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Abstract In this paper, we present a non-parametric overlapping community detec-
tion method based on the affiliation graph model using an Indian Buffet Process to
determine the number of communities. We compare this model with a full stochastic
blockmodel using the same prior, as well as two other models, a blockmodel and a
community model, that employ non-parametric priors based on a Gamma Process.
We ask two questions; firstly, whether community models are sufficient to model the
overlapping structure of real networks, without resorting to blockmodels that entail
significantlymore parameters; secondly, which is the better non-parametric approach
of the two analysed? Measuring performance in terms of predicting missing links,
we find that all models obtain similar performance, but in general, the Indian Buffet
Process prior results in simpler models, with fewer blocks or communities. We argue
that, when obtaining the latent structure is the purpose of the analysis, the simpler
affiliation graph model, with Indian Buffet Process is preferred.

Keywords Affiliation graph model · Generative model · Indian buffet process ·
Non-parametric model · Overlapping community detection

1 Introduction

Much work has been carried out in the identification of community structure in
social networks. Communities are sub-sets of highly interconnected vertices. Two
broad and distinct categories of community identification are studied, namely non-
overlapping and overlapping community detection. In the latter case, which is the
focus of this paper, vertices are allowed to belong to more than one community
and this would seem the best model of real-world social communities. After all,
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people tend to belong to many social groups such as leisure and work groups. A
wide range of approaches to overlapping community detection have been taken in
the state-of-the-art such as local seed-expansion [10], global optimization [3] and
other heuristic approaches, including an extension of the label propagationmethod to
the overlapping case [7]. Statistical generative approaches propose a model through
which the graph is generated, by initially selecting the community labels for the
nodes, followed by the generation of edges, whose probability of existence depends
on the community labels of their end-points. Computational inference techniques are
used to determine the model parameters from an observed graph and hence to infer
the community labels. In this paper, we focus on such generative methods.

We adopt the following notation. Let G = (V, E) be an undirected graph, such
that V is a set of nodes or vertices and E ⊆ V × V is a set of edges. An edge can
be represented as the undirected tuple (v,w), where v,w ∈ V . Let, C = {1, . . . , K }
be a set of community labels, where K > 0 is the total number of communities.
Write n = |V |. Assuming some numbering such that the vertices can be written as
{v1, . . . , vn}, we will sometimes refer to a vertex by its index i under this numbering.
An unweighted graph may be represented by its binary adjacency matrix A = {ai j }
where ai j = 1 if (i, j) ∈ E and ai j = 0 otherwise. We sometimes consider integer-
valued positive weights associated with an edge (i, j), and we write X = {xi j } for
the weighted graph with xi j ∈ Z

+. A community-assignment is an association of a
set of communities Ci ⊆ C , with each vi ∈ V . It is useful to describe the community
assignment as the binary n × K matrix Z = {zik}, such that zik = 1 if i ∈ Ck and
zik = 0 otherwise.When a positive real value is used to indicate the affinity of a node
i to a community k, � = {φik} is used with φik ∈ R

+.

2 Models

From the ground truth of real world networks, it has been found that many real world
network communities exhibit pluralistic homophily [18], that is, that the likelihood
of an edge existing between any pair of nodes is directly proportional to the number
of shared communities. The focus of this paper is on models that adhere to pluralistic
homophily. In the following sub-sections we gather such models into a framework
which we refer to as “Overlapping Weighted Stochastic Blockmodels” and from
this general framework, we define four models that are of particular interest in our
analysis. Two of these models are full blockmodels that allow for any type of block
structure in the network, while the other two are constrained to just community
structure. Our hypothesis is that community models, containing significantly fewer
parameters than full blockmodels, should be easier to learn and sufficiently accurate
to model real-world overlapping community structure. As part of this analysis, we
combine for the first time, the affiliation graph model (AGM) with an Indian Buffet
Process and compare this with the other three variants from the state-of-the-art.

Overlapping Weighted Stochastic Blockmodel: Many statistical methods for
overlapping community detection proposed to date are based on a common over-
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lapping weighted stochastic blockmodel (OWSB). The general model assumes that
edges in a graph G are generated independently at random, given the community
assignment parameters, whichwewrite as�. The likelihood of an observedweighted
graph is

P(X|�) =
n∏

i=1

n∏

j=1

P(Xi j = xi j |�) (1)

where P(Xi j = w) is the probability that the edge weight w is observed on edge
(i, j). In particular, P(Xi j = w) is Poisson distributed with rate depending on the
community assignments of nodes i and j , such that, the rate may be written as∑K

k=1

∑K
�=1 φikφ j�λk�, where λk� represents the rate of edge generation between

nodes in communities k and � and φik ∈ R
+ is a real-valued affiliation strength

between node i and the community k. Thus, the community assignment parameters
consist of the set � = (φik, λk�, K ). The rates between communities are symmet-
ric i.e. λk� = λ�k . We refer to the above model as a blockmodel because between-
community edges as well as within-community edges are modelled, i.e. we have
λk� > 0∀k, �. It is referred to in [20] as an Edge Partition Model (EPM).

The weighted model may be reduced to an unweighted model, with likelihood

P(A|�) =
n∏

i=1

n∏

j=1

p
ai j
i j (1 − pi j )

1−ai j , (2)

where pi j = P(Xi j > 0). Hence, pi j = 1 − ∏
k

∏
�(1 − πk�)

φikφ j� and πk� ≡ 1 −
exp(−λk�). Note that πk� ∈ [0, 1] and represents the probability that nodes in com-
munities k and � are joined by an edge. Thus the unweightedmodelmay be generated,
by starting with rates λk�, or directly from probabilities πk�.

For a fully Bayesian treatment of this model, we require the posterior distribution,
which is proportional to the product of the likelihood and prior probabilities, P(�),
i.e. P(�|X) ∝ P(X|�) × P(�) .Different specialisations of the model differ in their
choice of prior. In particular, the value of K may be given as an input parameter, in
which case a model selection method must be applied to choose among a range of
K ’s. A more sophisticated approach is to use a non-parametric prior.

Affiliation Graph Model: The Affiliation Graph Model (AGM) [18] is the spe-
cialisation of the OWSB in which the between-community edge rate λk� for k �= �, is
set to zero and the edges are unweighted, with φik constrained as φik ≡ zik ∈ {0, 1}.
In this case, the K (K + 1)/2 rate parameters reduce to just K parameters which we
write as rk ≡ λkk , with πk = 1 − exp(−rk). To allow for the possibility of an edge
between any pair of nodes, a null community is introduced, consisting of all the
nodes in the network, to capture any noisy edges that are not otherwise explained
by community membership. We refer to this as the ε community, with associated
parameters rε and πε . State-of-the-art methods that follow this model, and fit it using
a heuristic optimization technique include [11, 18, 19].
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Non-parametric Models: Non-parametric models do not assume that the struc-
ture of the model is fixed. In the context of overlapping community detection, this
corresponds to allowing the number of communities K to be inferred from the data
and potentially grow to infinity. Two approaches are proposed in the state-of-the-art.
The Infinite Edge Partition Model [20] uses a Hierarchical Gamma Process on λk�,
and hence we refer to it as HGP-EPM. This model has been constrained to the AGM
likelihood, in which case Gamma Process priors on rk suffice and we refer to this
constrained model as GP-AGM.

The IMRM [13] is an alternative non-parametric model, that constrains φik ≡
zik ∈ {0, 1} and imposes an Indian Buffet process (IBP) prior on zik , allowing for an
arbitrary number of communities. The IBP can be defined in terms of a community
weight wk , such that zik |wk ∼ Bernoulli(wk), with wk |α ∼ Beta(α/K , 1). Allowing
the number of communities K → ∞, we obtain Z ∼ IBP(α). The parameter α con-
trols the number of active communities, the number of communities a node belongs
to and the expected number of entries in Z. Our contribution is to constrain the IMRM
to the AGM, by setting inter-community rates to zero. We refer to this model as an
IBP-AGM model and its generative process is given in Algorithm 1.

The Bernoulli-Beta process in the IBP is a rich-get-richer process in which the
probability that a node is assigned to any community is proportional to the number
of nodes already in that community. On the other hand, the community assignment
parameter in theHGP-EPMandGP-AGMdepends only on node-specific parameters,
so we do not expect to see a strong preferential attachment phenomenon in the
community assignments in this case.

3 Related Work

In recent years, a number of generative models of networks with latent structure have
been proposed in the state-of-the-art. The stochastic blockmodel (SBM) [8] posits
that each node belongs to a single latent cluster and that interactions between pairs
of nodes are governed by parameters, conditional on the cluster assignments of the
nodes. The mixed membership stochastic blockmodel (MMSB) [1] extends this idea
by assuming that each node has a distribution over the set of latent clusters and that
pairs sample their cluster labels before selecting their interaction parameters. The
assortative MMSB [5], specialises the MMSB by disallowing between-cluster inter-
actions. However, MMSB models do not explicitly model for pluralistic homophily.
The infinite relational model [9] is a non-parametric version of the SBM that places
a Dirichlet Process prior on the community assignment of nodes. Another work on
detecting latent overlapping clusters in networks is the mixtures of Dirichlet Net-
work Distributions (MDND) model [17], that focuses on clustering links, rather than
nodes. Other work focuses on the link prediction task, rather than on community
identification. The work of [2] for instance, presents a model for sparse network gen-
eration, which is not explicitly defined in terms of latent clusters, but which can be
related to stochastic blockmodels, in so far as the probability of a link between two
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Algorithm 1 Generative process model of IBP-AGM
1: procedure GenerateNetwork
2: α ∼ Gamma(1, γ )

3: Z ∼ IBP(α)

4: for k = 1 : K do
5: πk ∼ Beta(a, b)
6: for i < j such that j ∈ 1 : n and i ≥ 1 do
7: ai j ∼ Bernoulli(pi j ) where pi j = 1 − (1 − πε)

∏K
k=1(1 − πk)

zik z jk

nodes depends on the nodes’ parameters through a link function. These parameters
do not correspond to explicit cluster assignments. In summary, while there are many
works on stochastic blockmodels or similar models, our focus is on models that are
based on the OWSB likelihood that explicitly models pluralistic homophily.

4 Inference Techniques

We have used standard MCMC algorithms for inference in IBP-AGM. The pseudo-
code for the MCMC of IBP-AGM is given in Algorithm 2. For sampling the IBP
parameter α, we use Gibbs sampling with a Gamma(1, γ ) prior on α. This results
in a Gamma posterior given in step 14 of Algorithm 2. For sampling the community
assignment Z, due to the non-conjugacy of the likelihood P(A|Z, π) in (2) and its
prior Z ∼ IBP(α), we use Auxiliary Gibbs Sampling (AGS) to sample from a non-
conjugate IBP [6]. This is similar toAGS [14] for the non-conjugateDirichlet process
mixture model. If m−ik = ∑

j �=i (z jk) > 0, we sample zik from its posterior in step 4
of Algorithm 2. To sample new communities, we consider K ∗ auxiliary communities
with π∗ ∼ Beta(a, b). A node i can be assigned to any of 2K

∗
combinations of these

K ∗ communities.With l running over all 2K
∗
possibilities, each Z∗

l has joint posterior
consisting of theBernoulli probabilities of assigning the node i to eachof the auxiliary
communities with probability α/K ∗

N+α/K ∗ . For sampling the edge probability parameter
π , we use Hamiltonian Monte Carlo (HMC) [4]. This method utilizes the gradient of
the log posterior to reduce the correlation between successive sampled states, thus
targeting higher probability states and resulting in fast convergence. It requires a
discretisation of the Hamiltonian equations, for which we use the leapfrog method.
Similar to the HMC for IMRM [13], π is sampled using HMC by transforming
πk ∈ [0, 1] to sk ∈ (−∞,∞) with πk = 1

1+exp(−sk )
, πk ∼ Beta(a, b) and computing

the log posterior, log P(s|A,Z) and its gradient, ∇ log P(s|A,Z).
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Algorithm 2MCMC algorithm for IBP-AGM
Input: A, K ∗
Initialize: a, b, π , Z, α
For each iteration, repeat :

1: for i = 1 : n do {Sample Z using Auxiliary Gibbs Sampling}
2: for k = 1 : K do
3: if m−ik > 0 then
4: Sample zik from P(zik = z|A,Z−ik , π) ∝ ((1 − z)n − (−1)zm−ik)P(A|Z, π)

5: else{m−ik = 0}
6: Set one of the auxiliary community edge probability π∗ to be πk and zik = 0
7: Sample the remaining π∗ from Beta(a, b)
8: for l = 1 : 2K ∗

do
9: Compute the posterior P(Z∗

l |A,Z, π, π∗) ∝ P(Z∗
l )P(A|Z∗

l ,Z, π, π∗)
10: Sample Z∗

l from 2K
∗
possibilities with probabilities P(Z∗

l |A,Z, π, π∗)
11: Set π = {π, π∗} and Z = {Z,Z∗

l }
12: Remove the zero columns from Z and its corresponding π

13: Sample π using Hamiltonian Monte Carlo using ∇ log P(s|A,Z), where π = 1
1+exp(−s)

14: Sample α using Gibbs Sampling from its posterior P(α|Z) = Gamma(1 + K , γ + ∑n
j=1

1
j )

5 Experiments

The main purpose of our empirical analysis is to compare the blockmodels with the
community models, with the two choices of non-parametric prior (GP and IBP).
The inference algorithm for IBP-AGM is described in Sect. 4. For IMRM, we use
HMC for IMRM [13] and Auxiliary Gibbs sampling for IBP. For EPM models, we
used Gibbs sampling described in [20], using a truncated Gamma Process and hence
requires to input a maximum number of communities. On the other hand, inference
with the IBP can generate any number of communities (truly non-parametric).

The following settings are used throughout the experiments, unless otherwise
specified. In IBP-AGM and IMRM, in each Gibbs update for AGS, we choose the
number of auxiliary communities K ∗ = 3 and for the HMC, a step size of 0.01
and a number of leapfrogs of 10 and set πε = 0.00005. For IBP-AGM, we con-
sider γ = 100 and a = b = 1. Similarly to HGP-EPM, we choose the prior on the
edge probability for IMRM in such a way that interaction within a community is
greater than between communities, i.e. a = 1, b = 5∀k �= � and a = 5, b = 1∀k = �

as given in [13] and consider γ = 1. For EPM, we have considered the same settings
and initialization as given in [20]. In all the four non-parametric models, the number
of communities is initialised, similarly to [20], with the condition K = min(100, n)

if n < 2,000 and K = min(256, n), otherwise. We have taken the same initial set-
tings for IBP-AGM and GP-AGM in terms of initial community assignments and
edge probability parameters i.e. zik = 1∀i, k and πk = 1 − exp(−1/K ) for IBP-
AGM or rk = 1/K for GP-AGM. For IMRM, each edge probability is assigned to
1 − exp(−1/K ) initially. All the experiments are done on Intel core i5, 4 cores.
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Similarly to the evaluation in [12, 13, 20], we have used missing link prediction
as a measure to compare the performance between methods. The test set consists of
20% of the available pairs of nodes, whose between-edge existence or otherwise is
withheld from the training data. AUC-ROC values are calculated for this test set.

While the AUC-ROC is a useful measure to detect convergence of the models, it
is worth noting, as seen in the experiments later in the paper, that the different models
are able to predict missing edges with similar performance. We emphasise that the
purpose of our work is to detect the community structure as an output, and therefore,
given similar AUC-ROC performance, we contend that simpler latent structures are
preferable over more complex ones. This implies a preference towards community
models, rather than blockmodels, since overlapping block structure is difficult to
comprehend and a preference towards fewer, rather thanmore communities. Initially,
we test their ability to recover the communities from networks generated from the
AGM. These generated networks are simple with a known number of communities
yet sufficiently complex to allow for different community structures to be found.
Then, we test their performance in detecting real world communities.

Networks Generated by AGM: Networks with two communities are gener-
ated using the generative process of AGM. We choose the network size from
n = {30, 100, 500} and set K = 2 with πk = 0.8∀k and πε = 0.00005. We choose
community assignment Z, such that in each network, 20% of the nodes belong to
the overlapping region of the two communities and 40% of the nodes belong to
each community only. An edge between nodes i and j is generated with proba-
bility pi j = 1 − (1 − πε)

∏
k(1 − πk)

zik z jk . We run the different models with these
networks as input, expecting to find K = 2 communities. After burn in of 15,000
iterations, 15,000 samples are collected, and the average result of 5 random runs is
reported.

From Table 1, we can see that GP-AGM converges to a model with greater than
two communities, whereas IBP-AGM converges to 2 communities. HGP-EPM and
IMRM also fit the networks with more complex block structure rather than having
two blocks with πk� ≈ 0,∀k �= �. As the number of edges increases in the network,
the blockmodels scale less well (in time) compared with the community models.
From the trace plots of the number of communities and log likelihood in Figs. 1 and
2, respectively, IBP-AGM converges in fewer iterations to GP-AGM. Moreover, as
GP-AGM converges to a higher number of communities, this results in a smaller
likelihood than IBP-AGM, see Fig. 2. In terms of predicting the missing links, all
models seem to perform equally.

Real World Networks: We take 3 small networks (n < 250) i.e. Football [15]
with a ground truth of 12 communities, Protein230 [20], NIPS234 [20], and 4 large
networks (n > 2,000) i.e. NIPS12 [20], Yeast [13], UsPower [13], Erdos [13]. 1,500
samples are collected after burn-in of 1, 500 iterations and the average result of
5 random runs is reported. The first notable finding of Table 2 is that all models
achieve similar AUC-ROC scores, with HGP-EPM and IBP-AGM marginally out-
performing the others. Examining the found latent structure, we see that generally,
the models based on the Gamma Process prior, HGP-EPM and GP-AGM, sample a
greater number of blocks or communities than IMRM and IBP-AGM. The shrinkage
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problem of Gamma Process prior on EPM model resulting into more number of
communities has been studied in [16]. This suggests that the IBP prior can recover
simpler latent structure, particularly for the larger networks. For example, the GP-
AGM finds 190 communities, while IBP-AGM finds 60 in the Erdos network.

WhileHGP-EPMgenerally obtains the bestAUC-ROCperformance, the structure
it uncovers, consisting of 91 overlapping blocks in Erdos, is extremely complex.
Each edge is explained, either by its membership of multiple blocks or by the fact
that it straddles different blocks with non-zero between-block edge probability. It is
very difficult to interpret such a model. The corresponding IBP-AGM uncovers just
60 overlapping communities, with between community edges explained entirely as
noisy links, and in this case, a marginally higher AUC-ROC score.

6 Conclusion

In this paper, we have presented an overlapping community detection algorithm,
which is a non-parametric version of the affiliation graph model (AGM) that uses
an Indian Buffet Process (IBP) prior and exhibits pluralistic homophily. We have
compared the model with another non-parametric model of AGM that uses a Gamma
Process (GP) prior. In terms of convergence, IBP-AGM performs better than the GP-
AGM with fewer communities in general, though there is not much difference in
AUC scores for missing link prediction. Hence, empirically, IBP-AGM has better
shrinkage while GP-AGM tends to overfit the data with larger number of parameters.
Comparing with blockmodels, we find that the community models obtain similar
performance to blockmodels and generally return simpler structures. Our futurework
will focus on making IBP-AGM more scalable.
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