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Abstract The ability to generate samples of the random effects from their condi-
tional distributions is fundamental for inference in mixed effects models. Random
walk Metropolis is widely used to conduct such sampling, but such a method can
converge slowly for medium dimension problems, or when the joint structure of
the distributions to sample is complex. We propose a Metropolis–Hastings (MH)
algorithm based on a multidimensional Gaussian proposal that takes into account
the joint conditional distribution of the random effects and does not require any tun-
ing, in contrast with more sophisticated samplers such as the Metropolis Adjusted
Langevin Algorithm or the No-U-Turn Sampler that involve costly tuning runs or
intensive computation. Indeed, this distribution is automatically obtained thanks to
a Laplace approximation of the original model. We show that such approximation is
equivalent to linearizing the model in the case of continuous data. Numerical exper-
iments based on real data highlight the very good performances of the proposed
method for continuous data model.
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1 Introduction

Mixed effects models are reference models when the inter-individual variability
that can exist within the same population is considered (see [9] and the references
therein). Given a population of individuals, the probability distribution of the series
of observations for each individual depends on a vector of individual parameters.
For complex priors on these individual parameters or models, Monte Carlo methods
must be used to approximate the conditional distribution of the individual parameters
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given the observations.Most often, direct sampling from this conditional distribution
is impossible and it is necessary to have resort to a Markov chain Monte Carlo
(MCMC) procedure.

Designing a fast mixing sampler is of utmost importance for several tasks in
the complex process of model building. The most common MCMC method for
nonlinear mixed effects models is the random walk Metropolis algorithm [9, 14,
15]. Despite its simplicity, it has been successfully used in many classical examples
of pharmacometry, when the number of random effects is not too large. Nevertheless,
maintaining an optimal acceptance rate (advocated in [15]) most often implies very
small moves and therefore a very large number of iterations in medium and high
dimensions since no information of the geometry of the target distribution is used.

To make better use of this geometry and in order to explore the space faster, the
Metropolis-adjusted Langevin algorithm (MALA) uses evaluations of the gradient
of the target density for proposing new states which are accepted or rejected using
the Metropolis-Hastings algorithm [16, 18]. The No-U-Turn Sampler (NUTS) is an
extension of the Hamiltonian Monte Carlo [11] that allows an automatic and optimal
selection of some of the settings required by the algorithm, [3]. Nevertheless, these
methods may be difficult to use in practice, and are computationally involved, in
particular when the structural model is a complex ODE based model.

The algorithm we propose is a Metropolis-Hastings algorithm, but for which the
proposal is a good approximation of the target distribution. For general data model
(i.e. categorical, count or time-to-event data models or continuous data models), the
Laplace approximation of the incomplete pdf p(yi ) leads to a Gaussian approxima-
tion of the conditional distribution p(ψi |yi ).

In the special case of continuous data, linearisation of the model leads, by def-
inition, to a Gaussian linear model for which the conditional distribution of the
individual parameter ψi given the data yi is a multidimensional normal distribution
that can be computed and we fall back on the results of [8].

2 Mixed Effect Models

2.1 Population Approach and Hierarchical Models

Wewill adopt a population approach in the sequel, where we consider N individuals
and ni observations for individual i . The set of observed data is y = (yi , 1 ≤ i ≤ N )

where yi = (yi j , 1 ≤ j ≤ ni ) are the observations for individual i . For the sake of
clarity, we assume that each observation yi j takes its values in some subset of R.
The distribution of the ni−vector of observations yi depends on a vector of indi-
vidual parameters ψi that takes its values in a subset of Rp. We assume that the
pairs (yi , ψi ) are mutually independent and consider a parametric framework: the
joint distribution of (yi , ψi ) is denoted by p(yi , ψi ; θ), where θ is the vector of fixed
parameters of the model. A natural decomposition of this joint distribution writes
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p(yi , ψi ; θ) = p(yi |ψi ; θ)p(ψi ; θ), where p(yi |ψi ; θ) is the conditional distribu-
tion of the observations, given the individual parameters, and where p(ψi ; θ) is the
so-called population distribution used to describe the distribution of the individual
parameters within the population. A particular case of this general framework con-
sists in describing each individual parametersψi as a typical valueψpop, and a vector
of individual random effects ηi : ψi = ψpop + ηi . In the sequel, we will assume a
multivariate Gaussian distribution for the random effects: ηi ∼i.i.d. N (0,�). Several
extensions of this model are straightforward, considering for instance transformation
of the normal distribution, or adding individual covariates in the model.

2.2 Continuous Data Models

A regression model is used to express the link between continuous observations and
individual parameters:

yi j = f (ti j , ψi ) + εi j , (1)

where yi j is the j-th observation for individual i measured at time ti j , εi j is the residual
error, f is the structuralmodel assumed to be a twice differentiable function ofψi .We
start by assuming that the residual errors are independent and normally distributed
with zero-mean and a constant variance σ 2. Let ti = (ti j , 1 ≤ ni ) be the vector of
observation times for individual i . Then, the model for the observations rewrites
yi |ψi ∼ N ( fi (ψi ), σ

2Idni×ni ) , where fi (ψi ) = ( f (ti,1, ψi ), . . . , f (ti,ni , ψi )). If
we assume that ψi ∼i.i.d. N (ψpop,�), then the parameters of the model are θ =
(ψpop,�, σ 2).

3 Sampling from Conditional Distributions

The conditional distribution p(ψi |yi ; θ) plays a crucial role in most methods used
for inference in nonlinear mixed effects models.

One of the main task to perform is to compute the maximum likelihood (ML)
estimate of θ , θ̂ML = argmax

θ∈�
L(θ, y), where L(θ, y) � logp(y; θ). The stochastic

approximation version of EM [7] is an iterative procedure for ML estimation that
requires to generate one or several realisations of this conditional distribution at each
iteration of the algorithm.

Metropolis-Hasting algorithm is a powerful MCMC procedure widely used for
sampling from a complex distribution [4]. To simplify the notations, we remove the
dependency on θ . For a given individual i , the MH algorithm, to sample from the
conditional distribution p(ψi |yi ), is described in Algorithm 1.
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Algorithm 1Metropolis-Hastings algorithm

Initialization: Initialize the chain sampling ψ
(0)
i from some initial distribution ξi .

Iteration k: given the current state of the chain ψ
(k−1)
i :

1. Sample a candidate ψc
i from a proposal distribution qi ( · |ψ(k−1)

i ).
2. Compute the MH ratio:

α(ψ
(k−1)
i , ψc

i ) = p(ψc
i |yi )

p(ψ
(k−1)
i |yi )

qi (ψ
(k−1)
i |ψc

i )

qi (ψc
i |ψ(k−1)

i )
. (2)

3. Set ψ(k)
i = ψc

i with probability min(1, α(ψc
i , ψ

(k−1)
i ) (otherwise, keep ψ

(k)
i = ψ

(k−1)
i ).

Current implementations of the MCMC algorithm, to which we will compare
our new method, in Monolix [5], saemix (R package) [6], nlmefitsa (Matlab) and
NONMEM[2]mainly use the same combination of proposals. The first proposal is an
independent Metropolis-Hasting algorithmwhich consists in sampling the candidate
state directly from the marginal distribution of the individual parameter ψi . The
other proposals are component-wise and block-wise random walk procedures [10]
that update different components of ψi using univariate and multivariate Gaussian
proposal distributions. Nevertheless, those proposals fail to take into account the
nonlinear dependence structure of the individual parameters. A way to alleviate
these problems is to use a proposal distribution derived from a discretised Langevin
diffusion whose drift term is the gradient of the logarithm of the target density
leading to the Metropolis Adjusted Langevin Algorithm (MALA) [16, 18]. The
MALA proposal is given by:

ψc
i ∼ N (ψ

(k)
i − γ∇ψi logp(ψ

(k)
i |yi ), 2γ ) , (3)

where γ is a positive stepsize. These methods still do not take into consideration
the multidimensional structure of the individual parameters. Recent works include
efforts in that direction, such as the Anisotropic MALA for which the covariance
matrix of the proposal depends on the gradient of the target measure [1]. The MALA
algorithm is a special instance of the HybridMonte Carlo (HMC), introduced in [11];
see [4] and the references therein, and consists in augmenting the state space with
an auxiliary variable p, known as the velocity in Hamiltonian dynamics.

All those methods aim at finding the proposal q that accelerates the convergence
of the chain. Unfortunately they are computationally involved and can be difficult to
implement (stepsizes and numerical derivatives need to be tuned and implemented).

We see in the next section how to define a multivariate Gaussian proposal for both
continuous and noncontinuous data models, that is easy to implement and that takes
into account the multidimensional structure of the individual parameters in order to
accelerate the MCMC procedure.
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4 A Multivariate Gaussian Proposal

For a given parameter value θ , the MAP estimate, for individual i , of ψi is the one
that maximises the conditional distribution p(ψi |yi , θ):

ψ̂i = argmax
ψi

p(ψi |yi , θ) = argmax
ψi

p(yi |ψi , θ)p(ψi , θ)

4.1 General Data Models

For both continuous and noncontinuous data models, the goal is to find a simple
proposal, a multivariate Gaussian distribution in our case, that approximates the
target distribution p(ψi |yi ). In our context, we can write the marginal pdf p(yi ) that
we aim to approximate as p(yi ) = ∫

elogp(yi ,ψi )dψi . Then, the Taylor expansion of
log(p(yi , ψi ) around the MAP ψ̂i (that verifies by definition ∇ logp(yi , ψ̂i ) = 0)
yields the Laplace approximation of −2 log(p(yi )) as follows:

−2 logp(yi ) ≈ −p log 2π − 2 logp(yi , ψ̂i ) + log
(∣
∣
∣−∇2 logp(yi , ψ̂i )

∣
∣
∣
)

.

We thus obtain the following approximation of logp(ψ̂i |yi ):

logp(ψ̂i |yi ) ≈ − p

2
log 2π − 1

2
log

(∣
∣
∣−∇2 logp(yi , ψ̂i )

∣
∣
∣
)

,

which is precisely the log-pdf of a multivariate Gaussian distribution with mean ψ̂i

and variance-covariance −∇2 logp(yi , ψ̂i )
−1, evaluated at ψ̂i .

Proposition 1 The Laplace approximation of the conditional distribution ψi |yi is a
multivariate Gaussian distribution with mean ψ̂i and variance-covariance

i = −∇2 logp(yi , ψ̂i )
−1 =

(
−∇2 logp(yi |ψ̂i ) + �−1

)−1
.

We shall now see another method to derive a Gaussian proposal distribution in
the specific case of continuous data models.

4.2 Nonlinear Continuous Data Models

When the model is described by (1), the approximation of the target distribution can
be done twofold: either by using the Laplace approximation, as explained above, or
by linearizing the structural model fi for any individual i of the population. Once the



90 B. Karimi and M. Lavielle

MAP estimate ψ̂i has been computed, using an optimisation procedure, the method
is based on the linearisation of the structural model f around ψ̂i :

fi (ψi ) ≈ fi (ψ̂i ) + J fi (ψ̂i )
(ψi − ψ̂i ) , (4)

where J fi (ψ̂i )
is the Jacobianmatrix of the vector fi (ψ̂i ). Defining zi � yi − fi (ψ̂i ) +

J fi (ψ̂i )
ψ̂i yields a linear model zi = J fi (ψ̂i )

ψi + εi which tractable conditional distri-
bution can be used for approximating p(ψi |yi , θ):

Proposition 2 Under this linear model, the conditional distributionψi |yi is a Gaus-
sian distribution with mean μi and variance-covariance i where

μi = ψ̂i and i =
(
J′
fi (ψ̂i )

J fi (ψ̂i )

σ 2
+ �−1

)−1

. (5)

We can note that linearizing the structural model is equivalent to using the Laplace
approximation with the expected information matrix. Indeed:

Eyi |ψ̂i

(
−∇2 logp(yi |ψ̂i )

)
=

J′
fi (ψ̂i )

J fi (ψ̂i )

σ 2
. (6)

We then use this normal distribution as a proposal in Algorithm1 for model (1).

5 A Pharmacokinetic Example

5.1 Data and Model

32 healthy volunteers received a 1.5mg/kg single oral dose of warfarin, an anticoagu-
lant normally used in the prevention of thrombosis [12], for whowemeasurewarfarin
plasmatic concentration at different times.Wewill consider a one-compartment phar-
macokinetics (PK)model for oral administration, assumingfirst-order absorption and
linear elimination processes:

f (t, ka, V, k) = D ka

V (ka − k)
(e−ka t − e−k t ) , (7)

where ka is the absorption rate constant, V the volume of distribution, k the elimina-
tion rate constant, and D the dose administered. Here, ka, V and k are PK parameters
that can change from one individual to another. Then, let ψi = (kai , Vi , ki ) be the
vector of individual PK parameters for individual i lognormally distributed. We will
assume in this example that the residual errors are independent and normally dis-
tributedwithmean 0 and variance σ 2.We can use the proposal given by Proposition 2
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and based on a linearisation of the structural model f proposed in (7). For themethod
to be easily extended to any structural model, the gradient is calculated by automatic
differentiation using the R package ‘Madness’ [13].

5.2 MCMC Convergence Diagnostic

We will consider one of the 32 individuals for this study and fix θ to some arbitrary
value, close to theMaximumLikelihood (ML) estimate obtainedwith SAEM(saemix
R package [6]): kapop = 1, Vpop = 8, kpop = 0.01, ωka = 0.5, ωV = 0.2, ωk = 0.3
andσ 2 = 0.5. First, we compare our our nlme-IMH,which is aMHsampler using our
new proposal, with theRWM, theMALA,which proposal, at iteration k, is defined by
ψc
i ∼ N (ψ

(k)
i − γk∇ logπ(ψ

(k)
i ), 2γk). The stepsize (γ = 10−2) is constant and is

tuned such that the optimal acceptance rate of 0.57 is reached [15]. 20 000 iterations
are run for each algorithm.Figure1highlights quantiles stabilisation using theMALA
similar to ourmethod for all orders and dimensions. TheNUTS, implemented in rstan
(R Package [17]), is fast and steady and presents similar, or even better convergence
behaviors for some quantiles and dimension, than our method (see Fig. 1).

Then, we produce 100 independent runs of the RWM, the IMH using our pro-
posal distribution (called the nlme-IMH algorithm), the MALA and the NUTS for
500 iterations. The boxplots of the samples drawn at a given iteration threshold are
presented Fig. 2 against the ground truth (calculated running the NUTS for 100 000
iterations) for the parameter ka.

Fig. 1 Modelling of the warfarin PK data: convergence of the empirical quantiles of order 0.1, 0.5
and 0.9 of p(ψi |yi ; θ) for a single individual. Our newMH algorithm is in red and dotted, the RWM
is in black and solid, the MALA is in blue and dashed and the NUTS is in green and dashed
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Fig. 2 Modelling of the warfarin PK data: Boxplots, over 100 parallel runs, for the RWM, the nlme-
IMH, the MALA and the NUTS algorithm. The ground truth median, 0.25 and 0.75 percentiles are
plotted as a dashed purple line and its maximum and minimum as a dashed grey line

For the three numbers of iteration considered in Fig. 2, the median of the nlme-
IMH and NUTS samples are closer to the ground truth. Figure 2 also highlights
that all those methods succeed in sampling from the whole distribution after 500
iterations. Similar comments can be made for the other parameters.

We decided to conduct a comparison between those sampling methods just in
terms of number of iterations (one iteration is one transition of the Markov Chain).
We acknowledge that the transition cost is not the same for each of those algorithms,
though, our nmle-IMH algorithm, except the initialisation step that requires a MAP
and a Jacobian computation, has the same iteration cost as RWM. The call to the
structural model f being very costly in real applications (when the model is the
solution of a complex ODE for instance), the MALA and the NUTS, computing its
first order derivatives at each transition, are thus far computationally involved.

Since computational costs per transition are hard to accurately define for each
sampling algorithm and since runtime depends on the actual implementation of those
methods, comparisons are based on the number of iterations of the chain here.

6 Conclusion and Discussion

We presented in this article an independent Metropolis-Hastings procedure for sam-
pling random effects from their conditional distributions in nonlinear mixed effects
models. The numerical experiments that we have conducted show that the proposed
sampler converges to the target distribution as fast as state-of-the-art samplers. This
good practical behaviour is partly explained by the fact that the conditional mode of
the random effects in the linearised model coincides with the conditional mode of
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the random effects in the original model. Initial experiments embedding this fast and
easy-to-implement IMH algorithm within the SAEM algorithm [7], for Maximum
Likelihood Estimation, indicate a faster convergence behavior.
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