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Abstract. Security Metrics help network administrators master the
security status and strengthen security management for many years.
Recently, with the usages of many new techniques and network struc-
tures, the cyber attacks become complex and the security measurement
has received more and more attentions. However, existing methods usu-
ally focus on one aspect of security and the indicators used are usu-
ally difficult to quantify, which makes it difficult to understand network
security status in some real circumstance. In this paper, we consider the
network system security from the perspective of attack and defense and
the changes of external security environment to propose a comprehen-
sive and quantifiable index system for network security measurement.
We illustrate the corresponding theories and the usages of each selected
indicators and we also complete the real-time security measurement in
various attacks and defenses by using NS3 simulator. The simulation
results verify the correctness and rationality of the proposed Security
Measurement Index System.

Keywords: Security metric · Index system ·
Attack and defense confrontation · NS3 simulation

1 Introduction

The rapid growth of information technology promoted the development and the
quality of computer networks, and also bring cyber attacks to users. Increasing
cyber threats and hacker activities made the network environment become seri-
ous and became the headache of modern networks system. In order to relieve
user’s safety anxiety and accelerate the development and use of modern net-
work technologies, a security measurement to the network is necessary. However,
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existed rule-based or machine learning-based security measurement methods are
passive, single-assist mitigations for specific security issues. These measures lack
of systematic considerations, which may blindly add protective equipment, waste
manpower and material resources, and can no longer meet the current network
security needs [1]. In order to fully understand the network security status and
effectively strengthen network security, network security metric has become a
hot and difficult issue. Although some security metric standard have been estab-
lished, many of them have some limitations and may lead to some issues.

Existed network security metric models, such as the National Institute of
Standards and Technology (NIST) cyber security framework, the Common Cri-
teria for Information Technology Security Assessment (CC), the Information
Security Technology Framework (IATF) and the information security protection
level (ISPL) are define the security measurement with standards or frameworks.
These security standards or frameworks tend to focus on product or manage-
ment, and indicators in them are not quantified. In addition, there are also some
researchers conduct network risk assessments from the vulnerabilities [3]. Com-
mon methods include probability-based attack graph model, system evolution of
Markov chain random representation, fault tree analysis and attack tree, etc. [4].
However, these existed methods only focus on the possible risks, they does not
consider the changes of the network system’s own detection and defense capa-
bility and the indicators used are usually difficult to quantify. In order to solve
the problems mentioned above, in this paper, we propose a complete, dynamic,
quantifiable and comparable index system for security measurement. Through
the real-time measurement and calculation of security indicators, the dynamic
changes of network status can be accurately described, and the internal causes
of network status changes can be deeply reflected, so that security-enhanced
decision support can be provided to security management.

The main contributions of this paper are listed as follows:

1. We propose a comprehensive, dynamic, quantifiable and comparable index
system from the perspective of offense and defense for network security mea-
surement.

2. We implement the multiple attack and defense modules in NS3 simulator.
3. We use the NS3 simulator to measure the network security status in real time,

verify the rationality and correctness of the proposed index system.

The remainder of this article is organized as follows. Section 2 introduces the
background knowledge and related work of security metric. A security index sys-
tem is proposed and the weights were determined in Sect. 3. Section 4 completes
the real-time measurement of the network status and verify the correctness and
rationality of the index system based on NS3 simulator. Section 5 summarizes
the whole article and points out the directions of future work.

2 Related Work

Security Measurement is important and many existed works has been done in
the literature. Some authoritative and relatively new security standards, includ-
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ing Common Criteria for Information Technology Security Assessment (CC),
Classified Protection of Information Security (CPIS), Network and Information
Security Directive (NIS), National Institute of Standards and Technology (NIST)
and Information Assurance Technical Framework (IATF) have defined their indi-
cators for security evaluation. We strictly reviewed these indicators, and com-
pare them against comprehensiveness, dynamics, quantification, objectivity, and
comparability. The results of the comparison are shown in Table 1.

Table 1. Index system comparison

Standard Comprehensiveness Dynamics Quantification Objectivity Comparability

CC No No No No Yes

CPIS Yes No Yes No Yes

NIS Yes Yes No No Yes

NIST Yes Yes No No Yes

IATF Yes Yes No No Yes

Besides those published standards, private research on this problem are also
contributed. In [6], the authors discuss the importance of network metric and
believes that security metric should be characterized by certainty, simplicity,
objectivity and repeatability. Then several commonly used metric method are
introduced and the security metric work is introduced from the policy and
economic aspects. However, this article only introduces the basic knowledge
of network metric, and does not propose a specific metric scheme. Literature
[7] proposes a hierarchical security threat metric model, including three levels
of service, host and network, and quantifies the evolution of security risks of
these levels based on IDS alarm and network bandwidth occupancy. The arti-
cle proposes some threat risk calculation formulas, which can quantify the risk
index of service, host and network in real time, and verify the correctness of
risk index quantification through experiments. However, the article only consid-
ers the attack risks, and does not consider the changes in the network’s own
defense capabilities. In [8], the authors believe that the core of security metric is
the result of an attacker using vulnerability to launch attacks and interact with
defense. From the perspective of attack and defense confrontation, the metrics
are divided into four categories: vulnerability indicator, defense indicator, attack
indicator and status indicator. The index system proposed in the paper is rel-
atively comprehensive, but just introduce the meaning of these indicators and
lack quantitative calculation formulas.

Although the researches on security metric are plenty, but the existed results
are single aspect, static and subjective, a comprehensiveness, dynamics and
quantifiability security metric are always required.

3 Security Metric Index System

Building a quantifiable and relatively complete index system is the main purpose
of our work. In order to solve the shortcomings of the existing index system, we
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propose a quantifiable, comprehensive, dynamic and universal index system from
the perspective of offensive and defensive confrontation. As shown in Fig. 1, we
consider network’s own defense capability and threats caused by attack, vulner-
ability. In addition, the network performance anomaly index is proposed from
the perspective of overall network communication performance. We describe the
definition of all indicators in the proposed index system, and then the calculation
and quantization formula of indicators will be given and the calculation results
are normalized.

Fig. 1. Network security index system

3.1 Security Protection Capability

Threat Detection Capability. Threat Detection Capability (TDC) is a metric
that measures the detection and monitoring efforts of devices such as IDS or
monitoring audit system for cyber attack. Threat detection capability is related
to threat detection intensity level (TDIL) and intrusion detection classification
performance. These two indicators are described below.

Threat Detection Intensity Level. It describes the scope and effectiveness of
attack detection by threat detection device. To best of our knowledge, main-
stream attacks account for the majority of all attacks, such as DDoS, XSS,
buffer overflow, etc. Therefore, successful detection of mainstream attacks con-
tributes a lot to network security [9]. We use interval data to describe different
levels of threat detection capability, as shown in Table 2.
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Table 2. Hierarchical definition of threat detection intensity

Level Capability Threat detection intensity description

1 0 No threat detection device, no threats can be detected

2 0.3 Can only detect a few threats, the detection effect is poor

3 0.8 Can detect mainstream threats, the detection effect is good

4 1.0 Can detect most threats, the detection effect is very good

Intrusion Detection Classification Index. IDS is a network behavior classifier
and its role is to identify threat behaviors [10]. Therefore, we can use traditional
classification evaluation indicators in statistical learning to measure intrusion
detection capability. The commonly used classification performance indicators
include recall, precision and etc. Precision (P) indicates the correct proportion of
the prediction in the positive samples, and recall (R) indicates the proportion of
the true positive samples that are predicted as positive samples. P and R reflect
the classification performance from different aspects, but sometimes there are
conflicts [11]. To deal with this problem, we use F-Measure (F1) as the intrusion
detection performance indicator. The formula for F1 is as follows.

F1 =
2 ∗ P ∗ R

P + R
(1)

Threat Detection Capability Calculation. The value of TDC is equal to the prod-
uct of TDL and F1. The calculation formula is as follows.

TDC = TDL ∗ F1 (2)

Where F1 is calculated based on the historical detection data of IDS. The TDC
has no dimension and the value ranges from 0 to 1, so it is not necessary to
normalize.

Threat Resist Capability. Threat Resist Capability (TRC) is a measure of
the ability to block or mitigate threats. It can defend against cyber attacks,
and prevent malicious behavior detected in time to ensure the network security.
The devices with threat resistance mainly include firewall, anti-virus software,
intrusion prevention system, and active defense technology [12]. TRC is related
to the threat resist intensity level and the blocking ratio. And these indicators
are described below.

Threat Resist Intensity Level. TRL measures the range and effect of security
protection and preventing threat. To best of our knowledge, mainstream attacks
occupy a large proportion, so the ability to defend against mainstream attacks is
important for network defense capabilities. We use interval data to describe the
ability of different threat level, and Table 3 gives the definition of threat strength
level.



52 G. Li et al.

Table 3. Hierarchical definition of threat resist intensity

Level Capability Threat resist intensity description

1 0 No security measures to reach and prevent threats

2 0.3 Can only defend against few threats, the protection effect is poor

3 0.8 Can defend against mainstream threats, the protection effect is good

4 1.0 Can protect most threats, the protection effect is very good

Blocking Ratio. Blocking ratio (BR) is the ratio of the number of successful
defending attacks to the number of hosts that are attacked. It can measure the
efficiency of defense equipment. The formula is as follows.

BR =
i=1∑

n

Blk(i)
En(n)

∗ 100%, Blk(i) ∈ [0, 1] (3)

Where n is the number of network device, Blk(i) is the degree to which the i-th
device successfully blocked the attack, ranging from 0 to 1, and En(n) indicates
the number of devices being attacked.

Threat Resist Capability Calculation. The value of TRC is equal to the product
of BR and TRL. The calculation formula is as follows.

TRC = TRL ∗ (BRb ∗ mbr1 + BRt ∗ mbr2),mbr1 + mbr2 = 1 (4)

Where BRb is calculated according to historical data of the defense device, and
BRt is calculated in the current security metric period T. In order to prevent
the security metric calculation error caused by the zero-day attack, the value of
BR is the weighted sum of BRb and BRt. For real-time measurement of network
status, we need to pay more attention to the current measurement period, so
that mbr1 = 0.2 and mbr2 = 0.8. TRC has no dimension and the range of values
is between 0 and 1, so it is not necessary to normalize.

3.2 Attack Threat Risk

Attack Severity. The Attack Severity (AS) measures the extent to which an
attack is harmful to network. Traditional cyber risks involve three elements,
namely threat, asset, and vulnerability [13]. The attack severity defined here
fuse threat and asset, which can more comprehensively and accurately measure
the degree of harm caused by attack to network resources. The calculation of
the severity of the attack involves the attack severity level and the target asset
importance level (TAIL). Their definitions are described below.

Attack Severity Level. Attack Severity Level (ASL) ranks the severity of an
attack and visually shows the difference between different attacks. We determine
the severity of the attack according to the attack classification and prioritization
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in the snort user manual. The snort manual divides the attack into three levels,
namely high, medium, and low. In this paper, we use 3, 2, 1 to represent these
three levels. The snort user manual already contains most of the attacks. For
some attacks that are not involved, we give them the same severity level as the
same type of attack.

Target Asset Importance Level. Successful implementation of a cyber attack
must be done through the target of the attack. Different device or service may
become target of intruder, such as router, firewall, and user data. The target
asset importance level (TAIL) is determined by the target type. We classify
TAIL into there levels, namely high, medium and low, represented by 3, 2 and
1.

Attack Severity Calculation. The severity of the attack is related to the type and
the number of attack, and the importance of the target assets. The calculation
formula is as follows.

AS =
i=1∑

m

(1 + ki ∗ cfi) ∗ r ∗ 10ASLi ∗ Ni ∗ TAILi (5)

Where m is the number of attack category, ASLi is the severity level of the
i-th attack, Ni is the number of occurrences of the i-th attack, and TAILi is
the asset importance level of the i-th attack’s target. We use 10ASLi instead
of ASLi according to the literature [7]. In order to more accurately reflect the
impact of attack and defense interaction on the network, we add the resist factor
r to indicate that attacks are successfully resisted by defense. The value of r is 0.1
indicating that the attack is only 10% of the original when the attack is resisted.
We divide attack into independent attack and coordinated attack, and their
severity calculation methods are slightly different. Implementing an coordinated
attack scenario requires multiple attack steps in sequence. And the attack that
occurs later is more threatening, so we propose the attack correlation factor cf to
more accurately describe the impact of attack. ki is the number of attack steps
before the i-th attack, and cfi is the attack-related factor, indicating the degree
of the collaborative attack threat increasing, the value of cfi is 0.1.

Max-min and z-score normalization are not applicable because it is difficult
to determine the maximum number of attacks based on historical statistics. To
solve this problem, we choose the negative exponential function e−a∗x as the
mapping function. It maps the indicator to between 0, 1 and is very close to the
max-min mapping. Based on experience and historical data analysis, we take
a equal to 0.005, a can be adjusted according to the actual size and status of
network, so the formula of AS is normalized as follows.

AS′ = e−a∗AS (6)
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Vulnerability Risk. The execution of the attack is inseparable from the
exploitation of the vulnerability. These vulnerabilities and efforts to compro-
mise these vulnerabilities are the most commonly collected data for understand-
ing network security. Many researchers have conducted network risk assessment
and analysis from the perspective of vulnerability analysis and have achieved
many results. The risk caused by the vulnerability is a potential energy that can
affect the network. Therefore, based on previous vulnerability risk assessment,
we propose vulnerability risk (VR) indicator. VR is related to the vulnerabil-
ity severity score and TAIL. The latter has been quantitatively analyzed in the
previous section. Below we describe the vulnerability severity score.

Vulnerability Severity Score. CVSS is often used to measure the severity of
vulnerabilities and help people determine their priority. It is mainly based on
measurements in different dimensions, namely basic, temporal, and environmen-
tal measure. In CVSS, the vulnerability score is between 0 and 10 and the high
score represents a very serious risk. Our vulnerability severity score (VSS) is
based on the CVSS.

Vulnerability Risk Calculation. The value of VR is the product of VSS and TAIL.
The calculation formula is as follows.

V R =
i=1∑

n

V SSi ∗ TAILi (7)

Where n is the number of vulnerabilities, VSSi is the severity score of vulnerabil-
ity i, and TAILi is the asset importance of the device with vulnerabilities i. We
use the negative exponential function e−b∗x as a mapping function to normalize
the vulnerability risk. Based on the analysis of historical risk data, we take c
equal to 0.005. The normalized formula for VR is as follows.

V R′ = e−b∗V R (8)

Asset Damage Degree. Intruders break the network and cause damages to
the network, such as server crash, database leak, and router outage. Network
damage directly affects network security and we propose the asset damage degree
(ADD) to measure the degree of asset damage. The value of ADD is determined
by TAIL, and the calculation formula is as follows.

ADD =
i=1∑

n

TAILi (9)

Where i represents the i-th damaged target, and TAILi is the severity of the
damaged target. We use the exponential function e−c∗x as a mapping function
to normalize. Based on the analysis of historical NDD data, we take c equal to
0.2. The normalization formula is as follows.

ADD′ = e−c∗ADD (10)
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Network Performance Anomaly Index. In order to measure the net-
work security status more accurately, we provide an overall research perspec-
tive by detecting abnormal changes in network communication performance.
When applying the metric system to the actual network, we may encounter
some unknown attacks. The metrics of attack and defense indicators will be
deviated, and the network performance metric can slightly alleviate this devi-
ation. We propose 4 indicators, including average end-to-end delay abnormal
index (AEEDAI), network throughput abnormal index (NTPAI), packet loss
rate abnormal index (PLRAI) and number of flows abnormal index (NFAI),
which are described in detail below.

Average End-to-End Delay Abnormal Index. End-to-end delay refers to the time
it takes for a packet to be sent from being received. Some attacks can be reflected
in end-to-end delay changes, such as the router’s routing table failure and server
resource exhaustion. Average End-to-End Delay (AEED) refers to the average of
all communication link delays across the network. AEEDAI indicates the extent
to which AEED deviates from the normal range. The calculation formula is as
follows.

AEEDAI =
‖AEED − AEEDnorm‖
AEEDmax − AEEDnorm

‖AEED − AEEDnorm‖ =
{
AEED − AEEDnorm, other
0, AEED − AEEDnorm < 0

(11)

Where AEEDnorm is the average threshold of AEED, and AEEDmax is the
maximum threshold. We normalize AEEDAI using the exponential function
e−d∗x as a mapping function. Based on the historical AEED data, we take the
value of d as 0.005. The normalization formula for AEEDAI is as follows.

AEED′ = e−d∗AEDD (12)

Network Throughput Abnormal Index. Network throughput represents the actual
maximum data transmission rate, mainly related to network congestion, stor-
age mechanism and processor performance. The Network Throughput Abnormal
Index (NTPAI) indicates the extent to which the network throughput deviates
from the normal range. The calculation formula is as follows.

NTPAI =
‖NTPnorm − NTP‖
NTPnorm − NTPmin

(13)

Where NTPnorm is the maximum throughput of the network, and NTPmin is
the minimum threshold of NTP. We use max-min method to normalize NTPAI
as shown below.

NTPAI ′ =
NTPAImax − NTPAI

NTPAImax − NTPAImin
(14)
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Packet Loss Rate Abnormal Index. The packet loss rate (PLR) refers to the ratio
of lost data packets to transmitted data packets. Many attacks can increase the
packet loss rate, such as routing attacks and virus attacks. PLRAI is an indicator
that we propose to measure the extent to which PLR deviates from the normal
range. The calculation formula is as follows.

PLRAI =
PLR − PLRnorm

PLRmax − PLRnorm
(15)

Where PLRnorm is the normal threshold of PLR, and PLRmax is the maximum
threshold. We normalize PLRAI using the min-man rule as shown in Eq. 16.

PLRAI ′ =
PLRAImax − PLRAI

PLRAImax − PLRAImin
(16)

Number of Flows Abnormal Index. A flow is a classification of packet charac-
teristic. In general, source destination IP, source destination port and protocol
with the same data packet form a stream. The number of flow will fall within a
normal range. If the number of flow changes greatly, it indicates that the network
status changes. Therefore, we propose NFAI to measure the extent to which the
number of flow deviates from the normal range. The calculation formula is as
follows.

NFAI =
‖NF − NFnorm‖
NFmax − NFnorm

(17)

Where NFnorm is the average number of flow, and NFmax is the maximum
number of flow. We use the exponential function e−g∗x as a mapping function
to normalize NFAI. Based on the historical data, we take g equal to 0.005. The
normalized formula is as follows.

NFAI ′ = e−g∗NFAI (18)

We propose four indicators based on commonly used network performance
parameters to describe the degree of network performance anomalies. And these
indicators can mitigate attack and defense metric errors caused by zero-day
attacks. The threshold of the network performance indicators in this paper is
determined by 30 experimental statistics.

Indicator Weight Calculating. There are many methods for determin-
ing indicator weights, such as Delphi, AHP, principal component analysis and
entropy weight. The first two are subjective, but can can rely on expert experi-
ence. The latter two are relatively objective, but they are not applicable here,
because different network configurations and changing network environments can
result in unreliable statistics. In this paper, we use the AHP method to calculate
the weight of all indicators.
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4 Security Metric Simulation Implementation

In order to verify the rationality and correctness of the proposed index system,
we use the NS3 simulator to achieve real-time measurement of network status.
First, we need to build an enterprise network and configure network resources and
vulnerability information. Then implement different attack and defense modules
and build different network scenarios. Finally, the security indicators are col-
lected and calculated in different scenarios, and the real-time network status
value is obtained, and the rationality of the index system is judged according to
the actual network status.

4.1 Build Network Scenario

Simulation Environment. We use the simulator NS3.25 to build the enter-
prise network. We use 101 nodes to simulate the equipment of the intranet,
and 125 nodes are used to simulate the external network. Different subnets are
connected through routers. The simulated network topology is shown in Fig. 2.
We configure the resources in the enterprise network and list the vulnerability
information as shown in Table 4.

Fig. 2. Simulation network topology

4.2 Offense and Defense Module

In order to measure the impact of offense and defense on network, we add differ-
ent strengths of attack and defense to the network scenarios in NS3. As NS3 sim-
ulator does not involve any security function, the implementation of the attack
module is to use the attack principle to embed the attack function code in NS3.
NS3 is more flexible than the actual network attack tools, and there is no lim-
itation of system permission [14], so we can modify the kernel source code as
needed. We implemented the attacks listed in Table 5, and also implemented dif-
ferent defense modules in NS3 to defense the attacks, including IDS and firewall,
etc.
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Table 4. Implemented defense module

Asset TAIL Quantity System type Vulnerability number CVSS score

Router 3 1 MikroTik CVE-2018-10070 7.8/10

switcher 3 2 Cisco IOS XE CVE-2018-0165 6.1/10

CVE-2018-0090 5.0/10

Database server 2 4 Windows CVE-2018-2775 4.0/10

CVE-2018-2769 4.0/10

Web server 2 1 Linux CVE-2005-1110 7.5/10

Mail server 2 1 Windows CVE-2004-2168 5.0/10

TFTP server 2 1 Windows CVE-2001-1097 5.0/10

User host 1 10 Windows CVE-2011-0514 5.0/10

User host 1 35 Windows CVE-2013-1451 4.0/10

User host 1 6 Linux CVE-2017-8779 7.8/10

User host 1 40 Linux CVE-2008-5183 4.3/10

Table 5. Implemented attack module

Attack type Dependent protocol

TCP-SYN, UDP, ICMP flood attack TCP, UDP, ICMP

TCP-SYN, UDP port scan TCP, UDP

IP scanning ICMP

TCP-SYN, UDP-Echo, ICMP-Echo

reflection amplification attack

TCP, UDP, ICMP

Botnet Irc

IP spoofing IP

Blackhole attack AODV

Wormhole attack AODV

4.3 Security Metirc Experiment Analysis

We designed two sets of experiments to analyze the network state changes in
attack and defense confrontation. The attack strength level in the experiment
refers to the snort user manual [15], and the defense strength level is determined
by the number of defense device. Table 6 lists the attack severity levels and attack
targets. Table 7 shows the defense equipment and defense strength. The security
metric experiment is detailed below.

The Impact of Attack on Network Security. In order to measure the impact of
attacks on network security, we need to fix the defense strength and then adjust
the different attack strength. We first determined that the defense device is CRT-
RS-IDS, blacklist and ACL, and then set up four different attacks. Table 8 lists
five different offensive and defensive scenarios. “/” means no attacks occur.

Figure 3 show the changes in comprehensive indicators. In subgraph 1, we can
find that the network status value exceeds 0.8 when the attack did not occur
because the strength level of the defense is 3. When an attack occurs, the security
status values in scenario 1 and 3 are drastically reduced because the protection
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Table 6. Attack information used in the experiment

Attack type Severity level Attack target

IP spoofing 1 Combined with DDoS attack

UDP DDoS 3 TFTP server

UDP DoS 2 TFTP server

UDP port scanning 1 DMZ area server

TCP-SYN DoS 2 Mail server

IP scanning 1 Enterprise network equipment

TCP-SYN port scanning 1 DMZ area server

Table 7. Defense strength information used in the experiment

Defense Defense
strength
level

Threat
detection
intensity
level

F-measure

CRT-RS-IDS, blacklist, ACL 3 3 0.99

CRT-RS-IDS, BF-ICMP-DEFEND-DDoS, blacklist, ACL 3 3 0.99

CRT-RS-IDS, blacklist, ACL, IP-MAC binding 3 3 0.99

CRT-RS-IDS, BF-ICMP-DEFEND-DDoS 3 3 0.99

CRT-RS-IDS, blacklist 2 3 0.99

device cannot defend against DDoS or DoS attacks. The attacks in scenario 2
and 4 can be detected by CRT-RS-IDS and blocked by blacklist or ACL, so the
security status value is slightly reduced. Subgraph 2 shows the impact of the
attack on security capabilities. When no attack occurs, multiple defense devices
make the network highly resistant. If the attack breaks through the defense, such
as scenario 1 and 3, then the network will be damaged and security protection
ability will decline. If the attack is successfully defended, the security protection
capability is basically unaffected. Subgraph 3 shows the impact of an attack on
the attack threat capability. The attack threat capability is less than 1 when no
attack occurs, because the vulnerabilities cause the network to have a threat risk.
We can find that the attack strength is directly proportional to the attack threat

Table 8. Implemented defense module

Defense 0–20 s 20–40 s 40–60 s 60–80 s 80–100 s

1 / / IP spoofing, UDP DDoS(A1) / /

2 / / UDP DDoS(A2) / /

3 / / IP spoofing, UDP DoS(A3) / /

4 / / UDP port scanning(A4) / /

5 / / / / /
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Fig. 3. The impact of attacks on network comprehensive indicators

capability from scenario 1, 2, 3 and 4. Subgraph 4 depicts the impact of attacks on
network performance. When no attack occurs, the network performance anomaly
index is very low, so the network communication performance is good. When an
attack occurs, the attack that breaks through the defense has a large impact on
the network performance, such as scenario 1 and 3, because the large amount of
data generated in a short time causes the communication link and bandwidth to
be occupied, resulting in an increase in network delay and PLR. When the attack
is successfully blocked by the defense, the network communication performance
is almost unaffected. In general, the measurement results can accurately reflect
the real-time impact of different attacks on network status.

The Impact of Defense on Network Security. Figure 4 describes the impact of dif-
ferent defense strengths on comprehensive indicators. In subgraph 1, the network
status value increases as the security level increases without attack. When there
is no protection, such as scenario 5, the network security status is lower than
the security baseline due to the risk of vulnerabilities. When an attack occurs,
attacks can be successfully blocked by BF-ICMP-DEFEND-DDoS in scenarios 1
and 3, so network status value is not greatly affected. In other cases, the network
is not effective against DDoS attacks with IP spoofing, and the network status
value is below the security baseline. From subgraph 2, we can find that the secu-
rity protection capability is directly related to the security defense strength. If
the network defense can defend against the attack, the defense ability will not be
affected, otherwise it will be seriously degraded, such as scenario 2 and scenario
4. In scenario 5, when there is no defense, the value of security protection capa-
bility is zero. Subgraph 3 shows that the attack threat capability depends not
only on the strength of the attack, but also on the outcome of the attack and
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Fig. 4. The impact of defense on network comprehensive indicators

defense interaction. Subgraph 4 shows the impact of defense strength on net-
work performance. Whether network performance is seriously affected depends
on whether the current attack breaks through the defense, such as scenario 2
and 3. In general, the measurement results can accurately reflect the real-time
impact process of different defenses on network status.

Combining the above analysis to compare the real state of the network with
the values of the various comprehensive indicators, the accuracy and rationality
of the indicator system can be verified.

5 Conclusion and Future Works

This paper describes the importance and necessity of security metric, and points
out the deficiencies of metrics by analyzing and comparing existing security stan-
dards. In order to solve the problem that the existing index system cannot be
quantified, we propose a quantifiable, comprehensive, dynamic and comparable
network security index system through the perspective of attack and defense
confrontation and calculate the index weight through AHP. The index system
considers both the threat brought by the attack and the defense capability of
the network itself. AHP can use the data collected in real time to ensure the reli-
ability and accuracy of the measurement results, and reduce the computational
difficulty and complexity. We also used NS3 simulator to test the proposed meth-
ods, the simulation results show the quantitability and dynamics of the indicator
system, but also verify that the index system is accurate and comprehensive.

In the future, we need to take a more objective and appropriate weight calcula-
tion method to measure the network security status more accurately. More types
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of attacks, such as XSS, SQL injection and buffer overflows, and other types of
network metrics, such as adhoc, should also be studied in our future work.
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