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Abstract. Many Bioinformatics tools, known as p-tools, have been
developed to predict the effect of single nucleotide polymorphisms
(SNPs) on gene functionality, in an effort to reduce the need for in-vivo
assays. However, the large number of p-tools available and the hetero-
geneity of their output make their selection and comparison difficult.
To study the consistency of predictions across p-tools, here we present
two indices and test them on five p-tools whose predictions are based
on different types of background information. For this test, SNPs from
well-known organism Drosophila melanogaster are considered.
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1 Introduction

A main factor underlying the conformation of proteins is their amino acid
sequence. An individual nucleotide change, also called a Single Nucleotide Poly-
morphism (SNP), is a missense mutation when it causes a different protein, or
a nonsense mutation when it causes a short and non-functional protein. The
degree to which a SNP affects protein function is a key point, but its prediction
remains an open problem.

Next-Generation Sequencing (NGS) technologies have made it possible to
detect thousands of SNPs [1], but wet-lab studies needed to associate these
SNPs with phenotypic traits are costly. To narrow down the list of candidate
SNPs, several Bioinformatics tools, hereafter referred to as p-tools, have been
developed to predict the impact of SNPs in-silico. P-tools can be based on infor-
mation from amino acid sequences, protein structure, context, functional param-
eters and evolutionary information [2]. For instance, for sequence conservation
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analysis, conserved amino acids—known to be relevant for protein function—
are identified by alignment, and SNPs on these positions are identified as likely
deleterious. Structure information is also used to infer sites with likely impact
on protein function: SNPs in ligand-binding domains or active sites typically
modify protein function. Based on this information, p-tools can be designed
using either expert knowledge or machine learning techniques. P-tools not only
vary in nature, but their outputs also vary in syntax and semantics, which makes
comparison between them tricky. To tackle this problem, most strategies normal-
ize predictions, forcing them into two classes, to evaluate classical performance
metrics like accuracy, sensibility, sensitivity and ROC curves [4].

In this work, consistency across p-tools is evaluated by means of two proposed
indices. For two given p-tools, the indices quantify the systematic disagreement
between each pair of SNPs, i.e., count pairs of predictions ordered differently in
each p-tool scale, without performing any scale normalization. An experimental
study was carried out using five widely-used p-tools [3]. These were selected
based on the diversity of knowledge or learning method they are based on, as
well as the possibility to be run online with standard parameters. The consistency
across p-tools was tested with SNPs from model organism D. melanogaster, a
common starting point for data analysis.

2 Materials and Methods

The method to evaluate consistency across p-tools has two stages. The first one
ponders, for each p-tool i, the order of two SNP effect predictions, (m1,m2): m1

can be more damaging than m2, the opposite can be true, or two mutations can
be equally damaging. This preference relation is noted as follows:

– m1 ≺i m2 if p-tool i considers m1 to be less damaging than m2;
– m1 ∼i m2 ⇐⇒ ¬(m1 ≺i m2) ∧ ¬(m2 ≺i m1), if p-tool i cannot assert m1 to

be less or more damaging than m2.

To value the three possible orders for a pair m1,m2, let ri(m1,m2) be defined
as follows:

ri(m1,m2) =

⎧
⎨

⎩

1 if m1 ≺i m2

−1 if m2 ≺i m1

0 if m2 ∼i m1

(1)

The second stage values the degree of (dis)agreement of relative orders—given by
all pairs of mutations—between two p-tools, i and j, through two indices (Eqs. 2
and 3): Kall is the ratio of mutations pairs ordered differently by both p-tools
to all mutation pairs, considering all disagreements; Kstrong is analogous but
considers only opposite orderings.

Kall =
|{(m1,m2) | ri(m1,m2) �= rj(m1,m2)}|

(|M |
2

) (2)

Kstrong =
|{(m1,m2) | ri(m1,m2) �= 0 ∧ ri(m1,m2) = −rj(m1,m2)}|

(|M |
2

) (3)
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For the case of discrete outputs, predictions are ordered according to labels,
e.g. {benign, possibly deleterious, probably deleterious} and a preference rela-
tion: benign ≺ possibly deleterious ≺ probably deleterious. When dealing
with numerical outputs ti, an inequality threshold δi is introduced, such that
the preference relation for p-tool i is defined as follows: m1 ≺i m2 ⇐⇒
ti(m2) − ti(m1) > δi, δi ≥ 0. Hence, m1 ∼i m2 ⇐⇒ |ti(m2) − ti(m1)| ≤ δi.

P-Tools: Selected p-tools have the following main features.

– PolyPhen21 uses protein sequences on a trained Näıve Bayes model to predict
SNP sites which code for a protein’s structure or function.

– Provean2 is based on a model that evaluates evolutionary information from
protein sequence.

– Align-GVGD3 uses biophysical characteristics of amino acid and protein mul-
tiple sequence alignments on an evolutionary conservation model.

– Strum4 values changes in folding stability induced by SNPs based on a gra-
dient boosting of Gibbs free-energy with different sequence and structure
properties.

– Cupsat5 evaluates changes in protein stability induced by SNPs based on
structure information of wild-type and mutant proteins.

Data: SNPs were analyzed on gene vermilion, locus Dmel CG2155, on D.mel.

3 Results and Discussion

P-tools are compared pairwise with the Kall and Kstrong indices and different
equality thresholds. All possible SNPs in each sequence position of the vermilion
gene are considered. See Fig. 1. Small index values represent similar pairwise
outputs. For all pairwise comparisons, as the threshold increases, the Kall value
first increases and then decreases when outputs became similar (ri(m1,m2) = 0).
Polyphen2-Provean follows that behavior after a threshold of 40% (data not
shown). On the other hand, Kstrong has a monotonically decreasing behavior.
Two cases are possible when comparing pairwise p-tool outputs ti, tj with
pairwise SNPs m1 and m2: (1) ti(m1) < ti(m2) and tj(m1) < tj(m2) or (2)
ti(m2) < ti(m1) and tj(m1) < tj(m2) (ti(m1) 
 ti(m2) or tj(m1) 
 tj(m2)
are a middle step between these cases and are also analyzed). In case (1), there
is an agreement according to Kall. When the threshold increases up to level
δi = |ti(m1)− ti(m2)|, ti(m1) 
 ti(m2) and tj(m1) < tj(m2), making Kall count
this as a disagreement. When the threshold reaches δj = |tj(m1) − tj(m2)|,
tj(m1) 
 tj(m2) and both tools agree again. In this case, the error will increase
after δi and decrease after δj . Clearly, when δ is 100%, all pairs will be considered

1 http://genetics.bwh.harvard.edu/pph2/.
2 http://sift.jcvi.org/.
3 http://agvgd.hci.utah.edu/agvgd input.php.
4 https://zhanglab.ccmb.med.umich.edu/strum/.
5 http://cupsat.tu-bs.de.

http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org/
http://agvgd.hci.utah.edu/agvgd_input.php
https://zhanglab.ccmb.med.umich.edu/strum/
http://cupsat.tu-bs.de
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equal. In case (2), there is a disagreement according to Kall. After δi is reached,
ti(m1) 
 ti(m2) and tj(m1) < tj(m2), meaning they still disagree. Only after
δj is reached, the two p-tools agree. In this case, the error decreases monoton-
ically. An analogous analysis can be done with Kstrong. In case (1), since both
p-tools never give opposite results, Kstrong evaluates outputs as an agreement,
regardless of the threshold. In case (2), after δi is reached, the outputs are no
longer opposite and are therefore equal according to Kstrong. In both cases, the
error can only decrease for increasing thresholds. While Kall has a monotonically
decreasing behaviour with δ only in case (2), Kstrong has such a behaviour for
both cases, making it less sensitive to the equality threshold.
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Fig. 1. Pairwise p-tool comparison. Kall (left) and Kstrong (right), δ from 0% to
33%. Outputs scales: AlignGVGD [5, 215]; Provean [−15, 3]; PolyPhen-2 [0, 1]; Strum
[−10, 11], and Cupsat [−23, 20], D.mel. gene vermilion

Note that even for δ ∼ 10%, pairwise p-tool comparison with Kstrong varies
from 0.05% to 20% in the worst case. The two tools which agree the most across
all δ are Strum and Cupsat, which makes sense since both work with similar
knowledge, namely gene energy functions. On the other hand, the two tools
which disagree the most are PolyPhen2 and Align-GVGD, which also makes
sense since one is based on structure and the other on evolutionary information.

4 Conclusions

Two indices were proposed to compare p-tools considering their most informative
output. The indices do not require any normalization process. The comparison
on D.mel. gene vermilion shows that predictions vary widely depending on the
p-tool. Still, different outputs are not necessarily a problem, since they enable
outputs to be integrated to achieve a more accurate prediction of SNP effects.
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