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Abstract. Android has dominated the smartphone market and become
the most popular mobile operating system. This rapidly increasing mar-
ket share of Android has contributed to the boom of Android malware
in numbers and in varieties. There exist many techniques which are
proposed to accurately detect malware, e.g., software engineering-based
techniques and machine learning (ML)-based techniques. In this paper,
our main contributions are threefold: We reviewed the existing analy-
sis techniques for Android malware detection; We focused on the code
analysis based detection techniques under the ML frameworks; We gave
the future research challenges and directions about Android malware
analysis.
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1 Introduction

The Android mobile devices continue to dominate the global mobile market,
with about 86.8% market share in the third quarter of 2018 according to the
statistical information published by IDC Corporate1. Almost eight out of ten
people worldwide use an Android mobile phone because they are cheap to buy2.
Android has become the most popular operating system without a doubt. Due to
the fact that Android is an open source operating system, thus users can easily
1 https://www.idc.com/promo/smartphone-market-share/os.
2 https://www.gdatasoftware.com/.
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download and install a wide variety of applications from both official (Google
Play3) and third-party (e.g., WanDouJia4, AnZhi5) app stores (Currently there
are approximately 2.6 million Android apps available at Google Play6). However,
along with Android’s popularity and its openness, Android mobile device users
have become the most attractive targets of cyber criminals as the number of
malicious apps has skyrocketed at an alarming rate. Figure 1 presents the number
of Android malware samples being detected per year from 2012 to 20187. It
is estimated that almost 12,000 new Android malware samples being detected
per day in 2018. Besides, the number of Android malware families has reached
about 1,200 [62]. In addition, the sophisticated Android malware samples may
be implemented with various strategies (e.g., code obfuscation, encryption) to
evade detection.

Fig. 1. The number of Android malware samples detected per year from 2012 to 2018.

To preserve a clean and safe ecosystem for Android users, both the academic
researchers and the security vendors have invested enormous effort to design
effective techniques to defend against Android malware samples or further cate-
gorize them into specific malware families [5,25,27,32,42,47,52,83,86,87]. Gen-
erally, the existing techniques for malware detection can be roughly divided
into three categories [6]. The first one is called static analysis technique, which
inspects the disassembled source code to find any potential suspicious function-
alities without executing the application. The second one is the dynamic analysis
technique, also called behaviors analysis technique. Dynamic analysis executes
the given application in an isolated environment (e.g., sandbox, simulator, vir-
tual machine), then monitors and traces its behaviors. The combination of static
analysis and dynamic analysis is the third category called hybrid analysis tech-
nique [6].

3 https://play.google.com/store.
4 https://www.wandoujia.com/.
5 http://www.anzhi.com/.
6 https://www.appbrain.com/stats/number-of-android-apps.
7 https://www.gdatasoftware.com/.
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To provide a detailed review about Android malware detection, in this paper,
our contributions are threefold: Firstly, we reviewed the existing Android mal-
ware detection techniques (including static, dynamic and hybrid techniques) as
well as the advantages and disadvantages of each technique. Secondly, in the
defender’s perspective, targeting the Android code analysis, we introduced the
machine learning based Android malware detection framework. We provided an
overview of the framework, and then the involved techniques and challenges were
reviewed in detail. In addition, we share our views of future potential research
directions about the Android malware analysis.

The remaining of this paper is structured as follows. Section 2 presented the
research status of Android malware detection. In Sect. 3, the Machine Learning
framework for Android malware detection was reviewed. The future research
direction and conclusion about this paper were given in Sects. 4 and 5, respec-
tively.

2 Traditional Software Engineering Based Android
Malware Analysis

A large number of Android malware analysis methods are built on traditional
software engineering technique. Generally, software engineering technique can
be roughly divided into three categories: Static code analysis, dynamic behav-
ior analysis, and hybrid analysis. In this Section, we briefly review these three
categories.

2.1 Static Code Analysis

The static code analysis is performed by disassembling and analyzing the source
code of the given Android applications without executing it [79]. The static code
analysis can be further categorized into signature based technique, permission
based technique, the Dalvik bytecode-based technique, and the hybrid static
analysis technique.

Signature-Based Technique

The signature involved methods are high efficiency and have been widely used
by commercial malware detection products. The key building block of signature
technique is to generate robust and accurate signatures based on the specific
strings or semantic patterns in the source code [26]. Zheng et al. [85] designed
DroidAnalytics, a signature-based analysis system which automatically collected
Android malware samples, produced signatures, retrieved the information, and
associated the malware samples based on a similarity score. Feng et al. proposed
Apposcopy, a novel semantics-based approach for detecting a common class of
Android malware samples that steals users’ privacy data [26]. In [27], Feng et al.
further implemented ASTROID, a system for automatically generating semantic
Android malware signatures from very few malicious samples within a malware
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family. The core idea underlying ASTROID was to look for a Maximally Sus-
picious Common Subgraph that was shared between all the known malicious
samples within an Android malware family [37].

Permission-Based Technique

To ensure the security of the Android operating system, the permission man-
agement plays an indispensable role in governing the access privilege [23]. The
software authors must declare the requested permissions in the AndroidMani-
fest.xml file. Thus, the core idea of permission-based technique is focusing on
analyzing the requested sensitive or suspicious permissions to identify the poten-
tial malware samples. In 2009, Enck et al. proposed Kirin as a security service
for Android analysis [22]. Without complicated and boring code inspection pro-
cess, Kirin provided practical light-weight certification of Android applications
at the installation time using the meaningful security rules to hinder malware
samples. ASEDS was created using the Security Distance model to evaluate the
risk level of specific combination of permissions [67]. Wu et al. provided a static
analysis to extract the permissions related to the APT call traces from Android-
Manifest.xml [74]. In 2013, PUMA was designed to perform Android malware
detection using the permission usage features [57].

Dalvik Bytecode-Based Technique

Android software is usually developed using Java and compiled into Java byte-
code. To execute more efficiently, the Java bytecode is optimized to Dalvik byte-
code classes.dex. The classes.dex bytecode contains abundant semantic informa-
tion, e.g., API calls, data flows, which is related to the application behaviors.
The main idea of Dalvik bytecode-based technique is to disassemble the binary
code and then analyze the source code to identify the Android malicious samples.
A significant tool was Soot8 originally designed by the Sable Group of McGill
University. Soot can translate the Android applications into several interme-
diate representations, such as Baf, jimple, Shimple, and Grimp. An improved
version of Soot, called Dexpler was presented in [10]. A robust and light-weight
system called DroidAPIMiner was implemented to detect Android malware [1].
DroidAPIMiner extracted the API related semantic information (such as criti-
cal API calls, their package level information, and parameters) within the byte-
code to represent Android samples. In 2017, HinDroid was proposed using the
structured heterogeneous information network to represent the Android appli-
cations [32]. An approach named MaMaDroid was presented to detect Android
malware by modeling the sequences of API calls as Markov chains [42].

Hybrid Static Analysis Technique

Some works have been conducted to extend the hybrid static analysis by analyz-
ing both the AndroidManifest.xml file as well as disassembled classes.dex code.
In [58], Sato et al. parsed various types of features (including permissions, intent
filters, process names and the number of redefined permissions) to characterize

8 https://sable.github.io/soot/.

https://sable.github.io/soot/
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the pattern of Android malicious samples. In 2014, Arp et al. proposed a light-
weight method named Drebin to detect Android malware samples directly on
the device [5]. Drebin extracted 4 types of feature sets from AndroidManifest.xml
and other 4 feature sets from disassembled classes.dex files to characterize the
Android applications. Arzt et al. designed a novel and accurate static taint anal-
ysis tool named FlowDroid in [7]. Different from the previous approaches, to
reduce the false alarm rate, FlowDroid modeled Android’s lifecycle or callback
methods.

In summary, the static analysis techniques are efficient since they target the
source code of the Android software. However, an increasing number of Android
malicious samples have been obfuscated or encrypted using various tricks to
evade detection [38,66,79]. Under this circumstance, it is difficult to disassemble
the binary bytecode and detect the malicious samples accurately. Besides, the
static analysis will overestimate the code execution paths. In addition, static
analysis techniques are often accompanied by high false positive rate.

2.2 Dynamic Behavior Analysis

Dynamic behavior analysis is conducted by monitoring and tracing the behaviors
of Android application during the execution to determine whether it is malicious
or not [15].

In 2014, an efficient, system-wide Android dynamic analysis system Taint-
Droid was proposed to track the flow of sensitive data [21]. An improved ver-
sion of TaintDroid named Droidbox was introduced in [19]. Portokalidis et al.
proposed an alternative dynamic approach [49]. This approach performed the
malware detection task on the remote servers in the cloud while the execution of
Android software on the device was mirrored in virtual machine environments. In
2011, a crowdsourcing-based dynamic analysis approach was proposed to detect
Android malware samples [15]. The detector was embedded in an integrated
framework to collect different behavior traces of the candidate applications from
a crowdsourcing system. The crowdsourcing strategy made it possible to capture
real behaviors traces of a large number of applications. Shabtai et al. presented
a dynamic host-based Android malware detection framework in [60].

Another dynamic analysis platform for Android named DroidScope, which
could reconstruct Linux OS level and Java Dalvik level semantic information
simultaneously and seamlessly was presented in [77]. To perform large-scale
Android applications analysis, Rastogi et al. implemented an automatic dynamic
analysis framework for Android named AppsPlayground [54]. AppsPlayground
integrated various automatic detection or exploration techniques (e.e., a taint
analysis tool [21], a kernel-level system call monitoring) to construct an effective
dynamic analysis platform. Reina et al. implemented CopperDroid [55], a tool
built on QEMU [12] to automatically analyze the out-of-box dynamic behaviors
of Android malicious samples. In 2014, AirBag, a client-side approach that lever-
aged light-weight operating system level virtualization was presented to enhance
the safety of the Android platform and to facilitate the defense capability against
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Android malware [73]. Backes et al. introduced a genetic and extensible Android
Security Framework (ASF) in [9].

In summary, the dynamic behavior analysis can easily discover the malicious
behaviors that may miss out by static code analysis. Besides, it is effective in
combating code encryption or obfuscation techniques [66,79]. However, the code
coverage rate of dynamic behaviors analysis is lower than that of the static
code analysis, thus it tends to miss some code sections that will be executed or
triggered at certain time or scenarios (e.g., the advanced Android malware may
hide or stop their malicious behaviors once they detect the virtual environment,
the malicious activities may be triggered only at night). In addition, dynamic
analysis techniques cost more computational resources.

2.3 Hybrid Analysis

The hybrid analysis technique combines both the static code analysis and the
dynamic behaviors analysis. In other words, it not only analyses the source code
of Android applications but also monitors the behaviors while the applications
are actually executed [11].

In 2010, a system named AASandbox (Android Application Sandbox) was
proposed to perform a hybrid analysis to automatically detect Android malicious
samples [14]. In the static analysis part, AASandbox disassembled the classes.dex
bytecode into the intermediate Smali code and then pre-checked the code that
may imply malicious code segments. In the dynamic analysis part, the candidate
Android applications were executed in the emulator for the behavior inspection.
A comprehensive investigation for the detection of Android malware samples
from both official and third-party stores using the hybrid analysis technique was
presented in [86]. Firstly, a permission-based footprinting method was proposed
to detect known-family malware samples. Then to detect the unknown malware
samples, a heuristics-based filtering method was designed to identify the specific
inherent behaviors of unknown malware families. In 2012, Zheng et al. addressed
the challenging issue about how to activate the sensitive behaviors of Android
applications in [84]. A hybrid analysis was proposed to uncover the UI-based
trigger conditions through automated interactions. First of all, the static analysis
was used to discover the expected activity switch paths by constructing Function
Call and Activity Call Graphs. Then the dynamic analysis was performed to
traverse each UI element and to investigate the UI interaction paths towards the
sensitive APIs. Furthermore, the produced trigger conditions of the proposed
approach could facilitate the existing dynamic tools, such as TaintDroid [21], to
automatically identify the corresponding sensitive behaviors.

Another novel hybrid analysis system named Mobile-Sandbox was presented
in [61]. Mobile-Sandbox employed specific techniques to track calls to native
APIs (e.g., C/C++). In the static analysis, the AndroidManifest.xml and binary
classes.dex were disassembled and analyzed to determine whether the candi-
date Android applications were performing potential suspicious permissions or
intents. Then these applications were executed in the sandbox to log all behav-
iors including native API calls. EvoDroid [41] and A5 (Automated Analysis of
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Adversarial Android Applications) [68] were two hybrid analysis systems similar
to Mobile-Sandbox [61], which also utilized the static analysis to traverse all
possible activity path to guide the further dynamic analysis. In [2], Afonso et
al. conducted a large-scale hybrid analysis of Android applications in the wild
to investigate how applications use the native code.

To address the code obfuscation issue, Rasthofer et al. presented HAR-
VESTER to capture run time values from Android applications, even from those
highly obfuscated advanced Android malware [53]. HARVEST could boost the
recall of the existing analysis tools, such as the dynamic tool TaintDroid [21]
and the static tool FlowDroid [7].

A generic Android input generator named IntelliDroid was proposed in [72].
IntelliDroid could be configured to generate inputs specific for a dynamic anal-
ysis system. Two techniques were employed to activate the targeted APIs with
the injected inputs: identifying event chains and device-platform interface input
injection. In addition, combining IntelliDroid with dynamic analysis tool Taint-
Droid [21] was able to provide better performance than FlowDroid [7].

In summary, the hybrid analysis technique exploits the advantages of static
and dynamic analysis techniques. It not only captures the semantic structural
information from the source code of Android applications but also tracks their
running behaviors. Therefore, the hybrid analysis technique is able to adapt
to code obfuscation while increasing the code coverage rate. However, hybrid
analysis consumes expensive resources, and it requires a longer time to produce
the analysis results [66,79]. Thus the usability of hybrid analysis is limited in a
practical deployment.

3 Machine Learning Involved Android Malware Analysis

Given the soaring number of Android applications from both official and third-
party stores, security experts or vendors have to inspect them in a short period
to figure out their purposes or capabilities. Then the corresponding countermea-
sures will be provided based on the inspection results [61]. Thus it is necessary
to accelerate the malware analysis process with little or even no human inter-
ventions. The Machine Learning techniques, which have been widely used in
many cyber security areas [34,40,51,63,71,75,82], open the door for an alter-
native perspective to effectively and automatically identify or classify Android
malicious samples. This section reviews the Android malware analysis meth-
ods using machine learning methods. Figure 2 presents the general framework of
machine learning based malware analysis. The framework mainly consists of four
steps: First of all, collecting the raw Android applications (including both benign
and malicious samples) and setting up the ground truth (malicious/benign or
specific family class). Second, performing feature engineering to extract infor-
mative features to characterize Android application samples. Third, training
machine learning models for the following malware detection or classification.
Fourth, predicting the candidate samples, evaluating the model and explaining
the results. In the following, we will review the related works based on each step
of the framework.
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Fig. 2. The general Machine Learning framework for binary Android malware detection
or multi-class family classification.

3.1 Raw Android Application Data Collection

Collect Raw Android Applications

The raw Android applications can be downloaded from various sources, e.g., the
official Google Play store and the alternative third-party app stores (such as
WanDouJia, AnZhi). For large-scale and up-to-date access to Android applica-
tions, it is necessary to implement specific crawlers for different Android appli-
cation stores to automatically browse, retrieve, and download applications into
repository [4,39].

However, there exist many challenges in crawling Android applications [4].
Firstly, different app stores have specific policies to limit or forbid the crawling of
applications. For example, without a verified Google account, users cannot down-
load any Android applications from Google Play. In addition, a valid account is
allowed to download a limited number of applications in a given time from one
IP address. Secondly, during the application downloading process, the crawlers
have to be adapted to the updates of the stores. For example, if the application
stores change the structure of the HTML pages, then a new analysis of the web
pages is required to revise the crawling scripts. Thirdly, for a given application,
it is difficult to download its previous versions. Most stores only provide the
latest version of applications. Thus, it is hard to guarantee that all versions of
the applications have been downloaded [39].

Annotate the Ground Truth of Applications

Reliable ground truth data is essential for evaluating the effectiveness of the mal-
ware analysis approaches. When the raw Android applications have been down-
loaded, the next step is to annotate the ground truth (identify the malicious
samples or further assign a family class to them) to construct the training set.
Most of the malware labeling works employed the state-of-the-art open-source
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online scanning service VirusTotal9 to annotate the labels for Android applica-
tions. VirusTotal incorporates more than 70 anti-virus tools and URL/domain
blacklisting services to provide a comprehensive analysis report for each uploaded
sample. Give a candidate Android application, the detailed ground truth anno-
tation steps are as follows: First of all, determining whether the application
is malicious or not using the majority voting strategy based on the results of
different anti-virus tools in VirusTotal. Second, if the candidate application is
malicious, we can further assign it a family class based on the returned analysis
results of different anti-virus tools. However, there exists the inconsistent family
naming issue from different anti-virus tools. Thus it is challenging to assign an
accurate family class to the candidate malware sample.

Currently, there were two state-of-the-art works focusing on the Android mal-
ware family class annotation. The first piece of work was based on the dominant
keyword algorithm [69]. First of all, the keywords from each of the detection
reports of anti-virus tools were extracted. Then the generic keywords were fil-
tered out. Finally, the rest keywords were counted to identify the dominant
keyword, which was thus considered as the family name. The second piece of
work was AVclass proposed in [59]. AVclass utilized new techniques to address
three issues: normalization, removal of generic tokens, and alias detection. Thus
AVclass was able to generate the most likely family names for a massive number
of Android malware samples based on the detection reports of selected anti-virus
tools.

3.2 Feature Engineering for Application Representation

The key building block in machine learning involved methods is feature engi-
neering. Extracting the informative and robust features to represent Android
applications is critical to the effectiveness and reliability of the models. In
general, the common features used to characterize Android applications can
be roughly divided into four categories: AndroidManifest.xml based semantic
features. Disassembled classes.dex based semantic features. Intermediate Smali
opcode based features. Fourth, the dynamic behaviors based features and other
side-information based features.

AndroidManifest.xml-Based Features

Each Android application package contains the AndroidManifest.xml file. This
file presents the essential information of the application, such as Hardware
components, Requested permissions, App components, and Filtered intents. The
stored information in this file can be parsed efficiently through static analysis [5].
Table 1 shows the detailed information of the features that can be extracted from
AndroidManifest.xml to characterize Android samples.

Disassembled classes.dex-Based Features

The Android application package is usually implemented using Java program-
ming language and then compiled into classes.dex bytecode for its execution
9 https://www.virustotal.com/.

https://www.virustotal.com/
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Table 1. The detailed information of the features that can be parsed from Android-
Manifest.xml.

Feature subset Detailed description of the feature subset

Requested permission Android apps will request permissions for accessing critical
resources during installation

App components Android apps can declare many components, for instance,
Service, Activity, Broadcastreceiver, ContentProvider

Filtered intents Android apps use intent filters to appoints the operations
it can perform and the data type it can manipulate

Hardware components Apply specific hardware or a series of particular hardwares
may imply potential security or privacy risks

in the Dalvik virtual machine. The classes.dex bytecode contains the compre-
hensive semantic knowledge about the critical API calls and data access within
an application [5]. Besides, the classes.dex bytecode can be efficiently disassem-
bled and parsed to represent Android applications. Table 2 shows the detailed
descriptions of the low-level features that can be captured through disassem-
bling classes.dex. Some high-level graph features, e.g., control flow graph [8,78],
API dependency graph [83], code property graph [76], and inter-component call
graph [25,28] can also be extracted from classes.dex.

Table 2. The detailed information of the low-level features that can be captured from
classes.dex.

Feature subset Detailed description of the feature subset

Suspicious API calls The suspicious API calls represent the potential malicious
actions of malware

Restricted API calls The restricted API calls reveal the critical capability of
Android applications

Used permissions The restricted API calls will be used to decide and match
the requested or indeed used permissions

Network addresses The network addresses appeared in the source codes are
related to potential botnet attacks or suspicious websites

Intermediate Smali Opcode-Based Features

Smali code is the intermediate but interpreted code between Java and Dalvik
virtual machine. All the Smali codes follow a set of grammar specifications. The
classes.dex can be disassembled into a set of Smali format files. Each Smali file
represents a single class containing all the methods within the class and each
method contains human-readable Dalvik instructions. Each instruction can be
parsed into a single opcode and multiple operands [36]. To reduce the noise and
improve efficiency, the common Dalvik instructions can be further categorized
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into 7 core instruction sets while discarding the operands as shown in Table 3.
Then n-grams features can be extracted from the opcode sequences of all the
classes of an Android application.

Table 3. The descriptions of the 7 types of Smali opcode instruction sets.

Instruction type The involved instructions

Move (M) move, move/from16, move/16, move-wide, move-wide/from16,
move-wide/16, move-object, move-object/from16,
move-object/16, move-result, move-result-wide,
move-result-object, move-exception

Return (R) return-void, return, return-wide, return-object

Goto (G) goto, goto/16, goto/32

If (I) if-eq, if-ne, if-lt, if-ge, if-gt, if-le, if-eqz, if-nez, if-ltz, if-gez, if-gtz,
if-lez

Get (T) aget, aget-wide, aget-object, aget-boolean, aget-byte, aget-char,
aget-short, iget, iget-wide, iget-object, iget-boolean, iget-byte,
iget-char, iget-short, sget, sget-wide, sget-object, sget-boolean,
sget-byte, sget-char, sget-short

Put (P) aput, aput-wide, aput-object, aput-boolean, aput-byte,
aput-char, aput-short, iput, iput-wide, iput-object, iput-boolean,
iput-byte, iput-char, iput-short, sput, sput-wide, sput-object,
sput-boolean, sput-byte, sput-char, sput-short

Invoke (V) invoke-virtual, invoke-super, invoke-direct, invoke-static,
invoke-interface, invoke-virtual/range, invoke-super/range,
invoke-direct/range, invoke-static/range, invoke-interface-range,
invoke-direct-empty, invoke-virtual-quick,
invoke-virtual-quick/range

Dynamic Behaviors-Based Features

The dynamic analysis tools can track abundant behaviors information of Android
applications during actual execution. These behaviors information, e.g., file or
network operations, information leaks can be efficiently parsed to represent
Android applications. Table 4 lists the 10 common dynamic behavior feature
set that can be used to characterize Android application samples [24].

Other Side-Information-Based Features

In addition to the features extracted directly from the static or dynamic analysis,
other side-information-based features can also be parsed to characterize Android
applications [20,56,87]. Zhu et al. proposed a method named FeatureSmith to
automatically engineering features for malware detection by mining the secu-
rity literature [87]. The natural language techniques were employed for mining
Android documents (e.g. scientific or academic papers) and for representing and
retrieving the semantic information about malware. Besides, the metadata, such
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Table 4. The detailed introduction of 10 common dynamic behavior feature sets.

Dynamic behavior Detailed description of the behavior

File operations Scanning the file-system to retrieve sensitive data or
creating external files to store the data

Network operations Receiving bot commands from C& C servers or fetching
malicious payloads from malicious websites

Cryptographic operations Encrypting root exploits, targetd premium SMS
number, critical methods, malicious payloads or URLs
to evade detection

Information leaks Collecting sensitive data (IMEI, account credentials,
SMS, contact lists) and sending them to remote server

Dexclass load Loading malicious payloads from app’s assets, from
another app or from remote system at running

Phone calls Making phone calls stealthily without users’ awareness

Sent SMS Causing financial charges to infected devices by
subscribing premium-rate services

Receiver actions Malware usually exploits system events to trigger
malicious payloads, while receivers are good indicators
of system events

Service start Malicious behaviors usually perform in background
processes contained in Android’s service components

System calls System calls show how applications request services
from operating system’s kernel

as the profile information of Android applications or the profile of application
developers can also be parsed to represent Android applications [45]. Further-
more, the software complexity metrics, e.g., the Chidamber and Kemerer Metrics
Suite [17] and McCabe’s Cyclomatic Complexity [43], can be employed to char-
acterize Android application samples [13,50].

3.3 Model Training for Malware Detection or Classification

In this step, the machine learning models will be trained for Android malware
detection or classification. Currently, both traditional machine learning mod-
els (e.g., Support Vector Machine [5], Random Forest [42], K-Nearest Neigh-
bors [42]) and deep learning models (e.g., Deep Neural Networks [31,80,81],
Convolutional Neural Networks [33]) have been applied to malware analysis. In
addition, for a specific malware detection issue, some particular machine learn-
ing algorithms were also employed. For example, in [32], to aggregate different
similarities between Android applications, multi-kernel learning [65] was applied
to automatically learn the weights of different similarity perspectives.
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3.4 Model Prediction, Evaluation, and Explanation

In this step, the trained machine learning model will be used to detect or classify
the candidate Android applications in the wild. Generally, there is no ground
truth data available for the Android samples in the wild. To evaluate the effec-
tiveness of the proposed approach, it is common to divide part of the labeled
Android applications as the testing set to validate the efficiency and efficacy of
the model.

Since Android malware detection or family attribution are class-imbalanced
classification problem, thus Accuracy along is far from enough to comprehen-
sively evaluate the effectiveness of the models, more metrics, e.g., Recall, Preci-
sion or F1-score should be introduced. In practice, an effective machine learning
based malware detection or classification approach should work with high accu-
racy as well as high efficiency. Generally, the efficiency refers to prediction time,
because in most cases the training process can be finished offline. Therefore
training time may not be a key challenge in the Android malware analysis while
prediction time is really important especially the trained model is deployed on
the mobile devices with limited computation resources.

Android malware samples constantly evolve over time. Thus it is important
that the proposed approach is able to adapt to the evolution or population drift
of malware (e.g., code obfuscation or encryption). Adaptiveness is a metrics
used to explore whether malware detectors are able to learn fresh patterns while
unlearning the obsolete patterns of malicious samples with time evolving [46].

In practice, an Android malware detection method must not only iden-
tify malicious samples but also offer explanations for the corresponding detec-
tion results [5]. The existing works provided different explanation granular-
ity [5,16,27]. For example, in [5], the explanation consisted of a ranked list
of features most indicative of malicious behavior and the corresponding weights
reflecting their relative contribution to the detection results. In [27], the expla-
nation results could locate the malicious components and the corresponding
suspicious metadata (e.g., sensitive data leaked by the component).

4 Possible Future Research Directions

In this section, we briefly present the future research directions of Android mal-
ware detection. It is known that malware detection is a fundamental and indis-
pensable topic in Cyber Security area. Researchers, as well as security vendors
have invested a considerable amount of time and money to address this topic.
And Machine learning techniques have been applied to Android malware detec-
tion for almost ten years. The future research directions will focus on fine-grained
analysis, the details are as follows:

Firstly, as mentioned in the previous section, the source code of Android
applications can be regarded as a special format natural language text, thus the
Natural Language Processing (NLP) techniques can be employed to facilitate the
detection performance. Besides, the NLP technique can be employed to better
capture the semantic meanings within and between Android applications [48].
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Therefore, the combination of Android malware detection and NLP technique
will be a promising research direction [3].

Secondly, it has been shown that lots of detection methods or commercial
tools are good at detecting specific type or family of malware. However, the detec-
tion performance is unsatisfactory when extending to other types of malware.
Besides, the detection approaches are necessary to adapt to different versions
of the same malware across various versions of the device OS. To address this
issue, Transfer Learning may be a potential future direction [70].

Thirdly, concept drift in Android malware detection is a serious issue whereby
models trained using older malware are not able to detect newer malware with
confidence. Thus identifying such antiquated detection models accurately and
timely is vital to the final performance. Traditional ML framework shown in
Fig. 2 had to re-train frequently to adapt to the latest landscape of malware. To
address this issue, online learning techniques can be introduced to fight against
concept drifting by updating the model continuously and efficiently with the
most recent malware examples [29,35,46].

Fourthly, inspired by the breakthroughs of Deep Learning in image clas-
sification, machine translation and natural language processing [18,30], Deep
Learning has been introduced to malware detection and achieved satisfactory
performance [44,80]. It can be expected that the latest Deep Learning models
will continue to be a potential approach for malware detection.

Essentially, Android malware detection can be regarded as a class-imbalanced
classification problem. The number of malware is far less than the number of
benign applications. However, to the best of our knowledge, there are few works
targeting the imbalance characteristic of Android malware detection issue. Thus,
the cost-sensitive classification approaches, which has been shown effective in
tackling class-imbalanced problems, may be a future research focus [64].

5 Conclusion

Android malware detection is a fundamental and systematic research topic in
cyber security. It has been widely studied by both academic communities and
security corporations. Meanwhile, machine Learning technique has also been
applied to Android malware detection for nearly ten years. However, there also
exist several challenges and difficulties in Android malware analysis area. In this
survey, the research status of Android malware detection was presented. On the
first, like other surveys, we reviewed the traditional software engineering based
Android malware analysis techniques (static, dynamic and hybrid techniques).
Our main focus is the Machine Learning framework for Android malware detec-
tion. We presented the detailed introduction of each part of the Machine Learn-
ing framework. Then, we gave the possible research directions about Android
malware detection. In the end, we concluded the full survey.
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45. Muñoz, A., Mart́ın, I., Guzmán, A., Hernández, J.A.: Android malware detection
from Google play meta-data: selection of important features. In: CNS, pp. 701–702.
IEEE (2015)

46. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: Context-aware, adaptive,
and scalable Android malware detection through online learning. IEEE Trans.
Emerg. Top. Comput. Intell. 1(3), 157–175 (2017)

47. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: A multi-view context-aware
approach to Android malware detection and malicious code localization. Empirical
Softw. Eng. 23(3), 1222–1274 (2018)



200 J. Qiu et al.

48. Nguyen, T.D., Nguyen, A.T., Phan, H.D., Nguyen, T.N.: Exploring API embed-
ding for API usages and applications. In: Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, 20–28
May 2017, pp. 438–449 (2017)

49. Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid Android: ver-
satile protection for smartphones. In: Twenty-Sixth Annual Computer Security
Applications Conference, ACSAC 2010, Austin, Texas, USA, 6–10 December 2010,
pp. 347–356 (2010)

50. Protsenko, M., Müller, T.: Android malware detection based on software complex-
ity metrics. In: Eckert, C., Katsikas, S.K., Pernul, G. (eds.) TrustBus 2014. LNCS,
vol. 8647, pp. 24–35. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09770-1 3

51. Qiu, J., Luo, W., Nepal, S., Zhang, J., Xiang, Y., Pan, L.: Keep calm and know
where to focus: measuring and predicting the impact of Android malware. In: Gan,
G., Li, B., Li, X., Wang, S. (eds.) ADMA 2018. LNCS (LNAI), vol. 11323, pp. 238–
254. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05090-0 21

52. Qiu, J., Luo, W., Pan, L., Tai, Y., Zhang, J., Xiang, Y.: Predicting the impact
of Android malicious samples via machine learning. IEEE Access 7, 66304–66316
(2019)

53. Rasthofer, S., Arzt, S., Miltenberger, M., Bodden, E.: Harvesting runtime values in
Android applications that feature anti-analysis techniques. In: NDSS. The Internet
Society (2016)

54. Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: automatic security analysis
of smartphone applications. In: Third ACM Conference on Data and Application
Security and Privacy, CODASPY 2013, San Antonio, TX, USA, 18–20 February
2013, pp. 209–220 (2013)

55. Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation
technique to automatically reconstruct Android malware behaviors. In: EuroSec,
April 2013

56. Sabottke, C., Suciu, O., Dumitras, T.: Vulnerability disclosure in the age of social
media: exploiting Twitter for predicting real-world exploits. In: USENIX Security
Symposium, pp. 1041–1056. USENIX Association (2015)

57. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G., Álvarez, G.:
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