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Abstract. Circadian rhythms are physiological and behavioural processes that
typically recur over 24-h periods.

Researchers show that circadian disruption, a marked break in normal 24-h
cycles of circadian rhythms, can cause serious health problems. It could lead to
critical illness, cancer, stress, myocardial infarction, diabetes, hypertension and
arrhythmias.

Today, circadian rhythms are monitored using blood, salivary and urine
hormone tests, such tests are not practical at home and do not provide contin-
uous real-time monitoring. Combining signal processing and artificial intelli-
gence with commercial sensors embedded in smartwatches or clothes that
measure physiological and behavioral attributes offers unprecedented and as yet
unexplored opportunities to monitor circadian rhythms in real time. This paper
presents the initial steps towards the development of a model for real-time
monitoring of the circadian rhythms. This model will contribute to transform
medicine from primarily intervention-focused to predictive and preventative.
Preliminary analysis shows promising results to automatically classify cortisol
levels as high or low, based on behavioral and physiological signals monitored
by non-invasive wearable sensors.
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1 Introduction

“Inner clock adapts our physiology to the dramatically different phases of the day, [...]
regulating critical functions such as behavior, hormone levels, sleep, body temperature
and metabolism”. This phenomenon is known as the biological clock or circadian
rhythm [1].
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Circadian alteration has significant side effects in our life. Among many, it could
lead to cardiovascular diseases, cancer and sleep disorders. It can affect lung function,
immune function, angiogenesis and many more are significantly influenced by the
circadian system, disrupting quality of life [2]. Moreover, recent researches [3] proved
that patient with major alterations in circadian cycles are significantly less likely to
survive to cancer treatments.

Thus, in order to reduce significant side effects due to circadian alterations also in
chronotherapy and chronomedicine, there is the need to develop new methods to
determine the state of a person’s circadian clock(s) in real-time.

Currently, the methods for circadian measurements are not suitable for continuous
and simultaneous monitoring at home. In fact, circadian cycles are measured via lab-
oratory tests (i.e., hormones measured via blood, urine or saliva specimens), which are
expensive and not easy to be performed at home. Most recently, actigraphy has been
explored for circadian rhythm estimations at home [4]. Nonetheless, benchmark
methods are not yet available and non-invasive behavioral (i.e., actigraphy) and
physiological monitoring has not been combined yet.

Therefore, the combination of wearable sensors, biomedical signal analysis and
machine learning techniques to develop methods and tools to quantify alterations in
internal clock could transform medicine from primarily intervention-focused to pre-
dictive and preventative.

Several cortisol indices are commonly used in the literature to determine circadian
alterations such as amplitude, frequency and phase [5]. In particular, peak-to-trough
difference is one of the most used index to assess thythm alterations [6].

This paper presents a preliminary result from a feasibility study conducted on
healthy subjects to identify a model to monitor circadian rhythms (peaks and trough) in
real-time using artificial intelligence and unobtrusive wearable behavioral and physi-
ological monitors.

2 Methods and Materials

2.1 Study Participants

8 healthy participants (4 men and 4 women, mean age (SD): 26.2 (3.3) years) in whom
no abnormalities were detected by the medical history, were recruited in the study.
Baseline characteristics, such as age, height, weight, general health status and use of
medications, were collected during a baseline assessment and briefing session. The
participants did not report history of heart disease, diabetes, systemic hypertension or
hypotension, or sleep-disorders, or consumption of any medication throughout the
course of the study, which could alter physiological signals being acquired. They had
healthy body mass index (BMI), i.e. between 18.5 and 24.9.

The Biomedical and Scientific Research Ethics Committee of the University of
Warwick approved this study (ref. REGO-2018-2205), assuring anonymity and no side
effects or possible disadvantages for the participants. All participants were carefully
instructed, and informed consent was acquired prior to the experiment. Participants
were compensated with a fixed fee.
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2.2 Protocol

Participants were asked to wear two different wearable devices for three nights and two
consecutive days. The first wearable device, the Zephyr BioPatch, recorded ECG,
breathing rate and raw 3-axis accelerations, with a sampling rate of 250 Hz, 18 Hz and
100 Hz respectively. The second one was a wireless data logger, the iButtons, which
can be used to obtain a valid measurement of human skin temperature. One iButton
was attached to each ankle, and another iButton was attached on each side of the chest,
one or two inches below the clavicle in the mid- clavicular line in order to measure
distal and proximal body temperature respectively [7]. The temperature sensors took a
measurement every 10 min.

In this study, cortisol was used as a marker of circadian rhythm. Participants were
instructed on how to take and store saliva samples, so as they could be sent to a
specialized laboratory and analyzed for levels of salivary cortisol. Participants were
instructed to take a sample immediately upon waking, and then to take further samples
every two hours for the rest of the day until they went to bed. Saliva samples were
acquired for two consecutive days via Salimetrics® Cortisol Enzyme Immunoassay
Kit, which is an immunoassay specifically designed and validated for the quantitative
measurement of salivary cortisol. The saliva was collected by the passive drool
technique.

For each subject, behavioral and physiological signals were acquired for three
nights and two days by wearable devices, and two days’ worth of salivary samples
were taken.

Participants were asked to report physical activity and food intake [8]. Participants
were also asked to complete the Pittsburgh Sleep Quality Index (PSQI) instrument [9]
and a consensus sleep diary [10]. The PSQI and sleep diary results were used to
compare reported sleep disturbances with alteration in circadian cycles.

All of the participants were asked to maintained ordinary daily schedules during the
experiments.

2.3 Data Analysis

The maximum and minimum cortisol levels were obtained for each subject for the two
days, and these were labelled respectively as “peak” and “trough”. In the cases where
the minimum or maximum cortisol level for a period appeared in more than one
measurement, then each measurement was also labelled.

Since physical exercise can greatly affect cortisol levels [11], only periods of time
during which there were similar levels of activity were considered. For each peak and
trough, a window of two hours around the time of the saliva measurement was taken.
Within each window of time, activity level and posture were evaluated. The activity as
reported from the Zephyr BioPatch represents a measure of second- to-second activity
and is sensitive to small movements. In order to reduce this sensitivity, the signal was
smoothed using a moving average, with a sample window of 60 s. This smoothed
activity, in essence, represents minute-to-minute activity.
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In order to control for activity and posture in the two hours window around each
peak or trough, only times when activity was less than 0.2 (which corresponds to a
level of activity less intense than walking) and the posture was between —20° and 20°
(which corresponds to times when the chest was roughly upright) were considered.

For each selected window of time, distal and proximal body temperature were also
considered. Distal body temperature was calculated as the mean of all measurements
from ankle temperature sensors during the selected window of time. Proximal body
temperature was calculated as the mean of all measurements from the clavicle tem-
perature sensors during the selected window of time.

For each selected window of time, the RR interval time-series was extracted from
ECG records using an automatic QRS detector, WQRS, available in the PhysioNet’s
toolkit [12]. QRS review and correction was performed using PhysioNet’s WAVE. The
fraction of total RR intervals labelled as normal-to-normal (NN) intervals was com-
puted as NN/RR ratio. NN/RR ratio was then used to measure the reliability of the data.
Records with NN/RR ratio less than 90% threshold were excluded from the analysis.
Heart Rate Variability (HRV) analysis was performed on 5 min excerpts using Kubios
(version premium) [13]. Time and frequency-domain features were analyzed according
to international guidelines [14], while non-linear measures were analyzed as described
in [15]. Frequency domain features were extracted from power spectrum estimated with
autoregressive (AR) model methods [13]. Finally, 20 HRV features were extracted and
examined.

2.4 Statistical Analysis and Classification

Given that HRV features were found non-normally distributed, Median (MD), Median
Absolute Deviation (MAD) and interquartile range (IQR) (i.e., non-parametric
descriptors) were computed for each repetition. The non-parametric Wilcoxon
Signed-Rank Test was used to appraise statistical differences of HRV features and
temperature variation between the “peak” and “trough” of cortisol measures.

In order to optimize the performance of the machine learning models, the number
of features should be limited by the number of instances of the event to detect (in this
instance, a peak or trough in cortisol levels). Furthermore, a reduction in the number of
features greatly simplifies the medical interpretation of any results achieved. Therefore,
the features selection was performed using relevance and redundancy analysis as
described in [16]. Training of the machine-learning models (including the algorithm
parameter tuning) was performed using a leave-one-outcross-validation approach on 6
participants. Binary classification performance measures were adopted according to the
standards reported in [15]. Five different machine-learning methods were used to train,
validate and test the classifiers (SVM, MLP, IBK, RF and LDA); the model was chosen
as the classifier achieving the highest Area under the Curve (AUC), which is a reliable
estimator of both sensitivity and specificity rates. The model was then tested on the
remaining 2 participants.
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3 Results and Conclusion

Preliminary analysis shows promising results to automatically detect cortisol levels as
high or low (peaks or troughs), based on HRV and temperature data extracted during
periods where activity and posture are controlled for. Some moderately successful
classifiers were produced. Random Forest outperformed the other classifiers achieving
78% AUC and 73% overall accuracy. These results provide encouragement that such a
protocol may be successful with further refinement, and wearable devices (through the
measurement of HRV) may indeed be useful in the real-time monitoring of circadian
rhythm.

Acknowledgment. We acknowledge the EPSRC-funded grant under the Cyclops Healthcare
Network. RC thanks the Institute of Advanced studies at the University of Warwick.

Conflict of Interest. The authors declare that they have no conflict of interest.

References

1. Van Laake, L.W., Liischer, T.F., Young, M.E.: The circadian clock in cardiovascular
regulation and disease: lessons from the nobel prize in physiology or medicine 2017. Eur.
Heart J. 39, 2326-2329 (2017)

2. Eckle, T.: Health impact and management of a disrupted circadian rhythm and sleep in
critical illnesses. Curr. Pharm. Des. 21(24), 3428 (2015)

3. Lévi, F., Okyar, A., Dulong, S., Innominato, P.F., Clairambault, J.: Circadian timing in
cancer treatments. Ann. Rev. Pharm. Toxicol. 50, 377-421 (2010)

4. Smith, M.T., et al.: Use of actigraphy for the evaluation of sleep disorders and circadian
rhythm sleep-wake disorders: an American Academy of Sleep Medicine clinical practice
guideline. J. Clin. Sleep Med. 14(07), 1231-1237 (2018)

5. Dorn, L.D., Lucke, J.F., Loucks, T.L., Berga, S.L.: Salivary cortisol reflects serum cortisol:
analysis of circadian profiles. Ann. Clin. Biochem. 44(3), 281-284 (2007)

6. Mormont, M., Levi, F.: Circadian-system alterations during cancer processes: a review. Int.
J. Cancer 70(2), 241-247 (1997)

7. Hasselberg, M.J., McMahon, J., Parker, K.: The validity, reliability, and utility of the
iButton® for measurement of body temperature circadian rhythms in sleep/wake research.
Sleep Med. 14(1), 5-11 (2013)

8. de Assis, M.A.A., Kupek, E., Nahas, M. V., Bellisle, F.: Food intake and circadian rhythms
in shift workers with a high workload. Appetite 40(2), 175-183 (2003)

9. Buysse, D.J., Reynolds III, C.F., Monk, T.H., Hoch, C.C., Yeager, A.L., Kupfer, D.J.:
Quantification of subjective sleep quality in healthy elderly men and women using the
Pittsburgh Sleep Quality Index (PSQI). Sleep 14(4), 331-338 (1991)

10. Carney, C.E., et al.: The consensus sleep diary: standardizing prospective sleep self-
monitoring. Sleep 35(2), 287-302 (2012)

11. Budde, H., Machado, S., Ribeiro, P., Wegner, M.: The cortisol response to exercise in young
adults. Front. Behav. Neurosci. 9, 13 (2015)



280 R. Castaldo et al.

12. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet components of a new
research resource for complex physiologic signals. Circulation 101(23), e215-e220 (2000)

13. Tarvainen, M.P., Niskanen, J.-P.: Kubios HRV user’s guide. In: Biosignal Analysis and
Medical Imaging Group (BSAMIG), Department of Physics University of Kuopio (2013)

14. Force, T.: Heart rate variability guidelines: Standards of measurement, physiological
interpretation, and clinical use. Eur. Heart J. 17, 354-381 (1996)

15. Melillo, P., Bracale, M., Pecchia, L.: Nonlinear heart rate variability features for real-life
stress detection. Case study: students under stress due to university examination (in English).
BioMed. Eng. OnLine 10(1), 1-13 (2011). Article no. 96

16. Castaldo, R., Melillo, P., Izzo, R., Luca, N.D., Pecchia, L.: Fall prediction in hypertensive
patients via short-term HRV analysis. IEEE J. Biomed. Health Inf. 21(2), 399-406 (2017)



	Investigating the Use of Wearables for Monitoring Circadian Rhythms: A Feasibility Study
	Abstract
	1 Introduction
	2 Methods and Materials
	2.1 Study Participants
	2.2 Protocol
	2.3 Data Analysis
	2.4 Statistical Analysis and Classification

	3 Results and Conclusion
	Conflict of Interest
	References




