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Preface

The Second International Conference on Machine Learning for Cyber Security
(ML4CS 2019) was held in Xi’an, China during September 19–21, 2019. ML4CS is a
well-recognized annual international forum for AI-driven security researchers to
exchange ideas and present their work. This volume contains papers presented at
ML4CS 2019. The Program Committee also invited seven distinguished researchers to
deliver their keynote talks. The keynote speakers were Elisa Bertino from Purdue
University, USA; Qiang Yang from Hong Kong University of Science and Technol-
ogy, SAR China; Michael Pecht from University of Maryland, USA; Zheng Yan from
Xidian University, China; Feifei Li from University of Utah, USA; Xuemin Lin from
University of New South Wales, Australia; and Jaideep Vaidya from Rutgers
University, USA.

The conference received 70 submissions. Each submission was reviewed by at least
three Program Committee members. The committee accepted 23 regular papers and
3 short papers to be included in the conference program. The proceedings contain
revised versions of the accepted papers. While revisions are expected to take the
referees comments into account, this was not enforced and the authors bear full
responsibility for the content of their papers.

ML4CS 2019 was organized by the School of Cyber Engineering, Xidian
University. Furthermore, ML4CS 2019 was sponsored by the State Key Laboratory of
Integrated Service Networks (ISN) and National 111 centre of Mobile Internet Security
(China 111 project No. B16037), Xidian University. The conference would not have
been such a success without the support of these organizations, and we sincerely thank
them for their continued assistance and support.

We would also like to thank the authors who submitted their papers to ML4CS
2019, and the conference attendees for their interest and support. We thank the
Organizing Committee for their time and effort dedicated to arranging the conference.
This allowed us to focus on the paper selection and deal with the scientific program.
We thank the Program Committee members and the external reviewers for their hard
work in reviewing the submissions; the conference would not have been possible
without their expert reviews. Finally, we thank the EasyChair system and its operators,
for making the entire process of managing the conference convenient.

September 2019 Xiaofeng Chen
Xinyi Huang
Jun Zhang
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Network Data Collection, Fusion, Mining
and Analytics for Cyber Security

Zheng Yan1,2(&)

1 State Lab of ISN, School of Cyber Engineering,
Xidian University, Xi’an 710071, China

zyan@xidian.edu.cn
2 Department of Communications and Networking,

Aalto University, 02150 Espoo, Finland

Abstract. Cyber security has become the most crucially important topic for
safeguarding national and personal safety. Achieving cyber security depends not
only on defense technologies, but also the technologies to detect and discover
cyber intrusions, threats and attacks. Herein, network data plays an essential
role. However, network data for security detection (i.e., security-related data)
normally features big data characters. How to collect and process them in an
efficient, effective and precise way becomes a big challenge towards network
security measurement. In this article, I will introduce the current research results
of my research team in terms of adaptive network data collection in heteroge-
nous networks, data fusion and compression for highly efficient network
intrusion detection and economic data storage, a method of application-layer
tunnel detection with rules and machine learning, as well as data mining and
analytics on opinions posted in the website for retrieving trust information and
generating reputation. Working on security-related network data collection,
fusion, mining and analytics, we make efforts to collect and process as few as
possible data in a context-aware manner, but achieve as accurate as possible
security detection results.

Keywords: Data collection � Data fusion � Data mining � Data analytics �
Cyber security � Machine learning

1 Introduction

Cyber security has become the most crucially important topic for safeguarding national
and personal safety. Achieving cyber security depends not only on defense technolo-
gies, but also the technologies to detect and discover cyber intrusions, threats and
attacks. Herein, network data plays an essential role. However, network data for
security detection (named security-related data) normally features big data characters.
How to determine the target security-related data for sampling, effectively collect
useful data and process them in an efficient, economic and precise way becomes a big
challenge towards network security measurement [1–5].

In this article, I will introduce the current research results of my research team in
terms of adaptive network data collection [6–8], data fusion and compression for highly

© Springer Nature Switzerland AG 2019
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efficient network intrusion detection and economic data storage [9–13], a method of
application-layer tunnel detection with rules and machine learning [14], as well as data
mining and analytics on opinions posted in website for retrieving trust information and
generating reputation [15, 16]. Working on security-related network data collection,
fusion, mining and analytics, we make efforts to collect and process as few as possible
data in a context-aware manner, but achieve as accurate as possible security detection
results.

2 Adaptive Network Data Collection

The network security is usually reflected by some relevant data that can be collected in
a network system. By learning and analyzing such data, called security-related data, we
can detect the intrusions to the network system and further measure its security level
[5]. Clearly, the first step of detecting network intrusions is to collect security-related
data. However, in the context of 5G and big data, there are a number of challenges in
collecting these data due to the heterogeneity of network and ever-growing amount of
data. Therefore, traditional data collection methods cannot be applied into the next
generation network systems directly [7, 8], especially for security-related data.

We designed and implemented an adaptive security-related data collector based on
network context in heterogeneous networks [6]. The proposed collector solves the issue
caused by heterogeneity of network system by designing a Security-related Data
Description Language (SDDL) to instruct security-related data collection in various
networking contexts based on a number of thorough surveys [1–4]. SDDL specifies
what kind of data should be collected in which way and at what place based on the
detection of networking context. SDDL also marks the tags about data processing
methods and the target attacks that the data can be used for detection. By integrating the
SDDL with network context detection, the proposed collector can flexibly collect data
at any network nodes with context awareness in a large-scale heterogeneous network.
In addition, by introducing adaptive sampling algorithms, data collection efficiency can
be further improved and the volume of the collected data can be reduced with the
insurance of data collection precision. Performance evaluation based on a prototype
implementation shows the effectiveness of the adaptive security-related data collector
in terms of a number of pre-defined design requirements.

3 Network Intrusion Detection Based on Reversible Sketches

With the continuous increase of network scale, the growth of network traffic brings
great challenges to the detection of DDoS flooding attacks and amplification attacks.
Incomplete network traffic collection or non-real-time processing of big-volume net-
work traffic will seriously affect the accuracy and efficiency of attack detection.
Recently, sketch data structures are widely applied in high-speed networks to compress
and fuse network traffic. But sketches suffer from a reversibility problem to make it
difficult to reconstruct a set of keys that exhibit abnormal behaviors due to the irre-
versibility of hash functions.
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In order to address the above challenges, we first design a novel Chinese
Remainder Theorem based Reversible Sketch (CRT-RS). CRT-RS is not only capable
of compressing and fusing big-volume network traffic but also has the ability of
reversely discovering the anomalous keys (e.g., the sources of malicious or unwanted
traffic). Then, based on traffic records generated by CRT-RS, we propose a Modified
Multi-chart Cumulative Sum (MM-CUSUM) algorithm that supports self-adaptive and
protocol independent detection to detect DDoS flooding attacks and amplification
attacks [9, 10]. The performance of the proposed detection method is experimentally
examined by several open source datasets. The experimental results show that the
method can detect DDoS flooding attacks and amplification attacks with efficiency,
accuracy, adaptability, and protocol independability. Moreover, by comparing with
other attack detection methods using sketch techniques, our method has quantifiable
lower computation complexity when recovering the anomalous source addresses,
which is the most important merit of our method.

4 Application-Layer Tunnel Detection with Rules
and Machine Learning

Application-layer tunnels are often used to construct covert channels in order to
transmit secret data, which is often applied to raise network threats in recent years.
Detection of abnormal application-layer tunnels can assist identifying a variety of
network threats, thus has high research significance. However, existing methods, such
as feature signature-based detection, protocol anomaly-based detection and behavior
statistics-based detection suffer from such drawbacks as high false positive rate, low
efficiency, invalid for encrypted tunnels, low identification rate and poor real-time
performance.

For overcoming the above problems, we explored application-layer tunnel detection
and proposed a generic detection method by applying both rules and machine learning
[14]. Our detection method consists of two parts: rule-based domain name filtering
regarding Domain Generation Algorithm (DGA) and a machine learning based generic
feature extraction framework for tunnel detection. We employed a trigram model to
design rule-based DGA domain name filtering, which can identify tunnels with obvious
features for reducing the amount of data that need to be further processed in machine
learning-based detection. Therefore, our method can greatly improve efficiency and
real-time performance of tunnel detection. In terms of machine learning, we proposed a
generic feature extraction framework by combining multiple detection methods, sup-
porting network layer, transport layer and application layer and performing multiple
statistical and security-related features extraction for tunnel detection. Thus, our
method can ensure high accuracy with low false positive rate. We tested the effec-
tiveness of the proposed method by conducting experiments on commonly used
Domain Name System (DNS), Hyper Text Transfer Protocol (HTTP) and Hypertext
Transfer Protocol Secure (HTTPS) tunnels. Experimental results showed that our
proposed method is more generic and efficient compared with other existing works.

Network Data Collection, Fusion, Mining and Analytics for Cyber Security 3



5 Fusing and Mining Opinions for Reputation Generation

The Internet provides a convenient platform for people to freely share their opinions on
any entities. The opinions expressed in natural languages carry the subjective attitudes
and preferences of humans. They represent the public perspectives on entities, thus
impact user decisions and behaviors in some way. Therefore, opinions have been
recognized as useful and valuable pieces of information for reputation generation.
Fusing and mining opinions offer a promising approach to extract trust and reputation
information and track public perspectives. However, we are still facing a number of
problems [15]. First, few existing studies on reputation generation are based on opinion
fusion and mining. Second, an important issue that was neglected in the past research is
the degree of relevance between opinions. Third, there is still a lack of a comprehensive
method for reputation visualization in order to effectively assist user decision. Forth, a
serious issue of online shopping reputation management system gives rise to a problem
called “all good reputation”. Such strong positive bias impacts buyers to make a wise
decision.

In order to overcome the above problems, we propose a novel reputation generation
approach based on opinion fusion and mining [15]. In our approach, opinions are
filtered to eliminate unrelated ones, and then grouped into a number of fused principal
opinion sets that contain opinions with a similar or the same attitude or preference. By
aggregating the ratings attached to the fused opinions, we normalize the reputation of
an entity. Meanwhile, various types of recommendations can be generated based on
relationships among opinions. To offer sufficient reputation information to users, we
also propose a new way of reputation visualization. It shows the details of opinion
fusing and mining results, such as the normalized reputation value, principal opinions
with popularity and other statistics. Experimental results coming from an analysis of
big real-world data collected from several popular commercial websites in both English
and Chinese demonstrate the generality and accuracy of the proposed approach,
especially the effectiveness of opinion filtering for reputation generation. A small-scale
real-world user study further quantifies the user acceptance of the developed reputation
visualization method. In the sequel, this implies that the proposed approach can be
applied in practice to generate reputation.

6 Conclusion

Network data is the foundation for finding potential risks of networks in order to trigger
defense mechanisms. In this article, I summarized our recent research results on net-
work data collection, fusion, mining and analytics for cyber security. Efficiency and
accuracy are crucial requirements of data collection and processing. On this aspect, we
focus on researching effective methods to collect and process as few as possible data in
a context-aware manner, but achieve as accurate as possible security detection results.

Acknowledgement. This work is sponsored by the National Key Research and Development
Program of China (Grant 2016YFB0800700), the NSFC (Grants 61672410, 61802293 and
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Abstract. Web parameter injection attacks are common and have put
a great threat to the security of web applications. In this kind of attacks,
malicious attackers can employ HTTP requests to implement attacks
against servers by injecting some malicious codes into the parameters
of the HTTP requests. Against the web parameter injection attacks,
most of the existing Web Intrusion Detection Systems (WIDS) cannot
find unknown new attacks and have a high false positive rate (FPR),
since they lack the ability of re-learning and rarely pay attention to the
intrinsic relationship between the characters. In this paper, we propose a
malicious requests detection system with re-learning ability based on an
improved convolution neural network (CNN) model. We add a character-
level embedding layer before the convolution layer, which makes our
model able to learn the intrinsic relationship between the characters
of the request parameters. Further, we modify the filters of CNN and
the modified filters can extract the fine-grained features of the request
parameters. The test results demonstrate that our model has lower FPR
compared with support vector machine (SVM) and random forest (RF).

Keywords: Malicious detection · Injection attacks · CNN ·
Embedding · Deep learning

1 Introduction

Tons of communications happens through protocol like HTTP/HTTPS today,
in which a client can initiate a web request and send it to the web server. A
web request usually carries some parameters input by users. Figure 1 shows the
request parameters in GET method that is one of HTTP methods. However, such
ordinary protocols or methods can lead to great threatens, that many attackers
use this part to pass their malicious code to the webserver.

In fact, web application attacks are common in attack incidents against
web servers. According to the recent report of Alert Logic [2,3], 73% of the
attack incidents in the past 18 months are web application attacks and these
attacks affected 85% of its customers. Akamai (a Content Delivery Network
service provider) also demonstrated that hackers had launched 47,417,828 web

c© Springer Nature Switzerland AG 2019
X. Chen et al. (Eds.): ML4CS 2019, LNCS 11806, pp. 6–16, 2019.
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Fig. 1. The request parameter in an HTTP header

attacks aiming at Akamai servers in just 8 days, between November 8, 2017 to
November 15, 2017 [4]. Within all web attacks, code injection attacks account
for a large proportion. By injecting some malicious codes into the parameters
of HTTP requests, attackers can employ HTTP requests to accomplish their
attacks against servers. This type of attacks is called parameter injection attacks,
which is a growing concern to the security of web service and require web service
providers to build an efficient mechanism to detect code injection attacks.

Existing countermeasures against web parameter injection attacks are usually
referred as Web Intrusion Detection Systems (WIDS), which includes signature-
based detection and anomaly-based detection [17]. With signature-based detec-
tion, the server needs to maintain a library of malicious symbols that distinguish
an injection attack from normal web requests. When it receives a request, the
server searches the request parameters to see if they contain a malicious symbol,
and web requests containing a malicious symbol will be considered as attacks.
This signature-based detection usually performs very well on the known attacks
that contain distinct symbols. However, a tiny change on the injected codes will
hide the symbols and disable such method. Obviously, signature-based detection
cannot find unknown new attacks. As for anomaly-based detection, the server
needs to train a math model which can characterize normal web requests and fil-
ter most abnormal web requests. Compared with signature-based detection, this
type of WIDS is able to discover some unknown new attacks. Unfortunately, the
FPR (false positive rate) of anomaly-based detection is high in practice.

Besides the high FPR, the model of anomaly-based detection lacks the ability
of re-learning since it is a constant model. In fact, earlier anomaly-based detec-
tion system collects all training data once and then generates a constant model.
Earlier anomaly-based detection systems take the sample with abnormal data
structures as an attack. Thus, it can detect some unknown attacks. However,
when the data structure of an attack is similar with a normal one, an anomaly-
based detection system is incapable of finding such attack. The reason is that
an anomaly-based WIDS cannot update its model in time.

In this paper, by using CNN we build a model for detecting parameter injec-
tion attacks in terms of web applications. In our model, we add a character-
embedding layer before the convolutional layers. The parameters within a request
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is first fed into the character-embedding layer, by which they will be transformed
into feature vectors that are then put into a traditional CNN along with their
labels. The output of CNN is a prediction demonstrating if the request is a mali-
cious attack or not. Unlike all previous models, our system is dynamic and has
the ability of re-learning. That is to say, the model can be restored when there
is some new data that it has never seen before. Our system is not only able
to find unknown new attacks, but also able to extract features of the malicious
query automatically, instead of maintaining a feature library like the signature-
based detection method. Since our model can extract both normal features and
malicious features, it has lower FPR than anomaly-based detection model which
only learns normal features.

The main contributions of this paper are as follows:
We build an improved CNN model in order to detect malicious web requests.

In this model, we add a character-level embedding layer before the convolution
layer aiming to digitize a character sequence. Different from the normal digitiza-
tion, character-level embedding is able to learn the hidden similarity of characters
in web requests. In the convolution layer, considering the one-dimensional data
structure, we design vertical filters to extract features from character sequence.

Based on the improved CNN model, we present an online learning system
which has re-learning ability. That is, the model can be updated in time when
there are some unknown new attacks. Therefore, it can adapt to the changing
attack methods.

2 Related Work

2.1 Malicious Request Detection

Malicious request detection has been an active research area, and various mali-
cious request detection systems have been proposed. They provide solutions for
some specific type or multiple types of malicious requests. For example, refer-
ence [9,14,16] showed us their solution to SQLI attack, which is one of the most
common malicious requests. Reference [14,16] trained a Support Vector Machine
(SVM) model to detect SQLI attacks. Joshi and Geetha [9] detected SQLI attacks
using the Naive Bayes machine learning algorithm. Reference [9,14] created
feature vector of string by the tokens of sql-query strings and feed these vec-
tors into the SVM-Train process to generate a model. Uwagbole and Buchanan
[16] created feature vectors by a hashing procedure called Feature hashing. But
these methods of creating feature vectors cannot reflect the relationship between
words. On the other hand, models of these papers are constant models that are
hard to be updated when there are some new form of SQLI attacks. Dong and
Zhang [7] proposed an adaptive system based on SVM for detecting malicious
queries in web attacks. This system focused on 4 most frequent types of web-
based code-injection attacks. The model of this system can be updated by some
new queries periodically. But it does not pay attention to the local features which
have an important impact on the final detection result.
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2.2 Convolutional Neural Network

In recent years, neural networks (NNs) have been successfully applied in many
areas. To some extent, malicious web request detection is a special kind of text
classification problem. NNs have achieved great success in text classification area.
For example, Kim [10] applied CNNs to sentence classification and Shibahara
et al. [15] applied CNNs to url sequence, which is similar to parameter string
focused in this paper. Kim [10] proposed a special CNNs named TextCNN.
TextCNN converts word sequence to a matrix that CNNs are able to process
through embedding layer. Shibahara et al. [15] proposed an Event De-noising
CNN (EDCNN). The input of EDCNN is more than just url sequence. They
use one-hot representation to denote the categorical features which contain city
corresponding to the IP address, TLD and country corresponding to the IP
address. In conclusion, CNN performs very well in these text classification prob-
lem, therefore it is possible to solve the malicious web request detection problem
using CNN.

Fig. 2. System overview

3 Proposed System

In this section, we will present the proposed system detecting malicious web
request and give its details.

3.1 System Design

Our system receives the parameters of the web request as input, and outputs the
detection results. As shown in Fig. 2, the system includes five modules including
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Fig. 3. Characters list

data preprocessing, classification model, manual check, labeled database and
training model.

Before running our system, we need some labeled samples to train an initial
detection model. As illustrated in Fig. 2, the system works as follows:

(1) A client sends a web request with some parameters to the web server.
(2) The web server passes the request to the data preprocessing module. The

data preprocessing module extracts the request parameter from the request
and converts it into a index list by indexing these characters.

(3) The data preprocessing module feeds this index list into the detection model.
(4) After some sophisticated computations with respect to this vector, the detec-

tion model returns the detection result to the web server.
(5) The web server responds to the user client according to the detection result.

If it is a benign request, the web server will return a web response that it
wants. Otherwise, the web server will return an error.

In the system background, the classification model saves some samples and
their detection results. These saved samples are randomly selected from those
samples that the detection model is less confident about (has relatively low
probability). In order to ensure that the labeled data is representative and the
amount of each type of data is balanced, we should check the samples manually
before adding them into the labeled database. When the system finds that the
labeled database has changed, it will train a new detection model based on the
old model by using the changed database. Then, system updates its detection
model with the new model. In this way, the model can get the re-learning ability
and adapt to the change of web attacks.

In this system, the detection task is mainly completed by the detection model.
The details of the detection model will be given in the next subsection.

3.2 Detection Model

Aiming to analyze web request parameters, we build an improved CNN model.
Using character embedding, we make the model learn by itself to digitalize
characters according to its tasks. Then, the improved CNN extracts features
of request parameters and gives the detection results by the output layer.
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Character Representation. A request parameter is a character sequence
which contains three types of characters, i.e. letters, digitals and special charac-
ters, see Fig. 3 for details. There are 95 characters in total. We convert character
sequences into index lists by indexing these characters. However, the character
index cannot reflect the relationship between the characters in a specific context.
For example, the character ‘=’ is not associated with the character ‘&’ in normal
texts. As shown in Fig. 4, in the context of web request parameters, they play a
similar role which as a separater. This similarity cannot be represented by index
numbers.

Fig. 4. The two characters ‘=’ and ‘&’ in a request parameter

Regarding this problem, we use character-level embedding in our model to
learn the hidden similarity between characters in web request parameters. The
idea of character-level embedding comes from the word embedding used in NLP
[6].
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Model Architecture. The model architecture, shown in Fig. 5, is a deep neu-
ral network we used in our demo system. It mainly consists of four parts: the
embedding layer, the convolution layer, the pooling layer and the output layer.

Embedding Layer: The embedding layer converts a index list into digital matrix
and then feeds it to the convolution layer. Let ei ∈ R

k be the k-dimensional vec-
tor corresponding to the i-th character in the character list. Here, i denotes the
index of a character. Then, we get an embedding table E =

(
e0, e1, e2, ..., e94

)T ,
from which we can query every character vector by the character index. The
embedding table is randomly initialized before starting training and will be
optimized by backpropagation to minimize the classification error. As shown
in Fig. 6, for a character in the character sequence, we look up in the embedding
table E and get a vector ei using the index of the character, thus making a matrix
X =

(
x0, x1, x2, ..., xn−1

)T for the whole character sequence, where xT
i ∈ E. At

the beginning of training, xi is randomly generated. After several iterations, xi

will be replaced by a new x∗
i which has been optimized by the backpropagation

algorithm. If there are some internal relationships between the character ca and
the character cb in the request parameter, the Euclidean distance between x∗

a

and x∗
b will be smaller relatively. For example, in the experiment we found the

Euclidean distance between ‘=’ and ‘&’ (L2(x∗
4, x

∗
10) = 7.8) is smaller than the

distance between ‘a’ and ‘&’ (L2(x∗
6, x

∗
10) = 10.09), and in practice ‘=’ and ‘&’

play the similar role.

Convolution Layer: The convolution layer uses different filters to extract dif-
ferent feature vectors. The filters are some matrices with different sizes. But
these matrices must have k columns, where k is the column of E in Embedding
layer. It should be noted that the difference in size only lays in rows. Unlike
CNNs applied in image recognition, the filters in our model can only be moved
vertically. Because we want our CNN model to learn the relationship between
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characters, and every row of the matrix X represents one character. In our model,
we set the width of filters equal to that of matrix X to ensure the indivisibility
of each character. Let y be one of the output feature vectors and F be a filter.
Then the output feature vector y is computed as:

yi = Relu(
L−1∑

r=0

k−1∑

c=0

Fr,cXi+r,c)

where yi denotes i-th value and F has L rows and k columns. Relu (Rectified
Linear Units) function is a popular activation function in the field of deep learn-
ing, which is proposed and applied in reference [11]. When we use n different
filters F , we will get n feature vectors y in convolution layer and these vectors
may have different lengths.

Pooling Layer: Pooling is a commonly used method in the field of deep learning.
Pooling layer outputs n results, where n denotes the amount of filters in convo-
lution layer. In our system, we use max pooling to calculate the outputs. The
output is derived as zi = max0�t�l−1(yit), where l denotes the length of feature
vector y in convolution layer. This pooling layer is used to reduce the amount of
parameters and the computation in our network and hence to control overfitting.

Output Layer: The output layer outputs the classification results. The length of
the output vector is the number of the classes. The output vector is computed
as yj = Softmax(

∑n−1
i=0 wi,jzi), where n denotes the length of the output vector

of previous layer, w denotes weights of this layer and the function Softmax is

computed as Softmax(xj) =
exj

∑
i e

xi
. In order to improve the generalization

ability of our model, we can also add dropout regularization in this layer. If we
use dropout in this layer, zi we get from the previous layer has a 50% probability
of being zero. The summation of all output values of this layer is 1 and the output
values are all non-negative. Therefore, an output value represents the probability
of belonging to a specific class.

To sum up, the embedding table, the filter matrices and the weights of every
layer are what we need to train, and they will be optimized by backpropagation
algorithm to minimize classification error.

4 Test and Evaluation

4.1 Dataset

In our experiment, we build our dataset through crawling from internet or
extracting the data we need from other datasets [1,8]. Then we merge them
into one dataset. There are 5 types of data samples we chose in our dataset:
Benign request, SQL injection (SQLI), Remote File Inclusion (RFI), Cross-Site
Scripting (XSS) and Directory Traversal (DT). However, the amount of each
category is extremely unbalanced. In order to keep the relative balance between
each category, we set a threshold for the amount of each category. When the
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Table 1. Composition of dataset

Category Number of samples Proportion

Benign request 2000 46.49%

SQLi 472 10.97%

XSS 720 16.74%

RFI 599 13.92%

DT 511 11.88%

SUM 4302 100%

number of samples in one category is greater than this threshold, we will ran-
domly sample this category to limit the number of samples to this threshold.
Table 1 displays the composition of the dataset we use finally.

4.2 Test Environment

We implement our architecture in Python 3.5.3 using Tensorflow [5]. The oper-
ating system we use is Ubuntu 17.04. We also use some of Python’s third-party
libraries, scikit-learn [13] and numpy.

Table 2. Performance of each model

Model Indicators Benign request DT RFI SQLi XSS FPR

RF Recall 99.62% 99.99% 99.58% 99.99% 99.65% 0.38%

Precision 99.99% 98.58% 99.57% 99.53% 100%

SVM Recall 99.87% 99.53% 98.25% 98.52% 99.99% 0.13%

Precision 99.12% 99.53% 99.98% 99.53% 100%

CNN Recall 99.95% 100% 100% 100% 100% 0.02%

Precision 100% 100% 99.83%% 99.79% 100%

4.3 Evaluation

We implement a demo classifier for malicious requests detection using the model
shown in Fig. 5. In the training process, we shuffle all training samples and
divide them into several batches. Then the samples of each batch are used to
optimize embedding table and weights of every layer. The process that we use one
batch of samples to optimize these parameters is one step. So we can optimize
these parameters by all batches step by step. Figure 7 shows how our model is
optimized step by step and demonstrates the sum of softmax cross entropy and
L2 regularization [12].
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Fig. 7. Train process

In order to compare with the traditional model, we add two control group.
We chose Random Forest (RF) and SVM as the control group. The model from
control group converts character sequences into sparse matrix through TF-IDF
algorithm. We calculate precision and recall rate [18] for every category and FPR
(we choose malicious samples as positive samples) for each model. Therefore for
one model we have one FPR and 5 pairs of precision and recall rate to calculate.
The results of our model against other two models are listed in Table 2. Our
model distinctively reduces FPR from 0.38% in RF and 0.13% in SVM to 0.02%.
We attribute this to the character-level embedding layer and the modified filters
of CNN. We believe that the limited improvement in the recall and precision rate
of our model is due to the limitations of the dataset, which is highly unbalanced
and small in quantity. Therefore, there is reason to believe that better results
will be achieved when it comes to practical issues, where more high quality data
is accessible. In addition, only one convolution layer is used in our demo system
considering the limitation of our dataset, we believe more advanced features can
be extracted if we use deeper networks on bigger dataset.

5 Conclusion

We proposed a malicious requests detection system with re-learning ability based
on an improved CNN model. Compared with two other traditional model: SVM
and RF, our model pays more attention to the extraction of the local feature in
the request parameters. Specifically, we add a character-level embedding layer
and modify the filters of CNN to extract the local feature in the request param-
eters. The results show that our improved CNN model outperforms traditional
models on test datasets, while the performance in more practical applications
remains to be tested.

References

1. WAF malicious queries data sets. https://github.com/faizann24/Fwaf-Machine-
Learning-driven-Web-Application-Firewall

https://github.com/faizann24/Fwaf-Machine-Learning-driven-Web-Application-Firewall
https://github.com/faizann24/Fwaf-Machine-Learning-driven-Web-Application-Firewall


16 W. Rong et al.

2. Cloud security report of alert logic (2017). https://www.alertlogic.com/resources/
cloud-security-report-2017/

3. Web application attacks accounted for 73% of all incidents says report
(2017). https://www.scmagazineuk.com/web-application-attacks-accounted-for-
73-of-all-incidents-says-report/article/682004/

4. Web attack visualization (2018). https://www.akamai.com/uk/en/about/our-
thinking/state-of-the-internet-report/web-attack-visualization.jsp

5. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems, software available from tensorflow. org (2015). http://tensorflow.org

6. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

7. Dong, Y., Zhang, Y.: Adaptively detecting malicious queries in web attacks. arXiv
preprint arXiv:1701.07774 (2017)
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Abstract. Face authentication systems are becoming more and more
prevalent, but it has an intrinsic vulnerability against the media-based
face forgery (MFF) where adversaries display photos or videos containing
victims’ faces to deceive face authentication systems. Liveness detection
is an important defense technique to prevent such attacks. In this paper,
we propose a practical and effective liveness detection mechanism to
protect the face authentication system against the MFF-based attacks.
Our approach send the challenge to the user in random and the camera
capture the response as a video. The Local Binary Pattern (LBP) is a
widely used descriptor in texture analysis due to its efficiency. We utilize
δ-LBP, a LBP variant, to detect the expression frame from the video.
Additionally, We improve the original LBP by using proper sampling
radius in different subareas of a facial image and apply the approach
in extracting the facial texture feature from the expression frame as a
histogram. Our method detects the MFF-based attacks by measuring
the consistency between the LBP histogram and the real facial texture
feature. To demonstrate its effectiveness, We collect real-world photo
data and video data from both legitimate authentication requests and
the MFF-based attacks. The experiment results show that it can detect
the MFF-based attacks with an accuracy of 96.45%.

Keywords: Face authentication · Media-based face forgery ·
Liveness detection · Local binary pattern

1 Introduction

Face authentication is a promising method which has been widely applied in user
authentication as it requires no user memory while providing a higher entropy
for identifying users [1]. Unfortunately, human faces can be easily captured and
reproduced from social networks, which makes face authentication system vul-
nerable to attacks. Most existing face authentication systems, such as Facelock-
Pro [2], have an intrinsic weakness against the media-based face forgery (MFF)
where an adversary forges or replayes a photo/video containing a victim’s face
to circumvent face authentication systems.

To defend against such attacks, liveness detection has been proposed to dis-
tinguish between legitimate face of live users and the forged face [3,4]. Crucial to
c© Springer Nature Switzerland AG 2019
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such methods are challenge-response protocols, where sensors send the challenges
to the user who then makes responses according to the displayed instructions in
real time. The responses are subsequently captured and verified to distinguish
that whether they come from a real human being or other forged face. Typical
challenges consist of blinking, smiling and other facial expressions.

In this work, we propose a liveness detection mechanism based on challenge-
response and local binary pattern to protect face authentication system against
the MFF-based attacks. The local Binary Pattern was first proposed by Ojalain
in 2002 [5], which is invariant to monotonic gray-value changes and has low
computational complexity, to extract local texture feature information. Our sys-
tem make sensors generate a dispalayed instruction as challenge randomly, like
blinking, smiling and other facial expressions. Then the camera can capture the
response from the user as a video. The system mainly consists of three compo-
nents:expression frame detection, facial feature extractor from this frame and
liveness classifier. In the first step, a LBP variant called δ-LBP is proposed to
detect the expression frame from the video. δ-LBP with selection of the proper
value of δ is helpful to detect the contour of the face image, so that we can utilize
δ-LBP to detect the expression frame. In the second step, we imporve the origi-
nal LBP by using proper sampling radius in different subareas of a facial image.
The current LBP operators, which adopt a fixed sampling radius for all pixels
in the facial image to extract facial texture feature, ignore the fact that different
subareas have different local gray-value distributions [9]. It is reasonable that
small sampling radius should be assigned to the fast-changing subarea while big
sampling radius should be assigned to the smoothly distributed subarea. There-
fore, we can use the enhanced LBP with different sampling radius to extract
facial texture feature and draw the corresponding LBP histogram. Finally, we
send the LBP histogram to the liveness classifier and find out whether the facial
texture feature is from a real live user.

We conduct a user study to validate the proposed liveness detection mech-
anism. We collect real-world photo data and video data from both legitimate
authentication requests and MFF-based attacks. Our experimental results show
that FaceLBP can detect MFF-based attacks with an accuracy of 96.45%.

2 Related Work

Various liveness detection techniques for face authentication have been proposed
in the literature. In this section, we discuss differences between our method and
those relevant studies.

Our method is a challenge-response protocol, which require interactions with
users in real time. Pan et al. proposed a liveness detection technique based on
blinking [10]. A popular face authentication software called VeriFace, asked users
to rotate their heads so as to verify the liveness [11]. Unfortunately, Attackers
can use videos containing the required human reactions to deceive those systems.
Our method can detect such video-based attacks effectively because the texture
feature of a real live user is obviously different between the feature of the fake
face.
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Our approach can also be categorized as a texture analysis method according
to the classification in Chakraborty’s survey [12]. The traditional methods in this
category mainly use various descriptors to extract features of images and pass
features through a classifier to obtain the final result. For example, Matta et al.
used the local binary patterns extracted from a single image to determine the
liveness of a user [13]. Compared with our method, random challenges provide
a stronger security guarantee. IDAIP team took a facial video as input and the
local binary patterns from each extracted frame in the video in order to build a
global histogram for the video. The liveness of face is determined based on the
global histogram [14]. It’s time-saving that our method detect the expression
frame from the video and extract the facial texture feature from this frame
instead of taking local binary patterns of each frame. Besides, we imporve the
LBP operator with proper sampling radius of different subareas of a facial image,
which reduces the computational complexity.

Besides above methods, there is another technique named multimodal based
liveness detection approache, which take face biometrics and other biometrics
into account in user authentication. For instance, Rowe et al. proposed a mul-
timodal based technique which requires a camera and a finger print scanner
to fuse face authentication and fingerprint authentication together [15]; Wilder
et al. took facial thermogram from an inferred camera and face biometrics from
a generic camera in authentication process [16,17]. Compared with our method,
multimodal approaches need more hardware sensors.

3 Background

3.1 Face Authentication

As one of the most prevalent biometric-based user authentication, face authen-
tication verifies a claimed identity of a user by checking the user’s facial fea-
tures extracted from the user’s facial photos or videos. A typical architecture
of face authentication system is illustrated in Fig. 1 [18]. It is divided into three
parts: sensors, liveness detection module and face recognition module. Sensors
comprises a camera and other auxiliary hardwares. When the user commences
the authentication process, the liveness detection module is initiated and sends
generated parameters to sensors (Step 1). Subsequently, the sensors generate
challenges according to the received parameters and deliver them to the user
(Step 2). After receiving the challenges, the user make corresponding responses.
The sensors capture such responses and encode them (Step 3). In real time, the
sensors send the captured responses to the liveness detection module (Step 4).
The liveness detection module gathers all decoded data and checks whether the
user is an actual human being. If so, the liveness detection module selects some
faces among all the responses and sends them to the face recognition module to
determine the identity of the user (Step 5).
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Fig. 1. A typical face authentication system

3.2 Media-Based Face Forgery Attacks

The media-based face forgery (MFF) attacks mean that an adversary can forge
users’ face biometrics based on photos or videos containing their faces and the
adversary can display the forged face biometrics to deceive face authentication
systems [20]. We can divide the MFF attacks into two categories according to
the types of media. There are traditional media and digital media. Traditional
media means that attacker use the paper photos to forge faces. Digital media
refers that attackers display the video containing the user’s face to circumvent
the system. Face authentication systems are inherently vulnerable to the MFF
attacks, because it cannot distinguish if the input facial photo or video is from a
live user or from pre-recorded photo or video of the same user. As shown in Fig. 1,
The liveness module is designed for protecting face authentication system from
the MFF-based attacks, including the photo-based attack and the video-based
attack. The liveness detection module aims at differentiating between legitimate
face biometris that are captured from a live user and the face biometrics forged
by adversary from the user’s facial photos or videos.

4 Design Overview

Our method verifies the liveness of a face against MFF-based attacks by mea-
suring the consistency between the LBP histogram and the real facial texture
feature. It mainly consists of three modules which are Expression Frame Detec-
tion (EFD), Facial Feature Extractor (FFE) and Liveness Classifier (LC), which
is shown in Fig. 2. Firstly, the sensors generates a challenge randomly and send
it to the user. The challenge is the displayed instruction on the screen which
require the user to make corresponding facial expressions. Our challenge consists
of five facial expressions. They are blinking, smiling, nodding, opening mouth
and shaking head. Then the camera captures the response as a video. After that,
the EFD module takes the video as an input and detects the expression frame.
With the detected frame, The FFE module extracts the facial texture feature
by enhanced LBP with different sampling radius and draw the LBP histogram.
At last, the LC module utilizes a classification algorithm to distinguish a real
face from a forged face in MFF-based attacks.
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Fig. 2. The components of our method

4.1 Expresssion Frame Detection

The expression video shows a successive process of the facial expression from the
onset state, the apex state to the offset state [6,7]. Onset indicates the time from
the start of the expression episode to the peak of the facial movement. Apex is
defined as the amount of the time when the expression is held at the peak and
finally, the offset is the time from the fading of the expression until it stops
[8]. The expression frame is defined as the frame in the video with a maximum
expression state in the apex. Usually, a given video contains a lot of frames,
and it is unreasonable to consider every frame to recognize the expression in the
video because of two reasons. The first one is that extracting the facial feature
of every frame is time-consuming. The second one is that other frames in the
video contain too much noise which is caused by various emotions. Therefore,
it’s of great importance to detect the expression frame.

We can detect the expression frame by concentrating on the contour of the
face. One weakness of the original LBP is that it is sensitive to noise. To solve
this problem, δ-LBP was proposed by Lu et al. to find the edge of the target
more conveniently [19]. δ-LBP can reduce the impact of noise and computational
burden, and the 8-bit binary δ-LBP code of the central pixel is defined as follows:

δ − LBPc =
7∑

p=0

s(gp − gc)2p

s(z) =

{
1 z ≥ δ

0 z < δ
, δ ≥ 0

(1)

where s(z) is the threshold function, gc and g0,...,g7 denote respectively the gray
values of the center pixel and its 8 neighbor pixels. Figure 3 shows an example
of δ-LBP.
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Fig. 3. An example of δ-LBP

The selection of parameter δ is the most important. When the value of δ
is small, the texture image obtained by δ-LBP presents more subtle texture
information of the face. When the value of δ is large, the texture image shows
more contour information of the face because larger δ emphasizes the difference
between the surrounding pixels and the central pixel. Figure 4 shows the texture
image using δ-LBP with different values of δ.

Fig. 4. Examples of texture image using δ-LBP with different δ

As illustrated above, δ-LBP with smaller δ can reflect more subtle texture
information of the face, and δ-LBP with larger δ can present contours of the
face. However, the value of δ can not be increased without limit. The contour
of the texture image with δ = 20 seems a little blurrier than the contour of the
texture image with δ = 15. So the selection of δ is the most crucial part in this
method. We constantly adjust the value of δ in the experiment and finally we
determine it as 15.

Let’s take an example where the challenge is blinking. The first step is to
extract all the frames from the video, as shown in Fig. 5. Then we can use δ-
LBP operator to detect the expression frame. According to the definition above,
the expression frame has the maximum expression state so that the difference
between the expression frame and the initial frame is the biggest. δ-LBP help
us to reflect the contour of the eyes so that we can find out that frame6 is the
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expression frame of blinking. Then we send this frame to the Facial Feature
Extractor module.

Fig. 5. All the frames of blinking

4.2 Facial Feature Extractor

The expression frame received from the Expression Frame Detection module
shows the maximum expression state which has the most obvious facial feature.
We use LBP with different sampling radius to extract the facial texture feature.
Traditional LBP operator use fixed radius to extract the facial texture feature of
the whole face, which ignores the fact that different central pixels actually have
different local gray-value distributions and the proper sampling radius should be
different for pixels. It is reasonable that small radius should be assigned to the
fast-changing facial area while large radius should be assigned to the smoothly
distributed facial area.

Generally, gradients can be used for getting information about changes of
a subarea of images. The gradient of the image is equivalent to the difference
between 2 adjacent pixels. Therefore, we can utilize gradient to evaluate local
gray-value distribution of each pixel. Small gradient value indicates that this
pixel has a smooth local distribution while big gradient value means that this
pixel is in a fast-changing local area.

We divide the expression frame into 4*4 subareas, as shown in Fig. 6. The area
containing important organs of the face, like eyes or mouth, should have smaller
sampling radius because the value of pixels in the subarea change fast. Other
slow-changing subareas can have bigger sampling radius. In this way, we draw
the histogram from LBP value of each subarea and integrate them as a feature
histogram, as shown below. The x-coordinate of the histogram has 256*16 = 4096
components, and the y-coordinate of the histogram means the number of every
component. Then we deliver the histogram to the Liveness Classifier module.

4.3 Liveness Classifier

After the Facial Feature Extractor module outputs a LBP histogram of the
expression frame, the Liveness Classifier module takes histogram as an input
and uses a classification algorithm to determine whether the histogram is taken
from a real face or a forged face from the MFF-based attacks. There are several
ways to discriminate the similarity of the obtained histogram features, such as
Histogram intersection (Pyramid Match Kernel), Chi square statistic, and so
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Fig. 6. 4*4 subarea Fig. 7. Feature histogram

on. In this case, we directly calculate the “distance” between the histograms to
determine whether they are from the same real face. Let the histogram of the
image to be matched be Si,j , and the histogram of the known image be Mi,j

where i = 1, 2, ..., 16 represents the number of subarea, j is the value of a column
in the histogram in the subarea. Then the similarity of the two images Δ is

Δ =
∑

(Si,j − Mi,j)2 (2)

After calculating the value of Δ, we are supposed to complete a binary classi-
fication task. We have to consider how to properly set the threshold of Δ to
minimize the cost of classification errors. The cost caused by different types of
classification errors are different. For example, the cost caused by recognizing
a fake face as a real face is significantly greater than the cost caused by recog-
nizing a real face as a fake face. In this section, we use a parameter E called
cost-sensitive error rate to help us find out the value of threshold. Let 0 and
1 respectively denote the real faces class and the fake faces class. Then cost01
means the cost caused by recognizing a real face as a fake face and cost10 means
the cost caused by recognizing a fake face as a real face. Obviously, the value of
cost10 is greater than the value of cost01. Both cost00 and cost11 mean no cost.
Let D+ and D− respectively denote the set of real faces class and the set of fake
faces class, then the cost-sensitive error rate E is defined as follows:

E =
1
m

⎛

⎝
∑

xi∈D+

I (f (xi) �= yi) × cost01

+
∑

xi∈D−
I (f (xi) �= yi) × cost10

) (3)

where m denote the number of faces in class, xi denote the face to be detected.
Function f() can be recognized as a detection function. When our method detects
the face correctly, we can get f(xi) = yi. And I(·) is an indicator function, where
· is True and False, the values are 1 and 0 respectively. By minimizing the value
of the cost-sensitive error rate, we can find out the value of the threshold of Δ. In
the Liveness Classifier module, If the calculated value of Δ less than or equal to
the threshold, the two images are considered to come from the same real live face.
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5 Data Collection and Experiment

5.1 Data Collection

Our user study involves 48 participants, including 29 males and 19 females with
the age range between 20 and 32. We choose an indoor place with normal light
as our data collection environment. The device for taking photos and recording
videos is the iphone7 front camera. The challenge consists of 5 facial expressions,
which are blinking, smiling, nodding, opening mouth and shaking head. Our data
is divided into two parts. They are legitimate face dataset and the MFF-based
attacks dataset. In the first part, we record the process that users make facial
expressions according to the random challenges as a video which is about 3 s
long. The distance between the user and the camera is 30 cm. In the second
part, we collect the MFF-based attacks dataset. It consists of the photo-based
attack dataset and the video-based attack dataset. We take 5 photos for each
participant with 30 cm distance and 240 photos are obtained totally. We divide
these photos into two parts in random, half of which are printed on A4 paper
and the other half of which are printed on photographic paper. As for the video-
based attack dataset, we play the video we recorded before and we record the
process as a new video. The distance is set as 40 cm in order to make the size
of faces in the front camera and the face size in the original video basically the
same. Finally, we get 165 segment videos as the video-based attack dataset.

5.2 Experiment

In this section, we fist present the settings of our experiments, then we evaluate
the performance of our method against the MFF-based attacks. In the expression
frame detection module, we select a proper value of δ. The larger the value of
δ, the lower of the dimension of δ-LBP. But if δ is outside a certain range, the
contour of the face will become blurry. Finally, we set the value of δ as 15 by
adjusting it in the experiment. In the facial feature extractor module, we set the
number of sampling points around the central pixel as 8. The value of sampling
radius depends on the gradient value of each subarea. The bigger the value of
sampling radius, the less time it takes to draw a histogram, as shown in Table 1.
The subareas containing important organs of the face, like eyes or mouth, should
have small sampling radius, because the gradient of the area is large. And in other
subareas where the gradient is small can have big sampling radius. We can not
only reduce computational complexity but also improve recognition accuracy. At
last, we respectively set the value of small radius and large radius as 2 and 10. In
the liveness classifier module, we divide all value of Δ from both real faces and
fake faces into two groups in random. One group is used for training to get the
threshold, and the other group is used to test accuracy. In the training group, the
maximum value of Δ from real faces has overlapping interval with the minimum
value of Δ from fake faces. We select multiple thresholds at regular intervals
in this interval and classify test data with each threshold. After calculating the
cost-sensitive error rate, we choose the threshold which has the minimum error
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rate. Repeating the above steps 20 times, we select the intermediate value of the
threshold interval with the highest frequency as the final threshold. The value
of the threshold is 1380000.

Table 1. The relationship between radius and time

Radius (pixel) 2 5 10 15

Time (s) 3.81 3.77 3.39 3.18

By analyzing the experimental data, We find out that our method is efficient
in detecting the MFF-based attacks. Our approach achieves the accuracy of
96.45% against the MFF-based attacks. We also conduct an experiment about
using original LBP with fixed sampling radius in feature extraction module and
compare it with our method. The accuarcy of using fixed sampling radius is only
91.13%, which is shown in Fig. 8

Fig. 8. Accuracy of two methods against the MFF-based attacks

6 Conclusion

In this paper, we propose an effective and practical liveness detection mechanism
for face authentication to prevent MFF-based attacks. Our approach can effec-
tively detect the MFF-based attacks by measuring the consistency between the
LBP histogram and the real facial texture feature. Experimental results prove
that our method is efficient.
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Abstract. There are challenges and issues when machine learning algo-
rithm needs to access highly sensitive data for the training process. In
order to address these issues, several privacy-preserving deep learning
techniques, including Secure Multi-Party Computation and Homomor-
phic Encryption in Neural Network have been developed. There are also
several methods to modify the Neural Network, so that it can be used
in privacy-preserving environment. However, there is trade-off between
privacy and performance among various techniques. In this paper, we
discuss state-of-the-art of Privacy-Preserving Deep Learning, evaluate
all methods, compare pros and cons of each approach, and address chal-
lenges and issues in the field of privacy-preserving by deep learning.
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Privacy-Preserving Deep Learning

1 Introduction

The invention of machine learning, i.e., Artificial Intelligence (AI) brings a new
era to human life. We can train a machine to do decision making like human
beings. In general, machine learning consists of training phase and testing phase.
In order to get better result by using machine learning, huge dataset is required
during the training phase. There is a trend to utilize machine learning in the
field of social engineering [1], image recognition [2], healthcare service [3], etc. In
order to get a satisfying result in machine learning, one of the main challenges
is the dataset collection. Since the data will be scattered upon individuals, lots
of efforts to collect them are required.

Sensitive users tend to reluctantly submit their private data to a third party.
A risk of data leakage will happen due to compromised server-side, e.g., when
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we use cloud computing. Users choose not to store their confidential data in
cloud because they worry about that somebody can look at their private data.
In order to convince users for their data security and privacy, an approach to use
privacy-preserved data is required to input training process in deep learning. For
this, the data sent to server must be encrypted and it should be kept encrypted
during the training phase, too. The challenge here is to modify the current deep
learning technique, so that it can process encrypted data. In this paper, we will
discuss state-of-the-art of Privacy-Preserving Deep Learning (PPDL) techniques,
evaluate them, compare pros and cons of each technique, and suggest the issues
and challenges in PPDL.

The remainder of this paper is organized as follows: Sect. 2 discusses clas-
sical privacy-preserving technology in brief. We examine the original structure
of Neural Network and modification needed for privacy-preserving environment
in Sect. 3. Section 4 presents state of the art of PPDL techniques. Furthermore,
Sect. 5 discusses about the analysis of the surveyed methods. Finally, conclusion
and future work are provided in Sect. 6. The main contribution of this work is to
give detailed analysis about state-of-the-art of PPDL method and show which
method has the best performance based on our metrics described on Sect. 4.

2 Classical Privacy-Preserving Technology

Privacy-preserving technique is classified as a special tool that enables the pro-
cessing of encrypted data [4]. The importance of privacy-preserving technique
is to enable computation on data, without revealing the original content. So,
it can ensure the privacy of highly confidential data. Directive 95/46/EC [5]
on the protection of individuals with regard to the processing of personal data
is a European Union directive that regulates the processing of personal data
based on human rights law. The directive states that “[The data] controller must
implement appropriate technical and organizational measures to protect personal
data against accidental or unlawful destruction or accidental loss, alteration,
unauthorized disclosure or access, in particular where the processing involves the
transmission of data over a network, and against all other unlawful forms of
processing.” The goal of privacy-preserving is based on this regulation.

2.1 Homomorphic Encryption

In 1978, Rivest et al. [6] questioned whether any encryption scheme exists to
support the computation on encrypted data without the knowledge of the secret
information. For example, the textbook RSA encryption supports multiplication
on encrypted data without its private secret key and we call such a system as
multiplicative Homomorphic Encryption (HE). Likewise, we call a system as an
additive HE [7] if it supports addition on encrypted data without its secret key.

Fully Homomorphic Encryption (FHE) means that it supports any compu-
tation on encrypted data without the knowledge of the secret key, i.e., for any
operation o and two plaintexts m1,m2, Enc(m1) o Enc(m2) = Enc(m1 o m2).
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It was remained as an interesting open problem in cryptography for decades till
Gentry [8] suggested the first FHE in 2009.

Afterwards, there are a number of research on HE schemes based on lattices
with Learning With Errors (LWE) and Ring Learning With Errors (Ring-LWE)
problems [9–13] and schemes over integers with approximate Greatest Common
Divisor (GCD) problem [14,15]. Early work on HE was impractical but for now,
there are many cryptographic algorithm tools that supports HE efficiently such
as HElib, FHEW, and HEEAN [16–18].

HE can be applicable to various areas. For example, it can improve the secu-
rity of cloud computing system since it delegates processing of user’s data with-
out giving access to the original data. It is also applicable to machine learning
methods for encrypted data by outsourcing computation of simple statistics like
mean and variance of all original data.

2.2 Secure Multi-Party Computation

The concept of secure computation was formally introduced as secure two-party
computation in 1986 by Yao [19] with the invention of Garbled Circuit (GC).
In GC, all functions are described as a Boolean circuit and an oblivious transfer
protocol is used, to transfer the information obliviously.

Then, Goldreich et al. [20] extended the concept to Secure Multi-Party Com-
putation (MPC) in 1987. The purpose of MPC is to solve the problem of collab-
orative computing that keeps privacy of a user in a group of non-trusted users,
without using any trusted third party.

Formally, in MPC, for a given number of participants, p1, p2, · · · , pn, each has
his private data, d1, d2, · · · , dn, respectively. Then, participants want to compute
the value of a public function f on those private data, f(d1, d2, · · · , dn) while
keeping their own inputs secret.

Compared to HE schemes, in secure MPC, parties jointly compute a function
on their inputs using a protocol instead of a single party. During the process,
information about parties’ secret must not be leaked.

In secure MPC, each party has almost no computational cost with a huge
communication cost, while the server has a huge computational cost with almost
no communication cost in HE scheme.

To apply secure MPC to deep learning, we must handle the cost of calculat-
ing non-linear activation functions like sigmoid or softmax since its cost during
training is too large.

2.3 Differential Privacy

Differential privacy was first proposed by Dwork et al. in 2005 [21], to treat the
problem of privacy-preserving analysis of data.

From the definition in [22], a randomized function K gives ε-differential pri-
vacy if for all datasets D1 and D2 differing on at most one element, and for all
S ⊆ Range(K),

Pr[K(D1) ∈ S] ≥ exp(ε) × Pr[K(D2) ∈ S]
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Differential privacy deals with the case that a trusted data manager wants to
release some statistics over his/her data without revealing any information about
the data. Thus, an adversary with access to the output of some algorithm learns
almost the same information whether user’s data is included or not.

Applying differential privacy, there are a number of researches on machine
learning algorithms like decision trees, support vector machines, or logistic
regressions [23–25].

3 Deep Learning in Privacy-Preserving Technology

This section describes the original structure of deep learning technique and the
modification needed for privacy-preserving environment.

3.1 Deep Neural Network (DNN)

Activation Layer. Activation layer, as shown in Fig. 1, decides whether the
data is activated (value one) or not (value zero). The activation layer is a non-
linear function that applies mathematical process on the output of convolutional
layer. There are several well-known activation function, such as Rectified Linear
Unit (ReLU), sigmoid, and tanh. Since those functions are not linear, the com-
plexity becomes really high if we use the functions to compute the HE encrypted
data. So, we need to find a replacement function that only contains multiplica-
tion and addition. The replacement function will be discussed later.

Pooling Layer. Pooling layer, as shown in Fig. 2, is a sampling layer whose
purpose is to reduce the size of data. There are two kinds of pooling: max and
average poolings. In HE, we cannot use max pooling function, because we are
not able to search for the maximum value of encrypted data. As a result, average
pooling is the solution to be implemented in HE. Average pooling calculates the
sum of values, so there is only addition operation here, which is able to be used
over HE encrypted data.

Fig. 1. Activation layer Fig. 2. Pooling layer
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Fully Connected Layer. The illustration of fully connected layer is shown in
Fig. 3. Each neuron in this layer is connected to neuron in previous layer, so it is
called fully connected layer. The connection represents the weight of the feature
like a complete graph. The operation in this layer is dot product between the
value of output neuron from the previous layer and the weight of the neuron.
This function is similar to hidden layer in Neural Network. There is only dot
product function that consists of multiplication and addition function, so we can
use it over HE encrypted data.

Dropout Layer. Dropout layer, which is shown in Fig. 4, is a layer created
to solve over-fitting problem. Sometimes, when we train our machine learning
model, the classification result will be too good for some kind of data, which
shows bias to the training set. This situation is not good, resulting in huge error
during the testing period. Dropout layer will drop random data during training
and set the data to zero. By doing this iteratively during the training period, we
can prevent over-fitting during the training phase.

Fig. 3. Fully connected layer Fig. 4. Dropout layer

3.2 Convolutional Neural Network (CNN)

CNN [26] is a class of DNN, which is usually used for image classification. The
characteristic of CNN is convolutional layer whose purpose is to learn features
which are extracted from the dataset. The convolutional layer has n × n size,
which we will do dot product between neighbor values in order to make convo-
lution. As a result, there are only addition and multiplication in convolutional
layer. We do not need to modify this layer as it can be used for HE data, which
is homomorphically encrypted.
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3.3 Modification of Neural Network in Privacy-Preserving
Environment

Batch Normalization Layer. Batch Normalization (BN) layer was proposed
by Ioffe and Szegedy [28]. The main purpose of BN layer is to fasten the training
process by increasing the stability of NN. This layer receives the output from
activation layer, then do re-scaling process, resulting in a value between zero
and one. BN layer computes the subtraction of each input with the batch mean
value, then divides it by the average value of the batch.

Approximation of Activation Function. There have been several researches
[4,29,30] to do polynomial approximation for activation function. Some well-
known methods include numerical analysis, Taylor series, and polynomial based
on the derivative of the activation function. Numerical analysis generates some
points from ReLU function, then uses the points as the input of approximation
function. Taylor series uses polynomials of different degrees to approximate the
activation function.

Convolutional Layer with Increased Stride. This architecture is proposed
by Liu et al. [30] to replace the pooling layer. They leverage convolutional layer
with increased stride as a substitution of pooling layer. They use BN layer
between the fully connected layer and ReLU. By doing this, the depth of the
data stays the same but the dimension is reduced.

4 State of the Art of PPDL Techniques

In this section, we will discuss state of the art of current PPDL techniques.
We divide PPDL method into three: HE-based PPDL, Secure MPC-based
PPDL, and Differential Privacy-based PPDL. Figure 5 shows the classification
of privacy-preserving method, to the best of our knowledge. The methods are
divided into classical and Hybrid PPDL. Classical privacy-preserving method
does not contain any deep learning technique, whereas Hybrid PPDL is the
combination of classical privacy-preserving method with deep learning. In this
paper, we focus on Hybrid PPDL technique since the classical privacy-preserving
technique has been already outdated.

In order to compare the performance of each surveyed paper, we use five
metrics including accuracy, run time, data transfer, Privacy of Client (PoC), and
Privacy of Model (PoM). Figure 6 shows the metrics for surveyed PPDL works in
this paper. Accuracy means the percentage of correct prediction made by PPDL
model. Run time is the time needed by the model to do encryption, sending
data from client to server, and doing classification process. Data transfer is the
amount of data transferred from client to server. PoC means that neither the
server or any other party knows about client data. PoM means that neither the
client or any other party knows about the model classifier in server. We measure
the average of accuracy, run time, and data transfer of each method. Then, we set
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Fig. 5. Classification of privacy-preserving (PP)

the average value as the standard. If the accuracy value is higher than average,
it means that the accuracy of the proposed method is good. Furthermore, if the
run time and data transfer are lower than average, it means that the run time
and data transfer of proposed method are good. We take the comparison data
from the respective papers as we believe it is the best result that is possible to
achieve. We do not re-execute their codes since not all of the codes are open to
public. We focus our paper to Hybrid PPDL method which combines classical
privacy-preserving with various deep learning practices.

Fig. 6. Metrics for surveyed PPDL works

4.1 HE-Based PPDL

In this section, we discuss PPDL method that leverages HE to ensure the privacy
of the data.

ML Confidential [31], developed by Graepel et al., is a modified CNN that
works on HE scheme. They use polynomial approximation to substitute non-
linear activation function. They use cloud service based scenario, and utilize
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their proposed method to ensure the privacy of data during transfer period
between client and server. At first, they do key generation, producing public
key and private key for each client. Then, client data is encrypted using HE
and transferred to the server. The cloud server will do training process using
the encrypted data, and use the training model to do classification on testing
dataset.

Cryptonets [34], proposed by Gilad-Bachrach et al., applies CNN to homo-
morphically encrypted data. They propose Cryptonets to protect data exchange
between user and cloud service. They show that cloud service can apply
encrypted prediction based on the encrypted data, then give back the encrypted
prediction to user. Later, a user can use his own private key to decrypt it, and
finally get the prediction result. This scheme can be implemented for hospital
service, for example, when a doctor needs to predict the health condition of a
patient and take care of an outpatient. The weakness of Cryptonets is its perfor-
mance limitation on the number of non-linear layer. If the number of non-linear
layer is large, which we can find from deeper Neural Network, the error rate will
increase and its accuracy drops.

PP on DNN [35], proposed by Chabanne et al., is a privacy-preserving tech-
nique on DNN. For the methodology, they combine HE with CNN. Their main
idea is to combine Cryptonets [34] with polynominal approximation for acti-
vation function and batch normalization layer proposed by Ioffe and Szegedy
[28]. They want to improve the performance of Cryptonets, which is only good
when the number of non-linear layer in the model is small. The main idea of this
paper is changing the structure of regular Neural Network that consists of con-
volutional layer, pooling layer, activation layer, and fully connected layer into
convolutional layer, pooling layer, batch normalization layer, activation layer,
and fully connected layer. Max pooling is not a linear function. As a result,
in pooling layer they use average pooling, instead of max pooling to provide
the homomorphic part with linear function. The batch normalization layer gives
contribution to restrict the input of each activation layer, resulting in stable
distribution. Polynomial approximation with low degree gives small error, which
is very suitable to be used in this model. The training phase is done using the
regular activation function, and the testing phase is done using the polynomial
approximation, as a substitution to non-linear activation function. Their exper-
iment shows that their model achieves 99.30% accuracy, which is better than
Cryptonets (98.95%). The pros of this model is its eligibility to work in Neural
Network with high number of non-linear layers, but still gives accuracy more
than 99%, unlike Gilad-Bachrach et al. [34] approach that experiences accuracy
drop when the number of non-linear layers are increased.

CryptoDL [29], proposed by Hesamifard et al., is a modified CNN for encrypted
data. They change the activation function part of CNN with low degree poly-
nomial. This paper shows that the polynomial approximation is indispensable
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for Neural Network in HE environment. They try to approximate three kinds
of activation function; ReLU, sigmoid, and tanh. The approximation technique
is based on the derivative of activation function. Firstly, during training phase,
CNN with polynomial approximation is used. Then, the model produced during
the training phase is used to do classification over encrypted data. The authors
apply their method to MNIST dataset [41], and achieve 99.52% accuracy. The
weakness of this scheme is not covering privacy-preserving training in deep Neu-
ral Network. They use the privacy-preserving for classification process only. The
pros of this work is it can classify many instances (8,192 or larger) for each pre-
diction round, unlike Rouhani et al. [40] that classifies one instance per round.
So we can say that CryptoDL works more effective compared to DeepSecure [40].

PP All Convolutional Net [30], proposed by Liu et al., is a privacy-preserving
technique on convolutional network using HE. They use MNIST dataset [41]
that contains handwritten number. They encrypt the data using HE, then use
the encrypted data to train CNN. Later, they do classification and testing pro-
cess using the model from CNN. Their idea is adding batch normalization layer
before each activation layer and approximate activation layer using Gaussian
distribution and Taylor series. They also change the non-linear pooling layer
with convolutional layer with increased stride. By doing this, they have success-
fully modified CNN to be compatible with HE, and achieve 98.97% accuracy
during the testing phase. We can see that the main difference between regu-
lar CNN and modified CNN in privacy-preserving technology is the addition of
batch normalization layer and the change of non-linear function in activation
layer and pooling layer into linear function.

Distributed PP Multi-Key FHE [39], proposed by Xue et al., is a PPDL
method using multi-key FHE. They do some modification to conventional CNN
structure, such as changing max pooling into average pooling, adding batch
normalization layer before each activation function layer, and replacing ReLU
activation function with low degree approximation polynomial. Their method is
beneficial for classifying large scale distributed data, for example, in order to
predict the future road condition, we need to train Neural Network model from
traffic information data which are collected from many cars. The security and
privacy issue during data collection and training process can be solved using
their approach.

Gazelle [43], proposed by Juvekar et al., is a new framework for PPDL. They
combine HE with GC to ensure privacy in Prediction-as-a-Service (PaaS) envi-
ronment. The goal of this paper is to facilitate a client to do classification process
without revealing his input to the server and also preserve the privacy of model
classifier in server. They try to improve the encryption speed of HE using Single
Instruction Multiple Data (SIMD). They also propose new algorithm to accel-
erate convolutional and matrix vector multiplication process. Finally, Gazelle is
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also able to switch protocol between HE and GC, so it successfully combines
secret-sharing and HE for privacy preserving environment. For the deep learn-
ing part, they leverage CNN that consists of two convolutional layers, two ReLU
layers as activation layers, one pooling layer, and one fully connected layer. In
order to ensure the privacy of the Neural Network model, they hide the weight,
bias, and stride size in the convolutional layer. Furthermore, they also limit
the number of classification queries from client to prevent linkage attack. The
experiment shows that Gazelle fully outclasses another popular technique such
as MiniONN [42] and Cryptonets [34] in terms of runtime.

TAPAS [44], proposed by Sanyal et al., is a new framework to accelerate parallel
computation using encrypted data in PaaS environment. They want to address
the main drawback of HE to do a prediction service, which is the large amount
of processing time required. The main contribution here is a new algorithm to
speed up binary computation in Binary Neural Network (BNN). The algorithm
firstly transforms all data into binary. Then, it computes the inner product by
doing XNOR operation between encrypted data and unencrypted data. After
that, they count the amount of 1’s from the result of previous step. Finally, they
check whether two times of the counted amount is bigger than the difference
between the number of bits and the bias. If yes, then they assign value 1 to
activation function and if no, they assign −1 to the activation function. They
also show that their technique can be parallelized by evaluating gates at the same
level for three representations at the same time. By doing this, the time needed
for evaluation step will be improved drastically. They compared their approach
with and without parallelization. The result shows that using MNIST dataset,
non-parallel process needs 65.1 h while the parallelized process only takes 147 s
to complete.

FHE DiNN [45], proposed by Bourse et al., stands for Fast HE Discretized
Neural Network technique, which is used for PPDL. They want to address com-
plexity problem in common HE technique when it is used in Neural Network.
The deeper the network is, the higher the complexity, resulting in more computa-
tional cost. They use bootstrapping technique to achieve linear complexity to the
depth of the Neural Network. When we compare to standard Neural Network,
there is one main difference, the weight, bias value, and the domain of activa-
tion function in the proposed method needs to be discretized. They use sign
activation function to limit the growth of signal in the range of −1, 1, showing
its characteristic of linear scale invariance for linear complexity. The activation
function will be computed during bootstrapping process, in order to refresh neu-
ron’s output. They successfully show that BNN can accomplish accuracy close
to regular NN by gaining more network size. During the experiment, FHE-DiNN
achieves more than 96% accuracy in less than 1.7 s. Overall, the processing time
of FHE-DiNN is much faster than Cryptonets [34], but their accuracy is slightly
worse (2.6% less).
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E2DM [47], proposed by Jiang et al., stands for Encrypted Data and Encrypted
Model, which is a PPDL framework that performs matrices operation on HE sys-
tem. E2DM encrypts a matrix homomorphically, then do arithmetic operations
on it. The main contribution of E2DM is less complexity needed during computa-
tion process. It has O(d) complexity to do dot product between two encrypted d
× d matrices, instead of O(d2) complexity. They leverage CNN with one convolu-
tional layer, two fully connected layers, and a square activation function. During
the experiment, they use plain text whose size is less than 212 and can predict 64
images during one circle of processing. E2DM achieves 20 fold latency reduction
and 34 fold size reduction compared to Cryptonets [34]. They also show that
compared to MiniONN [42] and Gazelle [43], E2DM has less bandwidth usage
because it does not require interaction between protocol participants.

As a summary, Table 1 illustrates the comparison of each HE-based PPDL
method based on our metrics.

Table 1. Comparison of HE-Based PPDL techniques

Scenario Proposed
schemes

DL
technique

Accuracy
(%)

Run
time (s)

Data
transfer
(Mbytes)

PoC PoM

Cloud
Service

ML
Confidential
[31]

DNN Bad (95.00) Bad
(255.7)

– Yes No

Cryptonets [34] CNN Good
(98.95)

Bad
(697)

Bad
(595.5)

Yes No

PP on DNN
[35]

CNN Good
(99.30)

– – Yes No

E2DM [47] CNN Good
(98.10)

Good
(28.59)

Good
(17.48)

Yes Yes

PPDL via
Additively HE
[48]

CNN Good 97.00 Good
(120)

– Yes Yes

Image
Recogni-
tion

CryptoDL [29] CNN Good
(99.52)

Bad
(320)

Bad
(336.7)

Yes No

PP All
Convolutional
Net [30]

CNN Good
(98.97)

Bad
(477.6)

Bad
(361.6)

Yes No

Content
Sharing

Distributed PP
Multi-Key FHE
[39]

CNN Good
(99.73)

– – Yes No

PaaS Gazelle [43] CNN – Good
(0.03)

Good
(0.5)

Yes Yes

Tapas [44] BNN Good
(98.60)

Good
(147)

– Yes Yes

FHE-DNN [45] DiNN Bad (96.35) Good
(1.64)

– Yes Yes
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PPDL via Additively HE [48], proposed by Phong et al., is a PPDL system
based on a simple NN structure. The author shows that there is a weakness in
Shokri and Shmatikov paper [49] that leaks client data during training process.
The weakness is called Gradients Leak Information. It is an adversarial method
to get input value by calculating the gradient of corresponding truth function to
weight and the gradient of corresponding of truth function to bias. If we divide
the two results, we will get the input value. Because of that reason, Phong et al.
propose their revised PPDL method to overcome this weakness. The key idea of
is letting cloud server updating deep learning model by accumulating gradient
value from users. However, actually there is a weakness too on this approach
because it does not prevent attacks between participants. Proper authentication
to participants should be done by the cloud server to prevent this vulnerability.

Secure Weighted Possibilistic C-Means (PCM) Algorithm for PP [50],
proposed by Zhang et al., is a secure clustering method to preserve data privacy
in cloud computing. They combine C-Means Algorithm with BGV encryption
scheme [12] to produce a HE based big data clustering on a cloud environment.
The main reason of choosing BGV in this scheme is because of its ability to ensure
correct result on the computation of encrypted data. They also address PCM
weakness, which is very sensitive and need to be initialized properly. To solve
this problem, the authors combine fuzzy clustering and probabilistic clustering.
During the training process, there are two main steps: calculating the weight
value and updating the matrix. In order to do it, Taylor approximation is used
here, as the function is polynomial with addition and multiplication operation
only.

4.2 Secure MPC-Based PPDL

In this section, we will talk about PPDL method that leverages Secure MPC to
ensure the privacy of the data.

SecureML [36], proposed by Mohassel and Zhang, is a new protocol for privacy-
preserving machine learning. They use Oblivious Transfer (OT), Yao’s GC, and
Secret Sharing. OT is a security protocol proposed by Rabin [37], in which the
sender of message remains oblivious whether the receiver has got the message
or not. Secret sharing becomes one of basic cryptographic tools to distribute a
secret between parties since the introduction of secret sharing by Shamir [38] in
1979. For deep learning part, they leverage linear regression and logistic regres-
sion in DNN environment. They propose addition and multiplication algorithm
for secretly shared values in linear regression. The authors leverage Stochastic
Gradient Descent (SGD) method in order to calculate the optimum value of
regression. The weakness of this scheme is that they can only implement a sim-
ple Neural Network, without any convolutional layer, so the accuracy is quite
low.
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DeepSecure [40], proposed by Rouhani et al., is a framework that enables the
use of deep learning in privacy-preserving environment. The authors use OT and
Yao’s GC protocol [19] with CNN to do the learning process. DeepSecure enables
a collaboration between client and server to do learning process on cloud server
using data from client. They do security proof of their system by using semi-
honest, honest-but-curious adversary model. It has been successfully shown that
the GC protocol keeps the client data private during the data transfer period.
The cons of this method is its limitation of number of instance processed each
round. They are only able to classify one instance during each prediction round.

MiniONN [42], proposed by Liu et al., is a privacy preserving framework to
transform a Neural Network into an oblivious Neural Network. The transfor-
mation process in MiniONN include the nonlinear functions, with a price of
negligible accuracy lost. There are two kinds of transformation provided by Min-
iONN, including oblivious transformation for piecewise linear activation function
and oblivious transformation for smooth activation function. A smooth function
can be transformed into a continuous polynomial by splitting the function into
several parts. Then, for each part, polynomial approximation is used for the
approximation, resulting in a piecewise linear function. So, MiniONN supports
all activation functions that have either monotonic range, piecewise polynomial,
or can be approximated into polynomial function. During the experiment, they
show that MiniONN beats Cryptonets [34] and SecureML [36] in terms of mes-
sage size and latency.

Table 2. The comparison of secure MPC-Based PPDL techniques

Scenario Proposed
schemes

DL
technique

Accuracy
(%)

Run time
(s)

Data
transfer
(Mbytes)

PoC PoM

Cloud
Service

DeepSecure
[40]

CNN Good
(98.95)

Bad
(10,649)

Bad
(722,000)

No Yes

Image
Recogni-
tion

SecureML
[36]

DNN Bad
(93.40)

– – No Yes

PaaS MiniONN
[42]

NN Good
(98.95)

Good
(1.04)

Good
(47.60)

No Yes

ABY3 [46] NN Bad
(94.00)

Good
(0.01)

Good
(5.20)

No Yes

ABY3 [46], proposed by Mohassel et al., is a protocol for privacy-preserving
machine learning based on three-party computation (3PC). This protocol can
switch between arithmetic, binary, and Yao’s 3PC, depending on processing
needs. The usual machine learning process works on arithmetic operation. As
a result, it cannot do polynomial approximation for activation function. ABY3
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can be used to train linear regression, logistic regression, and Neural Network
model. They use arithmetic sharing when training linear regression model. On
the other hand, for computing logistic regression and Neural Network model,
they use binary sharing on three party GC. During experiment, they show that
ABY3 outperforms MiniONN [42] by four order of magnitude faster, when it
runs on the same machine. Table 2 summarizes the comparison of each Secure
MPC-Based method.

4.3 Differential Privacy-Based PPDL

PATE [33], proposed by Papernot et al., stands for Private Aggregation of
Teacher Ensembles. PATE learning process consists of teacher phase and student
phase based on differential privacy in GAN (Generative Adversarial Network)
[27]. In PATE, firstly, during teacher phase, the model is trained using subset
of data. Then, the student model will learn from the teacher model. The key
of privacy is in teacher model [32], which is not made public. The advantage of
this model is due to the distinguished model, when an adversary can get a hold
on student model, it will not give them any confidential information. They also
show that there is possible failure that reveals some part of training data to the
adversary. As a result, notification to the failure is really important, aside from
developing cryptography technique for privacy protection.

5 Analysis of the Surveyed Methods

After we have surveyed all papers mentioned above, we can see that E2DM [47]
gives the best performance based on our metrics defined here. It is indicated by
getting good accuracy, good run time, good data transfer, and ensure both PoC
and PoM. E2DM is the only work that satisfies all parameters that we define,
which indicates the best PPDL method for this time. Furthermore, from our
analysis above, we believe that main challenge in privacy-preserving machine
learning technique regards to the trade-off between accuracy and complexity. If
we use high degree polynomial approximation for activation function, the accu-
racy will become better, but in cost for high complexity. On the other hand,
low degree polynomial approximation for activation function gives low complex-
ity with worse accuracy compared to high degree polynomial. Choosing correct
approximation method for each privacy-preserving scenario is the main challenge
here.

6 Conclusion and Future Work

In this paper, we have discussed state of the art of PPDL. We analyze the
original structure of Neural Network and the modification needed to use it in
privacy-preserving environment. We also address the trade-off between accuracy
and complexity during the substitution process of non-linear activation function
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as the main challenge. An open problem regarding privacy-preserving machine
learning technique is to reduce computational burden. How to divide the bur-
den between a client and a server optimally, to get the best performance is a
big challenge that needs to be addressed in the future. Another challenge is to
ensure the PoC and PoM at the same time, while maintaining the computa-
tion performance. Ensuring the PoC and PoM requires two extra computation
from client’s and model’s point of view, respectively. Our survey shows that only
E2DM has successfully fulfill those requirements, even though its accuracy still
lower than CryptoDL [29], DeepSecure [40], and MiniONN [42]. However, those
three methods only satisfy one of PoC or PoM, not both of them. Achieving more
than 99% accuracy with PoC and PoM properties becomes the main challenge
of the future PPDL method. Lightweight PPDL with fast and cheap cost is also
an interesting challenge for future work.
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Abstract. Security Metrics help network administrators master the
security status and strengthen security management for many years.
Recently, with the usages of many new techniques and network struc-
tures, the cyber attacks become complex and the security measurement
has received more and more attentions. However, existing methods usu-
ally focus on one aspect of security and the indicators used are usu-
ally difficult to quantify, which makes it difficult to understand network
security status in some real circumstance. In this paper, we consider the
network system security from the perspective of attack and defense and
the changes of external security environment to propose a comprehen-
sive and quantifiable index system for network security measurement.
We illustrate the corresponding theories and the usages of each selected
indicators and we also complete the real-time security measurement in
various attacks and defenses by using NS3 simulator. The simulation
results verify the correctness and rationality of the proposed Security
Measurement Index System.

Keywords: Security metric · Index system ·
Attack and defense confrontation · NS3 simulation

1 Introduction

The rapid growth of information technology promoted the development and the
quality of computer networks, and also bring cyber attacks to users. Increasing
cyber threats and hacker activities made the network environment become seri-
ous and became the headache of modern networks system. In order to relieve
user’s safety anxiety and accelerate the development and use of modern net-
work technologies, a security measurement to the network is necessary. However,
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existed rule-based or machine learning-based security measurement methods are
passive, single-assist mitigations for specific security issues. These measures lack
of systematic considerations, which may blindly add protective equipment, waste
manpower and material resources, and can no longer meet the current network
security needs [1]. In order to fully understand the network security status and
effectively strengthen network security, network security metric has become a
hot and difficult issue. Although some security metric standard have been estab-
lished, many of them have some limitations and may lead to some issues.

Existed network security metric models, such as the National Institute of
Standards and Technology (NIST) cyber security framework, the Common Cri-
teria for Information Technology Security Assessment (CC), the Information
Security Technology Framework (IATF) and the information security protection
level (ISPL) are define the security measurement with standards or frameworks.
These security standards or frameworks tend to focus on product or manage-
ment, and indicators in them are not quantified. In addition, there are also some
researchers conduct network risk assessments from the vulnerabilities [3]. Com-
mon methods include probability-based attack graph model, system evolution of
Markov chain random representation, fault tree analysis and attack tree, etc. [4].
However, these existed methods only focus on the possible risks, they does not
consider the changes of the network system’s own detection and defense capa-
bility and the indicators used are usually difficult to quantify. In order to solve
the problems mentioned above, in this paper, we propose a complete, dynamic,
quantifiable and comparable index system for security measurement. Through
the real-time measurement and calculation of security indicators, the dynamic
changes of network status can be accurately described, and the internal causes
of network status changes can be deeply reflected, so that security-enhanced
decision support can be provided to security management.

The main contributions of this paper are listed as follows:

1. We propose a comprehensive, dynamic, quantifiable and comparable index
system from the perspective of offense and defense for network security mea-
surement.

2. We implement the multiple attack and defense modules in NS3 simulator.
3. We use the NS3 simulator to measure the network security status in real time,

verify the rationality and correctness of the proposed index system.

The remainder of this article is organized as follows. Section 2 introduces the
background knowledge and related work of security metric. A security index sys-
tem is proposed and the weights were determined in Sect. 3. Section 4 completes
the real-time measurement of the network status and verify the correctness and
rationality of the index system based on NS3 simulator. Section 5 summarizes
the whole article and points out the directions of future work.

2 Related Work

Security Measurement is important and many existed works has been done in
the literature. Some authoritative and relatively new security standards, includ-
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ing Common Criteria for Information Technology Security Assessment (CC),
Classified Protection of Information Security (CPIS), Network and Information
Security Directive (NIS), National Institute of Standards and Technology (NIST)
and Information Assurance Technical Framework (IATF) have defined their indi-
cators for security evaluation. We strictly reviewed these indicators, and com-
pare them against comprehensiveness, dynamics, quantification, objectivity, and
comparability. The results of the comparison are shown in Table 1.

Table 1. Index system comparison

Standard Comprehensiveness Dynamics Quantification Objectivity Comparability

CC No No No No Yes

CPIS Yes No Yes No Yes

NIS Yes Yes No No Yes

NIST Yes Yes No No Yes

IATF Yes Yes No No Yes

Besides those published standards, private research on this problem are also
contributed. In [6], the authors discuss the importance of network metric and
believes that security metric should be characterized by certainty, simplicity,
objectivity and repeatability. Then several commonly used metric method are
introduced and the security metric work is introduced from the policy and
economic aspects. However, this article only introduces the basic knowledge
of network metric, and does not propose a specific metric scheme. Literature
[7] proposes a hierarchical security threat metric model, including three levels
of service, host and network, and quantifies the evolution of security risks of
these levels based on IDS alarm and network bandwidth occupancy. The arti-
cle proposes some threat risk calculation formulas, which can quantify the risk
index of service, host and network in real time, and verify the correctness of
risk index quantification through experiments. However, the article only consid-
ers the attack risks, and does not consider the changes in the network’s own
defense capabilities. In [8], the authors believe that the core of security metric is
the result of an attacker using vulnerability to launch attacks and interact with
defense. From the perspective of attack and defense confrontation, the metrics
are divided into four categories: vulnerability indicator, defense indicator, attack
indicator and status indicator. The index system proposed in the paper is rel-
atively comprehensive, but just introduce the meaning of these indicators and
lack quantitative calculation formulas.

Although the researches on security metric are plenty, but the existed results
are single aspect, static and subjective, a comprehensiveness, dynamics and
quantifiability security metric are always required.

3 Security Metric Index System

Building a quantifiable and relatively complete index system is the main purpose
of our work. In order to solve the shortcomings of the existing index system, we
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propose a quantifiable, comprehensive, dynamic and universal index system from
the perspective of offensive and defensive confrontation. As shown in Fig. 1, we
consider network’s own defense capability and threats caused by attack, vulner-
ability. In addition, the network performance anomaly index is proposed from
the perspective of overall network communication performance. We describe the
definition of all indicators in the proposed index system, and then the calculation
and quantization formula of indicators will be given and the calculation results
are normalized.

Fig. 1. Network security index system

3.1 Security Protection Capability

Threat Detection Capability. Threat Detection Capability (TDC) is a metric
that measures the detection and monitoring efforts of devices such as IDS or
monitoring audit system for cyber attack. Threat detection capability is related
to threat detection intensity level (TDIL) and intrusion detection classification
performance. These two indicators are described below.

Threat Detection Intensity Level. It describes the scope and effectiveness of
attack detection by threat detection device. To best of our knowledge, main-
stream attacks account for the majority of all attacks, such as DDoS, XSS,
buffer overflow, etc. Therefore, successful detection of mainstream attacks con-
tributes a lot to network security [9]. We use interval data to describe different
levels of threat detection capability, as shown in Table 2.
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Table 2. Hierarchical definition of threat detection intensity

Level Capability Threat detection intensity description

1 0 No threat detection device, no threats can be detected

2 0.3 Can only detect a few threats, the detection effect is poor

3 0.8 Can detect mainstream threats, the detection effect is good

4 1.0 Can detect most threats, the detection effect is very good

Intrusion Detection Classification Index. IDS is a network behavior classifier
and its role is to identify threat behaviors [10]. Therefore, we can use traditional
classification evaluation indicators in statistical learning to measure intrusion
detection capability. The commonly used classification performance indicators
include recall, precision and etc. Precision (P) indicates the correct proportion of
the prediction in the positive samples, and recall (R) indicates the proportion of
the true positive samples that are predicted as positive samples. P and R reflect
the classification performance from different aspects, but sometimes there are
conflicts [11]. To deal with this problem, we use F-Measure (F1) as the intrusion
detection performance indicator. The formula for F1 is as follows.

F1 =
2 ∗ P ∗ R

P + R
(1)

Threat Detection Capability Calculation. The value of TDC is equal to the prod-
uct of TDL and F1. The calculation formula is as follows.

TDC = TDL ∗ F1 (2)

Where F1 is calculated based on the historical detection data of IDS. The TDC
has no dimension and the value ranges from 0 to 1, so it is not necessary to
normalize.

Threat Resist Capability. Threat Resist Capability (TRC) is a measure of
the ability to block or mitigate threats. It can defend against cyber attacks,
and prevent malicious behavior detected in time to ensure the network security.
The devices with threat resistance mainly include firewall, anti-virus software,
intrusion prevention system, and active defense technology [12]. TRC is related
to the threat resist intensity level and the blocking ratio. And these indicators
are described below.

Threat Resist Intensity Level. TRL measures the range and effect of security
protection and preventing threat. To best of our knowledge, mainstream attacks
occupy a large proportion, so the ability to defend against mainstream attacks is
important for network defense capabilities. We use interval data to describe the
ability of different threat level, and Table 3 gives the definition of threat strength
level.
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Table 3. Hierarchical definition of threat resist intensity

Level Capability Threat resist intensity description

1 0 No security measures to reach and prevent threats

2 0.3 Can only defend against few threats, the protection effect is poor

3 0.8 Can defend against mainstream threats, the protection effect is good

4 1.0 Can protect most threats, the protection effect is very good

Blocking Ratio. Blocking ratio (BR) is the ratio of the number of successful
defending attacks to the number of hosts that are attacked. It can measure the
efficiency of defense equipment. The formula is as follows.

BR =
i=1∑

n

Blk(i)
En(n)

∗ 100%, Blk(i) ∈ [0, 1] (3)

Where n is the number of network device, Blk(i) is the degree to which the i-th
device successfully blocked the attack, ranging from 0 to 1, and En(n) indicates
the number of devices being attacked.

Threat Resist Capability Calculation. The value of TRC is equal to the product
of BR and TRL. The calculation formula is as follows.

TRC = TRL ∗ (BRb ∗ mbr1 + BRt ∗ mbr2),mbr1 + mbr2 = 1 (4)

Where BRb is calculated according to historical data of the defense device, and
BRt is calculated in the current security metric period T. In order to prevent
the security metric calculation error caused by the zero-day attack, the value of
BR is the weighted sum of BRb and BRt. For real-time measurement of network
status, we need to pay more attention to the current measurement period, so
that mbr1 = 0.2 and mbr2 = 0.8. TRC has no dimension and the range of values
is between 0 and 1, so it is not necessary to normalize.

3.2 Attack Threat Risk

Attack Severity. The Attack Severity (AS) measures the extent to which an
attack is harmful to network. Traditional cyber risks involve three elements,
namely threat, asset, and vulnerability [13]. The attack severity defined here
fuse threat and asset, which can more comprehensively and accurately measure
the degree of harm caused by attack to network resources. The calculation of
the severity of the attack involves the attack severity level and the target asset
importance level (TAIL). Their definitions are described below.

Attack Severity Level. Attack Severity Level (ASL) ranks the severity of an
attack and visually shows the difference between different attacks. We determine
the severity of the attack according to the attack classification and prioritization
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in the snort user manual. The snort manual divides the attack into three levels,
namely high, medium, and low. In this paper, we use 3, 2, 1 to represent these
three levels. The snort user manual already contains most of the attacks. For
some attacks that are not involved, we give them the same severity level as the
same type of attack.

Target Asset Importance Level. Successful implementation of a cyber attack
must be done through the target of the attack. Different device or service may
become target of intruder, such as router, firewall, and user data. The target
asset importance level (TAIL) is determined by the target type. We classify
TAIL into there levels, namely high, medium and low, represented by 3, 2 and
1.

Attack Severity Calculation. The severity of the attack is related to the type and
the number of attack, and the importance of the target assets. The calculation
formula is as follows.

AS =
i=1∑

m

(1 + ki ∗ cfi) ∗ r ∗ 10ASLi ∗ Ni ∗ TAILi (5)

Where m is the number of attack category, ASLi is the severity level of the
i-th attack, Ni is the number of occurrences of the i-th attack, and TAILi is
the asset importance level of the i-th attack’s target. We use 10ASLi instead
of ASLi according to the literature [7]. In order to more accurately reflect the
impact of attack and defense interaction on the network, we add the resist factor
r to indicate that attacks are successfully resisted by defense. The value of r is 0.1
indicating that the attack is only 10% of the original when the attack is resisted.
We divide attack into independent attack and coordinated attack, and their
severity calculation methods are slightly different. Implementing an coordinated
attack scenario requires multiple attack steps in sequence. And the attack that
occurs later is more threatening, so we propose the attack correlation factor cf to
more accurately describe the impact of attack. ki is the number of attack steps
before the i-th attack, and cfi is the attack-related factor, indicating the degree
of the collaborative attack threat increasing, the value of cfi is 0.1.

Max-min and z-score normalization are not applicable because it is difficult
to determine the maximum number of attacks based on historical statistics. To
solve this problem, we choose the negative exponential function e−a∗x as the
mapping function. It maps the indicator to between 0, 1 and is very close to the
max-min mapping. Based on experience and historical data analysis, we take
a equal to 0.005, a can be adjusted according to the actual size and status of
network, so the formula of AS is normalized as follows.

AS′ = e−a∗AS (6)
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Vulnerability Risk. The execution of the attack is inseparable from the
exploitation of the vulnerability. These vulnerabilities and efforts to compro-
mise these vulnerabilities are the most commonly collected data for understand-
ing network security. Many researchers have conducted network risk assessment
and analysis from the perspective of vulnerability analysis and have achieved
many results. The risk caused by the vulnerability is a potential energy that can
affect the network. Therefore, based on previous vulnerability risk assessment,
we propose vulnerability risk (VR) indicator. VR is related to the vulnerabil-
ity severity score and TAIL. The latter has been quantitatively analyzed in the
previous section. Below we describe the vulnerability severity score.

Vulnerability Severity Score. CVSS is often used to measure the severity of
vulnerabilities and help people determine their priority. It is mainly based on
measurements in different dimensions, namely basic, temporal, and environmen-
tal measure. In CVSS, the vulnerability score is between 0 and 10 and the high
score represents a very serious risk. Our vulnerability severity score (VSS) is
based on the CVSS.

Vulnerability Risk Calculation. The value of VR is the product of VSS and TAIL.
The calculation formula is as follows.

V R =
i=1∑

n

V SSi ∗ TAILi (7)

Where n is the number of vulnerabilities, VSSi is the severity score of vulnerabil-
ity i, and TAILi is the asset importance of the device with vulnerabilities i. We
use the negative exponential function e−b∗x as a mapping function to normalize
the vulnerability risk. Based on the analysis of historical risk data, we take c
equal to 0.005. The normalized formula for VR is as follows.

V R′ = e−b∗V R (8)

Asset Damage Degree. Intruders break the network and cause damages to
the network, such as server crash, database leak, and router outage. Network
damage directly affects network security and we propose the asset damage degree
(ADD) to measure the degree of asset damage. The value of ADD is determined
by TAIL, and the calculation formula is as follows.

ADD =
i=1∑

n

TAILi (9)

Where i represents the i-th damaged target, and TAILi is the severity of the
damaged target. We use the exponential function e−c∗x as a mapping function
to normalize. Based on the analysis of historical NDD data, we take c equal to
0.2. The normalization formula is as follows.

ADD′ = e−c∗ADD (10)
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Network Performance Anomaly Index. In order to measure the net-
work security status more accurately, we provide an overall research perspec-
tive by detecting abnormal changes in network communication performance.
When applying the metric system to the actual network, we may encounter
some unknown attacks. The metrics of attack and defense indicators will be
deviated, and the network performance metric can slightly alleviate this devi-
ation. We propose 4 indicators, including average end-to-end delay abnormal
index (AEEDAI), network throughput abnormal index (NTPAI), packet loss
rate abnormal index (PLRAI) and number of flows abnormal index (NFAI),
which are described in detail below.

Average End-to-End Delay Abnormal Index. End-to-end delay refers to the time
it takes for a packet to be sent from being received. Some attacks can be reflected
in end-to-end delay changes, such as the router’s routing table failure and server
resource exhaustion. Average End-to-End Delay (AEED) refers to the average of
all communication link delays across the network. AEEDAI indicates the extent
to which AEED deviates from the normal range. The calculation formula is as
follows.

AEEDAI =
‖AEED − AEEDnorm‖
AEEDmax − AEEDnorm

‖AEED − AEEDnorm‖ =
{
AEED − AEEDnorm, other
0, AEED − AEEDnorm < 0

(11)

Where AEEDnorm is the average threshold of AEED, and AEEDmax is the
maximum threshold. We normalize AEEDAI using the exponential function
e−d∗x as a mapping function. Based on the historical AEED data, we take the
value of d as 0.005. The normalization formula for AEEDAI is as follows.

AEED′ = e−d∗AEDD (12)

Network Throughput Abnormal Index. Network throughput represents the actual
maximum data transmission rate, mainly related to network congestion, stor-
age mechanism and processor performance. The Network Throughput Abnormal
Index (NTPAI) indicates the extent to which the network throughput deviates
from the normal range. The calculation formula is as follows.

NTPAI =
‖NTPnorm − NTP‖
NTPnorm − NTPmin

(13)

Where NTPnorm is the maximum throughput of the network, and NTPmin is
the minimum threshold of NTP. We use max-min method to normalize NTPAI
as shown below.

NTPAI ′ =
NTPAImax − NTPAI

NTPAImax − NTPAImin
(14)
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Packet Loss Rate Abnormal Index. The packet loss rate (PLR) refers to the ratio
of lost data packets to transmitted data packets. Many attacks can increase the
packet loss rate, such as routing attacks and virus attacks. PLRAI is an indicator
that we propose to measure the extent to which PLR deviates from the normal
range. The calculation formula is as follows.

PLRAI =
PLR − PLRnorm

PLRmax − PLRnorm
(15)

Where PLRnorm is the normal threshold of PLR, and PLRmax is the maximum
threshold. We normalize PLRAI using the min-man rule as shown in Eq. 16.

PLRAI ′ =
PLRAImax − PLRAI

PLRAImax − PLRAImin
(16)

Number of Flows Abnormal Index. A flow is a classification of packet charac-
teristic. In general, source destination IP, source destination port and protocol
with the same data packet form a stream. The number of flow will fall within a
normal range. If the number of flow changes greatly, it indicates that the network
status changes. Therefore, we propose NFAI to measure the extent to which the
number of flow deviates from the normal range. The calculation formula is as
follows.

NFAI =
‖NF − NFnorm‖
NFmax − NFnorm

(17)

Where NFnorm is the average number of flow, and NFmax is the maximum
number of flow. We use the exponential function e−g∗x as a mapping function
to normalize NFAI. Based on the historical data, we take g equal to 0.005. The
normalized formula is as follows.

NFAI ′ = e−g∗NFAI (18)

We propose four indicators based on commonly used network performance
parameters to describe the degree of network performance anomalies. And these
indicators can mitigate attack and defense metric errors caused by zero-day
attacks. The threshold of the network performance indicators in this paper is
determined by 30 experimental statistics.

Indicator Weight Calculating. There are many methods for determin-
ing indicator weights, such as Delphi, AHP, principal component analysis and
entropy weight. The first two are subjective, but can can rely on expert experi-
ence. The latter two are relatively objective, but they are not applicable here,
because different network configurations and changing network environments can
result in unreliable statistics. In this paper, we use the AHP method to calculate
the weight of all indicators.
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4 Security Metric Simulation Implementation

In order to verify the rationality and correctness of the proposed index system,
we use the NS3 simulator to achieve real-time measurement of network status.
First, we need to build an enterprise network and configure network resources and
vulnerability information. Then implement different attack and defense modules
and build different network scenarios. Finally, the security indicators are col-
lected and calculated in different scenarios, and the real-time network status
value is obtained, and the rationality of the index system is judged according to
the actual network status.

4.1 Build Network Scenario

Simulation Environment. We use the simulator NS3.25 to build the enter-
prise network. We use 101 nodes to simulate the equipment of the intranet,
and 125 nodes are used to simulate the external network. Different subnets are
connected through routers. The simulated network topology is shown in Fig. 2.
We configure the resources in the enterprise network and list the vulnerability
information as shown in Table 4.

Fig. 2. Simulation network topology

4.2 Offense and Defense Module

In order to measure the impact of offense and defense on network, we add differ-
ent strengths of attack and defense to the network scenarios in NS3. As NS3 sim-
ulator does not involve any security function, the implementation of the attack
module is to use the attack principle to embed the attack function code in NS3.
NS3 is more flexible than the actual network attack tools, and there is no lim-
itation of system permission [14], so we can modify the kernel source code as
needed. We implemented the attacks listed in Table 5, and also implemented dif-
ferent defense modules in NS3 to defense the attacks, including IDS and firewall,
etc.
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Table 4. Implemented defense module

Asset TAIL Quantity System type Vulnerability number CVSS score

Router 3 1 MikroTik CVE-2018-10070 7.8/10

switcher 3 2 Cisco IOS XE CVE-2018-0165 6.1/10

CVE-2018-0090 5.0/10

Database server 2 4 Windows CVE-2018-2775 4.0/10

CVE-2018-2769 4.0/10

Web server 2 1 Linux CVE-2005-1110 7.5/10

Mail server 2 1 Windows CVE-2004-2168 5.0/10

TFTP server 2 1 Windows CVE-2001-1097 5.0/10

User host 1 10 Windows CVE-2011-0514 5.0/10

User host 1 35 Windows CVE-2013-1451 4.0/10

User host 1 6 Linux CVE-2017-8779 7.8/10

User host 1 40 Linux CVE-2008-5183 4.3/10

Table 5. Implemented attack module

Attack type Dependent protocol

TCP-SYN, UDP, ICMP flood attack TCP, UDP, ICMP

TCP-SYN, UDP port scan TCP, UDP

IP scanning ICMP

TCP-SYN, UDP-Echo, ICMP-Echo

reflection amplification attack

TCP, UDP, ICMP

Botnet Irc

IP spoofing IP

Blackhole attack AODV

Wormhole attack AODV

4.3 Security Metirc Experiment Analysis

We designed two sets of experiments to analyze the network state changes in
attack and defense confrontation. The attack strength level in the experiment
refers to the snort user manual [15], and the defense strength level is determined
by the number of defense device. Table 6 lists the attack severity levels and attack
targets. Table 7 shows the defense equipment and defense strength. The security
metric experiment is detailed below.

The Impact of Attack on Network Security. In order to measure the impact of
attacks on network security, we need to fix the defense strength and then adjust
the different attack strength. We first determined that the defense device is CRT-
RS-IDS, blacklist and ACL, and then set up four different attacks. Table 8 lists
five different offensive and defensive scenarios. “/” means no attacks occur.

Figure 3 show the changes in comprehensive indicators. In subgraph 1, we can
find that the network status value exceeds 0.8 when the attack did not occur
because the strength level of the defense is 3. When an attack occurs, the security
status values in scenario 1 and 3 are drastically reduced because the protection
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Table 6. Attack information used in the experiment

Attack type Severity level Attack target

IP spoofing 1 Combined with DDoS attack

UDP DDoS 3 TFTP server

UDP DoS 2 TFTP server

UDP port scanning 1 DMZ area server

TCP-SYN DoS 2 Mail server

IP scanning 1 Enterprise network equipment

TCP-SYN port scanning 1 DMZ area server

Table 7. Defense strength information used in the experiment

Defense Defense
strength
level

Threat
detection
intensity
level

F-measure

CRT-RS-IDS, blacklist, ACL 3 3 0.99

CRT-RS-IDS, BF-ICMP-DEFEND-DDoS, blacklist, ACL 3 3 0.99

CRT-RS-IDS, blacklist, ACL, IP-MAC binding 3 3 0.99

CRT-RS-IDS, BF-ICMP-DEFEND-DDoS 3 3 0.99

CRT-RS-IDS, blacklist 2 3 0.99

device cannot defend against DDoS or DoS attacks. The attacks in scenario 2
and 4 can be detected by CRT-RS-IDS and blocked by blacklist or ACL, so the
security status value is slightly reduced. Subgraph 2 shows the impact of the
attack on security capabilities. When no attack occurs, multiple defense devices
make the network highly resistant. If the attack breaks through the defense, such
as scenario 1 and 3, then the network will be damaged and security protection
ability will decline. If the attack is successfully defended, the security protection
capability is basically unaffected. Subgraph 3 shows the impact of an attack on
the attack threat capability. The attack threat capability is less than 1 when no
attack occurs, because the vulnerabilities cause the network to have a threat risk.
We can find that the attack strength is directly proportional to the attack threat

Table 8. Implemented defense module

Defense 0–20 s 20–40 s 40–60 s 60–80 s 80–100 s

1 / / IP spoofing, UDP DDoS(A1) / /

2 / / UDP DDoS(A2) / /

3 / / IP spoofing, UDP DoS(A3) / /

4 / / UDP port scanning(A4) / /

5 / / / / /
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Fig. 3. The impact of attacks on network comprehensive indicators

capability from scenario 1, 2, 3 and 4. Subgraph 4 depicts the impact of attacks on
network performance. When no attack occurs, the network performance anomaly
index is very low, so the network communication performance is good. When an
attack occurs, the attack that breaks through the defense has a large impact on
the network performance, such as scenario 1 and 3, because the large amount of
data generated in a short time causes the communication link and bandwidth to
be occupied, resulting in an increase in network delay and PLR. When the attack
is successfully blocked by the defense, the network communication performance
is almost unaffected. In general, the measurement results can accurately reflect
the real-time impact of different attacks on network status.

The Impact of Defense on Network Security. Figure 4 describes the impact of dif-
ferent defense strengths on comprehensive indicators. In subgraph 1, the network
status value increases as the security level increases without attack. When there
is no protection, such as scenario 5, the network security status is lower than
the security baseline due to the risk of vulnerabilities. When an attack occurs,
attacks can be successfully blocked by BF-ICMP-DEFEND-DDoS in scenarios 1
and 3, so network status value is not greatly affected. In other cases, the network
is not effective against DDoS attacks with IP spoofing, and the network status
value is below the security baseline. From subgraph 2, we can find that the secu-
rity protection capability is directly related to the security defense strength. If
the network defense can defend against the attack, the defense ability will not be
affected, otherwise it will be seriously degraded, such as scenario 2 and scenario
4. In scenario 5, when there is no defense, the value of security protection capa-
bility is zero. Subgraph 3 shows that the attack threat capability depends not
only on the strength of the attack, but also on the outcome of the attack and
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Fig. 4. The impact of defense on network comprehensive indicators

defense interaction. Subgraph 4 shows the impact of defense strength on net-
work performance. Whether network performance is seriously affected depends
on whether the current attack breaks through the defense, such as scenario 2
and 3. In general, the measurement results can accurately reflect the real-time
impact process of different defenses on network status.

Combining the above analysis to compare the real state of the network with
the values of the various comprehensive indicators, the accuracy and rationality
of the indicator system can be verified.

5 Conclusion and Future Works

This paper describes the importance and necessity of security metric, and points
out the deficiencies of metrics by analyzing and comparing existing security stan-
dards. In order to solve the problem that the existing index system cannot be
quantified, we propose a quantifiable, comprehensive, dynamic and comparable
network security index system through the perspective of attack and defense
confrontation and calculate the index weight through AHP. The index system
considers both the threat brought by the attack and the defense capability of
the network itself. AHP can use the data collected in real time to ensure the reli-
ability and accuracy of the measurement results, and reduce the computational
difficulty and complexity. We also used NS3 simulator to test the proposed meth-
ods, the simulation results show the quantitability and dynamics of the indicator
system, but also verify that the index system is accurate and comprehensive.

In the future, we need to take a more objective and appropriate weight calcula-
tion method to measure the network security status more accurately. More types
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of attacks, such as XSS, SQL injection and buffer overflows, and other types of
network metrics, such as adhoc, should also be studied in our future work.
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Abstract. The explosive growth of Android malware has led to a strong
interest in developing efficient and precise malware detection approach.
Recent efforts have shown that machine learning-based malware classifi-
cation is a promising direction, and the API-level features are extremely
representative to discriminate malware and have been drastically used
in different forms. In this work, we implement a light-weight classifica-
tion system, CatraDroid, that recovers the semantics at call graph level
to classify applications. CatraDroid leverages text mining technique to
capture a list of sensitive APIs from the knowledge consisting of exploits
databases, code samples, and configurations of codebases. It builds a
complete call graph for Android applications and identifies call traces
from entry methods to sensitive API calls. Using call traces as features,
our classification approach can effectively discriminate Android malware
from benign applications. Through the evaluation, we demonstrated that
our approach outperforms the state-of-art API-level detection approach,
with high-quality features extracted by efficient static analysis.

Keywords: Android · Malware detection · Machine learning ·
Classification · Call graph

1 Introduction

Malware has posed a great threat to the Android ecosystem. Detecting malicious
behavior of Android applications is complicated by the nature of the component-
based Android framework and the incomplete control and data flow implicated
by the callbacks and runtime binding mechanism. Static analysis for Android
applications usually address different approach to reconstruct the complete con-
trol flow and data dependence information [13,36] as the basis of malicious
behavior detection. These efforts are likely to cause some performance issue.
Machine learning-based malware detection is a promising approach to detect
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Android malware because of the scalability and the flexibility to integrate diverse
aspects of the characteristics from Android applications.

The greatest challenge of using machine learning-based malware detection
is how to extract and select representative features for the malicious behaviors
in Android applications. Many different feature categories have been considered,
such as user permissions [30,32], API calls or relations [9,24,26,35,39], and more
complicated semantic features [28]. Some efforts have combined different feature
categories to build classifiers for discriminating complicated malicious behaviors
[12,18].

API-level features are considered to be extremely representative and also
easy to be extracted. A lot of features for malware detection are built upon API,
e.g. the frequency of API calls [9], the code-block and package relationship of
APIs [24], the similarity between API dependency graphs [39], data dependence
paths starting from and leading to specific APIs [26], source-sink pairs of APIs
[14], and some abstract correlations between APIs [35]. Some of these features
are fine-grained to catch both the control flows and data dependencies to dis-
criminate malicious behaviors. However, the scalability usually becomes an issue
especially when the data flows are considered to specify the program semantics
of applications.

In this work, we propose CatraDroid, a supervised learning-based approach
that recovers the semantics of program at call graph level to classify Android
applications and detect malware. Without constructing any data dependency as
did in [14,26,39], our approach tracks through the call graph and finds out all the
critical call traces leading from the entry methods to the sensitive API calls. The
sensitive APIs are discovered by text mining for the keywords of well-established
Android vulnerability descriptions, code samples, and the configurations of well-
known codebases. In the learning phase, we build different classification models
with these call traces and use them to predict the malicious behavior of unknown
applications. We evaluated CatraDroid on 15733 distinct applications including
10880 malware, and the evaluation results revealed that our approach can out-
perform the state-of-art API-level detection approach on different classification
models. The time cost of our static analysis is reasonable.

In summary, we make the following contributions:

1. We build a more comprehensive sensitive API list than the state-of-art app-
roach using text mining on exploits databases, code samples, and configura-
tions of codebases.

2. We construct the complete call graph for applications and identify call traces
from entry methods to sensitive API calls as the fine-grained features for
classifying Android applications and discriminating malware.

3. The evaluation results showed that CatraDroid outperformed the baseline
approach in classification performance, demonstrated the quality of features,
the comprehensiveness of sensitive API list, as well as the efficiency of our
static analysis.
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2 Related Work

Machine learning has been pervasively used in Android malware detection. In
this area, API-related features have been addressed as one of the most critical
features. These features can be extracted by either static or dynamic analysis.

In order to derive the API level features using static analysis, DroidAPIMiner
[9] addresses the frequency of API calls and the package information issuing the
API calls. For the critical APIs, a data flow analysis is performed to infer the
real value of parameters. DroidSIFT [39] constructs the API dependency graph
and queries the similarity scores between graphs to detect anomalies. Droid-
Miner [38] uses two-tiered behavior graphs constructed with relations of either
lifecycle methods or permission-related APIs to characterize malicious behav-
iors. DroidADDMiner [26] uses a build-in data-flow analysis to derive the API
data dependence paths for generating the modalities and features. A similar
principle was taken by MUDFLOW [14] to detect the abnormal data dependen-
cies bridged by specific pairs of source-sink APIs. MalPat [35] uses permission
information to decide the sensitivity of APIs and the correlations between them.
The correlations between APIs are more abstract compared with the source-sink
relations [14,33] and the relations built with the call traces in this work. Drebin
[12] adopts API calls as one aspect of the features relevant to malicious attacks.

Another choice to derive API level features is dynamic analysis, usually
based on sandboxing and profiling the sequence of critical system calls or API
invocations. CrowDroid [15] uses the API call sequences in the Linux kernel as
features. Dimjašević et al. [21] tracked the system calls as features to classify
Android malware and extensively evaluated the quality of their heuristics-based
feature encoding. DroidScribe [20] generates multi-level features, including pure
system calls, Binder communication, and abstract behavioral patterns. It has
demonstrated that the features at different levels are better in quality than the
innocent features of system calls. MADAM [34] takes a similar multi-level app-
roach to detect user’s and device’s anomaly based on the kernel-level system
calls, application-level critical API calls, user-level activities, and package level
metadata. Both dynamic monitoring and static assessment are used to capture
these features. EnDroid [23] also combines system-level call sequences with many
application-level dynamic features to develop effective malware detection. Droid-
Cat [16] can profile a diverse set of dynamic features based on method calls and
inter-component communication mechanism and use these features to categorize
malware with high accuracy. One of the weaknesses of dynamic analysis-assisted
approaches is that it is unsound and tend to miss critical features during profiling
when the inputs are insufficiently fed or the configurations are inappropriately
given.

3 CatraDroid

In this section, we propose CatraDroid, a call-trace driven approach to detect-
ing Android malware. In general, the approach of CatraDroid is a three-phase
learning-based classification:
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1. We generate a list of sensitive APIs according to the knowledge base derived
from online exploits databases, code samples, and configurations of well-
known codebases with text mining technique.

2. We build a complete call graph over each reverse-engineered Android applica-
tion, identify all the call traces triggered from the entry method and leading
to some sensitive API call.

3. We encode the call traces into feature vectors and apply supervised-learning
with different classifier models to discriminate malware from benign applica-
tions.

3.1 Sensitive API List Generation

Many Android APIs operate on sensitive data, e.g. contact list or SMS messages,
or require different critical services, e.g. URL/database connections, HTTPRe-
sponse. These APIs with critical functionality tend to be exploited by attackers
to conduct some malicious behaviors threatening user’s privacy or system secu-
rity. We call them sensitive APIs. In many API-based detection systems, the
identification of sensitive APIs mainly relies on the supervision of experts or
sandbox-based dynamic profiling. Both the domain-specific knowledge needed
by the experts and the profiled call sequences are impacted by the scale of
samples, and may have a significant bias. For example, TaintDroid [22] was
reported to manually embed 62 sensitive APIs in 9 categories [37], while for
FlowDroid [13], the number of sensitive sources and sinks is 224. Susi [33] takes
a learning-guided approach to effectively identify and categorize sensitive APIs
in the Android framework and applications, with a specific focus on the data
flow dependencies.

In this work, we propose to use text mining technique to identify the sensi-
tive APIs for our call trace generation. In order to derive a comprehensive list of
sensitive APIs, we first collect a set of features. The features include the Android-
related literal descriptions that mention the potential malicious behaviors, sen-
sitive functionalities, triggering inputs to vulnerabilities, from the Common Vul-
nerabilities and Exposures (CVEs) [5] and the Exploit Database [6], as well as
the related code samples. We also collect the configurations of well-known code-
bases, e.g. [13,17,22,33,36], including the source and sink lists, callback lists,
and taint wrapper lists. These descriptions, code samples, and configurations
constitute the knowledge base of the malicious behaviors and vulnerabilities of
the Android system and applications. Then, from these textual features, we
extract the technical terms to build a set of keywords. For example, we can find
some report that describes malware residing in app-readable/writable directo-
ries, exploiting dynamic loading classes or reflection mechanism to obtain the
component instance to conduct malicious behaviors. In this case, we can extract
at least keyword reflect and ClassLoader for identifying the sensitive APIs.
To prune the set of keywords, we apply the algorithm of term frequency-inverse
document frequency (TF-IDF) to rank the keywords and select a subset of more
informative keywords for the sensitive API identification. Thirdly, we search the
official online document of Android platform APIs [2] for these keywords. If the
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number of keywords presenting in the name and description of a specific API
is greater than a threshold, we identify this API as a sensitive API. A list of
sensitive APIs is generated in their method signatures, e.g. in Table 1, as critical
inputs of the call trace identification.

In this step, we identify 647 sensitive APIs for the call trace identification.
This list of sensitive APIs can cover all the sensitive APIs of TaintDroid, and
is also more comprehensive than the critical API list of DroidAPIMiner, see
Sect. 4.3 for details.

Table 1. Sensitive APIs w.r.t. reflect/ClassLoader derived from Android APIs

No API Signature

➀ <java.lang.reflect.Method.invoke(Ljava/lang/Object;[Ljavalang/Object;)Ljava/

lang/Object;>

➁ <java.lang.ClassLoader.loadClass(Ljava/lang/String;Z)Ljava/lang/Class;>

➂ <dalvik.system.DexClassLoader(Ljava/lang/String;Ljava/lang/String;Ljava/lang/

String; Ljava/lang/Object;)V>

. . .

3.2 Call Graph Generation and Call Trace Identification

Previous API-based detection approaches usually require to distinguish between
how the sensitive APIs are used in malicious verses benign applications. These
approaches may not be precise enough because a lot of sensitive APIs that are
found to be common in both benign and malicious apps may be pruned out.
In contrast, the traces of either system calls or invocations to the critical APIs
are more recognizable to distinguish the malicious behaviors from the normal
executions of applications. However, the sandbox-assisted dynamic trace profil-
ing takes a similar principle of must-analysis, and is incomplete to found all the
traces related to malicious behaviors of the application. To mitigate such limita-
tion, in this work, we propose to identify the traces leading to critical APIs, i.e.
call trace, statically over a precise call graph of Android applications. This fine-
grained feature will then be used in the learning-based malware classification.

In the first step, we propose to generate a precise call graph for Android appli-
cations. This is the prerequisite for identifying the call traces. Due to the event-
driven characteristic of Android application lifecycle, the call graph generation
is not straight-forward by starting from one specific entry. Instead, the Android
application usually contains multiple entry methods. Each entry method, usually
being some event handler, can receive events/callbacks from the Android system
to support switchable execution contexts.

We present the call-graph generation algorithm in Algorithm1. Firstly, we
derive all the possible edge relations in EdgeStore from the bytecode of appli-
cation. Each entity in EdgeStore is a tuple, whose first element mtd represents
a method object for analysis, and the second element calleemtd is an ordered
set of method objects that are invoked in the bytecode of mtd. calleemtd will
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be empty if mtd does not call other methods. Then we build the class hier-
archy for the classes of the application. After that, we extract the component
information from the manifest file of the application, including the path name
of component nc and the category of component τc. For each component, we
traverse the class hierarchy to find the class object c, and search for all the
lifecycle methods of the component or interface method of event listeners. We
accumulate these methods into the set of entry methods, i.e. Entries. Starting
from each entry method in Entries for code traversal, we perform a breadth-first
search (BFS) over the EdgeStore. For each method mtd in the vertice worklist,
if 〈mtd, calleemtd〉 ∈ EdgeStore, then we should add any mtd′ ∈ calleemtd into
the vertice worklist and add (mtd,mtd′) into the edge worklist. Consequently, we
generate a partial call graph by merging the results of the breadth-first search.
Then we iterate on the interface methods of callback listeners found in the partial
call graph, add them to Entries, update the partial call graph until no new entry
method is added to Entries. The list of callback listeners we use is generated by
using EdgeMiner [17]. From the callback methods of EdgeMiner, we obtain 3390
different callback listeners for use. Finally, for the implicit intents which are not
directed by explicit invoke instruction, we add new edges to generate the final
call graph.

Algorithm 1. Call Graph Generation for Android Application
1: EdgeStore ← {〈mtd, calleemtd〉 | ∀mtd ∈ Classes(app)}
2: T ← ClassHierarchy(app)
3: Comps ← {〈nc, τc〉 | path name nc and category τc of component class c extracted

from AndroidManifest.xml}
4: Entries ← ∅
5: for all 〈nc, τc〉 ∈ Comps do
6: c ← traverse(T , nc)
7: Entries ← Entries ∪ getEntryMtd(c, τc)
8: end for
9: for all entryi ∈ Entries do

10: 〈Vi, Ei〉 ← BFS(entryi, EdgeStore, T )
11: end for
12: PartialCallGraph ≡ 〈V, E〉 ←

⋃
entryi∈Entries〈Vi, Ei〉

13: Search PartialCallGraph, add interface methods of callback listener instances to
Entries and iterate over Step 9 until Entries reaches fixpoint

14: Add edge for implicit intents

Then we identify all the call traces over the complete call graph. Each call
trace is a directional path in the call graph. It starts from one of the entry
methods, and ends at one invocation of a sensitive API identified in Sect. 3.1.
We perform a depth-first search (DFS) from each entry method to see if there
is any invocation to some sensitive API on each directional path starting at this
entry method. If a path from the entry method mtd can lead to an invocation



CatraDroid: A Call Trace Driven Detection of Malicious Behaiviors 69

to sensitive API mtd′, we use (mtd,mtd′) to represent a sensitive call trace and
add it to the set of call traces.

The method signature mtd and mtd′ used to denote the node of call trace
consist of some type information of the component class that implements the
method. To build a reasonable granularity of features, we parse the manifest file
again and use the category information τc to substitute the type information of
component in the method signatures. The feature repository is then constructed
after duplication eliminations of the call traces.

3.3 Learning-Based Malicious Behavior Detection

The call traces identified in Sect. 3.2 are used as the critical features to detect
the malicious behaviors of Android malware. This is usually more precise than
identifying the invoked sensitive APIs because malicious applications and benign
applications usually target to different purpose and take different paths in the
call graph to operate on the critical data and confidentialities. Then, our machine
learning module uses the supervised learning technique for training the binary
classifiers. We adopt four algorithms, kNN [10], Naive Bayes [25], SVM [19], and
Random Forest [27], for the classification to decide if the performance of our
approach is achieved by the classification models or the features.

For simplicity, our approach does not quantify the frequency of call traces
to assign a rank score to each call trace. Instead, we apply the one-hot encod-
ing to build the feature vector of each sample. After training the classifier, for
any unknown application, we decompile the application for bytecode, extract
its manifest file, build the call graph, identify call traces, generate its feature
vector and input the feature vector to one of the classifiers for the malicious
behavior prediction. For comparison, we find the Random Forest model is better
in performance due to the results in Sect. 4.3.

4 Implementation and Evaluation

4.1 Implementation

Figure 1 depicts the implementation of CatraDroid. In the implementation of
call graph generation, we firstly leverage the Apktool [4] and Dare [29] to derive
the bytecode and the manifest file AndroidManifest.xml. We use IBM WALA
[8] to implement the call graph generation and call trace identification. In the
implementation of call graph generation, multiple-origin breadth-first search, as
well as the callbacks and implicit intents, should be carefully addressed. In the
call trace identification, substituting the type information of component with the
category information τc is critical to control the granularity of features derived by
the depth-first traverse on the call graph. The learning-based detection module
is based on the built-in algorithms of Scikit-learn [31].
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Fig. 1. Implementation of CatraDroid

4.2 Experimental Setups

The malware samples are collected from Drebin [12] and VirusShare [7], while
the benign samples are collected from AndroZoo [11], whose benign samples are
largely collected from Google Play. For the benign samples, a pre-processing
step is applied to filter out all the benign samples that contain at least one invo-
cation to sensitive APIs. After the pre-processing step, we collect 4853 benign
applications and 10880 malicious applications (2647 from Drebin, 8233 from
VirusShare) for the evaluation.

We use stratified 5-fold cross-validation to evaluate the performance of our
approach. To measure the performance of classifiers we derived, we use four
standard metrics accuracy, precision, recall, and AUC. Accuracy means the pro-
portion of samples that are predicted correctly. Precision is defined as the pro-
portion of correctly identified malicious apps to all classified malicious samples.
Recall represents the ability to identify malicious apps correctly in all the mali-
cious samples. These three metrics are defined based on the true positive (TP1),
true negative (TN2), false positive (FP3), and false negative (FN4).

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Because it will be more dangerous when we treat malware as a benign appli-
cation, recall is usually more valuable than the false positive rate. The area
under ROC curve (AUC ) represents the probability that a classifier will rank

1 TP: the number of malicious apps that are classified as malicious.
2 TN: the number of benign apps that are classified as benign.
3 FP: the number of benign apps that are misclassified as malicious.
4 FN: the number of malicious apps that are misclassified as benign.
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a randomly chosen malicious instance higher than a randomly chosen negative
one. An area of 1.0 means a perfect classifier, while an area of 0.5 indicates a
worthless classifier.

Our experiments are conducted on a workstation with 3.2 GHz× 16 Intel
CPU, 64 GB RAM, and Linux 4.13.0-46-generic kernel (Ubuntu 17.10).

4.3 Experimental Results and Analysis

In this section, we present the experimental results on performance and more
analysis on the characteristics of our approach to answering the following
research questions (RQ1 – RQ4).

RQ1. Can our approach outperform the state-of-art approach?
In order to demonstrate the effectiveness of our approach, we compare our

approach with DroidAPIMiner [9]. DroidAPIMiner uses static analysis to iden-
tify a variety of API-level features. These API features tend to be exploited by
malicious applications more frequently than being used by benign applications.
Supervised learning methods are applied to train some lightweight classifier for
detecting the malicious behavior of Android applications. We use Androguard [1]
to extract sensitive APIs and package-level information. Then we use Androwarn
[3] to reimplement the parameter-level API feature extraction of DroidAPIMiner.
From the invocations in smali code, we do a backward tracking to obtain the
possible values of API parameters.

The comparisons of the different evaluation metrics are presented in Table 2.
In our approach, the Random Forest model exhibits the best performance for all
the metrics, with accuracy of 98.90%, precison of 99.38%, and recall of 95.83%.
For DroidAPIMiner, the kNN model performs the best, with accuracy of 94.93%,
precision of 91.79%, and recall of 92.13%. Although its precision is lower than
SVM and Random Forest, it is still the best on F-measure. Because our app-
roach is on higher dimensional feature spaces compared with DroidAPIMiner,
the Random Forest model is a better choice for our approach. Meanwhile, SVM
performs very well on deciding recall for both our approach and DroidAPIMiner.

Table 2. Performance comparison between CatraDroid and DroidAPIMiner (DAMiner
for short)

Model Accuracy (%) Precision (%) Recall (%) AUC

DAMiner Ours DAMiner Ours DAMiner Ours DAMiner Ours

kNN 94.93 90.11 91.79 94.61 92.13 84.44 94.28 94.49

Naive Bayes 88.20 94.31 93.75 95.71 67.22 92.15 81.03 92.12

SVM 94.27 95.60 96.77 97.45 84.12 94.08 88.72 98.73

Random Forest 92.83 98.90 96.02 99.38 80.10 95.83 91.43 99.37

In summary, the Random Forest model of our approach improves the kNN
model of DroidAPIMiner on accuracy by 3.97%, on precision by 7.59%, and
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on recall by 3.70%. Our approach outperforms DroidAPIMiner on most of the
classification models. It means the features of sensitive call traces in our approach
make for the malicious behavior detection better than the frequency feature of
critical APIs in DroidAPIMiner. Malware and benign applications tend to have
different critical actions represented by the call traces.

RQ2. Are the sensitive APIs identified in Sect. 3.1 representative on the critical
actions to distinguish malware from benign applications?

The list of sensitive APIs derived using NLP-based technique contains 647
sensitive APIs. In Fig. 2 we illustrate the number of sensitive APIs we identified
in each specific package or library. On the other hand, DroidAPIMiner selects
top 169 APIs that can mostly differentiate benign applications from malicious
applications based on the usage frequency for evaluation. The numbers of APIs
in each package or library are presented in Fig. 3. By comparing the two lists in
detail, we find that except for some standard library package, e.g. java.util,
java.lang, and java.io, our sensitive APIs can cover 80.4% of the critical APIs
of DroidAPIMiner. Meanwhile, our approach falls short of identifying the critical
APIs in http-related package. This is because in the CVEs and exploit database,
we did not treat most of the http-related APIs or standard Java libraries as in
the context of Android vulnerabilities. In contrast, the frequency and data flow
relation captured by DroidAPIMiner are good at identifying critical APIs in
these packages.

Our sensitive APIs list is more comprehensive than that of DroidAPIMiner.
We extract more information from the exploits databases and configurations
of codebases on malicious database access, Bluetooth connection, multimedia
modules launching, near field communication, location data release, as well as
the critical actions from many different system toolkits.

Fig. 2. Distribution of sensitive API number of CatraDroid
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Fig. 3. Distribution of critical API number of DroidAPIMiner

RQ3. Does the set of call traces show sufficient diversity on malware and benign
applications?

In the answer to RQ1, we know that the call traces we concern are gen-
erally more fine-grained than the frequency of sensitive APIs addressed by
DroidAPIMiner. In order to illustrate the property of the call traces of an indi-
vidual application, we introduce a new metric internal repetition rate, (IRR):

IRR =
Avg. No. call traces − Unduplicated Avg. No. call traces

Unduplicated Avg. No. call traces
(4)

The type information of the methods in call traces generated in Sect. 3.2 should
be substituted with the category information τc. This procedure will lead to an
in-app duplication elimination on call traces. Then when we build the feature
space, all the call traces after in-app duplication elimination are merged together.
In this procedure, the same call trace from different applications should only
reserve one copy, which we called cross-app duplication elimination.

In Table 3 we show the statistics of the call trace elimination. In the mal-
ware in our data set, we find 931501 call traces before duplication eliminations.
The maximal number for individual malware is 9909. After the in-app duplica-
tion elimination, there are 374331 call traces. The average number of call traces
reduces from 85.6 to 34.4. The IRR for malware is 148.8%. In the benign applica-
tions in our data set, we find 424709 call traces before duplication eliminations.
The maximal number of call traces for an individual benign application is 2996.
After in-app duplication elimination, the number of call traces becomes 236146
and the IRR for benign applications is 79.9%. The difference in IRR reveals
that malware uses more types of components in the same category to perform
malicious actions. These components with different types should have a similar
interface but different implementations. This reflects a reasonable way to imple-
ment malicious functionalities, e.g. with some inherited or third-party libraries
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that have similar calling convention as well-established vulnerable functionali-
ties. In this work, we did not count the degree of duplications as the weighting
coefficient to further differentiate the frequency of sensitive call traces. We left
it as future work.

Table 3. Statistics of call traces elimination

Category No.

samples

No. call

traces

No. call traces

(in-app dupl.

elim.)

No. call traces

(cross-app

dupl. elim.)

IRR

Malware 10880 931501 374331 60059 148.8%

Benigns 4853 424709 236146 49571 79.9%

Table 4. Time costs of each step of CatraDroid

Step Reverse

engineering

Call trace

identification

RF classifier

model training

Detection

Avg. time (s) 4.14 170.27 8763.35 1.35 × 10−4

Then we show the difference on the set of call traces after two-phase dupli-
cation eliminations between malware and benign applications. We find 60059
call traces from malware after cross-app duplication elimination, and for benign
applications, this number is 49571. The number of duplicated call traces between
the two categories is 22828. The duplication rate is 26.3%. It indicates the call
traces used by malware are greatly different from the call traces used by benign
applications. The features we concern can well classify the calling conventions of
both benign and malicious applications.

RQ4. Are the time costs reasonable for each step of our approach?
The static analysis over Android applications is generally a time consuming

procedure. In this section, we have to figure out the average time cost by each step
of our approach, especially the call graph generation and call trace identification,
in order to estimate the time cost on any unknown application. The time costs
of each step are listed in Table 4. Clearly, the time costs of reverse engineering
and malware detection are ignorable. The average training time of Random
Forest models is acceptable because this time cost is averaged on the cross-
validation folds, instead of on application samples. The average time of call trace
identification, including the call graph generation time, is 170.27 s. Generally,
this time cost is positively correlated with the size of applications, i.e. 7.6 MB
on average for the applications in our data set. In summary, the time cost of our
approach is reasonable.



CatraDroid: A Call Trace Driven Detection of Malicious Behaiviors 75

5 Conclusion

We presented CatraDroid, a supervised learning-based classification approach
that detects malware using the semantics from the call graph of Android appli-
cation represented by the call traces leading from entry methods to the sensitive
API calls. We showed that our approach achieves higher classification perfor-
mance than the state-of-art API-level malware detection approach with a more
comprehensive sensitive API list. We also demonstrated the diversity of features
and the efficiency of our static analysis.

Although we have evaluated our approach to be efficient, this kind of API-
level malware classifications based on static analysis still confront some evasion
attacks, e.g. code obfuscation to defeat the identification of sensitive API calls.
It will be a benefit for the classification performance in the future to distinguish
call traces of the third-party libraries from call traces of the standard libraries
and user code. Also, we can quantify the frequency of sensitive call traces to
derive more fine-grained features for discriminating malware.
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Abstract. Passwords are the major part of authentication in cur-
rent social networks. The state-of-the-art password guessing approaches,
such as Markov model and probabilistic context-free grammars (PCFG)
model, assign a probability value to each password by a statistic app-
roach without any parameters. These methods require large datasets to
accurately estimate probability due to the law of large number. The neu-
ral network, approximating target probability distribution through iter-
atively training its parameters, was used to model passwords by some
researches. However, since the network architectures they used are sim-
ple and straightforward, there are many ways to improve it.

In this paper, we view password guessing as a language modeling task
and introduce a deeper, more robust, and faster-converged model with
several useful techniques to model passwords. This model shows great
ability in modeling passwords while significantly outperforms state-of-
the-art approaches. Inspired by the most advanced sequential model
named Transformer, we use it to model passwords with bidirectional
masked language model which is powerful but unlikely to provide normal-
ized probability estimation. Then we distill Transformer model’s knowl-
edge into our proposed model to further boost its performance. Compar-
ing with the PCFG, Markov and previous neural network models, our
models show remarkable improvement in both one-site tests and cross-
site tests. Moreover, our models are robust to the password policy by
controlling the entropy of output distribution.

Keywords: Authentication · Password guessing · Neural network

1 Introduction

Passwords are the most widely used mode of user authentication, perhaps, it
is because they are both easy to remember and to implement. Unfortunately,
many users choose predictable passwords, making password crackable. Password
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guessing aims at cracking as many user passwords as possible with minimum
guess numbers and can be used to simulate real-world attackers, so researches
are interested in finding more effective password guessing models than brute force
to accurately gauge password strength. In this work, we concentrate on trawling
offline guessing, where an attacker has gained access to a leaked database of
hashed passwords and tries to recover it.

Commonly used password guessing tools, such as John the Ripper [1] and
HashCat [14], combine the dictionary attacks with many heuristics like mixed
letter and leet speak to crack user passwords. Weir et al. [29] proposed the first
probabilistic model called probabilistic context-free grammars (PCFG). They
assumed that passwords could be divided into independent structures and cal-
culated their probabilities separately. Ma et al. [19] and Dürmuth et al. [6] showed
that Markov models that closely represent natural language could generate pass-
words efficiently. Beside those statistical approaches, Melicher et al. [20], Xu et al.
[30] and Liu et al. [18] used neural network to extract passwords’ feature and esti-
mate their probabilities automatically. Although the neural network approaches
seem to outperform statistic methods, none of them investigates in the connec-
tion between password guessing and language modeling. The architecture they
used was a simple LSTM network and can be fully improved. We refer those
models to the shallow neural network model since those models are shallow.

In this paper, we borrow ideas from language modeling to model and guess
passwords because passwords with meaningful sequential characters can be
regarded as short natural languages, which helps us study password guessing
from a scientific perspective. For example, the frequencies of characters within
passwords are actually quite different and this indicates that we are dealing with
an unbalanced classification task. To completely make use of the neural network,
we first introduce a carefully designed deep neural network, whose architecture
is more effective and the performance is better in modeling passwords. Secondly,
since the Transformer model shows great potential in language modeling, we
introduce a bidirectional model trained with masked language task. Although
it is powerful, it can’t provide normalized probability for one password which is
vital in password guessing. To handle this problem, borrowing idea from knowl-
edge distillation [9,27], we use the Transformer model as a teacher to guide the
proposed model. This simple trick improves the efficiency of our model in some
tests. We perform both one-site tests and cross-site tests to compare our deep
model with state-of-the-art password guessing models, including Markov model,
PCFG model, and shallow neural network model. Then we evaluate the perfor-
mance of those models with Monte Carlo method [4]. The result shows that our
deep model outperforms previous approaches in most cases.

In summary, the contributions of this paper are as follows:

– A deep neural network which guesses passwords more efficiently than previous
approaches is introduced.

– The proposed model is adapted to fit password’s nature that it belongs to
natural language.



80 H. Li et al.

– A bidirectional language model is used to improve our deep neural network
model.

The rest of this paper is structured as follows. We introduce some related works
in Sect. 2, and describe the model design of our deep neural network model in
Sect. 3. In Sect. 4, we evaluate our model and compare it to the state-of-the-art
methods. Finally, in Sect. 5, we conclude the paper and discuss the future work.

2 Background and Related Works

Human-chosen text passwords are today’s dominant mode of authentication.
However, as is revealed in predecessor’s work, the distribution of password space
is far from being random, thus cracking passwords is much easier than users
think. In this section, we first present an overview of recent development in
password guessing area. Then, we briefly introduce some key concepts in lan-
guage modeling.

2.1 Password Guessing

To accurately evaluate password strength, we need to develop effective password
guessing models in case of underestimating the capacity of attackers. The state-
of-the-art password guessing models can be mainly categorized as statistical
models or neural network models.

PCFG Model. Probabilistic context-free grammars (PCFG) was introduced
by Weir et al. [29] in 2009. The intuition behind PCFG is that passwords consist
of independent template structures and each structure has different terminals.
The probability of password is the probability of its structures multiplied by
those of its terminals. For instance, “rockyou123” can be divided into two struc-
tures “L7”, “D3” and “rockyou”, “123” are the terminals of those structures.
The terminals’ probability of Digits and Special chars are obtained from the
training set and those belong to Letters are obtained from natural language dic-
tionary. Li et al. [17] improved the capacity of generalization to Chinese password
databases by introducing Pinyin into the attack dictionary. [12] added keyboard
patterns and multi-word patterns to the context-free grammars. However, tradi-
tional PCFG models as mentioned above use equal-weight dictionary to generate
“L” field, so the actual distribution of passwords cannot be reflected. Ma et al.
[19] experimentally proved that counting the terminals’ frequencies of letters
from the training set can improve guessing.

Markov Model. Markov model is the dominant approach for modeling lan-
guage, and was first introduced into the area of password guessing in [23]. The
core concept of Markov model is to predict the next character based on previous
characters. The length of context characters used to predict the following char-
acter is called order. There are many variants of Markov models developed for
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password guessing [3,15]. Castelluccia et al. [3] proposed to use Markov models
for evaluating password strengths. Ma et al. [19] concluded that, through empiri-
cal analysis, markov model was better suited for estimating password probability.
They proposed end-symbol normalization and Laplace smoothing to improve the
Markov model. An end-symbol normalization is a normalization approach that
appends an end symbol ce to every password so that the probabilities assigned to
all passwords will add up to 1. Markov model with higher-order can utilize more
contextual information for generating passwords, but it may lead to overfitting.
Laplace smoothing is a kind of technique to alleviate overfitting, which smoothes
the probabilities of passwords by adding δ to the count of each substring. We
use markov model with end-symbol normalization and Laplace smoothing as
another baseline.

Neural Network Model. The neural network is a computational model that
mimics the structure and function of biological neural network which is broadly
used to estimate or approximate functions. The neural network has made great
achievements in the field of Natural Language Processing (NLP). Markov models
can only utilize fixed-length context, while a long short-term memory (LSTM)
network [11] can store the features learnt long ago. However, nobody had used
a neural network model for password guessing until Melicher et al. [20] used
LSTM network to extract passwords’ feature and make predictions. Although
the result was impressive, Melicher evaluated the result with restricted structures
and limited data, so the result cannot be considered general [21]. Similar to
Melicher, Xu et al. [30] also used a LSTM network to guess passwords, but
the guess number was set to 1010 thus lack of comprehensive evaluations. Hitaj
et al. [10] first introduced Generative Adversarial Networks (GAN) to password
guessing, but their model required more guessing attempts to catch up with
LSTM-based model. Liu et al. [18] combined PCFG rule with LSTM network and
showed great improvement. However, they only tested their model at maximum
guess number of 1012. In trawling offline guessing scenario, the maximum of
guess number is around 1016, so the compare might not be convincing.

2.2 Language Modeling

Language modeling could be a fundamental task in natural language processing.
Given a sequential data x1:T = {x1, x2, . . . , xT }, the goal is to predict the joint
probability P (x1:T ) which can be factorized as:

P (x1:T ) = P (x1)P (x2|x1)P (x3|x2, x1) · · · P (xT |xT−1 . . . x1).

Traditional N-gram language models use Markov assumption to simplify this
complex conditional probability P (xT |xT−1 . . . x1) to P (xT |xT−1 . . . xT−N )
where N called order. The major drawback of traditional N-gram language mod-
els is the sparsity, which makes model provide imprecise probability estimation
even with several smoothing techniques. Recurrent neural network (RNN) has
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shown its capacity in modeling sequential data, [16,21,32] used RNN-based mod-
els and achieved state-of-the-art results on various benchmarks. Since passwords
can be viewed as short natural language, it’s reasonable to apply advanced lan-
guage modeling techniques to password guessing.

Perplexity. We need a metric to justify different language models’ performance,
perplexity is the most wildly used method. Perplexity is closely related to the
joint probability P (x1:T ) and is given by:

PP (x1:T ) = P (x1:T )− 1
N = N

√
1

P (x1:T )

A well-performed model should assign low perplexity to passwords in test set.
Calculating perplexity will only cost little time and is easy to parallel, however,
the perplexity of password is infinity if the joint probability of password equal
to 0, thus perplexity is applicable only for those models that assign a non-zero
probability to each password. Due to this limitation, we only compare RNN-
based models’ perplexity.

Dropout

Char Embedding

Forward RNN

Dropout

Add&Norm

Softmax

5x

Output Probs

Output Layer

Fig. 1. The architecture of our neural network model.

3 Modeling Password with Neural Network

RNN-based models have shown great capacity in modeling neural language.
Compared with statistical models, they are more robust and flexible because
of their ability in extracting features. Beside the RNN model, several techniques
have been applied to language modeling and might be helpful to guess passwords.
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(a) Yahoo! (b) 10millions

Fig. 2. The L2 norm of output layer’s weight. end means a specific token we add to
each password’s end.

3.1 Extended Deep LSTM Network

Mass of different experiments as Melicher et al. tested to verify their work, the
base structure of the network was too simple and still had great potential for
improvement. They merely stacked three LSTM layers with two fully connected
layers. Although a deep neural network always works better than a wide but shal-
low neural network, stacking more layers onto a shallow neural network directly
will undermine its performance because a plain deep neural network is hard to
optimize [8]. Therefore, we craft the architecture of our model with a series of
tricks improving the performance.

Normalize Output Layer’s Weight. It’s well-known that words in natural
language corpus obey the Zipf’s Law, that is, the frequencies of words are closely
related to its rank. Similarly, different characters in passwords have different
frequencies and the distribution is far away from a uniform distribution. Since
we are doing a multi-step classification task, we would like to investigate the
impact of this skewed distribution. Notice that the output layer is actually a
linear transformation followed by a softmax function, denoting the output layer’s
weight as WD×V where D is the output feature dimensionality and V is the
vocabulary size, if we view each column of W as each character’s vectorized
representation, we can investigate the L2 norm of each column. We train a
LSTM network on Yahoo! and 10 millions, then plot the L2 norm according to
each column of output layer’s weight, and the result is shown in Fig. 2, the L2

norm also exhibits Zipf-like property. Recalling that there is a positive correlation
between probability P (c) and dot product f ·wc = ‖f‖‖wc‖ cos θ, characters with
larger L2 norm will get larger probability. We should diminish the impact of L2

norm to get better feature representation f , a straightforward way is to normalize
all characters’ norm to 1, so that all characters are treated equally.

Layer Normalization. When networks going deep, they are hard to train
because the distribution of each layer’s inputs varies with the parameters of the
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previous layers. [13] referred this phenomenon as internal covariate shift, and
they addressed this problem with batch normalization. However, the effect of
batch normalization is dependent on the mini-batch size and it is not obvious
about how to apply it to RNN-based network [2]. Ba et al. normalized each layer’s
inputs within layer instead of mini-batch, so that we can apply it to RNN-based
network. We normalize the output of each LSTM layer and that of its gates. This
trick stabilizes and accelerates the training process, also regularizes the network.

Shortcut Connection. Deep neural network often suffers from degradation
problem: with the network depth increasing, accuracy gets saturated and then
degrades rapidly [8]. He et al. addressed the degradation problem with a deep
residual learning framework where layers directly connect with each other. The
intuition behind the shortcut connection is that instead of hoping each layer
directly fit a desired underlying mapping H(x), these layers are expected to fit a
residual mapping F(x) = H(x)−x, enabling training a deep neural network. We
add each layer’s input to its activated output, this shortcut connection allows
gradients to flow smoothly between layers.

Table 1. Information of leaked dataset

Name Language Number

Myspace English 37144

phpbBB English 184389

RockYou English 14344391

Yahoo! English 5376849

10 millions English 10000000

clixsense English 1628894

Table 2. Classification accuracy

(a) Training on phpBB

Myspace Yahoo! RockYou

bidirectional 57.75% 48.85% 50.79%
unidirectional 47.16% 38.64% 40.38%

(b) Training on RockYou

Myspace Yahoo! phpBB

bidirectional 68.40% 52.42% 59.60%
unidirectional 49.93% 38.92% 46.10%

Dropout. Deep neural networks with massive parameters are easy to overfit
on training set. Hinton et al. [26] proposed dropout technique to prevent neural
network from overfitting by randomly droping some connections between inputs
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and outputs. This approach forces network to learn robust features independent
on specific units. We not only add dropout between LSTM layers but also employ
dropout for the embedding layer [7]. Applying dropout to embedding layer can
be quite different from the standard approach, while a special character will
disappear within a single forward pass. This can be viewed as randomly delete
some characters in a password, thus makes network robust. This simple approach
yields good performance.

Control Output’s Entropy. As different password sets may have different
password policy, the training set distribution may vary from the test set. This
means that we are overfitting on train set to some degree, so how to relieve this
overfitting problem without suitable training set? An alternative way is to use
a hyper-parameter T called temperature to control output’s entropy. We denote
the output layer’s output logit as Z = {z1, z2, . . . zV }, the normalized probability
is given by:

P (c) =
ezc/T∑V
i=1 ezi/T

(1)

The different between Eq. 1 and standard softmax is that logit is divided by the
temperature T . If T → 0, P (c) is approaching to an one-hot distribution with
very low entropy, and if T → ∞, P (c) is approaching to an uniform distribution
with high entropy, in other words, higher T correspond to higher entropy. So if
the training set’s policy is very different from the test set’s, we should choose a
higher T to get a smoother output distribution. By changing the temperature T,
we can control the output’s entropy, so that we can adjust to different password
policies.

Combining these techniques, we build a deep neural network that is shown
in Fig. 1. This model consists of five LSTM layers and one output layer. When
generating passwords, the network takes the previous state st−1 and character
at−1 as inputs in each time step t, outputs the probability of the next character
by:

st = MultiLSTM(st−1,eat−1
), (2)

gt = softmax(MLP(st)/T ), (3)
p(at) ∼ gt . (4)

Where eat−1
is the embedding of the previous character, MultiLSTM means

multi-layers LSTM transformation with layer normalization and shortcut con-
nection, MLP denotes the output layer, and gt is a distribution over alphabets
from where the tth step’s output character at is sampled. This deep neural net-
work model converges much faster and guesses passwords more efficiently than
Melicher’s shallow model.

3.2 Improved with Bidirectional Language Model

Markov and neural network models use left-to-right unidirectional language
model to model passwords. It is a natural approach since human always gen-
erate passwords from left to right. A Transformer encoder, modeling language
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based on jointly conditioned on both left and right context in all layers, is supe-
rior to the traditional model [5]. However, it can’t provide normalized proba-
bility estimation for one passwords, So we need to find an alternative way to
take advantage of the bidirectional model. A straightforward way is knowledge
distillation [9,27].

Bidirectional Language Model. Standard language models are unidirec-
tional, which limits the choice of network architectures and severely restricts
the ability of network to represent language. RNN-based model has provided
a very elegant way of dealing with time sequential data that embodies correla-
tions between data points. However, unidirectional language model can only use
the information of tokens preceding the current token to represent it, while the
future information also contribute to modeling the password. Many literatures
improved the effect by bidirectional modeling the existing models, and some of
them even obtained state-of-the-art results.

Transformer [28] is a model architecture relying entirely on an attention
mechanism to draw global dependencies between input and output. It beats
CNN and RNN-based models in Neural Machine Translation (NMT), Ques-
tion Answering (QA), and other NLP tasks both in efficiency and performance.
Devlin et al. [5] proposed a new language representation model called Bidi-
rectional Encoder Representations from Transformer (BERT), which obtains
new state-of-the-art results on eleven NLP tasks. Essentially speaking, BERT is
just the implementation of Transformer under the bidirectional language model,
which further proves the fact that bidirectional language models perform better
than unidirectional models. BERT addresses the unidirectional constraints in
standard language model by proposing a new objective, the “masked language
model” (MLM), that trains the bidirectional model by randomly masking some
percentages of the input characters and then predicting those masked charac-
ters based on their context. For instance, a password “password123” becomes
“pass[mask]ord[mask]23” after masking, and the model is required to predict
“w” based on the context of the first “[mask]” and predict “1” based on the con-
text of the second “[mask]”. This will force the model to involve rich contextual
information. We leverage BERT to extract the characteristic representation of
passwords, and the knowledge within is transferred into our password guessing
model through knowledge distillation.

Knowledge Distillation. In an abstract sense, knowledge is a learned mapping
from input vectors to output vectors [9]. In particular, when processing the
language modeling task, the knowledge is the semantics contained in sequences.
Knowledge distillation is a form of transfer learning, that uses a well-trained
model as a teacher to train other child models by the predictions of the teacher
model. The posterior probabilities (softmax output) generated by the teacher
model are called “soft targets” while the one-hot targets used in traditional
training objective are called “hard targets”. In general, the teacher model is
more complex and carefully trained (with exceptions, of course, such as [27]),



Password Guessing via Neural Language Modeling 87

so soft targets contain a lot of information in addition to pointing out the right
categories. For example, the posterior probabilities generated by the teacher
model such as [0.08, 0.9, 0.02] preserve the rank information for non-target class,
which indicates the second class is more similar to the first class than the third.
However, even if the teacher model is well trained, its output is still not as
discriminating as one-hot targets, thus the student model should be guided by
both.

(a) phpbb2Myspace (b) phpbb2Yahoo! (c) phpbb2RockYou

(d) Rockyou2Myspace (e) Rockyou2Yahoo! (f) Rockyou2phpbBB

Fig. 3. Cross-site tests. Markov denotes the Markov model, PCFG denotes the PCFG
model, Shallow denotes the shallow neural network model, Deep denotes our proposed
deep neural network model and Optimized denotes our proposed deep neural network
model optimized by the bidirectional language model.

In our work, BERT bidirectional language model introduced above is used
as a teacher model to tutor and improve our crafted unidirectional language
model. During the training process, the unidirectional model is not only guided
by original one-hot deterministic targets, but also encouraged to minimize the
Kullback-Leibler divergence between its softmax outputs and the soft targets
generated by the bidirectional model. The objective function is given by:

L(θ) = αLS(θ) + (1 − α)LH(θ). (5)

Where LH(θ) is the cross-entropy between softmax outputs and one-hot target,
LS(θ) is the Kullback-Leibler divergence between softmax outputs and the soft
targets, α is a hyper-parameter that makes a trade off between two functions.
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4 Experiment and Evaluation

We perform a series of experiments to test our deep neural network model and
compare it to state-of-the-art password guessing models. In this section, we first
briefly describe our training and testing setting and then evaluate the results of
our experiments.

4.1 Experiment Data

Our experiment data are all collected from leaked password sets, including Mys-
pace [22], phpBB [24], RockYou [25], clixsense, 10 millions and Yahoo! [31],
detailed information is shown in Table 1. For Myspace, phpBB and RockYou,
we only retain passwords between 6 and 12 in length, because passwords shorter
than 6 are easy to guess with brute force guessing and those longer than 12 make
up only a small part of the total dataset, similarly we retain passwords between
6 and 20 in length for Yahoo!, clixsense and 10 millions. We also convert all let-
ters to lowercase since capital letters are only a rarely part of all characters and
closely related to the password policy. The capital letters’ information is shown
in Table 3. Although password policies vary from password set to another, users
tend to use capital letters only in limited cases (Three cases described in Table 3
account for more than ninety-five percent of the total). So it won’t take much
additional guesses for passwords with capital letters if we generate correct low-
ercase letters. For the training set, we keep the alphabet size to 40 and remove
those passwords with characters outside of the alphabets, while the testing set
does not change.

Table 3. Capital letters’ information. First denotes the percentage of passwords’ first
letter is in uppercase, Last denotes the percentage of passwords’ last letter is in upper-
case, Fully means the percentage of passwords whose all letters are in uppercase, Total
corresponds to the percentage of passwords with capital letters, and Total∗ corresponds
to the percentage of all letters that are capitalized.

Myspace phpbBB RockYou Yahoo!

First 44.86% 65.45% 41.05% 79.16%

Last 2.04% 8.07% 1.96% 4.98%

Fully 52.27% 20.50% 55.87% 12.12%

Total 6.17% 8.15% 5.86% 27.90%

Total∗ 3.67% 3.91% 4.37% 9.48%

4.2 Evaluation

For the PCFG model, we follow [19] that all information are obtained from the
training set. For the Markov model, we use 5-gram model for RockYou and
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phpBB, 4-gram model for Yahoo and 10 millions. Both models with end-symbol
normalization and Laplace smoothing. For the shallow neural network model,
we stack two fully-connected layer onto three LSTM layers. Our deep neural
network model consists of two fully-connected layer and five LSTM layers, with
techniques including dropout, layer normalization and shortcut connection. We
prepare both cross-site tests and one-site tests for those five models to compre-
hensively evaluate their performance. The results are simulated with the Monte
Carlo method [4]. We generate one million random passwords at a time and
repeat the generating process ten times to provide accurate estimations.

The Capacity of the Bidirectional Model. Firstly, we want to see the
capacity of the bidirectional model since it involves rich information. So we
perform a classification task for both bidirectional and unidirectional models
to compare their performance. We randomly mask some characters for each
password in the testing set, and then the bidirectional model is excepted to
predict those masked characters based on its bidirectional context while the
unidirectional model will predict those based on its previous context. We use
classification accuracy as the metric, and the result is shown in Table 2. It is clear
that the bidirectional model beats the unidirectional model with a significant
margin in every situation. We also find that the bidirectional model uses data
more efficiently than the unidirectional model since when the training set changes
from a small dataset phpBB to a large dataset RockYou, the accuracy of the
unidirectional model improves 2.77% on Myspace and 0.28% on Yahoo!, while
the improvement of the bidirectional model is 10.65% and 3.57% respectively.

(a) Yahoo! (b) 10millions

Fig. 4. One-site tests

Cross-Set Tests. We first evaluate those model on cross-set tests, this means
that the training sets and test sets are from different password sets.
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We choose a medium dataset phpBB and a large dataset Rockyou as our
training sets, the result is shown in Fig. 3. When training on phpBB, the perfor-
mance of statistic models are barely efficient in general, only the PCFG model
outperforms shallow model before at around 1010 guesses when testing on Mys-
pace, their performance on Yahoo! and Rockyou are much weaker than RNN-
based models. Our proposed models are superior to other models with a huge
margin, since phpBB is a medium dataset, and statistic models estimate proba-
bility by counting, which requires large training set to provide accurate results,
our models show great robustness. When training on Rockyou, the statistic mod-
els improve much more than on phpBB. In Fig. 3(d) when testing on Myspace,
our proposed models outperform the statistic model beginning at around 1011

guesses with a slender margin. In Fig. 3(e) and (f) when testing on Yahoo! and
phpBB, our proposed models beat the PCFG model beginning at around 108

guesses and always outperforms the Markov model. The shallow model, however,
underperforms the statistic models in many cases. This illustrates the effect of
the techniques we use.

Table 4. Perplexity of different temperature (Yahoo! as training set)

(a) Yahoo! to 10millions

Perplexity

baseline 16.014

deep (t=0.95) 15.565
deep (t=1.0) 15.503
deep (t=1.05) 15.494
deep (t=1.1) 15.528

(b) Yahoo! to clixsense

Perplexity

baseline 14.048

deep (t=0.9) 12.316
deep (t=0.95) 12.289
deep (t=1.0) 12.313
deep (t=1.05) 12.373

Table 5. Perplexity of different temperature (10 millions as training set)

(a) 10millions to Yahoo!

Perplexity

baseline 16.646

deep (t=0.95) 16.247
deep (t=1.0) 15.934
deep (t=1.05) 15.712
deep (t=1.1) 15.562
deep (t=1.15) 15.470
deep (t=1.2) 15.425

(b) 10millions to clixsense

Perplexity

baseline 14.432

deep (t=0.95) 13.157
deep (t=1.0) 12.980
deep (t=1.05) 12.868
deep (t=1.1) 12.808
deep (t=1.15) 12.792
deep (t=1.2) 12.808
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One-Site Tests. We then evaluate those models on one-site tests, this means
that training and test sets come from a same password dataset (e.g., 80% for
training and 20% for testing), as different websites may have different require-
ments for password formats. Guessing the passwords of a completely different
websites is sometimes difficult to justify.

We test those models on Yahoo! and 10 millions which is longer and more
complex than Myspace, phpBB and RockYou. Notice that the Markov model
we use here is 4-gram instead of 5-gram because we find that 5-gram dictio-
nary is extremely sparse and smoothing techniques are nearly out of work. The
results are shown in Fig. 4, all the network based models outperform these statis-
tic models, while in cross-site tests, the shallow network model underperforms
statistic models in many cases. This means that the shallow network model is
more likely to overfits. Our proposed model, even though with more parame-
ters, is more general, supporting the effectiveness of techniques we use. We also
notice that statistic models’ performance dropped compare to cross-site tests,
it’s mainly because Yahoo! and 10 millions are more complex and longer pass-
words datasets than Myspace, phpBB and RockYou, while the performance of
RNN-based models is consistent.

Impact of Password Policy. As we have mentioned above, if training set have
different password policy from test set we may need a smooth output distribu-
tion, a hyper-parameter T is introduced to control the output’s entropy. We use
perplexity to evaluate result because Monte Carlo method is time-consuming,
result is shown in Tables 4 and 5, baseline denotes shallow network model. It
is clear that when we use 10 millions as training set, increasing T will directly
decrease perplexity. Recalling that higher T corresponds to higher entropy, since
10 millions have quite different password policy from Yahoo! and clixsense, we
could increase T to tackle the overfitting problem when the target set is different
from the training set.

Those experiments show that the performance of statistic models heavily
rely on size of training set and is not good at dealing complex passwords. RNN
architecture shows potential but fall short in many cases, the techniques we
used strongly improve RNN-based models’ performance. It is worth noting that
when the training set changes from phpBB to RockYou, the accuracy of the
bidirectional model improves much more than the unidirectional model, but
such improvement does not reflect in the guess-number graph, so the potential
of the bidirectional model is not yet fully realized.

5 Conclusion

This paper describes how to build a deep neural network to model and guess
human-chosen passwords and how to improve it with a bidirectional language
model. We show that neural network based models are effective in guessing based
on large dataset, and can be largely improved by many techniques such as layer
normalization. Our proposed models could guess passwords more effective than
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the state-of-the-art models. Comparing with the PCFG and Markov model, our
proposed models outperform them in both cross-site tests and one-site test. A
simple trick called temperature is introduced to adjust from different password
policy. We also show that the bidirectional language model is a more efficient
way to model passwords comparing with left-to-right language model used in the
Markov and neural network models. We use a simple technique called knowledge
distillation to improve the performance of our deep neural network model and
the improvement is significant at guesses of a low number yet not obvious in
general. However, we believe in the potential of the bidirectional language model
in password guessing, once we find a more applicable approach than knowledge
distillation we would get a more powerful model, and we remain this in future
works.
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Abstract. Cloud computing has proven to be a powerful paradigm in
both academia and industry. A variety of meteorological applications
using machine learning modeled as the workflows and meteorological big
data have been accommodated in the meteorological cloud infrastruc-
ture. However, it still faces challenges to guarantee the execution enciency
of the meteorological machine-learning workflows and avoid the privacy
leakage of the datasets in a semi-trusted cloud. To tackle this challenge,
a collaborative placement method (CPM) and a two-factor-based pro-
tection mechanism for machine-learning workflows and big data security
protection is proposed. Technically, fat-tree topology is leveraged to insti-
tute the meteorological cloud infrastructure. Then, the non-dominated
sorting differential evolution (NSDE) technique is employed to realize
joint optimization of data access time, energy efficiency and load bal-
ance. In terms of security protection, the proposed mechanism allows
data owners (DOs) to send encrypted data to users through meteorolog-
ical cloud server (MCS). The DOs are required to formulate access policy
and perform ciphertext-policy attribute-based encryption (CP-ABE) on
data. In order to decrypt, the users need to possess two factors that a
secret key and a security device (e.g., a sensor card in meteorological
applications). The ciphertext can be decrypted if and only if the user
gathers the secret key and the security device at the same time. Eventu-
ally, the experiment evaluates the performance of CPM.

Keywords: Meteorological big data · CPM ·
Machine-learning workflows · Load balancing · Two-factor protection ·
CP-ABE

1 Introduction

With the continuous accumulation of meteorological data, the computational
complexity of performing the meteorological applications is growing rapidly. To

The original version of this chapter was retracted: The retraction note to this chapter
is available at https://doi.org/10.1007/978-3-030-30619-9 28

c© Springer Nature Switzerland AG 2019, corrected publication 2020
X. Chen et al. (Eds.): ML4CS 2019, LNCS 11806, pp. 94–111, 2019.
https://doi.org/10.1007/978-3-030-30619-9_8

RETRACTED C
HAPTER

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30619-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-30619-9_28
https://doi.org/10.1007/978-3-030-30619-9_8


A Cooperative Placement Method for Machine Learning Workflows 95

ensure their performance, meteorological applications and the collected data
from automatic meteorological observation station are often offloaded to the
cloud for accommodation [1,2]. Traditionally, vast amounts of historical mete-
orological data are analyzed by the meteorological applications (e.g., weather
prediction and hazard assessment) to obtain the valuable information. Never-
theless, due to the enormous volume and complexity of meteorological big data,
the implementation efficiency of applications employing pure data analysis is
greatly degraded, which is not conducive to improve the service quality of these
applications. Fortunately, as an effective technology, machine learning improves
the execution efficiency of meteorological applications by feeding several param-
eters into the single learning model directly, which could theoretically improve
the accuracy of meteorological services by analyzing the abundant meteorological
data [3,4]. In addition, there has been interest in applying workflow technology
to build multiple meteorological services based on machine learning into auto-
matic application instances. The meteorological machine-learning application is
divided into multiple sub-tasks, and each node in the workflow has been respon-
sible for every link of machine learning.

However, to improve the implementation performance of such meteorological
machine-learning workflows, the internal relations between the massive meteoro-
logical data and the workflows requires to be analyzed. Accordingly, in order to
respond to the access requests from geographically distributed machine-learning
workflows in cloud infrastructure [5,6], it is particularly important to rationally
distribute meteorological big data to individual storage nodes. However, the
implementation performance of all the workflows can hardly be guaranteed just
by distributively placing the datasets. Thus, it is of great importance for the
meteorological department and the cloud service providers to properly schedule
all machine-learning workflows and meteorological big data (including the work-
flow input data and generated intermediate data) to the cloud infrastructure,
with the aim of reducing the average data access time for the machine-learning
workflows [7,8]. Concomitantly, the energy consumption of cloud data centers
is also rapidly increasing to accommodate the ever-increasing applications and
data [9], especially the power generated by massive data transmission during the
execution of workflow applications [10]. Currently, energy optimization has lim-
ited the sustainable development of cloud services to some extent, and become
a primary problem with cloud data centers [11,12]. On the other hand, to guar-
antee the service quality, the stability and availability of cloud data centers also
receives growing attention [13,14]. Load balance can enhance the reliability of
the cloud data centers - a key measure for ensuring the service performance and
minimize the probability of overloading or even downtime of a single node [15].
Therefore, while designing the placement method for the meteorological cloud,
the energy consumption and load balance metrics should be considered.

Furthermore, along with the increasing scope of meteorological services, there
also exists the privacy-leaking problem, since meteorological cloud may often
involve confidential data [16]. When acquiring important public resources, for
example, the staffs at the meteorological department read confidential docu-
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ments (e.g., meteorological observation data), security device and secret key are
essential for users. To prevent data being stolen, researchers mostly design single
public key encryption schemes [17,18]. The key is generally stored in a private
device or a trusted third party (TTP). If there is no malicious attackers, these
secret key storage schemes are safe enough. Unfortunately, when being accessed
with other equipment through the Internet, private devices and TTP are most
likely to be attacked by illegal hackers, resulting in the secret key being stolen.
But for all these, the users know nothing. In addition, let’s consider the follow-
ing two real-life work occasion: personal computers that store a user’s secret key
may be used by others in observatory, laboratories and offices, public computers
in meteorological department that record user login information will be shared
by different users. Under these circumstances, the secret keys are able to be com-
promised by some malicious attackers who use technical or non technical means.
Therefore, single secret key encryption scheme no longer satisfies certain security
requirements in meteorological applications, and the two-factor data protection
mechanism arises at the historic moment [19].

With these observations, it remains challenging to achieve energy saving,
balanced load distribution, high data acquisition efficiency for the implementa-
tion of machine-learning workflows and security protection in cloud environment.
For replying this challenge, a collaborative placement method, called CPM, for
machine-learning workflows and two-factor mechanism with security preserva-
tion are designed. Specifically, the key contributions are as follows.

– Fat-tree topology is introduced to institute the meteorological cloud infras-
tructure.

– The Non-Dominated Sorting Differential Evolution (NSDE) algorithm is
leveraged to achieve the balanced placement strategies.

– Simple Additive Weighting (SAW) and Multiple Criteria Decision Making
(MDCM) are employed to identify the most balanced data placement strategy.

– A two-factor-based data protection mechanism that utilizes CP-ABE and
public key encryption is proposed.

2 Preliminary Knowledge

First of all, we introduce a fat-tree based meteorological cloud framework. Then,
we analyze in detail a real-world instance of the meteorological machine-learning
workflows. Finally, we introduce the CP-ABE framework.

2.1 A Fat-Tree Based Meteorological Cloud Framework

Fat-tree topology is one of the most famous techniques to construct the cloud
infrastructure, which is composed of three layers, including core layer, aggrega-
tion layer and edge layer [20]. The switches in the aggregation layer and edge
layer form multiple pods to efficiently manage the switches and the physical
nodes in the data center. Thus, fat-tree topology is employed to establish the
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meteorological cloud infrastructure, which provides high throughput transmis-
sion service for MCS’ to ensure that the non-blocking network communication.
In addition, there are multiple parallel paths between any two physical nodes,
so the fault tolerance of network also performs good. Taking advantage of the
fat-tree network, meteorological department distributes massive meteorological
big data to MCS.

Figure 1 illustrates a fat-tree based MCS framework. In this framework, Pod
i (i= 0, 1, 2, . . . , Z −1) manages all the physical nodes of the subordinate mete-
orological center. Specially, the Pod 0 mainly manages the compute nodes and
storage nodes in the demilitarized zone (DMZ) and the lightning protection cen-
ter. The Pod 1 mainly manages all the compute nodes and storage nodes in the
information center which are the main master nodes for the MCS infrastructure.

Core

Aggregation

Edge

Host

Fig. 1. A fat-tree based MCS framework

2.2 Machine Learning-Based Meteorological Workflow

Benefit from the workflow technology, the meteorological applications can be
modeled as a variety of meteorological workflows, and the operations in a mete-
orological application are modeled as a series of tasks with prioritized relation-
ships. Generally, the meteorological workflows mainly include the meteorological
data Extract-Transform-Load (ETL) workflow, the special production workflow,
the element forecasting workflow. However, for those element forecasting work-
flows that require high accuracy of forecasting, machine learning technology,
with strong learning ability and predictive ability, gradually replaces some tra-
ditional forecasting methods, which is introduced into the process of meteorolog-
ical element forecasting [21], e.g., short-term lightning forecasting, air pollution
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forecasting, precipitation forecasting, temperature forecasting, wind speed fore-
casting.

In addition, to improve the execution efficiency, the meteorological machine-
learning workflows which consume large amounts of resources are offloaded to
the MCS for accommodation. Figure 2 shows an example of a typical machine-
learning workflow for wind speed prediction. In this workflow, all the operations
are abstracted as a series of tasks, i.e., t0 to t7. Among them, the white nodes
are the common tasks similar to those in traditional forecasting workflows, i.e.,
t0, t1, t7. The gray nodes are the personalized machine-learning tasks, i.e., t2,
t3, t4, t5, t6. The specific description of these tasks is presented as follows.

Fig. 2. An example of machine learning-based wind speed prediction workflow.

The task t0 represents the data collection operation. t1 represents the data
pre-processing operation. In t1, the noise data in the collected data is removed
through clustering and regression techniques, and to avoid the fact that some
meteorological elements are of small magnitude and their characteristics cannot
be learned. t2 represents the feature extraction operation. In t2, through the
feature extraction technique, the most effective feature set is extracted from the
original features of meteorological data. The task t3 represents the model training
operation, which utilizes the extracted meteorological feature set as the input
data of the “model training”, and uses the “wind speed” corresponding to the
feature set as the prediction result, and then trains the “wind speed prediction
model” based on a large number of training samples [21]. t4 is the model vali-
dation operation, which generally measures the accuracy of the model by “root
mean square error”. The task t5 is the model test operation. To assess the gener-
alization ability of the wind speed prediction model, t5 tests the true prediction
performance of the model by “cross-validation”. The tasks t6 and t7 represent
the model determination and wind speed prediction operation, respectively. The
model with the smallest generalization error is selected as the final wind speed
prediction model.

2.3 Ciphertext-Policy Attribute-Based Encryption

CP-ABE is a kind of cryptographic primitive for realizing one to many secure
communication, where the DOs share data to specific users by constructing an
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access policy and embedding the policy into ciphertext. The most CP-ABE con-
sists of following four algorithms.

Setup(1k). This algorithm takes a security parameter k as input. It outputs
a public parameter PK and a master key MK.

KeyGen(PK,MK,S). This algorithm takes public parameter PK, the mas-
ter key MK and an attribute set S as input. It outputs a private key SK related
to the attribute S.

Encrypt(PK,M, A). This algorithm takes the public parameter PK, a mes-
sage M and an access policy A as input. It outputs ciphertext CT such that
only the user whose attribute set satisfies the access policy can decrypt.

Decrypt(PK,CT, SK). This algorithm takes the public parameter PK, a
ciphertext CT and a private key SK as input. If and only if the attribute set S
of user satisfies the access policy A, the algorithm can decrypt the message M
successfully.

3 System Model and Formulation

In this section, we mainly formulate the data access model, energy consump-
tion model, data access model, load balancing model and two-factor security
protection model. Then a formalized goal function is defined.

3.1 Data Access Model

In the fat-tree network, suppose the task tm and its required data d are placed
on are vi and vj , respectively, then the relationship between node vi and node
vj is presented by γi,j .

– If vi and vj are the same node, γi,j = 0;
– If vi and vj belong to the same edge switch, γi,j = 1;
– If vi and vj belong to the different edge switches in the same pod, γi,j = 2;
– If vi and vj belong to the different pods, γi,j = 3;

Assume that the number of physical nodes in meteorological fat-tree network
is L, then the relationship of all nodes can be expressed as a two-dimensional
array γ taking values in {0, 1, 2, 3}, and the size of the array γ is L ∗ L.

According to the relationship γi,j between vi and vj , then the access time
Tac of task tm for data d(d ∈ βm) can be expressed by

Tac =

⎧
⎪⎪⎨

⎪⎪⎩

0 , γi,j = 0
2 ∗ d/Bhe , γi,j = 1
2 ∗ (d/Bhe + d/Bea) , γi,j = 2
2 ∗ (d/Bhe + d/Bea + d/Bac) , γi,j = 3

(1)

where Bhe is the bandwidth between nodes and edge switch, Bea is the band-
width between the edge switch and the aggregation switch and Bac is the band-
width between the aggregation switch and the core switch.
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The total data access time Tm of task tm mainly includes the access time of
task tm for obtaining its required dataset βm and the intermediate result data
mdm. So the total access time Tm of task tm is calculated by

Tm =
∑

d∈βm∪mdm

Tac (2)

Then the access time Ttotal of all tasks in the meteorological application is
calculated by

Ttotal =
M−1∑

m=0

Tm (3)

where M is the number of tasks in the current meteorological application.
Finally, the average access time Tavg for all tasks is calculated by

Tavg = Ttotal/M (4)

3.2 Energy Consumption Model

The energy due to the data extracting and accessing by the machine-learning
workflows mainly refers to the energy generated by switches.

If the forwarding rate of the switch is r and the forwarding power of the
switch is p, then the forwarding time tswitch of data d on a single switch is
calculated by

tswitch = d/r (5)

Denote the total amount of switches for vj to access the datasets on vi as
NSi,j . Then the energy generated by all the switches for accessing a dataset is
calculated by

Eswitch = NSi,j ∗ tswitch ∗ p. (6)

Consequently, the energy consumption Em for tm to extract all the input
datasets is calculated by

Em =
∑

d∈βm∪mdm

Eswitch (7)

Finally, the total transmission energy consumption E generated by the
switches for all the tasks is calculated by

E =
M−1∑

m=0

Em (8)
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3.3 Load Balancing Model

The load balancing in the cloud is analyzed from two aspects, i.e., the load
balancing of all the compute nodes and load balancing of all the storage nodes.
In this paper, the load balancing metric is quantified by the variance value of
the node utilization. Generally, the smaller the average utilization variance of all
nodes, the more balanced the load on each node.

Assume that the size of the virtual machines required for task tm and data
dn are vmm and vmn. The capacity of compute node vi and storage node vj

are Ci and Cj , respectively. The number of compute nodes and storage nodes
are set to P and Q respectively. If the compute node that hosts task tm and the
storage node for hosting data dn are vi and vj , respectively, δcal

m,i = 1, δstore
n,j = 1,

otherwise δcal
m,i = 0, δstore

n,j = 0. Finally, the utilization U cal
i of the compute node

vi and the utilization Ustore
j of the storage node vj are calculated by

U cal
i =

M−1∑

m=0

δcal
m,i

∗ vmm/Ci (9)

and

Ustore
j =

N−1∑

n=0

δstore
n,j

∗ vmn/Cj (10)

The average utilization of all compute nodes and storage nodes, denoted as
U cal and Ustore, respectively which are calculated by

U cal =
P−1∑

i=0

U cal
i /P (11)

and

Ustore =
Q−1∑

j=0

Ustore
j /Q (12)

Then, the average utilization variance of all compute nodes and storage
nodes, denoted as Ũ cal and Ũstore, are calculated by

Ũ cal =
1
P

∗
P−1∑

i=0

(U cal
i − U cal)2 (13)

and

Ũstore =
1
Q

∗
Q−1∑

j=0

(Ustore
i − Ustore)2 (14)

Finally, the average utilization variance Ũ of all nodes is calculated by

Ũ =
1
2

∗ (Ũ cal + Ũstore) (15)
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3.4 Two-Factor Security Protection Model

The whole two-factor security protection model contains four entities: cen-
tral authority (CA), data owners (DOs), users and meteorological cloud server
(MCS).

– CA: A CA is considered to be a entity that possesses unlimited computing and
storage capacity. Meanwhile, a CA is also a trusted party, and its tasks are to
generate system parameters, manage users (i.e., enrolling users: distributing
the secret key to every user) and distribute security devices (sensor cards).

– DOs: DOs are owners of data to be stored in MCS. All the data is encrypted
by using CP-ABE. Finally, they upload the generated ciphertext to MCS.

– Users: In meteorological applications, forecasters, analysts, collectors and
other staffs in the meteorological department are users. They can download
the encrypted public data from MCS. If the users want to get the data, they
firstly do decrypt by using their security devices and obtain the resulting
primary ciphertext, then users with specific attributes can decrypt primary
ciphertext by using their secret keys.

– MCS: It is not a credible entity. Concretely, MCS is honest-but-curious, which
can honestly implement the assigned tasks and return corresponding results.
However, it will also do its best to collect sensitive information. Generally,
MCS is regarded as a party with unlimited computing power and storage
space. In this paper, DOs upload the encrypted data (primary ciphertext) to
MCS, then MCS uses the public information obtained from CA to encrypt
primary ciphertext, resulting in secondary ciphertex.

The two-factor security protection model consists of five algorithms. The five
algorithms are described separately as follows.

Setup: (1k)−→(param, msk). The algorithm is run by CA. A security param-
eter k is taken as input. The algorithm outputs public parameters param and
master key msk.

Keygen and Security Device Distribution: (param, msk, S)−→(skS , epki,
eski). The algorithm is run by CA. On inputting the public parameters param,
the master secret key msk and the attribute set S that users possess, the algo-
rithm outputs secret key skS , public information epki, and secret information
eski of security device.

Primary Encryption: (param, A, m)−→ C1. The algorithm is run by DOs.
The input includes the public parameters param, the data m and attribute set
A. The output is the primary ciphertext C1.

Secondary Encryption: (param, epki, C1)−→ C2. The algorithm is run by
MCS. The public parameters, public information epki of security device and
primary ciphertext C1 are taken as input. The algorithm outputs secondary
ciphertext C2.

Data Decryption: (eski, skS , C2)−→m. The algorithm is run by users. The
input includes secret information eski of security device, secret key skS and
secondary ciphertext C2. The output is data m.
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4 Method Design

In this section, NSDE is leveraged for obtaining the balanced data placement
strategies for CPM. Specifically, the placement strategies are encoded to generate
an initial population. Then, the mutation, crossover, and selection operations are
sequentially conducted. Based on SAW and MDCM, the best solution is output
as the final placement strategy. Finally, the specific two-factor data security
protection mechanism is designed.

4.1 Encoding

In the encoding phase, the collaborative placement strategies for all tasks,
intermediate result data, and the input data of workflow are encoded as
the real numbers. Therefore, the placement strategies for all tasks and data
can be encoded as a placement strategies set X = {XT ,XMD,XOD},
where XT = {xT

0 , xT
1 , ..., xT

m, ..., xT
M−1} represents the placement strate-

gies of M tasks. XMD = {xMD
0 , xMD

1 , ..., xMD
m , ..., xMD

M−1} and XOD =
{xOD

0 , xOD
1 , ..., xOD

n , ..., xOD
N−1} represent the placement strategies of M interme-

diate results and N input data of the workflow, respectively. And the placement
position of these data must be storage nodes that do not store historical data in
cloud. At the same time, there is a correspondence between XT and XMD. For
example, data xMD

m is the intermediate result data generated by task xT
m.

4.2 Objective Functions

In this constrained multi-objective optimization problem, there are three objec-
tive functions: average data access time, total energy consumption, and load
balancing of each node. The smaller the objective function values are, the better
the solution is. However, we need to find a suitable solution that achieves the
balance of the three objective functions. The calculation process of the three
objective functions is shown as follows:

Average Data Access Time: For each task in task set TS, the storage time
of intermediate result and the access time of required data of each task are cal-
culated by formula (2), and the average data access time of all tasks is calculated
by formula (4).

Total Energy Consumption: For each task in task set TS, we calculate the
energy consumption of switches by formulas (6) and (7). Then, we calculate the
energy consumption generated by switches during the execution of all tasks by
formula (8).

Load Balancing: Firstly, we calculate the load of each node by formulas (9)
and (10), then we calculate the total load balance variance of all compute nodes
and all storage nodes by formulas (13) and (14), respectively. Finally the average
load variance of all nodes is calculated by formula (15).
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4.3 NSDE-Based Accquision of Collaborative Placement Strategies

NSDE algorithm is a multi-objective optimization algorithm based on population
evolution. Therefore, we first need to initialize a population.

Initialization. The initial population whose size is NP can be expressed as
X = {X0,X1, ...,Xi, ...,XNP−1}, where Xi is the i-th individual, and represents
a placement strategy. Encoding an individual Xi = {XT

i ,XMD
i ,XOD

i } has been
introduced in the encoding section. If the number of nodes is P , each gene xi,j

in each individual Xi randomly takes values between 0 and P − 1, and finally
the initial population X is generated.

Based on the initial population, NSDE begins to perform mutation, crossover,
and selection operations.

Mutation. Mutation operation refers to combining the difference vector of two
individuals with the third individual to generate the mutation individual.

Therefore, firstly, we randomly select three individuals Xa, Xb, and Xc in the
parent population X. Then, based on the mutation factor F which is generally
taken in [0, 1], the mutation individual Hi is calculated as follows:

Hi = Xa + F ∗ (Xb − Xc) (16)

Finally, we can generate a mutation population H = {H0,H1, ...,Hi, ...,HNP−1}
whose size is also NP .

Crossover. Based on the mutation population H and the parent population
X, we perform the crossover operation to generate a crossover population.

Firstly, we randomly select a gene Hi,j from the mutation individual Hi, and
retain it to the crossover gene Ri,j . Then, according to the crossover factor CR
which is also generally taken in [0, 1], we select other genes from the mutation
individual Hi and the parental individual Xi to form the crossover individual
Ri as follows:

Ri,j =
{

Hi,j , j = rand(0, 2M + N − 1)||rand(0, 1) ≤ CR;
Xi,j , rand(0, 1) > CR; (17)

Finally, we generate the crossover population R = {R0, R1, ..., RNP−1} whose
population size is also NP .

Selection. In the selection phase, we need to select individuals from the parent
population. Therefore, firstly, the parent population X and the crossover pop-
ulation R are merged into a population Y = {Y0, Y1, ..., Yi, ..., Y2NP−1} whose
size is 2NP . Then, we perform the fast non-dominated sorting and the crowd-
ing distance calculation operations. During performing the fast non-dominated
sorting, the objective functions of all individuals in population Y are evaluated
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by formulas (4), (8) and (15). All individuals are divided into multiple dominant
layers Li(i = 0, 1, 2, ...). The objective function values of all individuals in the Li

layer are better than the individuals in the Li+1 layer, so all individuals in the Li

layer can completely dominate all individuals in the Li+1 layer. However, we still
need to check whether each individual meets the privacy preservation constraint
by formula (17). Only the individuals which meet the privacy preservation in the
Li layer are more likely to be retained to the next generation population than
the individuals in the Li+1 layer. Furthermore, in the same dominating layer Li,
we perform the crowding distance calculation for each individual, the individuals
meeting privacy preservation with better crowding distance can be preferentially
retained to the next generation population X until the size of X is NP .

Iteration. NSDE continuously performs mutation, crossover, and selection
operations on population X, and multiple non-dominated optimal solutions are
obtained finally.

4.4 Optimal Collaborative Placement Strategy Confirmation

When the termination condition of algorithm is reached, multiple non-dominated
optimal solutions may be output. We still need to choose the optimal individual
among them as the optimal collaborative placement strategy. Therefore, based
on SAW and MDCM, we calculate the utility values of these solutions for the
normalization of multiple indicators.

Based on SAW, we set three corresponding weights w1, w2 and w3 as three
targets, and the sum of w1, w2 and w3 is equal to 1. The more important the
objective function is, the larger the corresponding weight is. The specific calcu-
lation method is as follows:

If T i, Ei and U i represent the three objective function values of individual Xi

respectively, Tmin, Tmax, Emin, Emax, Umin and Umax represent the minimum
and maximum values of the three objective function values of all individuals.
Therefore, the calculation of utility value vi of individual Xi is as follows.

vi = w1∗ Tmax − T i

Tmax − Tmin
+ w2∗ Emax − Ei

Emax − Emin
+ w3∗ Umax − U i

Umax − Umin
(18)

where w1 + w2 + w3 = 1.
Based on SAW and MDCM, we calculate the utility values of multiple opti-

mal solutions. Finally, the placement strategy with the largest utility value is
identified as the final optimal collaborative placement strategy.

4.5 Two-Factor Data Security Protection Mechanism

Setup. All public parameters and master key will be generated in the setup
phase. These public parameters will be shared among all parties. The master
key can only be kept by CA. The specific process of setup is as follows.
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We define G1 and G2 as cyclic multiplicative groups of prime order p, and e:
G

2
1 → G2 is the bilinear map. The algorithm chooses g, g2, h ∈ G1, α, β ∈R Z∗

q .
Four hash functions are chosen as follows: H1 : G1 → Z∗

q , H2 : {0, 1}∗ → Z∗
q ,

H3 : G2 → {0, 1}∗ and H4 : {0, 1}∗ → G1. Meanwhile, the algorithm sets
g1 = gα. There are n attributes in the mechanism. The attribute set can be
denoted as A = {A1, A2, . . . , Ai, . . . , An}1≤i≤n. Each attribute Ai has multiple
attribute values V = {v1, v2, . . . , vi, . . . , vm}1≤i≤m. The public parameters are
published as param = (k, q, g, g1, g2, h, e(g, g),H1,H2,H3,H4). The master key
is set as msk = α.

Keygen and Security Device Distribution. Firstly, CA will distribute a
security device for every user according to his/her ID. Secondly, CA is responsi-
ble for generating the secret keys for the users. Users can use their own security
devices and secret keys to decrypt a ciphertext. The specific process is as follows.

The CA chooses zi ∈R Z∗
q , and sets the public information of the security

device as epki = gzi , and its corresponding secret information as eski = zi.
Finally, CA distributes security devices for every user and shares epki with the
MCS. CA computes

τi = H4(s)−H2(β||i), υi = H4(s)−H2(α||i) (19)

The secret key is skS = (s, τi, υi), where s is the mapping of user attributes to
strings. Attribute set of each user is mapped to the a unique string. S is the
attributes that users possess.

Primary Encryption. DOs encrypt data and send the encrypted data to MCS.
Knowing public parameters param, the data m ∈ {0, 1}∗ and attribute set A.
The process of primary encryption is as follows.

The algorithm computes c1 = m · αk
A, c2 = gk, c3 = βk

A, c4 = A, and defines
αA =

∏
αi, βA =

∏
βi. The primary ciphertext C1 = {c1, c2, c3, c4} is sent to

MCS.

Secondary Encryption. After receiving the primary ciphertext from DOs,
MCS will encrypt it again, resulting in secondary ciphertext. Knowing public
parameters param, primary ciphertext and public information epki. The MCS
encrypts C1 = {c1, c2, c3, c4} to secondary ciphertext as follows.

The algorithm chooses μ1, μ2 ∈R {0, 1}∗, sets r = H2(μ1, μ2) and com-
putes c5 = c1 ⊕ (μ1||μ2), c6 = (μ1||μ2) ⊕ H3(e(g, g)r), c7 = (epki)r·H1(epki),
c8 = hr, c9 = H4(c5, c6, c7, c8)r. At this point, secondary ciphertext is C2 =
(c2, c3, c4, c5, c6, c7, c8, c9).

Data Decryption. When users need to decrypt ciphertext, security devices
and keys are necessary. The decryption process is as follows.
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Knowing c5 = c1 ⊕ (μ1||μ2), so c1 = c5 ⊕ (μ1||μ2). It is also known c6 =
(μ1||μ2) ⊕ H3(e(g, g)r). As a result, the following formula can be obtained

c1 = c5 ⊕ c6 ⊕ H3(e(g, g)r) (20)

Since c5 and c6 are known, so users first use security devices to compute e(g, g)r.
The process is as follows

e(g, g)r = e(g, gr)

= e(g, epk
r
zi
i )

= e(g, epk
r·H1(epki)· 1

zi·H1(epki)

i )

= e(g, c
1

zi·H1(epki)

7 )

(21)

By decryption of the users’ security devices, c1 can be obtained. Next, CA checks
whether the attribute set S of users can satisfy A or not. If it is true, the CA
computes τA =

∏
τi, υA =

∏
υi. The data can be decrypted as the following

equation
m =

c1
e(τA · υA, gk) · e(H4(s), βk

A) (22)

4.6 Method Overview

In this paper, we aim to reduce average data access time, total energy consump-
tion, optimize load balancing and protect data security. Therefore, the collab-
orative placement of machine-learning workflows is modeled as a constrained
multi-objective optimization problem. The security of two-factor data security
protection mechanism is attributed to CP-ABE and public key encryption. In
fact, the collaborative placement of machine-learning workflows and two-factor
data security protection mechanism can be processed in parallel, namely, the
two-factor security protection of data is completed while the machine-learning
workflows are placed collaboratively. In other words, two-factor data security
protection mechanism can be regarded as part of a collaborative placement
method.

5 Comparison and Analysis of Experimental Results

In this section, in order to evaluate the performance of our proposed CPM
method, we perform a series of experiments and compare them with two other
common placement methods. In terms of data security, we compare the proposed
mechanism with two other similar works in theory.
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Table 1. Parameter settings.

Parameter Value

Bandwidth of the edge layer 200 kb/s

Bandwidth between edge layer and aggregation layer 300 kb/s

Bandwidth between aggregation layer and core layer 400 kb/s

The forwarding rate of the switch 300 kb/s

The forwarding power of the switch 5 W

5.1 Parameters Setting and Comparison Methods

In this experiment, we model three different meteorological machine-learning
workflows separately. The settings of the used parameters are shown in Table 1.
To show the performance of our proposed CPM intuitively, four other methods
are employed for comparison analysis, which are elaborated as follows.

– Load-aware placement (LP). In LP, the tasks and data from the workflow are
placed sequentially on the physical servers to achieve the goal of load balance.

– Access time aware placement (AP). In AP, the datasets are co-placed with
the tasks that require the datasets for implementation in the same pod in
priority.

– Attribute-based data sharing scheme [17]. In [17], encryption mechanism is
only attribute-based encryption and does not support two-factor data security
protection.

– Identity-based two-factor security protection scheme [19]. Because of identity-
based encryption, the scheme does not support the security protection of
public data.

5.2 Impact of Weight on Utility Value

In the experiments, to observe the variation of the utility value by altering
weights, the three weights described in (18) are employed to adjust the propor-
tion of the corresponding objective respectively. We adjust the value of w1, and
w2 and w3 are changed accordingly while w2 and w3 are set to the same value in
this paper. Figure 3 shows the impact of the weight w1 on the load balance and
the access time metrics with different machine-learning workflows. It is intuitive
from the 6 sub-figures in Fig. 3 that when the weight w1 increases, the load bal-
ance variance becomes lower gradually, since w1 represents the proportion of the
load balance degree. Meanwhile, the energy consumption gets higher since the
weight w2 gets lower correspondingly.

5.3 Communication and Computational Cost Analysis

First of all, some notations used in efficiency analysis are defined as follows.
|G1| and |G2| are utilized to denote the length of an element in groups G1 and
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(a) number of work-
flows=1

(b) number of work-
flows=2

(c) number of work-
flows=3

(d) number of work-
flows=4

(e) number of work-
flows=5

(f) number of work-
flows=6

Fig. 3. The impact of the weight w1 on the load balance and the access time metrics
with different machine-learning workflows.

Table 2. Communication cost comparison.

Schemes Ours [17] [19]

Secret key length 2|G1| 3|Z∗
q | 2|G1|

Security device length |G1| + |Z∗
q | ⊥ 2|G1| + 2|Z∗

q |
Primary ciphertext length (|m| + 2)|G1| |ck| 6|G1| + 4l

Secondary ciphertext length (|m| + 5)|G1| + | ∗ | |G1| + |G2| 3|G1|+|G2| + 4l

Table 3. Computational cost comparison.

Phases Ours [17] [19]

KSDD EXP1 + 4H 12EXP1 + 2EXP2 + H 4EXP1

PE 3EXP1 EM 2EXP1 + EXP2 + PA + 3H

SE 3EXP1 + EXP2 + 4H 4EXP1 + EXP2 + 2H 3EXP1 + EXP2 + PA + 3H

DD 7EXP1 + 2PA + 3H PA + 2EXP2 9EXP1 + 2PA + 3H

G2, l denotes the length of security parameter, ck denotes the key length of a
symmetric encryption algorithm, |Z∗

q | denotes the length of an element in Z∗
q .

|m| and | ∗ | denote the length of data m and arbitrary 01 string, respectively.
PA, EXP1, EXP2, and H are utilized to denote the cost of a bilinear pairing,
an exponentiation in G1, an exponentiation in G2 and a hash function, respec-
tively. EM and DM are utilized to denote the cost of symmetric encryption and
decryption, respectively.
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Communication and computational comparison are demonstrated in Tables 2
and 3, respectively. In Table 3, KSDD, PE, SE and DD are initial capitaliza-
tion of keygen and security device distribution, primary encryption, secondary
encryption and data decryption phases, respectively. It is not difficult to see
from Table 3 that although the computational cost of the proposed mechanism
at some phases is slightly higher than similar works, the total computational
cost of our mechanism is significantly lower than theirs. A similar situation also
exists in Table 2. Therefore, we omit it here. In short, both communication and
computational cost comparison indicates the efficiency of the proposed mecha-
nism.

6 Conclusion and Future Work

In order to reduce the average data access time of the application and protect the
security of meteorological big data, we design a cooperative placement method
for machine learning workflows and meteorological big data security protection
in cloud computing. Firstly, we model the collaborative placement of tasks and
data in meteorological applications as a multi-objective optimization problem.
Secondly, we analyze and construct the average data access time model, total
energy consumption model and load balancing model, and optimize the multi-
objective problem using NSDE algorithm. Simultaneously, an efficient two-factor
data security protection mechanism has been considered into the collaborative
placement method. Finally, the effectiveness of our proposed method is verified
by comparison and analysis of multiple sets of experiments.

Based on the work done in this paper, we would continue to optimize the
placement of tasks, enhance data security, constantly update our method based
on actual performance of the proposed method in this paper, achieve the perfect
combination of rational placement of resources and data security protection.
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Abstract. Nowadays, smartphone applications are the most widespread
in our daily lives. These applications raised several security concerns such
as authentication, key agreement, and mutual authentication. Accord-
ingly, the researchers have been presented several user authentication
schemes based on the identity-based cryptography (IBC) and certificate-
less cryptography (CLC). Smartphones considered as limited resources
devices, thus, it needs lightweight protocols. However, the existing
schemes are suffering from high computational costs especially the one
that depends on CLC. In this paper, a lightweight certificateless user
authentication scheme based on the elliptic curve cryptography (ECC) is
introduced. The proposed scheme has the lowest computation costs com-
paring with the existing certificateless user’s authentication protocols.
Furthermore, The proposed scheme is secure under the computational
Diffie-Hellman (CDH) Problem and the elliptic curve discrete logarithm
problem (ECDLP). Indeed, the proposed scheme is suitable to use in
the mobile client-server environment and the Internet of things (IoT)
applications.

Keywords: User authentication · Key agreement ·
Certificateless cryptography · Elliptic curve cryptography

1 Introduction

It is an undeniable fact that many applications have been introduced to make
life more comfortable. Many of these applications are network applications and
therefore run in the client-server environment. In the client-server environment,
powerful computers called servers provide services and resources to the client
devices such as personal computers, laptops and mobile devices. Service providers
are able to offer services and resources through these network applications via
network [14].
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Recent upsurge of mobile environment has in turn increased the demand
for network resources and services. These requests have and still being satis-
fied through the development of mobile applications. Mobile client-server envi-
ronment contains several applications such as online payment, banking, shop-
ping, and social network applications. These mobile devices have the problem
of low computational power and battery limitation. This lead to a major draw-
back concerning the mobile devices capabilities. Also, the development of these
mobile applications has not only help to solve much problem of the demand for
network resources and services, but has also introduced other security issues.
Therefore, the user authentication and key agreement are important in these
applications [10].

By using the user authentication protocol, it easy to ensure that the system
dealing with the authorized user. Otherwise, the system will give the service to
an unauthorized user which is a danger. There is a need also for key agreement
protocol to let the communicating parties (client and server) agree on a key
that could be used to secure the communication in the future and the integrity.
Many user authentication and key agreement schemes have been proposed and
designed followed by the effect of Lamport scheme [13]. However, many of these
authentication and key agreement schemes are insecure against many malicious
attacks such as a forgery attack and replay attack. Also, many of these schemes
are not suitable for mobile clients with low computational capabilities since
many of them have high computational costs. From the above-mentioned issues,
the mobile client-server environment requires secure user authentication and
key agreement protocols. This paper proposes a lightweight certificateless user
authentication scheme using elliptic curve cryptography (ECC). The proposed
scheme has the lowest computation costs comparing with the existing certifi-
cateless user’s authentication protocols. According to the security analysis, the
proposed scheme is secure under the computational Diffie-Hellman (CDH) Prob-
lem and the elliptic curve discrete logarithm problem (ECDLP).

This paper presented as follows. The related works are discussed in Sect. 2.
The preliminaries are given in Sect. 3. The proposed scheme is explained in
Sect. 4. The result and discussion are introduced in Sect. 5. Finally, the conclu-
sions are shown in Sect. 6.

2 Related Work

Over the years, many user authentication and key agreement protocols have been
introduced for mobile client-server environment. These protocols have different
authentication credentials. Before we move on to the different works done in
this direction of security, we first want to mention the first basic key agreement
protocol known as the Diffie-Hellman key agreement protocol [4]. This protocol
has been modified in many ways to be able to provide implicit key authentication,
which means, only the licit parties can be able to calculate the session key.

Previously, in order to develop an authentication and key agreement protocol,
the Public Key Infrastructure (PKI) was employed, but this was very expensive
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with regards to the storage and distribution. In order to curb this problem of the
PKI, Shamir [16] introduced the identity-based cryptography (IBC). This scheme
was not practical due to integer factorization. Boneh and Franklin [2] introduced
an identity-based encryption protocol which sparked the idea of client-server
protocols.

In 2006, Das et al. [3] proposed an identity-based remote client authentication
scheme which was pairing based with smart cards. Goriparthi et al. [7] was able
to prove that the scheme of Das et al. [3] was not secured against a forgery attack.
This means that, the authentication process of the scheme can easily be passed
by an adversary. Based on the forgery attack weakness of the above scheme, two
different improved schemes were proposed. The first scheme was proposed by
Fang and Huang [5] to overcome the forgery attack in [3]. After that, Giri and
Srivastava [6] discovered that Fang and Huang’ scheme could also not overcome a
type of forgery attack and also offline attack. Giri and Srivastava [6] went further
to propose another scheme. Their scheme was an improved scheme which could
withstand the forgery attack. The scheme made use of public key encryption
on smart cards. This made the bilinear pairing operation on the identity-based
encryption to utilize more time.

Tseng et al. [20] proved that Giri and Srivastava’ scheme has a very high
computational cost for smart cards possessing low computing capabilities. Tseng
et al. [21] presented a more secured pairing-based authentication scheme for wire-
less clients with smart cards. The proposed scheme provided better performance
and could also withstand the forgery attack. Apart from the proposal and the
proof, Tseng et al [20] showed that the schemes in [3] and [6] were not able
to provide mutual authentication. In 2010, Yoon and Yoo [23] proposed a user
authentication and key exchange protocol for mobile client-server environment
based on Wu et al.’s scheme [22] to improve the performance of their scheme. He
[11] proposed an efficient user authentication key agreement protocol based on
bilinear pairing suitable for mobile client-server environment. He claimed his pro-
tocol gives better performance than that of [22] and [11]. In 2013, Sun et al. [18]
mentioned that most of the identity-based remote user authentication protocols
have an inherent weakness since the server knows all the private keys of clients,
therefore very vulnerable to inside attack and also, most of them could not pro-
vide user anonymity and perfect forward secrecy. They further went ahead to
proposed a novel user authentication protocol for a mobile client-server environ-
ment. Recently, Tsai et al. [19] proved that the protocol of Sun et al. could not
overcome the inside attack proposed by them. The server in the authentication
protocol of Sun et al. could not verify the validity of a user’s partial public key.

It is a clear notion that all the identity-based protocols have the inherent
key escrow problem. To overcome this issue, Certificateless user authentication
protocol can be proposed. Accordingly, all the schemes employed certificateless
cryptography (CLC) should be resisted to the adversaries TYPE I and TYPE
II as mentioned in [1]. Adversary TYPE I can replace the users’ public key, but
he/she cannot access the master key of the key generator center (KGC). The
adversary TYPE II owns the KGC’s master key, but he/she nevertheless can’t
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substitute the public key of the users. In order to solve the key escrow problem,
In 2017, Hassan et al. [8] proposed a certificateless user authentication protocol
which was able to solve the key escrow problem. They claimed their scheme is
secure against both adversary TYPE I and TYPE II. However, their protocol is
not secured against the adversary TYPE II. In order to solve this security issue,
Hassan et al. [9] proposed another certificateless user authentication protocol
for the mobile client-server environment. This scheme proved to be secured and
resistant to the adversaries TYPE I and TYPE II, but it has high computational
cost due to the use of bilinear pairing. This paper proposes a lightweight protocol
which is built on the CLC using ECC to reduce the computational costs in the
previous works.

3 Preliminaries

Here, the elliptic curve cryptography and the hardness assumptions are intro-
duced to use later in our proposed scheme.

1. Elliptic curve cryptography:
It is known the elliptic curve clarified on prime field Fp. Allow E(Fp) indicates
an elliptic curve E over a prime finite field Fp, which is explained by the
following an equation

y2 = x3 + ax + b (1)

While a, b ∈ Fp and with Δ = 4a3 + 27b2 �= 0. The curve compose of all the
points in E(Fp) with the point at infinity O. The reader can refer to [12].

2. The elliptic curve discrete logarithm problem ECDLP:
An elliptic curve E defined over a finite field Fq is given. Where P ∈ E(Fq) is a
point in E with order n as well as there is a point Q = lP where 0 � l � n−1.
It is hard to determine l.

3. The computational Diffie-Hellman (CDH) Problem:
If we have G is a base point of E(Fp) and P, xP, yP ∈ G.Then, the xyP ∈ G

could not be computed due to its difficulty.

4 The Proposed Protocol

We have used the work that presented in [12] to design our scheme. Certificate-
less cryptography with bilinear paring has been used to design the user authen-
tication protocols. However, these protocols have high computational costs. To
overcome this problem, we employed CLC with ECC to design a lightweight
user authentication and key agreement protocol. In the proposed protocol, the
server plays the role of the KGC. The server generates the partial private key
for the client, then the client select secret value to prepare the full private key.
Accordingly, we have the concept of the CLC used in this protocol. Our proposed
protocol compose of the following:



116 A. Hassan et al.

4.1 Setup

– Setup (1λ): The server plays the KGC. The server uses λ as security parameter
while the public parameters generate as follows:
1. A set of elliptic curve (E) domain parameters D = {q,Fq, n, a, b, h} are

used in our protocol.
2. The server picks his master secret key s ∈R Z

∗
q and compute the corre-

sponding master public key Ppub = sP .
3. Select Two cryptographic secure hash functions H1 : {0, 1}∗ × {0, 1}∗ ×

G × G → Z
∗
q , H2 : {0, 1}∗ × {0, 1}∗ × G × G × Z

∗
q → Z

∗
q .

4. Publish the public parameters {D,G, P, Ppub,H1,H2} as general.

4.2 Key Extract

In this phase, the public and partial private keys are generated by the server as
follows:

1. The client sends his identity IDc to the server IDs, then the server uses his
secret value s and the set of E domain parameters to compute the user’s
partial private key RIDc

= sP .
2. After receiving RIDc

, the client selects his secret value xIDc
∈ Z

∗
q to compute

his full private key (RIDc
, xIDc

) and the public key PKIDc
= xIDc

P .

4.3 User Authenticated Key Exchange

1. After the client received the keys from the server, starts communicating with
the server as follows:
(a) Select 1 ≤ k ≤ n − 1.
(b) Compute kP = (x1, y1).
(c) Compute ς = x1 mod n. if ς = 0 then go step (a).
(d) Choose ϕ ∈R Z

∗
q and Compute M = ϕP . Then, the client sends IDc and

M to the server.
2. The sever reacts as follows after received IDc and M correctly:

(a) Select β ∈ Z
∗
q . Then, T = βP and R1 = βM are computed.

(b) Compute hIDc
= H1(IDc, IDs, RIDc

, R1).
(c) Return T as well as hIDc

to the client.
3. Since T and hIDc

are received correctly, the client calculates the following
equations:
(a) Compute R2 = ϕT .
(b) Check whether the received hIDc

its equal to H1(IDc, IDs, RIDc
, R2).

(c) Compute S = k−1(hIDc
+ xIDc

ς) mod n. If S = 0 then go to step 1.
(d) Here, the session key is computed as follow sk = H2(IDc, IDs, RIDc

, R2,
hIDc

). Then, ς and S are sent to the server.
4. Finally, the server verifies from the validity of ς and S which are received

from the client as follows:
(a) Verify that ς and S are Integer in the internal [1, n − 1].
(b) Compute w = S−1 mod n.
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(c) Compute u1 = hIDc
w mod n.

(d) Compute u2 = ςw mod n.
(e) Compute X = u1P + u2PKIDc

. If X = O then reject the client. Other-
wise, Compute v = x1 mod n where X = (x1, y1). Accept the client if
and only if v = ς.

(f) Here, the session key is computed as follow sk = H2(IDc, IDs, RIDc
, R1,

hIDc
) (Fig. 1).

revreStneilC

Select 1 ≤ k ≤ n − 1.
kP = (x1, y1)
ς = x1 mod n
if ς = 0 then select new k
ϕ ∈ Z

∗
q

M = ϕP

IDc,M−−−−−−−−−−−−→
β ∈ Z

∗
q

T = βP
R1 = βM
hIDc = H1(IDc, IDs, RIDc , R1)

T,hIDc←−−−−−−−−−−−−−−
R2 = ϕT
hIDc = H1(IDc, IDs, RIDc , R2)
S = k−1(hIDc + xIDcς) mod n
if S = 0 then go to step 1.
sk = H2(IDc, IDs, RIDc , R2, hIDc)

ς,S−−−−−−−−−−−→
Verify that ς and S are Integer in [1, n − 1]
w = S−1 mod n
u1 = hIDcw mod n
u2 = ςw mod n
X = u1P + u2PKIDc

if X = O then reject the client
Else v = x1 mod n where X = (x1, y1)
Accept the client if and only if v = ς
sk = H2(IDc, IDs, RIDc , R1, hIDc)

Fig. 1. User authenticated key exchange

4.4 The Correctness of Our Protocol

This subsection describes how the proposed scheme is free of error. Given T = βP
and M = ϕP , the proposed scheme is correct due to

R2 = ϕT = ϕβP = βϕP = βM = R1 (2)
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In addition, given ς and S to the server. Then S = k−1(hIDc
+ xIDc

ς) mod n.
It can be written

k ≡ S−1(hIDc
+ xIDc

ς)

≡ S−1hIDc
+ S−1xIDc

ς

≡ whIDc
+ wxIDc

ς

≡ u1 + u2xIDc
(modn)

Therefore,
u1P + u2PKIDc

= (u1 + u2xIDc
)P = kP (3)

Then v = ς.
Finally, the session key in both sides (client and server) are equal.

sk =H2(IDc, IDs, RIDc
, R2, hIDc

)
=H2(IDc, IDs, RIDc

, R1, hIDc
)

5 Discussion

In this section, we demonstrate the efficiency of the performances and security
properties compared with exciting authentication stat-of-art schemes.

5.1 Security Analysis

Our scheme offers user authentication, key agreement and mutual authentication
for the mobile client-server environment. In the following discussion, we give a
brief description of how our scheme satisfied the abovementioned security aspects
as follows:

1. User authentication:
Our scheme provides user authentication since it is depend on the ellip-
tic curve digital signature algorithm (EDSA) in [12] which is secure under
ECDLP. The client sends ς and S as a signature to the server. Then, the
server needs to verify from the client by ensuring that ς and S are an integer
in [1, n − 1]. Adversary can not forge the signature due to the ECDLP.

2. Key agreement:
The proposed scheme provide the key agreement which can be used for the
future communication between both client and server. To get the session key,
the adversary needs to solve the CDH problem in sk. The key agreement
is sk = H2(IDc, IDs, RIDc

, R2, hIDc
) = H2(IDc, IDs, RIDc

, R1, hIDc
). The

adversary cannot get access to the key agreement due to the CDH problem
in R2 and R1.
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3. Mutual authentication:
Our scheme enjoys mutual authentication and it is secure under CDH. The
server can be sure that he is communicated with the right client by com-
puting T and hIDc

= H1(IDc, IDs, RIDc
, R1) in the server side. Then, the

server sends T and the value of hIDc
to the client to compute R2 and

H1(IDc, IDs, RIDc
, R2) as a value of hIDc

. If a client gets the right value of
the hIDc

, then the server authenticates from the client. Otherwise, the server
is communicated by the wrong client. The adversary cannot compromise the
hIDc

and T due to the CDH.

5.2 Performance Analysis

We conduct the performances evaluation regarding the security properties, the
computational cost and the communication overhead of the proposed scheme
compared with the existing protocols. The comparisons are done with He’s
scheme [11] (symbolize it by HDE), Hassan et al.’s scheme [9] (symbolize it
by AHC). We represent a bilinear pairing operation time by Tpr, multiplication
in G1 time by Tmu, inversion operation time by Tinv, addition in G1 time by Td

and hash function time by Th.
The basis of our quantitative analysis is based on Scottet al.’s experimental

results [15] as introduced in Table 1. From their experiment, Pentium IV with
speeds 3 GHz, was employed to simulate the server. The Philips HiPersmart card
provided a 32-bit RISC MIPS, 256 KB flash memory, 16 KB RAM and a maxi-
mum clock speed of 36 MHz was used to simulate the client. Their experiment
considered the security level of the Ate pairing system, and employed an elliptic
curve E over a finite field Fp, with p = 512 bits and a large prime order q = 160
bits.

Table 1. Computation cost at client side and server side

Tpr Tmu Td Tinv TH

Server 3.16 ms 1.17 ms < 0.1 ms < 1 ms 0.01 ms

Client 0.38 s 0.13 s < 0.1 s < 0.01 s < 0.001 s

Table 2. Computational costs

HDE [11] AHC [9] Ours

Client-time 3Tm + 3Th + Tinv 5Tmu + Tad + 4Th 5Tmu + 3Td + 2Th + Tinv

Processing-time 0.266 s 0.754 s 0.962 s

Server-time Tpr + 2Tm + 2Td + 3Th 2Tpr + 4Tmu + 2Td + 6Th Tmu + Td + 2Th + Tinv

Processing-time 9.26ms 11.26ms 2.29ms

The theoretical analysis is introduced to calculate the computational cost in
Table 2. As a result, we find that the proposed scheme has the lowest computa-
tional cost in server side and the reasonable cost in the client side compared with
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the existing protocols [9,11]. Hence, the proposed scheme has the advantage of
working with mobile-based applications and IoT environment due to the use of
the ECC scheme. In Table 3, we use ✓ to express that a scheme enjoys specified
security properties, as well as ✗ to express that a scheme does not enjoy the
specified security properties. Table 3 gives a comparison based on the security
properties.

Table 3. Security properties

HDE [11] AHC [9] Our protocol

Mutual authentication ✓ ✓ ✓

Key agreement ✓ ✓ ✓

Resistance to forgery attack ✓ ✓ ✓

Perfect forward-secrecy ✗ ✓ ✓

No key escrow problem ✗ ✓ ✓

Based ECC ✗ ✗ ✓
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Fig. 2. Communication cost

To get the communication overhead, we compute the transformed elements
between the client and server in all the schemes by using the following notation.
Let |ID| = 80

8 = 10 bytes and employing the curve with q = 160
8 = 20 bytes,

where the size of G1 is 1024 bits. Here, the size of G1 reduced to 65 bytes by
using the compression method in [17].

The communication cost for He [11], Hassan et al. [9], and our scheme are
shown as |ID| + 2|Z∗

q | + 2|G1| = 10 + 2 × 20 + 3 × 65 = 245 bytes, |ID| +
2|Z∗

q | + 2|G1| = 10 + 2 × 20 + 2 × 65 = 180 bytes and |ID| + 3|Z∗
q | + 2|G1| =

10 + 3 × 20 + 2 × 65 = 200 bytes, respectively (see Fig. 2).
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6 Conclusion

This paper presented a lightweight user authentication protocol with a key agree-
ment and mutual authentication. The proposed scheme employed certificateless
cryptography to solve the key escrow problem of identity-based cryptography,
as well as the elliptic curve cryptography to reduce the computational and com-
munication costs. Our protocol is secure under the hard assumptions CDH and
ECDL problems. Indeed, Our protocol is fitting for both the mobile and IoT
applications in client-server environments.
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Abstract. Most of the existing GPS spoofing detection schemes are
vulnerable to the complex generative GPS spoofing attack, and require
additional auxiliary equipments and extensive signal processing capabili-
ties, leading to defects such as low real-time performance and large com-
munication overhead which may not be available for the unmanned aerial
vehicle (UAV, also known as drone) system. Motivated by the limitations
of prior work, we propose a GPS spoofing detection scheme that requires
minimal prior configuration and employs information fusion based on
the GPS receiver and inertial measurement unit (IMU). We use a real-
time model of tracking and calculating to derive the current location
of the drones which are then contrasted with the location information
received by the GPS receiver to judge whether the UAV system is under
spoofing attack. Experiments show that, while the accuracy meets the
requirements of detection, the proposed method can accurately deter-
mine whether the system is attacked within 8 s, with a detection rate
of 98.6%. Compared with the existing schemes, the performance of real-
time detecting is improved in our method while the detection rate is
ensured. Even in our worst-case, we detect GPS spoofing attack within
28 s after the UAV system starts its mission.

Keywords: UAV · Drone · GPS spoofing · Attack detection

1 Introduction

UAV technology plays an important role in dealing with natural disasters, mate-
rial distribution, film and television shooting, and social security incidents. A
latest market report1 indicates that, as of 2018, the global UAV market rev-
enue has reached US$20.71 billion. It is expected that the market will grow at a
compound annual growth rate of 14.15%, and will reach US$52.3 billion in 2025.
1 http://www.avascent.com/2018/02/think-bigger-large-unmanned-systems-and-

the-next-major-shift-in-aviation/.
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Recently, with the development of technologies such as software radio, GPS
has become an indispensable part of the UAV navigation system, but suffered
from destructive security threats [1,2]. For a UAV system, GPS is an extremely
important sensor that provides accurate location information and reduces or
even eliminates the cumulative errors of the IMU. In the case of GPS and IMU
integrated navigation, the navigation accuracy and reliability of the drone have
been greatly improved. However, once the GPS sensor is deceived or attacked,
the data collected by the IMU will be false, and the UAV cannot resolve the
current flight status, resulting in that the UAV could not fly stably according to
the original trajectory, or even collide or crash [3].

Fig. 1. Schematic diagram of GPS spoofing. The attacker records the real GPS signal,
then adds a delay, or generates a GPS spoofing signal of a specific location and time
through a specific program, then forwards the processed signal to the GPS receiver of
the UAVs Formation member (the current location is P), positioning the drone to the
wrong location P’.

GPS spoofing is a major security threat to GPS currently, it is to make the
GPS receiver of the attacked target receive a false GPS signal by forging or
replaying the GPS signal so that the target GPS receiver can resolve a wrong
location and time information [4–7], as shown in Fig. 1. GPS spoofing can be
divided into two types from the generation of the deceptive signals [8]: (1) Trans-
mitting GPS spoofing is to record real GPS signals, plus a certain delay, and then
send them to the target GPS receiver through signal simulator or transponder,
so that the attacked target can resolve the wrong location and time information;
(2) Generative GPS spoofing is relatively more complicated. Attackers usually
extract location, time, satellite ephemeris and other information from real sig-
nals, align the carrier of false GPS signals with real GPS spoofing signals, then
generate GPS deception signals of specific location and time through specific pro-
grams, and transmit them to the target GPS receiver through matrix antenna,
so that the GPS receiver can calculate the wrong location and time information.

In this regard, the scientific community has put forward several detection
schemes to deal with GPS spoofing. However, existing research usually have the
following problems:
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(1) The method of detecting GPS spoofing based on the physical layer charac-
teristics of GPS signals can be applied to most UAV systems, but it can only
detect simple transmitting GPS spoofing, which is often helpless for more
elaborate generative GPS spoofing schemes. For example, when attackers use
multiple GPS transmitters to transmit specific satellite GPS signals [9], or
change the frequency of GPS signals dynamically in the process of spoofing,
these detection methods will not work because the Doppler shift of different
satellite signals no longer has the same changing rules.

(2) Most detection schemes based on cryptography apply symmetric cryptog-
raphy. Although its computational complexity is low, key management and
distribution is a difficult problem. Traditional public key cryptography can
solve the key management problem, while this technology relies excessively
on the ground public key infrastructure (PKI) system. In the UAV system,
the nodes move at high speed and the network topology changes dynamically,
it is hard to guarantee that the drones can obtain GPS public key certificates
from the ground PKI system in real time. Moreover, this method needs to
upgrade the existing UAV system, which will increase the communication
overhead and calculation processing overhead of messages, resulting in that
the real-time acquisition of location information by UAV group members is
greatly reduced, and lead to the yaw of the drones.

At the same time, since the wireless medium does not have a complete and
rapidly observable boundary, if some of the drone nodes are shielded or interfered
by the signal, they have been blocked or flew away from the network. The schemes
above are unable to obtain the flight information of these group members in
time and will be powerless when the system is attacked by GPS spoofing attack.
Therefore, this paper starts with the data communication between the groups
through the communication link inherent in the UAV system [10]. Driven by
the increasing threat and the lack of realistic short-term solutions, a lightweight
active GPS spoofing detection scheme is proposed. The main contributions are
as follows:

(1) We extract the data (such as location and speed of the drone) transmitted
by IMU to the ground control station (GCS) [11], and place the processing of
these information on the GCS. By this way to realize GPS spoofing detection,
we do not need to update GPS infrastructure equipment, GPS receiver, and
GPS signal format, which effectively improves the detection efficiency, and
also helps to solve the positioning deviation caused by GPS signal shielding
or interference.

(2) Combined with the classical multi-point positioning technology, a GPS
spoofing detection scheme based on regional positioning algorithm is
designed. The UAVs formation infers the location of formation members in
real-time through the interaction of communication data between them, and
compares the calculated data with the original position information received
by the GPS receiver of the UAV, so that the group members can quickly
determine whether they are deceived. At the same time, since the UAV sys-
tem no longer detects and locates the real position of the group members by
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directly measuring and analyzing the GPS signals received by the receiver
and their characteristics, the scheme can detect common transmitting GPS
spoofing attacks simultaneously. It can also effectively deal with more com-
plex generated GPS spoofing attacks.

(3) When the number of the UAVs formation is small, the communication data
generated between the group members is insufficient, and it is difficult to
implement the GPS spoofing detection scheme by combining the multi-point
positioning algorithm. In this case, using the flight characteristics and direc-
tion finding principle of the drone itself, the real-time positioning and track-
ing of the single target UAV is carried out, then whether the drone is suffered
by GPS spoofing attacks is judged.

The structure of this paper is as follows: Sect. 2 mainly introduces the existing
GPS spoofing detection schemes. Section 3 put forward our solutions. In Sect. 4,
numerous simulations and experiments are carried out and analyzed. Section 5
is devoted to the conclusions.

2 Related Work

2.1 GPS Spoofing Detection Scheme Based on Physical Layer
Characteristics of GPS Signals

Based on the principle of interference detection, Psiaki Lab [12] proposed a
GPS spoofing detection scheme based on the direction-of-arrival (DOA) induc-
tion. The angle of arrival of the signal is judged by the change of carrier phase
resolution signal between different antennas, so as to distinguish whether the
current target is attacked by GPS spoofing. However, if the attacked target can
only receive two GPS signals, or if the GPS spoofing system is deployed in the
direction of the satellite-to-target connection, GPS spoofing cannot be detected
effectively only by analyzing the direction of arrival of the signal. He et al. [13]
proposed a GPS spoofing detection scheme based on signal distortion detection.
Because the initial phase and C/A code of GPS signal are relatively stable at
each modulation level, the GPS receiver uses different strategies to track the
amplitude intensity of the access signal. When the target is deceived, the false
signal generated by the attacker is fused with the original satellite signal on the
GPS receiver. Users can be warned based on a transient observable peak signal
at this time. However, this method can detect the attack only when the tar-
get receives the GPS spoofing signal for a very short period of time. When the
spoofing signal tends to stabilize, it is difficult to detect whether the system is
deceived.

2.2 GPS Spoofing Detection Scheme Based on Cryptography

Wesson et al. [14] defined and evaluated the concept of GNSS signal authenti-
cation with a statistically based probability model, incorporating digital signa-
tures into scalable GPS civilian navigation signals. Bonior et al. [4] proposed a
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GPS communication signal protection scheme based on quantum key distribu-
tion (QKD). During the communication process, the GPS clock is transmitted
through two or more trusted entities (Beacons) connected by QKD to ensur-
ing the positioning of the GPS. [15,16] are also some symmetric cryptogra-
phy based detection schemes, which are generally trade-offs or optimizations
of encryption protocols in various GPS signal streams. However, cryptography
based GPS spoofing detection schemes usually require manufacturers or users
to make changes in the physical structure of the GPS signal broadcasting mode,
which increases communication overhead and has a certain degree of influence on
the real-time performance of the UAV system. At the same time, it is difficult to
cope with the transmitting GPS spoofing attack because the encryption method
cannot effectively detect the signal replays.

There are also some spoofing detection schemes [17–20], which locate the
drones by auxiliary positioning methods, and compare the target location infor-
mation obtained by assistant positioning method with the unauthorized loca-
tion information received by the target GPS receiver, to judge whether the tar-
get is attacked by GPS spoofing. For example, the multi-station arrival time
based positioning method [21], the conventional time difference based position-
ing method [22], and the frequency difference based positioning method [23], etc.,
they have the advantages of long-range, good concealment performance and high
positioning accuracy [24], but these methods require each auxiliary station to be
in motion relative to the target to be detected, and cannot detect low-speed or
stationary targets. For the UAV system, it’s usually necessary to perform com-
mon missions such as hovering and low-speed flight. If the UAV system suffered
from attacks such as GPS spoofing and no-fly zone deception, these methods
cannot provide effective and accurate location information for UAV systems.

Therefore, this paper proposes an active GPS spoofing detection method for
the specific situation and demands of the UAV system. In our scheme, with
adding as little auxiliary equipment as possible, the UAV position information
can be resolved in real-time and actively by extracting relevant data from UAV
communication links and the inherent inertial navigation device of the UAV,
and compared with the positioning information received by GPS receiver. In
this case, the system can senses whether the group members are attacked at the
first time of the GPS spoofing, thus effectively ensuring the safe flight of UAV.

3 Our Proposed Scheme

We consider each drone in the UAV system as an aerial motion platform, and
propose a time difference based positioning method. This method not only
overcomes the limitations of traditional positioning methods, achieves three-
dimensional positioning of the UAVs in the mission, but also lets UAVs in the
system can acquire the location information of all the other units. Thus, the
UAV system can actively detect and judge the GPS spoofing attack when using
UAV to carry out the flight mission, so as to ensure the safe implementation of
the flight mission.
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3.1 Multiple UAVs Formation

In the case of a UAVs formation, when the UAV U needs to judge whether it has
been deceived, it sends a self-positioning request to the GCS and other drones
around. After receiving the request, each of them uploads a position information
packet with a time stamp to the GCS, then the GCS calculates the current
position of the UAV U through a geometric algorithm. Ideally, after the UAV U
sends the self-localization request, we need only three UAVs in the formation to
respond to calculate the position of the UAV U.

(1) Obtain Location Information of the GCS. After the UAVs formation
took off, the GCS sent a self-positioning request to any three of the drones. After
receiving the request, the three drones (recorded as A, B, C) upload position
information data packets with time stamps to the GCS respectively. The GCS
receives the data packets uploaded by the three drones A, B, and C at Ti(i =
1, 2, 3), then performs BPSK demodulation and Gold Code decoding. According
to time Δτ of signal coding and modulation, the arrival time ti(i = 1, 2, 3)
of decoded echoes from drone A, B and C is corrected, the transmission time
ti + Δτ(i = 1, 2, 3) and coordinate (xi, yi, zi)T (i = 1, 2, 3) recorded in the data
packets uploaded by these three UAVs are obtained, and the three-dimensional
location information of the GCS itself is calculated through TOA algorithm.
That is, the intersection point (x0, y0, z0)T of three hemispheres are obtained by
solving Eq. (1).

ρi = c [Ti − (ti + Δτ)] + ni, i = 1, 2, 3 (1)

Where ρi =
√

(x0 − xi)
2 + (y0 − yi)

2 + (z0 − zi)
2; c indicates the communi-

cation signal transmission speed; ni(i = 1, 2, 3) is the measurement noise.

(2) Calculate the Location of the Target Srone. Then, the three-
dimensional position of the target is determined by the single branch intersection
principle of three bilobal hyperboloids. The double-leaf hyperboloid represents
the set of points that reach a constant difference between the two intersections.
We take the position of the GCS as a common focus of the three two-leaf hyper-
boloids, and the UAV A, B and C as the other three focuses respectively. The
distance difference between the UAV U scattering echo and the UAV A, B, C
is fixed. In space, three hyperboloids with only one branch are formed. These
three hyperboloids with only one branch form two spatial curves. When these
two spatial curves intersect, this point is the position of the UAV U. As shown
in Fig. 2, the specific steps are as follows:
(1) When the UAV A, B, and C upload data to the GCS, the GCS will also
generate scattering signals to A, B, and C. The time tai(i = 1, 2, 3) when the
scattering signal reaches the three drones will also be recorded by the sensor,
thus resulting in positioning errors. Therefore, this arrival time data needs to be
excluded.

Calculate the clock time E = |Ti − ti − Δτ | − |ti − TA0| (i = 1, 2, 3) received
by the GCS from UAV A, B and C. Given a ε(ε > 0, ε → 0), if E ≤ ε, it is the
time ti = tai(i = 1, 2, 3) when the scattered signal from the GCS arrives at the
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Fig. 2. The UAV U selects 3 other UAVs with the shortest communication time nearby
to locate and draw three hyperboloids.

A, B and C, and eliminate this data; if E ≤ ε, the time ti is the time when the
scattered signal from UAV U reaches A, B and C.
(2) It is known that the time t0 when the scattering echo of the UAV U arrives
at the GCS and the position coordinate (x0, y0, z0)T of the GCS. After the time
ti(i = 1, 2, 3) when the drone U scatters back to the drones A, B and C and the
position coordinate (xi, yi, zi)T (i = 1, 2, 3) of them are obtained, the coordinate
(xU , yU , zU )T of drone U is calculated by solving the nonlinear equations of the
following Eq. (2).

⎧
⎪⎪⎨
⎪⎪⎩

r0 =
√

(xU − x0)
2 + (yU − y0)

2 + (zU − z0)
2

ri =
√

(xU − x0)
2 + (yU − y0)

2 + (zU − z0)
2

Δri = ri − r0 = c(ti − t0) + ωi

, (i = 1, 2, 3) (2)

Since we only need to judge whether the UAV is subject to GPS spoofing
and do not need to be accurately positioned, it can be assumed that the ωi is a
Gaussian white noise with a variance of σ2, and a mean of 0.

Given a decision threshold tsh1, the drone U compares the coordinate(xU , yU ,
zU ) with the original GPS coordinate information received by the GPS receiver,
and calculates the Euclidean distance l (x, y, z) between the two. If l (x, y, z) <
tsh1, it means that the drone U is currently operating according to the predeter-
mined trajectory; if l (x, y, z) > tsh1, it indicates that the drone U has suffered
a GPS spoofing attack.
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Fig. 3. Diagram of flight parameters of a single drone.

3.2 Single UAV

When the UAV U needs to judge whether it is deceived or not, it sends a self-
positioning request to formation members nearby group members, and the num-
ber of responding drones around is less than 3, the number of drones in the
formation is too small to realize the detection scheme in Sect. 3.1. At this time,
we adopt the method of combining relevant angle and angle change rate to con-
duct real-time regional positioning and tracking of the target drone. Only the
location information of the target to be detected is considered, and the location
information is compared with the original GPS signal received by the system at
any time to determine whether the target drone is currently attacked by GPS
spoofing. As shown in Fig. 3. At this point, the position of the GCS is taken as
the coordinate origin. Since it is only necessary to discuss whether the UAV U
is attacked by GPS spoofing, the accuracy of the positioning allows a certain
degree of error. After eliminating the effects of atmospheric disturbances, the
target motion model of the UAV U can be described by the uniform motion
model with a acceleration disturbance. After the UAV U took off, the communi-
cation signal with a period of Tr is carried out between the GCS and the UAV
U (in general, only the estimation of the signal repetition period Tro can be
obtained, and Tro is constantly updated), and the observed value is recorded
every N pulses. ΔTr = Tr − Tro is taken as the estimation deviation and added
into the state variable of the UAV U for calculation.

The state vector of time k is taken as Sk = (xk, yk, zk, xUk, yUk, zUk,ΔTrk)T ,
and the GCS is taken as the coordinate origin, then the state equation of the
UAV U is:

Sk+1 = Φk+1|kSk + Wk (3)

In the equation, Φk+1|k =
(

I3×3 TI3×3 03×1

04×3 I4×4

)
is a state transition

matrix, Wk =
(
ωxkT0

2
/
2, ωykT0

2
/
2, ωzkT0

2
/
2, ωxkT0, ωykT0, ωzkT0, 0

)T
is a
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measurement noise, and can be approximated as a Gaussian white noise with a
mean of 0 and a variance of Qkδηk(T0 = NTro is the observation time).

The azimuth angle αk, the pitch angle βk, the azimuth change rate Δαk

(which can be obtained by a phase interferometer) of the UAV U and the one-
way arrival time TAk of the communication signal is recorded every time T0

interval of the GCS. When the UAV U moves, the radial distance between it
and the GCS changes, thus,

{
ΔTAk = TAk − TAk−1

TAi = ri/c
(4)

Where ri is the radial distance from the UAV U to the GCS at time TAi, and ri =√
x2

i + y2
i + z2i , c is the propagation speed of the communication signal. Since

Tr is a constant, and a constant value Tro is obtained every k time intervals, and
ΔTr = Tr −Tro, so the ΔTrk does not change from time k−1 to time k. Take the
derivative of both sides of the azimuth formula Δαk = (x′

kyk + xky′
k)

/
(x2

k + y2
k)

to get αk = arctan(xk/yk), and obtain a nonlinear measurement equation,
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

αk = arctan(xk/yk) + δαk

βk = arctan
(
zk

/√
x2

k + y2
k

)
+ δβk

Δαk = (x′
kyk + xky′

k)
/
(x2

k + y2
k) + δαk

ΔTAk = (rk − rk−1)/c + NTrok + NTrk + δtk

(5)

Next, combining the kinematics principle of the particle and the motion infor-
mation of the target, the state of the UAV U is solved. When the relative dis-
placement between the UAV U and the GCS occurs, the radial distance r, the
azimuth α and the pitch angle β change with time. Take the visual orthogonal
coordinate system (er, eα, eβ)T , where er is determined, eα and eβ are the direc-
tions of increase of the angles α and β respectively. Then the motion state of
the UAV U can be described as

r = rer

v = r′er + re′
r

(6)

The velocity vector in the er direction is ver = ωer, where ω = −α′ez + β′eα

and ez = cos β · eβ + sinβ · er, it can be obtained that,

v = r′er + re′
r = r′er + rα′ cos β · eα + rβ′eβ

= r′er + VHoeα + VV eeβ
(7)

In the equation, VHo and VV e are the horizontal tangential and vertical tan-
gential velocity components of the UAV U in the visual coordinate system,
VHo = rα′ cos β is known, VHo = vx cos α − vy sin α is known through the kine-
matics principle. After obtaining the velocity information of the UAV U in the
rectangular coordinate system, the radial distance r from the UAV U to the GCS
can be obtained, there is,

r = (vx cos α − vy sin α)/α′ cos β (8)
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After ranging, due to the correlation between angular measurements and velocity
estimation errors, a non-linear filtering algorithm is used to obtain the position
of the target through the geometric principle combined with angle measured val-
ues α and β, and to realize real-time tracking and recording of the flight path of
the UAV U. Giving a decision threshold tsh2, the UAV U compares this radial
distance with the radial distance r0 calculated from the original GPS coordinate
information received by the system GPS receiver. If |r − r0| < threshold2, it
indicates that the UAV U is currently operating normally according to the pre-
determined trajectory. If |r − r0| > threshold2, it indicates that the target has
been attacked by GPS spoofing.

4 Evaluation

In order to verify the feasibility of the scheme, this paper conducts a positioning
and tracking of the UAVs formation through simulation experiments. The flight
speed of each unit of the UAVs formation is known in these experiments. In order
to simplify the simulation process without loss of generality, the UAV is regarded
as a uniform sphere, and it is assumed that the location of each unit in the UAVs
formation is trusted before the time m. And during the communication process
of positioning between the drone and the GCS, the two are in a relatively static
state.

In the simulation experiment of the UAVs formation, our proposed method
detects the GPS spoofing attack by locating the target UAV. Therefore, we use
the geometrical dilution of precision (GDOP) to measure the detection accuracy
of the proposed GPS spoofing detection technology, i.e., GDOP =

√
tr(P),

where P is the covariance matrix of the positioning error; tr( · ) is the trace
of the covariance matrix P. Take the derivative of both sides of the following
equation,

⎧⎪⎪⎨
⎪⎪⎩

r0 =
√

(xU − x0)
2 + (yU − y0)

2 + (zU − z0)
2

ri =
√

(xU − x0)
2 + (yU − y0)

2 + (zU − z0)
2

Δri = ri − r0 = c(ti − t0) + ωi

, (i = 1, 2, 3)

In order to facilitate the solution, it is recorded as cix = ∂ri

∂x = x−xi

ri
, ciy = ∂ri

∂y =
y−yi

ri
, ciz = ∂ri

∂z = z−zi

ri
Finished out:

letC =

⎡
⎣

c1x − c0x c2x − c0x c3x − c0x

c1y − c0y c2y − c0y c3y − c0y

c1z − c0z c2z − c0z c3z − c0z

⎤
⎦ ,

dΔr = [dΔr1, dΔr2, dΔr3]
T , dx = [dx, dy, dz], dω = [dω1, dω2, dω3]

T then
dΔr = Cdx+dω The errors of arrival time measurement of the GCS are included
in the process of time difference measurement. In the experiment, it is assumed
that the noise errors of each Δri are irrelevant, and the least square method is
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chosen to solve the problem. The covariance matrix of the positioning error of
the target UAV is:

P = E
[
dxdxT

]

= E
[(
CTC

)−1
CT dxdxTC

(
CTC

)−T
]

=
(
CTC

)−1
CT dxdxTC

(
CTC

)−T

The GDOP factor is:

GDOP =
√

dx2 + dy2 + dz2

=
√

tr (E [dxdxT ]) =
√

tr(P)

Simulation 1. The time difference measurement error is set as 10 ns. In the
experiment, it was set that there were 5 UAVs performing missions in the UAVs
formation, all of which were controlled by the GCS and operated in accordance
with the predetermined flight trajectory. The UAV U was attacked by GPS
spoofing at 30 s after takeoff. The method proposed in Sect. 3.1 was used for
1000 Monte Carlo simulations. The flight trajectory of the target is shown in
Fig. 4.

Taking time t = 120 s as an example, the coordinate of the intersection point
in Fig. 2 is (58.4, 4.7, 153.2), which is the real-time position calculated by the
UAV U through the method in this paper. The error between the real position
and the intersection point is about 2 m.

Giving that the altitude of the target is 150 m, in the experimental envi-
ronment of Simulation 1, the GDOP of target positioning is shown in Fig. 5.
When the measurement error of time difference is 10 ns, the positioning error
of the target is about 7.71 m, and the maximum positioning accuracy can reach
0.67 m near the center of the coverage area of the GCS. In the real scene, it can
accurately determine whether the target is attacked by GPS spoofing

Simulation 2. Using the parameters setting in Simulation 1, the experiment was
carried out on a single UAV, and 1000 Monte Carlo simulations were performed
using the proposed method. The flight path of the target to be detected is shown
in Fig. 6. It can be seen from the simulation results that the real-time trajectory
of the target calculated by this method has strong credibility. After giving the
appropriate decision conditions, it can accurately determine whether the target
drone has been attacked by GPS spoofing.

In the environment of simulating the flight mission of a single drone, assuming
that the measurement error of time difference increases from 2 ns to 20 ns, we
conduct 1000 Monte Carlo experiments for each case, and use bias(θ) = E

[
θ̂
]
−θ

to measure the estimation deviation in x, y and z directions, then calculate the
root mean square error (RMSE). Figure 7 shows the RMSE under different time
measurement errors. Through calculation, it is concluded that the estimated
RMSE of x, y and z components of the target position can reach CRLB, which
are within the acceptable range and meet the requirements of GPS spoofing
detection. It is pointed out that the estimated RMSE error of the z component
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(a) 3D flight path of the target. (b) xOz.

(c) yOz. (d) xOy.

Fig. 4. Flight trajectory of the target

Fig. 5. Positioning GDOP of the drone at the height of target.
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(a) 3D flight path of the target. (b) xOz.

(c) yOz. (d) xOy.

Fig. 6. Flight path of the target.

Fig. 7. RMSE of target position under different time difference measurement error.



136 C. Liang et al.

(a) Multiple UAVs formation. (b) Single UAV formation .

Fig. 8. Probability of false positive rate, false negative rate and sum under different
decision thresholds

Fig. 9. Detection time.

is less than the x and y component. This is because in consideration of the real
environment, there will be more obstacles on horizontal direction, which will
have a certain impact on the measurement of the time difference, we arranged a
Gaussian noise variable whose σ approaches 0 and varies in a small range.

In Fig. 8, we explore the optimal decision thresholds with minimum false
alarm rate and miss rate. The error of time difference measurement was set
as 20 ns, and it was found in the experiment that when the thresholds were
tsh1 = 4.1 m and tsh2 = 6.2 m respectively, the sum of false alarm rate and
missing alarm rate reached the lowest value in the two scenarios. In the case
where the time difference measurement error is 20 ns and the thresholds are
tsh1 = 4.1 m and tsh2 = 6.2 m respectively, the detection time is given in Fig. 9.
It can be seen that when the number of the drones is greater than 4, it can
be stably detected within 8s after the system is spoofed, and the detection rate
can reach 98.6%. When the number of the drones is less than 4, it will take



Detection of GPS Spoofing Attack on Unmanned Aerial Vehicle System 137

28 s to keep track of the target to detect whether the target is attacked by GPS
spoofing, and the detection rate can reach 96.7%.

Fig. 10. Comparison of effective com-
munication time overhead

Fig. 11. Comparison of detection time

In the same simulation environment, we compare the scheme of this paper
with the existing schemes [4,10,25]. [26] points out that when the time cost
of communication link in the UAV system exceeds 100ms, the measurability of
relevant parameters will usually decline, and the flight quality of the UAV cannot
be guaranteed when it is about 250–300 ms.

Firstly, we analyze the relationship between the time cost of one effective
communication of the UAV system in each scheme and the number of formation
members. It can be seen from the Fig. 10, in the GPS spoofing detection scheme
based on cryptography [4], the communication overhead will seriously affect the
normal operation of the UAV system with the increase of formation members;
Jansen et al. [25] proposed the Crowd-GPS-Sec based GPS spoofing scheme to
counter GPS spoofing attacks by means of broadcasting. Therefore, the change
of formation members has no obvious impact on the communication link of UAV
system. The experimental results show that when the number of drones increases,
the time cost of the primary effective communication of UAVs in our scheme
increases, but it does not affect the measurement of the related parameters. Our
scheme can still effectively resist GPS spoofing attack in this case, and is better
than the detection scheme based on the physical layer characteristics of GPS
signals proposed by Hamelmann et al. [10].

Then, we compare the detection rate of each scheme and the required detec-
tion time when the UAV system is attacked. In the specific experiment, we set
the number of UAVs formation members to 5, the simulation results are shown
in Fig. 11. When the UAV system is spoofed, our scheme can detect the spoofing
attack faster than others. The detection rate is slightly lower (about 0.2%) than
the GPS detection scheme proposed by Kai et al., but their detection scheme
based on Crowd-GPS-Sec need to take about 82 s to integrate the location infor-
mation of all members of the system and broadcast it to the formation to achieve
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stable detection of GPS spoofing attacks. The experimental results show that
the scheme can greatly improve the real-time detection of GPS spoofing attacks
while ensuring the effectiveness of detection.

5 Conclusion

A lightweight active GPS spoofing detection method considering the scale of the
UAV system is proposed. We present two different detection methods, and anal-
yses the feasibility of the scheme. Experimental results show that our scheme
can effectively locate the real-time position of UAVs formation members within
the allowable error range, and can timely detect whether the system is attacked
by GPS spoofing, without changing the GPS infrastructure and GPS receiving
device, and adding auxiliary measuring equipment. Compared with the exist-
ing schemes, our scheme improves the real-time detection without reducing the
detection rate.
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7. Jansen, K., Tippenhauer, N.O., Pőpper, C.: Multi-receiver GPS spoofing detec-
tion: error models and realization. In: Annual Conference on Computer Security
Applications, pp. 237–250. ACM, California (2016)
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Abstract. Smartphones have become a necessity in people’s daily lives,
and changed the way of communication at any time and place. Nowa-
days, mobile devices especially smartphones have to store and process a
large amount of sensitive information, i.e., from personal to financial and
professional data. For this reason, there is an increasing need to protect
the devices from unauthorized access. In comparison with the traditional
textual password, behavioral authentication can verify current users in a
continuous way, which can complement the existing authentication mech-
anisms. With the advanced capability provided by current smartphones,
users can perform various touch actions to interact with their devices.
In this work, we focus on swipe behavior and aim to design a machine
learning-based unlock scheme called SwipeVLock, which verifies users
based on their way of swiping the phone screen with a background image.
In the evaluation, we measure several typical supervised learning algo-
rithms and conduct a user study with 30 participants. Our experimental
results indicate that participants could perform well with SwipeVLock,
i.e., with a success rate of 98% in the best case.

Keywords: User authentication · Behavioral biometric ·
Swipe behavior · Smartphone security · Touch action

1 Introduction

With the revolution of information technology, mobile devices like smartphones
have become prevalent in people’s lives. More users are willing to store private
information on their devices and use them to process some sensitive information
for mobility and convenience [27,50]. However, this also makes smartphones
a major target by cyber-criminals [31]. If attackers get the phone and unlock
it successfully, then they can easily steal all sensitive data. Thus, there is a
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demanding requirement for implementing user authentication mechanisms to
prevent unauthorized access.

Up to now, the most widely adopted authentication approach is still based
on textual passwords. For example, iPhones use PIN code to protect the devices,
but it may suffer many invasions, e.g., recording attacks [31]. In real-world
applications, users have multiple accounts and may choose easy-to-remember
passwords due to the multiple password inference [28] and limitation of long
term memory [49]. Some research studies like [3,48] revealed that this situation
may become even worse under existing state-of-the-art attacks. For example, the
report from SplashData showed that the most frequently used password in 2018
is “123456” [39].

As an alternative, graphical passwords (GP) were developed to enhance
the authentication process, since many studies like [30,36] identified that peo-
ple could remember images better than string passwords. There are many GP
schemes in the literature. For instance, Jermyn et al. [14] introduced DAS (draw-
a-secret) that requires users to draw their passwords on a 2D grid. Wiedenbeck
et al. [47] developed PassPoints that allows creating users’ credentials by clicking
on some locations on an image. In practice, GP schemes are not widely adopted
by mobile devices, but there exists a typical application called Android unlock
patterns, which requires users inputting correct patterns to unlock their phones
in a grid size of 3 × 3 points [2,7]. For authentication, users have to recall the
pattern registered during the enrollment.

However, Android unlock patterns may be vulnerable to many attacks in
real-world usage, as users can only choose a pattern with 4 dots at least and 9
dots at most. This makes Brute-force attack feasible because the total number
of possible patterns is only 389,112 [1]. In addition, it also suffers recording
attacks [31] and charging attacks [25,26] (i.e., the phone screen can be captured
by attackers). As a result, there is a great demand to enhance the security of
such unlocking mechanism.

Contributions. Many existing research studies have shown that combining
behavioral biometric could provide an additional security layer to safeguard the
Android unlock patterns [7,17,52]. For example, De Luca et al. [7] showed how
to combine behavioral biometric with unlock patterns using dynamic time warp-
ing (DTW). Motivated by this, in this work, we advocate the merit of enhanc-
ing authentication with behavioral biometric, and develop SwipeVLock, a swipe
behavior-based unlock mechanism on smartphones. In our scheme, users can
choose a background image and a location on the image to swipe their finger.
The contributions of this work can be summarized as follows.

– We design SwipeVLock, a phone unlocking scheme that verifies users based
on how they swipe the touchscreen. For enrollment, users have to choose one
background image and one location, and then register their swipe behavior.
This mechanism is transparent without additional hardware on smartphones.
We also test several typical supervised learning algorithms for authentication.

– In the user study, we involve a total of 30 common phone users to evaluate the
performance of SwipeVLock. Based on the collected data and users’ feedback,
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it is found that our scheme can provide good usability in practice. SwipeVLock
can be considered as one alternative to complement existing solutions.

Road Map. The rest of this paper is structured as follows. Section 2 introduces
related authentication schemes based on either graphical passwords or touch
behavioral biometric. Section 3 describes our scheme of SwipeVLock in detail. In
Sect. 4, we conduct a user study with 30 participants and analyze the collected
data. We discuss some open challenges and conclude our work in Sects. 5 and 6.

2 Related Work

This section introduces related studies regarding graphical passwords schemes
and touch behavioral authentication.

2.1 Authentication Based on Graphical Password

Graphical passwords have been researched over decades. There are three major
types for a traditional GP scheme [4,29,42]: recognition-based scheme, pure
recall-based scheme and cued recall-based scheme.

– Recognition-based scheme. This kind of scheme (e.g., [6,32]) needs users to
remember and recognize several images. Taking PassFaces [32] as a typical
example, it requires users to figure out human faces for user authentication.

– Pure recall-based scheme. This type of scheme requires users to generate a
pattern on an image. For example, Jermyn et al. [14] introduces DAS (‘draw-
a-secret’), in which users have to create their passwords on a grid. Android
unlock pattern (AUP) mechanism belongs to this type, asking users to swipe
their finger to input a correct pattern and unlock the device. It is indeed a
modified version of Pass-Go [44], in order to fit a small touchscreen. AUP has
some rules, i.e., it defines a valid pattern with 4 dots at least and 9 dots at
most, within a grid of 3 × 3 points on smartphones.

– Cued recall-based scheme. Such schemes require users to create a pattern on
an image or more images. Taking a typical system of PassPoints [47] as an
example, it needs users to remember five points on one image in an order.
Then Chiasson et al. [5] introduced Persuasive Cued Click-Points (PCCP),
in which users have to pick a point on a sequence of background images.

In addition to the above major schemes, existing GP schemes are more inte-
grated. For example, with the aim of enhancing the password space, world map
has been proposed as the background image, in which users can choose a loca-
tion worldwide [11,38]. Based on this idea, Sun et al. [43] designed PassMap that
requires users to choose two locations (in an order) on a world map. Then Thorpe
et al. [45] introduced GeoPass that only requires users to select one location.
The previous study showed that there is no significant difference between the
selection of one or two locations [29]. Meng [22] designed RouteMap, a map-based
scheme that demands users to create a route on a world map.
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Similar to textual passwords, graphical passwords may also suffer the issue
of multiple password interference. Meng et al. [28] investigated this issue with
60 participants between textual passwords and map-based passwords under six
account scenarios. They found that participants in the map-based graphical pass-
word scheme could perform better than the textual password scheme in both
short-term (one-hour session) and long term (after two weeks) password memo-
rability tests.

To further enhance the performance of graphical passwords, there is a balance
should be made between security and usability. A set of hybrid GP schemes were
also developed in the literature, like click-draw based GP scheme [17]. Some rele-
vant GP studies could be referred but not limited to [8,9,13,16–20,23,24,27,51].

2.2 Touch Behavioral Authentication

With the advent of touchscreen, touch dynamics has become popular on smart-
phones. Fen et al. [10] developed a finger gesture-based authentication system
on touchscreen devices, reaching a FAR of 4.66% and a FRR of 0.13% based
on a random forest classifier. Meng et al. [17] validated the feasibility of touch
behavioral authentication on smartphones, where they designed scheme with 21
features and achieved an average error rate of around 3% based on a combined
classifier of PSO-RBFN. Frank et al. [12] developed Touchalytics, a touch behav-
ioral authentication scheme with 30 features, and reached a median equal error
rate of around 4% (one week after the enrollment phase).

Up to now, more touch behavioral authentication schemes have been pro-
posed [21]. Zheng et al. [53] researched users’ tapping behaviors on a passcode-
enabled smartphone, and achieved an averaged equal error rate of nearly 3.65%
by using a one-class algorithm. Smith-Creasey and Rajarajan [37] achieved an
equal error rate of 3.77% by means of a stacked classifier approach. Sharma
and Enbody [41] studied how users interact with the application interface, and
achieved a mean equal error rate of 7% for user authentication based on the
SVM-based ensemble classifier. Shahzad et al. [40] researched users’ particular
behavior and designed an authentication scheme based on how users input a
gesture or a signature, such as velocity, device acceleration, and stroke time.

3 Design of SwipeVLock

The purpose of our proposed SwipeVLock is to complement existing unlocking
mechanisms on smartphones, through involving touch behavioral authentication.
Figure 1 shows the basic design of SwipeVLock with three major steps.
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Fig. 1. SwipeVLock: (1) Step1: select one background image from a pool; (2) Step2:
choose one location on the background image; and (3) Step3: swipe from the selected
location to unlock the phone.

SwipeVLock Enrollment. Users have to select one background image from
an image pool, with different themes such as fruits, cartoon characters, sport,
landscape, food, buildings, transportation, people, etc. Then, users can choose
one location as the starting point and then swipe the screen from this selected
location.

SwipeVLock Verification. For authentication, users have to select the same
background image from the pool, and swipe the screen from the same location
on the image. The authentication process can be regarded to be successful, if
and only if both image location and swipe behavior are verified by our scheme.

SwipeVLock Framework. Figure 2 depicts how to realize SwipeVLock. In this
work, our scheme employs a supervised learning-based framework to help model
users’ touch behavior. When users swipe the screen, SwipeVLock will extract
the touch features from swipe behavior and train the classifier. The classifier
mainly generates a normal profile based on the swipe behavior, and compares it
with the current swipe features. A decision will be output in the end.

On the other hand, SwipeVLock can compare the image location with the
stored location in the database. If there is a match, then it is considered to be
successful. In particular, we set the error tolerance to a 21×21 pixel box around
the selected location. This selection is based on the previous work like [29,45].
For example, GeoPass [45] proved that an error tolerance of 21 × 21 pixel is
usable in practice.

Swipe Features. In this work, based on the previous studies [7,12,24], we con-
sider some common and typical touch features that can be used to model swipe
behavior: the coordinates of location (XY), touch pressure, touch size, touch
time, and touch speed.
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Fig. 2. Detailed authentication processes for SwipeVlock.

– Coordinates of location. Our scheme records the location coordinates on the
selected image. Intuitively, users may have their own selection preference,
making the location different from others.

– Touch pressure. With the increasing capability of smartphones, current screen
sensors are able to identify the values of touch pressure, which can be used
to model users’ touch behavior.

– Touch duration. This feature can be computed by measuring the time differ-
ence between touch press-down and touch press-up. It is a common feature
that can be used to distinguish different users, i.e., some users may press
longer while some may press shorter.

– Touch speed. Intuitively, swipe behavior can be treated as a swift touch move-
ment. Based on [24], suppose a swipe action starts from (x1, y1) and ends
at (x2, y2), if we know relevant time of occurrence T1 and T2, then we can
calculate the touch speed according to Eq. (1).

Touch Speed =

√
(x2 − x1)2 + (y2 − y1)2

T2 − T1
(1)

4 User Study

To investigate the performance of our scheme, we perform a user study with 30
participants who are regular Android phone users. The detailed information is
shown in Table 1. In particular, we have 17 males and 13 females who aged from
18 to 45. Most of them are students in addition to business people, university
staff and faculty members. A $20 gift voucher was provided to each participant.

Supervised Learning. As mentioned in Fig. 2, SwipeVLock uses supervised
learning algorithms to help verify users. In this work, we consider the following
classifiers as a study: Decision tree (J48), Naive Bayes, SVM and Back Propa-
gation Neural Network (BPNN). These are the typical and popular classifiers in
the literature.
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Table 1. Participants information in the user study.

Information Male Female Occupation Male Female

Age <25 10 7 Students 13 10

Age 25–35 4 4 University Faculty&Staff 2 2

Age 35–45 3 2 Business People 2 1

– J48 is a decision tree classifier [33], which can label data based on the pre-
trained tree-like structure.

– Naive Bayes is kind of supervised learning algorithms based on Bayes theorem
by assuming conditional independence between every pair of features given
the value of the class variable [34].

– BPNN is a kind of neural network classifier [35], which uses a differentiable
transfer function at each network node and then uses error back-propagation
process to modify the internal network weights after each training round.

– Support Vector Machine (SVM) [15] is a linear model for both classification
or regression challenges, by generating a line or a hyperplane that separates
the data into classes.

To avoid any bias during classifier implementation, we adopted WEKA plat-
form, which is an open-source machine learning collection in Java [46]. We used
the default settings for all classifiers in the study. Below are two metrics used to
evaluate the performance of our scheme.

– False Acceptance Rate (FAR): indicates the percent of how many intruders
are classified as normal users.

– False Rejection Rate (FRR): indicates the percent of how many legitimate
users are classified as intruders.

Study Steps. In the study, we first introduced our objectives to all participants
and demonstrated what kind of data would be collected. Each participant could
get one Android phone (Samsung Galaxy Note) and before the experiment, each
of them has three trials to get familiar with the scheme. Then we randomly
divided participants into two groups. In particular, Group-A was asked to per-
form the experiment in our lab, while the participants in Group-B could set their
SwipeVLock in the lab and keep using the phone outside. Below are the detailed
study steps.

– Group1. Participants in this group were required to complete the experiment
in the lab.
• Step 1. Creation phase: participants have to create their credentials

according to SwipeVLock’ steps.
• Step 2. Confirmation phase: participants should confirm the password by

verifying both the image location and swipe behavior for 10 times (used
for classifier selection). Participants could modified their credentials if
they fail or want to change it.
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• Step 3. Distributed memory: participants were provided one paper-based
finding tasks to distract them for 15 min.

• Step 4. Login phase: participants should swipe to unlock the phone for
10 trials. The system recorded all the data for analysis.

• Step 5. Feedback form: participants should respond to several questions
in a feedback form regarding our scheme usage.

• Step 6. Retention. After three days, participants were asked to return and
unlock the phone for 10 times in our lab.

• Step 7. Participants have to finish another feedback from regarding our
scheme usage.

– Group2. Participants in this group could create their SwipeVLock credentials
in the lab, and then keep using the phone outside the lab.
• Step 1. Creation phase: participants have to create their credentials

according to SwipeVLock’ steps.
• Step 2. Confirmation phase: participants should confirm the password by

verifying both the image location and swipe behavior for 10 times (used
for classifier selection). Participants could modified their credentials if
they fail or want to change it.

• Step 3. Distributed memory: participants were provided one paper-based
finding tasks to distract them for 15 min.

• Step 4. Login phase: participants should swipe to unlock the phone for
10 trials. The system recorded all the data for analysis.

• Step 5. Feedback form: participants should respond to several questions
in a feedback form regarding our scheme.

• Step 6. Retention. Participants could keep the phone and try to unlock
the phone at last once each day. After three days, participants were asked
to return and unlock the phone for 10 times in our lab.

• Step 7. Participants have to finish another feedback from regarding our
scheme.

Study Results. In the confirmation phase, we could collect 150 trials in the
login phase for each Group1 and Group2. We used 60% of them as training data
and the rest as testing data (with a cross-validation mode). The performance of
different classifiers is depicted in Table 2. It is found that SVM could achieve a
smaller error rate than other classifiers, i.e., it could reach an AER of 4.1% and
4.45% in Group1 and Group2, respectively. In contrast, BPNN could reach an
AER of around 7%, while J48 & NBayes may cause an AER over 10%.

In this case, we used SVM as the classifier in SwipeVLock. Table 3 shows
the successful unlock trials for login phase and retention phase in Group1 and
Group2.

– Login phase. It is observed that participants in both groups could perform
well with a success rate of 97.3% (Group1) and 95.3% (Group2), respectively.
The errors were mainly caused by behavioral deviation, i.e., some participants
may perform a swipe too fast.
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Table 2. The performance of different classifiers under different groups.

Group1 J48 NBayes SVM BPNN Group2 J48 NBayes SVM BPNN

FAR (%) 9.7 12.4 3.7 6.8 FAR (%) 10.6 11.5 4.1 6.8

FRR (%) 10.3 10.3 4.5 7.2 FRR (%) 11.3 12.2 4.8 7.6

AER (%) 10.0 11.35 4.1 7.0 AER (%) 10.95 11.85 4.45 7.2

Table 3. Success rate in the login and retention phase for Group1 and Group2.

Login Group1 Group2

Success rate 146/150 (97.3%) 143/150 (95.3%)

Retention Group1 Group2

Success rate 132/150 (88%) 147/150 (98%)

– Retention phase. After three days, it is found that participants in Group2
performed much better than those in Group1. This is because participants in
Group2 could keep the phone and practice the unlocking behavior. Some par-
ticipants reported that they might unlock the phone 16 times a day, making
their swipe behavior more stable.

It is interesting to notice there are fewer errors caused by location selection,
indicating that the error tolerance is suitable in practical usage. Further, our
results validate that more practice can make the touch behavior more stable,
which is in-line with the observations in [24]. For the retention phase in Group2,
participants achieved a success rate of 98%, which is promising in real-world
applications.

User Feedback. During the study, we gave two feedback forms to each partic-
ipant regarding the scheme usage. Ten-point Likert scales were used in each
feedback question, where 1-score indicates strong disagreement and 10-score
indicates strong agreement. Several key questions and scores are summarized
in Table 4.

– Group1. Most participants were satisfied with the usage of SwipeVLock,
resulting in a score of over 8.5 on average for each question. We informally
interviewed 10 of them, and they believed this is an easy-to-use unlock mech-
anism.

– Group2. The participants in Group2 provided a higher score than Group1,
i.e., 9.1 vs. 8.7 for the third question. The reason may be due to that the
participants in this group could keep the phone and try it for three days. We
also informally interviewed 12 of them, and found that they had fun of using
this mechanism. Most of them have an interest to use it in their own phones.
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Table 4. Major questions and average scores received from the user study.

Questions (Group1) Average scores

1. I could easily create a credential under SwipeVLock 8.8

2. The time consumption for SwipeVLock creation is acceptable 8.5

3. I could easily login to the system 8.7

Questions (Group2) Average scores

1. I could easily create a credential under SwipeVLock 9.0

2. The time consumption for SwipeVLock creation is acceptable 8.7

3. I could easily login to the system 9.1

Though users’ feedback is a subjective way of evaluating the scheme per-
formance, it still provides valuable comments on our scheme. For instance, in
the study, we received many positive answers, which can support and motivate
the development of SwipeVLock, i.e., some participants are willing to use our
mechanism on their own phones. We consider that our scheme could become
a promising alternative to complement existing unlock mechanisms on smart-
phones.

5 Discussion

In the user study, we obtain promising results on the usage of our scheme. How-
ever, our work is still an early study to explore the performance of SwipeVLock,
there are many challenges and limitations.

– Time consumption. In this work, we did not investigate the time consumption,
as it normally takes less than 10 s. Most participants also satisfied with the
login time in our feedback forms. In our future work, we plan to perform a
larger study to explore this issue.

– Image selection. The first step of SwipeVLock is to select one background
image from a pool (i.e., with 10 images). Intuitively, users have their own
preference and are likely to choose a different image. However, with more
users, it is unclear whether there would be a bias. This is an interesting topic
in our future work.

– Location selection. The second step of SwipeVLock is to choose a location
on the selected image. Similar to the image selection, it is also an interesting
topic to investigate whether there is a selection bias, and explore which part
of image is most likely to be selected.

– More participants. In this work, we mainly involved 30 participants in the
study. In our future work, we plan to recruit more participants with diverse
background to validate our results. In addition, it is also an interesting topic to
investigate the difference between right handed and left handed participants,
and check the observations.
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– Advanced attacks. Our focus in this work is to investigate the performance
of SwipeVLock, we did not consider some adversarial scenarios, where an
attacker may get the phone and try to unlock it. This is an important topic
in our future work, i.e., exploring the effect of recording attacks and mimic
attacks.

– Multi-touch behavior. At this stage, our scheme only considers a swipe action
with single finger, while it is an interesting topic to investigate the perfor-
mance by using two fingers.

– Phone type. In this work, we mainly used one type of Android phone in the
user study, while it could be an interesting topic to explore whether phone
models may affect the scheme performance. This is also an open challenge for
existing authentication schemes.

– Machine leaning. Supervised learning algorithms are widely adopted when
designing a user authentication scheme [21]. In this work, we considered some
common and popular machine learning schemes to model users’ behavior. Our
future work plans to involve more diverse learning algorithms, e.g., ensemble
algorithms, and to investigate the effect of feature distance approaches.

– Comparison with other schemes. Our study focuses on evaluating the per-
formance of SwipeVLock itself, while we plan to consider a comparison with
similar schemes in future. For example, we can include some existing graphi-
cal password schemes, behavioral schemes or hybrid schemes. This is an open
challenge in this area, as there lacks a unified platform for comparison.

6 Conclusion

Unlock mechanisms like Android unlock patterns are an important security tool
to protect smartphones from unauthorized access, but attackers can still com-
promise the phone via various attacks like shoulder surfing, recording attacks
and charging attacks. As a result, there is an increasing need to enhance the
security of unlock mechanisms. In this work, motivated by this issue, we develop
SwipeVLock, a swipe behavior-based unlock scheme with a supervised frame-
work on smartphones, which requires users to choose one background image and
a location to perform a swipe action. A successful trial should have both suc-
cessful location selection and swipe verification. In our user study, we involved a
total of 30 participants and investigated their performance like success rate. Our
results demonstrate that participants could reach a success rate of 98% in the
best scenario. Most participants also provide positive feedback on the practical
usage of SwipeVLock.
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Abstract. Lattice reduction with random sampling is a kind of random-
ized heuristic algorithm for solving approximate Shortest Vector Problem
(SVP). In this paper, we propose a lattice vector sampling method for
solving approximate SVP. Firstly, we apply enumeration techniques into
vector sampling using natural number’s representation (NNR), enlight-
ened by discrete pruning. Secondly, to find optimal parameters for the
enumeration-like sampling method, we study the statistical properties
of a structured candidate vector set, and give a parameter calcula-
tion strategy for minimizing the sampling time. This new sampling
method is a universal framework that can be embedded into most of
the sampling-reduction algorithms. The experimental result shows that
sampling reduction algorithm with the new sampling method embedded
runs faster than the original Restricted Reduction (RR) algorithm within
90 dimensions.

Keywords: Public-key cryptosystem · Shortest vector problem ·
Lattice reduction · Enumeration

1 Introduction

A lattice L is all the integral combinations of n linear independent vectors
b1, . . . ,bn ∈ R

m×n, and these vectors are called a basis of L. Lattice is a
useful tool for analyzing public key cryptosystem [15] such as knapsack pub-
lic key system [20] and RSA [6,8]. Lattice-based cryptography is also widely
believed to resist quantum computer attacks, which called a lot of researches in
this field. NIST launched a post-quantum crypto project in 2016 and the half
candidate algorithms are lattie-based. For reasons of practical implementation,
the researches of lattice problem are mainly focused on integer lattices, namely
B = [b1, . . . ,bn] ∈ Z

m×n.
One of the most important topic in lattice theory is computational problems

of lattice. The hardness of these problems becomes the foundation of many
lattice-based public key system, and studying the computational complexity of
these problems is an interesting part of computational theory. Two of the famous
computational problems on lattice are:

c© Springer Nature Switzerland AG 2019
X. Chen et al. (Eds.): ML4CS 2019, LNCS 11806, pp. 154–172, 2019.
https://doi.org/10.1007/978-3-030-30619-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30619-9_12&domain=pdf
http://orcid.org/0000-0001-5459-9520
https://doi.org/10.1007/978-3-030-30619-9_12


An Enumeration-Like Vector Sampling Method 155

1. Shortest vector problem (SVP): Given a lattice basis B ∈ Z
m×n, find a

nonzero vector Bx (x ∈ Z
n\{0}) such that ‖Bx‖ ≤ ‖By‖ for any other

y ∈ Z
n\{0}.

2. Closest Vector Problem (CVP): Given a lattice basis B ∈ Z
m×n and a target

vector t ∈ Z
m, find an integer vector x ∈ Z

n such that ‖Bx − t‖ ≤ ‖By − t‖
for any other y ∈ Z

n.

The CVP was proved to be NP-complete by van Emde Boas in 1981 [9]
and the SVP was proved in 1998 by Ajtai under randomized reduction. Many
lattice-based cryptosystems are based on these two problems, and cracking the
cryptosystem is reduced to solving SVP or CVP on high dimension lattice. There-
fore, the algorithms solving the two main problems are quite important for the
research community.

The approximate version of SVP and CVP also calls widely concern and are
also useful in cryptanalysis [17].

1. Approximate SVP: Given a lattice basis B ∈ Z
m×n, find a nonzero vector

Bx (x ∈ Z
n\{0}) such that ‖Bx‖ ≤ γλ1, where λ1 is the length of the shortest

vector.
2. Approximate CVP: Given a lattice basis B ∈ Z

m×n and a target vector
t ∈ Z

m, find an integer vector x ∈ Z
n such that ‖Bx − t‖ ≤ γ‖By − t‖ for

any other y ∈ Z
n.

The parameter γ ≥ 1 is called approximation factor, and we denote it by
apfa. The hardness of approximate SVP depend on it approximation factor.
It is proved that approximate SVP to within factors 2(log n)1/2−ε

is NP-hard.
For larger factor such as

√
n/ log n, approximate SVP is not believed to be

NP-hard anymore [13,15]. In 2010, Darmstadt University launched a project of
SVP-challenge, aiming at finding the solutions to approximate SVP in various
dimension with fixed approximation factor γ = 1.05 [1].

For solving SVP and approximate SVP, a number of algorithms for solving
the shortest vector problem (SVP) on lattice have been proposed, and the ideas
of these algorithms are mainly divided to three types:

Enumeration. Enumeration is to exhaustive search following a structure called
“enumeration tree” of lattice vectors on a well-reduced lattice basis, and some-
times combined with pruning method. The classical enumeration algorithm is
believed to have time complexity of 2O(n log n), but polynomial (even linear)
space complexity [12]. The pruning strategies dramatically optimize the perfor-
mance of enumeration in practice while the probability of success is reduced
[4,11].

Sieving. The key idea of sieving is to sample some vectors in a hypersphere with
radius R and reduce the radius step by step by vectors reduction under certain
condition. Sieving algorithm usually has both time and space complexity of
2O(n), such as classical AKS sieve [3], NV sieve [16], etc. There were no practical
sieving algorithms showing higher efficiency than enumeration until HashSieve
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[5] and LD Sieve [14] were proposed. Recently, Martin Albrecht and Leo Ducas
find solutions to the SVP challenge on dimension 155 and 157 [1] using sieving
algorithm and lattice reduction.

Lattice Reduction with Random Sampling. It was first proposed by Schnorr
in 2003 [18], and refined by Buchmann, Ludwig [7], Kashiwabara, Fukase and
Teruya [10,19]. The main routine of sampling-reduction is to sample short vec-
tors on lattice “heuristically”, and then reduce the lattice basis by inserting the
very short vector into lattice basis and run LLL or BKZ. The procedure runs iter-
atively until a target vector is found. Kenji Kashiwabara and Tadanori Teruya
solved the approximate SVP problem of 150 dimension in 2017, and update their
152-dimensional record in 2018.

In 2017, Aono et al. [4] proposed lattice enumeration with discrete pruning,
generalizing the strategies of Fukase et al. [10]. Discrete pruning has more rigor-
ous theoretical analysis on success probabilities and running times than random
sampling, but random sapling method still shows good practicality in solving
SVP, especially suitable for massive parallelization, which revealed by Fukase
and Teruya’s high-dimensional SVP challenge records. However, there are still
some unsettled details in random sampling such as the construction of candidate
set and parameter selection.

In the rest of this paper, we focus on the random sampling reduction, and
try to give both theoretical analysis and practical details of random sampling
method, under some assumptions. In Sect. 2, we give a brief summary and expla-
nation of Schnorr’s sampling algorithm and Fukase-Kashiwabara algorithm. In
Sect. 3, we propose a new vector sampling method embedding enumeration tech-
nology into sampling algorithm, enlightened by discrete pruning [4]. In Sect. 4,
we establish a probability model of the structured candidate vector set, and give
parameters calculating algorithm to find optimal parameters for sampling short
vector in the candidate vector set. In Sect. 5, we embed the enumeration-like
sampling method into lattice reduction algorithm, and give practical implemen-
tation to compare with RR algorithm.

2 Preliminary

2.1 Lattice

Given a series of linear independent vectors B = [b1, . . . ,bn] ∈ R
m×n, the

lattice is defined as a set L (B) = {Bx,x ∈ Z
n}, and n is called the dimension

of L. A lattice is full-dimensional when m = n. Lattice has many basis. For any
two bases B1,B2 of the same lattice, there is a unique unimodular matrix U
such that B1 = B2U. For reasons of practical implementation (data storage
and computing with limited precision) and for solving SVP challenge [1], in this
paper, we mainly study the full-dimensional integer lattice, namely, B ∈ Z

n×n.
The determinant of a lattice is defined by det (L (B)) =

√
det(BTB) =∏n

i=1 ‖b∗
i ‖, where b∗

i is the orthogonalized vector of bi. It is easy to see that the
determinant of lattice is an invariant which is independent of the choice of basis.
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The length of shortest vector is denoted by λ1, and Minkowski’s first theorem
implies that in a lattice Λ, λ1 <

√
n · det (Λ)

1
n . A better estimation named

Gaussian Heuristic [11] is defined by GH (L) = 1√
π
Γ

(
n
2 + 1

) 1
n det (L)

1
n . In fact,

GH (L) is exactly the radius of an n-dimensional ball whose volume is det(L).
In SVP challenge [1], given a lattice basis B ∈ Z

n×n, the challenger is required
to submit a vector x such that ‖Bx‖ ≤ 1.05GH (L).

For a lattice basis B = [b1, . . .bn], the corresponding Gram-Schmidt orthog-
onalized basis B∗ = [b∗

1, . . .b
∗
n] is defined by b∗

i = bi − ∑i−1
j=1 μi,jb∗

i with

μi,j = 〈bi,b
∗
j 〉

〈b∗
j ,b∗

j 〉 . Using orthogonalization we can define orthogonal projection.

Let πi : R
n → span(b1, . . . ,bi)⊥ be the i-th orthogonal projection, such that

πi(v) = v−∑i−1
j=1 (〈v,b∗

j 〉/‖b∗
j‖2)b∗

j . Actually if we write lattice vector v in the
form of v =

∑n
i=1 uib∗

i , then πi(v) =
∑n

j=i ujb∗
j .

We can use orthogonalized basis to analyze the shortest vector problem.
Given a lattice vector v =

∑n
i=1 uib∗

i , then ‖v‖2 =
∑n

i=1 |ui|2‖b∗
i ‖2. In order to

find a very short vector, there are two methods one can take:

1. Decreasing μi to |μi| ≤ 1
2 for i = 1, . . . , n. Given a vector v =

∑n
j=1 μjb∗

j ∈ L

and an integer μ, for a certain index i, then vector v′ = v−μbi =
∑n

j=1 μ′
jb

∗
j

satisfies |μ′
i| ≤ 1

2 if |μ − μi| ≤ 1
2 . This method called “size reduced” is widely

used in many reduction algorithms such as LLL and BKZ.
2. Shortening b∗

i . We can find a very short vector b ∈ L (bi, . . . ,bn) to minimize
‖πi (b) ‖2 =

∑n
j=i μ2

j‖b∗
j‖2 by replacing bi with b. A key idea of sampling

method is to choose the vector b in a suitable subset Si ⊂ L (bi, . . . ,bn).
Schnorr mentioned that the various reduction algorithms differ by the choice
of Si [18].

Both classical enumeration and sieving algorithms only consider one case,
simply enumerating/searching vectors in the origin or projection lattice with-
out changing the lattice basis during the whole algorithm. However, sampling
reduction method takes both cases into consideration, which is believed to have
better performance on high dimension SVP.

2.2 Random Sampling Reduction (RSR) Algorithm

In the research of lattice problem, an important assumption is about the prop-
erty of well-reduced basis. Given an LLL or BKZ-reduced basis, the basis is
size-reduced and each b∗

i is a relatively short vector in the i-th orthogonal com-
plement span (b1, . . . ,bn), also denoted by πi (L) = {πi (v) |v ∈ L}. Then the
basis generally meets the following assumption:

Assumption 1 (Geometry Series Assumption, GSA). Given an LLL-
reduced or BKZ-reduced basis B and its corresponded orthogonalized basis B∗,
then

{‖b∗
i ‖2

}n

i=1
can be regarded as a geometric series. i.e., there exists q ∈[

3
4 , 1

)
, s.t. ‖b∗

i ‖2/‖b1‖2 = qi−1 for i = 1, . . . , n.
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If the lattice basis conforms to GSA, then given a lattice vector ‖v‖2 =∑n
j=1 |uj |2‖b∗

j‖2, it is believed that if the vector is very short, then |vi| is more
likely to be small when the index i is small.

Based on GSA, Schnorr proposed the heuristic idea of random sampling.
Let 1 ≤ u < n be a constant. Then in Schnorr’s strategy, the candidate lattice
vectors v =

∑n
j=1 ujb∗

j should satisfy:

|μi| =

{
1
2 , i < n − u

1, n − u ≤ i < n
, μn = 1.

In Schnorr’s random sampling algorithm SHORT [18], the algorithm iter-
atively samples vector v shorter than b1, and then insert v into the basis to
execute lattice reduction algorithm (LLL or BKZ), until a basis with ‖b1‖ ≤
γGH (L) is found.

Schnorr proposed an assumption on the distribution of μi to simplify the
analysis on sampling method’s performance:

Assumption 2 (Randomness Assumption, RA). The Gram-Schmidt coef-
ficients uj of the generated vectors v =

∑n
j=1 ujb∗

j are uniformly distributed in[− 1
2 , 1

2

]
for i < n − u and in [−1, 1] for n − u ≤ i < n. For a given vector v,

uj (j = 1, . . . , n − 1) are statistically independent, and for two distinct vectors
v,v′, uj and u′

j are statistically independent for any j = 1, . . . , n − 1.

Under GSA and RA, Schnorr gave the relationship between parameter setting
and success probability. The vector sampled by their algorithm follows a certain
probability distribution [18]. Schnorr’s Random Sampling Reduction (RSR) algo-
rithm also enlightened many other studies in random sampling such as Buch-
mann’s best bound analysis on random sampling algorithm [7], and Fukase’s
restricted reduction algorithm [10].

2.3 Restricted Reduction (RR) Algorithm

The restricted reduction algorithm (RR) proposed by Fukase and Kashiwabara
generalized Schnorr’s random sampling strategy. The key idea of RR is using a
short representation of lattice vector which is called “natural number represen-
tation” (NNR) to sample candidate vectors.

Definition 1 (The Natural Number Representation). Given a lattice
basis B and a lattice vector v =

∑n
j=1 ujb∗

j . The natural number represen-
tation of v is a natural number vector z = (z1, . . . , zn) ∈ N

n, such that
uj ∈

(
− zj+1

2 , − zj

2

]
or

(
zj

2 ,
zj+1
2

]
.

The NNR is a bijection between lattice vector and natural number vector.
The proof is given in [10]. Then the F-K algorithm samples short vectors in a
candidate set VB (s, t) ∈ L:
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Definition 2. VB (s, t) = {v ∈ L (B) : d(v) ≤ s,w(v) ≤ t}, where di(v) =
# {zj(v) = i, 1 ≤ j ≤ n}, wi(v) = n − min {j : zj(v) = i} + 1 and for some
c ∈ Z+ such that s, t ∈ N

c.

The parameter s defines the upper bounds of times that each natural number
1, 2 . . . shows in vector z. And vector t puts restriction on the index where each
natural number first shows in the vector. For lattice vectors in VB(s, t), their
corresponding NNR vectors always have “heavy tail” and “light head”.

Notice that VB(s, t) is a subset of L, and depends on lattice basis B. We
denote its corresponding NNR vector set as Z(s, t) = {z ∈ N

n} which only
depends on parameter s and t.

Fukase and Kashiwabara introduce a concept “G-S sum” denoted by GSS =∑n
j=1 ‖b∗

j‖2, and explain that a lattice basis with shorter GS sum may have
higher probability of finding short vectors in VB (s, t). Based on this heuristic
analysis, they design a reduction algorithm aiming at decreasing G-S sum of
basis.

In order to control the G-S sum goes down, they put up with a definition
insertion index [10]:

Definition 3 (insertion index). Let B be a lattice and v ∈ L(B), and δ ∈ R

with δ ≤ 1. The insertion index hδ(v) = min
{
j : ‖πj(v)‖2 < δ‖b∗

j‖2
}
.

Their is a restriction index � growing from 1 to an upper bound �max during
the reduction procedure of RR algorithm. The targeting vector in each round is
restricted by insertion index such that hδ(v) ≥ �. When the �-th basis vector bl

is not changed, the � grows up to �+1. The whole algorithm repeats until a very
short vector (< 1.05GH(L)) is found.

3 Applying Enumeration to Vector Sampling

In this section we introduce a more efficient way to find short vectors in sampling
algorithm based on the work of Fukase et al. [10] and Aono et al. [4].

3.1 Natural Number Representation (NNR)

Before introduce the key idea of out method, we first give some analysis on
natural number representation.

Our first result is about the symmetry of NNR vectors, namely, the relation-
ship between z(v) and z(−v). According to the definition and bijection relation-
ship, the conclusion shows as follows:

Theorem 1 (symmetry of NNR vectors). Given two lattice vectors v1 =
Bx1,v2 = Bx2 and their corresponding NNR vector z1 = z(v1), z2 = z(v2).
If x1 = −x2 and denote the last non-zero component of x1 by xt, w.l.o.g., let
xt > 0, then the NNR vectors satisfy

⌈
zt(v1)

2

⌉
=

⌈
zt(−v2)

2

⌉
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and zt(v1) is odd.

Proof. Given lattice vector v1 = Bx = B∗u with uj = 〈v,b∗
j 〉

〈b∗
j ,b∗

j 〉 =
∑n

i=j μi,jxi. If

the last non-zero component of x is xt, then ut =
∑n

i=t μi,txi = xt must be an
non-zero integer and for all j > t, uj = 0, therefore zj(v) = 0. Since ut = xt is
a non-negative integer, its natural number representation zt = 2xt − 1 is odd; if
xt < 0 then zt = −2xt is even. Under both condition,

⌈
zt

2

⌉
are the same. �

In our sampling method, the last component of the NNR vector should be
non-even. Then if a vector v is found during sampling, then −v will not be
calculated again.

Another relationship between lattice vector and NNR vector is the value of
length. Under randomness assumption (RA), Given a lattice basis B, any NNR
vector z has a corresponding lattice vector v with expected value

E[‖v‖2] =
1
12

n∑

j=1

(3z2j + 3zj + 1)‖b∗
j‖2 (1)

and variance

V ar[‖v‖2] =
n∑

j=1

(
z2j
48

+
zj

48
+

1
180

)‖b∗
j‖4 (2)

See the proof in [4,10].

3.2 A New Structure of Candidate Vector Set

We first define a simple structure of candidate NNR vector set.

Definition 4. Given any integer vector z = (z1 . . . , zn) ∈ N
n, NNR vector set

S(z) is defined as S(z) = {z ∈ N
n : 0 ≤ zi ≤ zi, i = 1, . . . , n}, and z is called

“template vector”. If lattice basis B is given, the corresponding lattice vector set
is denoted by SB(z).

One thing to note is that this definition has no dependence on GSA. In next
section we will prove that for any NNR vector set of this shape, the corresponding
lattice vector length in it will follows an asymptotically normal distribution.

Generally speaking, if the basis is an LLL-reduced or BKZ-reduced, the
orthogonal basis conforms to this assumption. Thus, for a lattice vector ‖v‖2 =∑n

j=1 |uj |2‖b∗
j‖2 to be very small, |vi| needs to be small especially for small i.

The vector’s corresponding NNR vector also has this property. We give a special
construction of S(z) below, which heuristically shows a relationship with GSA.

Definition 5. Given a vector t ∈ N
c+1 such that t0 = 0 < t1 < . . . < tc = n,

let

Z(t) = {z ∈ N
n : for tj < i ≤ tj+1, 0 ≤ zi ≤ j,

where j = 0, . . . , c − 1 and i = 1, . . . , n},

and there always exists a “template vector” z correspond to Z(t) such that Z(t) =
S(z). Actually, for j = 0, . . . , c and tj < i ≤ tj+1, zi = j.
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For any t, it generates a unique “template vector” z of Z(t). The parameter
t puts restrictions on the location where natural numbers first shows in the NNR
vector z.

3.3 Sampling Vectors in Candidate Set Using Enumeration

Under randomness assumption (RA), for any given NNR vector, its correspond-
ing lattice vector v in lattice L(B) has an expected value of square length E[‖v‖2]
defined by Eq. 1. E[‖v‖2] is a good way to estimate the length of a vector in lin-
ear time O(n). More specifically, it needs about M(2n)+2n time (M(·) denotes
the time of multiplication operation) to estimate one vector’s length, and if the
NNR vector is quite “sparse”, the time can be much more shorter. But Algo-
rithm 1 in [10] indicates that complexity of computing a real lattice vector’s
length is about O(M(1.5n2)), and the main cost is generated in the last step
when calculating the lattice vector representation v = Bx.

Since using NNR vector to estimate the length of lattice vector is of high
efficiency, in the rest part of the paper, we denote

f(z) � E[‖v‖2] =
1
12

n∑

j=1

(3z2j + 3zj + 1)‖b∗
j‖2 (3)

as a quick-estimating function for ‖v‖2.
As a pre-computation procedure of the original RR algorithm, all the NNR

vectors z ∈ VB(s, t) are sorted by value f(z) from small to large, and the first N
NNR vectors are kept in memory. However, sorting a very large set VB(s, t) with
size O(2n) is impractical since the time complexity and space is a polynomial of
#VB(s, t). Besides, the parameter N is experiential. They set N = 5 × 107 in
their implementation without precise explanation.

We put up with a new sampling method to solve the problem. We embed
the candidate set into our enumeration-like sampling algorithm as a boundary
condition, in another word, a pruning method. Our algorithm enumerates NNR
vectors in a given Z(t). In any layer of the enumeration tree, if the current node
does not satisfy the condition z /∈ Z(t), then the branch should be cut off from
the tree. It is more practical than the “sorting-selecting” way, because the spa-
tial complexity of enumeration is only O(poly(n)) where n is lattice dimension,
while the sorting algorithm, as mentioned above, needs a space of approximately
O(poly(2n)) to store all the vectors.

The pseudocode of the enumeration-like sampling algorithm is given in
AppendixA.

This algorithm is a universal framework that can be embedded into any
lattice sampling-reduction algorithm such as RSR and RR, by modifying the
pruning method. Generally speaking, the conditional control statement z ∈ Z(t)
can be replaced by any other pruning method.

However, there are questions remain to be explained, and most important
one is parameter selection. Different t and R may influence the running time.
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4 Statistical Analysis and Parameter Selection

Given a lattice basis B, the NNR vector set Z(t) generates a lattice vector
set over B denoted by VB(t). In this section, we will analyze the statistical
properties of candidate NNR vector set Z(t) and corresponding VB(t), and give
the parameters optimization strategy.

In this section, for a given parameter t, we use the equivalent representation
“template vector” z for convenience, namely, using the notation S(z) and SB(z)
to represent Z(t) and VB(t) respectively.

4.1 Distribution of Candidate Vectors

Before we study the statistical properties of candidate vector set S(z) and its
corresponding SB(z), some necessary theorems [4] are given below.

Lemma 1. Let X be a random variable uniformly distributed over [a, b], then
the expectation value of X2 is E(X2) = a2+b2+ab

3 and variance V (X2) = 4
45a2 −

1
45a3b − 2

15a2b2 − 1
45a3b + 4

45b4.

Lemma 2 (Lyapunov Central Limit Theorem). Suppose {X1,X2, . . .} is
a sequence of independent random variables, each with finite expected value μi

and finite variance σ2
i . If there exists δ > 0 such that

lim
n→∞

1
B2+δ

n

n∑

k=1

E|Xk − μk|2+δ = 0 (4)

where B2
n =

∑n
k=1 σ2

k, then
∑n

k=1
Xk−μk

Bn
converges in distribution to a standard

normal random variable as n goes to infinity, i.e.:

1
Bn

n∑

k=1

(Xk − μk) d−→ N(0, 1) (5)

Given a lattice basis B and a template vector z, the two variances can define
an NNR vector set S(z) and a corresponding lattice vector set SB(z). For v ∈
SB(z) and ‖v‖2 =

∑n
j=1 |uj |2‖b∗

j‖2, since zj(v) < zj for each j = 1, . . . , n

and therefore 0 ≤ |uj | ≤ zj+1
2 . If Random Assumption (RA) holds, then for

all j = 1 . . . n, |uj | can be regarded as independent random variables uniformly

distributed over
[
0,

zj+1
2

]
. According to Lemma 1, the expectation value of |uj |2

is
Ej =

1
12

(zj + 1)2 (6)

and variance value
Vj =

1
180

(zj + 1)4 (7)

Since ‖v‖2 is a linear combination of those random variables |uj |2, it can also
be regard as a random variable. Then we have a theorem on the distribution of
‖v‖2 over SB(z):
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Theorem 2. If there exists C1 ∈ R such that vol (L) =
∏n

j=1 ‖b∗
j‖ < C1 for any

n, and there exists C2 ∈ R such that ‖t‖∞ < C2 for any n-dimensional lattice
vector set SB(z), then for v ∈ SB(z) with ‖v‖2 =

∑n
j=1 |uj |2‖b∗

j‖2:

1
σ

(‖v‖2 − μ
) d−−−−→

n→∞ N(0, 1) (8)

with σ2 =
∑n

j=1 Vj‖b∗
j‖4 and μ =

∑n
j=1 Ej‖b∗

j‖2.
Proof. It can be proved that the case satisfies the Lyapunov condition with
δ = 1. Let Xi = |ui|2‖b∗

i ‖2, σ2
i = V 2

i ‖b∗
i ‖4 and μi = Ei‖b∗

i ‖2 in Lemma 2, and
we have B2

n > n
180 ∼ O(n) and

∑n
j=1 μj < C2

1C2
2 n ∼ O(n). Then let δ = 1 and

the left side of Eq. 4 is equal to O(n2)
O(n2/3)

= O(1/
√

n) → 0, according to Lemma 2
we have

1
σ

(‖v‖2 − μ
)

=
1
σ

n∑

k=1

(|uk|2‖b∗
k‖2 − Ek‖b∗

k‖2) d−→ N(0, 1) � (9)

As we mentioned in Sect. 3.2, the candidate vector set Z(t) we used in the
enumeration-like sampling method is a special construction of S(z), and therefore
the relevant conclusions still hold for VB(t):

Corollary 1. If there exists C1 ∈ R such that vol (L) =
∏n

j=1 ‖b∗
j‖ < C1 for

any n, and there exists C2 ∈ R such that ‖t‖∞ < C2 for any n-dimensional
lattice vector set VB(t) with template vector z, then for v ∈ VB(t) with ‖v‖2 =∑n

j=1 |uj |2‖b∗
j‖2:

1
σ

(‖v‖2 − μ
) d−−−−→

n→∞ N(0, 1) (10)

with σ2 =
∑n

j=1 Vj‖b∗
j‖4 and μ =

∑n
j=1 Ej‖b∗

j‖2.
To verify the theorem and its corollary, we choose two sets of parameters in

150 and 180 dimensional lattice and sample 500000 vectors in each candidate set
VB(t). The comparison of ‖v‖2 obtained by sampling with the theoretical normal
distribution in Theorem1 is shown in Fig. 1. The histogram shows the frequency
distribution of experimental observation, and the curve is the theoretical normal
distribution.

The experimental result seems to be consistent with the theoretical conclu-
sion. Unfortunately, in both of the 150 and 180 dimensional cases, Kolmogorov–
Smirnov test rejects the null hypothesis at level α = 0.05, indicating that the
frequency distribution of ‖v‖2 we observed differs from a normal distribution
with high probability.

This inconsistency has an explanation. In practice, vol (L) does not always
have an upper bound C1 as assumed in Theorem 1. In fact, the n-dimensional
lattice L provided by SVP challenge [1] has vol (L) growing super-exponentially
with respect to n. Since n is not too large in practical implementation and there-
fore the vol (L) can be bounded by a C1 large enough, we heuristically assume
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Distribution of ||v||2 in VB([0, 120, 138, 145, 150])
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Distribution of ||v||2 in VB([0,130, 165, 180])
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Fig. 1. The distribution of ‖v‖2 in different candidate set VB(t)

that for any n-dimensional random lattice basis with n � 50, the distribution of
‖v‖2 in SB(z) approximately follows N(μ, σ2).

From Theorem 1 we can calculate the probability of sampling a short lattice
vector in VB(t) has an estimated value:

p(A) � Pr
(‖v‖2 ≤ A

)
=

1
σ
√

2π

∫ A

−∞
exp

[
− (x − μ)2

2σ2

]
dx (11)

For a given basis B and a certain NNR vector z, the expectation value
E

[‖v‖2] can be regarded as a quick-estimating function of the real
length ‖v‖2 and is denoted by f(z) = 1

12

∑n
j=1 (3z2j + 3zj + 1)‖b∗

j‖2 =
∑n

j=1

(
1
4 (zj + 1

2 )2 + 1
48

) ‖b∗
j‖2.

If a vector z is uniformly sampled from S(z), which implies that zj is uni-
formly distributed over discrete values 0, . . . , zj and all zj are mutual indepen-
dent, then f(z) can also be regarded as a random variable.

Let

fj(x) =
(

1
4
(x +

1
2
)2 +

1
48

)
‖b∗

j‖2 (12)

then we have

E(f(z)) =
n∑

j=1

1
zj + 1

zj∑

i=0

fj(i) (13)

and variance value

V (f(z)) =
n∑

j=1

1
zj + 1

zj∑

i=0

⎡

⎣fj(i) − 1
zj + 1

zj∑

k=0

fj(k)

⎤

⎦

2

(14)

The expectation and variance values are easy to calculate if basis B and candi-
date set S(z) is given. And we can prove that the distribution of value f(z) with
z sampled from S(z) converges to normal distribution under certain conditions.
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The conclusion and proof are same with Theorem 1 and we will not describe
it in detail here. We also compare the histograms obtained by sampling with
theoretical norm distribution curves provided by Eqs. (13) and (14) (see Fig. 2).
We also heuristically assume that for any n-dimensional random lattice basis
with n � 50 and for z ∈ Z(t), the distribution of f(z) approximately follows a
normal distribution N(E(f(z)), V (f(z))).

4.2 Parameter Selection Strategy

In Schnorr’s sampling algorithm, the targeting vector in candidate set satisfies
‖v‖2 < δ‖b1‖2. In our sampling model, the probability that finding a vector
such that ‖v‖2 < δ‖b1‖2 is p(δ‖b1‖2) defined in Eq. (11). Then it is expected
to randomly sample N = 1

2 p(δ‖b1‖2) vectors in VB(t) to find a targeting vector,
where the coefficient in denominator is due to the symmetry of lattice vectors.

Distribution of f(z) in Z([0, 120, 138, 145, 150])

D
en

si
ty

87000000 87200000 87400000 87600000 87800000

0e
+

00
1e

−
06

2e
−

06
3e

−
06

4e
−

06

Distribution of f(z) in Z([0, 130, 165, 180])
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Fig. 2. The distribution of f(z) when z is sampled from Z(t)

We can use our enumeration method to heuristically increase the successful
rate, in another word, decrease the sampling amount N to save time. Consider-
ing the quick-estimating function f(z) =

∑n
j=1

(
1
4 (zj + 1

2 )2 + 1
48

) ‖b∗
j‖2, which

implies that for v ∈ VB(t) and its corresponding z ∈ Z(t), the smaller f(z) is,
the shorter ‖v‖2 is expected to be. In practice, randomly choosing N vectors
from VB(t) needs to choose N vectors from Z(t) and then map them into lattice
vectors. The algorithm is given in AppendixA.

This algorithm outputs a roughly estimation of the enumeration radius R.
Using R we can control the sampling procedure to find the smallest 1

p(δ‖b1‖2)

vectors in NNR candidate set. However in practice, many other factors should
be taken into consideration. One question is that in candidate set Z(t), f(z)
has a minimum value 1

12

∑n
j=1 ‖b∗

j‖2 corresponding to z = 0. When R <
1
12

∑n
j=1 ‖b∗

j‖2, no vector can be sampled out, but in this case, probability p
is relatively high and finding a target vector is easy, we can just enlarge R a
little to guarantee that the sampling algorithm can continue.



166 L. Luan et al.

We apply the parameter selection algorithm on high dimension to see the
theoretical and practical results. It shows that in high dimension, our algorithm
not only give an theoretical upper bound of sampling amount, and even has
better result in practice. We applied the algorithm to different dimensional lattice
and using different parameters. The lattice bases are generated by the C program
on [1] with seed 0, and are all BKZ-20 reduced.

In Table 1, ‖b1‖2 are directly obtained by the reduced basis, and we choose
different t to test our algorithm. The value p = Pr(‖v‖2 < ‖b1‖2), expected
sample amount N and output R is directly calculated by theoretical value. Then
we use the algorithm output R as the parameter of enumeration-like sampling
Algorithm 1, and we list the actual sampling amount when Algorithm1 finds the
first target lattice vector v such that ‖v‖2 < ‖b1‖2. The table shows that in
the enumeration-like sampling procedure, the first target vector is always found
earlier than reaching the theoretical estimation N .

Table 1. Results of Algorithm 2

n ‖b1‖2 t Pr(‖v‖2 < ‖b1‖2) Expected N R Actual N
min‖v‖2

‖b1‖2

140 39226111 [115 130 136] 0.000246722 4053 69025155.27 1995 0.8303

[110 130] 0.00024104 4149 69059667.85 2083 0.8303

145 34495520 [110 136 142] 0.000009906 100949 75730820.62 80419 0.9960

[110 140] 0.000010232 97733 75618150.70 79816 0.9960

150 51276487 [125 140 146] 0.000532548 1878 84922647.92 1136 0.8265

[120 140] 0.000524222 1908 84923582.07 1190 0.8265

155 51537003 [120 145 152] 0.000071214 14042 98728124.49 13340 0.9141

[120 148] 0.000072322 13827 98729111.79 20000 0.8078

160 71289521 [130 150 156] 0.000370468 2699 122347973.70 1668 0.8161

[125 150] 0.000366028 2732 122345526.74 2083 0.7682

165 109181313 [130 156 162] 0.000488326 2048 188897231.50 1000 0.7816

[130 158] 0.000489816 2042 188614310.10 1309 0.8322

170 77704714 [130 160 166] 0.000155746 6421 140157767.60 12500 0.8896

[134 166] 0.00016018 6243 140156366.02 3846 0.9036

Considering an extreme case where p(δ‖b1‖2) is too small, the number of
vectors N = 1

2 p(δ‖b1‖2) might be very close to, or even larger than #Z(t), which
makes the sampling procedure meaningless(invalid). This remains a question to
look into.

If the algorithm fails to find a targeting vector in the enumeration sampling
procedure, Schnorr and Fukase gave their solutions that taking i-th orthogonal
projection into consideration. In the extension version of Schnorr’s algorithm
[18], vectors such that ‖πi(v)‖2 < δ‖b∗

i ‖2 can be inserted to basis and execute
a BKZ or LLL reduction. In Fukase’s algorithm, they proposed the concept
“insertion index” in Definition 3 and enforce to insert the targeting vector in
order.
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5 Experimental Results and Conclusion

Based on Schnorr’s framework, We embedded the enumeration-like sampling
method (see Algorithm 1) into lattice reduction algorithm. The main routine,
Algorithm 3, is given in AppendixA.

5.1 Experiment Result

We implement Fukase’s RR algorithm and Algorithm3 on a server computer
with a 2.10GHz Intel Xeon CPU(E5-2620) with 64GB RAM, and we executed
our program on single thread. Our program used the NTL library [2] and the
lattice bases are generated by SVP challenge [1] with seed 0. Here we compare
the time consumptions of the two algorithms in Tables 2 and 3.

Table 2. Results of RR algorithm

n Parameters CPU time (sec) Norm apfa

66 s= [65 16 3], t= [66 28 6] 148 2173.046 1.033

70 s= [69 16 3], t= [70 30 8] 30179 2232.389 1.046

74 s= [73 18 4], t= [74 30 6] 381848 2281.597 1.035

We tried our best to optimize and the original RR algorithm described in
[10] and build the program. We did not use parallel programming technology
and therefore computation capability is relatively limited, our result may not
be the best performance that RR algorithm can achieve. We did not apply RR
algorithm on higer dimension(>74) since it might need to run several days.

Table 3. Results of Algorithm 3

n Parameters CPU time (sec) Norm apfa

66 t= [0 38 60 66] 1516 2173.046 1.041

70 t= [0 40 62 70] 2334 2205.844 1.034

74 t= [0 44 68 74] 6384 2312.38 1.049

78 t= [0 40 72 74 78] 113388 2192.766 0.968

82 t= [0 46 76 78 82] 133847 2374.588 1.025

86 t= [0 71 83 86] 73320 2429.330 1.023

90 t= [0 50 82 86 90] 298260 2468.856 1.018

According to the results, our algorithm runs generally faster than RR algo-
rithm, although the structure of candidate vector sets are different and not
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comparable. During the running of the programs, we find that our program ran
faster in the first several iterations because the size of candidate vector set is
adjusted according to the lattice basis, which made the lattice basis reduced
efficiently at the beginning.

Besides, we compare the single-thread running time of our algorithm with
some single-thread SVP challenge records provided by the authors in their com-
ments [1]. We show the comparison in Fig. 3. The efficiency of our algorithm is
higher than some classical sieving and very closed to the records made by other
algorithms such as lattice reduction, enumeration with other methods and so on.

1e+03

1e+04

1e+05

65 70 75 80 85 90
dimension

tim
e

algorithm

enum

other

our_algorithm

reduction

sieving

Fig. 3. Our algorithm vs. SVP challenge records

5.2 Conclusions and Further Work

Sampling-reduction method is believed to be efficient in solving high dimensional
shortest vector problem. It can continuously optimize lattice basis by sampling
and inserting short vectors. During the whole algorithm, the probability of find-
ing a very short lattice vector increases step by step.

We put up with a new sampling reduction method for solving SVP, and get
rid of the hard restriction of Schnorr’s Random Sampling Reduction algorithm,
and also have better theoretical support than Fukase’s Restricted Reduction
algorithm. Our Enumeration-like Sampling algorithm can be generally embed-
ded into various sampling reduction frameworks. We proved the distribution of
vector length in our candidate set converges to normal distribution under some
reasonable assumptions, which make it easy to calculate the sampling parameters
and adjust parameters according to different goals.

In our research, there are several problems remain considering:

1. The relationship between G-S sum and success rate. Fukase pointed out [10,
21] that basis with smaller G-S sum have higher probability of finding very
short lattice vector, and we have a similar conclusion in Sect. 4 that the
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expectation value of vector length is related to a weighted sum of ‖b∗
i ‖2. How

to control the G-S sum efficiently decreasing in the iteration of algorithm is
a meaningful and important problem.

2. Multiprocess implementation. There are mainly two ways to parallelize the
sampling reduction algorithms. One is parallel sampling, but it can only accel-
erate in constant speed. Another is to using different basis in different process.
It can raise the success rate but every process has heavy work to do. A bet-
ter parallelization strategy was done perfectly by [19], and they achieved 150
dimensional SVP challenge using their sophisticated extension version of RR
algorithm. Their ideas inspired us to exploit more special properties of lattice
basis in our algorithm.

Appendix A The Pseudocode of Algorithms

Algorithm 1. Enumeration-Sampling(B, Z(t), R)

Input:
B: lattice basis B = [b1, . . . ,bn] and its orthogonal basis B∗ = [b∗

1, . . . ,b
∗
n];

t: parameters of the candidate NNR vector set Z(t)
R ∈ R.

Output:
All NNR vectors z ∈ Z(s, t) such that f(z) = 1

12

∑n
j=1 (3z2

j + 3zj + 1)‖b∗
j ‖2 < R.

1: z2 = . . . = zn = fn+1 = 0 // Initialize nodes
2: for k = n to 2 do
3: fk ← fk+1 + 1

12
(3z2

k + 3zk + 1)‖b∗
k‖2 // Initialize function value (at each

layer)
4: end for
5: k ← 1 // Search from the last component as the root of the enumeration

tree
6: z1 ← 1
7: z′ = (z′

1, . . . z
′
n)

8: while true do
9: for k = n to 1 do

10: fk ← fk+1 + 1
12

(3z2
k + 3zk + 1)‖b∗

k‖2 // Update function value
11: z′

k ← zn−k+1 // Reverse the tree to obtain NNR vectors
12: end for
13: if fk < R and z′ ∈ Z(t) then
14: if k = 1 then
15: output z′

16: zk ← zk + 1
17: else
18: k ← k − 1
19: zk ← 0
20: end if
21: else if fk > R and z′ ∈ Z(t) then
22: k ← k + 1
23: if k = n + 1 then
24: exit // No more vectors
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25: else
26: zk ← zk + 1
27: end if
28: else
29: zk ← zk − 1
30: k ← k + 1
31: if k = n + 1 then
32: exit // No more vectors
33: else
34: zk ← zk + 1
35: end if
36: end if
37: end while

Algorithm 2. CalculateParameter(B, t, LEN)

Input:
B: lattice basis B = [b1, . . . ,bn] and its orthogonal basis B∗ = [b∗

1, . . . ,b
∗
n];

t, z: parameters of the candidate NNR vector set Z(t) and its template vector;
LEN : targeting squared length of random sampling. In Schnorr’s algorithm, let
LEN = δ‖b1‖2;

Output:
R ∈ R: upper bound of enumeration in Algorithm 1.

1: calculate Ej = 1
12

(zj + 1)2 and Vj = 1
180

(zj + 1)4 for j = 1, . . . , n ;
2: calculate σ2 =

∑n
j=1 Vj‖b∗

j ‖4 and μ =
∑n

j=1 Ej‖b∗
j ‖2; // distribution

parameters in VB(t)
3: calculate p = Pr(‖v‖2 < LEN) using formula 11;
4: calculate E(f(z)) and V (f(z)) using formula 13 and 14; // distribution

parameters in Z(t)
5: Look up table to find zα such that Pr(X < zα) = 1

p#Z(t)
, X ∼ N(0, 1);

6: R = E(f(z)) + zα

√
V (f(z));

7: return R;

Algorithm 3. Lattice Reduction With Enumeration-like Sampling
Input:

B: A BKZ-reduced n-dimensional lattice basis;
t, z: Parameters of the candidate NNR vector set Z(t) and its template vector;
δ;

Output:
A lattice vector v with ‖v‖ ≤ 1.05 GH(L);

1: while ture do
2: VB(t) ← ∅;
3: R ← CalculateParameter(B, t, δ‖b1‖2);
4: generate NNR vector set S ← Enumeration-like Sampling(B, Z(t), R);
5: for all z ∈ S do
6: v ← GenerateLatticeVector(B, z);
7: VB(t) ← VB(t) ∪ v;
8: end for
9: for all v ∈ VB(t) do

10: calculate ‖v‖2;
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11: if ‖v‖ ≤ 1.05GH(L) then
12: return v;
13: end if
14: calculate hδ(v);
15: end for
16: v0 ← the smallest vector by lexicographical order (hδ(v), ‖v‖2);
17: B ← BKZ(

[
b1, . . . ,bhδ(v0)−1,v0,bhδ(v0), . . . ,bn

]
);

18: end while
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Abstract. In this paper, we propose a new protocol for secure multi-
party learning (SML) from the aggregation of locally trained models, by
using homomorphic proxy re-encryption and aggregate signature tech-
niques. In our scheme, we utilize the method of secure verifiable com-
putation delegation to privately generate labels for auxiliary unlabeled
public data. Based on the labeled dataset, a central entity can learn a
global learning model without direct access to the local private datasets.
The generalization performance of SML is excellent and almost equals
to the accuracy of the model learned from the union of all the parties’
datasets. We implement SML on MNIST, and extensive analysis shows
that our method is effective, efficient and secure.

Keywords: Aggregate signature · Proxy re-encryption ·
Multiparty learning · Computation delegation

1 Introduction

Advances in machine learning in recent years have transformed the solutions of
many data-driven applications due to its superior performance, such as speech
recognition [11], image classification [13] and self-driving car [19], etc. Generally,
the learning model is trained from a large amount of data and can later be used
for inference, and the generalization capability of a leaning model is greatly
affected by the volume and quality of the training data. However, the data
used for training is always quite sensitive; therefore, collecting and holding large
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amount of such sensitive data by one machine learning service provider creates
high privacy risks to the data subject, whereas it is required for users to benefit
from such services [1].

The aforementioned problem motivates plenty of work on secure multiparty
machine learning, such as privacy-preserving decision tree [14], logistic regres-
sion [21], linear regression [9], etc. The main idea of these solutions is to utilize
secure multiparty computation (SMC) or fully homomorphic encryption to pro-
cess the whole dataset directly during the training process, which incurs high
computation overhead. Hamm et al. [12] extended multiparty learning based on
the ensemble of local classifiers and differentially privacy. In this strategy, the
local classifiers are collected by a trusted entity who uses the classifier ensemble
to generate labels for auxiliary unlabeled data. Then, the labeled data are used
to train a new global classifier. Finally, a differentially private global classifier
is released using output perturbation method [6]. Although the finally released
global classifier is secure against the malicious adversary, the protocol cannot
protect the privacy of the local classifiers, since it assumes that the local classi-
fiers are firstly collected by a “trusted” entity. As pointed out from recent attacks
against machine learning [10], private training data can be recovered with high
probability from the models. Such attacks can be implemented by analyzing the
internal parameters of the model directly, which is known as while-box attack.
Alternatively, the attacks can also proceed by repeatedly querying the model in
a black-box manner to gather data for further analysis; therefore, the method
proposed in [12] cannot be applied in privacy sensitive applications.

Some other relevant research tried leveraging outsourcing computation [7,8]
to improve the efficiency of privacy-preserving multiparty learning. Zhang et al.
[22] proposed a cloud computing based privacy-preserving single-layer perceptron
training scheme that supports batch patterns training and verification for the
training results. To solve the problem of information leakage in [20], Ma et al.
[16] proposed a privacy-preserving aggregation protocol to share the parameters
privately during the training process using additive homomorphic encryption.
In privacy-preserving neural network prediction, the first scheme which can be
implemented on the encrypted data was proposed by Barni et al. [3]. However,
during the prediction procedure the data provider has to decrypt the ciphertext
for each node, which introduces high communication overhead and significant
information leakage about the neural network model. Ma et al. [15] proposed the
first non-interactive neural network prediction scheme using two non-colluding
servers and additive homomorphic encryption.

1.1 Our Contributions

– We propose a novel scheme SML based on verifiable computation delegation,
which enables mutually distrust parties to learn a global model privately from
the aggregation of mixed locally trained models. The core of SML is a secure
and verifiable aggregation protocol which is used to generate the labels for
the auxiliary public unlabeled data.
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– We use homomorphic proxy re-encryption to realize secure aggregation of the
encrypted labels encrypted under multiple keys, and the aggregate signature
is used to realize the verifiability of the aggregated results returned from the
malicious cloud server.

– We evaluate SML comprehensively with MNIST, and the results show that it
is practically effective and efficient. The accuracy performance of the global
model shows great improvement compared to the averaged accuracy of locally
trained models (Fig. 1).

Organization. Section 2 formally describe the system model and security defini-
tions. In Sect. 3, we then proceed to give a concrete construction of our proposed
scheme, and the security proof and efficiency analysis are presented in Sect. 4.
In Sect. 5 we evaluate the effectiveness and efficiency of our protocol, and finally
we conclude the paper in Sect. 6.

Fig. 1. Framework of secure multiparty learning based on the local models

2 System Model and Security Definitions

2.1 System Model

Definition 1. A secure multiparty machine learning scheme from aggregation
of the local models SML = (Setup, LabGen, LabAgg, GloTra) consists of four
algorithms defined below.

– Setup(1κ): On input the security parameter κ, the setup algorithm is run
by the data owner, the cloud server and the central entity to generate their
own public/secret key pairs (pk, sk), respectively. Noting that the proxy re-
encryption key rki→C , for 1 ≤ i ≤ n is generated privately by Oi, S and C
together.
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– LabGen(Mi,UD): Assuming that each data owner already has a learning
model Mi. Given a new unlabeled dataset UD = {ud1, ud2, · · · , udm}, this
algorithm is run by each data owner to generate the label Labi,j = Mi(udj),
the corresponding label encryption Enc(pki, Labi,j) and label signature
Asig(ski, Labi,j), where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Finally, the label
encryptions are sent to the cloud server who will re-encrypt and aggregate the
encryptions into the ciphertext of the label summation. And the signatures
are firstly sent to the data owner On who computes the aggregate signature
σ that will be transferred to the central entity.

– LabAgg(Enc(pki, Labi,j), rki→C): On input the label encryptions from all the
data owners, and the proxy re-encryption keys the label aggregation algorithm
is run by the cloud server to convert the label encryptions from each data
owner into the label encryption of the central entity Enc(pkC , Labi,j). Then,
the ciphertexts are aggregated into one ciphertext Enc(pkC , Labj) based on
the property of additive homomorphism.

– GloTra(UD, Enc(pkC , Labj), σ, skc): The central entity C decrypts all the
label encryptions, and label each data item in UD with the classification
that has the maximum value. The correctness of the aggregate label can be
verified from aggregate signature. Then, C trains a new global learning model
M from the newly constructed labeled dataset and distributes the model to
all the data owners.

2.2 Security Requirements

In the following, we introduce some security requirements for SML. Obviously,
SML should inherently satisfy two security properties, i.e., privacy and accuracy.

Privacy: A SML is private if the adversary cannot obtain any information about
the any data owner’s local learning model. The adversary might be the cloud
server, the central entity, or other data owners. Specifically, we assume that the
cloud server is malicious, but the central entity and data owners are honest-but-
curious. Moreover, our scheme works in a non-collusion model.

Accuracy: A SML is accurate if the prediction accuracy of the global model M
output by GloTra() is better than the averaged accuracy of all the individual
locally-learning models Mi, for 1 ≤ i ≤ n.

3 Construction of SML

In this section, we propose a concrete SML scheme based on proxy re-encryption
[4] and aggregate signature [5].

– Setup(1κ): Let κ be the security parameter. Let G1, G2, and GT be three
multiplicative cyclic groups of prime order p, where p is a large secure prime,
and g1, g2 be generators of G1 and G2, respectively.
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• For each data owner Oi, randomly selects ski = xi
R←Z

∗
p and computes

the public key pki = gxi
1 . In addition, a full-domain hash function h :

{0, 1}∗ → G2 is employed to generate signatures on arbitrary messages
msg ∈ {0, 1}∗.

• The cloud server S and central entity C also generate their private and
public keys in the same way, output (pks, sks) and (pkc, skc).

• For 1 ≤ i ≤ n, generate the proxy re-encryption keys rki→C as follows: (1)
S randomly selects ri

R←Z
∗
p and sends it to Oi; (2) Oi computes x−1

i ri and
sends it to C. (3) C computes xcx

−1
i ri and sends it to S; (4) S computes

rki→C = r−1
i xcrix

−1
i = xcx

−1
i .

– LabGen(Mi,UD): Assuming that each data owner Oi already has a learn-
ing model Mi. Given a new unlabeled dataset UD = {ud1, ud2, · · · , udm},
LabGen() firstly generates the label Labi,j = Mi(udj), for 1 ≤ i ≤ n and
1 ≤ j ≤ m, where Labi,j is a vector of λ elements and λ represents the out-
put size of model Mi. Each element of Labi,j might be 0/1 (for max voting)
or a real number represents the confidence for a classification (for summation
voting and weighted voting). The label encryption (signature) is an encryp-
tion (signature) vector composed of the encryption (signature) of each ele-
ment of Labi,j . For simplicity, we Enc(Labi,j) or Asig(Labi,j) to represent
the encryption vector or the signature vector. The details are described as
follows:
For 1 ≤ i ≤ n and 1 ≤ j ≤ m:

• Encryption. (1) Oi randomly selects ri,j
R←Z

∗
p; (2) Oi computes ci,j =

g
Labi,j+ri,j

1 , and c′
i,j = g

xiri,j

1 ; (3) Enc(Labi,j) = (ci,j , c
′
i,j).

• Signature. (1) Oi randomly selects r′
i,j

R←Z
∗
p and computes hi,j =

h(r′
i,j , Labi,j); (2) the signature is computed as Asig(Labi,j) = g

Labi,j
2 hxi

i,j .• Enc(Labi,j), hi,j and Asig(Labi,j) are sent to S, C, and On, respectively.
When On has received all the signatures from n − 1 data owners, an
aggregate signature σ is computed and sent to the central entity C:

σ =
n∏

i=1

Asig(Labi,j) =
n∏

i=1

g
Labi,j
2 hxi

i,j

= g
∑n

i=1 Labi,j
2

n∏

i=1

hxi
i,j = g

Labj
2

n∏

i=1

hxi
i,j

– LabAgg(Enc(Labi,j), rki→C): The cloud server aggregates the label encryp-
tions for udj from all the data owners into one ciphertext Enc(Labj)c of
the central entity. Labj represents the aggregated label for udj , that is,
Labj =

∑n
i=1 Labi,j . In the following subsection, we will describe the details

about the aggregation.
• S uses the proxy re-encryption key rki→C to convert the label encryptions

Enc(Labi,j) for each data owner into label encryptions of the central
entity Enc(Labi,j)c. For 1 ≤ i ≤ n, 1 ≤ j ≤ m,

Enc(Labi,j)c = (ci,j , (c′
i,j)

rki→C ) = (gLabi,j+ri,j

1 , g
xcri,j

1 )
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• As the above encryption satisfies additive homomorphism, so S can aggre-
gate all the ciphertext into:

Enc(Labj)c =
n∏

i=1

Enc(Labi,j)c = (
n∏

i=1

g
Labi,j
1 g

ri,j

1 ,

n∏

i=1

g
xcri,j

1 )

= (g
∑n

i=1 Labi,j
1 g

∑n
i=1 ri,j

1 , g
xc

∑n
i=1 ri,j

1 )

= (gLabj
1 g

∑n
i=1 ri,j

1 , g
xc

∑n
i=1 ri,j

1 )

– GloTra(UD, Enc(Labj)c, Asig(Labi,j), hi,j , skc): The central entity C
decrypts the label encryption, verifies its correctness using the aggregate sig-
nature σ. Then, C trains a new global learning model M using the new labeled
dataset. The details are described as follows:

• Decrypts all the label encryptions Enc(Labj)c using secret key skc.
• Verifies the correctness of Labj

e(g1, σ) = e(g1, g
Labj
2

n∏

i=1

hxi
i,j) = e(g1, g

Labj
2 )e(g1,

n∏

i=1

hxi
i,j)

= e(g1, g
Labj
2 )

n∏

i=1

e(gxi
1 , hi,j) = e(g1, g

Labj
2 )

n∏

i=1

e(pki, hi,j)

• If the above equation holds, C accepts Labj and constructs a new dataset
with (udj , v(udj)), for 1 ≤ j ≤ m, where v(udj) is the corresponding
classification for udj , generated by simply selecting the classification with
the most votes or highest score among all the items of Labj . That is,

v(udj) = argmaxk Labj,k

where Labj,k represents the k-th item of Labj .
• C trains the global learning model M with (udj , v(udj)), for 1 ≤ j ≤ m.

4 Security and Efficiency Analysis

4.1 Security Analysis

Theorem 1. The proposed SML scheme satisfies the security requirement of
privacy.

Proof: Based on the security definition of privacy, we prove the theorem by
contradiction. Assume there exist PPT adversaries A1 and A2 that have a non-
negligible advantage ε in the experiment ExpSML

A1,A2
[M, κ], then we can use A1 or

A2 to build an efficient algorithm B to break the underlying proxy re-encryption
scheme or aggregate signature. As what has been proven in [4] and [5] that if there
exist a PPT adversary A that have a non-negligible advantage in breaking the
proxy re-encryption (aggregate signature), then A can be further used to solve
the computational Diffie-Hellman (computational co-Diffie-Hellman) problem.
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Table 1. Computation and computation efficiency analysis

Computation Communication

Data Owner I+M+m(4E+H+M) (4m + 1)|p|
Cloud Server mnE+2m(n− 1)M 2(mn + m + n)|p|
Central Entity m[(n + 1)(P + M) + 2I + E] 2(mn + m)|p|

Table 2. Efficiency comparison

Scheme Privacy Computation
(data owner)

Communication
(data owner)

Accuracy (MNIST)

[20] Gradient
leakage

O(|M |) O(|M |) 92%

[18] Local model
prediction
leakage

O(|UD|) O(|UD|) 98%

[17] Secure against
honest-but-
curious
adversary

O(|M |) O(|M |) 98%

[2] Secure against
honest-but-
curious
adversary

O(|M |) O(|M |) 98%

Ours Secure against
malicious
adversary

O(|UD|) O(|UD|) 98%

a|M | denotes the size of learning model M , and |UD| denotes the size of the unlabeled
dataset UD. Generally, |UD| is much smaller than |M |.
bRepresentation of the abbreviations: Secret sharing (SS), oblivious transfer (OT),
homomorphic encryption (HE), proxy re-encryption (PRE), aggregate signature (AS),
garbled circuits (GC).

4.2 Efficiency Analysis

Table 1 shows the cryptography related computation and communication over-
head of the data owner, the cloud server and the central entity. We denote by E,
M and I to represent an exponentiation, a multiplication and an inversion in the
group G1( or G2, GT ) respectively, by P the computation of one pairing and by
H a hashing operation. The additions are omitted in the table. n is the number
of participants and m is the volume of unlabeled dataset. Note that we assume
there already exists a local learning model for each data owner, so we omit the
data owner’s computation for training the local model. In addition, we use Pred
to represent one prediction computation overhead given an input data to the
learning model and Tra(D) the training computation overhead when given a
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dataset D. Table 2 shows the computation comparison of our scheme with the
previous related work.

5 Experimental Evaluation

5.1 Effectiveness Evaluation

The experiments are implemented by Kersas 2.2.4 language, Tensorflow 1.4.1
back-end on the machine running Ubuntu 16.4 with 2 Tesla P100 GPUs. The
training and testing samples are 60 K and 10K, respectively. The volume of unla-
beled dataset is set to be 2K. Firstly, we compare the performance of SML with
different label-generating methods: (1) Vote: labeling using max voting; (2) Sum:
labeling using classification probability summation; (3) Weighted sum: labeling
using weighted summation. Figure 2 shows that weighted sum performs a lit-
tle better than vote and sum when all the local models are bad, where “bad”
denotes the models with accuracy less than 70%. In the subsequent experiments,
we choose weighted sum as the label-generating method for our scheme SML.
Intuitively, we can expect batch learning to perform better and individual learn-
ing to perform worse than SML. To simulate various real applications, we set
the percentage of bad local models P = 0, 0.5 and 1.0 (Figs. 3, 4 and 5).

Fig. 2. Performance comparison of dif-
ferent label-generating method

Fig. 3. Performance comparison
with P = 0%.

Fig. 4. Performance comparison with
P = 50%

Fig. 5. Performance comparison
with P = 100%.
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5.2 Efficiency Evaluation

All our experiments are implemented by C programming language and the
Pairing-Based Cryptography (PBC) library on Linux machine running Ubuntu
14, which is with Intel dual core i7, 2.5 GHz CPU and 16 GB RAM, and we
simulate all the parties on this machine. The computation cost of each data
owner is linearly related with the volume of the unlabeled dataset. The average
computation time for each data item is about 10 ms. For the computation cost
of the cloud server, we set the number of participants from 5 to 50, and set the
data volume of the unlabeled dataset from 1000 to 5000. It requires about 2500 s
for the cloud server to complete all the computation when given 5000 unlabeled
data items and 50 participants. In real applications, this time consumption can
be greatly cut down using powerful cloud server and running the scheme in par-
allel. The computation efficiency of the central entity can also be improved in
parallel computation mode. As for the communication cost of the data owner,
the cloud server and the central entity. The data volume is set from 1000 to
5000. For simplification, the number of data owners is set to be 50. As analysed
in Table 1, the communication cost of each data owner is linearly related with
the data volume. Particularly, when the data volume is 5000 and |p| = 1024, the
communication cost of the data owner is 2.5 MB. As for the interaction between
the cloud server and central entity, the communication cost reaches about 64 MB
when data volume is 5000 and the number of data owners is 50.

6 Conclusion

In this work, we propose a secure multiparty learning scheme via the aggrega-
tion of locally trained models. Our scheme provides a secure and more efficient
aggregation method to construct a global model from private local models. We
mainly use proxy re-encryption and aggregate signature techniques to realize the
security requirement of privacy and verifiability. Our experiment results show
that our proposed scheme outperforms the state-of-the-art and is practical in
real-world applications.

References

1. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence
specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol.
33(8), 831 (2015)

2. Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning
via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5),
1333–1345 (2018)

3. Barni, M., Orlandi, C., Piva, A.: A privacy-preserving protocol for neural-network-
based computation. In: Proceedings of the 8th Workshop on Multimedia and Secu-
rity, pp. 146–151. ACM (2006)

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

https://doi.org/10.1007/BFb0054122


182 X. Ma et al.

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

6. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk
minimization. J. Mach. Learn. Res. 12(Mar), 1069–1109 (2011)

7. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourcing
of modular exponentiations. IEEE Trans. Parallel Distrib. Syst. 25(9), 2386–2396
(2014)

8. Chen, X., Li, J., Weng, J., Ma, J., Lou, W.: Verifiable computation over large
database with incremental updates. IEEE Trans. Comput. 65(10), 3184–3195
(2016)

9. Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis:
linear regression and classification. In: Proceedings of the Fourth SIAM Interna-
tional Conference on Data Mining, pp. 222–233 (2004)

10. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pp. 1322–1333.
ACM (2015)

11. Graves, A., Mohamed, A.R., Hinton, G.E.: Speech recognition with deep recur-
rent neural networks. In: IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 6645–6649 (2013)

12. Hamm, J., Cao, Y., Belkin, M.: Learning privately from multiparty data. In: Pro-
ceedings of the 33nd International Conference on Machine Learning, pp. 555–563
(2016)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

14. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptol. 15(3), 177–206
(2002)

15. Ma, X., Chen, X., Zhang, X.: Non-interactive privacy-preserving neural network
prediction. Inf. Sci. 481, 507–519 (2019)

16. Ma, X., Zhang, F., Chen, X., Shen, J.: Privacy preserving multi-party computation
delegation for deep learning in cloud computing. Inf. Sci. 459, 103–116 (2018)

17. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: Proceedings of the 2017 38th IEEE Symposium on Secu-
rity and Privacy (SP), pp. 19–38. IEEE (2017)

18. Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., Talwar, K.: Semi-
supervised knowledge transfer for deep learning from private training data. arXiv
preprint arXiv:1610.05755 (2016)

19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Proceedings of the Advances in Neural
Information Processing Systems, pp. 91–99 (2015)

20. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pp.
1310–1321. ACM (2015)

21. Slavkovic, A.B., Nardi, Y., Tibbits, M.M.: Secure logistic regression of horizontally
and vertically partitioned distributed databases. In: Workshops Proceedings of the
7th IEEE International Conference on Data Mining, pp. 723–728 (2007)

22. Zhang, X., Chen, X., Wang, J., Zhan, Z., Li, J.: Verifiable privacy-preserving single-
layer perceptron training scheme in cloud computing. Soft. Comput. 22(23), 7719–
7732 (2018)

https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
http://arxiv.org/abs/1610.05755


Data-Driven Android Malware
Intelligence: A Survey

Junyang Qiu1(B), Surya Nepal2, Wei Luo1, Lei Pan1, Yonghang Tai3,
Jun Zhang4, and Yang Xiang4

1 School of Information Technology, Deakin University, Melbourne, Australia
{qiuju,wei.luo,l.pan}@deakin.edu.au

2 Data61, CSIRO, Sydney, Australia
surya.nepal@data61.csiro.au

3 School of Physics and Electronic Information, Yunnan Normal University,
Kunming, China

taiyonghang@ynnu.edu.cn
4 School of Software and Electrical Engineering, Swinburne University of Technology,

Melbourne, Australia
{junzhang,yxiang}@swin.edu.au

Abstract. Android has dominated the smartphone market and become
the most popular mobile operating system. This rapidly increasing mar-
ket share of Android has contributed to the boom of Android malware
in numbers and in varieties. There exist many techniques which are
proposed to accurately detect malware, e.g., software engineering-based
techniques and machine learning (ML)-based techniques. In this paper,
our main contributions are threefold: We reviewed the existing analy-
sis techniques for Android malware detection; We focused on the code
analysis based detection techniques under the ML frameworks; We gave
the future research challenges and directions about Android malware
analysis.

Keywords: Android malware detection · Static analysis ·
Dynamic analysis · Hybrid analysis · Feature extraction ·
Machine learning · Code obfuscation

1 Introduction

The Android mobile devices continue to dominate the global mobile market,
with about 86.8% market share in the third quarter of 2018 according to the
statistical information published by IDC Corporate1. Almost eight out of ten
people worldwide use an Android mobile phone because they are cheap to buy2.
Android has become the most popular operating system without a doubt. Due to
the fact that Android is an open source operating system, thus users can easily
1 https://www.idc.com/promo/smartphone-market-share/os.
2 https://www.gdatasoftware.com/.

c© Springer Nature Switzerland AG 2019
X. Chen et al. (Eds.): ML4CS 2019, LNCS 11806, pp. 183–202, 2019.
https://doi.org/10.1007/978-3-030-30619-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30619-9_14&domain=pdf
https://www.idc.com/promo/smartphone-market-share/os
https://www.gdatasoftware.com/
https://doi.org/10.1007/978-3-030-30619-9_14


184 J. Qiu et al.

download and install a wide variety of applications from both official (Google
Play3) and third-party (e.g., WanDouJia4, AnZhi5) app stores (Currently there
are approximately 2.6 million Android apps available at Google Play6). However,
along with Android’s popularity and its openness, Android mobile device users
have become the most attractive targets of cyber criminals as the number of
malicious apps has skyrocketed at an alarming rate. Figure 1 presents the number
of Android malware samples being detected per year from 2012 to 20187. It
is estimated that almost 12,000 new Android malware samples being detected
per day in 2018. Besides, the number of Android malware families has reached
about 1,200 [62]. In addition, the sophisticated Android malware samples may
be implemented with various strategies (e.g., code obfuscation, encryption) to
evade detection.

Fig. 1. The number of Android malware samples detected per year from 2012 to 2018.

To preserve a clean and safe ecosystem for Android users, both the academic
researchers and the security vendors have invested enormous effort to design
effective techniques to defend against Android malware samples or further cate-
gorize them into specific malware families [5,25,27,32,42,47,52,83,86,87]. Gen-
erally, the existing techniques for malware detection can be roughly divided
into three categories [6]. The first one is called static analysis technique, which
inspects the disassembled source code to find any potential suspicious function-
alities without executing the application. The second one is the dynamic analysis
technique, also called behaviors analysis technique. Dynamic analysis executes
the given application in an isolated environment (e.g., sandbox, simulator, vir-
tual machine), then monitors and traces its behaviors. The combination of static
analysis and dynamic analysis is the third category called hybrid analysis tech-
nique [6].

3 https://play.google.com/store.
4 https://www.wandoujia.com/.
5 http://www.anzhi.com/.
6 https://www.appbrain.com/stats/number-of-android-apps.
7 https://www.gdatasoftware.com/.

https://play.google.com/store
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To provide a detailed review about Android malware detection, in this paper,
our contributions are threefold: Firstly, we reviewed the existing Android mal-
ware detection techniques (including static, dynamic and hybrid techniques) as
well as the advantages and disadvantages of each technique. Secondly, in the
defender’s perspective, targeting the Android code analysis, we introduced the
machine learning based Android malware detection framework. We provided an
overview of the framework, and then the involved techniques and challenges were
reviewed in detail. In addition, we share our views of future potential research
directions about the Android malware analysis.

The remaining of this paper is structured as follows. Section 2 presented the
research status of Android malware detection. In Sect. 3, the Machine Learning
framework for Android malware detection was reviewed. The future research
direction and conclusion about this paper were given in Sects. 4 and 5, respec-
tively.

2 Traditional Software Engineering Based Android
Malware Analysis

A large number of Android malware analysis methods are built on traditional
software engineering technique. Generally, software engineering technique can
be roughly divided into three categories: Static code analysis, dynamic behav-
ior analysis, and hybrid analysis. In this Section, we briefly review these three
categories.

2.1 Static Code Analysis

The static code analysis is performed by disassembling and analyzing the source
code of the given Android applications without executing it [79]. The static code
analysis can be further categorized into signature based technique, permission
based technique, the Dalvik bytecode-based technique, and the hybrid static
analysis technique.

Signature-Based Technique

The signature involved methods are high efficiency and have been widely used
by commercial malware detection products. The key building block of signature
technique is to generate robust and accurate signatures based on the specific
strings or semantic patterns in the source code [26]. Zheng et al. [85] designed
DroidAnalytics, a signature-based analysis system which automatically collected
Android malware samples, produced signatures, retrieved the information, and
associated the malware samples based on a similarity score. Feng et al. proposed
Apposcopy, a novel semantics-based approach for detecting a common class of
Android malware samples that steals users’ privacy data [26]. In [27], Feng et al.
further implemented ASTROID, a system for automatically generating semantic
Android malware signatures from very few malicious samples within a malware
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family. The core idea underlying ASTROID was to look for a Maximally Sus-
picious Common Subgraph that was shared between all the known malicious
samples within an Android malware family [37].

Permission-Based Technique

To ensure the security of the Android operating system, the permission man-
agement plays an indispensable role in governing the access privilege [23]. The
software authors must declare the requested permissions in the AndroidMani-
fest.xml file. Thus, the core idea of permission-based technique is focusing on
analyzing the requested sensitive or suspicious permissions to identify the poten-
tial malware samples. In 2009, Enck et al. proposed Kirin as a security service
for Android analysis [22]. Without complicated and boring code inspection pro-
cess, Kirin provided practical light-weight certification of Android applications
at the installation time using the meaningful security rules to hinder malware
samples. ASEDS was created using the Security Distance model to evaluate the
risk level of specific combination of permissions [67]. Wu et al. provided a static
analysis to extract the permissions related to the APT call traces from Android-
Manifest.xml [74]. In 2013, PUMA was designed to perform Android malware
detection using the permission usage features [57].

Dalvik Bytecode-Based Technique

Android software is usually developed using Java and compiled into Java byte-
code. To execute more efficiently, the Java bytecode is optimized to Dalvik byte-
code classes.dex. The classes.dex bytecode contains abundant semantic informa-
tion, e.g., API calls, data flows, which is related to the application behaviors.
The main idea of Dalvik bytecode-based technique is to disassemble the binary
code and then analyze the source code to identify the Android malicious samples.
A significant tool was Soot8 originally designed by the Sable Group of McGill
University. Soot can translate the Android applications into several interme-
diate representations, such as Baf, jimple, Shimple, and Grimp. An improved
version of Soot, called Dexpler was presented in [10]. A robust and light-weight
system called DroidAPIMiner was implemented to detect Android malware [1].
DroidAPIMiner extracted the API related semantic information (such as criti-
cal API calls, their package level information, and parameters) within the byte-
code to represent Android samples. In 2017, HinDroid was proposed using the
structured heterogeneous information network to represent the Android appli-
cations [32]. An approach named MaMaDroid was presented to detect Android
malware by modeling the sequences of API calls as Markov chains [42].

Hybrid Static Analysis Technique

Some works have been conducted to extend the hybrid static analysis by analyz-
ing both the AndroidManifest.xml file as well as disassembled classes.dex code.
In [58], Sato et al. parsed various types of features (including permissions, intent
filters, process names and the number of redefined permissions) to characterize

8 https://sable.github.io/soot/.

https://sable.github.io/soot/
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the pattern of Android malicious samples. In 2014, Arp et al. proposed a light-
weight method named Drebin to detect Android malware samples directly on
the device [5]. Drebin extracted 4 types of feature sets from AndroidManifest.xml
and other 4 feature sets from disassembled classes.dex files to characterize the
Android applications. Arzt et al. designed a novel and accurate static taint anal-
ysis tool named FlowDroid in [7]. Different from the previous approaches, to
reduce the false alarm rate, FlowDroid modeled Android’s lifecycle or callback
methods.

In summary, the static analysis techniques are efficient since they target the
source code of the Android software. However, an increasing number of Android
malicious samples have been obfuscated or encrypted using various tricks to
evade detection [38,66,79]. Under this circumstance, it is difficult to disassemble
the binary bytecode and detect the malicious samples accurately. Besides, the
static analysis will overestimate the code execution paths. In addition, static
analysis techniques are often accompanied by high false positive rate.

2.2 Dynamic Behavior Analysis

Dynamic behavior analysis is conducted by monitoring and tracing the behaviors
of Android application during the execution to determine whether it is malicious
or not [15].

In 2014, an efficient, system-wide Android dynamic analysis system Taint-
Droid was proposed to track the flow of sensitive data [21]. An improved ver-
sion of TaintDroid named Droidbox was introduced in [19]. Portokalidis et al.
proposed an alternative dynamic approach [49]. This approach performed the
malware detection task on the remote servers in the cloud while the execution of
Android software on the device was mirrored in virtual machine environments. In
2011, a crowdsourcing-based dynamic analysis approach was proposed to detect
Android malware samples [15]. The detector was embedded in an integrated
framework to collect different behavior traces of the candidate applications from
a crowdsourcing system. The crowdsourcing strategy made it possible to capture
real behaviors traces of a large number of applications. Shabtai et al. presented
a dynamic host-based Android malware detection framework in [60].

Another dynamic analysis platform for Android named DroidScope, which
could reconstruct Linux OS level and Java Dalvik level semantic information
simultaneously and seamlessly was presented in [77]. To perform large-scale
Android applications analysis, Rastogi et al. implemented an automatic dynamic
analysis framework for Android named AppsPlayground [54]. AppsPlayground
integrated various automatic detection or exploration techniques (e.e., a taint
analysis tool [21], a kernel-level system call monitoring) to construct an effective
dynamic analysis platform. Reina et al. implemented CopperDroid [55], a tool
built on QEMU [12] to automatically analyze the out-of-box dynamic behaviors
of Android malicious samples. In 2014, AirBag, a client-side approach that lever-
aged light-weight operating system level virtualization was presented to enhance
the safety of the Android platform and to facilitate the defense capability against



188 J. Qiu et al.

Android malware [73]. Backes et al. introduced a genetic and extensible Android
Security Framework (ASF) in [9].

In summary, the dynamic behavior analysis can easily discover the malicious
behaviors that may miss out by static code analysis. Besides, it is effective in
combating code encryption or obfuscation techniques [66,79]. However, the code
coverage rate of dynamic behaviors analysis is lower than that of the static
code analysis, thus it tends to miss some code sections that will be executed or
triggered at certain time or scenarios (e.g., the advanced Android malware may
hide or stop their malicious behaviors once they detect the virtual environment,
the malicious activities may be triggered only at night). In addition, dynamic
analysis techniques cost more computational resources.

2.3 Hybrid Analysis

The hybrid analysis technique combines both the static code analysis and the
dynamic behaviors analysis. In other words, it not only analyses the source code
of Android applications but also monitors the behaviors while the applications
are actually executed [11].

In 2010, a system named AASandbox (Android Application Sandbox) was
proposed to perform a hybrid analysis to automatically detect Android malicious
samples [14]. In the static analysis part, AASandbox disassembled the classes.dex
bytecode into the intermediate Smali code and then pre-checked the code that
may imply malicious code segments. In the dynamic analysis part, the candidate
Android applications were executed in the emulator for the behavior inspection.
A comprehensive investigation for the detection of Android malware samples
from both official and third-party stores using the hybrid analysis technique was
presented in [86]. Firstly, a permission-based footprinting method was proposed
to detect known-family malware samples. Then to detect the unknown malware
samples, a heuristics-based filtering method was designed to identify the specific
inherent behaviors of unknown malware families. In 2012, Zheng et al. addressed
the challenging issue about how to activate the sensitive behaviors of Android
applications in [84]. A hybrid analysis was proposed to uncover the UI-based
trigger conditions through automated interactions. First of all, the static analysis
was used to discover the expected activity switch paths by constructing Function
Call and Activity Call Graphs. Then the dynamic analysis was performed to
traverse each UI element and to investigate the UI interaction paths towards the
sensitive APIs. Furthermore, the produced trigger conditions of the proposed
approach could facilitate the existing dynamic tools, such as TaintDroid [21], to
automatically identify the corresponding sensitive behaviors.

Another novel hybrid analysis system named Mobile-Sandbox was presented
in [61]. Mobile-Sandbox employed specific techniques to track calls to native
APIs (e.g., C/C++). In the static analysis, the AndroidManifest.xml and binary
classes.dex were disassembled and analyzed to determine whether the candi-
date Android applications were performing potential suspicious permissions or
intents. Then these applications were executed in the sandbox to log all behav-
iors including native API calls. EvoDroid [41] and A5 (Automated Analysis of
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Adversarial Android Applications) [68] were two hybrid analysis systems similar
to Mobile-Sandbox [61], which also utilized the static analysis to traverse all
possible activity path to guide the further dynamic analysis. In [2], Afonso et
al. conducted a large-scale hybrid analysis of Android applications in the wild
to investigate how applications use the native code.

To address the code obfuscation issue, Rasthofer et al. presented HAR-
VESTER to capture run time values from Android applications, even from those
highly obfuscated advanced Android malware [53]. HARVEST could boost the
recall of the existing analysis tools, such as the dynamic tool TaintDroid [21]
and the static tool FlowDroid [7].

A generic Android input generator named IntelliDroid was proposed in [72].
IntelliDroid could be configured to generate inputs specific for a dynamic anal-
ysis system. Two techniques were employed to activate the targeted APIs with
the injected inputs: identifying event chains and device-platform interface input
injection. In addition, combining IntelliDroid with dynamic analysis tool Taint-
Droid [21] was able to provide better performance than FlowDroid [7].

In summary, the hybrid analysis technique exploits the advantages of static
and dynamic analysis techniques. It not only captures the semantic structural
information from the source code of Android applications but also tracks their
running behaviors. Therefore, the hybrid analysis technique is able to adapt
to code obfuscation while increasing the code coverage rate. However, hybrid
analysis consumes expensive resources, and it requires a longer time to produce
the analysis results [66,79]. Thus the usability of hybrid analysis is limited in a
practical deployment.

3 Machine Learning Involved Android Malware Analysis

Given the soaring number of Android applications from both official and third-
party stores, security experts or vendors have to inspect them in a short period
to figure out their purposes or capabilities. Then the corresponding countermea-
sures will be provided based on the inspection results [61]. Thus it is necessary
to accelerate the malware analysis process with little or even no human inter-
ventions. The Machine Learning techniques, which have been widely used in
many cyber security areas [34,40,51,63,71,75,82], open the door for an alter-
native perspective to effectively and automatically identify or classify Android
malicious samples. This section reviews the Android malware analysis meth-
ods using machine learning methods. Figure 2 presents the general framework of
machine learning based malware analysis. The framework mainly consists of four
steps: First of all, collecting the raw Android applications (including both benign
and malicious samples) and setting up the ground truth (malicious/benign or
specific family class). Second, performing feature engineering to extract infor-
mative features to characterize Android application samples. Third, training
machine learning models for the following malware detection or classification.
Fourth, predicting the candidate samples, evaluating the model and explaining
the results. In the following, we will review the related works based on each step
of the framework.
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Fig. 2. The general Machine Learning framework for binary Android malware detection
or multi-class family classification.

3.1 Raw Android Application Data Collection

Collect Raw Android Applications

The raw Android applications can be downloaded from various sources, e.g., the
official Google Play store and the alternative third-party app stores (such as
WanDouJia, AnZhi). For large-scale and up-to-date access to Android applica-
tions, it is necessary to implement specific crawlers for different Android appli-
cation stores to automatically browse, retrieve, and download applications into
repository [4,39].

However, there exist many challenges in crawling Android applications [4].
Firstly, different app stores have specific policies to limit or forbid the crawling of
applications. For example, without a verified Google account, users cannot down-
load any Android applications from Google Play. In addition, a valid account is
allowed to download a limited number of applications in a given time from one
IP address. Secondly, during the application downloading process, the crawlers
have to be adapted to the updates of the stores. For example, if the application
stores change the structure of the HTML pages, then a new analysis of the web
pages is required to revise the crawling scripts. Thirdly, for a given application,
it is difficult to download its previous versions. Most stores only provide the
latest version of applications. Thus, it is hard to guarantee that all versions of
the applications have been downloaded [39].

Annotate the Ground Truth of Applications

Reliable ground truth data is essential for evaluating the effectiveness of the mal-
ware analysis approaches. When the raw Android applications have been down-
loaded, the next step is to annotate the ground truth (identify the malicious
samples or further assign a family class to them) to construct the training set.
Most of the malware labeling works employed the state-of-the-art open-source



Data-Driven Android Malware Intelligence: A Survey 191

online scanning service VirusTotal9 to annotate the labels for Android applica-
tions. VirusTotal incorporates more than 70 anti-virus tools and URL/domain
blacklisting services to provide a comprehensive analysis report for each uploaded
sample. Give a candidate Android application, the detailed ground truth anno-
tation steps are as follows: First of all, determining whether the application
is malicious or not using the majority voting strategy based on the results of
different anti-virus tools in VirusTotal. Second, if the candidate application is
malicious, we can further assign it a family class based on the returned analysis
results of different anti-virus tools. However, there exists the inconsistent family
naming issue from different anti-virus tools. Thus it is challenging to assign an
accurate family class to the candidate malware sample.

Currently, there were two state-of-the-art works focusing on the Android mal-
ware family class annotation. The first piece of work was based on the dominant
keyword algorithm [69]. First of all, the keywords from each of the detection
reports of anti-virus tools were extracted. Then the generic keywords were fil-
tered out. Finally, the rest keywords were counted to identify the dominant
keyword, which was thus considered as the family name. The second piece of
work was AVclass proposed in [59]. AVclass utilized new techniques to address
three issues: normalization, removal of generic tokens, and alias detection. Thus
AVclass was able to generate the most likely family names for a massive number
of Android malware samples based on the detection reports of selected anti-virus
tools.

3.2 Feature Engineering for Application Representation

The key building block in machine learning involved methods is feature engi-
neering. Extracting the informative and robust features to represent Android
applications is critical to the effectiveness and reliability of the models. In
general, the common features used to characterize Android applications can
be roughly divided into four categories: AndroidManifest.xml based semantic
features. Disassembled classes.dex based semantic features. Intermediate Smali
opcode based features. Fourth, the dynamic behaviors based features and other
side-information based features.

AndroidManifest.xml-Based Features

Each Android application package contains the AndroidManifest.xml file. This
file presents the essential information of the application, such as Hardware
components, Requested permissions, App components, and Filtered intents. The
stored information in this file can be parsed efficiently through static analysis [5].
Table 1 shows the detailed information of the features that can be extracted from
AndroidManifest.xml to characterize Android samples.

Disassembled classes.dex-Based Features

The Android application package is usually implemented using Java program-
ming language and then compiled into classes.dex bytecode for its execution
9 https://www.virustotal.com/.

https://www.virustotal.com/
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Table 1. The detailed information of the features that can be parsed from Android-
Manifest.xml.

Feature subset Detailed description of the feature subset

Requested permission Android apps will request permissions for accessing critical
resources during installation

App components Android apps can declare many components, for instance,
Service, Activity, Broadcastreceiver, ContentProvider

Filtered intents Android apps use intent filters to appoints the operations
it can perform and the data type it can manipulate

Hardware components Apply specific hardware or a series of particular hardwares
may imply potential security or privacy risks

in the Dalvik virtual machine. The classes.dex bytecode contains the compre-
hensive semantic knowledge about the critical API calls and data access within
an application [5]. Besides, the classes.dex bytecode can be efficiently disassem-
bled and parsed to represent Android applications. Table 2 shows the detailed
descriptions of the low-level features that can be captured through disassem-
bling classes.dex. Some high-level graph features, e.g., control flow graph [8,78],
API dependency graph [83], code property graph [76], and inter-component call
graph [25,28] can also be extracted from classes.dex.

Table 2. The detailed information of the low-level features that can be captured from
classes.dex.

Feature subset Detailed description of the feature subset

Suspicious API calls The suspicious API calls represent the potential malicious
actions of malware

Restricted API calls The restricted API calls reveal the critical capability of
Android applications

Used permissions The restricted API calls will be used to decide and match
the requested or indeed used permissions

Network addresses The network addresses appeared in the source codes are
related to potential botnet attacks or suspicious websites

Intermediate Smali Opcode-Based Features

Smali code is the intermediate but interpreted code between Java and Dalvik
virtual machine. All the Smali codes follow a set of grammar specifications. The
classes.dex can be disassembled into a set of Smali format files. Each Smali file
represents a single class containing all the methods within the class and each
method contains human-readable Dalvik instructions. Each instruction can be
parsed into a single opcode and multiple operands [36]. To reduce the noise and
improve efficiency, the common Dalvik instructions can be further categorized
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into 7 core instruction sets while discarding the operands as shown in Table 3.
Then n-grams features can be extracted from the opcode sequences of all the
classes of an Android application.

Table 3. The descriptions of the 7 types of Smali opcode instruction sets.

Instruction type The involved instructions

Move (M) move, move/from16, move/16, move-wide, move-wide/from16,
move-wide/16, move-object, move-object/from16,
move-object/16, move-result, move-result-wide,
move-result-object, move-exception

Return (R) return-void, return, return-wide, return-object

Goto (G) goto, goto/16, goto/32

If (I) if-eq, if-ne, if-lt, if-ge, if-gt, if-le, if-eqz, if-nez, if-ltz, if-gez, if-gtz,
if-lez

Get (T) aget, aget-wide, aget-object, aget-boolean, aget-byte, aget-char,
aget-short, iget, iget-wide, iget-object, iget-boolean, iget-byte,
iget-char, iget-short, sget, sget-wide, sget-object, sget-boolean,
sget-byte, sget-char, sget-short

Put (P) aput, aput-wide, aput-object, aput-boolean, aput-byte,
aput-char, aput-short, iput, iput-wide, iput-object, iput-boolean,
iput-byte, iput-char, iput-short, sput, sput-wide, sput-object,
sput-boolean, sput-byte, sput-char, sput-short

Invoke (V) invoke-virtual, invoke-super, invoke-direct, invoke-static,
invoke-interface, invoke-virtual/range, invoke-super/range,
invoke-direct/range, invoke-static/range, invoke-interface-range,
invoke-direct-empty, invoke-virtual-quick,
invoke-virtual-quick/range

Dynamic Behaviors-Based Features

The dynamic analysis tools can track abundant behaviors information of Android
applications during actual execution. These behaviors information, e.g., file or
network operations, information leaks can be efficiently parsed to represent
Android applications. Table 4 lists the 10 common dynamic behavior feature
set that can be used to characterize Android application samples [24].

Other Side-Information-Based Features

In addition to the features extracted directly from the static or dynamic analysis,
other side-information-based features can also be parsed to characterize Android
applications [20,56,87]. Zhu et al. proposed a method named FeatureSmith to
automatically engineering features for malware detection by mining the secu-
rity literature [87]. The natural language techniques were employed for mining
Android documents (e.g. scientific or academic papers) and for representing and
retrieving the semantic information about malware. Besides, the metadata, such
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Table 4. The detailed introduction of 10 common dynamic behavior feature sets.

Dynamic behavior Detailed description of the behavior

File operations Scanning the file-system to retrieve sensitive data or
creating external files to store the data

Network operations Receiving bot commands from C& C servers or fetching
malicious payloads from malicious websites

Cryptographic operations Encrypting root exploits, targetd premium SMS
number, critical methods, malicious payloads or URLs
to evade detection

Information leaks Collecting sensitive data (IMEI, account credentials,
SMS, contact lists) and sending them to remote server

Dexclass load Loading malicious payloads from app’s assets, from
another app or from remote system at running

Phone calls Making phone calls stealthily without users’ awareness

Sent SMS Causing financial charges to infected devices by
subscribing premium-rate services

Receiver actions Malware usually exploits system events to trigger
malicious payloads, while receivers are good indicators
of system events

Service start Malicious behaviors usually perform in background
processes contained in Android’s service components

System calls System calls show how applications request services
from operating system’s kernel

as the profile information of Android applications or the profile of application
developers can also be parsed to represent Android applications [45]. Further-
more, the software complexity metrics, e.g., the Chidamber and Kemerer Metrics
Suite [17] and McCabe’s Cyclomatic Complexity [43], can be employed to char-
acterize Android application samples [13,50].

3.3 Model Training for Malware Detection or Classification

In this step, the machine learning models will be trained for Android malware
detection or classification. Currently, both traditional machine learning mod-
els (e.g., Support Vector Machine [5], Random Forest [42], K-Nearest Neigh-
bors [42]) and deep learning models (e.g., Deep Neural Networks [31,80,81],
Convolutional Neural Networks [33]) have been applied to malware analysis. In
addition, for a specific malware detection issue, some particular machine learn-
ing algorithms were also employed. For example, in [32], to aggregate different
similarities between Android applications, multi-kernel learning [65] was applied
to automatically learn the weights of different similarity perspectives.
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3.4 Model Prediction, Evaluation, and Explanation

In this step, the trained machine learning model will be used to detect or classify
the candidate Android applications in the wild. Generally, there is no ground
truth data available for the Android samples in the wild. To evaluate the effec-
tiveness of the proposed approach, it is common to divide part of the labeled
Android applications as the testing set to validate the efficiency and efficacy of
the model.

Since Android malware detection or family attribution are class-imbalanced
classification problem, thus Accuracy along is far from enough to comprehen-
sively evaluate the effectiveness of the models, more metrics, e.g., Recall, Preci-
sion or F1-score should be introduced. In practice, an effective machine learning
based malware detection or classification approach should work with high accu-
racy as well as high efficiency. Generally, the efficiency refers to prediction time,
because in most cases the training process can be finished offline. Therefore
training time may not be a key challenge in the Android malware analysis while
prediction time is really important especially the trained model is deployed on
the mobile devices with limited computation resources.

Android malware samples constantly evolve over time. Thus it is important
that the proposed approach is able to adapt to the evolution or population drift
of malware (e.g., code obfuscation or encryption). Adaptiveness is a metrics
used to explore whether malware detectors are able to learn fresh patterns while
unlearning the obsolete patterns of malicious samples with time evolving [46].

In practice, an Android malware detection method must not only iden-
tify malicious samples but also offer explanations for the corresponding detec-
tion results [5]. The existing works provided different explanation granular-
ity [5,16,27]. For example, in [5], the explanation consisted of a ranked list
of features most indicative of malicious behavior and the corresponding weights
reflecting their relative contribution to the detection results. In [27], the expla-
nation results could locate the malicious components and the corresponding
suspicious metadata (e.g., sensitive data leaked by the component).

4 Possible Future Research Directions

In this section, we briefly present the future research directions of Android mal-
ware detection. It is known that malware detection is a fundamental and indis-
pensable topic in Cyber Security area. Researchers, as well as security vendors
have invested a considerable amount of time and money to address this topic.
And Machine learning techniques have been applied to Android malware detec-
tion for almost ten years. The future research directions will focus on fine-grained
analysis, the details are as follows:

Firstly, as mentioned in the previous section, the source code of Android
applications can be regarded as a special format natural language text, thus the
Natural Language Processing (NLP) techniques can be employed to facilitate the
detection performance. Besides, the NLP technique can be employed to better
capture the semantic meanings within and between Android applications [48].
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Therefore, the combination of Android malware detection and NLP technique
will be a promising research direction [3].

Secondly, it has been shown that lots of detection methods or commercial
tools are good at detecting specific type or family of malware. However, the detec-
tion performance is unsatisfactory when extending to other types of malware.
Besides, the detection approaches are necessary to adapt to different versions
of the same malware across various versions of the device OS. To address this
issue, Transfer Learning may be a potential future direction [70].

Thirdly, concept drift in Android malware detection is a serious issue whereby
models trained using older malware are not able to detect newer malware with
confidence. Thus identifying such antiquated detection models accurately and
timely is vital to the final performance. Traditional ML framework shown in
Fig. 2 had to re-train frequently to adapt to the latest landscape of malware. To
address this issue, online learning techniques can be introduced to fight against
concept drifting by updating the model continuously and efficiently with the
most recent malware examples [29,35,46].

Fourthly, inspired by the breakthroughs of Deep Learning in image clas-
sification, machine translation and natural language processing [18,30], Deep
Learning has been introduced to malware detection and achieved satisfactory
performance [44,80]. It can be expected that the latest Deep Learning models
will continue to be a potential approach for malware detection.

Essentially, Android malware detection can be regarded as a class-imbalanced
classification problem. The number of malware is far less than the number of
benign applications. However, to the best of our knowledge, there are few works
targeting the imbalance characteristic of Android malware detection issue. Thus,
the cost-sensitive classification approaches, which has been shown effective in
tackling class-imbalanced problems, may be a future research focus [64].

5 Conclusion

Android malware detection is a fundamental and systematic research topic in
cyber security. It has been widely studied by both academic communities and
security corporations. Meanwhile, machine Learning technique has also been
applied to Android malware detection for nearly ten years. However, there also
exist several challenges and difficulties in Android malware analysis area. In this
survey, the research status of Android malware detection was presented. On the
first, like other surveys, we reviewed the traditional software engineering based
Android malware analysis techniques (static, dynamic and hybrid techniques).
Our main focus is the Machine Learning framework for Android malware detec-
tion. We presented the detailed introduction of each part of the Machine Learn-
ing framework. Then, we gave the possible research directions about Android
malware detection. In the end, we concluded the full survey.
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application sandbox system for suspicious software detection. In: 5th Interna-
tional Conference on Malicious and Unwanted Software, MALWARE 2010, Nancy,
France, 19–20 October 2010, pp. 55–62 (2010)

15. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware
detection system for Android. In: Proceedings of the 1st ACM Workshop Security
and Privacy in Smartphones and Mobile Devices, SPSM 2011, Co-Located with
CCS 2011, Chicago, IL, USA, 17 October 2011, pp. 15–26 (2011)

https://doi.org/10.1007/978-3-319-04283-1_6


198 J. Qiu et al.

16. Chen, K., et al.: Finding unknown malice in 10 seconds: mass vetting for new
threats at the Google-play scale. In: USENIX Security Symposium, pp. 659–674.
USENIX Association (2015)

17. Churcher, N.I., Shepperd, M.J.: Comments on “a metrics suite for object oriented
design”. IEEE Trans. Softw. Eng. 21(3), 263–265 (1995)
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Abstract. In cloud computing model, the data are usually encrypted
before outsourced to the cloud server, which protects the data privacy,
but also leaves keyword searches over ciphertext data a challenging prob-
lem. A keyword search scheme over encrypted data should achieve both
index privacy and query privacy; moreover, verification of search results
is desirable because the incorrectf results can be returned owing to system
defects or the cloud server’s motivation to save computation recourses.
Many multi-keyword search schemes have been proposed; however, few of
these schemes are verifiable and adaptively index-hiding and adaptively
query-hiding. In this paper, a semantically secure multi-keyword search
scheme is constructed, which is adaptively index-hiding and adaptively
query-hiding, also supports the correctness verification of search results.
We provide a detailed performance comparison and give a thorough secu-
rity proof by a sequence of games. The combined results demonstrate that
our scheme is secure and practical.

Keywords: Privacy-preserving search · Cloud computing ·
Search results verification · Semantically secure

1 Introduction

As a new computing paradigm, cloud computing can provide enormous comput-
ing and storage resources and enable users to conveniently access the computing
resources with high efficiency and saved overhead. Attracted by the powerful and
appealing advantages of cloud services, a lot of people and companies encrypt
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their data and outsource them to cloud servers. However, data outsourcing actu-
ally may lead to various security problems. To solve the search over the encrypted
data, searchable encryption (SE) came into being. In SE schemes, the data owner
usually generates an index according to document collection and then uploads
the encrypted documents set and the encrypted index to the remote server. Upon
receiving the trapdoor associated with query keywords, the server performs the
search over the searchable index and returns the matching documents. In the
last decade, SE has been widely researched, however, the existing SE schemes
have the following problems.

(1) In many existing SE schemes, “1” or “0” authorization model [1–5] is utilized
and the data owner is responsible for authorization operation. “1” or “0”
authorization model means the eligible users are/ aren’t given a secret key
which enables the user to execute any query of his choice. Such an authoriza-
tion model may leak the sensitive information of the user. Therefore, a user
should be only allowed to search for partial keywords set. The data owner is
responsible for the authorization means the data owner checks whether the
user is eligible, such that the data owner is desired to be constantly online,
which is impractical.

(2) In many existing SE schemes [1–6], the verification function of search results
isn’t equipped. However, in practice, the cloud server may return incorrect
results due to system faults or motivation to save computation recourses.
Thus, a mechanism to verify the correctness of the search results by the
users is desirable.

(3) In the existing SE schemem, Few schemes are semantically secure. Infor-
mally, semantic security means that an adversary can’t get related infor-
mation about target data, even though it can adaptively obtain plaintext-
ciphertext pairs.

In this paper, we apply the predicate encryption(PE) for inner products to
achieve multi-keyword search over the encrypted data. However, we observe that
the existing SE schemes [6–8] based on PE are only selectively secure, which
means that when the security is proved, paitial challenge ciphertext information
must be given before the public parameters are given to the adversary. We remove
the restriction by applying the PE and the dual system encryption method. We
construct a semantically secure multi-keyword search scheme, which supports
the search results verification and be adaptively index-hiding and query-hiding.
In our scheme, we introduce a trusted authority (TA), which takes charge of
authorization and generating keys. Our contributions are concluded below.

1. A trusted authority (TA) is introduced into our system, which is in charge
of generating keys and authorization. Thus, our scheme overcomes the disad-
vantages of “0” or “1” authorization model, in addition, the data owner isn’t
needed to be always online.

2. A semantically secure and verifiable multi-keyword scheme is proposed. The
proposed scheme is adaptively index-hiding and adaptively query-hiding
against chosen plaintext attack (CPA), moreover, it supports validation of
the correctness of the search results.
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3. A theoretical performance comparison and thorough security proof are made.
The combined results demonstrate that the proposed scheme is secure and
practical.

2 Related Work

On the basis of the keywords number in the query, SE mechanism can fall into
single keyword SE and multi-keyword SE.

As single-keyword search [2–9] doesn’t providing more accurate search
results, many multi-keyword search schemes have been proposed. Hwang et al.
[10] proposed a public key cryptography (PKC)-based conjunctive keyword
search scheme. Some works [7,11] such as applied PE model to enhance the
query expression and realize conjunctive and disjunctive search. Okatoma et al.
[8] constructed a hierarchical predicate encryption (HPE) scheme, providing hier-
archical delegation. The schemes [7,8] are selectively index-hiding against CPA
attack, which means when index security was proven, partial challenge cipher-
text information must be given before the adversary is given the public system
parameters. Applying dual system encryption and predicate encryption(PE),
Lewko et al. [13] realized multi-keyword search scheme, which is proved to be
adaptively index-hiding against CPA attack, which means that the adversary
with the capacity of obtaining adaptively plaintext-ciphertext pairs can’t infer
partial information about the index. However, the above PKC-based schemes
can’t address query privacy owing to the dictionary attack. Based on HPE [8], Li
et al. [6] achieved secure keyword searches on encrypted data, supporting range
query and subset query. They addressed query privacy by inserting a random
number in the processing of generating ciphertext. Their scheme was selectively
index-hiding and selectively query-hiding against CPA. In the symmetrical sce-
narios, Golle et al. [5] first constructed the conjunctive keyword search scheme.
Afterwards, Ballard et al. [14] also presented the conjunctive keyword search
schemes. Shen et al. [12] proposed a predicate only encryption scheme, which
was selectively index-hiding and selectively query-hiding against CPA. Since this
scheme was constructed on bilinear groups of composite order, it needed large
computation overhead. Zhang et al. [4] constructed Multi-attribute Tree (MAT)-
based index structure and improved the search efficiency of the scheme in [3].
These two schemes were index-hiding and query-hiding against known plaintext
attack(KPA). Lai et al. [16] presented a semantically secure search scheme to
achieve association rule mining, however, it only addressed the problem of single
keyword search, moreover, all of the above schemes utilized “honest-but-curious”
model, in which the server can returns the correct search results by the protocol,
however, in practice the cloud server can return incorrect search results owing
to the intention to save computational resources, therefore, verification of search
results is desirable.

A variety of verification methods of search results have been proposed in the
plaintext database scenarios [17]. The Merkle hash tree as well as cryptographic
signature are utilized to build a tree structure for authentication. However, they
didn’t the privacy protection.
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In the encrypted data search scenario [18], Wang et al. [19] used a hash
chain to construct a verification structure, however, their scheme only achieved
single-keyword search. Sun et al. [20] used a Merkle hash tree and cryptographic
signature to create a verifiable multi-dimensional b-tree. However, Sun’s method
is only suitable for text search and it can’t be directly used in our scenario,
because in their method the index construction is based on term frequency. Chen
et al. [21] designed a minimum hash sub-tree, and utilized it and cryptographic
signature to achieve the correctness and freshness verification of search results.
However, none of the above-mentioned schemes are semantically secure.

Based on the properties of bilinear pairs and Lagrange polynomials, Li
et al. [22] proposed a method of constructing reciprocal mapping. They applied
reciprocal mapping to construct a PKC-based searchable encryption scheme,
which was adaptively index-hiding against CPA attack. But this scheme couldn’t
achieve query privacy; moreover, this scheme wasn’t equipped with the results
verification. Lai et al. [16] proposed a fully secure ciphertext search scheme,
which was adaptively index-hiding and adaptively query-hiding, meaning that
the adversary with the capacity of obtaining adaptively plaintext-ciphertext
pairs can’t infer partial information about index and query, however, this scheme
only achieved verification of single-keyword search.

3 Preliminaries

3.1 DPVS

Dual Pairing vector spaces (DPVS) [8] is a tuple (q,G,GT , g,V,A, e), here q

is a prime, G and GT are cyclic groups of order q, V :=

N
︷ ︸︸ ︷

G × . . . × G over Fq

is N-dimensional vector space, A = (a1, . . . , aN ) is canonical basis of V, here

ai := (

i−1
︷ ︸︸ ︷

1, . . . , 1, g,

N−1
︷ ︸︸ ︷

1, . . . , 1), e : V × V → GT is a bilinear pairing. DPVS satisfies
the following conditions.

1. e is a polynomial-time bilinear pairing operation, satisfying e(aP, bQ) =
e(P,Q)ab, if e(P,Q) = 1, for all Q ∈ V, and P = 0, where a, b ∈ Fq,
P = (p1, . . . , pN ) ∈ V, Q = (q1, . . . , qN ) ∈ V .

2. For all i and j, the equation e(ai, aj) = e(g, g)ϕi,j holds, if i = j, then ϕi,j = 1;
otherwise, ϕi,j = 0.

3.2 Predicate Encryption

In inner product predicate encryption(PE) [7], every attribute is associated with
a vector

−→
X and each predicate f−→

Y
is associated with a vector

−→
Y . The equation

f−→
Y

(
−→
X ) = 1 holds iff

−→
X.

−→
Y = 0. In this paper, we takes a class of predicates

F =
{

f−→
Y

∣

∣

∣

−→
Y ∈ Fn

q

}

. Iff
−→
X.

−→
Y = 0, f−→

Y
(
−→
X ) = 1.
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3.3 Index and Predicate Vectors Representation

In inner product predicates encryption, each index is represented by an index
vector and each query is represented by a query vector. According to [7], we can
represent the index and query in vector form for keyword conjunctive search by
first converting them into polynomial forms and then converting to vectors. For
example, for the conjunctive keyword query:

(A1 = w1) ∧ (A2 = w2) . . . ,∧(Ad = wd),

here d represents the number of the attributes, Ai represents the ith attribute
and wi represents the query keyword according to the ith attribute, index and
query vector can be represented by the following steps.

(1) Convert the query to polynomial forms:
p(A1, A2, . . . , Ad) = r1(A1 − k1) + r2(A2 − k2)+, . . . ,+rd−1(Ad−1 − kd−1) + (Ad − kd),

where ri ∈ Fq(1 ≤ i ≤ d − 1).
(2) The index vector is denoted as

−→
X = (A1, A2, . . . , Ad, 1), where Ai should be

replaced by the attribute value of the ith attribute of the index.
(3) The query vector is represented as

−→
Y = (r1, r2, . . . , rd−1, 1,−(r1k1 + r2k2

+ rd−1kd−1 + kd)).

3.4 Notations

Letters m, d and n represent the number of the data documents collection,
the number of the attributes in each index and the length of the index vector
respectively. c ← A(a, b) means running an algorithm A which takes as inputs
(a, b) and outputing c. s

R←− S denotes that s is uniformly at random selected
from the collection S. GL(N,Fq) denotes the linear group of degree N over Fq,
F : Keys(F ) × D → R represents a mapping whose domain is D and the range
is R. Keys(F ) is the keys set of F. F (K,x) is also denoted by FK(x). ςbpg(1λ)
represents the bilinear map generation algorithm. ζob is a random orthonormal
bases generation algorithm.

ζob(1λ, N) : (q, g,G,GT ,V,A, e) ← ζdpvs(1λ, N)

Z = (zi,j)
R←− GL(N,Fq),

(ti,j) = (ZT )−1,

bi =
N
∑

j=1

zi,jaj(i = 1, . . . , N), B = (b1, . . . , bN ),

b∗
i =

N
∑

j=1

ti,jaj(i = 1, . . . , N), B∗ = (b∗
1, . . . , b

∗
N ),

Return (q, g,G,GT ,V,A, e,B,B∗).
B,B∗ and e satisfy e(b∗

i ,b
∗
j ) = e(g, g)δi,j , for all i and j, ifi = j, δi,j = 1,

otherwise δi,j = 0. B,B∗ are dual orthonormal bases of vector space.
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3.5 Assumptions

Assumption 1: n-eDDH Assumption
ςn−eDDH
β (1λ) : paramG = (q, G,GT , g, e) ← ςbpg(1λ),

k
R←− Fq − {0}, w, hi, ri

R←− Fq, for i = 1, . . . , n,
X0 := gkw,X1 ← G,
T =(g, gk, {gw+hiri , gri , ghi}1≤i≤n, {grihj}1≤i�=j≤n),
Return(paramG, T,Xβ).
n-eDDH assumption is that given (paramG, T,Xβ), a probabilistic

polynomial-time(PPT) adversary A guesses β ∈ {0, 1}. For any PPT adversary
A, the advantage for this assumption is Advn−eDDH

A .
Advn−eDDH

A = |Pr[A(paramG, T,X0) = 1] − Pr[A(paramG, T,X1) = 1]|
Advn−eDDH

A is negligible. See the reference [13] for details.

Assumption 2
(q, g,G,GT , e, V,B,B∗) ← δob(1λ, 2n + 3),
̂B = (b1, . . . , bn, b2n+1,b2n+3), ̂B∗ = (b∗

1, . . . , b
∗
n, b∗

2n+1, b
∗
2n+2),

T = (q, g,G,GT , e, V,B,B∗),
i, j = 1, . . . n,

ε1, ε2,i ← Fq, χ
R←− Fq − {0}, μi,j

R←− GL(n + 1, Fq)
d0,i = ε1bi + ε2,ib2n+3 (β = 0),

d1,i = ε1bi + χ
n
∑

j=1

ui,jbn+j + ε2,ib2n+3 (β = 1),

Assumption 2 is that given (T, {dβ,i}(1≤i≤n), a PPT adversary guesses β = 0
or β = 1. The advantage of a PPT adversary A for Assumption 2 is as follows:

AdvAP2
A =

∣

∣

∣Pr[A(T, {d0,i}i=1,...,n) = 1] − Pr[A(T, {d1,i}i=1,...,n) = 1]
∣

∣

∣

ADV Ap2
A (λ) is equal to ADV n−eDDH

A (λ), which has been proved in [13].

Assumption 3
(q, g,G,GT , e, V,B,B∗) ← δob(1λ, 2n + 3),
̂B = (b1, . . . , bn, b2n+1,b2n+3), ̂B∗ = (b∗

1, . . . , b
∗
n, b∗

2n+1, b
∗
2n+2),

T = (q, g,G,GT , e, V,B,B∗),
i, j = 1, . . . n,

w, γi
R←− Fq, χ, τ

R←− Fq − {0}
ui,j

R←− GL(n,Fq), (zi,j) = ((ui,j)−1)T ,
k∗

0,i
= wb∗

i + +rib
∗
2n+2(β = 0),

k∗
1,i

= wb∗
i + τ

n
∑

j=1

zi,jb
∗
n+j + rib

∗
2n+2(β = 1),

di = εbi + χ
n
∑

j=1

ui,jbn+j ,

Assumption 3 is that given (T, {di, k
∗
β,i}(1≤i≤n), a PPT adversary guesses

β = 0 or β = 1. The advantage of a PPT A for Assumption 3 is as follows:
AdvAP3

A =
∣

∣Pr[A(T, {di, k
∗
0,i}(1≤i≤n) = 1] − Pr[A, (T, {di, k

∗
1,i}(1≤i≤n) = 1]

∣

∣.
ADV Ap3

A (λ) is equal to ADV n−eDDH
A (λ), which has been proved in [13].
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Assumption 4
Assumption 4 is the same as Assumption 3 except that {di}i=1,...,n aren’t given to
the adversary when the adversary guesses β ∈ {0, 1}. Specifically, Assumption 4 is
to guess β = 0 or β = 1, given (T, {kβ,i}(1≤i≤n). The advantage of A for Assump-
tion 4 is defined as:

AdvAP4
A =

∣

∣Pr[A(T, {k∗
0,i}(1≤i≤n) = 1] − Pr[A, (T, {k∗

1,i}(1≤i≤n) = 1]
∣

∣

Assumption 5
Assumption 5 is the same as Assumption 2 except that additional {k∗

i }i=1,...,n

along with (T = (q, g,G,GT , e, V,B,B∗), {dβ,i}(1≤i≤n), are given to the adver-
sary in game when guessing β = 0 or β = 1. Specifically, Assumption 5 is a PPT
adversary guesses β ∈ {0, 1}, given (T, {dβ,i, k

∗
i }(1≤i≤n), where D, {dβ,i}(1≤i≤n

are the same as that in Assumption 2. h∗
i = wb∗

i + τ
n
∑

j=1

zi,jb
∗
n+j , where w

R←−

Fq, τ
R←− F∗

q , (zi,j) = ((ui,j)−1)T , For a PPT A, the advantage for Assumption 5
is defined as:

AdvAP5
A =

∣

∣

∣Pr[A(T, {d0,i, k
∗
i }(1≤i≤n, ) = 1] − Pr[A(T, {d1,i, k

∗
i }(1≤i≤n) = 1]

∣

∣

∣.

4 Problem Formulation

4.1 System Architecture

The system architecture comprises the data owner, the trusted anthority(TA),
the cloud server, the user.

Data Owner: It encrypts the searchable index vector and a huge amount of
data collection, sends them to the cloud server. About document encryption, it
is beyond the focus of this paper.

TA: TA is responsible for generating and managing system keys and authorizing
the search privileges to the query users. When receiving a trapdoor request for
the query Q from a user, TA judges whether this user is allowed or not by the
predefined authorization rules. TA will authorize the search privileges to the
user if the attributes values of the user satisfy the preestablished authorization
rules. Users’ attribute values can be certified by the credentials signed TA. TA
is generally governmental institution and assumed to be trusted.

Cloud Server: It stores the encrypted index and document set from the data
owner. Receiving the trapdoor, it performs the search over the encrypted index
and returns the matching results to the user.

Data User: After submitting the query request, the qualified user can receive
the trapdoor associated with the query keywords and submits the trapdoor to
the cloud server.
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4.2 Security Goals

Firstly, we will give some related definitions.

Chosen Plaintext Attack Model: The main idea of the CPA model is that the
attacker is allowed to request ciphertext for multiple selected plaintext messages.
That is, the attacker A is allowed to interact freely with the encryption oracle,
which can be thought of as a “black box” and encrypts message selected by A
with the private key.

Adaptively Index-Hiding Against CPA: A SE scheme is adaptively index-
hiding against CPA if for any PPT adversary A, the advantage of winning index
privacy game is negligible.

Adaptively Query-Hiding Against CPA: A SE scheme is adaptively query-
hiding if for any PPT adversary A, the advantage of winning the query privacy
game is negligible.

Unforgeability of the Results: Unforgeability needs to ensure that under
chosen plaintext attack model, the cloud server is unable to forge a valid proof
to let the data owner believe that an index contains all the query keywords which
it actually does not contain. Note: index privacy game and query privacy game
will be described in the security proof part of the scheme.

The security goals are: (1) Adaptively index-hiding against CPA; (2) Adap-
tively query-hiding against CPA; (3) Unforgeability of the search results.

5 The Proposed Schemes

5.1 Construction of Our Scheme

The proposed scheme is mainly comprised of five phases: system initialization,
encryption of the documents and index, generation of the trapdoor, secure search
in cloud server and verification at data user site.

1. System Initialization
System Initialization mainly generate the system keys and consists of the fol-
lowing two steps.

(1) TA runs Setup(1λ, 2n + 3) to generate public key PK, private keys SK2.
Setup(1λ, 2n + 3) : (q, g,G,GT ,V,A, e,B,B∗) ← ζob(1λ, 2n + 3),
̂B = (b1, . . . bn,b2n+1,b2n+3),
Define pseudorandom function F : {0, 1}Lk × {0, 1}Lr → Fq satisfying 2lk

≤ q,
Return PK = (q, g,G,GT ,V, e, F, ̂B), SK2 = (K2, B

∗).
(2) TA and data owner apply the Diffie-Hellman key exchange protocol to gen-

erate SK1 = (s,K1). Let A and B debote TA and the data owner.

• A selects elements a1, a2 uniformly at random from [1, q − 1], and computes
ga1 ← ga1(modq), ga2 ← ga2(modq), and sends ga1 , ga2 to B;
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• B selects elements b1, b2 uniformly at random from [1, q − 1], and computes
gb1 ← gb1(modq), gb2 ← gb2(modq) and sends gb1 , gb2to A;

• computes s = ga1
b1

(modq),K1 = ga2
b2

(modq);
• computes s = gb1

a1
(modq),K1 = gb2

a2
(modq), SK1 = (s,K1). (s, K1) is shared

by TA and the data owner.

2. Encryption of the Index
The encrypted index is generated according to the following steps.

(1) The data owner converts each index Ii into the index vectors
−→
Xi =

{xi1, . . . , xin} by the representative method of index vector.
(2) The data owner runs index encryption algorithm EncIndex(PK,SK1,

−→
Xi)

to generate the encrypted index.
EncIndex(SK1,

−→
Xi) : DIDi

R←− {0, 1}lr , ε1, ε2
R←− Fq,

αi = FK1(DIDi), DIDi is the identifier of the document di.

C−→
Xi

= s(ε1(
n
∑

j=1

xi,jbi) + αib2n+1 + ε2b2n+3),

Return(αi, C−→
Xi

), C−→
Xi

is the ciphertext of
−→
Xi.

(3) The date owner sends (αi, C−→
Xi

)(1 ≤ i ≤ m) to the cloud server.

3. Generation of the Trapdoor
The processing of generating the trapdoor is as follows.

(1) TA converts the query Q to the query vector
−→
Y = {y1, y2, . . . , yn}, according

to the representation method of the query vector.
(2) TA runs the trapdoor generation algorithm GenTrapdoor(SK,

−→
Y ) to gen-

erate the trapdoor TD−→
Y

.

GenTrapdoor(SK,
−→
Y ) : ρ1, ρ2, θ1, θ

R←− Fq,
γi = FK2(KIDi), γ = γ1.γ2, . . . , γd−1.γd,

When the user doesn’t care the jth attribute; we define γj = 1(1 ≤ j ≤ d),

K∗
1 = s−1(ρ1(

n
∑

i=1

yib
∗
i ) + ρ2b

∗
2n+2),K

∗
2 = s−1(θ1(

n
∑

i=1

yib
∗
i ) + γb∗

2n+1 + θ2b
∗
2n+2),

Return(γ, TD−→
Y

), where TD−→
Y

= (K∗
1 ,K∗

2 ).

(3) TA sends (γ, TD−→
Y

) to the user.

4. Secure Search in Cloud Server
The cloud server excutes the search and sends the results to the user.

(1) The cloud server runs query algorithm Query(C−→
Xi

,K∗
1).

Query(C−→
Xi

,K∗
1 ) = e(C−→

Xi
,K∗

1 )

= e(s(ε1(
n

∑

j=1

xi,jbj + αib2n+1 + ε2b2n+3), s−1((ρ1(
n

∑

i=1

yib
∗
i ) + ρ2b

∗
2n+2)))
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If
−→
Xi.

−→
Y = 0, this algorithm returns 1, Otherwise, it returns 0. That output

is 1 means that the index Ii contains all the keywords in Q.
(2) To convince the user that index Ii contains all the query keywords in the

query Q, the cloud server generates a proof pfi = e(C−→
Xi

,K∗
2 ).

(3) The cloud server sends ((α1, pf1), (α2, pf2), . . .) to the user.

5. Verification of the Search Results
For each search result (αi, pfi), the query user runs the verification algorithm
V erify(γ, αi,pfi) to verify the correctness of search results.

V erify(γ, αi,pfi) : vari = e(g, g)αiγ ,

If pfi = vari, it returns 1, Otherwise, it returns 0.

5.2 Proof of Correctness

Proof of the Search Correctness: Query(C−→
Xi

,K∗
1) = e(C−→

Xi
,K∗

1)

= e(s(ε1(
n

∑

j=1

xi,jbj + αib2n+1 + ε2b2n+3), s−1((ρ1(
n

∑

i=1

yib∗
i ) + ρ2b

∗
2n+2)))

= e(g, g)
s.s−1ε1ρ1

n∑

j

xi,jyj

= e(g, g)
ε1ρ1

n∑

j

xi,jyj

If
n
∑

j=1

xi,j .yj =
−→
Xi.

−→
Y = 0, then e(C−→

Xi
,K∗

1) = 1.

Proof of the Correctness for the Verification of the Research Eesults:

pfi = e(C−→
Xi

, K∗
2)

= e(s(ε1(
n∑

j=1

xi,jbi) + αib2n+1 + ε2b2n+3), s
−1(θ1(

n∑

i=1

yib
∗
i ) + γb∗

2n+1 + θ2b
∗
2n+2))

= e(s(ε1(
n∑

j=1

xi,jbi), s
−1θ1(

n∑

i=1

yib
∗
i )).e(sαib2n+1, s

−1γb∗
2n+1)

= e(g, g)
ss−1ε1θ1

n∑

j=1
xi,j .yj

.e(g, g)ss−1αiγ

If
−→
Xi.

−→
Y = 0, then pfi = e(g, g)αiγ . So

−→
Xi.

−→
Y = 0, verify(γ, αi,pfi) = 1.

6 Performance Comparison

We compare our scheme with the similar schemes [6,13,16], in terms of security
and basic functionality, as shown in Table 1.

From Table 1, scheme of Li et al. [6] is selectively index-hiding and query-
hiding against CPA. The scheme in [13] is adaptively index-hiding, but query



Semantically Secure and Verifiable Multi-keyword Search 213

Table 1. Performance comparison of the schemes (1)

LYC [6] LOS [13] LLD [16] Our scheme

Index privacy Selectively
index-hiding
against CPA

Adaptively
index-hiding
against CPA

Adaptively
index-hiding
against CPA

Adaptively
index-hiding
against CPA

Query privacy Selectively
query-hiding
against CPA

/ Adaptively
query-hiding
against CPA

Adaptively
query-hiding
against CPA

Verification No No Yes Yes

MKS or SKS MKS MKS SKS MKS

privacy cannot be achieved in [13]. Search results verification is not supported
in [6] and [13]. The scheme in [16] and our scheme are adaptively index-hiding
and query hiding, however, the scheme in [16] only achieves the single keyword
search (SKS)and our scheme can achieve the multi-keyword search (MKS) and
verification.

We compare our scheme with the schemes in [13,16], which can achieve
adaptively security in terms of storage and computation overhead, as shown
in Table 2.

Let m and n denote the number of the documents and the length of the
index vector, |G| denote the size of an element in G, |Fq| denote the size of an
element in Fq, P denote one pair operation on e : G × G → GT ,M denote an
exponentiation operation (point multiplication).

Encrypted Index Size: In our scheme, we consider (αi, C−→
Xi

) size as the
encrypted index size, which is |Fq| + (2n + 3) |G|; the size of the encrypted
index in [16] is lk + (2n + 5) |G|, where lk represents the size of the document
identifier, and the size of the encrypted index in [13] is (2n + 3) |G|.
Trapdoor Size: In our scheme, the size refers to the size of (γ,K∗

1 ,K∗
2 ), and it is

|Fq|+(2n+3) |G|+(2n+3) |G|, Similar to our scheme, the size of the trapdoor in
[16] refers to the size of (SID,K∗

1 ,K∗
2 ), and is lk +(2n+5) |G|+(2n+5) |G|, here

lk is the size of SID. For the scheme [13] we consider two situations: hierarchy
and no hierarchy.

Key Generation Time: In our scheme and the scheme in [13,16], the overhead
of generating key is generating B and B∗. Although in the our scheme and the
scheme in [13], ̂B is used. To computer ̂B, we must first computer B). The total
overhead of generating B and B∗ is 2N2M (our scheme and [13]: N = 2n + 3;
[16]: N = 2n + 5. To avoid the weakness of using “0” and “1” authorization
model, we introduce the TA. When TA and the data owner establish the shared
keys, Diffie-Hellman key exchange protocol is used, introducing 4M computation
overhead. Therefore the total overhead of generating keys is 2.(2n + 3)2M +4M .

Index Encryption Time: When generating the encrypted index, the basic
operation is to encrypt the index. In our scheme, to achieve the verification of
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the results, our scheme carries F function over the identifier information over
the document. So, the total computation overhead of generating the encrypted
index is F+(n + 4)(2n + 3)M . Similarly, this type of overhead in [16] is F+(n +
4)(2n + 5)M . The scheme in [13] don’t have the verification functionality and
its overhead of generating the encrypted index is (n + 3)(2n + 3)M .

Trapdoor Generation Time: In our scheme and [16], the time of generating
the trapdoor conclude the time of generating (K∗

1,K
∗
2) and the time of running

F function. For the scheme in [13], we consider two situations: hierarchy and no
hierarchy.

Search Time: To our scheme and the scheme [16], we consider the time of
searching m documents and time of generating a proof. However, the scheme in
[13] has the function of verification, therefore this scheme in [13] don’t need to
generate the proof.

From Table 2, we can see that the efficiency of our scheme is slightly less
than the efficiency of the scheme [13] without authorization function. However,
in terms of trap size, index generation and trapdoor generation, our scheme is
superior to [13] with authorization. From Table 2, our scheme is superior to the
[16] in storage overhead and computation overhead. Combined results show that
our scheme is secure and practical.

Table 2. Performance comparison of the schemes (2)

LOS [13] LLD [16] Our scheme

Encrypted
index size

(2n + 3) |G| lk + (2n + 5) |G| |Fq | + (2n + 3) |G|

Trapdoor
size

No hierarchy:
(2n+3)|G|
Hierarchy:
[l+2+(n-ul)].
(2n+3)|G|

lk+2(2n+5)|G| |Fq |+2(2n+3)|G|

Key
generation

2(2n + 3)2M 2(2n + 5)2M 2(2n + 3)2M + 4M

Index
encryption

(n + 3)(2n + 3)M (n + 4)(2n + 5)M
+F

(n + 4)(2n + 3)M
+F

Trapdoor
generation

No hierarchy:
(n+3)(2n+3)M
Hierarchy:
[(ul + l + 1)
+(l + 1)(ul + l + 1)
+(n − ul)(ul + l + 2)]
.(2n + 3)M

K∗
1 :

((n + 3)(2n + 5))M
K∗

2 :
((n + 4)(2n + 5))M
+ F

K∗
1 :

((n + 3)(2n + 3)))M
K∗

2 :
((n + 4)(2n + 3))M
+ xF

Search m(2n+3)P Search: m(2n+5)P
Proof: (2n+5)P

Search: m(2n+3)P
Proof: (2n+3)P
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7 Conclusion

In this paper, based on the inner product predicate encryption and dual system
encryption, we propose a semantically secure multi-keyword search scheme with
both index privacy and query privacy. Our scheme is adaptively index-hiding
and adaptively query-hiding. Our scheme also is equipped with the capacity
of verifying the authenticity of search results. Moreover, our scheme overcomes
the disadvantages of traditional “0” or “1” authorization and the data owner
is required to be always online by introducing the trusted authority. At last,
We make a theoretical performance comparison and thorough security proof
by a sequence of games. Combined results show that our scheme is secure and
practical.
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Appendix A.1 Dual System Encryption

The scheme security is proved by dual system encryption, in which both cipher-
text and keys present two states: standard and semi-functional. The trapdoor
generated by GenTrapdooris called the normal trapdoor, and the encrypted
index generated by EncIndexis called the standard ciphertext. We define the
semi-function index ciphertext and the semi-function trapdoor, which are only
employed in the proof of the scheme.

We use Cnorm−→
X

to denote the normal index ciphertext of
−→
X, (K∗(norm)

1 ,

K
∗(norm)
2 ) to denote the normal trapdoor of

−→
Y , Csemi−→

X
to denote the semi-

functional index ciphertext of
−→
X = {x1, . . . , xn}.

Cnorm−→
Xi

= s(ε1(
n
∑

j=1

xi,jbi) + αib2n+1 + ε2b2n+3)

K
∗(norm)
1 = s−1(ρ1(

n
∑

i=1

yib
∗
i ) + ρ2b

∗
2n+2),K

∗(norm)
2 = s−1(θ1(

n
∑

i=1

yib
∗
i ) + γb∗

2n+1 + θ2b
∗
2n+2)

We use Csemi−→
X

to denote the semi-functional index ciphertext of
−→
X = {x1, . . . , xn}.

Csemi−→
X

= s(ε1(
n
∑

i=1

xibi) +
n
∑

j=1

ujbn+j + αb2n+1 + ε2b2n+3) = s(ε1
−→
X,

−→
U ,α, 0, ε2)B

−→
U = (u1, . . . ,un), uj(1 ≤ j ≤ n) ← Fq, others are the same as those in Cnorm−→

X
.
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We use (K∗(semi)
1 ,K

∗(semi)
2 ) to denote the semi-functional trapdoor of

−→
Y =

{y1, . . . , yn}.

K
∗(semi)
1 = s−1(ρ1(

n∑

i=1

yib
∗
i ) +

n∑

i=1

vib
∗
n+i + ρ2b∗

2n+2) = s−1(ρ1
−→
Y ,

−→
V , 0, ρ2, 0)B∗

K
∗(semi)
2 = s−1(θ1(

n∑

i=1

yib
∗
i ) +

n∑

i=1

wib
∗
n+i + γb∗

2n+1 + θ2b∗
2n+2) = s−1(θ1

−→
Y ,

−→
W, γ, θ2, 0)B∗

where
−→
V = (v1, . . . , vn), vj(1 ≤ j ≤ n) ← Fq and

−→
W = (w1, . . . , wn), wi(1 ≤ i ≤

n) ← Fq, other parameters are the same as those in K
∗(norm)
1 and K

∗(norm)
2 .

If
−→
X.

−→
Y = 0, we can observe that

e(Cnorm−→
X

,K∗norm
1 ) = e(Csemi−→

X
,K

∗(norm)
1 ) = e(Cnorm−→

X
,K

∗(semi)
1 ) = 1 ∈ T

e(Cnorm−→
X

,K∗(norm)
2 ) = e(Csemi−→

X
,K∗(norm)

2 ) = e(Cnorm−→
X

,K∗(semi)
2 ) = e(g, g)αγ

e(Csemi−→
X

,K∗(semi
1 ) = e(g, g)ε1ρ1

−→
X

−→
.Y .e(g, g)

−→
U .

−→
V (1)

e(Csemi−→
X

,K∗(semi)
2 ) = e(g, g)ε1θ1

−→
X

−→
.Y .e(g, g)

−→
U .

−→
W .e(g, g)αγ . (2)

e(Csemi−→
X

,K∗(semi)
2 ) = e(g, g)ε1θ1

−→
X

−→
.Y .e(g, g)

−→
U .

−→
W .e(g, g)αγ are uniformly

and independently distributed over GT . From the Formula (1) and (2), we
can observe that the decryption fails when the semi-functional ciphertext is
decrypted with the semi-functional key.

Appendix A.2 The Proof of the Scheme Security

Index privacy game: it is a game between the challenger B and the PPT
adversary A. This game is also called game 0.

1. B executes Setup(1λ) to generate PK and secret keys SK = {SK1, SK2},
and PK is given to the adverdary. The private key is safely kept and SK1 is
also safely kept by the data owner. Note B generates SK1 by acting as both
parties in the the Diffie-Hellman key exchange protocol.

2. A may adaptively issue queries, where each query can be ciphertext query
or trapdoor query. On the j-th ciphertext query, A issues an index vector

−→
Xj

and receives the corresponding ciphertext C−→
Xj

← EncIndex(SK,
−→
Xj). On the

j-th trapdoor query, A issues a query vector
−→
Yj and receives the corresponding

trapdoor TD−→
Yj

← GenTrapdoor(SK,
−→
Yj).

3. A issues two challenge index vectors (
−→
X0,

−→
X1), subject to the restriction−→

X (0).
−→
Y �= 0 and

−→
X (1).

−→
Y �= 0 for the entire query vector

−→
Y issued by

A. B randomly chooses a random bit b ∈ {0, 1}, A is given C−→
X

(b) ←
EncIndex(SK,

−→
X (b)).
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4. A may continue to submit additional queries as in step (2), with the same
restriction as that in step 3.

5. A outputs one bit b’ , and it will win the game if b′ = b.

Game 1: A really random function substitutes FK1 in game 0, which has the
same range and domain.

Game 2: A really random function substitutes FK2 in game 1, which has the
same range and domain.

Game 3: Semi-functional challenge ciphertext for the index is given to the
adversary.

Game 4-t: the challenge index ciphertext is semi-functional, and the first t
trapdoors are semi-functinal.

Game 5: The challenge index ciphertext and all the trapdoors are semi-
functional.

Theorem 1. If the advantages for Assumptions 2 and 3 are negligible, then the
proposed scheme is adaptively index-hiding against CPA.

Proof: In game 5, since the index ciphertext and trapdoor are semi-functional,
so for any PPT adversary, he can’t attain any advantage in game 5. So, if the
index privacy game can be proved to be computationally indistinguishable with
the game 5, then we also prove the advantage for the original index privacy is
negligible. Below we will prove that the index privacy game and game 5 are
computationally indistinguishable by 5 lemmas.

Lemma 1. Game0 and game 1 is computationally indistinguishable.

Proof. For convenience of proving of Lemma 1, we construct a PPT machine B
that uses the adversary A to distinguish pseudorandom function and random
function. The processing is as follows. (1) B returns the system public parameters
PK = (q,G,GT , g,V, e, ̂B) to A and keeps SK = (r,K1,K2, B

∗).
(2) A issues a ciphertext query on the attribute vector

−→
X to B, B queries its

oracle on DID (the identifier of
−→
X ) and set the result as α. When f = FK1 , then

α = FK1(DID), otherwise, α is distributed uniformly at random. As response, B

answers a ciphertextC−→
X

= r(ε1(
n
∑

i=1

xibi)+αb2n+1 + ε2b2n+3) , where ε1, ε2 ∈ Fq

uniformly at random.
(3) A issues a query, B answers a normal trapdoor computed by using

B∗ and K2.
(4) When B gets the challenge index vector (

−→
X0,

−→
X1), B chooses a random bit

b ∈ {0, 1}, and sends a ciphertext index C−→
Xb

= s(ε1(
n
∑

i=1

xb
ibi)+αb2n+1+ε2b2n+3).

(5) A and B continues to operate as the step (2) and (3). In fact, when
f = FK1 , B has simulated game 0, when f is random function with the domain
D = (0, 1)lt and the range R = Fq, and then B simulated game 1.
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(6) A outputs bit b’, if b′ = b, which means that A can distinguish game
0 from game 1, then B can distinguish pseudorandom function and random
function, which contradicts with the property of the pseudorandom function.
Therefore, game 0 and game 1 are computationally indistinguishable.

Lemma 2. Game1 and game 2 is computationally indistinguishable.
We omit this proof of the Lemma 2, because it is similar to proof of Lemma 1.

Lemma 3. Assuming the advantage for Assumption 2 is negligible, and then
game 2 and 3 are computationally indistinguishable.

Proof. For convenience of proving of this lemma, we construct a PPT machine
B that uses the adversary A against Assumption 2.

After receiving Assumption 2 instance (q,G,GT , g, e,V, ̂B, ̂B∗, {dβ,i}(1≤i≤n),
B tries his best to decide β = 1 or β = 0. B runs A to break Assumption 2. The
processing is as follows.

(1) B returns the system public parameters PK = (q,G,GT , g,V, e, ̂B) to A and
keeps SK = (s,K1,K2, B

∗).
(2) A submits a ciphertext query on the index vector

−→
X , B answers a normal

ciphertext C−→
X

= s(ε1(
n
∑

i=1

xibi) + αb2n+1 + ε2b2n+3) omputed by ̂B and S.

(3) A issues a trapdoor query on all the query keywords, B answers a normal
trapdoor computed by ̂B∗ and S .

(4) Getting the challenge index vector (
−→
X0,

−→
X1), B selects a random bit b ∈

{0, 1}, parses
−→
Xb = {xb

1, . . . , x
b
n}, and computes C−→

Xb
= s(

n
∑

i=1

xb
idβ,i +

α′b2n+1), where α′ ∈ Fq uniformly at random.
(5) A continues to adaptively submit additional queries as in steps (2) and (3).

When β = 0, then C−→
Xb

= r(
n
∑

i=1

xb
id0,i + α′b2n+1) = r(ε1

n
∑

i=1

xb
ibi + α′b2n+1 +

(
n
∑

i=1

xb
iε2,i)b2n+3), B has simulated game 2.

When β = 1, then −→
Xb

= r(
n
∑

i=1

xb
id1,i + α′b2n+1) = r(ε1

n
∑

i=1

xb
ibi +

n
∑

i=1

(
n
∑

t=1
ρxb

tut,i)bn+i + α′b2n+1 + (
n
∑

i=1

xb
iε2,i)b2n+3), B has simulated game 3.

(6) A outputs bit b’, if b′ = b, which means that A can distinguish game 3
and game 2, then B can decide β = 0or1. This means that B’s advantage
of breaking Assumption 2 is non-negligible. This contradicts ADV Ap2

A (λ) =
ADV n−eDDH

A (λ), which has been proved in []. Therefore, if the advantage
for Assumption 2 is negligible, game 3 and game 2 are computationally indis-
tinguishable.
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Lemma 4. Assuming the advantage for Assumption 3 is negligible, then game
4-(t-1) and game 4-t are computationally indistinguishable for 1 ≤ ϑ ≤ t. where
ϑ denotes the number of trapdoor queries the adversary makes.

Proof. To For the sake of proving this Lemma 4, we construct a PPT machine
B that uses the adversary A against Assumption 3.

Receiving (q,G,GT , g, e, V, ̂B, ̂B∗, {h∗
β,i, di}(1≤i≤n), B tries to decide if β =

0or1. B runs A as a subroutine to break Assumption 3. The processing is as
follows.

(1) B returns the system returns the system Parameter PK = (q,G,GT , g,V,

e, ̂B) to A, and keeps SK = (s, ̂B∗).
(2) A issues a ciphertext query for the index vector

−→
X , B answers a normal

ciphertext C−→
X

= s(ε1(
n
∑

i=1

xibi) + αb2n+1 + ε2b2n+3) computed by s and ̂B.

(3) A issues the ν-th trapdoor query on the query vector
−→
Y = {y1, . . . , yn}, B

answers query ciphertext according to the following rules.

If 1 ≤ v ≤ k − 1, B creates a semi-functional trapdoor for
−→
Y = {y1, . . . , yn}

by using s and B∗.
If v > k, B answers a normal trapdoor by using s and B∗.

If v = k, B calculates K∗
1 = s−1(ρ(

n
∑

i=1

yih
∗
β,i) + ρ′b∗

2n+2),K
∗
2 =

s−1(θ(
n
∑

i=1

yih
∗
β,i) + η′b∗

2n+1
+ θ′b∗

2n+2), where ρ, ρ′, θ, θ′, η′ ∈ Fq uniformly at ran-

dom.

(4) Getting the challenge attribute vector (
−→
X0,

−→
X1), B selects a random bit

b ∈ {0, 1}, parses
−→
Xb = {xb

1, . . . , x
b
n}. B chooses ε2

′, α′ ∈ Fq and DID ∈
{0, 1}lt uniformly at random, computes α = FK1(FID), C−→

Xb
= r(

n
∑

i=1

xb
idi +

α′b2n+1 + ε2
′b2n+3), B sends (α,C−→

Xb
) to A.

(5) A continues to adaptively issue additional queries as in steps (2) C(3).

In fact, when β = 0, B has simulated game 4-(t-1). when β = 1, then B simulated
game 4-t.

(6) A outputs b’, if b′ = b, which means that A can distinguish game 4-(t-
1) and game 4-t, then B can decide β = 0 or 1. This means that B’s
advantage for Assumption 2 is non-negligible. This conflicts ADV Ap3

A (λ) =
ADV n−eDDH

A (λ), which has been proved in []

So game 4-(t -1) and game 4-t are computationally indistinguishable.

Lemma 5. Game 4-ϑ and game 5 are essentially equivalent.
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Proof. For convenience of proving of Lemma5, we prove distribution
({k(j)∗}i=1,...,x, {C(j)−→

X
}j=1,...,y C∗−→

X
) in game 4-ϑ and that in Game 5 are equivalent,

where x and y denote the number of ciphertext queries and trapdoor queries the
adversary issues, respectively.

Set di=bi, dn+i = bn+i−
n∑

s=1

zi,sbs−θib2n+1(i = 1, . . . , n), d2n+i = b2n+i(i =1, 2, 3),

Set D := (d1, . . . , d2n+3),D∗ := (d∗
1, . . . , d

∗
2n+3).

In the game 4-t, the trapdoor k(j)∗ for the j-th(1 ≤ j ≤ ϑ) query, the index
ciphertext C(j)−→

X
for the first j(1 ≤ j ≤ x) index, and the challenge ciphertext C∗−→

X

can be represented by B and B∗ as follows. k(j)∗ = (k(j)∗
1 , k(j)∗

2 )

K
(j)∗
1 = s−1(ρ(j)1 (

n
∑

i=1

y
(j)
i b∗

i ) +
n
∑

i=1

v
(j)
i b∗

n+i + ρ
(j)
2 b∗

2n+2)

K
(j)∗
2 = s−1(θ(j)1 (

n
∑

i=1

yib∗
i ) +

n
∑

i=1

w
(j)
i b∗

n+i + γ(j)b∗
2n+1 + θ

(j)
2 b∗

2n+2),

C(j)−→
X

= s(ε(j)1 (
n
∑

i=1

xj
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εx = ε1x
∗
t +

n
∑

i=1

uizi,t, αx = α∗ +
n
∑
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uiθi are uniformly and independently dis-

tributed.
Therefore, ({k(j)}i=1,...,y, {C(j)−→

X
}j=1,...,x,C∗−→

X
) can be represented as trapdoor

and index ciphertext with two methods, in Game 4-ϑ over bases B,B∗) in Game
5 over bases D,D∗). Thus, Game 4-ϑ can be conceptually changed to Game 5.

In conclusion, if the function is paseudorandom function and the advantages
for Assumptions 2 and 3 are negligible, the index privacy game and game 5
are computationally indistinguishable. Moreover, any PPT adversary has no
advantage for game 5. At this point, Theorem1 is proved.

Index privacy game game 0: it is the origal query privacy game between the
challenger B and the adaversary A. We describe the original query privacy game
can be described by the similar method with the original index privacy game.

Theorem 2. If the advantages for Assumptions 4 and 5 are negligible, then the
proposed scheme is adaptively query-hiding against CPA.

The proof ofthe Theorem 2 is similar to the proof of the Theorem1.

Appendix A.3 The Proof of Unforgeability of the Results

Theorem 3. The proposed scheme achieves unforgeability of the results.
Aftering receiving the trapdoor TD−→

Y
= (K∗

1 ,K∗
2 ), the cloud server searches

all the encrypted index and sends ((α1, pf1), (α2, pf2), . . .) to the user, where
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2) = e(g, g)αiγ , here αi = FK1(DIDi), γ = γ1, . . . , γd, γi =

FK2(KIDi) Otherwise, pfi are uniformly and independently distributed in GT .
So, If

−→
Xi doesnt matchs with

−→
Y = (y1, . . . , yn), the probability that an adversary

outputs pfi = e(g, g)αiγ is negligible. So, we prove that the proposed scheme
achieves unforgeability of the results.
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Abstract. With the development of the Internet, the content types of
the network traffic become more and more diverse, including video, news,
music, image and so on. Traffic identification plays an important role in
network management, security defense and performance optimization.
Traditionally, the network traffic analysis focuses on the protocol iden-
tification and application classification, which has been well studied in
the past two decades. However, as a large number of existing general
protocols and legal applications can be abused to hide and transmit the
data of different content types, illegal content may penetrate the traffic
analysis system, and lead to inefficient network management and cause
potential risks for internal networks. Different from the traditional work
on the identification of the protocols or applications, in this paper, we
propose a new method for recognizing the content types for the network
traffic. The proposed method is based on two technologies including the
wavelet transform and CNN. The wavelet transform is exploited to pro-
cess the time-frequency signals of the observed network traffic that is
further classified by the CNN. Experiment results are presented to vali-
date the performance of the proposed scheme.

Keywords: Content recognition · Network traffic ·
Wavelet transform · CNN

1 Introduction

Network traffic analysis is generally regarded as the classification of network
traffic or the identification of network application in the past few decades. This
area is fundamental to modern network management, security systems and the
environments for cloud computing [1].

To handle network traffic classification or identification, several traditional
methods have been applied including the port-based predication method and the
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payload-based prediction method. The port-based method exploits the relation-
ship between the network application and the transport-layer ports registered at
Internet Assigned Numbers Authority (IANA). Although this method is efficient
and simple, it becomes more and more inaccurate recently due to the dynamic
ports applied by more applications, and at the same time, this method is exposed
to the risk of being maliciously exploited by criminals. The payload-based meth-
ods which are also known as Deep Packet Inspection (DPI) solve the risk to some
extent. These methods first extract information from the packets of the network
traffic, including port, IP address and the information of the application layer,
and then the applications or protocols can be identified by the signatures in the
payload [2]. However, the methods require the upgrade of application signatures
over time, and cannot be used in the classification of encrypted applications.
These problems hinder the further applying of the payload-based method. Due
to the limitation of the port-based and payload-based methods, the statistics-
based methods attract more attention, which use the statistical information of
packets to identify applications [3]. However, the success of the statistics-based
method highly depends on the handcrafted features driven by the domain-expert.
The analyses of network traffic have been promoted by these work greatly. But
there are also some problems expected to be solved. For example, most previous
studies assume that one type of services or content is only related to one applica-
tion or protocol. Starting from this assumption, if the applications or protocols
are identified, the content or service can be identified. But unfortunately the
assumption is not always true at all time in reality, the reason is that the infor-
mation is encapsulated for delivery in modern network. That means different
types of content or services may be delivered through the same application or
protocol. For instance, in the Web, the HTTP or HTTPs can be used to deliver
many different types of content or services, such as video, image, music, news
and so on. And many applications can accept or deliver different types of content
or services. Obviously, only identifying the application or protocol for the net-
work traffic is not enough for more efficient network management and enhancing
network security.

To tackle this potential risk and provide another perspective for network man-
agement, instead of studying the identification of applications and protocols, we
propose a new method to recognize the types of the content or services in this
paper. The proposed method is inspired by the different time-varying character-
istics for the different network traffic of different content types. More specifically
the content type of the traffic impacts the inherent mode and attributes of the
traffic to some extent, therefore, some properties of the unobservable content
can be reflected by the time-varying characteristics of the traffic. Based on the
above ideas, we propose to integrate the Wavelet transform [4] and the CNN to
identifying the content type of the network traffic. The wavelet has been applied
in many areas requiring signal processing successfully [5,6]. In their work, the
wavelet is exploited to extract the feature from the analysed signal, and features
are utilized for classification or identification. These methods use the wavelet to
detect the changes in the spectral components of the corresponding signals and
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extract the features. In the field of signal processing, the Fourier transform (FT)
is widely applied. However, it is known that the Fourier transform is not suitable
for extracting both time domain and frequency domain features simultaneously.
In addition, the FT is better at analyzing stationary signals, but the signals
above are generally nonstationary. These signals mentioned above generally con-
sist of brief high-frequency components closely spaced in time, accompanied by
long lasting, low-frequency components closely spaced in frequency. The wavelet
methods are considered more appropriate for analyzing such signals than the FT.
As for the network traffic, obviously the traffic is usually nonstationary. In our
method, we preprocess the network traffic, and generate the virtual signal cor-
responding to the traffic. Then the virtual signals are processed by the wavelet
transform to extract time-frequency information. Finally, the CNN is applied
to grasp the relationship between the time-frequency information obtained by
processing the time-varying traffic, so we can identify the content types of the
network traffic.

The rest of the paper is organized as follows. Related works are reviewed in
Sect. 2. In Sect. 3 the rationale and implementation of our method are presented.
Section 4 presents the experiments and the result. Finally, Sect. 5 concludes the
paper.

2 Related Work

In the past several decades, there are many methods proposed to deal with the
internet traffic classification, including port-based methods, payload-based meth-
ods and statistics-based methods [7]. The port-based methods become inaccurate
gradually. There are several reasons, first of all, lots of applications begin to use
the same specific protocols, such as HTTP which is used by many types of traf-
fic, the next is that more and more applications start to avoid using well known
ports along with the use of dynamic ports [8]. The payload-based methods well
known as DPI also attract many researchers’ attention [9]. The sticking points
of these methods are the application signature and the packet payload. Bujlow
et al. [9], the author indicates that DPI is traditionally regarded as the most
accurate technique for the network traffic classification, and they compare six
DPI-based tools for different scenes. The HTTP application traffic produced by
the Web is identified for the hybrid HTTP/non-HTTP traffic, and the informa-
tion of HTTP header like content-type is exploited to identify applications [10].
The payload information is also used in [11] to identify the content types, includ-
ing Text, Picture, Audio, Video, Compressed and so on. The method does not
use the port number, but it has to resort to the payload of any packet of the
traffic. So it is also faced with some trouble. For example, the payload methods
cannot be applied to the identification of encrypted traffic. Furthermore, because
the method has to exploit the information in the payload, privacy issues cannot
be ignored [12].

The statistics-based methods are generally used in conjunction with Machine
Learning algorithms. These methods exploit packet and flow level characteris-
tics, which also extract a vector of features to describe the flow. Moore et al. [8]
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indicate that the accuracy of the traditional method based on flow classification
is low. They use a Naive Bayesian estimator to classify flows, more specifically,
the training data used in their method is manually classified according to the
content of the traffic, and then the labeled feature vectors can be input into a
supervised Naive Bayes classifier. The Bayesian classifier they used is improved.
Combining with the kernel density estimation theory, they break the Gaussian
assumption, and with the help of Fast Correlation-Based Filter (FCBF) [13],
the dimensionality of the features is reduced. Zhang and Chen [14] combine
K-means with Random Forest to tackle the problem of zero-day applications
with sufficient accuracy. Logistic regression is used to classify the network traffic
in [15], and they try to use a non-convex Capped-�1, �1 as the regularizer to
learn a set of shared features in traffic data. In order to handle the problem of
unknown applications, a bag-of-words is introduced to represent the content of
clusters which is built by the statistics-based features in [16], Based on their
payload content, similar traffic clusters are aggregated by the latent semantic
analysis. Wang et al. [17] suggest that the quality for only applying clustering
algorithms such as K-means and EM for the task is far from satisfaction. There-
fore, more researchers begin to focus on combining unlabeled traffic with labeled
traffic or correction information. Kumar et al. [18] propose a new method based
on multiple trained cluster models. This method is a semi-supervised clustering
based on multi-training clustering models. They use multiple sets of the traffic
attributes to train many models simultaneously, and then select a group of selec-
tion strategies for classification considering all the output of each model. In order
to improve the performance for the small size of training data, Zhang et al. [19]
propose a semi-supervised framework incorporating correlated information into
the classification process through the bag-of-flow model.

Recently, some approaches based on deep learning (DL) have appeared. Shi
et al. [20] focus on choosing the optimal and the most steady features for the
traffic classification. This approach is based on deep learning (DL) and feature
selection. With the help of deep learning, the high dimension and non-uniformity
of the flow can be well handled. Wang et al. [12] used a CNN-based represen-
tation method to identify malicious traffic. Representation learning methods
make it possible to learn features automatically from the raw data. It can help
solve the problem of extracting features manually. The method takes each byte
of the binary traffic file as a pixel image, and then inputs the data into CNN
for classification. Lotfollahi et al. [21] propose applying Deep Packet scheme to
describe and identify network traffic. This method uses deep learning architec-
ture, such as Auto-encoders which is a widely used in feature extracting and
1D-CNN which can catch the relationships of the adjacent traffic bytes. This
approach can not only identify unencrypted network traffic but also encrypted
traffic. Lopez-Martin et al. [22] propose a method to classify network traffic by
combining RNN and CNN. They take advantage of features extracted from the
packet in the flow life time, and then a time series of the feature vectors is
built for each flow. After labeling each flow, the data can be learned. They use
LSTM which is a variant model of RNN and easier to train. They view the time
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series of the feature vectors as images, the data preprocessed by the CNNs can
be input into the LSTM. They discuss the architecture obtained by combining
RNN and CNN and the impact of the packets studied in the flow on the result.
The method based on deep learning (DL) is also used for the mobile encrypted
traffic classification in [23]. They compare different DL techniques in the mobile
traffic classification scenario, from the viewpoint of Traffic view, Types of Input
data, DL architecture, and the set of performance measures.

Overall, the above studies have improved the performance of the network
traffic classification, but the problems still exist. The statistics-based methods
identify the network traffic according to the statistic information extracted from
the traffic. However the information related to the time characteristics is gener-
ally ignored, so do some of existing methods based on DL, and the computational
complexity of some DL methods is high. Moreover, the content types of the net-
work traffic are rarely researched. Those may prevent the further improvement
in performance for the network traffic classification and network management.
In this paper, we combine the Wavelet transform with the CNN to handle the
problem for the identification of content types.

3 Proposed Method

3.1 Rationale

In this section, we introduce the proposed scheme used in this paper. During
the data transmission, the content type of communication data is one of the
important factors driving and determining the mode of network transmissions
and characteristics of network traffic. Therefore, the characteristics of the net-
work traffic can reversely reveal the communication data of the specific content
type. From the perspective of the network layer (IP layer), communication data
of different content types present different transferring characteristics. And the
transferring characteristics are embodied in the IP traffic. If the different content
type data can be represented by the transferring characteristics of the IP traffic,
the content type of the traffic can be identified by identifying the IP traffic. Since
the collected data packets of IP traffic have the nature of the time series and
time series can be regarded as a virtual signal triggered by the data of the traffic,
so we intend to extract features of the triggered virtual signal and distinguish
the IP traffic by exploiting the signal processing method. In the processing, we
extract frequency-domain features of the signal and preserve the time-domain
features simultaneously. The time-frequency features are exploited to depict the
network traffic formed by different content type data. Eventually, the features of
signals are grasped with the help of learning algorithms, and the virtual signal
obtained from the unknown content type can be identified.

As shown in Fig. 1, two kinds of square blocks represent the IP packet includ-
ing the direction information, where the pure black square block indicates the
upstream packet and another indicates the downstream packet respectively. The
two kinds of packets form the time series of the network traffic. In the pre-
processing stage, we construct an abstractly generalized representation of the
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Fig. 1. The proposed classification structure.

IP traffic of a specific content type by processing the original time series with
the window. The data processed in different windows triggers various signals.
Therefore, the time series processed with the window can be regarded as the
process of data triggering signals, and the network traffic of different content
types can be classified according to the signals triggered by the data. Generally,
to classify or identify signals, we have to process the signals first to obtain the fea-
tures (frequency-domain features or time-domain features) that can characterize
the signals. Traditionally, only the frequency-domain features of the signals are
extracted, which results in the loss of the time-domain information. In order to
extract the features of the frequency and time domain simultaneously, we exploit
the Wavelet transform to process the signal obtained. Compared with the tradi-
tional signal processing methods (FT or STFT), the Wavelet transform also has
much more advantages in frequency resolution and time resolution. The time-
frequency information of the signal processed with the Wavelet transform can
well describe the characteristics related with the signal, and we can identify the
traffic of the unknown content according to the time-frequency information of the
signal obtained. Considering that the representation of the time-frequency infor-
mation is represented by the wavelet coefficients and the adjacent coefficients are
correlated, that promotes us to think of the time-frequency information as image
information and to identify signals by image recognition methods. Therefore, we
intend to exploit the convolutional neural network (CNN) to identify the image
obtained from the time-frequency information to achieve signal recognition. The
main idea behind this approach is that data of different content types trigger
different signals with various signal characteristics. Therefore, the characteris-
tics of signals can be grasped by learning algorithms, and the content type of
invisible instance can be correctly identified.

3.2 Formulation

On the basis of the above considerations, we can set C = {1,...,|C|} as the
content type of the network traffic captured from the Internet. We also set
Sc = {Sc

1, . . . , S
c
Nc

} as the network traffic packet size time series of the type
c ∈ C traffic, and Nc is the number of packets for type c. The direction of the
packet is given by Dc. And we set a non-overlapping window W1 to preprocess
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the IP traffic time series, and we obtain the average packet size for each win-
dow, which is given by Sc,W1

i , i ∈ (1, n), where n is equal to the integer part of
Nc/W1.

For W1 packets in a window, we count the number of upstream packets
and downstream packets, recorded as uc

i and dc
i respectively, for the type c ∈ C

traffic, and i ∈ (1, n). Moreover, we calculate the ratio of dc
i and uc

i as qc,W1
i , and

when uc
i = 0, it should be considered alone. (S∗)c,W1

i is given after the Sc,W1
i

zoomed in or out by the qc,W1
i for each window. To balance the complexity

and performance, another window W2 is set to obtain the sub-sequence of the
full traffic time series. Then (S∗)c,W1

W2 can be got. For the data in W2, they
trigger various signals, and (S∗)c,W1

W2 can be input into the CWT as a signal.
The coefficients of the scale M and time s can be obtained and given by

Wψ
S∗(τ,M) =

1
√|M |

∫
(S∗)c,W1

W2 ψ∗
(

s − τ

M

)
ds (1)

Finally, the wavelet coefficient matrixes for the type c network traffic can be
represented by (M × W2)c.

3.3 Algorithms

Considering a specific traffic with the content type c, the direction of the packet
is given by

Dc =
{

1
−1 (2)

where if the network traffic packet is upstream, we set Dc = 1, and if down-
stream, we set Dc = −1. The average packet size for the i-th window and type
c is given by

Sc,W1
i =

∑(i+1)∗W1
k=i∗W1+1 Sc

k

W1
, i ∈ (1, n), c ∈ C (3)

and we can obtain Sc,W1 = {Sc,W1
1 , . . . , Sc,W1

n }, where n is equal to the integer
part of Nc/W1. The ratio of uc

i and dc
i is given by

qc,W1
i =

{
dc
i

uc
i
, for uc

i �= 0.

dc
i , for uc

i = 0.
, i ∈ (1, n), c ∈ C (4)

when uc
i = 0, we set qc,W1

i = dc
i , which can describe the upstream and down-

stream situation in the window approximately. After that, we obtain Qc,W1 =
{qc,W1

1 , . . . , qc,W1
n }. Finally, we let

(S∗)c,W1
i = Sc,W1

i × qc,W1
i , i ∈ (1, n), c ∈ C (5)

And we get the time series (S∗)c,W1 = {(S∗)c,W1
1 , . . . , (S∗)c,W1

n }, which can also
be regarded as the time series signal and the time series obtained is processed
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by the Wavelet transform. As mentioned before, for the full network traffic, n
is relatively big, which makes it hard to learn the parameters. Thus we intend
to consider the sub-sequence of the time series in order to achieve the balance
between the complexity and performance without losing much accuracy. So we
set another overlapping window W2 to deal with (S∗)c,W1. The moving step
of the window is 2. Then, the sub-sequence is input into the CWT with the
Biorthogonal basic function. The coefficient matrix P c = (M × W2)c for type c
can be obtained as

P c =

⎡

⎢⎢⎢
⎢
⎣

Wψ
S∗(τ,M)c

1,1 Wψ
S∗(τ,M)c

1,2 · · · Wψ
S∗(τ,M)c

1,W2

Wψ
S∗(τ,M)c

2,1 Wψ
S∗(τ,M)c

2,2 · · · Wψ
S∗(τ,M)c

2,W2
...

...
. . .

...
Wψ

S∗(τ,M)c
M,1 Wψ

S∗(τ,M)c
1,2 · · · Wψ

S∗(τ,M)c
M,W2

⎤

⎥⎥⎥
⎥
⎦

(6)

where the M and W2 is the scale and the window applied. After the Wavelet
transform under M scale, many M ×W2 matrixes about the wavelet coefficients
are obtained. The correlation of the adjacent wavelet coefficients inspires us
to regard the matrixes as images. Therefore, the matrixes obtained above are
normalized and given by

P c
j,k =

(
Wψ

S∗(τ,M)c
j,k − min(Wψ

S∗(τ,M)c
j,:)

max(Wψ
S∗(τ,M)c

j,:)) − min(Wψ
S∗(τ,M)c

j,:)

)

M×W2

, c ∈ C (7)

and j ∈ (1,M), k ∈ (1,W2). Finally, the matrixes are set to 0˜255 by P c,k
c =

P c,k × 255. According to our analyses in Sect. 3.1, the final matrixes can be
regarded as the gray images. Then they can be identified by the CNN, which
has been applied in image recognition maturely.

3.4 Implementation

The proposed method can be applied in many network locations in reality, such
as backbone links, and server-side. The framework of the implementation is
shown in Fig. 2 in detail. It can be described in three parts: data preprocessing,
Wavelet transform, training and recognition.

Firstly, from the network traffic, we extract the IP packet size and obtain
the IP traffic time series of packet size. Then the data preprocessing module
divides the time series with the fixed non-overlapping window size and step. The
average packet size of the window is further zoomed in and out with qc,W1

i . The
time series (S∗)c,W1 can be obtained, and then it is divided with fixed window
size W2 and step 2. After that, the sub time series which can be seen as a
virtual signal can be obtained, the Wavelet transform is applied to the signal,
which helps us get the time-frequency information. After normalizing, the image
obtained is mapped to the content type, and all images of each content type are
labeled.

Secondly, as long as the labeled training dataset is prepared, they are applied
to train the CNN. The CNN is trained with the SGD, which makes the training
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Wavelet Transform(WT)

Normalized to  0~255

Input Convolution Max pooling FC layers Softmax layer

Classification

M:the scale of the WT

N:the subscript of Ts

Preprocessed traffic signal

Preprocessing traffic time 
series

Fig. 2. The framework for implementation.

procedure converge faster and better. The CNN includes two convolutional layers
and two pooling layers, and the output of the last pooling layer is input into Full-
connection layer. Finally the softmax layer is combined with layers above.

Thirdly, after the model has been trained, the parameters of CNN have been
learned. The testing dataset obtained after the data preprocessing is further
classified by the CNN.

4 Experiment

We conduct experiments to evaluate the performance of the proposed method
based on the real dataset of the network traffic.

4.1 Dataset Description

The network traffic used in this experiment is generated by the Web based on
HTTP or HTTPs. It is made up with six most popular content types shown
in Table 1, including video, image, music, news, trading, and live video traffic.
The video traffic is captured from the online movie. The images come from
the browsing images process on the Web. The music consists of the playing of
many songs. The news is collected when we read the news online. The trading is
captured when browsing the information of products. Different from the video,
the live video traffic is the most popular content type recently, and it comes from
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the real-time live broadcast room online. In the following experiment, we consider
both directions of the traffic. And we filter out those packets with the same
3-tuple (server IP address, Sever port, Protocol) that are relatively unrelated
with the traffic. For each training dataset and testing dataset, we disrupt them
when we train or test the model. All the experiment run on a general computer
configured with Intel Core i7 CPU at 3.60 GHz and 32G RAM.

Table 1. Composition of the dataset

Content types Number of packets

Video 20646

Image 192879

Music 2015891

News 44372

Trading 567507

Live video 296122

4.2 The Signal Feature

For packets of the window W1, we consider the packet size and the number of
upstream and downstream packets. We do not apply more information, because
the information can achieve the desired recognition performance. However, we
focus on the selection of the window W1 and W2. The best combination of W1
and W2 is determined in this Section.

In the data preprocessing part, we exploit the Wavelet transform to process
(S∗)c,W1 which are regarded as virtual signals. With the help of signal processing
method, the time-frequency information of signals is obtained simultaneously,
which helps correlate the signals with the content types. Other features of the
packets may be studied in future work to further improve the performance.

4.3 Evaluation Metrics

We apply Accuracy and Kappa coefficient to evaluate the overall performance
of a classifier, and use the Precision and Recall to evaluate the performance of
each class traffic. The Kappa coefficient is statistic which measures the inter-
rater agreement for categories. The definitions of the above metrics are shown
in Eqs. (8)–(11).

Accuracy =
∑|C|

c=1 TPc
∑|C|

c=1(TPc + FNc)
(8)

Precisionc =
TPc

TPc + FPc
(9)
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Recallc =
TPc

TPc + FNc
(10)

Kappa =
Accuracy − pe

1 − pe
(11)

where pe is given by pe = (
∑|C|

c=1 ac × bc)/(|C| × |C|), and ac represents the
number of real samples of the c-th class, bc represents the number of samples
belonging to the c-th class.

4.4 Parameters Configuration

In addition to the CNN parameter learned, there are some parameters that
cannot be obtained by learning, such as the window W1 and W2. Here we analyze
the value via experiments. In Table 2, we show the classification accuracy of CNN
for various parameter combinations of (W1,W2). Five experiments conducted
in each case are averaged.

Table 2. The Accuracy for different combination of W1 and W2

(%) W1 = 1 W1 = 4 W1 = 8 W1 = 12 W1 = 16

W2 = 100 67.8 76.7 84.4 86.6 87.4

W2 = 200 89.3 91.8 91 91.8 90.9

W2 = 300 91.7 95.6 92.5 96.6 93.4

W2 = 400 89.3 97.1 94.8 94 97.3

W2 = 500 94.4 97.4 93.2 95.6 99.5

The result shows that the size of window W1 and W2 may be helpful for
making the classification accuracy better. Figure 3 indicates the basics of our
selection of W1 and W2. Although the best selection is to set W1 = 16 and
W2 = 500, the gray image size is 100 × 500 and the computing complexity is
very high. From Fig. 3(a), we can see that increasing W1 form 1 to 4 improves
the performance a lot, and from Fig. 3(b), we see that increasing W2 form 100
to 300 also makes the result better.

In order to study the impact of W1 and W2 on the performance, we calculate
the accuracy increment in consideration of the windows. In Table 2, we obtain
the Accuracy matrix. Therefore, the accuracy increment along with W1 for each
W2 and the accuracy increment along with W2 for each W1 are given as follows:

IncrementW1 =
Accuracyi(j+1) − Accuracyij

4 × j
, i ∈ (1, 5), j ∈ (1, 4) (12)

IncrementW2 =
Accuracy(i+1)j − Accuracyij

i + 1
, i ∈ (1, 4), j ∈ (1, 5) (13)
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where i represents the selection of W2, and j represents the selection of W1,
e.g. i = 1 and j = 1 represent W2 = 100 and W1 = 1, and so on. In Fig. 5, we
give the trend of the accuracy increment for each case. Obviously, we can see
that setting W1 = 4 leads to surprising performance improvement in Fig. 5(a).
In Fig. 5(b), setting W2 = 200 or W2 = 300 both improve the performance, but
the performance under W2 = 200 is not satisfactory.
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Fig. 3. The Accuracy change.
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Fig. 4. The Precision and Recall for each content type with W2 = 300.

Therefore, to balance the data size required, complexity and performance, we
let W1 = 4 and W2 = 300. In that scenario, we get a better result without losing
too much accuracy. In Fig. 6(a), we also evaluate the Kappa coefficient. When we
set W1 = 4 and W2 = 300, the Kappa coefficient is 0.943, where we can judge
that the result of the classification is almost perfect agreement [24]. Figure. 6(b)
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Fig. 5. The Accuracy increment after adjustment.
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Fig. 6. Comprehensive evaluation of the performance.

shows the confusion matrix of the selected combination. It is apparent that the
false prediction is relatively rare. The false prediction is concentrated in the
News class, and that meets the common knowledge that News usually contains
many types of content. The precision and recall for each content type with each
value of W1 are also given in Fig. 4, which further proves the result.

In Fig. 6(c), we compare the classifiers widely used in classification. Since
the two-dimensional information obtained after the Wavelet transform cannot
be applied to those classifiers directly except ours, the feature vector is built to
describe the two-dimensional information. The features applied are some specific
sequence statistics such as the mean and variance of the sequence after process-
ing the data with the wavelet. The features chosen have reached the best result.
The result shows that: (i) the CNN can better handle the sequence after pro-
cessing the data with the wavelet. (ii) the CNN classifier performs more stable
performance than others, which promotes us to do further researches using this
scheme.
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5 Conclusion

In this paper, we propose a new method to recognize the types of content for
the network traffic. We regard the packets of the network traffic as the signal,
which makes the method almost unrelated with the TCP port number and the
protocol of the application layer. That suggests that the method can be applied
to the encrypted and unencrypted traffic at the same moment. In our work,
we introduce the Wavelet transform to process the network traffic signal, which
can reserve the characteristics of the time-varying signal. The time-frequency
information of the signal can be obtained simultaneously. Considering the corre-
lation of the adjacent elements’ information obtained from the traffic, we decide
to exploit the CNN to learn the relationship of the time-frequency informa-
tion. The time-frequency information matrixes are regarded as the gray images,
which can be input into the CNN experting in image recognition. The accuracy
of multi-classification classifier reaches 95.8% fully considering the data size and
complexity. The Kappa coefficient is 0.943, which shows the result of the classi-
fication is almost a perfect agreement. Although, the previous work has proved
the feasibility of the proposed method, we notice that there exist some disadvan-
tages, e.g. the data size required. For further research, we intend to introduce
more information of the packet such as the packet inter-arrival time, which allows
us to use multiple channels CNN for making up for the disadvantages.
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Abstract. Inter-component communication (ICC) is commonly used in
Android for information exchange among different components/apps.
However, it also brings severe challenges to information flow security.
When data is transferred and processed, the diversity of different secu-
rity mechanisms in various apps make data more vulnerable to leak-
age. Although there are several analysis approaches on security verifi-
cation on inter-component information flow, repetitive verification on
the same component during complex interactions increases the over-
head, which would affect task execution efficiency and consume more
energy. Therefore, we propose a compositional information flow security
verification approach, which improves efficiency by separating the intra-
app and inter-app analysis and verification process. The experiment and
analysis show that our method is more effective than traditional global
approaches.

Keywords: Android system · Information flow model ·
Inter-Component Communication · Compositional verification

1 Introduction

The current android operating system allows users to run many applications
developed by third-party independent developers, which are available in android
app markets. In addition, multiple applications can communicate and exchange
data by inter-component communication (ICC). ICC is the key mechanism of
communication between applications in android, which enriches the functions of
android applications, such as WeChat, which can access health data for ranking.
Unfortunately, while ICC enhances user functionality, it can be exploited by
malicious software to threaten user privacy. Indeed, researchers have shown that
android apps frequently collect and use users’ private data without their prior
consent [17].

When applications communicate with each other, it is more prone to data
leakage [1,3]. Existing information flow analysis methods mainly include static
analysis, dynamic analysis and machine learning analysis. In addition, there are
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some methods that combine the previous methods, such as hybrid (combining
dynamic and static) analysis methods.

The static analysis method decompile the .APK file of each app, and then
perform static taint analysis on the decompiled code to find out the data leakage
path, such as flowDroid [4], IIFDroid [8], DroidSate [10], DroidGuard [14] and
so on. They can analyze all the application’s resources or codes to achieve high
coverage on code. However, they lack an actual execution path and face critical
challenges in the presence of code obfuscation [22], loading dynamic code [15],
reflection calls [23], native code [24], and multithreading issues. The dynamic
analysis method detects the privacy leakage within an application by executing
the application in a real or virtual device, such as Mobile-sandbox [16], Taint-
Droid [6] and ScanDroid [12]. They can observe actual execution trace and tackle
code obfuscation and dynamic code loading. However, code coverage is limited
by dynamic analysis methods because it cannot execute all possible traces in
one time. As a result, the private data leakage vulnerabilities which exist in
the uncovered codes will be missed. Moreover, current malware can recognize
dynamic monitors as the analyzed app executes, causing the app to pose as a
benign program in these situations [25]. In order to solve the challenges of static
analysis and dynamic analysis, some hybrid solutions are proposed. For exam-
ple, HybriDroid [9] present a novel hybrid approach aims to automatically find
privacy leakages in a given app set.

In addition, in recent years, with the development of artificial intelligence
algorithms, it has become a trend to combine information flow analysis with arti-
ficial intelligence. Machine learning is a branch of artificial intelligence mainly
treating information flow analysis as a classification problem. By analyzing the
differences in features between benign applications and malicious applications,
the features with statistical differences are selected, and then trained to classify
[26–31]. In the feature extraction stage, static analysis method is generally used
to extract features. [32] makes use of the similarity analysis of android appli-
cation features of multiple dimensions to obtain the relevant rules of multiple
dimensions of android application. [33] automatically learns security/privacy-
related behaviors by analyzing user comments based on machine learning. In
order to extract API data dependencies, [34] conducts context-sensitive, flow-
sensitive and inter-process data flow analysis. [35] proposes a semantic-based
feature extraction and detection method for malicious code, which extracts the
key behaviors of malicious code and the dependencies between behaviors. The
advantages of machine learning analysis are low implementation overhead and
simple operation. The disadvantage is that it is influenced by the difference of
training applications and the selection of characteristics. Besides, the current
machine learning approach does not support analysis of inter-apps.

Most above analysis methods can be used for the analysis on the information
flow within a single component or application. In addition, many researches
are proposed for information flow analysis on the inter-communication between
different components [2,7,11,18,19]. IccTA [2] combines multiple applications
into one and performs intra-app analysis on the combined one. Covert [7] is
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a tool for analyzing vulnerabilities across applications that allows incremental
analysis of applications while they are being installed, updated, or deleted. MR-
Droid [19] empirically assesses ICC risks and tests for high-risk pairs. However,
most of these approaches works in a global way, in which they analyze the flows
across multiple components by modeling them as one combined entity. In other
words, the whole model must be remodeled even if there is a little change on
one component. And it would cost many efforts but with little benefits. Besides,
flows in the unchanged component or application will be reverified during the
analysis, which causes the additional verification load on mobile devices.

In order to reduce the overhead of verifying compositional information flow
security, this paper presents a compositional approach to automatically verify
security of information flow across multiple components or applications. This
paper presents the following original contributions:

(1) We define a formal model on individual application and sequential composite
applications combined by inter-component communication for information
flow analysis.

(2) We make the formal security constraints on information flow for each par-
ticipant across multiple applications.

(3) We propose a compositional information flow verification approaches for
secure inter-app communication among applications in android.

The rest of the paper is structured as follows. Section 2 presents the moti-
vation examples for this study. Sections 3 and 4 defines the formal models and
propose a security theorem for compositional information flow which verify with
the verification framework in Sect. 5. Section 6 evaluates our methodology and
Sect. 7 is conclusion.

2 Motivating Example

To illustrate our approach, we provide a concrete example of information trans-
mission among different android’s apps through Inter-Component Communi-
cation (ICC). Android provides a flexible application level message known as
Intent for communications between components. The example includes three
apps. App1 contains GetDataActivity which obtains the user’s sensitive data
such as phone number, e-health record and so on, which is shown in LIST1.
App2 contains ForwardActivity, which receives sensitive data (user’s movement
steps) from intent message MSteps and forwarding it to App3 by intent message
Fsteps1. App2 is shown in LIST2. App3 contains ReceiveDataActivity which is
responsible for receiving intent message and sends the data to a remote server
which can exploit it at will.

LIST 1 : App1: send an intent to transmit data

1 public class GetDataActivity extends AppCompatActivity {

2 protected void onCreate(Bundle savedInstanceState) {

3 ...
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4 sp = getSharedPreferences("User", Context.MODE_WORLD_READABLE);

5 SharedPreferences.Editor edit = sp.edit();

6 edit.putString("Value",meditText1.getText().toString().trim());

7 edit.commit();

8 String value = sp.getString("Value","Null");

9 ...

10 Intent MSteps = new Intent();

11 Bundle bundle = new Bundle();

12 MSteps.setAction("com.example.second");

13 bundle.putString("params3", value);

14 MSteps.putExtra("bundle", bundle);

15 startActivity(MSteps);

16 }

17 }

LIST 2:App2: receive an intent and send an intent to transmit data

1 public class ForwardActivity extends AppCompatActivity {

2 protected void onCreate(Bundle savedInstanceState) {

3 ...

4 final Intent Rsteps1 = getIntent();//source

5
6 button.setOnClickListener(new View.OnClickListener() {

7 public void onClick(View v) {

8 ...

9 Intent Fsteps1 = new Intent();

10 Bundle bundle1 = new Bundle();

11 Fsteps1.setAction("com.example.three");

12 String value1 = text.getText().toString();

13 bundle1.putString("para",value1);

14 Fsteps1.putExtra("bundle",bundle1);

15 Fsteps1.putExtra("para",value1);

16 startActivity(Fsteps1);//sink

17 });

18 }

Listing 3: App3: receives an intent

1 public class ThreeActivity extends AppCompatActivity {

2 protected void onCreate(Bundle savedInstanceState) {

3 ...

4 final Intent Rsteps2 =getIntent(); //source

5 Bundle bundle = intent.getBundleExtra("bundle");

6 final String value = bundle.getString("para");

7 text.setText(value);

8 ...

9 }

10 }

More specifically, from line 4 to line 9 in LIST 1, GetDataActivity edits a
e-health record and stores it in SharedPreferences which is a lightweight storage
class on the Android platform. From line 10 to line 15, GetDataActivity sets the
action of Intent, then gets the stored e-health data and subsequently sends it to
ForwardActivity through an Intent message. The Intent filter which is defined
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in the Manifest file of App2 is responsible for receiving this Intent message and
handle it. Likewise, ForwardActivity gets an Intent and receives users movement
step data of the message from GetDataActivity (On line 4 in App2). From line
9 to 16, ForwardActivity sets the type of Intent and sends an Intent message to
ReceiveDataActivity. In ReceiveDataActivity, it gets the Intent message and
receives the data.

In this example, if App3 is malicious software or is monitored by an attacker,
the sensitive data in App1 may be leaked to the attacker even though the infor-
mation flow is secure in App1 and App2.

3 Android Application Model

In Android system, an application is composed by components which are
described in a special file called Manifest. There are four kinds of components,
i.e., activity, service, content provider and broadcast receiver. Activities con-
struct user interface of an app. Each app may have multiple activities repre-
senting different screens of the application to the user. Services do not have
user interface but perform time-consuming tasks in the background. Content
providers act analogous to a database and provide access to a constructed set of
data. Broadcast receivers listen to global events.

Referring to the android application model described in [7], an app model
can be formally defined as follows.

Definition 1. A model for an android app is a tuple Ai = <Ci, Ii, IFi,
Seci> 1 ≤ i ≤ n, where

Ci is a set of components represent as Ci = { c1, c2, . . . , cm}, and each cj (j <
m) is a component of Ai. Each component contains a series of methods for
executing the required functions. We use Mi to represent the set of methods that
used in application Ai.

Ii is a set of event messages called intents that can be used for both intra-and
inter-app communications. Here we use Ini,j to represent an intent message set
from Application Ai to Application Aj where Ini,j ⊂ Ii.

IFi is a set of Intent filters. Each intent filter is attached to a component
and responsible for filtering implicit intents.

Seci is the set of security properties of all methods in Ai.

Different applications can cooperate with each other to fulfill different
user’s requirements through ICC. This paper studies a simplified type of inter-
application communications, i.e., sequential inter-application communication.
And we call these applications as sequential composite applications. Sequen-
tial composite applications is composed by a set of applications A1, A2, . . . , An

which communicates with each other in a sequential way. According to the char-
acteristics of sequential composite application, its model can be defined as follow.

Definition 2. The composite apps Ac can be represented as a tuple Ac =
<AC,CI,CIF>. where
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AC is a sequential group of apps in which each app has only one predecessor
and one successor.
CI is a collection of all intents using for communication between Ai and Ai+1.
CIF is the set of all Intent filters from all the applications used as the entry
point for the adjacent application communications.

Based on the above definition of the composite application model, the model
of the example in Sect. 2 can be extracted as Ac. AC = {App1, App2, App3},
where, App1 = <{GetDataActivity}, {Msteps}, {Interfilters}>. Each intent is
shown in bold in the code in Sect. 2. Interfilters are defined in the corresponding
application Manifest file.

4 Secure Information Model for Composite Application
in Android

4.1 Security Label Model

As a device for storing and processing data, android phone contains a lot of
sensitive information, such as e-health, contacts, and so on. According to the
different sensitivity of information, we use multi-level security model to describe
the security properties of data.

By referring to [20], security label model can be defined as a lattice (SL,≥),
where SL is a finite set of security levels that is orderly by ≥.

We define a function g : Mi → sl to represent the security level of each
method in application Ai. Based on the security label model, security property
in Ai can be represented by the security level on the methods.

4.2 Information Flow in Intra-app

For intra-app information flows, we use static analysis technique [4] to analyze
them. In one application’s component, there are source methods that are respon-
sible for accessing sensitive data such as phone numbers and sink methods that
are responsible for outputting data [5]. During the execution of the application,
data are received by different sources, processed by methods in component, and
finally outputted by different sinks, which constructs different data prorogation
paths. And we can define the information flow within an intra-app as follows.
Definition 3. The information flow of android’s app Ai can be represented as
a tuple flow = <source, sink> where, source, sink ∈ Mi.

Based on the above description, we define Flowi = {<source, sink>|
source, sink ∈ Mi, i ∈ N} as the set of all flows in Ai.

Combining with the multi-level security model, sl(source) and sl(sink) are
used to represent the security levels of sources and sinks. According to the def-
inition of non-interference [13], the security of information flow in a intra-app
can be formally defined as follows.

Definition 4. The information flows in application Ai are secure if it satisfies
that for ∀source, sink ∈ Mi, sl(source) > sl(sink), there is no existence of
information flow from source to sink, namely <source, sink> /∈ Flowi.
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4.3 Secure Information Flow in Composite Applications

Considering sequential group apps A1, A2, . . . , An, when applications communi-
cates with each other by intents, data are passed from the sink method of one
component in Ai to the source method of component in Ai+1, which forms an
inter-app information flow across multiple applications. And the following apps
Aj(j > i) may leak data despite the information flow in Ai is secure. The Fig. 1
shows the intra and inter flows in our example in Sect. 2.

Fig. 1. Composite information flow

For sequential composite application AC , the definitions of inter-app infor-
mation flow can be given as follows.

Definition 5. For ∀sourcei ∈ Mi, ∀sinkj ∈ Mj, there is a inter flow flowi,j =
<sourcei, sinkj> from Ai to Aj, if they satisfy one of the following conditions.

(1) For i = j − 1, there ∃sinki ∈ Mi, sourcej ∈ Mj that satisfy
<sinki, sourcej> ∈ Ini,j.

(2) For i 	= j − 1, ∃Ak, 1 < k < j;∃sourcek ∈ Mk,∃sinkk+1 ∈
Mk+1, and they satisfy that ∃flowi,k = <sourcei, sinkk>,∃flowk+1,j =
<sourcek+1, sinkj> and ∃<sinkk, sourcek+1> ∈ Ink,k+1.

According to the above description of the inter-app information flow, we use
Flowinter to represent the set of all inter-app information flows in the sequential
composite applications where Flowinter =

⋃
0≤i,j≤n flowi,j .

Then we can obtain the following definition on secure information flow in
composite application.
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Definition 6. The information flows in sequential composite application AC

are considered secure iff it satisfies that for each Ai ∈ AC , for ∀sourcei ∈
Mi,∀sinkj ∈ Mj(i ≤ j), there is no existence of information flow sourcei to
sinkj, namely <sourcei, sinkj> /∈ Flowi ∪ Flowinter.

Based on the composite information flow security definition above, we can
obtain the following theorem.

Theorem 1. In the security sequential combinatorial application ACs, the
information flow must satisfies following conditions.

(1) For ∀<source, sink> ∈ Flowi in Ai, there is sl(source) ≤ sl(sink).
(2) For ∀<sinki, sourcei+1> ∈ Ini,j, there is sl(sinki) ≤ sl(sourcei+1).

We can use the mathematical induction to prove the theorem by referring
to [20].

5 Compositional Information Flow Verification for
Composite Application Android System

Android inter-app communication is a basic behavior that usually occurs during
system running. For example, wechat accesses health data and makes statis-
tical ranking. The famous social software Weibo adds friends through visiting
contacts. In order to ensure the data security across multiple applications, we
propose an compositional information flow security Theorem1. According to the
Theorem 1, we can infer that for a sequential composite application, the infor-
mation flow security verification procedure includes two different phases, i.e., the
intra-flow verification and inter-flow verification.

5.1 Intra Flow Verification in Single Application

In the process of intra-flow verification, we first use the flowdroid tool [4] to
obtain the application’s sensitive information flow. Then each flow is verified
according to condition (1) in Theorem1. If the flows in the application is valid,
the certificate is generated which can be used for the inter flow verification to
avoid the repeated verification. The certificate includes all essential information
for inter flow verification, e.g., the security level on each source and sink method
and so on. The procedure for flow validation and certificate generation is shown
in Algorithm 1.

After successful verification, the generated certificate will be stored in the
database. This procedure can be executed during the application is going to be
installed on the system at the first time. And only secure ones can obtain the
certificates while the others are not allowed to be installed. The counterexample
will also be return to users.
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Algorithm 1. Intra-app verification & certificate set-up
Input: Ai =< Ci, Ii, IFi, Seci >Apk file
Output: Ce =< i, It, sl >, true, false

1: use flowdroid anaysis apk file to get the set of intra flow FlowResult
2: for each flow f ∈ FlowResult do
3: get security level sl(source) and sl(sink) from Seci
4: if (sl(source) > sl(sink)) then
5: break
6: else
7: n++
8: end if
9: end for

10: if (n < |FlowResult|) then
11: return false
12: else
13: generate the certificate Ce base on Ii, Seci
14: signature(Ce,CA)
15: return true
16: end if

5.2 Compositional Flow Verification for Inter-application
Communications

According to the condition (2) in Theorem1, the security on the inter-app flows
can be ensured by verification on the inter flows between the adjacent applica-
tions. The compositional verification algorithm is as follows.

In the compositional verification process, the certificate is obtained first and
then the adjacent application’s inter-flows are verified. If the validation is suc-
cessful, the result is returned to the user. Otherwise, return counterexample of
an insecure flow.

6 Implementation and Evaluation

This paper mainly studies the compositional application’s information flow secu-
rity verification approach. In this section, we experimentally compare the verifi-
cation time overhead of our approach with the global verification approach. Our
approach has been described in Sect. 5. The global approach first uses ApkCom-
biner [21] to combine multiple applications into one, and then use flowdroid [4]
for information flow analysis and verification. The basic experiment configura-
tion is shown in Table 1 and verification results are shown in Figs. 2 and 3. In
Table 1, the Applications number refers to the number of applications tested,
and Combined applications number refers to the number of compositional appli-
cations formed.



248 X. Rao et al.

Algorithm 2. Compositional verification approach
Input: Ai, Ai+1

Output: true, false, leakagepath

1: get Cei and Cei+1

2: for each intent in ∈ Cei · It do
3: get security level of sinki and sourcei+1 from Cei and Cei+1

4: if (sl(sinki) > sl(sourcei+1)) then
5: leakagepath =< sinki, sourcei+1 >
6: break
7: else
8: n++
9: end if

10: end for
11: if (n < |Cei · It|) then
12: output leakagepath
13: return false
14: else
15: return true
16: end if

Table 1. Basic configuration

General

Testing tools ApkCombiner, Flowdroid, Our approach

Application

Applications form apk files

Applications number 3, 6, 9, 12, 15, 18

Combined applications number 1, 8, 27, 64, 125, 216

Inter-app communications number 1, 2, 3, 4, 5, 6, 7

Figures 2 and 3 show that the verification time of the global method is much
higher than that of our approach. The reason is that when the communication
among different applications changes, the global approach needs to reverify all
the flows in the whole composite application. On the contrary, our approach
only needs to verify the relevant inter flows between the applications according
to certificate, which saves lots of costs on the reverification on intra flows in
the same application. Besides, our compositional verification algorithm is easy
to extend. With the increasing number of steps n, we only need to verify the
additional flows between An and An+1 to ensure the security of the composite
application.
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Fig. 2. The verification time increases with the inter-app communication number

Fig. 3. Verification time increases with the number of composite applications

7 Conclusion

ICC is used to communicate among multiple applications, which may cause leak-
age on users’ sensitive data. In this paper, we design the formal model of android
application and sequential composite applications by ICC. Then, through the
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analysis of the intra and inter information flows, we get the security theorem
on sequential composite application. Based on the theorem, we design a com-
positional information flow security verification algorithm. The process of infor-
mation flow verification in intra and inter app is separated to avoid repeated
verification in application when communication changes. Finally, we compared
our approach with the global verification through the experimental evaluation.
And the results show that our approach can reduce the overhead of informa-
tion flow verification effectively. Since our approach relies on the accuracy of
the information flow recognized by flowdroid [4], in the future, we are going to
improve the precision of information flow validation by using machine learning
to identify source and sink more accurately.
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Abstract. In the process of increasing cybersecurity attack and defense
confrontation, there is a natural asymmetry between the offensive and
defense. The Cyber Threat Intelligence (CTI) sharing mechanism is an
effective means to improve the emergency-response ability of the pro-
tection party. However, currently, there are no effective sharing schemes
in the community network to facilitate cross-sector threat intelligence
sharing. This paper presents a collaborative threat intelligence sharing
mechanism based on the blackboard model, which can be used to iden-
tify potential risks, prevent cyber attacks at an early stage, and facilitate
community incident response. According to the China National Standard
“Cyber security threat information format”, we divide threat intelligence
sharing into routine and attack-specific threat intelligence sharing. Also,
we design an attack-specific threat intelligence sharing module based on
the blackboard model and describe the sharing process. Finally, we design
the blackboard monitoring mechanism as a Multi-Agent System (MAS)
to realize many tasks in the sharing process. Our scheme is illustrated
by several CTI sharing scenarios in the community.

Keywords: CTI · Threat intelligence sharing · Blackboard ·
Monitoring mechanism · MAS

1 Introduction

The current offensive and defensive in cyberspace is an “asymmetric” war. In
recent years, new attacks represented by 0 day vulnerability utilization, APT
and social engineering emerge one after another [1–3]. In contrast, traditional
security protection is mostly in a passive state, and in the face of new threats
and attacks, defense and detection have little effect [4]. Given this situation,
Cyber Threat Intelligence (CTI) sharing emerges at a historical moment, which
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strengthens the collaboration and mutual assistance of all information systems
to improve threat detection and emergency response capability of all parties.
However, the current cybersecurity situation is unbalanced, in which the need for
shared threat intelligence exceeds the development of threat intelligence sharing
mechanisms. In response to this problem, how threat intelligence is shared and
exchanged is still an issue that needs to be studied and explored.

Besides, the threat intelligence is not only beneficial at the government level
but also necessary for cross-sector sharing in the community. Generally, a com-
munity consists of all of the entities within a geographical region, including local
government, academics, and industry organizations [5]. Many cyber threats are
difficultly detected and identified through a single sector. By correlating shared
intelligence in the community, a more efficient approach can be developed to
identify potential risks and prevent cyber threats at an early stage. Based on the
above objectives, Zhao et al. [6] proposed a group-centric collaborative informa-
tion sharing framework, which provides a good idea for the design and improve-
ment of the sharing scheme. However, there are two inadequacies in the design
of this scheme: (1) the shared information has a narrow focus and lacks a stan-
dard data format; (2) it lacks an authentication mechanism to solve the trust
problem between sharing participants. To solve the above problems, we add
the latest threat intelligence format specification—“Cyber security threat infor-
mation format” into the sharing mechanism, which provides a structured and
universal framework for expressing CTI, and use the blackboard model to realize
the fine-grained access control and identity authentication.

In recent years, the blackboard model has been widely used in knowledge
sharing fields. Because of its good interactivity and collaboration, it becomes a
central component in the construction of the decision system [7–11]. The liter-
ature [12] proposed an Incident Handling System (IHS), which allows the col-
laborative interaction between incident handling steps implemented using the
blackboard pattern. The establishment of a Multi-Agent System also requires the
blackboard model [13,14], especially for intelligent systems with dynamic, uncer-
tain, and complex tasks, which provides a flexible and efficient communication
method between Agents. Also, the application of the blackboard model includes
e-learning [15,16], network management [17], etc., which are not described here
in detail.

Therefore, this paper proposes a multi-cooperation community CTI sharing
model. We rely on the extended Group-centric Secure Information Sharing (g-
SIS) model in [6] and modify it. At the same time, we will add the extended
blackboard model as a sharing module in the Collaboration Group to realize
threat intelligence sharing through the interaction with a blackboard. The spe-
cific contributions of this paper are as follows:

– In the sharing process, we use the “Cyber security threat information format”
as a standardized description of threat intelligence currently used in China,
which makes up for the inadequacies (1). According to different types of
threat intelligence components, the sharing method is divided into routine
and attack-specific threat intelligence sharing to achieve sharing flexibility.
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– We adopt a blackboard model based on the “registration-feedback” mech-
anism, which can refine the access control of the sharing Participants to
the threat intelligence about specific attack activities. At the same time, the
added security verification function can avoid identity falsification to improve
the inadequacies (2).

– We design the monitoring mechanism in the blackboard sharing module as a
Multi-Agent System. The interaction among agents in this system can solve
the concurrent problems of threat intelligence sharing, eliminate the disad-
vantages of a single system, and improve the execution efficiency of tasks.
It fully reflects the possibility of combining artificial intelligence with threat
intelligence sharing.

The rest of the paper is organized as follows. In Sect. 2, we introduce the cur-
rent development status of CTI sharing and relevant academic research in recent
years, pointing out the design flaw of threat intelligence sharing. In Sect. 3, we
introduce the overall architecture of the blackboard sharing model for CTI and
the contents of each part. In Sect. 4, we put forward the community CTI sharing
framework, designing the blackboard model in Sect. 3 as an attack-specific threat
intelligence sharing module. Also, we describe the entire sharing process and the
design of the blackboard monitoring mechanism in detail. Section 5 takes “Wan-
naCry” blackmail worm as a practical example to describe the possible scenario
of threat intelligence sharing. Section 6 discusses innovation and future work;
then Sect. 7 concludes the paper.

2 Related Work

In the face of sophisticated cyber threats, we need a new paradigm to detect
and defend these cyber threats, to effectively establish situational awareness of
cybersecurity. However, much of this work is carried out by CNCERT1, and the
sharing of threat intelligence across sectors is rare. The United States is the
earliest country to carry out the threat information construction at the govern-
ment level, in recent years, the US government has continued to invest much
energy in cybersecurity policy legislation and to promote cybersecurity informa-
tion sharing between the federal government and the private sectors [4]. However,
in practice, secure information sharing is usually achieved through unique and
informal relationships [18]. Typically, CNCERT acts as a national focal point,
coordinating and aggregating security incident reports through E-mail, instant
messaging, file exchange/storage, VoIP, IRC, Web, and other communication
channels [19]. The problem with these information-sharing services is that the
organizations directly share information with government entities to a central-
ized location. What is lacking is collaboration among different organizations in
the same sector or across different sectors in a community [6].

In the academic research of CTI sharing, most of the inchoate content aimed
at the needs and motivations, problems and challenges of information shar-
ing, trying to find ways to solve these problems and put forward some feasible
1 https://www.cert.org.cn; July 2019

https://www.cert.org.cn
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opinions and suggestions [20–23]. With the development of research, more and
more summative investigation literature about security information sharing has
emerged. Serrano et al. [24] analyzed four challenges in network security infor-
mation sharing: legal issues, support for different ontologies, information sharing
for different communities and uncertain management issues, and proposed tech-
nical solutions with the help of current advanced technologies. Skopik et al. [25]
provided a structured overview of the dimensions of cybersecurity information
sharing. Goodwin et al. [26] used Microsoft’s years of experience in infrastructure
security management to present a historical background on information sharing
and described the classification of information sharing in terms of models, meth-
ods, and mechanisms. Finally, they provided feasible suggestions for collaborative
information sharing and exchange. For the specific sharing content and network
security in various countries, some threat intelligence sharing platforms [27,28]
have also been launched. Standards bodies and similar organizations have also
issued a series of standards on how to build security information-sharing net-
works, among which the typical examples are the NIST guide “Guide to Cyber
Threat Inform Sharing” [29] and ENISA document “Cyber Security Informa-
tion Sharing: An Overview of Regulatory and non-regulatory Approaches” [30],
etc. While these recommendations represent essential work, but they are not
complete, and essential parts are still missing. For example, the current rec-
ommendations mostly take an architectural view and ignore guidance on the
operational aspects of enabling secure information sharing. For these potential
and complex network systems, the techniques and processes required to maintain
situational awareness have received little attention.

3 Blackboard Sharing Model Overview

We take the blackboard model as an appropriate design pattern for attack-
specific threat intelligence sharing (see Fig. 1) because it provides information
sharing components that enable participants to work together, which will be
briefly introduced in Sect. 3.1. We classify threat intelligence sharing according
to the national standard “Cyber security threat information format” to achieve a
more flexible and efficient cyber-threat defense, which will be briefly introduced
in Sect. 3.2. To realize the multi-function characteristics of the blackboard mon-
itoring mechanism, we design it as MAS, which will be briefly introduced in
Sect. 3.3.

3.1 Blackboard Model

Hayes-Roth introduced blackboard architecture in 1985 [31], which is an exten-
sion of the expert system [32]. The blackboard model consists of knowledge
sources (KSs), blackboard, and controller (The controller is referred to as a
monitoring mechanism in the following). The blackboard model introduces a
shared data structure called blackboard as global memory. Entities working
independently on the blackboard are called knowledge sources that have spe-
cific knowledge in different domains. The control flow depends on the current
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Fig. 1. Blackboard sharing model overview

state of the blackboard and is monitored by the monitoring mechanism. The
goal of the blackboard model is to decompose a complex problem into more fea-
sible sub-problems. In the process of solving the problem, KSs always modify
the blackboard, and the final result is produced by these KSs cooperatively.

The blackboard model is chosen because of its prominent advantages. As an
efficient and universal knowledge storage and processing tool, the blackboard can
record the state information and intermediate results generated in the process
of problem-solving. Also, it can dispatch and manage the communication and
knowledge transfer between KSs, showing unique advantages in the extensive
capacity knowledge processing.

3.2 CTI Sharing Type

“Information security technology–Cyber security threat information format” [33]
is the expression specification of threat intelligence issued by China National
Standardization Management Committee in October 2018, which is used to stan-
dardize the modeling, analysis, and exchange of CTI. The standard provides a
structured and universal framework for expressing CTI, which can improve the
accuracy, interoperability and automatic processing efficiency of intelligence, and
can adequately support the automation of cyber threat management processes
and applications. To make the standard adapt to a variety of independent sce-
narios, it early considered scalability in the design process.

The framework consists of eight primary components which are “Observa-
tion”, “Indicator”, “Incident”, “Threat Actor”, “Target”, “TTP”, “Course of
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Action”, “Campaign” that express the characteristics of different dimensions for
cyber threats, respectively. They are structurally independent of each other and
are related to each other in content. For example, “Indicator” is used to iden-
tify specific “TTP”. It is the combination of multiple “Observation”, and it is
a detection rule used to detect “Incidents”. According to the standard descrip-
tion of CTI and the current situation of community network security, this paper
divides community internal information sharing into the following two types:

– Routine Threat Intelligence Sharing: Basic and general information
shared in a steady state. Comprehensive threat information includes “Obser-
vation” and “Indicator”, as well as other relevant alert information and pre-
cautions. The “Observation” is the most fundamental component which is
used to describe various stateful data or measurable events related to the
host or network; the “Indicator” is a combination of “Observation” used to
identify a specific “TTP” in a particular network environment.

– Attack-specific Threat Intelligence Sharing: When an attack is
detected, information related to a specific attack is shared. The threat-
specific threat information includes six security information components:
“Incident”, “Threat Actor”, “Target”, “TTP”, “Course of Action”, “Cam-
paign”. It mainly describes the cybersecurity threat information framework,
including cyber threats, network intrusions, security incidents, vulnerabilities,
technical impacts, potential consequences, risk assessments, response activi-
ties, responsiveness, mitigation strategies, etc.

3.3 Multi-Agent System

Multi-Agent System (MAS) is a collection composed of multiple Agents. Its goal
is to divide large and complex systems into small, connected, and easy-to-manage
systems. MAS is an essential branch of Distributed Artificial Intelligence (DAI).

As a whole of distributed problem solving, MAS has the following charac-
teristics: (1) the data is distributed or scattered; (2) the computing process is
asynchronous, concurrent or parallel; (3) each Agent has incomplete information
and problem-solving ability, there is no global control; (4) Agents can interact,
dynamically self-organize, coordinate and cooperate with each other, thus sig-
nificantly improving their ability to solve problems.

Compared with the traditional single system, the cooperative working abil-
ity of MAS improves the efficiency of task execution, and it is easy to extend
and upgrade. Moreover, MAS can accomplish distributed tasks that cannot be
accomplished by a single system [34].

4 Community Threat Intelligence Sharing Framework
Based on the Blackboard Model

In the traditional threat intelligence sharing, both sides communicate directly.
Once a large number of entities need to share information for a common goal,
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the traditional method may be very inefficient. A natural and effective way to
facilitate the sharing of information between more entities is to group information
and participants.

Fig. 2. Threat intelligence sharing framework based on the blackboard model

The Group-centric Secure Information Sharing (g-SIS) model [35] is an access
control model that aggregates users and information in a grouped manner. In
the g-SIS model, participants join and leave groups; meanwhile, threat intelli-
gence is added or removed from groups. Participants gain access to the informa-
tion within the group through membership. The framework is a flexible sharing
framework suitable for highly dynamic environments, such as security incident
response or threat intelligence real-time sharing. In this paper, a community
threat intelligence sharing framework based on the blackboard is proposed, and
g-SIS is selected as the overall architecture to realize community CTI sharing
requirements (see Fig. 2). We designed with the extended g-SIS model, which
introduces different types of groups and different inter-group relationships. We
also added an extended blackboard model to achieve attack-specific threat intel-
ligence sharing through the interaction between the group representatives and
the blackboard.

4.1 Collaborative Threat Intelligence Sharing Entity

In this framework, community threat intelligence sharing entities include Sec-
tor Groups, Non-Sector Organizations, and Super Group [6]. Each entity
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plays different roles in community CTI sharing. For example, Non-Sector Organi-
zations can provide valuable information for cybersecurity situational awareness
within the community. The Super Group is generally composed of experts in the
field of cybersecurity, who are responsible for assisting the Collaboration Group
to analyze information and identify risks. Also, it coordinates information shar-
ing among different Sector Groups.

A community needs a certain degree of routine threat intelligence sharing in
a stable state where no attack is found, and an attack-specific threat intelligence
sharing is required when the attack is identified. In our shared architecture, the
Collaboration Group supports routine and attack-specific threat intelligence
sharing between Sector Groups. The purpose of the Collaboration Group is to
facilitate the sharing of information between different sectors of the community
and to provide a long-term collaboration mechanism.

4.2 Blackboard Sharing Module

Overall Architecture. In this paper, we further utilize and extend the black-
board model to become a sharing module in the Collaboration Group. Instead
of communicating directly between the representatives of each group, the black-
board is used as the carrier of attack-specific threat intelligence sharing to realize
real-time threat intelligence sharing through interaction with the blackboard.
Besides, the blackboard sharing module also carries out correlation analysis for
threat intelligence of various sectors to determine when to establish a new Cam-
paign Domain on the blackboard.

The overall structure of the Blackboard Sharing Module is shown in Fig. 3.
The following is the relevant definition of this module:

Φ: The collection of Participants, that is, representatives of various Sector
Groups and Super Group members who participate in the threat intelligence
sharing of a specific attack.

Φ = {P1, P2, · · · , Pn} (1)

B: Blackboard, which is a collection of Campaign Domains. Campaign
Domain covers information about a cyber threat in cyberspace and is a set
of components of threat intelligence. That is, the Campaign Domain can record
information such as “Observation”, “Indicator”, “Incident”, “Threat Actor”,
“Target”, “TTP”, “Course of Action” and “Campaign”. The definition and for-
mat of the Campaign Domain depend on the scalability of the standard threat
intelligence model. The components defined in the threat intelligence model are
optional. They can be used independently or in any combination. Thus, the
Campaign Domain provides a flexible extension mechanism for the blackboard.

B = {D1,D2, · · · ,Dm} (2)

Register: Blackboard registration mechanism. When the Participant needs
to publish or access information about a Campaign Domain on the blackboard,
it must register in the monitoring mechanism.
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Register = {〈Pj1 ,Di1〉 , 〈Pj2 ,Di2〉 , · · · , 〈Pjk ,Dik〉}, 〈Pjk ,Dik〉 ∈ Φ × B (3)

where, 〈Pjk ,Dik〉 means that the Participant Pjk is registered in the Campaign
Domain Dik .

Fig. 3. The overall structure of the blackboard sharing module

Feedback: Blackboard feedback mechanism. According to the following
rules:

if Changed(Di)

then ∀Pj , 〈Pj ,Di〉 ∈ Register, F (Pj ,Di)

where, Changed(Di)(1 ≤ i ≤ m) indicates that the Campaign Domain Di has
been modified or updated, and F (Pj ,Di) indicates feedback to the Participant Pj

that the Campaign Domain Di in the blackboard has been modified or updated.

Attack-Specific Threat Intelligence Sharing Process. Before the cyber
threat is identified, the Participant within the Collaboration Group can share
the routine threat intelligence, current warning, and defense content in order to



262 Y. Lin et al.

maintain an excellent situational awareness order (see Sect. 5.1 for details). This
paper divides the situations that can trigger attack-specific threat intelligence
sharing into active and passive triggering. On the one hand, active triggering
relies on the association analysis of information collected from each Sector Group
in the Collaboration Group and takes the connection among CTI components
as the trigger principle, which can help interested Participants realize the early
prevention of potential threats through sharing. On the other hand, passive
triggering occurs when a cyber threat attacks one member of the Sector Group.
He can share threat intelligence that covers the details of the attack and can
also obtain contingency measures, minimizing the loss (see Sect. 5.2 for details).

Fig. 4. Participants share the threat intelligence through the attack-specific threat
intelligence sharing process, where CD, MM, BB respectively refer to Campaign
Domain, Monitoring Mechanism, and blackboard.

The attack-specific threat intelligence sharing process is shown in Fig. 4. Dur-
ing the sharing process, firstly, the Participant needs to apply for authentica-
tion. If the verification is passed, Participants can then register the Campaign
Domains they are interested in on the blackboard. After the blackboard moni-
toring mechanism agrees, the Participants can publish and access the content of
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the Campaign Domain when a special attack is confirmed. The blackboard mon-
itoring mechanism is responsible for the consistency problem after the Campaign
Domain updates. Once the information of a Campaign Domain on the blackboard
is changed, the blackboard monitoring mechanism notifies the Participants that
have registered in the Campaign Domain. This process is called feedback. This
interaction between the Participants and the blackboard is called a “registration-
feedback” mechanism. The Participant updates its known threat intelligence to
a specific Campaign Domain in the blackboard so that the information can be
perceived by other Participants registered in the same Campaign Domain. In
this way, threat-specific information sharing is achieved through blackboard.

It can be seen that in the entire attack-specific sharing process, the black-
board monitoring mechanism is the core of the shared module. The monitoring
mechanism is a software agent with information processing and decision-making
capabilities, which can control shared content to achieve corresponding func-
tions and support collaboration and sharing among Participants. The monitoring
mechanism acts as a proxy for monitoring and managing the blackboard, also
assigns shareable resources to the Campaign Domain. In general, the blackboard
monitoring mechanism is the intermediary that the Participants can access the
blackboard and the control mechanism of the blackboard.

Monitoring Mechanism. To realize the functions provided by the blackboard
monitoring mechanism, we chose Agent technology, which is well adapted to the
concurrency and dynamic design of the threat intelligence sharing process.

According to the Multi-Agent System, the functional architecture we
designed for the blackboard monitoring mechanism is shown in Fig. 5. Each
Participant is assigned to an artificial Agent, that is, the Personal Agent. In
the system, the Personal Agent replaces human behavior by executing all user
requests, which must first pass through itself, then retransmit to other Agents,
and finally return the response to the user. On the other hand, the monitoring
mechanism must ensure the authentication and access control of the Partici-
pant, and manage the related sharing operations of the Participant, so different
artificial Agents implement the above functions:

– Authentication Agent: It is necessary to carry out authentication, which
can prevent the identity forgery of the Participant, that is, all accesses of
the Participants to the blackboard must first pass security verification. For
example, a Participant can ensure that information comes from a credible one
by using a certificate authority to generate credentials for a Participant.

– Interaction Agent: Interaction Agent manages the interaction between dif-
ferent agents in the system and the blackboard. All Agents must access the
blackboard through an Interaction Agent.

– Registration & Revocation Agent: The Participant cannot have unlim-
ited access to the Campaign Domains, so they should be given sharing permis-
sions. Through the conditional request of the Participant, the access authority
of the corresponding Campaign Domain is specified or revoked for the Par-
ticipant, and a registration list of Campaign Domains is maintained.
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– Feedback Agent: To ensure that the threat intelligence in the blackboard is
consistent with that owned by the registered Participant, the Feedback Agent
needs to feedback the updates of the blackboard content. Thus, the Partici-
pant can obtain a real-time perception of the information on the blackboard,
and realize the “registration-feedback” mechanism together with the Regis-
tration & Revocation Agent.

– Creation & Disbandment Agent: This Agent receives the command of
the Collaboration Group administrator, and conducts the creation of a new
Campaign Domain or the disbandment of an outdated one. According to the
different threat “Campaigns”, the threat intelligence is classified, and Par-
ticipants can purposefully share information by creating different Campaigns
domains.

Fig. 5. The blackboard monitoring mechanism

In addition to coordinating and managing routine threat intelligence sharing
in the Collaboration Group, the administrator of the Collaboration Group also
assists the Creation & Disbandment Agent to decide when to create or dismiss
specific Campaign Domains based on the request of the Participants. Generally,
the administrator of the Collaboration Group is selected by the security depart-
ment of the local government in the community to ensure the safe and healthy
operation of the monitoring mechanism.
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5 Description of Threat Intelligence Sharing Scenario

In order to make the proposed scheme more precise, this paper will provide sev-
eral possible application scenarios for threat intelligence sharing, further illus-
trating the design of the threat intelligence sharing framework. Our sharing
framework focuses more on important issues at the level of abstraction, allowing
communities to carry out based on their specific needs and realities.

Since the collection, aggregation, and analysis of information are not the
focus of this paper, we assume that each group has tools and methods to collect
and aggregate information. At the same time, there is a sufficient correlation
analysis mechanism to determine whether there is a potential threat in the com-
munity. (For example, if a large amount of “Observation” from all the Sector
Groups meets the “Indicator” for a particular attack on files, processes or reg-
istries, they can be judged that they constitute a threat to the community.) Also,
Collaboration Groups should have guidelines that allow members to match the
threat intelligence they want to share with existing Campaign Domains accord-
ing to the characteristics and descriptions defined by each Campaign Domain.

Based on the above assumptions, we take the “WannaCry” worm virus [33]
as an attack case, and introduce several possible scenarios for threat intelligence
sharing.

5.1 Routine Threat Intelligence Sharing

The first scenario is simple, assuming that the Super Group receives an alert mes-
sage about an SMB vulnerability from another community. The Super Group
members will share this information and provide particular “Course of Action
(COA)”, such as providing a patch for the vulnerability to the Collaboration
Group cg so that the members of the Sector Group can be aware of the vul-
nerability and protect their Sector Group from the attack. In the Collaboration
Group, members of the Sector Group will issue threat intelligence containing
warnings and resources to their group if they believe their group is related to
the vulnerability.

5.2 Attack-Specific Threat Intelligence Sharing

Defense Against Threats. If the user u1 in (Energy) Sector Group sg1
detects that a specific domain name “http://www.iuqerfsodp9ifjaposdfjhgosurij
faewrwe-rgwea.com” exists in the URL access record, thinking the abnormal
URL access record may pose a potential threat. To prevent related attacks, he
may wish to share this threat information in sg1. Based on the predefined Sector
Group guidelines, information including URL access and DNS essential records
should be structured in a standard threat intelligence format and shared in sg1
as “Observation” threat intelligence. Other members of sg1 can read this intelli-
gence and take precautions when necessary, such as strengthening the monitoring
of this anomaly.

http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwe-rgwea.com
http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwe-rgwea.com
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In this scenario, we assume that no relevant threats are found in the com-
munity, and aggregated threat intelligence will be shared with the Collaboration
Group cg based on predefined community guidelines. Suppose that within a spec-
ified time interval, another user u2 detects file information named “t. wncry”,
and user u3 detects abnormal scanning behavior of 445 File Sharing port, both
of whom share the intelligence in sg1 in threat intelligence standard format. This
intelligence will be aggregated and correlated in sg1; then the aggregated threat
intelligence may prompt the user urep1 to generate a new “Observation” intel-
ligence. urep1 is a representative member of sg1 and also a member of cg. The
aggregated intelligence will be shared into the cg by urep1.

The Collaboration Group cg will correlate all threat intelligence collected
from other Sector Groups and analyze this information to determine if there is
a potential threat to the community. When each “observation” collected meets
the “indicators” of the “WannaCry” worm virus (For example, the parameters
of relevant files, registry and process are changed), it can be determined that
the community may be infected by “WannaCry”. Collaboration Group admin-
istrator will create a Campaign Domain cd1 for “WannaCry” on the blackboard
through the blackboard monitoring mechanism, which can provide detailed infor-
mation on upcoming attacks and provide references to potentially affected Sector
Group members, further sharing attack-specific threat intelligence through the
Campaign Domain. The Super Group representative in cg will provide preven-
tion strategies or mitigation plans for the registered users by sharing threat
intelligence like “COA”, “Threat Actor” and “Target” in cd1 in order to assist
with information analysis and incident response. The members who register cd1
can publish the preventive measures, mitigation plans, and other resources about
cd1 to their groups. For other unregistered cg members, the alarm information
and routine threat information can be shared with them.

In this simple scenario, the attack is low-level, and no specific attack attempts
occur in the community. This scenario reflects that the community can realize
defense against attack through the sharing of threat intelligence.

Emergency Response to Threats. Suppose that the “WannaCry” black-
mail worm attacks user u4 in the (Education) Sector Group sg2. He wants to
report information about the worm and get an efficient and real-time emergency
response. According to the predefined community guideline, he needs to share
threat intelligence that covers the details of the attack, including “Campaign”,
“TTP”, “Threat Actor”, “Incident”, “Indicator” and other threat intelligence
standard components.

The representative urep2 in sg2, (also a member of the Collaboration Group),
will examine the existing Campaign Domains in the blackboard of Collaboration
Group cg. Assume that in the cg, the report about the “WannaCry” worm has
been received from the Sector Group sg3. Through the correlation analysis, the
Campaign Domain cd2 has been created on the blackboard for the new threat
attack on port 445. urep2 can apply to the blackboard monitoring mechanism to
register cd2 and publish relevant intelligence to cd2 after the registration. The
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representatives of Super Group can help mitigate and respond to this situation
by sharing resources such as “COA” on cd2, and they can provide appropriate
recommendations for Sector Groups that have previously reported this attack
but have not been compromised.

If there is no Campaign Domain associated with “WannaCry”, urep2 can
request cg to create a new Campaign Domain. Based on the severity and extent
of the attack, and by analyzing or correlating previously received threat intel-
ligence, the cg administrator will authorize the blackboard monitoring mecha-
nism to create a new Campaign Domain cd3. urep2 can share the relevant threat
information by registering cd3 and obtain valid references. Similarly, relevant
recommendations such as “COA” will also be provided. After urep2 obtains the
corresponding disposal measures, it will post the intelligence in sg2 so that the
infected user u4 can implement the response measures as soon as possible to
minimize the loss.

6 Discussion

6.1 Innovation

In this paper, the g-SIS framework is still adopted as a whole to realize the shar-
ing of threat intelligence among multiple parties in the community, retaining its
advantages in data access control and adapting to the dynamic changing envi-
ronment. On this basis, we rely on the national standard “Cyber security threat
information format”. According to the correlation between threat intelligence
components, we divide the sharing ways into routine and attack-specific threat
intelligence sharing, which makes attack prevention and incident response more
flexible and efficient.

Besides, we utilize the blackboard model to solve collaborative threat intelli-
gence sharing. In essence, the cross-sector threat information sharing in the com-
munity is a process of multiparty cooperation and joint problem solving, which
completely conforms to the usage scenario of the blackboard model. Using the
blackboard model based on “registration-feedback”, the access control of the Par-
ticipant to threat intelligence can be refined to specific attack activities. Besides,
the added security verification function can prevent the identity of the malicious
attacker from forging and can solve the trust problem between the Participants.

Finally, we propose that MAS is a meritorious solution for distributed func-
tion realization of the blackboard monitoring mechanism. It can be seen that
we have added additional functions based on the original blackboard monitoring
mechanism. The previous single system architecture cannot solve the concur-
rency problem of threat intelligence sharing, and cannot satisfy the premise that
the Participants are unlimited by time and place. Therefore, MAS can not only
eliminate the disadvantages of a single system but also improve the efficiency
of task execution. Moreover, according to the extensible characteristics of MAS,
the function of the blackboard monitoring mechanism can be upgraded and
extended.
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6.2 Further Work

The first task we need to do in our future work is to design thoughtful and
complete interactive details for Participants and the blackboard (such as secure
authentication and encrypted communication). On this basis, it is necessary to
analyze possible security problems like collusion attacks and privacy protection,
which highlights the feasibility and security of the scheme.

Also, we are working on implementing the proposed blackboard monitoring
mechanism on the JADE (Java Agent Development Framework) platform. On
the other hand, we plan to carry out practical experimental verification of the
proposed model in the actual threat intelligence sharing scenario to highlight
the strengths of the sharing model to consolidate and its weak points to correct.

7 Conclusion

This paper presents a cooperative threat intelligence sharing framework based
on the blackboard model, which can be used to improve community cyberse-
curity. According to the national standard “Cyber security threat information
format”, we divide threat intelligence sharing into routine and attack-specific
threat intelligence sharing. We use the blackboard model to realize attack-specific
threat intelligence sharing and describe the sharing process. Finally, we design
the blackboard monitoring mechanism as MAS to realize many tasks in the shar-
ing process. We illustrate our model using information sharing scenarios in the
community. Although our model still needs many steps in practice, it provides
a broad and clear development idea for the combination of threat intelligence
sharing and artificial intelligence.
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Abstract. In this paper, we propose an energy-efficient surveillance
framework for real-time video processing. The proposed framework guar-
antees the confidentiality of important frames and transfers them for
a real-time decision. First, we extract the keyframes from the surveil-
lance video using a lightweight summarization technique based on a
fast histogram-clustering approach. Then, we employ an enhanced dis-
crete cosine transform (DCT) compression technique to reduce the size
of the extracted key frames. Finally, the cryptosystem encrypts these
keyframes using a lightweight image encryption scheme based on dis-
crete fractional random transform (DFRT) and Chen chaotic system.
The proposed framework is fast and ensures real-time processing. Fur-
thermore, this framework has the ability to reduce the transmission cost,
and storage required during transmitting the video surveillance.

Keywords: Data compression · Data encryption · DFRT · DCT ·
Keyframes · Surveillance video

1 Introduction

IoT systems have large operating costs and produce huge amounts of data,
especially upon storage using third-party like cloud systems. Images and video
required a large-scale processing power to extract the information from data.
To deal with computational complexity, the researchers propose several contri-
butions including data compression and video summarization techniques [1,2].
Generally, these techniques deal with the problem of efficient management of
massive data and reduce the data dissemination to remote IoT centers. How-
ever, most of these techniques present several security problems and lack to
robustness analysis. For instance, Muhammad et al. [2] proposed a symmetric
encryption scheme to secure IoT surveillance systems. However, this technique
cannot resist against noise and cropping attacks. In case losing a single pixel of
the encrypted image, this will make retrieving of the plain image impossible.

The researchers have proposed different techniques to reduce the volume of
data such as compression [1], blockchain [3] and video summarization techniques
c© Springer Nature Switzerland AG 2019
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[4,5]. The purpose from using these techniques is to extract only informative
frames and forward these data for processing in real time. Video summarization
techniques select a subset of the images and create a brief video contain the
relevant information of the video data [6,7]. Video compressions reduce the size
of the video bits by identifying and removing statistical redundancy [8]. Indeed,
video compression requires low computation power, resulting in decreased band-
width and storage requirement.

To tackle the above-mentioned issues, we propose an efficient and secure
image encryption-compression framework for IoT surveillance systems based on
discrete fractional random transform. The main contribution of this work is
using dynamic keys encryption instead of static block cipher comparing to state-
of-art schemes [9–11]. The encrypted data are probabilistic which means that
encrypting same data will produce different encrypted data (using same secret-
keys and cipher algorithm). The proposed framework contains three steps. First,
a video summarization is employed to reduce the images and video redundancy
[4]. Second, we use an image coding to compress the extracted frames from step
one. Finally, the proposed framework encrypts the compressed keyframes using a
fast and secure image encryption scheme based on the discrete fractional random
transform and Chen chaotic system. The nonlinear map employed to produce
two keys. First, a permutation key to shift the pixels of the image. Second, a
random matrix employed in discrete fractional random transform. Taking into
consideration the various requirements of constrained surveillance devices, the
proposed framework can be suitable for IoT-based surveillance systems.

The rest of the paper is organized as follows. Section 2 presents the proposed
framework. Section 3 presents brief experimental results. Finally, a conclusion
and future directions in Sect. 4.

2 Proposed Framework

In this part, a fast keyframe extraction based on an automatic video summariza-
tion technique is proposed. Our framework contains three parts that guarantee
a fast and secure transmission of informative frames upon real-time. First, by
eliminating video redundancy and select the informative frames using a video
summarization. Followed by the compression technique to reduce the frames
size from the extracted video. Finally, the framework encrypts the video using
a lightweight encryption scheme. The proposed work minimize the analysing
time to scan surveillance video for irregular events including fire detection by a
surveillance camera, and unusual activities. The cryptosystem ensures the con-
fidentiality of extracted frames prior to transmission.

2.1 Video Summarization Technique

Generally, a surveillance video contains various frames represent different scenes.
However, some scenes content fewer activities for a long time such as gas pipelines
surveillance in the desert. Sometimes, the scenes could contain a considerable
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Fig. 1. The proposed summary method includes the following steps: pre-sampling,
frames representation, clustering, and identify the keyframes.

amount of activities for shorter duration like in a case of leak detection for
oil and gas pipelines. Thus, it is required to employ extra layers techniques
to discard the irrelevant frames in the input video, minimizing the bandwidth
requirements. Several works have been proposed to extract keyframes based
on different techniques [4]. Some works have extracted keyframes using color
spaces such as YUV. Figure 1 shows the steps of the proposed summarization
framework.

2.2 A Lightweight Cryptosystem

The following points illustrate the steps of image compression-encryption Cryp-
tosystem based on PNRG chaotic system and DFRT. The nonlinear cycle shift
operation controlled by a Chen chaotic system is used for diffusion.

First, we compress the extracted keyframes using fractional cosine transform
used in JPEG system [12]. The keyframe, denoted by I, is transformed into spec-
trum via the fractional cosine transform. We employ a secure and fast pseudo
random number algorithm [13] to produce the random matrix of discrete frac-
tional random transform (DFRT) [9]. The final encrypted image, denoted as
D, is obtained after applying the discrete fractional random transform, where
the fractional order is the key of DFRT. To make it easier for the readers, we
illustrate the steps of the proposed cryptosystem as Fig. 2 shown.

Step 1. Load the original image and the secret keys. A color keyframe
extracted is encrypted using the proposed cryptosystem in Sect. 2 by reshaping
the RGB matrices [N, M, 3] into two-dimensional formats [3*N, M]. Followed by
the compression-encryption steps.

Step 2. The original image is transformed into spectrum by the fractional
cosine transform. The cryptosystem applies DCT on one-dimensional matrix.
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The front part of the elements implies the main information to be encrypted is
contained in the DC component (such as the low-frequency part of the image).

Step 3. Produce two set of random numbers (S1 and S2) based on PRNG [13]
using the secret keys. The Chen chaotic system is elaborated mathematically by
the following equations

Fig. 2. Image compression-encryption algorithm based on PRNG and DFRT

Step 4. Perform permutation process based on index sort of the generated
sequences from PRNG. So, each sequence will shift the plaintext using the a
random indexes of the generated chaotic numbers.

Step 5. Perform a discrete fractional random transform, where the fractional
order is the key of DFRT [11]. The discrete fractional random transform of a
two dimensional signal I is

ER = HαI(Hα)T . (1)

ER is the kernel transform of DFRT.
(HP )T is the transpose of (HP ).
α is the fractional order.
The transform kernel is random due to the from of randomized matrix I

generated from S1.
The kernel transform (HP ) is defined as:

Hα = ΓDα(Γ )T . (2)

where Γ is the eigenvector basis. While, ΓT is the transpose of Γ . Γ (ΓT ) =
I.DP is an N × N diagonal matrix.

Dα = diag
{

1, exp
(

− i2πα

T

)
, exp

(
− i4πα

T

)
, . . . , exp

[
− i2(N−1)πα

T

]}
(3)

where positive number T is the period of DFRT.

E =
P + P t

2
. (4)
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The transform kernel of DFRT is random which results from the randomness
of matrix. The obtained image is denoted as an encrypted image. Figure 2 shows
the structure of the proposed work based on PRNG and DFRT.

3 Simulation Results

The experimental results are presented in this section. Simulations and analysis
on various grayscale images have been performed on a Matlab (R2017b) plat-
form. The proposed framework is tested using a set of video dataset [1]. We
evaluate the security of the proposed framework using different dataset (such
as SIPI database) and some standard testing images such as Cameraman and
Lenna images. We use the following values (x0 = −1.2, y0 = 0.7, z0 = 14,
a = 35, b = 3, and c = 28) as secret keys for the proposed cryptosystem.

3.1 Security Analysis

The proposed cryptosystem relies on the initial values and controlling parameters
in Chen chaotic system as secret keys. The key space in this case is computed
based on the sensibility to initial values and controlling parameters (x0, y0, z0,
a, b, and c) of Chen map. According to the evolution, these keys are sensitive
enough to change the sequence from PRNG with any difference equal to or large
than 10−15. Hence, the key space for each generated sequences is computed to
be more than 1090 � 2300. The key space can be 2600, if the user choose to
produce S1 and S2 using different secret keys. The size of a key space should be
large enough to resesit the exhaustive attacks e.g brute force [14]. Additionally,
Table 1 shows that the proposed cryptosystem has larger Key space compared
to other recent state-of-art schemes [10,11].

Table 1. Key space comparison.

Algorithm Proposed algorithm Gong et al. [11] Zhou et al. [10]

Key space 2300 2187 2300

Figure 3 shows the summarized frames from an original video, subsequently
the compressed frames, and finally encrypted frames. The simulation also proves
that the proposed work can ensure a high level of security against different
attacks such as exhaustive search to find the secret keys. Due to the fact that
the proposed framework is extremely sensitive to the chosen secret keys, any
adjustment will change completely the encryption process. For example, Fig. 4
shows the attempts to decrypt the encrypted image using different secret keys
set. The values have been chosen closely to the original secret keys. This test
demonstrates that the proposed cryptosystem can withstand against different
attacks.
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Fig. 3. Summarized frame, compressed, and encrypted. Finally, decrypted frame

Fig. 4. Decrypted keyframes with incorrect keys (differ by a tiny value)

3.2 Compression Ratio

As known, image compression ratio measures the relative reduction in the image
size representation given by the compression technique. The most common pro-
cedure to compute compression ratio is the division of uncompressed size by
compressed size. In this work, compression ratio (CR) is defined as the following
equation illustrates (5).

CR =
Size of Original Data

Size of Compressed Data
(5)

Since the proposed framework relies directly on DCT compression, the com-
pression rate is computed based on the quality factor and DCT performance.
In this work, we assume quality factor is 60, which allows us to compress the
data and maintains the image quality. Table 2 shows the performances of com-
pressed images from SIPI Image database1. The compression rate of the proposed
cryptosystem is around 3.5, archiving good performances. This means that our
proposed method reduced the data size, storage, and bandwidth requirements
in processing, and communication.

1 http://sipi.usc.edu/database/.

http://sipi.usc.edu/database/
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Table 2. CR of the proposed cryptosystem

Image name Compression ratio Image name Compression ratio

Airplane 3.29 Clock 3.06

Moon surface 3,79 Resolution chart 3.24

Airplane 3.32 Chemical plant 3,19

Aerial 3.21 Couple 3,11

4 Conclusion

In this paper, a fast and secure framework is proposed for surveillance systems.
The extraction method of keyframes uses K-means clustering based on HSV
Histograms. Then, we propose a fast and efficient cryptosystem to guarantee
the keyframes confidentiality during the transmission over the public networks.
A DCT algorithm is used to compress the extracted frames and discrete frac-
tional random transform is employed to achieve fast and secure image encryption
scheme. Chen chaotic map is employed to produce two keys. A permutation key
to shift the pixels of the image and a random matrix which has been employed
in discrete fractional random transform. The proposed cryptosystem is experi-
mentally tested from different perspectives, showing excellent performances and
results. The results demonstrate superiority of the proposed work compared to
state-of-art techniques. Furthermore, the proposed cryptosystem guarantees fast
and secure transmission of the important keyframes to data centers, reducing
the requirements of communication bandwidth and energy, the analysing time,
and efforts to make the appropriate decisions.
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Abstract. In cloud security, traditional searchable encryption (SE)
requires high computation and communication overhead for dynamic
search and update. The clever combination of machine learning (ML)
and SE may be a new way to solve this problem. This paper pro-
poses interpretable encrypted searchable neural networks (IESNN) to
explore probabilistic query, balanced index tree construction and auto-
matic weight update in an encrypted cloud environment. In IESNN,
probabilistic learning is used to obtain search ranking for searchable
index, and probabilistic query is performed based on ciphertext index,
which reduces the computational complexity of query significantly. Com-
pared to traditional SE, it is proposed that adversarial learning and auto-
matic weight update in response to user’s timely query of the latest data
set without expensive communication overhead. The proposed IESNN
performs better than the previous works, bringing the query complexity
closer to O(logN) and introducing low overhead on computation and
communication.

Keywords: Searchable encryption · Searchable neural networks ·
Probabilistic learning · Adversarial learning · Automatic weight update

1 Introduction

The frequent and massive disclosure of private data has drawn the growing
attention of the public to the cyberspace security. Meanwhile, cloud storage ser-
vices are increasingly attracting individuals and enterprises to outsource data
into cloud server with the rapid development of cloud computing. Unfortunately,
outsourcing data into cloud server may reveal the privacy of data [10,14]. In
cloud security, searchable encryption (SE) has received widespread attention as
it protects the privacy of outsourced data and prevents sensitive information
from leaking [5]. However, traditional SE [1,3,6,8–10,12–14] requires high com-
putation and communication overhead to enable dynamic search and dynamic
update, which makes SE still unable to satisfy user’s experience and requirements
of the actual application adequately. Actually, machine learning (ML) can pro-
vide intelligent and efficient means yet the current popular ML only supports
c© Springer Nature Switzerland AG 2019
X. Chen et al. (Eds.): ML4CS 2019, LNCS 11806, pp. 279–289, 2019.
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plaintext data training and can not satisfy the special requirements of encrypted
cloud data. Therefore, it is necessary to discuss the cross-fusion problem of ML
and SE, and introduce intelligence and high-efficiency into SE.

SE has been continuously developed since it was proposed [8], and multi-
keyword ranked search scheme is recognized as excellent [5]. Cao et al. [1]
first discussed privacy-preserving multi-keyword ranked search over encrypted
cloud data (MRSE) for single data owner model, and established strict privacy
requirements. They first used asymmetric scalar-product preserving encryption
(ASPE) [12] to obtain the similarity score of the query vector and the index vec-
tor. In this way, cloud server can retrieve top-k documents that are most relevant
to the data user’s query request. However, since matrix operations require high
computation overhead, MRSE is not suitable for practical application scenario.
For the purpose of managing the keyword dictionary dynamically and improv-
ing system performance, Li et al. [6] proposed efficient multi-keyword ranked
query over encrypted data in cloud computing (MKQE) based on MRSE, which
owns a low overhead index construction algorithm and a novel trapdoor gen-
eration algorithm. However, it still has no major breakthrough in improving
search efficiency when the data set is large. To achieve dynamic search, Xia
et al. [13] provided a secure and dynamic multi-keyword ranked search scheme
over encrypted cloud data (EDMRS) to support dynamic operation in SE. For
tree-based index structures, search efficiency is improved by the greedy depth-
first search (GDFS) algorithm and parallel computing. Regrettably, the search
efficiency of ordinary balanced binary tree they used gradually decreases and
tends to linear search efficiency when migrating to multiple data owners model
with large amount of differential data. Moreover, maintaining such an index tree
is not flexible and efficient. Guo et al. [3] discussed secure multi-keyword ranked
search over encrypted cloud data for multiple data owners model (MKRS MO)
and designed a heuristic weight generation algorithm based on the relationships
among keywords, documents and owners (KDO). They considered the correla-
tion among documents and the impact of documents’ quality on search results.
Experiments on the real-world data set showed that MKRS MO is better than
the schemes using traditional TF × IDF keyword weight model [9]. However,
the fly in the ointment is that the operations of calculating index similarity in
MKRS MO may lead to “curse of dimensionality”, which limits the availability
of the system. Last but not least, they ignored the secure solution in known
background model [1] (threat model for measuring the ability of cloud server to
evaluate private data and the risk of revealing private information in SE system).

For the first time, this paper proposes interpretable encrypted searchable neu-
ral networks (IESNN) to explore intelligent SE. Based on the neural network, we
propose sorting network and employ probabilistic learning to obtain the query
ranking for encrypted searchable index. To be specific, firstly it performs a suffi-
cient amount of random queries (obey uniform distribution) and then calculates
the sum of the inner product of each index vector and all random query vec-
tors. Finally it sorts the index vectors according to the match scores from high
to low. Therefore, the probabilistic ranking of the index is close to the ranking
in the actual query, which reduces the computational complexity of the query
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significantly. Moreover, probabilistic query with computational complexity close
to O(log N), is used to retrieve top-k documents. In order to achieve secure
weight update without revealing private information to “semi-trusted” cloud
server [10,14], we propose searching adversarial network and weight update net-
work in an encrypted cloud environment. Specifically, in order to respond to
user’s timely query of the latest data set, we employ adversarial learning [2]
and optimal game equilibrium to make the probabilistic ranking of the index
close to its popular ranking. Furthermore, we combine backpropagation neural
network [4] with discrete Hopfield neural network [7] to enable automatic weight
update. It is worth mentioning that the update operations are done in the cloud,
which means there is no expensive communication overhead. So we can use
IESNN for model training and intelligent system implementation. On the one
hand, it introduces intelligence into the SE system, which improves user’s expe-
rience and reduces system overhead. On the other hand, training data sources
for ML can be derived from ciphertext. It means that data mining based on
ciphertext analysis can not only obtain results consistent with plaintext analysis
but also strengthen the intensity of data privacy protection. The comparison
among several previous typical schemes and ours is described in Table 1.

Table 1. Comparison of related works.

Item MRSE [1] MKRS MO [3] MKQE [6] EDMRS [13] IESNN

High-precision query
√ √ √ √ √

Privacy-preserving query
√ × √ √ √

Automatic weight update × × × × √
High-quality ranked search × √ √ × √
Efficient multi-keyword search

√ √ √ √ √
Flexible dynamic maintenance × × × × √

Our main contributions are summarized as follows:

(1) Towards intelligent SE by combining popular ML with traditional SE effec-
tively;

(2) We employ probabilistic learning method to achieve maximum likelihood
searching and improve search efficiency significantly;

(3) We use IESNN to implement flexible dynamic operation and maintenance
in an encrypted cloud environment.

The remainder of this paper is organized as follows: Sect. 2 describes the SE
model. Section 3 describes the details of IESNN and its performance tests.
Section 4 discusses our solution and its implications.

2 Searchable Encryption Model

2.1 System Model

The system model proposed in this paper consists of three parties, is depicted
in Fig. 1, and the specific description is as follows:
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Data owners (DO): DO are responsible for building searchable index and
original IESNN, encrypting the data and sending them to cloud server.

Data users (DU): DU are consumers of cloud services. Once the license is
granted, they can retrieve the encrypted cloud data.

Cloud server (CS): CS is considered “semi-trusted” in SE [10,14]. It pro-
vides cloud service, including running authorized access controls, performing
searches for encrypted cloud data based on query requests, returning top-k
documents to DU and enabling dynamic operation and maintenance with
IESNN.

Fig. 1. The basic architecture of searchable encryption system

2.2 System Framework

Setup: Based on privacy requirements in known background model [1], DOi

determines the size Ni of dictionary Di, the number Ui of pseudo-keyword,
sets the parameter Vi = Ui+Ni. For all data owners DO = {DO1, . . . , DOm},
we have V = {V1, . . . , Vm}, U = {U1, . . . , Um}, N = {N1, . . . , Nm}.

KeyGen(V ): DO generate secret key SK = {SK1, . . . ,SKs}, where SKi =
{Si,Mi,1,Mi,2}, Mi,1 and Mi,2 are two invertible matrices with the dimension
Vi × Vi and Si is a random Vi-length vector.

Extended-KeyGen(SKi, Zi): For dynamic search [6], if Zi new keywords are
added into the i-th dictionary Di (belongs to Di), the DOi generates a new
SK ′

i = {S′
i,M

′
i,1,M

′
i,2}, two invertible matrices M ′

i,1 and M ′
i,2 with the dimen-

sion (Vi + Zi) × (Vi + Zi), and a new (Vi + Zi)-length vector S′
i.

BuildIndex(I, SK): In order to reduce the possibility that “semi-trusted” cloud
server [10,14] evaluates the private data successfully, DO first build searchable
indexes for documents and obtain the weighted index vectors, and then fill
index vectors with random pseudo-keywords (obey Gaussian distribution)
and obtain secure index vectors with high privacy protection strength [1].
Finally they use secure index vectors to build IESNN and send IESNN to
CS (specific example: DOi “splits” index vector Ii into two random vectors
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{Ii,1, Ii,2}. Specifically, if Si[t] = 0, Ii,1[t] = Ii,2[t] = Ii[t] ; else if Si[t] = 1,
Ii,1[t] is a random value, Ii,2[t] = Ii[t] − Ii,1[t]. DOi encrypts Ii as ˜Ii =
{MT

i,1Ii,1,M
T
i,2Ii,2} with SKi).

Trapdoor(Q,SK): DU send query request (query keywords and k) to DO.
DO generate query Q = {Q1, . . . , Qm} (where Qi is a weighted vector with
dimension Vi) and calculate the trapdoor T = {T1, . . . , Tm} using SK and
send T to DU (specific example: DOi “splits” query vector Qi into two ran-
dom vectors {Qi,1, Qi,2}. Specifically, if Si[t] = 0, Qi,1[t] is a random value,
and Qi,2[t] = Qi[t] − Qi,1[t]; else if Si[t] = 1, Qi,1[t] = Qi,2[t] = Qi[t]. Finally,
DOi encrypts Qi as Ti = {M−1

i,1 Qi,1,M
−1
i,2 Qi,2} with SKi).

Query(T, k, I): DU send trapdoors, query instruction and attribute identifi-
cation to CS. CS performs searches based on the query, and returns top-k
documents to DU .

3 Interpretable Encrypted Searchable Neural Networks

3.1 Maximum Likelihood Searching

We employ inner product similarity [11] to quantitatively evaluate the effective
similarity between the query vector and the index vector. As illustrated in Fig. 2
(for an intuitive understanding, it shows the unencrypted network), in sorting
network, it performs a sufficient amount of random queries (obey uniform dis-
tribution: X ∼ (−σ

√
3, σ

√
3), that is f(x) = 1

2σ
√
3
, x ∈ [−σ

√
3, σ

√
3]), and then

calculates the sum of the inner product
∑m

j=1 IT
i ·Qj of each index vector and all

random query vectors with formula 1. Finally it sorts the index vectors according
to the match scores from high to low. Therefore, the index ranking obtained by
probabilistic learning is close to the ranking in the actual query.

Score = ˜Ii · Ti = {MT
i,1Ii,1,M

T
i,2Ii,2} · {M−1

i,1 Qi,1,M
−1
i,2 Qi,2} = IT

i · Qi (1)

We implement the proposed scheme using Python in Windows 10 operation sys-
tem with Intel Core i5 Processor 2.40 GHz and test its efficiency on a real-world
document set (IEEE INFOCOM publications, including 400 papers and 2,000
keywords). The probabilistic query algorithm based on the probabilistic ranking
of encrypted searchable index brings the query complexity closer to O(log N). As
shown in Fig. 3, when retrieving the same number of top-k documents, probabilis-
tic query performs better than the related works that based on tree search [3,13]
and matrix operation [1,6]. As the ordered feature of the balanced binary tree is
not guaranteed in the index tree and the query based on matrix operation needs
to traverse all indexes to retrieve top-k documents, the number of retrieved
indexes is far more than the number of retrieved documents.

3.2 Adversarial Learning

Adversarial network works when the probabilistic ranking of the index deviates
from the index ranking in the actual query result. As shown in Fig. 4, it employs



284 K. Chen et al.

Fig. 2. Sorting network

Fig. 3. Performance testing of multiple query algorithms. {The query precision and
search efficiency for different numbers of retrieved documents with the same document
collection (400) and dictionary (2,000). It requires an average of 100 experimental
results to measure performance of the following subjects: random unordered tree based
on plaintext index (RU-Tree-PI) [3,13], probabilistic ordered tree based on plaintext
index (PO-Tree-PI), probabilistic ordered tree based on ciphertext index (PO-Tree-
CI), probabilistic ranking based on ciphertext index (PR-CI), linear traversal based
on ciphertext index (LT-CI) [1,6]. The number of retrieved top-k documents is the
factor of 400: k = 1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200. Note: the nodes of the
tree are also included in the number of retrieval indexes. According to the experimen-
tal results, probabilistic query can significantly improve the search efficiency. When k
takes a specific interval value, the query precision is high or low. It is because that
the probabilistic ranking of the index vector is not strictly ordered, and the query is
random. Therefore, when the query vector is very “unpopular”, the query precision
will become lower, and when the query vector is “popular”, the query precision and
search efficiency will perform well.}
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optimal game equilibrium to make the probabilistic ranking of the index close to
its popular ranking (described by formula 2, pi(x) and pq(y) are the probability
distributions of the index ranking and query result, respectively).

min
S

max
A

V (A,S) = Ex∼pi(x)[log A(x)] + Ey∼pq(y)[log(1 − A(S(y)))] (2)

Inspired by generative adversarial networks (GAN) [2] and self-attention gener-
ative adversarial networks (SAGAN) [15] but different from GAN and SAGAN,
searching adversarial networks (SAN) do not require complex gradient calcu-
lations and extensive iterative training. As a matter of fact, SAN only require
simple residual calculations and index sorting floating steps. Specifically, after
completing the query, the ranked search result list is feedback to adversarial net-
work in SAN. Adversarial network calculates the residual before and after the
weight change of the index corresponding to top-k documents, and calculates
the relative floating of the index ranking of the feedback result (i.e. new index
ranking) and the original index ranking. Finally, SAN send the results of the
calculation (the residual of the weights) and the index ranking changes to the
weight update network as a target for index update (see Fig. 5 for details).

Fig. 4. Searching adversarial networks

3.3 Automatic Weight Update

As illustrated in Fig. 5, in order to achieve automatic weight update and respond
to users’ queries for the latest data sets in a timely manner, weight update net-
work (WUN) combines backpropagation neural network (BPNN) [4] with discrete
Hopfield neural network (DHNN) [7]. In WUN, the update of index weights
uses vector and matrix operations to approximate the actual increments, which
has the characteristics of local homomorphism for ciphertext operations and
plaintext operations. For instance, considering index vector Iα = [α1, . . . , αn]T ,
query vector Qγ = [γ1, . . . , γn]T , and two invertible matrices M = (aij)n×n and
M−1 = (bij)n×n. The update principle of ciphertext index is as follows:
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Matrix and vector multiplication: IT
α M = [

n
∑

i=1

αiai1, . . . ,
n
∑

i=1

αiain],M−1Qγ =

[
n
∑

j=1

b1jγj , . . . ,
n
∑

j=1

bnjγj ]; Secure inner product calculation: IT
α M · M−1Qγ =

IT
α · Qγ =

n
∑

i=1

αiγi; Index vector update: (IT
α + ΔIT

α )M = [
n
∑

i=1

(αi +

Δαi)ai1, . . . ,
n
∑

i=1

(αi + Δαi)ain] ≈ [
n
∑

i=1

αiai1 + Δβ1, . . . ,
n
∑

i=1

αiain + Δβn] =

IT
α M +ΔIT

β M ;Inner product approximation: (IT
α +ΔIT

α )M ·M−1Qγ ≈ (IT
α M +

ΔIT
β M) · M−1Qγ = IT

α · Qγ + ΔIT
β · Qγ =

n
∑

i=1

αiγi +
n
∑

i=1

Δβiγi.

Fig. 5. Weight update network

Asynchronous Work Mode of WUN : The update task from SAN to WUN
is only updating the weight of an index, while other indexes still retain their
original weight. i.e.

Ij(t + 1) =
{

sgn[netj(t)], j = i
Ij(t), j �= i

, Ij(t + 1) =
{

satlins[netj(t)], j = i
Ij(t), j �= i

(3)

Synchronous Work Mode of WUN : The synchronous work mode is parallel,
i.e. the weights of all indexes are all changed in one update. The adjustment of
the weight is determined according to the current input value. The weight update
is complete and the weight of an index continues to be used for the next update.
When the weight of each index is stabilized, the work ends.

{

Ij(t + 1) = sgn[netj(t)], j = 1, 2, . . . , n
Ij(t + 1) = satlins[netj(t)], j = 1, 2, . . . , n

(4)

When updating an index, the schemes [3,13] employ tree-based index need to
update the index vector itself (leaf node of index tree) and its corresponding



Interpretable Encrypted Searchable Neural Networks 287

other data (parent node of leaf node). Moreover, in order to achieve dynamic
search, the current schemes [1,3,6,9,13] need to download the ciphertext index
from the cloud, update its plaintext after local decryption, and finally upload
the new ciphertext index to the cloud. In comparison, our solution only needs
to update the index vector in the cloud with touching a smaller amount of data
and introduce low overhead on computation and communication.

3.4 Overall Operation and Maintenance of IESNN

As shown in Fig. 6, IESNN consist of sorting net, adversarial net, searching net
and weight update net. Except that the initial index weight needs to be generated
by data owners, the rest of automatic update operations (“add, delete, change
and investigate” operations of index) are all completed in an encrypted cloud
environment. The system forms a “query-learning-update-learning-query” self-
attention [15] loop and an “automatic operation and maintenance” mechanism.
Dynamic operation and maintenance of SE system are almost entirely done in
cloud server. On the one hand, implementing dynamic operation and mainte-
nance in an encrypted cloud environment not only improves the usability and
flexibility of SE system, but also enhances the strength of privacy protection.
On the other hand, when it is necessary to update the index in cloud server,
compared with traditional SE [1,3,6,9,13], our solution eliminates the need to
rebuild the index locally and upload a new index to cover the old index stored in
the cloud, which introduces low overhead on computation, communication and
local storage.

Fig. 6. The overall composition of IESNN

4 Discussion

In this paper, we discuss the cross-fusion problem of ML and SE, and pro-
pose IESNN. We creatively combine popular ML with traditional SE, which is
committed to exploring intelligent SE. We employ probabilistic learning method
to generate sorting network that is trained by a sufficient amount of random
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queries, which makes a contribution to achieve maximum likelihood searching
and bring the query complexity closer to O(log N). It means that exploiting ML
to optimize the query is effective in an uncertain system, even better than special
construction methods. Obviously, traditional query algorithms based on matrix
operations and tree searching are not optimistic in big data environments because
high dimensional data processing can lead to “curse of dimensionality” and even
system crashes. Implementing flexible dynamic operation and maintenance in
an encrypted cloud environment with IESNN that reduces communication over-
head, protects data privacy and leverages cloud computing well.
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Abstract. Many efforts have been down on tackling the network security issues
using game theory, especially studying the dynamic defense mechanism. They
mostly concentrated on the traditional networks, while omitting the advantages
of SDN (software-defined networks). In this paper, we formulate a new defense
framework for SDN, which adopts multistage dynamic defense strategies with
the help of a quantization method of attack. The defender may find the behaviors
of a particular attacker and make an adaptive response. This framework seeks to
support the defender to interact with an attacker following the initial deployment
of cyber defenses. Finally, we conduct evaluations to verify the effectiveness of
the framework and method proposed in the paper. In the future, we will further
study how to improve the defense capability of those critical nodes in SDN,
enable more sophisticated responses to attacker behaviors, and improve the
defensive situation.

Keywords: Software-defined network (SDN) � Multistage dynamic game �
Cyber Deception � New cyber security � Adaptive defense

1 Introduction

Traditional networks are rigid and inflexible because of their large scale and complex
technical system. There is basically no information interaction interface between the
security devices and applications running on the network that they are in a state of
separation from each other, these make it unable to effectively deal with the endless
attacks [1, 2]. The emergence of SDN (software-defined network) provides a new light
for cyber security defense, supporting more defense mechanisms designed by cyber
defender and enabling the dynamic resilience [3, 4].

In the process of network attack and defense, the defender’s role is notoriously
unfair since a defender aims to prevent intrusions at every possible location, and the
attacker only needs to discover and exploit a single vulnerability in order to breach
defenses [5]. This kind of target confrontation and relationship non-cooperation are the
embodiment of the game [6]. In addition, while many techniques have been developed
to increase the speed and accuracy of detecting adversarial activity with the aim of
making a defender’s job easier, beyond a priori hardening of systems, less research has
been done on techniques to make the attacker’s job fundamentally more difficult. The
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use of game theory for cyber defense can add more uncertainty by dynamically
adjusting defense strategies and masking true information. This further impacts the
decision-making of attackers, causing them to waste both time and effort [7]. Therefore,
designing an effective defense mechanism for SDN based on attack and defense game
is the practical need and important direction in the field of cyber security [8, 9].

There have some researches on cyber defense based on game theory, which can be
classified into two aspects [10, 11]. One is that network attack and defense game is
employed for the prediction of attack behaviors or when and how strategies should be
adopted by cyber defender. However, the game models in these researches are mostly
static method, which cannot reflect the interactive and multistage characteristics of
network confrontation. Kayode et al. proposed a non-zero and deterministic game to
analyze the security of computer networks, and the probability that the network may be
attacked can be obtained according to a given attack strategy or response strategy [12].
Zhang et al. improved the quantization method of attack and defense strategies, using
the non-cooperative and static game to select the optimal defense strategy based on
attack prediction [13]. Jiang et al. asserted that network attack and defense con-
frontation is a two-person, zero-sum, and static game, where cyber security assessment
and defense strategy selection are studied [14]. Carin et al. developed a static attack and
defense game for the effectiveness analysis of critical infrastructure security protection
strategies [15]. Wang et al. used the stochastic game to study the security evaluation of
the target network and defense strategy selection [16]. Gueye et al. analyzed the game
relationship between virus designers, data tamper and defenders, giving a choice of
defense strategies [17].

Another is that researchers used the incomplete information and dynamic game to
characterize the uncertainties with in the process of the network attack and defense.
Compared with the complete information and static game, it is more in line with the
reality of network attack and defense. However, the dynamic multistage division
method is not reasonable and feasible, with not considering the effect of motivation and
deception on cyber defense. Liu et al. analyzed the characteristics of attack and defense
confrontation in the context of dynamic target defense, proposing the selection method
of optimal defense strategy under different security situations based on incomplete
information and dynamic game [18]. Zhang et al. used the signal game to describe the
dynamic attack and defense process with incomplete information constraints, and
quantitatively described the signal attenuation [19]. Lin et al. formulated a dynamic
defense game to solve the problem of uncertain change on attack intention and attack
strategy [20].

Although some achievements have been made in the above researches, they are all
concentrated on the traditional network and fail to character the cyber security issues
under the SDN architecture. Therefore, we study that dynamic defense mechanism for
SDN to protect the key nodes based on game theory, formulating a multistage game by
using the architectural advantages of SDN, in which deceptive behaviors of cyber
defender in different stages were considered. This is important for defenders, since as
the dynamic adjustment of defense strategies can reduce the chances of SDN key nodes
being attacked, improving the security of SDN.
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2 Dynamic Defense Mechanism for SDN

We design a dynamic defense mechanism for SDN based on game theory to solve the
problem that static defense mechanism in the existing methods cannot describe the
uncertain and continuous change in the process of the network attack and defense. The
framework is shown in Fig. 1. The protected object is the target to be attacked, that is,
the key node in the network. SDN controller is the core of dynamic defense mecha-
nism, including a monitoring timer and multistage dynamic game, where the moni-
toring timer is responsible for switching between different game stages by setting a
fixed time period or sensing the security state of the SDN. Based on that, multistage
game is used to dynamic transformation of defense strategies according to the
behaviors of cyber attackers, considering the influence of cyber defender’s deceptive
behaviors on attacker’s decision making and cyber defense effects in different game
stages.

Additionally, in our model we define the game object as SDN controller and
network host. The actual situation of network attack and defense is that when cyber
attacker is limited by its own technology and knows less about the related information
of cyber defender. It is wise to use exploratory attacks, such as port scanning to collect
further defense information. Correspondingly, defenders must implement cyber defense
in a targeted manner to ensure cyber security. From this perspective, attack and defense
confrontation is a multi-round process. Therefore, dynamic defense mechanism for
SDN can be described as an interaction process between SDN controller and network
host through various individual strategies, and making a decision that how cyber
defender adapts the optimal defense strategies based on the attacker’s potential actions
and their expected defense utility.

SDN controller

IP=17.0.0.2
IP=10.0.0.2

Public
  network

monitoring 
timer

IP=10.0.0.1

protected object
(Key nodes)

Normally accessed data
Network host

SDN switch

multistage 
dynamic game

Abnormally accessed data

Defensive
purpose

Deception 
purpose

IP=16.0.0.3

Deception target

Fig. 1. Dynamic defense mechanism for SDN based on game theory
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3 Multistage Dynamic Game for SDN

Attack and defense confrontation in SDN environment is non-cooperative, incomplete
information, multistage and dynamic game process. In our model and analysis, we use
the well-known definitions of improved Bayesian game, imperfect information,
incomplete information, information sets, and perfect Bayesian equilibrium. We define
cyber attackers as the leader of the game, similarly, cyber defenders as the follower of
the game. We define defenders for two purposes, namely defensive purposes and
deceptive purposes, which differentiate our model from traditional game theory models.
In particular, we differentiate between a player’s perception of possible motivations,
deceptions, and payoffs of the game.

3.1 Formal Definition of Multistage Dynamic Game

We first give a formal definition of our multistage dynamic game for SDN (MDGS), in
the following, all sets are finite.

Definition 1. MDGS ¼ S;N;H; T ;U;P; eP� �
consists of the following:

S is the number of stages of MDGS, S ¼ 1; 2; . . .; nf g. The current stage of MDGS
is represented by MDGS(S), which is determined by the monitoring timer deployed on
the SDN controller.

N ¼ NA;NDð Þ is a set of players, NA indicates the cyber attacker, and the same
notation is used for ND indicated the cyber defender.

H ¼ HA;HDð Þ is a type space of attacker and defender, according to different
attack capabilities, attackers can be divided into several types as HA ¼ h1; h2; . . .; hhð Þ.
The probability distribution of HA is the common knowledge of attackers and
defenders, and the type of the defender is HD ¼ ðgÞ.

T ¼ TA; TDð Þ is a strategy space of attackers and defenders, and attack strategy
profile is a tuple expressed as TA ¼ a1; a2; . . .; aif g, similarly as TD ¼ d1; d2; . . .; dj

� �
.

A strategy is a complete description of one or more moves to take in all contingencies.
A tuple U ¼ UA;UDð Þ of utility functions for each player. The utility Ui hð Þ is a

numerical score representing the payoff to player i of the type of h.
P is the prior beliefs of attacker’s type, P ¼ ðp1; p2; . . .; phÞ represents the defen-

der’s initial judgment on the attacker’s type h.
eP is the posterior beliefs of attacker’s type, eP ¼ eP hhjaið Þ represents the defender’s

correction for the prior beliefs P by using Bayesian rule after observing the attacker’s
strategy ai.

3.2 Strategy Benefits Quantization

Strategy benefits quantization of cyber attacker and cyber defender is the key to realize
MDGS. Whether the quantization is reasonable directly affects the effect of cyber
defense [21]. We first propose the following quantitative method for cyber attackers.
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Definition 2. AR (Attack Reward) is the income of cyber attacker after a successful
attack. It is generally expressed by the system losses, that is, sum of SDD (System
Direct Damage) and SID (System Indirect Damage).

We define SDD as ID (Integrity Damage), AD (Availability Damage), and CD
(Confidentiality Damage), drawing on three basic attributes of information security.
Therefore, SDD can be expressed as Eq. (1).

SDD ¼ k � w1 � IDþw2 � ADþw3 � CDð Þ ð1Þ

The coefficient k is a numerical score between 0 and 10, representing the danger
degree of a certain type of attack strategy, which can be determined according to the
attack classification method of MIT Lincoln Laboratory [22]. w1;w2 and w3 respec-
tively represent weighting preferences of different networks for ID, AD and CD, and
w1 þw2 þw3 ¼ 1.

SID is a numerical score between 0 and 100, representing the system indirect
damage after a certain attack strategy, such as life length reduced degradation of
performance and quality of service declined.

Definition 3. AC (Attack Cost) is a numerical score between 0 and 100, representing
the cost of cyber attacker using an attack strategy. It usually measured by economics,
time, hardware and software resources, human resources, and professional knowledge
required to discover and invade system. For different levels of attackers, the cost of
attacking the same network is different. The higher the level, the lower the attack cost.

We now define the following quantitative method as an extension of regular
method that allows us to formulate deception in the framework of game theory.
Specifically, we introduce the concept of Cyber Deception Reward (CDR) to
demonstrate the importance of deceptive strategies for cyber defenders.

Definition 4. DR (Defense Reward) is the income of cyber defender after taking a
defense strategy against a certain attack, including DDR (Direct Defense Reward) and
CDR (Cyber Deception Reward). Therefore, a formal definition of DR can be
expressed as Eq. (2).

DR ¼ DDRþCDR ¼ gðh; a; dÞ � SDDþ lðh; a; dÞ � SIDþCDR ð2Þ

We define DDR as the system losses reduced by the implementation of a defense
strategy, that is, the reduction of SDD and SID.CDR defined an income that cyber
defender deploying deceptive strategies, such as honeypots to detect an attacker and
obtain information on the attacker’s intentions, manners and actions. Moreover, the
attacker observes a system without being able to detect its real type and is uncertain
whether to attempt to compromise the system. CDR can be divided into three levels
according to the degree of deception, 1st-CDR belongs to 0 and 100, 2st-CDR belongs
to 100 and 200, and 3st-CDR belongs to 200 and 300.

Defense strategy may be effective against a certain attack strategy, but it is invalid
for other attack strategies. Therefore, we define gðh; a; dÞ and lðh; a; dÞ as the effec-
tiveness that defender’s strategy d against attacker’s strategy a when attacker’s type is
h, where 0� gðh; a; dÞ� 1 and 0� lðh; a; dÞ� 1.
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Definition 5. DC (Defense Cost) represents the cost that cyber defender deploying a
defense strategy, sum of OC (Operation Cost) and NC (Negative Cost). It can be
expressed as Eq. (3).

DC ¼ OCþNC ¼ OCþ jðh; a; dÞ � AD ð3Þ

OC represents the cost of cyber defender deploying a defense strategy. It usually
quantified by the occupancy rate of resources such as CPU, memory, storage, etc., and
the average operation time. We define NC as the system availability is affected, such as
the failure of the system to work properly or the quality of other services declined due
to the implementation of the defense strategy. The coefficient jðh; a; dÞ is the degree of
negative impact that defender’s strategy d against attacker’s strategy a when attacker’s
type is h, where 0� jðh; a; dÞ� 1.

Relying on expert experience and scoring, we define quantified scores for SDD and
OC in different level, as shown in Tables 1 and 2.

As defined and analyzed above, the payoff functions for cyber attacker can be
expressed as Eq. (4).

UAðhh; ai; djÞ ¼ ARðh;iÞ � ACðh;iÞ � DRðh;i;jÞ ¼ ðSDDðh;iÞ þ SIDðh;iÞÞ
�ACðh;iÞ � ðgðhh; ai; djÞ � SDDðh;iÞ þ lðhh; ai; djÞ � SIDðh;iÞÞ � CDRðh;jÞ

ð4Þ

Table 1. Quantified scores for SDD.

Different threat degrees of attack strategy Quantified
scores
ID AD CD

5st-level: Deadly threat to system 80 90 90
4st-level: Major threat to system 60 70 80
3st-level: Certain threat to system 40 50 60
2st-level: Mild threat to system 20 30 40
1st-level: Weakly threat to system 10 10 20

Table 2. Quantified scores for OC.

Different impact levels of defense strategy Quantified scores

5st-level: Deadly impact on system 90
4st-level: Major impact on system 70
3st-level: Certain impact on system 50
2st-level: Mild impact on system 30
1st-level: Weakly impact on system 10
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Similarly, the payoff functions for cyber attacker can be expressed as Eq. (5).

UDðhh; ai; djÞ ¼ DRðh;i;jÞ � DCðh;i;jÞ � ARðh;iÞ ¼ ðgðhh; ai; djÞ � SDDðh;iÞ
þ lðhh; ai; djÞ � SIDðh;iÞÞ þCDRðh;jÞ � ðOCðh;jÞ þ jðhh; ai; djÞ � ADðh;iÞÞ � ARðh;iÞ

ð5Þ

3.3 Game Rules

In MDGS we use the well-known theory of incomplete information and dynamic game.
The dynamic game needs to know the game sequence of each player [23]. Harsanyi
transformation is an effective method to simulate and deal with such incomplete
information and dynamic game problems, by introducing a virtual participant “Nature”,
“Nature “ first gives the attack type a prior belief, which can be obtained through
historical experience or the average distribution. The defender constantly corrects the
beliefs of attacker’s type by observing the attack behaviors, for adjusting defense
strategies. Briefly, game rules of our model are as following:

First, “Nature” selects a type hh from the attacker’s type space HA with a certain
probability, where hh 2 HA. The attacker NA knows hh, while the defender does not
know, it has the prior belief of the attacker’s type hh.

Second, attacker NA selects ai as the attack strategy from its strategy space TA after
observing the type hh.

Third, when defender ND observes the strategy ai adopted by NA, it will first apply
the Bayesian rule to get the posterior belief from prior belief, and then choose a defense
strategy dj from its strategy space TD.

Fourth, utilities of both attacker and defender are calculated by UAðhh; ai; djÞ and
UDðhh; ai; djÞ.

Fifth, the condition for terminating the game is that the defender or attacker has
reached their target.

3.4 Existence of Equilibrium Solutions

Before solving the equilibrium solution of game, it is first asserted that there must be an
equilibrium solution in our model.

Theorem 1. The MDGS must have an equilibrium solution.
Proving as following: In MDGS, since N ¼ NA;NDð Þ, H ¼ HA;HDð Þ and T ¼

TA; TDð Þ are both finite sets, we can draw a conclusion that MDGS is a finite game.
Fudenberg and Selten’s research has shown that in any finite game, there is at least one
equilibrium solution, possibly including a hybrid strategy. Therefore, Theorem 1 holds.

3.5 Perfect Bayesian Equilibrium Algorithm

The MDGS we formulated is an incomplete information dynamic game, and its
equilibrium solution EQ ¼ ða�ðhhÞ; d�ðaiÞ; ~p�ðhhjaiÞÞ is refined perfect Bayesian
equilibrium. We now proposed the perfect Bayesian equilibrium algorithm, defined in
the following manner.
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Step 1. Initializing the posterior belief ~pðhhjaiÞ on each information set based on
historical experience.

Step 2. Calculating the defender’s optimal defense strategy d�ðaiÞ. When defender
observes the strategy ai adopted by attacker, based on posterior belief ~pðhhjaiÞ, it will
choose an optimal defense strategy d�ðaiÞ to maximize the expected utility UD brought
by the game. The formula is defined as Eq. (6).

d�ðaiÞ ¼ argmax
d2TD

X
h2HA

~pðhhjaiÞUDðhh; ai; djÞ ð6Þ

Step 3. Calculating the attacker’s optimal attack strategy a�ðhhÞ. The attacker h
foresees that the defender will make an optimal defense strategy d�ðaiÞ based on its
own actions, so it can maximize his game payoff expectation UA brought by the game,
adopting an optimal attack strategy a�ðhhÞ. The formula is defined as Eq. (7).

a�ðhhÞ ¼ argmax
a2TA

UAðhh; a�ðhhÞ; d�ðaiÞÞ ð7Þ

Step 4. Calculating the perfect Bayesian equilibrium. Using the subgame Nash
Equilibrium calculated in step 2 and step 3, the posterior belief ~p�ðhhjaiÞ can be
calculated by Bayesian rule based on priori belief pi ¼ pðhiÞ. If ~p�ðhhjaiÞ and ~pðhhjaiÞ
are not contradictory. Therefore, perfect Bayesian equilibrium solution can be named as
Eq. (8).

EQ ¼ ða�ðhhÞ; d�ðaiÞ; ~p�ðhhjaiÞÞ ð8Þ

4 Example Scenario and Analysis

MDGS is carried out in a sequential manner, with considering the incomplete infor-
mation and maximizing payoff in the whole game process. The optimal strategy in each
stage of the game is not always the same, but is updated with the posterior belief. In
comparison, this is more in line with the actual network attack and defense scenarios.
Furthermore, we used the XX virus attack mode as an example for experimental
verification and analysis.

4.1 Example Scenario

As an illustrative example, consider a SDN scenario in which the defender has pre-
deployed honeypots on the network, and the attacker has just initiated a port scan of a
particular system. They believe the system is a server containing possibly valuable
information, and would like to break in to it. For purposes of simplicity, the illustrative
scenario in this paper assumes the cyber attacker who has two types of high level and
low level, and the XX virus is used to invade the target network, which can be
abstracted as shown in Fig. 2.
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When the defender observes the attacker’s actions, there are two actions depending
on the defense purpose, one is to directly limit packets form the ports, and the other is
to deploy the honeypot to deceive the attacker [22].

4.2 Relevant Data Calculation

Referring to the existing literature [13, 19] and the strategy benefits quantification
method in Sect. 3.2, the relevant data in experimental scenario are shown in Tables 3,
4, 5 and 6, in where the value of bold mark is the relevant parameter of the high level
attacker, and the others are relevant parameter of the low level attacker.

A
attack

D
defense

A
attack

D
defense

2d 2a A
attack

3d 3a

1d0a
1a

1a

2a

3a

0a

Random Port scan

Crack weak password

Upload virus

Do nothing

Attack strategies or actions set

2d

3d

Block adversary IP using SDN

Launch honeypot server using SDN

Modify the honeypot 2 and 3 ports as weak passwords

Defense strategies or actions set

End

1d

N
0a 0a

Fig. 2. A possible experimental scenario for SDN

Table 3. Reward and cost of attack strategy under different attacker’s type.

Strategy k ID AD CD SDD SID AR AC

a1 (4,3) (10,10) (10,10) (20,20) (48,36) (5,5) (53,41) (40,50)
a2 (6,5) (20,20) (50,50) (80,80) (264,220) (15,10) (279,230) (60,75)
a3 (10,9) (40,40) (90,90) (90,90) (700,630) (50,40) (750,670) (50,80)

Where w1 ¼ 0:4, w2 ¼ 0:4, w3 ¼ 0:2

Table 4. Values of gðh; a; dÞ, lðh; a; dÞ and jðh; a; dÞ under different attacker’s type.
d1 d2 d3

a1 (0.8,0.8,0.4) (0.9,0.9,0.3) (0.7,0.7,0.3) (0.8,0.8,0.2) (0.2,0.2,0.3) (0.3,0.3,0.2)
a2 (0.3,0.3,0.4) (0.3,0.3,0.4) (0.7,0.7,0.3) (0.9,0.9,0.3) (0.4,0.4,0.4) (0.5,0.5,0.3)
a3 (0.3,0.3,0.45) (0.3,0.3,0.4) (0.4,0.3,0.4) (0.6,0.6,0.35) (0.7,0.7,0.4) (0.9,0.9,0.3)

Table 5. Values of CDR and OC under different attacker’s type.

Defense strategy Cyber Deception Reward (CDR) Operation Cost (OC)

d1 (0,0) (35,35)
d2 (180,150) (30,30)
d3 (300,260) (30,30)
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As defined and analyzed above, Payoff for both attacker and defender is obtained,
as shown in Eq. (9). We can find that the sum of payment of attacker and defender is
negative, meaning that each player needs to pay the price regardless of the outcome of
network attack and defense confrontation, this is in line with the basic theory of
information security.

d1 d2 d3
a1 ð � 29:4;� 49:6Þð�45:9;�42:1Þ ð � 24:1;� 48:9Þð�41:8;�40:2Þ ð2:4;� 75:4Þð�21:3;�60:7Þ
a2 ð � 44:7;� 70:3Þð�64;�66Þ ð � 156:3; 51:3Þð�202; 82Þ ð � 72:6;� 37:4Þð�110;�10Þ
a3 ð175;� 305Þð129;�280Þ ð105;� 221Þð�72;�69:5Þ ð � 125; 9Þð�273; 136Þ

ð9Þ

4.3 Equilibrium Solution and Defense Decision

(1) When S ¼ 1, it is the first game stage, namely MDGS (1).
The game tree of the first stage is obtained by using the Harsanyi transformation as
shown in Fig. 3. Let P ¼ ðpðh1Þ; pðh2ÞÞ ¼ ð0:5; 0:5Þ be the prior belief of attacker’s
type selected by player “Nature”. pðaijhhÞ representing the probability of using dif-
ferent attack strategies under different attacker’s type, which can be obtained through
historical experience and statistics, then calculating the posterior belief on different
sets of information as ~pðhhjaiÞ. When defender observes the attack strategy a1, the
posterior belief of attacker’s type ðh1; h2Þ is ð~p1; 1� ~p1Þ. Similarly as the posterior
beliefs ð~p2; 1� ~p2Þ and ð~p3; 1� ~p3Þ.

Nature

High level attacker Low level attacker

a2 a3a1

d1 d2 d3 d1 d2 d3 d1 d2 d3

a2 a3a1

d1 d2 d3 d1 d2 d3 d1 d2 d3

1
p

2
p

3
p

1
1 p

2
1 p

3
1 p

-29.4
-49.6

1
( ) 0.5p

2
( ) 0.5p

-24.1
-48.9

2.4
-75.4

-44.7
-70.3

-156.3
51.3

-72.6
-37.4

175
-305

105
-221

-125
9

-45.9
-42.1

-41.8
-40.2

-21.3
-60.7

-64
-66

-202
82

-110
-10

129
-280

-72
-69.5

-273
136

Fig. 3. Game tree of the first stage.
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Step 1. The defender’s optimal defense strategy set is calculated by the Eq. (10).

max
d2TD

X
h2HA

~pðhhjaiÞUDðhh; ai; djÞ ð10Þ

When a ¼ a1,

max
ðd1;d2;d3Þ

P
h1;h2

~pðhhja1ÞUDðhh; a1; djÞ ¼
maxf~pðh1ja1ÞUDðh1; a1; d1Þþ ~pðh2ja1ÞUDðh2; a1; d1Þ;
~pðh1ja1ÞUDðh1; a1; d2Þþ ~pðh2ja1ÞUDðh2; a1; d2Þ;
~pðh1ja1ÞUDðh1; a1; d3Þþ ~pðh2ja1ÞUDðh2; a1; d3Þg
¼ maxf~p1 � UDðh1; a1; d1Þþ ð1� ~p1Þ � UDðh2; a1; d1Þ; ~p1 � UDðh1; a1; d2Þ
þ ð1� ~p1Þ � UDðh2; a1; d2Þ; ~p1 � UDðh1; a1; d3Þþ ð1� ~p1Þ � UDðh2; a1; d3Þg
¼ maxf�7:5 � ~p1 � 42:1;�8:7 � ~p1 � 40:2;�14:7 � ~p1 � 60:7g

ð11Þ

Where ~p1 ¼ ~pðh1ja1Þ ¼ ~pðh1Þ�~pða1jh1Þ
~pðh1Þ�~pða1jh1Þþ ~pðh2Þ�~pða1jh2Þ ¼ 0:48, then the optimal defense

strategy d�ða1Þ ¼ d2 can be obtained by calculation. Similarly, when a ¼ a2 and
~p2 ¼ ~pðh1ja2Þ ¼ 0:38, the optimal defense strategy d�ða2Þ ¼ d2.when a ¼ a3 and
~p3 ¼ ~pðh1ja3Þ ¼ 0:56, the optimal defense strategy d�ða3Þ ¼ d3.

Step 2. The attacker’s optimal attack strategy set is calculated by the Eq. (12).

max
a2TA

UAðhh; aðhhÞ; d�ðaiÞÞ ð12Þ

When h ¼ h1,

max
a1;a2;a3

UAðh1; aðh1Þ; d�ðaiÞÞ ¼
maxfUAðh1; a1ðh1Þ; d�ða1ÞÞ;UAðh1; a2ðh1Þ; d�ða2ÞÞ;UAðh1; a3ðh1Þ; d�ða3ÞÞg
¼ maxfUAðh1; a1ðh1Þ; d2Þ;UAðh1; a2ðh1Þ; d2Þ;UAðh1; a3ðh1Þ; d3Þg

ð13Þ

Then the optimal attack strategy a�ðh1Þ ¼ a1. Similarly, when h ¼ h2, the optimal
attack strategy a�ðh2Þ ¼ a1.

Step 3. The perfect Bayesian equilibrium is calculated by the Eq. (14).

ða�ðhhÞ; d�ðaiÞ; ~p�ðhhjaiÞÞ ð14Þ

Based on the sub-game Nash Equilibrium calculated in step 1 and step 2, the
posterior belief ~p�ðhhjaiÞ can be obtained by Bayesian rule. Therefore, the perfect
Bayesian equilibrium solution of first stage EQ1 ¼ ða1; a1Þ; ðd2; d2Þ; ~p1 ¼ 0:48; ~p2 ¼f
0:38; ~p3 ¼ 0:56g is a mixed equilibrium, indicating that when defender observes the
attack strategy a1, the posterior belief of attacker’s type ðh1; h2Þ is ð~p1; 1� ~p1Þ ¼
ð0:48; 0:52Þ. The significance of this for the defender is to improve the probability
inference that the attacker is a low level type.

Furthermore, we can explain the meaning of this equilibrium solution in two
aspects: for attackers, since there is less information at the beginning of cyber-attack,
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no matter what type of attacker, the optimal attack strategy is usually adopting an
exploratory attack, such as port scanning. For defenders, we consider the deception
purpose, when observing the attacker has just initiated a port scan of the particular
system, the optimal defense strategy may not to block adversary IP, but chooses to
launch honeypot server using SDN for the purpose of deception.

(2) When S ¼ 2, it is the second game stage, namely MDGS (2).
In our model for SDN environment, the monitoring timer is responsible for switching
between different game stages. We will use the posterior belief of attacker’s type in
the first stage as the prior belief of attacker’s type in second stage, that is pðh1Þ ¼ 0:48
and pðh2Þ ¼ 0:52. The game tree of second stage is revised to Fig. 4.

Similarly, we can get the perfect Bayesian equilibrium solution of second stage
EQ2 ¼ ða1; a2Þ; ðd2; d2Þ; ~p1 ¼ 0:46; ~p2 ¼ 0:37; ~p3 ¼ 0:54f g, which is separation
equilibrium, indicating that when defender observes the attack strategy a1, the optimal
defense strategy is d2 and the posterior belief of attacker’s type ðh1; h2Þ is
ð~p1; 1� ~p1Þ ¼ ð0:46; 0:54Þ. However, if defender observes the attack strategy a2, the
optimal defense strategy is d2 and the posterior belief of attacker’s type ðh1; h2Þ is
ð~p1; 1� ~p1Þ ¼ ð0:37; 0:63Þ. The significance of this for the defender is to improve the
probability inference that the attacker is a low level type. In summary, the defender
infers that the probability of the attacker being a low level type is further increased.

(3) Subsequent stage game.
Updating the value of pðh1Þ and pðh2Þ by using the posterior belief of attacker’s type
in the previous stage, the equilibrium solution of the stage will be obtained. This
process will be repeated until the end of the game that the defender successfully tricks
the attacker into the honeypot to protect the SDN key nodes, or the attacker was
confused to achieve the target.

Defender

High level attacker Low level attacker

a2 a3a1

d1 d2 d3 d1 d2 d3 d1 d2 d3
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1
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Fig. 4. Game tree of the second stage
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5 Conclusion and Future Work

In this work, we demonstrate a straightforward extension of cyber defense model
through the use of game theory where the defender becomes aware of the identity of the
attacker through their interaction with deception strategy, such as a honeypot and is
therefore able to manipulate the true payoffs and game outcome using deception. Our
work combines aspects of SDN, cyber security research, network-based deception
techniques, and game theory. The main conclusions are as following:

The multistage dynamic game for SDN can automatically react to malicious
behavior and evolve over time as attacks change, which allows the cyber defenders
without to invest all the resources to deal with a potential attack. From a game per-
spective, this achieves a balance between the risks and investments of cyber security
and is an effective way to make appropriate defensive decisions with limited resources.

Cyber defense considering deception strategy can add more uncertainty by masking
true information. This further impacts the decision-making of attackers, causing them
to waste both time and effort. Therefore, the use of deception for cyber defense pro-
vides the promise of re-balancing asymmetric disadvantage in the process of network
attack.

The effectiveness of the strategy benefits quantization, and the definition of payoff
function have a crucial impact on the true payoffs and game outcome, which directly
affect the decision-making of the both attacker and defender.

We assert that the multistage dynamic game for SDN presented in this paper can
realize the adaptive adjustment of defense strategy in response to attack behavior at
different times, and apply to more complicated cyber defense scenarios. We plan to
explore the potential of this model more thoroughly in future work. Furthermore, our
current work uses illustrative examples of attacker and defender utility and game
structure. In future work we intend to involve a richer model of player behaviors and
payoffs, including the development of a learning model for attacker behaviors and
utility.
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Abstract. Since the introduction of the Android mobile platform, the
state of mobile malware has evolved in both attack sophistication and its
ability to evade detection. Given the right combination of elements, the
detection of malicious applications may be found among those that pose
no threat, yet the threats that exist across these malware types reveal
distinguishable attack characteristics. This paper investigates the benign
and attacking characteristics. By plotting complex features into dendro-
grams, we propose a novel approach to visually distinguish Android apps.
We visualize the complicated relationship and evaluate the effect of dif-
ferent text mining methods. Specifically, we employ machine learning
techniques including feature reduction using Principle Component Anal-
ysis, and the Random Forest classifier, to compare eight different models.
Using the Drebin dataset, we achieved an average accuracy of 95.83%.

Keywords: Artificial intelligence · Cyber security ·
Data driven cyber security · Machine learning · Malware detection

1 Introduction

The popularity of the Android platform, the ability of malware to easily find its
way onto devices and other related security issues have been numerously reported
[5,16]. Strikingly, more than 3 times as many applications existed in 2015 com-
pared to 2014 which contained malware, a 230% increase [24]. A widespread
release of remote access tools (RATs) were also observed in 2016 [18], and a
significant majority share of threats for 2016 were dominated by ransomware
types [13]. The rate and trends of Android malware are not subsiding; and the
cycle between attacker release to mitigating techniques or research observation
is still a game of catchup [28]. Another observable trend in the distribution of
new malware is the increase of payload, or attack sophistication [17] and evolu-
tion in detection evasion [19], besides the introduction of some new attack types,
i.e. ransomware, fundamental payload principles remain the same.
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The approach typically towards malware detection follows the identification
of key features and uses a trained model to determine the nature of samples
[23,30]. One noteworthy drawback is the dimensionality of the feature space
which may grow too large, becoming unruly and over-saturated [22]. Further-
more, the process of triage is one that is left to the user, which in Bring Your
Own Device (BYOD) domains may introduce threats into corporate or sensitive
environments [16]. We therefore can assume that within these domains some
precautionary actions would be initiated so that device access is granted by the
ability to monitor, or assess the applications on user end devices, extracting the
underlying structural elements of applications for identification, much like the
original Drebin approach [3]. With the issue of obfuscation remaining prevalent
and techniques sophisticated [1,6], we consider that features can be grouped
according to different characteristics of malware behaviour [1]. Another noted
issue is the aspect of providing a rapid response post-detection [22], with the
time between malware exploit identification to patch a lengthy process from the
path of Google to manufacturer to user [25].

The threat of zero-day, or undetected vulnerabilities and attacks remains an
open issue for discussion. The predominate methods for malware classification
is of a binary nature, identifying benign or malicious samples. To the best of
our knowledge, this visualization-focused approach is novel for Android malware
research and we seek in understanding the following research questions: (1) What
is the influence of text indexing and sparsity may have? (2) Does Principle
Component Analysis (PCA) effectively reduce the complexity and size of the
feature space? We see this work as the starting point in addressing the discussed
through a data-driven approach, in which the action of security defenses may be
better organized or automated with elements of intrusion detection. This paper
has the following key contributions:

1. We propose a data-driven malware analysis framework with a strong emphasis
on visualization. By using dendrograms, we provide human analysts with
instantaneous and intuitive insights of distance relationship deeply embedded
in sparse matrices. This novel approach provides greater visual feedback and
explainability to security professionals regarding the why of a classification.

2. We find a significant difference of classification accuracy due to various set-
tings of text mining methods. Such methods are overlooked in the context of
malware analysis. However, these text-mining methods are inevitable due to
the nature of sparse data presented in the malware corpus. On the Drebin
dataset, our empirical studies achieved an average accuracy of 95.83% by
using a combination of Principal Component Analysis and Document Term
Matrix in the full feature space. This combination out performs seven other
text mining, sparsity and feature space reduction combinations, producing
comparable results to [3] and [31] based on text mining alone.

The remaining sections are ordered as follows: Sect. 2 presents recent publi-
cations on malware analysis and summarizes the research gaps; Sect. 3 presents
our data-driven approach with the emphasis on visualization; Sect. 4 provides
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the results obtained from the well-known Drebin dataset [3] with discussions;
Sect. 6 concludes the paper.

2 Related Work

Unlike the other fields of study, the landscape of Android mobile malware does
not contain an impartial or current representation dataset for researchers. The
environment is rapidly changing and the malware itself is evolving very quickly.
Many approaches are seen to better extend the ability of classifying benign
or malicious applications, whilst lowering the risk of incorrect identification.
Similarities in achieving this objective are shared with the approach of binary
benign or malicious and/or multi-class family classification, the use of traditional
machine learning approaches or contributing new and novel methods. Encapsu-
lating many of these approaches is the Drebin Android malware dataset that
was shared with the research community in 2012 [3]. According to Arp et al. [3],
Support Vector Machine (SVM) was used with an overall accuracy of detection
at 94%, and family-type detection of each of the top 20 sized malicious families
at 93%. Furthermore, this contribution developed an application providing anal-
ysis with feedback to users regarding the natures of detected applications and
features. Utilizing Random Forest (RF), Zhu et al. [31] presented FeatureSmith,
training three classifiers of varying subsets of the Drebin dataset. Conversely to
Drebin using all 8 features, FeatureSmith reduced the feature category to three:
API, permission and intents. An accuracy of 92.5% was achieved with a false
positive rate of 1%. A semantic network was constructed for feature selection
based on literature [31].

Hou et al. [12] used APIs and supporting information from their code block or
method association etc., through a meta-path multi-kernel approach using SVM.
The approach constructed a similarity amongst samples achieving an accuracy
of 98.6% [12]. Yuan et al. proposed DroidDetector for online deep learning com-
bining both static and dynamic feature analysis achieving a 96.76% accuracy
[29]. Online learning was continued with the framework named CASANDRA
through novel graph kernel functions in behaviour identification and dependence
graphs for context information. An accuracy of 89.92% was achieved for through
the batch-training method [19]. For more up-to-date attack vectors, Maiorca
et al. presented R-PackDroid concerned with ransomware [17]. Sole use of APIs
and additional information were used with RF. While evaluating known and
zero-day risks, Grace et al. invented RiskRanker aimed to measure the risk of an
potential application for the threat of zero-day exploits. Applications are cate-
gorised based on a threat level risk that they may belong to a category of attack
by firstly comparing the signatures, function call graphs, and then analysis of
code loading and encryption functionality. While distantly similar in theme by
associating the surrounding risk of an attack, focuses mainly on root-exploits
for high risk applications and it is not concerned with the elements that define
a given attack class [9]. A common drawback among these works is the lack of
visualization that is essential for synthesizing knowledge. Analysis of the datasets
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is lacking, focusing on classification alone. Therefore we seek to obtain deeper
knowledge surrounding Android malware.

The success or failure of a classifier is very much dependant on the quality
of data used, with as best representation of the challenges ultimately see greater
success [4]. Suarez-Tangil et al. [22] used semantic and statistical approaches
titled DENDROID makes use of statistical analysis based on code semantic
structures for the identification of Android malware families. Similar to our
visualization, DENDROID makes use of distance measurements and hierarchi-
cal clustering to enable adaptation of the Vector Space Model for identification
and evolution tracking [22]. Feng et al. [7] used a semantic based approach for
static analysis in detecting malware and their family association. Analysis of
data and control flows is linked with a specification language to determine new
applications with an overall detection of 90% across many family types [7].

Wei et al. [26] sought to identify required permissions of an application based
on the description given, like Drebin and FeatureSmith it too seeks to confer
to uneducated users about the intent of a given application and the expected
requested permissions, achieving an accuracy as high as 87%. A training set it
used to build a relationship between applications and extracted keywords [26].
Like these approaches, most of the reviewed work fails to mention if at all the
process behind their text mining steps. Therefore there is no suitable evaluation
for the combination text mining influences for Android malware, we propose an
empirical study to explicitly compare.

We can infer from the literature that features remain a powerful element to
the aiding of malware detection. Furthermore we can see that overtime the data
itself shifts with the evolution of new malware from the template to the sibling
versions. The use of machine learning aids the discovery process, reducing time
and effort compared to manual investigation. Regardless of the change in data,
the process of our work, visualization, feature analysis, text mining comparisons
are complemented by classification. Seeking new views of the data allows us to
investigate unforeseen knowledge that classification helps support.

3 A Data-Driven Approach with Visualization Focus

3.1 System Overview

Typically within detection attempts, supervised learning employs the use of a
categorical, or labelled variable which allows a classifier to establish a point
of reference in building its model for classification. Any new samples that are
interpreted are then matched. Unsupervised is not reliant on any labelled data, as
one does not exist. In a sense of its true purpose, it groups, or classifies samples on
its relationship or closeness to other samples [27]. A supervised training approach
is employed with an unsupervised method for classification. Figure 1 presents
our overall framework. Our framework can be used to classify malware samples
through three phrases—visualization, text mining analysis, and classification
evaluation.
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Fig. 1. Process Diagram: Visualization sees a distance matrix constructed and then
visualized through a circularized dendrogram to enhance representation. Following this
stage a corpus is created of APIs, permissions, and intents. Classification is compared
for 8 models consisting of multiple combinations of indexing, sparsity and with or
without the use of PCA. Random forest is used for classification.

Table 1 lists the 8 different text mining models we will investigate. We observe
8 different total combinations in combining indexing, sparsity and the use of
PCA. The additional PCA comparison is included due to its maturity, and
proven effectiveness to reduce complex feature spaces. The accuracy of these
will be compared with the RF classifier. RF is selected partly due to its suc-
cessful use with the Drebin dataset in [31], and the explainability of results.
Table 1 provides an ID for each model, the approach elements and the factor
combination that it contains.

Table 1. Classification approaches

Model Approach in abbreviation Technical methods

1 DTM N-S DTM matrix, full feature space

2 Weighted N-S W-TF matrix, full feature space

3 Weighted SPARSE W-TF matrix, lowest featuring 0.5% feature space removed

4 DTM SPARSE DTM matrix, lowest featuring 0.5% feature space removed

5 PCA Weighted SPARSE PCA, W-TF matrix, lowest featuring 0.5% feature space removed

6 PCA DTM SPARSE PCA, DTM matrix, lowest featuring 0.5% feature space removed

7 PCA Weighted N-S PCA, W-TF matrix, full feature space

8 PCA DTM N-S PCA, DTM matrix, full feature space

3.2 Drebin Dataset

The Drebin dataset [3] is comprised of 123,453 benign and 5,560 malicious
Android applications collected between August–October 2012. Samples were
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sourced from the GooglePlay Store, Chinese and Russian equivalents, the
Android Malware Genome Project, other Android websites, blogs and known
malware forums. The original Drebin paper retrieved the inner structure of each
sample application, providing a data set of the 5560 malicious samples. All sam-
ples within the dataset are used excluding premium SMS-based applications.
This provides 129,013 benign and 5560 malicious samples. A ground truth is also
provided identifying the malicious family of the given application. This labeling
was originally conducted in the original Drebin experiment. The dataset is well
understood and accepted within the research community, and therefore selected
for use.

3.3 Labels and Features

The process of training classifiers walks a fine line, whereby the introduction of
noise may unintentionally reduce the accuracy, yet too few may choke the neces-
sary diversity to adequately distinguish good from bad. Thus machine learning
results can be linked to the quality of the data and the ability to best present
it as good representations encourage better results. Feature selections allows
removing noise from data to better enable learning [2,4]. Both the approaches in
[3] and [31] looked to filter the most appropriate features, i.e. Permissionx and
APIy. Following the approach of [31], where only API, Intent and Permission
features were considered, this approach is followed, a sample is seen in Table 2.
Unlike [3] and [31], the reduction of the feature space will not be wholly be con-
sidered, and all available features of these categories are used subject to sampling
considering the variance of samples. We aim to compare the affect of applying
either a Sparse or Non-Sparse (N-S) matrix to each approach, the sparse matrix
is set at 0.5% of less frequent terns removed.

Table 2. Dataset & Text mining: The number of unique features per element is vast
with each applications existing of many different combinations. The requirement for
evaluating various text mining approaches is apparent.

Feature category Unique entries Common examples

API 21,305 getAccounts, restartPackage, startService

Permission 18,020 READ SMS, RESTART PACKAGE, WAKE LOCK

Intent 5,747 LAUNCHER, BOOT COMPLETED, VIEW

3.4 Indexing

A well established preprocessing step in text mining is in the representation of
textual elements that are more significant to a machine [21]. For two of these
methods, we will compare the impact they may have on the classification of
benign or malicious applications. Of these, the main methods are the use of a
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term matrix or a weighted document frequency which we will consider an inverse
frequency [14]. A clear distinction can be drawn between these two methods,
where a term matrix is only concerned with the occurrence of a word in a doc-
ument, a weighted term frequency is concerned with the importance of a word
in a document, with respect to other participating documents. For enabling the
classification of textual elements we initially create a corpus or a body of words
for each of the applications used, we lower the case of words and also create a
text document, no stop words or punctuation is removed, yet special, or reserved
characters are removed.

Document Term Matrix (DTM). Text documents, or samples are read into
an M × N matrix where an occurrence of a word is marked of either existing or
not existing through binary representation. For the frequency of a given term i
in document j, term frequency is defined as:

TFji =
Ocurrance of term
Absence of term

(1)

Each word is arranged as a column, whilst each document or sample is arranged
for each row. Herein a Document Term Matrix is denoted as a DTM.

Weight by Term Frequency–Inverse Document Frequency (W-TF).
Like a Document Term Matrix in its layouts of words and samples and package
requirement, a Weight by Term Frequency–Inverse Document Frequency matrix
provides further steps than binary representation. For term frequency, tf i,j , fre-
quency occurrence is counted, ni,j , for a term ti in a document dj . In need of
normalization, the term frequency tf i,j is divided by Σknk,j . Inverse document
frequency (idf) for a term ti is defined as:

idf i = log2
|D|

|{d | ti ∈ d}| (2)

where |D| denotes the document totals, and |{d | ti ∈ d}| is the number of
documents where the term ti is represented. We can now define Term frequency–
inverse document frequency as tf i,j · idf i. Herein a Weight by Term Frequency–
Inverse Document Frequency is denoted as a W-TF.

3.5 Visualization

The method for visualizing the hierarchical clustering of the distance matrix is
done through the form of circularized dendrograms [8,11]. The method for using
a distance matrix with clustering, and a dendrogram was shown positively for [22]
in displaying the relationship and evolution of malware families, this approach is
complementary in displaying the closeness samples. We have particularly chosen
this circularized method for its ability to clearly display the cluster relationships,
the ordering of samples in a way that is distinct whist retaining independence
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between interpretation. In interpreting the figures, the inner structure represents
the cluster relationship as noted by its color, starting on the right and moving
counter-clockwise vertically, whilst the outside leave represents the leaves, or
samples and their closeness to one another, with the beginning leaves furthest
from the end in similarity. The color of the leave furthermore represents their
class types.

3.6 Principal Component Analysis (PCA)

Principal component analysis (PCA) is an unsupervised machine learning tech-
nique that allows a way in which high dimension data to be represented in a
lower dimensional format. A large data space of variables which may share a rela-
tionship are then lineally uncorrelated into principal components. The resulting
number of principle components is either equal or less than the original amount
of observations. The process of this representation is done so that the first prin-
ciple component holds the most variance in the data and so forth down for the
second having the second most variance etc, orthogonal to the proceeding com-
ponent [20]. We define xi as a set of n column vectors of dimension D and the
covariance matrix Cx respective of the data set as

Cx =
n∑

i=1

(xi − µx)(xi − µx)T (3)

where µx is the mean of the dataset:

µx =
1
n

N∑

i=1

xi (4)

Principle components p are the eigenvectors ei corresponding to the p largest
eigenvalues, we choose p as p < D. Eigenvectors of C can be found by using sin-
gular value decomposition. The direction of variation is determined through the
dominant eigenvectors, which is used in projecting the data into a p dimensional
space, we can define this as:

W = [µ1,µ2, . . . ,µd] (5)

Thus, y = WTx is defined as the projection of vector x and the corresponding
covariance matrix Cy of the vectors yi is:

Cy = WTCxW (6)

The matrix of W maximizes the determinant of Cy for a given p.

3.7 Random Forest Classifier

Random Forest is mainly for classification or regression. An ensemble approach
is undertaken where multiple decision trees are constructed during the training
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of the classifier through the method of building decision trees. Depending on
the approach, the mode of classes is obtained for classification, and the mean
prediction for regression. The approach to training typically is supervised, whilst
predictions can be made through unsupervised means [15]. For training of the
algorithm, bootstrapping aggregation is applied to the tree results, where a mode
or mean is determined. The process of aggregating the tree results is applied. For
a training set X = {x1, . . . , xn} with labels Y = {y1, . . . , yn}, bagging is repeated
B times, where a random sample is chosen for replacement of the training set
and fit trees with respect to selected samples.

For b ∈ {1, . . . , B} samples and their replacement, n training samples from
(X), (Y ). We can refer to these as (Xb) and (Yb), and for the classification or
regression tree fb on (Xb), (Yb). For decision on new samples, x′ can be chosen
by averaging the resulting predictions for all trees on x′. We can summarize as:

f̂ =
1
B

B∑

b=1

f̂b(x′) (7)

As an individual tree may suffer noise influence, training several tress on varied
data allows a less influenced distribution in conjunction with aggregation. The
random forest algorithm takes this process yet also selects a random sample of
the feature space as to not rely on features that are prominent in the dataset.

4 Empirical Studies

4.1 Visualization

Distance Measurement and Hierarchical Clustering. In working towards
a deeper understanding of attack characteristics, a distance matrix was clus-
tered hierarchically where applications are placed structurally together, for the
approach to clustering malware has shown to feature heavily on key features in
recent years [10]. The result were displayed in a circularized dendrogram while
clustering was repeated for a cluster size of 2 to 12 for the Binary approach. The
clustering process requires a decision from the algorithm in which way a sub tree
should go, with tighter clusters grouped to the left. Since there are n−1 merges,
there are 2(n−1) ordering to the leaves.

Visualizing this result the leaves or outer ring of the dendrogram show the
placement of applications based on their distance from one another, whilst the
inner structure represents the trees of the clusters. Leaves that belong to a given
cluster can be associated by their placement within a determined cluster color,
Fig. 2 presents our initial result of 2 clusters for binary labeling. Reference point 2
and 3 reveals that only a small percentage of samples were separated into cluster
1, which displays a mix between classes. Point 1 is one of many sections where
structurally there is a mix of classes in cluster 2, with malicious applications
varying their positioning greatly.

Figure 3 has a cluster count increase to 7. Point 1 reveals a very early sep-
aration of initial clusters, with a larger distance up to cluster 5. Cluster 6 still
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Fig. 2. Two cluster Dendrogram, Binary data: Moving counter-clockwise from point
3, the outer leaves represent the hierarchical positioning of samples based on their
features. The interior tress display our cluster participation. We can observe that no
clear positioning exists with the similarity of applications, there is a mix of red and
blue leaves. We can also observe that only a small portion fall into cluster 1. (Color
figure online)

Fig. 3. Seven cluster Dendrogram, Binary data: The leaves will remain in the same
position, but the cluster association has developed. A large portion still falls within
cluster 7, which is a large mix of benign and malicious samples.
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encompass the majority of samples with a brief split at the end. Even with this
increase of clusters we can see that three main groups (clusters 4, 5, 6) con-
tain the majority portion. This result implies that while we have good or bad
applications, there may be a subset category where application purpose may be
linked to this positioning.

Fig. 4. Twelve cluster Dendrogram, Binary data: We see the placement of clusters have
been placed at either the beginning or end of the leaves, suggesting that samples in
cluster 8 are similar regardless of being benign or malicious

Increasing our cluster size to 12, we further see in Fig. 4 that cluster 8 (previ-
ously 6 and 2) holds the majority of samples. Furthermore, as we have increased
cluster amounts there still remains a large portion of samples that are remain
together. Point 3 identifies that of our malicious applications, we can group one
subset efficiently together, but this remains separate from the surrounding same
class samples. The clusters included in point 1 (4, 5, 6) further separates mali-
cious and benign samples, but affirms that structurally there are applications
which share similarities among both classes. The splits seen in point 2 follow the
same pattern as previous clusters, splitting early in the tree, and at then at later
stages.

4.2 Classification and Processing

Accuracy. Attack classification is compared against 8 different indexing and
processing methods, we compare the overall accuracy and the TP, FP and Preci-
sion per class. 150 samples from each class are selected into 10 different subsets
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to be used for classification. These 10 sets are used per model and resulting
confusion matrices are aggregated with each model being passed to the RF clas-
sifier, which was trained in a supervised fashion, and run as unsupervised for
classification. The overall average accuracy per model can be seen in Table 3.

Table 3. Average accuracy of the 8 models

Model Average accuracy

1 – DTM, N-S 90.33%

2 – W-TF, N-S 90.95%

3 – W-TF, S 93.00%

4 – DTM, S 93.00%

5 – PCA, W-TF, S 91.33%

6 – PCA, DTM, S 95.39%

7 – PCA, W-TF, N-S 91.89%

8 – PCA, DTM, N-S 95.83%

The impact of indexing matrix style was shown to be impartial for models
without PCA, and the use of a sparse matrix showed to increase accuracy by
roughly 2%. Weighted and DTM indexing both achieved in the 90 per cents for
accuracy for a N-S matrix, the increase was shown across both when sparsity
in considered. The same effect can be observed with the use of PCA, yet rather
with the indexing that has been applied. Weighted matrix models were seen to
perform considerably lower than those that used a DTM, which is also in line
with the models without the use of PCA. The best performing model seen in
Table 3 is model 8, incorporating PCA, DTM, N-S matrix. Achieving an average
accuracy of 95.83% and a best performing 97.78%. This result sees roughly a 5.5%
increase over the same model with the use of PCA, and the second best model,
6, gain roughly a 2.4% increase. The influence of PCA can be identified among
all measurements. Models that used a DTM saw an average 4% increase against
those with W-TF with the inclusion of PCA, while those without achieved little
improvement.

5 Discussion

5.1 Empirical Study Results

Our best performing model was comprised of DTM N-S with PCA. An average
accuracy of 95.93% was achieved. The best two models both consisted of PCA,
models 6 & 8, roughly 2% greater in accuracy. The original Drebin paper [3]
achieved an accuracy of 94% and particularly 93% for family accuracy using SVM
and a wider range of feature optimisation and training in comparison. The work
of [31] also used a refined feature selection and training and the RF classifier,
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achieving a TPR of 92.5%. This result is noteworthy as optimal API, Permission
and Intent features were selected from their semantic network. [12] used multi-
kernel learning, concentrating on APIs and their relationship among themselves,
achieving an accuracy of 98.6%. Among these approaches binary classification
was employed. The addition of PCA reveals improvement in both accuracy over
complete models. The improvement in these two classes in noteworthy as it may
come down to the authors intent that separates benign or malicious applications
with respect to the data they are requesting.

Empirically we find that several factors contribute to class accuracy, TP and
FP rates between model approaches 1–4 and models 5–8, which are distinctly
separated by the use of PCA. The use of PCA is seldom seen in conjunction
with Android malware, for this approach of models 1–4, the sparsity of a matrix
was shown to influence results most rather than the indexing type shown across
all classes. Drawing any distinction regarding the indexing format, no distinct
conclusions can be made, yet DTM is regarded stronger across classes than W-
TF. For models 5–8 we can empirically observe that several factors complement
one another. The indexing format of DTM is shown most influential across both
sparsity types, while PCA is seen to improve the classification results. From
these two models we can conclude that sparsity and to a lesser extent DTM are
most influential for non PCA models, while DTM, N-S and PCA combine best
allowing a wider feature dimension size.

5.2 Processing Techniques

Approaches to language processing techniques vary across similar works with a
combination of DTM, W-TF and adjustments to sparsity. As to the best of our
knowledge, no meaningful contributions were found in comparing approaches, we
therefore aimed to examine language processing influences in Android malware
detection. As identified, the inclusion of PCA showed significant due to the
approach of this work as the entire feature space is considered, for approaches
without the use of PCA we identified that sparsity was the majority factor.
Indexing formats were negligible for a sparse matrix as seen with models 3 and
4, there is no difference across all metrics. Whilst with a N-S matrix the use of
a DTM was complementary, out performing a W-TF matrix except for class 0
TP results.

For those methods that use PCA, we can identify that the inclusion of PCA
yielded improvements across all metrics, we further identified that the indexing
method has a greater impact compared to sparsity. A DTM was revealed as the
complementary factor, out performing a W-TF matrix, which was lower across
all classes in the used metrics. Use of PCA saw an improvement towards FPs in
class 0 which remained high for approaches without PCA.

The application of applying a sparse matrix is common among research
approaches for various reasons. The nuance of outlying features may help aid
classification or increase noise among a wide feature space as they are outlying
and rare regardless of their indication from benign or malicious applications.
Furthermore the size of features space can grow significantly large, with even
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the Drebin dataset feature space being upwards of 70 GB when used with tra-
ditional machine learning algorithms like SVM. We observe like the majority of
approaches that DTM and a sparse matrix is most complementary to processing
for Android malware.

5.3 Visualization and Feature Identification

Visualization of attack association through class labels revealed what was
expected regarding malware families, families are not uniform, nor is their func-
tionality. It is then expected that after redefining the labeling based of visu-
alization methods in Sect. 4.1 that accuracy and other metrics like FP would
improve. This point therefore helps us understand that identifying families by
similar semantic elements may results in unwanted FPs.

6 Conclusions

The attention towards malware detection is an issue that requires further inves-
tigation. The ability of new malware to evolve and remain hidden continues to
plague users and security researchers. The combination of text mining processes
and knowledge gained through visualization were evaluated within our research.
Among these, we find the combination of DTM, N-S, and PCA most significant.
Validated through the random forest classifier, an average accuracy of 95.83%
was achieved. PCA furthermore helped increase the average accuracy of roughly
5%. In particular, the dendrograms used in this paper revealed the complex
relations between features in the malware samples through visualization. Visu-
alization suggests that the behavior of malware families should be examined
further, as the samples are intermixed between benign and malicious classes.
Semantic elements and the malware’s author intention play a role in producing
similar distances between these samples. Future work intends to compare the
techniques used against, and with related work to investigate their effectiveness.
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Abstract. Machine learning is becoming increasingly popular in a vari-
ety of modern technology. However, research has demonstrated that
machine learning models are vulnerable to adversarial examples in their
inputs. Potential attacks include poisoning datasets by perturbing input
samples to mislead a machine learning model into producing undesirable
results. Such perturbations are often subtle and imperceptible from a
human’s perspective. This paper investigates two methods of verifying
the visual fidelity of image based datasets by detecting perturbations
made to the data using QR codes. In the first method, a verification
string is stored for each image in a dataset. These verification strings
can be used to determine whether an image in the dataset has been per-
turbed. In the second method, only a single verification string stored and
is used to verify whether an entire dataset is intact.

Keywords: Adversarial machine learning · Cyber security · QR code ·
Visual fidelity · Watermarking

1 Introduction

The popularity of Machine Learning (ML) has rapidly grown in recent years, and
it has made its way into a variety of modern technology. ML techniques empower
a range of diverse applications, including self-driving cars, network intrusion
detection, speech recognition, and so on. However, research has demonstrated
that ML models are vulnerable to adversarial examples in its inputs. The purpose
of this is to use malicious inputs to fool a ML model into producing erroneous
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outputs [18]. This has given rise to a research field known as adversarial machine
learning [3].

There are a number of different adversarial attacks that can be deployed
against ML, for example, an adversary can poison a dataset by perturbing sam-
ples in the training data [3]. Over the years, researchers have examined and
demonstrated the effectiveness of such poisoning attacks [2,19,23]. Adversarial
attacks are a serious threat to the success of ML in practice, as small and subtle
perturbations in the inputs can mislead a ML model into outputting incorrect
predictions. In computer vision, such perturbations are often imperceptible to
the human visual system [1].

This paper focuses on protecting image based datasets by verifying the visual
fidelity of the data. Due to the ML necessity of requiring large amounts of train-
ing data, many ML models are trained using public datasets that are freely
available online. These public datasets are often copied and distributed with-
out any mechanism for protecting the integrity of the data. This makes these
datasets vulnerable to alterations by an adversary.

To address this problem, this paper investigates two methods of verifying
the visual fidelity of image based datasets by detecting perturbations in the
data using QR codes. The advantage of the proposed methods is that a copy of
the original dataset does not have to be used for verification. In the first method,
a verification string is generated for each image in a dataset using a QR code.
The size of a verification string is much smaller than the original image, and it
can be used to verify the visual fidelity of the image. To verify image fidelity, a
verification process is used to recover a QR code for each image. If the QR code
is noisy or cannot be recovered using this verification process, this means that
the dataset has been altered.

However, since this method requires a verification string for each image in a
dataset, the storage requirement increases linearly with the number of images.
While this is fine if storage space is not an issue, it may not be an attractive solu-
tion for applications with limited storage capacity. Therefore, a second method
is proposed where only a single verification string is required, and can be used
to verify the fidelity of images in an entire dataset. The limitation of the sec-
ond method is that one cannot determine whether individual images have been
altered, but only whether the dataset is intact or has been altered from the
original.

Our Contribution. In this paper, we investigate the problem of protecting
image based ML datasets against alteration by an adversary. The proposed meth-
ods attempt to provide mechanisms for verifying the visual fidelity of images in
a dataset without the need to use the original dataset. To do this, we generate
verification strings from the visual contents of the images and associate these
with QR codes. The reason for using QR codes is due to its inherent data capac-
ity and error correction properties, which are in-built in the QR code structure.
We present two methods for creating verification strings and for verifying the
fidelity of images. The advantage of the first method, which we named the Linear
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Verification String (LVS) method, is that the fidelity of each image can be veri-
fied individually. However, this comes at the cost of higher storage requirements.
The advantage of the second method, which we named the Aggregate Verifica-
tion String (AVS) method, is that only a single verification string is required to
determine whether an entire dataset is intact. Nevertheless, it does not allow for
one to determine the visual fidelity of individual images.

2 Background

The proposed methods are based on several concepts, including the QR code
structure, the Discrete Wavelet Transform (DWT), the Arnold transform and
trapdoor permutation. This section presents a brief background to these concepts
followed by a description of related work.

2.1 Preliminaries

QR Code. The Quick Response (QR) code is a two-dimensional (2D) bar-
code, which was invented by the company Denso Wave [7]. The purpose of using
the QR code in this study is because the QR code structure has an inherent
error correction mechanism. This mechanism enables QR codes to be correctly
decoded even if part of it is corrupted.

A QR code is made up of light and dark modules, which are organized into
function patterns and an encoding region [11]. The size and data capacity of a
QR code is determined by its version and error correction level. There are forty
different QR code versions and four error correction levels. These error correction
levels are L (low), M (medium), Q (quartile) and H (high); these correspond to
error tolerances of approximately 7%, 15%, 25% and 30%, respectively.

DWT. The Discrete Wavelet Transform (DWT) is a transform domain tech-
nique that is widely used in signal processing. For 2D images, it involves decom-
posing an image into frequency channels of constant bandwidth on a logarithmic
scale [17]. An image is decomposed into four sub-bands, which are labeled LL
(low-low), LH (low-high), HL (high-low) and HH (high-high). Sub-bands can
be further decomposed and this process can continue until the desired number
of levels is achieved. A depiction of how an image can be decomposed into two
levels of DWT sub-bands is shown in Fig. 1. The LL sub-band contains most
of the information of the original image [16]. As such, it represents the highest
visual fidelity of an image, as the human visual system is more sensitive to its
contents. Data from the LL2 sub-band was used in experiments conducted in
this study.

Arnold Transform. Adjacent pixels in images have a strong correlation to
each other. The Arnold transform, shown in Eq. 1, is a invertible transform that
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Fig. 1. Sub-bands of a two-level DWT.

can be used to disrupt the correlation between adjacent pixels [10]. An origi-
nal image that undergoes a number of Arnold transform iterations results in
a chaotic image. The reason for using this transform in this study is because
image perturbations introduce noise to an image. Applying the Arnold trans-
form to an image scrambles the pixels, and thus, scatters noise over the image.
This increases the potential of being able to recover the QR code despite image
perturbations.

[
x′

y′

]
=

[
1 1
1 2

] [
x
y

]
mod N (1)

Trapdoor Permutation. Let D be a finite set. A permutation family Π over
D specifies a randomized algorithm for generating (descriptions of) a permu-
tation and its inverse, denoted as (s, t) R←− Generate; an evaluation algorithm
Evaluate(s, ·); and an inversion algorithm Invert(t, ·). We require that for all
(s, t) produced by the algorithm Generate, Evaluate(s, ·) be a permutation of
D and Invert(t, Evaluate(s, ·)) be the identity map. A trapdoor permutation
family is one way if it is hard to invert, given just the forward permutation
description s. Formally, a trapdoor permutation family is (t, ε)-one way if no
t-time algorithm A has advantage greater than ε. Hence,

Adv InvertA
def
= Pr

[
x = A(s,Evaluate(s, x)) : (s, t) R←− Generate, x

R←− D
]
,

where the probability is over the coin tosses of Generate and A.

2.2 Related Work

Researchers have previously proposed the use of QR codes for various applica-
tions in computer security. For example, for storing private and public informa-
tion [22], secret sharing [5], visual cryptography [9], digital watermarking [6] and
so on.

The methods proposed in this paper are related to zero-based watermarking.
Unlike traditional watermarking techniques, which necessitates that a water-
mark be embedded within an image, zero-based approaches do not require the
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embedding of a watermark [12]. Liu and Yan [16] proposed a secret sharing
scheme based on zero watermarking. In their approach, the watermark was not
embedded within images, but rather cover images are used to create shares that
are distributed to participants and one which is registered with a certification
authority.

In addition, QR codes have previously been used in conjunction with water-
marking. For instance, a watermarking scheme based on the combination of
discrete cosine transform, QR codes and chaotic theory was proposed by Kang
et al. [13]. In other work, a digital rights management technique for protecting
documents by repeatedly inserting a QR code into the DWT sub-band of a doc-
ument was investigated [4]. Various other QR code watermarking approaches
have also been proposed [6,14,21].

Zero-based watermarking scheme using QR codes have also been proposed.
As an example, an authentication method for medical images using zero water-
marking and QR codes was devised. In this scheme, a patient’s identification
details and a link their data was encoded in the form of a QR code that serves
as the watermark [20]. Similarly, Li et al. [15] proposed a QR code based zero
watermarking scheme in conjunction with visual cryptography for authenticating
identification photos.

3 Proposed Methods

Two proposed methods are described in this section. The first method allows
for the verification of each image in a dataset. It provides a mechanism whereby
a user can check whether individual images in a dataset have been perturbed.
However, the first method comes at a cost of storing a verification string for each
image. This may not be an appealing solution in situations where limited storage
space is an issue. As such, the second method has a very low storage require-
ment, and provides a mechanism to verify whether an entire dataset is intact.
Nevertheless, in the second method, while a user can determine if a dataset is
not intact, the user cannot identify which of the images have been altered.

3.1 Method 1 - Linear Verification String (LVS) Method

The notion behind this method is to generate a verification string for each image
in a dataset. Hence, we call it the Linear Verification String (LVS) method. The
purpose of a verification string is to be able to ascertain whether an image has
been altered from the original image. An advantage of generating a verification
string is so that images in a dataset do not have to be compared with their
respective original image. Moreover, the verification strings will require much
less storage space when compared with the entire image dataset.

The motivation behind this approach is based on zero-based image water-
marking [16]. Unlike traditional watermarking techniques that requires a water-
mark to be embedded within an image, zero-based approaches do not alter the
image. This is in line with the objective of the proposed approach, which is to
detect whether samples in a dataset have been altered.
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Generating Verification Strings. Figure 2 gives an overview of the process
used to generate verification strings for all the images in a dataset. It can be seen
from the figure that to create the verification strings, a QR code that contains
the secret message, S, and a key, K, for encryption is required. K is a random
bit string, which can be generated in a number of different ways, for example,
by using a pseudorandom number generator or by using the hash of a password.
Encryption involves performing S ⊕ K for all modules in S. As such, the length
of K must equal the number of modules in S. For instance, a QR code version 1
which consists of 21 × 21 modules requires the key to contain 441 random bits.

Fig. 2. Overview of the process to generate a verification string for each image in a
dataset.

The purpose of performing encryption is so that an adversary will not be
able to obtain any information about S from the verification strings. Arnold
transform will then be performed on the encrypted secret, SE , to scramble the
pixels. The reason for doing this is to scatter any noise that may result from
perturbations to an image over the entire image. The scrambled secret, ST , will
be used for creating the verification strings. Note from Fig. 2 that the same ST

can be used for all images, as this will avoid the necessity of having to generate
multiple QR code messages and keys.

Each image in the dataset then undergoes the same process. Each image
is decomposed into DWT components at the desired level, level 2 DWT was
used in experiments in this paper. Note that color images will first have to be
converted to greyscale. The LL sub-band, which represents the highest visual
fidelity, will be binarized using a dithering process. The objective of dithering is
to binarize the image into black and white bits (i.e. 0s and 1s), while maintaining
the average grey level distribution. In the experiments, we adopted the Floyd-
Steinberg dithering technique, an approach that is based on error diffusion [8].
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After the dithering process, each image is upsampled using nearest neighbor
sampling to match the size of ST . The upsampling process is the reason why S
can be of any size. Finally, a verification string, Vi, is produced for each image
in the dataset by XORing ST with the dithered and upsampled results.

The details of an algorithm to generate verification strings for all images in a
dataset is provided in Algorithm1. Inputs to the algorithm are a secret QR code,
S, an encryption key, K, and all images in a dataset. The algorithm outputs a
verification string for each image in the dataset.

Algorithm 1. Algorithm for generating verification strings.
Input: A QR code, S, a key, K, and images in a dataset, Ii, where i ∈ {1, 2, ..., n}.
Output: Verification strings, Vi, where i ∈ {1, 2, ..., n}

Step 1. Encrypt information in S by XORing the random bits in K with the modules
in S to produce SE .
Step 2. Generate a chaotic image ST by scrambling the bits in SE using Arnold
transform for a number of iterations.

For each image, Ii, in the dataset, do
Step 3. Convert Ii to IDWTi by performing DWT to the desired level.
Step 4. Exact the LL sub-band from IDWTi.
Step 5. Dither the pixels to binarize the extracted LL sub-band into black and
white bits (i.e. 0s and 1s).
Step 6. Produce IDi by upsampling the dithered LL sub-band to match the size of
ST .
Step 7. Generate the verification string Vi using IDi ⊕ ST .

Verifying Image Fidelity. The verification strings can be used to verify the
visual fidelity of images in the dataset, and to determine whether any of the
images were perturbed. An overview of this process is depicted in Fig. 3. Similar
to the process of generating verification strings, each image in the dataset is
decomposed into DWT components. The LL sub-band at the pre-determined
level is dithered and upsampled using nearest neighbor sampling to match the
size of the verification string. Each pair of these are XORed, i.e. Vi ⊕ IDi, to
produce S′

Ti. Note that if an image was perturbed, S′
Ti �= ST for that image.

To recover the QR code, Arnold transform is inversed and K is used for
decryption to produce a recovered QR code for each image, SRi. If no images in
the dataset were altered, the QR code can be recovered perfectly for all images in
the dataset. However, if an image was perturbed, SRi for that image will result
in a noisy QR code.

Algorithm 2 details the steps involved in verifying the fidelity of images in
a dataset. The required inputs to the algorithm are the key, K, that was used
for encryption, the verification strings and the images in the dataset. For each
image in the dataset, the algorithm outputs the recovered QR code. The visual
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Fig. 3. Overview of the process to verify each image in a dataset.

Algorithm 2. Algorithm for verifying image fidelity.
Input: The key, K, verification strings, Vi, and images in a dataset, Ii, where i ∈
{1, 2, ..., n}.
Output: Recovered QR codes, S′

Ri, where i ∈ {1, 2, ..., n}

For each image, Ii, in the dataset, do
Step 1. Convert Ii to IDWTi by performing DWT to the desired level.
Step 2. Exact the LL sub-band from IDWTi.
Step 3. Dither the pixels to binarize the extracted LL sub-band into black and
white bits (i.e. 0s and 1s).
Step 4. Produce IDi by upsampling the dithered LL sub-band to match the size of
ST .
Step 5. Generate S′

Ti using Vi ⊕ IDi.
Step 6. Inverse the Arnold transform on S′

Ti to produce S′
Ei.

Step 7. Decrypt S′
Ei using K to recover the QR code, SRi.

fidelity of each image can be determined based on whether the resulting SRi is
a clean or a noisy QR code. If SRi is noisy, a clean reconstructed the QR code
can be obtained by averaging the black and white pixels per module. If there
are more white pixels, the module should be white, and vice versa.
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3.2 Method 2 - Aggregate Verification String (AVS) Method

The main drawback of the previously described LVS method, is its requirement
to have to store the verification strings of all images in a dataset. Storage require-
ments are proportional to the number of images in the dataset. While the LVS
method may seem impractical, it can be used to independently identify any alter-
ation in an individual image Ii, because the verification string Vi must be stored.
Hence, when storage space is not an issue (such as the use of cloud storage), this
method is feasible and attractive.

In our second method, we address the storage space issue, and aim to reduce
its size to a single verification string. In addition, we make use of trapdoor
permutation (which can be implemented using an RSA algorithm for example)
and a one way hash function, to provide additional layers of security.

Fig. 4. Overview of the AVS method.

An overview of the AVS method is depicted in Fig. 4, and the algorithm is
detailed in Algorithm3. The initial process is similar to the LVS method. After
the dithering process, we obtain IDi, which will be XORed with the key Ki and
the QR code S. Hence, IEi ← S ⊕ Ki ⊕ IDi. However, unlike the LVS method,
Ki

R−→ Evaluate(s, ·), where the input of the Evaluate algorithm is obtained
from the hash value of the IE(i−1), which is the output of IEi from the previous
image block. For the first image block, we can use the initial string, such as the
hash value of S or any other initial vector. With this chained mechanism, the
final output block will only comprise of a single verification string, V , regardless
the number of images involved.
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Algorithm 3. AVS algorithm.
Input: A QR code, S, the first key, K1, and images in a dataset, Ii, where i ∈
{1, 2, ..., n}.
Output: A verification string, V

For each image, Ii, in the dataset, do
Step 1. Convert Ii to IDWTi by performing DWT to the desired level.
Step 2. Extract the LL sub-band from IDWTi.
Step 3. Dither the pixels to binarize the extracted LL sub-band into black and
white bits (i.e. 0s and 1s).
Step 4. Produce IDi by upsampling the dithered LL sub-band to match the size of
S.
Step 5. Generate IEi using S ⊕ Ki ⊕ IDi. If i �= 1, Ki = hash(IE(i−1)).

For the last image, In, output the verification string, V = IEn.

Furthermore, as we use trapdoor permutation in the construction, the veri-
fication will require the use of the Invert(t, ·) algorithm, which cannot be exe-
cuted without the value of the trapdoor. Therefore, when verifying the images
in a dataset, if the QR code cannot correctly be recovered at any image block,
this means that the image has been altered and the dataset is not intact. On the
other hand, if the QR code can be recovered in all image blocks, the dataset is
completely intact.

In summary, to highlight the differences between LVS and AVS, we have
achieved a constant size output regardless the number of the image blocks in
AVS. Furthermore, we enhance the security level from incorporating a symmetric
encryption scheme in LVS with a trapdoor permutation algorithm in AVS.

4 Results and Discussion

An implementation of Algorithms 1 and 2 was implemented using the OpenCV
library. This was tested using a number of test images. Figures 5 and 6 show
examples of results obtained from the experiments. Additional results can be
found in Figs. 7 and 8 in the Appendix section of this paper.

Figure 5(a) shows an example of S, i.e. a QR code containing a secret message.
The QR code is of version 3, which contains 29 × 29 modules, with error cor-
rection level H. An example of S after encryption, i.e. SE , is shown in Fig. 5(b).
Figure 5(c) was produced by scrambling the bits in SE using Arnold transform
to generate ST . Note that in line with Algorithm1, the same ST was used in
the experiment to obtain the results shown in Figs. 6, 7 and 8. The test images
were commonly used image processing test images; namely, the lena, peppers
and mandrill images, respectively.
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Fig. 5. Example of S, SE and ST (a) QR code containing secret message; (b) encrypted
QR code; (c) result after Arnold transform.

Fig. 6. Example results for the ‘lena’ image (a) input image; (b) dithered LL2 sub-
band; (c) visual depiction of the verification string; (d) SR after JPEG compression;
(e) SR after noise; (f) SR after blurring; (g) reconstructed QR code from (d); (h)
reconstructed QR code from (e); (i) reconstructed QR code from (f).
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Results on the lena image are provided in Fig. 6. Figure 6(a) shows the input
image, I. In Fig. 6(b), the LL2 sub-band of Fig. 6(a) was dithered and the result
was upsampled to match the size of ST . A visual depiction of the verification
string, V , that was generated as a result of XORing all bits in ID with all bits
in ST is shown in Fig. 6(a). Note that this is stored as a bit string rather than
as an image to conserve memory storage requirements.

The test image was then perturbed using three common techniques; namely,
JPEG compression, noise and blurring. For JPEG compression, OpenCV JPEG
compression with a value of 95% quality was used. Figure 6(d) shows the result of
using the verification string to recover the QR code from the JPEG compressed
image. Figure 6(g) in turn shows a clean QR code that was reconstructed from
SR shown in Fig. 6(d), the grey modules indicate incorrect modules in the recon-
struction. To test perturbations resulting from noise, 5 random pixels in the test
image were altered. Figure 6(e) and (h) show the recovered QR code and a recon-
structed version, respectively. For the blurring test, Gaussian blurring was used
with σ = 0.5. The recovered QR code after blurring and the reconstructed ver-
sions are shown in Fig. 6(f) and (i), respectively. Similar experiments using other
test images are provided in the Appendix.

5 Conclusion

This paper investigates the problem of protecting image based ML datasets
against alteration by an adversary. Two methods are presented in this paper;
namely, the Linear Verification String (LVS) method and the Aggregate Ver-
ification String (AVS) method. The purpose of these methods is to provide a
mechanism for verifying the visual fidelity of images in a dataset without the
need to use the original dataset. In both methods, we generate verification strings
from the visual contents of the images and associate these with QR codes. In
the LVS method, a verification string is generated for each image in a dataset.
For verification, a verification process is used whereby each verification string is
used to verify the visual fidelity of individual images in the dataset. However, the
drawback of the LVS method is that the storage requirement increases linearly
with the number of images in a dataset. To solve this problem, we proposed the
AVS method which only requires the use of a single verification string to verify
whether an entire image dataset is intact. Nonetheless, in the AVS method, one
can only ascertain whether the dataset has been altered, but cannot determine
the visual fidelity of individual images.
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Appendix

Fig. 7. Example results for ‘peppers’ image (a) input image; (b) dithered LL2 sub-
band; (c) visual depiction of the verification string; (d) SR after JPEG compression;
(e) SR after noise; (f) SR after blurring; (g) reconstructed QR code from (d); (h)
reconstructed QR code from (e); (i) reconstructed QR code from (f).
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Fig. 8. Example results for ‘mandrill’ image (a) input image; (b) dithered LL2 sub-
band; (c) visual depiction of the verification string; (d) SR after JPEG compression;
(e) SR after noise; (f) SR after blurring; (g) reconstructed QR code from (d); (h)
reconstructed QR code from (e); (i) reconstructed QR code from (f).
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Abstract. Unmanned aerial vehicles (UAVs) are vulnerable to jamming
attacks that aim to interrupt the communications between the UAVs and
ground nodes and to prevent the UAVs from completing their sensing
duties. In this paper, we design a reinforcement learning based UAV tra-
jectory and power control scheme against jamming attacks without know-
ing the ground node and jammer locations, the UAV channel model and
jamming model. By evaluating the UAV transmission quality obtained
from the feedback channel and the UAV channel condition, this scheme
uses reinforcement learning to choose the UAV trajectory and transmit
power based on the UAV location, signal-to-interference-and-noise ratio
of the previous sensing data signal received by the ground node, and the
radio channel state. Simulation results show that this scheme improves
the quality of service of the UAV sensing duty given the required UAV
waypoints and saves the UAV energy consumption.

Keywords: Unmanned aerial vehicle · Jamming · Trajectory control ·
Power control · Reinforcement learning

1 Introduction

Unmanned aerial vehicles (UAVs) have been widely used for sensing tasks such
as the environment monitoring and military surveillance. However, the UAV
sensing data transmission to the ground node is vulnerable to jamming attacks.
By sending jamming signals to the ground node during the UAV transmission,
a jammer aims to degrade the UAV sensing data reception at the ground node,
drain the UAV battery and even prevent UAVs from carrying out the sensing
duties for the prescribed waypoints, i.e., the area of interests [8].

Frequency hopping [9] and smart antenna [2] are critical techniques for UAVs
to resist jamming attacks. The UAV trajectory control scheme as developed in
[1] uses Isaacs’ approach to choose the UAV trajectory against jamming attacks
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in a zero sum UAV pursuit evasion game. The UAV power control scheme in [13]
formulates a Bayesian Stackelberg game and proposes an iterative algorithm
with sub-gradient method to choose the UAV transmit power against jamming.
However, these UAV jamming resistance schemes rely on the known UAV channel
models and the jamming models, and their performance will be influenced by
the accuracy and generalizability of the UAV knowledge on these models.

Reinforcement learning (RL) enables UAVs to optimize their communication
policies via trials in the repeated UAV communication process against jamming.
For instance, the UAV jamming resistance scheme (QPC) in [6] that uses Q-
learning to optimize the UAV transmit power can improve the quality of the
signals received by the ground node and save the UAV energy consumption
against reactive jamming. However, this scheme does not consider the waypoints
required by the UAV sensing task nor optimize the UAV trajectory in the sensing
data transmission for the UAV sensing applications such as the environment
monitoring.

In this paper, we present a RL based UAV trajectory and power control
(RLTPC) scheme to resist jamming attacks. More specifically, by applying deep
RL, this scheme enables a UAV to jointly optimize its trajectory and transmit
power following the sensing task waypoint requirement. In this scheme, the UAV
chooses the communication policy based on its current location, the next way-
point location in the sensing task and the signal-to-interference-and-noise ratio
(SINR) of the previous sensing data signal received by the ground node in the
dynamic game against jammers. Without relying on the channel model between
the ground node and the jammer or the jamming model, this scheme applies a
Multilayer Perceptron (MLP) to approximate the action-value function for the
current UAV state. This scheme evaluates the quality of service (QoS) of the
UAV sensing task via the feedback from the ground node, the UAV energy con-
sumption in the previous sensing data transmission and the current distance to
the target waypoint, and uses the resulting utility to select the future UAV com-
munication policies against jamming. Simulations are performed for the UAV
sensing task for given waypoints and the UAV chennel model given by [10]. The
proposed UAV anti-jamming trajectory and power control scheme can signif-
icantly improve the QoS of the UAV sensing data transmission and save the
UAV energy against smart jamming in comparison with the benchmark QPC
in [6].

The remainder of this paper is organized as follows. The related work is
reviewed in Sect. 2, and the UAV sensing and communication model is presented
in Sect. 3. The UAV trajectory and power control scheme is proposed in Sect. 4,
the simulation results are analyzed in Sect. 5, and the conclusion is drawn in
Sect. 6.

2 Related Work

UAVs can apply the power control, trajectory planning and smart antenna
techniques against jamming. For example, the anti-jamming evasion trajectory
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scheme as proposed in [1] formulates a UAV pursuit evasion game and uses the
Isaacs’ approach to obtain the saddle point strategy against jamming. The adap-
tive beam nulling anti-jamming scheme as proposed in [2] uses Kalman filter to
estimate the jammer position and thus keeps the jamming signals in the null
region of beamforming antenna. The power control based anti-jamming algo-
rithm as designed in [13] applies the sub-gradient-based iterative algorithm to
select the UAV transmit power with fixed UAV and jammer locations.

Reinforcement learning can be used to optimize the power control strat-
egy, radio channel selection and discretized location planning in wireless net-
works. The RL based anti-jamming algorithm in [3] applies Q-learning to jointly
optimize the jamming and anti-jamming radio channels in competing mobile
networks. The deep RL based robot anti-jamming system as designed in [4]
optimizes the radio channel and the mobility strategy to improve the SINR.
The NOMA power allocation based anti-jamming game as formulated in [11]
uses Dyna-Q to select the transmit power on the multiple antennas and uses
hootbooting technique to reduce unnecessary exploration. The RL based anti-
jamming scheme proposed in [6] selects the optimal discretized transmit power
and location based on the previous jamming power and channel gains. The user-
centric UAV anti-jamming algorithm as presented in [12] uses both RL and deep
RL algorithms to optimize the UAV transmit power over a given number of radio
channels.

3 System Model

We consider a UAV communication network in a three-dimensional space, con-
sisting of a ground node, a legitimate UAV and a smart jammer. The UAV takes
off and visits a series of M planned waypoints {Wm}0≤m≤M at the scheduled
times {nT}0≤n≤M sequentially to execute some tasks such as point inspection,
where T is the fixed interval time between two sensing duties. The time slot
duration is shorter than the duration between sensing duties, so in the flight
between two adjacent waypoints the UAV target waypoints are the same. Dur-
ing the flight, the UAV tries to adjust its trajectory to get closer to the ground
node located at G to improve the quality of communication and arrive the next
waypoint punctually as well. The maximum mobility of the UAV in x, y and z
dimension in a time slot is V . The UAV senses the environment and transmits
the sensing data such as photographs or sensor data to the ground node when
it arrives at a planned waypoint [5,8] (Fig. 1).

At time k, the UAV is located at l(k) with a given target waypoint W (k).
On the way to the next waypoint, the UAV transmits the sensing data of the
previous waypoint to the ground node at the transmit power p

(k)
U at time slot k.

Meanwhile, the smart jammer located at J can sense the ongoing transmission
and sends artificial noises at the power p

(k)
J to interfere the UAV-to-ground

transmission. The maximum power of the UAV and the jammer is denoted by PU

and PJ , respectively. Besides, the channel gain from the UAV and the jammer to
the ground node is denoted by h

(k)
U and h

(k)
J , respectively. The ground node sends
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Fig. 1. Illustration of the anti-jamming communication network of a UAV located at
l(k) with a sensing task that requests a UAV to carry out sensing tasks at M waypoints
at time k = nT with 1 ≤ n ≤ M and sends the sensing data to the ground node located
at G during the flight to the next waypoint against a jammer located at J that sends
jamming signals with power p

(k)
J at time k.

a feedback message consisting of the SINR ρ(k) of the k-th data transmission
to the UAV after receiving the data. The UAV then decides the location and
transmit power at the next time slot based on the SINR of the last transmission
and positioning information.

The UAV uses the probability that the SINR satisfies a minimum SINR
threshold σ to evaluate the QoS, which can be denoted by E

[
I
(
ρ(k) > σ

)]
. Dur-

ing the communication and flight process from the previous waypoint to the m-th
waypoint, the UAV must find an optimal flight trajectory

{
l(k)

}
(m−1)T≤k≤mT

and determines the optimal transmit power at each location in the trajectory to
achieve a better QoS of the sensing data. For simplicity, we assume that both
the UAV and the jammer can use optical methods to get the location of each
other [14]. The jammer can acquire the SINR of the signal from the UAV to
the ground node using channel estimation. As the jammer is much closer to the
ground node, we assume that the feedback channel from the ground node to the
UAV cannot be jammed by the jammer.

The notations are summarized in Table 1 for easy reference.
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Table 1. List of notations

Symbol Description

M Number of the UAV waypoints in a sensing duty

Wm Location of the m-th waypoint, m = 1, 2, · · · , M

Tm Scheduled time to reach waypoint m

Nx/y/z/p Quantization levels of UAV movement direction/transmit power

l(k) Location of the UAV at time k

G/J Location of the ground node/jammer

pU/J UAV transmit power/jamming power

h
(k)

U/J Channel gain from the UAV/jammer to the ground node

ρ(k) SINR of the UAV signal received by the ground node

σ SINR threshold in the UAV QoS

4 RL Based UAV Trajectory and Power Control

UAVs have difficulty accurately estimating the UAV channel model, the jamming
attack model and the jamming channel model in the dynamic sensing data trans-
mission game against smart jamming. Therefore, we propose a UAV trajectory
and power control scheme based on deep reinforcement learning to resist jam-
ming attacks. Based on the current UAV state that consists of the current UAV
location, the UAV next waypoint and the UAV previous transmission quality
according to the feedback from ground node, this scheme uses a deep Q-network
[7] that combines reinforcement learning and deep learning techniques to choose
the trajectory x

(k)
1 ∈ [−V, V ]3 and the transmit power x

(k)
2 ∈ [0, PU ] at each

time slot in the dynamic sensing data transmission process against jamming.
As shown in Fig. 2, the UAV evaluates its current location vector l(k) that

consists of the three-dimension UAV coordinates with the given M target way-
point Wm, 1 ≤ m ≤ M , in the sensing duty. Based on the UAV transmis-
sion quality obtained from the ground node via the feedback channel, the UAV
obtains the SINR of the previous sensing data signal received by the ground
node ρ(k−1). The observed location l(k), the next waypoint W ′, and the previ-
ous sensing data SINR ρ(k−1) are used to form the state denoted by s(k), i.e.,
s(k) =

{
l(k),W ′, ρ(k−1)

}
.

The UAV inputs the current state s(k) to a small-scale neural network param-
eterized by θ, known as deep Q-network [7], to estimate the Q-values of the avail-
able trajectories and transmit powers in the action space X , which is denoted
by Q

(
s(k),x;θ

)
,x ∈ X . The UAV can use the Q-values to choose an action

x(k) = {x1, x2} including the movement direction on the x-, y- and z-axis x1

and the transmit power of sensing data x2. Apparently, the UAV can choose the
action with highest Q-value. However, this greedy strategy will lead to suboptimal
trajectory and power control solutions due to the lack of trials of other actions.
In piratical implementation, the ε-greedy policy is used in the selection of the
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Fig. 2. Illustration of the RL based UAV trajectory and power control scheme.

communication policy x(k) to avoid the local maximum. In this way, the UAV keeps
exploring the efficient jamming resistance polices by randomly choosing the other
transmission policy with small probability ε instead of the policy that maximizes
the Q-values at the sensing data transmission at the time step. The UAV collects
the experience e(k−1) =

{
s(k−1),x(k−1), u(k−1), s(k)

}
and stores it into an experi-

ence pool denoted by R =
{
e(i)

}
1≤i≤k−1

.
The UAV flies toward the next location l(k+1) = l(k) + x1, and transmits

the sensing data at the power x2 to the ground node on the way. The three
dimensions of x1 and the transmit power x2 are quantized into Nx, Ny, Nz and
Np levels, respectively, as the Q-network cannot output continuous actions.

The UAV then evaluates the QoS satisfaction based on the threshold σ, uses
the position sensor to measure the distance to the target waypoint, and evaluates
its energy consumption based on the current battery level. The UAV utility is
evaluated based on QoS satisfaction, energy consumption and distance to the
target waypoint as follows,

u(k) = I
(
ρ(k−1) > σ

)
− δ

(∥
∥
∥l(k) − W ′

∥
∥
∥
2

)
− CUx2, (1)



342 Z. Lin et al.

where δ and CU are two positive coefficients used for balancing the punishment
of power consumption and distance offset in the utility and I (·) is the indicator
function that equals to 1 if the argument is true and 0, otherwise.

After that, the UAV samples a minibatch consisting of N experiences from
R to update the deep Q-networks. The network uses a target network to make
the learning process more robust. The weights of the target Q-network θ̂ are the
frozen copy of θ which are updated every τ steps [7]. According to the Bellman
equation, the UAV can formulate the loss function of the Q-network as the
temporal difference of the Q-values and update the weights θ via the stochastic
gradient descent algorithm, which is given by

θ ← θ + α∇θE

[(
u(i) + γ max

x∈X
Q

(
s(i+1),x; θ̂

)
− Q

(
s(i),x(i);θ

))2
]

, (2)

where α ∈ (0, 1) is the learning rate of the neural network and γ ∈ (0, 1] repre-
sents how much the future utility counts in evaluating current UAV trajectory
x1 and power x2.

The RL based trajectory and power control scheme is summarized in Algo-
rithm1.

5 Simulation Results

We perform some simulations to evaluate the performance of RLTPC in a UAV
communication network against a smart jammer. Though we use a certain wire-
less channel model and attack model in the simulations, our RL based UAV
anti-jamming communication scheme can be adapted to any other UAV anti-
jamming communication network as described in Sect. 3.

In the simulations, an orthogonal coordinate space as shown in Fig. 3 is con-
sidered. The UAV initially locates at the first waypoint (0, 50, 30) m and uses
the sensors such as the camera to obtain photographs and environment data.
Then the UAV must fly to the next waypoint at (40, 50, 30) m within 4 s and
transmit the sensing data to the ground node located at (0, 0, 0) m at a trans-
mit power ranging from 0 to 4 W for every 1 s. This sensing and transmission
process will be repeated on the other 4 waypoints from (40, 50, 30) m to (160,
50, 30) m. The UAV decides its trajectory to the next waypoint by choosing
the UAV movement direction from current location. All the three dimensions of
the movement direction are chosen from {−20,−10, 0, 10, 20}m. The transmit
cost of the UAV is 0.25W−1 when evaluating the utility. The UAV can make
3 decisions between adjacent waypoints and samples 32 experiences from the
experience pool in each update phase. The SINR of the UAV data signals must
be larger than the threshold that is set as 15 dB to satisfy the QoS requirement.

During the UAV sensing data transmission, the UAV channel is under hilly
and mountains channel settings. The UAV transmits the sensing data at C-band
frequency 5.06 GHz. In the hilly environment, the path loss exponent is usually
chosen as 1.7 similar to [10] and the UAV transmission signals will suffer from
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Algorithm 1. RL based anti-jamming trajectory and power control scheme
Input: {Wm}1≤m≤M

1: Initialize γ, α, Cp, Cd, θ, θ̂ = θ, ρ(0) and R = ∅
2: for k = 1, 2, · · · , MT do
3: Observe the current location l(k)

4: Get the previous data transmission SINR ρ(k−1) from the ground node feedback

5: s(k) =
{

l(k), W ′, ρ(k−1)
}

6: Input s(k) to the Q-network to calculate the Q-values Q
(
s(k), x; θ

)
, ∀x ∈ X

7: Choose x(k) with the ε-greedy policy based on Q
(
s(k), x; θ

)

8: Fly to l(k+1) = l(k) + x1 and save the sensing data
9: Send the sensing data at power x2

10: Caculate u(k) via Eq. (1)
11: if k > 1 then
12: Store e(k−1) =

{
s(k−1), x(k−1), u(k−1), s(k)

}
in R

13: Sample a minibatch of N experiences at random from R
14: Update θ via Eq. (2)
15: end if
16: end for

a path loss of 119.7 dB at the reference distance 3.4 km with a large-scale log-
normally distributed fading X ∼ N (0, 2.4 dB). So the instant channel gain of
the UAV transmitting the sensing data to the ground node at location l can be
calculated by

hL = 10−(119.7+X)/10

( ‖l‖2
3400

)−1.7

. (3)

Besides, the Ricean fading channel is used to measure the small-scale fading
because of the line-of-sight path. Thus the channel gain hS caused by small-
scale fading can be sampled from a Ricean distribution whose K-factor can be
calculated by the linear fit equation in [10]. The total channel gain from the UAV
to the ground node hU consists of both the large-scale fading and the small-scale
channel gains.

When the UAV is transmitting the sensing data to the ground node, a jammer
located at (160, 0, 0) m will sense the transmission and send artificial noises
to jam the ongoing transmission. The jammer chooses the jamming power pJ
among 4 quantized power levels ranging from 10 mW to 100 mW according to
the greedy strategy. Specifically, the jammer first evaluates its utility of all these
available powers based on the expected QoS of the UAV data transmission and
the power cost of itself, i.e.,

ua = −I
(
ρ(k) > 15 dB

)
− 10pJ , (4)

and then chooses the power that maximizes the immediate utility.
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Fig. 3. Simulation settings of the UAV transmission for an UAV at 30m height that
carries out the sensing duties at 5 waypoints starting from (0, 50, 30)m to (160, 50,
30)m with the transmit power ranging from 0 to 4000 mW against a jammer that uses
the greedy strategy to select its power from 0 to 100 mW.

We use the QPC scheme proposed in [6] as a benchmark, which considers the
jamming power and channel gains as the state and uses Q-learning to decide the
transmit power level x2 ∈ [0, 4]W. This scheme does not consider the trajectory
of the UAV but only control the transmit power to address the jamming attack.
We believe that we can further improve the QoS of the UAV sensing duties
and save the energy consumption at the same time by jointly controlling the
trajectory and transmit power in our proposed scheme.

The simulation results in Fig. 4 show that the proposed scheme RLTPC can
improve the UAV sensing transmission QoS and save the UAV energy consump-
tion. As shown in Fig. 4a, the RLTPC scheme improves the UAV QoS by 9.5%
and saves the UAV energy consumption by 42.3% compared with the bench-
mark scheme QPC in [6] after convergence such as the 30000-th time slot. That
is because the UAV with QPC cannot learn the complicated UAV-ground model
and smart jamming strategies from the large continuous state space and the
mobility of the UAV is not leveraged, which leads to lower QoS and higher
energy consumption.

With higher QoS and lower energy consumption, RLTPC increases the UAV
utility compared with QPC, as shown in Fig. 4c. For example, the UAV util-
ity with RLTPC is 0.663 after 30000 time slots, which is about 99.5% higher
than QPC. Besides, the convergence time of RLTPC reduces by 16.7% in com-
parison with QPC, because RLTPC uses the deep Q-network to optimize the
UAV trajectory and power and applies experience replay technique to update
the weights to save exploration time and thus reduces the learning required time
and improves the UAV anti-jamming efficiency.
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Fig. 4. Performance of the UAV in the sensing data transmission system against jam-
ming attacks.
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6 Conclusion

In this paper, we have proposed a RL based UAV trajectory and power control
scheme to resist smart jamming attacks without relying on the UAV channel
model, the jamming channel model and the jamming attack model. The UAV
uses the deep Q-network to choose its trajectory and the transmit power for the
transmission of the sensing data to the ground node following the predefined
UAV sensing waypoints. Simulation results show that this scheme significantly
increases the QoS of the UAV sensing data transmission, saves the UAV energy,
and increases the UAV utility following the UAV sensing mission requirement.
For instance, this scheme improves the UAV sensing transmission QoS by 9.5%,
saves the UAV energy by 42.3%, and raises the UAV utility by 99.5%, compared
with QPC after convergence in a UAV sensing task with 5 waypoints against a
smart jammer.
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Abstract. In threshold secret sharing schemes, the secret s is divided
into n shares by a dealer, such that learning t or more than t shares can
reconstruct this secret, but knowing fewer than t shares cannot reveal any
information about the secret s. In order to enhance the confidentiality of
shares, reduce the participants’ computational costs, and guarantee the
fairness of secret reconstruction, this paper proposes a fair and efficient
secret sharing scheme based on cloud assisting. Specifically, we represent
the computational process of Shamir’s scheme as a matrix operation
and encrypt the shares by using a random one-dimensional matrix for
guaranteeing the confidentially of shares. In addition, we employ cloud
computation platform that assists to reduce the redundancy of recon-
struction computation and participants’ computational costs. To ensure
the fairness of secret reconstruction, our scheme enables participants to
recover their secret without revealing their share to the other partici-
pants, and ensure that only when all participants are honest, they can
reveal the correct secret. The performance analysis demonstrates that the
proposed scheme achieves a stronger level of security and a lower com-
putational cost. We also provide the experimental results and show that
the proposed approach is feasible and efficient compared with related
works.

Keywords: Secret sharing · Fairness · Unconditional security ·
Matrix operations

1 Introduction

For the protection of cryptographic keys, Shamir [13] first proposed the notion of
secret sharing scheme that is based on Lagrange interpolation polynomial, and
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later Blakley [2] also gave a secret sharing construction that is based on hyper-
plane geometry. The secret sharing scheme generally involves a distributor who
has a secret s, a set of n shareholders, and more than t participants, which are
a collection of subsets of shareholders, work together to reconstruct the secret.
The secret sharing scheme is usually divided into algorithms: share distribution
and secret reconstruction. In general, the threshold secret sharing scheme needs
to satisfy two security requirements [13]: Firstly, the correctness requires that
with knowledge of any t or more than t shares can recover the secret. Secondly,
the secrecy requires that with knowledge of fewer than t shares cannot get any
information about the secret s (t is threshold).

1.1 Related Work

The Shamir’s (t, n) scheme in [13] is unconditionally secure since the scheme sat-
isfies two security requirements. However, the scheme must guarantee the honest
environments that the dealer must honestly distribute the secret during the share
distribution phase and all shareholders should honestly correctly the shares dur-
ing the reconstruction phase. It is remarkable that the illegitimate participant
result in incorrect secret on the secret reconstruction phase and can also obtain
some meaningful information about the secret. On the other hand, it is ineffi-
cient in practical applications since it contains a lot of repetitive computations
[9,19,20].

In order to prevent the cheat problem in threshold secret sharing, Chor et al.
[3] proposed a notion of verifiable secret sharing (VSS), in which all shareholders
are able to verify that shares was released by other shareholders in verifiable
secret sharing scheme. For example, by using the non-interactive zero-knowledge
in [11] and then obtains ac information-theoretic secure verifiable secret sharing.
Harn and Lin [4] introduced new notions of strong t-consistency and strong
VSS. Later, Araki [1] proposed a (t, n)-threshold secret sharing scheme that is
capable of detecting the fact of cheating from n−1 or less colluding participants.
However, they require additional information and spend more processing time,
which leads to high computational complexity.

For protecting the privacy of shares and secret, lots of secret sharing schemes
that are based on some cryptographic assumptions, such as discrete logarithm
problem [5,14], multi-party zero-knowledge interactive proof protocol [17] etc,
however, the general encryption mechanisms will bring a lot of computational
costs and inefficient. On the other hand, the original Shamir’s scheme requires a
large data expansion, and thus the scheme is inefficient for resource-constrained
participants. In this work, we consider an assistant of cloud computing [6] into
the protocol.

Cloud computing is a new paradigm in which computing resources such as
processing, memory, and storage do not physically exist in the user’s location [6,
18], and it can provide stronger computing capabilities for customers. However,
outsourcing to the cloud is bound to produce some security and privacy issues
[7,15,16]. Accordingly, the customer needs to encrypt/perturb input data prior
to outsourcing to the cloud, and try to protect the privacy of output data.



350 M. Zhang et al.

In order to ensure that the encrypted data can be processed, and in which will not
leak any original content, so the fully homomorphic encryption scheme has been
proposed. However there is impractical and ineffective for fully homomorphic
encryption scheme at present [8,10,12].

1.2 Our Contribution

In the paper, we are motivated to propose an efficient and secure solution for
outsourcing the secret reconstruction computation to a public cloud that can
achieve high efficiency with security. In this proposed scheme, we represent the
processing of the Shamir’s scheme as a matrix operation, then encrypt the par-
ticipant’s share by multiplying a random one dimension matrix. This achieves
higher computational efficiency with strong security. Next, the cloud simply per-
forms the preset operation and returns the computing result. The introduction of
cloud computing is to reduce the redundancy of the reconstruction computation
in Shamir’s scheme and solve the problem of participants’ insufficient computing
power. After the participants receive the result returned by the cloud server, the
participants can verify the validity of this result by using his/her secret share.

The main contributions of this paper are described as follows:

1. We propose a cloud-assistant computation to reduce the redundancy of
the reconstruction computation in Shamir’s scheme and allow a resource-
constrained participant such as Internet-of-Thing node and wireless sensor to
take part in the reconstruction.

2. We give a new scheme to securely outsource secret reconstruction computa-
tion to a public and semi-honest cloud server. That is, the proposed scheme
guarantees that the cloud server cannot learn any meaningful information
about the participants’ private data.

3. The computation in our scheme is efficient, and the participants only need to
perform simple operations, whose computational complexity of participants
is less than Shamir’s scheme. We give the experimental results to indicate
that our scheme is efficient compared with related works.

1.3 Organization

The rest of this paper is organized as follows. Some preliminaries are introduced
in Sect. 2. In Sect. 3, we propose the concrete scheme and take an example of
this scheme. In Sect. 4, we analyze the correctness and security, and in Sect. 5
we give the experimental results and analysis. Finally, the conclusion is drawn
in Sect. 6.

2 Preliminaries

In this section, we describe the limitation of Shamir’s scheme and present a new
system model. In addition, we introduce the framework of the proposed scheme.
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2.1 Shamir (t, n)-Threshold Secret Sharing Scheme

Shamir’s threshold secret sharing scheme is based on Lagrange interpolation
polynomial, in which there exists n shareholders, i.e., H = {H1,H2, · · · ,Hn},
and a distributor (namely dealer) D, and the scheme consists of two phases that
described as follow:

Share Distribution Phase. Distributor D randomly picks a polynomial f(x) with
degree t−1: f(x) = a0+a1x+a2x

2+· · ·+at−1x
t−1, sets the secret s = a0, where

all coefficients ai ∈ Fp = GF (p), (i = 0, · · · , t − 1). The secret s = a0 ∈ GF (p).
D at random selects n integer {x1, x2, · · · , xn}, (xi �= xj), corresponding n
shareholders, and computes n shares {s1, · · · , sn}, si = f(xi),(i = 1, · · · , n).
Finally, the distributor D sends each si to the corresponding shareholder Hi by
a secure channel.

Secret Reconstruction Phase. Assume that k(t ≤ j ≤ n) participants Pis want
to reconstruct the secret s, i.e., {P1, P2, · · · , Pj} ⊆ H. At first each participant
Pj releases his share to the others, and then one of them can reconstruct the
secret by calling the Lagrange interpolating formula as follow.

f(x) =
j∑

i=1

f(xi)(
j∏

k=1,k �=i

x − xk

xi − xk
) (mod p) (1)

Finally, every participant obtain the secret by computing s = f(0).
Actually, the computation of Shamir’s secret share scheme can be regarded

as the operation of the matrix: y = Xa , where a is a t × 1 matrix, a =[
a0 a1 · · · at−1

]T, y is the j × 1 matrix, y =
[
y1 y2 · · · yn

]T, and X is a j × t

matrix, X =

⎡

⎢⎢⎢⎣

1 x1 · · · x1
t−1

1 x2 · · · x2
t−1

...
...

...
1 xn · · · xn

t−1

⎤

⎥⎥⎥⎦.

Thus, the evaluation can be formally represented as follow:
⎡

⎢⎢⎢⎣

y1
y2
...

yn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1 x1 · · · x1
t−1

1 x2 · · · x2
t−1

...
...

...
1 xn · · · xn

t−1

⎤

⎥⎥⎥⎦ ×

⎡

⎢⎢⎢⎣

a0

a1

...
at−1

⎤

⎥⎥⎥⎦ (2)

2.2 Limitation of Shamir’s Scheme

Shamir’s (t, n) threshold secret sharing only considers the scene that all par-
ticipants are legitimate shareholders in the secret reconstruction phase. How-
ever, when more than t participants collude together to reconstruct secret and
all shares are released asynchronously, an illegitimate participant can always
release their fake secret share after obtaining a t valid secret share. As a result,
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the illegitimate, and thus the dealer can reconstruct the correct secret by using t
valid secret shares. However, the legitimate participants will recover an incorrect
secret by using a fake secret from an illegitimate participant. Thus, if anyone of t
shareholders colludes together to reconstruct the secret, this scheme is insecure.
Obviously, consider the largest number of participants, every participant per-
forms exactly the same Lagrange interpolating formula to obtain the secret, and
it shows that the local computation of Lagrange interpolating formula needs
O(n2) times, and the total computational complexity is O(n3). It is easily to
indicate that this scheme has a higher complexity and most redundant compu-
tation.

2.3 System Model and Assumptions

System Model. In this paper, our system model consists of a distributor D, n
shareholders, j participants and a cloud server. The architecture of the proposed
system is shown in Fig. 1.

– Distributor : The distributor D is an entity of absolute honesty that truthfully
sends correct secret shares (xi, yi) and a secret key k to each shareholder in
the share distribution phase.

– Shareholders: Each shareholder receive a valid share from the distributor in
the share distribution phase.

– Participants: In the secret reconstruction phase, each of the participants
encrypts corresponding share by using secret key k and then send the
encrypted share to the cloud server. We consider participants as the following
roles:

Fig. 1. Framework of the proposed system
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1. Legitimate participant: The legitimate participant honestly executes
the steps of the protocol.

2. Outside adversary: The outside adversary who does not have any valid
share, but s/he can disguise themselves as legitimate participants to col-
lect information and then identifies the secret.

3. Inside adversary: The inside adversary is also called legitimate partici-
pant, who obtains s/he own share, but releases a fake share to each other
in secret reconstruction phase and thereby only s/he can obtain the secret
correctly.

– Cloud server : The cloud server who honestly performs preset operations
and returns the result to every participant. Finally, each of the participants
decrypts the result to obtain the secret s with secret key k . We note that the
cloud server is not completely trusted, who tries to learn any useful informa-
tion about computation result about the secret.

Security Requirements. Our proposed scheme has the following require-
ments:

– The distributor is a completely credible entity who sends valid shares to
legitimate shareholders via a secure channel in the secret distribution phase.

– The share of each shareholder is securely stored and confidential to the other
shareholders.

– The cloud server is a semi-honest entity which honestly performs the oper-
ations and returns a trusted and correct result to every participant, but it
wants to learn the meaningful information about secret.

– The scheme does not consider the collusion attacks between legitimate par-
ticipants and cloud server.

2.4 Definition of the Proposed Scheme

The proposed scheme consists of the following algorithms:

– KeyGen(λ) �−→ {k}. This algorithm takes a security parameter λ as input
and generates a random secret key k , which will be used for encrypting the
secret share and decrypting the result return by cloud server.

– ShareGen(n, t) �−→{si}. Taking as input n and t, this algorithm returns n
secret shares si = (xi, yi), for i = 1, · · · , n.

– ShareEnc(si, k) �−→{si′}. Taking as input a secret key k and a secret share
si = (xi, yi), this algorithm encrypts the share (xi, yi), and returns encrypted
share si

′ = (xi, yi
′).

– CSCompute(s1′, s2′, · · · , sj
′)�−→{a ′}. Taking j encrypted shares s1

′, s2′, · · · ,
sj

′ as input, this algorithm outputs a ′.
– SecretDec(a ′, k) �−→ {a}. Taking as input Decrypting a ′ and k , this algo-

rithm returns a .
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3 Concrete Construction

In this section, we present a novel scheme to solve the problem that balances the
security and efficiency of secret sharing scheme. The specific scheme is presented
as follows.

3.1 Share Distribution Phase

– KeyGen(λ)�−→{k}. The distributor D takes a security parameter λ to gen-
erates a random t × 1 vector k =

[
k1 k2 · · · kt

]T. The vector k acts as the
secret key that will be used for encrypting the secret share, and decrypting
the result returned by cloud server.

– ShareGen(n, t) �−→{si}. The distributor D opts a polynomial f(x) = a0 +
a1x + a2x

2 + · · · + at−1x
t−1 with degree t − 1 randomly, and sets secret

s = a0, where all coefficients ai ∈ Fp = GF (p), (i = 0, · · · , t − 1). Then D
at random selects n-integer {x1, x2, · · · , xn}, (xi �= xj ; i, j = 1, · · · , n; i �= j),
and computes yi = f(xi). Let shares be si = (xi, yi). Thus, the distributor D
sends the share si and secret key k to corresponding shareholder Hi.

3.2 Secret Reconstruction Phase

Suppose that j participants {P1, P2, ..., Pj} ⊆ H (t ≤ j ≤ n, n < 2t) take part
in reconstructing the secret s, and their respective secret share is si.

– ShareEnc(si, k) �−→{si′}. Each of the participants encrypts their share with
secret key

yi
′ = yi + x ik (3)

yi
′ = yi+

[
1 xi · · · xi

t−1
]×

⎡

⎢⎢⎢⎣

k1
k2
...
kt

⎤

⎥⎥⎥⎦, and sends the encrypted share si
′ = (xi, yi

′)

to cloud server, which can ensure the privacy of the share. Thus, the cloud
server obtains j encrypted shares. i.e., {s1

′, s2′, · · · , sj
′}.

– CSCompute(s1′, s2′, · · · , sj
′)�−→{a ′}. After collecting at least j shares, the

cloud server constructs two matrices as follows:

X =

⎡

⎢⎢⎢⎣

1 x1 · · · x1
t−1

1 x2 · · · x2
t−1

...
...

...
1 xj · · · xj

t−1

⎤

⎥⎥⎥⎦ and y ′ =

⎡

⎢⎢⎢⎣

y1
′

y2
′

...
yj

′

⎤

⎥⎥⎥⎦

And then compute:
a ′ = (XTX )

−1
XTy ′ (4)

Note that a ′ is a t × 1 matrix, that is, a ′ =
[
a0

′ a1
′ · · · at−1

′]T

Thus, the cloud server outputs a ′ to each participant. In this step, the cloud
server cannot obtain any meaningful information of secret (see Sect. 4.2 for
proof).
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– SecretDec(a ′, k) �−→ {a}. After obtaining the result a ′ from the cloud server,
each of the participants only need to perform a simple operation to decrypt
the a ′ with secret key k :

a = a ′ − k (5)

Note that a is a t × 1 matrix that is composed of original polynomial’s coef-
ficients, a =

[
a0 a1 · · · at−1

]T, therefore, every participants obtain the secret
s = a0.

3.3 Example

In this section, we give an example to describe the proposed scheme. In the
example, we let the threshold t to be t = 4, and the number of participants j to
be j = 5.

– Share distribution phase.
• KeyGen(λ)�−→{k}. Assume that the generated secret key k , k =[

5 3 8 10
]
.

• ShareGen(n, t) �−→{si}. The distributor randomly opts a polynomial f(x)
where

f(x) = 7 + 4x + 8x2 + 3x3

And the secret s = 7.
Next, the distributor at random selects n integer

[
9 8 5 4 10

]
.

Then it computes the corresponding function value:
[
f(9) f(8) f(5) f(4) f(10)

]

=
[
2878 2087 602 343 3847

]

Then the distributor sends s1 = (9, 2878) to P1, s2 = (8, 2087) to P2,
s3 = (5, 602) to P3, s4 = (4, 343) to P4, s5 = (10, 3847) to P5 with secret
key k , respectively.

– Secret reconstruction phase.
• ShareEnc(si, k) �−→{si′}. Each of the participants encrypts their share

with the secret key by using the Eq. 3. Therefore, s1
′ = (9, 10848), s2′ =

(8, 7748), s3′ = (5, 2072), s4′ = (4, 1128), s5′ = (10, 14682), and then every
participant sends the encrypted share si

′ to cloud server.
• CSCompute(s1′, s2′, · · · , sj

′)�−→{a ′}. After receiving at least five shares,

the cloud server constructs two matrices: X =

⎡

⎢⎢⎢⎢⎣

1 9 81 729
1 8 64 512
1 5 25 125
1 4 16 64
1 10 100 1000

⎤

⎥⎥⎥⎥⎦
and y ′ =

[
1048 7748 2072 1128 14682

]T Then it computes:

a ′ = (XTX )
−1

XTy ′ =
[
11 7 16 13

]T

Thus, the cloud server returns the result a ′ to every participant.
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• SecretDec(a ′, k) �−→ {a}. After obtaining the result a ′ from the cloud
server, each of participants only need to perform a simple operation to
decrypt the a ′ with secret key k :

a = a ′ − k =
[
7 4 8 3

]T

Notice that a is a t × 1 matrix that is composed of original polynomial’s
coefficients. Thus, every participant obtains the secret s = a0 = 7.

4 Analysis and Discussion

In this section, we theoretically analyze the correctness, security and computa-
tional complexity of the proposed scheme.

4.1 Correctness

Lemma 1. For any matrix Mm×n, its rank has following relation: r(M) =
r(MMT) = r(MTM).

Theorem 1. Our proposed scheme is correct.

Proof. The correctness of scheme is guaranteed by Lemma 1. Note that X is a
j × t (j ≥ t) Vandermonde matrix, and the rank is r(X ) = t. From Lemma 1,
we have

r(XTX ) = r(X ) = t

and, XTX is a t × t matrix. So the matrix XTX is an invertible matrix.
Based on Eq. 2, we have y = Xa , and XTy = XTXa , since XTX is

invertible matrix, then
(XT

X )
−1

XTy = a (6)
Therefore, the secret reconstruction can be expressed as an above operation of
the matrix.

Based on Eq. 3, we can integrate the encryption process of all participants
into the following calculations:

y ′ = y + Xk (7)

From Eqs. 6 and 7, we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a ′ = (XTX )
−1

XTy ′

= (XTX )
−1

XT(y + Xk)

= (XTX )
−1

XTy + (XTX )
−1

XTXk

= a + k

(8)

Equation 5 is satisfied, and the proof is completed.
The Eq. 8 is identical to the Eq. 6, and it’s very hard to attract the attention

of the cloud server. Finally, after receiving the results a ′ returned from the cloud
server, all participants can recover secret s by performing the operations with
secret key k , a = a ′ − k , and a =

[
a0 a1 · · · at−1

]T. Thus every participant get
the secret s = a0.
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4.2 Security

Theorem 2. Our proposed scheme is a perfect (t, n)-threshold secret sharing
scheme.

Proof. A (t, n)-threshold secret sharing scheme means that t participants or
more than t participants working together can reconstruct the secret, but fewer
than t participants cannot reveal any information about the secret s.

In our scheme, the participants submit shares si to cloud server in the recon-
struction phase, and the cloud server constructs two matrix X and y ′, and
computes (XT

X )
−1

XTy = a . However, when fewer t participants to reveal the
secret, that is, j ≤ t. From Lemma 1, we have r(XTX ) = r(X ) = j, and matrix
XTX is a t× t matrix, so the XTX is not an invertible matrix. Thus the cloud
server will not be able to compute the invertible matrix. However, more than t
participants can work together to reconstruct the secret correctly (See Sect. 4.1
for proof).

Theorem 3. Our proposed scheme can guarantee the fairness in the secret
reconstruction phase.

Proof. For an inside adversary who owns a valid share, he releases a fake share
to each other. As a result, only he/she obtains the correct secret. In our proposed
scheme, if an inside adversary submits a fake secret share to the cloud server,
which will lead to the cloud server compute the result incorrectly, and then
the cloud server also returns a wrong result to every participant. Thus each of
participant also recovers an erroneous secret. The any inside adversary cannot
obtain a correct secret, and the legitimate participants can verify the validity of
the result by substituting the share into the recovered polynomial and requires
the cloud server to reconstruct the secret again.

For an outside adversary who does not carry a valid share, he/she tries to
figure out the secret by disguising a legitimate participant to collect the infor-
mation. In the proposed scheme, only legitimate participants have the secret key
and corresponding secret shares, and there have no interaction between the par-
ticipants. Therefore, the outside adversary is not able to obtain any meaningful
information and figure out the secret.

Theorem 4. In our proposed scheme, the cloud server is incapable of learning
any meaningful information about the original polynomial, i.e. the secret s.

Proof. In our scheme, the cloud server can obtain every participant’s encrypted
share si

′ = (xi, yi
′) and can construct two matrices: X and y ′. Then it computes

a ′ = (XTX )
−1

XTy ′. The view of cloud server includes: xi and yi
′, then the

cloud server can construct j equation yi
′ = yi + k1 + k2xi + · · · + ktxi

t−1,
i = (1, 2, · · · , j), but there have 2t unknown quantity ai, i = (0, 1, · · · , t − 1),
km,m = (1, 2, · · · , t) in equations, since j (t ≤ j ≤ 2t). Thus the cloud server is
not able to obtain these unknown quantities by solving the equations, in other
words, it is impossible to learn any meaningful information about the secret.
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5 Performance

As mentioned previously, in the original Shamir’s (t, n)-threshold secret sharing
scheme, each participant performs the Lagrange interpolation formula to obtain
the secret, and it will incur O(n2) computational cost. The total computational
complexity is O(n3). However, in our scheme, the participant only needs to
compute yi

′ = yi +x ik (see Eq. 3) and a = a ′ −k (see Eq. 5) for encrypting and
decrypting the shares, which will spend O(t) computation for any participant.
In total, the computational complexity is O(tn).

We now give the experiments to evaluate our proposed scheme that is imple-
mented using Matlab R2016a on a PC with AMD Ryzen 5 2400G 3.6 GHz CPU
and 8 GB memory.

Table 1. Notations in simulations

Notation Remarks

t Threshold of scheme

j Number of participants

Ts Total runtime of secret reconstruction in Shamir’s scheme

Tl Total runtime of ShareEnc, SecretDec at the participant

Tc Runtime of CSCompute at the cloud sever

Table 2. Runtime of our scheme

t j Ts(ms) Tl(ms) Tc(ms)

5 5 0.096 0.025 0.109

5 6 0.175 0.030 0.181

5 7 0.243 0.034 0.260

5 8 0.272 0.037 0.285

50 50 0.970 0.050 1.010

50 60 1.370 0.054 1.450

50 70 1.480 0.069 1.510

50 80 1.590 0.073 1.650

We test five algorithms of the proposed scheme and also implement the
Shamir’s scheme. In Table 1, we briefly describe the notations in simulations,
which include threshold, number of participants and running time in different
stages.

The experimental results are given in Table 2, where the runtime (in millisec-
ond, i.e., ms) is the average value of 30 runs. It is easily to see that, from Table 2,
when threshold t is fixed, the time indices Ts, Tl, Tc increase with the increas-
ing of the number of participants j. It is worthwhile that the participants’ local
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computational cost Tl is far less than the runtime of the reconstruction phase
in the original Shamir scheme Ts. That is, our scheme can reduce considerably
the computational cost, which is derived from the proposed scheme to reduce
the amount of redundant computation by outsourcing the cloud computing. In
addition, if t is increased, the increasing rate of Ts is larger than that of Tl,
which means when the threshold t is risen, which will not have a significant
impact on participants in our scheme. Our proposed scheme is sufficient efficient
in practice.

6 Conclusion

In this paper, we proposed a new scheme for securely outsourcing computation
of secret reconstruction to a public cloud. In the proposed scheme, for guarantee-
ing the confidentially of shares, we covert the computational process of Shamir’s
scheme into a matrix operation, and encrypt the shares by multiplying a ran-
dom one-dimensional matrix. Meaningfully, we employ the cloud to reduce the
redundancy of reconstruction computation and participants computation costs.
To guarantee the fairness of secret reconstruction, without releasing the share
of the secret, our scheme can also reconstruct the secret efficiently. A compar-
ative summary demonstrates that the proposed scheme is feasible and secure
in practical application. Future research can focus on the identification of the
cheater of the scheme and implement a multi-secret sharing scheme based on
cloud assistant.
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Abstract. Decision trees are famous machine learning classifiers which
have been widely used in many areas, such as healthcare, text classifi-
cation and remote diagnostics, etc. The service providers usually host a
decision tree model on the cloud server and provide some classification
service for clients to use such a model remotely. In such a scenario, the
model is a valuable asset to the cloud which should not be disclosed to
the clients, while the query data and classification results are private to
the client. To solve such a problem, we propose several building blocks,
i.e., secure comparison and secure polynomial calculation, in a two-cloud
model. Based on these building blocks, we design a privacy-preserving
decision tree evaluation scheme. Compared with the most recent works,
our scheme can fully protect the tree model and clients’ data privacy
simultaneously. Besides, our scheme also supports offline service users
which is essential to the system’s scalability. Moreover, through theo-
retical analysis and real-world experimental test, it is oblivious that our
scheme is quite efficient.

Keywords: Decision tree evaluation · Data security ·
Cloud Computing

1 Introduction

Predictive modeling has been proved to be an essential tool in practice by people
and organizations, which has been used in many real-world scenarios, e.g., policy
making, medicine, on-line diagnosis, banking. Nowadays, almost all the “Internet
Giant”, including Amazon, Google, Facebook, Alibaba and Tencent, are working
on and use machine learning technology to build a predictive model. Usually,
there are two phases. The first is the training phase, where a model is trained on
a large dataset. The second is the evaluation phase, in which a classification label
can be returned for the input data vector. The internet giants with the ability
to collect massive data can train a more accurate predictive model on their
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cloud platform than normal individuals and organizations. With such a model,
they can use it to provide classification as a kind of cloud service. In real-world
setting, such typical machine learning prediction service requires the service
users reveal their query data and corresponding classification label to the server.
However, the query data and its corresponding classification result sometimes
contain sensitive information. Thus, the service users may reluctant to use such
a service for revealing this information to the server. One naive solution it to
simply send the machine learning model to the client, who can run the evaluation
phase locally. Unfortunately, such a model is a valuable asset to the company,
which is trained by spending a great number of resources. Thus, leaking such a
business secret to the others will greatly violate the company’s interest. More
importantly, the leakage of the machine learning model may even violate the
laws and regulations such as Health Insurance Portability and Accountability
Act (HIPAA) [1].

In this work, we mainly consider the security and privacy problems existing
in the decision tree evaluation on the outsourced cloud data. Decision tree has
been widely used in many research areas, e.g., disease diagnosis [2,3], credit-risk
assessment [4] and text classification [5], which consists of a collection of decision
nodes arranged in a tree structure. Early works focus on privacy-preserving
training decision tree [6,7]. Recently, more and more researchers have started
to study the privacy and security issues in the area of outsourced decision tree
evaluation [8–10].

Motivating Scenario. In this work, we try to find a solution for privacy-
preserving decision tree evaluation with high efficiency and security level. Here,
we consider a cloud service provider which has trained a decision tree model and
wants to use it to provide prediction service. In such a scenario, the following
security and privacy issues should be considered.

1. Both the query vector and its corresponding classification label should be
kept private from the cloud server and the other adversary.

2. The trained decision tree model should not be inferred to the client during
the whole evaluation process.

Moreover, efficiency is also vital to such a scheme. The cloud should return the
evaluation result to the client as soon as possible. Last but not least, supporting
off-line service users is essential for the scalability of the system.

Our Contributions. In this paper, we design a privacy-preserving decision
tree evaluation scheme in a two-cloud model. The contributions of this paper
are three-fold, namely:

• We propose a novel secure comparison which is based on additively homomor-
phic cryptosystem and secret sharing. Compared with the existing works, our
proposed protocol can reduce the communication round from O(n) to O(1).

• Based on the cryptographic blocks proposed, we construct a privacy-
preserving decision tree scheme. Several real-world dataset experimental tests
show the efficiency of our scheme.
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• We show that our scheme can indeed achieve higher privacy level than most
recent works [8–10]. And also, we fully prove the security of our scheme under
the semi-honest mode.

Related Work. Privacy-preserving data mining was first considered by [6,7,11].
After that, several works have been proposed in this area [12–14]. Earlier works
mainly consider how to securely construct a decision tree. The first work consid-
ering the private preserving decision tree evaluation was proposed by Brikell et
al. [15], which was applied to a remote diagnosis system. In this work, both the
homomorphic encryption and Garble Circuit (GC) [16] are used. The evaluation
time of such a scheme is sublinear in the tree size, but the secure program itself
and the communication cost are linear and hence is not efficient for large trees.
Later, Barni et al. [17] improved this scheme by reducing costs by a constant
factor. However, the communication cost is still linear.

Recently, Bost et al. proposed several privacy-preserving evaluation protocols
including decision tree. In their scheme, a decision tree is represented as a poly-
nomial whose output is the result of the classification label. The client and the
server run an improved DGK comparison [18] to compare the attribute vector
with the internal nodes of the tree. Finally, the server evaluates the polynomial
through a fully homomorphic encryption system. However, the fully homomor-
phic encryption (FHE) is quite time-consuming. Therefore, it is not efficient
enough for large tree applications. Wu et al. [9] improved it by using just an
additive homomorphic encryption (AHE). The evaluation returns the index of
the classification index. At the end of the protocol, the client needs to run an
Oblivious Transfer (OT) [19] with the server to get the label. Tai et al. based
the Wu et al.’s blueprint to make a significant improvement in efficiency. In their
scheme, a decision tree is represented in the form of linear functions rather than
a high-degree polynomial [10]. Cock et al. [20] proposed a privacy preserving
decision tree evaluation scheme based on secret sharing (SS) in the commodity-
based model. This scheme runs very fast with small trees but relatively slow
to deal with large trees. Joye et al. [21] proposed a work also based on [9], but
designed a new comparison protocol and improved the total number of compar-
ison during the evaluations. Most recently, Tueno et al. [22] proposed a decision
tree evaluation scheme by representing the tree as an array, which achieves sub-
linear complexity of the size of the tree. However, all the works proposed right
now cannot protect the tree model perfectly, i.e., the number of the nodes or the
depth of the tree may be leaked to the clients. Moreover, none of the works can
support offline clients, meaning that during the evaluation process the clients
need to communicate with the server and make some calculations on his own.
Our work can truly protect the tree and supporting offline users simultaneously.
We make a comparison with the most recent works in Table 1.
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Table 1. Comparison summary

Algorithm Support
offline

Query
privacy

Classification
privacy

Cryptosystem Model
leakage

[8] × � � FHE m

[9] × � � AHE, OT m, d

[10] × � � AHE, OT m

[20] × � � SS m

[21] × � � AHE m

[22] × � � GC, OT, ORAM d

Ours � � � SS, AHE ×

2 Preliminaries

In this section, we present several essential preliminary concepts of our scheme.
The key notations used throughout this paper are introduced in Table 2.

Table 2. Notation used

Notations Definition

pk Public key of Paillier cryptosystem

sk(1)/sk(2) Partial private key of Paillier cryptosystem

Encpk(·) Encryption with public key pk

PDecski(·) Partial Decryption with sk(i), i = 1, 2

[[x]] Ciphertext of x under Paillier cryptosystem

〈x〉 Additive secret shares of x

〈x〉A/〈x〉B Party A’s/ B’s additive secret share of x

‖x‖ Bit length of x

Add(·) Secure Addition

Mul(·) Secure Multiplication

Rec(·, ·) Reconstruction of the value of x

SC Secure Comparison

SPC Secure Polynomial Calculation

SDTE Secure Decision Tree Evaluation

2.1 Decision Tree Evaluation

The decision tree is a frequently encountered machine learning method which is
widely used in many classification and regression areas. A decision tree is a binary
tree T , which contains m internal nodes, called decision nodes. An example of
a decision tree is shown in Fig. 1. The leaf node of T is called a classification
node which is associated with the classification label. We call the length of the
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longest path from the root to a leaf as the depth of a decision tree. Generally,
a decision is usually not binary or complete. Nevertheless, each non-binary or
non-complete tree can be transformed into a complete binary tree, by increasing
the depth and introducing several dummy internal nodes [9]. Note that all the
leaves of a dummy node have the same classification label. A decision tree with
m internal nodes has a threshold vector Y = {y1, y2, · · · , ym}. We refer the
vector feature received by a decision tree as X = {x1, x2, · · · , xn}. We associate
each node in the tree with a Boolean function f(x) = (x ≥ y). For each dummy
node, we associate it with a trivial Boolean function f(x) = 0. The value of the
Boolean function decide the paths of the binary tree. If it is 1, we go to its left
child else we go to its right child node. Starting from the root of a decision, we
compare the internal node with the corresponding attribute value in X. When
we reach a leaf node in this path, the corresponding classification value of this
node can be outputted as the classification result of this vector X.

A:Outlook

B:Humidity D:WindyC:YES

Overcast RainSunny

E:NO F:YES G:NO H:YES

High Normal Weak Strong

Fig. 1. Decision tree model

2.2 Paillier Cryptosystem with Distributed Decryption

Paillier encryption algorithm is a well known additively homomorphic cryp-
tosystem [23]. recently, Hazay et al. designed a Paillier cryptosystem with dis-
tributed private keys [24]. In such a scheme, the private key is separated into
two shares, i.e., sk(1), sk(2). The plaintext domain of such a cryptosystem is
ZN , and the ciphertext space is ZN2 . The ciphertext of this scheme is denoted
as [[x]]. In the following, we use Encpk(·) and Decpk(·) to denote the encryp-
tion and decryption functions of this cryptosystem. Moreover, PDecsk(1)(·), and
PDecsk(2)(·) are used to denote the partial decryption functions with partial pri-
vate key sk(1) and sk(2). Given the ciphertext [[x]], the distributed decryption
works as [[x′]] ← PDecsk1([[x]]) and x ← PDecsk(2)([[x′]]).

The Paillier cryptosystem with distributed decryption is additively homo-
morphic, which means it has the following two properties:

1. Homomorphic Addition: Given two ciphertext, i.e, [[a]], [[b]], encrypted by
the same public key pk, we easily get Dec([[a]] · [[b]]) = a + b.

2. Scalar Multiplication: Given the ciphertext [[x]] and a constant integer c,
we can calculate Dec([[x]]c) = c · x. Specifically, when c = N − 1, it can be
easily calculated Dec([[x]]N−1) = −x, where −x = N − x.
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More proofs of the correctness and semantic security of the Paillier cryptosystem
with distributed decryption can be found in reference [24].

2.3 Additive Secret Sharing

Additive secret sharing scheme is a kind of secure multi-party computation
scheme [16] proposed by Shamir [25]. In additive secret sharing scheme, an inte-
ger x from a ring ZN is split into two additive shares. In the following, we use
〈x〉 to denote additive shares of x, and 〈x〉A, 〈x〉B are used to denote the shares
belong to party A and B. To reconstruct the value of x, a reconstruction func-
tion, i.e., Rec(·, ·) is needed. One of the two parties sends its share to the other,
and the other calculates x = 〈x〉A + 〈y〉B (mod N). In the following, for simplic-
ity, we omit “mod N” in each calculation, even though all the calculations are
with ZN .

Addition of Additive Shares. There are two kinds of addition to the additive
shares. One of them is the addition between a shared integer 〈x〉 with a constant
integer c; and the other is the addition between two additive shares, i.e., 〈x〉, 〈y〉.
The former can be calculated easily. One of the party calculates 〈z〉A ← 〈x〉A+c,
while the other just sets 〈z〉B ← 〈x〉B , where z = x+c. To compute the addition
of 〈x〉, 〈y〉, the two parties just need locally compute 〈z〉A ← 〈x〉A + 〈y〉A and
〈z〉B ← 〈x〉B + 〈y〉B respectively.

Multiplication Triplets. Beaver proposed a method to compute the multipli-
cation of two additively shared integers [26]. In such a scheme, a pre-computed
arithmetic multiplication triple of the form 〈c〉 = 〈a〉 ·〈b〉 is needed. The two par-
ties compute 〈e〉A ← 〈x〉A −〈a〉A, 〈e〉B ← 〈x〉B −〈a〉B , 〈f〉A ← 〈y〉A −〈b〉A, and
〈f〉B ← 〈y〉B −〈b〉B respectively. After that, they both run the Rec(·, ·) to recon-
struct e and f . Then, party A and B calculate 〈z〉A ← f · 〈a〉A + e · 〈b〉A + 〈c〉A,
〈z〉B ← e · f + f · 〈a〉B + e · 〈b〉B + 〈c〉B respectively. Here, we stress that the
pre-computed triples should be fresh for each multiplication. The generation of
these triplets can be done offline. They can be distributed by the trusted third
party or generated by the two parties through running Oblivious Transfer [19].
More details of the generation and distribution of these triplets can be found in
reference [27].

3 System Model and Design Goal

3.1 System Model

Our scheme focuses on the privacy-preserving decision tree evaluation on the
cloud data. In this scheme, we adopt a two-cloud model, namely Cloud Ser-
vice Provider (CSP) and Evaluation Service Provider (ESP). The overall system
model is shown in Fig. 2.
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Fig. 2. System model

(1) Key Generation Center: The trusted Key Generation Center (KGC) is
responsible for generating and managing both public and private keys for
every party in our system. KGC also is responsible to split the private key
into two shares and sends it to two clouds. After the key generation and
distribution, KGC can remain offline.

(2) Service Users: Generally, Service Users (SU) is the decision tree evaluation
service users in this scheme. The goal of SU is to find the classification result
of his data vectors. Note that all the data uploaded are split into two additive
shares, thus they can be given to CSP and ESP.

(3) Cloud Service Provider: In our scheme, we assume that the CSP has
owned a pre-trained decision tree model. With such a model, it can provide
classification service. Since the query data received are split into two shares.
Only one share of query data is uploaded to CSP. Thus, the CSP should
cooperate with ESP to fulfill the decision tree evaluation task.

(4) Evaluation Service Provider: In our scheme, the ESP mainly provide
online computation service for SU and CSP. With the help of ESP, CSP
and ESP can calculate the correct decision tree evaluation result.

Note that the Evaluator is an essential part in our system. On one hand,
in additive secret share based schemes, two parties are needed to fulfill various
computation tasks. On the other hand, the two-cloud model usually is capable of
minimizing the interactions between the server users and cloud servers while one
cloud cannot [28–30]. In our proposed scheme, SUs only send additive shares of
queries and then remain offline until receiving the additive classification results.
Moreover, we stress that all the entities involved should authenticate with each
other before performing specific actions. In fact there are many works about the
authentication [14,31,32]. For space limitation, we omit the details.
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3.2 Threat Model

Our scheme is built under a semi-honest model. In such a model, all the entities
involved are honest-but-curious, meaning that they all follow the rules of our
scheme, but try to learn additional knowledge during the execution process.
Moreover, we also assume that the two clouds, i.e., CSP and ESP, cannot collude
with each other. Here we remark that such restrictions are typical and widely
used in adversary model used in cryptographic protocols [28,33,34].

3.3 Design Goals

The design goals of our privacy-preserving decision tree evaluation are shown as
follows:

(1) Data Security and Privacy. Data security and privacy are the prior design
goals of our scheme. In our scheme, the query data and query result contains
sensitive information of the SU which should be revealed to neither the
CSP or ESP in our scheme. Moreover, the access pattern also should be
protected. In addition, the decision tree is the property of CSP, which cannot
be disclosed to ESP or SU.

(2) Classification Result’s Accuracy. It is also really important that the classifi-
cation accuracy must be guaranteed when applying the privacy-preserving
strategy. Therefore, the proposed system should achieve the same accuracy
compared with the non-privacy-preserving data mining system.

(3) Efficiency. Considering the real-time requirement of the online service, the
decision tree evaluation process should be done as fast as possible. Therefore,
the computation and communication overheads of ESP and CSP should be
as small as possible.

(4) Offline SUs. Usually the SUs are resource-constrained in our scheme. After
sending query data, they should be offline until receiving the classification
result. Supporting offline SUs is a good way to minimize the computation
and communication costs of them. Moreover, there are a great number of
SUs in our scheme, supporting offline SUs is vital to the scalability of our
scheme.

4 Privacy-Preserving Building Blocks

In this section, we mainly propose a secure comparison and secure polynomial
calculation protocol. These building blocks are based on additive secret sharing
and Paillier cryptosystem with distributed decryption. Both of them serve as
the basic constructions of privacy-preserving decision tree evaluation scheme. In
the following, we assume that CSP is the party A and ESP is the party B, i.e.,
〈·〉A belongs to CSP and 〈·〉B belongs to ESP.
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4.1 Secure Comparison

Suppose that the CSP and ESP have two additively shared integers 〈x〉, 〈y〉. Note
that in this algorithm, ‖x‖, ‖y‖ ≤ ‖N‖/2 − 1. Through running such a Secure
Comparison (SC) protocol, they get the additive shares of the comparison result
〈t〉, where t = (x ≥ y). During the running of this protocol, nothing of the
original data and the comparison result is leaked to CSP or ESP. We introduce
our SC in Algorithm 1.

Algorithm 1. Secure Comparison (SC)
Input: CSP has 〈x〉A, 〈y〉A and sk(1); ESP has 〈x〉B , 〈y〉B and sk(2). A pre-computed

arithmetic multiplication triple 〈c〉 = 〈a〉 · 〈b〉.
Output: CSP outputs 〈t〉A; ESP outputs 〈t〉B .
1: ESP: XB ← Enc(2〈x〉B + 1), Y B ← Enc(2〈y〉B). Send XB , Y B to CSP.
2: CSP: XA ← Enc(2〈x〉A), Y A ← Enc(2〈y〉A). X ← XA · XB , Y ← Y A · Y B .

Randomly pick r1, r2 ∈ ZN and α ∈ {0, 1}, s.t., ‖r1‖ < ‖N‖/2 − 1. If α = 0,
C ← X · Y N−1; else C ← Y · XN−1. D ← Cr1 . Partial decrypt D as D′, i.e,
D′ ← PDecsk(1)(D), before sending it to ESP.

3: ESP: d ← PDecsk(2)(D′). If d < N/2, β ← 1; else β ← 0.
4: CSP: 〈e〉A ← α − 〈a〉A, 〈f〉A ← α − 〈b〉A.
5: ESP: 〈e〉B ← −β − 〈a〉B , 〈f〉B ← −β − 〈b〉B .
6: CSP& ESP: e ← Rec(〈e〉A, 〈e〉B), f ← Rec(〈f〉A, 〈f〉B ).
7: CSP: 〈t〉A ← f · 〈a〉A + e · 〈b〉A + 〈c〉A.
8: ESP: 〈t〉B = e · f + f · 〈a〉B + e · 〈b〉B + 〈c〉B .

In our SC, both the additive secret sharing scheme and Paillier cryptosystem
with distributed decryption scheme are used. Firstly, CSP and ESP make a
conversion from additive secret to Paillier cryptosystem ciphertext. Specifically,
ESP computes 2(〈x〉B +1), 2〈y〉B and then encrypts them as XB and Y B before
sending them to CSP. At the same time, CSP also calculates 2〈x〉A, 2〈y〉A, and
then encrypts them as XA and Y A. With XA, Y A, XB and Y B , CSP can easily
compute X ← XA · XB , Y ← Y A · Y B , where X = [[2x + 1]], Y = [[2y]]. Next,
CSP picks two random integers from ZN , i.e., r1, and α ∈ {0, 1}, where ‖r1‖ <
‖N‖/2 − 1. If α = 0, CSP calculates C ← X · Y N−1, where C = [[2x + 1 − 2y]].
Otherwise, CSP computes C ← Y · XN−1, where C = [[2y − (2x + 1)]]. Then
,CSP also blinds C with r1through calculating D ← Cr1 before sending it to
cloud B. Note that, D = [[r1(2x+1−2y)]] or D = [[r1(2y−2x−1)]]. Finally, CSP
partial decrypts it with sk(1) as D′, and sends D′ to ESP. Receiving D′ from
CSP, ESP decrypts it by the partial private key sk(2) as d and compares it with
N/2. If d < N/2, ESP sets β ← 1. Otherwise, ESP sets β ← 0. Note that, after
these steps in this SC protocol, t = α ⊕ β is the final comparison result needed.
Since α, β ∈ (0, 1), we can conclude α ⊕ β = (α − β)2. Let γ = α − β. We can
see 〈γ〉 as 〈γ〉A ← α and 〈γ〉B = −β. Therefore, CSP and ESP just needs to run
a Mul(〈γ〉, 〈γ〉) to get the final comparison result. These multiplication steps are
shown from line 4 to line 8 in Algorithm 1.
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Remark. In our SC, we mainly let the two clouds compare r1(2x + 1 − 2y) or
r1(2y−2x−1) rather than directly compare r1(x−y). On one hand, if x = y, the
decryption result obtained by ESP is 0. Thus, the comparison result is leaked
to ESP. On the other hand, since x, y are integers, x > y ⇔ 2x + 1 > 2y and
x < y ⇔ 2x + 1 < 2y.

Discussion. Note that there are several works focusing on securely comparing
two additive shared integers [35,36]. Their works are just based on the secret
sharing scheme. Thus, the communication rounds are about O(n). However, in
our scheme, CSP and ESP just need to communicate with each other in 3 rounds.
We greatly reduce the communication rounds compared with references [35,36].

4.2 Secure Polynomial Calculation

Polynomial is a combination of several elements’ multiplications and additions.
Since we have Add and Mul on the additive secret shares, we can easily get
our Secure Polynomial Calculation (SPC) protocol. Such a SPC is also a series of
Adds and Muls’ combination. For example, if we want to compute f(x, y, z) =
a1x

n1ym1zk1 + a2x
n2ym2zk2 + · · · + aλ, where x, y, z are shared by ESP and

CSP, and a1, a2, · · · , aλ are public constants. To solve such a problem, CSP and
ESP calculate each monomial one by one, and then they run an Add on all the
shared monomial to get the results. For each monomial, it is just a combination
of several multiplications, and they just need to run Mul several times to get the
additive shares of each monomial.

5 Privacy-Preserving Decision Tree Evaluation

With the building blocks proposed, we are ready to introduce the detailed scheme
for our privacy-preserving decision tree evaluation. Our scheme consists of the
following three stages: query vector issuing, secure decision tree evaluation and
result recovering. Note that the modular N for the Paillier cryptosystem with
distributed decryption is generated by KGC. Such an N is also used for the
query data splitting. Thus, it also should be sent to SUs, before they issue their
query to the CSP.

5.1 Query Request Issuing

Once receiving N from KGC, the multiple SUs are ready to split their query
vectors. For a query vector X = {x1, x2, · · · , xn}, the SU splits it into two
additive shares through the following ways. The SU randomly chooses a set of
integers ri from ZN where i ∈ [1, n]. Then, the SU sets 〈xi〉A = ri, and 〈xi〉B =
xi − ri. After these computations, the SU uploads 〈X〉A to CSP and 〈X〉B to
ESP respectively. Here, we assume that the transmission channel between SUs
with the CSP and ESP are secure which cannot be eavesdropped by A.
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Fig. 3. Binary decision tree

5.2 Secure Decision Tree Evaluation

In this stage, CSP and ESP cooperate with each other to obliviously evaluate
the decision tree. We follow the idea of Bost et al. proposed that express the
decision tree as a polynomial P [8]. The basic idea of such a P is that it is a sum
of several terms, where each term is represented as a path from the root to one
leaf node. If and only if the query vector is classified as the label ci, the evaluation
result of P is ci. Therefore, the term corresponding to a path in the tree is the
multiplication of the boolean variables on that path and the classification label
at the leaf node. For example, the polynomial of the tree shown in Fig. 3(a) is
P (b1, b2, b3, b4, c1, c2, · · · , c5) = (1− b1) · (b2 · c2 +(1− b2) · c1)+ b1 · (b3 · c5 +(1−
b3)(c4 + (1 − b4) · c3))).

In our scheme, the decision tree model belongs to the CSP. Neither the ESP
or the SU should learn anything about the tree structure. And the two clouds
should also learn nothing about the query data and classification result. We
illustrate the details of our Secure Decision Tree Evaluation (SDTE) as follows:

Step 1 (CSP): Suppose that the internal node of a tree is Y =
{y1, y2, · · · , ym}. CSP adds some dummy node into the Y . Without loss of gen-
erality, we suppose that k dummy nodes are added. Then, CSP gets Y ′, where
Y ′ = {y1, y2, · · · , ym+k}. Note that for the correctness of the evaluation result,
all the dummy node goes to the same leaf node as the leaf node substituted by
them. The tree with dummy nodes is shown in Fig. 3(b).

Step 2 (CSP): CSP chooses m + k random integers αi from ZN , and sets
〈yi〉A = αi and 〈yi〉B = yi − αi. CSP sends 〈Y ′〉B to ESP. With the same way,
CSP also splits all the ci into two additive shares and send 〈ci〉B to ESP. Note
that, the two children of the dummy nodes are same. But here, we let CSP
choose different random numbers to make it indistinguishable.

Step 3 (CSP & ESP): For each 〈yi〉, CSP and ESP run a SC on it and its
corresponding 〈xi〉. Here we use bi to denote the comparison results. Note that
〈bi〉 is also secret shared by the two clouds. Neither the CSP nor the ESP knows
these comparison results.
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Step 4 (CSP & ESP): With all the 〈bi〉 and 〈ci〉, CSP and ESP can run a
SPC on these data to calculate the polynomial P . Without loss of generality, we
assume that the calculation result is 〈r〉. Finally, CSP and ESP send 〈r〉A and
〈r〉B to SU.

Remark. In our SDTE, several dummy internal nodes are introduced to keep
ESP from inferring the number of nodes in the decision tree. Note that the
dummy node has substituted the leaf node. We let CSP use the same leaf node
as the left and right children of the dummy node to guarantee the correctness of
the classification results. Moreover, to avoid the ESP inferring the depth of the
tree, we can introduce more dummy nodes in the same way.

5.3 Classification Result Reconstruction

After receiving the classification result shares, i.e., 〈r〉A, 〈r〉B , from CSP and
ESP respectively, the SU can recover the label of his query vector X through
local computation. That is, SU just computes r ← 〈r〉A + 〈r〉B .

6 Security Analysis

In this section, we first analyse the security of our building blocks and then our
privacy-preserving decision tree evaluation scheme.

6.1 Security of Cryptographic Blocks

In this section, we prove the security of SC and SPC. Before that, we first
present the definition of security in the semi-honest model [37].

Definition 1 (Security in the Semi-Honest Model [37]). Let π denote the
protocol and ai, bi be the input and output of party pi computed in this protocol
respectively. We also use Πi(π) to denote Pi’s execution image of the protocol π.
Then π is secure if Πi(π) can be simulated from ai and bi such that distribution
of the simulated image is computationally indistinguishable from Πi(π) (More
details can be found in [37] ).

From Definition 1, we can easily get that if a protocol is secure under the semi-
honest model, its simulated execution image and the actual execution image
should be computational indistinguishable. Usually, the data exchanged and the
information calculated during the protocol running is included in the execution
image of a protocol. Moreover, to prove the security of our protocols, the follow-
ing lemmas can be used. For more details of the proofs of Lemma 1 and Lemma
2 can be found in reference [38].

Lemma 1. [36,38] A protocol is perfectly simulatable if all its sub-protocols are
perfectly simulatable.
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Lemma 2. If r is a random integer uniformly chosen from ZN and independent
from any variable x ∈ ZN , r+x is also uniformly random and independent from
x.

Theorem 1. The SC proposed is secure under semi-honest model.

Proof. As we have stated that from line 4 to line 8 in Algorithm 1, CSP and
ESP cooperate with each other to run a Mul to get the final comparison result.
Since the security of Mul have been proved in reference [26], we just need to
prove other steps shown in Algorithm 1 is secure. In the following, we just give
the execution image of the first three lines in Algorithm 1. Here, let the exe-
cution image of CSP be denoted by ΠCSP (SC) which is given by ΠCSP (SC) =
{XA,XB , Y A, Y B ,X, Y, C, α, r1,D,D′}. Note that α is a random numbers in
ZN . We assume that ΠS

CSP (SC) = {X ′
0,X

′
1, Y

′
0 , Y

′
1 ,X

′, Y ′, C ′, α′, r′
1D

′
0,D

′′}
where all the elements are randomly generated from ZN except α′, r′

1, where
α′ is randomly chosen from (0, 1) and r′

1 is a random number whose bit length
is smaller than ‖N‖/2 − 1. Since Paillier cryptosystem with distributed decryp-
tion is a semantic secure encryption scheme [24], XA,XB , Y A, Y B ,X, Y, C,D,D′

are computationally indistinguishable from (X ′
0,X

′
1 , Y ′

0 , Y
′
1 ,X

′, Y ′, C ′,D′
0,D

′′).
Moreover, both α and α′ are randomly chosen from (0, 1), thus they are also
computationally indistinguishable. Based on the above analysis, we can draw a
conclusion that ΠCSP (SC) is indistinguishable from ΠS

CSP (SC).
Similarly, the execution image of ESP in this SC form line 1 to 3 is denoted

as ΠESP = {XB , Y B,D′, d}, where d = r1(2x + 1 − 2y) or d = r1(2y − 2x − 1).
The simulated image is ΠESP = {X ′′, Y ′′,D′, d′}, where all the elements are
randomly chosen from ZN . Since Paillier cryptosystem with distributed decryp-
tion is semantic secure, ΠESP (SC) is computationally indistinguishable from
ΠS

ESP (SC).
According to Lemma 2, combining the above analysis, we can confirm that

SC is secure under the semi-honest model.

Theorem 2. The SPC is secure under semi-honest model.

Proof. Our SPC is based on Add and Mul. Since the security of Add and Mul have
been proved in reference [26], we can conclude that SPC is secure too.

6.2 Security of Privacy-Preserving Decision Tree Evaluation
Scheme

Theorem 3. The proposed privacy-preserving decision tree evaluation scheme
is secure under semi-honest model.

Proof. In the similar manner we can prove that our privacy-preserving decision
tree evaluation scheme is secure under the semi-honest model firstly. In the first
and third stage, the calculations are done locally by the SU. Thus, it is obliviously
secure. In the following, we mainly prove our SDET is secure under semi-honest
model.
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In Step 1 and Step 2, CSP just splits the internal nodes and the leaf nodes
into two additive shares and sends one of the shares to ESP. Since one of the
shares is a random number chosen from ZN , according to Lemma 1, the other
share is random too. The other steps are based on our SC and SPC, which are
proven to be secure under the semi-honest model. According to Lemma 2, we
can conclude that our SDTE is secure under the semi-honest model.

7 Performance Analysis and Comparison

In this section, we evaluate the performance of our scheme.

7.1 Experiment Analysis

The performance evaluations of the proposed system are tested on two personal
computers running Windows 8.1 with Intel Core i7-6700 CPU 3.40 GHz eight-
core processor and 16 GB RAM memory. One of them acts as CSP and the other
acts as ESP. We implement Pailier cryptosystem with distributed decryption
by BigInteger Class in Java development kit, and using this to implement our
computation protocols.

Table 3. Performance on Real-World Dataset (100-Times for Average, 80-bits Security
Level)

Dataset n d m Time Comm. Cost

Breast-cancer 9 8 12 0.532s 16.489 KB

Heat-disease 13 3 5 0.28s 6.89 KB

Housing 13 13 92 6.412s 136.419 KB

Credit-screening 15 4 5 0.352s 6.99 KB

Spambase 57 17 58 4.189s 83.692 KB

We test our privacy-preserving decision tree evaluation scheme on five
datasets from the UCI repository1 whose application domain including breast
cancer diagnosis and credit rating classification. First, we train these dataset
to get our decision tree by standard Matlab tools (classregtree and Tree
Bagger).Note that we use the same dataset in reference [9]. The detailed exper-
imental results are shown in Table 3. Compared with Wu et al.’s work, both the
communication and computation costs of ours are much smaller.

1 UC Irvine Machine Learning Repository https://archive.ics.uci.edu/ml/datasets.
htm.

https://archive.ics.uci.edu/ml/datasets.htm
https://archive.ics.uci.edu/ml/datasets.htm
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8 Conclusions

In this work, we proposed a privacy-preserving decision tree evaluation scheme
on the outsourced cloud data. In our scheme, two-cloud model is used. During the
evaluation process, nothing of the query data and classification result is leaked
to either of the clouds. Moreover, the details of the tree are also kept secret to
the service users. Besides, in our scheme, the service users do not need to take
part in the evaluation, i.e, they just send a query and wait for the result. The
experimental results show that our scheme is highly efficient. For the future, we
plan to extend our work to support the random forest.
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Abstract. Voice Assistant (VAs) are increasingly popular for human-
computer interaction (HCI) smartphones. To help users automatically
conduct various tasks, these tools usually come with high privileges and
are able to access sensitive system resources. A comprised VA is a step-
ping stone for attackers to hack into users’ phones. Prior work has experi-
mentally demonstrated that VAs can be a promising attack point for HCI
tools. However, the state-of-the-art approaches require ad-hoc mecha-
nisms to activate VAs that are non-trivial to trigger in practice and are
usually limited to specific mobile platforms. To mitigate the limitations
faced by the state-of-the-art, we propose a novel attack approach, namely
Vaspy, which crafts the users’ “activation voice” by silently listening to
users’ phone calls. Once the activation voice is formed, Vaspy can select a
suitable occasion to launch an attack. Vaspy embodies a machine learn-
ing model that learns suitable attacking times to prevent the attack from
being noticed by the user. We implement a proof-of-concept spyware and
test it on a range of popular Android phones. The experimental results
demonstrate that this approach can silently craft the activation voice
of the users and launch attacks. In the wrong hands, a technique like
Vaspy can enable automated attacks to HCI tools. By raising awareness,
we urge the community and manufacturers to revisit the risks of VAs
and subsequently revise the activation logic to be resilient to the style of
attacks proposed in this work.

Keywords: Voice Assistant · Smartphone · Android ·
Software security · Systems security

1 Introduction

Voice assistants (VAs) have been widely used in smartphones, typically as
human-computer interaction (HCI) mechanisms for device control and iden-
tity authentication. Popular examples from the market include Amazon Alexa
[10], Samsung Bixby [29], Google Assistant [20], and Apple Siri [13]. Because
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human-beings are able to speak about 150 words per minute, which is much
faster than typing, e.g., roughly 40 words per minute on average, VAs are very
useful to transform human speech into machine-actionable commands. This cre-
ates an easy-to-use design of smartphones, especially for those that need lots of
inputs or for scenarios where ‘hands-free’ is mandatory (e.g., making phone calls
when driving). In order to support broad functionalities via voice, e.g., sending
text messages, making phone calls, browsing the Internet, playing music/videos,
etc., VAs are usually granted high-level privileges including dangerous permis-
sions [28] (e.g., ACCESS COARSE LOCATION, READ CONTACTS).

Unfortunately, the VA technique is a double-edged sword. They not only
bring great convenience to smartphone users, but also offer a backdoor for hack-
ers to gain entrance into the mobile systems. Hackers can take advantage of VAs’
required high privilege in accessing various applications and system services to
steal users’ private information like locations and device IDs [20], control smart
home devices [4], forge emails, or even transfer money [5], etc. For example, after
activating the Google Assistant with the keywords “OK Google”, a hacker can
further manipulate an episode of attacking voice that cheats the smartphone to
send the user’s location to a specific number via SMS with commands such as
“send my location to 12345678” [20]. Given a list of VA-enabled functions
[24], we can identify many potential attacks against users’ smartphones.

Prior work has already demonstrated the feasibility of attacking smartphones
via VAs [10,17,20,42]. The key to the successes of the approaches is to activate
VAs in a stealthy manner. For example, Diao et al. [20] and Alepis et al. [10]
utilise the Android inter-component communication (ICC) to wake up the VA.
To be stealthy, they propose to launch attacks when smartphones are unat-
tended or in the early morning (e.g., 3 am). However, this approach requires
to call a specific API (‘ACTION VOICE SEARCH HANDS FREE’), which is only avail-
able in Google Assistant. This excludes the use of the approach in some brands
like Huawei and Xiaomi, which provide custom VAs other than Google Assis-
tant. Zhang et al. [42] propose using inaudible ultrasound to activate VAs. The
attacking commands are undetectable by users but can be recognised by VAs
on smartphones. However, this approach needs a special ultrasound generator
on-site, which is not practical in the real world. There is another work under the
same umbrella. Carlini et al. [17] apply adversarial machine learning technique
to manipulate attacking sounds against voice recognition systems. This approach
requires the hackers to have physical access to the targeting smartphones and
run sound crafting processes iteratively. This premise is also impractical in most
real-world scenarios.

In this paper, we propose a novel and practical stealthy attacking approach
against voice assistants in Android phones, named Vaspy. It learns from the
user’s normal dialogue to craft the activation voice to the VA and leverages
the built-in speaker to play and activate the VA. To be stealthy, the attack is
triggered only at moments when the smartphone user is most likely to overlook
the occurrence of activation voice. The idea of Vaspy comes from two practical
facts: (1) the built-in speaker can be used to activate the VA of a phone [10];
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and (2) the ringtone of a phone can be easily neglected by a user in a noisy
environment.

We develop a proof-of-concept spyware based on Vaspy. The spyware dis-
guises itself as a popular microphone controlled game to increase the chance of
successful delivery to targeting Android phones1. The spyware records in/out-
bound calls and synthesises the activation keywords (e.g., ‘OK Google’) using
speech recognition and voice cloning [12] techniques. This operation is necessary
as state-of-the-art VAs are resilient to unauthenticated voiceprints. The proof-of-
concept spyware sheds light on two advantages of Vaspy: (1) since the attacking
process only makes use of a common component in an Android phone (e.g., the
built-in speaker), Vaspy can be applied to most off-the-shelf Android phones
that have built-in VAs; this breaks the limitations in prior work, which either
requires a special equipment [17,42] or can only be applied to Google Assis-
tant [10,20]; (2) Vaspy can employ machine learning techniques to analyse data
collected from various on-board sensors; this helps Vaspy identify the optimal
attacking time, making it stealthier compared to prior work [10,20].

Vaspy can be very dangerous to smartphone users, not only due to its stealth-
iness, but also because of its resilience to state-of-art anti-virus tools. We test
the proof-of-concept spyware on VirusTotal [2], a widely adopted industrial
anti-virus platform. We also test the spyware on three state-of-the-art learning-
based Android malware detectors, namely Drebin [14], DroidAPIMiner [9], and
MaMaDroid [33]. Results indicate that the spyware based on Vaspy can evade
their detection. In fact, Vaspy seldom invokes sensitive APIs [6] and uses the
VA as a puppet to carry out malicious activities, making it resilient to those
anti-virus tools.

We summarise the contributions of this paper as follows.

– We propose a novel attacking approach called Vaspy, which can stealthily
hack into Android phones via built-in VAs without users’ awareness.

– We designed a context-aware module in Vaspy, making it stealthier com-
pared to prior work. This module provides intelligent environment detection
to identify the optimal time to launch attack, based on the data collected
from various on-board sensors.

– We develop a proof-of-concept spyware based on Vaspy to evaluate the attack
in a real-world empirical study. The empirical results show that users can-
not detect the spyware and the spyware does not affect the performance of
Android phones significantly. We also find that the spyware is resilient to
typical anti-virus tools from both industry and academia.

The rest of this paper is organised as follows. Section 2 presents related works.
Section 3 provides the details of the attacking model in Vaspy. Section 4 demon-
strates the feasibility of Vaspy through a proof-of-concept spyware. The eval-
uation is presented in Sect. 5, followed by a discussion of some open issues in
Sect. 6. Section 7 concludes this paper.

1 This is only an example for delivery. There are many other social engineering meth-
ods to be used in the real world, e.g., [40].
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2 Related Work

2.1 Attacks to Smartphone VA

There are a few existing work designed to attack VAs. For example, Diao et al.
[10,20] proposed an attacking method that made use of Android inter-component
communication mechanism and built-in speaker. To be stealthy, Diao et al. [20]
designed the attack to be triggered at 3 am, a time when smartphones were
expected to be unattended (e.g., users sleeping). A similar model to make the
attack stealthy was adopted in Alepis et al.’s work [10]. However, these attacks
require a specific API (Intent: ‘ACTION VOICE SEARCH HANDS FREE’), which was
only available in Google Assistant. This limits the use of their proposed attacking
methods, e.g., considering devices like Huawei’s Xiao Yi and Xiaomi’s Xiao Ai,
which provide custom VAs for users. In addition, the stealthiness of the above
methods is not complete. For example, the volume of activation voice (e.g., 55±3
dB claimed in Table 4 of [20]) may be loud enough to wake the user, considering
the quiet environment in the early morning [35].

There are some other attacking methods that focused on crafting special
audio that could be recognised by smartphone VAs but not heard by human-
beings [17,42]. For example, the idea of Nicholas et al. [17] was to obfuscate
raw attack audio and make it sound like a noise. Based on adversarial machine
learning techniques [15,38], the deliberately crafted audio could be recognised
by smartphone VAs but was neglected by smartphone users as incomprehensible
noise. In another example, Zhang et al. proposed using ultrasound [42], as its
frequency is higher than the upper audible limit of human hearing. However, the
approach of Nicholas et al. [17] requires access to the targeting voice recogni-
tion model as either a black-box or a white-box, in order to run audio crafting
processes iteratively. Moreover, the approach of Zhang et al. requires a special
instrument (e.g., ultrasound generator) [42]. Both premises are impractical in
most real-world scenarios.

There are also some works that specifically studied the attacks against speech
recognition systems (note: a key part in VA) [30,36,41]. For example, Yuan et al.
[41] embedded voice commands into a song that can be recognised as a complete
sentence by the speech recognition system. Schönherr et al. [36] manipulated
adversarial examples against speech recognition systems by crafting special audio
signals based on psycho-acoustic hiding technique. Kumar et al. [30] explored
interpretation errors made by Amazon Alexa and found that Amazon Alexa
could make some permanent systematic errors. All these works focus on audio
processing for attacks. However, in the proposed Vaspy, we mainly focus on
the stealthier attacking behaviours such as identifying suitable attack time and
making it imperceptible to users. The ideas of the above works can also be
borrowed and integrated into our Vaspy to expand the attack range.
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2.2 Context-Awareness Based on Smartphone Sensors

The success of Vaspy relies on activating VAs in a stealthy manner. This in turn
relies on context-awareness that identifies the optimal attacking time according
to the data collected from the smartphone’s on-board sensors (e.g., accelerome-
ter, gyroscope, and ambient light sensor). In this subsection, we analyse similar
works that also adopted context-awareness based on on-board sensors.

Silva et al. adopted a series of sensors in a smart home to predict human
activities [19]. Wiese et al. collected sensor data to analyse where people keep
their smartphones [39]. They achieved an 85% successful rate in determining
if a smart phone was in a bag, in a pocket, out, or in hand. Liu et al. [32]
proposed recognising PINs when users input them by keyboard to smart watches.
They used the accelerometer to capture user’s hand movement, and achieved
high accuracy in keystroke inference. In another work, user’s typing pattern was
learned via accelerometer readings [34]. These patterns were then used to infer
user’s typing on the screen. Moreover, Ho et al. proposed a context-awareness
algorithm that determined when and what information to present would not
make flawless decisions on mobile devices with heavy communication traffic [27].
We can find many similar applications of context-awareness based on smartphone
sensors, e.g., [11,26,37].

Similar to prior work, Vaspy also uses context-awareness based on smart-
phone sensors. In this area, we reckon that there is no superiority among differ-
ent context-awareness methods. Vaspy just integrates those that can increase the
chance of successful attacking. The particular approach may be different when
Vaspy is implemented in various proof-of-concept scenarios.

3 Attacking Model: Vaspy

The workflow of Vaspy is shown in Fig. 1. Vaspy’s attacking approach includes
two modules: (1) Activation Voice Manipulation and (2) Attacking Environment
Sensing. The first module synthesises the commands (e.g., ‘OK Google’) that are
required to activate the VA. Because most popular VAs can differentiate the voice
of genuine smartphone owners based on artificial intelligence technologies [16],
the activation voice in Vaspy will be manipulated based on the targeted users’
own voice.

There are mainly two approaches available for synthesising activation voice:
(1) using users’ voice recording to clone an activation voice [12]; and (2) extract-
ing an activation voice form users’ voice recordings. For the first approach, we
can adopt voice cloning method [12] based on multi-speaker generative mod-
elling [23] to generate the activation voice by a few users’ own voice recordings.
The method provides a trained multi-speaker model (fine-tuning) that takes a
few audio-text pairs as input to simulate new speaker. This approach requires a
text input to encode the cloned voice. Alternatively, the second approach adopts
speech recognition techniques/tools such as Recurrent Neural Network (RNN)
[25] to retrieve/synthesise the vocal pieces of those special words from users’ own
voice. This approach has been widely used in some commercial systems such as
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Fig. 1. The workflow of an example spyware based on Vaspy. Incoming/outgoing calls
are monitored and recorded, and the activation voice is then synthesised. User’s envi-
ronment is monitored by built-in sensors to determine a suitable attacking occasion.
When launching the attack, text commands can be retrieved from Firebase [7] and
converted to speech by a built-in Text-to-Speech (TTS) module in the smartphone.

IBM Watson [1]. In Sect. 4, we implement an RNN-based method to synthesise
users’ voice in our proof-of-concept spyware, but alternative techniques/tools
can also be integrated to Vaspy. In our implementation, the vocal corpus of spe-
cial words can help craft the activation voice, e.g., ‘OK’ plus ‘Google’ producing
‘OK Google’ as a whole activation voice piece for Google Assistant. However,
it can be very challenging when the targeted user seldom speaks these special
words. In this case, Vaspy will synthesise the vocal pieces of the special words
from syllables captured from users’ voice [22], e.g., the first syllable of ‘good’
and the second syllable of ‘single’ can be concatenated to pronounce ‘google’.

Once the activation commands are crafted, the second module will collect
environment data such as light levels, noise levels, and motion states, via on-
board sensors. Vaspy introduces machine learning techniques to decide an opti-
mal time to launch the attack in a stealthy manner. The correctness of Vaspy’s
decisions is determined by the volume and quality of the contextual data col-
lected to access the attacking environment. After the second module identifies
a suitable attacking time, the synthesised activation voice is played, followed
by prepared attacking commands (e.g., “send my location to 123456”), causing
harm to the targeted smartphone user. After the activation, successive attacking
commands can be easily delivered to the VAs to control the compromised phone.

4 Proof-of-Concept: A Spyware

4.1 Activation Voice Manipulation

We implement a proof-of-concept spyware in Android to evaluate Vaspy in a
series of real-world scenarios. The spyware disguises itself as a microphone-
controlled game. When a user starts playing the game, Vaspy will be activated
in the background and stay active even if the game app is terminated.
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Once launched, Vaspy registers itself as a foreground service2 that mon-
itors phone call status. When there is an incoming or outgoing call, Vaspy
starts recording the audio from microphone. The audio clip will be processed
by the Activation Voice Manipulation module and then be deleted immediately
to release the storage. The recording process stops when either the phone call
ends or the activation keyword is successfully synthesised.

We implement a RNN-based voice synthesis model in our proof-of-concept
spyware. The RNN model is trained with audio clips containing both positive
words (i.e., activation keywords) and negative words (i.e., non-activation words).
Audio signals are converted into spectrograms which represent the spectrum of
frequencies of the signals. Starting and ending frames of each activation keyword
are labeled in the audio clips. The RNN is trained to extract activation words
from audio clips. We implement the Gate Recurrent Unit as the core unit of
our RNN [18]. There are 4500 and 500 audio clips used in training and testing,
respectively. The accuracy on the testing set is 93.4%.

Note that in our prototype implementation, recorded audio clips must contain
the activation keywords. However, this limitation can be removed by implement-
ing voice cloning technique [12], which requires only a few voice recordings of
arbitrary contents from the targeting user.

4.2 Attacking Environment Sensing

Environment data that decides whether to launch the attack is collected from
smartphone on-board sensors. In particular, we extract the movement intensity
features from accelerometer readings and the features of environment variables
from microphone and light sensors readings. Since smartphones do not have
built-in noise sensors, noise levels in decibel are calculated from the amplitude
of the ambient sound that we gathered from microphone, according to LdB =

10 lg
(

A1
A0

)2

wherein A1 is the amplitude of the recorded sound, and A0 is a
standard amplitude that is usually set to one.

Movement intensity features describe an overall perspective of human
behaviour state. We divide human behaviours into a series of states, includ-
ing (1) the definite motion state, (2) the definite stationary state, and (3) the
relative motion-stationary state. The sharp difference of readings between the
definite motion state and the definite stationary state allows the classification
model to recognise these behaviours with high accuracy. However, the activities
that do not show an apparent fluctuation may confuse the classification model.
Therefore, we define an intermediate, i.e., a relative motion-stationary state,
by which most of the confusing activities can be classified accurately. In this
prototype, we use Random Forest as our classification model because RF does
not directly output class labels but instead computes probabilities. We assign
labels to the instances according to whether the probabilities of RF exceed a
2 Android 9 disables background services from accessing user input and sensor data.

Therefore, we use foreground service and hide the notification icon by making it
transparent [3].
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certain threshold. We label the motion state with the probability of over 60%
and less than 40% as a definite motion state and a definite stationary state,
respectively. We also label the motion state with the probability between 40%
to 60% as a relative motion-stationary state. As the movement intensity features
are categorical data, machine learning based algorithms cannot work with them
directly. Therefore, we convert all the movement intensity features to numerical
values using one-hot encoding. The definite motion state has been encoded to
[0, 1], the definite stationary state has been encoded to [1, 0] and the relative
motion-stationary state has been encoded to [1, 1].

All collected sensors’ data will be re-sampled in a frequency of 50 Hz and
follow the Nearest Neighbour Interpolation principle [8], and merge with one hot
encoded movement intensity features to built training matrices. The features of
environment variables are used for the purpose of providing more specific details
on the uncertain environmental factors, such as noise level and light intensity,
which can also affect the decision about whether to launch a stealthy attack.

4.3 Post Attacks and Spyware Delivery

Once the environment detector determines to launch the attack, the synthesised
activation voice is played via the speaker on the victim’s phone. Meanwhile, the
attacking commands (text format) are dynamically fetched from Firebase [10]
and played via the smart phone’s speaker using Android built-in Text-to-speech
(TTS) service.

Three permissions are required in Vaspy, which are RECORD AUDIO (to record
the activation voice of the user), INTERNET (to dynamically fetch attacking com-
mands from the Firebase server and interact with trained online model), and
READ PHONE STATE (to monitor incoming/outgoing call status). Vaspy is dis-
guised as a popular microphone-controlled game, so that it can legitimately
request the RECORD AUDIO permission. When a victim user plays the game, the
player is required to blow or scream to the microphone to raise a rocket. (The
snapshot of the game can be found in AppendixA). The game is very deceivable
to teenagers or kids. In fact, the spyware can be delivered in other forms such
as a malicious audio recorder. READ PHONE STATE and INTERNET permissions are
very commonly requested by various Android games. There are 46 of the top 100
games on Google Play that requests the READ PHONE STATE permission, while all
of the top 10 games request the INTERNET permission.

5 Evaluation

In this section, we evaluate the performance of our prototype spyware in terms of
the attack success rate. The attack capabilities on the VAs from various vendors
(i.e., Google, Huawei, and Xiaomi) are also investigated. In addition, to examine
its stealthiness, we evaluate the system overhead, and tested Vaspy against anti-
virus tools/platforms.
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Fig. 2. Overview of the data collected in real-world scenarios.

5.1 Evaluation of the Attacking Environment Sensing Modulel

We evaluate the proposed attack on three VAs on four Android smartphones,
including Google Assistant on Google Pixel 2 and Samsung Galaxy S9, Xiao
Yi on Huawei Mate 8, and Xiao Ai on Xiaomi Mi 8. Smartphones are taken to
various real-world scenarios for data collection. These scenarios include moving
or stationary states, noisy or quiet environment, and putting a smartphone in
pockets or holding it on hands. The example scenarios are shown in Fig. 2.

Each smartphone is carried by a participant for data collection. An audio
piece of synthesised activation voice is stored in each smartphone. These activa-
tion voices are tested in advance to make sure that they can successfully activate
the voices assistant on the smartphones. In every two minutes, the activation
voice followed by one random attacking voice command (e.g., “Send ‘subscribe’
to 1234567”) is played via smartphone’s built-in speaker. If the participant does
not notice the voice command, and the command is successfully executed, we
label this attack as success. Finally, the data we collected for training includes
the readings from smartphone on-board sensors (i.e., microphone, accelerometer,
and ambient light sensor) and attack results (as label set).
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Table 1. Average accuracy performance

Invasion Precision Recall f1-score
Unsuccessful 0.96 0.95 0.95
Successful 0.97 0.98 0.98
Avg 0.97 0.97 0.97

We train a Random Forest with
collected data, and evaluated the
model based on Precision, Recall, and
F1 Score. The results of 20-fold cross
validation is presented in Table 1. It
shows the proposed model is well-
trained.

5.2 Evaluation of Real World Attack

We further evaluate the effectiveness of the attack in real-world scenarios in
different times of a day. We Ten participants are recruited to carry one of the
aforementioned smartphones to various real-world scenarios. Smartphone sensors
collect real-time environment data, and feed it to the trained machine learning
model. Then, a probability of whether to launch an attack is obtained. An attack
will be triggered if the probability exceeds a threshold (e.g., 80% in our exper-
iment setting). We set up a restriction that in every two minutes, there will
be at most one attack triggered. Figure 3 reports the sensors’ readings and the
output attacking probabilities in two typical scenarios (see AppendixC to find
more scenarios), where “True” in the attack results indicates that the attack
is triggered but not heard by the participant, while “False” represents that the
attack is triggered and heard by the participants. “N/A” means that no attack
is triggered in the time slot, so that it is excluded when calculating the success
rate. We can see from Fig. 3 that the spyware based on Vaspy achieves 100%
success rate in real world attack.

Fig. 3. Evaluation result of the attacking environment sensing.
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5.3 Capability of Attack

After activating the VAs, the attackers may further acquire victim’s private infor-
mation, or conduct malicious activities on the infected smartphones, through
remotely executing specific attacking commands.

In Table 2, we list and compare the potential attacks that can be launched
on different VAs in victim smartphones, namely Google Assistant on Pixel 2,
Xiao Yi on Huawei Mate 8, and Xiao Ai on Xiaomi Mi 8. We also listed the
permissions required if the corresponding information are queried in an app.
However, none of these permissions are required in the proposed attack, since
VAs are naturally gained privilege to access such information.

Table 2. Post attack commands against VAs.

Category Attack type Permission(s) bypassed Attack result against VAs

Google Huawei Xiaomi

Privacy leak Query location ACCESS COARSE LOCATION
√ √ √

Share location READ CONTACTS,

SEND SMS,

ACCESS COARSE LOCATION,

WRITE SMS

√ × ×

Query calendar READ CALENDAR
√ √ √

Share calendar READ CALENDAR,

READ CONTACTS,

SEND SMS, WRITE SMS

× × ×

Malicious

activity

Phone Call READ CONTACTS,

CALL PHONE

√ √ √

Send SMS READ CONTACTS,

SEND SMS, WRITE SMS

√ √ √

Send email /
√ √ √

Browse website INTERNET
√ √ √

Bluetooth control BLUETOOTH
√ √ √

While private information such as location, calendar etc., can be queried
locally, most of them cannot be sent out as text, with one exception that Google
Assistant can send user’s current location via SMS to arbitrary number. However,
this does not necessarily mean that attackers cannot access these information
remotely. Actually, an attacker can manipulate VA to start a phone call to him,
and then query the private information during the phone call. The audio response
from the VA can then be heard by the attacker.
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The malicious activities such as making phone calls to premium numbers,
sending SMS, browsing malicious websites and so on, can be performed on all
the VAs that we tested without requesting for any permissions.

Given the fact that VAs can be easily controlled by attackers to perform
malicious activities as well as acquiring private information, we suggest that the
vendors should rethink the privilege assigned to VAs.

5.4 Runtime Cost Analysis

We evaluate and analyse the runtime cost of the spyware because high runtime
cost (e.g., CPU, Memory) will reduce the stealthiness of the attack. We install
the prototype spyware on Google Pixel 2, Huawei mate 8, Xiaomi Mi 8 and Sam-
sung Galaxy S9. Since the spyware launches the attack in the four distinctive
phases below, we evaluate each phase individually: P1 (Phone call state moni-
toring), P2 (Recording and synthesising activation command), P3 (Environment
monitoring), and P4 (Attacking via a speaker).

Fig. 4. Power and memory consumption of four phases: P1 (Phone call state monitor-
ing), P2 (Recording and synthesising activation command), P3 (Environment monitor-
ing), and P4 (Attacking via the speaker)

Power Consumption Analysis: Figure 4(a) reports the power consumption
per minute for four attacking phases. We also compare the power consumption
with playing 1080P video and music. The results show that in P1, P2, and
P4, the power consumption per minutes on all Android phones are very low.
P3 has the highest power consumption, which is approximately 0.8 mAh per
minute. It is still negligible when compared with the scenarios such as playing
video or listening to music, which consumes 6.1 mAh and 5.1 mAh per minute,
respectively. We further reduce the frequency of collecting data from sensors in
P3 from 50 Hz to 10 Hz. The power consumption decreases to 0.5 mAh, without
affecting the success rate of the attack. The results suggest that the spyware
consumes too little power to be noticed by the user.

Memory and CPU Analysis. Figure 4(b) shows the average RAM usage in
the four processes. The average RAM usage in P1, P2, and P3 is less than 5 MB.
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The P3 uses the highest memory (approximately 10 MB) because of sensor utili-
sation. Compared to the scenarios like playing video or listening to music, which
consumes approximately 60 MB to 70 MB, the memory cost of our prototype
spyware can hardly affect the performance of the hosting smartphone systems.
Therefore, it is hard to be noticed by the user. We also evaluate the CPU cost.
It is found that only P3 requires CPU, which consumes around 7% of the total
capacity.

5.5 Resistance to Anti-Virus Tools

We test the spyware against industrial anti-malware tools as well as academic
malware detection solutions.

For industrial anti-virus products, we test the spyware on VirusTotal (see
AppendixB), as well as the top ten most popular anti-virus tools on Google Play,
such as Norton Security and Antivirus, Kaspersky Mobile Antivirus, McAfee
Mobile Security, and so on. None of them reported our spyware as malicious
app. We also submit the spyware to Google Play store, where submitted apps
are tested against their dynamic test platform Google Bouncer. The spyware
successfully passes the detection of Google Bouncer. Note that we took down
the spyware from the Google Play immediately after it passed the test.

We also test the spyware with three typical learning-based detectors in
academia, which rely on syntactic features (e.g., requested permissions, pres-
ence of specific API calls, etc.), as well as semantic features (e.g., sequence of
API calls) extracted from Android application package (APK), namely Drebin
[14], DroidAPIMiner [9], and MaMaDroid [33]. We trained all the detectors with
5,000 most recently discovered malware samples and 5,000 benign apps that we
collected from Virusshare3 and Google Play store between August and October
2018, respectively. Our spyware is labeled as a benign app by all three detec-
tors. The results show the resistance of the proposed attacking method to both
industrial and academic malware detection tools.

6 Discussion

In this section, we will introduce the promising defence approaches for Vaspy
and discuss the lessons from this work.

6.1 Defence Approaches for Vaspy

In this section, we demonstrate two possible defence approaches for Vaspy: (1)
identifying the source of the voice commands; (2) continuous authentication for
VAs.

3 https://virusshare.com/.

https://virusshare.com/
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(1) Identifying the source of the voice commands. In the proposed attack sce-
nario, the voice commands are played via a speaker on a smartphone. New
techniques [31] are able to locate the source of the sound, which can then
determine whether the sound comes from the built-in speaker. The VA ven-
dors can disable our attack by setting the VA to disregard any voice com-
mands from the built-in speaker on its hosting smartphone.

(2) Continuous authentication for VAs. Feng et al. [21] propose a scheme that
collects the body-surface vibrations of the user and matches with the speech
signal received from a microphone. The VA only executes the commands
that originate from the owner’s voice. While it may successfully defend our
attack, it also brings some inconvenience to the user. For example, users
cannot activate the VA when they do not hold the smartphone. Actually,
users tend to interact with VA when they are not able to touch the screen,
such as the time when they are driving.

6.2 Lessons from This Work

This can be recognised as a vulnerability in the current VAs. Once the VAs are
activated, they are able to change smartphone settings, and do malicious activi-
ties that require high level permission, such as sending SMS/emails and making
phone calls. Due to the privileges it has to access system resources and private
information. VAs can then be a stepping stone for the attackers to hack into the
Android phones. More secure mechanisms will be implemented to improve the
security of VAs, from either the research community or the VA vendors.

7 Conclusion

In this paper, we propose a smart and stealthy attack Vaspy targetting VAs on
Android phones. With the new attack, an attacker can forge voice commands
to activate the VA and launch a number of attacks, including leaking private
information, sending forged Message or emails, and calling arbitrary numbers.
An Attacking Environment Sensing module is built inside the Vaspy to choose
an optimal attacking time and voice volume making the attack unnoticed by the
users. We build a prototype spyware for Vaspy and evaluate the spyware with
participants across various VAs on different Android phones. We demonstrate
that Vaspy is able to launch attacks without being noticed by users. Moreover,
our spyware cannot be detected by the state-of-art anti-malware tools from both
industry and academia. We also propose a few potential solutions to detect our
attack. This research work may inspire the researchers for Android phones to
strengthen the security of VAs in general.
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Appendix A The Snapshot of the Proof-of-Concept
Spyware

(See Fig. 5).

Fig. 5. The snapshot of the proof-of-concept spyware. After player clicking start but-
ton, the rocket will raise when player blows or scream to the microphone. The rising
speed depends on the volume of sound that the microphone receives

Appendix B The Detection Result of VirusTotal

(See Fig. 6).

Fig. 6. A snapshot of the detection result in VirusTotal
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Appendix C Evaluation Result of Other Typical
Scenarios

(See Fig. 7).

Fig. 7. Evaluation result of the attacking environment sensing.
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14. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K.: Drebin: efficient

and explainable detection of android malware in your pocket (2014)
15. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Bloc-

keel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS
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