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Preface

The International Conference on Image Analysis and Processing (ICIAP) is an
established scientific meeting organized biennially and promoted by the Italian Asso-
ciation for Computer Vision, Pattern Recognition and Machine Learning (CVPL;
ex-GIRPR) of the International Association for Pattern Recognition (IAPR). The
conference traditionally covers topics related to computer vision, pattern recognition,
and image processing, addressing both theoretical and applicative aspects.

The 20th International Conference on Image Analysis and Processing (ICIAP 2019),
held in Trento, Italy, September 9–13, 2019 (https://event.unitn.it/iciap2019), was
organized jointly by University of Trento and Fondazione Bruno Kessler.

The conference was located in the city center, at the Faculty of Law of University of
Trento, nearby Piazza Duomo, namely the historical, main square of the city. ICIAP
2019 was endorsed by the International Association for Pattern Recognition (IAPR).
This year the conference was co-located with the 13th International Conference on
Distributed Smart Cameras (ICDSC 2019) (https://event.unitn.it/icdsc2019/), and a
joint keynote speech and oral session was organized.

ICIAP is traditionally a venue to discuss image processing and analysis, computer
vision, pattern recognition and machine learning, from both theoretical and applicative
perspectives, promoting connections and synergies among senior scholars and students,
universities, research institutes, and companies. ICIAP 2019 followed this trend, and
the program was subdivided into nine main topics, covering a broad range of scientific
areas, which were managed by two area chairs per each topic. They were: Video
Analysis and Understanding, Pattern Recognition and Machine Learning, Deep
Learning, Multiview Geometry and 3D Computer Vision, Image Analysis, Detection
and Recognition, Multimedia, Biomedical and Assistive Technology, Digital Foren-
sics, and Image Processing for Cultural Heritage.

ICIAP 2019 received 207 paper submissions from all over the world, including
Algeria, Austria, Belgium, Brazil, Bulgaria, Canada, China, Czech Republic, Denmark,
Egypt, Finland, France, Germany, Greece, India, Israel, Italy, Japan, Korea, Morocco,
Mexico, Pakistan, Poland, Romania, Russia, Saudi Arabia, Slovenia, Spain, Sweden,
Switzerland, Tunisia, Turkey, the United Kingdom, and the USA. To select papers
from these submissions, 21 expert researchers were invited to act as areas chairs,
together with the international Program Committee and an expert team of reviewers.
A rigorous peer-review selection process was carried out where each paper received at
least two reviews. This ultimately led to the selection of 117 high quality manuscripts,
presented during the conference in the form of 18 orals, 18 spotlights, and 81 posters,
with an overall acceptance rate of about 56%. Among oral papers selected at ICIAP
2019, four were selected as Brave New Ideas Paper, i.e. papers exploring highly
innovative ideas, visionary applications, and theoretical paradigm shifts in the area of
computer vision, pattern recognition, machine learning, multimedia analysis, and
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image processing. The ICIAP 2019 proceedings are published as volumes of the
Lecture Notes in Computer Science (LNCS) series by Springer.

The program included four invited talks by experts in computer vision, pattern
recognition, and robotics: Davide Scaramuzza, University of Zurich and ETH Zurich
(Switzerland), Tal Ayellet, Technion Israel of Technology (Israel), Emanuele Rodolà,
Sapienza University of Rome (Italy), and Alessandra Sciutti, Italian Institute of
Technology (Italy), who addressed very interesting and recent research approaches and
paradigms such as deep learning, 3D modeling and reconstruction, visual robot navi-
gation, semantic scene understanding, human-robot interaction, visual cognition,
computer graphics, and image enhancement. ICIAP 2019 also included several tutorials
on topics of great relevance for the community: Vision, Language and Action: from
Captioning to Embodied AI, Lorenzo Baraldi and Marcella Cornia (University of
Modena Reggio Emilia); Transferring Knowledge Across Domains: an Introduction to
Deep Domain Adaptation, Massimiliano Mancini (Sapienza University of Rome, FBK
and Italian Institute of Technology) and Pietro Morerio (Italian Institute of Technol-
ogy); High-Dynamic-Range Imaging: Improvements and Limits, Alessandro Rizzi
(University of Milano); Anomaly Detection in Images, Giacomo Boracchi (Politecnico
Milano) and Diego Carrera (ST Microelectronics); Fingerprint Presentation Attacks
Detection: Lessons Learned and a Roadmap to the Future, Gian Luca Marcialis
(University of Cagliari); and Probabilistic and Deep Learning for Regression in
Computer Vision, Stephane Lathuilière (University of Trento) and Xavier
Alameda-Pineda (Inria Grenoble). ICIAP 2019 also hosted the presentation of the
results of the Challenge DAFNE (Digital Anastylosis of Frescoes challeNgE), an
international competition in the artistic heritage sector designed to provide virtual
solutions that ultimately add to the fresco restorer’s toolkit.

ICIAP 2019 also hosted five satellite events: four workshops and one industrial
session. The workshops were: BioFor Workshop on Recent Advances in Digital
Security: Biometrics and Forensics, organized by Daniel Riccio, Francesco Marra,
Diego Gragnaniello (University of Naples Federico II, Italy) and Chang-Tsun Li
(Deakin University, Australia); the First International Workshop on eHealth in the Big
Data and Deep Learning Era, organized by Tanmoy Chakraborty (Institute of Infor-
mation Technology Delhi, India), Stefano Marrone (University of Naples “Federico II”,
Italy) and Giancarlo Sperl (CINI - ITEM National Lab, Naples, Italy); Deep Under-
standing of Shopper Behaviours and Interactions in Intelligent Retail Environment,
organized by Emanuele Frontoni (Università Politecnica delle Marche), Sebastiano
Battiato (University of Catania, Italy), Cosimo Distante (ISASI CNR, Italy), Marina
Paolanti (Università Politecnica delle Marche, Italy), Luigi Di Stefano (University of
Bologna, Italy), Giovanni Marina Farinella (University di Catania, Italy), Annette
Wolfrath (GFK Verein, Germany) and Primo Zingaretti (Università Politecnica delle
Marche, Italy) and the International Workshop on Pattern Recognition for Cultural
Heritage (PatReCH 2019), organized by Francesco Fontanella, Mario Molinara
(University of Cassino and Southern Lazio, Italy) and Filippo Stanco (University of
Catania, Italy). The Industrial Session was organized with the purpose of bringing
together researchers and practitioners in industrial engineering and computer science
interested in industrial machine vision. The session was organized by Luigi di Stefano,
Vittorio Murino, Paolo Rota, and Francesco Setti. In the industrial session we hosted
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several companies as well as start-ups to show their activities while assessing them
with respect to the cutting-edge research in the respective areas. The papers from the
workshop and the industrial session were all collected in New Trends in Image
Analysis and Processing – ICIAP 2019. We thank all the workshop and industrial
session organizers and tutorial speakers who made possible such an interesting
pre-conference program.

Several awards were conferred during ICIAP 2019. Two student support grants were
provided by the International Association for Pattern Recognition (IAPR). The Eduardo
Caianiello Award was attributed to the best paper authored or co-authored by at least
one young researcher (PhD student, Post Doc, or similar). A Best Paper Award was
also assigned after a careful selection made by an ad hoc appointed committee. The
award was dedicated to Prof. Alfredo Petrosino, an eminent scientist and one of the
most active members of the Italian Chapter of the IAPR, who passed away this year.
During the conference an important moment was dedicated to commemorate the
memory of Prof. Petrosino who will be greatly missed.

The organization and the success of ICIAP 2019 was made possible thanks to the
cooperation of many people. First of all, special thanks should be given to all the
reviewers and the area chairs, who made a big effort for the selection of the papers.
Second, we also would like to thank the industrial, special session, publicity, publi-
cation, and Asia and US liaison chairs, who, operating in their respective fields, made
this event a successful forum of science. Special thanks go to the workshop and tutorial
chairs, as well as all workshop organizers and tutorial lecturers for making the con-
ference program richer with notable satellite events. The communication services
department of UNITN that supported all the communication, the registration process,
and the financial aspects of the conference, among many other issues, should be
acknowledged for all the work done. Last but not least, we are indebted to the local
Organizing Committee (mainly colleagues from MHUG, University of Trento, and
FBK-TeV) who covered almost every aspect of the conference when necessary and the
day-to-day management issues of the ICIAP 2019 organization. Thanks very much
indeed to all the aforementioned people, as without their support we would not have
made it. We hope that ICIAP 2019 met its aim to serve as a basis and inspiration for
future ICIAP editions.

August 2019 Elisa Ricci
Samuel Rota Bulò

Cees Snoek
Oswald Lanz

Stefano Messelodi
Nicu Sebe
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Abstract. In this paper we consider the problem of video-based per-
son re-identification, which is the task of associating videos of the same
person captured by different and non-overlapping cameras. We propose
a Siamese framework in which video frames of the person to re-identify
and of the candidate one are processed by two identical networks which
produce a similarity score. We introduce an attention mechanisms to cap-
ture the relevant information both at frame level (spatial information)
and at video level (temporal information given by the importance of a
specific frame within the sequence). One of the novelties of our approach
is given by a joint concurrent processing of both frame and video levels,
providing in such a way a very simple architecture. Despite this fact, out
approach achieves better performance than the state-of-the-art on the
challenging iLIDS-VID dataset.

Keywords: Video-based person re-identification · Visual attention ·
Convolutional attention · LSTM · iLIDS-VID

1 Introduction

Given an image or video of a person taken from one camera, the Re-Identification
task (ReID) is the process of re-associating the person by analyzing images or
videos taken from a different camera with non-overlapping field of view. Although
humans can easily re-identify others by leveraging descriptors based on the per-
son’s face, height, clothing, and walking pattern, ReID is a difficult problem for
a machine to solve, since it should deal with features between cameras like dif-
ferent lighting conditions, different point of views or person occluded by objects
or other people.

Traditionally many attempts to explore the problem has been proposed for
still images (e.g., [1–6]), while recently some research groups have experimented
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approaches based on video images (e.g., [7]). Using videos for Re-Identification
provides several advantages over still images. The video setting is a more natural
way to perform Re-Identification, as a person will normally be captured by a
video camera producing a sequence of images rather than a single still image.
Given the availability of sequences of images, temporal information related to a
person motion may help to disambiguate difficult cases that arise when trying
to recognize a person in a different camera. Furthermore, sequences of images
provide a larger number of samples of a person appearance, thus allowing a better
appearance model to be built. On the other hand, this large set of information
needs to be treated properly.

To address this challenge, in this paper we propose an approach to the prob-
lem of video-based person re-identification that is characterized by two main
aspects. First, we propose a deep neural network architecture based on a Siamese
framework [8] which evaluates the similarity of the query video to a candidate
one. Second, we introduce a novel spatio-temporal attention mechanism with
the aim to select relevant information from different areas of the frames of the
input video, and from their evolution over time. Attention mechanisms have been
largely exploited in a variety of different implementations and in many different
domains of Deep Learning such as Natural Language Processing [9] and Com-
puter Vision [10]. The intuition behind Attention in Computer Vision is to mimic
the human visual process. Humans give different importance to different areas
in an image as they are able to focus on ‘hot’ areas and neglect others [11]. This
improves greatly the ability to recognize structures and patterns in otherwise
flat data. Nevertheless there are relatively few attempts to use Attention in the
field of Automatic Re-Identification. [12] proposes integrating a soft attention
based model in a Siamese network to focus adaptively on the important local
regions of an input image pair. [13] uses a spatial pyramid layer as the compo-
nent attentive spatial pooling to select important regions in spatial dimension.
[10] proposes a spatial attention module focused on recognizing the skeleton to
identify the poses, and then a temporal module to recognize the actions.

Unlike other approaches, which use at least two separate modules to identify
spatial and temporal features, we use a joint module to identify both at the same
time. This allows us to define a simpler architecture which provides state-of-the-
art performance on the well-known iLIDS-VID dataset.

2 Related Work

The interest for video-based Person Re-Identification has increased significantly
in recent years [14]. The aim of the first works was to manually extract fea-
ture representations invariant to changes in poses, lighting conditions, and view-
points. Using these features, they proposed distance metrics to measure the
similarity between two images. In particular, one of the first studies computes
the spatio-temporal stable region with foreground segmentation [15]; while [16]
employs more compact spatial descriptors and color features, constructed by
using the manifold geometry structure in video sequences.
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With the advent of Deep Learning approaches, Convolutional Neural Net-
works (CNNs) have been introduced in visual recognition tasks yielding to con-
siderable improvements in the performance [17] with respect to more classical
solutions [18]. In fact, CNNs are able to extract different features from a given
image, representing them as a set of output maps avoiding manual effort in fea-
ture engineering. Image-based Automatic Person Re-Identification is one of the
fields in which CNNs achieved remarkable results [19–24].

However, considering that Person Re-Identification is usually done in settings
that involve, for example, surveillance cameras, it is easy to argue that image-
based person re-identification is no more an adequate schema to address current
needs.

This led to most recent works that began exploring video-based person re-
identification [8,13,25–30], a setting closer to real-world applications. Videos
have the advantage to contain temporal information that is potentially helpful
in differentiating between persons. For example, in [8], the proposed CNN model
extracts features from subsequent video frames that are fed through a recurrent
final layer in order to combine frame-level features and video-level features.

Not all the parts of an image or of a video are equally important and humans
place more focus only on some of them, assigning little to no importance to the
rest. This attention mechanism has been adopted in a variety of applications,
such as machine translation [31], action recognition [32], image recognition [33]
and caption generation [34]. Recently, Attention models [10,32] have been pro-
posed for video and image understanding. These models assign weights to differ-
ent parts of each frame, making some of them more important than others. In
particular, [12] proposes integrating a spatial attention based model in a siamese
network to adaptively focus on the important local parts of an input image pair.

With respect to the existing literature, [29] and [35] are the most similar to
our approach. [29] uses a Recurrent Neural Network (RNN) to generate tem-
poral attentions over frames so that the model can focus on the most discrim-
inative ones in a video. [35] instead directly calculates the attention scores on
frame-based features, using a simple architecture with two separate temporal
and spatial modules. Our approach exploits a single attentive module to extract
both temporal and spatial features from frames at the same time, resulting in
an even simpler architecture that provides state-of-the-art performance.

3 The Proposed Approach

The proposed approach (see Fig. 1) is based on a Siamese network [8]. This
schema is composed by two identical networks, or branches, in which the first
is fed with the query video and the second with the candidate video to be
compared. Each branch includes a sequence of modules that will be described
in details in next sub-sections. The parameters of the two branches are shared.
The output of the Siamese network is a value that represents the similarity of
the two input video sequences in terms of the distance between their respective
features vectors, which should be close to zero if they belong to the same person,
close to one otherwise.
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Fig. 1. Siamese network scheme. Each network receives as input a person image
sequence to classify. The loss is calculated as the sum of the classification error of
each network, plus the Euclidean distance between the two descriptive vectors, which
should be close to zero if the two sequences belong to the same person, or close to one
if they belong to different people.

3.1 Spatio-Temporal Attentive Module

The Spatio-Temporal Attentive Module is the core module of the proposed archi-
tecture. It aims to identify the portions of a frame which an human eye would
normally focus on. Those areas should contain relevant spatial information, and
we want to exploit them to improve the re-identification performance. Since the
input frames are enhanced with the temporal information of the optical flow,
both spatial and temporal features will be exploited by this network.

Inspired by [11], we propose to use a particular combination of convolutional
network and LSTM, called Attentive ConvLSTM, capable of working on spatial
features, in which the internal state of the network is given by the standard
LSTM state equations where the matrix products between weights and inputs
are replaced by convolutional operators. The ability to work with sequences is
exploited to process input spatial features iteratively. The general idea of how
this module works is shown in the bottom part of Fig. 2.

Our aim is to exploit attentive maps to better identify relevant features of
frames and provide state-of-the-art performance while using a simple network.
The architecture of each branch (see Fig. 2) is based on an initial convolutional
network to reduce the image size, an attentive model to generate attentive maps,
a fully connected layer to extract significant features from the original frames,
and a final part where the features are combined.
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Fig. 2. Detailed Network scheme. The main blocks are the initial convolutional net-
work, the Spatio-Temporal Attention Module, and the final part which performs aver-
aging and normalization. The bottom part gives an idea of the multiple refining steps.

More in details, the architecture consists of an ConvLSTM to recurrently
processes attentive features at different locations of the frame, focusing on dif-
ferent regions of the tensor. A stack of features X is repeatedly given in input
to the LSTM, which sequentially updates an internal state based on three sig-
moid activators. Update is performed by two blocks: the Attentive Model, and
the ConvLSTM. The Attentive Model generates an attention map using a con-
volutional layer that takes as input the original X and the previous hidden
state, followed by a tanh activation function and another convolutional layer,
and finally normalized with a softmax operator. The resulting output repre-
sents a normalized spatial attention map, which is then applied to the original
X with an element-wise product, resulting in the filtered X′. In ConvLSTM,
each of the three sigmoid activators is given in input the sum of two different
convolutive layers, the first taking as input X′ and the second taking as input
the previous hidden state, and a bias. The output of the first sigmoid is then
multiplied element-wise with the previous X′, the output of the second sigmoid
is multiplied element-wise with the state of the LSTM memory cell, and the two
resulting outputs are summed together and fed to a tanh activator. The result is
multiplied element-wise with the output of the third sigmoid, and the resulting
tensor is the new hidden state.

The Spatio-Temporal Attentive Module takes in input an image and produces
in output multiple attentive maps, using an iterative refinement in T steps (based
on our preliminary experiments, we set T = 10). We then apply those maps to
the original input and obtain multiple different filtered outputs. Ideally, each
filter should focus on a different spatio-temporal feature of the frame.
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3.2 Architecture Details

The starting input (see Fig. 2) consists of video sequences composed by a batch
of N frames, each frame has size 56 × 48, with 3 channels for the YUV, plus 2
for the vertical and horizontal components of the optical flow, for a total of 5
channels.

The input is first processed through a convolutional network which consists of
3 stages, each composed by convolution, max-pooling, and nonlinear activations.
Each convolution filter uses 5×5 kernels with 1×1 stride and 4×4 zero padding.
This outputs a batch of size N × 32 × 10 × 8.

At this point, the model branches in two lines: the same input is passed
to the Spatio-Temporal Attentive Module previously described, and to a fully
connected layer preceded by a dropout applied with p = 0.6 probability. The first
aims to output multiple spatio-temporal-filtered feature vectors for each frame,
and the second a general feature vector for each frame.

Spatio-Temporal Attention generates multiple attentive filters. Each of these
filters has size 10 × 8, is first normalized with a sigmoid between 0 and 1, and
then applied with an element-wise multiplication to the original output of the
first convolutional network, obtaining multiple blocks weighted with a different
filter with the same dimension of the input, N ×32×10×8; each of these blocks
focus on a specific zone of the frames. A final fully connected layer generates, for
each block, a batch of spatio-temporal-weighted feature vectors of size N × 128.
This final layer is also preceded by a dropout with p = 0.6. In our model, since
we generate 3 filters, we obtain 3 spatio-temporal-weighted feature vectors.

The two branches of the network are then merged together, and the general
feature vectors are concatenated with each of the spatio-temporal weighted fea-
ture vectors, resulting in 3 combined-feature vectors of size 2N × 128. Finally,
each of these batches is averaged, normalized using L2 normalization, and lastly
summed together, obtaining a final feature descriptor of size 1 × 128.

4 Experimental Results

Our approach has been tested and evaluated on the public iLIDS-VID bench-
mark [27], since it is a challenging dataset that contains many occlusions, severe
illumination changes and background clutters. It is also widely used in literature
and it is then easier to fair compare our results. The iLIDS-VID dataset consists
of videos of 300 distinct people. For each person there are two different video
sequences, captured by two non-overlapping cameras. The video sequences have
a varying number of frames, with the shortest sequence having 23 frames long
and the longest having 192 frames, averaging at 73 frames.

4.1 Experimental Setup

To be comparable with literature, we follow the experimental setup proposed by
[8]. The dataset is randomly split in two: 50% of the people form the training
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set and 50% the test set. During the execution of the experiments, a different
train/test split is computed for every repetition and the final results are then
averaged. The network is trained for 1500 epochs using Stochastic Gradient
Descent algorithm. One epoch consists in showing the Siamese network an equal
number of positive sequence pairs and negative pairs, sampled randomly from
all the persons in the training set, alternatively.

A positive sequence pair consists of two full sequences of arbitrary length,
recorded by two different cameras, showing the same person. Analogously, a
negative sequence pair shows two different persons. During the training phase,
the length of the sequences is set to 16, that is, 16 consecutive frames belonging
to a person are randomly sampled and used during this phase. As in [27], the
first camera is the probe and the second the gallery.

All the images in the dataset go through a preprocessing step where they
are converted from the RGB to the YUV color space and each color channel is
normalized in order to have zero mean and unit variance. The three color chan-
nels are expanded with two more channels corresponding to the horizontal and
vertical component of the optical flow computed between each pair of consecu-
tive frames using Lucas-Kanade algorithm [36]. The two optical flow channels
are normalized to bring them within the [−1, 1] range.

Data augmentation is applied to each sequence during the training phase
in order to increase the diversity of the training sequences. Each frame in the
sequence undergoes cropping and mirroring, the same transformation is applied
in the same way to all the frames belonging to the same sequence.

The testing phase is performed considering a video sequence belonging to the
first camera as probe and a video sequence belonging to the second camera as
gallery. In this phase, we use up to 128 frames to form a sequence. The frames are
always the starting frames for the probe, and the ending frames for the gallery.
If this is not possible, because a person’s sequence does not have enough frames,
we consider all the available frames.

All tests are performed 10 times with different seeds, each time presenting
the model different people for training and testing.

4.2 Results

First we compared the results of our model when using different numbers of filters
for the Spatio-Temporal Attention Module, as shown in Table 1. We found that
performance increases when generating more filters, but with four or more the
model saturates and the performance starts decreasing.

Second, we present experimental results with 3 filters on sequences of varying
lengths between 2 and up to 128 frames, and the results are shown in Table 2.
Note that if a person’s sequence does not have enough frames, we still consider
all the available frames and that in all cases the training has been performed
using a fixed length sequence of 16. As one could expect, it is confirmed that
the performance increases as the number of frames in sequence of frames grows,
as also noted by [8]. Since the average sequence length in the dataset is 73,
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Table 1. Average results obtained using an increasing number of filters.

Average results using different number of filters

#filters Rank-1 Rank-5 Rank-10 Rank-20

0 60.5 84.8 93 96.9

1 59.4 85.7 93.2 97.4

2 63 87.7 93.9 97.3

3 63.3 87.4 94 97.8

4 59.6 87.2 93.9 97.7

the performance does not increase much between 64 and 128, because most
sequences are not long enough to benefit from the additional length.

Table 2. Average results with different sequence lengths (expressed in frames).

Average results with different sequence lengths

Length Rank-1 Rank-5 Rank-10 Rank-20

2 16.7 37.7 50.9 64.6

4 22.7 46.9 60.3 72.6

8 31.7 59.3 71.3 84.2

16 43.8 72.6 83.9 91.4

32 53.9 80.7 89 95.3

64 61 85.6 92.5 96.7

128 63.3 87.4 94 97.8

Finally, we present the comparison of our model with the state-of-the-art
in Table 3. Despite beeing a simple architecture, our solution outperforms other
methods proposed in the literature on 2 metrics out of 4. Note that [35] claim
better results on their paper, but, in order to provide a fair comparison, we
re-ran their provided code on our dataset splits. In addition, for the sake of
completeness we report the performance of [37] as well, even if their testing
protocol is not directly comparable with the others, as they always use all the
available frames.

The simplicity of our architecture comes from the choice of making the spatial
and temporal module work jointly. In fact their output is merged in order to,
hopefully, get the best of the two and select only the most relevant information
obtained by their combination.
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Table 3. Comparison with state-of-the-art methods.

iLIDS-VID

Methods Rank-1 Rank-5 Rank-10 Rank-20

Proposed Approach 63.3 87.4 94 97.8

Rao et al. [35] 62.2a 86.8 94.8 97.8

Xu et al. [38] 62 86 94 98

Zhang et al. [39] 60.2 85.1 - 94.2

McLaughlin et al. [8] 58 84 91 96

Zhengl et al. [40] 53 81.4 - 95.1

Yan et al. [28] 49.3 76.8 85.3 90.1

Liu et al. [37] 68b 86.8 95.4 97.4
aThese results were obtained in our tests on the code provided,
and are substantially lower than claimed in the paper
bResults are shown for completeness, but are not directly com-
parable

5 Conclusions

We described a novel architecture which exploits a single attentive network to
extract both spatial and temporal features to perform video-based person Re-
Identification, providing state-of-the-art performance on the recent challenging
iLIDS-VID dataset.

While the improvement obtained is not groundbreaking, the experiments
confirm that employing a joint spatial and temporal attention mechanism can
help pushing higher the performances in the field of person Re-Identification
using only simple neural networks.

Our experiments confirms that using a longer sequence of frames brings to
better performance. Analogously, one may think that using an higher number
of filters will always lead to better results; however this is true up to a certain
point: our experiments shows that using 3 attentive filters is better than using
none, but going above this number leads to a degradation in performance.

Future work will validate the results obtained in this study performing the
reported experiments on other datasets.
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Abstract. Background modeling is a preliminary task for many com-
puter vision applications, describing static elements of a scene and iso-
lating foreground ones. Defining a robust background model of uncon-
trolled environments is a current challenge since the model must manage
many issues, e.g., moving cameras, dynamic background, bootstrapping,
shadows, and illumination changes. Recently, methods based on keypoint
clustering have shown remarkable robustness especially in bootstrapping
and camera movements, highlighting however limitations in the analysis
of dynamic background (i.e., trees blowing in the wind or gushing foun-
tains). In this paper, an innovative combination between the RootSIFT
descriptor and an average pooling is proposed in a keypoint clustering
method for real-time background modeling and foreground detection.
Compared to renowned descriptors, such as A-KAZE, this combination
is invariant to small local changes in the scene, thus resulting more robust
in dynamic background cases. Results, obtained on experiments carried
out on two benchmark datasets, demonstrate how the proposed solu-
tion improves the previous keypoint-based models and overcomes several
works of the current state-of-the-art.

Keywords: Background modeling · Foreground detection ·
Keypoint clustering · Dynamic background · RootSIFT

1 Introduction

In computer vision community, the background modeling has always been a
field of great interest. This is because it can be a main prerequisite for many
smart applications, ranging from active video surveillance to optical motion cap-
ture. Due to many dynamic factors of the scene, background modeling is a very
complex task. For example, creating the model when there are foreground ele-
ments within the scene (i.e., bootstrapping), managing natural light changes
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-30642-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30642-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-30642-7_2


16 D. Avola et al.

over time, or handling the movement performed by parts of the scenery (i.e.,
dynamic background) are all critical aspects in defining a robust background
model of uncontrolled environments.

Over the years, different solutions have been proposed both for gradually
light changes, such as the adaptive model based on self-organizing feature maps
(SOFMs) presented in [22], and for bootstrapping problem, by using keypoint
clustering methods [5–7]. The last cited works have introduced a new background
modeling technique, based on the most interesting points of an image, able to
manage efficiently video sequences acquired by moving video cameras. Typically
keypoint-based methods are structured as follows: first, the background model is
defined using keypoints and related descriptors detected by a feature extractor;
then the keypoints of the model are tracked across consecutive frames, through a
feature matching phase, to tell apart background keypoints from the foreground
ones; finally, the Density-Based Clustering of Application with Noise (DBSCAN)
is applied to extract foreground keypoint clusters, which represent the foreground
element regions inside the scene. Despite their great results, the aforementioned
works cannot bear scenarios consisting of dynamic elements (i.e., trees blowing
in the wind or gushing fountains), that is because the common descriptors of the
keypoints are too sensitive to all variations that can occur in an uncontrolled
environment.

This paper, extending the pipeline of the adaptive bootstrapping manage-
ment (ABM) proposed in [5], introduces an innovative strategy to improve the
feature matching phase accuracy in keypoint-based methods for dynamic back-
ground modeling. Once the keypoints are extracted with the A-KAZE algorithm
[1], descriptors are computed combining the RootSIFT [2] with an average pool-
ing, applied on different patches obtained from a neighbourhood of each key-
point. Compared to renowned descriptors, such as A-KAZE, this combination
results invariant to small local changes caused by moving background. Moreover,
in the feature matching step, the Hamming distance is replaced by the Bhat-
tacharyya distance, since the latter is more suitable to measure the closeness
between our new descriptors, compared to the former, which is applicable only
between binary descriptors (i.e., A-KAZE, ORB [26], and others). Experiments
on the Scene Background Modeling.NET (SBMnet) [18] dataset have shown how
the proposed model provides good performance, in terms of background recon-
struction, in very challenging video sequences. Finally, including a foreground
detection module, inspired by the work proposed in [7], additional tests on the
Freiburg-Berkeley Motion Segmentation Dataset (FBMS-59) [24] dataset have
also shown that our solution can be integrated into a moving object detection
pipeline obtaining excellent results.

The rest of paper is organized as follows. In Sect. 2, a brief overview of the
state-of-the-art on background modeling is presented. In Sect. 3, the proposed
method is described in detail, presenting both our descriptor for background
modeling and the distance metric used in the feature matching phase. Section 4
contains the experimental results on the SBMnet and FBMS-59 datasets. Finally,
Sect. 5 concludes the paper.
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2 Related Work

In recent years, the background modeling has been extensively studied, often
integrating it as prerequisite for other tasks, such as foreground detection or
image segmentation. A valid example is reported in [31], where a spatio-temporal
tensor formulation and a Gaussian Mixture Background Model are fused to per-
form a hybrid moving object detection system. In [21], a hierarchical background
model for video surveillance using PTZ camera is presented, obtained by separat-
ing the range of continuous focal lengths of the camera into several discrete levels
and partitioning each level into many partial fixed scenes. Then, each new frame
acquired by the PTZ camera is related to a specific scene using a fast approxi-
mate nearest neighbour search. Another interesting model is used to implement
the change detection method proposed in [29], where a pixel representation is
characterized in a non-parametric paradigm by an improved spatio-temporal
binary similarity descriptors. This model is also used after in [10] to guide the
training of a Convolutional Neural Network (CNN) in performing a foreground
segmentation. In [27], the background model is built using appearance features,
obtained by considering each pixel neighborhood, and the foreground is sep-
arated from the background classifying each pixel using its associated feature
vectors and a Support Vector Machine (SVM). Two different models are pro-
posed in [12] to segment background and foreground dynamics, respectively,
where the first one is based on the Mixture of Generalized Gaussian (MoGG)
distributions and the second one combines multi-scale correlation analysis with
a histogram matching. In [15], a pre-trained CNN model is used to create the
background model, extracting features from a cleaned background image, with-
out moving objects. The foreground detection is performed comparing the fea-
tures of the previous model with the features extracted from each frame of the
video sequence using the previous CNN. In [32], a dual-target non-parametric
background model, able to work with different scenarios and simultaneously
distinguish background and foreground pixels, is introduced. Moreover, a novel
classification rule is presented: for the background pixels, the method controls
the updating of neighbouring pixels to obtain a complete silhouette of static or
low-speed moving objects; instead, for the foreground pixels, it controls the cur-
rent pixel updating to decrease false detection caused by improper background
initialization or frequent background changes. To conclude, an innovative solu-
tion is presented in [7], where a model-based on clustering of keypoints is used
with a spatio-temporal tracking to distinguish the candidate foreground regions
that contain moving objects. To follow, a change detection step is locally applied
into candidate foreground regions to obtain the moving object silhouettes. Our
solution can be perfectly integrated within the pipeline proposed in the latter
cited work, replacing the original model and reducing false positives in the fore-
ground detection stage.
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3 Proposed Method

In this section, the proposed solution to perform dynamic background modeling,
extending the pipeline of the ABM method, is described.

Fig. 1. An overview of the proposed solution used to improve the ABM method.

3.1 ABM Method

The original ABM method, taking a video sequence as input, is mainly composed
of the following steps:

– using the A-KAZE feature extractor, a keypoint set Kbt and a descriptor set
Dbt are computed on the first frame f0;

– the background model is initialized using Kbt and Dbt ;
– for each frame ft of the video sequence, with t > 0:

• keypoints Kt and descriptors Dt are extracted from ft;
• the candidate foreground keypoint set KFt

and the background keypoint
set KBt

are estimated using a feature matching operation between Dbt

and Dt, based on Hamming distance;
• the set Ct of clusters, representing the foreground element regions, is

computed using DBSCAN and KFt
;

• the background model is updated using the keypoints in KBt
and their

descriptors.

The choice of using A-KAZE feature extraction method derives from both
its good performance in terms of speed and accuracy [1], and its great results
obtained in several other fields, including object detection [4,8,11] and mosaick-
ing [3,9,30]. The DBSCAN algorithm is preferred over other standard clustering
algorithms, like K-Means, because it does not require a priori knowledge of the
cluster number.
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3.2 Proposed Descriptor

In our solution, a new descriptor is proposed to be used both in background
model initialization and in feature matching phase, instead of relying on A-
KAZE descriptor as in the ABM method (although A-KAZE is used to extract
the keypoints). This new descriptor is obtained combining RootSIFT and average
pooling operations, as shown in Fig. 1. For each keypoint kt extracted in the
frame ft (or kb, if we consider the background model keypoints), the RootSIFT
is used to extract the dkt

descriptor vector. RootSIFT feature extractor extends
SIFT descriptors, using an L1-normalization and applying the square-root of
each element in the SIFT vector. Afterwards, a neighbourhood Ψkt

of size 8 × 8
pixels is taken from each keypoint kt, considering the pixels outside the image as
zero value if the keypoint is placed at the border. Two average pooling operations
are applied on Ψkt

, where the first one uses a filter size of 2×2, whereas the second
one uses a size of 3× 3. All the operations use a stride of 1, and their results are
scaled using the L1-normalization. The outputs are represented by two feature
vectors called α

′
kt

and α
′′
kt

, respectively. Finally, the dkt
, α

′
kt

and α
′′
kt

vectors are
concatenated in a single descriptor, called d̂kt

(or d̂bt−1 for kb ∈ Kbt−1).
In the ABM feature matching module, the previous Hamming distance, used

for comparing the A-KAZE binary descriptors, must be replaced by another
suitable metric. Our choice fell on Bhattacharyya distance where, given two
different keypoints kt ∈ Kt and kb ∈ Kbt−1 and their descriptors d̂kt

and d̂bt−1 ,
the similarity between kt and kb is measured as follows:

dist(kt, kb) =
n−1∑

i=0

√
d̂kt

(i)d̂bt−1(i). (1)

Performing these changes, our modified ABM method can handle small vari-
ations caused by dynamic backgrounds, focusing only on significant movements,
typically associated to the foreground elements. In this way, robustness is ensured
on bootstrapping and moving camera problems, as well as A-KAZE descriptors.

3.3 Foreground Detection

As described in the introduction, in this work, a customized version of the fore-
ground detection stage, presented in [7], is integrated to identify moving objects
within scenes. For each frame ft of the video sequence, this stage performs a
change detection algorithm between the candidate foreground areas Aft and
the background model. The final result is represented by a binary image, called
Imaskt

, containing the mask of identified foreground element silhouettes in ft.
The change detection can be summarized in these main steps:

– The background model representation Ibt (i.e., the obtained image repre-
senting the reconstruction of the background at time t, without foreground
elements) and ft are converted to grayscale;
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– initially, a mean filter of size 3 × 3 and a stride of 3 are applied both in Ibt
and ft;

– the differences between the average values obtained by filters at the same
location in Ibt and ft are computed;

– for each 3 × 3 filter region, if the difference value exceeds the threshold τ1
and some pixels of the filter interpolate with a foreground cluster a ∈ Aft ,
it means that something between ft and Ibt is changed and further analysis
must be performed in that region:

• within the analysed 3 × 3 region, the difference between the pixel values
of ft and Ibt is performed;

• if the difference at position (h,w) exceeds the threshold τ2,
then Imaskt

(h,w) = 1, otherwise Imaskt
(h,w) = 0.

– else, for each pixel with coordinates (h,w), included in the considered 3 × 3
region, Imaskt

(h,w) = 0;
– once all the regions are analysed, to reduce the noise in Imaskt

, an opening
morphological operation is performed.

The two thresholds τ1 and τ2 are set to 15 and 30, respectively, based on
empirical tests performed on the FBMS-59 dataset video sequences. Through
this foreground detection pipeline, the proposed model can be used effectively
to separate the background from the moving objects present in the scene.

(a) (b) (c) (d) (e) (f)

Fig. 2. Examples of moving object detection and background updating. The video
sequences from the column (a) up to the column (c) belong to the SBMnet dataset.
The other sequences belong to the FBMS-59 dataset. For each column (from the top to
the bottom), the first picture is the generic frame, the second is the keypoint clustering
stage, the third is the moving object mask, and the last is the background updating.
From the first column up to the last one the following videos are shown: fall, canoe,
pedestrians, cars4, dog, and farm01.
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4 Experimental Results

This section reports the experimental results obtained on SBMnet and FBMS-59
datasets. The first one was used to prove the robustness of the proposed solution
in dynamic background and very short scene reconstruction. The second one was
used to perform a comparison with selected key works of the current literature
in foreground detection task.

4.1 SBMnet Dataset

The SBMnet dataset provides several sets of videos focused on the following
challenges: Basic, Intermittent Motion, Clutter, Jitter, Illumination Changes,
Background Motion, Very Long and Very Short. To show the improvements
with respect to the previous ABM method, in this paper, we focused mainly on
the Background Motion and Very Short categories. The visual representations of
some results, obtained on key videos of these two categories, are shown in Fig. 2
from column (a) to (c). It should be noted that the proposed method is able to
distinguish the foreground (for example the car or the canoe) from movements
performed by the dynamic background (i.e., the water and trees blowing in the
wind). In Tables 1 and 2, the experimental results and comparisons, with some
key works in the current literature, on both selected categories are reported.

Based on the protocol proposed in [23], the following metrics were used: the
Average Gray-level Error (AGE), the Percentage of Error Pixels (pEPs), the
Percentage of Clustered Error Pixels (pCEPs), the Multi-Scale Structural Simi-
larity Index (MS-SSIM), the Peak-Signal-to-Noise-Ratio (PSNR), and the Color
image Quality Measure (CQM). Considering the background motion category,
the proposed solution outperforms the previous ABM method, in terms of pEPs,
PSNR, and MSSIM metrics. This means that our reconstruction contains few
noisy points distributed within the whole image. For the veryShort category, we
improve the performance on the AGE metric, with respect to the ABM method,
while the average measures of the other metrics are very close to the state-of-
the-art results.

Table 1. Results and comparison of the proposed method on background reconstruc-
tion using the Motion Background category.

Methods Average

AGE

Averege

pEPs

Average

pCEPs

Average

MSSSIM

Average

PSNR

CQM

Our 9.9163 0.1337 0.0364 0.8747 26.5743 27.2464

ABM [5] 9.9952 0.1316 0.0292 0.8662 26.3616 27.5133

AAPSA [14] 11.1404 0.1488 0.0381 0.8422 24.4876 25.4679

BE-AAPSA [25] 9.3755 0.1266 0.0259 0.8766 26.0041 26.9062

LaBGen-P-Semantic (MP+U) [20] 8.7583 0.1152 0.0189 0.8805 27.0334 28.1119

DECOLOR [33] 10.5910 0.1403 0.0351 0.8535 24.2455 25.1072
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Table 2. Results and comparison of the proposed method on background reconstruc-
tion using the Very Short category.

Methods Average

AGE

Averege

pEPs

Average

pCEPs

Average

MSSSIM

Average

PSNR

CQM

Our 7.8508 0.0867 0.0430 0.9054 25.0245 25.9079

ABM [5] 7.7572 0.0664 0.0238 0.9101 26.2541 27.0108

AAPSA [14] 9.2952 0.0860 0.0438 0.8870 22.7636 23.7275

BE-AAPSA [25] 8.0857 0.0832 0.0429 0.8921 25.6458 26.5128

LaBGen-P-Semantic (MP+U)[20] 4.5450 0.0245 0.0056 0.9629 31.4073 32.0297

DECOLOR [33] 8.9984 0.1058 0.0809 0.9475 27.5064 28.2282

4.2 FBMS-59 Dataset

The FBMS-59 dataset is an extensive benchmark for testing feature based motion
segmentation algorithms. The visual representations of the results, obtained on
several video sequences, are shown in Fig. 2 from the column (d) to column (f).
As can be observed, the proposed model perfectly reconstructs the background
and, then, isolates the foreground element silhouettes. In Table 3, the compar-
isons, in terms of precision, recall, and F1-measure, between the proposed solu-
tion and key works of the current state-of-art are reported. Instead, in Table 4
additional results on video sequences not tested by the mentioned key works are
also reported to provide a further term of comparison for future works. Anyway,
the overall results highlight how our approach achieves good performance with
respect to the ongoing literature, even overcoming the keypoint-based method
proposed in [5]. The obtained high recall values prove that our method is able
to capture most of the foreground object pixels, thus resulting suitable for per-
son re-identification or surveillance applications. Especially the latter requires
greater precision in estimating the silhouette of foreground objects, probably
belonging to intruders, accepting false positives as a compromise.

Table 3. Comparison with key works of the current literature on the FBMS-59 dataset.

people1 people2 cars6 tennis

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Proposed method 0.801 0.950 0.871 0.834 0.980 0.899 0.786 0.949 0.860 0.793 0.989 0.891

Avola et al. [7] 0.765 0.917 0.840 N.A N.A N.A 0.785 0.910 0.840 N.A N.A N.A

Kwak et al. [19] - with NBP 0.950 0.930 0.940 0.850 0.760 0.828 N.A N.A N.A N.A N.A N.A

Kwak et al. [19] - without NBP 0.910 0.760 0.828 0.910 0.220 0.286 N.A N.A N.A N.A N.A N.A

Elqursh et al. [16] - 1 0.940 0.850 0.893 0.840 0.990 0.909 N.A N.A N.A 0.860 0.920 0.890

Elqursh et al. [16] - 2 0.970 0.880 0.923 0.850 0.970 0.906 N.A N.A N.A 0.900 0.810 0.850

Ferone et al. [17] 0.958 0.923 0.940 0.931 0.971 0.950 0.866 0.964 0.913N.A N.A N.A

Brox et al. [13] 0.890 0.775 0.829 N.A N.A N.A 0.824 0.994 0.901 N.A N.A N.A

Zhou et al. [33] 0.936 0.933 0.934 0.925 0.965 0.945 0.837 0.984 0.905 N.A N.A N.A

Sheikh et al. [28] 0.780 0.630 0.697 0.730 0.830 0.777 N.A N.A N.A 0.270 0.830 0.400
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Table 4. Additional experiments on FBMS-59 dataset.

dog farm01 cars4

Rec F1 Prec Rec F1 Prec Rec F1 Prec

Proposed method 0.747 0.965 0.842 0.832 0.773 0.802 0.602 0.941 0.734

5 Conclusion

This work presents an innovative combination of the RootSIFT descriptor and
an average pooling for real-time dynamic background modeling and foreground
detection. Unlike the previous keypoint-based method, the proposed solution is
invariant to small local changes caused by dynamic background. The method
provides remarkable results, with respect to different key works of the current
state-of-the-art, in both background reconstruction challenges and foreground
detection challenges.
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“Departments of Excellence 2018–2022” of the Department of Computer Science of
Sapienza University.
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Abstract. Machine learning has known a tremendous growth within the
last years, and lately, thanks to that, some computer vision algorithms
started to access what is difficult or even impossible to perceive by the
human eye. It is then natural that scientists began looking for ways to
probe humans’ emotions and their psyche with this technology. In this
paper, we study the feasibility of recognizing and classifying the abstract
concept of emotional states from videos of people facing a regular RGB
camera. We do so by using the barely perceptible micro facial expressions
humans cannot control, as well as the spontaneous variations of the pulse
rate that we estimated using remote photoplethysmography. We compare
these two modalities and our experimental results show that it is possible
to classify emotional states from these implicit information gathered from
regular cameras with encouraging performances.

Keywords: Affective computing · Facial expressions · LBP ·
Pulse rate variability · Remote photoplethysmography

1 Introduction

People’s general emotional state and mood have been much studied topics in
the fields of psychology and medicine. It has been proved that a person’s emo-
tional state can impact their reaction time and learning ability in the short term,
and even their health in the long run [1,2]. Being able to automatically predict
a person’s emotional state offers various real-world applications [3,4] such as
neuromarketing [5] or automobile drivers’ monitoring [6]. Contrary to simple
emotions, emotional states are complex states of the human mind that are pro-
voked by their surroundings or internal thoughts over a certain period of time.
To recognize a person’s emotional state, computer scientists researched many
cues: gestures, voice intonations, and also macro facial expressions variations
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over time. More recently, the scientific community started to gain interest in the
exploration of micro-expressions [7].

Facial expressions offer very important benchmarks in every day’s social
interactions. Most people are familiar with macro facial expressions, however,
few people are aware of the existence of micro facial expressions [7,8], and even
fewer know how to detect and recognize said micro-expressions. Initially discov-
ered by Haggard and Isaacs [9], micro-expressions are a type of involuntary facial
expressions that are extremely fast and of very low intensity. Their duration is
within 1/4 s, which makes their localization and analysis rather complicated
tasks. Micro-expressions can occur in two situations: conscious suppression and
unconscious repression. Conscious suppression happens when a person intention-
ally tries to stop themselves from showing their true emotions or tries to hide
them. Unconscious repression occurs when the subject himself does not realize
their true emotions. In both cases, micro-expressions betray the subject’s real
emotions independently from his awareness of their existence.

Another avenue of research in emotion recognition is based on the analysis
of physiological signals such as skin temperature, electrodermal activity or elec-
tromyography. Among many physiological features, the variations in the cardiac
rhythms are an interesting indicator of the autonomic function [10]. In fact, the
heart beating rate continuously fluctuates. The Heart Rate Variability (HRV)
is conventionally defined as the time intervals between successive beats and is
usually estimated from Electrocardiogram recordings. In the last decades, non-
contact methods to evaluate the cardiac activity have been developed. One par-
ticular method is Remote Photopletysmography (RPPG) [11,12], which enables
to estimate the pulse rate from a video. The basic principle of RPPG stems from
reflective photoplethysmography where the light reaching a camera is modulated
by the blood pulsations of the skin. The rhythmic beating of the heart results in
the pulsating blood volume alterations, which in turn lead to minute changes in
the skin color that can be quantified using different signal processing techniques
to generate a cardiac signal. From an RPPG signal, the Pulse Rate Variability
(PRV) can be estimated by calculating the pulse-to-pulse time intervals. Both
HRV and PRV describe changing heart beat rhythms, and multiple researches
have demonstrated similarity between PRV and HRV [13,14]. Therefore, the
PRV can also be an indicator of the autonomic activity [15].

In this paper, we explore the feasibility of classifying and predicting a per-
son’s emotional state, based on two kinds of hidden information only perceptible
to computer vision algorithms. This is realized through facial expression recog-
nition and its recent extension to micro-expression recognition on one hand,
and the analysis of the remotely measurable PRV on the other hand. These
two approaches are quite complementary since Micro/Macro-Facial Expressions
(M/M-FEs) describe the pixel content of the whole image at small intervals of
time, while PRV processes the signal given by the color changes in pixels over a
longer duration. In this work, we use the CAS(ME)2 dataset [16], in which the
subjects were exposed to different kinds of excitation videos to induce different
reactions while they themselves were filmed. The main objective of this dataset is
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to facilitate the development of algorithms for micro-expressions spotting from
long video streams and to the best of our knowledge, this is the first study
where physiological signals are estimated from this dataset. The two modalities
explored are also the only ones we can use on that dataset.

The paper is organized as follows: we describe M/M-FEs and PRV-based fea-
ture extraction methods used for this study in Sect. 2. Experiments are presented
and discussed in Sect. 3 and a conclusion is given in Sect. 4.

2 Feature Extraction Methods

In order to recognize emotional states, we have to go through two steps: feature
extraction (M/M-FEs and PRV) and classification. In this section, we present
the estimation of M/M-FEs and PRV-based features.

2.1 M/M-FEs-based Feature Extraction

We use the Local Binary Pattern Three Orthogonal Planes (LBP TOP) operator,
which is the baseline descriptor used as reference in most papers studying micro-
expressions [16,17] to describe M/M-FE videos. The LBP operator is a type of
visual descriptor that was originally designed for texture description [18]. The
general idea is to threshold a small area around each pixel in order to build a
binary code. This code is obtained by comparing neighbour pixel values with
the center pixel: values superior or equal to the center pixel’s value get assigned
a 1 while smaller values get assigned a 0. The choice of the surrounding area
directly affects the kind of edges it is possible to detect in an image. For pixel
neighborhoods referring to N sampling points on a circle of radius R, we generally
use the notation LBPN,R, whose value for a pixel c can be given by:

LBPN,R =
N−1∑

p=0

t(gp − gc)2p. (1)

Here gc represents the gray value of the center pixel c while gp represents
the gray values of equally spaced pixels on a circle of radius R, t defines a
thresholding function t(x) = 1 if x ≥ 0 and t(x) = 0 otherwise. The feature
vector representing an input image is calculated by extracting the histogram
distribution of the LBP. We can consider LBP as texture primitives that include
different types of curved edges, spots, flat areas, and so on. For an efficient
facial representation, images usually get divided into local blocks from which
we extract the LBP histograms and concatenate them into an enhanced feature
histogram [19]. Local texture can then be described using said histograms of the
binary values for a block in the image. The conventional LBP only serves for
spatial data in 2D images. To describe data in the 3D spatio-temporal domain,
the basic LBP is extracted from the three planes XY, XT and YT for each pixel
as shown in Fig. 1. The resulting three histograms are then concatenated into a
feature vector describing the video.

LBP TOP can only describe a single M/M-FE. The method to describe a
whole video containing several M/M-FEs is explained in Sect. 3.2.
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Fig. 1. Illustration of a spatiotemporal volume of a video [16]

2.2 PRV-Based Feature Extraction

Three main steps are followed to obtain the PRV signal as summarized in Fig. 2:
face detection and tracking, RPPG pulse extraction and PRV estimation. First,
the Viola-Jones face detection algorithm is used to detect the region of inter-
est (ROI) for each video frame. The location of the ROI is then tracked and
predicted with a linear Kalman filter. Next, the skin is detected by using the
method Conaire et al. proposed in [20], allowing to select pixels that are spatially
averaged. This yields to a unique RGB triplet for each frame. The triplets are
then concatenated to form the RGB temporal traces.

Fig. 2. Framework to obtain a PRV signal using RPPG

The second step consists in computing the pulse signal from the RGB traces.
Many advanced and complex techniques have been proposed recently [11,21]. In
this work, we use the chrominance algorithm proposed by De Haan et al. [22], and
denoted as CHROM in Fig. 2. The principal advantage of this method lies in its
computational simplicity, owing to its analytic formulation. After normalizing
the RGB traces (let Rn, Gn and Bn be the relative normalized traces), two
orthogonal chrominance signals Xs and Ys are built as: Xs = 3Rn−2Gn and Ys =
1.5Rn +Gn − 1.5Bn . Xs and Ys are then band-pass filtered with a Butterworth
filter (cut-off frequencies of 0.7 and 3.5 Hz) to give two signals Xf and Yf . The
pulse signal S is then obtained as: S = Xf − αYf , where α = σ(Xf )

σ(Yf )
, and σ(.) is
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the standard deviation operator. Including the ratio α minimizes disturbances
due to motion, since they alter the amplitudes of the chrominance signals Xs

and Ys in the same way while the cardiac pulse signal does not. The third step
is to interpolate and resample (we used a sampling rate of 125 Hz) the RPPG
pulse wave in order to increase the time domain resolution and to facilitate
peak detection. Pulse-to-Pulse Interval (PPI) time series is then measured to
constitute the PRV signal.

From the PRV signal we extract time-domain, frequency-domain and statis-
tical features, which are defined as follows:

– time-domain: features that are computed in this study are the standard
deviation of the pulse-to-pulse intervals (SDPP) and the square root of the
mean squared of successive differences (RMSSD) of the PPI series. SDPP is
the square root of PPI variance, and reflects the effect of all the components
that induce the pulse variability during the video recording. RMSSD describes
the evolution of consecutive pulse-to-pulse time intervals and reflects the high-
frequency component of the PRV. SDPP and RMSSD are obtained as:

SDPP =

√√√√ 1
N

N∑

i=1

(PPi − PP )2 (2)

RMSSD =

√√√√ 1
N − 1

N∑

i=2

(PPi − PPi−1)2 (3)

where N is the total number of PP intervals, PPi is the ith PPI and PP is
the mean value of the PPI series.

– frequency-domain: the density spectrum analysis of the PRV gives the low
(LF) and high (HF) frequency components of the pulse variability. Since the
interpretation of the role of the LF component in describing the autonomic
function is complex, as it reflects both the sympathetic and the parasympa-
thetic activities; we focused on the HF component. The HF range includes
frequencies between 0.15 Hz and 0.4 Hz, and represents the PNS activity.

– statistical analysis: the TIPP describes a tiangular iterpolation of the PPI
histogram. It is the width of the triangular function that best fits the PPI
histogram.

3 Experiments and Discussion

3.1 Dataset Presentation

The number of scientific papers dealing with the automatic analysis of micro-
expressions is rather limited. One of the reasons for it can be attributed to the
lack of datasets containing real micro-expressions. Fortunately, this is beginning
to change and recently a new dataset for facilitating the study on spontaneous
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micro-expressions spotting and recognition has been made public. This dataset,
named CAS(ME)2 [16], is the first dataset that can be used for the study of
facial micro-expressions, and offers at the same time the possibility to estimate,
by video analysis, physiological parameters such as PRV. Indeed, the videos are
sufficiently long and with no inter-frame compression, allowing to use RPPG
techniques.

22 participants in total were filmed while watching 3 different kinds of exci-
tation videos (disgust, anger and happiness). Each candidate was asked not to
show his emotions. This was done to minimize the number of easily noticeable
macro-expressions and to maximize the number of micro-expressions they would
show. The dataset was originally proposed for automatic M/M-FE spotting and
recognition, and while micro-expressions spotting has been getting good results
[23], their recognition still presents many challenges.

CAS(ME)2 offers 2 kinds of annotations for M/M-FEs. The first one is
done according to the facial muscle movements based on the Action Units (AU)
following the Facial Action Coding System (FACS) proposed by Ekman. The
second annotations are based on the self-reported emotions from the candidates.
These two annotations are not in agreement for all the videos. Furthermore,
in some cases, the emotional type of the elicitation video and the annotations
based on AU are sometimes contradictory (some subject would show a negative
facial expression in front of a happiness-inducing video). 24.05% of the facial
expressions are classified as others (i.e. where related AU are not discrimina-
tive). Some subjects would also show contradictory facial expressions on the
same video. These observations encouraged us to propose for the first time the
use of the emotional type of elicitation videos, also called excitation videos, of
CAS(ME)2 as our ground truth. We work under the assumption that the emo-
tional state of the person watching a video would be equivalent to the emotion
that video was made to induce. Our motivation behind this decision is to use a
labeling that would be more straightforward and less inclined to cause confusion.

In total, the number of available videos is 62, with 14 videos provoking hap-
piness, 24 for disgust and 24 for anger. The video length ranged from 1 min
(1800 frames) to approximately 2 min and 30 s (4500 frames).

3.2 Model Validation Protocol

The modalities we concentrate on were tested on the same videos following the
Leave One Subject Out (LOSO) cross-validation protocol: one subject’s data is
used as a test set in each fold of the cross-validation. This is done to better
reproduce actual use conditions where the encountered subjects are alien to
the model when it was trained. Older studies would use k-fold cross-validation;
however, this would result in a severe case of overfitting as the accuracies on
the test sets would be much higher than with LOSO. This can be attributed
to the fact that samples from the same subject would be present in both the
training and testing sets. Considering the fact that the same subject can show
the exact same expression many times (which may cause occurrences of the same
expression from that subject to belong to the training and the test sets at the
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same time), and that some subjects can be more inclined to show a specific type
of emotion more often, using the LOSO protocol seems to be the most rigorous
option.

3.3 Recognition with M/M-FEs and PRV

After extracting the M/M-FEs’ features with LBP TOP, a simple majority vote
is applied on the different results of each M/M-FE in a video to get the person’s
general feeling over an extended period of time. The winning class would be used
to represent a person’s emotional state for the whole video.

The overall classification then needs four SVMs with Radial Basis Function
(RBF) kernels: one that was trained on the three classes, and three that were
trained on each possible pairing of two classes from the three initial ones. The
2-class SVMs were used when we had a perfect equality between 2 classes using
the 3-class emotional state classifier. The parameters for the spatio-temporal
radii of LBP were equivalent to the ones used in [16]. Concerning the PRV,
the features were obtained from the extracted PRV waveforms of each video,
and concatenated to form (SDPP, RMSSD, HF, TIPP) vectors. Emotional state
classification was then realised based on these values using a non-linear SVM,
with an RBF kernel.

PRV-based features encapsulate slow changes in the heart rate. As a conse-
quence, the entire videos are needed to obtain meaningful PRV information. This
is not the case of M/M-FEs, which appear for very small durations (between 1/2
and 4 s for macro and less than 1/4 s for micro-expressions). Besides, each video
contains different M/M-FEs, which impelled us to apply an aggregation process
in order to describe the videos.

3.4 Results and Discussion

The final results of emotion classification using macro and micro-expressions and
the pulse rate variability are given by Table 1. Confusion matrices give the rate
of successful and unsuccessful predictions of the emotional states in order to
estimate to what point a classifier confuses two classes. Accuracy rates describe
how reliable the classifiers are at predicting emotional states correctly. The voting
process on M/M-FEs had an overall accuracy of 42.74% while PRV’s accuracy
was 59.79 %. If we compare the results of LBP TOP on excitation videos (for
the emotional state) and its original use for labels based on AU, we can see
that with 40.95% [16] on the 4 AU-based classes and 42.74% on the excitation
video-based labeling, the scores are comparable.

The observed results are interesting since PRV performances surpass those
of M/M-FEs, which is quite surprising as CAS(ME)2 was originally made for
M/M-FEs recognition but not for PRV estimation. Besides, the dataset does
not propose videos with a reference neutral emotional state, preventing us from
normalizing the PRV-based features as is usually done to mitigate the impact of
the user-dependence effect [24].
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Table 1. Emotional state classification confusion matrix and accuracies for M/M-
FEs and PRV. Present excitation emotions in CAS(ME)2 are Disgust, Anger and
Happiness. Results are expressed in percentage (%)

M/M-FEs PRV

True Predicted

Disgust Anger Happiness Disgust Anger Happiness

Disgust 57.4 40.4 2.1 75.0 4.0 21.0

Anger 44.7 55.3 0.0 0.0 75.0 25.0

Happiness 56.7 43.3 0.0 35.0 20.0 45.0

Accuracy 42.74 59.79

A possible explanation for the discrepancy of the results obtained with the
two modalities could be that M/M-FEs adequately describe sudden changes in
emotions, contrary to PRV features that cannot describe these rapid variations
in emotions. The difference in temporality between these two modalities is quite
obvious; however, it suggests that the use of M/M-FEs for the description of
emotions felt over long periods, e.g. as in [25], might not be the most appropri-
ate modality. Moreover, the relationship between the emotional states and the
occurrences of M/M-FEs is actually rather complex. An interesting illustration
of this hypothesis is that we observed cases of contradictory facial expressions
on the same video.

4 Conclusion

From simple videos it is possible to extract analytical and physiological features,
including M/M-FEs and PRV. Our results show that PRV can be an interest-
ing feature to estimate emotional states with a classification accuracy of about
60%. Although M/M-FEs yielded lower results, ways of improvement have to
be delved into. We emphasize with this work that the use of M/M-FEs for the
description of emotions must be considered carefully. Mainly because of the intri-
cate relationship between the experienced emotion and its display medium. If
both modalities are interesting for studies on emotion recognition, their comple-
mentarity will undoubtedly allow for a better apprehension of the complexity of
the emotions felt and displayed.

Future works could include the use of other datasets that would take advan-
tage of the complementarity of these two promising modalities with stimulus of
various durations. Concerning PRV extraction, having neutral emotional state
sequences would allow normalizing our features to mitigate the impact of the
user-dependence. Eventually, we also plan a fusion of M/M-FEs and PRV fea-
tures for emotional state prediction and to investigate the use of M/M-FEs
features to alleviate the intra-user dependence of PRV features.
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Abstract. This paper proposes a deep convolutional neural network
(CNN) for pedestrian tracking in 360◦ videos based on the target’s
motion.

The tracking algorithm takes advantage of a virtual Pan-Tilt-Zoom
(vPTZ) camera simulated by means of the 360◦ video. The CNN takes
in input a motion image, i.e. the difference of two images taken by using
the vPTZ camera at different times by the same pan, tilt and zoom
parameters. The CNN predicts the vPTZ camera parameter adjustments
required to keep the target at the center of the vPTZ camera view.

Experiments on a publicly available dataset performed in cross-
validation demonstrate that the learned motion model generalizes, and
that the proposed tracking algorithm achieves state-of-the-art perfor-
mance.

Keywords: Tracking · CNN · Motion · 360◦ video

1 Introduction

Pedestrian tracking has been largely studied in computer vision both with fixed
zoom static/mobile cameras [1–3], Pan-Tilt-Zoom (PTZ) cameras [4–6] and in
camera networks [7–10]. In particular, tracking algorithms for PTZ cameras aim
at controlling the camera so that the target always appears at the center of
the camera view, eventually zooming in or out if necessary. In these algorithms,
the camera control procedure poses several issues, and greatly limits the repro-
ducibility and comparison of the tracking algorithms.

In the last years, 360◦ videos are emerging as a new technology enabling
novel multimedia and Virtual Reality applications [11,12]. Such videos are col-
lected by cameras including two or more optical sensors acquiring images from
different viewpoints. The acquired images are then stitched in order to create
a spherical view stored, in general, as equirectangular image (see Fig. 1). In an
equirectangular image, coordinates of each pixel represent polar and azimuth
angles of the corresponding point onto the spherical surface.

Only recently, in [13–15], it has been recognized the possibility of adopt-
ing 360◦ cameras for surveillance purposes. These papers have proposed using
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360◦ videos to simulate vPTZ cameras, thus enabling the evaluation and com-
parison of algorithms for PTZ cameras.

Tracking in 360◦ videos is challenging in several respects. First, perform-
ing tracking directly onto equirectangular images is difficult because the target
appearance would depend on the location of the target on the equirectangular
image itself, and the image sphericity must be taken into account during tracking.
Second, even considering vPTZ cameras as in [15], prediction of the best zoom
factor to track the target over time is challenging, especially with occlusions and
abrupt changes of direction/velocity of the target. Finally, in contrast to PTZ
cameras, where optical zoom allows the acquisition of high quality images of the
target, in vPTZ cameras only a digital zoom is available, which limits the quality
of the target images during tracking when zooming in is required.

In this paper, we present a novel pedestrian tracking algorithm for 360◦ videos
based on deep CNN. Deep learning based approaches have already been pro-
posed for visual tracking. In some approaches [16–18], CNN are used to extract
an appearance representation of the target. In other approaches, target re-
identification is performed by learning a similarity metric by means of Siamese
networks [19–21]. At the best of our knowledge, no deep learning based approach
has been proposed yet for visual tracking in 360◦ videos.

We propose to track pedestrians by vPTZ cameras controlled based on the
pedestrians’ motion. Motion dynamics are modeled by a deep CNN trained to
regress the adjustments of the pan, tilt and zoom parameters required to main-
tain the target at the center of the vPTZ camera view. To clarify, let us assume
that at time t the parameters of the vPTZ camera to acquire the target image
It are (pt, tt, αt), namely pan, tilt and field of view (FOV) angles respectively.
In our approach, we use these same parameters to acquire an image It+1 at time
t+1 by our vPTZ camera. The difference between It+1 and It is used to measure
the pedestrian motion and is fed in input to a CNN to predict the parameter
variations (Δpt,Δtt,Δαt) required to maintain the target at the center of the
vPTZ camera view. Our tracking algorithm includes a re-identification strategy
used whenever an occlusion arises and no motion information is available.

The main contributions of this paper are summarized as follows:

1. We present a deep learning based approach for tracking in 360◦ videos;
2. We model motion dynamics by means of a CNN trained on difference images

(motion images); we do not use the CNN to model the target appearance nor
to learn a similarity metric. Instead, we train a single motion model that we
use to track our targets (targets are not included in the training set);

3. We propose a novel and compact deep CNN for visual tracking. The net-
work, with less than 200 K parameters, is used to regress the vPTZ camera
parameter variations from difference images of size 64 × 128 pixels;

Experiments in cross-video validation show that our approach is viable and
allows to achieve state-of-the-art performance on a publicly available dataset.
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Fig. 1. Spherical and Equirectangular Images: (a) example of spherical image acquired
by a 360◦ camera (i.e., a camera including at least two optical sensors); (b) the corre-
sponding equirectangular image whose rows and columns represent polar and azimuth
angles respectively.

2 Related Work

By analogy with tracking-by-detection techniques, first deep learning approaches
for tracking trained a model online to adapt it to the target appearance changes.

In [16], to limit the computational burden of training the model online, the
retraining is performed only when the target appearance largely changes.

To skip the training procedure, in [18], convolutional filters are derived from
the first target template and used to discriminate between target and back-
ground. In this way, the method does not online train a CNN. The core idea of
the work in [17] is that the target can share features (domain shared features)
with other objects, but can also have some specific and peculiar features (domain
specific features). The former can be modeled offline, the latter must be learned
online. By these motivations, the method fuses offline and online trained convo-
lutional layers while tracking the target in a video, limiting the cost of the online
training of the network.

Works in [19,20] propose to use offline trained networks for visual tracking.
Such methods use Siamese network, that is two branches convolutional neural
network able to process pairs of images. The method in [19] uses the Siamese
network as a matching function. The first branch of the network processes the
first target template, while the second branch processes, one-by-one, several
target image candidates. The image candidate with the best match is selected
has the new target location. The main limitation of this work is that it needs
to process multiple image candidates to locate the target. To overcome such
limitation, the method in [20] adopts a Siamese network trained to regress the
new target bounding box on a larger search area.

In contrast to these methods, in this paper we do not learn a similarity metric
nor we attempt to model the target appearance by deep features or deep models.
Instead, we use a deep CNN to model motion dynamics. The network is trained
offline, and no model adaptation is required during the target tracking.

In this sense, our network is related to LikeNet [21], a Siamese network that
computes a pixel-wise distribution over motion classes. The network receives as
input the target template and a target candidate shifted by a specific motion
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Fig. 2. From Spherical coordinates to tangent plane coordinates: the image shows a
section of the sphere. We set a coordinate system (u, v)π on the plane with origin in
the tangent point (p0, t0)S . The point (p, t)S on the sphere is projected to (u, v)π. The
coordinate v can be easily calculated from the angle difference Δt = t − t0.

vector. The similarity provided by the network is interpreted as the probability
associated to the motion vector used to generate the target candidate. Our net-
work takes in input only a difference image to predict the pan, tilt, FOV angle
variations required to control the vPTZ camera.

There are no many works on visual tracking in 360◦ videos. In [13], the
authors propose simulating a PTZ camera from spherical videos acquired offline.
Experiments with the Camshift algorithm [22] are presented to test the use of
such vPTZ cameras. Despite authors of [13] claim that their framework can
simulate zoom in and out, experiments were run with a fixed zoom factor.

In [14], the authors propose a method to predict the adjustments of the
pan, tilt and zoom parameters from motion templates computed on the first
image of the target. The method assumes that a weighted sum of these motion
templates can approximate the actual target’s motion, and that the same weights
can be used to compute the parameter adjustments from the parameters used
to generate the motion templates. Weights are estimated by minimizing the
approximation error in a least square sense.

In [15], a tracking-by-detection algorithm is proposed to track pedestrian
by vPTZ cameras. At each time, a detector is used to locate pedestrians in
the image acquired by the vPTZ camera. An adaptive appearance model is
used to establish correspondences of the detection to the target; the center of
the selected detection on the vPTZ camera plane is used to re-estimate the
pan, tilt, zoom parameters required to control the virtual camera. The approach
uses a gnomonic transformation [23] and its inverse to transform camera plane
coordinates to spherical coordinates and conversely.

Similarly to the work in [13–15], we use vPTZ cameras to track pedestrians.
The tracking problem is formulated as the estimation of the parameter variations
needed to foveate the vPTZ camera on the target.
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3 Equirectangular Images and Virtual PTZ Cameras

Tracking a point (p0, t0) on a spherical image corresponds to control a vPTZ
camera whose pan and tilt angles are respectively p0 and t0. In this sense, the
tangent plane to the sphere in (p0, t0) represents the camera plane, and the
FOV angle defines the extension of the spherical surface to project onto the
vPTZ camera plane.

As detailed in [15], simple geometrical transformations [23] allows to map
the spherical image onto the virtual camera plane. In this section, we present a
much simpler approach to map spherical coordinates onto the tangent plane.

3.1 From Spherical Image to vPTZ Camera Plane

Pixel coordinates (xr, yr) on the equirectangular image represent normalized
values of polar and azimuth angles of the corresponding point on the sphere
surface. The angles can be recovered from the pixel coordinates by a simple re-
scaling such that the polar angle t0 ranges in [0, 180◦], while the azimuth angle
p0 ranges in [0, 360◦].

Our goal is that of projecting the spherical surface centered in (p0, t0) and
with angular extension equals to α0 onto a tangent plane π.

As illustrated in Fig. 2, we set a coordinate system (u, v) on the plane π with
origin on the tangent point (p0, t0). Given a spherical point (p, t), the corre-
sponding point (u, v) on the plane π can be found as:

u = tan (p − p0); (1)
v = tan (t − t0). (2)

Reasoning in a similar way, given the angular extension α0 of the spherical
surface to project, the projected area will have coordinates on the tangent plane
varying in [−2 tan α0

2 , 2 tan α0
2 ].

Finally, we transform the coordinates (u, v) into an image coordinate system
(x, y) by translating and re-scaling the points such that x ∈ [0, w[, y ∈ [0, h[
where w and h are the width and the height of the vPTZ camera image.

By simple algebraic manipulation, it is possible to recover equations for the
inverse mapping (from image coordinates (x, y) to the spherical surface (p, t)).

4 Tracking with Virtual PTZ Cameras

Our algorithm aims at estimating the vPTZ camera parameter adjustments
required to keep the target at the center of the camera view. Let us assume
that, at time t, the vPTZ camera parameters are (pt, tt, αt). Our algorithm com-
putes a motion image to measure the movements of the target and uses a CNN to
predict the parameter variations (Δp,Δt,Δα). At the next iteration, the camera
parameters will be adjusted to (pt +Δp, tt +Δt, αt +Δα) and the procedure re-
iterated. In the following, we provide details about the motion image calculation,
the proposed CNN and the strategy adopted to train the model.



Deep Motion Model for Pedestrian Tracking in 360 Degrees Videos 41

4.1 Motion Images

Given two spherical images St and St+1 acquired at time t and t+1 respectively,
and the parameters (pt, tt, αt) of the vPTZ camera at time t, we define It and
It+1 as the images acquired by the vPTZ camera from the two spherical images
St and St+1 as described in Sect. 3.

We define the motion image MIt as:

MIt = It+1 − It (3)

Figure 3 shows examples of motion images, where the pixel intensity values have
been normalized to range in [0, 255]. As shown in the figure, motion images can
visually represent the target’s motion dynamics. Since the two images It and It+1

are generated by the same (pt, tt, αt) parameters, the image difference operator
has the effect of suppressing the background and highlighting the changes in
the scene mainly due to the target’s motion. Depending on the velocity and
direction of the target’s movements, the motion image presents borders whose
thickness and structure is correlated somehow with the parameter variations
that are necessary to control the vPTZ camera and track the target.

Fig. 3. Motion Images: on the left, pairs of images acquired by our vPTZ camera
with the same parameters (p, t, z) but at different time instants; on the right, the
normalized motion images computed as difference between the most recent image and
the less recent one. In both cases, the motion images highlight the need of: increasing
the pan parameter in the top row, decreasing the pan parameter in the bottom row.

4.2 Modeling Motion in 360◦ Videos

We want to model the target’s motion by means of a convolutional neural net-
work that is able to regress the parameter variations of a vPTZ camera from
motion images. We expect that, during training, our neural network learns a rela-
tion between the border thickness and structure depicted in the motion images
and the parameter variations. Ideally, we need to generate a training set of pairs
of motion images and parameter variations, {MIt, (Δpt,Δtt,Δαt)}t.

Whilst very intuitive, the use of motion images to regress such parameter
variations is not straightforward. Indeed, the same parameter variations can led
to different motion images. As an example, let us consider the images shown in
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Fig. 4. The shown motion images are characterized by the same parameter variations
despite their appearance greatly changes.

Fig. 5. Normalizing the parameter variations by the initial FOV angle: each block
shows motion images characterized by different parameter variations (reported on top
and on bottom of the images) but with similar normalized values (a, b, c) (in bold font).

Fig. 4. On the left, we show images acquired by a vPTZ camera at time t and
t+1 with the same parameters. On the right, we show the corresponding motion
images obtained by perturbing the FOV angle (αGT ) with ±10◦, ±5◦. Despite
the actual parameter variations required to track the target are the same, the
shown motion images greatly differ one each other. In particular, lower is the
value of the FOV angle, higher is the border thickness in the motion image.
This suggests that the parameter variations should be put in relation with the
initial FOV angle. To account for this issue, in our training schema, we generate
a training set {MIt, (a, b, c)}t where a = Δpt

αt
, b = Δtt

αt
and c = αt+1

αt
. Figure 5

shows examples of motion images with similar values of (a, b, c).
At test time, we use our CNN to regress (a, b, c). Later on, by using the

currently estimated value of pt, tt, αt and by inverse formulas, we calculate from
(a, b, c) the values of pt+1, tt+1, αt+1.

Our training procedure is fully supervised. To generate the training set, we
used the tracks of pedestrians for which we knew the parameters (pt, tt, αt) for
each t. We computed motion images of consecutive frames (namely frames with
time delay equals to 1) as described in Sect. 4.1. To augment the training data, we
also included motion images computed with different time delays. Furthermore,
we included images obtained by perturbing the initial FOV angle αt with values
sampled by a Normal distribution.
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4.3 Modeling Motion by Convolutional Neural Network

We designed a deep convolutional neural network to regress, from motion images,
the corresponding values (a, b, c) needed to calculate the vPTZ camera parameter
variations. The network is shown in Fig. 6. To limit the number of parameters,
we used 3 × 3 convolutional kernels in each layer. To progressively reduce the
feature map size, we did not use any padding when applying the convolutional
operator. We used a max-pooling layer any two convolutional layers. Overall,
our network is composed of 7 convolutional layers, 3 max-pooling layers and 2
fully connected layers.

In all layers, we use a ReLU activation function and, for regularization pur-
poses, we add Dropout layers after each ReLU activation function with a prob-
ability of 0.2 after convolutional layers, and 0.5 after dense layers.

Since we are interested in regression, the output layer uses a linear activation
function. We trained the model by adagrad, in order to adapt the learning rate
during the minimization of the mean-squared error.

With an input of size 64×128, the network counts less than 200K parameters,
which made feasible training the model on a TitanX GPU.

Fig. 6. Proposed Deep Convolutional Neural Network: the network is composed of 7
convolutional layers, 3 max-pooling layers and 2 fully connected layers. All kernels have
size 3 × 3 and all layers, but the last, adopt a ReLU activation function. The output
layer is composed of 3 neurons to regress the values (a, b, c).

4.4 Dealing with Occlusions and Absence of Motion

Our technique is able to predict the vPTZ camera parameter variations to track a
moving target. However, to be able to use our model within a tracking algorithm
it is necessary to account for two cases: (1) absence of motion; (2) occlusions.

The former case can be easily detected by measuring the motion image
entropy: low values of the entropy indicates that the motion has little impor-
tance. Hence we set a threshold TM on the entropy to detect the absence of
motion. In such case, the parameters of the vPTZ camera are not modified.

In case of occlusions, the motion image can be useless to track the target,
especially when the occluding object is closer to the camera than the target. We
use a descriptor of the target’s appearance to detect such cases. We extract the
descriptor from the first detection of the target. When the appearance similarity
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of the target and the candidate target is below a threshold TA, then it is not pos-
sible to use our deep motion model. Instead, we use CamShift [22] to re-identify
the target as soon as the occlusion ends; to limit the cases when the target exits
the FOV without being re-identified by CamShift, we use a FOV angle of 90◦.
As soon as the appearance similarity is higher than TA, the algorithm switches
tracking mode, and uses the proposed deep motion model to track the target.

We described the target’s appearance by means of a 2D color histogram of
the hue and saturation values. To establish matches between the descriptors, we
adopted the histogram intersection similarity metric.

5 Experimental Results

We performed experiments on the publicly available dataset in [13]. The dataset
provides 6 fully annotated tracks of different pedestrians. The tracks are split in
3 scenarios each including 3, 2 and 1 pedestrian track respectively. The average
number of frames in the 6 tracks is about 650.

In the videos, pedestrians move randomly – alone or in groups – around
the camera. All videos are characterized by strong illumination artifacts and
cluttered background (see Fig. 1(b)). The scenarios are especially difficult due to
the high number of occlusions and the abrupt changes of direction and velocity
of the targets.

We performed experiments in cross-scenario validation: at each iteration, a
scenario was used for test purposes and the remaining two to train the network.
On average, the number of training images was about 109K. The batch size was
set to 128 and the maximal number of epochs to 300. We used the 5% of the
training data as validation set and adopted early stopping to select the model
with the lowest validation loss considering a patience parameter of 50.

We have considered to evaluate our technique with the metrics described
in [13]. However, we noted that the Target to Center Error (TCE) in [13] is not
appropriate to measure the performance of tracking algorithms that use vPTZ
cameras. Indeed, the TCE is expressed in pixels and the error is measured on
the vPTZ camera plane, whose dimensions (W ×H) can be arbitrarily set. As an
example, in [13] the size of the vPTZ camera plane was set to 640×480 while, in
our implementation, the image size was set to 64× 128. Furthermore, such error
measurement greatly depends on the zoom factor. Hence, it seems reasonable
to measure the error directly on the spherical surface. For these reasons, we
assess our tracker performance by computing the mean absolute error (MAE) of
the estimated pan, tilt and FOV angles for the valid detection. A detection is
valid if the estimated target location (on the spherical surface) is inside the true
FOV angle derived from the ground-truth. All non valid detections contribute
to the track fragmentation (TF) error, which represents the average percentage
of erroneous detections of the target.

We compare our technique against the baseline method suggested in [13],
namely CamShift [22], and we used the implementation available in the OpenCV
Library. When using CamShift, we track pedestrians in the HSV color space by
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setting a FOV angle equals to 90◦. To deal with occlusions, our algorithm uses
the same Camshift implementation. In particular, the adopted 2D histogram had
16× 16 bins for the hue and saturation channels of the image. The thresholds to
detect absence of motion and occlusions were set to TM = 1 and TA = 0.7. We
have experimented making the threshold TA dynamic by decreasing it of the 5%
every time the algorithm uses CamShift, and setting TA back to 0.7 when the
algorithm uses the deep motion model.

Table 1 reports the results of our experiments. The first line shows the per-
formance of the model when only the CNN is used. In practice, the TF is very
high due to the fact that, when an occlusion arises, the tracker drifts and follows
the occluding object. Nonetheless, for the valid detections, the MAE over the
pan, tilt and FOV angles are of few degrees. When using CamShift to re-identify
the target at the end of the occlusion, the TF decreases of about the 23.53%.
In our experiments, we did not use an adaptive appearance descriptor and, in
the long time, the adopted descriptor is not useful anymore to re-identify the
target. This explains why, in our experiments, the TF remains high whilst much
lower than the one achieved by using only CamShift (third row of the table).
CamShift suffers from the fact that the appearance descriptor is not adapted
over time. The MAE of the FOV angle is much higher with CamShift due to
the fact that the algorithm tends to drift and, whilst we limited the size of the
detected bounding box to up ±3 times the size of the first target’s bounding
box, the detected area tends to grow over time. We also compare our method to
the tracking-by-detection technique proposed in [15] and to the method in [24],
which uses particle filtering to track the target. The track fragmentation of this
last method is comparable to that of the CamShift algorithm but higher than
that achieved using also our CNN model.

Overall, these results show the viability of the proposed method but highlight
the need of a stronger technique for person re-identification.

Table 1. Experimental Results: MAE stands for Mean Absolute Error, p, t, α indicates
pan, tilt and FOV angles respectively, TF stands for Track Fragmentation

Method MAE(p) MAE(t) MAE(α) TF

CNN [ours] 1.94◦ 1.29◦ 4.12◦ 67.84%

CNN + CamShift [ours] 2.55◦ 4.11◦ 11.82◦ 51.88%

CamShift [22] 3.86◦ 4.68◦ 36.11◦ 64.43%

TbyD [15] 2.43◦ 3.44◦ 15.26◦ 70.45%

PF [24] 3.14◦ 2.79◦ 9.85◦ 59.85%

6 Conclusions and Future Work

In this paper, we presented a tracking algorithm for 360◦ videos that simulates
a vPTZ camera to foveate frame-by-frame on the target. The algorithm adopts
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a deep CNN to model the dynamics of the target’s motion, and uses such model
to predict the pan, tilt and FOV angle variations required to keep the target
at the center of the vPTZ camera view. The proposed CNN has a limited num-
ber of parameters, receives in input a motion image and predicts values of the
parameter changes normalized with respect to the FOV angle of the current
frame.

Experimental results show that the adopted convolutional model is able to
predict the parameter variations in absence of occlusions. To deal with occlu-
sions, we use CamShift to re-identify the target. Experiments show the weakness
of the adopted appearance model.

In future work, we will modify our model to enable the prediction of when
and where an occlusion is going to arise. We will consider the possibility to
extend our algorithm to multi-target tracking to improve re-identification and
occlusion handling, and we will investigate tracking on the spherical views by
using spherical CNN.
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Abstract. Voice activity detection (VAD) with solely visual cues have
usually performed by detecting lip motion, which is not always feasi-
ble. On the other hand, visual activity (e.g., head, hand or whole body
motion) is also correlated with speech, and can be used for VAD. Convo-
lutional Neural Networks (CNNs) have demonstrated significantly good
results for many applications including visual activity-related tasks. It
can be possible to exploit CNN’s effectiveness to visual-VAD when whole
body visual activity is used. The way visual activity is represented (called
visual activity primitives) to be given to a CNN as input, might be impor-
tant to perform an effective VAD. Some primitives might result in better
detection and provide consistent VAD performance such that the detec-
tor works equally well for all speakers. This is investigated, for the first
time, in this paper. Regarding that, we compare visual activity primi-
tives quantitatively in terms of the overall performance and the standard
deviation of the performance, and qualitatively by visualizing the dis-
criminative image regions determined by CNN trained to identify VAD
classes. We perform a data-driven VAD with a person-invariant training
i.e., without using any labels or features of the test data. This is unlike
the state-of-the-art (SOA), which realizes a person-specific VAD with
hand-crafted features. Improved performances with much lower standard
deviation as compared to SOA are demonstrated.

Keywords: Voice activity detection · Visual activity ·
Dynamic images · Optical flow · Social interactions

1 Introduction

Voice Activity Detection (VAD) consists in automatically detecting “Who is
Speaking and When” in an audio/video recording. Automatic VAD contributes
various applications of human-human interaction analysis, human-computer
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(robot) interaction and also many industrial applications. As an example, for
analysis of human-human interactions, VAD can be used to extract speaking
turn-based nonverbal features (e.g., the length of the speech, the length of
the overlapping speech, etc.), which later on can be used to detect personality
traits (e.g. [17]), dominance (e.g., [15]) or emergent leaders (e.g., [1]). Perform-
ing an accurate VAD can allow a robot (or a computer) to reply to a specific
interlocutor when there is more than one person in a human-robot interaction
environment [5]. Video conferencing systems can utilize VAD to present the
video of the speaking person only during multi-person meetings. Additionally, an
effective VAD can improve video navigation and retrieval, speaker model adap-
tation to enhance speaker recognition, and speaker attributed speech-to-text
transcription [9].

Traditionally, VAD is performed by processing audio only, which is typi-
cally called speaker diarization [21]. On the other hand, multimodal approaches,
normally referred to as active speaker detection [6,22], have become popu-
lar, mostly adopting video and audio modalities. Multimodal approaches have
either modelled the speech and visual cues such as facial, body cues jointly
(e.g., [6]) or have performed audio speaker diarization while video has used to
track/localize/associate a person to a speech (e.g., [11]). There are relatively
few studies that have performed VAD based on video-based cues only (called
visual-VAD in this paper). In fact, VAD with solely visual cues can be very
desirable when the audio is not available due to technical or privacy related
reasons. There can also be cases that the task of distinguishing voices robustly
becomes very challenging such as in social gatherings, where much background
noise is present. In such conditions, an effective visual-VAD can compensate
audio speaker diarization.

The majority of the studies on visual-VAD have been performed based on
lip motion detection, e.g., [4,12,16,18]. Facial expressions [20], hand movement
[4,9,14], head activity [9], and visual focus of attention (VFOA) [14] are other
cues that have been utilized. On the other hand, visual activity cues extracted
from whole body (without specifically focusing on a certain body part such as
hands or head) [7,10] can result in very effective VAD. For instance, whole upper
body activity cues outperformed lip motion cues in [4].

There are diverse way to detect/represent the visual activity of a person to
perform visual-VAD. For example, in [14], a combination of motion vectors, DCT
(discrete cosine transform) coefficients and residual coding bit-rate were used. In
[10], motion history images (MHI) were utilized. Optical flow has been another
popular method to represent the visual activity as applied in [7]. Recently, in
[4,5], improved trajectory features that comprise of a concatenation of His-
togram of Oriented Gradients (HOG), Histogram of Flow (HoF) and Motion
Boundary Histogram (MBH) features were used. These examples all resulted in
hand-crafted visual activity features. On the other hand, deep learning mod-
els, such as Convolutional Neural Networks (CNN) have demonstrated state-of-
the-art results for many research problems, including activity recognition and
localization (e.g., [2,8]), which are highly related to visual activity detection and
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representation. Therefore, there is no reason not to exploit the effectiveness of
CNNs to visual-VAD. However, the way visual activity is initially represented
(called visual activity primitives, from now on in this paper) to be fed to CNNs
for training, can be critical to perform an effective VAD. In detail, some prim-
itives can result in better detection performance on average as compared to
others, or can perform more consistent VAD performance so that the detector
can work equally well for any speaker.

In this study, we compare the most popular visual activity primitives by
modeling them with CNN for video-based VAD, which has never been addressed
before. This comparative analysis is performed not only quantitatively but also
qualitatively allowing us to better show why some primitives are performing
better than others. Another contribution of this work is presenting improved
performances as compared to the state-of-the-art (SOA) visual-VAD methods.
The results obtained are also more stable such that the detection performances
are equally good for all persons. The way we perform VAD is data-driven, does
not use either labels or features belonging to the test data, thus, supports person-
invariant training, i.e., it is not requiring model re-training for each new person.
This is advantageous as compared to SOA presenting person-specific visual-VAD
methods with hand-crafted visual activity features.

The rest of this paper is organized as follows. In Sect. 2, existing video-based
VAD approaches are reviewed and the main differences between our work and
theirs are highlighted. In Sect. 3, the details of the visual activity primitives and
the way CNN fine-tuning is applied are described. The experimental setup is
illustrated in Sect. 4 with a brief description of the dataset used. Subsequently,
in Sect. 5, we compare the quantitative visual-VAD results of different visual
activity primitives with the results of SOA, while qualitative comparisons are
also performed among visual activity primitives. Finally, conclusive remarks and
future work are sketched in Sect. 6.

2 Related Work

VAD solely based on video-based cues can be categorized in terms of the body
parts investigated such as: face-based approaches that includes lip motion, head
activity, face gestures, visual focus of attention (VFOA) etc., body-based meth-
ods, which contain hand gestures, full body motion, upper body motion, etc., or
composition of these two categories.

As an earlier work on video-based VAD, in [18] the results of face detection,
skin color, skin texture and mouth motion sensors have been combined and
a Bayes Net model has been applied. In [16], facial movements corresponds
to mouth, head and entire face have been extracted by Spatiotemporal Gabor
filters, while mouth region gave the best VAD results. Haider et al. [12] analyzed
the performance of head movement vs. head and lip movements together, and lip
movement vs. lip and head movements together for speaker-dependent, speaker-
independent or hybrid human-machine multiparty interactive dialogue settings.
The results in that study [12] showed that head movement contributes to VAD
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significantly such that it outperforms lips movement except speaker-independent
setting, and in overall, the fusion of head and lips movements perform the best.
As seen, lip motion-based VAD is popular e.g.; [12,16,18] and effective. However,
existing techniques are limited as detecting lip motion is not always possible.
For instance, when speaker presents a profile view to the camera or the camera
resolution is low, or the speaker is far away from the camera or the speaker’s
lips is occluded by her hands, facial features detectors fail to detect the lips.

Hung et al. [14] analyzed the correlation between gaze and hand activities
and speaking status given the assumptions that; the speaker is the one who
moves most, and group’s gaze (detected in terms of VFOA) is more likely to be
on the speaker than on others. In that study [14], the visual activity of hands
were detected by Discrete Cosine Transform (DCT) coefficients and residual cod-
ing bit-rate, while VFOA was determined by a Bayesian approach. The output
features were tested with supervised and unsupervised learning in small group
meeting datasets, and the results approved the assumptions regarding VFOA and
hand motion. By using the same small group meeting dataset with [14], Gebre
et al. [10] proposed using motion history images (MHI) as a likelihood measure
of speaking activity, which resulted in promising performance as compared to
[14], although only one type of cue was used. Detecting VFOA, head motion,
body activity, lip motion and face is relatively less challenging in the meeting
datasets [10,14]. For instance, the detection of VFOA is drastically robust when
there are individual cameras capturing each person specifically at close distance
and in the meeting datasets [10,14], the cameras are always static, there are
more than one cameras capturing participants from their frontal view, and the
places of the cameras are known by the participants.

On the other hand, Cristani et al. [7] performed visual-VAD for surveillance
scenarios where the camera is located in a more distant place as compared to the
meeting or human-machine interactive dialogue environments. In that method
[7], a local video descriptor, which extracts the optical flow of human body, and
encodes optical flow energy and complexity using an entropy-like measure was
applied. Although, the results presented in [7] were successful, it is important to
highlight that, the dataset they used has a top-view that already diminishes the
possibility of occlusions and also the frames that the region of interests overlap
(i.e., inter-person occlusions) were discarded from their analyses.

Directional audio information was used to label improved trajectory fea-
tures extracted from upper body tracks of people as speaking or not-speaking
in [4]. These labels were used for the training of an SVM to perform visual-VAD.
Improved trajectories obtained for each 15 consecutive frames, pooled by a fisher
vector representation were represented by the spatio-temporal features i.e.; the
mean pixel location of the trajectory, and Histogram of Gradients (HoG), His-
togram of Flow (HoF) and Motion Boundary Histogram (MBH). Chakravarty
et al. [5] extended that scheme [4] to an online learning setting, starting from a
generic VAD, which gradually adapts itself to a specific person. One drawback of
that study [5] is, performing person-specific VAD, which requires training data
for each new person. Additionally, even though, [5] performed person-specific
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VAD, the results were still fluctuated, such that VAD was performed well for
some persons, while for others highly insufficient results were obtained.

More recently, deep learning-based feature extraction has become common
for visual-VAD as well. For instance, in [20], face features have been extracted
from AlexNet, then Long Short-Term Memory (LSTM) has been used to model
the temporal dependencies between face features over time, which was used to
perform VAD in real-time multiparty interactions. That study is different than
ours as focusing on face features and also limited due to requiring tightly cropped
face images.

Fig. 1. The overall illustration of the methodology. See text for details.

3 Methodology

The methodology applied to compare visual activity primitives is illustrated in
Fig. 1. During training, for each consecutive 10 RGB video frames, visual activity
primitives: (a) optical flow image (OFI) as proposed in [3], (b) OFI as presented
in [23], (c) dynamic image (DI) as proposed in [2], (d) the combination of OFI
[3] with DI and (e) the combination of OFI [23] with DI are obtained. For each
type of image, a ResNet50 model is fine-tuned with the VAD labels (speak-
ing or not-speaking). Given a test video, the same type of primitive whichever
ResNet50 model is fine-tuned with, is obtained and, softmax is used to perform
classification (end-to-end). Alternatively, the fine-tuned ResNet50 model is used
to extract features, which are given to a Support Vector Machine (SVM) trained
with the same training data ResNet50 is fine-tuned. The predicted label corre-
sponds to the test video frames, those the test optical flow images or dynamic
images (or the combinations of both) are constructed from.
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3.1 Visual Activity Primitives

A video segment having 10 frames is given as an example in Fig. 2 with the five
visual activity primitives obtained from it. This 10 frames are equal to: one RGB
dynamic image (DI), three optical flow images (OFI) obtained as in [3], three
OFI obtained as in [23] and optical flow based dynamic images i.e.; one DI image
for each optical flow method. These primitives are described as follows.

Fig. 2. Visual activity primitives: (1) RGB-dynamic image, (2) optical flow image M1;
refers to [3], (3) optical flow image M2; refers to [23], (4) dynamic image obtained
from optical flow image M1 and (5) dynamic image obtained from optical flow image
M2. This example shows a video segment composed of 10 frames while the person is
speaking.

Optical Flow Image (OFI) [3]: The main objective of the optical flow meth-
ods is to calculate a flow field by estimating the motion of pixels between two
images. In this study, for all optical flow methods, this is performed for every Fi

and Fi+3 frames, such that Fi+1 and Fi+2 are discarded from the calculation.
In other words, for every 30 frames (equals to 1 second for the dataset used),
we obtain 10 OFIs. We discard the frames Fi+1 and Fi+2 to be able to better
represent the motion because the image differencing applied to the consecutive
frames showed that, the motion between two successive frames are very small,
i.e. not creating informative flow images.

Brox et al. [3] presents a variational approach that applies a coarse-to-fine
warping strategy to combine three assumptions: the gradient constancy, the grey-
value constancy and the spatio-temporal smoothness constraint of the optical
flow estimation. The gradient constancy deals with the aperture problem while
the grey value constancy assumption makes the method robust against grey
value changes. The spatio-temporal smoothness constraint allows to estimate
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the displacement of a pixel only locally by taking the interaction between neigh-
bouring pixels into account. Given these, there are three parameters to be set:
the weight between the grey value and the gradient constancy assumption, the
smoothness parameter and the Gaussian convolution parameter to pre-process
the input images. In our experiments smoothness parameter is 80, weight is 5
and Gaussian parameter is 0.9, which are empirically found. Once the optical
flow is computed as described, we obtain the flow RGB images such that the
first two channels are obtained from x and y flow values, respectively. The x and
y flow values are centered around 128 and, then they are multiplied by a scalar
such that they fall between 0–255. The third channel is created with the flow
magnitude.

Optical Flow Image (OFI) [23]: This method is also a variational method,
uses total variation regularization with L1-norm and applies point-wise thresh-
olding strategy. Its objective is to preserve the edges and discontinuities in flow
field while being robust against to the illumination changes, occlusions and noise.
For visualization purpose, the optical flow field in x and y directions are normal-
ized in the range of [–1, 1], which is further converted into HSV color space such
that hue (H) indicates the direction, saturation (S) is represented by magnitude
of flow field and value (V) is fixed to 255. Then, the optical flow images are
obtained by converting them from HSV color space to RGB space.

Dynamic Image (DI) [2]: The objective of dynamic image [2] is to obtain
a compact representation of a video sequence summarizing the appearance and
dynamics of it. DI discards the static pixels such as background pixels and focuses
on the object in an action. Construction of a DI contains rank-pooling that
encodes the temporal evolution of the frames. The resulting DI can be used to
fine-tune any CNN model. Herein, DIs are obtained from RBG data (i.e., raw
video frames) or from OFIs extracted as described above.

3.2 ResNet50 Fine-Tuning

Training a CNN from scratch might not be effective if the size of the data
is limited. In this case, an alternative way is to fine-tune a pre-trained CNN
model. Given the better performance of ResNet50 as compared to many other
architectures [13], all the analysis regarding visual activity primitives are applied
by fine-tuning ResNet50 (pre-trained on ImageNet dataset). During fine-tuning,
a fully-connected layer having 2048 neurons is added after the final convolution
layer. Its weights are randomly initialized and are updated during training. The
weights of convolution layers are not updated. This model is trained with an
end-to-end manner while cross entropy loss function, Adam optimizer, and 10e−5

learning rate are applied for 20 epochs.
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The training data (more details are given in Sect. 4) is highly imbalanced such
that there are a lot more not-speaking segments than speaking segments, which
can mislead the classification task and result in poor performance. To overcome
this, the training data in each batch (in total 128 samples) is balanced such
that equal amount of randomly selected speaking and not-speaking samples (64
samples for each) are used. Furthermore, data augmentation is also applied such
that some randomly selected training images are horizontally flipped and/or a
64× 64 randomly selected patch is replaced with the mean value of the images,
which can be observed as a dropout in input layer.

3.3 Classifier Learning and Inference

The ResNet50 fine-tuning of all visual activity primitives are applied with Soft-
max, which are used to classify the test data as speaking or not-speaking as
well. Additionally, we apply a linear SVM for the best performing visual activ-
ity primitives to perform more fair comparisons with SOA [5]. The SVM kernel
parameter C is taken as 10k while k = {−4,−3,−2,−1, 0, 1, 2, 3, 4}.

Table 1. F1-scores (%). AVG and STD stand for average and standard deviation of
F1-scores of all speakers, respectively. W , OFI, DI mean window size, optical flow
image and dynamic image, respectively. The best results are emphasized in bold-face.

Method Bell Bollinger Lieberman Long Sick AVG STD Details

[5] 82.90 65.80 73.60 86.90 81.80 78.20 8.45 W = 10, SVM

[5] 90.30 69.00 82.40 96.00 89.30 85.40 10.36 W = 100, SVM

[6] 93.70 83.40 86.80 97.70 86.10 89.54 5.94 W = 10

OFI [3] 84.01 69.25 68.8 53.31 68.19 68.71 9.71 Softmax

OFI [23] 85.63 81.73 80.12 69.36 70.83 77.53 6.35 Softmax

RGB-DI 86.07 93.30 91.88 73.62 86.34 86.24 6.94 Softmax

RGB-DI 86.34 93.78 92.34 76.09 86.25 86.96 6.24 SVM

OFI [3]-DI 84.08 72.27 80.57 60.01 68.89 73.164 8.56 Softmax

OFI [23]-DI 89.97 86.56 85.15 82.46 85.43 85.91 2.44 Softmax

OFI [23]-DI 89.16 88.82 85.82 81.39 85.97 86.23 2.79 SVM

4 Experimental Setup

The visual activity primitives are compared using publicly available dataset,
called Columbia [5], which contains a 87 minutes-long video (frame rate: 30
frames per second) of a panel discussion. The field of the view of the camera
changes to focus on smaller groups of panelist at a time. Following SOA, we
only focus on the parts of the video where there is more than one person in
the frame and discard any person in the margins of the video. This results in
5 speakers (Bell, Bollinger, Lieberman, Long, Sick) out of 7, while 2–3 speakers
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are visible per frame. In order to compare our results with SOA [5], we use the
VAD labels (speaking/not-speaking) belonging to these 5 persons for each video
frame. As per the performed analyses, the whole upper body motion of each
speaker is used (in other words, the entire body parts that are visible). Finally,
leave-one-person-out cross validation with F1-score as the evaluation metric is
used still for comparative purposes [5].

5 Results

The best SOA results [5,6] and the best result of each visual activity primi-
tive with Softmax are given in Table 1. For the best performing visual activity
primitives, their results with SVM are also given. As seen, the average perfor-
mance of the visual activity primitives: RGB-DI, and OFI [23]-DI are the best
out of all primitives and they also perform better than visual modality based
SOA [5] method, no matter Softmax or SVM is used. Among all the SOA based
on multi-modality, the method in [6] performed best as it uses audio and lip
based visual information. The lip based visual information is not always reliable
if the subject is more expressive through body motion. As shown in Table 1 the
performance of RGB-DI for Bollinger and Lieberman is quite high as compared
to multi-modality based SOA method [6], where in case Long (subject), it is
the opposite. The performance of SOA [5] is highly dependent on the choice of
window size (W ) of temporal continuity algorithm that is based on the heuristics
that if a person is speaking it is more likely that she will continue speaking for a
while rather than stop speaking. Using temporal continuity largely corrected the
mis-classification results, but it is not clear how the window size of the temporal
continuity should be selected to obtain accurate VAD results. Given that we cre-
ate dynamic images for each 10 consecutive frames, it can be fairer to compare
the performances with SOA [5] while W is equal to 10. In this case, all visual
activity primitives except OFI [3] and OFI [3]-DI, perform better than SOA [5].

Better average visual-VAD performance is definitely very important but hav-
ing low VAD standard deviation (STD) of all speakers while still performing well
on average, is also significant. In detail, the performance of SOA [5] has fluctu-
ations such that it performs well for some persons (e.g., Long: 86.90%), while
performs highly worse for some others (e.g., Bollinger: 65.89%). This can be
observed from the high STD values, 8.45% and 10.36% as well. In other words,
this means that SOA [5] is not able to overcome domain-shift problem such that
the distributions of training data and the test data are different from each other,
which results in poorer VAD performance for some speakers. Domain-shift prob-
lem is highly possible for visual-VAD given that the way people moves while
speaking varies a lot from person to person, resulting in dissimilar visual activ-
ity representations, as also mentioned in the psychology literature. On the other
hand, the performance of any visual activity primitives is more consistent show-
ing the superiority of fc1 features of ResNet50 as compared to the features of
SOA. Especially, OFI [23]-DI is able to detect speaking and not-speaking video
segments equally well for every speaker.
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5.1 Qualitative Analysis

Given 4 video segments, each composed of 10 video frames, two of them hav-
ing the ground-truth label (GT) “speaking” and other two having GT “not-
speaking”, we visualize the class activation maps in Fig. 3 using the approach in
[19] for the ResNet50 fine-tuned for VAD using visual activity primitives sepa-
rately. Grad-CAM [19] is used to localize class-discriminative regions while they
are overlaid with the intermediate raw RBG frame of the corresponding video
segment in Fig. 3.

For the video segments having GT=speaking, it is expected that head and
hand motions are detected as the body of the person is more stable. Out of
all, OFI [3] (M1) is weaker to detect these motions, while RGB-DI and OFI [23]
(M2)-DI localize the hands and head motions the best. For video segments having
GT = not-speaking, in the first one, the person is slightly raising her hands up,
whereas in the second one, the person is drinking water. RGB-DI and especially
OFI M2-DI are still good at detecting the motions and more importantly, they
are able to differentiate these types of motions from the motions during speech,
i.e., they classify the frames correctly. However, OFI-M1 localizes other parts of
the image such as background or the area close to person’s shoulder, where the
motion is very subtle to allow the correct classification of these frames. These
results are in line with the quantitative results, showing that RGB-DI and OFI
[23] (M2)-DI are better to localize the motion correlated with speech.

Fig. 3. The visualization of the class-discriminative regions overlaid with the inter-
mediate raw RGB frame of the video segments when ResNet50 trained with visual
activity primitives separately is used. Red regions in the heat map correspond to the
high scores for the ground-truth class. M1 refers to [3] and M2 refers to [23]. (Color
figure online)
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6 Conclusions

We have addressed video-based voice activity detection (VAD) task with cues
from whole body motion with a data-driven person-invariant setting. A detailed
analysis was realized to compare the visual activity primitives representing the
body motion, which are fed into CNNs to learn an effective VAD model. Some
visual activity primitives resulted in better detection on average, while perform-
ing equally well for all speakers. Our detection results are also better on average
and more consistent than the current literature.

As future work, a novel, effective way of combining these visual activity
primitives will be investigated to perform visual-VAD in more complex scenarios
such as in crowd or multiparty egocentric video streams, after construction of
new benchmark datasets.
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Abstract. One of the most complex aspects of autonomous driving
concerns understanding the surrounding environment. In particular, the
interest falls on detecting which agents are populating it and how they
are moving. The capacity to predict how these may act in the near future
would allow an autonomous vehicle to safely plan its trajectory, minimiz-
ing the risks for itself and others. In this work we propose an automatic
trajectory annotation method exploiting an Iterative Plane Registration
algorithm based on homographies and semantic segmentations. The out-
put of our technique is a set of holistic trajectories (past-present-future)
paired with a single image context, useful to train a predictive model.

Keywords: Autonomous driving · Trajectory prediction

1 Introduction

Autonomous driving the past years has been one of the fields in which machine
learning and artificial intelligence were applied the most. Even though significant
steps forward have been made [2], the problem is yet far to be solved. The com-
plexity stems from the many facets of different nature that need to be taken into
account: in addition to the actual movement of the car itself, a thorough under-
standing of the surrounding scene needs to be obtained, both for what concerns
static components such as road layout and other moving agents [3]. To allow
an effective planning of a safe route towards its destination, the autonomous
car needs to recognize other agents and model their dynamics to the point of
predicting their future behavior.

Predicting agents’ future trajectories is a problem that can benefit from a
complete understanding of the scene. The surrounding layout acts indeed as a
physical constraint that outlines the possible routes that the vehicle can under-
take. Without relying on maps or geolocalization sensors though, scene com-
prehension based only on computer vision systems can turn out to be extremely
complex due to occlusion, background clutter and scene variability. Scene parsing
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and semantic segmentation methods [6] can aid with this problem by providing
a semantic category for each observed pixel.

On the other hand, modeling object dynamics from an autonomous car per-
spective is a hard task by itself. Since the observer is constantly moving, the first
obstacle one has to deal with is separating the two observed motions: the real
motion of agents and the apparent motion caused by the moving camera. The
common approach in generating datasets to train autonomous vehicles involves
the use of costly laser based range finders in order to obtain precise environment
measurements and the integration of GPS sensors in order to refer such coor-
dinates into the real world [11]. Currently dash cameras can be deployed at a
very low cost on vehicles, indeed a simple video search for Dash Camera on a
video repository such as Youtube yields hundred of thousands distinct results.
Interestingly, mining videos from the web allows to obtain data on dangerous
situations such as accidents which are not ethically reproducible in a controlled
dataset.

In this paper we move the first steps towards a method that will allow to
generate trajectory datasets from real-world scenarios without the need of an
instrumented vehicle and hours of driving. We propose an automatic pipeline
finalized to the generation of holistic trajectories composed by past-present-
future positions of all other agents. We obtain trajectories for each frame in a
video sequence, starting only from an RGB stream, without relying on complex
sensors such as LIDARs or external sources like maps. Our pipeline is composed
by several modules aimed at tracking both agents and the ground plane on which
they are moving. By combining semantic segmentations and local descriptors we
estimate a transformation to map the ground plane from one frame to another,
enabling the projection of object positions through time, onto a desired frame
(Fig. 1). We refer to this process as Iterative Plane Registration (IPR).

The paper is organized as follows. In Sect. 2 we frame our method into an
appropriate literature review. Section 3 is dedicated to our proposed technique,

Fig. 1. Holistic trajectories shown on the reference frame. Past: full squares. Present:
full circle. Future: empty squares.
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providing an outline of the Iterative Plane Registration algorithm. In Sect. 4 we
show the obtained results and we draw conclusions in Sect. 5.

2 Related Work

Recently several works targeted trajectory prediction [1,15,21]. The majority of
this line of research targets non motorized vehicles and pedestrian trajectories
[1,21]. For proper path planning of autonomous vehicles a full understanding of
every moving agent behavior is necessary.

Collecting data for autonomous driving is a complex, slow and expensive
procedure. Most autonomous driving datasets [7,11,14,18,25] are collected with
cars equipped with several dedicated sensors: dash cameras provide footage,
stereo rigs are used to obtain depth, laser scanners (LIDARs) generate cloud
points, Inertial Measurement Units (IMU) log how the vehicle is moving and
position is pinned down with GPS. As an example KITTI [11], provides all the
above sources at 10 Hz.

The lack of trajectory information at a large scale is currently a limitation
of many commonly used datasets, such as Cityscapes [7]. Only a few datasets
nowadays contain trajectory information. KITTI [11] has a small fraction of
the dataset annotated for object tracking; Berkeley Deep Drive (BDD) [25]
provides instance level segmentations with consistent IDs across frames and
nuScenes [5] has trajectory informations for the short video snippets that com-
pose the dataset. None of these datasets offers a satisfactory number of tra-
jectories to train a prediction model. The ApolloScape dataset [14] has been
recently extended with approximately 80k trajectories for a new trajectory pre-
diction task [18]. Trajectories are obtained combining LIDAR and IMU readings
and are represented in a world reference system, which is the most common
setting for this task [15,22]. Similarly, other common datasets dedicated only
to pedestrian trajectories [20,21] are in a top view reference system. This way
of representing data is easy to process and evaluate, yet is hard to obtain due
to the need of a laser scanner and loosens the correlation between pixels and
vehicle dynamics. Nonetheless, these datasets have a high cost. They require
the instrumentation of a car with cameras, inertial sensors, gps and even more
expensive sensors such as LIDARs. Moreover, it must be taken into account the
human effort in driving the instrumented vehicle and in the annotation phase if
no automatic object labeling and tracking is used.

Differently from previous approaches, we avoid these problems by collecting
full trajectories directly in the frame reference, pairing past and future paths to
what the car has in front, mimicking what humans see when driving. Furthermore
we do not require any specific equipment and we work solely with RGB frames.
This aspect also thins the acquisition process since any dash cam recorded video
(even scraped from the web, e.g. YouTube) can be used to generate trajectories,
instead of relying on heavily equipped fleets.

Simultaneous Localization and Mapping (SLAM) [4] is a basic tool
for any autonomous driving platform, providing ego-motion estimation, 3D



Vehicle Trajectories Through Iterative Plane Registration 63

reconstruction and self-localisation in a single optimization framework. Recently
deep learning based frameworks [23,24] have been used to improve classical fea-
ture based SLAM algorithms [19]; the idea is either to provide single view depth
estimation or directly computing frame-to-frame local feature correspondences.

Our proposed method shares some common traits with SLAM. Both
approaches have a module dedicated to inferring the motion of the ego-vehicle:
IPR by tracking the 2D ground plane and SLAM by tracking the whole 3D envi-
ronment. Despite this similarity, the goal of the two methods is very different
since we want to retain exactly what SLAM discards, i.e. model the dynamics
of other vehicles rather than reconstructing ego-motion and the static environ-
ment. Indeed SLAM could serve as a ground motion estimator in our pipeline.
Nonetheless SLAM algorithms require internal calibration parameters, while our
approach is suitable for any RGB sequence.

3 Iterative Plane Registration

Iterative Plane Registration (IPR) is an procedure to track the ground plane in
a video and obtain a series of homographies that can transform points across
different frames. We refer to IPR as a meta-algorithm since it outlines a generic
algorithmic procedure based on different computer vision modules, without rely-
ing on any specific model or architecture. The modules composing the Iterative
Plane Registration meta-algorithm are shown in Fig. 2 and are the following:
object detector, multiple target tracker, semantic segmentation model, local key-
point detector and descriptor and homography estimator.

RGB frames

Object 
Detection

Semantic 
Segmentation

Keypoint 
Detection

Keypoint 
filtering

Object Tracking

Homography
Estimation

Fig. 2. Iterative Plane Registration pipeline. Objects are detected and tracked. The
ground plane is tracked with an homography estimated through keypoints detected in
the image and filtered with the semantic segmentation. Chains of homographies are
estimated to warp the position of the objects across frames.
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The advantage of defining IPR as a meta-algorithm is that, thanks to its
highly modular nature, it can be easily updated by replacing its building blocks
keeping up with future state of the art advancements.

Object Detection and Tracking. Agents have to be localized in each frame
and tracked across the whole video. To this end, we use Mask-RCNN [13] as
object detector and the bounding box association algorithm proposed in [8] as
multiple target tracker. The method matches bounding boxes in consecutive
frames according to their intersection over union and thus generates spatio-
temporal tubes enclosing the objects. To ensure an accurate matching, bounding
box future positions are predicted using dense optical flow [9] to compensate
object and ego motion. To be able to detect relevant objects in an urban scene,
we use a Mask-RCNN model pretrained on MS-COCO [16] and we track only
objects which are relevant to our task, i.e. objects labeled by the detector as car,
person, bicycle, motorbike, truck or train.

Semantic Segmentation Based Keypoint Detection. In order to estimate
reliable transformations to map the ground plane from a frame to another, we
extract local keypoints from the scene and filter them using the output of a
semantic segmentation method. As keypoints we use SIFT [17], masking the
input image with the semantic segmentation provided by DeepLab v3+ [6]. Since
we want to obtain keypoints belonging to the ground plane, we retain only the
ones centered in pixels labeled as road or sidewalk, independently of the scale of
the detected keypoint.

Fig. 3. Keypoint matching between two frames. When all the keypoints are used (left),
correspondences are found all over the scene. When keypoints are filtered with the
semantic segmentation (right) matches are reliably found only on the ground plane.

Homography Estimation. In the following experiments we use SIFT since
they are the best trade-off in terms of stability, repeatability and speed. Any
other local feature could be employed in principle. SIFT keypoints and their
associated descriptors are used to estimate homographies between frames. This
is done using Random Sample Consensus (RANSAC) [10] between the two set
of matching keypoints Lti and Lti+1 , belonging to frames at time ti and ti+1.
RANSAC finds the transformation Hti that maps keypoints kjti ∈ Lti in their



Vehicle Trajectories Through Iterative Plane Registration 65

correspondent ones kjti+1 ∈ Lt+1 in the next frame, rejecting outlier correspon-
dences. The semantic segmentation filter over all the keypoints in the scene is
necessary since we only want to model the planar homography for the pixels
belonging to the actual road. By doing so we are working unders the assump-
tion that the ground can be locally approximated by a planar surface. Without
relying on the semantic segmentation we cannot establish the correct correspon-
dences between keypoints, yielding to an incorrect homography. Figure 3 shows
an example of matched keypoints between two frames, with and without the
segmentation mask. It can be seen that without segmenting the scene, it is likely
to establish correspondences between other planar surfaces, such as buildings,
which are often rich in texture and therefore keypoints.

Fig. 4. Chained homographies to warp points lying on the ground plane across frames.

Trajectory Projection. To generate holistic trajectories of other agents in a
given frame Fti , we project their positions in other frames Ftj using a chain of
homographies from tj to ti:

H =
∏

Htk ∀tk ∈ [tj , ti]. (1)

This procedure is also depicted in Fig. 4.
To map points forward in time we use the homographies estimated between

pairs of consecutive frames, while to map points backward in time we use inverse
homographies. Since each homography can only transform points belonging to
the ground plane we cannot warp bounding boxes. We therefore project only the
lower edge middle point of a bounding box, which is guaranteed to lie on the
ground plane. An example of generated trajectories is depicted in Fig. 1.

Combining chains of homographies may lead to incorrect results due to
numerical instability. To determine whether an homography is valid or not, we
check the determinant of the transformation matrix [12]: det (H) > 0. If an
homography is not valid, we interrupt the chain of homographies and we stop
projecting the trajectories, marking the remaining portion as invalid.



66 F. Becattini et al.

Algorithm 1. Iterative Plane Registration
Input: RGB video sequence Fti , ti ∈ [t0, tend]
Output: Homography set

1: Initial timestep t0.
2: while ti < tend do
3: Apply semantic segmentation algorithm (e.g. DeepLab [6]) to frame Fti , obtain-

ing a pixel-wise labeling Sc
ti , c ∈ {’road’, ’car’, ’sidewalk’ . . .}.

4: Extract local keypoints Lti (e.g. SIFT [17]) from Fti .
5: Discard keypoints not laying on the ground plane based on the semantic seg-

mentation: L′
ti = {k ∈ Lti s.t. Sti [kx, ky] ∈ {’road’, ’sidewalk’}}

6: Estimate homography to map the ground between frames Fti−1 and Fti :
Hti−1ti = RANSAC(L′

ti−1 , L
′
ti)

7: ti = ti+1;
8: end while
9: return {Hti}

4 Results

The Iterative Plane Registration algorithm can be used on any driving video
taken from a dashcam since it requires no annotation. To provide an evalua-
tion of the method, we generated trajectories for all LIDAR annotated videos
in the KITTI tracking training set [11]. To evaluate how accurately we register
the ground plane, we turn off the detection and tracking modules and consider
annotated trajectories instead. Since each trajectory is annotated as a collection
of 3D bounding boxes, we warp across frames the center of their lower face.
Once the holistic trajectories are obtained, we project them in the LIDAR met-
ric coordinate system using a frame to world homography. Whereas projecting
points from LIDAR to frame can be done by changing coordinate system and
using the camera projection matrix P , the opposite is not as1 straightforward
since P is not invertible. To this end we estimate an homography between the
pair of points belonging to the ground plane in the two reference systems. Dif-
ferently from what happens in the IPR pipeline, we do not need to detect and
match keypoints to estimate the homography since there is a direct correspon-
dence between frame pixels and LIDAR points. We only need to filter the points
by taking only the ones belonging to the ground plane, which can be done with
the semantic segmentation of the scene [6]. The frame to world transformation
allows us to project the estimated trajectories in the LIDAR metric reference
system and to compare them with the ground truth, obtaining an error in meters
(Fig. 5).

Figure 6 (left) shows the distribution of samples, i.e. individual points, as
a function of the temporal offset from the current frame and the L2 distance
from the ground truth. Most of the samples have a negligible error since almost
half of the points lie in a 5 m radius from the target. Increasing the temporal
offset, points estimates become less precise as an effect of error propagation
when combining long chains of homographies (Algorithm1). Furthermore some
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Fig. 5. Generated trajectories in the frame reference system (top) and comparison with
ground truth in the LIDAR metric reference system (bottom).

samples exhibit high errors, which are mainly caused by instabilities in warping
points far away from the camera, as shown in Fig. 6 (right). On the other hand,
it has to be noted that the most relevant signal is in the first seconds ahead.
We consider the most useful time span for training a prediction algorithm to be
12 s in the future. Therefore we report in Fig. 7 the distribution of errors for all
points in an 12 s horizon.

We also analyze the error in function of distance from the sensor. As can
be seen in Fig. 6, below 50 m of distance errors are mostly below 5 m. This
distance can be regarded as a common visibility horizon in urban scenarios,
with junctions, curved road and occlusions due to traffic. Consider that the
KITTI LIDAR sensor reach is 120 m but we can, in certain cases obtain farther
distances by ground plane registration.

Another interesting evaluation concerns the number of trajectories we are
able to obtain. To this end we ran the Iterative Plane Registration algorithm on
the whole KITTI tracking dataset (both train and test). We generate trajectories
up to 12 s (120 frames at 10 FPS), both in the past and in the future. According
to the determinant criterion explained in Sect. 3, parts of tracks generated by
invalid homographies are discarded.

In Fig. 8 we show the number of obtained trajectories, as a function of past
and future length. Both valid and invalid trajectories are shown. Interestingly
enough, invalid homographies concern mostly past trajectories. This is due to
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Fig. 6. Distribution of errors over samples (individual points) as a function of future
offset (left) and distance (right).

Fig. 7. Error distribution for points up to 12 s in the future.

the fact that from a car perspective the ground plane is observed from the car
ahead, therefore the estimated homographies will be less precise in the portion
of the plane behind the observer, which is often where the other agents lie in
past time-steps.

Despite this, we are able to generate a surprisingly high number of trajec-
tories, both in past and future directions. On the KITTI tracking dataset we
obtain approximately 55K and 73K samples for the training and test set respec-
tively, with an average of 6.7 trajectories per image. Note that the whole KITTI
tracking dataset only contains 896 training trajectories. The different nature of
our trajectories allows us to obtain a much higher number of samples both for
training and for testing. This high number of trajectories stems from the fact
that we are generating a new holistic trajectory from each frame in which the
agent is observed. Whereas these trajectories are correlated since they represent
the same agent, the resulting series of points is quite different due to camera
motion and context variability. Overall, this acts as a form of data augmenta-
tion over existing trajectories, multiplying the occurrences of a trajectory for
each frame in which the object is present.
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Fig. 8. Number of obtainable trajectories on the KITTI dataset (train) as a function
of past and future number of frames. Both valid (blue) and invalid (red) trajectories
are shown. (Color figure online)

5 Conclusions

In this paper we presented the Iterative Plane Registration meta-algorithm, a
procedure for collecting holistic trajectories of agents in urban scenarios without
requiring any prior annotation. The generated trajectories are composed by past,
present, and future positions, all projected into a single frame context. Thanks to
Iterative Plane Registration we are able to obtain an extremely high number of
trajectories which can be used to train predictive models for autonomous driving
vehicles.

Acknowledgements. This work has been developed within a collaboration with
IMRA Europe. We gratefully acknowledge the support of NVIDIA Corporation with
the donation of the Titan Xp GPU used for this research.
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Abstract. 360 degrees cameras are devices able to record spherical
images of the environment. Such images can be used to generate views of
the scene by projecting the spherical surface onto planes tangent to the
sphere. Each of these views can be considered as the output of a virtual
PTZ (vPTZ) camera with specific pan, tilt and zoom parameters.

This paper proposes to formulate the visual tracking problem as the
one of selecting, at each time, the vPTZ camera to foveate on the tar-
get from the unlimited set of simultaneously generated vPTZ camera
views. Assuming that the selected vPTZ camera is a stochastic variable,
the paper proposes to model the posterior distribution of the underly-
ing stochastic process by means of a set of particles each representing a
vPTZ camera view.

Experiments on a publicly available dataset show that the proposed
tracking strategy is viable and achieves state-of-the-art performance.

Keywords: Particle Filter · 360 degrees camera · vPTZ · Tracking

1 Introduction

Tracking with PTZ cameras is a challenging research topic in computer vision.
Tracking algorithms for PTZ cameras are meant to work online and need to be
fast enough to predict in time how to control the camera to keep the target at the
center of the camera FOV. Such algorithms are difficult to evaluate and compare
due to the unreproducibility of the environmental conditions (lights, shadows,
pedestrian/object movements, servomotor control, etc.) they cope with. To solve
this problem, recent papers [1–4] have proposed to simulate PTZ cameras (i.e.,
virtual PTZ cameras) from particular videos to allow not only the comparison
of tracking algorithms for PTZ cameras, but also the development of new ones.

In particular, in [1], we proposed a framework to simulate virtual PTZ
(vPTZ) cameras from pre-recorded 360◦ videos. A 360◦ video is a sequence of
spherical images of the environment to monitor. Each spherical image is obtained
by stitching together images acquired simultaneously from different viewpoints
by several optical sensors on-board of the 360◦ camera. In general, such spherical
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images are stored as equirectangular images whose pixel coordinates represent
latitude and longitude of the corresponding point on the sphere surface (see
Fig. 1). A geometrical transformation allows mapping the spherical surface onto
a tangent plane. By varying this tangent plane, it is possible to generate differ-
ent projections of the spherical surface [1]. Given a 360◦ video, we are then able
to simulate an unlimited number of simultaneous vPTZ camera views. In this
paper, we take advantage of this fact to formulate a new tracking algorithm for
360◦ videos.

Rather than formulating the tracking problem as the one of controlling a
single vPTZ camera, as in [1], in this paper we assume that the vPTZ camera to
foveate on the target at a time instant is a random variable, and we approximate
the posterior distribution of the underlying stochastic process by means of a
discrete set of vPTZ camera views. To model the posterior distribution over
vPTZ camera views we adopt the particle filter framework in which each particle
is a vPTZ camera with specific pan, tilt and zoom parameters (see Fig. 2).

For each frame of the 360◦ video, our tracking algorithm involves three main
phases: prediction, updating and re-sampling. In the prediction step, our algo-
rithm samples vPTZ camera views; in the update phase, our algorithm measures
the likelihood that each generated vPTZ camera view can track the target, and
updates the posterior distribution accordingly. The re-sampling procedure is
applied to avoid particle degeneration. The vPTZ camera view to track the tar-
get is found as expected value of the posterior distribution.

The idea of using particle filter with vPTZ cameras is, at the best of our
knowledge, new and not yet covered in other works. For the sake of clarity,
we note here that our proposed application of the particle filter to model the
posterior distribution of vPTZ camera views differs from the application of the
same technique to model the posterior distribution of the target’s location on
the equirectangular image. Indeed, in our framework, a particle does not directly
represent a patch of the equirectangular image. Instead, it represents the projec-
tion of the spherical surface onto a tangent plane accounting, in this way, for the
sphericity of the 360◦ image. Furthermore, we focus on the problem of tracking
a single target and, hence, we do not apply any data association technique as
generally required in multi-target tracking framework.

To validate our pedestrian tracker, we used the publicly available dataset of
spherical videos in [5]. Our experiments show that our technique is viable and
achieves state-of-the-art performance.

The plan of the paper is as follows. Section 2 discusses related work; Sect. 3
explains the mathematical formulation of the particle filter. Section 4 presents
our vPTZ camera filter for tracking in 360◦ videos; Sect. 5 presents experimental
results and, finally, Sect. 6 discusses conclusions and future work.

2 Related Work

Visual tracking is a relevant topic in computer vision and in fields such as surveil-
lance, robotics and human machine interface. Tracking is a difficult task due to
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background clutter, camera motion and object occlusions. State-of-the-art visual
object tracking was based for a long time on Gaussian state-space models among
which the best known is the Kalman filter [11]. This filter was developed under
very restrictive hypotheses such as the assumption that the state vector proba-
bility density function is Gaussian. In a linear system with Gaussian noise, the
Kalman filter is optimal; however, tracking objects usually involves the modeling
of non-linear Gaussian systems. To adapt the filter to the case of non-Gaussian
measurement noise, Extended or Unscented Kalman Filter [12–14] are used.

These methods soon proved to be inefficient to non-static scenes, in which
non-linearity and multi-modality are likely to be significant. Sequential Monte
Carlo techniques for filtering time series [7] and their specific use in visual track-
ing [15] have quickly become famous to manage these problems in a natural way,
by providing more robustness than that offered by the Kalman filters. Sequential
Monte Carlo, known also as Particle Filter, is one of the most popular among the
Monte Carlo methods, and combines the Monte Carlo technique with Bayesian
inference. The method implements a recursive Bayesian filter by Monte Carlo
sampling. This idea was formally developed by Gordon et al. in [8], and gave
birth to many Particle Filter variants [9,10].

For its intrinsic capability to adapt to changes and to track multiple hypothe-
ses, particle filter was soon used for visual tracking by Isard and Blake in [15,16].
These works have shown that the particle filter framework provides a robust
tracking framework, which led the visual tracking problem to be reviewed as an
inference problem under the Bayesian framework. In this approach, given the
state-space and observation models, the posterior probability density of the tar-
get state is recursively estimated by the use of the prior probability and the avail-
able observations [17–19]. The framework estimates probabilities of predicted
states based on the observed data, by sampling from a well-know probability
density function.

Fig. 1. An equirectangular image of the Cathedral in Palermo, Sicily
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Fig. 2. The image shows an equirectangular image and a set of views acquired by
different vPTZ cameras with the reported parameters.

In this paper, we propose to adopt the particle filter framework to track
pedestrians in 360◦ videos. In contrast to other particle filter based visual track-
ing approaches, in which the particle state includes the target’s location on the
image, in this paper the particle state includes the parameters of a vPTZ camera
and, as such, each particle models a vPTZ camera.

Tracking with a PTZ camera has been largely studied in computer vision
[2–5,14,20,23]. These algorithms aim to control the camera in such a way that
the target always appears at the center of the camera view.

The recent introduction of 360 degrees cameras gives the opportunity to
acquire spherical images of the environment that can be used to simulate different
PTZ camera views. Tracking a point on the spherical surface is not so different
from controlling a PTZ camera: latitude and longitude of a point on the sphere
actually correspond to the tilt and pan parameters of a vPTZ camera. The zoom
permits to control the extension of the spherical surface to project onto the image
(tangent) plane. The possibility of simulating PTZ cameras from equirectangular
or cylindrical images acquired by 360◦ cameras has already been studied in [1–
4,14,23].

In [3], a simulated virtual world with animated pedestrians was used for
tracking purposes. Whilst the idea was novel, the simulated environment was
based on unrealistic assumptions (e.g lighting conditions was not modeled in
the artificial scenario). In [2,23], frameworks to simulate an unlimited number
of PTZ cameras from 360◦ videos were proposed, enabling reproducibility of
tracking results under fixed experimental conditions.
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The work in [1] describes a pedestrian tracking-by-detection algorithm for
360◦ videos that aims at estimating the pan, tilt and zoom parameters required
to control the virtual camera in such a way that the target is always at the
center of the virtual camera view; a dynamic memory was also used to store the
appearance models of the best past target detections to allow the update of the
target’s appearance.

In this work, we instead adopt the particle filter framework to model the
posterior distribution over the vPTZ camera to use to track the target.

3 Mathematical Background

3.1 Sequential State Estimation Problem

Given a series of observations from time 1 to t, the sequential state estima-
tion problem concerns the estimation of the current optimal state based on the
observations up to time t, which in other words means estimating the posterior
probability density of the state itself.

Given the state xt and xt−1 at time t and t−1 respectively, and the stochastic
noise dt−1, we define the transition state function ft as:

xt = ft(xt−1, dt−1). (1)

The presence of the random variable dt−1 induces a conditional probability den-
sity function over the state xt.

Let us define yt as the observation at time t and vt as the stochastic noise
with which we observe the state. We define the dependency between yt, xt, vt by
means of the function gt:

yt = gt(xt, vt). (2)

Since vt is a random variable, it induces a probability density function, known
as likelihood, that is indicated as p(yt|xt).

The states are hidden in the sense that they are not observable and all we
can know about the system is through its observations at each time instant.

To solve the sequential state estimation problem we decided to adopt the
algorithm of the particle filter that implements a Bayesian filter and estimates
the states of the system on the basis of an indirect observation of the same.

3.2 Particle Filter

In its most generic sense, tracking is the problem of estimating a hidden state
sequence Xt = {xi}t

i=1, from a sequence of noisy and possibly nonlinear observa-
tions Yt = {yi}t

i=1 from time 1 to t. We assume the state sequence Xt follows a
first order Markov chain, that is, at each time step, the state xt only depends on
the state at the previous time step xt−1 rather than on the entire state history
Xt; we further assume that the observations Yt−1 are conditionally independent
up the state at time t.
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Particle filter implements a recursive Bayesian state estimator to solve the
above mentioned problem by using a discrete sample set of weighted particles
to recursively approximate the posterior distribution of the estimated state. We
define the state xt of an object with a set of variables ki, that is xt = {k1, ..., kn},
called state vector, to describe a dynamic system at a given instant t. As t
varies, the state vector describes a trajectory in the state-space that is called the
trajectory of the system.

In visual tracking applications, the state can represent the position of the
target at a specific time t. The observation is often an appearance descriptor of
the target.

The particle filter main steps are: prediction and update.

– Prediction: the algorithm uses the previous state to predict the current state;
– Update: the algorithm uses the current observation to correct the state esti-

mate.

Assuming that the initial state distribution P (x0) is known, under the first
order Markov chain assumption, the goal of particle filter is to estimate the
posterior state distribution p(xt|y1:t−1).

Given all observations up to time t − 1, {y1, ..., yt−1}, the prediction phase
uses the p(xt|xt−1) to predict the posterior state distribution p(xt|y1:t−1) by the
recursive equation:

p(xt|y1:t−1) =
∫

xt−1

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (3)

where p(xt−1|y1:t−1) represents the posterior distribution of xt−1 given all obser-
vations up to t − 1, and p(xt|xt−1) is the state transition probability.

At time t, the observation yt becomes available and the state xt can be
updated by using the Bayesian Filter formula:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(4)

where p(yt|xt) is known as observation likelihood. In the above equation, it is in
general difficult to evaluate the normalization factor p(yt|y1:t−1) in closed form.
For this reason, we consider p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1).

To overcome the complexity of such estimations, in particle filtering, the
posterior density is approximated by a discrete set of particles {x̃t

i}N
i=1 each

with a weight wi
t. Since it is difficult to sample from the posterior distribution,

particles x̃t
i are drawn from a proposal distribution Q(xt|x1:t−1, y1:t).

At each time, when a new observation becomes available, the posterior dis-
tribution is updated by modifying the particle weights as follows:

wi
t = wi

t−1 · p(yt|x̃t
i)p(x̃t

i|x̃i
t−1)

Q(x̃t|x1:t−1, y1:t)
. (5)

Weights are then normalized to sum 1. To avoid particle degeneration, particles
are resampled based on their importance weights.
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4 vPTZ Camera Filtering for Tracking

In this section we present our novel tracker for 360◦ video. Our framework is
based on the particle filter algorithm and the possibility to generate a number
of N vPTZ cameras from a single 360◦ video.

In our approach, we define xt as the vPTZ camera that can best track the
target at time t; we also define yt as the corresponding observation at time t, for
example the target appearance descriptor extracted from the view of the vPTZ
camera xt.

We model xt as a random variable and adopt particle filter to formulate the
underlying stochastic process. We approximate the posterior distribution over
the vPTZ cameras xt by means of a set of particles {x̃t

i}N
i=1. Each particle x̃t

i

is drawn from a proposal Gaussian distribution and represents a different vPTZ
camera characterized by its own pan, tilt and zoom parameters. Some of these
cameras will be directed towards non-interesting areas for the tracking purpose
while others will be directed towards the target.

Each vPTZ camera x̃t
i is a particle weighted by wi

t. The weights of the
particles are updated as described in Eq. 5 and normalized to sum 1.

The vPTZ camera xt+1 to track the target is computed as:

xt+1 =
N∑

i=1

wi
t · x̃i

t. (6)

The above described steps are iterated frame-by-frame to keep the target at
the center of the vPTZ camera FOV. To prevent the vPTZ cameras degenerate,
multinomial resampling is used.

4.1 State Model

We describe the state of a vPTZ camera with five parameters: α, β, γ, which
represent the pan, tilt, zoom angles, and the velocities of pan and tilt, that
are α̇ and β̇. We assume the zoom angle varies with zero velocity because its
variations are in general smoothed. In particular, the state xt is described as:

xt =
[
α, β, γ, α̇, β̇

]

We also assume that our system propagates particles according to a first
order motion model specified by Eq. 7 where δt is a constant value:

xt = Axt−1 + dt−1, with A =

⎡
⎢⎢⎢⎢⎣

1 0 0 δt 0
0 1 0 0 δt
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ (7)
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4.2 Observation Model

The first target detection, extracted at specified pan, tilt, zoom, is used to
initialize the appearance model y1 of the tracker.

Inspired by the work of [21], to obtain more discriminative histograms, the
image is divided into upper and lower parts and two different histograms are
extracted from them. Our appearance model relies on these histograms computed
on the Hue and Saturation channels of the image.

The observation likelihood p(yt|xt) is modeled by a Gaussian distribution
(centered in 0 and of variance σ2

a) over the Bhattacharyya distance [22] of the
appearance models yt and y1.

The Bhattacharyya distance is defined as:

d(H1, H2) = 2

√
1 − 1

2
√

H1H2N2

∑
I

2
√

H1(I)H2(I) (8)

where H1 and H2 are the histograms used to represent the appearance models
y1 and yt respectively, N is the number of bins in each histogram, H indicates
the mean value of the bin counts. This equation returns a value between 0 and
1, where 0 indicates that the two histograms are exactly the same.

When an occlusion arises (for example, the target is occluded by another
pedestrian), the likelihood of the particles decreases and, consequently, particles
begin to die (i.e., particles have low or uniform weights). To account for such
particle impoverishment, a resampling procedure is used to refresh the set of
particles [6]. We stress here that, since our tracking approach focuses only on a
single target and no pedestrian detector is used during tracking, our algorithm
does not require any data association procedure.

5 Experiments

We tested our framework on the publicly available dataset [23]. The video
sequences were captured in two indoor environments and six randomly mov-
ing individuals are annotated. The length of each sequenc varies from a few
seconds to one/two minutes. These video sequences are affected by common
tracking perturbation factors, such as: Motion Blur (MB), Scale Change (SC),
Out-of-Plane Rotation (OPR), Fast Motion (FM), Cluttered Background (CB),
Illumination Variation (IV), Low Resolution (LR), Occlusion (OCC), presence
of Distractors (DIS) and Articulated Objects (AO).

The video sequences are affected by serious illumination artifacts. Moreover
there are numerous occlusions arising while people are moving around the camera
alone or in groups. As baseline method, the work in [23] suggests to use CamShift,
and we used the one implemented in the OpenCV Library. We also compare
against the tracking-by-detection (TbD) method proposed in [1].

Each pedestrian tracker was initialized by the first bounding box of the target
provided with the ground-truth. To initialize the tracker automatically, a pedes-
trian detector can be used on the vPTZ camera views obtained by setting the zoom
angle to 90◦, the tilt angle to 0◦, and by varying the pan angle in [−180,−90, 0, 90].
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Table 1. Experimental Results: MAE stands for Mean Absolute Error, α, β, γ indicate
pan, tilt and zoom respectively, TF stands for Track Fragmentation

Method MAE(α) MAE(β) MAE(γ) TF

Pf vPTZ [ours] 3.14◦ 2.79◦ 9.85◦ 59.84%

CamShift [23] 3.86◦ 4.68◦ 36.11◦ 64.43%

TbyD [1] 2.43◦ 3.43◦ 15.26◦ 70.44%

Targets have been tracked over all the video frames. An automatic procedure
that ends the tracker when the target is not detected for a prefixed number of
consecutive frames can be introduced.

While the results in [23] consider all annotated objects in the dataset, we only
focused on the full-body annotated pedestrians. In [23], the zoom angle is set to
90◦. Our algorithm aims at estimating the best zoom angle to closely track the
target. Furthermore, in [23], Center Location Error (CLE) and Target to Center
Error (TCE) are expressed in pixels. These metrics are not general enough since
these measurements depends on the image resolution of the projected views and
on the zoom factor. For all the above reasons, we decided to not adopt the
metrics suggested in [23], and to measure the average absolute differences in
degrees between the estimated pan, tilt and zoom angles and the corresponding
angles derived from the annotations.

In Table 1, we report the values of mean absolute error (MAE) in degrees
for the estimated pan (α), tilt (β) and zoom (γ) angles. Furthermore, we report
the Track Fragmentation (TF) error that measures the percentage of invalid
detections in the tracks. A detection is considered valid if it falls within the
FOV angle derived from the annotated target bounding-box. We note that our
definition of Track Fragmentation is more restrictive than the one used in [23].
Indeed, in [23], a detection is invalid when it is outside the camera FOV, which
was set to 90◦ and, hence, was much larger than the one we derive from the
target bounding box.

By indicating with a ∗ the ground-truth values at time t, TF is defined as:

TFt =

{
1 if |αt − α∗

t | ≤ γ∗
t

4 & |βt − β∗
t | ≤ γ∗

t

2

0 otherwise.
(9)

As shown in Table 1, our method outperforms both the CamShift algorithm
and the work in [1] in terms of MAE and TF and, in particular, it seems to
be able to handle better the zoom factor estimation. All methods show high
values of TF, whilst the proposed method achieves the lowest one. We note here
that all methods perform tracking in the HSV color space by employing color
histograms. Overall, the results suggest that by adopting stronger appearance
descriptors the performance of the method could improve.
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6 Conclusions

In this paper we proposed a new framework to track a pedestrian in a 360◦ video
by using particle filter and generating virtual PTZ cameras. At the best of our
knowledge, there are no works using the particle filter framework to model the
posterior distribution of vPTZ cameras.

In the proposed framework, the posterior distribution is approximated by a
discrete set of particles. Each particle represents a vPTZ camera with specific
values of pan, tilt and zoom. Such cameras are weighted and used, frame-by-
frame, to estimate the vPTZ camera to track the target.

Experimental results on a publicly available dataset show that the proposed
method outperforms state-of-the-art works on tracking in 360◦ videos.

In future work, we will focus on improving the observation likelihood model
and, in general, the appearance model used to describe the target in order to
make it adaptive. We will also study the possibility to use offline trained deep
learning models to establish matches between the target and the candidate tar-
gets. We will investigate the possibility to extends our tracking approach to
multiple targets. For example, a tracker could be initialized for each target and
information about the estimated targets’ locations on the sphere could be shared
among trackers in order to disambiguate among them.
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Abstract. This paper presents a new approach to dynamic texture clas-
sification based on deterministic partially self-avoiding (DPS) walks on
complex networks (or graphs). In this approach, for each pixel is assigned
a vertex and two vertices are connected according to a given distance.
In order to analyze appearance and motion, we propose two graph mod-
eling: a spatial graph and a temporal graph. The DPS walks are agents
that can obtain rich characteristics of the environment in which they
were performed. Thus, the DPS walks are performed in the two mod-
eled graphs (spatial and temporal) and the feature vector is obtained
by calculating the statistical measures from the trajectories of the DPS
walks. The results in two well-known databases have demonstrated the
effectiveness of the proposed approach using a small feature vector. The
proposed approach also improved the performance when compared to
the previous DPS walks based method and the graph-based method.

Keywords: Dynamic texture · Deterministic walks · Network sciences

1 Introduction

Dynamic textures can be defined as a sequence of images (or video) that exhibit
certain stationary in time [6]. Examples of dynamic textures in the real world
include sea waves, smoke, swaying trees, moving flag, fire, a crowd of people,
among others. The approaches for dynamic texture representation are applied
in different problems such as traffic condition recognition [9], human activity
recognition [14], surveillance [29], among others.

In the literature, many approaches have been proposed based on different
strategies to analyze the spatial and temporal characteristics of the dynamic
textures. These approaches can be separated into five categories: motion-
based methods [17], model-based methods [11,13,18], filter-based methods [7],
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statistical-based methods [24,29] and, agent-based methods [9,10]. The agent-
based methods use the deterministic partially self-avoiding (DPS) walks to
describe the dynamic textures. These methods achieved promising results in
classification, clustering, and segmentation of dynamic textures.

In this paper, we propose a new method for dynamic textures analysis and
classification based on deterministic partially self-avoiding walks on complex
networks. The DPS walks was introduced initially to investigate the effects of
simple walks in random media [15]. After that, the DPS walks methodology
was applied for texture and dynamic texture analysis [3,9,10]. Basically, a DPS
walk can be understood as an agent who visits points (e.g. pixels, vertices)
distributed in a map (e.g. image, video, graph) based on the neighborhood, a
rule of movement and memory. Starting from a given point, the next step follows
the rule: go to the nearest point on the neighborhood that has not been visited
in the last μ steps (memory) [15]. Statistical features of the trajectories of the
DPS walks are used to study the map.

In the proposed approach, we model the dynamic texture in two graphs
(i.e. networks): spatial graph and temporal graph. The spatial graph models
the appearance characteristics, while the temporal graph contains the motion
properties of the dynamic texture. In this way, we apply the DPS walks on these
two graphs and use statistical characteristics of the trajectories to represent the
appearance and motion of the dynamic texture in a feature vector. The proposed
approach is different of the previous works [9–11] because it combines graph
modeling and DPS walks characteristics, while in [9,10] only the DPS walks
is applied in the videos and in [11] only the complex network theory is used
to modeling and characterization. In Sect. 2 our proposed method to dynamic
texture analysis is detailed. The experimental setup is described in Sect. 3. In
Sect. 4 the experimental results are presented and discussed. Finally, the paper
is concluded in Sect. 5.

2 Proposed Approach

2.1 Network Modeling

The network sciences (also called complex network) field uses the formalism of
graph theory with the incorporation of statistical mechanics and complex sys-
tems. It has attracted increased attention because of its ability to represent
and study a wide range of systems and data. In computer vision, the networks
have been used to model and analyze images and video analysis [2,21–23]. In this
paper, we use the graph to represent the dynamic texture video. In dynamic tex-
ture analysis, it is important to obtain appearance and motion features in order
to accurately represent the video. To achieve this, in the proposed approach, we
model the dynamic texture video in two graphs (networks): the spatial graph
GS = (VS , ES) that characterizes the appearance properties and the temporal
graph GT = (VT , ET ) that contains the motion properties.

In the two graphs, each pixel i = (xi, yi, ti) is mapped into a vertex i ∈ V ,
where xi and yi are the spatial coordinates and ti the temporal coordinate of
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the pixel i. The main difference between the two graphs is the definition of the
set of edges. In the spatial graph, the set ES is defined by the connection of all
vertices whose the Euclidean distance is smaller or equal than a given radius

√
2

and the time coordinates ti and tj are equal,

eij ∈ ES ⇐⇒
√

(xi − xj)2 + (yi − yj)2 ≤
√

2 and ti = tj (1)

On the other hand, in the temporal graph, the set of edges is defined by
connecting the vertices whose the Euclidean distance is smaller or equal than√

3 and the time coordinates are different,

eij ∈ ET ⇐⇒
√

(xi − xj)2 + (yi − yj)2 + (ti − tj)2 ≤
√

3 and ti �= tj (2)

Figure 1 illustrates three frames modeled as a graph. The frames are repre-
sented by the spheres in blue, green and red. For each edge eij connecting two
vertices i and j, a weight w(eij) is defined by the difference of intensities between
the two pixels that represent the vertices:

w(eij) =
|I(i) − I(j)|

255
, (3)

where I(i) ∈ [0, 255] is the gray intensity of a pixel i.

Fig. 1. Three frames modeled as a temporal graph. The edges connecting only vertices
of different frames. (Color figure online)

2.2 DPS Walks on Networks

The deterministic partially self-avoiding (DPS) walk is an agent, which was ini-
tially used to study regular and random media [15]. This deterministic walk
produces a set of trajectories that are used to characterize the environment in
which they were performed. The DPS walk was applied with success for fea-
ture extraction in different classification tasks, such as in texture analysis [3],
dynamic texture classification [9,10], shape analysis [20] and complex network
classification [12].
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In the proposed approach, the DPS walks are used for feature extraction of
the graphs that model the dynamic texture videos. In this way, the DPS walks
are performed on the vertices. The DPS walk is an agent that walks on the
vertices of the graph based on a deterministic rule r. The agent starts the walk
from a pre-defined vertex i and the movement to the next vertex j is given by:
go to the vertex j in the neighborhood η(i) (vertices connected to the vertex
i) which minimizes the edge weight w(eij) and that has not been visited in the
previous μ steps (i.e. that is not in memory j /∈ Mμ). Here, we will call this rule
of movement as r = min. We also consider another rule of movement that moves
the agent in the direction of the maximum edge weight w(eij) (r = max). The
two rules of movement are used because each one produces different trajectories
and, consequently, obtain different characteristics of the graph. The walk will
end when the agent to find a set of vertices in which it cannot escape, called
attractor.

The memory Mμ of size μ is the last μ vertices visited by the agent and that
cannot be visited. This memory is updated in each step of the agent to save the
last μ vertices visited. The trajectory of the agent can be divided into two parts:
an initial part of size τ called transient, and, a final part named attractor, which
is composed of vertices that form a cycle of period ρ ≥ μ+1 where the agent gets
stuck. In the cases in which the agent cannot find an attractor, the trajectory is
represented only by the transient part. For each vertex of the graph, a DPS walk
is started with a given memory size μ and a rule of movement r. Therefore, for
a graph with N vertices, we have N different trajectories. In order to measure
this set of trajectories, the transient time and attractor period joint distribution
Sμ,r(τ, ρ) is considered. In this distribution, the frequency of trajectories with
transient τ and attractor ρ is stored in each position [3],

Sμ,r(τ, ρ) =
1
N

∑
i∈V

{
1, if τi = τ and ρi = ρ
0, otherwise , (4)

where μ is the memory size and r the rule of movement used.

2.3 Proposed Signature

The joint distribution contains relevant information about the trajectories of
the DPS walks performed in a given graph. Thus, previous works [3] have used
features obtained from this joint distribution for characterization. In this way,
the best results were obtained using the histogram ht

μ,r(l), which calculates the
number of trajectories with size l = τ + ρ in a joint distribution computed with
memory size μ and rule of movement r,

hμ,r(l) =
l−1∑
b=0

Sk
μ,r(b, l − b). (5)
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In order to characterize the dynamic texture videos, the DPS walks are per-
formed in the two graphs: GS and GT . Thus, for each graph a histogram hμ,r(l)
can be obtained. Several previous works have shown that the most discriminative
information of the histogram hμ,r(l) are concentrated on its first elements [3,9].
In this work, we use the n first descriptors of the histogram hμ,r(l), with the
first position defined as (μ + 1), since there is no attractor smaller than (μ + 1).
Thus, given a memory size μ and a rule of movement r, a feature vector νΘ

u is
obtained:

νΘ
μ,r = [hΘ

μ,r(μ + 1), hΘ
μ,r(μ + 2), ..., hΘ

μ,r(μ + n)] (6)

where Θ is the type of graph: spatial S or temporal T .
The size of the memory directly influences the complexity of the trajectories

and, consequently, in the information extracted by the method. For example,
DPS walks with low memory values perform better local analysis [10]. In this
sense, histograms obtained with different memory sizes are used for a more robust
characterization of the different patterns present in the graphs (i.e. dynamic
texture videos), according to:

ϑΘ
r = [νΘ

μ1,r, ν
Θ
μ2,r, ..., ν

Θ
μm,r]. (7)

To characterize patterns of appearance and movement of dynamic textures,
a feature vector that consists of the concatenation of the spatial and temporal
descriptors is considered. Thus, this feature vector is composed of the charac-
teristics extracted from the spatial ϑS

r and temporal ϑT
r graphs using different

memory values, as described:

λr = [ϑS
r , ϑT

r ]. (8)

The feature vector obtained above refers to a single rule of movement.
Although this vector may be able to properly characterize dynamic textures,
another possibility is to combine the two rules of movement. The rule of move-
ment is another parameter that influences the trajectory of the agent. In this
sense, it is considered a final feature vector that consists of the concatenation
of vectors obtained with the two rules of movement r = min and r = max, as
follows:

λ = [λmin, λmax] (9)

2.4 Computational Complexity

Basically, the proposed approach models a dynamic texture with N = w×h×T
pixels in two graphs. For modeling, each pixel is mapped into a vertex, which is
linked with 8 and 18 neighbors for the spatial and temporal graphs, respectively.
As the number of neighbors is a multiplicative constant and much smaller than
the number of pixels in the video, it can be disregarded. Thus, the computational
complexity of the modeling is given then by O(N) for each type of graph. Next,
a DPS walk is started from each pixel, producing a trajectory of size l = τ + ρ,
where τ is the transient time and ρ is the attractor period. For cases where
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an attractor is not found, we finish the walk after M steps. In this work, we
define M = 20 because we use only the first elements of the joint distribution
for characterization. Therefore, the computational complexity to compute the
features from each graph (temporal and spatial) is given by the number of pixels
and the size of the trajectories, O(N × (τ + 2ρ)). We have 2ρ because it is
necessary to go through twice the same cycle of pixels to identify an attractor.

3 Experimental Setup

To classify the feature vectors, we adopted the 1-Nearest Neighbor (1NN) clas-
sifier and a specific scheme for each database to separate the training and test
set. The Dyntex++ [8] database is a compiled version of the Dyntex database
[16]. The samples are preprocessed in order to eliminate static or dynamic
non-representative backgrounds, zoom, and textures without movement. The
database has 3600 samples divided into 36 classes (e.g. boiling water, river water,
colony of ants and smoke). In the experiments, a 10-fold cross-validation scheme
with 10 trials was used [11]. The accuracy is reported as the average performance
of all experimental trials.

The UCLA [4] database is composed of 200 dynamic texture videos separated
into 50 classes with 4 samples per class (named UCLA-50 version). Each sample
has 48 × 48 × 75 pixels. This database also has two variations of the original
database proposed in [19]. On the UCLA-9 version, the samples are reorganized
into 9 classes: boiling water (8 samples), fire (8), flower (12), fountains (20),
plants (108), sea (12), smoke (4), water (12) and waterfall (16). In the UCLA-
8 version, the plant class is eliminated due to the large number of samples.
The experimental setup adopted in these databases is similar to [19]. For the
UCLA-50 is used a 4−fold cross-validation scheme with 10 repetitions. On the
other versions, it is used for the testing set, half of the sequences (randomly
selected from each class), and the remaining half is used for training. For these
databases, the correct classification rate (CCR) or accuracy is reported as the
average performance of all experimental trials.

4 Results and Discussion

First, we investigate the effects of the parameters of our proposed approach in
the task of dynamic texture classification. The parameters analyzed were: (i)
memory sizes μ and (ii) rules of movement r. In the experiments, it was used
the first n = 3 elements of the histogram hΘ

μ,r(l) for the UCLA databases and
the first n = 5 positions for the Dyntex++ database. These values were defined
based on the idea that the main information are in the first elements and from
the experimental tests.

Figure 2 shows the results of our proposed method on the two databases
for different combinations of memory sizes and rules of movement. On both
databases, the rule of movement r = max obtained higher accuracies than the
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rule of movement r = min. The rule of movement r = max is related to het-
erogeneous regions of the video (i.e. graph), that is, the agent walks on regions
where the difference of the gray level between the pixels (i.e. high edge weight)
is higher. On the other hand, in the rule r = min, the agent walks on homo-
geneous regions, that is, where the edge weight is smaller. This indicates that
heterogeneous regions have more discriminative information of the dynamic tex-
ture. However, the best results are obtained when both rules of movement are
combined.

Concerning the memory sizes, we note that low memory sizes provide infe-
rior accuracies. Thus, as we increase the memory sizes, the accuracy also is
increased. However, when using a combination of memory size higher than
[0, 1, 2, 3], the accuracy obtained starts to stabilize, suggesting that the pro-
posed descriptors have reached their limits in terms of discrimination ability.
Such behavior is expected: the larger the memory sizes μ, the harder find an
attractor. From the results, we set up as default parameters of the proposed
method μ = [0, 1, 2, 3, 4, 5, 6, 7, 8] and r = [min,max]. On both databases, the
highest accuracy was using this configuration (94.5% and 96.0% for the Dyn-
tex++ and UCLA-50, respectively). These results are interesting because they
indicate that the method is not strongly parameter dependent.
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Fig. 2. Accuracies using different combination of memory sizes and rules of movement.

In order to improve the analysis of our proposed approach, we performed a
comparison experiment using literature methods of dynamic textures. To achieve
this, we considered the accuracy, standard deviation and number of features of
the methods, when described in the original papers. In all comparison, we use
the same experimental setup described in Sect. 3.

Table 1 presents the classification results of the proposed method and oth-
ers on UCLA-50 database. Note that the proposed method obtained the best
accuracy when compared to the others. Concerning the complex network based
methods, the proposed method improves the accuracy compared to the CNDT
[11] method by 1.0%. This method uses traditional complex networks measures
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while our method uses the DPS walk for complex network characterization. Thus,
the results suggest that the DPS walk is more effective to describe the graph
and, consequently, the dynamic texture.

Table 1. Comparison of the classification results of the proposed method and others
on UCLA-50 database.

Methods Number of features Accuracy (%)

KDT-MD [5] - 89.50

DFS [27] - 89.50

3D-OTF [28] 290 87.10

CVLBP [24] - 93.00

RI-VLBP [30] 16384 77.50 (± 8.98)

LBP-TOP [29] 768 95.00 (± 4.44)

DPSW-TOP [9] 75 95.00 (± 4.78)

CNDT [11] 420 95.00 (± 5.19)

Proposed method 180 96.00 (± 3.16)

Table 2 summarizes the results on the UCLA-9 database. On this database,
our approach yields the second best result (96.80%). This result is slightly inferior
to the one obtained by CVLBP method (96.90%). On the other hand, on the
UCLA-8 database, the proposed method achieved the best accuracy, as can be
seen in Table 3. Here, the proposed method gives an accuracy of 96.59% against
95.65% of the CVLBP method. The proposed method also outperformed the
method DPSW-TOP, which is a DPS walk based method. This method applies
the DPS walk on three orthogonal planes to analyze the appearance and motion
properties of the dynamic textures. In this way, the results indicate that our
approach based on DPS walk applied on the graph is more effective for dynamic
texture characterization.

Table 4 presents the results on the Dyntex++ database for different methods.
The proposed method shows an improvement of 10.74% and 3.21% compared to
the CNDT and DPSW-TOP methods, respectively. However, on this database,
the proposed method obtained a performance lower than the RI-VLBP and
LBP-TOP methods. Nevertheless, it is important to emphasize that the feature
vector size of these methods is significantly higher than the feature vector of
our method. Therefore, our method is still competitive due to the small feature
vector, for example, the RI-VLBP extracts a long feature vector of dimension
16384, whereas our method produces only 180 characteristics.

Besides these compared methods, called hand-craft methods, we also compare
our proposed signature with a method based on learned features. This method
proposed in [1] uses a convolutional neural network (GoogleNet) to learn the
characteristics of the dynamic textures in three orthogonal planes and obtain a
signature. On the UCLA-50, UCLA-9 and UCLA-8 databases, the CNN-based
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Table 2. Classification results for all methods on the UCLA-9 database.

Methods Number of features Accuracy (%)

3D-OTF [28] 290 96.32

CVLBP [24] - 96.90

High level feature [25] - 92.60

Chaotic vector [26] 300 85.10

RI-VLBP [30] 16384 96.30

LBP-TOP [29] 768 96.00

DPSW-TOP [9] 75 96.33 (±2.46)

CNDT [11] 336 95.61 (±2.72)

Proposed method 180 96.80 (±2.36)

Table 3. Comparison results on the UCLA-8 database.

Methods Number of features Accuracy (%)

3D-OTF [28] 290 95.80

CVLBP [24] - 95.65

High level feature [25] - 85.65

Chaotic vector [26] 300 85.00

RI-VLBP [30] 16384 91.96

LBP-TOP [29] 768 93.67

DPSW-TOP [9] 75 93.41 (±6.01)

CNDT [11] 336 94.32 (±4.18)

Proposed method 180 96.59 (±7.12)

Table 4. Comparison results for different dynamic texture methods on the Dyntex++
database.

Methods Number of features Accuracy (%)

RI-VLBP [30] 16384 96.14 (±0.77)

LBP-TOP [29] 768 97.72 (±0.43)

DPSW-TOP [9] 75 91.39 (±1.29)

CNDT [11] 336 83.86 (±1.40)

Proposed method 180 94.60 (± 1.20)

method obtained 99.50%, 98.35% and 99.02% of accuracy, respectively. These
results are higher than the obtained by our method. However, it is important to
highlight that even with inferior results, our method is still competitive due to
its computational simplicity.
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5 Conclusion

This paper presents a new method for characterization and classification of
dynamic textures using deterministic partially self-avoiding walks on complex
networks. In this method, we have shown a graph modeling from dynamic tex-
ture videos, which allows us to analyze appearance (spatial graph) and motion
(temporal graph) properties. Thus, the DPS walks are performed on these two
graphs and the statistical information of its trajectories are used to compose
a feature vector. Experimental results obtained on the UCLA and Dyntex++
databases showed that our method is very competitive when compared to other
methods. Our method also outperformed the other previous DPSW-based and
complex network based methods. In addition, the proposed approach is compet-
itive in terms of dimensionality, producing feature vectors significantly smaller
than other literature methods. In this way, the tradeoff between performance
and feature vector size demonstrates the great potential of the proposed method
for dynamic texture classification.
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Abstract. Retail shops or restaurants are interested in real-time pro-
filing analysis of customer visit patterns, which could enable efficient
management and target marketing. They need to know not only how
many people entered but also if they are visiting for the first time and
keep track of their exact number. As a result, in this paper we define
the new variant of unique counting for videos, that is counting new per-
sons who have not already been counted in the past. To this end, we
propose a complete real-time system which is able to perform detec-
tion, tracking and unique counting in the wild with user drawn gates. A
fine-tuned network on persons body is used to extract descriptors which
are more privacy-oriented. Experiments of the system on the challenging
DukeMTMC dataset show that our method is able to effectively count
people in real time and discern between the persons which do multiple
passages through the gates.

Keywords: Counting · Multitracking · Reidentification

1 Introduction

In recent times there is a great interest in computer vision for monitoring all
types of environments. Many goals are impacted by new technological advances
in video analysis, e.g., security, resource management, urban planning, or adver-
tising. Of these technologies, counting people passing through a place is a funda-
mental problem. It is an essential building block for crowd analysis that is useful
for several different applications, including crowd monitoring [14], scene under-
standing [19], surveillance [15] and customer analysis [4]. In particular, retail
shops or restaurants are interested in real-time profiling analysis of customer
visit patterns, which could enable efficient management and target marketing.
They need to know not only how many people entered but also if they are visiting
for the first time and keep track of their exact number.
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As a result, in this paper we define the new variant of unique counting for
videos i.e. counting new persons who have not already been counted in the past.
At a high level, it requires to detect persons, remember and match previously
observed individuals. The main challenge is the open-world setting: for each
person detected the system must be able to tell if he is in the set of already
known persons or if he is a new person, which is a very hard task and requires a
memory based algorithm [10]. The task is different than person re-identification,
which is usually performed on images and require only to match query to gallery
persons. It is also different than multi-target tracking where it is required to
track all people across the scene but does not address counting passages through
an area or virtual line.

Fig. 1. The unique counting task. The task is to count the number of unique people
who cross the virtual gate, drawn in blue. In this example, person #2 crosses the gate
twice but he is only counted once. (Color figure online)

In the literature, people counting can refer to multiple different settings [14],
from counting the number of instances in a single image to counting how many
persons crossed a virtual gate or an area. Similarly to [9,15], in this paper we
address counting by defining virtual gates. These are imaginary lines where the
actual counting is made (see Fig. 1) and can be drawn freely by the user over the
frame. Hence, we perform counting in the realistic setting commonly referred as
“in the wild”, i.e. realistic footage, including conditions contaminated by blur,
non-uniform lighting, and non frontal pose. Moreover, multiple gates can be
defined per single cameras, allowing monitoring of multiple entrances.

The contributions of this work are three-fold: i. we propose the task of unique
counting which is a variation of counting task; ii. we propose a complete real-
time system which is able to perform detection, tracking and unique counting
in the wild with user drawn gates, and iii. we report experiments on the chal-
lenging DukeMTMC dataset [12] showing that our method is able to effectively
count people in real time and discern between the few persons which do multiple
passages through the gates.

The paper is organized as follows. Section 2 reports the most related work;
Sect. 3 describes our method in detail, including the various parts of our pipeline;
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Sect. 4 reports experiments on our adaptation of DukeMTMC to the task of
unique counting and finally in Sect. 5 our conclusions are reported.

2 Related Work

The problem of unique people counting is mainly related to the topics of people
counting and open world person re-identification.

2.1 People Counting

Vision-based people counting systems have become more popular in recent years,
which allow counting in different scenarios [13,14]. Two different research direc-
tions are pursued: spatial people counting and temporal people counting.

Spatial People Counting. Works in this direction aim at counting the exact
number of people who are present in a given image or video frame. The main
difficulty of this task is related to detecting persons, taking careful attention to
occlusions of people and their different appearance when in a crowd.

Detection based methods typically employ object detection methods spe-
cialized to detect people [5]. They train classifiers using features such as Haar
wavelets, histogram oriented gradients [5] and more recently with convolutional
neural network based methods [14]. To increase robustness to occlusions, Li et al
[8] propose to use head and shoulder detectors, which are more distinct than
full body. Xu et al. [17] add a tracker to reject false pedestrian detections. How-
ever, head and shoulder detectors make re-identification more difficult since they
usually cover few pixels and the face can be in the opposite direction than the
camera.

Temporal People Counting. These works are applied to videos and aim at
counting the number of people who enter the recorded area, pass through a
virtual line or a forced passage.

For areas where people flow can be forced, several researchers proposed to
use overhead mounted depth cameras. They can accurately count people flowing
through an entrance [4]. Nonetheless, they need proper installation and cannot
be employed in other environments. For open areas where people can freely
move, tracking of people is usually performed exploiting the entire body [20]
or the face [21]. Since counting is often employed along waypoints or streets, a
popular solution is using a virtual gate where only detection passing thorough are
recorded [9,15]. For instance, Liu et al. [9] use segmentation to partition groups of
people into individuals and individually track their movement crossing the gate.
They track people in trajectories by formulating pedestrian hypotheses that are
filtered and combined into accurate counting events. In [15], a surveillance system
based on recent object detector YOLO [11] exploits an intersection over union
tracker to count people who cross a gate.

This work is related to temporal people counting and is based on the use
of a virtual gate. However, differently from all these works, we address the task
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of unique person counting which require re-identification of people who pass
through the gate. We use the pedestrian appearance in a free context where a user
can freely draw the counting gate. Previous work that perform re-identification
uses only overhead mounted camera or face information which is limited to high
resolution cameras and may not be privacy compliant.

2.2 Open World Person Re-identification

The proposed method needs to discriminate between already known and
unknown persons as in the open-world setting [1]. The majority of person re-
identification methods focus on closed world scenarios using discriminative view-
invariant features or learning matching distance metrics [16]. Only recent work
considers open-set person re-identification [7], first in small scale with basic fea-
tures and distance learning [23], then with deep learning features in an end-to-
end manner [18]. Nonetheless, scaling to large scale is still an open issue where
only very recent work tries to address it, for instance, with hashing [25].

Differently from these methods, our approach do not need to explicitly main-
tain the full appearance of a person. We are only interested in the appearance at
the gate proximity, which permits to reduce the uncertainty of the open-world
setting and allows scaling with few resources.

3 Unique Counting System

Given a video stream, the proposed system aims to count the number of unique
individuals crossing one or more gates. A gate is an imaginary line drawn by a
user where the system has to count people, usually used to delimit a part of the
scene from another.

Differently from the task of counting [14], unique person counting requires
the re-identification of persons in open-world setting [10]. The system, beside
detecting when a person crosses a gate, needs also to detect if an instance has
already crossed a gate in the past to avoid counting it multiple times. It starts
with no knowledge of the persons that will cross the gates, so it has to memorize
a discriminative representation of each new person as it sees them.

For person re-identification one approach is to extract face features since they
are strongly discriminative [21]. However, their use limit where the system can
be applied due to technical requirements and privacy. Face detections should be
at least of a minimum size to be discriminative, forcing to employ cameras with
high resolutions, mounted to observe people facing the camera. Hence people
cannot be recognized in both directions. Moreover, being a sensitive information,
the acquisition of faces without explicit consent can raise privacy concerns. For
these reasons, we propose to exploit body related features. Body features are
not as discriminative as face features but they can be extracted in every pose
and hardly poses any privacy concern.

The proposed system is composed of four submodules, shown in Fig. 2: i.
a person detector to identify pedestrians in the frame; ii. a tracker to track
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the trajectory of each pedestrian and detect gate crossings; iii. a module to
extract body features, and iv. a re-identification module that allows to recognize
previously observed people. In the following sections we will explain in details
each module.

Fig. 2. Pipeline of the proposed system. Given a frame, persons are detected in
the scene and tracked when they come near a gate. Upon gate crossing, features of
the person in the red area near a gate are extracted and used to perform open-world
re-identification. (Color figure online)

3.1 Person Detector

The person detector module is responsible of detecting pedestrian in the scene.
We test two different state of the art methods which allow to process videos
in real-time, with different settings. The first method we employ is a YOLO
v3 network [11] which is a single-stage object detector that process an image
in a single pass and generates a set of boxes with an associated probability.
The method exploits a fully convolutional architecture where the last layer uses
1 × 1 filters to output a fixed amount of windows with different confidence. We
used a network trained on the 80 classes in COCO dataset with a TensorRT
implementation but detections are only taken for the class of person.

For this module, we also test the recent OpenPose detector [3] which is the
first real-time multi-person system to jointly detect human body and its parts
from single images. OpenPose exploits a sequential architecture composed of
convolutional networks that directly operate on belief maps from previous stages.
Part locations are increasingly refined without the need for explicit graphical
model-style inference. This method emits 25 keypoints that encode the pose of
each person detected, from which we derive a bounding box. More specifically, we
first split these keypoints to identify head, upper body and lower body separately.
Then we ensure that the three blocks that define the human body satisfy human
body proportions (i.e. body height should be about 7× head height and body
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width should be about 2× head height). If we miss at most two of the three
boxes due to keypoint absence or to low keypoint score, we can derive them by
exploiting body proportions and the measures of the available ones. Finally, we
take the box that tightly encompasses the three main human body parts obtained
in this way. This makes our detections more robust, especially in borderline
situations like cases where there are persons overlapping or partial occlusions.

3.2 Tracking and Gate Crossing Detection

Tracking detections allows the system to track movement of pedestrians and
understand when they are crossing virtual gates. Each person is represented
using a bounding box with its location. The detected boxes are joined together
into tracks using a tracking by detection strategy, grouping bounding boxes in
consecutive frames by looking at their Intersection over Union (IoU) and the
optical flow estimation.

We only evaluate tracks around the gates, so that we can reduce the risk
of incurring in tracking errors. We monitor the distance of the middle point of
the bottom segment of the bounding box (ideally the point between the feet)
from the gate line. Only when distance of the box is less than K pixels (that we
empirically set to 100) from the gate, it is tracked.

The tracker continuously monitors all pedestrians in the tracks. At each frame
a set of new detections is produced and we update the tracker state by associating
each track to every detection, if possible. For unassociated detections we start
new tracks. We employ a greedy association approach. At each frame we get a
set of detections Dt; given the set of tracks Tt−1 detected at the previous frame,
we compute an association matrix A based on IoU, such that Aij = di∩tj

di∪tj
. Then

we apply the function track described in Algorithm 1.

FUNCTION track (Dt, Tt−1)

Data: Tt−1 : {t1 . . . tn}, Dt : {d1 . . . dm},Aij =
di∩tj
di∪tj

Result: Tt

while maxij Aij > τ do
if not Kij ∧ Aij > τ then

〈̂i, ĵ〉 ← arg maxij Aij ;
tî ← dĵ Kî: ← TRUE;

K:ĵ ← TRUE;

end

end
/* Tracks not used for γ frames are removed. */

Tt ← Tt−1 \ {ti|li > γ};
/* Unassigned detections initialize new tracks. */

Tt ← Tt−1 ∪ {d|Kij = TRUE}
Algorithm 1. Data association algorithm. We associate tracks and unasso-
ciated detection if IoU > τ and remove a track if it is “dead” for ω frames.
Matrix A keeps track of associations and vector l counts the amount of frames
a track i is not associated with any detection.
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The procedure generates the paths, i.e. a sequence of points followed by
people on the scene. Gate crossing detection is performed by testing segment
intersection between the sequences of points from each track and a given line
of the gate. We address it as a segment intersection problem of 2nd degree,
also known as the orientation test which robustness has been studied in [2].
Given two line segments A = (s1, e1) and B = (s2, e2), we can test if they
intersect by checking the orientations of the ordered triplets formed by the four
points (s1, e1, s2, e2). There is intersection between A and B if (s1, e1, s2) and
(s1, e1, e2) have different orientations and similarly (s2, e2, s1) and (s2, e2, e1)
have different orientations. If points are collinear, we handle this case by fitting a
line through A and B and checking that the angle is around 0 or 180◦. By looking
at the orientations of the triplets we can also understand in which direction the
intersection occurred.

In case of multiple gates per camera, by tracking a person that is moving
across the scene we can re-identify the tracks who crosses multiple gates. In that
case, the system can directly ignore the following intersections, without further
advancing with the pipeline.

3.3 Body Feature Extractor

The body feature extractor module receives from the tracker those tracks that
cross a gate and extract a characteristic representation of each person. We fine-
tuned and tested two ResNet50 [6] networks pre-trained on the ImageNet dataset
as body feature extractors. To this end, we chose two datasets which are pop-
ular for the task of person re-identification and that contain challenging visual
conditions of people. The first net, named ResNet50-Market, is fine-tuned on the
Market1501 dataset [22], while the other, ResNet50-Duke on the DukeMTMC-
reID dataset [24]. For ResNet50-Market, we use the full training set of the Mar-
ket1501 dataset which has 6 cameras and contains 32,668 annotated bounding
boxes of 1,501 identities. For ResNet50-Duke, we use the full training set of the
DukeMTMC-reID dataset, which is a subset of the DukeMTMC dataset, where
1,404 identities are selected and for whom 36,411 bounding boxes are extracted,
sampling the videos every 120 frames. The resulting fine-tuned networks are
evaluated on the respective validation sets, obtaining a mAP of 79.1% and a
Rank-1 of 91.8% and a mAP of 59.4% and a Rank-1 of 77.2% respectively. In
both cases the results, specifically the Rank-1 figures, show that the fine-tuned
networks exhibit good re-identification capabilities.

For both network, each bounding box of a person is resized to the fixed size
of 128 × 256 pixels as network input. The body feature is obtained by taking as
output the penultimate layer feature maps of dimension 2048 normalization.

Given a track K that cross a gate, the module extracts the bounding box
of the person and a feature fi for each one of the M = 90 (empirically set)
frames before and after the crossing, using one of the fine-tuned networks. As
a result we obtain a set of feature per person crossing F = {f−45, . . . , f45}. We
obtain the final feature PK by applying average pooling to the set following L2
normalization.
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3.4 Re-identification

This module is responsible to keep track of the known identities and increment
the counter of each gate when a new person is crossing. To this end, the mod-
ule maintain a set of features M for each gate where new person features are
stored upon crossing. To detect if a person was saw in the past we implement
a simple distance strategy. Given a feature PK , we compute its cosine distance
< PK ,Mi > from all features Mi in M. When Mi > η, with η cross-validated
on the training set, we consider the person as new. In that case the module
increments the counter of the gate and adds PK to M. The number of known
identities corresponds to the count of unique persons that have crossed each gate
and is the final output of the system.

4 Experiments

In this section we report our experiments of the whole system and its compo-
nents. We first describe the dataset used and the experimental settings. Then
we report the experiments of our system on the unique counting task.

Fig. 3. Gates location. We drawn 3 gates per camera to count the flow of people
along the principal directions. Note that the system allow a user to freely drawn them
as many as needed.

4.1 Dataset and Ground Truth

We used the challenging DukeMTMC dataset [12]. The dataset is comprised of 8
static camera recordings of the Duke University campus. Each recording consists
of roughly 85 min of 1080p 60 fps video footage with more than 2,000,000 manu-
ally annotated frames for multi-target tracking, 7,000 single camera trajectories
and more than 2,000 identities. Identities have been manually annotated with
the respective bounding box and unique ID. They follow unconstrained paths,
moving between different cameras.
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4.2 Experimental Setup

From the 8 cameras of the DukeMTMC dataset we selected 2 cameras for test-
ing the system, specifically number 5 and 6 as they feature the most number
of identities exiting from the scene and later returning. We used the train val
sequence as ground truth annotations are available for this one, while they are
not provided for test sequences. We cross-validated the cosine-distance threshold
η and the M frame length on camera 4.

For each scene we place 3 gates which cover all the main directions a person
can go. Images of the gates for each scene are shown in Fig. 3.

Naturally the dataset does not come with unique counting ground truth,
but we can generate it starting from its multi-target annotations. To this end,
identity annotations are used to identify which gate is crossed and by how many
persons. Counting is made when a person crosses one of the gates. Subsequent
crossing of the same or any other gate in the scene is ignored. We use the resulting
number as ground-truth for our method.

4.3 Results

For assessing the performance of the system, we first test the proposed tracker
with the two detectors and then we test the performance of the whole system
comprised also of feature extraction and re-identification.

Table 1. Counting results using the base-
line approach.

Cam. 5 Cam. 6

YL + Tracker 785 1187

OP + Tracker 644 1070

GT + Tracker 459 728

GT Unique 431 725

Table 2. Counting results using the full
system. R50 represents the ResNet50 net-
work.

Cam. 5 Cam. 6

YL + Tracker + R50-Market 561 778

OP + Tracker + R50-Market 533 762

GT + Tracker + R50-Market 501 741

YL + Tracker + R50-Duke 438 752

OP + Tracker + R50-Duke 434 748

GT + Tracker + R50-Duke 432 730

GT Unique 431 725

Detector + Tracker. For the first experiment, we test the tracker only in
absence of feature extractor and re-identification modules. The detector and
tracker can perform unique counting in presence of more than one gate by check-
ing if a track intersects multiple gates. We use this method as baseline, named
YL + Tracker when using the YOLO detector and OP + Tracker when using
OpenPose. For reference, we also measure the tracker performance only by using
the ground truth boxes as detector. We name this combination GT + Tracker.

We report the resulting persons counted by the baseline in Table 1 and com-
pare the methods to the ground truth person counting (GT Unique). We observe
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that GT + Tracker and GT Unique are very narrow in gap. We note that both
cameras exhibit the same observations. Given a perfect detector, our tracking
method is able to obtain a very good result with only the 6.4 % of error, confirm-
ing that the tracker can effectively discern when the same person cross multiple
gates. Looking at YL + Tracker and OP + Tracker we observe that the error
is higher, while the latter has a slightly more correct result. This suggest that
detector and tracking alone are not sufficient to perform the hard task of unique
counting due to missing detections and tracker not able to completely recover
from such issues. OpenPose result in more coherent detections as expected. Our
tracker may miss some identities due to occlusions or persons abandoning the
scene and re-entering later. This leads to double-counting, as re-entering per-
sons would be considered new identities. At the same time, overlapping between
tracks may lead to identity swap and thus to erroneous counting.

Full System. In this experiment we test the complete system, that is the four
modules including feature extraction and re-identification, with the two fine-
tuned networks (ResNet50-Market and ResNet50-Duke). The full system run
at about ∼12.2 FPS. We report in Table 2 the persons counted by the whole
system in the various combinations. We can see that although having achieved a
lower Rank-1 for re-identification, fine-tuning on the same domain dataset yields
better results. In fact, between the various combinations, we observe that the
best combination is OP + Tracker + ResNet50-Duke, resulting in a near perfect
result. Comparing Tables 1 and 2, we note that by adding the last two modules,
the system is able to recognize more passed people and outputs a counter more
near the ground truth. This confirm that our re-identification approach is able
to reduce the false counting by re-identify the track of same persons.

5 Conclusions

In this paper we proposed a system to perform the variant of unique counting,
that is counting the unique persons which crosses a user drawn gate. The system
is able to detect persons, track them when they are near a gate and crosses
it. We perform open-world re-identification on the body feature, by exploiting
fine-tuned features that we trained on Market and DukeMTMC-reid datasets.
Experiments on the challenging DukeMTMC dataset showed that our system
is able to effectively count people passing through the gates in real time and
recognize already passed people.
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Abstract. This paper describes a low-cost vision-based system for real-
time tennis game analysis. The system elaborates videos captured by
four synchronized and calibrated cameras installed at the sides of the
court in order to accurately localize ball and players, and track them in
real-time. From this low-level data mid-level events, like shots, bounces,
ball in net, and high-level events, like stroke type and line calling, are
detected. All this data is made available to the players both on-court
during the play or through a web device at the end of the session. Cur-
rently, system prototypes are undergoing a field test in three locations
in Italy. In addition to positive comments of users, robustness and reli-
ability of the system have been demonstrated with specific evaluation
tests. Detection rate of shots is 99.7% while miss detection rate is less
than 0.8%. Reliability of the stroke classification is 97.1% and of in/out
evaluation is 99.5%. On average reaction time for line calling is 152ms.

Keywords: Tennis analysis · Real-time image processing · Line calling

1 Introduction

Sport is a physical activity aiming to improve skills through personal challenges
and competitions and, at the same time, to provide recreation and enjoyment to
participants. Competitive sport represents a source of entertainment for an ever
increasing number of spectators around the world, especially thanks to the wide
diffusion of television and digital media, making it an important business.

The topic of content-based analysis of broadcast sport material, including
tennis, has received, and continues to receive, great attention and efforts from
the computer vision research community. In particular, techniques have been pro-
posed for automatic annotation of multimedia archives for information retrieval
[19,21] and for video enhancement [16] using augmented reality methods to
improve the engagement of spectators.

This work has been partially funded by Provincia Autonoma di Trento (Italy) under
L.P. 6/99. Authors would like to thank the staff involved in the system development.
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We propose a low-cost solution based on computer vision to extract in real-
time low-level information from a tennis game on-court. Specifically, our system
is able to detect and track the 3D position of ball and players. This data is then
used by a higher level module to extract analytics than can be offered to the
players both on the field and through a web application. Currently the system
provides (i) classified detection of shots (forehand, backhand, serve) along with
information about space/time localization, velocity and spin, (ii) detection of
ball bounces with the estimation of the court contact region supporting the line
calling functionality. The solution has been included in a novel system, called
EYES ON1 with the main purpose to allow players to experience the game in
a novel and appealing modality, by checking their personal performance, their
progress over time, and to get help in the evaluation of controversial in/out cases.

The paper is organized as follows: Sect. 2 provides a brief overview of the
state of the art of products or systems devoted to the tennis world. Section 3
presents the main features and the general architecture of EYES ON. Section 4
provides a description of the computer vision sub-system, its modules and the
low-level data they provide. Section 5 describes the analytics that are computed
from data collected by the vision sub-system, and their visualization through
a user interface. Experiments and system performance are provided in Sect. 6,
while Sect. 7 concludes the paper with planned future upgrades.

2 Related Work

In the last two decades products devoted to tennis analysis with dedicated cam-
eras in the court have been proposed. For example, LucentVision [15,16], Hawk-
Eye [14], and Foxtenn are professional monitoring tennis systems. LucentVision,
a system for enhanced tennis broadcasts using real-time game statistics and vir-
tual replays, was launched in 1998 with the ATP Tour and has been used in
broadcasts of international tennis tournaments. Hawk-Eye [1,14] ball tracking
system is the most advanced tool used in official tennis matches since 2002, and
still in use today. It is known for its electronic line calling functionality. Hawk-
Eye uses up to ten high resolution cameras placed on the stadium roof, capturing
images at 50/60 frame per second (fps) [12,20]. Foxtenn, proposed by Foxtennis
Begreen, includes the line calling functionality and recently it received the offi-
cial approval from the International Tennis Federation (ITF) [11] for its usage
in competitions. The system uses up to 8 cameras at 120/2500 fps synchronized
with a high-speed laser scanner system. Because of their cost and the complex
installation and calibration procedure, they are targeted to the professional cir-
cuit. Recently, some monitoring products addressed to players appeared on the
market, but aiming only at specific practice or training task, e.g. monitoring the
hits of balls being shot from a ball machine [22], supporting coaches for player
performance analysis [4,18], detecting where a ball has landed on the court to
support the line calling function [9], with a camera mounted on a net-post.

1 https://www.eyeson.tennis.

https://www.eyeson.tennis
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A few systems for monitoring tennis game have been proposed in the litera-
ture. A comprehensive system is TennisSense [3], an instrumented platform for
indoor courts, devoted to player performance analysis and health monitoring.
The project focuses on multi-modal sensors integration, including a computer
vision system and wearable electronic sensing devices. Among the systems based
solely on vision we cite the video indexing system outlined in [17] and the plat-
form described in [18]. In both cases they suffer the limitation to operate only
for indoor court and, most important, not in real-time.

To the best of our knowledge SmartCourt [10], offered by PlaySight Inter-
active, is the only system on the market that provides a complete monitoring
of tennis game and that can be compared to EYES ON, at least in terms of
functionalities. It is equipped with four high-definition cameras working at 50
fps, one or more web cameras, and a graphical interactive interface located in a
kiosk structure next to the court. Cameras must be positioned at the top of poles
placed at the four corners of the court. It employs image processing algorithms
to extract information about strokes, ball trajectory, speed of shots, as well as
player movements. Purpose of the web cameras is to support video recording for
instant replay on the kiosk from different angles.

3 Outline of the System

The design and implementation of the proposed computer vision system took
into account a list of requirements of the whole project: (i) extraction of useful
information, part of which immediately available to the players, (ii) accuracy of
detection in order to enable the line calling functionality, (iii) applicability in a
wide range of different conditions, (iv) ease of installation and configuration, and
(v) low-cost. The global architecture of EYES ON is schematized in Fig. 1. The
core resides in Vision System whose task is to process video streams provided
by cameras observing the court for a twofold purpose: (i) extract low-level data
related to 3D position of ball and players with a sufficient temporal resolution to
generate accurate trajectories, and (ii) detect relevant events - like ball bounce,
ball in net, ball hit by racket - along with their localization in space and time.
This data, as soon as it is available, is sent to a Supervisor module which con-
trols the whole system by managing (i) the interaction with the user and (ii) the
communication with a local database and the Cloud. The Supervisor includes
a video analitycs module for the processing of low-level data coming from the
Vision System to extract high-level meaningful information for the users, e.g.
stroke classification or in/out decision. The interaction between Supervisor and
user, through the on-court GUI, allows players to register and to select the
desired game modality: match, warm-up, or drills. According to the selected
mode the Supervisor properly configures the analitycs module. Computed ana-
lytics are stored in a local database and, upon request, are shown to the players
through the GUI. At the end of each session the extracted data is sent to the
Cloud and stored in a permanent database that can be remotely accessed to get
personalized performance analysis, trends, or comparison with players commu-
nity. The hardware configuration of the system includes a processing unit hosted
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in a cabinet on one side of the net along with a touch screen display, and four
cameras that, in a common set-up, are mounted on two supports located next
to the net-posts. The two halves of the court are monitored independently by
pairs of cameras. They are synchronized and cable-connected to the processing
unit. A position close to the net, besides simplifying the installation, helps in
minimizing ball occlusions due to the body of players. But, as a matter of fact,
cameras do not necessarily have to be mounted on such supports, and they can
be installed on possibly existing structures provided they offer a comparable
view of the scene. Other cameras may be optionally installed in the court with
the aim to observe and record tennis action from different points of view.

Fig. 1. EYES ON’s software architecture. Through the On-court GUI players can reg-
ister and select the game mode; Supervisor activates the Vision System and, accord-
ingly to game mode, computes and stores analytics on local and cloud DBs. Results
are accessible immediately through On-court GUI or via Web App at the end of the
session.

4 Vision System

To meet system requirements we designed and implemented computer vision
modules characterized by: (i) low complexity in order to run in real-time, (ii)
adaptability to a wide range of illumination conditions, (iii) flexibility with
respect to moderate variations of camera position, (iv) ability to detect and
track accurately small and fast moving objects (e.g. 180 km/h). The Vision Sys-
tem is organized as a set of different specialized software modules which are
coordinated at run time by a Vision Manager (VM), which is also in charge of
communicating with the Supervisor. The software architecture is diagrammed
in Fig. 2. Software modules run on different threads whose execution is orches-
trated by VM. VM keeps track of the global state of the monitoring system
including information like: a ball is currently tracked or both the players are in
the court. In the following we describe different functionalities provided by the
Vision System along with the role played by the modules in Fig. 2.
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Fig. 2. Software architecture of the multi-thread Computer Vision system. The Vision
Manager (VM) communicates with Supervisor and orchestrates the activity of the
analysis modules: Motion Detection (MD), Background Analysis (BG), Ball Localiza-
tion (BL), Player Localization and tracking (PL), and Ball Tracking (BT). Analysis
modules use camera parameters produced and checked by two special modules. Each
camera manager (Cam) acts as interface between a camera and the processing modules.

Configuration. The vision modules behaviour depends on the value of a set of
parameters that have to be defined at installation time. The most relevant regard
court and cameras: A court model stores the position court elements (base-
lines, service lines, lateral lines, ...) with respect to a real-world coordinate system
having origin in the centre of the court, X axis along the middle court line, Y axis
along the net line and Z axis oriented upwards. The model includes also informa-
tion about the court surface (clay, hard, grass, carpet). camera calibration is
a critical but essential step for 3D object localization from 2D images. Intrinsic
camera parameters are estimated once and for all in laboratory by acquiring
images of specific graphical patterns. Extrinsic parameters are estimated by an
automatic module that works on images acquired at installation time after fix-
ing cameras on their supports with a proper field of view. The auto-calibration
module localizes the court lines intersections and put them in correspondence
with the real-world positions stored in the court model to calculate camera
coordinates and orientation with respect to the reference system. An auxiliary
module, called calibration check, has been implemented for the periodical
verification of camera poses. The alignment of expected court lines, according
to calibration, and real ones is computed and if misalignment overcomes a given
threshold a re-calibration step is automatically executed.

Image Analysis for Object Detection. Image acquisition and delivery to process-
ing modules is managed by the Cam modules (see Fig. 2): each camera acquires
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color images 1920 × 1200 at 50 fps, or 1920 × 1024 at 60 fps. Images are stored
in circular buffers and provided upon request to the analysis modules. Two
approaches are adopted to detect foreground objects from single images: back-
ground subtraction and motion detection (or frame difference). Four background
updating modules (BG), running in parallel, get frames from camera managers
and process them to create and maintain four images that store the appearance
of the scene without foreground objects, e.g. players. To compute the so called
foreground the current frame is compared to the background image. The back-
ground reference image is periodically updated (typically 3/5 times per second)
in order to model scene changes, which otherwise would lead to the detection
of false objects. Our method for background generation and updating is based
on [13]. Motion Detector (MD) is another low-level processing module that gets
frames from Cam and puts them in a short circular buffer. These are processed
to identify pixels corresponding to moving objects in an image and to produce
a motion map. It is analyzed to detect regions compatible with a moving ball
using two methods: (i) after thresholding, extraction of connected components
and morphological filtering, (ii) detection of peaked moving regions having a cir-
cular or elliptical shape. For each frame, the motion detector output is a set of
candidate ball regions. The module is applied to the entire frame or to selected
sub-regions according to the global state of the ball detection system stored in
the Vision Manager.

3D Ball Localization and Tracking. This task is in charge to Ball Localization
(BL) and Ball Tracking BT modules. BL is based on the analysis of the 2D
candidate ball regions produced by two MD modules looking at the same half
court. The type of analysis depends on the state of the tracking system, in
particular we distinguish two states: (a) the system is searching for a moving
ball (search), (b) the system is currently tracking a ball (track). In the first case
both BL modules run in parallel looking for a moving ball in their respective
half court. A BL collects candidate regions from a short sequence of consecutive
frames and, through triangulation, provides a cloud of ball candidates in the 3D
space. By means of graph analysis, 3D candidates collected through time are
filtered to build a ‘tracklet’ consistent with the physical model of a flying ball
[8]. When a BL detects a 3D ball the state of the system switches to track and
the expected trajectory of the ball is estimated according to the motion model. If
the system is in state track, the computation of the current ball location depends
on the distance of candidate regions to their predicted position according to the
expected trajectory. The system estimates the new ball position along with a
confidence factor. In case of high confidence the new position is used to update
the expected trajectory. A low confidence means a detection failure which is
notified to BT for a proper management of the condition. BT monitors the
output of the BL modules and, as soon as it is not consistent with the predicted
trajectory, it performs a detailed analysis in order to identify the reason, that
typically is included in the following list: ball went out the field of view, ball
bounced, ball went in the net, ball touched the net chord, ball hit by a player. If
the module recognizes one of these conditions it deals with it in a specific way,
otherwise it labels the track as lost and the state is set again to search.
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The management of the bounce event is particularly critical to support the
line calling functionality. As described in [7], the ball cannot be assimilated to a
material point with non-zero mass, but as a moving elastic sphere, that rolls and
slides, and its contact with the ground is not a point but an area. For this, we use
a bouncing model [2,5,6], and describe the impact region as an ellipsis. Accurate
detection of the ball during the impact with a racket is a critical task, mainly
because of fast movements and possible ball occlusions. For this reasons we infer
the time and space coordinates of the impact point by analysing in-coming and
out-going branches of the ball trajectory. BT returns to VM the ball coordinates
at each time and the occurrences of mid-level events, like bounce, ball in net,
impact with racket, net chord, along with the spatio-temporal coordinates they
happened.

Player Detection and Tracking. Player Localization module PL, one for each
half-court, aims to estimate player position and movement (Fig. 3). It computes
two foreground maps from the output of BG modules related to the same half
court. The module exploits a correspondence map that associates foreground
pixels to lists of possible player locations in the real-world. This map is pre-
computed in an off-line configuration phase by virtually placing a player model
on a grid of locations on the court, projecting it on the image plane, and col-
lecting the coordinates of changed pixels. The correspondence map permits to
compute, at run-time, a discretized probability map of player location, in real-
world coordinates, by accumulating the contribution of every foreground pixel.
The probability maps are multiplied to combine information coming from the
two points of view. To take into account spatio-temporal continuity, a prior
probability map is considered that enforce the player location to be in a neigh-
bourhood of the previous one. At the beginning, the prior map favours positions
close to the baseline. The entropy of the probability map is used to determine if
a player is in the court: high entropy values mean low probability of a person to
be in the scene. PL modules run typically at 5–10 Hz and return to the Vision
Manager information about presence and position of players in each half court.

Fig. 3. Player localization: probability maps that explain foreground regions in two
correspondent views (second and third maps) and an updated prior map of player
location (first map) are used to estimates a posterior distribution (fourth map). The
most probable location is reported in the 2D top view.
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5 Analytics and Their Visualization

The Supervisor includes a module to process data produced by Vision System to
compute video analytics, i.e. meaningful information about the observed activity
useful for players to asses their skills and measure their progress. Knowledge
about 3D trajectories of ball and players in real-time enables the extraction of
useful data, like classification of the stroke type, building of bounce and serve
maps, computation of shot speed, analysis of relative position of ball, player and
racket during an impact. At an even higher level, it is also possible to obtain
information about the sequence of individual strokes and to provide a description
of player strategies. In the following we describe the most relevant implemented
analytics.

Stroke Classification. In general, the stroke type depends on ball and player
absolute and relative positions, e.g. serve, forehand, backhand, smash, but in
order to provide a more detailed classification other data have to be considered:
ball spin (top-spin, slice), ball direction (cross, long-line), opponent position
(passing, lob), ball bounce before (volley) or after (drop-shot) the hit. At present,
the system implements the classification of serve, forehand and backhand.

Line Calling. This analytic computes the possible intersection of the legal region
with the ellipse provided by the Computer Vision along with the bounce event,
to establish if the ball has fallen in or not. The legal region is differently defined
by the tennis rule depending on the fact that the stroke originating the bounce
is a serve, or not. In the first case it depends on the server player position (cross-
court service box), while in all the other cases it is the opposite half court. The
analytic considers therefore the playing situation: type of stroke and, if necessary,
player position.

Other information are computed and made available to the players, like land-
ing point map, player occupancy and movements maps, traveled distance, as well
as statistics on speed/spin of the ball by type of stroke. Results of analytics are
almost instantaneously accessible to players, through the on-court GUI. Data is
visualized on the dashboard in a traditional tabular form as well as by means of
geolocalized maps which enable the player to interpret spatio-temporal data at
a glance. Figure 4 reports some examples. Video of the whole match or selected
video clips are uploaded to a web server at the end of the game session and then
accessible from any web device and shareable on social media.

Fig. 4. Analytics examples. From left to right: real-time visualization during a match
(shot classification, speed, spin); reconstruction of the landing point; statistics and map
about a serve drill.
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6 System Performance

EYES ON is currently installed in three tennis clubs and has almost com-
pleted the test phase (Fig. 5): Circolo Tennis (CT) Trento (Italy) - clay court
covered with an air dome system during autumn and winter; Circolo Tennis
Arco (Trento, Italy) - hard court inside a sport building; Centro di Preparazione
Olimpica (CPO) of Tirrenia (Pisa, Italy) - belongs to the Italian Tennis Feder-
ation which has decided to evaluate EYES ON as a tool to support training of
young top players. The various installations allowed players with different needs
to test the system and provide their qualitative feedback. To assess the system
quantitatively, we collected and examined data contained in a total of 1 h 23’
35” of game (match and drills), corresponding to 250.750 frames per camera,
in sequences acquired from different court scenarios. In the considered videos
1069 shots are present, defining as shot the event in which a flying ball has an
impact with a racket. The system has correctly detected 1061 shots (Precision
99.3%) and generated 3 false detection (Recall 99.7%). Table 1 reports perfor-
mance about stroke classification by type (Forehand, Backhand, Serve) and by
destination (IN, OUT, Fault). In the tables each row represents the instances
of a true class, while the columns represent the classification provided by the
system. In both cases data refers to the set of 1061 shots correctly detected. The
system exhibits a reliability rate greater than 97% to declare the correct type of
stroke and a reliability of 99.5% relatively to the shot destination.

Fig. 5. System installed at CT Trento court without and with covering. Camera on
the timber joists at CT Arco, and cabinet at CPO Tirrenia.

Running Time. We evaluate system performance in terms of processing time
through various working sessions, with different lighting conditions and game
modes. Table 2-Left reports mean elaboration time for the most time consuming
tasks, i.e. 3D ball localization and player localization. On average, half of the
time is dedicated to the first task, while player localization, which is computed
in parallel at a lower frame rate, requires only 75 ms every second. Therefore,
the processing power can be dedicated to the other software components of the
system for about 50% of the time, on average.

System Reactivity. We have estimated the reaction time of the system, that is the
time needed by the system to signal an event (hit or bounce) after it happened.
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Table 1. Left: Confusion table related to the classification of the three basic stroke
types. Right: Confusion table related to the classification of shot as IN, OUT, Fault.
GT columns report the ground-truth number of events.

GT Fore Back Serve Reliability(%) GT IN OUT Fault Rel(%)
Forehand 590 571 19 0 96.8 IN 855 852 3 0 99.7
Backhand 310 12 298 0 96.1 OUT 104 1 103 0 99.0
Serve 161 0 0 161 100.00 Fault 102 1 0 101 99.0

1601latot1.791601latot 99.5

It is a sum of a small constant time, intrinsic in low-level image processing, plus
the time to reliably detect the ball trajectory after the event and, finally, the
time to compute the shot parameters. As reported in Table 2-Right complete
information about the shot preceding the event is available after about 300 ms
the event occurred. In the case spin calculation is not required, e.g. for in/out
estimation, the average reaction time results to be 152 ms.

Table 2. Left: Average processing time for the main computer vision tasks: 3D ball
localization and player localization. Right: Statistics on system reactivity (in millisec-
onds). We reported the average delay times (μ) in detecting a shot or a bounce, with
and without computation of motion parameters (MP), and the standard deviation σ.

task time (ms) freq (Hz) ms per sec event samples with MP w/o MP σ
ball 10 50 500 racket 447 319 220 124
player 15 5 75 bounce 291 307 152 84

7 Conclusion

We have described a real-time vision-based system that offers to tennis players a
new training and matching style. The system collects data and provide analysis
usable by players, managers, coaches to improve game performance, highlight-
ing weaknesses or strengths. The system is low-cost, flexible, easy to install,
user friendly and reliable. Positive feedback has been collected from players who
tested the system in three pilot installations. System reliability has been assessed
in tests on real games. According to market needs, in the future we would like
to extend the functionality of the system and improve its accuracy in order to
submit the product to the ITF evaluation for obtaining the approval for auto-
mated line calling systems. Furthermore, research work continues to extend the
system to analysis of other sports by taking advantage of the flexibility of the
implemented modules.
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Abstract. Social modeling of pedestrian dynamics is a key element to
understand the behavior of crowded scenes. Existing crowd models like
the Social Force Model and the Reciprocal Velocity Obstacle, tradition-
ally rely on empirically-defined functions to characterize the dynamics
of a crowd. On the other hand, frameworks based on deep learning, like
the Social LSTM and the Social GAN, have proven their ability to pre-
dict pedestrians trajectories without requiring a predefined mathematical
model. In this paper we propose a new paradigm for crowd simulation
based on a pool of LSTM networks. Each pedestrian is able to move
independently and interact with the surrounding environment, given a
starting point and a destination goal.

Keywords: Crowd modeling · Crowd simulation · LSTM ·
Behavior analysis

1 Introduction

Although a considerable amount of research has been carried out in the domain
of behavior understanding and crowd motion analysis, there is still lack of a uni-
fied framework for validation. This is due to the fragmentation and heterogeneity
of datasets used for testing and benchmarking, which often suffer from scarcity
of training and testing data. Furthermore, quality of videos, size of datasets,
duration of sequences, content, density of the crowd, and quality of the anno-
tation, are only a few of the multiple factors that make it difficult to critically
evaluate the performance of machine vision algorithms. To address this problem,
one of the possibilities is to rely on simulators, which, although they might not
resemble the scenes as natural as the real videos, they provide a considerable
number of advantages, as automatic data annotation, and full control of camera
parameters. The integration of simulators in the processing pipeline has been lit-
tle investigated in the existing literature, and has initially been ruled by purely
agent-based models [5], thus conducting the analysis on the agents ground-truth
position.

The use of simulators in computer vision is not new per se, in particular
for object tracking and camera control [16], and, in computer vision, we have
recently observed an increasing interest in the generation of virtual videos instead
c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11751, pp. 117–127, 2019.
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of virtual agents behaviors. The substantial difference between the two consists
of carrying out the analysis with standard computer vision techniques, using the
videos generated by the simulator for testing purposes. This allows taking into
account potentially all the challenges of a real video, including the presence of
occlusions, obstacles, changes in the illumination conditions, similarity of objects
in the appearance model, etc.

In pedestrian dynamics, researchers have focused in the past on the study
of trajectories and social interactions between agents. The Social Force Model
(SFM) [10], the Reciprocal Velocity Obstacle model [20], and the continuum
crowds model [19] are among the best existing empirical models for crowd sim-
ulation derived from observation of the real world.

Recently, deep learning has been applied to prediction and forecasting of
agents in a video. Recurrent Neural Networks (RNNs), and in particular Long-
Short Term Memory (LSTM) networks, have successfully been adopted to pre-
dict the scene evolution over time [1]. This kind of networks has shown the
ability to learn the relation between spatially distributed data and its evolution.
LSTMs has also proven to be capable of generating video sequences complying
with predefined patterns [7]. Starting form the work in [1], we extend the use of
LSTM networks from path prediction to simulation of crowded video sequences.
The proposed method is implemented via a recurrent deep neural network based
on LSTM cells. Each agent in the simulation is driven by its own LSTM network,
which is aware of the hidden state of neighbouring agents. We train the LSTM
on our synthetic dataset, showing how the network is effectively able to learn
and replicate the simulated motion model. This demonstrates that gathering
person-specific datasets of real subjects would open to the opportunity to learn
person-specific behaviors, allowing for the inclusion of personal inclinations in
the virtual crowd model for a more realistic simulation.

To prove the feasibility of our approach in simulating end-to-end trajectories,
we validate our model using a synthetic dataset where agents move according
to the SFM [10], demonstrating how the proposed framework can effectively
learn the typical features of the SFM and reproduce them on different agents.
The compliance of the predicted paths against the SFM is measured using the
spatial distribution metric introduced in [9].

2 Related Work

The so-called Social Force Model relies on Newtonian forces to model the inter-
action between pedestrians and to guide each agent towards its goal. Similarly,
in robotics, the Reciprocal velocity Obstacle (RVO) [20] is widely used to model
the collision avoidance behavior between agents.

In the work by Treuille et al. [19], the crowd is modeled as a fluid, where
agents are influenced by their goal, position, their preferred speed and a dis-
comfort factor. However, the models mentioned above require the estimation or
computation of parameters, in order to replicate the interaction among agents.
The literature has tackled this issue relying on common optimization methods,
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like the Gradient-based Newton method [17] and Genetic Algorithms [15]. All
these methods are able to describe crowd behaviors assuming the availability of
a strong prior for the model. While they are good in describing the movements of
the whole crowd, they often fail in correctly representing the agent’s personality,
which is a key feature to enrich the model and make the simulation closer to the
behavior of real subjects. Data-driven approaches have recently been employed
to capture and model interactions among people in a crowd. Patil et al. [14]
use vector fields, either learned or manually sketched, to guide the crowd flow
in the environment. Goal-dependent velocity fields have also been used to guide
the simulation at a global level [3]. Lerner et al. [12] guide the agents using
learned trajectories, choosing the one that best matches the situation that the
agent is facing. Empirically-defined models can only tweak the behavior of dif-
ferent agents by varying parameters such as personal distances and preferred
velocities; data-driven simulations allow instead learning and simulating com-
mon social rules, such as the behavior at a roundabout, but local descriptors
for each agent personality cannot be handled directly. Cognitive models have
been employed to allow agents performing high-levels tasks such as path plan-
ning [6]. Various approaches have been employed to vary the pedestrian behavior
in the same situation, such as the OCEAN model [5] and the general adapta-
tion syndrome [2]. These models focus on local shaping of the motion, based on
personality traits, rather than long-term tasks.

As far as path prediction and activity forecasting is concerned, the literature
reports a good amount of relevant works. The Social Force Model has shown
good results in predicting pedestrian trajectories in the environment. Pellegrini
et al. have proposed the Linear Trajectory Avoidance model [15], which pre-
dicts the short term path of a pedestrian. Interactive Gaussian processes have
shown the ability to effectively improve the capability of a robot to predict
pedestrian trajectories and navigate a crowded environment [18]. More recently,
Recurrent Neural Networks, in particular LSTMs, have proven good capabili-
ties in describing spatially distributed data, also providing a temporal link in
sequences. LSTMs have been applied to crowd trajectory prediction by Alahi
et al. [1]. However, as mentioned above, one important issue in crowd simulation
is the lack of a recognized evaluation metric to assess the quality of a simulation.
If the simulation refers to an existing, real-life scenario, it can be evaluated using
common tools, by measuring global features, such as density and distribution of
the elements in the scene. Density-based [13] and entropy-based metrics [8] are
often used to compare real and synthetic data.

In [9], Helbing et al. present a metric based on the density distribution
between two sets of trajectories. As detailed later, we will adopt this metric
to evaluate the performances of our simulator in a quantitative manner.

3 The Proposed Model

Empirically-defined parametric functions are generally good in reproducing the
global motion properties of the crowd, but they tend to fail when capturing the
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complexity that leads each human to react differently when facing the presence
of other subjects or obstacles.

In the domain of path prediction, LSTM networks [11] have shown good
capabilities in predicting the behavior of pedestrians, if properly trained. In
particular, the Social LSTM model [1] is able to capture the status of the neigh-
borhood around each agent (number and position of other agents), which is then
used to refine the trajectory prediction. In our work, we propose a model able
to perform a simulation of a crowded scene by learning the motion properties of
the agents from a set of training video sequences. Each agent in the simulation
is provided with an autonomous network, based on LSTM cells. Each pedestrian
tries to reach its target destination given a starting point, a goal and the status
of his neighborhood.

Depending on the set of trajectories used to train the specific network, each
LSTM network can react in a different way to the same scenario. For example, if
an LSTM network is trained with a set of trajectories belonging to a specific per-
son, it will then be able to learn that model, thus replicating the subject reactions
(personality traits) to specific situations occurring in the simulation. The pos-
sibility of reproducing different personality traits makes it possible to simulate
semantically rich realistic situations, which do not rely on purely deterministic
models. To the best of our knowledge, such paradigm has not been explored in
the state-of-the-art and no dataset in this form has been made available to the
research community.

3.1 Virtual Crowds

Extending the LSTM paradigm to crowd simulation, each agent’s movements
are controlled by an LSTM network, able to guide it through the environment.

Agents (pedestrians in our scenario) moving in the crowd are influenced by
their goal, their personality, and the state of their neighborhood. All necessary
details are provided in the next paragraphs.

Goal Modeling. At the beginning of the simulation each agent/pedestrian
pedi, whose position is defined as (xi

t, y
i
t), is initialized at a starting position

(xi
0, y

i
0). The goal of the i-th pedestrian pedi is defined as

gi = (xi
g, y

i
g) (1)

where xi
g and yi

g are coordinates defined in meters in the simulator.
The chain structure of a cell of the neural network is shown in Fig. 1. At

each time step, the inputs of the LSTM cell representing a pedestrian are (i) the
previous position (xi

t−1, y
i
t−1), (ii) the goal gi, and (iii) the Social pooling tensor

Hi
t . The output of the LSTM cell is the agent position (xi

t, y
i
t).

When the Euclidean distance between the current position (xi
t, y

i
t) and the

goal gi is less then one meter, the simulation of that pedestrian is terminated.
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Fig. 1. The figure represents the chain structure of the LSTM network between two
consecutive time steps, t and t + 1. At each time step, the inputs of the LSTM cell
representing a pedestrian are the previous position (xi

t−1, y
i
t−1), the goal gi and the

Social pooling tensor Hi
t . The output of the LSTM cell is the current position (xi

t, y
i
t).

Neighborhood Modeling. The state of the neighborhood of each pedestrian
is represented by a “Social” hidden-state tensor, as proposed by [1]. The Social
pooling layer allows pedestrians to share their hidden states, thus enabling each
network to predict the next position, reasoning about its hidden state and the
neighborhood state.

The pedestrian pedj at time t in the scene is represented by the hidden-
state hj

t of a LSTM network. We choose the hidden-state dimension D and
the neighborhood size N0. The neighborhood of the agent pedi is handled by a
“Social” pooling layer. This layer has the aim of pooling information received
from the LSTM cells of its neighbors while preserving also their spatial mapping.
This spatial mapping is preserved through a grid pooling as explained in Eq. 3.
The pooled information is used to build a tensor, called “Social” hidden-state
tensor Hi

t , with dimensions N0 × N0 × D:

Hi
t(m,n, :) =

∑

j∈Ni

1mn[xj
t − xi

t, y
j
t − yi

t]h
j
t−1 (2)

where hj
t−1 represents the hidden-state of the LSTM of pedj (∀j �= i) at t−1, N i

represents the set of neighbors of pedestrian pedi and 1mn[x, y] is an indicator
function defined as:

1mn[x, y] =

{
0 if [x, y] /∈ cell mn
1 if [x, y] ∈ cell mn

(3)

A graphical representation of the pooling operation is shown in Fig. 2.
Once computed, the Social hidden-state tensor is embedded into a vector ai

t.
The output coordinates are embedded in the vector eit. The resulting recurrence
is then defined by the following equations:
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Fig. 2. Representation of the Social pooling layer. The black dot represents the pedes-
trian of interest pedi. Other pedestrians pedj (∀j �= i) are shown in different color
codes. The state of the neighborhood of pedi is described by N0 × N0 cells, which
pooling together spatially-close neighbors preserves the spatial information. This will
later be used to construct the hidden-state tensor Hi

t .

rit = Φ(xi
t, y

i
t;Wr) (4)

eit = Φ(ai
t,H

i
t ; g

i,We) (5)

hi
t = LSTM(hi

t−1, e
i
t;Wl) (6)

where Φ is an embedding function with ReLU activation; Wr and We represent
the embedding weights, and Wl represents the LSTM weights.

The next position (xi
t+1, y

i
t+1) in the simulation depends on the hidden-state

at the previous time-step hi
t. Inspired by [7], and as performed in [1], we predict

the following parameters, which characterize a bivariate Gaussian distribution:
the mean μi

t+1 = (μx, μy)it+1, the standard deviation σi
t+1 = (σx, σy)it+1 and the

correlation coefficient ρit+1. We use a 5 × D weight matrix Wp to estimate the
parameters. Thus, the coordinates at the next time-step t + 1 are computed as:

(xi
t+1, y

i
t+1) ∼ N(μi

t, σ
i
t, ρ

i
t) (7)

In order to estimate the parameters of the LSTM model, the negative log-
Likelihood loss Li for agent pedi is minimized for the current time instant t:

[μi
t, σ

i
t, ρ

i
t] = Wph

i
t−1 (8)

Li(We,Wl,Wp) = −
Tstep∑

t=Tcur+1

log
(
P(xi

t, y
i
t | μi

t, σ
i
t, ρ

i
t)

)
(9)

Our model is trained minimizing the log-Likelihood loss for all the trajectories
belonging to the dataset.

Personality. As far as the personality and decision making is concerned, the
motion of the pedestrian in the crowd has been modeled in existing simulators by
empirically varying parameters, such as pedestrian velocities and personal dis-
tances. Although this could actually increase the diversity of the agents’ motion,
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it is still not sufficient for a realistic modeling of the personality traits, which
in general lead to non-deterministic and non-linear motion models. Providing a
“personal” set of trajectories to each agent in the scene would allow for a much
more complex and diverse simulation.

Let us consider two pedestrians in the real world, where one exhibits an
aggressive behavior, while the other exhibits a shy behavior [2]. Let us assume
that we are able to collect a significant set of trajectories for each of the two
pedestrians. During simulation we associate pedi as the aggressive subject, and
pedj as the shy one. In this way, if we introduce both of them in the same sim-
ulated scenario, such that the social pooling tensor is Hi

t(m,n, :) = Hj
t (m,n, :),

and goals are gi = gj , the two pedestrians will take different decisions, depending
on the specific features.

3.2 Implementation Details

To achieve our results, we have used the following configuration. The embedding
dimension for the spatial coordinates is set to 64. The spatial pooling size, which
corresponds to an area of 4×4 m2, is set to 32. The pooling operation is performed
using a sum pooling window of size 8 × 8 with no overlaps. The hidden state
dimension is 128. The learning rate parameter is set to 0.003 and RMS-prop [4]
is used as the optimizer. The model is trained on a single GPU using a PyTorch1

implementation.
At the input of the LSTM, each trajectory consists of a set of coordinates

(Xreal, Yreal) in meters, which needs to be normalized. Each pair (xreal, yreal)
in the set is normalized between [−1, 1] using the following conversion:

(xnorm, ynorm) =
(
2 ∗ xreal − min(Xreal)

Norm
− 1, 2 ∗ yreal − min(Yreal)

Norm
− 1

)
(10)

where Norm represents the maximum range (in meters) of the biggest scene.
This normalization is in line with the experiments conducted in previous works
in this area [11].

4 Results

Dataset. To test our approach, we created a dataset composed of 5 fully anno-
tated scenes, which visually match other known real datasets, namely the ETH
[15] and UCY dataset [12], used in the experiments in [1]. An example is shown
in Fig. 3. The choice of using real datasets as reference is to confront the agents’
motion to scenes known to the community, rather than reproducing all the very
fine details in terms of appearance, which is in this work not relevant.

The average density of pedestrians per frame is 10. The five different scenes
include 204, 177, 194, 210, and 174 trajectories, respectively. The videos have
been recorded at a rate of 15 fps. The preferred velocity in the Social Forces
model is set to 4.7 km/h, which corresponds to the average speed of a walking
pedestrian.
1 http://pytorch.org.

http://pytorch.org
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(a) Real dataset (b) Synthetic dataset

Fig. 3. A comparison of two frames of the real and synthetic datasets. The scene of
interest is the so-called Hotel scene of the ETH dataset [15].

Experiments. To demonstrate the learning capabilities of the proposed frame-
work, we rely on the simulated sequences based on SFM. Each LSTM network
is trained for 100 epochs. Both training and test are conducted according to the
leave-one-out strategy. This corresponds to training on 4 sets of trajectories and
simulate a scene, which is similar to the fifth one. The prediction is updated at
steps of 0.4 s. In other words, the agent will re-consider its next displacement
according to its surroundings after 6 frames.

For each agent, the simulation starts in the time instant it appears in the
scene. Each pedestrian is assigned a goal, namely the last known position in the
scene. Our model computes the trajectories for each pedestrian and returns the
set of positions for all of them at each time step, for a complete and exhaustive
representation of the scene content.

4.1 Validation

To evaluate the simulation of the model with the dataset trajectories, we com-
pare the density distribution ρi,j . The density of the distribution is computed
using the equation suggested by Helbing et al. [9], as shown in Eq. 11, where n
represents the total number of points of all trajectories; d(i, j, k) is the Euclidean
distance between the k − th point along a trajectory and the (i, j) point of the
grid; and R is a scaling factor:

Table 1. For each video sequence, the table reports the number of points available in
the simulated video, and the number of grid cells in the horizontal (i) and vertical (j)
dimensions.

n i j

ETH Univ 356 4 25

ETH Hotel 383 4 18

UCY Zara1 455 25 14

UCY Zara2 654 25 15

UCY Univ 3006 30 18
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Table 2. Simulation of the five different video scenes that mimic real datasets, as used
in our experiments. The left column reports an overview of the scene, while the central
and right columns report an example of the original video density and a sample of
the one simulated using our framework. The value of ρ is color-coded: warmer colors
represent higher densities, while colder colors represent lower values. Numerical values
are reported on the right column at the right of each plot.

Name Scene Original Density Simulated Density

ETH
Hotel

1 1.5 2 2.5 3 3.5 4

area width

5

10

15

20

25

ar
ea

 h
ei

gh
t

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 1.5 2 2.5 3 3.5 4

area width

5

10

15

20

25

ar
ea

 h
ei

gh
t

0.15

0.2

0.25

0.3

0.35

ETH
Univ

1 1.5 2 2.5 3 3.5 4

area width

2

4

6

8

10

12

14

16

18

ar
ea

 h
ei

gh
t

0.05

0.1

0.15

0.2

0.25

1 1.5 2 2.5 3 3.5 4

area width

2

4

6

8

10

12

14

16

18

ar
ea

 h
ei

gh
t

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

UCY
Univ

5 10 15 20 25

area width

2

4

6

8

10

12

14

ar
ea

 h
ei

gh
t

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20 25

area width

2

4

6

8

10

12

14

ar
ea

 h
ei

gh
t

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

UCY
Zara1

5 10 15 20 25

area width

2

4

6

8

10

12

14

ar
ea

 h
ei

gh
t

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25

area width

2

4

6

8

10

12

14

ar
ea

 h
ei

gh
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

UCY
Zara2

5 10 15 20 25 30

area width

2

4

6

8

10

12

14

16

18

ar
ea

 h
ei

gh
t

0.5

1

1.5

2

2.5

5 10 15 20 25 30

area width

2

4

6

8

10

12

14

16

18

ar
ea

 h
ei

gh
t

0.5

1

1.5

2

2.5

3

3.5

4



126 N. Bisagno et al.

ρi,j =
1

2πR2

n∑

k=1

exp
(

− d(i, j, k)2

R2

)
(11)

The accumulation points (i, j) are displaced in a grid that covers the whole
image with a distance of 1 m between them. The real dimensions of each scene,
grid size (i, j), and the number of total points n are shown in Table 1. Scaling
factor is equal to 10. The plot of the density distribution of a set of trajectories
for each dataset is shown in Table 2.

5 Conclusions

We have presented a framework for crowd simulation. The model assigns a neu-
ral network to each agent in the simulation. The pedestrians are connected by
a social-pooling layer, which allows them to be aware of the status of their
neighborhood. Compared to empirically-defined functions used in the literature
to model crowds, the proposed solution allows simulating a more complex and
enriched variety of behaviors. Training the network with different datasets allows
in fact to reproduce the behavior of agents with different personalities. As stated
at the beginning, the proposed method does not have the goal of improving the
state of the art, but proposing a novel approach based on a simulator. Due to this
reason, there is no comparison with the any state of the art method for trajecto-
ries, since, to the best of our knowledge, there are no other simulators in literature
which we can compare to. In future works we plan to incorporate an Ego-Vision
framework such that each pedestrian navigates the environment according to
the information gathered from a first-person perspective. This would also allow
us to better extract personality traits, since the first person view contains many
more fine-grained details about the person wearing the camera.
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Abstract. Computational visual attention is a hot topic in computer
vision. However, most efforts are devoted to model saliency, whilst the
actual eye guidance problem, which brings into play the sequence of gaze
shifts characterising overt attention, is overlooked. Further, in those cases
where the generation of gaze behaviour is considered, stimuli of interest
are by and large static (still images) rather than dynamic ones (videos).
Under such circumstances, the work described in this note has a twofold
aim: (i) addressing the problem of estimating and generating visual scan
paths, that is the sequences of gaze shifts over videos; (ii) investigating
the effectiveness in scan path generation offered by features dynamically
learned on the base of human observers attention dynamics as opposed
to bottom-up derived features. To such end a probabilistic model is pro-
posed. By using a publicly available dataset, our approach is compared
against a model of scan path simulation that does not rely on a learning
step.

Keywords: Visual attention · Scan path · HMM ·
Bag of visual words · Video gaze prediction

1 Introduction

Real world contains a huge amount of visual information. Indeed, our brain is
very skillful in selecting the relevant one so that visual attention is guided to
scene regions and events in real time. The same competence would be desirable
for machine vision systems, so that relevant information could be gathered and
treated with the highest priority.

To such end the fundamental problem concerning what factors guide atten-
tion within scenes can be articulated in two related questions: (i) where do
we look within the scene and (ii) how we visit regions where attention will be
allocated.
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The latter issue, which involves the actual mechanism of shifting the gaze
from one location of the scene to another (i.e., producing a scan path), is seldom
taken into account in computational models of visual attention. By overviewing
the field [4,5,7,8,18], computational modelling of attention has been mainly
concerned with the where issue.

As to the latter, at the most general level, approaches span an horizon defined
by two theoretical frameworks [15]. On the one side, image guidance theories
posit that attention basically is a reaction to the image properties of the stimulus
confronting the viewer. The most prominent approach of this type is based on
visual salience: resources are allocated to visually salient regions in the scene,
relying on a saliency map computed from basic image features such as luminance
contrast, colour and edge orientation and motion [5,7,8].

On the other side cognitive guidance theories suggest that attention is
directed to scene regions that are semantically informative. Visual resources are
deployed to scene’s meaningful regions based on experience with general scene
concepts and the specific scene instance currently in view. A remarkable early
example of cognitive guidance modelling was provided by Chernyak and Stark
[9]; more recent works are described in [12,15,20–22].

In this note, we present a preliminary attempt at balancing image and cog-
nitive guidance of gaze on dynamic stimuli. The main contribution of the work
presented here lies in the following:

– modelling the gaze evolution taking into account three peculiar component:
perceptual, cognitive, and motor.

– exploiting the actual behaviour of eye-tracked observers to learn dynamically
which semantically meaningful regions are gazed, and adopt this knowledge
to generate new scan paths on unseen videos with the same semantic content.

– bridging the gap between perceptual features, such as low-level spatial and
temporal features, and the cognitive elements captured through semantic
components gathered inter-videos.

The remainder of the paper is organized as follows. Sect. 2 introduces the
probabilistic model, Sect. 3 gives the implementative details. Experiments are
reported in Sect. 4, and Sect. 5 is left to conclusions.

2 Proposed Model

Visual attention deployment in time can be considered as the allocation of
visual resources on regions of the viewed scene. In overt attention the signature
of such process can be represented by gaze dynamics. Consider such dynam-
ics as described by the stochastic process {Gt, t > 0} and let the time series
g1, g2, · · · , gT be a realisation of the process. In the following with some abuse of
notation we will use lower case g for both the realisation and the time-varying
random variable G; also we adopt the compact notation g1:T = {g1, g2, · · · , gT }.
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Under Markov assumption the joint probability p (g1:T ) can be written:

p (g1:T ) = p (g1) p (g2|g1) · · · p (gT |g1:T−1) = p (g1)
T∏

t=2

p (gt|gt−1) . (1)

Gaze evolution gt → gt+1 can be conceived as the consequence of the evo-
lution of an ensemble of time-varying random variables accounting for the fun-
damental aspects of attention deployment: (1) the gaze-dependent perception
of the external world, (2) the internal cognition state-space (the mind’s eye),
(3) the motor behaviour grounding actual gaze dynamics. More precisely, to
characterize this dynamic random process, let us define the following random
variables.

1. Perceptual component
Low level features: f spatial

t and f temporal
t collect low-level features accounting

for both spatial and temporal domains, respectively.
Semantic components wt: starting from the spatial features fspatial

t , the
semantic components wt are derived to describe semantic concepts/
objects [13] within the scene independently from their spatial positions.

Temporal features yt: starting from f temporal
t , they are responsible for captur-

ing where the movements within a scene drive the attention of an observer
independently from either the semantic or the task.

2. Cognitive component
Semantic concepts zt: since an observer progressively allocate the attention

to the most relevant parts of the scene depending on either implicit or
explicit tasks, zt captures high-level semantic contents, such as {Person,
Car, Street}. Due to the difficulties to make explicit this cognitive com-
ponents, they lie in a latent space of categories.

Duration st: this is conceived as a “switch” variable controlling the duration
of permanence in the latent state zt, i.e., it approximately regulates gaze
dwell time.

3. Motor component
Scan path ut: this variable denotes the actual spatial point of gaze, accounting

for the how problem of overt attention deployment. It is important to
note that the prior p(ut+1|ut) is useful to incorporate oculomotor biases
[16,19]. For instance it has been shown that saccade amplitudes are likely
to follow heavy-tailed laws [1–3,6].

To sum up, the time-varying gaze shift random variable gt = {ut, zt, st, wt,
yt}1 has conditional distribution

p (gt+1|gt) = p (ut+1, zt+1, st+1, wt+1, yt+1 | ut, zt, st, wt, yt) . (2)

1 Naturally, it holds that p
(
wt|f spatial

t

)
and p

(
yt|f temporal

t

)
. For sake of simplicity

we omit to recall these dependencies.
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Thanks to suitable conditional independence assumptions, Eq. (2) can be sim-
plified as follows:

p (gt+1 | gt) = p (yt+1 | yt) (3)
p (wt+1 | zt+1)
p (zt+1 | zt, st+1)
p (st+1 | st, zt)
p (ut+1 | ut, wt+1, yt+1) .

In other words, in our model of human vision dynamics, gaze brings together
low level perceptual components acting as saliency maps, with latent cognitive
components playing a central role in task-driven attention [10,25], together with
the prior knowledge of the oculomotor behaviour. The PGM in Fig. 1 represents
graphically this idea, highlighting the above conditional probability.

cognitive components

perceptual components

semantic
components

gaze

Fig. 1. Probabilistic graphical model including conditional independence assumptions
established in Eq. (3).

After model learning, gaze shift simulation is obtained by the following gen-
erative/sampling process having distribution as in Eq. (3):

Concerning the transition probability zt → zt+1 between (discrete) semantic
concepts of the scene conditioned on state duration st+1, we have

ẑt+1 ∼ p (zt+1 | zt, st+1) . (4)
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This should be implemented via latent dynamical models, such as HMM [11]
or recurrent neural networks (see Sect. 3.2), in which the generation of semantic
elements depend on the sampling

ŵt+1 ∼ p (wt+1 | zt+1) . (5)

In particular, the set of semantic elements assumed by wt is determined from
low level spatial features f spatial

t adopting either clustering, learning sparse dic-
tionaries [14] or other ensemble techniques as discussed in Sect. 3.1.

From the side of temporal features we simply have

ŷt+1 ∼ p (yt+1 | yt) , (6)

where yt is derived from low level temporal features f temporal
t such as optical

flow or temporal saliency maps (Sect. 3.1).
The state duration distribution is conditioned on its previous state and on

the semantic concept gazed at time t

ŝt+1 ∼ p (st+1 | st, zt) . (7)

This can be modelled by computing the empirical distribution of fixations dura-
tion on training data and, at test time, by sampling from it.

Finally, we can draw the next gaze shift gt → gt+1 by sampling the
distribution

ût+1 ∼ p (ut+1 | ut, yt+1, wt+1) . (8)

3 Model Implementation

In order to derive the gaze shift generation according to the model outlined in
Sect. 2, several implementative choices should be put in place.

3.1 Perceptual and Semantic Components

Spatial perceptual components (fspatial) should be discriminative and able to
consistently describe the local semantic content of image portions (cells), even
between videos.

This goal is achieved by resorting to convolutional neural networks (CNN)
as feature extractors: given a pool of videos with coherent semantic content (e.g.
dialogue between people), we characterize each frame applying the pretrained
AlexNet CNN2, and extracting the activation produced by the deepest convolu-
tional layer (conv5). More specifically, each frame is scanned by the CNN using
overlapping windows3, in order to discard the activation coefficient produced
with padding, and keeping only the central activation coefficients. This way,
each frame vt of a video v ∈ RGB, s.t. |v| = (h×w ×T ) is mapped in a (n×m)
2 https://it.mathworks.com/help/deeplearning/ref/alexnet.html.
3 Window is 227-by-227 pixel size, according to the AlexNet input.

https://it.mathworks.com/help/deeplearning/ref/alexnet.html
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grid yspatial
t , where each cell is characterized by a 256-dimensional feature vec-

tor. Here, n = h/f and m = w/f ; f being the decimation factor, responsible for
the spatial resolution of the scan path generation process.

A succinct vocabulary W = {w1, . . . , wM}, corresponding to the semantic
components, is derived applying the k-means algorithm to the fspatial features.

Quantizing yspatial
t according to W gives rise to the desired semantic content

wt (Fig. 2).

Fig. 2. Examples of wt characterizations, obtained quantizing two frames of two dif-
ferent videos, while referring to the same dictionary W. Notice in the zooms that cells
are clustered according to a coherent semantic.

Analogously, yt is obtained by averaging over the (n × m) cells the dense
f temporal
t computed as the video optical flow.

3.2 Latent Cognitive Components

Our approach relies on a supervised method in which the cognitive components
lie in a latent space and provide a substantial contribute to estimate gaze shifts.
We instantiate the cognitive components in the shape of the hidden space zt
of an HMM whose emissions wt are a finite set of “gazed” visual words, i.e.,
the semantics providing visible clues of the scene. This allows to accomplish the
generation steps described in Eq. (4) for the hidden state, and in Eq. (5) for the
visual cues.
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Naturally, also in case of indirect task-driven attention, the training phase
requires that videos in training and test share a common content (e.g., people
or faces, animals, cars), in order to learn visual attention patterns guided by
semantics. To such end, the training process requires a collection of saccadic
scan paths samples eye-tracked from several observers while viewing the set of
videos.

The generation phase uses ancestral sampling directly from the HMM trained
on gazed visual words. This gives rise to a frame-based prediction of a new
word wt for each frame t directly sampling from learnt conditional distribution
p(wt|zt).

3.3 Motor Component

As proposed in [6] the saccade amplitude distribution is well described by heavy
tailed distributions. As a consequence, the motor component can be modeled
as a Levy flight or a Markovian process with the shifts following a α-stable
distribution. Following this rationale, the shift prior probability p(ut+1|ut) is
modelled as a Cauchy 2D distribution (α = 1, [1,6]).

4 Simulation

In the following we present results so far achieved by a preliminary simulation
of the model outlined in Sect. 2. In particular we compare with the baseline
method described in [3],4 which only relies on reactive guidance with respect to
the stimulus, while accounting for oculomotor biases (long-tailed distribution of
gaze shift amplitudes) much like as we do. It is worth noting that few models are
available to compare with that, going beyond classic saliency models, account
for the actual generation of gaze shifts; by and large, further available models
limit to static stimuli processing [1,17,23].

4.1 Dataset

The adopted dataset is the one presented in [24]. It includes fixations of 39
subjects, recorded with an eye tracker at 60 Hz, viewing 65 videos gathered from
YouTube and Youku. The database is specialized for multiple-face videos, which
contain various numbers of faces varying from 1 to 27. The duration of each
video was cut down to be around 20 s and the subjects were asked to free-view
videos displayed at random order.

4 Matlab source code available at http://boccignone.di.unimi.it/Ecological Sampling.
html.

http://boccignone.di.unimi.it/Ecological_Sampling.html
http://boccignone.di.unimi.it/Ecological_Sampling.html
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4.2 Experimental Setup

In this preliminary test series, we used several randomly chosen video pairs,
one for training e one for test. Both are taken into account for the dictionary
construction W, while only the scan paths of the first video are employed to
train the HMM via gazed visual words.

The simulation process is concerned with both the baseline and the proposed
approach providing the generation of 50 scan paths for each test video. The
whole model has mainly three parameters that affect the performance, namely
the grid granularity f , the number of visual words, i.e. number of cluster for
the K-means algorithm (M) and the number of hidden states of the HMM (N).
These values have been chosen experimentally: optimal values in terms of both
quantitative evaluation (section below) and computational cost have been found
with f = 17, M = 20 and N = 4. A qualitative assessment of the proposed
model can be carried out via the comparison of the fixation density maps.

Ground Truth Baseline Proposed

Fig. 3. Visualization of different fixation density maps from human data, baseline
method and our proposed approach. The density maps refers to the same frames of
three different considered videos in the dataset.

In Fig. 3 we show three examples, extracted from as many videos, of fixation
density maps obtained by aggregating all the fixations (either artificial or human)
performed in the corresponding frames. At a glance it can be noted that the
baseline approach is more attracted by locations that include movements or,
more generally, low-level features, despite their semantic value. Differently, the
proposed approach seeks the locations that include relevant features in terms of
their visual word representation.
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4.3 Results

The proposed model is validated quantitatively by comparing the ground truth
and generated distributions of observer’s fixations. In particular, for each video
frame, a fixation density map is computed by aggregating spatially the fixations
of all the available observers, either real or artificial, yielding at each time t,
the result exemplified in Fig. 3. The proposed model is then compared to the
baseline by computing the Kullback-Leibler Divergence (KLD) between the real
and generated density maps. In Fig. 4 the empirical distribution of KL values for
both proposed and baseline models is depicted. As can be observed, the proposed
model produces on average much lower KLD values if compared to the baseline
with a remarkable difference in terms of uncertainty of the distributions.

Fig. 4. Histogram plot of the distribution of Kullback-Leibler Divergence values
between density maps of real and generated scan paths, using the proposed and baseline
methods

5 Conclusions

In this work we propose a model for estimating human scan paths by modeling
visual attention over videos. We find that to be effective the generation process
should leverage on three primary factors: low-level saliency features, semantic
objects identified through cognitive guidance, and oculomotor eye movements.
In our model the main role is played by a supervised method focusing on gazed
semantic objects that attract the attention during either free or task oriented
viewing. This allows to conclude that the ability to reproduce gaze shifts is
mainly yielded by a prior distribution on hidden states describing the seman-
tic content of the scenes. Future work will investigate the applicability of our
method to other datasets with different semantic contents. Furthermore, other
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techniques could be adopted to implement the different parts of model. For exam-
ple clustering could be substituted by learning sparse dictionaries, and HMM by
recurrent neural networks. An investigation in these directions should allow us
to optimize the implementation in term of both efficiency and efficacy.
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L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 296–303. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38628-2 35

11. Coen-Cagli, R., Coraggio, P., Napoletano, P., Boccignone, G.: What the draughts-
man’s hand tells the draughtsman’s eye: a sensorimotor account of drawing. Int.
J. Pattern Recognit Artif Intell. 22(05), 1015–1029 (2008)

12. Cuculo, V., D’Amelio, A., Lanzarotti, R., Boccignone, G.: Personality gaze patterns
unveiled via automatic relevance determination. In: Mazzara, M., Ober, I., Salaün,
G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 171–184. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-04771-9 14

13. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene
categories. In: IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR 2005), vol. 2, pp. 524–531. IEEE (2005)

14. Grossi, G., Lanzarotti, R., Lin, J.: Orthogonal procrustes analysis for dictionary
learning in sparse linear representation. PLoS ONE 12(1), 1–16 (2017). https://
doi.org/10.1371/journal.pone.0169663

15. Henderson, J.M., Hayes, T.R., Rehrig, G., Ferreira, F.: Meaning guides attention
during real-world scene description. Sci. Rep. 8, 10 (2018)

https://doi.org/10.1007/978-3-030-11012-3_27
https://doi.org/10.1007/978-3-642-38628-2_35
https://doi.org/10.1007/978-3-030-04771-9_14
https://doi.org/10.1371/journal.pone.0169663
https://doi.org/10.1371/journal.pone.0169663


138 V. Cuculo et al.

16. Le Meur, O., Coutrot, A.: Introducing context-dependent and spatially-variant
viewing biases in saccadic models. Vision Res. 121, 72–84 (2016)

17. Le Meur, O., Liu, Z.: Saccadic model of eye movements for free-viewing condition.
Vision Res. 116, 152–164 (2015)

18. Tatler, B., Hayhoe, M., Land, M., Ballard, D.: Eye guidance in natural vision:
reinterpreting salience. J. Vision 11(5), 5 (2011)

19. Tatler, B., Vincent, B.: The prominence of behavioural biases in eye guidance. Vis.
Cogn. 17(6–7), 1029–1054 (2009)

20. Torralba, A.: Contextual priming for object detection. Int. J. Comput. Vis. 53,
153–167 (2003)

21. Torralba, A.: Modeling global scene factors in attention. JOSA A 20(7), 1407–1418
(2003)

22. Torralba, A., Oliva, A., Castelhano, M., Henderson, J.: Contextual guidance of eye
movements and attention in real-world scenes: the role of global features in object
search. Psychol. Rev. 113(4), 766 (2006)

23. Xia, C., Han, J., Qi, F., Shi, G.: Predicting human saccadic scanpaths based on
iterative representation learning. IEEE Trans. Image Process., 1 (2019)

24. Xu, M., Liu, Y., Hu, R., He, F.: Find who to look at: turning from action to
saliency. IEEE Trans. Image Process. 27(9), 4529–4544 (2018)

25. Yang, S.C.H., Wolpert, D.M., Lengyel, M.: Theoretical perspectives on active sens-
ing. Curr. Opin. Behav. Sci. 11, 100–108 (2016)



Pattern Recognition and Machine
Learning



Relation, Transition and Comparison
Between the Adaptive Nearest Neighbor

Rule and the Hypersphere Classifier

Mauricio Orozco-Alzate1(B), Sisto Baldo2, and Manuele Bicego2
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Abstract. The Adaptive Nearest Neighbor (ANN) rule and the Hyper-
sphere Classifier (HC) are two very simple and relatively new variants
of the classical nearest neighbor (1NN) rule. Even if they share a simi-
lar formulation—they correct the query-to-prototype distance by taking
into account the distance of the prototype to the nearest one from other
classes—their relation has never been investigated. The main goal of
this paper is studying this relation and providing an exhaustive perfor-
mance comparison of both methods, highlighting occasions when their
performances differ as well as identifying cases in which their application
is advisable or leads to poorer results. Moreover, we propose a smooth
transition between the two classifiers by studying the use of several con-
vex combinations of their penalized distances. Experiments show that a
combination is particularly helpful when both ANN and HC are worse
than 1NN.

Keywords: Adaptive Nearest Neighbor · Convex combination ·
Comparison · Hypersphere Classifier · Relation · Transition

1 Introduction

The nearest neighbor rule (1NN) [1,2] represents a well known and widely applied
classifier, which assigns an unknown object (query or test object) to the class of
the object of the training set (prototype) whose distance to the testing object
is minimum (i.e. the nearest neighbor). Over the years, numerous variants for
improving this rule have been proposed. Some of them consist in either reducing
the size of the set of prototypes [3] or generating new ones [4]; others focus
on proposing novel dissimilarity measures and making them well-behaved in
high dimensional spaces [5] or adaptive to particular local distributions. Two
relatively recent and very similar approaches belong to the latter category, which
have been independently proposed, namely the Hypersphere Classifier (HC) [6]
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and the Adaptive Nearest Neighbor rule (ANN) [7]. Apparently, authors of HC—
the most recently proposed method—were not aware of ANN since they do not
refer to it in spite of the clear relationship between the two methods.

HC and ANN are both based on the rationale of penalizing the distance
between the query point x and a prototype xi by using the concept of a hyper-
sphere, centered at xi, whose radius is defined by the distance to the prototype’s
nearest prototype which belongs to a different class. This radius measures how
“inside” a class a given prototype is – a large radius indicates that the other
classes are far away from it, thus it can be trusted more. Given this radius, both
HC and ANN correct the distance of the testing point to the prototype: HC
subtracts it from ||x − xi|| while ANN divides ||x − xi|| by the radius. In both
cases, prototypes well inside their class have more importance (their distance to
the testing object is decreased). Despite the idea behind the two approaches is
very similar, a relation between them has not been analyzed yet, this represent-
ing the first goal of this manuscript. Actually, an empirical comparison of these
methods would serve not just to judge whether there are significant performance
differences between the two methods but also to better understand the overall
effect of the corresponding penalizations.

The second goal of this paper originates from the fact that another way of
improving the behavior of the (dis)similarity measures for classification is by
combining them, such that the resulting measure outperforms the individual
ones. In this paper we investigated a simple combination of the two penalized
distances, in order to show if it is possible to improve even more the accuracies.
One of the simplest possibilities is to use a convex linear combination. Accord-
ing to [8], such a combination of two distance functions is particularly useful
when combining an overestimate and an underestimate of the Euclidean dis-
tance, provided that both are either suitable for non-Euclidean topological spaces
or cheaper to be computed than the Euclidean distance itself, by, for instance,
avoiding the computation of costly square root operations. Kernels—i.e. similar-
ity functions—have also been interpolated by convex combinations. Gönen and
Alpaydın [9], referring to [10], point out that the convex combination—or, more
in general, a weighted average—is beneficial if both kernels exhibit similar clas-
sification performances but their class assignments rely sometimes on different
support vectors.

Summarizing, the main contributions of this paper are the following: (i) first,
we highlight the affinity and discuss the relation between HC and ANN; (ii) we
compare their behaviors in terms of accuracy; (iii) we propose a modified convex
combination of them in order to give further insights on the transition from
one to the other. The remaining part of the paper is organized as follows. HC
and ANN are explained in more detail in Sect. 2. Afterwards, in Sect. 3, their
relation is analyzed and four linear transitions between HC and ANN by convex
combinations are proposed. Experimental results and their discussions are given
in Sect. 4. Finally, our concluding remarks are provided in Sect. 5.
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2 Methods

In this section we introduce the two variants of 1NN, namely the Hypersphere
Classifier and the Adaptive Nearest Neighbor Rule. Then, we study their relation
in terms of a logarithmic scaling and, afterwards, present a simple model for the
transition between the two.

2.1 The Hypersphere Classifier

This classifier was originally proposed [6] as an incremental method, usable to
reduce the number of prototypes. Clearly it can also be used without memory
restrictions and, therefore, without forgetting prototypes. In this study, we do
not make use of the incremental property of HC. Let us present the approach
starting from [6], coming later to the formulation with the radius. In [6] authors
define as ρi the region of influence of xi; given that, the distance from x to xi is
computed as follows:

dHC(x,xi) = ||x − xi|| − gρi, (1)

The region of influence ρi is defined as 1/2 of the radius of the hypersphere
associated to xi, namely the hypershpere having as center xi and as radius (ri)
the distance to the nearest prototype of xi belonging to a different class. The
radius ri can be formally defined as:

ri = min
xj∈OT (xi)

d(xi,xj) (2)

with
OT (xi) = {xk such that label(xk) �= label(xi)} (3)

In Eq. (1), g is a free parameter. Even though ρi is defined as half of the
radius of the hypersphere in order to avoid overlapping between hyperspheres
from different classes, in [6] it is shown that the best value for g is 2 which, in
words, means that the best configuration is considering the region of influence as
the whole volume of the hypersphere in spite of the overlapping, i.e. ri = 2ρi. For
the sake of simplification, here we only consider that recommended configuration
and use Eq. (2) to rewrite Eq. (1) as:

dHC(x,xi) = ||x − xi|| − ri. (4)

Notice that Eq. (4) produces negative distances when a query point is inside
the hypersphere associated to xi; this is not a practical problem with the nearest
neighbor rule, which simply takes the minimum of the distances to all prototypes
(no matter this value is negative).
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2.2 The Adaptive Nearest Neighbor Rule

Similarly to HC, this classifier [7] weights distances of a testing point to a pro-
totype according to the size of the hypersphere associated to that prototype—
the hypersphere is defined as in the HC method. Similarly to HC, the effect is
to promote prototypes well inside their class: distances to points having small
hyperspheres are enlarged while distances to points having large hyperspheres
are diminished. This effect is simply obtained by dividing the distances by the
radius, as follows:

dANN (x,xi) =
||x − xi||

ri
. (5)

Notice that Eq. (5) does not generate negative values but has a much stronger
penalization than the one of Eq. (4). However, the distance might diverge if
ri → 0. In order to avoid the uncontrolled increase of dANN , in [7] it is proposed
to add an arbitrarily small ε to the radius. In general, the numerical problem is
unlikely to occur for real-world data satisfying the compactness hypothesis [11].

3 Relation and Transition Between HC and ANN

Relation. It has been shown in some recent works [12,13] that scaling the
distance with a convex non linear transformation can be beneficial for distance-
based classifiers. One example of such non linear scaling is to raise the distance
to a power less than one. Another possibility, which has been investigated for the
feature space but not for distances [14], is to use the logarithm, which has the
same convex monotonic behavior of the power transformation (for feature spaces,
the power transformation corresponds to the well known Box-Cox transform
[15,16]).

Clearly, in distance-based classifiers, such monotonic transformation has no
effect if the classifier only relies on rankings (such as the K-Nearest Neighbor
methods). However, if the classifier uses more complex mechanisms, this non
linear scaling can drastically change the results – see [12,13] for an analysis in
the dissimilarity-based representation.

Suppose now that we apply the non linear scaling logarithm to our input
distance d(x,xi) = ||x − xi||, getting a novel distance d̃(x,xi):

d̃(x,xi) = log d(x,xi) (6)

Consider again the notation that was introduced in Eq. (3). Now the HC rule
redefines the distance with d̃HC(x,xi):

d̃HC(x,xi) = d̃(x,xi) − r̃i, where r̃i = min
xj∈OT (xi)

d̃(xi,xj) (7)
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This radius can be expressed in terms of original distances, as follows:

r̃i = log
(

min
xj∈OT (xi)

ed̃(xi,xj)

)

= log
(

min
xj∈OT (xi)

elog d(xi,xj)

)

= log
(

min
xj∈OT (xi)

d(xi,xj)
)

= log ri (8)

Where the first step is possible since the exponential does not change the argu-
ment of the minimum of the distance. Now,

d̃HC(x,xi) = d̃(x,xi) − r̃i

= log d(x,xi) − log ri

= log
d(x,xi)

ri

= log dANN (x,xi) (9)

Therefore, the application of the HC correction to the logarithm of the orig-
inal distances is equivalent to the application of the logarithm to the ANN
correction computed on the original distances.

Transition. The above-mentioned affinity of HC and ANN motivated us to
propose a link between the two classifiers. Let us call s = ||x − xi|| and t = ri.
Given that, the two distances dANN and dHC can be rewritten as s/t and s − t,
respectively. In order to combine dANN and dHC , we propose four variants of
their convex combination:

dλ(s, t) = (1 − λ)
s

t
+ λ(s − t) (10)

dλ(s, t) =
(1 − λ)s
(t + λ)

+ λ(s − t) (11)

dλ(s, t) =
(1 − λ)s
(t + λ2)

+ λ(s − t) (12)

dλ(s, t) =
(1 − λ)s
(t +

√
λ)

+ λ(s − t) (13)

Equation (10) corresponds to the canonical convex combination of s and t, where
λ ∈ [0, 1] controls the transition from ANN to HC. In order to cope with a
possible singularity, Eq. (11) might be preferred instead, as well as other variants
that damp faster or slower the singularity, e.g. Eqs. (12) and (13). Please note
that also in these variants λ ∈ [0, 1] controls the transition from ANN to HC (for
λ = 0 we have the dANN distance, whereas for λ = 1 we have the dHC one).
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4 Experimental Results and Discussion

For the sake of reproducible research and fair comparison, we consider the union
of the two collections of data sets that were used for the experiments in the orig-
inal papers of HC and ANN. In [6], results were computed for the following data
sets: WDBC, Ecoli, German credit data, Glass, Haberman, Heart, Ionosphere,
Iris, Pima, Sonar, Tic-Tac-Toe, Vehicles, Wine and Yeast. In [7], experiments
were performed for WDBC, Ionosphere, Pima, Liver and Sonar. Besides, with the
aim of considering a wider range of data conditions, we included additional data
sets to the collection; namely: Arrhytmia, WPBC, Soybean1, Soybean2, Malaysia,
x80, Imox, Chromo and Spirals. The main properties of the collection of 24 data
sets are summarized in Table 1.

Table 1. Main properties of the considered data sets

Dataset # feat # obj # class Dataset # feat # obj # class
German-credit 20 1000 2 Wine 13 178 3
Pima 8 768 2 Sonar 60 208 2
WDBC 30 569 2 Soybean1 35 266 15
Tic-Tac-Toe 9 958 2 Chromo 8 1143 24
Yeast 8 1484 10 Vehicles 18 846 4
Ecoli 7 336 8 Malaysia 8 291 20
Arrhythmia 278 420 12 Imox 8 192 4
Heart 13 297 2 x80 8 45 3
Haberman 3 306 2 Soybean2 35 136 4
Ionosphere 34 351 2 Iris 4 150 3
Liver 6 345 2 Glass 9 214 6
WPBC 32 194 2 Spirals 2 194 2

4.1 First Experiment: Classifier Comparison

All the results reported in Table 2 were computed for repeated train and test
with 50 repetitions. In each repetition, data sets were split into two random
equal-sized parts, one used for training and the other for testing. Classification
accuracies are computed as the number of correctly classified elements in the
testing set. In the second, third and fourth columns of Table 2 we reported such
accuracies, together with the standard errors. In order to have a statistically
robust pairwise comparison between the three methods, we performed a two-
tailed t-test, at the 5% of significance, to compare the 50 repetitions of each
pair of methods (namely 1NN vs. ANN, 1NN vs. HC and ANN vs. HC). This
permits to judge whether the observed differences are statistically significant or
not [17]. The null hypothesis was that the performances of the two examined
techniques are equivalent: when it is rejected, a statistically significant difference
is found. Results of the t-tests are reported in the last three columns of Table 2.
In case of rejection of the null hyphothesis, a slanted arrow points to the best
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Table 2. Accuracies and t-tests

Accuracies t-tests

Dataset 1NN ANN HC 1NN

vs. ANN

1NN vs. HC ANN vs. HC

♦ German-credit 68.59± 0.29 70.92± 0.29 71.27± 0.29 Reject↗ Reject↗ Reject↗
♦ Pima 69.03± 0.33 71.91± 0.32 72.19± 0.32 Reject↗ Reject↗ Reject↗
♦ WDBC 95.27± 0.18 96.01± 0.16 96.23± 0.16 Reject↗ Reject↗ Reject↗
♦ Tic-Tac-Toe 79.07± 0.26 80.79± 0.25 82.51± 0.25 Reject↗ Reject↗ Reject↗
♦ Yeast 50.81± 0.26 52.87± 0.26 53.54± 0.26 Reject↗ Reject↗ Reject↗
♦ Ecoli 79.42± 0.44 81.95± 0.42 82.71± 0.41 Reject↗ Reject↗ Reject↗
� Arrhythmia 56.42± 0.48 55.8± 0.48 58.07± 0.48 Accept Reject↗ Reject↗
� Heart 2 76.48± 0.49 78.28± 0.48 78.59± 0.48 Reject↗ Reject↗ Accept

� Haberman 66.3± 0.54 68.39± 0.53 68.24± 0.53 Reject↗ Reject↗ Accept

� Ionosphere 85.27± 0.38 92.92± 0.27 92.82± 0.28 Reject↗ Reject↗ Accept

� Liver 60.35± 0.53 62.08± 0.52 62.15± 0.52 Reject↗ Reject↗ Accept

� WPBC 66.25± 0.68 71.11± 0.65 70.99± 0.65 Reject↗ Reject↗ Accept

� Wine 94.47± 0.34 95.37± 0.31 95.28± 0.32 Reject↗ Reject↗ Accept

� Sonar 82.96± 0.52 83.77± 0.51 83.75± 0.51 Accept Accept Accept

� Soybean1 84.24± 0.45 83.32± 0.46 83.41± 0.46 Accept Accept Accept

� Chromo 54.32± 0.29 54.06± 0.29 53.95± 0.29 Accept Accept Accept

� Vehicles 68.56± 0.32 67.93± 0.32 68.0± 0.32 ↖Reject ↖Reject Accept

� Malaysia 66.07± 0.55 64.96± 0.56 64.64± 0.56 ↖Reject ↖Reject Accept

� Imox 91.77± 0.4 90.81± 0.42 90.67± 0.42 ↖Reject ↖Reject Accept

� x80 90.17± 0.88 87.48± 0.98 87.83± 0.96 ↖Reject Accept Accept

� Soybean2 83.68± 0.63 82.5± 0.65 82.62± 0.65 ↖Reject Accept Accept

� Iris 93.79± 0.39 94.32± 0.38 93.76± 0.39 Reject↗ Accept ↖Reject

	 Glass 66.62± 0.64 64.99± 0.65 66.07± 0.65 ↖Reject Accept Reject↗

 Spirals 72.95± 0.64 68.76± 0.67 68.02± 0.67 ↖Reject ↖Reject ↖Reject

classifier. To better clarify this notation, for example, in the “1NN vs. ANN”
column, “German-credit” row, the arrow following the “Reject” indicates that
the ANN rule was statistically significantly better than the 1NN rule on the
German-credit dataset.

By looking at the table, different observations can be derived. According to
the performances, a number of groups of data sets can be identified. The first
group (denoted with ♦) corresponds to six data sets for which HC is better than
ANN and both, in turn, are better than 1NN. A slightly different behavior is
exhibited by Arrhytmia (denoted with �) for which there is no statistical differ-
ence between 1NN and ANN. Another large group (denoted by �) is composed
by data sets for which there is no difference between ANN and HC but both are
better than 1NN. Subsequently, we find a group of three data sets (�) for which
there is no statistical difference between the three classifiers.

Continuing with the descending reading of the table, there is a group of three
data sets (�) for which 1NN is better than both ANN and HC while there is no
difference between the latter. A slightly different behavior is shown by x80 and
Soybean2 (denoted with �), for which—in contrast to the previous case—HC is
equivalent to 1NN. The last group (�, 	 and 
) contains three data sets whose
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results are special: Iris is the only case in which ANN is better than both
1NN and HC; for Glass, HC is better than ANN, even though the former is
not significantly different than 1NN while the latter is worse than 1NN. Finally,
results for the Spirals data set show an artificial case—deliberately included
by us for illustration purposes, see Fig. 1—in which 1NN is significantly better
in accuracy (by 4.19% and 4.93%, respectively) than ANN and HC. Notice that
the spheres defined for Spirals would occupy the space between the spiral arms
and their corresponding radii are the half of the width of the inter-arm corridors.
Penalizations by the radius, that are so beneficial in other cases, appear to be
counterproductive for this data set due to its particular configuration.
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Fig. 1. Scatter plot of Spirals data set

In general we can see that in many
cases the correction of both HC and ANN
is beneficial with respect to 1NN, but
there are some other cases where this cor-
rection is not useful at all. Concerning
the two techniques, the HC method seems
to be slightly superior to the ANN vari-
ant. We tried to derive a relation between
such classification accuracies and data
set properties (in terms of dimensional-
ity, number of classes and so on): however,
it was not possible to derive many regu-
larities, apart from the facts that (i) the
behavior for Arrhythmia—the highest-dimensional data set—is special; (ii) the
large group of datasets for which there is no difference between ANN and HC
but both are better than 1NN is homogeneous with respect to the number of
classes (five two-class problems and a three-class one) and (iii) two of the three
data sets with more classes (Soybean1 and Chromo) do not exhibit any profit
from the use of ANN and HC.

4.2 Second Experiment: Transition Between ANN and HC

In this second experiment we tested if and how much helpful is to employ a
smooth transition between ANN and HC. Actually, the penalizations of the
distances implemented by these two rules have different nature, due to the two
different mathematical operations involved (subtraction vs. division). Therefore,
it seems reasonable to try to employ a combination of the two, as explained
in Sect. 3. To test this aspect we repeated the classification experiments on the
24 datasets of before, by using the convex combinations of the two modified
distances (in all the variants proposed in Sect. 3). The parameter λ has been
varied from 0 (ANN rule) to 1 (HC rule) with step 0.1.

The results showed that when the HC and the ANN rules were both
outperforming the 1NN rule (namely in the first fourteen data sets, from
German-credit until Sonar), there are no improvements by their convex com-
binations, with a smooth transition between the accuracies of the two methods.
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More interesting are the situations where ANN, HC or both are worse than 1NN.
Such situations are shown in Fig. 2, where accuracies are shown when varying
λ. In all plots, the red line represents the 1NN result, whereas the four variants
defined by Eqs. (10), (11), (12) and (13) are represented by the blue, cyan, black
and magenta lines, respectively.

Fig. 2. (Best viewed in color) Analysis of the transition. Red line represents the 1NN
result, whereas the four variants defined by Eqs. (10), (11), (12) and (13) are represented
by the blue, cyan, black and magenta lines, respectively. (Color figure online)

For these data sets, it is interesting to observe that the convex combinations
improve over both ANN and HC, except in the Arrhytmia case. Equation 13
is consistently the best for all these cases. Notice, in addition, that in four out
of eleven occasions—for Chromo, Vehicle, Iris and Glass—at least one of the
convex combinations outperforms 1NN for either some values of λ or all its range
(cf. Iris). This represents a valuable result, since it supports the idea that the
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combination can be really useful when ANN and HC both fail. Concerning the
parameter λ, we observed that in general the best value lies in the interval
[0.1, 0.3].

A ranking of the variants of the convex combinations, according to their
effects, is clearly observed in some of the subfigures; see, for instance, results for
Chromo, Vehicles, and Malaysia. In such cases, the sequence of the variants,
starting from the best one, is: Eqs. (13), (11), (12) and (10).

5 Conclusion

In this paper we presented an empirical comparison and analysis of two related
techniques, namely the Adaptive Nearest Neighbor Rule and the Hypersphere
Classifier. Both approaches improve 1NN by correcting the distance query-
prototype with information related to the distance of the prototype to the other
classes, the difference consists in the way such correction is implemented. The
relation between them is that the application of the HC correction to the loga-
rithm of the original distances is equivalent to the application of the logarithm
to the ANN correction computed on the original distances. We also performed a
thorough experimental comparison between the two methods, also investigating
how to integrate them via convex combinations.

Results lead us to conclude that HC, overall, should be preferred over ANN.
However, since ANN does not yield negative distances, it might be considered
as a processing step to apply, afterwards, alternative decision rules that are not
necessarily based on the smallest dissimilarity values. We also showed that the
convex combination of the two approaches is useful when both methods are
worse than the original 1-Nearest Neighbor. In these cases, in general, 0.1 ≤
λ ≤ 0.3 seems to be a convenient interval to select the parameter for the convex
combination. Its proper tuning, however, is a matter for further study.
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Abstract. Isolation Forests represent a recent variant of Random
Forests, specifically designed for one-class classification problems. In the
original version, this method builds a set of extremely randomized trees
to describe the set of points, subsequently measuring the “anomaly” of
a testing point by looking at how much deep it arrives in each tree.
Even if few extensions have been recently proposed – mainly aimed at
improving the training stage – in most cases the anomaly score is still
kept in its original formulation, which does not completely exploit all
the information contained in the trained forest. This paper is focused on
improving this aspect, and proposes a new approach for the computation
of the anomaly score, which exploits the different information linked to
the different nodes of the trees of the forest. We investigate three dif-
ferent variants of the novel anomaly score, evaluating them with twelve
UCI benchmark datasets, with encouraging results.

Keywords: One-class classification · Random Forests ·
Outlier Detection · Isolation Forests

1 Introduction

Random Forests [5] represent a widely used tool for classification and regression,
based on creating an ensemble of randomized decision trees [4], where each tree
is built on a random subsample of the data and of the features. Randomness is
crucial to get diverse trees, reducing the risk of overfitting and the computational
complexity. The obtained ensemble method is more robust and performs better
than a single tree [5,18]; actually it has been shown that these tools perform
very well in many different fields such as computer vision [3], bioinformatics [6],
remote sensing [23] and others, reaching performances which are comparable with
other state-of-the-art techniques such as Support Vector Machines and Neural
Networks [12].

Even if Random Forests have been mainly used for classification and regres-
sion, there also exist some random forest-based approaches for alternative
learning paradigms, such as clustering [1,21,26,27,30], survival analysis [16],
ranking problems [7], multi-label classification [17] and one-class classification
[8,14,15,20,26]. In this paper we focus on this latter class, i.e. one-class classifi-
cation [22], a learning problem in which only objects from one class are available
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(the target, or positive, class), and where the aim is to identify whether new
objects belong to that class or not [22,29]. The objects that do not belong to
the positive class are also known as outliers or anomalies.

Even if the exploitation of Random Forests in the one-class classification
field has not been studied as extensively as for classification and regression, some
interesting approaches have been proposed, which can be subdivided mainly into
two classes. The first class includes all those methods, such as [8,26], that solve
the one-classification task by creating a synthetic negative class (the outliers), so
that a classic classification random forest can be trained. The outlier generating
process is often based on assuming a well-defined distribution: one possibility is
to sample outliers uniformly on the domain space or to locate them in sparse,
isolated regions that contain few inliers [26]. The main advantage of this class
of approaches is that standard classification forests can be used without any
modification. At the same time these methods can arise some issues: the most
important is that the choice of the sampling technique is crucial. For example in
a high-dimensional space if we assume outliers to be uniformly distributed, we
have to generate a very big number of points to populate the space, and this is
often not feasible. In addition, given a specific problem, the chosen distribution
may not truly reflect how the outliers would distribute.

The second class of approaches are those based on Isolation Forests, a partic-
ular kind of Random Forests introduced by Liu and colleagues in [19,20]. Within
these tools, the goal is not to discriminate objects of different classes but rather
to isolate instances, that is to separate one object from the remaining ones. To
do that, Isolation Forests partition the data through random and recursive splits
along feature axes: a point is isolated when the leaf containing that point is cre-
ated. Outliers, which are very different in terms of feature values and number, are
likely to be separated earlier in the tree building process than inliers. Therefore,
to quantitatively measure how much an object is isolated, the authors of [19,20]
propose a scoring function, called anomaly score, which is inversely proportional
to the length of the path in a tree that the object traverses to reach its leaf, aver-
aged along all trees. As said before, the defined score will be higher for outliers
since they are likely to be separated closer to the root. Isolation Forests present
many advantages: they can work with only positive instances –and therefore no
outliers need to be artificially generated– and they are computationally efficient
thanks to the random split mechanism.

Even if Isolation Forests have been shown to be very effective for one-class
classification–e.g authors of [11] empirically demonstrated that they are the best
existing method to solve one-class classification tasks–, streaming data [13] and
clustering [1], their full potential has not yet been completely exploited, espe-
cially for what concerns the testing phase. In almost all works dealing with
Isolation Forests (see for example [9,11,28] or the extension proposed by [14])
the anomaly score is still kept in its original formulation of [19,20], which does
not completely exploit all the information contained in the trained forest1. More

1 For the sake of completeness, please note that a new scoring function has been
proposed in [15]. This measure, however, is specifically designed for streaming data.
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in detail, the scoring function is based on the length of the path traversed by
an object (the shorter the path, the more isolated the point). Even if being very
reasonable, this measure does not consider the information carried by each node,
i.e. it does not consider that not all nodes are equally important in the path –for
example a node with few points, e.g. a leaf, is usually more descriptive of the
feature space than a bigger node, such as the root. In this paper we overcome
this drawback, and propose an extension of the anomaly score: the novel score,
which we called path-weighted anomaly score, is based on the estimation of a
weighted path length, which exploits and takes into account the importance of
the different nodes of the trees. We designed three different variants of the score,
which consider different ways of measuring the “importance” of a node in a path.
It is important to note that node weights are computed on training data and
therefore, to not increase the testing procedure complexity, we compute them
while building the tree, i.e. during the training phase.

The proposed schemes have been evaluated on 12 UCI benchmark datasets
for one-class classification [10]. We investigated different parametrizations and
configurations, comparing the proposed approach with the standard counterpart:
the obtained results are very promising. The rest of the paper is organized as
follows: in Sect. 2 we explain in detail the Isolation Forests, while in Sect. 3 we
thoroughly define the proposed methodology. Section 4 is dedicated to the exper-
imental part and the related results. Finally, Sect. 5 contains some conclusions.

2 Isolation Forests

Isolation Forests are variants of Random Forests introduced by Liu in [19,20].
The basic idea behind these methods is that one-class classification can be solved
via isolation, that is by separating one object from the rest of the data, without
focusing on discriminating objects of different classes.

To encode the concept of isolation the authors in [19,20] propose a new tree
structure, called ITree. The ITree is based on the Extra-Trees proposed in [13].
These tools introduce different levels of randomness in the tree construction: for
example, instead of evaluating at each node every possible split on a subset of
features (as in standard decision trees), Extra Trees select a random split for each
feature in the subset. The ITree exploits the extreme version of the Extra-Trees,
called totally randomized trees, in which every split is completely random (at
every node, a random feature is extracted, and a random threshold in the feature
domain is chosen). Clearly, ITrees can be built using data coming from only one
class. Very recently, some authors [14,15] investigated alternative approaches
to build Isolation Forests: in particular in [14] they develop a function able to
evaluate every possible split in a one-class context, while in [15] they design a
new criteria which chooses the feature to split on randomly but proportionally
to the feature relevance.

To recover the isolation capability of an object, an anomaly score is defined
on the basis of the length of the path that the object traverses from the root to
its leaf. This measures the number of partitions needed to separate it from the
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rest [20]: if an object is found closer to the root, i.e. its path is short, it means
that it is easier to separate it, and thus to isolate it from the rest, with respect
to objects that end up in deeper leaves. More in detail the anomaly score of an
object x with respect to an Isolation Forest F is the following –in the paper we
consider the dependence of the score on F implicit in order not to make the
notation too heavy–:

s(x,N) = 2−E(h(x))
c(N) (1)

where N is the number of samples used to train each tree of the forest, E(h(x)) is
the average path length across all trees (see below) and c(N) is a normalization
factor, needed to compare trees built on sets of different sizes. To estimate c(N),
which can be seen as the average path length, we can use the estimation of
the average path length of unsuccessful searches in Binary Search Trees [19,20],
which is defined in the following way according to [24]

c(N) =

⎧
⎪⎨

⎪⎩

2H(N − 1) − 2(N − 1)/N if N > 2
1 if N = 2
0 otherwise

(2)

where H(i) stands for the harmonic number. The term E(h(x)) in formula (1) is
computed as:

E(h(x)) =
∑

t∈F ht(x) +
∑

t∈F c(|lt(x)|)
|F| . (3)

where t is a tree, c(|lt(x)|) is a normalization factor needed when t is not fully
grown (which estimates the average depth of the tree which can be built from
lt(x)) and ht(x) = |Pt(x)| with Pt(x) being the path of x, i.e. the set of nodes
visited by x from the root to the leaf containing x. From formula (1) it can be
inferred that the score of an object x is proportional to the inverse of its average
path length in the forest: if x ends up in leaves that are very deep in the trees,
its score will be quite low (close to 0), if instead its path ends very early the
score will be high (close to 1).

The anomaly score defined in (1) represents a reasonable way to characterize
outliers, and thus to solve the one-class classification problem: actually outliers
are usually very heterogeneous and low in number with respect to inliers, and
they do not follow a predefined distribution. When building an Isolation Forest,
they will be more likely separated from the rest of the data very quickly, i.e.
after few partitions. In other words, outliers will be likely to traverse a shorter
path with respect to inliers, producing an higher anomaly score (usually ≥ 0.5
as stated in [20]).

3 Proposed Methodology

In this section we describe the proposed approach. The starting observation is
that the anomaly score considers each node visited in a path to have the same
importance. In this sense, the path length ht(x) of a x in a tree t can be written as
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ht(x) =
∑

k∈Pt(x)

1. (4)

The main idea behind the proposed approach is to define a novel anomaly
score where nodes in the path are given a weight, which corresponds to specific
information that can be retrieved in the forest. The novel scoring function is
called path-weighted anomaly score and is based on re-defining ht(x) as follows.

Given a tree t and the path Pt(x) of an object x, ht(x) is defined as:

ht(x) =
∑

k∈Pt(x)

wtk (5)

where wtk represents the weight the node k has in the tree t. Clearly, when
considering wtk = 1 ∀t, k, we have the original anomaly score. The weights wtk

can be defined in several ways, here we investigated three different versions,
presented in the following.

3.1 Variant 1 – Neighborhood

The first variant is based on the concept of neighborhood defined in [30]: con-
sidering a node k and an object x in that node, the neighborhood of x is defined
as the set of all the other objects that would pass from k. More in general, we
can define the neighborhood Ntk of a node k of a tree t as the set of the objects
of the dataset that would pass by k in their path from the root to the leaves of
the tree t. Clearly the neighborhood of the root is the whole dataset, whereas
the neighborhood of a leaf contains only few points. To define the weight, we
observe that a node which has a very small and restrictive neighborhood is more
important than a larger one, since it is more specific for the object under anal-
ysis. In particular, in an Isolation Forest a small neighborhood occurs when we
are very deep in the tree (since the number of objects decreases from the root
to the leaves) or we are high in the tree and there is an outlier that has been
isolated after few partitions (i.e. we have leaves at small depths).

We thus want to give more weight to nodes with a smaller neighborhood,
which leads to the following definition of wN

tk. Given a tree t and a node k in t,
its weight wN

tk is:

wN
tk =

1
|Ntk| (6)

where Ntk is the neighborhood of the node k, i.e. the set of points passing by
that node in the path from the root to their leaves.

3.2 Variant 2 – Proxy

The second variant starts from [14], an extension of Isolation Forests which
improves the training stage: instead of a random train, trees are built by opti-
mizing a predefined function. In particular, while building a tree, the authors
of [14] find a split by minimizing the so-called proxy function, a function which
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indicates the loss of information obtained when doing a particular split. In the
classification setting, this function is typically defined using the class labels (an
example is the Gini impurity): however, in the case of Isolation Forests, labels
are not available and thus such function must be defined in an alternative way.

The definition given by [14] is based on the following intuition: the best split is
the one which best separates instances, i.e. where one of the two children contains
the maximum number of objects in a minimum volume and the other child the
minimum number of instances in a maximum volume. In principle, the former
child should characterize the inliers, whereas the latter should characterize the
outliers. In practice, the proxy is an adaptation of the Gini impurity for the
one-class context, and for its definition we need: a volume measure, the number
of inliers and an estimation of the number of outliers. Aside from the number of
inliers, which is known, we define the other two elements as follows:

(i) The volume of a node k is computed via the Lebesgue measure Leb(k). In
the proxy, the ratio λk = Leb(k)

Leb(parent(k)) between the volume of a node k and
its parent is measured to retrieve the best split.

(ii) In [14] the distribution of outliers within the node k to be split is assumed to
be constant with respect to node k. Therefore the number of outliers n′

k is
defined as n′

k = nkγ where nk is the number of inliers and γ some constant.

Leaving aside further mathematical processing steps (for all the details, please
see [14]), the one-class proxy is defined as:

proxy(k) =
nkL

γnkλL

nkL
+ γnkλL

+
nkR

γnkλR

nkR
+ γnkλR

(7)

where kL and kR are respectively the left and right child of k and γ = 1.
From our perspective, the one-class proxy can be used to measure the good-

ness of a split at a node k (the lower the proxy the better the split): actually, a
high proxy means that the split does not separate well the data the node con-
tains, i.e. the node is not very important in the isolation process. On the contrary
a low proxy means that the node is split in a good way, i.e. some objects will
likely to be isolated after it. Following this reasoning, we can define a new weight
wP

tk, given a tree t and a node k in t, as:

wP
tk =

1
proxyt(k)

(8)

where proxyt(k) is the proxy computed at node k.

3.3 Variant 3 – Proxy-Neighborhood

The third variant we propose combines the two previous versions, taking into
account both the neighborhood and the proxy of a node.
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Given a tree t and a node k in t, its weight wPN
tk is:

wPN
tk =

1
proxyt(k)|Ntk| (9)

where proxyt(k) and Ntk are respectively the proxy and the neighborhood of the
node k.

4 Experimental Evaluation

The evaluation is based on 12 datasets from the UCI-ML repository [10] which
are benchmarks for one-class classification [14] (they were preprocessed following
the specifications in [14]). Table 1 presents an overview of the datasets. We can
see that the datasets cover a large range of situations: they differ in size (the
smallest one has 351 samples while the biggest 567498), in the number of features
(from 3 up to 164) and in the outlier percentage (from 0.03% up to 45.8%).

Isolation Forests were trained with standard parameters, as defined in [19,20],
which are: number of objects N = 256 sampled without replacement, size of the
forest T = 100, number of features available per tree F = All and maximum
depth D = log(N). In addition we also performed the experiments using D =
N − 1 to understand whether more descriptive trees produce better results.

Following [14], we adopted a Novelty Detection framework [25], i.e. only
inliers are used in the training phase2. For each experiment the dataset has been
split equally, i.e. 50% of the samples, in training and testing set. Each experiment
has been repeated 30 times. Finally, as often done in many one-class classification
problems [14,19,20] as accuracy measure we adopted the area under the ROC
curve (AUC).

Table 1. Overview of the 12 UCI datasets used for the experimental evaluation.

Datasets Nr. of objects Nr. of features Outlier %

Adult 48842 6 16.10%

Annthyroid 7200 6 7.42%

Arrhythmia 452 164 45.80%

ForestCover 286048 10 0.96%

Http 567498 3 0.39%

Ionosphere 351 32 35.90%

Pendigits 10992 16 10.41%

Pima 768 8 34.90%

Shuttle 49097 9 7.15%

Smtp 95156 3 0.03%

Spambase 4601 57 39.40%

Wilt 4839 5 5.39%

2 An alternative framework to adopt would be Outlier Detection [2] which uses both
outliers and inliers in the training stage.
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The first analysis compares the novel anomaly score with the standard
unweighted version. In Table 2 we present the results obtained when using stan-
dard parametrization with depth log(N) and N − 1. The last row is the average
across all the datasets. The best result is highlighted in bold. To assess the sta-
tistical significance we computed the standard errors of the mean, which are
comprised in the range 4 ∗ 10−9 and 8 ∗ 10−5. As a first general observation, if
we look at the average across the datasets, we can see that the newly defined
scores outperform the standard anomaly score. More in detail, except for two
datasets, Spambase and Adult, the best score is always obtained with a path-
weighted variant; for Shuttle instead, it seems there is no difference in using
the standard or the novel score. On the other hand, in some cases, such as for
Wilt, the improvement is quite relevant (0.718 versus 0.535). Table 2 also shows
that varying the depth parameter is advantageous for our proposal, while for the
anomaly score the performances vary only slightly.

Table 2. Results for the standard parametrization setting. Anomaly stands for the
standard definition of the anomaly score, Variant 1 for the neighborhood-based variant,
Variant 2 for the proxy-based one and Variant 3 for the variant based on both the
neighborhood and the proxy.

Dataset Anomaly Variant 1 Variant 2 Variant 3

N − 1 log(N) N − 1 log(N) N − 1 log(N) N − 1 log(N)

Adult 0.631 0.630 0.625 0.629 0.627 0.630 0.610 0.629

Annthyroid 0.915 0.912 0.939 0.903 0.934 0.908 0.915 0.904

Arrhythmia 0.770 0.759 0.773 0.753 0.773 0.756 0.750 0.752

ForestCover 0.845 0.852 0.869 0.827 0.860 0.838 0.815 0.829

Http 0.994 0.993 0.997 0.994 0.997 0.996 0.997 0.992

Ionosphere 0.905 0.898 0.945 0.881 0.959 0.901 0.946 0.880

Pendigits 0.840 0.798 0.928 0.805 0.927 0.834 0.913 0.803

Pima 0.732 0.729 0.694 0.734 0.712 0.734 0.677 0.733

Shuttle 0.996 0.996 0.996 0.995 0.995 0.996 0.987 0.995

Smtp 0.902 0.913 0.908 0.920 0.918 0.927 0.890 0.915

Spambase 0.825 0.832 0.798 0.827 0.824 0.829 0.755 0.828

Wilt 0.535 0.483 0.704 0.476 0.691 0.484 0.718 0.477

Average 0.824 0.816 0.848 0.812 0.851 0.819 0.831 0.811

As second experiment, we performed an analysis to study how the perfor-
mances change when varying the size of the forest, i.e. T ∈ {50, 100, 200, 500}:
results are presented in Table 3. For each T we report the best anomaly score
(A) and the best path-weighted anomaly score (PW). We also indicate the vari-
ant reaching the best result. In bold we highlight the best result for each T .
To assess the statistical significance we computed the standard errors of the
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Table 3. Results for different T s. A stands for anomaly score, PW for path-weighted
score. We report the best weighted variant between parenthesis.

Dataset T=50 T=100 T=200 T=500

A PW A PW A PW A PW

Adult 0.629 0.628 (V2) 0.631 0.630 (V2) 0.632 0.631 (V2) 0.631 0.631 (V2)

Annthyroid 0.912 0.929 (V1) 0.915 0.939 (V1) 0.917 0.943 (V1) 0.918 0.946 (V1)

Arrhythmia 0.764 0.760 (V2) 0.770 0.773 (V2) 0.772 0.778 (V1) 0.775 0.784 (V1)

ForestCover 0.845 0.849 (V1) 0.852 0.869 (V1) 0.856 0.885 (V1) 0.861 0.896 (V1)

Http 0.992 0.996 (V2) 0.994 0.997 (V2) 0.994 0.998 (V2) 0.994 0.998 (V3)

Ionosphere 0.900 0.951 (V2) 0.905 0.959 (V2) 0.906 0.961 (V2) 0.907 0.962 (V2)

Pendigits 0.834 0.913 (V2) 0.840 0.928 (V1) 0.842 0.939 (V3) 0.844 0.953 (V3)

Pima 0.727 0.730 (V2) 0.732 0.734 (V2) 0.734 0.736 (V2) 0.735 0.737 (V2)

Shuttle 0.996 0.994 (V2) 0.996 0.996 (V1) 0.997 0.997 (V1) 0.997 0.997 (V1)

Smtp 0.911 0.923 (V2) 0.913 0.927 (V2) 0.913 0.927 (V2) 0.913 0.927 (V2)

Spambase 0.827 0.824 (V2) 0.832 0.829 (V2) 0.837 0.834 (V2) 0.840 0.837 (V2)

Wilt 0.534 0.687 (V1) 0.535 0.718 (V3) 0.537 0.753 (V3) 0.535 0.779 (V3)

Average 0.823 0.849 0.826 0.858 0.828 0.865 0.829 0.871
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Fig. 1. Datasets average-standard parametrization

mean, which are comprised in the range 2∗10−9 and 9∗10−5. As in Table 2, the
last row presents the average across all the datasets. We can observe that the
proposed method works well and the performances increase as T , the size of the
forest, does. This is not true for the standard anomaly score, which improvement
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reaches a plateau when T = 100. Indeed if we look at the results for T = 50 the
best score for 4 datasets is reached with the standard score, but if we observe
the results for T = 500 there is only one dataset which prefers the unweighted
anomaly score. This analysis also shows that in 27/48 cases the variant based on
the one-class proxy, Variant 2 is the best one. On the contrary, Variant 3 rarely
achieves the best results. We can also observe that for more than half datasets
the best variant does not change when varying the number of trees.

The last analysis aims at a deeper understanding of the three versions of the
path-weighted anomaly score. We analysed how the performance of the different
variants, averaged across all the datasets, varies when varying the size of the
forest. The results are depicted in Fig. 1: we can observe that among the three
variants, if we fix the depth to either log(N) or N −1, the best variant is in both
cases the one based on the proxy, confirming the results of Table 3. It makes
sense since the proxy measures the goodness of a node in terms of split, and
thus how well it isolates the data. Another observation we can make is that in
general, using fully grown trees, i.e. depth N − 1, increases the performances no
matter which variant we consider.

5 Conclusions

This paper proposes an improvement of the classical anomaly score of Isolation
Forests by exploiting node-related information. The proposed approach is very
robust and compares well to the state of the art; in particular it achieves the best
performances when working with large forests and with completely grown trees.
Nevertheless we could make some further improvements, such as developing an
automated method that given a dataset chooses a priori the best variant. In
the future we would like to investigate novel ways to define the importance of a
node and to design new methodologies to isolate points, i.e. modify the training
phase.
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Abstract. Building an informative graph over a collection of images or
signals is one of the most important tasks in semi-supervised learning
(SSL). Local Hybrid Coding (LHC) was recently proposed as an alterna-
tive to the sparse coding scheme that is used in Sparse Representation
Classifier (SRC). The LHC blends sparsity and bases-locality criteria
in a unified optimization problem. This paper introduces a data-driven
graph construction method that exploits and extends the LHC scheme.
We propose a new coding scheme coined Adaptive Local Hybrid Coding
(ALHC). The main contributions are as follows. First, the proposed cod-
ing scheme automatically selects the local and non-local bases of LHC
using data similarities calculated by Locality-constrained Linear code.
Second, the estimated similarities are used in the regularization of the
final solution. Third, the proposed ALHC scheme is used in order to con-
struct graphs over image datasets. For SSL tasks adopting label propa-
gation, we show that the proposed graph outperforms many state-of-the
art graphs on three public face datasets.

Keywords: Graph construction · Sparse coding · Local hybrid code ·
Label propagation

1 Introduction

Semi-supervised learning is one of the most important fields in machine learning.
It is mainly used in the cases where there are a huge amount of labeled samples,
but very few labeled ones.

It can be an interesting solution specially in the cases where acquiring unla-
beled data is easy and cheap but obtaining labeled data is difficult which is the
case in many real world problems such as: (i) image classification, (ii) webpage
classification, (iii) speech recognition, (iv) person emotion recognition in videos
[1], and (v) protein sequence classification.

Graph-based semi-supervised learning which adopts an affinity graph to rep-
resent the relation between the samples has gain a lot of attention in the last
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decade (e.g., [4,6]). Indeed, graph-based algorithms are widely used nowadays in
a variety of machine learning tasks such as: (i) semi-supervised learning for label
propagation and regression [7], (ii) feature selection, (iii) graph-based embed-
ding [8], and (iv) spectral clustering [14]. Over the past decade, several graph
construction techniques have been proposed. In this paper, we propose a new
technique to construct a graph based on the Local Hybrid Coding [18]. Con-
sidering both the bases-locality and sparsity constraints in a unified framework,
LHC obtains the advantages of both types of coding. Dense coding with �2 reg-
ularization can better represent the geometric structure of data manifold which
can increase the accuracy of classification due to better discrimination power
[15]. At the same time, the �1-sparsity guarantees the correct representation of
input data in case very few samples are available [12,17].

The main differences between our approach and the LHC scheme of [18]
are as follows. Firstly, in our work, we construct a data-driven graph using
data self-representativeness whereas in [18], the authors propose a variant of
the Sparse Representation Classifier that uses the hybrid coding instead of the
sparse coding. Hence, in our work the adopted dictionary is obtained from the
data whereas in [18] they use a pre-trained database. Secondly, in our work the
similarity between the samples are derived from the coefficients that are obtained
from a coding scheme namely, Locality-constrained Linear Coding (LLC) while
in [18] the selection of local and non-local bases is based on Euclidean distance.

Thirdly, we adopt a biased weight for the coefficients of the local bases.
The remainder of this paper is organized as follows. Section 2 provides a brief

review of graph construction and reviews the Local Hybrid Coding scheme. Our
proposed method is introduced in Sect. 3. In Sect. 4, we present some exper-
imental results obtained with three benchmark face image datasets. Section 5
concludes the paper. In this paper, capital bold letters denote matrices and
small bold letters denote vectors.

2 Related Work

This section describes some existing methods for graph construction. Then, it
will present a review of the recent Local Hybrid Coding scheme. k-nearest neigh-
bor and ε-neighborhoods are two traditional graph construction methods. Let
the original data set be denoted by X = [x1,x2, . . . ,xn] ∈ R

d×n.
Locally Linear Embedding (LLE) focuses on preserving the local structure

of data [11]. LLE formulates the manifold learning problem as a neighborhood-
preserving embedding, which learns the global structure by exploiting the local
linear reconstructions. It estimates the reconstruction coefficients by minimizing
the reconstruction error of the set of all local neighborhoods in the dataset. It
turned out that the linear coding used by LLE can be used for computing the
graph weight matrix. Thus, LLE graph can be obtained by applying two stages:
adjacency matrix computation followed by the linear reconstruction of samples
from their neighbors. The adjacency matrix can be computed using the KNN or
ε-Neighborhood method. In [5], the authors utilize LLC for graph construction.
They propose a graph construction method that is based on a variant of LLC.
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On the other hand, sparsity representation based graph is parameter-free. [10]
and [19] proposed sparsity representation based graph construction methods in
which every sample is represented as a sparse linear combination of the rest of
input samples and the coefficients are considered as weights.

min ‖wi‖1, s.t.xi = Xwi, (1)

where wi = [wi1, . . . , wi,i−1, 0, wi,i+1, . . . , win]T is an n-dimensional vector with
the i-th element being zero (implying that the xi is removed from X), ‖.‖1 is the
�1 norm of a vector or matrix, and the elements wij , j �= i denote the contribution
of xj in the reconstruction of xi.

After the weight vector wi for each xi, i = 1, 2, . . . , n is obtained, the affinity
matrix W = (wij)n×n is obtained as:

W = [w1,w2, . . . ,wn]T , (2)

where wi is the optimal solution of Eq. (1) problem: A robust version of the
sparse graph can be obtained by solving the following problem:

min ‖wi‖1 + ‖e‖1, s.t.xi = Xwi + e. (3)

In this article, we call the graph that is constructed by the weights obtained
from Eq. (1) as standard sparse graph (�1-s) and the graph obtained by solving
the Eq. 3 as robust sparse graph (�1-r).

2.1 Review of Local Hybrid Coding

The authors in [18] propose a Local Hybrid Coding scheme to encode image
descriptors by taking into account the bases-locality and �1-sparsity. Hence their
proposed method retains the advantages of Least Square coding scheme and
�1-sparsity.

Let B = [b1,b2, . . . ,bn] ∈ R
d×n denote a pre-trained dictionary which con-

tains n samples each with dimensionality of d. Let x ∈ R
d denote a test sample.

The objective is to project this sample onto the bases of B via computing a code
vector c such that x ≈ Bc. LHC ensembles the �1-sparsity and bases-locality
criteria into a unified optimization problem. The coding of sample x with respect
to the dictionary B can be obtained by applying two steps.

In the first step, based on the distance between the sample x and the atoms of
the dictionary, the pre-trained dictionary is divided into two disjoint sets of B(l)

that contain the k-nearest-neighbor (KNN) atoms (kl) and B(s) that contains the
non-k-nearest-neighbor (ks) atoms. The B(l) which contains the local samples
are used for local coding and B(s) that contains non-local samples are used for
sparse coding.

In the second step, based on the local codes c(l) that are obtained from the
local bases B(l) and the sparse codes c(s) that are obtained from the B(s) basis,
a hybrid code will be constructed by:

min
c

‖x − [B(l), B(s)] [c(l)T , c(s)T ]T ‖22 + γ ||c(l)||22 + λ ||c(s)||1 (4)
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where c = [c(l)T , c(s)T ]T is the hybrid code formed from two parts, local code
c(l) and sparse code c(s). ||.||1 and ||.||2 denote the �1-norm and �2-norm of a
vector, respectively. Criterion 4 has three terms: the first term is the residual
error of the sample reconstruction, the second term is the �2 norm of local basis
coefficients and the third term is the �1 norm of the non-local bases coefficients.

Although the dictionary B is partitioned into two disjoint subsets, their coef-
ficients c(l) and c(s) are coupled, thus the convex optimization problem (4) is
solved in an alternating optimization procedure. The two sets of unknown coef-
ficients are then iteratively obtained by alternating regularized �2 coding and
�1 coding over the local bases and the non-local bases, respectively. Note that
when the sparse code c(s) is constant, the minimization problem in Eq. (4)
reduces to a regularized Least Square problem that can be solved using a
closed-form solution. Let x(l) = x − B(s)c(s). The optimal c(l) is then given
by c(l) ← (B(l)TB(l)+γ I)−1B(l)Tx(l). When the local part c(l) is constant, then
the minimization problem in Eq. (4) reduces to a �1 regularized sparse coding
problem that can be efficiently solved by the feature-sign search method [9].

Algorithm 1 describes the procedure of the proposed method. The
FeatureSign() function is the algorithm described in [9] which computes the
sparse code of a given sample w.r.t. a given dictionary. It should be noted that
in each iteration only the local code (i.e. c(l)) and sparse code (i.e. c(s)) change.
According to [18], convergence can be obtained in five iterations.

Input: Dictionary matrix B ∈ R
d×n, sample x, γ, λ, kl, and ks.

Output: LHC Code vector c

c(s) ← 0 ;
Sort the vectors of B in ascending order of their distances to x and obtain
basis vectors into the matrix B ;

Split B into KNN bases B(l) (kl bases) and non-KNN bases B(s) (ks bases) ;
repeat

x(l) ← x − B(s)c(s) ;

c(l) ← (B(l)TB(l) + γ I)−1B(l)Tx(l) ;

x(s) ← x − B(l)c(l) ;

c(s) ← FeatureSign(B(s),x(s)) ;

until Convergence;

c = [c(l)T , c(s)T ]T

Algorithm 1: Local Hybrid Coding.

3 Proposed Approach: Adaptive LHC (ALHC) Graph

In this paper, we propose an adaptive graph construction method that is based on
data self-representativeness and adopted a modified version of the LHC method.
The proposed method is different from LHC is several aspects. First, in our work,
we construct a data-driven graph using data self-representativeness whereas in
[18], the authors target a coding scheme that can replace the sparse coding stage
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in the Sparse Representation Classifier. Hence, the dictionary in the proposed
method is constructed from the data themselves, compared to a pre-trained dic-
tionary in [18]. Second, while [18] determined the similarity between the samples
(and the selection of local and non-local bases) adopting Euclidean distance, in
this article we use the similarity coefficients obtained by a Locality-constrained
Linear Code (LLC) method. Third, our proposed scheme is able to adaptively
select the local and non-local bases without any user-defined parameter. Fourth,
our coding introduces weights for the local bases coefficients.

To construct the graph, for every sample, we estimate its code with respect
to the rest of the samples in the database. Let Xi ∈ R

d×(n−1) denote the data
matrix associated with the set Si = {x1,x2 . . . ,xi−1,xi+1, . . . ,xn}. The whole
process has two steps. In the first step, based on the similarity between a sample
(i.e. xi) and the rest of the samples (i.e. Si), the local and non-local bases are
selected. In the second step, we obtain a hybrid code from the local and non-local
sets. We proceed as follows.

First Step. We first estimate the coding of the sample xi with respect to the
data matrix Xi using LLC. Let a ∈ R

n−1 denote this code. This vector is given
by minimizing the LLC criterion:

a = arg min
a

(‖xi −Xi a‖22 +σ

n−1∑

j=1

pj a2
j ) = arg min

a

(
‖xi − Xi a‖22 + σ ‖P1/2 a||2

)

(5)
where P is a diagonal matrix with elements Pjj = pj . Any formula which forms
a distance criterion between the sample xi and the sample xj can be used to
calculate pj . In our work, we use the following formula:

pj = 1 − exp(−‖xi − xj‖2) (6)

By using simple linear algebra calculations, the solution to (5) has a closed-form
solution:

a =
(
XT

i Xi + σP
)−1

XT
i xi (7)

Since the score |aj | encodes the similarity between the sample xi and the sample
xj ∈ Si = {x1,x2 . . . ,xi−1,xi+1, . . . ,xn}, it is expected to be much better than
the classic Euclidean distance ‖xi − xj ||2. Thus, |aj | can be a good measure of
locality between samples xi and xj .

We use the |aj |, j = 1, ..., n − 1 to split the data matrix Xi (equivalently the
set Si) into two disjoint sets of local X(l)

i and non-local X(s)
i bases.

The scores |aj | are sorted in a descending order (i.e. decreasing the similarity)
and correspondingly the samples in the set Si are sorted into the set Ŝi.

An adaptive threshold can be the result of applying any statistical function
on the coefficients as:

t(xi) = f(|a1|, . . . , |an−1|), (8)

where f(|a1|, . . . , |an−1|) is a statistical function that returns a scalar that
depends on the set of |aj |. One possible choice for this function can be the
average of the obtained coefficients:
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t(xi) =
1

n − 1

n−1∑

j=1

|aj |. (9)

Based the estimated threshold t(xi), we can generate from the original set
Si = {x1,x2 . . . ,xi−1,xi+1, . . . ,xn} the local set S

(l)
i and the non-local set S

(s)
i .

The local set S
(l)
i = {xj} is determined by selecting the samples who coding

coefficient satisfies |aj | > t(xi).
The non-local set is given by S

(s)
i = Si − S

(l)
i . It should be noticed that the

cardinality of both S
(l)
i and S

(s)
i depends on the current sample xi. However, in

the case of LHC the cardinality of both local and non-local bases is fixed a priori
for the whole dataset. Furthermore, the samples in S

(s)
i are ordered according to

their scores |aj |. Let kl denote the size of the local bases (i.e., the size of S
(l)
i ),

and ks the size of the non-local bases (the size of S
(s)
i ).

Second step. In this step, we estimate the hybrid code ci for every sample xi

using a modified LHC scheme.
For the sake of clarity, the subscript i is omitted in Eqs. (10) and (12). The

hybrid code is obtained by:

min
c

‖x − [X(l), X(s)][c(l)T , c(s)T ]T ‖22 + γ ||Dc(l)||22 + λ ||c(s)||1 (10)

where D ∈ R
kl×kl is a diagonal matrix containing the weights Djj associated

with each jth component of the local code c(l)i . In our work, we use the following
expression for Djj :

Djj = 1/|aj |, j = 1, ..., kl (11)

The solution to the above minimization can be obtained by Algorithm 1 where
the solution for the local part is now given by:

c(l) = (B(l)TB(l) + γ D)−1B(l)Tx(l) (12)

The ALHC is summarized in Fig. 1. We stress the fact that in the proposed
method the size of local and non-local basis is sample dependent.

3.1 Kernel Variant of ALHC

The motivation behind using kernel representation relies on the fact that a lin-
ear model for data self-representation cannot be the best model. Therefore, by
adopting non-linear models for data self-representation, it is expected that the
estimated coding coefficients could better quantify the dependency and rela-
tion among samples and hence, better graph coefficients can be derived. Let
Φ : X → Φ(X) be a non-linear mapping that projects original data samples onto
a space of high dimension. Following the Kernel theory, it is not necessary to
know the explicit function Φ since what is really needed is the dot product among
the projected samples. In this new space, the data samples are represented by the
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Adaptive LHC graph

Input: Data matrix X = [x1, . . . ,xn] ∈ R
d×n, parameters σ, γ and λ.

Output: Affinity matrix W (constructed graph)

For each sample xi, i = 1, ..., n:
- Form the coding dictionary Xi from Si = {x1,x2 . . . ,xi−1,xi+1, . . . ,xn}
- Compute the diagonal matrix P such that P (j, j) = 1 − exp(−‖|xi − xj ||2),
j = 1, ..., n − 1.
- Estimate the coding vector a using Eq. (7)
- Calculate the adaptive threshold t(xi) using Eq. (9)
- Form the set S

(l)
i by selecting the samples of Si whose |aj | > t(xi)

- Set the set S
(s)
i to Si − S

(l)
i

- Form the local bases X(l)
i and non-local bases X(l)

i from S
(l)
i and S

(s)
i , respec-

tively
- Form the diagonal kl × kl matrix D using Eq. (11)
- Estimate the hybrid code vector ci using Algorithm 1 (Eq. (10)) in which the
identity matrix is replaced by D
- The ith row of W is given by Wi∗ = |ci|T

Fig. 1. The proposed ALHC graph.

matrix Φ = [φ(x1), φ(x2), ..., φ(xn)]. Let Kij = φT (xi)φ(xj) be the dot product
of the projection of two samples xi and xj . This dot product quantifies a simi-
larity measure between samples xi and xj . The kernel matrix K(., .) can be built
using Gaussian, polynomial, or any other function that satisfies Mecer’s condi-
tions. It is easy to show that the matrix K will be given by ΦT Φ. By adopting
the mapped data, Φ, the kernel variant of the proposed method can be obtained
by replacing the data with their non-linear projections. Thus, the code vector
associated with each sample will be estimated by minimizing the following:

min
c

‖φ(x) − [Φ(X(l)), Φ(X(s))][c(l)T , c(s)T ]T ‖2
2 + γ ||c(l)||22 + λ ||c(s)||1 (13)

4 Performance Evaluation: Graph-Based Label
Propagation for Image Classification

The graph-construction method is assessed by the performance of the post-graph
construction task. The latter is given by label propagation over the graph. In the
experiments, we will use the Gaussian Fields and Harmonic Functions (GFHF)
method [21] since it is non-parametric.

We used the following three public face datasets:

1. Extended Yale - part B1: It contains images of 38 human subjects. Each
subject has about 60 images. The images are resized to 32 × 32 pixels.

1 http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.

http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
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Table 1. Recognition performance (Mean recognition accuracy %) on the Extended
Yale, PF01 and FERET datasets over ten different random splits.

Ext. Yale

Method
Lab.

q = 9 q = 14 q = 20

KNN 80.55 82.06 83.25
GoLPP [20] 35.85 48.62 59.65
LNP [13] 93.45 94.23 95.05
�1 − s [3] 82.15 86.59 89.98
�1 − r [19] 93.19 95.01 96.35
�1 − c [2] 80.15 84.44 87.76
LLC [5] 88.57 92.34 95.37
LHC [18] 87.56 89.72 92.45
SRLS [16] 91.44 93.80 95.22
ALHC 94.79 96.06 97.15

PF01

Method
Lab.

q = 5 q = 8 q = 12

KNN 44.38 49.44 52.17
GoLPP [20] 42.81 61.32 73.91
LNP [13] 64.07 72.61 74.47
�1 − s [3] 53.81 59.33 62.39
�1 − r [19] 72.06 79.53 84.00
�1 − c [2] 53.80 60.65 64.50
LLC [5] 72.87 79.57 83.25
LHC [18] 66.85 75.14 80.39
SRLS [16] 71.55 76.61 78.17
ALHC 74.07 80.92 85.53

FERET

Method
Labeled

q = 2 q = 3 q = 4

KNN 31.33 38.96 49.70
GoLPP [20] 12.05 17.31 25.00
LNP [13] 56.20 70.24 77.95
�1 − s [3] 55.93 66.59 74.78
�1 − r [19] 55.05 69.13 81.27
�1 − c [2] 51.18 61.01 72.50
LLC [5] 57.06 71.09 80.25
LHC [18] 56.81 70.59 82.00
SRLS [16] 57.36 68.62 73.55
ALHC 61.65 74.72 83.93

2. PF012: It contains the true-color face images of 103 people, 53 men and
50 women, representing 17 different images (1 normal face, 4 illumination
variations, 8 pose variations, 4 expression variations) per person.

3. FERET3: In our experiments, we use a subset of FERET. This subset con-
sists of 1400 images for 200 different person (7 images per person).

4.1 Method Comparison

For quantitative evaluation of the proposed method, we compare the perfor-
mance of the classification of the graph obtained from the proposed method
with the ones obtained from several state of the art graph construction tech-
niques. We divide the database into two sets of labeled and unlabeled, and then
construct the graph using the union of both sets.
2 https://sites.google.com/site/postechimlab2012/databases/face-database-2001.
3 http://www.itl.nist.gov/iad/humanid/feret.

https://sites.google.com/site/postechimlab2012/databases/face-database-2001
http://www.itl.nist.gov/iad/humanid/feret
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For every database, we randomly select q samples in each class as labeled
samples and leave the rest as unlabeled samples.

The adopted graph construction methods are: KNN graph, LNP graph [13],
GoLPP graph [20], standard �1 Graph (�1-s), Robust �1 Graph (�1-r), constrained
�1 graph (�1-c) [2], LHC graph, SRLS [16], and our proposed construction method
ALHC. In each database, q labeled samples are selected and the label of the rest
of the nodes (samples) are estimated using (GFHF) [21] method adopting the
constructed graph of every graph construction technique. The process is repeated
ten times for ten different combinations of labeled/unlabeled samples and the
average classification accuracy is reported. The above process is repeated for
three different q values, corresponding to three numbers of labeled samples.

KNN and LNP methods have the neighborhood size parameter k. The stan-
dard and robust �1 graphs have λ (�1-sparsity). The constrained sparse graph has
α and β. The LHC method has γ (local regularization), λ (�1-sparsity), kl and
ks. The LLC method has σ. The proposed ALHC method has σ, γ (local regu-
larization), and λ (�1-sparsity). In our experiments, k is chosen from 5 to 60 with
a step of 5 for kNN and LNP graph construction methods. σ is set to one. The
�1-sparsity parameter λ used in �1-s and �1-r is fixed to 0.1. For LHC and ALHC,
this parameter is chosen from {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.1, 0.15, 0.2}. The
parameter γ is tuned from {0.03, 1}. kl is chosen from {10, 20, 30, 40, 50, 100} and
ks is chosen from {50, 100, 150, 200, 250, 300}. We used the regularization param-
eters of the �1-c and SRLS graphs as the ones suggested in [2] and [16].

For every graph construction method, several values for the parameter are
used. We then report the best recognition accuracy of each method from the best
parameter configuration. Table 1 illustrates the average classification rate in %
of label propagation using different graph construction methods for Extended
Yale, PF01, and FERET datasets.

We can observe that the proposed ALHC method outperformed other graph
construction techniques and obtained the highest accuracy in all databases and
different number of labeled samples. It demonstrates that the graph constructed
by the proposed method is very informative. Moreover, we can see that the
performance of the graph obtained by the proposed method is better than that
of standard and constrained �1 graphs and outperforms the three types of sparse
graphs.

4.2 Sensitivity to Parameters

In this section, we evaluate the sensitivity of the proposed method with respect
to the variation of its parameters, namely σ, γ, and λ. The goal is to study
the performance of the proposed method when these parameters vary. The first
parameter is a simple regularization parameter in Locality-constrained coding–
the phase in which similarities are computed. The last two parameters are two
regularization parameters that are used in the hybrid coding scheme where γ
penalizes a weighted �2 norm and λ penalizes the �1 norm. Figure 2 (left) illus-
trates the variation of the recognition rates as a function of σ for the PF01
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Fig. 2. Performance variation (recognition rate) as a function of the regularization
parameter σ (Left) and of the two regularization parameters γ and λ (Right).

dataset. In this experiment, we use 12 labeled samples per class and fixed the
other two parameters.

Figure 2 (right) illustrates the variation of the recognition rates as a function
of γ and λ for the PF01 dataset. In this experiment, the parameter σ was kept
fixed to one since this value seems to be a near optimal value. From the above
observations, we can conclude that it is easy to define a near optimal domain for
all parameters.

5 Conclusion

In this paper, we have proposed a new graph construction method that is based
on data self-representativeness. The main contribution of this paper is the adap-
tive selection of local and non-local bases for the Local Hybrid Coding. The
proposed method simultaneously takes into account the locality and sparsity
in the graph construction. Thus, the adaptively constructed graph can be very
informative.

Experimental results obtained on image databases, demonstrate that in the
task of graph-based label propagation, the graph constructed by the proposed
method can give better results compared to many state-of-the art graph con-
struction techniques. Currently, we are quantifying the improvement of results
trough the use of the kernel variant.
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Abstract. In recent times, the Sparse Representation Classifier (SRC),
the Collaborative Representation Classifier (CRC), and the Two Phase
Test Sample Sparse Representation (TPTSSR) classifier were proposed
as classification tools that exploit sparse representation. Inspired by
active learning techniques, this paper proposes an active Collabora-
tive Representation Classifier that can be exploited by these supervised
frameworks. The introduced Active Two Phase Collaborative Represen-
tation Classifier (ATPCRC) begins by estimating the label of the avail-
able unlabeled samples. At testing stage, based on the TPTSSR frame-
work any test sample will have two representations that are calculated
separately by using two different dictionaries. The first dictionary is com-
posed of all samples having original labels. The second dictionary con-
tains the whole dataset samples (original and predicted labels). The two
kinds of class-wise reconstruction error are then fused in order to infer the
label of the test sample. The proposal is validated on four public image
datasets. The results shoe that the introduced ATPCRC can outperform
the classic TPTSSR as well as several state-of-the-art approaches that
use label and unlabeled data samples.

Keywords: Two Phase Collaborative Representation Classifier ·
Semi-supervised learning · Image classification

1 Introduction

Image categorization was a hot topic in the computer vision and patter recogni-
tion community. Researchers brought many progresses to this domain by deploy-
ing semi-supervised learning (SSL) paradigms [2,7,8,15].

Unlike unsupervised and supervised learning, SSL exploits both labeled and
unlabeled data samples in estimating the models. However, SSL may face some
difficulties especially in cases where the labels are very scarce. Therefore, one
interesting approach is to increase the size of the labeled data by invoking active
c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11751, pp. 175–184, 2019.
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learning paradigms (e.g., [1,11,18]). One main goal of active learning is to gen-
erate more labeled samples by simply predicting the labels of unlabeled samples,
and exploit them to build new models and classifiers. The main problems that
these paradigms solve are: (i) identifying the most relevant unlabeled samples
that the system should predict their label first, (ii) preserving confident pre-
dictions. Usually, the proposed solutions rely on the concept of confidence in
prediction and classification. For instance, if the confidence of a label predic-
tion is not enough for a specific data sample (i.e., the predicted label has a
high uncertainty), then the corresponding sample will not be exploited by the
final model. At most, it will be used as an unlabeled sample since its estimated
label is uncertain. In addition to the uncertainty and confidence concepts, some
methods proposed other criteria. In order to avoid having many labeled sam-
ples in the same cluster, Nguyen et al. [21] exploit the diversity concept by
deploying a pre-clustering method. In [6], the authors proposed an active cluster
based sampling method. However, since this approach employs a hierarchical
clustering of unlabeled samples, the final performance can be impacted by the
performance of clustering process itself. In [17], the authors introduced an active
probabilistic variant of the K-NN classifier that can be used for multi-class prob-
lems. In [14], the authors proposed an approach that is based on informativeness
and representativeness of unlabeled samples. Besides active learning paradigms,
sparse representation has brought significant advances to the pattern recognition
field [5]. This is due to its capacity to acquire, represent and compress knowl-
edge of the domain, and thus to reconstruct the data with minimal loss [26]. The
Sparse Representation based Classifier (SRC) [27] can be thought as a general-
ization of the Nearest Neighbor classifier (NN) and the Nearest Feature Subspace
(NFS) [16]. Unlike the NN and NFS classifiers, SRC can be more robust in the
presence of deviations and occlusions [25]. Despite the fact that SRC has good
performance, it has a high computational cost since it is based on the �1 mini-
mization in the coding process. Therefore, SRC cannot practical for real-world
problems requiring a fast decision and classification. Thus, many researchers
exploited data locality [9]. For instance, the work of [19] limited the sparse cod-
ing dictionary to the nearest neighbors only. Xu et al. [28] proposed a Two Phase
Test Sample Sparse Representation (TPTSSR) approach in which the regular-
ization is given by the �2 norm. This method has two phases. In the first phase,
the testing sample is represented as a linear combination of all training samples.
The first M samples that provide its best representation are then chosen to be
the atoms of a new compact dictionary. In the second phase, the testing sample
is coded using the new dictionary of M samples. The label of the test sample
is made upon this representation. The Collaborative Representation Classifier
(CRC) is the classifier that uses the first phase of the TPTSSR classifier. This
paper is organized as follows: Sect. 2 presents our Active Two Phase Collabora-
tive Representation classifier (ATPCRC). The experimental results and methods
comparison are presented in Sect. 3. Section 4 concludes the paper. In the paper,
capital bold letters denote matrices and bold letters denote vectors.
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2 Active Two Phase Collaborative Representation
Classifier

Proposed Method. In this section, we propose the Active Two Phase Collaborative
Representation Classifier (ATPCRC). While our proposed ATPCRC makes the
TPTSSR classifier active, it is also able to make any collaborative representation-
based classifier (e.g., CRC and SRC) active. Our proposed ATPCRC aims to
construct a classifier that exploits both labeled and unlabeled samples. Let
x1,x2, . . . ,xL denote the labeled data samples and xL+1,xL+2, . . . ,xN denote
the unlabeled data samples. The matrix of labeled samples is denoted by
Xl = [x1,x2, . . . ,xL] ∈ R

D×L and the matrix of unlabeled samples is denoted by
Xu = [xL+1,xL+2, . . . ,xN ] ∈ R

D×U where L and U = N − L are the numbers
of labeled and unlabeled samples, respectively. The training data are defined by
the matrix X = [x1,x2, . . . ,xN ] ∈ R

D×N .
Using active learning strategies, we first estimate the labels of all unlabeled

samples, Xu. We then use both the original labeled data and the predicted ones,
X, to build a new classifier. We recall that the TPTSSR is a lazy classifier in
the sense that all of its computation stages run at the testing step. In order to
predicting the label of the unlabeled samples any classifier can be invoked. In
our work, we employ the TPTSSR classifier in which the original set of labeled
samples are used. Once this stage is achieved, every sample in the training data
matrix X has either an original label or a predicted one. In order to classifying
a testing sample by the proposed ATPCRC, we proceed as follows. Two coding
schemes are carried out independently, each has two phases of coding like in
TPTSSR. The first coding scheme uses the labeled data Xl. The second coding
scheme uses the whole training data matrix X. To infer the class of any testing
sample, a fusion of the class-wise reconstruction error is exploited. Let Ml and
M denote the parameters of the two coding processes. We proceed as follows.

First Phase. In the first phase, the testing sample y ∈ R
D will have two repre-

sentation or codes: the first code vector is computed from a linear combination
of the labeled samples Xl and the second code results from a linear combination
of the whole training data X. These two codes of y are given by:

y = al
1 x1 + al

2 x2 + . . . + al
L xL (1)

y = a1 x1 + a2 x2 + . . . + aL xL + . . . + aN xN (2)

Equations (1) and (2) can be rewritten in matrix form as follows:

y = Xl al and y = Xa

where al = [al
1, a

l
2, . . . , a

l
L]T and a = [a1, a2, . . . , aN ]T . The unknown code vec-

tors al and a are recovered using �2 regularization. These two vectors are solu-
tions to the following optimization problems, respectively:

al� = arg min
al

‖y − Xl al‖2 + λl ‖al‖2

a� = arg min
a

‖y − Xa‖2 + λ ‖a‖2
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where λl and λ are two regularization parameters. The solutions for al and a
are provided by:

al� = (XT
l Xl + λl Il)−1 XT

l y

a� = (XT X + λ I)−1 XTy (3)

where I and Il are identity matrices with an appropriate size. From Eqs. (1)
and (2), one can see that each data sample, xi, has its own contribution in the
reconstruction of the test sample y. Thus, from Eq. (1) the contribution of xi is
al

ixi. From (2), the contribution is aixi. Therefore, xi has a large contribution
in Eq. (1) if ‖y − al

i xi‖2 is small, and it has a large contribution in Eq. (2) if
‖y − ai xi‖2 is small. Thus, the Ml samples (1 ≤ Ml ≤ L) that have the largest
Ml contributions when approximating y in Eq. (1) and the M samples (1 ≤
M ≤ N) that have the largest M contributions when approximating y in Eq. (2)
are chosen to be handed over to the second phase of coding. The two subsets
of selected samples are denoted by {x̃l

1, x̃
l
2, . . . , x̃

l
Ml

}, and {x̃1, x̃2, . . . , x̃M}. In
matrix form, these two dictionaries are given by ˜Xl = [x̃l

1, x̃
l
2, . . . , x̃

l
Ml

] and
˜X = [x̃1, x̃2, . . . , x̃M ].

Second Phase. In the second phase, the testing sample y is represented by two
code vectors: the first one is a linear combination of the remaining Ml labeled
samples and the second one is a linear combination of the remaining M training
samples. This can be written as:

y = ˜Xl bl and y = ˜Xb

where bl and b denote the second phase vectors. Similarly to (1) and (2), the
unknown vectors bl and b are provided by:

bl� = (˜Xl

T
˜Xl + γl Il)−1

˜Xl

T
y

b� = (˜XT
˜X + γ I)−1

˜XT y (4)

where γ and γl are two regularization parameters.
Suppose we have tl data samples, from the Ml labeled samples, belong-

ing to the cth class: (x̃l
1)

c, (x̃l
2)

c, . . . , (x̃l
tl
)c, and their corresponding coeffi-

cients are (bl
1)

c, (bl
2)

c, . . . , (bl
tl
)c. Suppose that, from the M training samples,

there are t data samples belonging to the cth class (or predicted to be
in this class): (x̃1)c, (x̃2)c, . . . , (x̃t)c and their corresponding coefficients are
(b1)c, (b2)c, . . . , (bt)c. We can define the reconstruction error associated to class
c, Dev(c) by:

η
∥

∥

∥

∥

y −
tl

∑

j=1

x̃c
j (b

l
j)

c
∥

∥

∥

∥

2

+ (1 − η)
∥

∥

∥

∥

y −
t

∑

j=1

x̃c
j (bj)

c
∥

∥

∥

∥

2

(5)

where η is a balance parameter (0 ≤ η ≤ 1). The above proposed residual is a way
of fusing the collaborative contribution of the selected samples of the cth class,
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in representing the testing sample y by both Xl and X. A large contribution
corresponds to small residual. Therefore, the label of y is estimated by:

l(y) = arg min
c

Dev(c) 1 ≤ c ≤ C

where C is the number of classes and l(y) is the predicted class label of the
testing sample y. This, is the output of the ATPCRC. By using this merging
rule, we are able to down-weigh the residual associated with the samples in X
since their labels are not all correct. The introduced class-wise reconstruction
errors avoid the use of an ad-hoc sample-based confidence measure. Based on
Eq. (5), we can observe that if η is set to 1, we get the classic TPTSSR. If η
is set to zero, we get a trivial active variant of TPTSSR. In the sequel, we will
show that the proposed ATPCRC can outperform both the classic TPTSSR and
the trivial active variant of TPTSSR.

The Algorithm. The introduces ATPCRC has the following inputs: the labeled
data matrix Xl = [x1,x2, . . . ,xL] ∈ R

D×L, the training data matrix X =
[x1,x2, . . . ,xN ] ∈ R

D×N (it has both labeled and unlabeled samples), the testing
sample y ∈ R

D and the parameters M and Ml.

1. Estimate the labels of the samples xL+1,xL+2, . . . ,xN using the TPTSSR
classifier and the training data Xl. M is the TPTSSR parameter.

2. Calculate the code vectors a� and al� using Eq. (3).
3. Compute the vector e = (e1, e2, . . . , eN )T where ei = ‖y − ai xi‖2. Sort e

and choose the samples that corresponding to the smallest M elements of e.
These selected samples are denoted x̃1, x̃2, . . . , x̃M . Finally, form the matrix
˜X = [x̃1, x̃2, . . . , x̃M ].

4. Similarly form the matrix ˜Xl = [x̃l
1, x̃

l
2, . . . , x̃

l
Ml

] using el
i = ‖y − al

i xi‖2
instead of ei = ‖y − ai xi‖2 and Ml instead of M .

5. Compute the code vectors b� and bl� using Eq. (4).
6. For every class c (1 ≤ c ≤ C) calculate the global residual defined in Eq. (5).
7. The label of y is the class that corresponds to the smallest residual error.

3 Performance Study

In this section, we compare the performance of the proposed ATPCRC with that
of twelve methods: Nearest Neighbor classifier (NN), Support Vector Machines
(SVM) adopting a polynomial kernel, Sparse Representation based Classifier
(SRC) [27], Two Phase Test Sample Representation Classifier (TPTSSR) [28],
Semi-supervised Discriminant Embedding (SDE) [13], Semi-supervised Discrim-
inant Analysis (SDA) [4], Transductive Component Analysis (TCA) [20], Spar-
sity Preserving Discriminant Analysis (SPDA) [23], Laplacian Regularized Least
Squares (LapRLS) [3], Flexible Manifold Embedding (FME) [22], Kernel Flexible
Manifold Embedding (KFME) [12], and Semi-supervised Exponential Discrimi-
nant Embedding (ESDE) [10]. The SVM, NN, SRC, and TPTSSR classifiers are
supervised methods while the other competing approaches are exploiting both
unlabeled and labeled samples.
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Experimental Setup. The experiments are run on four public image datasets.
These four datasets belong to several categories: one object database (COIL20),
one handwritten digits database (USPS), and two face datasets (Extended Yale
and Honda).

COIL201: The Columbia Object Image Library (COIL20) The COIL20 image
database has 1440 images. There are 20 objects and each object provides 72
images which are taken at pose intervals of five degrees. In our experiments,
we use a subset having 18 images for each object (one image for every 20◦ of
rotation).

Extended Yale2: There are 1774 images depicting 28 persons. Each person has
59–64 frontal images.

Honda: We use 1138 face images retrieved from the public Honda Video
DataBase (HVDB). These images correspond to 22 persons.

USPS Handwritten Digits3: This dataset consists of 11000 images of hand-
written digits from “0” to “9” (1100 images per digit). We utilize the tenth of
this database.

Each dataset is randomly split into labeled, unlabeled and testing samples.
In the conducted experiments, we adopt three different partitions of the data.
These partitions are illustrated in Table 1. The labeled and unlabeled parts are
used in the methods that use bot labeled and unlabeled data. The test part is
used to evaluate the performance.

For each partition, the splitting process is repeated ten times. As a prepro-
cessing step, all datasets used PCA in order to reduce the dimensions. We used
a PCA that preserves 98% of the variability.

Table 1. Data partitions for the used image datasets.

Partition Training samples Testing samples

Labeled samples Unlabeled samples

Partition 1 15% 35% 50%

Partition 2 25% 25% 50%

Partition 3 35% 15% 50%

Method Comparison. Table 2 depicts the recognition performance of the pro-
posed ATPCRC and that of 12 competing methods. In this table, we report the
recognition rate average as well as its standard deviation over the ten random
splits.

1 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
2 http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html.
3 http://www.cs.nyu.edu/∼roweis/data.html.

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://www.cs.nyu.edu/~roweis/data.html
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For the FME, KFME, SDE, SDA, SPDA, LapRLS and TCA methods, all
parameters are tuned using the set {10−9, 10−6, 10−3, 1, 10+3, 10+6, 10+9}. For
the ATPCRC method, M and Ml parameters are chosen in {30, 60, 90, ..., N}.
The regularization parameters of the proposed ATPCRC method (i.e., λ, λl, γ
and γl) are set to 0.01. η is set to 0.8. This value for η was empirically found to
be a good choice for all datasets.

For the projection methods (SDE, SDA, SPDA, TCA, and ESDE), the classi-
fication was performed using the nearest neighbor (NN) classifier. The reported
results correspond to the best parameters configuration over ten splits. Bold
numbers correspond to the best recognition rates. Several observations can be
made from Table 2. The main ones are as follows. (1) The performance of the
introduced active classifier (ATPCRC) can be batter than that of many other
competing methods. (2) The outperformance of the proposed ATPCRC method
is significant for the Honda and Extended Yale datasets which have face images
with a high variability.

Table 3 compares our proposed ATPCRC with the trivial active TPTSSR.
The trivial active TPTSSR is obtained by setting the η parameter of ATPCRC
to zero. For the trivial active TPTSSR, the entire set of data samples X is used:
those with ground-truth labels and those with predicted ones. From this table,
we can see that the ATPCRC is superior to the trivial active TPTSSR in most
of the cases. Thus, the use of weighted class-wise reconstruction residuals (i.e.,
Eq. (5)) was crucial for reaching a good performance.

Statistical Significance. In the section we conduct a statistical analysis of the
results. To this end, we use the well known paired sample t-test [24]. We adopt a
confidence level of 95% (i.e., the statistical significance threshold p is set to 0.05).
Table 2 shows the outcome of all paired sample t-tests. For a given competing
approach, an underlined rate indicates that there is no significant statistical
difference between the proposed ATPCRC and this competing approach. Among
the 144 paired tests, the proposed ATPCRC was significantly better in 134
configurations representing 93.08% of the tested pairs.

Computational Time. We measure the computational time needed by the
TPTSSR, SRC, and the proposed ATPCRC method. We fix the number of
labeled images to 50% of the whole data and the remaining images are used as
test images. Table 4 depicts the CPU time in seconds associated with classifica-
tion of the whole test images. The experiments have been run using MATLAB
on a 128 GB RAM intel core I7-6900k 8 cores 3.6 GHz CPU computer. As it can
be seen, the proposed ATPCRC approach is much faster than the SRC method.

4 Conclusion

In this paper, we introduced an active Two Phase Collaborative Representa-
tion Classifier. Indeed, transforming the original TPTSSR (or any collabora-
tive representation classifier) to an active classifier is a challenging task. The
proposed fused class-wise reconstruction residual avoided adopting an ad-hoc
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Table 2. Average and standard deviation over ten random splits of the correct classi-
fication rate (%) using several methods.

Ext. Yale
Method Partition 1 Partition 2 Partition 3

NN 66.4 ± 5.6 75.2 ± 5.3 79.3 ± 3.2
SVM 75.2 ± 11.1 87.7 ± 5.8 92.2 ± 2.2
SRC [27] 86.1 ± 4.5 91.3 ± 3.4 93.5 ± 2.1
TPTSSR [28] 84.5 ± 5.4 91.2 ± 3.4 93.2 ± 2.0
SDE [13] 81.3 ± 6.5 86.5 ± 4.1 88.5 ± 3.2
SDA [4] 79.5 ± 9.9 88.0 ± 5.8 91.4 ± 3.3
TCA [20] 84.7 ± 8.4 91.7 ± 3.0 93.7 ± 2.1
SPDA [23] 78.3 ± 9.8 87.8 ± 6.0 91.3 ± 3.4
LapRLS [3] 76.1 ± 8.9 80.9 ± 6.0 82.1 ± 5.3
FME [22] 73.2 ± 5.8 77.1 ± 5.6 79.6 ± 4.6
KFME [12] 80.4 ± 8.7 90.3 ± 5.2 94.0 ± 3.5
ESDE [10] 78.6 ± 10.1 85.4 ± 7.8 89.2 ± 5.8
ATPCRC 88.2 ± 3.8 93.0 ± 2.7 94.4 ± 1.9

Honda
Method Partition 1 Partition 2 Partition 3

NN 56.9 ± 2.6 67.5 ± 3.0 73.7 ± 2.4
SVM 31.1 ± 4.4 35.9 ± 3.2 38.4 ± 3.4
SRC [27] 57.6 ± 3.0 69.2 ± 2.3 73.1 ± 2.0
TPTSSR [28] 61.0 ± 2.2 72.5 ± 2.9 78.6 ± 2.9
SDE [13] 55.7 ± 2.7 66.3 ± 2.9 72.7 ± 2.5
SDA [4] 56.7 ± 3.1 67.8 ± 3.0 74.7 ± 3.8
TCA [20] 49.7 ± 2.4 61.9 ± 3.4 69.4 ± 2.6
SPDA [23] 50.6 ± 2.4 67.2 ± 2.9 74.6 ± 3.6
LapRLS [3] 42.9 ± 2.8 45.4 ± 2.6 53.4 ± 1.5
FME [22] 51.4 ± 3.4 57.0 ± 2.3 59.6 ± 1.6
KFME [12] 56.9 ± 3.1 66.0 ± 3.0 69.9 ± 2.0
ESDE [10] 57.9 ± 2.9 68.3 ± 3.5 74.4 ± 3.0
ATPCRC 62.2 ± 2.4 73.3 ± 2.7 78.9 ± 2.1

USPS
Method Partition 1 Partition 2 Partition 3

NN 78.4 ± 1.6 83.1 ± 2.3 85.1 ± 1.8
SVM 66.1 ± 5.3 74.9 ± 4.1 81.1 ± 3.5
SRC 74.2 ± 1.9 82.0 ± 1.5 85.1 ± 1.5
TPTSSR 80.0 ± 1.7 85.0 ± 1.8 85.9 ± 1.6
SDE 75.1 ± 1.7 82.7 ± 2.4 85.4 ± 1.2
SDA 77.3 ± 1.9 83.4 ± 1.0 85.4 ± 0.8
TCA 66.9 ± 2.2 74.0 ± 1.5 77.8 ± 1.5
SPDA 55.6 ± 2.8 76.9 ± 2.7 83.5 ± 1.5
LapRLS 74.0 ± 1.8 75.3 ± 4.6 76.5 ± 4.3
FME 73.7 ± 1.8 76.5 ± 1.7 77.6 ± 1.6
KFME 80.5 ± 1.7 84.7 ± 1.3 87.4 ± 1.8
ESDE 78.5 ± 1.6 83.1 ± 2.3 85.1 ± 1.8
ATPCRC 81.1 ± 2.0 86.2 ± 1.2 88.4 ± 1.6

COIL20
Method Partition 1 Partition 2 Partition 3

NN 73.5 ± 6.1 81.5 ± 5.4 83.6 ± 3.7
SVM 69.6 ± 6.8 80.8 ± 4.4 84.8 ± 4.5
SRC 73.9 ± 6.0 81.6 ± 4.2 83.4 ± 3.4
TPTSSR 60.2 ± 6.6 83.7 ± 4.4 86.7 ± 3.4
SDE 72.2 ± 6.6 80.7 ± 4.7 83.2 ± 3.4
SDA 66.8 ± 6.5 77.1 ± 3.6 80.1 ± 3.2
TCA 68.0 ± 4.4 66.8 ± 4.1 69.6 ± 3.9
SPDA 34.8 ± 3.2 56.2 ± 3.5 67.1 ± 5.3
LapRLS 76.0 ± 5.4 81.2 ± 4.2 83.9 ± 3.7
FME 68.9 ± 5.7 74.7 ± 3.9 77.1 ± 3.2
KFME 72.0 ± 5.3 78.7 ± 6.0 80.7 ± 4.6
ESDE 73.6 ± 6.1 81.5 ± 5.4 83.6 ± 3.7
ATPCRC 76.8 ± 6.2 84.8 ± 4.1 87.3 ± 3.7

Table 3. Average recognition rate and standard deviation in % of a simple active
TPTSSR and the proposed ATPCRC classifier.

Ext. Yale
Method Partition 1 Partition 2 Partition 3

TPTSSR (active) 84.1 ± 5.4 87.7 ± 2.6 89.4 ± 2.1
ATPCRC 88.2 ± 3.8 93.0 ± 2.7 94.4 ± 1.9

Honda
Method Partition 1 Partition 2 Partition 3

TPTSSR (active) 61.2 ± 3.3 72.5 ± 2.4 78.4 ± 2.1
ATPCRC 62.2 ± 2.4 73.3 ± 2.7 78.9 ± 2.1

USPS
Method Partition 1 Partition 2 Partition 3

TPTSSR (active) 81.7 ± 2.5 85.7 ± 1.8 88.1 ± 1.7
ATPCRC 81.1 ± 2.0 86.2 ± 1.2 88.4 ± 1.6

COIL20
Method Partition 1 Partition 2 Partition 3

TPTSSR (active) 74.9 ± 5.3 82.2 ± 2.4 84.8 ± 2.2
ATPCRC 76.8 ± 6.2 84.8 ± 4.1 87.3 ± 3.7
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Table 4. CPU time (in seconds) of the SRC, TPTSSR and ATPCRC classifiers when
50% of the dataset are labeled images and the remaining 50% are test images.

ATPCRC TPTSSR SRC

Ext. Yale 19.59 9.22 60.33

USPS 5.09 2.55 28.11

Honda 5.68 2.75 29.96

COIL20 0.45 0.20 5.13

sample-based confidence measure. Experiments conducted on four public images
datasets show the outperformance of the proposed method over 12 classification
methods. These experiments demonstrate that active learning can lead to a per-
formance which is significantly better than that provided by the passive classifiers
TPTSSR and SRC.
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Abstract. This paper presents a gesture recognition approach for CAD
interfaces where the Leap Motion Controller is used for its high pre-
cision in modelling user hands. A simple, compact and effective hand
representation is proposed to encode trajectory and pose across time.
Recognition is based on Recurrent Neural Networks, particularly suited
for processing data sequences. An effective data augmentation technique
is also described to increase the size of the training set. Experiments con-
ducted on a novel dataset of gesture performed by 30 volunteers show
the effectiveness of the proposed technique; the dataset will be made
available to the community for future studies.

Keywords: Gesture recognition · Leap Motion Controller ·
LSTM networks · Computer-Aided Design

1 Introduction

Gestures are one of the most common and natural ways people use to commu-
nicate; humans move arms, hands, fingers or even the whole body to transmit
information or interact with the environment. In recent years, the development of
Human-Computer Interaction systems received great attention from the research
community with the aim of developing natural and unobtrusive interfaces, and
making users able to interact with the system without any hand-held device.
Gesture recognition systems can be profitably used in a variety of applications
[4]; among others, sign language translation, daily assistance to elders or disabled
people, security application and gaming are probably the most relevant.

This work focuses on the development of a gesture recognition system for
CAD interfaces. Although the realisation of a complete 3D model requires fine
user movements quite difficult to realise outside the sophisticated traditional
CAD interfaces, more intuitive and natural interactions can be useful for initial
prototyping or successive interaction with existing models. The widespread dif-
fusion of low-cost RGB-D sensors (e.g. Kinect) and their ability to track users’
movements greatly fostered research in this field. The approach proposed in this
c© Springer Nature Switzerland AG 2019
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paper is based on the use of the Leap Motion Controller (LMC) [13,17], which
provides interesting functionalities for detecting and tracking user’s hands; being
it designed to work at short distance, hands information is provided with a
noticeably higher level of precision with respect to previous devices operating at
larger distances and tracking the whole human body.

The proposed gesture recognition approach is based on a novel, compact but
effective hand representation coupled with Long-Short Term Memory networks
(LSTM), which represent a natural choice for their ability of managing sequences
of inputs over time. When dealing with networks, the level of accuracy reachable
is often influenced by the availability of training data; while, for its nature,
gesture recognition is in general considered a small-scale problem, the set of
data for network training can be incremented by artificially generated data.
One further contribution of this paper is the definition of data augmentation
techniques able to produce additional data for training while keeping unaltered
the semantic of gestures. Finally, a new dataset of gestures will be made available
to the research community to allow for future comparisons.

The paper is organised as follow: Sect. 2 presents the state of the art, with
particular reference to gesture recognition for CAD applications, Sect. 3 describes
the proposed approach, the experiments are described in Sect. 4 and Sect. 5 draws
some conclusions.

2 Related Works

The recent literature on human gesture recognition is huge and a comprehensive
review goes beyond the scope of this work; interested readers can refer to [3,4,15]
for recent surveys on 3D hand gesture recognition. Several solutions for natu-
ral CAD interfaces have been proposed in the literature. Many works propose
contact-based solutions where the user interacts with the system by means of
ad-hoc input devices. In [10] different techniques for sketch-based modeling are
described, where the users interact with CAD applications by means of sketches;
in [19] a Virtual Reality based system is described, where an electronic data glove
is suggested as input device. Several vision-based techniques have also been pro-
posed as an alternative to contact-based solutions, with the aim of providing to
the user a more natural interface. No direct interactions with input devices are
requested in this case; gesture interpretation is based on data streams acquired
by cameras of different nature (e.g. RGB or depth). One of the most interest-
ing sensors in this context is Microsoft Kinect [12,18], a low-cost device able to
capture in parallel RGB and Depth data streams; its success is largely related
to the skeleton representation provided by the SDK which allows to easily track
subjects and analyze their behaviour. The use of Kinect for gesture recognition
in CAD applications is proposed in some works [7,8,16]; however it is worth
noting that the fine hand gestures needed to precisely interact with the system
are difficult to capture with Kinect due to its simplified skeleton model where
hands are simply identified by a single joint (in the palm) and no information
about fingers is provided. Leap Motion Controller works at smaller distances
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with respect to Kinect and offers a much more detailed hand representation,
where each finger is represented by several joints. In [2] LMC multiple applica-
tions in Human-Computer Interaction are described, ranging from the medical
field to human-robot interaction, from games and gamification to sign language
recognition. A CAD interface based on LMC is described in [14] where a proof
of concept system able to recognize a set of gestures is described; the details of
the recognition approach are not given and the dataset used for testing is not
available, thus making impossible a comparison with our proposal. A relevant
work for our study is [1] where the use of LMC coupled with recurrent neural
networks is discussed for sign language and semaphoric gesture recognition. The
authors adopt a complex hand model and a deep network to deal with gestures
of different nature with interesting results; we will show in our experiments that,
for the specific CAD context, also a simplified representation and a relatively
small network allow to reach fully satisfactory results.

3 Proposed Approach

This paper proposes a novel approach for gesture recognition based on the use
of Leap Motion Controller. The Leap Motion Controller is a device designed to
detect and track user hands, usually placed on the user physical desktop in front
of the computer, or mounted on a headset for virtual reality. The device has two
monochromatic IR cameras and three infrared LEDs. The IR light emitted from
the LEDs is reflected by the user hands and then read by the cameras. Thanks to
these tools, the device is able to perceive user hands inside a hemispherical area
until a distance of 1 m, with a precision of 0,7 mm and a frame rate up to 200
fps. The information acquired by the sensor is then used to create an internal
representation of the two hands, easily accessible thanks to the provided SDK.

3.1 Hand Representation

The hand skeleton information extracted by the LMC consists of a set of
attributes, providing geometric data about the user palm, fingers and arm, but
also high-level information like acquisition confidence and grabbing or pinching
strength. Among the different data provided, the geometric ones are more rel-
evant to our model. Our objective is to define a representation capturing the
gesture evolution represented by hand pose, without including any information
related to hand shape which is user-specific and not meaningful for gesture recog-
nition. For this reason we neglect most of the data related to the hand position in
space (except palm position, used as a reference to evaluate hand translation in
time), and we mainly rely on the directions characterizing hand and fingerprints.
In particular we exploited for our representation (see Fig. 1a):

– arm: described by its direction da;
– palm: described by its 3D position p and its direction dp;
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– fingers: each finger is a complex object, consisting of a list of bones represent-
ing the single phalanges. We consider the direction of each bone dbf,p

, with
f being the finger index (f = 1, .., 5) and p the phalanx index (p = 1, .., 3).

Starting from the hand information provided by LMC, we defined a set of numer-
ical features able to encode the hand pose as well as its movement in space across
time. The use of angle values, instead of joint positions, allows to achieve a good
level of invariance with respect to users’ specific hand characteristics. In this
work only gestures involving a single hand are considered, but the proposed
model can be easily extended to a more general case where the user exploits
both hands.

Using the above described raw data, different types of features are extracted
for each frame i:

– the translation Δp(i) of the palm position with respect to frame i − 1:

Δp(i) = p(i) − p(i − 1)

– the angle ω(i) between the palm direction and the arm direction, computed as:

ω(i) = arccos(
dp(i) · da(i)

|dp(i)| · |da(i)| )

– a set of angles αf,p(i), with f = 1, .., 5 and p = 1, .., 3, representing for each
finger the angle between the palm direction and each finger phalanx:

αf,p(i) = arccos(
dp(i) · dbf,p

(i)
|dp(i)| · |dbf,p

(i)| )

Please note that for the thumb finger, only the αf,p angles referred to two
phalanges can be computed (i.e. for f = 1, p = 1, 2).

The angles αf,p are computed to capture the finger extension or closure; ω angle
can detect the wrist movement during the gesture. Each angle is measured in
the plane formed by the two directions involved. In order to keep track of the
hand spatial movement, we decided to consider only the variation of the palm
center coordinates; by considering only point variation and not its absolute coor-
dinates, the resulting features are invariant from the initial hand position. Each
frame of the video sequence is therefore represented by a 18-dimensional vector
obtained by the ordered concatenation of the above described values (3 values
for translation on the three axis, 1 ω angle, and 14 αf,p values). The sequence
length is fixed to 60 frames per gesture.

3.2 Network Structure

Our approach exploits Recurrent Neural Network to recognize gestures; in partic-
ular we evaluated two variants: Long Short-Term Memory [9] and Gated Recur-
rent Unit [5]. All RNNs have internal state vectors than can store past events
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Fig. 1. Hand model: the palm direction (red) intersects the different phalanges direc-
tions (blue) and the arm direction (green), forming the angles used to model the hand
pose (for instance, the features are represented for each phalanx i = 1, .., 3 for f = 2).
The palm position (black dot) is used to keep track of the hand movement. (Color
figure online)

and process current data based on the past, but in particular LSTM and GRU
are able to handle longer-term dependencies characterising longer sequences of
data. The results obtained using LSTM or GRU are often comparable in terms
of accuracy [6]. We chose a many-to-one network model; in fact the network pro-
cesses all the sequence elements before returning the predicted class. We chose
a fixed length of 60 frames the sake of simplicity, because it has proved to be a
sufficient time span for every gesture (about 2–3 s per gesture). The model can
be easily adapted to different frame lengths or even variable lengths among sam-
ples. For our problem, we sized the network as shown in Fig. 2: the input layer
has 18 neurons, corresponding to the size of feature vectors; it is then connected
to two hidden layers, each one composed by 200 LSTM neurons. The final layer

Fig. 2. Network structure unrolled through time.
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is a fully-connected layer, which takes as input the last output of the second
hidden layer; this layer works as a classifier and it will return the probability
of each class for the current gesture. As optimizing algorithm to minimize the
loss function during the training phase, we chose Adam Optimizer because it
provides in several contexts better performance than other optimizers [11]. The
learning rate is fixed to 0.0005.

3.3 Data Augmentation

In order to increase the data available for network training, a data augmenta-
tion technique is proposed; in particular, some transformations to the original
data are applied to produce new gestures which reproduce the main gesture
characteristics without introducing “unnatural” movements or hand poses.

Please note that the same random transformations are applied to the whole
gesture since applying independent variations to the single frames would produce
a noisy, non-smooth pattern.

Trajectory Rotation and Scaling. The first transformation applies to hand
trajectory, described by the palm position pi across time. An affine transform is
applied to produce trajectory rotation and scaling; trajectory translation would
be totally ineffective, since the trajectory is finally encoded in terms of pose
variations (Δpi features) to achieve independence from the absolute coordinates.
The affine transform given in Eq. (1) produces:

– a trajectory rotation of θx, θy and θz degrees on the X, Y and Z axis,
respectively;

– a trajectory scaling of sx, sy, sz on the three axis.

The transformation parameters are randomly generated within the ranges given
in Table 1. The rotation on the X axis is quite small, because higher values would
affect excessively the gesture nature; larger variations on the Y and Z axes can
be applied. Moreover a uniform scaling is applied.

⎡
⎢⎢⎢⎢⎣

p′
x

p′
y

p′
z

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0
0 cos(θx) −sin(θx)
0 sin(θx) cos(θx)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

cos(θy) 0 sin(θy)
0 1 0

−sin(θy) 0 cos(θy)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

cos(θz) −sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

sx 0 0
0 sy 0
0 0 sz

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

px
py
pz

⎤
⎥⎥⎥⎥⎦

(1)

Hand Pose Variation. The second transformation applies to hand pose, rep-
resented by the αf,p angles. Each angle is slightly modified to generate a new
pose that is still natural and realistic. In particular, to emulate effectively the
natural movement of fingers, the amplitude of the variation applied is directly
proportional to the phalanx distance from the palm (see v1, v2 and v3 in Table 1).
In fact, the farther the phalanx is from the palm, the wider is the angle resultant
from the variation applied.
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For this reason, the transformation factor chosen for the fingers is slightly
modified from phalanx to phalanx. Let α′

f,p be the generated angle from the
original αf,p, it can be computed as:

α′
f,p = vp · αf,p

Variations can be applied in both directions evenly (extending all the fingers or
making them more closed).

Table 1. Transformations applied in data augmentation for trajectory rotation and
scaling and for hand pose modification.

Variation Range Variation Range

θx ±(5◦ − 10◦) v1 [0.95, 0.99] ∪ [1.01, 1.05]

θy, θz ±(10◦ − 15◦) v2 [0.945, 0.989] ∪ [1.011, 1.055]

sx, sy, sz [0.85, 0.9] ∪ [1.1, 1.15] v3 [0.94, 0.988] ∪ [1.012, 1.06]

Fig. 3. Examples of data augmentation: (a) hand pose variation (example on a single
finger) and (b) gesture trajectory scaling. Solid blue lines represent the original data,
orange dotted lines the derived one. (Color figure online)

4 Experiments

4.1 Dataset

To the best of our knowledge no public benchmarks including raw data acquired
by LMC are available. The authors of [1] share their dataset but only in terms
of extracted features; the raw data needed to derive our representation are not
available thus making impossible the evaluation. We decided therefore to collect
a new dataset including gestures that can be applied in a hypothetical CAD
software. In particular, starting from the interface described in [14], we defined
8 gesture:
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– Translation: using only index finger, the user draws a straight trajectory.
– Rotation: extending both index and middle finger, the user rotates the hand

of 180◦, facing the palm upwards.
– Extrusion: extending thumb, index and middle finger, the user draws a

straight or undulating trajectory.
– Left swipe: using only index finger, the user moves the hand quickly from

right to left.
– Right swipe: using only index finger, the user moves the hand quickly from

left to right.
– Close: using only index finger, the user moves down the hand quickly.
– Scale enlargement : starting with thumb, index and middle finger tips close

together, the user moves them apart.
– Scale reduction: starting with thumb, index and middle finger far apart, the

user moves them close together.

Each of the 30 volunteers used his/her dominant hand to perform the ges-
ture, so there are also left-handed samples; a small training about the gestures is
provided by letting them to watch a short video (available at https://youtu.be/
ZWPTjusyaoo). Then, they proceeded to perform the gestures, at their chosen
speed (keeping the difference between standard speed gestures and quick ges-
tures). Each person performed each gesture twice, so 16 gestures were obtained
per person, overall 480 gesture samples. The dataset is available at http://biolab.
csr.unibo.it/CADGestures.html.

4.2 Result and Discussion

The main indicator used for performance evaluation is accuracy, which is simply
computed as the number of correct predictions C made by the network over the
total number of examined instances N : accuracy = C

N . Furthermore, to extract
more precise and class-specific information about the recognition accuracy, we
also analyzed the confusion matrix where the rows refer to the real gesture class
and the columns to the predicted one. All tests have been performed on a PC with
Linux OS, on a GeForce GTX1070 GPU with 8 GB of dedicated memory and
16 GB RAM. We implemented the LSTM and GRU networks using Tensorflow,
while Scikit-learn was used test SVM.

The dataset is partitioned in training set and test set in proportion 80–20, so
we have 384 gestures for network training, and 96 for testing purpose. This basic
training set is referred to as TSBase. Moreover, to evaluate the effectiveness of
data augmentation, we derived two additional training set, TSA1 and TSA2,
obtained generating respectively 1 or 2 gestures for each original gesture in
TSBase; the resulting cardinality is then |TSA1| = 768 and |TSA2| = 1152.

We tested two versions of the proposed network, i.e. built with LSTM and
GRU cells; moreover, as a term of comparison, we also evaluated the proposed
hand model coupled with a SVM classifier. Since SVMs are not able to pro-
cess data sequences, we concatenated in a single vector all the sequence feature
vectors (overall 1080 features).

https://youtu.be/ZWPTjusyaoo
https://youtu.be/ZWPTjusyaoo
http://biolab.csr.unibo.it/CADGestures.html
http://biolab.csr.unibo.it/CADGestures.html
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The results obtained with the base and augmented training sets are sum-
merized in Table 2 and Fig. 3. Both LSTM and GRU reach 100% accuracy on
the training set, but the first one better generalizes its knowledge on the test
set, thus producing overall better results. SVMs are not designed to evaluate
the sequential nature of the input, which is significant in this particular problem
and this may be the reason of their lower accuracy.

In general, even if a good testing accuracy is reached with TSBase, the results
clearly show that data augmentation is important and significantly impacts per-
formance for all the tested classifiers (+6% accuracy for LSTM). We can then
deduce that the proposed data augmentation allows to produce new instances
maintaining the nature and the spontaneity of the gesture performed.

Table 2. Results obtained using different algorithms and training sets.

Algorithm Training set Acc. on test set

LSTM network TSBase 87,3%

TSA1 91,6%

TSA2 93,7%

GRU network TSBase 84,3%

TSA1 87,5%

TSA2 88,5%

SVM TSBase 70,8%

TSA1 75,0%

TSA2 71,8%

An analysis of the confusion matrices in Fig. 3 shows that the most difficult
gesture to recognize is Extrusion, probably due to its similarity with the Rotation
gesture pose (the only difference is the extension of the thumb), even if Extrusion
requires a well defined trajectory in the space, whilst Rotation is almost static.
This is comprehensible if we consider that in the proposed model, only one
feature value is related to trajectory and the pose information has a much higher
influence on the final decision.

Even though a direct comparison with [1] is not possible since different ges-
ture datasets are used, we can observe that our compact representation, coupled
with proper data augmentation techniques, allows to reach an overall accuracy
of 93,7%, comparable to that of more complex systems, like the one proposed in
[1] where the reached accuracy is 96,4% (Fig. 4).



194 L. Mazzini et al.

Fig. 4. Confusion matrix of the LSTM network (on the left) and the GRU network (on
the right).

5 Conclusions

In this paper a new approach to gesture recognition has been proposed, based on
LSTM recurrent networks and Leap Motion Controller. The results obtained are
overall quite satisfactory; the fine representation of user hands allows to discrim-
inate precise gestures with a good accuracy. Moreover, the data augmentation
technique proposed to increase the set of data for network training allowed to
achieve a further performance improvement. An analysis of the main causes of
errors suggests some possible future works; in particular, the extracted features
are mainly related to hand pose, while hand trajectory contributes to a little
extent to the whole representation. Improving this aspect would allow to bet-
ter discriminate gestures characterized by a similar hand posture by different
trajectories across space.
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Abstract. We address the problem of designing a machine learning tool
for the automatic diagnosis of Parkinson’s disease that is capable of pro-
viding an explanation of its behavior in terms that are easy to understand
by clinicians. For this purpose, we consider as machine learning tool the
decision tree, because it provides the decision criteria in terms of both
the features which are actually useful for the purpose among the avail-
able ones and how their values are used to reach the final decision, thus
favouring its acceptance by clinicians. On the other side, we consider
the random forest and the support vector machine, which are among
the top performing machine learning tool that have been proposed in
the literature, but whose decision criteria are hidden into their internal
structures. We have evaluated the effectiveness of different approaches
on a public dataset, and the results show that the system based on the
decision tree achieves comparable or better results that state-of-the-art
solutions, being the only one able to provide a plain description of the
decision criteria it adopts in terms of the observed features and their
values.

Keywords: E-health · Trusted Artificial Intelligence ·
Parkinson’s disease · Machine learning

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects dopaminer-
gic neurons in the Basal Ganglia, whose death causes several motor and cognitive
symptoms. PD patients show impaired ability in controlling movements and dis-
ruption in the execution of everyday skills, due to postural instability, onset
of tremors, stiffness and bradykinesia [8–10,15]. In the last decades, the anal-
ysis of handwriting and/or drawing movements has brought many insights for
uncovering the processes occurring during both physiological and pathological
conditions [2,16,17], and for providing a non-invasive method for evaluating the
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stage of the disease [14]. A comprehensive survey of the literature on handwrit-
ing to support neurodegenerative diseases, including PD, may be found in [4].
As the authors pointed out, the large majority of studies aimed at investigating
the handwritten production for the purpose of inferring which are the features
that best characterize the production of PD patients with respect to healthy
subjects. A variety of tests have been proposed, requiring the subject to write
simple letters patterns, geometric figures, words, sentence and so on, but it has
been recently shown that the most suitable ones are those requiring the drawing
of geometric shapes such as spirals and meanders, with or without a reference
pattern printed on the paper [20].

Following these suggestions, Pereira and his collaborators have collected the
NewHandPD data set, which include both off-line images and on-line signals
of the traces produced by the subjects while drawing 4 samples of spirals and
4 samples of meanders by writing on paper with a digitizing pen. A variety
of top performing machine learning algorithms, such as Convolutional Neural
Networks (CNN), Support Vector Machine (SVM), Optimal Path Finder (OPF),
Random Forest (RF) and Restricted Boltzmann Machines (RBM) have been
evaluated, showing that when on-line data are used, the ImageNet architecture
could achieve a global accuracy of 87.14% in its best configuration, while the top
performance on off-line data were achieved by the SVM, with a global accuracy
of 66.72% on the meander drawings [11,12].

In this framework, the aim of the work reported here is twofold: improving
the performance on off-line data and providing an explicit representation of the
criteria developed by the system for discriminating between PD patients and
healthy subjects. Improving the performance obtained with static features is a
goal worth to be pursued for two main reasons: (1) it would allow to analyze
old writings or drawings produced by the subject (available only on paper given
the age of insurgence of the diseases) for reconstructing the patient’s medical
history or to date the onset of the disease; (2) it would avoid that some subjects,
especially elderly ones, feeling uncomfortable writing on a graphic tablet, may
change their usual handwriting/drawing, thus introducing in their production
unnatural characteristics that can lead to errors in assessment. Developing sys-
tems capable of explaining the decision procedure they have learned and adopted
is currently a topic of investigation in the framework of so called explainable arti-
ficial intelligence (xAI) [1,6]. In particular, in medical applications, adopting a
decision procedure that can be described in a way that resembles the one rou-
tinely followed by clinicians when considering the results of tests, will favour
their acceptance as supporting tool for early diagnosis.

To address both the issues, we propose to adopt a decision tree as the machine
learning tool to perform the discrimination between handwritten samples pro-
duced by PD patients and healthy subjects. This choice is motivated by the struc-
ture of the tree that can be naturally “translated” into a chain of if-then decision
rules, thus resembling very closely the diagnostic procedure. Other approaches
such as fuzzy rule based systems have been also proposed, but they need special-
ized tools for automatically generating the decision rules [19]. The performance
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of the decision tree are then compared with those achieved by a Support Vector
Machine, that in the previous studies mentioned above has provided the best per-
formance, and with those exhibited by a Random Forest, as it exploits the same
basic idea of decision tree, but whose decision criteria are much more complex
and much less explicable than those of the decision tree. In the remaining of the
paper, Sect. 2 briefly summarizes the main features of the three machine learning
tools we have compared, and the data set we have used during the experimental
work. Section 3 describes the experiments we have designed and performed for
the automatic learning of the decision trees and reports the results obtained in
terms of patient classification, as to show to which extent the proposed tool can
be used by clinicians in their daily practice. Eventually, in the conclusion, we
summarize the work that has been done, discuss the experimental results and
outline our future investigations.

2 Machine Learning Tools and Dataset

We briefly summarize in the following the machine learning tools we have com-
pared and the dataset used for performance evaluation.

2.1 C4.5

C4.5 is a statistical classifier introduced by Quinlan [13] and used in data min-
ing for inducing classification rules in the form of decision trees, which can be
employed to generate a decision from a set of training data. At each node of the
tree, C4.5 chooses the feature that most effectively splits the set of samples into
subsets that best differentiate the instances contained in the training data. The
splitting criterion is the normalized information gain (difference in entropy).
The attribute with the highest normalized information gain is chosen to take
the decision. Once C4.5 creates a tree node whose value is the chosen attribute,
it creates child links from this node where each link represents a unique value
for the chosen attribute and uses the child link values to further subdivide the
instances into subsets.

2.2 Random Forest

A random forest [7] is a meta estimator that aggregates a number of decision
tree classifiers, i.e., the forest, on various sub-samples of the dataset and use
averaging to enhance the predictive accuracy while mitigating the over-fitting.
In general, the more trees in the forest the more robust the forest looks like. In
random forest algorithm, instead of using information gain for calculating the
root node, the process of finding the root node and splitting the feature nodes
will happen randomly.
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Fig. 1. The feature extraction process for a spiral. The blue line is the template trace
ET, while the red line is the handwritten trace HT. The arrows indicate the radii for
both ET and HT, the white circles indicate the intersection of a radius with the ET and
the HT traces and the red circle represents the center of the ET. In order to compute
all the features, the radius is shifted by using a predefined spanning angle. (Color figure
online)

2.3 Support Vector Machines

The objective of the support vector machine [3] algorithm is to find a hyper-plane
in an n-dimensional space (n is the number of features) that distinctly classifies
the data points. To separate the two classes of data points, there are many pos-
sible hyper-planes that could be chosen. The objective is to find an hyper-plane
that has the maximum margin, i.e., the maximum distance among data points
of both classes. Maximizing the margin distance provides some reinforcement so
that future data points can be classified with more confidence. Support vectors
are data points that are closer to the hyper-plane and influence the position and
orientation of the hyper-plane. Deleting the support vectors will change the posi-
tion of the hyper-plane. Using these support vectors, we maximize the margin
of the classifier.

2.4 The Dataset

NewHandPD dataset contains handwritten data collected from graphical tests
performed by 31 PD patients and 35 healthy subjects. Each subject produced 4
samples of spirals and meanders, and from each sample 9 features, reported in
Table 1, were extracted. As a result, the dataset is composed of 264 spirals and
264 meanders drawn by the participants following a printed template on paper
with a pen. As a consequence, we have two unbalanced datasets, i.e., spirals and
meanders, each of which is composed of 124 samples belonging to PD patients
and 140 belonging to healthy subjects. Figure 1 shows, together on one sample,
the two main geometric entities, namely the distance between the centre of the
template and the template/written trace (ET/HT radius), from which all the
features are computed.
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Table 1. Features description of the dataset used. HT: handwritten trace, ET: exam
template

Feature Description

x0 RMS of the difference between HT and ET radius

x1 Maximum difference between HT and ET radius

x2 Minimum difference between HT and ET radius

x3 Standard Deviation of the difference between HT and ET radius

x4 Mean Relative Tremor

x5 Maximum HT radius

x6 Minimum HT radius

x7 Standard Deviation of HT radius

x8 Number of times the difference between HT and ET radius changes sign

3 Experiments

To evaluate the performance of the proposed approach in providing explain-
able yet effective solutions, we performed a patient classification experiment, as
described below.

3.1 Patient Classification

We divided the dataset into a Training set and a Test set made of 70% and 30%
of the original dataset, respectively, in such a way as to maintain the relative
occurrence of patients and healthy subjects. In particular, the Training set was
made of 25 healthy subjects and 22 PD patients while the Test set was composed
by 10 healthy subjects and 9 PD patients. The minimum and the maximum of
each feature were computed on the Training set and a min-max normalization
was applied to the whole dataset in order to scale all the features in the range
[0, 1].

The health condition of an individual was evaluated by classifying each of
his/her handwritten samples and by applying a majority vote: an individual was
classified as healthy or patient if the majority of his/her samples were assigned to
the “healthy” or to the “patient” class, respectively. A decision about the health
condition was rejected when the same number of samples were assigned to both
the classes. The experimentation was performed with the aim of understanding:
(1) which is the most performing classification schema among the ones described
in Sect. 2, (2) if both meanders and spirals are necessary for evaluating the
healthy condition, (3) how many samples are required for reaching the best
performance. Therefore, we evaluated the health condition of individuals by
classifying only the meanders, only the spirals and both meanders and spirals
and by varying the number of samples per subject used during the training and
the classification phases. In particular, samples were progressively included in
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Table 2. Classifiers’ parameters.

Classifier Parameters

Decision Tree Pruning confidence: 0.25,
Minimum number of instances per leaf: 2

Random Forest Bag size: 100, Number of iterations: 100,
Maximum depth of the tree: unlimited

SVM Kernel: radial basis, Gamma: 0.11, Cost: 1

the datasets following the order in which the subjects traced them. It follows
that each experimental configuration differs from the others in the classifier and
the type and number of samples belonging to the Training set and the Test set.

The implementation of the classifiers are those provided by Weka [18] as well
as their parameter values and have not been fine-tuned to provide a baseline
comparison among the selected classifiers. The parameter values are the same
for all the experiments presented in this paper and are reported in Table 2.

The effectiveness of the classifiers was evaluated in term of Accuracy, Reject,
False Negative Rate (FNR), which measures the percentage of healthy people
who are identified as PD patients, and False Positive Rate (FPR), which mea-
sures the percentage of PD patients who are identified as healthy.

For each experimental configuration, a 6-fold cross validation was performed
during the training phase and the classifier obtaining the best performance on
the validation set, i.e. the one with the smallest values of FNR and FPR and
with the greatest value of Accuracy, was selected for classifying individuals in
the Test set.

All the experiments were repeated 15 times by shuffling the individuals
between Training and Test set. Results obtained on the Test set when it was
made up of only meanders, only spirals and both the patterns are reported in
Tables 3, 4 and 5, respectively.

As it is evident from the results, all the classifiers exhibit the worst perfor-
mance on the dataset containing both meanders and spirals, while the best per-
formance is achieved on the meander dataset. Moreover, if we take into account
the performance as a function of the number of samples per subject, it is possible
to infer that the top performing scenario is represented by the one with the first 3
samples traced by each subject. Finally, by taking into account all the scenarios
together, RF results the most performing classifier. In order to evaluate whether
the performance in terms of accuracy by RF is significantly different from that
provided by other methods, a statistical analysis, based on a non-parametric
statistical test [5], is carried out. Following the results reported in the Tables 3,
4 and 5, the analysis has been performed considering the performance achieved
by the classifiers on the datasets with only meanders and only spirals.
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Table 3. Results obtained on Meanders. The first column reports the number of mean-
ders for each subject.

# of samples Accuracy (%) Error (%) Reject (%) FNR (%) FPR (%)

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

Decision Tree

1 72.98 12.29 27.02 12.29 0.00 0.00 32.00 16.41 21.48 20.48

2 69.82 9.31 4.21 3.94 25.96 9.11 6.00 8.00 2.22 4.44

3 85.97 9.15 14.03 9.15 0.00 0.00 24.67 15.43 2.22 4.44

4 72.63 8.42 11.58 5.83 15.79 6.37 22.00 11.08 0.00 0.00

Random Forest

1 76.84 6.60 23.16 6.60 0.00 0.00 26.67 11.35 19.26 13.12

2 70.88 6.34 5.96 6.34 23.16 5.70 8.67 11.47 2.96 4.91

3 85.96 8.08 14.04 8.08 0.00 0.00 20.00 14.61 7.41 9.66

4 72.98 9.96 8.77 5.32 18.25 7.66 16.00 10.20 0.74 2.77

SVM

1 75.79 9.76 24.21 9.76 0.00 0.00 40.67 19.48 5.93 6.87

2 62.45 7.16 15.09 8.57 22.46 9.11 28.67 16.28 0.00 0.00

3 72.98 8.78 27.02 8.78 0.00 0.00 51.33 16.68 0.00 0.00

4 58.95 5.83 18.95 8.11 22.11 8.20 35.33 15.43 0.74 2.77

Table 4. Results obtained on Spirals. The first column reports the number of spirals
for each subject.

# of samples Accuracy (%) Error (%) Reject (%) FNR (%) FPR (%)

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

Decision Tree

1 64.21 10.73 35.79 10.73 0.00 0.00 36.00 13.06 35.55 18.68

2 51.23 10.43 10.53 5.44 38.25 10.61 14.00 10.20 6.67 8.89

3 77.54 5.25 22.46 5.25 0.00 0.00 27.33 13.40 17.04 17.15

4 60.00 7.88 16.14 6.78 23.86 9.96 22.67 13.89 8.89 10.10

Random Forest

1 65.61 9.58 34.39 9.58 0.00 0.00 37.33 16.52 31.11 19.12

2 57.19 8.78 5.61 4.89 37.19 8.26 4.67 6.18 6.67 10.58

3 84.91 4.65 15.09 4.65 0.00 0.00 12.67 9.29 17.78 12.03

4 68.77 10.61 7.72 3.78 23.51 8.78 6.67 7.89 8.89 9.25

SVM

1 61.40 8.74 38.60 8.74 0.00 0.00 39.33 25.94 37.78 29.20

2 53.33 7.89 12.63 7.88 34.04 6.04 21.33 16.68 2.96 6.37

3 68.77 9.51 31.23 9.51 0.00 0.00 55.33 21.25 4.44 8.89

4 61.40 8.74 16.49 8.78 22.11 9.06 28.67 16.68 2.96 11.09

3.2 Statistical Analysis

The statistical analysis has been performed through the Friedman Aligned Ranks
test, configured with multiple comparison methods. The null hypothesis H0 for
the test states equality of medians between the different algorithms. The goal
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Table 5. Results obtained on Spirals (S) and Meanders (M). The first column reports
the number of samples, equally divided between spirals and meanders, for each subject.

# of samples Accuracy (%) Error (%) Reject (%) FNR (%) FPR (%)

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

Decision Tree

2 (1S+1M) 51.23 13.52 15.79 11.04 32.98 14.44 24.00 21.54 6.67 12.03

4 (2S+2M) 67.72 9.39 9.12 6.22 23.16 5.70 13.33 11.35 4.44 7.91

6 (3S+3M) 75.44 9.15 10.53 6.37 14.04 7.36 15.33 14.54 5.18 6.87

8 (4S+4M) 73.68 7.19 15.44 5.91 10.88 8.48 24.67 13.60 5.18 7.98

Random Forest

2 (1S+1M) 56.49 9.51 9.47 4.79 34.03 10.50 14.00 10.20 4.44 6.79

4 (2S+2M) 77.54 8.48 5.61 6.22 16.84 7.24 8.67 10.24 2.22 4.44

6 (3S+3M) 82.45 8.74 6.67 4.89 10.88 7.05 8.67 8.06 4.44 5.44

8 (4S+4M) 81.75 6.89 8.77 5.66 9.47 6.14 14.00 10.20 2.96 4.91

SVM

2 (1S+1M) 58.60 9.19 21.05 9.61 20.35 7.66 38.67 19.96 1.48 3.78

4 (2S+2M) 65.96 8.57 18.24 9.39 15.79 5.77 34.67 17.84 0.00 0.00

6 (3S+3M) 69.82 8.03 20.70 7.05 9.47 6.43 39.33 13.40 0.00 0.00

8 (4S+4M) 62.46 6.04 19.65 6.51 17.90 6.32 36.67 13.00 0.74 2.77

Table 6. The ranking of the classification methods according to the Friedman Aligned
Ranks test.

Rank

Random Forest 6.000

Decision Tree 12.625

SVM 18.875

of the test is to either confirm this hypothesis or reject it, at a given level of
confidence α. As it is typically done in scientific literature, we have used here
α = 0.05.

Table 6 reports the ranking of the methods and highlights that RF is the
best-performing method followed by DT and SVM. The statistic for Friedman
Aligned Ranks with control method is 9.46, distributed according to a chi-square
distribution with 2 degrees of freedom, while the p-value is 0.00881. This value
is lower than the chosen level of confidence 0.05, which suggests the existence of
statistically significant differences among the algorithms considered. Given that
H0 is rejected, meaning that the statistical equivalence among all the algorithms
does not hold true, we can proceed with the post-hoc procedures to investigate
where these differences between the algorithms exist. When using these proce-
dures, a new null hypothesis H0’ is used, which states the statistical equivalence
for couples of algorithms, rather than for the whole set of algorithms as it was
for H0.
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Table 7 reports the adjusted p-values for the post-hoc procedures for Fried-
man Aligned Ranks test, when RF is used as control method. In the table the
generic (i, j) adjusted p-value represents the smallest level of significance that
results in the rejection of H0’ between algorithm i and the control method,
i.e., the lowest value for which the algorithm i and the control method are not
statistically equivalent, for the j-th post-hoc procedure. The lower the adjusted
p-value, the more likely the statistical equivalence can be rejected. A very impor-
tant feature of such a table is that it is not tied to a pre-set level of significance
α. Rather, depending on the value of α we choose, the post-hoc procedures will
either accept or reject H0’. Considered that α = 0.05, the table says that the
statistical equivalence between RF and SVM can be statistically rejected for all
the post-hoc procedures apart Hochberg, while there is a statistical equivalence
between DT and RF. A general conclusion coming from the statistical analysis
is that DT and RF perform better than SVM.

Table 7. Adjusted p-values for the post-hoc procedures for Friedman Aligned Ranks
test (RF is the control method).

Adjusted p-value

Algorithm Statistic Bonferroni-Dunn Holm Finner Hochberg Li

SVM 3.642 0.00054 0.00054 0.00054 0.06095 0.00029

Decision Tree 1.874 0.12191 0.06095 0.06095 0.06095 0.06095

4 Conclusions

We have presented an approach for the automatic diagnosis of Parkinson’s dis-
ease that aims at developing a system that is capable of providing an explana-
tion of its behavior in terms that are easy to understand by the clinicians, thus
favouring their acceptance/reject of the machine diagnostic suggestions.

In this frameworks, we have chosen as machine learning tool the Decision
Tree, as it provides a description of the decision process in terms of if-then rules
applied to the feature values, a decision process clinicians are very familiar with,
and explicitly establishes a ranking of the features relevance. To illustrate this
point, the best performing decision tree obtained by C4.5 on the meander dataset
is reported below (Algorithm 1). It shows that the Mean Relative Tremor (x4)
results the most relevant feature, followed by the Maximum HT radius (x5), the
Minimum difference between the HT and ET radius (x2) and, eventually, the
Minimum HT radius (x6). Those findings are in accordance with the literature,
according to which tremor and deviation from a desired trajectory (either coded
into the subject motor plan or provided as task) are among the most distinctive
features of PD patients handwritten production. Even more important, it shows
how the selected features are combined to reach the final decision. In contrast,
for the other classifiers considered in this study, the SVM is unable to provide
an explanation of its decision, while the RF provides a global ranking of the
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Algorithm 1. Best performing model obtained by C4.5 on the Meander dataset.
if (x4 > 0.1729) then

output = “control”
else

if (x4 > 0.0905) then
if (x2 > 0.3016) then

output = “control”
else if (x6 > 0.0381) then

output = “control”
else

output = “patient”
end if

else if (x5 > 0.2849) then
output = “patient”

else
output = “control”

end if
end if

features relevance, but not a description of the way they are intertwined in the
decision making process.

Eventually, the experimental results show that the performance of the Deci-
sion Tree is comparable to that of the RF and better than the SVM one. As in
a previous study comparing SVM with OPF and NB [12] SVM was the top per-
forming classifier, we conclude that the DT proposed here achieves state-of-the-
art performance on off-line data, while being the only one capable of describing
its decision process in terms that can be simply and naturally understood by
clinicians.

The experimental results also suggest that care should be paid in collecting
the data to ensure that the task is neither too difficult nor too easy to carry
on, so to avoid that fatigue/boredom may introduce misleading data that can
negatively affect the performance.

In our future work we will investigate if and to which extent our method can
be used to monitor the progress of the disease, as well as to trace back its onset.
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5. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 18 (2011)

6. Doran, D., Schulz, S., Besold, T.R.: What does explainable AI really mean? A new
conceptualization of perspectives. arXiv preprint arXiv:1710.00794 (2017)

7. Ho, T.K.: Random decision forests. In: Proceedings of the Third International
Conference on Document Analysis and Recognition, ICDAR 1995, vol. 1, pp. 278.
IEEE Computer Society, Washington, DC (1995)

8. Hurrel, J., Flowers, K.A., Sheridan, M.R.: Programming and execution of move-
ment in Parkinson’s disease. Brain 110(5), 1247–1271 (1987)

9. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neuro-
surg. Psychiatry 79(4), 368–376 (2008). https://doi.org/10.1136/jnnp.2007.131045

10. Marsden, C.: Slowness of movement in Parkinson’s disease. Mov. Disord. 4(1 S),
S26–S37 (1989)

11. Pereira, C.R., Passos, L.A., Lopes, R.R., Weber, S.A.T., Hook, C., Papa, J.P.:
Parkinson’s disease identification using Restricted Boltzmann Machines. In: Fels-
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Abstract. Providing algorithmic explanations for the decisions of
machine learning systems to end users, data protection officers, and
other stakeholders in the design, production, commercialisation and use
of machine learning systems pipeline is an important and challenging
research problem. Much work in this area focuses on image classifica-
tion, where the required explanations can be given in terms of images,
therefore making explanations relatively easy to communicate to end-
users. For a classification problem, a contrastive explanation tries to
understand why the classifier has not answered a particular class, say B,
instead of the returned class A. Sparse dictionaries have been recently
used to identify local image properties as main ingredients for a system
producing humanly understandable explanations for the decisions of a
classifier developed based on machine learning methods. In this paper,
we show how the system mentioned above can be extended to produce
contrastive explanations.

Keywords: XAI · Explainable artificial intelligence ·
Machine learning · Sparse coding · Contrastive explanations

1 Introduction

Machine Learning (ML) techniques make possible to develop systems that learn
from observations. Many ML techniques (e.g., Support Vector Machines (SVM)
and Deep Neural Networks (DNN)) give rise to systems the behaviour of which
is often hard to interpret [18]. A crucial ML interpretability issue concerns the
generation of explanations for an ML system behaviour that are understandable
to a human being. In general, this issue is addressed as a scientific and techno-
logical problem by so-called explainable artificial intelligence (XAI) [1,9,20,23].
Providing XAI solutions to the ML explainability problem is important for many
AI and computer science research areas: to improve intelligent systems design,
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testing and revision processes, to make the rationale of automatic decisions more
transparent to end users and systems managers, thereby leading to better forms
of HCI and HRI involving learning systems, to improve interactions between
learning agents in Distributed AI, and so on. Providing a solution to the ML
explainability problem is also important from an ethical and legal viewpoint. ML
systems are being increasingly used to make or to support decisions that have
an impact on the life of persons, including career development, court decisions,
medical diagnosis, insurance risk profiles and loan decisions.

Various senses of interpretability and explainability for learning systems have
been identified and analysed [9], and various approaches to overcoming their
opaqueness are now being pursued [11,27]. For example, in [24] a series of tech-
niques for the interpretation of DNN are discussed, and in [20] a wide variety
of motivations underlying interpretability needs are examined, thereby refining
the notion of interpretability in ML systems. In the context of this multifaceted
interpretability problem [34,35], we focus on the issue of what it is to explain the
behaviour of ML perceptual classification systems for which only I/O relation-
ships are accessible, i.e., the learning system is seen as a black-box. In literature,
this type of approach is known as model agnostic [31].

Various model agnostic approaches have been proposed to give global expla-
nations by exhibiting a class prototype to which the input data can be associ-
ated [11,24,27,34]. These explanations are given in response to requests usually
expressed as why-questions: “Why was input x associated to class C?”. Specific
why-questions which may arise in connection with actual learning systems are:
“Why was this loan application rejected?” and “Why was this image classified as
a fox?”. However, prototypes often make rather poor explanations available. For
instance, if an image x is classified as “fox”, the explanation provided by means
of a fox-prototype is nothing more than a “because it looks like this” explana-
tion: one would not be put in the position to understand what features (parts)
of the prototype are associated to what characteristics (parts) of x. In order to
go beyond this level of understanding, instead of merely giving the user a global
explanation, one might attempt to provide a local explanation, which highlights
salient parts of the input [31]. Furthermore, [13,23] highlight that an human
explanation of an event is often given in contrastive terms, that is, instead of
trying to answer to the question “why this outcome?”, a possible answer to the
question “why this outcome and not another one?” is given. This result can be
reached considering, during the generation of the explanation, an event that did
not occur instead of the event that really happened, for example searching for
an explanation on the reasons behind an classifier returns “dog” as answer to
a given input image and not “cat”. So, in contrastive explanation approaches,
a different hypothetical outcome, which [19] calls the “foil”, is always used to
build the explanation.

In this paper, we exploit a model agnostic framework that returns local expla-
nations of classifications [2,29] in order to obtain an explanation in contrastive
terms. This framework, which is based on dictionaries of local and humanly inter-
pretable elements of the input, can be functionally described as a three entities
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model, composed of an Oracle (an ML system, e.g. a classifier), an Interroga-
tor raising explanations requests about the Oracle’s responses, and a Mediator
helping the Interrogator to understand the answer given by the Oracle. In this
framework, local explanations are provided by a module (the Mediator) which
is different from the classifier itself. The Mediator plays the crucial explana-
tory role, by advancing hypotheses on what humanly interpretable elements are
likely to have influenced the Oracle output, building explanations both in clas-
sical terms (“why P?”) and in contrastive terms (“why P and not Q?”). More
specifically, elements are computed which represent humanly interpretable fea-
tures of the input data, with the constraint that both prototypes and input
can be reconstructed as linear combinations of these elements. Thus, one can
establish meaningful associations between key features of the prototype and key
features of the input. To this end, we exploit the representational power of sparse
dictionaries learned from the data, where atoms of the dictionary selectively play
the role of humanly interpretable elements, insofar as they afford a local repre-
sentation of the data. Indeed, these techniques provide data representations that
are often found to be accessible to human interpretation [22]. The dictionaries
are obtained by a Non-negative Matrix Factorisation (NMF) method [4,14,17],
and the explanations are determined using an Activation-Maximisation (AM)
[11,34] based technique.

The paper is organised as follows: Sect. 2 briefly reviews related approaches,
in Sect. 3 we present the overall architecture; experiments and results are dis-
cussed in Sect. 4, while Sect. 5 is devoted to concluding remarks and future
developments.

2 Related Work

In recent years, various attempts have been made to interpret and explain the
output of a classification system. Initial attempts concerned SVM classifiers (see
for example [28]) or rule-based systems [6,8].

In the neural network context, recent surveys on explainable AI are pro-
posed in [1,12,30,40]. A significant attempt to explain in terms of images what
a computational neural unit computes is found in [11] using the Activation Max-
imisation method. AM-like approaches applied to CNN were proposed in [21,34].
Additional attempts to give interpretability to CNNs were proposed in [37] and
[10], where Deconvolutional Network (already presented by [38] as a way to do
unsupervised learning) and up-convolutional network are proposed, while [26,27]
uses an image generator network (similar to GANs) as priors for AM algorithm
to produce synthetic preferred images. In these approaches, explanations are
given in terms of prototypes or approximate input reconstructions. However,
one does not take into account the issue whether the given explanations are
in some manner interpretable by humans. Moreover, the proposed approaches
seem to be model-specific for CNN, differently from our model which is to be
considered as model-agnostic, and consequently applicable in principle to any
classifier. From another point of view, [36] studies the influence on the output of
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hardly perceptible perturbation on the input, empirically showing that it is pos-
sible to arbitrarily change the network’s prediction even when the input is left
apparently unchanged. Although this type of noise is extremely unlikely to occur
in realistic situations, the fact that such noise is imperceptible to an observer
opens interesting questions about the semantics of network components. How-
ever, approaches of this kind are quite distant from our present concerns, insofar
as they focus on entities that are hardly meaningful to humans. Important works
are also made into [3,5,25] where Pixel-Wise Decomposition, Layer-Wise Rel-
evance propagation ad Deep Taylor Decomposition are presented. [33] builds
explanations as difference in output from a “reference” output in terms of the
difference of the input from a “reference” input.

[41] presents a work based on prediction difference analysis [32] where a fea-
tures relevance vector is built which estimates how much each feature is “impor-
tant” for the classifier to return the predicted class. In [31] , the model-agnostic
explainer LIME is proposed, which takes into account the model behaviour in the
proximity of the instance being predicted. The LIME framework is more similar
to our approach than the other approaches mentioned in this section, and many
other approaches found in the literature. The LIME framework differs from our
own mainly in its use of super-pixels instead of a learned dictionary constrained
in order to have a compact representation.

In [39] a XAI methods based on the contrastive explanations is proposed.
However, this method relies on Deep Neural Network (specifically a CNN), mak-
ing this approach model-specific, differently from our proposed model which is
model-agnostic, that is independent by the chosen model to explain.

3 Proposed Approach

Given an oracle Ω, an input x and an Ω’s answer ĉ (regardless of whether it is
correct or not), we want to give an explanation of the answer provided by the
model Ω that is humanly interpretable. As we want to obtain humanly inter-
pretable elements which, combined together, can provide an acceptable explana-
tion for the choice made by Ω, we search for an explanation having the following
qualitative properties:

1. the explanation must be expressed in terms of a dictionary V whose elements
(atoms) are easily understandable by an interrogator;

2. the elements of the dictionary V have to represent “local properties” of the
input x;

3. the explanation must be composed by few dictionary elements.

We claim that considering as elements atoms of a sparse coding from a sparse
dictionary, and using sparse coding methods together with an AM-like algorithm
we obtain explanations satisfying the properties described above. Furthermore,
since the proposed method gives explanations in terms of relevant components
(atoms) which contributed to the classifier decision, we take advantage of this
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property to generate discriminative explanations comparing the explanation pro-
duced for the real classifier outcome with the explanation produced for a contrast
class given the same input. We think that, showing explanations generated for
different classes can help in understanding the reason behind the “preference”
given by an Oracle to an answer instead of another one.

3.1 Sparse Dictionary Learning

The first step of the proposed approach consists in finding a “good” dictionary
V that can represent data in terms of humanly interpretable atoms.

Let us assume that we have a set D = {(x(1), c(1)), (x(2), c(2)). . . . , (x(n),
c(n))} where each x(i) ∈ R

d is a column vector representing a data point, and
c(i) ∈ C its class. We can learn a Dictionary V ∈ R

d×k of k atoms across
multiple classes and an encoding H ∈ R

k×n s.t. X = V H + ε where X =
(x(1)|x(2)| . . . |x(n)) and ε is the error introduced by the coding. Every column
x(i) in X can be expressed as x(i) = V hi with hi i−th column of H. The
dictionary forms the basis of our explanation framework for an ML system.

We selected as dictionary learning algorithm an NMF scheme [17] with the
additional sparseness constraint proposed by [14]; this choice is motivated by
the fact that it respects our requirements described above, giving a “local” rep-
resentation of data, and non-negativity, that ensures only additive operations in
data representations, giving a better human understanding with respect to other
techniques. The sparsity level can be set using two parameters γ1 and γ2 which
control the sparsity on the dictionary and the encoding, respectively.

3.2 Explanation Maximisation

Unlike traditional dictionary-based coding approaches, our main goal is not to
get an “accurate” representation of the input data, but to get a representation
that helps humans to understand the decision taken by a trained model. To this
aim, we modify the AM algorithm so that, instead of looking for the input that
just maximises the answer of the model, it searches for the dictionary-based
encoding h that maximises the answer and, at the same time, is sparse enough
but without being “too far” from the original input x. More formally, indicating
with Pr(ĉ|x) the probability given by a learned model that input x belongs to
class ĉ ∈ C, V the chosen dictionary, S(·) a sparsity measure, the objective
function that we optimise is

max
h≥0

log Pr
(
ĉ|V h

) − λ1||V h − x||2 + λ2S
(
h

)
(1)

where λ1, λ2 are hyper-parameters regulating the input reconstruction and the
encoding sparsity level, respectively. The first regularisation term leads the algo-
rithm to choose dictionary atoms that, with an appropriate encoding, form a
good representation of the input, while the second regularisation term ensures a
certain sparsity degree, i.e., that only few atoms are used. The h ≥ 0 constraint
ensures that one has a purely additive encoding. Thus, each hi, ∀i.1 ≤ i ≤ d,
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Algorithm 1: Explanation Maximization procedure
Input: data point x ∈ R

d, the output class ĉ ,learned model Γ , a dictionary
V ∈ R

d×k, λ1, λ2

Output: the encoding h ∈ R
d

1 h ∼ Ud(0, 1);
2 while ¬ converge do
3 r ← V h;
4 h ← arg max

h
Pr

(
ĉ|r; Γ

) − λ1||r − x||2;
5 h ← proj(h, λ2); � proj(·, ·) is given by [14]

6 end
7 return h ;

measures the “importance” of the i-th atom. Equation 1 is solved by using a
standard gradient ascent technique, together with a projection operator given
by [14] that ensures both sparsity and non-negativity. The complete procedure
is reported in Algorithm 1.

3.3 Contrastive Explanation Maximisation

The aim of this we paper is to obtain a contrastive explanation approach exploit-
ing the EM procedure described in Sect. 3.2. We remember that, instead of
answering to the question “why the classifier returns the class P?”, contrastive
explanations wants to answer to the question “why the Oracle returns the class
P and not the class Q?”. The described EM procedure generates a possible
explanation searching for a good subset of atoms which pushes the classifier
toward the predicted class and, at the same time, is similar enough to the input
under investigation. We can easily use the same procedure to push the classifier
towards a contrastive class, so searching for a good set of atoms which is again
near enough to the input but that gives a different outcome if fed to the classi-
fier. An answer to the question “why the Oracle returns the class P and not the
class Q?” can be given inspecting the difference between atoms in the generated
explanations. For example, in a dataset of letters, if I have an image of an “e”
and a classifier gives the correct class, I expect that the explanation of “why is
it an “e”? ” differs from the explanation of, for example, “why should it be a
“c”?” by the use of some atom representing a centre line which characterises the
“e” letter respect to the “c” letter. In other words, we search for two (or more)
good enconding hc∗ and hc such that

hc∗ = arg max
h≥0

log Pr
(
c∗|V h

) − λ1||V h − x||2 + λ2S
(
h

)

hc = arg max
h≥0

log Pr
(
c|V h

) − λ1||V h − x||2 + λ2S
(
h

) (2)

with c∗, c ∈ C, c∗ classifier outcome for the input x and c �= c∗.
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Algorithm 2: Contrastive Explanation Maximization procedure
Input: data point x ∈ R

d, the number of antagonist classes q, the Oracle Ω, a
dictionary V ∈ R

d×k

Output: the encoding h ∈ R
d

1 p ← getClassProbabilities (x, Ω);
2 (c1, c2, . . . , cq+1) ← getBestClasses(p, q + 1);
3 hexpl ← EMExplanationBuilder(x,c1,Ω,V );
4 for i = 2 to q + 1 do

5 h
(i)
anta ← EMExplanationBuilder(x,ci,Ω,V );

6 end

7 return hexpl,h
(2)
anta, . . . ,h

(q+1)
anta

4 Experimental Assessment

To test our framework, we chose as Oracle a convolutional neural network archi-
tecture, LeNet-5 [16], generally used for digit recognition as MNIST. We have
trained the network from scratch using two different datasets: MNIST [16], and
a subset of the e-MNIST dataset [7] composed of the first 10 lowercase letters.
The model is learned using the Adam algorithm [15].

NMF with sparseness constraints [14] is used to determine the dictionaries.
We set the number of atoms to 200, relying on PCA analysis which showed that
the first 100 principal components explain more than 95% of the data variance.
We construct different dictionaries with different sparsity values in the range
γ1, γ2 ∈ [0.6, 0.8] [14], then we choose the dictionaries having the best trade-off
between sparsity level and reconstruction error. The dictionaries are determined
by looking for a good trade-off between reconstruction error and sparsity level.

The atoms forming our explanations are selected by taking those with larger
encoding values (i.e., those that are more “important” in the representation).

In Fig. 1 we show the proposed explanation from different inputs. The expla-
nations are expressed in terms of two different set of atoms which in Sect. 3.3
we computed using hc∗ and hc: the first one is the set of atoms which mostly
contribute (in terms of weights) to the outcome of the Oracle, the second one
the set of atoms which mostly contribute to a given constrastive outcome. For
clarity, we chose the first five.

We can see that the atoms selected by hc∗ provide elements which can be
considered discriminative for the selected outcome, for example in Fig. 1a (red)
EM selects many components which represent a diagonal line, showing that
it is probably one of the main feature selected by the classifier to make its
choice. In the second column (blue) we chose a contrast class (a “3”) and we
ask to the algorithm to make an explanation. We can see that the selected
components which are mostly different and varied, showing that the given image,
to be classified as a “3”, should have also other characteristics, as the central
horizontal line.
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Fig. 1. Examples of direct and contrastive explanations. See discussion in Sect. 4 for
more details (Color figure online)
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Similar considerations can be made for the example shown in Fig. 1b, where
the choice of a “five” can be motivated by the presence of the showed components
(red), while in the blue column, we can notice the total absence of component on
the left side, suggesting that the absence of a “left side” on the input image can
be an explanation of why the given input has not been classified as a “3”. in other
terms, the input, to be classified as a “3”, should have the visual components
on the right side not relevant in terms of weights. In Fig. 1c the given input is
correctly classified by the presence of the red component with high weights. The
presence of the central line can be considered as the main discriminative feature
between the outcome “H” and “c” (which is absent in the blue column). Similar
considerations can be made for the input in Fig. 1d.

5 Conclusions

We proposed a model-agnostic framework to explain the answers given by classi-
fication systems. To achieve this objective, we started by defining a general expla-
nation framework based on three entities: an Oracle (providing the answers to
explain), an Interrogator (posing explanation requests) and a Mediator (helping
Interrogator to interpret the Oracle’s decisions). We propose a Mediator using
known and established techniques of sparse dictionary learning, together with
Interpretability ML techniques, to give a humanly interpretable explanation of
a classification system outcomes. The proposed mediator can give explanation
both in traditional and contrastive terms, since “why not?” questions are partic-
ularly relevant, from an ethical and legal viewpoint, to address user complaints
about purported misclassifications and corresponding user requests to be classi-
fied otherwise. We tried our proposed approach by using an NMF-based scheme
as sparse dictionary learning technique. However, we expect that any other tech-
nique that meets the requirements outlined in Sect. 3 may be successfully used
to instantiate the proposed framework. The results of the experiments that we
carried out are encouraging, insofar as the explanations provided seem to be
qualitatively significant. Nevertheless, more experiments are necessary to probe
the general interest of our approach to explanation. We plan to perform both
a quantitative assessment, to evaluate explanations by techniques such as those
proposed in [24], and a subjective quality assessment to test how do humans
perceive and interpret explanations of this kind.

The proposed approach does not take so far into account factors such as
the internal structure of the dictionary used. Accordingly, the present work can
be extended by considering, for example, whether there are atoms that are suf-
ficiently “similar” to each other or whether the presence in the dictionary of
atoms which can be expressed as combinations of other atoms may affect the
explanations that are arrived at.
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Abstract. Designing neural networks for object recognition requires
considerable architecture engineering. As a remedy, neuro-evolutionary
network architecture search, which automatically searches for optimal
network architectures using evolutionary algorithms, has recently become
very popular. Although very effective, evolutionary algorithms rely heav-
ily on having a large population of individuals (i.e., network architec-
tures) and are therefore memory expensive. In this work, we propose
a Regularized Evolutionary Algorithm with low memory footprint to
evolve a dynamic image classifier. In details, we introduce novel custom
operators that regularize the evolutionary process of a micro-population
of 10 individuals. We conduct experiments on three different digits
datasets (MNIST, USPS, SVHN) and show that our evolutionary method
obtains competitive results with the current state-of-the-art.

Keywords: Deep Learning · Neural Architecture Search ·
Regularized Evolution · Evolutionary algorithms

1 Introduction

Deep Learning has made a remarkable progress in a multitude of computer vision
tasks, such as object recognition [1,2], object detection [3], semantic segmenta-
tion [4], etc. The success of deep neural networks (DNNs) has been attributed
to the ability to learn hierarchical features from massive amounts of data in an
end-to-end fashion. Despite the breakthroughs of manually designed networks,
such as Residual Networks [5] and Inception Net [6], these networks suffer from
two major drawbacks: (i) the skeleton of the architectures is not tailored for a
dataset at hand; and (ii) it requires expert knowledge to design high-performance
architectures. To circumvent the cumbersome network architecture design pro-
cess, there has been lately an increased interest in automatic design through
Neural Architecture Search [7] (NAS). The objective of NAS is to find an opti-
mal network architecture for a given task in a data-driven way. In spite of being
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in its nascent stages, NAS has consistently outperformed hand-engineered net-
work architectures on some common tasks such as object recognition [8], object
detection [8] and semantic segmentation [9].

Among NAS methods, neuro-evolutionary algorithms [13,14,21,24] have
recently resurfaced that use bio-inspired evolutionary principles for finding opti-
mized neural architectures. A promising work in this direction was conducted
by Real et al. [13], who proposed an aging-based evolutionary algorithm and
demonstrated that favouring younger individuals (i.e., network architectures)
against the best individuals in a population is beneficial in terms of convergence
to better network architectures.

The performance of neuro-evolutionary methods is, however, heavily depen-
dent on the population size (i.e, the number of individuals in the current popula-
tion) and as a result on the availability of computational resources. For instance,
Real et al. [13] used a population of 100 individuals evaluated in parallel on 450
GPUs. In this work, we propose an improved evolutionary algorithm, named
Regularized Evolutionary Algorithm, to accomplish NAS in limited computa-
tional settings. Specifically, our method is based on the regularized algorithm by
Real et al. [13] with various modifications that can be summarized as follows:
(i) an evolving cell with a variable number of hidden nodes where each node
(see Fig. 1b) can be thought of as a pairwise combination of common operations
(such as convolution, pooling, etc); (ii) a custom crossover operation that allows
recombination between two parent individuals in a population, to accelerate the
evolutionary search; (iii) a custom mutation mechanism, to generate new archi-
tectures by randomly modifying their hidden states, operations and number of
hidden nodes inside a cell; and iv) a stagnation avoidance mechanism to avoid
premature convergence. More details on the algorithm can be found in the Sup-
plementary Material available at https://arxiv.org/abs/1905.06252. Noticeable
is the implicit regularization performed by the stagnation avoidance and the
mutation of B, as shown in details in Sect. 3.2.

As we show in our experiments conducted on three different digits datasets,
the proposed modifications improve on the exploratory capability of the evolu-
tionary algorithm when very limited memory and computational resources are
at disposal during training. In our experiments, we used a micro-population of
10 individuals evaluated on a single GPU, obtaining competitive results when
compared with much larger computational setups such as those used in [13].

2 Background

The recent successes of NAS algorithms [8,10–14,16,17] have opened new doors
in the field of Deep Learning by outperforming traditional DNNs [1,5] that are
manually designed. Mostly, the NAS algorithms differ in the way they explore
the search space of the neural architectures. The search strategy can be broadly
divided into three different categories. The first category of methods [11,12]
use Bayesian optimization techniques to search for optimal network architec-
tures and have led to some early successes before reinforcement learning (RL)

https://arxiv.org/abs/1905.06252
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based methods [8,10,17] became mainstream, which is the second predominant
category. In RL based methods the agent’s action can be considered as the gen-
eration of a neural architecture within a given search space, whereas the agent’s
reward is the performance of the trained architecture on the validation set. Zoph
et al. [10] used a recurrent neural network to sample a set of operations for the
network architecture. In another work, the best performing network, dubbed as
NASNet [8], is searched by using Proximal Policy Optimization.

The final category of NAS algorithms leverage evolutionary algorithms for
finding the optimal network architectures. Surprisingly, the first work on using
genetic algorithm for searching network architectures [18] dates back several
decades ago. Since then, there have been several works [19,20] which use evo-
lutionary algorithm both to search network architectures and to optimize the
weights of the proposed networks. However, in practice Stochastic Gradient
Descent (SGD) based optimization of network weights works better than evo-
lution based optimization. Therefore, a series of methods [13,14,21] have been
proposed which restrict the usage of evolutionary algorithm just to guide archi-
tecture search, while using SGD for network weight optimization. The evolu-
tion based NAS methods differ in the way the sampling of parents are done,
the update policy of the population, and how the offspring are generated. For
instance, in [13] parents are selected according to a tournament selection [15],
while in [22] this is accomplished through a multi-objective Pareto selection. The
variations in the population update can be noticed in [13,21] where the former
removes the worst individual and the latter removes the oldest individual from a
population, respectively. Similar to [21], but differently from [13], in this work we
propose a μ + λ methodology to remove the worst individuals from the popula-
tion, where μ and λ is the population size and number of offspring, respectively.
With our approach, the best individual is preserved in the population (elitism).
Furthermore, as opposed to [13,21] who only considered mutation as the sole
offspring generation process, here we additionally consider a crossover operator
whose purpose is to accelerate the evolutionary process by recombining “building
blocks” obtained by the parents undergoing crossover.

Finally, the choice of population size plays a very crucial role in the explo-
ration of the search space of network architectures. For instance, the availability
of mammoth computing power (450 GPUs) allowed [13] to use a population size
P = 100, as opposed to our experiments which use a micro-population of size
P = 10. Thus, we compensate the lack of computational resources with various
modifications to the evolution process, so to allow an efficient exploration of the
search space with a very limited computational budget.

3 Method

In this section we present our method by first introducing the search space, and
then describing in detail the proposed Regularized Evolutionary Algorithm.
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3.1 Search Space

We consider the NASNet search space, introduced in [8], comprised of image
classifiers that have a fixed structure (see Fig. 1a), each one composed of repeated
motifs called cells, similar to Inception-like modules in [6]. Each architecture is
composed of two building-block cells called normal cell and reduction cell. By
design, all the normal and reduction cells should have the same architecture, but
the internal structure of a normal cell could vary from the reduction cell (see
Sect. 4.3). Another fundamental difference between the two is that the reduction
cell is followed by an average pooling operation with a 2× 2 kernel and stride of
2, whereas the normal cells preserve the size.

Fig. 1. (a) The full outer architecture used during the search phase; (b) Example of
an evolved cell’s internal structure and the depiction of a hidden node’s structure.

As seen from Fig. 1b and borrowing the taxonomy from [8], each cell is com-
posed of two input states (designated as “0” and “1”), an output state (desig-
nated as “final”) and a variable number of B hidden nodes. Excluding the input
and output states, each intermediate hidden node is constructed by a pairwise
combination of two independent operations (or op) on two inputs, followed by
the concatenation of their corresponding outputs. We refer to each hidden node’s
output as hidden states.

In total, each cell has a maximum of B + 3 states. Ops consist of commonly
used convnet operations, essentially only a subset of [8], defined as: identity
layer; 3× 3 convolution; 5× 5 convolution; 7× 7 convolution; 3× 3 max pooling;
3 × 3 average pooling. For example, in Fig. 1b, the zoomed-in hidden node is
constructed by two unique 3 × 3 convolution operations on the input state “1”,
followed by concatenation of resulting feature maps to yield another hidden state.
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It is worth noting that in [8,13] B is fixed for both the normal and reduction
cell, while in our method we treat B as a parameter which is also optimized
during the evolution, thus allowing different B (where B ∈ [Bmin, Bmax]) for
normal and reduction cells. In details, the input state is composed of a 1 × 1
convolutional layer with stride 1, to preserve the number of input channels, while
the output state is composed of a concatenation of the activations coming from
the previous unused hidden states. The inputs to each intermediate hidden node
can come from any of the previous states, including duplicates, while the output
from a hidden node can be connected to any of the following states. Finally, the
hidden states that are not connected with any (unused) op are concatenated in
the output hidden state.

Given a normal and a reduction cell, the architecture is built by alternating
these motifs as in [13], with the major difference that we avoid the use of skip-
connections and thus reduce the number of repetitions, in order to obtain a
simpler and faster training procedure. As in [13], we keep the same number of
feature maps inside each cell fixed, while this number is multiplied by a factor
K after each reduction cell. A sample overall architecture structure is reported
in Fig. 1a. The final goal of the NAS process is to find optimal architectures
for normal and reduction cells. Once their architectures have been chosen by
the algorithm, there are two hyper-parameters that need to be determined: the
number of normal cells (N) and the number of output features or filters (D).

3.2 Regularized Evolutionary Algorithm

The proposed Regularized Evolutionary Algorithm, see Algorithm 1, is based
on a micro-population of P = 10 individuals (i.e., network architectures). Each
individual represents a solution in the NASNet space, which as said is further
composed of normal and reduction cells. During evolution the population is
evolved in order to maximize the classification accuracy on a hold out validation
set. In the following, we describe in details each step of the proposed algorithm.

Population Initialization. In this initial step P individuals with random cells
are initialized and evaluated. Since we use a small value of P , the population is
strongly affected by badly initialized solutions. To solve this problem we initialize
all individuals with B hidden nodes (with B randomly selected in the range
[Bmin, Bmax/2]), in order to allow the algorithm to optimize and gradually
increase B during the evolution.

Offspring Generation. At each generation F offspring (i.e., new network archi-
tectures) are generated and inserted into the population. More specifically, for
each i-th offspring to generate, 1 ≤ i ≤ F , a sample of S individuals is selected
randomly from the population P . From these S individuals, two are selected
as parents for the i-th offspring: the best individual in the sample, P1 (this
is equivalent to a tournament selection), and another individual P2, which is
instead randomly selected from the sample. P1 and P2 are then used to generate
the offspring through crossover and mutation.
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Crossover. The crossover operation aims at merging two parent individuals,
thus enabling inheritance through generations. Let us assume that P1 and P2

have B1 and B2 hidden nodes, respectively. The offspring cell, derived from P1

and P2, will have Btemp = max(B1, B2) intermediate hidden nodes. The hidden
nodes of the parent cells are then merged through sequential random selection
with probability τcross, as follows. For the sake of generality we assume B1 �= B2.
The first min(B1, B2) intermediate hidden nodes Hoff

j in the offspring network,
1 ≤ j ≤ min(B1, B2), are set as:

Hoff
j =

{
HP1

j if p ≤ τcross

HP2
j otherwise

where p is a uniform random number drawn in [0, 1) and τcross is the crossover
probability threshold. This threshold plays an important role in the explo-
ration/exploitation balance in the algorithm, allowing to inherit the hidden nodes
either from P1 if p ≤ τcross (more exploitation), or from P2 if p > τcross (more
exploration). In our experiments, we set τcross = 0.6 to have a higher probabil-
ity of inheriting the hidden nodes from the best individual in the sample (P1),
rather than from a random individual P2. The remaining intermediate hidden
nodes Hoff

j , min(B1, B2) < j ≤ Btemp, are then derived directly from the corre-
sponding j-th node in the parent which has higher B. The edges of each hidden
node in the offspring are inherited from the parent without modifications.

Mutation. The mutation operation is a key ingredient in the evolution process,
as it allows the search to explore new areas of the search space but also refine the
search around the current solutions. Apart from the op mutation and hidden state
mutation introduced in [13], here we additionally introduce a specific mutation
for tuning the number of hidden nodes B. The first step is the op mutation which
requires a random choice to be made in order to select either the normal cell
or the reduction cell C. Once selected, the mutation operation will select one
of the B pairwise combinations (or hidden nodes) at random. From the chosen
pairwise combination, one of the two ops is replaced, with a probability τm−op,
by another op allowed in the search space. Following op mutation, hidden state
mutation is performed which, akin to op mutation, also oversees random choice
of cells, one of the B pairwise combinations and one of the two elements in a
combination. However, hidden state mutation differs from op mutation in that
it replaces (with probability τm−edge) the incoming hidden state or cell input,
which corresponds to the chosen element, with another one that is inside C,
instead of the op itself. It is important to notice that the new input is chosen
from the previous hidden nodes or cell inputs to ensure the feed-forward nature
of a cell. Finally, to encourage further exploration a third mutation allows to
increment the parameter B of C by 1, with probability τb, such that a new node
with index B + 1 is introduced with random weights, if B < Bmax. It is to be
noted that all unused states are concatenated at the end of the cell. Finally, the
offspring individual is evaluated and added to the population.
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Survivor Selection. The survivor selection is conducted at the end of each
generation. It is crucial since it permits the removal of the worst solutions from
the population and facilitates the convergence of the evolutionary search. In this
phase, the selection and removal of the worst individuals is conducted according
to a μ + λ selection scheme, where based on the symbols we have used so far
μ = P is the population size and λ = F is the number of generated offspring.
Therefore, at each step F worst individuals are removed from the set of P +
F individuals, so that the parent population for the next generations has a
fixed size of P individuals. It should be noted that, compared to other survivor
selection schemes, this scheme is implicitly elitist (i.e., it always preserves the
best individuals found so far) and also allows inter-generational competition
between parents and offspring.

Stagnation Avoidance. To avoid premature convergence of the population
to a local minimum we propose two stagnation avoidance mechanisms: soft
and hard stagnation avoidance. When stagnation occurs (i.e., the best accuracy
does not improve for more than Astag generations, as detected in the method
StagnationDetected() in Algorithm 1), the mutation probabilities τm−op and
τm−edge are increased to τm−op−avoid and τm−edge−avoid, respectively, where
τm−op−avoid and τm−edge−avoid denote increased mutation probabilities (such
that τm−op−avoid > τm−op and τm−edge−avoid > τm−edge). The choice to increase
τm−op and τm−edge is due to the fact that higher mutation probabilities, in gen-
eral, allow a higher exploration of the search space. On the other hand, τb is not
increased because the addition of more hidden nodes (which would likely follow
from a higher mutation probability) would increase the complexity of the cell
and does not alleviate stagnation. Finally, the hard stagnation avoidance is a
brute force remedy to stagnation. Specifically, if soft stagnation avoidance fails,
P − 1 worst solutions are replaced by P − 1 individuals with random cells, while
retaining the best solution found so far.

4 Experiments Results

In this section we describe the datasets and report the experimental setup used
in the evolutionary algorithm and network training. Finally, we report our exper-
imental evaluation on the considered datasets.

4.1 Datasets

We conducted all our experiments on the well-known MNIST, USPS and SVHN
datasets, all consisting of digits ranging from 0 to 9. MNIST and USPS are taken
from U.S. Envelopes and consist of grayscale handwritten digits. The SVHN is
a real-world dataset of coloured digits taken from Google Street View.

4.2 Experimental Setup

As mentioned in Sect. 2, our proposed method belongs to the category of neuro-
evolutionary methods where the optimal network is searched by an evolutionary
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Algorithm 1. Regularized Evolutionary Algorithm
population ← ∅, softTried ← False, g ← 1
while |population| < P do � Initialize population

individual.arch ← RandomArchitecture()
individual.accuracy ← TrainAndEval(individual.arch)
add individual to population

while g ≤ G do � Evolve for G generations
while |population| < P + F do � Generate F offspring

sample ← ∅ � Parent candidates
while |sample| < S do

candidate ← randomly sampled individual from population
add candidate to sample

P1 ← highest accuracy individual in sample � Tournament selection
P2 ← randomly selected individual in sample
offspring.arch ← Crossover(P1, P2)
offspring.arch ← Mutation(offspring.arch)
offspring.accuracy ← TrainAndEval(offspring.arch)
add offspring to population

remove F worst individuals from population � μ + λ selection
if StagnationDetected() then � Prevent Stagnation

if softTried then � Hard Stagnation Avoidance
remove P − 1 worst individuals from population
add P − 1 random individuals to population

else � Soft Stagnation Avoidance
τm−op ← τm−op−avoid, τm−edge ← τm−edge−avoid

softTried ← True

g ← g + 1

algorithm while the weights of the networks are trained with gradient descent
algorithm. Hence, we separately provide details about the chosen experimental
setup for the evolutionary algorithm and the network architecture and training.
For the experiments we used a Linux workstation equipped with a CPU Intel(R)
Core(TM) i9-7940X and a TITAN Xp GPU. The lack of massive computation
resource has led us to the following choice of parameters.

Evolutionary Algorithm. The experiments were conducted with P = 10,
F = 10, Bmin = 2, Bmax = 6 and ran for G = 200 generations. A sample size
S = 2 has been used to have a low selection pressure. For the crossover operation,
τcross = 0.6 was used to allow a higher probability of exploitation of the best
solutions in the populations. Instead, in the mutation phase, the probabilities
τm−op, τm−edge and τb were set to 0.4, 0.4 and 0.2, respectively, to allow both
a moderate exploration of the search space without significantly increasing the
complexity of the cells. Finally, the stagnation check has been enabled after 50
generations and the evolution is considered to be stagnating if the same best
result (in terms of accuracy) is provided for at least Astag = 40 generations. In
that case, τm−op−avoid and τm−edge−avoid were both set to 0.6.
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Network Architecture. The network architectures which conform to the over-
all structure in Fig. 1a were trained during the experiments. Due to limited mem-
ory, the initial channels D in the normal cell was set to 24 and then subsequently
multiplied by a factor K = 2 after each reduction cell, with a total of 3 normal
cells and 2 reduction cells. During the search phase, each individual has been
trained for 15 epochs with mini-batches of size 64 using an Adam optimizer hav-
ing an initial learning rate of 1e-4 with exponential decay. Dropout layer with
drop probability of 0.2 has been used in the final softmax classifier. To further
reduce the computations, our cells take duplicated output states Hprev from the
previous cell instead of Hprev and Hprev−1, thereby eliminating skip connec-
tions between cells unlike [8,13]. At the end of the search phase, when the final
best individual has been retrieved by the evolutionary algorithm, a training has
been performed with that best individual for 100 epochs with the same previous
parameters but with an initial learning rate of 1e-3. Batch normalization layers
were also inserted after each convolutional layer. Standard cross-entropy loss was
used for training the networks.

4.3 Results

Since the exploration in the NASNet search space is time consuming and also
memory intensive, the best cells were searched only using the MNIST dataset
due to its small size and reduced complexity. This has led to the evolution of
a best normal cell and a best reduction cell, which collectively form the best
network, dubbed as EvoA. The second best network is called EvoB.

Fig. 2. Architecture of the best cells of EvoA found using MNIST: (a) Normal cell;
(b) Reduction cell. The inputs “0” and “1” are the output states from the previous
cells. The output “FINAL” is the concatenation operation resulting from the remaining
hidden nodes inside the cell. The blocks in cyan represent a pairwise combination of
operations and their concatenation. Note that the colour corresponds to Fig. 1b. (Color
figure online)
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To show the benefit of having variable B hidden nodes in a cell, we considered
the following baselines: (i) EvoA, our best network with variable B; and (ii)
EvoB, our second best network also with variable B; (iii) Model-A with B = 3;
and (iv) Model-B with B = 4. As seen from Table 1, EvoA, the network found
by our proposed method, outperforms all baselines which consider fixed B. This
highlights the advantage of keeping B variable.

Table 1. Ablation study comparing the classification accuracy of our best evolved
networks EvoA and EvoB with networks having fixed B hidden nodes inside cells.

Model EvoA EvoB Model-A Model-B

Hidden States Variable Variable 3 4

Final Accuracy 99.59 99.55 99.47 99.49

Table 2. Digits test set results for EvoA and EvoB when compared with baselines.

Model MNIST SVHN

# Parameters Accuracy (%) # Parameters Accuracy (%)

ResNet18 [5] 11.18M 99.56 11.18M 92.00

DeepSwarm [23] 0.34M 99.53 0.34M 93.15

EvoB (ours) 0.21M 99.55 0.37M 91.56

EvoA (Ours) 0.22M 99.59 0.39M 91.80

In Fig. 2 the architectures of EvoA’s internal cells, both normal and reduction,
are presented. As it can be observed, normal cells in EvoA have B = 5 hidden
nodes whereas the reduction cell has B = 6. While the input states “0” and “1”
are duplicates of each other, unlike [8,13], we still observed good performance
without using skip connections.

We have compared our method with the following baselines: (i) ResNet18 [5]
and (ii) DeepSwarm [23], a NAS algorithm based on Ant Colony Optimization.
Due to the lack of availability of code from our closest competitor [13], we re-
implemented their aging-based evolution but the solutions never converged due
to the small size of our population, caused by limited memory and GPU avail-
ability. This resonates the fact that [13] is feasible only when large compute
resources are available. As seen from Table 2, EvoA outperforms all baselines
on MNIST, with the lowest number of tunable parameters. Importantly, for the
SVHN experiments we used an augmented architecture (with N = 4, D = 32
and each normal cell repeated thrice), composed of already evolved cells obtained
from the search phase with MNIST. The network, despite not being evolved
with SVHN, produced competitive results (slightly worse than ResNet18 and
DeepSwarm).

Transfer Learning. We also investigated the transferability of the trained net-
works on unseen target data. In details, we trained EvoA and EvoB on MNIST
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and used the trained weights to classify USPS test images. As seen from Table 3,
our EvoA and EvoB networks outperform all the baselines. Notably, while Deep-
Swarm outperforms both EvoA and EvoB on SVHN (as seen in Table 2), it per-
forms significantly worse when used for transfer learning. On the other hand,
our networks achieve near target test accuracy on unseen data.

Table 3. Classification accuracy on USPS with networks trained only on MNIST.

Model ResNet18 [5] DeepSwarm [23] EvoB (Ours) EvoA (Ours)

Accuracy (%) 89.08 61.56 96.72 96.40

5 Conclusions

In this work we have addressed Neural Architecture Search through a Regular-
ized Evolutionary Algorithm. The proposed algorithm is especially useful when
limited memory and limited computational resources are at disposal. Our main
contributions can be summarized as follows: (i) an evolving cell topology with
variable number of hidden nodes; (ii) ad hoc crossover and mutation operators
for improved exploration; and (iii) a novel stagnation avoidance for better con-
vergence. We have conducted experiments on three different digits datasets and
obtained competitive results. As a future work, we plan to scale our method to
larger populations of individuals (parallelized on multiple GPUs) and test it on
more complex datasets, also including videos.

Acknowledgments. We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the TITAN Xp GPU used for this research.
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Abstract. Few works tackle the Human Pose Estimation on depth
maps. Moreover, these methods usually rely on automatically annotated
datasets, and these annotations are often imprecise and unreliable, lim-
iting the achievable accuracy using this data as ground truth. For this
reason, in this paper we propose an annotation refinement tool of human
poses, by means of body joints, and a novel set of fine joint annota-
tions for the Watch-n-Patch dataset, which has been collected with the
proposed tool. Furthermore, we present a fully-convolutional architec-
ture that performs the body pose estimation directly on depth maps.
The extensive evaluation shows that the proposed architecture outper-
forms the competitors in different training scenarios and is able to run
in real-time.

Keywords: Human Pose Estimation · Depth maps · Body joints

1 Introduction

In recent years, the task of estimating the human pose has been widely explored
in the computer vision community. Many deep learning-based algorithms that
tackles the 2D human pose estimation have been proposed [5,19,22] along with a
comprehensive set of annotated datasets, collected both in real world [1,8,11] or
in simulations [7,17]. However, the majority of these works and data collections
are based on standard intensity images (i.e. RGB and gray-level data) while
datasets and algorithms based only on depth maps, i.e. images in which the
value of each pixel represents the distance between the acquisition device and
that point in the scene, have been less explored, even though this kind of data
contains fine 3D information and it can be used in particular settings, like the
automotive one [4,18], since depth maps are usually acquired through IR.

A milestone in the human pose estimation on depth maps is the work of
Shotton et al. [15], based on the Random Forest algorithm, that has been imple-
mented in both commercial versions of the Microsoft Kinect SDK. This real time

c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11751, pp. 233–244, 2019.
https://doi.org/10.1007/978-3-030-30642-7_21
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algorithm has been widely used to automatically produce body joints annota-
tions in depth-based public datasets. However, these annotations have limited
accuracy: in [15], the authors report a mean average precision of 0.655 on syn-
thetic data with full rotations.

For these reasons, in this paper we present Watch-R-Patch, a novel refined
set of annotations of the well-known Watch-n-Patch dataset [20], which contains
annotations provided by Shotton et al. ’s method [15].

Original wrong, imprecise, or missing body joints have been manually cor-
rected for 20 training sequences and 20 testing sequences, equally split between
the different scenarios of the dataset, i.e. office and kitchen.

Furthermore, we present a deep learning-based architecture, inspired by [5],
that performs the human pose estimation on depth images only. The model is
trained combining the original Watch-n-Patch dataset with the manually-refined
annotations, obtaining remarkable results. Similar to [15], the proposed system
achieves real time performance and can run at more than 180 fps.

2 Related Work

The majority of the literature regarding the Human Pose Estimation task is
focused on intensity images [6,13,22]. In [19] a sequential architecture is proposed
in order to learn implicit spatial models. Dense predictions, that corresponds to
the final human body joints, are increasingly refined through different stage into
the network model. The evolution of this method [5] introduces the concept of
Part Affinity Fields that allows learning the links between the body parts of
each subject present in the image.

Only a limited part of works is based on depth maps, i.e. images that provide
information regarding the distance of the objects in the scene from the camera,
One plausible limitation of depth-based methods is the lack of rich depth-based
datasets which have been specifically collected for the human pose estimation
task and contains manual body joint annotations. Indeed, available datasets
are often small, both in terms of number of annotated frames and in terms of
subjects. limiting their usability for the training of deep neural networks. In
2011, a method to quickly predict the positions of body joints from a single
depth image was proposed in [15]. An object recognition approach is adopted,
in order to shift the human pose estimation task in a per-pixel classification
problem. The method is based on the random forest algorithm and on a wide
annotated dataset, which has not been publicly released. A viewpoint invariant
model for the human pose estimation was recently proposed in [9], in which a
discriminant model embeds local regions into a particular feature space. This
work is based on the Invariant-Top View Dataset, a dataset with frontal and
top-view recordings of the subjects.

Recently, approaches performing the head detection directly on depth maps
were proposed in [2,3]. In [3], a shallow deep neural network is exploited to clas-
sify depth patches as head or non-head in order to obtain an estimation of the
head centre joint. The Watch-n-Patch dataset [20,21] has been collected for the
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unsupervised learning of relations and actions task. Its body joints annotation
are obtained applying an off-the-shelf method [15], therefore they are not par-
ticularly accurate, in particular when subjects stand in a non-frontal position.

Fig. 1. Annotation tool overview. The tool initially shows the original joint locations
(a). Then, each joint can be selected to view its name (b) or to move it in the correct
location (c). Missing joints can be added in the right position (d) (e). Finally, the
annotations (f) can be saved and the next sequence frame is shown.

3 Dataset

In this section, we firstly report an overview of the Watch-n-Patch dataset [20].
Then, we present the procedure we used to improve the original joint annotations
and the statistics of the manually refined annotations which are referred as
Watch-R(efined)-Patch. The dataset will be publicly available1.

3.1 Watch-n-Patch Dataset

Watch-n-Patch [20] is a challenging RGB-D dataset acquired with the second
version of the Microsoft Kinect sensor: differently from the first one, it is a Time-
of-Flight depth device. The dataset contains recordings of 7 people performing
21 different kinds of actions. Each recording contains a single subject performing
multiple actions in one room chosen between 8 offices and 5 kitchens.

The dataset contains 458 videos, corresponding to about 230 min and 78k
frames. The authors provide both RGB and depth frames (with a spatial resolution
of 1920×1080 and 512×424, respectively) and human body skeletons (composed
of 25 body joints) estimated and tracked with the method proposed in [15].
1 Watch-R-Patch: http://imagelab.ing.unimore.it/depthbodypose.

http://imagelab.ing.unimore.it/depthbodypose
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Fig. 2. Watch-R-Patch dataset overview. Kitchen and office sequences are shown in
the first and second row, respectively.

3.2 Annotation Procedure

We collect refined annotations for the Watch-n-Patch dataset using a quick
and easy-to-use annotation tool. In particular, we develop a system that shows
the original body joints (i.e. the Watch-n-Patch joints) on top of the acquired
depth image. The user is then able to move the incorrect joints in the proper
positions using the mouse in a drag-and-drop fashion. Once every incorrect joint
has been placed in the correct location, the user can save the new annotation
and move to the next frame. It is worth noting that, in this way, the user has
only to move the joints in the wrong position while already-correct joints do not
have to be moved or inserted. Therefore, original correct joints are preserved,
while improving wrongly-predicted joints. We have ignored finger joints (tip and
thumb) since original annotations are not reliable and these joints are often
occluded. An overview of the developed annotation tool is shown in Fig. 1. The
annotation tool is publicly released2.

3.3 Statistics

We manually annotate body joints in 20 sequences from the original training
set and 20 sequences from the original testing set. Sequences are equally split
between office and kitchen sequences. To speed up the annotation procedure and
increase the scene variability, we decided to fine-annotate a frame every 3 frames
in the original sequences. In some test sequences, every frame has been fine-
annotated. The overall number of annotated frames is 3329, 1135 in the training
set, 766 in the validation one, and 1428 in the testing one. We also propose an
official validation set for the refined annotations, composed of a subset of the
testing set, in order to standardize the validation and testing procedures.

For additional statistics regarding the annotated sequences and the proposed
train, validation, and test splits, please refer to Table 1. A qualitative overview
of the dataset is reported in Fig. 2.

2 Annotation tool: https://github.com/aimagelab/human-pose-annotation-tool.

https://github.com/aimagelab/human-pose-annotation-tool
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Table 1. Statistics of the Watch-R-Patch dataset.

Split Sequences Frames Annotated Modified mAP

Kitchen Office frames joints (%)

Train data 02-28-33 data 01-50-09 3385 1135 0.757 0.574

data 03-22-44 data 03-28-59

data 03-38-20 data 04-02-43

data 03-42-37 data 04-31-13

data 03-46-49 data 04-41-55

data 03-50-38 data 04-47-41

data 04-07-17 data 04-56-00

data 04-17-37 data 05-31-10

data 04-31-11 data 05-34-47

data 04-34-13 data 12-03-57

Val data 01-52-55 data 02-32-08 995 766 0.643 0.600

data 03-53-06 data 02-50-20

data 04-52-02 data 03-25-32

Test data 02-10-35 data 03-04-16 2213 1428 0.555 0.610

data 03-45-21 data 03-05-15

data 04-13-06 data 03-21-23

data 04-27-09 data 03-35-07

data 04-51-42 data 03-58-25

data 05-04-12 data 04-30-36

data 12-07-43 data 11-11-59

Overall – – 6593 3329 0.644 0.595

4 Proposed Method

In the development of the human pose estimation architecture, we focus on both
the performance (in terms of mean Average Precision (mAP)) and the speed (in
terms of frames per second (fps)).

To guarantee high performance, we decided to develop a deep neural network
derived from [5] while, to guarantee high fps, even on cheap hardware, we do
not include the Part Affinity Fields section (for details about PAF, see [5]).

4.1 Network Architecture

An overview of the proposed architecture is shown in Fig. 3.
The first part of the architecture is composed of a VGG-like feature extraction

block which comprises the first 10 layers of VGG-19 [16] and two layers that
gradually reduce the number of feature maps to the desired value. In contrast
to [5], we do not use ImageNet pre-trained weights and we train these layers
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Fig. 3. Proposed architecture overview. Each block contains its type (C: convolution,
MP: max pool), the kernel size, the number of feature maps, and the number of repe-
titions (if higher than 1). In our experiments, K = 21 and T = 6.

from scratch in conjunction with the rest of the architecture since the input is
represented by depth maps in place of RGB images.

The feature extraction module is followed by a convolutional block that pro-
duces an initial coarse prediction of human body joints analyzing the image
features extracted by the previous block only. The output of this part can be
expressed as:

P1 = φ(F, θ1) (1)

where F are the feature maps computed by the feature extraction module and
φ is a parametric function that represents the first convolutional block of the
architecture with parameters θ1. Here, P1 ∈ R

k×w×h.
Then, a multi-stage architecture is employed. A common convolutional block

is sequentially repeated T − 1 times in order to gradually refine the body joint
prediction. At each stage, this block analyzes the concatenation of the features
extracted by the feature extraction module and the output of the previous stage,
refining the earlier prediction. The output at each step can be represented with

Pt = ψt(F ⊕ Pt−1, θt) ∀t ∈ [2, T ] (2)

where F are the feature maps computed by the feature extraction module, Pt−1

is the prediction of the previous block, ⊕ is the concatenation operation, and ψt

is a parametric function that represents the repeated convolutional block of the
architecture with parameters θt. As in the previous case, Pt ∈ R

k×w×h.
The model is implemented in the popular framework Pytorch [14]. Further

details regarding the network architecture are reported in Fig. 3.

4.2 Training Procedure

The architecture is trained in an end-to-end manner applying the following objec-
tive function

Lt =
K∑

k=1

αk ·
∑

p

‖Pt
k(p) − Hk(p)‖22, (3)
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where K is the number of considered body joints, αk is a binary mask with
αk = 0 if the annotation of joint k is missing, t is the current stage, and p ∈ R

2

is the spatial location.
Here, Pt

k(p) represents the prediction at location p for joint k while Hk ∈
R

w×h is the ground-truth heatmap for joint k, defined as

Hk(p) = e−||p−xk||22 · σ−2
(4)

where p ∈ R
2 is the location in the heatmap, xk ∈ R

2 is the location of joint k,
and σ is a parameter to control the Gaussian spread. We set σ = 7.

Therefore, the overall objective function can be expressed as L =
∑T

t=1 Lt

where T is the number of stages. In our experiments, T = 6.
As outlined in [5], applying the supervision at every stage of the network

mitigates the vanishing gradient problem and, in conjunction with the sequential
refining of the body joint prediction, leads to a faster and more effective training
of the whole architecture.

The network is trained in two steps. In the first stage, the original body joint
annotations of Watch-n-Patch are employed to train the whole architecture from
scratch. It is worth noting that the Watch-n-Patch body joints are inferred by
the Kinect SDK which makes use of a random forest-based algorithm [15].

In the second stage, the network is finetuned using the training set of the
presented dataset. During this phase, we test different procedures. In the first
tested procedure, the whole architecture is fine-tuned, in the second one the
feature extraction block is frozen and not updated, while in the last procedure
all the blocks but the last one are frozen and not updated.

During both training and finetuning, we apply data augmentation techniques
and dropout regularization to improve the generalization capabilities of the
model. In particular, we apply random horizontal flip, crop (extracting a portion
of 488 × 400 from the original image with size 512 × 424), resize (to the crop
dimension), and rotation (degrees in [−4◦,+4◦]). Dropout is applied between
the first convolutional block and each repeated block.

In our experiments, we employ the Adam optimizer [10] with α = 0.9, β =
0.999, and weight decay set to 1 · 10−4. During the training phase, we use a
learning rate of 1 · 10−4 while, during the finetuning step, we use a learning rate
of 1 · 10−4 and apply the dropout regularization with dropout probability of 0.5.

5 Experimental Results

5.1 Evaluation Procedure

We adopt an evaluation procedure following what proposed for the COCO Key-
points Challenge on the COCO website [12].

In details, we employ the mean Average Precision (mAP) to assess the quality
of the human pose estimations compared to the ground-truth positions. The
mAP is defined as the mean of 10 Average Precision calculated with different
Object Keypoint Similarity (OKS) thresholds:
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Table 2. Comparison of the mAP reached by different methods computed on the
Watch-R-Patch dataset. See Sect. 4 for further details.

Shotton et al. [15] Oursorig Ourslast Oursblk Ours

APOKS=0.50 0.669 0.845 0.834 0.894 0.901

APOKS=0.75 0.618 0.763 0.758 0.837 0.839

mAP 0.610 0.729 0.726 0.792 0.797

mAP =
1
10

10∑

i=1

APOKS=0.45+0.05i (5)

The OKS is defined as

OKS =

∑K
i [δ(vi > 0) · exp −d2

i

2s2k2
i
]

∑K
i [δ(vi > 0)]

(6)

where di is the Euclidean distance between the ground-truth and the predicted
location of the keypoint i, s is the area containing all the keypoints, and ki is
defined as ki = 2σi. Finally, vi is a visibility flag: vi = 0 means that keypoint i
is not labeled while vi = 1 means that keypoint i is labeled.

The values of σ depend on the dimension of each joint of the human body.
In particular, we use the following values: σi = 0.107 for the spine, the neck, the
head, and the hip joints; σi = 0.089 for the ankle and the foot joints; σi = 0.087
for the knee joints; σi = 0.079 for the shoulder joints; σi = 0.072 for the elbow
joints; σi = 0.062 for the wrist and the hand joints.

5.2 Results

Following the evaluation procedure described in Sect. 5.1, we perform extensive
experimental evaluations in order to assess the quality of the proposed dataset
and method. Results are reported in Table 2.

Firstly, we have assessed the accuracy obtained by our architecture after a
training step employing the original Watch-n-Patch dataset. This experiment
corresponds to Oursorig in Table 2. As expected, when trained on the Kinect
annotations, our model is capable of learning to predict human body joints
accordingly to the Shotton et al. ’s method [15], reaching a remarkable mAP of
0.777 on the Watch-n-Patch testing set.

We also test the performance of the network employing our annotations as
the ground-truth. In this case, our method reach a mAP of 0.729, outperforming
the Shotton et al. ’s method with an absolute margin of 0.119. It is worth noting
that our method has been trained on the Kinect annotations only, but the overall
performance on the manually-annotated sequences is considerably higher than
the one of [15]. We argue that the proposed architecture has better generalization
capabilities than the method proposed in [15], even if it has been trained on the
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G.T. Shotton et al. [15] Ours

Fig. 4. Qualitative results obtained on the Watch-R-Patch dataset.
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Table 3. mAP of each body joint present in the Watch-R-Patch dataset.

Joint Shotton et al. [15] Oursorig Ours

SpineBase 0.832 0.841 0.905

SpineMid 0.931 0.911 0.935

Neck 0.981 0.975 0.978

Head 0.971 0.961 0.962

ShoulderLeft 0.663 0.673 0.819

ElbowLeft 0.490 0.635 0.772

WristLeft 0.456 0.625 0.677

HandLeft 0.406 0.599 0.680

ShoulderRight 0.538 0.547 0.782

ElbowRight 0.454 0.618 0.748

WristRight 0.435 0.642 0.727

HandRight 0.412 0.641 0.712

HipLeft 0.646 0.766 0.824

KneeLeft 0.494 0.743 0.788

AnkleLeft 0.543 0.771 0.800

FootLeft 0.497 0.743 0.801

HipRight 0.696 0.778 0.860

KneeRight 0.493 0.670 0.763

AnkleRight 0.508 0.630 0.648

FootRight 0.388 0.605 0.605

SpineShoulder 0.969 0.942 0.955

predictions of [15], therefore it obtains a higher mAP when tested on scenes with
actual body joint annotations.

Then, we report the results obtained applying different finetuning procedures.
In particular, we firstly train the proposed network on the original Watch-n-
Patch annotations then we finetune the model with the proposed annotations
updating different parts of the architecture. In the experiment Ourslast, we freeze
the parameters of all but the last repeated block, which means updating only
the parameters θ6 of the last convolutional block ψ6. In Oursblk, we freeze the
parameters of the feature extraction block, i.e. only the parameters θt of φ
and ψt are updated. Finally, we finetune updating the whole network in the
experiment Ours. As shown in Table 2, finetuning the whole architecture leads
to the highest APOKS=0.50, APOKS=0.75, and mAP scores. The proposed model,
trained on the original Watch-n-Patch dataset and finetuned on the presented
annotations, reaches a remarkable mAP of 0.797, outperforming the Shotton
et al. ’s method with an absolute gain of 0.187.
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Finally, we report per-joint mAP scores in Table 3. As it can be observed, the
proposed method outperforms the competitor and the baseline in nearly every
joint prediction, confirming the capabilities and the quality of the model and the
employed training procedure. Qualitative results are reported in (Fig. 4).

The model is able to run in real-time (5.37 ms, 186 fps) on a workstation
equipped with an Intel Core i7-6850K and a GPU Nvidia 1080 Ti .

6 Conclusions

In this paper we have investigated the human pose estimation on depth maps. We
have proposed a simple annotation refinement tool and a novel set of fine joint
annotations for a representative subset of the Watch-n-Patch dataset, which we
have published free-of-charge. We have presented a deep learning-based architec-
ture that performs the human pose estimation by means of body joints, reach-
ing state-of-the-art results on the challenging fine annotations of the Watch-R-
Patch dataset. As future work, we plan to publicly release the annotation tool
and to complete the annotation of the Watch-n-Patch dataset.
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Abstract. Multi-task networks often rely on complex architectures in
order to perceive and understand the driving scene. Computationally
intensive networks achieve state of the art results at the cost of real-time
inference on embedded devices. Our proposed unified solution obtains
competitive results on multiple tasks, while targeting an embedded plat-
form. We build upon our previous work of performing low-complexity
object detection and bottom point prediction and add semantic and
instance segmentation tasks while maintaining 19 FPS on the NVIDIA
Jetson TX2 embedded platform. We find that sharing layers between task
sub-networks is essential for achieving real-time inference. Due to the
task similarity and correlation between object detection, bottom point
prediction, semantic segmentation and instance segmentation we find
that the individual task performance is not greatly impacted by the
reduced computational capacity resulted from sharing layers amongst
the task sub-networks.

Keywords: Low-complexity · Multi-task · Embedded

1 Introduction

Scene perception and understanding refers to multiple detection tasks regarding
the driving scene such as object detection, free space detection, lane detection,
traffic sign detection, semantic and instance segmentation. Dedicated, high com-
plexity networks are employed for each of these tasks in order to achieve state
of the art results. Recently, multi-task networks have been proposed to jointly
predict multiple tasks in place of individual, specialized networks [16]. Using a
single multi-task network reduces the computational burden and has the poten-
tial to achieve better performance than individual networks if the learned tasks
are complementary [10].

In this paper we target an embedded architecture for use in autonomous
driving systems – the NVIDIA Jetson TX2. Existing multi-task networks often
rely on complex architectures that are unsuitable for embedded platforms due to
their time and memory constraints. To achieve real-time inference on embedded
c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11751, pp. 245–256, 2019.
https://doi.org/10.1007/978-3-030-30642-7_22
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Fig. 1. Unified scene understanding network.

platforms, unified models of lower complexity are used. Our proposed archi-
tecture is a unified, low-complexity model that jointly performs in real-time 4
tasks – object detection, bottom point prediction, semantic segmentation and
instance segmentation – achieving 19 FPS on the NVIDIA Jetson TX2 embed-
ded platform. The chosen tasks construct the free drivable area around the car
and identify the surrounding objects.

We leverage the object detection and bottom point prediction low-complexity
network from our previous work [3] and add semantic and instance segmentation
tasks to the unified network. The network is built so that the additional tasks do
not add significant overhead to the inference time. The unified network reuses
features by having a common encoder backbone which subsequently splits into
individual task branches. Each branch further refines the features and predicts
the branch task. The unified network is shown in Fig. 1.

To maximize the amount of information that we can infer from a scene, we
construct a wide-angle dataset that contains images captured with a fisheye
camera with 190◦ FOV. The wide FOV allows the camera to capture more
information from the surrounding area of the car. The dataset is discussed in
detail in Sect. 4.

In summary, our contributions in this paper are:

– We build on top of previous work and propose a low-complexity unified
architecture that performs scene perception by jointly predicting 4 tasks:
5-class object detection, free space prediction through bottom point detec-
tion, semantic segmentation and instance segmentation.
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– A unified network designed to share the computational burden and reuse the
layers can achieve real-time inference on an embedded platform even when
predicting 4 complex tasks.

– Our low-complexity unified network can achieve 19 FPS on the NVIDIA
Jetson TX2 embedded platform.

2 Related Work

2.1 Object Detection

Object detection architectures can be divided into high-complexity, two-stage
approaches and low-complexity, single-shot approaches. The two-stage methods
first propose class-agnostic bounding boxes which are fed to the second stage
where they are refined and assigned class probabilities. Among the two-stage
approaches we mention state of the art PANet [13] that builds upon the Mask
R-CNN [8] architecture by adding a top-down and bottom-up feature pyramid
network (FPN) [12]. Two-stage architectures are computationally expensive and
cannot be deployed on embedded devices. For platforms with limited resources,
single-shot architectures are introduced in order to reduce both memory and
resource requirements. SSD [14] is a single-shot architecture that predicts object
bounding boxes with their associated class at multiple scales. Single-shot multi-
scale architectures achieve better results than single-shot single-scale architec-
tures by decorrelating the prediction of different object scales.

2.2 Free Space Detection

Free space detection delimits the free drivable area. The task can be formulated
in terms of semantic segmentation, where the road class is predicted. The task
can also be formulated as object bottom point prediction in which the objects
include curb, sidewalk, and any obstacles so that the free space is defined as a
space beneath those objects. The bottom point prediction refers to predicting
the maximal height for each pixel along the image width, at which point an
obstacle exists [2,3].

2.3 Semantic and Instance Segmentation

Semantic segmentation predicts a dense, per-pixel class association. Deeplabv3
[4] achieves state of the art segmentation results on the Cityscapes [6] dataset by
using an FCN [15] to extract image features that are subsequently passed through
an Atrous Spatial Pyramid Pooling (ASPP) module that applies parallel atrous
convolutions with different rates in order to exploit the multi-scale contextual
information. The image resolution is recovered from the downscaled feature map
through bilinear upsampling. In Deeplabv3+ [5] the direct upsampling operation
is replaced by a decoder module in which the resolution is gradually recovered.
In order to obtain a sharper segmentation, the information from an earlier layer
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in the encoder is added to the decoder features. In our proposed model, we
use a simplified version of the Deeplabv3+ decoder, in order to maintain a fast
inference time.

Instance segmentation predicts a per-pixel instance association for each
object instance in a scene. This task can be predicted alongside either semantic
segmentation, since they are both per-pixel tasks, or alongside object detection,
in an attempt to better separate object instances and better fit the enclosing
bounding boxes. Mask R-CNN and PANet achieve state of the art results on the
COCO dataset for the object detection and instance segmentation tasks. The
instance segmentation prediction task is simplified using these architectures on
account of the two-stage approach. For each predicted bounding box, a reduced-
resolution mask is predicted per class. For two-stage approaches, the masks are
computed on the ROIs, and thus the task is simplified since we can only have
one instance in each ROI. In contrast, for single-stage methods, where we do
not have ROIs, the network is required to predict the instance segmentation
mask on the entire image. This task is arguably harder since the number of
instances in an image is not known beforehand, and a convolutional network is
unable to count. To bypass the counting problem, the task is often reformulated
in two ways. One formulation is to predict per-pixel vectors that point towards
the instance center [10]. The network predicts per-pixel vectors (2 dimensions)
and extracts the final instances in the post-processing step using the OPTICS
clustering algorithm [1]. Another formulation transforms the instance segmen-
tation task into a semantic segmentation task, in which instances are colored
[11]. The segmentation network assigns a constant number of labels – colors – to
an unknown number of instances. The ground truth is assigned at training time
and can be viewed as being part of the network loss.

2.4 Multi-task Networks

Task specific networks are employed in order to achieve state of the art results
without resource limitations. Multi-task networks reuse features among multiple
tasks so as to reduce the computational burden. Additionally, if the tasks learned
are similar and the training procedure is adequate, multi-task networks can
achieve better results than their independent counterparts [10].

Existing multi-task networks commonly predict a combination of object
detection, semantic or instance segmentation and depth prediction. MultiNet
[16] is a multi-task network that predicts vehicle object detection, road segmen-
tation and street classification. In [10] the multi-task network predicts semantic
segmentation, instance segmentation and depth prediction. We find that exist-
ing networks do not provide a complete view of the car’s surroundings and the
available drivable area. To this end, our proposed model predicts 5-class object
detection (car, bus, truck, pedestrian and *-cycle), bottom point prediction,
semantic segmentation and instance segmentation.
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3 Low-Complexity Unified Scene Understanding Network

Our proposed scene understanding model jointly predicts 4 tasks – object detec-
tion, bottom point prediction, semantic segmentation and instance segmenta-
tion, using a lightweight architecture suitable for embedded devices. We build
on our previous work of low-complexity object detection and bottom point pre-
diction and augment our unified network with semantic and instance segmenta-
tion tasks. Multi-task networks share the same architecture design: a common
encoder where the features are reused by the tasks followed by individual encoder
and decoder layers for each individual task. Branching out at later layers in the
encoder allows the sub-networks to share the computation and reuse features,
while branching out at earlier layers allows the networks to specialize.

In order to reduce the inference time, we share not only the common encoder
between all tasks but for the segmentation tasks (semantic and instance) we
also share the task-specific encoders and decoders, leaving only the predictors
to be task specific. This architecture modification provides a significant gain in
inference time at a small accuracy cost for the segmentation tasks. The common
encoder used is MobileNetV1 [9] until the Conv5 layer. Through experiments,
we have found that splitting at the Conv5 layer offered the best trade-off in
terms of accuracy and inference time. Each task keeps an independent copy of
the remaining encoder layers (Conv5-Conv11), except the segmentation tasks
which share the entire encoder as well as the decoder. The task predictors are
independent. In Fig. 1 we show our proposed unified model with its task specific
predictions. We illustrate the object detection predictions with bounding boxes
colored according to the predicted class. We use the same colors to overlay
the semantic segmentation predictions with the input image. For bottom point
visualization we color the free space area delimited by the predicted bottom
points. For instance segmentation we show the final extracted object instances.

3.1 Object Detection

In order to achieve competitive results while maintaining a fast inference time,
we adopt SSD as our object detection architecture, viewed independently in
Fig. 2. We predict objects at 6 scales, starting from Conv11 at 1/16 downscaled
resolution for the first scale. We add the remaining 5 layers on top of the encoder.

Fig. 2. Object detection network deploying SSD with MobileNetV1.



250 L. Iordache et al.

3.2 Bottom Point Prediction

We perform free space detection through predicting the obstacle bottom point
for each pixel in the image width. The network can be viewed as a standard clas-
sification network on height (H) classes, where for each pixel in the image width
we predict the height index of the obstacle bottom. The union of the bottom
points for all the width columns would build either the curb or the free drivable
area. In Fig. 3 the column-wise bottom point predictions are illustrated. Since
the bottom point network predicts the height index at each column in the image
width, the encoded features need to be decoded to the required image resolu-
tion. The network’s final layer is the softmax classification layer that predicts
the bottom height index for each column in the image width. After passing the
image through the encoder, we recover the image resolution from the features
through the depth-to-space operation as illustrated in Fig. 4. The depth-to-space
operation reuses the channels in the feature maps to reconstruct the height and
width of the image.

Fig. 3. Bottom point. Left: column-wise bottom prediction (red dot), Right: free space
detection (red line). (Color figure online)

Fig. 4. Bottom point detection network deploying MobileNetV1.

3.3 Semantic and Instance Segmentation

The semantic segmentation and instance segmentation sub-networks can be
viewed in Fig. 5. The segmentation sub-networks share the entire encoder, as
well as the decoder to further reduce inference time. Similar to Deeplabv3+, we
decode the features by bilinearly upsampling them from 1/16 to 1/8 downscaled
resolution. In order to recover object boundaries we concatenate the features
from a lower layer at the same resolution and apply a depthwise separable con-
volution in order to refine the features. The resulting features from the slim
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decoder are then passed to the semantic segmentation predictor. The resulting
segmentation mask is further bilinearly upsampled to the input image resolu-
tion in order to compute the loss. The predictors for the semantic and instance
segmentation are independent.

Following the vectors-to-center paradigm [10], we formulate our instance pre-
diction task as predicting a per-pixel 2-D displacement vector, in which for each
pixel in an instance we predict a 2-D vector pointing to the instance center of
mass to which the pixel belongs. Adding the pixel coordinates to the predicted
vector yield the instance center coordinates. For each instance I with its instance
center of mass C(xcenter, ycenter), adding the instance pixel coordinates (xi, yi)
to the predicted displacement vectors (dxi, dyi) yields C. These vectors can be
visualized similar to an optical flow, where the color represents the vector orien-
tation and the color opacity represents the vector magnitude. In Fig. 6, instance
segmentation ground truths and predictions are illustrated.

On top of the shared decoded features we add a final instance segmentation
predictor. The loss is computed on the input image resolution, using the bilin-
early upsampled predictions. The instance segmentation predictions need to be
post-processed in order to extract the object instances. We follow the same pro-
cedure as [10] and apply the OPTICS clustering algorithm. Figure 6 illustrates
an example of extracted instances.

Fig. 5. Semantic and instance segmentation network deploying MobileNetV1 encoder
and a slim decoder.

(a) Input image (b) Ground truth (c) Prediction (d) Extracted instances

Fig. 6. Instance segmentation task.
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4 Implementation

AVM Camera System. In order to maximize the available information in the
input, we use an Around View Monitoring (AVM) system to construct our
dataset. We use the same dataset as described in our previous work [3]. An
AVM system represents a 4-camera setup with which a top-view, 360◦ view of
a car’s surroundings can be constructed. The 4 cameras are positioned around
the car (front, rear and sides). Each camera is an HD fisheye camera with 190◦

FOV. We shall further refer to this dataset as the AVM dataset. The dataset is
manually annotated for object detection and bottom point prediction. We use a
high-complexity instance segmentation network in order to extract ground truth
for the semantic and instance segmentation tasks. We use a pre-trained Mask
R-CNN [8] model and only train the object detection sub-network on the AVM
dataset, keeping the instance segmentation sub-network freezed. We find that
the predicted masks are high quality and can be used as ground truth to train
a low-complexity segmentation network. The dataset statistics can be found in
Table 1.

Network Details. Our unified network receives as input a single RGB, front-
facing AVM image of size 640 × 360. We resize our AVM 720p high resolution
images to 640 × 360 in order to reduce inference time. We use MobileNetV1
encoder with depth multiplier 0.5 as the network backbone. All layers in the
shared and individual encoders are initialized with pre-trained weights on the
COCO dataset. Unless otherwise specified, we use depthwise separable convo-
lutions with ReLU activations and Batch Normalization. The object detection
branch predicts objects at 6 scales using the SSD architecture. We set the mini-
mum bounding box scale to be 0.06 with the maximum 0.95 for our AVM dataset.
The minimum value is specific to our dataset, being the smallest scale of an object
in the dataset. We use the standard SSD settings for the remaining parameters.
The network predicts the box localization and class association between the box
and the 5 classes present in the AVM dataset (car, bus, truck, pedestrian and
*-cycle). We use the standard SSD losses. For bottom point classification and
semantic segmentation we use the cross-entropy loss. The instance segmentation
loss is an L1 loss between the predicted displacement vector and the labels. The
segmentation losses are computed on the input resolution, between the ground
truth and the bilinearly upsampled predictors. The total loss is computed as
the sum of the individual losses, weighted by the individual task weights. The
instance segmentation task has a weight of λ = 0.1 with the others having a
weight of λ = 1. The instance segmentation task is learned the slowest and
should be allowed time to achieve better results.
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Table 1. Dataset statistics: number of objects in class.

Split Class

car bus truck pedestrian *-cycle

Train 5948 669 858 1130 320

Test 1132 271 414 121 50

Table 2. Unified architecture ablation experiments.

Architecture Car

AP

Bus

AP

Truck

AP

Pedestrian

AP

*-cycle

AP

mAP Bottom

MAE

SEM1

mIOU

IS2

MAE

TX2 inference

time (ms)

Unified

independent

decoders

0.71 0.68 0.39 0.32 0.45 0.51 3.31 0.63 0.57 107.33

Unified shared

decoder

0.71 0.7 0.36 0.26 0.54 0.51 3.09 0.63 0.60 79.3

Unified shared

decoder (slim)

0.72 0.71 0.33 0.26 0.49 0.5 3.15 0.62 0.65 51.46

1SEM: Semantic segmentation
2IS: Instance segmentation

5 Experiments

Metrics. For the object detection task we use the Pascal VOC mean average
precision (mAP) metric at 0.5 intersection over union (IOU). For bottom pre-
diction and instance segmentation we use the mean absolute error (MAE) and
for semantic segmentation we use the mean IOU (mIOU).

AVM Experiments. The AVM training dataset consists of front-facing fisheye
RGB images. The network is trained for 100 000 iterations with a batch size of
8, using the ADAM optimizer with an initial learning rate of 7e-4. The learning
rate is decayed every 15 000 iterations with a 0.5 decay factor. The network is
initialized with COCO weights. We use random cropping, horizontal flipping and
color distortion (brightness, contrast, hue, saturation) in order to augment our
data. We have experimented with the complexity of our unified architecture and
the trade-off between accuracy and inference time. To this end we report results
for independent decoders for the semantic and instance segmentation branches,
a shared decoder and a final slim shared decoder in Table 2. When the decoders
are independent between the two tasks, the specialized encoder features from
Conv5 to Conv11 are also independent. The non-slim variant of the decoder fol-
lows the Deeplabv3+ architecture. By sharing the decoder between the semantic
segmentation and instance segmentation we can gain significant speed-up at no
significant cost to the model performance. The semantic segmentation branch
seems largely unaffected by the shared decoder, while the instance segmentation
accuracy seems to be impacted by this. We report instance segmentation MAE
in terms of the predicted displacement vectors, without taking into account the
OPTICS post-processed instances. The object detection and bottom prediction
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Table 3. Component inference time.

Component TX2 inference time (ms) TX2 FPS

Shared
encoder
(Conv0-
Conv5)

OD Bottom Semantic
segmen-
tation

Instance
segmen-
tation

� 18.44 54

� � 31.8 31

� � � 40.38 25

� � � � 50.92 20

� � � � � 51.46 19

Fig. 7. Bottom point prediction on the KITTI dataset.

tasks achieve similar results between the three variants. We choose the third,
slim variant as our subsequent unified model, that is able to achieve competitive
results for 4 tasks – object detection, bottom point prediction, semantic seg-
mentation and instance segmentation – in 19 FPS on the NVIDIA Jetson TX2
embedded platform.

For timing the inference we do not include OPTICS post-processing over-
head. We test the inference time of the models using TensorFlow 1.7 on the
NVIDIA Jetson TX2 embedded platform, with the 3.3 JetPack with CUDA 9.0
and cuDNN 7.0. We perform component ablation tests in Table 3 in order to
quantify each component’s impact on the model inference time. A majority of
the total inference time is spent in the shared network encoder (18 ms), with each
component adding additional inference time. In our proposed model we prior-
itized our object detection and bottom tasks and chose to limit the inference
time through the semantic and instance segmentation branches. The segmenta-
tion branches add only 11 ms inference time on top of the remaining architecture,
providing relevant information at a small overhead.

KITTI Experiments. We perform additional experiments on the KITTI [7] open
dataset. We use a padded resolution of 1242 × 376 in order to jointly train on all
tasks. We train the object detection, semantic and instance segmentation tasks
only on the evaluated classes in KITTI. The bottom prediction ground truths are
extracted from the road segmentation ground truths, by finding the top point in
the segmentation contour for each column in the image width. The network is
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Table 4. Unified architecture trained on the KITTI dataset.

Car AP Pedestrian AP Cyclist AP mAP Bottom MAE SEM1mIOU IS2MAE

0.86 0.5 0.51 0.62 4.25 0.45 2.43
1SEM: Semantic segmentation
2IS: Instance segmentation

Table 5. KITTI object detection test set evaluation.

Class Easy Moderate Hard

Car 69.65% 61.26% 55.57%

Pedestrian 38.44% 31.66% 29.58%

Cyclist 34.27% 25.80% 23.71%

trained for 40 000 iterations with a batch size of 8, using the ADAM optimizer with
an initial learning rate of 1e-3, decayed every 10 000 iterations with a 0.5 decay fac-
tor. The network is initialized with Cityscapes weights. We use centered random
cropping, horizontal flipping and color distortion in order to augment our data.
We first report the KITTI results using the AVM evaluation metrics described
previously. We randomly split the train set into a train and validation set with
an 80/20 split. In Table 4 we report the results on the validation set. The object
detection task was trained on approximately 6 000 images and obtains competitive
results. The semantic and instance segmentation tasks perform poorly due in part
to the small dataset with many classes, and in part due to the low-complexity seg-
mentation branches. The bottom task is able to achieve good performance despite
the small training dataset. The bottom results can be visualized in Fig. 7. The
MAE for the bottom task is dependent on the image resolution, and as such the
KITTI bottom MAE cannot be directly compared to the AVM bottom MAE per-
formance. For comparison purposes we present the KITTI test set evaluations for
object detection in Table 5. The results are competitive with respect to the net-
work inference time. The low-complexity segmentation network requires sufficient
data in order to learn a valuable representation, as such the results for the semantic
and instance segmentation tasks on the KITTI dataset are bad. When the dataset
is sufficiently large as in the AVM dataset, the tasks learn a useful representation.
We do not report the bottom point results due to the task incompatibility with
the road segmentation evaluation.

6 Conclusions

In this paper we have proposed a low-complexity unified architecture that jointly
predicts in real-time 4 complex tasks –5-class object detection, bottom point
detection, semantic segmentation and instance segmentation– achieving 19 FPS
on the NVIDIA Jetson TX2 embedded platform. The flexibility and modularity
of our model allows for future improvements to each individual task, as well as
the possibility of adding additional tasks.
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Abstract. Image anomaly detection consists in finding images with
anomalous, unusual patterns with respect to a set of normal data.
Anomaly detection can be applied to several fields and has numer-
ous practical applications, e.g. in industrial inspection, medical imag-
ing, security enforcement, etc. However, anomaly detection techniques
often still rely on traditional approaches such as one-class Support Vec-
tor Machines, while the topic has not been fully developed yet in the
context of modern deep learning approaches. In this paper we propose
an image anomaly detection system based on capsule networks under
the assumption that anomalous data are available for training but their
amount is scarce.

Keywords: Anomaly detection · Deep learning · Capsule networks ·
Imbalanced datasets

1 Introduction

Anomaly detection has always been a challenging problem in the field of machine
learning. It consists in identifying anomalies within datasets, where an anomaly
is anything that significantly differs from the majority of the data. Anomaly
detection is thus achieved by building a model of “normality” and then compar-
ing any subsequent data with that model.

The topic has many potential application fields, such as identification of
defective product parts in industrial vision applications [13], fault-prevention
in industrial sensing systems [8], detection of anomalous network activity in
intrusion detection systems [1], medical image analysis for tumor detection [3],
traffic analysis [17], structural integrity check in hazardous or inaccessible envi-
ronments [16] and many more.

Many classical machine learning techniques have been adopted to identify
anomalies in data [7], such as Bayesian networks, rule-based systems, clustering
algorithms, statistical analysis, etc. One of the most popular approaches relies on
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Support Vector Machines and in particular on their one-class variant, in which
the standard SVM technique is used to split the feature space in two parts, one
with high-density data (the normal class) and the other with outliers. Despite
this huge interest of the research community on anomaly detection, the topic has
not been fully developed in the context of modern deep learning. In this field
(which we will call from now on deep anomaly detection), relatively few works
have been published, mostly relying on reconstruction-based or generative-based
approaches. The aim of this paper is to investigate the use of deep learning
techniques for image anomaly detection: the task is to search for those images
that are visually different from a reference group. In particular, we will focus on a
recent evolution of deep learning techniques, the so-called capsule networks [19],
to check if they could fit image anomaly detection tasks.

Anomaly detection techniques can be roughly classified in three main
groups depending on the availability of data and labels: fully-supervised, semi-
supervised and unsupervised [7]. In the fully-supervised case, it is assumed that
both normal and anomalous data are available for training, and the problem
reduces to a standard classification task. In this case, the main difference between
anomaly detection and other classification problems is the imbalanced nature of
the dataset: anomalies may be available for training, but their amount is by def-
inition much smaller than normal data. In the semi-supervised case only normal
data is labeled and available for training, and the goal is to classify new data
as either normal or anomalous—this is why this approach is often called “nov-
elty detection”. Finally, the unsupervised case (also called “outlier detection”)
is similar to a clustering problem: no labels are given for the training set, which
could potentially contain both normal and anomalous data, and the goal is to
identify the normal cluster while leaving out the outliers. In this paper we will
focus on the fully-supervised approach, and a capsule network will be used as
regular classifier on imbalanced data.

The paper is organized as follows: in Sect. 2 we give an overview of the most
recent works in the field of deep anomaly detection. Section 3 describes our
capsule-based architecture and how it has been adapted to the task of anomaly
detection. Finally, in Sect. 4 we provide experimental results on several datasets
to show the effectiveness of the proposed method.

2 Related Works

As mentioned in Sect. 1, anomaly detection has been widely studied in the field
of classical machine learning. Chandola et al. [7] give an excellent survey on
the topic, highlighting the different types of anomalies, application fields, and
possible non-deep approaches. From a deep learning point of view, the topic has
been less extensively covered. Kiran et al. published a survey on this topic, but
it is exclusively focused on anomaly detection in videos [14].

The fully-supervised approach is generally addressed with generic techniques
for handling imbalanced data, such as undersampling the dominant class or over-
sampling the smaller class either by data duplication or by synthetic generation
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of new data. In both cases the idea is to use a pre-processing step to make the
dataset balanced before applying any classification algorithm [4]. A recent work
proposes to use extra datasets as a source of anomalies to improve the detection
of the normal class by means of a process called outlier exposure [10].

Regarding semi-supervised or unsupervised approaches, early works adopted
techniques such as Deep Belief Networks [21] for medical diagnosis on EEG
waveforms or Restricted Boltzmann Machines [12] for network traffic analysis.
More recently, hybrid approaches have been proposed in which deep architectures
are used together with ideas from classical machine learning: for example Ruff
et al. [18] propose the Deep Support Vector Data Description method, in which
a deep neural network is trained under the same constraints adopted by one-
class Support Vector Machines. However, the majority of the proposed works
currently rely either on deep autoencoders or generative models.

Autoencoders are neural networks in which the differences between the out-
put and the input are minimized: the ideal autoencoder thus is an identity func-
tion. However, autoencoders are implemented as a concatenation of an encoder
and a decoder with an intermediate bottleneck, a low-dimension layer in which
the original data are compressed. If the decoder part can reconstruct the original
input, then the latent representation in the bottleneck captures all the relevant
features of the original data. Despite autoencoders have been initially developed
for dimensionality reduction tasks, they can be adapted to anomaly detection
problems: if an autoencoder is trained on the normal class, it will learn how to
represent its main features in its latent space. When an anomalous input is fed
in the network, it is assumed it cannot be properly represented in the latent
space, and thus the decoder reconstruction will be poor [5,6,23].

The other main approach is based on generative models, and in particular
on generative adversarial networks (GAN). GAN are based on two competing
networks: a generator, trying to create new data similar to the training ones,
and a discriminator, trying to discern original data from the generated ones.
The competition between the two networks leads the generator to learn how to
create novel data which are similar to the training ones. This way, if trained on
normal data, the generator learns a “normality model” much like autoencoders
do. If the generator is inverted, a comparison on the latent representations of
normal and anomalous data can be used to detect anomalies [2,11,20].

3 System Description

In this work we address the anomaly detection problem as a fully-supervised
classification with highly imbalanced datasets. The model we adopted is a capsule
network, in particular we rely on the CapsNet architecture proposed by Hinton
in [19]. The rationale behind this choice is that capsule networks proved to be
excellent classifiers thanks to their equivariance and spatial coherence properties,
thus we want to investigate if anomaly detection problems could benefit from
this architecture.

The original network has been developed to recognize MNIST digits and
consists of two main parts: an encoder, converting an input image into 10 vectors
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Fig. 1. The CapsNet architecture adopted in this work.

of instantiation parameters (digit caps), and a decoder, which reconstructs the
original input. The network is trained in order to maximize the vector length of
the correct digit caps and to minimize the decoder reconstruction loss. Although
the decoder is not strictly necessary, it is used to force the digit caps to learn
meaningful instantiation parameters describing visual properties of the digits.
The main components of the network are:

– Convolution: It is a traditional convolutional layer. The aim is to extract
basic features from the image. The network uses 256 kernels of size 9×9 with
ReLU output.

– PrimaryCaps: This layer is similar to the convolution layer, and it outputs
1152 feature vectors in R

8. These vectors are fed to a squash function, which
preserves their orientation and normalizes the length in the range [0, 1].

– Routing by Agreement: Routing by agreement is somewhat similar to max
pooling. It decides what information to send to the next level. In this method
each capsule tries to predict the next layer’s activations based on its length
and orientation.

– DigitCaps: After routing by agreement, 10 digit caps are obtained. These
squashed vectors in R

16 represent the instantiation parameters of each digit
class. The vector length is proportional to the probability of the input belong-
ing to a specific class, while its orientation represents the “pose”, this is the
specific instance of a digit among the many possible appearances for the same
digit.

– Reconstruction: The reconstruction part takes the longest digit caps vector
and uses three fully connected layers to reconstruct the input image.

In our implementation, we adopt the CapsNet architecture to perform fully-
supervised anomaly detection, and thus we reduced the number of digit caps to 2:
one representing the normal class, and the other representing the anomaly class,
as shown in Fig. 1. However, in Sect. 4 we will show that this basic network has
extremely poor performances when the dataset is highly imbalanced. In order to
deal with the class imbalance, we adopted two anomaly measures: reconstruction
loss and vector length difference.

Reconstruction loss rl is a MSE loss computed on the difference between
original and reconstructed image. We force the decoder network to be trained
only on normal data and using the output of the normal digit caps. This way,
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the network will be able to reconstruct correctly only normal data, and it will
behave poorly on anomalous data. This is the same technique adopted by nearly
all the autoencoder-based methods described in Sect. 2.

Vector length difference uses the length of digit caps vectors as a measure of
anomaly. Let zn and za the two output vectors for normal and anomaly classes.
Recall that, in CapsNet, these vector lengths are forced to assume values in the
range [0, 1], where higher values denote a better detection confidence. Using the
standard CapsNet approach, an image is classified as anomaly if ‖za‖ > ‖zn‖,
but this approach does not give good results on imbalanced datasets. With imbal-
anced datasets we noticed that the system behaves as expected on the dominant
class (‖zn‖ ≈ 1, ‖za‖ ≈ 0), while on anomalous data the difference between the
two vectors lengths is typically smaller. For example, ‖zn‖ = 0.8, ‖za‖ = 0.6 is
a strong hint that the sample is anomalous, even though it would be classified
as normal from a standard CapsNet. We thus propose to use ‖za‖ − ‖zn‖ as
anomaly score.

The final anomaly score AS is a combination of the two measures:

AS = ‖za‖ − ‖zn‖ + rl (1)

with ‖za‖, ‖zn‖, rl ∈ [0, 1]. The ROC curve in Fig. 2 shows that the combination
of the two anomaly measures leads to better results than using only one of
the two. Once computed the anomaly score on the training data, it is fed into a
logistic regressor to find the optimal threshold separating normal from anomalous
data. The threshold can later be used to classify new data based on their anomaly
score (see Fig. 3).

4 Results

Following a popular approach in deep anomaly detection works, the proposed
method has been evaluated on the MNIST dataset [15]. We also considered
two similar datasets, namely Fashion-MNIST [22] and Kuzushiji-MNIST [9].
Each dataset has 10 classes, respectively representing digits, clothing and ancient
Japanese characters. Training has been performed by iterating the following
schema over all classes:

1. Choose a class as the normal class
2. The training dataset contains all the training images of the chosen class plus

some training images randomly picked from the other classes. The amount of
training anomalies is either 10% or 1%

3. Train the network and compute the anomaly score threshold
4. Test the system on the whole test dataset

Note that the test dataset is not imbalanced, this avoids biased accuracy results.
Table 1 shows the training hyperparameters.

MNIST Dataset: For the MNIST dataset the network is trained on 28×28×1
MNIST digit images. The images have been standardized with mean 0.1307 and
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Fig. 2. ROC curve for three anomaly detection measures: vector length difference,
reconstruction loss, and vector length difference + reconstruction loss.

Fig. 3. Anomaly scores on test data, training done with 10% anomalies. Logistic regres-
sion threshold: −0.09.

Table 1. Training hyperparameters

Adam learning rate 0.001

% of anomalies in training data 1%–10%

Batch size 32

Epochs 10
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std. deviation 0.3081. Table 2 shows the achieved results with a standard Cap-
sNet and with the proposed approach, in the cases of 10% and 1% of anomalies
in the training set. As it can be seen, the standard CapsNet approach fails when
the dataset is extremely imbalanced: when anomalies are 1% of the training
dataset, the standard CapsNet has an average accuracy of 51.44%, which is very
close to a random guess. On the other hand, the proposed system keeps a high
accuracy even with imbalanced training data (accuracy is on average 98.84%
and 96.46% for the 10% and 1% anomaly cases respectively). Figure 4 shows the
reconstructed images for both normal and anomalous data. The figure confirms
that reconstruction is poor on anomalies, thus motivating the use of reconstruc-
tion error in the anomaly score definition.

Table 2. Accuracy % on MNIST dataset for standard CapsNet and the proposed
method. The amount of anomalies in the training data is 10% (top rows) or 1% (bottom
rows).

0 1 2 3 4 5 6 7 8 9 avg

Standard,
10% an.

97.46 98.78 97.02 92.87 96.36 93.42 96.87 96.83 95.50 92.13 95.72

Proposed,
10% an.

99.50 99.27 99.22 99.21 99.10 98.33 98.74 98.05 99.00 97.93 98.84

Standard,
1% an.

48.90 73.58 50.00 49.66 48.95 46.56 48.34 50.00 48.75 49.63 51.44

Proposed,
1% an.

99.20 98.24 98.19 95.48 94.37 95.46 98.34 97.07 97.85 90.41 96.46

Fig. 4. Top rows: normal (left) and anomalous (right) samples from the MNIST test
set. Bottom rows: the reconstructed images.

Fashion MNIST Dataset: Fashion MNIST dataset is composed of images
from an online clothing store. it contains 60,000 examples as a training set and
10,000 examples as a test set organized in 10 classes (see Table 3). The images
are 28 × 28 grayscale images and have been standardized as in the MNIST
case. Results are shown in Table 4 and reconstructions are shown in Fig. 5. The
dataset is more challenging, but the results confirm that the proposed method
outperforms standard CapsNet when the number of training anomalies is small.
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Table 3. Fashion MNIST label encoding

Label 0 1 2 3 4 5 6 7 8 9

Desc T-shirt/top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle
boot

Table 4. Accuracy % on fashion MNIST dataset.

0 1 2 3 4 5 6 7 8 9 avg

Standard,
10% an.

88.14 96.89 85.08 92.19 85.77 96.15 76.93 95.11 94.96 97.18 90.84

Proposed,
10% an.

93.28 98.07 87.50 95.01 91.50 98.07 84.44 96.64 97.73 97.83 94.01

Standard,
1% an.

49.41 49.41 49.41 49.41 49.41 49.41 49.41 49.46 49.41 49.41 49.41

Proposed,
1% an.

87.45 95.31 5 84.98 90.86 87.70 94.27 77.32 93.33 92.14 96.15 89.95

Kuzushiji-MNIST(K-MNIST): It is a dataset of 28 × 28 grayscale images
of ancient Japanese handwritten characters. The dataset contains 60,000 images
for training and 10,000 images for testing. Images have been standardized before
processing. It is a challenging dataset, as it can be seen in Fig. 6, where the 10
rows corresponding to each class can be seen. The accuracy for K-MNIST dataset
can be seen in Table 5 and reconstruction examples are in Fig. 7. The results
obtained on other datasets are confirmed: the proposed method outperforms
standard capsule network classification, especially in the 1% training anomaly
case.

5 Conclusions

In this work we proposed a fully-supervised deep anomaly detection technique
based on capsule networks. The network is trained as in a binary classifica-
tion problem, where each sample is either normal or anomalous, but with the
additional constraint of imbalanced datasets. To deal with data imbalance, we

Fig. 5. Top row: normal (left) and anomalous (right) samples from the Fashion MNIST
test set. Bottom row: the reconstructed images.
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Fig. 6. 10 classes of Kuzushiji-MNIST, with the first column showing each character’s
modern hiragana counterpart.

Table 5. Accuracy % on K-MNIST dataset.

0 1 2 3 4 5 6 7 8 9 avg

Standard,
10% an.

91.55 80.58 72.88 87.40 49.41 87.10 83.05 93.23 81.92 81.97 80.91

Proposed,
10% an.

96.54 93.92 88.69 96.25 88.19 93.43 93.08 93.48 95.85 95.01 93.44

Standard,
1% an.

49.95 49.95 49.95 49.95 49.95 49.95 49.95 49.95 49.95 49.95 49.95

Proposed,
1% an.

92.31 86.11 79.17 93.06 83.27 90.81 86.56 76.37 87.91 90.71 86.63

proposed a novel anomaly score based on output vectors length difference and
reconstruction error. Experimental results are very promising, since the network
has state-of-the-art performance even with highly imbalanced datasets where the
standard network fails.

To the best of our knowledge, this is the first use of capsule networks for
anomaly detection tasks. We believe that the ability of capsule networks to
create equivariant models can boost anomaly detection in the same way it has
proven to boost standard classification problems.

Fig. 7. Top row: normal (left) and anomalous (right) samples from the K-MNIST test
set. Bottom row: the reconstructed images.
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The proposed method currently outperforms or it is comparable to other
deep learning anomaly detection techniques as the ones discussed in Sect. 2,
however a direct comparison would be unfair since most of those methods use
semi-supervised or unsupervised techniques. Fully-supervised anomaly detection
is a very relevant topic with many practical applications in which anomalous
data are available, but of course semi-supervised or unsupervised approaches
are more challenging and can deal with those problems where anomalous data
are not available or not labeled. For this reason, as a future work we plan to
investigate the use of capsule networks in this direction.
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Abstract. In this work, we have proposed enhancements that improve
the performance of state-of-the-art facial emotion recognition (FER) sys-
tems. We believe that the changes in the positions of the fiducial points
and the intensities capture the crucial information regarding the emo-
tion of a face image. We propose the inputting of the gradient and the
Laplacian of the input image together with the original into a convolu-
tional neural network (CNN). These modifications help the network learn
additional information from the gradient and Laplacian of the images.
However, as shown by our results, the CNN in the existing state-of-the-
art models is not able to extract this information from the raw images.
In addition, we employ spatial transformer network to add robustness to
the system against rotation and scaling. We have performed a number of
experiments on two well known datasets, namely KDEF and FERplus.
Our approach enhances the already high performance of the state-of-the-
art FER systems by 3 to 5%.

In another contribution, we have proposed an efficient architec-
ture that performs better than the state-of-the-art system on FERplus
dataset, with the number of parameters reduced by a factor of about 24.
Here also, the fusion of gradient or Laplacian image with the original
image improves the recognition performance of the proposed model.

Keywords: Laplacian · Gradient · Convolutional neural network ·
Facial emotion recognition

1 Introduction

Machine recognition of human emotions is an important and challenging artificial
intelligence problem. Human emotions can be recognized from voice [1], body lan-
guage, facial expression and electroencephalography [2]. However, facial expres-
sion forms a simpler and more powerful way of recognizing emotions. Excluding
neutral, there are seven types of human emotions that are recognized univer-
sally: anger, disgust, fear, happiness, sadness, surprise and contempt. In certain
situations, humans are known to simultaneously express more than one emo-
tion. Developing systems for facial emotion recognition (FER) has application
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in areas such as clinical practice, human-computer interaction, behavioural sci-
ence, virtual reality, augmented reality, entertainment and advanced driver assis-
tant systems. Traditional techniques for FER mainly consist of four successive
steps: (i) pre-processing (ii) face and landmark detection (iii) feature extrac-
tion and (iv) emotion classification. These approaches heavily depend on the
algorithms used for face detection, landmark detection, the handcrafted features
and the classifiers used. Recent developments in deep learning reduce the burden
of handcrafting the features. Deep learning approaches perform well for all the
above-mentioned tasks by learning an end-to-end mapping from the input data
to the output classes. Out of all the learning based techniques, convolutional
neural network (CNN) based techniques are preferred.

There is a tendency in researchers to design deep neural networks (DNN’s)
as end to end systems, where every kind of processing is accomplished by the
network, including the feature extraction, by learning from the data. Some opine
that there is no need for any hard-coded feature extraction in any machine learn-
ing system. However, the deep neural networks have been designed to simulate
the biological neural network in the brain. It is well known that there are many
hard-coded feature extractors in the human brain, and even animal sensory
systems, in addition to the natural neural network, that also learns from data
(exposure and experience). One might argue that it is possible for the visual neu-
ral pathway or cortex to extract the gray image from the colour image obtained
by the cones in the retina. However, nature has chosen to have many more rods
than cones to directly obtain the gray images also in parallel. Further, the work
of Hubel and Wiezel [3] showed the existence of orientation selective cells in the
lateral geniculate nucleus and visual cortex of kitten. Also, different regions of
the basilar membrane in the cochlea respond to different frequencies [4] in both
man and animals and this processing is akin to sub-band decomposition of the
input audio signal. Thus, there are many examples of hard-coded feature extrac-
tion in the brain, which enhance the classification potential of the biological
neural network; our work reported here, is inspired from this aspect of nature’s
processing.

2 Related Work

Darwin and Phillip suggested that human and animal facial emotions are evo-
lutionary [5]. Motivated by Darwin’s work, Ekman et al. [6,7] found that the
seven expressions, namely happiness, anger, fear, surprise, disgust, sadness and
contempt remain the same across different cultures. Facial action coding system
(FACS) is proposed in [8] to investigate the facial expressions and the corre-
sponding emotions described by the activity of the atomic action units (cluster
of facial muscles). Facial expression can be analyzed by mapping facial action
units for each part of the face (eyes, nose, mouth corners) into codes.
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2.1 Traditional Approaches

Features are desired that possess maximal inter-class and minimal intra-class
variabilities for each of the expressions. Traditional systems for facial emotion
recognition depend mainly on what and how the features are extracted from
the facial expression. The features extracted can be categorized into (i) geo-
metric features, (ii) appearance based features or (iii) their combination. In the
work reported by Myunghoon et al. [9], facial features are extracted by active
shape model, whereas Ghimire and Lee [10] extract geometric features from
the sequences of facial expression images and multi-class Ada-boost and SVM
classifiers are used for classification. Global face region or regions containing dif-
ferent facial information are used to extract appearance-based features. Gabor
wavelets, Haar features, local binary pattern [11] or its variants such as [12] are
used to extract appearance-based features. Ghimire et al. [13] proposed a sin-
gle frame classification of emotion using geometric as well as appearance based
features and SVM classifier. In [14], features are extracted using pyramid his-
togram of orientation gradients. Here, the facial edge contours are constructed
using Canny edge detector. Histograms are calculated by dividing the edge maps
into different pyramid resolution levels. The histogram vectors are concatenated
to generate the final feature to be used for classification using SVM or AdaBoost
classifier.

2.2 Deep Learning Based Approaches

The above techniques in the literature depend heavily on handcrafted features.
However, deep learning algorithms have shown promising results in the recent
years. CNN based models have shown significant performance gain in various
computer vision and image processing tasks, such as image segmentation, de-
noising, super-resolution, object recognition, face recognition, scene understand-
ing and facial emotion recognition. Unlike the traditional techniques, deep learn-
ing based techniques learn (“end-to-end”) to extract features from the data. For
FER, the network generally uses four different kinds of layers, namely convolu-
tion, max-pool, dense layer and soft-max. Batch normalization with skip con-
nection is also used to ease the training process. The features extracted have
information about local spatial relation as well as global information. The max-
pool layer makes the model robust to small geometrical distortion. The dense
and soft-max layers help in assigning the class score.

Breuer and Kimmel [15] demonstrate the capability of the CNN network
trained on various FER datasets by visualizing the feature maps of the trained
model, and their corresponding FACS action unit. Motivated by Xception archi-
tecture proposed in [16], Arriaga et al. [17] proposed mini-Xception. Jung
et al. [18] proposed two different deep network models for recognising facial
expressions. The first network extracts temporal appearance features, whereas
the second extracts temporal geometric features and these networks are com-
bined and fine tuned in the best possible way to obtain better accuracy from
the model. Motivated by these two techniques, we have trained and obtained
multiple models, the details of which are explained in Sect. 5.
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For the task of FER, the current state of the art model [24] proposed a
miniature version of VGG net, called VGG13. The network has 8.75 million
parameters. The dataset used is the FERplus dataset [24], which has 8 classes,
adding neutral to the existing seven classes. The reported test accuracy is ≈84%.
In 2014, Levi et al. [19] obtained improved performance of emotion recognition
using CNN. They convert images to local binary patterns (LBP). These patterns
are mapped to a 3D metric space and used as input to the existing CNN architec-
tures, thus addressing the problem of appearance variation due to illumination.
They trained the existing VGG network [20], on CASIA Webface dataset [33],
and then used transfer learning to train the static facial expressions in the wild
(SFEW), to address the problem of the small size of SFEW dataset [34].

Ouellet [21] used a CNN based architecture for realtime detection of emo-
tions. The author uses transfer learning to train the Cohn-Kanade [22] dataset
on AlexNet. The author used the model to capture the emotions of gamers, while
they are playing games.

3 Datasets Used for the Study

We have used the KDEF [23] and FERplus [24,25] datasets for our experiments.
The FERplus dataset contains nearly 35000 images divided into 8 classes, includ-
ing contempt. The FERplus dataset improves upon the FER dataset by crowd-
sourcing the tagging operation. Ten taggers were asked to choose one emotion
per image, which resulted in a distribution of emotions for each image. The
training set contains around 28000 images. The remaining are divided equally
into validation and test sets. The original image size is 48 × 48 pixels. Figure 1
shows some sample face images from the FERplus dataset, with multiple emotion
labels for each image. KDEF dataset contains a total of 4900 images (divided
into the 7 classes of neutral, anger, disgust, fear, happiness, sadness, and sur-
prise), with equal number of male and female expressions. Figure 2(a), (b) and
(c) show, respectively, a sample input image from KDEF dataset, its deriva-
tive image obtained by the Sobel operator (gradient) and its second derivative
obtained by the Laplacian operator.

Fig. 1. Face image samples from FERplus dataset, with multiple emotion labels for
each image [24]
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Fig. 2. (a) A sample input image from the KDEF dataset [23]. (b) Its derivative image
obtained by the Sobel operator (Gradient). (c) Its second derivative obtained by the
Laplacian operator. Zoom to see the details in the Laplacian image.

4 The Proposed Models and Our Contributions

Rather than proposing a totally new architecture, which performs marginally
better than the state-of-the-art model, one approach could be to work on good
existing models and propose enhancements to significantly improve their perfor-
mance. Another approach could be to come out with a computationally efficient
model that performs as good as the state of the art models. We propose that
the performance of a classifier for facial emotion recognition can be improved by
making it robust to transformations such as scaling and rotation. The fiducial
points of a face change predictably, depending upon the specific emotion and
these changes are the important features for emotion recognition. Such changes
in the image landmark points and their intensities can be effectively captured by
the gradient and Laplacian of an image. Thus, in our first approach, we have sig-
nificantly improved the emotion recognition performance of two state-of-the-art
architectures by adding the following enhancements [35].

Spatial Transformer Layer (STL): CNN is a very powerful model, invariant
to some transformations like in-plane rotation and scaling. To obtain such invari-
ance, CNN requires a huge amount of training data. To achieve such invariance
in a computationally efficient manner, spatial transformer network [26] is used as
the input layer, called here as the spatial transformer layer. This allows spatial
manipulation of the data within the network. This differentiable module, when
combined with the CNN, infuses invariance to rotation, scaling, and translation,
with less training data than that needed by the normal CNN.

Sobel and Laplacian Operators: The gradient captures information such as
the direction of the maximum change and the Laplacian identifies regions of rapid
changes in the intensity. Thus, by adding the gradient and Laplacian images as
additional inputs, we can largely obviate the need for extracting the fiducial or
the landmark points. The gradient and Laplacian of an image f(x, y), denoted
by Δf(x, y) and Δ2f(x, y), can be approximated by applying Sobel [27] and
Laplacian [28] operators on an image. We have taken the input images from the
dataset and applied Sobel and Laplacian operators on them to obtain their first
and second derivatives, respectively. They detect the intensity discontinuities as
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contours. These images are fed as inputs, in series or parallel with the original
image, into the state of art models for FER.

Global Average Pooling and DepthSep Layers: The real time convolutional
neural network (RTNN) architecture selected by us [17] uses global average pool-
ing (GAP) [29]. The GAP layer has multiple advantages over the dense layer:
(i) it reduces over-fitting to a large extent; (ii) huge reduction in the number
of parameters compared to dense layer; (iii) the spatial average of feature maps
is fed directly to the soft-max layer. The latter enforces better correspondence
between the feature maps and the categories.

The RTNN model also employs depthwise separable convolution (DepSep)
layers [16]. The advantage of using depthwise separable convolution layer is that
it greatly reduces the number of parameters compared to the convolution layer.
At a particular layer, let the total number of filters be N, the depth of the feature
maps be D, and the size of the filter (spatial extent) used be Se. In such a case,
the total number of parameters in normal convolution is Se×Se×D×N . DepSep
is a two-step process: (i) filters of size Se × Se × 1 are applied to each feature;
therefore, the total number parameters at this step is Se × Se × D; (ii) then, N
filters of size 1×1×D are applied. So, the number of parameters required at this
step are D × N . Combining steps (i) and (ii), the total number of parameters in
DepSep layer are Se × Se × D + D × N . Hence, the reduction in the number of
parameters compared to normal convolution at each layer, where convolution is
replaced by DepSep convolution, is: Se×Se×D+D×N

Se×Se×D×N = (1/N) + (1/S2
e )

Our Contributions: In this work, our main contributions are:

– By adding the spatial transformer layer as the input processing block, we
have introduced robustness to scaling, rotation and translation.

– By adding the gradient and/or Laplacian image(s) as additional inputs to the
system, we have improved the recognition accuracies of three different FER
architectures by a good margin (see Tables 1, 2 and 4).

– We have trained multiple models to validate the performance gain obtained
due to the addition of gradient and Laplacian, on KDEF [23] and FER-
Plus [24] datasets.

– We have proposed an efficient architecture (refer Table 3) that performs better
than the state-of-the-art system on FERplus dataset (refer Table 4), while
reducing the number of parameters by a factor of 24.

– Our proposed architecture (reported in Table 3) has model size of around
9.7 MB compared to the original VGG-13 [24], which has the model size of
107.4 MB. Thus, our model can be run on a mobile phone more efficiently.

5 Experiments and Results

Three sets of different experiments have been carried out.

Experiment 1: In the first set of experiments, the Real-time neural network
(RTNN) model, with all the modifications proposed by us, has been tested on



274 R. K. Pandey et al.

Fig. 3. Inverted bottleneck module used in MobileNetV2 [31].

Table 1. FER results of RTNN and its various modifications proposed by us (parallel
networks) on the KDEF dataset (4900 images with 7 classes).

Architecture details Accuracy %

Orig. RTNN by Arriaga et al. [17] 83.16

STL + RTNN 84.08

RTNN + Lap. RTNN 84.39

STL with RTNN + Grad RTNN 85.10

STL with RTNN + Lap RTNN 85.51

STL with Orig., Grad and Lap. RTNN 88.16

the KDEF dataset. RTNN is the model proposed by Arriaga et al. [17], trained on
the KDEF dataset and validated. Table 1 reports the results of the experiments
conducted. STL + RTNN is the RTNN model trained with the addition of STL
at the input. RTNN + Lap. RTNN is the architecture, where the input image
and its Laplacian are fed in parallel. The outputs of these parallel networks are
combined and passed to a soft-max layer for classification. STL with RTNN +
Grad RTNN is the case when the input image and its gradient are first fed
to a STL, followed by the parallel subnetworks. The parallel networks extract
more useful features in the beginning layer, which are combined to obtain better
accuracy. STL with RTNN + Lap. RTNN is the architecture, where the model
is trained in parallel with the input image and its Laplacian. STL with Orig.,
Grad & Lap. RTNN is the case, where the model is trained in parallel with the
original, the gradient, and the Laplacian images. These input streams are first
fed independently to a STL, before being fed to the subnetworks in parallel.

Experiment 2: We have reimplemented the VGG13 network, used in [24],
in Tensorflow. We use the majority voting technique, as described in [24], for
labelling each image. The only modification we have made to the original model
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is the use of Adam optimizer [30] instead of momentum optimizer. Table 2 com-
pares the results of the original network with those after our enhancements. In
our setup, we get an average accuracy of 83.56% instead of 83.85% as reported in
the original paper. Next we propose two experimental setups. First, we modify
the input by taking the Laplacian of the original image and channel wise con-
catenating it with the original image. The resultant image is a 2 channel 64*64
input. In this setup, without modifying the learning rate, we get an average
accuracy improvement of close to 3% on an average, compared to our VGG13
implementation. In the second setup, we use Sobel operator instead of Laplacian,
and get gradients in x and y directions. The resultant gradients are again con-
catenated to the original image channelwise to get 3 channel input. This setup
again gives an improvement of close to 3%.

Table 2. FER accuracies on FERPlus dataset and the number of parameters (in
millions) of our models vs. VGG13 [24]. Each type of model has been trained 4 times
and its maximum, minimum and average accuracies are reported. Training set: 28000
images; validation and test sets: 3500 images each; number of classes: 8.

Models Avg Min Max Parameters

VGG13 (reported) 83.85 83.15 84.89 8.75

VGG13 (our implementation) 83.56 82.99 84.08 8.75

VGG13 + Laplacian (input concatenated) 86.22 85.94 86.56 8.75

VGG13 + Sobel (input concatenated) 86.42 86.08 86.55 8.75

Experiment 3: We propose our own architecture (details listed in Table 3,
having (1/24)-th the number of parameters compared to all the architectures
reported in Table 2), developed using inverted bottleneck module (refer Fig. 3)
reported in [31]. Even in this model, fusion of the Laplacian or the gradient image
to the input image (by concatenation) enhances the recognition performance by
2.3 and 2.5 %, respectively. The results with this proposed model and its feature-
fusion enhancements are listed in Table 4. The base+Sobel model performs better
than the original VGG13 model listed in Table 2 by 0.62%.

6 Conclusion

We have shown that feeding the gradient and/or Laplacian of the image, in
addition to the input image, improves the performance of any FER system.
We have performed many experiments on KDEF and FERplus datasets and
enhanced the recognition accuracies of state-of-the-art techniques [17,24]. We
believe that our proposed approach will largely impact the community working
on similar area. The advantages of our proposal are many folds: (i) improves
the recognition accuracy of any classifier (ii) the dataset size increases by two or
three times (depending on the Laplacian or/and gradient used together with the
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Table 3. Details of the architecture proposed by us, with inverted bottleneck 3 as the
core module. c, s and t denote the number of output channels from each layer, stride
and expansion factor used in the bottleneck module, respectively.

Layer Parameters Input (H ×W × C) c s t

conv2d 3 × 3 64 64 × 64 × 1 64 2 –

bottleneck 6720 64 × 64 × 32 32 1 1

bottleneck 12480 32 × 32 × 32 24 2 6

bottleneck 8208 16 × 16 × 24 24 1 6

bottleneck 9360 16 × 16 × 24 32 2 6

bottleneck 14016 8 × 8 × 32 32 1 6

bottleneck 14016 8 × 8 × 32 32 1 6

bottleneck 20160 8 × 8 × 32 64 1 6

bottleneck 52608 8 × 8 × 64 64 1 6

bottleneck 52608 8 × 8 × 64 64 1 6

bottleneck 52608 8 × 8 × 64 64 1 6

bottleneck 77184 8 × 8 × 64 128 1 6

conv2d 1 × 1 40960 8 × 8 × 128 320 1 –

avg pool 0 8 × 8 × 320 320 – –

conv2d 1 × 1 2048 1 × 1 × 320 8 1 –

Total 363616 – – – –

input), which is desirable in most deep learning tasks; (iii) the variability in the
input image space increases (iv) DepSep, inverted bottleneck module and GAP
layers help in reducing the computational complexity of the model. The proposed
enhancements result in absolute performance improvements, as listed in Tables 1,
2 and 4, over those of the original models. Researchers working on similar areas
can use our proposed features to add performance gain to any existing DNN
based classifier, thus obviating the need for designing a new classifier to achieve
similar performance gain. We have also proposed an efficient architecture that
performs better than the state of the art algorithm proposed in [24] with (1/24)-
th the number of parameters. Thus, if there is any need for designing any new

Table 4. FER performance of our models, with less complexity than VGG13, on
FERPlus [24] dataset. Models are trained 4 times with the same hyper-parameter
settings and their average, maximum and minimum accuracies are reported.

Models Avg Min Max Parameters

Base model (given in Table 3) 81.95 81.79 82.15 0.36 million

Base + Laplacian (input concatenated) 84.26 83.84 84.87 0.36 million

Base + Sobel (input concatenated) 84.47 84.21 84.69 0.36 million
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classifier, it can be made computationally efficient to a good extent with our
proposed approaches.

One might argue that the gradient and Laplacian of the input image can very
well be computed by the CNN. However, there are strong evidences for the need
for appropriate representations in accomplishing certain vision and motor control
tasks [32]. It is also clear from the results that at least the networks proposed
by Arriaga et al. [17] and VGG13 [24] are not able to compute these derived
images internally. On the other hand, pre-computing these features and feeding
them to the same network in parallel or in series, is clearly able to improve the
performance of the network. Thus, our experiments show that there is a clear
case for optimally combining appropriate feature extractors with learning neural
networks, to obtain better performance for specific pattern recognition tasks.
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Fig. 1. Example images generated using MetalGAN for 100-epochs, and 100-meta-
iterations. From left to right: gray scale image, ground truth, output of the network.
The example images belong to two different clusters.
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1 Introduction

The automatic image colorization task is an image processing problem that is
fundamental and extensively studied in the field of computer vision. The task
consists in creating an algorithm that takes as input a gray-scale image and
outputs a colorized version of the same image. The challenging part is to colorize
it in a plausible and well-looking way. Many systems were developed over the
years, exploiting a wide variety of image processing techniques, but recently, the
image colorization problem, as many other problems in computer vision, was
approached with deep-learning methods. Colorization is a generative problem
from a machine learning perspective. Generative techniques, such as Generative
Adversarial Networks (GANs) [7], are then suitable to approach such a task. In
particular, conditional GANs (cGANs) models seem especially appropriate to
this purpose, since their structure allows the network to learn a mapping from
an image x and (only if needed) a random noise vector z to an output generated
image y. On the contrary, standard GANs only learn the mapping from the noise
z to y.

As many deep-learning techniques, the training of a GAN or a cGAN needs
a large amount of images. Large datasets usually grant a great diversity among
images, allowing the network to better generalize its results. Nevertheless, hav-
ing a huge number of images is often not feasible in real-world applications, or
simply it requires too much storage space for an average system, and high train-
ing computational times. Hence, porting the current deep-learning colorization
technologies to a more accessible level and achieving a better understanding of
the colorization training process are eased by using a smaller dataset.

For these reasons, one of the aims of this work is to achieve good performances
in the colorization task using a little number of images compared to standard
datasets. In few-shot learning, a branch of the deep-learning field, the goal is to
learn from a small number of inputs, or from one single input in the ideal case
(one-shot learning): the network is subject to a low quantity of examples, and it
has to be capable to infer something when posed face-to-face to a new example.
This problem underpins a high generalization capability of the network, which is
a very difficult task and an open challenging problem in deep networks research.

Recently, some novel interesting ideas highlight a possible path to reach a
better generalization ability of the network. These ideas are based on the concept
of learning to learn, i.e., adding a meta-layer of learning information above the
usual learning process of the network. The generalization is achieved by intro-
ducing the concept of tasks distribution instead of a single task, and the concept
of episodes instead of instances. A tasks’ distribution is the family of those differ-
ent tasks on which the model has to be adapted to. Each task in the distribution
has its own training and test sets, and its own loss function. A meta-training
set is composed of training and test images samples, called episodes, belonging
to different tasks. During training, these episodes are used to update the initial
parameters (weights and bias) of the network, in the direction of the sampled
task. Results of meta-learning methods investigated in literature are encouraging
and obtain good performances on some few-shot datasets. For this reason and
since the goal of this work is to colorize images with a few number of examples,
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a meta-learning algorithm to tune the network parameters on many different
tasks was employed. The chosen algorithm is Reptile [15], and it was combined
with an adversarial colorization network composed by a Generator G and a Dis-
criminator D. In other words, the proposed method approaches the colorization
problem as a meta-learning one. Intuitively, Reptile works by randomly select-
ing tasks, then it trains a fast network on each task, and finally it updates the
weights of a slow network.

In this proposal, tasks are defined as clusters of the initial dataset. In fact,
a typical initial dataset is an unlabeled dataset that contains a wide variety of
images, usually photographs. In this setting, for example, a task could be to
color all seaside landscape, and another could be to color all cats photos. Those
tasks refer to the same problem and use the same dataset, but they are very
different at a practical level. A very large amount of images could overwhelm
the problem, showing as much seasides and cats as the network needs in order
to differentiate between them. The troubles start when only a small dataset
is available. As a matter of fact, such a dataset could not have the suitable
number of images for making the network learning how to perform both the two
example colorizations decently. The idea is to treat different classes of images
as different tasks. For dividing tasks, features were extracted from the dataset
using a standard approach—e.g., a Convolutional Neural Network (CNN)—and
the images were clusterized through K-means. Each cluster is thus considered as
a single task. During training, Reptile tunes the network G on the specific task
corresponding to an input query image and therefore it adapts the network to a
specific colorization class.

The problems and main questions that emerge in approaching a few-shot
colorization are various. First of all, how the clusterization should be made in
order to generate a coherent and meaningful distribution of tasks? Does a task
specialization really improve the colorization or the act of automatically coloring
a photo is independent from the subject of the photo itself? Second, how the
meta-learning algorithm should be combined with cGAN training, also to prevent
overfitting the generator on few images? And last, since the purpose of the work
is not to propose a solution to the colorization problem in general, but to propose
a method that substantially reduce the amount of images involved in training
without—or with minor—losses in state-of-the-art results, how to evaluate the
actual performance of the network compared to other approaches? In particular,
what are the factors that should be taken in account to state an enhancement,
not in the proper colorization, but in few-shot colorization? In the light of these
considerations, the contributions of this work are summarized as follows:

– A new architecture that combines meta-learning techniques and cGAN called
MetalGAN is proposed, specifying in detail how the generator and the dis-
criminator parameters are updated;

– A clusterization and a novel algorithm are described and their ability to tackle
image-to-image translation problems is highlighted;

– An empirical demonstration that a very good colorization can be achieved
even with a small dataset at disposal during training is provided by showing
visual results;
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– A precise comparison between two modalities (i.e. our algorithm and only
cGAN training) is performed at experimental time, using the same network
model and hyper-parameters.

2 Related Work

Image Retrieval: Since we need the clusterization to be as accurate as pos-
sible we reserved a particular attention to the recent image retrieval techniques
that focus on obtaining optimal descriptors. Recently, deep learning allowed to
greatly improve the feature extraction phase of image retrieval. Some of the
most interesting papers on the subject are [2,6,19,20,33] and, in particular,
MAC descriptors [27], that we ended up using.

Conditional GANs: When a GAN generator is not only conditioned with a
random noise vector, but also with more complex information like text [21], labels
[13], and especially images, the model to use is a conditional GANs (cGANs).
cGANs allow a better control over the output of the network and thus are very
suitable in a lot of image generation tasks. In particular, cGANs conditioned on
images were used both in a paired [9] and unpaired [35] way, to produce complex
texture [32], to colorize sketches [25] or images [3] and more recently to produce
outstanding image synthesis results [16,30]. In this work, the output must be
conditioned by the input gray-scale image, in order to train the network at only
generating the colors of the image but not shapes, or the image itself.

Meta-Learning: The most relevant meta-learning studies for this work are the
Model-Agnostic Meta-Learning (MAML) [5] algorithm and Reptile [15] ones.
In particular, we incorporate the Reptile algorithm inside the training phase,
allowing the parameters of the generator to be updated in the same fashion as
Reptile works. A similar work using MAML is MetaGAN [34], where a generator
is used to enhance classification models in order to discriminate between real and
fake data, providing generated samples for a task. The main purpose of Meta-
GAN is not to improve a generative network, but to perform a better few-shot
classification, using generated images to sharpen the decision boundary of the
problem. On the contrary, in our approach, the generator is fed with task-related
images, and the meta-learner is used to enhance the generator itself, instead of a
few-shot classifier. Both MAML and Reptile are based on hyper-parameterized
gradient descent, and they learn how to initialize network parameters. Other
types of meta-learners work differently. For example, there are many algorithms
that learn how to parameterize the optimizer of the network [8,18], or in other
cases the optimizer itself is a network [1,12,31]. Moreover, one of the most gen-
eral approach is to use a recurrent neural network trained on the episodes of a
set of tasks [4,14,26,29]. The most interesting result of these meta-learners is
the achievement of high performance on small datasets [10,22,28], or datasets
used for few-shot learning (e.g., Omniglot) [11].
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Fig. 2. Some of the results of the clusterization. It is evident how all the images have
lots of features in common.

3 Algorithm

This section goes in detail within the algorithm we propose. Therefore, each sub-
section focuses on a different aspect of the method. Then, the complete archi-
tecture is explained.

3.1 Clusterization of the Dataset

In order to exploit Reptile for image colorization we need to treat our image
dataset as it would be composed by a series of separate tasks. For this reason
we extract features from each image in the dataset using activation 43 layer of
Resnet50. Then, we calculate MAC descriptors by applying max pooling and
L2 normalization on the features. Having these MAC descriptors set F , we first
apply Principal Component Analysis (PCA) to reduce features dimension from
2048 to 512 and then apply K-means. K-means produces k clusters, and therefore
it divides the dataset in k tasks.

Hence, we expect to find, in each of these clusters, images which are similar
to each other, accordingly to their features. For example, a cluster could contain
images with grass, another one images with pets and so on and so forth. A visual
proof of this assumption is showed in Fig. 2.

3.2 cGAN

As generator architecture, we choose the U-net [23] which is one of the most
common for this type of task and we built the discriminator following the classic
DCGAN architecture [17], i.e., having each modules composed by Convolutions,
Batch Normalization and ReLU layers. Lab is the color space used in this work,
because is the one that best approximate human vision and therefore the gen-
erator takes as input a grayscale image xi (the L channel) and outputs the ab
channels. Then, we concatenate input and outputs and obtain the final results.

We use L1 loss to model the low-frequencies of our output images and adver-
sarial loss to model the high-frequencies in a similar way of the pix2pix archi-
tecture proposed by Isola et al. [9].
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Therefore, our objective function became:

L = wadvLadv + wL1LL1 (1)

where wadv and wL1 are weights assigned to the different losses, because we
want L1 loss to be more effective than adversarial loss during training.

3.3 Meta-learning

As previously briefly mentioned, we approached the generator training with a
Reptile meta-learner. This means that, once a task had been chosen, for a fixed
number of meta-iterations, the task is sampled and the gradient of the generator
loss function (1) is evaluated to perform a SGD step of optimization. Fixed the
initial generator parameters as θG, the inner-loop training defines a sequence(
θ̃
(j)
G

)Nmeta−iter

j=0
, where θ̃

(0)
G = θG. Hence it updates the θ̃

(j)
G parameters in the

direction of the task. Once the inner-loop is completed, the parameter are re-
aligned with the Reptile rule:

θG ← θG + λML

(
θ̃
(Nmeta−iter)
G − θG

)
(2)

where λML is the stepsize hyperparameter of Reptile.

3.4 Complete Architecture of the System

The MetalGAN training process is detailed in Algorithm 1. The algorithm is
parameterized by the number of epochs Nepochs, the number of meta-iterations

Algorithm 1. MetalGAN algorithm
1: for epoch in 0 . . . Nepochs do
2: for qi in Q do
3: K(qi) ← retrieve clusters(qi)
4: τ(qi) ← get task from cluster(K(qi))
5: for j in 0 . . . Nmeta−iter do
6: sample 〈input, target〉 from task τ(qi)
7: εGAN ← ∇θDLadv(D(G(input)), label real)
8: εL1 ← ∇θGLL1(D(G(input)), target)
9: εG ← wadvεGAN + wL1εL1 � calculates loss gradient

10: θ̃
(j)
G ← θ̃

(j−1)
G − λGεG � updates inner-loop generator parameters

11: end for
12: θG ← θG + λML

(
θ̃
(Nmeta−iter)

G − θG

)
� updates generator parameters

13: for all 〈input, target〉 in τ(qi) do
14: εDreal ← ∇θDLadv(D(target), label real)
15: εDfake ← ∇θDLL1(D(G(input)), label fake)
16: εD ← εDreal + εDfake � calculates discriminator loss gradients
17: θD ← θD − λDεD � update discriminator parameters
18: end for
19: end for
20: end for
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Nmeta−iter, the generator and discriminator learning rates λG and λD, the Reptile
stepsize parameter λML, and the loss weights wadv and wL1. During training,
we randomly select a query set Q = {q0, . . . , qz}. Each query qi corresponds to a
single cluster K(qi). It is worth noting that two queries could point to the same
cluster. Having this set, we are able to pick z different images at each epoch by
sampling the task τ(qi) and to update the generator G as showed in Fig. 3.

G D
Real/Fake

Reptile

Fig. 3. The MetalGAN architecture: the query qi points to a cluster K(qi) that is used
as a task to train the generator G with reptile.

The generator is updated by evaluating gradients of its loss functions (adver-
sarial loss Ladv and L1 loss LL1), and by adding them to obtain the error εG.
Then, the network parameters obtained in the inner-loop θ̃

Nmeta−iter
G are used to

update the outer-loop generator parameters θG. In the last step, all images of
the task τ(qi) are used to train the discriminator, calculating the gradients of the
discriminator adversarial and L1 losses, and adding them to obtain the discrim-
inator error εD. The discriminator parameters θD are updated consequently.

4 Experimental Results

For our experiments we choose a slightly modified version of Mini-Imagenet
[18]. Since our goal is not classification, we create our training and test set
using only images from the 64 classes contained in the training section of Mini-
Imagenet. The total number of images in the dataset is 38392. We define two
sets of experiments: the first one consists in training the cGAN without the use
of Reptile and the second one introduces Reptile and the features clusterization.
For both of them we set wadv = 1 and wL1 = 102. Learning rates of both the
generator and the discriminator were set to λG = λD = 10−4. For K-means
clusterization, the parameter k was set to 64 in order to have clusters as much
disjoint as possible. For Reptile, we use 100 meta-iter, and a stepsize λML =
10−3. The 10% of the dataset images are used as query images. The number of
epochs was set to 200. All tests have been executed on a GPU Nvidia 1080 Ti.



Cluster-Based Adaptive Training for Few-Shot Adversarial Colorization 287

Fig. 4. Results obtained using the cGAN only. Each group of three images is composed
of the input of the network (grayscale image), the ground truth, and the output of the
network.

4.1 cGAN Results

In Fig. 4 are reported some results produced after the training of the cGAN
without the clusterization and without Reptile, i.e., with a standard adversarial
algorithm. The training data at disposal are very scarce (∼38 k images compared
to 1.3 M of the whole Imagenet dataset) and, for this reason, the network is
not able to produce compelling results. In particular, the network often fails
to understand the difference between foreground and background objects and
therefore it applies the colors without following edges and borders. In general, for
the cGAN is very difficult to propagate the color correctly and is more common
the tendency to apply uneven patches of color. Finally, due to the scarcity of
data, the network cannot generalize in an acceptable way and hence the colors
in the outputs are not sharp, but, on the contrary, the produced results are very
blurry and often colors are applied almost randomly.

4.2 MetalGAN Results

Results of MetalGAN are showed in Fig. 5. It is immediately evident how Rep-
tile improves the results of the cGAN. In particular, colors are sharper and more
bright. The reason is that Reptile tunes the generator on each cluster and there-
fore allows the network to focus more on the more predominant colors present
in each task and, as a consequence, even with few examples the produced results
are compelling and plausible. For example, in a task with lots of images contain-
ing grass or plants there will be an abundance of different shades of green and
thus the network will learn very quickly to reproduce similar colors over the test
set. On the contrary, an image that is very different from the majority of images
in the rest of its task could be colorized poorly. This problem, however, is not
very frequent since the difference has to be very large in order to produce nasty
results.

Other examples can be found at implab.ce.unipr.it/?page id=1011.

http://implab.ce.unipr.it/?page_id=1011
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4.3 Quantitative Evaluation

In order to evaluate the quality of the generated samples, we used the Incep-
tion Score [24], because it is a very good metric to simulate human judgement.
We calculated the Inception Score of generated images using both cGAN and
MetalGAN (see Table 1). The score also measures the diversity of the generated
images, so a high score is better than a lower one. The MetalGAN approach
significantly improves standard cGAN score.

Fig. 5. Results of MetalGAN. Each of three images consists of the grayscale input given
to the network, the ground truth, and the output of the network. The four represented
images belong to different clusters.

Table 1. The Inception Scores are computed on generated images from the Mini-
ImageNet dataset, mean and standard deviation are reported for both cGAN and
MetalGAN results.

Dataset Mean Std

cGAN 3.20 0.83
MetalGAN 9.16 1.12

5 Conclusions

In normal adversarial generative settings, having few images at disposal during
training produces a complete failure in the colorization. In this paper, we pro-
posed a novel architecture which mix adversarial training with meta-learning
techniques, called MetalGAN. As shown by experimental results, even with few
images the network trained with MetalGAN was able to produce a well-looking
colorization. The clusterization of the dataset and the use of clusters as tasks
help at directing the colorization to the most probable suitable colors for the
image, and meta-learning allows to train the network on few examples. As future
developments, we plan to include the discriminator in the meta-learning train-
ing phase, and to test the method on other small datasets in order to prove the
generalization capability of the proposed MetalGAN architecture.



Cluster-Based Adaptive Training for Few-Shot Adversarial Colorization 289

References

1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent.
In: Advances in Neural Information Processing Systems, pp. 3981–3989 (2016)

2. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image
retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10590-1 38

3. Cao, Y., Zhou, Z., Zhang, W., Yu, Y.: Unsupervised diverse colorization via gen-
erative adversarial networks. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C.,
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Abstract. When applying powerful deep learning approaches on real
world tasks like pixel level annotation of urban scenes it becomes clear
that even those strong learners may fail dramatically and are still not
ready for deployment in the wild. For semantic segmentation, one of the
main practical challenges consists in finding large annotated collection
to feed the data hungry networks. Synthetic images in combination with
adaptive learning models have shown to help with this issue, but in gen-
eral, different synthetic sources are analyzed separately, not leveraging
on the potential growth in data amount and sample variability that could
result from their combination. With our work we investigate for the first
time the multi-source adaptive semantic segmentation setting, proposing
some best practice rule for the data and model integration. Moreover we
show how to extend an existing semantic segmentation approach to deal
with multiple sources obtaining promising results.

Keywords: Semantic segmentation · Domain adaptation

1 Introduction

Semantic segmentation has recently become one of the most prominent task in
computer vision. Indeed the ability to assign a label to each pixel of an input
image is crucial whenever a very detailed description of the observed scene is
needed, as in fine-grained object categorization [25] and autonomous driving
[21,24]. However, due to the complexity of manual labeling each image pixel, this
task is plagued by the scarcity of large annotated datasets, which are instead
essential to leverage the power of deep learning algorithms. Synthetic images
appear a useful alternative, but they reduce only in part the described issue. In
the case of urban scene scenarios for autonomous driving, computer games can
be used to generate automatically images with their ground truth labels, but
their level of realism is still low which induces the further need of domain adap-
tation methods. Thus, while solving the lack of data problem, other challenges
come from the development of methods able to reduce the domain gap. Up today,
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those two aspects of the same problem has always been tackled separately. On
one side several research groups have focused on developing different simulators
with an increasing set of visual details like urban layouts, buildings, vehicles
and several weather conditions, with the aim of augmenting the realism of the
produced images [4,18]. On the other side, many recent works focus on inte-
grating techniques to align the domains either at feature, pixel or output label
space level, even considering combination of those levels with different adver-
sarial losses [2,7,21]. Each of the proposed synthetic domains is generally used
to train a model and test it on real images, but the different synthetic sources
are always kept separated even if this choice limits again the amount and vari-
ance of annotated samples usable as source. The domain adaptation literature
for object classification has shown that integrating multiple sources helps gen-
eralization [5,6,26]. With our work we import this strategy for the first time in
the semantic segmentation framework, studying how the positive trend can be
maintained by practically merging the two solutions described above. The path
to this goal is not trivial due to the practical differences in class statistics across
domains, as well as in texture, resolution and aspect ratio for which we propose
best practice rules. Moreover, we go over the simple source sample combination,
exploiting a multi-level strategy that adapts each single source to the target
while cooperating with the adaptation of the joint data source. Besides the stan-
dard synthetic to real direction, we extend our analysis to the case of a synthetic
dataset used as target when the source combines real images and a different syn-
thetic collection. This setting allows to better understand the difference across
various synthetic sources and paves the way to the simultaneous exploitation of
both the synthetic-to-real and real-to-synthetic adaptive directions [19].

2 Related Works

The deep learning revolution started within the context of object classification
[9] but has rapidly extended to many other tasks. The first work to put semantic
segmentation under the deep learning spotlight was [14] that showed how fully
connected networks could be used to assign a label to each image pixel. Several
following works have then extended the interest around this task proposing tai-
lored architectures which involve multi-scale feature combinations [1,23] or inte-
grate context information [13,27]. The main issue with deep semantic segmenta-
tion remains that of collecting a large amount of images with pixel-based expensive
annotations. Some solutions in this sense have been proposed either developing
methods able to deal with weak annotations [8,15], or leveraging on other domain
images, as the synthetic ones produced by 3D renderings of urban scenes [4,17,18].
To avoid the drop in performance due to the synthetic to real shift, domain adap-
tation techniques have been integrated with approaches involving different net-
work levels. The most widely used solution consists in adding a domain classifier
used adversarially to minimize the gap among different feature spaces [2]. In [21],
adversarial learning is used both on the segmentation output and on inner net-
work features. A third family of methods applies adaptation directly at the pixel
level with GAN-based style transfer techniques [7].
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Fig. 1. Training Phase: our network has two Adaptive Classification Modules at dif-
ferent levels. In each module the source segmentation is predicted either with two
separate source-specific branches or just using one overall S-All branch (we did not
explicitly draw the S-All branch to avoid cluttering the image). The segmentation loss
is computed based on the sources ground truth. Moreover a domain discriminator is
used adversarially to reduce the domain shift comparing the target T either with each
source-specific output, or with the output obtained by S-All.
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Fig. 2. Test Phase: each classifier produces a semantic segmentation output (S1 : blue,
S2 : red, S-All : yellow). For every pixel we apply a max-pooling operator over the three
outputs. Finally the class assigned to the pixel is the one with the highest score over
the C classes (C = 19 when testing on Cityscapes). (Color figure online)

Other alternative strategies have focused on the introduction of critic net-
works to identify samples close to the classification boundary and exploit them
to improve feature generalization [20], or defined a curriculum adaptation to
focus first on easy and then on hard samples during the learning process [24], or
even introduced tailored loss functions [28].

Our work is orthogonal to all those research efforts. Indeed up to our knowl-
edge, none of the mentioned previous works have investigated the challenging
case of multi-source adaptive semantic segmentation. We build over the multi-
level approach presented in [21] and extend it to tackle two different sources and
one target domain. Moreover, we investigate the effect of integrating a further
pixel-level adaptive approach originally presented for unsupervised image style
transfer [11] to further reduce the domain shift.

3 Method

An overall view of the proposed architecture can be seen in Fig. 1. Our domain
adaptation method starts with a segmentation network G which takes the
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sources annotated images (Is, Y s) and the unlabeled target images (It) as input.
The network ends with an Adaptive Classification Module that contain sepa-
rate classification branches for each source as well as a domain discriminator
D. Each source classification branch produces a segmentation softmax output
P s = G(Is) ∈ R

H,W,C , where (H,W ) are the height and width image dimen-
sions and C is the number of categories. The used semantic segmentation loss
is

Ls
seg(I

s) = −
∑

h,w

∑

c=1,ldots,C

Y s
h,w,c log(P s

h,w,c), (1)

where s = 1, 2 for the two sources.
The domain discriminator D takes as input the segmentation output of both

the source and target data and is optimized through the binary loss

Ld(P ) = −
∑

h,w

(1 − z) log(D(P )h,w,0) + (z) log(D(P )h,w,1), (2)

with z = 0 if the sample is drawn from the target domain, and z = 1 for the
sample from the source domains. Finally the adversarial loss whose gradients
backpropagates on the segmentation network to maximize the confusion between
P s and P t is

Ladv(It) = −
∑

h,w

log(D(P t)h,w,1). (3)

To further improve the adaptation effect involving inner-features, another adap-
tive classification module is also applied to a lower network level. Thus the overall
loss is

L(Is, It) =
∑

k=feature,output

{
∑

s=1,2

λs
segLs

seg(I
s) + λs

advLs
adv(I

t)

}

k

(4)

and the network is optimized on the basis of the following criterion

max
D

min
G

L(Is, It). (5)

We also repeated the whole training considering a single source branch that
sees all the images together regardless of the domain identity: we indicate it as
S-All, with its own LS−All

seg loss. From the predictions of each available source
and from S-All, we finally need a single segmentation target output. For this
purpose we apply a max-pooling operator that runs on the prediction logits Ŷ
and selects the highest score per class, then followed by a second max-pooling
over the classes:

Assigned Label(h,w) = max
c=1...,C

max
s={1,2,S−All}

(Ŷ s
h,w,c). (6)

As illustrated in Fig. 2. Note that by keeping only S-All we fall back to the
single source original method in [21].
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3.1 Adding Pixel-Level Adaptation

As explained above the proposed adaptation process is applied both at the out-
put and at the feature level. Inspired by the extensive GAN-based literature
on style-transfer, we integrated in our method also a pixel-level adaptation pro-
cess, directly modifying the input images. Specifically we used the Unsupervised
Image-to-Image Translation (UNIT, [11]) method. It assumes that a pair of cor-
responding images in two different domains can be mapped to the same latent
code in a shared space. By using a Coupled GANs [12] and imposing weight shar-
ing constraints on the mapping functions, the method is able to change the style
of an image so that it looks like coming from a different domain. We applied
UNIT to produce target-like copies of the source images. After this (totally
unsupervised) pre-processing step, the proposed architecture is used on the new
stylized sources.

4 Experiments

4.1 Datasets and Setup

We used three publicly available datasets in our experiments as detailed in the
following.

Cityscapes [3] is a real-world, vehicle-egocentric image dataset collected in
50 cities in Germany and nearby countries. It provides a training set made of
2,993 images as well as 503 images for validation purpose, having 2048 × 1024
resolution. All the training, validation, and test images are accurately anno-
tated with per pixel category labels by human experts. We followed the VisDA
Semantic Segmentation challenge protocol, focusing on 19 labeled classes.

GTA5 [17] is composed by 24,966 images with resolution 1914 × 1052, syn-
thesized from the homonym video game and set in Los Angeles. Ground truth
and annotations are compatible with the Cityscapes dataset [3] that contains
19 categories. Depending on the role of the dataset in the experiments we used
either all the available images (as source) or a 500 sample subset (as target).

Synthia [18] is made of 9400 images at 1280 × 760 resolution compatible
with the Cityscapes dataset, but covering only 16 object categories. Even if the
virtual city used to generate the synthetic images does not correspond to any
of the real cities covered by Cityscapes, Synthia shows almost photo-realistic
frames with different light conditions and weather, multiple season, and a great
variety of dynamic objects. With the same approach of GTA5, we used the full
dataset for training and the first 500 images while testing.

We ran each experiment by choosing two datasets as sources domains, and the
third as target (unsupervised) domain. In previous works, the standard setting
consists in evaluating the recognition performance only of the shared classes
across domains, thus operating a subselection on Cityscapes when used against
Synthia. We find it natural that different data collections may have only partially
overlapping class sets and it should not be necessary to proceed every time to
an ad-hoc class choice [22]. Thus, we decided to keep all the datasets with their
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own original categories. Furthermore we investigate the effect of the resolution
on the final segmentation accuracy considering a high and a low resolution case.
In the first, all the images keep their own original size, while in the second they
are all downscaled by halving the native image dimensions. Finally we remark
that the three analyzed domains present remarkable differences on mean values.
Since the adversarial approaches are very sensitive to non-zero mean data, we
have chosen to work by removing from each dataset its own calculated image
mean.

4.2 Implementation Details

The main backbone of our segmentation network is the DeepLabv2 [1], which
uses a ResNet-101 pretrained on ImageNet and COCO [10]. This architecture
incorporates atrous convolution, which effectively enlarge the field of view of
filters without increasing the number of parameters. Within the Adaptive Clas-
sification Module we have two separate network branches, one for each source,
producing a 2D predictions followed by an interpolation function that rises the
resolution to that of the original ground truth label (during training). At test
time the same interpolation function was used to calculate accuracy using the
target ground truth as reference. Following [21,29], the module contains also
a discriminator that classify the images on the basis of their source or target
domain label. The discriminators model is the same of DCGAN [16], with con-
volutional layers interspersed by Leaky Relu non-linearities. Note that although
there are two adaptive classification modules in the network, the classification
output produced by the inner module has shown to be less reliable than the
ending one which is actually the only used at test time.

The network is trained with the Adam solver and learning rate 0.0001, while
for the architecture hyperparameters we kept the same values of [21]. The number
of iterations was set to 50k, but we observed convergence already after 20k
iterations.

Table 1. Performance values on the chosen experiments expressed with mIoU. The
proposed method outperform the no adaptation results as well as single branches and
S-All method on all the experiments but the one with GTA5 as target at high resolu-
tion, where it lags behind S-All result due to the poor performance of S2 branch.

Res Sources Target No adapt S1 S2 S-All Max merge

Orig. GTA5, Synthia Cityscapes 39.98 39.55 34.51 41.81 42.76

Cityscapes, GTA5 Synthia 35.55 35.25 34.07 36.37 37.52

Cityscapes, Synthia GTA5 37.97 41.17 23.60 40.57 39.49

Redu. GTA5, Synthia Cityscapes – 39.44 33.36 40.89 41.32

Cityscapes, GTA5 Synthia – 30.52 30.02 32.87 33.11

Cityscapes, Synthia GTA5 – 44.93 23.28 41.87 42.78
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Fig. 3. Predicted labels in the case of Cityscapes and Synthia target datasets. The
proposed method is able to better recognize some parts of the images like road pieces
(dark violet) w.r.t. single branches or S-All approach. (Color figure online)
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Table 2. Intersection over Union for each experiment category. The experiments are
performed on full resolution. Some particular categories (road, terrain, cars) seems
to better exploit the power of the proposed method w.r.t the S-All one, and they
contribute to the final accuracy increase due to their frequent presence on the scene.
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T: Cityscapes, S-All 85.0 36.3 79.9 21.5 18.0 29.5 25.5 19.3 81.4 23.5 78.0 57.6 23.9 75.4 35.0 40.7 2.6 31.7 29.9
T: Cityscapes, Max Merge 87.8 37.1 80.2 20.3 14.9 29.8 26.0 20.5 82.0 31.4 78.0 57.6 25.3 80.5 31.6 43.5 0.0 29.8 36.1

T: GTA5, Max Merge 82.4 29.4 56.5 41.6 6.7 31.1 26.4 19.3 64.4 7.4 88.1 42.8 50.3 74.2 36.8 31.4 0.0 32.5 29.3
T: Synthia, Max Merge 68.3 66.8 86.6 1.7 1.7 39.5 27.2 10.9 73.7 0.0 90.6 55.5 33.7 55.7 0.0 48.5 0.0 23.0 29.3

4.3 Results

The main experiment results are reported in Table 1. The values reported are
the mean Intersection Over Union (mIoU) which is the standard accuracy mea-
surement used on semantic segmentation tasks.

The proposed method is able to improve the S-All results on almost all the
performed experiments, even while the single source branch prove to reach lower
accuracy w.r.t. the S-All result, getting a boost ranging from 0.4% to 1.2%,
while w.r.t. the results without any adaptation at all (No Adapt column) the
difference of performance are from 1.5% to 2.7%. Looking more into detail, the
most difficult setting is the one with GTA5 as target domain, as the Synthia
source domain fails to properly reach an acceptable accuracy, and this worsen
the final performance in the full resolution case. The input data resolution has
an impact on final accuracy ranging from 1.44% in the case of Cityscapes as
target, to 4.41% in the case of Synthia target, showing that in order to obtain
the best possible accuracy is preferable to keep resolution as high as possible,
while at the same time demonstrates that in some cases a lower resolution can
dramatically speed up the training phase (around 3x faster in our case) while
losing a small amount of accuracy (target Cityscapes experiment).

Looking at per-class IoU measurements in Table 2, we noticed how the overall
increase of performance can be attributed to some specific classes IoU improve-
ment; terrain, road, vegetation and car seem to be the classes which better take
advantage of the proposed method. This effect can be noticed also in the pro-
duced images in Fig. 3, where some parts of the road are better reproduced in
our method w.r.t S-All output.

A final additional experiment have been performed by applying UNIT
method to the GTA5 and Synthia datasets in order to convert their style to the
Cityscapes one, after which the proposed architecture have been trained regu-
larly with two stylized GTA5 and Synthia datasets as sources and Cityscapes as
target. The measured accuracy obtained by merging the two branches S1 and
S2 is 44.5%, which is very promising result, taking also into account that it can
be further improved by exploiting S-All branch too. The UNIT architecture and
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our method have been trained separately because of the huge amount of GPU
memory required in order to train them jointly.

5 Conclusions

We have presented a study on multi-sources domain adaptation on semantic seg-
mentation tasks. The study revealed how simply putting all the sources together
is a sub-optimal approach, and we proposed a simple method to leverage on
individual sources as well as S-All method. The experiment performed show
promising results, with a small but steady improvement on the majority of set-
tings. Further investigation is required in order to better understand the effect
of some parameters like the chosen data resolution and the datasets means, and
the possibility of applying a style transfer method like UNIT jointly with the
domain adaptation method into a fully integrated architecture.
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Abstract. In this paper, we present a real-time pedestrian detection
system that has been trained using a virtual environment. This is a
very popular topic of research having endless practical applications and
recently, there was an increasing interest in deep learning architectures
for performing such a task. However, the availability of large labeled
datasets is a key point for an effective train of such algorithms. For this
reason, in this work, we introduced ViPeD, a new synthetically gen-
erated set of images extracted from a realistic 3D video game where
the labels can be automatically generated exploiting 2D pedestrian posi-
tions extracted from the graphics engine. We exploited this new synthetic
dataset fine-tuning a state-of-the-art computationally efficient Convolu-
tional Neural Network (CNN). A preliminary experimental evaluation,
compared to the performance of other existing approaches trained on
real-world images, shows encouraging results.

1 Introduction

Pedestrian detection remains a very popular topic of research having endless
practical applications. An important application domain of this topic is certainly
video surveillance for public security, such as crime prevention, identification of
vandalism, etc. A real-time response in the case of an incident, however, requires
manual observation of the video stream, which is in most cases economically not
feasible.

We propose a real-time CNN-based solution that is able to localize pedestrian
instances in images captured by smart cameras. CNNs are a popular choice for
current objects detectors since they are able to automatically learn features char-
acterizing the objects themselves; in the last years, these solutions outperformed
approaches relying instead on hand-crafted features.

The great challenge we must address using CNNs is the ability of these
algorithms to generalize to new scenarios having different characteristics, like
different perspectives, illuminations and object scales. This is a must when we
are dealing with smart devices that should be easily installed and deployed,
without the need for an early tuning phase. Therefore, the availability of large
c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11751, pp. 302–312, 2019.
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labeled training datasets that cover as much as possible the differences between
various scenarios is a key point for training state-of-the-art CNNs. Although
there are some large annotated generic datasets, such as ImageNet [1] and MS
COCO [2], annotating the images is a very time-consuming operation, since it
requires great human effort, and it is error-prone. Furthermore, sometimes it is
also problematic to create a training/testing dataset with specific characteristics.

A possible solution to this problem is to create a suitable dataset collecting
images from virtual world environments that mimics as much as possible all the
characteristics of our target real-world scenario. In this paper, we introduce a
new dataset named ViPeD (Virtual Pedestrian Dataset), a large collection of
images taken from the highly photo-realistic video game GTA V - Grand Theft
Auto V developed by Rockstar North, that extends the JTA (Joint Track Auto)
dataset presented in [3]. We demonstrate that we can improve performance and
achieve competitive results compared to the state-of-the-art approaches in the
pedestrian detection task.

In particular, we train a state-of-the-art object detector, YOLOv3 [4], over
the newly introduced ViPeDdataset. Then, we test the trained detector on the
MOT17 detection dataset (MOT17Det) [5], a real-world dataset suited for pedes-
trian detection, in order to measure the generalization capabilities of the pro-
posed solution with respect to real-world scenarios.

To summarize, in this work we propose a real-time CNN-based system able
to detect pedestrians for surveillance smart cameras. We train the algorithm
using a new dataset collected using images from a realistic video game and we
take advantage of the graphics engine for extracting the annotations without any
human intervention. Finally, we evaluate the proposed method on a real-world
dataset demonstrating his effectiveness and robustness to other scenarios.

2 Related Work

In this section, we review the most important works in object and pedestrian
detection. We also analyze previous studies on using synthetic datasets as train-
ing sets. Pedestrian detection is highly related to object detection. It deals with
recognizing the specific class of pedestrians, usually walking in urban environ-
ments. Approaches for tackling the pedestrian detection problem are usually sub-
divided into two main research areas. The first class of detectors is based on hand-
crafted features, such as ICF (Integral Channel Features) [6–10]. Those methods
can usually rely on higher computational efficiency, at the cost of lower accu-
racy. On the other hand, deep neural networks approaches have been explored.
[11–14] proposed some modifications around the standard CNN network [15] in
order to detect pedestrians, even accounting for different scales.

Many datasets are available for pedestrian detection. Caltech [16], MOT17Det
[5], INRIA [17], and CityPersons [18] are among the most important ones. Since
they were collected in different living scenarios, they are intrinsically very hetero-
geneous datasets. Some of them [16,17] were specifically collected for detecting
pedestrians in self-driving contexts. Our interest, however, is mostly concen-
trated on video-surveillance tasks and, in this scenario, the recently introduced
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MOT17Det dataset has proved to be enough challenging due to the high vari-
ability of the video subsets. State-of-the-art results on this dataset are reached
by [13]. With the need for huge amounts of labeled data, generated datasets
have recently gained great interest. [19,20] have studied the possibility of learn-
ing features from synthetic data, validating them on real scenarios. Unlike our
work, however, they did not explore deep learning approaches. [21,22] focused
their attention on the possibility to perform domain adaptation in order to map
virtual features onto real ones. Authors in [3] created a dataset taking images
from the highly photo-realistic video game GTA V and demonstrated that it
is possible to reach excellent results on tasks such as people tracking and pose
estimation when validating on real data.

To the best of our knowledge, [23] and [24] are the works closest to our setup.
In particular, [23] also used GTA V as the virtual world but, unlike our method,
they used Faster-RCNN [25] and they concentrated on vehicle detection.

Instead, [24] used a synthetically generated dataset to train a simple convo-
lutional network to detect objects belonging to various classes in a video. The
convolutional network dealt only with the classification, while the detection of
objects relied on a background subtraction algorithm based on Gaussian mix-
ture models (GMMs). The real-world performance was evaluated on two common
pedestrian detection datasets, and one of these (MOTChallenge 2015 [26]) is an
older version of the dataset we used to carry out our experimentation.

3 The ViPeD Dataset

In this section, we describe the datasets exploited in this work. First, we intro-
duce ViPeD-V irtual Pedestrian Dataset, a new virtual collection used for train-
ing the network. Then we outline MOT17Det [5], a real dataset employed for
the evaluation of our proposed solution. Finally, we illustrate CityPersons [18], a
real-world dataset for pedestrian detection we used as baseline. In order to show
the validity of ViPeD, we have compared our network trained with CityPersons
against the same network trained with ViPeD.

3.1 ViPeD-Virtual Pedestrian Dataset

As mentioned above, CNNs need large annotated datasets during the training
phase in order to learn models robust to different scenarios, and creating the
annotations is a very time-consuming operation that requires a great human
effort.

The main contribution of this paper is the creation of ViPeD, a huge collec-
tion of images taken from the highly photo-realistic video game GTAV developed
by Rockstar North. This newly introduced dataset extends the JTA (Joint Track
Auto) dataset presented in [3]. Since we are dealing with images collected from
a virtual world, we can extract pedestrian bounding boxes for free and without
the manual human effort, exploiting 2D pedestrian positions extracted from the
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video card. The dataset includes a total of about 500 K images, extracted from 512
full-HD videos (256 for training and 256 for testing) of different urban scenarios.

In the following, we report some details on the construction of the bounding
boxes and on the data augmentation procedure that we used to extend the JTA
dataset for the pedestrian detection task.

(A) Bounding Boxes: Since JTA is specifically designed for pedestrian pose
estimation and tracking, the provided annotations are not directly suitable for
the pedestrian detection task. In particular, the annotations included in JTA are
related to the joints of the human skeletons present in the scene (Fig. 1a), while
what we need for our task are the coordinates of the bounding boxes surrounding
each pedestrian instance.

Bounding box estimation can be addressed using different approaches. The
GTA graphic engine is not publicly available, so it is not easy to extract the
detailed masks around each pedestrian instance; [23] overcame this issue by
extracting semantic masks and separating the instances by exploiting depth
information. Instead, our approach exploits the skeletons annotations already
extracted by the JTA team in order to reconstruct the precise bounding boxes.
This seems to be a more reliable solution than the depth separation approach,
especially when instances are densely distributed, as in the case of crowded
pedestrian scenarios.

The very basic setup consists of drawing the smallest bounding box that
encloses all the skeleton joints. The main issue with this simple approach is
that each bounding box perfectly contains the skeleton, but not the pedestrian
mesh. Indeed, we can note that the mesh is always larger than the skeleton
(Fig. 1b). We solved this problem by estimating a pad for the skeleton bounding
box, exploiting another information produced by the GTA graphic engine and
already present in JTA, i.e. the distance of all the pedestrians in the scene from
the camera.

Fig. 1. (a) Pedestrians in the JTA dataset with their skeletons. (b) Examples of anno-
tations in the ViPeDdataset; original bounding boxes are in yellow, while the sanitized
ones are in light blue. (Color figure online)
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In particular, the height of the ith mesh, denoted as hi
m, can be estimated

from the height of the ithskeleton hi
s by means of the formula:

hi
m = hi

s +
α

zi
(1)

where zi is the distance of the ith pedestrian center of mass from the camera,
and α is a parameter that depends on the camera projection matrix.

Given that zi is already available for every pedestrian, we estimated the
parameter α by manually annotating 30 random pedestrians, obtaining for them
the correct value for hi

m, and then performing linear regression. We visually
checked that the α parameter estimation was correct even for all the other non-
manually annotated pedestrians.

We then estimated the mesh width wi
m. Unlike the height, the width is

strongly linked to the specific pedestrian pose, so it is difficult to be estimated
with only the camera distance information. We decided to estimate wi

m directly
from hi

m, assuming no changes in the aspect ratio for the original and adjusted
bounding boxes:

wi
m = hi

m

wi
s

hi
s

= hi
mri (2)

where ri is the aspect ratio of the ith bounding box. Examples of final estimated
bounding boxes are shown in Fig. 1b.

Finally, we performed a global analysis of these new annotations. As we can
see in Fig. 2, in the dataset there are annotations of pedestrians farthest than 30–
40 m from the camera. However, we evaluated that humans annotators tend to
avoid annotating objects farthest than this amount. We performed this analysis
by measuring the height of the smallest bounding boxes in the human-annotated
MOT17Det dataset [5] and catching out in our dataset at what distance from the
camera the bounding boxes assume this human-limit size. Therefore, in order to
obtain annotations comparable to real-world human-annotated ones, we decided
to prune all the pedestrian annotations furthest than 40 m from the camera.

From this point on, we will refer to the basic skeleton bounding boxes as
original bounding boxes. Instead, we will refer to the bounding boxes processed
by means of the previously described pipeline as sanitized (Fig. 1b).

(B) Data Augmentation: Synthetic datasets should contain scenarios as close as
possible to real-world ones. Even though images grabbed from the GTA game
were already very realistic, we noticed some missing details. In particular, images
grabbed from the game are very sharp, edges are very pronounced and common
lens effects are missing. In light of this, we prepared a more realistic version of
the original images.

We used GIMP image manipulation software, used in batch mode, in order to
modify every image of the original dataset, using a set of different filters: radial
blur, Gaussian blur, bloom effect, exposure/contrast. Parameters for these effects
are randomly sampled from a uniform distribution.
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Fig. 2. Histogram of distances between pedestrians and cameras.

3.2 MOT17Det

We evaluate our solution using the recently introduced MOT17Det dataset [5], a
collection of challenging images for pedestrian detection taken from 14 sequences
with various crowded scenarios having different viewpoints, weather conditions,
and camera motions. The annotations for all the sequences are generated by
human annotators from scratch, following a specific protocol described in their
paper. The training images are taken from sequences 2, 4, 5, 9, 10, 11 and 13
(for a total of 5,316 images), while test images are taken from the remaining
sequences (for a total of 5,919 images). It should be noted that the authors
released only the ground-truth annotations belonging to the training subset.
The performance metrics concerning the test subset are instead available only
submitting results to the MOT17Det Challenge1.

3.3 CityPersons

In order to compare our solution trained using synthetic data against the same
network trained with real images, we have also considered the CityPersons
dataset [18], a recent collection of images of interest for the pedestrian detec-
tion community. It consists of a large and diverse set of stereo video sequences
recorded in streets from different cities in Germany and neighboring countries.
In particular, authors provide 5,000 images from 27 cities labeled with bounding
boxes and divided across train/validation/test subsets.

4 Method

We use YOLOv3 [4] as object detector architecture, exploiting the original Dark-
net [27] implementation. The architecture of YOLOv3 jointly performs a regres-
sion of the bounding box coordinates and classification for every proposed region.
1 https://motchallenge.net/data/MOT17Det/.

https://motchallenge.net/data/MOT17Det/
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Unlike other techniques, YOLOv3 performs these tasks in an optimized fully-
convolutional pipeline that takes pixels as input and outputs both the bounding
boxes and their respective proposed categories. It is particularly robust to scale
variance since it performs the detections at three different scales, down-sampling
the input image by factors 32, 16 and 8.

As a starting point, we considered a model of YOLO pre-trained on the
COCO dataset [2], a large dataset composed of images describing complex every-
day scenes of common objects in their natural context, categorized in 80 different
categories. Since this network is a generic objects detector, we then specialized
it to recognize and localize object instances belonging to a specific category - i.e.
the pedestrian category in our case.

Our goal is to evaluate the detector when it is trained with synthetic data.
For this reason, we need to partially retrain the architecture to include new
information deriving from a different domain.

In this particular work, domain adaptation between virtual and real scenarios
is simply carried out by fine-tuning the pre-trained YOLOv3 architecture. In
particular, we first extract the weights of the first 81 layers of the pre-trained
model, since these layers capture universal features (like curves and edges) that
are also relevant to our new problem. Then, we fine-tune YOLO initialing the
firsts 81 layers with the previously extracted weights, and the weights associated
with the remaining layers at random. In this way, we get the network to focus
on learning the dataset-specific features in the last layers. All the weights are
left unfrozen, so they can be adjusted by the back-propagation algorithm. With
this technique, we are forcing the architecture to adjust the learned features to
match those from the destination dataset.

5 Experimental Evaluation

We evaluate our solution in two different cases: first, in order to test the general-
ization capabilities, we train the detector using only our new synthetic dataset;
then, in order to obtain best results on the MOT17Det dataset and compare them
with the state-of-the-art, we evaluate detections after fine-tuning the detector
also on the MOT17Det dataset itself.

Since the authors did not release the ground-truth annotations belonging to
the test subset, we submitted our results to the MOT17Det Challenge in order
to obtain the performance metrics. In order to prevent overfitting during the
training in the second scenario, we create a validation split from the training
subset considering a randomly chosen sequence. For the first scenario, instead,
we validate on the full training set of MOT17Det.

Following other object detectors benchmarks, we use Precision, Recall and
Average Precision (AP) as the performance metrics. A key parameter in all
these metrics is the intersection-over-union threshold (IoU ), which determines
if a bounding box is matched to an annotation or not, i.e. if it is a true positive
or a false positive.
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Precision and Recall are defined as:

Precision =
TPs

TPs + FPs
Recall =

TPs

TPs + FNs
(3)

where TPs are the True Positives, FPs the False Positives and FN the False
Negatives. Average Precision is instead defined as the average of the maximum
precisions at different recall values.

It is fairly common to observe detection algorithms compared under different
thresholds, and there are often many variables and implementation details that
differ between evaluation scripts which may affect results significantly. In this
work, we consider only MOT17Det and COCO performance evaluators. We also
use the standard IoU threshold value of 0.5.

Evaluation of the Generalization Capabilities. Considering the first sce-
nario, we first obtained a baseline using the original detector, i.e. the detector
trained using the real-world general-purpose COCO dataset. Then, we trained
the detector using our synthetic dataset, performing an ablation study over the
introduced extensions.

First, we considered the original images and the original bounding boxes.
Then, in order to evaluate how much the bounding-box construction policy can
affect the detection quality, we considered the sanitized bounding boxes. Third,
we considered also augmented images. Finally, we train the detector using the
real-world dataset CityPersons, specific for the pedestrian detection task. We
employ this experiment as a baseline over our ViPeD trained network. Results
are reported in Table 1.

Comparison with the State-of-the-art on MOT17Det. Concerning the
second scenario, we obtained a baseline starting from the original detector
trained with COCO and fine-tuning it with the training set of the MOT17Det
dataset. Then, we considered our previous detector trained with ViPeD (the one
with the sanitized bounding boxes and the augmented images) and we fine-tuned
again the network with the training set of the MOT17Det dataset. Results are
reported in Table 2, together with the ones obtained using the state-of-the-art
approaches publicly released in the MOT17 Challenge (at the time of writing).

Table 1. Results of YOLOv3 detector on MOT17Det

Training Dataset MOT AP COCO AP Precision Recall

COCO (Baseline) 0.69 0.41 87.4 72.4

CityPersons 0.58 0.37 69.0 60.5

ViPeD: Orig. BBs - Orig. Imgs 0.58 0.37 68.6 64.8

ViPeD: Sanitized BBs - Orig. Imgs 0.63 0.40 91.1 69.2

ViPeD: Sanitized BBs - Aug. Imgs 0.71 0.48 89.3 73.9
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Table 2. Results on MOT17Det: comparison with the state-of-the-art

Method MOT AP Precision Recall

YOLOv3 on COCO + MOT 0.80 89.9 82.8

YTLAB [13] 0.89 86.2 91.3

KDNT [28] 0.89 78.7 92.1

ZIZOM [29] 0.81 88.0 83.3

SDP [12] 0.81 92.6 83.5

YOLOv3 on ViPeD + MOT 0.80 90.2 84.6

Discussion. Results in Table 1 show that we obtained best performances train-
ing the detector with ViPeD, using the sanitized bounding boxes and the aug-
mented images, overtaking also the networks trained with COCO and with
CityPersons. Therefore, our solution is able to generalize the knowledge learned
from the virtual-world to a real-world dataset, and it is also able to perform bet-
ter than the solutions trained using the real-world manual-annotated datasets.

Results in Table 2 demonstrate that our training procedure is able to reach
competitive performance even when compared to specialized pedestrian detec-
tion approaches.

6 Conclusions

In this work, we propose a real-time system able to detect pedestrian instances
in images. Our approach is based on a state-of-the-art fast detector, YOLOv3,
trained with a synthetic dataset named ViPeD, a huge collection of images ren-
dered out from the highly photo-realistic video game GTA V developed by
Rockstar North.

The choice of training the network using synthetic data is motivated by
the fact that a huge amount of different examples are needed in order for the
algorithm to generalize well. This huge amount of data is typically manually
collected and annotated by humans, but this procedure usually takes a lot of
time and it is error-prone. We demonstrated that our solution is able to transfer
the knowledge learned from the synthetic data to the real-world, outperforming
the same approach trained instead on real-world manually-labeled datasets.

The YOLOv3 network is able to run on low-power devices, such as the
NVIDIA Jetson TX2 board, at 4 FPS. In this way, it could be deployed directly
on smart devices, such as smart security cameras or drones. Even if we trained
YOLOv3 detector on the specific task of pedestrian detection, we think that
the presented procedure could be applied at a larger scale even on other related
tasks, such as object segmentation or image classification.
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Abstract. Event cameras, neuromorphic devices that naturally respond
to brightness changes, have multiple advantages with respect to tradi-
tional cameras. However, the difficulty of applying traditional computer
vision algorithms on event data limits their usability. Therefore, in this
paper we investigate the use of a deep learning-based architecture that
combines an initial grayscale frame and a series of event data to esti-
mate the following intensity frames. In particular, a fully-convolutional
encoder-decoder network is employed and evaluated for the frame syn-
thesis task on an automotive event-based dataset. Performance obtained
with pixel-wise metrics confirms the quality of the images synthesized by
the proposed architecture.

Keywords: Video synthesis · Event camera · Event frames ·
Automotive · Deep learning

1 Introduction

Event cameras are optical sensors that asynchronously output events in case
of brightness variations at pixel level. The major advantages of this type of
neuromorphic sensors are the low power consumption, the low data rate, the
high temporal resolution, and the high dynamic range [8]. On the other hand,
despite exhibiting a higher power consumption and often a lower dynamic range,
traditional cameras are able to record local information, like textures, and the
majority of the computer vision algorithms are designed to work on this kind
of data. Indeed, being able to apply existing algorithms to the output of event
cameras could help the adoption of event-based sensors.

In this paper, aiming to conjugate the advantages of traditional and event
cameras, we investigate the use of a deep learning-based method to interpolate
intensity frames acquired by a low-rate camera with the support of the interme-
diate event data. Specifically, we exploit a fully-convolutional encoder-decoder
architecture to predict intensity frames, relying on an initial or a periodic set of
key-frames and a series of event frames, i.e. frames that collect the information
captured by event cameras in a certain time interval.

c© Springer Nature Switzerland AG 2019
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Fig. 1. Samples from the DDD17 dataset. The first row contains the intensity grayscale
images while the second one contains the event frames.

Focusing on the automotive scenario, we employ a novel event-based dataset
called DDD17 [4] (see Fig. 1) and evaluate the feasibility of the proposed method
with a wide set of pixel-level metrics. Quantitative and qualitative comparisons
with a recent competitor [26] shows the superior quality of the images synthesized
by the proposed model.

Summarizing, our contributions are twofold:

– We propose a fully-convolutional encoder-decoder architecture that combines
traditional images and event data (as event frames) to interpolate consecutive
intensity frames;

– We evaluate the effectiveness of the proposed approach on a public automotive
dataset, assessing the ability to generate reasonable images and providing a
fair comparison with a state-of-the-art approach.

2 Related Work

In the last years, event-based vision has increased its popularity in the computer
vision community. Indeed, many novel algorithms have been proposed to deal
with event-based data, produced by Dynamic Vision Sensors [11] (DVSs), like
visual odometry [29], SLAM [17], optical flow estimation [8], and monocular [21]
or stereo [1,28] depth estimation.

Event cameras have also been exploited for the ego-motion estimation [7,14],
the real-time feature detection and tracking [15,20], and the robot control in
predator/prey scenarios [16]. Furthermore, it has been shown that event data can
be employed to solve many classification tasks, such as the classification of char-
acters [19], gestures [13], and faces [10]. Recently, an optimization-based algo-
rithm that simultaneously estimates the optical flow and the brightness intensity
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Fig. 2. Overview of the proposed method. The input of the encoder-decoder architec-
ture is represented by the stack of an intensity and an event frame, while the output
is the predicted intensity frame. During inference, the output at each step is used as
the input intensity image in the following step.

was proposed in [3], while [18,23] presented a manifold regularization method
that reconstructs intensity frames from event data.

Lately, Scheerlinck et al. [26] proposed a complementary filter that com-
bines image frames and events to estimate the scene intensity. The filter asyn-
chronously updates the intensity estimation whenever new events or intensity
frames are received. If the grayscale frames are missing, the estimation can be
produced using events only.

This method is recent (at the time of writing) and outperforms previous exist-
ing works. Thus, we selected it as a baseline reference to evaluate our approach
(see Sect. 4).

3 Proposed Method

In this Section, we formally define the event frame concept. Then, we present
the investigated task from both a mathematical and an implementation point of
view.

3.1 Event Frames

Following the notation of [14], the j-th event ej provided by an event camera
can be expressed as:

ej = (xj , yj , tj , pj) (1)

where xj , yj , and tj are the spatio-temporal coordinates of a brightness change
and pj ∈ {−1,+1} is the polarity of the brightness change (i.e. positive or
negative variation).
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An event frame can be defined as the pixel-wise integration of the events
occurred in a time interval [t, t + τ ]:

Ψτ (t) =
∑

ej∈[t,t+τ ]

pj (2)

where ej ∈ [t, t + τ ] means {ej | tj ∈ [t, t + τ ]}. In practice, an event frame can
be formulated as a grayscale image that summarizes the events captured in a
particular time interval. There is loss of information when the number of events
exceeds the number of gray levels of the image.

3.2 Intensity Frame Estimation

We propose a method that corresponds to a learned parametric function F
defined as:

F : R2×w×h −→ R
w×h (3)

that takes as input an intensity image It ∈ R
w×h recorded at time t and an event

frame Ψτ (t) ∈ R
w×h (which summarizes pixel-level brightness variations in the

time interval [t, t + τ ]) in order to estimate the intensity image Î(t + τ) ∈ R
w×h

at time t+τ . w and h correspond to the width and the height of the event frames
and the intensity images.

Formally, the synthesized image Î(t + τ) can be defined as:

Î(t + τ) = F (I(t), Ψτ (t), θ) (4)

where θ corresponds to the parameters of the function F .

3.3 Architecture

In practice, the parametric function F corresponds to an encoder-decoder archi-
tecture that predicts the intensity frame Î(t + τ) from the concatenation of an
intensity frame I(t) and an event frame Ψτ (t), as represented in Fig. 2. In particu-
lar, the model is a fully-convolutional deep neural network with skip connections
between layers i and n − i, with n corresponding to the total number of layers.

As in the U-Net architecture [24], the number of layers with skip connections
is set to n = 4 with 128, 256, 512, 512 3 × 3 kernels in the encoder layers and
with 256, 128, 64, 64 3 × 3 kernels in the decoder layers.

These skip-connected layers are preceded by two convolutional layers with
64 feature maps and followed by a convolutional layer with 1 feature map that
projects the internal network representation to the final intensity estimation.

3.4 Training Procedure

The network is trained in a supervised manner using the Mean Squared Error
(MSE) loss as objective function:

MSE =
1
N

N∑

i=0

(yi − ŷi)2 (5)
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Table 1. Pixel-wise metrics (lower is better) computed on the synthesized frames of
DDD17.

Method Norm ↓ Difference ↓ RMSE ↓
L1 L2 Abs Sqr Lin Log Scl

[26] 0.080 29.249 0.269 0.027 0.098 4.830 4.352

Ours 0.027 8.916 0.179 0.007 0.040 4.048 3.571

where yi and ŷi are respectively the i -th pixels of the ground truth and the
generated image of the same size N = w · h.

We optimize the network using the Adam optimizer [9] with learning rate
2 · 10−4, β1 = 0.5, β2 = 0.999 and a mini-batch size of 8.

During the training phase, two consecutive frames (one as input, one as
ground-truth of the output) and the intermediate event frame (as input) are
employed. During the testing phase, instead, in order to obtain a sequence of
synthesized frames, the model iteratively receives the previously generated image
as intensity input or a new key-frame after λ iterations.

4 Experimental Evaluation

In this section, we firstly present the dataset that has been employed to train
and evaluate the proposed method. In the following, we report the procedure
that we have adopted to evaluate the quality of the estimated intensity frames.
Finally, we present and analyze the experimental results.

4.1 DDD17: End-to-end DAVIS Driving Dataset

Recently, Binas et al. [4] presented DDD17: End-to-end DAVIS Driving Dataset,
the first open dataset of annotated DAVIS driving recordings. The dataset con-
tains more than 12 h of recordings captured with a DAVIS sensor [5] (some
sample images are shown in Fig. 1). Each recording includes both event data
and grayscale frames along with vehicle information (e.g. vehicle speed, throt-
tle, brake, steering angle). Recordings are captured in cities and highways, in
dry and wet weather conditions, during day, evening, and night.

However, the quality of the gray-level images is low, the spatial resolution
is limited to 346 × 260 pixels, and the framerate is variable (it depends on the
brightness of the scene).

In our experiments, similar to [14], we use only the recordings acquired dur-
ing the day. In contrast to Maqueda et al. [14], however, we create the train,
validation, and test sets using different recordings.
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4.2 Metrics

Inspired by [6], we employed a variety of metrics to check the quality of the
generated images, being aware that evaluating synthesized images is in general
a difficult and still open problem [25].

Table 2. Starting from the left, we report the percentage of pixels under three differ-
ent thresholds, the Peak Signal-to-Noise Ratio (PSNR), and the Structural Similarity
(SSIM) indexes, computed on the synthesized frames of DDD17. Higher is better.

Method Threshold ↑ Indexes ↑
1.25 1.252 1.253 PSNR SSIM

[26] 0.671 0.781 0.827 20.542 0.702

Ours 0.775 0.848 0.875 29.176 0.864

In particular, we use distances (L1 and L2), differences (absolute and squared
relative difference), the root mean squared error (in the linear, logarithmic,
and scale-invariant version), and the percentage of pixels under a certain error
threshold. Furthermore, with respect to [6], we introduce two additional met-
rics: the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity index
(SSIM) [27]. They are calculated to respectively evaluate the image noise level
(in logarithmic scale) and the perceived image quality.

From a mathematical perspective, the PSNR is defined as:

PSNR = 10 · log10
( m · |I|∑

y∈I( y − ŷ )2
)

(6)

where I is the ground truth image, Î is the synthesized image, and m is the
maximum possible value of I and Î. ŷ ∈ Î corresponds to the element of the
generated image at the same location of y ∈ I. In our experiments m = 1.

The SSIM is defined as:

SSIM(p, q) =
(2μpμq + c1)(2σpq + c2)

(μ2
p + μ2

q + c1)(σ2
p + σ2

q + c2)
(7)

Given two windows p ∈ I, q ∈ Î of equal size 11 × 11, μp,q, σp,q are the mean
and variance of p and q while σpq is the covariance of p, q.

c1 and c2 are defined as c1 = (0.01 · L)2 and c2 = (0.03 · L)2 where L is
the dynamic range (i.e. the difference between the maximum and the minimum
theoretical value) of I and Î. In our experiments L = 1.

4.3 Experimental Results

We analyze the quality of the intensity estimations produced by our approach
and by the method presented in [26] employing the pixel-wise metrics reported
in Sect. 4.2.
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GT Sheerlinck et al. [26] Ours

Fig. 3. Samples of synthesized frames produced by our method (last column) and the
one of Scheerlinck et al. [26] (second column), while the first column contains ground
truth images. As shown, the proposed method produces less artefacts, in the form of
black or white spots, maintaining a good level of details, and it is able to preserve the
overall structure and appearance of the original scene.
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In the experiments, we empirically set the number of consecutive synthesized
frames (i.e. the sequence length) to λ = 6. It is worth noting that, within a
sequence, the input intensity frame of the proposed method is the intensity
estimation of the previous step except for the initial key-frame. We adapt the
input images of DDD17 to match the architecture requirements: the input data
is resized to a spatial resolution of 256 × 192.

Quantitative results are reported in Tables 1 and 2. As it can be seen, the
proposed method outperforms the competitor with a clear margin in every eval-
uation. In particular, PSNR and SSIM confirm the fidelity of the representation
and the good level of perceived similarity between the generated and the ground
truth images, respectively. Indeed, compared to the output of [26], frames synthe-
sized by our method contain less artifacts and shadows and the overall structure
of the scene is better preserved.

Visual examples, which are reported in Fig. 3, highlight the ability of the
proposed network to correctly handle the input event frames.

Finally, we investigate the performance of a traditional vision-based detec-
tion algorithm tested on the generated images. We adopt the well-known object
detection network Yolo-v3 [22], pre-trained on the COCO dataset [12], to inves-
tigate the ability of the proposed method to preserve the appearance of objects
which are significant in the automotive context, like pedestrians, trucks, cars,
and stop signals.

Since ground truth object annotations are not available in the dataset, we
first run the object detector on the real images contained in DDD17, obtaining a
sort of ground truth annotation. Then, we run Yolo-v3 on the generated images
and compare these detections with the produced annotations.

Results are expressed in terms of Intersection-over-Union (IoU) [2], which is
defined as follows:

IoU(A,B) =
Area of Overlap
Area of Union

=
|A ∩ B|

|A ∪ B| − |A ∩ B| (8)

where A and B are the bounding boxes found in the original and the generated
frames, respectively. A detection is valid if:

IoU(A,B) > τ, τ = 0.5 (9)

A weighted object detection score is also employed: each class contributes to the
final average according to its associated weight computed as the number of its
occurrence on the total number present in the test sequences.

We obtained a mean Intersection-over-Union of 0.863 (the maximum reach-
able value is 1) with 61% of valid object detections. We believe that these results
are remarkably promising because they show that the generated frames are
semantically similar to the real ones. Therefore, the proposed method can be
an effective way to apply traditional vision algorithms to the output of event
cameras.
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5 Conclusion

In this work, we have presented a deep learning-based method that performs
intensity estimation given an initial or periodic collection of intensity key-frames
and a group of events.

The model relies on a fully convolutional encoder-decoder architecture that
learns to combine intensity and event frames to produce updated intensity esti-
mations. The experimental evaluation shows that the proposed method can be
effectively employed to the intensity estimation task and that it is a valid alter-
native to current state-of-the-art methods.

As future work, we plan to test the framework on additional datasets as well
as to take into account the long-term temporal evolution of the scene.
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Abstract. Neural networks are said to be biologically inspired since
they mimic the behavior of real neurons. However, several processes in
state-of-the-art neural networks, including Deep Convolutional Neural
Networks (DCNN), are far from the ones found in animal brains. One
relevant difference is the training process. In state-of-the-art artificial
neural networks, the training process is based on backpropagation and
Stochastic Gradient Descent (SGD) optimization. However, studies in
neuroscience strongly suggest that this kind of processes does not occur
in the biological brain. Rather, learning methods based on Spike-Timing-
Dependent Plasticity (STDP) or the Hebbian learning rule seem to be
more plausible, according to neuroscientists. In this paper, we investigate
the use of the Hebbian learning rule when training Deep Neural Networks
for image classification by proposing a novel weight update rule for shared
kernels in DCNNs. We perform experiments using the CIFAR-10 dataset
in which we employ Hebbian learning, along with SGD, to train parts of
the model or whole networks for the task of image classification, and we
discuss their performance thoroughly considering both effectiveness and
efficiency aspects.

Keywords: Hebbian learning · Deep learning · Computer vision ·
Convolutional neural networks

1 Introduction

Backpropagation is the most common learning rule for artificial neural net-
works. Despite being initially developed for biologically inspired artificial net-
works, it is commonly known by neuroscience that this process is unlikely to be
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implemented by nature. Seeking for more plausible models that mimic biologi-
cal brains, researchers introduced several alternative learning rules for artificial
networks.

In this work, we explore one of these alternative learning rules—Hebbian
learning—in the context of modern deep neural networks for image classifica-
tion. Specifically, the concept of Hebbian learning refers to a family of learn-
ing rules, inspired by biology, according to which the weight associated with
a synapse increases proportionally to the values of the pre-synaptic and post-
synaptic stimuli at a given instant of time [2,4].

Different variants of Hebbian rules can be found in the literature. In this
work, we investigate two main Hebbian learning approaches, that is the Winner-
Takes-All competition [3,12] and the supervised Hebbian learning solution. We
apply these rule to train image classifiers that we extensively evaluate and com-
pare with respect to standard models trained with Stochastic Gradient Descent
(SGD). Moreover, we experiment with hybrid models in which we apply Hebbian
and SGD updates to different parts of the network. Experiments on the CIFAR-
10 dataset suggest that the Hebbian approach is adequate for training the lower
and the higher layers of deep convolutional neural networks, while current results
suggest that it has some limitations when used in the intermediate layers1. On
the other hand, the Hebbian approach is much faster than Gradient Descent
in terms of numbers of epochs required for training. Moreover, Hebbian update
rules are inherently local and thus fully parallelizable in the backward/update
phase, and we think that strategies to enhance the scalability of current models
can benefit from this property. The main contributions of this work are:

– the use of Hebbian learning in DCNN, with a novel proposal for weight
updates in shared kernels (Sect. 3.4);

– the definition of various hybrid deep neural networks, obtained combining
SGD and Hebbian learning in the various network layers (Sect. 4);

– extensive experimentation and analysis of the results (Sect. 5).

The paper is organized as follows. Section 2 gives a brief overview of other works
in this context. Section 3 introduces the Hebbian learning model. Section 4 dis-
cusses the deep network architecture that we defined and how we set the exper-
iments to assess the performance of the approach. Section 5 discusses the exper-
iments and the results. Section 6 concludes.

2 Related Works

Recently, several works investigated the Hebbian rule for training neural net-
works for image classification. In [15], the authors propose a deep Convolutional
Neural Network (CNN) architecture consisting of three convolutional layers, fol-
lowed by an SVM classifier. The convolutional layers are trained, without super-
vision, to extract relevant features from the inputs. This technique was applied
1 For the implementation details about the experiments described in this document

and the related source code, the reader is referred to [8,9].



326 G. Amato et al.

on different image datasets, among which CIFAR-10 [6], on which the algorithm
achieved above 75% accuracy with a three-layer network.

In [10], the authors obtain the Hebbian weight update rules by minimizing
an appropriate loss function, defined as the strain loss. Intuitively, they aim at
minimizing how the differences, between the similarity among input vectors and
output vectors, get distorted when moving from the input space and the output
space. Also in this case, the authors use CIFAR-10 to perform the experiments,
achieving accuracy up to 80% with a single layer followed by an SVM classifier [1].

In the above approaches, the Hebbian rule application remains limited to
relatively shallow networks. On the other hand, in our work, we explore the
possibility of applying Hebbian learning rules to deeper network architectures
and discuss the opportunities and limitations arisen in this context.

3 Hebbian Learning Model

The Hebbian plasticity rule can be expressed as

Δw = η y(x, w)x , (1)

where x is the vector of input signals on the neuron synapses, w is the weight
vector associated with the neuron, η is the learning rate coefficient, Δw is the
weight update vector, and y(x, w) is the post-synaptic activation of the neuron—
a function of the input and the weights that is assumed to be non-negative (e.g.
a dot product followed by a ReLU or sigmoid activation).

3.1 Weight Decay

Rule 1 only allows weights to grow, not to decrease. In order to prevent the
weight vector from growing unbounded, Rule 1 is extended by introducing a
weight decay (forgetting) term [2] γ(x, w)

Δw = η y(x, w)x − γ(x, w) . (2)

When the weight decay term is γ(x, w) = η y(x, w)w [4], we obtain

Δw = η y(x, w) (x − w) . (3)

If we assume that η y(x, w) is smaller than 1, the latter equation obtains the
following physical interpretation: at each iteration, the weight vector is modified
by taking a step towards the input, the size of the step being proportional to the
similarity between the input and the weight vector, so that if a similar input is
presented again in the future, the neuron will be more likely to produce a stronger
response. If an input (or a cluster of similar inputs) is presented repeatedly to
the neuron, the weight vector tends to converge towards it, eventually acting as a
matching filter. In other words, the input is memorized in the synaptic weights.
In this perspective, the neuron can be seen as an entity that, when stimulated
with a frequent pattern, learns to recognize it.
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3.2 Competitive Hebbian Learning: Winner Takes All

Equation 3 can be also used in the context of competitive learning [3,5,12,14].
When more than one neuron is involved in the learning process, it is possible to
introduce some forms of lateral interaction in order to force different neurons to
learn different patterns. A possible scheme of interaction is Winner Takes All
(WTA) competition [3,12] which works as follows:

1. when input is presented to the network, the neurons start a competition;
2. the winner of the competition is the neuron whose weight vector is the clos-

est to the input vector (according to some distance metric, e.g. angular dis-
tance [3] or euclidean distance [4]), while all the other neurons get inhibited;

3. the neurons update their weights according to Eq. 3, where y is set to 0 for
the inhibited neurons and to 1 for the winner neuron.

3.3 Supervised Hebbian Learning

Hebbian learning is inherently an unsupervised approach to neural network train-
ing because each neuron updates its weight without relying on labels provided
with the data. However, it is possible to use a simple trick to apply Hebbian rules
in a supervised fashion: the teacher neuron technique [11,13] involves imposing a
teacher signal on the output of the neurons that we want to train, thus replacing
the output that they would naturally produce. By doing so and by applying a
Hebbian learning rule, neurons adapt their weights in order to actually reproduce
the desired output when the same input is provided.

Applying this technique to the output layer is straightforward, as the teacher
signal coincides with the output target, but the choice of the teacher signal for
supervised training of internal neurons is not trivial. Similarly to [15], we use the
following technique to guide the neurons to develop a certain class-specificity in
intermediate layers: we divide the kernels of a layer in as many groups as the
number of classes and associate each group with a unique class; in addition, we
also devote a set of kernels to be in common to all the classes; when an input of
a given class is presented to the network, a high teacher signal y = 1 is provided
to all the neurons sharing kernels that belong to the group corresponding to the
given class, while the others receive a low teacher signal y = 0 (neurons sharing
kernels associated with the set common to all the classes always receive a high
teacher signal).

3.4 Hebbian Rule with Shared Kernels in DCNN

Eq. 3 allows computing Δw for each neuron in a given layer. Due to weight shar-
ing in convolutional neural networks, different neurons in the same convolutional
layer that shares the same kernel might be associated with different Δw’s. In
order to allow weight sharing in kernels of deep convolutional layers, we propose
to perform an aggregation step in which the different Δw’s, obtained at different
spatial locations, are used to produce a global Δwagg used for the update of the
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Fig. 1. Architecture of the Deep Convolutional Neural Network used in our
experiments.

kernel. Δwagg is computed as a weighted average of the Δw, where the weights
are proportional to the coefficient that determines the step size (y when the basic
Hebbian rule is used, 1 or 0 for winners and losers, respectively, when the WTA
rule is used, and the teacher signal when supervised Hebbian learning is used).

4 Neural Network Architecture and Experiment Settings

To evaluate the Hebbian rule in deep learning, we designed a reference deep net-
work architecture inspired to AlexNet [7]. The deep network structure, shown in
Fig. 1, is composed of four convolutional layers followed by a fully connected layer
(layer 5). Layer 6 is a linear classifier with one output per class. We performed
several experiments in which we combined Hebbian learning with SGD learning
in various ways, and we measured the classification performance obtained on the
CIFAR-10 dataset [6]. In the first and second experiment, discussed in Sects. 5.1
and 5.2, we modified the architecture in Fig. 1 as shown in Fig. 2a. Specifically, we
placed in turn Hebbian classifiers and SGD classifiers on top of feature extracted
from various layers of, respectively, an SGD- and an Hebbian-trained network.
In other words, the entire network was trained using a single approach (either
Hebbian or SGD) and just the top layer (the classifier) was changed. In the third
and fourth experiment, discussed in Sects. 5.3 and 5.4, we placed SGD-trained
layers on top of Hebbian-trained layers, and vice-versa, at various level of the
network, as shown in Fig. 2b. In the fifth experiment, discussed in Sect. 5.5, we
put various Hebbian-trained layers in between SGD trained layers, as shown in
Fig. 2c. In all the experiments, when lower layers were trained with the Hebbian
rule, we also pre-processed images with ZCA-whitening [6], which provided us
with better performance.

5 Experiments

As a baseline for the various experiments, we trained the defined network by
applying the Stochastic Gradient Descent (SGD) algorithm to minimize the
Cross-Entropy Loss. Training was executed using the following configuration:
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Fig. 2. Architecture modifications applied in our experiments.

SGD with Nesterov correction and momentum of 0.9, L2 penalty of 0.06, and
a batch size of 64. The network was trained for 20 epochs on the first four of
the five training batches of the CIFAR-10 dataset [6], corresponding to the first
40,000 samples, while the fifth batch, corresponding to the last 10,000 samples,
was used for validation. Testing was performed on the CIFAR-10 test batch pro-
vided specifically for this purpose. Images were normalized to have zero mean
and unit standard deviation. Early stopping was used so that, at the end of
the 20 epochs, the network parameter configuration that we kept was the one
achieving the highest accuracy. The learning rate was set to 10−3 for the first ten
epochs, then halved every epoch for the next ten epochs. This baseline was used
both for comparing with the performance obtained with Hebbian learning and
to produce pre-trained SGD layers to be combined with Hebbian-trained layers.
In the next sections, we discuss the results obtained by the various combinations
of Hebbian-trained and SGD-trained layers, introduced in Sect. 4.

5.1 Hebbian vs. SGD Classifiers on SGD-Trained Layers

In this first experiment, we used the baseline trained network, discussed in
Sect. 5, as a pre-processing module to extract features from an image, which
were then fed to a classifier as shown in Fig. 2a. We compared both a classifier
trained using SGD and the Hebbian rule.

To perform an exhaustive test, we measured the performance obtained by
placing (and training) a classifier after every layer of the network. The SGD
classifiers were trained with the same parameters used for the baseline, except
that the L2 penalty is reduced to 5 · 10−4. The Hebbian classifiers were trained
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Table 1. Accuracy (%) of SGD- and Hebbian-trained classifiers built on top of various
internal layers of an SGD- or Hebbian-trained network.

Classifier Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

SGD SGD SGD SGD SGD

SGD 60.71 66.30 72.39 82.69 84.95

Hebbian 46.58 56.59 67.79 82.18 84.88

Hebbian Hebbian Hebbian Hebbian Hebbian

SGD 63.92 63.81 58.28 52.99 41.78

with learning rate 0.1, the similarity between neuron inputs and weight vectors
was measured in terms of angular distance (lower angular distance means higher
similarity and vice-versa), and the activation function adopted was simply the
scalar product between the input and the normalized weight vectors.

Table 1 (top two rows) reports the results of tested configurations. We can see
that classifiers placed on top of higher layers and trained with the Hebbian rule
achieve accuracy values practically overlapped to those of an SGD classifier. On
the other hand, Hebbian classifiers placed on top of lower layers obtain a lower
accuracy. However, it is worth mentioning that Hebbian classifiers can be trained
in just a few epochs (usually one or two in our experiments), while classifiers
trained with Gradient Descent need from five to ten epochs to converge.

5.2 SGD Classifiers on Hebbian-Trained Layers

Experiments discussed in this section are complementary to those discussed
above. The entire deep network is trained with Hebbian approach, and the fea-
tures extracted from the various layers are fed to an SGD classifier.

The goal is to evaluate the performance of the Hebbian approach for training
the feature extraction layers of the network. To train the network, we set the
learning rate of the Hebbian weight update rule to 0.1. The similarity between
neuron inputs and weight vectors was measured in terms of angular distance
(lower angular distance means higher similarity and vice-versa), and the activa-
tion function used for neurons of Hebbian hidden layers was the cosine similarity
between input and weight vector, followed by the ReLU non-linearity. We used
the WTA approach (Sect. 3.2) for updating the weight of the internal layers, we
applied ZCA-whitening (see Sect. 4) to the input images. We imposed a teacher
signal on the layers of the network trained with Hebbian approach, even if they
are not classification layers, according to the logic discussed Sect. 3.3. In our
experiments, we used 96 common kernels at layer 1, 8 kernels per class plus 16
common kernels at layer 2, 16 kernels per class plus 32 common kernels at layer
3, 24 kernels per class plus 16 common kernels at layer 4, and 28 kernels per
class plus 20 common kernels at layer 5.

Table 1 (bottom row) reports the achieved results It can be observed that the
accuracy slowly degrades with the number of layers. We conclude that training
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with the basic Hebbian rule has some disadvantages when the depth of the
network increases, while it is still competitive when the layers are less than 4.

5.3 Hybrid: SGD Layers on Top of Hebbian Layers

In the previous experiments, the entire network was trained using a single app-
roach and we changed just the classifier. Here, we created hybrid networks where
the bottom layers were trained with the Hebbian rule and the top layers were
trained with SGD. The goal of the following set of experiments is to assess the
limits within which layers trained with the Hebbian algorithm can replace layers
trained with SGD.

The architectures of these hybrid networks are as in Fig. 2b, where a layer was
chosen as the splitting point between Hebbian trained layers and SGD trained
ones. All the layers from the first to the fifth were used in different experiments
as splitting points. The features extracted from the Hebbian-trained layers up to
the splitting point were fed to the remaining network which was re-trained from
scratch with SGD on the Hebbian feature maps provided as input. During this
re-training process, the Hebbian-trained network was kept in evaluation mode
and its parameters were left untouched. As before, also in this case, when training
the Hebbian layers, we used the WTA approach, and the images were processed
with ZCA-whitening.

Table 2 (second group) shows the accuracy on CIFAR-10 of a network com-
posed of bottom layers trained with the Hebbian algorithm and top layers trained
with Gradient Descent. In addition, the accuracy of the baseline fully trained
with Gradient Descent and that of the same network fully trained with the
Hebbian algorithm are also shown for comparisons (Table 2, first group). We
also report the results of a network where the bottom layers are left completely
untrained (randomly initialized), so that it is possible to assess whether Hebbian
training gives a positive contribution w.r.t. pure randomness or it is completely
destructive (Table 2, third group).

It can be observed that the first layer trained with the Hebbian algorithm can
perfectly replace the corresponding Gradient Descent layer. There is a certain
accuracy loss when also the second layer is switched to Hebbian learning, however
it is still competitive. Accuracy heavily degrades when further layers are set to
Hebbian learning. As expected, Hebbian training is better than untrained layers.

5.4 Hybrid: Hebbian Layers on Top of SGD Layers

The experiments presented in this section complement those discussed in
Sect. 5.3: bottom layers are SGD-trained, while the top layers are Hebbian-
trained. Table 2 (fourth group) shows the accuracy on CIFAR-10 of a network
composed of bottom layers trained with Gradient Descent and top layers trained
with the Hebbian algorithm. The table compares the accuracy of hybrid networks
obtained by choosing layers 1, 2, ..., 5 to be the splitting point, i.e. all the layers
on top of the first, second, ..., fifth (respectively) were trained with the Hebbian
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algorithm, while the rest of the network was kept in evaluation mode and its
parameters were left untouched.

In this case, we can observe that the last layer trained with the Hebbian
algorithm (i.e. the supervised Hebbian classifier) can perfectly replace the cor-
responding Gradient Descent layer. The fifth layer can also be replaced with
a Hebbian layer with only a minimal accuracy decrease. We observe a slightly
higher accuracy loss when also the fourth layer is replaced. Accuracy heavily
degrades when further layers are replaced.

Table 2. Accuracy (%) on the CIFAR-10 test set of various configurations of learning
rules. Columns ‘L1–L5’ and ‘Classif’ report the learning rule (G gradient descent, H
Hebbian rule, R random init.) used to train respectively layers 1 to 5 and the final
classifier.

Group Description L1 L2 L3 L4 L5 Classif Accuracy

1 Full SGD G G G G G G 84.95

Full Hebbian H H H H H H 28.59

2 1-bottom Hebbian H G G G G G 84.93

2-bottom Hebbian H H G G G G 78.61

3-bottom Hebbian H H H G G G 67.87

4-bottom Hebbian H H H H G G 57.56

5-bottom Hebbian H H H H H G 41.78

3 1-bottom Random R G G G G G 80.19

2-bottom Random R R G G G G 71.87

3-bottom Random R R R G G G 54.96

4-bottom Random R R R R G G 45.56

5-bottom Random R R R R R G 9.52

4 1-top Hebbian G G G G G H 84.88

2-top Hebbian G G G G H H 83.16

3-top Hebbian G G G H H H 71.18

4-top Hebbian G G H H H H 50.43

5-top Hebbian G H H H H H 32.95

5 Layer 1 Hebbian G H G G G G 80.36

Layer 2 Hebbian G G H G G G 80.68

Layer 3 Hebbian G G G H G G 80.92

Layer 4 Hebbian G G G G H G 83.75

6 Layer 2-3 Hebbian G H H G G G 72.12

Layer 3-4 Hebbian G G H H G G 74.98

Layer 4-5 Hebbian G G G H H G 76.86

7 Layer 2-3-4 Hebbian G H H H G G 63.68

Layer 3-4-5 Hebbian G G H H H G 62.43

8 Layer 2-3-4-5 Hebbian G H H H H G 47.24
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5.5 Hybrid: Hebbian Layers Between SGD Layers

Finally, more complex configurations were also considered in which network lay-
ers were divided into three groups: bottom layers, middle layers, and top layers,
as shown in Fig. 2c. The bottom layers were trained with SGD, the middle layers
with the Hebbian algorithm and the top layers again with SGD.

Table 2 (fifth to eighth group) shows the accuracy on CIFAR-10 of these con-
figurations. The table compares the accuracy of hybrid networks obtained by
choosing various combinations of inner layers to be converted to Hebbian train-
ing. It can be observed that a minor accuracy loss occurs when a single inner
layer is switched to a Hebbian equivalent. A slightly larger accuracy loss occurs
when two layers are replaced. Specifically, lower layers are more susceptible than
higher layers. Accuracy degrades more when further layers are replaced. How-
ever, the replacement of inner layers has more influence on the resulting accuracy
than the replacement of outer layers.

6 Conclusion

We explored the use of the Hebbian rules for training a deep convolutional neural
network for image classification. We extended the Hebbian weight update rule to
convolutional layers, and we tested various combinations of Hebbian and SGD
learning to investigate the advantages and disadvantages of mixing the two.

Experiments on CIFAR-10 showed that the Hebbian algorithm can be effec-
tively used to train a few layers of a neural network, but the performance
decreases when more layers are involved. In particular, the Hebbian algorithm
is adequate for training the lower and the higher layers of a neural network, but
not for the intermediate layers, which lead to the main performance drops when
switched from Gradient Descent to its Hebbian equivalent.

On the other hand, the algorithm is advantageous with respect to Gradient
Descent in terms of the number of epochs needed for training. In fact, a stack
of Hebbian layers (for instance the top portion of a hybridly-trained network, or
even a full Hebbian network), can be trained in fewer epochs (e.g. one or two
on the architecture we used) than a network trained with SGD, which needs
twenty epochs. Although the performance of deep full Hebbian networks is not
yet comparable to the one of gradient-based models, according to our results,
current Hebbian learning approaches could be efficiently and effectively adopted
in scenarios like fine-tuning and transfer learning, where Hebbian layers on top
of pre-trained SGD layers can be re-trained fast and effectively.

Moreover, the local nature of the Hebbian rule potentially provides huge
speed-ups for large models with respect to backpropagation, thus encouraging
further research to improve current approaches.
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Abstract. Automatic recognition and classification of skin diseases is
an area of research that is gaining more and more attention. Unfortu-
nately, most relevant works in the state of the art deal with a binary
classification between malignant and non-malignant examples and this
limits their use in real contexts where the classification of the specific
pathology would be very useful. In this paper, a convolutional neural
network (CNN) based on DenseNet architecture has been introduced
and exploited for the automatic recognition of seven classes (Melanoma,
Melanocytic nevus, Basal cell carcinoma, Actinic keratosis, Benign ker-
atosis, Dermatofibroma, Vascular) of epidermal pathologies starting from
dermoscopic images. Specialized network architecture and an innovative
multilevel fine-tuning method that generates a set of specialized net-
works able to provide highly discriminative features have been designed.
Finally, an SVM model is used for the final classification of the seven skin
lesions. The experiments were carried out using an extended version of
the HAM10000 dataset: starting from the publicly available images, geo-
metric transformations such as rotations, flipping and affine were carried
out in order to obtain a more balanced dataset.

Keywords: Deep Learning · Center loss · Skin lesion classification

1 Introduction

The development of systems based on image analysis for the automatic recogni-
tion and classification of skin diseases is an area of research that in recent years
is gaining more and more attention. It is indeed a challenging multidisciplinary
research area in which the application of modern machine learning techniques,
with particular attention to those based on Deep Learning methodologies, have
made automatic classification systems increasingly performing and attractive for
real uses [13].

Automatic systems for the classification of skin lesions are very desired
because, on the one hand, can drive the doctor’s attention (allowing the screen-
ing of a larger number of patients in the same portion of time) and, on the
c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11751, pp. 335–344, 2019.
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other hand, can even allow the development of domestic tools to identify per-
sons most at risk. In the scientific literature, several computer vision based
approaches making use of handcrafted features for skin lesions classification can
be found [1,4,5,12]. Due to huge inter/intraclass variation and high visual simi-
larity among different classes, the above-mentioned approaches were not able to
get satisfying performance in terms of accuracy. In the last years, Deep Convo-
lutional Neural Networks (DCNN) have increasingly being used in the computer
vision field for tasks such as image recognition and classification, showing to
exceed human performance. This surprising popularity of CNN pushed some
researchers to investigate how they can impact on automatic skin lesion classifi-
cation. Two relevant works exploiting CNN for skin lesion classification are those
proposed in [3,6]. Unfortunately, the work in [6] only deals with the binary clas-
sification between malignant and non-malignant examples. The work in [3] pro-
poses a unique model to classify multiple classes of skin lesions and to do that a
huge amount of data was used in order to handle the large number of parameters
in the model. Authors in [14] propose an approach that combines Deep Learn-
ing techniques with a low-level segmentation algorithm to distinguish malignant
and benign skins lesions. The starting idea of [21] is not far from this, but here
authors perform both the segmentation and the classification stages by means of
very deep networks with the goal of obtaining more discriminative features for
more accurate recognition. The typical degradation problem that occurs when a
network goes deeper is overcome by utilizing residual learning technique [7]. In
[18] an additional class, representing the visual patterns of regions outside the
lesion to reduce their influence on the classification decision, is introduced. In
[20] multiple imaging modalities together with patient metadata are provided
to a deep neural network to improve the performance of automated diagnosis of
five classes of skin cancer. The same five classes are the focus of the approach
proposed in [11]. Recently, an interesting comparison between the performance
of human experts and Convolutional Neural Networks for skin lesion detection
has been proposed in [16].

In this paper, a convolutional neural network (CNN) based on DenseNet
architecture [8] has been introduced and exploited for the automatic recognition
of seven classes of epidermal pathologies starting from dermoscopic images. In
particular, a network architecture more suited to the problem and an innovative
multilevel fine-tuning method that generates a set of specialized networks able,
also thanks to the linear combination of soft-max and center-loss [19], to provide
highly discriminating features have been designed. To the best of our knowledge,
the use of a model ensemble built by starting from one network architecture and
generating from that a set of specialized networks through a multilevel fine-
tuning method is the main contribution of the paper.

Starting from dermoscopic images, through each network new features are
obtained. Features are then concatenated and supplied as input to an SVM model
[15] for the final classification of seven skin lesions: Melanoma, Melanocytic
nevus, Basal cell carcinoma, Actinic keratosis, Benign keratosis, Dermatofi-
broma, Vascular. The experiments were carried out using an extended version of
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the HAM10000 dataset [17]. In particular, starting from the publicly available
images, geometric transformations such as rotations, flipping and affine were
carried out in order to obtain a dataset that is as balanced as possible.

The rest of the paper is organized as follow. In Sect. 2 the proposed clas-
sification system is described whereas Sect. 3 reports the experimental results.
Finally, Sect. 4 concludes the paper and give a glimpse of future works.

2 Methodology

The challenging problem of the classification of seven classes of skin lesions
has been faced by a novel CNN architecture. The architecture was designed by
taking as a starting point the one of the Densenet-121 presented in [8]. From the
original implementation, the first two Transition Layers and the first two Dense
Blocks were maintained whereas the number of layers in the third Dense Block
was reduced. The initial internal parameters of the net were set up as provided
after the pre-training on the IMAGENET dataset [2]. The third dense block was
simplified by reducing the number of its layers and the whole architecture is
reported in Table 1.

Table 1. The employed CNN architecture

Layers Output size Densenet-62

Convolution 112 × 112 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool, stride 2

Dense Block (1) 56 × 56

[
1 × 1 conv

3 × 3 conv

]
× 6

Transition Layer (1) 56 × 56
28 × 28

1 × 1 conv
2 × 2 average pool, stride 2

Dense Block (2) 28 × 28

[
1 × 1 conv

3 × 3 conv

]
× 12

Transition Layer (2) 28 × 28
14 × 14

1 × 1 conv
2 × 2 average pool, stride 2

Dense Block (3) 14 × 14

[
1 × 1 conv

3 × 3 conv

]
× 11

Classification Layer 1 × 1 7 × 7 global average pool
7D fully-connected, softmax

The resulting CNN was then fine-tuned on the HAM10000 Dataset [17] that
consist of 10, 015 dermoscopic images regarding the considered classes of skin
lesions: melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC),
actinic keratosis (AKIEC), benign keratosis (BKL), dermatofibroma (DF), vas-
cular (VASC). Some representative samples in the aforementioned dataset are
reported in Fig. 1.
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(a) Basal Cell Carcinoma (b) Dermatofibroma

(c) Melanoma (d) Nevus

(e) Pigmented Benign Keratoses (f) Pigmented Bowen

(g) Vascular

Fig. 1. One representative example for each of the seven Skin Lesion Classes of the
HAM10000 dataset.

Besides, in order to obtain a higher discriminative CNN model, in the learning
phase the center-loss function based approach, proposed in [19], was exploited.
In particular, in the course of CNN training, high discriminative features are
learned considering jointly softmax and center loss functions balanced by means
of a hyper parameter. The center loss function was defined by:

Lcenter =
1
2

m∑

i=1

‖xi − cyi
‖22 (1)

where the term ci ∈ �d denotes the yith class center of deep features xi.
Finally, the total loss function was defined as linear combination of soft-max

Ls and center-loss Lc functions as following:

L = Ls + γLc (2)

where the term γ is a scalar used for balancing the two loss functions. Intra-
class minimizations, during the learning phase, were controlled by means of Lc,
inter-class maximizations by means of Ls.

3 Experimental Results

The CNN introduced in Sect. 2 was trained by employing a k − fold approach
with k = 5. The whole HAM10000 (Table 2) was partitioned into five splits: four
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Table 2. HAM10000 Training Dataset. Number of images for each class.

MEL NV BCC AKIEC BKL DF VASC Total

1113 6705 514 327 1099 115 142 10015

of them were used for training and the remaining one for test. The procedure was
iterated in order to cover all the combinations of training and test splits. Given
the complexity of the network and the number of parameters to be trained
during the fine-tuning procedure, the samples of each training/test split were
increased by means of geometric transformations. In particular, from each base
image in a split additional images were obtained by rotation, flipping and affine
transformations (see examples in Fig. 2) in order to obtain training/test sets
having the representatives of each class as balanced as possible.

Each image in the balanced splits was then squared by centered cropping of
amplitude equal to the shorter side of the starting image. The resulting patch
was subsequently resized to a dimension of 224 × 224 pixels as requested by the
input layer of the network.

(a) Base image (b) Affine

(c) Rotation (d) Flipping of
the rotated im-
age

Fig. 2. Image transformations on a Melanoma sample

A multilevel fine-tuning, on the last Dense Block of the employed CNN archi-
tecture, was carried out using the training/test data splits provided by the
k − fold procedure. In each fine-tuning session, together with the last fully-
connected layer, the last two, the last four, the last six, the last eight, the last
ten and the last twelve convolution layers of the third Dense Block were modified
respectively. To explain better this step, in the first session the last three convo-
lution layers were fine-tuned whereas the parameters in the remaining layers of
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the network were not modified. In the second session, the last five convolution
layers were fine-tuned and so on. This led to six different models, namely Mod.1,
Mod.2, Mod.3, Mod.4, Mod.5, Mod.6 respectively. The classification scores, aver-
aging the obtained perfold results for each model, are in Tables 3 and 4 where
Precision/Recall and F1-score are reported.

In Tables 3 and 4 it is evident that each model performs better on a particular
class of skin lesions and this experimental evidence led to use an ensemble of
nets instead of an end-to-end classifier. To this end, the probability outputs
of each network were considered as features and chained in order to obtain
a single feature vector in order to represent all the classes as a whole. Feature
extraction was then performed on training data and the resulting feature vectors,
after dimensional reduction by means of PCA, were used to train a seven class
SVM classifier. The obtained SVM model was tested on the test data. The
entire procedure was carried out using the k − fold partitioned data and the
averaged results related to Precision, Recall, F1-score and confusion matrix of
the ensemble classifier are reported in Table 5 and Fig. 3 respectively.

In order to highlight the improvement in the performance of the proposed,
the same validation procedure with k − folded splitting of data and the same
center − loss approach was carried out by using the Densenet-121 CNN. In this
case, the last two convolution layers of the last Dense Block were fine-tuned.
Results, in terms of Precision, Recall and F1-Score, of this additional experiment
are reported in Table 6. Despite the deeper layout of the net, Densenet-121 CNN
showed a worse capacity, in terms of generalization, than the proposed approach
to classify the 7 classes of skin lesions.

This can be attributed to the high complexity of the network in terms of the
number of layers and to the low numerosity of the dataset used for which the
strategy for data augmentation used was not sufficient.

Network training was performed using two NVIDIA GTX 1080Ti cards and
the Caffe [9] framework. As optimizer, SGD was chosen with learning rate start-
ing at 0.01, weight decay and momentum equal to 0.0001 and 0.9 respectively.
The maximum number of iterations has been set at 75000, decreasing the learn-
ing rate by a factor of 10 at each step of 20000 iterations. Finally, the 0.008 value
was used for the γ parameter in the Eq. 2. Regarding SVM classifier, an RBF
kernel with λ = 0.01 and C = 10 were used.

Experimented outcomes are very encouraging. For all the classes the F1-score
was greater than 0.8, except for Melanoma (0.72) and Keratosis (0.62). Since
this is a relatively unexplored research field the fair comparison with leading
approaches in the literature is not trivial. There is no published work exploiting
the HAM10000 dataset indeed. Anyway, it is still possible to get a fair compari-
son in a quite simple way. In 2018 a dedicated challenge (ISIC 2018: Skin Lesion
Analysis Towards Melanoma Detection1) was held rightly on the HAM10000
dataset. Task 3 in the challenge was devoted to the seven classes of skin diseases
in the HAM10000 dataset. Task 3 was addressed by 141 research groups and,
excluding solutions using external data for training, the best one was the ensem-

1 https://challenge2018.isic-archive.com.

https://challenge2018.isic-archive.com
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Table 3. Results obtained using the 6 fine tuned models (In each row, upper value
refers to Precision score, lower value refers to Recall score)

Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 Mod. 6

MEL 0.70 0.70 0.73 0.70 0.75 0.72

0.56 0.52 0.54 0.60 0.55 0.68

NV 0.91 0.92 0.92 0.94 0.92 0.94

0.95 0.97 0.97 0.95 0.97 0.96

BCC 0.84 0.83 0.81 0.87 0.83 0.80

0.82 0.78 0.84 0.80 0.84 0.78

AKIEC 0.79 0.73 0.78 0.76 0.74 0.74

0.69 0.60 0.56 0.59 0.53 0.53

BKL 0.74 0.76 0.77 0.74 0.78 0.78

0.72 0.80 0.78 0.82 0.79 0.80

DF 0.80 1.00 0.90 0.75 0.90 0.82

0.72 0.82 0.82 0.82 0.82 0.82

VASC 0.93 1.0 0.91 0.93 0.92 1.00

0.93 0.79 0.71 0.93 0.86 1.00

Average 0.81 0.85 0.83 0.93 0.83 0.82

0.77 0.75 0.75 0.80 0.77 0.80

Table 4. F1-Score results related to the 6 fine tuned models

Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 Mod. 6

MEL 0.62 0.60 0.62 0.65 0.64 0.70

NV 0.93 0.94 0.95 0.94 0.94 0.95

BCC 0.83 0.81 0.83 0.84 0.83 0.80

AKIEC 0.73 0.66 0.65 0.67 0.62 0.62

BKL 0.73 0.78 0.78 0.77 0.79 0.80

DF 0.76 0.90 0.86 0.78 0.86 0.82

VASC 0.93 0.90 0.80 0.93 0.90 1.00

Average 0.79 0.79 0.78 0.80 0.79 0.81

ble of CNN described in [10]. Using PNASNet on 5-fold Validation Data authors
in [10] reported a mean precision on 7 classes (namely MCA) of 82, 6% ± 2.0
whereas the MCA score, as reported in Table 5 for the ensemble approach pro-
posed in this paper, is 88%.

A final consideration should be made: the approach proposed in this paper is
based on an ensemble of models generated by the same reduced network architec-
ture. This leads to reduced models extracted by the same network architecture
that can be exploited into embedded systems that are very desirable to quickly
move towards portable devices for domestic diagnosis of skin lesions.
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Table 5. Precision, Recall and F1-Score results for the proposed ensemble approach.

Precision Recall F1-Score

MEL 0.77 0.68 0.72

NV 0.92 0.98 0.95

BCC 0.91 0.82 0.87

AKIEC 0.80 0.50 0.62

BKL 0.86 0.77 0.81

DF 1.00 0.82 0.90

VASC 0.92 0.86 0.89

Average 0.88 0.76 0.82

Table 6. Precision, Recall and F1-Score results for the original Densenet-121.

Precision Recall F1-Score

MEL 0.60 0.03 0.05

NV 0.95 0.44 0.60

BCC 0.63 0.27 0.38

AKIEC 0.67 0.19 0.29

BKL 0.17 0.93 0.28

DF 0.22 0.18 0.20

VASC 0.21 0.50 0.30

Average 0.49 0.36 0.30

Fig. 3. Ensemble classifier Confusion Matrix

4 Conclusions and Future Work

In this work, a novel approach, based on deep CNNs, for classification of skin
lesions has been introduced. It works by using a unique (and not very deep)
network architecture from which six models have been generated (each one better
performing for specific classes of skin lesions) and then used in an ensemble able
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to handle 7 different classes of output. Due to the particular configuration of
the CNN, this approach could be exploited into embedded systems that are very
desirable to quickly move towards portable devices for domestic diagnosis of skin
lesions. Future works will deal with the challenging task of increasing the dataset
adding annotated data that can bring to more robust learning of the network
parameters. Besides, the possibility to take advantage of some pre-processing
step on input images (e.g. colour constancy) will be investigated. Finally, also
the use of a preliminary segmentation phase could be considered in order to
obtain registered images into a common reference.

Acknowledgement. The Authors thank Arturo Argentieri for his contribution to the
realization of the GPUs and software set-up used for the experiments.
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Abstract. Solving a classification problem for a neural network means
looking for a particular configuration of the internal parameters. This is
commonly achieved by minimizing non-convex object functions. Hence,
the same classification problem is likely to have several, different, equally
valid solutions, depending on a number of factors like the initialization
and the adopted optimizer.

In this work, we propose an algorithm which looks for a zero-error
path joining two solutions to the same classification problem. We witness
that finding such a path is typically not a trivial problem; however,
our heuristics is able to succeed in such a task. This is a step forward
to explain why simple training heuristics (like SGD) are able to train
complex neural networks: we speculate they focus on particular solutions,
which belong to a connected solution sub-space. We work in two different
scenarios: a synthetic, unbiased and totally-uncorrelated (hard) training
problem, and MNIST. We empirically show that the algorithmically-
accessible solutions space is connected, and we have hints suggesting it
is a convex sub-space.

Keywords: Neural networks · Solution space · Image classification

1 Introduction

One of the core problems in computer vision is image classification. Solving an
image classification problem means being able to correctly recognize an image as
being part of a class, which translates into the correct identification of key fea-
tures. Image classification finds a number of direct applications, not restricted
to tumor classification and detection [1], bio-metric identification [15,20,23],
object classification [9] and even emotions [7]. This problem is typically com-
plex to be solved, and a number of algorithms have been designed to tackle
it [8,17,24]. However, the top-performance model is here represented by neural
networks. In particular, the so-called convolutional neural networks (CNNs) are
able to automatically take as input images, process them in order to extract
the key features for the particular classification problem, and perform the clas-
sification itself. Applying very simple optimizing heuristics to minimize the loss
c© Springer Nature Switzerland AG 2019
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function, like SGD [4,27], slightly more complex optimizers like Nesterov [19] or
Adam [14] moving to the sophisticated local entropy minimizer [2,6], it is nowa-
days possible to succeed in training extremely complex systems (deep networks)
on huge datasets. Theoretically speaking, this is the “miracle” of deep learning,
as the dimensionality of the problem is huge (indeed, these problems are typi-
cally over-parametrized, and the dimensionality can be efficiently reduced [25]).
Furthermore, minimizing non-convex objective functions is typically supposed to
make the trained architecture stuck into local minima. However, the empirical
evidence shows that something else is happening under the hood: understanding
it, in order to provide some warranty for all the possible applications of image
classification, is critical.

In this work, we propose an heuristic approach which should help us to under-
stand some basic properties of the found solutions in neural network models.
Here, we aim to find a path joining two (or, in general, more) different solutions
to the same classification problem. Early attempts to explore possible joining
paths were performed using random walk-based techniques, but the complex-
ity of the task, due to the typical high-dimensionality of the problem, made it
extremely inefficient [13].

A recent work [12] suggests that solutions to the same problem are typically
divided by a loss barrier, but a later work by Draxler et al. [10] shows the
existence of low-loss joining paths between similar-performance solutions. Such a
work, however, focuses on the loss function, which is a necessary but not sufficient
condition to guarantee the performance on the training/test set. Our heuristics
puts a hard constraint on it: we will never have a performance (evaluated as
the number of samples correctly classified by the neural network model) below
a fixed threshold. In the case we ask our model to correctly classify the whole
training set, we will say we lie in the solution region S of the training model,
also known as version space. This will be our focus along this work.

In the last few years, thanks to the ever-increasing computational capability
of computers, bigger and bigger neural networks have been proposed, in order to
solve always more complex problems. However, explaining why they succeed in
solving complex classification tasks is nowadays a hot research topic [11,21,22].
Still, it is object of study why, using simple optimizers like SGD to minimize
problems which are typically non-convex, is a sufficient condition to succeed in
training deep models [5,16,18]. The aim of this work is to move a step in the
direction of explaining such a phenomenon, analyzing some typical solutions to
learning problems, and inspecting some properties of them. In this way, we aim
to give some hints on which type of solutions SGD finds, guessing whether there
is some room for improvement or not.

The rest of this paper is organized as follows. In Sect. 2 we set-up the problem
environment, aim and the algorithm is illustrated and justified. Next, in Sect. 3
we test our algorithm on MNIST and on training sets containing uncorrelated,
randomly-generated patterns. The experiments show that our proposed method
is able to always find joining paths in S between any found solution for the same
problem. Furthermore, hints on some properties of S are deducted studying
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the joining path. Finally, Sect. 4 draws the conclusions and suggests further
directions for future research.

2 The Proposed Algorithm

2.1 Preliminaries

In our setting, we have a training set Ξtr made of M pairs (ξi, σi), in which
we identify the set of inputs ξi and their associated desired output σi. For the
purpose of our work, we ask for some configuration W of the neural network
such that the entire Ξtr problem is correctly solved. If such a condition is met,
we say that the configuration W is a solution for the learning problem Ξtr. In
other words, a weights configuration Wk is a solution when

yi |ξi,Wk = σi ∀i ∈ Ξtr (1)

If we define S as the subset of all the W configurations which solve the whole
training problem Ξtr, we can say that Wk ∈ S. Let us imagine two solutions to
the same problem Ξtr, Wa and Wb, are provided. We aim to find a path Ωab ⊂ S
which joins Wa to Wb. At this point, we might face two different scenarios:

1. Ωab is simply a straight line. According to the work by Goodfellow et al., we
could draw a straight line between Wa and Wb which might be parametrized,
for example, as

lab(t) = (Wb − Wa)t + Wa (2)

with t ∈ [0, 1]. According to this scenario, this is a sufficient condition to
join the two different solutions. However, as showed by the same work of
Goodfellow et al., this is not typical [12].

2. Ωab is a “non-trivial” path as lab �⊂ S, and is not a-priori guaranteed to exist.
This is the typical scenario, and the setting in which we are going to work.
The work by Draxler et al. [10] shows that there exists a path Γab having low
loss value, however, in general, Γab �⊂ S. Our heuristics not only works for
the case Ωab �= lab, but it guarantees Ωab ⊂ S (Fig. 1).

2.2 Finding the Path

Our heuristics generates the path Ωab in a “Markov chain” fashion: we are going
to use a “survey” network Wx, whose task is to modify its configuration (i.e.
the value of its parameters) in order to move from Wa’s configuration to Wb,
never leaving S. Hence, at time t = 0 we initialize Wx = Wa, and we ask Wx to
explore S such that, at some time tf , Wx = Wb. The exploration algorithm is
designed according to three, very simple, basic concepts:

– We will never leave S.
– As we start from Wa, we want to arrive to Wb using a survey network Wx,

which draws Ωab in tf steps.
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Fig. 1. Example of the “non trivial” scenario. Here, while lab goes out the solution
region S, Ωab still remains inside it.

– At time t′, Wx will just have knowledge of the training set, direction and
distance towards the target Wb.

In order to reach Wb, we need to drive Wx at any time t to it. Towards this end,
we use an elastic force:

ΔW t
x = γ(Wb − W t−1

x ) (3)

where γ is an elastic constant, whose value is typically γ � 1.
If we just apply Eq. 3, in the non-trivial scenario, Wx will leave the solution

region, as we will have Ωab ≡ lab. Hence, what we need here is to change the
trajectory for our Ωab in a “smart” way. It will be nice to stay away from the
frontier of S. A local information we have, which might come handy in this
context, is the gradient on the training set. If we perform a GD step, Wx should
be naturally driven down the loss function and, supposedly, drives Wx away from
the frontier of S.

Along with the elastic coupling and the GD step, we impose a norm constraint
for Wx, acting as a regularizer, to be applied layer-by-layer, which bounds Wx’s
norm to:

n
(
W l

x

)
= ‖W l

b‖F − ‖W l
b‖F − ‖W l

a‖F
‖W l

b − W l
a‖F

‖W l
b − W l

x‖F (4)

where W l
x indicates the l-th layer of Wx and ‖ · ‖F is the Frobenius norm.

Essentially, we are imposing a linear constraint to the norm of Wx, which is
function of the distance from Wb. Finally, as we have the hard constraint on
remaining into S, we need to impose small steps for Wx

W t
x = W t−1

x + δW t
x (5)

where, typically,
δW t

x � ∇W t−1
x (6)

In this way, unless we find a local minimum very close to Wb and exactly on
the same path followed by Wx (extremely unlikely as empirically observed, issue
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which can be anyway easily tackled with a proper tuning of γ), we avoid to get
stuck in any local minimum.

To sum-up, in order to generate Ωab, after we have initialized Wx to Wa, we
iteratively perform the following steps:

1. Apply an elastic coupling in the direction of Wb (Eq. 3), with the hard con-
straint of never leaving S (this is hard because we will simulate a “hitting
a wall”-like fashion, i.e. we will discard all the steps which will put Wx out-
side S)

2. Perform Nepochs of gradient descent (GD) steps evaluated on Ξtr

3. Properly normalize Wx (Eq. 4)

The general algorithm is summarized in Algorithm 1.

Algorithm 1. Find joining path between Wa and Wb

1: procedure Track Ω(Wa, Wb, Ξtr)� Implicitly, Wx always normalized as in Eq. 4
2: Wx = Wa

3: Ω = Wx

4: while Wx �= Wb do
5: for Nepochs do
6: Wx = Wx − η∇Wx � ∇Wx computed on Ξtr

7: if Wx /∈ S then
8: return ∅ � η, γ not properly set

9: Wx-tmp = Wx − γ(Wb − Wx)
10: if Wx-tmp ∈ S then
11: Wx = Wx-tmp

12: Ω = append(Ω, Wx)

13: return Ω

2.3 Properties of the Path

Once we have obtained Ωab, we can perform an empirical investigation on it.
There are some interesting observations we can perform on it:

– Is there any property related to the shape of S? As typical problems are
extremely high-dimensional, it is very difficult to deduct some global prop-
erty on S. However, we might have some hint on how S is shaped from two
indicators:

• If we are always able to find Ωab ⊂ S, then we might suggest that all the
algorithmically-accessible solutions in S, collected in Salgo ⊂ S, live in a
connected subspace.

• We can study the Hessian along Ωab. Even though this is not a fully-
informative observation for S, we can deduce some properties, like the
shape of the loss in Salgo.
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– Verify how the loss function varies along Ωab: as our technique is strictly
bounded to S and not necessarily to the minimization of the loss function, it
may happen that some solutions to Ξtr have high loss.

– Check how the generalization error, defined as the error on the test set, varies
along Ωab.

All of these aspects will be empirically investigated in Sect. 3.

3 Experiments

The proposed algorithm was tested under two very different settings and archi-
tectures. In both cases, a Ωab ⊂ S path has always been found.

3.1 Tree Committee Machine on Random Patterns

In our first experiments, we use a simple kind of neural network, the so-called
Tree Committee Machine (TCM). It is a binary classifier, consisting in one-
hidden neural network having N inputs and K neurons in the hidden layer.
The connectivity of the hidden layer is here tree-like: each k-th neuron of the
hidden layer is able to receive data from an exclusive N

K subset of the input. In
particular, for our setting, the general output of the TCM is defined as

ŷi = tanh

⎡

⎣
K∑

k=1

htanh

⎛

⎝
N
K∑

j=1

Wkj · ξµ
kN

K +j

⎞

⎠

⎤

⎦ (7)

where htanh is the hard tanh.
The training set Ξtr is randomly generated: the input patterns ξi ∈

{−1;+1}(N×M) and random desired outputs σ ∈ {−1,+1}M .
All the experiments here shown are performed on TCMs having size N = 300

and K = 3 and the training sets consist in M = 620 samples. The training
of the reference solutions to Ξtr has been performed using the standard GD
technique, minimizing the binary cross-entropy loss function, with η = 0.1. The
network has been initialized using a gaussian initializer. In this setting, γ = 0.001
and Nepochs = 5. The algorithm was tested on 10 different, randomly-generated
datasets, and for each of them 3 different configurations Wi ∈ S were obtained
and attempted to be connected. The implementation of the neural network and
of the algorithm is in Julia 0.5.2 [3].

Even though we are in the typical scenario for which the error on lab > 0,
we are able to find a non-trivial path in S. For this network, it is also possible
to compute the exact Hessian matrix. Surprisingly, the typical observed scenario
here is that, along any found Ω ⊂ S, all the non-zero eigenvalues of the Hessian
matrix are strictly positive, the cardinality of non-zero eigenvalues is constant
and the reference solutions represent local minima for the trace of the Hessian
matrix. An example of this observed result is shown in Fig. 2. This result is
obtained in a hard learning scenario, and may suggest us that, even though the
learning problems are typically non-convex, GD-based techniques work because
the algorithmically accessible Salgo region, is convex.
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Fig. 2. Hessian eigenvalues along Ωab in TCM for random patterns. In this case, just
three eigenvalues are non-zero and all positive. Along the path, the loss on the training
set is proportional to the trace of the Hessian.

3.2 LeNet5 on MNIST

Experiments on LeNet5 solutions trained on the MNIST dataset have been per-
formed. In particular, at first simulations on a reduced MNIST are shown (train-
ing is performed on the first 100 images: we are going to call it MNIST-100) and
on the full MNIST dataset. The software used for the following simulations is
PyTorch 1.1 with CUDA 10.

(a) Loss on training and test set in Ωab (b) Error [%] on training and test set in Ωab

Fig. 3. Example of Ωab for LeNet5 with MNIST-100. The x axis is a normalized dis-
tance between Wa and Wb.

For the MNIST-100 case, the networks have been trained using SGD with η =
0.1, and initialized with Xavier. The joining path heuristic used γ = 0.001 and
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Fig. 4. Hessian eigenvalues along Ωab for LeNet5 trained on MNIST-100 (same exper-
iment as Fig. 3). Here the top-20 Hessian eigenvalues are plotted.

(a) Loss on training and test set along Ωab (b) Error [%] on the test set along Ωab

Fig. 5. Example of Ωab for LeNet5 with the entire training set. The x axis is a nor-
malized distance between Wa and Wb.

Nepochs = 5. Despite the higher dimensionality and complexity of LeNet5, also in
this case it has always been possible to find a Ωab path in S. A typical observed
behavior is shown in Fig. 3. It is here interesting to observe that in general,
moving through Ω, both the training and test loss are no longer monotonic or
bi-tonic, but they show a more complex behavior (an example is in Fig. 3(a)).
Furthermore, observing the test set error, it shows a similar behavior to the test
set loss, but not locally exactly the same (Fig. 3(b)).

It can be here interesting to investigate the behavior of the eigenvalues of
the Hessian along Ωab also in this scenario. Figure 4 is a plot for the top-20
eigenvalues. The Hessian eigenvalue computation has been performed here using
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the code by Gholami [26]. Interestingly, even for a more complex architecture
like LeNet5, along the entire Ωab path, the top eigenvalues are all positive.

Besides the simulations on MNIST-100, we also attempted to find a joining
path between two solutions for the entire MNIST dataset, still using LeNet5. In
this case, γ = 0.1 and Nepochs = 5, while the training of the initial configuration
is performed using SGD with η = 0.1 and initializing with Xavier. According
to our findings, in this setting, a zero-error joining path, even for the whole
MNIST problem, typically exists (Fig. 5). Interestingly, the best generalization
performance (at about 0.2 in the normalized distance scale) is here found far from
both the solutions found by SGD, and typically can not be found by vanilla-SGD,
as there is a higher training loss value (even if it lies in the version space).

4 Conclusion

In this work, a heuristic approach to find a path Ωab joining two solutions Wa

and Wb to the same training problem Ξtr is proposed. The main property of Ωab

is that it entirely lies in the solution space S of the W ’s configurations which
solve the training problem. In general, such an approach is not guaranteed to
produce an Ω: if S is not connected and Wa and Wb belong to two different
sub-spaces of S, by construction, Ωab can not exist. By our empirical observa-
tions, with a randomly-generated, uncorrelated, synthetic training set and with
MNIST, the subspace Salgo ⊆ S accessed by GD-based techniques seems to be
connected. Furthermore, we have some hints indicating that Salgo might be con-
vex and a further proof that SGD alone is not sufficient to guarantee the best
generalization, neither for nowadays simple classification problems like MNIST.

The proposed technique potentially allows us to extend the investigation of
S also to non-typical algorithmic solutions to the learning problem, along the
drawn Ω paths. These findings open to new researches in the field of explain-
able neural networks. Future work involves the study of how the generalization
error varies along Ω on more complex classification tasks and the design of an
algorithm to boost it.
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Abstract. Sport classification is a crucial step for content analysis in a
sport stream monitoring system. Training a reliable sport classifier can
be a challenging task when the data is limited in amount and highly
imbalanced. In this paper, we introduce a supervised two-stage transfer
learning (Two-Stage-TL) method to solve the data shortage problem. It
can progressively transfer features from a source domain to the target
domain using a properly selected bridge domain. For the class imbalance
issue, we compare several existing methods and demonstrate that the
log-smoothing class weight is the most applicable way for this specific
problem. Extensive experiments are conducted using ResNet50, VGG16,
and Inception-ResNet-v2. The results show that Two-Stage-TL outper-
forms classical One-Stage-TL and achieves the best performance using
log-smoothing class weight. The in-depth analysis is useful for researchers
and developers in solving similar problems.

Keywords: Multimedia content analysis · Sport classification ·
Transfer learning · Class imbalance learning

1 Introduction

The online piracy of media content is widespread, especially for sport streams.
To combat piracy of sport streams, content protection companies usually apply
a sport stream monitoring system. Figure 1 shows the workflow of such a sys-
tem, which tracks illegal activities, detects pirated sport streams, collects sample
data for sport classification and content identification, and finally enforces con-
tent rights. With respect to sport classification, traditional systems either need
human in the loop, which is not cost-effective and not scalable, or use hand-
crafted classifiers, which are not robust and lack flexibility. Thus, there is a need
to build a better sport classification model for the system.

Automatic sport classification is a sub-topic of multimedia content analysis.
Existing approaches can be categorized by the type of data (single image or
images/video), or by the algorithms (handcrafted features or deep learning) as
shown in Table 1.
c© Springer Nature Switzerland AG 2019
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Fig. 1. Workflow of a sport stream monitoring system. For each sport stream, several
screenshots are collected as the sample data for further analysis.

Table 1. Existing methods.

Handcrafted features Deep learning

Single image Fisher Kernel [1],
Bag-of-features [2]

Deep CNN image
classifiers [3–5]

Images/video Sparse features [6],
Dense trajectory [8]

Two-stream [7],
C3D [9], LSTM [10]

Since the data collected by the system is single image, we focus on image
classification methods. Deep Convolutional Neural Networks (CNN) such as
ResNet50 [4] and Inception-ResNet-v2 [5] have shown state-of-the-art perfor-
mance and outperformed the handcrafted methods. Thus, we decide to build a
sport image classification model based on deep learning methods.

Fig. 2. Pie chart of Live-Sports dataset.

To train our model, we collect a dataset using the sport stream monitoring
system and manually label the data. This dataset is called Live-Sports, which
has five sport categories as shown in Fig. 2. Due to the dataset limitation, we are
facing two challenges. The first challenge is the data shortage problem. Training
deep learning models usually require massive amounts of data. However, we
only have 6000 images over five sport categories. By training with a limited
amount of data, the generalization error of the supervised learning model can
be high [11]. The second challenge is the class imbalance problem. As shown in
Fig. 2, the dataset is highly imbalanced in categories. Recent study [12] reveals
that the class imbalance problem can have a detrimental effect on classification
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performance especially when the class imbalance ratio is large. Since our target
data has a large imbalance ratio, class balancing methods need to be applied to
reduce the detrimental effect on the target performance.

To address the first challenge, supervised transfer learning with fine-tuning,
can be applied, which reuses the deep learning model or features trained on one
task to another related task [13]. For general image classification tasks, a repre-
sentative way is to use deep learning models that are pretrained on ImageNet and
fine-tuned on the target domain [11]. It can be called one stage transfer learning
(One-Stage-TL), which transfers features from one source to one target. One-
Stage-TL works well for most cases since the earlier layers in the pretrained
network extract general features such as edges, colors, and textures, which have
high transferability for general image classification tasks [14]. However, the lat-
est findings also reveal that feature transferability drops considerably in the
higher layers when there is a large discrepancy between the source and target
domains [11]. Thus, One-Stage-TL may not be enough for achieving optimal
transferability.

In this work, we suggest an intuitive method that is called supervised two-
stage transfer learning (Two-Stage-TL). It establishes knowledge transfer from
a source domain to a target domain by using a bridge domain. In this way, it
keeps the general features in lower layers, and at the same time, transfers task-
related features in higher layers. Feature transferability is enhanced by gradually
reducing the domain discrepancy in two stages. Similar ideas have been shown in
[15–17]. Our Two-Stage-TL approach is different from theirs as it is designed for
deep learning models and it uses a two-step fine-tuning scheme, which fully fine-
tunes the CNN model in each step. Based on the defined properties in Sect. 2.1,
we find that ImageNet is a good choice for source domain and Sports-1M [18] is a
suitable bridge domain. In the experiment, we compare Two-Stage-TL with One-
Stage-TL and other training methods using ResNet50 as the model architecture
for the sport classification task. We also evaluate the performance of Two-Stage-
TL using VGG16 and Inception-ResNet-v2 for comparison. Experimental results
show that Two-Stage-TL always achieves better performance than the common
One-Stage-TL.

To address the second challenge, existing solutions include oversampling [12],
undersampling [12], class weight [12], and imbalance fine-tuning [19]. In this
paper, we use a log-smoothing class weight method and compare it with existing
methods mentioned above. Experimental results show that the sport classifica-
tion model achieves the best performance when applying log-smoothing class
weight with Two-Stage-TL.

Our contribution consists of three parts. First, we demonstrate that for multi-
class classification with a limited number of training data, the Two-Stage-TL
method outperforms the One-Stage-TL method if a proper bridge domain is
selected. Second, we compared several existing methods for the class imbalance
problem and demonstrated that for this specific problem, the log-smoothing
class weight is the best way to reduce the impact of class imbalance. Further-
more, extensive experiments are conducted on different CNN models to find the
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optimal solution considering the tradeoff of accuracy, training time, and model
size. Finally, since data shortage and class imbalance are common problems, our
in-depth problem analysis and solution are not limited to a specific application
and could be helpful to solve similar problems in other applications.

2 Two-Stage Transfer Learning

2.1 Two-Stage Transfer Learning Using Bridge Domain

For image classification tasks, researchers always recommend to pretrain the
model on a large-scale publicly available dataset and then fine-tune it on the
target dataset. This approach, which is called fine-tuning, has been widely-used
for supervised learning tasks. In this paper, we call it one-stage transfer learning
(One-Stage-TL), which only transfers knowledge once from a source task to the
target task. Here, the source domain and target domain can be denoted by
Ds = (xs

i , y
s
i )

ns

i=1 and Dt = (xt
j , y

t
j)

nt

j=1
respectively, where xs

i and xt
j are training

samples, ysi and ytj are labels, and ns and nt are the number of samples.
One-Stage-TL can improve the performance on the target task when the

source is similar to the target. However, when the source data is quite different,
it may lead to very limited performance improvement on the target task due
to the low feature transferability. To further improve the target performance,
we introduce a very intuitive supervised two-stage transfer learning (Two-Stage-
TL) approach. Different from One-Stage-TL, it progressively transfers knowledge
from the source to the target by using a bridge domain in the middle. The bridge
domain can be denoted by Db = (xb

k, y
b
k)

nb

k=1, where xb
k represents the training

sample, ybk represents the label, and nb is the number of samples.
To guarantee the effectiveness of Two-Stage-TL, the bridge domain should

have certain properties. Based on practical experience, we make some assumption
with respect to the properties of the bridge domain. First, compared with the
task of source ts, the task of the bridge tb should be more related to the task
of the target tt. Second, the data distribution of the bridge Db should be more
similar to the target distribution Dt than the source distribution Ds. Third, the
bridge dataset Xb should be larger than the target dataset Xt. Finally, since
Two-Stage-TL is used for supervised learning tasks, the bridge domain should
have labeled data without heavy cleaning work.

Based on our assumption, we find Sports-1M can be a good bridge domain
given ImageNet as the source and Live-Sports as the target. Sports-1M [18] is
a publicly available dataset, which has approximately 1 million YouTube video
links for 487 sport categories. We collect a dataset of Sports-1M with the five
sports of interest. We collect 2000 frames extracted from about 100 videos for
each sport. Non-sports contents such as commercials or interviews are removed
in advance. We find that the dataset is a hybrid of professional sports, user
generated contents and remix, while the target dataset contains only professional
sports data. Thus, Sports-1M has the same task, and visually different but very
similar data compared with the target domain, which meets the requirements of
the bridge domain.
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Fig. 3. Two-Stage-TL framework: (a) The Two-Stage-TL approach. Source data is not
required if the pre-trained model is available. (b) The two-step fine-tuning scheme.
When the target dataset is small, a smaller learning rate is applied in step 2 to avoid
overfitting [13].

2.2 Two-Stage-TL Framework

The framework of our Two-Stage-TL approach is shown in Fig. 3. In stage 1, we
pretrain the model on the source domain, transfer the features, and fine-tune
the model on the bridge domain. To speed up the pretraining step, we can use
off-the-shelf features that are pretrained on ImageNet or other benchmarks. In
this case, we do not need to collect data and train the model for the source
domain. If the bridge has a different task, the model needs modifications on
fully-connected (FC) layers. In this case, when we transfer the features from
source to bridge, features on FC layers can remain for fine-tuning or be replaced
by random initialization. Since FC layers are task-specific with a larger transfer-
ability gap [11], it should be fully trained on the new task, while the lower layers,
which contain general features, should be gently fine-tuned to further improve
the performance [13]. Thus, we use a two-step fine-tuning scheme as shown in
Fig. 3(b). In this scheme, the model is trained on FC layers with a large learning
rate in step 1 and fine-tuned on all layers with a smaller learning rate in step 2.
After training the bridge model, we transfer features of all layers to the target
model and fine-tune the model on the target task in stage 2. Similarly, the target
model is fine-tuned using the two-step fine-tuning scheme.

2.3 Class Imbalance Learning

We evaluate four class balancing methods including oversampling, undersam-
pling, class weight, and imbalance fitting. Oversampling is a widely-used sam-
pling method proven to be effective in many situations [12]. In our experiment,
we choose random minority oversampling, which randomly selects samples from
minority classes and applies data augmentation. Undersampling is another sam-
pling method, which is preferable to oversampling in some cases [12]. We choose
random majority undersampling that removes randomly selected samples from
majority classes.

Class weight is another common approach, which assigns different loss for
different classes by giving higher weight to the minority class and lower weight
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to the majority class. The original class weight is calculated by the equation:
cwi = nmajority/ni, where cwi denotes the class weight for class i, nmajority is
the number of samples for the majority class, and ni is the number of samples for
class i. Since our dataset is highly imbalanced, the class weight of a minority class
can be very large. In this case, we need to smooth the class weight to avoid getting
biased on the minority class due to the large weight. Simply dividing the original
class weight by a constant value is not enough, since the majority class suffers
from a too small weight. We introduce a log-smoothing method that smooths
the class weight by a natural logarithm function as follows: cwln

i = ln(cwi) + 1.
In this way, the class weight of minority classes shrinks to a reasonable level,
while the class weight of the majority class keeps the same. Both default and
log-smoothing class weight methods are evaluated in the experiment.

The last method, which we call imbalance fitting, is inspired by the method
in [19]. In our implementation, we first train the network on the balanced data
(by undersampling), then fully fine-tune the network with the original dataset.
To find the optimal method for our target dataset, we evaluate all of the above
methods using different training approaches.

3 Experiments

3.1 Dataset

In our experiment, ImageNet is the source domain and the pretrained features are
used for transfer learning in stage 1. Live-Sports and Sports-1M are the target
domain and bridge domain. They both have five sport categories: American
Football, Baseball, Basketball, Ice Hockey, and Soccer. Live Sports has 6000
images: 100 images for validation, 100 images for testing for each category, and
the rest are used for training. Sports-1M has 12500 images: 2000 images for
training and 500 images for validation for each category.

For the undersampling method, we create a balanced training set of Live-
Sports and each class has the same number of images (100) as the minority
class (American Football). The balanced samples are randomly selected from
the original training set. For the oversampling method, a balanced training set
is created by using data augmentation. Each category has the same number of
images (4000) as the majority class (Soccer).

3.2 Experimental Environment and Settings

The experimental environment is a PC with an Intel Xeon E5 CPU and an
Nvidia Tesla V100 GPU with 32 GB of memory. We select ResNet50, VGG16,
and Inception-ResNet-v2 as the basic CNN models in our experiment, because
they are widely used for image classification and have different levels of depth
and size. All models used in the experiments are implemented using Keras with
TensorFlow as the backend.
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To preprocess training and testing data, we resize the images to a certain
size, which is 224 * 224 for ResNet50 and VGG16 and 299 * 299 for Inception-
ResNet-v2. For real-time data augmentation during training, we use several
image processing methods provided by Keras ImageDataGenerator. The image
processing methods include rotation (−90◦..90◦), width shift (−20%..20%),
height shift (−20%..20%), shear (−0.2◦..0.2◦), zoom (−20%..20%), horizontal
flip (prob 50%), and vertical flip (prob 50%).

We use stochastic gradient descent (SGD) with momentum as the optimiza-
tion strategy in our experiment. The momentum is set to 0.9, the batch size
is set to 32, and the initial learning rate is set to 0.01. For the second step of
the two-step fine-tuning scheme, which fine-tunes on all layers, we use a smaller
learning rate (0.001) to avoid overfitting to the target domain [13]. For train-
ing from scratch, the model is trained by 100 epochs. For transfer learning, the
model is trained by 50 epochs in step 1 and 50 epochs in step 2. Instead of
running through all the epochs, we stop training when the validation loss does
not improve in 10 epochs.

In the test phase, we use classification accuracy and training time as the
evaluation metrics.

3.3 Comparison of Different Training Approaches

In this section, we evaluate the performance of Two-Stage-TL and other train-
ing methods including Train-From-Scratch, Train-From-Scratch-NoAug (with-
out data augmentation), and One-Stage-TL (using ImageNet as source). Classi-
fication accuracy and training time are used to evaluate these methods. Table 2
shows the evaluation results using ResNet50 as the basic network.

Table 2. Classification accuracy and training time of different training approaches.

Approaches Accuracy Time (min)

Train-From-Scratch-NoAug 77.8% 19

Train-From-Scratch 79% 35

One-Stage-TL 90.4% 54

Two-Stage-TL 93% 124 + 63

From Table 2, we can see that Train-From-Scratch-NoAug has the lowest
classification accuracy, which is only 77.8%. The classification accuracy of Train-
From-Scratch increases by 1.2% because of data augmentation. However, it is
still quite low (79%), which shows that training from scratch only is not enough
for training a reliable sport classifier. One-Stage-TL achieves much higher per-
formance, which is 90.4%. It shows that the pretrained weights on ImageNet are
beneficial for our task, sport classification. Compared with other methods, Two-
Stage-TL achieves the highest classification accuracy, which is improved by 2.6%
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from One-Stage-TL. It demonstrates that using Sports-1M as a bridge between
ImageNet and the target can further improve the classification accuracy. The
training time of Two-Stage-TL is more than other methods, which is 124 min in
the first stage and 63 min in the second stage. The time of the first stage can
be ignored, since it is only conducted once and the weights can be reused in the
future.

3.4 Comparison of Different Class Balancing Methods

In this section, we evaluate the performance of different class balancing meth-
ods including oversampling, undersampling, class weight, and imbalance fitting
(Imb-Fit). We use ResNet50 for this experiment because it has a good trade-off
between high performance and low training time. From Table 3, we find that
oversampling has an enhancement in performance for all training approaches.
Compared with other class balancing methods, oversampling enables the high-
est classification accuracy for Train-From-Scratch and One-Stage-TL. The per-
formance for Train-From-Scratch and One-Stage-TL approaches with the under-
sampling method drops by 5.2% and 1% respectively compared with the original
performance (in Table 2). The reason can be that removing training examples
in undersampling affects the generalizability on the test set. For Two-Stage-TL,
the undersampling method achieves higher performance than the original set-
ting and oversampling. The default class weight method does not work well on
Train-From-Scratch because the model cannot converge under the higher train-
ing loss. Two-Stage-TL with log-smoothing class weight achieves better perfor-
mance, which is 1% higher than using the default class weight method. The
imbalance fitting method does not improve the best performance of any training
approach. Overall, Two-Stage-TL with log-smoothing class weight is considered
as the most applicable approach for our problem.

Table 3. Classification accuracy of different class balancing methods (* log-smoothing).

Approaches Undersampling Oversampling Class weight Imb-Fit

Train-From-Scratch 72.6% 82.8% 20% 78.6%

One-Stage-TL 89.4% 93.2% 91.6% 91.6%

Two-Stage-TL 94% 93.4% 93% (*94%) 94%

Additionally, we compare the training time of the training approaches with
different class balancing methods. From Fig. 4, we can see that for most cases
oversampling has the longest training time while undersampling has the shortest
training time. This is caused by the different size of the training set, which is
500 for undersampling and 20000 for oversampling. Imbalance fitting and class
weight require medium level training time. If training time is crucial, Two-Stage-
TL with undersampling is the most applicable one, even though it may lose useful
information from training data.
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Fig. 4. Training time.

3.5 Comparison of Different CNN Models

In this section, we compare the performance of Two-Stage-TL on different deep
CNN models including ResNet50, VGG16, and Inception-ResNet-v2. We use
undersampling as the class balancing method for all of them. We evaluate the
models using classification accuracy and also compare the model size and the
training time in two stages. Table 4 shows the classification accuracy, training
time, and model size of three deep CNN models. We find that Inception-ResNet-
v2 achieves the best accuracy (96.8%), while ResNet50 achieves a bit lower
accuracy (94%) but requires much less training time (136 min) and has much
smaller model size (196 MB). For practical implementation, if there is a limitation
for training time and model size, ResNet50 is a good choice. Inception-ResNet-
V2 is optimal when the classification accuracy is crucial.

Table 4. Classification accuracy, training time, and model size of different CNN
models. T1 and T2 refer to the training time in two stages.

Approaches Accuracy T1 (min) T2 (min) Size (MB)

VGG16 93.8% 270 13 968

ResNet50 94% 130 6 196

Inception-ResNet-v2 96.8% 329 11 428

3.6 Feature Visualization

To demonstrate Two-Stage-TL has better transferability than One-Stage-TL,
we visualize Two-Stage-TL features and One-Stage-TL features of test images.
The features are extracted from the last hidden layer of the ResNet50 mod-
els trained by Two-Stage-TL and One-Stage-TL. We use the t-SNE method to
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(a) One-Stage-TL (b) Two-Stage-TL

Fig. 5. Visualization of t-SNE embeddings

reduce dimensions of the features and plot the t-SNE embeddings in a 2D space
for visual analysis. The t-SNE embeddings of Two-Stage-TL and One-Stage-TL
features are shown in Fig. 5, in which the data points of the same class are drawn
in the same color. Our observation is that the test examples with Two-Stage-TL
features are discriminated better compared with One-Stage-TL features. The
samples of each class in Two-Stage-TL features are better clustered with clearer
boundaries. The observation implies that Two-Stage-TL improves the transfer-
ability of the features to the target domain. The finding can explain the better
performance of Two-Stage-TL over One-Stage-TL.

4 Conclusion

In this paper, we introduced a supervised two-stage transfer learning (Two-
Stage-TL) method, which improves feature transferability by reducing the
domain discrepancy progressively. To verify its effectiveness, we conducted exper-
iments using three deep CNN models: ResNet50, VGG16, and Inception-ResNet-
v2. To solve the class imbalance problem, we evaluated different class balancing
methods. The experimental results show that the Two-Stage-TL outperforms
the classical One-Stage-TL, and it achieves the best performance using together
with log-smoothing class weight. In future work, we will extend Two-Stage-TL
to Multi-Stage-TL and explore its feasibility in multi-model applications.
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Abstract. In the last decades, the research in autonomous vehicles has
greatly improved thanks to the success of artificial neural models. Yet,
self-driving cars are far from reaching human performances. It is our
opinion that would be wise to reflect on why the human brain is so
effective in learning tasks as complex as the one of driving, and to try
to take inspiration for designing new artificial driving agents. For this
aim, we consider two relevant and related neurocognitive theories: the
Convergence-divergence Zones (CDZs) mechanism of mental simulation,
and the predicting brain theory. Then, we propose an implementation of
a semi-supervised variational autoencoder for visual perception, with an
architecture that best approximates those two neurocognitive theories.

Keywords: Mental imagery · Deep learning · Autonomous driving ·
Variational autoencoder · Free energy

1 Introduction

In recent years, the kind of artificial neural networks (ANNs) known as deep
learning [7,20] has revolutionized the field of computer vision, with unprece-
dented results [12,23,24]. One of the application domains that has definitely
benefited from the rise of deep learning is that of autonomous vehicles [1,21].
Despite the great progress reached, autonomous driving is still an unsolved prob-
lem, a major challenge for image processing is to achieve an integration with
motor commands enough reliable for an acceptable level of safety.

Contrary to common belief, humans are very reliable at driving: in the US
there is about one fatality per 100,000,000 miles. Such considerations lead to
reflect on why the human brain is so efficient in solving the driving task, and
if it is possible to take inspiration from the mechanisms whereby the brain
learns to perform such a complex task. This is the aim of the European project
Dreams4Cars, where we are developing an artificial driving agent inspired by
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the neurocognition of human driving, for further details refer to [2]. The work
here presented is a component of the Dreams4Cars project, addressing the visual
information collected by a camera on a vehicle.

Artificial neural networks are not a faithful model of how the brain works
just because their basic computational entities are named “neurons”, as often
supposed. However, in deep convolutional neural networks [12], there is some
resemblance between the alternating convolutional and pooling layers and the
composition of simple and complex brain cells found in the visual cortex [8].
Still, CNNs adhere to a neat division between the visual process and other cog-
nitive tasks, which is clearly a critical departure from behaviors of living agents,
including driving. Our effort is in leveraging on the current most established
neurocognitive theories on how the brain develops the ability to drive, in order
to derive the neural network architecture here presented.

Fig. 1. Schematic representation of the CDZ framework by Meyer and Damasio. Neu-
ron ensembles in early sensorimotor cortices of different modalities send converging
forward projections (red arrows) to higher-order association cortices, which, in turn,
project back divergently (black arrows) to the early cortical sites, via several interme-
diate steps. (Color figure online)

2 Simulation, Imagery, and Their Artificial Counterpart

The ability to drive is just one of the many highly specialized human sensorimo-
tor behaviors. What is remarkable in humans (and in part other in other mam-
mals) is the attitude of learning new motor skills without any innate scheme, a
capability that involves sophisticated computational mechanisms [5,27]. In prin-
ciple, ANN models are among the most appropriate artificial tools for replicating
this ability, being grounded on a strong empiricist paradigm of cognition [13].
However, for turning this general principle into workable models, many details
need to be unfolded.
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2.1 Simulation Theory and Convergence-Divergence Zones

A first step can be taken by adopting the proposal of Jeannerod and Hesslow,
the so-called simulation theory of cognition, dictating that thinking is essen-
tially a simulated interaction with the environment [6,9]. In the view of Hess-
low, simulation is a general principle of cognition, explicated in at least three
different components: perception, actions and anticipation. Perception can be
simulated by internal activation of sensory cortex in a way that resembles its
normal activation during perception of external stimuli. Simulation of actions
can be performed when activating motor structures, as during a normal behav-
ior, but suppressing its actual execution. The most simple case of simulation is
mental imagery, especially in visual modality. This is the case, for example, when
a person tries to picture an object or a situation. During this phenomenon, the
primary visual cortex (V1) is activated with a simplified representation of the
object of interest, but the visual stimulus is not actually perceived [15].

A second step is to identify how, at neural level, simulation can take
place. A prominent proposal in this direction has been formulated in terms
of convergence-divergence zones (CDZs) [14]. The primary purpose of “conver-
gence” is to record, by means of synaptic plasticity, which patterns of features –
coded as knowledge fragments in the early cortices – occur in relation with a
specific concept. Such records are built through experience, by interacting with
objects. A requirement for convergence zones is the ability to reciprocate feed-
forward projections with feedback projections in a one-to-many fashion – the
“divergence” path. The convergent flow is dominant during perceptual recogni-
tion, while the divergent flow dominates imagery. Convergent-divergent connec-
tivity patterns can be identified for specific sensory modalities, but also in higher
order association cortices, as shown in the hierarchical structure in Fig. 1.

2.2 The Predictive Theory

The reason why cognition, according to Hesslow or Jeannerod, is mainly expli-
cated as simulation, is because through simulation the brain can achieve the
most precious information of an organism: a prediction of the state of affairs in
the environment in the future. The need of predicting, and how it molds the
entire cognition, have become the core of a different, but related, theory which
has gained large attention in the last decade, made popular under the term “pre-
dictive brain”, or “free-energy principle for the brain”. The leading figure of this
theory is Karl Friston [3,4], who argues that the behavior of the brain, and of
an organism as a whole, can be conceived as minimization of free-energy. This
concept originated in thermodynamics, as a measure of the amount of work that
can be extracted from a system. What is borrowed by Friston is not the thermo-
dynamic meaning of the free-energy, but its mathematical form, deriving from
the framework of variational Bayesian methods in statistical physics [26]. This
basic framework is adapted by Friston for abstract entities of cognitive value, for
example, this is his free-energy formulation in the case of perception [4, p. 427]:

FP = ΔKL

(
p̌(c|z)‖p(c|x,a)

)
− log p(x|a) (1)
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where x is the sensorial input of the organism, c is the collection of the envi-
ronmental causes producing x, a are actions that act on the environment to
change sensory samples, and z are inner representations of the brain. The quan-
tity p̌(c|z) is the encoding in the brain of the estimate of causes of sensorial
stimuli. The difference between this encoding and the distribution p(c|x,a) in
the environment is computed by the Kullback–Leibler divergence ΔKL [26]. The
minimization of FP in Eq. (1) optimizes z.

2.3 Autoencoder-Based CDZs and Free-Energy Models

The CDZ hypothesis has found in the years support of a large body of neurocog-
nitive and neurophysiological evidence, however, it is a purely descriptive model.
In our opinion, a computational idea that bears significant similarities with the
CDZ scheme is the autoencoder. Autoencoder architectures have been the cor-
nerstone of the evolution from shallow to deep neural architectures [7,25], and
later exploited for capturing compact information from visual inputs [11]. In this
kind of models, the task to be solved by the network is to simulate as output the
same picture fed as input. The advantage is that while learning to reconstruct
the input image, the model develops a very compact internal representation of
the visual scene. Models able to learn such representation are closely connected
with the cognitive activity of mental imagery.

A remarkable improvement over the original autoencoders is the concept of
variational autoencoder [10], where the internal representation is implemented
in probabilistic terms, adopting the variational Bayesian framework [26]. The
encoder part is held to provide an approximated distribution p̌Φ(z|x) of the
unknown x, depending on the set of parameters Φ of the encoder. The decoder
part has its own set of parameters Θ, and from a fixed internal representation
z0 produces an output y = dΘ(z0). The typical loss function for a variational
autoencoder with parameters Φ and Θ can be written as:

L (Φ,Θ,x) = ΔKL

(
p̌(z|x)‖p(z)

) − log pΘ(x|z) (2)

where in the right hand side of the equation the first term is the Kullback–
Leibler divergence between the approximate distribution of z produced by the
encoder and the prior distribution p(z), while the second term is the element-
wise likelihood of the decoder to generate as output the same input data x.
It can be easily seen how Eq. (2) has exactly the same form of Friston’s “free-
energy”, shown in Eq. (1), therefore variational autoencoders captures both the
CDZ scheme and the idea of predicting by minimization of the free-energy.

3 Implementation

Here we present the implementation of our model of artificial visual imagery,
derived from the neurocognitive concepts just described. We implement the
model as an artificial neural network with encoder-decoder architecture, choosing
Keras with Tensorflow backend as deep learning framework.
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Fig. 2. The architecture of our model. The variational autoencoder has an encoder
compressing an RGB image to a compact high-feature representation. Then 3 different
decoders map the latent space back to separated output spaces: the decoder on top
of the figure outputs into the same visual space of the input; the other two decoders
project into conceptual space, producing binary images containing, respectively, car
entities and lane marking entities.

We describe our network as a semi-supervised variational autoencoder with
multiple decoding branches. As Fig. 2 shows, the network is composed of a single
encoder, which takes as input an RGB image and compresses the information
up to a latent space of 128 neurons. Since the images fed to the network have
dimension of 256×128×3, the compression performed by the network is almost of
4 orders of magnitude, a significant achievement compared to similar approaches
[19] which limits the compression of the encoder to only 1 order of magnitude.
The architecture of the encoder is defined by a stack of 4 convolutions followed
by 2 dense layers.

The rest of the network is divided into three separated decoders. The input of
each decoder is a tensor of 128, and all decoders have a symmetric architecture
with respect to the encoder, with 2 dense layers and 4 stacked deconvolutions.
What differs is the output space of each branch.

Similarly to the hierarchical arrangement of CDZs in the brain, autoencoder-
based models can be placed at a level depending on the distance covered by the
processing path, from the lowest primary cortical areas to the output of the
simulation. The first decoder, the one on top of Fig. 2, can be considered as
the lowest level the processes that start from the raw image data and converge
up to simple visual features. It is trained to reconstruct the same RGB image fed
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as input, therefore this “visual-space branch” makes up a standard variational
autoencoder, which can be trained in a total unsupervised manner.

At an intermediate level, the convergent processing path leads to representa-
tions that are no more in terms of visual features, rather in terms of “concepts”,
where the local perceptual features are pruned, and neural activations code the
nature of entities present in the environment that produced the stimuli [16]. In
our model we considered two concepts only, that of cars and lane markings,
those essential for the higher level, where the divergent path is in the format of
action representations. This higher level is under development [17], and is not
the focus of this paper.

Therefore, the output of the two “conceptual-space branches” of the network
is a binary image in which white pixels belong to the concept at case (other
cars or lane markings), while black pixels represent all the rest of the scene.
This is not the case of a standard variational autoencoder, where the model
output is trained as the reconstruction of the input. In our case, instead, the
conceptual-space decoders are still trained together with the encoder usign RGB
images, because this should correspond to the sensorial input information. That
is the reason why a semi-supervised training is needed here, we give the network
both the input RGB image and the corresponding target binary images for each
concept.

The loss functions for the three branches are all derived from the basic Eq. (2).
For the two “conceptual-space branches” a variation is introduced for accounting
the imbalance of pixels that do not belong to either concepts – with respect to
pixels that do belong to. We weighted the second component in Eq. (2), the cross
entropy log pΘ(x|z), by following [22], assigning the following coefficient to the
true value class:

P =

⎛
⎝ 1

NM

N∑
i

M∑
j

yi,j

⎞
⎠

1
k

(3)

where N is the number of pixels in an image, M is the number of images in
the training dataset, and P is the ratio of true value pixels over all the pixels in
the dataset. The parameter k is used to smooth the effect of weighting by the
probability of ground truth, a value evaluated empirically as valid is 4.

4 Results

In our experiments for training and testing the presented model, we adopted the
SYNTHIA dataset [18], a large collection of synthetic images representing var-
ious urban scenarios. The dataset is realized using the game engine Unity, and
it is composed of ∼100k frames of driving sequences recorded from a simulated
camera on the windshield of the ego car. We found this dataset to be well suited
for our experiment because, despite being generated in 3D computer graphics, it
offers a wide variety of illumination and weather conditions, resulting occasion-
ally in very adverse driving conditions. Each driving sequence is replicated on a
set of different environment conditions which includes seasons, weather and time
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Fig. 3. Samples from the SYNTHIA dataset. All images show the same frame of a
driving sequence, but under different environmental conditions. Starting from the top
left we have: fall, winter, spring; summer, dawn, sunset; night, winter night, fog; soft
rain, rain, night rain.

of the day. Figure 3 gives an example of the variety of data coming from the same
frame of a driving sequence. Moreover the urban environment is very diverse as
well, ranging from driving on freeways, through tunnels, congestion, “NewYork-
like” city and “European” town – as they describe. Overall, this dataset appears
to be a nice challenge for our variational autoencoder.

Figure 4 shows the results of our artificial CDZ model for a set of driving
sequences. The images produced by the model are processed to better show at
the same time the results on conceptual space and visual space. The colored
overlays highlight the concepts computed by the network, the cyan regions are
the output of the car divergent path, and the yellow overlays are the output of
the lane markers divergent path. These results nicely show how the projection
of the sensorial input (original frames) into conceptual representation is very
effective in identifying and preserving the sensible features of cars and lane
markings, despite the large variations in lighting and environmental conditions.

Table 1 display the IoU (Intersection over Unit) scores obtained by the net-
work over the SYNTHIA dataset. The table shows how the task of recognizing
the “car concept” generally ends up in better scores, with respect to the “lane
marking concept”. An explanation of why the latter task is more difficult can be
the very low ratio of pixel belonging to the class of lane markings, over the entire
image size. However, the performance of the model are satisfying, exhibiting the
best accuracy in the driving sequences on highways, and in the sunniest lighting
conditions (spring and summer sequences).
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Fig. 4. Results of our model for two driving sequence of the SYNTHIA dataset: city
centre and freeway driving, each with 9 different environmental conditions. In the
table, odd columns show the input frames, even columns show the outputs of our
neural network. In the output images, the background is the result of the visual-space
decoder, the output of the car conceptual-space decoder is highlighted in cyan, in
yellow the output of the lane markings conceptual-space decoder. (Color figure online)
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To demonstrate the generative capabilities of our model, we verified the result
of interpolating two latent space representations. The images on the left and
right of Fig. 5 are the two input images, while in the middle there are the images
generated from the interpolation of the compact latent spaces of the inputs. Even
in the case of very different input images, the interpolation generates novel and
plausible scenarios, proving the robustness of the learned latent representation.

Lastly, we would like to stress again that the purpose of our network is not
mere segmentation of visual input. The segmentation task is to be considered
as a support task, used to enforce the network to learn a more robust latent
space representation, which now is explicitly taking into consideration two of
the concepts that are fundamental to the driving tasks.

Table 1. IoU scores over the SYNTHIA dataset, grouped into the 5 different driving
sequences of the dataset (table on top) and into 9 different environmental and lighting
conditions (bottom). The results are given for the two “concepts” of cars and lane
markings, and their joint mean.

all Highway 1 NewYork 1 European NewYork 2 Highway 2

Car 0.8566 0.9245 0.9084 0.9037 0.9123 0.9251
Lane 0.6627 0.8161 0.6900 0.7522 0.6709 0.7493
mIoU 0.7597 0.8703 0.7992 0.8280 0.7916 0.8373

dawn fall fog night rain spring summer sunset winter

Car 0.8896 0.8852 0.8872 0.9009 0.9002 0.9201 0.9264 0.8978 0.9101
Lane 0.6399 0.7319 0.6509 0.6897 0.7096 0.7696 0.7532 0.7247 0.7502
mIoU 0.7648 0.8086 0.7691 0.7953 0.8049 0.8449 0.8398 0.8113 0.8302

Fig. 5. Results of interpolation between latent space representations. Images on the
extreme left and right are the input, the others are obtained interpolating the two
latent spaces of the input images.

5 Conclusions

We presented an artificial neural network inspired by the the neuroscientific foun-
dation of mental imagery, the main form of simulation grounding sensorimotor
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learning. Specifically, we addressed the two theories of convergence-divergence
zones proposed by Meyer and Damasio, and the concept of free-energy mini-
mization purported by Friston. We identified in the variational autoencoder the
artificial mechanism closest to these two neuroscientific concepts. In the domain
of autonomous driving, we implemented the network as a CDZ, at a level of
immediate perception, and at a level of intermediate concepts, of cars and lane
markers. The proposed model has been evaluated on the SYNTHIA dataset,
proving reliable results over a wide range of driving conditions and illumination.
This model is a component inside the Dreams4Cars project, immediately below
a higher level model, still based on autoencoder as CDZ, computing motor com-
mands from the conceptual representation of the environment presented in this
work.

Acknowledgements. This work was developed inside the EU Horizon 2020
Dreams4Cars Research and Innovation Action project, supported by the European
Commission under Grant 731593.
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Abstract. Classification of hyperspectral images is one of the main
problem in the research field of Remote Sensing. With the advantage
of spectral and spatial information, it is possible to distinguish effec-
tively different materials and terrains. In the last decade, the intensive
employing of Convolutional Neural Networks (CNN) for classification
and segmentation task led high quality results in the field of Hyper-
spectral Imaging. In this paper, we propose a novel CNN architecture
for HSI pixel-wise classification. In order to improve state-of-art results,
the proposed approach focuses on the use of Dilated Convolution. Also,
to face dataset imbalance problem we adopt an oversampling strategy
which increases the samples in minority classes. To prove the validity
of the proposed framework, we tested it on five different HSI datasets
and compared the performance with the most successful previous works.
Achieved performances prove that our approach is competitive with the
state-of-art and exhibits the best results on all the employed datasets.

Keywords: Hyperspectral image · Pixel-wise classification ·
Dilation layer · Oversampling

1 Introduction

Hyperspectral images (HSI) consist of hundreds of spectral bands and contin-
uous spectral features. Since every pixel of HSI is related to broad-spectrum
wavelengths, it includes more information than RGB and Multispectral images.
Thanks to the spatial and spectral information, HSI allow to discriminate dif-
ferent terrain or material on Earth surface [13]. For this reason, it has been
broadly used in Remote sensing applications (e.g., Land Cover classification).
Nonetheless, the huge spectral dimensionality and variability of spectral infor-
mation involve a high computational burden for Computer Vision tasks [10].
This problem can be prevented through a dimensionality reduction strategy like
Principal Component Analysis (PCA) [21]. PCA, is one of the most common
methods employed to address high dimensionality issues and to provide repre-
sentative features with a limited loss of discriminative information.
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Hyperspectral data for the spatial region can be described as set of spectral
measurements:

xi,j = [si,j(λ1), si,j(λ2), . . . , si,j(λN )]T (1)

Where xi,j is the spectral measurement of corresponding spatial region (i, j),
N is total number of spectral bands and si,j(λN ) is the spectral band measure-
ment at wavelength λN . This means hyperspectral image can be organized as
a collection X = {xi,j | i = 1, 2, . . . ,W j = 1, 2, . . . ,H}, where W and H are
image width and height respectively. In a nutshell, HSI is a set of N matrices,
one for each wavelength λn. In this paper, we focus on deep learning approaches
and propose a novel Convolutional Neural Network architecture for HSI pixels
classification. The main insight behind this research is the use of Dilated Convo-
lution [27] to systematically aggregate multiscale contextual information without
losing resolution. We evaluate the proposed approach on five different datasets
and point out that our CNN achieves an overall accuracy higher than 99.20% for
all the them. Moreover it outperforms all the most recent and successful state-
of-art results on the five benchmark datasets. The rest of the paper is organized
as follow: in Sect. 2, we present related works on HSI classification by focusing on
deep learning approaches; in Sect. 3, we describe the dataset preparation stage,
which includes dimensionality reduction and dataset oversampling; in Sect. 4, we
present the proposed network architecture; Sect. 5 reports experimental settings
and results; finally, Sect. 6 ends the paper with conclusions and future works.

2 Related Works

In the last years, many strategies for pixel-wise HSI classification have been
proposed. However, most of the existing works follow a conventional paradigm
which consists of two main steps: (1) handcrafted features extraction; (2) learn-
ing a classifier (e.g., SVM, Neural network, etc.). Although some traditional
approaches provide high quality results [3,22,24–26] recent works show that
strategies based on deep learning paradigm may achieve better performance.

In 2015, Yue et al. [28], proposed a framework which uses PCA, Deep Con-
volutional Neural Networks (DCNNs) and logistic regression (LR). In 2015,
Makantasis et al. [17], used a modified CNN to learn high-level features and
a Multi-Layer Perceptron (MLP) for pixel classification. In 2017, Lee et al. [14]
introduced a contextual deep CNN to optimally explore local contextual interac-
tions by jointly exploiting local spatio-spectral relationships. Mughees et al. [20]
proposed a hyper-voxel auto-encoder that efficiently exploits the spatial contex-
tual features of HSI. Li et al. [16], provided a CNN architecture which uses only
3D Convolutional layers and Fully Connected ones.

In 2018, [5], Gao et al. presented a work where the 1D spectral vectors of
hyperspectral data are transformed into 2D spectral feature matrices by empha-
sizing the difference among samples of different classes. In [15], the authors
proposed to use maximum overlap pooling to improve Alexnet performance for
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HSI classification. Guo et al. [7], employed an Artificial Neural Network super-
vised by center-loss (ANNC) for feature extraction; then, they proposed a CNN-
based Spatial Feature Fusion (CSFF) strategy to posteriorly integrate the spatial
information.

Differently from previous works, we designed a CNN which uses Transposed
Convolution and Dilated Convolution.

Transposed Convolution, also know as Deconvolution, was proposed by Zeiler
et al. in 2014 [29]. However, it is not the inverse operation of Convolution.
Actually, it operates by using convolution to map small set of values to a larger
one. It is widely used to perform up-sampling in CNN auto-encoder designed for
segmentation tasks (e.g., Segnet [1], U-Net [23]).

Dilated Convolution [27] performs a convolution by considering an area larger
then the kernel size. It is like one uses and expanded filter where the empty
positions are filling with zeros. However, no expanded filter is created, since the
filter elements are matched to distant elements in the input matrix. In CNN
architecture this allows an exponential growth of the receptive fields.

We prove validity of the proposed architecture by comparing the achieved
performance with state-of-art ones.

2.1 Datasets

The proposed approach has been evaluated on five benchmark datasets, namely
University of Pavia, Pavia Center, Botswana, Salinas and Indian Pines. All these
datasets are publicly available and employed in many researches in the field. In
this section we report the basic information about them.

The University of Pavia dataset, has been acquired using Reflective Optics
System Imaging Spectrometer (ROSIS) over Pavia, in north Italy. This dataset
includes a 610 × 610 pixels image with 103 bands. Spatial resolution is 1.3 m
per pixel. This area presents 9 different kinds of terrains; hence, each pixel is
annotated across 9 classes. Ground truth image in shown in Fig. 1(a).

Similarly, the Pavia Center dataset has been acquired by ROSIS and
presents the same number of classes. The hyperspectral image consists of with
102 bands; image size is 1096 × 1096 and spatial resolution 1.3 m. Figure 1(b)
depicts the ground truth.

The Botswana has been collected by the Hyperion sensor NASA EO-1 satel-
lite over the Okavango Delta in Botswana. This image presents 145 bands of size
1476 × 256 pixels; spatial resolution is 30 m per pixel and wavelengths covering
400nm to 2500nm. It includes 14 distinct land cover types. The ground truth
data are shown in Fig. 1(c).

The, Salinas data have been collected by AVIRIS sensor with a spatial reso-
lution of 3.7 m. Image size is 512×217 and each pixel is labeled across 16 classes.
Ground truth is reported in Fig. 1(d). Original data consisted of 224 bands, but
the 20 ones related to water absorption have been discarded. Hence, it includes
the 204 remaining bands.

Finally, Indian Pines data have been acquired by AVIRIS sensor over the
Indian Pines site in North-western Indiana and consists of 145 × 145 pixels and
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Fig. 1. (a) Ground truth image of Pavia University Dataset; (b) ground truth image of
Pavia Center Dataset; (c) ground truth image of Botswana Dataset; (d) ground truth
image of Salinas Dataset; (e) ground truth image of Indian Pines Dataset.

224 spectral reflectance bands. This scene is a subset of a larger one. It consists
of 16 classes. However, the number of channels have been reduced to 200 by
removing bands covering the region of water absorption. We report its ground
truth in Fig. 1(e).

3 Data Preparation

To prepare data, we first use Principal Components Analysis to reduce the high
dimensionality of original image (i.e., hundreds of spectral bands). PCA is a
mathematical procedure to move N -dimensional data in another N -dimensional
space where the dimensions are linearly uncorrelated [21]. Additionally, it allows
to select the M most representative dimensions. Consequently, a HSI pixel xi,j

with N spectral bands, can be reduced to a xi,j vector in M -dimensional space,
with M < N . Then, for each pixel in the reduced space, we extract a P × P
patch to use for its classification. Hence, the pixel-wise dataset for HSI pixels
classification includes a collection of patches in the new M -dimensional space.

Secondly, we randomly split the patch dataset in Training, Validation and
Test sets. Intuitively, the presence of adjacent patches in both, Training and Test
sets, could drive biased classification. Nevertheless, we ignore this fact similarly
to the state-of-art works in order to perform a proper comparison with them.
To face the problem of imbalanced dataset, we operate an oversampling on the
underrepresented classes of Training and Validation sets. To remark the problem
of class imbalance, in Fig. 2 we report the percentage distribution across the 16
classes of Indian Pines dataset. It can be noted the severe imbalance: while
almost the 25% of the samples belong to the class 11, the classes 1, 7 and 9
includes less then 1% of the samples. The employed oversampling strategy [9],
aims to replicate samples in minority classes. If largest class includes S samples,
after this process all the classes will include about S samples.

After oversampling on Training and Validation, we train the proposed net-
work. For an unbiased test, oversampling is not used on Test set. Figure 3 shows
the pipeline we adopt.
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Fig. 2. Distribution of the samples across the 16 classes of Indian Pines dataset. It can
be seen the dataset is strongly imbalanced.

4 Proposed Architecture

In this section we describe a new CNN architecture to classify pixels of HSI.
Our architecture aims to classify pixel by starting from P × P patches. The
reduced size of the input, drive us to employ Transposed Convolutions layers
for up-sampling and the Dilated Convolution layer to exponentially expanding
receptive fields without losing resolution or coverage. The architecture consists
of six layers. We found out that in the first two layers the network suffered of
neurons dying problem, hence we decided to use Exponential Linear Unit (ELU)
activation instead of Rectified Linear Unit (ReLU). This problems, also know
as “dying ReLU”, happens when the neuron get stuck and always outputs 0.
Hence, no gradients flow backward through the neuron, and it can be defined
“dead”. In other words, this stops the learning process of the CNN [2].

The layers which include standard Convolution are followed by Transposed
Convolutions layers (proposed by [29] as Deconvolution). Transposed Convolu-
tion is the process of going in the opposite direction of a standard convolution.
This is done by preserving the connectivity pattern. They aim to densify the
sparse activations of Pooling layers and give a dense activation map as output.

In the fourth layer, instead of standard Convolution, we use Dilated Convo-
lution to create a filter that presents spaces between each pixel. In order to not
decrease the feature map resolution, we choose Dilated Convolution layer with a
dilation factor of 2. Batch Normalization is used to scale the activations and to
stabilize the network by normalizing the output of the previous layer. Moreover,
to reduce network overfitting, we introduce Drop Out modules with factor 0.5.
As in most classification architectures, last layer is Fully Connected and Soft
Max units provide the output probability for each class.

Finally, we use ADAM (Adaptive Moment Estimation) optimizer [12] because
it presents the advantages of both Adaptive Gradient and Root Mean Square
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Fig. 3. The proposed framework.

Propagation. We selected the following parameters: learning rate 0.001; β1 = 0.9;
β2 = 0.99. These values control the decay rates of the exponential past gradients
and past squared gradients respectively. The proposed architecture is reported
in Fig. 4.

5 Experimental Settings and Results

To demonstrate the validity of the proposed approach we perform a 5-Fold Cross
validation test on the datasets described in Sect. 2.1. PCA is used to reduce the
original number of spectral bands to 30 dimensions, while a patch size of 5 × 5
is chosen. Then, we randomly select 60% of the patches for Training, 20% for
Validation and 20% for Test. Training and Validation set are oversampled and
then the network is trained from scratch. As in most of the literature works, we
adopted overall accuracy (OA), average accuracy (AA), and kappa coefficient
(Kappa) for performance evaluation. OA is the ratio between the number of
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correctly classified pixels and the number of all classified pixels. AA is the average
of classification accuracy of all classes, while the Cohen’s Kappa coefficient is
used to measure the agreement of classification for all the classes.

The results show an overall accuracy of 99.93%, 99.99%, 100.00%, 99.99%
and 99.81% for Pavia University, Pavia Center, Botswana, Salinas and Indian
Pines dataset respectively. Finally, for each dataset, we report the results of the
most recent works. Since in the state-of-art works, not all the datasets have been
used, we report a different table for each of them. Moreover, we do not report
some AA and Kappa values because they are missing in the original works. As
shown in Tables 1, 2, 3, 4 and 5 the proposed approach outperforms all the other
methods for all the datasets. In Botswana dataset, we even achieve the 100.00%
of performance on Botswana dataset. Moreover, the low standard deviation on
5-Fold Cross validation confirm our approach is stable for each of the datasets.

For a qualitatively evaluation, we also report the predicted classes in
Figs. 5(a), (b), (c), (d) and (e).

Table 1. Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient for
Pavia University dataset.

Method [17] [6] [19] [7] [16] Our

OA(%) 99.62 99.64 99.18 98.90 99.39 99.93±0.020

AA(%) – 99.61 98.75 98.49 98.85 99.94±0.028

KAPPA(%) – 99.53 98.95 98.52 99.20 99.91±0.027

5.1 Discussion

The lack of a common experimental setting in literature makes very time consum-
ing a rigorous comparison with state-of-art approaches. For instance, datasets
splitting is often different and this may influence the performances. Moreover,
in some works, no validation set is employed. Experimental results undoubtedly
prove that the proposed method is competitive. Actually, a stronger argument
in this sense, would require a different experimental settings for each state-of-art
work or the implementation of all of them. However, this is beyond the scope of
this paper and will be considered in future extensions.

Table 2. Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient for
Pavia Center dataset.

Method [17] [11] [8] [7] [25] Our

OA(%) 99.91 97.81 99.73 99.75 98.85 99.99±0.001

AA(%) – 92.81 99.25 99.40 98.43 99.99±0.005

KAPPA(%) – 96.88 99.61 99.64 97.90 99.99±0.002
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Table 3. Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient for
Botswana dataset.

Method [18] [22] [26] [4] [16] Our

OA(%) 97.44 88.19 89.44 97.93 99.55 100.00±0.000

AA(%) 97.80 89.53 90.60 – 99.60 100.00±0.000

KAPPA(%) – – 88.57 96.30 99.51 100.00±0.000

Table 4. Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient for
Salinas dataset.

Methods [17] [6] [15] [7] [18] Our

OA(%) 99.53 98.34 94.76 99.38 99.37 99.99±0.014

AA(%) – 99.33 94.75 99.76 99.67 99.98±0.009

KAPPA(%) – 98.15 94.16 99.30 – 99.99±0.010

Table 5. Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient for
Indian Pines dataset.

Methods [17] [6] [19] [20] [16] Our

OA(%) 98.88 97.57 96.87 90.08 99.07 99.81±0.065

AA(%) – 98.46 96.75 93.09 98.66 99.83±0.068

KAPPA(%) – 97.23 95.67 88.75 98.93 99.79±0.074

Fig. 5. (a) Predicted classes of Pavia University Dataset; (b) predicted classes of Pavia
Center Dataset; (c) predicted classes of Botswana Dataset; (d) predicted classes of
Salinas Dataset; (e) predicted classes of Indian Pine Dataset.

6 Conclusions

In this work we explore the problem of pixel-wise HSI classification and propose
a new framework which includes an oversampling stage to make benchmark
datasets balanced, and a new CNN architecture based on Dilated Convolution.
Despite the already high performance achieved by state-of-art works, our method
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outclasses all of them and achieves the best performance for each benchmark
dataset. For future works, we are planning to extend our study with an in-
depth review of HSI classification literature and perform new tests. We are also
considering to use our architecture for similar problems, like pixel-wise semantic
segmentation on different domains.
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Abstract. Deep Learning requires huge amount of data with related
labels, that are necessary for proper training. Thanks to modern
videogames, which aim at photorealism, it is possible to easily obtain syn-
thetic dataset by extracting information directly from the game engine.
The intent is to use data extracted from a videogame to obtain a repre-
sentation of various scenarios and train a deep neural network to infer
the information required for a specific task. In this work we focus on com-
puter vision aids for automotive applications and we target to estimate
the distance and speed of the surrounding vehicles by using a single dash-
board camera. We propose two network models for distance and speed
estimation, respectively. We show that training them by using synthetic
images generated by a game engine is a viable solution that turns out to
be very effective in real settings.

Keywords: Automotive · Deep Learning · Computer vision ·
Synthetic dataset

1 Introduction

The availability of large amount of indexed and labeled images is key to the
successful design of many complex vision tasks leveraging on powerful Deep
Learning (DL) techniques based on Convolutional Neural Networks (CNN). The
creation of a large dataset able to correctly represent the target scenario and
allowing the trained neural network to generalize in real applications remain a
critical design step. Resorting to human visual inspection and manual labeling
does not represent a viable solution in many scenarios. In fact, manual labeling
does not scale very well to large datasets, except for very simple and repetitive
tasks that do not require particular expertise where one can resort to crowd-
sourcing [3]. Moreover, doubts may arise on the quality of the collected infor-
mation and potential unexpected bias. Finally for some tasks manual labeling
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is simply not possible as is the case in the automotive scenario targeted in this
work, where physical quantities such as distance and speed must be estimated
from images. One option in the automotive field is to use special vehicles with
ad-hoc, and usually expensive, settings and sensors capable of gathering the
information required for training. The set-up and maintenance costs of such real
experiments may represent a significant barrier.

In this context the use of computer graphics (CG) simulation is emerging as
a powerful source of visual information. CG allows to obtain large sized dataset
in a short time and with the usage of cheap resources [11]. In addition, modern
video games are getting closer and closer to photorealism, thus promising to
bridge the gap between visual simulation and reality that is likely to be the
key to training computer vision systems that are effective in real life. Moreover,
simulation makes experimental and environmental settings more flexible: i.e.
in the automotive field, datasets with heterogeneous driving scenarios can be
generated and subjected to different weather and lighting conditions. Higher
heterogeneity can significantly improve the trained model in terms of robustness
and generalization. As an example by using a simple 3D rendering technique such
as Ray-casting in a virtual environment one can get a simulation of a LIDAR
scanner [14,15] easily obtaining information on the distance of the elements
within the image. Furthermore, it is possible to get data that are normally
difficult to obtain, such as measurements of the speed of all the surrounding
vehicles speed, that would require a complex setup on the real field.

Clearly, to customize and generate a dataset for visual training one either
needs to design a complex CG simulation environment or exploit existing high
quality game engines. The second option is viable if one has access to the source
code to easily extract information on the entities and the various elements
that make up the gaming environment (bounding box, size, distance from the
observer, type of entity, etc.). Nowadays, there are few open source simulators
that can be used to extract synthetic datasets. In the automotive environment
TORCS [1] can be used; however this tool allows the representation of only a few
scenarios with limited photorealism. On the other hand, commercial videogames
car run very realistic CG and are equipped with intelligent agents to simulate
entity actions, e.g. a pedestrian walking. For this reason the research community
has recently got interest in Grand Theft Auto V (GTAV) [4,9,12,13], a popular
open world videogame that, thanks to the libraries developed by third parties,
allows one to extract data from the gaming environment.

In a similar fashion to the work done in [13], in this work we propose two CNN
architectures to estimate distance and speed of the surrounding vehicles from a
single camera with windshield view (see Fig. 1). Training has been achieved with
GTAV simulations and performance validated in real life. The main contributions
of this paper lie in:

– a DL model the uses a pre-trained deep CNN to extract semantic features
from vehicles images and uses them to predict distance of the surrounding
vehicles from a single camera with windshield view;

– a model which uses optical-flow information to predict the speed of surround-
ing vehicles from pixel motion between pairs of video frames.
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– a training framework based on videogame simulation for the creation of train-
ing and testing datasets in the automotive field;

– we show that training with synthetic but photorealistic images represents
a viable alternative to more expensive experimental data collection, with
promising results in the estimation of distance and speed of the vehicles on
the road, observed with a single camera.

Dataset, code and pre-trained model are publicly available and can be found
at: https://github.com/mirkozaff/DeepGTAPrediction.

2 Methodology

In this section we will introduce the framework used to collect data, preprocess
them and the models used to accomplish the vision task.

2.1 Data Collection

Fig. 1. Example of a photorealistic frames extracted from the game environment.

Data have been collected from GTAV thanks to Script Hook V library (SHL),
which allows to easily access GTAV native function and extract information
about the entities (vehicles) from the game environment. Images and corre-
sponding information have been generated by configuring an in-game agent that
drives a vehicle and letting it wander the streets; during the simulation one can
collect the required information by queering the game engine through SHL calls.
For our goal we built a dataset by collecting, for every vehicle in the range of
30 m from the player, the following items:

https://github.com/mirkozaff/DeepGTAPrediction
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Fig. 2. Prototype architecture of our proposed distance model. A CNN is used to
extract semantic features, while the MLP branch is used to learn a spatial representa-
tion of the coordinates. Then all these information are merged and decoded into output
values trough a last MLP.

– Frame: 1920 × 1080 image captured at 30 Hz, gathered by setting the in-game
camera on the dashboard.

– Entity ID: identifier of the vehicle to track it in multiple frames.
– Entity speed, distance: speed and distance of the vehicle.
– Entity bounding box: pair of coordinates that define the bounding box B1 of

the vehicle in the captured frame; this is computed by projecting the 3D
bounding box obtained from the game engine into 2D screen coordinates.

We noted that the bounding boxes extracted by SHL are often inaccurate
and present a drift caused by the delay in the response to each SHL query. To
get precise bounding boxes we use pretrained Mask R-CNN [7] model to detect
each vehicle in the dumped frame (the same model will be used in the testing
phase on real-life images). For each detected vehicle Mask R-CNN output a
bounding box B2. To univocally map B2 onto previously computed B1 (and
corresponding speed and distance data) we set a threshold on the intersection
over union IoU = B1∩B2

B1∪B2
. Only the entities showing IoU ≥ 0.7 are included in

the dataset. The selected threshold has also the effect to filter out some vehicles
that cannot be reliably detected due to poor visual conditions.

2.2 Models

Distance. The first model we present is designed to estimate distance from
surrounding vehicles using a single camera with windshield view. The input is
a single image from which vehicles bounding boxes are detected, e.g. by using
Mask R-CNN. As shown in Fig. 2 the architecture is composed by two branches:

– First branch: pretrained ResNet50 [8] used to extract semantic features of the
target vehicle from the corresponding frame. To this end the classification
layers in ResNet50 are removed. The input is a frame crop based on the
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bounding box B2. In particular, each vehicle is extracted from the frame by
cropping and resizing it at 224× 224, that is the input resolution expected
by ResNet50.

– Second branch: Multi Layer Perceptron (MLP), that is used to encode the
coordinate of the bounding box B2 into a higher multi-dimensional space.
We selected the ELU activation function [5] for each layer, in place of the
classic ReLU ; we noted that in our scenario ELU is very effective to avoid
the dead-neuron problem [16].

These two branches are then concatenated and processed through a final MLP
responsible of predicting distance from the fused information produced by image
pixels and bounding box coordinates. Semantic features provided by the first
branch are important because vehicles appearing at the same scale in the image
may represent different classes of object; clearly, we cannot base the distance
estimation on the sole geometric information, i.e. bounding box dimension and
position analyzed by the second branch. In other words, as in real life, we must
take into account that cars are smaller than trucks when guessing the corre-
sponding distance.

Speed. The model proposed to estimate the speed of surrounding vehicles is
designed with a similar approach using two branches: (i) semantic based on
images, (ii) geometrical based on bounding boxes. When speed is regarded one
clearly has to consider at least two consecutive images to gather object dis-
placement over time. One option would be to directly process frames. In this
paper we propose to use as input the Optical Flow (OF) estimated from current
(and previous) frame under analysis. OF is a dense vector field that represents
the displacement of every pixel, e.g. computed using the Farneback method [6].
Moreover, we use the two bounding boxes of the same vehicle tracked in two con-
secutive frames (tracking is simply obtained in our GTAV dataset using entity
IDs, while it will require additional processing in real setting). The structure of
the model for speed estimation is as follows:

– First branch: PilotNet [2], a CNN proposed to learn salient points of the road
for autonomous driving, is used to process the input OF. The OF vector fields
is represented as an image with two bands representing vector magnitude and
direction, respectively. The obtained OF image is cropped according to B2 and
resized to 200 × 66 (the resolution expected by PilotNet). We improved the
original PilotNet model by adding batch normalization to the convolutional
layer in order to speed up convergence and by using ELU activation function
and Dropout on the last fully-connected layers.

– Second branch: same MLP structure used in previous model to encode in
a higher multidimensional space the coordinates of bounding boxes; differ-
ently from the distance estimation model, now the input is represented by
two bounding boxes associated to the same vehicle tracked in two successive
frames.
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Fig. 3. RMSE on distance (a) and speed (b) estimate.

Finally, the features extracted on the two branches are concatenated and pro-
cessed by final MLP as already shown in Fig. 2 to estimate speed. Clearly, we
adopted a heuristic similar to the one proposed for distance: the lower branch
extracts motion features based on bounding box geometrical information and
displacement; the Pilonet branch encodes richer features that depend on the OF
of all the pixels corresponding to a vehicle and potentially extract also semantic
characteristics.

3 Network Training

Using the process presented in Sect. 2.1 it is possible to generate datasets com-
prising as many vehicles, labeled with distance and speed, as desired. In this
work, we employ a training and validation sets with 250,000 and 2,500 samples,
respectively to train the distance model. As far as the speed model is regarded,
we extract from previous dataset all vehicles visible in two consecutive frames
generating a set of 180,000 OF images for training and 1,500 for validation.

The proposed models have been trained using Mean Squared Error (MSE)
as loss function and Adam optimizer with the following parameters: lr = 0.001,
β1 = 0.9, β2 = 0.999. In order to avoid over-fitting the training has been stopped
as soon as the loss computed on the validation set ceases to decrease; in our
experiments this usually happened after about 15 training epochs.

Training of all MLP sub-networks has been done using Dropout with param-
eter p = 0.4. In the distance model ResNet50 weights pretrained on ImageNet
have been kept fixed, while optimizing only the other MLP sub-networks. In the
speed model all the network has been trained since no pretrained PilotNet useful
in our context was already available.

Training has been run on a PC with Intel(R) Core(TM) i9-7940X CPU, 128
GB RAM and NVIDIA GeForce GTX 1080 Ti (x4). Testing was performed
both on the same machine and on a lighter one with Intel(R) Core(TM) i5-6400,
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8 GB RAM and NVIDIA GeForce GTX 1050 Ti. This latter has been selected
as representative of the hardware that one expects to have on board a vehicle
as opposed to the previous higher-end server.

4 Experimental Results

In this section we describe the experimental results obtained in different simu-
lated and real settings.

4.1 Testing on Synthetic Dataset

As a first step, the estimation accuracy of the trained models has been evaluated
on synthetic datasets of size 2,500 and 1,800 for distance and speed, respectively.
These testing sets have been generated using the GTAV simulation described
in Sect. 2.1. It is worth pointing out that training and testing sets have been
generated with different random simulations to make them independent.

The proposed models are able to predict distance with a Root MSE (RMSE)
of about 2.46 [m] and speed with RMSE of about 2.75 [mph]. In Fig. 1 we provide
an example of the obtained visual results. The image shows a car and a truck
with labels representing ground truth and predicted distance and speed. For the
car the model predicts a distance of 3.8 m versus a real value of 3 m and 9.5 mph
speed versus 10.2 mph.

In Fig. 3 we analyze in more details the estimation accuracy. In particular,
Fig. 3(a) shows the RMSE on distance as a function of the actual distance range;
to this end we compute RMSE (the circle marker) and standard deviation of the
estimation error (vertical bars) by binning the collected results in increasing
distance ranges of 5 m in the interval (0, 30) m (the top error bar indicates an
overestimate, whereas the bottom segment represents an underestimate). It can
be noted that, as one may expects, the RMSE increases for larger distances.
Overall the distance estimates are quite accurate and unbiased (almost symmet-
ric error bars) within a range of 15 m: as an example the RMSE in the range
(0, 5) m is 1.23 m and in the range (5, 10) m is 1.57 m. For farther vehicles the
predictions are less accurate and the model tends to underestimate the distance.
This can be explained by the fact that at distances greater than 15 m vehicles
are represented in the image by fewer pixels limiting the information extraction
capabilities of the convolutional layers.

In Fig. 3b we show similar RMSE analysis on the speed estimate as a function
of the speed up to 20 mph, that is the maximum value that can be simulated
in GTAV. It can be noted that speed RMSE increases as a function of speed.
The obtained results shows that the proposed network can guess the speed of
the surrounding vehicles at reasonable level by using a single camera view. As
an example, in the speed range (0, 5) mph we get RMSE equal to 2.10 mph, and
in the range (5, 10) mph we get RMSE equal to 4.15 mph. We expect to be able
to improve such results by increasing the number of temporal frames analyzed
by the model and using better OF representations.
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4.2 Testing on Real Dataset

As already mentioned in Sect. 1 one of the goal of this work is to understand if
CG simulation can be used to effectively train DL models that can be employed
in real settings. To answer this question we need vehicles videos with annotated
data. To this end we used the video sequence provided in [10] and corresponding
distance estimates as an example of real dataset. In Fig. 4 we compare the RMSE
on distance prediction obtained on the real and synthetic datasets subdivided in
2 m ranges (please note that images from [10] are limited to a 6 m range). It can
be noted that the proposed model is quite robust and generalizes well in real
life scenario, even if the actual environment can be significantly different with
respect to GTAV simualtion. Indeed it can be noted that, in the experimented
distance range, the RMSE of the real dataset increases by less than 0.5 m with
respect to the synthetic testing set. Overall the test RMSE was 1.21 on synthetic
data and 1.40 on real data. We would like to perform similar experiment with
speed prediction but unfortunately, to the best of our knowledge, there is no
publicly available dataset that can be employed to this end. Indeed, the setup
of a real road experimentation is quite complex.
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Fig. 4. RMSE on distance estimate (synthetic and real images).
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Fig. 5. Example of distance estimate in real environment.

4.3 Testing on the Road

Finally, the model has been tested on a video recorded on the streets around our
city using a Go Pro Hero 6 placed on the car dashboard. This last experiment
was accomplished in real road environments (both urban and highway) to check
the meaningfulness of the obtained predictions. In this case we do not have
ground truth data. By analyzing the operations of the proposed system in real
live we noted that the predicted distances are plausible and coherent, i.e. vehicles
appearing at the same distance are assigned the same value, and approaching
vehicles exhibit decreasing distance. As in previous experiment also in this case
the model performance is not significantly impaired by the road environment
that is very much different with respect the GTAV scenario.

4.4 Computational Cost

In this section we analyze the computational cost of the proposed solutions by
measuring the execution time of different algorithmic steps of the two hardware
architectures described in Sect. 3; these are meant to be representative of a work-
station performing remote computation and lower-end hardware compatible with
in vehicle system. In Table 1 we show the average time taken by the calculation
of the bounding box, speed and distance estimate for an image with 5 vehicles
(on average). It can be noted that to get acceptable delays (compatible with
real time requirements of advanced driver-assistance systems) it is necessary to
use powerful workstation. As expected the speed estimate represent the slowest
module.
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Table 1. Execution time of different algorithmic steps.

Work station

290 ms Bounding box

15 ms Distance

45 ms Speed

120 ms Latency

500 ms Total

On board PC

2 s Bounding box

280 ms Distance

880 ms Speed

3 s Total

5 Conclusions

In this paper, we proposed two models to accomplish two different tasks: speed
and distance prediction using a single camera looking at the road from the driver
perspective. Since for such tasks it is either technically difficult or quite expen-
sive to get real video sequences for training CNNs, in this paper we proposed
to use simulated data generated by means of a popular game engine. Such an
approach allowed us to collect photorealistic driving scenes, where all the visible
vehicles can be labeled with distance and speed information. We designed two DL
models built around similar ideas: one branch extracts features from the input
images, a second one maps vehicles’ bounding boxes (dimension and position)
to higher dimensional space, and a last MLP network infers distance or speed
from all the extracted features. The estimation accuracy has been evaluated on
both synthetic and real data showing that the simulated images can be used
to effectively train the proposed models. For future work we plan to improve
the models by substituting the bounding box detection network with a lighter
version and using a DL approach to estimate OF for speed prediction. Moreover,
we plan to enrich the input available to the network by including parameters
that can be logged on board a car such as throttle, brake and steering data to
mention a few.
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Abstract. In the last few years, Deep Learning (DL) gained more and
more impact on drug design because it allows a huge increase of the
prediction accuracy in many stages of such a complex process. In this
paper a Virtual Screening (VS) procedure based on Convolutional Neural
Networks (CNN) is presented, that is aimed at classifying a set of candi-
date compounds as regards their biological activity on a particular target
protein. The model has been trained on a dataset of active/inactive com-
pounds with respect to the Cyclin-Dependent Kinase 1 (CDK1) a very
important protein family, which is heavily involved in regulating the
cell cycle. One qualifying point of the proposed approach is the use of
molecular fingerprints as a suitable embedding for describing molecules;
up to our knowledge there is no Deep Learning approach for VS that
makes use of such descriptor. Several kinds of fingerprints are reported
in the scientific literature to address different aspects of both the struc-
ture and the local properties of a molecule. Both 1D and 2D CNNs have
been trained to test the performance of each single descriptor separately,
along with suitable ensembles of multiple descriptors for the same com-
pound; the best performing architecture has been used for prediction.
The CNN architectures are described in detail, and the results are com-
pared with some recent approaches for Virtual Screening with respect to
Cyclin-Dependent Kinase proteins that do not use molecular fingerprints
as their descriptor.
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1 Introduction

Drug discovery is the very long and complex process leading to the development
of a new medication, where several steps and loops are involved. Indeed, one
of the most relevant parts in the drug discovery cycle is drug design when one
already knows the biological target the new compound has to bind to. In general,
a biological target is an enzyme or a protein. In a modern drug design setup,
many compounds are screened to assess the best matching ones as regards their
ability of either inhibiting or activating the target associated to a particular
disease. Such a process is also referred to as Inverse Pharmacology or Target-
based Drug Design.

As part of his/her work, the drug designer needs to consult large public or
private databases to retrieve information about existing molecules. Such queries
can have different nature; particularly, it is necessary to investigate how two
molecules can bind with each other according to purely chemical criteria, taking
into account biological constraints due to the molecule toxicity for the human
organism. From the data point of view, these queries return very heterogeneous
information ranging from a whole molecule graph representation to textual and
numerical data.

In recent years, computer aided drug design has gained increasing importance
to speed up the whole process thus reducing the cost of developing new drugs
significantly. Virtual Screening (VS) refers exactly to an automated procedure
aimed at selecting those molecules that are likely to be active on the desired
target. Such procedures range from similarity search to Machine Learning (ML)
approaches, and all of them rely on using suitable numerical descriptors of both
the structure and some chemical properties of the candidate compound.

Virtual Screening can be regarded as a classification task in the ML perspec-
tive; typical approaches are Support Vector Machines and Random Forests. In
the Deep Learning era, both Convolutional and Recurrent Neural Networks are
used for VS and in other fields of Pharmacology like the prediction of chemical
reactions. The reader is referred to [8] for a recent and thorough review.

In this paper a VS procedure based on Convolutional Neural Networks (CNN)
is presented, that is aimed at classifying a set of candidate compounds as regards
their biological activity on the Cyclin-Dependent Kinase 1 (CDK1) a very impor-
tant protein family, which is heavily involved in regulating the cell cycle. This
work is part of a more wide research oriented to the development of new CDK1
inhibitors starting from natural products, to be used in cancer therapy. The
choice of this target is given by the previous experience of the research group in
the CDK1 modulators and the fact that canonical VS approaches on CDKs do
not respond properly to activity prediction because of high structural similarity
between different kinases binding sites. The importance of the target is given by
its validation as drug target. It is an archetypal kinase acting as central regulator
that drives cells through G2 phase and mitosis. Its importance in tumorigenesis
has been demonstrated by the evidence that, unlike other CDKs, loss of CDK1
in the liver confers complete resistance against tumor formation demonstrating
its role in the cancer development [4].
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The proposed CNN architecture makes use of molecular fingerprints as the
numerical descriptor of each candidate molecule, and this is quite a novelty
as regards DL approaches for biological activity prediction. Several kinds of
fingerprints are reported in the scientific literature to address different aspects of
both the structure, and the local properties of a molecule. The same fingerprint
can be devised also with different sizes. As a consequence, experiments have
been performed to test the performance of each single descriptor separately by
training 1D CNNs. Also 2D CNNs have been trained on suitable combinations
of different equal sized fingerprints for the same compound, to take into account
all the diverse information pieces coming from such descriptors at once. As it
was expected, multiple fingerprints performed better, and results are reported
as regards both the best ensemble and the best size. Moreover, we compared
our results with some recent approaches for Virtual Screening with respect to
Cyclin-Dependent Kinase proteins that do not use molecular fingerprints as their
descriptor.

The rest of the paper is arranged as follows. Section 2 reports a review of the
state of te art in ML and DL in drug design, and particularly in VS. Section 3
contains a description of molecular fingerprints along with the details on the
datasets, and the CNN architectures. Section 4 contains results and comparisons,
while conclusions are drawn in Sect. 5.

2 State of the Art

Clinical candidate molecules selected by drug detection must have a profile
responding to different criteria, that are based not only on the effect potency
but also on the selectivity, safety as well as the so called ADMET properties
(Absorption, Distribution, Metabolism, Excretion and Toxicity). Therefore, the
design of the optimal compound is a multidimensional challenge involving differ-
ent aspects of Chemistry and Biology, which is faced using ML. One key aspect
for ML approaches gaining success in property prediction is the possibility to
access and mining large data sets that contain heterogeneous information. Until
recent years, the best performing ML techniques were “shallow” ones [9] that is
support vector machines (SVM) and decision trees, particularly ensemble meth-
ods like Random Forest (RF). All these ML models should be iteratively refined
with new experimental data to increase model reliability and predictive power.

The Kinase protein family presents a huge variety, and contains a very high
number of proteins so it provides an amount of data that is well suited for
ML approaches oriented to VS for novel kinase inhibitors. In [11] Bayesian
models were generated for building Quantitative Structure-Activity Relation-
ship (QSAR) models on different kinases from a large, but sparsely populated
data matrix of more than 100,000 compounds. Random Forest has been applied
in another case study for predicting kinase activities on hundreds of kinases
starting from publicly available data sets integrated with in-house data [12]. In
several examples, Random Forest models showed a higher reliability in predic-
tion when compared to other approaches, but they perform worse than deep
neural networks.
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DNNs have been used for predicting different properties such as biological
activity, ADMET properties, and physicochemical parameters demonstrating
reliable and robust predictivity capabilities with high sensitivity when used on
different targets [7,15]. AtomNet was one of the first CNNs designed for drug
discovery to predict bio-activity of small molecules [16]. CNNs have been used
also to predict several properties such as the kinetic energy of hydrocarbons
as a function of electron density [17]. Several DNN architectures use Simpli-
fied Molecular Input Line Entry System (SMILES) as their input data [3,6,14].
SMILES is actually a simple chemical language whose rules allow building string
descriptors that can represent both molecular structures and reactions.

The architecture presented in this work relies on CNNs and molecular fin-
gerprints for VS of compounds as regards their biological activity on the CDK1
protein. Up to our knowledge there is no other approach in the literature mak-
ing use of molecular fingerprints as the data embedding for training a VS deep
neural model for bioactivity on CDK1. A detailed description of molecular finger-
prints is reported in the next section. As regards CDK-oriented VS, Li et al. [10]
propose a least-squares support vector machine (LS-SVM) trained on molecu-
lar descriptors to build a Structure-Activity Relationship (SAR) model to clas-
sify oxindole-based inhibitors of CDK1 and CDK2. In another study, Pereira
et al. [13] present DeepVS a deep learning approach for docking-based virtual
screening that has been tested on the data sets included in the Directory of
Useful Decoys (DUD) where only CDK2 were used. The results reported in the
two previous works were considered to compare the performance of the proposed
architecture, computing the fingerprints of the data sets they used. The results
of our experiments against DeepVS are reported in Sect. 4, while results reported
by the authors of LS-SVM were not useful because they used a very small data
set made by 82 compounds referred to by numerical IDs, that was extracted
manually from another paper in the literature. As a consequence it was not pos-
sible for us to retrieve the original compounds from any chemical database for
generating their fingerprints.

3 Materials and Methods

In this section we report a description of molecular fingerprints, the data sets
used in our experiments, and the architecture of the proposed CNNs.

3.1 Molecular Fingerprints

Modern approaches in Chemoinformatics have focused on the use of ML tech-
niques applied to fingerprints instead of classical molecular descriptors. The rea-
son is that fingerprints contain information on chemical groups and paths; they
provide complete information about molecular complexity thus allowing a more
robust comparison between two or more structures than molecular descriptors
do. SMILES descriptors also convey information on molecular structures but
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their inherent string form needs the cycles to be cut, and the description of the
same molecule is not unique thus a “SMILES canonicalization” is also needed.

Molecular fingerprints are generated analyzing each atom along with its
neighborhood till 6 or 7 bonds away. Such a neighborhood is searched for a
set of predefined molecular substructures, the so called patterns, that is atom
types, bond types, presence of rings, ans so on. After having enumerated all the
patterns in the molecule, each of them is used as a seed for a hashing function
that outputs in general 4 to 5 index positions whose corresponding bits are set to
1 in the “pattern fingerprint”; such a fingerprint is bit-wise ORed to the molec-
ular one. Actually the hashing function can cause a bit collision so we are not
guaranteed of the effective presence of a particular pattern unless at least one of
its bits is unique. On the other hand, a molecular substructure is absent if all its
bits are set to 0 in the fingerprint. A simplified fingerprint generation procedure
is reported in Fig. 1.

Fig. 1. Simplified fingerprint generation: the hashing function sets just 1 bit per pattern

Molecular fingerprints are generated using different approaches as regards
both the neighborhood definition and the size. In our experiments we tested six
among the most popular fingerprints: RDKit, Morgan, AtomPair, Topological
Torsion, Layered, and FeatMorgan. All of them differ in the choice of the paths
along the molecule to devise patterns, and particularly the Morgan and Feat-
Morgan fingerprint are circular that is they generate patterns by going through
each atom of the molecule and obtaining all possible paths through this atom
with a specific radius. Each unique path is then hashed into the fingerprint:
the larger the radius, the larger fragments are encoded. Fingerprints’ length can
range from 256 to 4K bits; in classical VS, different size fingerprints are com-
pared by “folding” them. The two halves of the longest fingerprint are bit wise
OR-ed thus obtaining a new fingerprint whose length is one half of the original
one. In our experiments, we tested each kind of fingerprints using three different
lengths: 256, 512, and 1024 bits, while the radius of the circular fingerprints was
set to 2, that is the conventional value.

From the computational point of view, VS procedures take advantage from
the fact that fingerprints are not too sparse bit vectors. Non ML approaches
perform different search strategies where some well known similarity measures
are used like Tanimoto, Cosine, Dice, Euclid, or Twersky; such measures are
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computed starting from the number of 1s counted respectively in each fingerprint,
and on the number of 1s in common between the two fingerprints.

Fingerprints have been also learnt from molecular graphs using CNNs as
reported in [5]. In this work, a single convolutional layer with softmax activation
is used in place of the hashing function to produce the bits indexing of a atom
neighborhood collected in the same way as circular fingerprints do. Authors
report very good performance in predicting both solubility and toxicity from two
purposely defined data sets, but the approach suffers from a high computational
cost when compared with direct use of circular fingerprints.

3.2 Data Sets

The data used in our experiments where extracted from the well known CheMBL
molecular database [1]. Biological activity of the tested compounds was measured
using the half maximal inhibitory concentration parameter (IC50) that is the
amount of substance which is needed to inihibit the target protein (i.e. CDK1)
by one half. A molecule has been considered active when IC50 ≤ 9 µM, otherwise
it is inactive.

Data preparation was accomplished using the KNIME data analysis plat-
form [2], and a workflow was implemented to prepare both the training and
the test set. Activity data for 1830 compounds on the CDK1 target were taken
from the CHEMBL308 ID were CDK1 is considered as a single protein, and the
CHEMBL1907602 ID were it is considered as a protein complex.

At first, incomplete data were deleted; the training set was then made using
1432 samples with a perfect balancing between the two class labels. Particularly,
716 active samples and 662 inactive ones were selected from the CHEMBL308
ID, while 54 inactive samples were selected from the CHEMBL1907602 ID.
The test set was made as a whole by 175 inactive molecules coming from the
CHEMBL1907602 ID, and 100 active samples coming from the CHEMBL308
ID.

Data in the two CheMBL IDs were searched for duplicates that were removed
to avoid repetitions in both the training and the test set. However it is worth
noting that in the same data set there may be two times the same molecule with
very different IC50 value coming from two different biological assays. We have
not used data augmentation because it is not possible to generate molecular
fingerprints and predict whether they are active molecules or not in a specific
biological assay but we have used 5-cross validation.

3.3 The CNN Architecture

Molecular fingerprint generation acts as a transform on the molecular struc-
ture from the spatial domain to a suitable Vector Space Representation. A fin-
gerprint represents the corresponding molecule “as a whole” that is it conveys
information about the presence of a particular substructure but not on its exact
position or its repetition in different sites of the same molecule. Moreover, we
want to perform a binary classification between active and inactive compounds,
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and biological activity is mostly related to the presence/absence of particular
substructures which in turn are well suited to bind to the target protein. As
a consequence, a CNN architecture appeared to be the best choice to classify
molecular fingerprints.

In this study we present two CNN architectures that have been trained from
scratch; the first is a 1D CNN trained on single fingerprints, and a 2D net-
work where each compound was represented by an ensemble of equal length
and different kind fingerprints arranged as a bi-dimensional matrix. The sec-
ond network is aimed at modeling those structural subtleties that can not be
represented by any single descriptor alone. In general, different patterns are
searched for in each fingerprint kind, and also the same pattern is searched
in different ways. Both networks consist of 4 convolutional layers with 512,
256, 128, 64 filters respectively with ReLU activation, each followed by a 2 ×
2 Max Pooling, while they differ only in the convolutional kernel dimensions.
Classification is achieved through a MLP with 1024, 512, and 256 ReLU units
respectively, while the ouput is a sigmoidal unit as we want binary classifica-
tion. The overall architecture is reported in Fig. 2. Hyperparameters tuning was
performed as a grid search in the following sets of values; Convolutional fil-
ters tested were [1024, 512, 256, 128, 64] in combination with all Keras padding
value; learning rate were multiplied by 10 in the ranges [10−6, 1; 2 · 10−5, 0.2].
Dropout probabilities where in the range [0.2, 0.9] with step 0.1, all the
available optimizers in Keras were tested. Bi-dimensional tested kernel sizes
were {(20, 2), (20, 1), (15, 2), (15, 1), (5, 2), (5, 1), (4, 2), (4, 1), (3, 2), (3, 1)}, while
1D tested kernels were {2, 3, 4}. Batch sizes were doubled in the range [8, 128].
Early sopping was used to devise training epochs. Table 1 shows the best choices
for all the hyperparameters. Due to the low number of samples, small size fin-
gerprints were tested with a number of epochs greater than 55; retraining was
performed with 70, 100 and 120 epochs, and the minimum loss was achieved
with 100 epochs. No overfitting was encountered with this setup. Hyperparam-
eter optimization took about 150 h to be accomplished on a GPU NVIDIA
GTX1060 6 GB, 1280 CUDA Cores, while each experiment took about 20 min.

Fig. 2. Bi-dimensional architecture of the network
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Table 1. Hyperparameters setting, used in all experiments.

Optimizer Learning rate Dropout Kernel size 2D Kernel size 1D Batch size Epochs Padding

Adamax 0.0002 0.5 (5,2), (5,1) 3 64 55 Same

4 Results and Discussion

The first set of experiments where devoted to devise the best performing finger-
print type/size in predicting biological activity, and 1D CNN was used. Table 2
reports the best test results for each fingerprint size along with its type. Here
and in the following tables, best results are highlighted in bold. The table reports
the achieved test accuracy, the F1-score, and the AUC value, which is used com-
monly when comparing two approaches in the drug design literature. Both a
SVM and a Random Forest model were trained on our data sets to validate the
performance of our model. The results of such experiment are reported in Fig. 3.
As it was expected, ML approaches have a very poor accuracy performance
(SVM = 0.9081, RF = 0.9081) if compared to ours best architecture (0.9345),
despite the better AUC value shown in Fig. 3.

Table 2. Results of 1D CNN on the test set

Length Fingerprint Accuracy Loss F1-score AUC

1024 Layered 0.9100 0.54 0.8700 0.9453

512 Layered 0.9272 0.4447 0.9000 0.9610

256 Torsion 0.8654 0.5456 0.831 0.9481

Fig. 3. ROC Curves comparison of the proposed architecture with classical ML
approaches; (a) best performing 1D CNN (L-512); (b) SVM; (c) Random Forest.

The second round of experiments was aimed at devising the best finger-
print combination/size for biological activity prediction using 2D CNN. The
idea behind this experiments is that different fingerprints for the same molecule
contain many different patterns, which in turn describe different molecular sub-
structures. Also different sizes correspond to patterns with variable length.
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Table 3. Results of the 2D CNN on the test set with different fingerprint length.
Fingerprint types: (R)DKit, (M)organ, (A)tompair, (T)opological Torsion, (L)ayred,
and (F)eatMorgan

(a) 1024 bit fingerprints

Fingerprints Accuracy Loss F1-score AUC
M,L 0.9200 0.5600 0.8800 0.9563
R,M,A 0.900 0.6800 0.8600 0.9527
M,A,L,F 0.9200 0.6000 0.8877 0.9444
R,M,A,L,F 0.9163 0.6082 0.8820 0.9513
R,M,A,T,L,F 0.8945 0.6280 0.8557 0.9494

(b) 512 bit fingerprints

Fingerprints Accuracy Loss F1-score AUC
M,F 0.8981 0.4463 0.8679 0.9555
M,T,L 0.9345 0.3900 0.9117 0.9685
R,M,T,F 0.9418 0.4268 0.9001 0.94
R,A,T,L,F 0.9127 0.4052 0.8867 0.963
R,M,A,T,L,F 0.9236 0.3950 0.9004 0.9774

(c) 256 bit fingerprints

Fingerprints Accuracy Loss F1-score AUC
L,F 0.9090 0.4087 0.8792 0.9655
R,L,F 0.9127 0.4734 0.8846 0.9606
R,A,L,F 0.9054 0.4914 0.8749 0.9572
R,M,T,L,F 0.8909 0.5380 0.8623 0.9624
R,M,A,T,L,F 0.8981 0.5982 0.8679 0.9537

As a consequence, a set of fingerprints arranged as a 2D matrix can act as a
better descriptor for molecular substructures than a single one can do. Table 3
reports the overall results for different fingerprint sizes.

As it is reported in Tables 2 and 3, the best performance is achieved with the
set of Morgan, Topological Torsion and Layered 512 bit fingerprints (MTL-512).
Layered fingerprints are always among the best performing descriptor regard-
less their size. Moreover, 512 Layered is exactly the best performing descriptor
in the 1D CNN architecture. It is trivial to say that 512 bit is the input data
size that best suits to the network capacity as it is defined by its architecture.
As regards the fingerprint types, it is difficult to devise an exact explanation of
the results due to the random process involved in the generation of molecular
fingerprints. It is not possible to devise precise patterns in precise positions that
are mainly responsible for the network performance. Anyway, we can say that
Layered fingerprints have a particular hashing scheme that allows accommodat-
ing substructure information with high level of detail so it is reasonable that 1D
CNN achieved its best performance using this kind of fingerprint. As regards the
2D CNN’s performance, it is worth noting that MTL-512 fingerprints together
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span all the diverse criteria to search for patterns so it seems quite reasonable
that such a triple produced the best result.

We further validated our architecture against the DeepVS network, which is
presented in [13], and deals with VS versus CDK proteins even if there are some
differences with our work.

DeepVS was trained on the CDK2 protein only; the authors tested their
network with a subset of the CHEMBL301 data set, which is extracted from
the DUD-E data set (798 active molecules and 28,329 decoys). At first, the
entire CHEMBL301 data set that consists of 1528 compounds (956 CDK2-active
molecules, and 572 inactive ones) was used to test the MTL-512 2D CNN. In this
experiment our network achieved AUC = 0.8030 that is a very good result when
compared with AUC = 0.82 achieved by DeepVS, which was trained purposely
for CDK2. As some compounds in CHEMBL301 are also active on CDK1, we
removed explicitly all of them to stress the network performance. As a result,
we obtained AUC = 0.678, which shows an obvious decrease; this still remains
a satisfactory result if related to human performances in VS, and also classical
ML approaches.

5 Conclusions

A novel CNN architecture has been presented in this work, that is trained on
the molecular fingerprints to predict biological activity of candidate medical
compounds versus the CDK1 protein target. The main novelty of the paper relies
on performing Deep Learning based VS starting from molecular fingerprints for
CDK1 that is a very important biological target for its direct implication in
the etiology of various cancerous forms. One qualifying point of our approach is
that fingerprints capture molecular structures according to different criteria and
are already accepted as molecular descriptors by the chemoinformatics society.
Another novelty of the approach is the use of fingerprint matrices, in order to
keep direct information from single fingerprint and indirect information from
the combination of the same. Their shape already makes them an embedding
that lends itself perfectly to the intended use. Fine tuning of hyperparameters
has been carried on along with several experiments with different fingerprint
types and sizes. Early results are satisfactory, and indicate that VS of suitable
arrangements of multiple fingerprint types, each addressing different ways of
representing molecular substructures, performs better than a single fingerprint
approach. Our architecture has been also compared to both classical ML and
other state-of-the art DL approaches even if trained on different data, and for
a different task. Future work will be oriented to a deep understanding of the
relation between particular fingerprints and biological activity prediction, and
to build a general architecture for screening compounds with respect to all the
CDK family.
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Abstract. In this paper, we deal with the problem of super-resolution
(SR) imaging and propose a deep deconvolutional network based model
for the same. In principle, the SR problem considers the construction
of the high-resolution (HR) version of a scene given a number of so-
called low-level image instances of the respective scene. Moreover, if there
is a single low-resolution (LR) image available, the problem becomes
even difficult and ill-posed. We deal with such a scenario and show how
the popular deconvolutional network can effectively reconstruct the HR
image by learning the functional mapping at the patch level. We eval-
uate the proposed model on a number of optical remote sensing (RS)
images obtained from the UC-Merced dataset. Experimental results sug-
gest that the proposed model consistently outperforms the existing deep
and shallow models for single image SR for the RS images.

Keywords: Satellite imaging · Deconvolutional neural networks ·
Image super resolution · Deep learning

1 Introduction

Rapid developments in RS technologies have contributed to the availability of
large quantity of visual data pertaining to the Earth’s surface. Satellite images
are used in variety of applications ranging from environmental monitoring to
homeland security since they reveal a vast amount of intricate details regarding
the different geographical locations on ground.

For the sake of extracting accurate information from these images, the quality
of the satellite images must be as pristine as possible. Satellite images obtained
from sensors are generally affected by different degradation factors and sophisti-
cated image enhancement techniques are needed in order to improve their spatial
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resolution. Among the different approaches, the spatial resolution of an imaging
system can be improved using a class of image enhancement algorithms known
as SR imaging [16]. Particularly in RS applications including image classifica-
tion, having higher spatial resolution helps to extract minute features from the
respective scenes, thus significantly enhancing the classification results. How-
ever, sensors with high spatial resolution are required at the hardware level for
obtaining high quality images which is not always feasible. Another challenge in
this regard is due to the down-linking of the HR satellite images to ground sta-
tions which is often difficult and expensive. All such factors invariably degrade
the quality of the satellite images to a considerable extent. As a remedy, SR
techniques have become much popular to convert LR satellite images to the
corresponding HR versions.

In this regard, the forward model [16] for imaging and motion process can
be formulated as

Yk = DBkMkX + nk (1)

given the HR scene X, warp matrix M , blur matrix B, down-sampling matrix D,
noise vector n and the kth LR image Yk, respectively. As can be understood, we
obtain the LR images because of the degradation caused by warping, blurring
and sub-sampling performed to the captured HR scenes due to limitations of
cameras. From Eq. 1 it can be affirmed that the process of obtaining the HR
images from the LR counterparts is ill-posed nature. Please note that, in this
paper, we consider HR scenes as the upscaling of the resolution of available LR
images by a factor of 2.

Initially, multi-image SR [17] techniques were followed to generate the HR
image from multiple LR observations. As expected, these techniques often face
difficulties in registering the LR scenes on the HR grid. This subsequently insti-
gated the research focus on single-image SR. However, the key problem in this
respect is the absence of prior knowledge regarding the high frequency details
from the images. In this regard, the learning based single image SR techniques
such as sparse coding [2,6] are based on an assumption that the sparse represen-
tation of the LR image patch over the LR dictionary is same as the corresponding
HR patch over the HR dictionary. However, this assumption does not always hold
true which leads to restricted performance by these models.

On the other hand, a number of recently introduced deep learning strate-
gies find their application to RS image analysis [3,25]. Recently, deep learning
algorithms [5,8,10,19] are used to tackle the SR problem for natural scenes as
well as on RS applications. Following the same, we propose a deconvolutional
network model for the purpose of single image SR from optical RS data.

The proposed model learns an end-to-end mapping between the LR image
and HR image pairs at the patch level. In particular, the images are divided
into patches of size 32 × 32 and then forward-propagated through the network,
following which, the reconstruction error is calculated and is subsequently back-
propagated. For testing, we consider the standard simulated scenario where the
images are upscaled by a factor of 2 and then forward propagated through our
network to obtain the predicted HR image.
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2 Related Work

2.1 Image Super Resolution

As aforementioned, based on the availability of LR images to be deployed for
the SR process, the existing SR algorithms can broadly be classified into two
families [1,16]: (i) single image SR, and (ii) multi-image SR.

For multi-image SR, the basic premise is the availability of multiple LR
images representing a given scene. These LR images provide different views
belonging to the same scene in terms of sub-pixel level shifts. Multi-image SR
techniques are broadly classified into: non-uniform interpolation approaches, fre-
quency domain approaches, regularized image reconstruction approaches. Non-
uniform interpolation based methods [4] register the LR images on the HR grid.
The main problem with registration is the motion estimation with reference
to any of the LR images that is required to account for these sub-pixel shifts.
Restoration methods such as de-blurring, modeled as spatial averaging opera-
tor are used to smoothen the obtained HR image. In contrast, frequency based
approaches use the aliasing relationship between continuous Fourier transform
of HR image and the discrete Fourier transform of the captured LR images
to reconstruct the HR image. Regularization based reconstruction methods are
usually used when plenty of LR images are available. Prior knowledge of the
solution is used to stabilize the inversion of this ill-posed problem. Either of
the deterministic approach or stochastic approaches like Maximum-a-Posteriori
(MAP) [17] are used for this purpose.

On the other hand, single-image SR presents more challenging scenario as
it involves prediction of the high frequency image details. Some of the early
works on single-image SR are documented in [7,22]. Single-image SR techniques
are classified into four categories - prediction models, edge based models, image
statistical models and exemplar based models [21]. Among them, exemplar based
models haven shown to outperform the rest for images of different modalities.
Most of these approaches focus on learning a mapping between the LR and
HR patch. SR using sparse coding (SCSR) [2,6] are based on regularizing the
dictionaries for the HR and LR patches so as to make the dictionary atoms
coherent.

2.2 Deep Learning for Image Super Resolution

Convolutional Neural Networks (CNN) have shown high accuracy in image classi-
fication [12], object detection [15] and many more. On the other hand, SRCNN [5]
is arguably the most popular model for SR from natural images. They propose a
3 layer network consisting of 3 conv layers while the pooling layers are eliminated
to avoid loss of pixel information during the reconstruction process.

2.3 Deconvolutional Networks

Likewise, deconvolutional neural networks (deconv-net) are extensively deployed
for image denoising, feature extraction, and semantic segmentation [14].
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By design, deconv-net follows the encoder-decoder architecture and they have
enabled production of highly diverse set of filters beyond the edge primitives [24].

In this paper, deconv-net is used to obtain the HR image from the features
extracted by the conv layers in the network for satellite imaging applications.
Although it is observed that the deeper networks are proved to be beneficial,
however in case of SRCNN the results have saturated at three layers even though
the layers are increased. On the other hand, given their ability in efficiently
reconstructing images in the decoder stage, deconv-net can incorporate both the
deeper structure and learn invariant features which is expected to output better
HR versions of the underlying scenes.

3 Deconv-Nets for Single-Image SR

Different stages of the proposed model include pre-processing the image, formu-
lation of the model and training the deconv-net, as detailed in the following:

3.1 Pre-processing

We convert all images into YCbCr color space. All the three channels are
upscaled by factor of 2 using bicubic interpolation and the proposed model is
applied on the luminance channel following the setup of majority of the existing
single-image SR models [18]. Once we obtain the resultant ‘Y’ channel from the
model, the upscaled ‘Cb’ and ‘Cr’ are directly stacked to it to obtain the final
HR image. For training, we obtain sub-images of 32 × 32 with a stride of 14 as
proposed in [5]. This method is adopted so that we would have training images
of fixed sizes for the simplicity of programming. Let us denote the luminance
channel after upscaling as Y (not to be confused with ‘Y’) and the original image
sample as X, which is the objective image to be generating by propagating Y
through the network.

While deploying the proposed model, we pass the luminance channel of the
image without dividing it into patches. This is done to avoid incorporating other
methods to stitch the obtained results from patches to form the eventual HR
image and handle cases like borders of image-patch, which might result in the
poor quality of the obtained image.

3.2 Description of the Proposed Model

The proposed model uses conv layers, each followed by an activation function in
order to introduce non-linearities. ReLU [13] is chosen as the activation function
since it speeds up the computation and performs relatively good. The deconvo-
lution layers are subsequently used for the reconstruction of the respective HR
image. Note that pooling and un-pooling are not incorporated in order to reduce
possible information loss as they would reduce the dimensions which is unsuit-
able for our task. Besides, in case for image SR, feature maps do not require
any scale invariance which is generally required for many deep learning tasks.
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The block diagram of the proposed deconv neural network based model is shown
in Fig. 1. The deconv layers are exactly mirror-like reflection of the conv layers,
with same number of layers as in the convolutional part and same filter sizes as
that of conv layers.

Fig. 1. An illustration of proposed model showing the different layers of the deconvo-
lutional network for image SR.

To summarize, the proposed SR model consists of three stages:

– Patch extraction: The first conv layer is used for patch extraction. Larger
filters are used to extract patches as well as the basic feature maps from input
LR image Y .

– Feature extraction and Mapping: The next two conv layers are used to
extract high level features and map the LR feature maps into the correspond-
ing HR feature maps.

– Reconstruction: The last three deconv layers are used for the construction
of the HR image from the feature maps obtained from the conv layers. We
choose deconv layers with a stride of 1 over the conv layers as deconv layers
are basically transposed conv layers, that work like a backward pass operation
which allow reconstruction of original images from the learnt feature maps.

3.3 Training

Using the definitions mentioned in Sect. 3.1, X can be represented as a function
of Y given the network parameters θ:

X = F (Y ; θ) (2)

The standard mean squared error (MSE) over n LR-HR patch pairs given by
Eq. 3 is used as the loss function for the proposed model.

MSE =
1
n

(
n∑

i=1

(F (Yi; θ) − Xi)2 (3)
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For optimizing MSE, we rely on the Adam’s optimizer [11]. The parameter
update rule followed in this case is given by:

θt = θt−1 − αt · mt

(
√

νt + ε̂)
(4)

where mt is the gradient of MSE with respect to θ, νt is the squared gradient,
β1 and β2 are hyper parameters controlling the moving values of the gradient.
On the other hand, a small constant ε̂ is used for numerical stability. αt is the
learning rate, which is tuned based on Eq. 5.

αt = α ·
√

1 − βt
2

(1 − βt
1)

(5)

3.4 Implementation Details

Given the proposed architecture, the size of filters in the conv layers are 9 × 9,
3 × 3 and 5 × 5 whereas the number of filters considered in each of these layers
are 32, 64 and 128, respectively. Note that the number of filters are increased
progressively considering that they yield more high-level features, apart from
restricting much loss of image details. On the other hand, the deconv layer filters
are constructed in opposite fashion compared to the conv layer filters (Fig. 1). In
total, the proposed network has 451, 969 parameters. We initialize the weights
of the network as per the He uniform initialization [9] as they consider the
distribution of outputs after ReLU activation while deciding the variance of the
uniform distribution of the weights which makes it easier to train.

We set β1 = 0.9 and β2 = 0.999 for the Adam’s optimizer, inspired by [11].
Learning rate (α) is set to 0.001 with decay of 10−6.

We also pad the output of each layer by zeros for handling the pixels that
lie on border. Therefore height and width of feature maps of each layer remain
identical (in our case, it is 32 × 32 for all layers). This is in contrast to SRCNN,
which explicitly requires to strip the border pixels for preserving the resolution
of the feature maps.

The output of the network is the luminance channel of obtained high reso-
lution image. We interpolate the Cb, Cr channels of the low resolution image
and stack the obtained luminance channel on top of it. We convert this resultant
YCbCr image, into RGB format to get the final image.

4 Results and Experiments

4.1 Data Set

The model is deployed on the popular UC-Merced optical RS dataset [23] which
is extensively used for different RS applications including classification etc. This
dataset consists of 21 different scene themes. Each class has a total of 100 images
of size 256 × 256 pixels providing us with total of 2100 images.
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50 randomly selected images from each class are used for training while
10 images per class are deployed for cross-validation. The model is tested on
4 images per category. This subsequently generates a total of 205, 520 image
patches for mapping the LR to HR patches.

4.2 Metrics

The goodness of the proposed SR model is tested using the standard signal to
noise ratio (PSNR) as mentioned in the following:

PSNR = 10 × log10(255/MSE) (6)

where MSE is obtained according to Eq. 3. Besides, we use the Structural Simi-
larity (SSIM) [20] for measuring the visual similarity at the patch level (between
LR and HR patches)

SSIM(x, y) =
(2 × μx × μy + c1)(2 × σxy + c2)

(μx + μy + c1)(σx + σy + c2)
(7)

where x and y represent the LR and HR patches, μ is average value of the lumi-
nance channel, σ is standard deviation, σxy is covariance. Further, c1 = (0.01L)2,
c2 = (0.03L)2 where L is the dynamic range of the pixel values: 2bitsperpixel − 1,
e.g., in this case L = 127.

4.3 Discussions

Fixation of the Network Structure. In order to obtain the optimal archi-
tecture, we initially repeat the experiments with varied network structures (in
terms of the number of deployed conv and deconv layers). Different combinations
used include the 2conv-2deconv model, 3conv-3deconv model and 4conv-4deconv
models where 2conv-2deconv implies a model with 2 conv layers followed by 2
deconv layers and so on. From Fig. 2, which is a plot of validation error against
epochs, we conclude that 3conv-3deconv layered network performs the best and
this architecture is subsequently finalized. From Fig. 3 we conclude that the
2conv-2deconv model underfits the data and fails to establish a relationship
between LR and HR images effectively. Whereas, the 4conv-4deconv model’s
accuracy averaged on the test data is slightly worse as that of 3conv-3deconv
model though it performs slightly better on some of the test images. Moreover,
it is computationally slower as compared to 3conv-3deconv model as it has more
trainable parameters due to addition of more layers. Therefore, the superiority
of the 3conv-3deconv model can be validated over the others based on the qual-
ity of the obtained HR images in terms of the PNSR measure as well as the
computational efficiency.
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Fig. 2. Validation error versus epochs.

Fig. 3. Comparison of PSNR for different layers.

Empirical Study. The 3conv-3deconv model is also compared with a number of
the recent state-of-the-art methods ScSR [21], SRCNN [5] and bicubic interpola-
tion. We have retrained ScSR and SRCNN on the same data set and split as we did
for our model to have a fair comparison. Figure 4 shows the HR image generated
by state-of-the-art models, our proposed model and the original HR image, respec-
tively for qualitative assessment. On the other hand, Table 1 depicts the accuracy
of models based on PSNR and SSIM. From Table 1 it is clear that our proposed
model outperforms than state-of-the-art methods for SR on satellite images based
on both the considered metrics. Also, from Fig. 4 we can infer that our proposed
model recovers more details of HR image as compared to other models.

Table 1. Comparison between Bicubic, ScSR, SRCNN and proposed model

Bicubic ScSR SRCNN Proposed model

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

airplane60 33.014 0.923 36.431 0.954 36.503 0.953 37.128 0.955

forest60 32.742 0.952 35.660 0.974 35.369 0.973 35.633 0.975

harbor60 24.044 0.900 26.223 0.940 26.351 0.939 27.652 0.957

parkinglot60 25.800 0.856 27.188 0.898 27.320 0.898 28.121 0.911

Average 31.837 0.883 33.964 0.919 34.095 0.918 34.642 0.924
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HR Bicubic ScSR SRCNN Proposed Model

HR Bicubic ScSR SRCNN Proposed Model

HR Bicubic ScSR SRCNN Proposed Model

HR Bicubic ScSR SRCNN Proposed Model

Fig. 4. Qualitative results comparing the images obtained from different algorithms.

5 Conclusions

In this paper, we present an end-to-end deep deconvolutional network based
single-image SR model for optical satellite images which is trained on image
patches. This is one of the preliminary study in remote sensing regarding the
use of deconvolutional network for image SR. Our model produces comparable
and even better performance as compared to the existing ad-hoc and deep image
SR techniques. Currently, we are interested in exploring the paradigm of zero-
shot SR based on deconv-net.
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Abstract. People are able to accurately estimate personality traits,
merely on the basis of “passport”-style neutral faces and, thus, cues
must exist that allow for such estimation. However, up to date, there has
been little progress in identifying the form and location of these cues.

In this paper we address the problem of inferring true personality
traits in highly constrained images using state of art machine learn-
ing techniques, in particular, deep networks and class activation maps
analysis.

The novelty of our work consists in that, differently from the vast
majority of the current and past approaches (that refer to the problem
of consensus personality rating prediction) we predict the genuine per-
sonality based on highly constrained images: the target’s are self ratings
on a validated personality inventory and we restrict to passport-like pho-
tos, in which so-called controllable cues are minimized.

Our results show that self-reported personality traits can be accu-
rately evaluated from facial features. A preliminar analysis on the fea-
tures activation maps shows promising results for a deeper understanding
on relevant facial cues for traits estimation.

Keywords: Five-Factor Model · Convolutional neural networks ·
Class activation maps

1 Introduction

Psychological studies of “thin slices” of behaviour investigate the accuracy of
social judgements made by observers on the basis of minimal information, usually
nonverbal and unintentional cues emitted by the target person being judged. For
example, ratings of university lecturers, made on a basis of silent 2-s video clips,
significantly correlated with the lecturers’ end-of-semester student evaluations
[1]. Of particular interest, observers are able to accurately estimate personality
traits on the thinnest of slices, merely on the basis of “passport”-style neutral
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face images [13]. “Accuracy” here refers to the agreement between self-ratings
of personality, as made by the targets themselves, and the ratings of observers.

The long-term goal of our work is to gain a deeper understanding on the cues
used by observers to make accurate judgements of personality from these highly
constrained face images. To date, there has been little progress in identifying
the form and location of these cues [21,22]. However, given that observers can
make accurate judgements of true personality, these cues must exist, and recent
computational advances offer promise. From a computational perspective, before
understanding the what and where of these cues, we need to first assess the
feasibility of the underlying task, that is, estimating true personality of people
from a single highly constrained image of their face. That is our task here,
where, given a set of face images annotated with personality characteristics, we
employed a pre-trained model obtained with a well-known convolutional neural
network, the VGG16 [16], to extract the relevant features from each image. Then,
we trained a fully connected network for personality characteristics regression.

In the experiments, we considered a dataset of still images annotated with
the personality scores of the observed subject. Targets were explicitly required
to adopt neutral expressions, hair back, cosmetics, glasses and jewelry removed
(according to e.g. [13]). The targets’ genuine personalities were measured through
self-rating with validated five-factor personality inventories, i.e. NEO-IPIP or
mini-IPIP (see e.g. [5]).

Our work differs from previous approaches in several ways. First, we are pre-
dicting the true (or actual, genuine) personality of target persons. The actual
personality is defined as the target’s self ratings on a validated personality inven-
tory. In contrast, the vast majority of approaches in the computing science fields
refer to the problem of apparent (or consensus) personality rating prediction
[3,7,10,12,19], as made by external observers. While the consensus rating is rel-
atively easy to collect [2], actual personality ratings are generally more laborious
and expensive to obtain.

A second aspect of diversity is that, unlike other work (see e.g. [6,18]) we are
using highly constrained images, similar to passport photos, in which so-called
controllable cues are minimized. Controllable cues include all that aspects of the
face image which can be readily modified by the target to create different person-
ality impressions, influencing the consensus personality rating. In this respect,
our work shares similarities with [11] who looked for correlation between 3D face
structure and personality. However, our stimuli are notably different in that they
are 2D and include both shape and surface information.

In summary, to the best of our knowledge, this paper represents the first
attempt to address inference of true personality in highly constrained images.

The remainder of the paper is organized as follow. In Sect. 2 we describe our
dataset, while in Sect. 3 details on our approach for the personality scores pre-
diction (Sect. 3.1) and on the experimental assessment (Sect. 3.2) are reported,
with a preliminar analysis on class activation maps (Sect. 3.3). Sect. 4 is left to
a final discussion.
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Fig. 1. Average images of a few samples of female (left) and male (right) faces in the
dataset.

2 The Data

In this work we employ a dataset acquired in-house consisting of 997 still images
depicting the face of a target individual. People have been asked to avoid such
cues one can voluntary control – as hairstyle, jewellery, facial expressions, and
cosmetics – that in general may affect personality judgements. In Fig. 1 we report
two average images of a few samples of female (left) and male (right) faces in
the dataset1 which includes in total 604 female and 393 male faces.

For each target a standard five-factor model [FFM] personality inventory –
NEO-IPIP or mini-IPIP – has been proposed, to finally collect a six dimensional
vector containing the score for each personality trait plus the information on the
gender. To the authors knowledge it is the first time that a dataset with such
characteristics is analyzed.

The FFM is defined in terms of five different dimensions (see [9]):

– Extraversion vs. Introversion, scoring from sociable, assertive, playful to aloof,
reserved, shy.

– Agreeableness vs. Disagreeable, scoring from friendly, cooperative to antago-
nistic, fault-finding.

– Conscientiousness vs. Unconscientious scoring from self-disciplined, organ-
ised, to inefficient, careless.

– Neuroticism vs. Emotional stability, scoring from calm, unemotional to inse-
cure, anxious.

– Openess vs Closed to experience, scoring from intellectual, insightful to shal-
low, unimaginative.

Before proceeding with the presentation of our methodology, it is worth dis-
cussing some of the properties of the dataset with a brief statistical analysis. A
first aspect to be mentioned is the fact that although in principle the range of
values that the scores can assume is (1–5) (with maximal resolution of 0.25), the
actual distributions of the estimated scores are uneven (see Fig. 2(a)).
1 For privacy issues we can not show the original images.
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Fig. 2. Left: distribution of the FFM traits scores in the dataset. Right: correlation
coefficients between the FFM traits.

A second aspect to be considered refers the presence of correlations among
the different traits. We evaluated the correlation with the Spearman’s Rank
Coefficient and report in Fig. 2(b) the results we obtained between the scores of
the whole dataset. According to the classification in [8] very weak correlation
can be noticed overall among traits, with only one weak correlation between
Extraversion and Neuroticism (ρ = −0.22, P < 10−11). Notice however that
the null hypothesis (i.e. there is no correlation between a specific pair of traits)
can not be rejected at the significance level of 0.05 for the pairs Extraversion-
Conscientiousness (ρ = 0.02, P = 0.54) and Agreeableness-Neuroticism (ρ =
0.02, P = 0.53).

As it is well known that personality traits may significantly differ in male and
female populations, we verified this aspects on the dataset. Performing a statis-
tical comparison between female and male samples using a Two-Sample TTest
we assessed that the only trait presenting no significant difference in a statisti-
cal sense is Extraversion (P = 0.92), while for all the others the test reveals a
strong separation between the two sample sets (in all cases P < 10−4). A visu-
alization of the approximated trait distributions, represented with histograms,
is also reported in Fig. 3.

3 Estimating the Five-Factor Model from Images

In this section we discuss the methodology we applied to estimate the scores
describing the Five-Factor Model of an individual from a single highly-
constrained image of his/her face. To this purpose, we casted the estimation
problem to a regression task where we want to learn the mapping between an
appropriate representation of the face image and the annotated scores associated
with it.

The images in the dataset presented in the previous section have been pro-
cessed with a face detector [20], to precisely identify the image portion corre-
sponding to the face, and then converted to grayscale. The resulting segmented
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(a) Extraversion (b) Agreableness (c) Conscientiousness

(d) Neuroticism (e) Openess

Fig. 3. Histograms describing the distribution of the 5 personality traits in the female
and male samples.

images have finally been resized to a fixed size of 224 × 224 pixels. Then we
extracted the relevant image features using the convolutional part of a pre-
trained Neural Network [17]. Finally we used them as input to a fully connected
layer to predict the Five-Factor scores for each target individual.

All the computational models are implemented using Keras and Tensor
Flow [4].

3.1 Personality Traits Regression with Pretrained VGG16 Network

To extract the relevant features from each image we used the convolutional part
of a pre-trained VGG16 convolutional neural network, [17] – pre-trained on the
Imagenet dataset [15].

The output of this first part of the architecture is a set of feature vectors of
25088 components that we used to train a fully connected network composed of
three dense layers, two of 100 units and a last one with size that depends on the
specific task we solve. Indeed, we explored two main regression tasks. With the
first, we trained the network to learn the mapping to each trait independently
from the others. We refer to this task as “single personality trait regression”,
and this corresponds to using a last layer composed of a single unit (size 1 ×
1 × 1). The second task considers instead the possibility of exploiting possible
hidden correlations among traits, by learning them as a whole with a vectorial
regression model. We will refer to it as “full personality traits regression”, for
which the last layer is composed of 6 units (size 1 × 1 × 6). A visual sketch of
the deep architecture we finally adopted is reported in Fig. 4.
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Fig. 4. A visualization of the architecture we adopted in our experiments. The con-
volutional part of the VGG-16 deep network is followed by dense layers, the latter
having different size depending on the specific task to be addressed: D = 1 for single
personality trait regression, while D = 6 for full personality traits regression (see text
for details).

The training has been performed on the 80% of the data samples, while
the remaining 20% has been employed for evaluation only. At each of the 100
epochs, after a random permutation of the images, the training set was further
split into 70% and 30% validation set. To avoid overfitting we used a dropout
regularization within the dense layers with rate 0.3. An Adam optimizer was
chosen with a batch size of 400 and a learning rate of 0.001 to minimize the
mean square error (MSE) loss. The full protocol was replicated 10 times to have
a statistics on the MSE on the test set.

3.2 Experimental Assessment

In this section we discuss the results of the experimental analysis we carried out.
In Fig. 5 we report the average Mean Square Error (MSE) obtained on the test
set for 10 random data splitting, using the architecture depicted in Fig. 4. More
specifically, we compare the effects of learning each trait independently from the
others (Fig. 5(a)) with the use of a vectorial regression to learn all the traits as a
whole (Fig. 5(b)). A first observation refers to the fact that overall the MSEs we
obtained are very promising for all the traits (as a reference consider the reported
MSE on sex (S) an easy individual characteristic to predict). In this evaluation
we implicitly consider the fact that the annotation we use as a reference is result
of a quantization from outcomes of self-reported questionnaires, influenced by
the individual subjectivity and thus prone to error. The results we obtained are
in line with performance reported in works sharing some contacts points with
ours although grounding on different motivations (as e.g. [23]).

A visual comparison with the results obtained for the full personality traits
regression task highlights uneven effects, in the sense not all the traits seem to
benefit from the full vector regression. Table 1 reports in the second and third



Genuine Personality Recognition from Highly Constrained Face images 427

(a) Single personality traits regression
and sex (S).

(b) Full vector personality traits regres-
sion and sex (S).

Fig. 5. Average mean square error on the test set using the architecture in Fig. 4 with
D = 1 (left) and D = 6 (right). Error bars refer to N = 10 repetitions.

colums the MSE values for, respectively, single and full traits regression. For
each trait, we highlighted in bold the best MSE among the two tasks.

Comparable results have been obtained with a recent kernel-based approach
for large-scale datasets [14], an alternative method we used to asses the consis-
tency of our results. The method builds on the use of Kernel Ridge Regression
with a gaussian kernel on the same set of features vectors. Figure 6 reports a
visual impression of the MSE obtained with the method on the same regression
tasks considered above, and the average values are also reported in Table 1 (forth
and fifth columns) for a comparison. The values suggest non significant statis-
tical correlation is present among traits. It is in particular interesting to note
that the gender of the target individual seems to play a minor role in the score
estimate, although statistical evidences that the traits are different in female
and male population have been assessed.

The overall results support our methodology and show how self-reported
personality traits can be evaluated from single, strongly constrained face images.
This result suggests that the features at the basis of the representation may in
fact helps in understanding the cues that reveals personality traits. In the next
section we thus discuss a preliminary analysis in this direction.

3.3 Activation Maps: A Preliminary Analysis

The assessment of the regression task that proves how it is possible to estimate
the Five-Factor model from one single image of an individual, allows us to further
investigate on the cues of the face enabling this ability. Since we use highly
constrained face images, the effects of controllable cues that might influence the
target personality judgment from an observer (and it is fair to assume the same
for a computational model) can be neglected. We can thus assume that the visual
features showing strong responses for the Five-Factors model estimation are in
fact face cues inherently providing essential judgement information.
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(a) Single personality traits regression
and sex (S).

(b) Full vector personality traits regres-
sion and sex (S).

Fig. 6. Average mean square error on the test set using the Falkon method [14] (error
bars refer to N = 10 repetitions).

Table 1. Average mean square errors and standard deviations obtained on the test set
for the single and full traits (plus sex (S)) regression models using different approaches
(see text for details).

Big5 VGG16 single VGG16 full Falkon single Falkon full

E 0.7300 ± 0.0035 0.8002 ± 0.0147 0.8377 ± 0.0011 0.8243 ± 0.0014

A 0.5473 ± 0.009 0.5261 ± 0.0006 0.5723 ± 0.0010 0.5654 ± 0.0003

C 0.7145 ± 0.0028 0.6842 ± 0.0021 0.8086 ± 0.0002 0.8119 ± 0.0003

N 0.7731 ± 0.0097 0.9609 ± 0.0006 0.7529 ± 0.0013 0.7675 ± 0.0004

O 0.5379 ± 0.0137 0.5690 ± 0.0032 0.5745 ± 0.0006 0.5733 ± 0.0017

S 0.2719 ± 0.0030 0.2636 ± 0.0010 0.2619 ± 6 ·10−5 0.2658 ± 9 ·10−5

Considering the well-assessed theory about deep features visualization in clas-
sification settings [16,24], to the purpose of feature visualization we converted
our task to a multi-class classification problem. This choice allowed us to use
off the shelf, well tested, algorithms like gradient weighted class activation maps
(CAM) for classification (not regression). To this aim we quantized the traits
score range into N (in our experiments empirically set to 6) intervals and trained
a single fully connected classifier on the same feature vectors dataset as for the
regression task. As a consequence, the architecture in Fig. 4 has been slightly
modified replacing the very last fully connected layer with a soft-max layer.

To highlight the target image parts on which the network was focusing
to make its prediction we used the gradient weighted class activation map
(CAM, [16]).

Figure 7 shows the average heatmaps (overlaied to the original images) we
obtained for the estimation of high values of the personality scores.

The highlighted regions of maximal signal in the figure show how well defined
parts of the individual target faces are selected to score the individual traits.
In the case of Openness the averaged signal was not significant. Of particular
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(a) Extraversion (b) Agreableness (c) Conscientiousness

(d) Neuroticism (e) Openess

Fig. 7. Average of superposed heatmaps on each subject correctly predicted for the
single trait class. Highlighted zones of maximal signal.

interest are the results for the Neuroticism trait, where the two most sexually
dimorphic regions of the human face have been tagged: the jaw and the brow.
Indeed, it is worth noticing that neuroticism is known to be sexually dimorphic
(women higher than men, as also visible from the histograms in Fig. 7(d)), and
deserves further study.

4 Discussion

Estimation of personal traits is important for designing personality-aware intel-
ligent systems and the computational model beyond the estimation might allow
to make a step towards the understanding and the characterization of the ele-
ments of faces to judge social traits. Considering that people are normally able to
accurately estimate personality traits, merely on the basis of a “passport”-style
neutral face, we hypothesized that cues must exist that allow for such estimation
and we addressed the problem of inference of true personality.

To this aim we employed state of art machine learning techniques, in partic-
ular, deep convolutional networks and class activation maps analysis, to test our
hypothesis and highlight specific face cues upon which personality traits can be
inferred.
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The novelty of our work consists in the fact that, differently from the vast
majority of the current approaches that refer to the problem of apparent (or
consensus) personality rating prediction, we predicted the genuine personality
of target persons, as the target’s self ratings on a validated personality inventory.
Also, we focused on highly constrained images, in which so-called controllable
cues are minimized.

Our results supported our methodology and hypothesis and show how self-
reported personality traits can be accurately evaluated from the facial features.
The class activation maps analysis further confirmed the feasibility of our app-
roach showing, for example, that the two most sexually dimorphic regions of the
human face, the jaw and the brow, have been correctly tagged by the network to
infer the trait score. Our initial results are very promising and a more detailed
analysis based on class activation maps will be the subject of further study.
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Abstract. Deep-learning approaches in data-driven modeling relies on
learning a finite number of transformations (and representations) of the
data that are structured in a hierarchy and are often instantiated as deep
neural networks (and their internal activations). State-of-the-art models
for visual data usually implement deep residual learning: the network
learns to predict a finite number of discrete updates that are applied to
the internal network state to enrich it. Pushing the residual learning idea
to the limit, ODE Net—a novel network formulation involving continu-
ously evolving internal representations that gained the best paper award
at NeurIPS 2018—has been recently proposed. Differently from tradi-
tional neural networks, in this model the dynamics of the internal states
are defined by an ordinary differential equation with learnable parame-
ters that defines a continuous transformation of the input representation.
These representations can be computed using standard ODE solvers, and
their dynamics can be steered to learn the input-output mapping by
adjusting the ODE parameters via standard gradient-based optimiza-
tion. In this work, we investigate the image representation learned in
the continuous hidden states of ODE Nets. In particular, we train image
classifiers including ODE-defined continuous layers and perform prelim-
inary experiments to assess the quality, in terms of transferability and
generality, of the learned image representations and compare them to
standard representation extracted from residual networks. Experiments
on CIFAR-10 and Tiny-ImageNet-200 datasets show that representations
extracted from ODE Nets are more transferable and suggest an improved
robustness to overfit.

Keywords: Transfer learning · Image representations ·
Continuous neural networks · Ordinary differential equations

This work was partially supported by “Automatic Data and documents Analysis to
enhance human-based processes” (ADA), CUP CIPE D55F17000290009, and by the
AI4EU project, funded by the EC (H2020 - Contract n. 825619). We gratefully acknowl-
edge the support of NVIDIA Corporation with the donation of a Tesla K40 GPU used
for this research.

c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11751, pp. 432–442, 2019.
https://doi.org/10.1007/978-3-030-30642-7_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30642-7_39&domain=pdf
http://orcid.org/0000-0001-5014-5089
http://orcid.org/0000-0003-0171-4315
http://orcid.org/0000-0001-6258-5313
http://orcid.org/0000-0002-0967-5050
https://doi.org/10.1007/978-3-030-30642-7_39


Evaluation of Continuous Image Features Learned by ODE Nets 433

1 Introduction

The last decade witnessed the renaissance of neural networks and deep differ-
entiable models for multi-level representation learning known as Deep Learning,
that highly improved Artificial Intelligence (AI) and Machine Perception with
a special emphasis on Computer Vision. The AI renaissance started in 2012
when a deep neural network, built by Hinton’s team, won the ImageNet Large
Scale Visual Recognition Challenge [18], and from that, the astonishing results
obtained by deep-learning approaches for data-driven modeling produced an
exponential-growing research activity on this field. Deep Learning methods have
been, and still are, the driving force behind this renaissance, and impressive
results have been obtained through the adoption of deep learning in tasks such
as image classification [14,18], object detection [26,27], cross-media retrieval [6],
image sentiment analysis [31], recognition [1], etc. Being a representation learn-
ing approach, the rationale behind deep-learning methods is to automatically
discover a set of multi-level representations from raw data that are specialized
for the specific task to be solved, such as object detection or classification [19].
Starting from raw data, each level of representation captures features of the input
at increasing level of abstraction that are useful for building successive repre-
sentations. Following this definition, we understand how relevant representations
learned in intermediate layers of deep learning architectures are. In the context of
visual data modeling, the architectures of models, mostly based on convolutional
neural networks, rapidly evolved from simple feed-forward networks to very deep
models with complex interactions between intermediate representations, such as
residual [15] or densely connected networks [16].

Recently, in the NeurIPS 2018 best paper [9], Chen et al. proposed ODE
Nets—a novel model formulation with continuous intermediate representations
defined by parametric ordinary differential equations (ODEs). This models can
be used as a generic building block for neural modeling: the evolution of the acti-
vations and the gradients with respect to parameters can be computed calling
a generic ODE solver. This formulation provides several benefits, including nat-
ural continuous-time modeling, O(1)-memory cost, adaptive computation, and
tunable trade-off between speed and accuracy at inference time. The authors
demonstrated ODE blocks in image classifiers trained on the MNIST dataset,
actually creating a continuous and evolving activation space of image represen-
tations.

In this work, we analyze the continuous feature hierarchy created by ODE
Nets when classifying natural images in terms of generality and transferabil-
ity, and we compare them to representations extracted with standard neural
networks. We investigate multiple architectures in which a different amount of
processing is delegated to ODE blocks: we analyze standard residual networks,
mixed residual-ODE networks, and finally we also consider ODE-only architec-
tures. Preliminary experiments on CIFAR-10 and Tiny-ImageNet-200 datasets
show promising results for continuous representations extracted by ODE Nets
outperforming similar-sized standard residual networks on a transfer learning
benchmark.
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2 Related Work

Neural Image Representations. Ever since the recent breakthroughs in the deep
learning field, extracting image representations from deep models, specially con-
volutional neural networks, has led to unprecedented accuracy in many vision
tasks. Early studies explored features extracted from generic object classifiers
trained on ImageNet: activations of late fully-connected layers played the role of
global descriptors and provided a strong baseline as robust image representations
[5,29]. With the definition of more complex networks, the attention shifted to
feature maps obtained from convolutional layers. Effective representations can
be extracted from convolutional feature maps via spatial max-pooling [3,25,30]
or sum-pooling [4,17], or more complex aggregation methods [2,21,24]. Better
representation can be obtained by fine-tuning the pretrained networks to the
retrieval task via siamese [23] or triplet [2,12] learning approaches. To the best
of our knowledge, we are the first to investigate ODE-derived continuous image
representations.

ODE-inspired Neural Architectures. Most of current state-of-the art models
implements some sort of residual learning [14,15], in which each layer or block
computes an update to be added to its input to obtain its output instead of
directly predict it. Recently, several works showed a strong parallelism between
residual networks and discretized ODE solutions, specifically demonstrating that
residual networks can be seen as the discretization of the Euler solution [22,33].
This interpretation sprouted novel residual networks architectures inspired by
advanced discretizations of differential equations. [22] and [35] derived residual
architectures justified by approximating respectively the Linear Multi-step and
Runge–Kutta methods. Comparisons with dynamical systems inspired works on
reversibility and stability of residual networks [7,8,13,28]. [9] propose to directly
adopt ODE solvers to implement continuous dynamics inside neural networks.
Traditional variable-step ODE solvers enable sample-wise adaptive computations
in a natural way, while previously proposed methods for adaptive computation
on classical networks [8,32] require additional parameters to be trained.

3 ODE Nets

In this section, we review the main concepts about ODE Nets, including their
formulation and training approach. For a full detailed description, see [9].

An ODE Net is a neural network that include one or more blocks whose
internal states are defined by a parametric ordinary differential equation (ODE).
Let z(t) the vector of activations at a specific time t of its evolution. We define
its dynamics by a first-order ODE parametrized by θ

dz(t)
dt

= f(z(t), t, θ) . (1)
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Given the initial value of the state z(t0)—the input of the ODE block—we can
compute the value of the state at a future time z(t1)—that we consider the
output of the ODE block—via integration of Eq. 1

z(t1) = z(t0) +
∫ t1

t0

dz(t)
dt

dt = z(t0) +
∫ t1

t0

f(z(t), t, θ)dt . (2)

This computation can be efficiently performed by modern ODE solvers, such
as the ones belonging to the Runge-Kutta family. Thus, the forward pass of an
ODE block is implemented as a call to a generic ODE solver

z(t1) = ODESolver(f, z(t0), t0, t1, θ) , (3)

where f can be an arbitrary function parametrized by θ which is implemented
as a standard neural network.

In order to be able to train ODE Nets, we need to adjust the parameters θ
in order to implement the correct dynamics of the continuous internal state for
our specific task. Thus, given a loss function L, we need to compute its gradient
with respect to parameters dL/dθ to perform a gradient descent step. Although
we can keep track of all the internal operations of the specific ODE solver used
and use backpropagation, this leads to a huge memory overhead, specially when
the dynamics of the internal state are complex, and the ODE solver requires
many steps to find the solution. Instead, Chen et al. [9] proposed to adopt the
adjoint sensitivity method. The adjoint state a(t) is defined as the derivative of
the loss with respect to the internal state z(t)

a(t) =
∂L

∂z(t)
, (4)

and its dynamics can be described by the following ODE

da(t)
dt

= −a(t)
∂f(z(t), t, θ)

∂z(t)
. (5)

The quantity we are interest in—the derivative of the loss with respect to param-
eters dL/dθ—can be expressed in function of the adjoint a(t)

dL
dθ

=
∫ t1

t0

a(t)
∂f(z(t), t, θ)

∂θ
dt, (6)

where ∂f(z(t), t, θ)/∂θ is known and defined by the structure of f . To compute
a(t) and thus dL/dθ, we need to know the entire trajectory of z(t), but this can
be recovered starting from the last state z(t1) and by solving its ODE (Eq. 1)
backward in time. With a clever formulation, Chen et al. [9] also showed that it
is possible to combine the process for finding z(t), a(t), and dL/dθ in a unique
additional call to the ODE solver.

Among the properties of ODE Nets, noteworthy benefits are (a) O(1)-
memory cost, since no intermediate activations are needed to be stored for both
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forward and backward operations, (b) adaptive computation, as modern adap-
tive ODE solvers automatically adjust the step size required to find the solu-
tion depending on the complexity of the dynamics induced by a specific input,
(c) inference-time speed-accuracy trade-off tuning, as the tolerance of adaptive
solvers can be lowered at inference time to obtain less accurate solutions faster
or viceversa.

4 Tested Architectures

In this section, we describe the architectures of the image classifiers implemented
with ODE Nets that we are going to analyze. We test three architectures in total.
The first two are the ones defined by Chen et al. [9], i.e. a standard residual net-
work with 8 residual blocks, and a mixed architecture with two residual blocks
and an ODE block. In addition, we analyze an architecture defined by the mini-
mum amount of standard layers, that is thus composed by a single convolutional
layer and an ODE block. A detailed description of the architectures follows.

Residual Net. We choose a standard residual network (ResNet) as a baseline
image classifier with the same architecture chosen by Chen et al. [9]. Starting
from the input, the ResNet is composed by two residual blocks each with a down-
sample factor of 2, and then by six additional residual blocks. The output of the
last residual block is average-pooled and followed by a fully-connected layer with
softmax activation that produces the final classification. The formulation of the
residual block is the standard one proposed in [15], but the batch normaliza-
tion operation is replaced with group normalization [34]. Thus, the structure of
the residual block is composed by two 3 × 3 256-filters convolutions preceded
by a 32-group normalization and ReLU activation, and a last group normal-
ization: GroupNorm-ReLU-Conv-GroupNorm-ReLU-Conv-GroupNorm. For the
first two blocks, we used 64-filters convolutions, and we employ 1 × 1 convolu-
tions with stride 2 in the shortcut connections to downsample its input.

Res-ODE Net. The first ODE-defined architecture tested is the one proposed
by Chen et al. [9]. They proposed to keep the first part of the architecture as
the previously described ResNet and substitute the last six residual blocks by
an ODE block that evolves a continuous state z(t) in a normalized time interval
[0, 1]. The ODE function f defining its dynamics is implemented using the same
network used in the residual blocks. In addition, this module takes the value of
the current time t as input to convolutional layers as a constant feature maps
concatenated to the other input maps. Similarly to ResNets, the output of the
ODE block z(1) is average-pooled and fed to a fully-connected layer with softmax
activation.

ODE-only Net. To fully exploit the ODE block and analyze its internal evolution,
we explore an additional architecture only composed by a single convolutional
layer and an ODE block. The convolutional layer has 256 4 × 4 filters slided
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with stride 2 which is not followed by any non-linear activation. The ODE block,
defined as in the Res-ODE architecture, takes the output of the convolution as
the initial state of the ODE block z(0). As in the other architectures, the final
state z(1) is taken as output and fed to the classification layer.

5 Experimental Evaluation

Following [29], we evaluate the effectiveness and generality of learned image
representation by measuring its effectiveness in a transfer learning scenario [11].
We learn features extractors for a particular image classification task (source),
and we evaluate them by using the learned representations as high-level features
for another image classification task with similar domain (target).

For our investigation, we used two low-resolution datasets, that is CIFAR-10
for the source task, and Tiny-ImageNet-200 for the target task. CIFAR-10 [20] is
a small-resolution 10-class image classification datasets with 50k training images
and 10k test images. Tiny-ImageNet-2001 is a 200-class classification dataset
with 64 × 64 images extracted from the famous ImageNet subset used for the
ILSVRC challenge. Each class has 500 training images, 50 validation images, and
50 test images, for a total of 100k, 10k, and 10k images respectively for training,
validation, and test sets.

We train all the models (Residual Net, Res-ODE Net, ODE-only Net) for 200
epochs on the CIFAR-10 dataset, adopting the SGD optimizer with momentum
of 0.9, a batch size of 128, a learning rate of 0.1 decreased by a factor 10 when the
loss plateaus, and a L2 weight decay of 10−4. We employ commonly used data
augmentation techniques for CIFAR-10, that is random cropping, color jittering,
and horizontal flipping, and we apply dropout with a .5 drop probability on the
layer preceeding the classifier. As ODE solver in ODE Nets, we employ a GPU
implementation2 of the adaptive-step fourth order Runge-Kutta method [10],
that performs six function evaluation per step plus the initial and final timestep
evalution, i.e. number of function evaluation = 6 × steps + 2.

Table 1 reports for each model the best test classification error obtained and
the complexity in both terms of number of parameters and ODE solver steps.
The introduction of ODE blocks in the image classification pipeline drastically
reduces the number of parameters of the model but also introduced a slight per-
formance degradation of the overall classification performance. Also note that
for ODE Nets, the number of steps required by the ODE solver to compute
a forward pass of the network depends on the complexity of the dynamics of
internal state induced by a specific input. For Res-ODE models, the ODE solver
requires 3 to 4 steps to process an image, indicating that the learned dynamics
of hidden state are quite simple, and most of the information extraction process
is due to preceding standard layers. On the other hand, in ODE-only networks
the ODE block is responsible to model the entire feature extraction process and

1 https://tiny-imagenet.herokuapp.com/.
2 https://github.com/rtqichen/torchdiffeq.

https://tiny-imagenet.herokuapp.com/
https://github.com/rtqichen/torchdiffeq
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Fig. 1. The most (left) and least (right) demanding images of CIFAR-10 test set in
terms of the number of solver steps required by the ODE solver (that is reported near
each image).

Table 1. Classification performance on CIFAR-10.

Test error Params Solver steps

Residual Net 7.28% 7.92M -

Res-ODE Net 7.80% 2.02M 3.8 ± 0.4

ODE-only Net 9.17% 1.20M 7.8 ± 1.5

thus requires to learn more complex dynamics of the hidden state; as a conse-
quence, the mean number of solver step required is higher, but it is more variable
depending on the input image. Figure 1 show the top-5 and bottom-5 images of
the CIFAR-10 test set in terms of number of solver steps required to make a pre-
diction; we can notice that the more prototypical and easily recognizable images
require fewer steps, while additional processing is adaptively employed by the
ODE solver when more challenging images are presented.
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Fig. 2. Accuracy (%) on the Tiny-ImageNet-200 validation set of a linear SVM trained
on z(t). Results obtained using the 7 intermediate layers of the Residual Net are evenly
placed between 0 and 1 on the x-axis.

We extract intermediate activations from all the trained models as image
representations for the target task (Tiny-ImageNet-200). For Residual Nets, we
test the output of the last 7 residual modules before the classifier. For both ODE
Nets, there are an infinite amount of intermediate states z(t), t ∈ [0, 1] that we
can extract; we sample z(t) between 0 and 1 with a sample rate of 0.05 and test
every sample as image representation for the target task. For all the extracted
representations, we apply global average pooling to obtain a spatial-agnostic
feature vector.

We train a linear SVM classifier that rely on the extracted features on the
validation set of Tiny-ImageNet-200 (for which labels are provided): we perform
a grid search of the penalty parameter C ∈ {0.01, 0.1, 1, 10, 100}, keeping track
of the configuration that obtained the best 5-fold cross-validated accuracy. We
then retrain this configuration on the whole set and report its accuracy. In Fig. 2,
we report the accuracies obtained by all the SVMs trained on different internal
activations of all the tested models. The x-axis indicate the time stamp t used to
extract the internal representation of ODE Nets z(t), while the y-axis indicate
the obtained accuracy. For convenience, we place the 7 points obtained from the
7 intermediate layers of the Residual Net evenly spaced in the x-axis between 0
and 1.
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In both ODE Nets, we observe a concave trend of the accuracy when using
later activations, with a maximum accuracy obtained using intermediate fea-
tures extracted from the early or mid evolution of the continuous hidden states
(∼21% at t = .45 for ODE-only and ∼19.5% at t = .1 for Res-ODE). As already
suggested by findings in other works [3,5], mid-features seem to be more trans-
ferable. Mid-features in Res-ODE are already extracted by preceding standard
layers, thus they occur early in the evolution of the continuous hidden state.
ODE Nets provide a more general and transferable image representation with
respect to Residual Nets that instead provide a lower and practically constant
performance on the target task, suggesting a higher degree of overfit to the source
task.

Notwithstanding that, the CIFAR-10 dataset is not able to provide enough
information about all the classes of the target dataset to obtain competitive
accuracies, and a larger and more complex dataset should be used as a source
task. Unfortunately, training ODE Nets has currently a high computational cost,
as also suggested by the evaluation of their proposers that was limited to the
MNIST dataset for image classification. This limits our ability to perform a
larger-scale experimentation, that are left for future work.

6 Conclusions

In this paper, we investigated the representations learned by ODE Nets, a
promising and potentially revolutionary deep-learning approach in which hidden
states are defined by an ordinary differential equation with learnable parameters.
We conducted our experiments in a transfer learning scenario: we trained three
deep-learning architectures (ODE-only Net, Res-ODE Net and Residual Net)
on a particular image classification task (CIFAR-10), and we evaluate them by
using the learned representations as high-level features for another image classi-
fication task (Tiny-ImageNet-200). The results show that ODE Nets provide a
more transferable, and thus more general, image representation with respect to
standard residual networks. Considering also other intrinsic advantages of ODE
Nets, such as O(1)-memory cost, and adaptive and adjustable inference-time
computational cost, this preliminary analysis justifies and encourages additional
research on the optimization of this kind of networks and its adoption in image
representation learning.
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Abstract. The use of aerial vehicles for warehouse autonomous inven-
torying has gained increasingly popularity over recent years. In this
work, an approach built around the usage of unmanned aerial vehicles
for warehouse scanning and Region-based Convolutional Neural Network
(R-CNN) for autonomous inventorying activities is proposed. The exper-
imental results obtained on video acquisitions of a real warehouse envi-
ronment demonstrated the feasibility of the proposed solution and the
possible margins of improvement.

Keywords: Advanced logistics · Autonomous warehouse inventory ·
Autonomous aerial vehicles · Tags detection and tracking ·
Faster R-CNN

1 Introduction

The paradigm of Industry 4.0 is prominently changing the warehousing activ-
ities as well as the logistics procedures for medium and big vendors. The use
of autonomous mobile robots for transportation and delivery [4] or the use of
aerial vehicles for autonomous warehouse inventory [13,18] has gained increas-
ingly popularity over recent years. The advances in technology together with the
evolution of machine learning and deep learning in computer vision is demon-
strating such a field of research being feasible and fruitful. The explosion of
e-commerce made the warehouse management a very critical task. Signalling
logistics intervention on time and thus avoiding waste of time or inefficiency in
delivery of goods becomes the priority of every vendors wants to enter in the
electronic markets.

In this work, an autonomous warehousing inventory approach is proposed,
which exploits unmanned aerial vehicles thought to perform a continuous check
of packages in stocks. The proposed solution is meant to be computationally
efficient as well as providing a level of accuracy compliant with an effective ware-
house management. It uses light Convolutional Neural Network (CNN) models
to detect and recognise on real-time the labels of packages during an aerial scan-
ning of the environment. The aerial vehicle, with onboard environment sensing
c© Springer Nature Switzerland AG 2019
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consisting in four common RGB cameras and sufficient computational power,
is able to autonomously inspect the warehouse environments and perform the
computer vision tasks to track the labels/barcodes of the packages. The exper-
imental results obtained on video acquisitions of a real warehouse environment
demonstrated the feasibility of the proposed solution and its reliable usage for
the autonomous logistics intervention. It is worth notifying that the proposed
approach does not aim to also perform the recognition of text or codes in the
packaging labels since well established and reliable procedures are available for
that task.

After discussing the related work in the next section, Sect. 3 details the pro-
posed solution and the neural network models used, while Sect. 4 presents the
experimental results achieved on a real warehouse scenario. Section 5 draws the
conclusion and the future directions of this works. Figure 1 shows example of
acquisitions carried out in real warehouse environments and highlights what the
proposed solution is meant to recognise as tags and what may represent false
positives.

Fig. 1. Frames extracted from video acquisitions of a aerial vehicle during flight. The
pictures is an example of a case study of tag detection/recognition in warehouse inven-
torying. The yellow bounding boxes highlight the real tags while in red ones all other
possible false positive labels. (Color figure online)

2 Related Work

Micro aerial vehicles (MAVs) are recently gaining a lot of consideration, both
in research and in commercial applications,e.g., surveillance and tracking, aerial
photography, inspection, rescue missions and so on [3]. Although the wide range
of sensors nowadays available, aerial vehicles (also often referred as drones) are
still thought to keep significant advantage from the usage of cameras for the
tasks of autonomous driving and obstacles avoidance [6,21]. We recently passed
from drone models equipping a monocular camera vision system [5] to stereo-
vision cameras [17,20] combined with tiny laser scanners [11,12] that enables a
rich acquisition of the scene and its 3D reconstruction. Fossel et al. [7] combined
Hector SLAM [14] and OctoMap [10] to build an accurate three-dimensional



An UAV Autonomous Warehouse Inventorying by Deep Learning 445

occupancy model of the environment and thus demonstrating the high efficacy
of obstacle avoidance solutions. The works above mentioned, together with the
vast literature on autonomous drones, demonstrate the high reliability of indoor
autonomous driving of aerial vehicles, which is considered established in this
work and not further explored. Rather, the solution discussed in this paper
focuses the attention of the task of inventorying the packs in the stock by a real-
time localisation and recognition of the packs and the pallets by computer vision
techniques. When dealing with warehousing activities, the use of wood pallets for
packs transportation and logistics is still considered of utmost importance. The
work by Mohamed et al. [16] has proposed a light solution for autonomous forklift
that is able to recognise and fork the pallets for transportation, which indeed
uses rangefinder-based system. Following their proposed idea, we built a solution
completely based on RGB cameras that is able to detect and track the labels
of packages (consisting in alphanumeric characters and bar-codes) to enable the
autonomous warehouse inventorying. A similar approach has also been presented
by Beul et al. [2] which is based on AprilTag detector [22] to locate the packages.
Although the high performance of such a solution, it makes the assumption that
the operational environment, i.e., the warehouse that may be a very wide indoor
space, has to be seamlessly covered by specific tags. These ones consist in special
black/white figures, similar to QRCode, by which the aerial vehicle can locate
itself and recognise the packs. Such a solution can of course be difficult to scale
on increasing size of the warehouse. On the same line, the work by Guérin et al.
[9] and Bae et al. [1] presented a novel warehouse inventory based on unmanned
aerial vehicles to make the inventory process completely autonomous. In both
cases, the drones are meant to scan the goods during the flight by achieving very
good results. On the other side, they used the Barcode scanner (the former) and
the RFID technology (the latter). Other similar approaches in the literature
making usage of RFID technology can be found. Even though they ensure high
precision and accuracy, then cannot easily generalise to the all diverse factors
affecting how the goods and packs are labelled during the warehousing logistics
procedures. What characterise the solution proposed in this paper is that is it
totally based on videos acquisitions from RGB camera and therefore, by a proper
training stage, can adapt to a huge variety of pack tags and labelling without
needing special constraints. Such a choice also makes hard a fair comparison with
other approaches in the literature that, as said above, often keep advantage from
dedicated sensors. Further, the specialised sensors ease the detection/recognition
of tags and labels but also provide a representation of the acquired data that
differs from simple RGB images.

3 Tags Detection with R-CNN

As said in the previous section, the work proposed in this paper is inspired to
the work by Mohammed et al. [16]. On the other side, rather than using laser
scanner, it is totally based on RGB cameras, mounted on the aerial vehicle.
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Image processing applications have been demonstrated to keep benefit from
Convolutional Neural Networks (CNNs) models [15]. The main component of a
CNN is represented by the convolutional layer. It features a local connectivity
patterns that forces the network to operate on limited receptive fields. Together
with other layers, like pooling, ReLU layers and fully connected layer, the CNN
models have become increasingly complex in size and in number of parameters
to learn. From one side, that made CNNs more and more performing. On the
other side, the computing power needed growth accordingly thus making infea-
sible to run such neural models on hardware with limited resources. Over recent
years, advancements in CNN models led to an alternative version called Region-
based Convolutional Neural Networks (R-CNNs) used for object detection and
image classification [19,23]. A R-CNN is organised in two steps: (i) a collection
of possible bounding boxes containing an object are extracted from the input
layer and (ii) the region of interest (ROIs) are then submitted to a classifier to
determine if they contain one of the known object to recognise (i.e., the classes
of the supervised problem). Inside the family of R-CNN, has gained significant
attention the model called Faster R-CNN [8], which is exploited in this work.
Faster R-CNNs are characterised from being composed of few convolutional layes
followed by a fully connected layer called Region Proposal Network (RPN). The
RPN receives as input the convolutional feature maps generated from the previ-
ous layers and operates by passing a n×n sliding window over them. It proposes
bounding box candidates (called anchors) according to predefined aspect ratios
and scales. For each anchor a value of Intersection over Union (IoU) ranging in
[0, 1] is computed. It represents the overlap ratio of the anchors and of ground
truth bounding boxes (see Definition 1). The ROIs extracted from the input
according to the anchors that are above an empirical threshold of IoU, are then
provided to a classifier that is in charge of classifying the detected objects. This
implies that Faster R-CNNs achieve efficient and fully end-to-end training, as a
single CNN is used for region proposal and classification [16].

Definition 1. Given A be the anchor, B the ground truth bounding box and
area(�) a function computing the area in pixel of the bounding box �, the Inter-
section over Union (IoU) is defined as:

IoU =
area(A) ∩ area(B)
area(A) ∪ area(B)

(1)

The model used in this work is composed by a Faster R-CNN which is divided
into three stages: the input layer, the intermediate convolutional stage, and the
final fully connected stage. The input layer consists of the input image corre-
sponding to aerial acquisition video frames. The convolutional part of the net-
work model is composed by two convolutional layers, interleaved by two ReLU
layers and a final max-pooling layer. The final stage, i.e., the RPN layer, is com-
posed by two fully connected layers ending in a softmax classification layer which
determines if the proposed ROIs belong to the class of tags or not. In order to fur-
ther assess the reliability of the detected tags, a CNN-based classifier is trained
to classify the most promising ROIs detected by the Faster R-CNN as tags.
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Fig. 2. The overall proposed model consisting in the combination of Faster R-CNN
and a shallow CNN.

Table 1. The configuration of the Faster R-CNN model network and the shallow
CNN-based classifier.

Faster R-CNN Shallow CNN

Input layer (32 × 32) Input layer (250×250)

Conv2D layer(kernel = 3 × 3, filters = 40,
stride,padding = 1)

Conv2D layer (kernel = 20 × 20,
filters = 25 padding = 1, stride = 1)

ReLU layer ReLU layer

Conv2D layer (kernel = 3 × 3, filters = 40,
stride,padding = 1)

Max-Pooling Layer (kernel = 5 × 5,
stride = 2)

ReLU layer Fully connected layer (neurons = 2)

Max-pooling layer (kernel = 3 × 3, stride
= 1)

Softmax layers

Fully connected layer (neurons = 64) Classification layer

ReLU layer

Fully connected layer (neurons = 2)

Softmax layer

Classification layer

It consists in a shallow CNN model that takes as input a crop of the full-size
original images that contains the ROIs only, therefore it consists in a subset of
the entire image containing all the ROIs detected by the Faster R-CNN. The
middle layer consists of a single convolutional layer followed by ReLU and max-
pooling layers. The final fully connected layer and a softmax layer is in charge
of classifying the image. An overall view of the network model is depicted in
Fig. 2, it can be noticed that the network is rather shallow, since the objective
of the proposed architecture is to perform online recognition on UAVs with lim-
ited computational resources and either to avoid overfitting due to the limited
number of samples in the dataset.

4 Experimental Results

Before introducing the achieved results and the data used for the experimentation,
further details of the network model configuration are provided in Table 1.
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The experimentation has been carried out on ad-hoc RGB videos acquired at
720p resolution in real warehouse environments involving the usage of a drone
while performing a vertical scanning of the packs on the shelves. From those
videos, 292 frames have been extracted. The frames have been selected among
those containing tags and containing other pieces of papers that did not repre-
sent tags. Even though the training and testing performed offline on commodity
hardware, the feasibility of real-time processing of the proposed solution is sup-
ported by the results reported in [16]. The dataset is then manually labelled
to build the ground truth for classification performance evaluation. The exper-
iments has been performed on both RGB color original images and grayscale
converted video frames. Precision/Recall (PR) curves have been used to show
the achieved results together with the average precision (AP) metric. We remem-
ber that Precision is a ratio of true positive instances to all positive instances
of objects in the detector, based on the ground truth. Recall is a ratio of true
positive instances to the sum of true positives and false negatives in the detector,
based on the ground truth. Average precision is computed over all the detection
results and returned as a numeric scalar in range [0, 1].

According to the designed model, we first trained the Faster R-CNN on the
training set, which is 70% of the dataset. The number of epochs is set to 10. The
PR curves in Fig. 3 show that working with grayscale images introduces a slight
improvement in performance, even though the two experiments are about equal
each other in terms of average precision (0.87 and 0.85 for grayscale and RGB
training respectively).
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Fig. 3. Training performance of Faster R-CNN on RGB training set and on converted
grayscale training set.

Once the Faster R-CNN training is complete and ROIs generated, the shallow
CNN-based classifier has been trained on all the extracted ROIs as input. Even
in this case the number of epochs is set to 10. In total, 89 ROIs of tags and 131
non-tags have been manually labelled. According to CNN model constraints,
the images have been scaled to 250 × 250 resolution and used to train different
configurations of the classifier. First of all, it has been used in its designed
configuration (as described in Table 1 above) (ConvNet1) and also by adding
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an extra convolutional layer and ReLU layer (ConvNet2Conv). The starting
learning rate has been set to 10−3 and a mini-batch size of 50 samples per
iteration has been used. Moreover, we also performed data augmentation of the
dataset by introducing slight variations in translation, rotation and scaling of
the tags. Reducing the learning rate to 10−5 and with mini-batch size to 32
samples, the training has been performed on both RGB images (NewConvNet)
and grayscale (ConvNetGray) thus resulting in the PR curves shown in Fig. 4.
On each plot, the PR curves in different configurations above mentioned have
been presented while average precision is reported in figure legend besides each
variant of the CNN-based classifier. It results clear how the data augmentation
and the lower learning rate significantly improved the recall and precision of the
classification.

In the attempt of further improving the average precision of the proposed
architecture, we use the weights of the layers from CNN-based classifier trained
on grayscale images of ROIs containing the tags (ConvNetGray). Such weights
have been used as to initialize the Convolutional layers of the Faster R-CNN
and then trained this last model network on input images RGB of the training
set. Figure 5 shows how such a solution improved significantly the classification
performance.
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Fig. 4. The PR curves of classification achieved in different configurations for the CNN-
based classifier. (Top) the PR curves of classification on training the CNN with RGB
images. (Bottom) The classification curves using the CNN trained on grayscale images.
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Fig. 5. A comparison of Faster R-CNN performance on different training conditions.
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Fig. 6. PR curves obtained by using the Faster R-CNN with pre-training on grayscale
images for tags detection and the configurations of the CNN-based classifier for classi-
fication. (Color figure online)

Following this intuition, we tested the performance of the Faster R-CNN
with pre-trained layers on grayscale images and we again provided the ROIs
coming from the CNN-based classifier in all the configuration discussed above.
Figure 6 summarises the level of performance achieve in all treatments. We can
observe how the pre-training performed on Faster R-CNN introduced a sig-
nificant increase in PR curves for all the conditions considered. Even though
the higher level of performance achieved on using RGB images, working with
grayscale images leads to a desirable reduction of computing demand. Since the
algorithm has to run on board the aerial vehicles, we chose to test the grayscale
configuration (Faster R-CNN pre-trained with grayscale images + CNN on
grayscale ROIs) to assess the reliability of the proposed solution. Inspecting
the responses of the CNN models, we observed that the Faster R-CNN model
reaches a confidence of detection that is most of the time above the threshold
of 0.98 both introducing a very negligible rate of false positive. Moreover, when
the Faster R-CNN is wrong, i.e., it detects a ROIs as containing a tag when it
is does not or vice versa, most of the CNN-based classifier also fails in correctly
classifying the tag. This often happens when occlusions or limited field of view
of the camera do not allow to unambiguously acquire the tags. This leads to sup-
pose a feasible solution which uses the two-stage approach, i.e. Faster R-CNN +
Shallow CNN, only for training while uses the solely Faster R-CNN for detecting
and recognising the tags.
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5 Conclusions

Warehouse management is commonly associated with complex and dynamic pro-
cesses presenting critical problems for warehouse managers across industries.
Accurate inventorying procedure becomes increasingly challenging on wider and
wider warehouse environments. Inaccurate inventory causes problems such as
maintaining improper stock levels and buildups of obsolete inventory. Fluctua-
tions in demand on seasonality as well as the speed of purchases in the electronic
markets, represents critical issue to face with and proper logistics operations can
determine the success or big faults. In this paper a simple solution based on
Convolutional Neural Network for warehouse inventorying has been presented.
Using unmanned aerial vehicles, the objective is enabling an autonomous ware-
house inventorying system according to which the drones are able to localise and
recognise the packs in stock and, in case, to signal the missing or the decrease of
offer of some products. Even though micro aerial vehicles have received a strong
acceleration over recent years, they still suffer from high battery consumption
and limited processing power. On the opposite side, machine learning and deep
learning techniques for computer vision tasks have achieved considerable high
performance at the cost of proportional computational demand, which is far
from being compliant with portable computing devices. To such a purpose, the
solution proposed in this work is meant to require limited computation power
but able to meet the requirements of a precise and accurate autonomous scan-
ning of a warehouse environment. The solution is based on a two-stage learning
process, where a Faster R-CNN is used to detect the tags during the aerial check
of the packs on the shelves. Once possible tags have been localised, the regions
of interest extracted from the video acquisition are promptly sent to a shallow
CNN-based classifier which is charge of classifying the right tags and differenti-
ate them from other piece of paper, or residual notes on the packs that do not
contribute to the inventory procedures. The experimental analysis carried out
on real scenarios by using real video acquisitions in a warehouse facility during
a vertical aerial scanning of the stocks have demonstrated the feasibility of the
proposed approach. The results achieved in different configurations of the CNN
models demonstrate that a high precision can be reached resulting in an aver-
age precision above 80%. Observations on CNN behaviour during training led
to a round of experiments that showed how to keep advantage for the exclusive
usage of the Faster R-CNN model upon the training performed on the shallow
classifier and then using those pre-trained layers in the Faster R-CNN. Precision
achieved aside, such an attempt demonstrated a computational lightening of
the proposed solution which further confirmed the feasibility of the autonomous
warehousing inventorying by unmanned aerial vehicles and which can be used
for future improvements of the approach proposed in this study.
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Abstract. The semantic segmentation of 3D shapes with a high-density
of vertices could be impractical due to large memory requirements.
To make this problem computationally tractable, we propose a neural-
network based approach that produces 3D augmented views of the 3D
shape to solve the whole segmentation as sub-segmentation problems.
3D augmented views are obtained by projecting vertices and normals of
a 3D shape onto 2D regular grids taken from different viewpoints around
the shape. These 3D views are then processed by a Convolutional Neural
Network to produce a probability distribution function (pdf) over the set
of the semantic classes for each vertex. These pdfs are then re-projected
on the original 3D shape and postprocessed using contextual information
through Conditional Random Fields. We validate our approach using 3D
shapes of publicly available datasets and of real objects that are recon-
structed using photogrammetry techniques. We compare our approach
against state-of-the-art alternatives.

Keywords: 3D semantic segmentation · Geometric deep learning

1 Introduction

Traditional Convolutional Neural Networks (CNNs) use a cascade of learned con-
volution filters, pooling operations and activation functions to transform image
data into feature embeddings processable by fully connected layers that classify
the image content [7]. Typically, 3D deep-learning approaches extend traditional
2D methods to non-Euclidean domains as the convolution operation is not well
defined in 3D [15]. One of the most challenging researched topic related to 3D
deep learning is the semantic segmentation of 3D shapes as it is key to sup-
port computer graphics applications such as shape editing [24] and modelling
[4]. Challenges to segment 3D shapes include dealing with different topologies,
handling noisy geometries and different resolutions, and modeling semantic rep-
resentations for different segments.

3D segmentation can be performed through multi-view [10,22], volumetric
[23] or intrinsic [15,18] deep learning-based approaches. Multi-view and volu-
metric approaches use Euclidean structures, such as 2D or 3D grids, respec-
tively, to process 3D shapes with 2D CNNs [10,22,23]. In particular, multi-view
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approaches simplify the representation of a 3D model using a set of rendered
depth images taken from different viewpoints around the model, thus making
the segmentation independent of the 3D-model polygon density [10,22]. Multi-
view approaches cannot fully exploit the geometric properties of the 3D shape
(e.g. face normals) because geometric information can be lost when data are
projected in 2D. Volumetric approaches approximate the 3D shape using voxels
which could overshadow geometric details of the object [23]. Intrinsic approaches
can be further divided into point-based and convolution-based approaches. Point-
based approaches define feature extractors directly on the shape vertices [18],
whereas convolution-based approaches extend the traditional convolution opera-
tions from grid-like structures to triangular meshes [15]. Point-based approaches
mostly process each vertex of the shape independently and loosely exploit local
information [18]. The additional structures used by conventional convolution-
based approaches increase the shape representation complexity hence prohibiting
the processing of high-density polygon models [15]. Typically, 3D segmentation
approaches validate their performance on datasets collected in controlled scenar-
ios, and they mostly lack of an evaluation carried out on 3D models reconstructed
using photogrammetric techniques [16].

In this paper we propose a novel 3D segmentation approach that retains both
the advantages of view-based [10] and intrinsic approaches [15] by building 3D
augmented views from multiple viewpoints around a 3D shape. 3D augmented
views are a projection of 3D shape portions on 2D regular grids, where each
cell of the grid encodes the information about depth and normal of the corre-
sponding projected portion. This allows us to significantly reduce the number of
parameters to learn and to perform 3D segmentation of shapes with diverse mesh
topology (e.g. polygon structure and/or density). We evaluate our approach on
synthetic 3D shapes from publicly available datasets, and on 3D shapes of objects
we captured with a smartphone and reconstructed using photogrammetry tech-
niques. Results show that the proposed approach can achieve state-of-the-art
accuracy by using only 1% of the parameters used by the alternative approaches.

2 Our Approach

2.1 Problem Formulation

Given a 3D shape X ⊂ R
3 composed of vertices x ∈ X , we design a neural-

network based approach p(x) = ΓΘ (x) that outputs a probability distribution
p(x) over the label space L = {1, . . . , L}, where L is the number of segmentation
labels. The output segmentation of X is computed as

h(x) = argmax
�=1,...,L

p(x),

where h(x) is a label defining the segment class of the vertex x.
The neural network ΓΘ can be defined as a a parametric function in the set of

learnable parameters (i.e. weights) Θ. ΓΘ is composed of four modules, namely
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Fig. 1. Our approach outline. 3D augmented views from different viewpoints are com-
puted from the 3D shape (shape decomposition). Point-wise features (i.e. coordinates
and surface normals) are extracted from these 3D views and classified to obtain segmen-
tation predictions. Predictions are re-projected and aggregated on the original shape,
and refined through a Conditional Random Field for local prediction consistency.

shape decomposition, feature extraction and classification, feature aggregation
and prediction refinement. Shape decomposition transforms the input 3D shapes
into 3D augmented views, or 3D views. Each 3D view is processed by a feature
extraction and classification network, namely ViewNet, that predicts the class
of each vertex. Prediction aggregation re-projects the predictions of ViewNet of
each 3D view onto the original 3D shape. Prediction refinement improves class
prediction using contextual information on the original shape. Figure 1 depicts
the block diagram.

2.2 Shape Decomposition

We simplify the 3D shape representation (e.g. triangular meshes, quad meshes,
CAD models) by decomposing the input shape into several components. Shape
decomposition can be performed by clustering shape vertices [8], by using geo-
metrical primitives [9], or by generating range scans from different viewpoints
[10]. We use a similar approach to the latter in order to process the 3D shape
regardless its 3D representation, resolution and vertex topology.

Given X in the form of a triangular mesh with vertices X = (x1, . . . ,xN ),
xn ∈ R

3, n = 1, . . . , N , we simplify X by building 3D views from M different
viewpoints. Let I(u, v;wm) = (u, v, d(u, v)) be a range scan that is captured
from the mth viewpoint wm, where (u, v) is the coordinate of a pixel, d(u, v)
is the depth value of the 3D shape, and m = 1, . . . , M . Let V(m) be the mth
3D view whose vertices V (m) = (v1, . . . ,vN(m)) are obtained by registering the
coordinates (u, v, d(u, v)) of the range scan to the coordinates of the vertices
X. The faces of the 3D view are obtained by connecting depth values using
the typical regular grid pattern of 2D images. For each vertex vn ∈ V (m) we
compute the surface normal n(vn) ∈ R

3 to define the signal on the 3D view as
f(vn) = (vn,n(vn)). The relation between a 3D view and the input 3D shape
is defined by the correspondence function t(m) : V(m) → X that assigns the
vertices of the mth 3D view to the corresponding vertices of the 3D shape.
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Fig. 2. Example of 3D augmented views. Left-hand side: a synthetic 3D shape from the
FAUST dataset [2]. Right-hand side: examples of the 3D augmented views extracted
by the shape decomposition module. 3D views have an uniform vertex density and
capture the underlying geometry even at a lower resolution.

2.3 Feature Extraction and Classification

The feature extraction and classification module processes the M 3D views
in parallel to learn features through a set of deep neural networks, namely
ViewNets, with shared weights. Formally, each ViewNet is a non-linear para-
metric function g(vn) = ΦΘcla (f(vn)) that takes vertex-wise features f(vn) as
input and produces the probability distribution g(vn) = (g1(vn), . . . , gL(vn)) as
output, where L is the number of segmentation classes and Θcla ⊂ Θ is the set
of ViewNet learnable weights. Let gV(m) ∈ [0, 1]N

(m)×L be the matrix containing
the pdfs of all vertices of V(m).

A ViewNet module is defined as the composition of Intrinsic Convolutional
(IC), Fully Connected (FC) and Softmax layers. FC and Softmax are standard
layers, whereas the IC layer replaces the convolutional layer used in traditional
Euclidean CNNs to perform convolution operations on 3D views [15]. The con-
volution at x ∈ X using IC layers requires additional information, in the form of
a local coordinate frame and a set of weighting functions that maps the signal
of the local neighbourhood of x to a fixed grid.

2.4 Prediction Aggregation

Predictions inferred from each 3D view are re-projected and aggregated on the
3D shape X in order to transfer the segmentation result on the original input.
We name this operation ProjNet. ProjNet employs a pooling operation that
takes the ViewNet predictions gV(m) on V(m) as input and the correspondence
function t(m) : V(m) → X for any m, to produce a single confidence map gX
defined on X . The pooling operation is defined as

gX (xn) =
1

|Ω(n)|
∑

m̃∈Ω(n)

gV(m̃)(vñ),
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where Ω(n) = {m: t(m)(ñ) = n} is the set of 3D view indices relative to the vertex
xn ∈ X , and gV(m̃)(vñ) is the probability distribution over the segmentation
classes associated to vertex vñ of the m̃th 3D view.

2.5 Prediction Refinement

The output of ProjNet is a point-wise prediction, i.e. the label prediction of
each vertex is estimated independently from its neighbors, thus leading to likely
local label inconsistencies. Moreover, some vertices of the input 3D shape may
not have been projected on any of the 3D views, thus leading to vertices with
undefined label predictions on X . Therefore, we impose local label consistency by
using a surface-based Conditional Random Field (CRF) approach [10,25] that
exploits contextual information to produce structured and dense predictions.

For each vertex xn ∈ X, let yn : xn → L be a random variable that assigns
a label � ∈ L to it, and let y = (y1, . . . , yN ) be the set of the random variables
associated to the N vertices of X. The CRF energy associated to y is defined
as:

E(y) =
N∑

n=1

ψunary(yn) +
N∑

n=1

N∑

ñ=n+1

ψpairwise(yn, yñ), (1)

where the unary term ψunary(yn) quantifies the assignment cost of yn to vertex
xn and the pairwise term ψpairwise(yn, yñ) quantifies the joint assignment cost
of yn, yñ to vertices xn,xñ [14]. Because gX (xn) measures the cost of assigning
the vertex xn to L, we define the unary term as ψunary(yn) = − log (gX (xn)).

The pairwise potential is instead defined as the weighted sum of three Gaus-
sian kernels:

ψpairwise(yn, yñ) = μ(yn, yñ)
(

wnear knear(yn, yñ) − wfar kfar(yn, yñ)

+ wfeat kfeat(yn, yñ)
)

,

where

knear(yn, yñ) = exp
(

−dX (xn,xñ)
σnear

)
,

kfar(yn, yñ) = 1X − exp
(

−dX (xn,xñ)
σfar

)
,

kfeat(yn, yñ) = exp
(

−‖f(xn) − f(xñ)‖2
σfeat

)
,

dX (x, x̃) is the geodesic distance between the vertices x, x̃ ∈ X , 1X is the identity
function on X , and μ(yn, yñ) is a label compatibility term.

Similarly to [10,25], knear favors local spatial consistency, while kfeat pro-
motes the assignment of similar labels to vertices with similar properties. The
third kernel kfar is novel and is introduced to disambiguate symmetries. Because
symmetric parts are likely to be located far from each other (e.g. arms and legs
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Fig. 3. Example of Conditional Random Field (CRF) learned weights (wnear, wfar, µ)
in the case of human 3D shapes.

in a human shape) we designed kfar to avoid distant points to have similar labels.
The set of CRF learnable parameters is defined as ΘCRF = {μ,wnear, wfar, wfeat},
ΘCRF ⊂ Θ. Figure 3 shows how CRF learns the relationships among segments
through an example of learned parameters (i.e. wnear, wfar and μ) on human 3D
shapes. In wnear we can observe that the head weights suggest that there is a
strong relationship between head and torso rather than between head and right
foot/right arm. Similarly, the torso weights suggest that there is a strong rela-
tionship between torso and arms/legs rather than between torso and feet/hands.

The most probable pdf configuration of y for X is obtained by minimizing
the energy E(y) defined in Eq. 1. The exact inference of the CRF distribution is
intractable, thus we use a mean-field approximation [10,14]. The iterative algo-
rithm for approximate mean-field inference can be implemented as a Recurrent
Neural Network (RNN) by rephrasing each step of the algorithm as a CNN layer
[25].

3 Results

3.1 Experimental Setup

We evaluate our 3D segmentation approach through two different experiments.
Firstly, we use data from the publicly available Princeton Shape Benchmark
(PSB) dataset [20] that contains synthetic shapes of several objects and animals;
in particular, the rigid shapes of the Airplane class, and the non-rigid shapes of
the Ant, Four Leg and Teddy classes. The segmentation labels of each object are
defined as in [20]. Secondly, we use data of non-rigid human shapes; in particular,
(i) synthetic people with different poses (FAUST dataset [2]), (ii) real people
acquired with depth sensors (SCAPE dataset [1]) and with structured light 3D
body scanners (SHREC14 dataset [5]), and (iii) real people that we acquired with
a smartphone and reconstructed using the photogrammetry pipeline COLMAP
[19]. We manually labelled the ground truth for FAUST and SCAPE datasets and
used their training data to learn the neural network model for the human shapes.
We have used this model to test our approach on all the other human shapes of
FAUST, SCAPE, SHREC14 and COLMAP datasets. The segmentation labels
for the non-rigid human shapes are: L = {head, torso, right arm, right hand,
right leg, right foot, left arm, left hand, left leg, left foot}.
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3.2 Training

Given a labelled training set, where each vertex xn ∈ X is associated to a
ground-truth label h(xn), the optimal parameters are obtained by minimizing
the categorical cross-entropy loss,

c(δh(xn),ΓΘ (x)) = −
N∑

n=1

δh(xn) log(ΓΘ (xn)),

where δh(xn) is the Kronecker delta defined for the ground-truth label h(xn).
Our approach is trained end-to-end and from scratch. We use M = 10 3D

views (Sect. 2.2, Fig. 2) taken from equi-spaced viewpoints around the shape.
For training we use the Adam optimizer [13] with a learning rate of 0.001. The
CRF weights are initialized with identity matrices, i.e. each segment class is only
in relationship with itself.

3.3 Evaluation

PSB Dataset: Table 1 shows the quantitative results of our approach on a
subset of PSB’s 3D shapes. We compare the accuracy of our approach with
ShapeBoost [11], Guo et al. [6] and ShapePFCN [10]. The first two approaches
use classifiers that are learned from hand-crafted features, whereas the latter is an
end-to-end deep learning approach similar to ours (i.e. features are also learned).
We can observe that the accuracy of our approach is similar to that of state-
of-the-art methods. However, compared to ShapePFCN [10] that is based on
the VGG16 architecture [21], which uses 134M parameters, our neural network
uses 14K parameters, i.e. 1% of ShapePFCN’s parameters [10]. Figure 4 shows
examples of segmentation results that are obtained on the Airplane category.
The uncertainty map next to each segmentation result showed that the highest
level of uncertainty is located where different segments intersect. Qualitatively,
the results are very accurate and show only minor errors on the rudder region.

Table 1. Segmentation mean accuracy (the higher the better [10]) on the Princeton
Shape Benchmark dataset [20].

Category Hand-crafted features End-to-end

ShapeBoost [11] Guo et al. [6] ShapePFCN [10] Ours

Airplane 96.1 91.6 93.0 94.1

Ant 98.7 97.6 98.6 94.8

Four leg 83.3 82.4 85.0 94.5

Teddy 98.7 97.3 97.7 92.8
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Fig. 4. Semantic segmentation results of our approach on PSB Airplane test shapes.
Segmentation color key: green = body, blue = wings, purple = engine, yellow = sta-
bilizer, and red = rudder. Each segmentation result (center) is accompanied by its
ground-truth (on its left) and a confidence map (on its right) showing the uncertainty
(entropy) of the network prediction over the 3D shape. The darker the color the higher
the uncertainty. (Color figure online)
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1

Fig. 5. Semantic segmentation results of our approach on a subset of FAUST’s test
shapes. Segmentation color key: colour code: yellow = head, green = torso, blue = right
arm, light blue = right hand, orange = right leg, yellow = right foot, red = left arm,
light red = left hand, purple = left leg, light purple = left foot. Each segmentation result
(left) is accompanied by a confidence map (right) showing the uncertainty (entropy)
of the network prediction over the 3D shape. The darker the color the higher the
uncertainty. (Color figure online)
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Fig. 6. Semantic segmentation results of our approach on a subset of SCAPE’s test
shapes. Segmentation color key is the same as that in Fig. 5.

Non-rigid Human Shapes: Figs. 5, 6, 7 and 8 show examples of segmentation
results that are obtained on the non-rigid human shapes. Beside each segmented
shape we can observe their associated entropy map. The smaller the entropy the
higher the uncertainty. As expected, the largest level of uncertainty is located
at the joints between two segments, that is where transition is not well defined.
Because we have annotations for FAUST and SCAPE, we quantified the accuracy
[10] and Intersection over Union (IoU) [18] of the segmentation results. In FAUST
we achieved an accuracy of 93.8% and IoU of 88.5% while in SCAPE we achieved
an accuracy of 72.1% and IoU of 58.7%. This accuracy and IoU differences are
due to the unbalanced number of training samples of the two datasets. FAUST
annotations are much more numerous than those of SCAPE. A few of the poses
of FAUST’s training shapes are also present in the test set. This does not occur in
the case of SCAPE, where poses are only present once. Figure 6 shows examples
of the segmentation errors occurred in SCAPE test, e.g. on the right-hand block
we can see that the legs of the shape in the middle have been segmented with
inverted labels.

Results in Figs. 7 and 8 show that the method can generalize also to
3D shapes that have not been used for training. Interestingly, our approach
can effectively generalize the mesh representation through the 3D augmented
views and produce a reliable segmentation in the case of COLMAP’s shapes.

preds

confs
0

1

Fig. 7. Semantic segmentation results of our approach on a subset of SHREC14’s
shapes. Trained on FAUST and SCAPE training sets. Segmentation color key is the
same as that in Fig. 5.
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Fig. 8. Semantic segmentation results of our approach on a subset of COLMAP’s
shapes. Trained on FAUST and SCAPE training sets. Segmentation color key is the
same as that in Fig. 5.

Note that the mesh topology of COLMAP’s shapes is different from those used
in training. This is because the meshing operation based on Poisson reconstruc-
tion of COLMAP produces highly irregular polygons [12]. However, it is also clear
that COLMAP’s shapes are more challenging than SHREC14’s ones by looking
at the respective confidence maps. Overall, results show that our approach can
effectively segment 3D shapes of different subjects, despite their different pose.

4 Conclusions

We presented an approach to segment 3D shapes efficiently regardless their
mesh topology. To achieve this we decomposed the segmentation problem into
sub-segmentation problems by using 3D augmented views generated from the
underlying 3D shape. This enabled us to train a neural network with 1% of
the parameters used by alternative state-of-the-art solutions, while maintain-
ing similar accuracy performance. We showed that our approach is generic and
can be used to segment 3D shapes with arbitrary mesh topologies, like those
computed with photogrammetry reconstruction techniques (e.g. Poisson recon-
struction [12]) that have a high density of polygons and that are distributed
irregularly. Moreover, our approach also showed evidence of being flexible to
segment other categories of 3D shapes (e.g. airplanes) other than human ones.

Future research directions include an extensive analysis of the results, evalu-
ating the impact of a multi-scale approach applied on the 3D augmented views
and exploring next-best-view approaches [17] to select the most suitable 3D views
of the object of interest. We will also exploit the structured output of the CRF to
build models for surface matching between 3D shapes [3] and explore attention
mechanisms to make the prediction of our approach robust to the clutter present
on the 3D shape (i.e. untrained segmentation classes).
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Abstract. Face attributes classification is drawing attention as a
research topic with applications in multiple domains, such as video
surveillance and social media analysis. In this work, we propose to train
attributes in groups based on their localization (head, eyes, nose, cheek,
mouth, shoulder, and general areas) in an end-to-end framework con-
sidering the correlations between the different attributes. Furthermore,
a novel ensemble learning technique is introduced within the network
itself that reduces the time of training compared to ensemble of several
models. Our approach outperforms the state-of-the-art of the attributes
with an average improvement of almost 0.60% and 0.48% points, on the
public CELEBA and LFWA datasets, respectively.

Keywords: Face attributes classification · Deep learning ·
Multi-task learning · Multi-label classification · Ensemble learning

1 Introduction

Attribute classifiers have been drawing attention in zero-shot or few-shot learning
problems where classes share attributes among them and can thus be recognized
with zero or a few samples. Face attribute in particular has been a focus [5–
7,13,17], as describing facial attributes has useful applications such as attribute-
based search. Previously, work on face attribute classification approaches were
based on handcrafted representations, as in [3,11,12]. This kind of approaches
are prone to failing when presented different variations of face images and in
unconstrained backgrounds. Recently, researchers tackle this task using deep
learning, which has resulted in huge performance leaps in several domains [13,
16,18,19,21,22]. Liu et al. [13] use two cascaded convolutional neural networks
(CNNs), for face localization (LNet) and attributes prediction (ANet). Each
attribute classifier is trained independently where the last fully connected layer
is replaced with a support vector machine classifier. Similarly in Zhong et al.
[21], attribute prediction is accomplished by leveraging different levels of CNNs.

Lately, the task is shifted to be a multi-task learning (MTL) problem by
training attributes in groups, mainly to speed up the training process and reduce
overfitting. Yet, only few works address the relationship between different facial
attributes [1,6,7]. Hand and Chellapa’s work divides the attributes into nine
c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11751, pp. 466–476, 2019.
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groups and train a CNN consisting of three convolutional sub-networks and two
multi-layer perceptrons [7]. The first two convolutional sub-networks are shared
for all of the classifiers and the rest of the network is independent for each group.
They also compare their results to the results of classifiers trained independently
for each attribute and show the advantage of grouping attributes together. Atito
and Yanikoglu use the multi-task learning paradigm, where attributes that are
grouped based on their location, share separate layers [1]. Learning is done in
two-stages: first by directing the attention of each network to the area of interest
and then fine-tuning the networks. In Han et al. [6], attributes are grouped into
ordinal vs. nominal attributes, where nominal attributes usually have two or
more classes and there is no intrinsic ordering among the categories, like race
and gender. The attributes are jointly estimated by training a convolutional
neural network that consists of some shared layers among all the attributes and
category-specific layers for heterogeneous attributes.

In this work, we propose an end-to-end network where all of the attributes
are trained at once in a multi-label learning scenario. An extra layer along with
a combined objective function are added to the network to capture the relation
between the attributes. Furthermore, a novel ensemble technique is introduced.

The main contributions are summarized as follows. (1) We use an end-to-end
deep learning framework for face attribute classification, capturing the correla-
tion among attributes with an extra layer that is trained at the same time with
the first one. (2) We propose a novel within-network ensemble technique. (3) We
obtain state-of-the-art results on both the CELEBA and LFWA datasets.

2 Proposed Approach

In this paper, we approached the face attributes classification problem in a multi-
label/multi-task fashion using an end-to-end framework. In Sect. 2.1, we trained
our base system in a multi-label fashion by sharing the network layers among all
of the attributes. While in Sect. 2.2, we introduced groups and attributes specific
layers for distinct feature extraction. In Sect. 2.3, an extra layer is embedded to
the architecture to capture the relation between different attributes. Finally, in
Sect. 2.4, a novel ensemble approach within the architecture itself is introduced.

Training a large deep learning network from scratch is time consuming and
needs tremendous amount of training data. Therefore, all of our proposed archi-
tectures are based on fine-tuning a pre-trained model, namely the ResNet-50
network [8] which is the first place winner of the (ILSVRC) 2015 classification
competition with top-5 error rate of 3.57%, trained on a dataset with 1.2 million
hand-labeled images of 1,000 different object classes.

2.1 Base System

Multi-Task learning has already shown a significant success in different appli-
cations like face detection, facial landmarks annotation, pose estimation, and
traffic flow prediction [10,14,15,20].
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In this work, we use MTL such that all the attributes are trained at once,
using the same shared layers. To match the output of ResNet-50 network with our
task, the output layer is replaced with 40 output units (one for each attribute)
and use the cross-entropy loss function to measure the discrepancy between the
expected and actual attribute values.

The multi-task approach not only saves on the training time, but the shared
network is also more robust to overfitting, according to our experimental results.
Intuitively, the model is forced to learn a general representation that captures
all of the specified tasks which less the chance of overfitting. Similar findings
are also reported in [2] and attributed to the regularization effect obtained by
sharing weights for multiple tasks.

Table 1. Grouping attributes based on their relative location.

Group Attributes

Head (1) Black Hair (2) Blond Hair (3) Brown Hair (4) Gray Hair
(5) Bald (6) Bangs (7) Straight Hair (8) Wavy Hair
(9) Receding Hairline (10) Hat

Eyes (11) Arched Eyebrows (12) Narrow Eyes (13) Bushy Eyebrows
(14) Bags Under Eyes (15) Eyeglasses

Nose (16) Big Nose (17) Pointy Nose

Mouth (18) Big Lips (19) Smiling (20) Mustache (21) Wearing Lipstick
(22) Mouth Slightly Open

Cheek (23) 5 O-clock Shadow (24) Rosy Cheeks (25) Goatee
(26) High Cheekbones (27) No Beard (28) Sideburns

Shoulder(29) Double Chin (30) Wearing Necklace (31) Wearing Necktie

General (32) Attractive (33) Blurry (34) Chubby (35) Young (36) Male
(37) Pale Skin (38) Oval Face (39) Heavy Makeup, (40) Earrings

2.2 Multi-task Learning with Attribute Grouping

When all the layers are shared in a simple multi-task learning approach, the
resulting network may be overly constrained. Therefore, we added a residual
block for each group of attributes, after the last residual network block (res5b),
as well as few layers for each attribute. This architecture is shown in the dashed
part of Fig. 1.

For grouping, the 40 attributes defined for the CELEBA and LFWA datasets
are divided into 7 groups based on their localization (head, eyes, nose, cheeks,
mouth, shoulder, and general areas) as shown in Table 1.

In the rest of the paper, we discuss our improvement to the multi-task learn-
ing network described thus far.
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Fig. 1. End-to-end architecture for face attributes classification.

2.3 End-to-End Network

Neither the basic, nor the multi-task architectures so far take into account the
correlations among attributes.

In previous work, correlations among facial attributes are learned and
exploited by using a separate network or learning phase. In this work we add
another fully connected layer with 40 output nodes to the network described
in Sect. 2.2, for simplicity and end-to-end training. The resulting architecture
is shown in Fig. 1, where the last layer aims to pick the most suitable predic-
tions based on the predictions in the previous layer, by learning the correlations
between the attributes.

The multi-label mean-squared-error loss used in this network consists of two
terms, one for each of the last two layers. Specifically, for a given input image
and A attributes, the loss function is denoted as shown in Eq. 1, where ŷ1[a] and
ŷ2[a] denote the output for attribute a, in the last two layers:

loss =
A∑

a=1

(y[a] − ŷ1[a])
2 + (y[a] − ŷ2[a])

2 (1)

In this architecture, mean-squared-error loss is used instead of cross-entropy
loss, with target values of {−1, 1}, since we aim to capture attribute correlations
with the last layer weights.



470 S. A. A. Ahmed and B. Yanikoglu

2.4 Within-Network Ensemble

Ensemble approaches are very important in reducing over-fitting and they are
used more and more to improving the performance of deep learning systems.
However, forming ensembles from deep learning systems is very costly, as training
often takes long hours or days.

To reduce the time to build the base classifiers forming the ensemble and
inspired by the improved results with the end-to-end architecture with two out-
put layers, we trained an ensemble all at once, within a single network.

The architecture illustrated in Fig. 2 shows the main idea behind our app-
roach. Assuming that we have a classification/regression task with N outputs
(here the 40 binary attribute nodes), we branch a fully connected layer with N
output nodes after every several layers and include their error in the global loss
function. During testing, the outputs of these branches are treated as separate
base classifier outputs and averaged to obtain the final output.

Im
ag
e

Loss Function

FC1 FC2 FC3 FC4 FC5

Fig. 2. A basic architecture of within-network ensemble approach, with 5 output layers.

In this work, we have constructed the ensemble with 5 such branches, each
with 40 output nodes. The training of the network for one epoch on the LFWA
dataset took approximately 18 min, compared to 16 min with the end-to-end
network.

Notice that the base classifiers formed in this fashion use progressively more
complex features and the training is much faster compared to training several
separate network as base classifiers. On the other hand, while these base classi-
fiers are not independent from each other, they show complementary behaviour,
based on our experimental findings. More implementation details are discussed
in Sect. 3.3.

3 Experimental Evaluation

We evaluated the effectiveness of our approach using the widely used CELEBA
and LFWA datasets, described in Sect. 3.1. Data augmentation techniques used
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while training are presented in Sect. 3.2. In Sect. 3.3, the network and implemen-
tation details are explained. Finally, in Sect. 3.4, the performance of our pro-
posed method is evaluated along with a comparison with several state-of-the-art
techniques.

3.1 Datasets

Our experiments are conducted on two well-known datasets for face attributes
classification to assess our proposed method, CELEBA and LFWA [13].

CELEBA [13] consists of 202, 599 images of 10, 177 different celebrity faces
identities. The first 8k identities are set for training (in total around 160k
images), while the remaining images are used for validation and testing
(around 20k images each). The dataset provides 5 landmark locations (both
eyes, nose, and mouth corners), along with ground-truth for 40 binary
attributes for each image.

LFWA [13] is originally constructed for face identification and verification [9],
but recently, it is annotated with the same 40 binary attributes. The anno-
tated dataset contains 13,143 images of 5,749 different identities. The dataset
has a designated training set portion of 6,263 images, while the rest is reserved
for testing. LFWA is one of the challenging datasets with large variations in
pose, contrast, illumination and image quality.

3.2 Data Augmentation

Deep networks typically have large number of free parameters on the order of
several millions, which makes the networks prone to overfitting. One way to com-
bat overfitting is to use data augmentation. Recently, several advanced methods
for face data augmentation have been developed and automated as in [4].

In this work, we want to show the effectiveness of our stand-alone architecture
without using sophisticated data augmentation or pre-processing techniques.
Therefore, we only use the following simple, but effective data augmentation
techniques: (1) Rotation: training images are rotated using a random rotation
angle between [−5, +5] around the origin. (2) Scaling: images are scaled up and
down with a random scale factor up to a quarter of the image size. (3) Contrast:
by converting the color space of the images from RGB to HSV and randomly
multiplying the S and V channels with a factor range between [0.5, 1.5]. In addi-
tion, blurring with two different filter size (3 × 3 and 5 × 5) and histogram
equalization are performed.

At every iteration, we randomly decide whether to apply a transformation to
the input image and then pick its parameter randomly. Thus, an input image may
undergo a combination of multiple transformations, during one presentation.
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3.3 Network Details and Implementation

As mentioned in Sect. 2.3, ResNet-50 is used as our base model in this work,
chosen due to its relatively small size and good performance.

All of the layers of ResNet-50 are shared among all of the attributes, up
until the last residual block, namely res5b. Then, seven forks are branched from
the res5b layer, one for each group of attributes. Each group’s shared layers
are similar to the layers in the last residual block of ResNet-50, which are as
following: a dropout layer followed by a three consecutive blocks of convolutional
layer, batch normalization, scaling and ReLU layer.

After every group block, several forks are branched, one for each attribute: a
dropout layer, pool layer, followed by a fully connected layer with one unit. The
output coming from all of the branches are then concatenated to form a vector
of 40 units and a hyperbolic tangent (tanh) activation layer is applied after this
layer. Finally, a fully connected layer with 40 units is added at the end, followed
by tanh activation layer, to learn the correlations among attributes.

For the within-network ensemble, 5 base classifiers are branched after the
res2c, res3c, res4a, res4d and res5a layers of the network. The whole network is
trained at once, with 7 terms in the loss function (5 coming from the extra
branched layers and 2 from the last two fully connected layers).

The implementation is done using the ResNet-50 models provided in the
Matlab deep learning toolbox. Throughout this work, we set the batch size equal
to 32 and the initial learning rate as 10−3 with a total of 20 epochs with stochastic
gradient descent for parameters optimization.

The training of the three models effectively took the same amount of time.
Specifically, training ResNet-50 model using LFWA dataset for one epoch was
performed in 15.52 min with the multi-task learning network, 16.02 min with the
end-to-end network and 18.28 min with the within-network-ensemble approach.
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Fig. 3. Obtained accuracies on LFWA dataset from the increasingly complex networks
described in Sect. 2. Best viewed in color. (Color figure online)
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Fig. 4. State-of-the-art accuracies on CELEBA dataset compared with our proposed
approach. Best viewed in color. (Color figure online)
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Fig. 5. Learned weights of the last hidden layer that capture the relation between
attributes (attributes order is same as in Table 1).

3.4 Results and Evaluation

A comparison between our proposed methods that are described in Sect. 2, is
shown using the LFWA dataset in Fig. 3. We have obtained an average accu-
racy of 85.15% using the base system approach; 85.66% with the multi-task
network using attribute grouping; 85.92% after embedding an extra layer to
capture the relation between the attributes; and finally 86.63% using our novel
within-network ensemble technique. Our approach outperforms the state-of-the-
art results on LFWA ([6]) by 0.48%.

In Fig. 4, our within-network ensemble approach is compared with the state-
of-the-art accuracies obtained on the larger CELEBA dataset. We obtained an
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Table 2. State-of-the-art accuracies on CELEBA dataset compared with the results
obtained in this work, using the within-network ensemble. Bold figures indicate the
best results.

# Attribute Baseline [13] [7] [6] This work

Head group

1 Black Hair 72.84% 95% 96% 91% 94.00%

2 Blond Hair 86.67% 80% 89% 96% 97.89%

3 Brown Hair 82.03% 68% 71% 88% 89.61%

4 Gray Hair 96.81% 95% 97% 98% 98.96%

5 Bald 97.88% 79% 85% 99% 99.57%

6 Bangs 84.43% 98% 99% 99% 96.32%

7 Straight Hair 79.01% 73% 84% 85% 84.21%

8 Wavy Hair 63.60% 80% 84% 87% 85.53%

9 Receding Hairline 91.51% 89% 94% 94% 94.90%

10 Wearing Hat 95.80% 99% 99% 99% 99.13%

Eyes group

11 Arched Eyebrows 71.56% 79% 83% 86% 85.79%

12 Narrow Eyes 85.13% 81% 87% 90% 89.21%

13 Bushy Eyebrows 87.05% 78% 85% 92% 94.41%

14 Bags Under Eyes 79.74% 81% 83% 85% 86.33%

15 Eyeglasses 93.54% 92% 96% 99% 99.13%

Nose group

16 Big Nose 78.80% 88% 90% 85% 83.86%

17 Pointy Nose 71.43% 72% 77% 78% 78.54%

Mouth group

18 Big Lips 67.30% 95% 96% 96% 92.70%

19 Smiling 49.97% 92% 93% 94% 95.15%

20 Mustache 96.13% 95% 97% 97% 98.75%

21 Wearing Lipstick 47.81% 93% 94% 93% 97.11%

22 Mouth Slightly . . . 50.49% 92% 94% 94% 96.27%

Cheek group

23 5 o’Clock Shadow 90.01% 91% 95% 95% 97.18%

24 Rosy Cheeks 92.83% 90% 95% 96% 95.66%

25 Goatee 95.42% 99% 100% 99% 98.41%

26 High Cheekbones 51.82% 87% 88% 88% 88.69%

27 No Beard 14.63% 95% 96% 97% 98.36%

28 Sideburns 95.36% 96% 98% 98% 98.05%

Shoulder group

29 Double Chin 95.43% 91% 96% 97% 97.56%

30 Wearing Necklace 86.21% 71% 87% 89% 88.32%

31 Wearing Necktie 92.99% 93% 97% 97% 97.58%

General

32 Attractive 50.42% 90% 93% 85% 85.68%

33 Blurry 94.94% 97% 98% 96% 96.84%

34 Chubby 94.70% 84% 96% 96% 97.54%

35 Young 24.29% 87% 88% 90% 89.84%

36 Male 61.35% 98% 98% 98% 99.13%

37 Pale Skin 95.79% 91% 97% 97% 99.35%

38 Oval Face 70.44% 66% 76% 78% 77.07%

39 Heavy Makeup 59.50% 90% 92% 92% 94.19%

40 Wearing Earrings 79.34% 82% 90% 91% 91.34%

Average 76.87% 87.30% 91.32% 92.60% 93.20%
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average accuracy of 93.20% that surpasses the state-of-the-art obtained in [6],
by 0.60%. Note that improvements are small due partly to the already high
accuracy rates for this problem and the fact that some of the binary attributes
are in fact continuous attributes (e.g. smile).

By visualizing the learned weights of the last hidden layer (Fig. 5), we found
that the relationship between attributes are nicely captured. For instance, the
learned weights show a high negative correlation between “No Beard” attribute
and “Mustache”, “Goatee”, and “Side Burns” attributes. Contrarily, there is
a high positive correlation between “Heavy Makeup” attribute and “Wearing
Lipstick”, “Rosy Cheeks”, and “No Beard” attributes.

State-of-art results on the CELEBA dataset and those obtained with the
within-network ensemble are shown in Table 2.

4 Conclusion

We present an end-to-end multi-task framework for face attribute classification
that considers attribute location to reduce network size and correlation among
attributes to improve accuracy.

We also introduce a novel ensemble technique that we call within-network
ensemble, by branching output nodes from different depths of the network and
computing the loss over all these branches. As the network is shared, this branch-
ing results in very little computational overhead. To the best of our knowledge,
this ensemble technique has not been suggested before, while it brings non-
negligible improvements (0.71% points accuracy improvement over the end-to-
end network). Our results surpass state-of-the-art on both LFWA and CELEBA
datasets, with 86.63% and 93.20% average accuracies, respectively.
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Abstract. In recent years, following the exploding spread of Social Net-
working platforms, more and more people have started to share large
quantities of data on Internet where they express personal opinions,
ideas or emotional states regarding any kind of topic. With the increasing
amount of these type of data, finding a way to analyzing it has become
a need for major companies, political parties or whatever organization
based on its own customers’ feedback. This paper proposes a new case
of study that has seen a limited assortment of similar proposals in the
current state-of-art: in particular, we propose an innovative approach
for analyzing both visual and textual features of Social Media images
using Deep Convolutional Neural Networks (DCNNs), in order to col-
lect more accurate results than the single analysis of both type can do
alone. The deep learning approach estimates the overall sentiment of
daily news-related pictures from social media based on both visual and
textual clues. The proposed approach was applied and tested on a new
public dataset with more than 9.000 annotated Instagram images. Exper-
imental results confirmed the effectiveness of the approach, showing high
values of accuracy.

1 Introduction

Nowadays, publishing or sharing a thought, an image or a video is an easy
and quite intuitive task that most of people performe normally during the day.
Posts about own ideas on surrounding events, rating of products, places and
companies’ services are published in a large amount on a daily basis. For this
reason, an increasing need to somehow control, analyzing and collecting data
from them has become crucial and fundamental for the organizations that rely on
their customers’ support: being able to determine if a product is having success,
if people are discontent about a political reform or if a certain restaurant has
enough standards for you are typical examples showing their important role for

c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11751, pp. 477–487, 2019.
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marketing policies and politics carried on by the major financial and commercial
organizations.

This study, in particular, focuses its attention on image content: a lot of dif-
ferent approaches were proposed to resolve these needs in the most efficient way,
most of them based on visual analysis or textual analysis, singularly. With the
increasing popularity of social networks and image sharing platforms [5] more
and more opinions are expressed by an image format. Several researchers have
now started to propose solutions for the sentiment analysis of visual content.
It is important to notice, however, that a multitude of user’ pictures does not
only include visual elements, but also textual elements. For example, people take
pictures of advertisement posters or more frequently, use any image-editing soft-
ware to add some words or sentences on them. In order to estimate the overall
sentiment of a picture, then, it is essential to not only analyze the sentiment of
the visual elements but also to correctly understand the meaning of the included
text and to analyze it accordingly. As in retail [24,25], it can happen that iden-
tical images have an opposite meaning since their textual content is exactly the
opposite. If we do not consider the text, we could determine a wrong sentiment.
In this paper, it is improved and extended the approach which has already been
described in [23]. The sentiment of a picture is identified by a machine learn-
ing classifier based on visual and textual features, extracted from two specially
trained Deep Convolutional Neural Networks (DCNNs). In particular, we focus
on sentiment analysis for both visual and textual information of daily news-
related pictures taken from Instagram.

For the visual feature extractor, VGG-16 net [29], AlexNet [17], CaffeNet [14],
GoogLeNet [30], and ResNet [11] with 50 layers and ResNet with 101 layers were
used and applied to the whole image, trained by fine-tuning a model pre-trained
on the ImageNet dataset. For the textual feature extractor, the DCNN archi-
tecture was used, proposed by [40] and created by fine-tuning a model that has
been previously trained on synthesised social media images. The model first had
to detect and recognise text before extracting features. With reference to these
features, six state-of-the-art classifiers, i.e., kNearest Neighbors (kNN) [1], [32],
Support Vector Machine (SVM) [8], Decision Tree (DT) [27], Random Forest
(RF) [2], Naive Bayes (NB) [28], and Artificial Neural Network (ANN) [20],
were evaluated to classify the overall sentiment.

The approach has been applied to a newly collected dataset “SocIal Media
PictureS News-related” (SIMPSoN) Dataset of daily news pictures from Insta-
gram. Both visual and textual elements concerning daily news were present in
the dataset with a total of 9.247 images.

Ground truth has been manually evaluated by three human annotators to
make it more reliable. The SIMPSoN Dataset is publicly available1 for research
purposes. The application of our approach to this dataset showed good results
in terms of precision, recall, and F1-score, which demonstrated the effectiveness
of the proposed approach.

1 http://vrai.dii.univpm.it/content/simpson-dataset.

http://vrai.dii.univpm.it/content/simpson-dataset
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The main contributions of this paper, aside from extending the system and
the analysis presented in [23], are (i) the collection and analysis of an Instagram
pictures dataset for deep learning purposes that is public to all researchers with
more than 9.000 social media images, (ii) the proposal of a novel method that
evaluates the visual and textual content of an image simultaneously, and (iii)
performance comparison of data collection for social media pictures classification.

The paper is organised as follows: Sect. 2 is an overview of the research sta-
tus of textual and visual sentiment analysis; Sect. 3 introduces more specifically
our approach, describing also the visual features extractor, the textual features
extractor, and the overall sentiment classifier; Sect. 4 presents the results; and
Sect. 5 discusses the conclusions and future works.

2 Related Works

The Sentiment Analysis is a wide field that contains a lot of different approaches
and methods that can be used according to the particular case of study. Sen-
timent analysis is applied to a large set of applications, that come from polit-
ical election prediction [7,33] stock market predicting [10,18], product evalua-
tion [9,31] and movie boxoffice performance [35].

Taking into account data sources, an important distinction for sentiment
analysis approaches is the division into unimodal and multimodal [3]: while uni-
modal approaches consider only one data source, multimodal models consider
several types of data sources when determining the sentiment. According to [12],
mainly in the last years the multimodal approach has an increasing attention.
This because often, an only one source of information can be ambiguous and
so not sufficient to detect the real sentiment of an emotion. For multimodal
sentiment, three types of combination methods exist: early fusion [22,26], late
fusion [34,35], and intermediate fusion [6,37].

In the early fusion, multiple sources of data are integrated to form a single
feature vector. In [26], the authors use deep convolutional neural networks to
extract features from visual and textual sources and then fuse all the features
with a multiple kernel learning classifier.

Late fusion aggregate decisions derived from multiple sentiment classifiers.
Each classifier is trained considering different modalities, that are independent in
the features space. Late fusion is employed in [4,34], that combines the prediction
results using text and images for sentiment analysis.

Finally, the last approach is intermediate fusion that refers to the use of arti-
ficial neural networks, where the fusion process occurs in an intermediate layer
of the networks. In the study [38], the authors employ both images and text
to determine the sentiment by fine-tuning a CNN for image sentiment analysis
and by training a paragraph vector model for textual sentiment analysis. Fur-
thermore, in [39], the authors employ deep learning approaches to analyze the
sentiment of Chinese micro-blogs posts from both textual and visual contents.
In recent years, the use of methods based on Deep learning is increased in the
sentiment analysis field. For example, in [15], the authors use a Convolutional
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Neural Network (CNN) to extract features from sentences and perform sentiment
analysis of Twitter messages; in [21], an ensemble system to detect the sentiment
of a text document from a data set of IMDB movie reviews and ratings. CNNs
have also been applied to the visual part of sentiment analysis. For example,
in [36] visual sentiment prediction framework is introduced: it performs transfer
operations learning from a pre-trained CNN with millions of parameters.

3 Materials and Methods

The approach presented in [23], i.e., the combination of the visual and textual
features, has been used and extended for the development of the proposed frame-
work. The framework for joint visual and textual analysis, as well as the novel
social media dataset (SIMPSoN Dataset) used for evaluation, was comprised of
three main components: the visual feature extractor, the textual feature extrac-
tor, and the overall classifier (see Fig. 1). Two trained DCNNs were used for
visual and textual feature extraction. Then, the two features were combined and
fed into the fusion classifier. To estimate the overall content of the image, state-
of-art machine learning algorithms were compared. Further details on the visual
and textual feature extractor and overall classifier are given in the following
sections.

The framework is comprehensively evaluated on the “SIMPSoN” Dataset,
publicity available, collected for this work. The details of the data collection and
ground truth labeling are discussed in Subsect. 3.4.

3.1 Description of Visual Feature Extractor

The visual feature extractor provides information about the visual part of the
picture. For this task, it is trained with image labels that indicate the visual
category of the images. The training is performed by fine-tuning a DCNN. Dif-
ferent DCNNs were tested to chose the ones with the best performance: VGG-16
net [29], an AlexNet [17], a CaffeNet [14], a GoogLeNet [30], and a ResNet [11]
with 50 layers, and a ResNet with 101 layers. The DCNNs have been pre-trained
on the ImageNet dataset [17] to classify images into 1,000 categories. The fine-
tuning is performed by cutting off the final classification layer and replacing it
with a fully connected layer that has three outputs (one for each category class);
the learning rate multipliers are increased for that layer. Loss and accuracy lay-
ers are adapted to take the input from the newly created final layer. The output
of the next to last layer is passed to the fusion classifier (fc7 layer for VGG-
16, AlexNet, and CaffeNet; pool5 for GoogLeNet and ResNet50). The image
feature extractor is implemented using standard Keras tools2. The dataset was
initially subjected to a phase of preprocessing to be able to be used: images was
cropped at the center and resized to 224 × 224 pixels. Furthermore the training
was improved by using data augmentation techniques: images of the dataset was
randomly flipped (Left-to-Right, Top-to-Down) and rotated (90◦, 180◦, 270◦).
2 http://keras.io/.

http://keras.io/
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Fig. 1. Workflow of the multimodal sentiment evaluation.

3.2 Description of the Textual Feature Extractor

The textual feature extractor provides information about the textual category
of a picture. It is trained with image labels that indicate the textual category
of the images. Multiple components make up the textual feature extractor. The
central component is a character-level CNN [40], extended for this analysis by one
additional convolution layer. This extra layer, inserted before the last pooling
layer, has a kernel size of three and produces 256 features. The text must be
transformed into characters before being processed by the character-level DCNN,
since it is embedded in the picture as pixels. For this reason, the following steps
have been performed:

1. Text Detection: Individual text boxes are detected in an image with the
TextBoxes Caffe model [19].

2. Text Arrangement : Detected text boxes are put in order based on a left-to-
right, top-to-bottom policy, thus forming logical lines.
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3. Text Recognition: Each text box is processed by the OCR model [13] to tran-
scribe the text of the box.

4. Text Encoding : The recognised text is encoded into one-hot vectors based on
the alphabet of the character-level DCNN.

The textual features of the next to last layer of the character-level DCNN
are passed to final fusion classifier.

The performance of a Dictionary based model is also evaluated. Each phrase
is mapped into a real vector domain, a technique that is called “word embedding”
when working with the text. This is a technique where words are encoded as
real-valued vectors in a high dimensional space; the similarity between word
meanings translates to closeness in the vector space [16]. The sequence length
(number of words) in each phrase varies, so we constrained each phrase to be
20 words, truncating long phrases and padding the shorter phrases with zero
values. Results were compared with those of character-level DCNN.

3.3 Description of the Overall Sentiment Classifier

Fusion classifier estimates the overall content of an image on the basis of the
visual and textual features. Thus, the visual and textual features extracted from
DCNN were pooled in the predictor vector and the machine learning classifier it
is trained with indicated the overall sentiment of the images. Based on all fea-
tures, six state-of-the-art classifiers—k-Nearest Neighbor (kNN), Support Vector
Machine (SVM), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB),
and Artificial Neural Network (ANN)—were compared to recognise the overall
content of the images. For what concerns the kNN, we employed the euclidean
distance as metric function. The Gaussian kernel was used for SVM. We selected
the optimal hyper-parameters for the machine learning methods (i.e., kNN: num-
ber of neighbours, SVM: kernel scale and box constraint, RF: number of weak
classifiers, ANN: number of hidden layers), implementing a grid-search and opti-
mising the F1-score in five-fold cross-validation within the training set. The
testing performances were evaluated in terms of precision, recall, and F1-score.

3.4 SIMPSoN Dataset

In order to evaluate the performance of the implemented system we used a
purposely created dataset comprising 9247 images. The sentiment of the images
was labeled manually. Since our goal is to conduct a visual sentiment analysis,
we have based our work on Instagram, the most famous image sharing social
network. Through profiles, hashtag and location, it is possible to search the
images related to recent news. The true content has been manually estimated
to provide a more precise and less cluttered dataset. All pictures are annotated
with respect to their visual, textual, and overall content.

Figure 2 shows three examples of pictures in the SIMPSoN Dataset. As can
be seen, the overall content depends not just on the visual content of the picture,
but also on the textual content. The current dataset is used to test and deploy
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the proposed methodology and compare different approaches. Further details
will be presented in the results section.

(a) Positive (b) Neutral (c) Negative

Fig. 2. Images from our data set. (a) is an example of positive image, (b) represents
an image with neutral sentiment, and (c) is a picture with negative sentiment.

As we can see, we have considered “positive” the images showing solidarity,
friendship, and in general all the ethical positive facts; for the negatives, we
chose to include in this category all the pictures showing violence, racism and
excessive vulgar statements.

4 Results and Discussion

In this section, we report the results of the experiments conducted on SIMPSoN
Dataset. The performance of the overall classifier is presented, with the per-
formance of the visual and textual classifiers (based on the visual and textual
feature extractors) being the key indicators to the overall classification. For the
experimental analysis, the labelled dataset has been split into a training set and
a test set. Each classifier was trained solely through the training set, while the
test set was used for all test purposes. The considered dataset is split into two
randomly selected sub-sets: 80% for training images and 20% for test images,
accounting for all permutations of overall, visual, and textual annotations.

The performance of the visual classification is reported in Table 1.

Table 1. Visual classification results.

DCNN Accuracy Precision Recall F1-score

VGG16 74.57 72.10 74.03 73.06

AlexNet 70.08 71.35 71.10 71.22
CaffeNet 69.14 71.80 70.13 70.96
GoogleNet 71.22 70.14 71.08 71.61
ResNet50 73.54 69.63 71.10 70.36
ResNet101 69.18 70.40 68.02 69.21
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As shown above, high values of precision and recall can be achieved. In
Table 2, the precision, recall, and F1-score of the textual classification is pre-
sented. From the results we can see that for this type of dataset and based
on a classification of a few classes, the VGG16 has better performance than a
much deeper network like the ResNet. The latter is usually better performing
with classification problems on many classes, for example with the 1000 classes
of ImageNet dataset. The textual classification performance is mainly good, but
lower than the visual classification performance. While the classification of visual
and textual image content is equally difficult for humans, the classification of
the text in the picture is much more challenging for machines, as it needs to be
detected and recognised before it can be classified.

Table 2. Textual classification results.

OCR DCNN Accuracy Precision Recall F1-score

Char based Kim [16] 66.13 68.59 59.37 58.26
Zhang [40] 57.15 54.10 53.07 52.73

Dict based Kim [16] 68.05 67.34 63.53 63.68
Zhang [40] 56.34 55.67 53.55 52.80

The features vectors (visual and textual) are extracted from the last layer
before the last fully connected of the best models (visulal an textual). Than the
4096 visual and 1024 textual features are concatenated in a unique vector that
is the imput of final classifiers. To train the final classifiers the feature vectors
were balanced between the classes based on the overall ground truth. Therefore
2898 samples, equal to the number of the minority class, were selected from each
class. For each class 2318 samples are used for training and the remaining 580
used for the test (split 80–20%). Finally, the results about the Overall Sentiment
Classification are shown in Table 3.

The best classifier in our study was the SVM, followed by k-NN and RF.

Table 3. Overall classification results.

Classifier Accuracy Precision Recall F1-score

DT 74.22 75.55 73.14 74.34
RF 76.12 76.07 77.10 76.58
kNN 77.80 78.90 77.22 78.06
NB 73.81 72.90 73.12 73.01
ANN 74.74 72.10 71.45 71.77
SVM 79.70 78.12 79.45 78.78
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5 Conclusion

Multimodal sentiment analysis of social media pictures represents a challenging
task useful to estimate user opionion on several fields. In this paper, we intro-
duce a deep learning approach for recognizing the sentiment of daily news social
media pictures by taking visual as well as textual information into account. The
sentiment of a picture is identified by a machine learning classifier based on
visual and textual features extracted from two especially trained DCNNs. By
combining DCNNs with machine learning classifiers such as kNN, SVM, DT,
RF, NB, and ANN, the approach is able to learn a high level representation
of both visual and textual content and to achieve good precision and recall for
sentiment classification. The experiments on the SIMPSoN Dataset yield high
accuracies and demonstrate the effectiveness and suitability of our approach.
Further investigation will be devoted to improve our approach by employing a
larger dataset and by comparing the performance of other networks, such as
LSTM (Long Short Term Memory). Moreover, we will extend the evaluation
by comparing our visual and textual classifiers with other existing systems for
visual and textual sentiment analysis.
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Abstract. We present a dual-stream CNN that learns both appearance
and facial features in tandem from still images and, after feature fusion,
infers person identities. We then describe an alternative architecture of
a single, lightweight ID-CondenseNet where a face detector-guided DC-
GAN is used to generate distractor person images for enhanced train-
ing. For evaluation, we test both architectures on FLIMA, a new exten-
sion of an existing person re-identification dataset with added frame-
by-frame annotations of face presence. Although the dual-stream CNN
can outperform the CondenseNet approach on FLIMA, we show that
the latter surpasses all state-of-the-art architectures in top-1 ranking
performance when applied to the largest existing person re-identification
dataset, MSMT17. We conclude that whilst re-identification performance
is highly sensitive to the structure of datasets, distractor augmentation
and network compression have a role to play for enhancing performance
characteristics for larger scale applications.

Keywords: Person Re-ID · GANs · Distractor synthesis ·
Deep face analysis

1 Introduction

Visual person re-identification (Re-ID) is tasked with linking people’s identities
across multiple acquisition scenarios usually comprising disjoint fields of view.
Given this highly variable operational environment, real-world Re-ID consti-
tutes a particularly challenging sub-domain in computer vision due to inherent
viewpoint and illumination changes, partial occlusions, limitations on resolution,
and significant appearance alterations, such as changes in clothing [9,14]. These
exigent visual conditions and the presence of facial occlusions render unimodal
approaches, such as face recognition systems, on their own inadequate – and that
is despite their human-level performance on favourable, well-known datasets, e.g.
[16,33].
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Fig. 1. Utilised Dual-Stream Architecture. Dual-stream CNN subdivided into
appearance and facial feature streams using late feature fusion to map from frames to
person identities. The appearance CNN network is based on LeNet-5 [15].

The emergence of deep learning techniques such as Convolutional Neural
Networks (CNNs), streamed network designs, and large scale datasets [3,30,35]
all have significantly evolved the field of Re-ID and addressed some of the
issues mentioned above, with significant impact on applications including out-
door CCTV surveillance [7] and indoor e-health systems [1]. Whilst CNN-based
representation learning excels at generating discriminative feature stacks that
map inputs to compact identity clusters in embedding space, obtaining cross-
referenced ground truth over long term [27], realising deployment of inexpen-
sive inference platforms, and establishing visual identities from very limited
data, remain challenging. In particular, the dependency of most deep learning
paradigms on high computational requirements and on vast annotated training
data pools appear as significant challenges to the field of person Re-ID.

In this paper, we explore the problem of ineffective training and heavy net-
work footprints by proposing a generative-discriminative framework that gener-
ates images of a distractor class for enhancing the training of a discriminative
ID-network – one which is lightweight and compact to deploy.

Initially, we describe a traditional two-stream CNN architecture (see Fig. 1)
split into appearance and facial feature streams that map in a conventional way,
after late feature fusion, from still images to person identities. This network
follows a regular streaming architecture deploying one visual task per stream
before combined inference. Then, we propose to utilise the facial stream of this
architecture to aid a setup where a single compact CondenseNet [11] is trained
to perform Re-ID. Critically, training data is enhanced via a Deep Convolu-
tional Generative Adversarial Network (DC-GAN) [20] generating a large set of
distractor images semantically guided by facial semantics (see Fig. 2). Note that
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Fig. 2. Guided DC-GAN Compact Architecture. CondenseNet training is
enhanced via distractor data generated by a DC-GAN which is semantically guided
by a face detector.

synthesised distractor person images are generated by training input from across
all identities; the synthesised content is thus not identical to given images of any
one identity. Conceptually, adding such a distractor class as an extra identity to
the given identities for training the identification network enforces differentiation
of persons from visually nearby distractors.

For evaluation, we introduce Facial-LIMA (FLIMA), which is an extension of
the Long-term Identity-aware Multi-target multi-camerA dataset (LIMA) [14],
by way of added frame-wise annotations of occurrence of faces. For an evaluation
in a second, very different scenario, comparative experiments on the large Multi-
Scene Multi-Time (MSMT17 [30]) person Re-ID dataset are presented. This
comparison includes the dual-stream architecture and different settings of the
proposed Guided DC-GAN trained compact CondenseNet against other reported
results of the state-of-the-art on this dataset. Due to differences in the standard
evaluation protocols, to sensitivity to the presence of detectable faces, and to
resolution differences, we report on the varying efficacy of the tested approaches.

2 Related Work

The transition from hand-crafted features and small-scale evaluation to deep
learning systems [36] with large-scale training datasets has fundamentally
changed the way Re-ID systems are designed and operated. Looking back, early
sliding window algorithms that made use of Histograms of Oriented Gradi-
ents (HOG) [6] or Haar-like Features [29] together with Eigenfaces [23] or Sup-
port Vector Machines (SVM) [5] were used to first detect and then classify per-
sons or faces based on finding and categorizing a relevant image patch. However,
these approaches’ reliance on manually crafted features render them suboptimal
in many application scenarios.



Deep Compact Person Re-Identification with Distractor Synthesis 491

Deep Learning – Deep representation learning, on the other hand, avoids man-
ual feature crafting entirely and has achieved significant improvements in image
classification tasks compared to traditional methods. Space Displacement Neural
Networks (SDNN) [15] demonstrated that neural nets can be effective for scale-
invariant object detection too as shown, for instance, for face location [28], and
detection and tracking [18] in videos. More recently, object detection has been
addressed by region-focussed architectures such as R-CNN, Fast R-CNN, and
Faster R-CNN [21] by integrating region proposal generation and classification
by sharing convolutional features. With respect to person Re-ID, various CNN-
centered approaches have been introduced recently, e.g. [24,31], including two-
stream Siamese CNNs [4] providing pairwise class equivalences. Often, however,
it is not the network design alone, but the availability of a large, learning-relevant
training data corpus that makes the difference in effective network training.

Adversarial Synthesis – Generative Adversarial Networks (GANs) [8] have
been applied widely and successfully to create large, learning-relevant training
data via augmentation – building on their ability to construct a latent space
that underpins the sparser training data, and then to sample from it to pro-
duce further training information. DC-GANs [20] pair the GAN concept with
compact convolutional operations to synthesise visual content more efficiently.
The DC-GAN’s ability to organise the relationship between a latent space and
an actual image space associated to the GAN input has been shown in a vari-
ety of applications, including face and pose analysis [17,20]. In these and other
domains, latent spaces have been constructed that can convincingly model and
parameterise object attributes, and hence dramatically reduce the amount of
data needed for conditional generative modeling of complex image distributions.
Some recent examples are face frontalisation [32] and identity preservation via
generative modelling [26,34]. For instance in [34], Dual-Agent GANs (i.e. DA-
GANs) were introduced to synthesise profile face images with varying poses.

Despite the deep learning revolution, the utilisation of both facial and person
appearance features has remained a fundamental challenge in long-term moni-
toring [14,19]. Thus, in Sect. 4.1 we employ a two-stream CNN architecture (see
Fig. 1) split into appearance and facial feature streams. We then compare it
in Sect. 4.2 to a single compact CondenseNet [11], which has access to both
facial and overall appearance information, where training data is enhanced via
a DC-GAN [20] performing distractor image generation. These models are then
explored and results are presented and discussed in Sect. 5. We begin by intro-
ducing the datasets used.

3 Datasets: LIMA, FLIMA and MSMT17

The LIMA dataset [14] consists of 188, 427 frames of 7 manually labeled iden-
tities associated to person bounding box tracklets estimated by OpenNI NiTE.
Identities refer to 6 person identities and 1 ‘unknown’ label, which represents one
distractor class that acts as an umbrella to capture any non-identity including
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Fig. 3. FLIMA Data Annotation. (a) Examples of challenging face annotations
and one example (b) where 2 faces are contained in the bounding box.

noise or multiple people in the same bounding box tracklet. The whole dataset
is recorded in various indoor environments and split into 13 sessions. Accord-
ing to previous works for long-term analysis [14,19], one fundamental evaluation
protocol is to perform a leave-one-out performance evaluation with a train-test
ratio of 12 : 1 to validate the generalization capability over the different periods.

The FLIMA1 dataset extends LIMA and assigns to every person bounding
box an additional tag indicating the presence or absence of a face. Note that if a
bounding box contains more than one face, the box will still just be labelled as
‘face’. In general, well resolved frontal-to-profile facial occurrences are labeled as
a ‘face’. By contrast, faces that are mostly occluded or non-visible are considered
as ‘non-face’. Figure 3 provides some examples from the FLIMA dataset. Overall,
60, 939 bounding boxes are annotated as containing faces.

Beyond FLIMA, we also consider the MSMT172 dataset [30], as it is the
largest person Re-ID dataset available. It contains 126, 441 bounding boxes of
4, 101 identities taken by 15 cameras during 4 days.

4 Proposed Methods

4.1 Dual-Stream Architecture

We propose a two-steam network as shown in detail in Fig. 1. The fundamen-
tal design contains two separate streams for full person and facial appearance,
respectively, which are combined through a fully connected layer that utilises
Softmax activation plus a categorical cross-entropy cost function. Adam [13] is
used as optimizer for network training.

The first stream deals with overall person appearance and a modified version
of the LeNet-5 [15] architecture is utilised to implement it. Different to the
standard implementation, (i) the input tensors are reshaped to s = 64×64×3, (ii)

1 FLIMA dataset will be made available at https://data.bris.ac.uk/data.
2 MSMT17 dataset is online at https://www.pkuvmc.com/publications/msmt17.html.

https://data.bris.ac.uk/data
https://www.pkuvmc.com/publications/msmt17.html
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Fig. 4. Facial Feature Representation. (a) Eigenface components, (b) CNN fea-
tures, (c) Eigenface features.

additional batch normalization layers [12] are introduced after the max-pooling
layers to speed-up training, and (iii) L2-regularization and drop-out are added
to the last fully connected layers in order to reduce over-fitting and stabilize
training.

The second stream deals with facial information exclusively. It starts out by
applying a face detector [21] to the input patch containing a detected person.
If a face is found then the facial region is fed into FaceNet [22] based on Open-
Face [2], which is adjusted to output a 128-D feature vector (or all zeros if no face
is found). These OpenFace features separate identities significantly better than
traditional approaches, such as Eigenfaces [10] in tandem with a Radial Basis
Function Support Vector Machine (RBF-SVM) and grid-search. Figure 4 illus-
trates the supremacy of deep features over the traditional approach on FLIMA
face data. The experiments of our dual-stream network lasted 36 h for training
1000 epochs on the FLIMA dataset with a Geforce Quadro K4100M running on
4GB RAM. We stabilised the training using the same parameters as in [15], but
with a learning rate of 0.001 and a dropout probability of 0.4.

4.2 DC-GAN Trained Compact CondenseNet

We argue that, instead of a classic dual-stream solution, a single compact Con-
denseNet [11] can perform Re-ID equally well or better as long as synthetic train-
ing can be effectively leveraged. The idea is to semantically guide an adversarial
generative process that utilises the facial stream of the dual-stream architec-
ture as a guidance network. As described in the original DC-GAN paper [20], a
discriminator D and a generator G network are trained in tandem, the former
learning to distinguish between generated and real input, the latter learning to
produce outputs ever closer to the real inputs. The adversarial training loss of
this process is, in agreement with [8]:
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minG max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1 − D(G(z)))],

(1)
where the data space in x and latent space in z are sampled for optimisation. One
can understand (1) as a combination of losses, such that the global discriminator
loss for the real and generated images is:

LD = LDx + LDz , (2)

where LDx is the discriminator loss for real images and LDz the discriminator
loss for the generated images, as:

LDx =
1
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[
log

(
D

(
x(i)

))]
, (3)

LDz =
1
m
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i=1

[
log

(
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(
G

(
z(i)

)))]
. (4)

Based on this fundamental layout, we design a training regime that gives particu-
lar emphasis to high quality real training images – those which are well resolved
and thus contain detectable facial features. These should ideally be modelled
as producing a smaller discriminator loss compared to other training images.
Following this paradigm, we introduce a penalisation term to our adversarial
training loss for all training images where faces are not detected, and modify
the discriminator losses from Eqs. (3) and (4) to be:
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log
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(
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(
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)))
− λ2

(
Δ

(
G

(
z(i)

)))]
, (6)

where Δ (.) = 1 when there is no face detectable in the argument, and Δ (.) = 0
otherwise. The two constants λ1,2 are penalisation factors. Note that practically,
this penalisation factor will be multiplied by n ≤ m according to n face-detected
images within the current batch of m images.

Once the training procedure ends, 48, 000 synthetic training images are gen-
erated by the DC-GAN and used as an additional (distractor) class for train-
ing (see Fig. 5). We follow the framework of [19] to train a CondenseNet as a
person ID-inference network, using 100 epochs for training the DC-GAN and
1, 500 epochs for the CondenseNet training processes, respectively. We use the
same parameters as [19] and different values for the penalisation factors, e.g.
λ1, λ2 = [0, 0.025, 0.05], of the discriminator and generator, respectively.
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Fig. 5. Augmentation with Guided DC-GANs. (a) Augmentation samples after
training DC-GANs with and without face detector guidance on FLIMA instances (3
individual identities shown). Note the improved quality of samples with guidance. (b)
Training of the DC-GAN process on all identity samples of the MSMT17 dataset as
used for the generation of distractors. We plot the loss values for the initial generated
samples. We also show samples of global distractors for different 0 ≤ λ1,2 ≤ 0.05 values.
Again, note improvements when activating the guidance with a value above 0.

5 Results

5.1 FLIMA Results

Table 1 shows results of the application of various architectures to the FLIMA
dataset. The first row reports the Re-ID performance when only the 4, 531 facial
patches detected by Faster RCNN are processed by an RBF-SVM applied to
Eigenfaces. Both precision and recall are poor due to the method’s reliance on
a basic methodology and well-resolved facial features. In contrast, the second
row shows comparative results of the method in [19], which utilises full per-
son imagery. The third row depicts performance details of the DC-GAN trained
CondenseNet. The fourth row gives the recognition performance of the LeNet5
stream of the dual-stream architecture that deals with person appearance fea-
tures only. The final row shows a considerably increased performance for Recall
when deploying the full dual-stream architecture. Here, in a dataset with a small
number of individuals and good facial resolution, a dual stream approach is
advantageous, noticing similar F1-scores for appearance-only CNN stream and
an appearance-based CondenseNet approach.

5.2 MSMT17 Results

Comparative performance measures, on what is currently the largest person
Re-ID dataset (MSMT17), are provided in Table 2. This dataset has lower res-
olution facial content than FLIMA, uses a different evaluation scheme [31], and
deals with far greater numbers of identities. We apply two metrics to quantify
performance: correct classification rate of the top ranked individual (Rank@1)
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Table 1. Recognition performance on FLIMA

Method # Test Images Precision Recall F1-score

RCNN and RBF-SVM-Eigenface (Faces only) 4,531 0.56 0.52 0.47

Selective Augmentation Approach [19] 14,494 0.75 0.74 0.74

Our Guided DC-GAN trained CondenseNet 14,494 0.85 0.85 0.85

Our Appearance-Stream only 14,494 0.92 0.81 0.86

Our Full Dual-Stream 14,494 0.93 0.90 0.91

Table 2. Person Re-ID performance on MSMT17 dataset for single queries.

Method Rank@1 mAP

Dual-Stream Architecture 4.89 5.91

GoogLeNet [25] 47.6 23.0

PDC [24] 58.0 29.7

GLAD [31] 61.4 34.0

Selective Augmentation Approach [19] 61.5 15.01

Our Guided DC-GAN (λ1, λ2 = 0.05, 0.025) trained CondenseNet 63.85 16.64

Our Guided DC-GAN (λ1, λ2 = 0.05, 0) trained CondenseNet 65.51 18.57

and mean Average Precision (mAP). Our dual-stream architecture and DC-
GAN trained CondenseNet results are shown alongside four other approaches,
i.e. GoogLeNet [25], a Pose-driven Deep Convolutional model (PDC) [24], a
Global-Local-Alignment Descriptor approach (GLAD) [31], and the Selective
Augmentation Approach [19]. It can be seen that whilst GLAD outperforms all
other methods with respect to mAP performance, our DC-GAN trained Con-
denseNet approach provides a significant improvement in Rank@1 performance
for single-queries. This is a 4% performance increase above the next best per-
forming method and 27% over GoogLeNet without using expensive and time-
consuming training of very-deep multi-stream networks that benefit the mAP
metric. Further, one has to consider that this increment is achieved with a signif-
icantly smaller footprint of the inference network – the produced CondenseNet
carries 8× fewer parameters.

Given its very simple appearance CNN streams, the dual-stream architec-
ture relies on features extracted from the facial stream. Compared to FLIMA,
MSMT17 contains lower resolution facial patches and, most importantly, it has
an evaluation scheme where the training set contains all different identity-classes
to those from the test set. This renders the learning of specific identities com-
pletely ineffective and explains the poor performance of the dual-stream app-
roach bound to learned facial features. The increased performance results with
our guided DC-GAN trained compact CondenseNet on MSMT17 are based on
leveraging distractor synthesis which remains highly relevant in this setting.
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6 Conclusion

In this paper we investigated potential approaches for person Re-ID based on
the exploitation of facial and person appearance representations, as well as an
integration that semantically guides the image synthesis of DC-GAN training.
First, we presented a traditional dual-stream architecture to learn both relevant
appearance and facial features in combination from still images to infer per-
son identities. We then described a second alternative architecture of a single,
lightweight ID-CondenseNet, where a DC-GAN is used to generate distractor
person images for enhanced training guided by the face detector leveraged from
the face stream of our dual-stream CNN architecture. We introduced the FLIMA
dataset with well-resolved facial content where we showed that the dual-stream
approach performs superior. However, we then reported improvements in top-
1 ranking performance compared to all tested state-of-the-art architectures on
MSMT17 when using our proposed CondenseNet system. We therefore conclude
that re-identification performance is highly sensitive to the structure of datasets
and evaluation metrics. As shown on MSMT17, distractor augmentation and
network compression may nevertheless have a role to play for enhancing perfor-
mance characteristics.
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Abstract. Advancements in deep learning techniques caused a
paradigm shift in feature extraction for image perception from hand-
crafted methods to deep methods. However, these deep features if
learned through unsupervised methods bear large memory footprints and
are prone to the curse of dimensionality. Traditional feature reduction
schemes involving aggregation of these learned visual descriptors may
lead to loss of essential information necessary for their obvious discrim-
ination. Therefore, this research studies various feature reduction tech-
niques for remote sensing image features. We also propose an deep dis-
criminative network with dimensionality reduction (DAE-DR), exploit-
ing stacked autoencoder based solution to abbreviate unsupervised fea-
tures without significantly affecting their discriminative and regenerative
characteristics. It is observed that the spatial dimensions encoded in the
feature vector are more important than increasing the number of network
filters for efficient image reconstruction. Validation of our approach has
been tested for remote sensing image retrieval (RSIR) problem. Results
demonstrate that our proposed network achieves 25 times reduction in
feature size with only 0.8 times depletion of retrieval score.

Keywords: Unsupervised features ·
Remote sensing image retrieval (RSIR) · Deep learning · Deep features

1 Introduction

Developments in imaging technology resulted in the extremely large datasets,
however, learning any useful information from these datasets, particularly
using modern deep learning architectures, require large amount of annotations.
Although initiatives such as ImageNet challenge and those related to autonomous
vehicles provide such annotated data, they are only limited to street level
imagery. In many areas, such as remote sensing, there is a dearth of annotated
datasets [6]. Thus, there is a dire need of a method that allows unsupervised
learning of features that are distinctive, posses reconstruction capability and are
effectively compact.
c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11751, pp. 499–508, 2019.
https://doi.org/10.1007/978-3-030-30642-7_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30642-7_45&domain=pdf
https://doi.org/10.1007/978-3-030-30642-7_45


500 Mohbat et al.

Fig. 1. DAE-DR framework in which the feature learning and reduction step is
explained in the upper part of the figure while the process of discriminating reduced
features set is presented in the lower part of the figure.

To cultivate distinctiveness among unsupervised features, we adopted dis-
criminative autoencoder network inspired from Generative Adverserial Networks
(GANs) [4] and Siamese Networks [8] in our previous work [11]. However, these
learned features are high dimensional with large memory footprints which require
huge storage capacity for big data applications, such as remote sensing image
retrieval.

Dimensionality reduction could be considered as one of the possible solu-
tions, employed through feature aggregation (by using global sum-pooling, max-
pooling, and scaled sum-pooling) or selection of kernels from the activations of
the learned network [5,12]. However, these methods have two important lim-
itations. Firstly, theses methods fail to perform on features learned through
unsupervised learning approaches. Secondly, they require an unbounded set of
experiments still, they do not guarantee compact feature representation.

In our previous work we proposed a Discriminative Autoencoder (DAE)
architecture that takes high-dimensional features from the depth layer of autoen-
coder as an input and projects them onto a space that separates similar
images from non-similar images (see Fig. 1) [11]. This work demonstrates a
step-wise procedure to abbreviate the features acquired through deep autoen-
coder network without significantly effecting their discriminative and regenera-
tive characteristics.
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Our approach leverages from the fact that autoencoders with linear acti-
vation are mathematically equivalent to Linear Principle Component Analy-
sis (PCA) and those with non-linear activation (such as sigmoid) are equiv-
alent to non-linear PCA. To prove the efficacy, we evaluated our approach
on RSIR problem using benchmark datasets including University of Califor-
nia Merced Land Use/Land Cover (LandUse) [13] and High-resolution Satellite
scene (SatScene) [3] containing 2100 and 1050 images, respectively.

2 Preliminaries

2.1 Discriminative Autoencoder (DAE)

For the dataset X containing n images such that X = {x1, x2, · · · , xn}, our
network transforms the given input image, xi onto the feature space generating
feature fi through deep learning network fi = hθ(xi) = r(Wxi + b).

Similarly, it then reconstructs the output image x
′
i from the input feature

fi using x
′
i = gθ′ (fi) = t(W

′
fi + b

′
). Where, h and g are encoder and decoder

functions, respectively. Similarly, θ = {W, b} are encoder parameters and θ
′

=
{W

′
, b

′} are decoder parameters for r and t being non-linear activation functions.
By employing the mean squared error L(xi, x

′
i) = ‖xi − x

′
i‖2 as loss function,

we optimize the parameters θ and θ
′
as follows:

θ∗, θ
′∗ = arg min

θ,θ′

1
N

N∑

i=1

L(xi, x
′
i) (1)

A pair of these image features (fq, ft) are then concatenated and given to the
discriminator network y

′
= d((fq, ft), θd) to compute the Bernoulli probabilities

(match or unmatched), where d is a discriminator model and y
′

is classifica-
tion probability. The parameters of d are optimized by using cross entropy loss
function Ld(y, y

′
) = −∑

q,t ylogy
′
as given in Eq. (2).

θ∗
d = arg min

θd

∑

q,t

[L(yi, d(hθ(xq) ∗ hθ(xt))] (2)

In our previous work [11], it has been demonstrated that the features f learned
using residual autoencoder coupled with the discriminative metric learning
scheme outperforms supervised features based approaches. However, these fea-
tures are prone to the curse of dimensionality.

2.2 Autoencoder vs PCA Relationship

We aim to obtain a transformation Φ that transform f to subspace f̃ as f̃ =
Φθ̃(f, W̃ ) and then from f̃ we aim to reconstruct the output x̃

′
as x̃

′
= gθ̃(f̃) =

t(W̃ f̃ + b̃) and compute similarity as ỹ
′
= d({f̃q, f̃t}, θ̃d). f̃ should be such that

it is a compact representation of f without any significant loss of information.
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Fig. 2. Visualization of reconstructed images from (a) Input (b) 8×8×512 dimensional
features of DAE (c) 1063 PCA basis (d) 1 × 1 × 1024 dimensional encoder features
(DAE-DR 1D) (e) 8 × 8 × 20 dimensional encoder features (DAE-DR 2D).

In order to introduce energy conservation the transform should also be unitary
i.e.

‖f̃‖2 = f̃H f̃ = Φθ̃(f, W̃ )HΦθ̃(f, W̃ ) = ‖f‖2 (3)

where fH is the hermitian conjugate of f . One such unitary transform is Eigen
matrix of auto-correlation Rff = ffH which form the basis of Principle Compo-
nent Analysis (PCA). In order to learn the optimal feature vector, we exploited
the relationship between PCA and auto-encoder basis. Mathematically, a linear
autoencoder is defined as:

f1 = W1 × X + b1 (4a)

X̃ = W2 × f1 + b2 (4b)

Where, W1 and W2 are weights, X is input and X̃ is reconstructed output.
Minimizing the mean square cost function (Eq. 5) with respect to W1,W2, b1, b2,
the problem reduces to optimization with respect to W2 only, as given in Eq. (6).

minW1,W2,b1,b2 = ‖X − (W2(W1X + b1) + b2)‖2 (5)

minW2 = ‖X∗ − W2W
†
2X∗‖2 (6)

where, X∗ is obtained by subtracting mean image from each image in data as
X∗ = X−x̄1T

N . Thus, by singular decomposition of W2, it can be proven that the
singular vectors of W2 are actually the principle components of X. Consequently,
PCA is equivalent to linear autoencoder whereas typical deep neural network
based autoencoder with non-linear activation functions would be analogous to
non-linear version of the PCA [2]. Therefore, the deep CNN autoencoder would
learn feature space much better than PCA where PCA would help us to compute
the optimal dimension of the space.

3 Methodology

3.1 Dimensionality Reduction in DAE via PCA

PCA helps to find the optimal dimension of space spanned by data but the
challenge is the auto-correlation matrix which is computationally expensive. So,
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instead of computing f as f = ΦHx where Φ = ξ(RXX), and ξ(.) returns the
Eigen vectors, we compute Φ as Φ = Fξ(RFHF ) (using Sirovich and Kirby
method [10]), i.e. by computing Eigen vectors of inner product of depth features
instead of raw images, where F = {f1, f2, · · · }. f̃ is then computed as:

f̃ = ΦHf (7)

Therefore, we compute the auto-correlation RF̃H F̃ of f̃ to identify the basis
vectors that contain the maximum amount of energy. By reducing the feature
dimension using PCA, from analysis of DAE features (32768 dimensions) on
LandUse dataset, it has been found that 95% of the information lies in only
1063 principle components.

3.2 Dimensionality Reduction via DAE-DR Network

We modified our existing DAE architecture to DAE-DR network to learn the
features with compact dimensions. The following three ways demonstrate the
achieved modification for conversion of features from DAE to DAE-DR.

Pruning Spatial Dimensions of Filters. By the introduction of 3 additional
residual blocks in autoencoder, spatial dimension is reduced to 1 × 1 while
increasing the number of filters to 1024, resulting in a 1D fine-grained feature
vector (DAE-DR 1D). Nonetheless, as compared to PCA neither regeneration nor
retrieval score were encouraging. It is quite obvious from Fig. 2(d) that reduction
of spatial dimension of activation’s results in loss of structural information and
outputs a degraded reconstructed image, hence, confirming the idea presented
in [11].

Table 1. Regeneration loss: Averaged MSE on test set where training hyper-parameters
were same for all models. PSNR averaged over 21 classes of LandUse.

Model/Scheme Feature Size MSE Loss PSNR (dB)

DAE [11] (8, 8, 512) 97.7 29.89

DAE (PCA) 1280 1114.34 6.150

DAE-DR 1D (1, 1, 1024) 2179.32 16.541

DAE-DR 2D (8, 8, 20) 636 21.192

Pruning Temporal Dimensions of Filters. Filters could also be pruned by
adapting “Try and learn” learning approach [7], converting DAE to DAE-DR.
However, this method takes a lot of training time which exponentially increases
with the complexity of network. Another way is to introduce a stack of layers
which reduces the dimensions depth wise while keeping the spatial dimensions
unchanged throughout. This technique ensures that the structural information
is stored in the spatial dimension. However, the addition of depth in the network
architecture produces a blurred regeneration.
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Fig. 3. Qualitative evaluation of RSIR for harbour, building, intersection, and forest
class from LandUse with query image (on the left most side) and its respective first
ten retrieved images in each row. It also includes some misclassification results for
intersection class.

Modification of Existing DAE Network. Another way is to modify the
hidden layers of the original autoencoder network by manipulating the number
of filters to produce the desired dimensional features. This approach yields the 2D
compact features (DAE-DR 2D) with significant improvement in reconstruction
as illustrated in Fig. 2(e).

The discriminator network for each of the three scenarios mentioned above
has been modified in such a way that it accommodates the input feature dimen-
sion, preserving the overall architecture of the network.

4 Results and Discussion

4.1 Training and Evaluation

In order to evaluate the performance of reduced features with our previous
results, all the training hyper-parameters were maintained as discussed in [11].
Data augmentation enabled the discriminator network to be robust to scaling,
illumination and transnational invariances. For evaluation of all the approaches
proposed in Sect. 3, standard metrics discussed in [9] for remote sensing image
matching were computed and a brief analysis has been provided in this section.

4.2 Analysis of Image Reconstruction

We trained three variants of auto-encoder networks and compared the regen-
erated images with [11]. Qualitative visual results demonstrated in Fig. 2 show
that the reconstruction of DAE-DR 2D features is smoother than reconstruction
from PCA basis vectors. Moreover, the spatial compression of features results
in the loss of structural information which degrades the reconstruction of the
image. For quantitative evaluation, we compare the reconstruction MSE loss
and Peak Signal to Noise Ration (PSNR). From Table 1, it can also be noticed
that the MSE loss of DAE-DR 1D feature is almost 20 times higher than the
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Table 2. Comparative evaluation of our proposed approach for feature dimension
reduction where it should be noted that despite having smaller feature size, our app-
roach outperform hand-crafted features and is comparable with supervised deep fea-
tures.

Feature type Features Feature size ANMRR↓
LandUse dataset

Hand-crafted LBP RGB [9] 54 0.751

SIFT (VLAD) [14] 25600 0.649

SIFT (FV) [9] 40960 0.639

Deep-supervised NetVLAD [1] 4096 0.406

SatResNet-50 [9] 2048 0.239

Deep-unsupervised DAE 32768 0.090

DAE (PCA) 1063 0.591

DAE-DR 1D 1024 0.495

DAE-DR 2D 1280 0.417

SatScene dataset

Hand-crafted LBP RGB [9] 54 0.664

SIFT (VLAD) [14] 25600 0.649

SIFT (FV) [9] 40960 0.552

Deep-supervised NetVLAD [1] 4060 0.371

SatResNet-50 [9] 2048 0.207

Deep-unsupervised DAE 32768 0.060

DAE (PCA) 804 0.473

DAE-DR FG 1D 1024 0.495

DAE-DR 2D 1280 0.50

loss of DAE. It can also be clearly analyzed that with the decrease in the feature
dimension, the quality of the reconstructed images is impaired. Hence, for an
effective reconstruction of the images local spatial information is crucial.

4.3 Analysis of Remote Sensing Image Matching

In order to evaluate the performance of the proposed approach, we provide
quantitative as well as qualitative evaluation. Subjective evaluation by observ-
ing Fig. 3 clearly shows that the top 10 retrieved images mostly belong to the
same class, however, the retrieved images are sometimes confused with visually
similar images of different classes e.g. forest with rivers and over-head with high-
way class. For quantitative evaluation on metrics used for remote sensing image
matching, we computed the values of Average Normalized Modified Retrieval
Rank (ANMRR) and Mean Average Precision (mAP) [9]. The previously pro-
posed unsupervised features outperforms supervised features in terms of lower
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Fig. 4. Comparison between different feature sizes and their mAP scores for LandUse
dataset.

Fig. 5. Comparison between different feature sizes and their mAP scores for RS
SatScene dataset.

ANMRR and higher mAP values which is evident from Table. 2 and a com-
parative analysis of features represented in Fig. 4 and Fig. 5. In our case, even
with 25 times reduction in feature size, the performance is still comparable to
hand-crafted approaches and competing with other supervised approaches e.g.
NetVLAD [1]. As described in Table 2, the ANMRR value of DAE is compara-
tively better as compare to other DAE-DR unsupervised feature approaches for
LandUse dataset. Furthermore, our approach outperforms other hand-crafted
approaches in terms of ANMRR and feature size. Such significant differences
in metric values demonstrates the effectiveness and superiority of our proposed
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feature size for the problem of RSIR using unsupervised features. By exploiting
the local spatial and global semantic information, the proposed feature length
outperforms the baseline sizes.

5 Conclusion

This paper introduces a novel unsupervised dimensionality reduction network
after thoroughly studying some of the systematic methods of reducing unsuper-
vised feature dimension including PCA. Through experiments we have shown
that our proposed network DAE-DR 2D is able to achieve comparable content
based image retrieval results from a significantly smaller feature vector. While a
larger number of feature maps are required to obtain accurate retrieval results,
we show that by retraining the spatial information and discarding the redun-
dant filters it is possible to produce an optimal size image descriptor employing
discriminative autoencoder.
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Abstract. Automatic organ segmentation is a vital prerequisite of many
clinical application in radiology. The anatomical variability of organs in
the abdomen makes it difficult for many methods to obtain good segmen-
tations for all organs. In this paper, we present a particular ensemble of
convolutional neural networks, combining technologies that analyze the
images with either a local or a global perspective. In particular, we imple-
mented a cascade of models combining the advantages of using local and
global processing. We have evaluated our proposed system on CT scan of
30 subjects in a nested cross-validation framework, showing a significant
performance improvement if compared with state-of-the-art methods.

Keywords: Deep learning · Ensemble learning ·
Convolutional neural networks · Medical imaging · Segmentation ·
Abdomen organs

1 Introduction

Accurate segmentation of abdominal organs is an important preliminary task in
many clinical applications, such as computer aided diagnosis systems, computer
assisted surgery systems, radiotherapy systems, etc. Manual segmentation is still
a standard practice in radiology that is performed slice-by-slice and organ-by-
organ. This makes manual segmentation time consuming and a possible source of
errors due to both the variability of human expertise and the inherent subjectiv-
ity of the expert. For this reason, there exist many semi-automated segmentation
tools, which however still require an interaction with an expert that can intro-
duce biases or unacceptable variability.

To overcome this problem various automated techniques were introduced.
Most of the approaches were based either on statistical shape models or on
c© Springer Nature Switzerland AG 2019
E. Ricci et al. (Eds.): ICIAP 2019, LNCS 11751, pp. 509–516, 2019.
https://doi.org/10.1007/978-3-030-30642-7_46
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atlases. Statistical shape models work with an estimation of the distribution
of target shapes and have proven to be a successful approach [2,11]. Atlas-
based approaches try to segment the images based on registered atlases [4,8,10].
Recently, deep convolutional neural networks (CNNs) have proven to be very
effective in many tasks including segmentation, outperforming many state-of-
the-art traditional approaches.

In general, all deep learning methods work with two different approaches,
either they process the full image (in 3D or slice by slice) [1] or they work with a
patch based approach where multiple small patches (in 2D or 3D) are processed
separately and results are concatenated to reconstruct the segmentation at the
original size [10]. Both approaches enjoy pros and cons. The first approach,
thanks to its global processing, is good in locating the organs in the whole space
while being less precise on the edges of the segmented areas and on small objects.
The second approach instead works on local information, having no perception of
the overall objects location while being more able in the segmentation of smaller
structures and edges.

Our aim is therefore to create a pipeline of different models combining the
two above approaches in order to enjoy the advantages of both frameworks.
We propose, therefore, an approach based on the combination of three different
CNNs resulting in an improved segmentation where each single approach fails.

Organs segmentation is a difficult task because of the complex anatomical
variability of all organs. Due to this variability, machine learning approaches
would require datasets with a large number of examples, which is an uncom-
mon condition in medical imaging. For this reason, the most recent CNN based
approaches to medical imaging segmentation are limited to single specific organs
(usually liver). The proposed method, instead, has been tested on a task requir-
ing the segmentation of 13 different organs, controlling the overfitting through
a nested cross-validation

The paper is organized as follows. The proposed system is first explained
in Sect. 2, together with a description of the used dataset and the experimental
setup. In Sect. 3 results of the experiments will be given and discussed comparing
the proposed model with state-of-the-art solutions. Finally, some conclusion will
be drawn in Sect. 4.

2 Data and Methods

2.1 Abdomen Organ Segmentation Dataset

We used a publicly available dataset1 [5] which consist of 30 healthy sub-
jects. The data was hand-labeled with 13 classes corresponding to 13 different
abdomen organs with various sizes (Spleen, R. Kidney, L. Kidney, Gallbladder,
Esophagus, Liver, Stomach, Aorta, Inferior Vena Cava, Portal Vein and Splenic
Vein, Pancreas, R Adrenal Gland, L Adrenal Gland). The data is available in
Nifty volumes. We unified the axial spacing to 3 mm. For this purpose, inter-
polation algorithm was used to interpolate the CT and gold standards to unify

1 https://www.synapse.org/#!Synapse:syn3193805/wiki/217789.

https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
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the axial spacing. Gray value was truncated between −350 and 350 because of
the complex boundaries of different organs and size was re-sampled to 256×256
while maintaining the voxel spacing of 3 mm. Extra parts of the image with no
organ labels present were cropped for image pre-processing. The average number
of slices per subject was 140.

2.2 Proposed System

The proposed system consists of three models incorporated in a simple frame-
work. We connected the three models in such a way that first 2 models, exploiting
respectively the global and the local information, produce segmentations that
are used together with the input image by a third model. In an ensemble learn-
ing perspective, instead of using traditional approaches to combine the outcome
of multiple models (e.g. majority vote), we learn how to combine the outcome
using a further deep model, which exploits the predictions of the two previous
models together with the input data to generate a refined segmentation. This
model learns how to use the two previous segmentations according to how much
trustable they are on each sub-structure of the whole image. For this reason,
since the reliability of segmentations is based on the location of all substruc-
tures, the third model must be selected among those processing the full image
exploiting the global information. The flow diagram of the proposed architecture
can be seen in Fig. 1. In the pipeline the three models are referred as P1, P2 and
P3 respectively.

In other words, the first two models, exploiting respectively the global and
the local information, are used to generate the auxiliary information which is
then used by a third model to generate the final prediction. The models used
to generate the auxiliary information, are respectively the Fully Convolutional
Network (FCN) [9] and the 3D-UNet patch-based model [7]. The segmenta-
tion’s from these two models are concatenated together with the original input
forming a three-channels image, which is then used as input to a third model
FC-DenseNet103 [3] to generate the final segmentation.

FCN Model (P1). We used DLTK implementation [7] with residual block con-
sisting of ReLU activation function followed by 3D convolution layer to extract
the features. To handle the stride convolution, we added pooling to the input
before the addition in the residual unit. For all convolution layers, Kernel size is
3 × 3 with stride 1 and padding size 1. In the decoder stage, fully convolutional
layers were used to target the output probabilities. Features maps learned at
each layer were up sampled to the original size and then fed to the up-score unit
where the features from encoder are learned to produce the sparse feature map.
The kernel size used for up score unit was 13 and finally a soft-max layer was
used to produce the segmentation.
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Fig. 1. The entire processing pipeline composed by three CNNs. Input: 256× 256 gray
scale image; Segmentation 1: prediction from FCN model; Segmentation 2: prediction
from 3D U-Net Patch Base Model; RGB 3 Channel Image: combination of Segmentation
1, Segmentation 2 and input forming an RGB image; Final Segmentation : prediction
from FC-DenseNet103 with the three RGB channels in input.

3D-UNet Patch-Based Model (P2). We used the 3D U-Net patch-based
version publicly available2. Patch size of 64 is used. Max-pooling operations
were performed to reduce the spatial size and high level features were extracted
while the bottom block was providing information to the output of the encoder.
In the decoder stage two deconvolutional blocks were used to resume the spatial
size for the segmented output. In the last stage, convolution and soft-max layers
were used to reduce the number of feature maps and to get the probability maps
for target objects.

FC-DenseNet103 Model (P3). The input to the last model in the pipeline
was a three-channel image composed by P1 and P2 predictions and the original
input image. We used the FC-DenseNet103 provided in [3], feature maps are
extracted in dense block of transition down layer and use pre-activation layer,
where ReLU, convolution, max pooling and Batch normalization were performed
on the input slice of 256×256. Up-sampling was performed in transition up layer
where input was up sampled and concatenated with the skip connections and
finally segmentation was calculated using soft-max layer.

2.3 Experimental Setup

FCN model was trained for 20000 iterations with batch size of 8 with tensor-flow.
Training was done using Adam optimizer with learning rate of 0.0001. Similarly,
3D-UNet model was trained for 800000 iterations with patch size of 64. Again,
Adam Optimizer was used with a learning rate of 0.00001. The last prediction
model (FC-DenseNet103) using auxiliary data was trained for 20 epochs with
batch size of 8 and tensor-flow as backend. RMSPropOptimizer was used with a
learning rate of 0.0001. The proposed system was implemented on NVidia GTX
1080. FCN and FC-DenseNet103 took on average five hours for training while
3d-Unet took on average fifteen hours for training.
2 https://github.com/zEttOn86/3D-Unet.

https://github.com/zEttOn86/3D-Unet
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For the sake of comparisons we also trained and tested FC-DenseNet103
only using the input images to evaluate the performance improvement due to
the auxiliary information. All the mentioned models were evaluated performing
a training from scratch, using nested cross-validation with 24 subjects used for
training, 2 subjects used for validation and 4 subjects used for testing. For evalu-
ation purpose, we used Dice score to measure the intersection between resulting
segmentation and ground truth:

DSC =
2|X ∩ Y |
|X| + |Y | (1)

3 Results and Discussion

The average results (dice scores) for all models are shown in Table 1. The results
were determined for all models only using the input image (P1, P2, and P3)
and for FC-DenseNet103 also using the auxiliary information (P4). Moreover,
the table shows the dice score of four other state-of-the-art methods (IMI, CLS,
CNN-sw, FCN), which were top-ranked in the MICCAI challenge providing the
dataset [6].

Table 1. Result of varius CNNs. Dice score obtained with Eq. (1) is shown for all
models used in our pipeline (P1 is the FCN, P2 is the 3D Unet patch-based, and P3
is the FC-DenseNet103 when considered alone or P4 when considered in the pipeline
proposed by the paper. Results of state-of-the-art models (IMI, CLS, CNN-sw and
FCN) [6] determined on the same dataset are provided for comparison.

Class P1 P2 P3 P4 IMI CLS CNN-sw FCN

Spleen 0.856 0.817 0.913 0.953 0.919 0.911 0.930 0.936

R. Kidney 0.907 0.902 0.854 0.934 0.901 0.893 0.866 0.897

L. Kidney 0.890 0.897 0.813 0.941 0.914 0.901 0.911 0.911

Gallbladder 0.543 0.574 0.319 0.719 0.604 0.375 0.624 0.613

Esophagus 0.594 0.578 0.624 0.784 0.692 0.607 0.662 0.588

Liver 0.920 0.927 0.942 0.968 0.948 0.940 0.946 0.949

Stomach 0.757 0.779 0.739 0.942 0.805 0.704 0.775 0.764

Aorta 0.840 0.796 0.812 0.884 0.857 0.811 0.860 0.870

Inferior Vena Cava 0.782 0.757 0.661 0.870 0.828 0.760 0.776 0.758

Portal & Splenic Veins 0.674 0.624 0.498 0.752 0.754 0.649 0.567 0.715

Pancreas 0.606 0.613 0.431 0.832 0.740 0.643 0.602 0.646

R. Adrenal Gland 0.542 0.513 0.353 0.752 0.615 0.557 0.631 0.630

L. Adrenal Gland 0.471 0.462 0.146 0.702 0.623 0.582 0.583 0.631

From Table 1, it can be seen that the proposed cascade of CNNs (column
P4) performs much better than any other solution, including the state-of-the-art
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methods top-ranked in the challenge. It clearly indicates the positive effect of
auxiliary information provided as further input channels. The effect is reflected
by the difference between column P3 and P4 where the same model was used
respectively without and with auxiliary information. The results showed signif-
icant improvements for some organs, especially small ones like adrenal glands,
pancreas, veins, esophagus. This is due to the particular combination of mod-
els. Indeed, FCN (P1) and Unet (P2) work at different granularity. The first
model works mostly on the global information of the whole image, hence, it
better locates the specific organs, while the second model works with local infor-
mation, being more able to segment on smaller structures and edges. The FC-
DenseNet103 model while being a weaker model, thanks to the auxiliary infor-
mation, it can learn how to use the segmentations provided by the two previous
models, refining its own segmentation based on the input images. From an alter-
native perspective, the FC-DenseNet103 model learns how to cleverly combine
the results coming from the ensemble of two other models. In another way, it
can be considered an advanced voting approach integrated by the original input
as auxiliary information.

Fig. 2. Comparison of different models average dice used in proposed technique for all
class labels.

The bar chart in Fig. 2 is a graphical representation of the results in Table 1
showing the dice score for all elements in the proposed cascade. It can be seen
that the entire pipeline (P4), i.e., FC-DenseNet103 with auxiliary information is
dominating all classes while the same model (P3) without auxiliary information
has sometimes very poor performance. Thus, providing the auxiliary information
to the model proved to be beneficial. In order to have a clearer understanding
of the processing, the sample results depicted in Fig. 3 show that predictions
of P1 and P2 are sometimes affected by small mistakes worsening the perfor-
mance. However, the third model provided with auxiliary information is able to
identify and correct the mistakes producing more accurate predictions. Inter-
estingly, a collateral result is that the processing time of the third model with
auxiliary information is reduced as the model is able to learn easily and quickly
as compared to when it is not provided with auxiliary information.
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Fig. 3. Examples of Resulting Predictions for three different subjects with Ground
Truth

4 Conclusion

In this paper, we proposed an architecture built upon the combination of three
different models solving quite efficiently a segmentation task. The three models
are connected in such a way that first two models help the third one to produce
better segmentation. This is obtained providing the preliminary segmentation
from the first two models as auxiliary information to the third one. The relevant
component here is the difference in the approaches used by the first two models.
The first one segments the organs processing the whole window in one step. This
makes the model aware of the location of different organs, losing the precision on
small structures and edges. The second method on the contrary is patch-based,
hence, it works on local information, making it better when processing small
structures and edges.

Giving the outcome of these two models as auxiliary information to a third
model helps the system to preserve the positive aspects of all segmentations
while ignoring the negative traits. This can be observed from the results in
Sect. 3 where it is evident that adding the auxiliary information results in a
significant improvement of the segmentation accuracy.
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Abstract. Matching surfaces is a challenging 3D Computer Vision prob-
lem typically addressed by local features. Although a variety of 3D fea-
ture detectors and descriptors has been proposed in literature, they have
seldom been proposed together and it is yet not clear how to identify
the most effective detector-descriptor pair for a specific application. A
promising solution is to leverage machine learning to learn the optimal
3D detector for any given 3D descriptor [15]. In this paper, we report
a performance evaluation of the detector-descriptor pairs obtained by
learning a paired 3D detector for the most popular 3D descriptors. In
particular, we address experimental settings dealing with object recog-
nition and surface registration.

Keywords: 3D Computer Vision · Surface matching · 3D features

1 Introduction

Surface matching is an ubiquitous task in 3D Computer Vision, where it helps
to tackle major applications such as object recognition and surface registration.
Nowadays, most surface matching methods follow a local paradigm based on
establishing correspondences between 3D patches referred to as features. The
typical feature-matching pipeline consists of three steps: detection, description
and matching.

Although over the last decades many 3D detectors and descriptors have been
proposed in literature, it is yet unclear how to effectively combine these proposals
to create an effective pipeline. Indeed, unlike the related field of local image
features, methods to either detect or describe 3D features have been designed
and proposed separately, alongside with specific application settings and related
datasets. This is also vouched by the main performance evaluation papers in the
field, which address either repeatability of 3D detectors designed to highlight
geometrically salient surface patches [14] or distinctiveness and robustness of
popular 3D descriptors [2].

More recently, however, [9] and [15] have proposed a machine learning app-
roach that allows for learning an optimal 3D keypoint detector for any given
3D descriptor so as to maximize the end-to-end performance of the overall
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feature-matching pipeline. The authors show that this approach provides effec-
tive pipelines across diverse applications and datasets. Moreover, their object
recognition experiments show that, with the considered descriptors (SHOT [13],
Spin Image (SI) [4], FPFH [8]), learning to detect specific keypoints leads to bet-
ter performance than relying on existing general-purpose handcrafted detectors
(ISS [17], Harris3D [10], NARF [11]).

By enabling an optimal detector to be learned for any descriptor, [15] sets
forth a novel paradigm to maximize affinity between 3D detectors and descrip-
tors. This opens up the question of which learned detector-descriptor pair may
turn out most effective in the main application areas. This paper tries to answer
this question by proposing an experimental evaluation of learned 3D pipelines.
In particular, we address object recognition and surface registration, and com-
pare the performance attained by learning a paired feature detector for the most
popular handcrafted 3D descriptors (SHOT [13], SI [4], FPFH [8], USC [12],
RoPS [3]) as well as for a recently proposed descriptor based on deep learning
(CGF-32 [5]).

2 3D Local Feature Detectors and Descriptors

This section reviews state-of-the-art methods for detection and description of 3D
local features. Both tasks have been pursued through hand-crafted and learned
approaches.

Hand-Crafted Feature Detectors. Keypoint detectors have traditionally been con-
ceived to identify points that maximize a saliency function computed on a sur-
rounding patch. The purpose of this function is to highlight those local geome-
tries that turn out repeatedly identifiable in presence of nuisances such as noise,
viewpoint changes, point density variations and clutter. State-of-the-art propos-
als mainly differ for the adopted saliency function. Detectors operate in two steps:
first, the saliency function is computed at each point on the surface, then non-
maxima suppression allows for sifting out saliency peaks. Intrinsic Shape Sig-
nature (ISS) [17] computes the eigenvalue decomposition of the scatter-matrix
of the points within the supporting patch in order to highlight local geome-
tries exhibiting a prominent principal direction, Harris3D [10] extends the idea
of image corners by deploying surface normals rather than image gradients to
calculate the saliency (i.e. Cornerness) function. Normal Aligned Radial Fea-
ture (NARF) [11] first selects stable surface points, then highlights those stable
points showing sufficient local variations. This leads to locate keypoints close to
depth discontinuities.

Learned Feature Detectors. Unlike previous work in the field, Salti et al. [9]
proposed to learn a keypoint detector amenable to identify points likely to gen-
erate correct matches when encoded by the SHOT descriptor. In particular, the
authors cast keypoint detection as a binary classification problem tackled by a
Random Forest and show how to generate the training set as well as the feature
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representation deployed by the classifier. Later, Tonioni et al. [15] have demon-
strated that this approach can be applied seamlessly and very effectively to other
popular descriptors such as SI [4] and FPFH [8].

Hand-Crafted Feature Descriptors. Many hand-crafted feature descriptors rep-
resent the local surface by computing geometric measurements within the sup-
porting patch and then accumulating values into histograms. Spin Images (SI)
[4] relies on two coordinates to represent each point in the support: the radial
coordinate, defined as the perpendicular distance to the line trough the surface
normal at the keypoint, and the elevation coordinate, defined as the signed dis-
tance to the tangent plane at the keypoint. The space formed by this two values
is then discretized into a 2D histogram.

In 3D Shape Context (3DSC) [1] the support is partitioned by a 3D spherical
grid centered at the keypoint with the north pole aligned to the surface normal.
A 3D histogram is built by counting up the weighted number of points falling
into each spatial bin along the radial, azimuth and elevation dimensions. Unique
Shape Context (USC) [12] extends 3DSC with the introduction of a unique and
repeatable canonical reference frame borrowed from [13].

SHOT [13], alike, deploys both a unique and repeatable canonical reference
frame as well as a 3D spherical grid to discretize the supporting patch into
bins along the radial, azimuth and elevation axes. Then, the angles between the
normal at the keypoint and those at the neighboring points within each bins
are accumulated into local histograms. Rotational Projection Statistics (RoPS)
[3] uses a canonical reference frame to rotate the neighboring points on the
local surface. The descriptor is then constructed by rotationally projecting the
3D points onto 2D planes to generate three distribution matrices. Finally, a
histogram encoding five statistics of distribution matrices is calculated. Fast
Point Feature Histograms (FPFH) [8] operates in two steps. In the first, akin to
PFH [7], four features, refereed to as SPFH, are calculated using the Darboux
frame and the surface normals between the keypoint and its neighbors. In the
second step, the descriptor is obtained as the weighted sum between the SPFH
of the keypoint and the SPFHs of the neighboring points.

Learned Feature Descriptors. The success of deep neural networks in so many
challenging image recognition tasks has motivated research on learning represen-
tations from 3D data. One of the pioneering works is 3D Match [16], where the
authors deploy a siamese network trained on local volumetric patches to learn a
local descriptor. The input to the network consists of a Truncated Signed Dis-
tance Function (TSDF) defined on a voxel grid. In [5], the authors deploy a
fully-connected deep neural network together with a feature learning approach
based on the triplet ranking loss in order to learn a very compact 3D descrip-
tor, referred to as CGF-32. Their approach does not rely on raw data but on
an hand-crafted input representation similar to [1], canonicalized by the local
reference frame presented in [13].



522 R. Spezialetti et al.

3 Keypoint Learning

In order to carry out the performance evaluation proposed in this paper, for
most local descriptors reviewed in Sect. 2 we did learn the corresponding optimal
detector according to the keypoint learning methodology [15]. We provide here
a brief overview of this methodology and refer the reader to [9,15] for a detailed
description.

The idea behind keypoint learning is to learn to detect keypoints that can
yield good correspondences when coupled with a given descriptor. To this end,
keypoint detection is cast as binary classification, i.e. a point can either be a good
candidate or not when used to create matches by means of the given descriptor,
and a Random Forest is used as classifier. Training of the classifier requires to
define the training set, i.e. both positive (good) and negative (not good) points,
as well as the feature representation.

As for positive samples, the method tries to sift out those points that, when
described by a chosen descriptor, can be matched correctly across different 2.5D
views of a 3D object. Thus, starting from a set of 2.5D views {Vi}, i = 1, . . . , N
of an object from a 3D dataset, each point p ∈ Vi in each view Vi is embedded
by the chosen descriptor. Then, for each view Vi, a subset of overlapping views is
selected based on an overlap threshold τ . A two-step positive samples selection
is performed on Vi and each overlapping view Vj . In the first step, a list of
correspondences between descriptors is created by searching for all descriptors
d ∈ Vi the nearest neighbor in the descriptor space between all descriptors g ∈ Vj .
A preliminary list of positive samples P j

i for view Vi is created by taking only
those points that have been correctly matched in Vj , i.e. the points belonging
to the matched descriptors in the two views correspond to the same 3D point
of the object according to threshold ε. The list is then filtered removing non-
maxima local extrema within εnms using the descriptor distance as saliency. In
the second step, the list of positive samples is refined by keeping only the points
in Vi that can be matched correctly also in those others overlapping views that
have not been used in the first step. Negative samples are then extracted on each
view, sampling random points among those points which are not included in the
positive set. A distance threshold εneg is used to avoid a negative being too close
to a positive and to other negative samples, and also to balance the size of the
positive and negative sets.

As far as the representation input to the classifier is concerned, the method
relies on histograms of normal orientations inspired by SHOT [13]. However, to
avoid computation of the local Reference Frame while still achieving rotation
invariance, the spherical support is divided only along the radial dimension so
as to compute a histogram for each spherical shell thus obtained. [15] showed
that, although inspired by SHOT, such representation can be used to learn an
effective detector also for other descriptors.
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4 Evaluation Methodology

The performance evaluation proposed in this paper aims to compare different
learned detector-descriptor pairs while addressing two main application settings,
namely object recognition and surface registration. In this section, we high-
light the key traits and nuisances which characterize the two tasks, present the
datasets and performance evaluation metrics used in the experiments and, finally,
provide the relevant implementation details.

4.1 Object Recognition

In typical object recognition settings, one wishes to recognize a set of given 3D
models into scenes acquired from an unknown vantage point and featuring an
unknown arrangement of such models. Peculiar nuisances in this scenario are
occlusions and, possibly, clutter, as objects not belonging to the model gallery
may be present in the scenes. In our experiments we rely on the following popular
object recognition datasets:

– UWA dataset, introduced by Mian et al. [6]. This dataset consists of 4 full
3D models and 50 scenes wherein models significantly occlude each other. To
create some clutter, scenes contain also an object which is not included in the
model gallery. As scenes are scanned by a Minolta Vivid 910 scanner, they
are corrupted by real sensor noise.

– Random Views dataset, based on the Stanford 3D scanning repository1 and
originally proposed in [14]. This dataset comprises 6 full 3D models and
36 scenes obtained by synthetic renderings of random model arrangements.
Scenes feature occlusions but no clutter. Moreover, scenes are corrupted by
different levels of synthetic noise. In the experiments we consider scenes with
Gaussian noise equal to σ = 0.1 mesh resolution units.

To evaluate the effectiveness of the considered learned detector-descriptor
pairs we rely on descriptor matching experiments. Specifically, for both datasets,
we run keypoint detection on synthetically rendered views of all models. Then,
we compute and store into a single kd-tree all the corresponding descriptors.
Keypoints are detected and described also in the set of scenes provided with
the dataset, {Sj}, j = 1, . . . , NS . Eventually, a correspondence is established
for each scene descriptor by finding the nearest neighbor descriptor within the
models kd-tree and thresholding the distance between descriptors to accept a
match as valid. Correct correspondences can be identified based on knowledge of
the ground-truth transformations which bring views and scenes into a common
reference frame and checking whether the matched keypoints lay within a 3D
distance ε. Indeed, denoting as (kj , kn,m) a correspondence between a keypoint
kj detected in scene Sj and a keypoint kn,m detected in the n-th view of model
m, as Tj,m the transformation from Sj to model m, as Tn,m the transformation

1 3 http://graphics.stanford.edu/data/3Dscanrep/.

http://graphics.stanford.edu/data/3Dscanrep/
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from the n-th view and the canonical reference frame of model m, the set of
correct correspondences for scene Sj is given by:

Cj = {(kj , kn,m) : ‖Tj,mkj − Tn,mkn,m‖ ≤ ε} (1)

From Cj , we can compute True Positive and False Positive matches for each
scene and, by averaging them across scenes, for each of the considered datasets.
The final results for each dataset are provided as Recall vs. 1-Precision curves,
with curves obtained by varying the threshold on the distance between descrip-
tors.

4.2 Surface Registration

The goal of surface registration is to align into a common 3D reference frame
several partial views (usually referred to as scans) of a 3D object obtained by
a certain optical sensor. This is achieved through rather complex procedures
that, however, typically rely on a key initial step, referred to as Pairwise Reg-
istration, aimed at estimating the rigid motion between any two views by a
feature-matching pipeline. Differently from object recognition scenarios, the main
nuisances deal with missing regions, self-occlusions, limited overlap area between
views and point density variations. In our experiments we rely on the following
surface registration dataset:

– Laser Scan dataset, recently proposed in [5]. This dataset includes 8 public-
domain 3D models, i.e. 3 taken from the AIM@SHAPE repository (Bimba,
Dancing Children and Chinese Dragon), 4 from the Stanford 3D Scanning
Repository (Armadillo, Buddha, Bunny, Stanford Dragon) and Berkeley Angel
According to the protocol described in [5], training should be carried out
based on synthetic views generated from Berkeley Angel, Bimba, Bunny and
Chinese Dragon, while the test data consists of the real scans available for
the remaining 3 models (Armadillo, Buddha and Stanford Dragon).

Thus, given a set of M real scans available for a test model, we compute all
the possible N = M(M−1)

2 view pairs {Vi, Vj}. For each pair, we run keypoint
detection on both views. Due to partial overlap between the views, a keypoint
belonging to Vi may have no correspondence in Vj . Hence, denoted as Ti and
Tj the ground-truth transformations that, respectively, bring Vi and Vj into a
canonical reference frame, we can compute the set Oi,j that contains the key-
points in Vi that have a corresponding point in Vj . In particular, given a keypoint
ki ∈ Vi

Oi,j = {ki : ‖Tiki − NN (Tiki,TjVj)‖ ≤ εovr}, (2)

where NN (Tiki,TjVj) denotes the nearest neighbor of Tiki in the trans-
formed view TjVj . If the number of points in Oi,j is less than 20% of the key-
points in Vi, the pair (Vi, Vj) is not considered in the evaluation experiments
due to insufficient overlap. Conversely, for all the view pairs (Vi, Vj) exhibiting
sufficient overlap, a list of correspondences between all the keypoints detected in
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Vi and all the keypoints extracted from Vj is established by finding the nearest
neighbor in the descriptor space via kd-tree matching. Then, given a pair of
matched keypoints (ki, kj), ki ∈ Vi, kj ∈ Vj , the set of correct correspondences,
Ci,j , can be identified based on the available ground-truth transformations by
checking whether the matched keypoints lay within a certain distance ε in the
canonical reference frame:

Ci,j = {(ki, kj) : ‖Tiki − Tjkj‖ ≤ ε} (3)

Then, the precision of the matching process can be computed as a function
of the distance threshold ε [5]:

precisioni,j(ε) =
|Ci,j |
|Oi,j | (4)

The precision score associated with any given model is obtained by averaging
across all view pairs. We also average across all test models so as to get the final
score associated to the Laser Scan dataset.

Table 1. Parameters for object recognition datasets.

Dataset rdesc(mm) rdet(mm) τ ε(mm) εnms(mm) εneg(mm) rnms(mm) smin(mm)

UWA 40 20 0.85 7 4 2 4 0.8

Random Views 40 20 – 7 – – 4 0.8

4.3 Implementation

For all handcrafted descriptors considered in our evaluation, we use the imple-
mentation available in the PCL library. For CGF-32, we use the public implemen-
tation made available by the authors [5]. As for the Keypoint Learning (KPL)
framework described in Sect. 3, we use the publicly available original code for the
generation of the training set2. During the detection phase, each point of a point
cloud is passed through the Random Forest classifier which produces a score. A
point is identified as a keypoint if it exhibits a local maximum of the scores in a
neighborhood of radius rnms and the score is higher than a threshold smin. For
each descriptor considered in our evaluation, we train its paired detector accord-
ing to the KPL framework. As a result, we obtain six detector-descriptor pairs,
referred to from now on as KPL-CGF32, KPL-FPFH, KPL-ROPS, KPL-SHOT,
KPL-SI, KPL-USC.

In object recognition experiments, the training data for all detectors are
generated from the 4 full 3D models present in the UWA dataset. According to
the KPL methodology [9,15], for each model we render views from the nodes of an
icosahedron centered at the centroid. Then, the detectors are used in the scenes
of the UWA dataset as well as in those of the Random Views dataset. Thus,
2 http://github.com/CVLAB-Unibo/Keypoint-Learning.

http://github.com/CVLAB-Unibo/Keypoint-Learning
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Table 2. Parameters for surface registration dataset.

Model name rdesc(mm) rdet(mm) τ ε(mm) εnms(mm) εneg(mm) εovr rnms(mm) smin(mm)

Angel 40 20 0.85 7 4 2 – – –

Bimba 40 20 0.85 7 4 2 – – –

Bunny 40 20 0.65 7 4 2 – – –

Chinese Dragon 40 20 0.65 7 4 2 – – –

Armadillo 40 20 – 7 – – 2 4 0.5

Buddha 40 20 – 7 – – 2 4 0.5

Stanford Dragon 40 20 – 7 – – 2 4 0.5

similarly to [9,15], we do not retrain the detectors on Random Views in order to
test the ability of the considered detector-descriptor pairs to generalize well to
unseen models in object recognition settings. A coherent approach was pursued
for the CGF-32 descriptor. As the authors do not provide a model trained on
the UWA dataset, we trained the descriptor on the synthetically rendered views
of the 4 UWA models using the code provided by the authors and following the
protocol described in the paper in order to generate the data needed by their
learning framework based on the triplet ranking loss. Thus, KPL-CGF32 was
trained on UWA models and, like all other detector-descriptor pairs, tested on
both UWA and Random Views scenes.

In surface registration experiments we proceed according to the protocol
proposed in [5]. Hence, detectors are trained with rendered views of the train
models provided within the Laser Scan dataset (Angel, Bimba, Bunny, Chinese
Dragon) and tested on the real scans of the test models (Armadillo, Buddha,
Stanford Dragon). As CGF-32 was trained exactly on the abovementioned train
models [5], to carry out surface registration experiments we did not retrain the
descriptor but used the trained network published by the authors3.

The values of the main parameters of the detector-descriptor pairs used in
the experiments are summarized in Tables 1 and 2. As it can be observed from
Table 1, train parameters for Random Views dataset are not specified as we did
not train KPL detectors on this dataset. For surface registration, since models
belong to different repositories, we report parameters grouped by model. Test
parameters for Angel, Bimba, Bunny and Chinese Dragon are not reported as
they are only used in train. Similarly, we omit train parameters for Armadillo,
Buddha and Stanford Dragon. Due to the different shapes of the models in the
dataset, τ is tuned during the train stage so that the number of overlapping
views remains constant across all models.

3 https://github.com/marckhoury/CGF.

https://github.com/marckhoury/CGF
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5 Experimental Results

5.1 Object Recognition

Results on the UWA dataset are shown in Fig. 1. First, we wish to highlight
how the features based on descriptors which encode just the spatial densities of
points around a keypoint outperform those relying on higher order geometrical
attributes (such as, e.g., normals). Indeed, KPL-CGF32, KPL-USC and KPL-
SI yield significantly better results than KPL-SHOT and KPL-FPFH. These
results are coherent with the findings and analysis reported in the performance
evaluation by Guo et al. [2], which pointed out the former feature category
being more robust to clutter and sensor noise. It is also worth observing how the
representation based on the spatial tessellation and point density measurements
proposed in [1] together with the local reference frame proposed in [13] turn
out particularly amenable to object recognition, as it is actually deployed by
both features yielding neatly the best performance, namely KPL-CGF32 and
KPL-USC. Yet, learning a dataset-specific non-linear mapping by a deep neural
network on top of this good representation does improve performance quite a
lot, as vouched by KPL-CGF32 outperforming KPL-USC by a large margin.
Indeed, the results obtained in this paper by learning both a dataset-specific
descriptor as well as its paired optional detector, i.e. the features referred to
as KPL-CGF32, turn out significantly superior to those previously published on
UWA object recognition dataset (see [9] and [15]).

In [15], the results achieved on Random Views by the detectors trained on
UWA prove the ability of the KPL methodology to learn to detect general rather
than dataset-specific local shapes amenable to provide good matches alongside
with the paired descriptor, and even more effectively, in fact, than the shapes
found by handcrafted detectors. Thus, when comparing the different features,
we can assume here that descriptors are feed by detectors with optimal patches
and focus on the ability of the former to handle the specific nuisances of the
Random Views dataset. As shown in Fig. 1, KPL-FPFH and KPL-SHOT per-
form slightly better than KPL-USC, KPL-CGF32 and KPL-SI. Again, this is
coherent with previous findings reported in literature (see [2] and [15]), which
show how descriptors based on higher order geometrical attributes turn out more
effective on Random Views due to the lack of clutter and real sensor noise. As
for KPL-CGF32, although it performs still overall better than the other descrip-
tors based on point densities, we observe quite a remarkable performance drop
compared to the results on the UWA dataset, much larger, indeed, than that
observed for KPL-USC, which shares with KPL-CGF32 a very similar input rep-
resentation. This suggests that the non-linear mapping learned by KPL-CGF32
is highly optimized to tell apart the features belonging to the objects present in
the training dataset (i.e. UWA) but turns out quite less effective when applied
to unseen features, like those found on the objects belonging to Random Views.
This domain shift issue is a peculiar wick trait of learned features, which may
cause them to yield less stable performance across diverse datasets than hand-
crafted representations.
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Fig. 1. Quantitative results on object recognition. Column a: UWA dataset.
Column b: Random Views dataset.

5.2 Surface Registration

First, it is worth pointing out how, unlike in object recognition settings, in surface
registration it is never possible to train any machine learning operator, either
detector or descriptor, on the very same objects that would then be processed
at test time. Indeed, should one be given either a full 3D model or a set of scans
where ground-truth transformations are known, as required to train 3D feature
detectors (i.e. KPL) or descriptors (e.g. CGF-32 ), there would be no need to
carry out any registration for that object. Surface registration is about stitching
together several scans of a new object than one wishes to acquire as a full 3D
model. As such, any learning machinery is inherently prone to the domain shift
issue.

As mentioned in Subsect. 4.2, our experiments rely on the Laser Scan dataset
[5] and follow the split into train and test objects proposed by the authors. As
shown in Fig. 2, when averaging across all test objects, the detector-descriptor
pair based on the learned descriptor CGF-32 provides the best performance. This
validates the findings reported in [5], where the authors introduce CGF-32 and
prove its good registration performance on Laser Scan, also in our experimental
setting where an optimal detector is learned for every descriptor.

6 Conclusion and Future Work

Object recognition settings turn out quite amenable to deploy learned 3D fea-
tures. Indeed, one can train upon a set of 3D objects available beforehand, e.g.
due to scanning by some sensor or as CAD models, and then seek to recog-
nize them into scenes featuring occlusions and clutter. These settings allow for
learning an highly specialized descriptor alongside its optimal paired detector so
to achieve excellent performance. In particular, the learned pair referred to in
this paper as KPL-CGF32 sets the new state of the art in descriptor matching
on the UWA benchmark dataset. Although the learned representation may not
exhibit comparable performance when transferred to unseen objects, in object
recognition it is always possible to retrain on the objects at hand to improve
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Fig. 2. Surface registration results on the Laser Scan dataset.

performance. An open question left to future work concerns whether the input
parametrization deployed by CGF-32 may enable to learn an highly effective
non-linear mapping also in datasets characterized by different nuisances (e.g.
Laser Scan) or one should better try to learn 3D representations directly from
raw data, as vouched by the success of deep learning from image recognition.
Features based on learned representations, such as KPL-CGF32, are quite effec-
tive also in surface registration, although this scenario is inherently more prone
to the domain shift issue and, indeed, features based on handcrafted descriptors,
like in particular KPL-SHOT and KPL-USC, turn out very competitive.

We believe that these findings may pave the way for further research on the
recent field of learned 3D representations, in particular in order to foster address-
ing domain adaptation issues, a topic investigated more and more intensively in
nowadays deep learning literature concerned with image recognition. Indeed, 3D
data are remarkably diverse in nature due to the variety of sensing principles
and related technologies and we wittness a lack of large training datasets, e.g. at
a scale somehow comparable to ImageNet, that may allow learning representa-
tions from a rich and varied corpus of 3D models. Therefore, how to effectively
transfer learned representations to new scenarios seems a key issue to the success
of machine/deep learning in the most challenging 3D Computer Vision tasks.

Finally, KPL has established a new framework whereby one can learn an opti-
mal detector for any given descriptor. In this paper we have shown how applying
KPL to a learned representation (CGF-32 ) leads to particularly effective features
(KPL-CGF32 ), in particular when pursuing object recognition. Yet, according
to the KPL methodology, the descriptor (e.g. CGF-32 ) has to be learned before
its paired detector: one might be willing to investigate on whether and how a
single end-to-end paradigm may allow learning both component jointly so as to
further improve performance.
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Abstract. In this paper, we propose a framework to derive accurate
reconstructions of the 3D face surface from low resolution depth frames
by means of a 3D Morphable Model (3DMM). By using a 3DMM specif-
ically designed to support local and expression-related deformations of
the face, we propose a two-steps 3DMM fitting solution: initially the
model is warped based on landmarks correspondences; subsequently, it
is iteratively refined by means of a mean-square optimization on the
nearest-neighboring vertices. Preliminary results show that the proposed
solution is able to derive faithful 3D models of the face, both for low-
and high-resolution scans; quantitative results also evidence the higher
accuracy of our approach with respect to methods that use one step fit-
ting based on landmarks. In addition, we employed the 3DMM fitting
to learn expressions specific coefficients, that can be further applied to
the deformed models so as to generate subject-specific expressive scans,
while the fitting procedure allows maintaining unaltered the general sur-
face topology of the original scans.

Keywords: 3DMM construction · 3DMM fitting · 3D face analysis

1 Introduction

Recent advances in 3D scanning technologies make it possible to acquire regis-
tered RGB and depth frames at affordable cost. For instance, cameras with such
capability are the Microsoft Kinect, the Asus Xtion and the Intel RealSense.
These devices can operate at 30 fps or even more, but their depth resolution
is modest, and individual frames are badly affected by noise that prevents the
accurate reconstruction of the 3D geometry of the observed scene. This is partic-
ularly true for non-planar object surfaces, such as in the case of reconstructing
the 3D geometry of faces. In the last few years, several 3D face reconstruction
approaches have been proposed, also in truly uncooperative, in the wild, con-
ditions [6]. However, a common trait of these approaches is that reconstruction
of the 3D face model from data observed in a generic image or video frame is
finalized to reproduce realistic renderings of the observed face in a different pose
(e.g., frontal pose) for the purpose of boosting the accuracy of person or facial
expression recognition. In these solutions, smoothness of the reconstructed 3D
face model is privileged with respect to fitting to the actual 3D geometry of the
face. Indeed, this yields pleasant and realistic face renderings, but may prove
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inadequate to provide a precise reconstruction of the 3D geometry of the face
and its deformations in the presence of voluntary and involuntary expressions.

Motivated by these considerations, in this paper we propose a novel face mod-
eling approach that starting from an RGB-D low-resolution sequence of the face
is capable of reconstructing an accurate 3D face model over time also in the pres-
ence of facial expressions and generic facial deformations. This opens the way
to the fine grained analysis of 3D local face deformations between expressive
and neutral models. For example, this can have applications in face rehabili-
tation, where a subject at home (e.g., a patient recovering after a stroke or a
face surgery) can be instructed to perform some facial deformations in front of
a camera. In our proposed solution, we start by the idea of using a 3DMM that
also includes modes of deformation associated to facial expression variations and
is specifically designed to account for local changes of the face. This is possible
thanks to a dictionary learning framework that gives the atoms of the dictionary
the capability of producing local deformations of the average model of the face.
The model is then fit to a point cloud as captured by a low-resolution scanner
(e.g., Kinect) through a coarse-to-fine solution: the initial fitting is driven by the
correspondence of a set of landmarks; the coarsely deformed model is then refined
by an iterative closest points reassignment that minimizes the mean square error
between corresponding points in an ICP like manner. The use of a dataset that
includes both neutral and expressive face models for constructing the dictio-
nary of deformation components favors the identification of identity-specific and
expression-specific components. By changing the weights that control the former
components the resulting 3DMM is deformed in such a way that the identity of
the represented subject is altered. Differently, by changing the weights that con-
trol the latter components the resulting 3DMM preserves the identity of the
represented subject yet changing the facial expression. This feature of the DL-
3DMM model has been exploited to learn the set of weights (and their values)
that are most correlated to some basic facial expressions. Experiments have been
performed to measure the reconstruction error between the 3D models derived
by fitting the 3DMM to the target scans of two large face datasets and the tar-
get scans themselves used as ground truth. In addition, our 3DMM has been
compared against the 3D model that the Kinect toolkit fits on the target face.
Finally, we also show that the 3D face models reconstructed with the proposed
approach can be also used to synthesize new face models with varying expres-
sions, while preserving the identity of the subject. Potentially, this opens the way
to the application of the proposed method to a large category of applications,
including data augmentation for the training of deep neural networks.

2 Related Work

In general, methods capable of reconstructing a 3D model of the face from low-
resolution depth data can be categorized as either driven by the data or based
on fitting a 3D (morphable) model.

Methods in the first category build a 3D face model by integrating tracked
live depth images into a common final 3D model. For example, a method to
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produce laser scan quality 3D face models from a freely moving user with a low-
cost, low-resolution depth camera was proposed in [9]. The model is initialized
with the first depth image, and then each subsequent cloud of 3D points is
registered to the reference using a GPU implementation of the ICP algorithm.
This registration rejects poor alignment due to facial expressions, occlusions, or
a poor estimation of the transformation. One evident limitation of this approach
is that it is not capable of reconstructing expressive models of the face. In [14],
the Kinect Fusion approach was proposed to fuse all of the depth data streamed
from a Kinect sensor into a single global implicit surface model of the observed
scene in real-time. To this end, the current pose of the sensor is obtained by
tracking the live depth frame relative to the global model using a coarse-to-fine
ICP algorithm, which uses all of the observed depth data available. In [10] the
method was extended by considering dynamic actions of the foreground. Though
the Kinect Fusion approach is general, its application to 3D face reconstruction
results into models that reduce the noise with respect to individual frames, but
still show a quite visible gap with respect to high-quality scans. In [2], a method
was presented for producing an accurate and compact 3D face model in real-time
using an RGB-D sensor like the Kinect camera. To this end, after initialization,
Bump Images are updated in real time by using every RGB-D frame with respect
to the current viewing direction and head pose; these latter are estimated using
a frame-to-global-model registration strategy.

Though this method takes a live sequence of RGB-D images streamed from
a fixed consumer sensor with unknown head pose, it is assumed the relative
movement of the head between two successive frames to be small, and that
the facial expression does not change during reconstruction. The work in [19]
presents a combined hardware/software solution for marker-less reconstruction
of non-rigidly deforming objects with arbitrary shape. First, a smooth template
model of the subject while moving rigidly is scanned. This geometric surface
prior is used to avoid strong scene assumptions, such as a kinematic human
skeleton or a parametric shape model. Next, a GPU pipeline performs non-rigid
registration of live RGB-D data to the smooth template using an extended non-
linear as-rigid-as-possible framework. High-frequency details are fused onto the
final mesh using a linear deformation model. However, this solution relies on a
specific stereo matching algorithm to estimate real-time RGB-D data.

Methods in the second category, i.e., methods that use a 3DMM to recon-
struct a face model from depth data, are few. The method described in [18]
employed a 3DMM that is fit to the depth images obtained from an RGB-D
camera. The template mesh and the incoming frame are aligned using features
detected in the RGB image as a coarse alignment step. The template is then
aligned non-rigidly to the incoming frame, and the 3DMM is fit to the tem-
plate. Unfortunately, this approach produces results that are biased towards the
template. The work in [11] contributes a real time method for recovering facial
shape and expression from a single depth image. The output is the result of
minimizing the error in reconstructing the depth image, achieved by applying a
set of identity and expression blend shapes to the model.
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A discriminatively trained prediction pipeline is used that employs random
forests to generate an initial dense, but noisy correspondence field. Then, a fast
ICP-like approximation is exploited to update these correspondences, allowing
a quick and robust initial fit of the model. The model parameters are then fine
tuned to minimize the true reconstruction error using a stochastic optimiza-
tion technique. However, none of these solutions can reconstruct fine details of
expressive faces using a 3DMM.

3 3D Morphable Face Model

The work in [4] first presented a complete solution to derive a 3DMM by trans-
forming the shape and texture from a training set of 3D face scans into a vector
space representation based on PCA. The 3DMM was further refined into the
Basel Face Model in [15], and subsequent evolutions but expressive scans were
not part of the training set in all these solutions. Indeed, two aspects have a
major relevance in characterizing the different methods for 3DMM construc-
tion: (1) the human face variability captured by the model; (2) the capability of
the model to account for facial expressions. Both these feature directly depend
on the number and heterogeneity of training scans. One of the few 3DMM in
the literature that exposes both these features is the Dictionary Learning based
3DMM (DL-3DMM) proposed in [8]. Since we mainly develop on this model,
below we first describe the peculiar features that make the DL-3DMM suitable
for our purposes, then we focus on the proposed fitting procedure.

DL-3DMM Construction. Differently from works in the literature that either
use optical-flow [4] or the non-rigid ICP algorithm [15], the dense alignment of
the training data for the DL-3DMM was obtained with a solution based on face
landmarks detection. These landmarks are then used for partitioning the face
into a set of non-overlapping regions, each one identifying the same part of the
face across all the scans. Re-sampling the internal of the region based on its
contour, a dense correspondence is derived region-by-region and so for all the
face. Such method showed to be robust also to large expression variations as
those occurring in the Binghamton University 3D Facial Expression (BU-3DFE)
database [17]. This dataset was used in the construction of the DL-3DMM.

Once a dense correspondence is established across the training data, these
are used to estimate a set of M deformation components Ci, usually derived by
PCA, that will be linearly combined to generate novel shapes S starting from
an average model m:

S = m +
|M |∑

i=1

Ciαi . (1)

In the DL-3DMM, a dictionary of deformation components is learned by
exploiting the Online Dictionary Learning for Sparse Coding technique [12].
Learning is performed in an unsupervised way, without exploiting any knowl-
edge about the data (e.g., identity or expression labels). The average model is
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deformed using the atoms Di in place of Ci in Eq. (1). More details on the
dictionary learning procedure can be found in [8]. The model m, the dictionary
D and the atoms weight w, constitute the DL-3DMM.

3DMM Fitting. The 3DMM was originally designed with the goal of reconstruct-
ing the 3D shape of a face from single images [5]; the different techniques to fit
the 3DMM to a face image can be divided in two main categories: analysis-
by-synthesis, and geometric based. Methods in the former category perform a
complex iterative procedure aimed at generating a synthetic image as similar
as possible to the input one, optimizing with respect to the 3DMM (shape and
texture) and rendering (e.g., camera or illumination) parameters. Despite their
complexity, the resulting reconstructions are rather accurate. Nonetheless, given
a textured rendering, it is hard to discern if the retrieved shape resembles the
real geometry of the face; this because the same rendering might be the result of
different combinations of the many involved parameters. Alternatively, methods
in the geometric-based category try to deform the 3DMM so as to match some
geometrical features detected on the image, like facial landmarks or edges [3].
These approaches exploit the fact that human faces are composed of muscles—
hence facial movements involve an extended surface rather than a single point—
that are constrained to fixed anthropometric proportions and limited variability.
Thus, when trying to deform the 3DMM to fit a set of sparse landmarks, the
surrounding surfaces will smoothly follow the deformation in a statistically plau-
sible way. This motivates the coarse reconstruction of the shape of the whole face
based only on few control points. Obviously, the resulting reconstruction will be
a coarse, but smooth approximation of the real surface.

The proposed method attempts to fill this gap; it builds upon the geometric
approaches and extends the fitting based on facial landmarks to a whole point
cloud. This extension implies a 3D scan corresponding to the face image to be
available, which changes the context and the objective. In this configuration,
the goal becomes deforming a generic face shape to match a target one, both
represented as point clouds; indeed, the problem can be seen as the non-rigid
registration of point clouds, which is a well-known problem in computer vision
for which many solutions have been proposed [1,13]. All the literature solutions,
however, are intended to work with generic point clouds representing arbitrary
objects, while in this case the problem is bounded to human faces. The main
difficulty is that faces are highly deformable objects, which often makes such
approaches fail in matching the two shapes. On the opposite, we can exploit this
prior to leverage a statistical tool such as the 3DMM to bound the deformation.

The proposed approach, first performs a similarity transformation to map the
target shape into the average model space, accounting for 3D rotation, transla-
tion and scale (SimilarityTransform in Algorithm 1). This is achieved by means
of 49 landmarks Lt ∈ R49×3, which are detected on the face image and back-
projected to the mesh.

To initialize the approach and account for large shape differences that might
impair the subsequent steps, we apply the DL-3DMM fitting using the landmarks
similarly to [8]. The average model m ∈ Rp×3 is deformed on the target shape
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Algorithm 1: Point Cloud Fitting (PCF)
Input: Average Model m, Dictionary D, Weights w, Target Shape t,

Landmarks Lt,m(Il), Error Threshold τ , Iterations Limit MaxIter
Output: Deformed Model m̂

˜t = SimilarityTransform(Lt, t,m(Il));
m̂ = LandmarkFitting(Lt,m(Il),D,w);
i = 0;
while i < MaxIter ‖ err > τ do

ICP(˜t,m̂);
˜t = VertexAssociation(˜t,m̂);

m̂ = ShapeFitting(˜t, m̂,D,w);

err = ComputeEuclideanError(˜t,m̂);
i = i + 1

t̃ ∈ Rk×3 minimizing the Euclidean distance of the landmarks, whose indices
on m are indicated as Il ∈ N49 (LandmarkFitting in Algorithm 1). Differently
from [8], the fitting is performed directly in the 3D space and projection on the
image plane is avoided. The deformation coefficients α are computed using the
dictionary atoms di as:

min
α

∥

∥

∥

∥

∥

∥

Lt − m(Il) −
|D|
∑

i=1

di(Il)αi

∥

∥

∥

∥

∥

∥

2

2

+ λ
∥

∥α ◦ ŵ−1
∥

∥

2
. (2)

In the equation above, di(Il) indicates that, for each dictionary atom, only
the elements associated to the vertices corresponding to the landmarks are
involved in the minimization. The solution is found in closed form and the aver-
age model m is deformed using Eq. (1) to obtain an initial estimate m̂. Then, we
perform a rigid ICP registration between m̂ and t̃ to refine the alignment, and
compute the per-vertex distance between the two meshes. We subsequently asso-
ciate each vertex of m̂ to its nearest neighbor in t̃, obtaining a re-parametrization
(VertexAssociation in Algorithm 1) of p indices of t̃. Note that k �= p in general,
thus a vertex of m̂ might be associated with multiple vertices of t̃; even if p = k,
this can still happen because of points that share the same nearest neighbor.
Once the association is done, the DL-3DMM is fit minimizing the Euclidean dis-
tance between each pair of associated points, using a least squares solution. The
fitting method reported in [8] uses a regularized formulation (Eq. (2)), which is
necessary to avoid uncontrolled deformations. In our case, we use all the ver-
tices to fit the target shape; thus the usefulness of the regularization becomes
marginal and the minimization of Eq. (2) becomes:

min
α

∥

∥

∥

∥

∥

∥

˜t − m̂ −
|D|
∑

i=1

diαi

∥

∥

∥

∥

∥

∥

2

2

. (3)
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The procedure is repeated until the error between subsequent iterations is lower
than a threshold τ or the maximum number of iterations if reached. Algorithm 1
reports the pseudo-code of the proposed Point Cloud Fitting procedure (PCF).

Note that the procedure can be applied either to single independent frames
or sequences without any change to the algorithm; indeed, the model at frame
t can be obtained either starting from the average model m̂ or the fitted model
at frame t − 1.

3.1 Learning Expression Coefficients

Given the DL-3DMM as described above, the result of the fitting procedure is a
set of coefficients α = {α1, . . . , α|D|} that are used to deform the average model
using Eq. (1). Considering a generic face image, these coefficients codify the
global shape deformation (i.e., the identity) along with other deformations (i.e.,
expressions). To derive the set of coefficients that control the expressions, we first
need to isolate the identity component from the deformation. To this aim, we
first fit the DL-3DMM to a face image in neutral expression to account for the
identity and obtain the coefficients αid (Eq. (1) after replacing PCA components
Ci with dictionary elements di); subsequently, the fitted model is used in place
of the average model to fit an expressive face image of the same subject. In
this way, we obtain a set of coefficients αexpr that encode the expression. The
procedure is depicted in Fig. 1. The final and crucial step is to find a recurrent
pattern in the αexpr coefficients, separately for each expression. To this end,
we investigated and compared the appropriateness of different methods using
statistical indicators and regressors. Results are reported in [7].

Fig. 1. Extraction of the expression-specific deformation coefficients from the
DL-3DMM fitting.

4 Experimental Results

We evaluated the proposed approach based on DL-3DMM and PCF in the task of
accurate 3D face reconstruction. The experiments are conceived to demonstrate



3DMM for Accurate Reconstruction of Depth Data 539

that RGB-D data, even if affected by noise and provided by low resolution scan-
ners, can be processed through PCF to reconstruct the 3D face shape. We also
show that previously learned expressions can be effectively transferred to the 3D
reconstructed models.

To quantitatively evaluate the reconstruction accuracy, we used two bench-
marks of 3D facial scans, namely, the Binghamton University 3D Facial Expres-
sion database (BU-3DFE) [17] and the Face Recognition Grand Challenge
database (FRGC) [16]. The BU-3DFE dataset has been largely employed for
3D expression/face recognition; it contains scans of 44 females and 56 males,
with age ranging from 18 to 70 years old, acquired in a neutral plus six dif-
ferent expressions: anger, disgust, fear, happiness, sadness, and surprise (2,500
scans in total). The subjects are distributed across different ethnic groups or
racial ancestries. This dataset has been used to train the DL-3DMM and a
fully registered version of 1,779 out of the 2,500 scans is available. The FRGC
dataset is composed of 466 individuals, for a total of 4,007 scans collected in
two separate sessions. Approximately, the 60% of such are in neutral expression,
while the others show spontaneous expressions. For the experiments, we used
the “fall2003” session, comprising 1,729 scans. In the following, we first present
and discuss results on BU-3DFE and FRGC, then for some Kinect scans. For all
the reported experiments, the regularization term λ of Eq. (2) has been fixed to
0.01; the error threshold τ and the maximum number of iterations in Algorithm 1
have been fixed to 0.001 and 50 respectively.

Table 1. Reconstruction error (in mm) for the landmark fitting (FL) and full point
cloud fitting (FL + PCF) with both DL and PCA based 3DMM.

Dataset FL FL + PCF

BU-3DFE (DL) 4.507 ± 2.809 0.802 ± 0.235

BU-3DFE (PCA) 4.979 ± 2.766 1.015 ± 0.254

FRGC (DL) 8.272 ± 4.939 0.455 ± 0.282

FRGC (PCA) 7.512 ± 4.756 0.728 ± 0.375

Reconstruction Accuracy. Here, we evaluate the accuracy of the vertices asso-
ciation by computing, for each vertex of the 3DMM, its distance to the closest
vertex of the 3D point cloud. To highlight the potential of the proposed solution,
values of the mean accuracy are computed with reference to two distinct cases:
(i) DL-3DMM fitting based on facial landmarks (FL), and (ii) DL-3DMM fitting
based on facial landmarks and PCF (FL + PCF). Further, we also report results
obtained using the standard PCA-based 3DMM solution. Recently, in order to
deal with multimodal variations, i.e., identity and expressions, the most widely
used 3DMM formulations employ a multilinear model made up of two 3DMM
components; one modeling the identity and the other modeling facial expres-
sions. Here, we wish to demonstrate the appropriateness and advantages of the
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selected DL-3DMM formulation, that can effectively account for both the prop-
erties in a single model. The mean error and standard deviation across all the
models for the BU-3DFE and FRGC datasets are reported in Table 1.

In Fig. 2, accuracy values are reported at a higher level of detail, showing
for each model of the BU-3DFE and FRGC datasets the error obtained by
using FL (in blue), and FL + PCF (in red). Results demonstrate a noticeable
improvement is obtained with the proposed procedure. To provide a qualitative
yet representative description of the accuracy of 3D face reconstruction, Fig. 3
reports some heat-maps obtained by encoding with a chromatic value the error
associated with each vertex of the reconstructed model; it can be appreciated
how the real surface is accurately reconstructed and fine details of regions where
landmarks are missing are accurately replicated, while maintaining a smoother
surface. The higher accuracy of the proposed solution is demonstrated by the
presence of large regions with blue/cyan colors (low error values) for models
reconstructed using FL + PCF compared to regions with red/yellow colors (high
error values) for models reconstructed using FL.
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Fig. 2. Comparison between landmark fitting (FL, in blue), and full point cloud fitting
(FL + PCF, in red). BU-3DFE (left) and FRGC (right). (Color figure online)

Kinect Data Reconstruction. Our approach has been experimented also on
Kinect data. To this end, we collected a few sequences to qualitatively test
our method on. Reconstruction of the face surface using the proposed app-
roach is compared to the reconstruction supported by the native libraries of
the Microsoft’s Kinect Face API that enables the extraction of a HD face model
for each face detected in the RGB-D stream. The average error obtained in such
sequences is 35.89, 1.70 and 58.40 mm, respectively, for the FL, the FL + PCF
and the Kinect reconstruction, demonstrating the effectiveness of the approach
even for low-resolution data and also compared to the Microsoft’s Kinect Face
API. From Fig. 3, we can appreciate that the sole landmarks were not sufficient
to reproduce the real shape, e.g., the nose, but it could only coarsely capture
the expression.
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Fig. 3. Comparison between DL-3DMM fitting based on facial landmarks (FL) and
facial landmarks plus PCF (FL + PCF). Three leftmost columns: reconstructions and
ground truth (GT) models; two rightmost columns: error heat-maps. From top to
bottom; the first two rows report sample models from, respectively, BU-3DFE, FRGC;
the last two rows, show the reconstruction of raw Kinect depth frames using our method
in comparison with the Microsoft’s Kinect Face API. (Color figure online)

4.1 Generation of Expressive Models

In order to derive qualitative results, we fitted the DL-3DMM to some neutral
faces of the dataset and applied the estimated deformation coefficients αest so
as to generate expressive scans for each expression. The expressive models gen-
erated from the neutral 3DMM according to the learned deformation vectors are
rendered for qualitative evaluation. Some examples can be appreciated in Fig. 4;
starting from the neutral expression, we can effectively generate expressive ren-
derings applying the expression-specific parameters separately. The last column
in the same figure shows another interesting application of our method, that is
the generation of complex, mixed expressions by combining the parameters of
the single prototypical expressions. This feature allows us to mix an arbitrary
number of expressions and further demonstrates the meaningfulness of the esti-
mated parameters. The examples in Fig. 4 are generated using a combination of
3 basic expressions.
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Fig. 4. Synthetic expressions transfer.

5 Conclusions

In this paper, we have proposed a 3DMM based solution to reconstruct a highly-
detailed 3D model of the face from depth frames or sequences. This is obtained
by the combined effect of two specific algorithmic solutions for 3DMM construc-
tion and fitting: on the one hand, we used a dictionary learning based 3DMM
implementation that makes possible modeling local deformations of the face; on
the other, the model is fit to a target point cloud by a two steps approach, where
the 3DMM is first deformed under the effect of the correspondence between a
limited set of landmarks, and subsequently refined by an iterative local adjust-
ment of point correspondences. Preliminary results have been reported that show
as the proposed framework provides superior results with respect to a landmark-
based solution. Further, we successfully learned and applied expression-specific
deformation to the fitted scans, while maintaining the accurate subject-specific
topology of the face surface unaltered.
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Abstract. In this work we discuss the action classification performance
obtained with a baseline assessment of the MoCA dataset: a multimodal,
synchronised dataset including Motion Capture data and multi-view
video sequences of upper body actions in a cooking scenario. To this
purpose, we setup a classification pipeline to manipulate the two data
type. For the MoCap, we employ a representation based on the use of
3D+t histograms modelling the space-time evolution of an action, classi-
fied using a classical Support Vector Machine with a linear kernel. As for
the videos, we learn the representation using a variant of the Inception
3D model, followed by a Single Layer Perceptron as a classifier. Dis-
cussing the experimental analysis will be the opportunity to observe the
diversity of MoCap and video data at work in two scenarios of uneven
complexity, i.e. on streams of data describing regular repetitions of the
same action, or when actions are part of a more complex and structured
activity where actions influence each other.

Keywords: Action classification · Motion Capture · Videos

1 Introduction

Classifying actions from visual data is paramount for a number of applications,
ranging from robotics and human-machine interaction, to industry and enter-
tainment. Over the last decades, research activities rode the wave of technolog-
ical advances in the visual devices, comfortably bouncing from the use of one
specific data source to another. Videos and Motion Capture devices are undoubt-
edly two backbones of the research in recent years, and the numerous surveys
published so far on action understanding topics, e.g. [2,5,11] just to name a
few, report detailed discussions on the peculiarities of the two. While stating
which data source may be considered the best choice from a general standpoint
is not trivial, it may be speculated that videos and skeleton data can be con-
sidered as complementary information carriers, characterized by uneven amount
of signal-to-noise ratios. On one hand, Motion Capture data can provide precise
but sparse 3D representations of actions; on the other, videos are more rich but
also harder to analyse and affected by perspective projection issues.
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In this paper, we discuss the action classification performance obtained with
a baseline assessment of the MoCA (MultimOdal Cooking Actions) dataset,
with specific focus of the effect of data sources. To this purpose, we setup a
classification pipeline that, starting from the same “data portions” (provided
by data annotation), is suitably instantiated to manipulate Motion Capture or
video data. For the first, we employ a representation based on the use of 3D+t
histograms modelling the space-time evolution of an action, classified using a
classical Support Vector Machine with a linear kernel. As for the latter, we learn
the representation using a variant of the Inception 3D model [1], followed by a
Single Layer Perceptron as a classifier.

Exploiting the MoCA dataset, we compare the classification of upper-body
cooking actions in two scenarios of different complexity: (i) on streams of data
describing regular repetitions of the same action, (ii) when actions are part of a
more complex and structured activity, and thus, although performed more nat-
urally, are influenced by other actions occurring in the temporal neighborhood.

The reminder of the paper is organized as follow. In Sect. 2 we introduce
the dataset and its characteristics, followed by Sects. 3 and 4 where we present
the methodologies of representation and classification for, respectively, Motion
Capture and video data. Sect. 5 discusses the experimental assessment, while
Sect. 6 is left to conclusions.

2 The MoCA Dataset

The MoCA (MultimOdal Cooking Actions) dataset [10] is a multimodal, syn-
chronised dataset in which we collect Motion Capture (henceforth referred to as
MoCap) data and video sequences acquired from multiple views of upper body
actions in a cooking scenario1. It has been collected with the specific purpose
of investigating view-invariant action properties in both biological and artificial
systems, and in this sense it may be of interest for multiple research commu-
nities in the cognitive and computational domains. Beside addressing classical
action recognition tasks, the dataset enables research on different nuances of
action understanding, from the segmentation of action primitives robust across
different sensors and viewpoints, to the detection of action classes depending on
their dynamic evolution or the goal.

We report in Table 1 the list of 20 cooking actions included in the dataset.
The range of actions presents significant diversity in terms of motion granularity,
since actions may involve the movement of fingers, hands or the entire arms. Also,
they may involve the use of one or two arm(s) of the volunteer, and possibly the
use of tools might require application of a variety of forces.

The acquisition setting (see Fig. 1(a)) included a motion capture system com-
posed by six VICON infrared cameras, each one equipped with an infrared strobe
capturing the light emitted by six reflective markers placed on relevant joints of
the right arm of the actor: shoulder, elbow, wrist, palm, index finger and little
1 The dataset is available for download at https://github.com/nicolettanoceti/

CookingDataset.

https://github.com/nicolettanoceti/CookingDataset
https://github.com/nicolettanoceti/CookingDataset
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Fig. 1. A visualization of the acquisition setting. (a) An overall image of the setup, (b)
a detailed view of the markers of the right arm of the volunteer, (c) sample trajecto-
ries, color coded with respect to the marker, for one entire unsegmented sequence of
action Mixing in a bowl (with 17 instances). Sample frames of the corresponding video
acquisitions are reported in (d) View 0, (e) View 1 and (f) View 2.

finger (Fig. 1(b)). Markers were calibrated in order to share the same coordi-
nate system and the final trajectories were recorded synchronously at a rate of
100 Hz/s. An example of the acquired trajectories for the action Mixing in a
bowl is reported in Fig. 1(c). For what concerns the video data, three identical
high resolution IP cameras were employed. The cameras observe the scene from
three different viewpoints: a lateral view (View 0), an egocentric view (View 1;
obtained with a camera mounted slightly above the subject’s head), and a frontal

Table 1. The list of 20 cooking actions included in the MoCA dataset. Below, a
description of the activities in the scene sequences are reported.

Shredding a carrot Cutting the bread

Cleaning a dish Eating

Beating eggs Squeezing a lemon

Mincing with a mezzaluna Mixing in a bowl

Open a bottle Turn the frittata in a pan

Pestling Pouring water in multiple containers

Pouring water in a mug Reaching an object

Rolling the dough Washing the salad

Salting Spreading cheese on a slice of bread

Cleaning the table Transporting an object
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view (View 2). Figure 1, bottom row, reports sample frames for the action Mixing
in a bowl acquired from V0, V1, and V2.

For each action a training and a test sequence is available, containing an aver-
age of 25 repetitions of the action. Furthermore, acquisitions of more structured
activities – we called scenes – are included, in which the actions are performed in
sequence for a final, more complex goal of action recognition in more structured
activities.

The dataset is accompanied by an annotation, which comprises the segmen-
tation of single action instances in terms of time instants in the MoCap reference
frame. A function then allows mapping the time instants to the corresponding
frame in the video sequences (acquired at 30 fps). In addition, functionalities to
load, segment, and visualize the data are also provided.

(a) Eating sample frames (b) Mixing sample frames (c) Rolling sample frames

(d) Eating, space features (e) Mixing, space features (f) Rolling, space features

(g) Eating, velocity 
features

(h) Mixing, velocity
features

(i) Rolling, velocity
features

Fig. 2. Example of 3D+t histograms for 3 different actions. Above: sample frames to
show the evolution of actions. Middle: histograms of action positions. Below: histograms
of instantaneous velocities. All histograms refer to the palm joint.

3 MoCap Data Analysis

Methods for action representation from MoCap data are mostly based on the
geometrical relationships among joints and their orientation in space [8], often
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aggregating information from different joints or body parts [7,15]. It is worth
notice that in general the amount of markers needed to succeed in a classification
task strongly depends on the granularity of the action itself, and if in some cases
the sparsity of the MoCap may represent a problem, in others it helps to focus
on the essential yet relevant action units.

Considering the variability of the actions included in our dataset, we com-
pose action descriptors combining different joints and their variations over time.
More specifically, we represent the space-time evolution of action instances from
Motion Capture data using 3D+t equally-binned histograms, collected by par-
titioning the volume of positions and instantaneous velocities (i.e. the displace-
ments between two time-adjacent positions) of actions. Histograms are built
using 4 out of the 6 joints available. In detail, after a visual inspection of the
trajectories (see an example in Fig. 1(c)), we selected the most descriptive joints,
i.e. elbow (E), wrist (W), palm (P) and index finger (I).

Following this procedure, for each action instance x, we collected a total of 8
vectorial descriptors, i.e. Hf

j (x) where j ∈ {E,W,P, I} denotes the joint, while
f ∈ {s, v} represents the feature (space or velocity) used to build the histogram.

In the experiments, we will consider different histograms aggregations:

– Hf (x) = [Hf
E(x)Hf

W (x)Hf
P (x)Hf

I (x)], i.e. concatenating the histograms of
all joints for a certain feature. The length is 6084 for space-based histograms,
and 8788 for velocity-based descriptors. These options will allow us to explore
the representation capability of space and velocity features, if employed inde-
pendently.

– H(x) = [Hs(x)Hv(x)], i.e. concatenating the histograms at the previous point
(final length 14872), to fully exploit the potential of the representation.

In Fig. 2 we report a visualisation of the histograms we obtained for 3 different
actions, i.e. Eating, Mixing, and Rolling. It can be noticed how, despite the
apparent simplicity of the representation, meaningful peculiarities of each action
can be appropriately encoded.

As for the actual action classification, we trained a multi-class Support Vector
Machine with a linear kernel2, which is known to be suitable when employing
histograms (see e.g. [3]).

4 Multi-view Video Analysis

The availability of pre-trained models enabled, in the last years, a diffusion and
solid assessment of deep architectures for image understanding tasks. The same
could not be said for the analysis of dynamic information until very recently due
to lack of datasets of appropriate size. Despite the significant improvements that
deep architectures provide with respect to state-of-art [5,13], only very recent
datasets made available to the research community [6] opened the possibility
of fully exploring the potential of pre-trained models when applied to different
temporal tasks or datasets.
2 We employed the LinearSVC implementation available in Python.
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Fig. 3. SpatioTemporal 3D Convolutional Neural Network derived by using a section
of the Inception 3D [1] as a feature extractor followed by a flattening layer and a single
fully connected layer as a classifier. Batch Normalization and Dropout layers are not
shown.

Taking inspiration from the above, in order to analyse the video streams,
we used learnt intermediate level features from a pre-trained neural network,
and employed this learnt representation as input to a multi-class classification
architecture. To learn the representation we consider a variant of the Inception
3D or I3D model [1], derived from the InceptionV1 [12]. It is a two-stream
Inflated 3D ConvNets model, originally including two streams, RGB and Optical
flow, jointly combined with a late fusion model. Conversely, we use only the flow
stream of the network, also less prone to overfitting. The model is pre-trained
on ImageNet dataset [4] and on Kinetics-400 [6]. Once trained, the network may
be seen as a multi- resolution representation of image sequences.

Figure 3 summarizes the actual network we incorporate in our work, includ-
ing both the feature extractor derived from the pre-trained I3D network and
the classifier. For a given multi-class classification task, segmented video clips
of the actions are used as inputs to the recognition pipeline. From them, the
optical flow is extracted, using the TV-L1 algorithm [14], and fed to the trained
Inception 3D model, from which we derive the activations of learnt intermediate
spatio-temporal features (a matrix of size {8,7,7,832}). The point of extraction
of the features was found empirically as one tolerant to changes in the specific
classification dataset.

As for the classifier, we considered the Single Layered Perceptron (SLP), a
single fully connected neural network layer, without non-linear activation. The
features learnt from the optical flow are flattened, and after a random dropout
they are fed into the SLP layer, followed by a batch normalization layer, to
promote regularization of the solution.

5 Experimental Evaluations

In this section we thoroughly discuss the experiments we performed on the MoCA
dataset. The analysis has the potential of being a baseline for the dataset, but
at the same time allows us to unfold the effects of data sources and their nature
on the classification results.
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(a) Spatial descriptor (b) View 0

(c) Velocity descriptor (d) View 1

(e) Full descriptor (f) View 2

Fig. 4. Confusion matrices corresponding to the classifiers. Left column: MoCap data
considering, from top, space only, velocity only, and the combination of the two. Right
column: video data using, from top, View 0, View 1, or View 2.



The Effects of Data Sources: A Baseline Evaluation of the MoCA Dataset 551

Table 2. Average classification accuracy on the MoCA dataset using MoCap and video
data in different configurations (see text for details)

Method Avg. Acc.± Std. Dev.

MoCap (Space) + Linear SVM 0.92 ± 0.19

MoCap (Velocity) + Linear SVM 0.82 ± 0.27

MoCap (Space + Velocity) + Linear SVM 0.95 ± 0.11

2D V0-V0 + SLP 0.93 ± 0.14

2D V1-V1 + SLP 0.90 ± 0.14

2D V2-V2 + SLP 0.91 ± 0.10

5.1 Cooking Actions Recognition: An Assessment

We start the discussion on the experimental analysis by reporting the results
we obtained on the recognition tasks of visual data streams with each stream
describing repetitions of the same action (i.e. using the test sequence acquired
similarly to the training, where the volunteer repeats a certain action for, on
average, 25 times, see Sect. 2). In both the classification pipelines (i.e. based
on MoCap and video data) the models are learnt on the training sequences and
evaluated on the test sequences. As for the SVMs, parameters have been selected
with K-fold Cross Validation (K = 5) coupled with a grid-search approach.

We report in Table 2 the average classification accuracies and standard devi-
ations obtained for different combinations of the MoCap histograms, and for the
different views for the video data. As expected, the MoCap data, when fully
exploited, leads to the best results, slightly superior but comparable to the per-
formance obtained with the videos, which are influenced by the viewpoint. As
a reference, we mention that a state-of-art method for action recognition from
skeleton data [9], based on the aggregation of displacement vectors describing
the joints configuration over time, provides an accuracy of 0.98.

A closer look to the accuracies of each action reveals uneven performances.
To comment on this, we report in Fig. 4 the confusion matrices for all the cases
we considered. At first glance, it is easy to confirm what was already argued
from the accuracy in the table, i.e. the confusion matrices for the classification
of videos, regardless the specific viewpoint, and for the MoCap data when the
full descriptor is employed, are very close to being diagonal. Meanwhile, the
remaining two cases, especially the one corresponding to the use of velocity
only, display a higher variance of the results. In fact, in the majority of cases the
performance of the full descriptor is higher than both spatial and velocity based
representations, or comparable to the best of the two. The remaining failures
can be attributed to the simplicity of the classifier. A deeper investigation on
the misclassified examples also reveal that the misclassified actions are different
when looking at the space or at the velocity, as expected. As for the videos,
in case of all viewpoints, two actions, i.e. Beating Eggs and Mincing with a
mezzaluna tend to be misclassified most often.
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Comparing the performance of the two classification pipelines, we observe that
videos, carrying richer and more redundant information, perform better on more
structured and complex actions, like Cutting the bread and Salting, where the
skeleton data are too poor. On the other hand, if an action is too simple –
meaning its dynamic is not enough informative – as in the case of Reaching,
the MoCap fails to convey the appropriate amount of information, while the
videos compensate with the appearance the lack in dynamic evidences. In case
the action is characterized by a high frequency or is spatially circumscribed, as
Beating eggs, the video data provides noisier representations, thus the sparser
but precise measures of the MoCap perform better.

5.2 Classifying Action Sequences

As observed in the previous section, the regularity of the movements that the
volunteer attains when performing repeatedly the very same task favours the
overall uniformity of the replicas, thus facilitating the classification despite the
apparent diversity of action complexity. Conversely, the execution of an action
when part of a mixed sequence – i.e. when appearing as an element of a more
structured activity – is highly influenced by the context, the other movements
occurring in the sequence, and their goal. To quantitatively assess such com-
plexity, we consider the sequences of the MoCA dataset we called scenes, in
which the actor simulates the preparation of a meal in a more natural way, and
apply the same trained models we adopted in the previous experiments. Table 3
reports a brief description of the activity represented with the scene sequences,
the number of actions and the accuracies obtained using the MoCap data with
full descriptor, and the 3 video sequences. A dramatic gap with respect to the
results obtained on actions repetitions can be observed, proving the strong influ-
ence of the contextual actions on the classification of each sub-part.

Table 3. Accuracy obtained on each scene sequence.

#Scene Instances Mocap V0 V1 V2

1 36 0.72 0.33 0.08 0.08

2 20 0 0.42 0.47 0.58

3 26 0 0.04 0.04 0.04

4 17 0 0.06 0.19 0.25

5 22 0.32 0 0.05 0.05

We propose in Table 4 a closer look to the actions involved in the scenes,
reporting the number of instances and how many of them have been correctly
classified. In a further column we highlight the number of samples for which
the classification of the corresponding video clips was deterred due to the short
length of the segmented clips, lower than the minimum required by the model.
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Table 4. An analysis on the classification of each action present in the scene sequences
(see text for details).

Action #Instances MoCap V0 V1 V2 Non-class

Carrot 17 0 7 8 10 0

Cutting 1 0 0 0 0 1

Eating 4 0 0 1 1 0

Eggs 28 26 0 0 0 28

Lemon 5 1 0 0 0 0

Mixing 17 0 0 0 0 0

Openbottle 1 0 0 0 0 0

Pouringsingle 2 0 1 0 0 0

Reaching 13 0 0 0 0 2

Salting 1 0 1 0 0 0

Spreading 6 0 0 0 0 0

Table 10 6 0 0 0 0

Transporting 16 0 6 6 6 1

Total 121 34 15 15 17 32

Overall Acc. – 0.27 0.12 0.12 0.14 –

Two main observations are in order. The first refers to the fact the complexity
of the scenes does not influence a particular type of actions – e.g. repetitive or
sporadic actions – but rather affects the classification task in general. Actions
like Reaching and Transporting an object are certainly characterised by a high
variability in space – depending on the starting and ending point of an action –
and in velocity, influenced by the weight of the specific object to be moved. The
latter aspect affects more in general the manipulation of objects, a type of action
that in the scenes has been in some cases instantiated slightly differently than in
the training and test sequence (e.g. in the action grating a piece of cheese is used
instead of a carrot). It is interesting to note that when attenuating the complexity
of the classification task the performance are only partially influenced. To this
purpose, we evaluated the classification results considering a lower number of
actions classes – more specifically considering only the ones actually present in
one of the scenes: while the accuracy of the MoCap increases to the 0.70, the
videos presents, on average, an accuracy of 0.25. This clearly shows that the
problem of the scene classification is inherently complex.
A second main observation is related to the fact the two sources of data show
complementary abilities, in the sense that when an action instance is recognised
this happens with just one of the two. This suggests that a multimodal approach
may be beneficial to solve ambiguities.
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6 Discussion

In this work we discussed the action classification performance obtained with a
baseline assessment of the MoCA dataset, a multimodal synchronised dataset
including Motion Capture data and multi-view video sequences of upper body
actions in a cooking scenario. We instantiated two classification pipelines to
manipulate the two data modalities. For the MoCap, we employed 3D+t his-
tograms modelling the space-time evolution of an action, classified using a clas-
sical Support Vector Machine with a linear kernel. As for the videos, we learned
the representation using a variant of the Inception 3D model, followed by a Single
Layer Perceptron as a classifier. We experimentally evaluated the classification
on streams of visual data describing regular repetitions of the same action, or
when actions are part of a more complex and structured activity where actions
influence each other. The critical discussion on the results we obtained high-
lighted the diversity of MoCap and video data at work, showing they provide
equally relevant and complementary abilities to characterize actions. Our future
efforts on the dataset will be aimed at exploiting this complementarity with
inherently multi-modal action representations.
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