
A Block-Based Union-Find Algorithm
to Label Connected Components

on GPUs

Stefano Allegretti, Federico Bolelli(B), Michele Cancilla, and Costantino Grana

Dipartimento di Ingegneria “Enzo Ferrari”,
Università degli Studi di Modena e Reggio Emilia,

Via Vivarelli 10, 41125 Modena, MO, Italy
{stefano.allegretti,federico.bolelli,

michele.cancilla,costantino.grana}@unimore.it

Abstract. In this paper, we introduce a novel GPU-based Connected
Components Labeling algorithm: the Block-based Union Find. The pro-
posed strategy significantly improves an existing GPU algorithm, taking
advantage of a block-based approach. Experimental results on real cases
and synthetically generated datasets demonstrate the superiority of the
new proposal with respect to state-of-the-art.

Keywords: Connected Components Labeling · Image processing ·
GPU · CUDA

1 Introduction

In the last decades, the maturity of Graphic Processing Units (GPUs) encour-
aged the development of algorithms specifically designed to work in a data-
parallel environment [4]. Indeed, applications characterized by irregular control
flow and irregular memory access patterns usually break the parallel execution
model when ported on GPU: they must be redesigned to take advantage of the
GPU architecture [12]. Connected Components Labeling (CCL), an essential
image processing algorithm that extracts objects inside binary images, is such
a kind of algorithm. The labeling procedure transforms an input binary image
into a symbolic one in which all pixels belonging to a connected component
are given the same label. Even though labeling has an intrinsically sequential
nature [7,19,24], many algorithms exploiting the parallelism of both CPUs and
GPUs have been recently proposed [3,11,13,27,38].

CCL, originally introduced by Rosenfeld and Pfaltz in 1966 [35], has an exact
solution, and the algorithms are mainly characterized by their execution time.
Since labeling represents the base step of many image processing applications [14,
15,17,18,28,33,34], it is required to be as fast as possible. Unfortunately, CCL
is not as easy to parallelize as other image processing tasks: CPU and GPU algo-
rithms usually have comparable performance [32]. However, efficient data-parallel

c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11752, pp. 271–281, 2019.
https://doi.org/10.1007/978-3-030-30645-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30645-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-30645-8_25

272 S. Allegretti et al.

algorithms are valuable for applications that totally run on GPU, allowing to
remove the need for data transfers between CPU and GPU memory.

In this paper, we introduce a new 8-connectivity GPU-based connected com-
ponents labeling algorithm, which improves previously proposed solutions by
taking advantage of the 2 × 2 block-based approach originally presented in [21]
for sequential algorithms. The proposed method reduces the amount of memory
accesses, significantly improving state-of-the-art performance in terms of execu-
tion time over both real case and synthetically generated datasets. The source
code of our proposal is available in [36].

The rest of this paper is organized as follows. In Sect. 2, the main contribu-
tions on parallel CCL are resumed. Section 3 analyzes the Union Find algorithm,
which represents the basis of our work, then Sect. 4 details our proposal. Section 5
demonstrates the effectiveness of our approach in comparison with other state-
of-the-art methods, providing an exhaustive evaluation. Finally, conclusions are
drawn in Sect. 6.

2 Related Work

The first work on GPU CCL dates back in 2010, when Hawick et al. [22] pro-
posed Label Equivalence (LE). LE is an iterative algorithm that propagates the
minimum label through every connected component. The process is sped up by
alternating the propagation phase with label equivalences resolution. In 2011,
Kalentev et al. [26] proposed an optimization of Label Equivalence, which we
will call OLE, obtained by removing overabundant operations and memory allo-
cations. Komura Equivalence (KE) [27] was also created as an improvement over
Label Equivalence, which removes the need for multiple iterations. The original
algorithm employs 4-connectivity, and it has been extended to 8-connectivity
in [2]. Zavalishin et al. [38] further improved OLE, applying a block-based strat-
egy to reduce the number of temporary labels, and memory accesses. The result
is known as Block Equivalence (BE). The benefit introduced by blocks was par-
tially lessened by an increased allocation time, caused by the need for additional
data structures to record block labels and connectivity information. Union Find
(UF), by Oliveira and Lotufo [31], is a parallel algorithm that employs the Union-

p q r

s x

P Q R
S X

Fig. 1. Neighborhood masks used by the algorithms described in the paper. UF employs
the mask in (a), where the central pixel is x. The block-based mask (b) is used by BUF
instead. Central block is X.

A Block-Based Union-Find GPU CCL Algorithm 273

Find data structure, commonly used to solve labels equivalences by sequential
algorithms [10,21,37].

3 Preliminaries

Algorithm 1. Possible implementa-
tion of Union-Find. L is the Union-
Find array, a and b are both array
indexes and pixel identifiers.
1: function Find(L, a)
2: while L[a] �= a do
3: a ← L[a]

4: return a

5: procedure Union(L, a, b)
6: a ← Find(L, a)
7: b ← Find(L, b)
8: if a < b then
9: L[b] ← a

10: else if b < a then
11: L[a] ← b

The proposal of this paper is an optimiza-
tion of the Union Find algorithm (UF),
by Oliveira and Lotufo, which is briefly
introduced in this section. UF performs
a partitioning of the output image L by
creating subsets of connected pixels, and
merging together those belonging to the
same connected component. To perform
this task, it takes advantage of the Union-
Find paradigm, which represents subsets
as directed rooted trees and provides con-
venient functions to deal with them: Find
that returns the root of a tree and Union
that joins together two different trees.

Trees are coded in the output image L,
using temporary labels: for a pixel p, with
raster index idp, L[idp] = idf is the father
node of p. A possible implementation of the Union-Find functions is reported in
Algorithm 1. A description follows:

– Find(L, a) consists of traversing the tree to which a belongs, starting from a
up to the root node.

– Union(L, a, b) first calls Find twice to get the roots of the trees containing
a and b, and then sets the smaller root as the father of the other one, thus
joining the two trees into a single one. The procedure used in the source code
is slightly more complicated, to avoid race hazards in a parallel environment.

An example of execution of the whole algorithm is depicted in Fig. 2. The
algorithm consists of three kernels: Initialization, Merge and Compression. Dur-
ing Initialization, single-node trees are coded in the output image L, by assigning
each foreground pixel its own raster index. All background pixels are set to 0.

The aim of the Merge kernel is to build a single tree for each connected
component. To achieve this goal, each thread working on a foreground pixel
x joins the tree of x to those of its foreground neighbors, by means of Union
procedures. Since Union is symmetric, checking the whole neighborhood is not
necessary. Instead, only half of it is considered, identified by the mask depicted
in Fig. 1a. The effects of Merge on Union-Find trees are shown in Fig. 2c. In this
example, the thread operating on pixel 15 performs a Union between 15 and 1,
and then another Union between 15 and 5.

In the Compression kernel, every Union-Find tree is flattened, by linking
every node directly to the root. This process ends the connected components

274 S. Allegretti et al.

1 1
1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 1

1 1

1 2 3 1 5 6 7 1 9 10 11
12 13 14 15 1 17 1 19 20 21 22
1 24 25 1 1 1 1 1 31 32 1
1 35 1 1 38 1 40 1 1 43 1
1 1 1 1 1 1 1 1 1 1 1
56 1 1 59 60 61 62 63 1 1 66
67 68 1 70 1 72 1 74 1 76 77
78 79 80 1 82 83 84 1 86 87 88

1 1 1 1 5 5 5 1 9 9 9
1 1 1 15 1 17 1 19 20 21 22
1 24 25 1 1 1 1 1 31 32 1
1 35 1 1 38 1 40 1 1 43 1
1 1 1 1 1 1 1 1 1 1 1
56 1 1 59 60 61 62 63 1 1 66
67 68 1 70 1 72 1 74 1 76 77
78 79 80 1 82 83 84 1 86 87 88

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 38 1 40 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
56 1 1 56 56 56 56 56 1 1 56
56 56 1 56 1 56 1 56 1 56 56
56 56 56 1 56 56 56 1 56 56 56

Fig. 2. Example of Union Find execution. (b) is the expected labels image after Initial-
ization. (c) is a temporary result of Merge kernel, under the assumption that threads
run in raster scan order, and the execution reached thread 15. (d) is the final labels
image after the execution of the Compression kernel.

labeling task, because every pixel of the same connected component is given the
same value.

4 Proposed Algorithm

Grana et al. noticed in [21] that, in the case of a two-dimensional image and 8-
connectivity, all foreground pixels within 2×2 blocks always share the same label.
Consequently, they designed a CCL algorithm that uses block labels instead
of pixel labels throughout the process, to greatly reduce the total amount of
memory accesses and speed up performance consequently.

We propose a new GPU CCL 8-connectivity algorithm, which is an optimized
variation of UF obtained through the application of 2 × 2 blocks. Our proposal,
named Block-based Union Find (BUF), inherits the base structure of Union Find
(Sect. 3). The difference resides in the use of block labels. In fact, every thread
works on a 2×2 block, which we will refer to as the X block. The algorithm imple-
ments the same kernels as UF, plus the additional FinalLabeling, which is needed
to copy block labels into pixels. Differently from the work by Zavalishin et al. [38],
we do not allocate memory for block labels. Instead, until the end of the algorithm,
we store them directly in the output image: the label assigned to a block is stored
in its top-left pixel, whose raster index is also used as the block id.

A Block-Based Union-Find GPU CCL Algorithm 275

Algorithm 2. Block-based Union Find Merge kernel. I and L are input and
output images, linearly stored in memory. A padding can be added at the end of
rows for alignment purpose, so step stores their total size in memory. A thread
is identified by (tx, ty) ∈ N 2, with tx ∈ [0, �cols/2�] and ty ∈ [0, �rows/2�].
1: kernel Merge(I, stepI , L, stepL)
2: xI ← 2 × ty × stepI + tx × 2
3: xL ← 2 × ty × stepL + tx × 2

4: BS ← 0
5: if I[xI] = 1 then BS |= 0x777

6: if I[xI + 1] = 1 then BS |= (0x777 << 1)
7: if I[xI + stepI] = 1 then BS |= (0x777 << 4)

8: if BS > 0 then

9: if HasBit(BS, 0) and I[xI − stepI − 1] then
10: Union(L, xL, xL − 2 × stepL − 2)

11: if (HasBit(BS, 1) and I[xI − stepI]) or
12: (HasBit(BS, 2) and I[xI − stepI + 1]) then
13: Union(L, xL, xL − 2 × stepL)

14: if HasBit(BS, 3) and I[xI − stepI + 2] then
15: Union(L, xL, xL − 2 × stepL + 2)

16: if (HasBit(BS, 4) and I[xI − 1]) or
17: (HasBit(BS, 8) and I[xI + stepI − 1]) then
18: Union(L, xL, xL − 2)

The first kernel of the algorithm, Initialization, creates the starting Union-
Find trees. At the beginning, one separate tree is built for each block X, by
performing L[idX] ← idX . Then, the Merge kernel joins the trees of connected
blocks, as illustrated in Algorithm 2. The block neighborhood mask, which con-
tains half the neighborhood, is depicted in Fig. 1b. Since blocks connections are
determined by lower level pixel connections, for every neighbor block of the mask
we must check whether some of its pixels are connected to some internal pixels
of block X. A naive approach, which just checks each adjacent block one by
one, would require multiple readings of internal pixels. So, it is better to find a
more efficient way. We adopted a strategy based on the work by Zavalishin et
al. [38], which involves a preliminary scan of pixels inside the block: for each
foreground one, its external neighbors are added to a set of pixels that will be
checked subsequently. The aforementioned set of pixels is represented as a bitset
that contains a bit for each pixel in a 4 × 4 square that encloses the X block,
as reported in Fig. 4. Initially, every bit is set to 0. When an internal pixel a
is read and recognized as foreground, each external pixel e neighbor to a must
have its corresponding bit set to 1. To conveniently achieve this goal, the whole
3 × 3 square centered on a is set accordingly, by means of a bitmask (Fig. 4b).
Bitmask 0x777 is required to set neighbors of the top-left pixel inside block X.
The bitmasks of other pixels can be obtained in the following way: if the pixel
is in the right column of the block, 0x777 is shifted one bit left. If the pixel is

276 S. Allegretti et al.

1 1
1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 1

1 1

1 1
1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 1

1 1

1 3 5 7 9 11

23 25 27 29 31 33

45 47 49 51 53 55

67 69 71 73 75 77

1 1
1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 1

1 1

1 1
1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 1

1 1

1 1 1 1 1 1

1 1 27 29 1 33

45 45 45 45 53 45

45 45 45 45 45 45

Fig. 3. Example of Block-based Union Find execution. (a) are the labels after Initial-
ization. Every block has its own label, equal to the raster index of its top-left pixel.
(b) are final block labels, after Compression. Blocks in the same connected component
shares the same label, and the only remaining thing to do is to copy block labels into
internal foreground pixels.

in the bottom row, the bitmask is shifted four bits left. The bottom-right pixel
of X is never responsible for connections between blocks inside the mask, so it
is never used. To find out which neighbor blocks are connected to X, the Merge
kernel must then check which pixels of the bitset are set, and read their values.
A Union is performed between X and connected blocks, as it happens for single
pixels in UF.

The BUF Compression kernel then performs the flattening of Union-Find
trees, by linking each block directly to the result of the Find. The effects of
Merge and Compression on an input image are depicted in Fig. 3. Eventually,
FinalLabeling copies the label of each block into its internal foreground pixels,
thus producing the final output.

5 Comparative Evaluation

The proposed strategy is evaluated by comparing its performance with state-of-
the-art algorithms. Experimental results reported and discussed in this Section
are obtained running the YACCLAB benchmark [10,20] on an Intel Core i7-
4770 CPU (with 4 × 32 KB L1 cache, 4 × 256 KB L2 cache, and 8 MB of L3

Fig. 4. (a) shows how pixels in a 4 × 4 square centered on the X block are numerated.
These numbers correspond to the pixel position in the associated bitset. Bits 0, 1, 2, 3, 4,
and 8 are used to record whether the corresponding pixel is to be checked for determining
blocks connectivity or not. The other bits are stored for convenience. (b) depicts the 3×3
bitmask (0x777) corresponding to the neighbors of the top-left internal pixel.

A Block-Based Union-Find GPU CCL Algorithm 277

Table 1. Average run-time results in ms obtained under Windows (64 bit) OS with
MSVC 19.15.26730 and NVCC V10.0.130 compilers using a Quadro K2200 NVIDIA
GPU. The bold values represent the best performing CCL algorithm on a given dataset.
Our proposals are identified with ∗.

3DPeS Fingerprints Medical MIRflickr Tobacco800 XDOCS

BUF* 0.512 0.441 1.313 0.495 3.268 12.088

BE [38] 1.517 1.164 2.730 1.165 5.966 20.278

UF [31] 0.594 0.529 2.040 0.659 4.304 17.316

OLE [26] 1.211 1.128 3.013 1.281 8.173 35.242

KE [2] 0.568 0.481 1.622 0.526 3.978 15.432

cache), and using a Quadro K2200 NVIDIA GPU with Maxwell architecture,
640 CUDA cores and 4 GB of memory. All the compared algorithms have been
implemented using CUDA 10.0 and compiled for x64 architectures, employing
MSVC 19.15.26730 and NVCC V10.0.130 compilers with optimizations enabled.
The benchmark provides a set of datasets covering real case scenarios for CCL,
among which we selected the most significant ones: MIRflickr [25], Medical [16],
Tobacco800 [1,29], XDOCS [6,8,9], Fingerprints [30], and 3DPeS [5]. A com-
plete description of these datasets can be found in [10]. The first experiment
carried out is the comparison between algorithms in terms of average execution
time over real datasets (Table 1). Our proposal outperforms state-of-the-art on
all test collections. The speed-up between BUF and KE, the best among com-
petitors, varies from 1.1 (MIRflickr) to 1.3 (XDOCS).

To better investigate the algorithms behavior, Fig. 5 is also reported, where
bar charts report separately the time needed for allocating data structures and
the time required by the labeling procedure. The allocation time is the same for
each strategy, but for BE. Indeed, all the algorithms must only allocate memory
for the output image. BE always requires a higher allocation time, since it relies
on additional matrices to store equivalences between blocks and their labels.
Obviously, this additional time is data dependent. We can notice that OLE
always has the highest execution time. The main drawback of the algorithm is
its iterative nature, which is inherited by its block-based variation, BE. In fact,
the benefits introduced by blocks allow BE to only have comparable performance
to UF, which employs a direct, non iterative approach. Moreover, BE is partially
hindered by its increased allocation time.

With our approach, we greatly improve the performance of UF. In fact, the
use of block labels allows to divide by four the initial number of Union-Find
trees. Consequently, the amount of Union operations required to merge trees in
the same connected component drastically decreases, and the lessened average
depth of trees allows to simplify Find calls. Besides, BUF, while benefiting from
the advantages of blocks, avoids the main flaw of BE, namely the allocation of
additional memory.

278 S. Allegretti et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

BUF *
BE UF OLE

KE

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Labeling

0.58

1.43

0.58 0.62 0.58

0.73

1.34

1.51

2.41

1.04

1.31

2.77

2.09

3.03

1.62

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

BUF *
BE UF OLE

KE

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Labeling

0.29

0.46

0.29 0.32 0.29

0.17

0.74

0.30

0.84

0.21

0.46

1.20

0.59

1.16

0.50

 0

 5

 10

 15

 20

 25

 30

 35

BUF *
BE UF OLE

KE

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Labeling

5.43
7.95

5.43 5.47 5.43

6.65

12.37

11.94

29.87

10.00

12.08

20.32
17.37

35.34

15.43

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

BUF *
BE UF OLE

KE

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Labeling

0.32

0.78

0.32 0.36 0.32

0.18

0.76

0.32

0.87

0.24

0.50

1.54

0.64

1.23

0.56

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

BUF *
BE UF OLE

KE

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Labeling

1.67

2.93

1.67 1.71 1.67

1.59

3.09

2.68

6.49

2.30

3.26

6.02

4.35

8.20

3.97

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

BUF *
BE UF OLE

KE

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Labeling

0.29
0.38

0.29 0.32 0.29

0.22

0.84

0.44

1.01

0.25

0.51

1.22

0.73

1.33

0.54

Fig. 5. Average run-time results with steps in ms. Lower is better.

Following a common approach in literature [21,23,37], additional tests have
been performed on images with increasing foreground density, in order to high-
light strengths and weaknesses of the algorithms (Fig. 6). OLE has an increasing
trend in the execution time up to 40% of foreground density, and then a decreas-
ing one after this value. Indeed, the number of iterations required by the labeling
procedure reaches the highest value when foreground density is about 40%. BE
has a similar behavior, albeit with better performance. The execution time of
UF grows with foreground density. The reason is that each pixel thread has to
perform one Union for each connected neighbor, and the number of those pix-
els depends on image density. BUF has a similar trend to UF, since it inherits
its basic behavior. The adoption of a block-based approach, anyway, allows to
decrease the amount of operations, drastically reducing the total execution time.

A Block-Based Union-Find GPU CCL Algorithm 279

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

 BUF*

BE
UF

OLE
KE

granularity = 1

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

 BUF*

BE
UF

OLE
KE

granularity = 4

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

 BUF*

BE
UF

OLE
KE

granularity = 8

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

 BUF*

BE
UF

OLE
KE

granularity = 16

Fig. 6. Granularity results in ms on images at various densities. Lower is better.

At 80% density and above, the high number ot Union operations makes BUF
slower than BE. Anyway, such density values are rather uncommon in real cases.

6 Conclusion

In this paper, the problem of GPU-based Connected Components Labeling in
binary images has been addressed. A new algorithm has been proposed, Block-
based Union Find, which was obtained by combining an existing strategy with a
block-based approach. This allows to considerably lessen the number of memory
accesses and consequently reduce execution time. Experimental tests on a wide
selection of real case datasets, covering most of the fields where CCL is commonly
used, confirm that our proposal represents the state-of-the-art for GPU-based
Connected Components Labeling.

References

1. Agam, G., Argamon, S., Frieder, O., Grossman, D., Lewis, D.: The complex doc-
ument image processing (CDIP) test collection project. Illinois Institute of Tech-
nology (2006)

2. Allegretti, S., Bolelli, F., Cancilla, M., Grana, C.: Optimizing GPU-based con-
nected components labeling algorithms. In: Third IEEE International Conference
on Image Processing, Applications and Systems (IPAS), pp. 175–180. IEEE (2018)

280 S. Allegretti et al.

3. Allegretti, S., Bolelli, F., Cancilla, M., Pollastri, F., Canalini, L., Grana, C.:
How does connected components labeling with decision trees perform on GPUs?
In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11678, pp. 39–51.
Springer, Cham (2019)

4. Andrecut, M.: Parallel GPU implementation of iterative PCA algorithms. J. Com-
put. Biol. 16(11), 1593–1599 (2009)

5. Baltieri, D., Vezzani, R., Cucchiara, R.: 3DPeS: 3D people dataset for surveillance
and forensics. In: Proceedings of the 2011 Joint ACM Workshop on Human Gesture
and Behavior Understanding, pp. 59–64. ACM (2011)

6. Bolelli, F.: Indexing of historical document images: ad hoc dewarping technique for
handwritten text. In: Grana, C., Baraldi, L. (eds.) IRCDL 2017. CCIS, vol. 733,
pp. 45–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68130-6 4

7. Bolelli, F., Baraldi, L., Cancilla, M., Grana, C.: Connected components labeling
on DRAGs. In: International Conference on Pattern Recognition (ICPR), pp. 121–
126. IEEE (2018)

8. Bolelli, F., Borghi, G., Grana, C.: Historical handwritten text images word spotting
through sliding window HOG features. In: Battiato, S., Gallo, G., Schettini, R.,
Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 729–738. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68560-1 65

9. Bolelli, F., Borghi, G., Grana, C.: XDOCS: an application to index historical doc-
uments. In: Serra, G., Tasso, C. (eds.) IRCDL 2018. CCIS, vol. 806, pp. 151–162.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73165-0 15

10. Bolelli, F., Cancilla, M., Baraldi, L., Grana, C.: Toward reliable experiments on
the performance of connected components labeling algorithms. J. Real-Time Image
Process. 1–16 (2018). https://doi.org/10.1007/s11554-018-0756-1

11. Bolelli, F., Cancilla, M., Grana, C.: Two more strategies to speed up connected
components labeling algorithms. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F.
(eds.) ICIAP 2017. LNCS, vol. 10485, pp. 48–58. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68548-9 5

12. Brunie, N., Collange, S., Diamos, G.: Simultaneous branch and warp interweaving
for sustained GPU performance. In: 39th Annual International Symposium on
Computer Architecture (ISCA), pp. 49–60 (2012)

13. Cabaret, L., Lacassagne, L., Etiemble, D.: Distanceless label propagation: an effi-
cient direct connected component labeling algorithm for GPUs. In: Seventh Inter-
national Conference on Image Processing Theory, Tools and Applications (IPTA),
pp. 1–6. IEEE (2017)

14. Canalini, L., Pollastri, F., Bolelli, F., Cancilla, M., Allegretti, S., Grana, C.: Skin
lesion segmentation ensemble with diverse training strategies. In: Vento, M., Per-
cannella, G. (eds.) CAIP 2019. LNCS, vol. 11678, pp. 89–101. Springer, Cham
(2019)

15. Cucchiara, R., Grana, C., Prati, A., Vezzani, R.: Computer vision techniques for
PDA accessibility of in-house video surveillance. In: First ACM SIGMM Interna-
tional Workshop on Video Surveillance, pp. 87–97. ACM (2003)

16. Dong, F., Irshad, H., Oh, E.Y., et al.: Computational pathology to discriminate
benign from malignant intraductal proliferations of the breast. PLoS ONE 9(12),
e114885 (2014)

17. Dubois, A., Charpillet, F.: Tracking mobile objects with several kinects using
HMMs and component labelling. In: Workshop Assistance and Service Robotics in
a Human Environment, International Conference on Intelligent Robots and Sys-
tems, pp. 7–13 (2012)

18. Eklund, A., Dufort, P., Villani, M., LaConte, S.: BROCCOLI: software for fast
fMRI analysis on many-core CPUs and GPUs. Front. Neuroinformatics 8, 24 (2014)

https://doi.org/10.1007/978-3-319-68130-6_4
https://doi.org/10.1007/978-3-319-68560-1_65
https://doi.org/10.1007/978-3-319-73165-0_15
https://doi.org/10.1007/s11554-018-0756-1
https://doi.org/10.1007/978-3-319-68548-9_5
https://doi.org/10.1007/978-3-319-68548-9_5

A Block-Based Union-Find GPU CCL Algorithm 281

19. Grana, C., Baraldi, L., Bolelli, F.: Optimized connected components labeling with
pixel prediction. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Sche-
unders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 431–440. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48680-2 38

20. Grana, C., Bolelli, F., Baraldi, L., Vezzani, R.: YACCLAB - yet another con-
nected components labeling benchmark. In: 23rd International Conference on Pat-
tern Recognition (ICPR), pp. 3109–3114. IEEE (2016)

21. Grana, C., Borghesani, D., Cucchiara, R.: Optimized block-based connected com-
ponents labeling with decision trees. IEEE Trans. Image Process. 19(6), 1596–1609
(2010)

22. Hawick, K.A., Leist, A., Playne, D.P.: Parallel graph component labelling with
GPUs and CUDA. Parallel Comput. 36(12), 655–678 (2010)

23. He, L., Chao, Y., Suzuki, K.: A linear-time two-scan labeling algorithm. In: Inter-
national Conference on Image Processing, vol. 5, pp. 241–244 (2007)

24. He, L., Zhao, X., Chao, Y., Suzuki, K.: Configuration-transition-based connected-
component labeling. IEEE Trans. Image Process. 23(2), 943–951 (2014)

25. Huiskes, M.J., Lew, M.S.: The MIR flickr retrieval evaluation. In: Proceedings
of the 2008 ACM International Conference on Multimedia Information Retrieval,
MIR 2008. ACM, New York (2008)

26. Kalentev, O., Rai, A., Kemnitz, S., Schneider, R.: Connected component labeling
on a 2D grid using CUDA. J. Parallel Distrib. Comput. 71(4), 615–620 (2011)

27. Komura, Y.: GPU-based cluster-labeling algorithm without the use of conven-
tional iteration: application to the Swendsen-Wang multi-cluster spin flip algo-
rithm. Comput. Phys. Commun. 194, 54–58 (2015)

28. Lelore, T., Bouchara, F.: FAIR: a fast algorithm for document image restoration.
IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2039–2048 (2013)

29. Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: Building
a test collection for complex document information processing. In: Proceedings of
the 29th Annual International ACM SIGIR Conference, pp. 665–666 (2006)

30. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recog-
nition. Springer, London (2009). https://doi.org/10.1007/978-1-84882-254-2

31. Oliveira, V.M., Lotufo, R.A.: A study on connected components labeling algorithms
using GPUs. In: SIBGRAPI, vol. 3, p. 4 (2010)

32. Playne, D.P., Hawick, K.: A new algorithm for parallel connected-component
labelling on GPUs. IEEE Trans. Parallel Distrib. Syst. 29(6), 1217–1230 (2018)

33. Pollastri, F., Bolelli, F., Paredes, R., Grana, C.: Improving skin lesion segmentation
with generative adversarial networks. In: 2018 IEEE 31st International Symposium
on Computer-Based Medical Systems (CBMS), pp. 442–443. IEEE (2018)

34. Pollastri, F., Bolelli, F., Paredes, R., Grana, C.: Augmenting data with GANs to
segment melanoma skin lesions. Multimed. Tools Appl. 1–18 (2019). https://doi.
org/10.1007/s11042-019-7717-y

35. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J.
ACM 13(4), 471–494 (1966)

36. Source code of the proposed strategy. https://github.com/prittt/YACCLAB.
Accessed 16 May 2019

37. Wu, K., Otoo, E., Suzuki, K.: Two strategies to speed up connected component
labeling algorithms. Technical report, LBNL-59102, Lawrence Berkeley National
Laboratory (2005)

38. Zavalishin, S., Safonov, I., Bekhtin, Y., Kurilin, I.: Block equivalence algorithm for
labeling 2D and 3D images on GPU. Electron. Imaging 2016(2), 1–7 (2016)

https://doi.org/10.1007/978-3-319-48680-2_38
https://doi.org/10.1007/978-1-84882-254-2
https://doi.org/10.1007/s11042-019-7717-y
https://doi.org/10.1007/s11042-019-7717-y
https://github.com/prittt/YACCLAB

	A Block-Based Union-Find Algorithm to Label Connected Components on GPUs
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Algorithm
	5 Comparative Evaluation
	6 Conclusion
	References

