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Preface

The Problem of the Spectral Asymptotics, in particular the problem of the
Asymptotic Distribution of the Eigenvalues, is one of the central problems
in the Spectral Theory of Partial Differential Operators; moreover, it is very
important for the General Theory of Partial Differential Operators.

I started working in this domain in 1979 after R. Seeley [1] justified
a remainder estimate of the same order as the then hypothetical second
term for the Laplacian in domains with boundary, and M. Shubin and
B. M. Levitan suggested me to try to prove Weyl’s conjecture. During the
past almost 40 years I have not left the topic, although I had such intentions
in 1985, when the methods I invented seemed to fail to provide the further
progress and only a couple of not very exciting problems remained to be
solved. However, at that time I made the step toward local semiclassical
spectral asymptotics and rescaling, and new much wider horizons opened.

So I can say that this book is the result of 40 years of work in the Theory
of Spectral Asymptotics and related domains of Microlocal Analysis and
Mathematical Physics (I started analysis of Propagation of singularities
(which plays the crucial role in my approach to the spectral asymptotics) in
1975).

This monograph consists of five volumes. This Volume II concludes the
general theory. It consists of two parts. In the first one we develop methods
of combining local asymptotics derived in Volume I, with estimates of the
eigenvalue counting functions in the small domains (singular zone) derived
by methods of functional analysis. In the second part we derive eigenvalue
asymptotics which either follow directly from the general theory, or require
applications of the developed methods (if the operator has singularities or
degenerations, strong enough to affect the asymptotics).

#

Victor Ivrii,
Toronto, June 10, 2019.

\Y%
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Introduction

This Volume is devoted to applications. In Part XI we consider Multiparticle
Quantum Theory, and in Part XII Miscellaneous problems (again, including
Multiparticle Quantum Theory).

Part XI. Asymptotics of the Ground State Energy of Heavy
Atoms and Molecules

In this Part we consider an application to Thomas-Fermi Theory. Consider
a large (heavy) atom or molecule; it is described by Multiparticle Quantum
Hamiltonian

(0.1) M= 3 M)+ 3 |X_1Xk|

1<n<N 1<n<k<N

where H is one-particle quantum Hamiltonian, Planck constant A = 1,
electron mass = %, electron charge = —1, y, is a location of m-th nuclei and
Z, its charge, M is fixed, but Z,, < N — oo.

This operator acts on the space A1<;j<n23(R3, C?) of totally antisym-

metric functions W(xg, <1;...; Xy, snv) because electrons are Fermions, x, =
(x}, x2,x3) is a coordinate and ¢, € {—3, 1} is a spin of n-th particle. We

identify C2-valued function ¢(x) on R? with scalar-valued 1 (x, <)

If electrons were not interacting between themselves, but the field poten-
tial was — W/(x), then they would occupy lowest eigenvalues and ground state
wave functions would be (anti-symmetrized) ¢1(x1, 1)P2(x2, $2) .. On(Xn, Snv)
where ¢, and \, are eigenfunctions and eigenvalues of Hyy.

Then the local electron density would be py = > ., n|¢n(x)|* and
according to pointwise Weyl law (if there is no magnetic field)

0:2) pulx) ~ 55 (W + 1)1,

XX
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where v = Ay; here we assume that Hy = A — V(x) as it is in Chapter 25.
This density would generate potential —|x|™ * py and we would have
WV — x|t py.
Replacing all approximate equalities by strict ones we arrive to Thomas-
Fermi equations:

(0.3) V- W =|x|"txp™,

1 3
(0.4) pr= 35 (W)L

(0.5) /pTF dx = N,

where v < 0 is called chemical potential and in fact approximates Ap.
Thomas-Fermi theory has been rigorously justified (with pretty good
error estimates).

Chapter 25. No Magnetic Field Case. In this chapter we assume
that there is no magnetic field: Hy = A — V/(x) with

(0.6) Vix)= > Zm

1<m<M X = Ym

where y,, is a position and Z, is a charge of m-th nuclei, M is fixed and
L=l =<---=<Zy=<N.

Section 25.1is an Introduction and in Section 25.2 we justify a reduction
of the original multiparticle problem to one-particle one. This is done mainly
by methods of the classical mathematical physics (functional analysis).

In Section 25.3 we expose Thomas-Fermi theory described by (0.3)—(0.5).

In Section 25.4 we, based on previous sections and chapters, prove our
main results. First of all, the ground state energy is given by

242
(0.7) Ey= o (6m): /(pTFi _ \/pTF> dx

1572
1
5 [T Wl -y ay + 0(22).

Using results of Section 12.6 Riesz Means for Operators with Singularities,
. . . 5 .
we improve the remainder estimate to O(Z3) but we need to include the

Scott correction term

(0.8) Y Sz,

1<m<M
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and even to O(Z g"s) but we need to include Dirac and Schwinger correction
terms ~ Z5.

In Section 25.5 we consider negatively charged systems (i.e. those with
Z =2+ ..+ Z, < N) and estimate excessive negative charge (N — Z),
when system is able to bind N electrons, i.e. Ey < Epn_1.

In Section 25.6 we consider positively charged systems (i.e. those with
Z > N) and estimate or find asymptotics Iy ~ vy for an ionization energy
IN = EN—l — EN.

We also consider systems with free yi, ..., yy and include in the total
energy the internuclear energy

(0.9) > Zmlm ,

1<m<m'<M [Ym = Y|

and minimize the ground state energy by vy, ..., yu and recover all afore-
mentioned results.

We also estimate ezcessive positive charge (Z — N) for which system does
not disintegrate into separate atoms.

Chapter 26. The Case of External Magnetic Field. Here we as-
sume that there is a constant magnetic field with a magnetic potential
A(x) = B(—%xz, %xl, 0) and then one-particle Hamiltonian is Schrodinger-
Pauli operator:

(0.10) H = ((—ihV — pA(x)) - 0)* + V()

(see, f.e. Volume III, (0.41)). We assume that the magnetic field is not
hyperstrong: B < N3. Still it may be sufficiently strong to affect pointwise
Weyl formula, which needs to be modified according to Chapter 13 (the
results of Chapter 14 are not needed here).

Basically there are two principally cases B < Z 5 of a moderate magnetic
field and Z3 < B < Z3 of a strong magnetic field and a transitional case.

Section 26.1 is an Introduction (which is parallel to Sections 25.1 and 25.2,
arguments and results of which require almost no modification).

Section 26.2 is parallel to Section 25.3 but instead of Section 25.4 we
have four Sections 26.5-26.6, covering single nucleus case M = 1, multiple
nuclei case M > 2 with analysis “inside molecule” and “near the molecule
edge”and the synthesis, respectively.

Sections 26.7 and 26.8 are similar to Sections 25.5 and 25.6.



INTRODUCTION XXIII

Chapter 27. The Case of Self-Generated Magnetic Field. Here
we consider the same Schrodinger-Pauli operator but magnetic field is
underdetermined a priory and its energy

(0.11) a1/|V x A|? dx

is included in the total energy. Here we assume that aZ,, < x* with some
constant k* > 0. We recover the same results as in Chapter 25 but with the
Scott correction term

(0.12) > S(azn)Z2

1<m<M

instead of (0.8).

Section 27.1 is an Introduction. Sections 27.2 and 27.3 provide a re-
placement for Sections 12.6: while Section 27.2 treats a single singularity,
Section 27.3 deals with a molecular case and the necessity to “decouple”
singularities.

In Section 27.4 as in Section 25.4 the asymptotics of the ground state
energy is recovered and Section 27.5 is similar to Sections 25.5 and Sec-
tion 25.0.

Chapter 28. The Case of Combined Magnetic Field. This chapter
combines two previous ones: there is an external constant magnetic field
1, 1

Ao(x) = B(—3x2,5x1,0) and an unknown self-generated magnetic field

(A— Ap)(x), and the energy of the latter
(0.13) at / |V x (A — Ay(x))[? dx

should be added to the total energy.

Section 28.1 is an Introduction. Since we need a lot of microlocal
arguments, they spread over six sections: Sections 28.2-28.4 cover the
local theory and Sections 28.5 and 28.6 the global theory under different
assumptions.

However applications to the ground state energy, excessive negative and
positive charges and ionization energy need only small modifications of our
previous arguments and squeeze into a single Section 28.7.
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Part XII. Articles

I decided to put results of the last few years in this volume as separate
articles. So far those are!)

- Joint paper with A. Hassel [1] Spectral asymptotics for the semiclassical
Dirichlet to Neumann operator.

- My paper [29] Spectral asymptotics for fractional Laplacians.

- My paper [32] Spectral asymptotics for Dirichlet to Neumann operator
in the domains with edges.

- My paper [30] Asymptotics of the ground state energy in the relativistic
settings.

- My paper [31] Asymptotics of the ground state energy in the relativistic
settings and with self-generated magnetic field.

- My paper [33] Complete semiclassical spectral asymptotics for periodic
and almost periodic perturbations of constant operator.

- My paper [34] Complete Differentiable Semiclassical Spectral Asymp-
totics.

item My paper [34] Bethe-Sommerfeld conjecture in semiclassical
settings.

- My paper [28] 100 years of Weyl’s law.

See also the List of my presentations with links to them.

1) While I do not plan to change the main body of this book, I intend to add new
articles, as soon as I write them.
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Chapter 25

No Magnetic Field Case

25.1 Introduction

The purpose of this Part is to apply semiclassical methods developed in the
previous parts to the theory of heavy atoms and molecules. Because of this
we combine our semiclassical methods with the traditional methods of that
theory, mainly function-analytic.

In this Chapter we consider the case without magnetic field. Next
chapters will be devoted to the cases of the self-generated magnetic field,
strong external magnetic field and the combined external and self-generated
fields. Basically this Chapter should be considered as an introduction.

We explore the ground state energy, an excessive negative charge, ioniza-
tion energy and excessive negative charge when atoms can still bind into
molecules.

25.1.1 Framework

Let us consider the following operator (quantum Hamiltonian)

(25.1.1) H=Hy= Y Hug+ >  Ix—xl"

1<j<N 1<j<k<N
on
(25.1.2) = A H H=2L(RYCY
1<n<N
with
(25.1.3) Hy = D* — V(x)
© Springer Nature Switzerland AG 2019 2
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describing N same type particles in the external field with the scalar potential
—V (it is more convenient but contradicts notations of the previous chapters),
and repulsing one another according to the Coulomb law.

Here x; € R? and (x, ..., xy) € RV, potential V(x) is assumed to be
real-valued. Except when specifically mentioned we assume that

(25.1.4) Vix)= > _Im

1<m<M ‘X - ym‘

where Z,, > 0 and y,, are charges and locations of nuclei.
Mass is equal to % and the Plank constant and a charge are equal to 1
here. The crucial question is the quantum statistics.

(25.1.5) We assume that the particles (electrons) are fermions. This means
that the Hamiltonian should be considered on the Fock space $ defined
by (25.1.2) of the functions antisymmetric with respect to all variables
(X1, §1), ceey (XN, §N).

Here ¢ € {1, ..., q} is a spin variable.

Remark 25.1.1. (i) Meanwhile for bosons one should consider this operator
on the space of symmetric functions. The results would be very different
from what we will get here. Since our methods fail in that framework, we
consider only fermions here.

(ii) In this Chapter we do not have magnetic field and we can assume that
g = 1; for ¢ > 1 no modifications of our arguments is required and results
are the same albeit with different numerical coefficients. In the next chapters
we introduce magnetic field (external or self-generated) we will be interested
ind=3,g=2and

(25.1.6) Hya= ((iV=A)-0)’ = V()
where 0 = (07, 02, 03), 0k are Pauli matrices.

Let us assume that
(25.1.7) Operator H is self-adjoint on $.

As usual we will never discuss this assumption.
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25.1.2 Problems to Consider

We are interested in the ground state energy E = Ey of our system i.e. in
the lowest eigenvalue of the operator H = Hy on $:

(25.1.8) E := inf SpecH on $;

more precisely we are interested in the asymptotics of Ey = E(y; Z; N) as
V is defined by (25.1.4) and N < Z .= Zy + Zo + ... + Zpy — oo and we are
going to prove that!) E is equal to Thomas-Fermi energy ' with Scott
and Dirac-Schwinger corrections and with o(Z %) erTor.

Here we use notations y = (y1,...,ym), £ = (241, ..., Zm)-

We are also interested in the asymptotics for the ionization energy

(2519) IN = EN_1 — EN.

It is well-known (see G. Zhislin [1]) that Iy > 0 as N < Z (i.e. molecule can
bind at least Z electrons) and we are interested in the following question:
estimate maximal excessive negative charge

25.1.10 N—-Z
(25.1.10) 2, (= 2)
i.e. how many extra electrons can bind a molecule?.
All these questions so far were considered in the framework of the fixed
positions yi, ..., ypy but we can also consider

(25.1.11) E=Ev=E(y;Z;N)=E+ U(y; 2)
with
ZnZ

(25.1.12) Uy:2) = Yy —"

1<m<m’'<M |ym - ym/‘
and
(25.1.13) E(Z;N)= inf E(y;Z;N)

Y1 ¥YM -

and replace Iy by TN = —EN + EN,l and modify all our questions accord-
ingly. We call these frameworks fixed nuclei model and free nuclei model
respectively.

In the free nuclei model we can consider two other problems:

1) Under reasonable assumption |y, — ym| > Z73 for all m #m.
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(a) Estimate from below minimal distance between nuclei i.e.

2 et <m [Ym = Yo

for which such minimum is achieved;

(b) Estimate mazimal excessive positive charge

(25.1.14) ml\zlax{Z -N:E< Nmi:/ | Z E(Zm; Nm) }
LN 1<m<m
Ni+...Ny=N

for which molecule does not disintegrates into atoms?.

25.1.3 Thomas-Fermi Theory

The first approximation is the Thomas-Fermi theory. Let us introduce the
spacial density of the particle with the state W € §:

(25.1.15) p(x) = pulx) = N/|\Il(x, tor . x) o+ ey

where | - | means a norm in CV9 and antisymmetricity of W implies that it
does not matter what variable x; is replaced by x while in the general case
one should sum on j =1, ..., N. Let us write the Hamiltonian, describing
the corresponding “quantum liquid”:

@106 £() = [l e~ [ VI dx + 3D(00),
with
(25.1.17) (o) = [ [ Ix = y1p()p(y) dcy

where 7 is the energy density of a gas of noninteracting electrons. Namely,

(25.1.18) 7(p) = fvli%(pw — P(w))

2) One can ask the same question about disintegration into smaller molecules but our
methods are too crude to distinguish between such questions.
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is the Legendre transform of the pressure P(w) given by the formula

d
(25.1.19) P(w) =saw2™, s =2021)"%(d +2) wyq.

The classical sense of the second and the third terms in the right-hand
expression of (25.1.16) is clear and the density of the kinetic energy is given
by 7(p) in the semiclassical approximation (see Remark 25.1.2). So, the
problem is

(25.1.20) Minimize functional £(p) defined by (25.1.16) under restrictions:
(25.1.21), , p>0, /pdx <N.

The solution if exists is unique because functional &(p) is strictly convex
(see below). The existence and the property of this solution denoted further
by p'F is known in the series of physically important cases.

Remark 25.1.2. If w is the negative potential then
(25.1.22) tre(x, x,0) = P'(w)

defines the density of all non-interacting particles with negative energies at
point x and

0
(25.1.23) / Td tre(x, x, T)dx ~ —/P(W) dx

is the total energy of these particles; here ~ means “in the semiclassical
approximation”.

We consider in the case of d = 3 a large (heavy) molecule with potential
(25.1.4). Tt is well-known® that

Proposition 25.1.3. (i) For V(x) given by (25.1.4) minimization problem
(25.1.20) has a unique solution p = p'"; then denote ETF == E(p'F);

(ii) Equality in (25.1.21), holds if and only if N < Z =" Z,.

3) E. Lieb, “Thomas-fermi and related theories of atoms and molecules”, [4], pp.
263-301.
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(iii) Further, p'F does not depend on N as N > Z.

(iv) Thus

(25.1.24) /pTFdx:min(N,Z), Z:= > Zn

25.1.4 Main Results Sketched and Plan of the
Chapter

In the first half of the Chapter we derive asymptotics for ground state energy
and justify Thomas-Fermi theory.

First of all, in Section 25.2 we reduce the calculation of E to calculation
of Ny(Hw — v) and to estimate for D(e(x, x,v) — p, e(x, x,v) — p) where
Ni(Hw —v) = Tr((Hw — v)~) is the sum of the negative eigenvalues of op-
erator Hy — v Hy = D> — W, W = WTF p = p™ are Thomas-Fermi
potential and Thomas-Fermi density respectively (or their appropriate ap-
proximations), v is either Ay (N-th eigenvalue of Hy/) or its appropriate
approximation and e(x, y,v) is the Schwartz kernel of E(v) which is the
spectral projector of Hy .

Section 25.3 is devoted to the systematic presentation of the Thomas-
Fermi theory.

Further, in Section 25.4 we apply our standard semiclassical arguments
and calculate Ny (Hy — v) and estimate D(e(x, x, v) — p, e(x, x,v) — p) and
also |Ay — v| where now v is the chemical potential (which is the Thomas-

Fermi approximation to Ay). As a result under appropriate restrictions to
N, Z and

(25.1.25) a:=min ly; — vl > 273

we prove that

(25.1.26) E = £'F + Scott + Dirac + Schwinger + o(Z3)
and

(25.1.27) D(pw — ™ pw — p'F) = o(Z3)
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where
(25.1.28) Scott=q Y _ Z
1<m<M
: 9 2 2 TF\4
1 = ——(367 ,
(25.1.29) Dirac 2(36 )2q3 [(p' )3 dx
25.1.30 Schwinger = (367)3q3 [ (pF)3 dx
g q P

and WV is the ground state.

Remark 25.1.4. (i) Actually we will recover even slightly better remainder
estimate O(Z37%) in (25.1.26) and (25.1.27) as a > Z~ 301,

(ii) Condition a 2 Z =3 bans nuclei to be so close that the repulsion energy
between them be much larger than the total energy of all the electrons.
Estimates in case when this condition is violated will be also proven;

(iii) Keeping in mind that there is no binding in Thomas-Fermi theory (and
this statement could be quantified) one gets immediately that in the free
nuclei model a > Z~ = and therefore remainder estimate o(Z %"S) holds.

(iv) Due to scaling in the Thomas-Fermi theory (see proposition 25.3.3)
ETF ~ q575 = ¢*(qg712)7, Scott ~ qZ2 = ¢*(g~1Z)?, and both Dirac and
Schwinger are ~ 373 = ¢3(q~12)s.

In the second half of the Chapter we apply estimate (25.1.27) to investi-
gate negatively and positively charged systems. In Section 25.5 we consider
negatively charged systems and derive an upper estimate for the excessive
negative charge (N — Z) such that Iy > 0 and ionization energy |y itself.

In Section 25.6 we derive upper and lower estimates for |y 4+ v and an
upper estimate for the excessive positive charge for which in the framework
of the free nuclei model a < co.

25.2 Reduction to Semiclassical Theory

To justify the heuristic formula E ~ £TF = £(p™") and to find an error
estimate let us deduce the lower and upper estimates for E.
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25.2.1 Lower Estimate

For the lower estimate we apply the electrostatic inequality due to E. H. Lieb:

(2521) > [ g —xl W0, )P dbx - doy >
1<j<k<N

4

500w, p0) € [ ) ox

with py defined by (25.1.15).

Remark 25.2.1. Inequality (25.2.1 holds for all (not necessarily antisymmet-
ric) functions W with [|[W||g2gsny = 1.

Therefore

(2522) (HN\U, \U> > Z (valelf, \IJ) + %D(I()\u,p\y) — C/p?u(x) dx =

1<j<N

> (Hw W, v) + %D(Pw ~pov—p) = 2D(p.p) - C/pi(X) dx

- 2
1<<N

where (-, -) means the inner product in $) and Hyy is one-particle Schrodinger
operator with the potential

(25.2.3) W=V —|x|"txp,

where p is an arbitrary chosen real-valued non-negative function.

The physical sense of the second term in W is transparent: it is a
potential created by a charge —p. Skipping the positive second term in the
right-hand expression of (25.2.2) and believing that the last term is not very
important for the ground state function W% we see that we need to estimate
from below the first term.

Here assumption that W is antisymmetric is crucial. Namely, for general
(or symmetric-does not matter) W the best possible estimate is NA; where
A1 is the lowest eigenvalue of Hy, (we always assume that there is sufficiently
many eigenvalues under the bottom of the essential spectrum of Hy ) and we

4) When we derive also an upper estimate for E we will get an upper estimate for this
term as a bonus.
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cannot apply semiclassical theory. However, for antisymmetric W situation
is rather different.

Namely, let Ay < Ay < A3 < ... be negative eigenvalues of Hy, (on
H = £3(R3,C9). Then the first term in the right-hand expression of (25.2.2)
is bounded from below by

(25.2.4) > A =Ni(Hw = X) + AN

1<<N

where N(B), N1(B) = Tr(B™~) are the number and the sum of all the negative
eigenvalues of operator B respectively such that Specess(B) C R* provided
A = Ay < 0; the latter assumption is equivalent to

(25.2.5) N(Hy) > N.

Applying the semiclassical approximation (which needs to be justified!) one
gets

(25.2.6) N;(Hw — A) = Ni(Hw — \) + error;
with
(25.2.7) Ni(Hw — ) = — / P(W(x) + X) dx

and errorg an error in the semiclassical approximation for Ni(Hy — 5\)
Therefore the lower estimate for the ground state energy is

- - 1
(25.2.8) E>— / P(W + X)dx + AN — ED(p, p) — error

where error now includes both an estimate for [ P%u dx and the semiclassical
remainder estimate.

Furthermore, applying a semiclassical approximation for the number
N(Hy — \) of eigenvalues below A (and this number should be approximately
N) one gets an equality

(25.2.9) N = N (Hw — \) + errorg
with
(25.2.10) N(Hy — %) = / P(W(x) + ) dx
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and errorg an error in the semiclassical approzimation for N(Hy — X).
To get the best possible lower estimate one should pick up p delivering
maximum to the functional

(25.2.11) —/P(W(x)+u) dx +vN — %D(p, )

(v = X here) under assumptions (25.1.21), , and (25.2.3) as we skip all the
erTors.

One can see that the optimal choice is the Thomas-Fermi potential WTF
and density p'F. The above arguments are very standard in MQT with
p=p"", W= WTF5 from the very beginning.

On the other hand, let us consider the Fuler-Lagrange equation for
p = p'F under condition [pdx = N:

(25.2.12) (p)—W=v (p>0), W=V —|x|txp

with the Lagrange factor 9. Expressing p and integrating we get
(25.2.13) N = N(Hy — 1) = / P (W(x) + v) dx.

Comparing (25.2.12) and (25.2.13) we get that with some error A~

Substituting to the first term in (25.2.6) A = v and v — W = —75(p) we get
the lower estimate E > £TF — error.

Remark 25.2.2. (i) Instead of (25.2.6) we will use a better estimate”;

(ii) To minimize errors we will also recalculate (25.2.4) effectively replacing
A by v:

(25.2.14) SN= > (N—v)+vN=Ni(Hy —v)+vN.
1<j<N 1<<N

The advantage is that we even do not mess up with the semiclassical
asymptotics for N(Hw — v). Further, one can replace here N by [ p'" dx:
(these quantities fail to be equal only for N > Z i.e. for v = 0).

%) Or some their close approximations.

6 Called chemical potential and in contrast to X belonging to Thomas-Fermi theory.

) With £TF replaced by ETF + Scott + Schwinger and with much smaller error; than
for a simple semiclassical approximation.
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(iii) Recall that we assumed that Ay < 0i.e. (25.2.5) holds. In the opposite
case

(25.2.15) N(Hw) < N.

we estimate the first term in the right-hand expression of (25.2.2) from below
by Ni(Hw) i.e. we will get the same formula but with v = 0.

25.2.2 Upper Estimate

To get the upper estimate one takes a test function W(xq, ..., xy) which is not
a ground state here but an antisymmetrization with respect to (x, ..., xy)
of the product ¢1(x1)--- dn(xn) where ¢y, ..., ¢y are orthonormal eigen-
functions of Hy, corresponding to eigenvalues Ag, ..., Ay, provided Ay < 0.
Namely this function minimizes the first term in the right-hand expression
of (25.2.2).
One can write
1
(25.2.16) V= det (0i(x)), ;1 n

and it is called the Slater determinant. Obviously, ||W| =1 and

(25.2.17) pu(x) = tren(x, x)

where

(25.2.18) en(x,y)= > ¢(x)sl(y)
1<j<N

is the Schwartz kernel of the projector to the subspace spanned on {¢;}1<j<n.

Remark 25.2.5. If q > 2 then ¢; = ¢j(x,¢) and V(x1, c1;...; Xy, Sn) 1S
an antisymmetrization with respect to (xi,<1;...;xn, sy) of the product

<Z51(X1, §1) te ¢N(XN, §N)-

Easy calculations show that

(25.2.19) (HV, W) = 3>\ + D(ow — . pu — )

1<j<N

1 1 _
= 5000) 5 [ [ b=l el y)entx, ) doy.
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The first term in the right-hand expression again is equal to the middle
expression in (25.2.4) which does not exceed

(25.2.20) Ni(Hw — ) + vN + |Ay — | - IN(Hyw — ) — N|.

Really, we need to consider (non-zero) terms which do not cancel in

(25.2.21) =)= (N-v)

J<N Aj<v

and their absolute value does not exceed | Ay — | while their number does
not exceed |N(Hw —v) — NI.

Again, discounting all the errors and considering semiclassical approxi-
mation (including py(x) ~ P'(W(x) + v)) we arrive to a functional

(25.2.22) — / P(W(x)+v) dx + vN — %D(p, p)+
%D(P’(W 4 1) = p P(W 4 1) — p)

which needs to be minimized under assumptions (25.1.21), , and (25.2.3).
This functional differs from (25.2.11) which was minimized by the last term.
One can prove that (25.2.22) minimizes as p = p'", W = WTF and v is
a chemical potential. So again we may pick them (or their appropriate
approximations) up from the very beginning.

Therefore in addition to a semiclassical error; ) of the previous subsection
we need to consider also semiclassical errors

(25.2.23) D(tre(x,x,v) — P'(W +v),tre(x, x,v) — P'(W +v)),
(25.2.24) D(e(x, x,v) — en(x, x), e(x, x, ) — en(x, X))

where e(x, y, v) is the Schwartz kernel of the spectral projector 8(7 — Hw)
of Hw,

(25.2.25) N(Hw —v) — / P'(W +v)dx

and
(25.2.26) AN — V.
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Remark 25.2.4. (i) Recall that we assumed that Ay < 0 i.e. (25.2.5) holds.
In the opposite case (25.2.15) selecting appropriate ¢;(x) with j = N(Hw) +
1,..., N we with arbitrarily small error estimate the first term in the right-
hand expression of (25.2.2) from above by Ni(Hw) as i.e. we will get the
same formula but with ¥ = 0 and we also will need to estimate (25.2.23)
with v = 0.

(ii) To make this case compatible with the case (25.2.5) we will need to
estimate |v| (and |N — Z|) under assumption (25.2.15); we will also compare
ETF calculated for such v (or, equivalently, N as they are connected) and
v=0(and N = Z).

(iii) Sure p™F and WTF depend on v (or N) but we will prove that for N — Z
relatively small we can do all calculations as v =0 (and N = Z).

(iv) If we are interested in the estimate for D(py — p'", py — p'") where
V is the ground state, we do not need to calculate a semiclassical error in
Ni(Hw — v). In fact, we can simply stick with Ni(Hy — A) with X = Ay
under assumption (25.2.5) and A = 0 otherwise. As a result in certain
cases our estimate for D(py — p'", py — p'F) will be better than the error
in an approximation for E and we need the former rather than the latter
for the results of the second half of this Chapter. Especially significant the
difference will be when we introduce magnetic field.

25.2.3 Remarks and Dirac Correction

Now almost everything is in framework of the theory we developed; the only
missing is an estimate

(25.2.27) /p§,dx < ¢z’

for a reasonable candidate W to the ground state; one can find it in E. Lieb’s
Selecta®.

However if we want a more sharp asymptotics with Dirac—Schwinger
terms, we need a remainder estimate o(Z %) or better; luckily there is im-
proved electrostatic inequality due to Theorem 1, G. Graf and J. P. Solovej [1]
(see also V. Bach [1]).
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Theorem 25.2.5. Let N > eZ. Then for the ground state W

(25.2.28) Ene > E > Epe — CZ37°
and
(25.2.29) E>Eps— CZ37°

with some exponent § > 0 where

(25.2.30) Eve = inf Eur(V),

where in (25.2.30) VU runs through Slater determinants® and

(25.2.31) Eue(W) = > (Hy .V, V) +%D(PW,PW)—

1<j<N

1 _
2/ Ix — y|Ftrel,(x, y)en(x, y) dxdy,

1
(25232) Eps == Z /\j - ED(pTFv IOTF) - ’fDirac/pTF’g dx,
JIKGEN;A <O

2
3

Kpirac = (27)3qc2¢, crF = (672/q?)3 is a Dirac constant.

Here (25.2.28)—(25.2.31) are (1.15), (1.16), (1.8), (1.6) respectively and
(25.2.32) is a combination of (1.12) and (25.3.30) of this paper?). Actually
we need only (25.2.29) and (25.2.32).

As we are going to prove that the last terms in (25.2.31) and (25.2.19)
coincide modulo O(Z %_‘5) we made a necessary step completely.

25.3 Thomas-Fermi Theory

Thomas-Fermi theory is well-developed in the no-magnetic-field case. We
cannot suggest any better reading than E. Lieb’s Selecta®.

In the Thomas-Fermi theory N is a real nonnegative number (not neces-
sarily an integer).

8) Albeit not necessarily of eigenfunctions of Hyy.
9 We do not have a coefficient % in the definition of D(.,.) but G. Graf and
J. P. Solovej [1] have.
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25.3.1 Existence

Let us recall that in order to get the best lower estimate (neglecting semi-
classical errors) one needs to maximize

(25.3.1) o (W +v) ::—/P(W—i—z/)dx—817r|V(W— V)|I?
given by (25.2.11) where we used equalities

(532)  D(p.p) = —(p. W~ V) = - [V(W ~ V)|,
(25.3.3) p = %A(W —v),

||.]| means £?mnorm and W — 0 as |x| — oo.
On the other hand, to get the best possible upper estimate (neglecting
semiclassical errors) one needs to minimize

(25.3.4) o (o, v) = /(T(p’) - Vp')dx + %D(p’,p’) — y/p’dx
where
(25.3.5) p=P(W+v)

and 7(p) the Legendre transformation (25.1.18) of P. Recall that according
to (25.1.19)

5 3
(25.3.6), , P(w) = 15‘7 wi, o Pl(w) = 64"2%2_
' T 77
and therefore
3 12 s
(25.3.7) 7(p) = g(67T2q 1)3p§.

Proposition 25.3.1. In our assumptions for any fired v < 0

(1) ®.(W +v) is a strictly concave functional.

(ii) ®*(p) is a strictly convex functional.

(111) S (W +v) < *(p,v) for any p >0 and W.

(iv) These extremal problems have a common solution W and p and
(25.3.8) p= %A(W —V)=P(W+v),

(25.3.9) W = o(1) as |x| = oo.
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(v) On the other hand, solution of (25.3.8)—(25.3.9) is the solution of the
both extremal problems.

(vi) Neither of these problem has a solution for v > 0.

(vii) Function
(25.3.10) N(v) = / PI(W + 1) dx

is continuous and monotone increasing at (—oo, 0] with N'(v) — 0 as v —

—o0 and N'(0) = Z.

(viii) For v and N linked by N = N(v) solutions of the problem above
coincide with p™", WTF of the problem (25.1.20) and one can skip condition
(25.1.20), for N > Z and

(25.3.11) EF=o(WT™F +0v) +uN=0*(p'",v) +vN.

Proof. The proof of Statements (i) and (ii) is obvious; therefore both prob-
lems have unique solutions. Comparing Euler-Lagrange equations we get
that these solutions coincide which yields Statements (iv) and (iii).

Proof of Statements (v)—(viii) is also rather obvious. O

Proposition 25.3.2. For arbitrary W the following estimates hold with
absolute constants eg > 0 and Cy:

(25.3.12) eD(p—p L p—p") <O (WTF +0) — (W + 1) <
CoD(p—p'ip =)

and

(25313) D(f — o,/ — pTF) < ©(p, ) — H(s"F ) <
CoD(p—p'ip =)

with p = =AW = V), p/ = P(W +v).

Proof. This proof is rather obvious as well. O
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25.3.2 Properties

Proposition 25.3.3. The solution of the Thomas-Fermi problem has fol-
lowing scaling properties

(25.3.14) WTF(X; Z;y; N; q) = q%N% WTF(q%Z%X; N~1Z: q%N%X; 1; 1),

(25.3.15 pTF(X; Z;y; N; q) = N2q2pTF(q%Z%X; 4 q%N%X; 1; 1),

)
(25.3.16) E(Z; yi N; q) = q%N%STF(N_IZ; q%Nix; 1; 1),
)

(25.3.17 v'(Z; yi N; q) = q%N%VTF(N{lZ; q%N%X; 1; 1)

where V7 = v is the chemical potential; recall that Z = (Z, ..., Zm) and
y= (Y1, ..., Ym) are arrays and parameter q also enters into Thomas-Fermi
theory.

Proof. Proof is trivial by scaling. O

Since we can exclude g by scaling, we do not indicate dependence on it
anymore. The following properties of Thomas-Fermi potential and density
in the case of the single atom (M = 1) are well-known:

Proposition 25.3.4. Let M = 1. Then the solution of the Thomas-Fermi
problem has the following properties:

(i) WTE(x; Zpn, Ym; N) and pF(x; Zp, ym; N) are spherically symmetric (with
respect to ym) and are non-increasing convex functions of |x — ym|.

(i) If N = Z,,, then

(25.3.18) W' < min(Zn|x = ym| ™" X — yml ),

(25.3.19) p'F = min(Z,%,|x - ym|_%, Ix —ym|7°)

with the threshold at |x — yn,| < ri = Z,;% when WTF = Z3 and p'F=Z2.
(i11) If eZn < N < Z,, then

(25.3.20) = |Zp— N}
and (25.3.18) holds as |x — ym| < 7, where
(25321) Fm e _V_1|Zm _ N|—1 — |Zm _ N|_%

for atoms denotes the exact radius of the support of p™* (see Statement (iv).
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(iv) On the other hand,
(25.3.22) WTF = (Z, — N)|x — ym| ™ as |x —ym|l > P
and p™F =0 as [x — ym| > Fn;
(v) Meanwhile, W™ < —v and p™ = O(|Zn — NJ?) as [x — ym| < T
(vi) Finally,
(25.3.23) — (X —ym VW) < W.

Consider now the molecular case (M > 2):

Proposition 25.3.5. (i) Let M > 2. Then

(25.3.24) v=|Z—N|:
and
(25.3.25) > Wi (elx —ym) S WTF <> WiF(e(x — ym))

where Z = Zy+...+Zy and WIF denotes an atomic Thomas-Fermi potential
with the charge Z, located at 0 and the same chemical potential v. Here €
and ¢ depend only on M.

(i1) In particular, if N < Z and |x —ym| > cFy for allm=1,..., M, then

(25.3.26) W™ (x) < > 1Z = N|[x = ym| ™"
and
(25.3.27) p'F(x) = 0.

Proof. Proof is due to the comparison arguments of E. Lieb, J. P. Solovej
and J. Yngvason [1,3]. O

Proposition 25.3.6. (i) Let N < Z and

1
(25.3.28) Ux) = 5 min [x — ym|,

(25.3.29) C(x) = (WTF(x))2.
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Then

(25.3.30) ((x) <({(x) =

Z%E(X)_% as l(x) < Z3,
C 1 U(x)2 as 773 < U(x) < |Z = N|°3,
|Z — N|2¢(x)2 as ((x) >1|Z — N|73;

C(x) and {(x) are both (-admissible and
(25.3.31) ID*WTF(x)] < Gul(x)*(x) Va:|a| <3,
and
(25.3.32) |DWTF(x) — D*WTF(y)| < GC(x)%(x) " 2|x — y|?
Vx,y |x —y| < el(x)
(ii) Unless ((x) < (—v)? estimates (25.3.32) hold for all a.

Proof. This proof is rather obvious corollary of the Euler-Lagrange equa-
tion. O

Remark 25.3.7. Let

(25.3.33) Z,=<N  Vm.
Then ¢(x) = {(x).

Theorem 25.3.8'9. Consider 7 and
(25.3.34) ETF =€ 4 U,

(25.3.35) U=U(Zi o, Zuiyie e ym) = Y

1<m<m'<M

ZnZ oy
|Ym = Y| .

Select a nucleus y,, and a unit vector n such that
(25.3.36) (Yk = Ym,n) <0 Vk

and plug ym + an instead of y, into ETF and into ETF V. Then

10) Theorem 1 of R. Benguria [1]; we combine two last statements in (iii).
1) So all other nuclei are confined in half-space and y,, moves away outside.
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(i) ETF is a non-increasing function of a > 0;
(ii) ETF is a non-increasing function of o > 0;

(iii) For fized o > 0 both EIF — EIF and ETF — EIF are non-decreasing
functions of N.

Equality
85TF
25.3. =
(25.3.37) v=>r
implies that (iii) is equivalent to
(25.3.38) Vo > 1.

Theorem 25.3.9'%. (i) For fived Zy, ..., Zm;y1, ..., ym and N = Z
(25.3.39) NETF(Z Ay; N) = ETF(N3Z;y; A3N)

is positive non-decreasing function of A > 0 and has a finite limit as A —
+00.

(i) This limit does not depend on Zy, ..., Zy.

Remark 25.3.10. One can observe easily that the same scaling property
without assumption N = Z holds for £ and U as well.

These two theorems and remark imply immediately

Proposition 25.3.11. Let assumption (25.3.33) be fulfilled. Then

(25.3.40) E™(Z;y;N) —  min > ET(Zui Nm) > emin(a™, Z3)

N ,,,,, N
NHI-...NMN;N 1<m<M
where
I
(25.3.41) 2= min Iyn — Yorl

Proof. In virtue of theorem 25.3.8(i) it suffices to prove proposition for
M = 2 (all other nuclei could be pulled to infinity), and in virtue of
theorem 25.3.8(iii) it suffices to prove proposition for Z = N.

Then the proof is due to theorem 25.3.9(i) and (25.3.33), which provides
uniformity. O

12) (1.8)~(1.9) of H. Brezis and E. Lieb [1].
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Remark 25.8.12. Invirtue of (25.3.37) the minimum (with respect to Ny, ..., Np)
in the sum in the right hand expression is reached when v; = v for all j, k.
The same is true for a system of isolated molecules.

Proposition 25.3.13. Let Q denote Thomas-Fermi excess energy which is
the left-hand expression of (25.3.40). Then

(25.3.42) D(p™ 7 ) <co = > lF

1<m<M

Proof. We follow “non-binding” proof due to Baxter (see E. Lieb Selecta®).
According to Baxter’s lemma there exist g, 0 < g < p'Fand h=p'F —g
such that g*|x|™' = V; a.e. when h > 0 and gx*|x|™* < V; a.e. when h=0.
Here V,, = Zn|x — ym| L.
Let « = [gdx, 3= [ hdx and let &F, STF be Thomas-Fermi energies

for the first atom and for the rest of molecule respectlvely and pjF, (1) TE be
corresponding Thomas-Fermi densities. Then

(25.343)  min (EI7(N) + ELS (V) < Exfa) + E(B) <

Ni+N'<

E1(g) + Eqy(h) — eD(g — p1 " g — pi7) — eD(h— p(y, h— p(fy) <
e(g+h)+/h<v1—g* |x|-1)dx—/(v1 g * XY gy

—eD(g —pi".& —pi") — D(h—p{i), h— p(f)
where p; and ;) are measures with the densities respectively Z15(x — y1)

and Y 5 op Zmd(x — ym) and we used the superadditivity of 7(p) = p3.
The last expression does not exceed

(25.3.44) ET" —eD(g —pi' & —pi") —eD(h—pli) h— pl)).
Using induction with respect to M we arrive to
(25.345) D(p™" = pi" = pli), p™" = pi" = pl)) <
2D(g — pi" g —pi') +2D(h— pi), h—pfi)) < CQ
and finally to (25.3.42). O

Problem 25.3.14. Find the stronger lower bound in (25.3.40) as N < Z.
Would be the left-hand expression = min(a~” +|Z — N[2a~!, Z3)?
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25.4 Application of Semiclassical Methods

25.4.1 Asymptotics of the Trace

In this subsection we calculate asymptotics of Tr((Hw — v)~). Here we need
to consider both inner and outer zones.

An inner zone (near nucleus y,) is a ball where V; = Zy|x — yn
dominates W — V,,. For a single nucleus (M = 1) it is defined by

|71

_1
(25.4.1) X —ym| < €Zm?®

but in the case M > 2 there are another restrictions

(25.4.2) x = Yol < ¢ min (zm(z,,, 4 Zo) My — ym/|)
and

(25.4.3) X = Y| < Zv

but we shrink this zone to
_1
(25.4.4) X = Ym| < 1 =emin(Z,Z7"a, Zn?).

Let us consider contribution of the zone &, described by (25.4.4) to
Ny (Hw —v) = Tr((Hw — v)~), both into the principal part of asymptotics
and the remainder. Let v, be a partition element concentrated in X, and
equal to 1 in {x: |x — ym| < 2r,}. Then, according to Theorem 12.6.8,

(25.4.5)  Tr((Hw — v) ¢m) = /Weyll(x)z/zm(x) dx + Scott, + O(Ry)

where Weyl,(x) and Scott,, are calculated for the case ¢ = 1 and then
multiplied by ¢g'%):

9
1572

while R, is C(?(¢l) = C¢3¢ calculated on its border i.e.

(25.4.6) Weyl, (x) =

(W(x) +v)}

(25.4.7) R = CZi + CZarm® < CZ5 + CZ3a™ %,

-1 -1
and 7 — 7Z, rym and

Really, one needs just to rescale x — (x — ym)r,,
1

1
introduce a semiclassical parameter A = Z3rj.

13) As operator H,, — v is nothing but g copies of A — (W 4 v).
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Remark 25.4.1. (i) Clearly, these arguments work only if r, > Z.t (i.e.
72 >a17).

(ii) On the other hand, if Z2 > a=*Z but a > Z~! we define r,, = a2 22
and we do not include Scott,, ¥ into the principal expression; moreover, in
this case we include X, into a singular zone and use variational methods to

estimate its contribution into the principal part of asymptotics; it will not
3 1
exceed CZa~1 < CZ2a 3.

(iii) Furthermore, if a < Z71, we set r,, = Z~* and we do not include any
Scott,, ¥ into the principal part of asymptotics and include all X, into
singular zones; using variational methods we estimate their contributions
into the principal part of asymptotics by CZ2.

Therefore we conclude that

(25.4.8) The total contribution of all inner zones into remainder does not
exceed the right-hand expression of (25.4.7) asa > Z ! and CZ? asa < Z™1.

Let us consider contributions of the outer zone Xy which is complimentary
to the union of all inner zones. Then

(25.4.9) Tr((Hw — v) o) = /Weyll(x)wo(x) dx + O(Ry)

with Weyl; (x) defined by (25.4.6) where

(25.4.10) = / x)3072 dx
and
_ (zie: as (< 773,
(25.4.11) (= -
2 as > 773

We justify (25.4.9)-(25.4.11) a bit later by an appropriate partition of unity.
One can see easily that the contribution of the zone {x: £(x) < Z~3} into
expression (25.4.10) does not exceed the same expression as in (25.4.8) and
that the contribution of the zone {x: £(x) > Z~3} into (25.4.10) does not
exceed CZ3. Then we arrive to

14) However it will be less than the remainder estimate, so we can include it into the
principal part of asymptotics anyway.
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Theorem 25.4.2. Let W =W'F N=<Z, W = WTF. Then

(25.4.12)  Tr((Hw —v)") = /Weyll(x) dx + Z Scott,, + O(R),

1<m<M
with
(25.413) R [T+ CZia as a>Z7%,
o ' Ccz? as a<Z7L.

Proof. (i) Consider v = 0 first. Then we just apply f-admissible partition
of unity. Sure, (¢ < 1 as £ > 1 but we can deal with it either by taking
¢ = 71 here or considering it as a singular zone and applying here variational
estimate as well.

(ii) Variational estimate works for v < 0 as well; furthermore, zone {x: W(x) <
(1—€)w, £ > |v|72} is classically forbidden.

(iii) However as v < —c we have a little problem as WTF is not very smooth,
it is only 62 as W =< —v. The best!® way to deal with it is to take /-
mollification with ¢ = h'=, h = ({¢)~}, use rough microlocal analysis of
Section 4.6 and the bracketing; it will bring an approximation error not
exceeding Ce2h~3|v| which does not exceed |v| = O(|Z — N|3). We leave
easy details to the reader. O

Now we arrive to the lower estimate for E:
Corollary 25.4.3. Let N < Z. Then
(25.4.14) E > E&™ 4 Scott — CR
with R defined by (25.4.13).
Proof. We know from Subsection 25.2.1 that
(25.4.15) E > Ny(Hw — v) +vN — %D(p, p) — CZ3

as W is given by (25.2.3). In virtue of Theorem 25.4.2

(25.4.16) E > /Weyll(x) dx + V/Weyl(x) dx — %D(p, p) + Scott — CR

15) From the point of view of generalization to the case when magnetic field is present
and it is not too weak, so magnetic version of WTF has multiple singularities.
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where we also plugged instead of N as N < Z (and v < 0)

(25.4.17) N = /Weyl(x) dx
with ,
(25.4.18) Weyl(x) = 6—22(W(x) +v)2.

One can check easily that three first terms in the right-hand expression of
(25.4.18) constitute exactly ®,(W + v) coinciding with ETF as W = WTF.O

Remark 25.4.4. (1) As a < Z~3 using the same method one can prove a
slightly better remainder estimate—with Z 3272 replaced by

(25.4.19) S min((Zn+ Zo) i — Y| 2 (2 + Zo)?)

1<m<m'<M

allowing to lighter nuclei to be closer one to another.

(ii) To improve this estimate further, allowing lighter nuclei to be closer to
heavier, ones one needs to improve Theorem 12.6.8 which seems to be too
difficult task for a such little gain.

25.4.2 Upper Estimate for E
Recall that in virtue of Subsection 25.2.2

1
(25.4.20) E < Ny(Hw —v)+vN — ED(p, p)+
1
|IAv —v| - IN(Hw — v) — N| + ED(tr en(x,x) — p,tren(x, x) — p)
and thus we need to estimate two last terms in the right-hand expression.

Estimating [A\y — V|

First, we need to estimate |Ay — v|. We will use the heuristic equality
N(Hw — An) &= N or more precisely two inequalities

(25.4.21),, N(Hw — Ay — 0) < N < N(Hyw — A +0)
and equality
(25.4.22) /Weyl(x) dx = min(N, Z)

where the right inequality (25.4.21), is valid only if Ay < 0i.e. N(Hw) > N.
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Case \y < v. Then we will use (25.4.21), and to calculate N(Hyw — Ay +0)
we will use semiclassical approximation:

(25.4.23) N(Hw — Ay +0) = /Weyl(x, An) dx + O(Ryp)
with the semiclassical error
(25.4.24) Ro = / ¢t dx
with the integral not exceeding
CZ/ L Ix[PPax+ C O x[TPdx = cZ3;
{Ix|<z73} {IxIzz73}

again we need to consider separately the case of N > Z and v = 0, when
integral (25.4.24) is taken over R*, and the case of N < Z and v < 0, when
this integral should be taken over {x: {(x) < C(Z — N)~:}; in the latter
case to cover non-smoothness we consider an approximation (mollification)
of W and an approximation error £2h~3 < 1. Therefore

(25.4.25) /Weyl(x, An)dx > N — CZ5.

Comparing with (25.4.22) we conclude that

3
2

(25.4.26) /((W(x) )t - (Wi + /\N)+> dx < CZ3,

Here an integrand is non-negative (since Ay < v). Further, one can see
easily that the main contribution to this integral is delivered by the zone
{x: 0(x) = |An|"#} 9 and the whole integral is =< |Ay|~#|v — Ay|. Therefore
(25.4.26) yields that

v =] < Clv| + A — v])i 25,
which is equivalent to
1 1
(25.4.27)  |Av—v| < CZ5 + C|v|#Z5 < CZ° + C(Z — N)3Z5 < CZ.

In particular,

16) Provided |Ay| < CoZ3. On the other hand, if [Ay| > CoZ* one can see easily that
(25.4.26) is =< Z because |v| < Z3 due to N < Z.
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(25.4.28) If |v] < Z5 (i.e. (Z— N)y < Z3), then [Ay| < GZ5
and also

(25.4.29) Av — |- IN(Hw —v) = N| < CZ - Z5 = CZ3.

Case Ay > v. Then we will use the left inequality (25.4.21);, but if
N(Hw) < N then integral (25.4.24) is diverging.

To avoid all related difficulties we will consider first the case when
we necessarily conclude that |Ay| > (1 — €)|v|. To do so observe that
even if the main contribution to the integral (25.4.26)'7 is delivered by
the zone {x: £(x) =< (Z — N)|An|™! = |v||An|}, we will ignore this
observation and consider a larger zone {x: {(x) < Colv|#} instead of
[x: £0x) < GolwlH w1},

One can prove easily that

(25.4.30) The contribution of the zone {x: £(x) < Go|v|"#} to the semiclas-
sical remainder, when calculating N(Hw — A\y), does not exceed CZ 5.

Therefore we arrive to the estimate

(25.4.31) v -] < Cizd = c(z-N):Z3 < cz

(cf. (25.4.27)). In particular, we conclude that

(25.4.32) If |v| > CZ5 (i.e. (Z— N) > CZ3), then |Ay| =< |v|

(cf. (25.4.28)). Then one can easily recover (25.4.27) completely. Since
IN(Hw — v) — N| < CZ3 we arrive to (25.4.29).

Case |v| <5 = CZs. This case (i.e. (Z— N)<ni = CZ3) is the most
important one. The easiest way to tackle it is to pick up p'" and WTF
calculated as if ¥ = 0 i.e. Z = N; that means the change of the test function
V in the upper estimate.

We need to modify an upper estimate of ZlgjgN Aj. To do this we note
that

(25.4.33) A = =1

and

17) Now an integrand is non-positive.

18) Obviously these zones coincides as |v| =< |An|.
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(25.4.34) A number of eigenvalues between Ay (if Ay < 0) and 0 does not
exceed CZ5 + Cn%,

which can be proven easily by our standard methods. Therefore
(25.4.35) 7N < Te(Hy) + Cn(Z5 + i)
1<<N

and the last term is less than CZ3 as long as n < CZ3 which is fulfilled.
In this last case!? we arrive to an upper estimate with £'F calculated
as if v = 0ie. ET7(Z; y; Z) which is less than EM(Z; y; N). Actually the

difference between these two is < |v|# < |n|%.

Estimating D-Term

We need to estimate the last term in the right-hand expression of (25.4.20);
we estimate it by
(25.4.36) GoD(tre(x, x,v) — P'(W +v), tre(x,x,v) — P'(W +v))
+ GoD(tre(x, x, v) — tren(x, x), tre(x, x, v) — trey(x, x))
+ GD(p— P(W +v),p— P(W +v)),

where the last term vanishes as p = p'", W = WTF; however, for some
technical reasons we want to avoid this assumption.

Estimating the First Term. To estimate the first term in (25.4.36) we
apply the semiclassical asymptotics

(25.4.37) tre(x, x, v) = Weyl(x) + O(¢*¢ ),
where Weyl(x) = P'(W(x) + v) and therefore this term does not exceed
(25.4.38) [ cbrctypeco ety Hx - y1 aoy.

Estimating this in‘lcegral by ‘che1 double sum of the integpls over dor}lains
{(x): 60x) < Z75,0(y) < 273} and {(x,y): £x) > Z75,6(y) = 273} we
get

(25.4.39) sz// 1 1 Ix| 2y 2 |x — y| ™t dxdy
{Ix[<Z73,|y|<Zz73}

19) Pending an analysis of the next subsubsection.
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and

(25.4.40) C// ) xRyl x — y |t dxdy
{IxIzZ273.ly|z273}

respectively, and rescaling we get the same integrals but both with the
“threshold” 1 rather than Z~3 and both with factor Z3 rather than Z2 or 1
respectively; one can see easily that both obtained integrals (without factor
73) are < 1. Therefore, expression (25.4.38) is O(Z3).

Therefore we proved

Proposition 25.4.5. As W = WTF the first term in (25.4.36) does not
exceed CZ5.

Remark 25.4.6. (i) For N > Z and v = 0 we used that ( < C/72 for
(>27s.

(ii) For N < Z and v < 0 we used that zone {x: ¢ > C(Z — N)73} is
classically forbidden (W + v < 0 there) and therefore integral is taken over
zone {x: { < C(Z — N)~3} where ¢ < G (2.

(iii) As N < Z WTF is not very smooth near W + v = 0 but one can handle
it by rescaling arguments.

(iv) Alternatively (preferably'®) one can replace WTF by its mollification
WIF.

Remark 25.4.7. Estimating this term, and also the second D-term (in the
next paragraph) we need to estimate the contribution of the singular zone
{x: l(x) < F= Z71} where effective semiclassical parameter is less than 1.
We claim that there

(25.4.41) e(x,x,\) < CZ*> for A< cZ?

Indeed, it is true if ¢(x) > 1. Also operator H is bounded from below by
—CZ?%. And finally, in the ball of B(y,, €eZ71) operator A is larger than
Z|x — ym|™t. We leave the easy details to the reader.

Therefore the contribution of this zone into N-term is O(CZ3r®) = O(1),
into both D-terms is O(Z°7°) = O(Z), and into T-term is O(Z°F%) = O(Z?).

Estimating the Second term. Consider now the second term in (25.4.36).
Due to the arguments of the previous paragraph modulo O(Z %) one can
rewrite it as
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(25.4.42)  GD(P' (W + Ay) — P'(W +v), P'(W + \y) — P'(W +)).

Really, if we replace tr e(x, x, ) and tr ey(x, x) by Weyl(x, v) and Weyl(x, Ay)
respectively we make a semiclassical errors estimated by Z 3 provided either
Anv < v or Ay =< v which is always the case unless |v| < CZ$ but in this
case we just “cheat” resetting everything to the case v = 0.

Let us estimate (25.4.42). According to the previous Subsubsection 25.4.2.1
there are two cases:

(i) N> Z — CZ5, in which case |v| < CZ5 and |A\y| < CZ5, and (25.4.42)
does not exceed

et [ X =y ) doy
{LCa<Le(y)<ty
wff = Y Cr)? ooy
{e(x)>LL(y)>L}
with L = [Ay — 1/|’%; one can calculate easily that both terms are of the
magnitude C|A\y — v|t < CZ9 < Z3.
(ii) N < Z — CZ3, in which case (25.4.42) does not exceed

qV—mf// Ix — y|¢(x)C(y) dxdy
)<L L(y)<L}

with L = |v|~# and this integral does not exceed |Ay — v[?|v|~# which due
to (25.4.27) does not exceed C(Z — N)3Z: < CZs.

Estimating the Third term. The third term in (25.4.36) does not exceed

GD(p—p" p—p"")+

GD(P(W +v) = P(WTF +0), P(W+v) — P(WTF +0))

and we leave to the reader an easy proof that both terms here are O(Z g_‘s)
as W is a described mollification of WTF.
Finally, a tTheorem
As we finished an upper estimate for E we arrive to the following main result:
Theorem 25.4.8. Let N < Z and let V be a ground state. Then

Z Ve > 71
(25.443)  |[E—€TF —Scott| < c4< T :Z; woase
as a< /",

where a is the minimal distance between nuclei.
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25.4.3 Improved Asymptotics

So far as a > Z~3 we recovered only o(Z %) for both error estimate in E
and (as a coproduct, see Subsection 25.4.4) for D(py — p'F, py — p'").

Our purpose is to improve them to o(Z%) (or slightly better) as a > Z73
and recover the Schwinger and Dirac terms. To do so in the lower estimate
for E one just need an improved electrostatic inequality (see Theorem 25.2.5)
and also improved semiclassical estimates in Tr((Hw — v)~) and N(Hw — v).

For the improved upper estimate we will need also to improve estimate
ID(pw — p"", D(pw — p'F) for the test function W and apply an estimate

1
(25.4.44) |2/ Ix — y[ L tren(x, y)el(x, y) dxdy+
imc / P (x) dx| < 25

which is due to Theorem 6.4.1720),
Remark 25.4.9. (i) Only contributions to the remainder of zones
(25.4.45) {x: 2757 < |x —ym| < 27367}

with b := min(aZ3,1) (where now we assume that b > 1) should be con-
sidered because the contributions of both zones {x: £(x) < Z=3b~%} and
{x: 6(x) < Z735b"} are O(Z3b79).

(ii) Only m with Z,, > Zb=% should be considered because contributions of
other m are are O(Z3b7%) as well.

Proposition 25.4.10. Let 9 be a (small) parameter such that b=% <9 < 1;
consider m with Z,, > Z9%. Let ¢(x) = ¥(r Y (x—ym)) with ¢ € €5°(B(0,1))
and r defined below.

(i) Further, let (Z — N)3 > r = Z~397L. Then inequalities

(25.4.46) ‘/(b(x)/ (e(x,x, \') — Weyl(x, \')) dxd X'

— Scott — Schwinger| < CZ§195,

20) This theorem implies the above estimate with § = 1 which is definitely overkill for

our purposes.
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(25.4.47) !/qﬁ(x)(e(x,x, A) — Weyl(x, A)) dx| < cziy’
and

(25.4.48) D(¢(e(x,x, 2) — Weyl(x, A)), 6 (e(x, x, \) — Weyl(x, )\))) <
CZ39°
hold with some exponent § > 0 for all A < 0 and for ¢ which is r-admissible.

(ii) On the other hand, let (Z — N)~3 < r. Let W be a constructed above
mollification of WTF. Then

(a) Estimates (25.4.46)—(25.4.48) hold for all X < v.

(b) Further, estimates (25.4.47), (25.4.48) hold for A € [v,0] such that
N(H — \) < N.

(¢) Furthermore, in this last case

(25.4.49) A= | < CZ5(Z — N)3°.

To prove these statements we need to study behavior of the Hamiltonian
trajectories. First we want to prove that in the indicated zone W'F is a
weak perturbation of WIF which is a single atom Thomas-Fermi potential
with Z,, and with v,, = v.

Proposition 25.4.11. In the framework of Proposition 25.4.10 in B(ym, r)
(25.4.50) IDYWTF — WTIF)| < ¢ WIF|x — yp|lol9°.

This estimate holds for all o as WTF /(—v) is disjoint from 1; otherwise it
holds for |a| <3 and

(25.451) [D*(WTF — WIF)(x) — D (W™ — WIF)(y)| <

Wi x = ym| 2 |x =y’
for |a] =3 and |x — ym| =< |y — ym| =< (Z — N)75.

Proof. An easy proof based on the variational approach is left to the reader.[]
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Next, let us consider a manifold ¥\ = {(x,§): H(x,&§) = A} with the
classical Hamiltonian H(x, £) = |£]*> — W(x), and let us introduce a measure
iy, with the density dxd¢ : dH on X y; this measure is invariant with respect to
the Hamiltonian flow with the Hamiltonian H(x, ). Note that py (X)) < Z.

Proposition 25.4.12. In the framework of Proposition 25.4.10 there exists
a set X\ 3 C X5 such that

(25.4.52) m(Zhy) < CO°Z

and through each point (x, &) belonging to 19(2_%, Z%)—vicz’m’ty of La\ Xhy
in T*R3 there passes a Hamiltonian trajectory (x(t), £(t)) of H of the length
T = Z7Y97% along which

N 1 _2 _
(25.4.53) }D(Xz%fz_%)(x(t)zag(t)z < Va:lal <k
and

(25.4.54) Ix(t) — x(0)|Z5 + |£(t) — £(0)|Z7F > v¥|t|Z,
where m is arbitrary and K,§ depend on k.
Proof. We will just sketch the proof.

(i) Consider first the case M = 1. Then the the classical dynamical system
is completely integrable since both the angular momentum and the energy
are preserved.

First, let us include into ¥, ; all the points (x, {) with trajectories not
residing over {97273 < (x) < Z739 "} forall t: |t| < T2,

Further, if (Z — N); > Z¢*" we also include into T} ; all the points
(x, &) with the trajectories not residing over B(yy, (1 —9%)F); recall that for

atoms 7 is an ezact radius of supp(p'"). Then (25.4.52)—(25.4.53) hold and
we reduce ¢, 0’ if necessary.

It is known that not all the Hamiltonian trajectories are closed (see
Appendix 25.A.2). Then one can prove easily that adding to X\ ; the set
satisfying (25.4.52) we can fulfill (25.4.52) and (25.4.54) as well??). One can
find the similar arguments in the proof of Theorem 7.4.12.

21)
22)

Le. trajectories, leaving this “comfort zone” for some t: [t| < T.
It is important that in the classical dynamics is completely integrable.
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(ii) The general case M > 2 is due of this particular one, Proposition 25.4.11
and trivial perturbation arguments. OJ

Proof of Proposition 25.4.10. Now estimates (25.4.46) and (25.4.47) follow
from Propositions 25.4.11 and 25.4.12 and the standard arguments. Note
that if (Z — N); > Z9¥%" we need to mollify WTF in the standard way.

To prove estimate (25.4.48) we can use decomposition (16.4.1) and apply
to the contribution of zone {(x,y): |x — y| > Z29%} the same standard

arguments. Meanwhile one can notice that the contribution of the zone
1 i . 5
{(x,y): |x —y| > Z29} is O(Z379). O

Combining all these improvements we arrive to

Theorem 25.4.13. Let N < Z. Let a > 775 and let V be a ground state.
Then

(25.4.55) |E — £F — Scott — Dirac — Schwinger| < CZ3 (270 + (32%)—6).

25.4.4 Corollaries and Discussion
Estimates for D(py — p'", py — p'")

Recall that in the lower estimate there was in the left-hand expression a non-
negative term 1D(py — p'", py — p'") which we so far just dropped. Then
in the frameworks of Theorems 25.4.8 and 25.4.13 we conclude that this
term does not exceed the right-hand expressions of (25.4.43) and (25.4.55)
respectively.

However, we can do better in the case a < Z -3, Indeed, recall that the
term a~2Z3 in the remainder estimate (25.4.43) appeared only because we
replaced Tr((Hw — v)™) by its Weyl approximation (with correction terms)
which we by no means need for estimating this term since Tr((Hw —v)~) was
present in both lower and upper estimates. Then we arrive to the following

Theorem 25.4.14. Let N < Z and let V be a ground state. Then

(25.4.56) D(py —p' " py —p'") < CQ =

c Z3 if a<Z,
Z3(Z27° + (az3)™) if a>2Z7s.



36 CHAPTER 25. NO MAGNETIC FIELD CASE

Estimates for Distance between Nuclei in the Free Nuclei Model

Let us estimate from below the distance between nuclei in the stable molecule
in the free nuclei model (with the full energy optimized with respect to the
position of the nuclei).

Theorem 25.4.15. Let M > 2 and let condition (25.3.33) be fulfilled. As-
sume that

(25.457) E(ZyiN)+ Y ZiZlym—ym| " <

1<m<m’'<M
min Z E(Zn; Nim)
NN 1<mem
N1+...+NM:N -
Then
(25.4.58) Yo — Y| > 27510 Ym £ m
and

(25.4.59) |ETF(Z? N) — ETF(Z; N) — Scott — Dirac — Schwinger| < 4

Proof. Note first that |E| < CZ3 and in virtue of Theorem 25.4.8 we can
replace E by £TF with O(Z?) error:

(25.4.60) E(ZyiN)+ > ZiZlym—ym| " <
1<m<m'<M
min Z E™(Zm; Np) — CZ3%

N1 ..... NM: 1SmSM

which in virtue of Proposition 25.3.11 is impossible unless a=’ < CZ? i.e.
a>eZ i 7.

Then, again in virtue of Theorem 25.4.8 we can replace E by £TF + Scott
with O(Z %) error. Let us take into account that for molecule Scott equals the
sum of Scott,,. Therefore in (25.4.60) we can replace CZ2 by CZ3. Applying
again Proposition 25.3.11 we conclude that a > eZ .

Let us improve this estimate further. In virtue of Theorem 25.4.13 we can
replace E by £TF + Scott + Dirac + Schwinger with O(Z3~%) error. However
one needs to compare Dirac—Schwinger correction for the molecule with the
sums of such corrections for separate atoms:
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Proposition 25.4.16. Ifa> Z 3% and

(25.4.61) ENZiyiN) = D €T (Zni Nm) +0(Z57)

1<m<M

where N = Ny + ... + Ny, then

(25.4.62) /(PTF)g dx= Y /(pLF)‘é dx + 0(Z37%),

1<m<M
where pIF = p™F(x — Ymi Zmi Nim) are atomic Thomas-Fermi densities.

Proof of this Proposition 25.4.16 will be provided immediately. Therefore
Dirac and Schwinger correction terms for a molecule are equal to the sums
of Dirac,, and Schwinger,, correction terms respectively with O(Z%"SZ) error
and in (25.4.60) we can replace CZ2 by CZ3~%,

Applying Proposition 25.3.11 again we conclude that a > Zats, O

Proof of Proposition 25.4.16. Note that the left-hand expression of (25.3.42)
is equal to

(25.4.63) V(W™ =W 2 with WTF= > wF

1<m<M

and therefore this expression is less than CQ < CZ 579 as well. Then
since a > Z —3%% we conclude that if we restrict the norm to the zone
{x : |x — ym| < Z73%9}, we can replace ™% and WTF by pIF and W]IF
respectively in (25.3.42), (25.4.63).

Using Thomas-Fermi equations we conclude that in this zone

(25.4.64) |IDY(WTF — WIF) < CWIFelelz=% wa i |a| <2

and then |(p™F)3 — (pIF)3| < C(pF)3Z% which implies (25.4.62) because
[(pIF)s dx = Z3 and contributions of zone {x : £(x) > Z73*%} to each
integral is O(Z379). O

The following problem seems to be very challenging:

Problem 25.4.17. In the framework of the free nuclei model consider
the case when assumption (25.3.33) is violated, i.e. when some nuclei
are much lighter than the others. We do not need this assumption for
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Theorems 25.4.8, 25.4.13 or 25.4.14 but we need to estimate from below the
minimal distance between nuclei a.

We cannot do this without some generalization of Proposition 25.3.11,
which we definitely do not expect to survive in its current form without
assumption (25.3.33). It would be unrealistic to expect any estimate from

below for am, = Ming2m |Ym — Ynr| without some estimate from below for
L.

The following problem seems to be reasonably challenging:

Problem 25.4.18. (i) Let us discuss the case M = 2 and 2, < Zj,
a < Z73. Then there is an unpleasant remainder O(a_%Z%) in the trace
asymptotics. Let us discuss how one can improve it.

Let us observe that in R3\ B(y;, Cb) we have W,F > W,F where b =
1
min(Z, 0 aZ,Z71). One can expect that we can modify WTF in B(y;, Cr)
to W so that the dynamical systems corresponding to Hamiltonians Hyy,
and Hy, would be close; then for Hy we would be able to recover trace
asymptotics with the remainder estimate O(Z379).
Meanwhile, if b > Z; %, i.e. a > Z,2Z, the contribution of B(y;, Cr,) to
! 5
the trace remainder would be O(b~227) = O(Z; 5) + 0(a=Y22,7/?) and
we would improve O(a=222) to O(Z37% + a~22,73).

On the other hand, if b < Z{l, ie. a < Z§2Z, the contribution of
B(yi1, Cr) to the trace remainder would be O(Z3), so we would get the
remainder O(Z3° + Z2).

In particular, we get O(Z%"S) provided Z, < Z§79.

(ii) Generalize for M > 2.

25.5 Negatively Charged sSystems

In this section we consider the case N > Z and provide upper estimates
for excessive negative charge (N — Z) if Iy > 0 and for ionization energy
IN = ENfl — IN-

25.5.1 Estimates of the Correlation Function

First of all, we provide some estimates which will be used for both negatively
and positively charged systems. Let us consider the ground-state function
W(xq,61; ... ; Xy, syv) and the corresponding density py(x).
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The crucial role plays estimate (25.4.56) D(py — p'", py — p'") < CQ of
Theorem 25.4.14 and the difference between upper and lower bounds for Ep
(with Ny(Hw — v) + vN not replaced by its semiclassical approximation).

Let us consider the classical density of the electron system

(25.5.1) o(x) = > B(x—x)

1<<N

and the smeared classical density

(2552) Qg,a( = Ox * G = Z ¢€(X - Xj)

1<j<N
where e will be chosen later; here (x,<) = (x1,<1; ..., xn, sn) € (R® x CHN,

(25.5.3) ¢-(z) = e 3¢(ze™?), ¢ € 65°(B(0, 3)) is a spherically symmetric,
non-negative function such that [ ¢(x)dx = 1.

Then [ ¢.(x)f(x)dx = f(0) + O(e?) for any f € 62 Let us consider
(25.5.4) Kn(x) == %D(&(') — (), 0x(-) = p(*))

where p = LA(W—V), W is either WTF if v = 0 or a “good” approximation
for it, constructed in the previous section.

Using Newton’s screening theorem?®® we conclude that
_ 1 _
(25.5.5) S bo -l 2 5D(e) o) — C=N
1<j<k<N

where the last term estimates

> D(6elx = %), 0e(x = x))).

1<<N

On the other hand,

256 30(e0).0:0)) = [ eallel ) b+ Ku(x) — 3D05.)

23) That uniformly charged sphere S(0, r) creates potential v(x) = —gmin(|x|~%, r=1)
where q is the total charge of the sphere.
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and therefore

(25.5.7) Hu> 37 Hu () + Kn(x)  5D(p,) — C=™*N

1<j<N
on (£2(R3,C9))N where W. is the smeared potential:
(25.5.8) W.(x) = V(x) — ¢ * |x| 7L % p.

Observe that the smeared potential does not depend on x and is defined
via p rather than py.
Also let us define

(25.5.9) Moo, oo om) = D (x5 02) (%)
and -
(25.5.10) N, == / p(y)xx(y)dy

with x.(y) == x(x,¥), x € €>(R°).
Furthermore, let us consider function 6 € 6°°(R3) such that

(25.5.11) 0<h<1.
Finally, consider
@512 T =] [ (1000~ )owl))0x(x, ) .

Obviously

T < [ A0 9) e 00— xsl) |90 iy
+ N/ |W(x, xa, ... ,XN)|2‘NX(X2, O XN) — I\_IXIQ(X) dxdxs - - - dxpy

< CNE*|| V5| ©

1

+ (N/ [W(x, X2, ..., xn)|?| Ny — Ni|20(x) dxdxs - - - de>§@%

where ,055)(-, -) is the quantum correlation function,
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(25.5.13) pg)(x,y) = N(N—-1) / W (x,y, X3, ..., xn)|* dxs - - - dxp,

(25.5.14) [ Ay = (= D),
(25.5.15) © =0y = /Q(X)pw(x)dx
and we used Cauchy-Schwartz inequality.
Since
(25516) N oxw) — = [( 3 6y =) = ), y) ey,

2<j<N
we again from Cauchy-Schwartz inequality conclude that
(25.5.17) [Ny — Nu|> < CIVyxl1Z2 - K10, oo xi).

Note that

(25.5.18) D (Hnb2(x)V, 02 (x) W) =

- EN//e(X)Pw(X) dX+/|V9§|2(X)Pw(X) dx

and then (25.5.7) yields that

(25.5.19) Ep / 0(x)pw(x) dx > — / V02 2(x) pw(x) dx

+ > (Hu (302 ()W, 0(x) W)

1<), k<N
1
+ / Kn(x)0(x1) |V (xa, ..., xn) 2 dxy ... dxy — ED('O' p)© — Ce'NO.
Also note that

(25.5.20) The sum of (N — 1) lowest eigenvalues of Hy, on H is greater than
(vN + N1 (Hw, —v)).

Then the second term in the right-hand expression of (25.5.19) is bounded
from below by (vN + Ny(Hw, — v))©, while the left-hand expression is Ex©.
Therefore assembling terms proportional to © we conclude that
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(25.5.21) SO + / V02 Py dx > > (Hiw, 07 (x)V, 02 (%)W)
J

+ N/ Kn(x1, ..., xn)0(x1) W (xq, ... ,xN)|2 dxq - - - dxy
with
1
(25.5.22) S=Ey—vN—Ny(Hw, —v)+ ED(p, ).

Due to the non-negativity of operator D?, the last term in (25.5.21) is greater
than —CT© with

(25.5.23) T = sup W;

supp(6)

so we arrive to

(25.5.24) /V/KN(Xl,...,XN)Q(Xl)’\V(Xl,...,XN)|2dX1'-~dXN <
C(S+T+ec'N)O+P

with

(25.5.25) p— / V02 2py dx.

Combining this inequality with (25.5.13), (25.5.17) we conclude that

1
(25.5.26) T < Csup |V, xall2e) ((5 +e N+ T)O + P) ‘03
+ CeN||V,x|l¢=©
due to obvious estimate
(25.5.27) Kn_1(x2, ..., xn) < 2Kn(xa, .., xn) + e N,

Now we want to estimate S from above and for this we need an upper
estimate for Ey. Recall that due to the arguments of Subsection 25.2.2
S < CQ provided we manage to prove that

(25.5.28) Expressions (25.2.23)—(25.2.26) satisfy the same estimates as be-
fore if we plug W. instead of W.

So, we need to calculate both semiclassical errors (which are calculated
exactly as for W = WTF) and the principal parts, and in calculations of
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(25.5.29) D(P'(W.+v)—p"F, P(W.+v)—p'F)
and
(25.5.30) D(p-—p'F pe —p'")

an error is O(£2Z3) due to estimates

(25.5.31) |DY(W — W.)| <

Ze (1402712 Ya if (<eZ3
c )20l Vo if (>eZ73,0£F,
g2¢=6-lol Va:lal < g if (=<7,

Then one can prove easily that the sum of these two expressions (25.5.29)
and (25.5.30) does not exceed CQ + CZ3¢2 4 CZ%¢, and this estimate cannot
be improved. Choosing ¢ < Z -3 we estimate these two terms by CZ 3.

Under this restriction a smearing error in the principal part of the
asymptotics of f e(x, x, A) dx, namely

(25.5.32) | /(P’(WE +v)— P(W +v)) dx],
does not exceed CZ2e2 = oz %) which is less than the semiclassical error.

Then S < CQ.

So, the following proposition is proven:

Proposition 25.5.1. If 0, x are as above then

25533 T =| [ (#0x5) = py)oel)) BN ) doy] <

%0

. ((Q +e N+ T + P%e%) + CeN||V, x

Csup ||V, x«

with © = Oy defined by (25.5.15) and T, P defined by (25.5.23), (25.5.25)
respectively and arbitrary e < Z -3

25.5.2 Excessive Negative Charge
Let us select 6 = 6,

(25.5.34) supp(f) C {x: (x) > b}.
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Observe that HyW = EyV yields

(25.5.35) EN/,OW(X)K(X)H(X) dx = Z (W, U(x;)0(x; ) HyV) =
D ()7602 ()W, L(x)762 () Hu W) — Zuv (0% (:)0(x:) ) w2

J

and isolating the contribution of j-th electron in j-th term we get

(25.5.36) EN/pw(x)é(x)G dx > ENl/p\u(x)E(x)@(x) dx+
D= L)) (~VO9)+ D = )W) - va (6 () 0()F ) W2

k:k#j

due to non-negativity of operator D2.
Now let us select b to be able to calculate the magnitude of ©. Observe
that

(25.5.37) |/9(X)(PW(X) — p(x)) dx| < CD(pw — p, pw — p)2[|VO2|| =

CD(py — p, pw — p)2b? < CQ3b2

and

(25.5.38) / 0(x)p(x) dx < b3
as long as

(25.5.39) Z3<b<Z-N);®

-1

because p = |x| ¢ as Z73 < |x| < o(Z — N),*. Note that the right-hand
expression of (25.5.38) is larger than the right-hand expression of (25.5.37)
as b> (G Q’%. Therefore let us pick up

(25.5.40) b= Q7
it does not conflict with (25.5.39) provided

(25.5.41) N>Z— CQr
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and then
(25.5.42) 0 = Q7.

Then the same arguments imply that the last term in the right-hand expres-
sion of (25.5.36) does not exceed Cb~*©; using inequality

(25.5.43) / () )0(x)dx > b

we conclude that
(25.5.44) bly@, < / 8(x) V (x)0(x) p(x) dx
- / O (x, y)o(x)|x — y| 0(x) dxdy + Cb© =
= [ 60VEOLxIpu(x)
= [ A6yl =y (1 - 6)o(x) dy

= [ #6001 = y10(r)0(x) dcy + Cb e,

Denote by 7, Z,, and Z3 the first, second and third terms in the right-hand
expression of (25.5.44) respectively. Symmetrizing Z3 in the right-hand
expression of (25.5.44) with respect to x and y we see that

7, - _% / P2 (x, ) (€0x) + €y)) x — y|20(y)0(x) dxdy

and using inequality £(x) + ¢(y) > min;(|x —y;| + |y —yj|]) > |x — y| we
conclude that this term is less than

(25.5.45) — ;/pgf)(x,y)e(y)ﬁ(x) dxdy =

5 =1) [ pulot) et 5 [ o)1 00))00x) ey

Here the first term is exactly —1(N — 1)©; replacing p‘(ﬁ)(x,y) by p(y)pw(x)
we get

1

(25.5.46) 5 /(1 —0(y))p(y)dy x ©
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with an error

(25.5.47) 5 [ (#00y) = oy )pulo)) (1= 60))8(x) iy

which we estimate using Proposition 25.5.1 with x(x,y) =1 — 6(y). Then
IV, xxllez = b2, [Vyxllge = b7, T =< b* P = b~ and picking up
e = Z~% we conclude that an error (25.5.47) is less than Ch2 Q20 = CQ7©
and then we conclude that

1 3
(25.5.48) I < —5(N - 2),0 + CQ70

because [ pf dy = Q7 and [ p(y)dy = min(Z, N).
On the other hand,

@549 T<— [ A xp)lx v (1= B))o(x) ey

with 6 = fp(1_) and replacing pff)(x, y) by p(y)pw(x) we get

(25.5.50) - /pw(X)p(Y)K(X)lx —y[7H(1 = 0(y))0(x) dxdy

and we estimate an error in the same way by cQio.
Therefore

(25.5.51) Iy + I, < /G(X)V(X)E(X)pw(x) dx—
[ Pl = v (1= 80))8(x) dcy + €@ =
[ W etx)p(x) o
+ [ s (Ol - v ()8 iy + Cal

due to V — W = |x|71 % p. Since W/ < Cb~3 we can skip the first term in
the right-hand expression. Furthermore, as

(25.5.52) /p(y)x —y|70(y) dy < © < Q7
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we can skip the second term as well.
Adding Zz to and multiplying by ©~1 we arrive to

(25.5.53) bly < —%(N —7), + CQ7

which implies immediately

Theorem 25.5.2. Let condition (25.3.33) be fulfilled.

(i) In the fized nuclei model let |y > 0. Then

1 if a<Z73,

25.5.54 N-—Z), <CQi =CZ7 ) ;
( b W= {zu(aZs)‘s if a> 275

(ii) In particular, for a single atom and for molecule with a > Z-3+8
(25.5.55) (N=2), <Z77

(iii) In the free nuclei model let Iy > 0. Then estimate (25.5.55) holds.

25.5.3 Estimate for Ionization Energy

Recall that as N < Z we assumed that N > Z — CQ7 (see (25.5.41)) and
b= Q’%. Then (25.5.53) also implies Iy < CQ% and we arrive to

Theorem 25.5.3. Let condition (25.3.33) be fulfilled and let N > Z — GCoZ7.
Then

(i) In the framework of fized nuclei model

(25.5.56) Iy < CZ7.

(i) In the framework of free nuclei model with N > Z — CoZ77°

i 2075/

(25.5.57) Iy < 7%

Remark 25.5.4. (i) Classical theorem of G. Zhislin [1] implies that the
system can bind at least Z electrons; the proof is based on the demonstration
that the energy of the system with N < Z electrons plus one electron on the
distance r is increasing as r — +00 because potential created by the system
with N < Z electrons behaves as (Z — N)|x|™* as |x| — oc;
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(ii) In the proof of Theorem 25.5.2(iii) and 25.5.3(ii) we note that tearing
of one electron in free nuclei model is easier than in the fixed nuclei model.

The following problem does not look extremely challenging:

Problem 25.5.5. In Theorems 25.5.2(i),(ii) and 25.5.3(i) get rid of condi-
tion (25.3.33).

25.6 Positively Charged sSystems

In this section we consider the case of positively charged system with
Z— N> GQ7 with sufficiently large G.

First let us find asymptotics of the ionization energy; the principal term
will be —r but we need to estimate a remainder.

25.6.1 Estimate from above for Ionization Energy

As M = 1 construction is well-known: let
us pick up function 6 such that § = 1 as

|Xx—ym| >F—pand 0 =0as |[x—y,| < F—20 —W(x)
where 7 is an exact radius of support p'F.

Here g <« r. As M > 1 let us pick instead / v
(25.6.1)  6(x) = F (0" [W(x) + 1]) /-

v —2v

where f € €>°(R), supported in (—o0, 2) and |_9 — 1=
equal 1 in (—o0,1), v <. I—Esuppﬁ—)
We will assume that o

(25.6.2) a>F=C(Z—-N)s

with sufficiently large Ci; we will discuss dropping this assumption later.
Then as we know that p'" is supported in cF-vicinity of nuclei, we conclude
that “atoms” are rather disjoint.

One can see easily that then as W + v = 0,

(25.6.3) IVW| = F5;

then the width of the zone {x: 0 < W(x)+v < 2v}is < o|VW|1 < = 0P
and



25.6. POSITIVELY CHARGED SSYSTEMS 49

(25.6.4) o = / B(x)p™" dx = v? x B = v F

while ||V6]|| < 8~2F = v=27 3 and therefore to ensure that © has the same
magnitude (25.6.4) we pick up the smallest v such that vz 7 > Co~2F 2 Q2
ie.

(25.6.5) V= GF Qs (< B=GFQs);
then
(25.6.6) O=F Qb

Then (25.5.15) is fulfilled. Note that v < v = 7 iff (Z — N) > Q7 exactly
as we assumed.
Then (25.5.44) is replaced by

(25.6.7) IN/E(X)pw(X)Q(X) dx < /G(X)V(X)E(X)pw(x) dx

= [ A )elx — yI6(x) ddy + 7270

where CS72FO estimates the last term in the right-hand expression of
(25.5.36). Then

(25.6.8) Iy / (x)po(x)0(x) dx < / 8(x) V (x)0(x) pu(x) dx
= [ (#0c0) = pulo)ol)) t)x = y10(x) oy
= [ poldply)tt)x = 517 200x) oy + €527,
Let us estimate from above
2569~ [ (p0c1) = pul)ol0) ) H00)x — y10(x) dody <
= [ (A3 = p(0p()) (1 = sl 1)) )b = ] 160) ey
+ [ )ty - yI6(x) iy

withw =w,: w=0for [x —y|>2yandw =1for [x —y| <~,v> 0.
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To estimate the first term in the right-hand expression one can apply
Proposition 25.5.1. In this case |V, x|l = Crye, IV, x|le < Py~ and
plugging P= 320 and T = |v|, ¢ = Z~3 we conclude that this term does
not exceed

(25.6.10) Cr(v2Q + CZ57y72)0,  Q=max(Q, Z3).

Consider the second term in the right-hand expression of (25.6.9). Note that
- __15 1 3
/p(y)w(x'y”" —y[THdy < C(F 297 +0297)

since p(y) < (W(y) + V)2 and [VW| = 75 then this term does not exceed
C(F 272 + v29?)FO.
Adding to (25.6.10) we get

3

Optimizing with respect to v = Qsv™s we get Con Q57O and (25.6.8)
becomes

(25.6.11) (Iy + V)/ﬁ(x)pw(x)ﬁ(x) dx <
/ 0(x) (W(x) + ) ((x)pu(x) dx + Co QEFO <

(v + U% @%)

where we took into account that V — x|t % p = W, and that W +v < v
on supp(6).

Since a factor at (Iy + v) in the left-hand expression of (25.6.11) is
obviously =< F© we arrive to (Iy +v) < Cv + Vit C_ﬁ

Recalling definition (25.6.4) of v we arrive to an upper estimate in
Theorem 25.6.3 below:

(25.6.12) Iy +v < Cu=CQs(Z — N)i.

Really, this is true if @ > Z 3 (we are interested in the general approach)
and in this case v > vi0 Q5. On the other hand, if Q = Zg(aZ%)_‘s, aZi > 1,
then we get an extra term CQTlo(Z - N)%Z 5 but we can skip it decreasing
unspecified exponent § > 0 in the definition of Q.
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Remark 25.6.1. (1) We will prove the same estimate from below in the next
Subsection 25.6.2.

(ii) Note that the relative error in the estimates is v/v = (Z — N)~2Qs.

(iii) In the proof we used not assumption (25.6.2) itself but its corollary
(25.6.3). If we do not have such assumption instead of equality (25.6.4) we
have inequality ©TF > v27 (but probably equality still holds). However we

have a problem to estimate |© — ©TF|: namely, we need to estimate the first
factor in the product |[V0z|D(p — p'F, p — pTF)z.

Let us select f in (25.6.1) such that |f'| < cf*~%/2 with arbitrarily small
0 > 0. Then

B[ V63| < c/ 610 oy < C(/ 9dx)15C(/ 1 dx)’ <
Z zZ zZ
C(@TF)I—év—%(l—é)F&S

13

with Z = supp(V#) and 3 = Fe Qs and an error is less than e@F provided
v=GF Qs x (FQ)™

which leads to a marginally larger error.
Estimate P could be done in the same manner but here slight increase
of it does not matter.

(iv) The same arguments of (iii) could be applied to the proof of the lower
estimate in the next subsection despite rather different definition of ©y by
(25.6.18).

(v) In vrirtue of Theorem 25.6.4 stable molecules do not exist in the free
nuclei model as Z — N > CQ% and in atomic case Iy = Iy.

Problem 25.6.2. Consider f such that |f'| < fg(f) where g7}(t) € £!
and further improve remainder estimate without assumption (25.6.3).

25.6.2 Estimate from below for Ionization Energy

Now let us prove estimate Iy + v from below. Let W = Wy(xq, ..., xy) be
the ground state for N electrons, |W|| = 1; consider an antisymmetric test
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function

(25613) \TJ = \U(Xl, ,XN+1) = \U(Xl, ,XN)U(XH+1)_

Z (X1, o X1, X1, X1 o0 X ) U(X5).

Then

Enva[ V)P < (Hypa W, W) = N(Hyo Vo, ) =

N(HNWu, W) + N(Hy oy, Vo, U) + NS [xi = g 7 Wu, Uy =

1<i<N

(En = VNP + N(Hw- g, W, )

NS = xwal™ — (V = W) o)) W, )

1<i<N

and therefore

(25.6.14) N (Iys1 + )W) > —(Hw iy, Yu, ¥)
(D = xngal = (V= W) (xupa)) W, 0)

1<i<N

with 2/ > v to be chosen later. One can see easily that

(25.6.15) N7HW|? = W flul*~

N/‘U(Xl, -1 X)W, e, y)u(y)u(x) dxg - - - dxy—y dxdy

where T means a complex or Hermitian conjugation.

Note that every term in the right-hand expression in (25.6.14) is the sum
of two terms: one with W replaced by W(xq, ..., xny)u(xn41) and another with
W replaced by —NWV(xq, ..., Xn—1, Xn+1)u(xn). We call these terms direct and
indirectindirect term respectively.

Obviously, in the direct and indirect terms u appears as |u(x)|? dx and
as u(x)u'(y) dxdy respectively, multiplied by some kernels.
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Recall that v is an arbitrary function.
Let us take u(x) = 02(x)¢;(x) where ¢;
are orthonormal eigenfunctions of Hy ., and
0(x) is f-admissible function supported in
{x: —v > W(x)+v > 2v} and equal 1
in {x:|—2v > W(x)+v > iv}, satisfying
(25.5.11), and 8 = vF°.

Let us substitute it into (25.6.14), mul-
tiply by ¢(M\L™') and take sum with re-
spect to j. We get the same expressions
with |u(x)|? dx and u(x)uf(y) dxdy replaced
by F(x,x)dx and F(x,y) dxdy respectively with

(25.6.16) F(x,y) = /@(ALl) dre(x,y, \).

Here (7) is a fixed “6°° non-negative function equal to 1 as 7 < % and equal
to0as7>1and L =1 — v = 60.

Under described construction and procedures the direct term generated
by N7 [[W)J? is

(25.6.17) /9(x)<p(/\L1)dAe(x,x,)\) dx
and applying the semiclassical approximation we get
(25.6.18) Oy = /go()\Ll) d\P' (W +v — \)dx.

Therefore under assumptions (25.3.33) and (25.6.2) Y the remainder es-
timate is Ch~1P2b=2 = Cv3Fb~1 = Cu~373; one can prove it easily by
partition of unity on supp(f) and applying the semiclassical asymptotics
with effective semiclassical parameter i = 1/(v2b) = U*%NF*5.

On the other hand, indirect term generated by N~![|W|? is

(25.6.19) — /v/ei(x)eé(y)uJ(xl,__,xN1,x)wf(x1,___,xN1,y)><

F(x,y) dxdydx - - - dxn_1

24) Or rather its corollary (25.6.3).
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and since the operator norm of F(.,.,.) is 1 the absolute value of this term
does not exceed

(25.6.20) N/Q(X)|\U(x1, eoxne1, X) [P dx = /Q(X)pw(x) dx <
/e(x)p(x) dx + CQ2|| Vo3|

where p™F = 0 on supp(f) and under assumption (25.6.2)2% | V62| =
3

b=3F = ("3F 2.
Recall that P/(WTF + v) = p™F. We will take / = v + L large enough to
keep Oy larger than all the remainders including those due to replacement

W by WTF and p by p'" in the expression above. One can see easily that
(25.6.21) Oy = h™3 x b2 < v2bP < VT,
Therefore

(25.6.22) Ifv = COF’% Q% and Z—N > Cozg the total expression generated
by N=2|W|2 is greater than e© with © = v3 7.

Now let us consider direct terms in the right-hand expression of (25.6.14).
The first of them is

(25.6.23) /9 1) dy (Hw 0% (x)e(x, v, ),y dx =

X

= [0 o (el V), o

L[ O, 041,04 et x, ) 2

2
/H(X)(V’ —v =AMLY dre(x, x, \) dx — C/ V02 2e(x, x, V') dx.

Note that the absolute value of l%st tern} in the right-hand expression of
(25.6.23) does not exceed Cb~1F2L> < Cv2F3 <« Cv®.
The second direct term in the right-hand expression is

(25.6.24) — /e(x) (pw x| L= (V- W)(x))F(x,x) dx —
— D(pw —p, H(X)F(x,x)) >

— CD(pw — P, Py — p)% . D(Q%F(X,X),Q%F(X,X))>2 > —C05F7’U%

1=
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provided V — W = |x|71 % p with D(p — p™F, p — pTF) < CQ; the absolute
value of this term is < v©.
Further, the first indirect term in the right-hand expression of (25.6.14) is

(25.6.25) — /v/eé(y)w(xl,...,XN_l,x)wT(xl,...,XN_I,y)x
(ALY d)\(HW-H/,xe%(X)e(X, ¥, A)) dxdydsx - - dxy_y =
—/v/e )62 ()W (1, .., X1, X)W (xa, o xv1, y) %
e(AL 1)(V —v—MA)dre(x,y, A) dxdydxy - - - dxy_1
/v/ St 1, )W s X1, y) X
(AL [Hw x, 02(x)] dre(x, y, \) dxdydsx, - - dxy_1.

Note that one can rewrite the sum of the first terms in the right-hand
expressions in (25.6.23) and (25.6.25) as Y (AL (v — v — X)) ||W]|* with

Wi(xg, . X)) = /\U(Xl, ey XN—1, X)H%(x)gbj(x) dx

and therefore this sum is non-negative.
One can prove easily that the absolute value of the second term in
(25.6.25) is less than

Cuzb! /pw(y)Gé(y) dy < Cu™2F %0 < v©.

Therefore

(25.6.26) The sum of the first direct and indirect terms in the right-hand
expression of (25.6.14) is greater than —Cv©.

Finally, we need to consider the second indirect term generated by the
right-hand expression of (25.6.14)

(25.6.27) /Z|y—x,|1 (V- W)y ))

1<i<N

W(xy, ..., xp)V(x, ... ,XN,l,y)H%(XN)G%(y)F(XN, y)dxy - - dxydy =
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= [ (40 (V= W))Wt 308 5 009

9%(XN)9%(y)F(xN,y) dx - - - dxndy

—[( byl ) 2009 G2 9)

1<i<N

0% (x )02 (y) F (x, y) dy - - - dxdly;

recall that p, is a smeared density, x = (xq, ..., xn).
Since ly| ™ % pe(y) — (V = W)(y) = [y|"* # (px — p), the first term in the
right-hand expression is equal to

(25.6.28) /eé(xN)\U(xl, X)X

Dy (p(¥) = p(¥). Flon v, O, e -, ) ) b~
and its absolute value does not exceed

(25.6.29)

1
2

(1] Do) = )2 = ) W00, 5000 )

N—3 <Dy<F(XN,y, A)H%(y)\ll(xl, e XN=1, Y ),
F(xn, Y, A)G%(y)\ll(xl, ooy XN—1, y)) dxy - dXN> E.

Due to estimate (25.5.24) and definition (25.5.4) as the first factor in
(25.6.29) does not exceed ((Q + T + e *N)© + P)% where we assume that
< Z 5 and © =< b"2Q>F is now an upper estimate for J 0(y)pu(y) dy-like
expressions; due to our choice of v it coincides with © = V3T

Then according to (25.5.25) P < Ch~20 < QO and according to (25.5.23)
T <« @ and therefore in all such inequalities we may skip P and T terms;
so we get C(Q 4+ ¢ 1N)20z,

Meanwhile the second factor in (25.6.29) (without square root) is equal
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to

Nl/sz/(ALl)so/(XLl)ly — 2| e(xw, v, A) 02 ()W (3, X1, y)
I — |
e(xn, z, \') 9%(Z)WT(X1, o XN—1, Z) dydz dxq - - - dxy_1 dxy dAdN;
] P

after integration by xy we get instead of marked terms e(y, z, A) (recall that
e(.,.,.) is the Schwartz kernel of projector and we keep A < X) and then
integrating with respect to A we arrive to

N [y = 2, 2000 s )6
Hé(z)wf(xl, o XN_1,Z) dydz dxq - - dxy_1
where now F is defined by (25.6.16) albeit with (? instead of . This latter
expression does not exceed
(25.6.30) N1 // ly — 2| M F(y, 2)|02(y)|W(xq, .., xn-1, y)
dydz dxy - - - dxn_1.

Then due to proposition 25.A.3 expression [ |y —z|™*|F(y, z)| dz does not ex-
ceed Ch~'h~1 < v7, and thus expression (25.6.30) does not exceed CZ2v2©
and therefore the second factor in (25.6.29) does not exceed CN~10#©2 and
the whole expression (25.6.29) does not exceed

C(Q+e7'N)20% x N™i0: = CNH(Q + 7' N)=vi0
and then

(25.6.31) As e > Z71v72 the first term in the right-hand expression of
(25.6.27) does not exceed Cv®O.

Further, we need to estimate the second term in the right-hand expression
of (25.6.27). It can be rewritten in the form

(256.32) > /U(x,-,y)w(xl,._.,XN)w(Xl,...,x,v_l,y)eé(xN)eé(y)x

1<i<N
F(xn,y) dxq - - dxndy
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where U(x;, y) is the difference between potential generated by the charge
d(x — x;) and the same charge smeared; note that U(x;, y) is supported in
{(xi,y): |xi —y| <e}. Let us estimate the i-th term in this sum with i < N
first; multiplied by N(N — 1), it does not exceed

(25.6.33)

1
2

N( [ 1065 PG x0) o) ) F o) - dedy) ‘

N(/ w(x;, Y)W (xq, ... ,XN_l,y)|29%(xN)0%(y)|F(xN, y)|dxg--- dedy> 2;

here w is e-admissible and supported in {(x;, y): |x; — y| < 2¢} function.
Due to Proposition 25.A.3 in the second factor IQ%(XN)|F(XN,y)| dxy < C
and therefore the whole second factor does not exceed

(25.6.34) C(/ Hé(x)w(x, y)pg)(x,y) dxdy>%

where we replaced x; by x. According to Proposition 25.5.1 in the selected
ox : | ) b . :

pression one can replace oy’ (x, y) by pw(x)p(y) with an error which does
not exceed

C(sup IV llzey (@ + €M) ? o+ CeN|V e )©

go < £71 becomes CNO.

which as we plug sup, [V, xx||¢2@3) < ez, |V, x

Meanwhile, consider

1
(25.6.35) / UG y) 20 () F (o )| -
Again due to Proposition 25.A.3 it does not exceed
col / UG ) PO3 () (I — ylot + 1) dy

and this integral should be taken over B(x;, ¢), with |U(x;, y)| < |x — y|™},
50 (25.6.35) does not exceed Cev3w!(x;, xy) with w'(x, y) = (1+U%|x—y|)_S
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1

(provided ¢ < v~z which will be the case). Therefore the first factor in
(25.6.33) does not exceed

(25.6.36) Cezv % /Qz(x)w X, y)pw)(x y) dxdy) .

Therefore in selected expression one can replace psﬁ)(x, y) by pw(x)p(y) with
an error which does not exceed what we got before but with ¢ replaced by
U*%, i.e. also CNO.

However in both selected expressions replacing pff)(x, y) by pu(x)p(y)
we get just 0. Therefore expression (25.6.33) does not exceed Ce2viZ0
which does not exceed Cv© provided ¢ < C viZ72,

So, we have two restriction to ¢ from above: the last one and ¢ < Z -3
and one can see easily that both of them are compatible with with restriction
to ¢ in (25.6.31).

Finally, consider term in (25.6.32) with i = N (multiplied by N):

(25.6.37) N/ Ulxn, Y)WV (x4, ... ,XN)|29%(XN)9%()/)F(XN,)/) dx - - - dxndy;

due to Cauchy inequality it does not exceed

1
(25.6.38) /|xN — YW (e, .. x) 202 ()03 (y) dxg -~-dedy)2><
1

/v /F(XN,y)|2|\U(X1, o) 202 (xn) 02 (y) dxa ~-~dedy>2

where both integrals are taken over {|xy — y| < e} and integrating with
respect to y there we get that it does not exceed

Ce102 x 01302 = Cuic?@ < vO.

Therefore the right-hand expression in (25.6.14) is > —Cv© and recalling
that v/ — v = O(v) we recover an lower estimate in Theorem 25.6.3 below:

(25.6.39) Iy +v>—Cv=CQs(Z— N)i

Combining with a lower estimate (25.6.12) and recalling estimate (25.4.5)
for @ we arrive to
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Theorem 25.6.3. Let condition (25.3.33) be fulfilled and let N < Z — CoQ7
with Q < G, Z5.

Then in the framework of fixed nuclei model under assumption (25.6.2)
1 as a< Zié,

(25.6.40)  |Iy+v| < C(Z— N)©EZi )
704 (aZ3)" as a> 2773,

25.6.3 Estimate for Excessive Positive Charge

To estimate excessive positive charge when molecules can still exist in free
nuclei model we apply arguments of section 5 of B. Ruskai and J. P. Solovej [1].
In view of Theorem 25.4.15 it is sufficient to consider the case

(25.6.41) a=minly; —yi| > GoF.
Jj<k

Therefore in Thomas-Fermi theory p' is supported in separate “atoms”.
Let us consider a-admissible functions 6,(x), supported in B(ym, 3a) for
m=1,..,Mand in {|x —yn,| > %a Vm=1,..., M} for m =0, such that

(25.6.42) 05+ ...+ 03 =1

Then for the ground state W

(25.6.43) En = (HU, W) =) (0,HOW, W) — > " [[(Vifa) V]
«a aj
with the sum over of (M + 1)-cluster decompositions o = (ap, ..., am) of

{1,...,N} and 0u(x) = [locmem [lica, Om(xi); 5 = 1,..., N. Then for any

given o

(25.6.44) H= Y Ha+da

0<m<M

with the cluster Hamiltonians H,,,, involving only potential of m-th nucleus
(no nucleus potential as m = 0) and only electrons belonging to «,, and
therefore satisfying

(25.6.45) Hao > Eat(No(), Z),  Hag >0,

and with the intercluster Hamiltonian (actually, just potentials)
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(25.646) Jo= D > ~Zulxi —ym|

1<m<M i¢am

+ 0D =T Y ZeZly —yal

m<li€am,jEq m</

Let us note that

(25.6.47) > Phi= >

0<m<I<M

with J,, given by (32)—(33) of Ruskai-Solovej [1] if m,/ > 0 and m = 0
respectively:

(25.6.48) St = ZinZilym — V1|7 = Zun D 01(:)?1%; — Y 1=
Z;y  Om0if i =yl DOm0 09)% i — 17
i i#j

and

(25.649) o= D 0o (=Zibx — vl + 3 i)l — gl ).
i J
Then we recover (35) of Ruskai-Solovej [1]
(25.6.50) {(JmV, V) = ZpZ)lym —yi|* — Z,/pw(x)em(x)2|x — |7t dx—

Z, / P ()2Ix — vl L b+ / P2 (%, )8 ()01 ) dixcly.

Applying Proposition 25.5.1 and estimate (25.4.56) (replacing first 6, with
m=1,...,M by 6, supported in B(yn, cF) and estimating an error), we
conclude that

(25.6.51) /pw(x)em(x)2|x —yi|tdx =

(7" C08m(021x = vl + O(Y)) lym = i

(25.6.52) /,o\.,(x)ém(x)2 dx = NiF + O(Y),
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with

(25.6.53) NTF = / P (X)0m(x)2dx, Y = QiF

(compare with (36)—(37) of Ruskai-Solovej [1]) which yields

(25.6.54) /pw(x)(l - > On(x)dx<CY,
1<m<M

and we prove that (25.6.52) holds for 6, as well (compare with (38) of
Ruskai-Solovej [1]).

The last term in (25.6.51) is estimated by Proposition 25.5.1 and estimate
(25.4.56) and the same replacement trick:

25655 [ o0y )0nx01yPx 1y =
[ Ayl 010 | by >
[ T im0 | iy~

c(@* [ (e -+ Yoy~ 3|
and repeating the same trick we get that it is larger than
(25.6.56) /pTF(x)pTF(y)\x —y|[tdxdy — C(Z — N)Ya™' — CY?a™l.
Then we conclude that

(25.6.57) (JW, W) > JTF — CNYa™
with

(25.6.58) Jo = / P ()T (¥)0m(x)0:(y)1x — y| " dxdy

= 2o [ S8 x vl = 21 [ 5T~ vl
+ ZnZilym —yi|
and
(25.6.59) [(JV, V)| < C(Z - N)Ya ! + CY?a?
(compare with (39)—(40) of Ruskai-Solovej [1]) provided
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25.660) | [ o7 ()bx = 51 nlo) dy  WIF[x — vl 1] <
C(Z — N)|x —ym| ™

for |x —ym| > CF.

Let us note that the absolute value of the last term in the right-hand
expression of (25.6.43) does not exceed Ca=?Y due to (25.6.52). Now stability
condition yields

(25.6.61) J= > Jw<CYa?4+C(Z-N)Ya '+ (Y2l

0<m<I<M

This inequality, (25.6.41) and Proposition 25.6.6 below yield that Z — N <
CY = CF2Qz. Since 7 = (Z — N)™3 we arrive to (Z — N) < CQ7:

Theorem 25.6.4. Let condition (25.3.33) be fulfilled. Then in the frame-
work of free nuclei model with M > 2 the stable molecule does not erist
unless

(25.6.62) Z-N<Zi

Remark 25.6.5. Unfortunately, we do not prove that molecules exist. We
are not aware of any rigorous result of this type in the frameworks of our
models.

Proposition 25.6.6. Let (25.6.41) be fulfilled. Then inequality (25.6.60)
holds and

(25.6.63) J>e(Z—N)at.
Proof. Note first that

(25.6.64) ETF < E&(p Z EpF)+JT(p) <

ZsTF )+ C(Z — N)?a?

with p= ), pjTF while

(25.6.65) ZS(pJ-TF) < ZS(GJ/)TF):
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then

(25.6.66) JTF(p™) < C(Zz-N)2a?

and using (25.6.62) we conclude that

(25.6.67) D(p™F —p.p"" —p) < C(Z - N)at.
Further,

(25.6.68) A:=> D(p" 0 —p;". p" 0 —p/7) <

J D(p™" —p.p'" —p) + CFa 'A
and combining with (25.6.66) we conclude that
(25.6.69) A< C(Z-N)*a?
due to (25.6.41). Combining with p;" * |x| ™" = NTF|x —y;| 7" for [x —y;| > rs
we arrive to (25.6.60). Further,

(25.6.70) JTF(™) > JTF(p) — CAZF=(Z — N)a~2 — CAF

N =

which together with (25.6.68) and (25.6.69) yields (25.6.63). 0

25.A Appendices

25.A.1 Electrostatic Inequalities

We know already that there are two sources of errors in the lower estimate:
due to electrostatic inequality (25.2.1) and semiclassical errors. For the
first error in the case B = const E. Lieb, J. P. Solovej and J. Yngvason (3]
provide the (almost) perfect estimate; the reader can find the proof based
on the magnetic Lieb—Thirring inequality (and this inequality as well) in
that paper (p. 122) which in the case of B = 0 becomes

Theorem 25.A.1. For the ground state V of (25.1.1) with potential (25.1.4)
(25.A.1) /p;j‘, dx < CZENE(Z + N)*

otherwise.
In particular for ¢ *N < Z < cN the right-hand expression does not
exceed CZ3.
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On the other hand, for B = 0 there is a more precise inequality due to
V. Bach [1] and G. Graf and J. P. Solovej [1]:

Theorem 25.A.2. For the ground state W of (25.1.1) with potential (25.1.4)
(25.A.2) (HV, V) >
1
Ny(A—v)+vN— 2/ Ix — y| Y e(x, y, v)|? dxdy — CN3~°

with some exponent § > 0.

We will discuss magnetic field case in more details in the Appendix to
the next Chapter 26.

25.A.2 Hamiltonian Trajectories

We are going to prove that for W = WTF in M = 1 case the generic
trajectory on the energy level v is not periodic. We use some ideas from
V. Arnold [2], pages 37-38. Recall that in this case W = W(r) (r = |x —y1])
and angular momentum M is a motion integral. Then any trajectory lies on
some plane and if M = [M| > 0 it lies in {0 < r < F} where W is analytic
and W(F) = —

(25.A.3) Let us assume that all the trajectories on the energy level v are
periodic.

Then the rotation number
M dr

/ﬁ r2\/2 — M?r=2

showing the increment of the polar angle over a half-trajectory should be
wk~! with k € N and should not depend on M where r; < r, are roots of
(W(r)4+v) — M?r=2 = v. So, ® should be the same for all trajectories on
the energy level v. One can see easily that for M — 0 & tends to those of
the Coulomb potential. So, ® = 2x for all trajectories on the energy level v.

Let ry be a root of F(r) =2(W(r)+v) + r“(W’(r))2 = 0. One can see
easily that F(F) > 0, F(r) — oo as r — 0 and F'(r) < 0 because

(25.A.4)

(25.A.5) W’ <o, W +2rW' = r H(rPW')) = rAW > 0.



66 CHAPTER 25. NO MAGNETIC FIELD CASE

So, the unique root exists. Then r = ry is a circular motion with M =
3w/

—rgW'(rp).
Then (V. Arnold [2], problem 2 at page 37)

& — 1/ W/BW + W) 1| _ =g

r=ry

for trajectories tending to circular. However, 3W' + rW” > W' due to
(25.A.5) and then ®y > 7. Contradiction to assumption (25.A.3).

25.A.3 Some Spectral Function Estimates

Proposition 25.A.3. For Schrodinger operator with W € € and for
¢ € 65°([—1,1]) the following estimate holds for any s:

(25.A.6) IF(x,y)l < Ch2(1+h Y x—y]) 7,

(25.A.7) F(x,y) = /¢()\) dre(x,y, N).

Proof. Let u(x,y,t) = f g ihTEA dye(x,y,A) be the Schwartz’s kernel of
e~ Ht

Fix y. Note first that £2-norm?® of ¢(hD;)x(t)w(x)u(x, y, t) is less than
Ch® as x € 65°([—¢, €]) and w € 6> supported in {|x — y| > €1} (e1 = Ce)
due to the finite speed of propagation of singularities.

We conclude then that %£2-norm of ¢(hD;)x(t)w(x)u(x,y, t) is less than
Ch® for w € 6> supported in {x: |x —y| > C}.

Then £2-norm of 9!V*¢(hD;)x(t)w(x)u does not exceed Ch*. Then
due to imbedding inequality £ °°-norm of ¢(hD;)x(t)w(x)u does not exceed
Ch*. Setting t = 0 and using this inequality and |F(x, y)| < Ch~3 (due to
Chapter 4) we get that |F(x, y)| < Ch® for |x — y| > €;

Now let us consider general [x—y| = r > Ch. Rescaling x—y — (x—y)r—!
we need to rescale h+— hr~! and rescaling above inequality and keeping in
mind that F(x, y) is a density with respect to x we get |F(x,y)| < Chsr=3-s
which is equivalent to (25.A.6)-(25.A.7). O

Comments

There are papers of physicists. L.H. Thomas and E. Fermi have suggested
in 1927 that a large Coulomb system (atom or molecule) in the ground

25 With respect to x, t here and below.
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state looks like a classical gas but with the Pauli principle, so, leading to
the first term £'F in the asymptotics. The second term of asymptotics was
conjectured by J. M.C. Scott in 1952 as a contribution of those electrons
which move very close to the nuclei. Next terms, Dirac and Schwinger
corrections were conjectured in 1930 and 1980, respectively.

The mathematical rigorous papers one can separated into several groups:

First, there are papers concerning only the Thomas—Fermi model (so,
studying the Thomas-Fermi equation, may be, with some modifications,
without any consideration of the quantum mechanical model, even if the
latter was a source for the former). Most notably H. Brezis, H. and E. Lieb
E. [1], R. Benguria [1], R. Benguria, R. and Lieb E. H. [1].

The second group consists of the papers, justifying Thomas—Fermi model
as an approximation to the quantum mechanical model: E. H. Lieb and B.
Simon, [1], where the leading term was derived; also certain properties of
the the Thomas—Fermi model were established.

Next, W. Hughes [1] and H. Siedentop and R. Weikart [1-3] justified
the Scott correction term in the atomic case, while V. Ivrii and M. Sigal [1]
justified it in the molecular case.

Then, C. Fefferman and L. Seco [1] justified Dirac and Schwinger cor-
rection terms in the atomic case, while V. Ivrii justified them in [21] (even
in the case of the relatively weak magnetic field). J. P. Solovej, J. P., T.
. Serensen and W. L. Spitzer [1] recovered Scott correction term in the
relativistic case (under assumption preventing relativistic instability).

The third group consists of the papers, related to the ground state energy
problem: B. Ruskai and J. P. Solovej [1], J. P. Solovej [1] and L. A. Seco,
I. M. Sigal, and J. P. Solovej [1].

Finally, we already mentioned papers which provided the solid functional-
analytical base for all this construction. Pretty complete survey could be
found in C. L. Fefferman, V. Ivrii, L. A. Seco, and 1. M. Sigal [1].
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Chapter 26

The Case of External Magnetic
Field

26.1 Introduction

In this Chapter we repeat analysis of the previous Chapter 25 but in the
case of the constant external magnetic fieldV.

26.1.1 Framework

Let us consider the following operator (quantum Hamiltonian)

(26.1.1) H=Hy =Y Havy+ Y Ix—xl"
1<j<N 1<j<k<N
on
(26.1.2) = A H H=2L(RCY
1<n<N
with
(26.1.3) Hya= ((iV = A)-0)* = V(x)

describing N same type particles in the external field with the scalar potential
—V and vector potential A(x), and repulsing one another according to the
Coulomb law.

D Actually we need a magnetic field either sufficiently weak or close to a constant on
the very small scale.
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Here x; € RY and (x,...,xy) € R, potentials V(x) and A(x) are
assumed to be real-valued. Except when specifically mentioned we assume
that

(26.1.4) V(x)= > _m

1<k<M |X - ym|

where Z,, > 0 and y,, are charges and locations of nuclei. Here o =
(01,02, ..., 04), Ok are g X g-Pauli matrices.

So far in comparison with the previous Chapter 25 we only changed
(25.1.3) to (26.1.3) introducing magnetic field. Now spin enters not only in
the definition of the space but also into operator through matrices o,. Since
we need d = 3 Pauli matrices it is sufficient to consider g = 2 but we will
consider more general case as well (but g should be even).

Remark 26.1.1. In the case of the the constant magnetic field V x A
(26.1.5) Hav = (=iV — A(X))* + - (V x A) — V(x)
In the case d = 2 this operator downgrades to
(26.1.6) Hav = (—iV — A(x))* + 03(V x A) — V(x)
Again, let us assume that
(26.1.7) Operator H is self-adjoint on $).

As usual we will never discuss this assumption.

26.1.2 Problems to Consider

As in the previous Chapter we are interested in the ground state energy
E = Ey of our system i.e. in the lowest eigenvalue of the operator H = Hy

on $:
(26.1.8) E = inf SpecH on 9;

more precisely, we are interested in the asymptotics of Ey = E(y; Z; N) as V
is defined by (26.1.4) and N < Z .= Zy + 2o+ ...+ Zy — o0 and we are going
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to prove that? E is equal to Magnetic Thomas-Fermi energy ELT, possibly
with the Scott and Dirac-Schwinger corrections and with an appropriate
error.

We are also interested in the asymptotics for the ionization energy

(2619) IN = EN—l — EN

and we also would like to estimate maximal excessive negative charge

(26.1.10) Nr;nlf,);o(N - 7).
All these questions so far were considered in the framework of the fixed
positions yi, ..., ym but we can also consider
(26.1.11) E=Ey=E(y;ZN)=E+ U(y; 2)
with
ZnZ
(26.1.12) Uy:2) = ), ——"
1<m<m'<M [Ym = Y|
and
(26.1.13) E(Z;N)= inf E(y;Z;N)
Y1 ¥YM -

and replace ly by T,V = EN,l — EN and modify all our questions accord-
ingly. We call these frameworks fixed nuclei model and free nuclei model
respectively.

In the free nuclei model we can consider two other problems:

(a) Estimate from below minimal distance between nuclei i.e.

1§mr2m§/\/l Yo = Y|

for which such minimum is achieved.

(b) Estimate mazimal excessive positive charge

(26.1.14) max{(Z — N): E< min g E(Zmi Nm) }
N N1 ..... NM: 1§m§M
Ni+...Ny=N

for which molecule does not disintegrates into atoms.

2) Under reasonable assumption to the minimal distance between nuclei.
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26.1.3 Magnetic Thomas-Fermi Theory

As in the previous Chapter 25 the first approximation is the Hartree-Fock (or
Thomas-Fermi) theory. Let us introduce the spacial density of the particle
with the state V € $:

(26.1.15) p(x) = pu(x) = N/ W(x, X2, ..., xn) |2 dxa - - - dxy.

Let us write the Hamiltonian, describing the corresponding “quantum lig-
uid”:

(26.1.16) Es(p) = /Ts(p(X))dX— / V(x)p(x) dX+%D(P: p),
with
(26.1.17) D(p. p)z/ x = yI 7 p(x)p(y) dxdy

where 75 is the energy density of a gas of noninteracting electrons:
(26.1.18) T8(p) = su%(pw — Pg(w))
w>
is the Legendre transform of the pressure Pg(w) given by the formula
1 4 -
(26.1.19) Pg(w) = %1/3<§w+ +;(w—213)+)
iz

with 3¢ = (27)"1q, (372)~1q for d = 2, 3 respectively.

The classical sense of the second and the third terms in the right-hand
expression of (26.1.16) is clear and the density of the kinetic energy is given
by 78(p) in the semiclassical approximation (see remark 26.1.2). So, the
problem is

(26.1.20) Minimize functional Eg(p) defined by (26.1.16) under restrictions:

(26.1.21)1’2 p>0, /pdx < N.

The solution if exists is unique because functional Eg(p) is strictly convex
(see below). The existence and the property of this solution denoted further
by pgF is known in the series of physically important cases.
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Remark 26.1.2. If w is the negative potential then
(26.1.22) tre(x, x,0) ~ Pg(w)

defines the density of all non-interacting particles with negative energies at
point x and

0
(26.1.23) / Td tre(x, x, 7)dx ~ —/PB(W) dx

(o]

is the total energy of these particles; here ~ means “in the semiclassical
approximation”.

We consider in the case of d = 3 a large (heavy) molecule with potential
(25.1.4). Tt is well-known® that

Proposition 26.1.3. (i) For V(x) given by (26.1.4) minimization problem
(26.1.20) has a unique solution p = pL~; then denote ELF = Eg(pLF).

(ii) Equality in (26.1.21), holds if and only if N < Z =" Z,.
(iii) Further, p™" does not depend on N as N > Z.

(iv) Thus

(26.1.24) /,ongx—min(N,Z), Z:= Y Zn

1<m<M

26.1.4 Main Results Sketched and Plan of the
Chapter

In the first half of this Chapter we derive asymptotics for ground state energy
and justify Thomas-Fermi theory. As construction of Section 25.2 works
with minimal modifications (see Section 26.6) in the magnetic case as well
we start immediately from magnetic Thomas-Fermi theory in Section 26.2.

We discover that there are three different cases: a moderate magnetic field
case B < Z3 when EXF < 73 and EIF = £JF(1 + o(1)), a strong magnetic
field case B> Z3 when EXF =< B5Z3 and EIF = EIF(1 4 o(1)) where EXF

3) Section IV of E. H. Lieb, J. P. Solovej and J. Yngvason [3].
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is Thomas-Fermi potential derived as Pg(w) = 154 w? (cf. (26.1.19)), and
an intermediate case B ~ Z3.

Then we apply semiclassical methods (like in Section 25.4) albeit now our
analysis is way more complicated due to two factors: the semiclassical theory
of the magnetic Schrodinger operator is more difficult than the corresponding
theory for the non-magnetic Schrodinger operator and also Thomas-Fermi
potential WTF is not very smooth in the magnetic case, so we need to
approximate it by a smooth one (on a microscale).

We discover that both semiclassical methods and Thomas-fermi theory
are relevant only if B < Z3. The case of the superstrong magnetic field
B > Z3 was considered in E. H. Lieb, J. P. Solovej and J. Yngvason [1].

First of all, in Section 26.3 we consider the case M = 1; then the Thomas-
Fermi potential WaF is non-degenerate and in this case we derive sharp
spectral asymptotics.

Next, in Section 26.4 we consider the case M > 2 but we analyze only
zone {WZF + v > B} where v is a chemical potential and B is an intensity
of the magnetic field. A certain weaker non-degeneracy condition is satisfied
due to the Thomas-Fermi equation and we derive almost sharp spectral
asymptotics.

Furthermore, in Section 26.5 we analyze in the case M > 2 the boundary
strip {WTF + v < B} containing the boundary of supp(pg©); this is the most
difficult case to analyze and our remainder estimates are not sharp unless
N>Z - CZ5.

Finally, in Section 26.6 we derive asymptotics of the ground state energy.
Their precision (or lack of it) follows from the precision of the corresponding
semiclassical results; so our results in the case M = 1 are sharp, but our
results in the case M > 2 (especially if N < Z — CZ%) are not.

In the second half of this Chapter we consider related problems. In
Section 26.7 (cf. Section 25.5) we consider negatively charged systems
(N > Z) and estimate both ionization energy Iy and excessive negative
charge (N — Z), ¥.

In Section 26.8 (cf. Section 25.6) we consider positively charged systems
(N < Z) and estimate the remainder |ly + v| in the formula Iy ~ —v; for
M > 2 we also consider a free nuclei model and estimate from below the
distance between nuclei and an excessive positive charge (Z — N); when
atoms can be bound into molecule?.

4) In the (magnetic) Thomas-Fermi theory both answers are 0.
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Appendices contain some auxiliary material, most notably, electrostatic
inequalities in Appendix 26.A.1 and also Zhislin’s theorem (that system can
bind at least Z electrons) in Appendix 26.A.4-all in the case of magnetic
field.

26.2 Magnetic Thomas-Fermi Theory

26.2.1 Framework and Existence

The Thomas-Fermi theory is well developed in the magnetic case as well
albeit in the lesser degree than in the non-magnetic one. The most important
source now is Section IV of E. H. Lieb, J. P. Solovej and J. Yngvason [3].

Again as in the previous Chapter 25 to get the best lower estimate for the
ground state energy (neglecting semiclassical errors) one needs to maximize
functional ®g (W + v) defined by (25.3.1) albeit with the pressure Pg(w)
given for d = 2,3 by (26.1.19). Formulae (25.3.2) and (25.3.3) also remain
valid.

Further, to get the best upper estimate (neglecting semiclassical errors)
one needs to minimize functional ®5(p’, ) defined by (25.3.4) where (25.3.4)
remains valid with P replaced by Pg and respectively 7(p") replaced by
7g(p’) which is Legendre transformation of Pg (see (26.1.18)).

Since Ppg is given by much more complicated expression (26.1.19) rather
than (25.3.6),, and respectively

d 1 4_ L d_
(26.2.1) PL(w) = ExlB(ij YRS (w-2jB)E 1)
Jjz1
(cf. (25.3.6),), there is no explicit expression for 7g similar to (25.3.7).
Remark 26.2.1. (1) B(x) = |V x A(x)|.

(ii) From now on we will assume that d = 3.

(iii) Pg is a strictly convex function and therefore 75 is also a strictly convex
function®.

5 - . - . .
5 As d =2, Pg is a convex and piecewise linear function and therefore 75 is also a
convex function.
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(iv) Pg(w) — Po(w), Pg(w) — Pi(w) and 75(p) — 10(p) as B — 0 where
(without subscript “0”) the limit functions have been defined by (25.3.6), ,
and (25.3.7) respectively.

Remark 26.2.2. (i) Alternatively we minimize Eg(p) = ®5(p, 0) under as-
sumptions

(26.2.2)1'2 p>0, /pdx < N.

(ii) So far in comparison with the previous Chapter 25 we changed only
definition of Pg(w) and 75(p) respectively. Note that Pg(w) belongs to
AR (as d = 2,3) as function of w; this statement will be quantified later.

(iii) While not affecting existence (with equality in (26.2.2), iff N < Z) and

uniqueness of solution, it affects other properties, especially as B > Z 3,

Proposition 26.2.3. In our assumptions for any fired v < 0 Statements
(i)—(viii) of Proposition 25.3.1 hold.

Proof. The proof is the same as of Proposition 25.3.1. The proof that
threshold ¥ = 0 matches to N = Z are theorems 4.9 and 4.10 of Section IV
of E. H. Lieb, J. P. Solovej and J. Yngvason [3]. O

Note that (25.3.8)-(25.3.9) and (25.3.10) become

1
(26.2.3) p= 4—A(W — V) = Pg(W +v),
T
(26.2.4) W =o(1) as |x| — oo
and
(26.2.5) N@) = / PL(W + ) dx
respectively.

Similarly, Proposition 25.3.2 remains true:

Proposition 26.2.4. For arbitrary W the following estimates hold with
absolute constants €9 > 0 and Cy:

(26.2.6) €D(p—p' . p—p™") < O (WTF + 1) — dp (W +v) <
GD(p— ', p = ')



76 CHAPTER 26. EXTERNAL MAGNETIC FIELD

and
(26.2.7) eD(p' —p™" 0 = p™") < Op(p,v) — Pp(p"" v) <

CD(p—p' . p—0p')
with p = =AW — V), p' = Pg(W +v).

Proof. This proof is rather obvious as well. O

26.2.2 Properties

Proposition 26.2.5. The solution of the magnetic Thomas-Fermi problem
has the following scaling properties

(26.2.8) W™ (x; Z; y; B; N; q) =

PN (g3 N3 x; N1Z; g5 Nsy; g SN3B; 1;1),
(26.2.10) £™7(Z; y: Bi N; q) = q%N%STF(N_IZ; q%Néx; q_%N_%B; 1; 1),
(26.2.11) VTF(Z; y: B; N; q) = q%N%VTF(/V_IZ; q%N% : q_%N_%B; 1; 1)

where V" = v is the chemical potential; recall that Z = (Z, ..., Zm) and
y = (Y1, ---.Ym) are arrays and parameter q also enters into Thomas-Fermi
theory.

T

In particular, v'F and B scale the same way.

Proof. Proof is trivial by scaling. O

Now one can guess that there are two cases B < Z3 and B > Z3 (recall
that N < Z) in which magnetic Thomas-Fermi theory looks very different
(and also an intermediate case B ~ Z3). To explain this difference let us
consider one atom case:

First of all recall that if B = 0 and N = Z theory (as M = 1) has just one
parameter and we can get rid of it by rescaling; W' =< Z¢~! as ¢ < 75
and WTF < (=% as ¢ > Z~3. Then

WTF2(3 = 7303, WTF2/3 < Z3¢3
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and
WTF3p3 = =3 WTF3/3 — o7

respectively where the first factors are spacial densities of the charge and
(negative) Thomas-Fermi energy respectively and therefore zone ¢ < Z73
provides the main contributions into both.

Therefore, if in this main zone B < WTF < 73 we guess that the
magnetic theory is similar to non-magnetic one, and actually it is true.

However, let us study an atomic case rigorously. Let M =1, y,, = 0 and
N < Z. Then

(26.2.12) WZF is a spherically symmetric, and it is monotone non-increasing
function of |x|; Wg" — +0 as |x| = oo;

(26.2.13) WaF(x) < —v = WEF = |x|71(Z - N).

Indeed, (26.2.12) is obvious and (26.2.13) follows from it and Newton
screening theorem.
Two propositions below treat cases B < Z 5 and B >Z 3 respectively; in

4 4
the former case there is another fork: B < (Z — N)3 and B 2 (Z — N):.

Proposition 26.2.6. Let M =1y, =0, N < Z, and B < 73,

(i) Then

(26.2.14) WEF < min(Z|x|7%, Clx|™)

and

(26.2.15) pEF < Cmin(Z2|x|72 + BZ2|x|72, |x|® + B|x| 7).

(ii) There exists
1 _1
(26.2.16) Fm < min(B74,(Z = N),*)
such that Wat = —v as |x| < F, and then piT =0 iff x > Fp.

(111) (26.2.14) and (26.2.15) become equivalencies (<) as |x| < (1 — €)Fm.
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4 1 4
() B <(Z— N)2 implies r, < (Z — N)*, v<(Z— N)3: and

(262.17) W™ 1 v = (Z — N)3(7n — |x]),
—OWTF = (Z - N)} i (1= )fm < X| < P

v) B> (Z —N) implies Fy = B-%, v = (Z — N), B} < B and
+ ~Y
(26.2.18) WTF + v < BX(F, — |x|)* + B2(Z — N)4(Fm — |x|)
— QW = B*(F — |x[)® + B2(Z — N),

as (L—=€)im < |x| < P

Proposition 26.2.7. Let M =1y, =0, N < Z, and B > Z3.

(i) Then

(26.2.19) WaF < Z|x|™!

and

(26.2.20) piF < CZ3|x|"% + CBZz|x| 2.

(i1) There exist Fp, and 7.,
(26.2.21) Fo=<B 575, P =<BZ,

such that WaF = B as |x| S Fn, WaF = —v as |x| S 7, and then piF =0
iff x > .

(111) (26.2.19)—(26.2.20) become equivalencies (<) as x| < (1 — €)rn.

(iv) v=(Z—N),B5Z75 < B and

(26.2.22) WTF + v < B3 (Fp — [X)* + 70 2(Z — N) 1 (F — |X])
and
(26.2.23) —OpWTF < B3 (F — [x])* + 7,2 (Z — N)4

as (1 —€)fm < |x] < F.
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Proofs of Propositions 26.2.6 and 26.2.7. Proofs easily follow from equation
and “boundary conditions” satisfied by w(r) where r = |x|:

(26.2.24) w” +2rtw = Py(w +v),

(26.2.25) w=r1Z,+0(1) as r — 0,

(26.2.26) w(Fm) = —v, w'(Fp) = vF!

where v = —(Z,, — N) 7, . O

Corollary 26.2.8. Let M=1,y, =0 and N < Z,,. Then

s

(i) WIF < B if |x| > F, where F,, < B"1Z,, as B> Z} and 7, < B™% as
4

B <cZ3.

4
(ii) As B < Zs the main contribution to both the charge and the Thomas-
_1
Fermi energy is delivered by zone {x: |x| < ri} with rk, = Zn?*; in particular,
7
then EF =< EF =< Z3: further, in this case WAt =< WTF in the zone
{x: |x| S erm}-

4

(iii) Further, EFF ~ ETF as B < Z3; furthermore, in this case WF ~ WTF
in the zone {x: |x| < Fn}.

(iv) On the other hand, as B > Z3, the main contributions to the total charge

15
and energy are delivered by {x: |x| < F,} and in particular p, < BZ3Fy and

3
2

(26.2.27) EIF = BZaia = B Z

Sale

4 1 4
Recall that 7, = B™# as B < Z3 and 7, < B™5Z5 as B > Z,. Note
that Proposition 25.3.5 (comparing WTF for molecule with the sum of those
for single atoms) still holds. Therefore we conclude that

Corollary 26.2.9. (i) Assume that
(26.2.28) Zn=Z

forallm=1,..., M. Then all statements of corollary 26.2.8 remain true
for M > 2 with |x| and Z,, replaced by {(x) and Z and i, F,,, ri by F, 7,
r* respectively.
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(ii) In the general case global statements remain true, pointwise statements
remain true without modification only as £(x) = lm(x) = |x — ym| with
In=<Z.

Remark 26.2.10. (i) Also holds Proposition 25.3.13 as it uses only super-
additivity of 7(p) and 75(p) is also super-additive (this follows from convexity
of 75(p) and equality 75(0) = 0).

(ii) However there is a significant difference: if there is no magnetic field
atoms really repulse one another on any distances and we can attribute it
to either excessive positive charge as N < Z or their infinite spatial size as
N = Z. However with magnetic field atoms have a finite size even as N = Z
and they do not repulse one another on the large distances. In particular,
Proposition 26.2.11 below holds.

Proposition 26.2.11. Let N = Z and

(26.2.29) Y = Y| = o + P Vm: 1<m<m <M.

Then

(26.2.30) EN(Zy.B.2)= Y EF(Zm ym B.Zn)
1<m<M

and

(26.2.31) pE (. 2y, B, Z)= > pg (%, Zm Ym B, Zm).
1<m<M

Proposition 26.2.12. (i) v is monotone increasing function of N.
(i1) Wg(x) is monotone non-increasing function of N.

(11i) Wg(x) + v is monotone non-decreasing function of N ; in particular
pe can only increase as N increases.

(iv) v is monotone non-increasing function of Zp,.

(v) Wg(x) is monotone non-decreasing function of Z,.

Proof. (i) Statement (i) follows from the strict convexity of £(p): consider
two solutions with corresponding subscripts. Then £(p) —E(p;) > vi(N—N;)
for any non-negative p # p; and N = [ pdx.

In particular, E(pl)—g(pz) > 1/2(N1—N2) and E(pg)—g(pl) > 1/1(N2—N1)
and then (v — 1n)(Ny — Np) > 0.
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(ii) Indeed, consider N; < N, and in the definition of W, slightly decrease
Zy, ..., Znm thus replacing them by Zj, ..., Z;,. Then Wy > W, for large |x|,
Wy — Wy — 400 as x — y,, and therefore if Statement (ii) fails, then
W; — W, reaches non-positive minimum at some regular point X; at this
point Wy < W, and

0 S %A(Wl - Wz) = Pl(Wl + 1/1) - P/(WQ + Vz).
This is possible only if at this point W5 + 15, < 0 and W; + 1, < 0. Then in
the small vicinity A(W; — W,) < 0 and X cannot be a point of minimum
unless W — W5 = const there. Then any point of this vicinity is also a point
of minimum and then due to standard analytic arguments W; — W, = const
everywhere which is impossible.

So, Wi(x; Zy, ..., Zm) > Wa(x; Z1, ..., Z},). Taking limit as Z,, — Z,, we
arrive to Wi(x; Z1, ..., Zu) > Wa(x; Zy, ..., Zu).

(iii) Proof of Statement (iii) is similar but roles of Wy and W, are played
by W, + v, and W; + v; respectively.

(iv) Let Zy,2 > Zy1 for all m. Assume that v, > v4. Then similar arguments
prove that Wh+v, > Wi+vq and thus p, > p; everywhere which is impossible
unless there are just identical equalities as W5 + v, > 0, which is impossible.

(v) Finally, after Statement (iv) was established, the same arguments prove
Statement (v). 0O

As far as we know Theorem 1 of R. Benguria [1] (see Theorem 25.3.8)
has not been proven in the case of magnetic field; however one can see easily
that arguments of of R. Benguria’s proof remain valid and we arrive to

Theorem 26.2.13. All Statements (i)—(iii) of Theorem 25.53.8 hold in the
case of the constant magnetic field.

Problem 26.2.14. (i) Investigate how supp(pL") depends on B and on Z
in the atomic case M = 1.

i1) More enerally, investigate how suppip F depends on B and on Z in
g g B
the case M > 2.
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26.2.3 Positive Ions

In view of Remark 26.2.10 we need to consider repulsion of positive ions in
more details. Our purpose is to prove

Theorem 26.2.15. Let condition (26.2.28) be fulfilled. Then the energy
excess is estimated from below

(26.2.32) =&F— > &l >z N3at

1<m<M

Note first that
(26.2.33) D(pg,) — PEo: PBL) — PB0)) T
/(PE(W;(FV) +v) - PE(W;(FO))) (W B(v) TV — WBT(%))) dx =
y/(PB(W 50y + V) — Ps(W3) +0)) dx

with the right-hand expression equal v(N — Z) < (Z — N)?F~! and due to
monotonicity Pg(w) we conclude that

Proposition 26.2.16. Let condition (26.2.28) be fulfilled. Then

(26.2.34) D(p8() — PBL0) PE — PB0Y) < C(Z = N)PFL.

Proof of Theorem 26.2.15. Step 1. Note first that due to non-negativity of
the expression

(26.2.35) EF(Z,y. N) — NITAilp:N(g;F(zl, Ny) — EFF(Z, Y, NY))

(see proof of Proposition 25.3.13 which persists even if there is constant
magnetic field, see Remark 26.2.10) it is sufficient to prove theorem only for
M = 2. From now on we assume that M = 2.

Step 2. According to Proposition 25.3.13

(26.2.36) D(pg — pEr — PER) < CQ.

Therefore due to superadditivity 75
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(26.2.37) Q> —/ Vipgh dx — / Vapiy dx+
D(p;;, pg'ﬁ )+ ZiZ,at—CQ

and it is sufficient to prove the same estimate from below for the right-hand
expression without the last term. However this is easy if a > i, + I> since
Vin = X — Ym| ' Zy and pf, = pg,(Ix — ym|) are spherically symmetric

functions®.
Therefore for a > A + 7, inequality (26.2.32) has been proven and in what

follows we can assume that a < i, + . Further, applying Theorem 26.2.13
we conclude then that

(26.2.38) Inequality (26.2.32) holds for a > er.

Step 3. Recall that the bulk of electrons are in the zone {/(x) =< r*}7.
Based on this one can prove easily that as a < e the right-hand hand
expression of (26.2.37) is greater than (1 — €;)a 1Z;Z, and therefore

(26.2.39) As B > Z5 and a < er* we have Q > (1—ea)atzz,

and combining with (26.2.38) we conclude that (26.2.32) holds for B > Z3
and for B < Z 5 we need to consider the case eor* < a < €F with arbitrarily
small constant e.

Replacing then Pg by P, and noting that an error will not exceed
CorB? < Ciea " while Q@ > ¢ga~" for B = 0 we conclude that (26.2.32) holds
as eor* <a<crand (Z - N) < Ga3.

Finally, as (Z — N) > Ga3 we see that F < Go(Z — N)™3 < ea and
(26.2.32) holds again. O

Even if we do not need it for our purposes we want to consider the
repulsion of too close neutral atoms:

6 However this is not true in general as a < i, + . Really, consider N, = Z,, and
uniformly charged spheres. Then the right-hand expression of (26.2.37)is0as a> A + P~
and is negative and decays as a decays from 7 + & to max(F, /) and it increases again
as a decays from max(r, i) to 0.

") TLe. zone {c(e)~1r* < £(x) < c(€)r*} contains at least (1 — )N electrons.
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Theorem 26.2.17. Let condition (26.2.28) be fulfilled and N = Z. Then
as a > €r the enerqgy excess is estimated from below

(26.2.40) Q>€GF > (Pt Fa— lym— ym|)PF P
1<m<m'<M
where
(26.2.41) =1 y B2
2. =< ., ., .
Z5Bs if B> Z5.

i if B< Z3,
and correspondingly G*F = o o .
Z5Bs if B> Zs.

Proof. Again we need to consider case M = 2. Since

1
26.2.42 —AWg = pg — Znd(X —Ym
(26 ) yp. B = PB m:ZIZ (X = ym)
and Wpg 1, Wpg, satisfy similar equations, (26.2.36) implies that
(26.2.43) IV(Ws — W1 — Wa2)| < cQ3.

This inequality and the fact that Wg = 0 as ¢(x) > cF, and Wg,, = 0 as
|X — Ym| > P imply that

(26.2.44) [(Ws — Wg1 — Wg,)|| < cFQ2.

Note that [(—pg + pe,1 + ps2) dx = 0 implies that

1 1
(26.2.45) |/((WB,1 + Weo)? — W2, — WE,) dx <
1
/|WBZ — (We1 + Wa2)?| dx.

One can calculate easily that the left-hand expression has a magnitude
(Gn*)z - nF - (n2F)? =< G2Pn* where the first factor is a magnitude of an
integrand as Wg 1 < Wg, < Gn*, nF is a depth, and U%F the width of this
zone.

On the other hand, consider the right hand expression. It consists of
contributions of several zones:
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(a) Zone Y, where Wg; + Wg, < Gt*, W < 2Gt*. This contribution does
not exceed CG2t2 mes(Y,) < CG2A139).

(b) Zone Z; where Wg1 + W, < Gt*, W > 2Gt*. Tts contribution does
not exceed

11
4

R
Slw

C | Widx< C|Wali(mes(Z,))i < CF¥Qit

Z¢

Q

since due to (26.2.44) || Wa||z, < cFQz.

(c) Zone where Wg 1 + Wg, =< G7*. This contribution does not exceed

(26.2.46) CG-%T—2/|WB — Wi1 — Weo|dx <
CG™3772 x || Wp — Way — Wapl x (mes(X,))2 < CG2Q:73r3,
Integrating by 77! d7 from t we get (26.2.46) calculated as 7 = t (and

capped by the same expression as 7 = 1.

So, the right-hand expression of (26.2.45) does not exceed
CGiPt + CQiFiti + CG 1QF3t 3,

optimizing with respect to t = G 5Q5F 5 we get all three terms equal to
1 1._8 1
CG~sQ3F3 comparing with CG273n* we arrive to (26.2.40). O

26.3 Applying Semiclassical Methods:
M=1

26.3.1 Heuristics

Let us consider first a mock proof of our main results; we deal here as if
WaF was very smooth which it is not the case; however later we will show
that its smoothness is sufficient to employ arguments of Chapter 18 rather
than those of Chapter 13. We also will deal as if non-degeneracy conditions
were satisfied leaving them also to more rigorous arguments below.

It will allow us to establish our target remainder estimates which we will
be able to prove rigorously for M =1 (in this section) while for M > 2 (in
the next two sections) our results will be not that good.

8) Obviously, mes(Y; U Z;) =< Pt and similarly mes(X,) < 7.
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B<Z7

71 Z-% B3 B~
— T | ' T '

Z<B<zi| BZ B

Figure 26.1: Let B < Z3. Then at {¢ < Z~3} are contained both the bulk

of charge and the bulk of energy, ¢ =< min((Z — N);%, B*%} is the border of
supp(prh); £ =< Z71 is the Scott distance; here h < 1. Further, ¢ < B~5 if
B<Zand (=B 3Z5if Z< B < Z3 separates {i < 1} (on the left) and
{w 2 1} (on the right).

Zi < B< Z?
Z1 B-
— T '

I

Figure 26.2: Let Z5 < B < Z3. Then at {¢ < Z"5Bs} are contained
both the bulk of charge and the bulk of energy and it is also the border
of supp(pg’); ¢ =< Z7! is the Scott distance; here h =< 1. Further, if
75 < B < 72 (= B 375 scparates {u < 1} (on the left) and {u > 1} (on
the right) and ¢ < B~!Z separates {uh < 1} (on the left) and {uh > 1} (on
the right).
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Total Charge

Consider

(26.3.1) /e(x,x, v)(x) dx,

first with y-admissible ¢(x), where v < ef. Recall that ¢(x) = ming, [x — Y|
is the distance to the nearest nucleus.

General Arguments. The main part of the semiclassical expression for
(26.3.1) is of magnitude b =3 + p'h =2 < (343 + B(y3 with A = 1/(¢) and
w = By/C.
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Indeed, let us rescale x — x/v and 7+ 7/¢? which leads to h =1+ K
and B — . In particular, for v =< ¢ we get

(26.3.2) G+ BCe.

Meanwhile, the remainder in the semiclassical expression for (26.3.1) does
not exceed Ch' =2+ Cp/'h' < (?y2 + B+? (gaining factor " in comparison
to the main part; here we need the smoothness and if ' > h9~! we also
need the non-degeneracy); for v < ¢ we get

(26.3.3) ¢ + B,

Sure, we ignored the fact that A" < 1 does not necessarily hold even
if v < £ but we believe that the contributions to the main part and the
remainder of these zones will be less than of zone where this inequality holds,
provided B < Z3.

Finally, let us sum expressions (26.3.2) and (26.3.3) with respect to
(-partition.

Moderate Magnetic Field. Consider the case B < Z 3 first. Then for
¢ < Z73 we plug ¢ = Z2(~2 into (26.3.2) and (26.3.3) resulting in

(26.3.4), 703 + BZ:0:  and  Z(+ B

in the main part and in the remainder respectively and the summation over
zone {x: {(x) < Z~3} results in the same expressions with £ = Z73, i. e. in
Z+BZ 3= Zand Z3 + BZ™5 =< 73 respectively.

On the other hand, for £ > Z~5 we plug ¢ = /=2 into (26.3.2) and (26.3.3)
resulting in

(26.3.5) (4Bl and (2B

then summation over zone {x: 775 < ((x)<F= B‘%} resultsin Z4+Bi = 7
and Z3 4+ B2 < 73 respectively.

Strong Magnetic Field. Consider the case B > Z3 now. Then the
threshold Z~3 disappears and we sum expressions (26.3.4)0'1 over zone
{x: {(x) < F:=Z5B75}, resulting in ZsB"34+Z =< Z and Z5B~5+Z5B5 =
ZiBs respectively.

Therefore, for both cases B < Z 5 we arrive to
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(due to the choice of v) with the

(26.3.6) The total charge is mln(N Z)
§Bs)) which is O(Z3) if B < Z3 and

remainder estimate O(max(Zs

0(Z3Bs)if Z5 < B < Z3.

Remark 26.5.1. Remainder is less than the main part if ZiBs < Zie.
B < Z3. It means exactly that (¢ > 1if ¢ = F (in the case B > Z3), or,
in other words that h < 1. The same is true for all other semiclassical
asymptotics below.

If B < Z3 we arrive to asymptotics, ig B < Z° we have estimates and
in the case of superstrong magnetic field B > Z3 Thomas-Fermi theory is
not valid for our main model.

Semiclassical D-Term

Consider now the semiclassical D-term
(26.3.7) D(e(x,x,v) — pg (x), e(x,x,v) — pg (x)).

General Arguments. We do not have appropriate asymptotics for
e(x, x, V) in the case of the magnetic field” but we apply Fefferman-de Llave
decomposition (16.4.1):

(26.3.8) |x —y[; (x,y) =[x = ylo(v Hx = y]) =
’774 / 1/11’7(X, ZWM(% Z) dZ

where ¢ € 6€>°([1, 2]).

Therefore contribution of B(z,7) x B(Z',7) with 3y < |z — Z/| < 4,
v < €l(z) to such term does not exceed C(C2’y2 + By?)?>y71. There are
= (3473 of such pairs with £(x) =< ¢ and their total contribution does not
exceed C(¢%+ B)2(3.

Now we need to sum over 7! dy which does not look good because it
leads to the logarithmic divergency but there is a simple remedy: we treat
this way only pairs t/ < |z — Z'| < ¢ and apply for pairs with |z — 2| <t
pointwise asymptotics; then we get

(26.3.9) C(¢? + B)**(1+ (log BL/C)+);

9) Unless we really assume that W is smooth and apply results sections 16.6-16.9.
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to get rid of this logarithmic factor we apply more delicate arguments similar
to those of Subsection 16.10.3.

Thus, ignoring this logarithmic factor we conclude that the contribution
of all pairs (z, z') with £(z) < £(Z') < ¢ does not exceed C((?+ B)?(® while
contribution of all pairs (z, z’) with ¢(z) =< {1 % ¢(Z') < ¢, does not exceed
C(G + B)(G + B)AG(6y + ).

Finally let us sum these expressions over partitions of unity.

Moderate Magnetic Field. Consider the case B < Z 3. Then summa-
tion over zone {/; < Z_%, Uy < Z_%} results in CZ3 and the same is also
true for summation over zone {Z’% </t < B’%, Z73 <y < B’%}.
Obviously, in such estimates, if there is a fixed number of zones, we do
not need to sum over “mixed” pairs when z and z’ belong to different zones.

Strong Magnetic Field. Consider the case B > Z 3. Then summation
over zone {{; < ZsB~5, {, < ZsB~5} results in CZ5Bs.
Therefore, for both cases B < Z 3 we arrive to

(26.3.10) Term (26.3.7) does not exceed C max(Z3, Z5Bs) which is CZ3 if
B < Ziand CZiBs if Z5 < B < Z3.

Remark 26.3.2'). Estimating this term, and also the second D-term (in the
next paragraph) we need to estimate the contribution of the singular zone
{x: {(x) < F= Z7'} where effective semiclassical parameter is less than 1.
We claim that there

(26.3.11) e(x,x,0) < C(BZ+ 2%  for A< cZ?

Indeed, it is true if ¢(x) > 1. Also operator H is bounded from below by
—CZ?% And finally, in the ball of B(y.,, eZ™!) operator A is larger than
Z|x — ym| ™t We leave the easy details to the reader.

Therefore for B < Z? the contribution of this zone into N-term is
O(CZ3r®) = O(1), into both D-terms is O(Z°7°) = O(Z), and into T-
term is O(Z°P%) = O(Z?) exactly as in Chapter 25. On the other hand,
for Z? < BleZ? the contribution of this zone into N-term is O(CBZF3) =
O(BZ72), into both D-terms is O(B2Z%7°) = O(B?Z~3), and into T-term is
O(BZ3r) = O(B).

10) Cf. Remark 25.4.7.
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|An —v| and Another D-Term

Consider two other non-trace terms in the upper estimate.

Moderate Magnetic Field. In the case B < Z 3 we established the
remainder in the total charge O(Z %) Then using our standard arguments
we conclude easily that |\y — | = O(Z) and then

(26.3.12) Av = |- IN(v) = N| < CZ3
and
(26.3.13) D(Pg(W3" (x) + An) — P5(WEF(x) +v),

Pe(WaF(x) + An) — Pa(WaF(x) +v)) < CZ53;
combining with the estimate of the previous subsubsection we conclude that
(26.3.14) D(pv — p&" v — pi) < CQ = O(Z3),

exactly as in (25.4.56).

Strong Magnetic Field. Let now 2Z 3 < B < Z3. Then we established
the remainder in the total charge O(Z5B é) and for the semiclassical D-term
we established estimate O(Z5B3). Therefore to estimate

(26.3.15) Av —v|-IN(v) = N| < CZ3B5
as well we want to prove that
(26.3.16) Aw — V| = O(Z3B3).

Observe that |v| < ZF! =< Z5Bs < CB. Therefore if [Ay — v| < Zlv| we
conclude that

(26.3.17) |/(Pg(ng(x) ) — Ph(WEF(x) + 1)) dx| >
w118 [(W+v) o

with the integral taken over zone {x: W(x) +v > |Any — v|}.
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One can see easily that as [A\y — v| < €|v| the right-hand expression of
(26.3.17) is larger than e[Ay — v| - Z5B~5 and it must be less than CZ3Bs:
Ay — v|Z5B~5 < CZ5B3 which implies (26.3.16).

Let us estimate the left-hand expression of (26.3.13). For this, however,
estimate (26.3.16) is insufficient. We consider here only the atomic case.
Then using (26.2.22)-(26.2.23) one can prove easily that the right-hand
expression of (26.3.17) is of magnitude

v —v| - BP x ([v[F ) 5B75 < [Ay — v| - |v| 3 Z5B 75
L ————

1
provided |A\— N| < ev, where the selected factor is just [(B?z*+|v|F 1), dz

(appearing due to (26.2.22)(26.2.23)). Comparing with Z5Bs we conclude
that

(a) If |v| > GZ 0B® (= (;Z5B3 x Z 1 Bw) then

(26.3.18) Ay —v| < Cly|:Z 5B

which is less than €|v| and coincides with (26.3.16) as (Z — N); =< Z.
(b) If || > G, Z" 1B then [Ay — v| < GZ 1B,

In the former case one can prove easily that the left-hand expression of
(26.3.13) does not exceed CZ3Bs.

In the latter case (exactly as in Subsection 25.4.2) we consider Thomas-
Fermi theory with » =0 i.e. N = Z and also prove that that

(26.3.19) The left-hand expression of (26.3.16) does not exceed Q = CZ3Bs.

In particular, we slightly improve estimate (26.3.15) to |v|3Z3 B3 as well
(if (Z—-N) < 2).

Therefore in our framework we estimated all non-trace terms in the
upper estimate by CZ $B3 and therefore “proved” estimate

(26.3.20) D(pw — pi pw — pE7) < CQ = O(Z3BS).

Trace

Consider now Tr((Haw —v)~). This term is of magnitude [(¢®>+B¢3) dx and
one can see easily that it is < Z5 for B < Z5 and < B3 Z: for Z3 < B< Z3.
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Meanwhile, consider the remainder. Again for simplicity consider only
the atomic case. If B < Z the contribution of the zone {x: £(x) < Z~3} is
0(Z3) (we need to include Scott correction term in the main part) while
the contribution of the zone {x: £(x) > Z~3} does not exceed

(26.3.21) C / (¢ + B2 dx

taken over this zone and it is < Z3 as well.

If Z < B < B? the contribution of the zone {x: /(x) < b= B~3Z3} is
O(b~2Z3) = O(Z3B3) and we need to include Scott correction term. Mean-
while, the contribution of the zone {x: ¢(x) > b} does not exceed integral
(26.3.21) taken over this zone which is =< Z3B3 + Z3 B3 where the last term
coincides with estimate for (26.3.7) if B > Z3 and does not exceed CZ3 if
B < Zs.

Finally, if Z2 < B < B3 we need to reset b = Z~! because h = 1/(¢/)
becomes 2> 1 inside. Then we do not need Scott correction term and the
contributions of the zone {x: ¢(x) < b} to both the main part and the
remainder do not exceed C [(¢° + B() dx < Z2+ B < B.

Further, the contribution of the zone {x: ¢(x) > b} to the remainder
does not exceed integral (26.3.21) taken over this zone which results in

CB + CZ#B# and the second term dominates due to assumption B < Z3.
Thus we arrive to

(26.3.22) The main therm in Tr((Haw —v)~) is of magnitude Z3 for B < Z3

and B5Zs for Z3 < B < Z3, while the remainder estimate is O(Z3) for

B<Z 0(ZiB3)for Z<B<Z3i and O(Z3iB3 + Z3B3) for Z3 < B < Z3.
IfB<Z i we need to include into main part Scott correction term.

Discussion

Now let us formulate our expectations:

Remark 26.3.3. We expect

(i) Estimate (26.3.14) for B < Z3 and estimate (26.3.20) for Z3 < B < Z3.

(ii) Furthermore, since for B < Z 3 the main contribution to all terms needed
to derive this estimate is delivered by the zone {x: £(x) ~ Z~3} and the
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effective magnetic field is y = B{/( ~ BZ~! we expect improved to “o” (or
better) estimate (26.3.14) if B < Z and a>> Z~3 1V,

(iii) Statement, similar to (ii) should be also true for the trace term; however
then we need to include the Schwinger term.

(iv) The remainder estimate for the ground state energy is maximum of the
remainder estimate for the non-trace and trace terms; therefore we expect
the same remainder estimate as in (26.3.22); Statement, similar to (ii) should
be also correct for the ground state energy. However then we need to include
both Schwinger and Dirac terms.

(v) We expect the described remainder estimate of the trace term and the
ground state energy if a is large enough; otherwise it should contain term
O(a2Z2) ifs B < Zi and a > Z~! (and in this case we include Scott
correction term).

Remark 26.3.4. The other difference between cases B < Z3% and B > 75 is
that ph = B2 < 1in the former case if /(x) < F; however in the latter case
it happens only if /(x) < B~1Z but in the zone {x: B~1Z < {(x) < B5Z5}
an opposite inequality holds.

26.3.2 Smooth Approximation

An approach described in Subsection 26.3.1 hits two obstacles: the non-
smoothness of W2 and its possible degeneration i.e. VWaF is not disjoint
from 0. However non-smoothness of WF is due to the non-smoothness
of Pg. So we want to consider first the zone where we can just replace
Pg(W + v) by P(W + v) and therefore WaF by some smooth function W
which does not necessary coincides with WTF.

Trivial Arguments

Obviously we can do this as an effective magnetic field p = B¢/¢ < 1. In
this case we do not need assumption W + v =< (? and therefore we can
take ( = (% as B < Z3 and ( pe Z73 and ¢ = Z2(72 in all other cases.
Therefore zone in question is

11) Recall that a = MiN1<m<m <M |Ym — Ym| is the minimal distance between nuclei.
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(26.3.23) X; ={x:l(x) < n}

_ B3 if 1<B<2Z,
with = y 1
B 373 if Zz<B<Z2

In this zone A; for such modified W we can unleash the full power of
the same smooth theory as in Section 25.4 and prove easily the following

Proposition 26.3.5. Let 1 < B < Z2. Then
(1) A contribution of zone Xy defined by (26.3.23) to

(26.3.24) /(e(x, x,v) — P (W(x) + 1/)) dx

does not exceed CZ3 while its contribution to

(26.3.25) D(e(x, x,v) — P(W(x) + ), e(x, x, v) — P'(W(x) + y))
does not exceed CZ%, and its contribution to
(26.3.26) / (el(x, x,v) + P(W(x) + 1/)) dx — Scott

does not exceed CZ5 + Ca=273 + CZ3B3 1) 12),

(ii) Further, if B << Z and a > Z73 we can recover for these contributions
estimates Cng, CZ3v and CZ3v respectively with

(26.3.27) v=Z"%4(aZ3) 0+ (BZ 1)

where expression (26.3.26) should be modified to
(26.3.28) /(el(x, x,v) — P(W(x) + v)) dx — Scott — Schwinger.

Furthermore in this case contribution of X; to
1

(26.3.29) 3 /tr(ef(x,y, v)e(x,y,v)) dxdy — Dirac

does not exceed CZ379.

12) If a < Z~1 we skip Scott and reset a = Z~! in the remainder estimate which become
cz2.
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Remark 26.5.6. (1) So far we should use P(.) instead of Pg(.) but we will
prove that the same results would hold for Pg as well.

(ii) In the next subsubsections we expand this zone to one defined by
n< h=3 13 but for trace term we still need a separate analysis as u < 1.

(iii) The same estimates hold if we replace in all expressions (26.3.24)-
(26.3.28) P by Pg.

(iv) We assumed that B < Z? since otherwise h 2> 1 not only in X; but
even in {x: WTF(x) > B}.

1
(v) Note that if n 2 (Z — N),* this zone (and the whole analysis) could
be cut short since outside zone in question W + v > 0. From Chapter 25
we already know how to deal with such irregularities.

(vi) We need to assume that a > Z =3 and to include the second term
(aZ3)7% in the definition of v only as we estimate the trace term (26.3.26).

Remark 26.5.7. (i) If either a < Z73 or B> Z we estimated (26.3.5) by
Ca~2Z3 + CZ3B3. While the first term does not bother us since assumption
. 1 1y . .. .

a < min(Z~3, B74) is unrealistic, the second term is troublesome. Let us
assume that a > 775,

We can marginally improve this estimate of expression (26.3.26) to
CZ5 +0(Z5B3).

2Firzst, observe, that this term CZ3B3 appears as b=273 with b =
B7375 <« 1. Therefore we need to estimate this way only contribution of the

1

zone Y = {x: b < {(x)Z3 < b~} and it is sufficient to investigate the cor-
responding classical dynamics in the zone Yy = {x: b? < {(x)Z3 < b=},

Indeed, to recover estimate we have now, we used a classical dynamics
on ¥ = {(x,€): H(x,&) =0} for time T(x) = Z71(x)>.

Further, one can see easily that along classical trajectories, starting in
Yy, U(x) < b~ for time T = b= Ty with o = () > 0.

On the other hand, the invariant measure of ¥, = {(x,&) € X, {(x) < r}
is < r?Z and since the spatial speed there is O(Z%r’%) we conclude that

13) Or even to u < h~3 under non-degeneracy assumption (26.3.35) with v = ¢, in
particular, in the atomic case.
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(26.3.30) The invariant measure of the points in X[y, such that the classical

trajectories starting from them do not remain in ), for time T = b™7 Ty,
1

does not exceed b**7Z3.

(ii) Now it is sufficient to explore the classical dynamics with the Hamilto-
nian, corresponding to the Coulomb potential and constant magnetic field,
and to prove that

(26.3.31) The invariant measure of the periodic points ¥ is 0.

To do so, we need to prove that there are non-periodic trajectories, which
do not hit an origin. It is sufficient to consider trajectories belonging to the
plane {z = 0}; we assume that magnetic intensity is (0,0, B). See Part (iii).

(iii) To improve this estimate further we need to investigate the classical
dynamics in more details, and it seems to be a daunting, if not impossible
task. Indeed, while in 2D the system is completely integrable!?, it does
not seem so in 3D as we know only two first integrals, energy E and
M, = (xy — yx) + 3B(* +y?).

Formal Expansion

Now we want to expand zone X;. Note first that

(26.3.32) P(W + v) — P'(W + v) = O(B?)
and
(26.3.33) P(W + v) — P(W + v) — k1 BX(W +v)2 = O(B?).

Really, one can consider Pg(w) and Pg(w) as Riemann sums for integrals
P’(w) and P(w) respectively; see Appendix 26.A.3 for details.

However under non-degeneracy assumption |VW/| =< (207! we can do
better with the integrated expressions.

14) And easily solvable in the polar coordinates since E = %r’z + V*(r) with effective
potential V*(r) = 3r?(M,r=2 — B/2)> — r~!, and the corrected angular momentum
M, = r20 + %Brz. One can see easily that V*(r) — 400 as r — 40 or r — +oo and has
a single nondegenerate minimum. Therefore along each trajectory r oscillates between
Fmin and rmax. If all trajectories on the energy level E were periodic, then the number of
oscillations was constant for increment 6 equal to 27n with some n € Z*. But this is
definitely not the case since the number of oscillations tends to co as M,/B — +oo.
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Proposition 26.3.8. Assume that in B(z,~)

(26.3.34) VW] < G2yl Va:|al < n,
(26.3.35) VW] > e®>y7H,

and

(26.3.36) B < (%

Then

(26.3.37) / 0() (PH(W(x) + ) — B(W() + 1)) dx = O(B ),
(26.3.38) /¢(><)(PB(W(X) +v) = Pp(W(x) +v)) dx = O(B°C"7)
and
(26.3.39) D (gf)(x)(Pfg(W(x) + ) — Py(W(x) + 1)),

O(x) (PE(W(x) +v) = P(W(x) + 1)) ) = O(B* ")
with
(26.3.40)  Pg(w) = P(w) + (k1P"(w)B? + k2P" B*) - (1 — (w/B))
where ¢ € 6([~2,2]), ¢ = 1 on [-1,1].

Proof. Rescaling x — xy~, w — w(~2 and therefore B +— 3 = B(™2 one
can reduce the case to v = ( = 1, B < 1. Then estimates (26.3.37)
and (26.3.38) are trivially proven by (multiple) integration by parts which
integrates Pg on each step increasing its smoothness'®).

To prove estimate (26.3.39) we apply decomposition (26.3.8). Integration
by parts shows that (26.3.37) with t-admissible function ¢ is O(ﬁ3t%) if
t > [ and therefore the contribution of the zone {(x,y): [x — y| < t} is
O(B°t3 x t=*). Then the total contribution of the zone {(x, y): |x —y| > (5}
is O(8°). Meanwhile a total contribution of the zone {(x,y): |x — y| < 8}
is O(8°® x 3?).

15) Recall that 8 = ph with g = By/¢ and h=1/¢~.
16) Tn fact one can prove then estimates O(B°) but adding correction terms > rx3%K.
However this improvement is not carried on to (26.3.39) in full.
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Therefore we expect that the zone X1 defined by i < 1 could be expanded
to the zone X7 defined by p < h~3 ) or even larger'”; furthermore, under
assumption |VW| = ¢20~1 we can define X by < h™s or even larger'?.

Expansion: Justification

Now however we need to deal with e(x, x, v) rather than Pg(W(x)+v) (etc).

Proposition 26.3.9. Assume that in B(z,~) conditions (26.3.34), (v >1
and

(26.3.41) B < c(*(¢7)”°

are fulfilled. Then for v-admissible
(26.3.42) / 0(x) (el x,v) — Bo(W(x) + 1)) di = O(C*),
(26.3.43) / 6(x) (er(x 0 7) — Po(W() 1)) die = O(¢*9)
and
(26.3.44) D<¢(x)(e(x, x,v) — Po(W(x) + 1)),

6x) (e(x, % v) = P(W(x) + 1)) ) = O(¢*)

Proof. Estimates (26.3.42) and (26.3.43) are due to Chapter 13. Really,
rescale x — xy L, 7= 7 2and h=1— h=~"1", B u= By

To prove (26.3.44) let us apply decomposition (26.3.8); then according
to (26.3.42) J(t) (defined as expression (26.3.42) with ty-admissible ¢;)
does not exceed C(?~%t? as long as t(vy > 1; therefore contribution of zone
{(x,y): |x — y| < t} into the left-hand expression of (26.3.44) does not
exceed C(C%9%t%)? x t=4y~1 < C(*y3.

Then summation over t > p~! = B7'y7!( returns C¢** [t71dt <
C¢*y3log pu (we assume that p > 2; case u < 2 has been covered already).
So, the total contribution of zone {(x,y): |x — y| > u~'} does not exceed

C¢** log .

17) We do not need for each £ have a sharp remainder estimates but need only them to
sum to a sharp estimate.
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Let us get rid of the logarithmic factor. Returning back to B(z, t)
stretched to B(0,1) one can see easily that conditions of Proposition 13.7.25
are fulfilled as well with T = min(t";, h"st‘g) and thus

[J(t)] < C(ht ™) 2T 1 < Ch 22 (¢ + ht0).
Plugginginto (26.3.8) we get
1
Ch™*y7! / 1+ ht70) dt < Ch ™yt = C¢*.
pul
On the other hand, in zone t < u~! we use the trivial estimate
e(x, x,v) = P'(W(x) +v) = O(n(*?)

(due to simple rescaling x +— pux) and its contribution to the left-hand
expression of (26.3.44) does not exceed C(u¢?y?)? x p=2y7t < C¢*3. O

Combining with estimates (26.3.32) and (26.3.33) we arrive to State-
ment (i) below; combining with Proposition 26.3.7 to Statement (ii):

Corollary 26.3.10. Assume that in B(z,~) conditions (26.3.34) and {y >
1 are fulfilled. Let ¢ be v-admissible function.

(i) Let

4
3

(26.3.45) B < cCiy i
then

(26.3.46) /¢(x) (e(x, x,v) — Pp(W(x) + 1/)) dx = 0(¢%*?),
(26.3.47) / qu(X)(el(x,x, ) — Pe(W(x) + 1/)) dx = 0(¢3)

and

(26.3.48) D(9(x)(e(x,x,v) — Po(W(x) + 1)),

6(x) (e(x,x,v) = Po(W(x) + 1)) ) = O(C*?).

(ii) Let assumption (26.3.35) be fulfilled and

2

(26.3.49) B < c(iys.
Then (26.3.46)~(26.3.48) hold.
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26.3.3 Rough Approximation

Unless our analysis has been cut short with r, 2 (Z — N);%7 we need to
consider the zone {x: ¢(x) > r} with redefined r, so that this zone is
described by p 2 h=3 or w2 h=% in the general or non-degenerate (i.e.
satisfying assumption (26.3.35)) cases respectively.

In this zone the replacement of Pg by P and thus WaF by some smooth
function leads to the error which is too large. Therefore instead in this zone
we consider ef-mollification of WAF with ¢ < 1 (after rescaling x — x/¢).
In contrast to potentials considered in Chapter 18 function W2F is more
regular.

Properties of Mollification
First, recall regularity properties of WgF:

Proposition 26.3.11. W2F have the following properties:
(26.3.50) IVEWEF(x)| < cal(x)%0(x)71 Va:|al <2,

(26.3.51) [V*(Wg' (x) — W5 (v))] <
coBU(X)"E|x — y[2 + 6ol (x)20(x) P|x — y|
Via| =2 Vx,y:|x—y| < el(x)

where we recall
(26.3.52) C(x) = min(Z76(x) "2, ((x)7?) if B<Z5,
(26.3.53) ((x) = Z2(x)"2 if B> Z3;

Proof. This proof is rather obvious corollary of the Thomas-Fermi equation
(26.2.3). See also arguments below. O

Let us consider B(z, £(z)) with ¢? > B and rescale x — x{~1, W s w =
(3(W + v) (where we included v for a convenience). After such rescaling
w € 62 uniformly, but there is more: Thomas-Fermi equation (26.2.3)
translates into

(26.3.54) %AW = (PPy(w) = (?CP'(w) + (¢ (Py(w) — P'(w))
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with 3 = B(™?; observe that Pg(W) is positively homogeneous of degree 3
with respect to (W, B).

Note that parameter 7 := (> <1 and 1 =< 1 if and only if B < 735 and
¢ > Z=3 (in which case ¢ =< (72).

Also note that the first term and the second terms in the right-hand
expression of (26.3.54) belong to €3 and n€z respectively uniformly'®
and

(26.3.55) Bn = B¢ = BCHP, n=C¢r? if p<1

Because of this w € €2 @ ﬁn‘@% again uniformly. Iterating, we conclude
that w € €" @ 577‘6% with arbitrarily large exponent n.

On the other hand, if B > ¢? (i.e. 8 2 1) without invoking Pg one can
prove easily that w € n‘@g with
(26.3.55)" n =B =B if B>1.

Therefore we have proven

(26.3.56) w € 6" @ Bn 62 with arbitrarily large exponent n as 8 < 1 and
wen6:asf>1

and one can see easily that

(26.3.57) Parameter = B(1? is O(1) and 7 =< 1 iff either B < Z3 and
(=B %ior B>Z3and { < B 575 (i.e. near border of supp(pLF), uncut
by v).

Remark 26.8.12. Tt may seem strange to define n differently as 8 < 1 and
£ 2 1 but there is a good reason for this when we consider the case of M > 2.
Anyway, n is the magnitude of the right-hand expression of (26.3.54).

Proposition 26.3.13. (i) Let w. be a e-mollification of w withe < min(3, h°)
(recall that h =1/(C¢)). Then if 8 <1 the following estimates hold:

(26.3.58) IVH(w —w.)| < cafinez 1o Va:|a| <2,
(26359)  |Po(w) — Pa(w.)] < chnet

and
(26.3.60)  |Ph(w) — Py(w.)| < cBiniet + chnes;

18) T.e. norms do not depend on any parameters.
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(i) On the other hand, if 5 2 1 the right-hand expressions of (26.3.58)—
(26.3.60) should be replaced by the similar expressions albeit without (3:

(26.3.58)’ V4w — w.)| < canez ! Va: ol <2,
(26.3.59)’ |Ps(w) — Ps(w.)| < cne?

and

(26.3.60)’ |P(w) — Ph(w.)| < cnzes.

(111) Further, under assumption |Vw| <1 in both cases

(26.3.61) | [ ) (Paw) — Pa(w) x| < cnch,

(26.3.62) | / o(x) (Ph(w) — Ph(we.)) dx| < cnet

and

(26.3.63) D((Pj(w) — Ph(wz)), ¢(Ph(w) — Ph(w.))) < cn’e?.

Proof. Proof of Statement (i) is trivial; in particular, we observe that
ne S 6.

Proof of Statement (iii) is also easy since then w. is different from w
on the set of measure < B~ le if 3 < ¢, and on the set of measure < ¢ if
B > Co. Actually w is uniformly smooth if § = 1 and ¢(x) < eF and we do
not need any mollification here.

One definitely can improve estimates (26.3.61)—(26.3.63) but we do not
need it. O

Consider now the analytical expressions and estimate the semiclassical
errors.

Remark 26.5.14. (i) From now on until the end of this Section we assume
that M =1 to avoid possible degenerations.

(ii) Recall that we can reduce operator with mollified potential to a canonical
form provided & > C(u~'h)z|log uu| (see Section 18.7). However here we will
have a much better estimate since we will take ¢ > h5—9.

Charge Term

Let us consider the charge term i.e. expression [ e(x,x,v)dx = (Tr0(v—H)).
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Regular Zone. Then the results of Section 18.9 implies that as

(26.3.64) W+v =< ¢?
and
(26.3.65) IVW| = ¢t

contribution of the ball B(x, ¢(x)) to expression (26.3.24) does not exceed
C(1+ ph)h=2 =< C(%? + CB(? exactly as in the mock proof.

Then summation with respect to ¢-partition in this zone results in CB 5
as B< Z,CZ5as Z<B<Z3and CB5Z% as Z5 < B < Z3.

Remark 26.5.15. (1) Condition (26.3.64) is fulfilled as ¢(x) < eF.
(ii) Further, since M = 1 both conditions (26.3.64) and (26.3.65) are fulfilled
if [x] < (1 — €)y (we pick up y,, = 0 and 7, exact radius of supp(pL")).

Border Strip. Now we need to consider the contribution of the border
strip Y = {x: 7(x) < €} with y(x) = €(F — |x|)7! and 7 := 7,. Here { < F,
¢ < ¢ with

(Z-N)°  if B<(Z-N):,
(26.3.66) F=<{pt if (Z— N)i <B<Z5,

Z5B73 if Z5<B<CZ8
and

2 4

(Z - N)2 if B<(Z-N)3,
(26.3.67) (=1 B} it (Z-N):<B<Z5,

Z5Bs if Zs<B<CZ8

and scaling we get = BFC ' and h = (17! here.

Let us consider first the case v = 0. Then both conditions (26.3.64) and
(26.3.65) are fulfilled albeit with ¢; = v(x)7 and ¢(x) = (y(x)? instead of ¢
and (.

Thus if 1 > 1 (i.c. ¥ > 7 := h3), the contribution of the ball B(x, v(x)F)
to the remainder does not exceed Cpuh~'4%219 and therefore the total con-
tribution of zone Y; = {x: 5 < 7(x) < €F} to the remainder does not

1 2 1

19) Really, after additional rescaling x — xy~ we have pu; = py—-,

hy = hy~=3 and pyhy b = ph=1H2.

, W= wyT
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exceed

(26.3.68) Cuhl/v(x)l dx < Cph~ | log h| = CB7|log h|

which is O(Z3) as long as B < Z3(log Z) 2.

Further, the same approach works if |v| < (?3% =< (?h =< (F* which is
equivalent to (Z — N); < ¢ (then |[VW| =< ¢¢;! if 4(x) > 7) and also if
this condition is violated but |v| < (?; in the latter case we need to pick up
7 == ]3¢,

To get rid of the logarithmic factor let us consider propagation. Recall
that it goes along magnetic lines i.e. that (x;, x2) remains constant. Let us
consider propagation in the direction in which |x3| increases (i.e. y(x) decays);
we do not need to consider zone Yy N {|x3| < Z~°F} since contribution of
this zone (26.3.68) is o(BF?).

One can see easily that we can follow dynamics which does not return
for a time T;(x) = Ti(x)(7(x)/7)? where T(x) < (;'% ! < F( 'y tisa
time required for this dynamics to pass though B(x, £1(x)). Therefore one
can replace (26.3.68) by

(26.3.69) C,uh_l/ Fy(x) 0 dx < Cuh™ = CBF.
{x:v(x)=27}

Further, as |v| > BF we need also to consider zone )Yy = {x: y(x) < 7}.
In this zone we take ¢; = /; = 57 and ¢ = ¢ = (|v|3)? with f;¢ > 1 and
since |[VW/| < 620, contribution of B(x, £1(x)) to the remainder does not
exceed CBf? and the total contribution of ), does not exceed CBF? which
what exactly we achieved for zone Y after we got rid of logarithm. We take
mollification parameter ¢ = ¢~12920),

Furthermore, zone Vs = {x: |x| > F + {1} is classically forbidden. So we
can take here

(26.3.70) G) =e(lx = 7). o(x) = min(ly 6 (x)3, [v]F)

and prove easily that its contribution also does not exceed CB7r.
Returning to the case |v| < ¢ we see that the contribution of zone
), to the remainder does not exceed CBF? because effective semiclassical

20) One can see easily that the resulting errors in the expressions(26.3.24) and (26.3.25)—
(26.3.26) will not violate our claims.
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parameter here is h; = 1 and non-degeneracy condition is of no concern for
us. We take mollification parameter ¢ = ¢~12920).

Moreover, we can modify W in ), (make it negative there) so that this
zone would be classically forbidden with ¢, ¢ defined by (26.3.70) with |v|
replaced by (. .

Finally in the case B < |v| (i. e. B < C(Z — N)i we can apply the
above arguments with 4 = 1 and arrive to the same result. Therefore we
proved in all cases

(26.3.71) If M = 1 the total contribution of the border strip ) to the
remainder in the charge term is O(BF?) which does not exceed CB? as
B<Z5and CBsZ5if Z5 < B < Z

Conclusion. If Z? < B < Z3 we need to estimate also contribution of the
inner core Xy = {x: {(x) < CZ7'}. By means of variational methods we
will prove (see Corollary 26.A.5)

(26.3.72) If Z? < B < Z3 the contributions of X; to both fe(x,x, v) dx
and [ Pg(W(x) + v) dx do not exceed CBZ 2.

Then we arrive to the following

Proposition 26.3.16. Let M =1. Then

(i) For constructed above potential W expression (26.3.24) does not exceed
CZ3 + CB3 Z5.

(ii) If B < Z expression (26.3.24) does not exceed C(B +1)°Z579.

Trace Term

Let us consider the trace term i.e. expression [ ei(x,x,v)dx = Tr((H—v)").

Regular Zone. Here again let us consider first zone where |x| < (1 — €)F.
Then the contribution of B(x, £(x)) to the Tauberian remainder?) does not
exceed CC2(h~1+4pu) < CC30+ CB(Y as in the mock proof and the summation
over zone results in CZ3 + CZ3B3: + CZ5Bs.

21) We will consider a bit later transition from the Tauberian expression to the magnetic
Weyl expression.
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Border Strip. Again in zone ), contribution of B(x, y(x)) does not exceed
CB¢/l; and the summation over this zone returns

(26.3.73) CB / ol1? dx

and plugging ¢; = 7y and ¢ = (1?2 results in CB% as B < Z% and CB3Z3
otherwise. The analysis of zone ) if there ), = 0 is also easy.

Consider zones ), and ). The same arguments as before imply that
their contributions to the remainder do not exceed CB F%’Zfl which is what
we got before.

Justification: from Tauberian to Magnetic Weyl Expression.

Case ph < (. We need to prove that with the announced error we
can replace the Tauberian expression by magnetic Weyl one. Note that the
canonical form of (72Ha v as described in Sections 13.3 and 18.7 is

(26.3.74) H = Ho+
p2wi(x, wthDy, x3) 4+ p2wa(xa, T thDy, x3) (X2 + p?h?D3)

+ 1 hws(xq, pthDy, x3) + O(,u_3h(’y + ,u_l)_% +u)

with
(26.3.75) Ho = W’ D2 — (x3 + 1> h*D3 + ph) + w(xy, i~ hDy, x3)
and
(26.3.76) v =emin|w — 2juh|
J

where we used the fact that w € ph€2 +€", u=3h = p~* - uh. Here we
have signs “+” and “—” on q/2 of the diagonal elements equally.
Then the Tauberian expression is

3
(26.3.77) const - ph~2 / Z(W = 2jph — 2wy = 2jp thw,) ? x

j=0
(¥ + 21+ 2jp ha) dx
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where term with j = 0 enters with the weight % and an error does not exceed
Ch=3 (u‘4 +u"3h /(7 + /fl)_% dx) = Cu zh3

because an integral does not exceed Cu%(,uh)’l; since p > h=3 this error
does not exceed Ch~16 which is better than O(h™1).

On the other hand, if we consider the difference between (26.3.77) and
the same expression with w; = wy, = ¥ = ¥, = 0 and consider it as a
Riemannian sum and replace it by an integral we get Gu=2h~3 with an
error not exceeding Cp~*(h)zh~3 which is even less. Therefore (26.3.77)

becomes

/ Pun(w)y dx + Gu2h3

and comparing with the result if p < h=% when we get the same answer
albeit with G = 0 we conclude that G must be 0. This concludes the
justification in A5.

Case ph > Gy. In this case we need a simplified version of (26.3.74)
H = Ho + O(p~th) and we need to consider only j = 0 and replacing H
by Ho brings and error Cuh=2 x p~th = O(h~!). This takes care of X, and
after scaling of ).

Conclusion. As 72 < B < Z3 we need to estimate also contribution of
Xy = {x: {(x) < CZ71'}. By means of variational methods we will prove
(see Corollary 26.A.5)

(26.3.78) For Z? < B < Z3 the contributions of Xy to both [ e(x, x, v) dx
and [ Pg(W(x) + v) dx do not exceed CB.

Then we arrive to the following
Proposition 26.3.17. Let M =1. Then

(i) For constructed above potential W expression (26.3.26) does not exceed
CZ5 + CZ5B3 + CZ3Bs.

(ii) If B < Z expression (26.3.26) does not exceed C(B +1)°Z37% (but one
should subtract a Schwinger term from the trace).
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Semiclassical D-Term: Local Theory

Unfortunately, we do not have any non-smooth theory (cf. Section 16.8)
here so far but actually we almost do not need it since singularities are
rather rare. Let us introduce a scaling function (26.3.76) and consider

(26.3.79) I(z) = / 620(x) (el %, 7) — Po(w(x) + 7)) dx

with ¢, \(x) = ¢(A7L(x — 2)) and A < y(z). Scaling x — A7!(x — z) we have
p ' =M and h— H = \7th.
Then, according to Section 13.5

(26.3.80) |(2)] < CH (1 + /W) < CX2h%(1 + ph)

as long as \ > h.

Really, a transition from the Tauberian decomposition to magnetic Weyl
one in this case is easy: skipping all perturbation terms O(u~2 + p~th) in
(26.3.74) and also setting 1; = o = 0 results in an error O(u2h~3 —i—h’l) in
(26.3.77)-like expression albeit with the power % rather than % and without
integration:

1
(26.3.81) const - uh™>> " (w — 2jpuh — p 2wy — 2jp~ hwo) ?
Jj=0
(0 + p 201 + 2 T h,);
scaling produces expression smaller than (26.3.80).

Let us apply this estimate (26.3.80) to the Fefferman—de Llave decompo-
sition (26.3.8).

Case u < Goh™L.

(i) Consider first a pair (z,z’) such that |2/ — z"| < €7y(Z'); then also
|2/ — 2" < epy(2”) and we take A = €|z’ — 2”|.

Then in the virtue of (26.3.80) the total contribution to D-term of all
such pairs belonging to B(z,v(z)), and with |z’ — z”| < A does not exceed

(26.3.82) CYA3 x A x B2h (1 + ph)® < Cy*h~*(1 + ph)?

where C3\~3 estimate the number of such pairs, A~ the inverse distance
between them, and CA?h=2(1 + ph) is the right-hand expression of (26.3.80).
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Then summation over A € (171, v) results in Cy3(1 + uh)?h=*| log(uy)).

Further, summation over all balls B(z,y) C B(0, 1) with v(z) = ~ results
in C(puh)~tyh=*| log(uy)| since there are < (uh)~1y~2 such balls due to non-
degeneracy assumption |Vw| < 1. Summation over v € (=1, uh) results in
Ch=*[log(u*h)|.

As A < p~! we can apply standard non-magnetic methods without
Fefferman-de Llave decomposition (26.3.8). Coefficients are smooth after
scaling as long as € > L.

(ii) Consider disjoint pairs (', 2") with |2/ — 2"| > max(y(2'),7(z")). Here
estimate (26.3.80) is not sufficient and it should be replaced by

(26.3.83) |4 (2)] < CAN3h™2(1 + ph)
as long as
(26.3.84) y > hid,

Really, the shift for time T with respect to &3 is < T provided |V, ,w| <1
and this shift is observable if T x v > A'~%. Similarly, in the canonical form
the shift for time T with respect to p=1& is < p= T provided |V, w| =<1
and this shift is observable if ' T x v > p~th'~°. In both cases shift with
T € (72, ) is observable under assumption (26.3.84) and therefore we can
extend T = 7% to T < 1.

Note that for e > h3~° assumption (26.3.84) is fulfilled automatically.
Then contribution of each disjoint pair to D-term does not exceed

Ch™*(1 + ph)*4(2' )y (2")’|2' = 2"
and the total contribution does not exceed

Ch*(1+ ,uh)z/ |z — 2"|7t dZ'dz” < Ch™*(1 + ph)?.

(i) To shed of logarithm in (i) we need a slightly better estimate than
(26.3.80). The same arguments as in Part (ii) result in

(26.3.85) |(2)] < CNh72(1 + ph) - (L4 My/h) 0.

Really, we just advance from time T < X to T =< A(1 + \y/h)°.
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Then the same factor is acquired by the right-hand expression of (26.3.82)
and the summation with respect to A € (hy™!,~) results in Cy3(1+ ph)?h=*
but summation with respect to A € (11, hy™!) results

Cy* (1 + ph)?h™* (1 + |log(puhy ™))

Further, summation over all balls B(z,v) C B(0,1) with v(z) < ~ results
in C(puh) (1 + ph)>h=*(1 + |log(phy™t)|) and, finally, summation over
v < ph results in Ch=*(1 + ph)?.

Note that in all cases perturbation terms in (26.3.74) and (26.3.81) result
in the error not exceeding the announced one.

Case ju > Goh™l. So far factor (1 + puh) was for a compatibility only.
Now it is important.

Exactly the same arguments work as p > Cyh~! with a minor modifica-
tions:

(a) v(x) now is defined by (26.3.76) with j = 0 and its upper bound is 1
rather than ph.

(b) Also the number of y-balls is =< v~2 rather than =< (uh) =ty ~2;
(¢) A now runs from h to 7 in (i) and (iii).

(d) We need to estimate contribution of pairs (z’, z”) with |2/ —2z"| < h. One
can see easily that e(x, x,7) < ,uh_2 and therefore the total contribution of
these pairs does not exceed Cp2h™ [[ |2/ — 2"|7t dz/dz" < Cp?h™* x h* <
Cu?h=2.

Therefore we have the following
Proposition 26.3.18. As [Vw| =< 1 and ¢ > h3% in B(0,1) and ¢ €
€>(B(0, %)

2

(26.386) D((e(x.x,7) = Ph(w(x) + 7)), é(e(x, x, v) = Py(w(x) + 7)) <
C(1+ puh)*h™*.
Remark 26.3.19. One can see easily that one can select ¢ > h3=9 such that

expressions (26.3.61), (26.3.62) and (26.3.62) will be respectively O(h**°),
O(h'*%) and O(h**?).
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Semiclassical D-Term: Global Theory

Regular Zone. The above results allow us to consider a total contribution
of zone X, into semiclassical D-term. As before let us consider ¢-admissible
partition of unity there and apply it to Fefferman—de Llave decomposition
(26.3.8). Then the total contribution of the elements which are not disjoint
does not exceed

(26.3.87) Ze (14 B¢ ?) ¢t = / (¢*+ B)¢® ¢ 1de
e — |

where (14 B§;2)2 and (4% are (1 + ph) and h™* respectively and ;! is a
scaling factor.

Then if (> = Z¢7!, an integral equals to the value of the selected
expression as ¢ reaches its maximum, i.e. for { = Z -3 for B < Z 3 and
(= Z5B% for 75 < B < Z3 and we arrive to CZ5 and CZ3B3 respectively.

On the other hand, if (2 = ¢=* an integral equals to the value of the
selected expression as ¢ reaches its minimum, i.e. for £/ = Z~3 and only in
the case B < Z3 and we arrive to CZ3 again.

Furthermore, the total contribution of the disjoint elements does not
exceed

-

(26.3.88) D |zo— 2, (1 + BG?) (1+ BG2) 3CR2¢2 <
np

/ (C+ )P+ B)P(P+ B rhdel 1 dl

Then if (> = Z¢~! and ¢'?2 = Z¢'~! an integral equals to the value of the
selected expression as both ¢ and ¢ reach their maxima, and we arrive to
CZ5 and CZ3Bs respectively.

On the other hand, if (> = ¢=* and ¢’ = ¢'=* (we do not need to consider
mixed pair) an integral equals to the value of the selected expression as both
¢ and ¢ reach their minima, and we arrive to CZ 3,

Therefore (combining with Proposition 26.A.5 as Z? < B < Z3) we
arrive to

Proposition 26.3.20. Let M =1. Then
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(i) The total contribution of the zone {x: {(x) < (1—€)F} to the semiclassical
D-term does not exceed CZ3 and CZ3 B3 for B < 75 and for 73 <B<Z

respectively.

(ii) If B < Z this contribution does not exceed C(B +1)°Z379.

Border Strip. Border strip Y = {x: (1 — €)7 < {(x) < (1 + €)F} is more
subtle. Here we need to use the same ¢1(x) = ¢o(7 — |x|) partition as before.

W=

Remark 26.3.21. Y is already covered by our arguments if 7 < (Z — N)_°.

Close Elements. Consider first contribution of elements which are
not disjoint. It is given by the left-hand expression of (26.3.87) with ¢, ¢
replaced by (1(x) = Py(x) and ¢(x) = (y(x)? respectively. However since
the layer {x: v(x) < v} contains =< =2 elements the right-hand expression
should be replaced by

/82F3’y v tdy < B*P®
| IE— |
since ¢ < B; so we arrive to O(max(B%, Z%B%).

Meanwhile for ), we have v(x) =5 < 1 and ¢(x)
contribution does not exceed what we got for ).

¢ = (52 and its

Disjoint Elements. Consider contribution of the disjoint elements.
It is given by the left-hand expression of (26.3.88) with ¢, ¢ replaced by =
and ¢ respectively. Note that ) [z, — z,| ™" < F1y 729/ % where we sum
with respect to all pairs with v, < v and 7, < 7. Therefore the right-hand

expression should be replaced by
(26.3.89) /;332 NEWNVEY

which leads to CF3B?|log(F~1¥)|> which differs from what we got before by
a logarithmic factor. To get rid of it we will use exactly the same trick as
in Paragraph 26.5.5.2.2. Border Strip proving Proposition 26.3.16 because
considering disjoint pairs we consider the same objects as there. Then
instead of (26.3.89) we arrive to

/F3327_57’_5’_y25 7_1d’y 7/—1d,y/
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which results in Cr3B2. )
Meanwhile for ), we have v(x) = 5 < F and ¢(x) = ¢ = (72 and its
contribution does not exceed what we got for ).

Conclusion. Finally, analysis in the outer zone is trivial. Therefore
we arrive

Proposition 26.3.22. Let M = 1. Then for constructed above potential W
(i) Ezpression (26.3.25) does not exceed CZ3 + CZ3Bs.

(i1) If B < Z expression (26.3.25) does not exceed C(B + 1)‘52275.

26.4 Applying Semiclassical Methods:
M>?2

Let us consider now the molecular case (M > 2). The major problem is that
the non-degeneracy condition |Vw| < 1 is not necessarily fulfilled. Therefore
we need to find an alternative approach to the zone where y > h’%) (with
p = Bl{™t and h = 1/4¢). Recall that it consists of three smaller zones: zone
Xy = {uh < Co, WEF > ¢o(?} %), zone X3 = {uh > Gy, WaF > €2} 2,
and the (most difficult) boundary strip Y = {WaF < €0¢?}, which we leave
for the next Section 26.5.

26.4.1 Scaling Functions in Zone A’

Step 1. We will use the scaling method in this zone; the good news is
that WAF is sufficiently regular after a proper rescaling and also sufficiently
non-degenerate. Recall that after we rescale x +— ¢~1(x—Xx), 7 = (27 in the
ball B(%, 17) with £ = ((x), { = Z2071, the rescaled potential w = (" 2WJF
satisfies in B(0, 2) equation

(2641) dw=yPy(w) with y=(PS1, f=ph=B{?<1
™
and therefore in B(0, 1)

(26.4.2) w = —% / Ix — 2| 'nPy(w(z2))d(z) dz + w'

22) Only if B < C;Z?; this zone disappears for (;Z> < B < Z3.
23) Qnly if Z3 < B < Z3; this zone disappears for B < Zs.
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with ¢ € 65°(B(0, 2)) and w’ € 65°(B(0, 2)).

‘2

Remark 26.4.1. (i) If ¢2 < Z¢7! then n = Z202 < 1; this happens for
B<Z3,(<Z%andfor B>Z3 (<B3.

(ii) If ¢2 < 2 then 7 =< 1; this happens only for B < Z3, 0 pe 775,
Let us introduce a function

(264.3)  70(x) = (min|w — 28] + [Tw|* + |V2w|* 4 [V2w/[2) ",
J

Remark 26.4.2. We cannot replace w’ by w in the last term because w € €3
only rather than 63.

Proposition 26.4.3. () is a scaling function i.e. |x —y| < eyo(x) =
Y0(y) = 70(x).

Proof. (a) If w belonged to 6€* (and we would put w instead of w’ in the
last term of (26.4.3)) then we would just prove that |Vyo| < c. Here we
should be more subtle. We need to prove that if

(26.4.4), , min |w — 2j3| <15, Vw| <13,
! J
(26.4.4),, IV2w| < 73, [V2w/| < 7

at point x, then at point y the same inequalities hold with 7o replaced by
cY0 2. Definitely this is true for (26.4.4), since w’ is smooth.

(b) Consider |[V2w]|. Consider [Aqw(y) — Aaw(x)| with A, = V* — 15;A,
a = (i,j). Then due to (26.4.2)

(26.4.5)  [Aayw(y) = Aaxw(x)| <

0 [ (hasdx = 217 = Rayly = 217 Pil(2)2) | + e

where the last term estimates |A,, w'(y) — A xw'(x)| and we used (26.4.4),.
Integrals here are understood in the sense of the principal value (vrai) and
€1 = €1(€) = +0 as e — 40.

24) We need to prove a bit of converse as well; see Part (c).
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Note that the integral in expression (26.4.5) does not change if we add
to Ps(w) any constant with respect to z.

Let us consider first this integral over {z: |[x — z| > 270}, provided
70 > |x — y|, and note that this integral does not exceed

ol [ 1x =2l 4px - ylx
(IVw(x)| - |x — 2| + |[VPw(X)] - |x — z]* + |x — z|g)% dz| < Ceyn.

Consider now integral over zone {z: |x — z| < 270}:

1 [ Mol = 2|72 (Pa(2)) — P(w(x) d

and note that it also does not exceed €;n. Further, t same arguments

work for this integral with x replaced by y but still integrated over zone

{z: |x — z| <27} (one needs to remember that |[Vw(x) — Vw(y)| = O(70)
1

and [V2w(x) — V2w(y)| = O(+5)).

Furthermore, the same arguments work also for these expressions inte-
grated over {z: |y — z| < 27o} and we are left with

In / w(x,y, 2)(Py(w(x)) — Py(w(y))) dz|

integrated over zone {z: |x — z| < v} and w < 75 and one can estimate it
by €17 easily in the same way. Therefore since |[Aw(x) — Aw(y)| does not
exceed €;1 we conclude that [V2w(x) — V2w(y)| does not exceed €1(n +~3).

However (26.4.2) implies that 7 < cv§ since Py(w) < 1 in &, and
therefore |[V2w(x) — V2w(y)| < 193 in B(x, 7).

Finally, combining this inequality with (26.4.4), we conclude that |Vw(x)—
Vw(y)| < e17g in B(x,); finally, combining with (26.4.4); we conclude
that [w(x) — w(y)| < e1vg in B(x, 7).

(c) Therefore (26.4.4), , are fulfilled in y € B(x,ey) with 7, replaced
by Y0(1 + Cep). Further, if we redefine 7o as the minimal scale such that
inequalities (26.4.4), , are fulfilled in x, then (26.4.4), , fail in y € B(x, eyo)
with v replaced by vo(1 — Cep). Therefore with appropriate € > 0 we
conclude that 3 < 7o(x)/70(y) < 2.
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Obviously, Yo < Yoold Where Yooiq was defined by (26.4.3) and therefore
the same conclusion also holds for gelq- O

Now let us reintroduce the scaling function

1
(26.4.3)* Yo(x) = g(mjn lw — 2J'B|3 + |VW|4 + |V2W|6 + |V3W/|12) 12+
j
Goh’ + Con?.
Then

(26.4.6) |x —y| < 2%(x) = 7(¥) < 70(x) and (26.4.4); , hold (with
some constant factor in the right-hand expression).

Consider B(X,%0), Jo = 70(X), and scale again x + 35 }(x —X), 7+ 55 *7
and respectively w — wy = 35 *(w — 2J3)), h — h; = h¥,°>. Further, since
after rescaling |Aw;| = O(n7,2) we set 1 — 11 = 177, °.

Due to cut-off in the end of (26.4.3)" h; < 1and n; S 1. If 5 < h3 then
h; < 1 and we are done. If 35 < 7)% then n; < 1 and we proceed to Step 3.

Step 2. So, let 7; < 1. Let us introduce a scaling function in B(0, 1)
obtained after the previous rescaling:

(2647) () = ¢(min jw + 20— )83 + [Vwil + [V2wal) .

Then
(26.4.8)172 mjln |W1 + 2(_7—j)5’_}/(;4| S Co"}/f, |VW1| S Co")/f,
(2648)3 |V2W1| S Co"}/l.

Remark 26.4.4%). Since now we do not have the third derivative in (26.4.7),
we do not need in wy in the definition of ;, only in the proof of Proposi-
tion 26.4.5 below.

Proposition 26.4.5. (i) v1(x) is a scaling function: |x —y| < 2y1(x) =
1(y) < n(x).
25 Cf. Remark 26.4.2.
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(ii) If m < €g then
(26.4.9) V2w (x) — V2w (x)] < e, w; = (W' —78)v "

Proof. Proof is similar but simpler than one of Proposition 26.4.3; it is based
on the rescaled version of (26.4.1)—(26.4.2):

1 _ _ __
(26.4.10) 2 Aw =mPs(wiT5 +28),  m=1%° <1

and therefore in B(0, 1)

1
(26411)  wi= -y / Ix — 2| i Py(wa (278 + 218)(2) dz + w.

Now let us reintroduce the scaling function
: 2
(26.4.7)" 71(x) = e(mjin lwi +2(G =) B% P+ [Vw|* + yv2w1|6)6 + Gohs.
Then

(26.4.12) |x — y| < 29(x) = 7(y) =< 70(x) and (26.4.8), 5 hold (with
some constant factor in the right-hand expression).

Let us consider X € B(0,1) (it is a new point), B(X, ¥1), 71 = 71(X), and
scale again x — 37 }(x — X), 7 +— 37 °7 and respectively wy — wo = J; 3wy,
_s
h1 — h2 = h]_’_}/l 2,

2
If 73 =< h7 then hy < 1 and we are done. If |[Vws| < 1 we are done as
well.

Step 3. So, consider the remaining case |V2ws| =< 1. Then we introduce
the scaling function (now, we have no doubt that this is a scaling function):

- 3 1
(26.4.13)  ~a(x) = (—:(mjn wa + 27 — j)B75 4373 + |VW2|2) 4Gkl
J

Let us consider X € B(0,1) (it is a new point), B(X,%2), 72 = 72(X), and
scale again x — 7, }(x — X), 7 = 7, 27 and respectively wy > ws = Y5 *ws,
h2 — h3 = hg’_}/£2.
1
If 7, < h? then hy < 1 and we are done. If [Vws| < 1 we are done as
well.
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Step 4. Finally, introduce

- 2
(26.4.14) v3(x) = emin |ws 4+ 2(j — /) 375 31 395 2| + Ch;.
J

26.4.2 Zone X,: Semiclassical N-Term

Now we apply scaling the arguments using scaling functions ~;_3 constructed
above.

We revert our steps. While we call v;_3 relative scaling functions let
us introduce absolute scaling functions ag(x) = Yo(x), a1(x) = Yo(x)11(x),

as(x) = y0(x)71(x)72(x), and as(x) = yo(x)y1(x)72(x)73(x) >
We need first

Proposition 26.4.6. Consider B(0,1) and assume that in it

(26.4.15) IVw| = 6,

and

(26.4.16) V2w| < cb.

Let

(26.4.17) Y(x) = emin|w — 2:hjlo " + hi
and

(26.4.18) e>hi% h=ho 2.

Let ¢ € 65°([—€o., €0]). Then for a <7 = ~(X),

(26.4.19) | / 0a(x) (€(x, X, 7) = Pliao (W(x) + 7)) ol <
Cuh™ta® + Cuh t’y Y (hy 2a7t)*
with
(26.4.20) e.(x,y,7) = @ (WDZ (1h) " )e(x, y,T)
and Weyl expression

(26.4.21) Py (w +7) = const Z B(w + 7 — 2juh)2p(w + 7 — 2jpuh)

J

26) So far we ignore the very first scaling x — (x — X)¢~1. Therefore really absolute
scaling functions would be ;.
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with the standard constant where for each x only one term is present in this
sum. Here we take large s > 0 as h < ya and s = 0 otherwise.

Proof. The proof is standard and based on the standard reduction to the
canonical form, standard estimates for U(x, y, t) a Schwartz kernel of propa-
gator e/i""07'tH.

(26.4.22) o / (D6 Ua(x, x. ) dx| < Cpuh~ta?

for T <1 and

(264.23) [Fer [ 0 (Tr(0) — Tr(0) Ul x,0) o] <
C,uhflae’(h’y*%a*l)s

with T = eyz where U, is defined similarly to (26.4.20).
Here obviously we can skip in (26.4.19) all perturbation terms in the
argument and in ¢, transformed. O

Then plugging into (26.4.19) o = v (= 7¥), we have factor (hv’%)s in the
second term.

There are two cases: 0 < ph and 0 > ph.

In the former case 6 < ph, taking the sum over y-partition of 1-element
we estimate the same expressions with ¢; instead of ¢, by their right-hand
expressions integrated over v~3 dy which returns Cuht.

On the other hand, in the latter case § > ph, let A\ = phf~1. Taking the
sum over vz-partition of A-element ¢, by the right-hand expressions which
returns Cphy *A2. In this case summation over A-partition return COh=2.

In both cases we arrive to the following estimate:

(26.4.24) | / 306) (20, 7) = Pl (wlx) 7)) de| < CON 4 Cuh™

Applying this estimate after a,-scaling we conclude that the left-hand
expression with ¢ = ¢,, (in the non-scaled settings) does not exceed
COh—2a3 + Cuh~ta3. Here the first term is O(h~2a3) and the summation
over l-element returns O(h~2).
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Consider the second term Cuh~ta3 = Cuh~'~3~v#v3. Then summation
over as-partition of aj-element returns

Cﬂhlvgvf/ﬁ X 73 2 dx < Cph™ 7573 (1 + | log Aal)

where 4, is a minimal value of v, over 7,_j-element. However in fact there
will be no logarithmic factor because in virtue of equation (26.4.1) there
is a positive eigenvalue of Hess wy of the maximal size (cf. Section 5.2.1).
Therefore, in fact, we have Cpuh=1432~2.

Now summation over ag-partition of ag-element returns

Cuh72 / 72 x 7% dx < Cph™92(1 + |log 41 l).

Finally, summation over ag-partition of 1-element returns
Cut [ (1 1og sl x 26 d = Cpi 551+ [log ),

where ¥, is an absolute minimum of v,. However 73 > 1 and v, > 7 and
therefore expression above does not exceed Cuh’ln_%(l + | logn)).

Remark 26.4.7. Recall that we estimated only the cut-off expression. To
calculate the full expression we need to calculate also the contribution of
the zone {& > ph}. However this is easy.

Really, instead of ¢(h*D2/(uh)) consider ¢'(h?D3 /6) with ¢’ € 6>°([1, 4])
and eph < 0 < 1. Without any scaling one can prove easily that such
modified expression (26.4.24) does not exceed COh=2. We leave easy details
to the reader.

Therefore plugging 6 = 2"ph and taking a sum over n =0, ..., || log, uhl|
we get the required expressions. Also note that in such expressions we
need to consider perturbed argument w + 2wy + juthw, (all other terms
which are O(u™* + ,u_%h) could be skipped and also a perturbed function
transformed).

Remark 26.4.8. (1) However we need to get rid of these perturbations for
6 < ph*=? only. Indeed, for # > ph'~° we need canonical form only to
study propagation and calculations could be performed without it. But then
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getting rid of the perturbation is trivial provided this perturbation does not
exceed Cpuh*? which is the case if

(26.4.25) >k,

(ii) Note that in the smooth approximation contributions of X is always less
than CZ3~%, Cmax(Z3, Z5B3)Z~% or Cmax(Z3,Z5Bs5)Z~% + CB2Zs®
respectively with an exception of the first two and only in the case of the
threshold value > Z —37%_ However in this case n > Z7% and the errors of
the smooth approximation approach in fact are less than CZ %’54, CZ37% as
well. Therefore there are in fact no exception.

(iii) It is important to have ¢ < ph and with ¢ = h30 h = hf~2 it means
1> h~3799372% which is due to (26.4.25).

Therefore we conclude that in the completely non-scaled settings with

¢ = ¢u(x)

(26.4.26) | / o(x) (elx,x.7) = Pa(W(x) + 7)) <
CC20% + CBUC2(1 + | log £%¢))

where the first term is Ch=2 and the second term is Cuh_ln’%(l + | logn|);
recall that h™! =< ¢(, p < B¢(™! and n < ¢2¢. In comparison with the
non-degenerate case |VWaF| = (27! we acquired the last term.

Assume first that condition (26.2.28) is fulfilled. Then

(i) If B< Z3, (< Z~5 we have ( = Z2("2 and the right-hand expression
of (26.4.26) returns CZ¢ + CB(3Z 4 and the summation with respect to ¢
results in its value as £ = Z73 i.e. CZ5 + CBZ~5 with the dominating first
term.

(ii) If B < Z3, ¢ > Z~3 we have ¢ = £2 and the right-hand expression
of (26.4.26) returns C£~2 + CB(?. We need to sum as long as ph < 1 i.e.

75 <t/ < B~# and the summation returns CZ3 + CB? with the dominating
first term.

(i) If Z3 < B < 72, ¢ < B1Z we have ( = Z2(~2 and the right-hand

expression of (26.4.26) returns CZ¢ + CBZ~#(3. Then summation results in
CZ?B~'+ CZ?B~3Z < 75,
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If assumption (26.2.28) is not fulfilled we can estimate in the first
term of the right-hand expression of (26.4.26) parameter ¢ from above by
min(Z2¢~2, £=2) and in the second term from below by Cp = min(Zéé;%, 02)
if £ =4, = |x —yn| and repeat all above arguments.

Therefore we arrive to the Statement (i) of Proposition 26.4.9 below.
Furthermore, note that for B < Z the zone A is contained in the zone
{x: {(x) > B"1% > Z w0} (really, p > h™3 in &) and we arrive to the
Statement (ii) below.

Proposition 26.4.9. (i) For B < Z? the contribution of zone X, to the
erpression

(26.4.27) / (e(x,x,v) = PE(W(x) + v)) dx

does not exceed CZ5.

(i) For B < Z the contribution of zone X, to the expression (26.4.27) does
not exceed CZ37,

26.4.3 Zone X,: Semiclassical D-Term

Further, we need to estimate the semiclassical D-term
(26.4.28) D(¢a[e(x, x,v) — Py(W(x) + 1)], bale(x, x,0) — P,’3(W(x)]>

where ¢,(x) is an a-admissible function. Again we revert our steps.
Consider B(x, @3) and apply Fefferman-de Llave decomposition (26.3.8).
Then in the framework of Proposition 26.4.6 contribution of pairs B(x, o) and
B(y, o) with 3o < |x — y| < 4a does not exceed the right-hand expression of
(26.4.19) squared and multiplied by a=*, where Ca™3 estimates the number
of the pairs and ! is the inverse distance. At this moment we discuss a

cut-off version of (26.4.28) i.e. with e,(.,.,.) and P}, (.). So, we have

_1
Cu’h™2 (1+ v3 H(havs 204_1)5)20[4.
Then integrating this expression with respect to a~!da with a < 3 we

arrive to Cri?h=2 (74 + h37s).
Therefore we conclude that
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(26.4.29) A cut-off version of expression (26.4.28) with a = a3 does not
exceed Cp?h=2 (’y§ + hg%)a%

The first term here Cu?h—2v3a3 does not exceed Cu?h=2a3 (recall that
a; = aj_17;) and the summation over az-partition of 1-element returns

Consider the second term Cp?h™2h3v3a3; its summation with respect
to as-partition of ap-element returns Cp?h=2a3h3 [v5°dys < Culh2a3
2

(really, recall that according to (26.4.14) v3 > h}) and then the summation
over ap-partition of l-element returns Cpu?h=2.

Consider B(x, &;) and apply Fefferman—de Llave decomposition (26.3.8).
There are two kinds of pairs:

(a) those with |x — y| > e(as(x) + asz(y)) for all (x,y) and
(b) those with |x — y| < min(asz(x), as(y)) for all (x, y).

The total contribution of the pairs of the second type (i.e. summation is
taken over all pairs of az-elements in B(0, 1)) as we already know is O(u2h~2).
Meanwhile according to the analysis in the previous Subsection 26.4.2 a
contribution of one pair of kind (a) does not exceed

C (h™2 + ph™ gttt 1 08) a3 x
at x
(h™2 + ph gty et 1035 ad x|x — y| !

at y

where each of two first factors is just an estimate of the integral (26.4.24)
calculated over corresponding domain. If we take the first term in the first
factor and sum over as-partition of 1-element we get only the second factor
multiplied by #h~! and then summation was done in the previous subsection.
Similarly we can deal with the first term in the second factor. On the other
hand, if we take only second factors and sum over pairs of az-subelements
of the same ap-element we get

Crh™?yg 2y %y, %0 =< CpPh~2a3,

Then summation with respect to ap-partition of 1-element returns Cpu2h=2.
Consider now B(x, &) and apply here Fefferman-de Llave decomposition
(26.3.8). There are two kinds of pairs:
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(a) those with |x — y| > e(aa(x) + az(y)) for all (x, y) and
(b) those with |x — y| < min(az(x), aa(y)) for all (x, y).

According to the above analysis the total contribution of the pairs of the
second type (i.e. the summation is taken over all pairs of ap-elements
in B(0,1)) as we already know is O(u?h=2). Meanwhile according to the
analysis in the previous Subsection 26.4.2 a contribution of one pair of kind
(a) does not exceed

C(h?+ph gyt ad x (W2 + ph gty e g x|x — y| ™

at x at y

and here again we can “forget” about the first terms in each factor. Then the
summation with respect to pairs of as-subelements of the same a;-element
results in Cp2h=275 2y, 208 < Cu?h=2a3 where we avoid logarithmic factor
in virtue of the same positive eigenvalue of Hess w. Summation with respect
to ap-admissible partition of 1-element returns Cu?h=2.

Consider now B(X, ag) and apply here Fefferman—de Llave decomposition.
Again there are two kinds of pairs and the total contributions of the pairs
of the second kind we already calculated and contribution of the pairs of
ap-subelements of the same 1-element does not exceed

CrPh2752(1 + | log %])%0 < Cp2h™2(1 + | log n|)?ad

and the summation with respect to ag-partition of 1-element returns
Cr2h(1+ |logn])?.

Finally, consider B(X,1) and apply here Fefferman-de Llave decomposi-
tion. Again there are two kinds of pairs and the total contributions of the
pairs of kind (b) we already estimated while the total contribution of the
pairs of kind (a) does not exceed Ch™* + Cp?h=2n=1(1 + | logn|)? where we
recalled the forgotten terms.

Again, this is estimate for cut-off expression. Going to uncut expression
we repeat the same trick as before but as we deal with D-term we need to
consider “mixed” pairs when one “factor” comes with # and another with ¢’
but then contribution of such pair does not exceed C(vh4)z(v/h™*)z. Easy
details are left to the reader.

Therefore returning to the original scale we conclude that the contribution
of (-layer to (26.4.28) does not exceed

(26.4.30) CC*B + CB¢7Y(1 + | log £%¢|)?
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which is exactly the right-hand expression of (26.4.26) squared and multiplied
by ¢~! due to scaling.

Remark 26.4.10. In comparison with the non-degenerate case |[VWgF| <
C%¢0~1 we acquired the last term.

Assume first that condition (26.2.28) is fulfilled. Then

(i) For B < Z3, £ < Z75 we have ¢ = Z2(~2 and expression (26.3.42)
returns CZ2( + CB2(3Z~% and the summation with respect to £ results in
its value as ¢ = Z73 i.e. CZ3 + CB2Z~! with the dominating first term.

(ii) For B < Z%, (> Z~% we have ¢ = £72 and expression (26.3.42) returns

Cl=5 + CB2(3. We need to sum as long as uh < 1ie. Z=3 <{ < B~% and
5 5

the summation returns CZ3 + CB# with the dominating first term.

(iii) For 73 < B < 72 (< B'Z we have ¢ = Z30~% and expression
(26.3.42) returns CZ2(+CB2Z~2(2. Then the summation results in CZ3B~1+
CB:Z < Z3B:s.

Sure, we need to consider also mixed pairs of the layers and their
contributions are

C(C2P+CBLC 3 (1+]log (2¢|)) x (/202 +CBEC 2 (14] log €3¢/ |)) x (44-£')

and the summation with respect to £ and ¢’ returns the same expression as
above.

If assumption (26.2.28) is not fulfilled we use the same trick as in the
previous Subsection 26.4.2. Therefore we arrive to the Statement (i) of
Proposition 26.4.11 below. Applying the same arguments as in the proof of
Proposition 26.4.9 we arrive to the Statement (ii):

Proposition 26.4.11. (i) For B < Z? the contribution of the zone Xa x X,
to expression (26.4.28) does not exceed C max(Z3, Z3B3).

(ii) For B < Z contribution of the zone Xo X X, to expression (26.4.28)
does not exceed CZ379.

26.4.4 Semiclassical T-Term
Semiclassical T-Term: Zone X; Extended

First let us cover zone X extended.
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What is X; Extended? To define this zone X] := {x: {(x) < r}, where
we define W using P rather than Pg let first us analyze the precise extension
in the framework of N- and D-terms. For N-term we have approximation
error and corresponding D-term not exceeding respectively C(uh)2n 2h=3 =
CB2(~3(2 and this expression squared and multiplied by ¢~ i.e. CB4C=3¢3.
Finally, both expressions are summed to their values as ¢ = r. Recall that
either ¢ = Z20~2 or ( = (2.

(i) Consider first B < Z3. Then we want these errors not to exceed
respectively CZ 5 and CZ3. Obviously, if r > Z =3 the first condition is
more restrictive. In this case plugging ¢ = r—2 and we set CB?r® = Z3 ie.
r—=B-%Z%. Then r > 773 as long as B < 75,

Then p = Br® = B-371s > Zs and h = B3 7% > Z_%; and one can
see easily that > h™2 provided ((x) > r.
(ii) Consider next Zs <B< Z5. Then for r < Z~% we have (= Zir~:. In
this case the second requirement is more restrictive and we set B*Z ~3r2
Z3, ie. r=B9Z7%. Then u=B3Zs and h=Z 2r 2 = BsZ % and
> h_%; this is better than h~3.

However, we can do better than this: observe that puh < 7 if and only
if r > B2Z 3 ie. B < Z%, which is greater than Zs but less than Z3, so
we test p and h in this case: yu = Z% and h= Z» and w> h—1i provided
Ux)>r.

If B> Z1 we will use another estimate for D-term: namely it does not
exceed (ph)2h=5r~1 = B3r® and we want it not to exceed Z3, so r = Z3B™5
(which is still less than Z73) and = B1 and h = B Z~3 and we test it
as B = Z3 when 0= B and h = B_%, So exponent —15—1 fits again.

(iii) Finally, if Z3 < B < Z3 then the error D-term does not exceed B3r5 and

we want it not to exceed B3 Z3. So, we pick up r = B_%Z%, w= B%Z_z%,
11 14

h = B% 772 and exponent —15—1 fits again.

When We can Use the same Method for T-Term? As far as semi-
classical T-expression is concerned an approximation error of such approach
in the localized and scaled settings is C(uh)2h~32" which is O(h™1) only

27) If instead of Pg(W) we use P(W)+ 1 P”(W)B? rather than P(W). This modification
does not affect our previous arguments.
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if p > h=5. One can extend it to w > h50 using the same trick as in
Remark 26.4.8 but we need to do better than this.

On the other hand, observe that in fact an approximation error does not
exceed?” C(uh)3n~2h=3 < CB3(2¢~: in the localized scaled settings. The
simple proof is left to the reader. This is translated into CB3/2¢~2 into

unscaled settings. Summation with respect to ¢ < r returns its value as

(=r.
So we get CB3r5 as B < Z5 and r > Z—3. Consider ﬁrst B <Z. In
this case we Want CB3r® < CZ5 and we pick up r = B~ $73 Wthh is
greater than Z 3 prov1ded B < Zlgo. Then pn = Br® = B~ 57 > 75 and
h=r=B3Z73 > 7" s and pu > h~ i,

If Z< B < Z5 but still r > Z75 we want CB3r® < CZ3B3% and we
pick up r = B~ Z% and we want it to be greater than Z 3 ie. B< Zs.
Then p=Br3=B"37Z8 > Zs and h=B %71 > B 3 and > h™s. It is
not as good as u > h=?

Then we use the smooth canonical form. In the operator perturbation
terms have factors p =2, ~* etc and we can use the standard approach to
get rid of u=* < ph, so we need to consider only =2

However let before scaling the second derivative of W be of magnitude
0; then after scaling it becomes of magnitude 6’ = 43+70 and then the
perturbation is of magnitude x~2 but contribution of the error will be
(after we compare the true Riemann sum and the Corresponding integral and
their difference Ch=3vu~2(uh)2(0') "2 x a3 < COzhy5 v ad < Ch_lyf%a%
where we used that § < C427;. Then summation over a;-partition of ag
element returns Ch~*a} and the summation over ~yp-partition returns Ch~!
as desired. Therefore we covered zone X; for T-term.

Semiclassical T-Term: Zone X,
Tauberian eEstimate. Tauberian estimate for cut-off expression is rather
simple:
_s _1
Cuh™ye 9t X g > 91 X 19737505 < Cpmy #5103

which nicely sums to Cu without logarithm due to the same positive eigen-
value arguments as before; for #-cut-off with 8 > ph we get the same albeit

28) Because the semiclassical remainder estimate is not better than this. Actually, due
to Remark 26.3.7 we can do marginally better than this, but we leave this analysis to the
reader.
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with 7; defined by the same formula albeit with (w; — 2juhsf1) replaced by

fs:' where s; ' means the scale; and this should be multiplied by 6/(uh).
The result nicely sums to Ch™!. This is what was required.

Magnetic Weyl Expression. Now we will get the same answer albeit
Cp~* term will be supplemented by C u_%h which in cut-off sum adds
Cu3hx uh=2 < ChL.

We can use the standard approach, with an error C/f%h x 0/(uh) x
1th=2 < COp~3 h~2 which means that we can take § = u3 h which is sufficient
to deal with with 6 > Cu%h; in particular, for pu > h3 we are done. But
for & > puh'=% we can apply the weak magnetic field approach, which is
sufficient. So we arrive to inequality

(26.4.31) |/;/¢(x) (ew(x,x, ) — Ph,(w(x) + 7')) dxdr| < Ch™t

and therefore we arrive to

Proposition 26.4.12. (i) If B < Z? the contribution of zone X, to the
eTpression

(26.4.32) /;/¢(x) (e@(x,x, T) = Pp (W(x) + 7')) dx dr

does not exceed C max((Z + B):Z3, ZgB%).

(i1) If B < Z the contribution of zone Xy to expression (26.4.32) does not
exceed CZ37°.

Mollification Errors. Further, we need to estimate
(26.4.33) / 6(0) (PH(W(x) + 7)) — Ph(WEF(x) + 7)) di
(26.4.34) /qs(x)(PB(W(x) 7)) = Pa(WEF(x) + 7)) ax,

(26.4.35) D(9(x)(Pa(W(x) + 7)) — Pa(WEF(x) +7))).

O(x) (PR(W(x) + 7)) — Pa(WEF(x) + 7))
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and
(26.4.36) 160V (W(x) — WEF () IP.

We start from local versions (so in fact we dealing with w and Wg .

_s
Obviously after all rescalings h = hy,>7; 7, > and therefore & = B =
_s
h%(753’yl 27;2)’% where we set 0 = 0 but we will show that we have a reserve
to set it as ¢ > 0 if we want to estimate (26.4.33) by h and (26.4.34)(26.4.36)
by h%.
We claim that

5
(26.4.37) lw — wjt| < Co = CBn(vg1iv3e) .
and
3
(26.4.38) IV(w —wiF)| < Ca = CB(vg13r3e)>.

Indeed, it follows from equation (26.4.2).

Then the contribution of as-element to (26.4.34) does not exceed Ccead
as measure of zone of ay-element where w # Wg: Fis O(ea3). One can see
casily that ce = O(h) and therefore Csea = O(h%a3) and the summation
over ap-partition of 1-element returns O(h3).

Modulo above calculations the contribution of aj-element to (26.4.33)

_1
does not exceed Cﬁg%eag. One can check easily that ¢e = O(h%’y2 2) and

therefore Cgéeag = O(h%af'*yzg) and the summation over ap-partition of
ag-element returns O(h%a‘;’) and then the summation over ap-partition of
1-element returns O(h?).

Similarly, expression (26.4.35) with ¢ = ¢,, does not exceed Cseras <
Ch*a4 and the summation over ap-partition of l-element returns O(h?).
However we need to consider disjoint pairs of ap-elements belonging to given
ag-element and their contribution does not exceed

L1 1
Ch / Yol Vo) Ix — y|THdxdy < Ch*a}

and then summation over a;-partition of 1-element returns O(h%). We need
also to consider disjoint pairs of aj-elements belonging to given l-element
and their contribution does not exceed Ch* [ |x — y|™! dxdy = O(h®).
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Finally, contribution of a,-element to (26.4.36) does not exceed Cc2ca3

and one can check easily that this does not exceed C ozf%%h% and the sum-
mation over a-partition of aq-element returns C a%hg; then summation over
1-partition of 1-element returns O(h3).

So, the scaled versions of (26.4.33) and (26.4.34)—(26.4.36) do not exceed
Ch and Ch? respectively. Then the original versions of (26.4.33), (26.4.34),
(26.4.34), and (26.4.36) do not exceed respectively CC3(3 x ((0)~! = C¢?,
CCB x (¢0)™2 = CC3¢, CC° x (¢0)™2 = C¢C*3, and CC* x (¢0)2 =
CC?07t < C¢B.

Leaving the easy details to the reader we arrive to

Proposition 26.4.13. (i) Contribution of zone X5 to the mollification er-
ror (26.4.33) does not exceed CZ5.

(i1) Contribution of zone X5 to the mollification error (26.4.34) does not
exceed CZ3 + o(Z3B3).

(i11) Contributions of zone X, to the mollification errors (26.4.35) and
(26.4.36) do not exceed CZ3.

and
Proposition 26.4.14. Let B < Z. Then

(1) Contribution of zone X, to the mollification error (26.4.33) does not
exceed CB°Z579.

(i1) Contributions of zone X to the mollification errors (26.4.35)—(26.4.35)
do not exceed CB°Z379.

Remark 26.4.15. Consider the mollification parameter in “absolute” scale

5
(ie. f-scale): & = Yon72v(h/337E73)5 "

h3=% > (u~1h)2=% which makes reduction possible.

One can see easily that ¢ >

Remark 26.4.16. All statements of Propositions 26.4.13 and 26.4.14 are valid
for semiclassical errors as well e>§cept statements, concerning T-term; tose
should include also terms Ca~2Z3 for a < Z=5 and Ca=0Z3%3 for a > 773,
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26.4.5 Zone Xj

Zone X3 defined by ph > GCo, h < 1, {x: {(x) < €F} appears only as
73 < B < Z3. In this zone Wg F is smooth and no mollification is necessary.
Further, in this zone the canonical form contains only one number j = 0
and |D*W| < C,¢?¢710l and W < 2.

Therefore we have non-degeneracy condition fulfilled and applying the
standard theory we conclude that in the scaled version contribution of B(0, 1)
to the semiclassical errors in N- and T-terms and into D-term are Cuh™?,
Cp and Cp?h=2 respectively.

In the unscaled version they become CB?, CB{( < CBZ:(> and CB2(3
and after summation (where for D-term we need to consider mixed contri-
bution of different layers) we arrive to the same expressions calculated as
(=F=B%Z5ie. CB%Zé, CB:Z% and CB:Z3 respectively. Thus we have

proven
Proposition 26.4.17. Let Z5 < B < Z3. Then
(i) Contribution of zone X3 to the N-error does not exceed CZ3Bs.

(ii) Contributions of zone X3 to the T-error and D-term do not exceed
CZ:Bs.

26.5 Semiclassical Analysis in the
Boundary Strip for M > 2

To finish our analysis we need to get the same estimates as before in the
boundary strip

(26.5.1) Yi={x: W(x)+v <eG, ef <{(x) < cr}
with
(Z—-N): for B<(Z—-N)3,
(26.5.2) G=148 for (Z—N): <B<Z5,
Z5B3 for B> Z5.
which coincides with (26.2.41) as B > (Z — N)3. Recall that 7 = (Z — N). 3,
F= B %and F = B 5Z5 in these three cases respectively. Analysis of
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the external zone Xy = {x: {(x) > CGF} will be trivial and inner zone
{x: W(x) + v > eG} has been covered already.

26.5.1 Properties of WiF if N =2Z
Let us explore properties of WEF in Y if N = Z?) Let us rescale x — x' =

xF !, W w =G W and define h = G-27!, y = G-2BF. Then

(a) In the case B < Z3 we need to rescale w(x') = B~!WZF(x'F) and take
h=B"+<1,u=B+>1 puh=1.

and h = (ZF)z = (BZ3)s < 1, u = BZ:F
BsZ75s >1(uh=1if B< Z5, h=1iff B= 73).

We will use now only rescaled coordinates unless the opposite is specified.
Then in Y rescaled

1 -
(26.5.3)  Aw = kw}, k=12, w—0=v(? as |x| — oo,

with ¢ = G2 where one can always get x = 12 after rescaling w +— 144k 2w.
Proposition 26.5.1. Let Z = N. Then in Y after rescaling

(26.5.4) |Dw| < C wry~ o Va

with the scaling function v = wi and

(26.5.5) IVwi| <1+ Cwt

with some constant C and exponent t > 0.

Proof. (a) Rescaling x — xF~' we get an equations (26.5.3), = (26.5.3)
with # = 0. We know that W = 0 for ¢(x) > cF; so after rescaling w = 0 for
{(x) > c. On the other hand, w < 1 as {(x) < e (uniformly with respect to
all the parameters).

Let us consider solution of the equation
(26.5.6) Aw, = 12w}
29) Je. v=0and G = BF *.
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in Q ={w < ¢, ¢ < c} with the boundary condition ws = w at 0Q; s > %

Note first that ws > 0. Really, ws is the solution of the variational
problem to minimize

(26.5.7) IVl + 24(s + 1)~ / Wt d

and one makes this functional only less replacing w by w,.

Further, the standard maximum principle arguments show that ws ~\, as
s \*?. Obviously wy \, w and wy — w in 6> in {x: w(x) > 0} as s \, :

We claim that
(26.5.8) ws € @Ast2,

To prove (26.5.8) note first that w € 629" uniformly with respect to all
the parameters for any & > 0. Then w® € 6°~% and then (26.5.6) yields that
ws € 627579 as soon as s — 0 ¢ Z. Then since ws > 0 we get |[Vwg| < cwsf
and so wS € €°72. Then equation (26.5.6) again yields that w, € €3

Now we need more subtle arguments. First, for |y| =1

(26.5.9)  we(x + ty) = ws(x) + t(Vws)x -y + 1

2(V2W5)X(y)t2 + O(t3).

Then the lowest eigenvalue ¢ of V2w, at x should be greater than —CWS%.
Indeed, otherwise we can take y as the corresponding eigenvector and t
with [t| = e and with a sign making second term non-positive and get
ws(x + ty) < 0.

This lower estlmate for eigenvalues of V2 Ws and equation (26.5.6) yield
that |V2w,| < CWs. But then |Vws| < CWS. Really, otherwise picking
y = |Vwe| 'V w, with |t| = ¢|Vws|2 and an appropriate sign we would get
ws(x + ty) < 0.

These estimates yield that ws(x’) =< ws(x) in B(x, v(x)) with v(x) = EWS%.
Then we € €2. In fact, let us consider f = wS*Vw and |f(x) — f(x')|. Let

30) 1f Aw; = fi(w;) in Q, fi(w) S as w 7 and fi(w) > fr(w) then A(w; — wp) > 0 as
wy > wy and then wy — wy does not reach maximum inside Q.
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us consider first |x — x| > 1(y(x) + y(x')); since |f(x)| < v(x)? at each
point we get that |f(x) — f(x') < |x — x/|2.

On the other hand, for |x — x| < £(y(x) + 7(x')) we conclude that

Y(x) < y(x') and |f(x) — f(X')] < |VF|-|x = x| < |x —x|° due to inequality
IVF] < V2w ws ™t + [VwsPw 2 < Cy

Therefore w¢ € 65 and equation (26.5.6) yields that w, € €3**.
(b) In the next round we assume that wy € €457° with some § € (0, 1).
Then
(26.5.10) ws(x + ty) <
1 1
ws(x) + H(VWs) -y + S (VW) () + (V2w )u(y) £ + Clef?
with p = min(4,4 + s — 9).

We claim now that the lowest possible eigenvalue ¢ of (V2 WS)X is greater

than —Cws(p —2/e Really, otherwise let us pick up y as the corresponding
eigenvector, t with |t| = ¢|¢|*/(P2) and with a sign making expression

t(vws)x Y + étB(v?’Ws)x(}/)

non-positive and get wg(x + ty) < 0 again. Now equation (26.5.6) yields
that inequality

(26.5.11), |VEw,| < Cwlp=/p

holds with k = 2.

Further, we claim that this inequality holds with k = 1, 3. Indeed, if one
or both of these inequalities are violated then let us take corresponding y
and t with
e = e(IVwe V0D 4 [V ()2

(calculated on y); replacing e by 2¢ if necessary we get
1 1
|t(VWs)x Yy + 6t3(v3ws)x(y)| 2 6O‘t(vws)x : y| + ‘6t3(v3Ws)x(y)|

and choosing an appropriate sign of t we get w(x + ty) < 0.
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Therefore inequalities (26.5.11); 5 hold. The same arguments as above

with 7 = wi’” lead us to w® € 6P* and then equation (26.5.6) yields that
ws € 6PT2. So, now we came back with & replaced by ¢ =2 + s — ps and
one can see easily that if § > s then ¢’ = s+ (2 — 4s) + (§ — s)s and after
few repeats 6 < s. Then we get (26.5.8). Unfortunately, constants depend
on s due to the fact that Aw € 62 fails to yield w € 6*.

(¢) Now we are going to finish the proof of (26.5.4). Let us consider wg

again and let v = 7,5 = w9 Due to the previous inequalities v € 6*.

We claim that |V+| is bounded uniformly with respect to s,d. Note first
that Ay*=9 = y(4=9)s implies that

(26.5.12) a|VA)? + byAy =47
with a = 5(4 - 6)(3—-10), b = 5(4—6), and 0 = 4s — 2 + (1 — 5)d.

Let ¢ = |Vv|?; obviously 1 is uniformly bounded at 9. Let us consider
maximum of 1 reached inside Q. At the point of maximum

(26.5.13) D Y =0
and |
SO0 =32+ 3 (), =
¥ ,
D Vo HHTTD (’v‘l(’f’ - aIV7|2))
y ;

Due to (26.5.12) and due to (26.5.13) this expression is equal to

Xi

D Ve — VAR = alVAP) + b7y RV
ij

and therefore at an inner point of minimum a|Vv|> <~7. So, |Vy| < C is
proven and for s N\ %, 0 \( 0 we get that ]VW%| <C.

Let us pick y(x) = ¢wi(x); then |[Vw| < T and w(x) < w(x) in
B(x,7(x)). This and equation (26.5.6) easily yield (26.5.4).

To prove inequality (26.5.5) let us consider wg again and let us take
now ¥ = |V7|?> — F4?t with t > 0; obviously % is non-positive at 9 for
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sufficiently large F. Let us consider maximum of v reached inside €. At
the point of maximum

(26.5.13)’ D g — Fty* P =0

and the same arguments as before (plus inequality |Vv| < Cy) show that at
an inner point of maximum a|V~y|?> < +? + CtF~?* where C does not depend
on F and small t > 0. Then at this point ¢ < 1 for small enough t > 0 and
as s — % and § — 0 we get (26.5.5). O

The following statement heavily uses estimate (26.5.5):

Proposition 26.5.2. The following estimate holds
(26.5.14) D(y 1T,y 1) < G2

with some constant C which does not depend on s € (0,1) where we set
1
TS = Wi( o) (i.e. it is0 as w <0).

Proof. As in the notations of the proof of Proposition 26.5.1 é = 0 and
s = % we have (26.5.12) witha=1, b=3 and o = 0:
1

3787+ IVA[* =1.

(26.5.15)
Then

—1+s —1+s 1 s S5\ _1+4s 1 s
Y=y TV + 3 Ay = (L= VAP Ayt

3 3(1+5)

and

—14s . —1+s s —1+s —1+s
D(vy H.’YH)S(l—g)D(W VAP )+ C <

s —1+s . —1+s - s —1+s
(1—§)D(’y 1+V’Y 1+)+CD(’y 1+t+,’}/ 1+)+C

due to (26.5.5) and this yields
D(,YflJrsyfyflJrs) < C572D(,yfl+t+syfyfl+t+s) 4 CSil.

Substituting s + mt instead of s, 0 < m < Ct~! we recover (26.5.14). [
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26.5.2 Analysis in the Boundary Strip ) for N > 7

We consider now the case of if N > Z (i.e. v =0 and G = BF *).
It is really easy to construct the proper potential in this case: we just
take

(26.5.16) we=wo., ¢ = f(we?)

with £ € €°((3,00)), supp(f) C (3,00), 0 < f <1, f(t) =1for t > 1.
Note that due to (26.5.3)

D(’y_l(bsvry_l@g) S C8_25D(’}/s_1,f>/5_1) S C5_28_2S,
D(l - gbb‘r 1-— ¢5) S C52_2SD('VS_1’ ,.yS—l) S CS_2€2_25;

then minimizing with respect to s (= |loge|™) the right-hand expression
we conclude that

(26.5.17)  D(v ¢, v ¢:) +eD(1— ¢, 1 — ¢.) < C(1 + |logel)?

and therefore
(26.5.18) /’ylgbg dx + &1 /(1 —¢:)dx < C(1+]logel).

Remark 26.5.5. (i) Recall that all these integrals are taken over domain
{x: w(x) > 0}. To avoid possible troubles we pick ¢ = h3 and set in the
zone {x: w(x) < Goh3}

v(x) = dist(x, {w > 2Goh3}),

—teL for v <e,

(26.5.16)’ w, = { .

—c* for y>¢

with ¢/ = f(ye71) and then in the complemental domain {x: w(x) < —¢?}
our assumptions are fulfilled with ¢ = &2 and ¢y = v > h.

(ii) Further, for ¢ = h3=9 with sufficiently small exponent 6 > 0 it does not
break estimate for mollification error in T-term.

(iii) Furthermore, for t > ¢

mes({x: 7(x) < t}) < Ct*e > mes({x: 7(x) < ec})
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and therefore

hs/ﬂylsgS dx < Ce tmes({x: y(x) < ec}) < CL:= C(1 + |log hl)
for sufficiently large s.

Using these estimates and the last remark we can prove easily

Proposition 26.5.4. Let N > Z. Then

(i) Contribution of Y U Xy with external zone Xy == {x: w(x) = 0} to mol-
lification and semiclassical errors in N-term do not exceed CToe3(1+ |logel)
and Ry(1 + |logel) respectively with

=y
I
@
\'
[
2.
)
I
@,

(26.5.19), To = B3,
for B< Z3
and
(265.19), To=2Z, Ry=BsZs, T=2Z2:B5, R=2ZBs
for Z3 < B < Z°
(i1) Contribution of Y U Xy to mollification and semiclassical D-terms do
not exceed CTe®(1+ |logel)? and R(1 + |loge|)? respectively.

(111) Contribution of Y U Xy to both mollification and semiclassical errors
in T-term do not exceed CTe'(1+ |loge|) and CR respectively.

Proof. Really, estimates for mollification errors and terms immediately follow
from the inequality
(26.5.20) mes({x: w(x) < &*}) < Ce(1+ |loge|)

which is due to (26.5.18).
Let us consider semiclassical errors and terms.

(i) Let us consider N-term first. Let us consider all possible balls and their
contributions: the contribution of each ball B(x, y(x)) to the semiclassical
error does not exceed Cuh=1v? < CB?y? and the total contribution does
not exceed

(26.5.21) CRO/’y(X)_l dx < CRy(1+ |logel)

where Ry = BF?; recall that y(x) > e.
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(ii) Consider semiclassical D-term. Let us consider all possible balls and
their contributions: the similar arguments with the analysis of disjoint balls
of different types and with analysis of the intersecting balls (of the same type)
lead us to the proper estimate of the contribution of ), U X} to semiclassical

D-term: namely, it does not exceed CRZF*(1 + |log 5|)2 (i.e. expression
(26.5.21) squared and multipled by CF~!) where RZF~ < R.

(i) Consider T-term. Let us consider all possible balls and their contribu-
tions. Contribution of each ball B (X, y(x)) to the semiclassical error does
not exceed CC2ug?y < CB(?Fsy? and the total contribution does not exceed

(26.5.22) CR / s(x)y(x) "% dx < CR

where R = B(?F and ¢(x) < v(x)?. O
Then picking appropriate € = h3 we arrive to
Corollary 26.5.5. Let N > Z. Then

(i) Contributions of Y U Xy to all errors in N-terms do not exceed CRyL
with L = (1 + | log BZ73|).

(ii) Contribution of Y U Xy to all D-terms do not exceed CRL.

(iii) Contribution of Y U Xy to all errors in T-terms do not exceed CR.

We will sum contributions of all zones to errors in Propositions 26.5.14
and 26.5.17 below.

Remark 26.5.6. Could we get rid of the logarithmic factors i.e. make L =1
as it was in the case M =17

(i) With the mollification errors we need to replace (26.5.20) by

(26.5.23) mes({x: w(x) < &*}) < Cg;

(ii) With the semiclassical terms our arguments here are insufficient even
if we established (26.5.23); we need extra propagation arguments in the
direction of decaying w along magnetic lines—exactly as in the case M = 1.
Surely there could be points where such arguments do not work; f.e. consider
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M = 2 and nuclei so that |y; — y,| is slightly less than 7 + 7, where 7, are
precise radii of support. Then w reaches its minimum at ).

So, we need to prove that the measure of such points is sufficiently small
(f.e. less than C|log BZ73|™1).

Unfortunately, we do not know how to make the above remark work and
we suggest

Problem 26.5.7. Follow through the discussed plan. For M = 2 it could
be easier due to the rotational symmetry of the potential WaF.

26.5.3 Analysis in the Boundary Strip ) for N < Z

Now let us consider the case of N < Z (i.e. v <0).

Case B > (Z — N):

4
We start from the case B > (Z — N)3 when 7 = min(B~3, Z5 B~5) matching
cases B < Z5 and Z5 < B < Z8.

Remark 26.5.8. (i) The results of the previous Subsection 26.4.2 remain
true as long as |[v|G™! < Goh3; in other words, as (Z — N), < G GFh3.
Plugging 7, G and h, we rewrite it as

(26.5.24) (Z — N). < Gmin(B:, Z3B)
matching cases B < Z3 and Z3 < B < 75,

(ii) Therefore in this Subsection we assume that condition (26.5.24) fails.
Let 0 = [v|G' < (Z— N), - max(B_%, Z71), also matching cases B < Z5
and 73 < B < 73,

Proposition 26.5.9. Consider dependence of WAt = WTF (x) onv. Then
(i) WTF ( ) + v is non-decreasing with respect to v at each point x.
(i1) WBT(FV)( x) is non-increasing with respect to v at each point x.

(i) In particular, Wgl,(x) +v 7 W (x) and Wgly(x) s Wglo)(x) at
each point x as v /0.
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Proof. (i) Consider W, = WBT(FDJ_) + vj with 0 > 11 > 15. One can prove

easily that WAF — V is a continuous function and since
(26.5.25) W, —Wso = vy — 1 as {(x) — oo

with 11 — 1, > 0 we conclude that Wy > W, at each point x (which is exactly
our Statement (i)) unless Wi — W, achieves a negative minimum at some
point x*:

(a) Let x* # ym; then A(Wy — Wah)(x*) = Pg(Wh) — Pg(W,) < 0 because
Wi < W, at x* and therefore x* cannot be such point.

(b) Let x* = y,,. From Thomas-Fermi equations for Wi, one can prove
easily that

(Wi — Wa)(x) = (WL — Wa)(ym) + Lin(X — ym)+
KmlX = V|2 (W4 — Wa)(ym) + O(Ix — ym|?)

near y, where L,(x) is a linear function and k, > 0 and therefore if
(Wi — Wa)(ym) < 0, y, cannot be a minimum point either.

(i) So, Wy > Ws and therefore A(Wy — Wh)(x*) = Pg(W;) — Pg(Ws) >0
and Wj — W, is a subharmonic function. Then due to (26.5.25) we conclude
that Wi, — Wh < vy — 15 iee. W;,Ew) < W‘;fuz) at each point.

(iii) Statement (iii) follows from Statements (i) and (ii). O

From Statements (i) and (iii) we conclude immediately that

Corollary 26.5.10. (i) pg'(:y) (x) is non-decreasing with respect to v at each
point X.

(i) pgi,y(X) / ppoy(x) at each point x as v 0.

Therefore in the zone {x € V: WBT(FV) > (1 + €)|v|} we can apply the
same (7, <) scaling with ¢ = 42 defined for v = 0. Indeed, we know that
there W/;T(F,,) +v = W;(F) =cZand ¢ = 72.

Then Thomas-Fermi equation (26.2.3) implies that

(26.5.26) VWG < Cos®y ™ Va
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and then we arrive to the Statement (i) in Proposition 26.5.11 below. On
the other hand, in the zone {x: Wg(FV) < (1 — €)|v|} we can apply the
same arguments but this zone is classically forbidden and we arrive to
Statement (ii) below. In both cases ¢y > h (where in the latter case 7 is the
distance from x to W,;r(';) (scaled) and ¢ = |6]2 in virtue of Remark 26.5.8.

Proposition 26.5.11. Let either B < 73 and |1/|% > 75 or 73 <B<Z
and |v|i > Bz. Then

(i) Contributions of zone {x: WaF(x) > (1 + €)|v|} to the semiclassical
errors in N- and T-terms and into semiclassical D-term do not exceed CRyL,
CR and CRL? respectively.

(ii) Contributions of zone {x: WaF(x) < (1 — &)|v|} to the semiclassical
errors in N- and T-terms and into semiclassical D-term do not exceed CRyL,
CR and CRL? respectively.
Remark 26.5.12. Here actually we can replace L by L, =1+ |log | with
3 4 4
Z—N), B if (Z—-—N)3 <B<Zs
(26527) 0= ]G =] )-B7 ' (4 =B,
(Z-N), Z1 if Z3 <B<Z?

Therefore we need to explore the following zone
Vo= {x: (L-e)lv| < W5"(x) < (1+e0)lv}

in the framework of Proposition 26.5.11. In virtue of Remark 26.5.8 i <1
where

(Z - N), 7B it B<Z3,

Slw

(26.5.28)  h=ho"

~
—~

(Z - N);iZ5B} it Zi<B<Z%

Let us rescale the ball B(.,a) to B(.,1) by x — xa~! with a = 0% (after
we already rescaled x — x7~1). After this let us introduce scaling function
o by (26.4.3). Then let us introduce consequently scaling functions 7; by
(26.4.7), 72 by (26.4.13) and 73 by (26.4.14)3Y.

Consider contributions of different balls in this hierarchy into semiclassical
and approximation errors in N- and T-terms and into D semiclassical and
approximation D-terms.

31) With j =7 = 0 and corrected as in (26.4.3)" and (26.4.7)".
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(i) Consider first semiclassical error in N-term. Due to Chapter 18 the
contribution of a; element does not exceed CB€J2 = CBFQOzJ2 for j = 3,2,
where recall that a; = o+ -7;.

Then for j = 2 we have CBF?a3 = CBF2a?+? and therefore we estimate
the contribution of a; element by CBF?a2 [ 75! dx 32, which also results in
CBPa? but with the logarithmic factor. However we can get rid of this
factor due to a simple observation:

(26.5.29) If 75 < € then Hess(w;) has at least two eigenvalues of magnitude
1 due to |Awy| < €.

Then the contribution of ag element does not exceed CBF2a3 [~ * dx 3);
we claim that it is CBF2a3. Indeed, we need to consider only points with
~v1 < € and there we use a similar observation:

(26.5.30) If 1 < e then |V3w/| < 1 and also |V3w' —e®e®e| > ¢! for any
e € R3 due to |9;Aw;| < e1; here V3w’ is a 3-tensor of the third derivatives

of w'.

Further, the contribution of o element does not exceed CBF2a? [ v5! dx3?;
since v > 7 = h3, we estimate it by CBFa?h3.

Finally, since 7~1)* is covered by no more than CL,a 2 such elements),
we conclude that

(26.5.31) The total contribution of Y* into the semiclassical (and also
approximation) errors in N-term does not exceed CBF%*%L*, where L, =
(1+|logd)).

Plugging values of i and 6, we arrive to expression (26.5.33) in Proposi-
tion 26.5.13(i) below.

(i) Similarly, in virtue of Subsubsection 26.3.1.2. Semiclassical D-Term we
know the that the contribution of the non-disjoint pair of aj-elements to the
semiclassical D-term does not exceed CB2¢3 = C82F30zJ3 for j = 3,2.

32) With the integral calculated in the scaled coordinates.
33) Indeed, due to Subsection 26.5.1 mes(F~1V*) < Cal,.
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Therefore the contribution of all non-disjoint pairs of asp subelements to
the same expression for a; element does not exceed CB2r2a3. Adding all
disjoint pairs, we get®?

(26.5.32) C82F3ai/ Ix — y| " y2(x) " ty2(y) "t dxdy.

Then using the results of Part (i) together with observation (26.5.29) we
arrive to CB?Fa3. So, contribution of the non-disjoint palr of ag-elements
to the semiclassical D-term does not exceed CB?(3 = CB?F®

Further, continuing in the same manner, we estimate the contribution of
the non-disjoint pair of ag-elements by CBzr ag.

Furthermore, in the same manner we estimate the contribution of the
non-disjoint pair of a-elements by expression (26.5.32) with ~, replaced by
~o, which does not exceed CB2P3a3h~3.

Finally, adding contribution of all non disjoint pairs and using results of
Part (i), we conclude that the total contribution of J* x * into the semiclas-
sical (and also approximation) D-terms does not exceed the final expression
we recovered there, squared and multiplied by 72, i.e. CB2PB3h™5L2.

Plugging values of i and 6 we arrive to expression (26.5.34) in Proposi-
tion 26.5.13(ii) below.
(iii) Due to Chapter 18 the contribution of «; element to the semiclassical er-
31
ror in T-term does not exceed CB(,C, as j = 3,2. Note that ¢ = G212727,y2
3
and ( = G%’yg'yf v for j = 3,2. Here we took § = o = 1 thus covering the
whole zone ).
5
Then the contribution of ap-element does not exceed CBG? Fy3vEvs. Fur-
5
ther, the contribution of a;-element does not exceed CBG27y3~2 [ 5t dx 32,
5
resulting in CBG%F’ySvf in virtue of the same observation (26.5.29).

Further, the contrlbutlon of ag-element does not exceed CBG?2 27y [ 71
resulting in CBG2743 in virtue of the same observation (26.5.30).

Finally, the total contribution of ) does not exceed CBG IF = CB%P =
max(B?, Z3B3).

Therefore we arrive to
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Proposition 26.5.13. In the framework of Proposition 26.5.183 there exists
potential W, such that

(i) Contributions of Y* to both semiclassical and approximation errors for
N-term do not exceed

1 7
(26.5.33) (Z— N)iL x (B%; Z%B%),

Wi

4
where here and below we list different values for (Z — N)i < B</Z3 and

for Zs < B < Z8.

(ii) Contributions of Y* x Y* to both semiclassical and approximation D-
terms do not exceed

(26.5.34) (B%; Z2B3).

(i11) Contributions of Y* to both semiclassical and approzimation errors for
T-term do not exceed

(26.5.35) (B3; Z3B3).
Case B < (Z - N)}
4
Now let us consider the case B < (Z — N)2. In this case the boundary strip
(26.5.36) Y= {x: |W(x)+v| <ev|}

consists of two subzones

(26.5.37) V1= {x:eB < |W(x)+v| <elv|}
and
(26.5.38) Y= {x: |W(x) +v| <eB}.

Applying arguments of Section 26.4 (more precisely, analysis in zones
X1, A extended and X,) one can prove easily that

4
Proposition 26.5.14. Let B < (Z — N)i. Then

(i) Contributions of Yy into semiclassical and approximation errors in N-
2
term do not exceed C|v|F? < C(Z — N)3.
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(i1) Contributions of Y1 X Yy into semiclassical and approximation D-terms
5
do not exceed C|v|?F® < C(Z — N)3.
(i11) Contribution of Yy into semiclassical and approximation errors in
5
T-term do not exceed C|v|2F =< C(Z — N)3.
Proof. We leave easy details to the reader. O

On the other hand, applylng arguments of the prcv10us Subsubscc—

tion 26.5.5.1. Case B > (Z — N) with @ =1, h = |v| 271 =< (Z — N)Jr
one can prove easily the following

Proposition 26.5.15. Let B < (Z — N)3. Then

(i) Contributions of Vs into semiclassical and approximation errors in N-
term do not exceed C(Z — N),. B,

(ii) Contributions of V» >< Vs into semiclassical and approximation D-terms
do not exceed C(Z — N) g2,

(111) Contribution of Vs into semiclassical and approximation errors in
5
T-term do not exceed C(Z — N)3.

Proof. We leave easy details to the reader.

26.5.4 Summary

Adding contributions of all other zones we arrive to

Proposition 26.5.16. Let M > 2. Then for the constructed potential W

(i) Total semiclassical and approximation errors in N-term do not exceed
CZ3 +(Z-N)°B if B<(Z—N)I,

(26.5.39) C Z§+B%L+(Z—N)iB%L* if (Z—N)ingZ%,
ZiBSL 4+ (Z - N)iZHBHL,  if Z5<B<Z?

where L, = (14 |log|) with § = |v|G™* = (Z — N), - max(B~4,Z7%) and
L=(1+]log BZ3|).
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(ii) Both semiclassical and approzimation D-terms do not exceed
Z3 4 (Z-N),° B2 if B<(Z-N)Z,
1 4
(26.5.40) C{ Z3 4+ Bil>+(Z—N):B%L%> if (Z—N): <B<Z5,
ZiBS2 4 (Z - N)IZ3B3L2  if Zi<B<Z
(iii) Total approximation error in T-term does not exceed

if B< Z3,
if Zs<B<Z%

Z
Z

Glw  wio

(26.5.41) CQ = Cmax(Z3, Z3B3) = c{

4
5

B

(iv) Total semiclassical error in T-term does not exceed
(26.5.42) CQ+ CZ3B + CZ?a 2
provided a > Z71; for a < Z7! the last term should be replaced by CZ?.

Also we arrive to

Proposition 26.5.17. Let M > 2, B < Z and a > Z=3i. Then for the
constructed potential W

(i) Total semiclassical and approzimation errors in N-term do not exceed
CZ5((BZ7Y) + (aZ5)™0 + Z79).

(ii) Both semiclassical and approzimation D-terms and semiclassical and
approzimation errors in T-term do not exceed CZ3 ((BZ‘1)5+(aZ%)_5+Z_‘5) .

26.6 Ground State Energy

26.6.1 Lower Estimates

Now the lower estimates for the ground state energy Ey are already proven:
in virtue of the analysis given in Subsection 25.2.1 we know that

(26.6.1)  En > &. (W) + (Tr(HA,W Yt / Ps(W + v) dx) —uN
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for arbitrary potential W and v < 0; picking Thomas-Fermi potential
W = WZF and chemical potential v, we arrive to estimate (26.6.2) below
with W = W,;rF and Q = 0.

However we use slightly different potential W and arrive to estimate
(26.6.2) below where CQ, defined by (26.5.42), estimates an approximation
error; replacing T-term by its semiclassical approximation and applying
Proposition 26.5.16(iii) and 26.5.17(ii), we arrive to estimates (26.6.3)—
(26.6.6) below:

Proposition 26.6.1. Let B < Z3. Then

(i) The following estimate holds with an approximate potential W we con-
structed:

(26.6.2) ETF>ETF 4 (Tr((HA,W )Y+ / Pe(W +v) dx) —CQ

with Q defined by (26.5.41); further, for W = WJF this estimate holds with
Q=0.

(ii) The following estimates hold for M =1 and M > 2 respectively

(26.6.3) E™ > &TF 4 Scott — CQ — CZ3B:3
and
(26.6.4) ETF > £™F 4+ Scott — CQ — CZ3iB3 — CZ2a2

provided a > Z713Y and B < Z?; on the other hand, if a < Z~', we can
skip Scott and replace the last term in (26.4.2) by CZ>.

(i1i) As B < Z the following estimates hold for M =1 and M > 2, a > Z73
respectively

(26.6.5) ETF > £TF + Scott + Dirac + Schwinger — CZ3 (Z7°+(BZ7Y))
and

(26.6.6) ETF > £TF 4 Scott + Dirac + Schwinger—
CZ3(Z70 + (BZ7Y) + (azZ3)7?).

34) Recall that a is the minimal distance between nuclei.
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26.6.2 Upper Estimate: General Scheme

On the other hand, the upper estimate is more demanding. Recall that,
according to Subsection 25.2.2, for the upper estimate in addition to the
trace we need to estimate also |A\y — v| where Ay < 0 is N-th eigenvalue
of Haw and Ay = 0 if Ha w has less than N negative eigenvalues, and the
product

(26.6.7) IAv —v| - IN(Haw) — N|

and also three D-terms: two of them are semiclassical:

(26.6.8), , D(e(x, X, A) = PLOW(x) + ), e(x, x, \) — Pa(W(x) + )\))
with A = v and A = Ay and also

(26.6.9)

D(PE(W(x) + Aw) = Po(W(x) + 1), PE(W(x) + An) = Pe(W(x) +1)).

For this purpose our tool will be semiclassical estimates for two semiclassical
N-terms

(26.6.10), / (e %, 2) — PH(W(x) + 1)) de

also with A = v and A = Ay and also estimate from below for the third
N-term

(26.6.11) | /(P;(W(x) £ 2w) — PRW() + 1)) .

26.6.3 Upper Estimate as M =1
Estimate for |\y — v|

We start from the easier case M = 1. Exactly as in Subsection 25.2.2 we
have two cases: in the first case |v| is small enough so we construct WTF
with v = 0 and estimate |Ay|, and in the second case we prove that Ay < v
and estimate [Ay — v| < €|v].

Proposition 26.6.2. Let M =1, B < Z3.
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(i) Assume first that

(26.6.12) (Z - N), <K = Cymax(Z3, Z3B3)
and let us construct W as if v =0 i.e. N=2Z. Then
(26.6.13) | < Gimax(Z3, B3).

(ii) Assume now that

(26.6.14) (Z - N); > K = Gomax(Z5, Z5B)
with sufficiently large Cy. Then Ay <X v and

(26.6.15) A — v < G max(Z5, B?) 7.

4
Proof. (i) In the framework of Statement (i) assume first that B > (Z—N)3.
One can see easily that then

(26.6.16) Expression (26.6.11) is
YRR . _3 2
= B} x (LGN')“ﬁ — l min(1, B-52%)

IS

where (|]Ay|/G)#F is a width of the zone where 0 < W < —Ay and the
selected factor is the volume of this zone. Indeed, W = (F — |x|)4 7 *G for
x| < T.

However this expression (26.6.11) should be less than C max(Z%, ZéB%)
which is exactly an error estimate in the semiclassical expression for N. Thus

(26.6.17) |An|imin(1, Z5B7%) < Cmax(Z3, Z3B3)

where everywhere the first and the second cases are as B < Z 5 and Z3 <
B < Z3 respectively. The last inequality is equivalent to (26.6.13).

On the other hand, if B < (Z — N)_%H inequality (26.6.17) is replaced

4
by |An|? < CZ3 which coincides with (26.6.17) with B reset to (Z — N)3
and also with the same inequality derived for B = 0 in Subsection 25.4.2;
therefore (26.6.13) holds in this case as well.
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(ii) One can prove easily that

(26.6.18) If condition (26.6.14) is fulfilled, and expression (26.6.11) does not
exceed the semiclassical error estimate Co max(Z 5,75B %), then Ay = v and,
furthermore, expression (26.6.11) is

(26.6.19) xB/\N—V|/"‘_’1/5§(W+V)dxxB|)\N—l/|/(W—}—V)+é dx,

which for B > (Z — N)? is

vl

1
- )“ = |\ — v+ [v[ "5 min(1, B~ 1©23)

(26.6.20) =< BP|Ay — |- IVI‘%<

and this should be less than C max(Zg, Z%B%), and this implies (26.6.15).

On the other hand, if B < (Z — N)3, then the right-hand expression of

_1
(26.6.19) is < |Ay — v|F < | Ay — v|(Z — N),* and this should be less than
CZ3, and this implies (26.6.15) in this case as well. O

Proposition 26.6.2 immediately implies
Corollary 26.6.3. In the frameworks of Proposition 26.6.2(i), (ii),
(26.6.21) [Av —v| - N([An, v]) < CQ,
where N(An, v) is the number of (non-zero) eigenvalues on interval [An, V]
or [v, An] Y.
Estimate for D-Terms

Proposition 26.6.4. In the frameworks of Proposition 26.6.2(i),(ii) ex-
Pressions

(26.6.22) D(e(x, x,A) — P5(W + X), e(x,x, ) — Pg(W + X))
with A\ = v and with A\ = \y and

(26.6.23)  D(P(W +v) — Pg(W + X), Pg(W +v) — P5(W + \y))
with A\ = Ay do not exceed Cmax(Z3, Z3B5).

35) Recall, that the frameworks of Proposition 26.6.2(i) we pick up v = 0.
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Proof. Recall that we already derived in Section 26.3 this estimate for D-
term (26.6.22) with A = v. Further, the same estimate for this term with
A = Ay can be proven exactly in the same way; we leave easy details to the
reader.

Furthermore, one can derive the same estimate for D-term (26.6.23) using
Proposition 26.6.2; again we leave easy details to the reader. O

Remark 26.6.5. Let B < Z. Then in (26.6.12)—(26.6.15) and therefore also
in (26.6.19) and in Proposition 26.6.4 one can replace Gy and C by Coe and
Ce respectively with the small parameter e: max(Z‘5, (BZ71)Y) <e<1l.

Summary

Then following the scheme of Subsection 25.4.4 we arrive to upper estimates
in Theorem 26.6.6 below (lower estimates have been proven in Proposi-
tion 26.6.1). Furthermore, based on estimates (26.6.2) and (26.6.24) and the
fact, that the left-hand term in (26.6.28) should fit into the “gap” between
them (see Section 25.2), we also arrive to Theorem 26.6.7 below:

Theorem 26.6.6. Let M =1, B < Z3. Then

(i) The following estimate holds:

(26.624) ET < €T 4 (Te(Haw —») ) + / Po(WTF(x) + ) dx) + CQ
with Q = max(Z%, Z%B%).

(i) The following estimate holds:

(26.6.25) E™F < &TF 4+ Scott + CQ + CZ5B5.

Here for 7> < B < Z3 one can skip Scott.

(i1i) If B < Z, then

(26.6.26) ETF > €7 4 Scott + Dirac + Schwinger + CZ3 (2~ + (BZ*)).

Theorem 26.6.7. Let M =1, B < Z3. Then
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(i) The following estimate holds:
(26.6.27) D(pw — p&" pv — p&) < CQ.

(ii) If B < Z, then

(26.6.28) D(pw — ok pw — pf7) < CZ3(Z7° +(BZ71)).

Main term
A

L Z% B :I Z3 Z%Bg 1
I I |
i Remainder estimate 3 |
75 B—=Z 7ZiBs g— 7% ZiBs B =
; e dennd— |
L Dirac, Schwinger 3 B_i: 71
I 1

Scott S

153

Z3

Figure 26.3: This figure illustrates the remainder estimate for Ey. Thresh-

olds B = Z* are shown in the yellow boxes.

26.6.4 Upper Estimate as M > 2

Estimate for [\y — v|

Again we need to consider two cases: almost neutral molecules (systems)
when (Z — N), < GK with K slightly redefined below and we can set v = 0
in the definition of Thomas-Fermi potential and establish estimate for |Ay|
(and for optimal v we have the same estimate for both |v| and Ay) and not
almost neutral molecules (systems) when (Z — N); > GoK and we can prove

that |Ay| < |v| and estimate | Ay — v|.

Proposition 26.6.8%9). Let M > 1, B < Z3 and condition (26.2.28) be

fulfilled.

36) Cf. Proposition 26.6.2.
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(i) Assume first that

75+ B3L if B<Z3,
(26.6.29) (Z-N); <K:=G L4 .

Z5BT L if Z3<B<Z8
and let us construct W as if v =0 i.e. N=Z2Z. Then

75+ B3L3 if B<Z3,
(26.6.30) v < G L4 s L

78BS if Z3<B<Z%

recall that L = |log BZ3|.

(ii) Assume now that

(26.6.31) (Z-N)y>K
with sufficiently large Cy in the definition of K. Then Ay < v and moreover
(26.6.32) A — v| < Cmax(Z3, B2Ly)|v|7,
where
1 if B<(Z-N)3,
(266.33) L1 =9 |log((Z — N), /B if (Z-N):<B<Z,
llog(Z — N), /B3 Z3|) if Zi<B<Z%

(i1i) For M =1 one can take L = Ly = 1.

Proof. We will apply arguments slightly more sophisticated than the obvious
ones, used in the proof of Proposition 26.6.2. These better arguments will
allow us to derive slightly better estimates for [A\y —v| as (Z — N); > CK,
and for threshold K itself.

Recall that estimates for |A\y —v/| are derived by comparison of expression
(26.6.11) and the semiclassical errors for the number of eigenvalues below
A =vand A = \y: expression (26.6.11) should be less than the sum of these
semiclassical errors.

Consider contribution of each ball

(26.6.34) B(x,l(x)) c Y ={x: mniln |X = ym| > €F}

to semiclassical errors as A = v and A\ = Ay and compare it with its
contribution to (26.6.11):
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(a) Each ball contributes no more than CB¢? to the first error (with A = v)
where due to our choice (¢ > 1.

(b) Further, cach ball with ¢ > C|Ay — v| contributes no more than CB(2.
On the other hand, each ball with ¢ < Gi|Ay — 1/|% contributes no more
than CB~7|\y — v|”/? to the second error (with A = Ay); here 0 = £ is
due to rescaling.

(¢) Meanwhile, each ball with ¢ > C|A\y — v|2 contributes no less than
coB|Any—v[¢ 13, and each ball with ¢ > Cl\)\,\,fuﬁ contributes no less than
co| A — |23 to expression (26.6.11) and it is larger than the contributions
of this ball to each of semiclassical errors (multiplied by C) as long as

(26.6.35), , C>v—v| > G, Ay —v| > Gl

Obviously in Statements (i), (ii) we can assume that

(26.6.36) Inequalities (26.6.30) and (26.6.32) respectively (with C replaced
by arbitrarily large C3) are violated.

(i)(a) Assume first that (Z — N)_%_ < B < Z3. Then in the framework of
assumption ¢ = B2(* with minimal £ = B~3 and therefore (26.6.35), , are
fulfilled for ¢ < G,B~!|An|. Therefore we need to account for the semiclassical
errors contributed by an inner shell (not exceeding C max(Z3, B2)) and by
zone Y N {l > GB Y| An|}; there ¢ > C;|Ay|2 and therefore its contribution
does not exceed CB [ ¢(x)~* dx with integral over this zone and it does not
exceed CBFL.

So, these truncated semiclassical errors do not exceed C max(Z 3, BFL).

Meanwhile, expression (26.6.11) is no less than CBz72|Ay|i. Therefore

comparing these two expressions as B < Z 5 and as Z3 < B < Z3% we arrive
to (26.6.30).

4
(b) Consider the remaining case B < (Z — N)3}. Semiclassical arguments
remain valid while estimate of (26.6.11) from below by eo|Ay|# also could
be proven easily.

4
(ii)(a) Again, assume first that (Z — N)3 < B < Z3. Again, in the
calculation of the truncated semiclassical errors we integrate over zone
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{0 > GB YAy — v|} where ¢ > Ci|An|2 and therefore its contribution does
not exceed CB [ ¢(x)~* dx with integral over this zone and it does not exceed
CBP Ly 37,

Again, expression (26.6.21) is larger than the expressions afterwards and
comparing with the semiclassical error estimate we arrive to (26.6.32).

4
(b) Consider the remaining case B < (Z — N)2. Semiclassical arguments
remain valid while estimate of (26.6.11) from below by €| Ay — v/ - |/\N|*%
also could be proven easily.

(iii) Recall that for M = 1 the semiclassical error estimate hold with
L=1L,=1 0

Then we arrive immediately to

Corollary 26.6.9. In the framework of Proposition 26.6.8 | A\y—v/|-N([An, v])
does not exceed expression (26.5.40).

Estimate for D-Terms for Almost Neutral Systems

We need to estimate the semiclassical error D-term (26.6.22) with A = Ay
because for A = v we already estimated it, and also we need to estimate
another D-term (26.6.23). We start from the latter one. Recall that under
assumption (26.6.29) we take v = 0. The trivial estimate is based on

(26.6.37) |PR(W) — Pa(W + )| < CW2 |\ + CBW 5|\,
leading to
(26.6.38) J< CD(W3, WHAR + CB2\ED(WH9, Wi0)

where here and below J is expression (26.6.23), 6 is a characteristic function
of the domain {x: 7(x) > h3} and we can ignore the contribution of the
zone {x: y(x) < h%}. Really, the contribution of this zone does not exceed
a semiclassical error estimate R = C max(Z3, Z:B512).

Note that even without assumption (26.6.29)

IA
oy}
IA
N

(26.6.39) D(W2, W2)= (B™%; B"5Z3)  for B< 73, Z

37) In Statement (i) this leads only to insignificant improvement.
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respectively and (26.6.30) implies that the first term in the right-hand
expression of (26.6.38) is much less than R.
Meanwhile, under assumption (26.6.29)

(26.6.40) D(W30, W=30) =< B'D(¢710, ¢710) =< B 'FD(y 16,7 10)

where in the right-hand expression D and 7, # are in the scale x — xF~! and
then D(y710,7710) =< L2 so the second term in (26.6.38) does not exceed
CBP|Ay|? L2 which due to (26.6.30) does not exceed

(26.6.41) R = Cmax(Z3, Z3B5LY).

Consider now term (26.6.22) with A = Ay. Let us consider zones
Q ={x: [ A=v| <S¢ and Q= {x: A —v| = (1}

Note that the contribution to the term in question of each pair of balls
contained in ©; x € does not exceed estimate for the same term with A = v;
really, after rescaling x +— x/¢ and 7 + 7/(? we conclude that the difference
between energy levels does not exceed local semiclassical parameter C/((().

Therefore the total contribution of €; x €; to this term does not exceed
Cmax(Z5, Z3B31?).

On the other hand, the contribution to the term in question of each pair
of balls contained in Q, x Q, does not exceed its contribution to (26.6.25)
and therefore the total contribution of €2, x €, to this term does not exceed
expression (26.6.41). Thus, term (26.6.22) with A\ = Ay does not exceed
(26.6.41).

Therefore we arrive immediately to

Theorem 26.6.10. Let M > 2, B < Z3 and condition (26.2.28) be fulfilled.
Then under assumption (26.6.29)

(i) The following estimate holds:

(26.6.42) ETF < €T ¢ (Tr((HA,W —v))+ / Ps(WTF + 1) dx>+
Cmax(Z3, Z3B5L%).

(ii) If a> Z7! then the following estimate holds:

(26.6.43) E™F < £ 4 Scott + C max(Z%, ZgB%L“) + CZ3B5 + Ca 275

if a < Z7! one should replace the last term in the right-hand expression by
CZ? and skip Scott.
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(iii) f B< Z anda>Z"3

(26.6.44) E™" < £TF 4 Scott + Dirac + Schwinger+
CZ3(Z70 +(BZ7Y) + (azZ3)7?).
Here proof of Statement (iii) is due to the same arguments as in the case

B = 0. Combining with the estimate from below we also conclude that

Theorem 26.6.11. (i) In the framework of Theorem 26.6.10 the following
estimate holds:

(26.6.45) D(,ow — " pw — pTF) < Cmax(Zg; Z§B§L4).
(i1) In the framework of Theorem 26.6.10(iii) the following estimate holds:

(26.6.46) D(py—p" pu—p'") < cz3 (Z7°+(BZh) + (aZ%)*‘S).

Estimate for D-Terms for Positively Charged Systems

Let assumption (26.6.31) be fulfilled. Let W = W, and ¢ = ¢, be a potential
and a scaling function (used to derive semiclassical remainder estimates)

for this ¥ < 0 (and N < Z) while W, and ¢y be a potential and a scaling
function for v =0 (and N = Z).

Let us start from rather trivial arguments. Note that
(26.6.47)  |Pa(W + A) — P(W + v)] < CW2|A — |6y + CB|A — v|26,,

where 6; and 6, are characteristic functions of Y3 = {x: W(x) +v > Glv|}
and Vo = {x: 0 < W(x) + v < G|v|} respectively. Let

Then in virtue of (26.6.47)

J < CD(W26y, W26,)| Ay — v,
Note that®®)
1
D(W36,, W26,) =< ((Z - N),*; B™%; Z5B™3).
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Then, using inequality (26.6.32) one can prove easily that J; < CZ 3.
However estimate for a contribution of zone )%, is much worse:

(26.6.48) b < CBPD (6, 6)| A — v| < CB2P(|v]/B%)} L2 — v,
1
where for B < (Z — N)3 we should replace (|v|/B2)zL2 by 7. Then, using
4
(26.6.32), we conclude that for (Z — N): < B < Z3
Jy < CBR|v|i2max(Z3, BY) = CB(Z — N)i 7% max(Z3, B3 L) L2,

and therefore we arrive to the last two cases below; the first case is proven
similarly:

(26.6.49) Hh<CS(Z- N)_%B% max(Z3, BzLy)L2,

in our three cases.
This is really shabby estimate. To improve it let us observe that

8
(26.6.50) If estimate [A\y — v| < Cmax(B3, (Z — N)®) holds, then J, does
not exceed (26.5.40)

and therefore we can assume that

(26.6.51) Ay — 1| > Cmax((Z — N)2; B3).

Let us estimate the truncated semiclassical error3?).

4
Proposition 26.6.12. (i) Let (Z — N): < B < Z3 and
(26.6.52) GoB3 < Ay —v| < GB2|v]s.

Then the truncated semiclassical error in N-term does not exceed

(26.6.53) F = CZ5 + CBA(|v|/B3)iL x (B~ Ay — v|) .

< B< Zi and Z5 < B < Z8

T

38) Tn our three cases B < (Z — N)«gH (Z = N)
respectively.

39) Le. contribution to such error of the zone, where it exceeds the contribution to the
principal part.
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(ii) Let (Z — N): < B < Z% and
(26.6.54) GB2|v|i < |y —v| < GB2|Y|3L.
Then the truncated semiclassical error does not exceed

(26.6.55) F:= CZ5 + CBPL.

(iii) Let B < (Z — N)} and

8
(26.6.56) (Z-N)L <|Mv—v| < G(Z—-N)y.
Then the truncated semiclassical error does not exceed

(26.6.57) Fi=CZ5 + C(Z - N)i Ay —v| ™%

4
(i) Let B < (Z — N)3 and

(26.6.58) Go(Z = N)y < Ay —v| < GZ5(Z - N)2.
Then the truncated semiclassical error does not exceed F := CZ3.

Proof. The easy proof, which uses arguments of the proof of Proposi-
tion 26.6.8, is left to the reader. O

Proposition 26.6.13. In the framework of Proposition 26.6.12(i)—(iv) term
(26.6.25) does not exceed

CF3(B|Ay — v|?) + (26.5.40)
with F defined in the corresponding cases in Proposition 26.6.12.

Proof. Using Proposition 26.6.8 one can prove easily that

(26.6.59) Contribution of {x: ¢(x) = min,, |[x —ym| < €7} to (26.6.25) does
not exceed CZ3.
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Now we need to estimate the excess of expression (26.6.25) over semi-
classical D-term (with A = v), which has been estimated by (26.5.40). To
do so we need to estimate

which is the contribution of the domain Q' = {x: {(x) < CB7!|]A — v|}
where 6 is the characteristic function of Q'. Recall that in the complimentary
domain |Pg(W + v) — Pg(W + \)| < C¢~1. Let us consider

and

(26662) D([PB(W + I/) — PB(W + )\)]Qt, [PB(W + l/) — PB(W + )\)]Ht/),
where 6y is a characteristic function of
Q) = {x: 6(x) < to = (|Ay — v|B2)3}
and 0, is a characteristic function of Q) = {x:t < {(x) < 2t} with
t>t' >t
Observe that, when calculating expression (26.6.11), the contribution of
Q is = B|\y — v|2 mes(€%), and therefore due to Proposition 26.6.12
(26.6.63) mes(€) < CF(BJAy —v]?2) ",
while term (26.6.61) is
5 1
= B[\ — v|D(f0, 6o) < CB?| Ay — v| (mes(Qo))® < CF3 (Blay — v]})?,

where the middle inequality

5
3

(26.6.64) D(xc. x6) < C(mes(G))

is well known®®) and the last one is due to (26.6.63); y¢ denotes characteristic
function of G.

Similarly, when calculating expression (26.6.11), one can see easily that
the contribution of €} is < B|A\y — v|(B?t*)"! mes(€2,) and therefore

(26.6.65) mes(Q,) < CF|Ay — v| 12,

40) Really, among uniform solids of equal mass and density the ball has the least
potential energy; then C = %(127I')%.
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while term (26.6.62) is =< [Ay — v|?t=2t' 2D(0;, 0y ), which does not exceed

(26.6.66)
ClAn — v[?t7%t' 72 mes(£;) mes(Qy ) [max(mes(€Q;), mes(Q))]
due to inequality

(26.6.67)  D(xc. xc') < Cmes(G) mes(G’)[max(mes(G), mes(G'))]

1
3

(S

which trivially follows from the obvious inequality D(x¢, 8,) < C(mes(G))3,
where 8,(x) = 8(x — z).

Due to (26.6.65) expression (26.6.66) does not exceed CF3t~3; recall
that t > t/. Since summation with respect to t > t' and then with respect
to t' > to returns CF3 to_%, we conclude that term (26.6.61) with y replaced
by 6” (the characteristic function of {x: ¢(x) > ty}) also does not exceed
CF3(B|Ay — v]2)s. O

So, we have now two estimates for an excess of expression (26.6.25) over
(26.5.40): one estimate is

(26.6.68) CF3(Blay — v|?):

with F = F(|Ay — v|) derived in Proposition 26.6.12 and another one is due
to (26.6.48). Let us consider the best of them. Note that estimate (26.6.68)
consists of two terms each due to the corresponding term in the definition
of F. The second term in the framework of Proposition 26.6.12(i) is

C(BAPI|*Lidw — v ™) (BIAw — v]?)® = BV FS || L3y — v| 2.

Then, taking minimum of this expression and CBF3|V’%L2|)\N — v, we see
that this minimum does not exceed

8

e
= CBiF3(Z — N)BLE =<

3
5

C(BEFR|u[EL3): (BRI | L2)
(Zz - N)FBLE it (Z-N)yi<B<Z
(Z—N)SZ5BsLE if 73 <B<Z3

|~

|
wis

S~

which is achieved for |Ay — v| < BFi5|v|"® L~ 5. One can see easily that
this expression does not exceed (26.5.40).
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Therefore in the framework of Proposition 26.6.12(i)(ii) we can select
F = (Z3 + BPL) according to (26.6.55), arriving to
C(Z5 + BPL)3B3|Ay — v|s < C(Z5 + BPL)IB3(Z5 + B2Ly)s|w|x,

which we can rewrite (slightly increasing powers of logarithms) as two last
cases in expression

(Z - N)5Z5B3 it B<(Z-N)I,
(266.69) C{(Z-N)#(Z% + BRIYBE  if (Z-N)i <B<Z,
(Z - N)* 25 B3 it Zi<B<Z2

In the framework of Proposition 26.6.12(iii) one should replace (v/B?)3
by 7 and L by 1, so B3R|v|iL|A\y — v|™t — B2B|\y — v|~; further, one
should preserve B|Ay — 1/|% and therefore the second term becomes

(B2 — v ™) (Blaw — v]})? =< BY Py — o]}

and taking minimum of it and (26.6.48) we again get a term lesser than
(26.5.40).

Meanwhile, the first term becomes Z9 B:|A\y — v|s < (Z — N)
occupying the first line in (26.6.69).
Therefore we have proven

S

79 B3

Proposition 26.6.14. If M > 2, B < Z3 all three D-terms do not exceed
(26.5.40) + (26.6.69).

Summary

Therefore all error terms in the upper estimate do not exceed (26.5.40) and
we arrive to

Theorem 26.6.15. Let M > 2, B < Z3. Then
(i) The following estimate holds:

(26.6.70) ETF < £TF ¢ (Tr((HA,W ) )+ / Pe(WT™F 4+ 1) dx)+
(26.5.40) + (26.6.69).
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(ii) The following estimate holds for a > Z7:

(26.6.71) E™ < & 4 Scott + CZ3B3 + 27273 +(26.5.40) + (26.6.69);

for a < Z71 one should replace selected terms by CZ>.
(iii) [ B< Z anda>Z"3
(26.6.72) E' > £TF 1 Scott + Dirac + Schwinger+
CZ3(Z7° + (BZ 1) + (aZ5)™).
We also arrtive to

Theorem 26.6.16. (i) In the framework of Theorem 26.6.15(i) the follow-
ing estimate holds:

(26.6.73) D(py —p'" pp—p'") < (26.5.40) + (26.6.69).

(1t) In the framework of Theorem 26.6.15(iii) (albeit without assumption
a> Z’%) the following estimate holds:

(26.6.74) D(py—p"ps —p'7) < CQ = CZ3(Z7° +(BZ7Y)).

Remaﬂf 26.6.17. In virtue of Remark 26.3.7 we can replace term CZ3Bs to
o(Z3B3). This is also true in the case of the better estimates M = 1.

We leave to the reader the following easy problem:

Problem 26.6.18. Investigate conditions to (Z — N); so that terms (26.5.40)

and (26.6.69) do not spoil the upper estimate for Ey or D(py —pg°, pv—pg).

26.7 Negatively Charged Systems

In this section we following Section 25.5 consider the case N > Z and provide
upper estimates for the excessive negative charge (N — Z) if Iy > 0 and for
the ionization energy .
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26.7.1 Estimates of the Correlation Function

First of all we provide some estimates which will be used for both negatively
and positively charged systems. Let us consider the ground-state function
W(xy,s1; ... Xy, sy) and the corresponding density py(x). Again the crucial
role play estimates*!)

(26.7.1) D(ps —p"ps—p'") <Q

where Q@ > Q is just the right-hand expression of the corresponding estimate;
as B < Z we can slightly decrease Q=0Q.

Recall that the same estimate holds also for difference between upper
and lower bounds for Ey (with Tr((Hw — v)~) + vN not replaced by its
semiclassical approximation).

Remark 26.7.1. All arguments and conclusions of Subsection 25.5.1 up to
but excluding estimate (25.5.31) are not related to the Schrodinger operator
and remain true.

So we need to calculate both the semiclassical errors and the principal
parts. Note that all semiclassical errors for W, do not exceed those obtained
for W we selected. Consider approximations errors in the principal part,
namely

(26.7.2) D(P'(W. +v) — P'(W +v), P'(W. +v) — P'(W +v))
and
(26.7.3) D(p- — p. p- — p)

since we already estimated terms D(P'(W +v) — pLF, P'(W +v) — pfF))

and D(p — pgF, p— pg") by Q.
Note that
(26.7.4) W — W.| < C(1+ 1) 723
and
(26.7.5) |P'(W. +v) — P'(W + )| <
CA+l=12C3+C(1+ e Y (B

41) Namely, estimate (26.6.27) of Theorem 26.6.7 if M = 1, and similar estimates
(26.6.45) of Theorem 26.6.11 and (26.6.73) of Theorem 26.6.16 if M > 2. For B < Z and
a> 73, we use estimate (26.6.74) in all cases.
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and therefore expression (26.7.2) does not exceed C(Z3c2 + ZB?c?7?) and it
does not exceed Cmax(Z3, BsZ3) for e = min(Z~%, Z5B ) and this does
not exceed CQ.

Further, consider expression (26.7.3); it is equal to 4xn|(W. — W, p. — p)|
and one can prove easily the same estimate for it.

Furthermore, under this restriction an error in the principal part of
asymptotics of [ e(x, x, A) dx, namely | [ (P'(W:+v)— P (W +v)) dx|, does
not exceed C (Z 3er 4+ 73 BsF%), which is less than the semiclassical error.
Then S < CQ with S defined by (25.5.22).

So, the following proposition is proven:

Proposition 26.7.2%%. If 0, x are as in Subsection 25.5.2, then estimale
(25.5.33) holds, namely,

267.6) T =1 [ (#00y) = oy )pwlx) ) () (x, ) | <
C5up | Vyxulluzes) ((Q + 27N + T)20 + PO + CaN||V,x|4~©

with © = Oy defined by (25.5.15) and T, P defined by (25.5.23), (25.5.25)
and arbitrary e < min(Z73, Z5b7s).

Recall that psf)(x,y) defined by (25.5.13) is the quantum correlation
function.

26.7.2 Excessive Negative Charge
Let us select § = 6, according to (25.5.34):

(25.5.34) supp(f) C {x: {(x) > b}.

Note that HyW = EnV yields identity (25.5.35) and isolating the contribution
of j-th electron in j-th term we get inequality (25.5.36):

(25.5.36) — IN/pw(X)E(X)H dx >

ZwX, 09) (= V) + D g —xd )W) = va (6% (5)0)*) V2

k:k#j

2) Cf. Proposition 25.5.1.
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due to the non-negativity of operator ((Dx — A(x)) - 0')2.
Now let us select b to be able to calculate the magnitude of ©. Note
that inequality (25.5.37) holds. Also (25.5.38) holds as long as

Wik
W=

(26.7.7) Z75 <b<emin((Z—-N),?, B%)
Using inequalities

IV (0(x)207)] < cb™ 01_0p(x)

and
/ pu(X)E(x)05(x) dx > bO,

(i.e. (25.5.43)) we conclude that
(26.7.8) bl©, < / 01 () V (x)((x)pu(x) dx

_ / @) (x, y)(x)|x — y| " 05(x) dxdy + CbOp1o) =

= [ BuVEORIpu(x) 0

= [ A6y 00lx = 3171 = 6a(1)ul) oy

= [ A Ol = 7|00l (x) iy + Cb O
(cf. (25.5.44)). Denote by Iy, Z,, and Z3 the first, second and third terms

in the right-hand expression of (26.7.8) respectively. Symmetrizing Z3 with
respect to x and y

7, - _% / P2 (x, ) (€0x) + €y)) x — y|720(y)0(x) dxdy

and using inequality £(x) + £(y) > min;(|x —vy;| + |y —yj|]) > |x — y| we
conclude that this term does not exceed

267.9) =5 [ #0c9)05(0)05(x) ey =

=3 =1) [ pud0u) o+ 5 [ 60x0) (1= 0405040 oy
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(cf. (25.5.45)).
Here the first term is exactly —3(N — 1)©; replacing pg)(x,y) by
p(y)pw(x) we get

(26.7.10) ;/(1 —0u(y))p(y) dy x ©p
with an error
6710 5 [(00) — A wl)) (1~ 0s00)) ()

(cf. (25.5.46), (25.5.47)). We estimate this expression using Proposi-
tion 26.7.2 with y(x, y) = 1—0,(y). Then ||V, xxlle2 =< b2, ||V, x|lge = b~
and P =< b710,*) while T < b~* as long as B < Z5 and b < B3,

To estimate the excessive negative charge we assume that (N — Z) >0
with Iy > 0. In this case the left-hand expression in (26.7.8) should be
positive.

Remark 26.7.3. Recall that in Subsection 25.5.2 we picked b = Z=2 and it
makes sense here as well as long as b < r = B~iie. as B < Z5. However
for B > Z31 we just pick up b = GyF and then T = 0 in our framework.

Estimating (26.7.11) we conclude that

1
(26.7.12) I; < —E(N -1- /(1 — 0b(y))p(y) dy)e,, + Iy
with

(26.7.13) To = Cb! (S50, + Nb2) @) + CeNb '@,

(cf. (25.5.48)).
On the other hand,

26700 T <~ [ pPlay)0lx =y (1 - baa-o(0))a(x) dcy

3) Recall that P = [ |V02|2py dx and T = SUPgupp(e) W-
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and replacing psﬁ)(x, y) by p(y)pw(x) and estimating an error due to Propo-

sition 26.7.2 again, we get

26.7.15) T2 <~ [ o pwl) 00— y17 (0~ (1)) o) oy +
b} (SO, + Nb2)20; + CeNb ! =
- / (V = W)(x)(x)05(x) d+

/ o) (X)) x — y| 0500y (y))0s(x) dixdly + To.

So, we picked up

z% if B<Z,
(26.7.16) b=Cmin(Z%,7)={ B™% if Z#% <B<Z5,
B3Zs if Z:<B<Z?
and
(26.7.17) e =min(Z 3, B757%).

Then, preserving all the estimates one can take W = p =0 at supp(Qg) 44)
and then

(26.7.18) I, + 1, = /Hb(x) W (x)l(x)pw(x) dx—
J (56030 = (00(3)) ) = 917 (1= 00()) () iy < o

Further, since [(1—0,(y))p(y) dy < Z% we get from (26.7.8) and estimate
(26.7.12) for 75 that

(26.7.19) (N — Z) < Cb3S% + CO, N3 bt + Cb104_O;"

because then eNzZb~! does not exceed Cb%(?%.

44) For B > Z# this is fulfilled automatically.
45) Actually for B > Z 5 this is an equality.
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Let us assume that estimate (26.7.20) below does not hold. Then
©p=N— [(1—0s(y))pu(y) dy and due to Theorem 26.6.16

1
0, — N—Z| < Cb2Q> <;(N-2)

and the same is true for © ;). Then (26.7.19) yields (26.7.20). So, (26.7.20)
has been proven.
Thus we proved the following theorem:

Theorem 26.7.4. Let condition (26.2.28) be fulfilled. In the fixed nuclei
model let 1y > 0.

(i) Then
z if B<Z7,
(26.7.20) (N—2), <C7ziB s +Bil if ZR <B<Z5L
Z5BsL if Zs<B<Z8
where L = |log(Z73B)].
(it) For M =1 the same estimate holds with L = 1:

z7 if B<Za,
(26.7.21) (N-2), <CQ ZiBs if Zn <B<Zil
Z5Bs if Z3 <B< Z%

Furthermore, for B < Z one can use a slightly sharper estimate for Q:

Theorem 26.7.5. Let condition (26.2.28) be fulfilled. In the fized nuclei
model let |y > 0. Then for a single atom and for molecule with B < Z and
a> Z—%-‘r(sl

Zi if B<Z%,
(26.7.22) (N-2), <Cq . 2
Zi'Bst if Zn <B<Z

Results for a free nuclei model follow from the above results and an
estimate of a from below (see Subsubsection 26.8.4.4. Estimate for Excessive
Negative Charge and lonization Energy).
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Theorem 26.7.6. Let condition (26.2.28) be fulfilled. In the free nuclei
model let |y > 0. Then

(i) Estimate (26.7.20) holds.

(ii) For B < Z estimate (26.7.22) holds.

26.7.3 Estimate for Ionization Energy

Finally, let us estimate the ionization energy, assuming that



172 CHAPTER 26. EXTERNAL MAGNETIC FIELD

(26.7.23) (Z— N), does not exceed the right-hand expression of (26.7.20)%%).
Few cases are possible:

(i) B < Z3 and (Z — N); < GoZ7. In this case we act exactly as in
Subsection 25.5.2: we pick up b = ¢Z~5 with a small enough constant
€ > 0; then

(26.7.24) |/9b(x)(p\|; — p) dx| < Cb2Q7,
while

(26.7.25) / Op(x)pdx < b3

and therefore

(26.7.26) O = /Qb(x)pw dx < b3
and

(26.7.27) |/0(X) (pw — p) dx| < €"O.

Then (26.7.8), (26.7.12), (26.7.15) yield that ly < CZ3; so estimate (26.7.37)
below in this case is recovered.

In all other cases one needs to replace 6, by a function which is not
b-admissible.

(i) Let Z% < B < Z3and M = 1. Let here 7 be the exact radius of supp(p),
p=pL and W = WZF, which were obtained in the Thomas-Fermi theory
with v = 0. Recall that 7 =< max(B~#; B~5Z5) and Q =< max(Z3; B5Z5).
Also recall that W = Gt* and p =< BGz for r = (1 — t)F with 1 —e < t < 1,
where G := min(B; B3Z5).

We take in this case Ft-admissible function 0, equal 0 for [x —y| < F(1—t)
and equal 1 for |x —y| > F(1 — 1¢).

(26.7.28) In all the above estimates one needs to replace Cb™'©y4_¢ by
Cr1t71@ with © defined by ¢ which is also Ft-admissible and equal 1 in
ert-vicinity of supp(6).

46) Or (26.7.21), or (26.7.22) in the framework of the corresponding theorem.
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Then (26.7.24)—(26.7.27) are replaced by

(26.7.29) |/9(X)(pw ~p)dx| < CQ}F x VO] = Ct b}
while
(26.7.30) / 0(x)p dx =< BG2Pt3

and therefore

(26.7.31) 0= /Q(X)pw dx =< BGPt.

Then (26.7.27) holds provided the right-hand expression of (26.7.29) does
not exceed the right-hand expression of (26.7.31), multiplied by e:

(26.7.32)  t=t =CB G iF Qi = Cimax(B 1Z%; B5Z %)

where we picked up the smallest possible value of t. Note that
(26.7.33) t <1 as either B < Z% or B < Z3.

Further, let us estimate from above

(26.7.31) T'=— / (P50 ¥) = pu(x)0(0)) €0 1x = y126(x) dxdy <
— [ (#2009) = pul1o)) (1 = ) )b — 1 200x) o+
[ w0n(y)x y)e0)x = 51 200) oy

withw =0as [x —y| > 277 and w =1 as |x — y| < 7F, with 7 € (¢, 1).
Then due to Proposition 26.7.2 with x(x,y) = (1 — w.(x,y))|x — y| !

the first term in the right- hand expression does not exceed C Fir—: Q o
since ||V Xx|le2ms) < (F7)~ 2 and also one can prove easily that all other

terms in ((Q + e IN+ T)%@ + P%@%) do not exceed CQRO.

Meanwhile, the second term in in the right-hand expression of (26.7.34)
does not exceed CBG272 x P72 x © because p(y) < CBG272 if |x — y| < 27F,
x € supp(f) and therefore [ p(y)w,(x,y)dy < CBG27*.
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Minimizing their sum
c(Friqi+BGiPT)O
with respect to 7 > t*7), we arrive to estimate
T < CFiQ35B3 GO,
Then exactly as in the proof of Theorem 25.5.3 we have inequality
(26.7.35) Fly < C(Z = N), + CF3Q3B3 G,
and therefore for (Z — N); < CFiQsBsGu we arrive to the estimate
Iy < CF3Q3sB3Gs.

Thus we have proven estimate (26.7.37) of Theorem 26.7.7 below, at
least as N > Z. Further, estimate (26.7.39) under the same assumption
N > Z is due to the fact that for B < Z one can use Q = Z%(B‘SZ“S +2Z79)
instead of Q.

Theorem 26.7.7. Let M = 1.
(i) Then for B < Z3 and

73 if B<Z7,
(26.7.36) (Z-N), <GB 8zs  if Z:# <B<Z5

BsZ3 if Zs<B<Z?
the following estimate holds

Zn if B<Z3,
(26.7.37) Iv < C{ BsZ% if Zn <B<Z3

B 71 if Z3<B<Z%
(i1) Furthermore for B < Z and

759 if B< Za,

(26.7.38) (Z-N)+ <G {B—WZH g R <p<z

- .. . . 7
47) One can see easily that minimum is achieved as 7 < t5.
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the following estimate holds

za-% if B<Z3,
(26.7.39) Iy < C -

BstY 75— if Z1 <B<?Z.

Proof in the general settings. To prove estimates (26.7.37) and (26.7.39) in
the general settings (i.e. without assumption N > Z) observe that for N < Z
(26.7.40) D(pp" —pz", o —pZ") < C(Z = N)*Ft =

Cmax((Z — N)3; C(Z — N)?B%; C(Z — N)?B5Z75)

(where subscript here denotes the number of electrons rather than the
intensity of the magnetic field) because the same estimate holds for £5F —EJF:

(26.7.41) 0<&EF —&EF < C(z—- N>,

which itself follows from

85TF

(26.7.42) .

=v=(Z-N)F?

Therefore to preserve our estimates we need to assume that the right-
hand expression of (26.7.40) does not exceed Q; this assumption is equivalent
to (Z — N), <min(Z+; ZsB~5) for B < Z3 which is exactly the first and
the second cases in (26.7.36) (and these cases in (26.7.38) appear in the
same way), and to (Z — N), < CBsZs for Z3 < B < Z3, which is exactly
the third case in (26.7.40).

Also there is a term C(Z — N) 7! in the estimate of ly. However, under
assumption (26.7.40) this term does not exceed the right hand expression of
(26.7.40) or (26.7.42), in fact coincides with it only in the first case. O

Consider now M > 2. Assume that B > Z 5 since the opposite case has
been analyzed already.

Let us pick up Ft-admissible function @ such that = 1 if W < G, Gt*
and 6 = 0 if W > 2C,Gt*. In this case (M > 2) we can claim only that
V]| < Ct—2F2|log t|2 and therefore

1

(26.7.29) /Q(X) (pw — p) dx| < Ct‘%| log t\%Fi 0,
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while

(26.7.30)’ BGIFE < / 0(x)p dx < BGY|log t|F¢*
and therefore

(26.7.31)’ 0= /e(x)pw dx > BG:Pt3

for

(26.7.32)’ t>t =GB TG T 7Q7|logt|7.

Now we need to look more carefully at Q, especially because while it
may contain “rogue” factor L or L2, it can also be large as (Z — N), is large.
Fortunately, this is not the case in the current framework:

Proposition 26.7.8. (i) Under condition (26.7.46) below Q is as in the
case N = Z i.e.

_ (Zi+Bir? if B<Z5,
(26.7.43) Q=9 ._s .
BsZ51° if Z3 <B<Z5.

(ii) Furthermore, if B < Z and a > Z~ % under condition (26.7.48) below Q
is exactly as in the case N =2, i.e.

(26.7.44) Q=2Z3(27°+ (aZ3)° + (BZY)?).

Proof. One can either derive it from the existing estimates or just repeat
estimates with v = 0 adding (Z — N)2 7! to Q. We leave easy details to
the reader.

Thereforg all the above arguments could be repeated with this new
expression @ which also acquires factor |logt| (due to this factor in the

1
estimate of ||V@|| and this factor boils to L7 with

(26.7.45) L {'OgBZ%)H 7% <B< 75,
7. o

llogBZ3|+1 Z5<B<Z%
Therefore we arrive to

Theorem 26.7.9. Let M > 2. Then
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(i) For
z7 if B<Z%7,
(26.7.46)  (Z—N); < Gl ZiB 7 + B3L if Z2 <B< 75,
BsZslL if Z3<B<Z?
the following estimate holds
Z5 if B<Za,
2 20 2 7.8 20 4
(26.7.47) Iy < CL7 § ZZBs + BsLs if Zn <B<Z3
755B® L0 if Z3 < B< Z%
(ii) Furthermore, for B< Z, a > 775 and
s [Z7 if B<Z3,
(26.7.48) (Z-N), <GC®l7, | .
ZiBs if Z8<B<2Z,
with
(26.7.49) c=Z'4BZ'+alZ:
the following estimate holds
2 [Z% if B<Z%,
(26750) IN S CLfg 20 2 20
7% Bk if Z#<B<Z

26.8 Positively Charged Systems

Now let us estimate from above and below the ionization energy in the case
when N < Z and condition (26.7.36) (if M = 1) or (26.7.46) (if M > 2)
fails. We also estimate excessive the positive charge in the case of M > 2
and free nuclei model. We will follow arguments of the corresponding three
subsections of Section 25.6.

26.8.1 Upper Estimate for Ionization Energy: M =1

Consider first the case of M = 1. Then for B = 0 arguments are well-known
(see Section 25.6) but we repeat them for B > 0: we pick up S-admissible
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function 6 such that 0 =1if [x —y;| >F—fand 0 =01if |[x —y;| <7 —20
where 7 is an exact radius of support of p'F (see the very beginning of
Subsection 25.6.1) and § < 7. Recall that

(Z—N)3 if B<Zn,
(26.8.1) F=<{ min((Z—N)73,B73) if Z# <B< Z5,
B :Zs if Z: <B<Z

where in the first case we used that Z — N > 7 7 while in the second case
both subcases (Z — N)~3 = B4 are possible.

We can assume without any loss of the generality that y; = 0. Now in the
spirit of Subsection 25.6.1 we need to select as we did in Subsection 26.7.3
the smallest 3 such that

(26.8.2) o = / 0(x)p"F(x) dx > CB2FQ2
implying that
(26.8.3) Oy = /Q(X)pw(x) dx < OTF,

where the right-hand expression of (26.8.2) estimates | [ 6(x)(p"" — pw) dx]|
(recall that it does not exceed ||V - D(p"™" — py, p'F — pw)%). Again as in
Subsection 25.6.1 p™" = pif is calculated for the actual value of N < Z.

Then, following Subsubsection 25.6.1, eventually we arrive to estimate
(25.6.8), namely:

(26.84) Iy / ((x)pu(x)0(x) dx < / B0V (x)(x)pw (x) dx
= [(#2659) = ) 1001 — ¥ 00) ey

- / pu()p(y) () |x — y| *6(x) dxdy + C3270,

and then estimate from above the second term in the right-hand expression
2655~ [ (p00) = pul)oln) 100l — y10(x) doy <
— [ (P - 1— 0(x)|x — y|160(x) dxd
pu (x,¥) = pu(x)p(y) ) (1 = w(x, y)) (x)Ix — y|7'0(x) dxdy

+ [ wnty )t )b — 1 16(x) iy
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withw =wy; w=0if [x—y|>2yandw =11if [x —y| <7, 7> [ (see
(25.6.9)).

To estimate the first term in the right-hand expression of (26.8.5) one can
apply Proposition 25.5.1. In this case ||V, x|lg2 < CFy~2, |V, x|z = Fy2
and plugging P= 320 and T = ||, e = Z~3 we conclude that this term
does not exceed (25.6.10)

(26.8.6) CF(y2Q7 + Z577%)0

(if @ > Z%; otherwise here we should reset here Q = Z%)_
Note that if 0 < 7— |x| <

o [V|By ~/B\a
(26.8.7) W+r=ov:= max{( = ); G(;) }
with G defined by (26.2.41) and therefore
(26.8.8) o= max{ ()1 B(10)2 et (02

where the first and the second clauses are forks of the first clause in (26.8.7)
since in the second clause automatically W +v < B for 0 < 7 — |x| < f;
therefore

(26.8.9) /p(x)@(x) dx =< max{(‘ |B)%, B(@)%; BG%(§)2}BF2,
and therefore (26.8.2) holds if and only if
(26.8.10) max{('l;|) (| ‘) 232, BG2 (<) 5%}; > CQ:;

then
(26811) B = m.n{Q | 378, B3 Qi fv| i H, B*%G*%Q%F?}

and in the corresponding cases
(26.8.12) v={Q¥wir i BiQiwiF i BiGIQiF 7]
Observe, however, that for B < Q% and |v| < Q% we do not need these

arguments; simpler arguments of Subsection 25.5.3 show that in this case
| < CQ7.
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On the other hand, for B < Q7 but |v| > Q7, we pick v = Q& |v| =,
like in Subsection 25.6.1, and observe that |v|F~'y = B and therefore we
conclude that ly + v < CQs|v|2, exactly like in that subsection. Therefore
we arrive to

Proposition 26.8.1. Let B < CoZ%. Then
(1) If |v| < COZ%, then estimate |y < CZ% holds like in the case B = 0.

(ii) If [v| > CoZ%, then estimate |y +v < CZ1|v|% holds like in the case
B=0.

Therefore in what follows we assume that B > Q%. One can see easily
that then g <'r.

Meanwhile, the same arguments imply that the second term in the
right-hand expression of (26.8.5) is of magnitude

max{ ()1 514 562 ()2}

r r

and we need to minimize

1+ max{ (1)
r
which is achieved when

b= mad (M B(M)Y Bet (1))
r r r
Let us compare this equation with equation to 5. It is the same albeit with
factor 72 rather than 2. Therefore if ¥ > F then v < 8 < F which is a
contradiction. Thus v < F but then v > 5.
Therefore we conclude that this term does not exceed

G~
©In

(26.8.13) = maX{Q%(@)%; Q%B%(%‘)n; QiBi G

i),

and to estimate Iy + v we need just to compute its sum with v defined by
(26.8.12).
Therefore we conclude that

(26.8.14) Iv+v < C(v+9).
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Remark 26.8.2. Observe that

18
wis

N

(26.8.15) 0(Z,B,|v|) = Z50v(1,Z 8B, |[v|Z 5||) if Z
and
(26.8.16) v(Z,BZ 73 |v|) = Z2v(1, Z73B, |v|Z2v|) if Z3 <B<Z3

1<B<Z

and ¢ has the same scaling properties.

Therefore we can make all calculations with Z = 1 and then scale.
Leaving easy calculations to the reader, we arrive to

Proposition 26.8.3. (i) For Z# < B < Z3

Z s |v|3 if |v| > Z 8B,
ZuB x|y if B<|v|<Z 5B,
(26.8.17) Iy +v < C{ Z&B i |v|i if ZuB% < |v| < B,
Z%Bis |y if Z3B% < |v| < Z3Bw,
Z7Bs if |v| < Z5B%.
(ii) In particular,
(26.8.18) Iv< CZ@Bs  if |v| < Z¥Bs.
(iii) For Z3 < B < Z3
Z% Bis|y|iz if |v]>Z5B3,
(26.8.19) Inv+v<Cq_. % , 2,8
Zi5 B if |v| < Z5Bs.
(iv) In particular,
(26.8.20) Iy < CZ5B&®  if |v| < ZtBs.

Remark 26.8.4. Recall that @ = 73 (B‘S + l)Z_‘5 if B < Z; therefore we can
add factor (B‘S/ + l)Z“S/ in all estimates of Propositions 26.8.1 and 26.8.3.
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26.8.2 Lower Estimate for Ionization Energy: M =1

Now let us derive an estimate |y + v from below. Let W = Wy (xq, ..., xy) be
the ground state for N electrons, ||W|| = 1; consider an antisymmetric test
function

(26.821) W =VU(xy, ..., xn41) = V(x1, .., Xn)t(Xnp1)—

D W0, X1 Xt X ) ()
1<j<N

Then exactly as in Subsection 25.6.2
Ensa[ V) < (Hyia W, ¥) = N(Hu1Wu, ¥) =

N(HNWu, W) + N(Hy oy, Vo, U) + NS [xi = g W, U) =
1<i<N
(En = )V + N{Hw 0 s, Y, )
+ N(( Z i — x| = (V= W) (xnp1)) W, W)

1<i<N

and therefore

(26822) N~ (|N+1 + Vv )H\UH Z _<HW+U’ XN+1\|JU W)
( Z - XN+1| — (V- W)(XN+1))W“: q’)

and
(26.8.23) N[ = |[W|]* - [|ul|*~

N/\Il(xl, e XN, X)W (X, o X1, y)u(y)ut(x) dxq - - - dxy_ 1 dxdy

as in (25.6.14) and (25.6.15) respectively where T means a complex or
Hermitian conjugation and v/ > v to be chosen later.

Note that every term in the right-hand expression in (26.8.22) is the
sum of two terms: one with W replaced by W(xq, ..., xp)u(xy41) and another
with W replaced by —NW(xq, ..., xny—1, Xn+1)u(xn). We call these terms, as
in Subsection 25.6.2, direct and indirect respectively.
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Obviously, in the direct and indirect terms u appears as |u(x)|? dx and
as u(x)u'(y) dxdy respectively multiplied by some kernels.

Recall that u is an arbitrary function. Let us take u(x) = 02(x)¢;(x)
where ¢; are orthonormal eigenfunctions of Hy ., and 6(x) is S-admissible
function which is supported in {x: —v > W(x)+v > 2v} and equal 1 in
{x: —2v > W(x) + v > v}, satisfying (25.5.11), and v is related to /3 as
in the previous Section 26.7:

(26.8.24) v = Cmax(vF'3; GF*s%).
Let us substitute it into (26.8.22), multiply by ¢(\;L™!) and take the

sum with respect to j; then we get the same expressions with |u(x)|? dx and
u(x)ut(y) dxdy replaced by F(x, x) dx and F(x, y) dxdy respectively with

(26.8.25) F(x,y) = /(p(/\Ll) dye(x,y, \).

Here ¢(7) is a fixed 6> non-negative function equal to 1 for 7 < 1 and
equal to 0 for 7 >1and L =7 — v = 6w.

Under described construction and procedures the direct term generated
by N7H|W]|? is

(26.8.26) /9(x)<p()\L1) dye(x, x, \) dx.
Then, applying semiclassical approximation, we get
(26.8.27) Oy = /gp()\L_l) d\Pg(W + v — \) dx.

Consider the remainder estimate. Assume that M =1 (case M > 2 will be
considered later). Then since L = Cyv the remainder does not exceed

(26.8.28) Ch*(uh +1)37%F,
where

(26.8.29) h=1/(vp)
and

(26.8.30) 1= Bpvz;
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one can prove it easily by partition of unity on supp(f) and applying semi-
classical asymptotics with effective semiclassical parameter h and magnetic
parameter u.

On the other hand, the indirect term generated by N=||¥|? is

(26.8.31) — /v/eé(x)e%(y)wxl,...,xN_l,x)wT(xl,...,XN_I,y)x
F(x,y) dxdydxy - - - dxy_1,

and since the operator norm of F(.,.,.) is 1, the absolute value of this term
does not exceed

(26.8.32) N/Q(x)|\ll(x1, eoxne1, X) [P dx = /G(X)pw(x) dx <

/e(x)pTF(x) dx + CQz|| V02|

where pTF = 0 on supp(d) and ||V62|| < B2F.

Recall that P'(WTF +v) = p™F. We will take v/ = v + L to keep Oy
larger than all the remainders including those due to replacement W by
WTF and p by p'F in the expression above. One can observe easily that
then /8 should satisfy (26.8.10); let us define 8 and then v by (26.8.11) and
(26.8.12) respectively. Then

(26.8.33) Oy = (v? + Bu?) P,
Therefore

(26.8.34) Let h < ¢ (i.e. v28 > G), and S, v be defined by (26.8.11) and
(26.8.12) respectively. Then expression (26.8.33) is larger than G372 Q2

and the total expression generated by N~1[|U|? is greater than ¢© with
© = Oy defined by (26.8.33).

Now let us consider the direct terms in the right-hand expression of
(26.8.22). The first of them is like in (25.6.23)

(26.8.35) — / OEX)GAL) (i 0} (X)e(x, v, N),_, dix =
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= [0 th (el V), o

1

— 5 [ ALt 01,84 el . 2) >

/G(X)(l/ —v = Np(AL7Y) dyre(x, x, A) dx — C/ V62 |2e(x, x, ') dx.

Observe that the absolute value of last term in the right-hand expression of
(26.8.35) does not exceed CA~17 (v + Buz) = f720.
The second direct term in the right-hand expression of (26.8.22) is like
n (25.6.24)
(26.8.36) /9 pu * |x|7H = (V — W)(x))F(x,
—D(pw — p. 0(x)F(x,x)) >
— CD(py — popw — p)7 - D(Q%F(x, x), Q%F(x,x))) > _CQIF e,

provided V — W = |x|71 % p with D(p — p'F, p — p'F) < CQ.
Further, the first indirect term in the right-hand expression of (26.8.22) is
like in (25.6.25)
(26.8.37) — N/Hé(y)lll(xl, XN, X)W (X, o X1, ) X
PAL™) dy (w102 (x)e(x, y, A)) dxdlydy - dxy_y =
- N/Qé(y)Qé(x)\U(xl, ,xN,l,x)\Uf(xl, e XNZ1, V) X
ALV — v — N) dre(x, y, \) dxdydx; - - - dxy_1
- /v/eé(y)wu(xl,__.,xN1,x)wf(x1,...,xN1,y)><
(AL [Hw x, 02(x)] dre(x, y, \) dxdydsx, - - dxy_1.
Observe that one can rewrite the sum of the first terms in the right-hand

expressions in (26.8.35) and (26.8.37) as 3., p(NL71) (1 — v — A)| )2
with

~

\Uj(xlr---yXNfl) :_/\U(Xl,...,XNl,X)

and therefore this sum is non-negative.

Nh—'

(x)5(x) dx
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One can see easily that the absolute value of the second term in the
right-hand expression of (26.8.37) does not exceed

1

/ w(y)02(y)dy x 5~ /91 e(x, x,v) dxxC@xC(U%+Bv)F2x
CH37Q:0

due the choice of 5. This is larger than the absolute value of the right-hand
expression in (26.8.36). Therefore (cf. 25.6.26) we conclude that

(26.8.38) The sum of the first direct and indirect terms in the right-hand
expression of (26.8.22) is greater than —C3~27Qz0.

Finally, we need to consider the second indirect term generated by the
right-hand expression of (26.8.22):

(26.8.39) — /( S by = xl = (V= W) x

1<i<N

W(xg, o o)W o X, v)02 ()02 (y) F (x, y) dx - - - dxydy =

= [ (1 0= (V= W))W 0¥ 30,90
0% (xn)02 (¥)F (xw, ) cba - - - cbedy

—[( Iyl ) W 200 G20

1<i<N

()02 () F (X, y) dx - - - dxdly:

[N

0
recall that o, is a smeared density, x = (xq, ..., xn).

Since |y|7t* 0x(y) — (V — W)(y) = |y|~* * (0x — p), the first term in the
right-hand expression is equal to

(26.8.40) / 02 (xp) W (x1, ..., Xn) X

Dy(gi(y) = p(y), Flxw . A)Q%(Y)W(XL ,XN—LY)) dxy - - - dxy
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and its absolute value does not exceed

(26.8.41)

1
2

(0] DLt = ) £:0) = o) ¥ 500 o))

N2 (Dy(F(Xvav /\)9%()/)‘“(’(1: e XN-1,Y),

Nl

F(xn,y, A\)02(y)V(x, ... ,xN,l,y)) dxq - - - de> 5.

Recall that the first factor is equivalently defined by (25.5.4) and therefore
due to estimate (25.5.24) it does not exceed ((Q+ T +e*N)O+ P)%, where
we assume that ¢ < Z73 and © = ﬁ(vg + Bv%)Fzﬁ = B_%FQ% is now an
upper estimate for [ 6(y)pw(y) dy-like expressions.

Then, according to (25.5.25), P < C720 < QO and, according to
(25.5.23), T < Q and therefore in all such inequalities we may skip P and
T terms; so we get C(Q + £ 1N)20z.

Meanwhile, the second factor in (26.8.41) (without square root) is equal
to

Nl/sz’(ALl)sO’(XLl)Iy — 2| e(xw, v, A) 02 ()W (3, X1, y) X
I — |
e(xn, z, \') 9%(Z)WT(X1, o XN—1,Z) dydz dxq - - - dxy_1 dxy dAdN;
] P

after integration with respect to xy we get instead of the marked terms
e(y,z, A) (recall that e(.,.,.) is the Schwartz kernel of the projector and we
keep A < \’) and then, integrating with respect to X' we arrive to

Nt / ly — z| tF(y, z)@é(y)\ll(xl, e XN—1, V) X
Hé(z)WT(xl, s XN—1, Z) dydz dxq - - - dxn_1,

where now F is defined by (26.8.25) albeit with (? instead of . This latter
expression does not exceed

(26.8.42) Nl// ly — 2| Y F(y, 2)|02(0) W (1, ..., -1, y) P %

dydz dxqy - - - dxn_1.
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Then due to Proposition 26.A.6 expression [ |y — z|™!|F(y, z)| dz does not
exceed CA~X(h™! + p) < vz + Bu~z, and thus expression (26.8.42) does not
exceed CZ2 (U% + B’U_%)@. Therefore the second factor in (26.8.41) does

not exceed CN~1 (v% + B%U_%)@% and the whole expression (26.8.41) does
not exceed

C(Q + e IN)207 x N1 (vF + Biv 1)@ =
CN1(Q + & 'N)? (vi + Biv3)@,
Finally we arrive to

Proposition 26.8.5%). Let

(26.8.43) v>max(Z73Q5; Z75 Q5 B3)
and
(26.8.44) e > Z  max(v3, Bu?).

Then the first term in the right-hand expression of (26.8.39) does not exceed
Cvo.

Further, we need to estimate the second term in the right-hand expression
of (26.8.39). It can be rewritten in the form

(26.8.45) Z / U(xi, y)W(xt, .. xw) VT (xq, ... ,XN_1,y)0%(XN)9%(y)><

1<i<N
F(xn,y) dxi - - - dxndy,

where U(x;, y) is the difference between two potentials, one generated by
the charge 8(x — x;) and another by the same charge smeared; note that
U(x;, y) is supported in {(x;, y): |x; — y| < e}. Let us estimate the i-th term
in this sum with i < N first. Multiplied by N(N — 1), it does not exceed

(26.8.46)

1
2

N( / UG ) PIW Gt x) 203 Gon)62 (1) [Fxu ) b - dedy) x

1
2

N(/ w(xi, )W (xq, ... ,XN_1,y)|29%(XN)9%(y)|F(XN, y)|dxg - dedy>

48) Cf. claim (25.6.31).
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here w is e-admissible and supported in {(x;, ¥): |x; — y| < 2e} function.
Due to Proposition 26.A.6 in the second factor

/eé(xN)|F(xN,y)| day < C(1+ ph) = C(1+ BoY)
and therefore the whole second factor does not exceed

(26.8.47) C(/ei(x)w(x,y)gﬁf)(x, y) dxdy) %(1 +Bu)z,

where we replaced x; by x. According to Proposition 25.5.1 in the selected

) @) : :
expression one can replace py,’ (X, y) by pw(x)p(y), with an error which does
not exceed

C(sup IV x|z (rey (Q + TN 2 + C5N||Vyx\|$oo>@,

¢ < 7! this expression

1
PR3 X €72, HV},X

When we plug sup, ||V, x«
becomes CNO.
Meanwhile, consider

(26.8.48) / (UG y) 202 () F o, )| dy

Again, due to Proposition 26.A.6, it does not exceed
Cloi -+ But) [ 1UGs PO ) (b — vt + 1) dy

and this integral should be taken over B(x;, ), with |U(x;, y)| < |x — y| ™,
0 (26.8.48) does not exceed

Ce(v% + Bv%)w'(x,-, Xn)

with w'(x,y) = (1+ v|x — y]) " (provided e < v™2 which will be the case).
Therefore the first factor in (26.8.46) does not exceed

ISP

(26.8.49) Ce: (U% + B2 )</ 02 (x)w' (x, y) o (x, ) dxdy) .
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Therefore in the selected expression one can replace pEf J(x,y) by pu(x)p(y)

with an error which does not exceed what we got before but with ¢ replaced
by U7%7 i.e. also CN©.

However, in both selected expressions, (26.8.47) and (26.8.49), replacing
pg)(x, y) by pw(x)p(y) we get just 0. Therefore expression (26.8.46) does not
exceed Ce: (”U% + B%’U%)ZO, which, in turn, does not exceed Cv© provided
e<Cvi(1+Bv ) 'Z2

So, we have two restriction to ¢ from above: the last one and e < Z -5 and
one can see easily that both of them are compatible with with restriction to
e in (26.8.43); also we can see easily that condition (26.8.43) is weaker than
v>{Z%: Z7B5: Z6B8) if {B < Z%,Z% <B< 75,73 < B < 73
respectively.

Finally, consider term in (26.8.45) with / = N (multiplied by N):

(26.8.50) N/ Ulxn, )|V (xq, ... ,XN)|29%(XN)9%(y)F(XN,y) dx - - - dxndy

due to Cauchy inequality it does not exceed
1
(26.8.51) /v(/ Ixv — y| 2V (-, xw) 202 (xu)02 (y) dxq - ..dXNdy)ZX

W [ 1FGu PV, P8 )0 0) b dencty)

where both integrals are taken over {|xy — y| < ¢}. Integrating with respect
to y there we get that it that it does not exceed
Ce202 x (U% + B’U%)E%@% = C(U% + BU%)62@ < vO.

Therefore the right-hand expression in (26.8.22) is > —Cv© and recalling
that v/ — v = O(v) we recover a lower estimate Iy + v > —Cv in Theo-
rem 26.8.6 below. Here v must be found from (26.8.11)-(26.8.12) and must
satisfy v < |v|.

Combining this estimate with the estimate from the above, derived in
Proposition 26.8.3 we arrive to

Theorem 26.8.6. Let M = 1. Let condition (26.2.28) be fulfilled. Then
(i) For B< Z2 and |v| > Z2

(26.8.52) Iy +v| < CZ|w|5.
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(ii) For Z% < B < Z5 and |v| > Z% BS estimate (26.8.17) from above and
estimate

Z%|v|5 if B<Z%||7,
o ZEB 3|k if Zs|v|% < B < |y,
(26.8.53) ntr>-=Cq o 5 ‘ _2
ZuzB 5|yl if | <B<Z 7|,

zZa if Z77*<B

from below hold.

(iii) For Z2 < B < Z® and |v| > Z5B% estimate (26.8.19) from above
and estimate

Z % Bs|v]i if B<Z 3yl
(26.8.54) v=4", e
% B if Z72lvjs < B
from below hold.

Remark 26.8.7. Recall that Q = 73 (86 + 1)2’5 as B < Z; therefore we
can add factor (B‘V + l)Z"s' in all estimates of Theorem 26.8.6.

26.8.3 Estimates for Ionization Energy: M > 2
Recall that for M > 2 we have only estimate (26.6.73):
D(pw — p, pv — p < Q) == (26.5.40) + (26.6.69).

Then exactly the same arguments lead us to the following (we leave all
details to the reader):

Theorem 26.8.8. Let M > 2. Then

(i) Estimate Iy +v < C(v + <) holds with v and s defined by (26.8.11)-
(26.8.12) and (26.8.13) albeit with Q replaced by Q.

(ii) Estimate |y +v > —Cuv holds with v defined by (26.8.11)-(26.8.12)
albeit with Q replaced by Q.

Therefore the case when @ < Q is not affected. One can see easily that
. 20 .
it happens for sure as B < Z17L™" where k > 0 is some exponent.

We leave to the reader
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Problem 26.8.9. (i) Find explicit formula for v + ¢ and v.

(ii) Find v* = v*(Z, B) and v, = v,(Z, B) such that |v| < v+ iff and only
if v <v* and |v| S o iff and only if v < v,.

26.8.4 Free Nuclei Model

In this subsection we consider two extra problems appearing in the free
nuclei model-estimate the minimal distance between nuclei and the maximal
excessive positive charge when system does not break apart. We also slightly
improve estimates for the maximal negative charge and for the ionization
energy.

Preliminary Arguments

Recall that we assume that

(26.8.55) Q=E— En <0
1<m<M
where
. ZnZo
(26.8.56) E=E+ ) —/
I<m<m'<M [Ym = Y|

We apply estimate from below for E delivered by Proposition 26.6.1(ii), and
estimates from above for E,,, delivered by Theorem 26.6.6(ii); then

T+ Scott — > <£,T,F - Scottm) < CQ+CZiBi+ Ca 222

1<m<M

or, equivalently, due to equality Scott =), <m<m S¢otty, and non-binding
theorem

(26.8.57) 0<Q=8T— Y £F<CQ+CZiBi+Ca 7",

1<m<M

Assume that assumption (26.2.28) is fulfilled. Then Q < £'F for a < er*
with r* = min(Z~3; B~5Z5) and therefore

(26.8.58) In the free nuclei model a > er*.
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Then the last term in (26.8.57) is not needed.

Remark 26.8.10. (i) Obviously, the second term CZ3B3 in the right-hand
expression of (26.8.57) matters only if Z < B < Z7; however we will show
that it could be skipped even in this case.

(ii) If B < Z we can replace the right-hand expression of (26.8.57) by
Zi79(1+ BY).

(iii) All these estimates hold also for D(py — p'", py — p'") because this
term is present in the estimate from below.

Minimal Distance

4
3

We are going to improve (26.8.58). Consider the case B < Z3 first. Then
since @ > epa’ for er* < a < eF (where in this case r* = Z73 <r= B~
we conclude that a > Z~2 provided B < Z i

Furthermore, then we can apply improved remainder estimate O(Z %—6)7
since the difference between Dirac—Schwinger terms for a molecule and the
sum of these terms for the atoms is also O(Z379) as long as a > Z =3+,
which is the case. Then we conclude that a > Z “2 as long as it is less
than e7 and we arrive to Statement (i) of Proposition 26.8.11:

)

Proposition 26.8.11. Let condition (26.2.28) be fulfilled. Then in the free
nuclei model

(i) For B < Z3 the minimal distance satisfies

(26.8.59) a>min(Z 2% eB ),

(ii) For Z2 < B < Z3 the distances satisfy
(26.8.60) Y — Yor| = Fon + Ty —€F Vm#m'

with arbitrarily small constant € > 0 where f, denote the exact radii of
supp(ppy )-

Proof. We need to prove Statement (ii). Observe that it also follows from
the arguments above in the case zZa <B<L/Z
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For Z < B < CZ3 the remainder estimate is O(Z3B3) and the same
arguments imply that |y, — ym| > ¢Z~2 B2 unless a > €F and since the
latter is weaker, it must be satisfied. Therefore if (26.8.60) fails, then in
virtue of Theorem 26.2.17 Q > ¢ B%, which is larger than the remainder
estimate CZ3B3.

Finally, case C.Z3 < B < Z3 follows from the fact that if (26.8.60) fails
then in virtue of Theorem 26.2.17 Q > elngg. O

Proposition 26.8.12. Let condition (26.2.28) be fulfilled. Then in the free
nuclei model

(26.8.61) Q+D(py —p'", py —p'") < CQ.

Proof. We need to cover only case Z < B < Z %, since only in this case
term CZ3B3 matters.

We apply now estimate from below for E delivered by Proposition 26.6.1(i),
and estimates from above for E,,, delivered by Theorem 26.6.6(i); then we
do not have term CZ3B3 but instead of equal to 0 difference of the Scott
correction terms, we get

(26.8.62) (Tr((HA,W —v))+ / Ps(W™F + 1) dx)—

Z (TI’((HA,W,,, — l//)_) + / PB(WTF + y’) dX),

1<m<M

where we know that /' =11 = ... = vp.

Let us use partition of unity ¢g + ¢1 + ... + ¢y = 1 where ¢, = 1 in
B(ym, €m) and is supported in B(ym, 2¢7y). Then our standard methods
imply that the absolute values of

(26.8.63) Tr((Haw — v) o) + / Pe(WT™F + 1) o(x) dx,
and

(26.8.64) Tr((Haw, — V)" m) + / Pe(Wy" + /)b dx
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withm=1,...,M, m =0,1,..., M, m" # m do not exceed CQ**). Therefore
we need to estimate an absolute value of

(26.8.65) Tr([(Haw —v)” — (Haw, — V)] ém)+
/('DB(WTF +v) — Pg(W,)F + 1)) dx.

Due to Proposition 26.8.11 B(ym, 3¢7) does not intersect B(yuy, Frr) and
then in B(ym, 3¢F) W,y < C(Z — N)F~. Using this inequality and

(26.8.66) D(p—pr— .= pm, p—p1— ... — pm) < CQ,
one can prove easily that there also

(26.8.67) W — W,| < CT = CQ2F 2 + C(Z — N)F !
and, moreover,

(26.8.68) V(W — W,)| < CTF = CQ2F 2 + C(Z — N)F 2,
(26.8.69) V2 (W = W,,)| < CTF2=CQ:F 7 + C(Z — N)F 3.

Then using our standard methods one can prove easily that an absolute
value of expression (26.8.65) with ¢,, replaced by ¢-admissible function ¢,
does not exceed

(26.8.70) CTh™2(1 + ph)
with our standard
(26.8.71) h=Z":irz  p
if either B< Z3, r<rZ 3 or Zs <B<2Z3 r<Fand
(26.8.72) h=r, p=Br?
if B < Z3. Plugging (26.8.71) and (26.8.72) and summing over partition we
arrive to CTZ5 as Z31 < B < Z5 and CTZ5B5 as Z5 < B < Z°.

Plugging T = (Z—N)7~! we get expressions which are much smaller than
(Z — N)?F* due to (26.8.61); plugging T = Q272 we get terms smaller
than ¢Q + C(¢)BiZ3 if B < Z3 and €Q + C(€)Z:Bs if Z3 < B < Z3;

here € > 0 is arbitrarily small and thus term (26.8.65) does not make any
difference. O

49) Recall that W and W,, are approximations to WTF and W]IF.
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Since Q > ea (Z — N)? we arrive to
Corollary 26.8.13. Let condition (26.2.28) be fulfilled. Then

(i) If (Z = N) > C(Qa)z where Q is our remainder estimate in the ground
state enerqy, then in free nuclei model minimal distance between nuclei must
be at least a.

(i) In particular, if (Z — N) > C(QF)2 then in free nuclei model minimal
distance between nuclei must be at least CoF and molecule consists of separate
atoms.

We leave to the reader

Problem 26.8.14. Using Theorem 26.2.17 and the arguments used in the
proof of Proposition 26.8.11, estimate overlapping of balls B(ym, 7m) if
Z= 3% > eB~# in the free nuclei model with N = Z and prove that

(26.8.73)  (Fu+ For — |ym — yur|) < CA(K2F1Q)2 =
c B#(B7iZ} + B7iL)® it 7% <B <75,
B~7% 13 it 73 <B<Z%

Estimate of Excessive Positive Charge

To estimate excessive positive charge when molecules can still exist in free
nuclei model we apply arguments of section 5 of B. Ruskai and J. P. Solovej [1].
In view of Corollary 26.8.13 for (Z—N) violating (26.8.76) below it is sufficient
to assume that (25.6.41) is satisfied:

(26.8.74) a=minly; —yi| > GF
i<k

i.e. in Thomas-Fermi theory p'F is supported in the separate “atoms”.
Really, it is the case if COZ% <B<Z73 bult also it is so if B < COZ% and
(Z— N), > G, Z7 since then 7 =< (Z — N), .

Like in Subsection 25.6.3 consider a-admissible functions 6,(x), sup-
ported in B(ym, 3a) as m=1,...,M and in {|x —yn/| > za Vm' =1,..., M}
as m = 0, such that

(26.8.75) 05+ ...+ 03, =1
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Then for the ground state W equality (25.6.43) holds with cluster Hamil-
tonians H,, defined by (25.6.44) and satisfying (25.6.45) and with the
intercluster Hamiltonian J, defined by (25.6.46) and satisfying (25.6.47)
with J,, defined by (25.6.48)—(25.6.49). Furthermore, equality (25.6.50)
holds.

Applying Proposition 25.5.1 and estimate (25.4.56) (replacing first 0
with k =1, ..., M by 6, supported in B(yx, cF), and estimating the resulting
error), we conclude that (25.6.51)-(25.6.54) hold with ¥ = Qz7z since
D(pw — ™, pw — p™F) < CQ.

The last term in (25.6.51) is estimated by Proposition 25.5.1 and estimate
(26.8.61) instead of (25.4.56) and the same replacement trick; so we arrive to
(25.6.55) and repeating the same trick we get that it is larger than (25.6.56).

Again let us note that the absolute value of the last term in the right-
hand expression of (25.6.43) does not exceed Ca=2Y due to (25.6.52). Now
stability condition yields that (26.6.61) must be fulfilled.

Then we conclude that (25.6.57) and (25.6.59) hold with J,,; defined by
(25.6.58) provided (25.6.60) is fulfilled as |x — yx| > CF.

This inequality, (26.8.74) and Proposition 25.6.6 (which is the special
case of Theorem 26.2.13) yield that Z — N < CY = CF%Q%. Now we need
to consider two cases:

(a) B < (Z—N)3; then 7 =< (Z—N)~3 and we conclude that (Z—N) < CQ3
exactly like in Subsubsection 25.6.3.

(b) (Z—N)3 < B < Z3; then plugging 7 and Q we arrive to two other cases
of (26.8.76).

Then we arrive to Statement (i) below; Statement (ii) follows from
Remark 26.8.10(ii).

Theorem 26.8.15°Y. Let condition (26.2.28) be fulfilled.

(i) Then in the framework of the free nuclei model with M > 2 the stable
molecule does not exist unless

75 if B<Z3,
(26.8.76) (Z=N), <G{ 7B if Z2 <B< 73,
Z5Bs if Z3<B<Z%

50) Cf. Theorem 25.6.4.
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(ii) Furthermore, for B < Z in the framework of the free nuclei model with
M > 2 the stable molecule does not exist unless

Za0 if B<Z%,
(26.8.77) (Z-N). <G . i

75510 if Zn<B<Z.
Estimate for Excessive Negative Charge and Ionization Energy
Estimate (26.8.61) and Remark 26.8.10 immediately imply
Theorem 26.8.16. Let condition (26.2.28) be fulfilled.

(i) Then in the framework of the free nuclei model with M > 2 estimates
(26.7.21) for the excessive negative charge and (26.7.37) for the ionization
enerqy IN = —EN + EN 1 hold.

(i1) Furthermore, if B < Z estimates (26.7.22) for the excessive negative
charge and (26.7.39) for the ionization energy ly hold.

26.A Appendices

26.A.1 Electrostatic Inequalities

There are two kinds of electrostatic inequalities: those which hold for any
fermionic state W and those which hold only for the ground-state (or near
ground state) W. Inequalities of the first kind do not depend on the quantum
Hamiltonian and they are (25.2.1) repeated here:

(26.A.1) Z /XJ — x| TV (xa, e x) [P - dxy >

1<j<k<N
1 4
30w, w) = € [ o) o

and (26.A.5) below.
Inequalities of the second kind are for B = 0:

(26.A.2) > [ = xl W0, xw) P dxoy >

1<j<k<N
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and more precise one (26.A.26) below.
For B = const there is an inequality established in E. Lieb, J. P. Solovej
and J. Yngvason [3] (p. 122):

Theorem 26.A.1. Let B = const. Then for the ground state W

2
5

(26.A.3) /p§, dx < CZENZ(Z + N)5 (1 + BZ73)%;

In particular, for c™*N < Z < cN the right-hand expression does not
exceed

Lz 73 if B<Z5,
(26.A.4) 4 5(1+BZ )5 C & .
Z1Bs if B> Z5.

We want to establish inequality, similar to (25.A.2), but in the magnetic
case. We will use for this the following

Theorem 26.A.2°Y). Fiz 0 < § < 1/6. Then for any density matriz F
and any density po(x) > 0 the following inequality holds

(26.A5) Y [ x = xl W 0a, o xw) P doy >

1<j<k<N
1
D(po. p+) — 5D (0. po) Z/ [F(x, sy, 6P |x = y| 7t dxdy

6 1/6+5
— Clipllg)s - IoIy/** - vy, F)3=2,

where p = po + pr + pw, v(7, F) = Tr(y(I = F)) and

(26.A.6) v="w(xy)= N/\Il(x,xz, XY, X, x) dXo - Xy
is two-point one particle density.

Recall that ||.||, denotes £P-norm.

There is a connection between (26.A.1) and (26.A.5): if we set F =0,

we get ¢ = ||p|l1 and the last term in (26.A.5) becomes ||p||2735 ||p|\1/2

51) Lemma 6 of G. Graf and J. P. Solovej [1].
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the other hand, H,oHig < HpHgg lIpll37%, so (26.A.5) is slightly deteriorated
(26.A.1) with F = 0 but with “free” po.

Let us follow G. Graf and J. P. Solovej [1] further albeit in the case of
magnetic field. Let us estimate first ||p||s5/3.

If p = p'" direct calculations show that for N < Z

(26.A.7) /pTF dx = min(Z, N),
(26.A.8) /(pTF)g de = CptSr® = CZ3(1+ BZ3)%,
(26.A.9) /(pTF)g dx = Cp'3r® = CZ3(1+BZ3)*
with

2
(26.A.10) r=min(Z73,B523) = 273 (1+ BZ3) 7,

L p*=min(N, Z)r -
5/6 1/2 _ 4/3

and we use [|pllgs - [llly"™ = [lplly)s for p=p™"

If p = py we use magnetic Lieb-Thirring inequality (see f.e. Theorem 2.2
in L. Erdos [1])

(26.A.12) Tr(Ha ) > —C/ Pg(W) dx
and therefore
(26.A.13) (HW, W) > Tr((Haw) /pr dx
= [ Viowdct 500w, ) = Cliwlf
which due to (26.A.12) is greater than
(26.A.14) /(CPB(W) + Wpoy) dx—
[ Vi dct 300w, v) ~ Clpulfy =

1
o [ ra(ow)d— [ Vowdct 5D(ow. pw) = Cllowl
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where we picked up W : CPg(W) = py.
The first two terms in the right-hand expression are estimated from
below by

260 [ 7a(pe) b~ C [ Pa(V)od—C [ Vpul1 - 5) o

where supp(¢) C {x: {(x) < 2r*} and supp(1 — ¢) C {x: {(x) > r*}.
One can see easily that the absolute value of the second term is =<

75 (1 + BZ~ ) while the absolute value of the third term does not exceed
CZ[V(1-9¢) dx = CZ2r*~1 which does not exceed the same expression

2
Z5(1+ BZ*%)? Therefore

(26.A.15) (HW, W) + GZ(1+BZ %)% >

1
260 [ 7apu) b + 5D(pw, pu) = Clpwlfs

Note that Hpﬂﬁﬁ, calculated over domain {x: py(x) > B3}, does not exceed

1
Cllpwl|2S 5/3 * llpllf with norms, calculated over the same domain, which does
not exceed CT2Z2 with T = [ 75(py) dx.
Meanwhile, prH:g, calculated over domain {x: py(x) < B3}, does not
1 5
exceed Cl|pl|3 - |lpll$ with norms, calculated over the same domain, which

does not exceed CZ2B3Ts.
Therefore

17t

(26.A.16) lpwllys < CT2Z2 + CZ3B3 Ts

t.u

and therefore (26.A.15) implies that if

(26.A.17) (HV, W) < GZ5(1+ BZ %),

then

(26.A.18) T = /TB(p\p) dx < GZi(1+ BZ%)
and

(26.A.19) lovl22 < €253 (1+ BZ3)%;
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taking F = 0 we arrive to (26.A.3) if N < Z.
However, on our preparatory step we need to estimate also || pwﬂgg and

due to (26.A.18) we need to consider only norms over {x: py(x) > B3}.

Then ||pw|\gg < C||pw||¢11%15 - Nlpwll¥® and plugging the same estimates

(26.A.19), (26.A.19) we conclude that

4
(26.A.20) lpwliz)s < CZ73(1+ BZ73)".

Now we assume that B < Z3, take F = e(x, y,v), where e(x, y,v) is
the Schwartz kernel of spectral projector for potential W, approximating
WTF and v < 0 is a chemical potential. One can prove easily that ||p,:||5/3

5/3
satisfies the same estimate and we need to estimate Tr(yw(/ — E(1))).
Consider
(26.A.21) N{Haw()V, V) — Tr(HE(v)) — a Tr(yw(l — E(v)))
> [ paTE@G) - [ (B-v+a)dsTrE()

B<0 B<v

_ _/_ B (8 — v+ a)dsE(B)
— aE()+ / L EWas

We can replace E(3) by [ P/(W + j)dx with a resulting error O(Zah°),
h = BZ~3. Then the right-hand expression becomes

(26.A.22) — L(«a) = /(—aP/B(W +v)+ /Oa Pg(W +v — ) dﬁ) dx =
_/Oa(a_5)</Pg(W+u—B)dx) da.
Therefore

(26.A.23) a(Tr(fyw(l — E(n))) - czrf) <
IN(HA,W(XI)\IJ, V) — Tr(HE(v)) +L(«).

Note that adding to the selected terms —1D(p™", p™F) we obtain exactly the
snippet, occurring in the lower estimate of Ey, but in virtue of the upper
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estimate it should not exceed @ = CcZ3 (1 + BZ%)% < CZ5 + Ch2Z%, and
therefore, plugging a = Z 379, we conclude that

(26.A.24) Tr(vw(l — E(n)) < ZK°
provided we prove that
(26.A.25) L(a)<Q  for a=Z51’.

Therefore modulo proof of (26.A.25) we arrive to the estimate (26.A.26)
below:

Theorem 26.A.3. Let N < Z and B < Z. Then for the ground state

enerqy

(26.A.26) > [ x5 = xl W0, xn) P d - dxoy >

1<j<k<N

1
5D(p™, ") + Dirac CZi7%(1+ B)

To prove (26.A.25) we note that 0 < Pj(w) = w2 +Bw 2. One can prove
casily then that L(a) < Cat + CBia3, which obviously implies (26.A.25).

26.A.2 Very Strong Magnetic Field Case

Let us consider now case Z2 < B < Z3.

Proposition 26.A.4. Consider the Schriodinger operator Ha w with a con-
stant magnetic field of intensity B and potential W: W < Z|x|7t. Let
B(x) = ¢.(x) be r-admissible function. Then if Z> < B < Z% and r < Z71

(26.A.27) le(x,y,0)| < CZB in B(0,r)
and
(26.A.28) All eigenvalues are > —CZ2.

Proof. Without any loss of the generality one can assume that

(26.A.29) Haw = D2 + D2 + (D; — Bxy)> — W.
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Consider f € %2 then |[[E(A\)f|| < ||f|| and then one can prove easily
(26.A.28) and inequality

(26.A.30) IHasEQVFI < (CZ2+ Al

Indeed, D3 + CZ? > W in the operator sense.
Then (26.A.30) implies that in B(0, r) x B(y/, r') with r' = B~z

IPPE(\)f| < CZ*B2l Vo :|a| <2VA< 22
with P = (D; — Bxp, Dy, D3) and therefore ||[E(A)f|l¢ < CZ2Bz||f||. Then
IE(x, -, M)l < CZ2Bz.

Repeating the same arguments with respect to y we arrive to estimate
(26.A.27). O

The following corollary follows immediately:

Corollary 26.A.5. In the framework of Proposition 26.A.4 with

¢ € L>(B(0,r)), lofle= <1

(26.A.31) |/¢(x)e(x,x,0) dx| < CZ7*B,
(26.A.32) D(d)(x)e(x,x,O),gb(x)e(x,x, 0)) < Cz73%B?
and

(26.A.33) |/ /gb(x)e(x,x, T)drdx| < CB.

26.A.3 Riemann Sums and Integrals
If f € 6°(R") and fast decays at +o0, then

(26.A.34)  F(0)h+ Y 2f(2nh)h ~ / h F(t)dt+ > rmfCmD(0)R™,

n>1 0 m>1

(26.A.35) > 2f((2n+ 1)h)h ~ /Oo F(t)dt+ > ki, FEmD(0)R

n>0 0 m>1

as h — +0. The proofs of both formulae follow from the Taylor’s decompo-
sition and observation that the odd powers of h should disappear. Taking
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f(t) = e /" with Rez > 0 we arrive to

cosh(z) )
26.A.36 1— ~ > k2™,
( ) sinh(z)Z m>1"{ ‘
1
26.A.37 1- ~ 2"
( ) sinh(z)z mz>1 Fom?
for |z| < 1. In particular, k1 = § and K} = —%.

26.A.4 Some Spectral Function Estimates

Proposition 26.A.6. For the Schridinger operator with A, W € €°° and
for ¢ € 65°([—1,1]) the following estimate holds for any s:

(26.A.38) IF(x,y)| < C(ph+1)h3(1+h Y x—y|)
where
(26.A.39) F(x,y) = /gb()\) dye(x, y, A).

Proof. Let u(x,y,t) = fe_"hflt)‘ dye(x,y,A) be the Schwartz’s kernel of
—ih~1Ht

Let us fix y. Note first that £2-norm®? of ¢(hD;)x(t)w(x)u(x, y, t) is less
than Ch® for x € 65°([—¢ €]) and w € 6> supported in {x: |[x —y| > €1}
(with €; = Ce) due to the finite speed of propagation of singularities.

We conclude then that £2-norm of ¢(hD;)x(t)w(x)u(x,y,t) does not
exceed C(uh+ 1)h® for w € 6> supported in {x: |[x —y| > C}.

Then £2-norm of 9!Ve¢(hD,)x(t)w(x)u does not exceed C(uh+ 1)h°.
Therefore due to imbedding inequality £>°-norm of ¢(hD;)x(t)w(x)u also
does not exceed C(uh+ 1)h®. Setting t = 0 and using this inequality and
estimate |F(x, y)| < C(uh + 1)h=3 (due to Chapter 7), we conclude that
|F(x,y)| < C(uh+ 1)h® for |x — y| > €.

Now let us consider general x with |[x — y| = r > Ch. Then rescaling
(x—y) = (x—y)r ! we need also to rescale h — hr=!, p — pr and rescaling
the above inequality and keeping in mind that F(x,y) is a density with
respect to x, we conclude that |F(x, y)| < Ch*r=3=* which is equivalent to
(26.A.38)(26.A.39). O

52) With respect to x, t here and below.

e
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26.A.5 Zhislin’s Theorem for Constant Magnetic
Field

We provide just a scheme to prove Zhislin’s theorem in the case of the
constant magnetic field. In this analysis Z, y, N and B are constant.

Proposition 26.A.7. Let V = Wy be the ground state with the energy
Eny < En_1. Then

(i) W € 6 and ¥ = O(eKI) as x| — oo.

(ii) Let N < Z. Then Viy — V € 62 and Vy = (Z — N)|x|7! + O(|x|72),
VVy = (Z = N)|x|72+ O(|x|3) as |x] — oc.

Proof. Obvious proof is left to the reader. O
Theorem 26.A.8 (Zhislin’s theorem). Ey 1 < Ey for N < Z.

Proof. We can assume that Ey < 0 and the ground state energy exists.
Really, it is true for some N < Z and if we prove that then automatically
Eni1 < Ep, then it would be true for (N + 1) as well, so we may go by
induction.

Consider ¥ = Wy (xq, ..., xy) and also (DN+17 which is an antisymmetrized
WN(Xl, ,XN)U(XN+1) (Cf (26821))

(26.A.40) W = U(xy, ..., xn11) = V(x0, o, X)) U(Xnp1)—

Z W(X1, ooy Xjm1, XN1) X1 -0 Xn) U(XG).
1<j<N

Then like in the estimate of the ionization energy (cf. (26.8.22)(26.8.23)):

(26.A.41) N Musa [ W] = —(Hy s, Yo, U) = (Y 16— x| W, 0)

1<i<N
and
(26.A.42) N7HW|)? = V|- |lulP~

N/\U(xl, e XN—1, X)\UT(Xl, e  XNZ1, y)u(y)uT(x) dxy - - dxy_1 dxdy.
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Now let us consider u supported in {x: fa < [x| < 3a} with a to be
chosen later. Then in virtue of Proposition 26.A.7(i) modulo O(e™“?)
we can replace in the right-hand expressions W by Wn(xq, .., xn)u(Xns1)
resulting in —(Hwu, u) and |Jul|? respectively with W = V4 defined in
Proposition 26.A.7(ii).

Therefore all we need to prove this theorem is to be able to select u with
|lul| < 1, supported in {x: a < |x| < 3a} and with (Hwu, u) < —epa '

In virtue of Proposition 26.A.7(ii) Vi > pa~ ! in {x: a < |x| < 3a} and
therefore we can replace W by ega™t. Without any loss of the generality one
can assume that A = (Bx,,0,0). Recall that for the linear vector-potential
A operator Hy = ((iV — A) - 0)? is a direct sum of Hf = (iV — A2 + B
and Hy = (iV — A)? — B; so we can consider only the latter. Note that
Hy = (i01—Bxz)*— 93— 0% and Hy v = 0 with v = exp(—3B(x —a)?+iBaxi).

Then u = v(x)x(r *(x — X)) with x € €>~(B(0,1)), x = 1 in B(0, 3),
x =(0,2a,0), r = 1ais a required function. O

Comments

We already mentioned papers E. H. Lieb, J. P. Solovej and J. Yngvason [1,3]
where asymptotics of the ground state energy were derived in the cases
B < Z% and B > Z3 respectively. Intermediate case B ~ Z3 was covered
also in [1]. Even without remainder estimates certain results concerning
ionization energy and maximal possible positive and negative charges were
also derived.

Remainder estimates in the case B < Z3 were derived by V. Ivrii
in [20,21]. Unfortunately there are gaps in the proofs of the second paper
in the case of M > 2 and large Z — N > 0 which I was unable to fill.; so our
results in this case are not as sharp as they supposed to be.
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Chapter 27

The Case of Self-Generated
Magnetic Field

27.1 Introduction

We are going to replace Schrodinger operator without magnetic field as in
Chapter 25 or with a constant magnetic field as in Chapter 26 by Schrodinger
operator

(27.1.1) H=Hav=((D-A)-0)° - V(x)

with unknown magnetic field A but then to add to the ground state energy
of the atom (or molecule) the energy of magnetic field (see selected term in
(27.1.2) thus arriving to

(27.1.2) E(A) = inf Spec(Hav) + o / IV x AP dx

with N-particle quantum Hamiltonian Ha )\ defined by (26.1.1) and a pa-
rameter v € (0, £*Z 7] with small constant * > 0.
Then finally

(27.1.3) E* = inf E(A)

A}

defines a ground state energy with a self-generated magnetic field").

1) This notion was introduced in series of papers L. Erdos, S. Fournais and J. P.

Solovej [1,3,4]; see also L. Erdés and J. P. Solovej [1].
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First of all we are lacking so far a semiclassical local theory and we
are developing it in Section 27.2 where we consider one-particle quantum
Hamiltonian

(27.1.4) H=Hay = ((hD - A)-0)* = V(x)

but instead of inf Spec(Ha v) we consider Tr™ (Ha ) which as we already
know is what replaces inf Spec(Ha,v) if electrons do not interact (then if
electrons interact we will need to replace V by W which includes a potential
generated by the electron cloud and justify this by estimating an error).

We define the energy of the magnetic field as in (27.1.2) but with &
replaced by kh?~1 (here d > 2 is arbitrary) and we prove that for d = 2,3 in
this framework a self-generated magnetic field is weak and the asymptotics
with the remainder O(h?>~9) (or even o(h*~?) under standard assumption of
the global nature) is exactly as for k = 0 (i.e. with A =0). In the latter
case asymptotics includes the Schwinger correction term s h™?.

Then in Section 27.3 we consider operator with potential having Coulomb-
type singularities and combining results and arguments of Sections 27.2
and 12.6 prove for d = 3 that

(27.1.5) Tr~(Hayv) = Weyl, +25(k)h 2 + O(k|log 5|5h™5 + h™Y)

provided k < k* (which is a small constant) and there is just one singularity;
when there are several singularities with a minimal distance a > 1 between
them we prove that

(27.1.6) Tr™ (Hav) = Weyl, +25(r)h 2+ O (x| log 5|3 h™5+ b +-ra 3h72).

If k < h%| log h|_% then under standard assumption about trajectories we
can upgrade this asymptotics to even sharper with the remainder estimate
o(h™!) and with the Schwinger correction term.

Further, in Section 27.4 we apply these results to provide estimates
from above and below for the total energy (27.1.3). As a byproduct we also
estimate D(py—p'F, py—p'F) where V is a ground state for a near-minimizer
A.

This estimate enables us in Section 27.5 to derive upper estimates for
the excessive negative charge, estimates or asymptotics for the ionization
energy, and in the free nuclei model also for the minimal distance between
nuclei and (in the case of molecule) for the excessive positive charge.
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27.2 Local Semiclassical Trace Asymptotics

27.2.1 Toy-Model
Statement of the Problem

Let us consider operator (27.1.1) in RY with d = 3 where A, V are real-valued
functions and V € £3 N %4 A € #;. Then this operator is self-adjoint.
We are interested in Tr™ (Hav) (the sum of all negative eigenvalues of this
operator). Let

27.2.1 E* = inf E(A),
( ) Ae%é?B(O,r)) (4)
(27.2.2) E(A) == (Tr— Hav + £ th2 / A dx)

with 0A = (0;A;) a matrix; here and below r is a parameter and constants
do not depend on it.

The estimate from above is delivered by A = 0 and Weyl formula with
an error O(h™!) as V € 612

(27.2.3) E* < Weyl; + O(h™);
where
(27.2.4) Weyl(r) = #h* / (V + 1) dx,
and
0 5 5
(27.2.5) Weyl, = /_oo 7d, Weyl(7) = 15772/ V2 dx.

Also for estimates o(h~2) we need to include into Weyl; the corresponding
boundary term. Now our goal is to provide an estimate from below

(27.2.6) E* > Weyl, — O(h™?);

We will use also Weyl(x, 7) and Weyl; (x) defined the same way albeit without
integration with respect to x.

2) Recall that this means that the second derivatives of V are continuous with the
continuity modulus O(]log |x — y||71), see Section 4.6. If there is a boundary it does not
pose any problem provided it is in the classically forbidden region.
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Preliminary Analysis

So, let us estimate E(A) from below. First we need the following really
simple

Proposition 27.2.1. Let V € £3 N £*. Then

(27.2.7) E*>-Ch3
and either
1 2 -3

or E(A) > ch3.
Proof. Using the Magnetic Lieb—Thirring inequality (5) of E. H. Lieb,
M. Loss, M. and J. P. Solovej [1])

(27.2.9) /trel(x,x,T) dx >

- Ch3/ V?dx — ch?(h2 / A2 dx>% (h8/ v dx>%,
we conclude that for any 6 > 0
(27.210)  E(A)>—-Ch*—C&8h>+ (v *th2—=6th) / |0A|? dx
which implies both assertions of this proposition. O
Proposition 27.2.2. Let V, € L3 N%*, k< ch™! and
(27.2.11) V<-CH1+x])°+C.
Then there exists a minimizer A.

Proof. Consider a minimizing sequence A;. Without any loss of the generality
one can assume that A; — A, weakly in #* and in £° and strongly in £[_
with any p < 6. Then A, is a minimizer.

Really, due to (27.2.8) and (7.2.11) negative spectra of Hy, v are discrete
and the number of negative eigenvalues is bounded by N = N(h). Consider

3) Otherwise we select a converging subsequence.



212 CHAPTER 27. SELF-GENERATED MAGNETIC FIELD

ordered eigenvalues A; x of Ha,v. Without any loss of the generality one can
assume that \; , have limits A x < 0 (we go to the subsequence if needed).

We claim that A x are also eigenvalues and if Ao x = ... = Ao kar—1 then
it is eigenvalue of at least multiplicity r. Indeed, let u;, be corresponding
eigenfunctions, orthonormal in £?. Then in virtue of A; being bounded in
%5 and V € £* we can estimate

(| Duj ]l < Kllujillg™ - lujkll” < K[ Dujel|*=7 - Jluzell

with ¢ > 0 which implies ||Du;«|| < K. Also assumption (27.2.11) implies
that ||(1 + |x|)*/2u; || are bounded and therefore without any loss of the
generality one can assume that u;, converge strongly.

Then
(27212) ||m Tl’i(HAj,\/) 2 Tri(HAm’\/),
J—0o0
(27.2.13) Iiminf/|8Aj|2dx >/|8Aoo|2dx
J—0o0

and therefore E(A.,) < E*. Then A, is a minimizer and there are equalities
in (27.2.12)—(27.2.13) and, in particular, there no negative eigenvalues of
Ha_ v other than A, . O

Remark 27.2.3. We do not know if a minimizer is unique. Also we do not
impose here any restrictions on r, K (which may depend on h) in (27.2.11)
or k > 0. From now on until the further notice let A = A, be a minimizer.

Proposition 27.2.4. In the framework of Proposition 27.2.2 let A be a
minimizer. Then

2

— Retr[(rj ((hD —A)-oe(x,y,7) +e(x,y, 7)(hD — A), - o*)}

y=x
where A = (A, Az, A3), 0 = (01, 02, 03) and e(x, y, T) is the Schwartz kernel
of the spectral projector 8(—H) of H = Ha,v and tr is a matriz trace.

Proof. Consider variation dA of A and variation of Tr™ (H) = Tr(H~) where
H~ = HB(—H) is a negative part of H. Note that the spectral projector of
H is

1 T
(27.2.15) 0(r — H) / Resg(7 — H)™*

210 J_ o
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and therefore

1 T

21 ) _

Resg Tr((8H)(r — H) %) = _87% /_T Resi Tr((8H)(r — H)) —

— 0. Tr((8H)6(T — H)).

Plugging it into

0

(27.2.16)  Tr(H) = /

7d, Tr(6(7 — H)) = —/ Tr(8(r — H) d)

(o] —00

and integrating with respect to 7 we arrive after simple calculations to
(27.2.17)  8Tr (H—7)=Tr((8H)O(r — H)) =) _ / ®;(x)8A;(x) dx
J
where ®(x) is the right-hand expression of (27.2.14). Therefore
2
(27.2.18) SE(A) = /(cbj(x) — WAAJ-(X))MJ(X) dx
J
which implies (27.2.14). O

Proposition 27.2.5. If for k = k*
(27.2.19) E* > Weyl, — CM

with M > Ch™* then for k < k*(1 — €)

1
(27.2.20) th/|8A2dx < GM.

Proof. Proof is obvious based also on the upper estimate E* < Weyl; +
Cht. O
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Estimates

Proposition 27.2.6. Let estimate (27.2.20) be fulfilled and let

(27.2.21) ¢=rMh<c.

Then for 7 < ¢

(i) Operator norm in £? of (hD)*0(7 — H) does not exceed C for k =0, 1,2.

(it) Operator norm in £? of (hD)*((hD — A) - 0)0(r — H) does not exceed
C for k=0,1.

Proof. (i) Let u=0(1 — H)f. Then |lu|| < ||f|| and since

(27.2.22) | Allgs < C||OA|| < C(kM)zh

we conclude that
|ADul| < [|(hD — A)ul| + |Aull < [[(hD — A)ul| + C|Al|ss - [lullzs <
I(hD = AYul| + C(kM)?hllul|*/? - [lu] 3/ <
I(hD — A)ul| + C(kMh)2|[ul|*/2 - || ADu]|*/? <
1
|(hD — A)ul| + §||hDu|| + CxMhl|u|;

therefore due to (27.2.21)
(27.2.23) [|hDu|| < 2||(hD — A)u|| + CxMh||ul|.
On the other hand, for B=V x Aand 7 < ¢

I(hD — A)ul|* < Cllul[® + (hlBlu, u) < Cllul|* + AlIBI| - [|ull%s <

2
2 =

CllulP + C(xM)2#|[u]| - |ullzs < Cllul]® + C(M)?hl|u]| - ||hDul <
1
C(1+ kMK + 2 M2 ?)||ul)? + 5 (hD — A)ul?
and due to (27.2.23) we conclude that

(27.2.24)  ||(hD — A)u| < Cllul| and [hDu] < C(1 + xkMh)|u|
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provided kMh'*9 < ¢ for sufficiently small § > 0. Therefore under assump-
tion (27.2.21) for k = 0, 1 statement (i) is proven.

Further, since (hD)? = (hD — A)?> + A(hD — A) + AhD — h[D, A] we in
the same way as before (and using (27.2.24)) conclude that

1 1
I(hD)?ul| < Cllul® + 2 IhD(hD — A)ul[ + Zl\h2D2UII
and therefore

|WD%ul| < Cllul + C||ARDu]

and repeating the same arguments we get ||h*D?ul| < C||u||; so for k = 2
Statement (i) is also proven.

(ii) Statement (ii) is proven in the same way. O

Corollary 27.2.7. Let (27.2.20) and (27.2.21) be fulfilled. Then for T < ¢

(27.2.25) e(x,x,7) < Ch™3
and
(27.2.26) [((hD — A) - &)e(x, y, T)|xey| < Ch73.

Proof. Let us prove that

(27.2.27) Operator norms from £? to 6 of both operators (7 — H) and
((hD — A) - 6)0(7 — H) do not exceed Ch™2.

Indeed, Proposition 27.2.6 and embedding theorem imply that the operator
norm of 8(r — H) from %2 to C does not exceed Ch~2. Then due to
interpolation operator norms of 8(7 — H) from %2 to £3 and £° do not
exceed Ch™2 and Ch™? respectively.

Let v = ((hD—A)-o)u, u = 0(r—H)f, ||f|| = 1. We know that £5-norms
of Hu and u do not exceed Ch™!, and then it is true for ((hD — A) - o)ul| as
well.
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Then ||Aullgs < C||Allgs||fllgs < Ch~z and ||Dulys < Ch™2 which
together with |ul|¢> < C implies that ||u|g» < Ch™3/273/P for 2 < p < oo.
Then ||Aul|gs < C||Al|gs||ul|¢2 < Ch™% and ||Dul|4s < Ch™%. Together with
|ul| < C it implies ||u < Ch~2. So, (27.2.27) has been proven.

Then the same estimate for holds adjoint operators which imply both

statements of the corollary. O

Corollary 27.2.8. Let (27.2.20) and (27.2.21) be fulfilled and A be a mini-
mizer. Then

(27.2.28) |0A||1-s < Crh™
and
(27.2.29) |0A]| g < Cih57

where 6% is the scale of Hélder spaces and § > 0 is arbitrarily small.

Proof. Really, due to (27.2.14) minimizer A satisfies ||AA| g~ < Crh™L.
Also we know that [|0A|| < C(kMh?)z < Chz due to (27.2.21). Then
(27.2.28) holds due to the standard properties of the elliptic equations?®.

Therefore if at some point y we have |0A(y)| 2 p, it is true in its
e(uhk1)1°-vicinity (provided p < kh~!) and then

10AI? Z i (b )>=2)
and we conclude that
M2(,uh/{—1)3(1—5) < Ckh*M — M5—35 < CRrA-3p1H30 )y

and one can see easily that (27.2.29) holds due to (27.2.21) and assumption
<M< hs

On the other hand, if ;1 > xh™! then we need to take e-vicinity and then
2 < CkMh? < Ch? where we used (27.2.21) again. Therefore (27.2.29) has
been proven. O

Remark 27.2.9. (i) It is not clear if it is possible to generalize this theory
to arbitrary d > 2 with the magnetic field energy given by

1
(27.2.30) thl/(|8A|2 — |V - AP?) dx.

1) Actually we can slightly improve this statement.
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Surely one should use generalized Pauli matrices o; in the definition of the
operator: for d = 2 one can prove that E(A) is bounded from below and a
minimizer exists; for d = 4 one can prove that E(A) is bounded from below
if k < egh; especially problematic is the case d > 5 since then A € #* does
not guarantee enough regularity.

(ii) Therefore while arguments of Subsection 27.2.2 below remain valid for
d > 4, so far they remain conditional (if a minimizer exists and satisfies
some crude estimates).

27.2.2 Microlocal Analysis Unleashed
Sharp Estimates

Now we can unleash the full power of microlocal analysis but we need to
extend it to our framework. It follows by induction from (27.2.28)—(27.2.29)
and the arguments we used to derive these estimates that

(27.2.31) |0A[|gn-s < Coxh™™"  Yne ZT,

so A is “smooth” in € = h scale while for rough microlocal analysis as in
Section 2.3 one needs at least ¢ = Ch|log h|. We consider in this section
arbitrary d > 2; see however Remark 27.2.9.

Proposition 27.2.10. For a commutator of a pseudodifferential operator
with a smooth symbol and €%+ -function A(x) a usual commutator formula
holds modulo O(h?*Y||0A||,) for any non-integer 6 > 0 where

> sup|of(x)| 0zt
a:la|=0
(27.2.32) |Ifll, = 01=0 (o0 ) .
Y suplx—y|W0 107 (x) - 0°F(y)| 0 ¢ 2.
aslal=10) X7
Proof. Easy proof is left to the reader. O

Proposition 27.2.11. Assume that

(27.2.33) 10V l¢(802)) < Co
and
(27.2.34) p = [|0All¢(502) < Co-

Let U(x,y, t) be the Schwartz kernel of e tHav  Then for T =< 1
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(i) Estimate

(27.2.35) || Feesn-1-x7(£) (hDX)*(hD, )P 1 (x)ha (y) U|| < Ch°

holds for all o : |a| <2, B: || <2, s and all 1,92 € 6€5°(B(0,1)), such
that dist(supp(¢1), supp(v2)) > G T and T < co; here ||.| means an operator
norm from L2 to L2.

(i1) Estimate
(27.2.36) [Feprmxr(6)(AD)* (D, )ie1(D, )2 (D, U] <
Ch* + Ch" (1 Allgy + IV llg-)

holds for all o : o] < 2, B :|5] <2, s and all 1,2 € 65°, such that
dist(supp(¢1), supp(p2)) > G T, and 7 < ¢.

(111) If also in B(0,2)
(27.2.37) e <|V|<c
then for a small constant T = € estimate
(27.2.38) [|Femn1rx7(2) (D<) (hD,) U] <
Ch* + Ch (1Al gy + IV llg)

holds for all o = |a| <2, B:|8] <2, s and all 1, ¢ € 65°(B(0,1)), such
that diam(supp(¢1) Usupp(12)) < T and || <e.

Proof. Let u= ™ "Mf with arbitrary f € £2.

(i) Statement (i) is easily proven by the same arguments as in the proof
of Theorem 2.1.2: we consider just usual function ¢(x) and operators of
multiplication like x(¢(x)) so there are no “bad” commutators due to non-
smoothness of A or V.

(i) Statement (ii) is also proven by the same arguments; however in this case
¢ = é(x, &) so we need to involve “bad” commutators but their contributions
are bounded by

Cll@uull - (A (FAllay + 1Vllos) Il + B Q)
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in the right-hand expression while the left-hand expression is eh||Qul|?
where Q, @y, and Q' are operators with symbols x(¢(x, £)), x1(¢(x, £)), and
X1(¢(x, &) — n) respectively, n > 0 is an arbitrarily small constant (so the
latter symbol has a bit larger support than the former one), 6 > 0 is a small
exponent, x1(t) = (—x/(t))z, and f.e. x(t) = e 117" for t < 0, x(t) = 0 for
t>0.

Therefore we conclude that
1Qul| < Ch* ([l Allgsy + IV llooa) lull + CH[| Q@ ull

and similarly we can estimate || Q' u|| with ||Q”u/| in the right-hand expression
etc and thus we conclude that

1Qull < CH* (I Allgy + I VIlgso) llull + Cho|lul
which is what we need.

(iii) Statement (iii) is easily proven by the same arguments as in the proof
of Theorem 2.1.2: we consider just usual function ¢(x) and operators of
multiplication like x(¢(x)) so there are no “bad” commutators due to non-
smoothness of A or V. However we need to consider a contribution of u
which is not confined to the small vicinity of (y, n) and we need Statement (ii)
for this so the last term in the right-hand expression of (27.2.38) is inherited.

We leave easy details to the reader. O

Remark 27.2.12. In Proposition 27.2.11

(i) Statement (i) means the finite propagation speed with respect to x.

(ii) Statement (ii) means the finite propagation speed with respect to &
and the last term in the right-hand expression of (27.2.36) is due to the
non-smoothness of A and V.

(iii) Statement (iii) means that under assumption (27.2.37) there actually
is a propagation with respect to x.

(iv) So far we have not assumed that V is very smooth function; we actually
do not need it at all: it is sufficient to assume that 9V is very smooth in
the microscale € = h'~%; one can actually invoke more delicate arguments of
the proof of Theorem 2.3.1 and deal with microscale ¢ = Ch|log h|.
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Therefore in the framework of Proposition 27.2.11(iii) estimate

(27.2.39) |Fepanxr(8)((AD)(hD,) Ulx, v, 1) |, | <
Ch =T~ 4+ CT2h O (J| Allgsr + 1V [lg30)

holds for all av: |a| <2, 5: 8] <2, s for T =€ and |7| < € where as usual
v € (=L~ UL 1), xr(5) = x(t/T).

Let us consider T € (Ch,¢); then we apply the standard rescaling
t— tT7Y x> xT1, h— hT~! and assumptions (27.2.33), (27.2.34) are
replaced by weaker assumptions

(27.2.33) Tl[oVllesray) < Co
and
(27.2.34) Tl|0All 451 < Co-

Further, |All,,; and [|V|l,,, acquire factor T,

Furthermore, since U(x, y, t) is a density with respect to y we need to
add factor T~¢ to the right-hand expression and due to F,_,,-1, we need to
add another factor T and after these substitution and multiplications we
arrive to

Proposition 27.2.13. Let h < T < ¢ and assumptions (27.2.33)", (27.2.34)’
and (27.2.37) be fulfilled. Then estimate (27.2.39) holds.

Next we apply our standard arguments:

Proposition 27.2.14. In the framework of Proposition 27.2.13 let X €
65°([—1,1]). Then the following estimates hold:

(27.2.40) [Fep1 [Xr(£) (AD)*(hD,)  U(x, y, )] |, | <
Ch= + CT?h T (JAllgrr + 1 Vlgsn)
and
(27.2.41) |[((hDx — A(x)) - 0)"((hD, — Ay)) - 0) e(x,y. 1)]|,_,~
Weyl,, 5(x)[ <

_ _ 1 1
Ch=(1+ || 0A| 681y + 1OV leaeiy ) + Ch T2 (Al + 1V ]py) 2
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where

(27.2.42) Weyl,, 5(x) = const h~ /{H( oe }((f —A(x)) - O')Mﬂ dg

is the corresponding Weyl expression and

2
(27.2.43) Hx, €)= ((€ — AX)) - 0)° = V(x)
in particular Weyl, 5(x) =0 for || + (8] = 1.

Proof. Obviously, the summation of (27.2.39) over Goh < [t| < T and a
trivial estimate by Ch*~9 of the contribution of the interval |t| < Coh implies
(27.2.40).

Then the standard Tauberian arguments imply that the left-hand ex-
pression of (27.2.41) does not exceed the right-hand expression of (27.2.40),
divided by T, i.e.

CT 4 4 CTH 0 (JAllysy + Vi)

Optimizing with respect to T < ¢, such that (27.2.33)’, (27.2.34)" hold, we
pick up T = T* with

(27.244) T* =
. -1 ,_1(p— -1
emm(l, (10Al 6o+ OV leeey) A2 D (JAllgsr+ I VIle1n) 2)-

Meanwhile the Tauberian formula and (27.2.39) imply that the contribution
of the interval {t: |t| < T} with h < T < T* to the Tauberian expression
does not exceed the right-hand expression of (27.2.39) divided by T, i.e.

Ch' =9+ T - CTh™ || 0A|«¢s;

summation over T, := h'™% < T < T* results in the right-hand expression

of (27.2.41).
So, we need to calculate only the contribution of {t : |t| < T.} but one
can see easily that modulo indicated error it coincides with Weyl,, 5. O

Remark 27.2.15. For d > 3 one can skip assumption (27.2.37).

Indeed, we can apply the standard rescaling technique: x + xf71,
his h=ht~2, A A2, V = VO with € = max(e] V]!, hiv3),
v = (14 |0V]¢); see Section 5.2.
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Application

Let us apply developed technique to estimate a minimizer.
Proposition 27.2.16. Let k < ¢ and let A be a minimizer. Let
(27.2.45) pi=[[0A¢ < Ch™1F.

For d = 2 let assumption (27.2.37) be also fulfilled. Then for 6 € (1,2)
estimate

(27.2.46)  ||0A]|go-1 + h'7Y]|0A|| o <

1
Cr(1+ [Vgr + ROV VIE,.,) + CloA]

holds with
(27.2.47) |OA|" == sup ||0A
y

L2(B(y.1)):

Proof. Consider expression for AA. According to equation (27.2.14) and
Proposition 27.2.14 (|AA| + |h0AA|) does not exceed the right-hand
expression of (27.2.41) multiplied by Ckh9™? i.e.

(27.2.48) [|AA[¢ + [[hOAA[¢ <
1 1
Cn(l +|0Af + [0V ¢ + h2CD[0A]2, + h%(071)||av||%e)v

where we replaced ||A|,,, and || V||, by larger [|0A|¢o and [[OV/ || 4o respec-
tively.
Then the regularity theory for elliptic equations implies that

(27.2.49) For any ¢ € (1,2) h?~1||0A||4er does not exceed this expression
(27.2.48) plus C||0A]".

Observe that that [[0A|¢ does not exceed (¢e]|0A|l¢e + C!||0A|") with arbi-
trarily small constant € > 0 and therefore

(27.2.50) W'~ |0Algo + €| 0Al4

does not exceed expression (27.2.48) plus C!||0A||" where we used (27.2.49)
for ¢ = 6.

Comparing (27.2.50) and (27.2.48) we conclude that for x < ¢ and
sufficiently small constant € > 0 we can eliminate in the derived inequality
both contributions of JA to (27.2.48) thus we arrive to (27.2.46). O
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Having this strong estimate to A allows us to prove

Theorem 27.2.17. Let k < c, (27.2.45) be fulfilled, and let d > 3. Assume
that

(27251) HVH(@GH S c

with 6 € (1,2). Then

(27.2.52) E* = Weyl;, + O(h*™9)

and a minimizer A satisfies

(27.2.53) |0A|| < Ck2h2

and

(27.2.54) |0A]|<go—1 + h*~|0A|| 0 < Cr2hz + Cr.

Proof. (a) In virtue of (27.2.40) the Tauberian error when calculating
Tr(H, /) does not exceed the right-hand expression of (27.2.40) multiplied
by CT2i.e.

(27.2.55) Ch=T 72+ Ch= " ([ Allgyy + IV lg.0)-

Assumption (27.2.51) allows us to simplify this expression and take T =<
(1+ p)~%; applying estimate (27.2.46) we conclude that the Tauberian error
does not exceed

(27.2.56) C(1+ p)*h*? 4 C(r + ||0A] )P,

We claim that

(27.2.57) Weyl error® when calculating Tr(H, ) also does not exceed
(27.2.56).

Then

(27.2.58) E(A) >
Weyl; — C(1+ p)?h*~4 — C(k + || 0A| VP> + k9| 0A|? >

1
Weyl, — Ch*~9 + ﬂhl-d||aA||2

5) Le. error when we replace Tauberian expression by Weyl expression.
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because p < C||0A||" + 1 due to (27.2.46) and assumption (27.2.51). This
implies an estimate of E* from below and combining with the estimate
E* < E*(0) = Weyl; + Ch*~? from above we arrive to (27.2.52) and (27.2.53)
and then to (27.2.54) due to (27.2.46) and assumption (27.2.51).

(b) To prove (27.2.57) let us plug A. instead of A into e (x, x,0). Then in
virtue of the rough microlocal analysis the contribution to Weyl error of
the interval {t : T, < |t| < €} with T, = h*~% would be negligible and the
contribution of the interval {t : |t| < T.} would be Weyl; + O(h*~9).

(c) Now let us calculate an error which we made plugging A. instead of
A into e (x, x,0). Obviously it does not exceed Ch™9||A — A.||« and since
|A— All¢ < Ce®1||OA||o this error does not exceed Ch'F1=9=43||9A
which is marginally worse than what we are looking for.

69,

However it is good enough to recover a weaker version of (27.2.52) and
(27.2.53) with an extra factor h=® in their right-hand expressions. Then
(27.2.46) implies a bit weaker version of (27.2.54) and in particular that its
left-hand expression does not exceed C.

Knowing this, let us consider the two term approximation. With the
above knowledge one can prove easily that the error in two term approxima-
tion does not exceed Ch3~9=% with § = 1009.

Then the second term in the Tauberian expression is

(27.2.59) /((HA,V — Ha. v)ef(x,y,0)) |y:X dx,

where subscript () means that we plugged A. instead of A and superscript
T means that we consider Tauberian expression with 7 = T* = ¢. But then
the contribution of the interval {t : T, < [t| < T*} is also negligible and
modulo Ch?*2=4=%||0A]|¢e we get a Weyl expression. However

(27.2.60) (Hav — Hav) = =2(6 — A) - (A— A) +]A- A

Observe that the first term in the right-hand expression kills the Weyl
expression since an integrand is odd with respect to (§ — A:) while the
second term as one can see easily makes it smaller than Ch*~9=%. Therefore
(27.2.57) has been proven. O

Remark 27.2.18. (i) For d = 2 we cannot drop assumption (27.2.37) at this
stage we did it for d > 3. However results of the next section allow us to
cure this problem using the partition-and-rescaling technique.
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(ii) Actually for V € €?! we have an estimate
(27.2.61) |0A(x) — 0A(y)| < Crlx — y|(|log [x — y|| + 1) + Cp.
Combining with (27.2.53) we conclude that

(27.2.62) 0A|l¢ < CK(d+1)/(d+2)| log h|d/(d+2)h1/(d+2).

(iii) If (27.2.51) holds for (hd)™V with m € Z* then (27.2.53) and (27.2.53)
also hold for (h9)™A instead of A; further, if (h0)™V € 6% then (27.2.61)
and (27.2.62) also hold for (hJ)™A instead of A.

Classical Dynamics and Sharper Estimates

Now we want to improve the remainder estimate O(h*~?) to o(h?>~9). Sure,
we need to impose condition to the classical dynamical system and since
|0A| = O(h°) with § > 0 due to (27.2.62), it should be dynamical system

associated with the Hamiltonian flow generated by Hp v:

(27.2.63) The set of periodic points of the dynamical system associated with
Hamiltonian flow generated by Hp\ has measure 0 on the energy level 0.

Recall that on the energy level {(x,&) : Hov(x,§) = 7} a natural density
du, = dxd§ : dH|y—, is defined.

The problem is we do not have a quantum propagation theory for Ha vy
as A is not a “rough” function (i.e. smooth in microscale €). However
it is a rather regular function, almost 62, and (A — A.) is rather small:
|A—A.| <n:= Ch*3 and |9(A— A.)| < Ch*~3% and therefore we can apply
a method of successive approximations with the unperturbed operator Ha_ v
as long as nT/h < h” ie. as T < h'=*. Here we, however, have no use for
such large T and consider T = O(h~?).

Consider

(27.2.64) Fesnoxr(0)U(x, v, t),

and consider terms of successive approximations. Then if we forget about
microhyperbolicity arguments the first term will be O(h=¢T), the sec-
ond term O(h~1~9yT?) = O(h*~9=") and the error term O(h=2~92T3) =
O(h2—d—6”)_
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Therefore since our goal is O(h'~?) we need to consider the first two
terms only. The first term is the same expression (27.2.64) with U replaced
by U(E).

Consider the second term, it corresponds to U,(x,y, t) which is the
Schwartz kernel of operator

t
(27.2.65) Uy =ih" / N Hacw (M — Hy, ) e ey gt
0

and then
(27.2.66) Tr(Upw) = ih™ Tr((HA,v - HAE,V)eihiltHAE'V’(pl(t))

where
t
wl(t) ::/ eih*1t’HAE,Vwefihflt’HAEYV dt’
0

is h-pseudodifferential operator with a rough symbol and ¢(t) ~ t.
Really, one can prove easily studying first the Hamiltonian flow equation
and then the transport equations that 1, = e tHavepe=h " tHav i5 o h
pseudodifferential operator with a rough symbol and its corresponding norm
is bounded.
Note that

ih™ Fepr €™ ey ypl(t) = (2m) / (Feonane™ ) F(hH (7 — 7)) d’

with f = Fo fe, fr = x7(£)y*(t) and therefore (27.2.65)(27.2.66) imply
that

(27.2.67) |Feoshrox7(8) TrU | < CpT2h¢

where in comparison with the trivial estimate we gained the factor h.

We can plug here T' € (T,, T) instead of T and, taking summation by
T’ from T, = € to T, we conclude that estimate (27.2.67) also holds for
x7(t) replaced by (X7(t) — X.(t)) (provided ¥ =1 on (—3, 1)) and since
nT? < A for T < h™% we see that the right-hand expression (27.2.67)
does not exceed Ch'=9+9,

On the other hand, our traditional methods imply that
(27.2.68)  |Fen o x7(t) Tr(e™ Haevp)| < CH=9Tu(M7 ) + Croht=94+0

where [1+ is the set of points on energy level 0, periodic with periods not
exceeding T, My is its (-vicinity, ¢ > 0 is arbitrarily small; recall that for
d = 2 we assume that condition (27.2.37) is fulfilled.
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Here again we can plug any T’ € (T, T) instead of T and after sum-
mation with respect to T’ we conclude that (27.2.68) also holds with x7(t)
replaced by (Tr(t) — ¥r.(2)).

Combining with estimate for (e "Ha-v — e™'Ha-v) we conclude that

|Ft—>h*1'r()2T(t) - )ZT*(t)) Tr(eit’hleA,Vw)‘ <
Ch4Tu(Nye) + Croht=d+?

and since ’
|Ft~>h’17'>_<T*(t) Tr(e,t’hleA,va < Chlfd

we conclude that

(27.2.69) |Fiyp-1,x7(1t) Tr(e;t/hleA,va <
Ch* 9+ ChTu(Nrc) + Creh' %,

Then the Tauberian error does not exceed the right-hand expression of
(27.2.69) multiplied by ChT~2 and it is less than CT1h*~9.

Consider now the Tauberian expression and again apply the two-term ap-
proximation for e '*av considering e 'tHa:v as an unperturbed operator;
then the error will be less than Ch>=9+9,

Consider the second term after taking trace; it is O( , so it is just
slightly too large. Further, if ¢ = | one can calculate it easily and observe
that it is O(h*>~9%9) provided V € €2

Finally, the first term is what we get for e v and in virtue of rough
microlocal analysis the contribution of the interval {t: T, < |t| < T} does
not exceed Ch*~4u(Mr ) + Crh?>~9% and the contribution of the interval
{t:|t| < T.} is Weyl; + O(h?>~9+9).

Then we arrive to

h2—d—46)

-1 t‘f’l'AE

Theorem 27.2.19. Let x < c, (27.2.45) and (27.2.51) be fulfilled. Further-
more, let condition (27.2.63) be fulfilled®. Then

(27.2.70) E* = Weyl; + o(h*™9)
where

d
(27.2.71) Weyl; = Weyl; + %h2d/ VZAV dx

calculated in the standard way for Hy,y and a minimizer A satisfies similarly
improved versions of (27.2.53) and (27.2.54).

6 Te. po(Ny) = 0.
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Remark 27.2.20. (1) Recall that for d = 2 so far we assume (27.2.37). How-
ever we need it only to estimate 0A. Indeed, even in the case of very
degenerate potential V' the “magnetic” correction will be small since |0A| is
small.

(ii) Under stronger assumptions to the Hamiltonian flow one can recover
better estimates like O(h*~9|log h|=2) or even O(h*+°~9) (like in Subsubsec-
tion 4.5.4.3 Sharper Remainder Estimates).

(iii) We leave to the reader to calculate the numerical constants sz, here

and in (27.2.76) below, 3 = 30 — 20,.

(iv) However, even if 1) # | we can observe that it is sufficient to consider
only principal terms and then the second term in approximations is also
O(h*=9*9) provided V € 62! as long as principal symbol of ¢(x) is even
with respect to &, in particular, if ¢ = ¢(x).

27.2.3 Local Theory
Localization and Estimate from above

The results of the previous Subsection 27.2.2 have two critical shortcomings:
first, they impose the excessive initial requirement (27.2.21) to k as we need
to start from M < ch™3; second, they are not local. However, curing the
second shortcoming, we make the way to addressing the first one as well,
using the partition and rescaling technique.

We can localize Tr™(H) = Tr(H™), which is the first term in E(A),
either in our traditional way as Tr(H~¢?) or in the way favored by some
mathematical physicists”): namely, we take Tr™(1H1)) where in both cases
Y € 6§°(B(0,3)), 0 < ¢ <1 and some other conditions will be imposed to
it later. Observe that

(27.2.72) Tr (YHY) > Tr(vH ) = / e (x, x,0)9*(x) dx.

Really, let us decompose operator H = HO(—H) + H(1 — 6(—H)), where
0(7— H) is a spectral projector of H, and therefore in the operator sense H >
H™ = HO(—H) and ypHy > 1pH 9, and therefore all negative eigenvalues

) See f. e. L. Erdés, S. Fournais. and J. P. Solovej [4].
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of ®H are greater than or equal to eigenvalues of the negative operator
1®H™1, and then

0

(27.2.73) Tr (YHY) > Tr(WH ) = Tr(/ 7d.0(1 — H)z/)z),

which is exactly the right-hand expression of (27.2.72).
Remark 27.2.21. Each approach has its own advantages.

(i) In particular, no need to localize A (see (ii)) and the fact that Proposi-
tion 27.2.5 obviously remains true are advantages of Tr™ (¢ H)-localization.

(ii) Further, sinces Tr™ (¢Hv)) does not depend on A outside of B(0, 2) we
may assume that A = 0 outside of B(0, 1). Really, we can always subtract a
constant from A without affecting traces and also cut-off A outside of B(0, 1)
in a way such that A'= A in B(0, 2) and [|0A'|| < c||0A||(0,1); the price is
to multiply by c~!-as long as principal parts of asymptotics coincide.

(iii) On the other hand, additivity rather than sub-additivity of (27.2.88) and
the trivial estimate from the above are advantages of Tr(¢»H~v)-localization;
therefore it is more advantageous.

(iv) In the next Chapter 28 (in Section 28.2) we will use more Tr™ (¢ H1))-
localization for preliminary estimates from below and simplify many argu-
ments of this Section. We apply these modifications and simplifications to
this Section in the final version of the Book.

We will use both methods and here we provide an upper estimate for the
larger expression Tr™ (¢)H1) and a lower estimate for the lesser expression
Tr(vH™4). Let us estimate from the above:

Proposition 27.2.22. Assume that V € 6>, d > 2. Let {(x) be a scaling
function®) and v be a function such that |0%| < cyl=lel for all o : |a| < 2
and || < ) with o > 1 and § > 09).

Then, if A= 0,

(27.2.74) Tr (YHY) = / Weyl, (x)1?(x) dx + O(h*9)

® Le. £>0and |0¢] < 3.
9 Such compactly supported functions obviously exist.



230 CHAPTER 27. SELF-GENERATED MAGNETIC FIELD

and under assumption (27.2.63)

(27.2.75) Tr (YHY) = / Weyl (x)1?(x) dx + o(h*~)
with

d d_
(27.2.76) Weyl;(x) = Weyl;(x) + sh " VAV + s0h7 1 V? 1]V V|2

calculated in the standard way for Hy .

Proof. Let us consider A= 1H1) as a Hamiltonian and let &(x, y, 7) be the
Schwartz kernel of its spectral projector. Then

(27.2.77) Tr (YHY) = /él(x,x, 0) dx = Z/él(x,x,omf dx,

where 1/)12 form a partition of unity in R? and we need to calculate the right

hand expression. The problem is that A is not a usual Schrédinger operator
because of the degenerating factor ¢ on each side.

Consider first an ef-admissible partition of unity in B(0,1). Let us
consider ~-scale in such element where 7 = €/’ and we will use 1-scale
in £. Then after rescaling x — xy~! the semiclassical parameter rescales
h + hpew = hy~! and the contribution of each y-subelement to a semiclassical
remainder does not exceed Cy%(h/v)* 7 with ¢ < 41 having the same
magnitude over element as long as v > 2h. Then the contribution of /-
element to a semiclassical error does not exceed Ctp?(h/v)?~9 x (44?9 <
Ch2fd¢2772€d < Ch2—dpd+25

Note that expression (27.2.77) only increases if we sum only with respect
to elements where ¢ > h. Therefore we arrive to estimate

Tr (YHY) < / Weyl, (x)%(x) dx + Ch*~¢,

where integration is taken over a domain {x: £(x) > h*/?}. Note that we can
extend this integral to R9: indeed, it will add negative term with absolute
value not exceeding Ch™? x h?*% as 1) < h'*9 there and it is absorbed by
the remainder estimate. O

Corollary 27.2.23. In the framework of Proposition 27.2.22

(27.2.78) E}, = infEy(A / Weyl; (x)1?(x) dx + Ch*~
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and under assumption (27.2.63)

(27.2.79) E;, < / Weyl, (x)h?(x) dx + Ch*~¢
with
1
(27.2.80) Eu(A) = Tr (YHY) + hz/|8A|2dx.
KR
Proof. Indeed, we just pick A= 0. O

Estimate from below

Now let us estimate redefined E,(A),

(27.2.81) Ey(A) = /el(x,x, 0)1%(x) dx + K/h::’—l/mAF dx,

from below. However we need an equation for an optimizer and it would be
easier for us to deal with even lesser expression involving 7-regularization.
Let us rewrite the first term in the right-hand expression in the form

/ @(/L)7 d-e(x, x, 7) +/ (1—@(r/L))T dre(x,x,7) >

—00 —00

/_L (Q(T/L)(T — L) dre(x, x,7) + (1 — @(r/L)) dre(x, x, T)),

where @ € 65°([—1,1]) equals 1 in [-3, 1] and let us estimate from below
L

(27.2.82) E(A) = / ( / B(r/L)(r — L)d-e(x, x, 7)(x)+

- 1
(1—@(r/L)(r — L) dre(x, x, T))”g/)2(X) dx + Thid / |OA|? dx.
Let us generalize Proposition 27.2.4:

Proposition 27.2.24. Let A be a minimizer of E,,(A). Then

khi—d
Retr[o;((hD — A). - 0K (x,y.7) + K(x,y.7) (hD — A), - &) |

(27.2.83) AAi(x) = &) =

y=x
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with

K= / SK[@(T/L)(T — L) Resg (7 — H) Yp?(1 — H) 1+
(1= §(r/L))(7 = L) Resa(r = H) "03(r — H) | (x,y) dT,

where we use a temporary notation SK[B](x, y) for the Schwartz kernel of
operator B.

Proof. Follows immediately from the proof of Proposition 27.2.4. O

Proposition 27.2.25. Let d = 3 and assumptions (27.2.20) and (27.2.21)
be fulfilled. Then for m < c

(i) Operator norm in L% of (hD)K(7 — H)~1 does not exceed C|Im 7|71 for
k=012

(it) Operator norm in £? of (hD)?*((hD — A) - ¢)(t — H)™* does not exceed
ClImr|™ for k=0,1,2.

Proof. Proof follows the same scheme as the proof of Proposition 27.2.6.]

Proposition 27.2.26. Let d = 3 and assumptions (27.2.20) and (27.2.21)
be fulfilled. Then |®(x)| < Ch=3.

Proof. Let us estimate
(27.2.84) | / 7¢(7/L) Resg SK[Q(T — H)y WA (r — H)—l] (x,y) d7],

where L < ¢ and ¢ € 65°([—1,1]) and also a similar expression with a
factor (7 — L) instead of 7; here either @ = I, or @ = (hDx — Ak)x or
Q = (hDy — AY),.

Proposition 27.2.25 implies that the Schwartz kernel of the integrand
does not exceed Ch=3|Im7|~2 and therefore expression (27.2.84) does not
exceed CL? x h=3L72 = Ch=3.

Then what comes out in ® from the term with the factor ¢(7/h) does
not exceed Ch=3.

Then, representing (1 — ¢(7/h)) as a sum of ¢(7/L) with L = 2"h with
n=0,..,||logh|| + c, we estimate the output of each term by Ch~3 and
thus the whole sum by Ch=3|log h|.
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To get rid of the logarithmic factor we use equality
(27.2.85) (7 — H) '(r — H) ™t =
—0(r — HY N+ (r — H) b ul(r — H)

if we plug only the second part, we recover a factor h/L, where h comes from
the commutator and 1/L from the increased singularity; an extra operator
factor in the commutator is not essential. Then summation over partition
results in Ch=3.

Plugging only the first part we do not use the above decomposition but
the equality Resg(r — H)™'d7 = d,0(7 — H). O

Corollary 27.2.27. Let d = 3, assumptions (27.2.20) and (27.2.21) be
fulfilled and A be a minimizer. Then (27.2.28) and (27.2.29) hold.

Proof. Proof follows the proof of Corollary 27.2.8. OJ

Now we can recover both Proposition 27.2.16 and our both main Theo-
rems 27.2.17 and 27.2.19:

Theorem 27.2.28. Let d = 3 and assumptions (27.2.20) and k < ¢ be
fulfilled. Then

(i) The following estimate holds:
(27.2.86) E;, — / Weyl, (x)1?(x) dx = O(h*~)

and and a minimizer A satisfies (27.2.53) and (27.2.54).

(ii) Furthermore, let assumption (27.2.63) be fulfilled (i.e. po(Ms) = 0).
Then

(27.2.87) E;, — / Weyl; (x)1?(x) dx = o(h*~9)

and a minimizer A satisfies similarly improved versions of (27.2.53) and
(27.2.54).

27.2.4 Rescaling
Now we apply the rescaling. We consider only d = 3 here.
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Case k<1

We already have an upper estimate: see Corollary 27.2.23. Let us prove a
lower estimate!®. Consider an error

(27.2.88) ( / Weyl, (x)¢? dx — Ew(A)>+.
Obviously, Tr™ is sub-additive

(27.2.89) Tr‘(Z YiH;) > ZTF(%H%),

and therefore so is E,;(A) under assumption that 1; € ‘63(B(x;, 3¢;)), where
multiplicity of covering by B(x;, £;)) does not exceed Gy and we are allowed
to replace k£ by Cix in the right-hand expression').

Then we need to consider each partition element and use a lower estimate

for it. While considering partition we use so called ISM identity: if

2
(27.2.90) doUi=1
J
we have

(27.2.91) H= Z(%ij + %[[H. Uil Wl) =

ZwJ(H + % Z[[H Uil 1/1k])¢j,

where the second equality is due to the fact that [[H, ], ¢;] is an ordinary
function.

In virtue of Proposition 27.2.5, from the very beginning we need to
consider

(27.2.92) M = kPR

with « =2, 8 =0 and x < ¢. But we need to satisfy precondition (27.2.21)
which is then

19 But only for E4(A) defined by (27.2.80).
) Realy, [AJ2 > ¢ 37, 94| with A;(x) — (AG)~A;()e] with v} € 63(B(x. 36)
equal 1 in B(x;, 3¢))).
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(27.2.93) KPTLh™ < c.

Therefore, if condition (27.2.93) is fulfilled with a = 0, we conclude that
the final error is indeed O(h™!) or even o(h™!) (under assumption (27.2.63))
without any precondition.

Let precondition (27.2.93) fail. Let us use y-admissible partition of unity
wf with v; satisfying after rescaling assumptions of Proposition 27.2.22.

Note that rescaling x + xy~! results in h — hney = hy~! and after
rescaling in the new coordinates ||0A||? acquires factor v¢=2 and thus factor
k~1h2 becomes kK Th™2y972 = k. L h-2 with K = Kpew = K.

Then after rescaling precondltlon (27.2.93) is satisfied provided before
rescaling kPTTh=~2t8+1 < ¢ Thus, let us pick up the largest v satisfying
this: v = = (FFV/(@+8+1) po/(a+6+1) - Obviously, if before rescaling condition
(27.2.93) fails, then h < v < 1.

But then expression (27.2.88) with ¢ replaced by 1; does not exceed
Ch,l, = C(hy™')7! and the total expression (27.2.88) does not exceed

new

C(hy™ )2y 3 = Ch iy 2 = Cx¥h~ 17 with
f=20pB+1)/(a+5+1), o =2af/(a+p+1).

Therefore, actually we can pick up M with «, § replaced by ', ' and
we have a precondition (27.2.93) with these new o/, 8" and we do not need
an old precondition. Repeating the rescaling procedure again, we derive a
proper estimate with again weaker precondition etc.

One can see easily that o + 8" + 1 = 3 and therefore on each step
a+ f+1 = 3 and we have a recurrent relation for o/: o = %a; and
therefore we have sequence for a which decays and becomes arbitrarily
small. Therefore precondition (27.2.93) has been reduced to a much weaker
assumption £ < h® and under it estimate M = O(h~!) has been established.
Furthermore, after this under assumption (27.2.63) we can prove even sharper
asymptotics.

To weaken assumption £ < h° to xk < ¢ we can use rescaling x +— xy ™
with v = h°. We arrive to the error estimate O(h~17%) and therefore op-
timizer satisfies ||V x A|| < h2=° (where 0 is increased if necessary but
remains arbitrarily small). Repeating the arguments of the proof of Propo-
sition 27.2.6, instead of ||AA|lg~ = O(1) we arrive to ||AA|g~ = O(h™°%)
and to [|0?Alg~ = O(h™°); then ||0A|g~ = O(h2~%): it is more than
sufficient to unleash the microlocal analysis technique without any need
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to appeal to Proposition 27.2.6 which is the only place where we needed
assumption (27.2.21).
Thus we arrive to

Theorem 27.2.29. Let d =3, V € 6?1, k < c and let 1 satisfy assump-
tion of Proposition 27.2.22. Then

(1) Asymptotics (27.2.86) holds.

(i1) Further, if assumption (27.2.63) is fulfilled then asymptotics (27.2.86)
holds.

(tii) If (27.2.86) or (27.2.87) holds for E,(A) (we need only an estimate
from below) then ||0A| = O((kh)2) or ||OA|| = o((kh)z) respectively.
Case 1<k < h?!

In this framework we can consider even the case 1 < k < h~. The simple
rescaling-and-partition arguments with v = x~! lead to the following

(27.2.94) If 1 < k < h™%, then the remainder estimate O(k*h~!) holds and
for a minimizer A satisfies ||0A||?> < Ck3h.

However we would like to improve it and, in particular, to prove that if
is moderately large then the remainder estimate is still O(h™!) and even
o(h™!) under non-periodicity assumption.

Theorem 27.2.30. Let d =3, V € 621, and let ¥ satisfy assumptions of
Proposition 27.2.22. Then

(i) For
(27.2.95) Kk < K, =ch 3|logh|
asymptotics (27.2.86) holds.

(it) Furthermore, for k = o(k}) and assumption (27.2.63) is fulfilled then
asymptotics (27.2.87) holds.

(iii) If K} < Kk < ch™! the following estimate holds:

(27.2.96) E;, — / Weyl, (x)02(x) dx| < Ch=3(r:h)?| log rh[2.
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Proof. (i) From (27.2.46) we conclude for x > ¢ that
h?10A|¢e < Cr(k + fi).

Then, using arguments of Subsection 27.2.2, one can prove easily that for
k< ho=3

|Feon1- X (8)(hD)*(hD,)? (U(x, v, £) = Uy (x, ¥, t) = Uiy (x, v, £))] <
Chlfd'

where we use the same 2-term approximation, T = ei~!. Let us take
then x = y, multiply by e~ 91 (e71(y — z)) and integrate over y. Using the
rough microlocal analysis technique, one can prove easily that from both
Ue(x,y, t) and U, (x,y, t) we get O(h™2) and in the end of the day we
arrive to the estimate |AA.| < Ckfi, which implies

(27.2.97) |0%A.| < Crkiji|log h| + Cp,

where obviously one can skip the last term. Here we used the regularity
property of the Laplace equation. For our purpose it is much better than
the estimate |0?A.| < Ck?|log h| + Cp, which one could derive easily.

Again, using arguments of Subsection 27.2.2, one can prove easily that

(27.2.98) | Tr(oHa ) = Tr(YH, )| < CR2h*7
and therefore
(27.2.99) | Tr(YHy ) — / Weyl, (x)¢?(x) dx| < Cii2h*~

and finally for an optimizer
(27.2.100) |0A|]* < Ckjih.

Here 1 and fi were calculated for A, but it does not really matter since due to
the estimate |0?A| < Ck2h~° we conclude that |[0A — 0A.| < Ck2h% < C
due to restriction to .

Then, for d =3

(27.2.101) 1*(/(rfil log h|))? < kfi*h



238 CHAPTER 27. SELF-GENERATED MAGNETIC FIELD

and if 4 > 1 we have i = p and (27.2.101) becomes 3| log h|=> < Ckh
which is impossible under (27.2.95).

So, i < 1 and (27.2.101) implies (27.2.86) and (27.2.100), (27.2.101)
imply that for an optimizer ||9A| < C(rkh)z and p < Cr*h|loghl?. So
Statement (i) is proven.

(ii) Proof of Statement (ii) follows then in virtue of arguments of Subsec-
tion 27.2.2.

(iii) If K} < k < h™* we apply the partition-and-rescaling technique. Then
h+— H = hy™t and k — k' = K7y and to get into the framework of (27.2.95)
we need v = e 3 h™3 | log(r:h)| 72, leading to the remainder estimate Ch1y72,
which proves Statement (iii). O

Problem 27.2.31. Repeat arguments of Subsubsections 27.2.1.2. Prelim-
inary Analysis and 27.2.1.3. Estimates and of this Subsection for d # 3.
When they hold?

27.3 Global Trace Asymptotics in the Case
of Coulomb-Like Singularities

27.3.1 Problem

We consider the same operator (27.1.4) as before in R® but now we assume
that V has Coulomb-like singularities. Namely let y,, € R® (m=1,..., M,
where M is fixed) be singularities (“nuclei”). We assume that

(27.3.1) V=Y T W(x)
1<m<M X = Yml|

where

(27.3.2) Zm >0, z1+ ...+ zy =<1,

and

(27.3.3) [D°WI< Co D zm(lx = Yol +1) " x =y

1<m<M
Va:|a| <2,
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but at the first stages we will use some weaker assumptions. Later we assume

that V/(x) decays at infinity sufficiently fast. Let us define E*) and E(A) by

(27.2.2)-(27.2.1). Finally, let £(x) mini<mem €m(x) with £m(x) = 1{x — ym|.
In this and next Sections we assume that

(27.3.4) K € (0, k*] where 0 < * is a small constant.

For k = 0 we set A =0 and consider E := Tr™(Ha v); then our results are
covered by Chapter 25.

27.3.2 Estimates to a Minimizer

Let us consider a Hamiltonian with potential V and let A be a magnetic
potential, minimizing expression (27.2.2). We say that A is a minimizer and
in the framework of our problems we will prove it existence.

Preliminary Analysis

First, we start from the roughest possible estimate:

Proposition 27.3.1. Let V satisfy (27.3.1)~(27.3.3) and let k < k*. Then
the near-minimizer A satisfies

(27.3.5) |/(tr ea1(x, x,0) — Weyly (x)) dx| < Ch™?
and
(27.3.6) |0A]| < Ck:.

Proof. Definitely (27.3.5)—(27.3.6) follow from the results of L. Erdds, S. Four-
nais, and J. P. Solovej [3] but we give an independent easier proof, based on
our Subsection 27.2.1.

(a) First, let us pick up A = 0 and consider Tr(¢,0(—H)) with cut-offs
Ye(x) = Y((x — ym)/€) where ¢ € 65°(B(0,1)) and equals 1 in B(0, §). Here
and below 0(7 — Ha v) is a spectral projector of H.

Then

(27.3.7) | Tr(veHa y(0)i)| < Ch2 for (=1, = .
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On the other hand, contribution of B(x,¢) with ¢(x) > ¢, to the Weyl
error does not exceed C¢?h~' = C¢3¢h~! where h = h/((l) in the rescaling;
so after summation over ¢ > ¢, we also get O(h™2) provided ¢* < C¢L.
Therefore we arrive to the following rather easy inequality:

(27.3.8) | / (tr €01 (x. x, 0) — Weyl, (x)) dx| < Ch™>.

This is what the rescaling method gives us without careful the study of the
singularity.

(b) On the other hand, consider A # 0. Let us prove first that

(27.3.9) Tr~ (YeHap) > —Ch™ — Ch™2 / |0AZdx  for (=¢..

Rescaling x — (x — ym)/¢ and 7 — 7/¢ and therefore h — hl~z < 1 and
A Al (because the singularity is Coulomb-like), we arrive to the same
problem with the same  (in contrast to Subsection 27.2.4 where x — K¢
because of the different scale in 7 and h) and with £ = h = 1.

In this case the required estimate follows from L. Erdds, J. P. Solovej [1]
(we reproduce Lemma 2.1 of this paper in Appendix 27.A.1.

(c) Consider now function v, as in (c¢) with ¢ > ¢,. Then according to
Theorem 27.2.29 rescaled

(27.3.10)  Tr™ (YeHav i) — / Weyl, (x)1)7 (x) dx

> —CCth™ — Ch™2 / 10AJ? dx.
B(x,2¢/3)

Really, rescaling of the first part is a standard one and in the second part we
should have in the front of the integral a coefficient x=*h=2¢? x (~24(h/(l)~?
where factor (2 comes from the scaling of the spectral parameter, factor
(™2 comes from the scaling of the magnitude of A, factor ¢ = (3 x (2
comes from the scaling of dx and O respectively, and h = h/(C/l) is a
semiclassical parameter after rescaling. Therefore this expression acquires a
factor (20 < C.

Then we conclude that

(27.3.11) /(tr ea1(x, x,0) — Weyly(x)) dx > —Ch™> — Ch™? / |OAJ? dx
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and adding the magnetic field energy x~*h=2||0A]||? we find out that
(27.3.12) E(A) — / Weyl, (x) dx >
E(0) - / Weyl, (x) dx + (11 — C)h~2||9A|2 — Ch~2

since Weyl;(x) does not depend on A. However due to (a) the right-hand
expression is greater than (k=1 — C)h~2||0A||> — Ch~2.

On the other hand, since A is supposed to be a near-minimizer, the
left-hand expression of (27.3.12) should not exceed the same expression for
A =0 plus Ch? i.e. Ch? due to (a) again. Then due to )(27.3.4) we arrive
to (27.3.5) and (27.3.6). O

Proposition 27.3.2. Let V satisfy (27.3.1)—(27.3.3). Then there exists a
minimizer A.

Proof. After Proposition 27.3.1 has been proven we just repeat arguments
of the proof of Proposition 27.2.2. If V € %3 no change would be required
but for V ¢ %3 one needs to consider modifications as in Remark 27.3.3
below. OJ

Remark 27.3.3. We are a bit ambivalent about a convergence of | Weyl;(x) dx
at infinity, since for the Coulomb potential it diverges. To avoid this issue,
however, we can either assume in addition that V € .%g, or tackle it as in
Proposition 27.3.16 below.

Estimates to a Minimizer. I

Let us repeat arguments of Subsubsection 27.2.1.3. Estimates. However
our task now is much more complicated: while we know a priory that
|0A|]? < Ck we will not be able to improve it significantly (or at all for
k=< 1).

Recall equation (27.2.14) for a minimizer A. After rescaling x — x/¢,
T 7/C% h— h=h/(Cl), A— AC"'/ this equation becomes

(27.3.13) AA; =
_2KC20R? Retr [aj ((th—ClA)X-O'e(X, y.7)+e(x, v, 7) t(hD—ClA)yUﬂ ‘

y=x
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and since so far (?¢ = 1 we arrive to

(27.3.14) AA; =
—2Kh2 Retr[o‘j ((hD—g‘lA)X.Ue(x, y, T)+e(x,y,7) f(hD—C‘lA)y-U)}

y=x

(a) Plugging u = ¥0(—H)f with cut-off function ¢ and repeating arguments
of Subsubsection 27.2.1.53. FEstimates, we conclude that in the rescaled
coordinates

(27.3.15) [|(AD, - &)u|| < [|(hDx — A) - &)u|| + C||Alls - ||ulls
< |((AD. — A) - @)ul| + Cli2 || Allgs - ||ulZ - ||ADxul|2

1 _1
< [((RDx = A) - o)ul| + S [[ADcul| + C(A™= [Allsze)?[lull,

where ||Al|¢s calculated in the rescaled coordinates is equal to ||Aorig||«6 orig
(where subscripts “orig” means that the norm is calculated in the original
coordinates and A) which does not exceed Ckz due to (27.3.6)'2 and
therefore (since ||(AD, - o)ul| = ||hDxul|)

(27.3.16) |ADcu|| < C(1 4 wh™Y)]|f]].

Continuing arguments of Subsubsection 27.2.1.3. FEstimates, we conclude
that in the rescaled coordinates

(27.3.17) [(hD)kul| < C (1 + xh™ ) |||,

(27.3.18) [(AD.)*((ADx = A) - o)u|| < C(L + wfi ) ||,
for k =0,1,2 and therefore

(27.3.19) |AA

P=o(B(x1)) < C/{ﬁ_l(l + Iih_l)3.
Here we estimate different norms of A locally. Then either

(27.3.20)  |9A

fm(B(X%)) + h6||82A igoo(B(X’%)) S Cﬁh71(1 + ﬁh71)3

or

(27.3.21) [|0Al| o (Bx1_e)) + 1°[|0PA

|§£°°(B(X,1—e))
< C||9A]| = C[|0Awrigllorig < Cr2

12) As usual we assume that the average of A over B(x,1) is 0.
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In the latter case (27.3.21) we have in the original coordinates

(27.3.22) HaA Loo(B(x,6)) < Clﬁ%f_%

and we are rather happy because then the effective intensity of the magnetic
1
field in B(X, 5) is §*1£||6A||ggw(3(xyl,€)) < Cka2.

(b) The former case (27.3.20) is much more complicated because our estimate
is really poor for k < 1 and we are going to act only in the assumption
(27.3.4). Assume that

(27.3.23) 10A[| e (Bx1-e)) < 1t

with p > h™7. Selecting u = ¥0(—H)f with y-admissible 1) we conclude
that ||(A- o)ul| < [|A||l¢=|ul| < Cuyl|lu||l (assuming without any loss of the
generality that A = 0 at some point of supp(¢)) and that

[(hD)*ull < C(1 + Ryt + ),
I(hRD)“((hD — A) - @)ul| < C(1+ Ay~ + py)**,

and therefore

M (ADy — A) - @)e(., ., 0)| < CA=3(1+ ™t + p7)?,
and then

| AA|| g (Bxi1-) < CATH L4+ Ayt + §)z.

Optimizing with respect to v = /f%h% we conclude that either
(27.3.24) |62 All g By < Ch™Y2(1 4 hp)s

or (27.2.21) holds. In the former case of (27.3.24), using the second of
estimates

1 4

(27.3.25) Al (@ < CHOAl e IOAIE,
3 2
(27.3.26) 10Ale= (61— < ClIPA g oy 1OAIL

we conclude that (27.3.23) holds with p = g/,
p= B (L g

and one can see easily that starting from p = h™* as given by (27.3.20), we
can arrive after number of iterations to p = h~37% and therefore

(27.3.27) |0 Allgoe(Bixa ey < Ch7s@20=0 | — 01,2,
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(c) This estimate (27.3.27) is good enough to launch our microlocal argu-
ments. Assuming (27.3.23) with u < h°~1 we estimate as in Section 27.2

T ((hDx — A) - o)e(.,.,0)| < Cuh~,
and then
|0*Allg1-o < Cuh™,
and therefore
|10Al| g1 < Cush™,

resulting in p == ,u%h"S and after a number of iterations we get 4 = h~%, and
therefore iterating this procedure one more time and taking into account
factor xk we arrive to

(27.3.28) Either (27.3.21) holds or
(27.3.29) ||82A||S£OO(B(X'1_E)) < Crh™9.

However to prove that the effective magnetic field is O(1) we need to modify
these arguments, and we do it in the next subsubsection.

Estimates to a Minimizer. 11

In this step we repeat arguments of Subsubsection 27.2.2.1. Sharp Estimates,
but now we have a problem: we cannot use p = ||0A||« since we have domains
X, = {x : {(x) > r} rather than the whole space. So we get the following
analogue of (27.2.48) where A is still rescaled and the norms are calculated
in the rescaled coordinates:

(27.3.30)  [[AAllg(p(x,2) + AlIADAl4(p(x,2) <
C’f(l + [0A|4(B(x1) + h%(g_l)HaAHW,G%(B(x,l))'
which implies
(27.3.31)  [|0All:¢((x,1)) + 1M I0All o (x,1)) <
eh® DY 0A lgo(a(x1)) + CrllOAlw(Bx1) + CIIOAll2 (B 1)

and the last term in the right-hand expression does not exceed C K2,



27.3. GLOBAL TRACE ASYMPTOTICS ... 245

Let v(r) = sup,. 4>, f(x), where f(x) is the left-hand expression of
(27.3.16), calculated for given x in the rescaled coordinates. Then (27.3.31)
implies that for x € (0, k*) (where £* > 0 is a small constant)

y(lr) + Cr2,

v(r) < 5

N| -

which in turn implies that
1
v(r) < EV(27HF)+2CH%, n>1,

and therefore

SIE

v(r) < 4Ck? + 4 sup f(x) < Gk
Gl <l(x)<2Coh?

due to the rough estimate (because h =< 1 for ¢(x) =< h?). Then returning
to the original (not rescaled) coordinates and to the original (not rescaled)
potential A we arrive to estimates (27.3.32) and (27.3.33) below:

Proposition 27.3.4. Let k < k*, ( = cl=2. Let A be a minimizer. Then
for €(x) > €, = h* estimate (27.3.22) holds and also

(27.3.32)  |0°A(x) — PA(y)| < Cr2l 3|x — y|PP20%2  0<9 <1,
and
(27.3.33) 10A(x) — DA(y)| < Cr2073|x — y|(1 4 | log |x — y||).

Remark 27.3.5. (i) So far we used only assumption that
(27.3.34) V| < CC3ll Vai|al <2
with ( = (=% but even this was excessive.

(ii) In this framework however we cannot prove better estimates because
(27.3.22) always remains a valid alternative even if { < (3.

(iii) Originally we need an assumption (27.2.37) | V| > ¢, but for d = 3 one
can easily get rid of it by the standard rescaling technique.

Consider now zone {x : {(x) </, }:

Propositi?n 27.3.6. Let k < k*, ( < cl=2. Let A be a minimizer. Then
|OA| < Cr2h3 for ((x) < L, = h?.
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Proof. Proof is standard, based on the rescaling (then i = 1) and equation
(27.2.14) for a minimizer A. We leave easy details to the reader. O

Let us slightly improve eastimate to a minimizer A. We already know that
|0A(x)| < Cof with 8 = ¢~z and using the standard rescaling technique we
conclude that

(27.3.35) |AA| < Cr(?B+ Cr(,
which does not exceed Crf~3 which implies
Proposition 27.3.7. In our framework

(i) If {(x) > 0, = h?, then

(27.3.36) Al < Crl™2,  |0A| < Crl™2
and

1
(27.3.37)  |0A(x) — 0A(y)| < C9K€7%79|X —yl as |x —y| < §€(x)
for any 6 € (0,1).
(i1) If {(x) < L., then these estimates hold with ((x) replaced by C..

Remark 27.5.8. (i) Here in comparison with old estimates we replaced factor
K2 by x which is an advantage.

(ii) These estimates imply that [; ., <y [0A]? dx < Cr?|log | while in

fact it must not exceed Ck.

<1}

Estimates to a Minimizer. II1

Consider now external zone ) := {x: {(x) > 1} and assume that
(27.3.38) ((x) < Cex)™ for /(x)>1

with v > 1.

Then if also |[0A(x)| = O(¢(x)™**) for ¢(x) > 1 then the right hand
expression of (27.3.35) does not exceed Cr(£73~1 + 7172} and therefore
we almost upgrade estimate for |0A(x)| to O(¢~3 +¢7"172*1) and repeating
these arguments sufficiently many times to O(¢73").
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However, there are several obstacles to this conclusion: first, if v > 1 we
conclude that

A= &jmlx = ym| T+ O(CT)

with constant «; ,; however assumption V - A = 0 implies «; ,, = 0 and we
pass this obstacle.
Indeed, let our equation be AA; = ®; and therefore

Aj(x) = —417r/lx—y|1¢j(y) dy.

Let a be the minimal distance between nuclei, 1 =) o ¢m Where ¢, is
supported in %a—vicinity of y,, and equals 1 in %a—vicinity ofy,m,, m=1,..,1.
Let

b= [ ©0)0n0) . n= max lhnl

1<m<M

Then if x belongs to b-vicinity of y,, with b < ea one can prove easily that
0 [ Ix =117 0,(0)0m(v) dy| < Cya 2+ Ca*

form=0,1,..., M, m" #£ m.
Also one can prove easily that

10 (/ x = Y2050 )bm (¥) dy = [x =yl M )| < Clx =yl 2,

and combining with the previous inequality and with equation V- A =0 we
conclude that |/, ;| < Cna=2b* + Ca—3b?> + Cb! for b < ea. Then selecting
b = ¢;a with sufficiently small constant €;, we conclude that n < Ca~! which
in turn implies that |9kA;(x)] < CL73.

The second obstacle

Aj = Z (xjk,m(xk - Yk,m)‘x - }/mli3 + 0(672)

k,m

with constant o, we cannot pass since assumption V - A = 0 implies only
that modulo gradient A =Y B, x V{,! with constant vectors B, and
one cannot do anything about this.

Therefore we upgrade (27.3.36)—(27.3.37) there:
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Proposition 27.3.9. In our framework assume additionally that (27.3.38)
holds. Then for v > %
(27.3.39) |A| < Crl2, |0A| < Cr(™3

and

(27.3.40)  |0A(x) — 0A(Y)| < Gorl > ?|x — y|° as |x—y| < %E(x)
if 6(x) > 1 (for all 0 € (0,1)).

Remark 27.5.10. (i) In application to the ground state energy we are inter-
ested in v = 2.

(ii) Observe that for a > 1

(27.3.41) / |0A]? dx = O(k%a™3).
{t(x)=a}

(iii) We were not able to improve (27.3.39)—(27.3.41) no matter how fast ¢
decays.

27.3.3 Basic Trace Estimates

Recall that the standard Tauberian theory results in the remainder estimate
O(h~?). Indeed, since the effective magnetic field intensity is no more than
Ck, the contribution of B(x, ¢(x)) to the Tauberian error'®) does not exceed
CC? x h~Y = C3¢h™, which for ¢ = ¢~ translates into C/~2h1 and
summation over domain {x : £(x) > {, = h?} results in Ch=2. On the other
hand, contribution of the domain {x : ¢(x) < £, = h?} into asymptotics does
not exceed Ch=30;1 = Ch=2 for h = 1.

However, now we can unleash arguments of V. Ivrii and I. M. Sigal [1].
Recall that we are looking at

(27.3.42) Tr(Hy ) = Tr(d1Hy 1) + Tr(d2Hy 02)

where 9% = ¢F + ¢3, supp(¢1) C {x, |x| < 2r}, supp(2) C {x,r < [x| < b}
and we compare it with the same expression calculated for Hj o with
VO = Z,|x|7!. Here we assume that

(27.3.43) a<l, zx1

13) And then to the Weyl error because we will explain transition from the Tauberian
to Weyl estimates below.
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and
(27.3.44) DXV = VO)| < qa el Va:lal <3.

The latter assumption is too restrictive and could be weaken. Then if ¢(x)
is an f-admissible partition element

(27.3.45) Tr(8(—Hy\)9?) = /Weyl(x)gzbz(x) dx + O(rh™?)
and
(27.3.46) Hyy¢%) /Weyl )62(x) dx + O(r"2h7Y),

where the error estimates are O(h~2) and O(¢?A™!) respectively. One can
justify transition from the Tauberian to Weyl errors by considering Tauberian
expressions and considering Ha_y and Ha v as unperturbed and perturbed
operators respectively; their difference is O((3¢?) with e = Al~°,

Then the contribution® of the time interval {t: t < T} to the Tauberian
expression for (27.3.45) of the first term in the approximation does not exceed
Ch™*T x (hT71)%, of the second term CA*T x (RT1)*Th &2, and of the
third term Ch=*T x (AT 1) T2h2c*. One can see easily that the end of the
day the first term gives us the Weyl expression, the second term turns out
to be 0, and the third term is less than the announced error.

Similarly, the contribution'¥) of the time interval {t: t < T} to the Taube-
rian expression for (27.3.46) of the first term in the approximation does not
exceed CC?h~*T x (hT~1), of the second term CC?A~*T x (AT 1)sTh 12
and of the third term CA™*T x (AT 1)?T2h2¢*. Again, in the end of the
day the first tem gives us the Weyl expression, the second term turns out to
be 0, and the third term is less than the announced error.

The same estimates also hold for operator Ha o and then using /(-
admissible partition of unity we conclude that

(27.3.47)  Tr(¢o(Hay — Hy o)) =

/(Weyll(x) Weyl?(x)) #3(x) dx + O(r~ ih™ b,

where Weyl? and Weyl® are calculated for operator with potential V0. Indeed,
we just proved this for each operator Ha v and Hy o separately.

14) After standard rescaling x — x0™ %, £ — &C7Y, h— h, 7 — 7¢ 72, and t — tC071.
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On the other hand, considering V7 = V(1 — ) + Vi = VO + Wn and
following V. Ivrii and I. M. Sigal [1], we can rewrite the similar expression
albeit for ¢, =1 as

(27.3.48) Tr(/1 WO(—Hg ) d77>

and applying the semiclassical approximation (under the temporary assump-
tion that W is supported in the domain {x : |x| < 4r}) one can prove that
for o1 =1

(27.3.49)  Tr(¢1(Hay — Hy yo)ér) =

/(Weyll(x) — Weyl?(x)) $3(x) dx + O(a~trh™2).

Really, due to (27.3.45) and (27.3.44) the contribution of the ball B(x, ¢(x))
does not exceed Ca~*h™2 = Ca */(x)h~2 and summation with respect to
partition with ¢(x) < 4r returns Ca—'rh=2); meanwhile, the contribution of
{x : l(x) < £,} does not exceed Ca~*h 2 = Ca~! since there h = 1.

One can get easily rid of the temporary assumption and take ¢; supported
in {x: ¢(x) < 2r} instead.

Therefore we arrive to

Proposition 27.3.11. Under assumption (27.3.44)
(27.3.50) Tr(¢¥(Hay — Hyvo)¥) =

/ (Weyl, (x) — Weyl(x)) ¥2(x) dx + O(a~5h~3).

Really, a=3h™3 is r-2h~ + a~Lrh~2 optimized by r =< r, := (ah)3; since
h? < a we note that h*> < r, < a.

Corollary 27.3.12. (i) For M =1 equality (27.3.50) remains valid with
Yv=1and a=1.

(ii) For M > 2 and a > h* equality (27.3.50) becomes
(27.3.51)  Tr(Y(Hay — Hyyo)¥) =
/(Wey|1(x) — Weyl2(x)) ¥2(x) dx + O((a~5 + 1)h~3),

where we reset case a>1 to a=1.
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27.3.4 Improved Trace Estimates
Improved Tauberian Estimates

Let us apply much more advanced arguments of Section 12.6; recall that
these arguments are using the long term propagation of singularities. Un-
fortunately, using these arguments, we are not able to improve the above
results unless k < 1.

First, let us consider v, which is r-admissible partition element located
in {x: (x) < r}, and we need to estimate an absolute value of

(27352) Ft—)hfl-,—)_(T(t) Tr(eihfltHQZ))’

and to do it we need to estimate the same expression with yr(t) replaced by
x7(t) with tg < T’ < T where to = /(1 = er2. We can break 1) = )+~
with 9% = ¢%(x, hD) such that the trajectories in the positive (negative)
time direction from support of its symbol ¢ (x, §) are going after time Cty
in the direction of increased ¢(x), and since we consider the trace we need
to consider only ¢+ and only x € €°([%, 1]).

The trouble is that we have not rough but non—snlooth magnetic field'®):
so let us consider to+t; +...+t, < T’ where t; = erJ =dr,j=01,.
and let us estimate an error appearing when we replace in (modlﬁed) (27.3.52)
eihfltH¢+ by

(27.3.53) (E=t)Hyt e Tkt i kg oMy

with ¢ defined similarly and Hamiltonian flow from supp(¢;”) for t = t; is
inside {( €)1 i1 (x, &) = 1}. Therefore we need to estimate an error when
we insert ;.

According to our propagation results (namely, Proposition 27.2.11) after
AN ¢J , were inserted, insertion of ¢+ brings a relative error not exceed-

ing C(R7]|0Al,, v, + hsﬂ) where f; = hr; > and Y, is an erj-vicinity of the
x-projection of supp(wj) s is an arbltrarlly large exponent

Recall that [|0A]], , < C /@h} % for 6 € (1,2); therefore this relative error
does not exceed Ch;(x + hf). Therefore inserting all ¢f brings a relative
error C ) oo hi(k+17) < Ch(k + h*) and since a priory expression (27.3.52)
is bounded by Ch~ 3T we conclude that

15) More precisely, A is rough but with the roughness parameter i which is a bit too
small.
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(27.3.54) The absolute value of expression (27.3.52) with Y7 (t) replaced by
x7(t) with T, =< r2 < T/ < T*19 does not exceed CA2(k + he) T

Then an absolute value of expression (27.3.52) with Y (t) replaced by
(X7(t) — X1.) does not exceed ChA~?(k + hf) and since expression (27.3.52)
with T = T, does not exceed Ch2t, we conclude that

(27.3.55) The absolute value of expression (27.3.52) with T, < T < T*
does not exceed Ch=2T, + Ch™2(k + h*) T.

Then we conclude that

(27.3.56) An error when we replace Tr(6(—Hav)¢) by its Tauberian expres-
sion with “time” T does not exceed Ch_z(T* T 14+k+ hs)

and

(27.3.57) An error when we replace Tr(H; Vw) by its Tauberian expression
with “time” T does not exceed Ch’l(T* T 14+k+ hs) T. T ¢

In the latter statement we need to remember how everything scales.

Observe that presence of the magnetic field due to its estimates relatively
perturbs dynamics by O(x) and therefore if x is sufficiently small (i.e. kK < K*)
it does not affect T*. Then assuming that

(27.3.58) |[VY(V = V)| <ealrl®  va:l|o <1, Vo =zt
with Z=<1, a>h*"*

we can take T* =< a» and therefore we conclude that the Tauberian error in
(27.3.57) does not exceed

(27.3.59) Chta~2r(ria 2 + k+ h°r )

and we arrive to Statement (i) in Proposition 27.3.13 below.
Meanwhile, the Tauberian error in Tr((HA_,V —H, Vo)w) does not exceed

(27.3.60) Cath 2r(ria™2 + k + h°r =)

and we arrive to Statement (ii) below:

16) We discuss the choice of T* later.
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Proposition 27.3.13. Assume that (27.3.58) is fulfilled and let ¢ be (-
admissible function supported in {x: {(x) < r} with > < r < a. Let A
satisfy minimizer estimate. Then

(i) The Tauberian error with T = T* =< az in TF(HA_’VdJ) does not exceed
(27.3.59).

(ii) The Tauberian error with T = T* < a3 in Tr((Hay — Hyyo)¥) does
not exceed (27.3.60).

Proof. An easy proof following arguments of Section 12.6 is left to the
reader. O

Observe that in the deduction of Statement (i) summation with respect
to r: b <r<areturns Ch - a~2 and in the deduction of (ii) summation
with respect to r : h> < r < b returns Ch’2(a’%b% + ka~'h) + Ca~'. Note
also that Statement (ii) remains true for r-admissible function supported in
{x: €(x) < r} with r < h*. Then we arrive to

Corollary 27.3.14. Assume that (27.3.58) is fulfilled. Then
(i) Let ¢y be L-admissible function supported in {x: b < {(x) < a}. Then the

Tauberian error with T = T* < a2 in Tr(H;ngz) does not exceed Ch™ta~2.

(ii) Let ¢y be L-admissible function supported in {x: {(x) < b}. Then the

Tauberian error with T = T* < a2 in Tr((Hyy — H;VO)@) does not exceed
Ch=2(a~2b3 + ka'h) + Ca~l.

Remark 27.3.15. Obviously we do not need any new assumptions on k
to estimate the sum of expressions obtained in Statements (i) and (ii) of
Corollary 27.3.14 by Ch~'a~2 (as b < a%h) here but we need to move from
Tauberian expression to Weyl expression.

Improved Weyl eEstimates

Note that in virtue of (27.3.54) for element ¢ the contribution of the time
interval {t: [t| < T’} to the Tauberian expression for Tr(H, ) does not
exceed Ch™ (k4 h*) T, T'71¢?, and therefore, replacing Y (t) by Yr.(t) we
introduce an error not exceeding

(27:360 Cht -+ 1) = Ch-Ar o+ her )
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and summation with respect to r : b < r < a returns
(27.3.62) Ch™1b%(k + h°b™2%).

On the other hand, also in virtue of (27.3.54) for element 1 the con-
tribution of the time interval {t: |t| < T’} to the Tauberian expression
for Tr((Ha\ — Hy \o)¥) does not exceed Ch?a~'(k + h®), and therefore
replacing ¥ 7(t) by Xr.(t) we introduce an error not exceeding

Ch=2a~ r(k+ h°r 2°)|log T/ T.|.

Further, in virtue of (27.3.55) the Tauberian error does not exceed
Ch’za’lr(r% T+ k+ hsr_%s), and adding these two errors together and
optimizing their sum by T < a3 we get T = r%(/@ + hsr_%s)’1 and the sum

(27.3.63)  Ch2a'r(k+ hsr_%s) (| log(x + hor2%)| + 1) + Ch2a73r.

Meanwhile repeating arguments of Subsection 27.3.3 one can see easily
that

(27.3.64) The difference between the Tauberian expression with T = T,
and the Weyl expression for Tr(HAfvz/;) does not exceed (27.3.61) with any
5§<2

and

(27.3.65) The difference between the Tauberian expression with T = T,
and the Weyl expression for Tr((H, — Hy \0)®) does not exceed

(27.3.66) Ch=2a Yr(k + h°r %)

with any s < 2 and thus does not exceed (27.3.63).
Summation with respect to r : h*> < r < b of (27.3.63) returns
(27.3.67) Ch™2a 'bk|log k| + Ch™2b3a™2 + Ca ¥,

adding expression (27.3.62) and optimizing the sum by b: h* < b < a we
get b =< (ah|log /{|)% and expression

(27.3.68) Ch™5a 3k|log k| + Ch a2,

Thus we have proven
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Proposition 27.3.16. (i) In the framework of Proposition 27.5.11
(27.3.69) Tr(v(Hy\ — H;Vo)w) =

/ (Weyl, (x) — Weyl3(x)) ¢2(x) dx + O(h™*asx| log |3 + h~"a2).

(ii) In particular, if
(27.3.70) K < ca oh|logah?|

the error in (27.3.69) does not exceed Ch™'a~: exactly as in the case without
magnetic field.

Remark 27.5.17. (i) Obviously we could consider a = 1 and then just rescale
X+ xa~t, 7+ 1a, h ha~3.

(ii) One may wonder if the same approach works for estimate of A. First of
all, there is no improvement for estimate for |§?A| because it follows from
the estimate for |AA| which is a pointwise estimate.

(iii) Still, since A and A are mollifications of AA one can improve estimates
for them if K < 1 and ¢ < a; however, there are no improvements if either
k=1 or £ > a. Since these improvements do not lead to the improvements
of our final results we do not pursue them.

27.3.5 Single Singularity
Coulomb Potential

Consider now exactly Coulomb potential: V = Z|x|~!. Let us establish the
existence of the Scott correction:

Proposition 27.3.18. Let V = Z|x|™, h >0, Z > 0 and 0 < k < K"
Then

(i) The following limit exists

r—o0o

(27.3.71)  lim (igf(Tr((qs,HAm,)) + # / |8A|2dx)
- /Weyll(x)gbf(x) dx) =:27°h"%5(Zk).

(i) And it coincides with
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(27.3.72)  lim (A' <Tr((HAV+77) ) + h2/|8A|2 dx

n—0+t

- /Wey|1(HA,v + 1, x) dx),
(111) And also with

(27.3.73) ilz‘f(/ (el(HA,V;x,x, 0) — Weyll(HA,V,x)> dx+

1

(iv) We also can replace in Statement (i) Tr((¢rHavér)™) by Tr(orHy v o1 ).
Here ¢ € 63°(B(0,1)), ¢ = 1 in B(0, 1), 6, = 6(x/r).

Proof. Observe first that due to scaling x — Zh™2x, A — Z71hA and
O0A — z72h%0A one needs to consider only Z = h = 1; all expressions on the
left scale exactly as Z2h=2S(Zk).

(i) Let us compare

1
Q(r.k, A) = Tr((¢rHaver)”) — /Wey|1(HA,va)¢E(X) dx + H/|5A|2 dx
and Q(r', k, A) with r > 1 and r’ > 2r. Note that
Q(r' K, A) = Q(r, (1 + €)r, A)+

S (Te((arHaviian) ) — [ Wesh(Hay,x)u,(x) d

1<j<J
€ 2,72
o / DA, (x) dx ),

where 1) and 1 are smooth compactly supported functions, equal 0 in B(0, )
and ¢ = 1 in the vicinity of supp(y)), J = [log, r'/r|, € > 0 is arbitrarily
small.

Therefore we can replace in the sum A by A; and ¢y, by Lin [ [0A|%)2 (x) dx;
but then in the virtue of Section 27.2 each term in the sum is bounded from
below by —C'(€) [ p20~ 4y dx = —C'(€)t™2 with t = 2/r. Then
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(27.3.74) Q(r', k, A) > Q(r, (14 €)r, A) — C'(e)r 2.
We know that Q(r, (1 + €)x, A) is bounded from below by —C(r) but now

we conclude that this bound is uniform with respect to r, which implies that

25(k) = liminf,, 1 infa Q(r, K, A) > —oco. Further, (27.3.74) implies that
25(k) + C'(e)r 2 > ir)\f Q(r, (1 +¢)x, A)

and therefore

(27.3.75) lim suplnf Q(r,k,A) <25((1+€)'k).

r—+o00o

Furthermore, plugging A = 0 we can see easily that Q(r, s, A) is uniformly
bounded from above and therefore 25(k) < +00; also our arguments imply
that [ |OA[* dx is uniformly bounded for near optimizers and therefore S(x)
is continuous with respect to £ < £*; combining with (27.3.75) we arrive to
Statement (i).

(ii) Similarly, (27.3.74) holds with Ha v replaced by Ha v + 1 and then we
can take r' = co and apply inf4 to both sides arriving to

ir)\f( r((Hav +n)7) /Weyl (Havin, ) dx + = /|8A|2dx> >
inf (Tr((¢r(HA v+n)o)” /Weyl Ha vy, X )¢ (x) dx+

m / |8A|2) dx — C'(e)r 2.

After this as  — 40 the right-hand expression tends to itself with n = 0;
tending r — +o0o0 we get there 25((1 + €)x) in virtue of Statement (i) and
tending € — 40 we arrive to

(27.3.76) lim infinf( r((Hav +1)” /Weyll(HA Vi, X) dx+

n—+0 A
/|8A|2dx) > 25(x).
K

On the other hand, consider

Tr ((HA\/+T] /Weyl HA V4 X )dX+ /|0A|2 dx
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and replace Tr((Hav +1)7) by

(27.3.77) Tr((Hav +n) ¢7) + % / |0A]> dx + Tr((Hav +n) (1 —¢2)).

Let A be a minimizer of the first expression; then in virtue of Proposi-
tions 27.2.24-27.2.26 this minimizer is sufficiently “good” on er-vicinity of
supp(1—¢?) and also the the difference between the second term and its Weyl
expression does not exceed Cr—2; one can prove it easily by {(x)-admissible
partition of unity as in Part (i) of the proof and we leave details to the
reader.

Observe that the first term in (27.3.77) is inf 4 Tr(qﬁ,(HAy + n)_qb,). In
this expression we can take limit as 7 — 40 just setting n = 0 and therefore
the left-hand expression in (27.3.76) with liminf replaced by limsup does
not exceed

ir)\f(Tr(@HX,v@) _/Wey|1(HA,V,X)¢E(x) dx+i/aA’2 dX) n Cr’%;

taking limit as r — +o0o we conclude that the left-hand expression in
(27.3.76) with liminf replaced by limsup does not exceed

|iminfinf(Tr(¢,H;V¢,) —/Weyll(HA,V,x)ng(x) dx+:;/|6A|2dx).

r——+oo A

This expression does not exceed (27.3.71) and therefore combining with
(27.3.76) we prove Statements (ii) and (iv).

(iii) Similarly,
/(el(HA,V;x,x, 0) — Weyl, (Ha,v, x))gbf(x) dx + % / |0AJ? dx >
. 1 1
")\f(Tr((ﬁerA,vcbr)_) - /Weyll(x)qﬁf(x) dx + P / |8A|2) —Cr
and therefore

igfnminf/(el(HA,v;x,x, 0) —Wey|1(HA,V,x))¢>$(x) dx+

i/|8A|2dx > 25(k).

On the other hand, as in Part (ii) of the proof, taking A to be a minimizer
of the first expression in (27.3.77), we see that
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ir)\flimsup/(el(HA,V;x,x, 0) —Weyll(HA,V,x))cpf(x) dx+

r—00
1

K

/|8A|2 dx < 25(k)

and Statement (iii) has been proven. O

Remark 27.5.19. (i) Statements similar to (i), (ii) were proven in L. Erdds,
S. Fournais, and J. P. Solovej [3] (see Theorem 2.4 and Lemma 2.5 respec-
tively).

(ii) Again as observed in in L. Erdds, S. Fournais, and J. P. Solovej [3] we
do not know if

(a) S(x) < S(0) for k > 0 or just
(b) S(k) = S(0) for k < k* and S(k) = —o0 for kK > K*.

If we knew that the optimizer is unique, then obviously A = 0 and it would
be relatively easy but rather unexciting the latter case.

(iii) While we assumed that x < x* with x* > 0 and it is possible that
S(k) = —o0 as k > k* with some £* < 0o we are not aware about any proof
of this, so in fact it could happen that k* = 400 and then condition x < x*
is superficial and one needs to study asymptotics of S(k) as kK — +oc.

Proposition 27.3.20. For 0 < k < &’
(27.3.78) S(K') < S(k) < S(K') + CK' (k71 — K'7H).

Proof. Monotonicity of S(k) is obvious.

Let 0 < k < k¥ < k” < k*. Then for any € > 0 if r = r, is large enough
then the left-hand expression in (27.3.71) for &' (without inf and lim) is
greater than S(k”) —e+ (k'~1 — x"~1)||0A]||?; also, if A is an almost minimizer
there, it is less than S(x') + €.

Therefore (k' — £"71)||0A|?> < |S(x") — S(K')| + 2¢. But then

S(k) —e < S(K)+e+ (k=K H|0A|? <
S(K)+e+ Ct =M= ") (S(K") = S(K)] + 2)
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and therefore

(27.3.79) (k71— K" 7HS(K) — S(K)| < (K7 = K THS(K) — S(K)|

which for k" = k* implies (27.3.78). O

Remark 27.3.21. Using global equation (27.2.14) we conclude that for Z =
h=1

(27.3.80) |0°A| < Cre~tlel if £>1, |a| <1,
(27.3.81) |0°A| < Ck if £<1, o<1,
(27.3.82) |0A|> < Cr2.

Then

(27.3.83) S'(k) < C. |S(k(1+n)—S(n)| < Cr.

Main Theorem

In the “atomic” case M = 1 we arrive instantly to the following theorem:
Theorem 27.3.22. Let M =1 and k < k*. Then

(i) Asymptotics holds

3. = eyly(x) dx +2z°5(zx)h™* + i Ogl{%+h_1.
27.3.84) E Weyl, (x) dx + 222S(zx)h™2 + O(h™ 34|

(ii) If k= o(h3|log h|~3), then

(27.3.85) Er = /Weyl’{(x) dx +22°S(zk)h 2 + o(h7h).

Proof. If A satisfies the minimizer properties, then in virtue of Proposi-
tion 27.3.16

(27.3.86) Tr (Hav) — / Weyl; (x) dx = Tr~ (Ha o) — / Weyl9(x) dx

+ O(h™3k|log k|5 + 1)
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and adding magnetic energy and plugging either minimizer for V or for V°
we get

(27.3.87) mf “(Hav) /Weyl dx+/]8A]2dx ;

ir)\f(Tr—(HA,vo) - /WeyF{(x) dx + th/|8A|2dx)
+ C(h 3k|log k|3 + hY).

Obviously if V' (and surely V°) are not sufficiently fast decaying at the
infinity, the left (and for sure the right hand) expression in (27.3.86) should
be regularized as in Subsubsection 27.5.5.1. Coulomb Potential. However
for potential decaying fast enough (faster than |x|727%) the regularization is
not needed.

For V° we have an exact expression which concludes the proof of State-
ment (i).

The proof of Statement (ii) is similar albeit with the small improvement,
based on the behavior of the classical dynamics (without magnetic field)
exactly as in Chapter 25. O

27.3.6 Several Singularities

Consider now the “molecular” case M > 2. Then we need more delicate
arguments.

Decoupling of Singularities

Consider partition of unity 1 = ZogmgM 12 where 1, is supported in %a—
vicinity of y,, for m=1, ..., M and ¥g = 0 in %a—vicinities of y, (“near-nuclei”
and “between-nuclei” partition elements).

Estimate from above. Then

(27.3.88) Tr(Hay) = Y Tr(@mHaytm),

o<m<M

and to estimate E* from the above we impose an extra condition to A:
1
(27.3.89) A=0  for {(x)> 2

Then in this framework we estimate
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(27.3.90) Tr (YoH4 y¥0) — /Weyll(x)wg(x) dx < Ch'a 2.

Proof of this inequality is trivial by using /-admissible partition and applying
results of the theory without any magnetic field.

Thus, to estimate E* from above'” we just need to estimate from above
the minimum with respect to A satisfying (27.3.89) of the expression

(27.3.91) Tr(zpmH;Vzpm)—/Weyll(x)zpfn(x) dx+i |OA|? dx.

K Sy, 00<tay

Estimate from below. In this case we use the same partition of unity
{42 }i=01...m and estimate

(27.3.92) Tr(Hay) = > Tr (YmHavrtbm)
0<m<M
with
(27.3.93) V=V 2m > (0v)
0<m<M

and we also use decomposition

(27.3.94) /|aA|2dx_ > /w2m|8A|2dx

0<m<M
with
) 1 i 1
(27.3.95) wp(x) =1 if £,(x) < 1—03, Wm(x) >1—Cq if £p(x) < Ea
for m=1,....M

1
(27.3.96) wo > €05 if (x) > 2

So far ¢ > 0 is a constant but later it will become a small parameter. Then
since

_ 1
(27.3.97)  Tr™ (YoHav:tbo) — /Wey|1(X)1/)(2)(X) dx + e W2|OA? dx >
Ch~tas
(again proven by partition) in virtue of the previous Section 27.2 we are left
with the estimates from below for
17) Modulo error in (27.3.51).
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kh?
Remark 27.5.23. (i) Note that the error in Weyl; when we replace V' there
by V does not exceed Ch=(14 a~2) which is less than the error in (27.3.51).

Here we can also assume that A satisfies (27.3.89); we need just to replace ¢
by €o¢ in (27.3.95)—(27.3.96).

(ii) We can further go down by replacing Tr™ (YmHa v/tm) by Tr(¥mHy i tm).

(27.3.98)  Tr (YmHaviom) — /Weyll(x)t/},zn(x) dx + = w2 |OA|? dx.

(iii) Therefore we basically have the same object for both estimates albeit
with marginally different potentials (V in the estimate from above and V' in
the estimate from below) and with a weight w?, satisfying (27.3.95)—(27.3.96);
in both cases w = 1 if /(x) < {5a but in the estimate from above w(x) grows
to Go and in the estimate from below w(x) decays to < if £(x) > a and in
both cases condition (27.3.89) could be either imposed or skipped.

(iv) From now on we consider a single singularity at 0 and we skip subscript
m. However if there was a single singularity from the beginning, all arguments
of this and forthcoming paragraphs would be unnecessary.

Scaling. Now we apply scaling arguments:

(i) We are done as Z =< 1 but as Z < 1'® we need a bit more fixing.
The problem is that V =< Z¢7! only for |x| < aZ; otherwise V < a™?
(where we still assume that a < 1). To deal with this we apply in the zone
{x: aZ < |x| < a} the same procedure as before and its contribution to
the error will be Ch~1a~2 as p= a~2 here. Actually we also need to keep
|x| > Z71h?; so we assume that Z7'h* < Za, ie. Z > azh.

Now let us scale x — x’ = x(aZ)~!, and multiply H, by a and therefore
also multiply A by az, so A — A" = a3A, h — K = ha 3Z~!; then the
magnetic energy becomes

/i_lh_2Z/w2(x)|6'A']2 dx’,

where factors a—! and aZ come from substitution A = a2 A’ and scaling
respectively. We need to multiply it by a (since we multiplied an operator);
then plugging h=2 = h'~2a71Z72 we get the same expression as before but

with Z/=1,a =1land ¥ = ha2Z"1 <1 and ¥’ = xZ instead of h and k.

18) Since Z denotes Z,, now we assume only that Zy + ... + Zy =< 1.
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If we prove here an error O (h'~*+£'| log /| 3 h”g) , then the final error will
be this expression multiplied by a=?, i.e. O(af%Zh*1+f<;a*%Z%| log nZ|%h*§),
which is less than the same expression with Z = 1.

(ii) On the other hand, let Z < a~2h. Recall, we assume that a > Goh?.
Then we can apply the same arguments as before but with Z = a~zh and we
arrive to the same situation as before albeit with /' =1, & =1, k' = ka 2h
and with Z’ = ZZ~'. Then we have the trivial error estimate O(a~') which
is less than O(a~2h™?).

Main Results

Combining results of the previous subsubsections and paragraphs with
Proposition 27.3.9 we arrive to

Theorem 27.3.24. Let M > 2, x < &* and (27.3.38) hold with v > 3.
Then

(i) The following asymptotics holds

(27.3.99) FE'= /Weyll(x) dx + 2 Z 225(zmk)h 2 4+ O(R; + R,)

1<m<M
with

ht + k| log K| 3h ™3 if a>1,
(27.3.100) Ri=¢ Jlog 1,4 Fas

a2h™' +k|logkl3a3h s if P<a<l
and

a3 if a>|logh %,
(27.3.101) R, = rh™2 /2= |logh .

|log h?a~ |t if h*<a</|logh|s.

(ii) If k= o(h3|log h|~3), ka3 = o(h) and a~* = o(1), then

(27.3.102) E* = / Weyli(x)dx +2 Y z2S(zmr)h 2+ o(h").

1<m<M

Proof. To prove theorem we need to prove the following estimate

1 _
(27.3.103) EHaAH%bSMSZ"}’ < Ch3
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where r, < b < ais a “cut-off”. On the other hand, we know that
1 5 oS
(27.3.104) K;||8AH =5 = 0(1)
and we need to recover the last factor in the definition of R».
For a > 1 we can have ka~3 because in virtue of (27.3.41) the square of
the partial norm in (27.3.104) does not exceed Ca—3k2.
On the other hand, for A% < r, < a we can select b : r, < b < a such that

the partial norm in (27.3.104) does not exceed C|log(a/h?)|7t - [|0A||?. O
Remark 27.5.25. (i) For a < |log h| we do not need assumption (27.3.38).

(ii) Following arguments of Section 12.6 estimates (27.3.85) and (27.3.104)
could be improved to O(h~29) provided a > h=%, k < h3*%|log h|~3 and
K S a3h1+61'

Problems and Remarks

The following problem seems to be really challenging and we have no idea
how to approach it:

Problem 27.3.26. (i) For x € [0, x*] with small enough x* > 0 does S(k)
really depend on x or S(k) = S(0) (see Remark 27.3.19)7

(i) If S(k) really depends on k, what is asymptotic behavior of S(x) — S(0)
as k — +0: can one improve S(k) — S(0) = O(k)?

(iii) Do we really need an assumption x € [0, *] (again see Remark 27.3.19)7?

(iv) Can one improve estimates to minimizer?

27.4 Asymptotics of the Ground State
Energy

27.4.1 Problem

Now we are ready to tackle our original object (27.1.2)—(27.1.3). So, let us
consider our usual quantum Hamiltonian

(27.4.1) H= > HI+ > Ig—xl™

1<j<N 1<j<k<N
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n
(27.4.2)

with
(27.4.3)
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H= N\ H  H=2(RC?

1<n<N

H® = ((iV — A) - 0)? — V(x).

We are interested in the ground state energy Ej(A) of our system i.e. in the
lowest eigenvalue of the operator H on $):

(27.4.4)

Exn(0) = inf Spec(H) on

if A= 0 and more generally in

(27.4.5)

where

(27.4.6)

(27.4.7)

. 1
EY — |r)‘f<|nfSpecﬁ(H) = / IV x AP dx),

Vix)= > Zn

1<m<M |X - ym|

N=<Z7>1, =21+ ...+ 2y, Z1>0,...,2Zy >0,

M is fixed, under assumption

(27.4.8)

O<a<kZt

with sufficiently small constant x* > 0.
Our purpose is to derive an asymptotics

(27.4.9)

Evm &N+ ) 2225(aZy)

1<m<M

and estimate an error (usually) provided

(27.4.10)

. _1
b= min |yn,—ymw|l >Z5.
1<m<m’'<M

Recall that the Thomas-Fermi potential WTF and the Thomas-Fermi
density p'F satisfy equations

(27.4.11)

and
(27.4.12)

1 3
TF — @(WTF 4 V).zt,.

WTF _ V0—|— |X|—1 *pTF,

where v is a chemical potential.



274. ASYMPTOTICS OF THE GROUND STATE ENERGY 267

27.4.2 Lower Estimate

Consider corresponding to H quadratic form exactly as in Sections 25.2
and 26.6

(27.4.13) (HU, W) = (HOW, W)+ (D x5 — x| W, 0) =

j 1<j<k<N
ST(HW W) + (V=W 0) + (Y [x— v, W)
J 1<j<k<N
with
(27.4.14) H=((iV—-A)-0)*— W(x)

where we select W later. By Lieb-Oxford inequality the last term is estimated
from below:

1 4
(27.4.15) (Y g—xltww) > 5D (v, pv) — c/pgu dx,
1<j<k<N
where
(27.4.16) pul(x) = N/|\U(x,xQ,...,xN)|2dx2.-.de

is a spatial density associated with W and

(27.4.17) 0(p.f) = [ [ 1x =y )0/ (y) iy

Therefore again repeating arguments of Section 25.2 we estimate H from
below:

(27.4.18) (HW, W) >

S (R, W) = 2((V — W)W, ¥) + 5D(pw. pw) — € [ =

J

1 4
S(H,9,9) = Dip. pu) + 5D(pw.pw) ~ € [ o=

J

1 1 4
D (Hgw,v) — 5D ) +5D(p = pu.p = pw) = C/pui dx

J
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swhere
(27.4.19) W —V =|x|"txp.
Note that due to antisymmetricity of W

(27.4.20) D (HW W)= Y N =T (H),

j 1<G<N: Aj<0

where ); are eigenvalues of H.

To estimate the last term in (27.4.18) we reproduce the proof of Lemma
4.3 from L. Erdés, S. Fournais and J. P. Solovej [3]:
According to magnetic Lieb—Thirring inequality for U > 0:

(27.4.21) > ((HS — V)V, ¥) > — C/U5/2dx Cy3U* dx — /Bzdx
J<N

where B =V x A, 7 > 0 is arbitrary. Then, selecting U = § min(pi,/3 'ypﬁ,/a)

with f > 0 sufficiently small but independent from <, we ensure that
TUpy > CUP? + Cy~3U* and then

(27.4.22) > {(H)W,¥) > e/min(pi,/3,’yp4/3)dx, —7/32 dx,

J<N

which implies

(27.4.23) / 4/3dx <A~ /min(pi/3,7p4/3) dx + ’y/pw dx <

2D ((Hg)w,w>+c/32 dx + cyN

JiA<0
where we use [ pydx = N.

Remark 27.4.1. As one can prove easily (see also L. Erdds, S. Fournais and
J. P. Solovej [3]) that

(27.4.24) ST{H)W, W) < CZEN

J<N
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even if N % Z; then we conclude that
(27.4.25) / dx < CZIN + G / B? dx.

It is sufficient unless we want to recover Dirac-Schwinger terms which
unfortunately is possible only if a < Z _1?0| log Z |_%. To recover remainder
estimate o(Zg) (or marginally better) we just apply Theorem 26.A.2. We
will do it later (see Theorem 27.4.5).

Therefore skipping the non-negative third term in the right-hand expres-
sion of (27.4.18) we conclude that

(27.4.26) (HWV, V) /|V x A2 dx >
1 ;
(M) + (- cl)/\v < AP dx — 2D(p. ) ~ CZ".

Applying Theorem 27.3.24 we conclude that

(27.4.27) The sum of the first and the second terms in the right-hand
expression of (27.4.26) is greater than

ETF+> " 2225(aZy) — CZ5(Ry + Ry)
with Ry and R, defined by (27.3.100) and (27.3.101) respectively with k = aZ,
h=2Z"5 and

(27.4.28) a:=275_ min_ |Ym— Yl

1<m<m’'<M

To prove this claim one needs just to rescale

(27.4.29), o x—xZ5, arsaZs, W Z75W,
A A VxAe Z5V x A

and introduce

(27.4.30) h=2773 k=aZ
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Observe that due to (27.4.29); we need to multiply our estimate by Z 3,
Here one definitely needs the regularity properties like in Section 27.3
but we have them since p = p'F, W = WTF. Also one can see easily that
“—(C;” brings correction not exceeding GaZ? as aZ < 1.
Meanwhile for p = p™", W = WTF

2
1572

5 1
(27.4.31) / W2 dx — ED(,O, p)=E'F.

Lower estimate of Theorem 27.4.3 below has been proven.
Remark 27.4.2. p=p'", W = WTF delivers the maximum of the right-hand

expression of (27.4.31) among p, W satisfying (27.4.19).

27.4.3 Upper Estimate
Upper estimate is easy. Plugging as in Section 25.2 W, the Slater determinant
(25.2.16) of 11, ..., ¥y, where 11, ..., Py are eigenfunctions of Haw we get
1
W = V) dx 4 5D (o, )~

1
EN(N — 1)/ |X1 — X2|_1|\U(X1,X2, D CT ,XN|2 dX1 e dXN,

where we do not care about the last term since we drop it (again as long as
we cannot get sharp enough estimate) and the first term in the second line
is in fact —D(p, py), provided (27.4.19) holds. Thus we get

1 1
(27.4.33)  Tr (Haw — An) + AvN — ED(p, p)+ ED(pw —p,pv — p)+
1
— / |0AJ? dx,
a

where we added the magnetic energy. Definitely we have several problems
here: Ay depends on A and there may be less than N negative eigenvalues.

However in the latter case we can obviously replace N by the lesser
number N’ := max(n < N, A\, < 0) since E}, is decreasing function of N. In
this case the first term in (27.4.33) would be just Tr™ (Ha,w) and the second
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would be 0. Then we apply theory of the previous Section 27.3 immediately
without extra complications.

Consider A a minimizer (or its mollification) for operator Ha w — p with
potential W = WTF and p < 0. Then

(27.4.34) N(p) = #{\ < pu} = /(W + /l)-%i- dx + 0(Z5).

One can prove (27.4.34) easily using the regularity properties of A established
in the previous Section 27.3 and the same rescaling (27.4.29)—(27.4.30) as
before. We leave this easy proof to the reader.

Therefore, repeating arguments of Subsubsection 25.4.2.1. Estimating
|[Av — v|, we conclude that either N > Z — COZ% and then |v| < C,Z5 and
we can take = 0 and |An| < C,Z5 or N < Z — GyZ5 and then we take
p=v, Pl = 1] = (Z = N)E and Ay — v| < Gilv[+Z5.

After this, following again to arguments of Subsection 25.4.2, we conclude
that

(27.4.35) Expression (27.4.33) without term 3D(py — p, pw — p) does not
exceed .
ETF+> 2225(aZn) + CZ3 (R + Ry)

with Ry and R, defined by (27.3.100) and (27.3.101) respectively with k = aZ,
h=Z"3 and a defined by (27.4.28).

Now we need to estimate properly D(py — p, py — p) which as in i.e.
Subsubsection 25.4.2.2. Estimating D-Term does not exceed the sum of

(27.4.36) D(e(x, x, 1) — Weyl(x, ), e(x, x, u) — Weyl(x, u)),
(27.4.37) D(e(x, x, An) — Weyl(x, An), e(x, x, An) — Weyl(x, An))
and

(27.4.38) D(Weyl(x, 1) — Weyl(x, Ay), Weyl(x, 1) — Weyl(x, An)).

Next, following arguments of Subsubsection 25.4.2.2. FEstimating D-
Term, one can prove easily that due to regularity properties of A both
semiclassical (27.4.36) and (27.4.37) terms do not exceed CZ3 and due to
estimates for [A\y — | the last term does (27.4.38) not exceed CZ3 as well.

This concludes the proof of the upper estimate in Theorem 27.4.3 below.
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27.4.4 Main Theorems

Theorem 27.4.3. (i) Under assumptions (27.4.7) and (27.4.8) the follow-
ing asymptotics holds

(27.4.39) En =&+ Y 2225(aZn)+ O(Z3(R + Ry))

1<m<M

with Ry and Ry defined by (27.3.100) and (27.3.101) respectively with k = aZ,
h=Z"3 and a defined by (27.4.28), a= o0 for M = 1.

(i1) In particular, under assumption (27.4.10) the following asymptotics
holds

(27.4.40) Ep =&+ > 2Z25(aZy)+

1<m<M
O(allog(aZ)|5Z5 + Z3 + ab32?%).

Recall that EF is a Thomas-Fermi energy and S(aZ,)Z2% are magnetic
Scott correction terms.

Theorem 27.4.4. (i) Let assumptions (27.4.7) and (27.4.8) be fulfilled
and let W = Wy be a ground state for a near optimizer A of the original
multiparticle problem. Then

[N[E)

(27.4.41) D(py —p'", puv —p'") < CZ5.

(ii) Furthermore, as b > Z-3

(27.4.42) D(pw — p'F, pu — p'F) < CZ5(Z7° + (bZ3)° + (a2)?).

Proof. (i) Note that all the terms in estimates from below and from above
are O(Z3) except the common term

1
(27.4.43) Tr (Haw + p) + — / IV x AJ? dx,

a

where A is a minimizer for this term and therefore estimate (27.4.41) has
been proven because estimate from below also contains D(py —p'F, py—pTF).

(ii) To prove Statement (ii) one needs
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(a) To improve estimate (27.4.34) to

3
2

(27.4.44)  N(p) = /(W + )2 dx 4+ O(Z5[Z70 + (bZ3)° + (22)%]);

(b) To estimate terms (27.4.36)—(27.4.38) by the right-hand expression of
(25.4.45); and

(¢) To accommodate Dirac term in both upper and lower estimates.

Tasks (a), (b) are easy and we leave it to the reader (cf. arguments
of Subsection 25.4.3); we use that after rescaling effective magnetic field
intensity becomes O(aZ) in the zone {x : {(x) < Z~3} due to already
established estimates to A.

To fulfill task (c) observe that in the upper estimate we already have
term

1
(27.4.45) ~3 tr/ Ix — y|ren(x, y)el(x, y) dxdy.

On the other hand, in virtue of Theorem 26.A.2 we replace in the lower
4

estimate term —C [ pd(x) dx by (27.4.6) with O(Z37°) error (again we leave

easy details to the reader).

One can prove by the same arguments as as in the non-magnetic case
o . . 5
that for aZ < x* it is Dirac + O(Z37°). O

Finally, combining arguments sketched in the proof of Theorem 27.4.4
with the improved estimate of (27.4.43) (see Theorem 27.3.24(ii)) we arrive
to

Theorem 27.4.5. Let assumptions (27.4.8) and (27.4.10) be fulfilled, and
let < Z79|log Z|73. Then

(27.4.46) Ej = &N + Z 272S(aZy) + Dirac + Schwinger+

1<m<M

O(allog(aZ)|5Z% + Z370 + ab3Z7?)

where Dirac and Schwinger are Dirac and Schwinger correction terms defined
exactly as in non-magnetic case by (25.1.29) and (25.1.30) respectively.
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27.4.5 Free Nuclei Model

Consider now free nuclei model (see Subsubsection 25.4.4.2). Estimates for
Distance between Nuclei in the Free Nuclei Model).

Theorem 27.4.6. Let us consider y, =y, minimizing the full energy

(27.4.47) Ev=Envt D> ZnZwlym—Ym|
1<m<m'<M

Assume that

(27.4.48) Zn=N Vm=1. M.

Then

(27.4.49) b>min(Z#%, 275 (aZ)™, a iZ72)

and in the remainder estimates in (27.4.40) and (27.4.46) one can skip
b-connected terms; so we arrive to

(27450) Ey=&F+ Y 222S(aZ,)+ O(allog(aZ)|3Z5 + Z3)
1<m<M
and
(27.4.51) Ey =&V + Z 272S(aZy) + Dirac + Schwinger+
1<m<M
0(a|log(aZ)|3Z% + Z57°)

respectively and also the same asymptotics with ET\, and gEF instead of Ey,
and ENF.

Proof. Optimization with respect to yi, ..., ym implies
ZnZyy
(27.4.52) B+ Y < > E,
1<m<m'<M [Ym — Yo | 1<m<M

where E* = E*(y1, ... .ym; 21, ..., Zm, N) and Ef, = E*(ym, Z) are calculated
for separate atoms. In virtue of Theorem 27.4.3

(27.453) £+ > z Z"" - Y &<

1<m<m’'<M

Co Iog(aZ)ﬁZ? + 2734 Cab322
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However due to the strong non-binding th(leorern in Thomas-Fermi theory the
left-hand expression is = b~ for b > Z~35 and therefore (27.4.53) implies

bZmin(Z %, a~7|log(aZ)|"AZ78, a 17 7)
where the third expression is larger than the second one for sure. Unfortu-
nately, for o > Z=99 it is not as good as we claimed in (27.4.49). Still
this estimate implies both (27.4.50) and (27.4.51).
To prove estimate (27.4.49) we observe that b>> Z~719 and then we
employ arguments used in the proof of Proposition 26.8.12 and prove that

| T (Haw + 1) = > Tr (Haw, +1)—

1<m<M

/ (WeyI(HA,W—i—,u; )= 3 Weyl(Haw,+4; x)) dx| < CZ5(Z70+(a2)"),

1<m<M

where A be a minimizer for “molecular” expression (27.4.45) and W,, are
atomic potentials. The same estimate holds if we replace Tr™ (Ha,w,, + 1) by
Tr™ (Hapw,, + 1) with Ay = Ag(b™tx — ym|) with ¢ € 65°(B(0, ), equal 1
in B(0,1). We leave an easy proof to the reader.

Then using the lower estimate for inf Specy(H) and upper estimates for
both inf Specy (Hp,) through Tr™ (Haw+p) and Tr™ (Ha,, w,,+1") respectively
(where H,, are associated with Ha, w, ) we arrive to

inf Specg(H) > Z inf Specy, (Hm)+ &' — Z ETF
1<m<M 1<m<M
~ CZ3(Z7 + (aZ)’)
and therefore

(27.4.54) Ea> Y Epa, +ET— > EF-

1<m<M 1<m<M
5

CZ3(Z7° + (aZ)’) — Cab32?,

where the last term is due to replacement of é J IV x A? dx by “atomized”
expressions Y,y w [ [V X Ap* dx.

19) There is no binding with b < Z~3 because remainder estimate is (better than) CZ2
and binding energy excess is < Z 3.
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The last inequality (27.4.54) then obviously holds with A,, replaced by
optimizers for “atomic” expressions (27.4.45) and now strong non-binding
theorem implies that

b < CZ5(Z70 + (aZ)’) + Cab™3Z?

which implies (27.4.49) where we change 0 > 0 as needed. O

27.5 Miscellaneous Problems

Recall that in our analysis in Sections 25.5 and 25.6 the crucial role was
played by an estimate of D(py — p'", py — p'") and since what we have now
(see Theorem 27.4.4) is (almost) as good as we had then, all arguments of
these Sections still work with the minimal modifications. We leave most of
the easy details to the reader but we need to deal with different magnetic

fields for different N.

27.5.1 Excessive Negative Charge
Theorem 27.5.12%. Let condition (27.4.48) be fulfilled.

(i) In the framework of the fixed nuclei model let us assume that
Iy =EN_; —EN > 0. Then

~io

{1 if a<Z73,
(275.1) (N—2),<CZ

704+ (aZ3) 4 (aZ)’ if a>Z75.

(i1) In particular, for a single atom and for molecule with a > Z-3+0

(27.5.2) (N—2), <ZH(Z7° + (a2)).

(111) In the framework of the free nuclei model let us assume that T’;V =
Ey_1 — Ey > 0. Then estimate (27.5.2) holds.

Proof. The proof follows the proof of Theorem 25.5.2; since it is not specific

to the case where there is no magnetic field, we find that (N — Z); < Q%,
where @ is an estimate for D(py — p'", py — p'"), which we established

20) Cf. Theorem 25.5.2.
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already; recall that the equivalence p™F = ¢=6 for ¢ > Z~3 also plays an
important role.
Here we pick up A = Ay 2" and conclude that

In(A) = En_1(A) — En(A) > Ejy_, — E}, > 0,

and then repeat arguments of the proof of Theorem 25.5.2.
We leave the remaining easy details to the reader. |

27.5.2 Estimates for ilonization Energy

Theorem 27.5.22%). Let condition (27.4.48) be fulfilled and let N > Z —
GoZ7. Then

(i) In the framework of the fixed nuclei model

(27.5.3) I < CZ7.

(i) In the framework of the free nuclei model with N > Z — CoZ7 (Z"S—O—aZé)
(27.5.4) Ty =Ey1—Eyy < Z5(Z77 + (a2)").

Proof. Recall that Theorem 25.5.3 was proven simultaneously with Theo-
rem 25.5.2; we follow the same scheme here picking up A = Ay?". Thus
here and in the first part of the proof of Theorem 27.5.3 we estimate from
above I}(A).

Again the remaining easy details a left to the reader. O

Theorem 27.5.32%). Let condition (27.4.48) be fulfilled and let N < Z —
CoZ7. Then in the framework of the fixed nuclei model under assumption
(25.6.2)

1

1 f a<Z73,

(27.55) (I +v)s < C(Z—N)BZ . s
Z0+(azZ3)" if a>Z .

21) Exactly as in the analysis of free nuclei model we pick up y for N-electrons we pick
now A for N electrons. B

22) Cf. Theorem 25.5.3.

23) Cf. Theorem 25.6.3.
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Proof. To estimate I}, + v from above we follow exactly the arguments of
Subsection 25.6.1 to estimate Iy(Ay) > I}. O

Problem 27.5.4. To prove the same estimate for (I}, + v/)_.

Remark 27.5.5. To estimate Iy, + v from below we need to pick up A = Ay_1
rather than A = Ap; then

In(A) = En_1(A) — En(A) < B}, — E} = I3,

and we should follow the arguments of Subsection 25.6.2. However, in
contrast to all other proofs of this Section, here we should use the spectral
properties of Ha w (or at least an estimate from above for its lowest eigenvalue
after localization to supp(f), while in all other results we need an estimate
from below for the same lowest eigenvalue after localization to supp(6)).

To estimate from above the lowest eigenvalue of Ha y we need some uni-
form (i.e. with constants which do not depend on N) smoothness estimates
for Ay_; where Ay_1 is the minimizer for Ey_;(A) as defined in Sections 27.4
and here (rather than as defined in Sections 27.2-27.3).

While (27.A.1) is an analogue of (27.2.14), it is still not the same, and
while it implies some estimate, it is not even remotely as good as we achieved
in Sections 27.2 and 27.3.

Sure py is not very smooth either but it close to rather smooth p'F; on
the other hand, the minimizer Ay is an almost-minimizer for the one-particle
trace problem studied Sections 27.2-27.3 but we don’t know how close it to
the minimizer (or one of the minimizers) of the latter problem.

27.5.3 Free Nuclei Model: Excessive Positive Charge

Theorem 27.5.6 %Y. Let condition (27.4.48) be fulfilled. Then in the frame-
work of free nuclei model with M > 2 the stable molecule does not exist
unless

(27.5.6) Z-N<ZHZ7 + (aZ)?).

Proof. Again we just repeat the proof of Theorem 25.6.4; we leave all easy
details to the reader. O

24) Of. Theorem 25.6.4.
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27.A Appendices

27.A.1 Minimizers and Ground States

First, establish a conditional existence of the minimizer? and the corre-
sponding ground state of the original problem:

Theorem 27.A.1. Let aZ < k* and let Eyy < E}_;. Then there exist a
minimizer A = Ay for the original multiparticle problem and the correspond-
ing ground state Wy.

Proof. We know that for aZ < k* (with £* > 0 which does not depend on
Z or positions of the nuclei) E*(A) is bounded from below; then ||V x A’||? is
bounded from above for a near-minimizer A" (but constants do depend on Z
and (k* —aZ) here). On the other hand, for A" € 65° and En(A’) < Ey_1(A)
there exists a ground state Wy(A’).

Therefore if Ay € 6§° is a minimizing sequence for Ey(A) we have
also a sequence Wy(Aq) with ||[Wy(Aqg)|| = 1. Going if necessary to the
subsequence, we can assume that Ay converges weakly in #€* and strongly
in &7 _for any p < 6; let A be its limit.

One can prove easily that Wy(A) converge weakly in H€' and strongly
in £? to ¥ and

(HavV, V) (Hag v¥n(Aw), Yn(Aw)),

= lim
k—00
and then
1 .
(HA’\/\U, W) + a = kILrT;o EN(A(k)),
which is E}, since Ay is a minimizing sequence and then W must be a ground
state. 0

Now in this framework we establish properties of the minimizer and the
ground state:

Proposition 27.A.229), Let W = Wy and A = Ay be a ground state and
minimizer with energy Ey, < Ej_;.

(i) W €6 and V = O(e~K) as |x| — co.

25) We do not know if it is unique.
26) Cf. Proposition 26.A.7.
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(ii) A€ €' and A= O(]x|72), V x A= O(|x|™3) as |x| = oc.

(i) Let N < Z. Then Viy — V € €' and Vg = (Z — N)|x|71 + O(|x|72),
VVy = —(Z = N)x|x| 72+ O(|x]3) as |x| = .

Proof. An obvious proof, using also an equation

2
27.A.1) —AA =
(ETA1) ~AA

—2N Retr/\IlT(x, X2, ..., Xn)O;(D — A)x - oV(X, X2, ..., Xn) dxz - - - dx,

is left to the reader. This equation is similar to (27.2.14) and is also derived
from variational principles, its right-hand expression is % where A is the
lowest eigenvalue of Ha v on Fock’ space.

27.A.2 Zhislin’s Theorem
Theorem 27.A.3 (Zhislin’s theoren) 2. Ej., < Ej if N < Z.

Proof. An easy proof repeating with obvious modifications proof of Theo-
rem 26.A.8 is left to the reader. O

27.A.3 L. Erdos—J. P. Solovej’s Lemma
We reproduce here Lemma 2.1 from L. Erdés, J. P. Solovej [1].

Lemma 27.A.4. There is a positive universal constant k* such that for
any Z,a with Zao < K* we have

infinf Hay > _CZ56Y2 — 73572

if CZ753 <6< G with a sufficiently large constant C.

Proof. Consider a pair of smooth functions  and 6y, such that 62 + 07 = 1,
supp(f1) C B(0,2r), 61 = 1 on B(0,r), and |Vb|, |Vb;| < Cr~! with
r=07"s.

27) Of. Theorem 26.A.8.
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Let {o be a smooth cutoff function, supported on B(0,3r) such that
[VXol < Cr~' and {o = 1 on B(0,2r). Let A be an average of A over B(0, 3r).
Let Ao = (A — A))Zo, Bo =V X Ao; then

V®A =%V ®A+(A-A)® V.

Clearly
/ Bgdxg/ yV®AO|2dxgz/ >"<0|V®A|2dx+Cr2/ (A—A)? dx
R3 R3 R3 B(0,3r)

< Cl/ IV @ A2 dx
B(0,3r)

for some universal constant C;, where in the last step we used the Poincaré
inequality. Let ¢ be a real phase such that Vo = A. Since o = 1 on the
support of 6, we have

O1Haobth = 016 P Hu_ 50€"0; = 016" Ha, v €901,
After these localizations, we have

(27.A.2) Hy 7=
N

z 1
3 [QI(HA,O S (IV6o ] + yvelﬁ)al}j = /( ) IV @ AJ? dx
B(0,3r

j=1

>3- [ne (on - We], + o2 [ e

with
W(x) = [I o+ crﬂ 1(]x| < 2r),

where 1(X) is a characteristic function of X.
Now we use the “running energy scale” argument in E. Lieb, M. Loss, M.
and J. Solovej [1].

N 0o
27 A. 3 Z [016 i HA/ 0~ W] e"“’elL Z —/ N—e(HA’,O — W) de
0

J=1

1 [e’e}
> —/ N_e(Hao — W) de —/ NO(%HA,,O — W +e)de
0 5

2

H o e e
> —/ Nfe(HA’,O — W) de — / NO(HA’,O ——W+ *) de,
0 “w H 1%



282 CHAPTER 27. SELF-GENERATED MAGNETIC FIELD

where N_.(H) denotes the number of eigenvalues of a self-adjoint operator
H below —e.

In the first term we use the bound Ha, o > (D — Ag)? — | By| and the CLR
(i.e. Cwikel-Lieb-Rozenblum) bound:

n
(27.A.4) /N (Hago— W de<C/ de [ (W+|Bo| — )2 o
R3

< /de/ —e/2)+dx—0—C/ de/ |Bo|—€2/2/L dx
R3

<C /| Widc+ C/ﬁ/ B2dx = CZ3r? + Cr2 +Cu%/ B2 dx.
R3

R3 R3

In the second term of (27.A.3) we use

2eZ
HAoo—*W> [(D Ao)? —m1(|x|<2r)]

Ce
2
+ E(D* Ao)® — |Bo| — PI(M <2r),

and that

2e 4e/
D—A))?—==1(x| <2r) > (D= A — — > —
( 0) ,u|| (|‘ ) ( 0) N’X| (N

2e/ >

)

ie.
eZ.\ 2 Ce
HAoo—fW> (D A0)2—2('u) |Bo|—u71(\x|§2r).

Let = 472, then using Ce/ur? < /4y for p < e (ie. C < (622%/3)?), we
get

2
e—) de
7
[e%S) 1 2
< [ NGO~ A~ Bl + 5y de< € [ de [ (180l — € /a? ox

14

(27.A.5) / No(Hapo — W +
w H

< Cpz / B2 dx.
R3

Note that if Za < k* with some sufficiently small universal constant x*, then
(27.A.5) can be controlled by the corresponding term in (27.A.2). Combining
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the estimates (27.A.2), (27.A.3), (27.A.4) and (27.A.5), we obtain
Hay > —CZ2r2 — Cr2

and lemma follows. 0

Comments

The problem was considered first in several papers of L. Erdos, J. P. Solovej [1]
and L. Erdés, S. Fournais, J. P. Solovej [1,3,4].

The same problem in the relativistic case was considered in L. Erdos,
S. Fournais, J. P. Solovej [2] (under assumption preventing relativistic
instability).
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Chapter 28

The Case of Combined
Magnetic Field

28.1 Introduction

In this Chapter instead of the Schrodinger operator without magnetic field
as in Chapter 25, or with a constant magnetic field as in Chapter 26, or with
a self-generated magnetic field as in Chapter 27 we consider the Schrédinger
operator (27.1.1) with unknown magnetic field A, but then we add to the
ground state energy of the atom (or molecule) the energy of the self-generated
magnetic field (see selected term in (28.1.1) thus arriving to

(28.1.1) E(A) = inf Spec(Hav) + ! / |V x (A — A%)|? dx

where A% = 1B(—x;, x1,0) is a constant ezternal magnetic field.
Then finally

(28.1.2) E* = inf E(A),

A—Ade e}

defines a ground state energy with a combined magnetic field A while
A = A — AV is a self-generated magnetic field.
Note that

(28.1.3) /v x (A— A2 dx = /(|v x A? = |V x A°?) dx

which seems to be a more “physical” definition.
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28.1.1 Plan of the Chapter

First of all, we are lacking so far a semiclassical local theory and we are
developing it in Sections 28.2-28.4, where we consider a one-particle quan-
tum Hamiltonian (28.2.1) with the external constant magnetic field A® of
intensity 3, h < 1 and a self-generated magnetic field (A — A°). Here theory
significantly depends if Sh < 1 or Sh 2 1 as it was in the case without a
self-generated magnetic field.

While Section 28.2 is preparatory and rather functional-analytical, Sec-
tions 28.3 and 28.4 are microlocal; they cover cases fh < 1 and fh 2 1
respectively. These three sections are similar to a single Section 27.2. How-
ever in Sections 28.3 and 28.4 various non-degeneracy assumptions play a
very significant role, especially for large (.

Then in Section 28.5 we consider a global theory if a potential has
Coulomb singularities and (in some statements) behaves like (magnetic)
Thomas-Fermi potential both near singularities and far from them.

Finally, in Section 28.6 we apply these results to our original problem of
the ground state energy so far assuming that the number of nuclei is 1. One
can recover the same results if M > 2 but the external magnetic field B is
weak enough. No surprise that the theory is different in the cases B < Z 3
and Z3 < B< 783 (see Chapter 25 where this difference appears). Since as
M =1 the strongest non-degeneracy assumption is surely achieved and as
M > 2 much weaker non-degeneracy assumption is achieved in the border
zone (see Chapter 25) our remainder estimates for large B significantly differ
in the atomic and molecular cases.

In Appendix 28.A we first generalize Lieb-Loss-Solovej estimate to the
case of the combined magnetic field (which is necessary if Sh 2 1), then
establish electrostatic inequality in the current settings and finally study
very special pointwise spectral expressions for a Schrodinger operator in R3
with linear magnetic and scalar potentials (we considered such operators
already in Section 16.6)

28.1.2 Unfinished Business

One can apply these results to estimates of the excessive positive and negative
charges (the estimates for excessive positive charges, if M > 2 in the free
nuclei framework) and estimates or asymptotics of the ionization energy in
the same manner as we did it in Chapters 25-27; however there are no new
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ideas but rather tedious calculations and we leave it to those readers who
decide to explore these topics, which is clearly serious task.

28.2 Local Semiclassical Trace Asymptotics:
Preparation

28.2.1 Toy-Model
Let us consider operator (27.1.4)

(28.2.1) H=Hay = ((hD - A)-0)* = V(x)

in R3 where A, V are real-valued functions and V € (6%, A— A% € #6}. Then
operator Hp v is self-adjoint. We are interested in Tr™ (Ha,v) = Tr™ (Hy /)
(the sum of all negative eigenvalues of this operator). Let

28.2.2 E*=E::= inf E(A),
( ) SRR (A)

where

(28.2.3)  E(A) = E.(A) = (Tr—(HA,V) I / (A — A%)2 dx)
with a matrix A = (9;A;)ij=123. Recall that A° is a linear potential,
A(x) = 28(—x2, x1,0). We consider rather separately cases

(28.2.4), Bh<1 and  Bh>1

of the moderate and strong external magnetic field.
To deal with the described problem we need to consider first a formal
semiclassical approximation.

28.2.2 Formal Semiclassical Theory
Semiclassical Theory: $h <1

Let us replace the trace expression Tr(H, \,4) by its magnetic semiclassical
approximation —h~3 [ Pgu( V)1 dx where B = |V x A| is a scalar intensity
of the magnetic field and P.(.) is a pressure. Then E(A) ~ E(A) with

(28.2.5) E(A) = E(A) = —h‘3/PB,,( ¢dx+ /|E)A’]2dx
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Assuming that [0A'| < 8, A’ = (A — A°) we find out that
(28.2.6) —h3 / Pen(V) dx
~—h /('Dﬁh(v) — 0Psn(V)(B — ﬂ)@b) dx
~—h3 / Psn( V)1 dx

—h3 / [@2 (05Psn(V)Y) - Ay — 0y (95 Psn(V)¥0) 'Aé} o,
where we used that

(28.2.7) B~ B — O A, + 0y A

and integrated by parts. Then £(A) ~ £(A) with
(28.2.8) E(A) = E(A) = —h3/P5h(V)w dx

1
172 [ [0 (0sPan(V)0) A1~ 00 0sPan(V)i) - 45] ot s [ 0 o

and replacing approximate equalities by exact ones and optimizing with
respect to A" we arrive to

(2829) AAll = —%Iihila)@ (OgPﬁh(V)w), AAlz = %I’ih718)<1 (OBPﬂ(V)z/J),
DA, =0
and

(28.2.10) E = inf &A=& = inf E(A).

A: A—APeit} A: A—APe it}

To justify our analysis we need to justify approximate equality
1
(28.2.11) —h73 / Pgn(V) dx + — / |0A"|? dx
K

~ —h3 / Pan(V)pdx — h~3 / [Gngh(V)w(—GX2A’1 +c’9X1A’2)] dx+

1
W / |8A/|2 dX
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and estimate an error when we minimize the right-hand expression instead

of the left-hand one. To do this observe that (even without assumptions
Bhs 1, hS1)

(28.2.12)  |Pgn(V) — Pan(V) — 9nPsn(V) - (B — B)h| <
C(B — B)* + C|B — B|33h3.

Indeed, one can prove it easily recalling that

(28.2.13) Psn(V) =30 (1- S00)(V - 2j3h)2 Bh

>0
and considering cases fh = 1, Bh 2 1, |B — | = ph, analyzing different
terms in (28.2.13) and observing that the last term in (28.2.12) appears only
in the case fh <1, |B— (| < 5.

Then since |B — 3| < |B’| (where B’ = |9(A— A%)|) we conclude that the
left-hand expression of (28.2.11) is greater than

—ha/PBh(V)de — C||B|8h~* = C||B||28h~2 + x*h 72| B,
where we used that
(28.2.14) |03nPsn(V)| < CBh it V<o
then a minimizer for the left-hand expression of (28.2.11) must satisfy

(28.2.15) IB|| < Crph

and one can observe easily that the same is true and for the minimizer for
the right-hand expression as well.
Also observe that

(28.2.16) B = B+ 0,A; — 0,A, + O(B7YB')?).

Then for both minimizers the differences between the left-hand and right-
hand expressions of (28.2.11) do not exceed C 1332 and therefore

(28.2.17) |E* — | < Cr2p:.
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One can calculate easily the minimizer for
(28.2.18)  — h*/[aﬂPgh(V)w(—aXzA’l+8X1A’ dx+/|8A’|2dx
and conclude that A} = kfha; with a3 = 0 and

(28.2.19)  Aay = —(Bh) '0x205nPsn(V), Aay = (Bh) 0x105nPsn( V)

and the minimum is negative and O(k/3?); we call it correction term; in fact,
|0A|| < kBh and the minimum is < —k3? in the generic case.

Then a minimum of the left-hand expression of (28.2.11) is equal to the
minimum of the right-hand expression modulo O(k? 32 h).

Remark 28.2.1. (i) One can improve this estimate under non-degeneracy
assumptions (28.3.60) or (28.3.65). However even in the general case observe
that

E(A") — E(A)
> —CBh™3||B'— B"||z — CBh™2||B'||2 - ||B' — B"|| +2cor *h 2| 9(A' — A")||2
> —Cr?B2h + e Th2||0(A — A2

if A’ is the minimizer for € and therefore since ||B’|| < CxBh we conclude
that

(28.2.20) E* > E(A) — CK*B?h
and
(28.2.21) |O(A — A")|| < Ck?ph?

if A” is an almost-minimizer for £(A”).

(ii) Observe, that picking up A" = 0 and applying arguments of Chapter 18
we can derive an upper estimate

(28.2.22) E* < —/PB,,(V)w dx + O(h™);

however this estimate is not sharp for k32 > h~! because £* is less than

the main term here with a gap < k32. For k =< 1 it gives us a proper upper
. . 1

estimate only if § < h™z.

Therefore for k3% > h~! an upper estimate is not as trivial as in
Chapter 26; in the future we pick up as A’ a minimizer for £(A) (mollified
by x as this minimizer is not smooth enough).
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Semiclassical Theory: $h 21

Consider Sh > 1. Without any loss of the generality one can assume that
[V||gee < Bhand [|0A ||~ < 23. Then in the definition (28.2.13) of Pga(V)
(etc) remains only term with j = 0:

1 3
(28.2.13) Pan(V) = 550 VZgh,
which leads to simplifications of £(A’) and £(A’); both of them become
;1 ) 3
(28.28) s / V24 dx
1 3

+ 5 0h™ / V2 (0 Ay — Do A dx + 5 Lh 2| 0A |2
modulo O(571h~2||B’||?) and equations to the minimizer become

1 3 1 3
(28.2.9)" AA| = —Ezonaxz (VEy), AA, = 5;4()/-e5)xl(v¢¢), AA;, =0.

Then ||B|| < x and a correction term is negative and =< —xh~2 in the
generic case. An error O(57*h™2||B’||?) becomes O(kB1h2) (and thus not
exceeding microlocal error O(f3)).

28.2.3 Estimate from below
Basic Estimates
Let us estimate E(A) from below. First we need the following really simple

Proposition 28.2.2Y. Consider operator Hay, defined on #2(B(0,1)) N
HE(B(0,1))?. Let V € £*.

(i) Let Bh < 1. Then

(28.2.23) E*>-Ch3
and either
1
(28.2.24) —5 / |0(A — A%)|2dx < Ch3
KR

or E(A) > ch3.

1 Cf. Proposition 27.2.1.
2 Te. on #?(B(0,1)) with the Dirichlet boundary conditions.
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(ii) Let fh > 1. Then

(28.2.25) E*> —CBh2— Cr3f3hs
and either
1
(28.2.26) — / 10(A— A%)2dx < CBh% + Crif3ih3
K

or E(A) > CBh™2 + Crifiih™s.
(iii) Furthermore, let fh > 1 and

(28.2.27) KBh* < c.

Then

(28.2.28) E* > -CBh?

and either

(28.2.29) # / |O(A — A% 2 dx < CBh2

or E(A) > CBh2.
Proof. Using estimate (28.A.2)%) we have
(28.2.30) E(A) > —C(1+ Bh)h~3
1 3
. -3 12 e 12 4 i /12
Ch (/aA| dx) Ch (/|aA| dx) + /{h2(/|8A| dx),

which implies both Statements (i)—(ii) while Statement (iii) is a special case
of Statement (ii). O

Remark 28.2.5. (i) Definitely we would prefer to have an estimate

(28.2.31) E(A) > —C(1+ Bh)h~3
e /|aA'|2dx )+ /|aA'|2dx

from the very beginning, but we cannot prove it without some smoothness
conditions to A and they will be proven only later under the same assumption
(28.2.27).

3) Magnetic Lieb-Thirring inequality (5) of E. H. Lieb, M. Loss, M. and J. P. Solovej [1])
would be sufficient for Sh < 1 but will lead to a worse estimate than we claim for Sh > 1.
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(i) This assumption (28.2.27) in a bit stronger form (28.2.27)" will be
required for our microlocal analysis in the next Section 28.3.

Remark 28.2.4. Using Proposition 28.2.2 one can prove easily the following:

(i) Proposition 27.2.2 (existence of the minimizer) remains valid;

(ii) Asin Remark 27.2.3 we do not know if the minimizer is unique. From
now on until further notice let A be a minimizer. We also assume that
V is sufficiently smooth (V € “62*). This is be the case for magnetic

Thomas-Fermi potential for sure.

(iii) Proposition 27.2.4 (namely, equation (27.2.14) to a minimizer) remains
valid for both A and A’ = A — A%

Proposition 28.2.5%. (i) Let Bh < 1 and 0 < k < (1 — €o)x*. Assume
that

(28.2.32) E*(k*, B, h) > € — CM,
(28.2.33) E*(k, B, h) < E+ CM

with the same number € and with M > Ch™ + Cx*/3?. Then

(28.2.34) /|aA'y2dx < Gikh*M;

(i1) Let Bh>1 and k*Bh < c, 0 <k < (1 — €)K*. Assume that (28.2.32)—
(28.2.33) are fulfilled with the same number € and with M > CB + Cr*h2.
Then estimate also (28.2.34) holds.

Proof. Proof obviously follows the proof of Proposition 27.2.5. O

Estimates to a Minimizer: fh <1

Consider first the simpler case gh < 1.

4) Cf. Proposition 27.2.5.
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Proposition 28.2.6. Let Sh < 1. Then

(28.2.35) le(x,y, 7)| < C(L+ p2hz)h3

and

(28.2.36) I(hD — A), - 0)e(x,y,7)| < C(1+ p2h2)h3,
where

(28.2.37) 1= [|0A | se.

Proof. Without any loss of the generality one can assume that uh > 1.
Consider ,u’%h%—element in R3. Without any loss of the generality one can
assume that A%(z) = A(z) = 0 in its center z.

Since both operators E(7) and ((hD — A) - 0)E(7) have their operator
norms bounded by ¢ in £2, one can prove easily that both operators ¢ D*E(7)
and ¢pD*((hD — A), - ¢)E(7) have their operator norms bounded by C¢l®l
with ¢ = /ﬁh_% if a € {0,1}3 and ¢ is supported in the mentioned element.

Then operator norms of both operators y,E(7) and yx((hD—A)x-o)E(T)

1

from %2 to C9 do not exceed Cp¢;¢ and therefore the same is true for
adjoint operators; here vy, is operator of restriction to x = z.

Since E(7)* = E(7)? = E(7) we conclude that the left-hand expressions
in (28.2.35) and (28.2.36) do not exceed C¢3, which is exactly the right-hand
expression in both of them.

Then from equation (27.2.14), which remains valid (see Remark 28.2.4(iii))
we conclude that

(28.2.38) |AA
and therefore
(28.2.39) |6%A|| 4 < Ck|log h|(1+ uzhz)h~".

g < Cr(1+ ;A%h%)/fl

Further, combining (28.2.39) with (28.2.24), the standard inequality
3
[0A |4 < [|0PA||3e - ||OA|| and (28.2.37), we conclude that

1< Clisllog h)E (1+ pdhd)5hs
and therefore ph < 1. Then

(28.2.40) |[0A || ¢~ < C(k|log h|)5h™5
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and therefore due to (28.2.39)
(28.2.41) |0A || < Ck|log h|h™

where for a sake of simplicity we slightly increase power of logarithm) thus
p g
arriving to

Proposition 28.2.7. Let Sh <1 and k < k*. Let A be a minimizer. Then
estimates (28.2.40) and (28.2.41) hold.

Furthermore, the standard scaling arguments applied to the results
of Section 27.2 imply that in fact the left-hand expressions of estimates
(28.2.36) and (28.2.24) do not exceed C(1+ 3+ u)h=2 and C(1+ B+ p)*h~t

respectively.
Therefore ||0?A||¢~ does not exceed Cr|logh|(1+ B + p) and ||OA'||
does not exceed Cr2(1+4 f+ p)hz, and then p < C(x|log h|)s(1+ B + )5 hs

which implies y < C(k|log h|)5(1+ 3)5hs and finally we arrive to

Proposition 28.2.8. Let fh <1 and k < k*. Then

(28.2.42) |0A|4 < C(x|log h|)3 (1 + B)5hs
and
(28.2.43) |0?A ||~ < Crl|log h|(1 + B).

Estimates to a Minimizer: $h 2> 1

Consider now more complicated case Sh > 1.

Proposition 28.2.9. Let fh > 1. Then the following estimates hold with
= |0A|oo

(28.2.44) le(x, y, 7)| < C(B+p) (1 + pzh2)h2
and
(28.2.45) ((hD = A) - 0)e(x, y, 7)| < C(B + 1) (1 + p2h?)h~2

Proof. Without any loss of the generality one can assume that p < f;
otherwise we simply replace 8 by u. Consider (5_%h%, B-zh2, (n+ 1)_%h%)—
box in R2, where recall that V x A° is directed along x3. Without any loss
of the generality one can assume that A%(z) = A’'(z) = 0 in its center z.
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Since both operators E(7) and ((hD — A), - 0)E(7) have their operator
norms bounded by ¢ in &2, one can prove easily that both operators pD*E(7)
and ¢D*((hD — A), - 0)E(7) have their operator norms bounded by C(* with
G=CG=p2h2and = (h+puzh2) for a € {0,1}3 and ¢, supported
in the mentioned cube.

Then operator norms of both operators y,E(7) and y,((hD— A)x-a)E(7)
from %2 to C9 do not exceed Cp¢;¢ and therefore the same is true for
adjoint operators; recall that v, is operator of restriction to x = z.

Since E(7)* = E(7)? = E(7) we conclude that the left-hand expressions
in (28.2.44) and (28.2.45) do not exceed C(2(3 which is exactly the right-hand
expressions in both of them. O

Then from equation (27.2.14), which remains valid (see Remark 28.2.4(iii)),
we conclude that

(28.2.46) |AA |4 < Cr(B+ ) (1+ p2h?)
and therefore
(28.2.47) |0%A'l| 4o < Cr|log B](B + ) (1 + p2h?).

Let (28.2.27)) be fulfilled. Then combining (28.2.47) with (28.2.29) and
3
|0A |4 < [|0PA||3e - ||OA]|5 we conclude that

lw

1< C(kllog B)E (B + u)* (14 hiut)® x wb b

and then either
(28.2.48) 1< ph < C(rpBh|log B|)7 (kBH%)7
or sth < 1. In the former case of (28.2.48)

(28.2.49) |0A|| ¢ < C(rB|log B])7 h7

and
(28.2.50) |0?A

= < C(Blog B]) 7 hi.

Observe that the right-hand expression of (28.2.49) is less than CS under
assumption

(28.2.27) kB log BN < ¢
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with sufficiently large K; however the right-hand expression of (28.2.50)
is not necessarily less than Cf under this assumption and we need more
delicate arguments.

Without any loss of the generality we can assume that d3A3(z) =0 (we
can reach it by a gauge transformation).

Then considering (372 hz, 72h2, v~3h3)-box in R3 we can replace factor
(1+ p2h2)h~2 by (14 v3h3)h~t in all above estimates with v = |92 A’
and therefore (28.2.47) is replaced by

PLoo

v < Crllog B|B(1+ v3h3)
and then under assumption (28.2.27)"

(28.2.51) v =|0?A||4~ < Ck|log 8|3
which implies
(28.2.52) |0A || < C(k|log B]B)5.

Obviously, if ph < 1 we arrive to the same conclusion in easier way. Thus
we have proven

Proposition 28.2.10. Let fh > 1, k < k* and (28.2.27)" be fulfilled. Then
estimates (28.2.51)—(28.2.52) hold.

28.3 Microlocal Analysis Unleashed: fh <1

28.3.1 Rough Estimate to a Minimizer

Recall equation (27.2.14) to a minimizer A of E(A):
2
~Retr|o;(((hD — ) - oe(x,y,7) + e(x, 7, 7) {(hD = A), - ) ) |l

where e(x, y, 7) is the Schwartz kernel of the spectral projector 8(7 — Ha v).
In the current framework this equation should be replaced by

(28.3.1) 2 A(A(x) — A(x)) = 0(x)

kh?

with ®;(x) defined above but since AA? = 0 these two equations are equiva-
lent. We assume in this section that Sh < 1.
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Proposition 28.3.1. Let fh <1 and let
(28.3.2) |0A||gee < pu < hL.
Then for 0 € [1,2]
(28.3.3) |9l + [[hOP) || £
< Ch2(1+ BEhE + [log h| + (BR[04 |37 + (B) ¥ V77 ).
Proof. (1) Assume first that V =<1,
(28.3.4) Bhi<1 and p=1

Note that we need to consider only case 8 > 2 because otherwise estimate has
been proven in Section 27.2 (see Proposition 27.2.16). Then the contribution
of the zone Z), = {|&5 — As(x)| < p} with p > p, == Co3~" to the Tauberian
remainder with T = T, := ¢4~ does not exceed

1 1 1 1
(28.3.5) Ch-2p(/3 + hOD oA 2, + haw—l)”avH%Q).

Indeed, if Q is h-pseudodifferential operator supported in this zone then
exactly as in the proof of (27.2.48) for T < T,

|Ft—>h*17>_(T(t)rx((hD)kQXUa)‘ < CPh_2
and

|Ft—)hfl‘r)_CT(t)rx((hD)ka(U - Ue))| S CPh_4?9T2.

where U and U, are Schwartz kernels of e~ "tHav and e~ 'tHave regpec-
tively and ¢ is an operator norm of perturbation (HAE,VS — HA,\/), A: and
V. are e-mollification of A and V respectively and € > h; then

|Feesh1, X7 ()< ((AD)*QU)| < Cp(h™> + h*9T?)
and therefore the Tauberian error does not exceed Cp(h=2T 1 + h=*9T).

Optimizing by T < T, we get Cp(h™2p~! + h=392) with ¢ = h and
¥ = e%F|OA|| v, which is exactly the (28.3.5).

Further, following arguments of Section 27.2 we conclude that an error
when we pass from the Tauberian expression to the Weyl expression does
not exceed

(28.3.6) Coh2(1+ PO [N, + h%”’l)l\aVHie)-
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(ii) On the other hand, the contribution of zone Z, = {|{; — As(x)| =< p}
with p > p, = Co~! to the Tauberian remainder with T = T* := ¢p does
not exceed

1 1 1 1 1 1
(28.3.7)  Ch™2 (1 + 200D oA 2, 4 p5<1—0>h5<9—1>||aV||%9).

Indeed, if @ is h-pseudodifferential operator, supported in this zone, then
for T<T™
|Ft%hfl‘r)ZT(t)rx((hD)kQXUE)| S C,Oh_2,
and for T, < T < T*
|Fen1XT(E)Tx ((AD)* Qe Us)| < Cph™2(h/ T %),
and then
e 1 (Tr(8) = T ()T (D) QUL)| < Cph 2(8h/p%)?

and

Fonte Xr (O (AD)F QL) < Cph™,
while approximation error is estimated in the same way as before but with
e = hp~! and thus ¥ acquires factor p=27°.

Then the Tauberian error is estimated and optimized by T < T* and it
does not exceed (28.3.7).

Following arguments of Section 27.2 we conclude that an error when we
pass from the Tauberian expression to the Weyl expression does not exceed
(28.3.6).

Then the summation of the Tauberian error with respect to p ranging
from p = p’ to p =1 (where in what follows we use p instead of p’ notation)
returns

(28.3.8)
1 1 1
Ch‘2(1 + |logp| + p 20 DpO-V)94 |2, + p‘i("‘”h%“"”H0VH%9)

and adding contribution of zone Z we conclude that the total Tauberian
remainder does not exceed

(28.3.9)
2 —1(0-1) L 1(0=1) 1A 4/ 3 ~1(0-1)p1(0-1) 3
Ch (,6,0+||0gp!+p 2R DNOA G + p72 Ve ||‘9V||<@9)-



28.3. MICROLOCAL ANALYSIS UNLEASHED: ph <1 299

Meanwhile, the summation of the Tauberian-to-Weyl error with respect
to p returns (28.3.9) albeit without logarithmic term. Optimizing with
respect to p > p, we arrive to

(28.3.10)  Ch2 <1+||ogh| + (Bh)R oA 70 +(Bh)9+1\|8V||"“>.
Furthermore, observe that

(28.3.11) If in e-vicinity of x inequality |V V/| < ¢ holds (with ¢ > |log h|™),
then we can pick up T* = emin(¢"!p, 1).

Indeed, we can introduce

py =& — As— faa(& — Ar) — B an(6 — Ay)
such that {H, p}} = Vi, + O(vS71) with v == ||9?Al| .
Therefore, in this case the remainder does not exceed

(28.3.12)  Ch2 (1+C|Iogh| + (Bh)FR||OA| 77 + (5h) T ||8V||9“).

(ili) Finally, observe that the Weyl expression for ®; is just 0. Therefore
under assumption (28.3.4) slightly improved estimate (28.3.3) has been
does not exceed expression (28.3.12).

(iv) To get rid of assumption (28.3.4) we scale x +— xy~ 1, h — hy™!
B+ By and pick up vy = min((ﬁh%)’% o ) then 8h s Bh, and Ch=2 —
Ch=2y"1 = CB3h~3 + Cuh=2 (as we need to multiply by v=3) and both
OA "“ and |0V "“ acquire factor

-

Observing that we can take ( = C and that factor v also pops up in all
other terms (except 1) in (28.3.12) we arrive to estimate (28.3.3).

Furthermore, to get rid of assumption V < 1 we also can scale with
v=¢€|lV|+ h3 and multiply operator by v~1; then h — hy~3, B +— B~v? and
estimate (28.3.3) does not deteriorate; we need to multiply by 7% which
does not hurt. 0
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Remark 28.53.2. (i) We can use €' # 0 for norm of V.
(ii) If V is smooth enough we can skip the related term (details later).

(iii) We can take § = 1 but in this case factor p=2@Dh2(0-1 in (28.3.8)
(i.e. after summation) and in (28.3.9) is replaced by |log p|; then taking into
account (i) we replace (28.3.10) by

1 /1 _1
(28.3.10)  Ch™? (1 + |log h| + |log h| - [|OA']|2, + (BR) 751 |0V 9’“)

o’
and similarly we deal with (28.3.12) and (28.3.3):
(28.3.3)" [|®;]|¢ + [|HOP; || g <

o’

: = -
G (BT VT

Ch*2<1+ﬁ3h% + | log h| + | log h|||0A’ 7

(iv) From the very beginning we could assume that p < §; otherwise we
could rescale as above with v = 37! and apply arguments of Section 27.2
simply ignoring external field.

Corollary 28.3.3. Let in the framework of Proposition 28.3.1 A’ be a min-
imizer. Then for 0,0 € [1,2]

(28.3.13) |[log h|M|OA |1 + h*~|OA||¢e
< Cr(3hE + |log bl + 11+ (BRI V|,
+ Cr?|log h||log h|* + C||0A]|.
Proof. Indeed, the left-hand expression of (28.3.13) does not exceed
[AA |l + [[hW0AA g + CllOA]

while for a minimizer ||AA||¢w~ + || AOAA’| ¢~ does not exceed the right-hand
expression of (28.3.3) multiplied by Crh?. O

28.3.2 Microlocal Analysis

Aslong as 8 < G h=3 we are rather happy with our result here, but we want
to improve it otherwise. First we will prove that singularities propagate along
magnetic lines; however since we do not know a self-generated magnetic field
we just consider all possible lines which will be in the cone {(x, y): [x'—y'| <
CopB71T} where 1 < pu < .
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Proposition 28.3.4. Assume that Sh <1,

(28.3.14) ||V||<@1(B(0'2)) < G
and
(28.3.15) [0A ceoay <1 (1< < eB)

with sufficiently small constant € > 0.
Let U(x,y, t) be the Schwartz kernel of e "tHav_ Then

(i) For T <1 estimate

(28.3.16) [FeeshrXr(8) 1 (x)a(y) U] < Ch°
holds for all yn, 1, € 65°(B(0, 1)), such that dist(supp(¢1), supp(¢2)) > Co T
and T < co; here ||.|| means an operator norm from £? to £? and s is

arbitrarily large.

(ii) For p < p <1 with p= CoufB™" and T < p estimate

(28.3.17)  ||Fesn1-X7(8)1(0 7 P32 pay ) (x)a(y) Ul
< CpFh + CP279h9(|||A/|”9+1 + V|”9+1)
holds for all all 1, g2 € 65, V1,9 € 65°(B(0, 1)), such that

dist(supp(1), supp(¢2)) > Gy, and T < ¢o; here and below p; = hD; — A;,
0 — hD, — A
Pi e

(iii) For p<p<S1land T = p <1 estimate

(28_3.18) || FH,,_1T)_<T(1”)901(P_1P3x)‘P2(P_1p3y)w1 (’7_1X)w2(7_1}/) UH
< Cpr oy + Chyp (A sy + 1V D)

holds for all v1, o2 € 65°, Y, Y2 € €5°, such that dist(supp(t1), supp(¢2)) >
Co,v=pT >B1 py>hand 7 < c.

Proof. Statement (i) claims that the general propagation speed with respect
to x is bounded by Cp. Further, Statement (ii) claims that the on distances
> (yp the propagation speed with respect to ps is also bounded by .
Finally, Statement (iii) claims that on distances > Cyp the propagation
speed with respect to x is bounded by Cyp. Note that from Corollary 28.3.3
we know that p < .
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(a) Proof follows the proof of Proposition 27.2.11 in the framework of the
strong magnetic field. Namely, proof of Statement (i) is a straightforward
repetition of the proof of Proposition 27.2.11(i). Since here we do not apply
at this stage operators (hD,)* and (hD,)*’, no assumption to the smoothness
of A is needed.

(b) Assume that A3 = 0 (we will get rid of this assumption on the next
step). After Statement (i) has been proven we rescale t — t/T, x3 — x3/7
with v = pT (since ¢, depend only on &3, all other coordinates are rather
irrelevant), h — h = h/(py), T +— 1. Then we apply the arguments
used in the proof of Proposition 27.2.11(ii) and conclude that the left-hand
expression of (28.3.17) does not exceed

T(B 4 CHA S (AN gy + IVIg) ).

where factor T is due to the scaling in the Fourier transform and v+ is
due to the scaling in || - |-norms. Plugging A, T, and v = p? we get the
right-hand expression of (28.3.17).

Then if ¢, depend only on x3, y3 we can follow the proof of Proposi-
tion 27.2.11(iii) and prove Statement (iii).

(c) Let Az be not necessarily identically 0. To consider ¢; depending only on
x1 or xp we should introduce (in the standard magnetic Schrédinger manner)
X| = x4 713 or x5 = xp — 37 pY respectively; recall that p) = hD; — A?
and pj = hDJ - Aj,j: 1,2,3.

Then [p9, p3] = ihB~*, [p), xi] = —ihdjx, [P}, x;] = 0 and one can see
easily that [p;, x;] = O(B7tpuh) (for any p:1 < pu < ) for j =1,2,3 and
k =1,2. Now we can apply the same arguments as above as long as p > p.

(d) Next we need to recover Statement (ii) in the general case. Without
any loss of the generality we may consider a vicinity of point z where
A'(z) = 0 and also 0A'(z) = 0. Indeed we can achieve the former by the
gauge transformation and the latter by a rotation of coordinates in which
case increment of p§ will be O(p).

In this case we just repeat the same arguments of Part (b) of our proof.

(e) Finally, the proof of Statement (iii) as 1; depend only on x3 follows from
Statement (ii).
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We leave all easy details to the reader. O

Proposition 28.3.5. Let Sh <1 and assumptions (28.3.14) and (28.3.15)
be fulfilled. Then

(i) For h < T <1 estimate
(28.3.19) |Feon1oX7(0)pCpy Ul < CT*h73*

holds for all o : |a| < 2, o : || <2, and all x,y € B(0,1), such that
Ix —y| > GT and 7 < c.

(i1) In the framework of Proposition 28.3.4(ii) the following estimate holds
foralla: o) <2,d : || <2, and T < c:

(28.3.20) |Femn1- X (£)PEPL 1(p " Pax) (™ pay )b (x)tba(y) U]

< Cph™* (5h71 + p*h7?) (/)1735/75 + P270h9(|||A/”|9+1 + | V|||9+1));

(iii) In the framework of Proposition 28.3.4(iii) the following estimate holds
foralla: o <2,d : || <2, and T < c:

(28.3.21) ’Ft—ﬂrlﬁzT(t)PSP}l/@1(P_1P3x)<ﬁ2(P_1P3y)¢1(’y_lx)¢2(’y_ly) U|

< Coh (B + 20 2) (55 + K (AT + 1Vl)).

Proof. Observe that estimates (28.3.16)—(28.3.18) hold if one applies operator
pfjp;‘/ under the norm (this follows from equations for U by (x,t) and
dual equations by (y, t)). Then estimates (28.3.19)-(28.3.21) hold with
a=o =0.

Really, without any loss of the generality one can assume that A’ = 0 at
some point of supp(¢1); then estimates (28.3.16)—(28.3.18) hold if one applies
operator p2*p’" instead. Then estimate (28.3.19) holds with o = o/ = 0;
further, estimates (28.3.20)—(28.3.21) also hold with o = o = 0 if one
applies an extra factor @ (p~"p3,)@2(p~"p3,) under the norm (this follows
from the properties of pj(-), J =1,2,3, in particular, canonical form). However
if ¢ =1 in e-vicinity of supp(i,) then we can skip this factor.

Finally, appealing to equations for U by (x, t) and (y, t) again we recover
estimates (28.3.19)—(28.3.21) with |a| < 2, /] < 2. O



304 CHAPTER 28. COMBINED MAGNETIC FIELD

Proposition 28.3.6. Let fh <1 and (28.3.14) and (28.3.15) be fulfilled.
Let z € B(0,1). Then:

(i) The following estimate
(28.3.22) |Fesyn1 X (£)PEPL ©1(0 " P3x) @2 Py ) Ulxmy—z|

< CpThH(Bh™' + p*h?)
holds for all a: || <2, o 1 |&/| <2, and 7 < c.

(i1) Let A,(x) = A(z) + (x — z,V,)A(2), Vo(x) = V(z) + (x —2,V,)V(2)
be linear approzimations to A and V at z; let H, = Ha,v,, U.(x,y, t) be its
Schwartz kernel. Then for i*=° < T < Gy, p < G estimate

(28323) |Ft—)h*17>_<7'(t)pgp;}/(pl(p71p3x)<p2(p71p3y)(U - Uz)|x:y:z|
< CpT?h2 (5h71 + pzhfz)uyz

holds with

(28.3.24) y=7(p, T):=GColp+ T)T + Ghp™*,
and

(28.3.25) v=~1AN+1VI,) + .

Proof. (i) Proof of Statement (i) is easy and left to the reader.
(ii) To prove Statement (ii) observe that

t
(28326) eithle _ eithlez + I'h—l/ ei(t—t’)hle(H _ Hz)eit/hlez dt/ _
0

t
eithlez_‘_ Z I'h—l/ ei(t—t’)hle(H_Hz)wkeit’hlez dt/,

0<k<K\ 0 .

where 1) is a y-admissible function supported in B(z,27v) and 1y are -
admissible functions supported in B(z, v) \ B(z, 37«) with v, = 2%y. Plug-
ging (28.3.26) into the left-hand expression of (28.3.23) we note that the
first term is cancelled and we have the sum with respect to k: 0 < k < K
obtained from this expression when we replace (U — U,) by the Schwartz
kernel of the selected above term.
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Further, observe that the term with k = 0 does not exceed the right-hand
expression of (28.3.23).

Furthermore, terms with k : 1 < k < K do not exceed the right-hand
expression of (28.3.21) multiplied by CTh™!min(r73,1); indeed, we just
replace p by T if needed. After summation with respect to k: 0 < k < K
we get

Cph™! T(ﬁh_1 + p2h_2) X (p_sfy_shs min(vy%, 1) 4+ h?p~2v min(v, 1))
which again does not exceed the right-hand expression of (28.3.23). O
Remark 28.5.7. Actually Statement (ii) is better than Statement (i) only if
vy2Th=1 < 1.

28.3.3 Advanced Estimate to a Minimizer

Now we are going to apply the results of the previous Subsection 28.3.2 to
the right-hand expression of (27.2.14).

Tauberian Estimate
Consider different zones (based on the magnitude of |ps|). Recall that

p=p"1 and p* = (Bh)3.

Zone {p < |ps| < p*}. Observe that Proposition 28.3.6(ii) implies that
for ¢; € 65°([-2, —3] U [3,2]) estimate

(28.3.27)  |Fesn1-X ()PP @1(p Pax)2(p ™ pay) Ulumy=z| < CS(p, T)
holds with

(28.3.28) S(p, T) = (,Bhil + p2h—2) (pfl + ph72V’)/2 T2),

where v = (p, T) is defined by (28.3.24).
Indeed, one can prove easily that

(28.3.29) |Ft—)h*17—>_(T(t)pgpﬁ/@1(p71p3x)tp2(p71p3y)Uz|x:y:Z|
< C(Bh 7t + p7h72).

5) As we assume that g = 1; otherwise g = p81.
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Let us take o = o, ¢1 = ¢, and p; = py. Since in this case expression
(28.3.30) PRy e1(p1 Pax)p2(p2 Py el i )y

is a monotone function with respect to 7, then the standard Tauberian
arguments (part I-estimates; we leave easy details to the reader) imply that

(28.3.31) [pepyer(p pa)er(p psy) e m) — el )] x=y|
<CS(p (T H+|r—7|h)

for all 7 < 7 < ¢ and therefore

(28.3.32) [y @1(o1 pa)ea(pz pay) [e(s ) = e 7] lxmy|
1,11 11
< C(Slor, T)S(p2, To))* (T2 T3 2 tlr =7/ (T34 T5 2 )W bt =772,
Then the standard Tauberian arguments (part II-asymptotics, with the
minor modifications; again we leave easy details to the reader) imply that
expression (28.3.30) is given by the standard Tauberian formula with an
error, not exceeding the right-hand expression of (28.3.32) with |7 — 7’|
replaced by hT !, which is

_1
2

(283.33) C(S(pr, T)S(oe o) (T T3 2+ (T 4 T )T H 4 T,

_1__1
Note that for T > max( Ty, T,) the second factor in (28.3.33) is < T, 2T, 2.

In other words, a contribution of the pair (p;, p2) to the Tauberian error
does not exceed a square root of S(p1, T1) Ty x S(p2, To) T, * with

(28.3.34) S(p, T)T~' = gh (pflel 42T (T + T2 + h2,f2))

= Bh! (,071 T 4+ h 20’ T34+ h2upTS +upt T>

for p<p<p".
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then the summation by p € [/, p*] returns
(28.3.35) Bh~ (h*%zﬁ\ log h| + h—3vip~3 + y%pfl)
with p = p’ to be selected later.

Zone {p* < |ps| < 1}. Further, we claim that
(28.3.36) For hs < p < Gy, h< T < egp we can take v = hp~ L.

Indeed, observe that if we use e-approximation with ¢ = (p‘lh)l_‘5 then the
contribution of time intervals {t: T, < [t| < T*} with T, = p~(p~1h)!~°,
T* = ¢gp is negligible and the transition from £ = (p~1h)}=% to e = (p~*h)
is done like in the previous Chapter 26. Again we leave easy details to the
reader.

Then

(28.3.37) S(p, )T ' =< ph™ (T +vT);
minimizing by T: h < T < ep we get

ph™2 (1/% +p 4 Vh);
then summation by p € [p*, G| returns

(28.3.38) h2(v2 + (1 + vh)|log h|).

1

Observe that p* = (8h)z > hs as 3> h™3.

Zone {|ps| < p'}. Finally, the remaining zone {|ps| < p'} is covered by a
single element p(p~tp3) with ¢ € 65°([-2,2]), p = p'.

Then instead of minimized S(p, T) T~ we can take pBh~—2 which should
be added to the sum of expressions (28.3.38) and (28.3.35) which estimate
contributions of two other zones resulting in

(28.3.39) h~2(v2 + (1 + vh)| log h))
+ Bh [h—%yﬂ log h| + h™3wsp~5 +vipt + ,oh—ﬂ _
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Obviously the second term in (28.3.39) should be minimized by p = p' €
[P, p*], resulting in

ot [ 2 log Al + hE(hivh)E 4 h i) ]
= Bh7! [h*%y%\ log h| + h 3yt 4 hf%u%) :

two terms arising when we set p = p* in the terms with negative power of p
and one term arising when we set p = p in the term with positive power of
p are absorbed by other terms in (28.3.39), which becomes
(28.3.40) h~2(v2 + (1 + vh)|log h|)

+ BhL [h’%yﬂ log h| + h™3uts + h=3ut].

ENE

This is an estimate for the whole Tauberian error (with variable T =

T(p))-

Calculating Tauberian Expression

Now we need to consider the Tauberian expression for p)‘fpf,‘/e(., 0 0)|xzy=2
and estimate an error made when we replace it by the Tauberian expression
for pfp?/ (., ., 0)|x=y=; we will call it the second error in contrast to the first
(Tauberian) error. Note that we are interested only in the case |a| + |a/| = 1.

Let us again consider contribution of pair (p1, p2). First, observe that
for p; < p this error does not exceed CS(py, T)T~! due to our standard
arguments and therefore we get for such pairs the same contribution to the
total error as we already got for the Tauberian error.

Second, consider pairs with p; > p, and in this case redoing previous
arguments we observe that the contribution to the first error does not exceed
1 1
CS(p1, T)2S(p2, T)2 T~* and the contribution to the second error does not
exceed

1 1
(28.3.41) CBh ™Y x pip3h v T3(T + p2)?,

where the first term which was C8h™1p~1T~! in the former case p; < p»
simply disappear. Indeed, it appears only due to the contribution of the
time interval {|t| < p} where we should take p = max(p1, p2) = p1 and
estimate an error due to the propagation of singularities.
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Similarly, the second term leading to expression (28.3.41) would also
disappear unless p; < T again due to the propagation of singularities.
Therefore the combined contribution of any pair to both errors does not
exceed

(28.3.42) (pl_lT_ + 2T 4 p h 20T + pp VT)
1 11
« (pz_lT_l RT3 4 pph TS + pglur) Ly pipah TS,

multiplied by C3h~! since we consider at this moment the case of p’ < p, <
p1 < p* while all other cases (namely, p» < p' < p1 < p*; po < p < p* < py;
P < pa < p* < p1;and p* < py K pp) are easier and left to the reader.

Opening parenthesis in (28.3.42) and eliminating all smaller terms we
arrive to

3 3 3 _1
+ (pipih v+ pip, 2 h V)T3 (p1p22(h V): 4 pipy th ) T2

3

P
3 _1 N S
(o 2pa v+ iy (M20)E) T 4 py 2y 0t
minimizing by T we get
1 _1 1 _1 _3 1 1 _1 1 1
pr Py (h2)s +py ¥ “’(h’ZV)g + (ff2V)Z +pytpy 7 (h )

1

1
+prpa (W) 4 prpy T 4 plpy H ()} 4 py Pyt
I—I

N

Observe, that only the last term has p; in the positive degree. Also
observe, that the optimal T = T(p) in the Tauberian error is a decreasing
function of p, so Ty < T, where T; = T(p;); therefore we consider the
Tauberian expression for T < T, and thus for p; < T < To.

Therefore T, must be an upper bound for p; and therefore the summation
by p1: p2 < p1 < T, results in all the terms with negative power of p; in
the value as p; = pp and in the exceptional (last) term with p; = Tp:

2
S(h=20)5 + (h~2v)|log pa(py 2K 1) 75|

3
%

05 (FW)E + p v + (032 h ) By 2 (h2)

(28.3.43) py? (H2)% + p;
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(where we used inequality T, < (p32h?v~1)s) with the last term equal to
the first one.

Then the summation by p, > p' results in the same expression (28.3.43)
calculated for p, = p'; adding as usual p’h~! (asince p/Bh~2 estimates the
contribution of zone {p, < p'}) and minimizing by p’ > p, we get, after we
multiply by Bh~! and add contributions of all other zones and also Tauberian
estimate (28.3.40), the following expression:

(28.3.44) h~? (V% + (u+ vh)|log h|)
+ B2 [h i log bl + h-3u - h-Tuh + h v,

Recall that we derived estimate for the difference between pgpSe(., ., 0)|x—y—;
and p2pg e;(., ., 0)|x=y— and thus for 4 = 1 we arrive to Statement (i) of
Proposition 28.3.8 below for p = 1.

Observe, however, that in virtue of Subsection 28.3.1 the same estimate
holds for g < hs. Then, if 1 < p < 3, one can scale x — ux, h — ph,
v 12y, K+ puk and we arrive to the same statement without assumption
w=1

Furthermore, in virtue of Propositions 28.A.4 and 28.A.5, expression
PSPy e:(., -, 0)[x=y—z| does not exceed CB2h 2|0V g if |a| + |o/] = 19,
Therefore we arrive to Statement (ii) below:

Proposition 28.3.8. Let 3 < h™! and (28.3.14) and (28.3.15) be fulfilled.
Then

(i) |p§“p§‘/ le(.,..0) — &(.,.,0)][x=y—z| does not exceed expression (28.3.44)
for |la| <2, || < 2.

(i) Consider |a| + |o/| = 1; then |p§p§‘/e(., . 0)|x=y=z| does not exceed
expression (28.3.44) plus Cwh=2 with

1 if B<hs,
(28.3.45) w=/{ Bins if h3<B<hz,
B if 2 <p<ht

6) Actually Proposition 28.A.4 provides better estimate for ||0V||¢~ < 82h.
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Remark 28.5.9. (i) Observe that for 8 < h™2 we got no improvement over
results of Subsection 28.3.1.

(i) One can replace p in the definition of 7 by v2. Indeed, we can assume
that 0A'(z) = 0. Then ~-vicinity of z we have u = O(v7v) and scaling we
should be concerned only abut this vicinity. We select v = voo.

Estimating |0?A'|

Recall that if A’ is a minimizer, then it must satisfy (27.2.14) and then
for ™2 < 8 < h™1 due to Proposition 28.3.8(ii) | AA[|l¢~ does not exceed
Creh?((28.3.44)+ 52 h~2) and then [|§2A’
multiplied by C|log h| plus [|0A||¢~ 7

¢ must not exceed this expression

(28.3.46) ||8?A||4~ < Ckllog h|(v? + (11 + vh)| log h|)
+ Crf3h|log h|(h=3v% + h™7v7 + h=2u%|log h|?) + Cr]| log h|32 ][OV |-

+ C||8Al poo.

Also recall that we can define v := max(||0?A’||¢=, 1); then we arrive to

Proposition 28.3.10. Let 1 < 3 < h™! and (28.3.14) be fulfilled. Let A’
be a minimizer satisfying (28.3.15).
Then one of the following two cases holds: either

(28.3.47) ||0?A||¢~ < Cu(k|log h|* +1)
+ C(rB|log h|) ¥ hs + C(rp|log h|)éh? + C(r3] log h|?) h3
+ Ckllog h|lw + C||0A|| ¢
with the right-hand expressions > C or
(28.3.48) [|0?A'||4~ < Cu(r|logh|* +1)
+ Crf|log h|hs + Ckp|log h|h7 + Crf|log h|>h?
+ Ckllog hlw + C||0A|| ¢

with the right-hand expression < C. Recall that w is defined by (28.3.45).

™) Which can be replaced by a different norm, say, |0A’|.
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Proof. Indeed, if v > C we have

v < Crp|log h| + C(kS3| log h|h3) % + C(rB|log h|h7)s + C(k3|log h|*h2)3
+ CrB2||0V

g + C||0A

L2,
which leads to (28.3.47); if v < 1 we have (28.3.48). O

Remark 28.3.11. (i) Observe that the right-hand expressions of (28.3.47)
and (28.3.48) are either < 1 or 2 1 simultaneously.

(ii) The second term in the right-hand expression of (28.3.47) (i.e. with

the power %) is always greater than the third and the fourth terms unless
kBh > |log h|=K). Because of this we just take power K of |logh| in this

term and skip two other terms. One can find easily that K = 4 is sufficient;

(iii) The second term in the right-hand expression of (28.3.47) is less than
the last one as 8 < h_l%(ﬁ\ log h|)_%.

(iv) Obviously, in (28.3.48) we can take u = 1; however we are missing
estimate of p in (28.3.47). For sure, we know that u < Cv but we will be
able to do a better work after we estimate |[0A’||? in Subsubsection 28.5.5.3.
Weak Magnetic Field Approach.

28.3.4 Trace Term Asymptotics
General Microlocal Arguments

Now let us consider the trace term. We are not assuming anymore that A’
is a minimizer but that it satisfies

(28.3.49),, [|0A |~ < p, |0°A|ge <v  with 1< pu<v<e

We assume that V € 62 uniformly. Later we will impose on V different
non-degeneracy assumptions; from now on small constant € > 0 in conditions
(28.3.15) and (28.3.49), , depends also on the constants in the non-degeneracy
assumption. '

Let us introduce the scaling function

(28.3.50) U(x) = € (m_in |V — 2j8h| + \(9V|2)% +7
J
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with
(28.3.51) 7:= Cmax(v87%, upt, h?).

We need the following

Proposition 28.3.12. Let Sh < 1 and (28.3.49), , be fulfilled. Consider
(7, p)-element with respect to (x, p3) with yp > h, v < max(¢, p) and

(28.3.52) p>pi= Comax(uft, h?).
Then for
(28.3.53) T.:=hp 2 < T<T" :=¢min(l,pl™)

for (7, p)-element {(x,&): x € B(z,7),|& — As(z)| < p} the following
estimate

(28.3.54)
|Femsn-1 X ()T (PP 01(0 7 Pax)2(p " pay ) (v X) 02 (v y) U) |
< CS(p. T
holds with
(28.3.55) S(p. T)= (Bh T+ p*h2) (pt + p > T?),

where € = hp~L.
Observe that we redefined p possibly increasing it.

Proof. The proof is similar to one of Theorem 27.2.17 and is based on
hp~!-approximation. Note first that the propagation speed with respect to
x3 is < p, the propagation speed with respect to ps is O(¢) and all other
propagation speeds are bounded by p. Therefore the shift with respect to
x3is < pT <las T < T* and it is observable for T > T, = h|log h|p~2 8).

Let us apply the three-term approximation. Then since the first term
does not includes any error, we can estimate it by

C(Bh—l +p2h_2),0’73h_1 T* -~ C(ﬁh_l +p2h—2)p—1,y3'

8) But in estimates we can skip the logarithmic factor using our standard scaling
arguments.
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which delivers the first term in S(p, T)3.

The second term is linear with respect to the perturbation (A — A.) and
asince we consider a shift by x3 in the estimate of this term, we also can
take T = T.. Indeed, contributions of intervals |t| < T' with T, < T < T*
to this term are negligible if we include a logarithmic factor in T7,®. Then
this term does not exceed C(Bh™! + p?h2) pl>vy?T?h~2? and it is less than
the first term in S(p, T)y>.

Finally, the third term does not exceed the second term in S(p, T)y>.0J

After estimate (28.3.54) has been proven we can estimate the contribution
of the given element to the Tauberian error by CS(p, T)v3p?h? T2 ¥ which
is

(28.3.56) CB+ph ) (pT 2+ p "W°hT)>.

Consider an error appearing when we replace in the Tauberian expression
T by T.. The first two terms are negligible on intervals |t| < T’ with
T. < T' < T* and the third term contributes here

C(B+ pPPh)p WihT'H3,
which sums to its value for T/ = T. Therefore this error does not exceed
(28.3.56) as well.
Minimizing expression (28.3.56) by T < T* we get
(28.3.57) C(B+ pPh™ ) (pT* 2+ p~303h3)73
= C(B+ pPh ) (p+ p 2 + pivihi)?,
where we do not include the last term with T = T, since then the first term

would be larger than CSh=2p3~3, which is the trivial estimate.
Now let us sum over the partition. Observe first that

(28.3.58) The contribution of the zone {p: p > (8h)2} does not exceed

(28.3.59) Qo= Ch™ '+ Ch 5u5

since p here would be in the positive degree. Consider now the contribution
1
of the zone {p: p < (Bh)2}.

9)

Factors p? and h?> T2 (rather than hT 1) appear because we consider the trace
term.
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Strong Non-Degenerate Case

Here p is in the negative degree but we can help it under strong non-
degeneracy assumption

(28.3.60) min|V — 2jBh| +]0V| > e  in B(0,1),
J

which later will be relaxed. Indeed, the relative measure of those x-balls with
~ = p?, where operator is non-elliptic is p2(3h)~* as p > h3. Then the total
contribution of such elements does not exceed p*h~(p~102 + p*%zx%hg) and
the summation over p results in (28.3.59). Meanwhile, the total contribution
of balls with |¢&; — A} < 5 = h3 does not exceed Cp%h~3, which is smaller'?).

However we have another restriction, namely, p > CouB~' V. Because
of this we need to increase the remainder estimate by CpS2h~1 x p?(Bh)~1
i.e. by

(28.3.61) Q' = 128722

We should not be concerned about the zone {p: 5> p > (8h)z} since here
we can always use T =< 37! and its contribution to the remainder will be
the same p3372h2.

Now we need to pass from the Tauberian expression with T = T,
to the magnetic Weyl expression and we need to consider only two first
terms in the successive approximations. We can involve our standard
methods of Section 18.9: note that |x — y| < cpT. = Ce in the propagation
and then we consider another unperturbed operator with V = V(y) and
A= Al(y) + (VAj(y), x — y) frozen at point y (when we later set x = y).
Then one can see that these terms modulo an error, not exceeding Qp, are
respectively

(28.3.62), —h3 / Pg_n( V) dx
and
(28.3.62), —h73 /(PB(V) — Pg.n( V)1 dx

10) These arguments work even if 3 < h~3 (and therefore (8h)2 < h3): we just set
v = hp~! for (Bh)2 < B < h3.
1) Here we can take p = ||0A’||¢~ without resetting it to 1 if the former is smaller.
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with B. = |V x (A + A”)|. Then we arrive to estimate (28.3.64) below.

Observe that non-degeneracy condition (28.3.60) was used only to esti-
mate by p?(8h)~! a relative measure of some set. However the same estimate
would be achieved under slightly weaker non-degeneracy condition

(28.3.63)  min|V —2jBh| + |0V|+ |det(Hess V)| > ¢  in B(0,1);
J

all arguments including transition to the magnetic Weyl expression work.
Therefore under this assumption the same estimate holds and we arrive to

Proposition 28.3.13. Let $h < 1 and conditions (28.3.49), , be fulfilled.
Then under non-degeneracy assumptions (28.3.60) or (28.3.63) estimate

(28.3.64) | Tr(Hy ) + b3 / Pen(V) dx| < CQ

holds with Q = Qo + Q" with Qo and Q' defined by (28.3.59) and (28.3.61).

Remark 28.3.14. We will show that for a minimizer @ < @ in both cases
(and even under even weaker non-degeneracy assumption (28.3.65)).

Non-Degenerate Case

Assume now that even weaker non-degeneracy condition is fulfilled:

(28.3.65) min |V — 2jBh| + [0V|+ |0*V| > ¢  in B(0,1).
J

Then the measure of the degenerate set is p(ﬁh)’% but even this is sufficient
to obtain the same sum from the second term. In the first term we get
however extra Cf|log h| (which is O(h™!) provided 8 < (h|log h|)~1) but
we can help with this too: indeed, if we fix £ > 27, then the relative measure
does not exceed p?(Sh¢) and summation results in O(h~*). We still need
to consider set {x: £(x) < 2}, but its contribution is obviously less than
CBI|log h| which in turn is O(h™* 4 v|log h|) (and this is O(h™!) for a
minimizer).

However contribution of the degenerate set becomes C3h~25%¢ which
boils down to the same expression @'. Then we arrive to

Proposition 28.3.15. Let fh < 1 and conditions (28.3.49), , be fulfilled.
Then under non-degeneracy assumption (28.3.65) estimate (28.3.63) holds
with @ = Q@+ Q", Q" = Q' + v|log h| with Qo and Q' defined by (28.3.59)
and (28.3.61) respectively.
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We leave easy details to the reader.

Degenerate Case

Let us derive a remainder estimate without any non-degeneracy assumpztions.
In comparison with the non-degenerate case we need to sum ﬂp_%l/%hi and
we sum it over p > p,, resulting in the same expression with p replaced
by p.; adding the contribution of the degenerate zone, equal to 8p3, we
1

get B« SUShS + Bh2p3, which should be minimized by p, > j, resulting in
Bushs + B7° i.e.

(28.3.66) Q" = Brihs + Bh 2 + 232k~ + | log h.

Thus we arrive to

Proposition 28.3.16. Let fh < 1 and conditions (28.3.49), , be fulfilled.
Then estimate (28.3.63) holds with Q replaced by Q = Qo+ Q" with Qp and
Q" are defined by (28.3.59) and (28.3.66) respectively.

Remark 28.5.17. We are going to apply our results to V = WaF + X\ with
chemical potential \. We know that

(i) For M = 1 (single nucleus case) after rescalings the non-degeneracy
condition (28.3.60) is fulfilled everywhere including the boundary zone
{x: e < r(x) < Gor}.

(ii) For M > 2 (multiple nuclei case) after rescalings the non-degeneracy
condition (28.3.60) is fulfilled if r(x) < ed where d is the minimal distance
between nuclei.

(iii) Further, for M > 2 and B < Z 5 after rescalings the non-degeneracy
condition (28.3.65) is fulfilled in the zone {x: Z~3 < r(x) < €F} where r(x)

1
is the distance to the closest nuclei and 7 = min(B_%, (Z—-N),?).

(iv) On the other hand, the non-degeneracy condition (28.3.63) is uncalled:
while we believe that that this condition is often fulfilled while (28.3.60)
fails we have no proof of this.

(v) For M > 2 in the boundary zone a more delicate scaling needs to be
applied to improve remainder estimate which is possible not only because
WaF is more regular than just 62 but also has some special properties.
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28.3.5 Endgame

Until now in this Section we assumed only that A’ satisfies equation to the
minimizer locally (and assumptions (28.3.14)—(28.3.15)) but now we assume
that A’ is a minimizer.

Upper Estimate

Let us first derive an upper estimate for E} and for this we need to pick-up
some A'. First of all, we try A’ = 0 resulting in

Er<&+Ch <& +Cht+ Crp?
which is a good estimate for k3% < h~%:
(28.3.67) Er <& +Cht

However for k32 > h~! we need to be more subtle. Namely, we pick up a
mollified minimizer for the modified functional &(A’), defined by (28.2.8).
More precisely, let A’ be the minimizer for &,(A’); then ,(A") = £+ O(h™1).

Still it is not a good choice since our approach relies upon 62-smoothness
but A’ is only ¢ 3-smooth.

Proposition 28.3.18. Let fh <1 and kB%h > 1; let A be a minimizer for
the modified functional E,(A") and let AL be its e-mollification. Then there
exists € > 0 such that

(28.3.68),, |0AL| < Cu=rph, |0PAL < Cv=C(1+ (kB)3h5)|loghl
and

(28.3.69) E(AL) =&+ O(h™).

Proof. From equation to A" we observe that

(28.3.70) |(A — AL)| < Ck(e + Bhe?), |0PAL| < Ck(L+ Bhe 2)|log hl
and

(28.3.71)  |Ex(A)) — E(AL)| < C(2 + Bhe?)kh ™3 + Cr(e + Bhe?)?h 2

because linear with respect to J(A’ — AL) terms disappear due to equation
to a minimizer. Then for ¢ > h the right-hand expression of (28.3.71)
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is O(h™' + kBh 2c2) and we take ¢ = min(1, (k) 3h3) 12, resulting in
(28.3.68), , and (28.3.69) since |[0A'| < CxBh. O

Then applying Propositions 28.3.12, 28.3.15 and 28.3.16 to operator
Ha. v with A. = A% 4+ AL we arrive to

Proposition 28.3.19. (i) For Bh < 1 and kB%*h < 1 estimate (28.3.67)
holds.

(ii) For Bh <1 and k5%h 2 1 estimate EX < EF + CQ holds with @ = @
under non-degeneracy assumption (28.3.65) and with Q = Qy + Q" in
the general case, calculated with v = (1 + (ﬁﬁ)%h%)’ logh|, p = h?, and
7 = max(hz, 571v).

Indeed, for A’ selected above u < kfh and one can check easily that
Q' < Q. Since v here is lesser than one derived for a minimizer of Ef(A’),
we are happy and skip calculation of Q™.

Lower Estimate

Estimate (28.3.63) implies that

Tr(Ha ) + £ [ 0A)|* > —h3/PBh(V)¢ dx + kT h 2 OA* - CQ

=E.(A') L T !

and therefore

(28372)  E, =€ -CQ  with El=infE(4), £ =inf&u(A),

where A = Al is a minimizer of E,(A") and Q is defined in Proposi-
tions 28.3.12, 28.3.15 and 28.3.16 and v is a right-hand expression of (28.3.47)
or 1 whatever is larger. For a sake of simplicity we replace it by a marginally
larger expression

(28.3.47)" v = (u+1)(k|log h|> + 1) + (k8) 5 h5| log h[X + k32| log hl;

recall that in “old” (28.3.47) p = ||0A'||z~ or p = 1, whatever is larger, so
we modified the first term here accordingly.

12) Then € > h due to x3%h > 1.
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Our problem is that so far we know neither ||0A’||z~ nor ||0A’||. Observe
however that

E; = Ex(A) > Exu(A) + (26) H0A? = &, + (25) H0A|? — CQ
> EX(A) — Crp*(26) H0A? — CQ

and therefore combining this with an upper estimate we arrive to estimate

(28.3.73) |0A'|| < C(kh*Q)z + Crfh,
and we have also

(28.3.74) 1OA |4 < ClIOA|]? - [|OPA |5
We are going to explore what happens if

(28.3.75) v =< u(k|log h> +1),

where the right-hand expression is the sum of all terms in (28.3.47)" con-
taining p.
Remark 28.3.20. (i) Observe first that remainder estimate Q = O(3?h™1)
is guaranteed and therefore ||0A'|| < CBhz. Then p < CB3hsvé due to
(28.3.74).

(i) Further, if (28.3.75) is fulfilled, then p < Bh2|log h|X and the same
estimate holds for v and then Qy =< h™!, Q" < CBh z|log h|¥; then the
rough estimate to @ is improved, and then p < Bh%, v 5h% and, finally,
Q@ = h™! under assumption (28.3.65) and Q = h™' + Sh~z in the general
case, and we also have nice estimates to u, v.

Therefore we can assume that (28.3.75) is not fulfilled, but then v is
defined by the remaining terms and then

(28.3.76) v = |log h| + kmin(B2h~2, B2)|log h| + (rB) S hs|log h|¥
(and from now we do not reset to 1 if this expression is smaller).
We almost proved the following estimates for Q:

(28.3.77) @ = Qo under non-degeneracy assumption (28.3.65) and Q =
Qo+ Bh~2 =< h™Y + Bh~2 in the general case.

However we need still explore what happens if Q < p3372h~2. In this case
1< (13472)505 and then ps < 513, and using (28.3.76) one can prove
casily (28.3.77) unless 8 < h~s|log h|¥ in which case v = (x| log h| + 1).
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Weak Magnetic Field Approach

Consider now case # < h™3. Recall that then v < Ckllogh| and p < 1.
Then as we study propagation with respect to ps we do not need to correct
it to p} and then we do not need p.

Then we can apply weak magnetic field approach (see Section 13.4).
Now contribution of a partition element with p > 37! does not exceed
pPh~1 x p=2 as we use T < ¢p and the total contribution of such elements
does not exceed Ch™': meanwhile the total contribution of elements with
p = Gt does not exceed CA2h™ 1 x B3 < Ch™tasweuse T = ¢St
Main Theorem

Therefore after we plug v into @y we have proven our estimate from below
and also the main theorem of this Section:

Theorem 28.3.21. Let fh <1 and k < k*. Then

(i) Estimate

(28.3.78) |Er — & < CQ

holds where under non-degeneracy assumption (28.3.65)
(28.3.79) Q = h™t + k¥ 37 h7 | log h|X,
and in the general case

(28.3.80) Q:=h1t+p8h2.

(ii) For a minimizer the following estimate holds: ||0?A'||y~ < Cv with v,
defined by (28.3.76).

We leave as an easy exercise to the reader

Problem 28.5.22. (i) Starting from estimate ||0?A’||g~ < Cv derive from
(28.3.73)—(28.3.74) estimate for ||0A'||¢~; consider separately three cases:
1<B<hs, h3<B<h:and h2<B<1.
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(ii) Prove that for x3%h > 1
(28.3.81) |O(A — A")|| < C(kQK)z,

where A’ and A” are minimizers for E, and &, respectively; in particular,
observe that [|0(A" — A")|| < [|[0A|| for k3%h > 1;

(iii) Since (28.3.81) holds for A” replaced by A” as well and since we have
estimate ||9%A!||¢~ < Cv, derive from (28.3.81) estimate for ||(A — A”)
and then the same estimate for ||0A'||¢.

PLoo

Remark 28.3.23. In the following observations we use simpler but less sharp
upper estimates to critical 3:

(i) Under non-degeneracy assumption (28.3.65) we conclude that Q@ < Ch™!
and v < Cﬂ%| log h| for 8 < h=3 and therefore w<1for < h’%| log h| =K.

(i) In the general case we see that Q < Ch~L+ CBh~z and v < Cf2|log h|
for f < h=3 and therefore < 1fors g < h_§| log h|~%; we used here
estimate 1 < C(kh2Q)5v3.

28.3.6 N-Term Asymptotics
Introduction

In the application to the ground state energy one needs to consider also
N-term asymptotics and D-term estimates. Let us start from the former:
we consider N-term

(28.3.82) /e(x, x, 0)1(x) dx.

Again we consider this asymptotics in the more broad content of assumptions
V € 62 and (28.3.49), , and we will follow arguments employed for a trace

term using the same notations. Then the Tauberian error does not exceed
CS(p, T)y*hT113) which is

(28.3.56)' CB+ P YA (7 T+ p3wPhT2)2

13) With S(p, T) defined by (28.3.28).
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Minimizing by T < T* we get

(28.3.57)' CB+Ph B (p ™+ p~20+ p3u5hs) 2,
Then summation over zone {p: p* > Bh} results in

(28.3.59)' Ro= C(h2+ h™3u5)

and we need to consider only contributions of elements belonging to the
zone {p: p* < Bh}

(28.3.83) B (p! +/072€+p7%1/§h%)73_

Strong Non-Degenerate Case

Under non-degeneracy conditions (28.3.60) or (28.3.63) expression (28.3.83)
should be multiplied by p?(8h)~1y~3 and after summation by p we get an
extra term Ch™2|log h|.

However we can get rid of the logarithmic factor by the standard trick:
in one direction time could be improved to p*~2¢°. We leave easy details to
the reader.

Further, adding R' = Ch~25 x j3(h) ! with 5 = Comax(p3~2, hz)

ie.
(28.3.61)' R = 1i*p3h73,
which is a contribution of the zone {p: p < p}, we arrive to

Proposition 28.3.24. Let fh < 1 and conditions (28.3.49), , be fulfilled.
Then under non-degeneracy assumption (28.3.60) or (28.3.63) estimate

(28.3.84) |/(tr e(x,x,0) — h3/P;3h(V))w(x) dx| < CR

holds with R = Ry + R', Ry, R' defined by (28.3.59)" and (28.3.61)".

Remark 28.3.25. The above estimate is sufficiently good since the weak
magnetic field approach brings remainder estimate Cpuh~2 even without any
non-degeneracy assumption. We leave easy details to the reader.
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Non-Degenerate Case

Under non-degeneracy assumption (28.3.65) we need to apply more subtle
arguments than before. Consider first subelements'¥) with p > ¢; for them we
need to multiply expression (28.3.83) by py~2 and sum by p > p,, resulting
in CBh|log h| + CAh—3v3ps 3,

On the other hand, for subelements with p < ¢ we need to multiply
(28.3.83) by p?(Bh)"1y~3 and sum by p, < p < £ and then by ¢ > p,,
resulting in the same expression albeit with a factor |log h|? instead of
|log h|. Here we get also Ch™2|log h| term but we deal with it exactly as in
the previous Subsubsection 28.5.6.2 Strong Non-Degenerate Case.

We need also to add contributions of subelements with p, < p < ¢ <7
and with p < p,. For the former subelements we need to consider only term
Bh~1p=20~% in (28.3.83) and only if / = v, resulting in Sh~'p;0y® and
contribution of the latter subelements we estimate by Bh~2p2. So we get

_ _2
(28.3.85) CH(hHloghl + h2p 0 + K505 p, * + h™2p?),
which should be minimized by p, > p, resulting in

CH(h | log h? + =375 + h™vz + h=22).
Then plugging p and ¢ = v~ we arrive to
(28.3.86)  R"=CA(h*loghl?+ h 338735 + h™'w?) + Cu2B h2
thus proving Proposition 28.3.26(i) below.

Degenerate cCase

In the general case we arrive to (28.3.85) albeit with factor p;?

_ _5
(28.3.87) CH(N o + h Y p 20+ h5u5p.° + h2p.),
which should be minimized by p. > p, resulting in

CBH(h™2 + h™305 + h™3vi + h™2p).

14) We call them “subelements” but they live in the phase spaces in contrast to elements
which live in the coordinate spaces.
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Then plugging j and ¢ we arrive to
(28.3.88) R" = CA(h 2+ h 3u5875 + h™3u%) 4 Cuh™2
thus proving Proposition 28.3.26(ii):

Proposition 28.3.26. Let fh < 1 and conditions (28.3.49), , be fulfilled.
Then

(i) Under non-degeneracy assumption (28.3.65) estimate (28.3.63) holds
with R = Ry + R", Ry, R" defined by (28.3.59)" and (28.3.86).

(ii) In the general case estimate (28.3.63) holds with R = Ry + R”, Ry, R"”
defined by (28.3.59)" and (28.3.88).

28.3.7 D-Term Estimate

Consider now D-term

(28.3.89) D([e(x, x,0) — h*Pg,(V)]¥, [e(x, x,0) — h™*Pg,(V)]¥)
with ¢ € 65°((B(0, 1)).

Proposition 28.3.27. Let Bh S1 and A" satisfy (28.3.49), ,. Then under
non-degeneracy assumption (28.3.60) D-term (28.3.89) does not exceed CR?
with R = Ry + R, Ry and R’ defined by (28.3.59)" and (28.3.61)".

Proof.  Step 1. Let us apply Fefferman-de Llave decomposition (16.4.1);
then we need to consider pairs of elements B(X, r) and B(y, r) such that
3r < |x—y| <4r. If r > p, then on each of these elements we should
consider (7, p) subelements (we call them “subelements” but they live in
the phase spaces in contrast to the elements which live in the coordinate
spaces). Then we have three parameters, namely (r, px, py).

Observe that for each y the number of matching x-elements is < 1
and that the summation with respect to p, > p* = (Bh)% results in Ror?
multiplied by a contribution of (7, p,)-subelement; after summation by r
and then by these (7, p,)-subelements we get CRyR. Similarly we are dealing
with p, > p*.

Therefore we need to consider only the case when both p, and p, do not
exceed p*. If r > cp*, then “the relative measure trick” allows us to add
factors pZ(Bh)~" and p}(Bh)~* even if p3 > r or p7 > r and then the total
contribution of such subelements also does not exceed CR?.
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Step 2. Consider next h < r < p*1% and we should look only at p, < p*,
py < p*. Further, if p2 > er or p} > er we can always inject factor cpir—!
or cpyr~* ending up again with CR?.

On the other hand, if both p7 < er and p? < er but r > cf we can
apply the same “relative measure trick” but comparing the measure of p2-
or pﬁ—elements with violated ellipticity assumption to the total measure
of B(z,r); then we can inject factors (p3/r)? and (p3/r)’ with arbitrary
0 <0 <1 and we select any 0 : % < 0 < 1 to have positive powers of p, and
py and power of r (counting r~*) greater than —3. We end up again with
CR2.

Observe that these arguments cover also cases px < p or p, < p.

Step 3. To estimate the contribution of zone {(x,y): r < h} we just
estimate |e(x, x, 7)| < Ch~3. O

For M > 2 we will need to estimate D-term under non-degeneracy
assumptions (28.3.63), or (28.3.65), or without any non-degeneracy assump-
tion.

Proposition 28.3.28. Let 8h < 1 and A’ satisfy (28.3.49), ,. Then D-term
(28.3.89) does not exceed CR? where

(i) Under non-degeneracy assumption (28.3.63) R = Ry + R', Ry and R’
defined by (28.3.59)" and (28.3.61)".

(i) Under non-degeneracy assumption (28.3.65) R = Ry+ R”, Ry and R
defined by (28.3.59)" and (28.3.86).

(iii) In the general case R = Ry + R", Ry and R" defined by (28.3.59)" and
(28.3.88).

Proof. Let us use ideas used in the proofs of Proposition 28.3.26, 28.3.24
and 28.3.26. Let us apply Fefferman-de Llave decomposition (16.4.1); then we
need to consider pairs of elements B(X, r) and B(y, r) with 3r < |x—y| < 4r.
If r > p on each of these elements we should consider (v, p) subelements'®.
Then again we have three parameters, namely (r, px, p,). On the other hand,
there is a scaling function ¢(x) and covering of B(0, 1) by (-elements.

15) Observe that we do not need to keep t > 5 but we need to keep pr > h.
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Part 1. Consider case of ¢, < r (and therefore ¢, < r). Then we must
assume that p, 0y 2 h, p,l, 2 h. Observe as in Step 1 of the previous proof
that if p, = p* = (ﬁh)%7 then the relative density of such subelements is
p%/(Bh) and therefore the summation over such subelements of the given
x-element results in CRyf3. Therefore the double summation over correspond-
ing subelements of x- and y-elements results in CR&Eifir‘l. Finally, after
the double summation over x- and y-elements we get CR3 [ |x — y| ™ dxdy,

which does not exceed CRZ.

Therefore in what follows we need to consider only subelements with
px S p%, py < p* 9. Further, observe that the same arguments are applicable
if ¢, 2 p*, ¢, 2 p* and we are left with the pairs of elements with ¢, < p*,
¢, < p* and their subelements with p, S p*, p, S p* since we will always
keep b > B, by > p.

Observe that the summation of (28.3.83) over subelements with p > ¢ of
the given element results in

(28.3.90) CBht (5_1 ‘|‘£_%V%h%)€3,

On the other hand, for p < ¢ the relative density of p-subelements of the
given /-element does not exceed Cp?¢~2 and therefore summation over such
subelements results in (28.3.90) again.

However in (28.3.83) if £ < £ we need to take in the middle term ¢ = ‘
and here we can ignore other options but ¢ = 31

Then the summation of this term over subelements with p > max(¢, p.)
results in CBh~ min(p;2, £-2)0¢% and the summation over subelements with
pe < p < Lresults in CAA 1 p20(1 + |log p.¢~1|)¢3 (and should be counted
as £ > p, only.

Finally, the contribution of subelements with p < p, does not exceed
CBh=2p3¢ and CBh—2p, L3 if p, < £ and p, > { respectively. So, in the former

case the total contribution of all subelements does not exceed

(28.3.91) Cph! [g—l FOSUERT + p720(1 + | log put7Y|) + h_lpig_z} 3

16) Due to positivity quadratic form D(.,.) we need to consider only “pure” pairs. We
will use this observation many times.
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Minimizing this expression by p, we get
(28.3.92)

CBN ¢+ V3hs0™3 + T3h 5 (1 + |log £,07H)3075 + h 15202 | 3,
achieved for

(28.3.93) p. = p.(¢) =< max((Ch(?|log h|)%, 7)
if ¢ >0, = max((Zh|log h|)3, p).

Then N-term does not exceed

(28.3.94)
201 -5 -3 2 3 _4
Cﬂh‘l/ [£;1+u§h§ex3+£ah-§(1+\|og£*£;1|)€£X5+h—1p3£;2] dx+
Lx>Lx

ConH ezt +vinie + B 4 h P02 mes({t < L))

where the first and second terms estimate contributions of elements with
l, > L, and £, </, respectively.

Remark 28.3.29. Observe that

(i) Under non-degeneracy assumption (28.3.60) we get C(Ro+R’) as expected
and under non-degeneracy assumption (28.3.63) we get C(Ry + R’|log h|)
but this is only because we counted here the contribution of subelements
with {x: px < ¢y} in the less efficient way.

(ii) Under non-degeneracy assumption (28.3.65) we get C(Ry+ R”) and and
in the general case we get C(Ry + R”) where Ry, R, R”, R" are defined in
Propositions 28.3.24 and 28.3.26.

Similarly, the total contribution of the zone considered here (in Part I)
to D-term does not exceed

(28.3.95) Cp%h~? / /
x>0y 0y >0, | x—y|>max(€x,Ly)
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x[61+ VIS L TR (1 4 |log L0 )05 + e

% [0+ v3RiG 0+ BH(L+ [log 6136, + h0?

X |x — y|™ dxdy

5 _ _4 2
+CB2h2 [&fljty%h%&_g—kégh*%& 5+h*1,53€;2] / / Ix—y| ™" dxdy.
£ <Ly by <l

Then under non-degeneracy assumption (28.3.60) we get C(Ry + R')?
as expected while under weaker non-degeneracy assumption (28.3.63) we
get C(Ro + R’|log h|)? but this is only because we counted here contribution
of subelements with {x: p, < {} in the less efficient way. Using the
method employed in the proof of Proposition 28.3.24 we can recover estimate
C(Ro + R')? as well.

Further, under non-degeneracy assumption (28.3.63) we get C(Ro + R”)?
and under non-degeneracy assumption (28.3.65) we get C(Ro + R")>.

Part 2. Consider the case of ¢, > Cr (and therefore ¢, =< ¢,). Then we
apply the same arguments as before albeit with ¢? replaced by fr. First,
consider the pair of subelements with p, > p*, p, > p*. Their contribution
to D-term does not exceed the product of expressions (28.3.83) with p = py,
v = v« multiplied by p2(8h)~* and (28.3.83) with p = p,, v = 7, multiplied
by p2(Bh)~t, and multiplied by |x — y|7*. Then the double summation
by px, py results in Ch™*(1 + y%h%)fyffyﬂx — y|71; and, finally, the double
summation over x, y returns Ch=*(1 + v3h3) [[ |x — y| " dxdy < CR2.

Then we need to consider pairs with p, < p*, p, < p* and also pairs
with [x — y| < hmax(p ', p,1).

Next consider pairs of subelements with p* > p, > (Zr)%, P> py > (Er)%.
Their contributions to D-term does not exceed expression

I 5 -3 -3 4 2 —
CHN2 (00, + Py + o py v h3) iglx — y |
| |

and the double summation over x,y in B(z, ¢) with ¢, = ¢ results in the
same expression with the selected factor replaced by ¢° and then the double
summation over py, p, results in

(28.3.96) C2h2 [g—2 LR +€_%y§h§]£5,
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Meanwhile, considering pairs of subelements with (Er)% > px > py and
(¢r)z > p, > p, (we use p, = p.(£) and £, introduced in (28.3.93)) we gain
factor p3p?/(pl) in the summation by subelements and we arrive to the

same expression (28.3.96) but with a logarithmic factor at £2:
CHH2[02 4+ PLA(1+ |log put M) + £ 5 vih3] 2

However we can get rid of logarithmic factors exactly as in the proof of
Proposition 28.3.26 thus getting (28.3.96). Then we need to sum by balls
B(z, () resulting in the same expression multiplied by ¢=3 and integrated:

_10
CH2h2 / {5;2 RO 40 u%h%]zi dx,
{€x>Ls}
which we estimate by
(28.3.97) CB*h2 / [6‘2 + 0+ z-?u%h%} >rmde
>0,

with m = 2,1, 0 under non-degeneracy assumptions (28.3.63), (28.3.65) and
in the general case respectively. Then we arrive to the terms of integrand
multiplied by ¢ and calculated either for £ =1 or ¢ = /.. One can see easily
that this does not exceed CR? with R defined in the corresponding statement
of Proposition 28.3.24.

One also can derive easily the same estimate for contributions of the pairs
of subelements with py, < p.(¢), py, < pi(€), £ > L., and for contributions of
the pairs of subelements with p, < {,, p, < /,, £ < {,, assuming in both
cases that p.r > h, p,r > h.

Finally, like in the proof of Proposition 28.3.26 we estimate the contribu-
tion of zone {x,y: pxr < h, p,r < h}. We leave easy details to the reader.
O

Remark 28.3.30. These arguments also work to estimate
(28.3.98) D(T«(hD — A) - oe(.,.,0), Tx(hD — A)x - oe(., ., 0)).

Indeed, Weyl expression for I'y(hD — A), - oe(.,.,0) is just 0. Therefore
we arrive under either of non-degeneracy assumptions (28.3.60), (28.3.63),
(28.3.65) and in the general case to estimate

(28.3.99) VA < Ckh’R,
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which could be better or worse than estimate |[VA'|| < Cr2z which we have
already. It is not clear if estimate ||[VA'|| < Ck holds.

28.4 Microlocal Analysis: Sh 2> 1

Now let us investigate the case of Sh = 1. In this case we assume not only
that k < 1 but also (28.2.27)": x3h?|log h|K < 1. We can apply the same
arguments as before and in the end of the day we will get the series of the
statements; we leave most of the easy details to the reader.

28.4.1 Estimate to a Minimizer
Observe first that
(28.4.1) |0A'||2 < CBh2 x kh* = Crf3 < Ch™?|log h| ¥
and

|AA| < CBh2 x kh? = Crf3 < Ch2|log h| 7K,
and therefore
(28.4.2) |0?A| < CkB < Ch™?|log h|¥.

First of all, repeating arguments leading to Proposition 28.4.8, we arrive
to estimate (28.3.46) modified

(28.4.3) [|0?A||4~ < Ck Bhv?|log hf?
Ll

+ Crfh|log h|(h~31% + h™Tu7 +-h~214| log h|?) + Cr|log h|32 ||V

poo
+ ClIOA] |-

Note a new factor Sh in the first line, which first becomes

(28.4.4) Crph|log h|(v? + (11 + vh)| log hl).

We prove it first for 41 = 1 and then rescale and in virtue of Remark 28.3.9(ii)

we can always replace u by v2 < h71; then, using v = maX(||82A,H££oo, 1)

and assumption (28.2.27)", we reduce (28.4.4) to its final form in (28.4.3).
Further, under additional super-strong non-degeneracy assumption

(28.4.5) min |V — 2j8h| = 1
x,j>0
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we can skip two selected terms in the second line of (28.4.3), arriving to

(28.4.6) ||0°A||g < CrBhv2|log h|?

¢ + C||0A

+ CrBh 2vi|log h|* + Ck|log h|32(|oV oo
Then we arrive to the following assertion:

Proposition 28.4.1'7). Let Bh > 1, k < k* and (28.2.27)% be fulfilled; let
V € 62; then

(i) The following estimates hold:

(28.4.7) |0?A || < v

with

(28.4.8) v = Ckp2|logh| + C(xB) % h|log h|X for kBh<1
and

(28.4.9) v := CrpB2|logh| + C(rB)*h3|log h|K for kBh>1.

(i) Moreover, under assumption (28.4.5) estimate v is given by (28.4.9)
even for kfh < 1.

Remark 28.4.2. (i) While case fh =< 1 has been already explored, we missed
an important case when non-degeneracy assumption (28.4.5) is fulfilled; so
we reexamine this case.

(i) While technically (28.4.3) and (28.4.6) hold even if assumption (28.2.27)"
fails provided v < €8, we cannot guarantee in this case that this inequality
holds.

28.4.2 Trace Term Asymptotics

Further, continuing our analysis we arrive to the following assertion

Proposition 28.4.3'%). Let Bh > 1, k < k* and vh?> < 1. Then

17) Cf. Proposition 28.3.10.

18) Cf. Propositions 28.3.13, 28.3.15 and 28.3.16; only factor Sh appears in the definition
of Qo.

19) In the framework of Proposition 28.4.1 for a minimizer this assumption is due to
(28.2.27)".
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(i) Under non-degeneracy assumption (28.3.60), or (28.3.63) remainder
estimate

(28.4.10) | Tr(Ha ) + 73 / Pen(V)Y dx| < Q

holds with Q = Qo + Q’,
(28.4.11) Qo = CB+ CBV3hS,
and Q" defined by (28.3.61).

(i1) Under non-degeneracy assumption (28.3.65) remainder estimate (28.4.10)
holds with @ = Qo + Q" with Q" = Q' + v|log h and Qy and Q' defined by
(28.4.10) and (28.3.61) respectively.

(iii) In the general case remainder estimate (28.4.10) holds with @ = Qp +
Q" with Qy and Q" defined by (28.4.10) and (28.3.66) respectively.

Applying Proposition 28.4.1 we arrive to

Corollary 28.4.4. In the framework of Proposition 28.4.3 let A’ be a min-
imizer. Then

(i) Under non-degeneracy assumption (28.3.60), or (28.3.63), or even
(28.3.65) estimate (28.4.10) holds with

(284.12) Q= Qo= CB+ Cr2 35 h7|log h|< for kBh<1
and
(284.13) Q= Qo= CB+ Crs35h7|logh|< for kBh>1.

(i1) Furthermore, under assumption (28.4.5) Qo is defined by (28.4.13) even
for kBh < 1.

(i11) In the general case estimate (28.4.10) holds with
(28.4.14) Q= Qo+ h 2+ k335 hs|loghl¥.

Remark 28.4.5. Observe that
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(i) If assumption (28.2.27)" holds, then Qo < k383h™3 < Bh~2, where the
middle expression appears in (28.2.25). On the other hand, if (28.2.27)"
fails, then the reverse inequalities hold. In the general case we assume that
Bh? < 1 to get a remainder estimate smaller than the main term.

(ii) Also v < 3 provided (28.2.27)" holds; if x = 1 then v < 3 if and only if
(28.2.27)" holds.

28.4.3 Endgame

Similarly to Theorem 28.3.21 we arrive to

Theorem 28.4.6. Let Bh 2> 1, k < k* and (28.2.27)" be fulfilled. Then
estimate (28.3.78)
[E;— &l < CQ

holds where

(i) Under non-degeneracy assumption (28.3.65) Q is defined by (28.4.12)
and (28.4.13).

(i1) In the general case Q is defined by (28.4.12); in particular, @ = Bh~3
as kfh < 1.

Problem 28.4.7*”). In this new settings recover estimates for [|9(A" — A”)]|,
|O(A" — A”)||¢= and ||0A"||¢~ where A” is a minimizer for E(A").

28.4.4 N-Term Asymptotics and D-Term Estimates

Repeating arguments of the proofs of Propositions 28.3.24, 28.3.26 we arrive
to

Proposition 28.4.8. Let Sh 2, 1 and conditions (28.3.49), , be fulfilled.
Then

(1) Under non-degeneracy assumption (28.3.60) or (28.3.63) estimate (28.3.84)
holds with R = Ry + R’,

(28.4.15) Ro = Bh~* + Bh~3vs

and R' defined by (28.3.61)".
20) Cf. Problem 28.3.22.
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(ii) Under non-degeneracy assumption (28.3.63) estimate (28.3.84) holds
with R = Ry + R”, Ry and R" defined by (28.4.15) and (28.3.86).

(i11) In the general case estimate (28.3.84) holds with R = Ry + R", Ry and
R" defined by (28.4.15) and (28.3.88).

Repeating arguments of the proof of Propositions 28.3.27 and 28.3.27
we arrive to

Proposition 28.4.9. Let Bh 2 1 and conditions (28.3.49), , be fulfilled.
Then

(i) Under non-degeneracy assumptions (28.3.60) or (28.3.63) D-term (28.3.89)
does not exceed CR?* with R = Ry + R', Ry and R’ defined by (28.4.15) and
(28.3.61)" respectively.

(ii) Under non-degeneracy assumption (28.3.65) D-term (28.3.89) does not
exceed CR? with R = Ry + R”, Ry and R’ defined by (28.4.15) and (28.3.86).

(iii) In the general case D-term (28.3.89) does not exceed CR* with R =
Ro + R", Ry and R defined by (28.4.15) and (28.3.88).

Problem 28.4.10. In the general case (without any non-degeneracy as-
sumptions) for fh < 1 and for Sh = 1 improve the remainder estimates for
both the trace term and N-term and estimates for D-term (so, make R” and
Q" smaller) under assumption V € 6° with s > 2.

To do this use more advanced partition of unity as in Chapter 25. Most
likely, however, it will affect only terms Cj3 h=3 and C 5 h=3 in Q" and R"
replacing them by CAhG=4/(+2) and CBA~1~%/(5+2) respectively.

28.5 Global Trace Asymptotics in the Case
of Thomas-Fermi Potential: B </ 3

28.5.1 Introduction

In this Section we consider global trace asymptotics for Thomas-Fermi
potential. First we consider the singularity zones where our results would
follow from Section 27.3, then we consider their interaction with the regular
zone which would lead to the deterioration of the remainder estimates for
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8> h~% and finally the boundary zone where non-degeneration properties
could be violated (especially for M > 2), which requires rather subtle analysis
and usage of the specific properties of Thomas-Fermi potential.

Remark 28.5.1. Recall that according to Chapter 25 there are two cases:

(a) B<Z %, when the most contributing to both the number of particles
and the energy zone is {x: £(x) = r* = Z73} (where {(x) is the distance to
the closest nucleus), and then rescaling x — xr* =1 7+ 727 =3 we arrive in
this zone to 8 = BZ~!, h= 73 with 8h < 1.

(b) Z3 < B < Z3, when the most contributing to both the number of
particles and the energy zone is {x: {(x) =< r* = B=5Z5}, and then rescaling
X = xr* 7T TB~5Z~% we arrive in this zone to b= BéZ’%, h=BsZ"3
with Sh > 1.

We also recall that in the free (movable) nuclei model the distances
between nuclei were greater than er* (which would be the case in the current
settings as well as we show later), so we will assume that it is the case
deducting our main results.

28.5.2 Estimates to a Minimizer
Preliminary Analysis

Consider potential V with the Coulomb-like singularities, exactly as in
Section 27.3 i.e. satisfying (27.3.1)—(27.3.3).

Proposition 28.5.22Y. Let V satisfy (27.3.1)-(27.3.2) and

(285.1) ID°W|< Co S zm(lx = unl + 1) *Ix — 9|

1<m<M
Vo o < 2.

Let k < k* and Bh < 1. Then the near-minimizer A satisfies

(28.5.2) | Tr(Hx ) +/h_3Pﬁh(V(x))) dx| < Ch™
and
(28.5.3) |0A|| < Cr2.

21) Cf. Proposition 27.3.1.
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Proof. We follow the proof of Proposition 27.3.1. Observe that scaling
x5 (X = §m)l7t, 7= 7¢ 72 leads us to

(28.5.4)  h hy = ht71¢7h B By = pC, K= Ky = KC.
Also observe that for ( = (3

(28.5.5) kB2 > 1 = (> 0= (B+1) 2k

and for k =< 1 those are equivalent.

(i) First, we pick up A’ =0. Then

(28.5.6) | Tr(Hp (0)) + h_3/P[3h(V(x))dx\ < Ch?

this estimate follows from the standard partition with ¢-admissible partition
elements, supported in {x: {(x) < ¢} for £ = ¢, and and in {x: {(x) =< ¢}
for ¢ > 2¢,.

(ii) On the other hand, consider A’ # 0. Let us prove first that
(28.5.7) T (YeHepy) > —C.h™2 — e th72||0A |2
for ¢ = {, = h?> where one can select constant ¢ arbitrarily small.

Rescaling x ~— (x — ym)/¢ and 7 +— 7/¢ and therefore h — h{=2 < 1
and A — Al2 (because singularity is Coulomb-like), we arrive to the same
problem with the same x and with £ = h = 1 and with 3 replaced by Bh°.
Then for 3h* < 1 we refer to Appendix 27.A.1 since Hay > Ha\ with
V' =V — 3%|x]2.

(iii) Consider now 1, as in (i) with ¢ > ¢,. Then according to Theo-
rems 28.3.21 and 28.4.6 for S1h; <1 and k(2 < K*

(28.5.8)  Tr~ (YeHavte) +h° / Pan(V/(x))07 (x) dx
> —C.C3(ht + BrhY) — enh72||0A |2,

Remark 28.5.3. Observe that if 1 is supported in {x: 3r < {(x) < 2r},
then we can take a norm of A over {x: 1r < {(x) < 4r}. Indeed, we can
just replace A" by A” = ¢y(A" — n) with arbitrary constant n and with ¢,
supported in {x: 3r < {(x) < 4r} and equal 1 in {x: 3r < ¢ <3r} (and ¢
by ce).

Then summation of these norms returns —Coex~1h=2||0A||2.
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Furthermore, the first term in the right-hand expression of (28.5.8) is
—C.(C3 A1 +2028h ) and summation over £ > h? returns —C.h~2 since
¢ = min(¢z, (72).

(iv) Consider next zone where f1h; > 1 (and ¢ > 1) but still h; < 1.
According to previous Section 28.5 inequality (28.5.8) should be replaced by

(28.5.9)  Tr (YeHavt) +h~° / Pan(V(x))¥7 (x) dx

> GBI+ vihi) — enth2|OA |2

with 1y, = (mlﬁl)%hﬁ log h|"?» and k181 = KkBCP = kB and thus with
Bih1¢? = Bh71¢?¢2. Then summation of the first term in the right-hand
expression results in its value when ¢ is the smallest i.e. 81h; = 1 and one
can check easily?® that this is less than Ch~2.

Further, Remark 28.5.3 remains valid. Then adding this zone does not
change inequality in question.

(v) The rest of the proof is obvious. Zone {x: ¢(x) > ¢*} is considered as
a single element and just rough variational estimate is used there to prove
that its contribution does not exceed Ch=2. O

Remark 28.5.4. Later we will improve both upper and lower estimates
using different tricks: imposing non-degeneracy assumptions, picking for
an upper estimate semiclassical self-generated magnetic field, using Scott
approximation terms. These improvements will lead not only to our final goal,
but also to our intermediate one—getting better estimates for a minimizer.

Proposition 28.5.5 %Y. In the framework of Proposition 28.5.2 there exists
a minimizer A.

Proof. After Proposition 28.5.2 has been proven we just repeat arguments
of the proof of Proposition 27.2.2. O

22) Because k181h = KkBhL < /{(ﬁh)% <1.
23) Sufficient to check for 8= h"1, £ =1and k = 1.
24) Cf. Proposition 27.3.2.
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Estimates to a Minimizer: Interior Zone

Recall equation (27.2.14) for a minimizer A:

2

~ Retr GJ-((hD — A oe(x,y,7) + e(x, v, 7) {(hD — A), - (r)

y=x
After rescaling x +— x /0, 7+ 7/C?, h+ h=h/(Cl), Ars ACY, B+ B¢
this equation becomes (27.3.13)

(27.3.13) AA; =

—2k(2UH2 Retr o ((hD—g—lA)X.oe(x, v, 7)+e(x, y. ) f(hD—g—lA)y-o) (

and since we can take (2( =1 we arrive to (27.3.14)

(27.3.14) AA =
—2kh?Retr o ((hD—C‘lA)XUe(X, y, T)+e(x,y, T) t(hD—C_lA)y-(r) ‘

y=x
Let us modify arguments of Subsection 27.3.1. First observe that
(28.5.10) |0A'| < Crzh™3, |0PA| < Ckih™®  for <20,

with £, = h?; this follows from above equations rescaled and from Bh® < e.
Let

(28.5.11) p(r) = sup [OALCTE,  v(r) = sup [PA|EE¢CY

Lx)>r Lx)>r

then v(r) should not exceed?)

-

31 1
(28.5.12) F(v) = Cry (1 + o+ min(B7h2, B7)
3 4 1
B (VAL 4 U+ v log buf?) ) log by + Cr(¢) 7,
where here v = v(3r), 1 = p(r), the last term is just an estimate for [|OA|

rescaled and ¢ =< r in that term. Indeed, (28.5.12) is derived exactly as
(28.3.46), but here we cut a hole {x: £(x) < 1r} in our domain.

25) As long as i < 1.
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We also know that y < Cr3r5(£¢2)7s. Using (28.5.12) and (28.5.10) one
can prove easily that v(r) does not exceed solution of the equation v = F(v)
multiplied by €29 i.e.

(285.13) v < Cra(1+ min (37 b, ,6%))| log 1|
+ C((saB0)¥ b + (saB) ) [log b + Crb(e?) 2.
In particular, scaling back and setting ¢ = (% we arrive to
(28.5.14) |0°A| < Cm(ﬁ_% +min(B3hi073, 5%e—%))| log £/,
+ (AR E 4 (68) 0308 ) [log ¢/ + CrieE,
The same arguments work for S1h; > 1 but now we need to replace
|log h1| by |log 51| which however is also < (/{, as fh < 1.

After this estimate is proven we can remove the last term in the right-
hand expression and we arrive to

Proposition 28.5.6. In the framework of Proposition 28.5.2
(28.5.15) |0?AY| < Cn(ﬂ’g +min(B3hi03, ﬁ%f%))| log £/,
+ (A h3eE 4 (68)2030% ) log ¢/ L. %,

Estimates to a Minimizer: Exterior Zone

Let us estimate |9?A’| as £ > ¢*. Observe that

Kh? _
(28.5.16) AJ'-(X)——M/|X—Y| Lo;(y) dy,

where ®; is given by (27.2.14). Then §?A’ is expressed via ®; as an integral
with a kernel K(x,y), singular when x = y and such that |K(x,y)| <
c(]x| +|y])~2 when |x — y| < |x| + |y|. Further, applying representation like
in Proposition 27.3.9, we can get an extra factor |y|(|x| + |y|)™* upgrading
it to |K(x, )| < clyl(Ix] + lyl)~*.

26) As long as a resulting expression rescaled, see (28.5.14) is a decaying function of £.
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Then, starting from (28.5.15) and iterating (28.3.46) we arrive to estimate

10,4

|0PA| < Crkl™*|log h| + C(kB) S h3 L~ 5| log h|X  for > 1

with arbitrarily small § > 0. Furthermore, using arguments of the proof of
Proposition 28.5.6 we can make é = 0 thus arriving to

Proposition 28.5.7. In the framework of Proposition 28.5.2

(28.5.17)  |0PA'| < Crl*|log h| + C(kB)T h3¢~ 5 |log bl for £>1.

1
Remark 28.5.8. Sure, as ¢ > 1, B1h}|log h1]K < 1 this estimate could be
improved but these improvements would not affect our crucial estimates.

28.5.3 Trace Asymptotics

Before proving trace estimates observe

Remark 28.5.9. (i) All local asymptotics and estimates with with mollifi-
cation with respect to spatial variables 2" proven in Sections 28.3 and 28.4
with unspecified v < €/ remain valid in the more general framework of the
smooth non-degenerate external field A°(x): namely

(28.5.18), , [0*A° < G, B® = |V x A% > p.

Indeed, we use only e-approximations with ¢ = h or ¢ = hp~! and we can
always change coordinate system so magnetic lines are (xi, x;) = const. We
leave easy arguments to the reader.

(ii) However since we do not have estimates (28.3.47) or (28.4.7)-(28.4.9)
in this more general framework??), we also do not have (28.4.12), (28.4.13)
then.

Now consider the trace term assuming that

(28.5.19) d=__min_[§y— Vw2 L

1<m<m'<M

27) Thus trace and N-term asymptotics and D-term estimates.

28) Even if we believe that these estimates are true. So far we have no need in such
generalization.
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(a) Due to the proofs of Theorem 27.3.22 and Proposition 28.5.2 we can
evaluate contribution of the zone {x: |x — yn| < €}, provided g < 1:

(28.5.20) | Tr(Haa ytom) — Tr(Hz . tm)
+ h3/P3h(V)¢m dx — h3/P0(Vm)¢m dx| < C(h™* + k| |Og/<;|%h*§),

where V,,, = zp|x — ¥m| ™! and ¢, is supported in {x : |x — y,| < €} and
equal 1in {x : |x — ¥m| < Ze€}.

Further, we can replace in this estimate Tr(Hy \, thm) + h™> [ Po(Vin)t¥m
by

(28.5.21) /(/O ev, a(x, x, 7) dT + /r3po(vm))¢,,, dx

—00
and we can also replace in the latter expression ¥, by 1.

(b) If B > 1, we can apply estimate (28.5.20) to the zone {x: |x —¥,| < eb}
with b = 473 scaling x = (x — ym)b > and 7 — 7 and h > hy = hb~2,
B Bb> =1, Kk — K; nOW ¥, is supported in {x 1 |x—=¥m| < eb} and equals
Lin {x : [x = ¥m| < Leb} and the right-hand expression of (28.5.20) becomes

_4
(285.22)  Cb ' (h "+ kllogr[>h; *) = C(B3h~" + x| log |5 B5h™3).

If B> 1, let us consider contribution of the zone {x: egb < |x — ¥| < €},
where due to assumption (28.5.19) non-degeneracy condition (28.3.60) is
automatically satisfied after rescaling; namely before rescaling it is

(28.5.23) min |V — 2jBh| + |V V|l =< 2.
J
A contribution of /-element in this zone does not exceed
(28.5.24) CC (bt + by *vd)
with
(28.5.25) v= sup |OPA|PCT,
[x—Ym]|=£

and plugging (28.5.4) into (28.5.24) we get
C(72h™" + (kB)5 h# 03 | log(ht 7)),
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which sums to
(28.5.26) C(B5h~* + (kB)# h7 | log h|¥),

which obviously does not exceed (28.5.22). Thus after scaling®” we arrive to

Proposition 28.5.10. Let V = WZF + X be Thomas-Fermi potential with
N<Z Nx<Zi =2 =..=2Zy B<Z5 and

(28.5.27) Yo —ym|>d>Z"3  Vi<m<m <M.

Then if ¥, is supported in er*-vicinity of ym

(28.5.28) | Tr(Hy\tm) — Tr(Ha v, ¥m)

+/PB(V)¢,,, dx—/Po(Vm)wm dx|

(Z% + allog(aZ)[3Z7) for B< Z,

does not exceed CQy with

(28.5.29) Qo = L L s .
(B3Z3 + allog(aZ)|3B3Z9) for Z < B< Zs.

Furthermore, if B < Z, then expression (28.5.28) does not exceed
(28.5.30) C(Z%[Z“5 +(BZ7YY 4+ (dZ3) %] + o |og(az)\%z%5).

Here improved estimate (28.5.30) can be proven by our standard propa-
gation arguments.

Further, let us consider the regular exterior zone {x: eor* < |x—yn,| < eF}
with 7 = min(B’%, (Z - N);%). Then due to Thomas-Fermi equation
WaF + X satisfies here non-degeneracy condition (28.3.65) after rescaling
and ¢ = (72, hy = ((x), By = BL3.

Then the contribution of f-element in this zone does not exceed (28.5.25)
as long as fih; <1, hy < 1lie. {(x)< mln(r 1), and due to (28.5.24) this

contribution does not exceed C(? (h_ + hy 31/3)7 where 14 is estimate for
|02A'| multiplied by ¢ ~1¢2:
4

(28.5.31) v = k| log h| + (kB) " h305 | log h|¥.

2) x vy Zix, T Zit, 1> h=2"3, B B8 =21 aw— & = aZ; recall that
Bh<1 < B<Z5.
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Then calculating v, and plugging it and hy = h¢ into C¢?(hy* + hy %u%) one
can see easily that here all terms contain ¢ in the negative powers.

Then summation by ¢ results in the same expression calculated for ¢ = r*
and one can observe easily that it does not exceed (28.5.29), (28.5.30) for
B<ZzZ, Z<B<Z 3 respectively. One can see easily that dealing with terms
C¢% x pi3B72h=2 due to (28.3.61) and C(?v|log h| (see Propositions 28.3.13
and 28.3.15) leads to smaller expressions.

Furthermore, using the standard propagation arguments one can upgrade
(28.5.29) to (28.5.30). Therefore we conclude that

(28.5.32) Proposition 28.5.10 remains true for 1, supported in the zone
{x:|x = ym| < emin(F, 1)}.

Consider now the contribution of the boundary zone {x: £(x) > min(7, 1)}.

(a) Let us start from more difficult and interesting case B > 1 assuming

first that Z = N. Rescale this zone first x — XB%, 7 — 7B71, then we have
1 1

hy = B4, 3 = B%. Observe that

(28.5.33) After this rescaling a rescaled magnetic field satisfies |9?A’| < 11
where 14 is given by (28.5.31) for £ = r.

As we know from Subsection 26.5.1, after the first scaling there exists
the scaling function ~ such that

(28.5.34) |0°V| < Cylel ol < 4,
(28.5.35) V=4 |0?V| < ~?

and therefore we can use a y-admissible partition. Then scaling again
X — X’}/71, T = T’)/747 h1 (g h2 = h"}/73, 61 — 62 = [)’1’}/71 and V1=V =1
we see that non-degeneracy assumption (28.3.65) is fulfilled and therefore
according to Proposition 28.4.3(ii) the contribution of ~y-element to the

2 4
remainder does not exceed CB’y4ﬂg(1 + h3 uf) because now Srh, > 1. Then
the total contribution of such elements does not exceed

(28.5.36) B / Ba(1 + h3vs )y dx
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1
with integral taken over zone {x: vy(x) > % := hj } where h, < 1. Plugging
Bo, hy and v, = v we get in the second term v~2 which is not good. Let us
apply Remark 28.5.9.

Recall that A'(x) is a solution of the Laplace equation and therefore
A(x) = [|x —y|"'F(y) dy; then A'(x) with x € B(z,7(z)) can be decom-
posed into the sum of two terms; the first one is given by the integral over
{y :ly—z| = 37(2)} and therefore is smooth and could be included in A°(x)
while the second is given by integral over {y : |y — z| < 27(z)} and could
be estimated by (28.3.46) with 3, h, x and v replaced by 2, ha, Ko = K17°
and 1v; and then one can see easily that v, < Vl’y%Jré. Therefore we conclude
that

Remark 28.5.11. In the boundary zone calculating trace term, N- and D-
3
terms one can take v, = 17219 with § > 0.

Plugging this improved v, into (28.5.36) we get everywhere 7 in the pos-
itive power and therefore expression (28.5.36) does not exceed the integrand

2 4
for v = 1, which is CBS; (1 + hv7), which we already got when estimating
the contribution of the regular zone.

(b) In the zone {x: y(x) < 7} we just reset 7 = 7% and since h, < 1 we do
not need any non-degeneracy condition here. Thus its contribution does not
exceed CBf;. Therefore we arrive to Proposition 28.5.12(i) with Z = N and
B>1.

(c) In the case B <1 we need no non-degeneracy assumption in the zone
{x: l(x) Z 1} as hy = 1; Proposition 28.5.12(i) has been proven in this case
as well.

(d) Explore now case N < Z. Then eventually we will need to take V =
WaF + A, where \ is a chemical potential. In this case the same arguments

1
hold provided By* < |A| = v < h? which is equivalent to (Z — N), < Bt
since in this case —\ = (Z — N), 71 = (Z — N), Bs.

(e) Further, for M = 1 we do not need assumption N = Z since we can
always refer to non-degeneracy condition (28.5.23), which is fulfilled, and
we arrive to Proposition 28.5.12(ii). Indeed, as in Section 26.5 we do not
partition further elements where this condition is fulfilled. We arrive to
Proposition 28.5.12(i), (ii) below.
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(f) Furthermore, consider case M > 2 and Btz < (Z — N), < Bi. Then
1
BY* = (Z — N);Bi and j = (Z — N): B 1.

In this case the contribution of -element (in the excess what was
prescribed before) does not exceed term (28.3.66) multiplied by (. Note
that two last terms in (28.3.66) are not new. Meanwhile, the first term
there (i.e. CAvshs) becomes CBY* x Biy~1 x 8 x (B~457%)s and after
multiplication by 572|log¥| it has 7 in the negative degree, so it does not

exceed the same value for 5 = B~%. After easy but tedious calculations one
can see that it is less than (28.5.22).

This leaves us with the second term in (28.3.66) (i.e. CSh~2), which
becomes CBJ* x Bi5~1 x Bs¥3 and after multiplication by 52| log¥| we
get

5

(28.5.37) CB¥3%|log7| = CQ' = CBE(Z — N): (1 + |log(Z — N), B~ 7).

(g) Finally, if (Z— N), > Bi, we again end up with the term C¢23h™2 this
4 _1
time with (2 = (Z — N)3, h=(Z - N)*, B = B(Z — N);:* (now 7 < 1); so

we arrive to

+ Ni=

(28.5.38) CQ" = CB(Z — N)
Thus we arrive to Proposition 28.5.12(iii), (iv) below.

Proposition 28.5.12. Let V = WF + X be Thomas-Fermi potential with
N<Z Nz =x2Z=.. =<2y BS Z5 and chemical potential A. Let
assumption (28.5.27) be fulfilled. Then

(i) For Z= N (X =0) the trace remainder

(28.5.39) |Tr(HA'V)+/PBh(V) dx—

Z (Tr(H;\,vm¢m)_/Po(Vm)1/Jm dx)|

1<m<M

does not exceed CQy with Qy defined by (28.5.29); the same is true for
(Z-N), < Bxz.
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(i) For M =1 the trace remainder (28.5.39) also does not exceed CQp.

(iii) For M > 1 and Bv: < (Z — N), < Bi the trace remainder (28.5.39)
does not exceed C(Qo + Q') with Q' defined by (28.5.37).

(iv) For M > 1 and (Z — N)_%|r > B the trace remainder (28.5.39) does not
exceed C(Qp + Q") with Q" defined by (28.5.38).

Remark 28.5.15. (i) For B < Z expression (28.5.29) could be upgraded to
(28.5.30).

(ii) Terms (28.5.38) and (28.5.39) are rather superficial: they do not depend
on « and they were not present in Chapter 25. Indeed, using more precise
arguments of Chapter 25 one can get rid of them, at least for sufficiently
small «.

However in the upper estimate we will need to deal with D-term as well
and this would give us a far larger error.

28.5.4 Endgame
Main Theorem: M =1

For M =1 we almost immediately arrive to the following statement which
we formulate in “rescaled” terms:

Theorem 28.5.14. Let V = WZF + X be a Thomas-Fermi potential as
B<Zi, NxZand M =1. Then

(28.5.40) & +25(aZ)Z? - CZ5(1+ aB) <E;
< & +25(aZ)Z? + C(Z3 + aB?Z3),
where S(aZ)Z? is a Scott correction term derived in Section 27.3.

Proof: Estimate from above. We already know from (28.5.20) that after the
standard rescaling for any magnetic field A’ satisfying the same estimates as
a minimizer of E,(A") the following estimate holds:

(28.5.41)  Tr(Hy ) + £ h%||0A|?

< —h—3/PB,,(V) dx + (28.5.21) + kh72||0A||> +(28.5.22).
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Here the left-hand expression is E,(A’) > Ef and in expression (28.5.21) we
take 1y = 1.

Let us pick up A" which is a minimizer for the Coulomb potential
Vi(x) = zi|x — y1|7! without any external magnetic field*”. Then we
can replace the selected sum of two terms by 2h™25(kz)z? (in virtue of
Subsubsection 27.3.5.1 an error does not exceed (28.5.22)).

Unfortunately A’ is not a minimizer for a local problem; however we can
replace Pgy(V) by

(28.5.42) Pgh(\/) -+ 85P5h(\/) -0, b = 81A’2 — 82A'1

and, if we apply partition, then on each partition element an error in (28.5.41)

does not exceed C/ﬁ@ﬁlh;% = Cﬁﬁh_%cgfg. Indeed, we know that for a
minimizer ||0A'|| < C(k 4 k2hz) (also see in the proof of the estimate from
below).

Summation over partition results in Cx3? and we arrive to

(28.5.43) —h3 / Psn(V)dx — h~3 / 9sPsn(V) - @ dx + C(h™! + k%)

in the right-hand expression where the first term is & 3.

The second term is rather unpleasant because we cannot estimate it by
anything better than CAh~! (see in the estimate from below) but here we
have a trick®?: we replace A’ by —A’ which is also a minimizer for the same
Coulomb potential V; without external magnetic field. Then ® and the
second term change signs and since nothing else happens we can skip the
second term which concludes the proof of the upper estimate.

Scaling back we arrive to the upper estimate in (28.5.40). O

Proof: Estimate from below. Again from (28.5.20) we already know that for
a minimizer A’ of E, (A’) estimate (28.5.41) could be reversed

(28.5.44)  Tr(Hy )+ Th 2| 0A|?

> —h3/PB,,(V) dx + (28.5.21) + kth™2||0A'||? —(28.5.22).

30) Actually since for the Coulomb potential the trace is infinite we take potential
Vi(x) 4+ 7 with 7 < 0, establish estimates and then tend 7 — —0.

31 Te. Thomas-Fermi energy calculated for A’ = 0.

32) Which unfortunately we cannot repeat in estimate from below.
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Here the left-hand expression is E,(A’) = E and the selected sum of two
terms can be estimated from below by 2h725(kz)z%.

Again A’ is not a minimizer for a local problem; however we can replace
Pgn(V) by Pgp(V) with an error not exceeding

Ch3/|8BPﬂh(V)| . |8Al| dX+ Ch3/|8§PBh(V)| . |8AI|2 dx
< Ch>)|0sPsn(V)|| - 1OA']] + Ch“”/laéPﬁh(V)l dx x [|0A'||?

with the right-hand expression not exceeding
(28.5.45) CBh oA || + Ch oA |12

However we already know that Ej;, > & — C(kh™2 4+ h™!) and therefore
since E,(A") = Eax(A') + (26h*) 71| OA'||?> we conclude that

(28.5.46) |0A|| < C(k + K2h?);

then expression (28.5.45) does not exceed C(kf + 1)h~* which concludes
the proof of the lower estimate.

Since A’ is a minimizer in the presence of the external field, we cannot
replace A’ by —A" and thus cannot repeat the trick used in the proof of the
upper estimate. Thus in the estimate from below we are left with Cx3h~!
rather than with Crf32.

Scaling back we arrive to the lower estimate in (28.5.40). O

Remark 28.5.15. (i) Tt is a very disheartening that our estimate deteriorated
here. However it may be that indeed the better estimate does not hold
due to the entanglement of the singularity and the regular zone via self-
generated magnetic field. Still we did not loose Scott correction term as
long as kGh < 1.

(ii) Recall that in the Section 27.3 we already had an entanglement of
different singularities which obviously remains with us for M > 2. Surely
both of these entanglements matter only if we are looking for the remainder
estimate better than O(xh~2). Otherwise we can just pick up A’ = 0 near
singularities and the Scott correction term equal to 2h~25(0)z;
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(iii) The silver lining is that we do not need all these non-degeneracy
conditions for such bad estimate and we expect that our arguments would
work for M > 2. Still for M > 2 we will need to decouple singularities and
to do this we will need to estimate ||OA’||¢2(f¢(x)=a}) Where d is the minimal
distance between nuclei (see (28.5.19)).

For <1, kK h%| log h|_% we can recover even Schwinger correction
term:

Theorem 28.5.16. Let V be a Thomas-Fermi potential Wa™ + X rescaled
as B< Z, N < Z and M = 1. Let respectively f = BZ™, h = Z’%, and
k=a < k*. Then

(28.5.47) |E;, — (& + 25(aZ)Z? + Schwinger)|
< CZ5(Z70+ B°Z7°) + CallogaZ|3Z%
where Schwinger is a Schwinger correction term.

Proof. The proof is standard like in Section 27.3: we invoke propagation
arguments in the zone {x: (8 + h)” < £(x)Z5 < (8 + h)™"}. O

28.5.5 N-Term Asymptotics and D-Term Estimate

Consider now N-terms assuming that A’ is a minimizer.

Case M =1
Assume first that M = 1.

(a) Consider first singular and regular zones (but not the boundary zone).
Then after rescaling the contribution of ¢-element to the remainder does not
exceed

(28.5.48) C(hi? + by *vf)

and summation over zone {x: £(x) < 1} results in the value of this as £ =1
le.

(28.5.49) C(h2+h3v75),  v* = (kB)"hs|log h|~.
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Recall that for £ > 1 we have h; = h¢, 31 = 303 and v is defined by (28.5.31)
which is sufficient even without invoking Remark 28.5.9 since all powers of
¢ in (28.5.48) become negative. Therefore the contribution of the regular
exterior zone also does not exceed (28.5.49).

(b) Consider now the boundary zone. Let us repeat arguments used in the

proof of Proposition 28.5.12: the contribution of ~-element does not exceed
_2 2

Cpa (hfl + hy 3V23) and plugging (> = 17", hy = hy ™ and v, = VW%M

_2 2
we get Cfy(h; ™9 + hy *v$+?*™°) and therefore the total contribution of the
boundary zone to the remainder does not exceed

_2 2 _5 2
(28.5.50)  Cp /(h;w-l + hy *vdy M) dx < C(hy?|log h| + hy *v7)

since B, = h;* and from Subsection 26.5.1 we also know that even in the
general case

(26.5.14) D(y ",y )< Cs?  for s> 0.

1
Here we integrate over v > 4 = hj while the contribution of the zone
{x: v(x) <7 does not exceed Chy 2.

Ity > h% (ie. (Z— N), = B1) we invoke in the zone {x: y(x) < 7}
the strong non-degeneracy assumption (28.3.60) fulfilled for M = 1 and
estimate its contribution by the same expression (28.5.50) albeit without
the logarithmic term. Similar arguments work also for (Z — N), > B i

(c) In expression (28.5.50) the logarithmic factor is mildly annoying. How-
ever we can get rid of it using our standard propagation arguments like in
Subsection 26.6.3; we leave easy details to the reader.

Note that so far in the estimate we also have Pg, (V) rather than Pj,;
observe however that in the virtue of non-degeneracy assumption (28.3.60)
fulfilledfor M = 1 the error when we replace Pg,(V) by Pj,(V) does not
exceed CBrh;* on the regular elements and Ch,? on the boundary elements
and summation in both cases results in O(8h~12) = O(B2h~2). Therefore
in contrast to the trace estimate there is no deterioration.

Scaling back, we arrive to estimate (28.5.51) below.
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(d) In the framework of Theorem 28.5.16 we invoke our standard propagation
arguments in the zone {x: (5 + h)? < {(x) < (5 + h)~7}; considering D-
terms we invoke these arguments if both elements in the pair belong to this
zone. Again, we leave easy details to the reader. Scaling back, we arrive to
estimate (28.5.53) below.

(e) We deal with D-term in our usual manner considering double partition
and different pairs of partition elements—disjoint when we just apply above
arguments since the kernel |x — y|™! is smooth there and non-disjoint when
we appeal to the local estimates of D-term. We we leave easy details to the
reader.

Proposition 28.5.17. Let V = WEF + X be a Thomas-Fermi potential for
B<Z5, NxZand M =1. Then

(i)

(28.5.51) |/(tr e(x, x,0) — Pg(V(x)) dx| < CR

and

(28.5.52)  D(tre(x,x,0) — Pp(V(x), tre(x, x,0) — Py(V(x)) < CZ3R?
with

(285.53) R =Ry = DefZi + Z5v*3,  v*=(aB)sZ 7|log Z|¥.

(i1) In the framework of Theorem 28.5.16 estimates (28.5.51) and (28.5.52)
hold with

(28.5.54) R:=CZ5(Z70 + B Z7° + (aZ)?).

Case M > 2

Consider now M > 2. In comparison with the case M = 1 we should get
some extra terms because

(a) First, in the regular zone with ¢(x) > ed the strong non-degeneracy
assumption (28.3.60) is replaced by the strong assumption (28.3.65).

1
(b) In the boundary zone with v(x) < %4 (and with % > h}) there is no
non-degeneracy assumption at all.
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Consider a regular zone first. According to (28.3.86) we get an extra
term

(28.5.55) ChhT w2 = CBRM(kB)5 0% |log h|K

since other extra terms are smaller; summation over the regular zone results
. . _ . _ 1 5 14 .
in the value with ¢ = 7; since 7 = (8h) "4 we get Cxsh~ o |log h|X. Scaling
back we arrive to

(28.5.56) CR" = CasBZ7|log Z|X.

Using 7y-partition in the boundary zone and plugging h, = hyy=3, 8> = 17y L,
Vs = 117210 (see Remark 28.5.11) and using (28.5.52) we prove easily that
1
if 5 = hi (ie. (Z— N), < Bu) the contribution of the boundary zone is
smaller than CR".
On the other hand, in the case Bz < (Z — N); < B# we need to add

_3 1
Chahy >77%(1+|log 7). Plugging h, = 73, B2 = /1771, 5 = (Z-N)1 B~ %
and scaling back we arrive to

(28.5.57) CR" = C(Z — N)3B¥ (1 + |log(Z — N), B~)).

Finally if (Z — N); > B we get Cihy ? with £ = (Z — N);7Z5 Le.

1

(28.5.58) CR" = C(Z — N),?B.

Thus we arrive to Proposition 28.5.18(i). The similar arguments work
for D-term and we arrive to Proposition 28.5.18(ii)

Proposition 28.5.18. Let V = WZF + ) be a Thomas-Fermi potential with
B<Z3, N<Zand M>2. Letd > Z~5. Then

(i) Estimate (28.5.51) holds with R = Ry + R" and R" defined by (28.5.56)
for (Z—N), < B, R=Ry+R'+R" and R" defined by (28.5.57) for
Bt < (Z—N); < Bi, R = Ry + R"” and R" defined by (28.5.58) for
(Z - N), > Bi.

Furthermore, if B < Z estimate (28.5.51) holds with

(28.5.59) R=2Z3[Z7+BZ7+(dZ35)7 + (a2)’].
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(ii) The left-hand expression of (28.5.57) does not exceed CZ3R2 + CB+R"?
if (Z=N); < Bz, CZ5R2+ CBi(R" + R")? and R" defined by (28.5.57) if
B < (Z— N), < BY, CZ3R2 +(Z — N):R"? and R” defined by (28.5.58)
if (Z = N), > Bi.

Furthermore, if B < Z the left-hand expression of (28.5.57) does not
exceed CZ3R2 with R defined by (28.5.59).

28.5.6 More Estimates to a Minimizer

Now we want to provide different kinds of estimates to the minimizer for
1. .. . .
¢(x) > Z73 in the original scale. More precisely, we are looking for

(28.5.60) ocl/qﬁr(x)@A’F dx

with ¢, supported in {x: ¢(x) =< r} because it will appear as an error when
we decouple singularities for M > 2 (in this case we should take r < d.
Due to equation (27.2.14) it is D-type term as well: namely, with the
integral taken over R3 it would be equal to aZ gD((bCDj, ¢®;) calculated in
the rescaled coordinates with ®; defined by (27.2.14); however with the
cut-off the integral kernel |x — y|~! needs to be modified. Recall that the
corresponding Weyl expression is 0.

First, using (28.5.16) and decomposition like in the proof of Proposi-
tion 27.3.9 we can rewrite (28.5.60) as

(28.5.61) = /K(z;x,y)dD(X)CD(y) dxdydz

multiplied by aZ3; here K(z;x, y) is supported in {z: ¢(z) < r}, singular
at x = z and y = z and satisfies

(28.5.62)  |K(zix,y)| < |x = 2|2y = 2|72|x| - ly[(Ix| + ) (ly[ + )"

Here we temporarily replaced r by Z ir.

Let us make a double f-admissible partition of unity and consider pairs
of elements with ¢(x) < r, and ¢(y) =< r,. There are three cases: n < er,
rn =< r and r; > cr, and so also for r;, and we can consider only pure pairs.



28.5. GLOBAL TRACE ASYMPTOTICS ... 355

Case M =1

Assume first that M = 1. Then the contribution of each pair with r; < er
(assuming that they belong to regular zone) does not exceed

5 2
3,,3

5 2 -
(28.5.63) Cin(h 4 h°v) X Gr(h? 4+ hy*v3) x r3,

) o o 10,4 %, o -1 o 1
where (; =r" hj = hr;, v; = (kB)shor? if p > 1and GG=r; *, hy = hr; 2,
vj = (kB)9 hs if r; < 1. Double summation returns its value if n = r, =
1.e.

(28.5.64) Ch™*(1 4 h5v*3)r 3,

Further, using Fefferman-de Llave decomposition one can prove easily
that the contribution of pairs with r; < r, < r (the only case when we have
a singular kernel) does not exceed (28.5.63) calculated as r; = r, = r which
is decaying function of r and therefore does not exceed (28.5.64).

Furthermore, the contribution of each pair with r; > Cr (assuming that
they belong to regular zone) does not exceed

_5
3

08) x Cars 2(hy? 4 by w3 ) x 2,

(28.5.65) Clury (% + hy

and the double summation returns its value with rn = r» = r which is the
same as (28.5.63) calculated with = r, = r and again does not exceed
(28.5.64).

Finally, considering r < r, < F we apply for (Z — N). < B 3 secondary
partitions with respect to x and y and using our standard arguments we
estimate the contribution of this zone by (28.5.65) calculated with rp = r, = F.

Therefore we estimated expression (28.5.61) by (28.5.64). In particular, if
kB < h™=|log h| =K i.e. aB < Z#|log Z|~K), then v* < h™2 and expression
(28.5.61) does not exceed Ch~#r=3. Plugging h = Z~3, multiplying by aZ3
and replacing r by Z3r we get aZ?r~3 thus proving Proposition 28.5.19(i).

On the other hand, for £3 > h™ | log h| ¥ estimate (28.5.61) by (28.5.64)
could be improved. Indeed, let us apply all the above arguments only for
r; >t with 1 <t <er. Then we get expression (28.5.63) with n =r, =t
ie.

128

(28.5.66) Ch™ x v*3hit = r3
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where we consider only term possibly exceeding Ch=*r=3.

To estimate the contribution of zone {x, y: ¢(x) < t, {(y) < t} we replace
®; by (kh~?)AA; and using the standard estimate for operator norm in £2
we conclude that the corresponding part of expression (28.5.61) does not
exceed Ck2h™*||0A||? x t3r3 < Ch™*£3r~3 as long as ||0A]| < Ck.

Adding this to (28.5.66) and minimizing by t < r we get Ch=*(1*2h)zs r =3
provided r > (y*2h)%,

Plugging v* and h, multiplying by aZ 3 and replacing r by Z 3r we arrive
to Proposition 28.5.19(ii).

Proposition 28.5.19. Let V = WAF + X be a Thomas-Fermi potential with
B<Zs, NxZand M =1. Then

(i) A minimizer satisfies

(28.5.67) at / |0A)2dx < CTor 2 = CaZ?r3
{x: Ux)>r}
forr>r. = 7= holds provided
(28.5.68) aB < Zw|log Z| 7K.
(ii) Otherwise a minimizer satisfies
(28.5.69) ofl/ |OA P dx < CTor® = CaZ?2r®  for r>r.
{x: 6(x)>r}
with
(28.5.70) r, = (aB)mZ m|log Z|K > Z73.

Remark 28.5.20. (i) Assumption (28.5.68) means exactly that r, < Z73.

(ii) Our usual approach implies that for B < Z the Tauberian error estimate
could be slightly improved but it has no implications here because in contrast
to e(x, x, 7) where the main term in the formal asymptotic decomposition is
h—3Pp, and the next one is < $2h~2, in ®; the main term is 0 and the next
one is nh=2 with the coefficient 7 depending on A’ and trying to calculate it
and plug the corresponding term into (28.5.61) instead of ®; will certainly
result in the identity.

(iii) It may happen that r, > 7; then it follows from the proof that r, should
be truncated to 7 in (28.5.69). Moreover, estimate (28.5.69) with r, = 7
holds even for M > 2 if no non-degeneracy assumption is made.
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Case M > 2

Assume now that M > 2 and that (28.5.19) is fulfilled. Then we need to
take into account excess terms in our estimates. In the regular zone such
excess term is

1 1
(285.71)  CGinfuihy'vi X Gnbahy'vi xr  for n<rn<r
and
1 1
(28.5.72)  Clir?Bihi v x Gory 2Bohy vl x 13 for n>rn>r.

Plugging f3;, h; and v; one observes easily that the former is a growing and
the latter is a decaying function of r; and these expressions coincide at
rn = r, = r. To decouple singularities we need to consider r < ed where
d is the minimal distance between singularities; so we will assume this.
Observe that extra terms appear only if r; > ed, so we need to consider only
(28.5.72).

Therefore if d < 7 the summation results in expression (28.5.72) calcu-
lated at r = r» = d which is

CH2hs (k)" |log h<d =5 r*,

which results in the original settings in)

(28.5.73) CT'r = C(aB)sBd 513

recall that we plug 3, h, k, replace d and r by Z 5d and Z %r, and multiply
by aZ 3
Meanwhile, using our standard arguments one can prove easily that the
contribution of the boundary zone is less than this provided (Z —N),. < B il
On the other hand, for Bz < (Z—-N); < Bi an extra contribution of
the boundary zone does not exceed

CHHh33BF (1 + |log ])?,

which results in the original settings in®?)

(28.5.74) CT"r = Ca(Z — N)* BE (1+ |log(Z — N), B~3])%F.

33) Le. after we plug &, 8, h, replace d and r by Z3d and Z5r and multiply by aZs.
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Finally, for (Z — N), > B# an extra contribution of the boundary zone
does not exceed

CB2h3F5p3,

which results in the original settings in®?

(28.5.75) CT"r* = Ca(Z — N)3 B2

Thus we have proven

Proposition 28.5.21. Let V = WJF + X be Thomas-Fermi potential with
B<Zis, NxZi=2Z=..=<Zyand M>2. Letr, < r < d < ¢F.
Then expression

(28.5.76) at / |OA'|? dx
{x: l(x)=r}

does not exceed C(Tor™> + (T + T")r®) with Ty defined by (28.5.68) or

(28.5.69) and T’ defined by (28.5.73), and T" either 0 (as (Z — N), < B1z)
or defined by (28.5.74), or (28.5.75).

Remark 28.5.22. (i) Recall that the decoupling error between the singularity
and the regular part does not exceed CaBZ 3

(ii) Meanwhile in these settings Scott — Scotty = O(aZ®) and if decoupling
error is greater than this there is no point in decoupling.

(iii) Obviously we need to assume that r, < e which implies that
(28.5.77) (aZ2)°B% < 7',

which is just tiny bit stronger than aZ <1, B < Z3. For (Z-N); < Bi
this condition is also sufficient.

(iv) Decoupling singularities we get an error (28.5.76) with integration over
{x: €(x) < r}; therefore if r, < d < F then minimizing Tor=3 + T'r® by
r:r.<r<dwe get

(28.5.78) To= (To(T + T")7 + (T' + T")r + Tod 2.
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28.5.7 Endgame: M > 2

For M > 2 we have two rather different results. In the first (28.5.39) we
appeal to the sum of localized trace terms ), 1, Tr(¥mH, \, ¥m) where
U is supported in {x: |x —yn| < d} (recall that d is the minimal distance
between singularities).

In the second one we want to use 2h™2 > S(aZ,)Z? instead. If A =0
then transition would be immediate. However in our case we need to
“decouple” singularities. Therefore in the estimate from below we need
results from the previous subsubsection:

Theorem 28.5.23. Let V = WZF + X be a Thomas-Fermi potential with
B<Z3,N<Zand M>2. Let k =aZ < k*. Then ifr. <d <F

(28.5.79) |E;, + / Pg(V)dx —2 Z S(aZ,)Z2 — Schwinger|

does not exceed C(Q + T) where Q is the trace estimate obtained in Propo-
sition 28.5.12(iii)—(iv) and T, is an estimate for expression (28.5.76) given
by (28.5.78).

Proof. (i) In the estimate from below we just replace A" in E,(A) by the
sum >, ooy A'¥m with ¥, supported in {x: [x — yn| < 1r} and equal 1 in
{x: [x = ym| < 2r} where r is the minimal distance between singularities,
and observe that a~![|0A’||? increased by no more than CT.

(ii) In the estimate from above we just plug into E,(A) A" = >, -y Ant¥m
with A/, minimizers for a single-singularity potential V/,. O

Remark 28.5.24. (i) Theorem 28.5.23 makes sense only if r, < d < F and
T. < aZ3 if any of these assumptions fails, we observe that E,(A') is
greater than & + Schwinger — CQ — CaZ® and in this case we can replace
S(aZy) by S(0); in this case in the upper estimate we pick up A’ = 0.

(ii) In the estimate from above T = max,, T,, with T, an estimate for
a single-singularity potential V,, delivered by Proposition 28.5.19; thus
T=Tod 3ifr. <d<F Still it is at least CaB%Z2 while decoupling error
of singularity and the regular zone is CaBZ 3 which is smaller.
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28.6 Global Trace Asymptotics in the Case
of Thomas-Fermi Potential:
73 < B< 78

28.6.1 Trace Estimates

In this Section we consider the case of Z3 <B<Z (corresponding to
Bh > 1 after rescaling®¥). We start with

Remark 28.6.1. (i) In contrast to the previous Section 28.5 in this case the
remainder estimate will be at least Ckh™2 and therefore there will be no
difficulty to decouple between singularities or between singularities and a
regular zone and the Scott correction term will be either >~ 25(0)Z2 or even
absent.

Therefore in the estimate from above we just pick up A" = 0 both here
and in the multiparticle problem and we will need only N-term and D-terms
with A" = 0 referring to Chapter 25.

(ii) For Sh > 1 we have a major dichotomy unrelated to the self-generated
magnetic field:

(a) B2 <1 (i.e. Z3 < B < Z#). In this case Scott correction term could
be larger than the contribution of zone {x: ¢(x) =< 1} to the remainder
estimate which is no better than O(/3) and one probably needs to include
Scott correction term in the final trace asymptotics.

(b) B2 > 1 (i.e. Z3 < B < Z3). In this case the opposite is true; then
one does not need to include Scott correction term for sure. Recall that
condition C < Z3 is also unrelated to self-generated magnetic field.

(iii) Recall that we need to impose condition x3h?|log 5|X < 1 which is
equivalent to

(28.6.1) aBsZ 5 |log Z|K < 1.

34) Recall that as Z3 < B < Z3 the scaling is x — B5Z sx (and the original distance
1

between nuclei is at least B*%Z%), T 87%227’7 8= B§Z*57 h=B3Z"% and B < Z3.
35) Cf. Proposition 28.5.2.
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Theorem 28.6.2%). Let V be Thomas-Fermi potential V .= WEF + X with
Z3<B<Z’ Nx<Zi =<2y =<..<Zyand N< Z. Let aZ < r* and
assumption (28.6.1) be fulfilled. Let A" be a minimizer. Then

(i) If either (Z — N); < B5Zs or M =1 and aB3Z5 > 1, then expression

(28.6.2) |E.(A") — Scotty + / / Pg(V(x)) dx|
does not exceed
(28.6.3) C(B%Z% +BSZ +aZb + v BEZ%E|log Z|K).

(i) IfM=1,(Z—N); > BZs and aB3Z5 < 1, then expression (28.6.2)
does not exceed

(28.6.4) C(B%z% +BSZ3 + aZ% + 0¥ BEZE|log 2|
B BEZE(Z — N log z1).

(iii) If M > 2 and (Z — N), 2 B1sZs, then expression (28.6.2) does not
exceed

(28.6.5) C(B%Z% +BSZ% +aZb + oS BEZ%|log Z|K

4 BHZH(Z — N)E | log(Z — N).ZY).

Proof. (a) Observe first that we need to prove only the estimate from below
for expression (28.6.2) without absolute value since in the estimate from
above we just pick A = 0 and apply results of Chapter 25 producing estimate
CBsZ3.

Proof of the estimate from below repeats the proof of Proposition 28.5.2.

Namely, we apply an appropriate partition and on each element 1? estimate
from below

(28.6.6) Tr (uHavth,) + (Goa) ™t / A2 dx + / / Pa(V/(x))2(x) dx
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for e > 1 and
(28.6.7)  Tr (voHavibo) + (Coa)1/|8A’]2 dx
+ [ [ PelvVx)( o~ Scotto

For B < Z2 we separate zone Xy = {x: {(x) < r, = B~3Z3} in which after
rescaling x — r-lx, 7+ r,Z 'r, we have 8 =1, h= B3Z73 and k = aZ.
Then for the corresponding partition element 3 expression (28.6.7) in virtue
of Chapter 26 does not exceed (by an absolute value)

C(h™ + r|log k[3h™5) x Zr Y,

which does not exceed (28.6.3) without the last term.

For B > Z? we separate zone Xy = {x: {(x) < r. = Z7'} and after
rescaling x +— r;ix, 7 — Z7'r,7 we have h = 1, 8 = BZ~2 and apply
variational estimates of Appendix 28.A.1 here. Then the contribution of Xj

4
to the remainder does not exceed C3 x Zr;! = CB < CBs Zs.

(b) Further, a contribution of each regular element with r, < ¢(x) < €F
(recall that 7 = B~5Z5) does not exceed

34

(28.6.8) C¢hyt (1 + (F@lﬁl)%hfﬂ log h1|K> for fih < Go,
14

(2869)  CCB (1+(mB) ¥R [loghl*)  for Biby = G

with ¢ = Z2072, By = BZ =203, hy = Z~20"2, ki1 = aZ. Indeed, if Bih > G
and £(x) < eF, then the super-strong non-degeneracy assumption (28.4.5) is
fulfilled.

Observe that the first term in (28.6.8) has ¢ in the negative power and
therefore sums to its value at ¢ = r, while the second term has ¢ in the
positive power and therefore sums to its value at Bih; =1 (ie. £ = B71Z,
h = B2Z7, B, = B~2Z); one can see casily that it is less than aZ3.
Actually this zone appears only as B < Z2.

On the other hand, both terms in (28.6.9) have £ in the positive power
and thus sum to their values at { = r, §; = B%Z*%, h = B5Z75 and
k1 = aZ which are exactly the second and the fourth terms in (28.6.2).



28.6. GLOBAL TRACE ASYMPTOTICS ... 363

(¢) Boundary zone {x: e < {(x) < c} is treated in the same way albeit
with ¢ = B§Z5~2, B, = BgZ_%yl_l, hy = BsZ 3~v73 and k1 = aZ~5 as long
as 7 > Gy (with 5 = (Z — N)1Z~# but reset to BsZ~s if the latter is
larger). Observe that plugging into (28.6.9) we get in both terms v in the
power greater than 2; therefore after summation with respect to partition
elements we get expression (28.6.9) with v =1, f; = B§Z’%, h=BsZ3
and k1 = aZ.

This proves the lower estimate (28.6.2) in the framework of the first
clause of Statement (i) as contribution of the zone v < B 5775 is estimated
easily; we leave it to the reader.

(d) Assume now that (Z — N), > BZs. We do not partition zone
{x: v(x) < G} further. In this case we need to take

4 2 4
(28.6.10) v = ((k1B1)5hi + (k1) o ) |log hy|¥.

For M =1 we should plug it into
2 4
(28.6.11) CPP(1+ hivd)y

with ¢ = B%Z%% and v = 7.
For k8h 2 1 we estimate it by the same expression with ¥ replaced by 1

but then in v; dominates the first term and we arrive to the lower estimate
(28.6.2) in the framework of the second clause of Statement (i).

(e) For M =1 and xkfBh < 1 we need to take into account term (28.6.11) with

11 = (k151) 9 h| log m|X which results in the last term in (28.6.4). Indeed,
as y(x) < Gy super-strong non-degeneracy condition is not fulfilled.

_1
(f) For M > 2, we need to take into account term C¢?B1h; 2y ~2(1 + | log|)
with v = 4 which results in the last term in (28.6.5). This concludes estimate
from below. O

Corollary 28.6.3. In the framework of Theorem 28.6.2(i), (it), (i) ex-
pression ||0A'||? does not exceed expressions (28.6.3), (28.6.4) and (28.6.5)
respectively, multiplied by o.

Proof. Indeed, the same estimates hold with « replaced by 2a. OJ
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The same methods lead us to a similar result for B < Z 3 (we leave the
oproof to the reader):

Theorem 28.6.4. Let V be Thomas-Fermi potential WAF + \ with B < Z%,
N<xZixZ=x..xZyand N<Z. Let o«Z < k*. Let A’ be a minimizer.
Then

(i) If either (Z — N) < BT or M = 1, then expression

(28.6.12) |E,.(A") — Scottg + //PB(V(X))dX|
does not exceed

(28.6.13) C(B%Z% + 75+ aZ3>; .

(i) If M > 2 and Bz < (Z — N), < Bi, then expression (28.6.12) does
not exceed

(28614) C(BiZ3+Z5+aZ’ + BR(Z - N)? |log(Z — N).B1).

(iii) If M > 2 and (Z—N), > B?, then expression (28.6.12) does not exceed
(28.6.15) C(B3Z3+ 23 +aZ’+ B(Z - /v)_%).

28.6.2 Estimates to a Minimizer

Observe that only terms B 575 and aZ3 are associated with the singularities
and they are definitely smaller than B3 Z3 if B > Zi. Therefore for B > 7+
we do not expect estimate for D(py — pg, pv — pg) better than expressions
(28.6.3)—(28.6.5).

However for B < Z i to improve such estimate we need to study a
minimizer. We assume that the remainder in Theorem 28.6.4 does not
exceed C(B%Z% + aZ®) and therefore

(28.6.16) |0A|| < Ca2BsZ5 + CaZ?
or, after our usual scaling,
(28.6.17) [0A|| < = C(k + w2 B5h3).

Observe that for Z3 < B < Z? we have all zones.
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Proposition 28.6.5. Let V' be Thomas-Fermi potential Wa" + X rescaled
with Z3 < B< Z3, Nx 21 =< Zo = ... < Zy and N < Z. Further, let
aZ <1 and aBéZ_g\ log 31X < 1. Then under assumption (28.6.17) the
minimizer A’ satisfies

(i) If ¢ <r.=h (i.e. hy > 1) then
(28.6.18) |0?A'| < Csh™.
(ii) If r. < 0 < c(Bh)™* (i.e. hy <1, Bihy < c), then
(28.6.19) |92A| < Cﬁ(gfg +min(B3h207, 5%5*%))| log ¢/r.|
+ C(kB)T h3 L9 |log (/r,|¥.

(iii) If c(Bh)™1 < ¢ < c, then
(28.6.20) |02A| < Csl™2 + CrfB2(4|logl/r,|

+ (A F RS0 F 4 (x8) h30E) log t/r .

Proof. The proof of these two propositions repeats our standard arguments
and is left to the reader. |

These propositions may not provide the best D-term estimate as k8h < 1
(i.e. aBiZs < 1) and could be improved in virtue of the super-strong
non-degeneracy assumption fulfilled at regular elements with ¢ > c(3h)~?
and at border elements with v > Cy. We want to improve term containing
(k8)9 h30~9 in (28.6.20). Assume now that 8h% < 1 and k8h < 1 (case we
need to cover). Let us consider zone {x : (eofSh > V(x) > Go|n|} where in
the corresponding scale super-strong non-degeneracy condition is fulfilled
and n = A\B~:Z5.

Proposition 28.6.6. Let conditions of Proposition 28.6.5 be fulfilled. Then
(i) Estimate
(28.6.21)  [8PA/(x)| < c(gf% 4 RBE(x)E + (nﬁ)%hgé(x)*%w log h|¥

holds provided
(28.6.22) Bh|log h|=° > V/(x) > |n]| - | log h|°

with arbitrarily small exponent § > 0.
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(ii) Furthermore, if |n| < |log h|=°, then estimate

(28.6.23)  |PA(x)| < c(g 4R+ (B)EHS + (k)3 h%ﬁ)| log h|K
holds provided |V(x)| < 1,5 = |n|4.

Proof. (i) Let

Vn(t) = sup ‘82A/(X)|€(X)g’ Xn(t) — {e—Gn—lt S V(X) S e€"+1t},
Xn(t)

Here € > 0 is arbitrarily small (but constants may depend on it). Assume
that

(28.6.24) et < €, e "t > Go|n|, e < |log hl.

Here first two conditions assure that in X,(t) the super-strong non-degeneracy
assumption is fulfilled after rescaling and the last condition assures that ¢(x)
remains the same (modulo logarithmic factor) here. Then

(28.6.25) va(t) < C(§ + 187 + Crifrhi (yn+1(t))%)| log k|

with k1 = K, f1 = ﬂr%, h = hr_%7 r = min(t71,1). Indeed, |AA| in
Xp11/2(t) does not exceed the right-hand expression (without term ¢ and

without logarithmic factor) multiplied by r=2 and Cg estimates £2-norm
of OA" (and we scale it properly). Recall that we scale x — x/r if r < €y
and x — x/v if r < 1 and in the latter case 8; = 771, hy = hy~3 and
k1 = K7°; the uncertainty due to r or v defined modulo logarithmic factor
compensates by |log h|*t in the right-hand expression of (28.6.25).

Therefore
Fo(t) < C(gr*% + CRBArE + Crfh? x (F,,+1(t))%)| log h|*:
for F,(t) = v,(t)r—3. Tterating we see that
Fo(t) < C((sr% + k3t ) log h|" + C(xh) [ log hl" x (Fpya (1)
[
Since Fpy1(r) < h~t the last factor is bounded by a constant if 2" > |log h|

and we can satisfy this and (28.6.24) as long as (28.6.22) holds. This proves
Statement (i).
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(ii) Consider the remaining zone ) = {x: V(x) < || - |log h|°} and let
v = supy, |0?A'|. Observe that in Y |AA’| does not exceed
C(/{B% + KkBh2 |Vt + ﬁﬁhgﬁ%y%w log h|¥

and on its border (28.6.23) is fulfilled. It implies that (28.6.23) is fulfilled in
Y as well. This proves Statement (ii). O

Remark 28.6.7. 1f |n| > |log h|=° then Proposition 28.6.5 is sufficiently good
in the remaining zone ).

28.6.3 N-Term Asymptotics and D-Term Estimates

We leave to the reader not complicated but rather tedious and error-prone
task

Problem 28.6.8. Estimate remainder in N-term

(28.6.26) | / (el x N') — Pa(V(x) + ) dx]

and D-term

(28.6.27)  D(e(x,x,N) — Pg(V(x) + X), e(x,x, \') — Pg(V(x) + X)).
After usual rescaling one needs to consider the following zones:

(a) Zone {x: {(x) < (8h)~*|log h|°}. In this zone one should use 3, = (2,
hy = ht=2 and 1y = (k1) 9 h? | log hy|¥ (other terms are not important here);
then its contributions to expressions (28.6.26) and (28.6.27) do not exceed
5 2 Zs o2

respectively C(hy*+ hy *v7) and C(hy* + hy 3yf)2€_1 (for £(x) < (Bh)7!
but slight extension just adds some logarithmic factor). In the final tally
¢ = (Bh)~log h|°.

(b) Zone {x: (Bh)~log h|® < ¢(x) < |log h|=°}. In this zone we have the
same expressions for by and By and 1, = (k)3 b |log hy|¥; then its contri-
butions to expressions (28.6.26) and (28.6.27) do not exceed respectively

22 _2 2
CBu(h* + hy *vf) and CB2(h7* + hy v7)*¢~L. In the final tally £ = 1.
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(¢) Zome {x: £(x) > |log h|=%, v(x) > 7| log h°}. In this zone h; = hy~3 and
By = ByL and v = (kB)*3h3| log h|¥ but we use according to Remark 28.5.9
1

instead v; = ﬁlﬂlhfu% with k1 = k7°. Then

(c1) For M = 1 contributions of vy-element to expressions (28.6.26) and
2
-3

_2 2
(28.6.27) do not exceed CBy(hy* + hy *v7) and CBZ(hy " + hy *vf )2 respec-
tively.

wIn

(c2) As M > 2 contributions of v-element to expressions (28.6.26) and
1
(28.6.27) do not exceed respectively CS1h'v? and CA2h %y,

In the final tally v = 1 in both cases (c1) and (cp).

(d) Then for M =1 contributions of J-element to expressions (28.6.26) and
(28.6.27) do not exceed respectively (in comparison to what we have already)

_2 2 _4 4 10,2 58
CpBih, *vi and CB3hy *vi with vy = (kB) hj 527 | log h|X.
On the other hand, for M > 2 contributions of 4-element to expressions
(28.6.26) and (28.6.27) do not exceed respectively (in comparison to what
3
we have already) CfBih, 2 and CA2h;>.

Let us partially summarize whzat we got. Let kBh 2 1. Then for M =1
the final results are Cﬁ(h_1 + h_§(/{ﬁ)%| log h|K) and the same expression
squared. On the other hand, for M > 2 the final results from all zones

1

except {x: v(x) < Gy} are CBh~3(kp3)3|log h|¥ and the same expression
squared.

On the other han(li, let /z;ﬁh < 1. Then for M =1 the final results do not
exceed CB(A71 + h_ﬁ(nﬁ)ﬁ log h|¥) and the same expression squared.

28.7 Applications to the Ground State
Energy

28.7.1 Preliminary Remarks

Recall that we are looking for

(28.7.1) <HW,\II>+;/|8A’\2dx,
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which should be minimized by ¥ € § and A'.
We know (see f.e. Subsection 25.2.1) that

1
(2872) <H\U, llf) 2 Tr_(HAvw+)\/) + )\/N + ED([)\U — P Py — p)
1 4
— 5D p) — C/p?u dx,

where W = V — |x|! % p, V is a Coulomb potential of nuclei, p and A\ < 0
are arbitrary.

Therefore to derive an estimate from below for expression (28.7.1) we just
need to pick up p and X' but we cannot pick up A’. Let us select p and A equal
to Thomas-Fermi density = pLF and chemical potential X respectively (but if
N ~ Z it is beneficial to pick up X' = 0), add ! [ |0A']? dx, and apply trace
asymptotics without any need to consider N- or D-terms and we have an
estimate from below which includes also “bonus term” %D(pw —p, py—p) and
is as good as a remainder estimate in the trace asymptotics rescaled—provided
we estimate properly the last term in (28.7.2).

Thus here we are missing only estimate for [ pi dx or more sophisticated
estimate if we are interested in Dirac and Schwinger terms. We will prove in
Appendix 28.A.2 that in the electfostatic inequality for near ground-state
one can replace this term —C [ pg dx by —CZ5 for B< Z% and —CB3 Z5
for Z3 < B < Z3; further, for B < Z one can replace it by Dirac — Ccz3-9
thus proving Bach-Graf-Solovej estimate in our current settings.

Therefore due to these arguments estimates from below in Theorems 28.7.4
and 28.7.5 follow immediately from Theorems 28.5.14, 28.5.16 and 28.5.23
for B< Z 5 and estimates from below in Theorem 28.7.11 follow immediately
from Theorems 28.6.2 and 28.6.4 for Z3 < B< Z5.

On the other hand, an estimate from above involves picking up p (which
we select to be pLF again) and picking A’ as well-which we choose as in
upper estimates of Section 28.5 (rescaled) and also picking up W which we
select ¢1(x1,61) -+ dn(xn, sn) anti-symmetrized by (x,61), ..., (xn, sn) but
we do not select X' in the trace asymptotics which must be equal to Ay,
which is N-th eigenvalue of Hy 4 or to 0 if there are less than N negative
eigenvalues of Hyy a.

In this case we need to estimate |\ — A| and also

(28.7.3) D(tre(x, x,N) — pg", tre(x, x, \') — pg' ),
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which required some efforts in Chapters 25-27 but here we will do it rather
easily because in Section 28.5 we took either A" equal to one for Coulomb
potential and without external magnetic field (as Sh?> < 1) or just O (as
Bh? > 1).

28.7.2 Estimate from above: B < 75

Recall that now we can select p and A" but cannot select \'.

If B < Z3 (or Sh < 1 after rescaling) we select A’ as a minimizer for one-
particle operator with Coulomb potential and without external magnetic
field. Then after rescaling x Z%x7 T Z’gT, h=1~ h= Z’%,
B—3=BZ ' a—rk=aZ

(28.7.4) |0A'| < Crl™3, 10°A'| < Crtl 3| log(€/K?)),
or before it
(28.7.5) 0A| < CaZ303, |0°A'| < CaZit 3| log(Z1)|.

Let us start from the easy case M = 1. We need the following

Proposition 28.7.1. Let M=1, Nx<Z, B < 73 and aZ < Kk*. Assume
that A satisfies (28.7.5). Then

(i) The remainder in the trace asymptotics does not exceed

C(Z3 + allog(aZ)|3Z% B<7Z
(28.7.6) { ( | log(aZ) 1) Jor B=

C(B3Z5 + allog(aZ)|3B5Z%) for B> 2Z.

(ii) The remainder in N-term asymptotics does not exceed CZs.

(iii) D-term does not exceed CZ3.

Proof. We cannot directly apply previous results because A’ is now generated
by much slower decaying Coulomb potential. The good news however is
that A’ is generated without presence of the external magnetic field. Let us
scale as we mentioned above.

(i) Consider the remainder estimate in the trace asymptotics.
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(ia) A contribution of the near singularity zone {x: ¢(x) < ¢* = ¢ min(ﬂ’g, 1)}
does not exceed

C(h™* + k| log k|35 <1,
(28.7.7) { ( | log | 3h3) as <

C(ﬁ%h_1 + K| Iogfcﬁﬁ%h_%) as B >1.

(ib) A contribution of E—element in the regular zone {x: ¢(x) > ¢*} does not
exceed CC2(h +h Vl) We plug hy = h/((l), and in virtue of (28.7.4)

v = k(™3 - (3¢71 = k02¢~1. Taking a sum we arrive to the same expression
at ¢ = (* i.e. expression (28.7.7). Scaling back we arrive to (28.7.6).

(ic) We leave analysis of the boundary zone to the reader. It requires just
repetition of the corresponding arguments of Section 28.5.

(ii) Next let us consider a remainder estimate in the N-term asymptotics.

(iia) Note that a contribution of l-element in the regular zone does not

exceed C (h +h ul) Then plugging h;, v1 we arrive after summation
to the same expression at ¢ = 1 i.e. Ch™2. One can prove easily that the
contribution of the near singularity zone is O(h=2*9).

Consider the contribution of the boundary zone. Note that this zone

4 _ _

appears only if B > (Z — N)3. Let us scale x — x{', 7 — (%, with
(= (,Bh)_l. Then h — h1 = hif i, B By = h;* and after scaling A’
satisfies [0?A'| < 1, = Crl2|log k.

(iib) Consider a contribution of y-element; scaling again x +— xy~ 1, 7 —
YA, by hy = hlfy N S N S - vy we see that it does not
2 _< £
exceed Cﬁz(h + h,? Vz) = C,Bl( 2ht + 7h ) This expression must

be divided by 72 and summed resultmg in

o

_5 2
(28.7.8) C(h?|log¥| + 7 hy *17)

1
with 7 > h} (equality is achieved if (Z — N) is small enough, otherwise
partitioning may be cut-off by a chemical potential). One can get rid of the
logarithmic factor by our standard propagation arguments; the second term
2
in (28.7.8) does not exceed Ch;?v; and plugging hy, 13 we get O(h™2) =
0(Z3).
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(iii) D-term is analyzed in the same way. O

Proposition 28.7.2. In the framework of Proposition 28.7.1 assume that
B<Z. Then

(i) The remainder in the trace asymptotics (with the Schwinger term) does
not exceed

(28.7.9) CZ3(Z7° + (BZ 7)) + ol log(aZ)|3 Z5 .

(i) The remainder in N-term asymptotics does not exceed

CZ5(Z7° 4+ (BZ 7YY + (aZ)°).
(iii) D-term does not exceed CZ3 (Z7°+(BZ71)’ + (aZ)?).

Proof. Proof includes improved (due to the standard arguments of prop-
agation of singularities) estimates of the contributions of threshold zone
{x: " < (x) < h=*} after rescaling. We leave details to the reader.  [J

Since we now have exactly the same N-term asymptotics and the same
remainder term estimate as in Subsection 26.6.3 as if there was no self-
generated magnetic field we immediately arrive to the same estimates of
|An — A| as there and therefore to the same estimates for |[A\y — A| - N and
not only for two D-terms

D(tre(x,x,7) — Pg(W +7), tre(x, x,7) — Pg(W + 7))
with 7 = A and 7 = Ay but also for the third one
D(Pg(W + An) — Pg(W + ), Po(W + Ay) — Pg(W + X)).

The trace term however is different-with Scott correction term 25(aZ)Z?
instead of 25(0)Z2 and the remainder estimate here includes an extra term
related to a.

It concludes the proof of the estimate from above for E}. Combined
with estimate from below it concludes the proof of Theorem 28.7.4.

Consider now the case M > 2. Since we need to decouple singularities in
this case we need sufficiently fast decaying magnetic field and thus potential
generating it. So we will take A’ =" Al ¢, with A/, defined by V = W]F
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(where W]F corresponds to a single nucleus) without any magnetic field and
with N = Z (i.e. A =0) and ¢, is supported in {x: |x —y, < %d} and
equals 1 in {x: [x —yn, < 3d}. However everywhere else we take V = WZF.

Assume first that (Z — N), is sufficiently small and we take Z = N even
in the definition of W2F. Then one can prove easily that

(28.7.10) |Tr (Hav)+at / |OA'|? dx + / Pg(V) dx — Scott|
< (28.7.6) + CaZ?d3,

where the last term is due to decoupling; indeed, |0A'| and |§?A’| decay as
(3 and (Hif (> 775,
Moreover, for B < Z one can replace (28.7.6) by

(28.7.11)  CZ3(Z7%+ (BZ™Y + (aZ)’ + (dZ5)~%) + Callog(aZ)|5Z5

while including Schwinger into left-hand expression. This estimate is at least
as good as what we got in the estimate from below but probably even better
since magnetic field admits now better estimates.

Let us estimate |Ay| if Ay < 0. To do this consider

(28.7.12) /[e(x,x, A) — e(x, x, Ay)] dx

with non-negative integrand. Then the contribution of ¢-element into the
main part of this expression, namely

(28.7.13) /[e(x, x, A) — e(x, x, An)]¥7 dx

(28.7.14) / [P/(x, V(x) + A) — P'(x, VI(x) + A)] 62 dx

and it does not depend on A’. On the other hand, since now |9?A’| admits so
good estimate, the contribution of this element to the remainder estimated
as if there was no self-generated magnetic field.

The same is true for the boundary elements as well.

But then |A\y| is estimated exactly as if there was no self-generated
magnetic field, i.e. exactly as in Section 26.6. But then all components of
the estimate from above, with exception of the trace term, namely [Ay|- N
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and all three D-terms are estimated as in Section 26.6. Under assumption
small (Z — N); all of them do not exceed CZ 3 which could be improved to

(28.7.15) CZ5(Z7° + (BZ 7Y + (aZ)’ + (dZ5)~°)

for B Z.

Similarly, if (Z — N)4 is larger than the corresponding threshold, we
need to consider two cases: 0 > X\ > Ay and 0 > Ay > A and estimate from
below

(28.7.16) /(e(x, x, A) — e(x, x, An))w? dx
and
(28.7.17) /(e(x, x, An) — e(x, x, A))? dx

respectively, leading to the estimate of [A\y — A| and then |Ay — A| - N and
all three D-terms and again here these terms are estimated as if there was
no self-generating magnetic field.

This concludes the proof of Theorem 28.7.5.

Remark 28.7.3. For M > 2 one could be concerned about term coming from
Cﬂh’% in the trace term and Cﬁh’% or its square in N- and D-terms but
assuming that d < 7 we simply have A’ = 0 due to decoupling there and
therefore apply theory of Chapter 25 without any modification.

28.7.3 Main Theorems: B < 73
Ground State Energy Asymptotics

Theorem 28.7.4. Let M=1, N =< Z, B< Z5 and o < k*Z7Y with small
constant k*. Then

(i) If B < Z, then
(28.7.18) El, = E1F + Scott + o(z% +al |og(a2)|%z%)

with Scott = 27%5(aZ).
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(ii) Moreover, if B< Z and a|log Z|3 < ZS, then this estimate could be
improved to

(28.7.19) Ej = ENF +22Z2S(aZ) + Schwinger + Dirac

+ o(z% (27 4+ B°Z%] +qf |og(a2)|%z%)_
(iii) If Z < B < Z3, then
(28.7.20) Ej = ENF +2225(a2)

+ O(B%Z% +allog(aZ)[3B5Z% + aBz%).

Theorem 28.7.5. Let M > 2, N < Z; < Z, < ... < Zy, B < Z5. Let
a < k*Z71 d > Z73 be a minimal distance between nuclei capped by

F= min(B’%, (Z - N);%). Then
(i) If B < Z, then
(28.7.21)  Ei = EF + Scott + o(z% +al|log(a2)} 2% + z2d—3})
with Scott =237, Z5S(aZp,) and, moreover,
(28.7.22) Ej = ENF + Scott + Schwinger + Dirac

+ o(z% [Z70 + (BZ7Y) +(dZ5) %] + ]| log(a2)|5Z% + sz‘3]).
(i) If B> Z, aB < Zw|log Z|™K and (Z — N), < B2, then

(28.7.23) Ej = & + Scott
+ O(B%z

4
3

+ o Iog()z|%B%Z%3 +BZ3 + Z2d_3D;
(iii) If B > Zw|logZ| ™, a > B 'Zw|log Z| ¥, (Z — N); < B% and
d>d=(aB)mZ xs|log Z|¥, then

(28.7.24) Ej = ENF + Scott
O(B%Z% +alllogalsBSZS + BZ5 + (aB)m Zxsd 3| Iome)'
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(iv) In any case
(28.7.25) Ey = &N + Scottg + O(B3Z5 + aZ°)
with Scotty = 23"y 4y Z2,5(0).

Recall that in the free nuclei model excess energy is < d=7 (as d < EB_%)
and therefore an error must be greater than ed~’. One can see easily that
d > min(Z 2, B™#) if B < Z and then in estimates (28.7.21) and (28.7.22)
the last terms (with d=3) could be skipped.

On the other hand, in (28.7.23)—(28.7.25) we can either skip the last terms
(with d=3) or assume that d < B~3 and these terms should be calculated
under this assumption and we arrive to

Theorem 28.7.6. Let M > 2, N < 7, < Z, < ... =< Zy, B < Z3 and
(Z = N), < Bz. Consider a free nuclei model. Then

(i) If B < Z, then
(28.7.26) Ex = ENF + Scott + O(Z% + o Iog(aZ)|%Z%])
and moreover
28.7.27) Ex = &7 + Scott + Schwinger + Dirac
N N
+0(Z3[Z 7+ (BZ '] + a]|log(a2) 1Z5]).
(i) If B> Z, o < B~1Zs|log Z| X, then
(28.7.28) Ej = &5 + Scott + O(B%z% +al|logal3B5Z% + 225%]).
(iii) If B> Z%|log Z|~K, B-1Z&|log h| K < a < B~ 1% Z|log Z| ¥, then
(28.7.29) Ej = & + Scott
O(B%Z% +af|logaliB3Z% + (aB) 2% Bi| IogZ|KD.
(iv) In any case

(28.7.30) Ey = &N + Scotto + O(B3Z5 + aZ®).
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We leave to the reader the following

Problem 28.7.7. In the frameworks of fixed nuclei and free nuclei models
consider the case M > 2, B > Z and (Z — N);, > B, Use results of
Sections 28.5 and 26.6. Recall that there are two cases: Btz < (Z—N), < B3
and (Z — N); > Bs.

In particular find out for which B this assumption could be skipped
without deterioration of the remainder estimates.

Ground State Density Asymptotics

Consider now asymptotics of py. Apart of independent interest one needs
them for estimate of excessive negative charge and estimate or asymptotics
of the ionization energy.

Theorem 28.7.8. Let M=1 Nx<Z, B < Z5 and o < K*Z7L, with small
constant k*. Then

(i) If B < Z, then
(28.7.31) D(pw — p'F, pu — p'F) = 0(Z3)
and moreover this estimate could be improved to

(28.7.32)  D(py —p' py—p'") = o(z% (Z7°+B°Z7° + (ocZ)‘S]);

(i) If Z < B < Z3, then

(28.7.33)  D(py —p™", po —p'F) = o(zg + (aB)H Z % | log Z|K).

Proof. We need to consider only the case when errors in the estimates for Ej},
exceed those announced in (28.7.31)—(28.7.33). Otherwise an estimate for
D(pw — p'F, pyv — p'F) follow from the estimates from above and below for
E;, as estimates from below contain the “bonus term” D(py —p'F, py —p'").

Let in the estimate from below pick up X = Ay and in the estimate from
above pick up A’ as a minimizer for a potential WaF + X with X' = \y; we
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do not calculate asymptotics of the trace terms since these terms in both
estimates coincide®®: then we arrive to estimate

(28.7.34) D(py — ™", pu — o)
< CD(tre(x, x, An) — p'Fotr e(x, x, \y) — pTF) + cZ3

and we need to estimate the first term in the right-hand expression.

Let us scale as usual. Then fh < 1 since B < Z s and our standard
arguments estimate this term by C(h’2+h_%y§)2 with v = (k)5 hs | log h|X.

Plugging f = BZ7!, h = Z_%, k = aZ and multiplying by Z3 due to
the spatial scaling we arrive exactly to (28.7.31) and (28.7.33).

Furthermore, as § < 1 let us consider contribution of the main zone
{x: h® < (x) < h2+(B+k)°} and use propagation arguments and improved
electrostatic inequality; then we arrive to estimate Ch=*(h + 3 + /@)‘S which
after rescaling becomes (28.7.32).

We leave all easy details to the reader. O

Consider now case M > 2. Then no matter what is the distance between
. . . 1
nuclei (as long as it is greater than eZ~3) we need to add one or two more
extra terms.

(a) The first one always appears and it is what becomes from C32h; %y 7!
as we plug 81 = B3, hy = hl, k1 = K73, 1y = (nlﬁl)%hﬁ log hy | =
(56)%0h%£3| log h|¥, and multiply by /=1 we get ¢ in the positive power and
therefore we must plug the largest possible ¢ which in case (Z — N), < B i
is ¢ = (Bh)’%. Also plugging k = oZ, 8 = BZ™}, h = Z73 and ( =
(,Bh)_% = B~1Z5 and multiplying by Z3 due to the scaling (with a possible
improvement for B < Z) we arrive to a2 B#|log Z|¥. One can see easily
that this term is larger than the second term in (28.7.33).

For (Z = N), > Bi this term will be smaller than the second extra term.
(b) The second extra term appears only if (Z — N), > B1.

(b), For Bz < (Z — N), < B? it is what becomes from §2h; 35| log 7|2
1

with substitutions £, = 8157, b = 73, 3= (Z — N)iB*% and with

B1, h1, £ defined above (we still need to multiply by Z %).

36) Due to the matching choices of A’ and .
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(b), For (Z—N), > Bi it is what becomes out f2h; 30~ with £ = (Z—N), .
Thus we arrive to

Theorem 28.7.9. Let M >2 N=x 2y =< .. =<2y, B< Zs. Further, let
a<k*Z1 d>Z3. Then

(i) For B < Z estimate (28.7.31) holds and, moreover, it could be improved
to

(28.7.35) D(pw —p'", pu—p™")
- o(z% (270 + B°Z + (aZ)’ + (dZ5) ] )

(ii) For B> Z and (Z — N), < B
(28.7.36) D(py — p™, pu — p'F) = 0(23 +a¥Bilog Z|K).
(iii) For B> Z and B < (Z — N), < Bi
(28.737) D(py — ", pu — o)

= 0(Z5 +a¥Bi|log 2| + BR(Z - N)i (1 + | log(Z — N). B,
(iv) For B> Z and (Z — N), < B3

_2

(28.7.38) D(py — p™F, py — p'F) = o(z% 4 BYZ - /v);).

Corollary 28.7.10. Estimates (28.7.31), (28.7.35)~ (28.7.38) hold for a
free nuclei model.

28.7.4 Main Theorems: 73 <B<Z73
Ground State Energy Asymptotics

For Z5 < B < 73 we select A’ = 0 in the estimate from above and therefore
just apply an upper estimate E} from Subsection 26.6.3. Combined with
estimate from below provided by Theorem 28.6.2 it implies the following
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Theorem 28.7.11. Let Zs <B <73, Zy = .= Zy =N, and a < k*Z~}
4 2
with small constant k*, and also o < B75Z5|log Z|~X. Then

(i) For M =1 and either (Z — N), < BsZs or aBsZs > 1

28.7.39 Er, — ETF — Scotty
N N
does not exceed
(28.6.3) C(B%Z% +BsZ3 +az3+a%3%§z%||ogzv<).

(ii) For M =1 and (Z—N), > B5Z5 and aB3Z5 < 1 expression (28.7.39)
does not exceed

(28.6.4) C(B%Z% +BSZi +aZ+ ot B%Z#|log Z|X

+afBRZE(Z - )T [0 Z/").

(iii) For M > 2 and (Z—N), < BiZs expression (28.7.39) does not exceed

(28.7.40) C(B%Z% +BiZ3(1+|log BZ 3|2 +aZd + 0¥ B%Z%|log Z|K> .
(iv) For M > 2 and (Z—N), > B1sZs expression (28.7.39) does not exceed

(28.7.41) C(B%Z% +B3Z3(1+ |log BZ 3| + aZ® + a¥ B# Z# |log Z|¥

+ B3 (Z = N)o(1+|log(Z — N)+Z*1|)2).

Ground State Density Asymptotics

Consider now asymptotics of py. Apart of independent interest we need
them for estimate of excessive negative charge and estimate or asymptotics
of the ionization energy. We are interested as usual in D(p\u — 5 Py — PEF)
and we know that

Corollary 28.7.12. In the framework of Theorem 28.7.11(i), (i), (i),
(iv) D(pw — L5, pw — pEF) does not exceed the corresponding remainder
estimate (28.6.3), (28.6.4), (28.7.40), (28.7.41).
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If we want to get rid of aZ3 + B3Z5 terms (which may be dominant
only for B< Z fand B< Z7 respectively) we need not to find asymptotics
of the trace term but to have trace term in the estimates from above and
below more consistent. The only explored option is to take in the estimate
from above the same A’ as in the estimate from below, which is a minimizer
for the corresponding one particle problem.

Theorem 28.7.13. Let Z3 <B< 73, Ziy=..=Zy =N, and a < x*Z~!
4 _2
with small constant k*, and also a < B75Z5|log Z| 7K.

(i) Let M =1. Then D(py — p&", pw — pg") does not exceed

Gilw

(28.7.42) CBiZ

+C(a¥BRZE + o BV ZF + ¥ BEZH(Z - N)?’E)| log Z|¥.

(i) Let M =2 and the minimal distance between nuclei d > B=5Z5. Then
D(pw —pLF, pw — pEF) does not exceed

oW

(28.7.43) CB:Z
+C(a3BRZE +aBB P ZH 1+ BIZH(Z - N)i)| log Z|¥.

Proof. We will use Propositions 28.6.5 and 28.6.6 to estimate (28.6.27). Let
us consider for each partition element

(28.7.44) |/(e(x,x, N) = Pg(V(x) + X)) ¥(x) dx].

(a) Zone {x: {(x) < B71Z|logh|°}. Here for each f-element expression
(28.7.44) does not exceed R, = C(h2 + Bubr V) (1 + vi hi) with By = B3,
h = ht~2 and 1y defined according to Proposition 28.6.5(ii). As usual
f=B3Z%and h=B:Z"3.

Then one can prove easily that the total contribution of this zone to

(28.7.45)  D(e(x, x,X) — Pe(V(x) + X), e(x,x, \') — Pg(V(x) + X))
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does not exceed CBZ*R?37) which is the second term in the parenthesis of
(28.7.42) and (28.7.43)3%).

(b) Zone {x: B~1Z|log h|® < {(x) < eB"5Z5} (with the exception of the
case § > |log h|™° which we leave to the reader). Here for each (-element
2 1
expression (28.7.44) does not exceed R, = CB1hA7 (14 13 h3) with 8y = 0z,
h = ht~2 and 1y defined according to Proposition 28.6.6(i).
Then one can prove easily that the total contribution of this zone to

(28.7.45) does not exceed CBsZ~sR237) which is the first term in the paren-
thesis of (28.7.42)3%).

(c) Zone {x: 7|log h]® < v(x) < G}. Here for each v-element expression
21
(28.7.44) does not exceed R, where R, = Cfyhy (1 + v5h3) (as M =1) and
1
R. = CBhy;'v} (as M > 2) with 3, = By~ %, hy = hy~3 and v, defined by
Proposition 28.6.6(i) and redefined by Remark 28.5.9.

Then one can prove easily that the total contribution of this zone to
(28.7.45) does not exceed CB5Z~5R237 which is the first term in the paren-
thesis of (28.7.42) and (28.7.43) for M =1 and M > 2 respectively %),

(d) Zome {x: v(x) < 7|log h|°}. Here for each y-element expression (28.7.44)
2 1 3

does not exceed Ry = CPBah; (L +v5h3) (as M = 1) and Ry = CBah, * (as
M > 2) with 3, = By, hy = hy=3 and v, defined by Proposition 28.6.6(ii).

Then one can prove easily that the total contribution of this zone to
(28.7.45) does not exceed CB3Z~5R25437) which is the third term in the
parenthesis of (28.7.42) and (28.7.43) for M = 1 and M > 2 respectively 3.
O

28.A Appendices

28.A.1 Generalization of Lieb-Loss-Solovej Estimate

Proposition 28.A.1. Consider operator H defined by (27.1.1) with A =
A+A" A = (AL(X), Ay(X'),0), X' = (x1, x2), and A" = (A](x), Aj(x), A5(x))

37) Calculated for £ or + on its maximum.
38) Modulo term not exceeding CB 4
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on Q. Assume that
(28.A.1) /B’dez/B“dx
with B=|V x A|l, B'=|V x A|, B" = |V x A”|. Then

(28.A2) —Tr(Hyy) <
C/Vé(x)dx—kC(/Bzdx)é(/B”zdx—k/V2dx>i</v4dx)i+
C(/B%fx)g(/v2dx)§(/v4dx)‘l‘.

Proof. Without any loss of the generality we can assume that V > 0. We
apply the moving frame technique of Lieb-Loss-Solovej [1]. Obviously

(28.A.3) —Tr(Hyy) = /OOO N=(Hay + ) d)\ =

/OOO N~ (Hao+ A — V)d) < /OOO N~ (Hao + (A = V)o(N)) dA
with ¢(\) = max(1, A1) since Hap > 0. Since
(28.A4) Hao=(P-0) = (P-0)* + Pi+ > [P Psl[oj 03] >

j=12

Hjyo+ P; — B”
with

(28.A.5) Hao= (P 0)’ = (Y. P-oy)?,

j=12

P; = D; — Aj, we conclude that —Tr(H,,) does not exceed

(28.A.6) / N~ (Hpo+ P; — B"+ (A= V)p())) dA.
0

Consider this integral over (u, 00); it is equal to

(28.A.7) / N~ (Hpo+ P; — B "+ (A= V)Aut) dA
1



384 CHAPTER 28. COMBINED MAGNETIC FIELD

and since Hj , > 0 this integral does not exceed
(28.A.8) / N~ (Hpo+ a[P; — B" + (A — V)Au"']) dA
n
with a > 1; since H} o > Pf + P3 — | B| this integral (28.A.8) does not exceed

(28.A.9) / N (P} + P3 = B+ alP; — B" + (A = V)\u™']) dA

1

which can be estimated due to CLR inequality after rescaling x3 — a%x3,
1
Ps+— a7 2P; by

C // a2 (B+a[B"+ (V- /\)/\,LL*I])J%r ddx
I

<C// a2 ( a)\2 —1) ddx
+C// a B”—l/\2 )
3 K
+C// a3 (V %)\) dAdx
3

< Ca uz/B2 dx + Cau%/B"2 dx + Cauz/v“ dx,

where we integrated over [0, 0o]. Optimizing with respect to a > 1 we get

1 1
(28.A.10) c(/ B dx>2<,u/8”2 dx—i—u‘l/V“ dx>2
+Cul / B dx + Cp 2 / V4 dx.

Therefore integral (28.A.7) does not exceed (28.A.10).
Consider integral (28.A.6) over [0, p]; it is

dAdx

—+ viw

"
(28.A.11) / N~ (Hpo+ P; — B"+(A—V))dA
0

and exactly as before it does not exceed

i
// B—fa)\ d)\dx—l-C// B”—f d)\dx

+C// a(Vf%)\)_%dAdx
0
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with a > 1; in first two integrals we replace (in parenthesis) A by A?u~1 and
expand integral to [0, oo], arriving to

Calué/B2 dx + Cau;/B”2 dx + C/aVg min(V, i) dx;

optimizing with respect to a > 1 we get

1

(28.A.12) C(/ B> dx)z(u/B”z dx+,ﬁ/v2 min(V, 1) dx)z
+ C,ué/B”2 dx + C/ V2 min(V, 1) dx.

Therefore integral (28.A.11) does not exceed (28.A.12) and the whole ex-
pression does not exceed

C(/Bzdxf(,u/B’de—i—u1/V4dx+,u5/vgmin(v,u) dx)%

n CM;/B/Q dx + Cug/w dx + C/Vg min(V/, ) dx;

replacing min(V/, i) by %% ,u% and V in the first and second lines respectively
we get

C(/Bde);(,u/B’deJr/fl/V4dx+,u/V2dx>;
|

+c,ﬁ/5"2dx+ cu-i/v4dx+ c/vi dx.

We skip the last term since it is already in (28.A.2); temporarily skip
monotone increasing by u selected term; optimizing the rest by p > 0 we get

C(/Bzdx)%(/B”dx)i(/ V4dx)%.

Now we are left with

1

C/ﬁ(/Bzdx);(/ V2dx)§+Cu—§(/B2dX>§(/ v4dx)5+

Cus / V4 dx.
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Optimizing by u > 0 we get

C(/Bzdxf(/vzdx)i(/V4dx)}1+ | | |
C(/B2dx>8</v2dx>8(/ Vi)'

which concludes the proof. O

28.A.2 Electrostatic Inequality

Proposition 28.A.2. (i) Let B < Z3, o < v*Z7!, c71Z < N < cZ.
Further, if B > Z3 then aBsZ~5 <e¢. Then

(28.A.13) Z /|Xj i TN, - x| sdx - - dxy

1<j<k<M

> D(py, pu) — C(Z3 + BSZ% + B);

(ii) Further, afor B < Z one can replace the last term in (28.A.13) by
Dirac — CZ37°.

Remark 28.A.3. Without self-generated magnetic field the last term was
—C(Z3 + B5Z35) and probably it holds here but does not give us any
advantage; for B > Z we need only C(Zg + Bézg) estimate.

Proof. Since we prove estimate from below we replace first

< Z (HA,V)XJW’ \V>

1<<N

( Z (Haw)xV, V) + /(W — V)py dx

1<j<N

without changing anything else and then we estimate the first term here
from below by Tr(Hg ) ; then in Tr(Hy ) + o *[|0A||* we replace A’
by a minimizer for this expression (rather than for the original problem)
only decreasing this expression. So we can now consider A" a minimizer of
Section 28.5.



28.A. APPENDICES 387

Then we follow arguments of Appendix 26.A.1 but now we need to justify
magnetic Lieb-Thirring estimate (26.A.12)

(26.A.12) Tr(Haw) > —C / Ps(W) dx

in the current settings and with W : CP'(W) = py and then W =
min(B~20,; pg,)-

Estimate (26.A.12) has been proven in L. Erdés [1] (Theorem 2.2) under
assumption that intensity of the magnetic field B (x) has a constant direction
which was the case in Chapter 25 but not here.

However we actually we do not need (26.A.12); we need this estimate
but with an extra term —CR in the right-hand expression where in (i)
R = (Z3 + B5Z53) is the last term in (28.A.13) and in (i) R = CZ37.

Further, the same paper L. Erdos [1]) provides an alternative version of
Theorem 2.2: as long as |0A'| < B it is sufficient to estimate |92A| < cB3.

One can check easily that this pointwise estimate holds if either B < Z?
and {(x) > r, == B~32Z3 or 72 < B < 73 and {(x) > r. = Z71. Introducing
partition into two zones {x: £(x) > r.} and {x: {(x) < 2r.} adds £~2¢(x)
with ¢(x) = Lix: r.<¢(x)<2r},» Which adds —CR to the right-hand expression
of (26.A.12).

Therefore we need to deal with the zone {x: ¢(x) < 2r,}. In this zone
however we can neglect an external field; indeed, as in Remark 27.4.1 we
get the same estimate (27.4.25) but with B intensity of the combined field;
however f B? dx over this zone does not exceed CR. This concludes proof of
Statement (i).

Statement (ii) is proven in the same manner as in Appendix 26.A.1. We
leave details to the reader. O

28.A.3 Estimates for (hD, — ux;)e(x,y, 7)|x=, for
Toy-Model Operator

We will use here notations of Subsection 27.5.1.

Calculations

Let us calculate the required expressions as X = R® and A(x) and V(x)
are linear. To do this we can consider just Schrodinger operator (acting on
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vector-functions) and then replace V by V 4+ puh where u is the magnetic
intensity; since 00, + 04,0; = 28 we have to consider scalar a Schrodinger
operator. Let us apply calculations of Subsection 16.6.1 with operator

(28.A.14) H = h’D; + (hDy — jix1)* + hD3 — 2axq — 233,

where without any loss of the generality we assume that o > 0, 5 > 0.

After rescaling x — pux, y — py, t — pt, g — 1 (but we will
need to use old p in calculations), h — h = ph we have U(x,y,t) =
Uy (%3, y3, 1)Uy (X', y', t) where from (16.6.4)

(28A15) U(l)(X3,y3, t) =
1 1 1/ 1 1, o, 1 503
SH(2mhlt]) 2exp(lh (77 Bt0s +ys) + gt (xs = ys)" + g 0% ));

and repeating (16.2.9)—(28.A.16) we get

(28A16) U(Z)(X, Y, t) = I.(47Th)71/12 CSC(t) eih_l(g(Q)(X’,y',t)
with
- 1 )
(28.A.17) Py = — 2 cot(t)(x1 — y1)
1
+ 5( 1y 20 ) (e — ye + 2tap™)
1
~ 1 cot(t)(xoa — yo + 2toe/fl)2 — ta?u .
Then
(28.A.18) Ulx,y, t) = i(27rh)*%|t|*%lu% csc(t) e d(x.y.t)
with

(28.A.19) ¢ = —%cot(t)(xl —yn)?

1 1
+§(x1+y1+2o¢/f1)(x2—y2+2to¢/f1)—1 cot(t) (o —ya+2tau 12 —tau 2+
1

—t
8

~—

1 Bt0a 4+ ys) + ot s — )P 4 S B%E).

W[ =
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Therefore applying first AD,,, hD,, — pxi, or AD,, and setting after this
x = y = 0 we conclude that

(28.A.20); (hDy U)lxmy=o = iap~ 't x (2ﬂh)*%|t\*%u%efﬁ*1w(t)v

(28.A.20), (ADy,U)|xey—o = iap (1 — tcot(t)) x (2mh)~2|t| 22 "#0),
(28.A.20); (hDyU)lx=y=0 = iBultx (2mh) "2 |t| "z pz el o)

with

1
(28.A.21) p(t) = P %t — a2 cot(t) + g 25

In other words, in comparison with U|,—,—o, calculated in Subsection 16.6.1,
expressions (ADy, U)|x=y=o, (ADx, U)|x=y—o and (hDy, U)|x=,—o acquire factors
ptat, p~ta(l — teot(t)) and p~1St respectively.

Recall that we had 2 cases: pu?h < a and p?h > a.

Case a > u%h
Then for each k, 1 < |k| < Goua™?, the k-th tick contributed no more than

(28.4.22) Cuh™ (12h/alk|)z x(u/hlK|)?

to Fryp-1,U|x=y—o (see Subsection 16.6.2) and then it contributed no more
than this multiplied by |t;| 7%, i.e.

(28.A.23) Cpuh™ k|7 (u2h/alk|)? x (u/h|k|)?
I —— |

to the corresponding Tauberian expression. Even when we multiply by
wt k|, we get (28.A.22) again proportional to |k|~!; then summation with
respect to k, 1 < |k| < k* == Gou(a + 8)713Y returns its value at k = 1, i.e.
12 h~1a~2 multiplied by logarithm (1+ |log k*|) and therefore we arrive to
Proposition 28.A.4 below for j =1, 3.

Let j = 2. Since t/cot(t,) < a~lu we conclude that contribution of
k-th tick does not exceed

(28.A.24) Cpuh™ k|7 (u2h/alk|)2 x (u/h|k|)?
e — |

39) As |t| > k* we have ¢/(t) > ¢ and then integrating by parts there we can recover
factor (t/k*)~" thus effectively confining us to integration over {t: [t| < k*}. This
observation can also improve some results of Sections 16.6-16.10.
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and summation by |k| > 1 returns its value as |k| = 1i.e. Cuzh~la~2 and
therefore we arrive to proposition 28.A.4 below for j = 2.

Proposition 28.A.4. Let uh < ey, 7 <1, a > ph.
Then

(i) Expression (hDy, — px1)e(X, y, T)|xey—o does not exceed Cpzha"z.

(i1) Expression hDye(x,y,T)|x=y—o does not exceed

Cpihtaz(1+|log u(a+B)7Y), and Cpih~'Ba~2(1+ ] log u(a+ B) 1) for
j =1, 3 respectively.

Case a < p2h

If 12h > «, then the same arguments work only for k == pi2ha™! < |k| < k*,
resultlng in contributions Cpzh~'az(1 + |logk*k~1]), Cuzh—2az, and
Cuzh™Ba~2(1 + |log k*k~1|) for j = 1,2,3 respectively if k < k* (i.e.
phB < ) or 0 otherwise.

Let 1 < |k| < k. We mainly consider the most difficult case j = 2 and
(as |t| > €o) only term arising from —apu~'tcot(t) factor, namely

(28.A.25) og,[[l X ,u%h*% / |t|7% COS(t)(sin(t))72e"ﬁ_1(“"(t)’”) dt,

where we took into account that we need to divide by t and skipped a
constant factor.

Consider first (28.A.25) with integration over interval {t: [t — tx| < s¢}
near t,. Observe that

(28.4.26)  ¢/(2) = (sin(e)) 202 262 — 2t(sin(t)) "t 28 4 50

and transform (28.A.25) into

ty+sk o
(28.A.27) a—luih—%/ 1t]73 cos(£)d, [ (017 d
ty—Sk
5 3 t+Sk 5 L
+a_1,u2h_2/ |t|~2 cos(t) [2t(sin(t))_1a2;f2—,62t2+7] el He(t)—tr)
t—Sk

Integrating the first term by parts we get a non-integral term

(28.A.28) ofl'u% h3 |t|*% Cos(t)eih_l(go(t)—t-r) | t=t)+s

t=tx—sk
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and we get an integral term

ty+5Sk

(28.A.29) o luih /

ti—Sk

[uhat (1] 73 cos(t)]
+ ¢ 72 cos(t) [2e(sin(t)) taPu? — 522 + r]} P O=17) gy

1 3 Bt 3 '7—1 t t 1 5 3 5
— 2apth? / 1t cot(£)e™ O gt 1+ O(a i3k 3).
t—Sk
Repeating the same trick we can eliminate the first term in the right-most
5 3 5
expression. Therefore we arrive to (28.A.28) with O(a *uzh 2s.|k|"2)
error. When s, =< o2 3h~1k? we get

(28.A.30) Cuh™2 x (oo yi2h) k|2

eITOor.

On the other hand, consider integral over [tx + sk, tx+1 — Sk+1], kK # 0. De-
composing e " (@(B)=t7) into Taylor series with respect to a2h~1u~3 cot(t)
one can prove easily that expression in question is

ofllugh’%m*% cos(t)(e"ﬁ_l(w(t)fﬁ) — e"h_l(s@(l)(t)*tf)) |:Z:115:5k+1

with ¢y (t) = 3p726t3 and with error not exceeding (28.A.30) multiplied
by (1 + |log sk|):
(28.A.31) Cuih™2 x (oo/i®h) k|72 x (1 + |log(a®u 3h " K?)]).

So non-integral terms with ¢ cancel one another because by the similar
arguments we can also cover [0, t; — ] and [t_; + s_1] and due to non-
singularity of t7}(1 — tcot(t))csc(t) at t = 0 there will be no non-integral
terms with k = 0. So we are left with

—a’lu% h2 | t|*% cos(t)e"h_l(ﬂ"(l)(f)*”)) }:tht

and their absolute values do not exceed (28.A.30). B
Finally, summation of (28.A.31) by k : 1 < |k| < min(k, k*) returns
(28.A.32) Cuzh i(a/p2h)z
| (1 [log(yuh)]) Buh < a,
(o Buh)s (1 + [log(uh)| + [log(o/ Buh)l)  Buh > a.

and we arrive to Proposition 28.A.5 below for j = 2:
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Proposition 28.A.5. Let uh < ey, 7 <1, and a < p2h.
Then

(1) Expression (hDy, — puxi)e(x, y, T)|x=y—o does not exceed (28.A.32).

1 TPTESSLON, €\ X, V) T)|x=y=0 GOES NOT excee
i) E jon hDy, oo d t exceed

o8AZ)  C pihBa”2(1+ |log(a/Buh)l)  if Buh <a,
ph™3 62 if Buh> a.
(iii) Expression hDy e(x,y, T)|x=y=o0 does not exceed
3 1

prh~taz(1+ |log(ar/Buh if Buh<a,
(28.A.34) eyt (1+[logla/Buh)) ,

pwh™2a2 if Buh > a.
Case puh > ¢

If th > €o we consider a different representation: namely (16.2.15) for a
spectral projector in dimension 2 (again after rescaling where we scale e, as
functions rather than Schwartz kernels):

(28.A.35) 6(2)(Xl,y/, T) =

(2m) " tpht > /vm(n TR (5 — 1)) um (1 — 1T Eh T (xa — y1)

mez+
x 0 (T —ap M+ y) — 204[%/7%77 —a?u - 2mﬂh> eiu*%h’%(xryz)n dn,
where we also replaced H() by H() — ph and 7 by ph 4+ 7. Since
(28.A.36) e(x,y,7) = e(z)(X/: y'.) *s e(l)(Xs,}/3, ),

where eq)(Xs, y3, 7) is a Schwartz kernel of the spectral projector of 1-
dimensional operator

(28.A.37) 2 D; — 281 xa,
we conclude that

(28.A.38) e(x,y,T)

= (2n) tuht Z /Um(n o (g — v1))um(n — [rh 2 (xg — y1))

mezZ+

11
X €q) (X3,y3,T—au‘l(xl+y1)—2au‘%h%n—azu‘2—2muh) el 2 2bemredn gy,
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Then
(28.A.39) (uhD,, — x1)e(x, y, 7')|X =0
= (2m)” ,u2h 2 Z/ n)1X €e) 0 0, 7—2apu” 2h277 o —2m,uh) dn

mezZ+

and since vp,(.) is an even (odd) function for even (odd) m we can replace
e1)(0,0, 7" — ZaM_%h%n) by

(28.A.40) e (0,0, 7' = 2172 h2n) — er)(0,0, 7' + 2y~ ha).

In virtue of Subsubsection 5.2.1.3 Asymptotics without Spatial Mollzﬁcatwn
we know that an absolute value of this expression does not exceed Ch~ 23 40)

we arrive to estimate?*!)
3,9 1

(28.A.41) |(hDy, — px1)e(x, y, T)}X:y20| < Cuzhtaz.

Further,
(28.A.42) phDye(x,y, )|, _ y=0

=i(2m)” 10zu2/ () % D-e1)(0,0, 7 —2apu~ 2h27} o?p~? —2myh) dn

mezZ*
i(2m)~ ;ﬂh Z /vm xel)(O 0, 7—2au” 2h277 o —2muh) dn
meZ+

and using the same arguments we arrive to estimate*!
3, 11
(28.A.43) |hD,, e(x, y, T)|X:y:0| < Cuzhtaz.

Finally,

(28.A44) uhDe(x,y.7)|_, o= () uh ™ 3 / v2)

X phDy,eq) (X3, V3, T — 20¢u*§h§77 -’ — 2m,uh)} dn

><3:,V3:0I

40) Only in the worst case when |7 — 2muh]| is not disjoint from 0.
4D) In the non-rescaled coordinates.
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and again in virtue of Subsubsection 5.2.1.3 Asymptotics without Spatial

Mollification we know that an absolute value of selected expression does not
1 1 . .

exceed Ch™232*?) and we arrive to estimate*!

(28.A.45) D e(x,y, 7|, ol < Cuh™232.

Therefore we have proven

Proposition 28.A.6. Let uh > 1, o < 1, § < 1, |7| < . Then for
operator (H — ph) estimates (28.A.41), (28.A.43) and (28.A.45) hold.

Tauberian Estimates

Remark 28.A.7. Assume now that all assumptions are fulfilled only in B(0, ¢)
rather than in R3. Then there is also a Tauberian estimate which should be
added to Weyl estimate. This Tauberian estimate (the same for all j = 1,2, 3)
coincides with the Tauberian estimate was calculated in Chapter 16. Namely

(i) For ph < 1, £ > Cou~?! this Tauberian estimate was calculated in
Proposition 16.6.2(ii)*Y.

(ii) For uh > 1, £ > Cyh this Tauberian estimate was calculated in Proposi-
tion 16.6.7(i) and corollary 16.6.8()*") and it does not exceed Cph=2071.

42) Without applying (hD; — pA;(x)) but it does not matter.
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