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Preface

This book presents theoretical, computational, and applied contributions by young
researchers in the field of Bayesian statistics, addressing new challenges and pro-
viding recent advancements. The volume is structured in three parts. The opening
section on Theory and Methods is devoted to mathematical statistics, model
building, and theoretical studies of Bayesian methodology. The second section, on
Computational Statistics, develops and compares computational tools for inference.
Finally, a section on Applied Statistics deals with the applications of complex
methods to real-world problems and data. Examples of the problems addressed in
this section include the estimation of slow and fast diffusion from magnetic reso-
nance images, a simulation study of HIV temporal patterns, and the study of past
ice sheet shapes.

All of the contributions have been peer reviewed and were among the presen-
tations delivered at the fourth Bayesian Young Statisticians Meeting (BAYSM
2018). This conference was organized and hosted by the Department of Statistics,
University of Warwick in Coventry, UK on July 2 and 3, 2018 and was patronized
and supported by the International Society of Bayesian Analysis (ISBA) and the
Junior Section of ISBA (j-ISBA).

BAYSM provides an opportunity for early-career researchers interested in
Bayesian statistics to connect with their scientific community. The goal is to
stimulate collaborations, encourage discussion, and establish networks with col-
leagues at a similar career stage as well as with senior researchers, thereby pro-
viding valuable support for the young researchers and also promoting research
across the wide spectrum of fields, where Bayesian methods can be employed.

Contributions from young researchers highlighted the diversity in applications of
Bayesian methodology, ranging from clinical trials and genomics to sports, climate
change, and dark matter.

We acknowledge all participants of BAYSM 2018, whose attendance and
contributions made the conference an outstanding scientific event and an enjoyable
experience. We thank the speakers, both junior and senior, and in particular we
appreciate the valuable work of the discussants—Deborah Ashby, Bärbel
Finkenstädt, JimGriffin,MicheleGuindani, AmyHerring, JimSmith, andMark Steel.
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We also express our sincere gratitude to the referees, who thoroughly reviewed the
contributions in this volume and provided helpful comments for the young
researchers. Finally, we give credit to Dario Spanò and Martine Barons for their
valuable work on the organizing committee and to the sponsors for their generous
support: the “de Castro” Statistics Initiative, Google, ISBA, and j-ISBA. For the
organizers, hosting this meeting was an exciting and rewarding experience. We
expect that BAYSM conferences will continue with the same success as the first four
editions, providing inspiration for new generations of Bayesian statisticians. The
next meeting will be in held in Kunming, China in 2020, as a satellite to the ISBA
World Meeting in Kunming, China. Additionally, we were delighted to announce
that BAYSM is now the official meeting of j-ISBA.

Milan, Italy Raffaele Argiento
Milan, Italy Daniele Durante
Edinburgh, UK Sara Wade
April 2019
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A Polya Tree Based Model for Unmarked
Individuals in an Open Wildlife
Population

Alex Diana, Jim Griffin and Eleni Matechou

Abstract Many ecological sampling schemes do not allow for unique marking of
individuals. Instead, only counts of individuals detected on each sampling occasion
are available. In this paper, we propose as novel approach for modelling count data
in an open population where individuals can arrive and depart from the site during
the sampling period. A Bayesian nonparametric prior, known as Polya Tree, is used
for modelling the bivariate density of arrival and departure times. Thanks to this
choice, we can easily incorporate prior information on arrival and departure density
while still allowing the model to flexibly adjust the posterior inference according to
the observed data. Moreover, the model provides great scalability as the complexity
does not depend on the population size but just on the number of sampling occasions,
making it particularly suitable for data-sets with high numbers of detections. We
apply the new model to count data of newts collected by the Durrell Institute of
Conservation and Ecology, University of Kent.

Keywords Polya tree · Statistical ecology · Bayesian nonparametrics · Count data

1 Introduction

Monitoring wildlife populations presents particular challenges. For example, it is
typically not possible to perform a census of the population of interest by encoun-
tering all of the individuals. One of the most cost and time effective ways to monitor
a wildlife population is to collect counts of the population on repeated sampling
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occasions (SO). This protocol is considerably easier to perform than a capture-
recapture (CR) scheme as it does not require physical capture or unique identification
of the individuals in the population. Themost popular model for analysing count data
in a frequentistic setting is the N-mixture model introduced in [6], which allows the
estimation of population size and capture probability when the population is closed,
that is the same individuals are present throughout the study period. However, when
the data are sparse or detection probability is low, N-mixture models are known to
suffer from parameter identifiability issues and may give rise to infinite estimates for
population size [2]. In a Bayesian setting, the natural way to solve issues of parameter
identifiability is to assume informative prior distributions on detection probability or
on population size in order to obtain sensible posterior distributions.

In this paper we work in a Bayesian framework and we relax the assumption
of population closure, allowing for individuals to enter and leave the site (and thus
become available or unavailable for detection) at random times, but still assuming
that emigration is permanent. These random arrival and departure times are sam-
pled from a distribution with unknown parameters. However, the absence of closure
makes it more challenging to separately estimate capture probability, population size
and density of arrival/departure times. Hence, it is of primary importance to assume
informative prior distributions in order to obtain ecologically sensible posterior dis-
tributions.

In order to allow for the posterior distribution to correctly adjust to the data with-
out relying on parametric assumptions, we use a Bayesian nonparametric (BNP)
approach to choose the prior distribution of the bivariate distribution of arrival and
departure times. In particular, we work with Polya Trees, which in the BNP frame-
work are the main alternative to Dirichlet process mixture models for modelling
continuous distributions. More information on other nonparametric priors can be
found in [4].

2 The Polya Tree Prior

We model the joint density of arrival and departure times, using the Polya tree (PT)
prior, defined in [5]. A PT has two parameters: the first is a sequence of nested
partitionsΠ of the sample spaceΩ (Ω = R

2 in our case),while the secondparameter,
α, is a sequence of positive numbers associated with each set of each partition.

The partition at the first level, π1, is obtained by splitting the sample space in two
sets, B0 and B1. Then for the partition at the second level, π2, we split each of the
two sets in two additional sets B00, B01 and B10, B11, respectively.

π2 = {B00, B01, B10, B11}, B00 ∪ B01 = B0, B10 ∪ B11 = B1.

The same process is repeated to generate the partitions at the remaining level. A
visual representation of the scheme for Ω = [0, 1] is given in Fig. 1.
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Fig. 1 Scheme of the partitions at the first three levels of the Polya tree

The PT prior is defined in terms of the (random) mass associated with each set
of each partition. By defining ε1 . . . εm as a generic sequence of 0 s and 1s, Bε1...εm

as a generic set of the partition and αε1...εm as the associated parameter, the mass
associated to Bε1...εm by the Polya Tree is

G(Bε1...εm ) =
m∏

i=1

Yε1...εi (1)

where Yε1...εi−10 is a Beta(αε1...εi−10, αε1...εi−11) random variable and Yε1...εi−11 = 1 −
Yε1...εi−10. For example, G(B01) = Y0(1 − Y00) where Y0 ∼ Beta(α0, α1) and Y00 ∼
Beta(α00, α01).

A conjugate scheme for a PT can be constructed if we assume a PT prior for a
distribution G, and we have observations y1, . . . , yn ∼ G, since the posterior distri-
bution G | y1, . . . , yn is still a PT. The parameters α�

ε of the posterior distribution can
be computed as α�

ε = αε + nε where nε is the number of observations falling into set
Bε.

A common choice is to center the PT on a pre-specified distribution G0, which
means that, for every set B of the partition, E[G(B)] = G0(B). In this paper we
will set the αε1...ε j−10 and αε1...ε j−11 associated with the sets Bε1...ε j−10 and Bε1...ε j−11

to be proportional to the mass assigned to these sets from G0, that is αε = cε ×
G0(Bε), where cε is a scaling parameter tuning the overall variance around the mean
distribution. Finally, we assume that G0 has random parameter η and we let this vary
by placing an additional prior on it, leading to what is known as Mixtures of Polya
Trees (MPT), as defined in [3].

3 Model

The data consist of the number of individuals, Dk , detected on SO k, with k =
1, . . . , K . We denote by Nk the (latent) number of individuals available for detection
at SO k and by p the detection probability, assumed to be constant for each individual
and each SO. Clearly Dk ∼ Binomial(Nk, p).

We do not assume that individuals are present throughout the study period but we
instead assume that their arrival and departure times are random. These times are
assumed to be sampled from a Poisson process, with intensity that can be written
as ω × ν̃ where ω is the overall mass of the process and ν̃ is a probability density
function. TheMPT is employed as a prior for ν̃ andwe call P0 the prior distribution on
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the hyparameters of the centring distribution G0, which we define later. As departure
is always greater than arrival, ν̃ is defined on {(x, y) ∈ R

2|x < y}.
Although the data depend only on the latent number of individuals Nk , we intro-

duce additional latent variables to make the inference of the PT more efficient. Let
{tk}k=1,...,K be the timeswhen samples are collected and take by convention t0 = −∞
and tK+1 = ∞. Additionally, let ni j be the number of individuals having arrival times
between ti and ti+1 and departure times between t j and t j+1 (with ni j = 0 for i > j).
The Nk can easily be obtained from the ni j as Nk = ∑K

j=k

∑k−1
i=0 ni j .

We make the standard choices of a Beta prior distribution for detection proba-
bility and a Gamma prior distribution for the overall intensity of the process. The
hierarchical structure of the model is the following:

Dk ∼ Binomial(Nk, p), Nk =
K∑

j=k

k−1∑

i=0

ni j , k = 1, . . . , K ,

ni j ∼ Poisson(ω × ωi j ), i = 0, . . . , K , j = 0, . . . , K i > j,

ωi j =
∫ ti+1

ti

∫ t j+1

t j

ν̃(x, y) dx dy, i = 0, . . . , K , j = 0, . . . , K , i > j,

ω ∼ Gamma(aω, bω), p ∼ Beta(a0, b0),

ν̃ ∼ PT(Π, αη), η ∼ P0.

In order to center the PT on a pre-specified distribution, we use the approach
explained in Sect. 2 of using a fixed partition and choosing the α according to the
value η of the parameters of the centring distribution. The dependence on η is thus
only in the α.

The process used to create the partition is explained in Fig. 2. The last level
corresponds to the partition defined by the sampling occasions. Since we use the
latent variables ni j and not the exact, on a continuous scale, individual arrival and
departure times, it is not meaningful to build a finer level of the partitions, as no
information is available about them.

We center the PT on a bivariate distribution with independent double exponential
marginal distributions, with probability density function (pdf)

G0(x1, x2;μ1, μ2, λ1, λ2) = 1

2λ1
exp

(
−|x1 − μ1|

λ1

)
1

2λ2
exp

(
−|x2 − μ2|

λ2

)
,

with the constraint that G0(x1, x2;μ1, μ2, λ1, λ2) = 0 if x1 > x2.
The sets of the partition are squares and triangles, as shown in Fig. 2. The choice

of the double exponential is motivated by the fact that integrals of this distribution
on squares and triangles can be computed analytically, without resorting to numer-
ical techniques. The hyperparameters (μ1, μ2) are given a bivariate normal prior
distribution and λ1 and λ2 two independent Gamma prior distributions.
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Fig. 2 Partitions of the Polya Tree. Observation occur only in the region above the diagonal. At
step k, the set of individuals departing after the kth sampling occasion is split into the individuals
departing between the kth and (k + 1)th sampling occasion and the individuals departing after the
(k + 1)th sampling occasion. After having reached level K , each set is split according to the same
procedure but with respect to the other dimension (arrival times)

4 Computational Notes

Posterior inference is performed using a Gibbs sampler.While this is straightforward
for some parameters, such as the detection probability p and the intensity ω of the
Poisson process thanks to conjugacy, for other parameters posterior inference is not
straightforward given that we are working with a PT.

The conditional distribution of the parameters ({ni j }, {ωi j }, η) given p and ω can
be written as

p({ni j }, {ωi j }, η|{Dk}, p, ω) ∝ p({Dk}|{Nk}, p) p({ni j }, ω, {ωi j } p({ωi j }|αη) p(η)

∝
K∏

k=1

Binomial(Dk |Nk, p)
K+1∏

i=1

i∏

j=1

Poisson(ni j |ω × ωi j ) p({ωi j }|Π,αη) p(η)

where the distribution p({ωi j }|αη) is given from the PT.
When writing the posterior distribution of the parameter η, we can integrate out

the parameterωi j , by employing a different parametrisation of the PT. First, we define
as nε the number of observations in set Bε and as qε0 the probability of assigning an
observation in set Bε0 given that we are in Bε which, according to the structure of
the PT, has a Beta(αε0, αε1) prior distribution. The marginal likelihood of the nε can
be expressed as

p({nε}|{αε}) =
∏

ε

∫
Bin(nε0|nε, qε0)Beta(qε0|αε0, αε1)dqε0.
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Integrating out the probabilities qε0 gives as a result a beta-binomial distribution.
Since the probability mass function of the beta-binomial is

f (k|n, α, β) =
(
n

k

)
B(k + α, n − k + β)

B(α, β)
,

the marginal likelihood of the latent variable nε given the hyperparameter η is

p({nε} |η) ∝
∏

ε

B(αε0 + nε0, αε1 + nε1)

B(αε0, αε1)
.

The posterior distribution for the latent variable ni j can be written as

p(ni j |{Dk}, p, ω, ωi j ) ∝ Poisson(ni j |ω × ωi j )

K∏

k=1

Binomial(Dk |Nk, p).

The parameter is updated with a random walk with uniform proposal over (ni j −
Ki j , . . . , ni j + Ki j ), where Ki j is chosen according to the value of the ni j chosen as
a starting point for the MCMC. In our case, we choose Ki j to be 1/5 of the starting
point of ni j .

The parameters ωi j correspond to the masses assigned by the distribution ν̃ to the
sets in the partition of the last level of the Polya tree. Hence, they can be sampled as a
product of Beta distributions as in (1). The parameters of the PT are updated at each
iteration conditional on the latent variable ni j , using the standard update explained
in Sect. 2.

5 Application

The data used in our application consist of weekly detections of great crested newts
(GCN) (Triturus cristatus). This species generally start to migrate to ponds in late
winter in order to breed. Subsequently, they leave the breeding site at the end of the
summer and hibernate on land. Sampling took place in ponds located at theUniversity
of Kent with data collected between the end of February 2016 until the beginning of
September of the same year, which covers a large part of the breeding period of the
newts. Samples were collected on weeks 1–22, 24–27 and 29 of the season.

GCN are uniquely identifiable and hence individual capture histories of this pop-
ulation exist. A total of 69 individuals were captured during the study. However, in
this case, the individual CR data have been collapsed to simple count data, which
are obtained by recording the number of individual newts caught on each of the
sampling weeks. It is believed that the population size is close to the sample size,
and we choose a prior distribution for ω with mean 76 to represent our belief that
around 90% of the individuals have been detected at least once. The variance has
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Fig. 3 Posterior distributions of population size (a) and detection probability (b), with the red
vertical lines showing the posterior means and the black line showing the prior distribution in each
case

been chosen in order to have a relative weakly informative prior, as the 95% prior
mass includes up to 135 individuals. Finally, 95% of the prior mass for detection
probability is placed on the (0.05, 0.35) interval, based on previous analyses of data
on the same population.

Prior knowledge suggests that a considerable number of individuals tend to arrive
at the site between the beginning of March and the end of April. Additionally, indi-
viduals depart between the end of May and the end of July. In order to translate this
knowledge into our prior distributions, we choose hyperpriors for η = (μ, λ) such
that 95%of the priormass of the arrival and departure density is in the aforementioned
ranges.

The posterior mean estimate of the population size is 89, while the posterior
mean of the detection probability is 0.33. The two posterior distributions are shown
in Fig. 3. The posterior distribution of the population size is different from the prior
distribution, as more individuals are estimated to be at the site than expected by
the ecologists. Moreover, in Fig. 4 we display the posterior mean of the latent num-
ber of individuals available at each sampling occasion together with the number of
individuals counted. For some sampling occasions, the empirical estimated detection
probability, estimated as the ratio between the estimated number of individuals avail-
able and the counted individuals, is outside the 95% posterior credible interval for
detection probability. This suggests that detection probability is not constant across
sampling occasions, as we have assumed in our model. According to expert knowl-
edge, changes in detection probability might be due to differences in environmental
conditions between sampling occasions, which affect behaviour of newts.

The posterior cumulative distribution functions of arrival and departure are also
shown in Fig. 4. As 95% of the individuals are estimated to arrive before any
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Fig. 4 a 95% posterior credible interval of the latent number of individuals available for detection
each week, shown in black, and the number of individuals detected each week shown in red. b
Posterior mean of the cumulative distribution function of arrival times (in red) and departure times
(in green)

individual has departed, the number of individuals is estimated to be fairly constant
between sampling occasions 9 and 14.

6 Conclusion

In this paper we have presented a BNP model for count data on an open wildlife
population consisting of individuals entering and exiting the site at random times. By
assuming a PT prior, we make no parametric assumptions on the shape of the arrival
and departure distribution.Moreover, the implementation is fast as the computational
complexity does not depend on the number of individuals but on the levels of the
PT, which depends on the number of sampling occasions. However, given the small
amount of information provided in count data, it is important to assume meaningful
and informative prior distributions in order to have sensible posterior distributions.
In this paper, we assume informative prior distributions for detection probability and
for population size, available thanks to expert knowledge.

As we mentioned in the introduction, another common sampling protocol is CR
which, as opposed to count data, provides individual information that can improve
estimation. Hence, a possible extension is to model count data and CR data jointly.
Another useful extension is to model data collected at different sites, by replacing
the Polya tree prior with a hierarchical Polya tree prior, defined in [1].
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Bias Estimation and Correction Using
Bootstrap Simulation of the Linking
Process

Shovanur Haque and Kerrie Mengersen

Abstract Record linkage involves a number of different linking methods to link
records from one or more data sources. Linkage error that occurs in the linking
methods due to erroneous entries or missing identifying information can lead to
biased estimates. It is essential to focus on the impact of bias and techniques for
the bias correction. This paper finds an expression for the bias of simple estimators
of cross-products of variables across linked files and constructs a bias-corrected
estimator. To derive the expressions for bias of the estimators, different scenarios
of linked files are considered. It is assumed that linkage is independent of linking
variable values. The situation is also considered where this independence assumption
does not hold. An expression of bias is defined where the product of variable values
for a true matched record pair are considered as a random and also a fixed value. For
the bias correction, this paper also proposes bootstrap simulation for the estimation
of match and non-match probabilities.

Keywords Record linkage · Markov chain Monte Carlo · Bias estimation · Bias
correction · Bootstrap

1 Introduction

Record linkage is the process of linking records from one or more data sources
that belong to the same entity. Different linking methods to find matches and link
records from different data sources, may have impact on the accuracy of the results
[3]. Errors can occur in the linking process due to missed-matches or false-matches.
Missed-matches are records which belong to the same individual or entity but fail to
be matched. False-matches are records that are erroneously matched but belong to
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two different individuals or entities. These two possible linkage errors can produce
biased estimates. Many authors show that bias increases as linkage error increases
(see for example, [8, 9, 17]). It is difficult to measure the extent of this bias with the
formal measures of linkage errors such as sensitivity, specificity or match rate [2, 3,
7, 15, 16].

Linkage error that occurs due to erroneous entries or missing identifying infor-
mation can lead to biased estimates. Harron et al. [11] realizes the importance of
determining the potential effect of linkage error on an outcome when linked data are
to be used in health research. They assessed the impact of linkage error on estimated
infection rates in paediatric intensive care based on linking a national audit dataset
(PICA-Net, the Paediatric Intensive Care Audit Network) and infection surveillance
data (Paediatric Intensive Care Audit Network National Report, 2009–2011) using
two different methods: highest-weight (HW) classification and prior-informed impu-
tation (PII). Their study found that the bias was greater when the match rate was low
or the error rate in variable values was high. In their analysis, they assumed that
both the match weight and match probabilities were calculated accurately as they are
based on the true match status of record pairs. However, this would not be the case
in a real linkage situation. In regression analysis, the possible linkage error affects
the estimation of the relationships between variables of the two files. The presence
of ‘false matches’ reduces the observed level of association between variables [16].
Scheuren and Winkler [18, 19] and Lahiri and Larsen [13] also demonstrate this
problem in detail. They introduce bias when estimating the slope of the regression
line.

In the absence of a unique identifier, records belonging to two different peoplemay
be incorrectly linked. As a quality measure, Christen [6] describes Precision which is
the proportion of links that are matches. The proportion of links that are matches help
measure linkage error. Incorrect links create measurement error and consequently
can bias analysis. The impacts of the bias and techniques for the bias correction have
been studied in the literature (see for example, [4, 5]). Chipperfield and Chambers
[4] develop a parametric bootstrap method for making inferences on binary variables
using a probabilistic method to link files under the 1-1 constraint (every record from
one file is linked to a distinct record in another file). Their method is valid as long
as the linkage process can be replicated. They show that the analytic estimates of
Precision in Lahiri and Larsen [13] are poor for 1-1 probabilistic linkage where every
record fromone file is linked to a distinct record in another file. Larsen andRubin [14]
estimate true match status by using the posterior probability of a match and improve
the classification of matches and non-matches through clerical review. However,
clerical review can be expensive and time consuming. Linking datasets and analysing
linked dataset are usually performed separately with different individuals to protect
data confidentiality. Thus, researchers who are involved in analysing linked datasets
often lack sufficient information to correctly assess the impact of errors on results
[1, 12]. This paper finds expressions for the bias of estimators of cross-products of
variables across linked files and constructs bias-corrected estimators using bootstrap
simulation of the linking process.
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The paper is organised as follows. Section 2 briefly describes the linking process
in the assessment method, MaCSim. A derivation of bias estimation and correction
of simple estimators of cross-products of variables across linked files is provided in
Sect. 3. Section4 provides details of estimation ofmatch and non-match probabilities
using bootstrap simulation of the linking process.

2 Linking Process

In our first paper [10], we described the methodMaCSim for assessing linkage accu-
racy.MaCSim is aMarkov chain basedMonte Carlo simulation method for assessing
linking process. MaCSim utilizes two linked files to create an agreement array or
agreement matrix from all linking fields across all records in the two linked files
and then simulates the agreement array using a defined algorithm which maintains
internal consistency in the patterns of agreement while preserving the underlying
probabilistic linking structure. From the agreement array we calculate necessary
parameter values and create an observed link using a defined linking process. Then
we simulate the agreement array using a defined algorithm developed for generating
re-sampled versions of the agreement array. In each simulation with the simulated
data, records are re-linked using the same linking method that has been used before
simulation. Then the simulated link is compared with the observed link and the accu-
racy of the individual link is calculated, which ultimately provides an estimate of the
accuracy of the linking method that has been followed to link the records.

The linkage of the two files, X and Y say, is undertaken by calculating composite
weights Wij for each pair of records, i and j, by summing individual weights over all
linking variables for that pair. An individual weight, wijl is calculated using match
and non-match probabilities for any record pair (i, j) that agree or disagree on the lth
linking variable value. In particular, we have:

Wij =
L∑

l=1

log2
(
Pr{Aijl | i, j a match}/Pr{Aijl | i, j not a match})

where A = (Aijl); i = 1, . . . ,RX , j = 1, . . . ,RY , l = 1, . . . ,L, is a three-
dimensional array denoting the agreement pattern of all linking variables across
all records in the two files. The agreement array A contains three outcomes, i.e. 1
(when values agree),−1 (when values disagree) and 0 (when either or both the values
are missing), of the comparison between record i of file X and record j of file Y for
the lth linking variable value. According to these codes, each linking field is given a
weight using probabilitiesml , ul and gl , whereml = Pr{Aijl = 1 | i, j a match}, ul =
Pr{Aijl=1 | i, j not a match} and gl = Pr{Aijl=0 | either or both i, j aremissing}.
These probabilities are estimated from the linked dataset. For any (i,j)th record pair
and any linking variable l, if the agreement value is 1 (i.e. Aijl = 1) then the weight
is calculated using wijl = log2(ml/ul); if the value is −1 (i.e. Aijl = −1), the weight
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is calculated using wijl = log2(1 − ml − gl)/(1 − ul − gl) and for a missing value
(i.e. Aijl = 0), the weight formula is wijl = log2(gl/gl) = log2(1). Once weights of
all record pairs,Wij are calculated, the record pairs are then sorted according to their
weights in descending order. The first record pair in the ordered list is linked if it has
a weight greater than the chosen threshold cut-off value. All the other record pairs
that contain either of the records from the associated record pair that has been linked
are removed from the list. Thus, possible duplicate links are discarded. The same
procedure is then followed for the second record pair in the list and so on until no
more records can be linked.

3 Bias Estimation and Correction for Simple Estimators
of Cross-Products of Variables Across Linked Files

We consider two linked files, X and Y , each with RX = RY = n records. Further, we
assume that each record in file X has a unique true match in file Y and that we are
able to uniquely link each record in file X to a partner in file Y . Since there is error
in the linkage process, the records may not be correctly linked (i.e., two records may
be erroneously linked). Note that we will eventually move to the more realistic case
of RX ≤ RY and some of the records in file X remaining un-linked.

Let C = (C1, . . . ,Cn)
T be the values of a variable of interest for each record in

file X and similarly let D = (D1, . . . ,Dn)
T be the values of a related variable for

each record in file Y . We are interested in the expectation of the total product:

NCD = E
(
CTDC

) = E

{ n∑

i=1

CiDj(i)

}
=

n∑

i=1

E
{
CiDj(i)

} = nµCD

where j(i) is the index in file Y corresponding to the true match of record i from file
X ,DC = (Dj(1), . . . ,Dj(n))

T and µCD = E{CiDj(i)} is the expected product for a true
matched record pair. Note that the vectorDC has the elements from file Y re-ordered
to ensure that the corresponding elements of C and D relate to their true matches.
Further, note that in this scenario, we are considering the observed pairs (Ci,Dj(i)) to
be independent and identically distributed replicates from some larger population.

A simple, but potentially biased estimate of NCD is constructed as

N̂CD = CT D̂C =
n∑

i=1

CiDĵ(i)

where D̂C = (Dĵ(1), . . . ,Dĵ(n))
T and ĵ(i) is the index of the record in file Y which is

linked to record i from file X .
Our goal is to find an expression for the bias of our estimator in terms of the

values:



Bias Estimation and Correction Using Bootstrap … 17

qii = Pr{ĵ(i) = j(i)}

and then construct a bias-corrected estimator.
In determining the bias, we start by making two simplifying assumptions:

1. the event {ĵ(i) = j(i)} is independent of the values of Ci and Dj(i); and,
2. the values of Ci and Dj are independent for any j �= j(i).

To calculate the bias of our simple estimator, we start by noting:

E
{
N̂CD

} =
n∑

i=1

E
{
CiDĵ(i)

}

and

E
{
CiDĵ(i)

} = E
{
CiDĵ(i) | ĵ(i) = j(i)

}
qii + E

{
CiDĵ(i) | ĵ(i) �= j(i)

}
(1 − qii)

= E
{
CiDj(i)

}
qii + E

{
CiDĵ(i) | ĵ(i) �= j(i)

}
(1 − qii) = µCDqii + µCµD(1 − qii)

where we have used our assumption that linkage is independent of the C and D
variables and µC = E(Ci) and µD = E(Dj). So, the bias of N̂CD is:

Bias
(
N̂CD

) = E
{
N̂CD

} − NCD =
n∑

i=1

E
{
CiDĵ(i)

} − NCD

=
n∑

i=1

[{
µCD − µCµD

}
qii + µCµD

] − NCD

=
( n∑

i=1

µCDqii − NCD

)
+ µCµD

n∑

i=1

(1 − qii) = {
NCD − nµCµD

}
(q̄ − 1)

where q̄ = 1
n

∑n
i=1 qii. Or, equivalently, we have E

{
N̂CD

} = NCDq̄ + nµCµD

(1 − q̄).
Hence, if we define

N̂ BC,1
CD = N̂CD − nµ̂Cµ̂D(1 − q̄)

q̄

where µ̂C = 1
n

∑n
i=1 Ci and µ̂D = 1

n

∑n
j=1 Dj, thenE

{
N̂ BC,1
CD

} = NCD. In otherwords,

N̂ BC,1
CD is unbiased.
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3.1 When the Values of Ci and Dj Are Not Independent
for Any j �= j(i)

As an alternative approach, which does not rely on assumption (2), we note that

E
{
N̂CD

} = NCDq̄ + nPCD(1 − q̄)

where PCD = E
{
CiDj | j �= j(i)

}
. So, if we define a new estimator as:

N̂ BC,2
CD =

n∑

i=1

w1CiDĵ(i) +
n∑

i=1

∑

j �=i

w2CiDĵ(j) = CTWD̂C

where W is an n × n matrix with w1s on the diagonal and w2s on the off-diagonals,
then

E
(
N̂ BC,2
CD

) =
n∑

i=1

w1E
{
CiDĵ(i)

} +
n∑

i=1

∑

j �=i

w2E
{
CiDĵ(j)

}

= nw1
{
µCDq̄ + PCD(1 − q̄)

} +
n∑

i=1

∑

j �=i

w2E
{
CiDĵ(j)

}
.

Now, since D̂C is simply a permutation of D, we have

n∑

i=1

∑

j �=i

w2E
{
CiDĵ(j)

} =
n∑

i=1

n∑

j=1

w2E
{
CiDĵ(j)

} −
n∑

i=1

w2E
{
CiDĵ(i)

}

=
n∑

i=1

n∑

j=1

w2E
{
CiDj

} −
n∑

i=1

w2E
{
CiDĵ(i)

}

=
n∑

i=1

∑

j �=j(i)

w2E
{
CiDj

} +
n∑

i=1

w2E
{
CiDj(i)

} −
n∑

i=1

w2E
{
CiDĵ(i)

}

= n(n − 1)w2PCD + nw2µCD − nw2
{
µCDq̄ + PCD(1 − q̄)

}

Thus,

E
(
N̂ BC,2
CD

) = n(w1 − w2){µCDq̄ + PCD(1 − q̄)} + n(n − 1)w2PCD + nw2µCD

= n{(w1 − w2)q̄ + w2}µCD + n{(w1 − w2)(1 − q̄) + (n − 1)w2}PCD.

So, to ensure that N̂ BC,2
CD is unbiased, we need to solve the following two equations:
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(w1 − w2)q̄ + w2 = 1 and (w1 − w2)(1 − q̄) + (n − 1)w2 = 0.

Solving these equations results in

w1 = 1

q
+ (1 − q̄)2

q̄(nq̄ − 1)
and w2 = q̄ − 1

nq̄ − 1

provided q̄ �= 1/n. From this, it is readily seen that W = Q−1, where Q is a matrix
with diagonal elements q̄ and off-diagonal elements (1 − q̄)/(n − 1).

3.2 When Considering the Total Product CTDC as a Fixed
Value

All the above discussions are based on the idea that CTDC was random and its
components are independent of the linking process. However, if we consider CTDC

as a fixed value (i.e., condition on its value), we can define the bias of N̂CD as follows:

Bias
(
N̂CD

) = E
(
N̂CD

) − CTDC = E
(
CT D̂C

) − CTDC = CT
{
E
(
D̂C

) − DC
}

Further, since there is now no randomness in CTDC , we have:

E
{
N̂CD

} =
n∑

i=1

CiE
{
Dĵ(i)

}

and

CiE
{
Dĵ(i)

} = CiE
{
Dĵ(i) | ĵ(i) = j(i)

}
qii + CiE

{
Dĵ(i) | ĵ(i) �= j(i)

}
(1 − qii)

= CiDj(i)qii + CiE
{
Dj | j �= j(i)

}
(1 − qii)

= CiDj(i)qii +
n∑

i=1

∑

j �=i

CiDj(j)qij

so that E{N̂CD} = CTQDC , where Q is now a matrix with diagonal entries qii and
off-diagonal elements qij = Pr{ ĵ(i) = j(j)} for j �= i. Thus, to create a bias cor-
rected estimator, we could use N̂ BC,3

CD = CTWD̂, where W = Q−1, provided Q is
non-singular.

We can see that Q is right stochastic from its definition. In the current scenario,
where all records in each file are linked, Q is doubly stochastic, but this will not be
true in the case of less than 100% linkage. In this situation, we still cannot say Q is
invertible. However, if Q is strictly diagonally dominant, it will be invertible.
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Since the structure of Q has qii = Pr{ ĵ(i) = j(i)}, we see that the diagonal ele-
ments are simply the probabilities of correct linkage. Thus, given its right stochastic
property (i.e., the rows sum to unity and the entries are all non-negative), the diagonal
dominance property amounts to:

| qii | >
∑

j �=i

| qij | = 1 − qii ⇒ qii > 1/2 ∀i

In other words, as long as the correct linkage has greater than a 50% chance of
occurring for all records,Q will be invertible, and thus bias correction in this context
is guaranteed to be possible.

4 Bootstrap Simulation of the Linking Process to Estimate
Match and Non-match Probabilities

The above discussions of bias correction required the use of the values qii and
qij, which would generally need to be estimated. One possibility for estimat-
ing these quantities would be bootstrap simulation of the linking process. Sup-
pose we have a bootstrap procedure to simulate a large number, B, of values
D̂∗

b = (
Dĵ∗b (1)

, . . . ,Dĵ∗b (n)
)T
, where b = 1, . . . ,B. Standard bootstrap bias correction

would then create the adjusted estimator:

N̂ BC,4
CD = CT D̂C − ̂BiasBOOT

(
N̂CD

) = CT D̂C −
( 1

B

B∑

b=1

CT D̂∗
b − CT D̂C

)

= 2CT D̂C − 1

B

B∑

b=1

CT D̂∗
b.

Now, in the scenario where we have assumed our linkage process will create a
complete 1-1 connection between the twofiles,we see that D̂∗

b is simply a permutation
of D̂C . So, we can write, D̂∗

b = P∗
bD̂C where P∗

b is the n × n permutation matrix
associated with the bth replication of the linkage process. Thus, we can further re-
write our bootstrap bias correction estimator as

N̂ BC,4
CD = 2CT D̂C − 1

B

B∑

b=1

CTP∗
bD̂C = 2CT D̂C − CT P̄∗D̂C = CTWBOOT D̂C

where P̄∗ = 1
B

∑B
b=1 P

∗
b and WBOOT = 2ln − P̄∗, with the n × n identity matrix, ln.
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5 Conclusion

This paper derives expressions for the bias of simple estimators of cross-products of
variables across two linked files and formulates bias corrected estimators considering
three different scenarios. The product for a true matched record pairs is considered as
both random and as a fixed value. We assume that for any record pair, the agreement
of linking variable values is independent among matches and non-matches for the
construction of the bias estimators and also proposed bias correction estimators
when the independence assumption does not hold for any non-matched pair. The
bias corrected estimators require the estimation of correct match and non-match
probabilities. We suggest estimating these quantities using bootstrap simulation of
the linking process. This paper covers the theoretical idea of bias correction method
in multiple scenarios. The practical implementation of the proposed method with
data would be a future work.
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Non-parametric Overlapping
Community Detection

Nishma Laitonjam and Neil Hurley

Abstract In this paper, we present a non-parametric overlapping community detec-
tion method based on the affiliation graph model using an Indian Buffet Process to
determine the number of communities. We compare this model with a full stochastic
blockmodel using the same prior, as well as two other models, a blockmodel and a
community model, that employ non-parametric priors based on a Gamma Process.
We ask two questions; firstly, whether community models are sufficient to model the
overlapping structure of real networks, without resorting to blockmodels that entail
significantlymore parameters; secondly, which is the better non-parametric approach
of the two analysed? Measuring performance in terms of predicting missing links,
we find that all models obtain similar performance, but in general, the Indian Buffet
Process prior results in simpler models, with fewer blocks or communities. We argue
that, when obtaining the latent structure is the purpose of the analysis, the simpler
affiliation graph model, with Indian Buffet Process is preferred.

Keywords Affiliation graph model · Generative model · Indian buffet process ·
Non-parametric model · Overlapping community detection

1 Introduction

Much work has been carried out in the identification of community structure in
social networks. Communities are sub-sets of highly interconnected vertices. Two
broad and distinct categories of community identification are studied, namely non-
overlapping and overlapping community detection. In the latter case, which is the
focus of this paper, vertices are allowed to belong to more than one community
and this would seem the best model of real-world social communities. After all,
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people tend to belong to many social groups such as leisure and work groups. A
wide range of approaches to overlapping community detection have been taken in
the state-of-the-art such as local seed-expansion [10], global optimization [3] and
other heuristic approaches, including an extension of the label propagationmethod to
the overlapping case [7]. Statistical generative approaches propose a model through
which the graph is generated, by initially selecting the community labels for the
nodes, followed by the generation of edges, whose probability of existence depends
on the community labels of their end-points. Computational inference techniques are
used to determine the model parameters from an observed graph and hence to infer
the community labels. In this paper, we focus on such generative methods.

We adopt the following notation. Let G = (V, E) be an undirected graph, such
that V is a set of nodes or vertices and E ⊆ V × V is a set of edges. An edge can
be represented as the undirected tuple (v,w), where v,w ∈ V . Let, C = {1, . . . , K }
be a set of community labels, where K > 0 is the total number of communities.
Write n = |V |. Assuming some numbering such that the vertices can be written as
{v1, . . . , vn}, we will sometimes refer to a vertex by its index i under this numbering.
An unweighted graph may be represented by its binary adjacency matrix A = {ai j }
where ai j = 1 if (i, j) ∈ E and ai j = 0 otherwise. We sometimes consider integer-
valued positive weights associated with an edge (i, j), and we write X = {xi j } for
the weighted graph with xi j ∈ Z

+. A community-assignment is an association of a
set of communities Ci ⊆ C , with each vi ∈ V . It is useful to describe the community
assignment as the binary n × K matrix Z = {zik}, such that zik = 1 if i ∈ Ck and
zik = 0 otherwise.When a positive real value is used to indicate the affinity of a node
i to a community k, � = {φik} is used with φik ∈ R

+.

2 Models

From the ground truth of real world networks, it has been found that many real world
network communities exhibit pluralistic homophily [18], that is, that the likelihood
of an edge existing between any pair of nodes is directly proportional to the number
of shared communities. The focus of this paper is on models that adhere to pluralistic
homophily. In the following sub-sections we gather such models into a framework
which we refer to as “Overlapping Weighted Stochastic Blockmodels” and from
this general framework, we define four models that are of particular interest in our
analysis. Two of these models are full blockmodels that allow for any type of block
structure in the network, while the other two are constrained to just community
structure. Our hypothesis is that community models, containing significantly fewer
parameters than full blockmodels, should be easier to learn and sufficiently accurate
to model real-world overlapping community structure. As part of this analysis, we
combine for the first time, the affiliation graph model (AGM) with an Indian Buffet
Process and compare this with the other three variants from the state-of-the-art.

Overlapping Weighted Stochastic Blockmodel: Many statistical methods for
overlapping community detection proposed to date are based on a common over-
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lapping weighted stochastic blockmodel (OWSB). The general model assumes that
edges in a graph G are generated independently at random, given the community
assignment parameters, whichwewrite as�. The likelihood of an observedweighted
graph is

P(X|�) =
n∏

i=1

n∏

j=1

P(Xi j = xi j |�) (1)

where P(Xi j = w) is the probability that the edge weight w is observed on edge
(i, j). In particular, P(Xi j = w) is Poisson distributed with rate depending on the
community assignments of nodes i and j , such that, the rate may be written as∑K

k=1

∑K
�=1 φikφ j�λk�, where λk� represents the rate of edge generation between

nodes in communities k and � and φik ∈ R
+ is a real-valued affiliation strength

between node i and the community k. Thus, the community assignment parameters
consist of the set � = (φik, λk�, K ). The rates between communities are symmet-
ric i.e. λk� = λ�k . We refer to the above model as a blockmodel because between-
community edges as well as within-community edges are modelled, i.e. we have
λk� > 0∀k, �. It is referred to in [20] as an Edge Partition Model (EPM).

The weighted model may be reduced to an unweighted model, with likelihood

P(A|�) =
n∏

i=1

n∏

j=1

p
ai j
i j (1 − pi j )

1−ai j , (2)

where pi j = P(Xi j > 0). Hence, pi j = 1 − ∏
k

∏
�(1 − πk�)

φikφ j� and πk� ≡ 1 −
exp(−λk�). Note that πk� ∈ [0, 1] and represents the probability that nodes in com-
munities k and � are joined by an edge. Thus the unweightedmodelmay be generated,
by starting with rates λk�, or directly from probabilities πk�.

For a fully Bayesian treatment of this model, we require the posterior distribution,
which is proportional to the product of the likelihood and prior probabilities, P(�),
i.e. P(�|X) ∝ P(X|�) × P(�) .Different specialisations of the model differ in their
choice of prior. In particular, the value of K may be given as an input parameter, in
which case a model selection method must be applied to choose among a range of
K ’s. A more sophisticated approach is to use a non-parametric prior.

Affiliation Graph Model: The Affiliation Graph Model (AGM) [18] is the spe-
cialisation of the OWSB in which the between-community edge rate λk� for k �= �, is
set to zero and the edges are unweighted, with φik constrained as φik ≡ zik ∈ {0, 1}.
In this case, the K (K + 1)/2 rate parameters reduce to just K parameters which we
write as rk ≡ λkk , with πk = 1 − exp(−rk). To allow for the possibility of an edge
between any pair of nodes, a null community is introduced, consisting of all the
nodes in the network, to capture any noisy edges that are not otherwise explained
by community membership. We refer to this as the ε community, with associated
parameters rε and πε . State-of-the-art methods that follow this model, and fit it using
a heuristic optimization technique include [11, 18, 19].



26 N. Laitonjam and N. Hurley

Non-parametric Models: Non-parametric models do not assume that the struc-
ture of the model is fixed. In the context of overlapping community detection, this
corresponds to allowing the number of communities K to be inferred from the data
and potentially grow to infinity. Two approaches are proposed in the state-of-the-art.
The Infinite Edge Partition Model [20] uses a Hierarchical Gamma Process on λk�,
and hence we refer to it as HGP-EPM. This model has been constrained to the AGM
likelihood, in which case Gamma Process priors on rk suffice and we refer to this
constrained model as GP-AGM.

The IMRM [13] is an alternative non-parametric model, that constrains φik ≡
zik ∈ {0, 1} and imposes an Indian Buffet process (IBP) prior on zik , allowing for an
arbitrary number of communities. The IBP can be defined in terms of a community
weight wk , such that zik |wk ∼ Bernoulli(wk), with wk |α ∼ Beta(α/K , 1). Allowing
the number of communities K → ∞, we obtain Z ∼ IBP(α). The parameter α con-
trols the number of active communities, the number of communities a node belongs
to and the expected number of entries in Z. Our contribution is to constrain the IMRM
to the AGM, by setting inter-community rates to zero. We refer to this model as an
IBP-AGM model and its generative process is given in Algorithm 1.

The Bernoulli-Beta process in the IBP is a rich-get-richer process in which the
probability that a node is assigned to any community is proportional to the number
of nodes already in that community. On the other hand, the community assignment
parameter in theHGP-EPMandGP-AGMdepends only on node-specific parameters,
so we do not expect to see a strong preferential attachment phenomenon in the
community assignments in this case.

3 Related Work

In recent years, a number of generative models of networks with latent structure have
been proposed in the state-of-the-art. The stochastic blockmodel (SBM) [8] posits
that each node belongs to a single latent cluster and that interactions between pairs
of nodes are governed by parameters, conditional on the cluster assignments of the
nodes. The mixed membership stochastic blockmodel (MMSB) [1] extends this idea
by assuming that each node has a distribution over the set of latent clusters and that
pairs sample their cluster labels before selecting their interaction parameters. The
assortative MMSB [5], specialises the MMSB by disallowing between-cluster inter-
actions. However, MMSB models do not explicitly model for pluralistic homophily.
The infinite relational model [9] is a non-parametric version of the SBM that places
a Dirichlet Process prior on the community assignment of nodes. Another work on
detecting latent overlapping clusters in networks is the mixtures of Dirichlet Net-
work Distributions (MDND) model [17], that focuses on clustering links, rather than
nodes. Other work focuses on the link prediction task, rather than on community
identification. The work of [2] for instance, presents a model for sparse network gen-
eration, which is not explicitly defined in terms of latent clusters, but which can be
related to stochastic blockmodels, in so far as the probability of a link between two
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Algorithm 1 Generative process model of IBP-AGM
1: procedure GenerateNetwork
2: α ∼ Gamma(1, γ )

3: Z ∼ IBP(α)

4: for k = 1 : K do
5: πk ∼ Beta(a, b)
6: for i < j such that j ∈ 1 : n and i ≥ 1 do
7: ai j ∼ Bernoulli(pi j ) where pi j = 1 − (1 − πε)

∏K
k=1(1 − πk)

zik z jk

nodes depends on the nodes’ parameters through a link function. These parameters
do not correspond to explicit cluster assignments. In summary, while there are many
works on stochastic blockmodels or similar models, our focus is on models that are
based on the OWSB likelihood that explicitly models pluralistic homophily.

4 Inference Techniques

We have used standard MCMC algorithms for inference in IBP-AGM. The pseudo-
code for the MCMC of IBP-AGM is given in Algorithm 2. For sampling the IBP
parameter α, we use Gibbs sampling with a Gamma(1, γ ) prior on α. This results
in a Gamma posterior given in step 14 of Algorithm 2. For sampling the community
assignment Z, due to the non-conjugacy of the likelihood P(A|Z, π) in (2) and its
prior Z ∼ IBP(α), we use Auxiliary Gibbs Sampling (AGS) to sample from a non-
conjugate IBP [6]. This is similar toAGS [14] for the non-conjugateDirichlet process
mixture model. If m−ik = ∑

j �=i (z jk) > 0, we sample zik from its posterior in step 4
of Algorithm 2. To sample new communities, we consider K ∗ auxiliary communities
with π∗ ∼ Beta(a, b). A node i can be assigned to any of 2K

∗
combinations of these

K ∗ communities.With l running over all 2K
∗
possibilities, each Z∗

l has joint posterior
consisting of theBernoulli probabilities of assigning the node i to eachof the auxiliary
communities with probability α/K ∗

N+α/K ∗ . For sampling the edge probability parameter
π , we use Hamiltonian Monte Carlo (HMC) [4]. This method utilizes the gradient of
the log posterior to reduce the correlation between successive sampled states, thus
targeting higher probability states and resulting in fast convergence. It requires a
discretisation of the Hamiltonian equations, for which we use the leapfrog method.
Similar to the HMC for IMRM [13], π is sampled using HMC by transforming
πk ∈ [0, 1] to sk ∈ (−∞,∞) with πk = 1

1+exp(−sk )
, πk ∼ Beta(a, b) and computing

the log posterior, log P(s|A,Z) and its gradient, ∇ log P(s|A,Z).



28 N. Laitonjam and N. Hurley

Algorithm 2MCMC algorithm for IBP-AGM
Input: A, K ∗
Initialize: a, b, π , Z, α
For each iteration, repeat :

1: for i = 1 : n do {Sample Z using Auxiliary Gibbs Sampling}
2: for k = 1 : K do
3: if m−ik > 0 then
4: Sample zik from P(zik = z|A,Z−ik , π) ∝ ((1 − z)n − (−1)zm−ik)P(A|Z, π)

5: else{m−ik = 0}
6: Set one of the auxiliary community edge probability π∗ to be πk and zik = 0
7: Sample the remaining π∗ from Beta(a, b)
8: for l = 1 : 2K ∗

do
9: Compute the posterior P(Z∗

l |A,Z, π, π∗) ∝ P(Z∗
l )P(A|Z∗

l ,Z, π, π∗)
10: Sample Z∗

l from 2K
∗
possibilities with probabilities P(Z∗

l |A,Z, π, π∗)
11: Set π = {π, π∗} and Z = {Z,Z∗

l }
12: Remove the zero columns from Z and its corresponding π

13: Sample π using Hamiltonian Monte Carlo using ∇ log P(s|A,Z), where π = 1
1+exp(−s)

14: Sample α using Gibbs Sampling from its posterior P(α|Z) = Gamma(1 + K , γ + ∑n
j=1

1
j )

5 Experiments

The main purpose of our empirical analysis is to compare the blockmodels with the
community models, with the two choices of non-parametric prior (GP and IBP).
The inference algorithm for IBP-AGM is described in Sect. 4. For IMRM, we use
HMC for IMRM [13] and Auxiliary Gibbs sampling for IBP. For EPM models, we
used Gibbs sampling described in [20], using a truncated Gamma Process and hence
requires to input a maximum number of communities. On the other hand, inference
with the IBP can generate any number of communities (truly non-parametric).

The following settings are used throughout the experiments, unless otherwise
specified. In IBP-AGM and IMRM, in each Gibbs update for AGS, we choose the
number of auxiliary communities K ∗ = 3 and for the HMC, a step size of 0.01
and a number of leapfrogs of 10 and set πε = 0.00005. For IBP-AGM, we con-
sider γ = 100 and a = b = 1. Similarly to HGP-EPM, we choose the prior on the
edge probability for IMRM in such a way that interaction within a community is
greater than between communities, i.e. a = 1, b = 5∀k �= � and a = 5, b = 1∀k = �

as given in [13] and consider γ = 1. For EPM, we have considered the same settings
and initialization as given in [20]. In all the four non-parametric models, the number
of communities is initialised, similarly to [20], with the condition K = min(100, n)

if n < 2,000 and K = min(256, n), otherwise. We have taken the same initial set-
tings for IBP-AGM and GP-AGM in terms of initial community assignments and
edge probability parameters i.e. zik = 1∀i, k and πk = 1 − exp(−1/K ) for IBP-
AGM or rk = 1/K for GP-AGM. For IMRM, each edge probability is assigned to
1 − exp(−1/K ) initially. All the experiments are done on Intel core i5, 4 cores.
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Similarly to the evaluation in [12, 13, 20], we have used missing link prediction
as a measure to compare the performance between methods. The test set consists of
20% of the available pairs of nodes, whose between-edge existence or otherwise is
withheld from the training data. AUC-ROC values are calculated for this test set.

While the AUC-ROC is a useful measure to detect convergence of the models, it
is worth noting, as seen in the experiments later in the paper, that the different models
are able to predict missing edges with similar performance. We emphasise that the
purpose of our work is to detect the community structure as an output, and therefore,
given similar AUC-ROC performance, we contend that simpler latent structures are
preferable over more complex ones. This implies a preference towards community
models, rather than blockmodels, since overlapping block structure is difficult to
comprehend and a preference towards fewer, rather thanmore communities. Initially,
we test their ability to recover the communities from networks generated from the
AGM. These generated networks are simple with a known number of communities
yet sufficiently complex to allow for different community structures to be found.
Then, we test their performance in detecting real world communities.

Networks Generated by AGM: Networks with two communities are gener-
ated using the generative process of AGM. We choose the network size from
n = {30, 100, 500} and set K = 2 with πk = 0.8∀k and πε = 0.00005. We choose
community assignment Z, such that in each network, 20% of the nodes belong to
the overlapping region of the two communities and 40% of the nodes belong to
each community only. An edge between nodes i and j is generated with proba-
bility pi j = 1 − (1 − πε)

∏
k(1 − πk)

zik z jk . We run the different models with these
networks as input, expecting to find K = 2 communities. After burn in of 15,000
iterations, 15,000 samples are collected, and the average result of 5 random runs is
reported.

From Table 1, we can see that GP-AGM converges to a model with greater than
two communities, whereas IBP-AGM converges to 2 communities. HGP-EPM and
IMRM also fit the networks with more complex block structure rather than having
two blocks with πk� ≈ 0,∀k �= �. As the number of edges increases in the network,
the blockmodels scale less well (in time) compared with the community models.
From the trace plots of the number of communities and log likelihood in Figs. 1 and
2, respectively, IBP-AGM converges in fewer iterations to GP-AGM. Moreover, as
GP-AGM converges to a higher number of communities, this results in a smaller
likelihood than IBP-AGM, see Fig. 2. In terms of predicting the missing links, all
models seem to perform equally.

Real World Networks: We take 3 small networks (n < 250) i.e. Football [15]
with a ground truth of 12 communities, Protein230 [20], NIPS234 [20], and 4 large
networks (n > 2,000) i.e. NIPS12 [20], Yeast [13], UsPower [13], Erdos [13]. 1,500
samples are collected after burn-in of 1, 500 iterations and the average result of
5 random runs is reported. The first notable finding of Table 2 is that all models
achieve similar AUC-ROC scores, with HGP-EPM and IBP-AGM marginally out-
performing the others. Examining the found latent structure, we see that generally,
the models based on the Gamma Process prior, HGP-EPM and GP-AGM, sample a
greater number of blocks or communities than IMRM and IBP-AGM. The shrinkage
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problem of Gamma Process prior on EPM model resulting into more number of
communities has been studied in [16]. This suggests that the IBP prior can recover
simpler latent structure, particularly for the larger networks. For example, the GP-
AGM finds 190 communities, while IBP-AGM finds 60 in the Erdos network.

WhileHGP-EPMgenerally obtains the bestAUC-ROCperformance, the structure
it uncovers, consisting of 91 overlapping blocks in Erdos, is extremely complex.
Each edge is explained, either by its membership of multiple blocks or by the fact
that it straddles different blocks with non-zero between-block edge probability. It is
very difficult to interpret such a model. The corresponding IBP-AGM uncovers just
60 overlapping communities, with between community edges explained entirely as
noisy links, and in this case, a marginally higher AUC-ROC score.

6 Conclusion

In this paper, we have presented an overlapping community detection algorithm,
which is a non-parametric version of the affiliation graph model (AGM) that uses
an Indian Buffet Process (IBP) prior and exhibits pluralistic homophily. We have
compared the model with another non-parametric model of AGM that uses a Gamma
Process (GP) prior. In terms of convergence, IBP-AGM performs better than the GP-
AGM with fewer communities in general, though there is not much difference in
AUC scores for missing link prediction. Hence, empirically, IBP-AGM has better
shrinkage while GP-AGM tends to overfit the data with larger number of parameters.
Comparing with blockmodels, we find that the community models obtain similar
performance to blockmodels and generally return simpler structures. Our futurework
will focus on making IBP-AGM more scalable.
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Posterior Consistency in the Binomial
Model with Unknown Parameters: A
Numerical Study

Laura Fee Schneider, Thomas Staudt and Axel Munk

Abstract Estimating the parameters from k independent Bin(n, p) random vari-
ables, when both parameters n and p are unknown, is relevant to a variety of
applications. It is particularly difficult if n is large and p is small. Over the past
decades, several articles have proposed Bayesian approaches to estimate n in this
setting, but asymptotic results could only be established recently in Schneider et al.
(arXiv:1809.02443, 2018) [11]. There, posterior contraction for n is proven in the
problematic parameter regime where n → ∞ and p → 0 at certain rates. In this ar-
ticle, we study numerically how far the theoretical upper bound on n can be relaxed
in simulations without losing posterior consistency.

Keywords Bayesian estimation · Binomial distribution · Discrete parameter ·
Posterior contraction · Simulation study

1 Introduction

We consider estimating the parameter n of the binomial distribution from k inde-
pendent observations when the success probability p is unknown. This situation is
relevant in many applications, for example in estimating the population size of a
species [10] or the total number of defective appliances [4]. Another recent appli-
cation is quantitative nanoscopy, see [11]. There, the total number of fluorescent
markers (fluorophores) attached to so-called DNA-origami is estimated from a time
series of microscopic images. The number of active fluorophores counted in each
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image is modeled as a binomial observation, where the probability p that a fluo-
rophore is active in the respective image is very small (often below 5%).

This setting, where the success probability p is small (and n potentially large),
is very challenging. The difficulties that arise can be understood by considering the
following property of the binomial distribution: if n converges to infinity, p converges
to zero, and the product np converges to λ > 0, then a Bin(n, p) random variable
converges in distribution to a Poisson variable with parameter λ. Thus, the binomial
distribution converges to a distribution with a single parameter. This suggests that
it gets harder to derive information about the two parameters separately when n is
large and p small.

In this context, it is instructive to look at the sample maximum Mk as an estima-
tor for n, which was suggested by Fisher in 1941 [5]. Although it turns out to be
impractical, see [3], the sample maximum is consistent and converges in probability
for fixed parameters (n, p) exponentially fast to the true n, as k → ∞. This can be
seen from

P (Mk = n) = 1 − (1 − pn)k, (1)

which implies, by Bernoulli inequality and since 1 − x ≤ e−x , that

1 − e−kpn ≤ P (Mk = n) ≤ kpn.

In an asymptotic settingwheren → ∞ and p → 0 such that kpn → 0, the probability
in (1) no longer converges to one. Thus, the samplemaximum is a consistent estimator
for n only as long as kpn → ∞. The condition en = O(k) is necessary for this to
hold.

Estimating n in this difficult regime becomes more manageable by including
prior knowledge about p. We therefore consider random N and P , and variables
X1, . . . , Xk that are independently Bin(n, p) distributed given that N = n and P =
p. Various Bayesian estimators have been suggested over the last 50 years, see [1,
4, 6, 7, 10]. In all these works, a product prior for (N , P) is used, and the prior
�P on P is chosen as beta distribution Beta(a, b) for some a, b > 0. Since this is
the conjugate prior, it is a natural choice. In contrast, there is quite some discussion
about the most suitable prior �N for N , see for example [1, 8, 9, 13]. Therefore,
the asymptotic results in [11] are not restricted to a specific �N and only require a
condition that ensures that enough weight is put on large values of n (see Eq. (4) in
Sect. 2).

In [11], we also introduce a new class of Bayesian point estimators for n, which
we call scale estimators. We choose �P = Beta(a, b) and set �N (m) ∝ m−γ for a
positive value γ . If γ > 1, the prior �N is a proper probability distribution, but it is
sufficient to ensure γ + a > 1 in order to obtain a well-defined posterior distribution,
as discussed in [8]. The scale estimator is then defined as the minimizer of the Bayes
risk with respect to the relative quadratic loss, l(x, y) = (x/y − 1)2. Following [10],
it is given by
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n̂ := E
[
1
N |Xk

]

E
[

1
N 2 |Xk

] =
∑∞

m=Mk

1
m La,b(m)�N (m)

∑∞
m=Mk

1
m2 La,b(m)�N (m)

, (2)

whereXk = (X1, . . . , Xk) denotes the sample, Mk is the sample maximum, and La,b

is the beta-binomial likelihood, see [2]. We refer to [11] for a detailed discussion and
numerical study of this estimator.

The present article is structured as follows. In Sect. 2, the main theorem (proven in
[11]) is presented,which showsuniformposterior contraction in the introducedBayes
setting for suitable asymptotics of n and p. The theorem states that n6+ε = O(k) for
ε > 0 is already sufficient for consistency of the Bayes estimator. This is a significant
improvement over the sample maximum, where the sample size must be much larger
for consistent estimation of n. In Sect. 3, we then conduct a simulation study to better
investigate the restrictions for the parameters n and p needed to ensure consistency.
Our findings indicate that estimation of n is still consistent if n5 = O(k), but that it
becomes inconsistent for n3 = O(k). It is hard to pin down the exact transition from
consistency to inconsistency when nα = O(k). However, our results suggest that, if
α ≈ 4, n already grows too fast to be consistently estimated from a sample of size
k. We discuss our results and provide several remarks in Sect. 4.

2 Posterior Contraction for n

To study posterior contraction in the binomialmodelwe consider theBayesian setting
described in Sect. 1. For fixed parameters n and p that are independent of the number
of observations k, posterior consistency follows fromDoob’s theorem, see, e.g., [12].
We extend this result to the class of parameters

Mλ :=
{
(nk, pk)k : 1/λ ≤ nk pk ≤ λ, nk ≤ λ 6

√
k/ log(k)

}
(3)

for fixed λ > 1. Since we want to handle a variety of suitable prior distributions for
N , we only require that �N is a proper probability distribution on N that fulfills the
condition

�N (m) ≥ βe−αm2
(4)

for all m ∈ N and some positive constants α and β.

Theorem 1 (c.f. [11]) Conditionally on N = nk and P = pk, let X1, . . . , Xk
i.i.d.∼

Bin(nk, pk). For any prior distribution �(N ,P) = �N�P on (N , P) with �P =
Beta(a, b) for a, b > 0, and where �N satisfies (4), we have uniform posterior
contraction over the setMλ of sequences (nk, pk)k defined in (3) for any λ > 1, i.e.,
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sup
(nk ,pk )k∈Mλ

Enk ,pk

[
�

(
N 
= nk |Xk

)] → 0, as k → ∞.

This result directly implies consistency of the scale estimator (2) for parameter
sequences in Mλ. The mild restrictions on the prior distribution allow applying the
result to the estimators derived in [6, 7] as well. Furthermore, it is possible to apply
the statement of Theorem 1 to estimators as in [1, 4] by restricting the improper prior
to a compact support with increasing upper bound, as done in Theorem 2 in [11].
This upper bound needs to be greater than nk and small enough such that condition
(4) holds for m = nk .

3 Simulation Study

The theorem presented in the previous section states that the asymptotic behavior
nk = O

(
6
√
k/ log(k)

)
leads to posterior contraction of N for suitable priors, as long

as nk pk stays in a compact interval bounded away from zero. In this section we try to
answer the question by howmuch the constraints onMλ in Theorem1 can be relaxed.
We address this problem by studying the relation between posterior contraction and
the order α > 0 when nk = O

(
α
√
k
)
. More precisely, we are interested in the smallest

α = α∗ such that posterior consistency,

Enk ,pk

[
�

(
N 
= nk |Xk

)] → 0, as k → ∞, (5)

remains valid. Tackling this problem analytically turns out to be extremely challeng-
ing, see the proof of Theorem 1 in [11].

In our simulations, we consider sequences (nk, pk)k defined by nk = w α
√
k and

pk = μ/nk for parametersw, μ > 0.Thevalues ofw andμ should, ideally, notmatter
for the asymptotics and thus for the pursuit of α∗. Suitable choices of w and μ for
given α are still necessary for practical reasons to ensure that the asymptotic behavior
becomes visible for the values of k covered by the simulations. For any selection
(α,w, μ), we calculate the posterior probability of the true parameter nk and theMSE
of different estimators for values of k up to 1011. In order to achieve these extremely
large observation numbers, we take care to minimize the number of operations when
expressing the beta-binomial likelihood La,b in our implementation. Since La,b does
not depend on the order of the observations but only on the frequencies of each
distinct outcome xi , the runtime depends on nk (the number of different values that
xi can take) instead of k itself.

Figure1a–b show the (empirical) mean posterior probability in (5) and the (em-
pirical) mean square error (MSE) between n̂ and nk for different scale estimators n̂
in several scenarios (α,w, μ). The number of samples was set to 200. It is clearly
visible that the choice α = 6 leads to posterior consistency (which is in good agree-
ment with Theorem 1), since the posterior probability approaches 1 while the MSE
converges to 0. However, the simulations indicate that this also holds true for α = 5.
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(a) (b)

(c)

Fig. 1 Asymptotic behavior of the scale estimator and posterior contraction. a shows log-log plots
of the MSE of several scale estimators in different asymptotic scenarios (α,w, μ). The value μ

was set to 25 in each simulation, and the parameters for the scale estimators were picked as all
possible combinations of γ ∈ {0.5, 1}, a ∈ {1, 5}, and b ∈ {1, 5}. b shows the empirical mean of
the posterior probabilities �(N = nk |Xk) for the same four settings depicted in (a). c shows the
MSE of the scale estimator with parameters γ = a = b = 1 for constant α = 6 and varying values
of w and μ

For α = 4, it becomes questionable whether posterior contraction will eventually
happen. The choice α = 3, in contrast, leads to a clear increase of the MSE with
increasing k, and posterior contraction evidently fails.

An interesting observation is the power law behavior ∼k−β of the MSE, which
is revealed by linear segments in the respective log-log plots. Figure1a shows that
the slope β is independent of the chosen estimator, and Fig. 1c suggests that it might
also be independent of w and μ. We can therefore consider β as a function β(α) of
α alone. A numerical approximation of α∗ is then given by the value of α where β

changes sign, i.e.,
β(α∗) = 0.

Since β(α) is strictly monotone, as a higher number k of observations will lead to
better estimates, such an α∗ is uniquely defined. Figure2 displays an approximation
of the graph of β(α) for values between α = 2 and α = 8. The respective slopes are
estimated by linear least squares regressions for k between 107 and 109. Even though
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Fig. 2 Relation between α

and β. For a given order α,
the corresponding value of β

was determined by
conducting simulations like
in Fig. 1a and fitting the
slope for k between 107 and
109. The graph shows that
the zero point α∗ of the
conjectured function β(α)

has to be in the vicinity of 4

our numerical results do not allow us to establish the precise functional relation
between α and β, it becomes clear that α∗ indeed has to be close to 4.

For comparison, we additionally conducted simulations that target other asymp-
totic regimes. First,wekeep pk constant and letnk again increasewith the sample size,
nk = w α

√
k. In this scenario, a properly rescaled binomial random variable converges

to a standard normal distribution. Our simulations confirm that estimation of nk is
easier in this case: the MSE in Fig. 3a decreases faster when α = 6 and pk = 0.05
is fixed compared to α = 6 and pk → 0. The rate of convergence β seems to be
independent of the specific choice of pk = p in this alternative setting, see Fig. 3b.
Thus, it makes sense to look at the smallest order α that still exhibits consistency for
fixed p. Figure3c reveals that the estimation of nk remains consistent over a larger
range of values for α in this setting, approximately as long as α > 2 (compared to
α > 4 in the original setting).

The last asymptotic regime we consider is the classical one for parameter estima-
tion, where nk = n and pk = p both stay constant as k grows to infinity. Figure3a
covers this regime in the last plot. It affirms that estimating n is easiest in this setting,
and we obtain the expected rate ∼k−1 for the convergence of the MSE towards zero.

4 Discussion

Theorem 1 (see [11]) shows posterior contraction under diverging parameters nk
and pk as long as (nk, pk) ∈ Mλ, which implies nk = O

(
6
√
k/ log(k)

)
. The aim of

our simulation study in Sect. 3 was to explore the minimal rate α
√
k for nk such that

posterior consistency remains valid. The difference in the permissible rates turns
out to be rather small, since our investigation suggests that α = 5 still allows for
consistent estimation, whereas α = 3 clearly leads to inconsistency. Figure2 shows
that the true boundary α∗ is likely close to 4, indicating that Theorem 1 cannot be
improved fundamentally.

Several aspects of our simulations and findings deserve further commentary. First,
Fig. 1c reveals that the slope β is not strongly affected by the parameters w and μ in
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(a) (b)

(c)

Fig. 3 Comparison of alternative asymptotic settings. a shows the MSE for three different asymp-
totic scenarios. In the first plot, nk and pk behave like in Fig. 1 with w = 16 and μ = 25. In the
second plot, pk is fixed to the value 0.05, while nk still increases with k (w = 16). The third plot
addresses the scenario where both nk and pk are held fixed. b shows the scenario of growing nk
(with α = 6 and w = 16) and different fixed values pk . The graph shows that the slope β in the
linear segment does not depend on pk . c shows the relation between β and α for the scenario with
fixed pk and growing nk . The values of the slopes β are determined as described in Fig. 2, with
adapted ranges for k

the settings that we tested. However, our numerical approach is not suitable to verify
questions like this with a high degree of confidence. For example, our numerics
become instable for values k > 1011.

Secondly, we additionally conducted simulations for other estimators than the
scale estimator (2) that are not shown in the article. For example, we tested various
versions of the Bayesian estimator given in [4]. While their performance for k ≤
103 varies quite much—similar to the different estimators shown in Fig. 1a—their
asymptotic performance is exactly the same as for the scale estimator. Notably, the
maximum likelihood estimator also exhibits the very same asymptotic behavior,
even though it performs poorly in the regime of smaller k. The sample maximum,
in contrast, shows a completely different behavior: the MSE diverges even for nk ∼
log(k). This illustrates the sharpness of the assumptions for Lemma 5 in [11], which
states that the sample maximum is consistent if nk log(nk) < c log(k) for c < 1.

Finally, we consistently observed a phase transition in all simulations when the
MSE drops below a value of about 0.1. There, the MSE changes its behavior and
begins to decreases faster than∼kβ . Indeed, it seems to decay exponentially from that
point on. We conjecture that this happens due to the discreteness of n, which implies
that theMSE cannot measure small deviations |n̂ − n| < 1 without dropping to zero.
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Rather, if the posterior contracts somuch thatwe estimaten correctlymost of the time,
the MSE essentially captures the probability that n̂ lies outside of the interval (n −
1, n + 1), and such probabilities usually decay exponentially fast. For applications,
the rate of the MSE before the exponential decay is often much more interesting.
One instructive example in this context is the sample maximum in the setting of
fixed n and p, for which we know from Sect. 1 that it converges exponentially fast.
However, as argued above, this only takes place when theMSE is already very small,
and simulations suggest that the rate of convergence is much slower if the MSE is
larger than 0.1. For instance, if p = 0.2 and n = 25, we find β ≈ −0.13. Thus, even
though the true asymptotic behavior of the sample maximum is exponential, the
practically meaningful rate of convergence is considerably worse than the rate of the
Bayesian estimators, where β = −1.

Acknowledgements Support of the DFG RTG 2088 (B4) and DFG CRC 755 (A6) is gratefully
acknowledged.
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Learning in the Absence of Training
Data—A Galactic Application

Cedric Spire and Dalia Chakrabarty

Abstract There are multiple real-world problems in which training data is unavail-
able, and still, the ambition is to learn values of the system parameters, at which
test data on an observable is realised, subsequent to the learning of the functional
relationship between these variables. We present a novel Bayesian method to deal
with such a problem, in which we learn the system function of a stationary dynamical
system, for which only test data on a vector-valued observable is available, though
the distribution of this observable is unknown. Thus, we are motivated to learn the
state space probability density function (pdf), where the state space vector is wholly
or partially observed. As there is no training data available for either this pdf or
the system function, we cannot learn their respective correlation structures. Instead,
we perform inference (using Metropolis-within-Gibbs), on the discretised forms of
the sought functions, where the pdf is constructed such that the unknown system
parameters are embedded within its support. The likelihood of the unknowns given
the available data is defined in terms of such a pdf. We make an application of this
methodology, to learn the density of all gravitating matter in a real galaxy.

Keywords Absence of training data · Bayesian learning · Dark Matter in
galaxies · Metropolis-within-Gibbs · State space density

1 Introduction

The study of rich correlation structures of high-dimensional random objects is often
invokedwhen learning the unknown functional relationship between an observed ran-
dom variable, and some other parameters that might inform on the properties of a sys-
tem. A problem in which a vector of system parameters (say ρ ∈ R ⊆ R

p) is related
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to an observed response variable (say Y ∈ Y ⊆ R
d ), is easily visualised by the

equation: Y = ξ(ρ), where ξ : R −→ Y . Given training data D = {(ρi , yi )}Ndata
i=1 ,

we aim to learn this unknownmapping ξ(·)within the paradigm of supervised learn-
ing. Here, “training data” comprises pairs of chosen design points ρi , and the output
yi that is generated at the chosen ρi ; i = 1, . . . , Ndata . Methods to perform super-
vised learning are extensively covered in the literature [12, 16–18]. Having learnt
ξ(·), one could use this model to predict the value ρ [5], at which the test datum ytest
on Y is realised—either in the conventional framework as ρ = ξ−1(Y)|Y= ytest , or as
the Bayesian equivalent. Such prediction is possible, only subsequent to the learning
of the functional relation between ρ and Y using training data D.

However, there exist physical systems forwhichonlymeasurements on the observ-
able Y are known, i.e. training data is not available. The disciplines affected by
the absence of training data are diverse. In engineering [20], anomaly detection is
entirely sample-specific. There are no training data that allow for the learning of
a functional relationship between anomaly occurrence (parametrised by type and
severity of anomaly), and conditions that the sample is subjected to. Yet, we need to
predict those anomalies. In finance, such anomalies in stock price trends are again
outside the domain of supervised learning, given that the relationship between the
market conditions and prices have not been reliably captured by any “models” yet. In
neuroscience [1], a series of neurons spike at different amplitudes, and for different
time widths, to cause a response (to a stimulus). We can measure the response’s
strength and the parameters of firing neurons, but do not know the relation between
these variables. Again, in petrophysics, the proportion of the different components
of a rock (e.g. water, hydrocarbons), affects Nuclear Magnetic Resonance (NMR)
measurements from the rock [7, 21]. However, this compositional signature cannot
be reliably estimated given such data, using available estimation techniques. Quan-
tification of petrological composition using the destructive testing of a rock is highly
exclusive and expensive, to allow for a sample that is large and diverse enough to
form a meaningful training data set that counters the rock-specific, latent factors
(geological influences) affecting the system property (composition). Equally, depen-
dence on such latent geological influence annuls the possibility of using numerical
simulations to generate NMR data, at chosen compositional values. Thus, generation
of training data is disallowed.

In this work, we capacitate learning of the (possibly high-dimensional) func-
tional relation between an observable, and a system parameter vector, in such a
challenging (absent training) data situation, given ignorance on the distribution of
the observable. This could then be undertaken as an exercise in supervised learning,
as long as the missing training data is generated, i.e. we are able to generate the
system parameter vector ρi at which the measured (test) datum, yi on Y , is recorded,
∀i ∈ {1, . . . , Ndata}. Our new method invokes a system property that helps link ρ

with Y , and this is possible in physical systems for which we have—at least partial—
observed information. To clarify, in the face of absent training data, we advance the
pursuit of the probability density function of the observable Y , on which data is
available, and employ this to learn the system parameter vector ρ. We undertake
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such an exercise in a Bayesian framework, in which we seek the posterior of the pdf
of the observables, and the system parameters, given the available data.

The sought parameter vector could inform on the behaviour, or structure, of the
system (e.g. it could be the vectorised version of the density function of all gravitat-
ing matter in a distant galaxy). The state space pdf establishes the link between this
unknown vector, and measurements available on the observable (that may comprise
complete or incomplete information on the state space variable).We consider dynam-
ical systems, such that the system at hand is governed by a kinetic equation [11]; we
treat the unknown system parameter vector as the stationary parameter in the model
of this dynamical system. In the novel Bayesian learning method that we introduce,
this parameter is embedded within the support of the state space pdf. We describe the
general model in Sect. 2, that is subsequently applied to an astronomical application
discussed in Sect. 3. Inference is discussed in Sect. 4, where inference is made on the
state space pdf and the sought system parameters, given the data that comprises mea-
surements of the observable, using Metropolis-within-Gibbs. Results are presented
in Sect. 5, and the paper is rounded up with a conclusive section (Sect. 6).

2 General Methodology

We model the system as a dynamical one, and define the state space variable as a
p-dimensional vector S ∈ S ⊆ R

p. Let the observable be Y ∈ Y ⊆ R
d; d < p,

such that only some (d) of the p different components of the state space vector S can
be observed. In light of this situation that is marked by incomplete information, we
need to review our earlier declaration of interest in the probability density function of
the full state space vector. Indeed, we aim to learn the pdf of the state space variable
S, and yet, have measured information on only Y , i.e. on only d of the p components
of S. The data D = { y(k)}Ndata

k=1 is then one set of measurements of the observable Y .
If the density of S is to be learnt given data on Y , such incompleteness in measured
information will have to be compensated for, by invoking independent information.
Such independent information comprises symmetry of S .

It follows that unobserved components of S will have to be integrated out of the
state space pdf, in order to compare against data that comprises measurements of
observables. This is equivalent to projecting the state space pdf onto the space Y
of observables, and therefore, we refer to the result as the projected state space pdf.
The likelihood of the model parameters, given the data, is simply the product of the
projected state space pdf over all the data points (assuming i id data points). But
until now, the unknown model parameters have not yet appeared in our expression of
the likelihood. The next step is then to find a way for embedding the sought system
parameters in the support of the projected state space pdf.

This can be achieved by assuming that our dynamical system is stationary, so that
the rate of change of the state space pdf is 0. This allows us to express the pdf as
dependent on the state space vector S, but only via such functions of (some, or all,
amongst) S1, . . . , Sp that are not changing with time; in fact, the converse of this
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statement is also true. This is a standard result, often referred to as Jeans Theorem [3,
14]. The model parameters that we seek, can be recast as related to such identified
time-independent functions of all/some state space coordinates of motion. Thus, by
expressing the state space pdf as a function of appropriate constants of motion, we
can embed system parameters into the support of the sought pdf.

As stated above, thispdfwill then need to be projected into the space of observables
Y , andwewill convolve such a projected pdfwith the error density, at every choice of
themodel parameters. Then assumingdata to be i id, the product of such a convolution
over the whole dataset will finally define our likelihood. Using this likelihood, along
with appropriate priors, we then define the posterior probability density of the model
parameters and the state space pdf, given the data D. Subsequently, we generate
posterior samples using Metropolis-within-Gibbs.

We recall that in absence of training data on a pair of random variables, we cannot
learn the correlation structure of the functional relationship between these variables.
In such situations, instead of the full function, we can only learn the vectorised
version of the sought function. In other words, the relevant interval of the domain
of the function is discretised into bins, and the value of the function is held constant
over any such bin; we can learn the functional value over this bin.

3 Astrophysics Application

Our astrophysics application is motivated to learn the contribution of dark matter, to
the density function of all gravitating mass in a distant galaxy. While information on
light-emitting matter is available, it is more challenging to model the effects of dark
matter, since, by definition, one cannot observe such matter (as it does not emit or
reflect light of any colour). However, the following physical phenomena confirm that
unobservable dark matter is contributing to the overall gravitational mass density of
the galaxy: distortion of the path of light by gravitationalmatter acting as gravitational
lenses; temperature distribution of hot gas that is emanating from a galaxy; motions
of stars or other galactic particles that are permitted despite the attractive gravitational
pull of the surrounding galactic matter. In fact, astrophysical theories suggest that
the proportion of dark matter in older galaxies (that are of interest to us here) is the
major contributor to the galactic mass, over the minor fraction of luminous matter
[13]. We can compute this proportion, by subtracting the density of luminous matter
from the overall density. It is then necessary to learn the gravitational mass density
of the whole system, in order to learn dark matter density.

We begin by considering the galaxy at hand to be a stationary dynamical sys-
tem, i.e. the distribution of the state space variable does not depend on time. Let
S = (X1, X2, X3, V1, V2, V3)

T ∈ S ⊆ R
6 define the state space variable of a galac-

tic particle, where X = (X1, X2, X3)
T is defined as its 3-dimensional location vec-

tor and V = (V1, V2, V3)
T as the 3-dimensional velocity vector. The data consists

of measurements of the one observable velocity coordinate V3, and two observ-
able spatial coordinates, X1, X2, of Ndata galactic particles (e.g. stars). That is, for
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each galactic particle, we have measurements of Y = (X1, X2, V3)
T ∈ Y ⊆ R

3. For
Ndata observations, our data is thus shaped as an Ndata × 3-dimensional matrix,
D = { y(k)}Ndata

k=1 .
The system function that we are interested in learning here, is the density function

ρ(X1, X2, X3) of the gravitational mass of all matter in the considered galaxy, where
we assume that this gravitational mass density ρ(·) is a function of the spatial coordi-
nates X only. This system function does indeed inform on the structure of the galactic
system—for it tells us about the distribution of matter in the galaxy; it also dictates
the behaviour of particles inside the galaxy, since the gravitational mass density is
deterministically known as a function of the gravitational potential Φ(X1, X2, X3)

via the Poisson equation (∇2Φ(X1, X2, X3) = −4πGρ(X1, X2, X3), whereG is the
known Universal Gravitational constant, and ∇2 is the Laplacian operator), which is
one of the fundamental equations of Physics [10]. The potential of a system, along
with the state space distribution, dictates system dynamics.

Here, we assume that the state space density of this dynamical system does not
vary with time, i.e. d f [X1(t), X2(t), X3(t), V1(t), V2(t), V3(t)]/dt = 0. This fol-
lows from the consideration that within a typical galaxy, collisions between galactic
particles are extremely rare [3]. We thus make the assumption of a collisionless sys-
tem evolving in time, according to the Collisionless Boltzmann Equation (CBE) [3,
6]. As motivated above, this allows us to express the state space pdf as dependent
on those functions of X1, X2, X3, V1, V2, V3 that remain invariant with time, along
any trajectory in the state spaceS ; such time-invariant constants of motion notably
include energy, momentum, etc. It is a standard result that the state space pdf has to
depend on the energy E(X1, X2, X3, ‖ V ‖) of a galactic particle [2, 8], where ‖ · ‖
represents the Euclidean norm of a vector. Here, energy is given partly by kinetic
energy that is proportional to ‖ V ‖2, and partly by potential energy, which by our
assumption, is independent of velocities. Secondly, given that the state space is 6-
dimensional, the number of constants of motion must be less than or equal to 5, to
allow the galactic particle at least 1 degree of freedom, i.e. not be fixed in state space
[8].

We ease our analysis by assuming that the state space pdf is a function of energy
only. This can be rendered equivalent to designating the symmetry of isotropy to the
state spaceS , where isotropy implies invariance to rotations, i.e. the state space pdf
is assumed to be such a function of X and V , that all orthogonal transformations of
X and V preserve the state space pdf. The simple way to achieve the equivalence
between an isotropic state space pdf and the lone dependence on energy E of the
pdf, is to ensure that the gravitational mass density, (and therefore the gravitational
potential), at all points at a given Euclidean distance from the galactic centre, be the
same, i.e. the distribution of gravitational mass abides by spherical symmetry such
thatρ(·) (and thereforeΦ(·)) depends on X1, X2, X3 via the Euclidean norm ‖ X ‖ of
the location vector X , of a particle. Then energy E is given as the sum of the ‖ V ‖2-
dependent kinetic energy, and the ‖ X ‖-dependent potential energy. Spherical mass
distribution is not a bad assumption in the central parts of “elliptical” galaxies that
are of interest for us, as these have a global triaxial geometry. To summarise, state
space pdf is written as f (E), and we embed ρ(·) into its support, by recalling that
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energy E is partly the gravitational potential energy Φ(·) that is deterministically
related to the gravitational mass density ρ(·), through Poisson equation.

As there is no training data available to learn the correlation structure of the
sought functions ρ(X) and f (E), we can only learn values of these functions at
specified points in their domains, i.e. learn their vectorised forms ρ and f respec-
tively, where ρ := (ρ1, ..., ρNX )

T , with ρi = ρ(x) for x ∈ [xi−1, xi ]; i = 1, . . . Nx .
The discretised form of f (E) is similarly defined, after partitioning the relevant
range of (non-positive) E-values (to indicate that the considered galactic particles
are bound to the galaxy by gravitational attraction), into NE number of E-bins. Then,
in terms of these vectorised versions of the state space pdf, likelihood of the unknown
parameters ρ1, . . . ρNX , f1, . . . , fNE , given data on the observable Y is:

�
(
ρ, f |{ y(k)}Ndata

k=1

)
=

Ndata∏
k=1

ν( y(k), ρ, f ), (1)

where ν(.) is the projected state space pdf.
We also require that ρ1 ≥ 0, . . . ρNX ≥ 0, f1 ≥ 0, . . . , fNE ≥ 0, and that ρi ≥

ρi+1, i = 1, . . . , NX − 1. The latter constraint is motivated by how the mass in a
gravitating system (such as a galaxy) is distributed; given that gravity is an attractive
force, the stronger pull on matter closer to the centre of the galaxy, implies that
gravitational mass density should not increase as we move away from the centre of
the system. These constraints are imposed via the inference that we employ.

4 Inference

Inference on the unknown parameters—that are the components of ρ and f—is
undertaken using Metropolis-within-Gibbs. In the first block update during any iter-
ation, the ρ1, . . . , ρNX parameters are updated, and subsequently, the f1, . . . , fNE

parameters are updated in the 2nd block, at the updated ρ-parameters, given the
data D that comprises Ndata measurements of the observed state space variables
X1, X2, V3 that are the components of the observable vector Y .

Imposition of the monotonicity constraint on the ρ parameters, to ensure ρi ≥
ρi+1, i = 1, . . . NX − 1, renders the inference interesting. We propose ρi from a
truncated normal proposal density that is left truncated at ρi+1, ∀i = 1, . . . , NX −
1, and propose ρNX from a truncated normal that is left truncated at 0. The mean
of the proposal density is the current value of the parameter and the variance is
experimentally chosen, as distinct for each i ∈ {1, . . . , NX }. Such a proposal density
helps to maintain the non-increasing nature of the ρi -parameters, with increasing i .
At the same time, non-negativity of these parameters is also maintained. We choose
arbitrary seeds for ρ1, . . . , ρNX , and using these as the means, a Gaussian prior is
imposed on each parameter. The variance of the prior density on ρi , is kept quite large
(∼106 times the chosen prior mean that is set equal to the seed), and demonstration
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of lack of sensitivity to the prior choices, as well as the seeds, is undertaken. A vague
Gaussian prior with a large variance approximates a flat prior, thus ensuring that
inference is not prior-driven. There is no correlation information on components of
the vectorised state space pdf, unlike in the case of the components of the vectorised
gravitational mass density function. We propose f j from a truncated normal (to
maintain non-negativity), where the mean of this proposal density is the current
value of the parameter and the variance is chosen by hand. Vague Gaussian priors
are imposed, while the same seed value is used ∀ j ∈ {1, . . . , NE }.

An important consideration in ourwork is the choice of NX and NE .We could have
treated these as unknowns and attempted learning these from the data; however, that
would imply that the number of unknowns will vary from one iteration to another,
and we desired to avoid such a complication, especially since the data strongly
suggests values of NX and NE . We choose NX by partitioning the range of Rp :=√
X2
1 + X2

2 values in the data D, such that, each resulting Rp-bin includes at least
one observed value of V3 in it, and at the same time, the number of Rp-bins is
maximised. Again, we use the available data D to compute the empirical values
of energy E , where an arbitrarily scaled histogram of the observed Rp is used to
mimic the vectorised gravitational mass density function, that is then employed to
compute the empirical estimate of the vectorised gravitational potential function, that
contributes to E values. We admit maximal E-bins over the range of the empirically
computed values of E , such that each such E-bin contains at least one datum in D.

5 Results

We have input data on location and velocities of 2 kinds of galactic particles (called
“Globular Clusters”, and “Planetary Nebulae”—respectively abbreviated as GC and
PNe), available for the real galaxy NGC4494. The GC data comprises 114 mea-
surements of Y = (X1, X2, V3)

T , for the GCs in NGC4494 [9]. Our second dataset
(PNe data), comprises 255 measurements of PNe [15]. Results obtained using the
PNe data and GC data are displayed in Fig. 1. Inconsistencies between gravitational
mass density parameters learnt from data on different types of particles can sug-
gest interesting dynamics, such as splitting of the galactic state space into multiple,
non-communicating sub-spaces [4], but for this galaxy, parameters learnt from the 2
datasets, concur within the learnt 95% Highest Probability Density credible regions.

6 Conclusions

An astronomical implication of our work is that ρ1 learnt from either dataset suggests
a very high gravitational mass density in the innermost Rp-bin (≈1.6kpc), implying
gravitational mass�109times mass of the Sun, enclosed within this innermost radial
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Fig. 1 Results from Metropolis-within-Gibbs showing the 95% Highest Probability Densities
(HPDs) for all the parameters to learn, for both PNe (top row) and GC (bottom row) data. Mode of
the marginal of each learnt parameter is shown as a red dot. Results on ρ are on the left, and on the
f parameters on the right; these are depicted for the PNe data in the top row, and for the GC data
in the bottom row

bin. This result alone does not contradict the suggestion that NGC4494 harbours a
central supermassive blackhole (SMBH) of mass ∼2.69 ± 2.04 × 107 solar masses
[19]. Very interestingly, our results indicate that for bothGCs and PNe,most particles
lie in the intermediate range of energy values; this is also borne by the shape of the
histogram of the empirically computed energy using either dataset, where this empir-
ical E value computation is discussed in the last paragraph of Sect. 4. However, owing
to its intense radially inward gravitational attraction, a central SMBH is expected to
render the potential energy (and therefore the total energy E) of the particles closer to
the galactic centre to be much higher negative values than those further away, while
also rendering the number (density) of particles to be sharply (and monotonically)
decreasing with radius away from the centre. This is expected to render the energy
distribution to be monotonically decreasing as we move towards more positive E
values—in contradiction to our noted non-monotonic trend. So while our results are
not in contradiction to the report of a very large value of mass enclosed within the
inner parts of NGC4494, interpretation of that mass as a SMBH does not follow from
our learning of the state space pdf.

Supervised learning of the gravitational mass density function, and state space
pdf—as well as that of the relation ξ(·) between the observable state space coordi-
nates, and the system function (or vector)—can be undertaken after generating the
training dataset relevant to the functional learning problem at hand. Applications in
petrophysics and finance are also planned.
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Multiplicative Latent Force Models

Daniel J. Tait and Bruce J. Worton

Abstract Bayesian modelling of dynamic systems must achieve a compromise
between providing a complete mechanistic specification of the process while retain-
ing the flexibility to handle those situations in which data is sparse relative to model
complexity, or a full specification is hard to motivate. Latent force models achieve
this dual aim by specifying a parsimonious linear evolution equation with an additive
latent Gaussian process (GP) forcing term. In this work we extend the latent force
framework to allow for multiplicative interactions between the GP and the latent
states leading to more control over the geometry of the trajectories. Unfortunately
inference is no longer straightforward and so we introduce an approximation based
on the method of successive approximations and examine its performance using a
simulation study.

Keywords Gaussian processes · Latent force models

1 Introduction

Modern statistical inference must often achieve a balance between an appeal to
the data driven paradigm whereby models are flexible enough to allow inference
to be chiefly driven by the observations, and on the other hand the mechanistic
approach whereby the structure of the data generating process is well specified up
to some, usually modest, set of random parameters. The conflict between these two
philosophies can be particularly pronounced for complex dynamic systems for which
a complete mechanistic description is often hard to motivate and instead we would
like a framework that allows for the specification of a, potentially over-simplistic,
representative evolution equationwhichwould enable themodeller to embed asmuch
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prior knowledge as they feel comfortable doing while at the same time ensuring the
model is sufficiently flexible to allow for any unspecified dynamics to be captured
during the inference process.

Such a compromise is provided by a class of hybrid models introduced in [1]
which they term latent force model (LFM). This is a combination of a simple mecha-
nistic model with added flexibility originating from a flexible Gaussian process (GP)
forcing term. The aim is to encode minimal dynamic systems properties into the
resulting state trajectories without necessarily having to provide a complete mecha-
nistic description of how the system evolves.

One of the appealing features of the LFM is the fact that the resulting trajectories
are given by Gaussian processes and therefore inference can proceed in a straight-
forward manner. However, for many classes of systems the Gaussian trajectories
are unlikely to be realistic; examples include time series of circular, directional or
tensor valued data. For all of these cases, if we have a suitably dense sample then the
Gaussian trajectory assumption may be acceptable, however when data are sparse
comparative to model complexity we would like to be able to consider models that
move beyond this assumption and allow a priori embedding of geometric constraints.

In this paper we briefly review the LFMbefore introducing our extension in Sect. 3
and then discuss how our model now allows for the embedding of strong geometric
constraints. Unfortunately it is no longer straightforward to solve for the trajectories
as some transformation of the latent random variables and therefore in Sect. 4 we
introduce an approximate solution method for this class of models based on the
method of successive approximations for the solution of certain integral equations.
We then demonstrate by way of a simulation study that our approximate model
performs well for cases which possess a solvable ground truth.

2 Latent Force Models

The LFM was initially proposed as a model of the transcriptional regulation of gene
activities in [3, 5], in subsequent developments the modelling philosophy shifted
from this mechanistic perspective to the hybrid setting in [1]. For a K -dimensional
state variable x(t) ∈ R

K the first order LFM is described by a system of ordinary
differential equations (ODE) in matrix-vector form as

dx(t)
dt

= −Dx(t) + b + Sg(t), (1)

where D is a K × K real-valued diagonal matrix, b is a real-valued K -vector and
g(t) is the RR-valued stochastic process with smooth independent GP components
gr (t), r = 1, . . . , R. In this work the kernel functions of the GP terms are chosen
so that the sample paths are almost surely smooth, allowing (1) to be interpreted
as an ODE rather than as a stochastic differential equation. The K × R rectangular
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sensitivity matrix S acts to distribute linear combinations of the independent latent
forces to each component of the evolution equation.

The model (1) gives only an implicit link between the latent random variables and
the observed trajectories, but to carry out inference wewould ideally like to represent
this connection as an explicit transformation. It turns out that for the model (1) with
constant coefficient matrix and additive inhomogeneous forcing term this is easily
done and an explicit solution is given by

x(t) = e−D(t−t0)x(t0) +
∫ t

t0

e−D(t−τ)dτ · b + L[g](t), (2)

where L[ f ](t) is the linear integral transformation acting on functions f : R → R
R

to produce a function L[ f ] : R → R
K given by

L[ f ](t) =
∫ t

t0

e−D(t−τ)S f (τ )dτ. (3)

The decomposition of the solution of the LFM (2)makes it clear that, for given values
of the initial condition x(t0) and the model parameters θ = (D,b,S), the trajectory is
given by a linear integral transformation of the smooth latent GPs, and it follows that
the trajectory and the latent force variables will have a joint Gaussian distribution.
This property enables a marginalisation over the latent GPs and so allows the LFM
to be viewed as a particular instance of a GP regression model. In this interpretation
the model parameters are to be regarded as kernel hyperparameters, and inference
for these variables may be done using standard techniques, see [6].

3 Multiplicative Latent Force Models

While from a computational point of view the GP regression framework of the LFM
is appealing we would like to move beyond the restriction of having Gaussian state
trajectories. We therefore introduce an extension of the LFM which will allow us to
represent non-Gaussian trajectories while at the same time keeping the same funda-
mental components: a linear ODEwith the time dependent behaviour of the evolution
equation coming from a set of independent smooth latent forces. In matrix/vector
form our model is given by

dx(t)
dt

= A(t)x(t), A(t) = A0 +
R∑

r=1

Ar · gr (t). (4)

The coefficient matrix A(t) will be a square matrix of dimension K × K formed by
taking linear combinations of a set of structure matrices {Ar }Rr=0 which we multiply
by scalar GPs. By linearity A(t) will be a Gaussian process in R

K×K although
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typically the choice of the set of structure matrices will be guided by geometric
considerations and in general the dimension of this space will be much less than
that of the ambient K 2 dimensional space. In the specification (4) the matrix valued
Gaussian process A(t) will interact multiplicatively with the state variable in the
evolution equation, rather than as an additive forcing term in (1), and so we refer to
this model as the multiplicative latent force model (MLFM).

Since the GP terms are smooth (4) has, almost surely, a unique pathwise solution
on compact intervals [0, T ]. While for the LFM it was possible to use (2) to perform
a marginalisation over the latent forces and so learn structural parameters indepen-
dently of the variables we cannot guarantee the existence of the marginal distribution
to (4). The existence of L p solutions to this problem are considered in [8] fromwhich
it may be possible to construct moment matching approximations. Because we can-
not perform this marginalisation we restrict ourselves to approximations constructed
around a dense realisation of the GP terms which, with increasingly fine partitions
of the interval, will approach the unique sample path solution.

The multiplicative interaction in (4) and the freedom to choose the support of the
coefficient matrix will allow us to embed strong geometric constraints on solutions
to ODEs of this form. In particular, by choosing the elements {Ar } from some Lie
algebra g corresponding to a Lie group G then the fundamental solution of (4) will
itself be a member of the group G [4], allowing dynamic models with trajectories
either within the group itself or formed by an action of this group on a vector space.

4 Method of Successive Approximations

In general non-autonomous linear ODEs do not possess a closed form solution and
therefore it is no longer straightforward to carry out inference for theMLFM;we lack
the explicit representation of the trajectories in terms of the latent random processes
which was possible for the LFM using the solution (2). To proceed we first note that
a pathwise solution to the model (4) on the interval [0, T ] is given by

x(t) = x(0) +
∫ t

0
A(τ )x(τ )dτ, 0 ≤ t ≤ T,

a solution to which can be obtained by starting from an initial approximation of the
trajectory, x0(t), and then repeatedly iterating the linear integral operator

xm+1(t) = x0(0) +
∫ t

0
A(τ )xm(τ ) d τ. (5)

This process is known as the method of successive approximations and is a classical
result in the existence and uniqueness theorems for the solutions of ODEs.

We introduce some probabilistic content into this approximation by placing a
mean zero Gaussian process prior on the initial state variable x0(t) independent of
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the latent force terms. Since (5) is a linear operator for known A(t) and xm(t) then
the marginal distribution of the (m + 1)th successive approximation conditional on
the process A(t) will be mean zero Gaussian with covariance given recursively by

Ẽ
[
xm+1(t)xm+1(t

′)�
] =

∫ t

t0

∫ t ′

t0

A(τ )Ẽ[xm(τ )xm(τ ′)�]A(τ ′)� d τ d τ ′, (6)

where Ẽ denotes expectation conditional on the stochastic process A(t) on [0, T ].
In practice, we will not be dealing with complete trajectories, but instead with the

process observed at a finite set of points t0 < · · · < tN , and so we replace the map
(5) by a numerical quadrature

x(t0) +
∫ ti

t0

A(τ )x(τ )dτ ≈ x(t0) +
Ni∑
j=1

A(τi j )x(τi j )wi j , i = 1, . . . , N , (7)

for a set of weights {wi j } which are determined by our choice of quadrature rule and
we have a set of nodes τi j labelled such that τi1 = ti−1 and τi Ni = ti . It follows that
methodswithmore than two nodes over a particular interval [ti , ti+1]must necessarily
augment the latent state vector. Increasing the number of nodes will cause the error
in (7) to decrease, we defer discussion of the finer points of this approximation, but
for practical purposes the important detail is that this error can be made arbitrarily
small because we are free to increase the resolution of the trajectories by treating this
as a missing data problem albeit with a corresponding computational cost. In terms
of a linear operator acting on the whole trajectory we replace the operator (5) with a
matrix operator K [g] acting on the discrete trajectories such that each row of K [g]
performs the quadrature (7), that is if x is a dense realisation of a continuous process
x(t) evaluated at the points {τi j } then

(K[g]x)i = x(t0) +
Ni∑
j=1

A(τi j )x(τi j )wi j , i = 1, . . . , N . (8)

For suitably dense realisations of the trajectory we can conclude that the majority
of the informational content in the linear map (5) is captured by applying the matrix
operator form of the integral operator (8) and therefore there will be minimal loss of
information if we replace the (Gaussian) correlated error term with an independent
additive noise term leading to a conditional distribution of the form

p(xm+1 | xm, g,�) = N (xm+1 | K [g]xm,�) , (9)

where� is the covariance of the independent noise termapproximating the quadrature
error in (7). A similar use of quadrature is proposed in [9] applied to the integral
operator (3) to allow for nonlinear transformation of the GP variables. No attempt
is made to proxy for the quadrature error and it effectively gets absorbed into the
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GP model. For our application the additive error may be viewed as a regularisation
term to prevent singularities in the covariance matrix. Heuristically in the limit with
� = 0 and M → ∞ the covariance matrix can be represented as the outer product
of the K eigenvectors of the discretised matrix operator K [g] with unit eigenvalues
so that the resulting covariance matrix is singular.

If we specify a Gaussian initial distribution p(x0) = N(x0 | 0, �0) then carry out
iterates of the map (7) up to some truncation order M we have an approximation to
the distribution of a finite sample of a complete trajectory of (4) conditioned on a
discrete realisation of the latent forces which is given by

p(xM | g,�) =
∫

· · ·
∫

p(xM , xM−1, . . . , x0 | g,�)dx0 · · · dxM−1

=
∫

· · ·
∫ M∏

m=1

p(xm | xm−1, g,�)p(x0)dx0 · · · dxM−1

= N(xM | 0, �M(g,�)), (10)

where the covariance matrix �M(g,�) is defined recursively by �0(g,�) = �0 and

�m(g,�) = K [g]�m−1(g,�)K [g]� + �, m = 1, . . . , M, (11)

and this model should then be viewed as a discretisation of the true marginal distri-
bution with moments (6).

It is now possible to specify a complete joint distribution p(x, g) of the latent state
and force variables by completing the likelihood term (10) with the prior on the latent
force variable. On inspection of (8) we see that the entries of K [g] will be linear
in the latent forces and so the entries of the covariance matrix (11) will be degree
2M polynomials in the latent forces and as such there is no analytical expression
for the posterior conditional density for orders greater than one. Despite this it is
straightforward to use sampling methods and gradient based approximations.

5 Simulation Study

Reasonably we would expect that by increasing the truncation order of the approxi-
mation introduced in the previous section we gain increasingly accurate approxima-
tions to the true conditional distribution and in this section we demonstrate that this
is indeed the case by considering an exactly solvable model.

We demonstrate our method on the Kubo oscillator [7] which can be expressed
by the ODE in R2 with a single latent force and evolution equation

[
ẋ(t)
ẏ(t)

]
=

[
0 −g(t)

g(t) 0

] [
x(t)
y(t)

]
, (12)
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which for x(t) = (x(t), y(t))� has solution given by

x(t) = R

[∫ t

0
g(τ )dτ

]
x(t0), (13)

where R[θ ] in (13) is the 2 × 2 matrix rotating a vector in R
2 by θ -radians

anticlockwise around the origin. It follows that given a set of data points Y =
(x0, x1, . . . , xN )with t0 < t1 < · · · < tN and zero measurement error that the values
of Gi := ∫ ti

ti−1
g(τ )dτ are constrained to satisfy xi = R[Gi ]xi−1, for i = 1, . . . , N

which defines the vector G = (G1, . . . ,GN )� up to translation of each compo-
nent by 2π , moreover since Var(Gi ) = O(|ti − ti−1|2) we can consider only the
component in [−π, π ] and approximate the true conditional distribution of g =
(g(t0), g(t1), . . . , g(tN ))� by the Gaussian distribution with density p(g | G = γ )

where γ ∈ [−π, π ]N with components satisfying xi = R[γi ]xi−1 for each i =
1, . . . , N .

While the distribution implied by the likelihood term (10) is not available in closed
form, we can investigate the qualitative properties of themethod introduced in Sect. 4
by considering the Laplace approximation. Using the Laplace approximation has the
benefit of allowing us to carry out the comparison with the ground truth distribution
using a proper metric on the space of distributions by considering the Wasserstein
distance between two multivariate Gaussians [2].

The method of successive approximations fixes a point and is therefore local in
character, as such we implement a simulation study that enables us to assess the
performance of our approximation as the total interval length increases. We consider
twomethods of varying the interval lengthT ; thefirst byfixing the sample size, N , and
then varying the spacing between samples, �t , and the second by fixing the sample
frequency and varying the total number of observations. For each combination of
sample size and frequencywe perform 100 simulations of the Kubo oscillator (12) on
the interval [0, T ] assuming a known radial basis function (RBF) kernel k(t, t ′;ψ) =
ψ0 exp{−(t − t ′)2/2ψ2

1 } with ψ = (1, 1)� for the latent force. We consider interval
lengths T ∈ {3, 6, 9} and sample frequencies�t ∈ {0.50, 0.75, 1.00}. This implies a
sample size of N = T/�t + 1 for each experiment andwe use Simpson’s quadrature
rule so that the latent state vector is augmented to size 2N + 1.

Our principal interest is in the impact of the truncation order, M , on the accuracy
of our approximation and so for each simulated experiment we fit the model with
orders M = 3, 5, 7, 10. The covariance of the initial approximation is formed by
placing independent GP priors on the first and second components with RBF kernels
k(t, t ′;φk) and the parameters φk , k = 1, 2 are optimised during the fitting process.
The regularisation matrix � is given by multiplying an appropriately sized identity
matrix by a small scale parameter 0.0001 and this value is kept fixed.

The results of the experiment are displayed in Table1. Along each rowwe observe
that across all sampling specifications increasing the order of approximation leads
to increasingly accurate approximations of the true distributions, and that this con-
clusion holds whether we vary the sample size or the sample frequency. Inspecting
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Table 1 Comparison of the successive approximations MLFM introduced in Sect. 4 with the true
distribution for the Kubo oscillator based on 100 simulations of the process on [0, T ] with N =
T/�t + 1 evenly spaced observations. Reported are the sample averages and standard errors of the
Wasserstein distance between the Laplace approximation and the true conditional distribution

T �t order = 3 order = 5 order = 7 order = 10

9 1.00 0.965 (0.477) 0.863 (0.573) 0.711 (0.672) 0.527 (0.632)

0.75 0.983 (0.315) 0.874 (0.407) 0.762 (0.448) 0.584 (0.415)

0.50 1.517 (0.556) 1.068 (0.450) 0.701 (0.227) 0.517 (0.225)

6 1.00 0.865 (0.606) 0.619 (0.503) 0.433 (0.475) 0.319 (0.412)

0.75 0.738 (0.392) 0.629 (0.463) 0.513 (0.426) 0.328 (0.325)

0.50 0.846 (0.256) 0.591 (0.194) 0.532 (0.234) 0.399 (0.192)

3 1.00 0.374 (0.311) 0.294 (0.384) 0.202 (0.256) 0.185 (0.211)

0.75 0.421 (0.440) 0.272 (0.440) 0.136 (0.217) 0.076 (0.064)

0.50 0.421 (0.190) 0.395 (0.289) 0.235 (0.132) 0.191 (0.051)

the columns we observe that for each order a decrease in the sampling interval T
leads to a general increase in accuracy of the approximation with some variations
with the sample size and frequency. The fact that within most blocks of fixed T and
M that the distances are of a similar magnitude strongly suggests it is the size of the
window T that is a larger determinant of the accuracy of the introduced approxima-
tion than the number of sample points or their frequency. In fact, we see that dense
samples can lead to a slower convergence of the approximation and this is particu-
larly pronounced for the row T = 9 and �t = 0.50 which does a very poor job of
approximating the true distribution at lower orders compared to the sparser samples,
but eventually outperforms these methods as the approximation order increases.

6 Discussion

In this paper we have introduced the MLFM, a hybrid model which enables the
embedding of prior geometric knowledge into statistical models of dynamic systems.
By using the method of successive approximations we were able to motivate a family
of truncated approximations to the joint distribution, and while the distribution is not
available in closed form it is still amenable to sampling and gradient based methods.
In future work we discuss variational methods formed by retaining the successive
approximations rather than performing the marginalisation (10) and exploiting the
interpretation of (9) as a linear Gaussian dynamical system in the truncation order.

The simulation study in Sect. 5 showed the method performs well over moderate
sample windows with only a few orders of approximation, but that as the length of
window over which a solution is sought increases the order required to achieve good
performance increases. It may therefore be of interest to replace a single, high order,
approximation with a collection of local methods of lower order. Combining these
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local models in a principled manner is the subject of ongoing work, nevertheless the
results of Sect. 5 show that the method introduced in this paper can perform well, as
well as being an important precursor to more involved methods.

Acknowledgements The authors would like to thank Dr. Durante and two anonymous referees for
their valuable comments and suggestions on an earlier version of this paper, which substantially
improved the content and clarity of the article. Daniel J. Tait is supported by an EPSRC studentship.

References

1. Alvarez, M., Luengo, D., Lawrence, N.D.: Latent force models. In: van Dyk, D., Welling, M.
(eds.) Proc. Mach. Learn. Res. 5, 9–16 (2009)

2. Dowson, D.C., Landau, B.V.: The Fréchet distance between multivariate normal distributions.
J. Multivar. Anal. 12, 450–455 (1982)

3. Gao, P., Honkela, A., Rattray, M., Lawrence, N.D.: Gaussian process modelling of latent chemi-
cal species: applications to inferring transcription factor activities. Bioinform. 24, i70–i75 (2008)

4. Iserles, A., Norsett, S.P.: On the solution of linear differential equations in Lie groups. Philos.
Trans. Roy. Soc. A, Math., Phys. and Eng. Sci. 357, 983–1019 (1999)

5. Lawrence, N.D., Sanguinetti, G., Rattray, M.: Modelling transcriptional regulation using Gaus-
sian processes. In: Schölkopf, B., Platt, J.C., Hofmann, T. (eds.) Adv. Neural Inf. Process. Syst.
19, 785–792 (2007)

6. Rasmussen, C.E.,Williams, C.K.I.: Gaussian Processes forMachine Learning.MIT Press, Cam-
bridge (2006)

7. Risken,H.: TheFokker-PlanckEquation:Methods of Solution andApplications. Springer,Berlin
(1989)

8. Strand, J.L.: Random ordinary differential equations. J. Differ. Equ. 7, 538–553 (1970)
9. Titsias M.K., Lawrence, N.D., Rattray, M.: Efficient sampling for Gaussian process inference

using control variables. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Adv. Neural
Inf. Process. Syst. 21, 1681–1688 (2009)



Computational Statistics



particleMDI: A Julia Package for the
Integrative Cluster Analysis of Multiple
Datasets

Nathan Cunningham, Jim E. Griffin, David L. Wild and Anthony Lee

Abstract Wepresent particleMDI, a Julia package for performing integrative cluster
analysis on multiple heterogeneous data sets, built within the framework of multi-
ple data integration (MDI). particleMDI updates cluster allocations using a particle
Gibbs approach which offers better mixing of the MCMC chain—but at greater
computational cost—than the original MDI algorithm. We outline approaches for
improving computational performance, finding the potential for greater than an order-
of-magnitude improvement.We demonstrate the capability of particleMDI to uncov-
ering the ground truth in simulated and real datasets. All files are available at https://
github.com/nathancunn/particleMDI.jl.

Keywords Bayesian inference · Cluster analysis · Computational statistics ·
Data integration · Particle Monte Carlo methods

1 Introduction

Cluster analysis is the task of inferring a latent group structure in data, such that
observations within groups are, in some sense, ‘closer’ to one another than to
observations in other groups. Standard methods, such as k-means, are not equipped
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for cases where the units of observation have data arising from multiple sources.
Integrating multiple data sources into a composite analysis is a key challenge in the
analysis of genomic data where multiple heterogeneous datasets can give different—
but complementary—views of the same underlying process. In this context, one may
perform cluster analysis to infer risk cohorts among groups of patients for whom we
have multiple biological data sets recorded. We introduce particleMDI, a package
developed in the statistical programming language Julia [2] for performing integra-
tive cluster analysis in this context. While many such approaches exist (see e.g. [7,
12, 13, 17]), particleMDI is built within the framework of multiple data integration
(MDI) [11].

MDI facilitates integrative cluster analysis by allowing for the borrowing of in-
formation between datasets of potentially different types. Observations arise from a
Dirichlet-multinomial allocation mixture model [9]—a finite approximation to the
Dirichlet process mixture model. To infer dependence between the cluster structure
of different datasets, Kirk et al. introduce a parameter, �, measuring the similarity
between pairs of datasets at the level of the cluster allocations. The inferred value
of, e.g., φk,l is used to inflate the probability of assigning observations in dataset k
to the clusters they are assigned to in dataset l.

Inference in MDI is performed via a Gibbs sampler, alternating between updating
cluster allocations and hyperparameters; full details are available in [11]. As con-
jugate priors are used in MDI, the cluster parameters can be analytically integrated
over and individual cluster allocations are updated while holding all other allocations
fixed [14]. A result of this one-at-a-time approach is that once MDI infers an alloca-
tion which is ‘good enough’, in some sense, it can be difficult to consider alternatives
unless they are similar to this current allocation.

2 particleMDI

particleMDI extends the original MDI algorithm, replacing the one-at-a-time ap-
proach to clustering with a conditional particle filter, which has demonstrated good
mixing properties even when the number of particles is relatively low [8]. This ap-
proach to cluster analysis (see [4, 5, 8]) infers a latent cluster allocation, ci,k , for an
observation, xi,k , given observations x1:i,k and allocations c1:(i−1),k , using a weighted
cloud of approximations, termed particles. The particle approximation of the Gibbs
sampler [1] uses a conditional sequential Monte Carlo (SMC) update, which uses a
single particle, sampled appropriately from the particle filter, to update the hyperpa-
rameters. The trajectory of this ‘reference particle’ is held fixed through a subsequent
pass of the conditional SMC update, thus guiding other particles towards relevant
regions of the state space.

We use the parameter � to share information across datasets by inflating the
weights of particles in which allocations agree across datasets, as detailed in Algo-
rithm1.
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2.1 Improving Computational Performance

particleMDI is much more computationally costly than the original MDI algorithm.
Fearnhead [5] discusses the inherent inefficiencies in particleMonteCarlo algorithms
as applied to clustering algorithms: resampling and the discrete nature of the state-
space mean it is likely some particles will be duplicates of others. Calculation of
mutation weights—the weights for assigning an observation to each cluster—
involves evaluating the posterior predictive of assigning an observation to each clus-
ter. This step is wholly deterministic meaning identical particles will have identical
mutation weights and, thus, there is no value in evaluating them more than once. To
tackle this, we identify duplicated particles via the following ID assignments

I D(m)
i+1 = I D(m)

i × (M × N ) + c(m)
i+1

where particle m assigns observation i + 1 to cluster c(m)
i+1, M is the total number of

particles, and N the maximum number of clusters.
It is also likely that where particles differ, they may share commonality, be it a

shared subset of clusters, or even a shared partition up to a permutation of cluster
labels.Again, thiswill involve redundant calculations evaluating posterior predictives
multiple times for the same clusters. We adapt our algorithm so that each particle
indexes into a global environment of clusters containing only a single copy of each
unique cluster.We now need only evaluate posterior predictives once for each unique
cluster and then combine these at the level of the particle to form themutationweights.

A separate layer of inefficiency arises in the sequential nature of SMC methods.
Evaluation of the posterior predictive of observation i conditional on the cluster
allocations of observations 1 : (i − 1) is uninformative for very small values of i .
To address this, we augment the particle Gibbs sampler such that we only update
a predetermined number of cluster labels, holding �nρ� labels fixed for 0 < ρ < 1.
As the observations are exchangeable, we permute the observation indices accord-
ing to a uniform permutation function σ and hold the first �nρ� cluster labels fixed
from a previous pass of the conditional particle filter. The idea of updating blocks of
sequential observations in the particle Gibbs sampler has previously been discussed
[1] and a similar idea has been explored in the context of cluster analysis [3]. The
permutation function, σ(·), is updated at every Gibbs iteration, ordering observation
such that σ(c)i,k is the allocation for observation σ(x)i,k and σ(x)i,l corresponds
to the same observational unit in a different data set. Therefore, where the standard
particle Gibbs algorithm samples alternately from p(θ |x1:n, c1:n) and pθ (c1:n|x1:n),
our approach samples from p(θ |x1:n, c1:n) and pθ (σ (c)�nρ�:n|σ(x)1:n, σ (c)1:�nρ�).
(θ here refers to the hyperparameters of the model, not the cluster parameters indi-
cated in Fig. 1—as we use conjugate priors, the cluster parameters can be integrated
out.) As well as giving the algorithm a ‘warm start’, this also avoids introducing a
dependency between the inferred allocations and the order data are observed. Other
approaches, such as that in [8], resolve this issue by instead updating all previous
allocations during the resampling step. In a worst-case scenario—where resampling
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Algorithm 1 particleMDI
Inputs:

π , �, cluster allocations c∗
1:n,1:K , a random permutation over observation

indices, σ(·), and thresholds α and ρ to control resampling and the portion of
data conditioned-on, respectively

Initialize:
Set particle weights ξ (1), . . . , ξ (M) = 1
Set σ(c)(1)1:n,1:K = σ(c)∗1:n,1:k , σ(c)(2:M)

1:�nρ�,1:K = σ(c)∗1:�nρ�,1:K
for i = �nρ�, . . . , n do � (iterate over remaining observations)

for m = 1, . . . , M do � (iterate over particles)
for k = 1, . . . , K do � (iterate over datasets)

if m �= 1 then � (particle 1 is the reference)
Sample σ(c)(m)

i,k � (assign observation σ(x)i,k to a cluster)

q(σ (c)(m)
i,k = a) ∝ f (σ (x)i,k |σ(c)(m)

i,k = a) × πa,k
end if

end for

ξ (m) = ξ (m) ×
K∏

k=1

N∑

a=1

πa,k f (σ (x)i,k |σ(c)(m)
i,k = a) ×

K−1∏

k=1

K∏

l=k+1

(1 + φk,l1(σ (c)(m)
i,k =

σ(c)(m)
i,l )) � (Update particle weights accounting for agreement across datasets)

end for
Calculate effective sample size (ESS) = (

∑M
m=1 ξ (m))2

∑M
m=1 ξ (m)2

.

if ESS < αM then
resample particles according to ξ (m)

∑M
m=1 ξ (m)

and reset particle weights ξ (1), . . . , ξ (M) = 1

end if
end for
Select a final cluster allocation according to ξ (m)

∑M
m=1 ξ (m)

and use to update π ,� and use as c∗
1:n,1:K

and return to start.

is performed at every step—this would increase the complexity of the algorithm from
O(n) to O(n2), assuming the mutation weights can be computed in constant time.
The choice of ρ warrants careful consideration as it imposes a trade-off between
computation time and the mixing of the algorithm. However, where computation
time is not a concern, lower values of ρ are not strictly to be preferred; setting ρ too
low can result in too few conditioned-on observations to overcome the dependency
in the observation order. We explore the impact of this in Sect. 4.

3 Using the particleMDI Package

The pmdi() function provides the primary functionality of the particleMDI algo-
rithm. It takes the following inputs:

• dataFiles a vector of matrices containing the data to be clustered
• dataTypes a vector of types. For convenience, Gaussian and categorical data
types are included and can be specified asparticleMDI.GaussianCluster
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Fig. 1 A graphical model representation of MDI and particleMDI in a three dataset case (K = 3).
xi,k denotes observation i in dataset k arising from cluster ci,k with parameters θci ,k , which are given

a priorG(0)
k . Cluster a in dataset k has prior allocationweightπa,k which is given a Dirichlet (α/N )

prior. Theφi, j values allow the allocations in data set i to inform those in data set j . (Figure recreated
from [11])

and particleMDI.CategoricalCluster respectively. However, this can
easily be extended to any other data type for which a posterior predictive can be
specified, as detailed in Sect. 3.1

• N the maximum number of clusters to be inferred in each dataset
• particles an integer indicating the number of particles to use in the analysis
• ρ a value in (0, 1) indicating the proportion of the data whose allocations are held
fixed at each iteration of the Gibbs sampler, as outlined in Sect. 2.1

• iter an integer specifying the number of iterations of the Gibbs sampler
• outputFile a string specifying the path of a .csv file in which to store the output

pmdi() outputs a .csv file, where each row contains the mass parameters, the phi
values, and the allocations c1:n,1:K . A user can assess this output file via some plotting
functions built in the Julia library Gadfly [10]. In order to visualise the cluster alloca-
tions frommultiple iterations of theGibbs sampler, aswell as acrossmultiple datasets,
generate_psm() and consensus_map(), can be used to visualise the poste-
rior similaritymatrices [13, 16] as heatmaps. That is, for each of K datasets, an n × n
heatmap is constructed where element (i, j) reflects the frequency that observations
i and j are assigned to the same cluster, as seen in Fig. 2. plot_phimatrix(),
plot_phichain(), and plot_nclust() can each be useful tools for moni-
toring convergence of the Gibbs sampler, returning a heatmap of mean � values, a
line graph of inferred � values, and the number of clusters inferred respectively.
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3.1 Extending particleMDI for User-Defined Data Types

One of the strengths of the original MDI method is its ability to cluster a variety of
different data types within a single analysis. While we provide the functionality for
Gaussian and categorical data types, we take advantage of Julia’s multiple dispatch
capabilities to allow users to extend particleMDI to perform cluster analysis on
other data types. As Julia code is just-in-time compiled, these user-specified data
types do not suffer any penalty in terms of computation time. We illustrate this
capability with a trivial example of assigning observations to clusters based on their
sign.

We first create a cluster struct, a structure containing a single cluster and sufficient
statistics for calculating the posterior predictive. In this case, we just need indicators
of whether any observations belong to the cluster, as well as their sign.

mutable struct SignCluster

n::Int64 # No. of observations in cluster

isneg::Bool # Positive/negative flag

SignCluster(dataFile) = new(0, false)

end

We then define calc_logprob, a function which returns the log posterior pre-
dictive of an observation, obs, given the observations assigned to cluster cl. It is
important to specify cl as being of type SignCluster.

function particleMDI.calc_logprob(cl::SignCluster, obs)

if cl.n == 0

return log(0.5)

else

return ((obs[1] <= 0) == cl.isneg) ? 0 : - 10

end

end

Finally, the function cluster_add! updates a cluster, cl, when an observation,
obs, is added to it.

function particleMDI.cluster_add!(cl::SignCluster, obs)

cl.n += 1

cl.isneg = (obs[1] < 0)

end

We can now cluster univariate data into positive and negative clusters by passing
SignCluster as a data type in pmdi().
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4 Application

We demonstrate particleMDI on three simulated Gaussian datasets, with cluster
means μ·,1 = [−0.5, 0, 0.75], μ·,2 = [0, 0.75,−0.5], μ·,3 = [0.75,−0.5, 0], where
μi, j indicates the mean of observations belonging to cluster i in dataset j . We choose
balanced clusters for clarity of illustrating results; analysis on other data suggests this
does not unduly impact the results. All observations are drawn independently with
standard deviation σ = 1 meaning we expect significant overlap across all clusters.
Each data set has 150 observations with 16 dimensions, with 25% being noise. The
analyses are run for 1000 iterations, with M = 32, and ρ = 0.25. The results, in
Fig. 2, show that, by considering all three datasets simultaneously, particleMDI is
able to recover the true underlying structure of the data.

Figure3 shows the empirical effect on computation time as a function of observa-
tions, dimensions, and the number of particles used. Where the relevant parameters
are not altered, particleMDI is run for n = 1000, M = 32, clustering two Gaussian
and one categorical dataset with n = 150 observations with 16 dimensions. In all
cases 25% of dimensions are drawn as random noise. All analyses were performed
in Julia 0.6.4 on a Windows laptop with a 2.80GHz Intel Core i7-7700HQ CPU and
32.0GB RAM. We contrast the computation times between two implementations of
the algorithm: one which benefits from the performance improvements obtained by
exploiting the redundancy of the particle filter as outlined in Sect. 2.1; and one with-
out these improvements. Aswe are only avoiding performing redundant calculations,
these improvements do not come at the cost of any decrease in accuracy. Figure3
shows we can improve computation time by more than an order of magnitude.

In order to assess the impact of ρ, we examine cluster accuracy from analysis on
Fisher’s iris dataset [6] for varying levels of ρ. We assess cluster accuracy by means
of the adjusted Rand index [15]—a measure of agreement between two partitions
adjusted for agreement by chance, a value of 1 indicating perfect agreement, and
0 indicating agreement no better than chance. As expected, very large ρ values
lead to slow mixing of the Gibbs sampler, leading to many iterations before the

Fig. 2 Heatmap representation of the posterior similarity matrices as output from
generate_psm() and consensus_map for three Gaussian datasets (K1, K2, K3) with dif-
ferent degrees of overlap in clusters across data sets. The brightness of point (i, j) in each reflects
the empirical probability that observations i and j are clustered together in each dataset, with these
values averaged across datasets to give the value in ‘overall’
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Fig. 3 Computation time as a function of the number of particles, the number of dimensions, and
the number of observations respectively. The results show that reducing inefficient calculations can
contribute to greater than an order of magnitude improvement in computation time

Fig. 4 The effect on cluster
accuracy as a function of ρ

from analyses on Fisher’s iris
dataset. Analyses were
performed 10× and adjusted
Rand index values per
iteration were averaged
across runs. The results
suggest extreme values can
negatively influence the
output while there is little
observable difference
between thresholds in the
range 0.25–0.5

algorithm converges. Interestingly though, very small values of ρ appear to be more
problematic, with values of ρ = 0.05 and ρ = 0.1 struggling to get close to the
ground truth. As discussed in Sect. 2.1 when ρ is very small, the conditional particle
filter has little information onwhich to base allocations for observations it encounters
at the beginning, inducing a strong dependence on the order of the observations
(Fig. 4).
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5 Discussion

In this paper, we have presented particleMDI, a Julia package implementing a particle
Monte Carlo approach to the integrative cluster analysis of multiple data sets. We
have demonstrated the capability of the package to uncover the ground truth cluster
structure in a group of synthetic datasets of different data types. In Sect. 3.1 we
showed how this package can perform cluster analysis on any data type for which a
posterior predictive distribution can be specified.We outlinedmethods for improving
computational performance of our algorithm in Sect. 2.1 and demonstrated that these
approaches can achieve performance improvements of an order ofmagnitude ormore
in terms of computation time. While the context of our work is in integrative cluster
analyses, these approaches are also applicable to the single-data context of cluster
analysis using particle Monte Carlo methods.

All files relevant to this package are available on Github. (https://github.com/
nathancunn/particleMDI.jl)
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Approaches Toward the Bayesian
Estimation of the Stochastic Volatility
Model with Leverage

Darjus Hosszejni and Gregor Kastner

Abstract The sampling efficiency of MCMC methods in Bayesian inference for
stochastic volatility (SV) models is known to highly depend on the actual param-
eter values, and the effectiveness of samplers based on different parameterizations
varies significantly.We derive novel algorithms for the centered and the non-centered
parameterizations of the practically highly relevant SV model with leverage, where
the return process and innovations of the volatility process are allowed to corre-
late. Moreover, based on the idea of ancillarity-sufficiency interweaving (ASIS), we
combine the resulting samplers in order to guarantee stable sampling efficiency irre-
spective of the baseline parameterization. We carry out an extensive comparison to
already existing sampling methods for this model using simulated as well as real
world data.

Keywords Ancillarity-sufficiency interweaving strategy (ASIS) · Auxiliary
mixture sampling · Bayesian inference · Markov chain Monte Carlo (MCMC) ·
State-space model

1 Introduction and Model Specification

Stochastic volatility (SV) models [19] are an increasingly popular choice for model-
ing financial return data. The basic SVmodel assumes an autoregressive structure for
the log-volatility, and it is able to match the empirically observable low serial auto-
correlation in the return series but high serial autocorrelation in the squared return
series. The SV model with leverage (SVL) [6] extends the SV model by allow-
ing the return series and the increment of the log-volatility series to correlate. This
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correlation models a real world phenomenon, the asymmetric relationship between
returns and their volatility.

SVL, in its centered parameterization (C), is typically formulated as

yt = exp(ht/2)εt ,

ht+1 = μ + ϕ(ht − μ) + σηt ,

cor(εt , ηt ) = ρ,

(1)

for t = 1, . . . , T , where εt , ηt ∼ i.i.d.N (0, 1). The only observed variable is y =
(y1, . . . , yT )′, usually some de-meaned financial return series. An AR(1) structure
is assumed for the latent log variance h = (h1, . . . , hT )′, with mean μ, persistence
ϕ, and increment volatility σ . The leverage effect is captured by ρ, which is zero in
the basic SV model by assumption.

An equivalent specification, called the non-centered parameterization (NC), can
be obtained by substituting h̃t = (ht − μ)/σ into (1), thereby moving μ and σ from
the state equation to the observation equation. The resulting formulation is given by

yt = exp((μ + σ h̃t )/2)εt ,

h̃t+1 = ϕh̃t + ηt .
(2)

Common priors are chosen from the literature: (ϕ + 1)/2 ∼ Beta(aϕ, bϕ), (ρ +
1)/2 ∼ Beta(aρ, bρ),σ 2 ∼ Gamma(ασ , βσ ),μ ∼ N (μμ, σ 2

μ),h1 ∼ N (μ, σ 2/(1 −
ϕ2)) [5, 9, 15].

While the SV model is accessible through the R [18] package stochvol [8],
it does not cater for the leverage effect, and, to the best of our knowledge, there is
no implementation of SVL that works out-of-the-box in a free, open source envi-
ronment.1 Our goal is to extend the package with an easy-to-use MCMC sampler
that performs reasonably well on a diverse variety of data sets. To this end, we com-
pare various sampling algorithms through a large simulation study from a practical
viewpoint. In doing so, it is important to note that stochvol is often used as a
subsampler for hierarchical models such as (vector auto) regressions or multivariate
(factor) SV models. Consequently, in order to use the extended package in a sim-
ilar manner, adaptive algorithms are not preferred, as their adaptation state can be
cumbersome to implement within a larger MCMC scheme.

2 Estimation Strategies

The state-of-the-art solution [15] for estimating h is based on linearizing the obser-
vation equation in (2), and employing a ten-component bivariate Gaussian mixture
approximation to the joint law of (log ε2t , ηt ) separately for each time point, thus

1Editorial note: as of February 1, 2019, stochvol handles leverage.
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introducing a new array of latent variables st ∈ {1, . . . , 10}, t = 1, . . . , T , encoding
the mixture components. The resulting conditionally Gaussian state space can be
written as

y∗
t = μ + σ h̃t + m(1)

st + v(1)
st wt ,

h̃t+1 = ϕh̃t +
√
1 − ρ2zt + dtρ

(
m(2)

st + v(2)
st wt

)
,

(3)

where y∗
t = log(y2t ), dt = sgn(yt ), wt , zt ∼ i.i.d.N (0, 1) for t = 1, . . . , T , and

m(i)
j , v(i)

j are model-independent constants for i = 1, 2, and j = 1, . . . , 10, defined
in [15].

Let ϑ = (ϕ, ρ, σ, μ)′, and s = (s1, . . . , sT )′. The sampling algorithm of the aux-
iliary model (AUX) consists of repeating the steps below.

• Step 1: Draw s | y,h,ϑ using inverse transform sampling with the posterior prob-
abilities calculated as in Sect. 2.3.2 of [15].

• Step 2: Draw ϕ, ρ, σ | y, s via an independent Metropolis-Hastings (MH) step
utilizing the Laplace approximation of the collapsed distribution of ϕ, ρ, σ | y, s
as the proposal. The calculation of the acceptance ratio includes Kalman filter
evaluations, numerical optimization, and numerical differentiation.

• Step 3: Draw μ | y, s, ϕ, ρ, σ , and then h | y, s,ϑ , using Gaussian simulation
smoothing [2, 4].

At least three issues arise with this method. First, due to the involvement of Kalman
filter evaluations and the numerical optimization part in Step 2, the execution time of
the sampler is significantly worse than the runtime of methods with more naïve pro-
posals, e.g. MH algorithms based on sampling from the full conditional distribution.
According to our measurements, Step 2 requires around 80% of the total runtime.
Second, for extreme data sets, the sampler might get stuck in a state and be unable
to accept a new state for many iterations. Third, and finally, the numerical optimiza-
tion step is sensitive to its configuration, possibly returning a negative semi-definite
Hessian matrix at the found mode.

Hence, for parameter sampling, we replace Step 2 by a random-walk MH
(RWMH) method which estimates (1) or (2) without resorting to the auxiliary mix-
ture approximation. For the latent vector, we again use the highly efficient Step 3 of
AUX as a proposal, followed by an MH acceptance-rejection step to correct for the
difference between models (1) and (3).

As already shown for SV [9, 13], samplers based on different parameterizations
can have substantially different sampling efficiencies on the same data set due to the
altered dependence structure. To exploit this phenomenon, the ancillarity-sufficiency
interweaving strategy (ASIS) [21] can utilize samplers of both C and NC, and thus
ASIS may be able to deliver a markedly higher effective sample size than samplers
based on a single parameterization only.

The RWMH sampling algorithm estimates SVL by repeating the steps below.

• Step 1: Draw h | y,ϑ . A candidate h∗ is proposed using the AUX sampler by
drawing s | y,h,ϑ and then drawing h | y, s,ϑ as explained in Steps 1 and 3 of
algorithm AUX. Subsequently, h∗ is accepted with probability
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min

{
1,

pC (h∗ | y,ϑ)

pC (h | y,ϑ)

pA (h | y,ϑ)

pA (h∗ | y,ϑ)

}
,

where pC and pA denote the corresponding posteriors resulting from specifications
(1) and (3), respectively.

• Step 2: Draw ϑ | y,h. In order to avoid a possibly problematic truncation of
the proposal distribution, the parameter vector ϑ is transformed from (−1, 1) ×
(−1, 1) × (0,∞) × R to R

4 by applying the transformation x �→ 0.5 log((1 +
x)/(1 − x)) to ϕ and ρ, and by taking the logarithm of σ 2. Then, in the resulting
unbounded space, a simple four-dimensional Gaussian random walk is proposed.
Its innovation covariance matrix elements are fixed at 0.1 on the diagonal and zero
elsewhere.

• If ASIS is applied, then, after Step 2, h̃ = (h̃1, . . . , h̃T )′ is calculated using the
new values of σ and μ, followed by a new draw from ϑ | y, h̃. Finally, in order to
move back to the original parameterization, h is recalculated from h̃ and the new
values of σ and μ.

ASIS is a natural extension to the RWMH samplers for the centered and the non-
centered parameterizations. However, in the case of AUX, resampling in a different
parameterization is detrimental to sampling efficiency for two reasons. First, inStep2,
the parameters ϕ, ρ and σ are drawn from a collapsed distribution that is independent
of h. Consequently, ASIS provides only negligible gains in sampling efficiency.
Second, if ASIS were applied to AUX, the computationally most expensive parts of
Step 2 would be repeated, thereby increasing the execution time by around 80%.

3 Simulation Study

In order to assess the efficiency of our estimation algorithms for the parameter vec-
tor ϑ , we simulate data using SVL from an extensive grid of data generating pro-
cesses (DGPs). The parameters ϕtrue, ρtrue, σtrue vary on a {0, 0.5, 0.9, 0.95, 0.99} ×
{−0.6,−0.3, 0, 0.3, 0.6} × {0.1, 0.3, 0.5} grid. For the sake of readability, μtrue is
set to −9 in all cases, resulting in 75 distinct parameter settings. This choice cov-
ers previously investigated ranges [7, 9]. After the burn-in, respectively, adapta-
tion phase, 50 000 MCMC draws are obtained from the posterior distribution. We
repeat this exercise for ten data sets of length 300, and ten data sets of length 3000,
for eight sampling algorithms: AUX, Stan-C, Stan-N, JAGS-C, JAGS-N, RWMH-
C, RWMH-N, and RWMH-ASISx5, where C and N stand for the centered and,
respectively, non-centered parameterization, while ASISx5 denotes the algorithm
repeating the two steps of ASIS five times after each draw of h, which in general
we found to be superior to executing the two ASIS steps only once. Note, that,
although they do not fit our needs due to their adaptation phase, we include Stan [1]
and JAGS [16] as benchmarks, and all reported results are based on the chain after
adaptation has stopped.We fix the priors throughout the simulation study to aϕ = 20,
bϕ = 1.5, aρ = 3, bρ = 6, ασ = 0.5, βσ = 0.5,μμ = −10, and σ 2

μ = 100. The prior
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Table 1 Typical execution times (in min) for 50 000 draws after the burn-in when T = 3000. The
displayed values correspond to the first and the ninth deciles of all wall clock times. The choice of
the parameterization affects the execution time when JAGS or Stan is used and thus in these cases
runtimes are shown separately for C and NC

Stan-C Stan-N JAGS-C JAGS-N RWMH RWMH-ASISx5 AUX

90–642 59–441 22–31 50–106 6–21 14–29 44–86

hyperparameters of ϕ, σ 2, and μ are chosen from previous studies [9, 14], and the
slightly informative prior on ρ is chosen to improve the estimation process of Stan-C
and of AUX in the extremes of the parameter grid. However, results not reported here
due to space constraints indicate that when T = 300, the posterior distribution of ρ

is only mildly affected by this choice compared to a uniform prior, whereas when
T = 3000 the differences are barely noticeable.

The resulting 12 000 MCMC chains were computed on a cluster of computers
consisting of 400 Intel E5 2.3 GHz cores running R version 3.4.3. The Stan and
the JAGS models were estimated using rstan [1] version 2.17.3 and rjags [16]
version 4-6. The RWMH samplers and AUXwere based on our computationally effi-
cient Rcpp [3] implementation. The typical runtime of the samplers is summarized
in Table1. Inefficiency factors and effective sample sizes were calculated using the
coda [17] package, data analysis and visualization was done with the help of the
tidyverse [20] package.

We assess the statistical efficiency of the different competitors through their inef-
ficiency factor (IF), an estimator for the integrated autocorrelation time τ , given by
τ = 1 + 2

∑∞
t=1 ρauto(t), where ρauto(t) denotes the autocorrelation function at lag t .

For an MCMC sample S, the IFs reported here are calculated as IFS = nS/ESSS [9],
where nS is the size of S, and ESSS stands for the effective sample size of S, the size
of a serially uncorrelated sample having the same Monte Carlo standard error as S.
A good sampler has low serial correlation, thus the aim is to provide samples with
low IF, or, in other words, high ESS. In practice, computational speed is comparably
important to computational efficiency. Hence, the final assessment is based on the
effective sampling rate (ESR), defined as the ESS divided by the execution time.
We note that incorporating runtime in the assessment of algorithms may be prob-
lematic due to inconsistent implementations [11]; however, as one of our objectives
is a software package, we consider the computational speed an essential part of our
study.

3.1 Collapsed Versus Full Conditional Sampling

AUX employs a well-known technique for improving the statistical efficiency of
MCMC simulations by using a collapsed distribution for sampling ϕ, ρ, and σ .
This means that some variables are marginalized out in order to decrease the serial
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Fig. 1 Autocorrelation functions of the posterior draws for μ, ϕ, ρ, and σ , using RWMH-ASISx5
and AUX, for an illustrative example where ϕtrue = 0.95, ρtrue = −0.3, σtrue = 0.3, and T = 300.
The line type indicates the speed of the Monte Carlo simulation: the number of solid lines equals
the average number of samples drawn in 0.1s

dependence in the chain [12]. ASIS, on the other hand, takes advantage of being
able to reorganize the dependence. Which technique is superior in practice largely
depends on computational aspects. Figure1 exemplifies the problem by displaying
the autocorrelograms of the outputs of RWMH-ASISx5 andAUX, for the parameters
μ, ϕ, ρ, and σ , based on a selected data set. The figure illustrates the execution time
as well: in both columns, the number of solid lines indicates the average number of
samples drawn in 0.1s. Thus, in each facet, the height of the rightmost solid line
visualizes the ESR for the given parameter and sampler. Although the autocorre-
lation functions of AUX decay faster than the ones of RWMH-ASISx5, the latter
counterbalances its disadvantages by its speed. Note, however, that different DGPs
tend to produce qualitatively different pictures, making the choice between AUX and
RWMH-ASISx5 non-trivial.

3.2 Efficiency Overview

The minimal ESR is the minimum taken over the ESRs of ϕ, ρ, σ , and μ, and, thus,
it measures the speed of discovering the joint posterior p(ϑ | y). In order to provide
an overview, Fig. 2 displays the minimal ESRs for each sampler and strategy, and for
all DGPs with ρtrue = −0.3 and T = 3000. Taking into account that Stan and JAGS
are general-purpose probabilistic modeling frameworks, they perform surprisingly
well compared toAUX and our RWMH implementations which have been developed
specifically for themodel at hand. However, the absence of a best performingmethod
is eye-catching. In particular, the choice between AUX and RWMH is noticeably
difficult.
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Fig. 2 Minimal effective sampling rates of all the examined samplers and strategies, for the whole
range of ϕtrue and σtrue values, while, for the sake of readability, ρtrue is set to −0.3, and T to 3000.
In each facet, there are 10 data points plotted for each sampler and strategy, corresponding to the
10 repetitions of the simulation exercise. A small horizontal noise has been applied to the position
of the points to increase their visibility

In terms of variability, note that the ESRs of AUX range from below 0.001 to
above 1, while the ESRs of RWMH-ASISx5 fall between 0.01 and 0.1. This renders
the latter more stable by around two orders of magnitude.

4 Application to Financial Data Sets

We apply the eight estimation methods to seven univariate time series of daily
financial log-returns covering four asset types and two economic periods. The first
time interval is a booming, pre-crisis period starting from 2005-01-01 and ending
on 2007-12-31, including a total of 872 business days. The second interval is a
more recent, more volatile period between 2015-01-01 and 2018-06-30, including
1014 business days. The series under consideration are the Bitcoin price in USD
(ticker: BTCUSD=X), hereafter BTC, the German DAX index (ticker: ˆGDAXI),
the EUR/USD exchange rate (ticker: EURUSD=X), hereafter EUR, and a large
German company, the Merck KG’s equity (ticker: MRK.DE), hereafter MRK. The
data is provided by Yahoo! Finance.
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Fig. 3 Minimal effective sampling rate for seven data sets. Facets correspond to time series, where
“2005–07” and “2015–18” denote the first and the second time period, respectively. In each facet,
each point corresponds to a certain sampler and strategy

Figure3 summarizes the results of the exercise, carried out under the same prior
specification as in Sect. 3. It is interesting to note that Stan generally shows high
ESRs with the only exception of BTC where RWMH-ASISx5 excels. Focusing on
the comparison of RWMH and AUX it stands out that without interweaving, AUX
is generally to be preferred, whereas RWMH-ASISx5 tends to outperform AUX in
all scenarios but one. The overall picture is similar to Fig. 2, as there is no single
algorithm that dominates on all data sets.

5 Conclusion

The paper at hand contributes to the literature on MCMC sampling algorithms by
investigating the efficiency of several competing methods for the stochastic volatil-
ity model with leverage. We derived an RWMH sampler and improved it through
ASIS and an efficient latent state sampler. Moreover, we carried out a computational
experiment to compare our novel method to the state-of-the-art approach, an auxil-
iary mixture sampler, and to Stan and JAGS implementations as benchmarks. Based
on our results, we conclude that employing our boosted naïve estimator for the latent
space stabilizes the effective sampling rate of the algorithm by avoiding numerical
optimization and differentiation.

Current research is directed towards further financial applications including factor
models [10], and further extending the R package stochvol.
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Efficient Metropolis-Hastings Sampling
for Nonlinear Mixed Effects Models

Belhal Karimi and Marc Lavielle

Abstract The ability to generate samples of the random effects from their condi-
tional distributions is fundamental for inference in mixed effects models. Random
walk Metropolis is widely used to conduct such sampling, but such a method can
converge slowly for medium dimension problems, or when the joint structure of
the distributions to sample is complex. We propose a Metropolis–Hastings (MH)
algorithm based on a multidimensional Gaussian proposal that takes into account
the joint conditional distribution of the random effects and does not require any tun-
ing, in contrast with more sophisticated samplers such as the Metropolis Adjusted
Langevin Algorithm or the No-U-Turn Sampler that involve costly tuning runs or
intensive computation. Indeed, this distribution is automatically obtained thanks to
a Laplace approximation of the original model. We show that such approximation is
equivalent to linearizing the model in the case of continuous data. Numerical exper-
iments based on real data highlight the very good performances of the proposed
method for continuous data model.

Keywords Nonlinear · MCMC · Metropolis · Mixed effects · Sampling

1 Introduction

Mixed effects models are reference models when the inter-individual variability
that can exist within the same population is considered (see [9] and the references
therein). Given a population of individuals, the probability distribution of the series
of observations for each individual depends on a vector of individual parameters.
For complex priors on these individual parameters or models, Monte Carlo methods
must be used to approximate the conditional distribution of the individual parameters
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given the observations.Most often, direct sampling from this conditional distribution
is impossible and it is necessary to have resort to a Markov chain Monte Carlo
(MCMC) procedure.

Designing a fast mixing sampler is of utmost importance for several tasks in
the complex process of model building. The most common MCMC method for
nonlinear mixed effects models is the random walk Metropolis algorithm [9, 14,
15]. Despite its simplicity, it has been successfully used in many classical examples
of pharmacometry, when the number of random effects is not too large. Nevertheless,
maintaining an optimal acceptance rate (advocated in [15]) most often implies very
small moves and therefore a very large number of iterations in medium and high
dimensions since no information of the geometry of the target distribution is used.

To make better use of this geometry and in order to explore the space faster, the
Metropolis-adjusted Langevin algorithm (MALA) uses evaluations of the gradient
of the target density for proposing new states which are accepted or rejected using
the Metropolis-Hastings algorithm [16, 18]. The No-U-Turn Sampler (NUTS) is an
extension of the Hamiltonian Monte Carlo [11] that allows an automatic and optimal
selection of some of the settings required by the algorithm, [3]. Nevertheless, these
methods may be difficult to use in practice, and are computationally involved, in
particular when the structural model is a complex ODE based model.

The algorithm we propose is a Metropolis-Hastings algorithm, but for which the
proposal is a good approximation of the target distribution. For general data model
(i.e. categorical, count or time-to-event data models or continuous data models), the
Laplace approximation of the incomplete pdf p(yi ) leads to a Gaussian approxima-
tion of the conditional distribution p(ψi |yi ).

In the special case of continuous data, linearisation of the model leads, by def-
inition, to a Gaussian linear model for which the conditional distribution of the
individual parameter ψi given the data yi is a multidimensional normal distribution
that can be computed and we fall back on the results of [8].

2 Mixed Effect Models

2.1 Population Approach and Hierarchical Models

Wewill adopt a population approach in the sequel, where we consider N individuals
and ni observations for individual i . The set of observed data is y = (yi , 1 ≤ i ≤ N )

where yi = (yi j , 1 ≤ j ≤ ni ) are the observations for individual i . For the sake of
clarity, we assume that each observation yi j takes its values in some subset of R.
The distribution of the ni−vector of observations yi depends on a vector of indi-
vidual parameters ψi that takes its values in a subset of Rp. We assume that the
pairs (yi , ψi ) are mutually independent and consider a parametric framework: the
joint distribution of (yi , ψi ) is denoted by p(yi , ψi ; θ), where θ is the vector of fixed
parameters of the model. A natural decomposition of this joint distribution writes
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p(yi , ψi ; θ) = p(yi |ψi ; θ)p(ψi ; θ), where p(yi |ψi ; θ) is the conditional distribu-
tion of the observations, given the individual parameters, and where p(ψi ; θ) is the
so-called population distribution used to describe the distribution of the individual
parameters within the population. A particular case of this general framework con-
sists in describing each individual parametersψi as a typical valueψpop, and a vector
of individual random effects ηi : ψi = ψpop + ηi . In the sequel, we will assume a
multivariate Gaussian distribution for the random effects: ηi ∼i.i.d. N (0,�). Several
extensions of this model are straightforward, considering for instance transformation
of the normal distribution, or adding individual covariates in the model.

2.2 Continuous Data Models

A regression model is used to express the link between continuous observations and
individual parameters:

yi j = f (ti j , ψi ) + εi j , (1)

where yi j is the j-th observation for individual i measured at time ti j , εi j is the residual
error, f is the structuralmodel assumed to be a twice differentiable function ofψi .We
start by assuming that the residual errors are independent and normally distributed
with zero-mean and a constant variance σ 2. Let ti = (ti j , 1 ≤ ni ) be the vector of
observation times for individual i . Then, the model for the observations rewrites
yi |ψi ∼ N ( fi (ψi ), σ

2Idni×ni ) , where fi (ψi ) = ( f (ti,1, ψi ), . . . , f (ti,ni , ψi )). If
we assume that ψi ∼i.i.d. N (ψpop,�), then the parameters of the model are θ =
(ψpop,�, σ 2).

3 Sampling from Conditional Distributions

The conditional distribution p(ψi |yi ; θ) plays a crucial role in most methods used
for inference in nonlinear mixed effects models.

One of the main task to perform is to compute the maximum likelihood (ML)
estimate of θ , θ̂ML = argmax

θ∈�
L(θ, y), where L(θ, y) � logp(y; θ). The stochastic

approximation version of EM [7] is an iterative procedure for ML estimation that
requires to generate one or several realisations of this conditional distribution at each
iteration of the algorithm.

Metropolis-Hasting algorithm is a powerful MCMC procedure widely used for
sampling from a complex distribution [4]. To simplify the notations, we remove the
dependency on θ . For a given individual i , the MH algorithm, to sample from the
conditional distribution p(ψi |yi ), is described in Algorithm 1.
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Algorithm 1Metropolis-Hastings algorithm

Initialization: Initialize the chain sampling ψ
(0)
i from some initial distribution ξi .

Iteration k: given the current state of the chain ψ
(k−1)
i :

1. Sample a candidate ψc
i from a proposal distribution qi ( · |ψ(k−1)

i ).
2. Compute the MH ratio:

α(ψ
(k−1)
i , ψc

i ) = p(ψc
i |yi )

p(ψ
(k−1)
i |yi )

qi (ψ
(k−1)
i |ψc

i )

qi (ψc
i |ψ(k−1)

i )
. (2)

3. Set ψ(k)
i = ψc

i with probability min(1, α(ψc
i , ψ

(k−1)
i ) (otherwise, keep ψ

(k)
i = ψ

(k−1)
i ).

Current implementations of the MCMC algorithm, to which we will compare
our new method, in Monolix [5], saemix (R package) [6], nlmefitsa (Matlab) and
NONMEM[2]mainly use the same combination of proposals. The first proposal is an
independent Metropolis-Hasting algorithmwhich consists in sampling the candidate
state directly from the marginal distribution of the individual parameter ψi . The
other proposals are component-wise and block-wise random walk procedures [10]
that update different components of ψi using univariate and multivariate Gaussian
proposal distributions. Nevertheless, those proposals fail to take into account the
nonlinear dependence structure of the individual parameters. A way to alleviate
these problems is to use a proposal distribution derived from a discretised Langevin
diffusion whose drift term is the gradient of the logarithm of the target density
leading to the Metropolis Adjusted Langevin Algorithm (MALA) [16, 18]. The
MALA proposal is given by:

ψc
i ∼ N (ψ

(k)
i − γ∇ψi logp(ψ

(k)
i |yi ), 2γ ) , (3)

where γ is a positive stepsize. These methods still do not take into consideration
the multidimensional structure of the individual parameters. Recent works include
efforts in that direction, such as the Anisotropic MALA for which the covariance
matrix of the proposal depends on the gradient of the target measure [1]. The MALA
algorithm is a special instance of the HybridMonte Carlo (HMC), introduced in [11];
see [4] and the references therein, and consists in augmenting the state space with
an auxiliary variable p, known as the velocity in Hamiltonian dynamics.

All those methods aim at finding the proposal q that accelerates the convergence
of the chain. Unfortunately they are computationally involved and can be difficult to
implement (stepsizes and numerical derivatives need to be tuned and implemented).

We see in the next section how to define a multivariate Gaussian proposal for both
continuous and noncontinuous data models, that is easy to implement and that takes
into account the multidimensional structure of the individual parameters in order to
accelerate the MCMC procedure.
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4 A Multivariate Gaussian Proposal

For a given parameter value θ , the MAP estimate, for individual i , of ψi is the one
that maximises the conditional distribution p(ψi |yi , θ):

ψ̂i = argmax
ψi

p(ψi |yi , θ) = argmax
ψi

p(yi |ψi , θ)p(ψi , θ)

4.1 General Data Models

For both continuous and noncontinuous data models, the goal is to find a simple
proposal, a multivariate Gaussian distribution in our case, that approximates the
target distribution p(ψi |yi ). In our context, we can write the marginal pdf p(yi ) that
we aim to approximate as p(yi ) = ∫

elogp(yi ,ψi )dψi . Then, the Taylor expansion of
log(p(yi , ψi ) around the MAP ψ̂i (that verifies by definition ∇ logp(yi , ψ̂i ) = 0)
yields the Laplace approximation of −2 log(p(yi )) as follows:

−2 logp(yi ) ≈ −p log 2π − 2 logp(yi , ψ̂i ) + log
(∣
∣
∣−∇2 logp(yi , ψ̂i )

∣
∣
∣
)

.

We thus obtain the following approximation of logp(ψ̂i |yi ):

logp(ψ̂i |yi ) ≈ − p

2
log 2π − 1

2
log

(∣
∣
∣−∇2 logp(yi , ψ̂i )

∣
∣
∣
)

,

which is precisely the log-pdf of a multivariate Gaussian distribution with mean ψ̂i

and variance-covariance −∇2 logp(yi , ψ̂i )
−1, evaluated at ψ̂i .

Proposition 1 The Laplace approximation of the conditional distribution ψi |yi is a
multivariate Gaussian distribution with mean ψ̂i and variance-covariance

i = −∇2 logp(yi , ψ̂i )
−1 =

(
−∇2 logp(yi |ψ̂i ) + �−1

)−1
.

We shall now see another method to derive a Gaussian proposal distribution in
the specific case of continuous data models.

4.2 Nonlinear Continuous Data Models

When the model is described by (1), the approximation of the target distribution can
be done twofold: either by using the Laplace approximation, as explained above, or
by linearizing the structural model fi for any individual i of the population. Once the
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MAP estimate ψ̂i has been computed, using an optimisation procedure, the method
is based on the linearisation of the structural model f around ψ̂i :

fi (ψi ) ≈ fi (ψ̂i ) + J fi (ψ̂i )
(ψi − ψ̂i ) , (4)

where J fi (ψ̂i )
is the Jacobianmatrix of the vector fi (ψ̂i ). Defining zi � yi − fi (ψ̂i ) +

J fi (ψ̂i )
ψ̂i yields a linear model zi = J fi (ψ̂i )

ψi + εi which tractable conditional distri-
bution can be used for approximating p(ψi |yi , θ):

Proposition 2 Under this linear model, the conditional distributionψi |yi is a Gaus-
sian distribution with mean μi and variance-covariance i where

μi = ψ̂i and i =
(
J′
fi (ψ̂i )

J fi (ψ̂i )

σ 2
+ �−1

)−1

. (5)

We can note that linearizing the structural model is equivalent to using the Laplace
approximation with the expected information matrix. Indeed:

Eyi |ψ̂i

(
−∇2 logp(yi |ψ̂i )

)
=

J′
fi (ψ̂i )

J fi (ψ̂i )

σ 2
. (6)

We then use this normal distribution as a proposal in Algorithm1 for model (1).

5 A Pharmacokinetic Example

5.1 Data and Model

32 healthy volunteers received a 1.5mg/kg single oral dose of warfarin, an anticoagu-
lant normally used in the prevention of thrombosis [12], for whowemeasurewarfarin
plasmatic concentration at different times.Wewill consider a one-compartment phar-
macokinetics (PK)model for oral administration, assumingfirst-order absorption and
linear elimination processes:

f (t, ka, V, k) = D ka

V (ka − k)
(e−ka t − e−k t ) , (7)

where ka is the absorption rate constant, V the volume of distribution, k the elimina-
tion rate constant, and D the dose administered. Here, ka, V and k are PK parameters
that can change from one individual to another. Then, let ψi = (kai , Vi , ki ) be the
vector of individual PK parameters for individual i lognormally distributed. We will
assume in this example that the residual errors are independent and normally dis-
tributedwithmean 0 and variance σ 2.We can use the proposal given by Proposition 2
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and based on a linearisation of the structural model f proposed in (7). For themethod
to be easily extended to any structural model, the gradient is calculated by automatic
differentiation using the R package ‘Madness’ [13].

5.2 MCMC Convergence Diagnostic

We will consider one of the 32 individuals for this study and fix θ to some arbitrary
value, close to theMaximumLikelihood (ML) estimate obtainedwith SAEM(saemix
R package [6]): kapop = 1, Vpop = 8, kpop = 0.01, ωka = 0.5, ωV = 0.2, ωk = 0.3
andσ 2 = 0.5. First, we compare our our nlme-IMH,which is aMHsampler using our
new proposal, with theRWM, theMALA,which proposal, at iteration k, is defined by
ψc
i ∼ N (ψ

(k)
i − γk∇ logπ(ψ

(k)
i ), 2γk). The stepsize (γ = 10−2) is constant and is

tuned such that the optimal acceptance rate of 0.57 is reached [15]. 20 000 iterations
are run for each algorithm.Figure1highlights quantiles stabilisation using theMALA
similar to ourmethod for all orders and dimensions. TheNUTS, implemented in rstan
(R Package [17]), is fast and steady and presents similar, or even better convergence
behaviors for some quantiles and dimension, than our method (see Fig. 1).

Then, we produce 100 independent runs of the RWM, the IMH using our pro-
posal distribution (called the nlme-IMH algorithm), the MALA and the NUTS for
500 iterations. The boxplots of the samples drawn at a given iteration threshold are
presented Fig. 2 against the ground truth (calculated running the NUTS for 100 000
iterations) for the parameter ka.

Fig. 1 Modelling of the warfarin PK data: convergence of the empirical quantiles of order 0.1, 0.5
and 0.9 of p(ψi |yi ; θ) for a single individual. Our newMH algorithm is in red and dotted, the RWM
is in black and solid, the MALA is in blue and dashed and the NUTS is in green and dashed
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Fig. 2 Modelling of the warfarin PK data: Boxplots, over 100 parallel runs, for the RWM, the nlme-
IMH, the MALA and the NUTS algorithm. The ground truth median, 0.25 and 0.75 percentiles are
plotted as a dashed purple line and its maximum and minimum as a dashed grey line

For the three numbers of iteration considered in Fig. 2, the median of the nlme-
IMH and NUTS samples are closer to the ground truth. Figure 2 also highlights
that all those methods succeed in sampling from the whole distribution after 500
iterations. Similar comments can be made for the other parameters.

We decided to conduct a comparison between those sampling methods just in
terms of number of iterations (one iteration is one transition of the Markov Chain).
We acknowledge that the transition cost is not the same for each of those algorithms,
though, our nmle-IMH algorithm, except the initialisation step that requires a MAP
and a Jacobian computation, has the same iteration cost as RWM. The call to the
structural model f being very costly in real applications (when the model is the
solution of a complex ODE for instance), the MALA and the NUTS, computing its
first order derivatives at each transition, are thus far computationally involved.

Since computational costs per transition are hard to accurately define for each
sampling algorithm and since runtime depends on the actual implementation of those
methods, comparisons are based on the number of iterations of the chain here.

6 Conclusion and Discussion

We presented in this article an independent Metropolis-Hastings procedure for sam-
pling random effects from their conditional distributions in nonlinear mixed effects
models. The numerical experiments that we have conducted show that the proposed
sampler converges to the target distribution as fast as state-of-the-art samplers. This
good practical behaviour is partly explained by the fact that the conditional mode of
the random effects in the linearised model coincides with the conditional mode of
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the random effects in the original model. Initial experiments embedding this fast and
easy-to-implement IMH algorithm within the SAEM algorithm [7], for Maximum
Likelihood Estimation, indicate a faster convergence behavior.
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Comparison Between Suitable Priors
for Additive Bayesian Networks

Gilles Kratzer, Reinhard Furrer and Marta Pittavino

Abstract Additive Bayesian networks (ABN) are types of graphical models that
extend the usual Bayesian-generalised linear model to multiple dependent variables
through the factorisation of the joint probability distribution of the underlying vari-
ables. When fitting an ABN model, the choice of the prior for the parameters is of
crucial importance. If an inadequate prior—like a not sufficiently informative one—
is used, data separation and data sparsity may lead to issues in the model selection
process. In this work we present a simulation study to compare two weakly infor-
mative priors with a strongly informative one. For the weakly informative prior,
we use a zero mean Gaussian prior with a large variance, currently implemented in
the R package abn. The candidate prior belongs to the Student’s t-distribution. It is
specifically designed for logistic regressions. Finally, the strongly informative prior
is Gaussian with a mean equal to the true parameter value and a small variance. We
compare the impact of these priors on the accuracy of the learned additive Bayesian
network as function of different parameters. We create a simulation study to illus-
trate Lindley’s paradox based on the prior choice. We then conclude by highlighting
the good performance of the informative Student’s t-prior and the limited impact of
Lindley’s paradox. Finally, suggestions for further developments are provided.
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1 Introduction to ABN

Additive Bayesian network (ABN) models are types of graphical models that extend
the usual generalised regression framework to multiple dependent variables through
the representation of the joint probability distribution. ABNs are a special type of
Bayesian network (BN)model in that each node in the graph comprises a generalised
linear model (GLM). This property is used to compute additively the global score of
the structure. All types of BN models consist of two reciprocally dependent parts:
a qualitative one (the structure) and a quantitative one (the model parameters). BN
models are statistical models that derive a directed acyclic graph (DAG) from empir-
ical data, describing the dependency structure of the random variables. The DAG is
the graphical representation of the joint probability distribution of all random vari-
ables represented by the data. The model parameters stem from the local probability
distribution of all the variables in the network.

In the last few decades, BN modelling has been widely used in biomedical sci-
ence and in systems biology to analyse multi-dimensional data [3, 4, 12, 13, 25].
Recently, ABN modelling approaches have been successfully applied to the field of
veterinary epidemiology [10, 24, 28]. A very appealing feature of ABN is its abil-
ity to generalise standard regression methodology. A general introduction to BN and
ABNmodelling in veterinary epidemiology is provided by [18]. Further applications
of BN to veterinary studies were described by [29]. Graphical modelling techniques
based on ABN used to analyse epidemiological data were used by [17, 19, 20],
resulting in several publications.

The paper is structured as follows. Relevant technical details of ABN models are
presented in Sect. 2. Section3 explains the issue of data separation and Lindley’s
paradox and highlights the importance of appropriate prior choice. Section4 reports
the results of a simulation study underpinning the necessity of careful prior selection
with respect to data separation and Lindley’s paradox. We conclude the article in
Sect. 5 with future research directions.

The main original contribution of this paper is to compare the impact of different
priors on the fitting performance ofABNmodels using synthetic datasets in a realistic
epidemiological setting. The underlying idea is to render the ABN approach more
robust in practice when using an adequate prior. This is of high importance, as a
typical systems epidemiology dataset has a relatively small sample size. Our findings
show that none of the currently proposed alternative priors are fully satisfactory and
further studies need to be conducted.

2 Additive Bayesian Networks in a Nutshell

A BN model B for a set of random variables X = {X1, . . . , Xn} consists of:
– A DAG structure S = (V ,E), where V is a finite set of nodes and E is a finite
set of directed edges between the nodes. A DAG is acyclic; hence, the edges in
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E do not form directed cycles. A random variable X j corresponds to each node
j ∈ V = {1, . . . , n} in the graph. We do not distinguish between a variable X j and
the corresponding node j .

– A node k is said to be a parent of a node j if the edge set E contains an edge
from k to j . A set of parents for a node j is denoted by Pa j . Pj indicates the total
number of parents for a node j , i.e., dim(Pa j ) = Pj ≥ 0 and Pj = 0 for orphan
nodes.

– A set of local probability distributions for all variables in the network is encoded
by θB. Each node j , with parent set Pa j , is parametrised by a local probability
distribution: P(X j | Pa j ).

We denote a BN model B by the pair B = (S, θB), representing the DAG structure
S and the model parametrization θB, respectively.

Edges represent bothmarginal and conditional dependencies. Themain role of the
network structure is to express the conditional independence relationships among the
variables in the model through graphical separation, thus specifying the factorisation
of the global probability distribution:

P(X) =
n∏

j=1

P(X j | Pa j ). (1)

The left panel of Fig. 1 shows a simple BN example for four nodes.
A general BN has an arbitrary distribution for each of the factors in (1), whereas

an ABN defines each of these factors through a GLM. For example, assuming a
discrete distribution for node 3 of Fig. 1, using classical notation for the exponential
family parametrisation [22] its probability mass function writes

P(X3 = x | X1 = x1, X2 = x2) = exp
(
η(θ3)T (x) − A(θ3)

)
H(x), (2)

where the functions η, T , A, H may be node-dependent (we have omitted the indices
to simplify the notation) and where θ3 incorporates the configuration of the parents’
node

η(θ3) = β3,0 + β3,1x1 + β3,2x2. (3)

For nodes with continuous distributions or with different number of parents, (2) and
(3) can be adapted accordingly.

Using only binary variables, i.e., X j ∈ {0, 1}, simplifies the previous equations.
More specifically, each node equation (2) collapses to θ j and represents 2Pj nonzero
probabilities. In (2) we use the logit link function, resulting in classical logistic
regression models for all nodes.

In the Bayesian framework, the priors are placed upon the parameters β j,k , j =
1, . . . , n and k = 0, . . . , Pj .
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Fig. 1 Left: A four node Bayesian network with structureS = (V, E), where V = {1, . . . , 4}, E =
{(1, 3), (2, 3), (3, 4)}, e.g., Pa1 = Pa2 = ∅, Pa3 = {1, 2} and Pa4 = {3}. Right: ABN parametri-
sation for binary nodes based on the logit link function. Note that the probabilities θ3 and θ4 depend
on the configuration of the parents

3 Potential Limitation When Fitting ABN Models

From an applied perspective when fitting ABN models, we need to be aware of two
possible issues: data separation and Lindley’s paradox. The former is linked to the
data and the latter is inherently linked to the fitting procedure. An adequate prior
could potentially control both of their impacts on the fitted structure.

3.1 Data Separation

The data separation arises when a linear combination of predictors perfectly predicts
the outcome. This is surprisingly common in applied logistic regression. Data sepa-
ration induces estimation problems for the entire model, not only for the parameters
directly involved.

Due to the large number of models necessary to evaluate (for each node a GLM
for each parent configuration), data separation is a serious concern when modelling
discrete data with anABNmodel. The separation occurs when the dataset is too small
to observe events with low probabilities. Therefore, the smaller the sample size, the
higher the probability of not observing given instances which have a low probability.
The issue is intensified with increasing complexity of the model. A popular solution
is to remove predictors until the design matrix becomes fully ranked. However,
this often leads to the deletion of the strongest predictors, which is not desirable,
especially in the context of ABN [30]. Alternatively, the natural “Bayesian” solution
is to use a prior that will drive the posterior whenever data separation arises. Multiple
prior distributions havebeenproposed to tackle this issue.Anotable one is the Jeffreys
prior [5] which is, however, hard to interpret as prior information. Indeed, the Jeffreys
prior is not parametrised on the scale of the parameter. Moreover, when applied to
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sparse data the prior may lead to poor numerical results. As a result, dedicated priors
have been developed which are weakly informative enough to be used in a general
context and which can still drive the posterior if separation arises [8]. They have been
designed to produce stable and regularised estimates. These priors are based on the
Student’s t-distribution. This paper compares the effect of the currently implemented
prior in the abn R package, which is non-informative with the weakly informative
prior promoted by [8].

3.2 Lindley’s Paradox

A common approach to fitting an ABN model is using a score-based method. A
popular choice is to take a score that is decomposable, i.e., each node of the network
has a score contribution which is additive. The score of the total network is the
sum of each individual atomic network. Typically a cache of scores is pre-computed
and an optimisation algorithm is applied to select the structure that contains all
nodes and maximises the score, i.e., choosing a global structure. The cache-building
essentially implies fitting all possible combinations of the random variables. Even
for very limited numbers of random variables, approximations are required to render
the computation tractable.

Under the viewpoint of building a global structure based on the nodes’ individual
models, ABN can be viewed as a model selection technique. It is known that when
a weakly informative prior is used, Bayesian model selection will asymptotically
always prefer the simpler model, regardless of the data. This is called Lindley’s
paradox [21]. Using aweakly informative prior for the parameters leads to reasonable
parameter estimates compared to a pure maximum likelihood estimation for a given
network. But the main objective of ABN analysis is performing structural inference,
which is precisely negatively affected by weakly informative priors. So, Lindley’s
paradox is potentially amassive threat for an ABN analysis. Indeed, the quality of the
inferred structure relies on the paradigm that the score should be representative (as a
proxy) of the ability of a given structure to fit the data. If a systematic asymptotic error
is made regarding the scoring of the atomic structures, then the final model selected
will tend to be too simple compared to an ABN selection using frequentist computed
scores. Controlling the final complexity of the model through the adequate choice
of the parameter prior is a major challenge when using Bayesian model selection
approach applied to ABN models.

4 Implementation and Simulation Study

From a practical perspective, computational speed is the major concern in an ABN
context. Indeed the number of models to be evaluated is a function of the number of
nodes. This function is super-exponential with the number of random variables [27].
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The estimation of Bayesian regression coefficients using Gibbs or Metropolis algo-
rithms is usually not fast enough, especially because the model selection approach is
based on a point estimate of the posterior rather than on the full network information.
An appealingly fast and reliable procedure to fit the model and return an approximate
posterior mode is described in [8] and a detailed explanation is given in the Sect. 14.8
of [7]. The procedure is an alteration of the classical iterative reweighted least squares
algorithm that uses an approximate expectation-maximisation algorithm to update
the regression coefficients at each step. The prior information is taken into account
through augmented data. This procedure is used to estimate the posterior mode for
every possible combination of all the variables. The output of this procedure is a
comprehensive list of scores. Further details for this first step are given in [16]. In a
second step, an exact search is performed to select the network with the highest pos-
sible global score [14]. The simulation study has been carried out using the package
abn [15] in the R software environment [26].

4.1 Data Separation

In order to illustrate the influence of the prior on an ABN analysis, we randomly
simulate BNs consisting of 10 binary random variables with 80% of the possible
edges expressed. Each edge represents the same regression coefficient (β coefficients
in the right panel of Fig. 1) set to 0.99 on the logit scale, i.e., = expit(5). For sample
sizes N = 100, 500, 1000 and 10,000 we randomly generate 50 distributions of the
selected network. The two priors used are a weakly informative prior (WI) which is
a normal distribution with mean zero and variance 1000 and a Student’s t-prior (ST)
with one degree of freedom (i.e., Cauchy) and scale parameter 2.5. The simulation
results are not very sensitive to the scale parameter within the range of 1.5–3. Then
the true positive rate (TPR) and the false positive rate (FPR) are used to measure
the accuracy of the selected networks. Every selected network is transformed to an
essential graph, as two networks of the sameMarkov class of equivalence could differ
substantially in terms of structure but have the same score because they represent the
same assertions of conditional independence [6]. Indeed, the implemented scoring
approach can differentiate networks up to the Markov class of equivalence only.

Figure2 shows the TPR and FPR as a function of the sample size for two different
priors and illustrates that both priors exhibit a proper “asymptotic” behaviour when
sample size increases: TPR and FPR tend to 100% and 0%, respectively. The chosen
coefficients (0.99) of the edges in each BN leads almost surely to data separation
for most of the possible variables’ combinations. Not surprisingly, the Student’s
t-prior has a better accuracy for network scoring for selecting both positive and
negative edges.



Comparison Between Suitable Priors for Additive Bayesian Networks 101

0.00

0.25

0.50

0.75

1.00

100 500 1000 10000

Sample size

P
er

ce
nt

ag
e

TPR.WI

FPR.WI

TPR.ST

FPR.ST

Percentage of edges retrieved (80% connected BN)

Fig. 2 Accuracy measures for retrieved edges for 80%-connected ten nodes (n = 10) simulated
Bayesian networks as a function of data sample size (N = 100, 500, 1000 and 10,000). The boxplots
(each based on 50 simulations) show the true positive rate (TPR) and the false positive rate (FPR)
outcome of the weakly informative prior (WI) and Student’s t-prior (ST)

4.2 Lindley’s Paradox

An ABN modelling approach is based on multiple approximations. The network
score is a proxy for selecting the best network. This score is conveniently chosen as
decomposable, i.e., the marginal likelihood in this case. The procedure to compute
the marginal likelihood is subject to numerical approximations. So even if Lindley’s
paradox is a known theoretical concern, it could potentially have a limited impact in
practice.

In order to illustrate Lindley’s paradox in a plausible situation, we randomly
simulate BNs of n = 10 nodes with a range of different edge densities. Each edge
has a known regression coefficient (β coefficients in the right panel of Fig. 1). Then,
we simulate 50 synthetic datasets of 1000 observations per network density. For this
simulation study three priors have been used: the two priors described above and a
strongly informative prior (SI), which is a normal distribution with its mean set to the
true regression coefficient for each edge and variance 0.1. Of course, this last prior is
not realistic in practice but it is added here to illustrate the “asymptotic” behaviour.
The average normalised number of parents is used to illustrate Lindley’s paradox.
For this illustration, we divide the average number of a simulated network by the
true number of parents of the original network. Then, BNs are fitted using binomial
regression with different priors, and the essential graphs are extracted.

Figure3 summarises the simulation result and compares the (normalised) average
number of parents of the fitted BN under different priors. If the selected DAGs are
subjected to Lindley’s paradox due to the weakness of prior information, one should
see a scatter plot deviating from the diagonal. Indeed, the Lindley’s paradox implies
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Fig. 3 Comparison of different priors for different network complexities (edge densities varying
between 0.1 and 0.9)

that the selected model tends to be too simple. Then the normalised average number
of parents tend to be higher than one and should depend on the prior used. As seen
in Fig. 3, sparse networks, i.e. low network complexity, are more impacted by than
highly connected ones. The marginal posterior likelihood seems to overfit the sparse
network structure and to underfit dense networks. In Fig. 3a one can see that a weakly
informative prior performs comparably as Student’s t-prior, whereas the effect of
highly informative prior is clearly visible in Fig. 3b. The selected networks almost
never exceed the true networks in term of complexity. Surprisingly, even such a prior
does not allow the scoring procedure to optimally select dense networks. Indeed,
one could expect that such amounts of information would lead to perfect scoring and
thus quasi no sampling error. Again, with 1000 observations, the simulation results
are not very sensitive to the scale parameter.

5 Future Developments

In Sect. 4 we showed that parameter priors play a major role in ABN modelling
by (i) comparing the effect of different priors on data separation when dealing with
discrete data and (ii) selecting networks depending on the prior information to address
the Lindley’s paradox conditional to the structure complexity. The simulation study
highlights the need to further study suitable priors for ABN modelling. Indeed, the
presented priors are not fully satisfactory. They partially improve the situation in
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the discrete case, but as mentioned in the introduction, an ABN modelling usually
involves a mixture of distributions.

A conjugate prior that contains enough information regarding the data would lead
to evident benefits. For example, a closed-form distribution for the posterior might be
available. This result would lead to huge advantages in terms of marginal likelihood
computation by reducing the time for the structure selection process. Similarly, the
parameters estimates will also benefit from this choice. Another common issue of
the BN literature is the so-called score equivalence problem [11, 23] that could be
solved using an appropriate prior.

In order to achieve this goal, we consider the link betweenABNmodels andGLMs
and exploit features of the exponential family. A good candidate for this purpose is
the conjugate prior distribution that belongs to a flexible family of priors called the
Diaconis–Ylvisaker conjugate priors [2]. This prior distribution was introduced by
[1]. A change of variables and the resulting properties need to be checked (as in [9]) in
order to apply this distribution to our specific case. Further work will be conducted in
this direction in order to formally verify all the desirable assumptions. Additionally,
the R package abn [15] should be equipped with further priors for practical usage
and availability for the statistical community.
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A Bayesian Nonparametric Model for
Integrative Clustering of Omics Data

Iliana Peneva and Richard S. Savage

Abstract Cancer is a complex disease, driven by a range of genetic and environ-
mental factors. Many integrative clustering methods aim to provide insight into the
mechanisms underlying cancer but few of them are computationally efficient and able
to estimate the number of subtypes. We have developed a Bayesian nonparametric
model for combined data integration and clustering called BayesCluster, which aims
to identify cancer subtypes and addresses many of the issues faced by the existing
integrative methods. The proposed method can integrate and use the information
from multiple different datasets, and offers better cluster interpretability by using
nonlocal priors. We incorporate feature learning because of the large number of pre-
dictors, and use a Dirichlet process mixture model approach to produce the patient
subgroups. We ensure tractable inference with simulated annealing. We apply the
model to datasets from theCancerGenomeAtlas project of glioblastomamultiforme,
which contains clinical and biological data about cancer patients with extremely poor
prognosis of survival. By combining all available information we are able to be better
identify clinically meaningful subtypes of glioblastoma.

Keywords Bayesian nonparametrics · Data integration · Glioblastoma · Mixture
models · Non-local priors

1 Introduction

Every year approximately 14.1 million people are diagnosed with a type of cancer
[44] and the survival prognosis formany of them is poor due to the lack of understand-
ing of the causes of some cancers. Modern large-scale projects such as the Cancer

I. Peneva (B)
University of Warwick, Warwick, UK
e-mail: i.peneva@warwick.ac.uk

R. S. Savage
Department of Statistics, University of Warwick, Warwick, UK
e-mail: r.s.savage@warwick.ac.uk

© Springer Nature Switzerland AG 2019
R. Argiento et al. (eds.), Bayesian Statistics and New Generations,
Springer Proceedings in Mathematics & Statistics 296,
https://doi.org/10.1007/978-3-030-30611-3_11

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30611-3_11&domain=pdf
mailto:i.peneva@warwick.ac.uk
mailto:r.s.savage@warwick.ac.uk
https://doi.org/10.1007/978-3-030-30611-3_11


106 I. Peneva and R. S. Savage

Genome Atlas (TCGA) [42], METABRIC [5] and the International Cancer Genome
Consortium (ICGC) [12] offer a great opportunity to study the mechanisms under-
lying different types of cancer. However, they also bring the challenges of selecting
informative features, estimating the number of cancer subtypes, and providing inter-
pretative results.

Many recent studies propose an integrative clustering approach to solving these
problems, based on the idea that none of the individual datasets can fully capture the
complexity of cancer, but collectively, they can offer a better understanding of the true
oncogenic mechanisms. These studies can broadly be divided into two categories:
those which cluster each dataset individually and then define the final partition by
a post hoc integration of the separate clusterings, and those which combine all data
sources to determine a single partition.Using the first approach [6, 41] fails to identify
the common structure shared between the different data types, whereas the second
approach [19, 38] fails to identify patterns that are unique to the individual data
types. Both approaches often have slow parameter inference and are limited in the
type of the datasets they can model.

In this paper, we present an efficient clustering algorithm called BayesCluster,
which addresses these drawbacks. It makes use of mixture models, which have
become increasingly popular in integrative clustering [1, 16, 21, 35]. In this way, we
can easily model different types of data and perform faster, more efficient inference.
We illustrate the model with the TCGA study of glioblastoma, which is the most
aggressive brain cancer and has some of the worst survival prognosis, with a median
survival of about 14 months [37]. The results from this work have the potential for
improving this situation by providing more specific patient subtypes and possible
biomarkers.

2 Data

We downloaded gene expression (GE), copy number variation (CNV), microRNA
(miRNA), and methylation (ME) data from the glioblastoma multiforme project,
available on TCGA data portal (http://cancergenome.nih.gov/). After matching sam-
ples across all data types, we were left with 211 samples for which we have complete
genomic data. Therewere a few duplicate samples for the same patient in the datasets,
for which we made a blind selection of the first sample, based on barcode ordering.

We selected for subsequent analyses the most highly variable genes in each of the
genomic datasets. We used the publicly available level 3 gene expression data on the
UNC AgilentG4502A_07 platform, level 2 copy number data, level 3 miRNA data,
generated by UNC on the H-miRNA 8× 15K platform, and the publicly available
level 3 methylation data on HumanMethylation450 platform. We set all missing
values to 0 because we assume that the data is zero-centred and normalised. This
resulted in the selection of 122, 112 and 125 genes from the gene expression, copy
number variation and miRNA data, respectively. In the case of the methylation data,
the measurements were in the form of beta values, which are equal to the ratio

http://cancergenome.nih.gov/
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of methylation signal to methylation + background signal. We binarised the data
(β > 0.95) and removed any features with fewer than 10 hits. That left us with 106
features.

3 Methodology

3.1 Statistical Models

We use two different statistical models to model the real-valued and discrete types
of data in the glioblastoma study.

We model each Dt -dimensional continuous observation xi t in dataset t with N
observations by a Gaussian likelihood with unknown mean and variance:

p(xi t |zi ,Wt ) = N (xi t |Wtzi , σ 2
t I), (1)

where the latent variables Z = {z1, . . . , zN } ∈ R
P×N represent the true molecular

subtypes to be discovered,Wt ∈ R
Dt×P is the loadingsmatrix associatedwith dataset

t and that maps the data to a lower dimensional space, and σ 2
t ∈ R

+ is the residual
variance. Following [15], we place N (0, I) prior on each row inWt .

We assume that the methylation observations are modelled as realisations of a
multinomial distribution whose parameters are achieved through a softmax transfor-
mation of the linear projection of the latent factor vector:

p(xi,me|zi ,W1:Dme ,w01:0Dme ) =
Dme∏

d=1

Cat (xid,me|S(Wᵀ
d zi + w0d)), (2)

whereWd ∈ R
P×M is the loadings matrix for the dth response variable,w0d ∈ R

M is
the offset term for the dth response variable and M ∈ N is the number of categories
(in this case 2). We place N (0, I) prior on every row in each loadings matrix Wd

and N (0, I) prior on the offsets w0d , similarly to [15].

3.2 Integrative Framework

We assume that the datasets we model share the same set of latent variables Z, which
represent the underlying subtypes or shared structure between the datasets. We can
jointly estimate Z from the available datasets. We represent each of the glioblastoma
datasets with amatrix, with the columns corresponding to the patients and the rows to
the genes. For example,Xge, with dimensions Dge × N , denotes the gene expression
data. By using (1) and (2), we can derive the mathematical form of the model which
integrates the glioblastoma datasets as follows:
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Xge = WgeZ + εεεge

Xcnv = WcnvZ + εεεcnv

p(Xme|W1:Dme ,w01:0Dme ) =
N∏

i=1

Dme∏

d=1

Cat (xid,me|S(Wᵀ
d zi + w0d)) (3)

Xmi RN A = Wmi RN AZ + εεεmi RN A,

whereWge,Wcnv,W1, . . . ,WDme ,Wmi RN A are the loadingmatrices,w01, . . . ,w0Dme

are the offset terms, and εεεge ∈ R
Dge×N , εεεcnv ∈ R

Dcnv×N , εεεmi RN A ∈ R
DmiRN A×N are the

remaining variances unique to each data type after accounting for correlation between
data types. We place N (0, σ 2

geI), N (0, σ 2
cnvI), N (0, σ 2

mi RN AI) priors on the error
terms εεεge, εεεcnv and εεεmi RN A, respectively.

The key idea of the integrative framework is to reduce the high-dimensional
datasets to a low-dimensional subspace which still captures themajor data variations.
We then model the lower dimensional representation using a finite approximation to
a Dirichlet process mixture model [13], known as a Dirichlet-multinomial allocation
mixture model [10]:

p(Z) =
K∑

k=1

πkN (Z|μμμk, I), (4)

where πk’s are the mixing proportions, which are Dir( α
K , . . . , α

K ) distributed and K
is the number of clusters which we learn from the data. In (4), the latent variables Z
are conditionally independent and identically distributed with a mixture density. We
use cluster indicators ci , with ci |πππ ∼ Mult(πππ), to indicate the cluster membership of
the i th latent variable. We assume that the cluster means of latent variables μμμk have
a moment prior, introduced in [33]:

p(μμμk) = 1

Ck

∏

1≤i< j≤k

(μμμi − μμμ j )
ᵀ(μμμi − μμμ j )

g
N (μμμk |0, gI), (5)

where Ck is the normalising constant and g is the dispersion parameter, which drives
the separation between clusters. This prior leads to the identification of more clin-
ically meaningful subtypes, stronger model parsimony and robustness even under
model misspecification. The moment prior serves also as a base distribution for the
Dirichlet Process prior in (4).

3.3 Inference

We perform inference with simulated annealing [17], which is a stochastic optimiser
and can avoid getting stuck in local maxima. In addition, using simulated annealing
will provide us with a near optimal solution much faster than the MCMC methods.
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The main drawback of simulated annealing is that we get only MAP estimates of the
model parameters rather than the full posterior distributions but since we are mainly
interested in the final cluster partition, this is a worthy trade-off.

We have marginalised the mixing proportions πππ which reduces the number of
parameters we need to infer. At the beginning of each iteration, we resample the
cluster indicators C = {c1, . . . , cN } using Algorithm 8 from [27] as we work with
non-conjugate priors. We then consider merging all points from small clusters (with
fewer than 10 points) with the large cluster which they are most likely to join, and
accept the move with a Metropolis Hastings ratio. This move is an example of split-
merge MCMC [10, 14]. We investigated the idea of split-merge sampling because
we often observed a tail of small clusters in our experiments which might be in part
due to simulated annealing getting stuck in local modes.

We use simulated annealing after the split-merge move to infer the model param-
eters. Since it is closely related to the MCMC methods, we can easily adapt the
steps involved in random walk Metropolis Hastings to perform simulated annealing
instead. We proceed in the following manner: we propose a move from the current
state S to S∗, where the latent variablesZ, the noise variablesεεεt , the loadingsmatrices
for the discrete observationsW1 . . . ,WDme and the offset termsw01, . . . ,w0Dme have
been updated using the same proposal distributions as we would use in random walk
Metropolis Hastings, and the update of the loadings matrices Wt has been obtained
using the approximationXt ≈ WtZ. After the proposal of the new state, we compute

r = exp
( f (S∗) − f (S)

Tk

)
, (6)

where f is the model log posterior and Tk is the current temperature of the cooling
schedule. We move to the new state S∗ and update the model parameters with prob-
ability min(1, r), otherwise we stay in the current state S and do not update model
parameters. We use an exponential cooling schedule Tk = T0sk with a starting tem-
perature of T0 = 100 and s = 0.95. We fix the concentration parameter α to 3 as
it leads to robust results [8]. The algorithm continues until convergence or a fixed
number of iterations is reached.

3.4 Model Selection and Choice of Final Partition

Since the output of the algorithm depends on the dataset we choose to initialise the
latent variables with, we run BayesCluster for all possible initialisation scenarios
for a range of number of latent variables (P = 2, . . . , 10) and we use Bayesian
information criterion to select P . The final partition is the maximum a posteriori
partition from the simulated annealing algorithm for the selected P .
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4 Results

We consider 5 ways of identifying cancer subtypes with BayesCluster—with each
individual data type and with all 4 data types combined. We used clinical data,
containing information about days to last follow-up, the patient treatments, age,
gender, to further specify the subtypes. We compare all subtypes in terms of the
right-censored event being death.

For each case, we plot Kaplan-Meier curves for the patient groups, identified by
BayesCluster, after the removal of any patients with no follow-up. We test the null
hypothesis that there is no difference between the subtypes in their survival prognosis,
and the resulting unadjusted log-rank p-values are 0.4, 0.02, 0.66, 0.39, 0.014 for
the subtypes identified using only gene expression, only copy number variation,
only miRNA, only methylation and all data types, respectively. We have identified
5 glioblastoma subtypes using the information from all 4 datasets (see Fig. 1a). The
heatmaps on Fig. 2 highlight the genomic differences between the 5 subtypes.

4.1 Comparison with Other Methods

We compare the performance of BayesCluster with another integrative clustering
method, called iClusterPlus [25]. iClusterPlus is a Gaussian latent variable model
for genomic data integration and is an extension of iCluster [38]. It both reduces the
dimensionality of the datasets and models the relations between the different types
of data. Similarly to BayesCluster, it assumes that there is a common set of latent
cluster membership variables across all datasets. Unlike BayesCluster, iClusterPlus
uses a modified Monte Carlo Newton-Raphson algorithm [7, 23] and random walk
Metropolis Hastings [32, 39] to learn the model parameters. The method uses the

Fig. 1 Glioblastoma subtypes, identified using the integration of gene expression, methylation,
copy number variation and miRNA data, with the application of BayesCluster and iClusterPlus
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(a) Gene expression data

−3 −2 −1 0 1 2 3

(b) Copy number variation data
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Fig. 2 Heatmaps of the glioblastoma data types, with the patients being on the x-axis, sorted by the
integrative partition, and the selected features for each data type on the y-axis, sorted by hierarchical
clustering with average linkage

deviance ratio metric, which is the percentage of the total variation explained by the
model, for model selection. The optimal number of clusters is determined by the
point of transition after which there is not a significant change in the deviance ratio.

The models we use to model the different data types are similar to the ones used
in the Multiple Dataset Integration (MDI) model [34] as well. Both BayesCluster
and MDI use split-merge to improve the mixing. In this paper we demonstrate that
BayesCluster provides competitive results in comparison with iClusterPlus and sim-
ple clustering approaches. A more comprehensive comparison with other integrative
methods including MDI can be found in [29].

iClusterPlus identifies 5 subtypes of glioblastoma patients using the information
fromall 4 datasets (Fig. 1b). The five groups do not have statistically different survival
outcome, and there is nopatient subtype that has a noticeably better survival prognosis
than the rest.

We compare the performance of BayesCluster on each of the four individual data
sources with k-means [11, 22] and Gaussian mixture model (GMM) [2, 24] in the



112 I. Peneva and R. S. Savage

Table 1 Bonferroni-corrected p-values for Kaplan-Meier survival curves. As GMM resulted in one
large cluster and singletons in the case of copy number variation and miRNA, we excluded these
results. The p-value for k-modes was not adjusted as the model was applied only to methylation
data. We have highlighted the unadjusted p-values with an asterisk

GE CNV miRNA ME all

k-means/k-modes 0.6 0.06 1.00 0.59* –

GMM 0.16* – – – –

iClusterPlus 0.95 0.225 1.00 0.036 0.9

BayesCluster 1.00 0.10 1.00 1.00 0.07

case of real-valued data, and in the case of discrete data, k-modes [4]. For each
of the datasets, k-means/k-modes and GMM are not able to capture the difference
between the patient subtypes. This suggests that using the information frommultiple
glioblastoma data sources could identify more clinically meaningful subtypes.

We summarise the comparison between the models in Table1. We have applied
Bonferroni correction in the cases where we test multiple times the null hypothesis
of no difference between the groups in their survival.

5 Conclusion

We presented BayesCluster, a novel Bayesian method for unsupervised modelling
of individual datasets and for integrative modelling of multiple datasets, which has
the advantages of inferring the number of clusters from the data and of easily imple-
mentable inference. Its framework is based on the Dirichlet Process mixture model
which enables the modelling of heterogeneous data types and the subtype allocation
of arriving new patients, using the predictive distribution from [9].

We applied BayesCluster to glioblastoma data and managed to identify specific
subtypes that are prognostic of survival outcome and could be used for more targeted
treatments.We plan to validate these subtypeswith an independent dataset, part of the
ICGCdatabase. Since therewere caseswhereBayesCluster couldnot findmeaningful
subtypes, we will consider improving the feature selection and interpretability by
incorporating estimation of the posterior probability of each omics feature. This can
be used as a criterion for feature selection as suggested by [26].
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Bayesian Inference of Interaction Effects
in Item-Level Hierarchical Twin Data

Inga Schwabe

Abstract Behavior geneticists are interested in the relative importance of genetic
and environmental influences in the origins of individual differences in a trait (phe-
notype). Considerable effort has been devoted to analyses including interactions
between these different sources, such as gene-environment interactions. To mea-
sure the phenotype, usually, a questionnaire is presented to monozygotic (MZ) and
dizygotic (DZ) twins and the resulting sum-scores are used as proxy measures for
the phenotype in the genetic model. However, earlier research has shown that using
sum-scores can lead to the spurious finding of interactions and, instead, an approach
based on raw item data should be adopted. This can be done by simultaneously
estimating the genetic twin model and an item response theory (IRT) measurement
model. Due to the hierarchical nature of twin data, this is difficult to implement in
the frequentist framework. As an alternative, we can adopt the Bayesian framework
and use off-the-shelf MCMC methods. This chapter contains an overview of this
methodology, including different parametrizations of interaction terms. To illustrate
the methodology, the depression scores of 364 MZ twin pairs and 585 DZ twin pairs
are analyzed to investigate if depression is etiologically different in older (>60years)
twins.

Keywords Behavior genetics · Hierarchical twin data · Item response theory ·
MCMC · Psychometrics

1 Introduction

Inference in the field of behavior genetics focuses on determining the relative contri-
bution of nature and nurture to individual differences in a trait (e.g., the phenotype).
One of the most commonly used methods in this field is the classical twin design,
which makes use of the fact that twin pairs are either identical (monozygotic, MZ)
and share the same genomic sequence or non-identical (dizygotic, DZ) and share, on
average, only half of the segregating genes. When MZ twin pairs are more similar in
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a phenotype (e.g., depression or educational achievement) than DZ twin pairs, this
implies that genetic influences are important.

Traditionally, in the classical twin design, the ACE model is used which
decomposes total phenotypic variance (e.g., scores on amathematics test or a depres-
sion scale), σ 2

P , into variance due to additive genetic (A) influences (σ 2
A), common-

environmental (C) influences (σ 2
C ) and unique-environmental (E) influences (σ 2

E ,
residual variance). Additive genetic (A) influences are parametrized as latent vari-
ables that are perfectly correlated within MZ twin pairs and correlate, on average, 1

2
within DZ twin pairs. Common-environmental influences are parametrized as being
perfectly correlatedwithin bothMZandDZ twin pairs and interpreted as shared influ-
ences that lead to resemblance between twins that cannot be attributed to their genetic
resemblance. Contrarily to many other research fields, residual variance (denoted by
σ 2
E in the twin design) is not used for model-fit purposes, but interpreted as reflecting

not only measurement error, but everything that is not related to genetic differences
that makes a twin par different (e.g., unique-environmental influences, E).

In the last decade, the assessment of an interaction between these different sources
of variancehas received increasing attention.An interaction canbe estimatedbetween
any combination of the latent variables (e.g., A, C, and E), but we can also estimate
a moderation of variance components by adding a measured environmental moder-
ator variable to the model. While the former parametrization usually concentrates
on estimating an interaction between latent genetic influences and latent unique-
environmental influences, the latter design is often used to estimate all different
kinds of interactions (e.g., including interactions between the moderator variable(s)
and latent environmental influences).

1.1 Potential Bias

When the twin design is applied, traditionally, the twins’ answers to every item of a
questionnaire or test are aggregated into a single score (e.g., a sum-score) and then
used as a proxy measure for the phenotype. However, earlier research has shown
that the use of a sum-score can lead to the spurious finding of interaction effects due
to artefacts of the given measurement scale, such as heterogeneous measurement
error. Instead, an approach based on the analysis of raw item data should be adapted
which can be done by simultaneously estimating the genetic model and an item
response theory (IRT) measurement model [5, 9, 11]. The IRT approach is model-
based measurement in which a twin’s latent trait is estimated using not only trait
levels (e.g., performance on a mathematics test) but also item properties such as the
difficulty of each test item.

1.2 Bayesian Approach

To take full advantage of the IRT approach, both the genetic twin model and the IRT
measurement model have to be estimated simultaneously [13], which is not possible
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when using the currently available software [1, 6, 8]. The simultaneous estimation of
the genetic twinmodel and IRTmodel is challenging since it requires the evaluation of
multiple integrals. This problem can be avoided by adopting aBayesian approach and
using Markov chain Monte Carlo (MCMC) algorithms to approximate the posterior
distribution. In the following, an overview of a Bayesian approach to the estimation
of gene-environment interactions is given that enables item-level analysis of the twin
data by integrating an IRT model into the genetic model [5, 9, 11].

2 Methods

2.1 ACE Model

We assume that part of the variance in the latent phenotypic trait θi j of twin j from
pair i is shared with the co-twin and part of it is unique to the individual (e.g.,
explained by unique-environmental influences (E), captured by residual variance
σ 2
E ) [4]. Furthermore, we assume that the total shared variance is partly genetic (e.g.,

explained by additive genetic influences, represented by A) and partly environmental
(e.g., explained by common-environmental factors, represented by C). We then have
for MZ twins:

Ai ∼ N (0, σ 2
A)

Ci ∼ N (0, σ 2
C )

θi j ∼ N (μ + Ai + Ci + β1sM i , σ
2
E )

where β1s denotes the main effect of a moderator variable that has the same value
for every twin family i (see the following for more detail).

As it is generally observed that a hierarchical parametrization leads to more effi-
cient estimation, we use the following (equivalent) parametrization, where the famil-
ial random effect F (e.g., the sum of C and A) of every twin family i is a deviation
from the random effect C of the same family i :

Ci ∼ N (μ + β1sM i , σ
2
C)

Fi ∼ N (Ci , σ
2
A)

θi j ∼ N (Fi , σ
2
E )

whereμ refers tot the phenotypic population mean, σ 2
C represents variance explained

by common-environmental influences, σ 2
A denotes variance that can be explained by

additive genetic influences and σ 2
E is the residual variance for each individual twin.

For every family i , the genetic part of the phenotype, Ai , can be calculated by sub-
tracting the part of the familial random effect that is due to common-environmental
influences (e.g., Ai = Fi − Ci ).
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The parametrization is the same for DZ twins, except that they are not genetically
identical, but share on average 50% of the segregating genes. This genetic correlation
of 1

2 is modeled by assuming normally distributed familial random effects for every
twin family i first (e.g., F1i ∼ N (Ci ,

1
2σ

2
A)) and then using these as expected value

whenmodeling the familial effect of every individual twin j of family i (e.g., F2i j ∼
N (F1i , 1

2σ
2
A)).

2.2 Modeling Interaction Effects

We can take two different approaches to integrate interaction terms into the above
described twin design.

First, we can model any interaction(s) among the latent variables (e.g., A, C,
and E). As this is common practice, here, we concentrate on estimating an interac-
tion between additive genetic influences and unique-environmental influences (e.g.,
A×E), but note that it is also possible to include other interaction terms (e.g., A×C
or C×E). A×E can be modeled by varying the amount of variance due to unique-
environmental variance systematically with genetic value A, resulting in a variance
term that is unique for every individual and is portioned into a part that denotes an
intercept (unique-environmental variance when Ai j = 0) and a slope parameter that
represents the interaction effect (e.g. σ 2

E ji = exp(β0 + β1A2i j ) for DZ twins where
β0 denotes the intercept and β1 the interaction term). Note that A×E is thenmodelled
as (log)linear effect, meaning that unique-environmental variance is larger at either
higher or lower levels of the genetic value where the sign of the slope determines the
direction of the interaction effect. The exponential function is used to avoid negative
variances.

While modeling environmental influences as latent variables provides a nice and
strong omnibus test, often, one or more moderator variable(s) are used to investigate
interactions with specific environmental influences. This makes results potentially
very informative. Often, this alternative parametrization is not only used to estimate
interaction effects with additive genetic influences (henceforth referred to as A×M),
but also with common-environmental influences (henceforth referred to as C×M) or
unique-environmental influences (henceforth referred to as E×M) - that is, moder-
ation of variance components (henceforth referred to as ACE×M). For readability,
the ACE×M parametrization presented here discusses the case where we the mod-
erator variable takes the same value for both members of a twin pair [11]. To model
ACE×M, variance components are divided into an intercept (representing variance
components when M i = 0) and a linear interaction term (denoting A×M, C×M and
E×M respectively). For MZ twins, we then have:

σ 2
Ai = exp(β0a + β1aM i )

σ 2
Ci = exp(β0c + β1cM i )

σ 2
Ei = exp(β0e + β1eM i )
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where β0a , β0c and β0e represent additive genetic, common-environmental and
unique-environmental variance respectively when M i = 0. β1a , β1c and β1e are the
interaction terms that represent A×M, C×M and E×M respectively.

Similar to the model specification for MZ twins, C×M and E×M are introduced
by allowing common-environmental and unique-environmental influences to vary
between DZ families (e.g., σ 2

Ci = exp(β0c + β1cM i ) and σ 2
Ei = exp(β0e + β1eM i )).

Then, to introduce A×M, the genetic value of every individual twin, A2i j , is scaled
by multiplying it with the standard deviation σAi , where σ 2

Ai = exp(β0a + β1aM i ).
This yields a genetic value A3i j that is unique for every individual twin j from DZ
family i :

A3i j = A2i j
√
exp(β0a + β1aM i )

where, similar to the model specification of DZ twins, β0a represents additive genetic
variance when M i = 0 and β1a is the interaction term that represents A×M.

2.3 IRT Modeling

For readability, so far, we have ignored the psychometric part in the genetic models
discussed above. Simultaneously to every genetic model, the latent phenotype, θi j
appears in an IRT measurement model. The most simple IRT model is the so-called
Rasch model, which models the probability of a correct answer to item k (e.g., of
a mathematics test) by twin j from family i as a logistic function of the difference
between the twin’s latent trait score (e.g., mathematical ability) and the difficulty of
the item:

ln(Pi jk/(1 − Pi jk)) = θi j − bk
Yi jk ∼ Bernoulli(Pi jk)

where Yi jk represents the answer of twin j of family i to item k which are assumed
to have a Bernoulli distribution. It is assumed that all items discriminate equally well
between varying traits, but the model can be extended to also include discrimination
parameters (e.g., comparable to factor loadings in structural equation modeling)
that differ between items [3]. The Rasch model and its extension are suitable for
dichotomous data as is often encountered in cognitive tests (e.g., scored as correct
= 1 and false = 0) and sometimes in personality questionnaires where a respondent
is asked if he or she agrees with a particular statement (e.g., scored as agree = 1, 0
= disagree). For ordinal item data, as encountered in for example Likert scale data,
we can use among others the generalized partial credit model (GPCM), which treats
polytomous response categories (e.g., Likert scale data) as ordered performance
levels.
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3 Data Illustration: Depression Scores

To illustrate how the methodology can be used to analyze empirical twin data, twin
responses to a seven item depression scale were analyzed to investigate if depression
is etiologically different for older twins.

The scale was part of a telephone questionnaire that was administered in the
National Survey of Midlife Development in the United States (MIDSU) in 1995–
1996 under the auspices of the Inter-university Consortium for Political and Social
Research [2].1 Each item of this scale consists of a statement (e.g., “I lose interest
in most things”), followed by the instruction of the interviewer to indicate if the
respondent agreedwith the statement or not. The data of twinswith unknown zygosity
(N twins = 25) were excluded from the analysis, resulting in a total sample size of
364 MZ twin pairs and 585 DZ twin pairs. One MZ twin pair and five DZ twin pairs
with non-matching ages were excluded from the sample, further reducing the sample
size to 363 MZ twin pairs and 580 DZ twin pairs. When the age of the first twin
was missing, the age of the second twin was imputed (and vice versa). For a total
of 98 twin pairs, the age was not recorded (missing). Mean age of the whole sample
was 44 (SD = 12) and 45 (SD = 12) for MZ and DZ twin pairs respectively. For an
easier interpretation, the continuous age variablewas transformed into a dichotomous
dummy variable that cut the sample in two distinct age groups, coded as 0 (all twin
pairs younger than 60years) and 1 (all twin pairs that were 60years or older). 724
(77%) twin pairs were younger than 60years and 121 (13%) 60years old or older.

We fitted an ACE model with Rasch model that included all possible interac-
tions between latent variables and age group (e.g., A×M, C×M and E×M, where
M refers to the dichotomous variable that divides twins in the two age groups). We
used independent normal distributions for intercepts and interaction effects (e.g.,
β0a, β0c and β0e ∼ N (−1, 2), β1a, β1c and β1e ∼ N (0, 10)) as well as for diffi-
culty parameters (e.g., βk ∼ N (0, 10)) and the main effect of the moderator variable
(e.g., β1m ∼ N (0, 10)). As there were twin pairs with unknown age, independent
Bernoulli distributed prior distributions were defined (e.g., for every twin family
i , M i ∼ Bernoulli(π)). On the probability, π , separate Beta distributed hyper-
priors were used for MZ and DZ twins respectively (e.g., πmz ∼ Beta(1, 1) and
πdz ∼ Beta(1, 1)).

After a burn-in period of 15,000 iterations, the posterior distribution was based on
an additional 20,000 iterations from 1 Markov chain. For data handling and MCMC
estimation, the open-source software packages R [8] and JAGS [7] were used. For
all parameters of interest, posterior means and standard deviations were calculated
as was the 95% highest posterior density (HPD) interval. When the HPD does not
contain zero, the influence of a parameter can be regarded as significant. This however
does not hold for the variance components of this particular application, as these are
bounded at zero due to a very low phenotypic variance.

1The opinions expressed in this article are those of the authors and do not necessarily reflect the
views of the ICPSR.
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Table 1 Data illustration: depression data. Estimates of variance components and heritability, based
on the ACE model with integrated Rasch model. Total phenotypic variance was 4.963. HPD refers
to highest posterior density interval

Posterior point estimate (SD) 95% HPD

β1s 0.019 (0.001) [0.017; 0.021]

exp(β0a) 2.231 (0.605) [1.002; 3.266]

exp(β0c) 1.572 (0.484) [1.000; 2.508]

exp(β0e) 1.160 (0.170) [1.000; 1.532]

β1a −0.014 (0.006) [−0.027; −0.002]
β1c −0.009 (0.006) [−0.022; 0.001]
β1e 0.003 (0.003) [−0.004; 0.007]
h2 0.44 (0.093) [0.247; 0.608]

3.1 Results

The posterior means and standard deviations of all parameters as well as narrow-
sense heritability can be found in Table1. Narrow-sense heritability was defined
as the relative magnitude of the total phenotypic variance that can be explained
by additive genetic variance (e.g., h2 = exp(β0a)

σ 2
P

= exp(β0a)

(exp(β0a)+exp(β0c)+exp(β0e))
). In the

second column of the table, the 95% highest posterior density interval can be found.
To save space, estimates of item parameters as well as convergence plots are not
displayed here but can be obtained from the author.

It can be seen that most of the phenotypic variance can be explained by addi-
tive genetic influence. While common-environmental influences also contribute to
phenotypic variance, the influence of unique-environmental influences is negligibly
small. HPD intervals show that none of the interaction effects was significant.

4 Discussion

This contribution provides an overview of a Bayesian framework that makes it pos-
sible to estimate interactions in genetically-informative item-level twin data through
estimating both genetic and measurement (IRT) model simultaneously. The incor-
poration of such a measurement model into genetic twin analyses is important, since
it has been shown that analyzing an aggregated measure such as the sum-score can
result in the spurious finding of an interaction effect due to measurement scale arte-
facts [5, 9, 11]. The models presented here can be extended to a longitudinal version
when the phenotypic trait has been assessed atmultiple occasions, which also enables
inference about the nature (e.g., genetic or environmental) of the covariance among
the different measurement points [12].
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To illustrate the methodology, the scores on a 7 item depression scale of
364 MZ twin pairs and 585 DZ twin pairs were analyzed. Results showed that
genetic influences were the most important source in explaining phenotypic vari-
ance. Furthermore, no interaction term was significant, implying that depression is
not etiologically different in older people.

To make the methodology presented here more accessible to applied researcher in
the behavior genetics community, the R package BayesTwin was developed, which
includes all models presented here and some extensions. A tutorial for this package
can be found elsewhere [10].
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A Phase II Clinical Trial Design
for Associated Co-primary Efficacy
and Toxicity Outcomes with Baseline
Covariates

Kristian Brock, Lucinda Billingham, Christina Yap and Gary Middleton

Abstract The experimental design presented here is motivated by a phase II clinical
trial called PePS2, investigating the efficacy and safety of an immunotherapy called
pembrolizumab in a specific subgroup of lung cancer patients. Previous trials have
shown that the probability of efficacy is correlated with particular patient variables.
There are clinical trial designs that investigate co-primary efficacy and toxicity out-
comes in phase II, but few that incorporate covariates. We present here the approach
we developed for PePS2, latterly recognised to be a special case of a more general
method originally presented by Thall, Nguyen and Estey. Their method incorporates
covariates to conduct a dose-finding study but has been scarcely used in trials. Dose-
finding is not required in PePS2 because a candidate dose has been widely tested.
Starting from the most general case, we introduce our method as a novel refinement
appropriate for use in phase II, and evaluate it using a simulation study. Our method
shares information across patient cohorts. Simulations show it is more efficient than
analysing the cohorts separately. Using the design in PePS2 with 60 patients to test
the treatment in six cohorts determined by our baseline covariates, we can expect
error rates typical of those used in phase II trials. However, we demonstrate that care
must be taken when specifying the models for efficacy and toxicity because more
complex models require greater sample sizes for acceptable simulated performance.
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1 Introduction

There is a relative dearth of phase II clinical trial designs that incorporate patient
covariates to assess efficacy and toxicity. We introduce a novel approach here.

Ourmotivation is a phase II trial called PePS2 that investigates an immunotherapy
in a specific subgroup of lung cancer patients. We developed a Bayesian regression
method that adjusts for predictive patient data available at trial commencement to
investigate co-primary binary outcomes. We latterly learned that our design is a
special case of Thall, Nguyen and Estey (TNE), a family of methods that perform
dose-finding trials guided by efficacy and toxicity outcomes whilst accounting for
baseline patient data [17]. Their design yields personalised dose recommendations.

PePS2 is not a dose-finding trial. Instead, it seeks to estimate the probabilities
of efficacy and toxicity at a dose of pembrolizumab previously demonstrated to
be safe and effective in a closely-related group of patients [9]. To acknowledge its
heritage, we introduce our design as a novel simplification of TNE that removes the
dose-finding components so that it may be used in phase II.

In Sect. 2, we describe the PePS2 trial and the pertinent clinical data from pre-
vious trials. In Sect. 3, we review the literature for suitable experimental designs.
We describe our design in detail in Sect. 4 and evaluate it with a simulation study in
Sect. 5. Finally, in Sect. 6, we describe future plans for this work.

2 The Clinical Trial Scenario

PePS2 is a phase II trial of pembrolizumab in non-small-cell lung cancer (NSCLC)
patients with Eastern Cooperative Oncology Group performance status 2 (PS2).
NSCLC is a common sub-type of lung cancer. Patients with PS2 are ambulatory
and capable of self-care but typically too ill to work. Critically, it is doubtful that a
PS2 patient could tolerate the toxic side effects of chemotherapy.

The primary objective of the trial is to learn if pembrolizumab is associated with
sufficient disease control and tolerability to justify use in PS2 patients. The joint pri-
mary outcomes are (i) toxicity, defined as the occurrence of a treatment-related dose
delay or treatment discontinuation due to adverse event related to pembrolizumab;
and (ii) efficacy, defined as the occurrence of stable disease, partial response (PR)
or complete response (CR), without prior progressive disease, at or after the second
post-baseline disease assessment by version 1.1 of the Response Evaluation Criteria
In Solid Tumors [8]. The second assessment is scheduled to occur at week 18.

Pembrolizumab inhibits the programmed cell death 1 (PD-1) receptor via the
programmed death-ligand 1 (PD-L1) protein. It has been shown to be active and
tolerable in patients with better performance status [9]. Overall, 19.4% of patients
had an objective response (PR or CR) and 9.5% experienced a major adverse event,
defined as an event of at least grade 3 by the Common Terminology Criteria for
Adverse Events, v4.0. These statistics compare favourably to those typically seen in
advanced NSCLC patients under chemotherapy [1, 13]. We foresee no reason why
they should be materially different in PS2 patients.
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Table 1 Objective response
rates for the validation sample
(n = 204) in [9]

PD-L1 Group Criteria Objective Response %,
(95% CI)

Low PD-L1 score < 1% 10.7 (2.3, 28.2)

Medium 1% ≥ PD-L1 score < 50% 16.5 (9.9, 25.1)

High PD-L1 score ≥ 50% 45.2 (33.5, 57.3)

Table 2 Cohorts used in the
PePS2 trial. xi shows the
predictive variable vector for
patient i

Cohort Previous treatment
status

PD-L1
category

xi = (x1i , x2i , x3i )

1 TN Low (0,1,0)

2 TN Medium (0,0,1)

3 TN High (0,0,0)

4 PT Low (1,1,0)

5 PT Medium (1,0,1)

6 PT High (1,0,0)

Garon et al. introduce the PD-L1 proportion score biomarker, defined as the per-
centage of neoplastic cells with staining for membranous PD-L1 [9]. Efficacy out-
comes for the 204 patients in their validation group, summarised by PD-L1 score,
are shown in Table1. Objective responses are observed in all cohorts and the rate
increases with PD-L1. Based on this information, we expect PD-L1 to be predictive
of response in our PS2 population.

Furthermore, 24.8% of patients who had received no previous anti-cancer therapy
(treatment-naive, TN) achieved a response, compared to 18.0% in the group that had
been previously treated (PT) [9]. This represents a potentially small but important
effect that should be consideredwhen testing the treatment.We propose to investigate
pembrolizumab by jointly stratifying by the three Garon PD-L1 groups, and PT and
TN statuses. Each patient will belong to exactly one of six cohorts, as demonstrated
in Table2.

In phase II, there is strongmotivation to deliver findings quickly to inform the next
study phase. Recruitment of approximately 60 PS2 patients within one year would
be feasible but accrual materially higher would be unlikely. Given the relative dearth
of treatment alternatives, we seek to offer the trial to all PS2 patients and not stratify
accrual. Pembrolizumab has not been investigated in PS2 patients so the clinical
scenario requires a trial design that tests efficacy and toxicity. Given the evidence
that PD-L1 and pretreatedness are associated with response, it is highly desirable
to use a trial design that incorporates this predictive information. The next section
describes our search for a clinical trial design to achieve these objectives.

3 Review of Available Trial Designs

We sought a clinical trial design that uses covariates to study co-primary binary
outcomes. The well-known phase II design by Bryant and Day (BD) takes threshold
rates of efficacy and toxicity and returns the number of events to approve the treatment
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[4]. For given levels of significance and power, the thresholds identify the optimal
trial of the competing outcomes. The design does not use covariates, assuming the
population to be homogeneous. Parallel BD designs in our six cohorts would require
a prohibitively large total sample size. Other phase II sequential designswithmultiple
outcomes [3, 6, 7, 11, 14, 15] generally focus on providing stopping rules rather
than incorporating predictive information.

Several phase I dose-finding designs [2, 16, 19] use co-primary outcomes. These
could potentially be adapted to our purpose, although they generally do not use
covariates. A notable exception is TNE, an extension of EffTox [16] that adds patient
covariates to analyse co-primary efficacy and toxicity at different doses. The objective
of their Bayesian design is to recommend a personal dose of an experimental agent,
after adjusting for baseline data. The design was used in a dose-finding study of
PR104 in relapsed or refractory acute myeloid or lymphoblastic leukaemia [12]. We
found no other examples of its use, and no suggestion that it had been adapted for the
non-dose-finding context. Our proposed design can be considered as a simplification
of TNE for use in phase II.

4 Assessing Efficacy and Toxicity and Adjusting
for Covariates

In this section, we describe the statistical design used in PePS2, with the general TNE
model as the starting point. We call this design P2TNE, for Phase II Thall, Nguyen
and Estey. TNE present marginal probability models for an experimental treatment:

logit πk(τ, x, y, θ) = fk(τ,αk) + βk x + τγky , (1)

where k = E, T denote efficacy and toxicity respectively. τ is the given dose appro-
priately normalised; x and y are vectors of covariates, with y interacting with dose;
θ is a pooled vector of all parameters to be estimated; fk(τ,αk) characterise the dose
effects; and βk and γ k are vectors of covariate effects and dose-covariate interac-
tions. TNE also introduce similar models for the events under historical treatments
by which informative data on dose and covariate effects can be incorporated.

The authors consider jointmodels for associating events. They present an example
using the Gumbel model, as used in [16]:

πa,b(πE , πT , ψ) =(πE )a(1 − πE )1−a(πT )b(1 − πT )1−b

+ (−1)a+b(πE )(1 − πE )(πT )(1 − πT )
eψ − 1

eψ + 1
,

(2)
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where a and b equal 1 when efficacy and toxicity occur in a given patient respec-
tively, else 0. For ψ ∈ R, the fractional term takes values on (−1, 1), reflecting the
correlation between the events. We refer to ψ as the association parameter.

To derive P2TNE, we remove all terms related to τ in (1) to reflect that dose is
fixed. Furthermore in PePS2, we consider only the historic outcomes of the same
single experimental treatment under a closely-related cohort of patientswithNSCLC.

Let xi = (x1i , x2i , x3i ) denote the covariate data and ai , bi the occurrence of effi-
cacy and toxicity in patient i . For trial data:

X = {(x1, a1, b1), ..., (xn, an, bn)} ,

the aggregate likelihood function is

L (X, θ) =
n∏

i=1

πai ,bi (πE (xi , θ), πT (xi , θ), ψ) .

Let θ have prior distribution f (θ). For patients with covariate data x , the posterior
expectation of the probability of efficacy under treatment is

E(πE (x, θ)|X) =
∫

πE (x, θ) f (θ)L (X, θ)dθ∫
f (θ)L (X, θ)dθ

,

and the posterior probability that the rate of efficacy exceeds some threshold π∗
E is

Pr(πE (x, θ) > π∗
E |X) =

∫
I(πE (x, θ) > π∗

E ) f (θ)L (X, θ)dθ∫
f (θ)L (X, θ)dθ

.

The treatment is acceptable in patients with covariate vector x if

Pr(πE (x, θ) > π∗
E |X) > pE

Pr(πT (x, θ) < π∗
T |X) > pT ,

(3)

where π∗
E , pE , π∗

T and pT are chosen by the trialists. The clinical investigator chose
the values π∗

E = 0.1 and π∗
T = 0.3 to reflect that efficacy less than 10% or toxicity

exceeding 30% would render the treatment unattractive for further study in this
patient group. We derived pE = 0.7 and pT = 0.9 by simulation using the method
described below. Our chosen models for marginal efficacy and toxicity are:

logit πE (xi , θ) = α + βx1i + γ x2i + ζ x3i
logit πT (xi , θ) = λ ,

(4)

with the events associated by (2). Our efficacymodel assumes that the event log-odds
for PT patients in the PD-L1 categories are a common linear shift of those in TN
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patients, an assumption we call piecewise parallelism, broadly supported by [9]. The
rate of toxicity is assumed uniform across groups, supported by the data in [9, 10].
We analyse more complex models that relax each of these assumptions.

5 Simulation Study

Choice of priors is contentious in clinical trials. We simulated performance under
diffuse, regularising, and informative priors.Our diffuse priors are normalwithμ = 0
and σ = 10. Regularising priors expect event rates close to 20% in all cohorts, put
the majority of prior predictive mass in the left tail, but admit that event rates can be
high. Informative priors expect event rates similar to those observed in [9], modestly
penalised to reflect PS2 patient prognosis.

Table3 shows operating characteristics using 60 patients. We tuned pE and pT
by simulation in key benchmark scenarios, requiring that the design approve in all
cohorts: (i) with at least 80% probability in scenario 1; and (ii) with no more than
5% probability in scenario 2. These probabilities reflect typical values for frequentist
power and significance in phase II trials. Starting with pT = pT = 0.7, we saw that
the designs accepted too often in scenario 2.With patients potentially near end-of-life,
we chose to adjust operating performance by increasing certainty when evaluating
toxicity; pT = 0.8 was still too permissive but pT = 0.9 achieved our goal under the
regularising and diffuse priors, and pT = 0.95 under informative priors. Scenarios
4–6 show that performance is good in settings inspired by the reported data [9, 10].
Compared to diffuse priors, the regularising priors improve approval probability
without pre-empting covariate effects like the informative priors.

Table3 also shows performance of beta-binomial conjugate models applied to
cohorts individuallywith Beta(1, 1) priors, accepting if (3) is satisfiedwith pE = 0.7
and pT = 0.9. By incorporating baseline covariates, P2TNE considerably improves
performance without erroneously inflating acceptance in scenarios 2 and 5.

The diffuse priors generate prior predictive distributions with most of the proba-
bility mass polarised close to events rates of 0 and 1, inconsistent with our beliefs and
the published data. Coverage of posterior credible intervals was lowest and empirical
standard error of estimates highest under the diffuse priors (data not shown).

Our model choices (4) imply fairly strong assumptions.We analyse model embel-
lishments to infer the cost of greater model complexity. We relax the piecewise par-
allel assumption by adding interactions terms to the efficacy model. Under diffuse
priors, approval probabilities and coverages decrease in our scenarios. An extra 20–
40 patients are required to match performance of the simpler model under diffuse
priors. To correctly improve the rejection probability in cohort 4 under scenarios 4–6,
this model requires several times the initial sample size, an unjustifiable increase.

We relaxed the assumption that toxicity is uniform over groups by mirroring in
the toxicity model the efficacy covariate terms in (4), yielding a model with nine
parameters including ψ . The extra model complexity reduces approval probabilities
and coverage. Poor coverage is a particular problem in the toxicitymodel in scenarios



A Phase II Clinical Trial Design for Associated Co-primary Efficacy … 131

Table 3 Summary of simulated trials. Sc is scenario number; Co is cohort number. Patient cohorts
are defined in Table2. PrEff and PrTox are true probabilities of efficacy and toxicity. OddsR shows
ratio of odds of efficacy in patients that experience toxicity to those that do not. OddsR=1 reflects no
association; OddsR<1 implies efficacy is less likely when toxicity occurs. N showsmean number of
patients; Eff and Tox the mean number of events. Inf is the approval probability under informative
priors; Reg and Diff are the same under regularising and diffuse priors. BetaBin shows approval
probability using cohort-specific beta-binomial models. 10,000 iterations used

Sc Co PrEff PrTox OddsR N Eff Tox Inf Reg Diff BetaBin

1 1 0.300 0.1 1.0 9.3 2.8 0.9 0.883 0.896 0.878 0.540

2 0.300 0.1 1.0 13.1 3.9 1.3 0.906 0.920 0.905 0.658

3 0.300 0.1 1.0 7.5 2.3 0.8 0.980 0.909 0.816 0.473

4 0.300 0.1 1.0 12.5 3.7 1.2 0.875 0.912 0.896 0.635

5 0.300 0.1 1.0 10.8 3.2 1.1 0.873 0.909 0.890 0.590

6 0.300 0.1 1.0 6.8 2.0 0.7 0.959 0.893 0.819 0.459

2 1 0.100 0.3 1.0 9.3 0.9 2.8 0.012 0.025 0.019 0.035

2 0.100 0.3 1.0 13.1 1.3 3.9 0.013 0.028 0.023 0.032

3 0.100 0.3 1.0 7.5 0.8 2.3 0.038 0.029 0.021 0.034

4 0.100 0.3 1.0 12.5 1.2 3.7 0.009 0.024 0.021 0.034

5 0.100 0.3 1.0 10.8 1.1 3.2 0.009 0.024 0.022 0.032

6 0.100 0.3 1.0 6.8 0.7 2.0 0.027 0.025 0.019 0.041

3 1 0.300 0.1 0.2 9.3 2.8 0.9 0.884 0.897 0.879 0.562

2 0.300 0.1 0.2 13.1 3.9 1.3 0.906 0.920 0.904 0.667

3 0.300 0.1 0.2 7.5 2.3 0.8 0.981 0.909 0.818 0.494

4 0.300 0.1 0.2 12.5 3.7 1.2 0.877 0.913 0.897 0.652

5 0.300 0.1 0.2 10.8 3.2 1.1 0.874 0.908 0.889 0.605

6 0.300 0.1 0.2 6.8 2.0 0.7 0.960 0.893 0.820 0.478

4 1 0.167 0.1 1.0 9.3 1.5 0.9 0.408 0.451 0.398 0.293

2 0.192 0.1 1.0 13.1 2.5 1.3 0.651 0.690 0.633 0.432

3 0.500 0.1 1.0 7.5 3.8 0.8 0.993 0.981 0.974 0.622

4 0.091 0.1 1.0 12.5 1.1 1.3 0.208 0.277 0.215 0.131

5 0.156 0.1 1.0 10.8 1.7 1.1 0.405 0.493 0.419 0.298

6 0.439 0.1 1.0 6.8 3.0 0.7 0.961 0.930 0.931 0.581

5 1 0.167 0.3 1.0 9.3 1.5 2.8 0.027 0.063 0.039 0.071

2 0.192 0.3 1.0 13.1 2.5 3.9 0.046 0.099 0.066 0.084

3 0.500 0.3 1.0 7.5 3.8 2.3 0.071 0.141 0.102 0.159

4 0.091 0.3 1.0 12.5 1.1 3.7 0.014 0.037 0.021 0.028

5 0.156 0.3 1.0 10.8 1.7 3.2 0.030 0.071 0.045 0.065

6 0.439 0.3 1.0 6.8 3.0 2.0 0.070 0.135 0.099 0.163

6 1 0.167 0.1 0.2 9.3 1.5 0.9 0.408 0.451 0.396 0.308

2 0.192 0.1 0.2 13.1 2.5 1.3 0.651 0.689 0.633 0.447

3 0.500 0.1 0.2 7.5 3.8 0.8 0.993 0.981 0.974 0.627

4 0.091 0.1 0.2 12.5 1.1 1.3 0.208 0.278 0.212 0.139

5 0.156 0.1 0.2 10.8 1.7 1.1 0.402 0.493 0.415 0.313

6 0.439 0.1 0.2 6.8 3.0 0.7 0.962 0.929 0.930 0.589
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where the event rate is 10%. For instance, the four-parameter model performs very
poorly in scenarios 1 and 3, particularly in the smallest cohorts. Performance is better
in scenario 2where the true rate is 30%. This is notable because the published data [9,
10] suggest low toxicity. In scenarios not shown in Table3, this model successfully
identifies differential toxicity associated with covariates but requires a sample size
exceeding 100 to do so with high probability. Weighing the extra demand in resource
against the likely benefit, we prefer the simpler model.

Lastly, scenarios 3 and 6 show that model performance is seemingly unaffected by
strong association in efficacy and toxicity events.We investigated amodel variant that
assumes independence by setting ψ = 0 in (2). Approval probability and precision
were practically unchanged. This is understandable because ψ is absent from (4)
and therefore does not affect (3). ψ is useful, however, in conditional inference. For
example, the predicted distribution of unknown efficacy conditioned on observed
toxicity is shifted lower by ψ given negative association prevailing in the collected
trial data, and vice-versa. Given its useful role with no performance penalty, we
retain ψ .

6 Further Work and Availability of Materials

Statisticians know that dichotomising continuous variables reduces information. We
have used in this research the PD-L1 categorisation previously introduced and val-
idated in NSCLC [9]. In ongoing work, we use the underlying continuous score in
place of the categorisation. In this setting, further caremust be takenwhen specifying
the model form and the parameter priors. For instance, we expect overwhelmingly
that the gradient term describing the sensitivity of efficacy with respect to PD-L1
score will be positive, so that higher scores are more likely to yield efficacy events.
However, it is debatable whether our priors or model form should reflect that we
expect greater or lesser efficacy-PD-L1 sensitivity in treatment naive or pretreated
patients. A hierarchical approach has some merit, where PD-L1 gradients are inter-
preted as draws from some common distribution. This would allow heterogeneity to
manifest in subgroups whilst discouraging over-fitting via shrinkage-based regulari-
sation.Missing data is a perennial challenge in clinical trials. A hierarchical approach
has the further benefit of pragmatically treating patients with unknown pretreatment
status as a third cohort. Intuitively, we could interpret this group as behaving like an
unknown mixture of pretreated and treatment-naive patients.

One of the focuses of this research has been the consideration of different models
that could eventually be fit to the trial data. We approached the problem as if one
candidate model had to be identified in advance in the analysis plan. An alternative
is to specify a suite of models and then combine their inferences. For instance, in
Bayesian model averaging, the response distributions generated by the candidate
models are weighted together by their marginal posterior probabilities. In contrast,
methods have been introduced that stack posterior predictive distributions, using the
leave-one-out (LOO) predictor for each model and each data-point, deriving model
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weights that minimise the LOO mean squared error [18]. A method like this could
allow us to combinemodelswithmarkedly different features like simple and complex
specifications for the toxicity sub-model in a data-oriented manner.

Models used in this research were implemented in Stan [5] and all materials are
available on GitHub at https://github.com/brockk/bebop.

References

1. Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D.R., Steins, M., Ready, N.E., et al.: Nivolumab
versus docetaxel in advanced non-squamous non-small-cell lung cancer. N. Engl. J. Med. 373,
123–135 (2015)

2. Braun, T.M.: The bivariate continual reassessment method: extending the CRM to phase I trials
of two competing outcomes. Control. Clin. Trials. 23, 240–256 (2002)

3. Brutti, P., Gubbiotti, S., Sambucini, V.: An extension of the single threshold design for moni-
toring efficacy and safety in phase II clinical trials. Stat. Med. 30, 1648–1664 (2011)

4. Bryant, J., Day, R.: Incorporating toxicity considerations into the design of two-stage phase II
clinical trials. Biometrics. 51, 1372–1383 (1995)

5. Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., et al.: Stan: a probabilistic
programming language. J. Stat. Softw. 76, 1–32 (2017)

6. Conaway, M., Petroni, G.: Designs for phase II trials allowing for a trade-off between response
and toxicity. Biometrics. 52, 1375–1386 (1996)

7. Cook, R., Farewell, V.: Guidelines for monitoring efficacy and toxicity responses in clinical
trials. Biometrics. 50, 1146–1152 (1994)

8. Eisenhauer, E.A., Therasse, P., Bogaerts, J., Schwartz, L.H., Sargent, D., et al.: New response
evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer.
45 228–2DD47 (2009)

9. Garon, E.B., Rizvi, N.A., Hui, R., Leighl, N., Balmanoukian, A.S., et al.: Pembrolizumab for
the treatment of nonsmall-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015)

10. Herbst, R.S., Baas, P., Kim, D., Felip, E., Perez-Gracia, J.L., et al.: Pembrolizumab ver-
sus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer
(KEYNOTE-010): a randomised controlled trial. Lancet. 387, 1540–1550 (2016)

11. Jin, H.: Alternative designs of phase II trials considering response and toxicity. Contemp. Clin.
Trials. 109, 525–536 (2007)

12. Konopleva, M., Thall, P.F., Arana Yi, C., Borthakur, G., Coveler, A., et al.: Phase I/II study of
the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute
lymphoblastic leukemia. Haematologica. 100, 927–934 (2015)

13. Schiller, J.H., Harrington, D., Belani, C.P., Langer, C., Sandler, A., et al.: Comparison of four
chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 346, 92–98
(2002)

14. Thall, P.F., Simon, R.M., Estey, E.H.: New statistical strategy formonitoring safety and efficacy
in single-arm clinical trials. J. Clin. Oncol. 14, 296–303 (1996)

15. Thall, P.F., Sung, H.G.: Some extensions and applications of a Bayesian strategy for monitoring
multiple outcomes in clinical trials. Stat. Med. 17, 1563–1580 (1998)

16. Thall, P.F., Cook, J.D.: Dose-finding based on efficacy-toxicity trade-offs. Biometrics. 60,
684–693 (2004)

17. Thall, P.F., Nguyen, H.Q., Estey, E.: Patient-specific dose finding based on bivariate outcomes
and covariates. Biometrics. 64, 1126–1136 (2008)

18. Yao, Y., Vehtari, A., Simpson, D., Gelman, A.: Using stacking to average Bayesian predictive
distributions. Bayesian Anal. 13, 917–1007 (2017)

19. Zhang, W., Sargent, D.J., Mandrekar, S.: An adaptive dose-finding design incorporating both
toxicity and efficacy. Stat. Med. 25, 2365–2383 (2006)

https://github.com/brockk/bebop


A Conditional Autoregressive Model
for Estimating Slow and Fast Diffusion
from Magnetic Resonance Images

Ettore Lanzarone, Elisa Scalco, Alfonso Mastropietro, Simona Marzi
and Giovanna Rizzo

Abstract The Intra-Voxel Incoherent Motion (IVIM) model is largely adopted to
estimate slow and fast diffusion parameters of water molecules in biological tissues,
which are used as biomarkers for different diseases. However, the standard approach
to obtain the maps of these parameters is based on a voxel-by-voxel estimation and
neglects the spatial correlations, thus resulting in noisy maps. To get better maps,
we propose a Bayesian approach that exploits a Conditional Autoregressive (CAR)
prior density. We consider a pure CAR model and a mixture CAR model, and we
compare the outcomes with two benchmark approaches. Results show better maps
under the CAR models.

Keywords Conditional autoregressive model · Diffusion parameters · Intra-voxel
incoherent motion · Magnetic resonance imaging · Spatial correlation

1 Introduction

Diffusion-WeightedMagnetic Resonance Imaging (DW-MRI) is a non-invasive tech-
nique that is largely employed to quantitatively characterize the diffusion properties
of water molecules in biological tissues. The acquisition of DW-MRI images is
based on matched dephasing and rephasing gradient envelopes, whose characteris-
tics (magnitude, duration and time interval) are combined in a single parameter b
that influences the signal attenuation associated with the diffusion properties.

The Intra-Voxel IncoherentMotion (IVIM)model describes the incoherentmotion
of the water molecules as a biexponential decay over b, with a slow and a fast
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diffusion component that depend on three parameters: two decay rate coefficients
(slow diffusion D and fast pseudo-diffusion D∗) and the pseudo-diffusion volume
fraction f [10].

This model is largely applied in clinics to estimate the parameters D, D∗ and f
based on patient-specific DW-MRI images acquired at different b values. As already
reported in the literature, these parameters can be used as biomarkers for different
diseases [17]. Moreover, their estimation over the voxels allows obtaining maps
of the spatial distribution of the diffusion properties in Regions of Interest (ROIs).
In the literature and the practice, the standard approach to obtain these maps is a
nonlinear least-square method, which fits the biexponential function to the acquired
DW-MRI images using the Levenberg Marquardt or the Trust Region algorithm [16,
17]. However, it generates noisy maps, especially forD∗ and f [17], due to the voxel-
by-voxel estimation that reduces the Signal to Noise Ratio (SNR) and neglects the
spatial structure of the biological tissues.

Our aim is to develop an alternative approach to include the spatial correlation in
the estimation procedure, in order to reduce the noise of estimated maps. To this end,
we exploit a Conditional Autoregressive (CAR) specification of the prior density,
and we consider both a pure CAR model and a mixture CAR model.

2 Literature Review

Bayesian approaches have been largely applied to medical imaging, especially for
tissue classification [1, 5]. Functional MRI (fMRI) is the most relevant application
field for Bayesian approaches, whose aim is to infer brain regions that exhibit a
neuronal activity in response to a given stimulus, by detecting blood flow changes
[19]. For example, Jeong et al. [8] applied linear regression models with long mem-
ory errors and discrete wavelet transforms, together with a Bayesian estimation of
model parameters. Zhang et al. [18] applied a wavelet-based Bayesian nonparamet-
ric regression model, accounting for the spatial correlation structure of the tissue by
means of a Markov random field prior. Zhang et al. [20] applied a spatio-temporal
linear regression model that specifically accounts for the heterogeneity in neuronal
activity between subjects via a spatially informed multi-subject nonparametric vari-
able selection prior.

Bayesian approaches have been also proposed to estimate the IVIM parameters
in the context of DW-MRI. A simple Bayesian approach with uninformative or min-
imally informative priors was firstly proposed by Neil and Bretthorst [12]. Barbieri
et al. [2] found that this approach is associated with lower variability and higher
precision and accuracy with respect to several least-square approaches. This simple
voxel-by-voxel Bayesianmodel was also applied byDyvorne et al. [3] to estimate the
effects of diffusion gradient polarity and breathing acquisition scheme on image qual-
ity, SNR, IVIM parameters, and parameter reproducibility in the liver district. Orton
et al. [13] proposed a shrinkage prior model with no user-defined parameters, and
this approach was applied by Spinner et al. [14] in cardiovascular images. Freiman
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et al. [4] and Kurugol et al. [9] considered a spatial homogeneity prior in the form of
a continuous Markov random field to obtain spatially regular parametric maps, and
they proposed a fusion bootstrap moves algorithm to get the posterior density. In a
recent work, While [17] compared several approaches to estimate the IVIM para-
metric maps, including a Bayesian model with a Gaussian shrinkage prior [13] and
two Bayesian models with a spatial homogeneity prior [4]. He highlighted that the
Bayesian approaches consistently outperformed the classical non-linear least square
fitting, and that the use of a spatial homogeneity prior reduces the errors with respect
to a Gaussian one. However, these approaches could mask some tissue features and,
thus, they must be implemented with caution. For example, the prior distribution and
the central tendency measure have an impact on the estimation results, as demon-
strated by [7], who found that the best overall quality of the IVIM parameters is
obtained with a lognormal prior. To the best of our knowledge, none of available
works consider spatial autoregressive models.

3 Problem Description and Approach

Our dataset consists of several DW-MRI signal intensity images acquired at different
b values (b ∈ B starting from b = 0 s/mm2). Each image is divided in voxels and we
refer to a single layer of them, i.e., we deal with two-dimensional images for which
the discrete coordinates of a voxel are (i, j), with i ∈ I and j ∈ J .

The signal intensity in voxel (i, j) at b is denoted by SI(i, j, b), and the intensity
decay over b is described in each voxel by the IVIM model [17]:

SI (i, j, b) = SI (i, j, 0)
{
f (i, j) e−b Dsum(i,j) + [

1 − f (i, j)
]
e−b D(i,j)

}

∀i ∈ I , j ∈ J , b ∈ B \ {0} (1)

whereDsum (i, j) = D (i, j) + D∗ (i, j). Our goal is to estimate the coefficientsD(i, j),
Dsum(i, j) and f (i, j) in each voxel. Then, we derive D∗(i, j) = Dsum(i, j) − D(i, j).

We propose a pure CAR approach and a mixed CAR approach, in which the prior
includes a CAR and a Gaussian component.

3.1 Likelihood Function

The parameters to estimate are included in set Θ , with Θ = D ∪ Dsum∪
f,D = {D (i, j) , i ∈ I , j ∈ J },Dsum = {Dsum (i, j) , i ∈ I , j ∈ J } and f = { f (i, j) ,

i ∈ I , j ∈ J }.
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Each parameter inΘ is assumed to be a random variable. Thus, each decay Eq. (1)
is a randomprocess, andwemay express the density of each SI (i, j, b) as conditioned
to Θ :

SI (i, j, b) ∼ L (SI (i, j, b) |Θ, SI (i, j, 0)) ∀i ∈ I , j ∈ J , b ∈ B \ {0} (2)

where L denotes the conditional probability law. Moreover, we assume that each
observation SIobsijb (with b ∈ B \ {0}) is subject to a measurement error and that the
errors are independent, based on the fact that each image is separately acquired.

Thus, we model the observations as stochastic variables centered on the value
computed from the model, which are conditionally independent given the model
parameters. Indeed,we consider aNormal distributionN withmean value SI (i, j, b)
and standard deviation σobs:

SIobsijb ∼ N
(
SI (i, j, b) , σ 2

obs

) ∀i ∈ I , j ∈ J , b ∈ B \ {0} (3)

Actually, a Rician distribution should be used for low SNR values, while the
Rician distribution iswell approximated by theGaussian one [6] for high SNRvalues.
Anyway, the Gaussian and the Rician likelihood functions give similar results for a
large range of SNR values [7].

The combination of (2) and (3) gives the conditional lawof each observationSIobsi,j,b,
while their product over i ∈ I , j ∈ J and b ∈ B \ {0} gives the likelihood function of
the overall set of observations given Θ .

3.2 Prior Density

We assume a priori independence between D, Dsum and f . Then, separately for each
parameter λ (i, j), where λ generically denotes D (i, j), Dsum (i, j) or f (i, j), we con-
sider two alternative priors. The former is a CAR specification, while the latter is
a mixture model with two components: the same CAR specification and a simple
Gaussian density.

Moreover, the standard deviation σobs follows an independent Gamma density:

σobs ∼ Gamma

(∑
i∈I ,j∈J SI

obs
ij0

2 |I × J | , 1

)

The mean value is the half of the average value of SIobsijb at the initial b = 0, to scale
the mean value based on the specific image set, and the variance is equal to the mean
value.
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3.2.1 CAR Specification

We refer to [11] andwe assume the following intrinsicCARmodel for each parameter
λ (i, j) given the rest of the values:

λ (i, j) |λc
i,j ∼ N

(∑
α∈I ,β∈J w(α, β, i, j)λ (α, β)
∑

α∈I ,β∈J w(α, β, i, j)
,

σ 2
λ∑

α∈I ,β∈J w(α, β, i, j)

)

(4)

where λc
i,j = λ \ {λ (i, j)} and w(α, β, i, j) denotes the spatial neighborhood matrix.

In particular, we assume w(α, β, i, j) = 1 for the voxels (α, β) bordering (i, j), and
0 elsewhere:

w(α, β, i, j) =

⎧
⎪⎨

⎪⎩

1 α = {i − 1, i + 1} and β = {j − 1, j, j + 1}
1 α = i and β = {j − 1, j + 1}
0 otherwise

With respect to [11], we consider the intrinsic model by setting the spatial auto-
correlation coefficient ρ = 1; possible instabilities are fixed by the mixture model.

Finally, the priors for the standard deviations are σf ∼ Gamma (0.25, 1), σDsum ∼
Gamma (0.01, 1) and σD ∼ Gamma (0.001, 1), with mean value in agreement with
the literature and variance equal to the mean value.

3.2.2 Mixture Model

We assume the following mixture distribution for each parameter λ (i, j):

f (λ (i, j) |λc
i,j) = wC fC

(
λ (i, j) |λc

i,j

)
+ wG fG (λ (i, j)) (5)

where f denotes the mixture density, fC the density of the CAR component, as in (4),
and fG the density of the Gaussian component, which assumes the following form
for each parameter λ (i, j):

λ (i, j) ∼ N
(
μλ, σ

2
0λ

)
(6)

with μf = σ0f = 0.1, μDsum = σ0Dsum = 0.01, μD = 0.001 and σ0D = 0.0001.
The weights are set as follows: wC = 0.75 and wG = 0.25.

3.3 Posterior Estimates

The Bayesian models are implemented in R with package RSTAN [15]; the code is
freely available upon request. Samples from the posterior densities are obtained with
1000 iterations after a warm up of 1000 iterations, which guarantee convergence.
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4 Application to Test Images and Results

We consider two test images, the former related to the head-and-neck district (HN)
and the latter to the shoulder (SH). In both cases,B = {0, 25, 50, 75, 100, 150, 300 ,
500, 800} s/mm2. We compare four approaches (our proposals and two bench-
marks):

1. Mixture: the proposed approach with the mixture prior;
2. CAR: the proposed approach with the CAR prior;
3. Gauss: a simple Bayesian approach with the Gaussian prior in (6);
4. Segm: the standard segmented approach with a non-linear least square fitting,

using the Trust Region optimization algorithm [17].

We first evaluate the quality of the maps. Then, we perform a quantitative com-
parison in some ROIs manually identified (tumor and muscle in both cases; parotid
gland in HN). We consider the Coefficient of Variation (CV) for each parameter
within each area, i.e., the ratio between the standard deviation and the mean value
of the parameter over the voxels in the area [9]. As for the Bayesian approaches,
we consider the maps of the posterior mean in each voxel, and mean and standard
deviations for the CVs are computed with the posterior means in the voxels.

The maps of f , D and D∗ = Dsum − D in Figs. 1 and 2 show that Mixture and
CAR outperform the other approaches. Segm maps are the noisiest, while Gauss
maps are qualitatively too smooth, especially for D where contrasts are lost and
compromise the estimation of the other coefficients. CVs in Table1 show the highest
values in Segm and the lowest inGauss, as expected (noisy images and lost contrasts,
respectively). CVs ofMixture and CAR approaches are fair and similar. However, as
shown in Figs. 1 and 2, Mixture provides a better estimation of the D∗ map.

5 Discussions and Conclusion

We apply for the first time in the literature a Bayesian CAR approach to estimate the
IVIM model coefficients.

Results have confirmed that the maps estimated with the Segm approach are
the noisiest, as reported in the literature. Also the maps estimated with the Gauss
approach are not acceptable, even though the CV is low, because of the considerable
underestimation of D and D∗ and the overestimation of f (data not shown). Mix-
ture and CAR approaches generate acceptable maps with similar CVs and realistic
parameter values in each ROI. However, the pure CAR approach presents saturation
problems, especially for D∗. These problems are mitigated by theMixture approach,
which regularizes local criticalities.

Future work will be devoted to further improve the estimation approach, e.g.,
exploiting the segmentation used in [16, 17] also in our Bayesian CAR framework.
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Fig. 1 HN case. DW-MRI image acquired at b = 0 s/mm2 with the three ROIs (muscle, tumor and
parotid) delineated in yellow (top image). Estimatedmaps ofD∗,D and f under the four approaches:
mixture (first column), CAR (second column), Gauss (third column), Segm (fourth column)
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Fig. 2 SH case. DW-MRI image acquired at b = 0 s/mm2 with the two ROIs (muscle and tumor)
delineated in red (top image). Estimated maps of D∗, D and f under the four approaches: mixture
(first column), CAR (second column), Gauss (third column), Segm (fourth column)
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Table 1 CVs of parameters D∗, D and f in the ROIs, for both the HN and SH case

Mixture CAR Gauss Segm

D∗ HN Tumor 0.532 0.394 0.379 0.750

Parotid 0.324 0.500 0.426 0.425

Muscle 0.530 0.505 0.355 1.182

SH Tumor 0.694 0.648 0.504 0.504

Muscle 0.674 0.636 0.391 1.053

D HN Tumor 0.204 0.215 0.053 0.247

Parotid 0.490 0.676 0.095 0.355

Muscle 0.179 0.190 0.026 0.162

SH Tumor 0.258 0.255 0.072 0.293

Muscle 0.236 0.228 0.029 0.452

f HN Tumor 1.008 1.067 0.671 1.570

Parotid 0.540 0.522 0.437 0.588

Muscle 0.830 0.902 0.584 1.223

SH Tumor 0.532 0.529 0.434 0.630

Muscle 0.590 0.703 0.546 0.627
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Abstract Viral load values and CD4+T cells count are markers currently evaluated
in the clinical follow-up ofHIV/AIDSpatients. In this context, it is relevant to develop
methods that provide a more complete temporal description of these markers, e.g. in
between clinical appointments. To this end, we combine a mathematical model and
a Bayesian methodology to estimate trajectories from a set of observed values. Also,
we construct a variation band containing the most central trajectories for one patient,
by exploring the range of values in the a posteriori distributions. The methods are
illustrated with simulated data.
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1 Introduction and Methods

Viral dynamic models can be formulated through a system of nonlinear ordinary dif-
ferential equations, which enables to describe the temporal evolution of the clinical
parameters of a HIV patient. To this extent, several HIV dynamic models have been
proposed in the literature [9]. An instance of that are the two versions of a HIVmodel
based on the interactions between uninfected, latently infected and actively infected
CD4+T cells together with free virus, introduced by Perelson et al. [10]. Moreover,
Bonhoeffer et al. [1] discuss a model that includes nonlinear interactions between
virus and host cell populations, including the effect of a HIV therapy approach. Most
of the statistical models used in HIV context are non-linear mixed effects and model
longitudinal outcomes by accounting for within and between subject sources of vari-
ations [14]. In this work, we are solely interested in the within individual variation.
We also assume that the within variation of a subject (i.e. its temporal trajectory)
is well described by a system of ordinary differential equations (ODE), where its
parameters reflect the intra-subject mechanisms related to the interaction between
virus and immune system response. Thus, the statistical model is here defined from
the numerical solution of the ODE system and an error term that represents measure-
ment error and model misspecification [5, 6].

For the estimation of the parameters of a HIV model, the most commonly used
approaches in practice are based either on nonlinear least squares (e.g. [7]) or on
Bayesian estimation (e.g. [6]). The advantages of Bayesian approaches are well-
known and include the simplicity of computational implementation and the gener-
ation of a posteriori distributions for the unknown parameters. Additionally, these
methods offer the possibility of including prior knowledge in the model (e.g., the
physiological variation interval for the parameters of the model).

This work aims at estimating the temporal trajectories of the clinical markers of a
HIV patient, from a set of (sparse) observations over time. The methodology adopted
in this work combines a Bayesian approach initial values obtained from nonlinear
least squares to the experimental data. Furthermore, we introduce temporal trajectory
bands based on themultivariate a posteriori distribution to characterize the variability
of temporal trajectories for a given subject.

The rest of the paper is organized as follows: in Sect. 1.1, the dynamics of
HIV/AIDS infection are described through a mathematical model. In Sect. 1.2, the
Markov-Chain Monte Carlo (MCMC) methodology is introduced and explained in
detail. Furthermore, the optimization procedure developed to obtain optimal initial
estimates for the parameters of the model is also presented. These methods allow
to build several trajectories for each patient, where each trajectory is obtained for a
given solution in the a posteriori distributions. In Sect. 2, the methods are illustrated
with simulated data that mimic experimental temporal trajectories and incorporates
laboratory measurement errors of the clinical markers. Finally, Sect. 3 is devoted to
conclusions.
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1.1 Mathematical Model

We consider a modified version of the mathematical model in Stafford et al. [12] for
the dynamics of HIV/AIDS infection. The model includes an additional parameter
ε denoting the effectiveness of the antiretroviral therapy [8], and is represented as

dT (t)

dt
= λ − d1T (t) − (1 − ε)k1T (t)V (t)

dT ∗(t)
dt

= (1 − ε)k1T (t)V (t) − δT ∗(t) (1)

dV (t)

dt
= π1T

∗(t) − cV (t)

with initial conditions (T (0),T ∗(0), V (0)) = (T0,T ∗
0 , V0). The state variables are the

viral load V (t) and the number of uninfected and infected CD4+ T cells, respectively
T (t) and T ∗(t). Thus, the total number of CD4+ T cells is CD4(t) = T (t) + T ∗(t).
The model also incorporates parameters with clinical interpretation, namely θθθ =
(d1, ε, k1, δ, π1, c). The parameter d1 is the difference between rate loss from cell
death and rate gain due to cell division of CD4+ T cells, and the term λ = d1T0
expresses the proliferation rate of uninfected target cells. The parameter 0 ≤ ε ≤ 1
is the effectiveness of therapy, k1 is the infectivity rate, δ is the death rate of infected
cells, π1 is the average number of virions produced by a single infected cell and c is
the clearance rate of free virions [12].

1.2 Bayesian Approach for Parameter Estimation (MCMC)

The vector θθθ is estimated from a set of CD4(t) values observed for one patient at its
clinical follow-up appointments. The Bayesian estimation approach used for the esti-
mation of θθθ , presented in Sect. 1.2.1, incorporates non-informative prior distributions
which require the setting of initial values in order to start the iterative parameters
updates. In particular, there is a need to set the initial values for the parameters which
are obtained by the optimization procedure described in Sect. 1.2.2.

1.2.1 MCMC Methodology

The repeated measurements y(ti) := CD4(ti) of a subject at a treatment time ti can
be written as

y(ti) = f (θθθ, ti) + eee(ti), i = 1, . . . , n, (2)

where f (θθθ, ti) := ŷ(ti) represents the CD4 value of the subject at treatment time ti,
provided by the mathematical model described in (1), by considering a set of fixed
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Algorithm 1MCMC Algorithm
1: Compute optimal η̂̂η̂η and set ηηη = η̂̂η̂η.
2: Initialization (k = 1)

2.1 Set hyper-parameters a, b,ηηη,ΛΛΛ,ΩΩΩ and υ.
2.2 Generate θθθ(k) for k = 1:

• generate σ−2(k) following σ−2 ∼ Ga(a, b) where Ga is the Gamma distribution.
• generate μμμ(k) following μμμ ∼ N (ηηη,ΛΛΛ) where N is the Normal distribution.
• generate ΣΣΣ−1(k) following ΣΣΣ−1 ∼ Wi(ΩΩΩ, υ) where Wi is the Wishart distribution.
• generate θθθ(k) = ηηη + bbb, [bbb|ΣΣΣ] ∼ N (0,ΣΣΣ(k)).

2.3 Accept θθθ(k) if (0.01, 0, 10−11, 0.24, 50, 2.39) ≤ θθθ(k) ≤ (0.02, 1, 10−5, 0.7, 104, 23) otherwise repeat from 2.2.

3: Actualization (k > 1)
3.1 Generate candidate ϕϕϕ for k > 1:

• generate σ−2(k) following [σ−2|μμμ(k−1),ΣΣΣ−1(k−1), θθθ(k−1),yyy] ∼ Ga(a + 1
2 ,AAA−1(k)),

where AAA(k) = b−1 + 1
2

∑n
i=1[y(ti) − f (θθθ(k−1), ti)]2.

• generate μμμ(k) following [μμμ|σ−2(k−1),ΣΣΣ−1(k−1), θθθ(k−1),yyy] ∼ N (BBB−1(k)CCC(k),BBB−1(k)),
where BBB(k) = ΣΣΣ−1(k−1) + ΛΛΛ−1 and CCC(k) = ΣΣΣ−1(k−1)θθθ(k−1) + ΛΛΛ−1ηηη.

• generate ΣΣΣ−1(k) following [ΣΣΣ−1|σ−2(k−1),μμμ(k−1), θθθ(k−1),yyy] ∼ Wi(DDD
−1(k), 1 + υ),

whereDDD(k) = ΩΩΩ−1 + (θθθ(k−1) − μμμ(k−1))(θθθ(k−1) − μμμ(k−1))T .
• generate candidate ϕϕϕ = μμμ(k) + bbb, [bbb|ΣΣΣ(k)] ∼ N (0,ΣΣΣ(k)).

3.2 Keep ϕϕϕ if (0.01, 0, 10−11, 0.24, 50, 2.39) ≤ ϕϕϕ ≤ (0.02, 1, 10−5, 0.7, 104, 23) otherwise repeat from 3.1.

4: Accept or reject candidate ϕϕϕ

4.1 Define π(xxx|σ−2(k),μμμ(k),ΣΣΣ−1(k),yyy) = exp{− σ−2(k)
2

∑n
i=1[y(ti) − f (xxx, ti)]2 − 1

2 (xxx − μμμ(k))TΣΣΣ−1(k)(xxx −
μμμ(k))}.
4.2 Evaluate the acceptance probability α(ϕϕϕ|θθθ(k−1)) = min

(

1, π(ϕϕϕ|σ−2(k),μμμ(k),ΣΣΣ−1(k),yyy)
π(θθθ(k−1)|σ−2(k),μμμ(k),ΣΣΣ−1(k),yyy)

)

.

4.3 Generate u following u ∼ U (0, 1) where U is the Uniform distribution.

4.4 Assign θθθ(k) = ϕϕϕ and move to k + 1 if α(ϕϕϕ|θθθ(k−1)) ≥ u otherwise θθθ(k) = θθθ(k−1) and repeat from 3.

values for the components in θθθ . Finally, eee(t) is a zero-mean error with variance σ 2

[5]. In accordance with other literature studies, we considered log10-transformations
to ensure the positiveness of the dynamic parameters and to stabilize the CD4(t)
variance [5].

The MCMC methodology proceeds as presented in Algorithm 1. There is an
initialization step where the hyper-parameters of the a priori distributions are set. We
consider σ−2 ∼ Ga(a, b),μμμ ∼ N (ηηη,ΛΛΛ) andΣΣΣ−1 ∼ Wi(ΩΩΩ, υ) with parameters a =
4, b = 8,ΛΛΛ = (0.4, 0.01, 0.3, 0.1, 100, 0.1),ΩΩΩ = (2.0, 0.5, 2.0, 2.0, 1.25, 2.5) and
υ = 5 as in previous studies [5, 6]. Also, ηηη = log10(d10 , ε0, k10 , δ0, π10 , c0) is set as
the vector of optimal parameters estimates resulting from the nonlinear programming
algorithm described in Sect. 1.2.2.

After initialization, the Gibbs sampling steps update σ−2, μμμ and ΣΣΣ−1, whereas
the Metropolis-Hasting algorithm updates θθθ . The values at state k, i.e. σ−2(k), μμμ(k)

andΣΣΣ−1(k), are used to generate a candidate for θθθ(k), denoted as ϕϕϕ. Then, the accep-
tance probability is evaluated and, if higher than a uniform (0, 1) generated random
number, the candidate ϕϕϕ is accepted and θθθ(k) = ϕϕϕ. Note that there is an implicit
relation between σ , μμμ and ΣΣΣ , and the model in (2) through the evaluation of π

in the acceptance probability. It is clear that π depends of y(ti) − f (., ti), which
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Table 1 Values for the parameters θθθ = (d1, ε = 0, k1, δ, π1, c) used for the simulation of 100
replicas per patient [12]. See [4, 12] for further details on parameters range

Patient d1 (day−1) k1 (ml day−1) δ (day−1) π1 (day−1) c (day−1)

1 0.013 0.46 × 10−6 0.40 980 3

2 0.012 0.75 × 10−6 0.39 790 3

3 0.017 0.80 × 10−6 0.31 730 3

Range 0.01–0.02 10−11–10−5 0.24–0.70 50–104 2.39–23

is the error term e(ti) in model in 2. While the computation of f (ϕϕϕ, ti) indirectly
depends of σ−2(k), μμμ(k) and ΣΣΣ−1(k), as ϕϕϕ is generated from σ−2(k), μμμ(k) and ΣΣΣ−1(k),
the computation of f (θθθ(k−1), ti) indirectly depends of σ−2(k−1),μμμ(k−1) andΣΣΣ−1(k−1),
as θθθ(k−1) was generated from σ−2(k−1), μμμ(k−1) and ΣΣΣ−1(k−1), and accepted in the
previous state of the chain. Afterwards, the chain starts over in the new state k + 1
until 6000 candidates are accepted, i.e., at the end of this process, the algorithm
produces θθθ(k), k = 1, 2, . . . , 6000 vectors, to be used in subsequent analyses. In the
initialization (k = 1) and actualization (k > 1) steps, the (physiological) validity of
the model is tested by checking whether θθθ(k) = (d1, ε, k1, δ, π1, c) falls within the
range of values in Table1.

1.2.2 Optimal ηηη Estimate

As stressed above, an acceptable ηηη value for the MCMCmethod is obtained through
the nonlinear programming algorithm. As before, CD4(ti) is the observed number of
CD4+T cells at time ti, i = 1, 2, . . . , n, and f (ηηη, ti) = ̂CD4(ti) = T (ti) + T ∗(ti) is
the value of CD4(ti) provided by the model (1) for a given ηηη. The optimal parameter
estimates, say η̂̂η̂η, can be obtained by minimizing the sum of squared errors between
the model estimates and the observed CD4 values. Thus, the nonlinear programming
algorithm can be formulated as

minimize g(ηηη) =
n

∑

i=1

(̂CD4(ti) − CD4(ti))
2

subject to
n

∑

i=1

(̂CD4(ti) − CD4(ti)) = 0 (3)

and lblblb ≤ ηηη ≤ ububub

where the restriction guarantees that the numerical solution η̂̂η̂η verifies that prop-
erty of the minimum least squares method (i.e. equal contribution of negative
and positive deviations from observations). Finally, η̂̂η̂η is restricted to physiologi-
cal lower and upper bounds, respectively lblblb = (0.01, 0, 10−11, 0.24, 50, 2.39) and
ububub = (0.02, 1, 10−5, 0.7, 10000, 23) [4, 12].
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Fig. 1 a, b, c: CD4(t) trajectory over time of the patients with the θθθ parameters in Table 1. The
circles represent the observations obtained for one replica of each patient

The optimization procedure was implemented with MATLABTM function
fmincon, that starts at an initial solution ηηη∗ to find a minimizer η̂̂η̂η of g(ηηη) subject
to the above-mentioned restrictions and bounds. The initial solution ηηη∗ is obtained
as that minimizing g(ηηη) in a set of 1000 candidates randomly generated from a
multivariate uniform distribution on lblblb and ububub. The optimization procedure in (3)
was first introduced by [11] and validated through a simulation study. We concluded
that the parameters ηηη (in Table1) used for data simulation can be properly replaced
by the estimates η̂̂η̂η obtained from the optimization procedure, as such replacement
does not lead to a relevant impact on the optimum g(·) value. Moreover the results
in [11] showed that η̂̂η̂η provides a better fit to the data than ηηη because the optimiza-
tion procedure produces a fine tuning to the data. Finally, it is important to stress
that the replacement of ηηη by η̂̂η̂η is mandatory when dealing with real data, because
reference parameters ηηη are unknown in such cases. The algorithms and other soft-
ware used in this work were implemented in MATLABTM (version R2015a), The
Mathworks Inc., MA, USA.

2 Simulated Data and Results

The methods described above were tested on simulated data. Equally spaced CD4(t)
and V (t) observations were generated in the interval [0, 120](days), by numeri-
cal Runge–Kutta integration of (1). We reproduced the evolution of three HIV
patients with parameters presented in Table1 and initial conditions (T0,T ∗

0 , V0) =
(11 × 103, 0, 10−6). In this way, we obtain a set of n = 18 observations representing
the temporal trajectory of a patient in clinical follow-up every 7 days.Afterwards, 100
replicas of the trajectory are randomly generated, by adding an error to the CD4+T
values following a zero mean Normal distribution with standard deviation equal
to 20% of the measured value [13]. Figure1a–c shows one replica of each patient
and highlights the similarities and differences among patients. After estimation, the
chains associated with the model’s parameters were analyzed with respect to auto-
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correlation and convergence. As expected, the chains exhibited serial dependence in
all cases (replicas and parameters). Therefore, for each replica, we considered the
lowest sampling interval of the chain values (up to 6) for which the sample autocor-
relation was within the 95% confidence band for a null autocorrelation. With this
procedure, the initial 6000 samples were reduced to e.g. 2000, 1500, 1200 or 1000,
depending of the replica. Finally, the Geweke and the Gelman and Rubin tests were
performed to analyze convergence [2, 3]. Convergence was not rejected for all cases,
as results in Table 2 show the G test statistics inside the interval (−1.96, 1.96) of
95% confidence for equality of the means (of the first 10% and last 50% of each
Markov chain) and the GR factors close to 1. Figure 2 presents the a posteriori dis-
tributions of the parameters θθθ , for the replicas presented in Fig. 1. In particular, the
distributions associated with d1 hold clear similarities for patients 1 and 2, and both
show large differences to that of patient 3. This result was expected due to the d1
values associated with each patient: similar d1 values for patients 1 and 2, and distinct
from that of patient 3 (see Table1). For the remaining parameters, the differences
between distributions are barely perceptible. Therefore, we considered the multivari-
ate parameter d = ∑n

i=1(
̂CD4(ti) − CD4(ti)) to enhance inter-subject differences.

The parameter d allows the simultaneous analysis of θθθ values, as d is evaluated from
̂CD4(ti) = T (ti) + T ∗(ti) with a certain combination of values in θθθ . Therefore, each
combination of values in θθθ has associated just one value of d . Figure3 resumes the
analysis for patient 1. The distribution of d is obtained by evaluation of ̂CD4 for
all combinations of θθθ values obtained from the multivariate a posteriori distribu-
tion. The vertical line locates d = 0 i.e. the combination with null deviation from
observed to estimated data. The corresponding temporal trajectory is well adjusted
to the simulated data and exhibits clear similarities to the temporal trajectory from
the simulation parameters (Fig. 1). Also, the percentiles 25 and 75 of d distribution
constitute a variation band containing 50% of the most central deviations and allow
to obtain a variation band containing the most central temporal trajectories for each
patient. Note that the 50% band of the patient trajectories is constructed from the
distribution of d and, as expected, d0.25 < d0.75 where dp is the pth-percentile of d .

However, note that the ̂CD4(ti) values evaluated for θθθ0.25 and θθθ0.75 do not necessarily
maintain the same ordering. Instead, these curves constitute the range of variation
of the curves with lowest squared errors. In order to compare different antiretro-
viral therapy (ART) conditions, we further consider simulation cases with ε �= 0
together with the parameters presented in Table 1, for all patients. Note that high
values of ε mimic the effect of highly effective ART where the CD4+T trajectories
tend to be constant for longer time periods and, at the limiting value ε = 1, it repro-
duces a constant line. Therefore, we consider ε ∈ {0.1, 0.25, 0.35} so to reproduce
a variety of CD4+T trajectories with an accentuated decay after the constant initial
step. However, the set of simulation parameters theta [see table 1] and ε �= 0 does
not guarantee that the simulation case reproduces a real condition. Therefore, these
simulation cases are presented solely to evaluate the estimation performance when
ε �= 0. Figure 4 resumes the results for patient 1 and shows that the performance
in estimation for ε ∈ {0.1, 0.25, 0.35} is fairly similar to that obtained for the case
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Table 2 Chains’ convergence analysis from Geweke test (G test statistics, first 3 lines of the table)
and Gelman and Rubin diagnostic test (GR factor, last 3 lines of the table). The values are mean ±
standard deviation evaluated for 100 replicas of each patient

Patient log10(d1) log10(k1) log10(δ) log10(π1) log10(c)

1 −0.041 ± 0.936 0.056 ± 1.031 −0.082 ± 1.114 −0.018 ± 1.086 −0.081 ± 1.016

2 0.011 ± 0.959 −0.132 ± 1.102 −0.047 ± 1.002 0.092 ± 1.127 0.125 ± 0.908

3 −0.051 ± 1.099 −0.124 ± 1.126 0.043 ± 1.121 0.060 ± 1.160 −0.059 ± 1.025

1 1 ± 0.001 1 ± 0.001 1 ± 0.001 1 ± 0.001 1 ± 0.001

2 1 ± 0.001 1 ± 0.001 1 ± 0.001 1 ± 0.001 1 ± 0.001

3 1 ± 0.002 1 ± 0.001 1 ± 0.001 1 ± 0.002 1 ± 0.001

Fig. 2 Aposteriori distributions for theθθθ = (d1, ε, k1, δ, π1, c) parameters obtained for the replicas
presented in Fig. 1. The vertical lines locate the simulation parameters displayed in Table1

ε = 0. In particular, the central trajectories are well aligned with the simulated data
and the variation bands reproduce adequate temporal trajectories of the patient. Note
that the simulated data seems to exhibit a larger variability for increasing values of ε.
This pattern is properly reproduced by the width of the variation bands which seem
to be wider for increasing values of ε. With respect to the shape of the CD4+T curve,
its variation is explained by the distinct parameter values (ε included), which are
estimated by the statistical method, and then sent to the ODE model to generate the
trajectories. Thus, the shape reflects the change in several parameter values and not
only in one.

3 Conclusion

In this work, the estimation of the parameters of a mathematical model is carried
out by a Bayesian approach with initial conditions obtained from an optimization
procedure based on nonlinear programming. The results suggest that the proposed
method allows to obtain trajectories and variation bands that adequately describe
the simulated data. The MCMC based approaches are known to be computationally
expensive and largely dependent on the initial values of the hyper-parameters. We
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Fig. 3 Summary of results for the replica of patient 1 (see Fig. 1): distribution of d (with location
of d = 0, and percentiles 25 and 75 of the distribution) and corresponding CD4+T trajectories
superimposing the simulated data (circles). Same curves representation for patients 2 and 3

Fig. 4 CD4+T trajectories for percentiles 25 and 75 of the distribution d superimposing the sim-
ulated data (circles) for the simulations of patient 1 for a ε = 0.1. b ε = 0.25. c ε = 0.35

deal with the latter limitation by providing optimal initial values to the Bayesian
approach. Even so, the computational efficiency can still be improved by adopting
e.g. Approximate Bayesian Computation (ABC) schemes that avoid the evaluation
of the likelihood function. Future developments will also consider the evaluation
of the proposed method in real clinical data, obtained from the follow-up of HIV
infected patients.
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Modelling with Non-stratified Chain
Event Graphs

Aditi Shenvi, Jim Q. Smith, Robert Walton and Sandra Eldridge

Abstract Chain Event Graphs (CEGs) are recent probabilistic graphical modelling
tools that have proved successful in modelling scenarios with context-specific inde-
pendencies. Although the theory underlying CEGs supports appropriate representa-
tion of structural zeroes, the literature so far does not provide an adaptation of the
vanilla CEG methods for a real-world application presenting structural zeroes also
known as the non-stratified CEG class. To illustrate these methods, we present a
non-stratified CEG representing a public health intervention designed to reduce the
risk and rate of falling in the elderly. We then compare the CEG model to the more
conventional Bayesian Network model when applied to this setting.

Keywords Bayesian networks · Bayesian statistics · Chain event graphs
Event tree · Public health intervention

1 Introduction

The development of Chain Event Graphs (CEGs) which were first introduced in
[22] was motivated by the need for a probabilistic graphical modelling tool that can
handle asymmetric information. Such asymmetries may present as context-specific
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conditional independence relations and structural zeroes. It has been shown that
CEGs can be elicited from expert opinion, admit fast conjugate estimation, closed-
form learning and model selection under complete sampling [8, 11, 21]. Various
conditional independence statements can be read from the topology of aCEGwithout
reference to its embellished edge probabilities [22, 25]. This enables any elicitation
or explanation of the model class to be translated to and from natural language—a
vital property for efficient decision support.

CEGs are constructed from event trees through the process of creating stages
and merging vertices whose rooted subtrees have isomorphic stage structures as
described in Sect. 2. The event tree [19] for a real-world system may have some
of its branches unpopulated. Zeroes present in the data could be one of two types:
sampling zeroes or structural zeroes. While the former refers to unobserved values
due to sampling limitations, the latter refers to a logical impossibility of observing
a non-zero value. Event trees can represent such information succinctly by simply
deleting the unpopulated edges where the absence of a non-zero value can be justified
to be a logical constraint. The CEG, being a function of its underlying event tree,
inherits the property of embedding such information directly in its structure.

When it comes to modelling asymmetries, CEGs have proven to be more suc-
cessful than other graphical models such as Bayesian Networks (BNs) which were
popularised by Pearl as a tool for causal analysis [17] and for reading conditional
independence statements directly from the topology of the graph through the pro-
cess of d-separation [27]. Whilst the BN is a powerful modelling tool, it is unable to
embed context-specific conditional independence relations directly into its graphical
representation. In order to exploit such information from a BN, we need to make
adjustments to the model using methods such as those proposed in [3, 12, 18]; none
of which result in a unified graphical model for encapsulating these context-specific
details. Whereas CEGs have been useful in modelling context-specific conditional
independencies in domains such as public health and security [2, 7].

Another shortcoming of the BN is its inability to express structural zeroes in
its topology. We’ve already stated how CEGs, through their relationship with event
trees, are equipped to handle structural zeroes. Such CEGs are called non-stratified
CEGs. To the best of our knowledge, the current literature does not demonstrate this
property of the CEG. The aim of this paper is to represent a real-world process with
structural zeroes using a non-stratified CEG and to compare it to a BN for the same
process. We illustrate this by modelling a public health intervention to alleviate the
risk of falls in the elderly based on the work developed in [9].

2 Preliminary Concepts

In this section we review the definitions of an event tree, a CEG and a BN as well
as other associated concepts. For a detailed description of CEGs see [22]. For more
details on BNs see [14, 17].
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Event Tree: An event tree T = (V(T ), E(T )) is an acyclic, connected, directed
graph. The vertices represent events that may occur to a unit during the unfolding of
the process being modelled. There exists only one vertex with no parents, this vertex
is the root vertex s0. All other vertices have exactly one parent. The vertices with no
children are called leaves. Let L(T ) be the set of leaves. The non-leaf vertices are
called situations. Let S(T ) form the set of situations where S(T ) = V(T )\L(T ). Let
X(si ) be the set of children of situation si .

Floret: A floret F of situation si is defined as F (si ) = (V (F (si )), E(F (si )))
where V (F (si )) = si ∪ X(si ) and E(F (si )) is the set of edges induced by V (F (si ))
in T .

Stage: Two situations si and s j in T are said to be in the same stage u if and only
if there exists a bijection ψu under which X(si ) and X(s j ) have the same distribution
given byψu(si , s j ) : X(si ) → X(s j ), whereψu leads to a mapping of the edge labels
which is meaningful for the real-world application.

Staged Tree: In event tree T , situations in the same stage are given the same
colour. A coloured event tree T is called a staged tree ST .

Position: Two situations si and s j in T are said to be in the same position w if and
only if the staged trees STsi and STs j rooted at si and s j respectively are isomorphic
in the sense of isomorphism between coloured graphs.

Chain Event Graph: A Chain Event Graph is obtained from its underlying staged
tree by collapsing situations in the same position into one vertex and adding an
additional vertex w∞ into which all the leaf vertices are collected. Only the stages
containing situations which are in the same stage but not in the same position retain
their colouring in the CEG.

Bayesian Network: A BN X is represented by a directed acyclic graph (DAG) G
= (V, E) where the nodes represent random variables. The lack of an edge between
two nodes of G represents conditional independence between them while a directed
edge encodes information about the conditional dependencies between them. For
Pai denoting parents of Xi , a BN on variables Xi , i = 1, . . . , n has joint probability
distribution given by P(X1, . . . , Xn) = ∏n

i=1 P(Xi |Pai ).

3 Intervention

Falls-related injuries and fatalities are a serious problem among the elderly. Accord-
ing to NICE guidelines [10], 30% of people older than 65 and 50% of people older
than 80 fall at least once a year. Eldridge et al. [9] modelled an intervention to reduce
falls in the elderly using a probability tree for short-term analysis and a Markov
model for long-term effectiveness. The intervention was designed to enhance assess-
ment, referral pathways and treatment for high-risk individuals aged over 65 years
who have a substantial risk of falling. After assessment, individuals are classified
as high-risk or low-risk of falling as per the recommendations in FRAT (Falls Risk
Assessment Tool) [15]. In our model, we have additionally classified individuals by
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their type of residence as we learned from domain literature that the fall rates are
higher for individuals living in institutionalised care [16]. We incorporate this infor-
mation by setting the proportion of high-risk individuals in communal establishments
higher than in the community. The variables used to study this intervention are X =
{XA, XR, XT , XF }. Here XA indicates whether the individual aged over 65 resides
in the community or in a communal establishment (such as nursing homes, care
homes, hospitals) and whether they have been assessed or not; XR indicates the risk
level of the individual as high or low; XT indicates whether the individual has been
referred & treated, not referred & treated or not treated; and XF indicates whether
the individual suffered from a fall or not. As per the design of this intervention, all
referred persons are treated and all those who fall under the not treated category have
not been referred. Low-risk individuals do not receive referrals for treatment and
hence we only classify them as treated or not treated.

4 Methods

We begin by constructing a staged tree for the intervention as shown in Fig. 1. This
tree is non-stratified as the treatment variable XT has no logical interpretation for
individuals who have not been assessed as by intervention design they cannot receive
any treatment. This staged tree is our data generating model. We simulated data for
50,000 individuals passing through this system by forward sampling. The numbers
along the edges represent the observations along each branch. Observe that several
of the branches are sparsely populated. For instance, there are only two observations
along the edge indicating falls suffered by assessed low-risk individuals in communal
establishments who received treatment. Sparsely populated branches may pose a
problem for model selection. We discuss this further in Sect. 6.

We use aweakly informative equivalent sample size (α) of 4 and set the parameters
of theDirichlet prior on each situation of the tree using themass conservation property
as described in [6]. All CEG structures are assumed a priori equally likely. We
use an adapted form of the greedy Agglomerative Hierarchical Clustering (AHC)
algorithm developed in [11] to fit a CEG to the data and evaluate it using the Bayesian
Dirichlet equivalent uniform (BDeu) score developed in [4]. The AHC algorithm in
[11] sequentially merges situations into stages by combining the two situations at
every step which give the highest improvement to the BDeu score of the graph.
This was further refined by the introduction of the concept of hyperstages in [5]. A
hyperstage consists of sets of situations such that two situations can be merged into a
single stage if and only if they belong to the same set in the hyperstage. This allows
further information about the domain to be embedded into the model and can also
greatly reduce the dimension of the model search space. Under this adaptation, we
used the domain knowledge to set the hyperstage structure and used this structure to
run the AHC algorithm to output the best fitting CEG to the data.
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Fig. 1 Staged tree representing the data generating model

To learn the BN structure, we use theHill-Climbing algorithm from theR package
bnlearn. We compared the two graphical models based on their BDeu score as well
as their ability to express context-specific information and structural zeroes which
are essential in assessing the effectiveness of the intervention. TheCEGmodel is then
analysed further for its robustness and ability to incorporate causal manipulations.
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5 Results

The Hill-Climbing algorithm outputs the BN in Fig. 2a. As the intervention gives
rise to a total order of XA � XR � XT � XF , certain edges must be suppressed in
order for the BN to be representative of the real-world application. For instance, the
directed edge from Treatment to Risk is not permissible given the total order. This
gives rise to the BN in Fig. 2b. The BDeu score of this BN structure is −68709.99.

We set up the hyperstage structure for the AHC algorithm as [{s1, s2, s3, s4},
{s5, s7}, {s6, s8}, {s9, s10, s11, s14, s16, s17, s18, s21}, {s12, s13, s15, s19, s20, s22}]. The
best-fitting CEG returned by the AHC is given in Fig. 3 when we assign the situation
priors using α set to 4. Note that the stage structure of this CEG is exactly the same as
the stage structure of the data generating tree given in Fig. 1. The BDeu score of this
CEG is −68671.59, thus giving an extremely high Bayes Factor of 4.7523 × 1016 in
favour of the CEG model. By Kass and Raftery’s interpretation [13], this indicates
very strong evidence in favour of the CEG model being a better fit to the data.

Additionally, from the topology of the CEG in Fig. 3, we can read the following
context-specific conditional independence statements using cuts as defined in [22]:

(a)

(b)

Fig. 2 a Original BN returned using the Hill-Climbing algorithm; b Best-fitting BN which admits
the total order of XA � XR � XT � XF

Fig. 3 CEG returned by the AHC algorithm
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Fig. 4 The CEG model is
robust given varying values
of α

XT � XR | {XA = Not Assessed}, (1)

XT �� XR | {XA = Assessed}, (2)

whereas Fig. 2b fails to show these contextual independencies.
Sensitivity to the choice of priors is one of the factors influencing the robustness

of the CEG. The parameter α determines the prior assigned to each situation of the
event tree. Thus to assess the robustness of the CEG, we fit the data using AHC to
varying values of the equivalent sample size α and compare the number of stages
at each value of α between 0.25 and 20 with increments of 0.25 as shown in Fig. 4.
The number of stages remains steadily at 11 for α greater than three. Moreover, we
observe that the stage structure also remains the same for α greater than 3.

CEGs admit exploration of causal hypotheses throughmanipulations under certain
conditions as described in detail in [2, 24, 26]. Such CEGs are called causal CEGs.
Manipulations in CEGs can be asymmetric as it is possible to intervene in certain
positions and not necessarily on the entire variable. For instance, assuming our non-
stratified CEG in Fig. 4 is also a causal CEG, we may wish to examine the effect
of treatment given to all assessed high-risk individuals irrespective of their type of
residence. This would result in the deletion of edge w5 to w7 and the edge labelled
“not referred & treated” from w5 to w9. The edge probabilities remain unchanged
except that the probability of traversing the remaining w5 to w9 edge conditional on
reaching w5 is one.

6 Discussion

We observed in Sect. 5 that the CEG is robust against varying values of α. For α

greater than three, the resultant CEG was the data generating model. The smaller
values of α were unable to return this due to sparsity along some of the branches of
the event tree. In the falls intervention scenario we had domain literature to support
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the veracity of the staging produced by the AHC. In the absence of sufficient domain
information, situations whose emanating edges contain sparse data-points should be
maintained as singletons in the hyperstage structure. Failing this, spurious stages
may be merged by the AHC resulting in an unreliable CEG.

In this paper, we compared two types of graphical models—Bayesian Networks
andChain EventGraphs—demonstrating the superiority of CEGs inmodelling struc-
tural zeroes and context-specific independencies by modelling a falls intervention.
In [9], which provided the falls intervention design, the effectiveness of the inter-
vention was assessed using a probability tree for the short-term and a Markov model
for the long-term. We briefly outline the advantages of CEGs over these modelling
techniques when presented with a scenario such as the falls intervention.

A probability tree is the same as an uncoloured event tree. Unlike the BN, prob-
ability trees and Markov models can satisfactorily express asymmetric information
introduced by structural zeroes. However, an essential property which these models
lack is the ability to read conditional independence statements from their topol-
ogy. They also do not admit causal manipulations. The colouring of the staged tree,
followed by the collapsing of vertices in the CEG not only provide a succinct and
complete description of the various paths that an individual may traverse as they pass
through the system but also allow us to read context-specific conditional indepen-
dence relationships and under a legitimate causal setting, can be subject to a causal
analysis. These properties are particularly useful for modelling multi-factorial inter-
ventions where there are several different components of the intervention whose
contributions and effects may not be trivially quantified or analysed.

It is important to note that the Markov model in [9] was for assessing long-
term effectiveness. The CEG described in this paper caters to short-term analysis.
Dynamic variants of the CEG have been developed in [1, 7]. For applications such
as the falls intervention, we observe that individuals take varying amounts of time
to move from certain states. For instance, individuals living in the community who
have been assessed and have been referred and treated will not all fall. Also, those
who do suffer from a fall would do so after varying amounts of time since they
received their treatment. In such settings, it is also typical to record observations
when a transition occurs rather than recording them at regular intervals. For instance,
we would note that an individual has suffered a fall and the time that has elapsed
since their treatment but we are unlikely to record every day or every month that
an individual has not suffered a fall. This type of setting corresponds more closely
to a semi-Markov process rather than a Markov process. However, like a Markov
model, a semi-Markov model will not allow reading of conditional independence
statements. For this purpose, we have developed a dynamic variant of the CEG that
has an underlying semi-Markov structure. This is called the Reduced Dynamic Chain
Event Graph (RDCEG). An early application of this class of models can be found in
[23] and an associated technical paper is in preparation [20].
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Modelling Career Trajectories of Cricket
Players Using Gaussian Processes

Oliver G. Stevenson and Brendon J. Brewer

Abstract In the sport of cricket, variations in a player’s batting ability can usually
be measured on one of two scales. Short-term changes in ability that are observed
during a single innings, and long-term changes that are witnessed between matches,
over entire playing careers. To measure long-term variations, we derive a Bayesian
parametric model that uses a Gaussian process to measure and predict how the bat-
ting abilities of international cricketers fluctuate between innings. The model is fitted
using nested sampling given its high dimensionality and for ease of model compar-
ison. Generally speaking, the results support an anecdotal description of a typical
sporting career. Young players tend to begin their careers with some raw ability,
which improves over time as a result of coaching, experience and other external
circumstances. Eventually, players reach the peak of their career, after which ability
tends to decline. The model provides more accurate quantifications of current and
future player batting abilities than traditional cricketing statistics, such as the batting
average. The results allow us to identify which players are improving or deteriorat-
ing in terms of batting ability, which has practical implications in terms of player
comparison, talent identification and team selection policy.

Keywords Cricket · Gaussian processes · Nested sampling

1 Introduction

Asa sport, cricket is a statistician’s dream.The game is steeped in numerous statistical
and record-keeping traditions, with the first known recorded scorecards dating as far
back as 1776. Given the statistical culture that has developed with the growth of
cricket, using numeric data to quantify individual players’ abilities is not a new
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concept. However, despite the abundance of data available, cricket has only recently
attracted the attention of statistical analysts in the public realm. This is potentially
due to many previous academic studies being focused on the likes of achieving a fair
result [6, 8, 11] and match outcome prediction [1, 3, 4, 17], rather than statistical
applications that measure and predict individual player abilities and performances.

For as long as themodern game has existed, a player’s batting ability has primarily
been recognized using the batting average; in general, the higher the batting average,
the better the player is at batting. However, the batting average fails to tell us about
variations in a player’s batting ability, which can usually be attributed to one of two
scales: (1) short-term changes in ability that are observed during or within a single
innings, due to factors such as adapting to the local pitch and weather conditions
(commonly referred to as ‘getting your eye in’ within the cricketing community),
and (2) long-term changes that are observed between innings, over entire playing
careers, due to the likes of age, experience and fitness levels.

Early studies provided empirical evidence to support the claim that a batsman’s
score could be modelled using a geometric progression, suggesting players bat with
a somewhat constant ability during an innings [10]. However, it has since been
shown that the geometric assumptions do not hold for many players, due to the
inflated number of scores of 0 that are present in many players’ career records [2,
12]. Rather than model batting scores, Kimber and Hansford [12] and Cai et al. [5]
used nonparametric and parametric hazard functions respectively, to measure how
dismissal probabilities changewith a batsman’s score. Estimating a batsman’s hazard
function, H(x), which represents the probability of getting out on score x , allows us
to observe how a player’s ability varies over the course of an innings. Both studies
found that batsmen appeared to be more likely to get out while on low scores—early
in their innings—than on higher scores, supporting the idea of ‘getting your eye in’.

In order to quantify the effects of ‘getting your eye in’, Stevenson and Brewer
[16] proposed an alternative means of measuring how player ability varies during an
innings. The authors use aBayesian parametricmodel to estimate the hazard function,
allowing for a smooth transition in estimated dismissal probabilities between scores,
rather than the sudden, unrealistic jumps seen in [12] and to a lesser extent [5]. For
the vast majority of past and present international Test players, Stevenson andBrewer
[16] found overwhelming evidence to suggest that players perform with decreased
batting abilities early in an innings and improve as they score runs, further supporting
the notion of ‘getting your eye in’.

1.1 Modelling Between-Innings Changes in Batting Ability

While there is plenty of evidence to suggest that players do not batwith some constant
ability during an innings, it is also unlikely that a player bats with some constant
ability throughout their entire career. Instead, variations in a player’s underlying
ability are likely to occur between innings, due to factors such as how well the player
has been performing recently (referred to as ‘form’ in cricket).
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If batting form were to have a significant impact on player performance, we
should be able to identify extended periods of players’ careers with sequences of high
scores (indicating the player was ‘in’ form) and sequences of low scores (indicating
the player was ‘out of’ form). On the contrary, Durbach and Thiart [9] found little
empirical evidence to support this idea. Instead, for the majority of players analyzed
in the study, the authors suggest that public perceptions of batting form tend to
be overestimated, with many players’ scores able to be modelled using a random
sequence.

Within a Bayesian framework, Koulis et al. [13] employed the use of a hidden
Markov model to determine whether a batsman is in or out of form. The model
estimates a number, K , of ‘underlying batting states’ for each player, including the
expected number of runs to be scored when in each of the K states. Parameters
that measure: availability (the probability a batsman is in form for a given match),
reliability (the probability a batsman is in form for the next n matches) and mean
time to failure (the expected number of innings a batsmanwill play before he is out of
form), were also estimated for each batsman. However, a drawback of this approach
is that the model requires an explicit specification of what constitutes an out of form
state. The authors specify a batting state that has a posterior expected median number
of runs scored of less than 25, as being out of form, and all other states as being in
form. While in the context of one day or Twenty20 cricket this is not necessarily
an unreasonable specification, there are numerous arguments that could be made to
justify a low score, scored at a high strike rate, as a successful innings.

In this paper, we extend the Bayesian parametric model detailed in [16], such that
we can not only measure and predict how player batting abilities fluctuate during
an innings, but also between innings, over the course of entire playing careers. This
allows us to treat batting form as continuous, rather than binary; instead of defining
players as ‘in’ or ‘out’ of form, we can describe players as improving or deterio-
rating in terms of batting ability. At this stage our focus is on longer form test and
first-class cricket, as limited overs cricket introduces a number of match-specific
complications [7].

2 Model Specification

The derivation of the model likelihood follows the method detailed in [16]. If X ∈
{0, 1, 2, 3, . . .} is the number of runs a batsman is currently on, we define a hazard
function, H(x) ∈ [0, 1], as the probability a batsman gets out on score x . Assuming
a functional form for H(x), conditional on some parameters θ , we can calculate the
probability distribution for X as follows:

P(X = x) = H(x)
x−1∏

a=0

[1 − H(a)] . (1)
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For any given value of x , this can be thought of as the probability of a batsman
surviving up until score x , then being dismissed. However, in cricket there are a
number of instances where a batsman’s innings may end without being dismissed
(referred to as a ‘not out’ score). Therefore, in the case of not out scores, we compute
P(X ≥ x) as the likelihood, rather than P(X = x). Comparable to right-censored
observations in the context of survival analysis, this assumes that for not out scores
the batsman would have gone on to score some unobserved score, conditional on
their current score and their assumed hazard function.

Therefore, if I is the total number of innings a player has batted in and N is
the number of not out scores, the probability distribution for a set of conditionally
independent ‘out’ scores {xi }I−N

i=1 and ‘not out’ scores {yi }Ni=1 can be expressed as

p({x}, {y}) =
I−N∏

i=1

(
H(xi )

xi−1∏

a=0

[1 − H(a)]
)

×
N∏

i=1

( yi−1∏

a=0

[1 − H(a)]
)
. (2)

Whendata {x, y} arefixed andknown,Eq. (2) gives the likelihood for anyproposed
form of the hazard function, H(x; θ). Therefore, conditional on the set of parameters
θ governing the form of H(x), the log-likelihood is

log
(
L(θ)

)
=

I−N∑

i=1

log H(xi ) +
I−N∑

i=1

xi−1∑

a=0

log[1 − H(a)] +
N∑

i=1

yi−1∑

a=0

log[1 − H(a)].
(3)

2.1 Parameterizing the Hazard Function

The model likelihood in Eq. (3) depends on the parameterization of the hazard func-
tion, H(x). As per [16], we parameterize the hazard function in terms of an effective
average function, μ(x), which represents a player’s ability on score x , in terms of a
batting average. Given the prevalence of the batting average in cricket, it is far more
intuitive for players and coaches to think of ability in terms of batting averages, rather
than dismissal probabilities. The hazard function can then be expressed in terms of
the effective average function, μ(x), as follows

H(x) = 1

μ(x) + 1
(4)

where the effective average contains three parameters, θ = {μ1, μ2, L}, and takes
the following functional form

μ(x) = μ2 + (μ1 − μ2) exp

(−x

L

)
. (5)
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Here,μ1 represents a player’s initial batting ability when beginning a new innings,
while μ2 is the player’s ‘eye in’ batting ability once used to the specific match
conditions. Bothμ1 andμ2 are expressed in terms of a batting average. The timescale
parameter L , measures the speed of transition between μ1 and μ2 and is formally
the e-folding time. By definition the e-folding time, L , signifies the number of runs
scored for approximately 63% (formally 1 − 1

e ) of the transition between μ1 and
μ2 to take place and can be understood by analogy with a ‘half-life’. This model
specification allows us to answer questions about individual players, such as: (1)
how well players perform when they first arrive at the crease, (2) how much better
players perform once they have ‘got their eye in’ and (3) how long it takes them to
‘get their eye in’.

2.2 Modelling Between-Innings Changes in Batting Ability

To extend the model further, such that we can measure variations in player batting
ability between innings, we use the same likelihood function in Eq. (3). However, we
re-parameterize the effective average function to include a time component, t , such
that

μ(x, t) = expected batting average on score x , in t th career innings. (6)

For clarity, wewill refer toμ(x) as the ‘within-innings’ effective average (explain-
ing how ability changes within an innings). By marginalizing over all scores, x , we
obtain the ‘between-innings’ effective average, ν(t), which explains how ability
changes between innings, across a playing career.

ν(t) = expected batting average in t th career innings. (7)

When estimating ν(t), we need to account for variations in ability due to external
factors such as: recent form, general improvements/deterioration in skill and the
element of randomness associated with cricket. This is achieved by fitting a μ2

parameter for each innings in a player’s career, where μ2,t represents a player’s ‘eye
in’ batting ability, corresponding to their t th innings. We are then able to predict the
expected batting average in each innings, ν(t), analytically using Eq. (5).

To afford a player’s underlying batting ability a reasonable amount of flexibility,
the set of {μ2,t } terms are modelled using a Gaussian process. A Gaussian process is
fully specified by an underlying mean value, m, and covariance function, K (ti , t j ),
which will determine by how much a player’s batting ability can vary from innings
to innings [14]. Our choice of covariance function is the commonly used squared
exponential covariance, which contains scale and length parameters σ and �.

Therefore, the model contains the set of parameters θ = {μ1, {μ2,t }, L ,m, σ, �}.
The model structure with respect to parameters μ1, L , C and D follows the model
specification detailed in [16], with the parameters assigned the following prior dis-
tributions.
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μ1 ← Cμ2

L ← Dμ2

C ∼ Beta(1, 2)

D ∼ Beta(1, 5)

log(μ2,t ) ∼ Gaussian process(m, K (ti , t j ; σ, �))

m ∼ Lognormal(log(25), 0.752)

σ ∼ Exponential(10)

� ∼ Uniform(0, 100)

These priors are either non-informative or are relatively conservative, while
loosely reflecting our cricketing knowledge. It is worth noting, that as we are measur-
ing ability in terms of a batting average (whichmust be positive), wemodel log(μ2,t ),
rather than just μ2,t , to ensure positivity in our estimates.

As the model requires a set of {μ2,t } parameters to be fitted (one for each innings
played), the model can contain a large number of parameters for players who have
enjoyed long international careers. Therefore, to fit the model we employ a C++
implementation of the nested sampling algorithm [15], which uses Metropolis-
Hastings updates and is able to handle both high dimensional and multimodal prob-
lems that may arise. The model output provides us with the posterior distribution for
each of the model parameters, as well as the marginal likelihood, which makes for
trivial model comparison. For each player analyzed, we initialize the algorithm with
1000 particles and use 1000 MCMC steps per nested sampling iteration.

3 Analysis of Individual Players

3.1 Data

The data we use to fit the model are simply the Test career scores of an individ-
ual batsman and are obtained from Statsguru, the cricket statistics database on the
Cricinfo website.1 As the model assumes that a player’s ability is not influenced
by the specific match scenario, it is best suited to longer form cricket, such as Test
matches, where there is generally minimal external pressure on batsmen to score
runs at a prescribed rate.

3.2 Modelling Between-Innings Changes in Batting Ability

To illustrate the practical implications of the model, let us consider the Test match
batting career of current New Zealand captain, Kane Williamson. The evolution of
Williamson’s between-innings effective average, ν(t), is shown in Fig. 1 and suggests
that early in his career, Williamson was not as good a batsman as he is today. In fact,
it was not until playing in roughly 50 innings that he began to consistently bat at
least as well as his current career average of 50.36. This is not surprising, as it is

1www.espncricinfo.com.

https://www.espncricinfo.com
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Fig. 1 Posterior predictive effective average function for ν(t) (red), fitted to Kane Williamson’s
test career data, including a subset of posterior samples (green), future predictions (purple) and a
68% credible interval (pink/dotted purple)

a commonly held belief that many players need to play in a number of matches to
‘find their feet’ at the international level, before reaching their peak ability.

To gain a better understanding of how Williamson compares to other batsmen
globally, we can compare multiple players’ effective average functions. Figure2
compares the predictive effective average functions for the current top four batsmen
in the world, as ranked by the official International Cricket Council (ICC) ratings.2

As we might expect, all players appear to have improved in terms of batting ability
since the start of their careers. Again, this supports the concept of ‘finding your feet’
at the international level, although different players appear to take different lengths
of time to adjust to the demands of international cricket.

Table1 shows each player’s predicted effective average for their next innings, as
well as their ICC rating. The order of these four players remains unchanged when
ranking by predicted effective averages instead of ICC ratings, however, as we have
computed the posterior predictive distributions for ν(t), our model has the added
advantage of being able to quantify the differences in abilities between players.
Rather than concluding ‘Steve Smith is 26 rating points higher than Virat Kohli’, we
can make more useful statements such as: ‘we expect Steve Smith to outscore Virat
Kohli by 5.1 runs in their next respective innings’ and ‘Steve Smith has a 68.8%
chance of outscoring Virat Kohli in their next respective innings’.

2As of 1st August, 2018: (1) Steve Smith, (2) Virat Kohli, (3) Joe Root and (4) Kane Williamson—
commonly referred to as ‘the big four’.
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Fig. 2 Posterior predictive effective average functions, ν(t), for ‘the big four’, including predictions
for the next 20 innings (dotted)

Table 1 Predicted effective averages, ν(t), for the next career innings for ‘the big four’. The official
ICC Test batting ratings (as of 1st August, 2018) are shown for comparison

Player Career average Predicted ν(next innings) ICC rating (#)

S. Smith (AUS) 61.4 62.5 929 (1)

V. Kohli (IND) 53.4 57.4 903 (2)

J. Root (ENG) 52.6 52.6 855 (3)

K. Williamson (NZ) 50.4 51.2 847 (4)

4 Concluding Remarks and Future Work

We have presented a novel and more accurate method of quantifying player batting
ability than traditional cricketing statistics, such as the batting average. The results
provide support for the common cricketing belief of ‘finding your feet’, particularly
for players beginning their international careers at a young age, with many batsmen
taking a number of innings to reach their peak ability in the Test match arena. With
respect to batting form, the model appears to reject the idea of recent performances
having a significant impact on innings in the near future. In particular, it appears that
the effect of recent form varies greatly from player to player.

A major advantage of the model is that we are able to maintain an intuitive crick-
eting interpretation, allowing for the results and implications to be easily digested by
coaches and selectors, who may have minimal statistical training. Additionally, we
are able to make probabilistic statements and comparisons between players, allow-
ing us to easily quantify differences in abilities and predict the real life impacts of
selecting one player over another. As such, the findings have practical implications
in terms of player comparison, talent identification, and team selection policy.
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It is worth noting that we have ignored important variables, such as the number of
balls faced in each innings, as well as the strength of the opposition. Currently, the
model treats all runs scored equally. Implementing ameans of incorporatingmore in-
depth, ball-by-ball data and including the strength of opposition bowlers will reward
players who consistently score highly against world-class bowling attacks.
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Ice Cores and Emulation: Learning More
About Past Ice Sheet Shapes

Fiona Turner, Richard Wilkinson, Caitlin Buck, Julie Jones
and Louise Sime

Abstract Creating more accurate reconstructions of past Antarctic ice sheet shapes
allows us to better predict how they will vary in the changing climate and contribute
to future sea level changes. In this research, we use expert elicitation to create a
subjective prior distribution of the Antarctic ice sheets at the Last Glacial Maximum
(LGM), 21Ka. A design of shapes from this distribution will be run through the
global climate model HadCM3, providing us with output that we can compare with
proxy data to find a better estimate of the ice sheet shape at the LGM.

Keywords Antarctic ice sheets · Expert elicitation · Principal component
analysis · Subjective Bayesian methods

1 Background

1.1 Environmental Research

Extensive research has been done on reconstructing the ice sheets at both poles. This
is done using mathematical computer models of climate combined with data and
various physical constraints, providing us with estimates of the shape and size of the
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ice sheets. The focus is often on critical time periods, when the ice sheets were most
in flux and there is greatest variance in estimates.

Data derived from indirect observations are known as proxy data. These come
from such sources as coral reefs, tree rings and ice cores. They act as observations
for timeperiods or locationswhendirect observationswere notmade,making theman
essential tool in palaeo-climatology. In this research, we use ice cores drilled from
the Antarctic ice sheets to learn more about the past size of the sheets. These ice
cores contain the stable water isotopes deuterium and oxygen-18; the ratio of these
to oxygen-16 can tell us the precipitation and temperature when the ice formed,
amongst other things. Many of the ice cores contain hundreds of thousands of years
worth of data, making them an invaluable set of observations in an area that was
unstudied by humans until the twentieth century.

The Last Glacial Maximum (LGM) is a time period of significant interest to
palaeo-climatologists. Taking place at 21Ka, it was the peak of the most recent ice
age, when the ice sheets were at their greatest extent. Studying the transition of the
ice sheets to present day can teach us a lot about how they respond as the climate
warms. The relative recentness of this event also means there are many ice cores
dating back to the LGM, providing us with a set of proxy observations to use in our
analysis.

Sea levels were 125m lower than present day during the LGM and have the
potential to rise further still if both the Antarctic ice sheets melt completely. If we
can estimate how the shape and size of the ice sheets vary in the changing climate,
we can better predict how they will contribute to sea level changes.

1.2 Why Use Bayesian Methods?

Prior distributions created inBayesian analysis represent the statisticians’ own judge-
ments. Eliciting expert opinions about the parameters we are trying to describe could
allow us to reduce uncertainty around them. Expert elicitation is an important stage
in creating a subjective prior distribution. Particularly when there is little information
in the data being used, a prior distribution can be very influential on results.

The Antarctic ice sheets have been reconstructed at the LGM multiple times. We
have collected forty of these shapes from the literature and will use them in our own
analysis of the shape and size of the sheets. Disregarding the shapes when creating
this reconstruction would result in a less informed model; we therefore will use them
to form a subjective prior distribution. By incorporating the shapes in to our model,
our prior distribution will better represent the uncertainty around the ice sheets’
shapes at the LGM.
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2 Building the Prior Model

We wish to create a prior model using the collected reconstructions. However, we
first need to reduce the dimensions of our dataset; having forty variables would make
running the model too computationally expensive. We therefore create a basis: a set
of direction vectors that span the variation between and within the collected ice sheet
shapes. These vectors will be used to create new synthetic ice sheet shapes based on
the existing reconstructions.

The first four reconstructions we collected ([1, 3, 9, 11]) are the most widely
used and accepted in the climatology community. We wish for these to influence our
prior model more than the other thirty-six ice sheet shapes, so we split the collected
ice sheet shapes into two sets and first create basis vectors from these four shapes
using Principal Component Analysis (PCA). PCA reduces the dimensions of a data
set whilst preserving as much of the information in the data as possible. It creates a
set of orthogonal vectors by maximising

aT�a, (1)

where a is the vector we are trying to find and � is the covariance matrix of the
data. These vectors are then ordered by how much of the variation in the data they
represent. A cut off point for these vectors is decided on based on how much vari-
ation each vector represents. The vectors containing less than this cut off are then
discarded. Performing PCA on the forty shapes altogether would result in smaller
reconstruction errors overall. However, we want to ensure that the initial four shapes
have reconstruction errors that are as small as possible, and that they influence the
prior model more than the other thirty-six shapes. Splitting the shapes in to two sets
allows us to create basis vectors from the first four ice sheet shapes and then find
any variation in the second set that hasn’t already been described. Performing PCA
on the first four shapes gives us four principal components representing 50.45%,
34.48%, 9.23% and 5.84% of the variation respectively. We discard the fourth com-
ponent as it represents only a small amount of the variation in the data; this leaves us
with three basis vectors. When we reconstruct all forty shapes using these principal
components, we find they represent 75.77% of all variation. We now have an initial
set of basis vectors, which we collectively call A.

Having worked first with these four widely used reconstructions, a further lit-
erature review revealed thirty-six reconstructions that are also worthy of inclusion.
These come from [2, 4–6, 10]. We use these thirty-six other shapes to create further
basis vectors. These must be orthogonal to A, so that they do not describe any direc-
tions in the basis that A already represents. We find the new vectors by using the null
space of A; the set of vectors for which

Ax = 0.

We call this set B, and wish to find vectors of the form wB for some w.
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(a) (b)

(c) (d)

(e)

Fig. 1 Our five basis vectors. The black line represents present day Antarctica for reference
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Fig. 2 An interactive plot of our prior model; the sliders below the plot control the five variables,
allowing us to create new ice sheet shapes by adjusting the individual basis vectors. Currently the
sliders are all set to zero; the above plot is of the mean ice sheet shape

In PCA we maximised AT�A. Here, we are maximising wT BT�Bw. As

� = XT X,

where X is our data set of thirty-six shapes, and

BT�B = BT XT X B = (XB)T X B,

this is an eigenvalue problem thatwe can solvewith the singular value decomposition,
which factorises a n × pmatrix in to the formU�V T , whereU is a n × n matrix,�
is a diagonal n × n matrix of eigenvalues and V is a p × n matrix of corresponding
eigenvectors. We take the first two column vectors of V as our new basis vectors.
These represent 18.93%of variation in the forty shapes; our basis vectors nowaccount
for 94.7% of the variation in the dataset. This method essentially copies PCA for
two sets of data. Other methods we had tried, including Newton-Raphson, proved
too computationally expensive as our data set is too large to invert. We now have a
model with five variables with which we can create synthetic ice sheet shapes. These
five variables can be seen in Fig. 1. This takes the form
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y = α1x1 + ... + α5x5 + μ,

where the xi are the basis vectors, μ is the mean shape that was removed from the
data before analysis and the αi are a set of constraints on the variables that allow us
to control how much of each variable contributes to the model output. An interactive
plot of this model can be seen in Fig. 2. The five sliders control the αi ; moving them
left or right determines how much each of the five variables contributes to the ice
sheet plotted above.

3 Expert Elicitation

We now wish to run a set of synthetic ice sheet shapes from our prior model through
the global climate model, HadCM3. This will provide us with estimates of water
isotope values that can be compared to data collected from ice cores. HadCM3 is
both computationally and financially very expensive to run. We are therefore limited
in how many jobs we can submit and any shapes we run through the model must be
plausible for the LGM. We decide to gather expert judgements on our prior model
to assist us with determining the direction of our future work; only shapes that the
experts judge to have a high probability of occurring at the LGMwill be run through
HadCM3.

There is extensive literature on how to conduct a formal expert elicitation, such
as the Sheffield Elicitation framework [7]; this a package on how to elicit probability
distributions from multiple experts. We initially consulted [8] when planning our
elicitation process. However, althoughwe considered conducting a formal elicitation,
it became clear we required something a lot simpler. Rather than a formal systematic
approach,weorganised ameetingwith various experts at theBritishAntarctic Survey.

We shared our model with a group of five ice modellers and LGM experts at
the British Antarctic Survey. These were Robert Arthern,1 Richard Hindmarsh,2

Dominic Hodgson,3 Robert Mulvaney4 and James Smith.5 We held an informal
meeting to explain the project and ask for their advice on it. From this meeting we
gained constraints on the values the αi ’s could take. We then created a design of
shapes by building a maxi-min Latin Hypercube design for the αi ’s. This gave us a
set of eighty shapes that spanned the plausible basis we have created. We shared this
with the experts as a follow-up to our meeting and asked them to recommend which
of the shapes to discard and which to run through HadCM3, providing reasons for
their recommendations. Using their judgements, we decided on a set of forty-nine
synthetic ice sheet shapes that will be used for our analysis. Examples of the shapes

1Ice sheet modeller, rart@bas.ac.uk.
2Glaciologist, rcah@bas.ac.uk.
3Sedimentologist, daho@bas.ac.uk.
4Science leader of the Ice Dynamics and Palaeoclimate team, rmu@bas.ac.uk.
5Sedimentologist, jaas@bas.ac.uk.
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(a) (b)

Fig. 3 Two of the shapes created and shown to the experts for their judgements; the shape on the
left was kept whilst the shape on the right was discarded. The red line was added on their advice;
it is the ice extent limit from [2], and was used a constraint on the shapes

they recommended to be kept or discarded are plotted in Fig. 3. The red line plotted
over the ice sheet is the ice extent limit from [2]; they recommended this as a measure
on the plausibility of each ice sheet.

4 Future Work

We will run this chosen set of synthetic ice sheet shapes through HadCM3. This will
give us estimated values of water isotopes over the time period run. We will then
build a Gaussian process emulator to interpolate between these values; the output of
the emulator will be modelled as a likelihood, and compared to collected ice cores
to see which input from the prior model provides isotope estimates that most closely
matches these observations. We should then be able to determine on a more accurate
estimate of the size and shape of the Antarctic ice sheets at the LGM.
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