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Abstract. Inter-component communication (ICC) is commonly used in
Android for information exchange among different components/apps.
However, it also brings severe challenges to information flow security.
When data is transferred and processed, the diversity of different secu-
rity mechanisms in various apps make data more vulnerable to leak-
age. Although there are several analysis approaches on security verifi-
cation on inter-component information flow, repetitive verification on
the same component during complex interactions increases the over-
head, which would affect task execution efficiency and consume more
energy. Therefore, we propose a compositional information flow security
verification approach, which improves efficiency by separating the intra-
app and inter-app analysis and verification process. The experiment and
analysis show that our method is more effective than traditional global
approaches.
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1 Introduction

The current android operating system allows users to run many applications
developed by third-party independent developers, which are available in android
app markets. In addition, multiple applications can communicate and exchange
data by inter-component communication (ICC). ICC is the key mechanism of
communication between applications in android, which enriches the functions of
android applications, such as WeChat, which can access health data for ranking.
Unfortunately, while ICC enhances user functionality, it can be exploited by
malicious software to threaten user privacy. Indeed, researchers have shown that
android apps frequently collect and use users’ private data without their prior
consent [17].

When applications communicate with each other, it is more prone to data
leakage [1,3]. Existing information flow analysis methods mainly include static
analysis, dynamic analysis and machine learning analysis. In addition, there are
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some methods that combine the previous methods, such as hybrid (combining
dynamic and static) analysis methods.

The static analysis method decompile the .APK file of each app, and then
perform static taint analysis on the decompiled code to find out the data leakage
path, such as flowDroid [4], IIFDroid [8], DroidSate [10], DroidGuard [14] and
so on. They can analyze all the application’s resources or codes to achieve high
coverage on code. However, they lack an actual execution path and face critical
challenges in the presence of code obfuscation [22], loading dynamic code [15],
reflection calls [23], native code [24], and multithreading issues. The dynamic
analysis method detects the privacy leakage within an application by executing
the application in a real or virtual device, such as Mobile-sandbox [16], Taint-
Droid [6] and ScanDroid [12]. They can observe actual execution trace and tackle
code obfuscation and dynamic code loading. However, code coverage is limited
by dynamic analysis methods because it cannot execute all possible traces in
one time. As a result, the private data leakage vulnerabilities which exist in
the uncovered codes will be missed. Moreover, current malware can recognize
dynamic monitors as the analyzed app executes, causing the app to pose as a
benign program in these situations [25]. In order to solve the challenges of static
analysis and dynamic analysis, some hybrid solutions are proposed. For exam-
ple, HybriDroid [9] present a novel hybrid approach aims to automatically find
privacy leakages in a given app set.

In addition, in recent years, with the development of artificial intelligence
algorithms, it has become a trend to combine information flow analysis with arti-
ficial intelligence. Machine learning is a branch of artificial intelligence mainly
treating information flow analysis as a classification problem. By analyzing the
differences in features between benign applications and malicious applications,
the features with statistical differences are selected, and then trained to classify
[26–31]. In the feature extraction stage, static analysis method is generally used
to extract features. [32] makes use of the similarity analysis of android appli-
cation features of multiple dimensions to obtain the relevant rules of multiple
dimensions of android application. [33] automatically learns security/privacy-
related behaviors by analyzing user comments based on machine learning. In
order to extract API data dependencies, [34] conducts context-sensitive, flow-
sensitive and inter-process data flow analysis. [35] proposes a semantic-based
feature extraction and detection method for malicious code, which extracts the
key behaviors of malicious code and the dependencies between behaviors. The
advantages of machine learning analysis are low implementation overhead and
simple operation. The disadvantage is that it is influenced by the difference of
training applications and the selection of characteristics. Besides, the current
machine learning approach does not support analysis of inter-apps.

Most above analysis methods can be used for the analysis on the information
flow within a single component or application. In addition, many researches
are proposed for information flow analysis on the inter-communication between
different components [2,7,11,18,19]. IccTA [2] combines multiple applications
into one and performs intra-app analysis on the combined one. Covert [7] is
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a tool for analyzing vulnerabilities across applications that allows incremental
analysis of applications while they are being installed, updated, or deleted. MR-
Droid [19] empirically assesses ICC risks and tests for high-risk pairs. However,
most of these approaches works in a global way, in which they analyze the flows
across multiple components by modeling them as one combined entity. In other
words, the whole model must be remodeled even if there is a little change on
one component. And it would cost many efforts but with little benefits. Besides,
flows in the unchanged component or application will be reverified during the
analysis, which causes the additional verification load on mobile devices.

In order to reduce the overhead of verifying compositional information flow
security, this paper presents a compositional approach to automatically verify
security of information flow across multiple components or applications. This
paper presents the following original contributions:

(1) We define a formal model on individual application and sequential composite
applications combined by inter-component communication for information
flow analysis.

(2) We make the formal security constraints on information flow for each par-
ticipant across multiple applications.

(3) We propose a compositional information flow verification approaches for
secure inter-app communication among applications in android.

The rest of the paper is structured as follows. Section 2 presents the moti-
vation examples for this study. Sections 3 and 4 defines the formal models and
propose a security theorem for compositional information flow which verify with
the verification framework in Sect. 5. Section 6 evaluates our methodology and
Sect. 7 is conclusion.

2 Motivating Example

To illustrate our approach, we provide a concrete example of information trans-
mission among different android’s apps through Inter-Component Communi-
cation (ICC). Android provides a flexible application level message known as
Intent for communications between components. The example includes three
apps. App1 contains GetDataActivity which obtains the user’s sensitive data
such as phone number, e-health record and so on, which is shown in LIST1.
App2 contains ForwardActivity, which receives sensitive data (user’s movement
steps) from intent message MSteps and forwarding it to App3 by intent message
Fsteps1. App2 is shown in LIST2. App3 contains ReceiveDataActivity which is
responsible for receiving intent message and sends the data to a remote server
which can exploit it at will.

LIST 1 : App1: send an intent to transmit data

1 public class GetDataActivity extends AppCompatActivity {

2 protected void onCreate(Bundle savedInstanceState) {

3 ...
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4 sp = getSharedPreferences("User", Context.MODE_WORLD_READABLE);

5 SharedPreferences.Editor edit = sp.edit();

6 edit.putString("Value",meditText1.getText().toString().trim());

7 edit.commit();

8 String value = sp.getString("Value","Null");

9 ...

10 Intent MSteps = new Intent();

11 Bundle bundle = new Bundle();

12 MSteps.setAction("com.example.second");

13 bundle.putString("params3", value);

14 MSteps.putExtra("bundle", bundle);

15 startActivity(MSteps);

16 }

17 }

LIST 2:App2: receive an intent and send an intent to transmit data

1 public class ForwardActivity extends AppCompatActivity {

2 protected void onCreate(Bundle savedInstanceState) {

3 ...

4 final Intent Rsteps1 = getIntent();//source

5
6 button.setOnClickListener(new View.OnClickListener() {

7 public void onClick(View v) {

8 ...

9 Intent Fsteps1 = new Intent();

10 Bundle bundle1 = new Bundle();

11 Fsteps1.setAction("com.example.three");

12 String value1 = text.getText().toString();

13 bundle1.putString("para",value1);

14 Fsteps1.putExtra("bundle",bundle1);

15 Fsteps1.putExtra("para",value1);

16 startActivity(Fsteps1);//sink

17 });

18 }

Listing 3: App3: receives an intent

1 public class ThreeActivity extends AppCompatActivity {

2 protected void onCreate(Bundle savedInstanceState) {

3 ...

4 final Intent Rsteps2 =getIntent(); //source

5 Bundle bundle = intent.getBundleExtra("bundle");

6 final String value = bundle.getString("para");

7 text.setText(value);

8 ...

9 }

10 }

More specifically, from line 4 to line 9 in LIST 1, GetDataActivity edits a
e-health record and stores it in SharedPreferences which is a lightweight storage
class on the Android platform. From line 10 to line 15, GetDataActivity sets the
action of Intent, then gets the stored e-health data and subsequently sends it to
ForwardActivity through an Intent message. The Intent filter which is defined
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in the Manifest file of App2 is responsible for receiving this Intent message and
handle it. Likewise, ForwardActivity gets an Intent and receives users movement
step data of the message from GetDataActivity (On line 4 in App2). From line
9 to 16, ForwardActivity sets the type of Intent and sends an Intent message to
ReceiveDataActivity. In ReceiveDataActivity, it gets the Intent message and
receives the data.

In this example, if App3 is malicious software or is monitored by an attacker,
the sensitive data in App1 may be leaked to the attacker even though the infor-
mation flow is secure in App1 and App2.

3 Android Application Model

In Android system, an application is composed by components which are
described in a special file called Manifest. There are four kinds of components,
i.e., activity, service, content provider and broadcast receiver. Activities con-
struct user interface of an app. Each app may have multiple activities repre-
senting different screens of the application to the user. Services do not have
user interface but perform time-consuming tasks in the background. Content
providers act analogous to a database and provide access to a constructed set of
data. Broadcast receivers listen to global events.

Referring to the android application model described in [7], an app model
can be formally defined as follows.

Definition 1. A model for an android app is a tuple Ai = <Ci, Ii, IFi,
Seci> 1 ≤ i ≤ n, where

Ci is a set of components represent as Ci = { c1, c2, . . . , cm}, and each cj (j <
m) is a component of Ai. Each component contains a series of methods for
executing the required functions. We use Mi to represent the set of methods that
used in application Ai.

Ii is a set of event messages called intents that can be used for both intra-and
inter-app communications. Here we use Ini,j to represent an intent message set
from Application Ai to Application Aj where Ini,j ⊂ Ii.

IFi is a set of Intent filters. Each intent filter is attached to a component
and responsible for filtering implicit intents.

Seci is the set of security properties of all methods in Ai.

Different applications can cooperate with each other to fulfill different
user’s requirements through ICC. This paper studies a simplified type of inter-
application communications, i.e., sequential inter-application communication.
And we call these applications as sequential composite applications. Sequen-
tial composite applications is composed by a set of applications A1, A2, . . . , An

which communicates with each other in a sequential way. According to the char-
acteristics of sequential composite application, its model can be defined as follow.

Definition 2. The composite apps Ac can be represented as a tuple Ac =
<AC,CI,CIF>. where
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AC is a sequential group of apps in which each app has only one predecessor
and one successor.
CI is a collection of all intents using for communication between Ai and Ai+1.
CIF is the set of all Intent filters from all the applications used as the entry
point for the adjacent application communications.

Based on the above definition of the composite application model, the model
of the example in Sect. 2 can be extracted as Ac. AC = {App1, App2, App3},
where, App1 = <{GetDataActivity}, {Msteps}, {Interfilters}>. Each intent is
shown in bold in the code in Sect. 2. Interfilters are defined in the corresponding
application Manifest file.

4 Secure Information Model for Composite Application
in Android

4.1 Security Label Model

As a device for storing and processing data, android phone contains a lot of
sensitive information, such as e-health, contacts, and so on. According to the
different sensitivity of information, we use multi-level security model to describe
the security properties of data.

By referring to [20], security label model can be defined as a lattice (SL,≥),
where SL is a finite set of security levels that is orderly by ≥.

We define a function g : Mi → sl to represent the security level of each
method in application Ai. Based on the security label model, security property
in Ai can be represented by the security level on the methods.

4.2 Information Flow in Intra-app

For intra-app information flows, we use static analysis technique [4] to analyze
them. In one application’s component, there are source methods that are respon-
sible for accessing sensitive data such as phone numbers and sink methods that
are responsible for outputting data [5]. During the execution of the application,
data are received by different sources, processed by methods in component, and
finally outputted by different sinks, which constructs different data prorogation
paths. And we can define the information flow within an intra-app as follows.
Definition 3. The information flow of android’s app Ai can be represented as
a tuple flow = <source, sink> where, source, sink ∈ Mi.

Based on the above description, we define Flowi = {<source, sink>|
source, sink ∈ Mi, i ∈ N} as the set of all flows in Ai.

Combining with the multi-level security model, sl(source) and sl(sink) are
used to represent the security levels of sources and sinks. According to the def-
inition of non-interference [13], the security of information flow in a intra-app
can be formally defined as follows.

Definition 4. The information flows in application Ai are secure if it satisfies
that for ∀source, sink ∈ Mi, sl(source) > sl(sink), there is no existence of
information flow from source to sink, namely <source, sink> /∈ Flowi.
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4.3 Secure Information Flow in Composite Applications

Considering sequential group apps A1, A2, . . . , An, when applications communi-
cates with each other by intents, data are passed from the sink method of one
component in Ai to the source method of component in Ai+1, which forms an
inter-app information flow across multiple applications. And the following apps
Aj(j > i) may leak data despite the information flow in Ai is secure. The Fig. 1
shows the intra and inter flows in our example in Sect. 2.

Fig. 1. Composite information flow

For sequential composite application AC , the definitions of inter-app infor-
mation flow can be given as follows.

Definition 5. For ∀sourcei ∈ Mi, ∀sinkj ∈ Mj, there is a inter flow flowi,j =
<sourcei, sinkj> from Ai to Aj, if they satisfy one of the following conditions.

(1) For i = j − 1, there ∃sinki ∈ Mi, sourcej ∈ Mj that satisfy
<sinki, sourcej> ∈ Ini,j.

(2) For i 	= j − 1, ∃Ak, 1 < k < j;∃sourcek ∈ Mk,∃sinkk+1 ∈
Mk+1, and they satisfy that ∃flowi,k = <sourcei, sinkk>,∃flowk+1,j =
<sourcek+1, sinkj> and ∃<sinkk, sourcek+1> ∈ Ink,k+1.

According to the above description of the inter-app information flow, we use
Flowinter to represent the set of all inter-app information flows in the sequential
composite applications where Flowinter =

⋃
0≤i,j≤n flowi,j .

Then we can obtain the following definition on secure information flow in
composite application.



246 X. Rao et al.

Definition 6. The information flows in sequential composite application AC

are considered secure iff it satisfies that for each Ai ∈ AC , for ∀sourcei ∈
Mi,∀sinkj ∈ Mj(i ≤ j), there is no existence of information flow sourcei to
sinkj, namely <sourcei, sinkj> /∈ Flowi ∪ Flowinter.

Based on the composite information flow security definition above, we can
obtain the following theorem.

Theorem 1. In the security sequential combinatorial application ACs, the
information flow must satisfies following conditions.

(1) For ∀<source, sink> ∈ Flowi in Ai, there is sl(source) ≤ sl(sink).
(2) For ∀<sinki, sourcei+1> ∈ Ini,j, there is sl(sinki) ≤ sl(sourcei+1).

We can use the mathematical induction to prove the theorem by referring
to [20].

5 Compositional Information Flow Verification for
Composite Application Android System

Android inter-app communication is a basic behavior that usually occurs during
system running. For example, wechat accesses health data and makes statis-
tical ranking. The famous social software Weibo adds friends through visiting
contacts. In order to ensure the data security across multiple applications, we
propose an compositional information flow security Theorem1. According to the
Theorem 1, we can infer that for a sequential composite application, the infor-
mation flow security verification procedure includes two different phases, i.e., the
intra-flow verification and inter-flow verification.

5.1 Intra Flow Verification in Single Application

In the process of intra-flow verification, we first use the flowdroid tool [4] to
obtain the application’s sensitive information flow. Then each flow is verified
according to condition (1) in Theorem1. If the flows in the application is valid,
the certificate is generated which can be used for the inter flow verification to
avoid the repeated verification. The certificate includes all essential information
for inter flow verification, e.g., the security level on each source and sink method
and so on. The procedure for flow validation and certificate generation is shown
in Algorithm 1.

After successful verification, the generated certificate will be stored in the
database. This procedure can be executed during the application is going to be
installed on the system at the first time. And only secure ones can obtain the
certificates while the others are not allowed to be installed. The counterexample
will also be return to users.
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Algorithm 1. Intra-app verification & certificate set-up
Input: Ai =< Ci, Ii, IFi, Seci >Apk file
Output: Ce =< i, It, sl >, true, false

1: use flowdroid anaysis apk file to get the set of intra flow FlowResult
2: for each flow f ∈ FlowResult do
3: get security level sl(source) and sl(sink) from Seci
4: if (sl(source) > sl(sink)) then
5: break
6: else
7: n++
8: end if
9: end for

10: if (n < |FlowResult|) then
11: return false
12: else
13: generate the certificate Ce base on Ii, Seci
14: signature(Ce,CA)
15: return true
16: end if

5.2 Compositional Flow Verification for Inter-application
Communications

According to the condition (2) in Theorem1, the security on the inter-app flows
can be ensured by verification on the inter flows between the adjacent applica-
tions. The compositional verification algorithm is as follows.

In the compositional verification process, the certificate is obtained first and
then the adjacent application’s inter-flows are verified. If the validation is suc-
cessful, the result is returned to the user. Otherwise, return counterexample of
an insecure flow.

6 Implementation and Evaluation

This paper mainly studies the compositional application’s information flow secu-
rity verification approach. In this section, we experimentally compare the verifi-
cation time overhead of our approach with the global verification approach. Our
approach has been described in Sect. 5. The global approach first uses ApkCom-
biner [21] to combine multiple applications into one, and then use flowdroid [4]
for information flow analysis and verification. The basic experiment configura-
tion is shown in Table 1 and verification results are shown in Figs. 2 and 3. In
Table 1, the Applications number refers to the number of applications tested,
and Combined applications number refers to the number of compositional appli-
cations formed.
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Algorithm 2. Compositional verification approach
Input: Ai, Ai+1

Output: true, false, leakagepath

1: get Cei and Cei+1

2: for each intent in ∈ Cei · It do
3: get security level of sinki and sourcei+1 from Cei and Cei+1

4: if (sl(sinki) > sl(sourcei+1)) then
5: leakagepath =< sinki, sourcei+1 >
6: break
7: else
8: n++
9: end if

10: end for
11: if (n < |Cei · It|) then
12: output leakagepath
13: return false
14: else
15: return true
16: end if

Table 1. Basic configuration

General

Testing tools ApkCombiner, Flowdroid, Our approach

Application

Applications form apk files

Applications number 3, 6, 9, 12, 15, 18

Combined applications number 1, 8, 27, 64, 125, 216

Inter-app communications number 1, 2, 3, 4, 5, 6, 7

Figures 2 and 3 show that the verification time of the global method is much
higher than that of our approach. The reason is that when the communication
among different applications changes, the global approach needs to reverify all
the flows in the whole composite application. On the contrary, our approach
only needs to verify the relevant inter flows between the applications according
to certificate, which saves lots of costs on the reverification on intra flows in
the same application. Besides, our compositional verification algorithm is easy
to extend. With the increasing number of steps n, we only need to verify the
additional flows between An and An+1 to ensure the security of the composite
application.
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Fig. 2. The verification time increases with the inter-app communication number

Fig. 3. Verification time increases with the number of composite applications

7 Conclusion

ICC is used to communicate among multiple applications, which may cause leak-
age on users’ sensitive data. In this paper, we design the formal model of android
application and sequential composite applications by ICC. Then, through the
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analysis of the intra and inter information flows, we get the security theorem
on sequential composite application. Based on the theorem, we design a com-
positional information flow security verification algorithm. The process of infor-
mation flow verification in intra and inter app is separated to avoid repeated
verification in application when communication changes. Finally, we compared
our approach with the global verification through the experimental evaluation.
And the results show that our approach can reduce the overhead of informa-
tion flow verification effectively. Since our approach relies on the accuracy of
the information flow recognized by flowdroid [4], in the future, we are going to
improve the precision of information flow validation by using machine learning
to identify source and sink more accurately.
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