Another variant of the inductive transfer learning is
self-taught learning [38], when no source domain data is available for training.

3.2 Transductive Transfer Learning

In this kind of transfer learning paradigm, the source and target tasks are not dif-
ferent while the source and target domains can differ. It is assumed that very little
or no target domain data is available while training the model. In the context of
this paradigm, there can be two possibilities. First, the feature spaces of the source
and the target domains may be different, and second, the marginal probability dis-
tributions of the source and the target data may differ. The later is a scenario where
the source and target domains are different, which is handled by domain adaptation
based techniques. Some of the most prominent applications of transductive transfer
learning aremulti-view object recognition [39, 40], multi-view object detection [41],
multi-view facial expression recognition [42], cross-resolution face recognition [15],
cross-spectral face recognition [43], and bimodal-vein data mining [44].
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3.3 Unsupervised Transfer Learning

When no labeled data in both source and target domains are available, techniques to
train an effectivemodel for the target domain falls under the category of unsupervised
transfer learning. This refers to unsupervised learning tasks such as clustering [45],
dimensionality reduction [46], and so on. Unsupervised transfer learning has been
explored in applications such as target detection from hyperspectral images [47],
person reidentification [48], object recognition [49], blur and illumination invariant
face recognition [50] and classification of breast cancer histopathology images [51].

4 Domain Adaptation

Given the source and target domains, Ds and Dt , source and target and tasks τs and τt ,
domain adaptation based techniques aim to learn a model suitable for the target task
when Ds �= Dt and τs = τt . In some cases, a few labeled or unlabeled target domain
samples Xt may be available. Let us take an example of classification of cars, where
we need to classify an image of a car into “k” different categories. A real- world
deployment of such an application can be done by the police for monitoring cars.
Now, the scenario (daytime/nighttime, amount of traffic, illumination, and speed
of traffic) on which the model was trained might need to be diversified with the
passage of time. Instead of discarding the old trained model and retraining a new
model from scratch, transfer learning techniques aim at adapting the old model
with respect to the new data. This ensures that the old knowledge that was learnt
is not discarded, rather adapted for the new domain in an efficient manner, which
saves time and effort required to train a new model all over again. Thus, domain
adaptation is a transductive transfer learning scenario, where the source and target
domains are different (Fig. 3). As explained in Sect. 2.1, a domain consists of the data
samples/features and marginal distribution of the data. This marginal distribution is
a function of the feature space and depends on the feature distribution of the training
and testing data. The domain difference of training and testing data can be attributed
to the difference in the distribution of data (marginal distribution of the training and
testing data) or difference in the feature space of training and testing data. Based
on this, domain adaptation may be classified into Homogeneous (the former) and
Heterogeneous Domain Adaptation (the later) types, which are further illustrated
as follows.

4.1 Homogeneous Versus Heterogeneous Domain
Adaptation

In the Homogeneous Domain Adaptation setting, the feature space of the source
and target data are the same, however, the marginal distributions are different, that
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(a) (b)

Fig. 3 Illustration of domain adaptation. a Represents a classifier (black line) which was trained
on the source domain, bRepresents target domain containing data pertaining to related but different
domains, for which the classifier needs to be adapted/fine-tuned

is, P(Xs) �= P(Xt ). The most simple way of performing Homogeneous Domain
Adaptation is to fine-tune the pretrained model on labeled instances of the target
domain. Several approaches have utilized this technique for low- resolution image
classification [54, 55], face verification [56], cross-domain image retrieval [57], face
recognition from sketches [58], and cross-spectral face matching [59]. Several meth-
ods performedHomogeneousDomainAdaptation bymodifying the existing softmax
loss to a soft label loss for digit classification [60], object classification [61], and clas-
sification of images of cars [62]. Some approaches [56, 63] have also incorporated
metric learning into the homogeneous domain adaptation approach. Depending on
the availability of labeled target domain data, homogeneous domain adaptation can
further be divided into supervised (a few instances of labeled target domain data
are available), semi-supervised (abundant unlabeled instances are available), and
unsupervised techniques (no labeled data of the target domain is available).

In the heterogeneous setting (Fig. 4), the feature space of the source domain F(Xs)

and that of the target domain F(Xt ) are different. This scenario may arise due to
different models or feature extractors that are used to represent the source and the
target domain. One approach to address this is to transform the features of the source
and the target domain into a common subspace [64–66]. Another set of approaches
has mapped the target domain data into the source domain [67, 68]. Similarly, the
heterogeneous scenario may also be classified into supervised, semi-supervised, and
unsupervised techniques, depending on the availability of labeled data in the target
domain.Homogeneous and heterogeneous domain adaptation are illustrated in Fig. 4.
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Fig. 4 Illustration of homogeneous and heterogeneous domain adaptation. The source domain
consists of images of birds (images taken fromCUB-200-2011 database [52]) and the target domain
consists of images of cars (images taken from CARS-196 database [53]). As evident in the figure,
different feature spaces are used to represent the source domain and target domain, hence the domain
adaptation required is heterogeneous. If the same is represented using the identical feature spaces,
the domain adaptation required would be homogeneous

4.2 Multistep Domain Adaptation

Domain adaptation techniques in general assume that the source and target domains
are related, even if they are not identical.Anexample of relateddomainswouldbe face
images in high resolution and low resolution while images of cars and faces would be
completely unrelated in terms of the marginal distribution of the domains. In cases
where the domains are related, the domain adaptation methods are popularly known
as one-step domain adaptationmethods [15, 67–69]. In very limited scenarios, we
would have the source and target domains very different from each other. In such
cases, multistep or transitive domain adaptation approaches [70, 71] needs to be
applied.

One-Step Domain Adaptation: One-step domain adaptation (Fig. 5a) is focused on
source and target domains that are related. Figure5 illustrates one-step and multistep
domain adaptation using examples of face recognition. One-step domain adaptation
methods have been used for problems including low-resolution face recognition [54],
face verification [56], digit recognition [60], and object recognition [61, 72]. Some
of the methods have utilized it in the semi-supervised setting using pseudo-labels
for object recognition [63] and scene recognition [73, 74]. Some attribute-based
approaches [61, 62] for one-step domain adaptation have also been proposed for
object recognition. Another popular approach for one-step domain adaptation is by
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(a)

(b)

Fig. 5 Illustration of a One-step and b Multistep domain adaptation. In case of one-step domain
adaptation, a model trained on high-resolution (HR) visible spectrum (VIS) face images is adapted
to HR and near-infrared (NIR) images since the domains are only different in terms of the spectrum.
In case of themultistep approach, the same source domain has to be adapted for LR andNIR images,
thus the model is adapted to an intermediate domain (HR/NIR) and then adapted to the final target
domain

training the model for the target domain using adversarial training, illustrated as
follows.

Adversarial Approaches: Recently, several adversarial approaches have been
designed for one-step domain adaptation. In an adversarial approach, samples from
the source domain are either transformed into the target domain, or a discriminative
model is trained by synthetically generated target domain data. Adversarial-based
methods can be based on generative models or non-generative models. Generative
model basedmethods [75–78] use a generative adversarial network (GAN)model for
transforming source domain data into target domain data, or generate target domain
data from random noise. Non-generative approaches [61, 79–81] learn a model to
project source and target domain data into a common feature space so that a domain
invariant representation space can be learnt.

Multistep Domain Adaptation: Multistep domain adaptation (Fig. 5a) approaches
define one or more intermediate domains for training an effective model for the
target domain. As an example, if a model trained on objects is to be adapted for
recognition of baby faces, then an intermediate domain could be face images of
adults, which can then be adapted to baby faces. Based on the kind of features used,
multistep approaches can be classified [82] into handcrafted [83], instance-based [71]
or representation transfer based [84] methods.
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4.3 Related Areas

Several related areas to domain adaptation such as covariate shift, incremental learn-
ing, co-training, and dataset bias have been outlined in transfer learning surveys [34,
85–89]. A concise overview of each of them is as follows:

Covariate Shift or Sample Selection Bias: Covariate shift is a classical problem in
transfer learning where the marginal distributions of the two domains are different
although the conditional probability of the labels, given the features, are identical.
In other words, P(Xs) �= P(Xt ) but P(Ys/X = x) == P(Yt/X = x). This setting
is known as covariate shift [33] or sample selection bias [90, 91]. One of the major
approaches for addressing this scenario is the instance weighting scheme [92]. In
order to account for the difference in the marginal distribution of the source and
target domain data, weights are assigned to the training samples so that their marginal
distribution is similar to that of the target domain data.

Incremental learning: A model trained on a set of data samples may need to be
updated for new or upgraded data so the old model’s knowledge can be utilized.
The new data may be represented by more data samples from the existing classes on
which the model was trained, or a new set of classes in addition to the old classes.
As an example, a recognition system which identifies car models using images from
cameras installed at traffic signals may need to be updated periodically as new car
models are out in the market. In order to design an effective incremental learning
algorithm [93–95], the plasticity–stability dilemma needs to be addressed. This is a
trade-off between catastrophic forgetting [96] (losing the ability to classify the old
data/classes) and effectively incorporating the new knowledge in the old model.

Co-training: In order to train a model for a real-world application, machine learning
algorithms use labeled data for training. In such cases, scarcity of labeled data may
be a hindrance to training an effective model. Most often, abundant unlabeled data is
available, which can be utilized for training the model. Co-training algorithms [28,
97, 98] use these unlabeled samples in conjunction with the labeled samples to
update/learn the classifiers. The approach is to have two classifiers/models trained on
separate views of data. This helps in the representation of complementary knowledge
which can be utilized to assign pseudo-labels to the unlabeled samples to aid training
of the classifiers.

5 Summary

This chapter summarizes the different aspects of domain adaptation for visual under-
standing along with related disciplines and applications. Domain adaptation based
techniques present an important set of tools which are utilized to train effective
machine learning models for which abundant target domain data is not available. It
falls under the transductive transfer learning paradigm, where the source and target
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tasks are the same but the source and target domains are different. With the recent
usage and popularity of deep representation learningmethods and the advent of large-
scale data based applications, the relevance and importance of domain adaptation of
pretrained models is high. A significant amount of research has been done in Homo-
geneous and one-step domain adaptation. However, the potential of Heterogeneous
and multistep domain adaptation approaches for visual understanding is relatively
unexplored.
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Adaptation with Deep Metric Learning
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Abstract Unsupervised domain adaptation techniques have been successful for a
wide range of problems where supervised labels are limited. The task is to classify
an unlabeled “target” dataset by leveraging a labeled “source” dataset that comes
from a slightly similar distribution. We propose metric-based adversarial discrimi-
native domain adaptation (M-ADDA) which performs two main steps. First, it uses
a metric learning approach to train the source model on the source dataset by opti-
mizing the triplet loss function. This results in clusters where embeddings of the
same label are close to each other and those with different labels are far from one
another. Next, it uses the adversarial approach (as that used in ADDA (Tzeng et al.
Adversarial discriminative domain adaptation, 2017, [36])) to make the extracted
features from the source and target datasets indistinguishable. Simultaneously, we
optimize a novel loss function that encourages the target dataset’s embeddings to
form clusters. While ADDA and M-ADDA use similar architectures, we show that
M-ADDA performs significantly better on the digits adaptation datasets of MNIST
and USPS. This suggests that using metric learning for domain adaptation can lead
to large improvements in classification accuracy for the domain adaptation task. The
code is available at https://github.com/IssamLaradji/M-ADDA.
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1 Introduction

Convolutional neural networks (CNN) [19] allow us to extract powerful features that
can be used for tasks such as image classification and segmentation. However, these
features are usually domain specific in that they are not discriminative enough for
datasets coming from other domains, resulting in poor classification performance.
Consequently, unsupervised domain adaptation techniques have emerged [9, 21, 35,
38] to address the domain shift phenomenon between a source dataset and a target
dataset. Common techniques use adversarial learning in order to make extracted
features from the source and target datasets indistinguishable. The extracted features
from the target dataset are then passed through a trained classifier (pretrained on the
source dataset) to predict the labels of the target test set [36].

Recently, metric-based methods have been introduced to address the problem of
unsupervised domain adaptation [14, 24], namely classifying an example is per-
formed by computing its similarity to prototype representations of each category
[24]. Further, a category-agnostic clustering network was proposed by [14] to clus-
ter new datasets through transfer learning. In this chapter, we introduce M-ADDA,
a metric-based adversarial discriminative domain adaptation framework. First, M-
ADDA trains our source model using metric learning by optimizing the triplet loss
[13] on the source dataset. As a result, if K is the number of classes, then the dataset
is clustered into K clusters where each cluster is composed of examples having the
same label (see Fig. 1). The goal is to obtain an embedding of the target dataset where
the k-nearest neighbors (kNN) of each example belongs to the same class and where
examples from different classes are separated by a large margin. A major strength

Fig. 1 Metric learning.
The result of minimizing the
triplet loss on the MNIST
dataset. Each cluster
corresponds to examples
belonging to a single-digit
label
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Fig. 2 Domain adaptation. The blue dots represent the MNIST embeddings after optimizing
Eq. (1). The orange dots represent the USPS embeddings. The center image shows the USPS
embeddings beforeminimizing the domain shift adverbially by Eq. (3). The right-most image shows
the USPS embeddings after optimizing Eq. (2)

Fig. 3 Domain adaptation. The blue dots represent the MNIST embeddings after optimizing
Eq. (1). The orange dots represent the USPS embeddings. The center image shows the USPS
embeddings beforeminimizing the domain shift adverbially by Eq. (3). The right-most image shows
the USPS embeddings after optimizing Eq. (2)

in this approach is its nonparametric nature [39] as it does not implicitly make para-
metric (possibly limiting) assumptions about the input distributions (Figs. 2 and 3).

Next, we adapt the distributions between the source and target extracted fea-
tures using the adversarial learning method used by ADDA [36]. This addresses
the domain discrepancy between the datasets. Early methods for domain adaptation
are based on minimizing correlation distances and minimizing the maximum mean
discrepancy to ensure both datasets have a common feature space [22, 31, 32, 34].
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However, adversarial learning approaches showed state-of-the-art performance for
domain adaptation. While the features’ distributions become more similar during
training, we also train a network that maps the extracted features to embeddings
such that they are clustered into K clusters. Concurrently, we encourage the clusters
to have largemargins between them. Therefore, the network is trained byminimizing
the distance between each target example embedding and its closest cluster center
corresponding to the source embedding. This approach is simple to implement and
achieves competitive results on digit datasets such as MNIST [18] and USPS [17].

To summarize our contributions, (1) we propose a novel metric learning frame-
work that uses the triplet loss to cluster the source dataset for the task of domain
adaptation; (2) we propose a new loss function that regularizes the embeddings of
the target dataset to encourage them to formclusters; and (3)we showa large improve-
ment over ADDA [36] on a standard unsupervised domain adaptation benchmark.
Note that ADDA uses a similar architecture but a different loss function than M-
ADDA.

In Sect. 2, we review the related works and other similar approaches. In Sect. 3, we
introduce our framework and the new loss terms for domain adaptation. In Sect. 4,
we present experimental results illustrating the efficacy of our approach on the digits
dataset. Finally, we conclude the chapter in Sect. 5.

2 Related Work

Metric learning has shown great success in many visual classification tasks [13,
30, 39]. The goal is to learn a distance metric such that examples belonging to
the same label are as close as possible in some embedding space and samples from
different labels are as far fromone another as possible. It can be used for unsupervised
learning such as clustering [40] and supervised learning such as k-nearest neighbor
algorithms [12, 39]. Recently, triplet networks [13] and Siamese networks [1] have
been proposed as powerful models for metric learning which have been successfully
applied for few-shot learning and learning with few data. However, to the best of our
knowledge, we are the first to apply metric learning that is based on triplet networks
for domain adaptation.

A close topic to domain adaptation is transfer learningwhich has received tremen-
dous attention recently. It allows us to solve tasks where labels are scarce by learning
from relevant tasks for which labels are abundant [4, 5, 28] by identifying a com-
mon structure between multiple tasks [6]. A common transfer learning strategy is
to use pretrained networks such as those trained on ImageNet [15] and fine-tune
them on new tasks. While this approach can significantly improve performance for
many visual tasks, it performs poorly when the pretrained network is used on a
dataset which comes from a different distribution than the one it is trained on. This
is because the model has learned features that are specific to one domain that might
not be meaningful for other domains.
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To address this challenge, a large set of domain adaptationmethodswere proposed
over the years [9, 21, 35, 36] whose goal is to determine a common latent space
between two domains often referred to as a source dataset and a target dataset.
The general setting is to use a model that trains to extract features from the source
dataset, and then encourage features extracted from the target dataset to be similar to
the source features [2, 8, 10, 26, 37]. Auto-encoder based methods [3, 10] train one
or a variety of auto-encoders for the source and target datasets. Then, a classifier is
trained based on the latent representation of the source dataset. The same classifier
is then used to label the target dataset. Adversarial networks [11] based approaches
use a generator model to transform the examples’ feature representations from one
domain to another [3, 25, 29].

Another group of domain adaptation methods [20, 31, 34, 37] minimize the dif-
ference between the distributions of the features extracted from the source and target
data. They achieve this by minimizing point estimates of a given metric between
the source and target distributions by using maximum or mean discrepancy metrics.
Current state-of-the-art techniques use the adversarial learning approach to encour-
age the feature representations from the two datasets to be indistinguishable (i.e.,
have a common distribution) [36]. Close to our method are recent similarity-based
approaches proposed by [14, 24], which transfer class-agnostic prior to new datasets,
and classify examples by computing their similarity to prototype representation of
each category, respectively. Our approach uses a regularized metric learning method
with the help of k-nearest neighbors as a nonparametric framework. This can be
more powerful than ADDA which uses a model that makes parametric assumptions
(introducing limitations) about the input distribution [39].

Another class of domain adaptation methods are self-ensembling methods which
augment the source dataset by applying various label preserving transformations on
the images [7, 16, 27, 33]. Using the augmented dataset, they train several deep
network models and use an ensemble of those networks for the domain adaptation
task. Laine et al. [16] have two networks in their model: the Π -model and temporal
model. In the Pi-model, every unlabelled sample feeds to a classifier twice with
different dropout, noise, and image translation parameters. Their temporal model
records the average of the historical network prediction per sample and forces the
subsequent predictions to be close to the average. Tarvainen et al. [33] improve the
temporal network by recording the average of the network weights rather than class
prediction. This results in two networks: the student and the teacher network. The
student network is trained via gradient descent and the weights of the teacher are the
historical exponential moving average of the weights of the student network. The
unsupervised loss is the mean square difference between the prediction of the stu-
dent and the teacher under different dropout, noise, and image translation parameters.
French et al. [7] combine the previous two methods with adding extra modifications
and engineering and get state-of-the-art results in many domain adaptation tasks for
image datasets. However, this method uses heavy engineering with many label pre-
serving transformations to augment the data. In contrast, we show that our method
significantly improves results over ADDA by making simple changes to their frame-
work.
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3 Proposed Approach: M-ADDA

We propose M-ADDA which performs two main steps:

1. train a source model on the source dataset using metric learning (as in Fig. 4)
using the triplet loss function; then

2. simultaneously, adapt the distributions between the extracted source and target
dataset features and regularize the predicted target dataset embeddings to form
clusters (see Fig. 5).

Our M-ADDA framework consists of a source model and a target model. The
two models have the same architecture, and they both have an encoder that extracts
features from the input dataset and a decoder to map the extracted features to embed-
dings. Consider a source dataset (XS,YS), and a target dataset (XT ,YT ) where the
data XS and XT are drawn from two different distributions.

Training the source model. The source model fθS (·), parameterized by θS , is first
trained on the source dataset by optimizing the following triplet loss:

Fig. 4 Training the source model. We pretrain the source encoder and decoder by optimizing
the triplet loss in Eq. (1). The source encoder extracts the features from the source dataset and the
decoder maps the features to the embedding space where clusters are formed

Fig. 5 Training the target model. We adversarially adapt the encoded features’ distributions
between the source and target encoder usingEq. (3)while using the source cluster centers to optimize
Eq. (4). The label of each target embedding is themode of the labels of the nearest source embedding
neighbors
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L(θS) =
∑

(ai ,pi ,ni )

max(|| fθS (ai ) − fθS (pi )||2−

|| fθS (ai ) − fθS (ni )||2 + m, 0)

(1)

where ai is an anchor example (picked randomly), pi is an example with the same
label as the anchor, and ni is an example with a different label from the anchor.
Optimizing Eq. (1) encourages the embedding of ai to be closer to pi than to ni by
at least margin m. If the anchor example is close enough to the positive example pi ,
and far from the negative example ni by a margin of at least m, the max function
returns zero; therefore, the corresponding triplet (ai , pi , ni ) does not contribute to
the loss function. If the margin is smaller than m, then the max function returns
|| fθS (ai ) − fθS (pi )||2 − || fθS (ai ) − fθS (ni )||2 + m. Minimizing this term results in
moving ai toward pi and moving it away from ni in the embedding feature space.
After optimizing the loss term long enough, the samples with the same label are
pulled together and those with different labels are pushed away from each other. As
a result, points of the same label form a single cluster which allows us to efficiently
classify examples using k-nearest neighbors (see Fig. 4).

Algorithm1 shows the procedure of training the source model on the source
dataset for one epoch. Given a batch (XB,YB), for each unique element yi in YB ,
we obtain an anchor ai whose label is yi , a positive example pi whose label is yi ,
and a negative example ni whose label is not yi . Note that set(YB) returns the unique
elements of YB . In our experiments, we obtained the negative example uniformly at
random. However, other methods are possible such as greedily picking the triplet
with the largest loss (as computed by Eq. (1)), and non-uniformly picking triplets
based on their individual loss values. Finally, for each triplet, we compute the loss
and update the parameters of the source model to minimize Eq. (1).

Algorithm 1 Training the source model on the source dataset (single epoch).
1: inputs
2: Source model fθS (·), and source images and labels (XS, YS).
3: for {XB , YB} ∈ (XS, YS) do
4: for yi ∈ set( YB ) do
5: AP ← All image pairs whose label is yi .
6: for each {ai , pi } ∈ AP do
7: ni ← A random sample in XB whose label is not yi .
8: L ← The loss in Eq. (1) using {ai , pi , ni } and fθS (·).
9: Update the parameters θS by backpropagating through L .
10: end for
11: end for
12: end for

Training the target model. Next, we define C as the set of centers corresponding
to the source embedding clusters (represented as red dots in Fig. 5). Each center in
C corresponds to a single label in the source dataset. A center is computed by taking
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the mean of the source embeddings belonging to that center’s label. Then, we train
the target model, parametrized by θT by optimizing the following two loss terms:

L(θT , θD) = LA(θTE , θD)︸ ︷︷ ︸
Adapt

+LC (θT )︸ ︷︷ ︸
C-Magnet

(2)

where θTE corresponds to the parameters of the target model’s encoder; and θD is
the parameter set for a discriminator model we use to adapt the distributions of the
extracted features between the source (S) and target (T ) datasets. We achieve this by
optimizing

LA(θTE , θD) = min
θD

max
θTE

−
∑

i∈S
log DθD (EθS (XSi )) −

∑

i∈T
log (1 − DθD (EθTE

(XTi ))),
(3)

where θSE is the source model encoder’s set of parameters; and D(·) is the discrimi-
nator model which is trained to maximize the probability that the features extracted
by the source model’s encoder come from the source dataset and that the features
extracted by the target model’s encoder come from the target dataset. In other words,
the discriminator D(.) tries to distinguish between the features extracted from the
source dataset and the features from the target dataset by giving higher value (close
to one) to a source dataset feature vector and a lower value (close to zero) to a target
dataset feature vector. Simultaneously, the encoder of the target model is trained
to confuse the discriminator into predicting the target features as coming from the
source dataset. This adversarial learning approach encourages the features extracted
by EθSE

(XSi ) and EθTE
(XTi ) to be indistinguishable in their distributions. For the sake

of brevity, note that we show the loss functions in terms of a single source example
XSi and target example XTi .

In parallel, we minimize the center magnet loss term defined as

LC(θT ) =
∑

i∈T
min

j
|| fθT (xi ) − C j ||2, (4)

which pulls the embeddings of example Xi to the closest cluster center defined in C
(see Fig. 5). The cluster center for a class is obtained by taking the Euclidean mean of
all samples belonging to that class. Since we have 10 classes in MNIST and USPS,
|C | = 10. This regularization term allows the target dataset embeddings to form
clusters that are similar to the clusters formed by the source dataset embeddings. This
is useful when minimizing L(θT , θD) fails to make the target embedding clustered
in a similar way as the source embeddings. For example, in Fig. 2b, we see that the
target embeddings become scattered around the center whenminimizingLA(θT , θD)

only. However, by simultaneously minimizing LC(θT ), we get a better formation of
clusters as seen in Fig. 3b.



M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning 25

Algorithm 2 Training the target model on the target dataset (single epoch).
1: inputs
2: Target model fθT (·), and source and target images and labels (XS, YS, XT , YT ).
3: for {XSB , YSB , XTB , YTB } ∈ (XS, YS, XT , YT ) do
4: Maximize Eq. (3) w.r.t. θD using {XSB , YSB , XTB , YTB }
5: Minimize Eq. (3) w.r.t. θT using {XSB , YSB , XTB , YTB }
6: end for
7: ES ← The embeddings of the source dataset extracted by fθS (·)
8: C ← The cluster centers of ES are obtained by taking the Euclidean mean for each class.
9: for {XTB , YTB } ∈ (XT , YT ) do
10: L ← The loss computed using Eq. (4) and cluster centers C
11: Update parameters θT by backpropagating through L .
12: end for

Algorithm 3 Predicting the labels of the test images.
1: inputs
2: Target model fθT (·), Source model fθT (·), and source and target images and labels.
3: ES ← The embeddings of the source dataset extracted by fθS (·)
4: for {XTB , YTB } ∈ (XT , YT ) do
5: ETB ← The embeddings of XTB extracted by fθT (·)
6: PTB ← The mode label of the k-nearest ES samples.
7: end for

Algorithm2 shows the procedure for training the targetmodel on the target dataset.
Lines 4–5 use Eq. (3) to make the target features and the source features indistin-
guishable. Lines 7–12 update the target model parameters by encouraging the target
embeddings to move to the closest source cluster center. As shown in Algorithm
3, the prediction stage consists of two steps. First, we extract the embeddings of
the source dataset examples using the pretrained source model. Then, the label of
an example XTi is the mode label of the k-nearest source embeddings. This non-
parametric approach allows us to implicitly learn powerful features that are used to
compute the similarities between the examples.

4 Experiments

To illustrate the performance of our method for the unsupervised domain adaptation
task, we apply it on the standard digits dataset benchmark using accuracy as the
evaluation metric. We consider two domains: MNIST and USPS. They consist of 10
classes representing the digits between 0 and 9 (we show some digit examples in
Fig. 6).We follow the experimental setup in [36]where 2000 images are sampled from
MNIST and 1800 from USPS for training. Since our task is unsupervised domain
adaptation, all the images in the target domain are unlabeled. In each experiment,
we ran Algorithm1 for 200 epochs to train our source model. Then, we reported the
accuracy on the target test set after running Algorithm2 for 200 epochs.
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Fig. 6 Dataset. Example images taken from the two digit domains we used in our benchmark

Table 1 Digits adaptation. We evaluate our method on the unsupervised domain adaptation task
on the digits datasets, using the setup in [36]

Method MNIST → USPS USPS → MNIST

Source only (ADDA [36]) 0.752 0.571

Source only (Ours) 0.601 0.679

Gradient reversal [9] 0.771 0.730

Domain confusion [35] 0.791 0.665

CoGAN [21] 0.912 0.891

ADDA [36] 0.894 0.901

M-ADDA (Ours) 0.952 0.940

Table 2 Digits adaptation. We evaluate our method using the setup in [2, 3]

Method MNIST → USPS USPS → MNIST

Source only (Ours) 0.60 0.68

DSN [2] 0.91 –

PixelDA [3] 0.96 –

SimNet [24] 0.96 0.96

M-ADDA (Ours) 0.98 0.97

We also use similar architectures for our models as those in [36]. The encoder
module is the modified LeNet architecture provided in the Caffe source code [19].
The decoder is a simple linear model that transforms the encoded features into 256-
unit embedding vectors. The discriminator consists of three fully connected layers:
two layers with 500 hidden units followed by the final discriminator output. Each of
the 500-unit layers uses a ReLU activation function (Fig. 9).

Table1 shows the results of our experiments on the digits datasets. We see that our
method achieves competitive results compared to previous state-of-the-art methods,
ADDA [36]. This suggests that metric learning allows us to achieve good results
for domain adaptation. Further, Table2 shows the results of our experiments using
the setup in [2, 3] where the full training set was used for both MNIST and USPS.
We see that our method beats recent state-of-the-art methods in the USPS, MNIST
domain adaptation challenge. However, it would be interesting to see the efficacy of
M-ADDA in more complicated tasks such as the VisDA dataset challenge [23]. We
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Fig. 7 Optimizing the triplet loss. (Left) The triplet loss value during the training of the source
model on the USPS and MNIST datasets; (Right) The classification accuracy obtained on the target
datasets

Fig. 8 M-ADDA results. (Left) the t-SNE components of the source embeddings on the MNIST
dataset after training the source model. (Right) the t-SNE components of the target embeddings of
the USPS dataset after training the target model. The stars represent the cluster centers of the source
embeddings. The colors represent different labels

show in Fig. 7 (left) the triplet loss value during the training of the sourcemodel on the
USPS and MNIST datasets. Further, Fig. 7 (right) shows the classification accuracy
obtained on the target datasets with respect to the number of epochs. Higher accuracy
was obtained for USPS when the model was trained on MNIST, which is expected
since MNIST consists of more training examples (Fig. 8).

In Table3, we compare between twomain variations for training the target model.
Center magnet only updates the target model using Eq. (4); therefore, it ignores the
adversarial training part of Eq. (3). Using center magnet only to train the target
model results in poor performance. This is expected since the performance highly
depends on the initial clustering. We see in Fig. 10 (right) that several source cluster
centers (represented as stars) contain samples corresponding to different labels. For
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Table 3 Ablation studies. Impact of the loss terms on the classification accuracy of the target
model

Method MNIST → USPS USPS → MNIST

Center magnet only 0.77 0.85

Adversarial adaptation only 0.93 0.92

M-ADDA 0.98 0.97

Fig. 9 Ablation studies. (Left) the classification accuracy on MNIST using variations of the loss
function (2); (Right) the classification accuracy on USPS using variations of the loss function (2).
NOCENTER refers to optimizing Eq. (3) only, and NODISC refers to optimizing Eq. (4) only. The
blue lines refer to the result of optimizing Eq. (2)

Fig. 10 Center magnet optimization only. The stars represent the cluster centers of the source
embeddings
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Fig. 11 Adversarial optimization only. The stars represent the cluster centers of the source
embeddings

example, the samples with the pink label are clustered with those of the green label.
Similarly, those with the orange label are clustered with those of the teal label. This is
expected since the target model is encouraged to move the embeddings to the nearest
cluster centers without having to match the extracted feature distributions between
the source and target datasets (Fig. 9).

Using only the adversarial adaptation loss improves the results significantly, since
having the extracted features distribution between the source and target similar is
crucial. However, we see in Fig. 11 (right) that some samples are far from any cluster
centerwhichmakes their class labels ambiguous, namely the pink and yellow samples
that are in the center between the yellow and pink cluster centers. To address these
ambiguities, the center magnet loss helps the model to regularize against them. As
a result, we see in Fig. 8 (right) that better clusters are formed when we optimize
the whole loss function defined in Eq. (2). This suggests that M-ADDA has strong
potential in addressing the task of unsupervised domain adaptation.

5 Conclusion

We propose M-ADDA, which is a metric learning based method, to address the task
of unsupervised domain adaptation. The framework consists of twomain steps. First,
a triplet loss is used to pretrain the source model on the source dataset. Then, we
adversarially train a target model to adapt the distributions of its extracted features
to match those of the source model. In parallel, we optimize a center magnet loss to
regularize the output embeddings of the target model so that they form clusters that
have a similar structure as that of the source model’s output embeddings. We showed
that this approach can perform significantly better than ADDA [36] on the digits
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adaptation dataset of MNIST and USPS. For future work, it would be interesting
to apply these methods on more complicated datasets such as those in the VisDA
challenge.
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Abstract Image translation refers to the task of mapping images from a visual
domain to another. Given two unpaired collections of images, we aim to learn a
mapping between the corpus-level style of each collection,while preserving semantic
content shared across the two domains. We introduce xgan, a dual adversarial auto-
encoder, which captures a shared representation of the common domain semantic
content in an unsupervised way, while jointly learning the domain-to-domain image
translations in both directions.We exploit ideas from the domain adaptation literature
and define a semantic consistency loss which encourages the learned embedding to
preserve semantics shared across domains. We report promising qualitative results
for the task of face-to-cartoon translation. The cartoon dataset we collected for this
purpose, “CartoonSet”, is also publicly available as a new benchmark for semantic
style transfer at https://google.github.io/cartoonset/index.html.
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1 Introduction

Image-to-image translation—learning to map images from one domain to another—
covers several classical computer vision tasks such as style transfer (rendering an
image in the style of a given input [4]), colorization (mapping grayscale images to
color images [26]), super-resolution (increasing the resolutionof an input image [13]),
or semantic segmentation (inferring pixel-wise semantic labeling of a scene [18]).
Learning suchmappings requires an underlying understanding of the shared informa-
tion between the two domains. In many cases, supervision encapsulates this knowl-
edge in the form of labels or paired samples. This holds, for instance, for colorization,
where ground-truth pairs are easily obtained by generating grayscale images from
colored inputs.

In thiswork,we consider the task of unsupervised semantic style transfer: learning
tomap an image fromone domain into the style of another domainwithout altering its
semantic content (see Fig. 1). In particular, we experiment on the task of translating
faces to cartoons. Note that without loss of generality, a photo of a face can bemapped
to many valid cartoons, and vice-versa. Semantic style transfer is, therefore, amany-
to-many mapping problem, for which obtaining labeled examples are ambiguous and
costly. Furthermore, in this unsupervised settingwe do not have access to supervision
on shared domain semantic content (e.g., facial attributes such as hair color, eye
color, etc.). Instead, we propose an encoder–decoder structure with a bottleneck
embedding shared across the two domains to capture common semantics as a latent
representation.

Thekey issue is thus to learn an embedding that preserves semantic facial attributes
(hair color, eye color, etc.) between the two domains with little supervision, and to
incorporate it within a generative model to produce the actual domain translations.
Although this chapter specifically focuses on the face-to-cartoon setting, many other

Fig. 1 Semantic style transfer is the task of adapting an image to the visual appearance of another
domain without altering its semantic content given only two unpaired image collections without
pairs supervision (left). We define semantic content as characteristic attributes which are shared
across domains but do not necessarily appear the same at the pixel-level. For instance, cartoons
and faces have a similar range of hair color but with very different appearances, e.g., blonde hair is
bright yellow in cartoons. The proposed xgan applied on the face-to-cartoon task yields a shared
representation that preserves important face semantics such as hair style or face shape (right)
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examples fall under this category: mapping landscape pictures to paintings (where
the different scene objects and their composition describe the input semantics), trans-
forming sketches to images, or even cross-domain tasks such as generating images
from text. We only rely on two unlabeled training image collections or corpora, one
for each domain, with no known image pairings across domains. Hence, we are faced
with a double domain shift, first in terms of global domain appearance, and second
in terms of the content distribution of the two collections.

Recent work [1, 6, 10, 25, 27] report good performance usingGAN-basedmodels
for unsupervised image-to-image translation when the two input domains share sim-
ilar pixel-level structure (e.g., horses and zebras) but fail for more significant domain
shifts (e.g., dogs and cats). Perhaps the best known recent example is CycleGAN [27].
Given two image domains D1 and D2, the model is trained with a pixel-level cycle-
consistency loss which ensures that the mapping g1→2 from D1 to D2 followed by
its inverse, g2→1, yields the identity function; i.e., ., g1→2 ◦ g2→1 = id. We argue
that such a pixel-level constraint is not sufficient in our setting and that we rather
need a constraint in feature space to allow for more permissive transformations of
the pixel input. To this end, we propose xgan (“Cross-GAN”), a dual adversarial
auto-encoder which learns a shared semantic representation of the two input domains
in an unsupervised way, while jointly learning both domain-to-domain translations.
More specifically, the domain translation g1→2 consists of an encoder e1 taking inputs
inD1, followed by a decoder d2 with outputs inD2 (and likewise for g2→1) such that
e1 and e2, as well as d1 and d2, are partially shared across domains.

Themain novelty lies in howwe constrain the shared embedding using techniques
from the domain adaptation literature, as well as a novel semantic consistency loss.
The latter ensures that the domain-to-domain translations preserve the semantic rep-
resentation, i.e., ., that e1 ≈ e2 ◦ g1→2 and e2 ≈ e1 ◦ g2→1. Therefore, it acts as a
form of self-supervision which alleviates the need for paired examples and preserves
semantic feature-level information rather than pixel-level content. In the following
section, we review relevant recent work before discussing the xgan model in more
detail in Sect. 3. In Sect. 4, we introduce CartoonSet, our dataset of cartoon faces
for research on semantic style transfer. Finally, in Sect. 5 we report experimental
results of xgan on the face-to-cartoon task.

2 Related Work

Recent literature suggests twomain directions for tackling the semantic style transfer
task: traditional style transfer and pixel-level domain adaptation. The first approach
is inadequate as it only transfers texture information from a single style image, and
therefore does not capture the style of an entire corpus. The latter category also
fails in practice as it explicitly enforces pixel-level similarity which does not allow
for significant structural change of the input. Instead, we draw inspiration from the
domain adaptation and feature-level image-to-image translation literature.
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Style Transfer. Neural style transfer refers to the task of transferring the texture of
a specific style image while preserving the pixel-level structure of an input content
image [4, 9]. Recently, [14, 15] proposed to instead use a dense local patch-based
matching approach in the feature space, as opposed to global featurematching, allow-
ing for convincing transformations between visually dissimilar domains. Still, these
models only perform image-specific transfer rather than learning a global corpus-
level style and do not provide a meaningful shared domain representation. Further-
more, the generated images are usually very close to the original input in terms of
pixel structure (e.g., edges) which is not suitable for drastic transformations such as
face-to-cartoon.

Domain adaptation. xgan relies on learning a shared feature representation of both
domains in an unsupervised setting to capture semantic rather than pixel informa-
tion. For this purpose, we make use of the domain-adversarial training scheme [3].
Moreover, recent domain adaptation work [1, 2, 22] can be framed as semantic style
transfer as they tackle the problem of mapping synthetic images, easy to generate, to
natural images, which are more difficult to obtain. The generated samples are then
used to train a model later applied to natural images. Contrary to our work, however,
they only consider pixel-level transformations.

Unsupervised Image-to-Image translation. Recent work [6, 10, 25, 27] tackle the
unsupervised pixel-level image-to-image translation task by learning both cross-
domain mappings jointly, each as a separate generative adversarial network, via a
cycle-consistency loss which ensures that applying each mapping followed by its
reverse yields the identity function. This intuitive form of self-supervision leads
to good results for pixel-level transformations but often fails to capture significant
structural changes [27]. In comparison, our proposed semantic consistency loss acts
at the feature-level, allowing for more flexible transformations.

Orthogonal to this line of work is UNIT [7, 16, 19]. This model consists of a
coupled VAEGAN architecture [12, 17] with a shared embedding bottleneck, trained
with pixel-level cycle-consistency. Similar to xgan, it learns a joint feature-level
representation of the two domains, however, UNIT assumes that sharing high-level
layers in the architecture is a sufficient constraint, while xgan’s objective explicitly
introduces the semantic consistency component.

Finally, the Domain Transfer Network (DTN) [23, 24] is closest to our work in
terms of objective and applications. The DTN architecture is a single auto-encoder
trained tomap images from a source to a target domain with self-supervised semantic
consistency feedback. It was also successfully applied to the problem of feature-level
image-to-image translation, in particular to the face-to-cartoon problem. Contrary to
xgan however, the DTN encoder is pretrained and fixed, and is assumed to produce
meaningful embeddings for both the face and the cartoon domains. This assumption
is very restrictive, as off-the-shelf models pretrained on natural images do not usually
generalize well to other domains. In fact, we show in Sect. 5 that a fixed encoder does
not generalize well in the presence of a large domain shift between the two domains.
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Fig. 2 The xgan (A) objective encourages the model to learn a meaningful joint embedding
(B1) (Lrec , and Ldann), which should be preserved through domain translation (B2) (Lsem ), while
producing output samples of good quality (B3) (Lgan and Lteach)

3 Proposed Model: XGAN

Let D1 and D2 be two domains that differ in terms of visual appearance but share
common semantic content. It is often easier to think of domain semantics as a high-
level notion, e.g., semantic attributes, however, we do not require such annotations
in practice, but instead consider learning a feature-level representation that automat-
ically captures these shared semantics. Our goal is thus to learn in an unsupervised
fashion, i.e., ., without paired examples, a joint domain-invariant embedding: seman-
tically similar inputs across domains will be embedded nearby in the learned feature
space.

Architecture-wise, xgan is a dual auto-encoder on domains D1 and D2 Fig. 2A.
We denote by e1 the encoder and by d1 the decoder for domain D1; likewise e2 and
d2 forD2. For simplicity, we also denote by g1→2 = d2 ◦ e1 the transformation from
D1 to D2; likewise g2→1 for D2 to D1.

The training objective can be decomposed into five main components: the recon-
struction loss,Lrec, encourages the learned embedding to encode meaningful knowl-
edge for each domain; the domain-adversarial loss, Ldann , pushes embeddings from
D1 andD2 to lie in the same subspace, bridging the domain gap at the semantic level;
the semantic consistency loss, Lsem , ensures that input semantics are preserved after
domain translation;Lgan is a simple generative adversarial (GAN) objective, encour-
aging the model to generate more realistic samples, and finally, Lteach is an optional
teacher loss that distils prior knowledge from a fixed pretrained teacher embedding,
when available. The total loss function is defined as a weighted sum over these five
loss terms:

Lxgan = Lrec + ωdLdann + ωsLsem + ωgLgan + ωtLteach,
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where the ω hyperparameters control the contributions from each of the individual
objectives. An overview of themodel is given in Fig. 2, and we discuss each objective
in more detail in the rest of this section.

Reconstruction loss, Lrec. Lrec encourages the model to encode enough information
on each domain to perfectly reconstruct the input. More specifically Lrec = Lrec,1 +
Lrec,2 is the sum of reconstruction losses for each domain.

Lrec,1 = Ex∼pD1
(‖x − d1(e1(x))‖2) , likewise for domain D2 (1)

Domain-adversarial loss, Ldann . Ldann is the domain-adversarial loss between D1

andD2, as introduced in [3]. It encourages the embeddings learned by e1 and e2 to lie
in the same subspace. In particular, it guarantees the soundness of the cross-domain
transformations g1→2 and g2→1. More formally, this is achieved by training a binary
classifier, cdann , on top of the embedding layer to categorize encoded images from
both domains as coming from either D1 or D2 (see Fig. 2B1). cdann is trained to
maximize its classification accuracy while the encoders e1 and e2 simultaneously
strive to minimize it, i.e., ., to confuse the domain-adversarial classifier. Denoting
model parameters by θ and a classification loss function by � (e.g., cross-entropy),
we optimize

min
θe1 ,θe2

max
θdann

Ldann, where (2)

Ldann = EpD1
�(1, cdann(e1(x))) + EpD2

� (2, cdann(e2(x)))

Semantic consistency loss, Lsem . Our key contribution is a semantic consistency
feedback loop that acts as self-supervision for the cross-domain translations g1→2

and g2→1. Intuitively, we want the semantics of input x ∈ D1 to be preserved when
translated to the other domain, g1→2(x) ∈ D2, and similarly for the reverse mapping.
However, this consistency property is hard to assess at the pixel-level as we do
not have paired data and pixel-level metrics are suboptimal for image comparison.
Instead, we introduce a feature-level semantic consistency loss, which encourages
the network to preserve the learned embedding during domain translation. Formally,
Lsem = Lsem,1→2 + Lsem,2→1, where

Lsem,1→2 = Ex∼pD1
‖e1(x) − e2(g1→2(x))‖, likewise for Lsem,2→1. (3)

‖ · ‖ denotes a distance between vectors.

GAN objective, Lgan . We find that generating realistic image transformations has
a crucial positive effect for learning a joint meaningful and semantically consistent
embedding as the produced samples are fed back through the encoders when comput-
ing the semantic consistency loss: making the transformed distribution p(g2→1(D2))

as close as possible to the original domain p(D1) ensures that the encoder e1 does
not have to cope with an additional domain shift.
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Thus, to improve sample quality, we add a generative adversarial loss [5] Lgan =
Lgan,1→2 + Lgan,2→1, where Lgan,1→2 is a state-of-the-art GAN objective [5] where
the generator g1→2 is paired against the discriminator D1→2 (and likewise for g2→1

and D2→1). In this scheme, a discriminator D1→2 strives to distinguish generated
samples from real ones inD2, while the generator g1→2 aims to produce samples that
confuse the discriminator. The formal objective is

min
θg1→2

max
θD1→2

Lgan,1→2 (4)

Lgan,1→2 = Ex∼pD2
(log(D1→2(x))) + Ex∼pD1

(log(1 − D1→2(g1→2(x))))

Likewise, Lgan,2→1 is defined for the transformation from D2 to D1.
Note that the combination of theLgan andLsem objectives should subsume the role

of the domain-adversarial loss Ldann in theory. However, Ldann plays an important
role at the beginning of training to bring embeddings across domains closer, as the
generated samples are typically poor and not yet representative of the actual input
domains D1 and D2.

Teacher loss,Lteach .We introduce an optional component to incorporate prior knowl-
edge in the model when available, e.g., in a semi-supervised setting. Lteach encour-
ages the learned embeddings to lie in a region of the subspace defined by the output
representation of a pretrained teacher network, T . In other words, we distils feature-
level knowledge from T and constrains the embeddings to a more meaningful sub-
region, relative to the task on which T was trained. This can be seen as a form of
regularization of the learned embedding. Moreover, Lteach is asymmetric by defi-
nition. It should not be used for both domains simultaneously as each term would
potentially push the learned embedding in two different directions. Formally, Lteach

(applied to domain D1) is defined as

Lteach = Ex∼pD1
‖T (x) − e1(x)‖, (5)

where ‖ · ‖ is a distance between vectors.

3.1 Architecture and Training Procedure

We use a simple mirrored convolutional architecture for the auto-encoder. It con-
sists of five convolutional blocks for each encoder, the two last ones being shared
across domains, and likewise for the decoders (five deconvolutional blocks with the
two first ones shared). This encourages the model to learn shared representations
at different levels of the architecture rather than only in the middle layer. A more
detailed description is given in Table1. For the teacher network, we use the highest
convolutional layer of FaceNet [21], a state-of-the-art face recognition model trained
on natural images.
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Table 1 Overview of the XGAN architecture used in practice. The encoder and decoder have the
same architecture for both domains, and (//) indicates that the layer is shared across domain

Layer Size

Inputs 64x64x3

conv1 32x32x32

conv2 16x16x64

(//) conv3 8x8x128

(//) conv4 4x4x256

(//) FC1 1x1x1024

(//) FC2 1x1x1024

(a) Encoder

Layer Size

Inputs 1x1x1024

(//) deconv1 4x4x512

(//) deconv2 8x8x256

deconv3 16x16x128

deconv4 32x32x64

deconv5 64x64x3

(b) Decoder

Layer Size

Inputs 64x64x3

conv1 32x32x16

conv2 16x16x32

conv3 8x8x32

conv4 4x4x32

FC1 1x1x1

(c) Discriminator

The xgan training objective is to minimize (Eq.1). In particular, the two adver-
sarial losses (Lgan and Ldann) lead to min-max optimization problems requiring
careful optimization. For the GAN loss Lgan , we use a standard adversarial training
scheme [5]. Furthermore, for simplicity we only use one discriminator in practice,
namely, D1→2 which corresponds to the face-to-cartoon path, our target application.
We first update the parameters of the generators g1→2 and g2→1 in one step. We then
keep these fixed and update the parameters for the discriminator D1→2.We iterate this
alternating process throughout the training. The adversarial training scheme forLdann

can be implemented in practice by connecting the classifier cdann and the embedding
layer via a gradient reversal layer [3]: the feed-forward pass is unaffected, however,
the gradient is backpropagated to the encoders with a sign-inversion representing the
min-max alternation. We perform this update simultaneously when computing the
generator parameters. Finally, we train the model with Adam optimizer [11] and an
initial learning rate of 1e-4.

4 The CartoonSet Dataset

Although previouswork has tackled the task of transforming frontal faces to a specific
cartoon style, there is currently no such dataset publicly available. For this purpose,
we introduce a new dataset, CartoonSet,1 which we release publicly to further aid
research on this topic.

Each cartoon face is composed of 16 components including 12 facial attributes
(e.g., facial hair, eye shape, etc), and 4 color attributes (such as skin or hair color)
which are chosen from a discrete set of RGB values. The number of options per
attribute category ranges from 3 to 111, for the largest category, hairstyle. Each

1CartoonSet, https://github.com/google/cartoonset.

https://github.com/google/cartoonset
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of these components and their variation were drawn by the same artist, resulting
in approximately 250 cartoon components artworks and 108 possible combinations.
The artwork components are divided into a fixed set of layers that define a Z-ordering
for rendering. For instance, face shape is defined on a layer below eyes and glasses,
so that the artworks are rendered in the correct order. For instance, hairstyle needs to
be defined on two layers, one behind the face and one in front. There are eight total
layers: hair back, face, hair front, eyes, eyebrows, mouth, facial hair, and glasses. The
mapping from attribute to artwork is also defined by the artist such that any random
selection of attributes produces a visually appealing cartoon without any misaligned
artwork, which sometimes involves handling interaction between attributes, e.g., the
appearance of “short beard” will change depending on the face shape. For example,
the proper way to display a “short beard” changes for different face shapes, which
required the artist to create a “short beard” artwork for each face shape. We create
the CartoonSet dataset from arbitrary cartoon faces by randomly sampling value for
each attribute. We then filter out unusual hair colors (pink, green, etc) or unrealis-
tic attribute combinations, which results in a final dataset of approximately 9, 000
cartoons. In particular, the filtering step guarantees that the dataset only contains
realistic cartoons, while being completely unrelated to the source dataset.

5 Experiments

We experimentally evaluate our xganmodel on semantic style transfer; more specif-
ically, on the task of converting images of frontal faces (source domain) to images
of cartoon avatars (target domain) given an unpaired collection of such samples in
each domain. Our source domain is composed of real-world frontal-face images from
the VGG-Face dataset [20]. In particular, we use an image collection consisting of
18,054 uncropped celebrity frontal face pictures. As a preprocessing step, we align
the faces based on eyes and mouth location and remove the background. The target
domain is the CartoonSet dataset introduced in the previous section. Finally, we ran-
domly select and take out 20% of the images from each dataset for testing purposes,
and use the remaining 80% for training. For our experiments, we also resize all
images to 64 × 64. As shown in Figs. 3 and 4, the two domains vary significantly in

Fig. 3 Random samples from our cartoon dataset, CartoonSet

Fig. 4 Random centered aligned samples from VGG-Face. We preprocess them with automatic
portrait matting to avoid dealing with background noise
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Fig. 5 Selected samples generated by xgan on the VGG-Face (left) to CartoonSet (right) task.
The figure reads row-wise: for each face-cartoon pair, the target image (cartoon) on the right was
generated from the source image (face) on the left

appearance. In particular, cartoon faces are rather simplistic compared to real faces
and do not display as much variety (e.g., noses or eyebrows only have a few shape
options). Furthermore, we observe a major content distribution shift between the two
domains due to the way we collected the data: for instance, certain hair color shades
(e.g., bright red, gray) are overrepresented in the cartoon domain compared to real
faces. Similarly, the cartoon dataset contains many samples with eyeglasses while
the source dataset only has a few (Fig. 5).

Comparison to the DTN baseline. Our first evaluation is a qualitative comparison
between the Domain Transfer Network (DTN) [23] and xgan on the semantic style
transfer problem outlined above. To the best of our knowledge, DTN is the current
state of the art for semantic style transfer given unpaired image corpora from two
domains with significant visual shift. In particular, DTN was also applied to the task
of transferring face pictures to cartoons (bitmojis) in the original chapter.2 Figure6
shows the results of bothDTN and xgan applied to randomVGG-Face samples from
the test set to produce their cartoon counterpart. Evaluation metrics for style transfer
are still an active research topicwith no good unbiased solution yet. Hence,we choose
optimal hyperparameters by manually evaluating the quality of resulting samples,
focusing on accurate transfer of semantic attributes, similarity of the resulting sample
to the target domain, and crispness of samples.

It is clear from Fig. 6 that DTN fails to capture the transformation function that
semantically stylizes frontal faces to cartoons from our target domain. In contrast,
XGAN is able to produce sensible cartoons both in terms of the style domain—the
resulting cartoons look crisp and respect the specific CartoonSet style—and in terms
of semantic similarity to the input samples from VGG-Face. There are some failure
cases such as hair or skin color mismatch, which emerge from the weakly supervised
nature of the task and the significant content shift between the two domains (e.g.,
red hair is overrepresented in the target cartoon dataset). In Fig. 5 we report selected
xgan samples that we think best illustrate its semantic consistency abilities, showing
that the model learns ameaningful shared representation that preserves common face
semantics. Additional random samples are also reported in Fig. 7.

2The original DTN code and dataset is not publicly available, hence, we instead report results from
our implementation applied to the VGG-Face to CartoonSet setting.
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Fig. 6 A qualitative comparison between DTN and xgan. In both cases we present random test
samples for the face-to-cartoon transformation. The tables are organized row-wise where each face
input is mapped to the cartoon face immediately on its right

We believe the failure of DTN is primarily due to its assumption of a fixed joint
encoder for both domains. Although the decoder learns to reconstruct inputs from the
target domain almost perfectly, the semantics are not well preserved across domains
and the decoder yields samples of poor quality for the domain transfer. In fact,
FaceNet was originally trained on real faces inputs, hence there is no guarantee
that it can produce a meaningful representation for CartoonSet samples. In contrast
to our dataset, the target bitmoji domain in [23] is visually closer to real faces, as
bitmojis are more realistic and customizable than the cartoon style domain we use
here. This might explain the original work performance even with a fixed encoder.
Our experiments suggest that using a fixed encoder is too restrictive and does not
adapt well to new scenarios. We also train a DTN with a fine-tuned encoder which
yields samples of better quality than the original DTN. However, this setup is very
sensitive to hyperparameters choice during training and prone to mode collapse.

Comparison to CycleGAN. As we havementioned in the related work section, Cycle-
GAN [27], DiscoGAN [10], and DualGAN [25] form another family of closely
related work for image-to-image translation problems. However, differently from
DTN and the proposed XGAN, these models only consider a pixel-level cycle-
consistency loss and do not use a shared domain embedding. Consequently, they
fail to capture high-level shared semantics between significantly different domains.
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Fig. 7 Random samples obtained by applying xgan on faces and cartoons from the testing set for
both cross-domain mappings

To explore this problem, we experiment with CycleGAN3 on the face-to-cartoon
task. We train a CycleGAN with a pix2pix [8] generator as in the original chapter,
which is close to the generator we use in XGAN in terms of architecture choices and
size (depth and width of the network). As shown in Fig. 8, this approach yields poor
results, which is explained by the explicit pixel-level cycle-consistency loss and the
fact that the pix2pix architecture contains backward connections (U-net) between
the encoder and the decoder; both these features enhance pixel structure similarities
which are not desirable for this task.

3CycleGAN-tensorflow, https://github.com/xhujoy/CycleGAN-tensorflow.

https://github.com/xhujoy/CycleGAN-tensorflow
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Fig. 8 The default CycleGANmodel is not suitable for transformation between domains with very
dissimilar appearances as it enforces pixel-level structural similarities

Ablation study.We conduct a number of insightful ablation experiments on xgan.We
first consider training only with the reconstruction loss Lrec and domain-adversarial
lossLdann . In fact, these form the core domain adaptation component in xgan and, as
we will show, are already able to capture basic semantic knowledge across domains
in practice. Second, we experiment with the semantic consistency loss and teacher
loss. We show that both have complementary constraining effects on the embedding
space which contributes to improving the sample consistency.

We first experiment on xganwith only the reconstruction and domain-adversarial
losses active. These components prompt the model to (i) encode enough information
for each decoder to correctly reconstruct images from the corresponding domain and
(ii) to ensure that the embedding lies in a common subspace for both domains. In
practice in this setting, the model is robust to hyperparameter choice and does not
require much tuning to converge to a good regime, i.e., ., low reconstruction error
and around 50% accuracy for the domain-adversarial classifier. As a result of (ii),
applying each decoder to the output of the other domain’s encoder yields reasonable
cross-domain translations, albeit of low quality (see Fig. 9). Furthermore, we observe
that some simple semantics such as skin tone or gender are overall well preserved
by the learned embedding due to the shared auto-encoder structure. For comparison,
failure modes occur in extreme cases, e.g., when the model capacity is too small, in
which case transferred samples are of poor quality, or when the weight ωd is too low.
In the latter case, the source and target embeddings are easily distinguishable and
the cross-domain translations do not look realistic.

Second,we investigate the benefits of adding semantic consistency inxgan via the
following three components: sharing high-level layers in the auto-encoder leads the
model to capture common semantics earlier in the architecture. In general, high-level
layers in convolutional neural networks are known to encode semantic information.
We performed experiments with sharing only the middle layer in the dual auto-
encoder. As expected, the resulting embedding does not capture relevant shared
domain semantics. Second, we use the semantic consistency loss as self-supervision
for the learned embedding, ensuring that it is preserved through the cross-domain
transformations. It also reinforces the action of the domain-adversarial loss as it
constrains embeddings from the two input domains to lie close to each other. Finally,
the optional teacher loss leads the learned source embedding to lie near the teacher
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Fig. 9 Test results for xgan with the reconstruction (Lrec) and domain-adversarial (Ldann) losses
active only in the training objective Lxgan

Fig. 10 Results of ablating the teacher loss (Lteach ) (top) and semantic consistency loss (Lsem )
(bottom) in the xgan objective Lxgan

output (in our case, FaceNet’s representation layer), which is meant for real faces. It
acts in conjunction with the domain-adversarial loss and semantic consistency loss,
whose role is to bring the source and target embedding distributions closer to each
other.

In Fig. 10 we report random test samples for both domain translations when ablat-
ing the teacher loss and semantic consistency loss, respectively. While it is hard to
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draw conclusions from visual inspections, it seems that the teacher network has
a positive regularization effect on the learned embedding by guiding it to a more
realistic region: training the model without the teacher loss (Fig. 10a) yields more
distorted samples, especially when the input is an outlier, e.g., person wearing a hat,
or cartoons with unusual hairstyle. Conversely, when the semantic consistency is
inactive (Fig. 10b), the generated samples overall display less variety. In particular,
rare attributes (e.g., unusual hairstyle) are not as well preserved as when the semantic
consistency term is present.

Discussions and Limitations. Our initial aimwas to tackle the semantic style transfer
problem in a fully unsupervised framework by combining techniques from domain
adaptation and image-to-image translation:We first observe that using a simple setup
where a partially shared dual auto-encoder is trainedwith reconstruction and domain-
adversarial losses already suffice to produce an embedding that captures basic seman-
tics rather well (for instance, skin tone). However, the generated samples are of poor
quality and fine-grained attributes such as facial hair are not well captured. These
two problems are greatly diminished after adding the GAN loss and the proposed
semantic consistency loss, respectively. Failure cases still exist, especially on non-
representative input samples (e.g., a person wearing a hat) which are mapped to
unrealistic cartoons. Adding the teacher loss mitigates this problem by regularizing
the learned embedding, however, it requires additional supervision and makes the
model dependent on the specific representation provided by the teacher network.

Future work will focus on evaluating xgan on different domain transfer tasks. In
particular, thoughwe introduced xgan for semantic style transfer,we think themodel
goes beyond this scope and can be applied to classical domain adaptation problems,
where quantitative evaluation becomes possible: while the pixel-level transforma-
tions are not necessary for learning the shared embedding, they are beneficial for
learning a meaningful representation across visual domains, when combined with
the self-supervised semantic consistency loop.

6 Conclusions

In this work, we introduced xgan, a model for unsupervised domain translation
applied to the task of semantically consistent style transfer. In particular,we argue that
similar to the domain adaptation task, learning image-to-image translation between
two structurally different domains requires learning a high-level joint semantic rep-
resentation while discarding local pixel-level dependencies. Additionally, we pro-
posed a semantic consistency loss acting on both domain translations as a form of
self-supervision.
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We reported promising experimental results on the task of face-to-cartoon that
outperform the current baseline. We also showed that additional weak supervision,
such as a pretrained feature representation, can easily be added to the model in the
form of teacher knowledge. It acts as a good regularizer for the learned embeddings
and generated samples. This is particularly useful for natural image datasets, for
which off-the-shelf pretrained models are abundant.
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Abstract Learning from small amounts of labeled data is a challenge in the area of
deep learning. This is currently addressed by Transfer Learning, where one learns
the small dataset as a transfer task from a larger source dataset. Transfer Learning
can deliver higher accuracy if the hyperparameters and source dataset are chosen
well. One of the important parameters is the learning rate for the layers of the neural
network. We show through experiments on the ImageNet22k and Oxford Flowers
datasets that improvements in accuracy in range of 127% can be obtained by proper
choice of learning rates. We also show that the images/label parameter for a dataset
can potentially be used to determine optimal learning rates for the layers to get the
best overall accuracy.We additionally validate this method on a sample of real-world
image classification tasks from a public visual recognition API.
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Fig. 1 Impact of data size on learning accuracy

1 Introduction

Deep Learning has become all pervasive in many application domains like Vision,
Speech, and Natural Language Processing [13]. This can be partly attributed to
the availability of fast processing units like GPUs as well as better neural network
designs. The availability of large, open source, general-purpose labeled data has also
helped the penetration of Deep Learning into these domains.

The accuracy obtained on a learning task depends on the quality and quantity of
training data. As Fig. 1 shows, with larger amounts of data, for the same learning
task, one can obtain much better accuracy. In this figure, the accuracy obtained on
various categories of ImageNet22K [5] are shown with the big data being 10x bigger
in size than the small data. While large, open source, general purpose, labeled data is
available, customers often have specific needs for training. For example, a doctormay
be interested in using Deep Learning for Melanoma Detection [4]. The amount of
labeled data available in these specific areas is rather limited. In situations like these,
the training accuracy can be negatively impacted if trained with only this limited
data. To alleviate this problem, one can fall back on Transfer Learning [14, 17].

In Transfer Learning, one takes a model, trained on a potentially large dataset
(called the source dataset) and then learns a new, smaller dataset (called the target
dataset) as a transfer task (T) on it. This can be achieved by fine-tuning the weights of
neurons in the pretrained model using the target dataset. Fine-tuning is a technique
to leverage the information contained in a source dataset by tweaking the weights
of its pretrained network while training the model for a target dataset. It has been
shown that models trained on the source dataset learn basic concepts which will be
useful in learning the target dataset [18].



Improving Transferability of Deep Neural Networks 53

Fig. 2 Impact of base model on transfer learning accuracy

In the area of vision, the neural networks tend to be quite deep in terms of layers
[10]. It has been shown that the layers learn different concepts. The initial layers
learn very basic concepts like color, edges, shapes, and textures while later layers
learn complex concepts [12]. The last layer tends to learn to differentiate between
the labels supported by the source dataset.

The key challenges to Transfer Learning are how, what, and when to transfer [17].
One needs to address key questions like the selection of the source dataset, the neural
network to use, the various hyperparameter settings as well as the type of training
method to apply on the selected neural network and dataset. Figure2 shows the
accuracy obtained while training on the Tool category of ImageNet22K on models
created from different source categories of ImageNet22K like Sports, Animals, Plant
as well as random initialization. As the figure indicates, accuracy varied from −8%
to +67% improvement over the random initialization (no Transfer Learning) case.

When performing Transfer Learning using deep learning, a popular method of
training is using Stochastic Gradient Descent (SGD) [3]. In SGD, the key hyper-
parameters to control the descent are the block size, the step size, and the learning
rate. In the case of Transfer Learning, the learning rate can be set for every layer
of the neural network. This controls how much the weights in each layer change as
training progresses on the target dataset. A lower learning rate for a layer allows the
layer to retain what it has learned from the source data longer. Conversely, a higher
learning rate forces the layer to relearn those weights quicker for the target dataset.
For Transfer Learning, the concepts learned in the early layers tend to have high
value since the source dataset is typically large, and the early layers represent lower
level features that are transferable to the target task. If the rates are large, then the
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weights could change significantly and the neural network could overlearn on the
target task, especially if the target task has a limited amount of training data. The
accuracy that is obtained on the target task depends on the proper selection of all
these parameters.

In this chapter, we study the impact of individualized layer learning rates on the
accuracy of training. We use a large dataset called ImageNet22K [5] and a small
dataset called the Oxford Flowers [15] for our experiments. These experiments are
done on a deep residual network [10]. We show that the number of images per label
plays an important role in the choice of the learning rate for a layer. We also share
preliminary results on real-world image classification tasks which indicate graduated
learning rates across a network, such that early layers change slowly and allow for
better accuracy on the target dataset.

The chapter is organized as follows: InSect. 2,wedescribe relatedwork. InSects. 3
and 4 we describe our experimental setup and present our results, respectively. We
conclude in Sect. 5.

2 Related Work

Several approaches are proposed to deal with the problem of learning with small
amounts of data. These include one-shot learning [8], zero-shot learning [16], mul-
titask learning [1, 7], and generic transfer learning [2, 9, 18].

Multitask learning simultaneously trains the network for multiple related tasks by
finding a shared feature space [1]. An example is NeuralMachine Translation (NMT)
where the same network is used for translation to different languages [7]. In [9] a joint
fine-tuning approach is proposed to tackle the problem of training with insufficient
labeled data. The basic idea is to select a subset of training data from source dataset
(with similar low-level features as target dataset) and use it to augment the training
dataset for target task. Here, the convolutional layers of the resulting network are
fine-tuned for both the source and target tasks. Our work is targeted for scenarios
where source dataset is not accessible and fine-tuning is only possible using a target
dataset.

It was established in [18] that fine-tuning all the layers of the neural network
gives the best accuracy. However, there is no study on the sensitivity of accuracy to
the degree of fine-tuning. In [2] it is experimentally shown for one dataset that the
accuracy of a (fine-tuned) model monotonically increases with increasing learning
rate and then decreases, indicating existence of an optimal learning rate before over-
learning happens. We studied variation in accuracy of model with learning rate used
in fine-tuning for several datasets and observed non-monotone patterns.

Another popular form of Transfer Learning is by using deep feature embeddings
from a neural network to drive binary Support Vector Machines (SVMs) [2, 6]. In
this approach, there are as many SVMs as categories in the target dataset and each
SVM learns to classify a particular label. The feature embeddings can be taken from
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any layer of the neural network but, in general, is taken from the penultimate layer.
This is equivalent of fine-tuning with the learning rate multipliers of all the inner
layers up to the penultimate layer being kept to 0 and the last layer being changed.

3 Experimental Setup

ImageNet22k contains 21841 categories spread across hierarchical categories. We
extracted some of the major hierarchies like sport, garment, fungus, weapon, plant,
animal, furniture, food, person, nature, music, fruit, fabric, tool, and building to
form multiple sources and target domains image sets for our evaluation. Figure3
shows the hierarchies of ImageNet22k dataset that was used and their relative sizes
in terms of number of images. Figure4 shows representative images from some of
these important domains. Some of the domains like animal, plant, person, and food
contain substantially more images (and labels) than categories such as weapon, tool,
or sport. This skew is reflective of real-world situations and provides a natural testbed
for our method when comparing training sets of different sizes.

Fig. 3 Imagenet22k hierarchies used
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Fig. 4 Representative images from various Imagenet22k hierarchies used in experiments

Each of these domains was then split into four equal partitions. One was used to
train the source model, two were used to validate the source and target models, and
the last was used for the Transfer Learning task. One-tenth of the fourth partition
was used to create a Transfer Learning target. For example, the person hierarchy
has more than one million images. This was split into four equal partitions of more
than 250K each. The source model was trained with data of that size, whereas the
target model was fine-tuned with one-tenth of that data size taken from one of the
partitions. The smaller target datasets are reflective of real Transfer Learning tasks.

We augmented the target datasets by also using the Oxford Flower dataset [15] as
a separate domain. The dataset contains 102 commonly occurring flower types with
8189 images. Out of this, a target dataset of only 10 training images per class was
used. The rest of the data was used for validation.

The training of the source and target models was done using Caffe [11] and a
ResNet-27 model [10]. The main components of this neural network are shown in
Fig. 5. The source models were trained using SGD [3] for 900,000 iterations with a
step size of 300,000 iterations and an initial learning rate of 0.01. The target models
were trained with an identical network architecture, but with a training method with
one-tenth of both iterations and step size. A fixed random seed was used throughout
all training.
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Fig. 5 Major Blocks of the ResNet model used in the experiments

4 Results and Discussion

Fine-tuning theweights involves initializing theweights to the values from the source
model and then adjusting them to reduce the classification loss with the target dataset.
Typically in fine-tuning a source model to a target domain, the practice is to keep
the weights of all the inner layers unchanged and only fine-tune the weights of the
last fully connected layer. The parameter which controls the degree of fine-tuning is
the learning rate. Let I L − n/LL − m be a transfer learning fine-tuning experiment
where the inner layers learning rate (I L) is at n and outer layer learning rate (LL) is
at m, with n < m. We are assuming a uniform learning rate for all the inner layers
for most of the experiments. For those where the inner learning rate was varied, it is
specifically mentioned in the chapter.

4.1 Fine-tuning Last Layer

We first did some experiments to quantify the gains possible by varying the learn-
ing rate of the last layer in fine-tuning while keeping all the inner layers weights
unchanged. Table1 compares the difference in accuracy of trained model for two
different values of learning rate of the last layer, 0.01 and 0.1, corresponding to
experiments I L − 0/LL − 0.01 and I L − 0/LL − 0.1. Observe that the accuracy
is sensitive to the choice of LL and significant gains in accuracy (up to 127%) are
achievable for certain domains by just choosing the best value of LL .

4.2 Fine-tuning Inner Layers

An earlier work [2, 18] has observed that fine-tuning inner layers along with the last
layer can give better accuracy compared to only fine-tuning the last layer. However
their observation was based on limited datasets. We are interested in studying how
the accuracy changes with I L for a fixed LL with the following objectives:
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Table 1 Transfer learning accuracy with varying LL

Target Source LL-0.01 (%) LL-0.1 (%) % Gain

Fabric Garment 13.09 11.33 15.47

Tool Weapon 14.54 14.78 1.63

Oxford Plants 91.06 73.17 24.44

Food Fruit 5.71 5.07 12.52

Fungus Plant 13.12 5.80 127.79

Person Food 4.49 2.81 59.75

Fruit Garment 9.30 10.50 12.92

Music Plant 15.37 9.47 62.22

(i) Identify patterns which can be used to provide guidelines for choosing LL and
I L for a given source/target dataset.

(ii) Find correlation between dataset features like images per label, similarity
between source and target datasets, and the choice of I L/LL .

(iii) Quantify possible gains in accuracy for different datasets by exploring the space
of LL and I L values and hence establish the need to develop algorithms for
identifying the right set of fine-tuning parameters for a given source/target
dataset.

To this end, we conducted experiments varying I L for a fixed LL . We divided the
experiments into two sets based on perceived semantic closeness of source and target
domains. Set A (B) consists of experiments where the source and target datasets are
semantically close (far). Thus we have,

A = { f abrict/garments, toolt/weapons, ox f ordt/plantss,

f oodt/ f rui ts, f ungust/plants}, and
B = {persont/ f oods, f rui tt/garments,musict/plants}

Figures6 and7 show the accuracy obtained by increasing I L bypowers of 10 between
0 and LL for LL = 0.01 and 0.1. So when LL = 0.01(0.1), I L took values in
{0, 0.0001, 0.001, 0.01}({0, 0.0001, 0.001, 0.01, 0.1}).

Two patterns across different experiments are observed: (i) accuracy increases
monotonically with I L and then decreases (ii) accuracy alternates between increase
and decrease cycles. The variation in accuracy with I L can be significant for certain
datasets. Let minm and maxm be the minimum and maximum value of accuracy
obtained when I L is varied at LL = m and βm be defined as:

βm = maxm − minm
minm

× 100 (1)
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Fig. 6 Set A accuracy vs IL
for fixed LL

Fig. 7 Set B accuracy vs IL
for fixed LL

Observe that βm represents the percentage range of possible variation in accuracy
with LL = m and varying I L . Figure8 compares βm for different datasets. All the
datasets exhibit βm > 0, with median values of β0.01(β0.1) being 28.96% (83.52%).
Observe that β0.1 > β0.01 for all the datasets. Also, for same dataset, the range of
variation in accuracy can be quite large or small depending on LL . For example, for
ox f ordt/plants, f ungust/plants , and musict/plants the difference β0.1 − β0.01

is greater than 100 points. Thus, fine-tuning both inner and outer layers gives the
best accuracy. Further the value of I L that maximizes accuracy can be different for
different datasets. The pattern of variation in accuracy with I L/LL is not always
monotone.

Let αm be the value of I L that achieves the best accuracy (maxm) at LL = m for a
dataset. Table2 lists αm for different datasets. The last column in the table shows the
differencemax0.1 − max0.01. Observe that there is no clear winner, for some datasets
keeping LL = 0.1 and then searching for I L gives the best accuracy while for others
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Fig. 8 Range of variation in accuracy with varying I L

Table 2 αm for different datasets under study

Target Source α0.01 α0.1 max0.1 − max0.01 (%)

Fabric Garment 0.0001 0.0001 0.00

Tool Weapon 0.0001 0.1 −1.41

Oxford Plants 0.0001 0.0001 −0.88

Food Fruit 0.01 0.01 0.98

Fungus Plant 0.01 0.01 0.78

Person Food 0.01 0.01 −0.71

Fruit Garment 0.01 0.01 −0.12

Music Plant 0.01 0.01 −2.86

LL = 0.01 performs better. This indicates the need for joint optimization over the
space of LL and I L to get the best accuracy.

We are interested in identifying correlation between source/target dataset features
and αm . The first feature that we consider is images/label in the target dataset. Intu-
itively with more labeled data for the target domain, we can be more aggressive
(i.e., use larger I L and LL) in fine-tuning. Figure9 plots αm versus images/label
in target for m = 0.01 and 0.1. For both these cases we observe that αm increases
with images/label. However there is one anomaly, α0.1 = 0.1 for persont/ f oods ,
though persont has smaller images/label. This seems to allude that other features of
source/target datasets also dictate the choice of learning rates.We are currently inves-
tigating this direction with the hope to develop some functional mapping between
the features of source/target datasets and αm . This knowledge can be leveraged to
develop intelligent algorithms to identify the best learning rate for inner layers and
outer layers for a given source/target dataset.
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Fig. 9 Correlation between αm and images/label

4.3 Graduated Fine-tuning of Inner Layers

We also investigated how the top-1 accuracy varies if the inner layer learning rate
multipliers are not kept at a fixed value but varied.With the assumption that very basic
concepts learned in the earlier layers are more important for transfer learning than
later layers which map to complex concepts, we varied the learning rate multipliers
in steps within the inner layers.

Oxford Flowers Dataset The ResNet-27 we are using for throughout these experi-
ments has inner convolutional layers organized in five stages, conv1 through conv5
as shown in Fig. 5. We can denote the learning rate multiplier for each of these five
stages as I L1 through I L5. We measured the accuracy of fine-tuning when we kept
the inner learning rate multiplier (I L1..I L5) equal across stages, (at a fixed value of
either 1, 2, or 5) and also compared to using a graduated set of values. In this case,
each convolutional stage was assigned a multiplier (like 0, 1, 2, and 5), with conv1
and conv2 using the same (first, smallest) multiplier, and conv3, 4, and 5 using the
successive, larger multipliers. (Meaning I L1 was equal to I L2.) In each case we
set the learning rate multiplier LL of the last layer to 10. Figure10 shows the top-1
accuracy for different I L configurations with Oxford flowers as the target dataset and
plant as the source dataset with the base learning rate at 0.001. As the chart shows,
the best accuracy was achieved when the learning rate multipliers were graduated.

Real-World Image Classification TasksNext, we sought to validate these observa-
tions on training data “in the wild”. IBM operates a public cloud API called Watson
Visual Recognition1 which enables users to train their own image classifier by pro-
viding labeled example images, while images provided to the API are not used to

1https://www.ibm.com/watson/developercloud/visual-recognition/api/v3.

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3.
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Fig. 10 Top-1 accuracy with varying inner LR mult and fixed outer LR mult at 20

train anything aside from that user’smodel. Users can opt-in to allow their image data
to be used to help evaluate changes in the training engine. From the many training
tasks that were opted-in, we took a random sample of 70 tasks. We did not manually
inspect the images, but based on the names given to the labels, we presumed they
represented a wide variety of image types, including industrial, consumer, scientific,
and social domains as shown in Fig. 11. Based on the languages of the class labels, we
had a wide geographic range as well. The average number of training images per task
was about 250, with an average of 5 classes in each, so a mean of 50 image examples
per class. We randomly split these into 80% for training and 20% for validation,
leaving 40 training images per class on average.

For each of the 70 training tasks, we created a baseline model that was a ResNet-
27 initialized with weights from an ImageNet1K model. We set the base learning
rate to 0.001 and the LL to 10. The I L was set to 0. We fine-tuned the network for
20 epochs and computed top-1 accuracy on the held-out 20% of labeled data from
each task. The average top-1 accuracy across the 70 tasks was 78.1%.

For the graduated I L condition, we initialized I L1..I L5 to be {0, 1, 2, 4, 8} and
LL to be 16.We then defined a set of 11 scales, {0.25, 0.5, 1.0, 1.5, 2, 2.5, 3, 4, 5, 7,
10}. The scale is a secondary learning rate multiplier. For example, the final learning
rate at scale 0.5 for conv3 (I L3) and base learning rate 0.001 would be 0.5 ∗ 2 ∗
0.001 = 0.001. The intuition is to combine the scale factors explored in Figs. 6 and
7 with the graduated values of I L1..I L5 explored in Fig. 10.

This combination of scales and learning tasks resulted in 70 ∗ 11 = 770 additional
fine-tuning jobs, which we ran for 20 epochs each. We evaluated the top-1 accuracy
for each of these jobs. We found that if we picked the individual scale which maxi-



Improving Transferability of Deep Neural Networks 63

Fig. 11 Distribution of Image Classification Tasks from service API used

mized the accuracy for each job, the mean top-1 accuracy across all tasks improved
from 78.1 to 88.0%, a significant gain. However, to find this maximum exhaustively
requires running 11 fine-tuning jobs for each learning task. So we looked at which
scale was most frequently the optimal one, and it was scale of 0.25. If we limit our-
selves to one fine-tuning job per training task, and always chose this single scale, the
mean top-1 accuracy across jobs had a more modest increase, from 78.1 to 79.7%.

This promising direction needs further investigation; if we could predict the opti-
mal learning rate multiplier scale based on some known characteristic of the training
task, such as number of images per class, or total number of training images, we could
efficiently reach the higher accuracy point established by our exhaustive search.

5 Conclusion

Transfer Learning is a powerful method of learning from small datasets. However,
the accuracy obtained from this method could vary substantially depending on the
choice of the hyperparameters for training as well as the selection of the source
dataset and model. We study the impact of the learning rate and multiplier which can
be set for every layer of the neural network. We present experimental analysis based
on the large ImageNet22K dataset, the small Oxford flower dataset and real-world
image classification datsets and show that the images per label parameter could be
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used to determine what the learning rates. It also seems like continuously varying
the learning rate for inner layers has more promise than keeping them all fixed and
is a worthy direction to pursue.
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Cross-Modality Video Segment Retrieval
with Ensemble Learning

Xinyan Yu, Ya Zhang and Rui Zhang

Abstract Jointly modeling vision and language is a new research area which has
many applications, such as video segment retrieval and video dense caption. Com-
pared with video language retrieval, video segment retrieval is a novel task that uses
natural language to retrieve a specific video segment from the whole video. One
common method is to learn a similarity metric between video and language fea-
tures. In this chapter, we utilize ensemble learning method to learn a video segment
retrieval model. Our ensemble model aims to combine each single-stream model to
learn a better similarity metric. We evaluate our method on the task of the video clip
retrieval with the new proposed Distinct Describable Moments dataset. Extensive
experiments have shown that our approach achieves improvement compared with
the result of the state-of-art.

Keywords Video segment retrieval · Ensemble learning

1 Introduction

In the past few years, cross-modal retrieval has drawn more attention due to the rapid
development of the Internet. Cross-modal retrieval is a kind of retrievalmethodwhich
involves data from different modalities. It takes data from one modality as a query to
retrieve data from another modality. Traditional retrieval methods only utilize single
modal data. For example, if we use language query to search our interested videos on
the Internet, the language query is only used to match the video caption. However,
cross-modal retrieval can directly retrieve the elements in the video, such as actors,
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Fig. 1 Video segment retrieval is a task to retrieve a video segment from the entire video via
language query. The video segment in red rectangle corresponds to the language query below.
Though both language description A and B describe the same video segments at the same time,
they are constructed with different words and depict the clip in different description perspectives.
Description A describes the movement of the crowd in the video as a whole, and the description B
depicts the movement of a specific person

actions, and objects. Therefore, cross-modal retrieval can help users to search for
information in a more effective way.

In this chapter, we study a novel cross-modal retrieval task which connects video
clips with natural language description. Different from traditional video language
retrieval that focuses on finding the matched entire video with a given description,
we want to retrieve a specific video segment from the entire video with a description.
The difficulty to solve this problem is not only from the differences between each
modality but also from the differences within each modality. Natural language is
usually complicated and ambiguous. As shown in Fig. 1, one video segment can
be described in totally different ways by two viewers. These two descriptions may
be hardly considered to describe the same video scene if we only give these two
sentences to another viewer. Language query A and B depict the video segment in
different perspectives. Query A describes the movement of the crowd in the video
while queryBdepicts themovement of a little child in the crowd.Although sometimes
these two descriptions have the same meaning, they are not entirely made up of the
same words, but of many synonyms. So it is hard to learn a suitable similarity metric
to retrieve video segments with the corresponding language query.

To solve this novel and challenging problem,we utilize ensemble learning to guide
the aggregation of a multi-stream cross-modal retrieval model. Ensemble learning
is a widely used algorithm which combines multiple models to improve the model
performance. To learn a better similarity metric for retrieval task with ensemble
learning, we propose a novel method which integrates ensemble learning to guide
the aggregation of multi-stream retrieval model. We conduct our experiments over
the Distinct Describable Moments (DiDeMo) dataset which consists of more than
10,000 untrimmed videos with an explicit video segment caption and corresponding
time stamps.
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We mainly contribute in the following aspects:

• We propose a multi-stream model to retrieve the specific video segments from the
entire video via text query. Multi-streammodel can learn multiple common spaces
for vision and language features. It could improve the learned similarity metric
with ensemble learning. The combination of the ensemble model is guided by a
language-based aggregation module.

• We conduct experiments on Distinct Describable Moments dataset and assess the
proposed method on top-1 recall (recall@1), top-5 recall (recall@5), and mean
intersection over union (mIoU). The results demonstrate that our proposedmethod
outperforms the state-of-art.

The remainder of this chapter is structured as follows: Sect. 2 introduces related
work in recent years about vision and language understanding. Section3 gives the
detail of the proposed cross-modal retrieval model. Section4 details the experimental
index, experimental setup, and experiment results. Finally, Sect. 5 concludes our
work.

2 Related Work

Localizing moments in a video with natural language is a new research task which
jointly models visual and language information. This task is related to both vision
and language understanding.

2.1 Vision Understanding

Convolution neuron network (ConvNets) has become the most effective and widely
used visual features extractor since [10]won the ImageNet Large ScaleVisualRecog-
nition Challenge (ILSVRC). Their results significantly reduced top-5 error compared
with the second place. Many of the following researches [6, 18, 19] focused on
improving the image recognition accuracy through increasing the depth and width of
the deep network. Inspired by the success of ConvNets in the image domain, various
pretrained ConvNets are transferred to extract features from the videos for video
recognition. However, compared with the still image which only has appearance
information, the video consists of multi-frames and has motion information between
frames. Therefore, it is not suitable to directly use ConvNets trained on still image to
extract video features for the lack of motion information. To integrate the motion into
ConvNets, [17] used two-stream networks to model appearance and motion simul-
taneously. Orthogonal to the two-stream method, [21] exploited the 3D convolution
kernel to concrete the spatial and temporal information across the convolution layers.
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2.2 Language Understanding

Natural language processing is one of the important technologies in artificial intelli-
gence because language is the tool for people to communicate with each other. There
are also many practical natural language applications in daily life, such as semantic
analysis and language translation.

Learning high-quality distributed vector representations is the most fundamental
and important work in NLP task systems. Reference [13] proposedWord2Vec model
to learn embedding representation. They used the correlation of source context words
and the target word to model the syntactic and semantic relationship between word
sequences. Due to the simple model architecture, their Continuous Bag of Words
(CBOW) and Skip-gram models were efficiently trained with one trillion words.
Different from the predictive-based model, GloVe [15] learned geometrical embed-
ding vectors of words based on co-occurrence counts. This method preserved the
semantic analogies and also took the corpus word occurrence statistics into consid-
eration. To keep the ordering and semantic meaning simultaneously, [11] proposed
an unsupervised learning method to learn continuous distributed vector representa-
tions for sentence and document. In this chapter, we use GloVe trained onWikipedia
corpus as our word embedding method.

2.3 Cross-Modal Understanding

Despite deep learning having been widely used and achieving success in vision
and language task individually, it is still a challenge to jointly understand vision
and language. Previous work has focused on tasks, such as image/video caption,
image/video retrieval, and video question answering.

Earlywork on image caption usually used two-stage pipeline to generate sentences
from still image. The semantic content is identified in the first stage and then used
to generate a sentence using a language template. This two-stage pipeline simplified
image caption task to only generate sentence related with some given objects and
actions. Though the category of objects and actions should be elaborately selected,
the limited number of categories is insufficient to model the complex sentence in the
real world. Reference [24] changed this template-based model to a decoder–encoder
structure. They first used deep convolution network to extract visual features from
still image and then decode the fixed-length word embedding vector using Long
Short-Term Memory Network (LSTM) to generate image description. Inspired by
the success of thiswork, [23] introduced the end-to-end structure to the video caption.
The difference between image caption and video caption is how to exploit temporal
information of the video. Tomodel temporal information of the video into description
generation, LSTMcould be used both as an encoder and decoder to generate the video
caption.
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Image/video-sentence retrieval is a cross-domain retrieval task. The core idea is to
find the most related instance via the query from another domain. The query can be
either image/video or semantic description. The common pipeline for cross-domain
retrieval task is to first extract instance features from each domain and then do metric
learning to narrow their similarity. Reference [3] leveraged the meaningful seman-
tic label to improve the image classification model. They computed the similarity
between joint representation of images and labels to help predict novel classes never
before observed.

Reference [8] proposed the Deep Visual-Semantic Alignment (DVSA) model.
They used R-CNN [5] object detector to extract image features and bidirectional
LSTMs to encode sentence features. Instead of directly mapping the vision and
semantic features into the common space, [9] proposed a finer-level bidirectional
retrieval model that embeds the fragment of images and fragment sentences into
the common space. Reference [27] integrated canonical correlation analysis (CCA)
which is a traditional method for cross-modal retrieval into the deep network to
match image and text. Reference [26] researched the domain structure in image–
text embedding. They combined structure-preserving loss function with a bi-ranking
loss to constrain the structure in each domain. Reference [12] proposed multimodal
convolution network (M-CNN) to exploit the intermodal relations. They composed
sentences to different-level semantic fragments to match the image. Reference [14]
utilized visual and textual attention mechanisms to extract essential information
from vision and language. Their dual-path attention model captured the fine-grained
interplay between vision and language. Reference [22] advocated for learning a
visual-semantic hierarchy over image and language.

Reference [16] collected a novel movie dataset with aligned text description—
Large Scale Movie Description Challenge (LSMDC). Reference [20] studied order-
embedding in joint language-visual neural network model architectures for the video
text retrieval. Reference [28] proposed a high-level concept word detector and devel-
oped a semantic attention mechanism to selectively match the language description
with video cue. Though many efforts have been made for video language retrieval, a
few people work on localizing moments of the video via natural language query. The
main obstacle for the video moment retrieval is lack of fine-grained video annotation
that contains both language description and time stamps. Reference [7] collected
over 10,000 unedited, personal videos and annotated video segments with referring
expression. Reference [4] added sentence temporal annotations to Charades, a video
dataset which consists of daily dynamic scenarios. They addressed the video segment
retrieval task by using an object detection framework.

3 Methods

In this section, we introduce our multi-stream video language retrieval model and
explain how to use the language information to ensemble each stream.
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3.1 Model Overview

Generally, a cross-model retrieval includes twomodal inputs, V and S. In our formu-
lation, V represents the video clips and S represents the natural language. The goal
of the retrieval model is to find a common embedding space for V and S. We could
adopt metric learning method to learn each embedding functions F (·) andG (·). The
entire cross-modal retrieval model M could be trained end-to-end with the following
objective:

M̂ = argmin
M

Dθ (F (V ) ,G (S))

where Dθ (·) is a distance function which is used to measure the similarity between
projected features of different domains. Cosine distance and Euclidean distance are
two common distance functions used in the retrieval task.

In our work, we still retain the idea of projecting two domain features into the
same common space. To learn a better similarity metric, we utilize the language
information to aggregate the multi-stream retrieval network.

The overview of our proposed model is shown in Fig. 2. Each stream in the whole
model is a basic cross-modal retrievalmodelwhich tries to project features in different
domains to the same common embedding space. Then we use a language-based
aggregationmodule to obtain the final cross-modal distance. Details of the individual
modules are shown below.

Fig. 2 The whole retrieval model contains k simple retrieval models. Video features and language
query are sent into each stream to compute individual similarity distance Disi . The final distance is
combined with k distance with aggregation module. The aggregation module exploits the semantic
meaning of the query sentence to decide the importance of k basic retrieval model. Notice that our
k video embedding networks share parameters of the first FC layer
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3.2 Video Embedding

To localize the specific video segment from the entire video, we should take both the
vision features and temporal features into consideration.

We construct our vision features using local video features Vlocal and context
video features Vcontext . Local video features reflect what happened within a specific
time span. Though the language query only depicts what occurs in the local video,
context video features are important for it to provide the context information. Context
information tells what happens before and after the specific time span in the video
that could help localize the video segment. In our work, we first use a pretrained
convolution neural network to extract features for each video frame. For a video V
which consists of [1 . . . N ] video frames, we construct video features as

Vcontext = Norm2

(
1

N

N∑
i=1

V i

)

Vlocal = Norm2

(
1

N ′

end∑
i=start

V i

)

where N represents the total number of video frames, start and end represent the start
and end point of the local video segment; notice that 1 ≤ start < end ≤ N . We use
average pooling to aggregate the features in the time span. Then, L2 Normalization
after pooling is applied to rescale the vision features.

Simultaneously, putting local video features and context video features into the
model could weakly help the model learn temporal relation between the video seg-
ment and the entire video.Tomodelmore temporal information that indicateswhether
the video segmentmatches the languagequery,we add a temporal point [Ts , Te]which
represents the time span into video features. The temporal features are also normal-
ized(to [0, 1]) to be in the same numerical scale with video features. Finally, we
concatenate video context features Vcontext , video local features Vlocal , and temporal
features [Ts, Te] to construct input video representation Vinput .

Since a video consists of several still images, we could use knowledge learned
from the image dataset to learn the video information. We use the model pretrained
on ImageNet [10] to extract appearance feature from the video dataset. Appearance
information can represent the object and other attributes in still video frames. In
video recognition, motion feature is also widely used to recognize video action in
the form of optical flow [17]. To model the motion information of videos, we use
a video recognition network [25] to extract motion feature. In our experiments, we
construct our vision features individually with the appearance and motion feature.
Two ensemble retrieval models are trained respectively with appearance and motion
feature and aggregated with late fusion.
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The video embedding network is constructed with two fully connected layers with
ReLU. The first fully connected layer in each video embedding network is shared to
reduce model parameters.

3.3 Language Embedding

The natural language input is a sequence of word embedding vector representing the
text query. To capture the semantic meaning of the sentence, we use the LSTM to
model the query text. We first convert each word in the text query with GloVe [15]
into the word embedding vector. Although the corpus which GloVe is trained on and
is not related to theDiDeMo dataset, we could useGloVe as aword embeddingmodel
for its generalization. Then, the sequence of embedding vectors is put into LSTM to
aggregate the semantic meaning of the sentence. Finally, the last hidden state ht of
LSTM is linear transformed with a fully connected layer to achieve embedded text
features.

3.4 Language-Based Ensemble

The core problem for cross-modal retrieval is to learn a suitable similarity metric. To
address this problem, we take ensemble learning into consideration. In our work, we
propose a multi-stream model with a language-based ensemble. The multi-stream
model contains k basic retrievalmodelswhich are shown inFig. 1. Eachbasic retrieval
model contains one video embedding network and one text embedding network. In
our ensemble module, language query is used to aggregate the learned similarity
metric in each stream. We compute the multi-stream weights with the input sentence
as

Wi (s) = ep
T
i h(s)∑k

j=1 e
pTj h(s)

i ⊆ [1 . . . k] (1)

where s represents the input text query, h (·) is the aggregate function to extract
sentence meaning, and pi denotes the linear transformer. We achieve the aggregated
distance as

Disagg =
k∑

i=1

Wi ∗ Disi (2)

The distance Dis between the input text query and the video segment is computed
in each retrieval stream first.
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Dis = Dθ (s, v, t) (3)

where s is text query. t is the time stamp of the video segment v.
Our ensemble model is trained with triplet loss. Triplet loss aims to bring close the

matched video clip–text pair and push away unmatched pairs. In traditional video-
text retrieval task, a video–text pair is composed of video segments with its text
query. Compared with that, we additionally take the time stamp of the video segment
as a temporal feature. In our experiment, a training pair is denoted as < si , vi , t i >.
si is the text description which describes the video segment vi . t i is the time interval
of this video segment. During training time, we sample negative training pair within
the same video or from another video. According to different sample ways, we define
two triplet losses: inter-video loss and intra-video loss.

Intra-video loss Localizing a video segment from an entire video is a challenging
task because a queried video segmentmay have little differencewith its context video.
To distinguish a queried video segment from its context, negative pair< si , v j , t j >
is sampled within the same video.

Different from traditional video retrieval task which only involves video features
and text features, we integrate the temporal features in our model. The temporal
features depict the position of the video clip throughout the entire video. With intra-
loss, we also model the relationship between temporal features and vision features.
We define intra-video loss as

Lossintra = max
(
0,m − Dθ

(
si , v j , t j

) + Dθ

(
si , vi , t i

))
(4)

where v j is any other possible video segment in the same video. t j denotes the time
point of v j . m is the margin variable for metric learning.

Inter-video loss Compared with intra-loss, inter-video loss is proposed to match
the video segments with correct semantic concepts from other videos. For this pur-
pose, we select a negative pair which has the same time span with the positive pair.
The inter-video loss is defined as

Lossinter = max
(
0,m − Dθ

(
si , vk, t i

) + Dθ

(
si , vi , t i

))
(5)

where vk is one possible video segment in another video. Negative pair has the same
temporal features t i with the anchor video segment vi .

Total loss consists of weighted intra-video loss and inter-video loss.

Lossall = λLossintra + (1 − λ) Lossinter (6)

where λ is the parameter to adjust the importance of these two losses. In our experi-
ment,λ is set to 0.8 for the intra-differencewhich ismore subtle than inter-difference.
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Fig. 3 The final result is obtained with aggregating the results of appearance and motion model in
a late fusion way. Notice that the embedding networks in each model are trained individually

3.5 Late Fusion

For different visual input, we train two different multi-stream retrieval models indi-
vidually: appearance model and motion model. The language-based aggregation
module is only used to aggregate the distance computed in each single-streammodel.
To fuse the results of models trained with appearance and motion feature, we use the
late fusion as shown in Fig. 3. Late fusion formula is defined as

Dis f inal = (1 − η) Disaagg + ηDismagg (7)

where Disaagg and Dismagg are the distance computed with appearance and motion
model, η denotes the late fusion parameter. We set η to 0.5 via experiments on the
validation set.

4 Experiments

In this section, we describe details of our training method and experiment results on
the DiDeMo dataset.

4.1 Experiment Setup

We conduct experiments on the Distinct Describable Moments (DiDeMo) dataset
[7]. DiDeMo consists of over 10,000 videos lasting about 25–30s. They select about
14,000 videos from YFCC100M and eliminate those trimmed videos. The rest of
the videos are then annotated by several annotators. The total number of language
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annotations with referring time point is over 40,000. Each description is verified to
only refer to a single video moment.

The reasonwe chooseDiDeMo as our experiment dataset is that DiDeMo contains
more camera and temporal words than other video description datasets. This means
the video segment in DiDeMo is depicted in multi-views. The complexity of the
language description makes it more challenging to model the semantic information.
It also increases retrieval difficulty that each video only has 2.57 distinct moments
in average.

We report the results of ourmodel on Rank@1 (R@1), Rank@5 (R@5), andmean
intersection over union (mIoU). Each video in DeDiMo is separated into several 5 s
video clips. For example, a 30 s video is broken into six five-second video segments.
These video segments build up 21 possible video segments according to different
time points. Our model is trained to find the most relative video segment from the 21
possible video proposals via the text query. For there are four time annotations for
each video segment, four-choose-three combination is used to find the highest score.

4.2 Implement Details

Details of our training procedure are given below:

Data preprocessingWe use GloVe [15] pretrained on the corpus fromWikipedia
as our word embedding method. The dimension of the embedding vector is 300. As
for visual features, the appearance feature is extracted from f c7 using VGG [18]
pretrained on ImageNet [2]. We also use a video recognition network [25] to extract
motion feature. The two kinds of vision features could capture the video features in
different views. To speed up themodel training, all these features have been extracted
before. The fine-tuning of the features extraction model is not implemented in our
model. Two ensemble retrieval models are trained respectively with appearance and
motion feature and aggregated with late fusion. These two models are denoted as
appearance model and motion model corresponding to their video feature composi-
tion.

Training detailsWe train the entire retrieval model which contains k basic model
with TensorFlow [1]. k is set to 4 in our experiments. For each single-stream retrieval
model, we set their hyperparameters to the same. The LSTM hidden dimension is
1000. Common embedding space is a 100-dimension vector space. The margin m
in the ranking loss function is 0.1. To optimize the whole retrieval model, we apply
stochastic gradient descent (SGD) to minimize the loss function.

It is insufficient to only use the aggregated loss computed by language-based
aggregation module to optimize all k retrieval models. We also train all k retrieval
models with ranking loss computed in each stream. The final loss function we use is
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Loss f inal = α

k∑
i=1

Lossistream + βLossens (8)

where Lossistream represents the loss in every single stream and is only backpropa-
gated to each stream. Lossens represents the loss computed with aggregated distance.
α and β are two scalar parameters to balance the loss. In our experiment, α and β
are set to 0.5 and 1.0.

4.3 Result

In this part, we evaluate our proposed multi-stream language aggregation retrieval
model on the Distinct Describe Moments dataset and report the results on Rank@1,
Rank@5, and mIoU. The results of our model and baseline model are shown in
Table1. We compare our model with the traditional method CCA and MCN [7].

We notice that CCA performs not as well as other methods. It is a traditional
method to bridge the gap between different domains. The reason for its poor result
is mainly for it cannot distinguish the subtle difference between video segment and
its context. Appearance model in Table1 represents our multi-steam retrieval model
which only uses appearance feature as input. It outperforms CCA in Rank@1 and
Rank@5 with 4.54 and 23.61%, but gets a lower result in mIoU. Compared with the
appearance model, motion model achieves a better result on all the metric: Rank@1
= 27.78%, Rank@5 = 76.82%, and mIoU = 40.67%. This suggests that the motion
feature is important in video tasks. Its better performance also attributes to themotion
feature is extracted with video recognition network.

Our late fusion model achieves the best results: Rank@ = 1:29.39%, Rank@5
= 79.28%, and mIoU = 42.82%. Compared with MCN [7] which only uses single-
stream retrievalmodel, ourmodel leverages the language query information to aggre-
gate the learned similarity metrics of multi-stream network. The late fusion model
outperforms their results on all three evaluation metrics, respectively. The results
show that our multi-stream retrieval network aggregated with language information
learns a better similarity metric compared with single-stream network.

Table 1 Comparison of different methods of DiDeMo

Method Rank@1 Rank@5 mIoU

CCA 18.11 52.11 37.82

MCN [7] 28.10 78.21 41.08

Appearance model 22.65 75.70 33.69

Motion model 27.78 76.82 40.67

Fusion model 29.39 79.28 42.82
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Table 2 Comparison of different ensemble methods

Ensemble method Rank@1 Rank@5 mIoU

Linear ensemble 27.01 76.73 39.62

Ours 27.78 76.82 40.67

Our language-based aggregation module unites each stream model in the spirit of
ensemble learning. In our experiments, we train our aggregation module with a text
query in an end-to-end way. To better analyze the effect of our text embedding mod-
ule, we train a new motion model with another ensemble method. In this ensemble
method, we obtain the final distance by directly inputting distance of each stream to
a fully connected layer. Weights for each stream are trained as parameters of this FC
layer. This ensemble method is denoted as a linear ensemble in our experiment. All
the hyperparameters and optimization methods in this model are set to be the same
with our standard motion model. Difference between these two models is only in the
ensemble module. We compare the results of these two motion models with differ-
ent ensemble methods in Table2. Compared with the linear ensemble method, our
ensemble method achieves better results on all three evaluation metrics. It demon-
strates that it is better to use text information to the aggregate distance in each stream
network.

5 Conclusion

In this chapter, we address the problem of localizing video segments via language
query. Different from retrieving video from a video library, retrieving video segments
should distinguish the subtle difference between corresponding video segments and
other possible video segments within the same video. With a single-stream retrieval
model, it is insufficient to learn a suitable similarity metric for this novel retrieval
task.We proposemulti-steam language aggregation retrieval model, in which seman-
tic information is used to guide the aggregation of every single stream. With the
language-based aggregation module, each single-stream network can be trained to
obtain a better similarity metric. The whole retrieval model is optimized with in-
stream loss and aggregated loss.

Our method outperforms other results on the DiDeMo dataset. Extensive exper-
iments show that under our proposed aggregation module, multi-stream retrieval
model can be effectively combined to accurately measure the distance between video
and text domain. Future work will focus on excavating more video information and
combining appearance and motion feature in a more efficient way.
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On Minimum Discrepancy Estimation
for Deep Domain Adaptation

Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh
and Sridha Sridharan

Abstract In the presence of large sets of labeled data, Deep Learning (DL) has
accomplished extraordinary triumphs in the avenue of computer vision, particularly
in object classification and recognition tasks. However, DL cannot always perform
well when the training and testing images come from different distributions or in the
presence of domain shift between training and testing images. They also suffer in the
absence of labeled input data. Domain adaptation (DA) methods have been proposed
to make up the poor performance due to domain shift. In this chapter, we present a
new unsupervised deep domain adaptationmethod based on the alignment of second-
order statistics (covariances) aswell asmaximummean discrepancy of the source and
target datawith a two-streamConvolutionalNeuralNetwork (CNN).Wedemonstrate
the ability of the proposed approach to achieve state-of-the-art performance for image
classification on three benchmark domain adaptation datasets: Office-31 [27], Office-
Home [37] and Office-Caltech [8].

Keywords Unsupervised domain adaptation · Domain discrepancy ·
Classification · Visual adaptation · Transfer learning · Feature learning
1 Introduction

Deep Neural Networks (DNN) [16] have brought tremendous advances across many
machine learning tasks and applications such as object detection [7], object recog-
nition [15], speech recognition [2], person re-identification [13], and machine trans-
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lation [33]. For example, in [9] a DNN achieves 97.84% accuracy in multi-digit
number classification from street view images because of the ability of joint fea-
ture and classifier learning of the DNN. The dramatic success of large-scale image
classification based on DNNs commenced in 2012. In [15], they attained the best
performance in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
by developing AlexNet. These victories were achieved in part from the accessibility
of large labeled datasets such as the widely used ImageNet [15]. While the introduc-
tion of such datasets have unlocked many breakthroughs, the process of obtaining
such labels still remains a time consuming and manual task.

In object recognition or classification, the training images may be different than
the target images due to backgrounds, camera viewpoints, object transformations,
and human selection preference. When the source data and target data distributions
are dissimilar, classifier’s performance can be significantly impacted. In computer
vision, this is generally known as dataset bias or dataset shift [18, 34]. Learning
a discriminative model of different distributions of training and test data is known
as domain adaptation [24, 25, 40]. The principle objective of unsupervised domain
adaptation algorithms is to interface the source and target distributions by acquiring
a domain constant information where the target data are used without any labels.

Recent investigations have demonstrated that deep neural networks learn more
transferable components for unsupervised domain adaptation [30]. Recently, unsu-
pervised domain adaptation methods [10, 11, 20, 21, 26, 28, 30, 32, 38] have
been proposed where features are adapted by aligning the second-order statistics of
the source and target data. Although [30] introduces a new loss named Correlation
Alignment (CORAL) Loss, it depends on a linear transformation, and it is not an
end-to-end trainable method. After feature extraction, the linear transformation is
applied, and a Support Vector Machine (SVM) classifier is trained in another phase.
Moreover, the features are fixed in these types of shallow domain adaptation meth-
ods. The approach in [30] is extended in [32] to incorporate the CORAL loss directly
into deep neural networks. Maximum Mean Discrepancy (MMD) is another popu-
lar metric for feature adaptation. MMD-based DA techniques have achieved great
success to minimize the discrepancy between source and target data. MMD can also
be incorporated with deep neural networks to achieve stronger performance over
conventional methods.

In our approach, we get motivation from both of the above top performing metrics
and propose a new domain adaptationmethodwhich leverages the advantages of both
feature adaptation metrics: CORAL and MMD. The difference between previous
research and our work is that previous approaches either minimize the source and
target data discrepancy using maximum mean discrepancy or second-order statistics
for feature adaptation. However, in our approach, weminimize the discrepancy using
both metrics (MMD and CORAL) for feature adaptation. MMD-based methods for
domain adaptation utilize symmetric transformation to distributions of the source and
target data whereas CORAL-based approaches apply asymmetric transformation.
However, symmetric transformations neglect the dissimilarities between the source
and target data. On the other hand, asymmetric transformations attempt to link the
source and target domains [31]. CORAL aligns the second-order statistics that can
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be reconstructed utilizing all eigenvectors and eigenvalues instead of aligning only
the top k eigenvectors and eigenvalues as subspace-based methods [4].

We present an assessment of our proposed deep domain adaptation by aligning
covariances or second-order statistics and maximum mean discrepancy within two
streams of CNN on three benchmark datasets: Office-31 [27], the recently released
Office-Home [37] and Office-Caltech [8].

In summary, the contributions of this chapter are given as follows:

– We propose a novel deep neural network approach for unsupervised domain adap-
tation in the context of image classification in computer vision.

– The proposed deep domain adaptation architecture jointly adapts features using
two popular feature adaptation metrics: MMD and CORAL.

– We report competitive accuracy compared to the state- of-the-art methods on three
benchmark domain adaptation datasets for image classification. We achieve the
best average image classification accuracies on three datasets compared to other
state-of-the-art methods.

The rest of the chapter is organized as follows: Sect. 2 describes related research,
the proposed methodology is described in Sect. 3, Sect. 4 illustrates a comprehensive
evaluation, and finally, Sect. 5 concludes the chapter.

2 Related Works

There have been many domain adaptation methods [1, 20, 21, 26, 28, 32, 35, 38]
proposed in recent years to solve the problem of domain bias. All the methods
can be categorized into two main categories, Conventional Domain Adaptation and
Deep Domain Adaptation methods. The conventional domain adaptation methods
develop their model into two stages, feature extraction and classification. In the first
phase, these domain adaptation methods extract features and in the second phase, a
classifiers is trained to classify the objects. However, the performance of these DA
methods is not satisfactory.

Obtaining the features using deep neural network even without adaptation tech-
nique outperform the conventionalDAmethods by largemargin.However, the results
achieved with the Deep Convolutional Activation Features (DeCAF) [3] even with-
out using any adaptation technique to the target data are remarkably better than
the outcomes acquired with any conventional domain adaptation methods because
DNNs extract more robust features using nonlinear transform. As a result deep neural
network-based domain adaptation methods are getting popular day by day.

MMD is a popular metric for measuring the distributions of source and target
samples. Tzeng et al. [36] proposed the Deep Domain Confusion (DDC) domain
adaptation framework based on a confusion layer for the discrepancy between source
and target data. In [35], the previous work is extended by introducing soft label
distributionmatching loss. Long et al. [17] proposed theDomainAdaptationNetwork
(DAN) that propose the integration ofMMDsdefined among several layers, including
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the soft prediction layer. This idea was further improved by introducing residual
transfer networks [18] and Joint Adaptation Networks [19]. Venkateswara et al. [37]
proposed a new Deep Hasing Network for unsupervised domain adaptation where
hash codes are used to address the domain adaptation issue.

Another popularmetric for feature adaptation between domains is aligning covari-
ance or second-order statistics which is known as Correlation Alignment. In [30, 32],
unsupervised deep domain adaptation techniques have been proposed where domain
shift is minimized by aligning the covariances of the source and target data. The
idea is similar to Deep Domain Confusion (DDC) [36] and Deep Adaptation Net-
work (DAN) [17] except that the CORAL loss is used instead of MMD to minimize
the discrepancy between source and target data. Both [30, 32] introduces a new
loss named coral loss which is the distance between the second-order statistics of
the source and target representations. In [14], a deep domain adaptation approach
based on the mixture of alignments of second-order or higher order scatter statistics
between source and target distributions has been proposed. All these methods uti-
lized two streams of CNNwhere the source network and target network combined at
the classifier level. Another deep domain adaptation method is Domain-Adversarial
Neural Networks (DANN) [5] which introduces a new deep learning domain adapta-
tion approach by integrating a gradient reversal layer into the standard architecture.
This gradient reversal layer do not change during forwardpropagation, but during
backpropagation its gradient reverse.

In our work, we adapt the features using both CORAL and MMD metric to
minimize the dissimilarity between the source and target domains. CORAL is used
to align the second-order statistics and MMD is used to align higher order statistics.

3 Proposed Approach

Our proposed methodology is illustrated in Fig. 1. In Our proposed method, the
features of the source and target domains are jointly adapted using CORAL and
MMD metrics. The source and target data use two separate CNNs. In fc7 and fc8
layers, CORAL andMMD loss layer are added to minimize the discrepancy between
the source and target data. Finally, the discrepancy between source and target data is
minimized by entropy minimization of the unlabeled target data.

We consider the unsupervised domain adaptation scenario where labeled source
data and unlabeled target data are available. Let us consider that the source domain
data samples are Ds = {Xs

i } with available labels Ls = {Yi } and the target data
samples are Dt = {Xt

i } without labels. The number of source and target sam-
ples are Ns and Nt , respectively. Let the classifiers for source domain and tar-
get domain be Fs(Xs

i ) and Ft (Xt
i ), respectively. The distribution of the data of

source and target domains are nonidentical, i.e., Ps(Xs
i ,Ys) �= Pt (Xt

i ,Yt ). We build
a deep learning architecture which aids the learning of a transfer classifiers, such as
Y = Fs(Xs

i ) = Ft (Xt
i ) to minimize the source–target discrepancy or mismatch.
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Fig. 1 Overview of our proposed methodology. The classifiers and features of both source and
target data are adapted simultaneously. MMD and CORAL loss layers are added in fc7 and fc8
layers of two-stream of CNN. CORAL layer align the second-order statistics and MMD layer
aligns the higher order statistics

We propose a new deep DA method which has two streams of convolutional
Neural Network (CNN), one for source data and another for target data. It adapts
features by aligning second-order statistics and maximum mean discrepancy of the
source and target data. The discrepancy of the source and target data are minimized
by the following equation:

min
Fs ,Ft

Dl(Ds, Dt ) f c7 + min
Fs ,Ft

MMD2(Ds, Dt ) f c7+
min
Fs ,Ft

Dl(Ds, Dt ) f c8 + min
Fs ,Ft

MMD2(Ds, Dt ) f c8+
Nt∑

i=1

H(Ft (X
t
i )). (1)

Moreover, the proposed method also adapts the classifiers using entropy mini-
mization.

The features are adapted by aligning second-order statistics as well as maximum
mean discrepancy.We define the coral loss of the source and target activation features
(such a loss function is used in prior work [32]) as

min
Fs ,Ft

Dl(Ds, Dt ) = 1

4d2
‖Cs − Ct‖2F , (2)

where Cs and Ct denote the features covariance matrices of the source and target
data and ||.||2F denotes the squared matrix Frobenius norm. The Cs and Ct are given
by the following equation [32]:

Cs = 1

Ns − 1
(DT

s Ds − 1

Ns
(1T Ds)

T (1T Ds), (3)
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Ct = 1

Nt − 1
(DT

t Dt − 1

Nt
(1T Dt )

T (1T Dt ). (4)

The features are further adapted by using another popular metric for feature adap-
tation, MMD. The MMD loss function is defined as

min
Fs ,Ft

MMD2(Ds, Dt ) =

‖ 1

Ns

Ns∑

i=1

φ(Xs
i ) − 1

Nt

Nt∑

i=1

φ(Xt
i )‖2H , (5)

where φ(Xs
i ) denotes the feature map associated with kernel map,

K (Xs
i , X

t
i ) =< φ(Xs

i ), φ(Xt
i ) > K (Xs

i , X
t
i ). (6)

K (Xs
i , X

t
i ) is usually defined as the convex combination of L basis kernels

Kl(Xs
i , X

t
i ) [39],

K (Xs
i , X

t
i ) =

L∑

l=1

β1K1(X
s
i , X

t
i )s.t.β1 ≥ 0,

L∑

l=1

β1 = 1. (7)

Since feature adaptation cannot eliminate the discrepancy [18], we adapt classi-
fiers along with feature adaptation. In this work, the classifier is adapted by decreas-
ing the entropy of class-conditional distribution on the target data Dt (similar loss
function has been proposed in prior work [18]),

min
Ft

1

Nt
=

Nt∑

i=1

H(Ft (X
t
i )), (8)

where H(·) represents the class-conditional distribution entropy function.

3.1 Discussion

The main difference between our work and prior works is that they consider only
one metric for feature adaptation whereas we consider two metrics for minimizing
the discrepancy between the source and target data. In [32], CORAL layer is used
in between fc8 layers of the source and target CNNs, but we used CORAL layer
in between fc7 and fc8 layers. It is mentioned that the MMD metric is used in
between fc8 layers in [18] and MMD layer is used in between fc6, fc7, and fc8
layers in [17]. The difference between our work and [18] is that RTN uses Residual
TransferNetwork andMMDmetric,whereaswe use simpleAlexNet architecture that
consists of 5 convolutional followed by three fully connected layers and CORAL and
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MMD metrics to adapt the features. In our research, we have found that if multiple
feature adaptation metrics are used in between fc7 and fc8, we get better accuracy
using simple CNN architecture, and the best configuration of domain adaptation
architecture is to use feature adaptation metric in between fc7 and fc8.

4 Experiments

In this section, we conduct extensive experiments to assess the proposed method and
compare the method against recently published state-of-the-art unsupervised deep
domain adaptation approaches.

4.1 Datasets

Weevaluate all themethods on three standard domain adaptation benchmark datasets:
Office-31 [27], Office-Home [37], and Office-Caltech [8] in the context of imagee
classification.

Office-31 In the context of image classification, Office-31 is the most prominent
benchmark dataset for domain adaptation. The dataset contains everyday object
images from an office environment. It consists of 4110 images with 31 object cate-
gories and 3 image domains: Amazon (A) contains images downloaded from ama-
zon.com, DSLR (D) contains images taken by Digital SLR camera and Webcam
(W) contains images taken by web camera with different photo graphical settings.
For all experiments, we use the source data with labels and target data without any
labels for unsupervised domain adaptation. We conduct experiments on all six trans-
fer tasks for all possible combinations of source and target pairs for the available
three domains. The average performance of all transfer tasks is also calculated.

Office-Home The Office-Home dataset contains four domains and each domain
contains images from 65 different classes (categories). The four domains are Art
(Ar), Clipart (Cl), Product (Pr) and Real-World (Rw). Art domain contains the
images from sketches, paintings, ornamentation form of artistic depictions of images.
Clipart domain is the collection of clipart images. The images of product domain
have no background, and Real-World domain consists of images that are captured
by a regular camera. It has around 15,500 images. Every category has an average of
around 70 images and a maximum of 99 images. We conduct experiments on all 12
transfer tasks for all combinations of source and target pairs for the four domains.
Figure2 presents some sample images of 7 classes of Office-Home dataset.

Office-Caltech The Office-Caltech is another popular benchmark dataset in the
domain adaptation community which is formed by taking the 10 common classes
shared byOffice-31 and Caltech-256. It has four domains namedAmazon (A),Web-
cam (W), DSLR (D), and Caltech (C). We conduct experiments on all 12 transfer
task as it has four different domains.
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Fig. 2 There are some example images that are taken from Office-Home dataset. It comprises
images of everyday objects. This dataset divided into four different domains; the Clipart domain
comprises clipart images, the Art domain consists of sketches, paintings, artistic images, the Prod-
uct domain comprises images which have no background and finally, the Real-World domain is
created by taking images which are capturedwith a regular camera. The figure shows sample images
from 7 of the 65 classes

4.2 Experimental Setup

In our method, we used two streams of Convolutional Neural Network (CNN). We
extended AlexNet deep learning architecture which was pretrained on the ImageNet
dataset for both streams of CNN. The dimension of the last fully connected layer
(fc8) is set to the number of classes of the objects (31 for office 31, 65 for home-office
and 10 for Office-Caltech datasets). We set the learning rate to 0.0001 to optimize
the network. We set the batch size to 128, momentum to 0.9 and weight decay to
5 × 10−4 during training phase.

4.3 Results and Discussion

In this section, we provide the details of the performance of our method in the
context of unsupervised domain adaptation where we use the labeled source data and
unlabeled target data.Our proposed approach is comparedwith both conventionalDA
and recently published deep architecture-based approaches: Geodesic Flow Kernel
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(GFK) [8], Transfer Component Analysis (TCA) [22], AlexNet (No adaptation) [15],
VGG16 (No Adaptation) [29], Domain-Adversarial Neural Network (DANN) [5],
Deep Correlation alignment (D-CORAL) [32], DAN [17], Deep Reconstruction-
Classification Networks (DRCN) [6], Residual Transfer Networks (RTN) [18], and
Deep Hashing Network (DAH) [37].

TCA is a traditional domain adaptation approach based onMMD-regularizedKer-
nel primary component analysis (PCA). GFK is a subspace-based domain adaptation
approach. BothTCAandGFKdonot use deep neural architecture. Thesemethods are
not end-to-end approach. At first features are extracted and then the features are used
in domain adaptation networks. Both AlexNet and VGG16 deep convolutional neu-
ral networks are also used as deep feature extractors without adaptation techniques
to show that a standalone deep architecture works better than conventional domain
adaptation techniques. DANN introduces a deep learning approach domain adapta-
tion technique by integrating a gradient reversal layer into the standard architecture.
D-CORAL is also another deep domain adaptation architecture where second-order
statistics alignment technique is used to adapt features. DAN usesMMD tominimize
the dissimilarity between source and target domains. DRCN introduces an unsuper-
vised domain adaptation model which reconstruct source images that have a similar
appearance to or qualities in common with the target images. RTN introduces resid-
ual transfer network where classifiers and features are adapted simultaneously. DAH
uses deep hashing network for unsupervised domain adaptation. In DAH, MMD is
utilized to decrease the dissimilarities between the source and target domains.

We use Caffe [12] framework to implement our proposedmethod.We use Alexnet
architecture [15]. We conduct experiments with one NVIDIA GeForce GTX 1070
Graphics Processing Unit (GPU). For unsupervised domain adaptation techniques,
we follow the standard protocol where the source data are labeled, but the target data
are unlabeled. We make a comparison based on average classification accuracy for
each transfer task.

As shown inTables1, 2 and 3,we compare the results of our proposedmethodwith
state-of-the-art approaches on three datasets (Office 31, Office-Home and Office-
Caltech) in the context of classification accuracy. The classification accuracy of a
model Ai depends on the images correctly identified. We evaluated all the methods
using the following formula:

Ai = t

n
× 100, (9)

where, t is the total number of correctly classified images, and n belong to the total
images.

ForOffice-31 dataset,we report the image classification results inTable1 for target
data on different transfer tasks. In Table2, the target data classification accuracy are
reported forOffice-Homedataset on twelve transfer tasks. ForOffice-Caltech dataset,
the target classification accuracy on different transfer tasks are reported in Table3.
The accuracies stand for the percentage of correctly classified target images.

For Office-31 dataset, the previous best average result achieved by [6, 18] which
are 73.7% and 73.6%, respectively. In contrast with their approach, our combined
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Table 1 Image classification accuracies for deep domain adaptation on the Office-31 dataset. We
use the standard protocol for unsupervised domain adaptation where source data are labeled, but
target data are unlabeled. A-W indicates A (Amazon) is source and W (Webcam) is target

Methods A-W D-W D-A W-A W-D A-D Avg.

TCA [23] 21.5 50.1 8.0 14.6 58.4 11.4 27.3

GFK [8] 19.7 49.7 7.9 15.8 63.1 10.6 27.8

VGG16 [29] 63.9 81.6 46.9 54.1 91.9 63.1 66.9

AlexNet [15] 53.4 79.9 46.9 47.5 84.1 55.6 61.2

DANN* [5] 73.9 94.9 – – 99.5 – -*

D-CORAL [32] 67.2 94.5 52.6 51.6 98.7 64.9 71.6

DAN [17] 68.5 96.0 50.0 49.8 99.0 66.8 71.7

DRCN [6] 68.7 96.4 56.0 54.9 99.0 66.8 73.6

RTN [18] 73.3 96.8 50.5 51.0 99.6 71.0 73.7

DAH [37] 68.3 96.1 55.5 53.0 98.8 66.5 73.0

Our method 72.1 97.3 54.6 53.9 98.7 71.2 74.6

DANN* reported three transfer tasks only

Table 2 Image classification accuracies for deep domain adaptation on the Office-Home dataset.
We use the standard protocol for unsupervised domain adaptation where source data are labeled,
but target data are unlabeled. Ar-Cl indicates Ar (Art) is source domain and Cl (Clipart) is target
domain
Methods A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R - P Avg.

TCA [23] 19.93 32.08 35.71 19.00 31.36 31.74 21.92 23.64 42.12 30.74 27.15 48.68 30.34

GFK [8] 21.60 31.72 38.83 21.63 34.94 34.20 24.52 25.73 42.92 32.88 28.96 50.89 32.40

VGG16 [29] 30.40 45.92 57.54 35.40 48.67 50.75 35.77 30.51 60.20 49.62 34.54 64.00 45.28

AlexNet [15] 27.40 34.53 45.04 32.40 43.90 46.72 29.76 32.94 50.20 40.74 35.07 55.99 39.74

DANN [5] 33.33 42.96 54.42 32.26 49.13 49.76 30.49 38.14 56.76 44.71 42.66 64.65 44.94

D-CORAL [32] 32.18 40.47 54.45 31.47 45.8 47.29 30.03 32.33 55.27 44.73 42.75 59.40 42.79

DAN [17] 30.66 42.17 54.13 32.83 47.59 49.78 29.07 34.05 56.70 43.58 38.25 62.73 43.46

RTN [18] 31.23 40.19 54.56 32.46 46.60 48.25 28.20 32.89 56.38 45.53 44.74 61.28 43.53

DAH [37] 31.64 40.75 51.73 34.69 51.93 52.79 29.91 39.63 60.71 44.99 45.13 62.54 45.54

Our method 35.15 44.35 57.17 36.82 52.45 53.67 34.80 37.17 62.15 49.95 46.29 66.05 48.00

CORAL andMMD loss outperforms their results by 0.9% and 1.0% respectively. For
Office-Home dataset, our proposed method achieves average 48.0% classification
accuracy which outperforms most state-of-the-art approaches, such as, DAH [37]
by 2.46%. For the Office-Caltech dataset, the existing best result was achieved by
[18]. Our proposed method beats their average classification accuracy by 0.2%.
Thus, the proposed model based on MMD and CORAL outperforms all comparison
methods on most transfer tasks on the datasets. From Tables1, 2 and 3, we can see
that the proposed method achieves better average performance than other baseline
conventional and deep domain adaptation methods.
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Table 3 Image classification accuracies for deep domain adaptation on the Office-Caltech dataset.
We use the protocol for unsupervised domain adaptation where source data are labeled, but target
data are unlabeled. A-C indicates A (Amazon) is source and C (Caltech) is target
Methods A-W D-W D-A W-A W-D A-D A-C W-C C-W C-D D-C C-A Avg.

TCA [23] 84.4 96.9 90.4 85.6 99.4 82.8 81.2 75.5 88.1 87.9 79.6 92.1 87.0

GFK [8] 89.5 97.0 89.8 88.5 98.1 86.0 76.2 77.1 78.0 77.1 77.9 90.7 85.5

AlexNet
[15]

79.5 97.7 87.1 83.8 100.0 87.4 83.0 73.0 83.7 87.1 79.0 91.9 86.1

D-CORAL
[32]

89.8 97.3 91.0 91.9 100.0 90.5 83.7 81.5 90.1 88.6 80.1 92.3 89.7

DAN [17] 91.8 98.5 90.0 92.1 100.0 91.7 84.1 81.2 90.3 89.3 80.3 92.0 90.1

RTN [18] 95.2 99.2 93.8 92.5 100.0 95.5 88.1 86.6 96.9 94.2 84.6 93.7 93.4

Our method 95.7 99.4 94.7 94.8 100.0 96.6 89.1 86.5 95.2 93.4 84.7 93.6 93.6

These results provide the suggestion that our proposed method is capable to
acquire better classifiers which are adaptive in between domains and transferable
features to solve domain adaptation issue.

From all the results in terms of image classification, we can find the following
observations:

– Traditional deep learning approaches without domain adaptation perform better
than the standard domain adaptation methods.

– The proposed unsupervised deep domain adaptation based on joint aligning of the
second-order statistics and maximum mean discrepancy outperforms the state-of-
the-art methods.

– Our models work better where the number of classes of objects is more. For exam-
ple, Office-Home dataset contains 65 categories and we achieved 48% accuracy
using our model.

4.4 Visualization

We use t-SNE for embedding visualization. To produce an embedding, we take
images from Amazon and Webcam domains of Office-31 dataset. We use the CNN
model to acquire the corresponding fc7-4096 dimensional vector for each image.
After that, we plug these fc7-4096 vectors into t-SNE and generate 2-dimensional
vector for each image. We plot a t-SNE embedding in Fig. 3 of images that are taken
from Amazon and Webcam domains using our learned representation (right) and
make a comparison it to an embedding formed with AlexNet in Fig. 3 (left). Exam-
ining the embeddings, we found that the clusters created by our model separate the
classes while mixing the domains much more efficiently than the AlexNet approach
where there is no domain adaptation technique is applied.
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Fig. 3 t-SNE embedding of images that are taken from Amazon and Webcam domains using
AlexNet model (left) and using two MMD and CORAL metrics in between fc7 and fc8 layers of
the two stream CNN (right). While mixing domains, It is observed that the clusters created by our
proposed model that can separate classes much more efficiently than AlexNet model where there
is no domain adaptation technique is applied

5 Conclusion

In this chapter, we introduce an unsupervised deep domain adaptation architecture
where the features and classifiers are adapted jointly. The source and target features
are adapted by aligning covariances as well as maximum mean discrepancy and the
classifiers are adapted by minimizing the entropy loss of the target data. Extensive
Experimental results on standard benchmark datasets suggest the state-of-the-art
performance. Prior deepdomain adaptation techniques either useMMDorCORAL to
decrease the mismatch between the source and target data. However, unlike previous
work, we use both MMD and CORAL to adapt the features across domains. This
makes our method a decent supplement to existing procedures.
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generating a new shared representation space onto which multi-modal features are
mapped for the goal of obtaining performance improvements by combining the indi-
vidual modalities. Often, these heavily fine-tuned feature representations would have
strong feature discriminability in their own spaces which may not be present in
the fused subspace owing to the compression of information arising from multi-
ple sources. To address this, we propose a new approach to fusion by enhancing
the individual feature spaces through information exchange between the modalities.
Essentially, domain adaptation is learnt by building a shared representation used for
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modeled tomodify the features with the overarching goal of improving the combined
system performance. We apply our fusion method to the task of facial action unit
(AU) recognition by learning to enhance the thermal and visible feature representa-
tions. We compare our approach to other recent fusion schemes and demonstrate its
effectiveness on the MMSE dataset by outperforming previous techniques.

Keywords Feature fusion · Feature fine-tuning · Facial action unit recognition ·
Deep fusion · Multi-modal representation learning

N. N. Lakshminarayana, D. D. Mohan, N. Sankaran—Equal contribution authors listed in alpha-
betical order.

N. N. Lakshminarayana · D. D. Mohan (B) · N. Sankaran · S. Setlur · V. Govindaraju
University at Buffalo, Buffalo, NY 14226, USA
e-mail: dmohan@buffalo.edu

N. N. Lakshminarayana
e-mail: nagashri@buffalo.edu

N. Sankaran
e-mail: n6@buffalo.edu

S. Setlur
e-mail: setlur@buffalo.edu

V. Govindaraju
e-mail: govind@buffalo.edu

© Springer Nature Switzerland AG 2020
R. Singh et al. (eds.), Domain Adaptation for Visual Understanding,
https://doi.org/10.1007/978-3-030-30671-7_7

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30671-7_7&domain=pdf
mailto:dmohan@buffalo.edu
mailto:nagashri@buffalo.edu
mailto:n6@buffalo.edu
mailto:setlur@buffalo.edu
mailto:govind@buffalo.edu
https://doi.org/10.1007/978-3-030-30671-7_7


96 N. N. Lakshminarayana et al.

1 Introduction

In recent years, methods that combine features from multiple data sources have
been gaining popularity. This can be primarily attributed to the large amount of data
produced by different multi-modal sensors. Most of the methods that try to combine
the multi-modal data, broadly fall under two major categories. Multi-view learning
methods [25], which look at finding a subspace or a shared space between the data
of multiple modalities and employ that as a unified representation. These methods
generally try to enforce a constraint that increases the similarity of features learned
by the views. On the other hand, multi-modal fusion methods [14], try to combine
features of different representations to improve performance of the overall system.

Majority of the multi-modal fusion methods try to create a unified feature space.
This is done either by mapping the current feature space to a higher dimension or
by learning a latent representation after concatenating multi-modal features. Due to
the recent advancements in new embedding methods such as [20] and complex multi
dataset training procedures for deep learning, the features produced by such networks
are highly optimal. Generating a unified representation from multiple such features
might require equally complex training procedures. In this chapter, we try to rethink
the premise of the necessity of having a unified representation. We theoretically and
experimentally show that learning linear transformation that increase separability
of these features in their respective feature spaces can be an alternative to existing
methods. In order to validate our claims, we apply our method to the problem of
recognition of facial action units.

Facial expressions are one of the most important nonverbal cues in any inter-
personal communications. Facial expressions can be measured in two dimensions
popularly. The judgmental coding system describes emotions in a latent emotion
space. The frequently used parameters in this scheme are the seven universal emo-
tions, namely, Anger, Fear, Disgust, Happiness, Sadness, Surprise, and Contempt.
A more elaborative way of describing emotions is using the FACS coding scheme.
In their chapter, [5] define FACS as a measure of different facial muscle movements
that contribute to the facial expressions either independently or in pairs. Each of
the action Units describes a movement or contraction of the facial muscle. Thus,
they encode the anatomically visible changes rather than relying on the observer’s
inference of emotions. The granularity of FACS is particularly beneficial in detecting
even the subtle controlled or uncontrolled facial behavior. For several decades, they
have been extensively used in forensics, neuro-marketing, health care, etc. Although
facial action units’ recognition is well explored in the visible light domain (VLD),
the RGB images suffer from illumination changes and can only capture the visual
changes that occur as an effect of the AUs. There are, however, some physiological
changes that the face undergoes during the occurrence of the action units, such as
skin temperature changes, variation in the heart rate, blood pressure, and respira-
tion rate that can not be captured using the visible images. In contrast, the infrared
images that allow detection of skin temperature variations and are invariant to illu-
mination changes and skin tone variation from person to person, have been shown
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to be sensitive to AU movements [13]. Thus, the visible and thermal images encode
complementary aspects of facial action units.

In this chapter,we propose an alternative to the current existingmulti-modal fusion
methods. We train a DenseNet Model on both the visible and thermal images and
generate corresponding visible and thermal features.We present an idea of enhancing
existing feature spaces by only applying scaling and translation perturbation. The
perturbation that is to be applied to each feature is learned by the network by jointly
looking at all the feature representations. By doing so, we generate an enhanced
feature representation of the original thermal and visible features. These enhanced
features when combined, improve the overall performance of the system.

2 Related Work

There is a large amount of literature on the design and application of techniques used
for combining multiple features to improve the overall performance of any system.
The full treatment of these fusion techniques is well beyond the scope of this chapter.
However, we will look at some of the recent methods that have focused on fusing
multi-modal data to provide the proper context to ourwork. Simplisticmodels that use
linear combinations of features are insufficient to capture the complex correlations
between the modalities. One such approach is aggregating features weighted by the
metadata [18] pertaining to face images, for the task of face recognition. Another
approach is to use bilinear pooling [16] which captures the second-order statistics of
the features. High dimensionality, vast parameterization, and slow convergence limit
the practical applicability of these algorithms.To address these issues, [26] proposed a
multi-modal factorized bilinear pooling (MFB) approach used for a Visual Question-
answering task. Although it provides compact features and robust performance, the
method attempts to learn a completely new feature space. Recently, in [1], the authors
use a deep fusion network to jointly represent heterogeneous features from face
images by performing nonlinear transformations of the concatenated feature space.
Zhao et al. [29] present, as part of a CNN system for person reidentification, a tree
structure-based fusion network that encourages competition among features arising
fromdecomposed image regions (such as legs, arms, head, etc.) during fusion to select
relevant features. They implement this strategy by performing element-wise max
pooling operations on feature inputs and transforming the resulting feature activations
to representations utilized by higher stages of the fusion structure. For solving the
problem of missing features and curse of dimensionality in multi-modal fusion, the
authors of [11] propose to fuse the multi-modal features by grouping them into a set
of subspaces represented as a point on a Grassmann manifold and employing the L2
Hausdorff distance for comparing feature vectorswith different number of subspaces.
Heterogeneous feature structure fusion [15] jointly optimizes the internal (within
each feature set) and external structures (across different feature sets) explicitly
via a unified feature projection. Specifically, the algorithm represents the internal
structure using a locality preserving projection (LPP) and the external structure by



98 N. N. Lakshminarayana et al.

canonical correlation analysis (CCA) and is optimized via linear programming or
eigenvector methods. The proposed multi-modal conditional feature enhancement
method (MCFE) differs from the previous literature in that, rather than learning a
new high dimensional feature space, MCFE uses a feature enhancement technique to
improve the discriminative capabilities of each of the representations using minimal
perturbations.

Facial expressions can bemeasured in two dimensions popularly. The Judgmental
Coding System describes expressions in a latent emotion space such as anger, fear,
disgust, happiness, etc. A more elaborate way of describing emotions is using the
FACS coding scheme. They encode the anatomically visible changes rather than rely-
ing on the observer’s inference of emotions. Recently the availability of spontaneous
expression datasets has made it possible for researchers to implement automatic
facial action unit recognition techniques. A detailed survey of the different methods
and their performance is listed in [3, 24]. Owing to the popularity of deep learning in
visual tasks, currently, most of the work in facial action unit recognition in the visible
light domain, learn CNN-based features. In this chapter, we review some of the recent
literature in facial action unit recognition. In their chapter, [7] use a seven-layer net-
work to detect the occurrence and intensity of facial action units. In [6], authors use
multi-label CNNs to extract appearance based features. Following the intuition that
certain facial regions are more import than others for a particular AU, patch learning
methods [30] have been used popularly. Sizhong et al. [8] introduced an incremental
boosting layer on top of a three-layer CNN to deal with limited positive samples in
each class. The introduced IB-CNN is trained separately for each class and does not
take into account the interdependencies and correlations of different AUs. Action
units can also be analyzed by exploring temporal domain along with the spatial. The
authors of [12] used a combination of CNN and bidirectional LSTM to jointly learn
the shape, appearance, and dynamic features. The CNN had two input streams for
sequence of image regions and sequence of corresponding binarymasksmerged after
the first pooling layer followed by two convolution layers. In [2] use two layers of
LSTM on top of CNN to extract spatiotemporal information. Most of the aforemen-
tioned methods use common architectures of CNNs like AlexNets, VGG nets [21]
or their simple modifications. In this chapter, we use the recent Densenet-121 archi-
tecture for feature extraction, with a few modifications like multitask learning and
a weighted cross-entropy loss. The existing work on facial action unit recognition
extract features from unimodal data. However, data from different modalities could
contain complementary information and learning their correlations could enrich the
feature space. In 2011, [13] analyzed the thermal fluctuations subjective to different
AUs. Through their study, they found thermography to be a promising alternative
discriminator for AUs. However, the lack of any publicly available dataset with syn-
chronous visible and thermal videos with AU annotations impaired the thermal anal-
ysis of AUs. In 2016, [28] presented a multi-modal spontaneous emotion (MMSE)
dataset consisting of 2D, 3D videos, thermal videos, and other physiological signals
like heart rate, electrical conductivity of skin, etc. The dataset consists of 140 subjects
and for each participant, 2D videos, 3D videos, and thermal videos from IR sensors
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are collected for ten tasks designed to elicit spontaneous emotions. In this chapter,
we use the MMSE dataset to learn a multi-modal conditional feature enhancement
representation for thermal and visible images.

3 Approach

3.1 Overview

The schematic of the proposedmulti-modal conditional feature enhancement (MCFE)
method is shown in Fig. 1. MCFE consists of a feature extraction stage followed by
a feature enhancement stage. Addressing the task of facial action unit recognition,
we first train a deep CNN that learns to assign action unit labels for a given RGB
frame focused on an individual’s face. This network is optimized using a multitask
learning framework with class weighting incorporated, to solve the issue of class
imbalance prevalent in such problems. While one network is trained on the visi-
ble spectrum, another network is trained similarly on the thermal spectrum for the
same task. Each network learns a specific view of the task and we implement a
novel multi-modal learning solution to enhance their corresponding representations
by modeling their correlations in the shared subspace. Contrary to traditional fusion
approaches, our approach does not attempt to create a unified fused representation
of the modalities that is better equipped at solving the task. Rather, in our fusion
approach, we emphasize transferring information that is uniquely learnt from the
individual modalities to other view representations with the aim of improving the
performance of each modality’s feature representation oriented toward maximizing
the combined system’s performance. This method has an advantage over traditional

Fig. 1 Overview of the proposed MCFE framework. The system extracts Deep features (Fv and
FT ) from paired visible and thermal images simultaneously using their corresponding DenseNet
models. Further, using the proposed approach, the enhanced features (F ′

v and F ′
T ) are produced
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fusion schemes in that, instead of vastly increasing the search space for finding an
optimum representation that describes both modalities equally, it limits the problem
to only determining the corrections/perturbations it needs to apply to each view’s
representation guided by the accompanying views. In doing so, we enhance not only
the individual representations but also the overall system performance which aggre-
gates the performances of the individual modalities. In the following sections, we
detail the approaches that we used for extracting action unit features and our novel
fusion approach applied to multi-modal facial action unit recognition.

3.2 Feature Extraction

Research in facial expression recognition can be categorized mainly on the basis of
feature extractors and classifiers. The ability of handcrafted features like SIFT [17],
HOG [4] etc to capture the complex nonlinear transformations of the face caused
by expressions are limited. CNNs on the other hand, has shown the ability to learn
optimal features for vision-based tasks like handwritten character recognition, face
recognition, etc. A series of convolutional filters can extract features starting from
abstract information like edges to complexpatterns like faces in the subsequent layers.
However, with deeper structures, the gradient vanishes as it reaches the beginning
layers. Networks with short skip connections like ResNets [9] and Highway Net-
works [22] prevent this by providing an alternative and easier way for gradients to
flow. Following this, DenseNet [10] was introduced wherein features from one layer
are connected to features of all the preceding layers. As a result, the lower level
abstract features are combined with the higher level granular features. Although
DenseNets learn a representation similar to the deeper models, owing to its compact
parameterization, it is less prone to over fitting, and enables feature reuse. To this
end, we use the Densenet-121 architecture with modifications for extracting features
from both visible and thermal images. The network consists of four dense blocks
followed by an output layer consisting of 12 neurons for 12 classes. The sigmoid
activation is used at the final classification layer. Typically the cross entropy loss is
applied to the output layer. Consider N AU classes, then for each input, the multi-
class cross-entropy cost is calculated as follows:

C =
N∑

i=1

(y′
i log yi + (1 − y′

i ) log(1 − yi )) (1)

In the above formulation, the individual components of loss corresponding to eachAU
is given equal weight. Most of the facial action unit datasets are heavily imbalanced.
Some of the action units have very low positive to negative sample ratio, otherwise
called the occurrence rate. Therefore, in order to account for the under represented
classes, the individual loss components needs to be weighted. However, calculating
the weights for each class with respect to other classes for a multi-label classification
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problem can be quite complex as each data sample can contain more than one AU
class. Therefore to overcome this problem, we use a multitask framework wherein a
separate binary cross-entropy loss is applied to each of the N output neurons and the
weights applied to the loss components are weighted by the ratio of their respective
positive and negative samples. The final output layer of the DenseNet is split into 12
output neurons. The cost function is calculated as follows:

bi = wi ∗ (y′
i log yi ) + 1 ∗ ((1 − y′

i )log(1 − yi )) (2)

The negative samples are weighted by 1 and the positive samples are weighted by
wi given as

wi = ni
pi

(3)

where ni is the total negative samples for AUi and pi is the total positive samples.
The final loss is calculated as the sum individual binary cross-entropy losses:

Ci =
N∑

i=1

bi (4)

Thus, the loss formulation takes into account the individual class distributions, while
still learning the correlations between thedifferent actionunits. Thenetwork is trained
with random weight initialization instead of initializing with the typical ImageNet
classification weights.

3.3 Multi-modal Conditional Feature Enhancement (MCFE)

Deep multi-modal fusion has typically relied on learning the feature correlations
among the modalities by stacking a number of fully connected layers applied on a
merged representation (concatenation, sum, etc.) or by projecting each modality’s
feature space onto a common optimal subspace for the specific task. Such methods
eventually arrive at a new shared representation for fusion, but is it necessary to have
to construct a completely new representation?We address this question by proposing
to employ the existing feature space and design a fusion scheme that, based upon a
shared representation, learns to only modify or perturb the original features in such
a way as to improve feature separability in their existing feature spaces.

Consider k input modalities xi , i = 1, .., k and their corresponding feature repre-
sentations are obtained as follows:

vi = f (xi ; θi ) (5)

where vi ∈ R
di , f may be an MLP, DNN or other feature extractors and θi are

the parameters for the corresponding modalities which may be shared. We define
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a function g with parameters ∇ which transforms all the input modalities’ features
into a latent representation l ∈ R

n thus:

l = g(v1, v2, ...vk; ∇) (6)

Based on this latent representation, we compute M transformation factors (feature
wise scaling and translation) si = [s1i , .., sMi ] and ti = [t1i , .., t Mi ] for each modality
i as below (omitting the subscript i for brevity)

s j = σ(W j
s
T
l + b j

s ) (7)

t j = σ(W j
t
T
l + b j

t ) (8)

Since the above equations are for each modality, there are k weights and biases
W j

s and b j
s corresponding to the scaling factors and k weights and biases W

j
t and b j

t

corresponding to the translation factors with j = 1, ..,M and σ denoting the sigmoid
nonlinearity. With these, we can construct M different variants of each feature vector
vi as

e j
i = (s j

i � vi ) ⊕ t ji (9)

Finally we choose 1 out of the M different enhanced features e j
i by predicting impor-

tance weights ch j
i for the M variants and running it through a softmax activation to

pick the most relevant enhanced feature vector e*i :

ch j
i = so f tmax(W j

c
T
l + b j

c ) (10)

e*i =
M∑

j=1

ch j
i ∗ e j

i (11)

whereW j
c and b j

c are the k weights and biases corresponding to the choice prediction
function applied to the kmodalities. This final enhanced feature representation is pre-
sented to the classification layer for improved performance on the task being solved.
Figure2 illustrates the general architecture of the proposed multi-modal conditional
feature enhancement system.

The presence of M variants of transformation factors and consequently M dif-
ferent versions of the enhanced features enables the learning algorithm to explore
a variety of improvements that can be applied to the original feature set. This is
similar in concept to the multiple paths that are present in the inception [23] deep
network architecture, where each layer gets its data from several different views of
the previous layer’s output. The presence of such multiple paths of computation
directly improves gradient flow to the prior layers since each path would begin to
learn aspects unique to a particular view for better representing the solution space.
Additionally, the ability to select the variant that is most suitable for the given sam-
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Fig. 2 MCFE Architecture. The system takes k modality features v and proposes M variants of
element-wise scaling s and translation t parameters applied on the input features. It finally weights
the aggregation of the proposals using ch via the channel sum operation to finally arrive at k
enhanced features e∗

ple of multi-modal features enables conditioning the fusion methodology applied
to the features. This allows the gradients to pass through multiple parallel routes
to the latent representation mapping function g and thus allows faster convergence
as observed in the experiments. It should be noted that the latent representation l
being learnt is different from the traditional shared representations that prior works
obtain during fusion. This is because in this formulation, l encapsulates information
relevant only to making a decision as to how to correct every modality’s feature
representation independently rather than representing a common unified subspace
which is used directly for the classification task. There are benefits for defining the
latent representation in such a manner and this will be explored in Sect. 3.4.

3.4 Training MCFE for AU Recognition

MCFE is applied to the thermal and visible features arising out of the corresponding
thermal and RGB frames extracted as described in Sect. 3.2. The latent mapping
function g that operates on the two inputs is implemented as a modified lightweight
DenseNet CNN. The latent representation l is connected to three separate fully
connected layers—one each for scaling, translation, and predicting choice. Upon
computing the final enhanced feature set ei* as described in Sect. 3.3 they are inde-
pendently connected to separate AU classification layers (one each for thermal and
visible spectrum) composed of 12 outputs each indicating the presence of a specific
action unit for the given image. In order to orient the training of MCFE’s parameters
to the final goal of improving the overall system (thermal and visible combined)
performance and not just the individual modality’s performance, we perform a sim-
ple average of the predictions by the thermal and visible classification layers. By
combining the predictions and optimizing against them, the network is encouraged
to learn parameters that would enable a particular modality’s enhanced feature to
compensate for the shortcomings of the other feature.
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In the naive approach, we can initialize the network with random weights. How-
ever, this would either fail to converge or provide unsatisfactory results. Intelli-
gent initializations help the network perform significantly better than traditional
approaches. We take two steps in this direction: (a) initialize the scaling layer to
produce an output of 1s and the translation layer to produce an output of 0s; and (b)
initialize the classification layers with the corresponding pretrained weights learnt
during the feature extraction step. Performing Step (a) ensures that in the initial state-
of-the network the enhanced features are the same as the original features, forming
an identity map:

e j
i = (s j

i � vi ) ⊕ t ji
= (1 � vi ) ⊕ 0 = vi

which gives a good starting location to begin gradient descent. Since the overall error
reduces in a specific direction, there can only be an improvement to the feature rep-
resentation (or at worst can remain the same). Step (b) accomplishes the objective of
reusing the information learnt from prior training to give a good target representation
that the previous layers can attempt to produce from the original representation. One
question that arises is how can we ensure that the enhanced features are indeed only
corrected versions of the original features and not entirely a new set of features learnt
by the network? We address this by freezing the classification layer weights from
training (which are already preinitialized). This enforces a constraint on the input to
the classification layers (i.e., the enhanced features) such that it adheres to the general
feature space representation that the classification layer has been trained to operate
on. Imposing this constraint limits the optimizer’s task to finding δs to each individ-
ual feature so as to magnify or diminish their effect and in doing so make the feature
space more separable with respect to the given classification layer parameters. This
is a much simpler task to optimize for, than having to explore unconstrained combi-
nations of feature spaces and, as we observe in the experiments, leads to much faster
convergence with strong performance gains. Additionally, with the formulation of a
single latent representation that is responsible for the computation of three separate
quantities, it implements the information bottleneck principle which has been shown
to produce better generalizations [19] and also mirrors the multitask learning frame-
work’s principle of leveraging a single representation for accomplishing multiple
disparate tasks.

4 Experiments

4.1 Datasets

We used the Multi-modal Spontaneous Emotion (MMSE) database to evaluate our
performance. MMSE contains 2D and thermal videos of 140 participants from ten
tasks, each eliciting different emotions. Among them, only four tasks were labeled
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for facial action units. Expert AU coders annotated each frame using the Facial
Action Coding System. The thermal sensor and the RGB camera were mounted on
top of each other and their frame rates were set to 25 fps for synchronization. In
our experiments, we used all 196, 793 visible frames, and 195, 411 thermal frames.
Out of the available images, only 133, 309 paired frames were available for our
multi-modal learning experiments.

4.2 Settings

Preprocessing All the input images in the dataset were aligned using the MTCNN
framework [27] based on the 49 facial landmark points provided by the MMSE
dataset. Further, the images were cropped to 170×170 and randomly rotated for
data augmentation. The presence of each action unit was labeled as +1/0. The data
samples with missing labels and faces were excluded from training.

Network Settings and Training for Feature Extraction We adopted a threefold
cross validation protocol to train our networks. For each experiment, we split the
dataset into three subject dependent partitions using two partitions for training and
the remaining one partition for validation. Both CNNs in our implementation are
trained using the weighted cross-entropy loss defined in Eqs. 2–4 The models are
trained with SGD as the optimizer with learning rate initialized to 1e − 3.

Network Settings and Training forMCFEWe use DenseNet-100x12 architecture,
which has a depth of 100 and a growth rate of 12 for getting the latent represen-
tation from the features. Along with the DenseNet, the network consists of three
fully connected layers corresponding to scaling, translation and prediction, and two
classification layers corresponding to the two modalities, resulting in a total of 24M
parameters. The network is trained using Adam optimizer, with a learning rate of 0.1
and a batch size of 128 for 32 epochs.

4.3 Results

We show the results of our experiment in Table1. We report our performance using
the F1 metrics widely used in the literature of facial action unit recognition. For
each experiment, we report the individual F1 scores of each action unit and also the
average F1 score across all action units. We report the average F1 scores across three
splits. We compare MCFE performance with other relevant state-of-the-art multi
model fusion strategies such as MFB [26] and Concatenation network [1]. We also
compare our enhanced features with the original features from a simple sum score
level fusion perspective.

From Table1, we note that the fusion results of the proposed MCFE methods
outperform the other methods. The simple score fusion of the enhanced features
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Table 2 Variation of the mean F1 score of split 2 of the data set for different values of M. M refers
to the number of scaling and translation values initially generated from network, from which the
choice layer picks the best value

M mean F1 score

2 0.7714

4 0.7688

8 0.7711

16 0.7662

32 0.7704

provides a performance improvement of about 1.1% on average, compared to the
original features. However, we also note that even though MFB performs slightly
better on some action units, MCFE significantly outperforms MFB in the action
units which are severely underrepresented in the dataset. It is appealing to note that
this improvement is obtained without using any explicit class balancing strategies.
Another interesting observation is the significant performance improvement of ther-
mal features across all the action units. This can be attributed to the fact that the
network would have learned good translation and scaling factors for the thermal fea-
tures so as to align it better with the visible component. Even though there is a slight
reduction in the performance of visible features in some cases, this can be seen as
a trade-off, as the system tries to align features from both the modalities, so as to
improve the overall performance.

Additionally, we perform experiments with varying values of M and the results
are provided in Table2. Since there is no clear correlation between the value of M
and the performance of the system that can be observed, M can be treated as any
other hyperparameter which depends on the input data, different parameters of the
network, and the task being optimized for.

5 Future Work

In this work, we explored how to maximally separate multi-modal features in their
respective feature space. We used a simple sum-based score fusion as a method to
improve the overall performanceof the system. In the currentwork,wedid not explore
the amount of complementary information present in themulti-modal features. It will
be interesting to investigate a fusion methodology which tries to enhance individual
features by increasing the complementarity between them. We created this fusion
methodology for a multi-modal feature scenario. However, we believe this fusion
methodology could be adapted to enhance the performance of systems, which are
based on an ensemble of classifiers. Furthermore, MCFE is performed on spatial
features treating individual frames as a data sample. In future, we aim to apply our
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fusion methodology to features modeling both spatial and temporal aspects in a
multi-label setting. The proposed MCFE is a general fusion technique and can be
applied to other tasks that can make use of the multi-modal data.

6 Conclusion

Multi-modal fusion techniques are being used extensively in combining informa-
tion from multiple data sources. Several approaches have been proposed, which
try different techniques to create a unified representation directly for fusion. How-
ever, the underlying concept of requiring a final unified representation has remained
unchanged. In this chapter, we proposed an alternative to the concept of a joint uni-
fied representation. Through theoretical and experimental validation, we find that we
can learn the factors that help to better align the features in their respective feature
spaces to maximize separability. In doing so, we eliminate the need for a unified
representation. We also show that such aligned features can be easily combined so
as to improve the overall performance of the system.

Acknowledgements This material is based upon work partially supported by the National Science
Foundation under Grant IIP #1266183.
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Intuition Learning

Anush Sankaran, Mayank Vatsa and Richa Singh

Abstract “By reading only the title and abstract, do you think this research will
be accepted in an AI conference?” A common impromptu reply would be “I don’t
know but I have an intuition that this research might get accepted”. Intuition is often
employed by humans to solve challenging problems without explicit efforts. Intu-
ition is not trained but is learned from one’s own experience and observation. The
aim of this research is to provide intuition to an algorithm, apart from what they
are trained to know in a supervised manner. We present a novel intuition learning
framework that learns to perform a task completely from unlabeled data. The pro-
posed framework uses a continuous state reinforcement learning mechanism to learn
a feature representation and a data-label mapping function using unlabeled data.
The mapping functions and feature representation are succinct and can be used to
supplement any supervised or semi-supervised algorithm. The experiments on the
CIFAR-10 database show challenging cases where intuition learning improves the
performance of a given classifier.

Keywords Reinforcement learning · Unsupervised classification · Intuition

1 Introduction

Intuition refers to knowledge acquiredwithout inference and/or the use of reason [25].
Philosophically, there are several definitions for intuition and themost popularly used
one is “Thoughts that are reached with little apparent effort, and typically without
conscious awareness” [11] and is considered as the opposite of a rational process.
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From a machine learning perspective, training a supervised classifier is a rational
process where it is trained with labeled data allowing it to learn a decision boundary.
Also, traditional unsupervised learningmethods do notmap the learnt patterns to their
corresponding class labels. Semi-supervised approaches bridge this gap by leverag-
ing unlabeled data to better perform supervised learning tasks. However, the final
task (say, classification) is performed only by a supervised classifier using labeled
datawith some additional knowledge fromunsupervised learning. The notion of intu-
ition would mean that the system performs tasks using only unlabeled data without
any supervised (rational) learning. In other words, intuition is a context-dependent
guesswork that can be incorrect at certain times. In a typical learning pipeline, the
concept of intuition can be used for a variety of purposes starting from training data
selection up to and including decision-making. Heuristics are the simplest form of
intuition that bypass or is used in conjunction with rational decisions to obtain quick
approximate results. For example, heuristics can be used in (1) choosing the new data
points in an online active learning scenario [6], (2) for feature representation [7], (3)
feature selection [10], or (4) choice of classifier and its parameters [4].

Table1 shows the comparison of existing popular machine learning paradigms.
Supervised learning attempts to learn an input–output mapping function on a feature

Table 1 Comparison of existing popular machine learning paradigms along with the proposed
intuition learning paradigm
Paradigm Input data Learnt function Comments

Supervised [3] <data, label> data-label mapping

Unsupervised [3] <data> data clusters

Semi-supervised [5] <data, label>, unlabeled
data

data-label mapping unlabeled data follow the
same distribution

Reinforcement [14] reward function (or value) state, action policy need a teacher to provide
reward

Active [24] <data, label> data-label mapping, new
data selection

need human annotator
(Oracle) or expert
algorithm to provide labels
for new data

Transfer [22] <sourceData,
sourceLabel>,
<targetData, targetLabel>

targetData—targetLabel
mapping

transfer can be data
instances, classification
parameters, or features

Imitation [18] sourceData,
sourceData-sourceLabel
mapping

targetData—targetLabel
mapping

need a teacher to provide
reward

Self taught [23] <data, label>, unlabeled
data

data-label mapping unlabeled data need not
follow the same distribution
and label as data

Deep learning [2] <data, label>, unlabeled
data

data-label mapping complex architecture to
learn robust data
representations

Intuition data, unlabeled data, reward
function (or value)

data-label mapping unlabeled data need not
follow the same
distribution, need a reward
function
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space using a set of labeled training data. Transfer learning aims to improve the
target learning function using the knowledge in source (related) domain and source
learning tasks [22]. Many types of knowledge transfer such as classification param-
eters [17], feature representations [9], and training instances [12] have been tested
to improve the performance of supervised learning tasks. Semi-supervised learning
utilizes additional knowledge from unlabeled data, drawn from the same distribution
and having the same task labels as the labeled data. Many of the research works have
focused on unsupervised feature learning, i.e., to create a feature subspace using
the unlabeled data, to which the labeled data can be projected to obtain a new fea-
ture representation [5]. In 2007, Raina et al. [23] proposed a framework termed as
“Self-taught learning” to create the generic feature subspace using sparse autoen-
coders irrespective of the task labels. Self-taught learning dismisses the same class
label assumption of semi-supervised learning and forms a generic high-level feature
subspace from the unlabeled data, where the labeled data can be projected.

As shown in Fig. 1, we postulate a framework of supplementing intuition deci-
sions at the decision level to a supervised or semi-supervised classifier. The decisions
drawn by the reinforcement learning block in Fig. 1 are called intuition because they
are learnt only using the unlabeled data with an indirect reward from a teacher. Exist-
ing algorithms, broadly, require training labels for building a classifier or borrows
the classifier parameters from an already trained classifier. Direct or indirect training
is not always possible as obtaining data labels are very costly. To address this chal-
lenge, we propose a novel paradigm for unsupervised task performance mechanism
learnt from cumulative experience. Intuition is modeled as a learning framework,
which provides the ability to learn a task completely from unlabeled data. By using
continuous state reinforcement learning as a classifier, the framework learns to per-
form the classification task without the need for explicit labeled data. Reinforcement
learning helps in adapting a randomly initialized feature space to the specific task
at hand, where a parallel supervised classifier is used as a teacher. As the proposed
framework is able to learn a mapping function from the input data to the output class
labels, without the requirement for explicit training, it functions similar to human
intuition and we term this approach as Intuition Learning.

1.1 Research Contributions

This research proposes a novel intuition learning framework to enable algorithms
learn a specific classification or regression task completely from unlabeled data. The
major contributions of this research are as follows:

– A continuous state reinforcement learning-based classification framework is pro-
posed to map input data to output class label, without the explicit use of training.

– A residual Q-learning-based function approximation method for learning the fea-
ture representation of task-specific data. A novel reward function which does not
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Fig. 1 Comparing the different learning paradigms such as supervised, semi-supervised, and trans-
fer learningwith the proposed intuition learning paradigm. Intuition learning transfer the knowledge
to perform classification from unlabeled data using reinforcement learning
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require class labels is designed to provide feedback to the reinforcement-based
classification system.

– A context-dependent addition framework is proposed, where the result of the
intuition framework can be supplemented based on the confidence of the trained
supervised or semi-supervised mapping function.

2 An Intuition Learning Algorithm

The basic idea of the proposed intuition learning framework is presented in Fig. 2.
Given a large set of unlabelled data, different kinds of feature representations are
extracted to describe the data, irrespective of the task in hand. To further leverage
the knowledge interpretation from unlabeled data, a continuous state reinforcement
learningmechanism is used to perform the given classification task.As reinforcement
is a continuous learning process, using a reward-based feedback mechanism, the
classification task improves with time. The reinforcement learning, on one hand acts
as a classifier, while on the other hand continuously adapts the feature representation
with respect to the given task. Thus, given multiple tasks, the proposed intuition
learning framework can adapt the generic feature space to be consistent with the
corresponding task.

Let {(I (1)
l , y(1)), (I (2)

l , y(2)), . . . , (I (m)
l , y(m))} be the set ofm labeled training data

drawn i.i.d. from a distribution D. The labeled data are represented as {(x (1)
l , y(1)),

(x (2)
l , y(2)), . . . , (x (m)

l , y(m))}, where x (i)
l ∈ Rn is the feature representation of the

Fig. 2 A block diagram outlining on how a feature space can be adapted using reinforcement
learning algorithm with feedback from a supervised classifier trained on limited task-specific data
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data I (i)
l and y(i) ∈ [1, 2, . . . ,C] denotes the class label corresponding to x (i)

l . Let
the set of unlabeled data be {I (1)

u , I (2)
u , . . . , I (p)

u }, where the subscript u represents
that they are unlabeled data. Contrary to self-taught learning [23], we do not assume
that the labeled and unlabeled data should be drawn from the same distribution D or
have the same class labels, however, they should be derived from the same modality.
Given a set of labeled and large unlabeled data, the aim of intuition learning is to
learn a hypothesis h′ : (X → R) ∈ [1, 2, . . . ,C] that predicts the labels for a given
input representation of data drawn. However, the hypothesis h′ is learnt without the
direct use of labels y(i) and is used as a supplement for the hypothesis h learnt using
(x (1)

l , y(1)) in a supervised (or semi-supervised) manner.

2.1 Adapting Feature Representation

From a large set of unlabeled data, many different kind of feature representations are
extracted. Each representation may correspond to a different property of the data that
we try to capture. For image data, the features could be color, texture, and shapewhile
for text data, the features could be n-grams, bag-of-words, and word embeddings.
The features can also be a set of different color features or set of hierarchical n-
grams. If the large set of unlabeled data is seen as the world (or the universal set), the
features are the different observations made by the algorithm from the world. Similar
to human intuition, the set of feature representations extracted are task-independent,
and later depending on the learning task a subset of these features could be dominantly
used. This task-independent feature space is similar to the human intuition learnt by
observing the environment.

Figure3 provides a detailed description of the proposed intuition learning frame-
work. From the set of unlabeled data Iu , we extract r different kinds of feature repre-
sentations, {Xu1 , Xu2 , . . . , Xur }, where Xui = {x (1)

ui , x (2)
ui , . . . , x (p)

ui }, where x ( j)
ui ∈ Rni .

For every feature representation q ∈ [1, 2, . . . , r ], we cluster the representation
[x (1)

uq , x (2)
uq , . . . , x (p)

uq ] into C clusters1 using k-means clustering. The centroid of each

cluster for the i th feature representation is given as [z1u(i)
, z2u(i)

, . . . , zCu(i)
]. This feature

collection of [z1u(q), z
2
u(q), . . . , z

C
u(q)], for q = [1, 2, . . . , r ] is called as Intuition-based

Feature Subspace (IFS), as it clusters the entire set of unlabeled data into groups,
based on every observation (feature).

1The best adaption results are obtained when we fix C to be the number of classes we have in the
learning task.
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Fig. 3 Overall scheme of the proposed intuition learning algorithm that aids a supervised classifier

2.2 Classification Using Reinforcement Learning

For a given set of m labeled training data, {I (1)
l , I (2)

l , . . . , I (m)
l }, the set of r fea-

tures (as used for the unlabeled data) are extracted as [x (1)
lq

, x (2)
lq

, . . . , x (m)
lq

], where
q = [1, 2, . . . , r ]. The extracted features are then projected onto the Intuition-based
Feature Subspace (IFS) by calculating the distance of features from the correspond-
ing cluster centroids shown as,

s(i)
q = ||x (i)

lq
− z( j)

uq ||2 (1)

for j = [1, 2, . . . ,C], q = [1, 2, . . . , r ], and i = [1, 2, . . . ,m]. The representation
of the data i is given by concatenating the distances corresponding to all the features,

s(i) = [s(i)
1 , s(i)

2 , . . . , s(i)
r ] (2)

The obtained representation is succinct with a fixed length dimension of rC × 1,
where r is the number of different feature types extracted andC is the number of clus-
ters. In essence, every value represents the distance from a cluster centroid. Also, in a
typical semi-supervised (or self-taught) learning scheme, the mapping between intu-
ition based representation and the output class labels, {(s(1), y(1)), (s(2), y(2)), . . . ,

(s(m), y(m))} is learnt in a supervised manner. However, in the proposed intuition
learning, we attempt to learn the data-label mapping without using the class labels,
using reinforcement learning. The aim of reinforcement learning is to learn an action
policy π : s → a, where s ∈ S is the current state of the system and a is the action
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performed in that state. As the setup involves a continuous state environment, the
optimal action policy is learnt using a model free, off-policy Temporal Difference
(TD) algorithm called Q-learning, where Q(s, a)-value denotes the effectiveness of
a state-action pair. The T D(0) Q-learning algorithm is given by,

Q(st , a) = Q(st , a) + α

[
rt + γ max

a′ Q(st+1, a
′) − Q(st , a)

]
(3)

where rt ∈ Rn is the immediate reward obtained for performing action a in state
st , γ ∈ [0, 1] is the factor with which the future rewards are discounted and α ∈
[0, 1] is the learning rate. In our problem, reinforcement learning is formulated as a
classification problem, where IFS is the current state s and action a is the output label
to be predicted, the policy π learns the data-label relation for the given data. Due
to the large, probabilistic, and continuous definition of the space s, the Q-values are
approximated using a universal function approximation, i.e., a neural network [26].

Q(s, a) = ψ(s, a, θ) =
∑
i

φi (s, a).θi = φT (s, a).θ (4)

where φ is the approximation function. Using residual Q-learning algorithm [21],
the free parameters θ are updated as follows:

θt+1 = θt + α.ψ.Δψ (5)

θt+1 = θt + α

[
rt + γ max

a′ Q(st+1, a
′) − Q(st , a)

]

×
[
βγ

∂

∂θ
max
a′ Q(st+1, a

′) − ∂

∂θ
Q(st , a)

] (6)

where β is a weighting factor called the Bellman residual. Baird [1] guaranteed the
convergence of the above approximate Q-learning function, the details of which are
skipped for the sake of brevity. ε− exploration strategy is adopted, where, in every
state a random action is preferred with a probability of ε. As observed in [16], “the
crucial factor for a successful approximate algorithm is the choice of the parametric
approximation architecture and the choice of the projection (parameter adjustment)
method(s)”.The choice of reward function employed is highly important and directly
implies the effectiveness of adaption, which is explained in the next section.

2.3 Design of Reward Function

The Intuition-based Feature Subspace (IFS) is defined by the cluster centroid points
obtained using unlabeled data for every feature q as [z(1)

uq , z(2)
uq , . . . , z(C)

uq ], where
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q = [1, 2, . . . , r ]. This space provides an organized definition of how the entire set of
unlabeled data is observed and inferred. From the various features of the labeled train-
ing data [(x (1)

lq
, y(1)), (x (2)

lq
, y(2)), . . . , (x (m)

lq
, y(m))], where q ∈ [1, 2, . . . , r ], the cen-

troid points for every feature and every class are calculated as, [z(1)
lq

, z(2)
lq

, . . . , z(C)
lq

],
whereq = [1, 2, . . . , r ]. This space, called theLabeled dataFeature Subspace (LFS),
formed by these centroid points provide us the inference of the particular learning
task to be performed. It is to be noted that:

– Apart from unlabeled data, every labeled training data (and even testing data) gets
incrementally added to the IFS, as the observed data affects the overall under-
standing of features.

– The aim of incremental learning is to shape the I FS as close as possible to LF
while learning the feature-label mapping using reinforcement learning.

The incremental update of the I FS happens for the i th training example belonging
to j th class, as shown in the following equation:

z( j)
uq = z( j)

uq +
(
x (i)
lq

− z( j)
uq

n j
q

)
(7)

for q = [1, 2, . . . , r ], where n j
q is the number of data points in the j th cluster for qth

feature. Further, to make effective learning from this incremental update, the reward
function is defined as a function of the distance between the current IFS and LFS, as
follows:

rt =
(
||z( j)

uq ,t − z( j)
lq

||2
)−1

(8)

for q = [1, 2, . . . , r ], j = [1, 2, . . . ,C] at a given time t .

2.4 Context-Dependent Addition Mechanism

Intuition learning framework acts as a supplement to (and not complementing) super-
vised learning. The need for intuition arises only when the confidence of supervised
learner falls below a particular threshold. Therefore, a context-dependent mecha-
nism is designed to leverage supervised learning using intuition only when required.
For given labeled training data {I (1)

l , I (2)
l , . . . , I (m)

l }, some handwritten or unsuper-
vised features are extracted, {(x (1)

l , y(1)), (x (2)
l , y(2)), . . . , (x (m)

l , y(m))} and a super-

vised model is learnt, Hs :
(
x (i)
l → ŷs

)
. Based on the supervised learning algo-

rithm, the classification confidence is computed for the i th data point and is given
as con f (i)

s = [cs(i)
1 , cs(i)

2 , . . . , cs(i)
C ]. The mechanism to calculate the classification

confidence depends on the supervised learning model used. Similarly, the intuition
learning can be represented as Hint : (

s(i) → ŷint
)
and the classification confidence
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is the output of the last layer of the value function approximation neural architec-
ture, given as con f (i)

int = [cint (i)1 , cint (i)2 , . . . , cint (i)C ]. A label switching mechanism
is performed to give the final predicted label, ŷ, as follows:

ŷ =
{
ŷs, Δ > th

ŷnew, otherwise
(9)

where th is the threshold for using intuition and the condition for context Δ is
calculated as follows:

Δ = max
j

(
cs(i)

j

)
− max

l �= j

(
cs(i)

l

)
(10)

In such cases where intuition is used to boost the confidence of supervised classifier
the new label is computed as follows:

cnew(i)
k = λ.cs(i)

k + (1 − λ).cint (i)k (11)

ŷnew = argmax
j

(
cnew(i)

j

)
(12)

where λ is the trade-off parameter between intuition and supervised learning. Thus,
in simple words, we add the feeling of intuition to an algorithm. The entire approach
is summarized as an algorithm in Algorithm 1.

Algorithm 1 Intuition Learning Algorithm

1: Input: Labeled Data: {(I (1)
l , y(1)), (I (2)

l , y(2)), . . . (I (m)
l , y(m))}, Unlabeled Data:

{I (1)
u , I (2)

u , . . . I (p)
u }, maxNumberOfEpochs

2: repeat
3: for i = 1 to m do � Extract r different types of features
4: {[x (1)

u1 , x (2)
u1 , . . . , x (p)

u1 ], [x (1)
u2 , x (2)

u2 , . . . , x (p)
u2 ], . . . , [x (1)

ur , x (2)
ur , . . . , x (p)

ur ]} ←
{I (1)

u , I (2)
u , . . . I (p)

u } � Cluster data into C groups based on each feature
5: [z1uq , z2uq , . . . , zCuq ], ∀ q = [1, 2, . . . , r ] � Compute the current state

6: s(i)
q = ||x (i)

lq
− z juq ||2, ∀ j = [1, 2, . . . ,C], ∀q = [1, 2, . . . , r ], ∀i = [1, 2, . . . ,m]

� Approximate the current state Q-value
7: Q(s, a) = ψ(s, a, θ) = ∑

i φi (s, a).θi � Update θ
8: θt+1 = θt + α.ψ.Δψ � Compute reward value

9: rt =
(
||z juq ,t − z jlq ||2

)−1 ∀q = [1, 2, . . . , r ], ∀ j = [1, 2, . . . ,C]
10: end for
11: until maxNumberOfEpochs or Δψ < thresh � Test phase
12: For I (i)

t , calculate β, ŷs , ŷnew
13: if Δ > thresh then
14: ŷ ← ŷs
15: else
16: ŷ ← ŷnew , as shown in Eqs. 11, 12.
17: end if
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3 Experimental Analysis

3.1 Dataset

The proposed intuition learning algorithm is applied for 10-class classification prob-
lem using the CIFAR-10 database [15]. The database contains 60,000 color images
labeled, each of size 32 × 32 pertaining to 10 classes (i.e., 6,000 images per class).
There are 50,000 training images and 10,000 test images. The data set contains small
size images, leading to limited and noisy information content and it provides the
most relevant case study to demonstrate the effectiveness of the proposed paradigm.
The STL-10 database [7] is used as the unlabeled image data set having one million
colored images of size 96 × 96. As shown in Table2 six different feature repre-
sentations are extracted from the images. These features comprehensively comprise
the various types of features that could be extracted from image data. For all the
experiments, five times random cross-validation is performed and the best model
accuracy is reported for all the experiments. Sample images from CIFAR-10 and
STL-10 datasets are shown in Fig. 4.

3.2 Interpreting Intuition-Based Feature Subspace

The primary aim of the approach is to construct the feature subspace completely from
unlabeled data and to adapt it to a specific learning task. Figure5 shows the clusters
of entire unlabeled data corresponding to every feature extracted. The concatenation
of the feature spaces put together in Fig. 5a represents the IFS. Figure5b shows
the adapted task-specific feature subspace after performing 300 epochs of learning
with the given labeled data. Figure5c shows the amount of update in the cluster after
adding an image, by calculating the dissimilarity between the cluster centroid, before
and after the addition of the image. Cluster dissimilarity is calculated for the r − th
feature representation as follows:

Table 2 Details of different features extracted from the image data

Type Feature Dimension Parameters

Color Color harris [27] 10 × 2 σg = 1.5, σa = 5

Color Color
autocorrelograms [13]

64 × 1 Quantization level, m = 64

Local texture Local binary pattern
(LBP) [19]

59 × 4 N = 8, R = 1

Global texture GIST [20] 512 × 1 nθ = 8, nblock = 4

Saliency Region covariances [8] 32 × 32 r = 3,σ = 1.2,m = 1/10

Shape Multilayer
autoencoder [28]

10 × 1 size =
[10, 110, 110, 340, 340, 1024, 1024]



122 A. Sankaran et al.

Fig. 4 Sample set labeled images from CIFAR-10 database and unlabeled images from STL-10
database

(a)

(b)

(c)

Fig. 5 Image showing the data clusters for each of the extracted feature and grid depicts the cluster
density at local regions. a shows the IFS of all the unlabeled data, b shows the adapted task-specific
feature space after 300 epochs of learning, and c shows the amount of change happening in the
cluster after the addition of an image. Best viewed in color

Cdis =
C∑
j=1

1

Dj
.||z( j)

ur |(t+1) − z( j)
ur |(t)||2 (13)

where Dj is the density of the j th cluster. It can be visually observed from the plot
that, shape, gist, and LBP feature spaces are updated (learns) after the addition of
each image, indicating that these features contribute more towards the classification
task. However, both color Harris and autocorrelogram features are not much updated
by the training data.
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3.3 Performance Analysis

It is to be noted that intuition learning framework is used to supplement any super-
vised or semi-supervised learning mechanism. In this research, we show the results
in the following scenario:

1. Using two supervised learning algorithms (backpropagation neural network and
multi-class SVM) with Uniform Circular Local Binary Pattern (UCLBP) [19] as
features. Labeled data, [(x (1)

lq
, y(1)), (x (2)

lq
, y(2)), . . . , (x (m)

lq
, y(m))], from CIFAR-

10 is used to train the supervised algorithms.
2. Using a semi-supervised learning algorithm, with neural network as classifier and

UCLBP features trained on CIFAR-10 dataset. The semi-supervised algorithm
used for comparison is one approach for self-taught learning [23], with unlabeled
data from STL-10 dataset, {(s(1), y(1)), (s(2), y(2)), . . . , (s(m), y(m))}.

3. Using a intuition learning framework only, having the intuition-based task-
specific feature representation combined with a continuous state reinforcement
learning (Q-learning) in Eq.4 for classification.

4. Using a supervised intuition framework, where the output of the supervised learn-
ing algorithm and the intuition learning framework is combined using the context-
dependent addition mechanism in Eq.12.

5. Using a semi-supervised intuition framework, where the output of the semi-
supervised learning algorithm and the intuition learning framework is combined
using the context-dependent addition mechanism.

The optimized values of various parameters used in our framework are as fol-
lows:α = 0.99, γ = 0.95,β = 0.2, th = 0.9,λ = 0.5, and ε = 0.05. Preprocessing
of features is done using z-score normalization. All the experiments are performed
on a Intel Xeon E5 − 2640 0, 2.50GHz, 64GB RAM server.

As already discussed, intuition has a better significance in challenging problems
with limited training data. Tables3, 4, and 5 show the performance of the proposed
intuition learning in comparison with other learning methods, by varying the train-

Table 3 The performance accuracy (%) of supervised intuition learning is compared with super-
vised (neural network) and semi-supervised (self-taught) learning methods. The significance of
intuition is studied by varying the amount of available training data. 5 times random cross-validation
is performed and the best modelś performance is reported

Training size Supervised Semi-supervised Supervised intuition

10000 38.90 29.64 36.19

5000 37.13 24.34 34.78

3000 14.12 17.07 25.65

1000 10.34 16.54 19.61
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Table 4 The influence of supplementing intuition to supervised and semi-supervised algorithm is
shown by improvement in the performance accuracy (%)

Training size Intuition Intuition supervised Intuition
semi-supervised

10000 12.11 36.19 29.21

5000 10.00 34.78 23.85

3000 10.00 25.65 22.49

1000 08.99 19.61 20.53

Table 5 The performance accuracy (%) of supervised and supervised intuition framework using
SVM classifier is studied

Training size Supervised Intuition supervised

10000 44.57 41.83

5000 43.21 40.77

3000 13.56 17.48

1000 06.19 09.78

(a) (b)

Fig. 6 Examples of a success and b failure cases of the proposed intuition learning. AL = actual
ground truth label, SL = label predicted by the supervised neural network learner, and IL = label
predicted when intuition is combined with supervised neural network learner

ing size as parameter.2 It can be observed that with enough training data, super-
vised algorithms (both neural network and SVM) yield the best classification per-
formance. However, with decrease in the size of training data, the performance of
all the three algorithms, supervised, semi-supervised, and intuition learning reduces.
The results show that in such a scenario, incorporating intuition with supervised
or semi-supervised algorithm yields improved results. This supports our hypothesis
that adding intuitionwould improve the performance fromunder challenging circum-
stances such as limited training data. Similarly from a human’s perspective, under

2For a given training size, the same subset of images is used across all the classifiers to avoid any
training bias.
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Fig. 7 A plot between the cumulative errors across each epoch empirically showing the learning
effectiveness of the residual Q-learning performed in Eq.6

the presence of all data and information, one may take correct decisions. However,
when the background training data information is limited, intuition learning helps.
Further, some key analysis are summarized below:

1. To study the effectiveness of residual learning in Eq.6, training error over suc-
cessive epochs is plotted, as shown in Fig. 7, for a training size of 10000. It can
be observed that the training error gradually decreases and remains constant after
300 epochs, indicating that maximum training capacity has been achieved, with
minimum training error.

2. The computation time required for intuition learning depends on the complexity
of r features that are extracted. However, for one sample, under the assumption
that the feature extraction happens off-line, the overall intuition decision and
feature space can be generated in 0.082 s while the supervised decision can be
taken in ∼4s on an average. This shows that intuition is much faster requiring
little effort than supervised decision-making.

3. In Fig. 6, some success and failure example cases are shown where (a) intuition
helps incorrectly classifying a data but supervised learning fails and (b) data
was incorrectly classified because of intuition. As previously discussed, intuition
can go wrong sometimes. Upon analyzing the first horse example in failure case
(Fig. 6b), it is observed that horses are clustered more towards brown color in the
autocorrelogram color feature space. However, as the horse shown in the images
is white in color, it gets clustered along with cat and misclassified by intuition
learning.
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4 Conclusion

Inspired from human capabilities of instinct reasoning, this research presents a intu-
ition learning framework that supplements a classifier for improved performance,
especially with limited training data. Intuition is modeled as a continuous state rein-
forcement learning, that adapts to a particular task using large amount of unlabeled
data and limited task-specific data. The performance of intuition is shown in a 10 class
image classification problem, in comparison with supervised, semi-supervised, and
reinforcement learning. The results indicate that the application of intuition improves
the performance of the classifier with limited training data.
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Alleviating Tracking Model Degradation
Using Interpolation-Based Progressive
Updating

Xiyu Kong, Qiping Zhou, Yunyu Lai, Muming Zhao and Chongyang Zhang

Abstract Recently,CorrelationFilter (CF)-basedmethodshavedemonstrated excel-
lent performance for visual object tracking. However, CF-based models often face
one model degradation problem: With low learning rate, the tracking model cannot
be updated as fast as the large-scale variation or deformation of fast motion targets;
As for high learning rate, the trackingmodel is not robust enough against disturbance,
such as occlusion. To enable the trackingmodel adapt with such variation effectively,
a progressive updatingmechanism is necessary. In order to exploit spatial and tempo-
ral information in original data for tracking model adaptation, we employ an implicit
interpolation model. With motion-estimated interpolation using adjacent tracking
frames, the obtained intermediate response map can fit the learning rate well, which
will effectively alleviate the learning-related model degradation. The evaluations on
the benchmark datasets KITTI and VOT2017 demonstrate that the proposed tracker
outperforms the existing CF-based models, with advantages regarding the tracking
accuracy.

Keywords Visual tracking · Correlation filter · Progressive updating

1 Introduction

Visual tracking is one of themost challenging tasks in computer vision. It has attracted
a lot of interests from numerous researchers for its wide applications in diverse areas
such as video surveillance, vehicle autonomy, and video analysis.

Recently, Correlation Filter (CF) based methods [4, 11, 16, 17], have become a
popular approach to deal with tracking task due to the advantage of computational
efficiency. CF-based tracking process can be decomposed into three steps: training
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Fig. 1 Illustration of tracking failure under different learning rates: The first row illustrates tracking
failure results from relatively low learning rate (0.005), the trackingmodel is not updated fast enough
in order to match with fast-changing target; The second row illustrates tracking failure results from
relatively high learning rate (0.05), which makes tracking model update so fast that the disturbance,
such as occlusion, is taken as the main part of the target, and thus wrong result is got; The third row
shows accurate tracking result based on the proposed method using progressive updating, which
has the same learning rate as the first row

the correlation filter by performing circular sliding window operation to periodically
extended training samples [24]; detecting the target with the trained tracker in a new
frame; updating the tracking model with the detection result. CF methods gain the
advantage of computational efficiency based on a principle that training and detection
samples must be extended through circular shifts. Although dense sampling provides
sufficient feature from the data, cyclic shifts create a synthetic region of which the
detection scores are only accurate near the center [13]. This leads to a restricted target
search region at the detection step. For a target with fast motion, the CF-based track-
ers tend to generate tracking failure due to the restricted search region. Reference
[8] From the perspective of model updating, tracking failure of these approaches can
be divided into two situations: either with a low learning rate the tracking model
updates too slow to catch up with variation of fast moved targets, or with a higher
learning rate the tracking model is not robust enough against disturbance, such as
occlusion (Fig. 1).

Tracking objects with occlusion (see Fig. 2) or fast motion (see Fig. 3) demands
a robust tracking model capable of adapting with large search region and visual
features variance. To alleviate effects brought by fast-moving objects, we propose
a progressive updating mechanism based on motion-estimated interpolation method
(MEINT) to update tracking model with transitional information. We argue that this
non-model specific technique can provide intermediate spatial-temporal information
for model training and detection process without relying on delicate learning rate
fine-tune.

Based on this intuition, we propose a novel tracking model to alleviate model
degradation situation especially with fast-moving targets. One motion-estimated
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Fig. 2 Occlusion scenario in soccer1 of vot2017. The upper sequence is the result from DCF-CSR
tracker. The lower sequence is the result from proposed method

Fig. 3 Fast motion/illumination change scenario in drone1 of vot2017. The upper sequence is
DCF-CSR tracker’s result. The lower sequence is the result from proposed method

interpolation (MEINT) block is developed in this work, which is used to gener-
ate interpolated response with adjacent tracking frames, and thus the model can be
updated smoothly using the intermediate information. By adapting original data with
spatial and temporal information, we propose a generic scheme which can be seam-
lessly integrated into those models to enhance the motion-adaptive capacity of the
tracker itself.

Overall, our contribution to tracking model degradation objects are twofolds:
1. We propose a novel interpolation-based tracking model to pose the learning

problem. With motion-estimated interpolation using adjacent tracking frames, the
obtained intermediate response map can fit the learning rates well and thus learning-
related model degradation can be reduced effectively.
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2. One motion-estimated interpolation (MEINT)-based progressive updating
mechanism is developed to obtain the accurate intermediate response. As a generic
block, MEINT is complementary to existing approaches, and can be integrated with
existing tracking models to enhance their motion-adaptive capacity.

2 Related Work

During the last decade, more and more valuable works have been developed and
enabled great progress in the area of visual object tracking. ConvNets have enabled
significant progress in feature learning recently, based on which more and more
tracking methods are developed to replace handcrafted feature-based traditional
models [1, 21]. However, most deep learning based methods [9, 22] suffer from
high computational cost due to a large amount of workload during training process,
which makes them not a suitable choice for real-time object tracking. Valmadre
et al. [26] proposed an end-to-end representation for Correlation Filter-based track-
ing and achieved a speed of 45 fps, however, at a cost of accuracy which is even lower
than some handcrafted feature based tracking methods [6] which have higher fps.
Further more, the need of GPU also increases the cost of equipments, which limits
the application of deep-based methods in real-time embedded systems.

In terms of non-deep learning methods, the discriminative correlation filters with
fHOG [5] features have been popularized recently in the tracking community, starting
with MOSSE tracker [4]. The kernelized correlation filter(KCF) [6] further investi-
gated the computational efficiency results from circular structures.

However, the circular structure also leads to several problems known as bound-
ary effect [12]. DCFs with limited boundaries (CFLB) [12], spatially regularized
CF(SRDCF) [7], and background correlation filters (BACF) [10] all propose differ-
ent approaches in order to get more important information from the training sample
to achieve better tracking model. CFs with limited boundaries (CFLB) [12] was
proposed to learn CFs with fewer boundary effects. However, it is merely based on
pixel intensities, which was proved to be not good enough to express the patterns
in the image in [11]. Spatially regularized CF (SRDCF) [7] was proposed to learn
trackers with optimization objective altered in order to maintain more information
around the center of the patches. Although this method has promising performance
on prediction, it has a major disadvantage. Specifically, the regularized objective,
without close-form solution, is costly to optimize. In addition, a set of parameters
need to be carefully tuned to form the regularization weights. Failure to tune these
hyperparameters may lead to poor tracking performance [10]. Background corre-
lation filters (BACF) [10] were proposed to include more background information
from the frame and generate negative training samples which will help the classifier
distinguish background from the foreground. Despite its impressive performance,
altering the structure of the training process leads to no closed-form solution and the
authors resorted to ADMMmethods to solve the problem, which leads to a speed of
35 fps.
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3 Alleviating Model Degradation Using
Interpolation-Based Progressive Updating

3.1 Revisiting of CF-Based Tracking Method

The CF-based tracking process can be mainly decomposed into three steps: training,
detection, and model updating. A cosine window is applied on the features, in order
to remove the boundary discontinuities. Due to the convenience brought by circular
shifts, the convolution in the spatial domain can be expressed as an element-wise
product in the frequency domain.

The parameters of the correlation filter contains: F(x) and F(α), where F(·)
denotes the Fourier transformation. For the first frame, x is feature extracted from
target region, while α is the filter parameter determined by label and auto-correlation
of the target feature.

F(α) = F(y)

Corr(F(x),F(x))
. (1)

where function Corr(·) denotes correlation in frequency domain. y is a Gaussian
distributed label with the center at the target position.

The response in Fourier domain of the circular sample can be calculated directly
with dot product. Let Corr(F(x),F(z)) denotes the correlation between the model
feature F(x) and the feature extracted from detecting region, the response can be
expressed as follows:

F(R) = Corr(F(x),F(z)) · F(α). (2)

The new position is detected by searching for maximal response’s location, which
provides new training samples for new target model as stated in Eq.1. The new
training samples are subsequently used to update the model. Updating the model
with new parameters also involves updating F(x) and F(α). As mentioned above,
the circular form of x leads to speed-up results from circular matrix: the correlation
of circular matrix in Fourier domain can be expressed as dot product. The updating
process can be expressed as follows:

F(αt ) = (1 − l) · F(αt ) + l · F(αt+1). (3)

F(xt ) = (1 − l) · F(xt ) + l · F(xt+1). (4)

where l denotes the learning rate and t indexes the frame where the model is from.
More detailed explanation of standard CF-based method can be found in [16].

The efficiency of CF is based on the circular shifts in the training samples and test-
ing samples [7]. However, circular-shifted samples also cause problems: the cosine
window applied to the data leads to restricted target search region and inaccurate data
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around the margin. More detailed explanation about problems result from circular
shifts that can be found in [7].

For fast-moving objects, due to restricted detection area resulted from training
process, the detection area from the previous frame fails to cover tracking object
from the current frame, which leads to tracking failure. To alleviate effects brought by
fast-moving objects, we propose amotion-estimated interpolationmethod (MEINT),
which synthesis frames with transitional information.

3.2 Motion-Estimated Interpolation(MEINT) Based
Progressive Updating

The equations in Sect. 3.1 still hold for the proposed method. Other than the original
set of samples s, in order to alleviate model degradation, the proposed method pro-
gressively updates the tracking model for each interpolated frame, which provides a
set of samples carrying spatial and temporal information.

Figure4 illustrates the effect of progressive updating on frames with the depredat-
ing model, the model degradation is reduced due to the progressive updating based
on interpolation of the frames.

Motion estimation(ME) is done by matching the same entities in two adjacent
frames and calculating themotion vector field (MVF), relying on blockmatching [25]
or on descriptor matching [23]. The core of variousME algorithms is blockmatching

Fig. 4 Comparison between original frames and frames after progressive updating for response
map and detection results. The responsemap is calculated from the cross-correlation betweenmodel
and test sample. As shown in the first row, fast motion leads to model not robust enough, which
leads to response map with multiple peak values, since it is possible for the highest peak value to be
a disturbance, the tracking result might drift from the target. In the second row, interpolated frame
provide transition information for training tracking model, which leads to distinct response map
with single peak value and accurate tracking result
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algorithm (BMA) [14] which has intuitive architecture and low complexity [19].
BMA is adopted here for lowering computation cost. The two adjacent frames are
first divided into square blocks with length, and by matching blocks and recording
the movement between two frames, the MVF is calculated.

For the block with center c and size p · p, the block matching is done by mini-
mizing the energy difference between blocks from two frames.

minimize
δc

D(B(c), B(c + δc))

subject to δc ∈ [−p, p]. (5)

where B(c)denotes the pixel block centered at c,δc denotes estimated motion, and
D(·) denotes the cost function chosen to describe the difference between blocks.

Its form depends on the terms of computational expense such as mean absolute
difference (MAD) ormean square error(MSE). Byminimizing the energy, themotion
estimation of each block (δc) can be generated into MVF u(c), which is needed in
the interpolation process. The MVF records the estimated movement for each block.

The interpolationmethod is adopted from [2]. In order to calculate the interpolated
frame, the interpolated field shall be calculated first. From motion field ut between
frame ft and frame ft+1, let δt denote the time interval, the motion field on point c
of the interpolated frame generated at time t + λ · δt is expressed as:

uλ(round(c + λut (c))) = ut (c). (6)

For each hole chole in the interpolated motion field uλ(chole), it is filled up with
the nearest motion vector uλ(cassigned). The i-th interpolated frame between frame ft
and ft+1 is expressed as follows:

fλ(c) = (1 − λ) ft (c − λuλ(c))

+λ ft+1(c + (1 − λ)uλ(c)).
(7)

3.3 Process of Progressive Updating Model

The process is illustrated in Algorithm1, where emphasized part indicates the inter-
polation process based on motion estimation and black part indicates standard CF-
based tracking process, c, (δc), B(·), D(·),u,λ, f, l, x, R, t has the same meaning
as the section above, and δc denotes possible motion direction, mdl denotes target
model, f eature denotes feature extraction function adopted.

For a video sequence which contains tracking failures that result from model
degradation, progressive updating is implemented to provide spatial and temporal
information for progressive model updating, which can serve as a preprocess on data
before applying the standard tracking process.
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Algorithm 1 Tracking with progressive model updating
Input: video sequence f ; target region pos(0);
Output: tracking result pos
1: for ft (t > 1) do
2: for each B(c) do
3: for each δc do
4: D(c) = D( ft (c + δc) − ft (c))
5: end for
6: ut (c) = δcmin

7: end for
8: for each ut (c) do
9: uλ(round(c + λδcmin )) = ut (c)
10: end for
11: for each uλ(chole) do
12: uλ(chole) = Nearest (uλ(cassigned))
13: end for
14: fλ(c) = (1 − λ) ft−1(c − uλ(c)) + (λ) ∗ ft (c + uλ(c))
15: end for
16: for ft (t > 1) do
17: xt−1 = f eature( ft , post−1)

18: R = (mdl · Corr(xt−1, xt−1));
19: post = POS(R)
20: xt = f eature( ft , post )
21: mdlt = label

Corr(xt ,xt )
22: if t = 1 then
23: mdl = mdlt .
24: else
25: mdl = (1 − l) · mdl + l · mdlt
26: end if
27: end for

3.4 Effect of Progressive Updating

Duringmodel updating process, progressivemodel updating leads to a slightly higher
model changing speed.Model updatingwith higher frequency compensates the insuf-
ficiency of small learning rate for fast motion targets, which implicitly leads to a
tracking model updated in accordance to the changing of target.

During the detection process, in tracking failure cases, the peak of the response
map is not as bright as functional tracking response map. Such ambiguity will usu-
ally result in failure to accurately recognize the true target. Progressive updating
decelerates the training process for the tracker, and provides more iterations for the
tracker to be updated. Higher updating frequency for the filter can lead to a clearer
model for the target, which results in response maps with higher peak value and less
ambiguity.
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4 Experiment

4.1 Dataset

(1) VOT2017 dataset: The VOT2017 dataset [18] comprises 60 short sequences
showing various objects in challenging backgrounds. The annotations are stored in a
text file, and contains eight float number for each frame, which indicate the locations
of the four corners of the bounding box.

(2) KITTI: The KITTI dataset [15] is a dataset for autonomous driving. The video
sequence adopted is from the left color image of tracking dataset, and those from the
static camera are training sequence 0016 and 0017. Other sequences are captured
from a mobile camera on a vehicle, hence not adopted. Since the dataset is meant
for multiple instances tracking, in order to make it suitable for single-object tracking
methods, the data is transformed into tracking results with one object in ground truth
each sequence. The regenerated ground truth sequence is stored in a text file with
the top left coordinates, width, and height.

4.2 Methods of Evaluation

Since one baseline tracker [16] does not consider the scale-variance throughout the
tracking process, the precision curve [4, 16, 24, 27] is adopted in order to evaluate the
performance: the tracking result is considered precise when the distance between the
predicted center andground truth center iswithin the threshold. Precision curves show
the percentage of correctly tracked frames for a range of distance thresholds [16]. A
threshold of 20 pixels is chosen to demonstrate a representative precision score, as
done in previous works [4, 16, 24, 27].

4.3 Comparison Scenarios and Experimental Details

The evaluation of the proposed method is over two experiments. The first experi-
ment demonstrates performance improvement by implementing the method over the
kernerlized correlation filter (KCF) tracker [16], and discriminative correlation filter
with channel and spatial reliability(DCF-CSR) tracker [20] onVOT2017 dataset. The
experiment result is also compared withmost related trackers onVOT2017 challenge
in Fig. 5, including SRDCF [7], Staple [3], and ECO [6] with handcrafted features.
The second experiment is conducted on KITTI dataset with more challenging con-
ditions with both trackers, and the experiment demonstrates an accuracy boost on
both baseline trackers in these challenging scenarios.
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Fig. 5 The mean precision for 60 video sequences in VOT2017. The performance improvement
of MEINT on KCF and DCF-CSR (left). Comparison between three recent most related trackers
SRDCF, Staple, and ECO+HC (right)

During motion-estimated interpolation, the motion estimation is calculated with
BMA [14], and the cost function is set as the pixel-wise sum of the absolute error.
The hole area in the motion vector field is filled with the nearest calculated motion
vector. The interpolation factor λ is set to 0.5. In the tracking module, 31-channel
HOG features [5] using 4 × 4 cell size multiplied by a Hann window [4] is adopted.
The learning (adaptation) rate of KCF and DCF-CSR l = 0.02 for most of the exper-
iments, only fine-tuned to 0.0175 for KCF on KITTI single-tracklet dataset in order
to get a slight performance improvement. The MATLAB implementation is tested
on a machine equipped with an Intel Core i7 running at 3.40 GHz.

4.4 Experiment Result and Analysis

Anablation study onVOT2017 andKITTIwas conducted to evaluate the contribution
of motion-estimated progressive updating for KCF and CSR-DCF. Results of the
precision plots are illustrated in Table1.

Table 1 Precision score(20px) comparison between baseline model and the proposed method on
VOT2017 and KITTI

KCF KCF+MEINT DCF-CSR DCF-CSR+MEINT

Dataset Precision FPS Precision FPS Precision FPS Precision FPS

VOT2017 0.306 318.19 0.336 304.20 0.4954 10.2367 0.5150 10.5833

KITTI 0.429 334.98 0.435 311.30 0.408 10.01 0.4474 9.9936
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Fig. 6 The mean precision
for 60 video sequences in
VOT2017, compared with
deep learning based trackers

As illustrated in Fig. 5 on dataset VOT2017, setting KCF tracking process on data
without motion-estimated progressive updating (KCF) results in 8.9% performance
drop in precision score compared to KCF+MEINT, and replacing the motion esti-
mation interpolated data with raw data in DCF-CSR tracking process results in 3.8%
drop in performance.

Figure5b shows the precision score on the VOT2017. The proposed MEINT+
CSR-DCF outperforms correlation filter approaches with handcrafted features at the
precision score 0.515.

For completeness purposes, recent deep learning-based trackers reported results
on VOT2017 is included and illustrated in Fig. 6. The deep learning-based trackers
still provides better results compared with handcrafted feature-based trackers due to
better feature extraction mechanism with convolution neural network.

On KITTI dataset reformatted into single-object form, as illustrated in Fig. 7, the
KCF tracking process with proposed method gain 0.5% performance improvement
through learning rate fine-tuning from 0.02 to 0.0175, and MEINT improves the
precision score of original DCF-CSR tracker by 9.7%.

Benefited from the additional information provided by progressive updating, the
proposed method is significantly effective for tracking failure resulted from model
degradation, which can be observed from Table2. Due to additional information of
consistency provided by interpolated frames, the progressive model updating assists
the tracker to effectively adapt with the fast motion target. As illustrated in Fig. 3,
due to illumination variance and fast camera motion, originally DCF-CSR tracker
lost the target during a sharp illumination change, while the proposed method dealt
with the situation well and led to a robust tracking result.

Compared with KCF tracker, the DCF-CSR method demonstrates higher per-
formance improvement from MEINT. The reason is that the progressive updat-
ing encounters problems under occlusion scenarios, where background information
occluding the target is responsible for the model degradation. However, the DCF-
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Fig. 7 Mean precision of single-object tracking with MEINT for 39 video sequences on KITTI

Table 2 Precision score improvement scenarios on VOT2017

KCF KCF+MEINT DCF-CSR DCF-CSR+MEINT

Videos Precision FPS Precision FPS Precision FPS Precision FPS

Ball1 0.562 370.11 0.600 338.30 1.000 9.02 1.000 9.17

Birds1 0.009 545.80 0.009 554.40 0.322 8.56 0.540 7.83

bmx 0.145 244.16 0.224 226.18 0.105 7.13 0.250 4.82

Bolt1 0.683 504.85 1.000 471.19 1.000 13.6 1.000 13.5

Book 0.029 133.47 0.023 136.43 0.303 7.90 0.526 9.21

Drone1 0.037 780.70 0.037 738.73 0.076 9.92 0.527 10.3

Drone_across 0.048 333.15 0.054 299.81 0.245 9.33 0.891 9.76

Fish3 0.507 170.70 0.805 165.41 0.611 12.2 0.584 12.1

Gymnastics1 0.162 216.48 0.243 182.80 0.996 11.6 0.995 12.9

Handball2 0.353 310.40 0.689 290.74 0.381 10.90 0.697 11.04

Motocross1 0.085 269.74 0.104 238.97 0.122 10.8 0.579 11.6

Road 0.088 365.12 0.998 354.31 0.989 10.95 0.993 10.02

Shaking 0.019 202.24 0.038 195.63 0.888 11.4 0.918 12.1

Soccer1 0.263 135.25 0.653 108.76 0.429 11.35 0.883 11.59

CSRmethod contains a subsectionwhich is designed to distinguish background from
foreground [20], which makes the model training process robust against disturbance
such as occlusion, leading to a more effective MEINT. As illustrated in Fig. 2, in
video sequence ‘soccer1’ the tracking results remain stable against occlusion.
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5 Conclusion

We propose to address the tracking model degradation problem of existing CF-based
tracking methods via a progressive model updating mechanism based on motion-
estimated interpolation. By progressive model updating using motion-estimated
interpolation, intermediate response map can be obtained to fit the learning rates
well, and thus learning-relatedmodel degradation canbe alleviated effectively.Exten-
sive experiments on two public tracking benchmarks and comparisons with recent
state-of-the-art CF-based approaches demonstrate the effectiveness of the proposed
method for fast motion object tracking.
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