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Abstract. We address the problem of designing a machine learning tool
for the automatic diagnosis of Parkinson’s disease that is capable of pro-
viding an explanation of its behavior in terms that are easy to understand
by clinicians. For this purpose, we consider as machine learning tool the
decision tree, because it provides the decision criteria in terms of both
the features which are actually useful for the purpose among the avail-
able ones and how their values are used to reach the final decision, thus
favouring its acceptance by clinicians. On the other side, we consider
the random forest and the support vector machine, which are among
the top performing machine learning tool that have been proposed in
the literature, but whose decision criteria are hidden into their internal
structures. We have evaluated the effectiveness of different approaches
on a public dataset, and the results show that the system based on the
decision tree achieves comparable or better results that state-of-the-art
solutions, being the only one able to provide a plain description of the
decision criteria it adopts in terms of the observed features and their
values.
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Parkinson’s disease · Machine learning

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects dopaminer-
gic neurons in the Basal Ganglia, whose death causes several motor and cognitive
symptoms. PD patients show impaired ability in controlling movements and dis-
ruption in the execution of everyday skills, due to postural instability, onset
of tremors, stiffness and bradykinesia [8–10,15]. In the last decades, the anal-
ysis of handwriting and/or drawing movements has brought many insights for
uncovering the processes occurring during both physiological and pathological
conditions [2,16,17], and for providing a non-invasive method for evaluating the
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stage of the disease [14]. A comprehensive survey of the literature on handwrit-
ing to support neurodegenerative diseases, including PD, may be found in [4].
As the authors pointed out, the large majority of studies aimed at investigating
the handwritten production for the purpose of inferring which are the features
that best characterize the production of PD patients with respect to healthy
subjects. A variety of tests have been proposed, requiring the subject to write
simple letters patterns, geometric figures, words, sentence and so on, but it has
been recently shown that the most suitable ones are those requiring the drawing
of geometric shapes such as spirals and meanders, with or without a reference
pattern printed on the paper [20].

Following these suggestions, Pereira and his collaborators have collected the
NewHandPD data set, which include both off-line images and on-line signals
of the traces produced by the subjects while drawing 4 samples of spirals and
4 samples of meanders by writing on paper with a digitizing pen. A variety
of top performing machine learning algorithms, such as Convolutional Neural
Networks (CNN), Support Vector Machine (SVM), Optimal Path Finder (OPF),
Random Forest (RF) and Restricted Boltzmann Machines (RBM) have been
evaluated, showing that when on-line data are used, the ImageNet architecture
could achieve a global accuracy of 87.14% in its best configuration, while the top
performance on off-line data were achieved by the SVM, with a global accuracy
of 66.72% on the meander drawings [11,12].

In this framework, the aim of the work reported here is twofold: improving
the performance on off-line data and providing an explicit representation of the
criteria developed by the system for discriminating between PD patients and
healthy subjects. Improving the performance obtained with static features is a
goal worth to be pursued for two main reasons: (1) it would allow to analyze
old writings or drawings produced by the subject (available only on paper given
the age of insurgence of the diseases) for reconstructing the patient’s medical
history or to date the onset of the disease; (2) it would avoid that some subjects,
especially elderly ones, feeling uncomfortable writing on a graphic tablet, may
change their usual handwriting/drawing, thus introducing in their production
unnatural characteristics that can lead to errors in assessment. Developing sys-
tems capable of explaining the decision procedure they have learned and adopted
is currently a topic of investigation in the framework of so called explainable arti-
ficial intelligence (xAI) [1,6]. In particular, in medical applications, adopting a
decision procedure that can be described in a way that resembles the one rou-
tinely followed by clinicians when considering the results of tests, will favour
their acceptance as supporting tool for early diagnosis.

To address both the issues, we propose to adopt a decision tree as the machine
learning tool to perform the discrimination between handwritten samples pro-
duced by PD patients and healthy subjects. This choice is motivated by the struc-
ture of the tree that can be naturally “translated” into a chain of if-then decision
rules, thus resembling very closely the diagnostic procedure. Other approaches
such as fuzzy rule based systems have been also proposed, but they need special-
ized tools for automatically generating the decision rules [19]. The performance
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of the decision tree are then compared with those achieved by a Support Vector
Machine, that in the previous studies mentioned above has provided the best per-
formance, and with those exhibited by a Random Forest, as it exploits the same
basic idea of decision tree, but whose decision criteria are much more complex
and much less explicable than those of the decision tree. In the remaining of the
paper, Sect. 2 briefly summarizes the main features of the three machine learning
tools we have compared, and the data set we have used during the experimental
work. Section 3 describes the experiments we have designed and performed for
the automatic learning of the decision trees and reports the results obtained in
terms of patient classification, as to show to which extent the proposed tool can
be used by clinicians in their daily practice. Eventually, in the conclusion, we
summarize the work that has been done, discuss the experimental results and
outline our future investigations.

2 Machine Learning Tools and Dataset

We briefly summarize in the following the machine learning tools we have com-
pared and the dataset used for performance evaluation.

2.1 C4.5

C4.5 is a statistical classifier introduced by Quinlan [13] and used in data min-
ing for inducing classification rules in the form of decision trees, which can be
employed to generate a decision from a set of training data. At each node of the
tree, C4.5 chooses the feature that most effectively splits the set of samples into
subsets that best differentiate the instances contained in the training data. The
splitting criterion is the normalized information gain (difference in entropy).
The attribute with the highest normalized information gain is chosen to take
the decision. Once C4.5 creates a tree node whose value is the chosen attribute,
it creates child links from this node where each link represents a unique value
for the chosen attribute and uses the child link values to further subdivide the
instances into subsets.

2.2 Random Forest

A random forest [7] is a meta estimator that aggregates a number of decision
tree classifiers, i.e., the forest, on various sub-samples of the dataset and use
averaging to enhance the predictive accuracy while mitigating the over-fitting.
In general, the more trees in the forest the more robust the forest looks like. In
random forest algorithm, instead of using information gain for calculating the
root node, the process of finding the root node and splitting the feature nodes
will happen randomly.
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Fig. 1. The feature extraction process for a spiral. The blue line is the template trace
ET, while the red line is the handwritten trace HT. The arrows indicate the radii for
both ET and HT, the white circles indicate the intersection of a radius with the ET and
the HT traces and the red circle represents the center of the ET. In order to compute
all the features, the radius is shifted by using a predefined spanning angle. (Color figure
online)

2.3 Support Vector Machines

The objective of the support vector machine [3] algorithm is to find a hyper-plane
in an n-dimensional space (n is the number of features) that distinctly classifies
the data points. To separate the two classes of data points, there are many pos-
sible hyper-planes that could be chosen. The objective is to find an hyper-plane
that has the maximum margin, i.e., the maximum distance among data points
of both classes. Maximizing the margin distance provides some reinforcement so
that future data points can be classified with more confidence. Support vectors
are data points that are closer to the hyper-plane and influence the position and
orientation of the hyper-plane. Deleting the support vectors will change the posi-
tion of the hyper-plane. Using these support vectors, we maximize the margin
of the classifier.

2.4 The Dataset

NewHandPD dataset contains handwritten data collected from graphical tests
performed by 31 PD patients and 35 healthy subjects. Each subject produced 4
samples of spirals and meanders, and from each sample 9 features, reported in
Table 1, were extracted. As a result, the dataset is composed of 264 spirals and
264 meanders drawn by the participants following a printed template on paper
with a pen. As a consequence, we have two unbalanced datasets, i.e., spirals and
meanders, each of which is composed of 124 samples belonging to PD patients
and 140 belonging to healthy subjects. Figure 1 shows, together on one sample,
the two main geometric entities, namely the distance between the centre of the
template and the template/written trace (ET/HT radius), from which all the
features are computed.
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Table 1. Features description of the dataset used. HT: handwritten trace, ET: exam
template

Feature Description

x0 RMS of the difference between HT and ET radius

x1 Maximum difference between HT and ET radius

x2 Minimum difference between HT and ET radius

x3 Standard Deviation of the difference between HT and ET radius

x4 Mean Relative Tremor

x5 Maximum HT radius

x6 Minimum HT radius

x7 Standard Deviation of HT radius

x8 Number of times the difference between HT and ET radius changes sign

3 Experiments

To evaluate the performance of the proposed approach in providing explain-
able yet effective solutions, we performed a patient classification experiment, as
described below.

3.1 Patient Classification

We divided the dataset into a Training set and a Test set made of 70% and 30%
of the original dataset, respectively, in such a way as to maintain the relative
occurrence of patients and healthy subjects. In particular, the Training set was
made of 25 healthy subjects and 22 PD patients while the Test set was composed
by 10 healthy subjects and 9 PD patients. The minimum and the maximum of
each feature were computed on the Training set and a min-max normalization
was applied to the whole dataset in order to scale all the features in the range
[0, 1].

The health condition of an individual was evaluated by classifying each of
his/her handwritten samples and by applying a majority vote: an individual was
classified as healthy or patient if the majority of his/her samples were assigned to
the “healthy” or to the “patient” class, respectively. A decision about the health
condition was rejected when the same number of samples were assigned to both
the classes. The experimentation was performed with the aim of understanding:
(1) which is the most performing classification schema among the ones described
in Sect. 2, (2) if both meanders and spirals are necessary for evaluating the
healthy condition, (3) how many samples are required for reaching the best
performance. Therefore, we evaluated the health condition of individuals by
classifying only the meanders, only the spirals and both meanders and spirals
and by varying the number of samples per subject used during the training and
the classification phases. In particular, samples were progressively included in
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Table 2. Classifiers’ parameters.

Classifier Parameters

Decision Tree Pruning confidence: 0.25,
Minimum number of instances per leaf: 2

Random Forest Bag size: 100, Number of iterations: 100,
Maximum depth of the tree: unlimited

SVM Kernel: radial basis, Gamma: 0.11, Cost: 1

the datasets following the order in which the subjects traced them. It follows
that each experimental configuration differs from the others in the classifier and
the type and number of samples belonging to the Training set and the Test set.

The implementation of the classifiers are those provided by Weka [18] as well
as their parameter values and have not been fine-tuned to provide a baseline
comparison among the selected classifiers. The parameter values are the same
for all the experiments presented in this paper and are reported in Table 2.

The effectiveness of the classifiers was evaluated in term of Accuracy, Reject,
False Negative Rate (FNR), which measures the percentage of healthy people
who are identified as PD patients, and False Positive Rate (FPR), which mea-
sures the percentage of PD patients who are identified as healthy.

For each experimental configuration, a 6-fold cross validation was performed
during the training phase and the classifier obtaining the best performance on
the validation set, i.e. the one with the smallest values of FNR and FPR and
with the greatest value of Accuracy, was selected for classifying individuals in
the Test set.

All the experiments were repeated 15 times by shuffling the individuals
between Training and Test set. Results obtained on the Test set when it was
made up of only meanders, only spirals and both the patterns are reported in
Tables 3, 4 and 5, respectively.

As it is evident from the results, all the classifiers exhibit the worst perfor-
mance on the dataset containing both meanders and spirals, while the best per-
formance is achieved on the meander dataset. Moreover, if we take into account
the performance as a function of the number of samples per subject, it is possible
to infer that the top performing scenario is represented by the one with the first 3
samples traced by each subject. Finally, by taking into account all the scenarios
together, RF results the most performing classifier. In order to evaluate whether
the performance in terms of accuracy by RF is significantly different from that
provided by other methods, a statistical analysis, based on a non-parametric
statistical test [5], is carried out. Following the results reported in the Tables 3,
4 and 5, the analysis has been performed considering the performance achieved
by the classifiers on the datasets with only meanders and only spirals.
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Table 3. Results obtained on Meanders. The first column reports the number of mean-
ders for each subject.

# of samples Accuracy (%) Error (%) Reject (%) FNR (%) FPR (%)

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

Decision Tree

1 72.98 12.29 27.02 12.29 0.00 0.00 32.00 16.41 21.48 20.48

2 69.82 9.31 4.21 3.94 25.96 9.11 6.00 8.00 2.22 4.44

3 85.97 9.15 14.03 9.15 0.00 0.00 24.67 15.43 2.22 4.44

4 72.63 8.42 11.58 5.83 15.79 6.37 22.00 11.08 0.00 0.00

Random Forest

1 76.84 6.60 23.16 6.60 0.00 0.00 26.67 11.35 19.26 13.12

2 70.88 6.34 5.96 6.34 23.16 5.70 8.67 11.47 2.96 4.91

3 85.96 8.08 14.04 8.08 0.00 0.00 20.00 14.61 7.41 9.66

4 72.98 9.96 8.77 5.32 18.25 7.66 16.00 10.20 0.74 2.77

SVM

1 75.79 9.76 24.21 9.76 0.00 0.00 40.67 19.48 5.93 6.87

2 62.45 7.16 15.09 8.57 22.46 9.11 28.67 16.28 0.00 0.00

3 72.98 8.78 27.02 8.78 0.00 0.00 51.33 16.68 0.00 0.00

4 58.95 5.83 18.95 8.11 22.11 8.20 35.33 15.43 0.74 2.77

Table 4. Results obtained on Spirals. The first column reports the number of spirals
for each subject.

# of samples Accuracy (%) Error (%) Reject (%) FNR (%) FPR (%)

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

Decision Tree

1 64.21 10.73 35.79 10.73 0.00 0.00 36.00 13.06 35.55 18.68

2 51.23 10.43 10.53 5.44 38.25 10.61 14.00 10.20 6.67 8.89

3 77.54 5.25 22.46 5.25 0.00 0.00 27.33 13.40 17.04 17.15

4 60.00 7.88 16.14 6.78 23.86 9.96 22.67 13.89 8.89 10.10

Random Forest

1 65.61 9.58 34.39 9.58 0.00 0.00 37.33 16.52 31.11 19.12

2 57.19 8.78 5.61 4.89 37.19 8.26 4.67 6.18 6.67 10.58

3 84.91 4.65 15.09 4.65 0.00 0.00 12.67 9.29 17.78 12.03

4 68.77 10.61 7.72 3.78 23.51 8.78 6.67 7.89 8.89 9.25

SVM

1 61.40 8.74 38.60 8.74 0.00 0.00 39.33 25.94 37.78 29.20

2 53.33 7.89 12.63 7.88 34.04 6.04 21.33 16.68 2.96 6.37

3 68.77 9.51 31.23 9.51 0.00 0.00 55.33 21.25 4.44 8.89

4 61.40 8.74 16.49 8.78 22.11 9.06 28.67 16.68 2.96 11.09

3.2 Statistical Analysis

The statistical analysis has been performed through the Friedman Aligned Ranks
test, configured with multiple comparison methods. The null hypothesis H0 for
the test states equality of medians between the different algorithms. The goal
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Table 5. Results obtained on Spirals (S) and Meanders (M). The first column reports
the number of samples, equally divided between spirals and meanders, for each subject.

# of samples Accuracy (%) Error (%) Reject (%) FNR (%) FPR (%)

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

Decision Tree

2 (1S+1M) 51.23 13.52 15.79 11.04 32.98 14.44 24.00 21.54 6.67 12.03

4 (2S+2M) 67.72 9.39 9.12 6.22 23.16 5.70 13.33 11.35 4.44 7.91

6 (3S+3M) 75.44 9.15 10.53 6.37 14.04 7.36 15.33 14.54 5.18 6.87

8 (4S+4M) 73.68 7.19 15.44 5.91 10.88 8.48 24.67 13.60 5.18 7.98

Random Forest

2 (1S+1M) 56.49 9.51 9.47 4.79 34.03 10.50 14.00 10.20 4.44 6.79

4 (2S+2M) 77.54 8.48 5.61 6.22 16.84 7.24 8.67 10.24 2.22 4.44

6 (3S+3M) 82.45 8.74 6.67 4.89 10.88 7.05 8.67 8.06 4.44 5.44

8 (4S+4M) 81.75 6.89 8.77 5.66 9.47 6.14 14.00 10.20 2.96 4.91

SVM

2 (1S+1M) 58.60 9.19 21.05 9.61 20.35 7.66 38.67 19.96 1.48 3.78

4 (2S+2M) 65.96 8.57 18.24 9.39 15.79 5.77 34.67 17.84 0.00 0.00

6 (3S+3M) 69.82 8.03 20.70 7.05 9.47 6.43 39.33 13.40 0.00 0.00

8 (4S+4M) 62.46 6.04 19.65 6.51 17.90 6.32 36.67 13.00 0.74 2.77

Table 6. The ranking of the classification methods according to the Friedman Aligned
Ranks test.

Rank

Random Forest 6.000

Decision Tree 12.625

SVM 18.875

of the test is to either confirm this hypothesis or reject it, at a given level of
confidence α. As it is typically done in scientific literature, we have used here
α = 0.05.

Table 6 reports the ranking of the methods and highlights that RF is the
best-performing method followed by DT and SVM. The statistic for Friedman
Aligned Ranks with control method is 9.46, distributed according to a chi-square
distribution with 2 degrees of freedom, while the p-value is 0.00881. This value
is lower than the chosen level of confidence 0.05, which suggests the existence of
statistically significant differences among the algorithms considered. Given that
H0 is rejected, meaning that the statistical equivalence among all the algorithms
does not hold true, we can proceed with the post-hoc procedures to investigate
where these differences between the algorithms exist. When using these proce-
dures, a new null hypothesis H0’ is used, which states the statistical equivalence
for couples of algorithms, rather than for the whole set of algorithms as it was
for H0.
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Table 7 reports the adjusted p-values for the post-hoc procedures for Fried-
man Aligned Ranks test, when RF is used as control method. In the table the
generic (i, j) adjusted p-value represents the smallest level of significance that
results in the rejection of H0’ between algorithm i and the control method,
i.e., the lowest value for which the algorithm i and the control method are not
statistically equivalent, for the j-th post-hoc procedure. The lower the adjusted
p-value, the more likely the statistical equivalence can be rejected. A very impor-
tant feature of such a table is that it is not tied to a pre-set level of significance
α. Rather, depending on the value of α we choose, the post-hoc procedures will
either accept or reject H0’. Considered that α = 0.05, the table says that the
statistical equivalence between RF and SVM can be statistically rejected for all
the post-hoc procedures apart Hochberg, while there is a statistical equivalence
between DT and RF. A general conclusion coming from the statistical analysis
is that DT and RF perform better than SVM.

Table 7. Adjusted p-values for the post-hoc procedures for Friedman Aligned Ranks
test (RF is the control method).

Adjusted p-value

Algorithm Statistic Bonferroni-Dunn Holm Finner Hochberg Li

SVM 3.642 0.00054 0.00054 0.00054 0.06095 0.00029

Decision Tree 1.874 0.12191 0.06095 0.06095 0.06095 0.06095

4 Conclusions

We have presented an approach for the automatic diagnosis of Parkinson’s dis-
ease that aims at developing a system that is capable of providing an explana-
tion of its behavior in terms that are easy to understand by the clinicians, thus
favouring their acceptance/reject of the machine diagnostic suggestions.

In this frameworks, we have chosen as machine learning tool the Decision
Tree, as it provides a description of the decision process in terms of if-then rules
applied to the feature values, a decision process clinicians are very familiar with,
and explicitly establishes a ranking of the features relevance. To illustrate this
point, the best performing decision tree obtained by C4.5 on the meander dataset
is reported below (Algorithm 1). It shows that the Mean Relative Tremor (x4)
results the most relevant feature, followed by the Maximum HT radius (x5), the
Minimum difference between the HT and ET radius (x2) and, eventually, the
Minimum HT radius (x6). Those findings are in accordance with the literature,
according to which tremor and deviation from a desired trajectory (either coded
into the subject motor plan or provided as task) are among the most distinctive
features of PD patients handwritten production. Even more important, it shows
how the selected features are combined to reach the final decision. In contrast,
for the other classifiers considered in this study, the SVM is unable to provide
an explanation of its decision, while the RF provides a global ranking of the
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Algorithm 1. Best performing model obtained by C4.5 on the Meander dataset.
if (x4 > 0.1729) then

output = “control”
else

if (x4 > 0.0905) then
if (x2 > 0.3016) then

output = “control”
else if (x6 > 0.0381) then

output = “control”
else

output = “patient”
end if

else if (x5 > 0.2849) then
output = “patient”

else
output = “control”

end if
end if

features relevance, but not a description of the way they are intertwined in the
decision making process.

Eventually, the experimental results show that the performance of the Deci-
sion Tree is comparable to that of the RF and better than the SVM one. As in
a previous study comparing SVM with OPF and NB [12] SVM was the top per-
forming classifier, we conclude that the DT proposed here achieves state-of-the-
art performance on off-line data, while being the only one capable of describing
its decision process in terms that can be simply and naturally understood by
clinicians.

The experimental results also suggest that care should be paid in collecting
the data to ensure that the task is neither too difficult nor too easy to carry
on, so to avoid that fatigue/boredom may introduce misleading data that can
negatively affect the performance.

In our future work we will investigate if and to which extent our method can
be used to monitor the progress of the disease, as well as to trace back its onset.
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