
Adaptive Database’s Performance Tuning
Based on Reinforcement Learning

Chee Keong Wee(&) and Richi Nayak(&)

Science and Engineering Faculty, Queensland University of Technology,
Brisbane, QLD 4001, Australia

ckwee@outlook.com, r.nayak@qut.edu.au

Abstract. Database (DB) performance tuning is a difficult task that requires a
vast amount of skill, experience and efforts in tweaking a DB for optimum
results. With the hundreds of parameters to be considered under the diverse
application configurations, business logic and software technology, getting a
true global optimum setting is difficult for a DB administrator. We propose a
novel approach based on Reinforcement Learning to tune a DB adaptively with
minimum risk to the production setup. It results in a new set of parameters
tailored to the production DB. Empirical results show that there is a significant
gain in performance for the DB in its overall efficiency while reducing the IO
overheads, based on a set of key performance statistics collected before and after
the optimization process.

1 Introduction

Database (DB) tuning is complex and tedious where an alteration to its configuration
can have a big impact on its performance, especially for a large-scale database. The
tuning task is undertaken by a DB administrator (DBA) that has the skills, experience,
and knowledge on database tuning [1]. A DBA tunes the DB parameters in accordance
with the operation that is posed by depending applications to get the right balance.
Getting the balance between control and performance is difficult and it requires
numerous iterations of trials before it can be balanced. However, it is very time-
consuming to perform this through trials and errors. Moreover, it is risk sensitive if the
underlying database supports a mission-critical system as the system cannot tolerate
any downtime nor degradation in its performance and functionality.

We propose a novel approach of DB performance tuning based on Reinforcement
Learning (RL), named as Adaptive DB Performance Tuning (ADPT). The conjecture is
that ADPT will follow the process what a sentient being will do in performing tasks in
the real world. We propose a customized process that presents a workload duplication
process between production and test environment to mitigate the risk in the tuning
process. Several Oracle’s features are used in ADPT, primarily to simulate actual
production workload in the test environment. The guiding principle of RL is to learn
what actions work and what’s not for the underlying DB environment, then build up the
agent experience until it can work positively with the environment with minimum
penalty or faults. The length of training is dependent on the duration of the DB
workload replay and the number of iterations required [2]. In our experiments with the

© Springer Nature Switzerland AG 2019
K. Ohara and Q. Bai (Eds.): PKAW 2019, LNAI 11669, pp. 97–114, 2019.
https://doi.org/10.1007/978-3-030-30639-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30639-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30639-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30639-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-30639-7_9

374 MB size of replay, the RL agent managed to achieve an expert level in the test
environment within 2 days. The experimental results show that ADPT can improve the
DB’s IO performance by a factor of 25%.

This RL-based tuning can be regarded as self-learning and correcting while per-
forming the tuning process which sets ADPT apart from prior methods [3]. One major
distinction from existing works [4–9] is that the tuning is adaptive and able to incor-
porate higher realism into the processes instead of relying on artificially simulated loads
from the load test tools.

2 Related Works

Database tuning is considered as a challenging task for a DBA [10]. The DB vendors
support the customers with training, knowledge, and software [11] that can assist the
DBAs in monitoring and identify bottlenecks in the DB. But these tools require manual
interventions to extract and initiate the diagnostic process [12]. The recommendations
provided by these tools are up to the DBA’s discretion including the risk involved in
implementing them on the production systems.

In recent times, there has been a surge in the interest of automating the database
tuning process with a variety of methods that are statistical, heuristic, rule-based or
machine learning based [4–9]. A common statistical tuning method is to use cost-
benefit analysis [13] to locate cost savings for DB’s components using estimates from
the correlation of the accumulated processing time to the parameters’ values. However,
the results are reported not to be optimum as the parameters alteration is dependent on
the window period setting; the size of the window’s time has an impact on the pos-
sibility of excessively tuned parameters [13]. A genetic algorithm was used as part of
the DB performance predicting model’s configuration search strategy in conjunction
with a neural network to find the optimum setting for a system that runs on a NoSQL
database [7]. The concept is to build a subset of the data derived from the main system
and the tuning system will loop through the configuration search, invoking perfor-
mance prediction checks in a hill climbing approach to find the best parameter settings.

A series of machine learning algorithms were used to tune an MYSQL database
that supports a complex protein synthesizing system [8]. Starting with the use of
clustering, it finds the most significant parameters against the captured data from
different workloads that have been executed with different settings. Next, the lasso
regression is used to identify the important parameters, or knobs, based on their
changes against the variation encountered in the DB’s statistics. They are then passed
to the next tuning process. Several iterations of the DB workloads are acquired to
calculate each knob measurement, followed by the application of Gaussian regression
to locate the best configuration. This entire process is repeated until an optimal DB
performance outcome is achieved.

We summarised a list of DB tuning methods that span from the manual techniques
to artificial intelligence approach in Table 1. Delphi technique [14] is used to gather the
information from a group of DBAs that are currently working for a power utility
company. These methods are ranked in term of their complexity, capability, scalability
and time requirement based on their collective feedback. Each one of them come with

98 C. K. Wee and R. Nayak

their own strength and weakness, starting with the manual methods that are the most
tedious to use, to the most effective methods that use machine learning and DB sup-
plied tools.

Existing works display the following shortcoming; (1) Existing methods assume a
consistent, stable and well-defined DB in operation that doesn’t vary in workload
behaviour. They rely on this DB to collect statistics and data to support their models’
training dataset, but they ignore the level of uncertainties. (2) Existing methods focus
on achieving the optimum parameters settings for a consistent and stable DB that
operated under the simulated workload which is not a clear reflection of the real-world
DB scenario. (3) Majority of these works handle DBs with Online Transaction Pro-
cessing (OLTP) operation and do not emphasize on another form of data operations
such as Online Analytical Processing (OLAP) or Decision Support System (DSS).
(4) These works operate against a small set of workloads and cover a small subset of
the vast number of DB initialization parameters. The optimum parameters may not
yield the same result when it is applied in the production environment due to different
workload and operations. (5) Some methods depend on hand-crafted fuzzy rules or
machine generated guidelines which are inflexible and narrowly scoped, that constraint
them to adapt with the constant changing conditions that will occur in real-world DBs.

The best way to tune a mission-critical DB is to learn and adapt the changes in its
parameters that are suited for the real production workload. We propose the ADPT
method to perform adaptive database tuning focusing on the IO that is based on deep

Table 1. Database’s performance tuning techniques (low 1 to high 10)

Method Complexity Effort Remark

Manual [15] 9 9 Require in-depth knowledge and skill. Passive, very
time consuming, error-prone and may not get optimum
result. Most economical of all. Not scalable

DB tuning tool
[15]

4 3 Require average/good DBA knowledge and skill, less
error-prone and faster than manual. Passive and require
DBA to operate. Tools may be costly. Limited
scalability

Rule-Based [15] 7 6 Passive to semi-proactive. Only as good as its
knowledge rule-based. Built into monitoring tool.
Scalability is low

Heuristic fuzzy
based [6, 16]

8 8 Semi-active. Need a lot of prior statistics data. May not
achieve the global optimum. May need a reset if
schema changes. Use benchmark workloads.
Scalability is low

Statistical-based
[5]

5 7 Semi-active. Need a lot of prior statistics data. May not
achieve the global optimum. May need a reset if
schema changes. Scalability is medium

Other ML
models [7, 8]

4 6 Semi-active. Need a lot of prior statistics data. May not
achieve global optimum, adaptive to schema changes.
Scalability is medium

Adaptive Database’s Performance Tuning Based on Reinforcement Learning 99

reinforcement learning on a sandpit setup that we can replicate and replay the pro-
duction workload on it. To our knowledge, ADPT is one of the first method using RL
in DB tuning.

3 Adaptive DB Performance Tuning (ADPT)

Since the major DB performance relies strongly on the underlying IO throughput,
ADPT focuses predominantly on DB’s IO tuning. As shown in Fig. 1, the main
component is the reinforcement learning (RL) agent that interacts directly with the test
DB setup. It iterates through a series of activities that can be described as phases of
learning and tuning in its course of DB optimization. The RL agent starts off as a
“young model” with no knowledge and learns through a series of trial-and-error. As it
gets more experienced in interacting with the test DB on parameter settings versus
performance achieved, it will start to predict the outcome and choose the best outcome.
However, being a “young apprentice”, the RL agent has much to learn so its prediction
will not be accurate and needs correction. Towards the end of the tuning iteration, it
will achieve the “adult” experience of the system and will be able to know precisely
what action it should take for certain states in order to achieve optimum results.

3.1 Process of ADPT

The process of ADPT starts by setting the length of a workload period that should be
used. This period should represent the time when meaningful activities are present in
the DB that can form a substitute model for the test environment. A backup is taken via
Recovery Manager (RMAN) and is used to clone the test DB. When the DB-Replay
has captured enough workload, its files are transferred to the test environment. DB
Flashback is enabled on the test DB so that it can revert the DB back to the original
state once the workload is replayed. This keeps the test DB in its pristine state before
any changes were made.

The copied workload files are pre-processed to set them ready for replay. The first
DB-Replay’s run sets the baselines. Both the AWR statistics and parameters are
obtained and used for later reference. Scoring of the DB is done by a process that
summarizes the eight major fields as shown in Table 3 in the DB’s statistics report to
produce a final score. These fields have been identified as the key anchors that
determine each aspect of the DB’s individual subsystem performances such as memory,
IO, SQL and overall efficiency [15]. In the next iteration, new parameters’ values are
applied to the DB and the workload is replayed. It is followed by scoring and the results
are recorded by the RL agent in its knowledge-base. The process is repeated until the
output of the DB’s score has reached an optimum value or the iteration count set at the
beginning has been reached (Fig. 2).

100 C. K. Wee and R. Nayak

This process is outlined in Algorithm 1 and Fig. 1.

3.2 Database’s Tools

Oracle database is selected to support the implementation of the method. The following
describes the various Oracle’s features that have been used in ADPT;

Flashback DB: This feature enables the DB to be restored back to a point in time by
rolling back all the changes that have occurred since then [17].
Automatic Workload Repository (AWR): AWR is commonly used to report on the
DB’s performance statistics which covers wait events, time model statistics, active
session, object user and expensive SQL statements. The outputs that AWR produces
identify the bottleneck, waits, and other performance issues that are associated with
them. We use a subset of the results that have been aggregated from different groups
of statistics as listed in Table 2 [18].
DB Replay: This is one of the components of Oracle’s Real Application Testing
suite [2]. It captures the workloads from a source DB and then replays it on a target
DB. [18].
Automatic Big table Caching: This feature enables Oracle to reserve part of the
buffer cache to cache data for table scans by using temperature and object-based
Algorithm to track medium to large tables. It is to allow queries to be made against
memory which is much faster [19].
In-Memory Column Store: This feature enables the DB to allows the user to store
tables and other objects in a columnar-format instead of the common row format
[19].

3.3 Subroutines for the RL Agent

There are activities that need to be executed sequentially between the DB and the RL
agent. For the test environment preparation, we duplicate the production workload onto
the test DB by using DB-Replay to capture the workload in the production system
during the busy period for a certain duration. A suitable period is chosen for the scale of

Replay workload in
Test DB

Apply parameter
changes to DB

Obtain Test DB
Perform statistics

RL agent does trial-
and-error on action on
state to find reward

Capture workload
from Prod DB

RL
Agent

use NN prediction to
find best reward &
actions for states

Use knowledge to
supply best action to
states

High
Learning rate

Test DB

Medium
Learning rate

Low
Learning rate

Fig. 1. Adaptive DB Tuning model overview

Routine A

Zero - Very low
= no knowledge

Choose to
appropriate state

Determine learning rate

Medium – high
= some knowledge

Very high
= expert knowledge

Q table (state, action,
reward, new state)

knowledge

Routine B

Routine B(without
init reset)

Routine C
(prediction model)

Fig. 2. Different phases of RL agent learning

Adaptive Database’s Performance Tuning Based on Reinforcement Learning 101

the anticipating tuning process. The DB-Replay’s captured files are copied over to the
test environment. The test DB is cloned from the production DB’s backup using the
recovery tool called RMAN [20]. The DB is configured for the flashback, followed by
setting the baseline initialization parameter. The next step is to capture the DB’s
performance statistics with the first replayed workload, as a baseline. Only the dynamic
parameters are considered in this tuning process scope.

Algorithm 1: Main DB optimizing Algorithm Algorithm 2 - Routine A
Input: The state of DB from the AWR report and computed rewards
Output: The action of new parameters’ value for the database
Initialization1: set value for learning, reward preference and exploration rate, for
exploration, learning, and exploitation, decay_rate
Initialization2: initialize memory, Q-table collection and respective counters

Get a baseline of DB from routine A
Acquire the state from the AWR report
Set the learning rate to zero, med_learning to 30%, high_learning to 90%
Loop the iteration process

Check the learning rate.
 If learning <= med_learning, do the exploration phase
 /* exploration phase */
 Generate random initialization configuration.
 Run Routines A and B
 /*reset DB environment. Run Action against Environment and get a new
 state. find the score as a reward. Store knowledge of
 state, action, reward, and new_state to knowledgebase */
 If learning is > med_learning and < high_learning, then do

/* learning phase */
 Run Routine C
 /* reset the DB by flashback and flush memory.
 Predict new action for state and potential reward.
 Apply Action to Environment and get new state plus reward.
 Correct the reward and store information into knowledgebase */
 If learning > high_learning,
 /*refer to the knowledgebase for action to state. */

If exploration_rate < exploration_limit then
 Exploits the knowledgebase to find optimum action for given state that

Gives best rewards
Else

 Go to exploration phase – Routine A
learning rate +=1
exploration rate= exploration_rate *=decay_rate

Input: baseline init file, captured replay log files.
Output: statistics report for baseline, s0.
Initialization 1: create flashback restore point.
Initialization 2: reset init parameter, a flush memory, clear old
snapshots.

Create “before” snapshot.
Run DB Replay to play the workload.
Create “after” snapshot.
Run awrreport.sql for the statistics report as the baseline state, s0.
Flashback DB
Execute command to flush memory
Reset the DB’s init parameter
Drop and clear all snapshots.

There are three DB-based routines that will be performed throughout the different
learning phases in the tuning process, and they alter the DB’ settings for the RL
support. Routine A sets the DB to baseline through flashback and parameter reset. It
replays the workload and acquires its stats score at baseline, s0. Routine B scores the
DB statistics difference between the previous state and the current one, Ds, after
applying the parameters change. The results are kept in the knowledgebase. Routine C
predicts the scores based on parameters change and state, followed by self-correction.
The results are added into the knowledgebase. At the end of routine C, we conjecture
that the prediction model in the RL agent will achieve a high degree of accuracy, due to
the acquisition of a large knowledgebase including information on various states,
actions, and rewards. When the process reaches the high learning phase, the RL agent
is assumed to achieve an expert level where it can refer to this knowledgebase to find
the best global actions. For a single state of the test DB, the RL agent can traverse down
the relationship of a sequence that leads from one state to another. It will result in
finding the optimum choice of an action that yields the best rewards and the RL agent
will use that action to apply to the test DB which eventually will achieve the best-
performing state.

102 C. K. Wee and R. Nayak

The routines A, B, and C are described in Algorithms 2, 3 and 4, respectively.

Algorithm 3 – Routine B Algorithm 4 – Routine C
Input: Captured replay log files, baseline statistics reports
Output: statistics report new state, s’, reward, r’, update knowledgebase
Initialization 1: randomize configuration file. Flush memory, flashback DB,
reset init.

Perform Routine A.
Create “before” snapshot.
Select one of the parameters’ set values from the config file.
Apply the action with parameter set.
Run DB Replay to play the workload.
Create “after” snapshot.
Run awrreport.sql for statistics report for the state, s’.
Consolidate and differentiate both old and new states, s and s’.
Score the changes.
Record the result into the knowledgebase.

Input: Captured replay log files, statistics reports,
 knowledgebase
Output: statistics report new state, s’, reward, r’,
 Update knowledgebase.
Initialization 1: randomize configuration file.
 Flush memory, flashback DB, reset init.
Initialization 2: NN predicting model.

Perform Routine A but without init reset.
Train NN and then use it to predict action and reward.
Create “before” snapshot.
Apply the action.
Run DB Replay to play the workload.
Create “after” snapshot.
Run awrreport.sql for statistics report for the state, s’.
Consolidate and differentiate both old and new states, s and s’.
Score the changes and correct the reward, r.
Record the result of the new state, old state, action,

predicted reward, actual reward into the knowledgebase.

3.4 RL for DB Tuning: Q Learning

For a typical RL model, the agent interacts with the environment and perceives the state
of the environment to take actions and receive rewards [3]. The goal is to choose
actions to maximize rewards. As seen in Fig. 3, at time t, the agent observes the
environment which gives the state, st, and the agent executes an action, at, and receives
a reward, rt. from the environment. The environment then changes and reaches a new
state, st+1. This cycle repeats until the goal is achieved. The optimal behaviour p is
based on past actions and the agent tries to maximize the expected cumulative rewards
over time [3]. In this method, the environment refers to the DB, a state refers to the
DB’s performance in response to the workload replayed after experiencing the DB
parameters’ values, and an action refers to the process of changing the DB’s initial-
ization parameters.

As the test DB environment has a big combination of parameters versus workloads,
there is no true model that the agent can rely on. Therefore, it relies on trial-and-error to
find the action. For the proposed self-tuning approach, the agent learns by interacting
with the DB. Action, at, will be performed by applying the parameter change for an
epoch t then receive reward or penalty rt, that is derived by the scoring of the DB
performance after the workload is replayed and the AWR report is generated. The agent
will be able to judge whether the last change made is for the better or worse. However,
it is not able to reason about the long-term effects of the actions it takes. Delay to
feedback is acceptable in this case as there is no need for immediate response.

The agent’s objective is to learn about its current situation and try to maximize the
chance to score more rewards through trial-and-error by the exploration of other actions
as well as exploitations. This ensures that all variation of parameters-changing actions
and the rewards that they will get from the environments’ state. Once the optimum
actions have been identified, the agent will exploit them. It also finds a balance by
choosing between the exploring and exploiting actions using a e-greedy action selec-
tion algorithm with a random number between 0 and 1 [3].

Adaptive Database’s Performance Tuning Based on Reinforcement Learning 103

In this paper, we propose to use Q-learning, a model-free learning algorithm [3],
that explores the environment and exploits the current knowledge simultaneously via
trial-and-error to find both good and bad actions. At each step, it looks forward to the
next state and observes the best possible reward for all available actions in that state. It
uses the knowledge to update the action-value of the corresponding action in the
current state with the learning rate a (06 a6 1). The Q(s,a) value becomes a com-
bination of immediate reward and discounted future reward. It is expressed [3] as:

Q s; að Þ Q s; að Þþ a rþ cmax0a Q s0; a0ð Þ � Q s; að Þ� � ð1Þ

Where a is the learning rate, c is the discount factor, r is the reward, s is the state of the
DB performance result, a is the action on the parameter changes, a′ is the new action, s′
is the new state. Maxa′ Q(s′,a′) is the expected optimal value, Q(s,a) is the old value.
Equation (1) begins using random conditions at the start and iterates to converge to the
optimum function, Q*(s,a). The entire process is iterative and is driven by the optimal
policy as in Eq. (2):

Table 2. Selected Oracle’s initialization para-
meters

Parameters Description

Memory_target It enables automatic memory management
(AMM) which allocate memory dynamically
as required by the DB for all the main
important memory parameters such as
DB_CACHE_SIZE,
SHARED_POOL_SIZE,
PGA_AGGREGATE_TARGET,
LARGE_POOL_SIZE, and
JAVA_POOL_SIZE

Optimizer_mode Set the optimization approach for the
instance to the option of FIRST_ROWS,
FIRST_ROWS_n, or ALL_ROWS

Optimizer_index_
cost_adj

Set the relative costs of full scan versus index
operations. OLTP queries gain better
performance with lower settings

Optmizer_index_caching Set the amount of an index will reside in the
data buffer which also determines the cost of
an index probe in a nested loop join

Db_file_multi_block_
read_count

Sets the value of blocks to read in a single IO
which determines the efficiency of a full table
scan

Log_buffer Set the buffers for the uncommitted
transaction in memory. It affects DB
performance when there are high updates but
less on queries

Db_keep_cache_ size Set the size of the KEEP buffer pool which
retains data in the memory so that the queries
read from memory and less from disk

Db_recycle_cache_size Set the size of the RECYCLE buffer pool and
keep data in the memory for a longer period
instead of ageing out

Db_big_table_cache_
percent_target

Set the percentage of the buffer cache for
automatic big table caching. This is only
activated from a DB restart

Inmemory_size Set the size of the in-memory column store to
keep tables that use this feature

Table 3. Performance statistics report
from AWR.

Statistics Description

Cache sizes Information on the system global
area (SGA)

Load profile Information about the data
workload for the selected period
between the snapshots

Instance efficiency
percentage

Information about the memory
usage ratio for the buffer, library,
sorting, redo, latch and parsing

Shared pool
statistics

information on the system’s
memory usage for shared pool and
SQL execution

Top ten foreground
event

information on the top wait events
that cover details such as
DB CPU, amount of IO used by
SQL, type of reading (sequential
or parallel), log synchronization

Top SQL ordered
by elapsed time

information on those SQL queries
that took a long time to run

Top SQL ordered
by CPU time

Information on those expensive
SQL queries that consume the
most CPU time

IO statistics information on the tablespaces’ IO
activities

Environment

Agent

Action at

Reward rt

Reward rt+1
State st+1

State st

Fig. 3. RL agent’s processes

104 C. K. Wee and R. Nayak

P� ¼ argmaxaQ
� s; að Þ ð2Þ

The Q-learning Algorithm starts with the initialization of Q table (Q(s,a)) to zero
for all state-action pairs (s, a). It will observe the state, s, of the DB at the beginning
followed by iterating actions until it converges. The agent will need to choose between
exploration and exploitation as some changes can achieve local maxima. We propose to
use the e greedy algorithm [3] that randomly chooses the action whether to explore or
to exploit. The e value can decrease over time when the agent becomes more confident
with its estimate of Q-values using a value of range 0.8–0.9. This is to minimize the
agent’s chance of getting skewed toward a single set of action for a given Q-value and
persistently reusing the actions for a given state. The state is ambiguous and can only
relate to the performance statistics produced by the AWR report.

Approximation of States and Actions. Both the optimum value and optimal policy
can be used if the states and actions are small in numbers. However, a DB has many
possible states and actions which cannot simply be determine by Eqs. (1) and (2). For
example, if we consider the state of DB’s statistics (as listed in Table 4), the combi-
nation can range up to 5n and the combination of the actions’ parameters (as listed in
Table 5) can exceed 10m where n and m are the possible combinations of permutation
that can possibly exist. The sheer number, of the parameter’s permutation and com-
bination reaching into hundreds of thousands, exhibits the typical problem of curse
dimensionality. To mitigate this problem, we use a neural network model [21] as
illustrated in Fig. 4, which uses inputs as states s which are aggregated sums of DB
statistics n, a scalar reward r as a target value, and the possible m number of parameter
values of actions, a, of that attribute to the final Q-value derivation in Eq. (3). sn refers
to the state of the DB comprising of n statistics, am is the action that applies parameter
change of the m combinations and i is the iteration. Figure;

Predicted reward; r ¼ f 1 s1; . . .snð Þt
Predicted action; a ¼ f 2 s1; . . .snð Þt

ð3Þ

The data set used for NN training is from the knowledge-base that the RL agent
builds up at the start with its trial-and-error testing. To simplify our approach, we focus
on the current reward and equate reward to Q-value. The predicted reward from the NN
versus the actual reward will form the mean square error function for the NN for
optimization in Eq. (4). Within the NN model, there are several predictions of the score
and actions required for the state. The maximum sets that give the best scores are

state, s
(group

statistics, n) Action, a
(parameters
values, m)

Predicted
reward, r

Fig. 4. NN function approxmiation
of states vs rewars and actions

Adaptive Database’s Performance Tuning Based on Reinforcement Learning 105

selected, followed by a discount from the previous score. The calibrate reward function
uses the action, apredict, and find the real reward, rpredict against the state, s.

MSE ¼ rpredict � calibrate reward s0; apredict
� � ð4Þ

In the proposed implementation, the Q-value is a normalized and calculated value of
reward r for an action between two states. Normalization is done in order to bring all
AWR statistics in the same range, as some measurements generate values in percentage
and some in millions. The NN training process, to produce the predicted optimum
reward, continues until the reward (or Q-value) meets the requirement of maxa Q(s′,a′).
The predicted action at each iteration in the medium learning phase is re-validated by
the agent against the environment to derive the real reward. The validated information
of Q(s,a,r,s′), which refers to the normalized Q value of the reward for the action
applied to the existing state and bring it to a new state, s′, is then added to the
knowledge base for the next iteration of NN training. Figure 5 shows the flow of the
RL agent in finding the optimum route along with the DB’s states and best actions that
yield the optimum reward. The Q value is the computed normalized value that takes
into consideration the current and future rewards. c is set to 0.1 for consideration of
future states-actions but the emphasis is still on the current states.

Scoring the Environment’s State. The AWR report will generate and consolidate the
statistics which are used to calculate the overall score for the DB’s performance as
shown in Table 4;

Fig. 5. RL process of discovering optimum DB’s state-action-reward path

106 C. K. Wee and R. Nayak

The value among the group statistics varies widely, some are in percentage, mil-
liseconds, counts, etc. We propose to normalize the accumulated statistics from the new
state st+1, after the parameter change in relation to the previous state st. A weight is
associated with the statistics’ ratio if further tuning is required to emphasize a difference
among them as shown in Eq. (5). A score for the new state is calculated as follows,

stþ 1 ¼ 1
ks

Xk

i¼1
Ei

E0
wE þ Pi

P0
wPþ Ti

T0
wT þ Qi

Q0
wQþ Di

D0
wD

� �
ð5Þ

where k is the number of statistics considered, i is the instance in the loop that the agent
uses to learn the optimum configuration, E is the summation of the Oracle instance
efficiency percentage on all the memory components in the System Global Area (SGA),
P is the summed value of the shared pool statistics of memory usage for the SQL
execution, T is the summed value of the top 5 wait event statistics that occurred, Q is
the summed value of the top expensive SQL’s execution statistics and D is the summed
value of the disk IO statistics of the tablespaces. W is the weight that emphasizes the
importance of the individual statistics group. E0, P0, T0, Q0, and D0 refers to the
initializing values which are used as the baseline reference.

We also introduce another scaling factor against the statistics group to mitigate the
basis of excessive value increment versus diminishing performance returns. For
example, a choice is needed to be made between +60% increase in memory to get 20%
DB performance returns and +20% increase for 12% return. Therefore, the scaling
factor is presented as followed,

Scaling factor; di ¼ siþ 1 � si
si

=ð1
n

Xm

i¼1 ð
piþ 1 � piÞ

pi
ÞÞ ð6Þ

Table 5. Actions’ configuration parameters spec

Var Initialization parameters Range

p1 Memory_target (mt) 1000 � MT � 3000

p2 Optimizer_mode (om) {first_rows_N|
first_rows| all_rows}

p3 Log_buffer (lb) 100 � lb � 500

p4 Optimizer_index_cost_adj (oica) 0 � oica � 100

p5 Optimizer_index_caching (oic) 0 � oic � 100

p6 Db_file_multiblock_read_count
(dfmrc)

4 � dfmrc � 128

p7 Db_keep_cache_size (dkcs) 0 � dkcs � 1000

p8 Db_recycle_cache_size (drcs) 0 � drcs � 1000

p9 Db_big_table_cache_percent_target
(btcpt)

0–40% of p1

p10 Inmemory_size (inms) 0–40% of p1

Table 4. DB’s consolidated main statistics

Statistics Description

Oracle instance
efficiency

Contained the statistics on the memory
components in the SGA such as buffer, sort,
library, and execution ratio

Shared pool stats contained the summary of the percentage of
memory usage of the shared pool for
executing SQL

Timed events
stats

Showed the most significant waits
contributing to the DB Time. Waits such as
DB or log file read/write, CPU time, latch,
sort

SQL stats A summary of a list of top expensive SQL
that occurred and their values in term of
elapsed time read and write. For the intent of
this score calculation, only the category of
top SQL that consumed the most CPU time
will be considered

Disk IO stats Listed the IO values for all the tablespaces
in the DB

Adaptive Database’s Performance Tuning Based on Reinforcement Learning 107

where s is the state, i is the iteration of the environment instances, m is the number
of parameters that will be modified, p is the parameter of change. So, the new value for
st+1 will be st+1 * di.

Action for the Environment. Table 2 lists the top important initialization parameters
that have a major impact on DB performance [22]. In this paper, we propose to use
them to form the actions of change that the presented RL agent will employ against the
database environment. The action for the environment is a compound configuration set
of DB’s initialization parameters as shown in Table 5. For action, Ai = {p1i, p2i, p3i,
p4i, p5i, p6i, p7i, p8i, p9i, p10i} where p1..10 are the parameters and i is the iteration in
the learning loop. Each parameter has its own unique value, limit, and literals that
cannot be inter-exchanged. An extra routine of parameters generation must be created
to ensure that each one of them not only has to abide within the value limits but also
ensures that it has sufficient interval block ranges to avoid unnecessary iterations within
the training loop. It is not feasible to test all permutation and combination of the
parameters due to exponential computation efforts involved. To reduce the range of
testing, we use a series of parameters values combination as a single set of action
instead adjusting the parameter value one by one individually.

4 Empirical Analysis

The purpose of experiments is to determine the effectiveness of ADPT for tuning the
DB for optimum performance. The experiment starts by capturing workloads from a
DB that supports transactional processing for a period of several hours during office
hours. The files are then transferred to the test environment which is in turn processed
and primed for replay. As for the test DB, it was cloned from the source DB and
configured with the exact configuration like memory setting, tablespaces block allo-
cation, and other parameters. The source DB has 2 schemas and there are over 50+
objects such as tables, views, and procedures which reside in two tablespaces. It has a
peak of 18 users during peak hours, all of which use dedicated connections. The
volume of transaction is estimated to be around 10 GB+ per week. As modern DBs are
complex in design with hundreds of parameters and a wide range of features plus
option, we must narrow the scope of test down to a manageable size; the 380+ ini-
tialization parameters of a typical Oracle 12c DB has been scaled to the top ten most
influential ones as shown in Table 2 [22]. In the test environment, ADPT goes through
the tuning process, iterating through and writing the results of each iteration out to the
display and log files. By the end of the experiment, we expect the RL agent to find new
parameters’ values that can improve the DB efficiency and balance other performance
statistics.

The main difference between the proposed test setting versus existing works [5, 6,
16, 23–25] is that (1) ADPT derives the results from the AWR outputs which contain
detailed information on the performance statistics, and (2) ADPT uses a production
workload to replay against the target database which keeps the test environment very
close to the production. Whereas the common practice in existing works [5, 6, 16, 23–
25] is to use a set of SQL samples to simulate the DB load which does not reflect the

108 C. K. Wee and R. Nayak

types of SQL executed in the production environment. They used readings from the
database’s dynamic views such as library or buffer hit ratio which may not have the
capacity to capture the statistics for the entire test duration. Other statistics from the
CPU, IO or memory utilization from the OS are also commonly used. ADPT finds the
best combination of parameter values that suit the source DB. We do not stress the DB
setup to the limit which is not practical.

The experiment runs on a Linux virtual machine which runs the production stan-
dard Oracle DB with 2 CPUs each with 2 cores, has 12 Gb of RAM and 500 GB of
storage with 100 GB that is managed by Oracle’s ASM. The Oracle version used is
12cR2 enterprise edition. As for the RL agent’s predicting model, ADPT uses a neural
network that comprised of 3 hidden layers of 100 nodes. It is trained with data in 50
batches and 100 epochs. Different configurations and combinations of neural networks
have been tested, but, this setup was selected based on the better results with the least
fluctuations.

4.1 ADPT Performance and Results

This section details the outcome of the tuned DB. Figures 6, 7, 8, 9, 10, 11 and 12
showed the results of the DB’s performance statistics between two types of tunings
made against the same DB and the workload. For one DB tuning, the big table in-
memory caching initialization parameter is turned on that allows the DB to make more
use of onboard memory to cache all of its tables. Without this parameter, the DB
operates on the basis of caching only those rows of data that have been most recently
used. The graphs values in Figs. 6, 7, 8, 9 and 11 have been normalized to bring all
variables in a common range. Figure 6 shows that the overall efficiency improvement
in the Oracle instance efficiency ratio, timed event statistics and disk IO statistics. The
shared pool and SQL statistics showed incurring extra loads in their performance as
compared to before. There is high probability that the contest of buffer cache for both
in-memory and big table caching demand more from the overall instance’s memory
pool. But, as shown by the improvement in the overall instance efficiency, the overall
results were improved.

Figures 6, 7, 8, 9, 10, 11 and 12 showed that the three phases of the RL learning
process start with the number of iterations below 40 as the exploration phase and
followed by the iteration of 90+ onwards as expert learning. Those that are in between
is regarded as the learning-predicting phase where the RL agent learns to adjust its
prediction. Figure 7 showed the difference between the actual versus the predicted
rewards between 30th and 90th iteration band. For the Oracle instance efficiency ratio,
shared pool statistics, timed event statistics and SQL statistics in Figs. 8, 9, 10 and 11
respectively, a strong fluctuation is shown in the parameters’ values assigned by the RL
agent. The degree of change was evident in the middle phase until the final state, where
the RL has to rely primarily on its knowledge for assigning the actions to the state.
Disk IO statistics in Fig. 12 takes a more volatile fluctuation especially for the DB that
is tuned without the big table caching. However, the DB’s disk IO statistics were
reduced to the lowest readings toward the final.

Figures 13 and 14 showed the trends in the changes of the ten parameters
throughout the tuning iterations for the DB’s when the big table caching was turned on

Adaptive Database’s Performance Tuning Based on Reinforcement Learning 109

and off. The balancing process toward the latter state of the middle phase is leading
toward a lower set of values that the RL agent has regarded to be the best. The final
values were decided by the agent at the last phase.

4.2 ADPT’s Comparative Performance on OLTP, DSS and Hybrid DBs

Another set of tests were conducted to validate the ADPT efficacy in tuning DBs with
different types of usage like DSS which has more select queries and experience more
IO or, Hybrid DB which has a combination of OLTP and DSS operation. The
experiments are repeated by capturing workloads from the DBs of three other IT
systems each with a different workload. Figure 15 showed the DBs’ performance in
accordance with the captured statistics before and after they have been tuned with the
ADPT. OLTP DB#1 and #2 serve the different applications and both have their unique
set of user-base, schemas and transaction operations. DB#1 has a higher workload with

0.0

0.5

1.0

Oracle
instance

efficiency

Shared Pool
statistics

Timed Event
statistics

SQL
statistics

Disk IO
statistics

Percent% DB Performance difference
Before w/ BT caching w/o BT caching

Fig. 6. DB Performance dif-
ference (with and without
Automatic Big table Caching).

0.0

0.1

0.2

0.3

0.4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Norm
value

Iterations

Reward Predictions' deviations

Fig. 7. Tuning runs’ reward
prediction deviations

70

80

90

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Percent%

Iterations

Instance Efficiency Percentage
w/o bt cache w/ bt cache

Fig. 8. Instance efficiency ratio
trend

60

75

90

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Percent%

Iterations

Shared Pool statistics
w/o bt cache w/ bt cache

Fig. 9. Shared pool statistics

75

80

85

90

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
Percent%

Iterations

Timed event statistics
w/o bt cache w/ bt cache

Fig. 10. Timed event stati-
stics

0

20

40

60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Percent%

Iterations

SQL statistics
w/o bt cache w/ bt cache

Fig. 11. SQL statistics

150

200

250

300

350

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

IO reads
Millions

Iterations

Disk IO Statistics
w/o bt cache w/ bt cache

Fig. 12. Disk IO statistics

0.0

0.2

0.4

0.6

0.8

1.0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Norm
values

Iterations

Parameters values trend #1
MEMORY_TARGET
OPTIMIZER_INDEX_COST_ADJ
OPTMIZER_INDEX_CACHING
DB_FILE_MULTI_BLOCK_READ_COUNT
LOG_BUFFER
DB_KEEP_CACHE_ SIZE
DB_RECYCLE_ CACHE_SIZE
INMEMORY_SIZE

Fig. 13. Parameters values
trend for DB without big table
caching setting

0.0

0.2

0.4

0.6

0.8

1.0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Norm
values

Iterations

Parameters values trend #2
MEMORY_TARGET
OPTIMIZER_INDEX_COST_ADJ
OPTMIZER_INDEX_CACHING
DB_FILE_MULTI_BLOCK_READ_COUNT
LOG_BUFFER
DB_KEEP_CACHE_ SIZE
DB_RECYCLE_ CACHE_SIZE
INMEMORY_SIZE

Fig. 14. Parameters values
trend for DB with big table
caching setting

110 C. K. Wee and R. Nayak

more inserts transactions and DB#2 has a mixed of insert-updates. Improvement in
performance of OLTP DB#2 is significant when the ADPT tuned the parameters in
accordance to suit the current operation of OLTP particularly in the reduction of IO
stats. The hits on shard pool stats metric has improved with an optimum sized SGA,
which attributes to higher SQL stats and gives overall DB’s efficiency.

Same results can be seen in the DB’s results with the DSS load. Overall DB’s
efficiency has seen improvement with an increase in memory hit, reduction in IO while
working increasing the cost of the SQL execution. The DB with the mixed workload
has experienced lesser improvement as compared to the others. Mainly parameters set
for OLTP are usually not optimum for DSS and vice versa. This resulted in a com-
promise in the operation improvement when ADPT tried to bring a common config-
uration setting to meet the hybrid operation. It is then settled for less optimal.

0.0

1.0

Oracle
Instance

Efficiency

Shared
Pool

Statistics

Timed
Events

statistics

SQL
Statistics

Disk IO
statistics

N
or

m
 v

al
ue

s

OLTP type DB #1

Before After

0.0

1.0

oracle
instance

efficiency

shared
pool stats

timed
event
stats

SQL stats Disk IO
stats

N
or

m
 v

al
ue

s

OLTP type DB #2

before after

0.0

1.0

oracle
instance

efficiency

shared
pool stats

timed
event
stats

SQL stats Disk IO
stats

N
or

m
 v

al
ue

s
DSS type database

before after

0.0

1.0

oracle
instance

efficiency

shared
pool stats

timed
event
stats

SQL stats Disk IO
stats

N
or

m
 v

al
ue

s

Hybrid type database

before after

Fig. 15. ADPT test against DBs with OLTP DB#1, OLTP DB#2, DSS and mixed workloads

Table 6. Benchmarking RL tuning with other methods

Method Complex/skill
needed

Effort/labour The risk
to Prod
DB

Adaptive
to
changes

Tuning
coverage

Achieve
opt
result

Duplicate
to other
DBs

Manual tuning
method [15]

High Very high High No limited Low Very slow

Use DB tuning
packages [15]

High High-v high High No limited Med Slow

Performance
tuning software
[15]

Med Med Med No Med High Med

Rule-based
tuning [15]

Low-Med low Med-high limited high Med-
high

Fast

Heuristic-based
tuning [6, 16]

Med-high Low-Med Med-high limited Med-high High Fast

NN based
tuning(need
large dataset)
[7, 8]

Med Low-Med Med-high limited High High Fast

RL tuning Low-Med Low-Med Very low Yes High High Fast

Adaptive Database’s Performance Tuning Based on Reinforcement Learning 111

4.3 Discussion

One observation made during experiments was that the state produced by the DB
environment may not generate a consistent reaction to the actions as there are numerous
other Oracle’s background processes running which may impact on the final score. The
current way to mitigate this is to run the learning process with a large number of
iterations so that the variation of states’ value will be reduced to a point where the
magnitude is small and acceptable. Another observation, on the future reward and
action predicted from the Q-learning’s NN model, is that the reward has a higher error
rate as compared to the realistic environment state’s rewards. The MSE function is
managed by another routine that verifies the real reward that the predicted action will
produce, then add them back incrementally into the knowledge-base to enrich it. As
more information about the actual state versus the action of the DB including the actual
reward is made available to the NN model, the better the prediction it will make. The
final Q-table contains a list of states, actions and Q-value. There will be several states
that are either similar or nearly identical, and each of them has their own actions. The
associated Q-value will be the referencing point in which the agent will choose the
optimum Q-value and the associated actions for that state of interest. The actions used
here is a compound set of values combined with pre-selected parameters as listed in
Table 5 for our experiments which have the most significant impact on the DB. There
is no granularity or how each parameter will impact on the DB’s state.

Existing methods require the effort of collecting large workloads under different
configurations setting before they engage their tuning process [8]. Whereas ADPT
operates on the assumption that there is no prior knowledge or datasets to learn from. It
must learn from scratch by interacting with the DB adaptively of what works and what
not. The goal is not to do testing for extreme high one-dimensional load variation, but
multi-dimensional that include changes in application structure too. The space of
complexities in DB tuning is high; there are over 380+ major and minor parameters in a
DB, over 500+ readings that are related to a DB’s performance statistics plus DB’s
usage that has additional features. It becomes impossible to factor all these in academic
experiments. Therefore, we narrow down the problem’s scale to a manageable size.

From a common DBA’s perspective, the transactional output and latency are a one-
dimensional measure of DB and SQL performance. We need to cater for a wider
variety of DB usage instead of confining the measurement to just pure transactional
which are always in demand in OLTP systems. How can one tune a DB that has a
combination of order processing, geospatial, reporting and ETL combined? Modern
DB’s landscapes are complex and ADPT proves to be effective in finding a matching
set of parameters that is topical to a real system and not some simulated fictitious load.
Table 6 gives a qualitative evaluation of the ADPT with other methods. As shown by
experiments, ADPT can help the organization to optimize its DBs.

112 C. K. Wee and R. Nayak

5 Conclusion

We present a novel machine learning-based approach, ADPT, using RL to optimize DB
performance under a changing workload throughout the period. ADPT safeguards the
stability and privacy of the DB by conducting the regressive tuning process onto a test
environment that has duplicate setup with production workload activities replayed
there. The RL agent learns what works and what does not on the parameters versus the
outcome of the DB’s statistics after workload replay in an iterative way. The reward is
calculated from the difference between the DB’s statistics before and after the
parameter changes. Upon the completion of the performance tuning process, each state
instances have multiple different actions and rewards associated with it. The RL agent
uses the neural network model which learns to predict the rewards-actions. It recog-
nizes the error gap between its predictions versus the actual rewards from the envi-
ronment and it recalibrates through error correction. It then adds these instances to the
training dataset cumulatively, thereby re-train and improves on its overall prediction
accuracy. The empirical analysis was conducted using ADPT to learn and adapt to the
workload replayed from the production DB’s image. The results showed improvement
in the performance results in the five DB statistics group areas while reducing
unnecessary excessive value increases on the initialization parameters.

This paper uses the top significant initialization parameters to develop the proto-
type. There are over 650+ parameters initialization parameters that have other minor
influences on the DB’s performance, but they should be included in the future works.
Another area to incorporate is the SQL tuning part which has a large impact on the
DB’s throughput, especially on the IO part. There are many other types of relational
databases and each has its own unique set of configuration and administration. The
work to adapt ADPT into another DB platform will require some effort to learn and
understand their mode of operation first. Any IT systems’ requirement changes
throughout its lifespan and having an adaptive and intelligent tuning system to optimize
them is the best approach to gain the best return of investment and performance from it.

References

1. Hoffer, J., Ramesh, V., Topi, H.: Modern Database Management. Prentice Hall, New Jersey
(2015)

2. Colle, R., et al.: Oracle database replay. Proc. VLDB Endow. 2(2), 1542–1545 (2009)
3. Mellouk, A.: Advances in Reinforcement Learning. InTech, London (2011)
4. Ding, Z., Wei, Z., Chen, H.: A software cybernetics approach to self-tuning performance of

on-line transaction processing systems. J. Syst. Softw. 124, 247–259 (2017)
5. Rabinovitch, G., Wiese, D.: Non-linear optimization of performance functions for autonomic

database performance tuning. In: Third International Conference on Autonomic and
Autonomous Systems, ICAS 2007. IEEE (2007)

6. Rodd, S., Kulkarni, U.P.: Adaptive self-tuning techniques for performance tuning of
database systems: a fuzzy-based approach with tuning moderation. Soft. Comput. 19(7),
2039–2045 (2015)

Adaptive Database’s Performance Tuning Based on Reinforcement Learning 113

7. Mahgoub, A., et al.: Rafiki: a middleware for parameter tuning of NoSQL datastores for
dynamic metagenomics workloads. In: Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference. ACM (2017)

8. Van Aken, D., et al.: Automatic database management system tuning through large-scale
machine learning. In: Proceedings of the 2017ACM International Conference onManagement
of Data. ACM (2017)

9. Oracle Corporation: Master Note: Database Performance Overview (Doc ID 402983.1)
(2018)

10. Antognini, C.: Troubleshooting Oracle Performance. Apress, New York (2014)
11. Coronel, C., Morris, S.: Database Systems: Design, Implementation, & Management.

Cengage Learning, Boston (2016)
12. Alapati, S.R., et al.: Oracle Database 12c Performance Tuning Recipes: A Problem-Solution

Approach. The Expert’s Voice in Oracle. 1 online resource (li, 581 p.)
13. Kans, M., Ingwald, A.: Common database for cost-effective improvement of maintenance

performance. Int. J. Prod. Econ. 113(2), 734–747 (2008)
14. Habibi, A., Sarafrazi, A., Izadyar, S.: Delphi technique theoretical framework in qualitative

research. Int. J. Eng. Sci. 3(4), 8–13 (2014)
15. Alapati, S., Kuhn, D., Padfield, B.: Oracle Database 12c Performance Tuning Recipes: A

Problem-Solution Approach. Apress, New York (2014)
16. Wei, Z., Ding, Z., Hu, J.: Self-tuning performance of database systems based on fuzzy rules.

In: 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD). IEEE (2014)

17. Kuhn, D., Alapati, S., Nanda, A.: Performing flashback recovery. In: Kuhn, D., Alapati, S.,
Nanda, A. (eds.) RMAN Recipes for Oracle Database 12c, pp. 395–442. Apress, Bereley
(2013). https://doi.org/10.1007/978-1-4302-4837-8_13

18. Ngai, G., et al.: Automatic workload repository battery of performance statistics. Google
Patents (2009)

19. Oracle Corporation: Oracle Database 12c Release 2 (12.2) New Features (2018)
20. Kuhn, D., et al.: RMAN Recipes for Oracle Database 12c: A Problem-Solution Approach.

The Expert’s Voice in Oracle, 2nd edn. Apress, Berkeley (2013). 1 online resource (730 p.)
21. Van Hasselt, H., Guez, A., Silver, D.: Deep Reinforcement Learning with Double Q-

Learning. In: AAAI (2016)
22. Gryglewicz-Kacerka, W., Kacerka, J.: Analysis of the effect of chosen initialization

parameters on database performance. In: Kozielski, S., Mrozek, D., Kasprowski, P.,
Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015. CCIS, vol. 521, pp. 60–68.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18422-7_5

23. Sharma, H.K., Nelson, S.: Performance enhancement using SQL statement tuning approach.
Database Syst. J. 8(1), 12–21 (2017)

24. Wiese, D., Rabinovitch, G.: Knowledge management in autonomic database performance
tuning. In: Fifth International Conference on Autonomic and Autonomous Systems (ICAS
2009). IEEE (2009)

25. Zhou, J., et al.: Improving database performance on simultaneous multithreading processors.
In: Proceedings of the 31st International Conference on Very Large Data Bases. VLDB
Endowment (2005)

114 C. K. Wee and R. Nayak

http://dx.doi.org/10.1007/978-1-4302-4837-8_13
http://dx.doi.org/10.1007/978-3-319-18422-7_5

	Adaptive Database’s Performance Tuning Based on Reinforcement Learning
	Abstract
	1 Introduction
	2 Related Works
	3 Adaptive DB Performance Tuning (ADPT)
	3.1 Process of ADPT
	3.2 Database’s Tools
	3.3 Subroutines for the RL Agent
	3.4 RL for DB Tuning: Q Learning

	4 Empirical Analysis
	4.1 ADPT Performance and Results
	4.2 ADPT’s Comparative Performance on OLTP, DSS and Hybrid DBs
	4.3 Discussion

	5 Conclusion
	References

