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Preface

The Problem of the Spectral Asymptotics , in particular the problem of the
Asymptotic Distribution of the Eigenvalues , is one of the central problems
in the Spectral Theory of Partial Differential Operators ; moreover, it is very
important for the General Theory of Partial Differential Operators .

I started working in this domain in 1979 after R. Seeley [1] justified
a remainder estimate of the same order as the then hypothetical second
term for the Laplacian in domains with boundary, and M. Shubin and
B. M. Levitan suggested me to try to prove Weyl’s conjecture. During the
past almost 40 years I have not left the topic, although I had such intentions
in 1985, when the methods I invented seemed to fail to provide the further
progress and only a couple of not very exciting problems remained to be
solved. However, at that time I made the step toward local semiclassical
spectral asymptotics and rescaling, and new much wider horizons opened.

So I can say that this book is the result of 40 years of work in the Theory
of Spectral Asymptotics and related domains of Microlocal Analysis and
Mathematical Physics (I started analysis of Propagation of singularities
(which plays the crucial role in my approach to the spectral asymptotics) in
1975).

This monograph consists of five volumes. This Volume II concludes the
general theory. It consists of two parts. In the first one we develop methods
of combining local asymptotics derived in Volume I, with estimates of the
eigenvalue counting functions in the small domains (singular zone) derived
by methods of functional analysis. In the second part we derive eigenvalue
asymptotics which either follow directly from the general theory, or require
applications of the developed methods (if the operator has singularities or
degenerations, strong enough to affect the asymptotics).

Victor Ivrii,
Toronto, June 10, 2019.
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Introduction

This Volume is devoted to applications. In Part XI we consider Multiparticle
Quantum Theory, and in Part XII Miscellaneous problems (again, including
Multiparticle Quantum Theory).

Part XI. Asymptotics of the Ground State Energy of Heavy
Atoms and Molecules

In this Part we consider an application to Thomas-Fermi Theory. Consider
a large (heavy) atom or molecule; it is described by Multiparticle Quantum
Hamiltonian

(0.1) HN =
∑︁

𝟣≤n≤N

HV (xn) +
∑︁

𝟣≤n<k≤N

1

|xn − xk |
,

where H is one-particle quantum Hamiltonian, Planck constant ℏ = 1,
electron mass = 𝟣

𝟤
, electron charge = −1, ym is a location of m-th nuclei and

Zm its charge, M is fixed, but Zm ≍ N → ∞.
This operator acts on the space ∧𝟣≤j≤NL𝟤(ℝ𝟥,ℂ𝟤) of totally antisym-

metric functions Ψ(x𝟣, 𝜍𝟣; ... ; xN , 𝜍N) because electrons are Fermions, xn =
(x𝟣

n , x𝟤
n , x𝟥

n ) is a coordinate and 𝜍n ∈ {−𝟣
𝟤
, 𝟣
𝟤
} is a spin of n-th particle. We

identify ℂ𝟤-valued function 𝜓(x) on ℝ𝟥 with scalar-valued 𝜓(x , 𝜍)
If electrons were not interacting between themselves, but the field poten-

tial was −W (x), then they would occupy lowest eigenvalues and ground state
wave functions would be (anti-symmetrized) 𝜑𝟣(x𝟣, 𝜍𝟣)𝜑𝟤(x𝟤, 𝜍𝟤) ...𝜑N(xN , 𝜍N)
where 𝜑n and 𝜆n are eigenfunctions and eigenvalues of HW .

Then the local electron density would be 𝜌𝝭 =
∑︀

𝟣≤n≤N |𝜑n(x)|𝟤 and
according to pointwise Weyl law (if there is no magnetic field)

(0.2) 𝜌𝝭(x) ≈
1

3𝜋𝟤
(W + 𝜈)

𝟥
𝟤
+,

XX
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where 𝜈 = 𝜆N ; here we assume that HV = Δ− V (x) as it is in Chapter 25.
This density would generate potential −|x |−𝟣 * 𝜌𝝭 and we would have

W ≈ V − |x |−𝟣 * 𝜌𝝭.
Replacing all approximate equalities by strict ones we arrive to Thomas-

Fermi equations:

V − W 𝖳𝖥 = |x |−𝟣 * 𝜌𝖳𝖥,(0.3)

𝜌𝖳𝖥 =
1

3𝜋𝟤
(W 𝖳𝖥 + 𝜈)

𝟥
𝟤
+,(0.4) ∫︁

𝜌𝖳𝖥 dx = N ,(0.5)

where 𝜈 ≤ 0 is called chemical potential and in fact approximates 𝜆N .
Thomas-Fermi theory has been rigorously justified (with pretty good

error estimates).

Chapter 25. No Magnetic Field Case. In this chapter we assume
that there is no magnetic field: HV = Δ− V (x) with

(0.6) V (x) =
∑︁

𝟣≤m≤M

Zm

|x − ym|
,

where ym is a position and Zm is a charge of m-th nuclei, M is fixed and
Z𝟣 ≍ Z𝟤 ≍ · · · ≍ ZM ≍ N .

Section 25.1 is an Introduction and in Section 25.2 we justify a reduction
of the original multiparticle problem to one-particle one. This is done mainly
by methods of the classical mathematical physics (functional analysis).

In Section 25.3 we expose Thomas-Fermi theory described by (0.3)–(0.5).
In Section 25.4 we, based on previous sections and chapters, prove our

main results. First of all, the ground state energy is given by

(0.7) EN = 2
(6𝜋𝟤)

𝟧
𝟥

15𝜋𝟤

∫︁ (︁
𝜌𝖳𝖥

𝟧
𝟥 − V 𝜌𝖳𝖥

)︁
dx

− 1

2

∫︁∫︁
𝜌𝖳𝖥(x)𝜌𝖳𝖥(y)|x − y |−𝟣 dxdy + O(Z 𝟤).

Using results of Section 12.6 Riesz Means for Operators with Singularities,
we improve the remainder estimate to O(Z

𝟧
𝟥 ) but we need to include the

Scott correction term

(0.8)
∑︁

𝟣≤m≤M

S𝟢Z 𝟤
m,

INTRODUCTION
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and even to O(Z
𝟧
𝟥
−𝛿) but we need to include Dirac and Schwinger correction

terms ∼ Z
𝟧
𝟥 .

In Section 25.5 we consider negatively charged systems (i.e. those with
Z := Z𝟣 + ... + Zm < N) and estimate excessive negative charge (N − Z ),
when system is able to bind N electrons, i.e. EN < EN−𝟣.

In Section 25.6 we consider positively charged systems (i.e. those with
Z > N) and estimate or find asymptotics IN ≈ 𝜈N for an ionization energy
IN := EN−𝟣 − EN .

We also consider systems with free y𝟣, ... , yM and include in the total
energy the internuclear energy

(0.9)
∑︁

𝟣≤m<m′≤M

ZmZm′

|ym − ym′ |
,

and minimize the ground state energy by y𝟣, ... , yM and recover all afore-
mentioned results.

We also estimate excessive positive charge (Z −N) for which system does
not disintegrate into separate atoms.

Chapter 26. The Case of External Magnetic Field. Here we as-
sume that there is a constant magnetic field with a magnetic potential
A(x) = B(−𝟣

𝟤
x𝟤,

𝟣
𝟤
x𝟣, 0) and then one-particle Hamiltonian is Schrödinger-

Pauli operator:

(0.10) H = ((−ih∇− 𝜇A(x)) · σ)𝟤 + V (x)

(see, f.e. Volume III, (0.41)). We assume that the magnetic field is not
hyperstrong: B ≪ N𝟥. Still it may be sufficiently strong to affect pointwise
Weyl formula, which needs to be modified according to Chapter 13 (the
results of Chapter 14 are not needed here).

Basically there are two principally cases B ≪ Z
𝟦
𝟥 of a moderate magnetic

field and Z
𝟦
𝟥 ≪ B ≪ Z 𝟥 of a strong magnetic field and a transitional case.

Section 26.1 is an Introduction (which is parallel to Sections 25.1 and 25.2,
arguments and results of which require almost no modification).

Section 26.2 is parallel to Section 25.3 but instead of Section 25.4 we
have four Sections 26.3–26.6, covering single nucleus case M = 1, multiple
nuclei case M ≥ 2 with analysis “inside molecule” and “near the molecule
edge”and the synthesis, respectively.

Sections 26.7 and 26.8 are similar to Sections 25.5 and 25.6.
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Chapter 27. The Case of Self-Generated Magnetic Field. Here
we consider the same Schrödinger-Pauli operator but magnetic field is
underdetermined a priory and its energy

(0.11) 𝛼−𝟣

∫︁
|∇ × A|𝟤 dx

is included in the total energy. Here we assume that 𝛼Zm ≤ 𝜅* with some
constant 𝜅* > 0. We recover the same results as in Chapter 25 but with the
Scott correction term

(0.12)
∑︁

𝟣≤m≤M

S(𝛼Zm)Z
𝟤
m

instead of (0.8).
Section 27.1 is an Introduction. Sections 27.2 and 27.3 provide a re-

placement for Sections 12.6: while Section 27.2 treats a single singularity,
Section 27.3 deals with a molecular case and the necessity to “decouple”
singularities.

In Section 27.4 as in Section 25.4 the asymptotics of the ground state
energy is recovered and Section 27.5 is similar to Sections 25.5 and Sec-
tion 25.6.

Chapter 28. The Case of Combined Magnetic Field. This chapter
combines two previous ones: there is an external constant magnetic field
A𝟢(x) = B(−𝟣

𝟤
x𝟤,

𝟣
𝟤
x𝟣, 0) and an unknown self-generated magnetic field(︀

A − A𝟢

)︀
(x), and the energy of the latter

(0.13) 𝛼−𝟣

∫︁
|∇ × (A − A𝟢(x))|𝟤 dx

should be added to the total energy.
Section 28.1 is an Introduction. Since we need a lot of microlocal

arguments, they spread over six sections: Sections 28.2–28.4 cover the
local theory and Sections 28.5 and 28.6 the global theory under different
assumptions.

However applications to the ground state energy, excessive negative and
positive charges and ionization energy need only small modifications of our
previous arguments and squeeze into a single Section 28.7.

INTRODUCTION
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Part XII. Articles

I decided to put results of the last few years in this volume as separate
articles. So far those are1)

- Joint paper with A. Hassel [1] Spectral asymptotics for the semiclassical
Dirichlet to Neumann operator.

- My paper [29] Spectral asymptotics for fractional Laplacians.

- My paper [32] Spectral asymptotics for Dirichlet to Neumann operator
in the domains with edges .

- My paper [30] Asymptotics of the ground state energy in the relativistic
settings.

- My paper [31] Asymptotics of the ground state energy in the relativistic
settings and with self-generated magnetic field.

- My paper [33] Complete semiclassical spectral asymptotics for periodic
and almost periodic perturbations of constant operator.

- My paper [34] Complete Differentiable Semiclassical Spectral Asymp-
totics.

item My paper [34] Bethe-Sommerfeld conjecture in semiclassical
settings.

- My paper [28] 100 years of Weyl’s law.

See also the List of my presentations with links to them.

1) While I do not plan to change the main body of this book, I intend to add new
articles, as soon as I write them.
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Chapter 25

No Magnetic Field Case

25.1 Introduction

The purpose of this Part is to apply semiclassical methods developed in the
previous parts to the theory of heavy atoms and molecules. Because of this
we combine our semiclassical methods with the traditional methods of that
theory, mainly function-analytic.

In this Chapter we consider the case without magnetic field. Next
chapters will be devoted to the cases of the self-generated magnetic field,
strong external magnetic field and the combined external and self-generated
fields. Basically this Chapter should be considered as an introduction.

We explore the ground state energy, an excessive negative charge, ioniza-
tion energy and excessive negative charge when atoms can still bind into
molecules.

25.1.1 Framework

Let us consider the following operator (quantum Hamiltonian)

H = HN :=
∑︁

𝟣≤j≤N

HV ,xj +
∑︁

𝟣≤j<k≤N

|xj − xk |−𝟣(25.1.1)

on

H =
⋀︁

𝟣≤n≤N

H, H = L𝟤(ℝd ,ℂq)(25.1.2)

with

HV = D𝟤 − V (x)(25.1.3)

© Springer Nature Switzerland AG 2019
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25.1. INTRODUCTION 3

describing N same type particles in the external field with the scalar potential
−V (it is more convenient but contradicts notations of the previous chapters),
and repulsing one another according to the Coulomb law.

Here xj ∈ ℝd and (x𝟣, ... , xN) ∈ ℝNd , potential V (x) is assumed to be
real-valued. Except when specifically mentioned we assume that

(25.1.4) V (x) =
∑︁

𝟣≤m≤M

Zm

|x − ym|

where Zm > 0 and ym are charges and locations of nuclei.
Mass is equal to 𝟣

𝟤
and the Plank constant and a charge are equal to 1

here. The crucial question is the quantum statistics.

(25.1.5) We assume that the particles (electrons) are fermions . This means
that the Hamiltonian should be considered on the Fock space H defined
by (25.1.2) of the functions antisymmetric with respect to all variables
(x𝟣, 𝜍𝟣), ... , (xN , 𝜍N).

Here 𝜍 ∈ {1, ... , q} is a spin variable.

Remark 25.1.1. (i) Meanwhile for bosons one should consider this operator
on the space of symmetric functions. The results would be very different
from what we will get here. Since our methods fail in that framework, we
consider only fermions here.

(ii) In this Chapter we do not have magnetic field and we can assume that
q = 1; for q ≥ 1 no modifications of our arguments is required and results
are the same albeit with different numerical coefficients. In the next chapters
we introduce magnetic field (external or self-generated) we will be interested
in d = 3, q = 2 and

(25.1.6) HV ,A =
(︀
(i∇− A) · σ

)︀𝟤 − V (x)

where σ = (σ𝟣,σ𝟤,σ𝟥), σk are Pauli matrices.

Let us assume that

(25.1.7) Operator H is self-adjoint on H.

As usual we will never discuss this assumption.
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25.1.2 Problems to Consider

We are interested in the ground state energy E = EN of our system i.e. in
the lowest eigenvalue of the operator H = HN on H:

(25.1.8) E := inf SpecH on H;

more precisely we are interested in the asymptotics of EN = E(y;Z ;N) as
V is defined by (25.1.4) and N ≍ Z := Z𝟣 + Z𝟤 + ... + ZM → ∞ and we are
going to prove that1) E is equal to Thomas-Fermi energy ℰ𝖳𝖥 with Scott
and Dirac-Schwinger corrections and with o(Z

𝟧
𝟥 ) error.

Here we use notations y = (y𝟣, ... , yM), Z = (Z𝟣, ... ,ZM).
We are also interested in the asymptotics for the ionization energy

(25.1.9) IN := EN−𝟣 − EN .

It is well-known (see G. Zhislin [1]) that IN > 0 as N ≤ Z (i.e. molecule can
bind at least Z electrons) and we are interested in the following question:
estimate maximal excessive negative charge

(25.1.10) max
N: 𝖨N>𝟢

(N − Z )

i.e. how many extra electrons can bind a molecule?.
All these questions so far were considered in the framework of the fixed

positions y𝟣, ... , yM but we can also consider

̂︀E = ̂︀EN = ̂︀E(y;Z ;N) = E + U(y;Z )(25.1.11)

with

U(y;Z ) :=
∑︁

𝟣≤m<m′≤M

ZmZm′

|ym − ym′ |
(25.1.12)

and ̂︀E(Z ;N) = inf
𝗒𝟣,...,𝗒M

̂︀E(y;Z ;N)(25.1.13)

and replace IN by ̂︀IN = −̂︀EN + ̂︀EN−𝟣 and modify all our questions accord-
ingly. We call these frameworks fixed nuclei model and free nuclei model
respectively.

In the free nuclei model we can consider two other problems:

1) Under reasonable assumption |𝗒m − 𝗒m′ | ≫ Z− 𝟣
𝟥 for all m ̸= m′.
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(a) Estimate from below minimal distance between nuclei i.e.

a := min
𝟣≤m<m′≤M

|ym − ym′ |

for which such minimum is achieved;

(b) Estimate maximal excessive positive charge

(25.1.14) max
N

{︀
Z − N : ̂︀E < min

N𝟣,...,NM :

N𝟣+...NM=N

∑︁
𝟣≤m≤M

E(Zm;Nm)
}︀

for which molecule does not disintegrates into atoms2).

25.1.3 Thomas-Fermi Theory

The first approximation is the Thomas-Fermi theory. Let us introduce the
spacial density of the particle with the state Ψ ∈ H:

(25.1.15) 𝜌(x) = 𝜌𝝭(x) = N

∫︁
|Ψ(x , x𝟤, ... , xN)|𝟤 dx𝟤 · · · dxN

where | · | means a norm in ℂNq and antisymmetricity of Ψ implies that it
does not matter what variable xj is replaced by x while in the general case
one should sum on j = 1, ... ,N . Let us write the Hamiltonian, describing
the corresponding “quantum liquid”:

ℰ(𝜌) =
∫︁
𝜏(𝜌(x)) dx −

∫︁
V (x)𝜌(x) dx +

1

2
D(𝜌, 𝜌),(25.1.16)

with

D(𝜌, 𝜌) =

∫︁∫︁
|x − y |−𝟣𝜌(x)𝜌(y) dxdy(25.1.17)

where 𝜏 is the energy density of a gas of noninteracting electrons. Namely,

(25.1.18) 𝜏(𝜌) = sup
w≥𝟢

(︀
𝜌w − P(w)

)︀
2) One can ask the same question about disintegration into smaller molecules but our

methods are too crude to distinguish between such questions.
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is the Legendre transform of the pressure P(w) given by the formula

(25.1.19) P(w) = 𝜘𝟣w
d
𝟤
+𝟣

+ , 𝜘𝟣 = 2(2𝜋)−d(d + 2)−𝟣𝜛dq.

The classical sense of the second and the third terms in the right-hand
expression of (25.1.16) is clear and the density of the kinetic energy is given
by 𝜏(𝜌) in the semiclassical approximation (see Remark 25.1.2). So, the
problem is

(25.1.20) Minimize functional ℰ(𝜌) defined by (25.1.16) under restrictions:

(25.1.21)𝟣,𝟤 𝜌 ≥ 0,

∫︁
𝜌 dx ≤ N .

The solution if exists is unique because functional ℰ(𝜌) is strictly convex
(see below). The existence and the property of this solution denoted further
by 𝜌𝖳𝖥 is known in the series of physically important cases.

Remark 25.1.2. If w is the negative potential then

(25.1.22) tr e(x , x , 0) ≈ P ′(w)

defines the density of all non-interacting particles with negative energies at
point x and

(25.1.23)

∫︁ 𝟢

−∞
𝜏 d𝜏 tr e(x , x , 𝜏)dx ≈ −

∫︁
P(w) dx

is the total energy of these particles; here ≈ means “in the semiclassical
approximation”.

We consider in the case of d = 3 a large (heavy) molecule with potential
(25.1.4). It is well-known3) that

Proposition 25.1.3. (i) For V (x) given by (25.1.4) minimization problem
(25.1.20) has a unique solution 𝜌 = 𝜌𝖳𝖥; then denote ℰ𝖳𝖥 := ℰ(𝜌𝖳𝖥);

(ii) Equality in (25.1.21)𝟤 holds if and only if N ≤ Z :=
∑︀

m Zm.

3) E. Lieb, “Thomas-fermi and related theories of atoms and molecules”, [4], pp.
263–301.
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(iii) Further, 𝜌𝖳𝖥 does not depend on N as N ≥ Z .

(iv) Thus

(25.1.24)

∫︁
𝜌𝖳𝖥 dx = min(N ,Z ), Z :=

∑︁
𝟣≤m≤M

Zm.

25.1.4 Main Results Sketched and Plan of the
Chapter

In the first half of the Chapter we derive asymptotics for ground state energy
and justify Thomas-Fermi theory.

First of all, in Section 25.2 we reduce the calculation of E to calculation
of N𝟣(HW − 𝜈) and to estimate for D

(︀
e(x , x , 𝜈) − 𝜌, e(x , x , 𝜈) − 𝜌

)︀
where

N𝟣(HW − 𝜈) = Tr((HW − 𝜈)−) is the sum of the negative eigenvalues of op-
erator HW − 𝜈 HW = D𝟤 − W , W = W 𝖳𝖥, 𝜌 = 𝜌𝖳𝖥 are Thomas-Fermi
potential and Thomas-Fermi density respectively (or their appropriate ap-
proximations), 𝜈 is either 𝜆N (N-th eigenvalue of HW ) or its appropriate
approximation and e(x , y , 𝜈) is the Schwartz kernel of E (𝜈) which is the
spectral projector of HW .

Section 25.3 is devoted to the systematic presentation of the Thomas-
Fermi theory.

Further, in Section 25.4 we apply our standard semiclassical arguments
and calculate N𝟣(HW − 𝜈) and estimate D

(︀
e(x , x , 𝜈)− 𝜌, e(x , x , 𝜈)− 𝜌

)︀
and

also |𝜆N − 𝜈| where now 𝜈 is the chemical potential (which is the Thomas-
Fermi approximation to 𝜆N). As a result under appropriate restrictions to
N , Z and

a := min
j ̸=k

|yj − yk | ≫ Z− 𝟣
𝟥(25.1.25)

we prove that

E = ℰ𝖳𝖥 + Scott + Dirac + Schwinger + o(Z
𝟧
𝟥 )(25.1.26)

and

D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) = o(Z
𝟧
𝟥 )(25.1.27)
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where

Scott = q
∑︁

𝟣≤m≤M

Z 𝟤
m(25.1.28)

Dirac = −9

2
(36𝜋)

𝟤
𝟥 q

𝟤
𝟥

∫︁
(𝜌𝖳𝖥)

𝟦
𝟥 dx ,(25.1.29)

Schwinger = (36𝜋)
𝟤
𝟥 q

𝟤
𝟥

∫︁
(𝜌𝖳𝖥)

𝟦
𝟥 dx(25.1.30)

and Ψ is the ground state.

Remark 25.1.4. (i) Actually we will recover even slightly better remainder

estimate O(Z
𝟧
𝟥
−𝛿) in (25.1.26) and (25.1.27) as a ≥ Z− 𝟣

𝟥
+𝛿𝟣 .

(ii) Condition a ≳ Z− 𝟣
𝟥 bans nuclei to be so close that the repulsion energy

between them be much larger than the total energy of all the electrons.
Estimates in case when this condition is violated will be also proven;

(iii) Keeping in mind that there is no binding in Thomas-Fermi theory (and
this statement could be quantified) one gets immediately that in the free

nuclei model a ≥ Z− 𝟧
𝟤𝟣 and therefore remainder estimate O(Z

𝟧
𝟥
−𝛿) holds.

(iv) Due to scaling in the Thomas-Fermi theory (see proposition 25.3.3)

ℰ𝖳𝖥 ∼ q
𝟤
𝟥 Z

𝟩
𝟥 = q𝟥(q−𝟣Z )

𝟥
𝟩 , Scott ∼ qZ 𝟤 = q𝟥(q−𝟣Z )𝟤, and both Dirac and

Schwinger are ∼ q
𝟦
𝟥 Z

𝟧
𝟥 = q𝟥(q−𝟣Z )

𝟧
𝟥 .

In the second half of the Chapter we apply estimate (25.1.27) to investi-
gate negatively and positively charged systems. In Section 25.5 we consider
negatively charged systems and derive an upper estimate for the excessive
negative charge (N − Z ) such that IN > 0 and ionization energy IN itself.

In Section 25.6 we derive upper and lower estimates for IN + 𝜈 and an
upper estimate for the excessive positive charge for which in the framework
of the free nuclei model a <∞.

25.2 Reduction to Semiclassical Theory

To justify the heuristic formula E ∼ ℰ𝖳𝖥 = ℰ(𝜌𝖳𝖥) and to find an error
estimate let us deduce the lower and upper estimates for E.
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25.2.1 Lower Estimate

For the lower estimate we apply the electrostatic inequality due to E. H. Lieb:

(25.2.1)
∑︁

𝟣≤j<k≤N

∫︁
|xj − xk |−𝟣|Ψ(x𝟣, ... , xN)|𝟤 dx𝟣 · · · dxN ≥

1

2
D(𝜌𝝭, 𝜌𝝭)− C

∫︁
𝜌

𝟦
𝟥
𝝭(x) dx

with 𝜌𝝭 defined by (25.1.15).

Remark 25.2.1. Inequality (25.2.1 holds for all (not necessarily antisymmet-
ric) functions Ψ with ‖Ψ‖L𝟤(ℝ𝟥N) = 1.

Therefore

(25.2.2) 〈HNΨ,Ψ〉 ≥
∑︁

𝟣≤j≤N

〈HV ,xjΨ,Ψ〉+ 1

2
D
(︀
𝜌𝝭, 𝜌𝝭)− C

∫︁
𝜌

𝟦
𝟥
𝝭(x) dx =

∑︁
𝟣≤j≤N

〈HW ,xjΨ,Ψ〉+ 1

2
D
(︀
𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌

)︀
− 1

2
D
(︀
𝜌, 𝜌

)︀
− C

∫︁
𝜌

𝟦
𝟥
𝝭(x) dx

where 〈·, ·〉 means the inner product in H and HW is one-particle Schrödinger
operator with the potential

(25.2.3) W = V − |x |−𝟣 * 𝜌,

where 𝜌 is an arbitrary chosen real-valued non-negative function.
The physical sense of the second term in W is transparent: it is a

potential created by a charge −𝜌. Skipping the positive second term in the
right-hand expression of (25.2.2) and believing that the last term is not very
important for the ground state function Ψ 4) we see that we need to estimate
from below the first term.

Here assumption that Ψ is antisymmetric is crucial. Namely, for general
(or symmetric–does not matter) Ψ the best possible estimate is N𝜆𝟣 where
𝜆𝟣 is the lowest eigenvalue of HW (we always assume that there is sufficiently
many eigenvalues under the bottom of the essential spectrum of HW ) and we

4) When we derive also an upper estimate for 𝖤 we will get an upper estimate for this
term as a bonus.



10 CHAPTER 25. NO MAGNETIC FIELD CASE

cannot apply semiclassical theory. However, for antisymmetric Ψ situation
is rather different.

Namely, let 𝜆𝟣 ≤ 𝜆𝟤 ≤ 𝜆𝟥 ≤ ... be negative eigenvalues of HW (on
H = L𝟥(ℝ𝟥,ℂq). Then the first term in the right-hand expression of (25.2.2)
is bounded from below by

(25.2.4)
∑︁

𝟣≤j≤N

𝜆j = N𝟣(HW − 𝜆̄) + 𝜆̄N

where N(B), N𝟣(B) = Tr(B−) are the number and the sum of all the negative
eigenvalues of operator B respectively such that Spec𝖾𝗌𝗌(B) ⊂ ℝ+ provided
𝜆̄ = 𝜆N < 0; the latter assumption is equivalent to

(25.2.5) N(HW ) ≥ N .

Applying the semiclassical approximation (which needs to be justified!) one
gets

N𝟣(HW − 𝜆̄) = 𝒩𝟣(HW − 𝜆̄) + error𝟣(25.2.6)

with

𝒩𝟣(HW − 𝜆̄) := −
∫︁

P
(︀
W (x) + 𝜆̄

)︀
dx(25.2.7)

and error𝟢 an error in the semiclassical approximation for N𝟣(HW − 𝜆̄).
Therefore the lower estimate for the ground state energy is

(25.2.8) E ≥ −
∫︁

P(W + 𝜆̄) dx + 𝜆̄N − 1

2
D(𝜌, 𝜌)− error

where error now includes both an estimate for
∫︀
𝜌

𝟦
𝟥
𝝭 dx and the semiclassical

remainder estimate.
Furthermore, applying a semiclassical approximation for the number

N(HW − 𝜆̄) of eigenvalues below 𝜆̄ (and this number should be approximately
N) one gets an equality

N = 𝒩 (HW − 𝜆̄) + error𝟢(25.2.9)

with

𝒩 (HW − 𝜆̄) :=

∫︁
P ′(︀W (x) + 𝜆̄

)︀
dx(25.2.10)
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and error𝟢 an error in the semiclassical approximation for N(HW − 𝜆̄).
To get the best possible lower estimate one should pick up 𝜌 delivering

maximum to the functional

(25.2.11) −
∫︁

P
(︀
W (x) + 𝜈

)︀
dx + 𝜈N − 1

2
D(𝜌, 𝜌)

(𝜈 = 𝜆̄ here) under assumptions (25.1.21)𝟣,𝟤 and (25.2.3) as we skip all the
errors.

One can see that the optimal choice is the Thomas-Fermi potential W 𝖳𝖥

and density 𝜌𝖳𝖥. The above arguments are very standard in MQT with
𝜌 = 𝜌𝖳𝖥,W = W 𝖳𝖥 5) from the very beginning.

On the other hand, let us consider the Euler-Lagrange equation for
𝜌 = 𝜌𝖳𝖥 under condition

∫︀
𝜌 dx = N :

(25.2.12) 𝜏 ′(𝜌)− W = 𝜈 (𝜌 > 0), W = V − |x |−𝟣 * 𝜌

with the Lagrange factor 𝜈 6). Expressing 𝜌 and integrating we get

(25.2.13) N = 𝒩 (HW − 𝜈) =

∫︁
P ′(︀W (x) + 𝜈

)︀
dx .

Comparing (25.2.12) and (25.2.13) we get that with some error 𝜆̄ ∼ 𝜈.
Substituting to the first term in (25.2.6) 𝜆̄ = 𝜈 and 𝜈 − W = −𝜏 ′B(𝜌) we get
the lower estimate E ≥ ℰ𝖳𝖥 − error.

Remark 25.2.2. (i) Instead of (25.2.6) we will use a better estimate7);

(ii) To minimize errors we will also recalculate (25.2.4) effectively replacing
𝜆̄ by 𝜈:

(25.2.14)
∑︁

𝟣≤j≤N

𝜆j =
∑︁

𝟣≤j≤N

(𝜆j − 𝜈) + 𝜈N ≥ N𝟣(HW − 𝜈) + 𝜈N .

The advantage is that we even do not mess up with the semiclassical
asymptotics for N(HW − 𝜈). Further, one can replace here N by

∫︀
𝜌𝖳𝖥 dx :

(these quantities fail to be equal only for N > Z i.e. for 𝜈 = 0).

5) Or some their close approximations.
6) Called chemical potential and in contrast to 𝜆̄ belonging to Thomas-Fermi theory.
7) With ℰ𝖳𝖥 replaced by ℰ𝖳𝖥 + 𝖲𝖼𝗈𝗍𝗍 + 𝖲𝖼𝗁𝗐𝗂𝗇𝗀𝖾𝗋 and with much smaller 𝖾𝗋𝗋𝗈𝗋𝟣 than

for a simple semiclassical approximation.
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(iii) Recall that we assumed that 𝜆N < 0 i.e. (25.2.5) holds. In the opposite
case

(25.2.15) N(HW ) < N .

we estimate the first term in the right-hand expression of (25.2.2) from below
by N𝟣(HW ) i.e. we will get the same formula but with 𝜈 = 0.

25.2.2 Upper Estimate

To get the upper estimate one takes a test function Ψ(x𝟣, ... , xN) which is not
a ground state here but an antisymmetrization with respect to (x𝟣, ... , xN)
of the product 𝜑𝟣(x𝟣) · · ·𝜑N(xN) where 𝜑𝟣, ... ,𝜑N are orthonormal eigen-
functions of HW corresponding to eigenvalues 𝜆𝟣, ... ,𝜆N , provided 𝜆N < 0.
Namely this function minimizes the first term in the right-hand expression
of (25.2.2).

One can write

(25.2.16) Ψ =
1

N!
det

(︀
𝜑i(xj)

)︀
i ,j=𝟣,...,N

and it is called the Slater determinant . Obviously, ‖Ψ‖ = 1 and

𝜌𝝭(x) = tr eN(x , x)(25.2.17)

where

eN(x , y) =
∑︁

𝟣≤j≤N

𝜑j(x)𝜑
†
j (y)(25.2.18)

is the Schwartz kernel of the projector to the subspace spanned on {𝜑j}𝟣≤j≤N .

Remark 25.2.3. If q ≥ 2 then 𝜑j = 𝜑j(x , 𝜍) and Ψ(x𝟣, 𝜍𝟣; ... ; xN , 𝜍N) is
an antisymmetrization with respect to (x𝟣, 𝜍𝟣; ... ; xN , 𝜍N) of the product
𝜑𝟣(x𝟣, 𝜍𝟣) · · ·𝜑N(xN , 𝜍N).

Easy calculations show that

(25.2.19) 〈HΨ,Ψ〉 =
∑︁

𝟣≤j≤N

𝜆j +
1

2
D(𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌)

− 1

2
D(𝜌, 𝜌)− 1

2

∫︁∫︁
|x − y |−𝟣 tr e†

N(x , y)eN(x , y) dxdy .
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The first term in the right-hand expression again is equal to the middle
expression in (25.2.4) which does not exceed

(25.2.20) N𝟣(HW − 𝜈) + 𝜈N + |𝜆N − 𝜈| · |N(HW − 𝜈)− N |.

Really, we need to consider (non-zero) terms which do not cancel in

(25.2.21)
∑︁
j≤N

(𝜆j − 𝜈)−
∑︁
𝜆j<𝜈

(𝜆j − 𝜈)

and their absolute value does not exceed |𝜆N − 𝜈| while their number does
not exceed |N(HW − 𝜈)− N |.

Again, discounting all the errors and considering semiclassical approxi-
mation (including 𝜌𝝭(x) ∼ P ′(︀W (x) + 𝜈)

)︀
we arrive to a functional

(25.2.22) −
∫︁

P
(︀
W (x) + 𝜈

)︀
dx + 𝜈N − 1

2
D(𝜌, 𝜌)+

1

2
D(P ′(W + 𝜈)− 𝜌,P ′(W + 𝜈)− 𝜌)

which needs to be minimized under assumptions (25.1.21)𝟣,𝟤 and (25.2.3).
This functional differs from (25.2.11) which was minimized by the last term.
One can prove that (25.2.22) minimizes as 𝜌 = 𝜌𝖳𝖥, W = W 𝖳𝖥 and 𝜈 is
a chemical potential. So again we may pick them (or their appropriate
approximations) up from the very beginning.

Therefore in addition to a semiclassical error𝟣
7) of the previous subsection

we need to consider also semiclassical errors

D
(︀
tr e(x , x , 𝜈)− P ′(W + 𝜈), tr e(x , x , 𝜈)− P ′(W + 𝜈)

)︀
,(25.2.23)

D
(︀
e(x , x , 𝜈)− eN(x , x), e(x , x , 𝜈)− eN(x , x)

)︀
(25.2.24)

where e(x , y , 𝜈) is the Schwartz kernel of the spectral projector θ(𝜏 − HW )
of HW ,

N(HW − 𝜈)−
∫︁

P ′(W + 𝜈) dx(25.2.25)

and

𝜆N − 𝜈.(25.2.26)
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Remark 25.2.4. (i) Recall that we assumed that 𝜆N < 0 i.e. (25.2.5) holds.
In the opposite case (25.2.15) selecting appropriate 𝜑j(x) with j = N(HW ) +
1, ... ,N we with arbitrarily small error estimate the first term in the right-
hand expression of (25.2.2) from above by N𝟣(HW ) as i.e. we will get the
same formula but with 𝜈 = 0 and we also will need to estimate (25.2.23)
with 𝜈 = 0.

(ii) To make this case compatible with the case (25.2.5) we will need to
estimate |𝜈| (and |N −Z |) under assumption (25.2.15); we will also compare
ℰ𝖳𝖥 calculated for such 𝜈 (or, equivalently, N as they are connected) and
𝜈 = 0 (and N = Z ).

(iii) Sure 𝜌𝖳𝖥 and W 𝖳𝖥 depend on 𝜈 (or N) but we will prove that for N −Z
relatively small we can do all calculations as 𝜈 = 0 (and N = Z ).

(iv) If we are interested in the estimate for D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) where
Ψ is the ground state, we do not need to calculate a semiclassical error in
N𝟣(HW − 𝜈). In fact, we can simply stick with N𝟣(HW − 𝜆̄) with 𝜆̄ = 𝜆N
under assumption (25.2.5) and 𝜆̄ = 0 otherwise. As a result in certain
cases our estimate for D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) will be better than the error
in an approximation for E and we need the former rather than the latter
for the results of the second half of this Chapter. Especially significant the
difference will be when we introduce magnetic field.

25.2.3 Remarks and Dirac Correction

Now almost everything is in framework of the theory we developed; the only
missing is an estimate

(25.2.27)

∫︁
𝜌

𝟦
𝟥
𝝭dx ≤ CZ

𝟧
𝟥

for a reasonable candidate Ψ to the ground state; one can find it in E. Lieb’s
Selecta3).

However if we want a more sharp asymptotics with Dirac–Schwinger
terms, we need a remainder estimate o(Z

𝟧
𝟥 ) or better; luckily there is im-

proved electrostatic inequality due to Theorem 1, G. Graf and J. P. Solovej [1]
(see also V. Bach [1]).



25.3. THOMAS-FERMI THEORY 15

Theorem 25.2.5. Let N ≥ 𝜖Z . Then for the ground state Ψ

E𝖧𝖥 ≥ E ≥ E𝖧𝖥 − CZ
𝟧
𝟥
−𝛿(25.2.28)

and

E ≥ E𝖣𝖲 − CZ
𝟧
𝟥
−𝛿(25.2.29)

with some exponent 𝛿 > 0 where

(25.2.30) E𝖧𝖥 := inf
𝝭

E𝖧𝖥(Ψ),

where in (25.2.30) Ψ runs through Slater determinants 8) and

(25.2.31) E𝖧𝖥(Ψ) :=
∑︁

𝟣≤j≤N

〈HV ,xjΨ,Ψ〉+ 1

2
D
(︀
𝜌𝝭, 𝜌𝝭)−

1

2

∫︁∫︁
|x − y |−𝟣 tr e†

N(x , y)eN(x , y) dxdy ,

(25.2.32) E𝖣𝖲 :=
∑︁

j :𝟣≤j≤N;𝜆j<𝟢

𝜆j −
1

2
D(𝜌𝖳𝖥, 𝜌𝖳𝖥)− 𝜅𝖣𝗂𝗋𝖺𝖼

∫︁
𝜌𝖳𝖥,

𝟦
𝟥 dx ,

𝜅𝖣𝗂𝗋𝖺𝖼 = (2𝜋)−𝟥qc𝟤
𝖳𝖥, c𝖳𝖥 = (6𝜋𝟤/q𝟤)

𝟤
𝟥 is a Dirac constant.

Here (25.2.28)–(25.2.31) are (1.15), (1.16), (1.8), (1.6) respectively and
(25.2.32) is a combination of (1.12) and (25.3.30) of this paper9). Actually
we need only (25.2.29) and (25.2.32).

As we are going to prove that the last terms in (25.2.31) and (25.2.19)

coincide modulo O(Z
𝟧
𝟥
−𝛿) we made a necessary step completely.

25.3 Thomas-Fermi Theory

Thomas-Fermi theory is well-developed in the no-magnetic-field case. We
cannot suggest any better reading than E. Lieb’s Selecta3).

In the Thomas-Fermi theory N is a real nonnegative number (not neces-
sarily an integer).

8) Albeit not necessarily of eigenfunctions of HW .
9) We do not have a coefficient 𝟣

𝟤 in the definition of 𝖣(., .) but G. Graf and
J. P. Solovej [1] have.
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25.3.1 Existence

Let us recall that in order to get the best lower estimate (neglecting semi-
classical errors) one needs to maximize

(25.3.1) Φ*(W + 𝜈) := −
∫︁

P(W + 𝜈) dx − 1

8𝜋
‖∇(W − V )‖𝟤

given by (25.2.11) where we used equalities

D(𝜌, 𝜌) = −(𝜌,W − V ) =
1

4𝜋
‖∇(W − V )‖𝟤,(25.3.2)

𝜌 :=
1

4𝜋
Δ(W − V ),(25.3.3)

‖.‖ means L𝟤-norm and W → 0 as |x | → ∞.
On the other hand, to get the best possible upper estimate (neglecting

semiclassical errors) one needs to minimize

Φ*(𝜌′, 𝜈) :=

∫︁ (︀
𝜏(𝜌′)− V 𝜌′

)︀
dx +

1

2
D(𝜌′, 𝜌′)− 𝜈

∫︁
𝜌′dx(25.3.4)

where

𝜌′ := P ′(W + 𝜈)(25.3.5)

and 𝜏(𝜌) the Legendre transformation (25.1.18) of P . Recall that according
to (25.1.19)

P(w) =
q

15𝜋𝟤
w

𝟧
𝟤
+, P ′(w) =

q

6𝜋𝟤
w

𝟥
𝟤
+(25.3.6)𝟣,𝟤

and therefore

𝜏(𝜌) =
3

5

(︀
6𝜋𝟤q−𝟣

)︀ 𝟤
𝟥𝜌

𝟧
𝟥 .(25.3.7)

Proposition 25.3.1. In our assumptions for any fixed 𝜈 ≤ 0

(i) Φ*(W + 𝜈) is a strictly concave functional.

(ii) Φ*(𝜌) is a strictly convex functional.

(iii) Φ*(W + 𝜈) ≤ Φ*(𝜌, 𝜈) for any 𝜌 ≥ 0 and W .

(iv) These extremal problems have a common solution W and 𝜌 and

𝜌 =
1

4𝜋
Δ(W − V ) = P ′(W + 𝜈),(25.3.8)

W = o(1) as |x | → ∞.(25.3.9)
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(v) On the other hand, solution of (25.3.8)–(25.3.9) is the solution of the
both extremal problems.

(vi) Neither of these problem has a solution for 𝜈 > 0.

(vii) Function

(25.3.10) 𝒩 (𝜈) =

∫︁
P ′(W + 𝜈) dx

is continuous and monotone increasing at (−∞, 0] with 𝒩 (𝜈) → 0 as 𝜈 →
−∞ and 𝒩 (0) = Z .

(viii) For 𝜈 and N linked by N = 𝒩 (𝜈) solutions of the problem above
coincide with 𝜌𝖳𝖥,W 𝖳𝖥 of the problem (25.1.20) and one can skip condition
(25.1.20)𝟤 for N ≥ Z and

(25.3.11) ℰ𝖳𝖥 = Φ(W 𝖳𝖥 + 𝜈) + 𝜈N = Φ*(𝜌𝖳𝖥, 𝜈) + 𝜈N .

Proof. The proof of Statements (i) and (ii) is obvious; therefore both prob-
lems have unique solutions. Comparing Euler-Lagrange equations we get
that these solutions coincide which yields Statements (iv) and (iii).

Proof of Statements (v)–(viii) is also rather obvious.

Proposition 25.3.2. For arbitrary W the following estimates hold with
absolute constants 𝜖𝟢 > 0 and C𝟢:

(25.3.12) 𝜖𝟢D(𝜌− 𝜌𝖳𝖥, 𝜌− 𝜌𝖳𝖥) ≤ Φ*(W
𝖳𝖥 + 𝜈)− Φ*(W + 𝜈) ≤

C𝟢D(𝜌− 𝜌′, 𝜌− 𝜌′)

and

(25.3.13) 𝜖𝟢D(𝜌
′ − 𝜌𝖳𝖥, 𝜌′ − 𝜌𝖳𝖥) ≤ Φ*(𝜌, 𝜈)− Φ*(𝜌𝖳𝖥, 𝜈) ≤

C𝟢D(𝜌− 𝜌′, 𝜌− 𝜌′)

with 𝜌 = 𝟣
𝟦𝜋
Δ(W − V ), 𝜌′ = P ′(W + 𝜈).

Proof. This proof is rather obvious as well.
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25.3.2 Properties

Proposition 25.3.3. The solution of the Thomas-Fermi problem has fol-
lowing scaling properties

W 𝖳𝖥(x ; Z ; y ; N ; q) = q
𝟤
𝟥 N

𝟦
𝟥 W 𝖳𝖥(q

𝟤
𝟥 Z

𝟣
𝟥 x ; N−𝟣Z ; q

𝟤
𝟥 N

𝟣
𝟥 y; 1; 1),(25.3.14)

𝜌𝖳𝖥(x ; Z ; y; N ; q) = N𝟤q𝟤𝜌𝖳𝖥(q
𝟤
𝟥 Z

𝟣
𝟥 x ; N−𝟣Z ; q

𝟤
𝟥 N

𝟣
𝟥 y; 1; 1),(25.3.15)

ℰ𝖳𝖥(Z ; y ; N ; q) = q
𝟤
𝟥 N

𝟩
𝟥ℰ𝖳𝖥(N−𝟣Z ; q

𝟤
𝟥 N

𝟣
𝟥 y; 1; 1),(25.3.16)

𝜈𝖳𝖥(Z ; y ; N ; q) = q
𝟤
𝟥 N

𝟦
𝟥𝜈𝖳𝖥(N−𝟣Z ; q

𝟤
𝟥 N

𝟣
𝟥 y; 1; 1)(25.3.17)

where 𝜈𝖳𝖥 = 𝜈 is the chemical potential; recall that Z = (Z𝟣, ... ,ZM) and
y = (y𝟣, ... , yM) are arrays and parameter q also enters into Thomas-Fermi
theory.

Proof. Proof is trivial by scaling.

Since we can exclude q by scaling, we do not indicate dependence on it
anymore. The following properties of Thomas-Fermi potential and density
in the case of the single atom (M = 1) are well-known:

Proposition 25.3.4. Let M = 1. Then the solution of the Thomas-Fermi
problem has the following properties:

(i) W 𝖳𝖥(x ;Zm, ym;N) and 𝜌𝖳𝖥(x ;Zm, ym;N) are spherically symmetric (with
respect to ym) and are non-increasing convex functions of |x − ym|.

(ii) If N = Zm, then

W 𝖳𝖥 ≍ min
(︀
Zm|x − ym|−𝟣, |x − ym|−𝟦

)︀
,(25.3.18)

𝜌𝖳𝖥 ≍ min
(︀
Z

𝟥
𝟤
m|x − ym|−

𝟥
𝟤 , |x − ym|−𝟨

)︀
(25.3.19)

with the threshold at |x − ym| ≍ r *m = Z
− 𝟣

𝟥
m when W 𝖳𝖥 ≍ Z

𝟦
𝟥
m and 𝜌𝖳𝖥 ≍ Z 𝟤

m.

(iii) If 𝜖Zm ≤ N < Zm, then

(25.3.20) − 𝜈 ≍ |Zm − N |
𝟦
𝟥

and (25.3.18) holds as |x − ym| ≤ r̄m where

(25.3.21) r̄m = −𝜈−𝟣|Zm − N |−𝟣 ≍ |Zm − N |−
𝟣
𝟥

for atoms denotes the exact radius of the support of 𝜌𝖳𝖥 (see Statement (iv).
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(iv) On the other hand,

(25.3.22) W 𝖳𝖥 = (Zm − N)|x − ym|−𝟣 as |x − ym| ≥ r̄m

and 𝜌𝖳𝖥 = 0 as |x − ym| ≥ r̄m;

(v) Meanwhile, W 𝖳𝖥 ≍ −𝜈 and 𝜌𝖳𝖥 = O
(︀
|Zm − N |𝟤) as |x − ym| ≍ r̄m.

(vi) Finally,

(25.3.23) − ⟨x − ym,∇W ⟩ ≍ W .

Consider now the molecular case (M ≥ 2):

Proposition 25.3.5. (i) Let M ≥ 2. Then

𝜈 ≍ |Z − N |
𝟦
𝟥(25.3.24)

and ∑︁
m

𝜖W 𝖳𝖥
m (c(x − ym)) ≤ W 𝖳𝖥 ≤ c

∑︁
m

W 𝖳𝖥
m (𝜖(x − ym))(25.3.25)

where Z = Z𝟣+...+ZM and W 𝖳𝖥
m denotes an atomic Thomas-Fermi potential

with the charge Zm located at 0 and the same chemical potential 𝜈. Here 𝜖
and c depend only on M.

(ii) In particular, if N < Z and |x − ym| ≥ cr̄m for all m = 1, ... ,M, then

W 𝖳𝖥(x) ≍
∑︁
m

|Z − N ||x − ym|−𝟣(25.3.26)

and

𝜌𝖳𝖥(x) = 0.(25.3.27)

Proof. Proof is due to the comparison arguments of E. Lieb, J. P. Solovej
and J. Yngvason [1, 3].

Proposition 25.3.6. (i) Let N ≤ Z and

ℓ(x) =
1

2
min
m

|x − ym|,(25.3.28)

𝜁(x) =
(︀
W 𝖳𝖥(x)

)︀ 𝟣
𝟤 .(25.3.29)
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Then

(25.3.30) 𝜁(x) ≤ 𝜁(x) =

C

⎧⎪⎪⎨⎪⎪⎩
Z

𝟣
𝟤 ℓ(x)−

𝟣
𝟤 as ℓ(x) ≤ Z− 𝟣

𝟥 ,

ℓ(x)−𝟤 as Z− 𝟣
𝟥 ≤ ℓ(x) ≤ |Z − N |−

𝟣
𝟥 ,

|Z − N |
𝟣
𝟤 ℓ(x)−

𝟣
𝟤 as ℓ(x) ≥ |Z − N |−

𝟣
𝟥 ;

𝜁(x) and 𝜁(x) are both ℓ-admissible and

(25.3.31) |D𝛼W 𝖳𝖥(x)
⃒⃒
≤ C𝛼𝜁(x)

𝟤 ℓ(x)−|𝛼| ∀𝛼 : |𝛼| ≤ 3,

and

(25.3.32) |D𝛼W 𝖳𝖥(x)− D𝛼W 𝖳𝖥(y)| ≤ C𝟥𝜁(x)
𝟤ℓ(x)−

𝟩
𝟤 |x − y |

𝟣
𝟤

∀x , y : |x − y | ≤ 𝜖ℓ(x)

(ii) Unless 𝜁(x) ≍ (−𝜈) 𝟣
𝟤 estimates (25.3.32) hold for all 𝛼.

Proof. This proof is rather obvious corollary of the Euler-Lagrange equa-
tion.

Remark 25.3.7. Let

(25.3.33) Zm ≍ N ∀m.

Then 𝜁(x) ≍ 𝜁(x).

Theorem 25.3.8 10). Consider ℰ𝖳𝖥 and̂︀ℰ𝖳𝖥 := ℰ𝖳𝖥 + U ,(25.3.34)

U = U(Z𝟣, ... ,ZM ; y𝟣, ... , yM) =
∑︁

𝟣≤m<m′≤M

ZmZm′

|ym − ym′ |
.(25.3.35)

Select a nucleus ym and a unit vector n such that

(25.3.36) ⟨yk − ym, n⟩ ≤ 0 ∀k

and plug ym + 𝛼n instead of ym into ℰ𝖳𝖥 and into ̂︀ℰ𝖳𝖥 11). Then

10) Theorem 1 of R. Benguria [1]; we combine two last statements in (iii).
11) So all other nuclei are confined in half-space and 𝗒m moves away outside.
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(i) ̂︀ℰ𝖳𝖥
𝛼 is a non-increasing function of 𝛼 ≥ 0;

(ii) ℰ𝖳𝖥
𝛼 is a non-increasing function of 𝛼 ≥ 0;

(iii) For fixed 𝛼 > 0 both ̂︀ℰ𝖳𝖥
𝛼 − ̂︀ℰ𝖳𝖥

𝟢 and ℰ𝖳𝖥
𝛼 − ℰ𝖳𝖥

𝟢 are non-decreasing
functions of N.

Equality

𝜈 =
𝜕ℰ𝖳𝖥

𝜕N
(25.3.37)

implies that (iii) is equivalent to

𝜈𝛼 ≥ 𝜈𝟢.(25.3.38)

Theorem 25.3.9 12). (i) For fixed Z𝟣, ... ,ZM ; y𝟣, ... , yM and N = Z

(25.3.39) 𝜆𝟩 ̂︀ℰ𝖳𝖥(Z ;𝜆y ;N) = ̂︀ℰ𝖳𝖥(𝜆𝟥Z ; y;𝜆𝟥N)

is positive non-decreasing function of 𝜆 > 0 and has a finite limit as 𝜆 →
+∞.

(ii) This limit does not depend on Z𝟣, ... ,ZM .

Remark 25.3.10. One can observe easily that the same scaling property
without assumption N = Z holds for ℰ𝖳𝖥 and U as well.

These two theorems and remark imply immediately

Proposition 25.3.11. Let assumption (25.3.33) be fulfilled. Then

̂︀ℰ𝖳𝖥(Z ; y;N)− min
N𝟣,...,NM :

N𝟣+...NM=N

∑︁
𝟣≤m≤M

ℰ𝖳𝖥(Zm;Nm) ≥ 𝜖min(a−𝟩,Z
𝟩
𝟥 )(25.3.40)

where

a =
1

2
min
m<m′

|ym − ym′ |.(25.3.41)

Proof. In virtue of theorem 25.3.8(i) it suffices to prove proposition for
M = 2 (all other nuclei could be pulled to infinity), and in virtue of
theorem 25.3.8(iii) it suffices to prove proposition for Z = N .

Then the proof is due to theorem 25.3.9(i) and (25.3.33), which provides
uniformity.

12) (1.8)–(1.9) of H. Brezis and E. Lieb [1].
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Remark 25.3.12. In virtue of (25.3.37) the minimum (with respect to N𝟣, ... ,NM)
in the sum in the right hand expression is reached when 𝜈j = 𝜈k for all j , k .
The same is true for a system of isolated molecules.

Proposition 25.3.13. Let 𝒬 denote Thomas-Fermi excess energy which is
the left-hand expression of (25.3.40). Then

(25.3.42) D(𝜌𝖳𝖥 − 𝜌𝖳𝖥, 𝜌𝖳𝖥 − 𝜌𝖳𝖥) ≤ C𝒬, 𝜌𝖳𝖥 :=
∑︁

𝟣≤m≤M

𝜌𝖳𝖥m .

Proof. We follow “non-binding” proof due to Baxter (see E. Lieb Selecta3)).
According to Baxter’s lemma there exist g , 0 ≤ g ≤ 𝜌𝖳𝖥 and h = 𝜌𝖳𝖥−g

such that g * |x |−𝟣 = V𝟣 a.e. when h > 0 and g * |x |−𝟣 ≤ V𝟣 a.e. when h = 0.
Here Vm = Zm|x − ym|−𝟣.

Let 𝛼 =
∫︀

g dx , 𝛽 =
∫︀

h dx and let ℰ𝖳𝖥
𝟣 , ℰ𝖳𝖥

(𝟣) be Thomas-Fermi energies

for the first atom and for the rest of molecule respectively and 𝜌𝖳𝖥𝟣 , 𝜌𝖳𝖥(𝟣) be
corresponding Thomas-Fermi densities. Then

(25.3.43) min
N𝟣+N′≤N

(︁
ℰ𝖳𝖥
𝟣 (N𝟣) + ℰ𝖳𝖥

(𝟣) (N
′)
)︁
≤ ℰ𝟣(𝛼) + ℰ(𝟣)(𝛽) ≤

ℰ𝟣(g) + ℰ(𝟣)(h)− 𝜖D(g − 𝜌𝖳𝖥𝟣 , g − 𝜌𝖳𝖥𝟣 )− 𝜖D(h − 𝜌𝖳𝖥(𝟣), h − 𝜌𝖳𝖥(𝟣)) ≤

ℰ(g + h) +

∫︁
h(V𝟣 − g * |x |−𝟣) dx −

∫︁
(V𝟣 − |g * |x |−𝟣) dµ(𝟣)

− 𝜖D(g − 𝜌𝖳𝖥𝟣 , g − 𝜌𝖳𝖥𝟣 )− 𝜖D(h − 𝜌𝖳𝖥(𝟣), h − 𝜌𝖳𝖥(𝟣))

where µ𝟣 and µ(𝟣) are measures with the densities respectively Z𝟣δ(x − y𝟣)

and
∑︀

𝟤≤m≤M Zmδ(x − ym) and we used the superadditivity of 𝜏(𝜌) = 𝜌
𝟧
𝟥 .

The last expression does not exceed

(25.3.44) ℰ𝖳𝖥 − 𝜖D(g − 𝜌𝖳𝖥𝟣 , g − 𝜌𝖳𝖥𝟣 )− 𝜖D(h − 𝜌𝖳𝖥(𝟣), h − 𝜌𝖳𝖥(𝟣)).

Using induction with respect to M we arrive to

(25.3.45) D(𝜌𝖳𝖥 − 𝜌𝖳𝖥𝟣 − 𝜌𝖳𝖥(𝟣), 𝜌
𝖳𝖥 − 𝜌𝖳𝖥𝟣 − 𝜌𝖳𝖥(𝟣)) ≤

2D(g − 𝜌𝖳𝖥𝟣 , g − 𝜌𝖳𝖥𝟣 ) + 2D(h − 𝜌𝖳𝖥(𝟣), h − 𝜌𝖳𝖥(𝟣)) ≤ C𝒬

and finally to (25.3.42).

Problem 25.3.14. Find the stronger lower bound in (25.3.40) as N < Z .

Would be the left-hand expression ≍ min(a−𝟩 + |Z − N |𝟤a−𝟣,Z
𝟩
𝟥 )?
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25.4 Application of Semiclassical Methods

25.4.1 Asymptotics of the Trace

In this subsection we calculate asymptotics of Tr((HW − 𝜈)−). Here we need
to consider both inner and outer zones.

An inner zone (near nucleus ym) is a ball where Vj = Zm|x − ym|−𝟣

dominates W − Vm. For a single nucleus (M = 1) it is defined by

|x − ym| ≤ 𝜖Z
− 𝟣

𝟥
m(25.4.1)

but in the case M ≥ 2 there are another restrictions

|x − ym| ≤ 𝜖 min
m′ ̸=m

(︁
Zm(Zm + Zm′)−𝟣|ym − ym′ |

)︁
(25.4.2)

and

|x − ym| ≤ Zm𝜈
−𝟣(25.4.3)

but we shrink this zone to

|x − ym| ≤ rm := 𝜖min
(︀
ZmZ−𝟣a,Z

− 𝟣
𝟥

m

)︀
.(25.4.4)

Let us consider contribution of the zone 𝒳m described by (25.4.4) to
N𝟣(HW − 𝜈) = Tr((HW − 𝜈)−), both into the principal part of asymptotics
and the remainder. Let 𝜓m be a partition element concentrated in 𝒳m and
equal to 1 in {x : |x − ym| ≤ 𝟣

𝟤
rm}. Then, according to Theorem 12.6.8,

(25.4.5) Tr
(︀
(HW − 𝜈)−𝜓m

)︀
=

∫︁
Weyl𝟣(x)𝜓m(x) dx + Scottm + O(Rm)

where Weyl𝟣(x) and Scottm are calculated for the case q = 1 and then
multiplied by q 13):

(25.4.6) Weyl𝟣(x) := − q

15𝜋𝟤

(︀
W (x) + 𝜈

)︀ 𝟧
𝟤

+

while Rm is C𝜁𝟤(𝜁ℓ) = C𝜁𝟥ℓ calculated on its border i.e.

(25.4.7) Rm = CZ
𝟧
𝟥
m + CZ

𝟥
𝟤
mr

− 𝟣
𝟤

m ≤ CZ
𝟧
𝟥 + CZ

𝟥
𝟤 a− 𝟣

𝟤 .

Really, one needs just to rescale x ↦→ (x − ym)r
−𝟣
m and 𝜏 ↦→ 𝜏Z−𝟣

m rm and

introduce a semiclassical parameter ℏ = Z
𝟣
𝟤
mr

𝟣
𝟤
m.

13) As operator Hw − 𝜈 is nothing but q copies of 𝝙− (W + 𝜈).
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Remark 25.4.1. (i) Clearly, these arguments work only if rm ≥ Z−𝟣
m (i.e.

Z 𝟤
m ≥ a−𝟣Z ).

(ii) On the other hand, if Z 𝟤
m ≥ a−𝟣Z but a ≥ Z−𝟣 we define rm = a

𝟣
𝟤 Z− 𝟣

𝟤

and we do not include Scottm
14) into the principal expression; moreover, in

this case we include 𝒳m into a singular zone and use variational methods to
estimate its contribution into the principal part of asymptotics; it will not
exceed CZa−𝟣 ≤ CZ

𝟥
𝟤 a− 𝟣

𝟤 .

(iii) Furthermore, if a ≤ Z−𝟣, we set rm = Z−𝟣 and we do not include any
Scottm

14) into the principal part of asymptotics and include all 𝒳m into
singular zones; using variational methods we estimate their contributions
into the principal part of asymptotics by CZ 𝟤.

Therefore we conclude that

(25.4.8) The total contribution of all inner zones into remainder does not
exceed the right-hand expression of (25.4.7) as a ≥ Z−𝟣 and CZ 𝟤 as a ≤ Z−𝟣.

Let us consider contributions of the outer zone 𝒳𝟢 which is complimentary
to the union of all inner zones. Then

(25.4.9) Tr
(︀
(HW − 𝜈)−𝜓𝟢

)︀
=

∫︁
Weyl𝟣(x)𝜓𝟢(x) dx + O(R𝟢)

with Weyl𝟣(x) defined by (25.4.6) where

R𝟢 =

∫︁
𝒳𝟢

C𝜁(x)𝟥ℓ−𝟤 dx(25.4.10)

and

𝜁 =

{︃
Z

𝟣
𝟤 ℓ−

𝟣
𝟤 as ℓ ≤ Z− 𝟣

𝟥 ,

ℓ−𝟤 as ℓ ≥ Z− 𝟣
𝟥 .

(25.4.11)

We justify (25.4.9)–(25.4.11) a bit later by an appropriate partition of unity.

One can see easily that the contribution of the zone {x : ℓ(x) ≤ Z− 𝟣
𝟥} into

expression (25.4.10) does not exceed the same expression as in (25.4.8) and

that the contribution of the zone {x : ℓ(x) ≥ Z− 𝟣
𝟥} into (25.4.10) does not

exceed CZ
𝟧
𝟥 . Then we arrive to

14) However it will be less than the remainder estimate, so we can include it into the
principal part of asymptotics anyway.
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Theorem 25.4.2. Let W = W 𝖳𝖥, N ≍ Z , W = W 𝖳𝖥. Then

Tr
(︀
(HW − 𝜈)−

)︀
=

∫︁
Weyl𝟣(x) dx +

∑︁
𝟣≤m≤M

Scottm + O(R),(25.4.12)

with

R :=

{︃
CZ

𝟧
𝟥 + CZ

𝟥
𝟤 a− 𝟣

𝟤 as a ≥ Z−𝟣,

CZ 𝟤 as a ≤ Z−𝟣.
(25.4.13)

Proof. (i) Consider 𝜈 = 0 first. Then we just apply ℓ-admissible partition
of unity. Sure, 𝜁ℓ ≤ 1 as ℓ ≥ 1 but we can deal with it either by taking
𝜁 = ℓ−𝟣 here or considering it as a singular zone and applying here variational
estimate as well.

(ii) Variational estimate works for 𝜈 < 0 as well; furthermore, zone {x : W (x) ≤
(1− 𝜖)𝜈, ℓ ≥ |𝜈|− 𝟣

𝟤} is classically forbidden.

(iii) However as 𝜈 ≤ −c we have a little problem as W 𝖳𝖥 is not very smooth,

it is only C
𝟩
𝟤 as W ≍ −𝜈. The best15) way to deal with it is to take 𝜀ℓ-

mollification with 𝜀 = ℏ𝟣−𝛿, ℏ = (𝜁ℓ)−𝟣, use rough microlocal analysis of
Section 4.6 and the bracketing; it will bring an approximation error not
exceeding C𝜀

𝟩
𝟤ℏ−𝟥|𝜈| which does not exceed |𝜈| = O(|Z − N | 𝟦𝟥 ). We leave

easy details to the reader.

Now we arrive to the lower estimate for E:

Corollary 25.4.3. Let N ≍ Z . Then

(25.4.14) E ≥ ℰ𝖳𝖥 + Scott− CR

with R defined by (25.4.13).

Proof. We know from Subsection 25.2.1 that

(25.4.15) E ≥ N𝟣(HW − 𝜈) + 𝜈N − 1

2
D(𝜌, 𝜌)− CZ

𝟧
𝟥

as W is given by (25.2.3). In virtue of Theorem 25.4.2

E ≥
∫︁

Weyl𝟣(x) dx + 𝜈

∫︁
Weyl(x) dx − 1

2
D(𝜌, 𝜌) + Scott− CR(25.4.16)

15) From the point of view of generalization to the case when magnetic field is present
and it is not too weak, so magnetic version of W 𝖳𝖥 has multiple singularities.
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where we also plugged instead of N as N < Z (and 𝜈 < 0)

N =

∫︁
Weyl(x) dx(25.4.17)

with

Weyl(x) =
q

6𝜋𝟤

(︀
W (x) + 𝜈

)︀ 𝟥
𝟤

+
.(25.4.18)

One can check easily that three first terms in the right-hand expression of
(25.4.18) constitute exactly Φ*(W + 𝜈) coinciding with ℰ𝖳𝖥 as W = W 𝖳𝖥.

Remark 25.4.4. (i) As a ≤ Z− 𝟣
𝟥 using the same method one can prove a

slightly better remainder estimate–with Z
𝟥
𝟤 a− 𝟣

𝟤 replaced by

(25.4.19)
∑︁

𝟣≤m<m′≤M

min
(︁
(Zm + Zm′)

𝟥
𝟤 |xm − ym′ |−

𝟣
𝟤 , (Zm + Zm′)𝟤

)︁
allowing to lighter nuclei to be closer one to another.

(ii) To improve this estimate further, allowing lighter nuclei to be closer to
heavier, ones one needs to improve Theorem 12.6.8 which seems to be too
difficult task for a such little gain.

25.4.2 Upper Estimate for E

Recall that in virtue of Subsection 25.2.2

(25.4.20) E ≤ N𝟣(HW − 𝜈) + 𝜈N − 1

2
D(𝜌, 𝜌)+

|𝜆N − 𝜈| · |N(HW − 𝜈)− N |+ 1

2
D(tr eN(x , x)− 𝜌, tr eN(x , x)− 𝜌

)︀
and thus we need to estimate two last terms in the right-hand expression.

Estimating |𝜆N − 𝜈|

First, we need to estimate |𝜆N − 𝜈|. We will use the heuristic equality
N(HW − 𝜆N) ≈ N or more precisely two inequalities

N(HW − 𝜆N − 0) ≤ N ≤ N(HW − 𝜆N + 0)(25.4.21)𝟣,𝟤
and equality ∫︁

Weyl(x) dx = min(N ,Z )(25.4.22)

where the right inequality (25.4.21)𝟤 is valid only if 𝜆N < 0 i.e. N(HW ) ≥ N .
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Case 𝜆N < 𝜈. Then we will use (25.4.21)𝟤 and to calculate N(HW −𝜆N+0)
we will use semiclassical approximation:

N(HW − 𝜆N + 0) =

∫︁
Weyl(x ,𝜆N) dx + O(R𝟢)(25.4.23)

with the semiclassical error

R𝟢 =

∫︁
𝜁𝟤ℓ−𝟣 dx(25.4.24)

with the integral not exceeding

CZ

∫︁
{|x |≤Z− 𝟣

𝟥 }
|x |−𝟤 dx + C

∫︁
{|x |≥Z− 𝟣

𝟥 }
|x |−𝟧 dx ≍ CZ

𝟤
𝟥 ;

again we need to consider separately the case of N ≥ Z and 𝜈 = 0, when
integral (25.4.24) is taken over ℝ𝟥, and the case of N < Z and 𝜈 < 0, when

this integral should be taken over {x : ℓ(x) ≤ C (Z − N)−
𝟣
𝟥}; in the latter

case to cover non-smoothness we consider an approximation (mollification)

of W and an approximation error 𝜀
𝟩
𝟤ℏ−𝟥 ≪ 1. Therefore

(25.4.25)

∫︁
Weyl(x ,𝜆N) dx ≥ N − CZ

𝟤
𝟥 .

Comparing with (25.4.22) we conclude that

(25.4.26)

∫︁ (︁(︀
W (x) + 𝜈

)︀ 𝟥
𝟤

+
−

(︀
W (x) + 𝜆N

)︀ 𝟥
𝟤

+

)︁
dx ≤ CZ

𝟤
𝟥 .

Here an integrand is non-negative (since 𝜆N < 𝜈). Further, one can see
easily that the main contribution to this integral is delivered by the zone
{x : ℓ(x) ≍ |𝜆N |−

𝟣
𝟦} 16) and the whole integral is ≍ |𝜆N |−

𝟣
𝟦 |𝜈−𝜆N |. Therefore

(25.4.26) yields that

|𝜆N − 𝜈| ≤ C (|𝜈|+ |𝜆N − 𝜈|)
𝟣
𝟦 Z

𝟤
𝟥 ,

which is equivalent to

|𝜆N − 𝜈| ≤ CZ
𝟪
𝟫 + C |𝜈|

𝟣
𝟦 Z

𝟤
𝟥 ≍ CZ

𝟪
𝟫 + C (Z − N)

𝟣
𝟥
+Z

𝟤
𝟥 ≤ CZ .(25.4.27)

In particular,

16) Provided |𝜆N | ≤ C𝟢Z
𝟦
𝟥 . On the other hand, if |𝜆N | ≥ C𝟢Z

𝟦
𝟥 one can see easily that

(25.4.26) is ≍ Z because |𝜈| ≤ c𝟢Z
𝟦
𝟥 due to N ≍ Z .
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(25.4.28) If |𝜈| ≤ c𝟢Z
𝟪
𝟫 (i.e. (Z − N)+ ≤ c𝟣Z

𝟤
𝟥 ), then |𝜆N | ≤ C𝟢Z

𝟪
𝟫

and also

(25.4.29) |𝜆N − 𝜈| · |N(HW − 𝜈)− N | ≤ CZ · Z
𝟤
𝟥 = CZ

𝟧
𝟥 .

Case 𝜆N ≥ 𝜈. Then we will use the left inequality (25.4.21)𝟣, but if
N(HW ) < N then integral (25.4.24) is diverging.

To avoid all related difficulties we will consider first the case when
we necessarily conclude that |𝜆N | ≥ (1 − 𝜖)|𝜈|. To do so observe that
even if the main contribution to the integral (25.4.26) 17) is delivered by

the zone {x : ℓ(x) ≍ (Z − N)|𝜆N |−𝟣 ≍ |𝜈| 𝟥𝟦 |𝜆N |−𝟣}, we will ignore this

observation and consider a larger zone {x : ℓ(x) ≤ C𝟢|𝜈|−
𝟣
𝟦} instead of

{x : ℓ(x) ≤ C𝟢|𝜈|
𝟥
𝟦 |𝜆N |−𝟣} 18).

One can prove easily that

(25.4.30) The contribution of the zone {x : ℓ(x) ≤ C𝟢|𝜈|−
𝟣
𝟦} to the semiclas-

sical remainder, when calculating N(HW − 𝜆N), does not exceed CZ
𝟤
𝟥 .

Therefore we arrive to the estimate

(25.4.31) |𝜆N − 𝜈| ≤ C |𝜈|
𝟣
𝟦 Z

𝟤
𝟥 ≍ C (Z − N)

𝟣
𝟥
+Z

𝟤
𝟥 ≤ CZ

(cf. (25.4.27)). In particular, we conclude that

(25.4.32) If |𝜈| ≥ CZ
𝟪
𝟫 (i.e. (Z − N) ≥ CZ

𝟤
𝟥 ), then |𝜆N | ≍ |𝜈|

(cf. (25.4.28)). Then one can easily recover (25.4.27) completely. Since

|N(HW − 𝜈)− N | ≤ CZ
𝟤
𝟥 we arrive to (25.4.29).

Case |𝜈| ≤ 𝜂 = CZ
𝟪
𝟫 . This case (i.e. (Z − N) ≤ 𝜂

𝟥
𝟦 = CZ

𝟤
𝟥 ) is the most

important one. The easiest way to tackle it is to pick up 𝜌𝖳𝖥 and W𝖳𝖥

calculated as if 𝜈 = 0 i.e. Z = N ; that means the change of the test function
Ψ in the upper estimate.

We need to modify an upper estimate of
∑︀

𝟣≤j≤N 𝜆j . To do this we note
that

(25.4.33) 𝜆N ≥ −𝜂

and
17) Now an integrand is non-positive.
18) Obviously these zones coincides as |𝜈| ≍ |𝜆N |.
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(25.4.34) A number of eigenvalues between 𝜆N (if 𝜆N < 0) and 0 does not

exceed CZ
𝟤
𝟥 + C𝜂

𝟥
𝟦 ,

which can be proven easily by our standard methods. Therefore

(25.4.35)
∑︁

𝟣≤j≤N

𝜆j ≤ Tr(H−
W ) + C𝜂

(︀
Z

𝟤
𝟥 + 𝜂

𝟥
𝟦

)︀
and the last term is less than CZ

𝟧
𝟥 as long as 𝜂 ≤ CZ

𝟤𝟢
𝟤𝟣 which is fulfilled.

In this last case19) we arrive to an upper estimate with ℰ𝖳𝖥 calculated
as if 𝜈 = 0 i.e. ℰ𝖳𝖥(Z ; y;Z ) which is less than ℰ𝖳𝖥(Z ; y;N). Actually the

difference between these two is ≍ |𝜈| 𝟩𝟦 ≤ |𝜂| 𝟩𝟦 .

Estimating D-Term

We need to estimate the last term in the right-hand expression of (25.4.20);
we estimate it by

(25.4.36) C𝟢D
(︀
tr e(x , x , 𝜈)− P ′(W + 𝜈), tr e(x , x , 𝜈)− P ′(W + 𝜈)

)︀
+ C𝟢D

(︀
tr e(x , x , 𝜈)− tr eN(x , x), tr e(x , x , 𝜈)− tr eN(x , x)

)︀
+ C𝟢D

(︀
𝜌− P ′(W + 𝜈), 𝜌− P ′(W + 𝜈)

)︀
,

where the last term vanishes as 𝜌 = 𝜌𝖳𝖥, W = W 𝖳𝖥; however, for some
technical reasons we want to avoid this assumption.

Estimating the First Term. To estimate the first term in (25.4.36) we
apply the semiclassical asymptotics

(25.4.37) tr e(x , x , 𝜈) = Weyl(x) + O(𝜁𝟤ℓ−𝟣),

where Weyl(x) = P ′(W (x) + 𝜈) and therefore this term does not exceed

(25.4.38)

∫︁∫︁
𝜁(x)𝟤𝜁(y)𝟤ℓ(x)−𝟣ℓ(y)−𝟣|x − y |−𝟣 dxdy .

Estimating this integral by the double sum of the integrals over domains
{(x , y) : ℓ(x) ≤ Z− 𝟣

𝟥 , ℓ(y) ≤ Z− 𝟣
𝟥} and {(x , y) : ℓ(x) ≥ Z− 𝟣

𝟥 , ℓ(y) ≥ Z− 𝟣
𝟥} we

get

CZ 𝟤

∫︁∫︁
{|x |≤Z− 𝟣

𝟥 ,|y |≤Z− 𝟣
𝟥 }
|x |−𝟤|y |−𝟤|x − y |−𝟣 dxdy(25.4.39)

19) Pending an analysis of the next subsubsection.
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and

C

∫︁∫︁
{|x |≥Z− 𝟣

𝟥 ,|y |≥Z− 𝟣
𝟥 }
|x |−𝟥|y |−𝟥|x − y |−𝟣 dxdy(25.4.40)

respectively, and rescaling we get the same integrals but both with the
“threshold” 1 rather than Z− 𝟣

𝟥 and both with factor Z
𝟧
𝟥 rather than Z 𝟤 or 1

respectively; one can see easily that both obtained integrals (without factor

Z
𝟧
𝟥 ) are ≍ 1. Therefore, expression (25.4.38) is O(Z

𝟧
𝟥 ).

Therefore we proved

Proposition 25.4.5. As W = W 𝖳𝖥 the first term in (25.4.36) does not

exceed CZ
𝟧
𝟥 .

Remark 25.4.6. (i) For N ≥ Z and 𝜈 = 0 we used that 𝜁 ≤ C𝟣ℓ
−𝟤 for

ℓ ≥ Z− 𝟣
𝟥 .

(ii) For N < Z and 𝜈 < 0 we used that zone {x : ℓ ≥ C (Z − N)−
𝟣
𝟥} is

classically forbidden (W + 𝜈 < 0 there) and therefore integral is taken over

zone {x : ℓ ≤ C (Z − N)−
𝟣
𝟥} where 𝜁 ≤ C𝟣ℓ

−𝟤.

(iii) As N < Z W 𝖳𝖥 is not very smooth near W + 𝜈 = 0 but one can handle
it by rescaling arguments.

(iv) Alternatively (preferably15)) one can replace W 𝖳𝖥 by its mollification
W 𝖳𝖥
𝜀 .

Remark 25.4.7. Estimating this term, and also the second D-term (in the
next paragraph) we need to estimate the contribution of the singular zone
{x : ℓ(x) ≤ r̄ = Z−𝟣} where effective semiclassical parameter is less than 1.
We claim that there

(25.4.41) e(x , x ,𝜆) ≤ CZ 𝟥 for 𝜆 ≤ cZ 𝟤.

Indeed, it is true if ℓ(x) ≥ 1. Also operator H is bounded from below by
−CZ 𝟤. And finally, in the ball of B(ym, 𝜖Z

−𝟣) operator Δ is larger than
Z |x − ym|−𝟣. We leave the easy details to the reader.

Therefore the contribution of this zone into N-term is O(CZ 𝟥r̄ 𝟥) = O(1),
into both D-terms is O(Z 𝟨r̄ 𝟧) = O(Z ), and into T-term is O(Z 𝟧r̄ 𝟥) = O(Z 𝟤).

Estimating the Second term. Consider now the second term in (25.4.36).

Due to the arguments of the previous paragraph modulo O(Z
𝟧
𝟥 ) one can

rewrite it as
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(25.4.42) C𝟣D
(︀
P ′(W + 𝜆N)− P ′(W + 𝜈),P ′(W + 𝜆N)− P ′(W + 𝜈)

)︀
.

Really, if we replace tr e(x , x , 𝜈) and tr eN(x , x) by Weyl(x , 𝜈) and Weyl(x ,𝜆N)

respectively we make a semiclassical errors estimated by Z
𝟧
𝟥 provided either

𝜆N < 𝜈 or 𝜆N ≍ 𝜈 which is always the case unless |𝜈| ≤ CZ
𝟪
𝟫 but in this

case we just “cheat” resetting everything to the case 𝜈 = 0.
Let us estimate (25.4.42). According to the previous Subsubsection 25.4.2.1

there are two cases:

(i) N ≥ Z − CZ
𝟤
𝟥 , in which case |𝜈| ≤ CZ

𝟪
𝟫 and |𝜆N | ≤ CZ

𝟪
𝟫 , and (25.4.42)

does not exceed

C |𝜈 − 𝜆N |𝟤
∫︁∫︁

{ℓ(x)≤L,ℓ(y)≤L}
|x − y |−𝟣𝜁(x)𝜁(y) dxdy

+C

∫︁∫︁
{ℓ(x)≥L,ℓ(y)≥L}

|x − y |−𝟣𝜁(x)𝟥𝜁(y)𝟥 dxdy

with L = |𝜆N − 𝜈|− 𝟣
𝟦 ; one can calculate easily that both terms are of the

magnitude C |𝜆N − 𝜈| 𝟩𝟦 ≤ CZ
𝟣𝟦
𝟫 ≪ Z

𝟧
𝟥 .

(ii) N ≤ Z − CZ
𝟤
𝟥 , in which case (25.4.42) does not exceed

C |𝜈 − 𝜆N |𝟤
∫︁∫︁

{ℓ(x)≤L,ℓ(y)≤L}
|x − y |−𝟣𝜁(x)𝜁(y) dxdy

with L = |𝜈|− 𝟣
𝟦 and this integral does not exceed |𝜆N − 𝜈|𝟤|𝜈|− 𝟣

𝟦 which due

to (25.4.27) does not exceed C (Z − N)
𝟣
𝟥 Z

𝟦
𝟥 ≤ CZ

𝟧
𝟥 .

Estimating the Third term. The third term in (25.4.36) does not exceed

C𝟣D
(︀
𝜌− 𝜌𝖳𝖥, 𝜌− 𝜌𝖳𝖥

)︀
+

C𝟣D
(︀
P ′(W + 𝜈)− P ′(W 𝖳𝖥 + 𝜈),P ′(W + 𝜈)− P ′(W 𝖳𝖥 + 𝜈)

)︀
and we leave to the reader an easy proof that both terms here are O(Z

𝟧
𝟥
−𝛿)

as W is a described mollification of W 𝖳𝖥.

Finally, a tTheorem

As we finished an upper estimate for E we arrive to the following main result:

Theorem 25.4.8. Let N ≍ Z and let Ψ be a ground state. Then

(25.4.43) |E− ℰ𝖳𝖥 − Scott| ≤ C

{︃
Z

𝟧
𝟥 + a− 𝟣

𝟤 Z
𝟥
𝟤 as a ≥ Z−𝟣,

Z 𝟤 as a ≤ Z−𝟣,

where a is the minimal distance between nuclei.
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25.4.3 Improved Asymptotics

So far as a ≥ Z− 𝟣
𝟥 we recovered only O(Z

𝟧
𝟥 ) for both error estimate in E

and (as a coproduct, see Subsection 25.4.4) for D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥).

Our purpose is to improve them to o(Z
𝟧
𝟥 ) (or slightly better) as a ≫ Z− 𝟣

𝟥

and recover the Schwinger and Dirac terms. To do so in the lower estimate
for E one just need an improved electrostatic inequality (see Theorem 25.2.5)
and also improved semiclassical estimates in Tr((HW − 𝜈)−) and N(HW − 𝜈).

For the improved upper estimate we will need also to improve estimate
𝟣
𝟤
D(𝜌𝝭 − 𝜌𝖳𝖥, D(𝜌𝝭 − 𝜌𝖳𝖥) for the test function Ψ and apply an estimate

(25.4.44) |1
2

∫︁∫︁
|x − y |−𝟣 tr eN(x , y)e†

N(x , y) dxdy+

𝜅𝖣𝗂𝗋𝖺𝖼

∫︁
𝜌𝖳𝖥

𝟦
𝟥 (x) dx | ≤ Z

𝟧
𝟥
−𝛿

which is due to Theorem 6.4.1720).

Remark 25.4.9. (i) Only contributions to the remainder of zones

(25.4.45) {x : Z− 𝟣
𝟥
−𝛿𝟣 ≤ |x − ym| ≤ Z− 𝟣

𝟥 b𝛿𝟣}

with b := min(aZ
𝟣
𝟥 , 1) (where now we assume that b ≥ 1) should be con-

sidered because the contributions of both zones {x : ℓ(x) ≤ Z− 𝟣
𝟥 b−𝛿𝟣} and

{x : ℓ(x) ≤ Z− 𝟣
𝟥 b𝛿𝟣} are O(Z

𝟧
𝟥 b−𝛿).

(ii) Only m with Zm ≥ Zb−𝛿𝟤 should be considered because contributions of

other m are are O(Z
𝟧
𝟥 b−𝛿) as well.

Proposition 25.4.10. Let 𝜗 be a (small) parameter such that b−𝛿𝟤 ≤ 𝜗 ≤ 1;
consider m with Zm ≥ Z𝜗𝛿𝟣. Let 𝜑(x) = 𝜓(r−𝟣(x−ym)) with 𝜓 ∈ C∞

𝟢 (B(0, 1))
and r defined below.

(i) Further, let (Z − N)−
𝟣
𝟥 ≥ r = Z− 𝟣

𝟥𝜗−𝟣. Then inequalities

(25.4.46)
⃒⃒∫︁

𝜑(x)

∫︁ 𝜆

−∞

(︀
e(x , x ,𝜆′)−Weyl(x ,𝜆′)

)︀
dxd𝜆′

− Scott− Schwinger
⃒⃒
≤ CZ

𝟧
𝟥𝜗𝛿,

20) This theorem implies the above estimate with 𝛿 = 𝟣 which is definitely overkill for
our purposes.
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(25.4.47)
⃒⃒∫︁

𝜑(x)
(︀
e(x , x ,𝜆)−Weyl(x ,𝜆)

)︀
dx

⃒⃒
≤ CZ

𝟤
𝟥𝜗𝛿

and

(25.4.48) D
(︁
𝜑
(︀
e(x , x ,𝜆)−Weyl(x ,𝜆)

)︀
,𝜑

(︀
e(x , x ,𝜆)−Weyl(x ,𝜆)

)︁)︀
≤

CZ
𝟧
𝟥𝜗𝛿

hold with some exponent 𝛿 > 0 for all 𝜆 ≤ 0 and for 𝜑 which is r -admissible.

(ii) On the other hand, let (Z − N)−
𝟣
𝟥 ≤ r . Let W be a constructed above

mollification of W 𝖳𝖥. Then

(a) Estimates (25.4.46)–(25.4.48) hold for all 𝜆 ≤ 𝜈.

(b) Further, estimates (25.4.47), (25.4.48) hold for 𝜆 ∈ [𝜈, 0] such that
N(H − 𝜆) ≤ N.

(c) Furthermore, in this last case

(25.4.49) |𝜆− 𝜈| ≤ CZ
𝟤
𝟥 (Z − N)

𝟣
𝟥𝜗𝛿.

To prove these statements we need to study behavior of the Hamiltonian
trajectories. First we want to prove that in the indicated zone W 𝖳𝖥 is a
weak perturbation of W 𝖳𝖥

m which is a single atom Thomas-Fermi potential
with Zm and with 𝜈m = 𝜈.

Proposition 25.4.11. In the framework of Proposition 25.4.10 in B(ym, r)

(25.4.50) |D𝛼(W 𝖳𝖥 − W 𝖳𝖥
m )| ≤ c𝛼W 𝖳𝖥

m |x − ym|−|𝛼|𝜗𝛿.

This estimate holds for all 𝛼 as W 𝖳𝖥/(−𝜈) is disjoint from 1; otherwise it
holds for |𝛼| ≤ 3 and

(25.4.51) |D𝛼(W 𝖳𝖥 − W 𝖳𝖥
m )(x)− D𝛼(W 𝖳𝖥 − W 𝖳𝖥

m )(y)| ≤

cW 𝖳𝖥
m |x − ym|−

𝟩
𝟤 |x − y |

𝟣
𝟤𝜗𝛿

for |𝛼| = 3 and |x − ym| ≍ |y − ym| ≍ (Z − N)−
𝟣
𝟥 .

Proof. An easy proof based on the variational approach is left to the reader.
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Next, let us consider a manifold Σ𝜆 = {(x , 𝜉) : H(x , 𝜉) = 𝜆} with the
classical Hamiltonian H(x , 𝜉) = |𝜉|𝟤 − W (x), and let us introduce a measure
µ𝜆 with the density dxd𝜉 : dH on Σ𝜆; this measure is invariant with respect to
the Hamiltonian flow with the Hamiltonian H(x , 𝜉). Note that µ𝜆(Σ𝜆) ≍ Z .

Proposition 25.4.12. In the framework of Proposition 25.4.10 there exists
a set Σ′

𝜆,𝜗 ⊂ Σ𝜆 such that

(25.4.52) µ𝜆(Σ
′
𝜆,𝜗) ≤ C𝜗𝛿Z

and through each point (x , 𝜉) belonging to 𝜗(Z− 𝟣
𝟥 ,Z

𝟤
𝟥 )-vicinity of Σ𝜆 ∖ Σ′

𝜆,𝜗

in T *ℝ𝟥 there passes a Hamiltonian trajectory (x(t), 𝜉(t)) of H of the length
T = Z−𝟣𝜗−𝛿 along which⃒⃒

D𝛼

(xZ
𝟣
𝟥 ,𝜉Z− 𝟤

𝟥 )

(︀
x(t)Z

𝟣
𝟥 , 𝜉(t)Z− 𝟤

𝟥

)︀⃒⃒
≤ C𝜗−K ∀𝛼 : |𝛼| ≤ k(25.4.53)

and

|x(t)− x(0)|Z
𝟣
𝟥 + |𝜉(t)− 𝜉(0)|Z− 𝟤

𝟥 ≥ 𝜗K |t|Z ,(25.4.54)

where m is arbitrary and K , 𝛿 depend on k.

Proof. We will just sketch the proof.

(i) Consider first the case M = 1. Then the the classical dynamical system
is completely integrable since both the angular momentum and the energy
are preserved.

First, let us include into Σ′
𝜆,𝜗 all the points (x , 𝜉) with trajectories not

residing over {𝜗𝛿′Z− 𝟣
𝟥 ≤ ℓ(x) ≤ Z− 𝟣

𝟥𝜗−𝛿′} for all t : |t| ≤ T 21).

Further, if (Z − N)+ ≥ Z𝜗𝛿
′′
we also include into Σ′

𝜆,𝜗 all the points

(x , 𝜉) with the trajectories not residing over B
(︀
y𝟣, (1− 𝜗𝛿

′
)r̄
)︀
; recall that for

atoms r̄ is an exact radius of supp(𝜌𝖳𝖥). Then (25.4.52)–(25.4.53) hold and
we reduce 𝛿, 𝛿′ if necessary.

It is known that not all the Hamiltonian trajectories are closed (see
Appendix 25.A.2). Then one can prove easily that adding to Σ′

𝜆,𝜗 the set

satisfying (25.4.52) we can fulfill (25.4.52) and (25.4.54) as well22). One can
find the similar arguments in the proof of Theorem 7.4.12.

21) I.e. trajectories, leaving this “comfort zone” for some t : |t| ≤ T .
22) It is important that in the classical dynamics is completely integrable.
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(ii) The general case M ≥ 2 is due of this particular one, Proposition 25.4.11
and trivial perturbation arguments.

Proof of Proposition 25.4.10. Now estimates (25.4.46) and (25.4.47) follow
from Propositions 25.4.11 and 25.4.12 and the standard arguments. Note
that if (Z − N)+ ≥ Z𝜗𝛿

′′
we need to mollify W 𝖳𝖥 in the standard way.

To prove estimate (25.4.48) we can use decomposition (16.4.1) and apply

to the contribution of zone {(x , y) : |x − y | ≥ Z− 𝟣
𝟤𝜗𝛿

′} the same standard
arguments. Meanwhile one can notice that the contribution of the zone
{(x , y) : |x − y | ≥ Z− 𝟣

𝟤𝜗𝛿
′} is O(Z

𝟧
𝟥
−𝛿).

Combining all these improvements we arrive to

Theorem 25.4.13. Let N ≍ Z . Let a ≥ Z− 𝟣
𝟥 and let Ψ be a ground state.

Then

(25.4.55) |E− ℰ𝖳𝖥 − Scott− Dirac− Schwinger| ≤ CZ
𝟧
𝟥

(︀
Z−𝛿 + (aZ

𝟣
𝟥 )−𝛿

)︀
.

25.4.4 Corollaries and Discussion

Estimates for D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥)

Recall that in the lower estimate there was in the left-hand expression a non-
negative term 𝟣

𝟤
D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) which we so far just dropped. Then

in the frameworks of Theorems 25.4.8 and 25.4.13 we conclude that this
term does not exceed the right-hand expressions of (25.4.43) and (25.4.55)
respectively.

However, we can do better in the case a ≤ Z− 𝟣
𝟥 . Indeed, recall that the

term a− 𝟣
𝟤 Z

𝟥
𝟤 in the remainder estimate (25.4.43) appeared only because we

replaced Tr((HW − 𝜈)−) by its Weyl approximation (with correction terms)
which we by no means need for estimating this term since Tr((HW −𝜈)−) was
present in both lower and upper estimates. Then we arrive to the following

Theorem 25.4.14. Let N ≍ Z and let Ψ be a ground state. Then

(25.4.56) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) ≤ CQ :=

C

{︃
Z

𝟧
𝟥 if a ≤ Z− 𝟣

𝟥 ,

Z
𝟧
𝟥

(︀
Z−𝛿 + (aZ

𝟣
𝟥 )−𝛿

)︀
if a ≥ Z− 𝟣

𝟥 .
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Estimates for Distance between Nuclei in the Free Nuclei Model

Let us estimate from below the distance between nuclei in the stable molecule
in the free nuclei model (with the full energy optimized with respect to the
position of the nuclei).

Theorem 25.4.15. Let M ≥ 2 and let condition (25.3.33) be fulfilled. As-
sume that

(25.4.57) E(Z ; y;N) +
∑︁

𝟣≤m<m′≤M

ZjZk |ym − ym′ |−𝟣 ≤

min
N𝟣,...,NM :

N𝟣+...+NM=N

∑︁
𝟣≤m≤M

E(Zm;Nm)

Then

|ym − ym′ | ≥ Z− 𝟧
𝟤𝟣
+𝛿𝟣 ∀m ̸= m′(25.4.58)

and

|̂︀E𝖳𝖥(Z ;N)− ̂︀ℰ𝖳𝖥(Z ;N)− Scott− Dirac− Schwinger| ≤ CZ
𝟧
𝟥
−𝛿.(25.4.59)

Proof. Note first that |E| ≤ CZ
𝟩
𝟥 and in virtue of Theorem 25.4.8 we can

replace E by ℰ𝖳𝖥 with O(Z 𝟤) error:

(25.4.60) ℰ𝖳𝖥(Z ; y;N) +
∑︁

𝟣≤m<m′≤M

ZjZk |ym − ym′ |−𝟣 ≤

min
N𝟣,...,NM :

N𝟣+...+NM=N

∑︁
𝟣≤m≤M

ℰ𝖳𝖥(Zm;Nm)− CZ 𝟤;

which in virtue of Proposition 25.3.11 is impossible unless a−𝟩 ≤ CZ 𝟤 i.e.
a ≥ 𝜖Z− 𝟤

𝟩 ≫ Z− 𝟣
𝟥 .

Then, again in virtue of Theorem 25.4.8 we can replace E by ℰ𝖳𝖥 +Scott
with O(Z

𝟧
𝟥 ) error. Let us take into account that for molecule Scott equals the

sum of Scottm. Therefore in (25.4.60) we can replace CZ 𝟤 by CZ
𝟧
𝟥 . Applying

again Proposition 25.3.11 we conclude that a ≥ 𝜖Z− 𝟧
𝟤𝟣 .

Let us improve this estimate further. In virtue of Theorem 25.4.13 we can
replace E by ℰ𝖳𝖥 + Scott + Dirac + Schwinger with O(Z

𝟧
𝟥
−𝛿𝟤) error. However

one needs to compare Dirac–Schwinger correction for the molecule with the
sums of such corrections for separate atoms:



25.4. APPLICATION OF SEMICLASSICAL METHODS 37

Proposition 25.4.16. If a ≥ Z− 𝟣
𝟥
+𝛿𝟣 and

ℰ𝖳𝖥(Z ; y;N) =
∑︁

𝟣≤m≤M

ℰ𝖳𝖥(Zm;Nm) + O(Z
𝟩
𝟥
−𝛿𝟣)(25.4.61)

where N = N𝟣 + ... + NM , then∫︁
(𝜌𝖳𝖥)

𝟦
𝟥 dx =

∑︁
𝟣≤m≤M

∫︁
(𝜌𝖳𝖥m )

𝟦
𝟥 dx + O(Z

𝟧
𝟥
−𝛿𝟤),(25.4.62)

where 𝜌𝖳𝖥m = 𝜌𝖳𝖥(x − ym;Zm;Nm) are atomic Thomas-Fermi densities.

Proof of this Proposition 25.4.16 will be provided immediately. Therefore
Dirac and Schwinger correction terms for a molecule are equal to the sums
of Diracm and Schwingerm correction terms respectively with O(Z

𝟧
𝟥
−𝛿𝟤) error

and in (25.4.60) we can replace CZ 𝟤 by CZ
𝟧
𝟥
−𝛿𝟤 .

Applying Proposition 25.3.11 again we conclude that a ≥ Z
𝟧
𝟤𝟣
+𝛿.

Proof of Proposition 25.4.16. Note that the left-hand expression of (25.3.42)
is equal to

(25.4.63) ‖∇
(︀
W 𝖳𝖥 − W̄ 𝖳𝖥

)︀
‖𝟤 with W̄ 𝖳𝖥 :=

∑︁
𝟣≤m≤M

W 𝖳𝖥
m

and therefore this expression is less than CQ ≤ CZ
𝟩
𝟥
−𝛿𝟣 as well. Then

since a ≥ Z− 𝟣
𝟥
+𝛿𝟣 we conclude that if we restrict the norm to the zone

{x : |x − ym| ≤ Z− 𝟣
𝟥
+𝛿}, we can replace 𝜌𝖳𝖥 and W̄ 𝖳𝖥 by 𝜌𝖳𝖥m and W 𝖳𝖥

m

respectively in (25.3.42), (25.4.63).
Using Thomas-Fermi equations we conclude that in this zone

(25.4.64) |D𝛼(W 𝖳𝖥 − W 𝖳𝖥
m )| ≤ C𝛼W 𝖳𝖥

m ℓ−|𝛼|Z−𝛿𝟤 ∀𝛼 : |𝛼| ≤ 2

and then |(𝜌𝖳𝖥) 𝟦
𝟥 − (𝜌𝖳𝖥m )

𝟦
𝟥 | ≤ C (𝜌𝖳𝖥m )

𝟦
𝟥 Z−𝛿𝟤 which implies (25.4.62) because∫︀

(𝜌𝖳𝖥m )
𝟦
𝟥 dx ≍ Z

𝟧
𝟥 and contributions of zone {x : ℓ(x) ≥ Z− 𝟣

𝟥
+𝛿} to each

integral is O(Z
𝟧
𝟥
−𝛿).

The following problem seems to be very challenging:

Problem 25.4.17. In the framework of the free nuclei model consider
the case when assumption (25.3.33) is violated, i.e. when some nuclei
are much lighter than the others. We do not need this assumption for
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Theorems 25.4.8, 25.4.13 or 25.4.14 but we need to estimate from below the
minimal distance between nuclei a.

We cannot do this without some generalization of Proposition 25.3.11,
which we definitely do not expect to survive in its current form without
assumption (25.3.33). It would be unrealistic to expect any estimate from
below for am := minm′ ̸=m |ym − ym′ | without some estimate from below for
Zm.

The following problem seems to be reasonably challenging:

Problem 25.4.18. (i) Let us discuss the case M = 2 and Z𝟤 ≪ Z𝟣,

a ≤ Z− 𝟣
𝟥 . Then there is an unpleasant remainder O(a− 𝟣

𝟤 Z
𝟥
𝟤 ) in the trace

asymptotics. Let us discuss how one can improve it.

Let us observe that in ℝ𝟥 ∖ B(y𝟣,Cb) we have W 𝖳𝖥
𝟣 ≫ W 𝖳𝖥

𝟤 , where b =

min(Z
− 𝟣

𝟥
+𝛿

𝟤 , aZ𝟤Z−𝟣). One can expect that we can modify W 𝖳𝖥 in B(y𝟣,Cr𝟤)
to W so that the dynamical systems corresponding to Hamiltonians HW

and HW𝟣 would be close; then for HW we would be able to recover trace

asymptotics with the remainder estimate O(Z
𝟧
𝟥
−𝛿).

Meanwhile, if b ≥ Z−𝟣
𝟤 , i.e. a ≥ Z−𝟤

𝟤 Z , the contribution of B(y𝟣,Cr𝟤) to

the trace remainder would be O(b− 𝟣
𝟤 Z

𝟥
𝟤
𝟤 ) = O(Z

𝟧
𝟥
−𝛿

𝟤 ) + O(a−𝟣/𝟤Z𝟤Z 𝟣/𝟤) and

we would improve O(a− 𝟣
𝟤 Z

𝟥
𝟤 ) to O(Z

𝟧
𝟥
−𝛿 + a− 𝟣

𝟤 Z𝟤Z
𝟣
𝟤 ).

On the other hand, if b ≤ Z−𝟣
𝟤 , i.e. a ≤ Z−𝟤

𝟤 Z , the contribution of
B(y𝟣,Cr𝟤) to the trace remainder would be O(Z 𝟤

𝟤 ), so we would get the

remainder O(Z
𝟧
𝟥
−𝛿 + Z 𝟤

𝟤 ).

In particular, we get O(Z
𝟧
𝟥
−𝛿) provided Z𝟤 ≤ Z

𝟧
𝟨
−𝛿.

(ii) Generalize for M ≥ 2.

25.5 Negatively Charged sSystems

In this section we consider the case N ≥ Z and provide upper estimates
for excessive negative charge (N − Z ) if IN > 0 and for ionization energy
IN := EN−𝟣 − IN .

25.5.1 Estimates of the Correlation Function

First of all, we provide some estimates which will be used for both negatively
and positively charged systems. Let us consider the ground-state function
Ψ(x𝟣, 𝜍𝟣; ... ; xN , 𝜍N) and the corresponding density 𝜌𝝭(x).
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The crucial role plays estimate (25.4.56) D
(︀
𝜌𝜓 − 𝜌𝖳𝖥, 𝜌𝜓 − 𝜌𝖳𝖥

)︀
≤ CQ of

Theorem 25.4.14 and the difference between upper and lower bounds for EN

(with N𝟣(HW − 𝜈) + 𝜈N not replaced by its semiclassical approximation).
Let us consider the classical density of the electron system

𝜚x(x) =
∑︁

𝟣≤j≤N

δ(x − xj)(25.5.1)

and the smeared classical density

𝜚x ,𝜀(x) = 𝜚x * 𝜑𝜀 =
∑︁

𝟣≤j≤N

𝜑𝜀(x − xj)(25.5.2)

where 𝜀 will be chosen later; here (x , 𝜍) = (x𝟣, 𝜍𝟣; ... , xN , 𝜍N) ∈ (ℝ𝟥 × ℂq)N ,

(25.5.3) 𝜑𝜀(z) = 𝜀−𝟥𝜑(z𝜀−𝟣), 𝜑 ∈ C∞
𝟢

(︀
B(0, 𝟣

𝟤
)
)︀
is a spherically symmetric,

non-negative function such that
∫︀
𝜑(x) dx = 1.

Then
∫︀
𝜑𝜀(x)f (x) dx = f (0) + O(𝜀𝟤) for any f ∈ C𝟤. Let us consider

(25.5.4) KN(x) :=
1

2
D
(︀
𝜚x(·)− 𝜌(·), 𝜚x(·)− 𝜌(·)

)︀
where 𝜌 = 𝟣

𝟦𝜋
Δ(W −V ), W is either W 𝖳𝖥 if 𝜈 = 0 or a “good” approximation

for it, constructed in the previous section.
Using Newton’s screening theorem23) we conclude that

(25.5.5)
∑︁

𝟣≤j<k≤N

|xj − xk |−𝟣 ≥ 1

2
D
(︀
𝜚x(·), 𝜚x(·)

)︀
− C𝜀−𝟣N

where the last term estimates∑︁
𝟣≤j≤N

D
(︀
𝜑𝜀(x − xj),𝜑𝜀(x − xj)

)︀
.

On the other hand,

1

2
D
(︀
𝜚x(·), 𝜚x(·)

)︀
=

∫︁
𝜚x(|x |−𝟣 * 𝜌) dx + KN(x)−

1

2
D(𝜌, 𝜌)(25.5.6)

23) That uniformly charged sphere S(𝟢, r) creates potential v(x) = −q 𝗆𝗂𝗇(|x |−𝟣, r−𝟣)
where q is the total charge of the sphere.
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and therefore

HN ≥
∑︁

𝟣≤j≤N

HW𝜀(xj) + KN(x)−
1

2
D(𝜌, 𝜌)− C𝜀−𝟣N(25.5.7)

on (L𝟤(ℝ𝟥,ℂq))N where W𝜀 is the smeared potential :

(25.5.8) W𝜀(x) = V (x)− 𝜑𝜀 * |x |−𝟣 * 𝜌.

Observe that the smeared potential does not depend on x and is defined
via 𝜌 rather than 𝜌𝝭.

Also let us define

Nx(x𝟤, ... , xN) :=
∑︁

𝟤≤j≤N

(𝜒x * 𝜑𝜀)(xj)(25.5.9)

and

N̄x :=

∫︁
𝜌(y)𝜒x(y)dy(25.5.10)

with 𝜒x(y) := 𝜒(x , y), 𝜒 ∈ C∞(ℝ𝟨).
Furthermore, let us consider function 𝜃 ∈ C∞(ℝ𝟥) such that

(25.5.11) 0 ≤ 𝜃 ≤ 1.

Finally, consider

(25.5.12) 𝒥 := |
∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌(y)𝜌𝝭(x)

)︁
𝜃(x)𝜒(x , y) dxdy |.

Obviously

𝒥 ≤
∫︁
𝜌
(𝟤)
𝝭 (x , y)

⃒⃒
𝜒x * 𝜑𝜀 − 𝜒x(y)

⃒⃒
𝜃(x) dxdy

+ N

∫︁
|Ψ(x , x𝟤, ... , xN)|𝟤

⃒⃒
Nx(x𝟤, ... , xN)− N̄x

⃒⃒
𝜃(x) dxdx𝟤 · · · dxN

≤ CN𝜀s‖∇s+𝟣
y 𝜒‖L∞Θ

+
(︁

N

∫︁
|Ψ(x , x𝟤, ... , xN)|𝟤|Nx − N̄x |𝟤𝜃(x) dxdx𝟤 · · · dxN

)︁ 𝟣
𝟤
Θ

𝟣
𝟤

where 𝜌
(𝟤)
𝝭 (·, ·) is the quantum correlation function,
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𝜌
(𝟤)
𝝭 (x , y) := N(N − 1)

∫︁
|Ψ(x , y , x𝟥, ... , xN)|𝟤 dx𝟥 · · · dxN ,(25.5.13) ∫︁

𝜌
(𝟤)
𝝭 (x , y)dy = (N − 1)𝜌𝝭(x),(25.5.14)

Θ = Θ𝝭 :=

∫︁
𝜃(x)𝜌𝝭(x)dx(25.5.15)

and we used Cauchy-Schwartz inequality.
Since

Nx(x𝟤, ... , xN)− N̄x =

∫︁ (︀ ∑︁
𝟤≤j≤N

𝜑𝜀(y − xj)− 𝜌(y)
)︀
𝜒(x , y) dxdy ,(25.5.16)

we again from Cauchy-Schwartz inequality conclude that⃒⃒
Nx − N̄x |𝟤 ≤ C‖∇y𝜒‖𝟤L𝟤 · KN−𝟣(x𝟤, ... , xN).(25.5.17)

Note that

(25.5.18)
∑︁

𝟣≤j≤N

〈HN𝜃
𝟣
𝟤 (xj)Ψ, 𝜃

𝟣
𝟤 (xj)Ψ〉 =

EN

∫︁ ∫︁
𝜃(x)𝜌𝝭(x) dx +

∫︁
|∇𝜃

𝟣
𝟤 |𝟤(x)𝜌𝝭(x) dx

and then (25.5.7) yields that

(25.5.19) EN

∫︁
𝜃(x)𝜌𝝭(x) dx ≥ −

∫︁
|∇𝜃

𝟣
𝟤 |𝟤(x)𝜌𝝭(x) dx

+
∑︁

𝟣≤j ,k≤N

〈HW𝜀(xk)𝜃
𝟣
𝟤 (xj)Ψ, 𝜃(xj)Ψ〉

+

∫︁
KN(x)𝜃(x𝟣)|Ψ(x𝟣, ... , xN)|𝟤 dx𝟣 ... dxN − 1

2
D(𝜌, 𝜌)Θ− C𝜀−𝟣NΘ.

Also note that

(25.5.20) The sum of (N −1) lowest eigenvalues of HW𝜀 on ℋ is greater than(︀
𝜈N + N𝟣(HW𝜀 − 𝜈)

)︀
.

Then the second term in the right-hand expression of (25.5.19) is bounded
from below by

(︀
𝜈N +N𝟣(HW𝜀 − 𝜈)

)︀
Θ, while the left-hand expression is ENΘ.

Therefore assembling terms proportional to Θ we conclude that
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(25.5.21) SΘ+

∫︁
|∇𝜃

𝟣
𝟤 |𝟤𝜌𝝭 dx ≥

∑︁
j

〈HW𝜀,xj𝜃
𝟣
𝟤 (xj)Ψ, 𝜃

𝟣
𝟤 (xj)Ψ〉

+ N

∫︁
KN(x𝟣, ... , xN)𝜃(x𝟣)|Ψ(x𝟣, ... , xN)|𝟤 dx𝟣 · · · dxN

with

(25.5.22) S := EN − 𝜈N − N𝟣(HW𝜀 − 𝜈) +
1

2
D(𝜌, 𝜌).

Due to the non-negativity of operator D𝟤
x , the last term in (25.5.21) is greater

than −CTΘ with

(25.5.23) T = sup
𝗌𝗎𝗉𝗉(𝜃)

W ;

so we arrive to

(25.5.24) N

∫︁
KN(x𝟣, ... , xN)𝜃(x𝟣)|Ψ(x𝟣, ... , xN)|𝟤 dx𝟣 · · · dxN ≤

C
(︀
S + T + 𝜀−𝟣N

)︀
Θ+ P

with

(25.5.25) P =

∫︁
|∇𝜃

𝟣
𝟤 |𝟤𝜌𝝭 dx .

Combining this inequality with (25.5.13), (25.5.17) we conclude that

(25.5.26) 𝒥 ≤ C sup
x

‖∇y𝜒x‖L𝟤(ℝ𝟥)

(︁(︀
S + 𝜀−𝟣N + T

)︀
Θ+ P

)︁ 𝟣
𝟤
Θ

𝟣
𝟤

+ C𝜀N‖∇y𝜒‖L∞Θ

due to obvious estimate

(25.5.27) KN−𝟣(x𝟤, ... , xN) ≤ 2KN(x𝟣, ... , xN) + 𝜀−𝟣N .

Now we want to estimate S from above and for this we need an upper
estimate for EN . Recall that due to the arguments of Subsection 25.2.2
S ≤ CQ provided we manage to prove that

(25.5.28) Expressions (25.2.23)–(25.2.26) satisfy the same estimates as be-
fore if we plug W𝜀 instead of W .

So, we need to calculate both semiclassical errors (which are calculated
exactly as for W = W 𝖳𝖥) and the principal parts, and in calculations of
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D
(︀
P ′(W𝜀 + 𝜈)− 𝜌𝖳𝖥,P ′(W𝜀 + 𝜈)− 𝜌𝖳𝖥

)︀
(25.5.29)

and

D(𝜌𝜀 − 𝜌𝖳𝖥, 𝜌𝜀 − 𝜌𝖳𝖥)(25.5.30)

an error is O(𝜀𝟤Z 𝟥) due to estimates

(25.5.31) |D𝛼(W − W𝜀)| ≤

C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Zℓ−𝟣−|𝛼|(1 + ℓ𝜀−𝟣)−𝟤 ∀𝛼 if ℓ ≤ 𝜖Z− 𝟣

𝟥

𝜀𝟤ℓ−𝟨−|𝛼| ∀𝛼 if ℓ ≥ 𝜖Z− 𝟣
𝟥 , ℓ ̸≍ r̄ ,

𝜀𝟤ℓ−𝟨−|𝛼| ∀𝛼 : |𝛼| ≤ 3

2
if ℓ ≍ r̄ .

Then one can prove easily that the sum of these two expressions (25.5.29)
and (25.5.30) does not exceed CQ +CZ 𝟥𝜀𝟤+CZ 𝟤𝜀, and this estimate cannot

be improved. Choosing 𝜀 ≤ Z− 𝟤
𝟥 we estimate these two terms by CZ

𝟧
𝟥 .

Under this restriction a smearing error in the principal part of the
asymptotics of

∫︀
e(x , x ,𝜆) dx , namely

(25.5.32) |
∫︁ (︀

P ′(W𝜀 + 𝜈)− P ′(W + 𝜈)
)︀

dx |,

does not exceed CZ
𝟥
𝟤 𝜀

𝟥
𝟤 = O(Z

𝟣
𝟤 ) which is less than the semiclassical error.

Then S ≤ CQ.
So, the following proposition is proven:

Proposition 25.5.1. If 𝜃,𝜒 are as above then

(25.5.33) 𝒥 = |
∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌(y)𝜌𝝭(x)

)︁
𝜃(x)𝜒(x , y) dxdy | ≤

C sup
x

‖∇y𝜒x‖L𝟤(ℝ𝟥)

(︁
(Q + 𝜀−𝟣N + T )

𝟣
𝟤Θ+ P

𝟣
𝟤Θ

𝟣
𝟤

)︁
+ C𝜀N‖∇y𝜒‖L∞Θ

with Θ = Θ𝝭 defined by (25.5.15) and T ,P defined by (25.5.23), (25.5.25)

respectively and arbitrary 𝜀 ≤ Z− 𝟤
𝟥 .

25.5.2 Excessive Negative Charge

Let us select 𝜃 = 𝜃b

(25.5.34) supp(𝜃) ⊂ {x : ℓ(x) ≥ b}.
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Observe that HNΨ = ENΨ yields

(25.5.35) EN

∫︁
𝜌𝝭(x)ℓ(x)𝜃(x) dx =

∑︁
j

〈Ψ, ℓ(xj)𝜃(xj)HNΨ〉 =

∑︁
j

〈ℓ(xj)
𝟣
𝟤 𝜃

𝟣
𝟤 (xj)Ψ, ℓ(xj)

𝟣
𝟤 𝜃

𝟣
𝟤 (xj)HNΨ〉−

∑︁
j

‖∇
(︀
𝜃

𝟣
𝟤 (xj)ℓ(xj)

𝟣
𝟤

)︀
Ψ‖𝟤

and isolating the contribution of j-th electron in j-th term we get

(25.5.36) EN

∫︁
𝜌𝝭(x)ℓ(x)𝜃 dx ≥ EN−𝟣

∫︁
𝜌𝝭(x)ℓ(x)𝜃(x) dx+∑︁

j

〈Ψ, ℓ(xj)𝜃(xj)
(︁
−V (xj)+

∑︁
k:k ̸=j

|xj−xk |−𝟣
)︁
Ψ〉−

∑︁
j

‖∇
(︀
𝜃

𝟣
𝟤 (xj)ℓ(xj)

𝟣
𝟤

)︀
Ψ‖𝟤

due to non-negativity of operator D𝟤
x .

Now let us select b to be able to calculate the magnitude of Θ. Observe
that

(25.5.37) |
∫︁
𝜃(x)

(︀
𝜌𝝭(x)− 𝜌(x)

)︀
dx | ≤ CD(𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌)

𝟣
𝟤‖∇𝜃

𝟣
𝟤‖ ≍

CD(𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌)
𝟣
𝟤 b

𝟣
𝟤 ≤ CQ

𝟣
𝟤 b

𝟣
𝟤

and ∫︁
𝜃(x)𝜌(x) dx ≍ b−𝟥(25.5.38)

as long as

Z− 𝟣
𝟥 ≤ b ≤ 𝜖(Z − N)

− 𝟣
𝟥

+(25.5.39)

because 𝜌 ≍ |x |−𝟨 as Z− 𝟣
𝟥 ≤ |x | ≤ c𝟢(Z − N)

− 𝟣
𝟥

+ . Note that the right-hand
expression of (25.5.38) is larger than the right-hand expression of (25.5.37)

as b ≥ C𝟢Q− 𝟣
𝟩 . Therefore let us pick up

b := 𝜖𝟢Q− 𝟣
𝟩 ;(25.5.40)

it does not conflict with (25.5.39) provided

N ≥ Z − C𝟢Q
𝟥
𝟩(25.5.41)
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and then

Θ ≍ Q
𝟥
𝟩 .(25.5.42)

Then the same arguments imply that the last term in the right-hand expres-
sion of (25.5.36) does not exceed Cb−𝟣Θ; using inequality

(25.5.43)

∫︁
𝜌𝝭(x)ℓ(x)𝜃(x)dx ≥ bΘ

we conclude that

(25.5.44) bINΘb ≤
∫︁
𝜃(x)V (x)ℓ(x)𝜌𝝭(x) dx

−
∫︁
𝜌
(𝟤)
𝝭 (x , y)ℓ(x)|x − y |−𝟣𝜃(x) dxdy + Cb−𝟣Θ =

=

∫︁
𝜃(x)V (x)ℓ(x)𝜌𝝭(x) dx

−
∫︁
𝜌
(𝟤)
𝝭 (x , y)ℓ(x)|x − y |−𝟣

(︀
1− 𝜃(y)

)︀
𝜃(x) dxdy

−
∫︁
𝜌
(𝟤)
𝝭 (x , y)ℓ(x)|x − y |−𝟣𝜃(y)𝜃(x) dxdy + Cb−𝟣Θ.

Denote by ℐ𝟣, ℐ𝟤, and ℐ𝟥 the first, second and third terms in the right-hand
expression of (25.5.44) respectively. Symmetrizing ℐ𝟥 in the right-hand
expression of (25.5.44) with respect to x and y we see that

ℐ𝟥 = −1

2

∫︁
𝜌
(𝟤)
𝝭 (x , y)

(︀
ℓ(x) + ℓ(y)

)︀
|x − y |−𝟣𝜃(y)𝜃(x) dxdy

and using inequality ℓ(x) + ℓ(y) ≥ minj(|x − yj | + |y − yj |) ≥ |x − y | we
conclude that this term is less than

(25.5.45) − 1

2

∫︁
𝜌
(𝟤)
𝝭 (x , y)𝜃(y)𝜃(x) dxdy =

− 1

2
(N − 1)

∫︁
𝜌𝝭(x)𝜃(x) dx +

1

2

∫︁
𝜌
(𝟤)
𝝭 (x , y)

(︀
1− 𝜃(y)

)︀
𝜃(x) dxdy .

Here the first term is exactly −𝟣
𝟤
(N − 1)Θ; replacing 𝜌

(𝟤)
𝝭 (x , y) by 𝜌(y)𝜌𝝭(x)

we get

1

2

∫︁ (︀
1− 𝜃(y)

)︀
𝜌(y) dy ×Θ(25.5.46)
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with an error
1

2

∫︁ (︀
𝜌
(𝟤)
𝝭 (x , y)− 𝜌(y)𝜌𝝭(x)

)︀(︀
1− 𝜃(y)

)︀
𝜃(x) dxdy(25.5.47)

which we estimate using Proposition 25.5.1 with 𝜒(x , y) = 1− 𝜃(y). Then

‖∇y𝜒x‖L𝟤 ≍ b
𝟣
𝟤 , ‖∇y𝜒‖L∞ ≍ b−𝟣, T ≍ b−𝟦, P ≍ b−𝟣Θ and picking up

𝜀 = Z− 𝟤
𝟥 we conclude that an error (25.5.47) is less than Cb

𝟣
𝟤 Q

𝟣
𝟤Θ ≍ CQ

𝟥
𝟩Θ

and then we conclude that

(25.5.48) ℐ𝟥 ≤ −1

2
(N − Z )+Θ+ CQ

𝟥
𝟩Θ

because
∫︀
𝜌𝜃 dy ≍ Q

𝟥
𝟩 and

∫︀
𝜌(y) dy = min(Z ,N).

On the other hand,

(25.5.49) ℐ𝟤 ≤ −
∫︁
𝜌
(𝟤)
𝝭 (x , y)ℓ(x)|x − y |−𝟣

(︀
1− 𝜃(y)

)︀
𝜃(x) dxdy

with 𝜃 = 𝜃b(𝟣−𝜖) and replacing 𝜌
(𝟤)
𝝭 (x , y) by 𝜌(y)𝜌𝝭(x) we get

(25.5.50) −
∫︁
𝜌𝝭(x)𝜌(y)ℓ(x)|x − y |−𝟣

(︀
1− 𝜃(y)

)︀
𝜃(x) dxdy

and we estimate an error in the same way by CQ
𝟥
𝟩Θ.

Therefore

(25.5.51) ℐ𝟣 + ℐ𝟤 ≤
∫︁
𝜃(x)V (x)ℓ(x)𝜌𝝭(x) dx−∫︁

𝜌𝝭(x)ℓ(x)𝜌(y)|x − y |−𝟣
(︀
1− 𝜃(y)

)︀
𝜃(x) dxdy + CQ

𝟥
𝟩Θ =∫︁

𝜃(x)W (x)ℓ(x)𝜌𝝭(x) dx

+

∫︁
𝜌(y)𝜌𝝭(x)ℓ(x)|x − y |−𝟣𝜃(y)𝜃(x) dxdy + CQ

𝟥
𝟩Θ

due to V − W = |x |−𝟣 * 𝜌. Since W ℓ ≤ Cb−𝟥 we can skip the first term in
the right-hand expression. Furthermore, as

(25.5.52)

∫︁
𝜌(y)|x − y |−𝟣𝜃(y) dy ≍ Θ ≍ Q

𝟥
𝟩
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we can skip the second term as well.
Adding ℐ𝟥 to and multiplying by Θ−𝟣 we arrive to

(25.5.53) bIN ≤ −1

2
(N − Z )+ + CQ

𝟥
𝟩

which implies immediately

Theorem 25.5.2. Let condition (25.3.33) be fulfilled.

(i) In the fixed nuclei model let IN > 0. Then

(25.5.54) (N − Z )+ ≤ CQ
𝟥
𝟩 = CZ

𝟧
𝟩

{︃
1 if a ≤ Z− 𝟣

𝟥 ,

Z−𝛿 + (aZ
𝟣
𝟥 )−𝛿 if a ≥ Z− 𝟣

𝟥 .

(ii) In particular, for a single atom and for molecule with a ≥ Z− 𝟣
𝟥
+𝛿

(25.5.55) (N − Z )+ ≤ Z
𝟧
𝟩
−𝛿′ .

(iii) In the free nuclei model let ̂︀IN > 0. Then estimate (25.5.55) holds.

25.5.3 Estimate for Ionization Energy

Recall that as N < Z we assumed that N ≥ Z − CQ
𝟥
𝟩 (see (25.5.41)) and

b = Q− 𝟣
𝟩 . Then (25.5.53) also implies IN ≤ CQ

𝟦
𝟩 and we arrive to

Theorem 25.5.3. Let condition (25.3.33) be fulfilled and let N ≥ Z −C𝟢Z
𝟧
𝟩 .

Then

(i) In the framework of fixed nuclei model

(25.5.56) IN ≤ CZ
𝟤𝟢
𝟤𝟣 .

(ii) In the framework of free nuclei model with N ≥ Z − C𝟢Z
𝟧
𝟩
−𝛿

(25.5.57) ̂︀IN ≤ Z
𝟤𝟢
𝟤𝟣
−𝛿′ .

Remark 25.5.4. (i) Classical theorem of G. Zhislin [1] implies that the
system can bind at least Z electrons; the proof is based on the demonstration
that the energy of the system with N < Z electrons plus one electron on the
distance r is increasing as r → +∞ because potential created by the system
with N < Z electrons behaves as (Z − N)|x |−𝟣 as |x | → ∞;
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(ii) In the proof of Theorem 25.5.2(iii) and 25.5.3(ii) we note that tearing
of one electron in free nuclei model is easier than in the fixed nuclei model.

The following problem does not look extremely challenging:

Problem 25.5.5. In Theorems 25.5.2(i),(ii) and 25.5.3(i) get rid of condi-
tion (25.3.33).

25.6 Positively Charged sSystems

In this section we consider the case of positively charged system with
Z − N ≥ C𝟢Q

𝟥
𝟩 with sufficiently large C𝟢.

First let us find asymptotics of the ionization energy; the principal term
will be −𝜈 but we need to estimate a remainder.

25.6.1 Estimate from above for Ionization Energy

−W (x)

𝜈

𝜈 − 2𝜐

supp 𝜃
𝜃 = 1

As M = 1 construction is well-known: let
us pick up function 𝜃 such that 𝜃 = 1 as
|x−ym| ≥ r̄−𝛽 and 𝜃 = 0 as |x−ym| ≤ r̄−2𝛽
where r̄ is an exact radius of support 𝜌𝖳𝖥.
Here 𝛽 ≪ r̄ . As M ≥ 1 let us pick instead

(25.6.1) 𝜃(x) = f 𝟤
(︀
𝜐−𝟣[W (x) + 𝜈]

)︀
where f ∈ C∞(ℝ), supported in (−∞, 2) and
equal 1 in (−∞, 1), 𝜐 ≤ 𝜈.

We will assume that

(25.6.2) a ≥ r̄ = C𝟣(Z − N)−
𝟣
𝟥

with sufficiently large C𝟣; we will discuss dropping this assumption later.
Then as we know that 𝜌𝖳𝖥 is supported in cr̄ -vicinity of nuclei, we conclude
that “atoms” are rather disjoint.

One can see easily that then as W + 𝜈 ≈ 0,

(25.6.3) |∇W | ≍ r̄−𝟧;

then the width of the zone {x : 0 ≤ W (x)+𝜈 ≤ 2𝜐} is≍ 𝜐|∇W |−𝟣 ≍ 𝛽 = 𝜐r̄ 𝟧

and
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(25.6.4) Θ𝖳𝖥 :=

∫︁
𝜃(x)𝜌𝖳𝖥 dx ≍ 𝜐

𝟥
𝟤 × 𝛽 r̄ 𝟤 = 𝜐

𝟧
𝟤 r̄ 𝟩

while ‖∇𝜃‖ ≍ 𝛽− 𝟣
𝟤 r̄ = 𝜐−

𝟣
𝟤 r̄−

𝟥
𝟤 and therefore to ensure that Θ has the same

magnitude (25.6.4) we pick up the smallest 𝜐 such that 𝜐
𝟧
𝟤 r̄ 𝟩 ≥ C𝜐−

𝟣
𝟤 r̄−

𝟥
𝟤 Q

𝟣
𝟤

i.e.

𝜐 := C𝟤r̄−
𝟣𝟩
𝟨 Q

𝟣
𝟨 ( ⇐⇒ 𝛽 = C𝟤r̄

𝟣𝟥
𝟨 Q

𝟣
𝟨 );(25.6.5)

then

Θ ≍ r̄−
𝟣
𝟣𝟤 Q

𝟧
𝟣𝟤(25.6.6)

Then (25.5.15) is fulfilled. Note that 𝜐 ≤ 𝜈 = r̄−𝟦 iff (Z − N) ≥ Q
𝟥
𝟩 exactly

as we assumed.
Then (25.5.44) is replaced by

(25.6.7) IN

∫︁
ℓ(x)𝜌𝝭(x)𝜃(x) dx ≤

∫︁
𝜃(x)V (x)ℓ(x)𝜌𝝭(x) dx

−
∫︁
𝜌
(𝟤)
𝝭 (x , y)ℓ(x)|x − y |−𝟣𝜃(x) dxdy + C𝛽−𝟤r̄Θ

where C𝛽−𝟤r̄Θ estimates the last term in the right-hand expression of
(25.5.36). Then

(25.6.8) IN

∫︁
ℓ(x)𝜌𝝭(x)𝜃(x) dx ≤

∫︁
𝜃(x)V (x)ℓ(x)𝜌𝝭(x) dx

−
∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌𝝭(x)𝜌(y)

)︁
ℓ(x)|x − y |−𝟣𝜃(x) dxdy

−
∫︁
𝜌𝝭(x)𝜌(y)ℓ(x)|x − y |−𝟣𝜃(x) dxdy + C𝛽−𝟤r̄Θ.

Let us estimate from above

(25.6.9) −
∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌𝝭(x)𝜌(y)

)︁
ℓ(x)|x − y |−𝟣𝜃(x) dxdy ≤

−
∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌𝝭(x)𝜌(y)

)︁(︀
1− 𝜔(x , y)

)︀
ℓ(x)|x − y |−𝟣𝜃(x) dxdy

+

∫︁
𝜌𝝭(x)𝜌(y)𝜔(x , y)ℓ(x)|x − y |−𝟣𝜃(x) dxdy

with 𝜔 = 𝜔𝛾: 𝜔 = 0 for |x − y | ≥ 2𝛾 and 𝜔 = 1 for |x − y | ≤ 𝛾, 𝛾 ≥ 𝛽.
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To estimate the first term in the right-hand expression one can apply
Proposition 25.5.1. In this case ‖∇y𝜒‖L𝟤 ≍ C r̄𝛾−

𝟣
𝟤 , ‖∇y𝜒‖L∞ ≍ r̄𝛾−𝟤 and

plugging P = 𝛽−𝟤Θ and T = |𝜈|, 𝜀 = Z− 𝟤
𝟥 we conclude that this term does

not exceed

(25.6.10) C r̄
(︀
𝛾−

𝟣
𝟤 Q̄

𝟣
𝟤 + CZ

𝟤
𝟥𝛾−𝟤

)︀
Θ, Q̄ = max(Q,Z

𝟧
𝟥 ).

Consider the second term in the right-hand expression of (25.6.9). Note that∫︁
𝜌(y)𝜔(x , y)|x − y |−𝟣 dy ≤ C (r̄−

𝟣𝟧
𝟤 𝛾

𝟩
𝟤 + 𝜐

𝟥
𝟤𝛾𝟤)

since 𝜌(y) ≍
(︀
W (y) + 𝜈)

𝟥
𝟤 and |∇W | ≍ r̄−𝟧; then this term does not exceed

C (r̄−
𝟣𝟧
𝟤 𝛾

𝟩
𝟤 + 𝜐

𝟥
𝟤𝛾𝟤)r̄Θ.

Adding to (25.6.10) we get

C
(︁
𝛾−

𝟣
𝟤 Q̄

𝟣
𝟤 + CZ

𝟤
𝟥𝛾−𝟤 + r̄−

𝟣𝟧
𝟤 𝛾

𝟩
𝟤 + 𝜐

𝟥
𝟤𝛾𝟤

)︁
r̄Θ.

Optimizing with respect to 𝛾 = Q̄
𝟣
𝟧𝜐−

𝟥
𝟧 we get C𝜐

𝟥
𝟣𝟢 Q̄

𝟤
𝟧 r̄Θ and (25.6.8)

becomes

(25.6.11) (IN + 𝜈)

∫︁
ℓ(x)𝜌𝝭(x)𝜃(x) dx ≤∫︁

𝜃(x)
(︀
W (x) + 𝜈

)︀
ℓ(x)𝜌𝝭(x) dx + C𝜐

𝟥
𝟣𝟢 Q

𝟤
𝟧 r̄Θ ≤

C
(︀
𝜐 + 𝜐

𝟥
𝟣𝟢 Q̄

𝟤
𝟧

)︀
r̄Θ.

where we took into account that V − |x |−𝟣 * 𝜌 = W , and that W + 𝜈 ≤ 𝜐
on supp(𝜃).

Since a factor at (IN + 𝜈) in the left-hand expression of (25.6.11) is

obviously ≍ r̄Θ we arrive to (IN + 𝜈) ≤ C𝜐 + 𝜐
𝟥
𝟣𝟢 Q̄

𝟤
𝟧 .

Recalling definition (25.6.4) of 𝜐 we arrive to an upper estimate in
Theorem 25.6.3 below:

(25.6.12) IN + 𝜈 ≤ C𝜐 = CQ
𝟣
𝟨 (Z − N)

𝟣𝟩
𝟣𝟪 .

Really, this is true if Q ≥ Z
𝟧
𝟥 (we are interested in the general approach)

and in this case 𝜐 ≥ 𝜐
𝟥
𝟣𝟢 Q

𝟤
𝟧 . On the other hand, if Q = Z

𝟧
𝟥 (aZ

𝟣
𝟥 )−𝛿, aZ

𝟣
𝟥 ≥ 1,

then we get an extra term CQ
𝟣
𝟤𝟢 (Z − N)

𝟣
𝟧 Z

𝟤
𝟥 but we can skip it decreasing

unspecified exponent 𝛿 > 0 in the definition of Q.
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Remark 25.6.1. (i) We will prove the same estimate from below in the next
Subsection 25.6.2.

(ii) Note that the relative error in the estimates is 𝜐/𝜈 = (Z − N)−
𝟩
𝟤 Q

𝟣
𝟨 .

(iii) In the proof we used not assumption (25.6.2) itself but its corollary
(25.6.3). If we do not have such assumption instead of equality (25.6.4) we

have inequality Θ𝖳𝖥 ≳ 𝜐
𝟧
𝟤 r̄ 𝟩 (but probably equality still holds). However we

have a problem to estimate |Θ−Θ𝖳𝖥|: namely, we need to estimate the first

factor in the product ‖∇𝜃 𝟣
𝟤‖D(𝜌− 𝜌𝖳𝖥, 𝜌− 𝜌𝖳𝖥)

𝟣
𝟤 .

Let us select f in (25.6.1) such that |f ′| ≤ cf 𝟣−𝛿/𝟤 with arbitrarily small
𝛿 > 0. Then

b𝟤‖∇𝜃
𝟣
𝟤‖𝟤 ≤ C

∫︁
𝒵
𝜃𝟣−𝛿 dx ≤ C (

∫︁
𝒵
𝜃 dx)𝟣−𝛿C (

∫︁
𝒵
1 dx)𝛿 ≤

C (Θ𝖳𝖥)𝟣−𝛿𝜐−
𝟥
𝟤
(𝟣−𝛿)r̄ 𝟥𝛿

with 𝒵 = supp(∇𝜃) and 𝛽 = r̄
𝟣𝟥
𝟨 Q

𝟣
𝟨 and an error is less than 𝜖Θ𝖳𝖥 provided

𝜐 = C𝟤r̄−
𝟣𝟩
𝟨 Q

𝟣
𝟨 × (r̄ 𝟩Q)−𝛿𝟣

which leads to a marginally larger error.

Estimate P could be done in the same manner but here slight increase
of it does not matter.

(iv) The same arguments of (iii) could be applied to the proof of the lower
estimate in the next subsection despite rather different definition of Θ𝝭 by
(25.6.18).

(v) In vrirtue of Theorem 25.6.4 stable molecules do not exist in the free

nuclei model as Z − N ≥ CQ
𝟥
𝟩 and in atomic case ̂︀IN = IN .

Problem 25.6.2. Consider f such that |f ′| ≤ fg(f ) where g−𝟣(t) ∈ L𝟣

and further improve remainder estimate without assumption (25.6.3).

25.6.2 Estimate from below for Ionization Energy

Now let us prove estimate IN + 𝜈 from below. Let Ψ = ΨN(x𝟣, ... , xN) be
the ground state for N electrons, ‖Ψ‖ = 1; consider an antisymmetric test
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function

(25.6.13) Ψ̃ = Ψ̃(x𝟣, ... , xN+𝟣) = Ψ(x𝟣, ... , xN)u(xn+𝟣)−∑︁
𝟣≤j≤N

Ψ(x𝟣, ... , xj−𝟣, xN+𝟣, xj+𝟣, ... , xN)u(xj).

Then

EN+𝟣‖Ψ̃‖𝟤 ≤ 〈HN+𝟣Ψ̃, Ψ̃〉 = N〈HN+𝟣Ψu, Ψ̃〉 =

N〈HNΨu, Ψ̃〉+ N〈HV ,xN+𝟣
Ψu, Ψ̃〉+ N〈

∑︁
𝟣≤i≤N

|xi − xN+𝟣|−𝟣Ψu, Ψ̃〉 =

(EN − 𝜈 ′)‖Ψ̃‖𝟤 + N〈HW+𝜈′,xN+𝟣
Ψu, Ψ̃〉

+ N〈
(︀ ∑︁
𝟣≤i≤N

|xi − xN+𝟣|−𝟣 − (V − W )(xN+𝟣)
)︀
Ψu, Ψ̃〉

and therefore

(25.6.14) N−𝟣(IN+𝟣 + 𝜈 ′)‖Ψ̃‖𝟤 ≥ −〈HW+𝜈′,xN+𝟣
Ψu, Ψ̃〉

− 〈
(︀ ∑︁
𝟣≤i≤N

|xi − xN+𝟣|−𝟣 − (V − W )(xN+𝟣)
)︀
Ψu, Ψ̃〉

with 𝜈 ′ ≥ 𝜈 to be chosen later. One can see easily that

(25.6.15) N−𝟣‖Ψ̃‖𝟤 = ‖Ψ‖𝟤 · ‖u‖𝟤−

N

∫︁
Ψ(x𝟣, ... , xN−𝟣, x)Ψ†(x𝟣, ... , xN−𝟣, y)u(y)u†(x) dx𝟣 · · · dxN−𝟣 dxdy

where † means a complex or Hermitian conjugation.

Note that every term in the right-hand expression in (25.6.14) is the sum
of two terms: one with Ψ̃ replaced by Ψ(x𝟣, ... , xN)u(xN+𝟣) and another with
Ψ̃ replaced by −NΨ(x𝟣, ... , xN−𝟣, xN+𝟣)u(xN). We call these terms direct and
indirect indirect term respectively.

Obviously, in the direct and indirect terms u appears as |u(x)|𝟤 dx and
as u(x)u†(y) dxdy respectively, multiplied by some kernels.
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−W (x)

𝜈 ′

𝜈

supp 𝜃
𝜃 = 1

Recall that u is an arbitrary function.
Let us take u(x) = 𝜃

𝟣
𝟤 (x)𝜑j(x) where 𝜑j

are orthonormal eigenfunctions of HW+𝜈 and
𝜃(x) is 𝛽-admissible function supported in
{x : − 𝜐 ≥ W (x) + 𝜈 ≥ 𝟤

𝟥
𝜈} and equal 1

in {x : | − 2𝜐 ≥ W (x) + 𝜈 ≥ 𝟣
𝟤
𝜈}, satisfying

(25.5.11), and 𝛽 = 𝜐r̄ 𝟧.
Let us substitute it into (25.6.14), mul-

tiply by 𝜙(𝜆jL
−𝟣) and take sum with re-

spect to j . We get the same expressions
with |u(x)|𝟤 dx and u(x)u†(y) dxdy replaced
by F (x , x) dx and F (x , y) dxdy respectively with

(25.6.16) F (x , y) =

∫︁
𝜙(𝜆L−𝟣) d𝜆e(x , y ,𝜆).

Here 𝜙(𝜏 ) is a fixed C∞ non-negative function equal to 1 as 𝜏 ≤ 𝟣
𝟤
and equal

to 0 as 𝜏 ≥ 1 and L = 𝜈 ′ − 𝜈 = 6𝜐.
Under described construction and procedures the direct term generated

by N−𝟣‖Ψ̃‖𝟤 is ∫︁
𝜃(x)𝜙(𝜆L−𝟣) d𝜆e(x , x ,𝜆) dx(25.6.17)

and applying the semiclassical approximation we get

Θ𝝭 :=

∫︁
𝜙(𝜆L−𝟣) d𝜆P ′(W + 𝜈 − 𝜆) dx .(25.6.18)

Therefore under assumptions (25.3.33) and (25.6.2) 24) the remainder es-

timate is Cℏ−𝟣r̄ 𝟤b−𝟤 = C𝜐
𝟣
𝟤 r̄ 𝟤b−𝟣 = C𝜐−

𝟣
𝟤 r̄−𝟥; one can prove it easily by

partition of unity on supp(𝜃) and applying the semiclassical asymptotics

with effective semiclassical parameter ℏ = 1/(𝜐
𝟣
𝟤 b) = 𝜐−

𝟥
𝟤 r̄−𝟧.

On the other hand, indirect term generated by N−𝟣‖Ψ̃‖𝟤 is

(25.6.19) − N

∫︁
𝜃

𝟣
𝟤 (x)𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, x)Ψ†(x𝟣, ... , xN−𝟣, y)×

F (x , y) dxdydx𝟣 · · · dxN−𝟣

24) Or rather its corollary (25.6.3).
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and since the operator norm of F (., ., .) is 1 the absolute value of this term
does not exceed

(25.6.20) N

∫︁
𝜃(x)|Ψ(x𝟣, ... , xN−𝟣, x)|𝟤 dx =

∫︁
𝜃(x)𝜌𝝭(x) dx ≤∫︁
𝜃(x)𝜌(x) dx + CQ

𝟣
𝟤‖∇𝜃

𝟣
𝟤‖

where 𝜌𝖳𝖥 = 0 on supp(𝜃) and under assumption (25.6.2) 24) ‖∇𝜃 𝟣
𝟤‖ ≍

b− 𝟣
𝟤 r̄ ≍ 𝜁−

𝟣
𝟤 r̄−

𝟥
𝟤 .

Recall that P ′(W 𝖳𝖥 + 𝜈) = 𝜌𝖳𝖥. We will take 𝜈 ′ = 𝜈 + L large enough to
keep Θ𝝭 larger than all the remainders including those due to replacement
W by W 𝖳𝖥 and 𝜌 by 𝜌𝖳𝖥 in the expression above. One can see easily that

(25.6.21) Θ𝝭 ≍ ℏ−𝟥 × b−𝟤r̄ 𝟤 ≍ 𝜐
𝟥
𝟤 br̄ 𝟤 ≍ 𝜐

𝟧
𝟤 r̄ 𝟩.

Therefore

(25.6.22) If 𝜐 = C𝟢r̄−
𝟣𝟩
𝟨 Q

𝟣
𝟨 and Z −N ≥ C𝟢Z

𝟧
𝟩 the total expression generated

by N−𝟣‖Ψ̃‖𝟤 is greater than 𝜖Θ with Θ = 𝜐
𝟧
𝟤 r̄ 𝟩.

Now let us consider direct terms in the right-hand expression of (25.6.14).
The first of them is

(25.6.23) −
∫︁
𝜃

𝟣
𝟤 (x)𝜙(𝜆L−𝟣) d𝜆

(︀
HW+𝜈′,x𝜃

𝟣
𝟤 (x)e(x , y ,𝜆)

)︀
y=x

dx =

−
∫︁
𝜃(x)𝜙(𝜆L−𝟣) d𝜆

(︀
HW+𝜈′,xe(x , y ,𝜆)

)︀
y=x

dx

− 1

2

∫︁
𝜙(𝜆L−𝟣)[[HW , 𝜃

𝟣
𝟤 ], 𝜃

𝟣
𝟤 ] d𝜆e(x , x ,𝜆) ≥∫︁

𝜃(x)(𝜈 ′ − 𝜈 − 𝜆)𝜙(𝜆L−𝟣) d𝜆e(x , x ,𝜆) dx − C

∫︁
|∇𝜃

𝟣
𝟤 |𝟤e(x , x , 𝜈 ′)dx .

Note that the absolute value of last term in the right-hand expression of
(25.6.23) does not exceed Cb−𝟣r̄ 𝟤L

𝟥
𝟤 ≍ C𝜐

𝟣
𝟤 r̄−𝟥 ≪ C𝜐Θ.

The second direct term in the right-hand expression is

(25.6.24) −
∫︁
𝜃(x)

(︁
𝜌𝝭 * |x |−𝟣 − (V − W )(x)

)︁
F (x , x) dx =

− D
(︀
𝜌𝝭 − 𝜌, 𝜃(x)F (x , x)

)︀
≥

− CD
(︀
𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌

)︀ 𝟣
𝟤 · D

(︁
𝜃

𝟣
𝟤 F (x , x), 𝜃

𝟣
𝟤 F (x , x))

)︁ 𝟣
𝟤 ≥ −CQ

𝟣
𝟤 r̄

𝟣𝟧
𝟤 𝜐

𝟧
𝟤
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provided V − W = |x |−𝟣 * 𝜌 with D(𝜌 − 𝜌𝖳𝖥, 𝜌 − 𝜌𝖳𝖥) ≤ CQ; the absolute
value of this term is ≪ 𝜐Θ.

Further, the first indirect term in the right-hand expression of (25.6.14) is

(25.6.25) − N

∫︁
𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, x)Ψ†(x𝟣, ... , xN−𝟣, y)×

𝜙(𝜆L−𝟣) d𝜆
(︀
HW+𝜈′,x𝜃

𝟣
𝟤 (x)e(x , y ,𝜆)

)︀
dxdydx𝟣 · · · dxN−𝟣 =

− N

∫︁
𝜃

𝟣
𝟤 (y)𝜃

𝟣
𝟤 (x)Ψ(x𝟣, ... , xN−𝟣, x)Ψ†(x𝟣, ... , xN−𝟣, y)×

𝜙(𝜆L−𝟣)(𝜈 ′ − 𝜈 − 𝜆) d𝜆e(x , y ,𝜆) dxdydx𝟣 · · · dxN−𝟣

− N

∫︁
𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, x)Ψ†(x𝟣, ... , xN−𝟣, y)×

𝜙(𝜆L−𝟣)[HW ,x , 𝜃
𝟣
𝟤 (x)] d𝜆e(x , y ,𝜆) dxdydx𝟣 · · · dxN−𝟣.

Note that one can rewrite the sum of the first terms in the right-hand
expressions in (25.6.23) and (25.6.25) as

∑︀
j 𝜙(𝜆jL

−𝟣)(𝜈 ′− 𝜈−𝜆j)‖Ψ̂j‖𝟤 with

Ψ̂j(x𝟣, ... , xN−𝟣) :=

∫︁
Ψ(x𝟣, ... , xN−𝟣, x)𝜃

𝟣
𝟤 (x)𝜑j(x) dx

and therefore this sum is non-negative.
One can prove easily that the absolute value of the second term in

(25.6.25) is less than

C𝜐
𝟣
𝟤 b−𝟣

∫︁
𝜌𝝭(y)𝜃

𝟣
𝟤 (y) dy ≤ C𝜐−

𝟣
𝟤 r̄−𝟧Θ ≪ 𝜐Θ.

Therefore

(25.6.26) The sum of the first direct and indirect terms in the right-hand
expression of (25.6.14) is greater than −C𝜐Θ.

Finally, we need to consider the second indirect term generated by the
right-hand expression of (25.6.14)

(25.6.27) −
∫︁ (︁ ∑︁

𝟣≤i≤N

|y − xi |−𝟣 − (V − W )(y)
)︁
×

Ψ(x𝟣, ... , xN)Ψ
†(x𝟣, ... , xN−𝟣, y)𝜃

𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)F (xN , y) dx𝟣 · · · dxNdy =
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−
∫︁ (︁

|y |−𝟣*𝜌x(y)−(V −W )(y)
)︁
Ψ(x𝟣, ... , xN)Ψ

†(x𝟣, ... , xN−𝟣, y)×

𝜃
𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)F (xN , y) dx𝟣 · · · dxNdy

−
∫︁ (︁ ∑︁

𝟣≤i≤N

|y−xi |−𝟣−|y |−𝟣*𝜌x(y)
)︁
Ψ(x𝟣, ... , xN)Ψ

†(x𝟣, ... , xN−𝟣, y)×

𝜃
𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)F (xN , y) dx𝟣 · · · dxNdy ;

recall that 𝜌x is a smeared density, x = (x𝟣, ... , xN).

Since |y |−𝟣 * 𝜌x(y)− (V − W )(y) = |y |−𝟣 * (𝜌x − 𝜌), the first term in the
right-hand expression is equal to

(25.6.28)

∫︁
𝜃

𝟣
𝟤 (xN)Ψ(x𝟣, ... , xN)×

Dy

(︁
𝜌x(y)− 𝜌(y), F (xN , y ,𝜆)𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, y)

)︁
dx𝟣 · · · dxN ;

and its absolute value does not exceed

(25.6.29)(︂
N

∫︁
D
(︀
𝜌x(·)− 𝜌(·), 𝜌x(·)− 𝜌(·)

)︀
|Ψ(x𝟣, ... , xN)|𝟤𝜃(xN) dx𝟣 · · · dxN

)︂ 𝟣
𝟤

×

N− 𝟣
𝟤

(︂
Dy

(︁
F (xN , y ,𝜆)𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, y),

F (xN , y ,𝜆)𝜃
𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, y)

)︁
dx𝟣 · · · dxN

)︂ 𝟣
𝟤

.

Due to estimate (25.5.24) and definition (25.5.4) as the first factor in

(25.6.29) does not exceed
(︀
(Q + T + 𝜀−𝟣N)Θ + P

)︀ 𝟣
𝟤 where we assume that

𝜀 ≤ Z− 𝟤
𝟥 and Θ ≍ b− 𝟣

𝟤 Q
𝟣
𝟤 r̄ is now an upper estimate for

∫︀
𝜃(y)𝜌𝝭(y) dy -like

expressions; due to our choice of 𝜐 it coincides with Θ = 𝜐
𝟧
𝟤 r̄ 𝟩.

Then according to (25.5.25) P ≍ Cb−𝟤Θ ≪ QΘ and according to (25.5.23)
T ≪ Q and therefore in all such inequalities we may skip P and T terms;
so we get C (Q + 𝜀−𝟣N)

𝟣
𝟤Θ

𝟣
𝟤 .

Meanwhile the second factor in (25.6.29) (without square root) is equal
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to

N−𝟣

∫︁
L−𝟤𝜙′(𝜆L−𝟣)𝜙′(𝜆′L−𝟣)|y − z |−𝟣 e(xN , y ,𝜆) 𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, y)×

e(xN , z ,𝜆′) 𝜃
𝟣
𝟤 (z)Ψ†(x𝟣, ... , xN−𝟣, z) dydz dx𝟣 · · · dxN−𝟣 dxN d𝜆d𝜆′;

after integration by xN we get instead of marked terms e(y , z ,𝜆) (recall that
e(., ., .) is the Schwartz kernel of projector and we keep 𝜆 < 𝜆′) and then
integrating with respect to 𝜆′ we arrive to

N−𝟣

∫︁
|y − z |−𝟣F (y , z)𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, y)×

𝜃
𝟣
𝟤 (z)Ψ†(x𝟣, ... , xN−𝟣, z) dydz dx𝟣 · · · dxN−𝟣

where now F is defined by (25.6.16) albeit with 𝜙𝟤 instead of 𝜙. This latter
expression does not exceed

(25.6.30) N−𝟣

∫︁∫︁
|y − z |−𝟣|F (y , z)|𝜃

𝟣
𝟤 (y)|Ψ(x𝟣, ... , xN−𝟣, y)|𝟤×

dydz dx𝟣 · · · dxN−𝟣.

Then due to proposition 25.A.3 expression
∫︀
|y −z |−𝟣|F (y , z)| dz does not ex-

ceed Cb−𝟣ℏ−𝟣 ≍ 𝜐
𝟣
𝟤 , and thus expression (25.6.30) does not exceed CZ−𝟤𝜐

𝟣
𝟤Θ

and therefore the second factor in (25.6.29) does not exceed CN−𝟣𝜐
𝟣
𝟦Θ

𝟣
𝟤 and

the whole expression (25.6.29) does not exceed

C (Q + 𝜀−𝟣N)
𝟣
𝟤Θ

𝟣
𝟤 × N−𝟣𝜐

𝟣
𝟦Θ

𝟣
𝟤 = CN−𝟣(Q + 𝜀−𝟣N)

𝟣
𝟤𝜐

𝟣
𝟦Θ

and then

(25.6.31) As 𝜀 ≥ Z−𝟣𝜐−
𝟥
𝟤 the first term in the right-hand expression of

(25.6.27) does not exceed C𝜐Θ.

Further, we need to estimate the second term in the right-hand expression
of (25.6.27). It can be rewritten in the form

(25.6.32)
∑︁

𝟣≤i≤N

∫︁
U(xi , y)Ψ(x𝟣, ... , xN)Ψ

†(x𝟣, ... , xN−𝟣, y)𝜃
𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)×

F (xN , y) dx𝟣 · · · dxNdy
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where U(xi , y) is the difference between potential generated by the charge
δ(x − xi) and the same charge smeared; note that U(xi , y) is supported in
{(xi , y) : |xi − y | ≤ 𝜀}. Let us estimate the i -th term in this sum with i < N
first; multiplied by N(N − 1), it does not exceed

(25.6.33)

N

(︂∫︁
|U(xi , y)|𝟤|Ψ(x𝟣, ... , xN)|𝟤𝜃

𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)|F (xN , y)| dx𝟣 · · · dxNdy

)︂ 𝟣
𝟤

×

N

(︂∫︁
𝜔(xi , y)|Ψ(x𝟣, ... , xN−𝟣, y)|𝟤𝜃

𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)|F (xN , y)| dx𝟣 · · · dxNdy

)︂ 𝟣
𝟤

;

here 𝜔 is 𝜀-admissible and supported in {(xi , y) : |xi − y | ≤ 2𝜀} function.

Due to Proposition 25.A.3 in the second factor
∫︀
𝜃

𝟣
𝟤 (xN)|F (xN , y)| dxN ≤ C

and therefore the whole second factor does not exceed

(25.6.34) C
(︁∫︁

𝜃
𝟣
𝟤 (x)𝜔(x , y)𝜌

(𝟤)
𝝭 (x , y) dxdy

)︁ 𝟣
𝟤

where we replaced xi by x . According to Proposition 25.5.1 in the selected
expression one can replace 𝜚

(𝟤)
𝝭 (x , y) by 𝜌𝝭(x)𝜌(y) with an error which does

not exceed

C
(︁
sup
x

‖∇y𝜒x‖L𝟤(ℝ𝟥)

(︀
Q + 𝜀−𝟣N

)︀ 𝟣
𝟤 + C𝜀N‖∇y𝜒‖L∞

)︁
Θ

which as we plug supx ‖∇y𝜒x‖L𝟤(ℝ𝟥) ≍ 𝜀
𝟣
𝟤 , ‖∇y𝜒‖L∞ ≍ 𝜀−𝟣 becomes CNΘ.

Meanwhile, consider

(25.6.35)

∫︁
|U(xi , y)|𝟤𝜃

𝟣
𝟤 (y)|F (xN , y)| dy .

Again due to Proposition 25.A.3 it does not exceed

C𝜐
𝟥
𝟤

∫︁
|U(xi , y)|𝟤𝜃

𝟣
𝟤 (y)

(︀
|xN − y |𝜐

𝟣
𝟤 + 1

)︀−s
dy

and this integral should be taken over B(xi , 𝜀), with |U(xi , y)| ≤ |xi − y |−𝟣,

so (25.6.35) does not exceed C𝜀𝜐
𝟥
𝟤𝜔′(xi , xN) with 𝜔

′(x , y) =
(︀
1+𝜐

𝟣
𝟤 |x −y |

)︀−s



25.6. POSITIVELY CHARGED SSYSTEMS 59

(provided 𝜀 ≤ 𝜐−
𝟣
𝟤 which will be the case). Therefore the first factor in

(25.6.33) does not exceed

(25.6.36) C𝜀
𝟣
𝟤𝜐

𝟥
𝟦

(︁∫︁
𝜃

𝟣
𝟤 (x)𝜔′(x , y)𝜌

(𝟤)
𝝭 (x , y) dxdy

)︁ 𝟣
𝟤
.

Therefore in selected expression one can replace 𝜌
(𝟤)
𝝭 (x , y) by 𝜌𝝭(x)𝜌(y) with

an error which does not exceed what we got before but with 𝜀 replaced by
𝜐−

𝟣
𝟤 , i.e. also CNΘ.
However in both selected expressions replacing 𝜌

(𝟤)
𝝭 (x , y) by 𝜌𝝭(x)𝜌(y)

we get just 0. Therefore expression (25.6.33) does not exceed C𝜀
𝟣
𝟤𝜐

𝟥
𝟦 ZΘ

which does not exceed C𝜐Θ provided 𝜀 ≤ C𝜐
𝟣
𝟤 Z−𝟤.

So, we have two restriction to 𝜀 from above: the last one and 𝜀 ≤ Z− 𝟤
𝟥

and one can see easily that both of them are compatible with with restriction
to 𝜀 in (25.6.31).

Finally, consider term in (25.6.32) with i = N (multiplied by N):

(25.6.37) N

∫︁
U(xN , y)|Ψ(x𝟣, ... , xN)|𝟤𝜃

𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)F (xN , y) dx𝟣 · · · dxNdy ;

due to Cauchy inequality it does not exceed

(25.6.38) N
(︁∫︁

|xN − y |−𝟤|Ψ(x𝟣, ... , xN)|𝟤𝜃
𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y) dx𝟣 · · · dxNdy

)︁ 𝟣
𝟤×

N
(︁∫︁

|F (xN , y)|𝟤|Ψ(x𝟣, ... , xN)|𝟤𝜃
𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y) dx𝟣 · · · dxNdy

)︁ 𝟣
𝟤

where both integrals are taken over {|xN − y | ≤ 𝜀} and integrating with
respect to y there we get that it does not exceed

C𝜀
𝟣
𝟤Θ

𝟣
𝟤 × 𝜐

𝟥
𝟦 𝜀

𝟥
𝟤Θ

𝟣
𝟤 = C𝜐

𝟥
𝟦 𝜀𝟤Θ ≪ 𝜐Θ.

Therefore the right-hand expression in (25.6.14) is ≥ −C𝜐Θ and recalling
that 𝜈 ′ − 𝜈 = O(𝜐) we recover an lower estimate in Theorem 25.6.3 below:

(25.6.39) IN + 𝜈 ≥ −C𝜐 = CQ
𝟣
𝟨 (Z − N)

𝟣𝟩
𝟣𝟪 .

Combining with a lower estimate (25.6.12) and recalling estimate (25.4.5)
for Q we arrive to
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Theorem 25.6.3. Let condition (25.3.33) be fulfilled and let N ≤ Z −C𝟢Q
𝟥
𝟩

with Q ≤ C𝟣Z
𝟧
𝟥 .

Then in the framework of fixed nuclei model under assumption (25.6.2)

(25.6.40) |IN + 𝜈| ≤ C (Z − N)
𝟣𝟩
𝟣𝟪 Z

𝟧
𝟣𝟪

{︃
1 as a ≤ Z− 𝟣

𝟥 ,

Z−𝛿 + (aZ
𝟣
𝟥 )−𝛿 as a ≥ Z− 𝟣

𝟥 .

25.6.3 Estimate for Excessive Positive Charge

To estimate excessive positive charge when molecules can still exist in free
nuclei model we apply arguments of section 5 of B. Ruskai and J. P. Solovej [1].
In view of Theorem 25.4.15 it is sufficient to consider the case

(25.6.41) a = min
j<k

|yj − yk | ≥ C𝟢r̄ .

Therefore in Thomas-Fermi theory 𝜌𝖳𝖥 is supported in separate “atoms”.
Let us consider a-admissible functions 𝜃m(x), supported in B(ym,

𝟣
𝟥
a) for

m = 1, ... ,M and in {|x − ym| ≥ 𝟣
𝟦
a ∀m = 1, ... ,M} for m = 0, such that

(25.6.42) 𝜃𝟤𝟢 + ... + 𝜃𝟤M = 1.

Then for the ground state Ψ

(25.6.43) EN = 〈HΨ,Ψ〉 =
∑︁
𝛼

〈𝜃𝛼H𝜃𝛼Ψ,Ψ〉−
∑︁
𝛼,j

‖(∇j𝜃𝛼)Ψ‖𝟤

with the sum over of (M + 1)-cluster decompositions 𝛼 = (𝛼𝟢, ... ,𝛼M) of
{1, ... ,N} and 𝜃𝛼(x) =

∏︀
𝟢≤m≤M

∏︀
i∈𝛼m

𝜃m(xi); j = 1, ... ,N . Then for any
given 𝛼

(25.6.44) H =
∑︁

𝟢≤m≤M

H𝛼m + J𝛼

with the cluster Hamiltonians H𝛼m , involving only potential of m-th nucleus
(no nucleus potential as m = 0) and only electrons belonging to 𝛼m and
therefore satisfying

(25.6.45) H𝛼m ≥ Eat(Nm(𝛼),Zm), H𝛼𝟢 ≥ 0,

and with the intercluster Hamiltonian (actually, just potentials)
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(25.6.46) J𝛼 =
∑︁

𝟣≤m≤M

∑︁
i /∈𝛼m

−Zm|xi − ym|−𝟣

+
∑︁
m<l

∑︁
i∈𝛼m,j∈𝛼l

|xi − xj |−𝟣 +
∑︁
m<l

ZmZl |yl − ym|−𝟣.

Let us note that

(25.6.47)
∑︁
𝛼

𝜃𝟤𝛼J𝛼 =
∑︁

𝟢≤m<l≤M

Jml

with Jml given by (32)–(33) of Ruskai–Solovej [1] if m, l > 0 and m = 0
respectively:

(25.6.48) Jml = ZmZl |ym − yl |−𝟣 − Zm

∑︁
i

𝜃l(xi)
𝟤|xi − ym|−𝟣−

Zl

∑︁
i

𝜃m(xi)
𝟤|xi − yl |−𝟣 +

∑︁
i ̸=j

𝜃m(xi)
𝟤𝜃l(xj)

𝟤|xi − xj |−𝟣,

and

(25.6.49) J𝟢l =
∑︁
i

𝜃𝟢(xi)
𝟤
(︁
−Zl |xi − yl |−𝟣 +

∑︁
j

𝜃l(xj)
𝟤|xi − xj |−𝟣

)︁
.

Then we recover (35) of Ruskai–Solovej [1]

(25.6.50) 〈JmlΨ,Ψ〉 = ZmZl |ym − yl |−𝟣 − Zl

∫︁
𝜌𝝭(x)𝜃m(x)

𝟤|x − yl |−𝟣 dx−

Zm

∫︁
𝜌𝝭(x)𝜃l(x)

𝟤|x − ym|−𝟣 dx +

∫︁
𝜌
(𝟤)
𝝭 (x , y)𝜃m(x)𝜃l(y) dxdy .

Applying Proposition 25.5.1 and estimate (25.4.56) (replacing first 𝜃m with
m = 1, ... ,M by 𝜃m supported in B(ym, cr̄) and estimating an error), we
conclude that

(25.6.51)

∫︁
𝜌𝝭(x)𝜃m(x)

𝟤|x − yl |−𝟣 dx =(︁∫︁
𝜌𝖳𝖥(x)𝜃m(x)

𝟤|x − yl |−𝟣 dx + O(Y )
)︁
|ym − yl |−𝟣,

∫︁
𝜌𝝭(x)𝜃m(x)

𝟤 dx = N𝖳𝖥
m + O(Y ),(25.6.52)
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with

N𝖳𝖥
m =

∫︁
𝜌𝖳𝖥(x)𝜃m(x)

𝟤 dx , Y := Q
𝟣
𝟤 r̄

𝟣
𝟤(25.6.53)

(compare with (36)–(37) of Ruskai–Solovej [1]) which yields∫︁
𝜌𝝭(x)

(︀
1−

∑︁
𝟣≤m≤M

𝜃m(x)
)︀

dx ≤ CY ,(25.6.54)

and we prove that (25.6.52) holds for 𝜃m as well (compare with (38) of
Ruskai–Solovej [1]).

The last term in (25.6.51) is estimated by Proposition 25.5.1 and estimate
(25.4.56) and the same replacement trick:

(25.6.55)

∫︁
𝜌
(𝟤)
𝝭 (x , y)𝜃m(x)

𝟤𝜃l(y)
𝟤|x − y |−𝟣 dxdy ≥∫︁

𝜌
(𝟤)
𝝭 (x , y)𝜃m(x)

𝟤𝜃l(y)
𝟤|x − y |−𝟣 dxdy ≥∫︁

𝜌𝖳𝖥(x)𝜌𝝭(y)𝜃m(x)
𝟤𝜃l(y)

𝟤|x − y |−𝟣 dxdy−

C
(︁

Q
𝟣
𝟤

∫︁
𝜌𝝭(x)𝜃l(x)

𝟤dx + Ya−𝟣
)︁
|ym − yl |−𝟣

and repeating the same trick we get that it is larger than∫︁
𝜌𝖳𝖥(x)𝜌𝖳𝖥(y)|x − y |−𝟣dxdy − C (Z − N)Ya−𝟣 − CY 𝟤a−𝟣.(25.6.56)

Then we conclude that

〈JmlΨ,Ψ〉 ≥ J𝖳𝖥
ml − CNYa−𝟣(25.6.57)

with

(25.6.58) J𝖳𝖥
ml =

∫︁
𝜌𝖳𝖥(x)𝜌𝖳𝖥(y)𝜃m(x)𝜃l(y)|x − y |−𝟣 dxdy

− Zm

∫︁
𝜌𝖳𝖥(x)𝜃l(y)|x − ym|−𝟣 dx − Zl

∫︁
𝜌𝖳𝖥(x)𝜃m(y)|x − yl |−𝟣 dx

+ ZmZl |ym − yl |−𝟣

and

(25.6.59) |〈J𝟢lΨ,Ψ〉| ≤ C (Z − N)Ya−𝟣 + CY 𝟤a−𝟣

(compare with (39)–(40) of Ruskai–Solovej [1]) provided
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(25.6.60)
⃒⃒⃒∫︁

𝜌𝖳𝖥(y)|x − y |−𝟣𝜃m(x) dy − N𝖳𝖥
m |x − ym|−𝟣

⃒⃒⃒
≤

C (Z − N)|x − ym|−𝟣

for |x − ym| ≥ C r̄ .
Let us note that the absolute value of the last term in the right-hand

expression of (25.6.43) does not exceed Ca−𝟤Y due to (25.6.52). Now stability
condition yields

(25.6.61) J =
∑︁

𝟢≤m<l≤M

Jml ≤ CYa−𝟤 + C (Z − N)Ya−𝟣 + CY 𝟤a−𝟣.

This inequality, (25.6.41) and Proposition 25.6.6 below yield that Z − N ≤
CY = C r̄

𝟣
𝟤 Q

𝟣
𝟤 . Since r̄ ≍ (Z − N)−

𝟣
𝟥 we arrive to (Z − N) ≤ CQ

𝟥
𝟩 :

Theorem 25.6.4. Let condition (25.3.33) be fulfilled. Then in the frame-
work of free nuclei model with M ≥ 2 the stable molecule does not exist
unless

(25.6.62) Z − N ≤ Z
𝟧
𝟩
−𝛿.

Remark 25.6.5. Unfortunately, we do not prove that molecules exist. We
are not aware of any rigorous result of this type in the frameworks of our
models.

Proposition 25.6.6. Let (25.6.41) be fulfilled. Then inequality (25.6.60)
holds and

(25.6.63) J ≥ 𝜖(Z − N)𝟤a−𝟣.

Proof. Note first that

(25.6.64) ℰ𝖳𝖥 ≤ ℰ(𝜌) =
∑︁
j

ℰ(𝜌𝖳𝖥j ) + J𝖳𝖥(𝜌) ≤∑︁
j

ℰ𝖳𝖥(𝜌𝖳𝖥j ) + C (Z − N)𝟤a−𝟣

with 𝜌 =
∑︀

j 𝜌
𝖳𝖥
j while ∑︁

j

ℰ(𝜌𝖳𝖥j ) ≤
∑︁
j

ℰ(𝜃j𝜌𝖳𝖥);(25.6.65)
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then

J𝖳𝖥(𝜌𝖳𝖥) ≤ C (Z − N)𝟤a−𝟣(25.6.66)

and using (25.6.62) we conclude that

D(𝜌𝖳𝖥 − 𝜌, 𝜌𝖳𝖥 − 𝜌) ≤ C (Z − N)𝟤a−𝟣.(25.6.67)

Further,

(25.6.68) Λ :=
∑︁
j

D(𝜌𝖳𝖥𝜃j − 𝜌𝖳𝖥j , 𝜌𝖳𝖥𝜃j − 𝜌𝖳𝖥j ) ≤

D(𝜌𝖳𝖥 − 𝜌, 𝜌𝖳𝖥 − 𝜌) + C r̄a−𝟣Λ

and combining with (25.6.66) we conclude that

(25.6.69) Λ ≤ C (Z − N)𝟤a−𝟣

due to (25.6.41). Combining with 𝜌𝖳𝖥j *|x |−𝟣 = N𝖳𝖥
j |x −yj |−𝟣 for |x −yj | ≥ rS

we arrive to (25.6.60). Further,

(25.6.70) J𝖳𝖥(𝜌𝖳𝖥) ≥ J𝖳𝖥(𝜌)− CΛ
𝟣
𝟤 r̄
1

2
(Z − N)a− 𝟥

𝟤 − CΛr̄−𝟣

which together with (25.6.68) and (25.6.69) yields (25.6.63).

25.A Appendices

25.A.1 Electrostatic Inequalities

We know already that there are two sources of errors in the lower estimate:
due to electrostatic inequality (25.2.1) and semiclassical errors. For the

first error in the case B⃗ = const E. Lieb, J. P. Solovej and J. Yngvason [3]
provide the (almost) perfect estimate; the reader can find the proof based
on the magnetic Lieb–Thirring inequality (and this inequality as well) in

that paper (p. 122) which in the case of B⃗ = 0 becomes

Theorem 25.A.1. For the ground state Ψ of (25.1.1) with potential (25.1.4)

(25.A.1)

∫︁
𝜌

𝟦
𝟥
𝝭 dx ≤ CZ

𝟧
𝟨 N

𝟣
𝟤

(︀
Z + N

)︀ 𝟣
𝟥

otherwise.
In particular for c−𝟣N ≤ Z ≤ cN the right-hand expression does not

exceed CZ
𝟧
𝟥 .
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On the other hand, for B = 0 there is a more precise inequality due to
V. Bach [1] and G. Graf and J. P. Solovej [1]:

Theorem 25.A.2. For the ground state Ψ of (25.1.1) with potential (25.1.4)

(25.A.2) 〈HΨ,Ψ〉 ≥

N𝟣(A − 𝜈) + 𝜈N − 1

2

∫︁∫︁
|x − y |−𝟣|e(x , y , 𝜈)|𝟤 dxdy − CN

𝟧
𝟥
−𝛿

with some exponent 𝛿 > 0.

We will discuss magnetic field case in more details in the Appendix to
the next Chapter 26.

25.A.2 Hamiltonian Trajectories

We are going to prove that for W = W 𝖳𝖥 in M = 1 case the generic
trajectory on the energy level 𝜈 is not periodic. We use some ideas from
V. Arnold [2], pages 37–38. Recall that in this case W = W (r) (r = |x − y𝟣|)
and angular momentum M⃗ is a motion integral. Then any trajectory lies on
some plane and if M = |M⃗ | > 0 it lies in {0 < r < r̄} where W is analytic
and W (r̄) = −𝜈.

(25.A.3) Let us assume that all the trajectories on the energy level 𝜈 are
periodic.

Then the rotation number

(25.A.4) Φ =

∫︁ r𝟤

r𝟣

M dr

r 𝟤
√︁

2
(︀
W (r) + 𝜈

)︀
− M𝟤r−𝟤

showing the increment of the polar angle over a half-trajectory should be
𝜋k−𝟣 with k ∈ ℕ and should not depend on M where r𝟣 ≤ r𝟤 are roots of(︀
W (r) + 𝜈

)︀
− M𝟤r−𝟤 = 𝜈. So, Φ should be the same for all trajectories on

the energy level 𝜈. One can see easily that for M → 0 Φ tends to those of
the Coulomb potential. So, Φ = 2𝜋 for all trajectories on the energy level 𝜈.

Let r𝟢 be a root of F (r) = 2
(︀
W (r) + 𝜈

)︀
+ r 𝟦

(︀
W ′(r)

)︀𝟤
= 0. One can see

easily that F (r̄) > 0, F (r) → ∞ as r → 0 and F ′(r) < 0 because

(25.A.5) W ′ < 0, W ′′ + 2rW ′ = r−𝟣(r 𝟤W ′)′) = rΔW > 0.
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So, the unique root exists. Then r = r𝟢 is a circular motion with M =
−r 𝟥𝟢 W ′(r𝟢).

Then (V. Arnold [2], problem 2 at page 37)

Φ → 𝜋
√︀

W ′/(3W ′ + rW ′′)−𝟣
⃒⃒
r=r𝟢

= Φ𝟢

for trajectories tending to circular. However, 3W ′ + rW ′′ > W ′ due to
(25.A.5) and then Φ𝟢 > 𝜋. Contradiction to assumption (25.A.3).

25.A.3 Some Spectral Function Estimates

Proposition 25.A.3. For Schrödinger operator with W ∈ C∞ and for
𝜑 ∈ C∞

𝟢 ([−1, 1]) the following estimate holds for any s:

|F (x , y)| ≤ Ch−𝟥
(︀
1 + h−𝟣|x − y |

)︀−s
,(25.A.6)

F (x , y) :=

∫︁
𝜑(𝜆) d𝜆e(x , y ,𝜆).(25.A.7)

Proof. Let u(x , y , t) =
∫︀

e−ih−𝟣t𝜆 d𝜆e(x , y ,𝜆) be the Schwartz’s kernel of

e−ih−𝟣Ht .
Fix y . Note first that L𝟤-norm25) of 𝜑(hDt)𝜒(t)𝜔(x)u(x , y , t) is less than

Chs as 𝜒 ∈ C∞
𝟢 ([−𝜖, 𝜖]) and 𝜔 ∈ C∞ supported in {|x − y | ≥ 𝜖𝟣} (𝜖𝟣 = C 𝜖)

due to the finite speed of propagation of singularities.
We conclude then that L𝟤-norm of 𝜑(hDt)𝜒(t)𝜔(x)u(x , y , t) is less than

Chs for 𝜔 ∈ C∞ supported in {x : |x − y | ≥ C}.
Then L𝟤-norm of 𝜕 lt∇𝛼𝜑(hDt)𝜒(t)𝜔(x)u does not exceed Chs . Then

due to imbedding inequality L∞-norm of 𝜑(hDt)𝜒(t)𝜔(x)u does not exceed
Chs . Setting t = 0 and using this inequality and |F (x , y)| ≤ Ch−𝟥 (due to
Chapter 4) we get that |F (x , y)| ≤ Chs for |x − y | ≥ 𝜖𝟢;

Now let us consider general |x−y | = r ≥ Ch. Rescaling x−y ↦→ (x−y)r−𝟣

we need to rescale h ↦→ hr−𝟣 and rescaling above inequality and keeping in
mind that F (x , y) is a density with respect to x we get |F (x , y)| ≤ Chsr−𝟥−s

which is equivalent to (25.A.6)–(25.A.7).

Comments

There are papers of physicists. L.H. Thomas and E. Fermi have suggested
in 1927 that a large Coulomb system (atom or molecule) in the ground

25) With respect to x , t here and below.
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state looks like a classical gas but with the Pauli principle, so, leading to
the first term ℰ𝖳𝖥 in the asymptotics. The second term of asymptotics was
conjectured by J. M.C. Scott in 1952 as a contribution of those electrons
which move very close to the nuclei. Next terms, Dirac and Schwinger
corrections were conjectured in 1930 and 1980, respectively.

The mathematical rigorous papers one can separated into several groups:
First, there are papers concerning only the Thomas–Fermi model (so,

studying the Thomas-Fermi equation, may be, with some modifications,
without any consideration of the quantum mechanical model, even if the
latter was a source for the former). Most notably H. Brezis, H. and E. Lieb
E. [1], R. Benguria [1], R. Benguria, R. and Lieb E. H. [1].

The second group consists of the papers, justifying Thomas–Fermi model
as an approximation to the quantum mechanical model: E. H. Lieb and B.
Simon, [1], where the leading term was derived; also certain properties of
the the Thomas–Fermi model were established.

Next, W. Hughes [1] and H. Siedentop and R. Weikart [1–3] justified
the Scott correction term in the atomic case, while V. Ivrii and M. Sigal [1]
justified it in the molecular case.

Then, C. Fefferman and L. Seco [1] justified Dirac and Schwinger cor-
rection terms in the atomic case, while V. Ivrii justified them in [21] (even
in the case of the relatively weak magnetic field). J. P. Solovej, J. P., T.
Ø. Sørensen and W. L. Spitzer [1] recovered Scott correction term in the
relativistic case (under assumption preventing relativistic instability).

The third group consists of the papers, related to the ground state energy
problem: B. Ruskai and J. P. Solovej [1], J. P. Solovej [1] and L. A. Seco,
I. M. Sigal, and J. P. Solovej [1].

Finally, we already mentioned papers which provided the solid functional-
analytical base for all this construction. Pretty complete survey could be
found in C. L. Fefferman, V. Ivrii, L. A. Seco, and I. M. Sigal [1].



Chapter 26

The Case of External Magnetic
Field

26.1 Introduction

In this Chapter we repeat analysis of the previous Chapter 25 but in the
case of the constant external magnetic field1).

26.1.1 Framework

Let us consider the following operator (quantum Hamiltonian)

H = HN :=
∑︁

𝟣≤j≤N

HA,V ,xj +
∑︁

𝟣≤j<k≤N

|xj − xk |−𝟣(26.1.1)

on

H =
⋀︁

𝟣≤n≤N

H, H = L𝟤(ℝd ,ℂq)(26.1.2)

with

HV ,A =
(︀
(i∇− A) · σ

)︀𝟤 − V (x)(26.1.3)

describing N same type particles in the external field with the scalar potential
−V and vector potential A(x), and repulsing one another according to the
Coulomb law.

1) Actually we need a magnetic field either sufficiently weak or close to a constant on
the very small scale.
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Here xj ∈ ℝd and (x𝟣, ... , xN) ∈ ℝdN , potentials V (x) and A(x) are
assumed to be real-valued. Except when specifically mentioned we assume
that

(26.1.4) V (x) =
∑︁

𝟣≤k≤M

Zm

|x − ym|

where Zm > 0 and ym are charges and locations of nuclei. Here σ =
(σ𝟣,σ𝟤, ... ,σd), σk are q × q-Pauli matrices.

So far in comparison with the previous Chapter 25 we only changed
(25.1.3) to (26.1.3) introducing magnetic field. Now spin enters not only in
the definition of the space but also into operator through matrices σk . Since
we need d = 3 Pauli matrices it is sufficient to consider q = 2 but we will
consider more general case as well (but q should be even).

Remark 26.1.1. In the case of the the constant magnetic field ∇× A

HA,V =
(︀
−i∇− A(x)

)︀𝟤
+ σ · (∇× A)− V (x)(26.1.5)

In the case d = 2 this operator downgrades to

HA,V =
(︀
−i∇− A(x)

)︀𝟤
+ σ𝟥(∇× A)− V (x)(26.1.6)

Again, let us assume that

(26.1.7) Operator H is self-adjoint on H.

As usual we will never discuss this assumption.

26.1.2 Problems to Consider

As in the previous Chapter we are interested in the ground state energy
E = EN of our system i.e. in the lowest eigenvalue of the operator H = HN

on H:

(26.1.8) E := inf SpecH on H;

more precisely, we are interested in the asymptotics of EN = E(y;Z ;N) as V
is defined by (26.1.4) and N ≍ Z := Z𝟣+Z𝟤+...+ZM → ∞ and we are going
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to prove that2) E is equal to Magnetic Thomas-Fermi energy ℰ𝖳𝖥
B , possibly

with the Scott and Dirac-Schwinger corrections and with an appropriate
error.

We are also interested in the asymptotics for the ionization energy

(26.1.9) IN := EN−𝟣 − EN

and we also would like to estimate maximal excessive negative charge

(26.1.10) max
N : 𝖨N>𝟢

(N − Z ).

All these questions so far were considered in the framework of the fixed
positions y𝟣, ... , yM but we can also consider̂︀E := ̂︀EN = ̂︀E(y;Z ;N) = E + U(y;Z )(26.1.11)

with

U(y;Z ) :=
∑︁

𝟣≤m<m′≤M

ZmZm′

|ym − ym′ |
(26.1.12)

and ̂︀E(Z ;N) = inf
𝗒𝟣,...,𝗒M

̂︀E(y;Z ;N)(26.1.13)

and replace IN by ̂︀IN = ̂︀EN−𝟣 − ̂︀EN and modify all our questions accord-
ingly. We call these frameworks fixed nuclei model and free nuclei model
respectively.

In the free nuclei model we can consider two other problems:

(a) Estimate from below minimal distance between nuclei i.e.

min
𝟣≤m<m′≤M

|ym − ym′ |

for which such minimum is achieved.

(b) Estimate maximal excessive positive charge

(26.1.14) max
N

{︀
(Z − N) : ̂︀E < min

N𝟣,...,NM :

N𝟣+...NM=N

∑︁
𝟣≤m≤M

E(Zm;Nm)
}︀

for which molecule does not disintegrates into atoms.

2) Under reasonable assumption to the minimal distance between nuclei.
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26.1.3 Magnetic Thomas-Fermi Theory

As in the previous Chapter 25 the first approximation is the Hartree-Fock (or
Thomas-Fermi) theory. Let us introduce the spacial density of the particle
with the state Ψ ∈ H:

(26.1.15) 𝜌(x) = 𝜌𝝭(x) = N

∫︁
|Ψ(x , x𝟤, ... , xN)|𝟤 dx𝟤 · · · dxN .

Let us write the Hamiltonian, describing the corresponding “quantum liq-
uid”:

ℰB(𝜌) =
∫︁
𝜏B(𝜌(x)) dx −

∫︁
V (x)𝜌(x) dx +

1

2
D(𝜌, 𝜌),(26.1.16)

with

D(𝜌, 𝜌) =

∫︁∫︁
|x − y |−𝟣𝜌(x)𝜌(y) dxdy(26.1.17)

where 𝜏B is the energy density of a gas of noninteracting electrons:

(26.1.18) 𝜏B(𝜌) = sup
w≥𝟢

(︀
𝜌w − PB(w)

)︀
is the Legendre transform of the pressure PB(w) given by the formula

(26.1.19) PB(w) = 𝜘𝟣B
(︁1
2

w
d
𝟤
+ +

∑︁
j≥𝟣

(w − 2jB)
d
𝟤
+

)︁
with 𝜘𝟣 = (2𝜋)−𝟣q, (3𝜋𝟤)−𝟣q for d = 2, 3 respectively.

The classical sense of the second and the third terms in the right-hand
expression of (26.1.16) is clear and the density of the kinetic energy is given
by 𝜏B(𝜌) in the semiclassical approximation (see remark 26.1.2). So, the
problem is

(26.1.20) Minimize functional ℰB(𝜌) defined by (26.1.16) under restrictions:

(26.1.21)𝟣,𝟤 𝜌 ≥ 0,

∫︁
𝜌 dx ≤ N .

The solution if exists is unique because functional ℰB(𝜌) is strictly convex
(see below). The existence and the property of this solution denoted further
by 𝜌𝖳𝖥B is known in the series of physically important cases.
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Remark 26.1.2. If w is the negative potential then

(26.1.22) tr e(x , x , 0) ≈ P ′
B(w)

defines the density of all non-interacting particles with negative energies at
point x and

(26.1.23)

∫︁ 𝟢

−∞
𝜏 d𝜏 tr e(x , x , 𝜏)dx ≈ −

∫︁
PB(w) dx

is the total energy of these particles; here ≈ means “in the semiclassical
approximation”.

We consider in the case of d = 3 a large (heavy) molecule with potential
(25.1.4). It is well-known3) that

Proposition 26.1.3. (i) For V (x) given by (26.1.4) minimization problem
(26.1.20) has a unique solution 𝜌 = 𝜌𝖳𝖥B ; then denote ℰ𝖳𝖥

B := ℰB(𝜌𝖳𝖥B ).

(ii) Equality in (26.1.21)𝟤 holds if and only if N ≤ Z :=
∑︀

m Zm.

(iii) Further, 𝜌𝖳𝖥 does not depend on N as N ≥ Z .

(iv) Thus

(26.1.24)

∫︁
𝜌𝖳𝖥B dx = min(N ,Z ), Z :=

∑︁
𝟣≤m≤M

Zm.

26.1.4 Main Results Sketched and Plan of the
Chapter

In the first half of this Chapter we derive asymptotics for ground state energy
and justify Thomas-Fermi theory. As construction of Section 25.2 works
with minimal modifications (see Section 26.6) in the magnetic case as well
we start immediately from magnetic Thomas-Fermi theory in Section 26.2.

We discover that there are three different cases: a moderate magnetic field
case B ≪ Z

𝟦
𝟥 when ℰ𝖳𝖥

B ≍ Z
𝟧
𝟥 and ℰ𝖳𝖥

B = ℰ𝖳𝖥
𝟢 (1 + o(1)), a strong magnetic

field case B ≫ Z
𝟦
𝟥 when ℰ𝖳𝖥

B ≍ B
𝟤
𝟧 Z

𝟫
𝟧 and ℰ𝖳𝖥

B = ℰ̄𝖳𝖥
B (1 + o(1)) where ℰ̄𝖳𝖥

B

3) Section IV of E. H. Lieb, J. P. Solovej and J. Yngvason [3].
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is Thomas-Fermi potential derived as PB(w) = 𝟣
𝟤
𝜘𝟣w

d
𝟤 (cf. (26.1.19)), and

an intermediate case B ∼ Z
𝟦
𝟥 .

Then we apply semiclassical methods (like in Section 25.4) albeit now our
analysis is way more complicated due to two factors: the semiclassical theory
of the magnetic Schrödinger operator is more difficult than the corresponding
theory for the non-magnetic Schrödinger operator and also Thomas-Fermi
potential W 𝖳𝖥 is not very smooth in the magnetic case, so we need to
approximate it by a smooth one (on a microscale).

We discover that both semiclassical methods and Thomas-fermi theory
are relevant only if B ≪ Z 𝟥. The case of the superstrong magnetic field
B ≫ Z 𝟥 was considered in E. H. Lieb, J. P. Solovej and J. Yngvason [1].

First of all, in Section 26.3 we consider the case M = 1; then the Thomas-
Fermi potential W 𝖳𝖥

B is non-degenerate and in this case we derive sharp
spectral asymptotics.

Next, in Section 26.4 we consider the case M ≥ 2 but we analyze only
zone {W 𝖳𝖥

B + 𝜈 ≳ B} where 𝜈 is a chemical potential and B is an intensity
of the magnetic field. A certain weaker non-degeneracy condition is satisfied
due to the Thomas-Fermi equation and we derive almost sharp spectral
asymptotics.

Furthermore, in Section 26.5 we analyze in the case M ≥ 2 the boundary
strip {W 𝖳𝖥 + 𝜈 ≲ B} containing the boundary of supp(𝜌𝖳𝖥B ); this is the most
difficult case to analyze and our remainder estimates are not sharp unless
N ≥ Z − CZ

𝟤
𝟥 .

Finally, in Section 26.6 we derive asymptotics of the ground state energy.
Their precision (or lack of it) follows from the precision of the corresponding
semiclassical results; so our results in the case M = 1 are sharp, but our
results in the case M ≥ 2 (especially if N ≤ Z − CZ

𝟤
𝟥 ) are not.

In the second half of this Chapter we consider related problems. In
Section 26.7 (cf. Section 25.5) we consider negatively charged systems
(N ≥ Z ) and estimate both ionization energy IN and excessive negative
charge (N − Z )+

4).
In Section 26.8 (cf. Section 25.6) we consider positively charged systems

(N ≤ Z ) and estimate the remainder |IN + 𝜈| in the formula IN ≈ −𝜈; for
M ≥ 2 we also consider a free nuclei model and estimate from below the
distance between nuclei and an excessive positive charge (Z − N)+ when
atoms can be bound into molecule4).

4) In the (magnetic) Thomas-Fermi theory both answers are 𝟢.
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Appendices contain some auxiliary material, most notably, electrostatic
inequalities in Appendix 26.A.1 and also Zhislin’s theorem (that system can
bind at least Z electrons) in Appendix 26.A.4–all in the case of magnetic
field.

26.2 Magnetic Thomas-Fermi Theory

26.2.1 Framework and Existence

The Thomas-Fermi theory is well developed in the magnetic case as well
albeit in the lesser degree than in the non-magnetic one. The most important
source now is Section IV of E. H. Lieb, J. P. Solovej and J. Yngvason [3].

Again as in the previous Chapter 25 to get the best lower estimate for the
ground state energy (neglecting semiclassical errors) one needs to maximize
functional ΦB,*(W + 𝜈) defined by (25.3.1) albeit with the pressure PB(w)
given for d = 2, 3 by (26.1.19). Formulae (25.3.2) and (25.3.3) also remain
valid.

Further, to get the best upper estimate (neglecting semiclassical errors)
one needs to minimize functional Φ*

B(𝜌
′, 𝜈) defined by (25.3.4) where (25.3.4)

remains valid with P replaced by PB and respectively 𝜏(𝜌′) replaced by
𝜏B(𝜌

′) which is Legendre transformation of PB (see (26.1.18)).

Since PB is given by much more complicated expression (26.1.19) rather
than (25.3.6)𝟣, and respectively

(26.2.1) P ′
B(w) =

d

2
𝜘𝟣B

(︁1
2

w
d
𝟤
−𝟣

+ +
∑︁
j≥𝟣

(w − 2jB)
d
𝟤
−𝟣

+

)︁
(cf. (25.3.6)𝟤), there is no explicit expression for 𝜏B similar to (25.3.7).

Remark 26.2.1. (i) B(x) = |∇ × A(x)|.

(ii) From now on we will assume that d = 3.

(iii) PB is a strictly convex function and therefore 𝜏B is also a strictly convex
function5).

5) As d = 𝟤, PB is a convex and piecewise linear function and therefore 𝜏B is also a
convex function.
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(iv) PB(w) → P𝟢(w), P ′
B(w) → P ′

𝟢(w) and 𝜏B(𝜌) → 𝜏𝟢(𝜌) as B → 0 where
(without subscript “0”) the limit functions have been defined by (25.3.6)𝟣,𝟤
and (25.3.7) respectively.

Remark 26.2.2. (i) Alternatively we minimize ℰB(𝜌) = Φ*
B(𝜌, 0) under as-

sumptions

(26.2.2)𝟣,𝟤 𝜌 ≥ 0,

∫︁
𝜌 dx ≤ N .

(ii) So far in comparison with the previous Chapter 25 we changed only
definition of PB(w) and 𝜏B(𝜌) respectively. Note that PB(w) belongs to

C
d
𝟤
+𝟣 (as d = 2, 3) as function of w ; this statement will be quantified later.

(iii) While not affecting existence (with equality in (26.2.2)𝟣 iff N ≤ Z ) and

uniqueness of solution, it affects other properties, especially as B ≥ Z
𝟦
𝟥 .

Proposition 26.2.3. In our assumptions for any fixed 𝜈 ≤ 0 Statements
(i)–(viii) of Proposition 25.3.1 hold.

Proof. The proof is the same as of Proposition 25.3.1. The proof that
threshold 𝜈 = 0 matches to N = Z are theorems 4.9 and 4.10 of Section IV
of E. H. Lieb, J. P. Solovej and J. Yngvason [3].

Note that (25.3.8)–(25.3.9) and (25.3.10) become

𝜌 =
1

4𝜋
Δ(W − V ) = P ′

B(W + 𝜈),(26.2.3)

W = o(1) as |x | → ∞(26.2.4)

and

𝒩 (𝜈) =

∫︁
P ′
B(W + 𝜈) dx(26.2.5)

respectively.
Similarly, Proposition 25.3.2 remains true:

Proposition 26.2.4. For arbitrary W the following estimates hold with
absolute constants 𝜖𝟢 > 0 and C𝟢:

(26.2.6) 𝜖𝟢D(𝜌− 𝜌𝖳𝖥, 𝜌− 𝜌𝖳𝖥) ≤ ΦB,*(W
𝖳𝖥 + 𝜈)− ΦB,*(W + 𝜈) ≤

C𝟢D(𝜌− 𝜌′, 𝜌− 𝜌′)
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and

(26.2.7) 𝜖𝟢D(𝜌
′ − 𝜌𝖳𝖥, 𝜌′ − 𝜌𝖳𝖥) ≤ Φ*

B(𝜌, 𝜈)− Φ*
B(𝜌

𝖳𝖥, 𝜈) ≤
C𝟢D(𝜌− 𝜌′, 𝜌− 𝜌′)

with 𝜌 = 𝟣
𝟦𝜋
Δ(W − V ), 𝜌′ = P ′

B(W + 𝜈).

Proof. This proof is rather obvious as well.

26.2.2 Properties

Proposition 26.2.5. The solution of the magnetic Thomas-Fermi problem
has the following scaling properties

(26.2.8) W 𝖳𝖥(x ; Z ; y ; B ; N ; q) =

q
𝟤
𝟥 N

𝟦
𝟥 W 𝖳𝖥(q

𝟤
𝟥 N

𝟣
𝟥 x ; N−𝟣Z ; q

𝟤
𝟥 N

𝟣
𝟥 y; q− 𝟤

𝟥 N− 𝟦
𝟥 B ; 1; 1),

(26.2.9) 𝜌𝖳𝖥(x ; Z ; y ; B ; N ; q) =

q𝟤N𝟤𝜌𝖳𝖥(q
𝟤
𝟥 N

𝟣
𝟥 x ; N−𝟣Z ; q

𝟤
𝟥 N

𝟣
𝟥 y; q− 𝟤

𝟥 N− 𝟦
𝟥 B ; 1; 1),

ℰ𝖳𝖥(Z ; y ; B ; N ; q) = q
𝟤
𝟥 N

𝟩
𝟥ℰ𝖳𝖥(N−𝟣Z ; q

𝟤
𝟥 N

𝟣
𝟥 y; q− 𝟤

𝟥 N− 𝟦
𝟥 B ; 1; 1),(26.2.10)

𝜈𝖳𝖥(Z ; y ; B ; N ; q) = q
𝟤
𝟥 N

𝟦
𝟥𝜈𝖳𝖥(N−𝟣Z ; q

𝟤
𝟥 N

𝟣
𝟥 y; q− 𝟤

𝟥 N− 𝟦
𝟥 B ; 1; 1)(26.2.11)

where 𝜈𝖳𝖥 = 𝜈 is the chemical potential; recall that Z = (Z𝟣, ... ,ZM) and
y = (y𝟣, ... , yM) are arrays and parameter q also enters into Thomas-Fermi
theory.

In particular, 𝜈𝖳𝖥 and B scale the same way.

Proof. Proof is trivial by scaling.

Now one can guess that there are two cases B ≪ Z
𝟦
𝟥 and B ≫ Z

𝟦
𝟥 (recall

that N ≍ Z ) in which magnetic Thomas-Fermi theory looks very different

(and also an intermediate case B ∼ Z
𝟦
𝟥 ). To explain this difference let us

consider one atom case:
First of all recall that if B = 0 and N = Z theory (as M = 1) has just one

parameter and we can get rid of it by rescaling; W 𝖳𝖥 ≍ Zℓ−𝟣 as ℓ ≲ Z− 𝟣
𝟥

and W 𝖳𝖥 ≍ ℓ−𝟦 as ℓ ≳ Z− 𝟣
𝟥 . Then

W𝖳𝖥 𝟥
𝟤 ℓ𝟥 ≍ Z

𝟥
𝟤 ℓ

𝟥
𝟤 , W𝖳𝖥 𝟧

𝟤 ℓ𝟥 ≍ Z
𝟧
𝟤 ℓ

𝟣
𝟤
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and

W𝖳𝖥 𝟥
𝟤 ℓ𝟥 ≍ ℓ−𝟥, W𝖳𝖥 𝟧

𝟤 ℓ𝟥 ≍ ℓ−𝟩

respectively where the first factors are spacial densities of the charge and
(negative) Thomas-Fermi energy respectively and therefore zone ℓ ≍ Z− 𝟣

𝟥

provides the main contributions into both.
Therefore, if in this main zone B ≪ W 𝖳𝖥 ≍ Z

𝟦
𝟥 we guess that the

magnetic theory is similar to non-magnetic one, and actually it is true.
However, let us study an atomic case rigorously. Let M = 1, ym = 0 and

N ≤ Z . Then

(26.2.12) W 𝖳𝖥
B is a spherically symmetric, and it is monotone non-increasing

function of |x |; W 𝖳𝖥
B → +0 as |x | → ∞;

(26.2.13) W 𝖳𝖥
B (x) ≤ −𝜈 =⇒ W 𝖳𝖥

B = |x |−𝟣(Z − N).

Indeed, (26.2.12) is obvious and (26.2.13) follows from it and Newton
screening theorem.

Two propositions below treat cases B ≲ Z
𝟦
𝟥 and B ≳ Z

𝟦
𝟥 respectively; in

the former case there is another fork: B ≲ (Z − N)
𝟦
𝟥
+ and B ≳ (Z − N)

𝟦
𝟥
+.

Proposition 26.2.6. Let M = 1, ym = 0, N ≍ Zm and B ≤ Z
𝟦
𝟥 .

(i) Then

W 𝖳𝖥
B ≤ min(Z |x |−𝟣,C |x |−𝟦)(26.2.14)

and

𝜌𝖳𝖥B ≤ C min(Z
𝟥
𝟤 |x |−

𝟥
𝟤 + BZ

𝟣
𝟤 |x |−

𝟣
𝟤 , |x |−𝟨 + B |x |−𝟤).(26.2.15)

(ii) There exists

(26.2.16) r̄m ≍ min
(︀
B− 𝟣

𝟦 , (Z − N)
− 𝟣

𝟥
+

)︀
such that W 𝖳𝖥

B ≷ −𝜈 as |x | ≶ r̄m and then 𝜌𝖳𝖥B = 0 iff x ≥ r̄m.

(iii) (26.2.14) and (26.2.15) become equivalencies (≍) as |x | ≤ (1− 𝜖)r̄m.
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(iv) B ≤ (Z − N)
𝟦
𝟥
+ implies r̄m ≍ (Z − N)

− 𝟣
𝟥

+ , 𝜈 ≍ (Z − N)
𝟦
𝟥
+ and

(26.2.17) W 𝖳𝖥 + 𝜈 ≍ (Z − N)
𝟧
𝟥
+(r̄m − |x |),

− 𝜕|x |W
𝖳𝖥 ≍ (Z − N)

𝟧
𝟥
+ if (1− 𝜖)r̄m ≤ |x | ≤ r̄m.

(v) B ≥ (Z − N)
𝟦
𝟥
+ implies r̄m ≍ B− 𝟣

𝟦 , 𝜈 ≍ (Z − N)+B
𝟣
𝟦 ≲ B and

(26.2.18) W 𝖳𝖥 + 𝜈 ≍ B𝟤(r̄m − |x |)𝟦 + B
𝟣
𝟤 (Z − N)+(r̄m − |x |)

− 𝜕|x |W
𝖳𝖥 ≍ B𝟤(r̄m − |x |)𝟥 + B

𝟣
𝟤 (Z − N)+

as (1− 𝜖)r̄m ≤ |x | ≤ r̄m.

Proposition 26.2.7. Let M = 1, ym = 0, N ≍ Zm and B ≥ Z
𝟦
𝟥 .

(i) Then

W 𝖳𝖥
B ≤ Z |x |−𝟣(26.2.19)

and

𝜌𝖳𝖥B ≤ CZ
𝟥
𝟤 |x |−

𝟥
𝟤 + CBZ

𝟣
𝟤 |x |−

𝟣
𝟤 .(26.2.20)

(ii) There exist r̄m and r̄ ′m,

(26.2.21) r̄m ≍ B− 𝟤
𝟧 Z

𝟣
𝟧 , r̄ ′m ≍ B−𝟣Zm,

such that W 𝖳𝖥
B ≷ B as |x | ≶ r̄m, W 𝖳𝖥

B ≷ −𝜈 as |x | ≶ r̄ ′m and then 𝜌𝖳𝖥B = 0
iff x ≥ r̄m.

(iii) (26.2.19)–(26.2.20) become equivalencies (≍) as |x | ≤ (1− 𝜖)r̄m.

(iv) 𝜈 ≍ (Z − N)+B
𝟤
𝟧 Z− 𝟣

𝟧 ≲ B and

W 𝖳𝖥 + 𝜈 ≍ B𝟤(r̄m − |x |)𝟦 + r̄−𝟤
m (Z − N)+(r̄m − |x |)(26.2.22)

and

−𝜕|x |W 𝖳𝖥 ≍ B𝟤(r̄m − |x |)𝟥 + r̄−𝟤
m (Z − N)+(26.2.23)

as (1− 𝜖)r̄m ≤ |x | ≤ r̄m.
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Proofs of Propositions 26.2.6 and 26.2.7. Proofs easily follow from equation
and “boundary conditions” satisfied by w(r) where r = |x |:

w ′′ + 2r−𝟣w = P ′
B(w + 𝜈),(26.2.24)

w = r−𝟣Zm + O(1) as r → 0,(26.2.25)

w(r̄m) = −𝜈, w ′(r̄m) = 𝜈 r̄−𝟣
m(26.2.26)

where 𝜈 = −(Zm − N)+r̄−𝟣
m .

Corollary 26.2.8. Let M = 1, ym = 0 and N ≍ Zm. Then

(i) W 𝖳𝖥
B ≲ B if |x | ≥ r̄ ′m where r̄ ′m ≍ B−𝟣Zm as B ≥ Z

𝟦
𝟥
m and r̄ ′m ≍ B− 𝟣

𝟦 as

B ≤ cZ
𝟦
𝟥
m.

(ii) As B ≲ Z
𝟦
𝟥
m the main contribution to both the charge and the Thomas-

Fermi energy is delivered by zone {x : |x | ≍ r *m} with r *m = Z
− 𝟣

𝟥
m ; in particular,

then ℰ𝖳𝖥
B ≍ ℰ𝖳𝖥 ≍ Z

𝟩
𝟥
m; further, in this case W 𝖳𝖥

B ≍ W 𝖳𝖥 in the zone
{x : |x | ≲ 𝜖r̄m}.

(iii) Further, ℰ𝖳𝖥
B ∼ ℰ𝖳𝖥 as B ≪ Z

𝟦
𝟥
m; furthermore, in this case W 𝖳𝖥

B ∼ W 𝖳𝖥

in the zone {x : |x | ≪ r̄m}.

(iv) On the other hand, as B ≥ Z
𝟦
𝟥 , the main contributions to the total charge

and energy are delivered by {x : |x | ≍ r̄m} and in particular 𝜌m ≍ BZ
𝟣
𝟤
m r̄

𝟧
𝟤
m and

(26.2.27) ℰ𝖳𝖥
B ≍ BZ

𝟥
𝟤
m r̄

𝟥
𝟤
m ≍ B

𝟤
𝟧 Z

𝟫
𝟧
m.

Recall that r̄m ≍ B− 𝟣
𝟦 as B ≤ Z

𝟦
𝟥
m and r̄m ≍ B− 𝟤

𝟧 Z
𝟣
𝟧
M as B ≥ Z

𝟦
𝟥
M . Note

that Proposition 25.3.5 (comparing W 𝖳𝖥 for molecule with the sum of those
for single atoms) still holds. Therefore we conclude that

Corollary 26.2.9. (i) Assume that

(26.2.28) Zm ≍ Z

for all m = 1, ... ,M. Then all statements of corollary 26.2.8 remain true
for M ≥ 2 with |x | and Zm replaced by ℓ(x) and Z and r̄m, r̄ ′m, r *m by r̄ , r̄ ′,
r * respectively.
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(ii) In the general case global statements remain true, pointwise statements
remain true without modification only as ℓ(x) = ℓm(x) := |x − ym| with
Zm ≍ Z .

Remark 26.2.10. (i) Also holds Proposition 25.3.13 as it uses only super-
additivity of 𝜏 (𝜌) and 𝜏B(𝜌) is also super-additive (this follows from convexity
of 𝜏B(𝜌) and equality 𝜏B(0) = 0).

(ii) However there is a significant difference: if there is no magnetic field
atoms really repulse one another on any distances and we can attribute it
to either excessive positive charge as N < Z or their infinite spatial size as
N = Z . However with magnetic field atoms have a finite size even as N = Z
and they do not repulse one another on the large distances. In particular,
Proposition 26.2.11 below holds.

Proposition 26.2.11. Let N = Z and

|ym − ym′ | ≥ r̄m + r̄m′ ∀m : 1 ≤ m < m′ ≤ M .(26.2.29)

Then

ℰ𝖳𝖥
B (Z , y,B ,Z ) =

∑︁
𝟣≤m≤M

ℰ𝖳𝖥
B (Zm, ym,B ,Zm)(26.2.30)

and

𝜌𝖳𝖥B (x ,Z , y,B ,Z ) =
∑︁

𝟣≤m≤M

𝜌𝖳𝖥B (x ,Zm, ym,B ,Zm).(26.2.31)

Proposition 26.2.12. (i) 𝜈 is monotone increasing function of N.

(ii) WB(x) is monotone non-increasing function of N.

(iii) WB(x) + 𝜈 is monotone non-decreasing function of N ; in particular
𝜌B can only increase as N increases.

(iv) 𝜈 is monotone non-increasing function of Zm.

(v) WB(x) is monotone non-decreasing function of Zm.

Proof. (i) Statement (i) follows from the strict convexity of ℰ(𝜌): consider
two solutions with corresponding subscripts. Then ℰ(𝜌)−ℰ(𝜌j) > 𝜈j(N −Nj)
for any non-negative 𝜌 ̸= 𝜌j and N =

∫︀
𝜌 dx .

In particular, ℰ(𝜌𝟣)−ℰ(𝜌𝟤) > 𝜈𝟤(N𝟣−N𝟤) and ℰ(𝜌𝟤)−ℰ(𝜌𝟣) > 𝜈𝟣(N𝟤−N𝟣)
and then (𝜈𝟣 − 𝜈𝟤)(N𝟣 − N𝟤) > 0.
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(ii) Indeed, consider N𝟣 < N𝟤 and in the definition of W𝟤 slightly decrease
Z𝟣, ... ,ZM thus replacing them by Z ′

𝟣, ... ,Z ′
M . Then W𝟣 > W𝟤 for large |x |,

W𝟣 − W𝟤 → +∞ as x → ym and therefore if Statement (ii) fails, then
W𝟣 − W𝟤 reaches non-positive minimum at some regular point x̄ ; at this
point W𝟣 ≤ W𝟤 and

0 ≤ 1

4𝜋
Δ(W𝟣 − W𝟤) = P ′(W𝟣 + 𝜈𝟣)− P ′(W𝟤 + 𝜈𝟤).

This is possible only if at this point W𝟤 + 𝜈𝟤 ≤ 0 and W𝟣 + 𝜈𝟣 < 0. Then in
the small vicinity Δ(W𝟣 − W𝟤) ≤ 0 and x̄ cannot be a point of minimum
unless W𝟣−W𝟤 = const there. Then any point of this vicinity is also a point
of minimum and then due to standard analytic arguments W𝟣 − W𝟤 = const
everywhere which is impossible.

So, W𝟣(x ;Z𝟣, ... ,ZM) > W𝟤(x ;Z ′
𝟣, ... ,Z ′

M). Taking limit as Z ′
m → Zm we

arrive to W𝟣(x ;Z𝟣, ... ,ZM) ≥ W𝟤(x ;Z𝟣, ... ,ZM).

(iii) Proof of Statement (iii) is similar but roles of W𝟣 and W𝟤 are played
by W𝟤 + 𝜈𝟤 and W𝟣 + 𝜈𝟣 respectively.

(iv) Let Zm,𝟤 > Zm,𝟣 for all m. Assume that 𝜈𝟤 > 𝜈𝟣. Then similar arguments
prove that W𝟤+𝜈𝟤 ≥ W𝟣+𝜈𝟣 and thus 𝜌𝟤 ≥ 𝜌𝟣 everywhere which is impossible
unless there are just identical equalities as W𝟤 + 𝜈𝟤 > 0, which is impossible.

(v) Finally, after Statement (iv) was established, the same arguments prove
Statement (v).

As far as we know Theorem 1 of R. Benguria [1] (see Theorem 25.3.8)
has not been proven in the case of magnetic field; however one can see easily
that arguments of of R. Benguria’s proof remain valid and we arrive to

Theorem 26.2.13. All Statements (i)–(iii) of Theorem 25.3.8 hold in the
case of the constant magnetic field.

Problem 26.2.14. (i) Investigate how supp(𝜌𝖳𝖥B ) depends on B and on Z
in the atomic case M = 1.

(ii) More generally, investigate how supp(𝜌𝖳𝖥B ) depends on B and on Z in
the case M ≥ 2.
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26.2.3 Positive Ions

In view of Remark 26.2.10 we need to consider repulsion of positive ions in
more details. Our purpose is to prove

Theorem 26.2.15. Let condition (26.2.28) be fulfilled. Then the energy
excess is estimated from below

(26.2.32) 𝒬 := ̂︀ℰ𝖳𝖥
B −

∑︁
𝟣≤m≤M

ℰ𝖳𝖥
B,m ≥ 𝜖(Z − N)𝟤+a−𝟣.

Note first that

(26.2.33) D
(︀
𝜌𝖳𝖥B(𝜈) − 𝜌𝖳𝖥B,𝟢, 𝜌

𝖳𝖥
B(𝜈) − 𝜌𝖳𝖥B(𝟢)

)︀
+∫︁ (︀

P ′
B(W

𝖳𝖥
B(𝜈) + 𝜈)− P ′

B(W
𝖳𝖥
B(𝟢))

)︀(︀
W 𝖳𝖥

B(𝜈) + 𝜈 − W 𝖳𝖥
B(𝟢))

)︀
dx =

𝜈

∫︁ (︀
P ′
B(W

𝖳𝖥
B(𝜈) + 𝜈)− P ′

B(W
𝖳𝖥
B(𝟢) + 0)

)︀
dx

with the right-hand expression equal 𝜈(N − Z ) ≍ (Z − N)𝟤r̄−𝟣 and due to
monotonicity P ′

B(w) we conclude that

Proposition 26.2.16. Let condition (26.2.28) be fulfilled. Then

(26.2.34) D
(︀
𝜌𝖳𝖥B(𝜈) − 𝜌𝖳𝖥B(𝟢), 𝜌

𝖳𝖥
B,𝜈 − 𝜌𝖳𝖥B(𝟢)

)︀
≤ C (Z − N)𝟤r̄−𝟣.

Proof of Theorem 26.2.15. Step 1. Note first that due to non-negativity of
the expression

(26.2.35) ̂︀ℰ𝖳𝖥
B (Z , y,N)− min

N𝟣+N′=N

(︀
ℰ𝖳𝖥
B (Z𝟣,N𝟣)− ̂︀ℰ𝖳𝖥

B (Z ′, y′,N ′)
)︀

(see proof of Proposition 25.3.13 which persists even if there is constant
magnetic field, see Remark 26.2.10) it is sufficient to prove theorem only for
M = 2. From now on we assume that M = 2.

Step 2. According to Proposition 25.3.13

(26.2.36) D(𝜌𝖳𝖥B − 𝜌𝖳𝖥B,𝟣 − 𝜌𝖳𝖥B,𝟤) ≤ C𝒬.

Therefore due to superadditivity 𝜏B
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(26.2.37) 𝒬 ≥ −
∫︁

V𝟣𝜌
𝖳𝖥
B,𝟤 dx −

∫︁
V𝟤𝜌

𝖳𝖥
B,𝟣 dx+

D(𝜌𝖳𝖥B,𝟤, 𝜌
𝖳𝖥
B,𝟣) + Z𝟣Z𝟤a−𝟣 − C𝒬

and it is sufficient to prove the same estimate from below for the right-hand
expression without the last term. However this is easy if a ≥ r̄𝟣 + r̄𝟤 since
Vm = |x − ym|−𝟣Zm and 𝜌𝖳𝖥B,m = 𝜌𝖳𝖥B,m(|x − ym|) are spherically symmetric

functions6).

Therefore for a ≥ r̄𝟣+ r̄𝟤 inequality (26.2.32) has been proven and in what
follows we can assume that a ≤ r̄𝟣 + r̄𝟤. Further, applying Theorem 26.2.13
we conclude then that

(26.2.38) Inequality (26.2.32) holds for a ≥ 𝜖r̄ .

Step 3. Recall that the bulk of electrons are in the zone {ℓ(x) ≍ r *} 7).
Based on this one can prove easily that as a ≤ 𝜖r̄ the right-hand hand
expression of (26.2.37) is greater than (1− 𝜖𝟣)a

−𝟣Z𝟣Z𝟤 and therefore

(26.2.39) As B ≥ Z
𝟦
𝟥 and a ≤ 𝜖r * we have 𝒬 ≥ (1− 𝜖𝟣)a

−𝟣Z𝟣Z𝟤

and combining with (26.2.38) we conclude that (26.2.32) holds for B ≳ Z
𝟦
𝟥

and for B ≲ Z
𝟦
𝟥 we need to consider the case 𝜖𝟢r * ≤ a ≤ 𝜖r̄ with arbitrarily

small constant 𝜖.

Replacing then PB by P𝟢 and noting that an error will not exceed
C𝟢r̄B𝟤 ≤ C𝟣𝜖a

−𝟩 while 𝒬 ≥ 𝜖𝟢a−𝟩 for B = 0 we conclude that (26.2.32) holds
as 𝜖𝟢r * ≤ a ≤ cr̄ and (Z − N) ≤ C𝟤a−𝟥.

Finally, as (Z − N) ≥ C𝟤a−𝟥 we see that r̄ ≤ C𝟢(Z − N)−
𝟣
𝟥 ≤ 𝜖a and

(26.2.32) holds again.

Even if we do not need it for our purposes we want to consider the
repulsion of too close neutral atoms:

6) However this is not true in general as a < r̄𝟣 + r̄𝟤. Really, consider Nm = Zm and
uniformly charged spheres. Then the right-hand expression of (26.2.37) is 𝟢 as a ≥ r̄𝟣 + r̄𝟤
and is negative and decays as a decays from r̄𝟣 + r̄𝟤 to 𝗆𝖺𝗑(r̄𝟣, r̄𝟤) and it increases again
as a decays from 𝗆𝖺𝗑(r̄𝟣, r̄𝟤) to 𝟢.

7) I.e. zone {c(𝜖)−𝟣r* ≤ ℓ(x) ≤ c(𝜖)r*} contains at least (𝟣− 𝜖)N electrons.
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Theorem 26.2.17. Let condition (26.2.28) be fulfilled and N = Z . Then
as a ≥ 𝜖r̄ the energy excess is estimated from below

𝒬 ≥ 𝜖G 𝟤r̄
∑︁

𝟣≤m<m′≤M

(r̄m + r̄n − |ym − ym′ |)𝟣𝟤+ r̄−𝟣𝟤(26.2.40)

where

G :=

{︃
B if B ≤ Z

𝟦
𝟥 ,

Z
𝟦
𝟧 B

𝟤
𝟧 if B ≥ Z

𝟦
𝟥 .

(26.2.41)

and correspondingly G 𝟤r̄ =

{︃
B

𝟩
𝟦 if B ≤ Z

𝟦
𝟥 ,

Z
𝟫
𝟧 B

𝟤
𝟧 if B ≥ Z

𝟦
𝟥 .

Proof. Again we need to consider case M = 2. Since

1

4𝜋
ΔWB = 𝜌B −

∑︁
m=𝟣,𝟤

Zmδ(x − ym)(26.2.42)

and WB,𝟣, WB,𝟤 satisfy similar equations, (26.2.36) implies that

‖∇(WB − WB,𝟣 − WB,𝟤)‖ ≤ c𝒬
𝟣
𝟤 .(26.2.43)

This inequality and the fact that WB = 0 as ℓ(x) ≥ cr̄ , and WB,m = 0 as
|x − ym| ≥ r̄m imply that

(26.2.44) ‖(WB − WB,𝟣 − WB,𝟤)‖ ≤ cr̄𝒬
𝟣
𝟤 .

Note that
∫︀
(−𝜌B + 𝜌B,𝟣 + 𝜌B,𝟤) dx = 0 implies that

(26.2.45) |
∫︁ (︀

(WB,𝟣 + WB,𝟤)
𝟣
𝟤 − W

𝟣
𝟤
B,𝟣 − W

𝟣
𝟤
B,𝟣

)︀
dx ≤∫︁
|W

𝟣
𝟤
B − (WB,𝟣 + WB,𝟤)

𝟣
𝟤 | dx .

One can calculate easily that the left-hand expression has a magnitude
(G𝜂𝟦)

𝟣
𝟤 · 𝜂r̄ · (𝜂 𝟣

𝟤 r̄)𝟤 ≍ G
𝟣
𝟤 r̄ 𝟥𝜂𝟦 where the first factor is a magnitude of an

integrand as WB,𝟣 ≍ WB,𝟤 ≍ G𝜂𝟦, 𝜂r̄ is a depth, and 𝜂
𝟣
𝟤 r̄ the width of this

zone.
On the other hand, consider the right hand expression. It consists of

contributions of several zones:
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(a) Zone 𝒴t where WB,𝟣 + WB,𝟤 ≤ Gt𝟦, WB ≤ 2Gt𝟦. This contribution does

not exceed CG
𝟣
𝟤 t𝟤 mes(𝒴t) ≍ CG

𝟣
𝟤 r̄ 𝟥t𝟥 8).

(b) Zone 𝒵t where WB,𝟣 + WB,𝟤 ≤ Gt𝟦, WB ≥ 2Gt𝟦. Its contribution does
not exceed

C

∫︁
𝒵t

W
𝟣
𝟤
B dx ≤ C‖WB‖

𝟣
𝟤
𝒵(mes(𝒵t))

𝟥
𝟦 ≤ C r̄

𝟣𝟣
𝟦 𝒬

𝟣
𝟦 t

𝟥
𝟦

since due to (26.2.44) ‖WB‖𝒵t ≤ cr̄𝒬 𝟣
𝟤 .

(c) Zone where WB,𝟣 + WB,𝟤 ≍ G𝜏 𝟦. This contribution does not exceed

(26.2.46) CG− 𝟣
𝟤 𝜏−𝟤

∫︁
|WB − WB,𝟣 − WB,𝟤| dx ≤

CG− 𝟣
𝟤 𝜏−𝟤 × ‖WB − WB,𝟣 − WB,𝟤‖ × (mes(𝒳𝜏 ))

𝟣
𝟤 ≍ CG− 𝟣

𝟤𝒬
𝟣
𝟤 r̄

𝟧
𝟤 𝜏−

𝟥
𝟤 .

Integrating by 𝜏−𝟣 d𝜏 from t we get (26.2.46) calculated as 𝜏 = t (and
capped by the same expression as 𝜏 = 𝜂.

So, the right-hand expression of (26.2.45) does not exceed

CG
𝟣
𝟤 r̄ 𝟥t𝟥 + C𝒬

𝟣
𝟦 r̄

𝟣𝟣
𝟦 t

𝟥
𝟦 + CG− 𝟣

𝟤𝒬
𝟣
𝟤 r̄

𝟧
𝟤 t−

𝟥
𝟤 ;

optimizing with respect to t = G− 𝟤
𝟫𝒬 𝟣

𝟫 r̄−
𝟣
𝟫 we get all three terms equal to

CG− 𝟣
𝟨 Q

𝟣
𝟥 r̄

𝟪
𝟥 comparing with CG

𝟣
𝟤 r̄ 𝟥𝜂𝟦 we arrive to (26.2.40).

26.3 Applying Semiclassical Methods:

M = 𝟣

26.3.1 Heuristics

Let us consider first a mock proof of our main results; we deal here as if
W 𝖳𝖥

B was very smooth which it is not the case; however later we will show
that its smoothness is sufficient to employ arguments of Chapter 18 rather
than those of Chapter 13. We also will deal as if non-degeneracy conditions
were satisfied leaving them also to more rigorous arguments below.

It will allow us to establish our target remainder estimates which we will
be able to prove rigorously for M = 1 (in this section) while for M ≥ 2 (in
the next two sections) our results will be not that good.

8) Obviously, 𝗆𝖾𝗌(𝒴t ∪ 𝒵t) ≍ r̄𝟥t and similarly 𝗆𝖾𝗌(𝒳𝜏 ) ≍ r̄𝟥𝜏 .
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Z−𝟣 Z− 𝟣
𝟥 B− 𝟣

𝟥 B− 𝟣
𝟦

B− 𝟣
𝟦B− 𝟤

𝟥 Z
𝟣
𝟥

B ≤ Z

Z ≤ B ≤ Z
𝟦
𝟥

Figure 26.1: Let B ≤ Z
𝟦
𝟥 . Then at {ℓ ≍ Z− 𝟣

𝟥} are contained both the bulk

of charge and the bulk of energy, ℓ ≍ min((Z − N)
− 𝟣

𝟥
+ ,B− 𝟣

𝟦} is the border of

supp(𝜌𝖳𝖥B ); ℓ ≍ Z−𝟣 is the Scott distance; here h ≍ 1. Further, ℓ ≍ B− 𝟣
𝟥 if

B ≤ Z and ℓ ≍ B− 𝟤
𝟥 Z

𝟣
𝟥 if Z ≤ B ≤ Z

𝟦
𝟥 separates {𝜇 ≲ 1} (on the left) and

{𝜇 ≳ 1} (on the right).

Z−𝟣 B− 𝟤
𝟧 Z

𝟣
𝟧

B− 𝟤
𝟧 Z

𝟣
𝟧

B−𝟣Z

B−𝟣Z

B− 𝟤
𝟥 Z

𝟣
𝟥

Z
𝟦
𝟥 ≤ B ≤ Z 𝟤

Z 𝟤 ≤ B ≤ Z 𝟥

Figure 26.2: Let Z
𝟦
𝟥 ≤ B ≤ Z 𝟥. Then at {ℓ ≍ Z− 𝟤

𝟧 B
𝟣
𝟧} are contained

both the bulk of charge and the bulk of energy and it is also the border
of supp(𝜌𝖳𝖥B ); ℓ ≍ Z−𝟣 is the Scott distance; here h ≍ 1. Further, if

Z
𝟦
𝟥 ≤ B ≤ Z 𝟤 ℓ ≍ B− 𝟤

𝟥 Z
𝟣
𝟥 separates {𝜇 ≲ 1} (on the left) and {𝜇 ≳ 1} (on

the right) and ℓ ≍ B−𝟣Z separates {𝜇h ≲ 1} (on the left) and {𝜇h ≳ 1} (on
the right).

Total Charge

Consider

(26.3.1)

∫︁
e(x , x , 𝜈)𝜓(x) dx ,

first with 𝛾-admissible 𝜓(x), where 𝛾 ≤ 𝜖ℓ. Recall that ℓ(x) = minm |x − ym|
is the distance to the nearest nucleus.

General Arguments. The main part of the semiclassical expression for
(26.3.1) is of magnitude h′ −𝟥 + 𝜇′h′ −𝟤 ≍ 𝜁𝟥𝛾𝟥 + B𝜁𝛾𝟥 with h′ = 1/(𝜁𝛾) and
𝜇′ = B𝛾/𝜁.
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Indeed, let us rescale x ↦→ x/𝛾 and 𝜏 ↦→ 𝜏/𝜁𝟤 which leads to h = 1 ↦→ h′

and B ↦→ 𝜇′. In particular, for 𝛾 ≍ ℓ we get

(26.3.2) 𝜁𝟥ℓ𝟥 + B𝜁ℓ𝟥.

Meanwhile, the remainder in the semiclassical expression for (26.3.1) does
not exceed Ch′ −𝟤 + C𝜇′h′ −𝟣 ≍ 𝜁𝟤𝛾𝟤 + B𝛾𝟤 (gaining factor h′ in comparison
to the main part; here we need the smoothness and if 𝜇′ ≥ h′ 𝛿−𝟣 we also
need the non-degeneracy); for 𝛾 ≍ ℓ we get

(26.3.3) 𝜁𝟤ℓ𝟤 + Bℓ𝟤.

Sure, we ignored the fact that h′ ≤ 1 does not necessarily hold even
if 𝛾 ≍ ℓ but we believe that the contributions to the main part and the
remainder of these zones will be less than of zone where this inequality holds,
provided B ≪ Z 𝟥.

Finally, let us sum expressions (26.3.2) and (26.3.3) with respect to
ℓ-partition.

Moderate Magnetic Field. Consider the case B ≤ Z
𝟦
𝟥 first. Then for

ℓ ≤ Z− 𝟣
𝟥 we plug 𝜁 = Z

𝟣
𝟤 ℓ−

𝟣
𝟤 into (26.3.2) and (26.3.3) resulting in

(26.3.4)𝟢,𝟣 Z
𝟥
𝟤 ℓ

𝟥
𝟤 + BZ

𝟣
𝟤 ℓ

𝟧
𝟤 and Zℓ+ Bℓ𝟤

in the main part and in the remainder respectively and the summation over
zone {x : ℓ(x) ≤ Z− 𝟦

𝟥} results in the same expressions with ℓ = Z− 𝟣
𝟥 , i. e. in

Z + BZ− 𝟣
𝟥 ≍ Z and Z

𝟤
𝟥 + BZ− 𝟤

𝟥 ≍ Z
𝟤
𝟥 respectively.

On the other hand, for ℓ ≥ Z− 𝟣
𝟥 we plug 𝜁 = ℓ−𝟤 into (26.3.2) and (26.3.3)

resulting in

(26.3.5)𝟢,𝟣 ℓ−𝟥 + Bℓ and ℓ−𝟤 + Bℓ𝟤;

then summation over zone {x : Z− 𝟣
𝟥 ≤ ℓ(x) ≤ r̄ = B− 𝟣

𝟦} results in Z+B
𝟥
𝟦 ≍ Z

and Z
𝟤
𝟥 + B

𝟣
𝟤 ≍ Z

𝟤
𝟥 respectively.

Strong Magnetic Field. Consider the case B ≥ Z
𝟦
𝟥 now. Then the

threshold Z− 𝟣
𝟥 disappears and we sum expressions (26.3.4)𝟢,𝟣 over zone

{x : ℓ(x) ≤ r̄ := Z
𝟣
𝟧 B− 𝟤

𝟧}, resulting in Z
𝟫
𝟧 B− 𝟥

𝟧 +Z ≍ Z and Z
𝟨
𝟧 B− 𝟤

𝟧 +Z
𝟤
𝟧 B

𝟣
𝟧 ≍

Z
𝟤
𝟧 B

𝟣
𝟧 respectively.

Therefore, for both cases B ≶ Z
𝟦
𝟥 we arrive to
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(26.3.6) The total charge is min(N ,Z ) (due to the choice of 𝜈) with the

remainder estimate O
(︀
max(Z

𝟤
𝟥 ,Z

𝟤
𝟧 B

𝟣
𝟧 )) which is O(Z

𝟤
𝟥 ) if B ≤ Z

𝟦
𝟥 and

O(Z
𝟤
𝟧 B

𝟣
𝟧 ) if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

Remark 26.3.1. Remainder is less than the main part if Z
𝟤
𝟧 B

𝟣
𝟧 ≲ Z i.e.

B ≤ Z 𝟥. It means exactly that 𝜁ℓ ≥ 1 if ℓ = r̄ (in the case B ≥ Z
𝟦
𝟥 ), or,

in other words that h ≲ 1. The same is true for all other semiclassical
asymptotics below.

If B ≪ Z 𝟥 we arrive to asymptotics, ig B ≲ Z 𝟥 we have estimates and
in the case of superstrong magnetic field B ≫ Z 𝟥 Thomas-Fermi theory is
not valid for our main model.

Semiclassical D-Term

Consider now the semiclassical D-term

(26.3.7) D
(︀
e(x , x , 𝜈)− 𝜌𝖳𝖥B (x), e(x , x , 𝜈)− 𝜌𝖳𝖥B (x)

)︀
.

General Arguments. We do not have appropriate asymptotics for
e(x , x , 𝜈) in the case of the magnetic field9) but we apply Fefferman–de Llave
decomposition (16.4.1):

(26.3.8) |x − y |−𝟣
𝛾 (x , y) := |x − y |𝜙(𝛾−𝟣|x − y |) =

𝛾−𝟦

∫︁
𝜓𝟣,𝛾(x , z)𝜓𝟤,𝛾(y , z) dz

where 𝜙 ∈ C∞([1, 2]).
Therefore contribution of B(z , 𝛾) × B(z ′, 𝛾) with 3𝛾 ≤ |z − z ′| ≤ 4𝛾,

𝛾 ≤ 𝜖ℓ(z) to such term does not exceed C
(︀
𝜁𝟤𝛾𝟤 + B𝛾𝟤)𝟤𝛾−𝟣. There are

≍ ℓ𝟥𝛾−𝟥 of such pairs with ℓ(x) ≍ ℓ and their total contribution does not
exceed C

(︀
𝜁𝟤 + B)𝟤ℓ𝟥.

Now we need to sum over 𝛾−𝟣 d𝛾 which does not look good because it
leads to the logarithmic divergency but there is a simple remedy: we treat
this way only pairs tℓ ≤ |z − z ′| ≤ ℓ and apply for pairs with |z − z ′| ≤ tℓ
pointwise asymptotics; then we get

(26.3.9) C (𝜁𝟤 + B)𝟤ℓ𝟥
(︀
1 + (log Bℓ/𝜁)+

)︀
;

9) Unless we really assume that W is smooth and apply results sections 16.6–16.9.
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to get rid of this logarithmic factor we apply more delicate arguments similar
to those of Subsection 16.10.3.

Thus, ignoring this logarithmic factor we conclude that the contribution
of all pairs (z , z ′) with ℓ(z) ≍ ℓ(z ′) ≍ ℓ does not exceed C (𝜁𝟤 + B)𝟤ℓ𝟥 while
contribution of all pairs (z , z ′) with ℓ(z) ≍ ℓ𝟣 ̸≍ ℓ(z ′) ≍ ℓ𝟤 does not exceed
C (𝜁𝟤𝟣 + B)(𝜁𝟤𝟤 + B)ℓ𝟤𝟣ℓ

𝟤
𝟤(ℓ𝟣 + ℓ𝟤)

−𝟣.

Finally let us sum these expressions over partitions of unity.

Moderate Magnetic Field. Consider the case B ≤ Z
𝟦
𝟥 . Then summa-

tion over zone {ℓ𝟣 ≤ Z− 𝟣
𝟥 , ℓ𝟤 ≤ Z− 𝟣

𝟥} results in CZ
𝟧
𝟥 and the same is also

true for summation over zone {Z− 𝟣
𝟥 ≤ ℓ𝟣 ≤ B− 𝟣

𝟦 , Z− 𝟣
𝟥 ≤ ℓ𝟤 ≤ B− 𝟣

𝟦}.
Obviously, in such estimates, if there is a fixed number of zones, we do

not need to sum over “mixed” pairs when z and z ′ belong to different zones.

Strong Magnetic Field. Consider the case B ≥ Z
𝟦
𝟥 . Then summation

over zone {ℓ𝟣 ≤ Z
𝟣
𝟧 B− 𝟤

𝟧 , ℓ𝟤 ≤ Z
𝟣
𝟧 B− 𝟤

𝟧} results in CZ
𝟥
𝟧 B

𝟦
𝟧 .

Therefore, for both cases B ≶ Z
𝟦
𝟥 we arrive to

(26.3.10) Term (26.3.7) does not exceed C max(Z
𝟧
𝟥 ,Z

𝟥
𝟧 B

𝟦
𝟧 ) which is CZ

𝟧
𝟥 if

B ≤ Z
𝟦
𝟥 and CZ

𝟥
𝟧 B

𝟦
𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

Remark 26.3.2 10). Estimating this term, and also the second D-term (in the
next paragraph) we need to estimate the contribution of the singular zone
{x : ℓ(x) ≤ r̄ = Z−𝟣} where effective semiclassical parameter is less than 1.
We claim that there

(26.3.11) e(x , x , 0) ≤ C (BZ + Z 𝟥) for 𝜆 ≤ cZ 𝟤.

Indeed, it is true if ℓ(x) ≥ 1. Also operator H is bounded from below by
−CZ 𝟤. And finally, in the ball of B(ym, 𝜖Z

−𝟣) operator Δ is larger than
Z |x − ym|−𝟣. We leave the easy details to the reader.

Therefore for B ≤ Z 𝟤 the contribution of this zone into N-term is
O(CZ 𝟥r̄ 𝟥) = O(1), into both D-terms is O(Z 𝟨r̄ 𝟧) = O(Z ), and into T-
term is O(Z 𝟧r̄ 𝟥) = O(Z 𝟤) exactly as in Chapter 25. On the other hand,
for Z 𝟤 ≤ BleZ 𝟥 the contribution of this zone into N-term is O(CBZ r̄ 𝟥) =
O(BZ−𝟤), into both D-terms is O(B𝟤Z 𝟤r̄ 𝟧) = O(B𝟤Z−𝟥), and into T-term is
O(BZ 𝟥r̄ 𝟥) = O(B).

10) Cf. Remark 25.4.7.
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|𝜆N − 𝜈| and Another D-Term

Consider two other non-trace terms in the upper estimate.

Moderate Magnetic Field. In the case B ≤ Z
𝟦
𝟥 we established the

remainder in the total charge O(Z
𝟤
𝟥 ). Then using our standard arguments

we conclude easily that |𝜆N − 𝜈| = O(Z ) and then

(26.3.12) |𝜆N − 𝜈| · |N(𝜈)− N | ≤ CZ
𝟧
𝟥

and

(26.3.13) D
(︀
P ′
B(W

𝖳𝖥
B (x) + 𝜆N)− P ′

B(W
𝖳𝖥
B (x) + 𝜈),

P ′
B(W

𝖳𝖥
B (x) + 𝜆N)− P ′

B(W
𝖳𝖥
B (x) + 𝜈)

)︀
≤ CZ

𝟧
𝟥 ;

combining with the estimate of the previous subsubsection we conclude that

(26.3.14) D(𝜌𝝭 − 𝜌𝖳𝖥B , 𝜌𝝭 − 𝜌𝖳𝖥B ) ≤ CQ = O(Z
𝟧
𝟥 ),

exactly as in (25.4.56).

Strong Magnetic Field. Let now Z
𝟦
𝟥 ≤ B ≤ Z 𝟥. Then we established

the remainder in the total charge O(Z
𝟤
𝟧 B

𝟣
𝟧 ) and for the semiclassical D-term

we established estimate O(Z
𝟥
𝟧 B

𝟦
𝟧 ). Therefore to estimate

|𝜆N − 𝜈| · |N(𝜈)− N | ≤ CZ
𝟥
𝟧 B

𝟦
𝟧(26.3.15)

as well we want to prove that

|𝜆N − 𝜈| = O(Z
𝟣
𝟧 B

𝟥
𝟧 ).(26.3.16)

Observe that |𝜈| ≲ Z r̄−𝟣 ≍ Z
𝟦
𝟧 B

𝟤
𝟧 ≤ CB . Therefore if |𝜆N − 𝜈| ≤ 𝟣

𝟤
|𝜈| we

conclude that

(26.3.17) |
∫︁ (︀

P ′
B(W

𝖳𝖥
B (x) + 𝜆N)− P ′

B(W
𝖳𝖥
B (x) + 𝜈)

)︀
dx | ≥

𝜖|𝜆N − 𝜈|B
∫︁

(W + 𝜈)
− 𝟣

𝟤
+ dx

with the integral taken over zone {x : W (x) + 𝜈 ≥ |𝜆N − 𝜈|}.
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One can see easily that as |𝜆N − 𝜈| ≤ 𝜖|𝜈| the right-hand expression of

(26.3.17) is larger than 𝜖|𝜆N − 𝜈| · Z
𝟣
𝟧 B− 𝟤

𝟧 and it must be less than CZ
𝟤
𝟧 B

𝟣
𝟧 :

|𝜆N − 𝜈|Z 𝟣
𝟧 B− 𝟤

𝟧 ≤ CZ
𝟤
𝟧 B

𝟣
𝟧 which implies (26.3.16).

Let us estimate the left-hand expression of (26.3.13). For this, however,
estimate (26.3.16) is insufficient. We consider here only the atomic case.
Then using (26.2.22)–(26.2.23) one can prove easily that the right-hand
expression of (26.3.17) is of magnitude

|𝜆N − 𝜈| · Br̄ 𝟤 × (|𝜈|r̄−𝟣)−
𝟣
𝟥 B− 𝟣

𝟥 ≍ |𝜆N − 𝜈| · |𝜈|−
𝟣
𝟥 Z

𝟩
𝟣𝟧 B− 𝟦

𝟣𝟧

provided |𝜆−N | ≤ 𝜖𝜈, where the selected factor is just
∫︀
(B𝟤z𝟦+ |𝜈|r̄−𝟣)

− 𝟣
𝟤

+ dz

(appearing due to (26.2.22)–(26.2.23)). Comparing with Z
𝟤
𝟧 B

𝟣
𝟧 we conclude

that

(a) If |𝜈| ≥ C𝟣Z− 𝟣
𝟣𝟢 B

𝟩
𝟣𝟢 (= C𝟣Z

𝟤
𝟧 B

𝟥
𝟧 × Z− 𝟥

𝟣𝟢 B
𝟣
𝟣𝟢 ) then

(26.3.18) |𝜆N − 𝜈| ≤ C |𝜈|
𝟣
𝟥 Z− 𝟣

𝟣𝟧 B
𝟩
𝟣𝟧

which is less than 𝜖|𝜈| and coincides with (26.3.16) as (Z − N)+ ≍ Z .

(b) If |𝜈| ≥ C𝟣Z− 𝟣
𝟣𝟢 B

𝟩
𝟣𝟢 then |𝜆N − 𝜈| ≤ C𝟤Z− 𝟣

𝟣𝟢 B
𝟩
𝟣𝟢 .

In the former case one can prove easily that the left-hand expression of
(26.3.13) does not exceed CZ

𝟥
𝟧 B

𝟦
𝟧 .

In the latter case (exactly as in Subsection 25.4.2) we consider Thomas-
Fermi theory with 𝜈 = 0 i.e. N = Z and also prove that that

(26.3.19) The left-hand expression of (26.3.16) does not exceed Q = CZ
𝟥
𝟧 B

𝟦
𝟧 .

In particular, we slightly improve estimate (26.3.15) to |𝜈| 𝟣𝟥 Z
𝟥
𝟧 B

𝟤
𝟥 as well

(if (Z − N) ≪ Z ).
Therefore in our framework we estimated all non-trace terms in the

upper estimate by CZ
𝟥
𝟧 B

𝟦
𝟧 and therefore “proved” estimate

(26.3.20) D(𝜌𝝭 − 𝜌𝖳𝖥B , 𝜌𝝭 − 𝜌𝖳𝖥B ) ≤ CQ = O(Z
𝟥
𝟧 B

𝟦
𝟧 ).

Trace

Consider now Tr((HA,W −𝜈)−). This term is of magnitude
∫︀
(𝜁𝟧+B𝜁𝟥) dx and

one can see easily that it is ≍ Z
𝟩
𝟥 for B ≤ Z

𝟦
𝟥 and ≍ B

𝟤
𝟧 Z

𝟫
𝟧 for Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.
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Meanwhile, consider the remainder. Again for simplicity consider only
the atomic case. If B ≤ Z the contribution of the zone {x : ℓ(x) ≤ Z− 𝟣

𝟥} is

O(Z
𝟧
𝟥 ) (we need to include Scott correction term in the main part) while

the contribution of the zone {x : ℓ(x) ≥ Z− 𝟣
𝟥} does not exceed

(26.3.21) C

∫︁
(𝜁𝟥 + B𝜁)ℓ−𝟤 dx

taken over this zone and it is ≍ Z
𝟧
𝟥 as well.

If Z ≤ B ≤ B𝟤 the contribution of the zone {x : ℓ(x) ≤ b := B− 𝟤
𝟥 Z

𝟣
𝟥} is

O(b− 𝟣
𝟤 Z

𝟥
𝟤 ) = O(Z

𝟦
𝟥 B

𝟣
𝟥 ) and we need to include Scott correction term. Mean-

while, the contribution of the zone {x : ℓ(x) ≥ b} does not exceed integral

(26.3.21) taken over this zone which is ≍ Z
𝟦
𝟥 B

𝟣
𝟥 + Z

𝟥
𝟧 B

𝟦
𝟧 where the last term

coincides with estimate for (26.3.7) if B ≥ Z
𝟦
𝟥 and does not exceed CZ

𝟧
𝟥 if

B ≤ Z
𝟦
𝟥 .

Finally, if Z 𝟤 ≤ B ≤ B𝟥 we need to reset b = Z−𝟣 because h = 1/(𝜁ℓ)
becomes ≳ 1 inside. Then we do not need Scott correction term and the
contributions of the zone {x : ℓ(x) ≤ b} to both the main part and the
remainder do not exceed C

∫︀
(𝜁𝟧 + B𝜁𝟥) dx ≍ Z 𝟤 + B ≍ B .

Further, the contribution of the zone {x : ℓ(x) ≥ b} to the remainder
does not exceed integral (26.3.21) taken over this zone which results in

CB + CZ
𝟥
𝟧 B

𝟦
𝟧 and the second term dominates due to assumption B ≪ Z 𝟥.

Thus we arrive to

(26.3.22) The main therm in Tr((HA,W −𝜈)−) is of magnitude Z
𝟩
𝟥 for B ≤ Z

𝟦
𝟥

and B
𝟤
𝟧 Z

𝟫
𝟧 for Z

𝟦
𝟥 ≤ B ≤ Z 𝟥, while the remainder estimate is O(Z

𝟧
𝟥 ) for

B ≤ Z , O(Z
𝟦
𝟥 B

𝟣
𝟥 ) for Z ≤ B ≤ Z

𝟦
𝟥 , and O(Z

𝟦
𝟥 B

𝟣
𝟥 +Z

𝟥
𝟧 B

𝟦
𝟧 ) for Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

If B ≤ Z
𝟩
𝟦 we need to include into main part Scott correction term.

Discussion

Now let us formulate our expectations:

Remark 26.3.3. We expect

(i) Estimate (26.3.14) for B ≤ Z
𝟦
𝟥 and estimate (26.3.20) for Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

(ii) Furthermore, since for B ≤ Z
𝟦
𝟥 the main contribution to all terms needed

to derive this estimate is delivered by the zone {x : ℓ(x) ≈ Z− 𝟣
𝟥} and the
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effective magnetic field is 𝜇 = Bℓ/𝜁 ≈ BZ−𝟣 we expect improved to “o” (or

better) estimate (26.3.14) if B ≪ Z and a ≫ Z− 𝟣
𝟥
11).

(iii) Statement, similar to (ii) should be also true for the trace term; however
then we need to include the Schwinger term.

(iv) The remainder estimate for the ground state energy is maximum of the
remainder estimate for the non-trace and trace terms; therefore we expect
the same remainder estimate as in (26.3.22); Statement, similar to (ii) should
be also correct for the ground state energy. However then we need to include
both Schwinger and Dirac terms.

(v) We expect the described remainder estimate of the trace term and the
ground state energy if a is large enough; otherwise it should contain term
O(a− 𝟣

𝟤 Z
𝟥
𝟤 ) ifs B ≤ Z

𝟩
𝟦 and a ≥ Z−𝟣 (and in this case we include Scott

correction term).

Remark 26.3.4. The other difference between cases B ≤ Z
𝟦
𝟥 and B ≥ Z

𝟦
𝟥 is

that 𝜇h = B𝜁−𝟤 ≲ 1 in the former case if ℓ(x) ≤ r̄ ; however in the latter case

it happens only if ℓ(x) ≤ B−𝟣Z but in the zone {x : B−𝟣Z ≤ ℓ(x) ≤ B− 𝟤
𝟧 Z

𝟣
𝟧}

an opposite inequality holds.

26.3.2 Smooth Approximation

An approach described in Subsection 26.3.1 hits two obstacles: the non-
smoothness of W 𝖳𝖥

B and its possible degeneration i.e. ∇W 𝖳𝖥
B is not disjoint

from 0. However non-smoothness of W 𝖳𝖥
B is due to the non-smoothness

of PB . So we want to consider first the zone where we can just replace
PB(W + 𝜈) by P(W + 𝜈) and therefore W 𝖳𝖥

B by some smooth function W
which does not necessary coincides with W 𝖳𝖥.

Trivial Arguments

Obviously we can do this as an effective magnetic field 𝜇 = Bℓ/𝜁 ≲ 1. In
this case we do not need assumption W + 𝜈 ≍ 𝜁𝟤 and therefore we can
take 𝜁 = ℓ−𝟦 as B ≲ Z

𝟦
𝟥 and ℓ ≳ Z− 𝟣

𝟥 and 𝜁 = Z
𝟣
𝟤 ℓ−

𝟣
𝟤 in all other cases.

Therefore zone in question is

11) Recall that a = 𝗆𝗂𝗇𝟣≤m<m′≤M |𝗒m − 𝗒m′ | is the minimal distance between nuclei.
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(26.3.23) 𝒳𝟣 := {x : ℓ(x) ≤ r𝟣}

with r𝟣 =

{︃
B− 𝟣

𝟥 if 1 ≤ B ≲ Z ,

B− 𝟤
𝟥 Z

𝟣
𝟥 if Z ≲ B ≲ Z 𝟤.

In this zone 𝒳𝟣 for such modified W we can unleash the full power of
the same smooth theory as in Section 25.4 and prove easily the following

Proposition 26.3.5. Let 1 ≤ B ≤ Z 𝟤. Then

(i) A contribution of zone 𝒳𝟣 defined by (26.3.23) to∫︁ (︁
e(x , x , 𝜈)− P ′(W (x) + 𝜈)

)︁
dx(26.3.24)

does not exceed CZ
𝟤
𝟥 while its contribution to

D
(︁

e(x , x , 𝜈)− P ′(W (x) + 𝜈), e(x , x , 𝜈)− P ′(W (x) + 𝜈)
)︁

(26.3.25)

does not exceed CZ
𝟧
𝟥 , and its contribution to∫︁ (︁

e𝟣(x , x , 𝜈) + P(W (x) + 𝜈)
)︁

dx − Scott(26.3.26)

does not exceed CZ
𝟧
𝟥 + Ca− 𝟣

𝟤 Z
𝟥
𝟤 + CZ

𝟦
𝟥 B

𝟣
𝟥
11), 12).

(ii) Further, if B ≪ Z and a ≫ Z− 𝟣
𝟥 we can recover for these contributions

estimates CZ
𝟤
𝟥𝜐, CZ

𝟧
𝟥𝜐 and CZ

𝟧
𝟥𝜐 respectively with

𝜐 := Z−𝛿 + (aZ
𝟣
𝟥 )−𝛿 + (BZ−𝟣)𝛿(26.3.27)

where expression (26.3.26) should be modified to∫︁ (︀
e𝟣(x , x , 𝜈)− P(W (x) + 𝜈)

)︀
dx − Scott− Schwinger.(26.3.28)

Furthermore in this case contribution of 𝒳𝟣 to

1

2

∫︁
tr
(︀
e†(x , y , 𝜈)e(x , y , 𝜈)

)︀
dxdy − Dirac(26.3.29)

does not exceed CZ
𝟧
𝟥
−𝛿.

12) If a ≲ Z−𝟣 we skip 𝖲𝖼𝗈𝗍𝗍 and reset a = Z−𝟣 in the remainder estimate which become
CZ 𝟤.
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Remark 26.3.6. (i) So far we should use P(.) instead of PB(.) but we will
prove that the same results would hold for PB as well.

(ii) In the next subsubsections we expand this zone to one defined by

𝜇 ≤ h− 𝟣
𝟥
13) but for trace term we still need a separate analysis as 𝜇 ≲ 1.

(iii) The same estimates hold if we replace in all expressions (26.3.24)–
(26.3.28) P by PB .

(iv) We assumed that B ≤ Z 𝟤 since otherwise h ≳ 1 not only in 𝒳𝟣 but
even in {x : W 𝖳𝖥(x) ≥ B}.

(v) Note that if r𝟣 ≳ (Z − N)
− 𝟣

𝟥
+ this zone (and the whole analysis) could

be cut short since outside zone in question W + 𝜈 ≥ 0. From Chapter 25
we already know how to deal with such irregularities.

(vi) We need to assume that a ≥ Z− 𝟣
𝟥 and to include the second term

(aZ
𝟣
𝟥 )−𝛿 in the definition of 𝜐 only as we estimate the trace term (26.3.26).

Remark 26.3.7. (i) If either a ≪ Z− 𝟣
𝟥 or B ≫ Z we estimated (26.3.5) by

Ca− 𝟣
𝟤 Z

𝟥
𝟤 +CZ

𝟦
𝟥 B

𝟣
𝟥 . While the first term does not bother us since assumption

a ≪ min(Z− 𝟣
𝟥 ,B− 𝟣

𝟦 ) is unrealistic, the second term is troublesome. Let us

assume that a ≥ Z− 𝟣
𝟥 .

We can marginally improve this estimate of expression (26.3.26) to

CZ
𝟧
𝟥 + o

(︀
Z

𝟦
𝟥 B

𝟣
𝟥

)︀
.

First, observe, that this term CZ
𝟥
𝟤 B

𝟣
𝟥 appears as b− 𝟣

𝟤 Z
𝟥
𝟤 with b =

B− 𝟤
𝟥 Z

𝟤
𝟥 ≪ 1. Therefore we need to estimate this way only contribution of the

zone 𝒴 := {x : b𝛿 ≤ ℓ(x)Z
𝟣
𝟥 ≤ b−𝛿} and it is sufficient to investigate the cor-

responding classical dynamics in the zone 𝒴𝟣 := {x : b𝟤𝛿 ≤ ℓ(x)Z
𝟣
𝟥 ≤ b−𝟤𝛿}.

Indeed, to recover estimate we have now, we used a classical dynamics
on Σ := {(x , 𝜉) : H(x , 𝜉) = 0} for time T (x) = Z−𝟣ℓ(x)

𝟥
𝟤 .

Further, one can see easily that along classical trajectories, starting in
Σ|𝒴 , ℓ(x) ≤ b−𝟤𝛿 for time T = b−𝜎T𝟢 with 𝜎 = 𝜎(𝛿) > 0.

On the other hand, the invariant measure of Σr = {(x , 𝜉) ∈ Σ, ℓ(x) ≍ r}
is ≍ r 𝟤Z and since the spatial speed there is O(Z

𝟣
𝟤 r−

𝟣
𝟤 ) we conclude that

13) Or even to 𝜇 ≤ h− 𝟥
𝟧 under non-degeneracy assumption (26.3.35) with 𝛾 = ℓ, in

particular, in the atomic case.
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(26.3.30) The invariant measure of the points in Σ|𝒴 , such that the classical
trajectories starting from them do not remain in 𝒴𝟣 for time T = b−𝜎T𝟢,
does not exceed b𝟤+𝜎Z

𝟣
𝟥 .

(ii) Now it is sufficient to explore the classical dynamics with the Hamilto-
nian, corresponding to the Coulomb potential and constant magnetic field,
and to prove that

(26.3.31) The invariant measure of the periodic points Σ is 0.

To do so, we need to prove that there are non-periodic trajectories, which
do not hit an origin. It is sufficient to consider trajectories belonging to the
plane {z = 0}; we assume that magnetic intensity is (0, 0,B). See Part (iii).

(iii) To improve this estimate further we need to investigate the classical
dynamics in more details, and it seems to be a daunting, if not impossible
task. Indeed, while in 2D the system is completely integrable14), it does
not seem so in 3D as we know only two first integrals, energy E and
Mz = (xẏ − y ẋ) + 𝟣

𝟤
B(x𝟤 + y 𝟤).

Formal Expansion

Now we want to expand zone 𝒳𝟣. Note first that

P ′
B(W + 𝜈)− P ′(W + 𝜈) = O(B

𝟥
𝟤 )(26.3.32)

and

PB(W + 𝜈)− P(W + 𝜈)− 𝜅𝟣B𝟤(W + 𝜈)
𝟣
𝟤 = O(B

𝟧
𝟤 ).(26.3.33)

Really, one can consider P ′
B(w) and PB(w) as Riemann sums for integrals

P ′(w) and P(w) respectively; see Appendix 26.A.3 for details.
However under non-degeneracy assumption |∇W | ≍ 𝜁𝟤ℓ−𝟣 we can do

better with the integrated expressions.

14) And easily solvable in the polar coordinates since E = 𝟣
𝟤 r̆𝟤 + V *(r) with effective

potential V *(r) = 𝟣
𝟤 r𝟤(Mz r−𝟤 − B/𝟤)𝟤 − r−𝟣, and the corrected angular momentum

Mz = r𝟤𝜃 + 𝟣
𝟤Br𝟤. One can see easily that V *(r) → +∞ as r → +𝟢 or r → +∞ and has

a single nondegenerate minimum. Therefore along each trajectory r oscillates between
r𝗆𝗂𝗇 and r𝗆𝖺𝗑. If all trajectories on the energy level E were periodic, then the number of
oscillations was constant for increment 𝜃 equal to 𝟤𝜋n with some n ∈ ℤ+. But this is
definitely not the case since the number of oscillations tends to ∞ as Mz/B → +∞.
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Proposition 26.3.8. Assume that in B(z , 𝛾)

|∇𝛼W | ≤ C𝛼𝜁
𝟤𝛾−|𝛼| ∀𝛼 : |𝛼| ≤ n,(26.3.34)

|∇W | ≥ 𝜖𝜁𝟤𝛾−𝟣,(26.3.35)

and

B ≤ 𝜁𝟤.(26.3.36)

Then ∫︁
𝜑(x)

(︁
P ′
B(W (x) + 𝜈)− P̃ ′

B(W (x) + 𝜈)
)︁

dx = O(B𝟤𝜁−𝟣𝛾𝟥),(26.3.37) ∫︁
𝜑(x)

(︁
PB(W (x) + 𝜈)− P̃ ′

B(W (x) + 𝜈)
)︁

dx = O(B𝟧𝜁−𝟧𝛾𝟥)(26.3.38)

and

(26.3.39) D
(︁
𝜑(x)

(︀
P ′
B(W (x) + 𝜈)− P̃ ′

B(W (x) + 𝜈)
)︀
,

𝜑(x)
(︀
P ′
B(W (x) + 𝜈)− P̃ ′

B(W (x) + 𝜈)
)︀)︁

= O(B𝟧𝜁−𝟦𝛾𝟧)

with

(26.3.40) P̃B(w) := P(w) +
(︀
𝜅𝟣P ′′(w)B𝟤 + 𝜅𝟤P IV B𝟦

)︀
·
(︀
1− 𝜙(w/B)

)︀
where 𝜙 ∈ C∞([−2, 2]), 𝜙 = 1 on [−1, 1].

Proof. Rescaling x ↦→ x𝛾−𝟣, w ↦→ w𝜁−𝟤 and therefore B ↦→ 𝛽 = B𝜁−𝟤 one
can reduce the case to 𝛾 = 𝜁 = 1, 𝛽 ≤ 1 15). Then estimates (26.3.37)
and (26.3.38) are trivially proven by (multiple) integration by parts which
integrates P𝛽 on each step increasing its smoothness16).

To prove estimate (26.3.39) we apply decomposition (26.3.8). Integration

by parts shows that (26.3.37) with t-admissible function 𝜑 is O(𝛽𝟥t
𝟥
𝟤 ) if

t ≥ 𝛽 and therefore the contribution of the zone {(x , y) : |x − y | ≍ t} is
O(𝛽𝟨t𝟥× t−𝟦). Then the total contribution of the zone {(x , y) : |x − y | ≥ 𝛽}
is O(𝛽𝟧). Meanwhile a total contribution of the zone {(x , y) : |x − y | ≤ 𝛽}
is O(𝛽𝟥 × 𝛽𝟤).

15) Recall that 𝛽 = 𝜇h with 𝜇 = B𝛾/𝜁 and h = 𝟣/𝜁𝛾.
16) In fact one can prove then estimates O(𝛽s) but adding correction terms

∑︀
𝜅k𝛽

𝟤k .
However this improvement is not carried on to (26.3.39) in full.
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Therefore we expect that the zone 𝒳𝟣 defined by 𝜇 ≲ 1 could be expanded
to the zone 𝒳 ′

𝟣 defined by 𝜇 ≲ h− 𝟣
𝟥
13) or even larger17); furthermore, under

assumption |∇W | ≍ 𝜁𝟤ℓ−𝟣 we can define 𝒳 ′
𝟣 by 𝜇 ≲ h− 𝟥

𝟧 or even larger17).

Expansion: Justification

Now however we need to deal with e(x , x , 𝜈) rather than P ′
B(W (x)+𝜈) (etc).

Proposition 26.3.9. Assume that in B(z , 𝛾) conditions (26.3.34), 𝜁𝛾 ≥ 1
and

(26.3.41) B ≤ c𝜁𝟤(𝜁𝛾)−𝛿

are fulfilled. Then for 𝛾-admissible 𝜑∫︁
𝜑(x)

(︁
e(x , x , 𝜈)− P̃ ′

B(W (x) + 𝜈)
)︁

dx = O(𝜁𝟤𝛾𝟤),(26.3.42) ∫︁
𝜑(x)

(︁
e𝟣(x , x , 𝜏)− P̃B(W (x) + 𝜈)

)︁
dx = O(𝜁𝟥𝛾)(26.3.43)

and

(26.3.44) D
(︁
𝜑(x)

(︀
e(x , x , 𝜈)− P̃ ′

B(W (x) + 𝜈)
)︀
,

𝜑(x)
(︀
e(x , x , 𝜈)− P̃ ′

B(W (x) + 𝜈)
)︀)︁

= O(𝜁𝟦𝛾𝟥).

Proof. Estimates (26.3.42) and (26.3.43) are due to Chapter 13. Really,
rescale x ↦→ x𝛾−𝟣, 𝜏 ↦→ 𝜏𝜁−𝟤 and h = 1 ↦→ h = 𝛾−𝟣𝜁−𝟣, B ↦→ 𝜇 = B𝛾𝜁−𝟣.

To prove (26.3.44) let us apply decomposition (26.3.8); then according
to (26.3.42) J(t) (defined as expression (26.3.42) with t𝛾-admissible 𝜑t)
does not exceed C𝜁𝟤𝛾𝟤t𝟤 as long as t𝜁𝛾 ≥ 1; therefore contribution of zone
{(x , y) : |x − y | ≍ t} into the left-hand expression of (26.3.44) does not
exceed C (𝜁𝟤𝛾𝟤t𝟤)𝟤 × t−𝟦𝛾−𝟣 ≍ C𝜁𝟦𝛾𝟥.

Then summation over t ≥ 𝜇−𝟣 = B−𝟣𝛾−𝟣𝜁 returns C𝜁𝟦𝛾𝟥
∫︀

t−𝟣 dt ≍
C𝜁𝟦𝛾𝟥 log 𝜇 (we assume that 𝜇 ≥ 2; case 𝜇 ≲ 2 has been covered already).
So, the total contribution of zone {(x , y) : |x − y | ≥ 𝜇−𝟣} does not exceed
C𝜁𝟦𝛾𝟥 log 𝜇.

17) We do not need for each ℓ have a sharp remainder estimates but need only them to
sum to a sharp estimate.
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Let us get rid of the logarithmic factor. Returning back to B(z , t)
stretched to B(0, 1) one can see easily that conditions of Proposition 13.7.25
are fulfilled as well with T = min

(︀
t−𝛿, h−𝛿t𝛿

)︀
and thus

|J(t)| ≤ C (ht−𝟣)−𝟤T−𝟣 ≤ Ch−𝟤t𝟤
(︀
t𝛿 + h𝛿t−𝛿

)︀
.

Plugginginto (26.3.8) we get

Ch−𝟦𝛾−𝟣

∫︁ 𝟣

𝜇−𝟣

t−𝟣
(︀
t𝛿 + h𝛿t−𝛿

)︀
dt ≍ Ch−𝟦𝛾−𝟣 = C𝜁𝟦𝛾𝟥.

On the other hand, in zone t ≤ 𝜇−𝟣 we use the trivial estimate

e(x , x , 𝜈)− P ′(W (x) + 𝜈) = O(𝜇𝜁𝟤𝛾𝟤)

(due to simple rescaling x ↦→ 𝜇x) and its contribution to the left-hand
expression of (26.3.44) does not exceed C (𝜇𝜁𝟤𝛾𝟤)𝟤 × 𝜇−𝟤𝛾−𝟣 ≍ C𝜁𝟦𝛾𝟥.

Combining with estimates (26.3.32) and (26.3.33) we arrive to State-
ment (i) below; combining with Proposition 26.3.7 to Statement (ii):

Corollary 26.3.10. Assume that in B(z , 𝛾) conditions (26.3.34) and 𝜁𝛾 ≥
1 are fulfilled. Let 𝜑 be 𝛾-admissible function.

(i) Let

B ≤ c𝜁
𝟦
𝟥𝛾−

𝟤
𝟥 ;(26.3.45)

then ∫︁
𝜑(x)

(︁
e(x , x , 𝜈)− P̃ ′

B(W (x) + 𝜈)
)︁

dx = O(𝜁𝟤𝛾𝟤),(26.3.46) ∫︁
𝜑(x)

(︁
e𝟣(x , x , 𝜏)− P̃B(W (x) + 𝜈)

)︁
dx = O(𝜁𝟥𝛾)(26.3.47)

and

(26.3.48) D
(︁
𝜑(x)

(︀
e(x , x , 𝜈)− P̃ ′

B(W (x) + 𝜈)
)︀
,

𝜑(x)
(︀
e(x , x , 𝜈)− P̃ ′

B(W (x) + 𝜈)
)︀)︁

= O(𝜁𝟦𝛾𝟥).

(ii) Let assumption (26.3.35) be fulfilled and

(26.3.49) B ≤ c𝜁
𝟪
𝟧𝛾−

𝟤
𝟧 .

Then (26.3.46)–(26.3.48) hold.
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26.3.3 Rough Approximation

Unless our analysis has been cut short with r𝟣 ≳ (Z − N)
− 𝟣

𝟥
+ , we need to

consider the zone {x : ℓ(x) ≥ r𝟣} with redefined r𝟣, so that this zone is

described by 𝜇 ≳ h− 𝟣
𝟥 or 𝜇 ≳ h− 𝟥

𝟧 in the general or non-degenerate (i.e.
satisfying assumption (26.3.35)) cases respectively.

In this zone the replacement of PB by P and thus W 𝖳𝖥
B by some smooth

function leads to the error which is too large. Therefore instead in this zone
we consider 𝜀ℓ-mollification of W 𝖳𝖥

B with 𝜀 ≪ 1 (after rescaling x ↦→ x/ℓ).
In contrast to potentials considered in Chapter 18 function W 𝖳𝖥

B is more
regular.

Properties of Mollification

First, recall regularity properties of W 𝖳𝖥
B :

Proposition 26.3.11. W 𝖳𝖥
B have the following properties:

(26.3.50) |∇𝛼W 𝖳𝖥
B (x)| ≤ c𝛼𝜁(x)

𝟤ℓ(x)−|𝛼| ∀𝛼 : |𝛼| ≤ 2,

(26.3.51) |∇𝛼
(︀
W 𝖳𝖥

B (x)− W 𝖳𝖥
B (y)

)︀
| ≤

c𝟢Bℓ(x)−
𝟧
𝟤 |x − y |

𝟣
𝟤 + c𝟢𝜁(x)

𝟤ℓ(x)−𝟥|x − y |

∀|𝛼| = 2 ∀x , y : |x − y | ≤ 𝜖ℓ(x)

where we recall

𝜁(x) = min
(︀
Z

𝟣
𝟤 ℓ(x)−

𝟣
𝟤 , ℓ(x)−𝟤

)︀
if B ≤ Z

𝟦
𝟥 ,(26.3.52)

𝜁(x) = Z
𝟣
𝟤 ℓ(x)−

𝟣
𝟤 if B ≥ Z

𝟦
𝟥 ;(26.3.53)

Proof. This proof is rather obvious corollary of the Thomas-Fermi equation
(26.2.3). See also arguments below.

Let us consider B(z , ℓ(z)) with 𝜁𝟤 ≳ B and rescale x ↦→ xℓ−𝟣, W ↦→ w =
𝜁−𝟤(W + 𝜈) (where we included 𝜈 for a convenience). After such rescaling

w ∈ C
𝟧
𝟤 uniformly, but there is more: Thomas-Fermi equation (26.2.3)

translates into

(26.3.54)
1

4𝜋
Δw = ℓ𝟤P ′

𝛽(w) = ℓ𝟤𝜁P ′(w) + ℓ𝟤𝜁
(︀
P ′
𝛽(w)− P ′(w)

)︀
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with 𝛽 = B𝜁−𝟤; observe that P ′
B(W ) is positively homogeneous of degree 3

with respect to (W ,B).

Note that parameter 𝜂 := 𝜁ℓ𝟤 ≲ 1 and 𝜂 ≍ 1 if and only if B ≲ Z
𝟦
𝟥 and

ℓ ≳ Z− 𝟦
𝟥 (in which case 𝜁 ≍ ℓ−𝟤).

Also note that the first term and the second terms in the right-hand
expression of (26.3.54) belong to C

𝟧
𝟤 and 𝛽𝜂 C

𝟣
𝟤 respectively uniformly18)

and

(26.3.55) 𝛽𝜂 = 𝛽𝜁ℓ𝟤 = B𝜁−𝟣ℓ𝟤, 𝜂 := 𝜁ℓ𝟤 if 𝛽 ≲ 1.

Because of this w ∈ C
𝟫
𝟤 ⊕ 𝛽𝜂 C

𝟧
𝟤 again uniformly. Iterating, we conclude

that w ∈ Cn ⊕ 𝛽𝜂 C
𝟧
𝟤 with arbitrarily large exponent n.

On the other hand, if B ≳ 𝜁𝟤 (i.e. 𝛽 ≳ 1) without invoking P ′
B one can

prove easily that w ∈ 𝜂 C
𝟧
𝟤 with

(26.3.55)′ 𝜂 := 𝛽𝜁ℓ𝟤 = B𝜁−𝟣ℓ𝟤 if 𝛽 ≳ 1.

Therefore we have proven

(26.3.56) w ∈ Cn ⊕ 𝛽𝜂 C
𝟧
𝟤 with arbitrarily large exponent n as 𝛽 ≲ 1 and

w ∈ 𝜂 C
𝟧
𝟤 as 𝛽 ≳ 1

and one can see easily that

(26.3.57) Parameter 𝜂 = B𝜁−𝟣ℓ𝟤 is O(1) and 𝜂 ≍ 1 iff either B ≤ Z
𝟦
𝟥 and

ℓ ≍ B− 𝟣
𝟦 or B ≥ Z

𝟦
𝟥 and ℓ ≍ B− 𝟤

𝟧 Z
𝟣
𝟧 (i.e. near border of supp(𝜌𝖳𝖥B ), uncut

by 𝜈).

Remark 26.3.12. It may seem strange to define 𝜂 differently as 𝛽 ≲ 1 and
𝛽 ≳ 1 but there is a good reason for this when we consider the case of M ≥ 2.
Anyway, 𝜂 is the magnitude of the right-hand expression of (26.3.54).

Proposition 26.3.13. (i) Let w𝜀 be a 𝜀-mollification of w with 𝜀 ≲ min(𝛽, h𝛿)
(recall that h = 1/(𝜁ℓ)). Then if 𝛽 ≲ 1 the following estimates hold:

|∇𝛼(w − w𝜀)| ≤ c𝛼𝛽𝜂𝜀
𝟧
𝟤
−|𝛼| ∀𝛼 : |𝛼| ≤ 2,(26.3.58)

|P𝛽(w)− P𝛽(w𝜀)| ≤ c𝛽𝜂𝜀
𝟧
𝟤(26.3.59)

and

|P ′
𝛽(w)− P ′

𝛽(w𝜀)| ≤ c𝛽
𝟥
𝟤𝜂

𝟣
𝟤 𝜀

𝟧
𝟦 + c𝛽𝜂𝜀

𝟧
𝟤 ;(26.3.60)

18) I.e. norms do not depend on any parameters.
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(ii) On the other hand, if 𝛽 ≳ 1 the right-hand expressions of (26.3.58)–
(26.3.60) should be replaced by the similar expressions albeit without 𝛽:

|∇𝛼(w − w𝜀)| ≤ c𝛼𝜂𝜀
𝟧
𝟤
−|𝛼| ∀𝛼 : |𝛼| ≤ 2,(26.3.58)′

|P𝛽(w)− P𝛽(w𝜀)| ≤ c𝜂𝜀
𝟧
𝟤(26.3.59)′

and

|P ′
𝛽(w)− P ′

𝛽(w𝜀)| ≤ c𝜂
𝟣
𝟤 𝜀

𝟧
𝟦 .(26.3.60)′

(iii) Further, under assumption |∇w | ≍ 1 in both cases

|
∫︁
𝜑(x)

(︀
P𝛽(w)− P𝛽(w𝜀)

)︀
dx | ≤ c𝜂𝜀

𝟩
𝟤 ,(26.3.61)

|
∫︁
𝜑(x)

(︀
P ′
𝛽(w)− P ′

𝛽(w𝜀)
)︀

dx | ≤ c𝜂𝜀
𝟫
𝟦(26.3.62)

and

D
(︀
𝜑(P ′

𝛽(w)− P ′
𝛽(w𝜀)), 𝜑(P

′
𝛽(w)− P ′

𝛽(w𝜀))
)︀
≤ c𝜂𝟤𝜀

𝟫
𝟤 .(26.3.63)

Proof. Proof of Statement (i) is trivial; in particular, we observe that

𝜂𝜀
𝟧
𝟤 ≲ 𝛽.
Proof of Statement (iii) is also easy since then w𝜀 is different from w

on the set of measure ≍ 𝛽−𝟣𝜀 if 𝛽 ≤ C𝟢 and on the set of measure ≍ 𝜀 if
𝛽 ≥ C𝟢. Actually w is uniformly smooth if 𝛽 ≳ 1 and ℓ(x) ≤ 𝜖r̄ and we do
not need any mollification here.

One definitely can improve estimates (26.3.61)–(26.3.63) but we do not
need it.

Consider now the analytical expressions and estimate the semiclassical
errors.

Remark 26.3.14. (i) From now on until the end of this Section we assume
that M = 1 to avoid possible degenerations.

(ii) Recall that we can reduce operator with mollified potential to a canonical

form provided 𝜀 ≥ C (𝜇−𝟣h)
𝟣
𝟤 | log 𝜇| (see Section 18.7). However here we will

have a much better estimate since we will take 𝜀 ≥ h
𝟤
𝟥
−𝛿.

Charge Term

Let us consider the charge term i.e. expression
∫︀

e(x , x , 𝜈) dx = (Tr θ(𝜈−H)).
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Regular Zone. Then the results of Section 18.9 implies that as

W + 𝜈 ≍ 𝜁𝟤(26.3.64)

and

|∇W | ≍ 𝜁𝟤ℓ−𝟣(26.3.65)

contribution of the ball B(x , ℓ(x)) to expression (26.3.24) does not exceed
C (1 + 𝜇h)h−𝟤 ≍ C𝜁𝟤ℓ𝟤 + CBℓ𝟤 exactly as in the mock proof.

Then summation with respect to ℓ-partition in this zone results in CB
𝟤
𝟥

as B ≤ Z , CZ
𝟤
𝟥 as Z ≤ B ≤ Z

𝟦
𝟥 and CB

𝟣
𝟧 Z

𝟤
𝟧 as Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

Remark 26.3.15. (i) Condition (26.3.64) is fulfilled as ℓ(x) ≤ 𝜖r̄ .

(ii) Further, since M = 1 both conditions (26.3.64) and (26.3.65) are fulfilled
if |x | ≤ (1− 𝜖)r̄m (we pick up ym = 0 and r̄m exact radius of supp(𝜌𝖳𝖥B )).

Border Strip. Now we need to consider the contribution of the border
strip 𝒴 := {x : 𝛾(x) ≤ 𝜖} with 𝛾(x) = 𝜖(r̄ − |x |)r̄−𝟣 and r̄ := r̄m. Here ℓ ≍ r̄ ,
𝜁 ≍ 𝜁 with

r̄ ≍

⎧⎪⎪⎨⎪⎪⎩
(Z − N)

− 𝟣
𝟥

+ if B ≤ (Z − N)
𝟦
𝟥
+,

B− 𝟣
𝟦 if (Z − N)

𝟦
𝟥
+ ≤ B ≤ Z

𝟦
𝟥 ,

Z
𝟣
𝟧 B− 𝟤

𝟧 if Z
𝟦
𝟥 ≤ B ≤ CZ 𝟥

(26.3.66)

and

𝜁 ≍

⎧⎪⎪⎨⎪⎪⎩
(Z − N)

𝟤
𝟥
+ if B ≤ (Z − N)

𝟦
𝟥
+,

B
𝟣
𝟤 if (Z − N)

𝟦
𝟥
+ ≤ B ≤ Z

𝟦
𝟥 ,

Z
𝟤
𝟧 B

𝟣
𝟧 if Z

𝟦
𝟥 ≤ B ≤ CZ 𝟥

(26.3.67)

and scaling we get 𝜇 = Br̄𝜁−𝟣 and h = 𝜁−𝟣r̄−𝟣 here.
Let us consider first the case 𝜈 = 0. Then both conditions (26.3.64) and

(26.3.65) are fulfilled albeit with ℓ𝟣 = 𝛾(x)r̄ and 𝜍(x) = 𝜁𝛾(x)𝟤 instead of ℓ
and 𝜁.

Thus if 𝜍ℓ𝟣 ≥ 1 (i.e. 𝛾 ≥ 𝛾 := h
𝟣
𝟥 ), the contribution of the ball B(x , 𝛾(x)r̄)

to the remainder does not exceed C𝜇h−𝟣𝛾𝟤 19) and therefore the total con-
tribution of zone 𝒴𝟣 := {x : 𝛾 ≤ 𝛾(x) ≤ 𝜖r̄} to the remainder does not

19) Really, after additional rescaling x ↦→ x𝛾−𝟣, w ↦→ w𝛾−𝟤 we have 𝜇𝟣 = 𝜇𝛾−𝟣,
h𝟣 = h𝛾−𝟥 and 𝜇𝟣h−𝟣

𝟣 = 𝜇h−𝟣𝛾𝟤.
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exceed

(26.3.68) C𝜇h−𝟣

∫︁
𝛾(x)−𝟣 dx ≍ C𝜇h−𝟣| log h| = CBr̄ 𝟤| log h|

which is O(Z
𝟤
𝟥 ) as long as B ≤ Z

𝟦
𝟥 (log Z )−𝟤.

Further, the same approach works if |𝜈| ≲ 𝜁𝟤𝛾𝟥 ≍ 𝜁𝟤h ≍ 𝜁 r̄−𝟣 which is
equivalent to (Z − N)+ ≤ 𝜁 (then |∇W | ≍ 𝜍𝟤ℓ−𝟣

𝟣 if 𝛾(x) ≥ 𝛾) and also if
this condition is violated but |𝜈| ≤ 𝜁𝟤; in the latter case we need to pick up

𝛾 = 𝛾𝟣 := |𝜈| 𝟣𝟥 𝜁− 𝟤
𝟥 .

To get rid of the logarithmic factor let us consider propagation. Recall
that it goes along magnetic lines i.e. that (x𝟣, x𝟤) remains constant. Let us
consider propagation in the direction in which |x𝟥| increases (i.e. 𝛾(x) decays);
we do not need to consider zone 𝒴𝟣 ∩ {|x𝟥| ≤ Z−𝛿 r̄} since contribution of
this zone (26.3.68) is o(Br̄ 𝟤).

One can see easily that we can follow dynamics which does not return
for a time T *

𝟣 (x) := T𝟣(x)(𝛾(x)/𝛾)
𝛿 where T (x) ≍ ℓ−𝟣

𝟣 𝜍−𝟣 ≍ r̄𝜁−𝟣𝛾−𝟣 is a
time required for this dynamics to pass though B(x , ℓ𝟣(x)). Therefore one
can replace (26.3.68) by

(26.3.69) C𝜇h−𝟣

∫︁
{x : 𝛾(x)≥𝛾}

𝛾𝛿𝛾(x)−𝟣−𝛿 dx ≍ C𝜇h−𝟣 = CBr̄ 𝟤.

Further, as |𝜈| ≥ Br̄ we need also to consider zone 𝒴𝟢 := {x : 𝛾(x) ≤ 𝛾}.
In this zone we take ℓ𝟣 = ℓ̄𝟣 = 𝛾 r̄ and 𝜍 = 𝜍 = (|𝜈|𝛾) 𝟣

𝟤 with ℓ𝟣𝜍 ≥ 1 and
since |∇W | ≍ 𝜍𝟤ℓ−𝟣

𝟣 , contribution of B(x , ℓ𝟣(x)) to the remainder does not
exceed CB ℓ̄𝟤𝟣 and the total contribution of 𝒴𝟤 does not exceed CBr̄ 𝟤 which
what exactly we achieved for zone 𝒴𝟣 after we got rid of logarithm. We take
mollification parameter 𝜀 = 𝜍−𝟣Z 𝛿 20).

Furthermore, zone 𝒴𝟥 = {x : |x | ≥ r̄ + ℓ̄𝟣} is classically forbidden. So we
can take here

(26.3.70) ℓ𝟣(x) = 𝜖(|x | − r̄), 𝜍(x) = min
(︀
𝜍ℓ̄

− 𝟣
𝟤

𝟣 ℓ𝟣(x)
𝟣
𝟤 , |𝜈|

𝟣
𝟤

)︀
and prove easily that its contribution also does not exceed CBr̄ 𝟤.

Returning to the case |𝜈| ≲ 𝜁 we see that the contribution of zone
𝒴𝟤 to the remainder does not exceed CBr̄ 𝟤 because effective semiclassical

20) One can see easily that the resulting errors in the expressions(26.3.24) and (26.3.25)–
(26.3.26) will not violate our claims.
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parameter here is h𝟣 = 1 and non-degeneracy condition is of no concern for
us. We take mollification parameter 𝜀 = 𝜍−𝟣Z 𝛿 20).

Moreover, we can modify W in 𝒴𝟤 (make it negative there) so that this
zone would be classically forbidden with ℓ𝟣, 𝜍 defined by (26.3.70) with |𝜈|
replaced by 𝜁.

Finally in the case B ≤ |𝜈| (i. e. B ≤ C (Z − N)
𝟦
𝟥
+ we can apply the

above arguments with 𝛾 = 1 and arrive to the same result. Therefore we
proved in all cases

(26.3.71) If M = 1 the total contribution of the border strip 𝒴 to the

remainder in the charge term is O(Br̄ 𝟤) which does not exceed CB
𝟣
𝟤 as

B ≤ Z
𝟦
𝟥 and CB

𝟣
𝟧 Z

𝟤
𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

Conclusion. If Z 𝟤 ≤ B ≤ Z 𝟥 we need to estimate also contribution of the
inner core 𝒳𝟢 := {x : ℓ(x) ≤ CZ−𝟣}. By means of variational methods we
will prove (see Corollary 26.A.5)

(26.3.72) If Z 𝟤 ≤ B ≤ Z 𝟥 the contributions of 𝒳𝟢 to both
∫︀

e(x , x , 𝜈) dx
and

∫︀
P ′
B(W (x) + 𝜈) dx do not exceed CBZ−𝟤.

Then we arrive to the following

Proposition 26.3.16. Let M = 1. Then

(i) For constructed above potential W expression (26.3.24) does not exceed

CZ
𝟤
𝟥 + CB

𝟣
𝟧 Z

𝟤
𝟧 .

(ii) If B ≤ Z expression (26.3.24) does not exceed C (B + 1)𝛿Z
𝟤
𝟥
−𝛿.

Trace Term

Let us consider the trace term i.e. expression
∫︀

e𝟣(x , x , 𝜈) dx = Tr((H −𝜈)−).

Regular Zone. Here again let us consider first zone where |x | ≤ (1− 𝜖)r̄ .
Then the contribution of B(x , ℓ(x)) to the Tauberian remainder21) does not
exceed C𝜁𝟤(h−𝟣+𝜇) ≍ C𝜁𝟥ℓ+CB𝜁ℓ as in the mock proof and the summation

over zone results in CZ
𝟧
𝟥 + CZ

𝟦
𝟥 B

𝟣
𝟥 + CZ

𝟥
𝟧 B

𝟦
𝟧 .

21) We will consider a bit later transition from the Tauberian expression to the magnetic
Weyl expression.
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Border Strip. Again in zone 𝒴𝟣 contribution of B(x , 𝛾(x)) does not exceed
CB𝜍ℓ𝟣 and the summation over this zone returns

(26.3.73) CB

∫︁
𝜍ℓ−𝟤

𝟣 dx

and plugging ℓ𝟣 = r̄𝛾 and 𝜍 = 𝜁𝛾𝟤 results in CB
𝟧
𝟦 as B ≲ Z

𝟦
𝟥 and CB

𝟦
𝟧 Z

𝟥
𝟧

otherwise. The analysis of zone 𝒴𝟢 if there 𝒴𝟤 = ∅ is also easy.
Consider zones 𝒴𝟤 and 𝒴𝟢. The same arguments as before imply that

their contributions to the remainder do not exceed CBr̄ 𝟤𝜍ℓ̄−𝟣
𝟣 which is what

we got before.

Justification: from Tauberian to Magnetic Weyl Expression.

Case 𝜇h ≤ C𝟢. We need to prove that with the announced error we
can replace the Tauberian expression by magnetic Weyl one. Note that the
canonical form of 𝜁−𝟤HA,W as described in Sections 13.3 and 18.7 is

(26.3.74) ℋ = ℋ𝟢+

𝜇−𝟤𝜔𝟣(x𝟣,𝜇
−𝟣hD𝟣, x𝟥) + 𝜇−𝟤𝜔𝟤(x𝟣,𝜇

−𝟣hD𝟣, x𝟥)(x
𝟤
𝟤 + 𝜇𝟤h𝟤D𝟤

𝟤 )

+ 𝜇−𝟣h𝜔𝟥(x𝟣,𝜇
−𝟣hD𝟣, x𝟥) + O

(︀
𝜇−𝟥h(𝛾 + 𝜇−𝟣)−

𝟥
𝟤 + 𝜇−𝟦

)︀
with

ℋ𝟢 = h𝟤D𝟤
𝟥 − (x𝟤

𝟤 + 𝜇𝟤h𝟤D𝟤
𝟤 ± 𝜇h) + w(x𝟣,𝜇

−𝟣hD𝟣, x𝟥)(26.3.75)

and

𝛾 = 𝜖min
j

|w − 2j𝜇h|(26.3.76)

where we used the fact that w ∈ 𝜇h C
𝟧
𝟤 + Cn, 𝜇−𝟥h = 𝜇−𝟦 · 𝜇h. Here we

have signs “+” and “−” on q/2 of the diagonal elements equally.
Then the Tauberian expression is

(26.3.77) const · 𝜇h−𝟤

∫︁ ∑︁
j≥𝟢

(︀
w − 2j𝜇h − 𝜇−𝟤𝜔𝟣 − 2j𝜇−𝟣h𝜔𝟤

)︀ 𝟥
𝟤

+
×(︀

𝜓 + 𝜇−𝟤𝜓𝟣 + 2j𝜇−𝟣h𝜓𝟤

)︀
dx
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where term with j = 0 enters with the weight 𝟣
𝟤
and an error does not exceed

Ch−𝟥
(︁
𝜇−𝟦 + 𝜇−𝟥h

∫︁
(𝛾 + 𝜇−𝟣)−

𝟥
𝟤 dx

)︁
≍ C𝜇− 𝟩

𝟤 h−𝟥

because an integral does not exceed C𝜇
𝟣
𝟤 (𝜇h)−𝟣; since 𝜇 ≥ h− 𝟥

𝟧 this error

does not exceed Ch− 𝟫
𝟣𝟢 which is better than O(h−𝟣).

On the other hand, if we consider the difference between (26.3.77) and
the same expression with 𝜔𝟣 = 𝜔𝟤 = 𝜓𝟣 = 𝜓𝟤 = 0 and consider it as a
Riemannian sum and replace it by an integral we get G𝜇−𝟤h−𝟥 with an
error not exceeding C𝜇−𝟦(𝜇h)

𝟣
𝟤 h−𝟥 which is even less. Therefore (26.3.77)

becomes ∫︁
P𝜇h(w)𝜓 dx + G𝜇−𝟤h−𝟥

and comparing with the result if 𝜇 ≍ h− 𝟥
𝟧 when we get the same answer

albeit with G = 0 we conclude that G must be 0. This concludes the
justification in 𝒳𝟤.

Case 𝜇h ≥ C𝟢. In this case we need a simplified version of (26.3.74)
ℋ = ℋ𝟢 + O(𝜇−𝟣h) and we need to consider only j = 0 and replacing ℋ
by ℋ𝟢 brings and error C𝜇h−𝟤 × 𝜇−𝟣h = O(h−𝟣). This takes care of 𝒳𝟤 and
after scaling of 𝒴 .

Conclusion. As Z 𝟤 ≤ B ≤ Z 𝟥 we need to estimate also contribution of
𝒳𝟢 = {x : ℓ(x) ≤ CZ−𝟣}. By means of variational methods we will prove
(see Corollary 26.A.5)

(26.3.78) For Z 𝟤 ≤ B ≤ Z 𝟥 the contributions of 𝒳𝟢 to both
∫︀

e𝟣(x , x , 𝜈) dx
and

∫︀
P ′
B(W (x) + 𝜈) dx do not exceed CB .

Then we arrive to the following

Proposition 26.3.17. Let M = 1. Then

(i) For constructed above potential W expression (26.3.26) does not exceed

CZ
𝟧
𝟥 + CZ

𝟦
𝟥 B

𝟣
𝟥 + CZ

𝟥
𝟧 B

𝟦
𝟧 .

(ii) If B ≤ Z expression (26.3.26) does not exceed C (B + 1)𝛿Z
𝟧
𝟥
−𝛿 (but one

should subtract a Schwinger term from the trace).
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Semiclassical D-Term: Local Theory

Unfortunately, we do not have any non-smooth theory (cf. Section 16.8)
here so far but actually we almost do not need it since singularities are
rather rare. Let us introduce a scaling function (26.3.76) and consider

(26.3.79) J𝜆(z) =

∫︁
𝜑z,𝜆(x)

(︀
e(x , x , 𝜏)− P𝛽(w(x) + 𝜏)

)︀
dx

with 𝜑z,𝜆(x) = 𝜑(𝜆−𝟣(x − z)) and 𝜆 ≤ 𝛾(z). Scaling x ↦→ 𝜆−𝟣(x − z) we have
𝜇 ↦→ 𝜇′ = 𝜆𝜇 and h ↦→ h′ = 𝜆−𝟣h.

Then, according to Section 13.5

(26.3.80) |J𝜆(z)| ≤ Ch′ −𝟤(1 + 𝜇′h′) ≍ C𝜆𝟤h−𝟤(1 + 𝜇h)

as long as 𝜆 ≥ h.
Really, a transition from the Tauberian decomposition to magnetic Weyl

one in this case is easy: skipping all perturbation terms O(𝜇−𝟤 + 𝜇−𝟣h) in
(26.3.74) and also setting 𝜓𝟣 = 𝜓𝟤 = 0 results in an error O

(︀
𝜇−𝟤h−𝟥+h−𝟣

)︀
in

(26.3.77)-like expression albeit with the power 𝟣
𝟤
rather than 𝟥

𝟤
and without

integration:

(26.3.81) const · 𝜇h−𝟤
∑︁
j≥𝟢

(︀
w − 2j𝜇h − 𝜇−𝟤𝜔𝟣 − 2j𝜇−𝟣h𝜔𝟤

)︀ 𝟣
𝟤

+
×(︀

𝜓 + 𝜇−𝟤𝜓𝟣 + 2j𝜇−𝟣h𝜓𝟤

)︀
;

scaling produces expression smaller than (26.3.80).
Let us apply this estimate (26.3.80) to the Fefferman–de Llave decompo-

sition (26.3.8).

Case 𝜇 ≤ C𝟢h−𝟣.

(i) Consider first a pair (z , z ′) such that |z ′ − z ′′| ≤ 𝜖𝟢𝛾(z
′); then also

|z ′ − z ′′| ≤ 𝜖𝟢𝛾(z
′′) and we take 𝜆 = 𝜖|z ′ − z ′′|.

Then in the virtue of (26.3.80) the total contribution to D-term of all
such pairs belonging to B(z , 𝛾(z)), and with |z ′ − z ′′| ≍ 𝜆 does not exceed

(26.3.82) C𝛾𝟥𝜆−𝟥 × 𝜆−𝟣 × 𝜆𝟤h−𝟦(1 + 𝜇h)𝟤 ≍ C𝛾𝟥h−𝟦(1 + 𝜇h)𝟤

where C𝛾𝟥𝜆−𝟥 estimate the number of such pairs, 𝜆−𝟣 the inverse distance
between them, and C𝜆𝟤h−𝟤(1 + 𝜇h) is the right-hand expression of (26.3.80).
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Then summation over 𝜆 ∈ (𝜇−𝟣, 𝛾) results in C𝛾𝟥(1 + 𝜇h)𝟤h−𝟦| log(𝜇𝛾)|.

Further, summation over all balls B(z , 𝛾) ⊂ B(0, 1) with 𝛾(z) ≍ 𝛾 results
in C (𝜇h)−𝟣𝛾h−𝟦| log(𝜇𝛾)| since there are ≍ (𝜇h)−𝟣𝛾−𝟤 such balls due to non-
degeneracy assumption |∇w | ≍ 1. Summation over 𝛾 ∈ (𝜇−𝟣,𝜇h) results in
Ch−𝟦| log(𝜇𝟤h)|.

As 𝜆 ≤ 𝜇−𝟣 we can apply standard non-magnetic methods without
Fefferman–de Llave decomposition (26.3.8). Coefficients are smooth after
scaling as long as 𝜀 ≥ 𝜇−𝟣.

(ii) Consider disjoint pairs (z ′, z ′′) with |z ′ − z ′′| ≥ max
(︀
𝛾(z ′), 𝛾(z ′′)

)︀
. Here

estimate (26.3.80) is not sufficient and it should be replaced by

|J𝛾(z)| ≤ C𝜆𝟥h−𝟤(1 + 𝜇h)(26.3.83)

as long as

𝛾 ≥ h
𝟤
𝟥
−𝛿.(26.3.84)

Really, the shift for time T with respect to 𝜉𝟥 is ≍ T provided |∇x𝟥w | ≍ 1
and this shift is observable if T × 𝛾 ≳ h𝟣−𝛿. Similarly, in the canonical form
the shift for time T with respect to 𝜇−𝟣𝜉i is ≍ 𝜇−𝟣T provided |∇xi w | ≍ 1
and this shift is observable if 𝜇−𝟣T × 𝛾 ≳ 𝜇−𝟣h𝟣−𝛿. In both cases shift with
T ∈ (𝛾

𝟣
𝟤 , 𝜖𝟢) is observable under assumption (26.3.84) and therefore we can

extend T ≍ 𝛾
𝟣
𝟤 to T ≍ 1.

Note that for 𝜀 ≥ h
𝟤
𝟥
−𝛿 assumption (26.3.84) is fulfilled automatically.

Then contribution of each disjoint pair to D-term does not exceed

Ch−𝟦(1 + 𝜇h)𝟤𝛾(z ′)𝟥𝛾(z ′′)𝟥|z ′ − z ′′|−𝟣

and the total contribution does not exceed

Ch−𝟦(1 + 𝜇h)𝟤
∫︁∫︁

|z ′ − z ′′|−𝟣 dz ′dz ′′ ≍ Ch−𝟦(1 + 𝜇h)𝟤.

(iii) To shed of logarithm in (i) we need a slightly better estimate than
(26.3.80). The same arguments as in Part (ii) result in

(26.3.85) |J𝜆(z)| ≤ C𝜆𝟤h−𝟤(1 + 𝜇h) · (1 + 𝜆𝛾/h)−𝛿.

Really, we just advance from time T ≍ 𝜆 to T ≍ 𝜆(1 + 𝜆𝛾/h)𝛿.
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Then the same factor is acquired by the right-hand expression of (26.3.82)
and the summation with respect to 𝜆 ∈ (h𝛾−𝟣, 𝛾) results in C𝛾𝟥(1+𝜇h)𝟤h−𝟦

but summation with respect to 𝜆 ∈ (𝜇−𝟣, h𝛾−𝟣) results

C𝛾𝟥(1 + 𝜇h)𝟤h−𝟦
(︀
1 + | log(𝜇h𝛾−𝟣)|

)︀
.

Further, summation over all balls B(z , 𝛾) ⊂ B(0, 1) with 𝛾(z) ≍ 𝛾 results
in C (𝜇h)−𝟣𝛾(1 + 𝜇h)𝟤h−𝟦

(︀
1 + | log(𝜇h𝛾−𝟣)|

)︀
and, finally, summation over

𝛾 ≲ 𝜇h results in Ch−𝟦(1 + 𝜇h)𝟤.

Note that in all cases perturbation terms in (26.3.74) and (26.3.81) result
in the error not exceeding the announced one.

Case 𝜇 ≥ C𝟢h−𝟣. So far factor (1 + 𝜇h) was for a compatibility only.
Now it is important.

Exactly the same arguments work as 𝜇 ≥ C𝟢h−𝟣 with a minor modifica-
tions:

(a) 𝛾(x) now is defined by (26.3.76) with j = 0 and its upper bound is 1
rather than 𝜇h.

(b) Also the number of 𝛾-balls is ≍ 𝛾−𝟤 rather than ≍ (𝜇h)−𝟣𝛾−𝟤;

(c) 𝜆 now runs from h to 𝛾 in (i) and (iii).

(d) We need to estimate contribution of pairs (z ′, z ′′) with |z ′−z ′′| ≤ h. One
can see easily that e(x , x , 𝜏) ≤ 𝜇h−𝟤 and therefore the total contribution of
these pairs does not exceed C𝜇𝟤h−𝟦

∫︀∫︀
|z ′ − z ′′|−𝟣 dz ′dz ′′ ≍ C𝜇𝟤h−𝟦 × h𝟤 ≍

C𝜇𝟤h−𝟤.

Therefore we have the following

Proposition 26.3.18. As |∇w | ≍ 1 and 𝜀 ≥ h
𝟤
𝟥
−𝛿 in B(0, 1) and 𝜑 ∈

C∞(B(0, 𝟣
𝟤
)

(26.3.86) D
(︁
𝜑
(︀
e(x , x , 𝜏)− P ′

𝛽(w(x) + 𝜏)
)︀
,𝜑

(︀
e(x , x , 𝜈)− P ′

𝛽(w(x) + 𝜏)
)︁
≤

C (1 + 𝜇h)𝟤h−𝟦.

Remark 26.3.19. One can see easily that one can select 𝜀 ≥ h
𝟤
𝟥
−𝛿 such that

expressions (26.3.61), (26.3.62) and (26.3.62) will be respectively O(h𝟤+𝛿),
O(h𝟣+𝛿) and O(h𝟤+𝛿).
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Semiclassical D-Term: Global Theory

Regular Zone. The above results allow us to consider a total contribution
of zone 𝒳𝟤 into semiclassical D-term. As before let us consider ℓ-admissible
partition of unity there and apply it to Fefferman–de Llave decomposition
(26.3.8). Then the total contribution of the elements which are not disjoint
does not exceed

(26.3.87)
∑︁
n

ℓ−𝟣
n

(︀
1 + B𝜁−𝟤

n

)︀𝟤
ℓ𝟦n𝜁

𝟦
n ≍

∫︁ (︀
𝜁𝟦 + B𝟤

)︀
ℓ𝟥 ℓ−𝟣dℓ

where
(︀
1 + B𝜁−𝟤

n

)︀𝟤
and ℓ𝟦n𝜁

𝟦
n are (1 + 𝜇h) and h−𝟦 respectively and ℓ−𝟣

n is a
scaling factor.

Then if 𝜁𝟤 = Zℓ−𝟣, an integral equals to the value of the selected
expression as ℓ reaches its maximum, i.e. for ℓ = Z− 𝟣

𝟥 for B ≤ Z
𝟦
𝟥 and

ℓ = Z
𝟣
𝟧 B− 𝟤

𝟧 for Z
𝟦
𝟥 ≤ B ≤ Z 𝟥 and we arrive to CZ

𝟧
𝟥 and CZ

𝟥
𝟧 B

𝟦
𝟧 respectively.

On the other hand, if 𝜁𝟤 = ℓ−𝟦 an integral equals to the value of the
selected expression as ℓ reaches its minimum, i.e. for ℓ = Z− 𝟣

𝟥 and only in
the case B ≤ Z

𝟦
𝟥 and we arrive to CZ

𝟧
𝟥 again.

Furthermore, the total contribution of the disjoint elements does not
exceed

(26.3.88)
∑︁
n,p

|zn − zp|−𝟣
(︀
1 + B𝜁−𝟤

n

)︀(︀
1 + B𝜁−𝟤

p

)︀
ℓ𝟤n𝜁

𝟤
nℓ

𝟤
p𝜁

𝟤
p ≍∫︁∫︁

(ℓ+ ℓ′)−𝟣
(︀
𝜁𝟤 + B

)︀
ℓ𝟤
(︀
𝜁 ′ 𝟤 + B

)︀
ℓ′ 𝟤 ℓ−𝟣dℓ ℓ′ −𝟣dℓ′.

Then if 𝜁𝟤 = Zℓ−𝟣 and 𝜁 ′ 𝟤 = Zℓ′ −𝟣 an integral equals to the value of the
selected expression as both ℓ and ℓ′ reach their maxima, and we arrive to
CZ

𝟧
𝟥 and CZ

𝟥
𝟧 B

𝟦
𝟧 respectively.

On the other hand, if 𝜁𝟤 = ℓ−𝟦 and 𝜁 ′ 𝟤 = ℓ′ −𝟦 (we do not need to consider
mixed pair) an integral equals to the value of the selected expression as both

ℓ and ℓ′ reach their minima, and we arrive to CZ
𝟧
𝟥 .

Therefore (combining with Proposition 26.A.5 as Z 𝟤 ≤ B ≤ Z 𝟥) we
arrive to

Proposition 26.3.20. Let M = 1. Then
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(i) The total contribution of the zone {x : ℓ(x) ≤ (1−𝜖)r̄} to the semiclassical

D-term does not exceed CZ
𝟧
𝟥 and CZ

𝟥
𝟧 B

𝟦
𝟧 for B ≤ Z

𝟦
𝟥 and for Z

𝟦
𝟥 ≤ B ≤ Z 𝟥

respectively.

(ii) If B ≤ Z this contribution does not exceed C (B + 1)𝛿Z
𝟧
𝟥
−𝛿.

Border Strip. Border strip 𝒴 = {x : (1− 𝜖)r̄ ≤ ℓ(x) ≤ (1 + 𝜖)r̄} is more
subtle. Here we need to use the same ℓ𝟣(x) = 𝜖𝟢(r̄ − |x |) partition as before.

Remark 26.3.21. 𝒴 is already covered by our arguments if r̄ ≍ (Z − N)
− 𝟣

𝟥
+ .

Close Elements. Consider first contribution of elements which are
not disjoint. It is given by the left-hand expression of (26.3.87) with ℓ, 𝜁
replaced by ℓ𝟣(x) = r̄𝛾(x) and 𝜍(x) = 𝜁𝛾(x)𝟤 respectively. However since
the layer {x : 𝛾(x) ≍ 𝛾} contains ≍ 𝛾−𝟤 elements the right-hand expression
should be replaced by ∫︁

B𝟤r̄ 𝟥𝛾 𝛾−𝟣d𝛾 ≍ B𝟤r̄ 𝟥

since 𝜍𝟤 ≤ B ; so we arrive to O
(︀
max(B

𝟧
𝟦 ,Z

𝟥
𝟧 B

𝟦
𝟧

)︀
.

Meanwhile for 𝒴𝟤 we have 𝛾(x) = 𝛾 ≤ 1 and 𝜍(x) = 𝜍 = 𝜁𝛾𝟤 and its
contribution does not exceed what we got for 𝒴𝟣.

Disjoint Elements. Consider contribution of the disjoint elements.
It is given by the left-hand expression of (26.3.88) with ℓ, 𝜁 replaced by 𝛾
and 𝜍 respectively. Note that

∑︀
n,p |zn − zp|−𝟣 ≍ r̄−𝟣𝛾−𝟤𝛾′ −𝟤 where we sum

with respect to all pairs with 𝛾n ≍ 𝛾 and 𝛾p ≍ 𝛾′. Therefore the right-hand
expression should be replaced by

(26.3.89)

∫︁
r̄ 𝟥B𝟤 𝛾−𝟣d𝛾 𝛾′ −𝟣d𝛾′

which leads to C r̄ 𝟥B𝟤| log(r̄−𝟣𝛾)|𝟤 which differs from what we got before by
a logarithmic factor. To get rid of it we will use exactly the same trick as
in Paragraph 26.3.3.2.2. Border Strip proving Proposition 26.3.16 because
considering disjoint pairs we consider the same objects as there. Then
instead of (26.3.89) we arrive to∫︁

r̄ 𝟥B𝟤𝛾−𝛿𝛾′ −𝛿𝛾𝟤𝛿 𝛾−𝟣d𝛾 𝛾′ −𝟣d𝛾′
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which results in C r̄ 𝟥B𝟤.
Meanwhile for 𝒴𝟤 we have 𝛾(x) = 𝛾 ≤ r̄ and 𝜍(x) = 𝜍 = 𝜁𝛾𝟤 and its

contribution does not exceed what we got for 𝒴𝟣.

Conclusion. Finally, analysis in the outer zone is trivial. Therefore
we arrive

Proposition 26.3.22. Let M = 1. Then for constructed above potential W

(i) Expression (26.3.25) does not exceed CZ
𝟧
𝟥 + CZ

𝟥
𝟧 B

𝟦
𝟧 .

(ii) If B ≤ Z expression (26.3.25) does not exceed C (B + 1)𝛿Z
𝟧
𝟥
−𝛿.

26.4 Applying Semiclassical Methods:

M ≥ 𝟤

Let us consider now the molecular case (M ≥ 2). The major problem is that
the non-degeneracy condition |∇w | ≍ 1 is not necessarily fulfilled. Therefore

we need to find an alternative approach to the zone where 𝜇 ≥ h− 𝟣
𝟥 ) (with

𝜇 = Bℓ𝜁−𝟣 and h = 1/ℓ𝜁). Recall that it consists of three smaller zones: zone
𝒳𝟤 := {𝜇h ≤ C𝟢, W 𝖳𝖥

B ≥ 𝜖𝟢𝜁
𝟤} 22), zone 𝒳𝟥 := {𝜇h ≥ C𝟢, W 𝖳𝖥

B ≥ 𝜖𝟢𝜁
𝟤} 23),

and the (most difficult) boundary strip 𝒴 = {W 𝖳𝖥
B ≤ 𝜖𝟢𝜁

𝟤}, which we leave
for the next Section 26.5.

26.4.1 Scaling Functions in Zone 𝒳𝟤

Step 1. We will use the scaling method in this zone; the good news is
that W 𝖳𝖥

B is sufficiently regular after a proper rescaling and also sufficiently
non-degenerate. Recall that after we rescale x ↦→ ℓ̄−𝟣(x− x̄), 𝜏 ↦→ 𝜁−𝟤𝜏 in the

ball B(x̄ , 𝟣
𝟤
ℓ̄) with ℓ̄ = ℓ(x̄), 𝜁 = Z

𝟣
𝟤 ℓ̄−𝟣, the rescaled potential w = 𝜁−𝟤W 𝖳𝖥

B

satisfies in B(0, 2) equation

1

4𝜋
Δw = 𝜂P ′

𝛽(w) with 𝜂 = 𝜁ℓ̄𝟤 ≲ 1, 𝛽 = 𝜇h = B𝜁−𝟤 ≤ 1(26.4.1)

and therefore in B(0, 1)

w = − 1

4𝜋

∫︁
|x − z |−𝟣𝜂P ′

𝛽(w(z))𝜑(z) dz + w ′(26.4.2)

22) Only if B ≤ C𝟣Z 𝟤; this zone disappears for C𝟣Z 𝟤 ≤ B ≲ Z 𝟥.
23) Only if Z

𝟦
𝟥 ≲ B ≲ Z 𝟥; this zone disappears for B ≲ Z

𝟦
𝟥 .
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with 𝜑 ∈ C∞
𝟢 (B(0, 𝟧

𝟨
)) and w ′ ∈ C∞

𝟢 (B(0, 𝟥
𝟦
)).

Remark 26.4.1. (i) If 𝜁𝟤 ≍ Zℓ−𝟣 then 𝜂 = Z
𝟣
𝟤 ℓ

𝟥
𝟤 ≤ 1; this happens for

B ≤ Z
𝟦
𝟥 , ℓ ≲ Z− 𝟣

𝟥 and for B ≥ Z
𝟦
𝟥 , ℓ ≲ B− 𝟣

𝟥 .

(ii) If 𝜁𝟤 ≍ ℓ−𝟤 then 𝜂 ≍ 1; this happens only for B ≤ Z
𝟦
𝟥 , ℓ ≳ Z− 𝟣

𝟥 .

Let us introduce a function

(26.4.3) 𝛾𝟢(x) =
(︁
min
j

|w − 2j𝛽|𝟥 + |∇w |𝟦 + |∇𝟤w |𝟨 + |∇𝟥w ′|𝟣𝟤
)︁ 𝟣

𝟣𝟤
.

Remark 26.4.2. We cannot replace w ′ by w in the last term because w ∈ C
𝟧
𝟤

only rather than C𝟥.

Proposition 26.4.3. 𝛾𝟢(x) is a scaling function i.e. |x − y | ≤ 𝜖𝛾𝟢(x) =⇒
𝛾𝟢(y) ≍ 𝛾𝟢(x).

Proof. (a) If w belonged to C𝟦 (and we would put w instead of w ′ in the
last term of (26.4.3)) then we would just prove that |∇𝛾𝟢| ≤ c . Here we
should be more subtle. We need to prove that if

min
j

|w − 2j𝛽| ≤ 𝛾𝟦𝟢 , |∇w | ≤ 𝛾𝟥𝟢 ,(26.4.4)𝟣,𝟤

|∇𝟤w | ≤ 𝛾𝟤𝟢 , |∇𝟥w ′| ≤ 𝛾𝟢(26.4.4)𝟥,𝟦

at point x , then at point y the same inequalities hold with 𝛾𝟢 replaced by
c𝛾𝟢

24). Definitely this is true for (26.4.4)𝟦 since w ′ is smooth.

(b) Consider |∇𝟤w |. Consider |Λ𝛼w(y) − Λ𝛼w(x)| with Λ𝛼 = ∇𝛼 − 𝟣
𝟥
𝛿ijΔ,

𝛼 = (i , j). Then due to (26.4.2)

(26.4.5) |Λ𝛼,yw(y)− Λ𝛼,xw(x)| ≤

|𝜂
∫︁ (︀

Λ𝛼,x |x − z |−𝟣 − Λ𝛼,y |y − z |−𝟣
)︀
P ′
𝛽(w(z))𝜑(z) dz |+ 𝜖𝟣𝛾

𝟤
𝟢

where the last term estimates |Λ𝛼,yw ′(y)− Λ𝛼,xw ′(x)| and we used (26.4.4)𝟦.
Integrals here are understood in the sense of the principal value (vrai) and
𝜖𝟣 = 𝜖𝟣(𝜖) → +0 as 𝜖→ +0.

24) We need to prove a bit of converse as well; see Part (c).
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Note that the integral in expression (26.4.5) does not change if we add
to P ′

𝛽(w) any constant with respect to z .

Let us consider first this integral over {z : |x − z | ≥ 2𝛾𝟢}, provided
𝛾𝟢 ≥ |x − y |, and note that this integral does not exceed

𝜂|
∫︁

|x − z |−𝟦|x − y |×(︀
|∇w(x)| · |x − z |+ |∇𝟤w(x)| · |x − z |𝟤 + |x − z |

𝟧
𝟤

)︀ 𝟣
𝟤 dz | ≤ C 𝜖𝟣𝜂.

Consider now integral over zone {z : |x − z | ≤ 2𝛾𝟢}:

|𝜂
∫︁

Λ𝛼,x |x − z |−𝟣 ·
(︀
P ′
𝛽(w(z))− P ′

𝛽(w(x))
)︀

dz |

and note that it also does not exceed 𝜖𝟣𝜂. Further, t same arguments
work for this integral with x replaced by y but still integrated over zone
{z : |x − z | ≤ 2𝛾𝟢} (one needs to remember that |∇w(x)−∇w(y)| = O(𝛾𝟢)

and |∇𝟤w(x)−∇𝟤w(y)| = O(𝛾
𝟣
𝟤
𝟢 )).

Furthermore, the same arguments work also for these expressions inte-
grated over {z : |y − z | ≤ 2𝛾𝟢} and we are left with

|𝜂
∫︁
𝜔(x , y , z)

(︀
P ′
𝛽(w(x))− P ′

𝛽(w(y))
)︀

dz |

integrated over zone {z : |x − z | ≍ 𝛾𝟢} and 𝜔 ≍ 𝛾−𝟥
𝟢 and one can estimate it

by 𝜖𝟣𝜂 easily in the same way. Therefore since |Δw(x)−Δw(y)| does not
exceed 𝜖𝟣𝜂 we conclude that |∇𝟤w(x)−∇𝟤w(y)| does not exceed 𝜖𝟣(𝜂 + 𝛾𝟤𝟢).

However (26.4.2) implies that 𝜂 ≤ c𝛾𝟤𝟢 since P ′
𝛽(w) ≍ 1 in 𝒳𝟤 and

therefore |∇𝟤w(x)−∇𝟤w(y)| ≤ 𝜖𝟣𝛾
𝟤
𝟢 in B(x , 𝛾𝟢).

Finally, combining this inequality with (26.4.4)𝟤 we conclude that |∇w(x)−
∇w(y)| ≤ 𝜖𝟣𝛾

𝟥
𝟢 in B(x , 𝛾𝟢); finally, combining with (26.4.4)𝟣 we conclude

that |w(x)− w(y)| ≤ 𝜖𝟣𝛾
𝟦
𝟢 in B(x , 𝛾𝟢).

(c) Therefore (26.4.4)𝟣−𝟦 are fulfilled in y ∈ B(x , 𝜖𝛾𝟢) with 𝛾𝟢 replaced
by 𝛾𝟢(1 + C 𝜖𝟣). Further, if we redefine 𝛾𝟢 as the minimal scale such that
inequalities (26.4.4)𝟣−𝟦 are fulfilled in x , then (26.4.4)𝟣−𝟦 fail in y ∈ B(x , 𝜖𝛾𝟢)
with 𝛾𝟢 replaced by 𝛾𝟢(1 − C 𝜖𝟣). Therefore with appropriate 𝜖 > 0 we
conclude that 𝟣

𝟤
≤ 𝛾𝟢(x)/𝛾𝟢(y) ≤ 2.
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Obviously, 𝛾𝟢 ≍ 𝛾𝟢𝗈𝗅𝖽 where 𝛾𝟢𝗈𝗅𝖽 was defined by (26.4.3) and therefore
the same conclusion also holds for 𝛾𝟢𝗈𝗅𝖽.

Now let us reintroduce the scaling function

(26.4.3)* 𝛾𝟢(x) = 𝜖
(︁
min
j

|w − 2j𝛽|𝟥 + |∇w |𝟦 + |∇𝟤w |𝟨 + |∇𝟥w ′|𝟣𝟤
)︁ 𝟣

𝟣𝟤
+

C𝟢h
𝟣
𝟥 + C𝟢𝜂

𝟣
𝟤 .

Then

(26.4.6) |x − y | ≤ 2𝛾𝟢(x) =⇒ 𝛾𝟢(y) ≍ 𝛾𝟢(x) and (26.4.4)𝟣−𝟦 hold (with
some constant factor in the right-hand expression).

Consider B(x̄ , 𝛾𝟢), 𝛾𝟢 = 𝛾𝟢(x̄), and scale again x ↦→ 𝛾−𝟣
𝟢 (x − x̄), 𝜏 ↦→ 𝛾−𝟦

𝟢 𝜏
and respectively w ↦→ w𝟣 = 𝛾−𝟦

𝟢 (w − 2̄𝛽)), h ↦→ h𝟣 = h𝛾−𝟥
𝟢 . Further, since

after rescaling |Δw𝟣| = O(𝜂𝛾−𝟤
𝟢 ) we set 𝜂 ↦→ 𝜂𝟣 = 𝜂𝛾−𝟤

𝟢 .

Due to cut-off in the end of (26.4.3)* h𝟣 ≲ 1 and 𝜂𝟣 ≲ 1. If 𝛾𝟢 ≍ h
𝟣
𝟥 then

h𝟣 ≍ 1 and we are done. If 𝛾𝟢 ≍ 𝜂
𝟣
𝟤 then 𝜂𝟣 ≍ 1 and we proceed to Step 3.

Step 2. So, let 𝜂𝟣 ≪ 1. Let us introduce a scaling function in B(0, 1)
obtained after the previous rescaling:

(26.4.7) 𝛾𝟣(x) = 𝜖
(︁
min
j

|w𝟣 + 2(̄ − j)𝛽𝛾−𝟦
𝟢 |𝟤 + |∇w𝟣|𝟥 + |∇𝟤w𝟣|𝟨

)︁ 𝟣
𝟨
.

Then

min
j

|w𝟣 + 2(̄ − j)𝛽𝛾−𝟦
𝟢 | ≤ C𝟢𝛾

𝟥
𝟣 , |∇w𝟣| ≤ C𝟢𝛾

𝟤
𝟣 ,(26.4.8)𝟣−𝟤

|∇𝟤w𝟣| ≤ C𝟢𝛾𝟣.(26.4.8)𝟥

Remark 26.4.4 25). Since now we do not have the third derivative in (26.4.7),
we do not need in w ′

𝟣 in the definition of 𝛾𝟣, only in the proof of Proposi-
tion 26.4.5 below.

Proposition 26.4.5. (i) 𝛾𝟣(x) is a scaling function: |x − y | ≤ 2𝛾𝟣(x) =⇒
𝛾𝟣(y) ≍ 𝛾𝟣(x).

25) Cf. Remark 26.4.2.



26.4. APPLYING SEMICLASSICAL METHODS: M ≥ 2 117

(ii) If 𝜂𝟣 ≤ 𝜖𝟢 then

(26.4.9) |∇𝟤w𝟣(x)−∇𝟤w ′
𝟣(x)| ≤ 𝜖𝟤𝛾𝟣, w ′

𝟣 = (w ′ − ̄𝛽)𝛾−𝟦
𝟢 .

Proof. Proof is similar but simpler than one of Proposition 26.4.3; it is based
on the rescaled version of (26.4.1)–(26.4.2):

1

4𝜋
Δw𝟣 = 𝜂𝟣P𝛽(w𝟣𝛾

𝟦
𝟢 + 2̄𝛽), 𝜂𝟣 = 𝜂𝛾−𝟤

𝟢 ≤ 1(26.4.10)

and therefore in B(0, 1)

w𝟣 = − 1

4𝜋

∫︁
|x − z |−𝟣𝜂𝟣P ′

𝛽(w𝟣(z)𝛾
𝟦
𝟢 + 2̄𝛽)𝜑(z) dz + w ′

𝟣.(26.4.11)

Now let us reintroduce the scaling function

(26.4.7)* 𝛾𝟣(x) = 𝜖
(︁
min
j

|w𝟣 +2(̄ − j)𝛽𝛾−𝟦
𝟢 |𝟤 + |∇w𝟣|𝟥 + |∇𝟤w𝟣|𝟨

)︁ 𝟣
𝟨
+C𝟢h

𝟤
𝟧
𝟣 .

Then

(26.4.12) |x − y | ≤ 2𝛾𝟢(x) =⇒ 𝛾𝟢(y) ≍ 𝛾𝟢(x) and (26.4.8)𝟣−𝟥 hold (with
some constant factor in the right-hand expression).

Let us consider x̄ ∈ B(0, 1) (it is a new point), B(x̄ , 𝛾𝟣), 𝛾𝟣 = 𝛾𝟣(x̄), and
scale again x ↦→ 𝛾−𝟣

𝟣 (x − x̄), 𝜏 ↦→ 𝛾−𝟥
𝟣 𝜏 and respectively w𝟣 ↦→ w𝟤 = 𝛾−𝟥

𝟣 w𝟣,

h𝟣 ↦→ h𝟤 = h𝟣𝛾
− 𝟧

𝟤
𝟣 .

If 𝛾𝟣 ≍ h
𝟤
𝟧
𝟣 then h𝟤 ≍ 1 and we are done. If |∇w𝟤| ≍ 1 we are done as

well.

Step 3. So, consider the remaining case |∇𝟤w𝟤| ≍ 1. Then we introduce
the scaling function (now, we have no doubt that this is a scaling function):

(26.4.13) 𝛾𝟤(x) = 𝜖
(︁
min
j

|w𝟤 + 2(j̄ − j)𝛽𝛾−𝟦
𝟢 𝛾−𝟥

𝟣 |+ |∇w𝟤|𝟤
)︁ 𝟣

𝟤
+ C𝟢h

𝟣
𝟤
𝟤 .

Let us consider x̄ ∈ B(0, 1) (it is a new point), B(x̄ , 𝛾𝟤), 𝛾𝟤 = 𝛾𝟤(x̄), and
scale again x ↦→ 𝛾−𝟣

𝟤 (x − x̄), 𝜏 ↦→ 𝛾−𝟤
𝟤 𝜏 and respectively w𝟤 ↦→ w𝟥 = 𝛾−𝟤

𝟤 w𝟤,
h𝟤 ↦→ h𝟥 = h𝟤𝛾

−𝟤
𝟤 .

If 𝛾𝟤 ≍ h
𝟣
𝟤
𝟣 then h𝟥 ≍ 1 and we are done. If |∇w𝟥| ≍ 1 we are done as

well.
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Step 4. Finally, introduce

(26.4.14) 𝛾𝟥(x) = 𝜖min
j

|w𝟥 + 2(j̄ − j)𝛽𝛾−𝟦
𝟢 𝛾−𝟥

𝟣 𝛾−𝟤
𝟤 |+ Ch

𝟤
𝟥
𝟥 .

26.4.2 Zone 𝒳𝟤: Semiclassical N-Term

Now we apply scaling the arguments using scaling functions 𝛾𝟣−𝟥 constructed
above.

We revert our steps. While we call 𝛾𝟣−𝟥 relative scaling functions let
us introduce absolute scaling functions 𝛼𝟢(x) = 𝛾𝟢(x), 𝛼𝟣(x) = 𝛾𝟢(x)𝛾𝟣(x),
𝛼𝟤(x) = 𝛾𝟢(x)𝛾𝟣(x)𝛾𝟤(x), and 𝛼𝟥(x) = 𝛾𝟢(x)𝛾𝟣(x)𝛾𝟤(x)𝛾𝟥(x)

26).
We need first

Proposition 26.4.6. Consider B(0, 1) and assume that in it

|∇w | ≍ 𝜃,(26.4.15)

and

|∇𝟤w | ≤ c𝜃.(26.4.16)

Let

𝛾(x) := 𝜖min
j

|w − 2𝜇hj |𝜃−𝟣 + ℏ
𝟤
𝟥(26.4.17)

and

𝜀 ≥ ℏ
𝟤
𝟥
−𝛿, ℏ := h𝜃−

𝟣
𝟤 .(26.4.18)

Let 𝜙 ∈ C∞
𝟢 ([−𝜖𝟢, 𝜖𝟢]). Then for 𝛼 ≤ 𝛾 := 𝛾(x̄),

(26.4.19) |
∫︁
𝜑𝛼(x)

(︁
e𝜙(x , x , 𝜏)− P ′

𝜇h,𝜙

(︀
w(x) + 𝜏

)︀)︁
dx | ≤

C𝜇h−𝟣𝛼𝟥 + C𝜇h−𝟣𝛼𝟥𝛾−𝟣(ℏ𝛾−
𝟣
𝟤𝛼−𝟣)s

with

e𝜙(x , y , 𝜏) := 𝜙
(︀
h𝟤D𝟤

x𝟥
(𝜇h)−𝟣

)︀
e(x , y , 𝜏)(26.4.20)

and Weyl expression

P ′
𝛽,𝜙(w + 𝜏) = const

∑︁
j

𝛽(w + 𝜏 − 2j𝜇h)
𝟣
𝟤𝜙(w + 𝜏 − 2j𝜇h)(26.4.21)

26) So far we ignore the very first scaling x ↦→ (x − x̄)ℓ−𝟣. Therefore really absolute
scaling functions would be 𝛼jℓ.
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with the standard constant where for each x only one term is present in this
sum. Here we take large s > 0 as ℏ ≤ 𝛾𝛼 and s = 0 otherwise.

Proof. The proof is standard and based on the standard reduction to the
canonical form, standard estimates for U(x , y , t) a Schwartz kernel of propa-
gator e iℏ−𝟣𝜃−𝟣tH :

(26.4.22) |Ft→ℏ−𝟣𝜏

∫︁
𝜒̄T (t)𝜑𝛼(x)U𝜙(x , x , t) dx | ≤ C𝜇h−𝟣𝛼𝟥

for T ≍ 1 and

(26.4.23) |Ft→ℏ−𝟣𝜏

∫︁
𝜑𝛼(x)

(︀
𝜒̄T (t)− 𝜒̄T̄ (t)

)︀
U𝜙(x , x , t) dx | ≤

C𝜇h−𝟣𝛼𝟥(ℏ𝛾−
𝟣
𝟤𝛼−𝟣)s

with T̄ = 𝜖𝛾
𝟣
𝟤 where U𝜙 is defined similarly to (26.4.20).

Here obviously we can skip in (26.4.19) all perturbation terms in the
argument and in 𝜑𝛼 transformed.

Then plugging into (26.4.19) 𝛼 = 𝛾 (= 𝛾), we have factor (h𝛾−
𝟥
𝟤 )s in the

second term.

There are two cases: 𝜃 ≤ 𝜇h and 𝜃 ≥ 𝜇h.
In the former case 𝜃 ≤ 𝜇h, taking the sum over 𝛾-partition of 1-element

we estimate the same expressions with 𝜑𝟣 instead of 𝜑𝛾 by their right-hand
expressions integrated over 𝛾−𝟥 d𝛾 which returns C𝜇h−𝟣.

On the other hand, in the latter case 𝜃 ≥ 𝜇h, let 𝜆 = 𝜇h𝜃−𝟣. Taking the
sum over 𝛾𝟥-partition of 𝜆-element 𝜑𝜆 by the right-hand expressions which
returns C𝜇h−𝟣

𝟤 𝜆𝟤. In this case summation over 𝜆-partition return C𝜃h−𝟤.

In both cases we arrive to the following estimate:

(26.4.24) |
∫︁
𝜑(x)

(︁
e𝜙(x , x , 𝜏)− P ′

𝜇h,𝜙

(︀
w(x) + 𝜏

)︀)︁
dx | ≤ C𝜃h−𝟤 + C𝜇h−𝟣.

Applying this estimate after 𝛼𝟤-scaling we conclude that the left-hand
expression with 𝜑 = 𝜑𝛼𝟤 (in the non-scaled settings) does not exceed
C𝜃h−𝟤𝛼𝟤

𝟤 + C𝜇h−𝟣𝛼𝟤
𝟤. Here the first term is O(h−𝟤𝛼𝟥

𝟤) and the summation
over 1-element returns O(h−𝟤).
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Consider the second term C𝜇h−𝟣𝛼𝟤
𝟤 = C𝜇h−𝟣𝛾𝟤𝟢𝛾

𝟤
𝟣𝛾

𝟤
𝟤 . Then summation

over 𝛼𝟤-partition of 𝛼𝟣-element returns

C𝜇h−𝟣𝛾𝟤𝟢𝛾
𝟤
𝟣

∫︁
𝛾𝟤𝟤 × 𝛾−𝟥

𝟤 dx ≍ C𝜇h−𝟣𝛾𝟤𝟢𝛾
𝟤
𝟣(1 + | log 𝛾𝟤|)

where 𝛾k is a minimal value of 𝛾k over 𝛾k−𝟣-element. However in fact there
will be no logarithmic factor because in virtue of equation (26.4.1) there
is a positive eigenvalue of Hessw𝟤 of the maximal size (cf. Section 5.2.1).
Therefore, in fact, we have C𝜇h−𝟣𝛾𝟤𝟢𝛾

𝟤
𝟣 .

Now summation over 𝛼𝟣-partition of 𝛼𝟢-element returns

C𝜇h−𝟣𝛾𝟤𝟢

∫︁
𝛾𝟤𝟣 × 𝛾−𝟥

𝟣 dx ≍ C𝜇h−𝟣𝛾𝟤𝟢(1 + | log 𝛾𝟣|).

Finally, summation over 𝛼𝟢-partition of 1-element returns

C𝜇h−𝟣

∫︁
𝛾𝟤𝟢(1 + | log 𝛾𝟣|)× 𝛾−𝟥

𝟢 dx ≍ C𝜇h−𝟣𝛾−𝟣
𝟢 (1 + | log 𝛾𝟣|),

where 𝛾k is an absolute minimum of 𝛾k . However 𝛾𝟤𝟢 ≥ 𝜂 and 𝛾𝟣 ≥ 𝜂 and

therefore expression above does not exceed C𝜇h−𝟣𝜂−
𝟣
𝟤 (1 + | log 𝜂|).

Remark 26.4.7. Recall that we estimated only the cut-off expression. To
calculate the full expression we need to calculate also the contribution of
the zone {𝜉𝟥𝟥 ≥ 𝜇h}. However this is easy.

Really, instead of 𝜙(h𝟤D𝟤
𝟥/(𝜇h)) consider 𝜙′(h𝟤D𝟤

𝟥/𝜃) with 𝜙
′ ∈ C∞([1, 4])

and 𝜖𝜇h ≤ 𝜃 ≤ 1. Without any scaling one can prove easily that such
modified expression (26.4.24) does not exceed C𝜃h−𝟤. We leave easy details
to the reader.

Therefore plugging 𝜃 = 2n𝜇h and taking a sum over n = 0, ... , ⌊| log𝟤 𝜇h|⌋
we get the required expressions. Also note that in such expressions we
need to consider perturbed argument w + 𝜇−𝟤𝜔𝟣 + j𝜇−𝟣h𝜔𝟤 (all other terms

which are O(𝜇−𝟦 + 𝜇− 𝟥
𝟤 h) could be skipped and also a perturbed function

transformed).

Remark 26.4.8. (i) However we need to get rid of these perturbations for
𝜃 ≤ 𝜇h𝟣−𝛿 only. Indeed, for 𝜃 ≥ 𝜇h𝟣−𝛿 we need canonical form only to
study propagation and calculations could be performed without it. But then
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getting rid of the perturbation is trivial provided this perturbation does not
exceed C𝜇h𝟣+𝛿 which is the case if

(26.4.25) 𝜇 ≥ h− 𝟣
𝟥
−𝛿.

(ii) Note that in the smooth approximation contributions of 𝒳𝟣 is always less

than CZ
𝟤
𝟥
−𝛿𝟣 , C max(Z

𝟧
𝟥 ,Z

𝟥
𝟧 B

𝟦
𝟧 )Z−𝛿𝟣 or C max(Z

𝟧
𝟥 ,Z

𝟥
𝟧 B

𝟦
𝟧 )Z−𝛿𝟣 + CB

𝟣
𝟤 Z

𝟩
𝟨
−𝛿𝟣

respectively with an exception of the first two and only in the case of the
threshold value ≥ Z− 𝟣

𝟥
−𝛿𝟤 . However in this case 𝜂 ≥ Z−𝛿𝟥 and the errors of

the smooth approximation approach in fact are less than CZ
𝟤
𝟥
−𝛿𝟦 , CZ

𝟧
𝟥
−𝛿𝟦 as

well. Therefore there are in fact no exception.

(iii) It is important to have 𝜀 ≤ 𝜇h and with 𝜀 = ℏ 𝟤
𝟥
−𝛿, ℏ = h𝜃−

𝟣
𝟤 it means

𝜇 ≥ h− 𝟣
𝟥
−𝛿𝜃

𝟣
𝟥
− 𝟣

𝟤
𝛿 which is due to (26.4.25).

Therefore we conclude that in the completely non-scaled settings with
𝜑 = 𝜑ℓ(x)

(26.4.26) |
∫︁
𝜑(x)

(︁
e(x , x , 𝜏)− P ′

B

(︀
W (x) + 𝜏

)︀)︁
| ≤

C𝜁𝟤ℓ𝟤 + CBℓ𝜁−
𝟣
𝟤 (1 + | log ℓ𝟤𝜁|)

where the first term is Ch−𝟤 and the second term is C𝜇h−𝟣𝜂−
𝟣
𝟤 (1 + | log 𝜂|);

recall that h−𝟣 ≍ ℓ𝜁, 𝜇 ≍ Bℓ𝜁−𝟣 and 𝜂 ≍ ℓ𝟤𝜁. In comparison with the
non-degenerate case |∇W 𝖳𝖥

B | ≍ 𝜁𝟤ℓ−𝟣 we acquired the last term.
Assume first that condition (26.2.28) is fulfilled. Then

(i) If B ≤ Z
𝟦
𝟥 , ℓ ≤ Z− 𝟣

𝟥 we have 𝜁 = Z
𝟣
𝟤 ℓ−

𝟣
𝟤 and the right-hand expression

of (26.4.26) returns CZℓ+ CBℓ
𝟧
𝟦 Z− 𝟣

𝟦 and the summation with respect to ℓ

results in its value as ℓ = Z− 𝟣
𝟥 i.e. CZ

𝟤
𝟥 + CBZ− 𝟤

𝟥 with the dominating first
term.

(ii) If B ≤ Z
𝟦
𝟥 , ℓ ≥ Z− 𝟣

𝟥 we have 𝜁 = ℓ−𝟤 and the right-hand expression
of (26.4.26) returns Cℓ−𝟤 + CBℓ𝟤. We need to sum as long as 𝜇h ≤ 1 i.e.

Z− 𝟣
𝟥 ≤ ℓ ≤ B− 𝟣

𝟦 and the summation returns CZ
𝟤
𝟥 +CB

𝟣
𝟤 with the dominating

first term.

(iii) If Z
𝟦
𝟥 ≤ B ≤ Z 𝟤, ℓ ≤ B−𝟣Z we have 𝜁 = Z

𝟣
𝟤 ℓ−

𝟣
𝟤 and the right-hand

expression of (26.4.26) returns CZℓ+ CBZ− 𝟣
𝟦 ℓ

𝟧
𝟦 . Then summation results in

CZ 𝟤B−𝟣 + CZ 𝟤B− 𝟣
𝟦 Z ≲ Z

𝟤
𝟥 .
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If assumption (26.2.28) is not fulfilled we can estimate in the first
term of the right-hand expression of (26.4.26) parameter 𝜁 from above by

min(Z
𝟣
𝟤 ℓ−

𝟣
𝟤 , ℓ−𝟤) and in the second term from below by 𝜁m = min(Z

𝟣
𝟤
mℓ

− 𝟣
𝟤

m , ℓ−𝟤
m )

if ℓ = ℓm := |x − ym| and repeat all above arguments.
Therefore we arrive to the Statement (i) of Proposition 26.4.9 below.

Furthermore, note that for B ≤ Z the zone 𝒳𝟤 is contained in the zone
{x : ℓ(x) ≥ B− 𝟥

𝟣𝟢 ≥ Z− 𝟥
𝟣𝟢} (really, 𝜇 ≥ h− 𝟣

𝟥 in 𝒳𝟤) and we arrive to the
Statement (ii) below.

Proposition 26.4.9. (i) For B ≤ Z 𝟤 the contribution of zone 𝒳𝟤 to the
expression

(26.4.27)

∫︁ (︀
e(x , x , 𝜈)− P ′

B(W (x) + 𝜈)
)︀

dx

does not exceed CZ
𝟤
𝟥 .

(ii) For B ≤ Z the contribution of zone 𝒳𝟤 to the expression (26.4.27) does

not exceed CZ
𝟤
𝟥
−𝛿.

26.4.3 Zone 𝒳𝟤: Semiclassical D-Term

Further, we need to estimate the semiclassical D-term

(26.4.28) D
(︁
𝜑𝛼[e(x , x , 𝜈)− P ′

B(W (x) + 𝜈)],𝜑𝛼[e(x , x , 0)− P ′
B(W (x)]

)︁
where 𝜑𝛼(x) is an 𝛼-admissible function. Again we revert our steps.

Consider B(x , 𝛼̄𝟥) and apply Fefferman–de Llave decomposition (26.3.8).
Then in the framework of Proposition 26.4.6 contribution of pairs B(x ,𝛼) and
B(y ,𝛼) with 3𝛼 ≤ |x − y | ≤ 4𝛼 does not exceed the right-hand expression of
(26.4.19) squared and multiplied by 𝛼−𝟦, where C𝛼−𝟥 estimates the number
of the pairs and 𝛼−𝟣 is the inverse distance. At this moment we discuss a
cut-off version of (26.4.28) i.e. with e𝜙(., ., .) and P ′

𝜇h,𝜙(.). So, we have

C𝜇𝟤h−𝟤
(︀
1 + 𝛾−𝟣

𝟥 (h𝟤𝛾
− 𝟣

𝟤
𝟥 𝛼−𝟣)s

)︀𝟤
𝛼𝟦.

Then integrating this expression with respect to 𝛼−𝟣 d𝛼 with 𝛼 ≤ 𝛾𝟥 we
arrive to C𝜇𝟤h−𝟤

(︀
𝛾𝟦𝟥 + h𝟤

𝟤𝛾𝟥
)︀
.

Therefore we conclude that
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(26.4.29) A cut-off version of expression (26.4.28) with 𝛼 = 𝛼𝟥 does not
exceed C𝜇𝟤h−𝟤

(︀
𝛾𝟦𝟥 + h𝟤

𝟤𝛾𝟥
)︀
𝛼𝟥
𝟤

The first term here C𝜇𝟤h−𝟤𝛾𝟦𝟥𝛼
𝟥
𝟤 does not exceed C𝜇𝟤h−𝟤𝛼𝟥

𝟥 (recall that
𝛼j = 𝛼j−𝟣𝛾j) and the summation over 𝛼𝟥-partition of 1-element returns
C𝜇𝟤h−𝟤.

Consider the second term C𝜇𝟤h−𝟤h𝟤
𝟤𝛾𝟥𝛼

𝟥
𝟤; its summation with respect

to 𝛼𝟥-partition of 𝛼𝟤-element returns C𝜇𝟤h−𝟤𝛼𝟥
𝟤h𝟤

𝟤

∫︀
𝛾−𝟤
𝟥 d𝛾𝟥 ≲ C𝜇𝟤h−𝟤𝛼𝟥

𝟤

(really, recall that according to (26.4.14) 𝛾𝟥 ≥ h
𝟤
𝟥
𝟥 ) and then the summation

over 𝛼𝟤-partition of 1-element returns C𝜇𝟤h−𝟤.
Consider B(x , 𝛼̄𝟤) and apply Fefferman–de Llave decomposition (26.3.8).

There are two kinds of pairs:

(a) those with |x − y | ≥ 𝜖(𝛼𝟥(x) + 𝛼𝟥(y)) for all (x , y) and

(b) those with |x − y | ≤ min(𝛼𝟥(x),𝛼𝟥(y)) for all (x , y).

The total contribution of the pairs of the second type (i.e. summation is
taken over all pairs of 𝛼𝟥-elements in B(0, 1)) as we already know is O(𝜇𝟤h−𝟤).
Meanwhile according to the analysis in the previous Subsection 26.4.2 a
contribution of one pair of kind (a) does not exceed

C
(︀
h−𝟤 + 𝜇h−𝟣𝛾−𝟣

𝟢 𝛾−𝟣
𝟣 𝛾−𝟣

𝟤 𝛾−𝟣−𝛿
𝟥 𝛾𝛿𝟥

)︀
𝛼𝟥
𝟥⏟  ⏞  

at x

×

(︀
h−𝟤 + 𝜇h−𝟣𝛾−𝟣

𝟢 𝛾−𝟣
𝟣 𝛾−𝟣

𝟤 𝛾−𝟣−𝛿
𝟥 𝛾𝛿𝟥

)︀
𝛼𝟥
𝟥⏟  ⏞  

at y

×|x − y |−𝟣

where each of two first factors is just an estimate of the integral (26.4.24)
calculated over corresponding domain. If we take the first term in the first
factor and sum over 𝛼𝟥-partition of 1-element we get only the second factor
multiplied by 𝜇h−𝟣 and then summation was done in the previous subsection.
Similarly we can deal with the first term in the second factor. On the other
hand, if we take only second factors and sum over pairs of 𝛼𝟥-subelements
of the same 𝛼𝟤-element we get

C𝜇𝟤h−𝟤𝛾−𝟤
𝟢 𝛾−𝟤

𝟣 𝛾−𝟤
𝟤 𝛼𝟧

𝟤 ≍ C𝜇𝟤h−𝟤𝛼𝟥
𝟤.

Then summation with respect to 𝛼𝟤-partition of 1-element returns C𝜇𝟤h−𝟤.
Consider now B(x̄ , 𝛼̄𝟣) and apply here Fefferman-de Llave decomposition

(26.3.8). There are two kinds of pairs:
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(a) those with |x − y | ≥ 𝜖(𝛼𝟤(x) + 𝛼𝟤(y)) for all (x , y) and

(b) those with |x − y | ≤ min(𝛼𝟤(x),𝛼𝟤(y)) for all (x , y).

According to the above analysis the total contribution of the pairs of the
second type (i.e. the summation is taken over all pairs of 𝛼𝟤-elements
in B(0, 1)) as we already know is O(𝜇𝟤h−𝟤). Meanwhile according to the
analysis in the previous Subsection 26.4.2 a contribution of one pair of kind
(a) does not exceed

C
(︀
h−𝟤 + 𝜇h−𝟣𝛾−𝟣

𝟢 𝛾−𝟣
𝟣 𝛾−𝟣

𝟤

)︀
𝛼𝟥
𝟥⏟  ⏞  

at x

×
(︀
h−𝟤 + 𝜇h−𝟣𝛾−𝟣

𝟢 𝛾−𝟣
𝟣 𝛾−𝟣

𝟤

)︀
𝛼𝟥
𝟥⏟  ⏞  

at y

×|x − y |−𝟣

and here again we can “forget” about the first terms in each factor. Then the
summation with respect to pairs of 𝛼𝟤-subelements of the same 𝛼𝟣-element
results in C𝜇𝟤h−𝟤𝛾−𝟤

𝟢 𝛾−𝟤
𝟣 𝛼𝟧

𝟣 ≍ C𝜇𝟤h−𝟤𝛼𝟥
𝟣 where we avoid logarithmic factor

in virtue of the same positive eigenvalue of Hessw . Summation with respect
to 𝛼𝟣-admissible partition of 1-element returns C𝜇𝟤h−𝟤.

Consider now B(x̄ , 𝛼̄𝟢) and apply here Fefferman–de Llave decomposition.
Again there are two kinds of pairs and the total contributions of the pairs
of the second kind we already calculated and contribution of the pairs of
𝛼𝟣-subelements of the same 1-element does not exceed

C𝜇𝟤h−𝟤𝛾−𝟤
𝟢 (1 + | log 𝛾𝟣|)𝟤𝛼𝟧

𝟢 ≲ C𝜇𝟤h−𝟤(1 + | log 𝜂|)𝟤𝛼𝟥
𝟢

and the summation with respect to 𝛼𝟢-partition of 1-element returns
C𝜇𝟤h−𝟤(1 + | log 𝜂|)𝟤.

Finally, consider B(x̄ , 1) and apply here Fefferman-de Llave decomposi-
tion. Again there are two kinds of pairs and the total contributions of the
pairs of kind (b) we already estimated while the total contribution of the
pairs of kind (a) does not exceed Ch−𝟦 + C𝜇𝟤h−𝟤𝜂−𝟣(1 + | log 𝜂|)𝟤 where we
recalled the forgotten terms.

Again, this is estimate for cut-off expression. Going to uncut expression
we repeat the same trick as before but as we deal with D-term we need to
consider “mixed” pairs when one “factor” comes with 𝜃 and another with 𝜃′

but then contribution of such pair does not exceed C (𝜈h−𝟦)
𝟣
𝟤 (𝜈 ′h−𝟦)

𝟣
𝟤 . Easy

details are left to the reader.
Therefore returning to the original scale we conclude that the contribution

of ℓ-layer to (26.4.28) does not exceed

(26.4.30) C𝜁𝟦ℓ𝟥 + CB𝟤ℓ𝜁−𝟣(1 + | log ℓ𝟤𝜁|)𝟤
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which is exactly the right-hand expression of (26.4.26) squared and multiplied
by ℓ−𝟣 due to scaling.

Remark 26.4.10. In comparison with the non-degenerate case |∇W 𝖳𝖥
B | ≍

𝜁𝟤ℓ−𝟣 we acquired the last term.

Assume first that condition (26.2.28) is fulfilled. Then

(i) For B ≤ Z
𝟦
𝟥 , ℓ ≤ Z− 𝟣

𝟥 we have 𝜁 = Z
𝟣
𝟤 ℓ−

𝟣
𝟤 and expression (26.3.42)

returns CZ 𝟤ℓ+ CB𝟤ℓ
𝟥
𝟤 Z− 𝟣

𝟤 and the summation with respect to ℓ results in
its value as ℓ = Z− 𝟣

𝟥 i.e. CZ
𝟧
𝟥 + CB𝟤Z−𝟣 with the dominating first term.

(ii) For B ≤ Z
𝟦
𝟥 , ℓ ≥ Z− 𝟣

𝟥 we have 𝜁 = ℓ−𝟤 and expression (26.3.42) returns

Cℓ−𝟧 + CB𝟤ℓ𝟥. We need to sum as long as 𝜇h ≤ 1 i.e. Z− 𝟣
𝟥 ≤ ℓ ≤ B− 𝟣

𝟦 and
the summation returns CZ

𝟧
𝟥 + CB

𝟧
𝟦 with the dominating first term.

(iii) For Z
𝟦
𝟥 ≤ B ≤ Z 𝟤, ℓ ≤ B−𝟣Z we have 𝜁 = Z

𝟣
𝟤 ℓ−

𝟣
𝟤 and expression

(26.3.42) returns CZ 𝟤ℓ+CB𝟤Z− 𝟣
𝟤 ℓ

𝟥
𝟤 . Then the summation results in CZ 𝟥B−𝟣+

CB
𝟣
𝟤 Z ≲ Z

𝟥
𝟧 B

𝟦
𝟧 .

Sure, we need to consider also mixed pairs of the layers and their
contributions are

C
(︀
𝜁𝟤ℓ𝟤+CBℓ𝜁−

𝟣
𝟤 (1+| log ℓ𝟤𝜁|)

)︀
×
(︀
𝜁 ′ 𝟤ℓ′ 𝟤+CBℓ′𝜁 ′ −

𝟣
𝟤 (1+| log ℓ′ 𝟤𝜁 ′|)

)︀
×(ℓ+ℓ′)−𝟣

and the summation with respect to ℓ and ℓ′ returns the same expression as
above.

If assumption (26.2.28) is not fulfilled we use the same trick as in the
previous Subsection 26.4.2. Therefore we arrive to the Statement (i) of
Proposition 26.4.11 below. Applying the same arguments as in the proof of
Proposition 26.4.9 we arrive to the Statement (ii):

Proposition 26.4.11. (i) For B ≤ Z 𝟤 the contribution of the zone 𝒳𝟤×𝒳𝟤

to expression (26.4.28) does not exceed C max(Z
𝟧
𝟥 ,Z

𝟥
𝟧 B

𝟦
𝟧 ).

(ii) For B ≤ Z contribution of the zone 𝒳𝟤 × 𝒳𝟤 to expression (26.4.28)

does not exceed CZ
𝟧
𝟥
−𝛿.

26.4.4 Semiclassical T-Term

Semiclassical T-Term: Zone 𝒳𝟣 Extended

First let us cover zone 𝒳𝟣 extended.
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What is 𝒳𝟣 Extended? To define this zone 𝒳 ′
𝟣 := {x : ℓ(x) ≤ r}, where

we define W using P rather than PB let first us analyze the precise extension
in the framework of N- and D-terms. For N-term we have approximation
error and corresponding D-term not exceeding respectively C (𝜇h)𝟤𝜂−

𝟣
𝟤 h−𝟥 =

CB𝟤𝜁−
𝟥
𝟤 ℓ𝟤 and this expression squared and multiplied by ℓ−𝟣 i.e. CB𝟦𝜁−𝟥ℓ𝟥.

Finally, both expressions are summed to their values as ℓ = r . Recall that
either 𝜁 = Z

𝟣
𝟤 ℓ−

𝟣
𝟤 or 𝜁 = ℓ−𝟤.

(i) Consider first B ≤ Z
𝟦
𝟥 . Then we want these errors not to exceed

respectively CZ
𝟤
𝟥 and CZ

𝟧
𝟥 . Obviously, if r ≥ Z− 𝟣

𝟥 the first condition is
more restrictive. In this case plugging 𝜁 = r−𝟤 and we set CB𝟤r 𝟧 = Z

𝟤
𝟥 i.e.

r = B− 𝟤
𝟧 Z

𝟤
𝟣𝟧 . Then r ≥ Z− 𝟣

𝟥 as long as B ≤ Z
𝟩
𝟨 .

Then 𝜇 = Br 𝟥 = B− 𝟣
𝟧 Z

𝟨
𝟣𝟧 ≥ Z

𝟣
𝟨 and h = B− 𝟤

𝟧 Z
𝟤
𝟣𝟧 ≥ Z− 𝟣

𝟥 ; and one can
see easily that 𝜇 ≳ h− 𝟣

𝟤 provided ℓ(x) ≥ r .

(ii) Consider next Z
𝟩
𝟨 ≤ B ≤ Z

𝟦
𝟥 . Then for r ≤ Z− 𝟣

𝟥 we have 𝜁 = Z
𝟣
𝟤 r−

𝟣
𝟤 . In

this case the second requirement is more restrictive and we set B𝟦Z− 𝟥
𝟤 r

𝟫
𝟤 =

Z
𝟧
𝟥 , i.e. r = B− 𝟪

𝟫 Z
𝟣𝟫
𝟤𝟩 . Then 𝜇 = B− 𝟣

𝟥 Z
𝟧
𝟫 and h = Z− 𝟣

𝟤 r−
𝟣
𝟤 = B

𝟦
𝟫 Z− 𝟤𝟥

𝟤𝟩 and
𝜇 ≥ h− 𝟥

𝟩 ; this is better than h− 𝟣
𝟥 .

However, we can do better than this: observe that 𝜇h ≤ 𝜂 if and only
if r ≥ B𝟤Z−𝟥 i.e. B ≤ Z

𝟧𝟢
𝟥𝟫 , which is greater than Z

𝟩
𝟨 but less than Z

𝟦
𝟥 , so

we test 𝜇 and h in this case: 𝜇 = Z
𝟧
𝟥𝟫 and h = Z

𝟣𝟣
𝟥𝟫 and 𝜇 ≥ h− 𝟧

𝟣𝟣 provided
ℓ(x) ≥ r .

If B ≥ Z
𝟧
𝟣𝟣 we will use another estimate for D-term: namely it does not

exceed (𝜇h)𝟥h−𝟨r−𝟣 = B𝟥r 𝟧 and we want it not to exceed Z
𝟧
𝟥 , so r = Z

𝟣
𝟥 B− 𝟥

𝟧

(which is still less than Z− 𝟣
𝟥 ) and 𝜇 = B

𝟣
𝟣𝟢 and h = B

𝟥
𝟣𝟢 Z− 𝟤

𝟥 and we test it

as B = Z
𝟦
𝟥 when 𝜇 = B

𝟣
𝟣𝟢 and h = B− 𝟣

𝟧 , so exponent − 𝟧
𝟣𝟣

fits again.

(iii) Finally, if Z
𝟦
𝟥 ≤ B ≤ Z 𝟥 then the error D-term does not exceed B𝟥r 𝟧 and

we want it not to exceed B
𝟦
𝟧 Z

𝟥
𝟧 . So, we pick up r = B− 𝟣𝟣

𝟤𝟧 Z
𝟥
𝟤𝟧 , 𝜇 = B

𝟣𝟩
𝟧𝟢 Z− 𝟪

𝟤𝟧 ,
h = B

𝟣𝟣
𝟧𝟢 Z− 𝟣𝟦

𝟤𝟧 and exponent − 𝟧
𝟣𝟣

fits again.

When We can Use the same Method for T-Term? As far as semi-
classical T-expression is concerned an approximation error of such approach
in the localized and scaled settings is C (𝜇h)

𝟧
𝟤 h−𝟥 27) which is O(h−𝟣) only

27) If instead of PB(W ) we use P(W )+ 𝟣
𝟤P ′′(W )B𝟤 rather than P(W ). This modification

does not affect our previous arguments.
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if 𝜇 ≥ h− 𝟣
𝟧 . One can extend it to 𝜇 ≥ h− 𝟣

𝟧
−𝛿 using the same trick as in

Remark 26.4.8 but we need to do better than this.
On the other hand, observe that in fact an approximation error does not

exceed27) C (𝜇h)𝟥𝜂−
𝟣
𝟤 h−𝟥 ≍ CB𝟥ℓ𝟤𝜁−

𝟩
𝟤 in the localized scaled settings. The

simple proof is left to the reader. This is translated into CB𝟥ℓ𝟤𝜁−
𝟥
𝟤 into

unscaled settings. Summation with respect to ℓ ≤ r returns its value as
ℓ = r .

So we get CB𝟥r 𝟧 as B ≤ Z
𝟦
𝟥 and r ≥ Z− 𝟣

𝟥 . Consider first B ≤ Z . In
this case we want CB𝟥r 𝟧 ≤ CZ

𝟧
𝟥 and we pick up r = B− 𝟥

𝟧 Z
𝟣
𝟥 which is

greater than Z− 𝟣
𝟥 provided B ≤ Z

𝟣𝟢
𝟫 . Then 𝜇 = Br 𝟥 = B− 𝟦

𝟧 Z ≥ Z
𝟣
𝟧 and

h = r = B− 𝟥
𝟧 Z

𝟣
𝟥 ≥ Z− 𝟦

𝟣𝟧 and 𝜇 ≥ h− 𝟥
𝟦 .

If Z ≤ B ≤ Z
𝟦
𝟥 but still r ≥ Z− 𝟣

𝟥 we want CB𝟥r 𝟧 ≤ CZ
𝟦
𝟥 B

𝟣
𝟥
28) and we

pick up r = B− 𝟪
𝟣𝟧 Z

𝟦
𝟣𝟧 and we want it to be greater than Z− 𝟣

𝟥 i.e. B ≤ Z
𝟫
𝟪 .

Then 𝜇 = Br 𝟥 = B− 𝟥
𝟧 Z

𝟦
𝟧 ≥ Z

𝟣
𝟪 and h = B− 𝟪

𝟣𝟧 Z
𝟦
𝟣𝟧 ≥ B− 𝟣

𝟥 and 𝜇 ≥ h− 𝟥
𝟪 . It is

not as good as 𝜇 ≥ h− 𝟥
𝟩 .

Then we use the smooth canonical form. In the operator perturbation
terms have factors 𝜇−𝟤, 𝜇−𝟦 etc and we can use the standard approach to
get rid of 𝜇−𝟦 ≤ 𝜇h, so we need to consider only 𝜇−𝟤.

However let before scaling the second derivative of W be of magnitude
𝜃; then after scaling it becomes of magnitude 𝜃′ = 𝛾𝟤𝟢𝛾

𝟤
𝟣𝜃 and then the

perturbation is of magnitude 𝜃𝜇−𝟤 but contribution of the error will be
(after we compare the true Riemann sum and the corresponding integral and

their difference Ch−𝟥𝜈𝜇−𝟤(𝜇h)𝟤(𝜃′)−
𝟣
𝟤×𝛼𝟥

𝟣 ≤ C𝜃
𝟣
𝟤 h−𝟣𝛾−𝟣

𝟢 𝛾−𝟣
𝟣 𝛼𝟥

𝟣 ≤ Ch−𝟣𝛾
− 𝟣

𝟤
𝟣 𝛼𝟥

𝟣

where we used that 𝜃 ≤ C𝛾𝟤𝟢𝛾𝟣. Then summation over 𝛼𝟣-partition of 𝛼𝟢

element returns Ch−𝟣𝛼𝟥
𝟢 and the summation over 𝛾𝟢-partition returns Ch−𝟣

as desired. Therefore we covered zone 𝒳𝟣 for T-term.

Semiclassical T-Term: Zone 𝒳𝟤

Tauberian eEstimate. Tauberian estimate for cut-off expression is rather
simple:

C𝜇h−𝟣𝛾−𝟣
𝟢 𝛾−𝟣

𝟣 𝛾−𝟣
𝟤 × h𝛾−𝟥

𝟢 𝛾
− 𝟧

𝟤
𝟣 𝛾−𝟤

𝟣 × 𝛾𝟦𝟢𝛾
𝟥
𝟣𝛾

𝟤
𝟤𝛼

𝟥
𝟤 ≍ C𝜇𝛾

− 𝟣
𝟤

𝟣 𝛾−𝟣
𝟤 𝛼𝟥

𝟤

which nicely sums to C𝜇 without logarithm due to the same positive eigen-
value arguments as before; for 𝜃-cut-off with 𝜃 ≥ 𝜇h we get the same albeit

28) Because the semiclassical remainder estimate is not better than this. Actually, due
to Remark 26.3.7 we can do marginally better than this, but we leave this analysis to the
reader.
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with 𝛾j defined by the same formula albeit with (wj − 2j𝜇hs−𝟣
j ) replaced by

𝜃s−𝟣
j where s−𝟣

j means the scale; and this should be multiplied by 𝜃/(𝜇h).
The result nicely sums to Ch−𝟣. This is what was required.

Magnetic Weyl Expression. Now we will get the same answer albeit
C𝜇−𝟦 term will be supplemented by C𝜇− 𝟥

𝟤 h which in cut-off sum adds
C𝜇− 𝟥

𝟤 h × 𝜇h−𝟤 ≤ Ch−𝟣.
We can use the standard approach, with an error C𝜇− 𝟥

𝟤 h × 𝜃/(𝜇h) ×
𝜇h−𝟤 ≍ C𝜃𝜇− 𝟥

𝟤 h−𝟤 which means that we can take 𝜃 = 𝜇
𝟥
𝟤 h which is sufficient

to deal with with 𝜃 ≥ C𝜇
𝟥
𝟤 h; in particular, for 𝜇 ≥ h

𝟤
𝟥 we are done. But

for 𝜃 ≥ 𝜇h𝟣−𝛿 we can apply the weak magnetic field approach, which is
sufficient. So we arrive to inequality

(26.4.31) |
∫︁ 𝜏

−∞

∫︁
𝜑(x)

(︁
e𝜙(x , x , 𝜏)− P ′

𝛽,𝜙

(︀
w(x) + 𝜏

)︀)︁
dx d𝜏 | ≤ Ch−𝟣

and therefore we arrive to

Proposition 26.4.12. (i) If B ≤ Z 𝟤 the contribution of zone 𝒳𝟤 to the
expression

(26.4.32)

∫︁ 𝜏

−∞

∫︁
𝜑(x)

(︁
e𝜙(x , x , 𝜏)− P ′

B,𝜙

(︀
W (x) + 𝜏

)︀)︁
dx d𝜏

does not exceed C max
(︀
(Z + B)

𝟣
𝟥 Z

𝟦
𝟥 ,Z

𝟥
𝟧 B

𝟦
𝟧

)︀
.

(ii) If B ≤ Z the contribution of zone 𝒳𝟤 to expression (26.4.32) does not

exceed CZ
𝟧
𝟥
−𝛿.

Mollification Errors. Further, we need to estimate∫︁
𝜑(x)

(︁
P ′
B(W (x) + 𝜏))− P ′

B(W
𝖳𝖥
B (x) + 𝜏))

)︁
dx ,(26.4.33) ∫︁

𝜑(x)
(︁

PB(W (x) + 𝜏))− PB(W
𝖳𝖥
B (x) + 𝜏))

)︁
dx ,(26.4.34)

(26.4.35) D
(︁
𝜑(x)

(︀
P ′
B(W (x) + 𝜏))− P ′

B(W
𝖳𝖥
B (x) + 𝜏))

)︀
,

𝜑(x)
(︀
P ′
B(W (x) + 𝜏))− P ′

B(W
𝖳𝖥
B (x) + 𝜏))

)︀)︁
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and

(26.4.36) ‖𝜑(x)∇
(︀
W (x)− W 𝖳𝖥

B (x)
)︀
‖𝟤.

We start from local versions (so in fact we dealing with w and w𝖳𝖥
𝛽 ).

Obviously after all rescalings ℏ = h𝛾−𝟥
𝟢 𝛾

− 𝟧
𝟤

𝟣 𝛾−𝟤
𝟤 and therefore 𝜀 = ℏ 𝟥

𝟤 =

h
𝟥
𝟤 (𝛾−𝟥

𝟢 𝛾
− 𝟧

𝟤
𝟣 𝛾−𝟤

𝟤 )−
𝟥
𝟤 where we set 𝛿 = 0 but we will show that we have a reserve

to set it as 𝛿 > 0 if we want to estimate (26.4.33) by h and (26.4.34)–(26.4.36)
by h𝟤.

We claim that

|w − w𝖳𝖥
𝛽 | ≤ C 𝜍 := C𝛽𝜂

(︀
𝛾𝟦𝟢𝛾

𝟥
𝟣𝛾

𝟤
𝟤𝜀

)︀ 𝟧
𝟤 .(26.4.37)

and

|∇(w − w𝖳𝖥
𝛽 )| ≤ C 𝜍𝟣 := C𝛽𝜂

(︀
𝛾𝟦𝟢𝛾

𝟥
𝟣𝛾

𝟤
𝟤𝜀

)︀ 𝟥
𝟤 .(26.4.38)

Indeed, it follows from equation (26.4.2).

Then the contribution of 𝛼𝟤-element to (26.4.34) does not exceed C 𝜍𝜀𝛼𝟥
𝟤

as measure of zone of 𝛼𝟤-element where w ̸= w𝖳𝖥
𝛽 is O(𝜀𝛼𝟥

𝟤). One can see

easily that 𝜍𝜀 = O(h
𝟩
𝟥 ) and therefore C 𝜍𝜀𝛼𝟥

𝟤 = O(h
𝟩
𝟥𝛼𝟥

𝟤) and the summation

over 𝛼𝟤-partition of 1-element returns O(h
𝟩
𝟥 ).

Modulo above calculations the contribution of 𝛼𝟤-element to (26.4.33)

does not exceed C𝛽𝜍
𝟣
𝟤 𝜀𝛼𝟤

𝟥. One can check easily that 𝜍𝜀 = O(h
𝟥
𝟤𝛾

− 𝟣
𝟤

𝟤 ) and

therefore C 𝜍
𝟣
𝟤 𝜀𝛼𝟥

𝟤 = O(h
𝟩
𝟥𝛼𝟥

𝟣𝛾
𝟧
𝟤
𝟤 ) and the summation over 𝛼𝟤-partition of

𝛼𝟣-element returns O(h
𝟥
𝟤𝛼𝟥

𝟣) and then the summation over 𝛼𝟣-partition of

1-element returns O(h
𝟥
𝟤 ).

Similarly, expression (26.4.35) with 𝜑 = 𝜑𝛼𝟤 does not exceed C 𝜍𝜀𝟤𝛼
𝟧
𝟤 ≤

Ch𝟥𝛼𝟦
𝟤 and the summation over 𝛼𝟤-partition of 1-element returns O(h𝟥).

However we need to consider disjoint pairs of 𝛼𝟤-elements belonging to given
𝛼𝟣-element and their contribution does not exceed

Ch𝟥

∫︁
𝛾
− 𝟣

𝟤
𝟤x 𝛾

− 𝟣
𝟤

𝟤y |x − y |−𝟣 dxdy ≤ Ch𝟤𝛼𝟧
𝟣

and then summation over 𝛼𝟣-partition of 1-element returns O(h
𝟥
𝟤 ). We need

also to consider disjoint pairs of 𝛼𝟣-elements belonging to given 1-element
and their contribution does not exceed Ch𝟥

∫︀
|x − y |−𝟣 dxdy = O(h𝟥).
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Finally, contribution of 𝛼𝟤-element to (26.4.36) does not exceed C 𝜍𝟤𝟣𝜀𝛼
𝟥
𝟤

and one can check easily that this does not exceed C𝛼𝟥
𝟣𝛾

𝟪
𝟥
𝟤 h

𝟪
𝟥 and the sum-

mation over 𝛼𝟤-partition of 𝛼𝟣-element returns C𝛼𝟥
𝟣h

𝟪
𝟥 ; then summation over

1-partition of 1-element returns O(h
𝟪
𝟥 ).

So, the scaled versions of (26.4.33) and (26.4.34)–(26.4.36) do not exceed
Ch and Ch𝟤 respectively. Then the original versions of (26.4.33), (26.4.34),
(26.4.34), and (26.4.36) do not exceed respectively C𝜁𝟥ℓ𝟥 × (𝜁ℓ)−𝟣 = C𝜁𝟤ℓ𝟤,
C𝜁𝟧ℓ𝟥 × (𝜁ℓ)−𝟤 = C𝜁𝟥ℓ, C𝜁𝟨ℓ𝟧 × (𝜁ℓ)−𝟤 = C𝜁𝟦ℓ𝟥, and C𝜁𝟦ℓ × (𝜁ℓ)−𝟤 =
C𝜁𝟤ℓ−𝟣 ≤ C𝜁𝟦ℓ𝟥.

Leaving the easy details to the reader we arrive to

Proposition 26.4.13. (i) Contribution of zone 𝒳𝟤 to the mollification er-

ror (26.4.33) does not exceed CZ
𝟤
𝟥 .

(ii) Contribution of zone 𝒳𝟤 to the mollification error (26.4.34) does not

exceed CZ
𝟧
𝟥 + o(Z

𝟦
𝟥 B

𝟣
𝟥 ).

(iii) Contributions of zone 𝒳𝟤 to the mollification errors (26.4.35) and

(26.4.36) do not exceed CZ
𝟧
𝟥 .

and

Proposition 26.4.14. Let B ≤ Z . Then

(i) Contribution of zone 𝒳𝟤 to the mollification error (26.4.33) does not

exceed CB𝛿Z
𝟤
𝟥
−𝛿.

(ii) Contributions of zone 𝒳𝟤 to the mollification errors (26.4.35)–(26.4.35)

do not exceed CB𝛿Z
𝟧
𝟥
−𝛿.

Remark 26.4.15. Consider the mollification parameter in “absolute” scale

(i.e. ℓ-scale): 𝜀 = 𝛾𝟢𝛾𝟣𝛾𝟤𝛾(h/𝛾
𝟥
𝟢𝛾

𝟧
𝟤
𝟣 𝛾

𝟤
𝟤)

𝟤
𝟥
−𝛿. One can see easily that 𝜀 ≥

h
𝟤
𝟥
−𝛿 ≥ (𝜇−𝟣h)

𝟣
𝟤
−𝛿𝟣 which makes reduction possible.

Remark 26.4.16. All statements of Propositions 26.4.13 and 26.4.14 are valid
for semiclassical errors as well except statements, concerning T -term; tose
should include also terms Ca− 𝟣

𝟤 Z
𝟥
𝟤 for a ≤ Z− 𝟣

𝟥 and Ca−𝛿Z
𝟧
𝟥
+ 𝟣

𝟥
𝛿 for a ≥ Z− 𝟣

𝟥 .
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26.4.5 Zone 𝒳𝟥

Zone 𝒳𝟥 defined by 𝜇h ≥ C𝟢, h ≤ 1, {x : ℓ(x) ≤ 𝜖𝟢r̄} appears only as

Z
𝟦
𝟥 ≤ B ≤ Z 𝟥. In this zone W 𝖳𝖥

B is smooth and no mollification is necessary.
Further, in this zone the canonical form contains only one number j = 0
and |D𝛼W | ≤ C𝛼𝜁

𝟤ℓ−|𝛼| and W ≍ 𝜁𝟤.
Therefore we have non-degeneracy condition fulfilled and applying the

standard theory we conclude that in the scaled version contribution of B(0, 1)
to the semiclassical errors in N- and T-terms and into D-term are C𝜇h−𝟣,
C𝜇 and C𝜇𝟤h−𝟤 respectively.

In the unscaled version they become CBℓ𝟤, CBℓ𝜁 ≤ CBZ
𝟣
𝟤 ℓ

𝟣
𝟤 and CB𝟤ℓ𝟥

and after summation (where for D-term we need to consider mixed contri-
bution of different layers) we arrive to the same expressions calculated as

ℓ = r̄ = B− 𝟤
𝟧 Z

𝟣
𝟧 i.e. CB

𝟣
𝟧 Z

𝟤
𝟧 , CB

𝟦
𝟧 Z

𝟥
𝟧 and CB

𝟦
𝟧 Z

𝟥
𝟧 respectively. Thus we have

proven

Proposition 26.4.17. Let Z
𝟦
𝟥 ≤ B ≤ Z 𝟥. Then

(i) Contribution of zone 𝒳𝟥 to the N-error does not exceed CZ
𝟤
𝟧 B

𝟣
𝟧 .

(ii) Contributions of zone 𝒳𝟥 to the T-error and D-term do not exceed

CZ
𝟥
𝟧 B

𝟦
𝟧 .

26.5 Semiclassical Analysis in the

Boundary Strip for M ≥ 𝟤

To finish our analysis we need to get the same estimates as before in the
boundary strip

𝒴 := {x : W (x) + 𝜈 ≤ 𝜖G , 𝜖r̄ ≤ ℓ(x) ≤ cr̄}(26.5.1)

with

G :=

⎧⎪⎪⎨⎪⎪⎩
(Z − N)

𝟦
𝟥
+ for B ≤ (Z − N)

𝟦
𝟥
+,

B for (Z − N)
𝟦
𝟥
+ ≤ B ≤ Z

𝟦
𝟥 ,

Z
𝟦
𝟧 B

𝟤
𝟧 for B ≥ Z

𝟦
𝟥 .

(26.5.2)

which coincides with (26.2.41) as B ≥ (Z −N)
𝟦
𝟥 . Recall that r̄ = (Z −N)

− 𝟣
𝟥

+ ,

r̄ = B− 𝟣
𝟦 and r̄ = B− 𝟤

𝟧 Z
𝟣
𝟧 in these three cases respectively. Analysis of
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the external zone 𝒳𝟦 := {x : ℓ(x) ≥ C𝟣r̄} will be trivial and inner zone
{x : W (x) + 𝜈 ≥ 𝜖G} has been covered already.

26.5.1 Properties of W 𝖳𝖥
B if N = Z

Let us explore properties of W 𝖳𝖥
B in 𝒴 if N = Z 29) Let us rescale x ↦→ x ′ =

x r̄−𝟣, W ↦→ w = G−𝟣W and define h = G− 𝟣
𝟤 r̄−𝟣, 𝜇 = G− 𝟣

𝟤 Br̄ . Then

(a) In the case B ≤ Z
𝟦
𝟥 we need to rescale w(x ′) = B−𝟣W 𝖳𝖥

B (x ′r̄) and take

h = B− 𝟣
𝟦 ≤ 1, 𝜇 = B

𝟣
𝟦 ≥ 1, 𝜇h = 1.

(b) On the other hand, for B ≥ Z
𝟦
𝟥 one should set w(x ′) = r̄Z−𝟣W 𝖳𝖥

B (x ′r̄)

and h = (Z r̄)−
𝟣
𝟤 = (BZ−𝟥)

𝟣
𝟧 ≤ 1, 𝜇 = BZ− 𝟣

𝟤 r̄
𝟥
𝟤 = B

𝟤
𝟧 Z− 𝟣

𝟧 ≥ 1, 𝜇h =

B
𝟥
𝟧 Z− 𝟦

𝟧 ≥ 1 (𝜇h ≍ 1 iff B ≲ Z
𝟦
𝟥 , h ≍ 1 iff B ≍ Z 𝟥).

We will use now only rescaled coordinates unless the opposite is specified.
Then in 𝒴 rescaled

(26.5.3) Δw = 𝜅w
𝟣
𝟤
+, 𝜅 = 12, w → 𝜃 = 𝜈𝜁−𝟤 as |x | → ∞,

with 𝜁 := G
𝟣
𝟤 where one can always get 𝜅 = 12 after rescaling w ↦→ 144𝜅−𝟤w .

Proposition 26.5.1. Let Z = N. Then in 𝒴 after rescaling

|D𝛼w | ≤ C𝛼w𝛾−|𝛼| ∀𝛼(26.5.4)

with the scaling function 𝛾 = w
𝟣
𝟦 and

|∇w
𝟣
𝟦 | ≤ 1 + Cw t(26.5.5)

with some constant C and exponent t > 0.

Proof. (a) Rescaling x ↦→ x r̄−𝟣 we get an equations (26.5.3)𝟢 = (26.5.3)
with 𝜃 = 0. We know that W = 0 for ℓ(x) ≥ cr̄ ; so after rescaling w = 0 for
ℓ(x) ≥ c . On the other hand, w ≍ 1 as ℓ(x) ≤ 𝜖 (uniformly with respect to
all the parameters).

Let us consider solution of the equation

(26.5.6) Δws = 12w s
+

29) I.e. 𝜈 = 𝟢 and G = Br̄−𝟦.
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in Ω = {w ≤ 𝜖, ℓ ≤ c} with the boundary condition ws = w at 𝜕Ω; s > 𝟣
𝟤
.

Note first that ws ≥ 0. Really, ws is the solution of the variational
problem to minimize

(26.5.7) ‖∇w‖𝟤 + 24(s + 1)−𝟣

∫︁
w s+𝟣
+ dx

and one makes this functional only less replacing w by w+.

Further, the standard maximum principle arguments show that ws ↘ as
s ↘ 30). Obviously ws ↘ w and ws → w in C∞ in {x : w(x) > 0} as s ↘ 𝟣

𝟤
.

We claim that

(26.5.8) ws ∈ C𝟦s+𝟤.

To prove (26.5.8) note first that w ∈ C𝟤−𝛿′ uniformly with respect to all
the parameters for any 𝛿′ > 0. Then w s

s ∈ Cs−𝛿 and then (26.5.6) yields that

ws ∈ C𝟤+s−𝛿 as soon as s − 𝛿 /∈ ℤ. Then since ws ≥ 0 we get |∇ws | ≤ cw
𝟣
𝟤
s

and so w s
s ∈ Cs− 𝟣

𝟤 . Then equation (26.5.6) again yields that ws ∈ Cs+ 𝟥
𝟤 .

Now we need more subtle arguments. First, for |y | = 1

(26.5.9) ws(x + ty) = ws(x) + t(∇ws)x · y +
1

2
(∇𝟤ws)x(y)t

𝟤 + O
(︀
t𝟥
)︀
.

Then the lowest eigenvalue 𝜍 of ∇𝟤ws at x should be greater than −Cw
𝟣
𝟥
s .

Indeed, otherwise we can take y as the corresponding eigenvector and t
with |t| = 𝜖𝜍 and with a sign making second term non-positive and get
ws(x + ty) < 0.

This lower estimate for eigenvalues of ∇𝟤ws and equation (26.5.6) yield

that |∇𝟤ws | ≤ Cw
𝟣
𝟥
s . But then |∇ws | ≤ Cw

𝟤
𝟥
s . Really, otherwise picking

y = |∇ws |−𝟣∇ws with |t| = 𝜖|∇ws |
𝟣
𝟤 and an appropriate sign we would get

ws(x + ty) < 0.

These estimates yield that ws(x
′) ≍ ws(x) in B

(︀
x , 𝛾(x)

)︀
with 𝛾(x) = 𝜖w

𝟣
𝟥
s .

Then w s
s ∈ C

𝟥
𝟤 . In fact, let us consider f = w s−𝟣

s ∇w and |f (x)− f (x ′)|. Let
30) If 𝝙wi = fi (wi ) in 𝝮, fi (w) ↗ as w ↗ and f𝟣(w) ≥ f𝟤(w) then 𝝙(w𝟣 − w𝟤) > 𝟢 as

w𝟣 > w𝟤 and then w𝟣 − w𝟤 does not reach maximum inside 𝝮.
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us consider first |x − x ′| ≥ 𝟣
𝟥

(︀
𝛾(x) + 𝛾(x ′)

)︀
; since |f (x)| ≤ 𝛾(x)

𝟣
𝟤 at each

point we get that |f (x)− f (x ′) ≤ |x − x ′| 𝟣𝟤 .
On the other hand, for |x − x ′| ≤ 𝟣

𝟥

(︀
𝛾(x) + 𝛾(x ′)

)︀
we conclude that

𝛾(x) ≍ 𝛾(x ′) and |f (x)− f (x ′)| ≤ |∇f | · |x − x ′| ≤ |x − x ′|s due to inequality
|∇f | ≤ |∇𝟤ws |w s−𝟣

s + |∇ws |𝟤w s−𝟤
s ≤ C𝛾s−𝟣.

Therefore w s
s ∈ Cs+𝟣 and equation (26.5.6) yields that ws ∈ C𝟥+s .

(b) In the next round we assume that ws ∈ C𝟦+s−𝛿 with some 𝛿 ∈ (0, 1).
Then

(26.5.10) ws(x + ty) ≤

ws(x) + t(∇ws)x · y +
1

2
(∇𝟤ws)x(y)t

𝟤 +
1

6
(∇𝟥ws)x(y)t

𝟥 + C |t|p

with p = min(4, 4 + s − 𝛿).

We claim now that the lowest possible eigenvalue 𝜍 of
(︀
∇𝟤ws

)︀
x
is greater

than −Cw
(p−𝟤)/p
s . Really, otherwise let us pick up y as the corresponding

eigenvector, t with |t| = 𝜖|𝜍|𝟣/(p−𝟤) and with a sign making expression

t(∇ws)x · y +
1

6
t𝟥(∇𝟥ws)x(y)

non-positive and get ws(x + ty) < 0 again. Now equation (26.5.6) yields
that inequality

(26.5.11)k |∇kws | ≤ Cw (p−k)/p
s

holds with k = 2.

Further, we claim that this inequality holds with k = 1, 3. Indeed, if one
or both of these inequalities are violated then let us take corresponding y
and t with

|t| = 𝜖
(︁
|∇ws |𝟣/(p−𝟣) + |∇𝟥ws(y)|𝟣/(p−𝟥)

)︁
(calculated on y); replacing 𝜖 by 2𝜖 if necessary we get

|t(∇ws)x · y +
1

6
t𝟥(∇𝟥ws)x(y)

⃒⃒
≥ 𝜖𝟢|t(∇ws)x · y |+ |1

6
t𝟥(∇𝟥ws)x(y)|

and choosing an appropriate sign of t we get w(x + ty) < 0.
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Therefore inequalities (26.5.11)𝟣−𝟥 hold . The same arguments as above

with 𝛾 = w
𝟣/p
s lead us to w s ∈ Cps and then equation (26.5.6) yields that

ws ∈ Cps+𝟤. So, now we came back with 𝛿 replaced by 𝛿′ = 2 + s − ps and
one can see easily that if 𝛿 > s then 𝛿′ = s + (2− 4s) + (𝛿 − s)s and after
few repeats 𝛿 < s. Then we get (26.5.8). Unfortunately, constants depend
on s due to the fact that Δw ∈ C𝟤 fails to yield w ∈ C𝟦.

(c) Now we are going to finish the proof of (26.5.4). Let us consider ws

again and let 𝛾 = 𝛾s,𝛿 = w
𝟣/(𝟦−𝛿)
s . Due to the previous inequalities 𝛾 ∈ C𝟣.

We claim that |∇𝛾| is bounded uniformly with respect to s, 𝛿. Note first
that Δ𝛾𝟦−𝛿 = 𝛾(𝟦−𝛿)s implies that

(26.5.12) a|∇𝛾|𝟤 + b𝛾Δ𝛾 = 𝛾𝜎

with a = 𝟣
𝟣𝟤
(4 − 𝛿)(3 − 𝛿), b = 𝟣

𝟣𝟤
(4 − 𝛿), and 𝜎 = 4s − 2 + (1 − s)𝛿.

Let 𝜓 = |∇𝛾|𝟤; obviously 𝜓 is uniformly bounded at 𝜕Ω. Let us consider
maximum of 𝜓 reached inside Ω. At the point of maximum

(26.5.13)
∑︁
i

𝛾xixj𝛾xi = 0

and

1

2
Δ𝜓 =

∑︁
i ,j

𝛾𝟤xixj +
∑︁
i

𝛾xi
(︀
Δ𝛾

)︀
xi
=

∑︁
i ,j

𝛾𝟤xixj + b−𝟣
∑︁
i

𝛾xi

(︁
𝛾−𝟣

(︀
𝛾𝜎 − a|∇𝛾|𝟤

)︀)︁
xi
.

Due to (26.5.12) and due to (26.5.13) this expression is equal to∑︁
i ,j

𝛾𝟤xixj − b−𝟣𝛾−𝟤|∇𝛾|𝟤
(︀
𝛾𝜎 − a|∇𝛾|𝟤

)︀
+ b−𝟣𝜎𝛾𝜎−𝟤|∇𝛾|𝟤

and therefore at an inner point of minimum a|∇𝛾|𝟤 ≤ 𝛾𝜎. So, |∇𝛾| ≤ C is

proven and for s ↘ 𝟣
𝟤
, 𝛿 ↘ 0 we get that |∇w

𝟣
𝟦 | ≤ C .

Let us pick 𝛾(x) = 𝜖′w
𝟣
𝟦 (x); then |∇w | ≤ 𝟣

𝟤
and w(x) ≍ w(x) in

B
(︀
x , 𝛾(x)

)︀
. This and equation (26.5.6) easily yield (26.5.4).

To prove inequality (26.5.5) let us consider ws again and let us take
now 𝜓 = |∇𝛾|𝟤 − F𝛾𝟤t with t > 0; obviously 𝜓 is non-positive at 𝜕Ω for
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sufficiently large F . Let us consider maximum of 𝜓 reached inside Ω. At
the point of maximum

(26.5.13)′
∑︁
i

𝛾xixj𝛾xi − Ft𝛾𝟤t−𝟤𝛾xj = 0

and the same arguments as before (plus inequality |∇𝛾| ≤ C𝟢) show that at
an inner point of maximum a|∇𝛾|𝟤 ≤ 𝛾𝜎 +CtF𝛾𝟤t where C does not depend
on F and small t > 0. Then at this point 𝜓 ≤ 1 for small enough t > 0 and
as s → 𝟣

𝟤
and 𝛿 → 0 we get (26.5.5).

The following statement heavily uses estimate (26.5.5):

Proposition 26.5.2. The following estimate holds

(26.5.14) D(𝛾−𝟣+s , 𝛾−𝟣+s) ≤ Cs−𝟤

with some constant C which does not depend on s ∈ (0, 1) where we set

𝛾−𝟣+s := w
𝟣
𝟦
(−𝟣+s)

+ (i.e. it is 0 as w ≤ 0).

Proof. As in the notations of the proof of Proposition 26.5.1 𝛿 = 0 and
s = 𝟣

𝟤
we have (26.5.12) with a = 1, b = 3 and 𝜎 = 0:

1

3
𝛾Δ𝛾 + |∇𝛾|𝟤 = 1.(26.5.15)

Then

𝛾−𝟣+s = 𝛾−𝟣+s |∇𝛾|𝟤 + 1

3
𝛾sΔ𝛾 = (1− s

3
)𝛾−𝟣+s |∇𝛾|𝟤 + 1

3(1 + s)
Δ𝛾𝟣+s

and

D(𝛾−𝟣+s , 𝛾−𝟣+s) ≤ (1− s

3
)D(𝛾−𝟣+s |∇𝛾|𝟤, 𝛾−𝟣+s) + C ≤

(1− s

3
)D(𝛾−𝟣+s , 𝛾−𝟣+s) + CD(𝛾−𝟣+t+s , 𝛾−𝟣+s) + C

due to (26.5.5) and this yields

D(𝛾−𝟣+s , 𝛾−𝟣+s) ≤ Cs−𝟤D(𝛾−𝟣+t+s , 𝛾−𝟣+t+s) + Cs−𝟣.

Substituting s + mt instead of s, 0 ≤ m ≤ Ct−𝟣 we recover (26.5.14).
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26.5.2 Analysis in the Boundary Strip 𝒴 for N ≥ Z

We consider now the case of if N ≥ Z (i.e. 𝜈 = 0 and G = Br̄−𝟦).
It is really easy to construct the proper potential in this case: we just

take

(26.5.16) w𝜀 = w𝜑𝜀, 𝜑𝜀 = f (w𝜀−𝟦)

with f ∈ C∞((𝟣
𝟤
,∞)), supp(f ) ⊂ (𝟣

𝟤
,∞), 0 ≤ f ≤ 1, f (t) = 1 for t > 1.

Note that due to (26.5.3)

D(𝛾−𝟣𝜑𝜀, 𝛾
−𝟣𝜙𝜀) ≤ C𝜀−𝟤sD(𝛾s−𝟣, 𝛾s−𝟣) ≤ Cs−𝟤𝜀−𝟤s ,

D(1− 𝜑𝜀, 1− 𝜑𝜀) ≤ C𝜀𝟤−𝟤sD(𝛾s−𝟣, 𝛾s−𝟣) ≤ Cs−𝟤𝜀𝟤−𝟤s ;

then minimizing with respect to s (= | log 𝜀|−𝟣) the right-hand expression
we conclude that

D
(︀
𝛾−𝟣𝜑𝜀, 𝛾

−𝟣𝜙𝜀
)︀
+ 𝜀−𝟤D

(︀
1− 𝜑𝜀, 1− 𝜑𝜀) ≤ C

(︀
1 + | log 𝜀|

)︀𝟤
(26.5.17)

and therefore ∫︁
𝛾−𝟣𝜑𝜀 dx + 𝜀−𝟣

∫︁
(1− 𝜑𝜀) dx ≤ C

(︀
1 + | log 𝜀|

)︀
.(26.5.18)

Remark 26.5.3. (i) Recall that all these integrals are taken over domain

{x : w(x) > 0}. To avoid possible troubles we pick 𝜀 = h
𝟣
𝟥 and set in the

zone {x : w(x) ≤ C𝟢h
𝟦
𝟥}

𝛾(x) = dist(x , {w ≥ 2C𝟢h
𝟦
𝟥}),

w𝜀 =

{︃
−𝛾𝟦𝜑′

𝜀 for 𝛾 ≤ 𝜀,

−𝜀𝟦 for 𝛾 ≥ 𝜀
(26.5.16)′

with 𝜑′
𝜀 = f (𝛾𝜀−𝟣) and then in the complemental domain {x : w(x) ≤ −𝜍𝟤}

our assumptions are fulfilled with 𝜍 = 𝜀𝟤 and 𝜍𝛾 = 𝛾𝟥 ≥ h.

(ii) Further, for 𝜀 = h
𝟣
𝟥
−𝛿 with sufficiently small exponent 𝛿 > 0 it does not

break estimate for mollification error in T-term.

(iii) Furthermore, for t > 𝜀

mes({x : 𝛾(x) ≤ t}) ≤ Ct𝟥𝜀−𝟥 mes({x : 𝛾(x) ≤ 𝜖𝜀})
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and therefore

hs

∫︁
𝛾−𝟣−s𝜍−s dx ≤ C𝜀−𝟣 mes({x : 𝛾(x) ≤ 𝜖𝜀}) ≤ CL := C (1 + | log h|)

for sufficiently large s.

Using these estimates and the last remark we can prove easily

Proposition 26.5.4. Let N ≥ Z . Then

(i) Contribution of 𝒴 ∪ 𝒳𝟦 with external zone 𝒳𝟦 := {x : w(x) = 0} to mol-
lification and semiclassical errors in N-term do not exceed CT𝟢𝜀

𝟥(1 + | log 𝜀|)
and R𝟢(1 + | log 𝜀|) respectively with

(26.5.19)𝟣 T𝟢 = B
𝟥
𝟦 , R𝟢 = B

𝟣
𝟤 , T = B

𝟩
𝟦 , R = B

𝟧
𝟦

for B ≤ Z
𝟦
𝟥

and

(26.5.19)𝟤 T𝟢 = Z , R𝟢 = B
𝟣
𝟧 Z

𝟤
𝟧 , T = Z

𝟫
𝟧 B

𝟤
𝟧 , R = Z

𝟥
𝟧 B

𝟦
𝟧

for Z
𝟦
𝟥 ≤ B ≤ Z 𝟥.

(ii) Contribution of 𝒴 ∪ 𝒳𝟦 to mollification and semiclassical D-terms do
not exceed CT𝜀𝟨(1 + | log 𝜀|)𝟤 and R(1 + | log 𝜀|)𝟤 respectively.

(iii) Contribution of 𝒴 ∪ 𝒳𝟦 to both mollification and semiclassical errors
in T-term do not exceed CT𝜀𝟩(1 + | log 𝜀|) and CR respectively.

Proof. Really, estimates for mollification errors and terms immediately follow
from the inequality

(26.5.20) mes({x : w(x) ≤ 𝜀𝟦}) ≤ C𝜀(1 + | log 𝜀|)

which is due to (26.5.18).
Let us consider semiclassical errors and terms.

(i) Let us consider N-term first. Let us consider all possible balls and their
contributions: the contribution of each ball B

(︀
x , 𝛾(x)

)︀
to the semiclassical

error does not exceed C𝜇h−𝟣𝛾𝟤 ≍ CBr̄ 𝟤𝛾𝟤 and the total contribution does
not exceed

(26.5.21) CR𝟢

∫︁
𝛾(x)−𝟣 dx ≤ CR𝟢

(︀
1 + | log 𝜀|

)︀
where R𝟢 = Br̄ 𝟤; recall that 𝛾(x) ≥ 𝜀.
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(ii) Consider semiclassical D-term. Let us consider all possible balls and
their contributions: the similar arguments with the analysis of disjoint balls
of different types and with analysis of the intersecting balls (of the same type)
lead us to the proper estimate of the contribution of 𝒴𝟦 ∪𝒳𝟦 to semiclassical

D-term: namely, it does not exceed CR𝟤
𝟢 r̄−𝟣

(︀
1 + | log 𝜀|

)︀𝟤
(i.e. expression

(26.5.21) squared and multipled by C r̄−𝟣) where R𝟤
𝟢 r̄−𝟣 ≍ R .

(iii) Consider T-term. Let us consider all possible balls and their contribu-
tions. Contribution of each ball B

(︀
x , 𝛾(x)

)︀
to the semiclassical error does

not exceed C𝜁𝟤𝜇𝜍𝟤𝛾 ≍ CB𝜁𝟤r̄ 𝜍𝛾𝟤 and the total contribution does not exceed

(26.5.22) CR

∫︁
𝜍(x)𝛾(x)−𝟤 dx ≍ CR

where R = B𝜁𝟤r̄ and 𝜍(x) ≍ 𝛾(x)𝟤.

Then picking appropriate 𝜀 = h
𝟣
𝟥 we arrive to

Corollary 26.5.5. Let N ≥ Z . Then

(i) Contributions of 𝒴 ∪ 𝒳𝟦 to all errors in N-terms do not exceed CR𝟢L
with L = (1 + | logBZ−𝟥|).

(ii) Contribution of 𝒴 ∪ 𝒳𝟦 to all D-terms do not exceed CRL𝟤.

(iii) Contribution of 𝒴 ∪ 𝒳𝟦 to all errors in T-terms do not exceed CR.

We will sum contributions of all zones to errors in Propositions 26.5.14
and 26.5.17 below.

Remark 26.5.6. Could we get rid of the logarithmic factors i.e. make L = 1
as it was in the case M = 1?

(i) With the mollification errors we need to replace (26.5.20) by

(26.5.23) mes({x : w(x) ≤ 𝜀𝟦}) ≤ C𝜀;

(ii) With the semiclassical terms our arguments here are insufficient even
if we established (26.5.23); we need extra propagation arguments in the
direction of decaying w along magnetic lines–exactly as in the case M = 1.
Surely there could be points where such arguments do not work; f.e. consider
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M = 2 and nuclei so that |y𝟣 − y𝟤| is slightly less than r̄𝟣 + r̄𝟤 where r̄𝟣,𝟤 are
precise radii of support. Then w reaches its minimum at 𝒴 .

So, we need to prove that the measure of such points is sufficiently small
(f.e. less than C | logBZ−𝟥|−𝟣).

Unfortunately, we do not know how to make the above remark work and
we suggest

Problem 26.5.7. Follow through the discussed plan. For M = 2 it could
be easier due to the rotational symmetry of the potential W 𝖳𝖥

B .

26.5.3 Analysis in the Boundary Strip 𝒴 for N < Z

Now let us consider the case of N < Z (i.e. 𝜈 < 0).

Case B ≥ (Z − N)
𝟦
𝟥
+

We start from the case B ≥ (Z −N)
𝟦
𝟥
+ when r̄ = min(B− 𝟣

𝟦 ,Z
𝟣
𝟧 B− 𝟤

𝟧 ) matching

cases B ≲ Z
𝟦
𝟥 and Z

𝟦
𝟥 ≲ B ≲ Z 𝟥.

Remark 26.5.8. (i) The results of the previous Subsection 26.4.2 remain

true as long as |𝜈|G−𝟣 ≤ C𝟢h
𝟦
𝟥 ; in other words, as (Z − N)+ ≤ C𝟢G r̄h

𝟦
𝟥 .

Plugging r̄ , G and h, we rewrite it as

(26.5.24) (Z − N)+ ≤ C𝟢 min
(︀
B

𝟧
𝟣𝟤 , Z

𝟣
𝟧 B

𝟦
𝟣𝟧

)︀
matching cases B ≲ Z

𝟦
𝟥 and Z

𝟦
𝟥 ≲ B ≲ Z 𝟥.

(ii) Therefore in this Subsection we assume that condition (26.5.24) fails.

Let 𝜃 = |𝜈|G−𝟣 ≍ (Z − N)+ ·max
(︀
B− 𝟥

𝟦 , Z−𝟣
)︀
, also matching cases B ≲ Z

𝟦
𝟥

and Z
𝟦
𝟥 ≲ B ≲ Z 𝟥.

Proposition 26.5.9. Consider dependence of W 𝖳𝖥
B = W 𝖳𝖥

B(𝜈)(x) on 𝜈. Then

(i) W 𝖳𝖥
B(𝜈)(x) + 𝜈 is non-decreasing with respect to 𝜈 at each point x .

(ii) W 𝖳𝖥
B(𝜈)(x) is non-increasing with respect to 𝜈 at each point x .

(iii) In particular, W 𝖳𝖥
B(𝜈)(x) + 𝜈 ↗ W 𝖳𝖥

B(𝟢)(x) and W 𝖳𝖥
B(𝜈)(x) ↘ W 𝖳𝖥

B(𝟢)(x) at
each point x as 𝜈 ↗ 0.
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Proof. (i) Consider Wj := W 𝖳𝖥
B(𝜈j )

+ 𝜈j with 0 > 𝜈𝟣 > 𝜈𝟤. One can prove

easily that W 𝖳𝖥
B − V is a continuous function and since

(26.5.25) W𝟣 − W𝟤 → 𝜈𝟣 − 𝜈𝟤 as ℓ(x) → ∞

with 𝜈𝟣−𝜈𝟤 > 0 we conclude that W𝟣 ≥ W𝟤 at each point x (which is exactly
our Statement (i)) unless W𝟣 − W𝟤 achieves a negative minimum at some
point x*:

(a) Let x* ̸= ym; then Δ(W𝟣 − W𝟤)(x
*) = P ′

B(W𝟣) − P ′
B(W𝟤) ≤ 0 because

W𝟣 < W𝟤 at x* and therefore x* cannot be such point.

(b) Let x* = ym. From Thomas-Fermi equations for W𝟣,𝟤 one can prove
easily that

(W𝟣 − W𝟤)(x) = (W𝟣 − W𝟤)(ym) + Lm(x − ym)+

𝜅m|x − ym|
𝟥
𝟤 (W𝟣 − W𝟤)(ym) + O(|x − ym|𝟤)

near ym where Lm(x) is a linear function and 𝜅m > 0 and therefore if
(W𝟣 − W𝟤)(ym) < 0, ym cannot be a minimum point either.

(ii) So, W𝟣 ≥ W𝟤 and therefore Δ(W𝟣 − W𝟤)(x
*) = P ′

B(W𝟣)− P ′
B(W𝟤) ≥ 0

and W𝟣 − W𝟤 is a subharmonic function. Then due to (26.5.25) we conclude
that W𝟣 − W𝟤 ≤ 𝜈𝟣 − 𝜈𝟤 i.e. W 𝖳𝖥

B,(𝜈𝟣)
≤ W 𝖳𝖥

B,(𝜈𝟤)
at each point.

(iii) Statement (iii) follows from Statements (i) and (ii).

From Statements (i) and (iii) we conclude immediately that

Corollary 26.5.10. (i) 𝜌𝖳𝖥B(𝜈)(x) is non-decreasing with respect to 𝜈 at each
point x .

(ii) 𝜌𝖳𝖥B(𝜈)(x) ↗ 𝜌𝖳𝖥B(𝟢)(x) at each point x as 𝜈 ↗ 0.

Therefore in the zone {x ∈ 𝒴 : W 𝖳𝖥
B(𝜈) ≥ (1 + 𝜖)|𝜈|} we can apply the

same (𝛾, 𝜍) scaling with 𝜍 = 𝛾𝟤 defined for 𝜈 = 0. Indeed, we know that
there W 𝖳𝖥

B(𝜈) + 𝜈 ≍ W 𝖳𝖥
B(𝟢) ≍ 𝜍𝟤 and 𝜍 = 𝛾𝟤.

Then Thomas-Fermi equation (26.2.3) implies that

(26.5.26) |∇𝛼W 𝖳𝖥
B(𝜈)| ≤ C𝛼𝜍

𝟤𝛾−|𝛼| ∀𝛼
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and then we arrive to the Statement (i) in Proposition 26.5.11 below. On
the other hand, in the zone {x : W 𝖳𝖥

B(𝜈) ≤ (1 − 𝜖)|𝜈|} we can apply the
same arguments but this zone is classically forbidden and we arrive to
Statement (ii) below. In both cases 𝜍𝛾 ≥ h (where in the latter case 𝛾 is the

distance from x to W 𝖳𝖥
B(𝜈) (scaled) and 𝜍 = |𝜃| 𝟣𝟤 in virtue of Remark 26.5.8.

Proposition 26.5.11. Let either B ≤ Z
𝟦
𝟥 and |𝜈| 𝟥𝟦 ≥ Z

𝟤
𝟥 or Z

𝟦
𝟥 ≤ B ≤ Z 𝟥

and |𝜈| 𝟥𝟦 ≥ B
𝟣
𝟤 . Then

(i) Contributions of zone {x : W 𝖳𝖥
B (x) ≥ (1 + 𝜖𝟢)|𝜈|} to the semiclassical

errors in N- and T-terms and into semiclassical D-term do not exceed CR𝟢L,
CR and CRL𝟤 respectively.

(ii) Contributions of zone {x : W 𝖳𝖥
B (x) ≤ (1 − 𝜖𝟢)|𝜈|} to the semiclassical

errors in N- and T-terms and into semiclassical D-term do not exceed CR𝟢L,
CR and CRL𝟤 respectively.

Remark 26.5.12. Here actually we can replace L by L* = 1 + | log 𝜃| with

(26.5.27) 𝜃 = |𝜈|G−𝟣 ≍

{︃
(Z − N)+B− 𝟥

𝟦 if (Z − N)
𝟦
𝟥
+ ≤ B ≤ Z

𝟦
𝟥 ,

(Z − N)+Z−𝟣 if Z
𝟦
𝟥 ≤ B ≤ Z 𝟥;

Therefore we need to explore the following zone

𝒴* := {x : (1− 𝜖𝟢)|𝜈| ≤ W 𝖳𝖥
B (x) ≤ (1 + 𝜖𝟢)|𝜈|}

in the framework of Proposition 26.5.11. In virtue of Remark 26.5.8 ℏ ≲ 1
where

(26.5.28) ℏ = h𝜃−
𝟥
𝟦 ≍

⎧⎨⎩(Z − N)
− 𝟥

𝟦
+ B

𝟧
𝟣𝟨 if B ≤ Z

𝟦
𝟥 ,

(Z − N)
− 𝟥

𝟦
+ Z

𝟥
𝟤𝟢 B

𝟣
𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

Let us rescale the ball B(.,𝛼) to B(., 1) by x ↦→ x𝛼−𝟣 with 𝛼 = 𝜃
𝟣
𝟦 (after

we already rescaled x ↦→ x r̄−𝟣). After this let us introduce scaling function
𝛾𝟢 by (26.4.3). Then let us introduce consequently scaling functions 𝛾𝟣 by
(26.4.7), 𝛾𝟤 by (26.4.13) and 𝛾𝟥 by (26.4.14) 31).

Consider contributions of different balls in this hierarchy into semiclassical
and approximation errors in N- and T-terms and into D semiclassical and
approximation D-terms.

31) With j = ̄ = 𝟢 and corrected as in (26.4.3)
*
and (26.4.7)

*
.
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(i) Consider first semiclassical error in N-term. Due to Chapter 18 the
contribution of 𝛼j element does not exceed CBℓ𝟤j = CBr̄ 𝟤𝛼𝟤

j for j = 3, 2,
where recall that 𝛼j = 𝛾𝟢 · · · 𝛾j .

Then for j = 2 we have CBr̄ 𝟤𝛼𝟤
𝟤 = CBr̄ 𝟤𝛼𝟤

𝟣𝛾
𝟤
𝟣 and therefore we estimate

the contribution of 𝛼𝟣 element by CBr̄ 𝟤𝛼𝟤
𝟣

∫︀
𝛾−𝟣
𝟤 dx 32), which also results in

CBr̄ 𝟤𝛼𝟤
𝟣 but with the logarithmic factor. However we can get rid of this

factor due to a simple observation:

(26.5.29) If 𝛾𝟤 ≤ 𝜖 then Hess(w𝟣) has at least two eigenvalues of magnitude
1 due to |Δw𝟣| ≤ 𝜖𝟣.

Then the contribution of 𝛼𝟢 element does not exceed CBr̄ 𝟤𝛼𝟤
𝟢

∫︀
𝛾−𝟣
𝟣 dx 32);

we claim that it is CBr̄ 𝟤𝛼𝟤
𝟢. Indeed, we need to consider only points with

𝛾𝟣 ≤ 𝜖 and there we use a similar observation:

(26.5.30) If 𝛾𝟣 ≤ 𝜖 then |∇𝟥w ′| ≍ 1 and also |∇𝟥w ′−e⊗e⊗e| ≥ c−𝟣 for any
e ∈ ℝ𝟥 due to |𝜕jΔw𝟣| ≤ 𝜖𝟣; here ∇𝟥w ′ is a 3-tensor of the third derivatives
of w ′.

Further, the contribution of 𝛼 element does not exceed CBr̄ 𝟤𝛼𝟤
∫︀
𝛾−𝟣
𝟢 dx 32);

since 𝛾 ≥ 𝛾𝟢 = ℏ 𝟣
𝟥 , we estimate it by CBr̄ 𝟤𝛼𝟤ℏ− 𝟣

𝟥 .

Finally, since r̄−𝟣𝒴* is covered by no more than CL*𝛼
−𝟤 such elements33),

we conclude that

(26.5.31) The total contribution of 𝒴* into the semiclassical (and also

approximation) errors in N-term does not exceed CBr̄ 𝟤ℏ− 𝟣
𝟥 L*, where L* :=

(1 + | log 𝜃|).

Plugging values of ℏ and 𝜃, we arrive to expression (26.5.33) in Proposi-
tion 26.5.13(i) below.

(ii) Similarly, in virtue of Subsubsection 26.3.1.2. Semiclassical D-Term we
know the that the contribution of the non-disjoint pair of 𝛼j -elements to the
semiclassical D-term does not exceed CB𝟤ℓ𝟥 = CB𝟤r̄ 𝟥𝛼𝟥

j for j = 3, 2.

32) With the integral calculated in the scaled coordinates.
33) Indeed, due to Subsection 26.5.1 𝗆𝖾𝗌(r̄−𝟣𝒴*) ≤ C𝛼L*.
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Therefore the contribution of all non-disjoint pairs of 𝛼𝟤 subelements to
the same expression for 𝛼𝟣 element does not exceed CB𝟤r̄ 𝟥𝛼𝟥

𝟣. Adding all
disjoint pairs, we get32)

(26.5.32) CB𝟤r̄ 𝟥𝛼𝟥
𝟣

∫︁∫︁
|x − y |−𝟣𝛾𝟤(x)

−𝟣𝛾𝟤(y)
−𝟣 dxdy .

Then using the results of Part (i) together with observation (26.5.29) we
arrive to CB𝟤r̄ 𝟥𝛼𝟥

𝟣. So, contribution of the non-disjoint pair of 𝛼𝟣-elements
to the semiclassical D-term does not exceed CB𝟤ℓ𝟥 = CB𝟤r̄ 𝟥𝛼𝟥

𝟣.

Further, continuing in the same manner, we estimate the contribution of
the non-disjoint pair of 𝛼𝟢-elements by CB𝟤r̄ 𝟥𝛼𝟥

𝟢.

Furthermore, in the same manner we estimate the contribution of the
non-disjoint pair of 𝛼-elements by expression (26.5.32) with 𝛾𝟤 replaced by

𝛾𝟢, which does not exceed CB𝟤r̄ 𝟥𝛼𝟥ℏ− 𝟤
𝟥 .

Finally, adding contribution of all non disjoint pairs and using results of
Part (i), we conclude that the total contribution of 𝒴*×𝒴* into the semiclas-
sical (and also approximation) D-terms does not exceed the final expression

we recovered there, squared and multiplied by r̄−𝟣, i.e. CB𝟤r̄ 𝟥ℏ− 𝟤
𝟥 L𝟤

*.

Plugging values of ℏ and 𝜃 we arrive to expression (26.5.34) in Proposi-
tion 26.5.13(ii) below.

(iii) Due to Chapter 18 the contribution of 𝛼j element to the semiclassical er-

ror in T-term does not exceed CBℓ*𝜁* as j = 3, 2. Note that 𝜁 = G
𝟣
𝟤𝛾𝟤𝟢𝛾

𝟥
𝟤
𝟣 𝛾𝟤𝛾

𝟣
𝟤
𝟥

and 𝜁 = G
𝟣
𝟤𝛾𝟤𝟢𝛾

𝟥
𝟤
𝟣 𝛾𝟣 for j = 3, 2. Here we took 𝜃 = 𝛼 = 1 thus covering the

whole zone 𝒴 .

Then the contribution of 𝛼𝟤-element does not exceed CBG
𝟣
𝟤 r̄𝛾𝟥𝟢𝛾

𝟧
𝟤
𝟣 𝛾

𝟤
𝟤 . Fur-

ther, the contribution of 𝛼𝟣-element does not exceed CBG
𝟣
𝟤 r̄𝛾𝟥𝟢𝛾

𝟧
𝟤
𝟣

∫︀
𝛾−𝟣
𝟤 dx 32),

resulting in CBG
𝟣
𝟤 r̄𝛾𝟥𝟢𝛾

𝟧
𝟤
𝟣 in virtue of the same observation (26.5.29).

Further, the contribution of 𝛼𝟢-element does not exceed CBG
𝟣
𝟤 r̄𝛾𝟥𝟢

∫︀
𝛾
− 𝟣

𝟤
𝟣

resulting in CBG
𝟣
𝟤 r̄𝛾𝟥𝟢 in virtue of the same observation (26.5.30).

Finally, the total contribution of 𝒴 does not exceed CBG
𝟣
𝟤 r̄ = CB𝟤r̄ 𝟥 =

max(B
𝟧
𝟦 ,Z

𝟥
𝟧 B

𝟦
𝟧 ).

Therefore we arrive to
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Proposition 26.5.13. In the framework of Proposition 26.5.13 there exists
potential W𝜀 such that

(i) Contributions of 𝒴* to both semiclassical and approximation errors for
N-term do not exceed

(26.5.33) (Z − N)
𝟣
𝟦
+L × (B

𝟣𝟫
𝟦𝟪 ; Z

𝟩
𝟤𝟢 B

𝟤
𝟣𝟧 ),

where here and below we list different values for (Z − N)
𝟦
𝟥
+ ≤ B ≤ Z

𝟦
𝟥 and

for Z
𝟦
𝟥 ≤ B ≤ Z 𝟥.

(ii) Contributions of 𝒴* × 𝒴* to both semiclassical and approximation D-
terms do not exceed

(26.5.34) (B
𝟤𝟧
𝟤𝟦 ; Z

𝟣
𝟤 B

𝟤
𝟥 ).

(iii) Contributions of 𝒴* to both semiclassical and approximation errors for
T-term do not exceed

(26.5.35) (B
𝟧
𝟦 ; Z

𝟥
𝟧 B

𝟦
𝟧 ).

Case B ≤ (Z − N)
𝟦
𝟥
+

Now let us consider the case B ≤ (Z − N)
𝟦
𝟥
+. In this case the boundary strip

𝒴 := {x : |W (x) + 𝜈| ≤ 𝜖|𝜈|}(26.5.36)

consists of two subzones

𝒴𝟣 := {x : 𝜖B ≤ |W (x) + 𝜈| ≤ 𝜖|𝜈|}(26.5.37)

and

𝒴* := {x : |W (x) + 𝜈| ≤ 𝜖B}.(26.5.38)

Applying arguments of Section 26.4 (more precisely, analysis in zones
𝒳𝟣, 𝒳𝟣 extended and 𝒳𝟤) one can prove easily that

Proposition 26.5.14. Let B ≤ (Z − N)
𝟦
𝟥
+. Then

(i) Contributions of 𝒴𝟣 into semiclassical and approximation errors in N-

term do not exceed C |𝜈|r̄ 𝟤 ≍ C (Z − N)
𝟤
𝟥
+.
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(ii) Contributions of 𝒴𝟣 ×𝒴𝟣 into semiclassical and approximation D-terms

do not exceed C |𝜈|𝟤r̄ 𝟥 ≍ C (Z − N)
𝟧
𝟥
+.

(iii) Contribution of 𝒴𝟣 into semiclassical and approximation errors in

T-term do not exceed C |𝜈| 𝟥𝟤 r̄ ≍ C (Z − N)
𝟧
𝟥
+.

Proof. We leave easy details to the reader.

On the other hand, applying arguments of the previous Subsubsec-

tion 26.5.3.1. Case B ≥ (Z − N)
𝟦
𝟥
+ with 𝜃 = 1, ℏ = |𝜈|− 𝟣

𝟤 r̄−𝟣 ≍ (Z − N)
− 𝟣

𝟥
+

one can prove easily the following

Proposition 26.5.15. Let B ≤ (Z − N)
𝟦
𝟥
+. Then

(i) Contributions of 𝒴𝟤 into semiclassical and approximation errors in N-

term do not exceed C (Z − N)
− 𝟧

𝟫
+ B.

(ii) Contributions of 𝒴𝟤 ×𝒴𝟤 into semiclassical and approximation D-terms

do not exceed C (Z − N)
− 𝟩

𝟫
+ B𝟤.

(iii) Contribution of 𝒴𝟤 into semiclassical and approximation errors in

T-term do not exceed C (Z − N)
𝟧
𝟥
+.

Proof. We leave easy details to the reader.

26.5.4 Summary

Adding contributions of all other zones we arrive to

Proposition 26.5.16. Let M ≥ 2. Then for the constructed potential W

(i) Total semiclassical and approximation errors in N-term do not exceed

(26.5.39) C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CZ

𝟤
𝟥 + (Z − N)

− 𝟧
𝟫

+ B if B ≤ (Z − N)
𝟦
𝟥
+,

Z
𝟤
𝟥 + B

𝟣
𝟤 L + (Z − N)

𝟣
𝟦
+B

𝟣𝟫
𝟦𝟪 L* if (Z − N)

𝟦
𝟥
+ ≤ B ≤ Z

𝟦
𝟥 ,

Z
𝟤
𝟧 B

𝟣
𝟧 L + (Z − N)

𝟣
𝟦
+Z

𝟩
𝟤𝟢 B

𝟤
𝟣𝟧 L* if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥

where L* = (1 + | log 𝜃|) with 𝜃 = |𝜈|G−𝟣 = (Z − N)+ ·max(B− 𝟥
𝟦 ,Z−𝟣) and

L = (1 + | logBZ 𝟥|).
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(ii) Both semiclassical and approximation D-terms do not exceed

(26.5.40) C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z

𝟧
𝟥 + (Z − N)

− 𝟩
𝟫

+ B𝟤 if B ≤ (Z − N)
𝟦
𝟥
+,

Z
𝟧
𝟥 + B

𝟧
𝟦 L𝟤 + (Z − N)

𝟣
𝟤
+B

𝟤𝟧
𝟤𝟦 L𝟤

* if (Z − N)
𝟦
𝟥
+ ≤ B ≤ Z

𝟦
𝟥 ,

Z
𝟥
𝟧 B

𝟦
𝟧 L𝟤 + (Z − N)

𝟣
𝟤
+Z

𝟣
𝟤 B

𝟤
𝟥 L𝟤

* if Z
𝟦
𝟥 ≤ B ≤ Z 𝟥.

(iii) Total approximation error in T-term does not exceed

(26.5.41) CQ := C max
(︀
Z

𝟧
𝟥 , Z

𝟥
𝟧 B

𝟦
𝟧

)︀
= C

{︃
Z

𝟧
𝟥 if B ≤ Z

𝟦
𝟥 ,

Z
𝟥
𝟧 B

𝟦
𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

(iv) Total semiclassical error in T-term does not exceed

(26.5.42) CQ + CZ
𝟦
𝟥 B

𝟣
𝟥 + CZ

𝟥
𝟤 a− 𝟣

𝟤

provided a ≥ Z−𝟣; for a ≤ Z−𝟣 the last term should be replaced by CZ 𝟤.

Also we arrive to

Proposition 26.5.17. Let M ≥ 2, B ≤ Z and a ≥ Z− 𝟣
𝟥 . Then for the

constructed potential W

(i) Total semiclassical and approximation errors in N-term do not exceed

CZ
𝟤
𝟥

(︀
(BZ−𝟣)𝛿 + (aZ

𝟣
𝟥 )−𝛿 + Z−𝛿)︀.

(ii) Both semiclassical and approximation D-terms and semiclassical and

approximation errors in T-term do not exceed CZ
𝟧
𝟥

(︀
(BZ−𝟣)𝛿+(aZ

𝟣
𝟥 )−𝛿+Z−𝛿)︀.

26.6 Ground State Energy

26.6.1 Lower Estimates

Now the lower estimates for the ground state energy EN are already proven:
in virtue of the analysis given in Subsection 25.2.1 we know that

(26.6.1) EN ≥ Φ*(W ) +
(︁
Tr(HA,W − 𝜈)− +

∫︁
PB(W + 𝜈) dx

)︁
− 𝜈N
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for arbitrary potential W and 𝜈 ≤ 0; picking Thomas-Fermi potential
W = W 𝖳𝖥

B and chemical potential 𝜈, we arrive to estimate (26.6.2) below
with W = W 𝖳𝖥

B and Q = 0.
However we use slightly different potential W and arrive to estimate

(26.6.2) below where CQ, defined by (26.5.42), estimates an approximation
error; replacing T-term by its semiclassical approximation and applying
Proposition 26.5.16(iii) and 26.5.17(ii), we arrive to estimates (26.6.3)–
(26.6.6) below:

Proposition 26.6.1. Let B ≤ Z 𝟥. Then

(i) The following estimate holds with an approximate potential W we con-
structed:

(26.6.2) E𝖳𝖥 ≥ ℰ𝖳𝖥 +
(︁
Tr((HA,W − 𝜈)−) +

∫︁
PB(W + 𝜈) dx

)︁
− CQ

with Q defined by (26.5.41); further, for W = W 𝖳𝖥
B this estimate holds with

Q = 0.

(ii) The following estimates hold for M = 1 and M ≥ 2 respectively

E𝖳𝖥 ≥ ℰ𝖳𝖥 + Scott− CQ − CZ
𝟦
𝟥 B

𝟣
𝟥(26.6.3)

and

E𝖳𝖥 ≥ ℰ𝖳𝖥 + Scott− CQ − CZ
𝟦
𝟥 B

𝟣
𝟥 − CZ

𝟥
𝟤 a− 𝟣

𝟤(26.6.4)

provided a ≥ Z−𝟣 34) and B ≤ Z 𝟤; on the other hand, if a ≤ Z−𝟣, we can
skip Scott and replace the last term in (26.4.2) by CZ 𝟤.

(iii) As B ≤ Z the following estimates hold for M = 1 and M ≥ 2, a ≥ Z− 𝟣
𝟥

respectively

(26.6.5) E𝖳𝖥 ≥ ℰ𝖳𝖥 + Scott + Dirac + Schwinger − CZ
𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿

)︀
and

(26.6.6) E𝖳𝖥 ≥ ℰ𝖳𝖥 + Scott + Dirac + Schwinger−

CZ
𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿 + (aZ

𝟣
𝟥 )−𝛿

)︀
.

34) Recall that a is the minimal distance between nuclei.
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26.6.2 Upper Estimate: General Scheme

On the other hand, the upper estimate is more demanding. Recall that,
according to Subsection 25.2.2, for the upper estimate in addition to the
trace we need to estimate also |𝜆N − 𝜈| where 𝜆N < 0 is N-th eigenvalue
of HA,W and 𝜆N = 0 if HA,W has less than N negative eigenvalues, and the
product

(26.6.7) |𝜆N − 𝜈| · |N(HA,W )− N |

and also three D-terms: two of them are semiclassical:

D
(︁

e(x , x ,𝜆)− P ′
B(W (x) + 𝜆), e(x , x ,𝜆)− P ′

B(W (x) + 𝜆)
)︁

(26.6.8)𝟣,𝟤

with 𝜆 = 𝜈 and 𝜆 = 𝜆N and also

D
(︁

P ′
B(W (x) + 𝜆N)− P ′

B(W (x) + 𝜈), P ′
B(W (x) + 𝜆N)− P ′

B(W (x) + 𝜈)
)︁
.

(26.6.9)

For this purpose our tool will be semiclassical estimates for two semiclassical
N-terms ∫︁ (︁

e(x , x ,𝜆)− P ′
B(W (x) + 𝜆)

)︁
dx(26.6.10)𝟣,𝟤

also with 𝜆 = 𝜈 and 𝜆 = 𝜆N and also estimate from below for the third
N-term

|
∫︁ (︁

P ′
B(W (x) + 𝜆N)− P ′

B(W (x) + 𝜈)
)︁

dx |.(26.6.11)

26.6.3 Upper Estimate as M = 1

Estimate for |𝜆N − 𝜈|

We start from the easier case M = 1. Exactly as in Subsection 25.2.2 we
have two cases: in the first case |𝜈| is small enough so we construct W 𝖳𝖥

with 𝜈 = 0 and estimate |𝜆N |, and in the second case we prove that 𝜆N ≍ 𝜈
and estimate |𝜆N − 𝜈| ≤ 𝜖|𝜈|.

Proposition 26.6.2. Let M = 1, B ≤ Z 𝟥.
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(i) Assume first that

(Z − N)+ ≤ K := C𝟢 max
(︀
Z

𝟤
𝟥 , Z

𝟤
𝟧 B

𝟣
𝟧

)︀
(26.6.12)

and let us construct W as if 𝜈 = 0 i.e. N = Z . Then

|𝜆N | ≤ C𝟣 max
(︀
Z

𝟪
𝟫 , B

𝟤
𝟥

)︀
.(26.6.13)

(ii) Assume now that

(26.6.14) (Z − N)+ ≥ K = C𝟢 max
(︀
Z

𝟤
𝟥 , Z

𝟤
𝟧 B

𝟣
𝟧

)︀
with sufficiently large C𝟢. Then 𝜆N ≍ 𝜈 and

(26.6.15) |𝜆N − 𝜈| ≤ C𝟣 max
(︀
Z

𝟤
𝟥 , B

𝟣
𝟤

)︀
|𝜈|

𝟣
𝟦 .

Proof. (i) In the framework of Statement (i) assume first that B ≥ (Z −N)
𝟦
𝟥
+.

One can see easily that then

(26.6.16) Expression (26.6.11) is

≍ B |𝜆N |
𝟣
𝟤 ×

(︁ |𝜆N |
G

)︁ 𝟣
𝟦
r̄ 𝟥 ≍ |𝜆N |

𝟥
𝟦 min

(︀
1, B− 𝟥

𝟣𝟢 Z
𝟤
𝟧

)︀
where (|𝜆N |/G )

𝟣
𝟦 r̄ is a width of the zone where 0 < W ≤ −𝜆N and the

selected factor is the volume of this zone. Indeed, W ≍ (r̄ − |x |)𝟦+r̄−𝟦G for
|x | ≍ r̄ .

However this expression (26.6.11) should be less than C max
(︀
Z

𝟤
𝟥 , Z

𝟤
𝟧 B

𝟣
𝟧

)︀
which is exactly an error estimate in the semiclassical expression for N . Thus

(26.6.17) |𝜆N |
𝟥
𝟦 min

(︀
1, Z

𝟤
𝟧 B− 𝟥

𝟣𝟢

)︀
≤ C max

(︀
Z

𝟤
𝟥 , Z

𝟤
𝟧 B

𝟣
𝟧

)︀
where everywhere the first and the second cases are as B ≤ Z

𝟦
𝟥 and Z

𝟦
𝟥 ≤

B ≤ Z 𝟥 respectively. The last inequality is equivalent to (26.6.13).

On the other hand, if B ≤ (Z − N)
𝟦
𝟥
+, inequality (26.6.17) is replaced

by |𝜆N |
𝟥
𝟦 ≤ CZ

𝟤
𝟥 which coincides with (26.6.17) with B reset to (Z − N)

𝟦
𝟥
+

and also with the same inequality derived for B = 0 in Subsection 25.4.2;
therefore (26.6.13) holds in this case as well.
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(ii) One can prove easily that

(26.6.18) If condition (26.6.14) is fulfilled, and expression (26.6.11) does not

exceed the semiclassical error estimate C𝟢 max(Z
𝟤
𝟥 ,Z

𝟤
𝟧 B

𝟣
𝟧 ), then 𝜆N ≍ 𝜈 and,

furthermore, expression (26.6.11) is

≍ B |𝜆N − 𝜈|
∫︁

P ′′
B(W + 𝜈) dx ≍ B |𝜆N − 𝜈|

∫︁
(W + 𝜈)

− 𝟣
𝟤

+ dx ,(26.6.19)

which for B ≥ (Z − N)
𝟦
𝟥
+ is

≍ Br̄ 𝟥|𝜆N − 𝜈| · |𝜈|−
𝟣
𝟤

(︁ |𝜈|
G

)︁ 𝟣
𝟦 ≍ |𝜆N − 𝜈| · |𝜈|−

𝟣
𝟦 min

(︀
1, B− 𝟥

𝟣𝟢 Z
𝟤
𝟧

)︀
(26.6.20)

and this should be less than C max
(︀
Z

𝟤
𝟥 , Z

𝟤
𝟧 B

𝟣
𝟧

)︀
, and this implies (26.6.15).

On the other hand, if B ≤ (Z − N)
𝟦
𝟥
+, then the right-hand expression of

(26.6.19) is ≍ |𝜆N − 𝜈|r̄ ≍ |𝜆N − 𝜈|(Z − N)
− 𝟣

𝟥
+ and this should be less than

CZ
𝟤
𝟥 , and this implies (26.6.15) in this case as well.

Proposition 26.6.2 immediately implies

Corollary 26.6.3. In the frameworks of Proposition 26.6.2(i), (ii),

(26.6.21) |𝜆N − 𝜈| · N([𝜆N , 𝜈]) ≤ CQ,

where N(𝜆N , 𝜈) is the number of (non-zero) eigenvalues on interval [𝜆N , 𝜈]
or [𝜈,𝜆N ]

35).

Estimate for D-Terms

Proposition 26.6.4. In the frameworks of Proposition 26.6.2(i),(ii) ex-
pressions

D
(︀
e(x , x ,𝜆)− P ′

B(W + 𝜆), e(x , x ,𝜆)− P ′
B(W + 𝜆)

)︀
(26.6.22)

with 𝜆 = 𝜈 35) and with 𝜆 = 𝜆N and

D
(︀
P ′
B(W + 𝜈)− P ′

B(W + 𝜆), P ′
B(W + 𝜈)− P ′

B(W + 𝜆N)
)︀

(26.6.23)

with 𝜆 = 𝜆N do not exceed C max(Z
𝟧
𝟥 ,Z

𝟥
𝟧 B

𝟦
𝟧 ).

35) Recall, that the frameworks of Proposition 26.6.2(i) we pick up 𝜈 = 𝟢.
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Proof. Recall that we already derived in Section 26.3 this estimate for D-
term (26.6.22) with 𝜆 = 𝜈. Further, the same estimate for this term with
𝜆 = 𝜆N can be proven exactly in the same way; we leave easy details to the
reader.

Furthermore, one can derive the same estimate for D-term (26.6.23) using
Proposition 26.6.2; again we leave easy details to the reader.

Remark 26.6.5. Let B ≤ Z . Then in (26.6.12)–(26.6.15) and therefore also
in (26.6.19) and in Proposition 26.6.4 one can replace C𝟢 and C by C𝟢𝜀 and
C𝜀 respectively with the small parameter 𝜀: max

(︀
Z−𝛿, (BZ−𝟣)𝛿

)︀
≤ 𝜀 ≤ 1.

Summary

Then following the scheme of Subsection 25.4.4 we arrive to upper estimates
in Theorem 26.6.6 below (lower estimates have been proven in Proposi-
tion 26.6.1). Furthermore, based on estimates (26.6.2) and (26.6.24) and the
fact, that the left-hand term in (26.6.28) should fit into the “gap” between
them (see Section 25.2), we also arrive to Theorem 26.6.7 below:

Theorem 26.6.6. Let M = 1, B ≤ Z 𝟥. Then

(i) The following estimate holds:

(26.6.24) E𝖳𝖥 ≤ ℰ𝖳𝖥 +
(︁
Tr((HA,W − 𝜈)−) +

∫︁
PB(W

𝖳𝖥(x) + 𝜈) dx
)︁
+ CQ

with Q = max
(︀
Z

𝟧
𝟥 ,Z

𝟥
𝟧 B

𝟦
𝟧

)︀
.

(ii) The following estimate holds:

(26.6.25) E𝖳𝖥 ≤ ℰ𝖳𝖥 + Scott + CQ + CZ
𝟦
𝟥 B

𝟣
𝟥 .

Here for Z 𝟤 ≤ B ≤ Z 𝟥 one can skip Scott.

(iii) If B ≤ Z , then

(26.6.26) E𝖳𝖥 ≥ ℰ𝖳𝖥 + Scott + Dirac + Schwinger + CZ
𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿

)︀
.

Theorem 26.6.7. Let M = 1, B ≤ Z 𝟥. Then
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(i) The following estimate holds:

(26.6.27) D(𝜌𝝭 − 𝜌𝖳𝖥B , 𝜌𝝭 − 𝜌𝖳𝖥B ) ≤ CQ.

(ii) If B ≤ Z , then

(26.6.28) D(𝜌𝝭 − 𝜌𝖳𝖥B , 𝜌𝝭 − 𝜌𝖳𝖥B ) ≤ CZ
𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿

)︀
.

Main term

B = Z
𝟦
𝟥

Z
𝟩
𝟥 Z

𝟫
𝟧 B

𝟤
𝟧

Remainder estimate

B = Z 𝟥Z
𝟥
𝟧 B

𝟦
𝟧B = ZZ

𝟧
𝟥

Dirac, Schwinger

B = Z
𝟣𝟣
𝟩Z

𝟦
𝟥 B

𝟣
𝟥

B = Z
𝟩
𝟦

Scott S

Figure 26.3: This figure illustrates the remainder estimate for EN . Thresh-
olds B = Z ⋆ are shown in the yellow boxes.

26.6.4 Upper Estimate as M ≥ 2

Estimate for |𝜆N − 𝜈|

Again we need to consider two cases: almost neutral molecules (systems)
when (Z −N)+ ≤ C𝟢K with K slightly redefined below and we can set 𝜈 = 0
in the definition of Thomas-Fermi potential and establish estimate for |𝜆N |
(and for optimal 𝜈 we have the same estimate for both |𝜈| and 𝜆N) and not
almost neutral molecules (systems) when (Z −N)+ ≥ C𝟢K and we can prove
that |𝜆N | ≍ |𝜈| and estimate |𝜆N − 𝜈|.

Proposition 26.6.8 36). Let M ≥ 1, B ≤ Z 𝟥 and condition (26.2.28) be
fulfilled.

36) Cf. Proposition 26.6.2.
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(i) Assume first that

(Z − N)+ ≤ K := C𝟢

{︃
Z

𝟤
𝟥 + B

𝟣
𝟤 L if B ≤ Z

𝟦
𝟥 ,

Z
𝟣
𝟧 B

𝟦
𝟣𝟧 L if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥

(26.6.29)

and let us construct W as if 𝜈 = 0 i.e. N = Z . Then

|𝜆N | ≤ C𝟣

{︃
Z

𝟪
𝟫 + B

𝟤
𝟥 L

𝟦
𝟥 if B ≤ Z

𝟦
𝟥 ,

Z
𝟣
𝟧 B

𝟦
𝟣𝟧 L

𝟦
𝟥 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥;

(26.6.30)

recall that L = | logBZ−𝟥|.

(ii) Assume now that

(26.6.31) (Z − N)+ ≥ K

with sufficiently large C𝟢 in the definition of K . Then 𝜆N ≍ 𝜈 and moreover

|𝜆N − 𝜈| ≤ C max
(︀
Z

𝟤
𝟥 ,B

𝟣
𝟤 L𝟣

)︀
|𝜈|

𝟣
𝟦 ,(26.6.32)

where

L𝟣 =

⎧⎪⎪⎨⎪⎪⎩
1 if B ≤ (Z − N)

𝟦
𝟥
+,

| log((Z − N)+/B
𝟥
𝟦 | if (Z − N)

𝟦
𝟥
+ ≤ B ≤ Z

𝟦
𝟥 ,

| log(Z − N)+/B
𝟦
𝟧 Z

𝟥
𝟧 |) if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

(26.6.33)

(iii) For M = 1 one can take L = L𝟣 = 1.

Proof. We will apply arguments slightly more sophisticated than the obvious
ones, used in the proof of Proposition 26.6.2. These better arguments will
allow us to derive slightly better estimates for |𝜆N − 𝜈| as (Z − N)+ ≥ CK ,
and for threshold K itself.

Recall that estimates for |𝜆N−𝜈| are derived by comparison of expression
(26.6.11) and the semiclassical errors for the number of eigenvalues below
𝜆 = 𝜈 and 𝜆 = 𝜆N : expression (26.6.11) should be less than the sum of these
semiclassical errors.

Consider contribution of each ball

(26.6.34) B(x , ℓ(x)) ⊂ 𝒴 = {x : min
m

|x − ym| ≥ 𝜖r̄}

to semiclassical errors as 𝜆 = 𝜈 and 𝜆 = 𝜆N and compare it with its
contribution to (26.6.11):
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(a) Each ball contributes no more than CBℓ𝟤 to the first error (with 𝜆 = 𝜈)
where due to our choice 𝜁ℓ ≥ 1.

(b) Further, each ball with 𝜁 ≥ C𝟣|𝜆N − 𝜈| 𝟣𝟤 contributes no more than CBℓ𝟤.

On the other hand, each ball with 𝜁 ≤ C𝟣|𝜆N − 𝜈| 𝟣𝟤 contributes no more
than CBℓ𝟥−𝜎|𝜆N − 𝜈|𝜎/𝟤 to the second error (with 𝜆 = 𝜆N); here 𝜎 = 𝟣

𝟥
is

due to rescaling.

(c) Meanwhile, each ball with 𝜁 ≥ C𝟣|𝜆N − 𝜈| 𝟣𝟤 contributes no less than

𝜖𝟢B |𝜆N−𝜈|𝜁−𝟣ℓ𝟥, and each ball with 𝜁 ≥ C𝟣|𝜆N−𝜈|
𝟣
𝟤 contributes no less than

𝜖𝟢|𝜆N − 𝜈| 𝟣𝟤 ℓ𝟥 to expression (26.6.11) and it is larger than the contributions
of this ball to each of semiclassical errors (multiplied by C ) as long as

(26.6.35)𝟣,𝟤 𝜁𝟤 ≥ |𝜆N − 𝜈| ≥ C𝟤𝜁ℓ
−𝟣, |𝜆N − 𝜈| ≥ C𝟤ℓ

−𝟤.

Obviously in Statements (i), (ii) we can assume that

(26.6.36) Inequalities (26.6.30) and (26.6.32) respectively (with C replaced
by arbitrarily large C𝟥) are violated.

(i)(a) Assume first that (Z − N)
𝟦
𝟥
+ ≤ B ≤ Z 𝟥. Then in the framework of

assumption 𝜁 = B𝟤ℓ𝟦 with minimal ℓ = B− 𝟣
𝟥 and therefore (26.6.35)𝟣,𝟤 are

fulfilled for ℓ ≤ C𝟤B−𝟣|𝜆N |. Therefore we need to account for the semiclassical

errors contributed by an inner shell (not exceeding C max(Z
𝟤
𝟥 ,B

𝟣
𝟤 )) and by

zone 𝒴 ∩ {ℓ ≥ C𝟤B−𝟣|𝜆N |}; there 𝜁 ≥ C𝟣|𝜆N |
𝟣
𝟤 and therefore its contribution

does not exceed CB
∫︀
ℓ(x)−𝟣 dx with integral over this zone and it does not

exceed CBr̄ 𝟤L.

So, these truncated semiclassical errors do not exceed C max(Z
𝟤
𝟥 ,Br̄ 𝟤L).

Meanwhile, expression (26.6.11) is no less than CB
𝟣
𝟤 r̄ 𝟤|𝜆N |

𝟥
𝟦 . Therefore

comparing these two expressions as B ≤ Z
𝟦
𝟥 and as Z

𝟦
𝟥 ≤ B ≤ Z 𝟥 we arrive

to (26.6.30).

(b) Consider the remaining case B ≤ (Z − N)
𝟦
𝟥
+. Semiclassical arguments

remain valid while estimate of (26.6.11) from below by 𝜖𝟢|𝜆N |
𝟥
𝟦 also could

be proven easily.

(ii)(a) Again, assume first that (Z − N)
𝟦
𝟥
+ ≤ B ≤ Z 𝟥. Again, in the

calculation of the truncated semiclassical errors we integrate over zone
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{ℓ ≥ C𝟤B−𝟣|𝜆N − 𝜈|} where 𝜁 ≥ C𝟣|𝜆N |
𝟣
𝟤 and therefore its contribution does

not exceed CB
∫︀
ℓ(x)−𝟣 dx with integral over this zone and it does not exceed

CBr̄ 𝟤L𝟣
37).

Again, expression (26.6.21) is larger than the expressions afterwards and
comparing with the semiclassical error estimate we arrive to (26.6.32).

(b) Consider the remaining case B ≤ (Z − N)
𝟦
𝟥
+. Semiclassical arguments

remain valid while estimate of (26.6.11) from below by 𝜖𝟢|𝜆N − 𝜈| · |𝜆N |−
𝟣
𝟦

also could be proven easily.

(iii) Recall that for M = 1 the semiclassical error estimate hold with
L = L𝟣 = 1.

Then we arrive immediately to

Corollary 26.6.9. In the framework of Proposition 26.6.8 |𝜆N−𝜈|·N([𝜆N , 𝜈])
does not exceed expression (26.5.40).

Estimate for D-Terms for Almost Neutral Systems

We need to estimate the semiclassical error D-term (26.6.22) with 𝜆 = 𝜆N
because for 𝜆 = 𝜈 we already estimated it, and also we need to estimate
another D-term (26.6.23). We start from the latter one. Recall that under
assumption (26.6.29) we take 𝜈 = 0. The trivial estimate is based on

|P ′
B(W )− P ′

B(W + 𝜆)| ≤ CW
𝟣
𝟤 |𝜆|+ CBW − 𝟣

𝟦 |𝜆|
𝟥
𝟦 ,(26.6.37)

leading to

J ≤ CD(W
𝟣
𝟤 , W

𝟣
𝟤 )|𝜆|𝟤 + CB𝟤|𝜆|

𝟥
𝟤D(W − 𝟣

𝟦 𝜃, W − 𝟣
𝟦 𝜃)(26.6.38)

where here and below J is expression (26.6.23), 𝜃 is a characteristic function

of the domain {x : 𝛾(x) ≥ h
𝟣
𝟥} and we can ignore the contribution of the

zone {x : 𝛾(x) ≤ h
𝟣
𝟥}. Really, the contribution of this zone does not exceed

a semiclassical error estimate R := C max(Z
𝟧
𝟥 , Z

𝟥
𝟧 B

𝟦
𝟧 L𝟤).

Note that even without assumption (26.6.29)

(26.6.39) D(W
𝟣
𝟤 , W

𝟣
𝟤 ) ≍ (B− 𝟣

𝟦 ; B− 𝟪
𝟧 Z

𝟫
𝟧 ) for B ≤ Z

𝟦
𝟥 , Z

𝟦
𝟥 ≤ B ≤ Z 𝟥

37) In Statement (i) this leads only to insignificant improvement.
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respectively and (26.6.30) implies that the first term in the right-hand
expression of (26.6.38) is much less than R .

Meanwhile, under assumption (26.6.29)

(26.6.40) D(W − 𝟣
𝟦 𝜃,W − 𝟣

𝟦 𝜃) ≍ B−𝟣D(ℓ−𝟣𝜃, ℓ−𝟣𝜃) ≍ B−𝟣r̄ 𝟥D(𝛾−𝟣𝜃, 𝛾−𝟣𝜃)

where in the right-hand expression D and 𝛾, 𝜃 are in the scale x ↦→ x r̄−𝟣 and
then D(𝛾−𝟣𝜃, 𝛾−𝟣𝜃) ≍ L𝟤 so the second term in (26.6.38) does not exceed

CBr̄ 𝟥|𝜆N |
𝟥
𝟤 L𝟤 which due to (26.6.30) does not exceed

(26.6.41) R := C max
(︀
Z

𝟧
𝟥 , Z

𝟥
𝟧 B

𝟦
𝟧 L𝟦

)︀
.

Consider now term (26.6.22) with 𝜆 = 𝜆N . Let us consider zones
Ω𝟣 := {x : |𝜆− 𝜈| ≲ 𝜁ℓ−𝟣} and Ω𝟤 := {x : |𝜆− 𝜈| ≳ 𝜁ℓ−𝟣}.

Note that the contribution to the term in question of each pair of balls
contained in Ω𝟣×Ω𝟣 does not exceed estimate for the same term with 𝜆 = 𝜈;
really, after rescaling x ↦→ x/ℓ and 𝜏 ↦→ 𝜏/𝜁𝟤 we conclude that the difference
between energy levels does not exceed local semiclassical parameter C/(𝜁ℓ).

Therefore the total contribution of Ω𝟣 ×Ω𝟣 to this term does not exceed
C max

(︀
Z

𝟧
𝟥 , Z

𝟥
𝟧 B

𝟦
𝟧 L𝟤

)︀
.

On the other hand, the contribution to the term in question of each pair
of balls contained in Ω𝟤 × Ω𝟤 does not exceed its contribution to (26.6.25)
and therefore the total contribution of Ω𝟤 ×Ω𝟤 to this term does not exceed
expression (26.6.41). Thus, term (26.6.22) with 𝜆 = 𝜆N does not exceed
(26.6.41).

Therefore we arrive immediately to

Theorem 26.6.10. Let M ≥ 2, B ≤ Z 𝟥 and condition (26.2.28) be fulfilled.
Then under assumption (26.6.29)

(i) The following estimate holds:

(26.6.42) E𝖳𝖥 ≤ ℰ𝖳𝖥 +
(︁
Tr((HA,W − 𝜈)−) +

∫︁
PB(W

𝖳𝖥 + 𝜈) dx
)︁
+

C max
(︀
Z

𝟧
𝟥 , Z

𝟥
𝟧 B

𝟦
𝟧 L𝟦

)︀
.

(ii) If a ≥ Z−𝟣 then the following estimate holds:

(26.6.43) E𝖳𝖥 ≤ ℰ𝖳𝖥 + Scott + C max
(︀
Z

𝟧
𝟥 , Z

𝟥
𝟧 B

𝟦
𝟧 L𝟦

)︀
+ CZ

𝟦
𝟥 B

𝟣
𝟥 + Ca− 𝟣

𝟤 Z
𝟥
𝟤 ;

if a ≤ Z−𝟣 one should replace the last term in the right-hand expression by
CZ 𝟤 and skip Scott.
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(iii) If B ≤ Z and a ≥ Z− 𝟣
𝟥

(26.6.44) E𝖳𝖥 ≤ ℰ𝖳𝖥 + Scott + Dirac + Schwinger+

CZ
𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿 + (aZ

𝟣
𝟥 )−𝛿

)︀
.

Here proof of Statement (iii) is due to the same arguments as in the case
B = 0. Combining with the estimate from below we also conclude that

Theorem 26.6.11. (i) In the framework of Theorem 26.6.10 the following
estimate holds:

(26.6.45) D
(︀
𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥

)︀
≤ C max

(︀
Z

𝟧
𝟥 ; Z

𝟥
𝟧 B

𝟦
𝟧 L𝟦

)︀
.

(ii) In the framework of Theorem 26.6.10(iii) the following estimate holds:

(26.6.46) D
(︀
𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥

)︀
≤ CZ

𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿 + (aZ

𝟣
𝟥 )−𝛿

)︀
.

Estimate for D-Terms for Positively Charged Systems

Let assumption (26.6.31) be fulfilled. Let W = W𝜈 and ℓ = ℓ𝜈 be a potential
and a scaling function (used to derive semiclassical remainder estimates)
for this 𝜈 < 0 (and N < Z ) while W𝟢 and ℓ𝟢 be a potential and a scaling
function for 𝜈 = 0 (and N = Z ).

Let us start from rather trivial arguments. Note that

(26.6.47) |P ′
B(W + 𝜆)− P ′

B(W + 𝜈)| ≤ CW
𝟣
𝟤 |𝜆− 𝜈|𝜃𝟣 + CB |𝜆− 𝜈|

𝟣
𝟤 𝜃𝟤,

where 𝜃𝟣 and 𝜃𝟤 are characteristic functions of 𝒴𝟣 = {x : W (x) + 𝜈 ≥ C𝟢|𝜈|}
and 𝒴𝟤 = {x : 0 < W (x) + 𝜈 ≤ C𝟢|𝜈|} respectively. Let

Jk := D
(︀
[P ′

B(W + 𝜆N)− P ′
B(W + 𝜈)]𝜃k , [P

′
B(W + 𝜆N)− P ′

B(W + 𝜈)]𝜃k
)︀
.

Then in virtue of (26.6.47)

J𝟣 ≤ CD(W
𝟣
𝟤 𝜃𝟣,W

𝟣
𝟤 𝜃𝟣)|𝜆N − 𝜈|𝟤.

Note that38)

D(W
𝟣
𝟤 𝜃𝟣, W

𝟣
𝟤 𝜃𝟣) ≍

(︀
(Z − N)

− 𝟣
𝟥

+ ; B− 𝟣
𝟦 ; Z

𝟫
𝟧 B− 𝟪

𝟧

)︀
.
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Then, using inequality (26.6.32) one can prove easily that J𝟣 ≤ CZ
𝟧
𝟥 .

However estimate for a contribution of zone 𝒴𝟤 is much worse:

(26.6.48) J𝟤 ≤ CB𝟤D(𝜃𝟤, 𝜃𝟤)|𝜆N − 𝜈| ≤ CB𝟤r̄ 𝟥(|𝜈|/B𝟤)
𝟣
𝟤 L𝟤

𝟣|𝜆N − 𝜈|,

where for B ≤ (Z − N)
𝟣
𝟥
+ we should replace (|𝜈|/B𝟤)

𝟣
𝟤 L𝟤

𝟣 by r̄ 𝟤. Then, using

(26.6.32), we conclude that for (Z − N)
𝟦
𝟥
+ ≲ B ≲ Z 𝟥

J𝟤 ≤ CBr̄ 𝟥|𝜈|
𝟥
𝟦 L𝟤

𝟣 max(Z
𝟤
𝟥 ,B

𝟣
𝟤 ) ≍ CB(Z − N)

𝟥
𝟦
+r̄

𝟫
𝟦 max(Z

𝟤
𝟥 ,B

𝟣
𝟤 L𝟣)L

𝟤
𝟣,

and therefore we arrive to the last two cases below; the first case is proven
similarly:

(26.6.49) J𝟤 ≤ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Z − N)

− 𝟦
𝟥

+ Z
𝟤
𝟥 B𝟤,

(Z − N)
𝟥
𝟦
+B

𝟩
𝟣𝟨 max(Z

𝟤
𝟥 ,B

𝟣
𝟤 L𝟣)L

𝟤
𝟣,

(Z − N)
𝟥
𝟦
+Z

𝟫
𝟤𝟢 B

𝟥
𝟧 L𝟥

𝟣

in our three cases.
This is really shabby estimate. To improve it let us observe that

(26.6.50) If estimate |𝜆N − 𝜈| ≤ C max(B
𝟤
𝟥 , (Z − N)

𝟪
𝟫
+) holds, then J𝟤 does

not exceed (26.5.40)

and therefore we can assume that

(26.6.51) |𝜆N − 𝜈| ≥ C max((Z − N)
𝟪
𝟫
+; B

𝟤
𝟥 ).

Let us estimate the truncated semiclassical error39).

Proposition 26.6.12. (i) Let (Z − N)
𝟦
𝟥
+ ≤ B ≤ Z 𝟥 and

(26.6.52) C𝟢B
𝟤
𝟥 ≤ |𝜆N − 𝜈| ≤ C𝟣B

𝟣
𝟤 |𝜈|

𝟣
𝟦 .

Then the truncated semiclassical error in N-term does not exceed

F := CZ
𝟤
𝟥 + CBr̄ 𝟤(|𝜈|/B𝟤)

𝟣
𝟦 L × (B−𝟣|𝜆N − 𝜈|)−𝟣.(26.6.53)

38) In our three cases B ≤ (Z − N)
𝟦
𝟥
+, (Z − N)

𝟦
𝟥
+ ≤ B ≤ Z

𝟦
𝟥 , and Z

𝟦
𝟥 ≤ B ≤ Z 𝟥

respectively.
39) I.e. contribution to such error of the zone, where it exceeds the contribution to the

principal part.
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(ii) Let (Z − N)
𝟦
𝟥
+ ≤ B ≤ Z 𝟥 and

(26.6.54) C𝟣B
𝟣
𝟤 |𝜈|

𝟣
𝟦 ≤ |𝜆N − 𝜈| ≤ C𝟣B

𝟣
𝟤 |𝜈|

𝟣
𝟦 L.

Then the truncated semiclassical error does not exceed

(26.6.55) F := CZ
𝟤
𝟥 + CBr̄ 𝟤L.

(iii) Let B ≤ (Z − N)
𝟦
𝟥
+ and

(26.6.56) (Z − N)
𝟪
𝟫
+ ≤ |𝜆N − 𝜈| ≤ C𝟣(Z − N)+.

Then the truncated semiclassical error does not exceed

(26.6.57) F := CZ
𝟤
𝟥 + C (Z − N)

𝟧
𝟥
+|𝜆N − 𝜈|−𝟣.

(iv) Let B ≤ (Z − N)
𝟦
𝟥
+ and

(26.6.58) C𝟢(Z − N)+ ≤ |𝜆N − 𝜈| ≤ C𝟣Z
𝟤
𝟥 (Z − N)

𝟣
𝟥
+.

Then the truncated semiclassical error does not exceed F := CZ
𝟤
𝟥 .

Proof. The easy proof, which uses arguments of the proof of Proposi-
tion 26.6.8, is left to the reader.

Proposition 26.6.13. In the framework of Proposition 26.6.12(i)–(iv) term
(26.6.25) does not exceed

CF
𝟧
𝟥 (B |𝜆N − 𝜈|

𝟣
𝟤 )

𝟣
𝟥 + (26.5.40)

with F defined in the corresponding cases in Proposition 26.6.12.

Proof. Using Proposition 26.6.8 one can prove easily that

(26.6.59) Contribution of {x : ℓ(x) := minm |x − ym| ≤ 𝜖r̄} to (26.6.25) does

not exceed CZ
𝟧
𝟥 .
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Now we need to estimate the excess of expression (26.6.25) over semi-
classical D-term (with 𝜆 = 𝜈), which has been estimated by (26.5.40). To
do so we need to estimate

(26.6.60) D
(︀
[PB(W + 𝜈)− PB(W + 𝜆)]𝜃, [PB(W + 𝜈)− PB(W + 𝜆)]𝜃

)︀
which is the contribution of the domain Ω′ := {x : ℓ(x) ≤ CB−𝟣|𝜆 − 𝜈|}
where 𝜃 is the characteristic function of Ω′. Recall that in the complimentary
domain |PB(W + 𝜈)− PB(W + 𝜆)| ≤ Cℓ−𝟣. Let us consider

D
(︀
[PB(W + 𝜈)− PB(W + 𝜆)]𝜃𝟢, [PB(W + 𝜈)− PB(W + 𝜆)]𝜃𝟢

)︀
(26.6.61)

and

D
(︀
[PB(W + 𝜈)− PB(W + 𝜆)]𝜃t , [PB(W + 𝜈)− PB(W + 𝜆)]𝜃t′

)︀
,(26.6.62)

where 𝜃𝟢 is a characteristic function of

Ω′
𝟢 := {x : ℓ(x) ≤ t𝟢 := (|𝜆N − 𝜈|B−𝟤)

𝟣
𝟦}

and 𝜃t is a characteristic function of Ω′
t := {x : t ≤ ℓ(x) ≤ 2t} with

t ≥ t ′ ≥ t𝟢.
Observe that, when calculating expression (26.6.11), the contribution of

Ω′
𝟢 is ≍ B |𝜆N − 𝜈| 𝟣𝟤 mes(Ω′

𝟢), and therefore due to Proposition 26.6.12

mes(Ω′
𝟢) ≤ CF

(︀
B |𝜆N − 𝜈|

𝟣
𝟤

)︀−𝟣
,(26.6.63)

while term (26.6.61) is

≍ B𝟤|𝜆N − 𝜈|D(𝜃𝟢, 𝜃𝟢) ≤ CB𝟤|𝜆N − 𝜈|
(︀
mes(Ω𝟢)

)︀ 𝟧
𝟥 ≤ CF

𝟧
𝟥

(︀
B |𝜆N − 𝜈|

𝟣
𝟤

)︀ 𝟣
𝟥 ,

where the middle inequality

D(𝜒G ,𝜒G ) ≤ C
(︀
mes(G )

)︀ 𝟧
𝟥(26.6.64)

is well known40) and the last one is due to (26.6.63); 𝜒G denotes characteristic
function of G .

Similarly, when calculating expression (26.6.11), one can see easily that
the contribution of Ω′

t is ≍ B |𝜆N − 𝜈|(B𝟤t𝟦)−𝟣 mes(Ω′
t) and therefore

(26.6.65) mes(Ω′
t) ≤ CF |𝜆N − 𝜈|−𝟣t𝟤,

40) Really, among uniform solids of equal mass and density the ball has the least
potential energy; then C = 𝟣

𝟧 (𝟣𝟤𝜋)
𝟣
𝟥 .



162 CHAPTER 26. EXTERNAL MAGNETIC FIELD

while term (26.6.62) is ≍ |𝜆N − 𝜈|𝟤t−𝟤t ′ −𝟤D(𝜃t , 𝜃t′), which does not exceed

C |𝜆N − 𝜈|𝟤t−𝟤t ′ −𝟤 mes(Ωt)mes(Ωt′)
[︀
max

(︀
mes(Ωt), mes(Ωt′)

)︀]︀− 𝟣
𝟥

(26.6.66)

due to inequality

D(𝜒G ,𝜒G ′) ≤ C mes(G )mes(G ′)
[︀
max

(︀
mes(G ), mes(G ′)

)︀]︀− 𝟣
𝟥 ,(26.6.67)

which trivially follows from the obvious inequality D(𝜒G , δz) ≤ C (mes(G ))
𝟤
𝟥 ,

where δz(x) = δ(x − z).

Due to (26.6.65) expression (26.6.66) does not exceed CF
𝟧
𝟥 t−

𝟤
𝟥 ; recall

that t ≥ t ′. Since summation with respect to t ≥ t ′ and then with respect

to t ′ ≥ t𝟢 returns CF
𝟧
𝟥 t

− 𝟤
𝟥

𝟢 , we conclude that term (26.6.61) with 𝜃𝟢 replaced
by 𝜃′′ (the characteristic function of {x : ℓ(x) ≥ t𝟢}) also does not exceed

CF
𝟧
𝟥 (B |𝜆N − 𝜈| 𝟣𝟤 ) 𝟣

𝟥 .

So, we have now two estimates for an excess of expression (26.6.25) over
(26.5.40): one estimate is

(26.6.68) CF
𝟧
𝟥 (B |𝜆N − 𝜈|

𝟣
𝟤 )

𝟣
𝟥

with F = F (|𝜆N − 𝜈|) derived in Proposition 26.6.12 and another one is due
to (26.6.48). Let us consider the best of them. Note that estimate (26.6.68)
consists of two terms each due to the corresponding term in the definition
of F . The second term in the framework of Proposition 26.6.12(i) is

C
(︀
B

𝟥
𝟤 r̄ 𝟤|𝜈|

𝟣
𝟦 L|𝜆N − 𝜈|−𝟣

)︀ 𝟧
𝟥
(︀
B |𝜆N − 𝜈|

𝟣
𝟤

)︀ 𝟣
𝟥 ≍ B

𝟣𝟩
𝟨 r̄

𝟣𝟢
𝟥 |𝜈|

𝟧
𝟣𝟤 L

𝟧
𝟥 |𝜆N − 𝜈|−

𝟥
𝟤 .

Then, taking minimum of this expression and CBr̄ 𝟥|𝜈| 𝟣𝟤 L𝟤|𝜆N − 𝜈|, we see
that this minimum does not exceed

C
(︀
B

𝟣𝟩
𝟨 r̄

𝟣𝟢
𝟥 |𝜈|

𝟧
𝟣𝟤 L

𝟧
𝟥

)︀ 𝟤
𝟧
(︀
Br̄ 𝟥|𝜈|

𝟣
𝟤 L𝟤

)︀ 𝟥
𝟧 ≍ CB

𝟧
𝟥 r̄

𝟪
𝟥 (Z − N)

𝟩
𝟣𝟧
+ L

𝟤𝟪
𝟣𝟧 ≍

C

⎧⎨⎩(Z − N)
𝟩
𝟣𝟧
+ BL

𝟤𝟪
𝟣𝟧 if (Z − N)

𝟦
𝟥
+ ≤ B ≤ Z

𝟦
𝟥 ,

(Z − N)
𝟩
𝟣𝟧
+ Z

𝟪
𝟣𝟧 B

𝟥
𝟧 L

𝟤𝟪
𝟣𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥,

which is achieved for |𝜆N − 𝜈| ≍ B
𝟣𝟣
𝟣𝟧 r̄

𝟤
𝟣𝟧 |𝜈|− 𝟣

𝟥𝟢 L− 𝟤
𝟣𝟧 . One can see easily that

this expression does not exceed (26.5.40).
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Therefore in the framework of Proposition 26.6.12(i)(ii) we can select

F = (Z
𝟤
𝟥 + Br̄ 𝟤L) according to (26.6.55), arriving to

C (Z
𝟤
𝟥 + Br̄ 𝟤L)

𝟧
𝟥 B

𝟣
𝟥 |𝜆N − 𝜈|

𝟣
𝟨 ≤ C (Z

𝟤
𝟥 + Br̄ 𝟤L)

𝟧
𝟥 B

𝟣
𝟥 (Z

𝟤
𝟥 + B

𝟣
𝟤 L𝟣)

𝟣
𝟨 |𝜈|

𝟣
𝟤𝟦 ,

which we can rewrite (slightly increasing powers of logarithms) as two last
cases in expression

(26.6.69) C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Z − N)

𝟣
𝟣𝟪
+ Z

𝟣𝟣
𝟫 B

𝟣
𝟥 if B ≤ (Z − N)

𝟦
𝟥
+,

(Z − N)
𝟣
𝟤𝟦
+ (Z

𝟣𝟣
𝟫 + B

𝟣𝟣
𝟣𝟤 L𝟦)B

𝟣𝟣
𝟥𝟤 if (Z − N)

𝟦
𝟥
+ ≤ B ≤ Z

𝟦
𝟥 ,

(Z − N)
𝟣
𝟤𝟦
+ Z

𝟩𝟫
𝟣𝟤𝟢 B

𝟤𝟥
𝟥𝟢 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

In the framework of Proposition 26.6.12(iii) one should replace (𝜈/B𝟤)
𝟣
𝟦

by r̄ and L by 1, so B
𝟥
𝟤 r̄ 𝟤|𝜈| 𝟣𝟦 L|𝜆N − 𝜈|−𝟣 ↦→ B𝟤r̄ 𝟥|𝜆N − 𝜈|−𝟣; further, one

should preserve B |𝜆N − 𝜈| 𝟣𝟤 and therefore the second term becomes(︀
B𝟤r̄ 𝟥|𝜆N − 𝜈|−𝟣

)︀ 𝟧
𝟥
(︀
B |𝜆N − 𝜈|

𝟣
𝟤

)︀ 𝟣
𝟥 ≍ B

𝟣𝟣
𝟥 r̄ 𝟧|𝜆N − 𝜈|−

𝟥
𝟤

and taking minimum of it and (26.6.48) we again get a term lesser than
(26.5.40).

Meanwhile, the first term becomes Z
𝟣𝟢
𝟫 B

𝟣
𝟥 |𝜆N − 𝜈| 𝟣𝟨 ≤ (Z − N)

𝟣
𝟣𝟪
+ Z

𝟣𝟣
𝟫 B

𝟣
𝟥

occupying the first line in (26.6.69).
Therefore we have proven

Proposition 26.6.14. If M ≥ 2, B ≤ Z 𝟥 all three D-terms do not exceed
(26.5.40)+ (26.6.69).

Summary

Therefore all error terms in the upper estimate do not exceed (26.5.40) and
we arrive to

Theorem 26.6.15. Let M ≥ 2, B ≤ Z 𝟥. Then

(i) The following estimate holds:

(26.6.70) E𝖳𝖥 ≤ ℰ𝖳𝖥 +
(︁
Tr((HA,W − 𝜈)−) +

∫︁
PB(W

𝖳𝖥 + 𝜈) dx
)︁
+

(26.5.40)+ (26.6.69).
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(ii) The following estimate holds for a ≥ Z−𝟣:

(26.6.71) E𝖳𝖥 ≤ ℰ𝖳𝖥 + Scott + CZ
𝟦
𝟥 B

𝟣
𝟥 + a− 𝟣

𝟤 Z
𝟥
𝟤 +(26.5.40)+ (26.6.69);

for a ≤ Z−𝟣 one should replace selected terms by CZ 𝟤.

(iii) If B ≤ Z and a ≥ Z− 𝟣
𝟥

(26.6.72) E𝖳𝖥 ≥ ℰ𝖳𝖥 + Scott + Dirac + Schwinger+

CZ
𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿 + (aZ

𝟣
𝟥 )−𝛿

)︀
.

We also arrtive to

Theorem 26.6.16. (i) In the framework of Theorem 26.6.15(i) the follow-
ing estimate holds:

(26.6.73) D
(︀
𝜌𝜓 − 𝜌𝖳𝖥, 𝜌𝜓 − 𝜌𝖳𝖥

)︀
≤ (26.5.40)+ (26.6.69).

(ii) In the framework of Theorem 26.6.15(iii) (albeit without assumption

a ≥ Z− 𝟣
𝟥 ) the following estimate holds:

(26.6.74) D
(︀
𝜌𝜓 − 𝜌𝖳𝖥, 𝜌𝜓 − 𝜌𝖳𝖥

)︀
≤ CQ := CZ

𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿).

Remark 26.6.17. In virtue of Remark 26.3.7 we can replace term CZ
𝟦
𝟥 B

𝟣
𝟥 to

o(Z
𝟦
𝟥 B

𝟣
𝟥 ). This is also true in the case of the better estimates M = 1.

We leave to the reader the following easy problem:

Problem 26.6.18. Investigate conditions to (Z −N)+ so that terms (26.5.40)
and (26.6.69) do not spoil the upper estimate for EN or D(𝜌𝝭−𝜌𝖳𝖥B , 𝜌𝝭−𝜌𝖳𝖥B ).

26.7 Negatively Charged Systems

In this section we following Section 25.5 consider the case N ≥ Z and provide
upper estimates for the excessive negative charge (N − Z ) if IN > 0 and for
the ionization energy IN .
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26.7.1 Estimates of the Correlation Function

First of all we provide some estimates which will be used for both negatively
and positively charged systems. Let us consider the ground-state function
Ψ(x𝟣, 𝜍𝟣; ... ; xN , 𝜍N) and the corresponding density 𝜌𝝭(x). Again the crucial
role play estimates41)

(26.7.1) D
(︀
𝜌𝜓 − 𝜌𝖳𝖥, 𝜌𝜓 − 𝜌𝖳𝖥

)︀
≤ Q̄

where Q̄ ≥ Q is just the right-hand expression of the corresponding estimate;
as B ≤ Z we can slightly decrease Q̄ = Q.

Recall that the same estimate holds also for difference between upper
and lower bounds for EN (with Tr((HW − 𝜈)−) + 𝜈N not replaced by its
semiclassical approximation).

Remark 26.7.1. All arguments and conclusions of Subsection 25.5.1 up to
but excluding estimate (25.5.31) are not related to the Schrödinger operator
and remain true.

So we need to calculate both the semiclassical errors and the principal
parts. Note that all semiclassical errors for W𝜀 do not exceed those obtained
for W we selected . Consider approximations errors in the principal part,
namely

D
(︀
P ′(W𝜀 + 𝜈)− P ′(W + 𝜈),P ′(W𝜀 + 𝜈)− P ′(W + 𝜈)

)︀
(26.7.2)

and

D(𝜌𝜀 − 𝜌, 𝜌𝜀 − 𝜌)(26.7.3)

since we already estimated terms D
(︀
P ′(W + 𝜈) − 𝜌𝖳𝖥B ,P ′(W + 𝜈) − 𝜌𝖳𝖥B )

)︀
and D(𝜌− 𝜌𝖳𝖥B , 𝜌− 𝜌𝖳𝖥B ) by Q̄.

Note that

(26.7.4) |W − W𝜀| ≤ C (1 + ℓ𝜀−𝟣)−𝟤𝜁𝟤

and

(26.7.5) |P ′(W𝜀 + 𝜈)− P ′(W + 𝜈)| ≤
C (1 + ℓ𝜀−𝟣)−𝟤𝜁𝟥 + C (1 + ℓ𝜀−𝟣)−𝟣𝜁B

41) Namely, estimate (26.6.27) of Theorem 26.6.7 if M = 𝟣, and similar estimates
(26.6.45) of Theorem 26.6.11 and (26.6.73) of Theorem 26.6.16 if M ≥ 𝟤. For B ≤ Z and

a ≥ Z− 𝟣
𝟥 , we use estimate (26.6.74) in all cases.
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and therefore expression (26.7.2) does not exceed C
(︀
Z 𝟥𝜀𝟤 + ZB𝟤𝜀𝟤r̄ 𝟤

)︀
and it

does not exceed C max(Z
𝟧
𝟥 ,B

𝟦
𝟧 Z

𝟥
𝟧 ) for 𝜀 = min(Z− 𝟤

𝟥 ,Z
𝟤
𝟧 B− 𝟦

𝟧 ) and this does
not exceed C Q̄.

Further, consider expression (26.7.3); it is equal to 4𝜋|(W𝜀 − W , 𝜌𝜀 − 𝜌)|
and one can prove easily the same estimate for it.

Furthermore, under this restriction an error in the principal part of
asymptotics of

∫︀
e(x , x ,𝜆) dx , namely |

∫︀ (︀
P ′(W𝜀+ 𝜈)−P ′(W + 𝜈)

)︀
dx |, does

not exceed C
(︀
Z

𝟥
𝟤 𝜀

𝟥
𝟤 + Z

𝟣
𝟤 B𝜀r̄

𝟥
𝟤

)︀
, which is less than the semiclassical error.

Then S ≤ C Q̄ with S defined by (25.5.22).
So, the following proposition is proven:

Proposition 26.7.2 42). If 𝜃,𝜒 are as in Subsection 25.5.2, then estimate
(25.5.33) holds, namely,

(26.7.6) 𝒥 = |
∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌(y)𝜌𝝭(x)

)︁
𝜃(x)𝜒(x , y) dxdy | ≤

C sup
x

‖∇y𝜒x‖L𝟤(ℝ𝟥)

(︁
(Q̄ + 𝜀−𝟣N + T )

𝟣
𝟤Θ+ P

𝟣
𝟤Θ

𝟣
𝟤

)︁
+ C𝜀N‖∇y𝜒‖L∞Θ

with Θ = Θ𝝭 defined by (25.5.15) and T ,P defined by (25.5.23), (25.5.25)

and arbitrary 𝜀 ≤ min(Z− 𝟤
𝟥 ,Z

𝟤
𝟧 b− 𝟦

𝟧 ).

Recall that 𝜌
(𝟤)
𝝭 (x , y) defined by (25.5.13) is the quantum correlation

function.

26.7.2 Excessive Negative Charge

Let us select 𝜃 = 𝜃b according to (25.5.34):

(25.5.34) supp(𝜃) ⊂ {x : ℓ(x) ≥ b}.

Note that HNΨ = ENΨ yields identity (25.5.35) and isolating the contribution
of j-th electron in j-th term we get inequality (25.5.36):

(25.5.36) − IN

∫︁
𝜌𝝭(x)ℓ(x)𝜃 dx ≥∑︁

j

〈Ψ, ℓ(xj)𝜃(xj)
(︁
−V (xj)+

∑︁
k:k ̸=j

|xj−xk |−𝟣
)︁
Ψ〉−

∑︁
j

‖∇
(︀
𝜃

𝟣
𝟤 (xj)ℓ(xj)

𝟣
𝟤

)︀
Ψ‖𝟤

42) Cf. Proposition 25.5.1.
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due to the non-negativity of operator
(︀
(Dx − A(x)) · σ

)︀𝟤
.

Now let us select b to be able to calculate the magnitude of Θ. Note
that inequality (25.5.37) holds. Also (25.5.38) holds as long as

(26.7.7) Z− 𝟣
𝟥 ≤ b ≤ 𝜖min

(︀
(Z − N)

− 𝟣
𝟥

+ ,B− 𝟣
𝟦

)︀
Using inequalities

|∇(𝜃b(x)
𝟣
𝟤 ℓ

𝟣
𝟤 )| ≤ cb−𝟣𝜃(𝟣−𝜖)b(x)

and ∫︁
𝜌𝝭(x)ℓ(x)𝜃b(x) dx ≥ bΘb

(i.e. (25.5.43)) we conclude that

(26.7.8) bINΘb ≤
∫︁
𝜃b(x)V (x)ℓ(x)𝜌𝝭(x) dx

−
∫︁
𝜌
(𝟤)
𝝭 (x , y)ℓ(x)|x − y |−𝟣𝜃b(x) dxdy + Cb−𝟣Θb(𝟣−𝜖) =

=

∫︁
𝜃b(x)V (x)ℓ(x)𝜌𝝭(x) dx

−
∫︁
𝜌
(𝟤)
𝝭 (x , y)ℓ(x)|x − y |−𝟣

(︀
1− 𝜃b(y)

)︀
𝜃b(x) dxdy

−
∫︁
𝜌
(𝟤)
𝝭 (x , y)ℓ(x)|x − y |−𝟣𝜃b(y)𝜃b(x) dxdy + Cb−𝟣Θb(𝟣−𝜖)

(cf. (25.5.44)). Denote by ℐ𝟣, ℐ𝟤, and ℐ𝟥 the first, second and third terms
in the right-hand expression of (26.7.8) respectively. Symmetrizing ℐ𝟥 with
respect to x and y

ℐ𝟥 = −1

2

∫︁
𝜌
(𝟤)
𝝭 (x , y)

(︀
ℓ(x) + ℓ(y)

)︀
|x − y |−𝟣𝜃(y)𝜃(x) dxdy

and using inequality ℓ(x) + ℓ(y) ≥ minj(|x − yj | + |y − yj |) ≥ |x − y | we
conclude that this term does not exceed

(26.7.9) − 1

2

∫︁
𝜌
(𝟤)
𝝭 (x , y)𝜃b(y)𝜃b(x) dxdy =

− 1

2
(N − 1)

∫︁
𝜌𝝭(x)𝜃b(x) dx +

1

2

∫︁
𝜌
(𝟤)
𝝭 (x , y)

(︀
1− 𝜃b(y)

)︀
𝜃b(x) dxdy



168 CHAPTER 26. EXTERNAL MAGNETIC FIELD

(cf. (25.5.45)).

Here the first term is exactly −𝟣
𝟤
(N − 1)Θb; replacing 𝜌

(𝟤)
𝝭 (x , y) by

𝜌(y)𝜌𝝭(x) we get

1

2

∫︁ (︀
1− 𝜃b(y)

)︀
𝜌(y) dy ×Θb(26.7.10)

with an error

1

2

∫︁ (︀
𝜌
(𝟤)
𝝭 (x , y)− 𝜌(y)𝜌𝝭(x)

)︀(︀
1− 𝜃b(y)

)︀
𝜃b(x) dxdy(26.7.11)

(cf. (25.5.46), (25.5.47)). We estimate this expression using Proposi-

tion 26.7.2 with 𝜒(x , y) = 1−𝜃b(y). Then ‖∇y𝜒x‖L𝟤 ≍ b
𝟣
𝟤 , ‖∇y𝜒‖L∞ ≍ b−𝟣

and P ≍ b−𝟣Θb
43), while T ≲ b−𝟦 as long as B ≤ Z

𝟦
𝟥 and b ≤ B− 𝟣

𝟦 .

To estimate the excessive negative charge we assume that (N − Z ) > 0
with IN > 0. In this case the left-hand expression in (26.7.8) should be
positive.

Remark 26.7.3. Recall that in Subsection 25.5.2 we picked b = Z− 𝟧
𝟤𝟣 and it

makes sense here as well as long as b ≤ r̄ = B− 𝟣
𝟦 i.e. as B ≤ Z

𝟤𝟢
𝟤𝟣 . However

for B ≥ Z
𝟤𝟢
𝟤𝟣 we just pick up b = C𝟢r̄ and then T = 0 in our framework.

Estimating (26.7.11) we conclude that

ℐ𝟥 ≤ −1

2

(︁
N − 1−

∫︁ (︀
1− 𝜃b(y)

)︀
𝜌(y) dy

)︁
Θb + ℐ𝟢(26.7.12)

with

ℐ𝟢 = Cb
𝟣
𝟤

(︁
𝒮Θb + Nb−𝟤

)︁ 𝟣
𝟤
Θ

𝟣
𝟤
b + C𝜀Nb−𝟣Θb(26.7.13)

(cf. (25.5.48)).

On the other hand,

(26.7.14) ℐ𝟤 ≤ −
∫︁
𝜌
(𝟤)
𝝭 (x , y)ℓ(x)|x − y |−𝟣

(︀
1− 𝜃b(𝟣−𝜖)(y)

)︀
𝜃b(x) dxdy

43) Recall that P =
∫︀
|∇𝜃 𝟣

𝟤 |𝟤𝜌𝝭 dx and T = 𝗌𝗎𝗉𝗌𝗎𝗉𝗉(𝜃) W .
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and replacing 𝜌
(𝟤)
𝝭 (x , y) by 𝜌(y)𝜌𝝭(x) and estimating an error due to Propo-

sition 26.7.2 again, we get

(26.7.15) ℐ𝟤 ≤ −
∫︁
𝜌(y)𝜌𝝭(x)ℓ(x)|x − y |−𝟣

(︀
1− 𝜃b(𝟣−𝜖)(y)

)︀
𝜃b(x) dxdy+

Cb− 𝟣
𝟤

(︀
𝒮Θb + Nb−𝟤

)︀ 𝟣
𝟤Θ

𝟣
𝟤
b + C𝜀Nb−𝟣 =

−
∫︁

(V − W )(x)ℓ(x)𝜃b(x) dx+∫︁
𝜌(y)𝜌𝝭(x)ℓ(x)|x − y |−𝟣𝜃b(𝟣−𝜖)(y))𝜃b(x) dxdy + ℐ𝟢.

So, we picked up

b = C min(Z− 𝟧
𝟤𝟣 , r̄) =

⎧⎪⎪⎨⎪⎪⎩
Z− 𝟧

𝟤𝟣 if B ≤ Z
𝟤𝟢
𝟤𝟣 ,

B− 𝟣
𝟦 if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 ,

B− 𝟤
𝟧 Z

𝟣
𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥

(26.7.16)

and

𝜀 = min(Z− 𝟤
𝟥 ,B− 𝟦

𝟧 Z
𝟤
𝟧 ).(26.7.17)

Then, preserving all the estimates one can take W = 𝜌 = 0 at supp(𝜃 b
𝟤
) 44)

and then

(26.7.18) ℐ𝟣 + ℐ𝟤 =

∫︁
𝜃b(x)W (x)ℓ(x)𝜌𝝭(x) dx−∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌𝝭(x)𝜌(y)

)︁
ℓ(x)|x − y |−𝟣

(︀
1− 𝜃b(y)

)︀
𝜃b(x) dxdy ≤ ℐ𝟢.

Further, since
∫︀ (︀

1− 𝜃b(y)
)︀
𝜌(y) dy ≤ Z 45) we get from (26.7.8) and estimate

(26.7.12) for ℐ𝟥 that

(26.7.19) (N − Z ) ≤ Cb
𝟣
𝟤𝒮

𝟣
𝟤 + CΘ

− 𝟣
𝟤

b N
𝟣
𝟤 b−𝟣 + Cb−𝟣Θb(𝟣−𝜖)Θ

−𝟣
b

because then 𝜀N
𝟣
𝟤 b−𝟣 does not exceed Cb

𝟣
𝟤 Q̄

𝟣
𝟤 .

44) For B ≥ Z
𝟤𝟢
𝟤𝟣 this is fulfilled automatically.

45) Actually for B ≥ Z
𝟤𝟢
𝟤𝟣 this is an equality.
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Let us assume that estimate (26.7.20) below does not hold. Then
Θb = N −

∫︀ (︀
1− 𝜃b(y)

)︀
𝜌𝝭(y) dy and due to Theorem 26.6.16

|Θb − N − Z | ≤ Cb
𝟣
𝟤 Q̄

𝟣
𝟤 ≤ 1

2
(N − Z )

and the same is true for Θb(𝟣−𝜖). Then (26.7.19) yields (26.7.20). So, (26.7.20)
has been proven.

Thus we proved the following theorem:

Theorem 26.7.4. Let condition (26.2.28) be fulfilled. In the fixed nuclei
model let IN > 0.

(i) Then

(26.7.20) (N − Z )+ ≤ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z

𝟧
𝟩 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

Z
𝟧
𝟨 B− 𝟣

𝟪 + B
𝟣
𝟤 L if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 L

Z
𝟤
𝟧 B

𝟣
𝟧 L if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥

where L = | log(Z−𝟥B)|.

(ii) For M = 1 the same estimate holds with L = 1:

(26.7.21) (N − Z )+ ≤ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z

𝟧
𝟩 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

Z
𝟧
𝟨 B− 𝟣

𝟪 if Z
𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 L

Z
𝟤
𝟧 B

𝟣
𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

Furthermore, for B ≤ Z one can use a slightly sharper estimate for Q̄:

Theorem 26.7.5. Let condition (26.2.28) be fulfilled. In the fixed nuclei
model let IN > 0. Then for a single atom and for molecule with B ≤ Z and
a ≥ Z− 𝟣

𝟥
+𝛿𝟣

(26.7.22) (N − Z )+ ≤ C

⎧⎨⎩Z
𝟧
𝟩
−𝛿 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

Z
𝟧
𝟨
−𝛿B− 𝟣

𝟪
+𝛿 if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

Results for a free nuclei model follow from the above results and an
estimate of a from below (see Subsubsection 26.8.4.4. Estimate for Excessive
Negative Charge and Ionization Energy).
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Theorem 26.7.6. Let condition (26.2.28) be fulfilled. In the free nuclei
model let ÎN > 0. Then

(i) Estimate (26.7.20) holds.

(ii) For B ≤ Z estimate (26.7.22) holds.

26.7.3 Estimate for Ionization Energy

Finally, let us estimate the ionization energy, assuming that
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(26.7.23) (Z −N)+ does not exceed the right-hand expression of (26.7.20)46).

Few cases are possible:

(i) B ≤ Z
𝟤𝟢
𝟤𝟣 and (Z − N)+ ≤ C𝟢Z

𝟧
𝟩 . In this case we act exactly as in

Subsection 25.5.2: we pick up b = 𝜖Z− 𝟧
𝟤𝟣 with a small enough constant

𝜖′ > 0; then

|
∫︁
𝜃b(x)

(︀
𝜌𝝭 − 𝜌

)︀
dx | ≤ Cb

𝟣
𝟤 Q

𝟣
𝟤 ,(26.7.24)

while ∫︁
𝜃b(x)𝜌 dx ≍ b−𝟥(26.7.25)

and therefore

Θ :=

∫︁
𝜃b(x)𝜌𝝭 dx ≍ b−𝟥(26.7.26)

and

|
∫︁
𝜃(x)

(︀
𝜌𝝭 − 𝜌

)︀
dx | ≤ 𝜖′′Θ.(26.7.27)

Then (26.7.8), (26.7.12), (26.7.15) yield that IN ≤ CZ
𝟤𝟢
𝟤𝟣 ; so estimate (26.7.37)

below in this case is recovered.

In all other cases one needs to replace 𝜃b by a function which is not
b-admissible.

(ii) Let Z
𝟤𝟢
𝟤𝟣 ≤ B ≤ Z 𝟥 and M = 1. Let here r̄ be the exact radius of supp(𝜌),

𝜌 = 𝜌𝖳𝖥B and W = W 𝖳𝖥
B , which were obtained in the Thomas-Fermi theory

with 𝜈 = 0. Recall that r̄ ≍ max(B− 𝟣
𝟦 ; B− 𝟤

𝟧 Z
𝟣
𝟧 ) and Q̄ ≍ max(Z

𝟧
𝟥 ; B

𝟦
𝟧 Z

𝟥
𝟧 ).

Also recall that W ≍ Gt𝟦 and 𝜌 ≍ BG
𝟣
𝟤 for r = (1− t)r̄ with 1− 𝜖 ≤ t ≤ 1,

where G := min(B ; B
𝟤
𝟧 Z

𝟦
𝟧 ).

We take in this case r̄ t-admissible function 𝜃, equal 0 for |x −y| ≤ r̄(1−t)
and equal 1 for |x − y| ≥ r̄(1− 𝟣

𝟤
t).

(26.7.28) In all the above estimates one needs to replace Cb−𝟣Θb(𝟣−𝜖) by
C r̄−𝟣t−𝟣Θ′ with Θ′ defined by 𝜃′ which is also r̄ t-admissible and equal 1 in
𝜖r̄ t-vicinity of supp(𝜃).

46) Or (26.7.21), or (26.7.22) in the framework of the corresponding theorem.
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Then (26.7.24)–(26.7.27) are replaced by

|
∫︁
𝜃(x)

(︀
𝜌𝝭 − 𝜌

)︀
dx | ≤ CQ

𝟣
𝟤 × ‖∇𝜃‖ ≍ Ct−

𝟣
𝟤 r̄

𝟣
𝟤 Q

𝟣
𝟤(26.7.29)

while ∫︁
𝜃(x)𝜌 dx ≍ BG

𝟣
𝟤 r̄ 𝟥t𝟥(26.7.30)

and therefore

Θ :=

∫︁
𝜃(x)𝜌𝝭 dx ≍ BG

𝟣
𝟤 r̄ 𝟥t𝟥.(26.7.31)

Then (26.7.27) holds provided the right-hand expression of (26.7.29) does
not exceed the right-hand expression of (26.7.31), multiplied by 𝜖:

(26.7.32) t = t* := C𝟢B− 𝟤
𝟩 G− 𝟣

𝟩 r̄−
𝟧
𝟩 Q

𝟣
𝟩 = C𝟣 max(B− 𝟣

𝟦 Z
𝟧
𝟤𝟣 ; B

𝟤
𝟥𝟧 Z− 𝟨

𝟥𝟧 )

where we picked up the smallest possible value of t. Note that

(26.7.33) t ≍ 1 as either B ≍ Z
𝟤𝟢
𝟤𝟣 or B ≍ Z 𝟥.

Further, let us estimate from above

(26.7.34) ℐ ′ = −
∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌𝝭(x)𝜌(y)

)︁
ℓ(x)|x − y |−𝟣𝜃(x) dxdy ≤

−
∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌𝝭(x)𝜌(y)

)︁(︀
1− 𝜔𝜏 (x , y)

)︀
ℓ(x)|x − y |−𝟣𝜃(x) dxdy+∫︁

𝜌𝝭(x)𝜌(y)𝜔𝜏 (x , y)ℓ(x)|x − y |−𝟣𝜃(x) dxdy

with 𝜔 = 0 as |x − y | ≥ 2𝜏 r̄ and 𝜔 = 1 as |x − y | ≤ 𝜏 r̄ , with 𝜏 ∈ (t, 1).

Then due to Proposition 26.7.2 with 𝜒(x , y) =
(︀
1 − 𝜔𝜏 (x , y)

)︀
|x − y |−𝟣

the first term in the right-hand expression does not exceed C r̄
𝟣
𝟤 𝜏−

𝟣
𝟤 Q

𝟣
𝟤Θ

since ‖∇y𝜒x‖L𝟤(ℝ𝟥) ≍ (r̄𝜏)−
𝟣
𝟤 and also one can prove easily that all other

terms in
(︁
(Q + 𝜀−𝟣N + T )

𝟣
𝟤Θ+ P

𝟣
𝟤Θ

𝟣
𝟤

)︁
do not exceed CQΘ.

Meanwhile, the second term in in the right-hand expression of (26.7.34)

does not exceed CBG
𝟣
𝟤 𝜏 𝟤× r̄ 𝟥𝜏 𝟤×Θ because 𝜌(y) ≤ CBG

𝟣
𝟤 𝜏 𝟤 if |x −y | ≤ 2𝜏 r̄ ,

x ∈ supp(𝜃) and therefore
∫︀
𝜌(y)𝜔𝜏 (x , y) dy ≤ CBG

𝟣
𝟤 𝜏 𝟦.
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Minimizing their sum

C
(︁

r̄
𝟣
𝟤 𝜏−

𝟣
𝟤 Q

𝟣
𝟤 + BG

𝟣
𝟤 r̄ 𝟥𝜏 𝟦

)︁
Θ

with respect to 𝜏 ≥ t 47), we arrive to estimate

ℐ ′ ≤ C r̄
𝟩
𝟫 Q

𝟦
𝟫 B

𝟣
𝟫 G

𝟣
𝟣𝟪Θ.

Then exactly as in the proof of Theorem 25.5.3 we have inequality

(26.7.35) r̄ IN ≤ C (Z − N)+ + C r̄
𝟩
𝟫 Q

𝟦
𝟫 B

𝟣
𝟫 G

𝟣
𝟣𝟪 ,

and therefore for (Z − N)+ ≤ C r̄
𝟩
𝟫 Q

𝟦
𝟫 B

𝟣
𝟫 G

𝟣
𝟣𝟪 we arrive to the estimate

IN ≤ C r̄−
𝟤
𝟫 Q

𝟦
𝟫 B

𝟣
𝟫 G

𝟣
𝟣𝟪 .

Thus we have proven estimate (26.7.37) of Theorem 26.7.7 below, at
least as N ≥ Z . Further, estimate (26.7.39) under the same assumption

N ≥ Z is due to the fact that for B ≤ Z one can use Q̄ = Z
𝟧
𝟥 (B𝛿Z−𝛿 + Z−𝛿)

instead of Q.

Theorem 26.7.7. Let M = 1.

(i) Then for B ≤ Z 𝟥 and

(Z − N)+ ≤ C𝟢

⎧⎪⎪⎨⎪⎪⎩
Z

𝟧
𝟩 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

B− 𝟣
𝟪 Z

𝟧
𝟨 if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 ,

B
𝟣
𝟧 Z

𝟤
𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥

(26.7.36)

the following estimate holds

IN ≤ C

⎧⎪⎪⎨⎪⎪⎩
Z

𝟤𝟢
𝟤𝟣 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

B
𝟤
𝟫 Z

𝟤𝟢
𝟤𝟩 if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥

B
𝟤𝟨
𝟦𝟧 Z

𝟦
𝟣𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

(26.7.37)

(ii) Furthermore for B ≤ Z and

(Z − N)+ ≤ C𝟢

{︃
Z

𝟧
𝟩
−𝛿 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

B− 𝟣
𝟪
+𝛿Z

𝟧
𝟨
−𝛿 if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

(26.7.38)

47) One can see easily that minimum is achieved as 𝜏 ≍ t
𝟩
𝟫 .
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the following estimate holds

IN ≤ C

{︃
Z

𝟤𝟢
𝟤𝟣
−𝛿′ if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

B
𝟤
𝟫
+𝛿′Z

𝟤𝟢
𝟤𝟩
−𝛿′ if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z .

(26.7.39)

Proof in the general settings. To prove estimates (26.7.37) and (26.7.39) in
the general settings (i.e. without assumption N ≥ Z ) observe that for N < Z

(26.7.40) D(𝜌𝖳𝖥N − 𝜌𝖳𝖥Z , 𝜌𝖳𝖥N − 𝜌𝖳𝖥Z ) ≤ C (Z − N)𝟤r̄−𝟣 ≍

C max
(︀
(Z − N)

𝟩
𝟥 ; C (Z − N)𝟤B

𝟣
𝟦 ; C (Z − N)𝟤B

𝟤
𝟧 Z− 𝟣

𝟧

)︀
(where subscript here denotes the number of electrons rather than the
intensity of the magnetic field) because the same estimate holds for ℰ𝖳𝖥

N −ℰ𝖳𝖥
Z :

0 ≤ ℰ𝖳𝖥
N − ℰ𝖳𝖥

Z ≤ C (Z − N)𝟤r̄−𝟣,(26.7.41)

which itself follows from

𝜕ℰ𝖳𝖥

𝜕N
= 𝜈 ≍ (Z − N)r̄−𝟣.(26.7.42)

Therefore to preserve our estimates we need to assume that the right-
hand expression of (26.7.40) does not exceed Q; this assumption is equivalent

to (Z − N)+ ≤ min(Z
𝟧
𝟩 ; Z

𝟧
𝟨 B− 𝟣

𝟪 ) for B ≤ Z
𝟦
𝟥 which is exactly the first and

the second cases in (26.7.36) (and these cases in (26.7.38) appear in the

same way), and to (Z − N)+ ≤ CB
𝟣
𝟧 Z

𝟤
𝟧 for Z

𝟦
𝟥 ≤ B ≤ Z 𝟥, which is exactly

the third case in (26.7.40).
Also there is a term C (Z −N)+r̄−𝟣 in the estimate of IN . However, under

assumption (26.7.40) this term does not exceed the right hand expression of
(26.7.40) or (26.7.42), in fact coincides with it only in the first case.

Consider now M ≥ 2. Assume that B ≥ Z
𝟤𝟢
𝟤𝟣 since the opposite case has

been analyzed already.
Let us pick up r̄ t-admissible function 𝜃 such that 𝜃 = 1 if W ≤ C𝟢Gt𝟦

and 𝜃 = 0 if W ≥ 2C𝟢Gt𝟦. In this case (M ≥ 2) we can claim only that

‖∇𝜃‖ ≤ Ct−
𝟣
𝟤 r̄

𝟣
𝟤 | log t| 𝟣𝟤 and therefore

|
∫︁
𝜃(x)

(︀
𝜌𝝭 − 𝜌

)︀
dx | ≤ Ct−

𝟣
𝟤 | log t|

𝟣
𝟤 r̄

𝟣
𝟤 Q̄

𝟣
𝟤 ,(26.7.29)′
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while

BG
𝟣
𝟤 r̄ 𝟥t𝟥 ≲

∫︁
𝜃(x)𝜌 dx ≲ BG

𝟣
𝟤 | log t|r̄ 𝟥t𝟥(26.7.30)′

and therefore

Θ :=

∫︁
𝜃(x)𝜌𝝭 dx ≳ BG

𝟣
𝟤 r̄ 𝟥t𝟥(26.7.31)′

for

t ≥ t* := C𝟢B− 𝟤
𝟩 G− 𝟣

𝟩 r̄−
𝟧
𝟩 Q̄

𝟣
𝟩 | log t|

𝟤
𝟩 .(26.7.32)′

Now we need to look more carefully at Q̄, especially because while it
may contain “rogue” factor L or L𝟤, it can also be large as (Z −N)+ is large.
Fortunately, this is not the case in the current framework:

Proposition 26.7.8. (i) Under condition (26.7.46) below Q̄ is as in the
case N = Z i.e.

(26.7.43) Q̄ =

{︃
Z

𝟧
𝟥 + B

𝟧
𝟦 L𝟤 if B ≤ Z

𝟦
𝟥 ,

B
𝟦
𝟧 Z

𝟥
𝟧 L𝟤 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

(ii) Furthermore, if B ≤ Z and a ≥ Z− 𝟣
𝟥 under condition (26.7.48) below Q̄

is exactly as in the case N = Z , i.e.

(26.7.44) Q̄ = Z
𝟧
𝟥

(︀
Z−𝛿 + (aZ

𝟣
𝟥 )−𝛿 + (BZ−𝟣)𝛿

)︀
.

Proof. One can either derive it from the existing estimates or just repeat
estimates with 𝜈 = 0 adding (Z − N)𝟤+r̄−𝟣 to Q̄. We leave easy details to
the reader.

Therefore all the above arguments could be repeated with this new
expression Q̄ which also acquires factor | log t| (due to this factor in the

estimate of ‖∇𝜃‖ and this factor boils to L
𝟣
𝟤
𝟣 with

(26.7.45) L𝟣 =

{︃
| logBZ− 𝟤𝟢

𝟤𝟣 |+ 1 Z
𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 ,

| logBZ−𝟥|+ 1 Z
𝟦
𝟥 ≤ B ≤ Z 𝟥.

Therefore we arrive to

Theorem 26.7.9. Let M ≥ 2. Then
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(i) For

(Z − N)+ ≤ C𝟢

⎧⎪⎪⎨⎪⎪⎩
Z

𝟧
𝟩 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

Z
𝟧
𝟨 B− 𝟣

𝟪 + B
𝟣
𝟤 L if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 ,

B
𝟣
𝟧 Z

𝟤
𝟧 L if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥

(26.7.46)

the following estimate holds

IN ≤ CL
𝟤
𝟫
𝟣

⎧⎪⎪⎨⎪⎪⎩
Z

𝟤𝟢
𝟤𝟣 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

Z
𝟤𝟢
𝟤𝟩 B

𝟤
𝟫 + B

𝟩
𝟫 L

𝟪
𝟫 if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥

Z
𝟦
𝟣𝟧 B

𝟤𝟨
𝟦𝟧 L

𝟪
𝟫 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

(26.7.47)

(ii) Furthermore, for B ≤ Z , a ≥ Z− 𝟣
𝟥 and

(Z − N)+ ≤ C𝟢𝜍
𝛿

{︃
Z

𝟧
𝟩 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

Z
𝟧
𝟨 B− 𝟣

𝟪 if Z
𝟤𝟢
𝟤𝟣 ≤ B ≤ Z ,

(26.7.48)

with

𝜍 = Z−𝟣 + BZ−𝟣 + a−𝟣Z
𝟣
𝟥(26.7.49)

the following estimate holds

IN ≤ CL
𝟤
𝟫
𝟣 𝜍

𝛿′

{︃
Z

𝟤𝟢
𝟤𝟣 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

Z
𝟤𝟢
𝟤𝟩 B

𝟤
𝟫 if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z .

(26.7.50)

26.8 Positively Charged Systems

Now let us estimate from above and below the ionization energy in the case
when N < Z and condition (26.7.36) (if M = 1) or (26.7.46) (if M ≥ 2)
fails. We also estimate excessive the positive charge in the case of M ≥ 2
and free nuclei model. We will follow arguments of the corresponding three
subsections of Section 25.6.

26.8.1 Upper Estimate for Ionization Energy: M = 1

Consider first the case of M = 1. Then for B = 0 arguments are well-known
(see Section 25.6) but we repeat them for B > 0: we pick up 𝛽-admissible
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function 𝜃 such that 𝜃 = 1 if |x − y𝟣| ≥ r̄ − 𝛽 and 𝜃 = 0 if |x − y𝟣| ≤ r̄ − 2𝛽
where r̄ is an exact radius of support of 𝜌𝖳𝖥 (see the very beginning of
Subsection 25.6.1) and 𝛽 ≪ r̄ . Recall that

(26.8.1) r̄ ≍

⎧⎪⎪⎨⎪⎪⎩
(Z − N)−

𝟣
𝟥 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

min
(︀
(Z − N)−

𝟣
𝟥 ,B− 𝟣

𝟦

)︀
if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 ,

B− 𝟤
𝟧 Z

𝟣
𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥,

where in the first case we used that Z − N ≥ Z
𝟧
𝟩 while in the second case

both subcases (Z − N)−
𝟣
𝟥 ≷ B− 𝟣

𝟦 are possible.
We can assume without any loss of the generality that y𝟣 = 0. Now in the

spirit of Subsection 25.6.1 we need to select as we did in Subsection 26.7.3
the smallest 𝛽 such that

Θ𝖳𝖥 :=

∫︁
𝜃(x)𝜌𝖳𝖥(x) dx ≥ C𝛽− 𝟣

𝟤 r̄ Q̄
𝟣
𝟤(26.8.2)

implying that

Θ𝝭 :=

∫︁
𝜃(x)𝜌𝝭(x) dx ≍ Θ𝖳𝖥,(26.8.3)

where the right-hand expression of (26.8.2) estimates |
∫︀
𝜃(x)(𝜌𝖳𝖥 − 𝜌𝝭) dx |

(recall that it does not exceed ‖∇𝜃‖ · D(𝜌𝖳𝖥 − 𝜌𝝭, 𝜌
𝖳𝖥 − 𝜌𝝭)

𝟣
𝟤 ). Again as in

Subsection 25.6.1 𝜌𝖳𝖥 = 𝜌𝖳𝖥N is calculated for the actual value of N < Z .
Then, following Subsubsection 25.6.1, eventually we arrive to estimate

(25.6.8), namely:

(26.8.4) IN

∫︁
ℓ(x)𝜌𝝭(x)𝜃(x) dx ≤

∫︁
𝜃(x)V (x)ℓ(x)𝜌𝝭(x) dx

−
∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌𝝭(x)𝜌(y)

)︁
ℓ(x)|x − y |−𝟣𝜃(x) dxdy

−
∫︁
𝜌𝝭(x)𝜌(y)ℓ(x)|x − y |−𝟣𝜃(x) dxdy + C𝛽−𝟤r̄Θ,

and then estimate from above the second term in the right-hand expression

(26.8.5) −
∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌𝝭(x)𝜌(y)

)︁
ℓ(x)|x − y |−𝟣𝜃(x) dxdy ≤

−
∫︁ (︁

𝜌
(𝟤)
𝝭 (x , y)− 𝜌𝝭(x)𝜌(y)

)︁(︀
1− 𝜔(x , y)

)︀
ℓ(x)|x − y |−𝟣𝜃(x) dxdy

+

∫︁
𝜌𝝭(x)𝜌(y)𝜔(x , y)ℓ(x)|x − y |−𝟣𝜃(x) dxdy
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with 𝜔 = 𝜔𝛾: 𝜔 = 0 if |x − y | ≥ 2𝛾 and 𝜔 = 1 if |x − y | ≤ 𝛾, 𝛾 ≥ 𝛽 (see
(25.6.9)).

To estimate the first term in the right-hand expression of (26.8.5) one can

apply Proposition 25.5.1. In this case ‖∇y𝜒‖L𝟤 ≍ C r̄𝛾−
𝟣
𝟤 , ‖∇y𝜒‖L∞ ≍ r̄𝛾−𝟤

and plugging P = 𝛽−𝟤Θ and T = |𝜈|, 𝜀 = Z− 𝟤
𝟥 we conclude that this term

does not exceed (25.6.10)

(26.8.6) C r̄
(︀
𝛾−

𝟣
𝟤 Q

𝟣
𝟤 + Z

𝟣
𝟥𝛾−𝟤

)︀
Θ

(if Q ≥ Z
𝟧
𝟥 ; otherwise here we should reset here Q := Z

𝟧
𝟥 ).

Note that if 0 ≤ r̄ − |x | ≍ 𝛽

W + 𝜈 ≍ 𝜐 := max
{︁(︀ |𝜈|𝛽

r̄

)︀
; G

(︀𝛽
r̄

)︀𝟦}︁
,(26.8.7)

with G defined by (26.2.41) and therefore

𝜌 ≍ max
{︁(︀ |𝜈|𝛽

r̄

)︀ 𝟥
𝟤 ; B

(︀ |𝜈|𝛽
r̄

)︀ 𝟣
𝟤 ; BG

𝟣
𝟤

(︀𝛽
r̄

)︀𝟤}︁
(26.8.8)

where the first and the second clauses are forks of the first clause in (26.8.7)
since in the second clause automatically W + 𝜈 ≤ B for 0 ≤ r̄ − |x | ≲ 𝛽;
therefore ∫︁

𝜌(x)𝜃(x) dx ≍ max
{︁(︀ |𝜈|𝛽

r̄

)︀ 𝟥
𝟤 ; B

(︀ |𝜈|𝛽
r̄

)︀ 𝟣
𝟤 ; BG

𝟣
𝟤

(︀𝛽
r̄

)︀𝟤}︁
𝛽 r̄ 𝟤,(26.8.9)

and therefore (26.8.2) holds if and only if

max
{︁(︀ |𝜈|

r̄

)︀ 𝟥
𝟤𝛽𝟥; B

(︀ |𝜈|
r̄

)︀ 𝟣
𝟤𝛽𝟤; BG

𝟣
𝟤

(︀1
r̄

)︀𝟤
𝛽

𝟩
𝟤

}︁
r̄ ≥ CQ

𝟣
𝟤 ;(26.8.10)

then

𝛽 = min
{︁

Q
𝟣
𝟨 |𝜈|−

𝟣
𝟤 r̄

𝟣
𝟨 ; B− 𝟣

𝟤 Q
𝟣
𝟦 |𝜈|−

𝟣
𝟦 r̄−

𝟣
𝟦 ; B− 𝟤

𝟩 G− 𝟣
𝟩 Q

𝟣
𝟩 r̄

𝟤
𝟩

}︁
(26.8.11)

and in the corresponding cases

𝜐 =
{︁

Q
𝟣
𝟨 |𝜈|

𝟣
𝟤 r̄−

𝟧
𝟨 ; B− 𝟣

𝟤 Q
𝟣
𝟦 |𝜈|

𝟥
𝟦 r̄−

𝟧
𝟦 ; B− 𝟪

𝟩 G
𝟥
𝟩 Q

𝟦
𝟩 r̄−

𝟤𝟢
𝟩

}︁
.(26.8.12)

Observe, however, that for B ≲ Q
𝟦
𝟩 and |𝜈| ≲ Q

𝟦
𝟩 we do not need these

arguments; simpler arguments of Subsection 25.5.3 show that in this case
|IN | ≤ CQ

𝟦
𝟩 .
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On the other hand, for B ≲ Q
𝟦
𝟩 but |𝜈| ≳ Q

𝟦
𝟩 , we pick 𝛾 = Q

𝟣
𝟪 |𝜈|− 𝟣𝟧

𝟥𝟤 ,
like in Subsection 25.6.1, and observe that |𝜈|r̄−𝟣𝛾 ≳ B and therefore we

conclude that IN + 𝜈 ≤ CQ
𝟣
𝟨 |𝜈| 𝟣𝟩𝟤𝟦 , exactly like in that subsection. Therefore

we arrive to

Proposition 26.8.1. Let B ≤ C𝟢Z
𝟤𝟢
𝟤𝟣 . Then

(i) If |𝜈| ≤ C𝟢Z
𝟤𝟢
𝟤𝟣 , then estimate IN ≤ CZ

𝟤𝟢
𝟤𝟣 holds like in the case B = 0.

(ii) If |𝜈| ≥ C𝟢Z
𝟤𝟢
𝟤𝟣 , then estimate IN + 𝜈 ≤ CZ

𝟧
𝟣𝟪 |𝜈| 𝟣𝟩𝟤𝟦 holds like in the case

B = 0.

Therefore in what follows we assume that B ≥ Q
𝟦
𝟩 . One can see easily

that then 𝛽 ≤ r̄ .
Meanwhile, the same arguments imply that the second term in the

right-hand expression of (26.8.5) is of magnitude

max
{︁(︀ |𝜈|𝛾

r̄

)︀ 𝟥
𝟤 ; B

(︀ |𝜈|𝛾
r̄

)︀ 𝟣
𝟤 ; BG

𝟣
𝟤

(︀𝛾
r̄

)︀𝟤}︁
𝛾𝟤

and we need to minimize

𝛾−
𝟣
𝟤 Q

𝟣
𝟤 +max

{︁(︀ |𝜈|𝛾
r̄

)︀ 𝟥
𝟤 , B

(︀ |𝜈|𝛾
r̄

)︀ 𝟣
𝟤 ; BG

𝟣
𝟤

(︀𝛾
r̄

)︀𝟤}︁
𝛾𝟤,

which is achieved when

𝛾−
𝟣
𝟤 Q

𝟣
𝟤 ≍ max

{︁(︀ |𝜈|𝛾
r̄

)︀ 𝟥
𝟤 ; B

(︀ |𝜈|𝛾
r̄

)︀ 𝟣
𝟤 ; BG

𝟣
𝟤

(︀𝛾
r̄

)︀𝟤}︁
𝛾𝟤.

Let us compare this equation with equation to 𝛽. It is the same albeit with
factor r̄ 𝟤 rather than 𝛾𝟤. Therefore if 𝛾 ≥ r̄ then 𝛾 ≤ 𝛽 ≤ r̄ which is a
contradiction. Thus 𝛾 ≤ r̄ but then 𝛾 ≥ 𝛽.

Therefore we conclude that this term does not exceed

(26.8.13) 𝜍 := max
{︁

Q
𝟩
𝟣𝟨

(︀ |𝜈|
r̄

)︀ 𝟥
𝟣𝟨 ; Q

𝟧
𝟣𝟤 B

𝟣
𝟨

(︀ |𝜈|
r̄

)︀ 𝟣
𝟣𝟤 ; Q

𝟦
𝟫 B

𝟣
𝟫 G

𝟣
𝟣𝟪 r̄−

𝟤
𝟫

}︁
,

and to estimate IN + 𝜈 we need just to compute its sum with 𝜐 defined by
(26.8.12).

Therefore we conclude that

(26.8.14) IN + 𝜈 ≤ C (𝜐 + 𝜍).
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Remark 26.8.2. Observe that

𝜐(Z ,B , |𝜈|) = Z
𝟤𝟢
𝟤𝟣𝜐(1,Z− 𝟤𝟢

𝟤𝟣 B , |𝜈|Z− 𝟤𝟢
𝟤𝟣 |𝜈|) if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥(26.8.15)

and

𝜐(Z ,BZ−𝟥, |𝜈|) = Z 𝟤𝜐(1,Z−𝟥B , |𝜈|Z−𝟤|𝜈|) if Z
𝟦
𝟥 ≤ B ≤ Z 𝟥,(26.8.16)

and 𝜍 has the same scaling properties.

Therefore we can make all calculations with Z = 1 and then scale.
Leaving easy calculations to the reader, we arrive to

Proposition 26.8.3. (i) For Z
𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥

(26.8.17) IN + 𝜈 ≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Z
𝟧
𝟣𝟪 |𝜈|

𝟣𝟩
𝟤𝟦 if |𝜈| ≥ Z− 𝟤𝟢

𝟧𝟣 B
𝟤𝟦
𝟣𝟩 ,

Z
𝟧
𝟣𝟤 B− 𝟣

𝟤 |𝜈|
𝟣𝟩
𝟣𝟨 if B ≤ |𝜈| ≤ Z− 𝟤𝟢

𝟧𝟣 B
𝟤𝟦
𝟣𝟩 ,

Z
𝟧
𝟦𝟪 B− 𝟥

𝟣𝟨 |𝜈|
𝟥
𝟦 if Z

𝟧
𝟣𝟤 B

𝟫
𝟣𝟨 ≤ |𝜈| ≤ B ,

Z
𝟤𝟧
𝟥𝟨 B

𝟥
𝟣𝟨 |𝜈|

𝟣
𝟣𝟤 if Z

𝟧
𝟫 B

𝟧
𝟣𝟤 ≤ |𝜈| ≤ Z

𝟧
𝟫 B

𝟫
𝟣𝟨 ,

Z
𝟤𝟢
𝟤𝟩 B

𝟤
𝟫 if |𝜈| ≤ Z

𝟧
𝟫 B

𝟧
𝟣𝟤 .

(ii) In particular,

(26.8.18) IN ≤ CZ
𝟤𝟢
𝟤𝟩 B

𝟤
𝟫 if |𝜈| ≤ Z

𝟤𝟢
𝟤𝟩 B

𝟤
𝟫 .

(iii) For Z
𝟦
𝟥 ≤ B ≤ Z 𝟥

(26.8.19) IN + 𝜈 ≤ C

{︃
Z

𝟩
𝟥𝟢 B

𝟪
𝟣𝟧 |𝜈|

𝟣
𝟣𝟤 if |𝜈| ≥ Z

𝟤
𝟧 B

𝟪
𝟣𝟧 ,

Z
𝟦
𝟣𝟧 B

𝟤𝟨
𝟦𝟧 if |𝜈| ≤ Z

𝟤
𝟧 B

𝟪
𝟣𝟧 .

(iv) In particular,

(26.8.20) IN ≤ CZ
𝟦
𝟣𝟧 B

𝟤𝟨
𝟦𝟧 if |𝜈| ≤ Z

𝟦
𝟣𝟧 B

𝟤𝟨
𝟦𝟧 .

Remark 26.8.4. Recall that Q = Z
𝟧
𝟥

(︀
B𝛿 +1

)︀
Z−𝛿 if B ≤ Z ; therefore we can

add factor
(︀
B𝛿′ + 1

)︀
Z−𝛿′ in all estimates of Propositions 26.8.1 and 26.8.3.
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26.8.2 Lower Estimate for Ionization Energy: M = 1

Now let us derive an estimate IN + 𝜈 from below. Let Ψ = ΨN(x𝟣, ... , xN) be
the ground state for N electrons, ‖Ψ‖ = 1; consider an antisymmetric test
function

(26.8.21) Ψ̃ = Ψ̃(x𝟣, ... , xN+𝟣) = Ψ(x𝟣, ... , xN)u(xn+𝟣)−∑︁
𝟣≤j≤N

Ψ(x𝟣, ... , xj−𝟣, xN+𝟣, xj+𝟣, ... , xN)u(xj)

Then exactly as in Subsection 25.6.2

EN+𝟣‖Ψ̃‖𝟤 ≤ 〈HN+𝟣Ψ̃, Ψ̃〉 = N〈HN+𝟣Ψu, Ψ̃〉 =

N〈HNΨu, Ψ̃〉+ N〈HV ,xN+𝟣
Ψu, Ψ̃〉+ N〈

∑︁
𝟣≤i≤N

|xi − xN+𝟣|−𝟣Ψu, Ψ̃〉 =

(EN − 𝜈 ′)‖Ψ̃‖𝟤 + N〈HW+𝜈′,xN+𝟣
Ψu, Ψ̃〉

+ N〈
(︀ ∑︁
𝟣≤i≤N

|xi − xN+𝟣|−𝟣 − (V − W )(xN+𝟣)
)︀
Ψu, Ψ̃〉

and therefore

(26.8.22) N−𝟣(IN+𝟣 + 𝜈 ′)‖Ψ̃‖𝟤 ≥ −〈HW+𝜈′,xN+𝟣
Ψu, Ψ̃〉

− 〈
(︀ ∑︁
𝟣≤i≤N

|xi − xN+𝟣|−𝟣 − (V − W )(xN+𝟣)
)︀
Ψu, Ψ̃〉

and

(26.8.23) N−𝟣‖Ψ̃‖𝟤 = ‖Ψ‖𝟤 · ‖u‖𝟤−

N

∫︁
Ψ(x𝟣, ... , xN−𝟣, x)Ψ†(x𝟣, ... , xN−𝟣, y)u(y)u†(x) dx𝟣 · · · dxN−𝟣 dxdy

as in (25.6.14) and (25.6.15) respectively where † means a complex or
Hermitian conjugation and 𝜈 ′ ≥ 𝜈 to be chosen later.

Note that every term in the right-hand expression in (26.8.22) is the
sum of two terms: one with Ψ̃ replaced by Ψ(x𝟣, ... , xN)u(xN+𝟣) and another
with Ψ̃ replaced by −NΨ(x𝟣, ... , xN−𝟣, xN+𝟣)u(xN). We call these terms, as
in Subsection 25.6.2, direct and indirect respectively.
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Obviously, in the direct and indirect terms u appears as |u(x)|𝟤 dx and
as u(x)u†(y) dxdy respectively multiplied by some kernels.

Recall that u is an arbitrary function. Let us take u(x) = 𝜃
𝟣
𝟤 (x)𝜑j(x)

where 𝜑j are orthonormal eigenfunctions of HW+𝜈 and 𝜃(x) is 𝛽-admissible
function which is supported in {x : − 𝜐 ≥ W (x) + 𝜈 ≥ 𝟤

𝟥
𝜈} and equal 1 in

{x : − 2𝜐 ≥ W (x) + 𝜈 ≥ 𝟣
𝟤
𝜈}, satisfying (25.5.11), and 𝜐 is related to 𝛽 as

in the previous Section 26.7:

(26.8.24) 𝜐 = C max(𝜈 r̄−𝟣𝛽; G r̄−𝟦𝛽𝟦).

Let us substitute it into (26.8.22), multiply by 𝜙(𝜆jL
−𝟣) and take the

sum with respect to j ; then we get the same expressions with |u(x)|𝟤 dx and
u(x)u†(y) dxdy replaced by F (x , x) dx and F (x , y) dxdy respectively with

(26.8.25) F (x , y) =

∫︁
𝜙(𝜆L−𝟣) d𝜆e(x , y ,𝜆).

Here 𝜙(𝜏) is a fixed C∞ non-negative function equal to 1 for 𝜏 ≤ 𝟣
𝟤
and

equal to 0 for 𝜏 ≥ 1 and L = 𝜈 ′ − 𝜈 = 6𝜐.
Under described construction and procedures the direct term generated

by N−𝟣‖Ψ̃‖𝟤 is ∫︁
𝜃(x)𝜙(𝜆L−𝟣) d𝜆e(x , x ,𝜆) dx .(26.8.26)

Then, applying semiclassical approximation, we get

Θ𝝭 :=

∫︁
𝜙(𝜆L−𝟣) d𝜆P ′

B(W + 𝜈 − 𝜆) dx .(26.8.27)

Consider the remainder estimate. Assume that M = 1 (case M ≥ 2 will be
considered later). Then since L = C𝟣𝜐 the remainder does not exceed

Chs(𝜇h + 1)𝛽−𝟤r̄ 𝟤,(26.8.28)

where

h = 1/(𝜐
𝟣
𝟤𝛽)(26.8.29)

and

𝜇 = B𝛽𝜐−
𝟣
𝟤 ;(26.8.30)



184 CHAPTER 26. EXTERNAL MAGNETIC FIELD

one can prove it easily by partition of unity on supp(𝜃) and applying semi-
classical asymptotics with effective semiclassical parameter h and magnetic
parameter 𝜇.

On the other hand, the indirect term generated by N−𝟣‖Ψ̃‖𝟤 is

(26.8.31) − N

∫︁
𝜃

𝟣
𝟤 (x)𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, x)Ψ†(x𝟣, ... , xN−𝟣, y)×

F (x , y) dxdydx𝟣 · · · dxN−𝟣,

and since the operator norm of F (., ., .) is 1, the absolute value of this term
does not exceed

(26.8.32) N

∫︁
𝜃(x)|Ψ(x𝟣, ... , xN−𝟣, x)|𝟤 dx =

∫︁
𝜃(x)𝜌𝝭(x) dx ≤∫︁

𝜃(x)𝜌𝖳𝖥(x) dx + CQ
𝟣
𝟤‖∇𝜃

𝟣
𝟤‖

where 𝜌𝖳𝖥 = 0 on supp(𝜃) and ‖∇𝜃 𝟣
𝟤‖ ≍ 𝛽− 𝟣

𝟤 r̄ .
Recall that P ′(W 𝖳𝖥 + 𝜈) = 𝜌𝖳𝖥. We will take 𝜈 ′ = 𝜈 + L to keep Θ𝝭

larger than all the remainders including those due to replacement W by
W 𝖳𝖥 and 𝜌 by 𝜌𝖳𝖥 in the expression above. One can observe easily that
then 𝛽 should satisfy (26.8.10); let us define 𝛽 and then 𝜐 by (26.8.11) and
(26.8.12) respectively. Then

(26.8.33) Θ𝝭 ≍
(︀
𝜐

𝟥
𝟤 + B𝜐

𝟣
𝟤

)︀
𝛽 r̄ 𝟤.

Therefore

(26.8.34) Let h ≤ 𝜖𝟢 (i.e. 𝜐
𝟣
𝟤𝛽 ≥ C𝟢), and 𝛽, 𝜐 be defined by (26.8.11) and

(26.8.12) respectively. Then expression (26.8.33) is larger than C𝟢𝛽
− 𝟣

𝟤 Q
𝟣
𝟤

and the total expression generated by N−𝟣‖Ψ̃‖𝟤 is greater than 𝜖Θ with
Θ = Θ𝝭 defined by (26.8.33).

Now let us consider the direct terms in the right-hand expression of
(26.8.22). The first of them is like in (25.6.23)

(26.8.35) −
∫︁
𝜃

𝟣
𝟤 (x)𝜙(𝜆L−𝟣) d𝜆

(︀
HW+𝜈′,x𝜃

𝟣
𝟤 (x)e(x , y ,𝜆)

)︀
y=x

dx =
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−
∫︁
𝜃(x)𝜙(𝜆L−𝟣) d𝜆

(︀
HW+𝜈′,xe(x , y ,𝜆)

)︀
y=x

dx

− 1

2

∫︁
𝜙(𝜆L−𝟣)[[HW , 𝜃

𝟣
𝟤 ], 𝜃

𝟣
𝟤 ] d𝜆e(x , x ,𝜆) ≥∫︁

𝜃(x)(𝜈 ′ − 𝜈 − 𝜆)𝜙(𝜆L−𝟣) d𝜆e(x , x ,𝜆) dx − C

∫︁
|∇𝜃

𝟣
𝟤 |𝟤e(x , x , 𝜈 ′)dx .

Observe that the absolute value of last term in the right-hand expression of
(26.8.35) does not exceed C𝛽−𝟣r̄ 𝟤

(︀
𝜐

𝟥
𝟤 + B𝜐

𝟣
𝟤

)︀
≍ 𝛽−𝟤Θ.

The second direct term in the right-hand expression of (26.8.22) is like
in (25.6.24)

(26.8.36) −
∫︁
𝜃(x)

(︁
𝜌𝝭 * |x |−𝟣 − (V − W )(x)

)︁
F (x , x) dx =

− D
(︀
𝜌𝝭 − 𝜌, 𝜃(x)F (x , x)

)︀
≥

− CD
(︀
𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌

)︀ 𝟣
𝟤 · D

(︁
𝜃

𝟣
𝟤 F (x , x), 𝜃

𝟣
𝟤 F (x , x))

)︁ 𝟣
𝟤 ≥ −CQ

𝟣
𝟤 r̄−

𝟣
𝟤Θ,

provided V − W = |x |−𝟣 * 𝜌 with D(𝜌− 𝜌𝖳𝖥, 𝜌− 𝜌𝖳𝖥) ≤ CQ.
Further, the first indirect term in the right-hand expression of (26.8.22) is

like in (25.6.25)

(26.8.37) − N

∫︁
𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, x)Ψ†(x𝟣, ... , xN−𝟣, y)×

𝜙(𝜆L−𝟣) d𝜆
(︀
HW+𝜈′,x𝜃

𝟣
𝟤 (x)e(x , y ,𝜆)

)︀
dxdydx𝟣 · · · dxN−𝟣 =

− N

∫︁
𝜃

𝟣
𝟤 (y)𝜃

𝟣
𝟤 (x)Ψ(x𝟣, ... , xN−𝟣, x)Ψ†(x𝟣, ... , xN−𝟣, y)×

𝜙(𝜆L−𝟣)(𝜈 ′ − 𝜈 − 𝜆) d𝜆e(x , y ,𝜆) dxdydx𝟣 · · · dxN−𝟣

− N

∫︁
𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, x)Ψ†(x𝟣, ... , xN−𝟣, y)×

𝜙(𝜆L−𝟣)[HW ,x , 𝜃
𝟣
𝟤 (x)] d𝜆e(x , y ,𝜆) dxdydx𝟣 · · · dxN−𝟣.

Observe that one can rewrite the sum of the first terms in the right-hand
expressions in (26.8.35) and (26.8.37) as

∑︀
j 𝜙(𝜆jL

−𝟣)(𝜈 ′ − 𝜈 − 𝜆j)‖Ψ̂j‖𝟤
with

Ψ̂j(x𝟣, ... , xN−𝟣) :=

∫︁
Ψ(x𝟣, ... , xN−𝟣, x)𝜃

𝟣
𝟤 (x)𝜑j(x) dx

and therefore this sum is non-negative.
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One can see easily that the absolute value of the second term in the
right-hand expression of (26.8.37) does not exceed∫︁

𝜌𝝭(y)𝜃
𝟣
𝟤 (y) dy × 𝛽−𝟣

∫︁
𝜃𝟣(x)e(x , x , 𝜈 ′) dx ≍ CΘ× C

(︀
𝜐

𝟥
𝟤 + B𝜐

)︀
r̄ 𝟤 ≍

C𝛽− 𝟥
𝟤 r̄Q

𝟣
𝟤Θ

due the choice of 𝛽. This is larger than the absolute value of the right-hand
expression in (26.8.36). Therefore (cf. 25.6.26) we conclude that

(26.8.38) The sum of the first direct and indirect terms in the right-hand

expression of (26.8.22) is greater than −C𝛽− 𝟥
𝟤 r̄Q

𝟣
𝟤Θ.

Finally, we need to consider the second indirect term generated by the
right-hand expression of (26.8.22):

(26.8.39) −
∫︁ (︁ ∑︁

𝟣≤i≤N

|y − xi |−𝟣 − (V − W )(y)
)︁
×

Ψ(x𝟣, ... , xN)Ψ
†(x𝟣, ... , xN−𝟣, y)𝜃

𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)F (xN , y) dx𝟣 · · · dxNdy =

−
∫︁ (︁

|y |−𝟣*𝜚x(y)−(V −W )(y)
)︁
Ψ(x𝟣, ... , xN)Ψ

†(x𝟣, ... , xN−𝟣, y)×

𝜃
𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)F (xN , y) dx𝟣 · · · dxNdy

−
∫︁ (︁ ∑︁

𝟣≤i≤N

|y−xi |−𝟣−|y |−𝟣*𝜚x(y)
)︁
Ψ(x𝟣, ... , xN)Ψ

†(x𝟣, ... , xN−𝟣, y)×

𝜃
𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)F (xN , y) dx𝟣 · · · dxNdy ;

recall that 𝜚x is a smeared density, x = (x𝟣, ... , xN).
Since |y |−𝟣 * 𝜚x(y)− (V − W )(y) = |y |−𝟣 * (𝜚x − 𝜌), the first term in the

right-hand expression is equal to

(26.8.40)

∫︁
𝜃

𝟣
𝟤 (xN)Ψ(x𝟣, ... , xN)×

Dy

(︁
𝜚x(y)− 𝜌(y), F (xN , y ,𝜆)𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, y)

)︁
dx𝟣 · · · dxN
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and its absolute value does not exceed

(26.8.41)(︂
N

∫︁
D
(︀
𝜚x(·)− 𝜌(·), 𝜚x(·)− 𝜌(·)

)︀
|Ψ(x𝟣, ... , xN)|𝟤𝜃(xN) dx𝟣 · · · dxN

)︂ 𝟣
𝟤

×

N− 𝟣
𝟤

(︂
Dy

(︁
F (xN , y ,𝜆)𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, y),

F (xN , y ,𝜆)𝜃
𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, y)

)︁
dx𝟣 · · · dxN

)︂ 𝟣
𝟤

.

Recall that the first factor is equivalently defined by (25.5.4) and therefore

due to estimate (25.5.24) it does not exceed
(︀
(Q +T + 𝜀−𝟣N)Θ+P

)︀ 𝟣
𝟤 , where

we assume that 𝜀 ≤ Z− 𝟤
𝟥 and Θ ≍ 𝛽

(︀
𝜐

𝟥
𝟤 + B𝜐

𝟣
𝟤

)︀
r̄ 𝟤𝛽 ≍ 𝛽− 𝟣

𝟤 r̄Q
𝟣
𝟤 is now an

upper estimate for
∫︀
𝜃(y)𝜌𝝭(y) dy -like expressions.

Then, according to (25.5.25), P ≍ C𝛽−𝟤Θ ≪ QΘ and, according to
(25.5.23), T ≪ Q and therefore in all such inequalities we may skip P and

T terms; so we get C (Q + 𝜀−𝟣N)
𝟣
𝟤Θ

𝟣
𝟤 .

Meanwhile, the second factor in (26.8.41) (without square root) is equal
to

N−𝟣

∫︁
L−𝟤𝜙′(𝜆L−𝟣)𝜙′(𝜆′L−𝟣)|y − z |−𝟣 e(xN , y ,𝜆) 𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, y)×

e(xN , z ,𝜆′) 𝜃
𝟣
𝟤 (z)Ψ†(x𝟣, ... , xN−𝟣, z) dydz dx𝟣 · · · dxN−𝟣 dxN d𝜆d𝜆′;

after integration with respect to xN we get instead of the marked terms
e(y , z ,𝜆) (recall that e(., ., .) is the Schwartz kernel of the projector and we
keep 𝜆 < 𝜆′) and then, integrating with respect to 𝜆′ we arrive to

N−𝟣

∫︁
|y − z |−𝟣F (y , z)𝜃

𝟣
𝟤 (y)Ψ(x𝟣, ... , xN−𝟣, y)×

𝜃
𝟣
𝟤 (z)Ψ†(x𝟣, ... , xN−𝟣, z) dydz dx𝟣 · · · dxN−𝟣,

where now F is defined by (26.8.25) albeit with 𝜙𝟤 instead of 𝜙. This latter
expression does not exceed

(26.8.42) N−𝟣

∫︁∫︁
|y − z |−𝟣|F (y , z)|𝜃

𝟣
𝟤 (y)|Ψ(x𝟣, ... , xN−𝟣, y)|𝟤×

dydz dx𝟣 · · · dxN−𝟣.
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Then due to Proposition 26.A.6 expression
∫︀
|y − z |−𝟣|F (y , z)| dz does not

exceed C𝛽−𝟣(h−𝟣 + 𝜇) ≍ 𝜐
𝟣
𝟤 + B𝜐−

𝟣
𝟤 , and thus expression (26.8.42) does not

exceed CZ−𝟤
(︀
𝜐

𝟣
𝟤 + B𝜐−

𝟣
𝟤

)︀
Θ. Therefore the second factor in (26.8.41) does

not exceed CN−𝟣
(︀
𝜐

𝟣
𝟦 + B

𝟣
𝟤𝜐−

𝟣
𝟦

)︀
Θ

𝟣
𝟤 and the whole expression (26.8.41) does

not exceed

C (Q + 𝜀−𝟣N)
𝟣
𝟤Θ

𝟣
𝟤 × N−𝟣

(︀
𝜐

𝟣
𝟦 + B

𝟣
𝟤𝜐−

𝟣
𝟦

)︀
Θ

𝟣
𝟤 =

CN−𝟣(Q + 𝜀−𝟣N)
𝟣
𝟤

(︀
𝜐

𝟣
𝟦 + B

𝟣
𝟤𝜐−

𝟣
𝟦

)︀
Θ.

Finally we arrive to

Proposition 26.8.5 48). Let

𝜐 ≥ max
(︀
Z− 𝟦

𝟥 Q
𝟤
𝟥 ; Z− 𝟦

𝟧 Q
𝟤
𝟧 B

𝟤
𝟧

)︀
(26.8.43)

and

𝜀 ≥ Z−𝟣 max(𝜐−
𝟥
𝟤 ,B𝜐−

𝟧
𝟤

)︀
.(26.8.44)

Then the first term in the right-hand expression of (26.8.39) does not exceed
C𝜐Θ.

Further, we need to estimate the second term in the right-hand expression
of (26.8.39). It can be rewritten in the form

(26.8.45)
∑︁

𝟣≤i≤N

∫︁
U(xi , y)Ψ(x𝟣, ... , xN)Ψ

†(x𝟣, ... , xN−𝟣, y)𝜃
𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)×

F (xN , y) dx𝟣 · · · dxNdy ,

where U(xi , y) is the difference between two potentials, one generated by
the charge δ(x − xi) and another by the same charge smeared; note that
U(xi , y) is supported in {(xi , y) : |xi − y | ≤ 𝜀}. Let us estimate the i -th term
in this sum with i < N first. Multiplied by N(N − 1), it does not exceed

(26.8.46)

N

(︂∫︁
|U(xi , y)|𝟤|Ψ(x𝟣, ... , xN)|𝟤𝜃

𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)|F (xN , y)| dx𝟣 · · · dxNdy

)︂ 𝟣
𝟤

×

N

(︂∫︁
𝜔(xi , y)|Ψ(x𝟣, ... , xN−𝟣, y)|𝟤𝜃

𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)|F (xN , y)| dx𝟣 · · · dxNdy

)︂ 𝟣
𝟤

48) Cf. claim (25.6.31).
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here 𝜔 is 𝜀-admissible and supported in {(xi , y) : |xi − y | ≤ 2𝜀} function.
Due to Proposition 26.A.6 in the second factor∫︁

𝜃
𝟣
𝟤 (xN)|F (xN , y)| dxN ≤ C (1 + 𝜇h) ≍ C (1 + B𝜐−𝟣)

and therefore the whole second factor does not exceed

(26.8.47) C
(︁∫︁

𝜃
𝟣
𝟤 (x)𝜔(x , y)𝜚

(𝟤)
𝝭 (x , y) dxdy

)︁ 𝟣
𝟤
(1 + B𝜐−𝟣)

𝟣
𝟤 ,

where we replaced xi by x . According to Proposition 25.5.1 in the selected
expression one can replace 𝜌

(𝟤)
𝝭 (x , y) by 𝜌𝝭(x)𝜌(y), with an error which does

not exceed

C
(︁
sup
x

‖∇y𝜒x‖L𝟤(ℝ𝟥)

(︀
Q + 𝜀−𝟣N

)︀ 𝟣
𝟤 + C𝜀N‖∇y𝜒‖L∞

)︁
Θ.

When we plug supx ‖∇y𝜒x‖L𝟤(ℝ𝟥) ≍ 𝜀
𝟣
𝟤 , ‖∇y𝜒‖L∞ ≍ 𝜀−𝟣 this expression

becomes CNΘ.
Meanwhile, consider

(26.8.48)

∫︁
|U(xi , y)|𝟤𝜃

𝟣
𝟤 (y)|F (xN , y)| dy .

Again, due to Proposition 26.A.6, it does not exceed

C
(︀
𝜐

𝟥
𝟤 + B𝜐

𝟣
𝟤

)︀ ∫︁
|U(xi , y)|𝟤𝜃

𝟣
𝟤 (y)

(︀
|xN − y |𝜐

𝟣
𝟤 + 1

)︀−s
dy

and this integral should be taken over B(xi , 𝜀), with |U(xi , y)| ≤ |xi − y |−𝟣,
so (26.8.48) does not exceed

C𝜀
(︀
𝜐

𝟥
𝟤 + B𝜐

𝟣
𝟤

)︀
𝜔′(xi , xN)

with 𝜔′(x , y) =
(︀
1 + 𝜐

𝟣
𝟤 |x − y |

)︀−s
(provided 𝜀 ≤ 𝜐−

𝟣
𝟤 which will be the case).

Therefore the first factor in (26.8.46) does not exceed

(26.8.49) C𝜀
𝟣
𝟤

(︀
𝜐

𝟥
𝟦 + B

𝟣
𝟤𝜐

𝟣
𝟦

)︀(︁∫︁
𝜃

𝟣
𝟤 (x)𝜔′(x , y)𝜌

(𝟤)
𝝭 (x , y) dxdy

)︁ 𝟣
𝟤
.
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Therefore in the selected expression one can replace 𝜌
(𝟤)
𝝭 (x , y) by 𝜌𝝭(x)𝜌(y)

with an error which does not exceed what we got before but with 𝜀 replaced
by 𝜐−

𝟣
𝟤 , i.e. also CNΘ.

However, in both selected expressions, (26.8.47) and (26.8.49), replacing

𝜌
(𝟤)
𝝭 (x , y) by 𝜌𝝭(x)𝜌(y) we get just 0. Therefore expression (26.8.46) does not

exceed C𝜀
𝟣
𝟤

(︀
𝜐

𝟥
𝟦 + B

𝟣
𝟤𝜐

𝟣
𝟦

)︀
ZΘ, which, in turn, does not exceed C𝜐Θ provided

𝜀 ≤ C𝜐
𝟣
𝟤

(︀
1 + B𝜐−𝟣

)︀−𝟣
Z−𝟤.

So, we have two restriction to 𝜀 from above: the last one and 𝜀 ≤ Z− 𝟤
𝟥 and

one can see easily that both of them are compatible with with restriction to
𝜀 in (26.8.43); also we can see easily that condition (26.8.43) is weaker than

𝜐 ≥
{︀

Z
𝟤𝟢
𝟤𝟣 : Z

𝟤𝟢
𝟤𝟩 B

𝟤
𝟫 : Z

𝟦
𝟣𝟧 B

𝟤𝟨
𝟦𝟧

}︀
if

{︀
B ≤ Z

𝟤𝟢
𝟤𝟣 ; Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 ; Z

𝟦
𝟥 ≤ B ≤ Z 𝟥

}︀
respectively.

Finally, consider term in (26.8.45) with i = N (multiplied by N):

(26.8.50) N

∫︁
U(xN , y)|Ψ(x𝟣, ... , xN)|𝟤𝜃

𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y)F (xN , y) dx𝟣 · · · dxNdy

due to Cauchy inequality it does not exceed

(26.8.51) N
(︁∫︁

|xN − y |−𝟤|Ψ(x𝟣, ... , xN)|𝟤𝜃
𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y) dx𝟣 · · · dxNdy

)︁ 𝟣
𝟤×

N
(︁∫︁

|F (xN , y)|𝟤|Ψ(x𝟣, ... , xN)|𝟤𝜃
𝟣
𝟤 (xN)𝜃

𝟣
𝟤 (y) dx𝟣 · · · dxNdy

)︁ 𝟣
𝟤

where both integrals are taken over {|xN − y | ≤ 𝜀}. Integrating with respect
to y there we get that it that it does not exceed

C𝜀
𝟣
𝟤Θ

𝟣
𝟤 ×

(︀
𝜐

𝟥
𝟦 + B𝜐

𝟣
𝟦

)︀
𝜀

𝟥
𝟤Θ

𝟣
𝟤 = C

(︀
𝜐

𝟥
𝟦 + B𝜐

𝟣
𝟦

)︀
𝜀𝟤Θ ≪ 𝜐Θ.

Therefore the right-hand expression in (26.8.22) is ≥ −C𝜐Θ and recalling
that 𝜈 ′ − 𝜈 = O(𝜐) we recover a lower estimate IN + 𝜈 ≥ −C𝜐 in Theo-
rem 26.8.6 below. Here 𝜐 must be found from (26.8.11)–(26.8.12) and must
satisfy 𝜐 ≤ |𝜈|.

Combining this estimate with the estimate from the above, derived in
Proposition 26.8.3 we arrive to

Theorem 26.8.6. Let M = 1. Let condition (26.2.28) be fulfilled. Then

(i) For B ≤ Z
𝟤𝟢
𝟤𝟣 and |𝜈| ≥ Z

𝟤𝟢
𝟤𝟣

(26.8.52) |IN + 𝜈| ≤ CZ
𝟧
𝟣𝟪 |𝜈|

𝟣𝟩
𝟤𝟦 .
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(ii) For Z
𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 and |𝜈| ≥ Z

𝟤𝟢
𝟤𝟩 B

𝟤
𝟫 estimate (26.8.17) from above and

estimate

(26.8.53) IN + 𝜈 ≥ −C

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Z

𝟧
𝟣𝟪 |𝜈|

𝟣𝟩
𝟤𝟦 if B ≤ Z

𝟧
𝟣𝟪 |𝜈|

𝟣𝟩
𝟤𝟦 ,

Z
𝟧
𝟣𝟤 B− 𝟣

𝟤 |𝜈|
𝟣𝟩
𝟣𝟨 if Z

𝟧
𝟣𝟪 |𝜈|

𝟣𝟩
𝟤𝟦 ≤ B ≤ |𝜈|,

Z
𝟧
𝟣𝟤 B− 𝟥

𝟣𝟨 |𝜈|
𝟥
𝟦 if |𝜈| ≤ B ≤ Z− 𝟤𝟢

𝟩 |𝜈|𝟦,

Z
𝟤𝟢
𝟤𝟣 if Z− 𝟤𝟢

𝟩 |𝜈|𝟦 ≤ B

from below hold.

(iii) For Z
𝟤𝟢
𝟤𝟣 ≤ B ≤ Z 𝟥 and |𝜈| ≥ Z

𝟦
𝟣𝟧 B

𝟤𝟨
𝟦𝟧 estimate (26.8.19) from above

and estimate

(26.8.54) 𝜐 =

{︃
Z− 𝟣

𝟣𝟢 B
𝟣
𝟧 |𝜈|

𝟥
𝟦 if B ≤ Z− 𝟣

𝟤 |𝜈|
𝟣
𝟦

Z
𝟦
𝟥𝟧 B

𝟤𝟤
𝟥𝟧 if Z− 𝟣

𝟤 |𝜈|
𝟣
𝟦 ≤ B

from below hold.

Remark 26.8.7. Recall that Q = Z
𝟧
𝟥

(︀
B𝛿 + 1

)︀
Z−𝛿 as B ≤ Z ; therefore we

can add factor
(︀
B𝛿′ + 1

)︀
Z−𝛿′ in all estimates of Theorem 26.8.6.

26.8.3 Estimates for Ionization Energy: M ≥ 2

Recall that for M ≥ 2 we have only estimate (26.6.73):

D(𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌 ≤ Q̄) := (26.5.40)+ (26.6.69).

Then exactly the same arguments lead us to the following (we leave all
details to the reader):

Theorem 26.8.8. Let M ≥ 2. Then

(i) Estimate IN + 𝜈 ≤ C (𝜐 + 𝜍) holds with 𝜐 and 𝜍 defined by (26.8.11)–
(26.8.12) and (26.8.13) albeit with Q replaced by Q̄.

(ii) Estimate IN + 𝜈 ≥ −C𝜐 holds with 𝜐 defined by (26.8.11)–(26.8.12)
albeit with Q replaced by Q̄.

Therefore the case when Q̄ ≤ Q is not affected. One can see easily that
it happens for sure as B ≤ Z

𝟤𝟢
𝟣𝟩 L−𝜅 where 𝜅 > 0 is some exponent.

We leave to the reader
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Problem 26.8.9. (i) Find explicit formula for 𝜐 + 𝜍 and 𝜐.

(ii) Find 𝜈* = 𝜈*(Z ,B) and 𝜈* = 𝜈*(Z ,B) such that |𝜈| ≲ 𝜐 + 𝜍 iff and only
if 𝜈 ≲ 𝜈* and |𝜈| ≲ 𝜐 iff and only if 𝜈 ≲ 𝜈*.

26.8.4 Free Nuclei Model

In this subsection we consider two extra problems appearing in the free
nuclei model–estimate the minimal distance between nuclei and the maximal
excessive positive charge when system does not break apart. We also slightly
improve estimates for the maximal negative charge and for the ionization
energy.

Preliminary Arguments

Recall that we assume that

Q := Ê−
∑︁

𝟣≤m≤M

Em < 0(26.8.55)

where

Ê = E +
∑︁

𝟣≤m<m′≤M

ZmZm′

|ym − ym′ |
.(26.8.56)

We apply estimate from below for Ê delivered by Proposition 26.6.1(ii), and
estimates from above for Em, delivered by Theorem 26.6.6(ii); then

ℰ̂𝖳𝖥 + Scott−
∑︁

𝟣≤m≤M

(︁
ℰ𝖳𝖥
m − Scottm

)︁
≤ CQ + CZ

𝟦
𝟥 B

𝟣
𝟥 + Ca− 𝟣

𝟤 Z
𝟥
𝟤

or, equivalently, due to equality Scott =
∑︀

𝟣≤m≤M Scottm and non-binding
theorem

0 ≤ 𝒬 := ℰ̂𝖳𝖥 −
∑︁

𝟣≤m≤M

ℰ𝖳𝖥
m ≤ CQ + CZ

𝟦
𝟥 B

𝟣
𝟥+Ca− 𝟣

𝟤 Z
𝟥
𝟤 .(26.8.57)

Assume that assumption (26.2.28) is fulfilled. Then 𝒬 ≍ ℰ𝖳𝖥 for a ≤ 𝜖r *

with r * = min(Z− 𝟣
𝟥 ; B− 𝟤

𝟧 Z
𝟣
𝟧 ) and therefore

(26.8.58) In the free nuclei model a ≥ 𝜖r *.
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Then the last term in (26.8.57) is not needed.

Remark 26.8.10. (i) Obviously, the second term CZ
𝟦
𝟥 B

𝟣
𝟥 in the right-hand

expression of (26.8.57) matters only if Z ≤ B ≤ Z
𝟣𝟣
𝟩 ; however we will show

that it could be skipped even in this case.

(ii) If B ≤ Z we can replace the right-hand expression of (26.8.57) by

Z
𝟧
𝟥
−𝛿(1 + B𝛿).

(iii) All these estimates hold also for D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) because this
term is present in the estimate from below.

Minimal Distance

We are going to improve (26.8.58). Consider the case B ≤ Z
𝟦
𝟥 first. Then

since 𝒬 ≥ 𝜖𝟢a−𝟩 for 𝜖r * ≤ a ≤ 𝜖r̄ (where in this case r * = Z− 𝟣
𝟥 ≤ r̄ = B− 𝟣

𝟦 ),

we conclude that a ≳ Z− 𝟧
𝟤𝟣 provided B ≤ Z

𝟤𝟢
𝟤𝟣 .

Furthermore, then we can apply improved remainder estimate O(Z
𝟧
𝟥
−𝛿),

since the difference between Dirac–Schwinger terms for a molecule and the
sum of these terms for the atoms is also O(Z

𝟧
𝟥
−𝛿) as long as a ≥ Z− 𝟣

𝟥
+𝛿𝟣 ,

which is the case. Then we conclude that a ≥ Z− 𝟧
𝟤𝟣
−𝛿′ as long as it is less

than 𝜖r̄ and we arrive to Statement (i) of Proposition 26.8.11:

Proposition 26.8.11. Let condition (26.2.28) be fulfilled. Then in the free
nuclei model

(i) For B ≤ Z
𝟤𝟢
𝟤𝟣 the minimal distance satisfies

(26.8.59) a ≥ min(Z− 𝟧
𝟤𝟣
−𝛿, 𝜖B− 𝟣

𝟦 ).

(ii) For Z
𝟤𝟢
𝟤𝟣 ≤ B ≤ Z 𝟥 the distances satisfy

(26.8.60) |ym − ym′ | ≥ r̄m + r̄m′ − 𝜖r̄ ∀m ̸= m′

with arbitrarily small constant 𝜖 > 0 where r̄m denote the exact radii of
supp(𝜌𝖳𝖥m ).

Proof. We need to prove Statement (ii). Observe that it also follows from

the arguments above in the case Z
𝟤𝟢
𝟤𝟣 ≤ B ≤ Z .
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For Z ≤ B ≤ CZ
𝟦
𝟥 the remainder estimate is O(Z

𝟦
𝟥 B

𝟣
𝟥 ) and the same

arguments imply that |ym − ym′ | ≥ 𝜖Z− 𝟦
𝟤𝟣 B− 𝟣

𝟤𝟣 unless a ≥ 𝜖r̄ and since the
latter is weaker, it must be satisfied. Therefore if (26.8.60) fails, then in

virtue of Theorem 26.2.17 𝒬 ≥ 𝜖𝟣B
𝟩
𝟦 , which is larger than the remainder

estimate CZ
𝟦
𝟥 B

𝟣
𝟥 .

Finally, case C𝜖Z
𝟦
𝟥 ≤ B ≤ Z 𝟥 follows from the fact that if (26.8.60) fails

then in virtue of Theorem 26.2.17 𝒬 ≥ 𝜖𝟣Z
𝟫
𝟧 B

𝟤
𝟧 .

Proposition 26.8.12. Let condition (26.2.28) be fulfilled. Then in the free
nuclei model

(26.8.61) 𝒬+ D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) ≤ CQ.

Proof. We need to cover only case Z ≤ B ≤ Z
𝟣𝟣
𝟩 , since only in this case

term CZ
𝟦
𝟥 B

𝟣
𝟥 matters.

We apply now estimate from below for Ê delivered by Proposition 26.6.1(i),
and estimates from above for Em, delivered by Theorem 26.6.6(i); then we

do not have term CZ
𝟦
𝟥 B

𝟣
𝟥 but instead of equal to 0 difference of the Scott

correction terms, we get

(26.8.62)
(︁
Tr((HA,W − 𝜈)−) +

∫︁
PB(W

𝖳𝖥 + 𝜈) dx
)︁
−∑︁

𝟣≤m≤M

(︁
Tr((HA,Wm − 𝜈 ′)−) +

∫︁
PB(W

𝖳𝖥 + 𝜈 ′) dx
)︁
,

where we know that 𝜈 ′ = 𝜈𝟣 = ... = 𝜈M .

Let us use partition of unity 𝜑𝟢 + 𝜑𝟣 + ... + 𝜑M = 1 where 𝜑m = 1 in
B(ym, 𝜖r̄m) and is supported in B(ym, 2𝜖r̄m). Then our standard methods
imply that the absolute values of

Tr
(︀
(HA,W − 𝜈)−𝜑𝟢

)︀
+

∫︁
PB(W

𝖳𝖥 + 𝜈)𝜑𝟢(x) dx ,(26.8.63)

and

Tr
(︀
(HA,Wm − 𝜈 ′)−𝜑m′

)︀
+

∫︁
PB(W

𝖳𝖥
m + 𝜈 ′)𝜑m′ dx(26.8.64)
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with m = 1, ... ,M , m′ = 0, 1, ... ,M , m′ ̸= m do not exceed CQ 49). Therefore
we need to estimate an absolute value of

(26.8.65) Tr
(︀[︀
(HA,W − 𝜈)− − (HA,Wm − 𝜈 ′)−

]︀
𝜑m

)︀
+∫︁ (︀

PB(W
𝖳𝖥 + 𝜈)− PB(W

𝖳𝖥
m + 𝜈 ′))𝜑m dx .

Due to Proposition 26.8.11 B(ym, 3𝜖r̄) does not intersect B(ym′ , r̄m′) and
then in B(ym, 3𝜖r̄) Wm′ ≤ C (Z − N)r̄−𝟣. Using this inequality and

D(𝜌− 𝜌𝟣 − ...− 𝜌M , 𝜌− 𝜌𝟣 − ...− 𝜌M) ≤ C𝒬,(26.8.66)

one can prove easily that there also

|W − Wm| ≤ CT := C𝒬
𝟣
𝟤 r̄−

𝟣
𝟤 + C (Z − N)r̄−𝟣(26.8.67)

and, moreover,

|∇(W − Wm)| ≤ CT r̄−𝟣 = C𝒬
𝟣
𝟤 r̄−

𝟥
𝟤 + C (Z − N)r̄−𝟤,(26.8.68)

|∇𝟤(W − Wm)| ≤ CT r̄−𝟤 = C𝒬
𝟣
𝟤 r̄−

𝟧
𝟤 + C (Z − N)r̄−𝟥.(26.8.69)

Then using our standard methods one can prove easily that an absolute
value of expression (26.8.65) with 𝜑m replaced by ℓ-admissible function 𝜓m

does not exceed

CTh−𝟤(1 + 𝜇h)(26.8.70)

with our standard

h = Z− 𝟣
𝟤 r−

𝟣
𝟤 , 𝜇 = BZ− 𝟣

𝟤 r
𝟥
𝟤(26.8.71)

if either B ≤ Z
𝟦
𝟥 , r ≤ r *Z− 𝟣

𝟥 or Z
𝟦
𝟥 ≤ B ≤ Z 𝟥, r ≤ r̄ and

h = r , 𝜇 = Br 𝟥(26.8.72)

if B ≤ Z
𝟦
𝟥 . Plugging (26.8.71) and (26.8.72) and summing over partition we

arrive to CTZ
𝟤
𝟥 as Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 and CTZ

𝟤
𝟧 B

𝟣
𝟧 as Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

Plugging T = (Z−N)r̄−𝟣 we get expressions which are much smaller than

𝜖(Z − N)𝟤r̄−𝟣 due to (26.8.61); plugging T = 𝒬 𝟣
𝟤 r̄−

𝟣
𝟤 we get terms smaller

than 𝜖′𝒬 + C (𝜖′)B
𝟣
𝟦 Z

𝟦
𝟥 if B ≤ Z

𝟦
𝟥 and 𝜖′𝒬 + C (𝜖′)Z

𝟥
𝟧 B

𝟦
𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥;

here 𝜖′ > 0 is arbitrarily small and thus term (26.8.65) does not make any
difference.

49) Recall that W and Wm are approximations to W 𝖳𝖥 and W 𝖳𝖥
m .
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Since 𝒬 ≥ 𝜖a−𝟣(Z − N)𝟤 we arrive to

Corollary 26.8.13. Let condition (26.2.28) be fulfilled. Then

(i) If (Z − N) ≥ C (Qa)
𝟣
𝟤 where Q is our remainder estimate in the ground

state energy, then in free nuclei model minimal distance between nuclei must
be at least a.

(ii) In particular, if (Z − N) ≥ C𝟣(Qr̄)
𝟣
𝟤 then in free nuclei model minimal

distance between nuclei must be at least C𝟢r̄ and molecule consists of separate
atoms.

We leave to the reader

Problem 26.8.14. Using Theorem 26.2.17 and the arguments used in the
proof of Proposition 26.8.11, estimate overlapping of balls B(ym, r̄m) if

Z− 𝟧
𝟤𝟣
−𝛿 ≥ 𝜖B− 𝟣

𝟦 in the free nuclei model with N = Z and prove that

(26.8.73) (r̄m + r̄m′ − |ym − ym′ |) ≤ C r̄(K−𝟤r̄−𝟣Q)
𝟣
𝟤 =

C

{︃
B− 𝟣

𝟦

(︀
B− 𝟩

𝟦 Z
𝟧
𝟥 + B− 𝟣

𝟤 L
)︀ 𝟣

𝟣𝟤 if Z
𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 ,

B− 𝟩
𝟣𝟧 Z

𝟣
𝟣𝟢 L

𝟣
𝟨 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

Estimate of Excessive Positive Charge

To estimate excessive positive charge when molecules can still exist in free
nuclei model we apply arguments of section 5 of B. Ruskai and J. P. Solovej [1].
In view of Corollary 26.8.13 for (Z−N) violating (26.8.76) below it is sufficient
to assume that (25.6.41) is satisfied:

(26.8.74) a = min
j<k

|yj − yk | ≥ C𝟢r̄

i.e. in Thomas-Fermi theory 𝜌𝖳𝖥 is supported in the separate “atoms”.
Really, it is the case if C𝟢Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z 𝟥 but also it is so if B ≤ C𝟢Z

𝟤𝟢
𝟤𝟣 and

(Z − N)+ ≥ C𝟣Z
𝟧
𝟩 since then r̄ ≍ (Z − N)

− 𝟣
𝟥

+ .
Like in Subsection 25.6.3 consider a-admissible functions 𝜃m(x), sup-

ported in B(ym,
𝟣
𝟥
a) as m = 1, ... ,M and in {|x − ym′ | ≥ 𝟣

𝟦
a ∀m′ = 1, ... ,M}

as m = 0, such that

(26.8.75) 𝜃𝟤𝟢 + ... + 𝜃𝟤M = 1.
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Then for the ground state Ψ equality (25.6.43) holds with cluster Hamil-
tonians H𝛼m defined by (25.6.44) and satisfying (25.6.45) and with the
intercluster Hamiltonian J𝛼 defined by (25.6.46) and satisfying (25.6.47)
with Jml defined by (25.6.48)–(25.6.49). Furthermore, equality (25.6.50)
holds.

Applying Proposition 25.5.1 and estimate (25.4.56) (replacing first 𝜃k
with k = 1, ... ,M by 𝜃k , supported in B(yk , cr̄), and estimating the resulting

error), we conclude that (25.6.51)–(25.6.54) hold with Y = Q
𝟣
𝟤 r̄

𝟣
𝟤 since

D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) ≤ CQ.
The last term in (25.6.51) is estimated by Proposition 25.5.1 and estimate

(26.8.61) instead of (25.4.56) and the same replacement trick; so we arrive to
(25.6.55) and repeating the same trick we get that it is larger than (25.6.56).

Again let us note that the absolute value of the last term in the right-
hand expression of (25.6.43) does not exceed Ca−𝟤Y due to (25.6.52). Now
stability condition yields that (26.6.61) must be fulfilled.

Then we conclude that (25.6.57) and (25.6.59) hold with Jml defined by
(25.6.58) provided (25.6.60) is fulfilled as |x − yk | ≥ C r̄ .

This inequality, (26.8.74) and Proposition 25.6.6 (which is the special

case of Theorem 26.2.13) yield that Z − N ≤ CY = C r̄
𝟣
𝟤 Q

𝟣
𝟤 . Now we need

to consider two cases:

(a) B ≤ (Z −N)
𝟦
𝟥 ; then r̄ ≍ (Z −N)−

𝟣
𝟥 and we conclude that (Z −N) ≤ CQ

𝟥
𝟧

exactly like in Subsubsection 25.6.3.

(b) (Z −N)
𝟦
𝟥 ≤ B ≤ Z 𝟥; then plugging r̄ and Q we arrive to two other cases

of (26.8.76).

Then we arrive to Statement (i) below; Statement (ii) follows from
Remark 26.8.10(ii).

Theorem 26.8.15 50). Let condition (26.2.28) be fulfilled.

(i) Then in the framework of the free nuclei model with M ≥ 2 the stable
molecule does not exist unless

(26.8.76) (Z − N)+ ≤ C𝟣

⎧⎪⎪⎨⎪⎪⎩
Z

𝟤𝟢
𝟤𝟣 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

Z
𝟧
𝟨 B− 𝟣

𝟪 if Z
𝟤𝟢
𝟤𝟣 ≤ B ≤ Z

𝟦
𝟥 ,

Z
𝟤
𝟧 B

𝟣
𝟧 if Z

𝟦
𝟥 ≤ B ≤ Z 𝟥.

50) Cf. Theorem 25.6.4.
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(ii) Furthermore, for B ≤ Z in the framework of the free nuclei model with
M ≥ 2 the stable molecule does not exist unless

(26.8.77) (Z − N)+ ≤ C𝟣

{︃
Z

𝟤𝟢
𝟤𝟣
−𝛿 if B ≤ Z

𝟤𝟢
𝟤𝟣 ,

Z
𝟧
𝟨
−𝛿B− 𝟣

𝟪
+𝛿 if Z

𝟤𝟢
𝟤𝟣 ≤ B ≤ Z .

Estimate for Excessive Negative Charge and Ionization Energy

Estimate (26.8.61) and Remark 26.8.10 immediately imply

Theorem 26.8.16. Let condition (26.2.28) be fulfilled.

(i) Then in the framework of the free nuclei model with M ≥ 2 estimates
(26.7.21) for the excessive negative charge and (26.7.37) for the ionization
energy ÎN = −ÊN + ÊN−𝟣 hold.

(ii) Furthermore, if B ≤ Z estimates (26.7.22) for the excessive negative
charge and (26.7.39) for the ionization energy ÎN hold.

26.A Appendices

26.A.1 Electrostatic Inequalities

There are two kinds of electrostatic inequalities: those which hold for any
fermionic state Ψ and those which hold only for the ground-state (or near
ground state) Ψ. Inequalities of the first kind do not depend on the quantum
Hamiltonian and they are (25.2.1) repeated here:

(26.A.1)
∑︁

𝟣≤j<k≤N

∫︁
|xj − xk |−𝟣|Ψ(x𝟣, ... , xN)|𝟤 dx𝟣 · · · dxN ≥

1

2
D(𝜌𝝭, 𝜌𝝭)− C

∫︁
𝜌

𝟦
𝟥
𝝭(x) dx

and (26.A.5) below.
Inequalities of the second kind are for B = 0:

(26.A.2)
∑︁

𝟣≤j<k≤N

∫︁
|xj − xk |−𝟣|Ψ(x𝟣, ... , xN)|𝟤 dx𝟣 · · · dxN ≥

1

2
D(𝜌𝝭, 𝜌𝝭)− CZ

𝟧
𝟥 ,
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and more precise one (26.A.26) below.

For B⃗ = const there is an inequality established in E. Lieb, J. P. Solovej
and J. Yngvason [3] (p. 122):

Theorem 26.A.1. Let B⃗ = const. Then for the ground state Ψ∫︁
𝜌

𝟦
𝟥
𝝭 dx ≤ CZ

𝟧
𝟨 N

𝟣
𝟤 (Z + N)

𝟣
𝟥

(︀
1 + BZ− 𝟦

𝟥

)︀ 𝟤
𝟧 ;(26.A.3)

In particular, for c−𝟣N ≤ Z ≤ cN the right-hand expression does not
exceed

(26.A.4) CZ
𝟧
𝟥

(︀
1 + BZ− 𝟦

𝟥

)︀ 𝟤
𝟧 ≍ C

{︃
Z

𝟧
𝟥 if B ≤ Z

𝟦
𝟥 ,

Z
𝟣𝟩
𝟣𝟧 B

𝟤
𝟧 if B ≥ Z

𝟦
𝟥 .

We want to establish inequality, similar to (25.A.2), but in the magnetic
case. We will use for this the following

Theorem 26.A.2 51). Fix 0 < 𝛿 ≤ 1/6. Then for any density matrix F
and any density 𝜌𝟢(x) ≥ 0 the following inequality holds

(26.A.5)
∑︁

𝟣≤j<k≤N

∫︁
|xj − xk |−𝟣|Ψ(x𝟣, ... , xN)|𝟤 dx𝟣 · · · dxN ≥

D(𝜌𝟢, 𝜌𝛾)−
1

2
D(𝜌𝟢, 𝜌𝟢)−

1

2

∑︁
𝜍,𝜍′

∫︁∫︁
|F (x , 𝜍; y , 𝜍 ′)|𝟤|x − y |−𝟣 dxdy

− C‖𝜌‖𝟧/𝟨𝟧/𝟥 · ‖𝜌‖
𝟣/𝟨+𝛿
𝟣 · 𝜐(𝛾,F )𝟣/𝟥−𝛿,

where 𝜌 = 𝜌𝟢 + 𝜌F + 𝜌𝝭, 𝜐(𝛾,F ) := Tr(𝛾(I − F )) and

(26.A.6) 𝛾 = 𝛾𝝭(x , y) = N

∫︁
Ψ(x , x𝟤, ... , xN)Ψ

†(y , x𝟤, ... , xN) dx𝟤 · · · xN

is two-point one particle density.

Recall that ‖.‖p denotes Lp-norm.
There is a connection between (26.A.1) and (26.A.5): if we set F = 0,

we get 𝜍 = ‖𝜌‖𝟣 and the last term in (26.A.5) becomes ‖𝜌‖𝟧/𝟨𝟧/𝟥 · ‖𝜌‖
𝟣/𝟤
𝟣 . On

51) Lemma 6 of G. Graf and J. P. Solovej [1].
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the other hand, ‖𝜌‖𝟦/𝟥𝟦/𝟥 ≤ ‖𝜌‖𝟧/𝟨𝟧/𝟥 · ‖𝜌‖
𝟣/𝟤
𝟣 , so (26.A.5) is slightly deteriorated

(26.A.1) with F = 0 but with “free” 𝜌𝟢.
Let us follow G. Graf and J. P. Solovej [1] further albeit in the case of

magnetic field. Let us estimate first ‖𝜌‖𝟧/𝟥.
If 𝜌 = 𝜌𝖳𝖥 direct calculations show that for N ≍ Z∫︁

𝜌𝖳𝖥 dx = min(Z ,N),(26.A.7) ∫︁
(𝜌𝖳𝖥)

𝟦
𝟥 dx ≍ C𝜌*

𝟦
𝟥 r * 𝟥 = CZ

𝟧
𝟥

(︀
1 + BZ− 𝟦

𝟥

)︀ 𝟤
𝟧 ,(26.A.8) ∫︁

(𝜌𝖳𝖥)
𝟧
𝟥 dx ≍ C𝜌*

𝟧
𝟥 r * 𝟥 = CZ

𝟩
𝟥

(︀
1 + BZ− 𝟦

𝟥

)︀ 𝟦
𝟧(26.A.9)

with

r * = min(Z− 𝟣
𝟥 ,B− 𝟤

𝟧 Z
𝟣
𝟧 ) ≍ Z− 𝟣

𝟥

(︀
1 + BZ− 𝟦

𝟥

)︀− 𝟤
𝟧 ,(26.A.10)

𝜌* = min(N ,Z )r *−𝟥(26.A.11)

and we use ‖𝜌‖𝟧/𝟨𝟧/𝟥 · ‖𝜌‖
𝟣/𝟤
𝟣 ≍ ‖𝜌‖𝟦/𝟥𝟦/𝟥 for 𝜌 = 𝜌𝖳𝖥.

If 𝜌 = 𝜌𝝭 we use magnetic Lieb–Thirring inequality (see f.e. Theorem 2.2
in L. Erdös [1])

(26.A.12) Tr(H−
A,W ) ≥ −C

∫︁
PB(W ) dx

and therefore

(26.A.13) 〈HΨ,Ψ〉 ≥ Tr((HA,W )−) +

∫︁
W 𝜌𝝭 dx

−
∫︁

V 𝜌𝝭 dx +
1

2
D(𝜌𝝭, 𝜌𝝭)− C‖𝜌𝝭‖𝟦/𝟥𝟦/𝟥,

which due to (26.A.12) is greater than

(26.A.14)

∫︁ (︀
−CPB(W ) + W 𝜌𝝭

)︀
dx−∫︁

V 𝜌𝝭 dx +
1

2
D(𝜌𝝭, 𝜌𝝭)− C‖𝜌𝝭‖𝟦/𝟥𝟦/𝟥 ≥

3𝜖𝟢

∫︁
𝜏B(𝜌𝝭) dx −

∫︁
V 𝜌𝝭 dx +

1

2
D(𝜌𝝭, 𝜌𝝭)− C‖𝜌𝝭‖𝟦/𝟥𝟦/𝟥
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where we picked up W : CP ′
B(W ) = 𝜌𝝭.

The first two terms in the right-hand expression are estimated from
below by

2𝜖𝟢

∫︁
𝜏B(𝜌𝝭) dx − C

∫︁
PB(V )𝜑 dx − C

∫︁
V 𝜌𝝭(1− 𝜑) dx ,

where supp(𝜑) ⊂ {x : ℓ(x) ≤ 2r *} and supp(1− 𝜑) ⊂ {x : ℓ(x) ≥ r *}.
One can see easily that the absolute value of the second term is ≍

Z
𝟩
𝟥

(︀
1 + BZ− 𝟦

𝟥

)︀ 𝟤
𝟧 , while the absolute value of the third term does not exceed

CZ
∫︀

V (1 − 𝜑) dx ≍ CZ 𝟤r *−𝟣 which does not exceed the same expression

Z
𝟩
𝟥

(︀
1 + BZ− 𝟦

𝟥

)︀ 𝟤
𝟧 . Therefore

(26.A.15) 〈HΨ,Ψ〉+ C𝟣Z
𝟩
𝟥

(︀
1 + BZ− 𝟦

𝟥

)︀ 𝟤
𝟧 ≥

2𝜖𝟢

∫︁
𝜏B(𝜌𝝭) dx +

1

2
D(𝜌𝝭, 𝜌𝝭)− C‖𝜌𝝭‖𝟦/𝟥𝟦/𝟥.

Note that ‖𝜌𝝭‖𝟦/𝟥𝟦/𝟥, calculated over domain {x : 𝜌𝝭(x) ≥ B
𝟦
𝟥}, does not exceed

C‖𝜌𝝭‖𝟧/𝟨𝟧/𝟥 · ‖𝜌‖
𝟣
𝟤
𝟣 with norms, calculated over the same domain, which does

not exceed CT
𝟣
𝟤 Z

𝟣
𝟤 with T =

∫︀
𝜏B(𝜌𝝭) dx .

Meanwhile, ‖𝜌𝝭‖𝟦/𝟥𝟦/𝟥, calculated over domain {x : 𝜌𝝭(x) ≤ B
𝟦
𝟥}, does not

exceed C‖𝜌‖
𝟣
𝟤
𝟥 · ‖𝜌‖

𝟧
𝟨
𝟣 with norms, calculated over the same domain, which

does not exceed CZ
𝟣
𝟤 B

𝟣
𝟥 T

𝟣
𝟨 .

Therefore

‖𝜌𝝭‖𝟦/𝟥𝟦/𝟥 ≤ CT
𝟣
𝟤 Z

𝟣
𝟤 + CZ

𝟧
𝟨 B

𝟣
𝟥 T

𝟣
𝟨(26.A.16)

and therefore (26.A.15) implies that if

〈HΨ,Ψ〉 ≤ C𝟣Z
𝟩
𝟥

(︀
1 + BZ− 𝟦

𝟥

)︀ 𝟤
𝟧 ,(26.A.17)

then

T =

∫︁
𝜏B(𝜌𝝭) dx ≤ C𝟤Z

𝟩
𝟥

(︀
1 + BZ− 𝟦

𝟥

)︀ 𝟤
𝟧(26.A.18)

and

‖𝜌𝝭‖𝟦/𝟥𝟦/𝟥 ≤ CZ 𝟧/𝟥
(︀
1 + BZ− 𝟦

𝟥

)︀ 𝟤
𝟧 ;(26.A.19)
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taking F = 0 we arrive to (26.A.3) if N ≍ Z .

However, on our preparatory step we need to estimate also ‖𝜌𝝭‖𝟧/𝟥𝟧/𝟥 and

due to (26.A.18) we need to consider only norms over {x : 𝜌𝝭(x) ≥ B
𝟦
𝟥}.

Then ‖𝜌𝝭‖𝟧/𝟥𝟧/𝟥 ≤ C‖𝜌𝝭‖𝟣𝟨/𝟣𝟧𝟦/𝟥 · ‖𝜌𝝭‖𝟥/𝟧𝟥 and plugging the same estimates

(26.A.19), (26.A.19) we conclude that

(26.A.20) ‖𝜌𝝭‖𝟧/𝟥𝟧/𝟥 ≤ CZ 𝟩/𝟥
(︀
1 + BZ− 𝟦

𝟥

)︀ 𝟦
𝟧 .

Now we assume that B ≤ Z 𝟥, take F = e(x , y , 𝜈), where e(x , y , 𝜈) is
the Schwartz kernel of spectral projector for potential W , approximating
W 𝖳𝖥 and 𝜈 ≤ 0 is a chemical potential. One can prove easily that ‖𝜌F‖𝟧/𝟥𝟧/𝟥

satisfies the same estimate and we need to estimate Tr
(︀
𝛾𝝭(I − E (𝜇))

)︀
.

Consider

(26.A.21) N〈HA,W (x𝟣)Ψ,Ψ〉− Tr(HE (𝜈))− 𝛼Tr
(︀
𝛾𝝭(I − E (𝜈))

)︀
≥

∫︁
𝛽<𝟢

𝛽 d𝛽 Tr E (𝛽)−
∫︁
𝛽≤𝜈

(𝛽 − 𝜈 + 𝛼) d𝛽 Tr E (𝛽)

= −
∫︁
𝜈−𝛼<𝛽<𝜈

(𝛽 − 𝜈 + 𝛼)d𝛽E (𝛽)

= −𝛼E (𝜈) +

∫︁
𝜈−𝛼<𝛽<𝜈

E (𝛽) d𝛽.

We can replace E (𝛽) by
∫︀

P ′(W + 𝛽) dx with a resulting error O(Z𝛼ℏ𝛿),
ℏ := BZ−𝟥. Then the right-hand expression becomes

(26.A.22) − L(𝛼) :=

∫︁ (︁
−𝛼P ′

B(W + 𝜈) +

∫︁ 𝛼

𝟢

P ′
B(W + 𝜈 − 𝛽) d𝛽

)︁
dx =

−
∫︁ 𝛼

𝟢

(𝛼− 𝛽)
(︁∫︁

P ′′
B(W + 𝜈 − 𝛽) dx

)︁
d𝛽.

Therefore

(26.A.23) 𝛼
(︁
Tr

(︀
𝛾𝝭(I − E (𝜇))

)︀
− CZℏ𝛿

)︁
≤

N〈HA,W (x𝟣)Ψ,Ψ〉− Tr(HE (𝜈))+L(𝛼).

Note that adding to the selected terms −𝟣
𝟤
D(𝜌𝖳𝖥, 𝜌𝖳𝖥) we obtain exactly the

snippet, occurring in the lower estimate of EN , but in virtue of the upper
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estimate it should not exceed Q = CZ
𝟧
𝟥

(︀
1 + BZ− 𝟦

𝟥 )
𝟤
𝟧 ≤ CZ

𝟧
𝟥 + Ch𝟤Z

𝟩
𝟥 , and

therefore, plugging 𝛼 = Z
𝟦
𝟥ℏ𝛿, we conclude that

Tr
(︀
𝛾𝝭(I − E (𝜇)) ≤ Zℏ𝛿(26.A.24)

provided we prove that

L(𝛼) ≤ Q for 𝛼 = Z
𝟦
𝟥ℏ𝛿.(26.A.25)

Therefore modulo proof of (26.A.25) we arrive to the estimate (26.A.26)
below:

Theorem 26.A.3. Let N ≍ Z and B ≤ Z . Then for the ground state
energy

(26.A.26)
∑︁

𝟣≤j<k≤N

∫︁
|xj − xk |−𝟣|Ψ(x𝟣, ... , xN)|𝟤 dx𝟣 · · · dxN ≥

1

2
D(𝜌𝖳𝖥, 𝜌𝖳𝖥) + Dirac− CZ

𝟧
𝟥
−𝛿(1 + B𝛿)

To prove (26.A.25) we note that 0 ≤ P ′′
B(w) ≍ w

𝟣
𝟤 +Bw− 𝟣

𝟤 . One can prove

easily then that L(𝛼) ≤ C𝛼
𝟩
𝟦 + CB

𝟣
𝟦𝛼

𝟥
𝟤 , which obviously implies (26.A.25).

26.A.2 Very Strong Magnetic Field Case

Let us consider now case Z 𝟤 ≤ B ≤ Z 𝟥.

Proposition 26.A.4. Consider the Schrödinger operator HA,W with a con-
stant magnetic field of intensity B and potential W : W ≤ Z |x |−𝟣. Let
𝜑(x) := 𝜑r (x) be r -admissible function. Then if Z 𝟤 ≲ B ≲ Z 𝟥 and r ≍ Z−𝟣

(26.A.27) |e(x , y , 0)| ≤ CZB in B(0, r)

and

(26.A.28) All eigenvalues are ≥ −CZ 𝟤.

Proof. Without any loss of the generality one can assume that

(26.A.29) HA,W = D𝟤
𝟥 + D𝟤

𝟤 + (D𝟣 − Bx𝟤)
𝟤 − W .
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Consider f ∈ L𝟤; then ‖E (𝜆)f ‖ ≤ ‖f ‖ and then one can prove easily
(26.A.28) and inequality

(26.A.30) ‖HA,𝟢E (𝜆)f ‖ ≤ (CZ 𝟤 + 𝜆+)‖f ‖.

Indeed, 𝟣
𝟤
D𝟤

𝟥 + CZ 𝟤 ≥ W in the operator sense.

Then (26.A.30) implies that in B(0, r)× B(y ′, r ′) with r ′ = B− 𝟣
𝟤

|P𝛼E (𝜆)f | ≤ CZ𝛼𝟥B
𝟣
𝟤
|𝛼′| ∀𝛼 : |𝛼| ≤ 2 ∀𝜆 ≤ Z 𝟤

with P = (D𝟣 − Bx𝟤,D𝟤,D𝟥) and therefore ‖E (𝜆)f ‖C ≤ CZ
𝟣
𝟤 B

𝟣
𝟤‖f ‖. Then

‖E (x , .,𝜆)‖L𝟤
y
‖ ≤ CZ

𝟣
𝟤 B

𝟣
𝟤 .

Repeating the same arguments with respect to y we arrive to estimate
(26.A.27).

The following corollary follows immediately:

Corollary 26.A.5. In the framework of Proposition 26.A.4 with
𝜑 ∈ L∞(B(0, r)), ‖𝜑‖L∞ ≤ 1

|
∫︁
𝜑(x)e(x , x , 0) dx | ≤ CZ−𝟤B ,(26.A.31)

D
(︀
𝜑(x)e(x , x , 0),𝜑(x)e(x , x , 0)

)︀
≤ CZ−𝟥B𝟤(26.A.32)

and

|
∫︁ 𝟢

−∞

∫︁
𝜑(x)e(x , x , 𝜏) d𝜏dx | ≤ CB .(26.A.33)

26.A.3 Riemann Sums and Integrals

If f ∈ C∞(ℝ+) and fast decays at +∞, then

f (0)h +
∑︁
n≥𝟣

2f (2nh)h ∼
∫︁ ∞

𝟢

f (t) dt +
∑︁
m≥𝟣

𝜅mf (𝟤m−𝟣)(0)h𝟤m,(26.A.34)

∑︁
n≥𝟢

2f ((2n + 1)h)h ∼
∫︁ ∞

𝟢

f (t) dt +
∑︁
m≥𝟣

𝜅′mf (𝟤m−𝟣)(0)h𝟤m(26.A.35)

as h → +0. The proofs of both formulae follow from the Taylor’s decompo-
sition and observation that the odd powers of h should disappear. Taking
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f (t) = e−tz/h with Re z > 0 we arrive to

1− cosh(z)

sinh(z)
z ∼

∑︁
m≥𝟣

𝜅mz𝟤m,(26.A.36)

1− 1

sinh(z)
z ∼

∑︁
m≥𝟣

𝜅′mz𝟤m(26.A.37)

for |z | ≪ 1. In particular, 𝜅𝟣 =
𝟣
𝟥
and 𝜅′𝟣 = −𝟣

𝟨
.

26.A.4 Some Spectral Function Estimates

Proposition 26.A.6. For the Schrödinger operator with A,W ∈ C∞ and
for 𝜑 ∈ C∞

𝟢 ([−1, 1]) the following estimate holds for any s:

|F (x , y)| ≤ C (𝜇h + 1)h−𝟥
(︀
1 + h−𝟣|x − y |

)︀−s
(26.A.38)

where

F (x , y) :=

∫︁
𝜑(𝜆) d𝜆e(x , y ,𝜆).(26.A.39)

Proof. Let u(x , y , t) =
∫︀

e−ih−𝟣t𝜆 d𝜆e(x , y ,𝜆) be the Schwartz’s kernel of

e−ih−𝟣Ht .
Let us fix y . Note first that L𝟤-norm52) of 𝜑(hDt)𝜒(t)𝜔(x)u(x , y , t) is less

than Chs for 𝜒 ∈ C∞
𝟢 ([−𝜖, 𝜖]) and 𝜔 ∈ C∞ supported in {x : |x − y | ≥ 𝜖𝟣}

(with 𝜖𝟣 = C 𝜖) due to the finite speed of propagation of singularities.
We conclude then that L𝟤-norm of 𝜑(hDt)𝜒(t)𝜔(x)u(x , y , t) does not

exceed C (𝜇h + 1)hs for 𝜔 ∈ C∞ supported in {x : |x − y | ≥ C}.
Then L𝟤-norm of 𝜕 lt∇𝛼𝜑(hDt)𝜒(t)𝜔(x)u does not exceed C (𝜇h + 1)hs .

Therefore due to imbedding inequality L∞-norm of 𝜑(hDt)𝜒(t)𝜔(x)u also
does not exceed C (𝜇h + 1)hs . Setting t = 0 and using this inequality and
estimate |F (x , y)| ≤ C (𝜇h + 1)h−𝟥 (due to Chapter 7), we conclude that
|F (x , y)| ≤ C (𝜇h + 1)hs for |x − y | ≥ 𝜖𝟢.

Now let us consider general x with |x − y | = r ≥ Ch. Then rescaling
(x −y) ↦→ (x −y)r−𝟣 we need also to rescale h ↦→ hr−𝟣, 𝜇 ↦→ 𝜇r and rescaling
the above inequality and keeping in mind that F (x , y) is a density with
respect to x , we conclude that |F (x , y)| ≤ Chsr−𝟥−s which is equivalent to
(26.A.38)–(26.A.39).

52) With respect to x , t here and below.
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26.A.5 Zhislin’s Theorem for Constant Magnetic
Field

We provide just a scheme to prove Zhislin’s theorem in the case of the
constant magnetic field. In this analysis Z , y , N and B are constant.

Proposition 26.A.7. Let Ψ = ΨN be the ground state with the energy
EN < EN−𝟣. Then

(i) Ψ ∈ C𝟣 and Ψ = O(e−𝜖|x |) as |x | → ∞.

(ii) Let N < Z . Then V𝝭 − V ∈ C𝟤 and V𝝭 = (Z − N)|x |−𝟣 + O(|x |−𝟤),
∇V𝝭 = (Z − N)|x |−𝟤 + O(|x |−𝟥) as |x | → ∞.

Proof. Obvious proof is left to the reader.

Theorem 26.A.8 (Zhislin’s theorem). EN+𝟣 < EN for N < Z .

Proof. We can assume that EN < 0 and the ground state energy exists.
Really, it is true for some N < Z and if we prove that then automatically
EN+𝟣 < EN , then it would be true for (N + 1) as well, so we may go by
induction.

Consider Ψ = ΨN(x𝟣, ... , xN) and also Ψ̃N+𝟣, which is an antisymmetrized
ΨN(x𝟣, ... , xN)u(xN+𝟣) (cf. (26.8.21)):

(26.A.40) Ψ̃ = Ψ̃(x𝟣, ... , xN+𝟣) = Ψ(x𝟣, ... , xN)u(xn+𝟣)−∑︁
𝟣≤j≤N

Ψ(x𝟣, ... , xj−𝟣, xN+𝟣, xj+𝟣, ... , xN)u(xj).

Then like in the estimate of the ionization energy (cf. (26.8.22)–(26.8.23)):

(26.A.41) N−𝟣IN+𝟣‖Ψ̃‖𝟤 ≥ −〈HV ,xN+𝟣
Ψu, Ψ̃〉− 〈

∑︁
𝟣≤i≤N

|xi − xN+𝟣|−𝟣Ψu, Ψ̃〉

and

(26.A.42) N−𝟣‖Ψ̃‖𝟤 = ‖Ψ‖𝟤 · ‖u‖𝟤−

N

∫︁
Ψ(x𝟣, ... , xN−𝟣, x)Ψ†(x𝟣, ... , xN−𝟣, y)u(y)u†(x) dx𝟣 · · · dxN−𝟣 dxdy .
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Now let us consider u supported in {x : 𝟣
𝟤
a ≤ |x | ≤ 3a} with a to be

chosen later. Then in virtue of Proposition 26.A.7(i) modulo O(e−𝜖𝟣a)
we can replace in the right-hand expressions Ψ̃ by ΨN(x𝟣, ... , xN)u(xN+𝟣)
resulting in −〈HW u, u〉 and ‖u‖𝟤 respectively with W = V𝝭 defined in
Proposition 26.A.7(ii).

Therefore all we need to prove this theorem is to be able to select u with
‖u‖ ≍ 1, supported in {x : a ≤ |x | ≤ 3a} and with 〈HW u, u〉 ≤ −𝜖𝟢a−𝟣.

In virtue of Proposition 26.A.7(ii) V𝝭 ≥ 𝜖𝟢a−𝟣 in {x : a ≤ |x | ≤ 3a} and
therefore we can replace W by 𝜖𝟢a−𝟣. Without any loss of the generality one
can assume that A = (Bx𝟤, 0, 0). Recall that for the linear vector-potential

A⃗ operator H𝟢 = ((i∇ − A) · σ)𝟤 is a direct sum of H+
𝟢 = (i∇ − A)𝟤 + B

and H−
𝟢 = (i∇ − A)𝟤 − B ; so we can consider only the latter. Note that

H−
𝟢 = (i𝜕𝟣−Bx𝟤)

𝟤−𝜕𝟤𝟤−𝜕𝟤𝟥 and H−
𝟢 v = 0 with v = exp(−𝟣

𝟤
B(x𝟤−a)𝟤+iBax𝟣).

Then u = v(x)𝜒(r−𝟣(x − x̄)) with 𝜒 ∈ C∞(B(0, 1)), 𝜒 = 1 in B(0, 𝟣
𝟤
),

x̄ = (0, 2a, 0), r = 𝟣
𝟥
a is a required function.

Comments

We already mentioned papers E. H. Lieb, J. P. Solovej and J. Yngvason [1,3]
where asymptotics of the ground state energy were derived in the cases
B ≪ Z 𝟥 and B ≫ Z 𝟥 respectively. Intermediate case B ∼ Z 𝟥 was covered
also in [1]. Even without remainder estimates certain results concerning
ionization energy and maximal possible positive and negative charges were
also derived.

Remainder estimates in the case B ≪ Z 𝟥 were derived by V. Ivrii
in [20,21]. Unfortunately there are gaps in the proofs of the second paper
in the case of M ≥ 2 and large Z − N > 0 which I was unable to fill.; so our
results in this case are not as sharp as they supposed to be.



Chapter 27

The Case of Self-Generated
Magnetic Field

27.1 Introduction

We are going to replace Schrödinger operator without magnetic field as in
Chapter 25 or with a constant magnetic field as in Chapter 26 by Schrödinger
operator

(27.1.1) H = HA,V =
(︀
(D − A) · σ

)︀𝟤 − V (x)

with unknown magnetic field A but then to add to the ground state energy
of the atom (or molecule) the energy of magnetic field (see selected term in
(27.1.2) thus arriving to

(27.1.2) E(A) = inf Spec(HA,V ) + 𝛼−𝟣

∫︁
|∇ × A|𝟤 dx

with N-particle quantum Hamiltonian HA,V defined by (26.1.1) and a pa-
rameter 𝛼 ∈ (0,𝜅*Z−𝟣] with small constant 𝜅* > 0.

Then finally

(27.1.3) E* = inf
A∈H𝟣

𝟢

E(A)

defines a ground state energy with a self-generated magnetic field1).

1) This notion was introduced in series of papers L. Erdös, S. Fournais and J. P.
Solovej [1, 3, 4]; see also L. Erdös and J. P. Solovej [1].
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First of all we are lacking so far a semiclassical local theory and we
are developing it in Section 27.2 where we consider one-particle quantum
Hamiltonian

(27.1.4) H = HA,V =
(︀
(hD − A) · σ

)︀𝟤 − V (x)

but instead of inf Spec(HA,V ) we consider Tr−(HA,V ) which as we already
know is what replaces inf Spec(HA,V ) if electrons do not interact (then if
electrons interact we will need to replace V by W which includes a potential
generated by the electron cloud and justify this by estimating an error).

We define the energy of the magnetic field as in (27.1.2) but with 𝜅
replaced by 𝜅hd−𝟣 (here d ≥ 2 is arbitrary) and we prove that for d = 2, 3 in
this framework a self-generated magnetic field is weak and the asymptotics
with the remainder O(h𝟤−d) (or even o(h𝟤−d) under standard assumption of
the global nature) is exactly as for 𝜅 = 0 (i.e. with A = 0). In the latter
case asymptotics includes the Schwinger correction term 𝜘𝟤h−𝟣.

Then in Section 27.3 we consider operator with potential having Coulomb-
type singularities and combining results and arguments of Sections 27.2
and 12.6 prove for d = 3 that

(27.1.5) Tr−(HA,V ) = Weyl𝟣 + 2S(𝜅)h−𝟤 + O
(︀
𝜅| log 𝜅|

𝟣
𝟥 h− 𝟦

𝟥 + h−𝟣
)︀

provided 𝜅 < 𝜅* (which is a small constant) and there is just one singularity;
when there are several singularities with a minimal distance a ≫ 1 between
them we prove that

(27.1.6) Tr−(HA,V ) = Weyl𝟣+2S(𝜅)h−𝟤+O
(︀
𝜅| log 𝜅|

𝟣
𝟥 h− 𝟦

𝟥+h−𝟣+𝜅a−𝟥h−𝟤
)︀
.

If 𝜅≪ h
𝟣
𝟥 | log h|− 𝟣

𝟥 then under standard assumption about trajectories we
can upgrade this asymptotics to even sharper with the remainder estimate
o(h−𝟣) and with the Schwinger correction term.

Further, in Section 27.4 we apply these results to provide estimates
from above and below for the total energy (27.1.3). As a byproduct we also
estimate D(𝜌𝝭−𝜌𝖳𝖥, 𝜌𝝭−𝜌𝖳𝖥) where Ψ is a ground state for a near-minimizer
A.

This estimate enables us in Section 27.5 to derive upper estimates for
the excessive negative charge, estimates or asymptotics for the ionization
energy, and in the free nuclei model also for the minimal distance between
nuclei and (in the case of molecule) for the excessive positive charge.
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27.2 Local Semiclassical Trace Asymptotics

27.2.1 Toy-Model

Statement of the Problem

Let us consider operator (27.1.1) in ℝd with d = 3 where A,V are real-valued

functions and V ∈ L
𝟧
𝟤 ∩ L𝟦, A ∈ H𝟣

𝟢 . Then this operator is self-adjoint.
We are interested in Tr−(HA,V ) (the sum of all negative eigenvalues of this
operator). Let

E* := inf
A∈H𝟣

𝟢(B(𝟢,r))
E(A),(27.2.1)

E(A) :=
(︁
Tr− HA,V + 𝜅−𝟣h−𝟤

∫︁
|𝜕A|𝟤 dx

)︁
(27.2.2)

with 𝜕A = (𝜕iAj) a matrix; here and below r is a parameter and constants
do not depend on it.

The estimate from above is delivered by A = 0 and Weyl formula with
an error O(h−𝟣) as V ∈ C𝟤,𝟣 2)

E* ≤ Weyl𝟣 + O(h−𝟣);(27.2.3)

where

Weyl(𝜏) =
1

3𝜋𝟤
h−𝟥

∫︁
(V + 𝜏)

𝟥
𝟤
+ dx ,(27.2.4)

and

Weyl𝟣 =

∫︁ 𝟢

−∞
𝜏d𝜏Weyl(𝜏) = − 2

15𝜋𝟤

∫︁
V

𝟧
𝟤
+ dx .(27.2.5)

Also for estimates o(h−𝟤) we need to include into Weyl𝟣 the corresponding
boundary term. Now our goal is to provide an estimate from below

(27.2.6) E* ≥ Weyl𝟣 − O(h−𝟣);

We will use also Weyl(x , 𝜏 ) and Weyl𝟣(x) defined the same way albeit without
integration with respect to x .

2) Recall that this means that the second derivatives of V are continuous with the
continuity modulus O(| 𝗅𝗈𝗀 |x − y ||−𝟣), see Section 4.6. If there is a boundary it does not
pose any problem provided it is in the classically forbidden region.
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Preliminary Analysis

So, let us estimate E(A) from below. First we need the following really
simple

Proposition 27.2.1. Let V ∈ L
𝟧
𝟤 ∩ L𝟦. Then

E* ≥ −Ch−𝟥(27.2.7)

and either
1

𝜅h𝟤

∫︁
|𝜕A|𝟤 dx ≤ Ch−𝟥(27.2.8)

or E(A) ≥ ch−𝟥.

Proof. Using the Magnetic Lieb–Thirring inequality (5) of E. H. Lieb,
M. Loss, M. and J. P. Solovej [1])

(27.2.9)

∫︁
tr e𝟣(x , x , 𝜏) dx ≥

− Ch−𝟥

∫︁
V

𝟧
𝟤
+ dx − Ch𝟤

(︁
h−𝟤

∫︁
|𝜕A|𝟤 dx

)︁ 𝟥
𝟦
(︁

h−𝟪

∫︁
V 𝟦
+ dx

)︁ 𝟣
𝟦
,

we conclude that for any 𝛿 > 0

(27.2.10) E(A) ≥ −Ch−𝟥 − C𝛿𝟥h−𝟥 +
(︀
𝜅−𝟣h−𝟤 − 𝛿−𝟣h−𝟣)

∫︁
|𝜕A|𝟤 dx

which implies both assertions of this proposition.

Proposition 27.2.2. Let V+ ∈ L
𝟧
𝟤 ∩ L𝟦, 𝜅 ≤ ch−𝟣 and

(27.2.11) V ≤ −C−𝟣(1 + |x |)𝛿 + C .

Then there exists a minimizer A.

Proof. Consider a minimizing sequence Aj . Without any loss of the generality
one can assume that Aj → A∞ weakly in H𝟣 and in L𝟨 and strongly in Lp

𝗅𝗈𝖼

with any p < 6 3). Then A∞ is a minimizer.
Really, due to (27.2.8) and (7.2.11) negative spectra of HAj ,V are discrete

and the number of negative eigenvalues is bounded by N = N(h). Consider

3) Otherwise we select a converging subsequence.
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ordered eigenvalues 𝜆j ,k of HAj ,V . Without any loss of the generality one can
assume that 𝜆j ,k have limits 𝜆∞,k ≤ 0 (we go to the subsequence if needed).

We claim that 𝜆∞,k are also eigenvalues and if 𝜆∞,k = ... = 𝜆∞,k+r−𝟣 then
it is eigenvalue of at least multiplicity r . Indeed, let uj ,k be corresponding
eigenfunctions, orthonormal in L𝟤. Then in virtue of Aj being bounded in
L𝟨 and V ∈ L𝟦 we can estimate

‖Duj ,k‖ ≤ K‖uj ,k‖𝟣−𝜎𝟨 · ‖uj ,k‖𝜎 ≤ K‖Duj ,k‖𝟣−𝜎 · ‖uj ,k‖𝜎

with 𝜎 > 0 which implies ‖Duj ,k‖ ≤ K . Also assumption (27.2.11) implies
that ‖(1 + |x |)𝛿/𝟤uj ,k‖ are bounded and therefore without any loss of the
generality one can assume that uj ,k converge strongly.

Then

lim
j→∞

Tr−(HAj ,V ) ≥ Tr−(HA∞,V ),(27.2.12)

lim inf
j→∞

∫︁
|𝜕Aj |𝟤 dx ≥

∫︁
|𝜕A∞|𝟤 dx(27.2.13)

and therefore E(A∞) ≤ E*. Then A∞ is a minimizer and there are equalities
in (27.2.12)–(27.2.13) and, in particular, there no negative eigenvalues of
HA∞,V other than 𝜆∞,k .

Remark 27.2.3. We do not know if a minimizer is unique. Also we do not
impose here any restrictions on r ,K (which may depend on h) in (27.2.11)
or 𝜅 > 0. From now on until the further notice let A = Ah be a minimizer.

Proposition 27.2.4. In the framework of Proposition 27.2.2 let A be a
minimizer. Then

(27.2.14)
2

𝜅h𝟤
ΔAj(x) = Φj :=

− Re tr
[︁
σj

(︁
(hD − A)x · σe(x , y , 𝜏) + e(x , y , 𝜏) t(hD − A)y · σ

)︁]︁⃒⃒⃒
y=x

where A = (A𝟣,A𝟤,A𝟥), σ = (σ𝟣,σ𝟤,σ𝟥) and e(x , y , 𝜏 ) is the Schwartz kernel
of the spectral projector θ(−H) of H = HA,V and tr is a matrix trace.

Proof. Consider variation δA of A and variation of Tr−(H) = Tr(H−) where
H− = Hθ(−H) is a negative part of H . Note that the spectral projector of
H is

(27.2.15) θ(𝜏 − H) =
1

2𝜋i

∫︁ 𝜏

−∞
Resℝ(𝜏 − H)−𝟣
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and therefore

δTr
(︀
θ(𝜏 − H)

)︀
=

1

2𝜋i

∫︁ 𝜏

−∞
Resℝ Tr

(︀
(𝜏 − H)−𝟣(δH)(𝜏 − H)−𝟣

)︀
=

1

2𝜋i

∫︁ 𝜏

−∞
Resℝ Tr

(︀
(δH)(𝜏 −H)−𝟤

)︀
= −𝜕𝜏

1

2𝜋i

∫︁ 𝜏

−∞
Resℝ Tr

(︀
(δH)(𝜏 −H)−𝟣

)︀
=

− 𝜕𝜏 Tr
(︀
(δH)θ(𝜏 − H)

)︀
.

Plugging it into

(27.2.16) Tr−(H) =

∫︁ 𝟢

−∞
𝜏d𝜏 Tr

(︀
θ(𝜏 − H)

)︀
= −

∫︁ 𝟢

−∞
Tr

(︀
θ(𝜏 − H) d𝜏

)︀
and integrating with respect to 𝜏 we arrive after simple calculations to

(27.2.17) δTr−(H − 𝜏) = Tr
(︀
(δH)θ(𝜏 − H)

)︀
=

∑︁
j

∫︁
Φj(x)δAj(x) dx

where Φ(x) is the right-hand expression of (27.2.14). Therefore

(27.2.18) δE(A) =
∑︁
j

∫︁ (︀
Φj(x)−

2

𝜅h𝟤
ΔAj(x)

)︀
δAj(x) dx

which implies (27.2.14).

Proposition 27.2.5. If for 𝜅 = 𝜅*

E* ≥ Weyl𝟣 − CM(27.2.19)

with M ≥ Ch−𝟣 then for 𝜅 ≤ 𝜅*(1− 𝜖𝟢)

1

𝜅h𝟤

∫︁
|𝜕A|𝟤 dx ≤ C𝟣M .(27.2.20)

Proof. Proof is obvious based also on the upper estimate E* ≤ Weyl𝟣 +
Ch−𝟣.
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Estimates

Proposition 27.2.6. Let estimate (27.2.20) be fulfilled and let

(27.2.21) 𝜍 = 𝜅Mh ≤ c .

Then for 𝜏 ≤ c

(i) Operator norm in L𝟤 of (hD)kθ(𝜏 −H) does not exceed C for k = 0, 1, 2.

(ii) Operator norm in L𝟤 of (hD)k
(︀
(hD − A) · σ

)︀
θ(𝜏 − H) does not exceed

C for k = 0, 1.

Proof. (i) Let u = θ(𝜏 − H)f . Then ‖u‖ ≤ ‖f ‖ and since

(27.2.22) ‖A‖L𝟨 ≤ C‖𝜕A‖ ≤ C (𝜅M)
𝟣
𝟤 h

we conclude that

‖hDu‖ ≤ ‖(hD − A)u‖+ ‖Au‖ ≤ ‖(hD − A)u‖+ C‖A‖L𝟨 · ‖u‖L𝟥 ≤

‖(hD − A)u‖+ C (𝜅M)
𝟣
𝟤 h‖u‖𝟣/𝟤 · ‖u‖𝟣/𝟤L𝟨 ≤

‖(hD − A)u‖+ C (𝜅Mh)
𝟣
𝟤‖u‖𝟣/𝟤 · ‖hDu‖𝟣/𝟤 ≤

‖(hD − A)u‖+ 1

2
‖hDu‖+ C𝜅Mh‖u‖;

therefore due to (27.2.21)

(27.2.23) ‖hDu‖ ≤ 2‖(hD − A)u‖+ C𝜅Mh‖u‖.

On the other hand, for B = ∇× A and 𝜏 ≤ c

‖(hD − A)u‖𝟤 ≤ C‖u‖𝟤 + (h|B |u, u) ≤ C‖u‖𝟤 + h‖B‖ · ‖u‖𝟤L𝟦 ≤

C‖u‖𝟤 + C (𝜅M)
𝟣
𝟤 h𝟤‖u‖ · ‖u‖L𝟨 ≤ C‖u‖𝟤 + C (𝜅M)

𝟣
𝟤 h‖u‖ · ‖hDu‖ ≤

C (1 + 𝜅Mh𝟤 + 𝜅
𝟥
𝟤 M

𝟥
𝟤 h𝟤)‖u‖𝟤 + 1

2
‖(hD − A)u‖𝟤

and due to (27.2.23) we conclude that

(27.2.24) ‖(hD − A)u‖ ≤ C‖u‖ and ‖hDu‖ ≤ C (1 + 𝜅Mh)‖u‖
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provided 𝜅Mh𝟣+𝛿 ≤ c for sufficiently small 𝛿 > 0. Therefore under assump-
tion (27.2.21) for k = 0, 1 statement (i) is proven.

Further, since (hD)𝟤 = (hD − A)𝟤 + A(hD − A) + AhD − h[D,A] we in
the same way as before (and using (27.2.24)) conclude that

‖(hD)𝟤u‖ ≤ C‖u‖𝟤 + 1

4
‖hD(hD − A)u‖+ 1

4
‖h𝟤D𝟤u‖

and therefore

‖h𝟤D𝟤u‖ ≤ C‖u‖𝟤 + C‖AhDu‖

and repeating the same arguments we get ‖h𝟤D𝟤u‖ ≤ C‖u‖; so for k = 2
Statement (i) is also proven.

(ii) Statement (ii) is proven in the same way.

Corollary 27.2.7. Let (27.2.20) and (27.2.21) be fulfilled. Then for 𝜏 ≤ c

e(x , x , 𝜏) ≤ Ch−𝟥(27.2.25)

and

|((hD − A) · σ)e(x , y , 𝜏)|x=y | ≤ Ch−𝟥.(27.2.26)

Proof. Let us prove that

(27.2.27) Operator norms from L𝟤 to C of both operators θ(𝜏 − H) and

((hD − A) · σ)θ(𝜏 − H) do not exceed Ch− 𝟥
𝟤 .

Indeed, Proposition 27.2.6 and embedding theorem imply that the operator
norm of θ(𝜏 − H) from L𝟤 to C does not exceed Ch− 𝟥

𝟤 . Then due to
interpolation operator norms of θ(𝜏 − H) from L𝟤 to L𝟥 and L𝟨 do not

exceed Ch− 𝟣
𝟤 and Ch−𝟣 respectively.

Let v = ((hD−A)·σ)u, u = θ(𝜏−H)f , ‖f ‖ = 1. We know that L𝟨-norms
of Hu and u do not exceed Ch−𝟣, and then it is true for ((hD − A) · σ)u‖ as
well.
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Then ‖Au‖L𝟥 ≤ C‖A‖L𝟨‖f ‖L𝟨 ≤ Ch− 𝟣
𝟤 and ‖Du‖L𝟥 ≤ Ch− 𝟥

𝟤 which
together with ‖u‖L𝟤 ≤ C implies that ‖u‖Lp ≤ Ch−𝟥/𝟤+𝟥/p for 2 ≤ p < ∞.

Then ‖Au‖L𝟦 ≤ C‖A‖L𝟨‖u‖L𝟣𝟤 ≤ Ch− 𝟣
𝟦 and ‖Du‖L𝟦 ≤ Ch− 𝟧

𝟦 . Together with

‖u‖ ≤ C it implies ‖u‖ ≤ Ch− 𝟥
𝟤 . So, (27.2.27) has been proven.

Then the same estimate for holds adjoint operators which imply both
statements of the corollary.

Corollary 27.2.8. Let (27.2.20) and (27.2.21) be fulfilled and A be a mini-
mizer. Then

‖𝜕A‖C𝟣−𝛿 ≤ C𝜅h−𝟣(27.2.28)

and

‖𝜕A‖L∞ ≤ C ′
𝛿h

− 𝟦
𝟧
−𝛿(27.2.29)

where C𝜃 is the scale of Hölder spaces and 𝛿 > 0 is arbitrarily small.

Proof. Really, due to (27.2.14) minimizer A satisfies ‖ΔA‖L∞ ≤ C𝜅h−𝟣.

Also we know that ‖𝜕A‖ ≤ C (𝜅Mh𝟤)
𝟣
𝟤 ≤ Ch

𝟣
𝟤 due to (27.2.21). Then

(27.2.28) holds due to the standard properties of the elliptic equations4).
Therefore if at some point y we have |𝜕A(y)| ≳ 𝜇, it is true in its

𝜖(𝜇h𝜅−𝟣)𝟣−𝛿-vicinity (provided 𝜇 ≤ 𝜅h−𝟣) and then

‖𝜕A‖𝟤 ≳ 𝜇𝟤(𝜇h𝜅−𝟣)𝟥(𝟣−𝛿)

and we conclude that

𝜇𝟤(𝜇h𝜅−𝟣)𝟥(𝟣−𝛿) ≤ C𝜅h𝟤M ⇐⇒ 𝜇𝟧−𝟥𝛿 ≤ C𝜅𝟦−𝟥𝛿h−𝟣+𝟥𝛿M

and one can see easily that (27.2.29) holds due to (27.2.21) and assumption
h−𝟣 ≤ M ≲ h−𝟥.

On the other hand, if 𝜇 ≥ 𝜅h−𝟣 then we need to take 𝜖-vicinity and then
𝜇𝟤 ≤ C𝜅Mh𝟤 ≤ Ch

𝟣
𝟤 where we used (27.2.21) again. Therefore (27.2.29) has

been proven.

Remark 27.2.9. (i) It is not clear if it is possible to generalize this theory
to arbitrary d ≥ 2 with the magnetic field energy given by

(27.2.30)
1

𝜅hd−𝟣

∫︁ (︀
|𝜕A|𝟤 − |∇ · A|𝟤

)︀
dx .

4) Actually we can slightly improve this statement.



27.2. LOCAL SEMICLASSICAL TRACE ASYMPTOTICS 217

Surely one should use generalized Pauli matrices σj in the definition of the
operator: for d = 2 one can prove that E(A) is bounded from below and a
minimizer exists; for d = 4 one can prove that E(A) is bounded from below
if 𝜅 ≤ 𝜖𝟢h; especially problematic is the case d ≥ 5 since then A ∈ H𝟣 does
not guarantee enough regularity.

(ii) Therefore while arguments of Subsection 27.2.2 below remain valid for
d ≥ 4, so far they remain conditional (if a minimizer exists and satisfies
some crude estimates).

27.2.2 Microlocal Analysis Unleashed

Sharp Estimates

Now we can unleash the full power of microlocal analysis but we need to
extend it to our framework. It follows by induction from (27.2.28)–(27.2.29)
and the arguments we used to derive these estimates that

(27.2.31) ‖𝜕A‖Cn−𝛿 ≤ Cn𝜅h−𝟣−n ∀n ∈ ℤ+,

so A is “smooth” in 𝜀 = h scale while for rough microlocal analysis as in
Section 2.3 one needs at least 𝜀 = Ch| log h|. We consider in this section
arbitrary d ≥ 2; see however Remark 27.2.9.

Proposition 27.2.10. For a commutator of a pseudodifferential operator
with a smooth symbol and C𝜃+𝟣-function A(x) a usual commutator formula
holds modulo O(h𝜃+𝟣|||𝜕A|||𝜃) for any non-integer 𝜃 > 0 where

(27.2.32) |||f |||𝜃 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁

𝛼:|𝛼|=𝜃

sup
x

|𝜕𝛼f (x)| 𝜃 ∈ ℤ+,

∑︁
𝛼:|𝛼|=⌊𝜃⌋

sup
x ̸=y

|x − y |⌊𝜃⌋−𝜃 · |𝜕𝛼f (x)− 𝜕𝛼f (y)| 𝜃 /∈ ℤ+.

Proof. Easy proof is left to the reader.

Proposition 27.2.11. Assume that

‖𝜕V ‖C(B(𝟢,𝟤)) ≤ C𝟢(27.2.33)

and

𝜇 := ‖𝜕A‖C(B(𝟢,𝟤)) ≤ C𝟢.(27.2.34)

Let U(x , y , t) be the Schwartz kernel of e ih−𝟣tHA,V . Then for T ≍ 1
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(i) Estimate

(27.2.35) ‖Ft→h−𝟣𝜏𝜒T (t)(hDx)
𝛼(hDy )

𝛽𝜓𝟣(x)𝜓𝟤(y)U‖ ≤ Chs

holds for all 𝛼 : |𝛼| ≤ 2, 𝛽 : |𝛽| ≤ 2, s and all 𝜓𝟣,𝜓𝟤 ∈ C∞
𝟢 (B(0, 1)), such

that dist(supp(𝜓𝟣), supp(𝜓𝟤)) ≥ C𝟢T and 𝜏 ≤ c𝟢; here ‖.‖ means an operator
norm from L𝟤 to L𝟤.

(ii) Estimate

(27.2.36) ‖Ft→h−𝟣𝜏𝜒T (t)(hDx)
𝛼(hDy )

𝛽𝜙𝟣(hDx)𝜙𝟤(hDy )U‖ ≤

Chs + Ch𝜃
(︀
|||A|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀
holds for all 𝛼 : |𝛼| ≤ 2, 𝛽 : |𝛽| ≤ 2, s and all 𝜙𝟣,𝜙𝟤 ∈ C∞

𝟢 , such that
dist(supp(𝜙𝟣), supp(𝜙𝟤)) ≥ C𝟢T , and 𝜏 ≤ c𝟢.

(iii) If also in B(0, 2)

(27.2.37) 𝜖𝟢 ≤ |V | ≤ c

then for a small constant T = 𝜖 estimate

(27.2.38) ‖Ft→h−𝟣𝜏𝜒T (t)(hDx)
𝛼(hDy )

𝛽U‖ ≤
Chs + Ch𝜃

(︀
|||A|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀
holds for all 𝛼 : |𝛼| ≤ 2, 𝛽 : |𝛽| ≤ 2, s and all 𝜓𝟣,𝜓𝟤 ∈ C∞

𝟢 (B(0, 1)), such
that diam(supp(𝜓𝟣) ∪ supp(𝜓𝟤)) ≤ 𝜖𝟢T and |𝜏 | ≤ 𝜖.

Proof. Let u = e ith−𝟣H f with arbitrary f ∈ L𝟤.

(i) Statement (i) is easily proven by the same arguments as in the proof
of Theorem 2.1.2: we consider just usual function 𝜑(x) and operators of
multiplication like χ(𝜑(x)) so there are no “bad” commutators due to non-
smoothness of A or V .

(ii) Statement (ii) is also proven by the same arguments; however in this case
𝜑 = 𝜑(x , 𝜉) so we need to involve “bad” commutators but their contributions
are bounded by

C‖Q𝟣u‖ ·
(︁

h𝟣+𝜃
(︀
|||A|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀
‖u‖+ h𝟣+𝛿‖Q ′u‖

)︁
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in the right-hand expression while the left-hand expression is 𝜖h‖Q𝟣u‖𝟤
where Q, Q𝟣, and Q ′ are operators with symbols χ(𝜑(x , 𝜉)), χ𝟣(𝜑(x , 𝜉)), and
χ𝟣(𝜑(x , 𝜉)− 𝜂) respectively, 𝜂 > 0 is an arbitrarily small constant (so the
latter symbol has a bit larger support than the former one), 𝛿 > 0 is a small

exponent, χ𝟣(t) = (−χ′(t))
𝟣
𝟤 , and f.e. χ(t) = e−|t|−𝟣

for t < 0, χ(t) = 0 for
t ≥ 0.

Therefore we conclude that

‖Qu‖ ≤ Ch𝜃
(︀
|||A|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀
‖u‖+ Ch𝛿‖Q ′u‖

and similarly we can estimate ‖Q ′u‖ with ‖Q ′′u‖ in the right-hand expression
etc and thus we conclude that

‖Qu‖ ≤ Ch𝜃
(︀
|||A|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀
‖u‖+ Chs‖u‖

which is what we need.

(iii) Statement (iii) is easily proven by the same arguments as in the proof
of Theorem 2.1.2: we consider just usual function 𝜑(x) and operators of
multiplication like χ(𝜑(x)) so there are no “bad” commutators due to non-
smoothness of A or V . However we need to consider a contribution of u
which is not confined to the small vicinity of (y , 𝜂) and we need Statement (ii)
for this so the last term in the right-hand expression of (27.2.38) is inherited.

We leave easy details to the reader.

Remark 27.2.12. In Proposition 27.2.11

(i) Statement (i) means the finite propagation speed with respect to x .

(ii) Statement (ii) means the finite propagation speed with respect to 𝜉
and the last term in the right-hand expression of (27.2.36) is due to the
non-smoothness of A and V .

(iii) Statement (iii) means that under assumption (27.2.37) there actually
is a propagation with respect to x .

(iv) So far we have not assumed that V is very smooth function; we actually
do not need it at all: it is sufficient to assume that 𝜕V is very smooth in
the microscale 𝜀 = h𝟣−𝛿; one can actually invoke more delicate arguments of
the proof of Theorem 2.3.1 and deal with microscale 𝜀 = Ch| log h|.
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Therefore in the framework of Proposition 27.2.11(iii) estimate

(27.2.39) |Ft→h−𝟣𝜏𝜒T (t)
(︀
(hDx)

𝛼(hDy )
𝛽U(x , y , t)

)︀⃒⃒
x=y

| ≤

Ch𝟣−d+sT−s + CT 𝟤h−d+𝜃
(︀
|||A|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀
holds for all 𝛼 : |𝛼| ≤ 2, 𝛽 : |𝛽| ≤ 2, s for T = 𝜖 and |𝜏 | ≤ 𝜖 where as usual
𝜒 ∈ C∞

𝟢 ([−1,−𝟣
𝟤
] ∪ [𝟣

𝟤
, 1]), 𝜒T (t) = 𝜒(t/T ).

Let us consider T ∈ (Ch, 𝜖); then we apply the standard rescaling
t ↦→ tT−𝟣, x ↦→ xT−𝟣, h ↦→ hT−𝟣 and assumptions (27.2.33), (27.2.34) are
replaced by weaker assumptions

T‖𝜕V ‖C(B(x ,𝟣)) ≤ C𝟢(27.2.33)′

and

T‖𝜕A‖C(B(x ,𝟣)) ≤ C𝟢.(27.2.34)′

Further, |||A|||𝜃+𝟣 and |||V |||𝜃+𝟣 acquire factor T 𝜃+𝟣.
Furthermore, since U(x , y , t) is a density with respect to y we need to

add factor T−d to the right-hand expression and due to Ft→h−𝟣𝜏 we need to
add another factor T and after these substitution and multiplications we
arrive to

Proposition 27.2.13. Let h ≤ T ≤ 𝜖 and assumptions (27.2.33)′, (27.2.34)′

and (27.2.37) be fulfilled. Then estimate (27.2.39) holds.

Next we apply our standard arguments:

Proposition 27.2.14. In the framework of Proposition 27.2.13 let 𝜒̄ ∈
C∞
𝟢 ([−1, 1]). Then the following estimates hold:

(27.2.40) |Ft→h−𝟣𝜏

[︀
𝜒̄T (t)

(︀
(hDx)

𝛼(hDy )
𝛽U(x , y , t)

)︀]︀⃒⃒
x=y

| ≤

Ch𝟣−d + CT 𝟤h−d+𝜃
(︀
|||A|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀
and

(27.2.41) |
[︀(︀
(hDx − A(x)) · σ

)︀𝛼(︀
(hDy − A(y)) · σ

)︀𝛽
e(x , y , t)

]︀⃒⃒
x=y

−

Weyl𝛼,𝛽(x)| ≤

Ch𝟣−d
(︀
1+‖𝜕A‖C(B(x ,𝟣))+‖𝜕V ‖C(B(x ,𝟣))

)︀
+Ch−d+ 𝟣

𝟤
(𝜃+𝟣)

(︀
|||A|||𝜃+𝟣+ |||V |||𝜃+𝟣

)︀ 𝟣
𝟤
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where

Weyl𝛼,𝛽(x) := const h−d

∫︁
{H(x ,𝜉)≤𝜏}

(︀
(𝜉 − A(x)) · σ

)︀𝛼+𝛽
d𝜉(27.2.42)

is the corresponding Weyl expression and

H(x , 𝜉) =
(︀
(𝜉 − A(x)) · σ

)︀𝟤 − V (x);(27.2.43)

in particular Weyl𝛼,𝛽(x) = 0 for |𝛼|+ |𝛽| = 1.

Proof. Obviously, the summation of (27.2.39) over C𝟢h ≤ |t| ≤ T and a
trivial estimate by Ch𝟣−d of the contribution of the interval |t| ≤ C𝟢h implies
(27.2.40).

Then the standard Tauberian arguments imply that the left-hand ex-
pression of (27.2.41) does not exceed the right-hand expression of (27.2.40),
divided by T , i.e.

CT−𝟣h𝟣−d + CTh−d+𝜃
(︀
|||A|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀
.

Optimizing with respect to T ≤ 𝜖, such that (27.2.33)′, (27.2.34)′ hold, we
pick up T = T * with

(27.2.44) T * =

𝜖min
(︁
1,

(︀
‖𝜕A‖C(B(x ,𝟣))+‖𝜕V ‖C(B(x ,𝟣))

)︀−𝟣
, h− 𝟣

𝟤
(𝜃−𝟣)

(︀
|||A|||𝜃+𝟣+|||V |||𝜃+𝟣

)︀− 𝟣
𝟤

)︁
.

Meanwhile the Tauberian formula and (27.2.39) imply that the contribution
of the interval {t : |t| ≍ T} with h ≤ T ≤ T * to the Tauberian expression
does not exceed the right-hand expression of (27.2.39) divided by T , i.e.

Ch𝟣−d+sT−s−𝟣 + CTh−d+𝜃‖𝜕A‖C𝜃 ;

summation over T* := h𝟣−𝛿 ≤ T ≤ T * results in the right-hand expression
of (27.2.41).

So, we need to calculate only the contribution of {t : |t| ≤ T*} but one
can see easily that modulo indicated error it coincides with Weyl𝛼,𝛽.

Remark 27.2.15. For d ≥ 3 one can skip assumption (27.2.37).

Indeed, we can apply the standard rescaling technique: x ↦→ xℓ−𝟣,
h ↦→ ℏ = hℓ−

𝟥
𝟤 , A ↦→ Aℓ−

𝟣
𝟤 , V ↦→ V ℓ−𝟣 with ℓ = max(𝜖|V |𝜈−𝟣, h

𝟤
𝟥𝜈−

𝟣
𝟥 ),

𝜈 = (1 + |𝜕V |C); see Section 5.2.
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Application

Let us apply developed technique to estimate a minimizer.

Proposition 27.2.16. Let 𝜅 ≤ c and let A be a minimizer. Let

(27.2.45) 𝜇 := ‖𝜕A‖C ≤ Ch−𝟣+𝛿.

For d = 2 let assumption (27.2.37) be also fulfilled. Then for 𝜃 ∈ (1, 2)
estimate

(27.2.46) ‖𝜕A‖C𝜃−𝟣 + h𝜃−𝟣‖𝜕A‖C𝜃 ≤

C𝜅
(︀
1 + ‖V ‖C𝟣 + h

𝟣
𝟤
(𝜃−𝟣)‖V ‖

𝟣
𝟤

C𝜃+𝟣

)︀
+ C‖𝜕A‖′

holds with

(27.2.47) ‖𝜕A‖′ := sup
y

‖𝜕A‖L𝟤(B(y ,𝟣)).

Proof. Consider expression for ΔA. According to equation (27.2.14) and
Proposition 27.2.14 (|ΔA| + |h𝜕ΔA|) does not exceed the right-hand
expression of (27.2.41) multiplied by C𝜅hd−𝟣 i.e.

(27.2.48) ‖ΔA‖C + ‖h𝜕ΔA‖C ≤

C𝜅
(︁
1 + |𝜕A|C + |𝜕V |C + h

𝟣
𝟤
(𝜃−𝟣)‖𝜕A‖

𝟣
𝟤

C𝜃 + h
𝟣
𝟤
(𝜃−𝟣)‖𝜕V ‖

𝟣
𝟤

C𝜃

)︁
,

where we replaced |||A|||𝜃+𝟣 and |||V |||𝜃+𝟣 by larger ‖𝜕A‖C𝜃 and ‖𝜕V ‖C𝜃 respec-
tively.

Then the regularity theory for elliptic equations implies that

(27.2.49) For any 𝜃′ ∈ (1, 2) h𝜃
′−𝟣‖𝜕A‖C𝜃′ does not exceed this expression

(27.2.48) plus C‖𝜕A‖′.

Observe that that ‖𝜕A‖C does not exceed (𝜖‖𝜕A‖C𝜃 + C ′
𝜖‖𝜕A‖′) with arbi-

trarily small constant 𝜖 > 0 and therefore

(27.2.50) h𝜃−𝟣‖𝜕A‖C𝜃 + 𝜖−𝟣‖𝜕A‖C

does not exceed expression (27.2.48) plus C ′
𝜖‖𝜕A‖′ where we used (27.2.49)

for 𝜃′ = 𝜃.
Comparing (27.2.50) and (27.2.48) we conclude that for 𝜅 ≤ c and

sufficiently small constant 𝜖 > 0 we can eliminate in the derived inequality
both contributions of 𝜕A to (27.2.48) thus we arrive to (27.2.46).
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Having this strong estimate to A allows us to prove

Theorem 27.2.17. Let 𝜅 ≤ c, (27.2.45) be fulfilled, and let d ≥ 3. Assume
that

‖V ‖C𝜃+𝟣 ≤ c(27.2.51)

with 𝜃 ∈ (1, 2). Then

E* = Weyl𝟣 + O(h𝟤−d)(27.2.52)

and a minimizer A satisfies

‖𝜕A‖ ≤ C𝜅
𝟣
𝟤 h

𝟣
𝟤(27.2.53)

and

‖𝜕A‖C𝜃−𝟣 + h𝜃−𝟣‖𝜕A‖C𝜃 ≤ C𝜅
𝟣
𝟤 h

𝟣
𝟤 + C𝜅.(27.2.54)

Proof. (a) In virtue of (27.2.40) the Tauberian error when calculating
Tr(H−

A,V ) does not exceed the right-hand expression of (27.2.40) multiplied
by CT−𝟤 i.e.

(27.2.55) Ch𝟣−dT−𝟤 + Ch−d+𝜃
(︀
|||A|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀
.

Assumption (27.2.51) allows us to simplify this expression and take T ≍
(1 + 𝜇)−𝟣; applying estimate (27.2.46) we conclude that the Tauberian error
does not exceed

(27.2.56) C (1 + 𝜇)𝟤h𝟤−d + C (𝜅+ ‖𝜕A‖′)h𝟤−d .

We claim that

(27.2.57) Weyl error5) when calculating Tr(H−
A,V ) also does not exceed

(27.2.56).

Then

(27.2.58) E(A) ≥
Weyl𝟣 − C (1 + 𝜇)𝟤h𝟤−d − C (𝜅+ ‖𝜕A‖′)h𝟤−d + 𝜅−𝟣h𝟣−d‖𝜕A‖𝟤 ≥

Weyl𝟣 − Ch𝟤−d +
1

2𝜅
h𝟣−d‖𝜕A‖𝟤

5) I.e. error when we replace Tauberian expression by Weyl expression.
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because 𝜇 ≤ C‖𝜕A‖′ + 1 due to (27.2.46) and assumption (27.2.51). This
implies an estimate of E* from below and combining with the estimate
E* ≤ E*(0) = Weyl𝟣 + Ch𝟤−d from above we arrive to (27.2.52) and (27.2.53)
and then to (27.2.54) due to (27.2.46) and assumption (27.2.51).

(b) To prove (27.2.57) let us plug A𝜀 instead of A into e𝟣(x , x , 0). Then in
virtue of the rough microlocal analysis the contribution to Weyl error of
the interval {t : T* ≤ |t| ≤ 𝜖} with T* = h𝟣−𝛿 would be negligible and the
contribution of the interval {t : |t| ≤ T*} would be Weyl𝟣 + O(h𝟤−d).

(c) Now let us calculate an error which we made plugging A𝜀 instead of
A into e𝟣(x , x , 0). Obviously it does not exceed Ch−d‖A − A𝜀‖C and since
‖A − A𝜀‖C ≤ C𝜀𝜃+𝟣‖𝜕A‖C𝜃 this error does not exceed Ch𝜃+𝟣−d−𝟦𝛿‖𝜕A‖C𝜃 ,
which is marginally worse than what we are looking for.

However it is good enough to recover a weaker version of (27.2.52) and
(27.2.53) with an extra factor h−𝛿𝟣 in their right-hand expressions. Then
(27.2.46) implies a bit weaker version of (27.2.54) and in particular that its
left-hand expression does not exceed C .

Knowing this, let us consider the two term approximation. With the
above knowledge one can prove easily that the error in two term approxima-
tion does not exceed Ch𝟥−d−𝛿′ with 𝛿′ = 100𝛿.

Then the second term in the Tauberian expression is

(27.2.59)

∫︁ (︀
(HA,V − HA𝜀,V )e

𝖳
(𝜀)(x , y , 0)

)︀⃒⃒
y=x

dx ,

where subscript (𝜀) means that we plugged A𝜀 instead of A and superscript
𝖳 means that we consider Tauberian expression with T = T * = 𝜖. But then
the contribution of the interval {t : T* ≤ |t| ≤ T *} is also negligible and
modulo Ch𝜃+𝟤−d−𝟦𝛿‖𝜕A‖C𝜃 we get a Weyl expression. However

(27.2.60) (HA,V − HA𝜀,V ) = −2(𝜉 − A𝜀) · (A − A𝜀) + |A − A𝜀|𝟤.

Observe that the first term in the right-hand expression kills the Weyl
expression since an integrand is odd with respect to (𝜉 − A𝜀) while the
second term as one can see easily makes it smaller than Ch𝟥−d−𝛿′ . Therefore
(27.2.57) has been proven.

Remark 27.2.18. (i) For d = 2 we cannot drop assumption (27.2.37) at this
stage we did it for d ≥ 3. However results of the next section allow us to
cure this problem using the partition-and-rescaling technique.
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(ii) Actually for V ∈ C𝟤,𝟣 we have an estimate

(27.2.61) |𝜕A(x)− 𝜕A(y)| ≤ C𝜅|x − y |(| log |x − y ||+ 1) + C𝜇.

Combining with (27.2.53) we conclude that

(27.2.62) ‖𝜕A‖C ≤ C𝜅(d+𝟣)/(d+𝟤)| log h|d/(d+𝟤)h𝟣/(d+𝟤).

(iii) If (27.2.51) holds for (h𝜕)mV with m ∈ ℤ+ then (27.2.53) and (27.2.53)
also hold for (h𝜕)mA instead of A; further, if (h𝜕)mV ∈ C𝟤,𝟣 then (27.2.61)
and (27.2.62) also hold for (h𝜕)mA instead of A.

Classical Dynamics and Sharper Estimates

Now we want to improve the remainder estimate O(h𝟤−d) to o(h𝟤−d). Sure,
we need to impose condition to the classical dynamical system and since
|𝜕A| = O(h𝛿) with 𝛿 > 0 due to (27.2.62), it should be dynamical system
associated with the Hamiltonian flow generated by H𝟢,V :

(27.2.63) The set of periodic points of the dynamical system associated with
Hamiltonian flow generated by H𝟢,V has measure 0 on the energy level 0.

Recall that on the energy level {(x , 𝜉) : H𝟢,V (x , 𝜉) = 𝜏} a natural density
dµ𝜏 = dxd𝜉 : dH |H=𝜏 is defined.

The problem is we do not have a quantum propagation theory for HA,V

as A is not a “rough” function (i.e. smooth in microscale 𝜀). However
it is a rather regular function, almost C𝟤, and (A − A𝜀) is rather small:
|A−A𝜀| ≤ 𝜂 := Ch𝟤−𝟥𝛿 and |𝜕(A−A𝜀)| ≤ Ch𝟣−𝟥𝛿 and therefore we can apply
a method of successive approximations with the unperturbed operator HA𝜀,V

as long as 𝜂T/h ≤ h𝜎 i.e. as T ≤ h𝟣−𝟦𝛿. Here we, however, have no use for
such large T and consider T = O(h−𝛿).

Consider

(27.2.64) Ft→h−𝟣𝜏𝜒T (t)U(x , y , t),

and consider terms of successive approximations. Then if we forget about
microhyperbolicity arguments the first term will be O(h−dT ), the sec-
ond term O(h−𝟣−d𝜂T 𝟤) = O(h𝟣−d−𝛿′) and the error term O(h−𝟤−d𝜂𝟤T 𝟥) =
O(h𝟤−d−𝛿′′).
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Therefore since our goal is O(h𝟣−d) we need to consider the first two
terms only. The first term is the same expression (27.2.64) with U replaced
by U(𝜀).

Consider the second term, it corresponds to U ′
(𝜀)(x , y , t) which is the

Schwartz kernel of operator

U′
(𝜀) := ih−𝟣

∫︁ t

𝟢

e i(t−t′)h−𝟣HA𝜀,V
(︀
HA,V − HA𝜀,V

)︀
e it′h−𝟣HA𝜀,V dt ′(27.2.65)

and then

Tr
(︀
U′

(𝜀)𝜓
)︀
= ih−𝟣 Tr

(︁(︀
HA,V − HA𝜀,V

)︀
e ih−𝟣tHA𝜀,V𝜓𝟣(t)

)︁
(27.2.66)

where

𝜓𝟣(t) :=

∫︁ t

𝟢

e ih−𝟣t′HA𝜀,V𝜓e−ih−𝟣t′HA𝜀,V dt ′

is h-pseudodifferential operator with a rough symbol and 𝜓𝟣(t) ∼ t.
Really, one can prove easily studying first the Hamiltonian flow equation

and then the transport equations that 𝜓t := e ih−𝟣tHA𝜀,V𝜓e−ih−𝟣tHA𝜀,V is a h-
pseudodifferential operator with a rough symbol and its corresponding norm
is bounded.

Note that

ih−𝟣Ft→h−𝟣𝜏e ih−𝟣tHA𝜀,V𝜓𝟣(t) = (2𝜋)

∫︁ (︀
Ft→h−𝟣𝜏 ′e

ih−𝟣tHA𝜀,V
)︀
f̂ (h−𝟣(𝜏 − 𝜏 ′)) d𝜏 ′

with f̂ = Ft→𝜏 ft , ft = 𝜒T (t)𝜓
𝟣(t) and therefore (27.2.65)–(27.2.66) imply

that

(27.2.67) |Ft→h−𝟣𝜏𝜒T (t) Tr U
′
(𝜀)𝜓| ≤ C𝜂T 𝟤h−d

where in comparison with the trivial estimate we gained the factor h.
We can plug here T ′ ∈ (T*,T ) instead of T and, taking summation by

T ′ from T* = 𝜖 to T , we conclude that estimate (27.2.67) also holds for
𝜒T (t) replaced by

(︀
𝜒̄T (t)− 𝜒̄T*(t)

)︀
(provided 𝜒̄ = 1 on (−𝟣

𝟤
, 𝟣
𝟤
)) and since

𝜂T 𝟤 ≤ h𝟣+𝛿 for T ≤ h−𝛿 we see that the right-hand expression (27.2.67)
does not exceed Ch𝟣−d+𝛿.

On the other hand, our traditional methods imply that

(27.2.68) |Ft→h−𝟣𝜏𝜒T (t) Tr
(︀
e ith−𝟣HA𝜀,V𝜓

)︀
| ≤ Ch𝟣−dTµ(ΠT ,𝜁) + CT ,𝜁h

𝟣−d+𝛿

where ΠT is the set of points on energy level 0, periodic with periods not
exceeding T , ΠT ,𝜁 is its 𝜁-vicinity, 𝜁 > 0 is arbitrarily small; recall that for
d = 2 we assume that condition (27.2.37) is fulfilled.
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Here again we can plug any T ′ ∈ (T*,T ) instead of T and after sum-
mation with respect to T ′ we conclude that (27.2.68) also holds with 𝜒T (t)
replaced by

(︀
𝜒̄T (t)− 𝜒̄T*(t)

)︀
.

Combining with estimate for
(︀
e ith−𝟣HA𝜀,V − e ith−𝟣HA𝜀,V

)︀
we conclude that

|Ft→h−𝟣𝜏

(︀
𝜒̄T (t)− 𝜒̄T*(t)

)︀
Tr

(︀
e it′h−𝟣HA,V𝜓

)︀
| ≤

Ch𝟣−dTµ(ΠT ,𝜁) + CT ,𝜁h
𝟣−d+𝛿

and since
|Ft→h−𝟣𝜏 𝜒̄T*(t) Tr

(︀
e it′h−𝟣HA,V𝜓

)︀
| ≤ Ch𝟣−d

we conclude that

(27.2.69) |Ft→h−𝟣𝜏 𝜒̄T (t) Tr
(︀
e it′h−𝟣HA,V𝜓

)︀
| ≤

Ch𝟣−d + Ch𝟣−dTµ(ΠT ,𝜁) + CT ,𝜁h
𝟣−d+𝛿.

Then the Tauberian error does not exceed the right-hand expression of
(27.2.69) multiplied by ChT−𝟤 and it is less than CT−𝟣h𝟤−d .

Consider now the Tauberian expression and again apply the two-term ap-
proximation for e ih−𝟣tHA,V considering e ih−𝟣tHA𝜀,V as an unperturbed operator;
then the error will be less than Ch𝟤−d+𝛿.

Consider the second term after taking trace; it is O(h𝟤−d−𝟦𝛿), so it is just
slightly too large. Further, if 𝜓 = I one can calculate it easily and observe
that it is O(h𝟤−d+𝛿) provided V ∈ C𝟤,𝟣.

Finally, the first term is what we get for e ih−𝟣tHA𝜀,V and in virtue of rough
microlocal analysis the contribution of the interval {t : T* ≤ |t| ≤ T} does
not exceed Ch𝟤−dµ(ΠT ,𝜁) + CT ,𝜁h

𝟤−d+𝛿 and the contribution of the interval
{t : |t| ≤ T*} is Weyl𝟣 + O(h𝟤−d+𝛿).

Then we arrive to

Theorem 27.2.19. Let 𝜅 ≤ c, (27.2.45) and (27.2.51) be fulfilled. Further-
more, let condition (27.2.63) be fulfilled 6). Then

E* = Weyl*𝟣 + o(h𝟤−d)(27.2.70)

where

Weyl*𝟣 = Weyl𝟣 + 𝜘h𝟤−d

∫︁
V

d
𝟤
+ΔV dx(27.2.71)

calculated in the standard way for H𝟢,V and a minimizer A satisfies similarly
improved versions of (27.2.53) and (27.2.54).

6) I.e. µ𝟢(𝝥∞) = 𝟢.
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Remark 27.2.20. (i) Recall that for d = 2 so far we assume (27.2.37). How-
ever we need it only to estimate 𝜕A. Indeed, even in the case of very
degenerate potential V the “magnetic” correction will be small since |𝜕A| is
small.

(ii) Under stronger assumptions to the Hamiltonian flow one can recover
better estimates like O(h𝟤−d | log h|−𝟤) or even O(h𝟤+𝛿−d) (like in Subsubsec-
tion 4.5.4.3 Sharper Remainder Estimates).

(iii) We leave to the reader to calculate the numerical constants 𝜘* here
and in (27.2.76) below, 𝜘 = 𝜘𝟣 − 𝟤

d
𝜘𝟤.

(iv) However, even if 𝜓 ̸= I we can observe that it is sufficient to consider
only principal terms and then the second term in approximations is also
O(h𝟤−d+𝛿) provided V ∈ C𝟤,𝟣 as long as principal symbol of 𝜓(x) is even
with respect to 𝜉, in particular, if 𝜓 = 𝜓(x).

27.2.3 Local Theory

Localization and Estimate from above

The results of the previous Subsection 27.2.2 have two critical shortcomings:
first, they impose the excessive initial requirement (27.2.21) to 𝜅 as we need
to start from M ≤ ch−𝟥; second, they are not local. However, curing the
second shortcoming, we make the way to addressing the first one as well,
using the partition and rescaling technique.

We can localize Tr−(H) = Tr(H−), which is the first term in E(A),
either in our traditional way as Tr(H−𝜓𝟤) or in the way favored by some
mathematical physicists7): namely, we take Tr−(𝜓H𝜓) where in both cases
𝜓 ∈ C∞

𝟢 (B(0, 𝟣
𝟤
)), 0 ≤ 𝜓 ≤ 1 and some other conditions will be imposed to

it later. Observe that

(27.2.72) Tr−(𝜓H𝜓) ≥ Tr(𝜓H−𝜓) =

∫︁
e𝟣(x , x , 0)𝜓𝟤(x) dx .

Really, let us decompose operator H = Hθ(−H) + H(1 − θ(−H)), where
θ(𝜏−H) is a spectral projector of H , and therefore in the operator sense H ≥
H− := Hθ(−H) and 𝜓H𝜓 ≥ 𝜓H−𝜓, and therefore all negative eigenvalues

7) See f. e. L. Erdös, S. Fournais. and J. P. Solovej [4].
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of 𝜓H𝜓 are greater than or equal to eigenvalues of the negative operator
𝜓H−𝜓, and then

(27.2.73) Tr−(𝜓H𝜓) ≥ Tr(𝜓H−𝜓) = Tr
(︁∫︁ 𝟢

−∞
𝜏d𝜏θ(𝜏 − H)𝜓𝟤

)︁
,

which is exactly the right-hand expression of (27.2.72).

Remark 27.2.21. Each approach has its own advantages.

(i) In particular, no need to localize A (see (ii)) and the fact that Proposi-
tion 27.2.5 obviously remains true are advantages of Tr−(𝜓H𝜓)-localization.

(ii) Further, sinces Tr−(𝜓H𝜓) does not depend on A outside of B(0, 𝟥
𝟦
) we

may assume that A = 0 outside of B(0, 1). Really, we can always subtract a
constant from A without affecting traces and also cut-off A outside of B(0, 1)
in a way such that A′ = A in B(0, 𝟥

𝟦
) and ‖𝜕A′‖ ≤ c‖𝜕A‖B(𝟢,𝟣); the price is

to multiply 𝜅 by c−𝟣–as long as principal parts of asymptotics coincide.

(iii) On the other hand, additivity rather than sub-additivity of (27.2.88) and
the trivial estimate from the above are advantages of Tr(𝜓H−𝜓)-localization;
therefore it is more advantageous.

(iv) In the next Chapter 28 (in Section 28.2) we will use more Tr−(𝜓H𝜓)-
localization for preliminary estimates from below and simplify many argu-
ments of this Section. We apply these modifications and simplifications to
this Section in the final version of the Book.

We will use both methods and here we provide an upper estimate for the
larger expression Tr−(𝜓H𝜓) and a lower estimate for the lesser expression
Tr(𝜓H−𝜓). Let us estimate from the above:

Proposition 27.2.22. Assume that V ∈ C𝟤,𝟣, d ≥ 2. Let ℓ(x) be a scaling
function8) and 𝜓 be a function such that |𝜕𝛼𝜓| ≤ c𝜓ℓ−𝜎|𝛼| for all 𝛼 : |𝛼| ≤ 2
and |𝜓| ≤ cℓ𝜎(𝟣+𝛿) with 𝜎 > 1 and 𝛿 > 0 9).

Then, if A = 0,

Tr−(𝜓H𝜓) =

∫︁
Weyl𝟣(x)𝜓

𝟤(x) dx + O(h𝟤−d)(27.2.74)

8) I.e. ℓ ≥ 𝟢 and |𝜕ℓ| ≤ 𝟣
𝟤 .

9) Such compactly supported functions obviously exist.
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and under assumption (27.2.63)

Tr−(𝜓H𝜓) =

∫︁
Weyl*𝟣(x)𝜓

𝟤(x) dx + o(h𝟤−d)(27.2.75)

with

Weyl*𝟣(x) = Weyl𝟣(x) + 𝜘𝟣h−𝟣V
d
𝟤
+ΔV + 𝜘𝟤h−𝟣V

d
𝟤
−𝟣

+ |∇V |𝟤(27.2.76)

calculated in the standard way for H𝟢,V .

Proof. Let us consider H̃ = 𝜓H𝜓 as a Hamiltonian and let ẽ(x , y , 𝜏) be the
Schwartz kernel of its spectral projector. Then

(27.2.77) Tr−(𝜓H𝜓) =

∫︁
ẽ𝟣(x , x , 0) dx =

∑︁
j

∫︁
ẽ𝟣(x , x , 0)𝜓𝟤

j dx ,

where 𝜓𝟤
j form a partition of unity in ℝd and we need to calculate the right

hand expression. The problem is that H̃ is not a usual Schrödinger operator
because of the degenerating factor 𝜓 on each side.

Consider first an 𝜖ℓ-admissible partition of unity in B(0, 1). Let us
consider 𝛾-scale in such element where 𝛾 = 𝜖ℓ𝜎 and we will use 1-scale
in 𝜉. Then after rescaling x ↦→ x𝛾−𝟣 the semiclassical parameter rescales
h ↦→ h𝗇𝖾𝗐 = h𝛾−𝟣 and the contribution of each 𝛾-subelement to a semiclassical
remainder does not exceed C𝜓𝟤(h/𝛾)𝟤−d with 𝜓 ≤ 𝛾𝟣+𝛿, having the same
magnitude over element as long as 𝛾 ≥ 2h. Then the contribution of ℓ-
element to a semiclassical error does not exceed C𝜓𝟤(h/𝛾)𝟤−d × ℓd𝛾𝟤−d ≍
Ch𝟤−d𝜓𝟤𝛾−𝟤ℓd ≤ Ch𝟤−dℓd+𝟤𝛿.

Note that expression (27.2.77) only increases if we sum only with respect
to elements where ℓ𝜎 ≥ h. Therefore we arrive to estimate

Tr−(𝜓H𝜓) ≤
∫︁

Weyl𝟣(x)𝜓
𝟤(x) dx + Ch𝟤−d ,

where integration is taken over a domain {x : ℓ(x) ≥ h𝟣/𝜎}. Note that we can
extend this integral to ℝd : indeed, it will add negative term with absolute
value not exceeding Ch−d × h𝟤+𝛿 as 𝜓 ≤ h𝟣+𝛿 there and it is absorbed by
the remainder estimate.

Corollary 27.2.23. In the framework of Proposition 27.2.22

E*
𝜓 := inf

A
E𝜓(A) ≤

∫︁
Weyl𝟣(x)𝜓

𝟤(x) dx + Ch𝟤−d(27.2.78)
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and under assumption (27.2.63)

E*
𝜓 ≤

∫︁
Weyl𝟣(x)𝜓

𝟤(x) dx + Ch𝟤−d(27.2.79)

with

E𝜓(A) := Tr−(𝜓H𝜓) +
1

𝜅h𝟤

∫︁
|𝜕A|𝟤 dx .(27.2.80)

Proof. Indeed, we just pick A = 0.

Estimate from below

Now let us estimate redefined E𝜓(A),

(27.2.81) E𝜓(A) :=

∫︁
e𝟣(x , x , 0)𝜓𝟤(x) dx +

1

𝜅hd−𝟣

∫︁
|𝜕A|𝟤 dx ,

from below. However we need an equation for an optimizer and it would be
easier for us to deal with even lesser expression involving 𝜏 -regularization.
Let us rewrite the first term in the right-hand expression in the form∫︁ 𝟢

−∞
𝜙(𝜏/L)𝜏 d𝜏e(x , x , 𝜏) +

∫︁ 𝟢

−∞
(1− 𝜙(𝜏/L))𝜏 d𝜏e(x , x , 𝜏) ≥∫︁ L

−∞

(︁
𝜙(𝜏/L)(𝜏 − L) d𝜏e(x , x , 𝜏) + (1− 𝜙(𝜏/L))𝜏 d𝜏e(x , x , 𝜏)

)︁
,

where 𝜙 ∈ C∞
𝟢 ([−1, 1]) equals 1 in [−𝟣

𝟤
, 𝟣
𝟤
] and let us estimate from below

(27.2.82) E′
𝜓(A) :=

∫︁ (︁∫︁ L

−∞
𝜙(𝜏/L)(𝜏 − L)d𝜏e(x , x , 𝜏)(x)+

(1− 𝜙(𝜏/L))(𝜏 − L) d𝜏e(x , x , 𝜏)
)︁
𝜓𝟤(x) dx +

1

kh𝟣−d

∫︁
|𝜕A|𝟤 dx .

Let us generalize Proposition 27.2.4:

Proposition 27.2.24. Let A be a minimizer of E′
𝜓(A). Then

(27.2.83)
2

𝜅h𝟣−d
ΔAj(x) = Φj :=

Re tr
[︁
σj

(︁
(hD − A)x · σ𝒦(x , y , 𝜏) +𝒦(x , y , 𝜏) t(hD − A)y · σ

)︁]︁⃒⃒⃒
y=x



232 CHAPTER 27. SELF-GENERATED MAGNETIC FIELD

with

𝒦 =

∫︁ L

−∞
SK

[︁
𝜙(𝜏/L)(𝜏 − L) Resℝ(𝜏 − H)−𝟣𝜓𝟤(𝜏 − H)−𝟣+

(1− 𝜙(𝜏/L))𝜏(𝜏 − L) Resℝ(𝜏 − H)−𝟣𝜓𝟤(𝜏 − H)−𝟣
]︁
(x , y) d𝜏 ,

where we use a temporary notation SK[B](x , y) for the Schwartz kernel of
operator B.

Proof. Follows immediately from the proof of Proposition 27.2.4.

Proposition 27.2.25. Let d = 3 and assumptions (27.2.20) and (27.2.21)
be fulfilled. Then for 𝜏 ≤ c

(i) Operator norm in L𝟤 of (hD)k(𝜏 − H)−𝟣 does not exceed C | Im 𝜏 |−𝟣 for
k = 0, 1, 2;.

(ii) Operator norm in L𝟤 of (hD)𝟤
(︀
(hD − A) ·σ

)︀
(𝜏 − H)−𝟣 does not exceed

C | Im 𝜏 |−𝟣 for k = 0, 1, 2.

Proof. Proof follows the same scheme as the proof of Proposition 27.2.6.

Proposition 27.2.26. Let d = 3 and assumptions (27.2.20) and (27.2.21)
be fulfilled. Then |Φ(x)| ≤ Ch−𝟥.

Proof. Let us estimate

(27.2.84) |
∫︁
𝜏𝜙(𝜏/L) Resℝ SK

[︁
Q(𝜏 − H)−𝟣𝜓𝟤(𝜏 − H)−𝟣

]︁
(x , y) d𝜏 |,

where L ≤ c and 𝜙 ∈ C∞
𝟢 ([−1, 1]) and also a similar expression with a

factor (𝜏 − L) instead of 𝜏 ; here either Q = I , or Q = (hDk − Ak)x or
Q = (hDk − Ak)y .

Proposition 27.2.25 implies that the Schwartz kernel of the integrand
does not exceed Ch−𝟥| Im 𝜏 |−𝟤 and therefore expression (27.2.84) does not
exceed CL𝟤 × h−𝟥L−𝟤 = Ch−𝟥.

Then what comes out in Φ from the term with the factor 𝜑(𝜏/h) does
not exceed Ch−𝟥.

Then, representing
(︀
1− 𝜑(𝜏/h)

)︀
as a sum of 𝜙(𝜏/L) with L = 2nh with

n = 0, ... , ⌊| log h|⌋ + c , we estimate the output of each term by Ch−𝟥 and
thus the whole sum by Ch−𝟥| log h|.
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To get rid of the logarithmic factor we use equality

(27.2.85) (𝜏 − H)−𝟣𝜓(𝜏 − H)−𝟣 =

− 𝜕(𝜏 − H)−𝟣𝜓 + (𝜏 − H)−𝟤[h,𝜓](𝜏 − H)−𝟣;

if we plug only the second part, we recover a factor h/L, where h comes from
the commutator and 1/L from the increased singularity; an extra operator
factor in the commutator is not essential. Then summation over partition
results in Ch−𝟥.

Plugging only the first part we do not use the above decomposition but
the equality Resℝ(𝜏 − H)−𝟣 d𝜏 = d𝜏θ(𝜏 − H).

Corollary 27.2.27. Let d = 3, assumptions (27.2.20) and (27.2.21) be
fulfilled and A be a minimizer. Then (27.2.28) and (27.2.29) hold.

Proof. Proof follows the proof of Corollary 27.2.8.

Now we can recover both Proposition 27.2.16 and our both main Theo-
rems 27.2.17 and 27.2.19:

Theorem 27.2.28. Let d = 3 and assumptions (27.2.20) and 𝜅 ≤ c be
fulfilled. Then

(i) The following estimate holds:

(27.2.86) E*
𝜓 −

∫︁
Weyl𝟣(x)𝜓

𝟤(x) dx = O(h𝟤−d)

and and a minimizer A satisfies (27.2.53) and (27.2.54).

(ii) Furthermore, let assumption (27.2.63) be fulfilled (i.e. µ𝟢(Π∞) = 0).
Then

(27.2.87) E*
𝜓 −

∫︁
Weyl*𝟣(x)𝜓

𝟤(x) dx = o(h𝟤−d)

and a minimizer A satisfies similarly improved versions of (27.2.53) and
(27.2.54).

27.2.4 Rescaling

Now we apply the rescaling. We consider only d = 3 here.
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Case 𝜅 ≤ 1

We already have an upper estimate: see Corollary 27.2.23. Let us prove a
lower estimate10). Consider an error

(27.2.88)
(︁∫︁

Weyl𝟣(x)𝜓
𝟤 dx − E𝜓(A)

)︁
+
.

Obviously, Tr− is sub-additive

(27.2.89) Tr−(
∑︁
j

𝜓jH𝜓j) ≥
∑︁
j

Tr−(𝜓jH𝜓j),

and therefore so is E𝜓(A) under assumption that 𝜓j ∈ C𝟤
𝟢(B(xj ,

𝟣
𝟤
ℓj)), where

multiplicity of covering by B(xj , ℓj)) does not exceed C𝟢 and we are allowed
to replace 𝜅 by C𝟣𝜅 in the right-hand expression11).

Then we need to consider each partition element and use a lower estimate
for it. While considering partition we use so called ISM identity : if

(27.2.90)
∑︁
j

𝜓𝟤
j = 1,

we have

(27.2.91) H =
∑︁
j

(︀
𝜓jH𝜓j +

1

2
[[H ,𝜓j ],𝜓j ]

)︀
=

∑︁
j

𝜓j

(︀
H +

1

2

∑︁
k

[[H ,𝜓k ],𝜓k ]
)︀
𝜓j ,

where the second equality is due to the fact that [[H ,𝜓j ],𝜓j ] is an ordinary
function.

In virtue of Proposition 27.2.5, from the very beginning we need to
consider

(27.2.92) M = 𝜅𝛽h−𝟣−𝛼

with 𝛼 = 2, 𝛽 = 0 and 𝜅 ≤ c . But we need to satisfy precondition (27.2.21)
which is then

10) But only for 𝖤𝜓(A) defined by (27.2.80).
11) Really, ‖𝜕A‖𝟤 ≥ c

∑︀
j ‖𝜕Aj‖𝟤 with Aj (x) = (A(x)−Aj (xj ))𝜓

′
j with 𝜓

′
j ∈ C𝟤

𝟢(B(xj ,
𝟩
𝟪ℓj ))

equal 𝟣 in B(xj ,
𝟥
𝟦ℓj)).
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(27.2.93) 𝜅𝛽+𝟣h−𝛼 ≤ c .

Therefore, if condition (27.2.93) is fulfilled with 𝛼 = 0, we conclude that
the final error is indeed O(h−𝟣) or even o(h−𝟣) (under assumption (27.2.63))
without any precondition.

Let precondition (27.2.93) fail. Let us use 𝛾-admissible partition of unity
𝜓𝟤
j with 𝜓j satisfying after rescaling assumptions of Proposition 27.2.22.
Note that rescaling x ↦→ x𝛾−𝟣 results in h ↦→ h𝗇𝖾𝗐 = h𝛾−𝟣 and after

rescaling in the new coordinates ‖𝜕A‖𝟤 acquires factor 𝛾d−𝟤 and thus factor
𝜅−𝟣h−𝟤 becomes 𝜅−𝟣h−𝟤𝛾d−𝟤 = 𝜅−𝟣

𝗇𝖾𝗐h−𝟤
𝗇𝖾𝗐 with 𝜅 ↦→ 𝜅𝗇𝖾𝗐 = 𝜅𝛾.

Then after rescaling precondition (27.2.93) is satisfied provided before
rescaling 𝜅𝛽+𝟣h−𝛼𝛾𝛼+𝛽+𝟣 ≤ c . Thus, let us pick up the largest 𝛾 satisfying
this: 𝛾 = 𝜅−(𝛽+𝟣)/(𝛼+𝛽+𝟣)h𝛼/(𝛼+𝛽+𝟣). Obviously, if before rescaling condition
(27.2.93) fails, then h ≪ 𝛾 ≤ 1.

But then expression (27.2.88) with 𝜓 replaced by 𝜓j does not exceed
Ch−𝟣

𝗇𝖾𝗐 = C (h𝛾−𝟣)−𝟣 and the total expression (27.2.88) does not exceed
C (h𝛾−𝟣)−𝟣𝛾−𝟥 = Ch−𝟣𝛾−𝟤 = C𝜅𝛽

′
h−𝟣−𝛼′

with

𝛽′ = 2(𝛽 + 1)/(𝛼 + 𝛽 + 1), 𝛼′ = 2𝛼/(𝛼 + 𝛽 + 1).

Therefore, actually we can pick up M with 𝛼, 𝛽 replaced by 𝛼′, 𝛽′ and
we have a precondition (27.2.93) with these new 𝛼′, 𝛽′ and we do not need
an old precondition. Repeating the rescaling procedure again, we derive a
proper estimate with again weaker precondition etc.

One can see easily that 𝛼′ + 𝛽′ + 1 = 3 and therefore on each step
𝛼 + 𝛽 + 1 = 3 and we have a recurrent relation for 𝛼′: 𝛼′ = 𝟤

𝟥
𝛼; and

therefore we have sequence for 𝛼 which decays and becomes arbitrarily
small. Therefore precondition (27.2.93) has been reduced to a much weaker
assumption 𝜅 ≤ h𝛿 and under it estimate M = O(h−𝟣) has been established.
Furthermore, after this under assumption (27.2.63) we can prove even sharper
asymptotics.

To weaken assumption 𝜅 ≤ h𝛿 to 𝜅 ≤ c we can use rescaling x ↦→ x𝛾−𝟣

with 𝛾 = h𝛿. We arrive to the error estimate O(h−𝟣−𝛿) and therefore op-

timizer satisfies ‖∇ × A‖ ≤ h
𝟣
𝟤
−𝛿 (where 𝛿 is increased if necessary but

remains arbitrarily small). Repeating the arguments of the proof of Propo-
sition 27.2.6, instead of ‖ΔA‖L∞ = O(1) we arrive to ‖ΔA‖L∞ = O(h−𝛿)

and to ‖𝜕𝟤A‖L∞ = O(h−𝛿); then ‖𝜕A‖L∞ = O(h
𝟣
𝟤
−𝛿); it is more than

sufficient to unleash the microlocal analysis technique without any need
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to appeal to Proposition 27.2.6 which is the only place where we needed
assumption (27.2.21).

Thus we arrive to

Theorem 27.2.29. Let d = 3, V ∈ C𝟤,𝟣, 𝜅 ≤ c and let 𝜓 satisfy assump-
tion of Proposition 27.2.22. Then

(i) Asymptotics (27.2.86) holds.

(ii) Further, if assumption (27.2.63) is fulfilled then asymptotics (27.2.86)
holds.

(iii) If (27.2.86) or (27.2.87) holds for E𝜓(A) (we need only an estimate

from below) then ‖𝜕A‖ = O((𝜅h)
𝟣
𝟤 ) or ‖𝜕A‖ = o((𝜅h)

𝟣
𝟤 ) respectively.

Case 1 ≤ 𝜅 ≤ h−𝟣

In this framework we can consider even the case 1 ≤ 𝜅 ≤ h−𝟣. The simple
rescaling-and-partition arguments with 𝛾 = 𝜅−𝟣 lead to the following

(27.2.94) If 1 ≤ 𝜅 ≤ h−𝟣, then the remainder estimate O(𝜅𝟤h−𝟣) holds and
for a minimizer A satisfies ‖𝜕A‖𝟤 ≤ C𝜅𝟥h.

However we would like to improve it and, in particular, to prove that if 𝜅
is moderately large then the remainder estimate is still O(h−𝟣) and even
o(h−𝟣) under non-periodicity assumption.

Theorem 27.2.30. Let d = 3, V ∈ C𝟤,𝟣, and let 𝜓 satisfy assumptions of
Proposition 27.2.22. Then

(i) For

(27.2.95) 𝜅 ≤ 𝜅*h := 𝜖h− 𝟣
𝟦 | log h|−

𝟥
𝟦

asymptotics (27.2.86) holds.

(ii) Furthermore, for 𝜅 = o(𝜅*h) and assumption (27.2.63) is fulfilled then
asymptotics (27.2.87) holds.

(iii) If 𝜅*h ≤ 𝜅 ≤ ch−𝟣 the following estimate holds:

(27.2.96) |E*
𝜓 −

∫︁
Weyl𝟣(x)𝜓

𝟤(x) dx | ≤ Ch−𝟥(𝜅h)
𝟪
𝟥 | log 𝜅h|𝟤.



27.2. LOCAL SEMICLASSICAL TRACE ASYMPTOTICS 237

Proof. (i) From (27.2.46) we conclude for 𝜅 ≥ c that

h𝟣−𝜃|𝜕A|C𝜃 ≤ C𝜅(𝜅+ 𝜇̄).

Then, using arguments of Subsection 27.2.2, one can prove easily that for
𝜅 ≤ h𝜎−

𝟣
𝟤

|Ft→h−𝟣𝜏 𝜒̄T (t)(hDx)
𝛼(hDx)

𝛽
(︀
U(x , y , t)− U(𝜀)(x , y , t)− U ′

(𝜀)(x , y , t)
)︀
| ≤

Ch𝟣−d ,

where we use the same 2-term approximation, T = 𝜖𝜇̄−𝟣. Let us take
then x = y , multiply by 𝜀−d𝜓(𝜀−𝟣(y − z)) and integrate over y . Using the
rough microlocal analysis technique, one can prove easily that from both
U(𝜀)(x , y , t) and U ′

(𝜀)(x , y , t) we get O(h−𝟤) and in the end of the day we

arrive to the estimate |ΔA𝜀| ≤ C𝜅𝜇̄, which implies

(27.2.97) |𝜕𝟤A𝜀| ≤ C𝜅𝜇̄| log h|+ C𝜇,

where obviously one can skip the last term. Here we used the regularity
property of the Laplace equation. For our purpose it is much better than
the estimate |𝜕𝟤A𝜀| ≤ C𝜅𝟤| log h|+ C𝜇, which one could derive easily.

Again, using arguments of Subsection 27.2.2, one can prove easily that

|Tr(𝜓H−
A,V𝜓)− Tr(𝜓H−

A𝜀,V
𝜓)| ≤ C 𝜇̄𝟤h𝟤−d(27.2.98)

and therefore

|Tr(𝜓H−
A,V𝜓)−

∫︁
Weyl𝟣(x)𝜓

𝟤(x) dx | ≤ C 𝜇̄𝟤h𝟤−d(27.2.99)

and finally for an optimizer

‖𝜕A‖𝟤 ≤ C𝜅𝜇̄𝟤h.(27.2.100)

Here 𝜇 and 𝜇̄ were calculated for A, but it does not really matter since due to
the estimate |𝜕𝟤A| ≤ C𝜅𝟤h−𝛿 we conclude that |𝜕A − 𝜕A𝜀| ≤ C𝜅𝟤h−𝛿𝜀 ≤ C
due to restriction to 𝜅.

Then, for d = 3

(27.2.101) 𝜇𝟤
(︀
𝜇/(𝜅𝜇̄| log h|

)︀
)𝟥 ≤ 𝜅𝜇̄𝟤h
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and if 𝜇 ≥ 1 we have 𝜇̄ = 𝜇 and (27.2.101) becomes 𝜅−𝟥| log h|−𝟥 ≤ C𝜅h
which is impossible under (27.2.95).

So, 𝜇 ≤ 1 and (27.2.101) implies (27.2.86) and (27.2.100), (27.2.101)

imply that for an optimizer ‖𝜕A‖ ≤ C (𝜅h)
𝟣
𝟤 and 𝜇 ≤ C𝜅𝟦h| log h|d . So

Statement (i) is proven.

(ii) Proof of Statement (ii) follows then in virtue of arguments of Subsec-
tion 27.2.2.

(iii) If 𝜅*h ≤ 𝜅 ≤ h−𝟣 we apply the partition-and-rescaling technique. Then
h ↦→ h′ = h𝛾−𝟣 and 𝜅 ↦→ 𝜅′ = 𝜅𝛾 and to get into the framework of (27.2.95)

we need 𝛾 = 𝜖𝜅−
𝟦
𝟥 h− 𝟣

𝟥 | log(𝜅h)|−𝟣, leading to the remainder estimate Ch−𝟣𝛾−𝟤,
which proves Statement (iii).

Problem 27.2.31. Repeat arguments of Subsubsections 27.2.1.2. Prelim-
inary Analysis and 27.2.1.3. Estimates and of this Subsection for d ̸= 3.
When they hold?

27.3 Global Trace Asymptotics in the Case

of Coulomb-Like Singularities

27.3.1 Problem

We consider the same operator (27.1.4) as before in ℝ𝟥 but now we assume
that V has Coulomb-like singularities. Namely let ym ∈ ℝ𝟥 (m = 1, ... ,M ,
where M is fixed) be singularities (“nuclei”). We assume that

V =
∑︁

𝟣≤m≤M

zm
|x − ym|

+ W (x)(27.3.1)

where

zm ≥ 0, z𝟣 + ... + zM ≍ 1,(27.3.2)

and

(27.3.3) |D𝛼W | ≤ C𝛼
∑︁

𝟣≤m≤M

zm
(︀
|x − ym|+ 1

)︀−𝟣|x − ym|−|𝛼|

∀𝛼 : |𝛼| ≤ 2,
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but at the first stages we will use some weaker assumptions. Later we assume
that V (x) decays at infinity sufficiently fast. Let us define E*) and E(A) by
(27.2.2)–(27.2.1). Finally, let ℓ(x)min𝟣≤m≤M ℓm(x) with ℓm(x) :=

𝟣
𝟤
|x − ym|.

In this and next Sections we assume that

(27.3.4) 𝜅 ∈ (0,𝜅*] where 0 < 𝜅* is a small constant.

For 𝜅 = 0 we set A = 0 and consider E := Tr−(HA,V ); then our results are
covered by Chapter 25.

27.3.2 Estimates to a Minimizer

Let us consider a Hamiltonian with potential V and let A be a magnetic
potential, minimizing expression (27.2.2). We say that A is a minimizer and
in the framework of our problems we will prove it existence.

Preliminary Analysis

First, we start from the roughest possible estimate:

Proposition 27.3.1. Let V satisfy (27.3.1)–(27.3.3) and let 𝜅 ≤ 𝜅*. Then
the near-minimizer A satisfies

|
∫︁ (︀

tr eA,𝟣(x , x , 0)−Weyl𝟣(x)
)︀

dx | ≤ Ch−𝟤(27.3.5)

and

‖𝜕A‖ ≤ C𝜅
𝟣
𝟤 .(27.3.6)

Proof. Definitely (27.3.5)–(27.3.6) follow from the results of L. Erdös, S. Four-
nais, and J. P. Solovej [3] but we give an independent easier proof, based on
our Subsection 27.2.1.

(a) First, let us pick up A = 0 and consider Tr
(︀
𝜓ℓθ(−H)𝜓ℓ

)︀
with cut-offs

𝜓ℓ(x) = 𝜓((x − ym)/ℓ) where 𝜓 ∈ C∞
𝟢 (B(0, 1)) and equals 1 in B(0, 𝟣

𝟤
). Here

and below θ(𝜏 − HA,V ) is a spectral projector of H .

Then

(27.3.7) |Tr
(︀
𝜓ℓH

−
A,V (0)𝜓ℓ

)︀
| ≤ Ch−𝟤 for ℓ = ℓ* := h𝟤.
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On the other hand, contribution of B(x , ℓ) with ℓ(x) ≥ ℓ* to the Weyl
error does not exceed C𝜁𝟤ℏ−𝟣 = C𝜁𝟥ℓh−𝟣 where ℏ = h/(𝜁ℓ) in the rescaling;
so after summation over ℓ ≥ ℓ* we also get O(h−𝟤) provided 𝜁𝟤 ≤ Cℓ−𝟣.
Therefore we arrive to the following rather easy inequality:

(27.3.8) |
∫︁ (︀

tr e𝟢,𝟣(x , x , 0)−Weyl𝟣(x)
)︀

dx | ≤ Ch−𝟤.

This is what the rescaling method gives us without careful the study of the
singularity.

(b) On the other hand, consider A ̸= 0. Let us prove first that

(27.3.9) Tr−(𝜓ℓH𝜓ℓ) ≥ −Ch−𝟤 − Ch−𝟤

∫︁
|𝜕A|𝟤 dx for ℓ = ℓ*.

Rescaling x ↦→ (x − ym)/ℓ and 𝜏 ↦→ 𝜏/ℓ and therefore h ↦→ hℓ−
𝟣
𝟤 ≍ 1 and

A ↦→ Aℓ
𝟣
𝟤 (because the singularity is Coulomb-like), we arrive to the same

problem with the same 𝜅 (in contrast to Subsection 27.2.4 where 𝜅 ↦→ 𝜅ℓ
because of the different scale in 𝜏 and h) and with ℓ = h = 1.

In this case the required estimate follows from L. Erdös, J. P. Solovej [1]
(we reproduce Lemma 2.1 of this paper in Appendix 27.A.1.

(c) Consider now function 𝜓ℓ as in (c) with ℓ ≥ ℓ*. Then according to
Theorem 27.2.29 rescaled

(27.3.10) Tr−
(︀
𝜓ℓHA,V𝜓ℓ

)︀
−

∫︁
Weyl𝟣(x)𝜓

𝟤
ℓ (x) dx

≥ −C𝜁𝟥ℓh−𝟣 − Ch−𝟤

∫︁
B(x ,𝟤ℓ/𝟥)

|𝜕A|𝟤 dx .

Really, rescaling of the first part is a standard one and in the second part we
should have in the front of the integral a coefficient 𝜅−𝟣h−𝟤𝜁𝟤× 𝜁−𝟤ℓ(h/𝜁ℓ)−𝟤

where factor 𝜁𝟤 comes from the scaling of the spectral parameter, factor
𝜁−𝟤 comes from the scaling of the magnitude of A, factor ℓ = ℓ𝟥 × ℓ−𝟤

comes from the scaling of dx and 𝜕 respectively, and ℏ := h/(𝜁ℓ) is a
semiclassical parameter after rescaling. Therefore this expression acquires a
factor 𝜁𝟤ℓ ≤ C .

Then we conclude that

(27.3.11)

∫︁ (︀
tr eA,𝟣(x , x , 0)−Weyl𝟣(x)

)︀
dx ≥ −Ch−𝟤 − Ch−𝟤

∫︁
|𝜕A|𝟤 dx
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and adding the magnetic field energy 𝜅−𝟣h−𝟤‖𝜕A‖𝟤 we find out that

(27.3.12) E(A)−
∫︁

Weyl𝟣(x) dx ≥

E(0)−
∫︁

Weyl𝟣(x) dx + (𝜅−𝟣 − C )h−𝟤‖𝜕A‖𝟤 − Ch−𝟤

since Weyl𝟣(x) does not depend on A. However due to (a) the right-hand
expression is greater than (𝜅−𝟣 − C )h−𝟤‖𝜕A‖𝟤 − Ch−𝟤.

On the other hand, since A is supposed to be a near-minimizer, the
left-hand expression of (27.3.12) should not exceed the same expression for
A = 0 plus Ch𝟤, i.e. Ch𝟤 due to (a) again. Then due to )(27.3.4) we arrive
to (27.3.5) and (27.3.6).

Proposition 27.3.2. Let V satisfy (27.3.1)–(27.3.3). Then there exists a
minimizer A.

Proof. After Proposition 27.3.1 has been proven we just repeat arguments
of the proof of Proposition 27.2.2. If V ∈ L

𝟧
𝟤 no change would be required

but for V /∈ L
𝟧
𝟤 one needs to consider modifications as in Remark 27.3.3

below.

Remark 27.3.3. We are a bit ambivalent about a convergence of
∫︀
Weyl𝟣(x) dx

at infinity, since for the Coulomb potential it diverges. To avoid this issue,
however, we can either assume in addition that V ∈ L

𝟧
𝟤 , or tackle it as in

Proposition 27.3.16 below.

Estimates to a Minimizer. I

Let us repeat arguments of Subsubsection 27.2.1.3. Estimates. However
our task now is much more complicated: while we know a priory that
‖𝜕A‖𝟤 ≤ C𝜅 we will not be able to improve it significantly (or at all for
𝜅 ≍ 1).

Recall equation (27.2.14) for a minimizer A. After rescaling x ↦→ x/ℓ,
𝜏 ↦→ 𝜏/𝜁𝟤, h ↦→ ℏ = h/(𝜁ℓ), A ↦→ A𝜁−𝟣ℓ this equation becomes

(27.3.13) ΔAj =

−2𝜅𝜁𝟤ℓℏ𝟤 Re tr
[︁
σj

(︁
(ℏDk−𝜁−𝟣A)x ·σe(x , y , 𝜏)+e(x , y , 𝜏) t(ℏD−𝜁−𝟣A)y ·σ

)︁]︁⃒⃒⃒
y=x
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and since so far 𝜁𝟤ℓ = 1 we arrive to

(27.3.14) ΔAj =

−2𝜅ℏ𝟤 Re tr
[︁
σj

(︁
(ℏD−𝜁−𝟣A)x ·σe(x , y , 𝜏)+e(x , y , 𝜏) t(ℏD−𝜁−𝟣A)y ·σ

)︁]︁⃒⃒⃒
y=x

.

(a) Plugging u = 𝜓θ(−H)f with cut-off function 𝜓 and repeating arguments
of Subsubsection 27.2.1.3. Estimates, we conclude that in the rescaled
coordinates

(27.3.15) ‖(ℏDx · σ)u‖ ≤ ‖((ℏDx − A) · σ)u‖+ C‖A‖L𝟨 · ‖u‖L𝟥

≤ ‖((ℏDx − A) · σ)u‖+ Cℏ−
𝟣
𝟤‖A‖L𝟨 · ‖u‖

𝟣
𝟤 · ‖ℏDxu‖

𝟣
𝟤

≤ ‖((ℏDx − A) · σ)u‖+ 1

2
‖ℏDxu‖+ C (ℏ−

𝟣
𝟤‖A‖L𝟨)𝟤‖u‖,

where ‖A‖L𝟨 calculated in the rescaled coordinates is equal to ‖A𝗈𝗋𝗂𝗀‖L𝟨,𝗈𝗋𝗂𝗀

(where subscripts “orig”means that the norm is calculated in the original

coordinates and A) which does not exceed C𝜅
𝟣
𝟤 due to (27.3.6)12) and

therefore (since ‖(ℏDx · σ)u‖ = ‖ℏDxu‖)

(27.3.16) ‖ℏDxu‖ ≤ C
(︀
1 + 𝜅ℏ−𝟣

)︀
‖f ‖.

Continuing arguments of Subsubsection 27.2.1.3. Estimates, we conclude
that in the rescaled coordinates

‖(ℏDx)
ku‖ ≤ C

(︀
1 + 𝜅ℏ−𝟣

)︀k‖f ‖,(27.3.17)

‖(ℏDx)
k((ℏDx − A) · σ)u‖ ≤ C (1 + 𝜅ℏ−𝟣)k‖f ‖,(27.3.18)

for k = 0, 1, 2 and therefore

(27.3.19) ‖ΔA‖L∞(B(x ,𝟣)) ≤ C𝜅ℏ−𝟣(1 + 𝜅ℏ−𝟣)𝟥.

Here we estimate different norms of A locally. Then either

(27.3.20) ‖𝜕A‖L∞(B(x , 𝟥
𝟦
)) + ℏ𝛿‖𝜕𝟤A‖L∞(B(x , 𝟥

𝟦
)) ≤ C𝜅ℏ−𝟣(1 + 𝜅ℏ−𝟣)𝟥

or

(27.3.21) ‖𝜕A‖L∞(B(x ,𝟣−𝜖)) + ℏ𝛿‖𝜕𝟤A‖L∞(B(x ,𝟣−𝜖))

≤ C‖𝜕A‖ = C‖𝜕A𝗈𝗋𝗂𝗀‖𝗈𝗋𝗂𝗀 ≤ C𝜅
𝟣
𝟤

12) As usual we assume that the average of A over B(x , 𝟣) is 𝟢.
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In the latter case (27.3.21) we have in the original coordinates

(27.3.22) ‖𝜕A‖L∞(B(x ,ℓ)) ≤ C𝜅
𝟣
𝟤 ℓ−

𝟥
𝟤

and we are rather happy because then the effective intensity of the magnetic
field in B(x , ℓ) is 𝜁−𝟣ℓ‖𝜕A‖L∞(B(x ,𝟣−𝜖)) ≤ C𝜅

𝟣
𝟤 .

(b) The former case (27.3.20) is much more complicated because our estimate
is really poor for 𝜅 ≍ 1 and we are going to act only in the assumption
(27.3.4). Assume that

(27.3.23) ‖𝜕A‖L∞(B(x ,𝟣−𝜖)) ≤ 𝜇

with 𝜇 ≥ ℏ−𝜎. Selecting u = 𝜓θ(−H)f with 𝛾-admissible 𝜓 we conclude
that ‖(A · σ)u‖ ≤ ‖A‖L∞‖u‖ ≤ C𝜇𝛾‖u‖ (assuming without any loss of the
generality that A = 0 at some point of supp(𝜓)) and that

‖(ℏD)ku‖ ≤ C (1 + ℏ𝛾−𝟣 + 𝜇𝛾)k ,

‖(ℏD)k((ℏD − A) · σ)u‖ ≤ C (1 + ℏ𝛾−𝟣 + 𝜇𝛾)k+𝟣,

and therefore

|Γx(ℏDx − A) · σ)e(., ., 0)| ≤ Cℏ−𝟥(1 + ℏ𝛾−𝟣 + 𝜇𝛾)
𝟩
𝟤 ,

and then

‖ΔA‖L∞(B(x ,𝟣−𝜖)) ≤ Cℏ−𝟣(1 + ℏ𝛾−𝟣 + 𝜇𝛾)
𝟩
𝟤 .

Optimizing with respect to 𝛾 = 𝜇− 𝟣
𝟤 h

𝟣
𝟤 we conclude that either

(27.3.24) ‖𝜕𝟤A‖L∞(B(x ,𝟣−𝜖)) ≤ Cℏ−𝟣−𝛿(1 + ℏ𝜇)
𝟩
𝟦

or (27.2.21) holds. In the former case of (27.3.24), using the second of
estimates

‖A‖L∞(B(x ,𝟣−𝜖)) ≤ C‖𝜕𝟤A‖
𝟣
𝟧

L∞(B(x ,𝟣−𝜖))‖𝜕A‖
𝟦
𝟧 ,(27.3.25)

‖𝜕A‖L∞(B(x ,𝟣−𝜖)) ≤ C‖𝜕𝟤A‖
𝟥
𝟧

L∞(B(x ,𝟣−𝜖))‖𝜕A‖
𝟤
𝟧(27.3.26)

we conclude that (27.3.23) holds with 𝜇 = 𝜇′,

𝜇′ := ℏ−
𝟥
𝟧
−𝛿(1 + ℏ𝜇)

𝟤𝟣
𝟤𝟢

and one can see easily that starting from 𝜇 = ℏ−𝟦 as given by (27.3.20), we

can arrive after number of iterations to 𝜇 = ℏ− 𝟥
𝟧
−𝛿 and therefore

(27.3.27) ‖𝜕kA‖L∞(B(x ,𝟣−𝜖)) ≤ Cℏ−
𝟣
𝟧
(𝟣+𝟤k)−𝛿 k = 0, 1, 2.
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(c) This estimate (27.3.27) is good enough to launch our microlocal argu-
ments. Assuming (27.3.23) with 𝜇 ≤ h𝜎−𝟣 we estimate as in Section 27.2

|Γx((ℏDx − A) · σ)e(., ., 0)| ≤ C𝜇ℏ−𝛿,
and then

‖𝜕𝟤A‖B(x ,𝟣−𝜖) ≤ C𝜇h−𝛿,

and therefore

‖𝜕A‖B(x ,𝟣−𝜖) ≤ C𝜇
𝟥
𝟧 h−𝛿,

resulting in 𝜇 := 𝜇
𝟥
𝟧 h−𝛿 and after a number of iterations we get 𝜇 = h−𝛿, and

therefore iterating this procedure one more time and taking into account
factor 𝜅 we arrive to

(27.3.28) Either (27.3.21) holds or

(27.3.29) ‖𝜕𝟤A‖L∞(B(x ,𝟣−𝜖)) ≤ C𝜅h−𝛿.

However to prove that the effective magnetic field is O(1) we need to modify
these arguments, and we do it in the next subsubsection.

Estimates to a Minimizer. II

In this step we repeat arguments of Subsubsection 27.2.2.1. Sharp Estimates,
but now we have a problem: we cannot use 𝜇 = ‖𝜕A‖∞ since we have domains
𝒳r = {x : ℓ(x) ≥ r} rather than the whole space. So we get the following
analogue of (27.2.48) where A is still rescaled and the norms are calculated
in the rescaled coordinates:

(27.3.30) ‖ΔA‖C(B(x , 𝟥
𝟦
) + ℏ‖Δ𝜕A‖C(B(x , 𝟥

𝟦
) ≤

C𝜅
(︁
1 + |𝜕A|C(B(x ,𝟣) + h

𝟣
𝟤
(𝜃−𝟣)‖𝜕A‖C𝜃 𝟣

𝟤
(B(x ,𝟣)

)︁
,

which implies

(27.3.31) ‖𝜕A‖C(B(x , 𝟣
𝟤
)) + ℏ𝜃−𝟣‖𝜕A‖C𝜃(B,(x , 𝟣

𝟤
)) ≤

𝜖ℏ(𝜃−𝟣)𝜁−𝟣‖𝜕A‖C𝜃(B(x ,𝟣)) + C𝜅‖𝜕A‖C(B(x ,𝟣)) + C‖𝜕A‖L𝟤(B(x ,𝟣))

and the last term in the right-hand expression does not exceed C𝜅
𝟣
𝟤 .
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Let 𝜈(r) = supx : ℓ(x)≥r f (x), where f (x) is the left-hand expression of
(27.3.16), calculated for given x in the rescaled coordinates. Then (27.3.31)
implies that for 𝜅 ∈ (0,𝜅*) (where 𝜅* > 0 is a small constant)

𝜈(r) ≤ 1

2
𝜈(

1

2
r) + C𝜅

𝟣
𝟤 ,

which in turn implies that

𝜈(r) ≤ 1

2
𝜈(2−nr) + 2C𝜅

𝟣
𝟤 , n ≥ 1,

and therefore

𝜈(r) ≤ 4C𝜅
𝟣
𝟤 + 4 sup

C𝟢h𝟤≤ℓ(x)≤𝟤C𝟢h𝟤
f (x) ≤ C𝟣𝜅

𝟣
𝟤

due to the rough estimate (because ℏ ≍ 1 for ℓ(x) ≍ h𝟤). Then returning
to the original (not rescaled) coordinates and to the original (not rescaled)
potential A we arrive to estimates (27.3.32) and (27.3.33) below:

Proposition 27.3.4. Let 𝜅 ≤ 𝜅*, 𝜁 = cℓ−
𝟣
𝟤 . Let A be a minimizer. Then

for ℓ(x) ≥ ℓ* = h𝟤 estimate (27.3.22) holds and also

|𝜕𝟤A(x)− 𝜕𝟤A(y)| ≤ C𝜅
𝟣
𝟤 ℓ−

𝟧
𝟤 |x − y |𝜃ℓ𝜃/𝟤ℓ−𝜃/𝟤* 0 < 𝜃 < 1,(27.3.32)

and

|𝜕A(x)− 𝜕A(y)| ≤ C𝜅
𝟣
𝟤 ℓ−

𝟧
𝟤 |x − y |(1 + | log |x − y ||).(27.3.33)

Remark 27.3.5. (i) So far we used only assumption that

(27.3.34) |𝜕𝛼V | ≤ C𝜁𝟤ℓ−|𝛼| ∀𝛼 : |𝛼| ≤ 2

with 𝜁 = ℓ−
𝟣
𝟤 but even this was excessive.

(ii) In this framework however we cannot prove better estimates because

(27.3.22) always remains a valid alternative even if 𝜁 ≪ ℓ−
𝟣
𝟤 .

(iii) Originally we need an assumption (27.2.37) |V | ≥ 𝜖𝟢, but for d = 3 one
can easily get rid of it by the standard rescaling technique.

Consider now zone {x : ℓ(x) ≤ ℓ*}:

Proposition 27.3.6. Let 𝜅 ≤ 𝜅*, 𝜁 ≤ cℓ−
𝟣
𝟤 . Let A be a minimizer. Then

|𝜕A| ≤ C𝜅
𝟣
𝟤 h−𝟥 for ℓ(x) ≤ ℓ* = h𝟤.
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Proof. Proof is standard, based on the rescaling (then ℏ = 1) and equation
(27.2.14) for a minimizer A. We leave easy details to the reader.

Let us slightly improve estimate to a minimizer A. We already know that
|𝜕A(x)| ≤ C𝟢𝛽 with 𝛽 = ℓ−

𝟥
𝟤 and using the standard rescaling technique we

conclude that

(27.3.35) |ΔA| ≤ C𝜅𝜁𝟤𝛽 + C𝜅𝜁𝟥ℓ−𝟣,

which does not exceed C𝜅ℓ−
𝟧
𝟤 which implies

Proposition 27.3.7. In our framework

(i) If ℓ(x) ≥ ℓ* := h𝟤, then

|A| ≤ C𝜅ℓ−
𝟣
𝟤 , |𝜕A| ≤ C𝜅ℓ−

𝟥
𝟤(27.3.36)

and

|𝜕A(x)− 𝜕A(y)| ≤ C𝜃𝜅ℓ
− 𝟥

𝟤
−𝜃|x − y |𝜃 as |x − y | ≤ 1

2
ℓ(x)(27.3.37)

for any 𝜃 ∈ (0, 1).

(ii) If ℓ(x) ≤ ℓ*, then these estimates hold with ℓ(x) replaced by ℓ*.

Remark 27.3.8. (i) Here in comparison with old estimates we replaced factor

𝜅
𝟣
𝟤 by 𝜅 which is an advantage.

(ii) These estimates imply that
∫︀
{x : ℓ(x)≤𝟣} |𝜕A|𝟤 dx ≤ C𝜅𝟤| log h| while in

fact it must not exceed C𝜅.

Estimates to a Minimizer. III

Consider now external zone 𝒴 := {x : ℓ(x) ≥ 1} and assume that

(27.3.38) 𝜁(x) ≤ Cℓ(x)−𝜈 for ℓ(x) ≥ 1

with 𝜈 > 1.
Then if also |𝜕A(x)| = O(ℓ(x)−𝜈𝟣) for ℓ(x) ≥ 1 then the right hand

expression of (27.3.35) does not exceed C𝜅(ℓ−𝟥𝜈−𝟣 + ℓ−𝜈𝟣−𝟤𝜈) and therefore
we almost upgrade estimate for |𝜕A(x)| to O(ℓ−𝟥𝜈+ℓ−𝜈𝟣−𝟤𝜈+𝟣) and repeating
these arguments sufficiently many times to O(ℓ−𝟥𝜈).
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However, there are several obstacles to this conclusion: first, if 𝜈 > 1 we
conclude that

Aj =
∑︁
m

αj ,m|x − ym|−𝟣 + O(ℓ−𝟣−𝛿)

with constant αj ,m; however assumption ∇ · A = 0 implies αj ,m = 0 and we
pass this obstacle.

Indeed, let our equation be ΔAj = Φj and therefore

Aj(x) = − 1

4𝜋

∫︁
|x − y |−𝟣Φj(y) dy .

Let a be the minimal distance between nuclei, 1 =
∑︀

𝟢≤m≤M 𝜑m where 𝜑m is

supported in 𝟣
𝟥
a-vicinity of ym and equals 1 in 𝟣

𝟦
a-vicinity of ym, m = 1, ... , 1.

Let

Ij ,m =

∫︁
Φj(y)𝜑m(y) dy , 𝜂 = max

𝟣≤m≤M
|Ij ,m|.

Then if x belongs to b-vicinity of ym with b ≤ 𝜖a one can prove easily that

|𝜕xk
∫︁

|x − y |−𝟣Φj(y)𝜑m′(y) dy | ≤ C𝜂a−𝟤 + Ca−𝟥

for m′ = 0, 1, ... ,M , m′ ̸= m.
Also one can prove easily that

|𝜕xj
(︁∫︁

|x − y |−𝟣Φj(y)𝜑m′(y) dy − |x − ym|−𝟣Ij ,m
)︁
| ≤ C |x − ym|−𝟥,

and combining with the previous inequality and with equation ∇ · A = 0 we
conclude that |Im,j | ≤ C𝜂a−𝟤b𝟤 + Ca−𝟥b𝟤 + Cb−𝟣 for b ≤ 𝜖a. Then selecting
b = 𝜖𝟣a with sufficiently small constant 𝜖𝟣, we conclude that 𝜂 ≤ Ca−𝟣 which
in turn implies that |𝜕kAj(x)| ≤ Cℓ−𝟥.

The second obstacle

Aj =
∑︁
k,m

αjk,m(xk − yk,m)|x − ym|−𝟥 + O(ℓ−𝟤)

with constant αjk,m we cannot pass since assumption ∇ · A = 0 implies only
that modulo gradient A =

∑︀
m βm × ∇ℓ−𝟣

m with constant vectors βm and
one cannot do anything about this.

Therefore we upgrade (27.3.36)–(27.3.37) there:
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Proposition 27.3.9. In our framework assume additionally that (27.3.38)
holds. Then for 𝜈 > 𝟦

𝟥

|A| ≤ C𝜅ℓ−𝟤, |𝜕A| ≤ C𝜅ℓ−𝟥(27.3.39)

and

|𝜕A(x)− 𝜕A(y)| ≤ C𝜃𝜅ℓ
−𝟥−𝜃|x − y |𝜃 as |x − y | ≤ 1

2
ℓ(x)(27.3.40)

if ℓ(x) ≥ 1 (for all 𝜃 ∈ (0, 1)).

Remark 27.3.10. (i) In application to the ground state energy we are inter-
ested in 𝜈 = 2.

(ii) Observe that for a ≥ 1

(27.3.41)

∫︁
{ℓ(x)≍a}

|𝜕A|𝟤 dx = O(𝜅𝟤a−𝟥).

(iii) We were not able to improve (27.3.39)–(27.3.41) no matter how fast 𝜁
decays.

27.3.3 Basic Trace Estimates

Recall that the standard Tauberian theory results in the remainder estimate
O(h−𝟤). Indeed, since the effective magnetic field intensity is no more than
C𝜅, the contribution of B(x , ℓ(x)) to the Tauberian error13) does not exceed

C𝜁𝟤 × ℏ−𝟣 = C𝜁𝟥ℓh−𝟣, which for 𝜁 ≍ ℓ−
𝟣
𝟤 translates into Cℓ−

𝟣
𝟤 h−𝟣 and

summation over domain {x : ℓ(x) ≥ ℓ* = h𝟤} results in Ch−𝟤. On the other
hand, contribution of the domain {x : ℓ(x) ≤ ℓ* = h𝟤} into asymptotics does
not exceed Cℏ−𝟥ℓ−𝟣

* = Ch−𝟤 for ℏ = 1.
However, now we can unleash arguments of V. Ivrii and I. M. Sigal [1].

Recall that we are looking at

(27.3.42) Tr(𝜓H−
A,V𝜓) = Tr(𝜑𝟣H−

A,V𝜑𝟣) + Tr(𝜑𝟤H−
A,V𝜑𝟤)

where 𝜓𝟤 = 𝜑𝟤
𝟣 + 𝜑𝟤

𝟤, supp(𝜑𝟣) ⊂ {x , |x | ≤ 2r}, supp(𝜑𝟤) ⊂ {x , r ≤ |x | ≤ b}
and we compare it with the same expression calculated for HA,V 𝟢 with
V 𝟢 = Zm|x |−𝟣. Here we assume that

a ≤ 1, z ≍ 1(27.3.43)

13) And then to the Weyl error because we will explain transition from the Tauberian
to Weyl estimates below.
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and

|D𝛼(V − V 𝟢)| ≤ c𝟢a−𝟣ℓ−|𝛼| ∀𝛼 : |𝛼| ≤ 3.(27.3.44)

The latter assumption is too restrictive and could be weaken. Then if 𝜑(x)
is an ℓ-admissible partition element

Tr
(︀
θ(−H−

A,V )𝜑
𝟤
)︀
=

∫︁
Weyl(x)𝜑𝟤(x) dx + O(rh−𝟤)(27.3.45)

and

Tr
(︀
H−

A,V𝜑
𝟤
)︀
=

∫︁
Weyl𝟣(x)𝜑

𝟤(x) dx + O(r−
𝟣
𝟤 h−𝟣),(27.3.46)

where the error estimates are O(ℏ−𝟤) and O(𝜁𝟤ℏ−𝟣) respectively. One can
justify transition from the Tauberian to Weyl errors by considering Tauberian
expressions and considering HA𝜀,V and HA,V as unperturbed and perturbed
operators respectively; their difference is O(𝜁𝟥𝜀𝟤) with 𝜀 = ℏ𝟣−𝛿.

Then the contribution14) of the time interval {t : t ≍ T} to the Tauberian
expression for (27.3.45) of the first term in the approximation does not exceed
Cℏ−𝟦T × (ℏT−𝟣)s , of the second term Cℏ−𝟦T × (ℏT−𝟣)sTℏ−𝟣𝜀𝟤, and of the
third term Cℏ−𝟦T × (ℏT−𝟣)T 𝟤ℏ−𝟤𝜀𝟦. One can see easily that the end of the
day the first term gives us the Weyl expression, the second term turns out
to be 0, and the third term is less than the announced error.

Similarly, the contribution14) of the time interval {t : t ≍ T} to the Taube-
rian expression for (27.3.46) of the first term in the approximation does not
exceed C𝜁𝟤ℏ−𝟦T × (ℏT−𝟣)s , of the second term C𝜁𝟤ℏ−𝟦T × (ℏT−𝟣)sTℏ−𝟣𝜀𝟤

and of the third term Cℏ−𝟦T × (ℏT−𝟣)𝟤T 𝟤ℏ−𝟤𝜀𝟦. Again, in the end of the
day the first tem gives us the Weyl expression, the second term turns out to
be 0, and the third term is less than the announced error.

The same estimates also hold for operator HA,V 𝟢 and then using ℓ-
admissible partition of unity we conclude that

(27.3.47) Tr
(︀
𝜑𝟤(H

−
A,V − H−

A,V 𝟢)𝜑𝟤

)︀
=∫︁ (︀

Weyl𝟣(x)−Weyl𝟢𝟣(x)
)︀
𝜑𝟤
𝟤(x) dx + O(r−

𝟣
𝟤 h−𝟣),

where Weyl𝟢𝟣 and Weyl𝟢 are calculated for operator with potential V 𝟢. Indeed,
we just proved this for each operator HA,V and HA,V 𝟢 separately.

14) After standard rescaling x ↦→ xℓ−𝟣, 𝜉 ↦→ 𝜉𝜁−𝟣, h ↦→ ℏ, 𝜏 ↦→ 𝜏𝜁−𝟤, and t ↦→ t𝜁ℓ−𝟣.
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On the other hand, considering V 𝜂 = V 𝟢(1− 𝜂) + V 𝜂 = V 𝟢 + W 𝜂 and
following V. Ivrii and I. M. Sigal [1], we can rewrite the similar expression
albeit for 𝜑𝟤 = 1 as

(27.3.48) Tr
(︁∫︁ 𝟣

𝟢

Wθ(−HA,V 𝜂) d𝜂
)︁

and applying the semiclassical approximation (under the temporary assump-
tion that W is supported in the domain {x : |x | ≤ 4r}) one can prove that
for 𝜑𝟣 = 1

(27.3.49) Tr
(︀
𝜑𝟣(H

−
A,V − H−

A,V 𝟢)𝜑𝟣

)︀
=∫︁ (︀

Weyl𝟣(x)−Weyl𝟢𝟣(x)
)︀
𝜑𝟤
𝟣(x) dx + O(a−𝟣rh−𝟤).

Really, due to (27.3.45) and (27.3.44) the contribution of the ball B(x , ℓ(x))
does not exceed Ca−𝟣ℏ−𝟤 = Ca−𝟣ℓ(x)h−𝟤 and summation with respect to
partition with ℓ(x) ≤ 4r returns Ca−𝟣rh−𝟤); meanwhile, the contribution of
{x : ℓ(x) ≤ ℓ*} does not exceed Ca−𝟣ℏ−𝟤 = Ca−𝟣 since there ℏ = 1.

One can get easily rid of the temporary assumption and take 𝜑𝟣 supported
in {x : ℓ(x) ≤ 2r} instead.

Therefore we arrive to

Proposition 27.3.11. Under assumption (27.3.44)

(27.3.50) Tr
(︀
𝜓(H−

A,V − H−
A,V 𝟢)𝜓

)︀
=∫︁ (︀

Weyl𝟣(x)−Weyl𝟢𝟣(x)
)︀
𝜓𝟤(x) dx + O

(︀
a− 𝟣

𝟥 h− 𝟦
𝟥

)︀
.

Really, a− 𝟣
𝟥 h− 𝟦

𝟥 is r−
𝟣
𝟤 h−𝟣 + a−𝟣rh−𝟤 optimized by r ≍ r* := (ah)

𝟤
𝟥 ; since

h𝟤 ≤ a we note that h𝟤 ≤ r* ≤ a.

Corollary 27.3.12. (i) For M = 1 equality (27.3.50) remains valid with
𝜓 = 1 and a = 1.

(ii) For M ≥ 2 and a ≥ h𝟤 equality (27.3.50) becomes

(27.3.51) Tr
(︀
𝜓(H−

A,V − H−
A,V 𝟢)𝜓

)︀
=∫︁ (︀

Weyl𝟣(x)−Weyl𝟢𝟣(x)
)︀
𝜓𝟤(x) dx + O

(︀
(a− 𝟣

𝟥 + 1)h− 𝟦
𝟥

)︀
,

where we reset case a ≥ 1 to a = 1.
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27.3.4 Improved Trace Estimates

Improved Tauberian Estimates

Let us apply much more advanced arguments of Section 12.6; recall that
these arguments are using the long term propagation of singularities. Un-
fortunately, using these arguments, we are not able to improve the above
results unless 𝜅≪ 1.

First, let us consider 𝜓, which is r -admissible partition element located
in {x : ℓ(x) ≍ r}, and we need to estimate an absolute value of

(27.3.52) Ft→h−𝟣𝜏 𝜒̄T (t) Tr
(︀
e ih−𝟣tH𝜓

)︀
,

and to do it we need to estimate the same expression with 𝜒̄T (t) replaced by

𝜒T ′(t) with t𝟢 ≤ T ′ ≤ T where t𝟢 = 𝜖ℓ𝜁−𝟣 = 𝜖r
𝟥
𝟤 . We can break 𝜓 = 𝜓++𝜓−

with 𝜓± = 𝜓±(x , hD) such that the trajectories in the positive (negative)
time direction from support of its symbol 𝜓+(x , 𝜉) are going after time Ct𝟢
in the direction of increased ℓ(x), and since we consider the trace we need
to consider only 𝜓+ and only 𝜒 ∈ C∞([𝟣

𝟤
, 1]).

The trouble is that we have not rough but non-smooth magnetic field15);

so let us consider t𝟢+ t𝟣+...+ tn ≍ T ′ where tj = 𝜖r
𝟥
𝟤
j , rj = c j r , j = 0, 1, ... , n,

and let us estimate an error appearing when we replace in (modified) (27.3.52)
e ih−𝟣tH𝜓+ by

(27.3.53) e ih−𝟣(t−tn)H𝜓+
n+𝟣e ih−𝟣tnH𝜓+

n · · · e ih−𝟣t𝟣H𝜓+
𝟣 e ih−𝟣t𝟢H𝜓+

with 𝜓+
j defined similarly and Hamiltonian flow from supp(𝜓+

j ) for t = tj is

inside {(x , 𝜉) : 𝜓+
j+𝟣(x , 𝜉) = 1}. Therefore we need to estimate an error when

we insert 𝜓+
j .

According to our propagation results (namely, Proposition 27.2.11) after
𝜓+
𝟣 , ... ,𝜓

+
j−𝟣 were inserted, insertion of 𝜓+

j brings a relative error not exceed-

ing C
(︀
ℏ𝜃j |||𝜕A|||𝜃,Yj

+ ℏs+𝟣
j

)︀
, where ℏj = hr

− 𝟣
𝟤

j and Yj is an 𝜖rj -vicinity of the

x-projection of supp(𝜓j); s is an arbitrarily large exponent.
Recall that |||𝜕A|||𝜃,Yj

≤ C𝜅ℏ𝟣−𝜃j for 𝜃 ∈ (1, 2); therefore this relative error

does not exceed Cℏj(𝜅 + ℏsj ). Therefore inserting all 𝜓+
j brings a relative

error C
∑︀

j≥𝟢 ℏj(𝜅+ ℏsj ) ≍ Cℏ(𝜅+ ℏs) and since a priory expression (27.3.52)

is bounded by Cℏ−𝟥T we conclude that

15) More precisely, A is rough but with the roughness parameter ℏ which is a bit too
small.
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(27.3.54) The absolute value of expression (27.3.52) with 𝜒̄T (t) replaced by

𝜒T ′(t) with T* ≍ r
𝟥
𝟤 ≤ T ′ ≤ T * 16) does not exceed Cℏ−𝟤(𝜅+ ℏs)T ′.

Then an absolute value of expression (27.3.52) with 𝜒̄T (t) replaced by
(𝜒̄T (t)− 𝜒̄T*) does not exceed Cℏ−𝟤(𝜅+ ℏs) and since expression (27.3.52)
with T = T* does not exceed Cℏ−𝟤t𝟢 we conclude that

(27.3.55) The absolute value of expression (27.3.52) with T* ≤ T ≤ T *

does not exceed Cℏ−𝟤T* + Cℏ−𝟤(𝜅+ ℏs)T .

Then we conclude that

(27.3.56) An error when we replace Tr
(︀
𝜃(−HA,V )𝜓

)︀
by its Tauberian expres-

sion with “time” T does not exceed Cℏ−𝟤
(︀
T*T−𝟣 + 𝜅+ ℏs

)︀
and

(27.3.57) An error when we replace Tr
(︀
H−

A,V𝜓
)︀
by its Tauberian expression

with “time” T does not exceed Cℏ−𝟣
(︀
T*T−𝟣 + 𝜅+ ℏs

)︀
T*T−𝟣𝜁𝟤.

In the latter statement we need to remember how everything scales.
Observe that presence of the magnetic field due to its estimates relatively

perturbs dynamics by O(𝜅) and therefore if 𝜅 is sufficiently small (i.e. 𝜅 ≤ 𝜅*)
it does not affect T *. Then assuming that

(27.3.58) |∇𝛼(V − V 𝟢)| ≤ 𝜖a−𝟣r−|𝛼| ∀𝛼 : |𝛼| ≤ 1, V 𝟢 = Zr−𝟣

with Z ≍ 1, a ≥ h𝟤−𝛿

we can take T * ≍ a
𝟥
𝟤 and therefore we conclude that the Tauberian error in

(27.3.57) does not exceed

(27.3.59) Ch−𝟣a− 𝟥
𝟤 r
(︀
r

𝟥
𝟤 a− 𝟥

𝟤 + 𝜅+ hsr−
𝟣
𝟤
s
)︀

and we arrive to Statement (i) in Proposition 27.3.13 below.
Meanwhile, the Tauberian error in Tr

(︀
(H−

A,V − H−
A,V 𝟢)𝜓

)︀
does not exceed

(27.3.60) Ca−𝟣h−𝟤r
(︀
r

𝟥
𝟤 a− 𝟥

𝟤 + 𝜅+ hsr−
𝟣
𝟤
s
)︀

and we arrive to Statement (ii) below:

16) We discuss the choice of T * later.
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Proposition 27.3.13. Assume that (27.3.58) is fulfilled and let 𝜓 be ℓ-
admissible function supported in {x : ℓ(x) ≍ r} with h𝟤 ≤ r ≤ a. Let A
satisfy minimizer estimate. Then

(i) The Tauberian error with T = T * ≍ a
𝟥
𝟤 in Tr

(︀
H−

A,V𝜓
)︀
does not exceed

(27.3.59).

(ii) The Tauberian error with T = T * ≍ a
𝟥
𝟤 in Tr

(︀
(H−

A,V − H−
A,V 𝟢)𝜓

)︀
does

not exceed (27.3.60).

Proof. An easy proof following arguments of Section 12.6 is left to the
reader.

Observe that in the deduction of Statement (i) summation with respect

to r : b ≤ r ≤ a returns Ch−𝟣a− 𝟣
𝟤 and in the deduction of (ii) summation

with respect to r : h𝟤 ≤ r ≤ b returns Ch−𝟤(a− 𝟧
𝟤 b

𝟧
𝟤 + 𝜅a−𝟣b

)︀
+ Ca−𝟣. Note

also that Statement (ii) remains true for r -admissible function supported in
{x : ℓ(x) ≤ r} with r ≍ h𝟤. Then we arrive to

Corollary 27.3.14. Assume that (27.3.58) is fulfilled. Then

(i) Let 𝜑𝟤 be ℓ-admissible function supported in {x : b ≤ ℓ(x) ≤ a}. Then the

Tauberian error with T = T * ≍ a
𝟥
𝟤 in Tr

(︀
H−

A,V𝜑𝟤

)︀
does not exceed Ch−𝟣a− 𝟣

𝟤 .

(ii) Let 𝜑𝟣 be ℓ-admissible function supported in {x : ℓ(x) ≤ b}. Then the

Tauberian error with T = T * ≍ a
𝟥
𝟤 in Tr

(︀
(H−

A,V − H−
A,V 𝟢)𝜑𝟣

)︀
does not exceed

Ch−𝟤(a− 𝟧
𝟤 b

𝟧
𝟤 + 𝜅a−𝟣b

)︀
+ Ca−𝟣.

Remark 27.3.15. Obviously we do not need any new assumptions on 𝜅
to estimate the sum of expressions obtained in Statements (i) and (ii) of

Corollary 27.3.14 by Ch−𝟣a− 𝟣
𝟤 (as b ≤ a

𝟣
𝟤 h) here but we need to move from

Tauberian expression to Weyl expression.

Improved Weyl eEstimates

Note that in virtue of (27.3.54) for element 𝜓 the contribution of the time
interval {t : |t| ≍ T ′} to the Tauberian expression for Tr

(︀
H−

A,V𝜓
)︀
does not

exceed Cℏ−𝟣
(︀
𝜅+ ℏs

)︀
T*T ′ −𝟣𝜁𝟤, and therefore, replacing 𝜒̄T (t) by 𝜒̄T*(t) we

introduce an error not exceeding

Cℏ−𝟣
(︀
𝜅+ ℏs

)︀
𝜁𝟤 ≍ Ch−𝟣r−

𝟣
𝟤

(︀
𝜅+ hsr−

𝟣
𝟤
s
)︀

(27.3.61)
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and summation with respect to r : b ≤ r ≤ a returns

Ch−𝟣b− 𝟣
𝟤

(︀
𝜅+ hsb− 𝟣

𝟤
s
)︀
.(27.3.62)

On the other hand, also in virtue of (27.3.54) for element 𝜓 the con-
tribution of the time interval {t : |t| ≍ T ′} to the Tauberian expression
for Tr

(︀
(H−

A,V − H−
A,V 𝟢)𝜓

)︀
does not exceed Cℏ−𝟤a−𝟣

(︀
𝜅 + ℏs

)︀
, and therefore

replacing 𝜒̄T (t) by 𝜒̄T*(t) we introduce an error not exceeding

Ch−𝟤a−𝟣r
(︀
𝜅+ hsr−

𝟣
𝟤
s
)︀
| logT/T*|.

Further, in virtue of (27.3.55) the Tauberian error does not exceed

Ch−𝟤a−𝟣r
(︀
r

𝟥
𝟤 T−𝟣 + 𝜅+ hsr−

𝟣
𝟤
s
)︀
, and adding these two errors together and

optimizing their sum by T ≤ a
𝟥
𝟤 we get T ≍ r

𝟧
𝟤 (𝜅+ hsr−

𝟣
𝟤
s)−𝟣 and the sum

(27.3.63) Ch−𝟤a−𝟣r
(︀
𝜅+ hsr−

𝟣
𝟤
s
)︀(︀
| log(𝜅+ hsr−

𝟣
𝟤
s)|+ 1

)︀
+ Ch−𝟤a− 𝟧

𝟤 r
𝟧
𝟤 .

Meanwhile repeating arguments of Subsection 27.3.3 one can see easily
that

(27.3.64) The difference between the Tauberian expression with T = T*
and the Weyl expression for Tr

(︀
H−

A,V𝜓
)︀
does not exceed (27.3.61) with any

s < 2

and

(27.3.65) The difference between the Tauberian expression with T = T*
and the Weyl expression for Tr

(︀
(H−

A,V − H−
A,V 𝟢)𝜓

)︀
does not exceed

(27.3.66) Ch−𝟤a−𝟣r
(︀
𝜅+ hsr−

𝟣
𝟤
s
)︀

with any s < 2 and thus does not exceed (27.3.63).

Summation with respect to r : h𝟤 ≤ r ≤ b of (27.3.63) returns

(27.3.67) Ch−𝟤a−𝟣b𝜅| log 𝜅|+ Ch−𝟤b
𝟧
𝟤 a− 𝟧

𝟤 + Ca−𝟣;

adding expression (27.3.62) and optimizing the sum by b : h𝟤 ≤ b ≤ a we

get b ≍ (ah| log 𝜅|) 𝟤
𝟥 and expression

(27.3.68) Ch− 𝟦
𝟥 a− 𝟣

𝟥𝜅| log 𝜅|
𝟣
𝟥 + Ch−𝟣a− 𝟣

𝟤 .

Thus we have proven
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Proposition 27.3.16. (i) In the framework of Proposition 27.3.11

(27.3.69) Tr
(︀
𝜓(H−

A,V − H−
A,V 𝟢)𝜓

)︀
=∫︁ (︀

Weyl𝟣(x)−Weyl𝟢𝟣(x)
)︀
𝜓𝟤(x) dx + O

(︀
h− 𝟦

𝟥 a− 𝟣
𝟥𝜅| log 𝜅|

𝟣
𝟥 + h−𝟣a− 𝟣

𝟤

)︀
.

(ii) In particular, if

(27.3.70) 𝜅 ≤ ca− 𝟣
𝟨 h

𝟣
𝟥 | log ah−𝟤|−

𝟣
𝟥

the error in (27.3.69) does not exceed Ch−𝟣a− 𝟣
𝟤 exactly as in the case without

magnetic field.

Remark 27.3.17. (i) Obviously we could consider a = 1 and then just rescale

x ↦→ xa−𝟣, 𝜏 ↦→ 𝜏a, h ↦→ ha− 𝟣
𝟤 .

(ii) One may wonder if the same approach works for estimate of A. First of
all, there is no improvement for estimate for |𝜕𝟤A| because it follows from
the estimate for |ΔA| which is a pointwise estimate.

(iii) Still, since 𝜕A and A are mollifications of ΔA one can improve estimates
for them if 𝜅≪ 1 and ℓ≪ a; however, there are no improvements if either
𝜅 ≍ 1 or ℓ ≥ a. Since these improvements do not lead to the improvements
of our final results we do not pursue them.

27.3.5 Single Singularity

Coulomb Potential

Consider now exactly Coulomb potential: V = Z |x |−𝟣. Let us establish the
existence of the Scott correction:

Proposition 27.3.18. Let V = Z |x |−𝟣, h > 0, Z > 0 and 0 < 𝜅 ≤ 𝜅*.
Then

(i) The following limit exists

(27.3.71) lim
r→∞

(︂
inf
A

(︁
Tr

(︀
(𝜑rHA,V𝜑r )

−)︀+ 1

𝜅h𝟤

∫︁
|𝜕A|𝟤 dx

)︁
−

∫︁
Weyl𝟣(x)𝜑

𝟤
r (x) dx

)︂
=: 2Z 𝟤h−𝟤S(Z𝜅).

(ii) And it coincides with
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(27.3.72) lim
𝜂→𝟢+

(︂
inf
A,V

(︁
Tr

(︀
(HA,V + 𝜂)−)

)︀
+

1

𝜅h𝟤

∫︁
|𝜕A|𝟤 dx

)︁
−

∫︁
Weyl𝟣(HA,V + 𝜂, x) dx

)︂
,

(iii) And also with

(27.3.73) inf
A

(︂∫︁ (︁
e𝟣(HA,V ; x , x , 0)−Weyl𝟣(HA,V , x)

)︁
dx+

1

𝜅h𝟤

∫︁
|𝜕A|𝟤 dx

)︂
.

(iv) We also can replace in Statement (i) Tr
(︀
(𝜑rHA,V𝜑r )

−) by Tr
(︀
𝜑rH

−
A,V𝜑r

)︀
.

Here 𝜑 ∈ C∞
𝟢 (B(0, 1)), 𝜑 = 1 in B(0, 𝟣

𝟤
), 𝜑r = 𝜑(x/r).

Proof. Observe first that due to scaling x ↦→ Zh−𝟤x , A ↦→ Z−𝟣hA and
𝜕A ↦→ z−𝟤h𝟥𝜕A one needs to consider only Z = h = 1; all expressions on the
left scale exactly as Z 𝟤h−𝟤S(Z𝜅).

(i) Let us compare

Q(r ,𝜅,A) := Tr
(︀
(𝜑rHA,V𝜑r )

−)︀− ∫︁
Weyl𝟣(HA,V , x)𝜑𝟤

r (x) dx +
1

𝜅

∫︁
|𝜕A|𝟤 dx

and Q(r ′,𝜅,A) with r ≥ 1 and r ′ ≥ 2r . Note that

Q(r ′,𝜅,A) ≥ Q(r , (1 + 𝜖)𝜅,A)+∑︁
𝟣≤j≤J

(︁
Tr

(︀
(𝜓𝟤j rHA,V𝜓𝟤j r )

−)︀− ∫︁
Weyl𝟣(HA,V , x)𝜓𝟤

𝟤j r (x) dx+

𝜖

2𝜅

∫︁
|𝜕A|𝟤𝜓𝟤

𝟤j r (x) dx
)︁
,

where 𝜓 and 𝜓 are smooth compactly supported functions, equal 0 in B(0, 𝟣
𝟤
)

and 𝜓 = 1 in the vicinity of supp(𝜓), J = ⌊log𝟤 r ′/r⌋, 𝜖 > 0 is arbitrarily
small.

Therefore we can replace in the sum A by Aj and 𝜓𝟤j r by 1 in
∫︀
|𝜕A|𝟤𝜓𝟤

𝟤j r (x) dx ;
but then in the virtue of Section 27.2 each term in the sum is bounded from
below by −C ′(𝜖)

∫︀
𝜌𝟥ℓ−𝟣𝜓t dx = −C ′(𝜖)t−

𝟣
𝟤 with t = 2j r . Then
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(27.3.74) Q(r ′,𝜅,A) ≥ Q(r , (1 + 𝜖)𝜅,A)− C ′(𝜖)r−
𝟣
𝟤 .

We know that Q(r , (1 + 𝜖)𝜅,A) is bounded from below by −C (r) but now
we conclude that this bound is uniform with respect to r , which implies that
2S(𝜅) := lim infr→+∞ infA Q(r ,𝜅,A) > −∞. Further, (27.3.74) implies that

2S(𝜅) + C ′(𝜖)r−
𝟣
𝟤 ≥ inf

A
Q(r , (1 + 𝜖)𝜅,A)

and therefore

lim sup
r→+∞

inf
A

Q(r ,𝜅,A) ≤ 2S((1 + 𝜖)−𝟣𝜅).(27.3.75)

Furthermore, plugging A = 0 we can see easily that Q(r ,𝜅,A) is uniformly
bounded from above and therefore 2S(𝜅) < +∞; also our arguments imply
that

∫︀
|𝜕A|𝟤 dx is uniformly bounded for near optimizers and therefore S(𝜅)

is continuous with respect to 𝜅 < 𝜅*; combining with (27.3.75) we arrive to
Statement (i).

(ii) Similarly, (27.3.74) holds with HA,V replaced by HA,V + 𝜂 and then we
can take r ′ = ∞ and apply infA to both sides arriving to

inf
A

(︂
Tr

(︀
(HA,V + 𝜂)−

)︀
−

∫︁
Weyl𝟣(HA,V+𝜂, x) dx +

1

𝜅

∫︁
|𝜕A|𝟤 dx

)︂
≥

inf
A

(︂
Tr

(︀
(𝜑r (HA,V + 𝜂)𝜑r )

−)︀− ∫︁
Weyl𝟣(HA,V+𝜂, x)𝜑𝟤

r (x) dx+

1

(1 + 𝜖)𝜅

∫︁
|𝜕A|𝟤

)︂
dx − C ′(𝜖)r−

𝟣
𝟤 .

After this as 𝜂 → +0 the right-hand expression tends to itself with 𝜂 = 0;
tending r → +∞ we get there 2S((1 + 𝜖)𝜅) in virtue of Statement (i) and
tending 𝜖→ +0 we arrive to

(27.3.76) lim inf
𝜂→+𝟢

inf
A

(︂
Tr

(︀
(HA,V + 𝜂)−V −

∫︁
Weyl𝟣(HA,V+𝜂, x) dx+

1

𝜅

∫︁
|𝜕A|𝟤 dx

)︂
≥ 2S(𝜅).

On the other hand, consider

Tr
(︀
(HA,V + 𝜂)−

)︀
−

∫︁
Weyl𝟣(HA,V+𝜂, x) dx +

1

𝜅

∫︁
|𝜕A|𝟤 dx
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and replace Tr
(︀
(HA,V + 𝜂)−

)︀
by

(27.3.77) Tr
(︀(︀

HA,V + 𝜂
)︀−
𝜑𝟤
r

)︀
+

1

𝜅

∫︁
|𝜕A|𝟤 dx +Tr

(︀(︀
HA,V + 𝜂

)︀−
(1− 𝜑𝟤

r )
)︀
.

Let A be a minimizer of the first expression; then in virtue of Proposi-
tions 27.2.24–27.2.26 this minimizer is sufficiently “good” on 𝜖r -vicinity of
supp(1−𝜑𝟤

r ) and also the the difference between the second term and its Weyl

expression does not exceed Cr−
𝟣
𝟤 ; one can prove it easily by ℓ(x)-admissible

partition of unity as in Part (i) of the proof and we leave details to the
reader.

Observe that the first term in (27.3.77) is infA Tr
(︀
𝜑r

(︀
HA,V + 𝜂

)︀−
𝜑r

)︀
. In

this expression we can take limit as 𝜂 → +0 just setting 𝜂 = 0 and therefore
the left-hand expression in (27.3.76) with lim inf replaced by lim sup does
not exceed

inf
A

(︁
Tr

(︀
𝜑rH

−
A,V𝜑r

)︀
−

∫︁
Weyl𝟣(HA,V , x)𝜑𝟤

r (x) dx +
1

𝜅

∫︁
|𝜕A|𝟤 dx

)︁
+ Cr−

𝟣
𝟤 ;

taking limit as r → +∞ we conclude that the left-hand expression in
(27.3.76) with lim inf replaced by lim sup does not exceed

lim inf
r→+∞

inf
A

(︁
Tr

(︀
𝜑rH

−
A,V𝜑r

)︀
−

∫︁
Weyl𝟣(HA,V , x)𝜑𝟤

r (x) dx +
1

𝜅

∫︁
|𝜕A|𝟤 dx

)︁
.

This expression does not exceed (27.3.71) and therefore combining with
(27.3.76) we prove Statements (ii) and (iv).

(iii) Similarly,∫︁ (︁
e𝟣(HA,V ; x , x , 0)−Weyl𝟣(HA,V , x)

)︁
𝜑𝟤
r (x) dx +

1

𝜅

∫︁
|𝜕A|𝟤 dx ≥

inf
A

(︁
Tr

(︀
(𝜑rHA,V𝜑r )

−)︀− ∫︁
Weyl𝟣(x)𝜑

𝟤
r (x) dx +

1

𝜅

∫︁
|𝜕A|𝟤

)︁
− Cr−

𝟣
𝟤

and therefore

inf
A
lim inf
r→∞

∫︁ (︁
e𝟣(HA,V ; x , x , 0)−Weyl𝟣(HA,V , x)

)︁
𝜑𝟤
r (x) dx+

1

𝜅

∫︁
|𝜕A|𝟤 dx ≥ 2S(𝜅).

On the other hand, as in Part (ii) of the proof, taking A to be a minimizer
of the first expression in (27.3.77), we see that



27.3. GLOBAL TRACE ASYMPTOTICS

inf
A
lim sup
r→∞

∫︁ (︁
e𝟣(HA,V ; x , x , 0)−Weyl𝟣(HA,V , x)

)︁
𝜑𝟤
r (x) dx+

1

𝜅

∫︁
|𝜕A|𝟤 dx ≤ 2S(𝜅)

and Statement (iii) has been proven.

Remark 27.3.19. (i) Statements similar to (i), (ii) were proven in L. Erdös,
S. Fournais, and J. P. Solovej [3] (see Theorem 2.4 and Lemma 2.5 respec-
tively).

(ii) Again as observed in in L. Erdös, S. Fournais, and J. P. Solovej [3] we
do not know if

(a) S(𝜅) < S(0) for 𝜅 > 0 or just

(b) S(𝜅) = S(0) for 𝜅 < 𝜅* and S(𝜅) = −∞ for 𝜅 > 𝜅*.

If we knew that the optimizer is unique, then obviously A = 0 and it would
be relatively easy but rather unexciting the latter case.

(iii) While we assumed that 𝜅 < 𝜅* with 𝜅* > 0 and it is possible that
S(𝜅) = −∞ as 𝜅 > 𝜅* with some 𝜅* <∞ we are not aware about any proof
of this, so in fact it could happen that 𝜅* = +∞ and then condition 𝜅 < 𝜅*

is superficial and one needs to study asymptotics of S(𝜅) as 𝜅→ +∞.

Proposition 27.3.20. For 0 < 𝜅 < 𝜅′

(27.3.78) S(𝜅′) ≤ S(𝜅) ≤ S(𝜅′) + C𝜅′(𝜅−𝟣 − 𝜅′−𝟣).

Proof. Monotonicity of S(𝜅) is obvious.
Let 0 < 𝜅 < 𝜅′ < 𝜅′′ ≤ 𝜅*. Then for any 𝜀 > 0 if r = r𝜀 is large enough

then the left-hand expression in (27.3.71) for 𝜅′ (without inf and lim) is
greater than S(𝜅′′)−𝜀+(𝜅′−𝟣−𝜅′′−𝟣)‖𝜕A‖𝟤; also, if A is an almost minimizer
there, it is less than S(𝜅′) + 𝜀.

Therefore (𝜅′−𝟣 − 𝜅′′−𝟣)‖𝜕A‖𝟤 ≤ |S(𝜅′′)− S(𝜅′)|+ 2𝜀. But then

S(𝜅)− 𝜀 ≤ S(𝜅′) + 𝜀+ (𝜅−𝟣 − 𝜅′−𝟣)‖𝜕A‖𝟤 ≤

S(𝜅′) + 𝜀+ C (𝜅−𝟣 − 𝜅′−𝟣)(𝜅′−𝟣 − 𝜅′′−𝟣)−𝟣
(︀
|S(𝜅′′)− S(𝜅′)|+ 2𝜀

)︀
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and therefore

(27.3.79) (𝜅−𝟣 − 𝜅′−𝟣)−𝟣|S(𝜅)− S(𝜅′)| ≤ (𝜅′−𝟣 − 𝜅′′−𝟣)−𝟣|S(𝜅′)− S(𝜅′′)|

which for 𝜅′′ = 𝜅* implies (27.3.78).

Remark 27.3.21. Using global equation (27.2.14) we conclude that for Z =
h = 1

|𝜕𝛼A| ≤ C𝜅ℓ−𝟣−|𝛼| if ℓ ≥ 1, |𝛼| ≤ 1,(27.3.80)

|𝜕𝛼A| ≤ C𝜅 if ℓ ≤ 1, |𝛼| ≤ 1,(27.3.81)

‖𝜕A‖𝟤 ≤ C𝜅𝟤.(27.3.82)

Then

S ′(𝜅) ≤ C , |S(𝜅(1 + 𝜂))− S(𝜂)| ≤ C𝜅𝜂.(27.3.83)

Main Theorem

In the “atomic” case M = 1 we arrive instantly to the following theorem:

Theorem 27.3.22. Let M = 1 and 𝜅 ≤ 𝜅*. Then

(i) Asymptotics holds

(27.3.84) E* =

∫︁
Weyl𝟣(x) dx + 2z𝟤S(z𝜅)h−𝟤 + O(h− 𝟦

𝟥𝜅| log 𝜅|
𝟣
𝟥 + h−𝟣).

(ii) If 𝜅 = o(h
𝟣
𝟥 | log h|− 𝟣

𝟥 ), then

(27.3.85) E* =

∫︁
Weyl*𝟣(x) dx + 2z𝟤S(z𝜅)h−𝟤 + o(h−𝟣).

Proof. If A satisfies the minimizer properties, then in virtue of Proposi-
tion 27.3.16

(27.3.86) Tr−(HA,V )−
∫︁

Weyl𝟣(x) dx ≡ Tr−(HA,V 𝟢)−
∫︁

Weyl𝟢𝟣(x) dx

+ O(h− 𝟦
𝟥𝜅| log 𝜅|

𝟣
𝟥 + h−𝟣)
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and adding magnetic energy and plugging either minimizer for V or for V 𝟢

we get

inf
A

(︁
Tr−(HA,V )−

∫︁
Weyl𝟣(x) dx +

1

𝜅h𝟤

∫︁
|𝜕A|𝟤 dx

)︁
⋚(27.3.87)

inf
A

(︁
Tr−(HA,V 𝟢)−

∫︁
Weyl𝟢𝟣(x) dx +

1

𝜅h𝟤

∫︁
|𝜕A|𝟤 dx

)︁
± C (h− 𝟦

𝟥𝜅| log 𝜅|
𝟣
𝟥 + h−𝟣).

Obviously if V (and surely V 𝟢) are not sufficiently fast decaying at the
infinity, the left (and for sure the right hand) expression in (27.3.86) should
be regularized as in Subsubsection 27.3.5.1. Coulomb Potential. However
for potential decaying fast enough (faster than |x |−𝟤−𝛿) the regularization is
not needed.

For V 𝟢 we have an exact expression which concludes the proof of State-
ment (i).

The proof of Statement (ii) is similar albeit with the small improvement,
based on the behavior of the classical dynamics (without magnetic field)
exactly as in Chapter 25.

27.3.6 Several Singularities

Consider now the “molecular” case M ≥ 2. Then we need more delicate
arguments.

Decoupling of Singularities

Consider partition of unity 1 =
∑︀

𝟢≤m≤M 𝜓𝟤
m where 𝜓m is supported in 𝟣

𝟥
a-

vicinity of ym for m = 1, ... ,M and 𝜓𝟢 = 0 in 𝟣
𝟦
a-vicinities of ym (“near-nuclei”

and “between-nuclei”partition elements).

Estimate from above. Then

(27.3.88) Tr(H−
A,V ) =

∑︁
𝟢≤m≤M

Tr(𝜓mH−
A,V𝜓m),

and to estimate E* from the above we impose an extra condition to A:

(27.3.89) A = 0 for ℓ(x) ≥ 1

5
a.

Then in this framework we estimate
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(27.3.90) Tr−(𝜓𝟢H−
A,V𝜓𝟢)−

∫︁
Weyl𝟣(x)𝜓

𝟤
𝟢(x) dx ≤ Ch−𝟣a− 𝟣

𝟤 .

Proof of this inequality is trivial by using ℓ-admissible partition and applying
results of the theory without any magnetic field.

Thus, to estimate E* from above17) we just need to estimate from above
the minimum with respect to A satisfying (27.3.89) of the expression

(27.3.91) Tr(𝜓mH−
A,V𝜓m)−

∫︁
Weyl𝟣(x)𝜓

𝟤
m(x) dx +

1

𝜅h𝟤

∫︁
{ℓm(x)≤ 𝟣

𝟧
a}
|𝜕A|𝟤 dx .

Estimate from below. In this case we use the same partition of unity
{𝜓𝟤

m}j=𝟢,𝟣,...,M and estimate

Tr(H−
A,V ) ≥

∑︁
𝟢≤m≤M

Tr−(𝜓mHA,V ′𝜓m)(27.3.92)

with

V ′ = V + 2h𝟤
∑︁

𝟢≤m≤M

(𝜕𝜓)𝟤,(27.3.93)

and we also use decomposition∫︁
|𝜕A|𝟤 dx =

∑︁
𝟢≤m≤M

∫︁
𝜔𝟤
m|𝜕A|𝟤 dx(27.3.94)

with

(27.3.95) 𝜔m(x) = 1 if ℓm(x) ≤
1

10
a, 𝜔m(x) ≥ 1− C 𝜍 if ℓm(x) ≤

1

2
a

for m = 1, ... ,M ,

(27.3.96) 𝜔𝟢 ≥ 𝜖𝟢𝜍 if ℓ(x) ≥ 1

5
a.

So far 𝜍 > 0 is a constant but later it will become a small parameter. Then
since

(27.3.97) Tr−(𝜓𝟢HA,V ′𝜓𝟢)−
∫︁

Weyl𝟣(x)𝜓
𝟤
𝟢(x) dx +

1

𝜅h𝟤

∫︁
𝜔𝟤
𝟢|𝜕A|𝟤 dx ≥

Ch−𝟣a− 𝟣
𝟤

(again proven by partition) in virtue of the previous Section 27.2 we are left
with the estimates from below for

17) Modulo error in (27.3.51).
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(27.3.98) Tr−(𝜓mHA,V ′𝜓m)−
∫︁

Weyl𝟣(x)𝜓
𝟤
m(x) dx +

1

𝜅h𝟤

∫︁
𝜔𝟤
m|𝜕A|𝟤 dx .

Remark 27.3.23. (i) Note that the error in Weyl𝟣 when we replace V ′ there

by V does not exceed Ch−𝟣(1+ a− 𝟣
𝟤 ) which is less than the error in (27.3.51).

Here we can also assume that A satisfies (27.3.89); we need just to replace 𝜍
by 𝜖𝟢𝜍 in (27.3.95)–(27.3.96).

(ii) We can further go down by replacing Tr−(𝜓mHA,V ′𝜓m) by Tr(𝜓mH−
A,V ′𝜓m).

(iii) Therefore we basically have the same object for both estimates albeit
with marginally different potentials (V in the estimate from above and V ′ in
the estimate from below) and with a weight 𝜔𝟤

m satisfying (27.3.95)–(27.3.96);
in both cases 𝜔 = 1 if ℓ(x) ≤ 𝟣

𝟣𝟢
a but in the estimate from above 𝜔(x) grows

to C𝟢 and in the estimate from below 𝜔(x) decays to 𝜍 if ℓ(x) ≥ 𝟣
𝟥
a and in

both cases condition (27.3.89) could be either imposed or skipped.

(iv) From now on we consider a single singularity at 0 and we skip subscript
m. However if there was a single singularity from the beginning, all arguments
of this and forthcoming paragraphs would be unnecessary.

Scaling. Now we apply scaling arguments:

(i) We are done as Z ≍ 1 but as Z ≪ 1 18) we need a bit more fixing.
The problem is that V ≍ Zℓ−𝟣 only for |x | ≤ aZ ; otherwise V ≲ a−𝟣

(where we still assume that a ≤ 1). To deal with this we apply in the zone
{x : aZ ≤ |x | ≤ a} the same procedure as before and its contribution to

the error will be Ch−𝟣a− 𝟣
𝟤 as 𝜌 = a− 𝟣

𝟤 here. Actually we also need to keep
|x | ≥ Z−𝟣h𝟤; so we assume that Z−𝟣h𝟤 ≤ Za, i.e. Z ≥ a− 𝟣

𝟤 h.

Now let us scale x ↦→ x ′ = x(aZ )−𝟣, and multiply Ha,V by a and therefore

also multiply A by a
𝟣
𝟤 , so A ↦→ A′ = a

𝟣
𝟤 A, h ↦→ h′ = ha− 𝟣

𝟤 Z−𝟣; then the
magnetic energy becomes

𝜅−𝟣h−𝟤Z

∫︁
𝜔𝟤(x)|𝜕′A′|𝟤 dx ′,

where factors a−𝟣 and aZ come from substitution A = a− 𝟣
𝟤 A′ and scaling

respectively. We need to multiply it by a (since we multiplied an operator);
then plugging h−𝟤 = h′−𝟤a−𝟣Z−𝟤 we get the same expression as before but
with Z ′ = 1, a′ = 1 and h′ = ha− 𝟣

𝟤 Z−𝟣 ≤ 1 and 𝜅′ = 𝜅Z instead of h and 𝜅.
18) Since Z denotes Zm now we assume only that Z𝟣 + ... + ZM ≍ 𝟣.

… 263
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If we prove here an error O
(︀
h′−𝟣+𝜅′| log 𝜅′| 𝟣𝟥 h′− 𝟦

𝟥

)︀
, then the final error will

be this expression multiplied by a−𝟣, i.e. O
(︀
a− 𝟣

𝟤 Zh−𝟣+𝜅a− 𝟣
𝟤 Z

𝟩
𝟥 | log 𝜅Z | 𝟣𝟥 h− 𝟦

𝟥

)︀
,

which is less than the same expression with Z = 1.

(ii) On the other hand, let Z ≤ a− 𝟣
𝟤 h. Recall, we assume that a ≥ C𝟢h𝟤.

Then we can apply the same arguments as before but with Z̄ = a− 𝟣
𝟤 h and we

arrive to the same situation as before albeit with h′ = 1, a′ = 1, 𝜅′ = 𝜅a− 𝟣
𝟤 h

and with Z ′ = Z Z̄−𝟣. Then we have the trivial error estimate O(a−𝟣) which

is less than O(a− 𝟣
𝟤 h−𝟣).

Main Results

Combining results of the previous subsubsections and paragraphs with
Proposition 27.3.9 we arrive to

Theorem 27.3.24. Let M ≥ 2, 𝜅 ≤ 𝜅* and (27.3.38) hold with 𝜈 > 𝟦
𝟥
.

Then

(i) The following asymptotics holds

(27.3.99) E* =

∫︁
Weyl𝟣(x) dx + 2

∑︁
𝟣≤m≤M

z𝟤
mS(zm𝜅)h

−𝟤 + O(R𝟣 + R𝟤)

with

R𝟣 =

{︃
h−𝟣 + 𝜅| log 𝜅|

𝟣
𝟥 h− 𝟦

𝟥 if a ≥ 1,

a− 𝟣
𝟤 h−𝟣 + 𝜅| log 𝜅|

𝟣
𝟥 a− 𝟣

𝟥 h− 𝟦
𝟥 if h𝟤 ≤ a ≤ 1

(27.3.100)

and

R𝟤 = 𝜅h−𝟤

{︃
a−𝟥 if a ≥ | log h|

𝟣
𝟥 ,

| log h𝟤a−𝟣|−𝟣 if h𝟤 ≤ a ≤ | log h|
𝟣
𝟥 .

(27.3.101)

(ii) If 𝜅 = o(h
𝟣
𝟥 | log h|− 𝟣

𝟥 ), 𝜅a−𝟥 = o(h) and a−𝟣 = o(1), then

(27.3.102) E* =

∫︁
Weyl*𝟣(x) dx + 2

∑︁
𝟣≤m≤M

z𝟤
mS(zm𝜅)h

−𝟤 + o(h−𝟣).

Proof. To prove theorem we need to prove the following estimate

(27.3.103)
1

𝜅
‖𝜕A‖𝟤{b≤ℓ(x)≤𝟤b},≤ Cb−𝟥
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where r* ≤ b ≤ a is a “cut-off”. On the other hand, we know that

(27.3.104)
1

𝜅
‖𝜕A‖𝟤 = −𝜕S

𝜕𝜅
= O(1)

and we need to recover the last factor in the definition of R𝟤.
For a ≥ 1 we can have 𝜅a−𝟥 because in virtue of (27.3.41) the square of

the partial norm in (27.3.104) does not exceed Ca−𝟥𝜅𝟤.
On the other hand, for h𝟤 ≤ r* ≤ a we can select b : r* ≤ b ≤ a such that

the partial norm in (27.3.104) does not exceed C | log(a/h𝟤)|−𝟣 · ‖𝜕A‖𝟤.

Remark 27.3.25. (i) For a ≤ | log h| we do not need assumption (27.3.38).

(ii) Following arguments of Section 12.6 estimates (27.3.85) and (27.3.104)

could be improved to O(h−𝟣+𝛿) provided a ≥ h−𝛿𝟣 , 𝜅 ≤ h
𝟣
𝟥
+𝛿𝟣 | log h|− 𝟣

𝟥 and
𝜅 ≤ a𝟥h𝟣+𝛿𝟣 .

Problems and Remarks

The following problem seems to be really challenging and we have no idea
how to approach it:

Problem 27.3.26. (i) For 𝜅 ∈ [0,𝜅*] with small enough 𝜅* > 0 does S(𝜅)
really depend on 𝜅 or S(𝜅) = S(0) (see Remark 27.3.19)?

(ii) If S(𝜅) really depends on 𝜅, what is asymptotic behavior of S(𝜅)− S(0)
as 𝜅→ +0: can one improve S(𝜅)− S(0) = O(𝜅)?

(iii) Do we really need an assumption 𝜅 ∈ [0,𝜅*] (again see Remark 27.3.19)?

(iv) Can one improve estimates to minimizer?

27.4 Asymptotics of the Ground State

Energy

27.4.1 Problem

Now we are ready to tackle our original object (27.1.2)–(27.1.3). So, let us
consider our usual quantum Hamiltonian

H =
∑︁

𝟣≤j≤N

H𝟢
xj
+

∑︁
𝟣≤j<k≤N

|xj − xk |−𝟣(27.4.1)
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in

H =
⋀︁

𝟣≤n≤N

H, H = L𝟤(ℝ𝟥,ℂ𝟤)(27.4.2)

with

H𝟢 =
(︀
(i∇− A) · σ

)︀𝟤 − V (x).(27.4.3)

We are interested in the ground state energy E*
N(A) of our system i.e. in the

lowest eigenvalue of the operator H on H:

E*
N(0) = inf Spec(H) on H(27.4.4)

if A = 0 and more generally in

E*
N = inf

A

(︁
inf SpecH(H) +

1

𝛼

∫︁
|∇ × A|𝟤 dx

)︁
,(27.4.5)

where

V (x) =
∑︁

𝟣≤m≤M

Zm

|x − ym|
(27.4.6)

N ≍ Z ≫ 1, Z := Z𝟣 + ... + ZM , Z𝟣 > 0, ... ,ZM > 0,(27.4.7)

M is fixed, under assumption

0 < 𝛼 ≤ 𝜅*Z−𝟣(27.4.8)

with sufficiently small constant 𝜅* > 0.
Our purpose is to derive an asymptotics

E*
N ≈ ℰ𝖳𝖥

N +
∑︁

𝟣≤m≤M

2Z 𝟤
mS(𝛼Zm)(27.4.9)

and estimate an error (usually) provided

b := min
𝟣≤m<m′≤M

|ym − ym′ | ≥ Z− 𝟣
𝟥 .(27.4.10)

Recall that the Thomas-Fermi potential W 𝖳𝖥 and the Thomas-Fermi
density 𝜌𝖳𝖥 satisfy equations

𝜌𝖳𝖥 =
1

3𝜋𝟤
(W 𝖳𝖥 + 𝜈)

𝟥
𝟤
+(27.4.11)

and

W 𝖳𝖥 = V 𝟢 + |x |−𝟣 * 𝜌𝖳𝖥,(27.4.12)

where 𝜈 is a chemical potential.
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27.4.2 Lower Estimate

Consider corresponding to H quadratic form exactly as in Sections 25.2
and 26.6

(27.4.13) 〈HΨ,Ψ〉 =
∑︁
j

(H𝟢
xj
Ψ,Ψ) + (

∑︁
𝟣≤j<k≤N

|xj − xk |−𝟣Ψ,Ψ) =∑︁
j

(HxjΨ,Ψ) + ((V − W )Ψ,Ψ) + (
∑︁

𝟣≤j<k≤N

|xj − xk |−𝟣Ψ,Ψ)

with

(27.4.14) H =
(︀
(i∇− A) · σ

)︀𝟤 − W (x)

where we select W later. By Lieb-Oxford inequality the last term is estimated
from below:

〈
∑︁

𝟣≤j<k≤N

|xj − xk |−𝟣Ψ,Ψ〉 ≥ 1

2
D(𝜌𝝭, 𝜌𝝭)− C

∫︁
𝜌

𝟦
𝟥
𝝭 dx ,(27.4.15)

where

𝜌𝝭(x) = N

∫︁
|Ψ(x , x𝟤, ... , xN)|𝟤 dx𝟤 · · · dxN(27.4.16)

is a spatial density associated with Ψ and

D(𝜌, 𝜌′) :=

∫︁∫︁
|x − y |−𝟣𝜌(x)𝜌′(y) dxdy .(27.4.17)

Therefore again repeating arguments of Section 25.2 we estimate H from
below:

(27.4.18) 〈HΨ,Ψ〉 ≥∑︁
j

(HxjΨ,Ψ)− 2((V − W )Ψ,Ψ) +
1

2
D(𝜌𝝭, 𝜌𝝭)− C

∫︁
𝜌

𝟦
𝟥
𝝭 dx =

∑︁
j

(HxjΨ,Ψ)− D(𝜌, 𝜌𝝭) +
1

2
D(𝜌𝝭, 𝜌𝝭)− C

∫︁
𝜌

𝟦
𝟥
𝝭 dx =

∑︁
j

(HxjΨ,Ψ)− 1

2
D(𝜌, 𝜌) +

1

2
D(𝜌− 𝜌𝝭, 𝜌− 𝜌𝝭)− C

∫︁
𝜌

𝟦
𝟥
𝝭 dx
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swhere

(27.4.19) W − V = |x |−𝟣 * 𝜌.

Note that due to antisymmetricity of Ψ

(27.4.20)
∑︁
j

(HxjΨ,Ψ) ≥
∑︁

𝟣≤j≤N : 𝜆j<𝟢

𝜆j ≥ Tr−(H),

where 𝜆j are eigenvalues of H .
To estimate the last term in (27.4.18) we reproduce the proof of Lemma

4.3 from L. Erdös, S. Fournais and J. P. Solovej [3]:
According to magnetic Lieb–Thirring inequality for U ≥ 0:

(27.4.21)
∑︁
j≤N

〈(H𝟢
xj
− U)Ψ,Ψ〉 ≥ −C

∫︁
U𝟧/𝟤 dx − C𝛾−𝟥U𝟦 dx − 𝛾

∫︁
B𝟤 dx

where B = ∇× A, 𝛾 > 0 is arbitrary. Then, selecting U = 𝛽min(𝜌
𝟧/𝟥
𝝭 , 𝛾𝜌

𝟦/𝟥
𝝭 )

with 𝛽 > 0 sufficiently small but independent from 𝛾, we ensure that
𝟣
𝟤
U𝜌𝝭 ≥ CU𝟧/𝟤 + C𝛾−𝟥U𝟦 and then

(27.4.22)
∑︁
j≤N

〈(H𝟢
xj
)Ψ,Ψ〉 ≥ 𝜖

∫︁
min(𝜌

𝟧/𝟥
𝝭 , 𝛾𝜌𝟦/𝟥) dx ,−𝛾

∫︁
B𝟤 dx ,

which implies

(27.4.23)

∫︁
𝜌
𝟦/𝟥
𝝭 dx ≤ 𝛾−𝟣

∫︁
min(𝜌

𝟧/𝟥
𝝭 , 𝛾𝜌𝟦/𝟥) dx + 𝛾

∫︁
𝜌𝝭 dx ≤

c𝛾−𝟣
∑︁
j :𝜆j<𝟢

〈(H𝟢
xj
)Ψ,Ψ〉+ c

∫︁
B𝟤 dx + c𝛾N

where we use
∫︀
𝜌𝝭 dx = N .

Remark 27.4.1. As one can prove easily (see also L. Erdös, S. Fournais and
J. P. Solovej [3]) that

(27.4.24)
∑︁
j≤N

〈(H𝟢
xj
)Ψ,Ψ〉 ≤ CZ

𝟦
𝟥 N
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even if N ̸≍ Z ; then we conclude that

(27.4.25)

∫︁
𝜌
𝟦/𝟥
𝝭 dx ≤ CZ

𝟤
𝟥 N + C𝟣

∫︁
B𝟤 dx .

It is sufficient unless we want to recover Dirac-Schwinger terms which
unfortunately is possible only if 𝛼 ≪ Z− 𝟣𝟢

𝟫 | log Z |− 𝟣
𝟥 . To recover remainder

estimate o(Z
𝟧
𝟥 ) (or marginally better) we just apply Theorem 26.A.2. We

will do it later (see Theorem 27.4.5).

Therefore skipping the non-negative third term in the right-hand expres-
sion of (27.4.18) we conclude that

(27.4.26) 〈HΨ,Ψ〉+ 1

𝛼

∫︁
|∇ × A|𝟤 dx ≥

Tr−(H) + (
1

𝛼
− C𝟣)

∫︁
|∇ × A|𝟤 dx − 1

2
D(𝜌, 𝜌)− CZ

𝟧
𝟥 .

Applying Theorem 27.3.24 we conclude that

(27.4.27) The sum of the first and the second terms in the right-hand
expression of (27.4.26) is greater than

ℰ𝖳𝖥 +
∑︁
m

2Z 𝟤
mS(𝛼Zm)− CZ

𝟦
𝟥 (R𝟣 + R𝟤)

with R𝟣 and R𝟤 defined by (27.3.100) and (27.3.101) respectively with 𝜅 = 𝛼Z ,

h = Z− 𝟣
𝟥 and

(27.4.28) a := Z
𝟣
𝟥 min
𝟣≤m<m′≤M

|ym − ym′ |.

To prove this claim one needs just to rescale

(27.4.29)𝟣−𝟧 x ↦→ xZ
𝟣
𝟥 , a ↦→ aZ

𝟣
𝟥 , W ↦→ Z− 𝟦

𝟥 W ,

A ↦→ A, ∇× A ↦→ Z
𝟣
𝟥∇× A

and introduce

(27.4.30) h = Z− 𝟣
𝟥 , 𝜅 = 𝛼Z .
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Observe that due to (27.4.29)𝟥 we need to multiply our estimate by Z
𝟦
𝟥 .

Here one definitely needs the regularity properties like in Section 27.3
but we have them since 𝜌 = 𝜌𝖳𝖥, W = W 𝖳𝖥. Also one can see easily that
“−C𝟣” brings correction not exceeding C𝟤𝛼Z 𝟤 as 𝛼Z ≤ 1.

Meanwhile for 𝜌 = 𝜌𝖳𝖥, W = W 𝖳𝖥

(27.4.31)
2

15𝜋𝟤

∫︁
W

𝟧
𝟤 dx − 1

2
D(𝜌, 𝜌) = ℰ𝖳𝖥.

Lower estimate of Theorem 27.4.3 below has been proven.

Remark 27.4.2. 𝜌 = 𝜌𝖳𝖥, W = W 𝖳𝖥 delivers the maximum of the right-hand
expression of (27.4.31) among 𝜌,W satisfying (27.4.19).

27.4.3 Upper Estimate

Upper estimate is easy. Plugging as in Section 25.2 Ψ, the Slater determinant
(25.2.16) of 𝜓𝟣, ... ,𝜓N , where 𝜓𝟣, ... ,𝜓N are eigenfunctions of HA,W we get

(27.4.32) 〈HΨ,Ψ〉 = Tr−(HA,W − 𝜆N) + 𝜆NN+∫︁
(W − V )(x)𝜌𝝭(x) dx +

1

2
D(𝜌𝝭, 𝜌𝝭)−

1

2
N(N − 1)

∫︁∫︁
|x𝟣 − x𝟤|−𝟣|Ψ(x𝟣, x𝟤, x𝟥, ... , xN |𝟤 dx𝟣 · · · dxN ,

where we do not care about the last term since we drop it (again as long as
we cannot get sharp enough estimate) and the first term in the second line
is in fact −D(𝜌, 𝜌𝝭), provided (27.4.19) holds. Thus we get

(27.4.33) Tr−(HA,W − 𝜆N) + 𝜆NN − 1

2
D(𝜌, 𝜌) +

1

2
D(𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌)+

1

𝛼

∫︁
|𝜕A|𝟤 dx ,

where we added the magnetic energy. Definitely we have several problems
here: 𝜆N depends on A and there may be less than N negative eigenvalues.

However in the latter case we can obviously replace N by the lesser
number N ′ := max(n ≤ N ,𝜆n ≤ 0) since E*

N is decreasing function of N . In
this case the first term in (27.4.33) would be just Tr−(HA,W ) and the second
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would be 0. Then we apply theory of the previous Section 27.3 immediately
without extra complications.

Consider A a minimizer (or its mollification) for operator HA,W − 𝜇 with
potential W = W 𝖳𝖥 and 𝜇 ≤ 0. Then

(27.4.34) N(𝜇) := #{𝜆k < 𝜇} =

∫︁
(W + 𝜇)

𝟥
𝟤
+ dx + O(Z

𝟤
𝟥 ).

One can prove (27.4.34) easily using the regularity properties of A established
in the previous Section 27.3 and the same rescaling (27.4.29)–(27.4.30) as
before. We leave this easy proof to the reader.

Therefore, repeating arguments of Subsubsection 25.4.2.1. Estimating
|𝜆N − 𝜈|, we conclude that either N ≥ Z − C𝟢Z

𝟤
𝟥 and then |𝜈| ≤ C𝟣Z

𝟪
𝟫 and

we can take 𝜇 = 0 and |𝜆N′ | ≤ C𝟣Z
𝟪
𝟫 or N ≤ Z − C𝟢Z

𝟤
𝟥 and then we take

𝜇 = 𝜈, |𝜆N | ≍ |𝜈| ≍ (Z − N)
𝟦
𝟥
+ and |𝜆N − 𝜈| ≤ C𝟣|𝜈|

𝟣
𝟦 Z

𝟤
𝟥 .

After this, following again to arguments of Subsection 25.4.2, we conclude
that

(27.4.35) Expression (27.4.33) without term 𝟣
𝟤
D(𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌) does not

exceed
ℰ𝖳𝖥 +

∑︁
m

2Z 𝟤
mS(𝛼Zm) + CZ

𝟦
𝟥 (R𝟣 + R𝟤)

with R𝟣 and R𝟤 defined by (27.3.100) and (27.3.101) respectively with 𝜅 = 𝛼Z ,

h = Z− 𝟣
𝟥 and a defined by (27.4.28).

Now we need to estimate properly D(𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌) which as in i.e.
Subsubsection 25.4.2.2. Estimating D-Term does not exceed the sum of

D(e(x , x ,𝜇)−Weyl(x ,𝜇), e(x , x ,𝜇)−Weyl(x ,𝜇)),(27.4.36)

D(e(x , x ,𝜆N)−Weyl(x ,𝜆N), e(x , x ,𝜆N)−Weyl(x ,𝜆N))(27.4.37)

and

D(Weyl(x ,𝜇)−Weyl(x ,𝜆N), Weyl(x ,𝜇)−Weyl(x ,𝜆N)).(27.4.38)

Next, following arguments of Subsubsection 25.4.2.2. Estimating D-
Term, one can prove easily that due to regularity properties of A both
semiclassical (27.4.36) and (27.4.37) terms do not exceed CZ

𝟧
𝟥 and due to

estimates for |𝜆N − 𝜇| the last term does (27.4.38) not exceed CZ
𝟧
𝟥 as well.

This concludes the proof of the upper estimate in Theorem 27.4.3 below.
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27.4.4 Main Theorems

Theorem 27.4.3. (i) Under assumptions (27.4.7) and (27.4.8) the follow-
ing asymptotics holds

(27.4.39) E*
N = ℰ𝖳𝖥

N +
∑︁

𝟣≤m≤M

2Z 𝟤
mS(𝛼Zm) + O

(︀
Z

𝟦
𝟥 (R𝟣 + R𝟤)

)︀
with R𝟣 and R𝟤 defined by (27.3.100) and (27.3.101) respectively with 𝜅 = 𝛼Z ,

h = Z− 𝟣
𝟥 and a defined by (27.4.28), a = ∞ for M = 1.

(ii) In particular, under assumption (27.4.10) the following asymptotics
holds

(27.4.40) E*
N = ℰ𝖳𝖥

N +
∑︁

𝟣≤m≤M

2Z 𝟤
mS(𝛼Zm)+

O
(︀
𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫 + Z

𝟧
𝟥 + 𝛼b−𝟥Z 𝟤

)︀
.

Recall that ℰ𝖳𝖥
N is a Thomas-Fermi energy and S(𝛼Zm)Z

𝟤
m are magnetic

Scott correction terms .

Theorem 27.4.4. (i) Let assumptions (27.4.7) and (27.4.8) be fulfilled
and let Ψ = ΨA be a ground state for a near optimizer A of the original
multiparticle problem. Then

(27.4.41) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) ≤ CZ
𝟧
𝟥 .

(ii) Furthermore, as b ≥ Z− 𝟣
𝟥

(27.4.42) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) ≤ CZ
𝟧
𝟥

(︀
Z−𝛿 + (bZ

𝟣
𝟥 )−𝛿 + (𝛼Z )𝛿

)︀
.

Proof. (i) Note that all the terms in estimates from below and from above

are O(Z
𝟧
𝟥 ) except the common term

(27.4.43) Tr−(HA,W + 𝜇) +
1

𝛼

∫︁
|∇ × A|𝟤 dx ,

where A is a minimizer for this term and therefore estimate (27.4.41) has
been proven because estimate from below also contains D(𝜌𝝭−𝜌𝖳𝖥, 𝜌𝝭−𝜌𝖳𝖥).

(ii) To prove Statement (ii) one needs
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(a) To improve estimate (27.4.34) to

(27.4.44) N(𝜇) =

∫︁
(W + 𝜇)

𝟥
𝟤
+ dx + O

(︀
Z

𝟤
𝟥

[︀
Z−𝛿 + (bZ

𝟣
𝟥 )−𝛿 + (𝛼Z )𝛿

]︀)︀
;

(b) To estimate terms (27.4.36)–(27.4.38) by the right-hand expression of
(25.4.45); and

(c) To accommodate Dirac term in both upper and lower estimates.

Tasks (a), (b) are easy and we leave it to the reader (cf. arguments
of Subsection 25.4.3); we use that after rescaling effective magnetic field

intensity becomes O(𝛼Z ) in the zone {x : ℓ(x) ≍ Z− 𝟣
𝟥} due to already

established estimates to A.

To fulfill task (c) observe that in the upper estimate we already have
term

(27.4.45) − 1

2
tr

∫︁∫︁
|x − y |−𝟣eN(x , y)e†

N(x , y) dxdy .

On the other hand, in virtue of Theorem 26.A.2 we replace in the lower

estimate term −C
∫︀
𝜌

𝟦
𝟥
𝝭(x) dx by (27.4.6) with O(Z

𝟧
𝟥
−𝛿) error (again we leave

easy details to the reader).

One can prove by the same arguments as as in the non-magnetic case
that for 𝛼Z ≤ 𝜅* it is Dirac + O(Z

𝟧
𝟥
−𝛿).

Finally, combining arguments sketched in the proof of Theorem 27.4.4
with the improved estimate of (27.4.43) (see Theorem 27.3.24(ii)) we arrive
to

Theorem 27.4.5. Let assumptions (27.4.8) and (27.4.10) be fulfilled, and

let 𝛼 ≤ Z− 𝟣𝟢
𝟫 | log Z |− 𝟣

𝟥 . Then

(27.4.46) E*
N = ℰ𝖳𝖥

N +
∑︁

𝟣≤m≤M

2Z 𝟤
mS(𝛼Zm) + Dirac + Schwinger+

O
(︀
𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫 + Z

𝟧
𝟥
−𝛿 + 𝛼b−𝟥Z 𝟤

)︀
where Dirac and Schwinger are Dirac and Schwinger correction terms defined
exactly as in non-magnetic case by (25.1.29) and (25.1.30) respectively.
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27.4.5 Free Nuclei Model

Consider now free nuclei model (see Subsubsection 25.4.4.2). Estimates for
Distance between Nuclei in the Free Nuclei Model).

Theorem 27.4.6. Let us consider ym = y*m minimizing the full energŷ︀E*
N := E*

N +
∑︁

𝟣≤m<m′≤M

ZmZm′ |ym − ym′ |−𝟣.(27.4.47)

Assume that

Zm ≍ N ∀m = 1, ... ,M .(27.4.48)

Then

b ≥ min
(︀
Z− 𝟧

𝟤𝟣
+𝛿, Z− 𝟧

𝟤𝟣 (𝛼Z )−𝛿, 𝛼− 𝟣
𝟦 Z− 𝟣

𝟤

)︀
(27.4.49)

and in the remainder estimates in (27.4.40) and (27.4.46) one can skip
b-connected terms; so we arrive to

(27.4.50) E*
N = ℰ𝖳𝖥

N +
∑︁

𝟣≤m≤M

2Z 𝟤
mS(𝛼Zm) + O

(︀
𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫 + Z

𝟧
𝟥

)︀
and

(27.4.51) E*
N = ℰ𝖳𝖥

N +
∑︁

𝟣≤m≤M

2Z 𝟤
mS(𝛼Zm) + Dirac + Schwinger+

O
(︀
𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫 + Z

𝟧
𝟥
−𝛿)︀

respectively and also the same asymptotics with ̂︀E*
N and ̂︀ℰ𝖳𝖥

N instead of E*
N

and ℰ𝖳𝖥
N .

Proof. Optimization with respect to y𝟣, ... , yM implies

(27.4.52) E* +
∑︁

𝟣≤m<m′≤M

ZmZm′

|ym − ym′ |
<

∑︁
𝟣≤m≤M

E*
m

where E* = E*(y𝟣, ... , yM ;Z𝟣, ... ,Zm,N) and E*
m = E*(ym,Zm) are calculated

for separate atoms. In virtue of Theorem 27.4.3

(27.4.53) ℰ𝖳𝖥 +
∑︁

𝟣≤m<m′≤M

ZmZm′

|xm − xm′ |
−

∑︁
𝟣≤m≤M

ℰ𝖳𝖥
m ≤

C𝛼| log(𝛼Z )|
𝟣
𝟥 Z

𝟤𝟧
𝟫 + Z

𝟧
𝟥 + C𝛼b−𝟥Z 𝟤.
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However due to the strong non-binding theorem in Thomas-Fermi theory the
left-hand expression is ≳ b−𝟩 for b ≥ Z− 𝟣

𝟥 and therefore (27.4.53) implies

b ≳ min
(︀
Z− 𝟧

𝟤𝟣 , 𝛼− 𝟣
𝟩 | log(𝛼Z )|−

𝟣
𝟤𝟣 Z− 𝟤𝟧

𝟨𝟥 , 𝛼− 𝟣
𝟦 Z− 𝟣

𝟤

)︀
where the third expression is larger than the second one for sure. Unfortu-
nately, for 𝛼 ≥ Z− 𝟣𝟢

𝟫
−𝛿′ it is not as good as we claimed in (27.4.49). Still

this estimate implies both (27.4.50) and (27.4.51).

To prove estimate (27.4.49) we observe that b ≫ Z− 𝟤
𝟩
19) and then we

employ arguments used in the proof of Proposition 26.8.12 and prove that

|Tr−(HA,W + 𝜇)−
∑︁

𝟣≤m≤M

Tr−(HA,Wm + 𝜇)−∫︁ (︁
Weyl(HA,W+𝜇; x)−

∑︁
𝟣≤m≤M

Weyl(HA,Wm+𝜇; x)
)︁

dx | ≤ CZ
𝟧
𝟥

(︀
Z−𝛿+(𝛼Z )𝛿

)︀
,

where A be a minimizer for “molecular” expression (27.4.45) and Wm are
atomic potentials. The same estimate holds if we replace Tr−(HA,Wm + 𝜇) by
Tr−(HAm,Wm + 𝜇) with Am = A𝜑(b−𝟣|x − ym|) with 𝜑 ∈ C∞

𝟢 (B(0, 𝟣
𝟥
), equal 1

in B(0, 𝟣
𝟦
). We leave an easy proof to the reader.

Then using the lower estimate for inf SpecH(H) and upper estimates for
both inf SpecHm

(Hm) through Tr−(HA,W+𝜇) and Tr−(HAm,Wm+𝜇
′) respectively

(where Hm are associated with HAm,Wm) we arrive to

inf SpecH(H) ≥
∑︁

𝟣≤m≤M

inf SpecHm
(Hm) + ℰ𝖳𝖥 −

∑︁
𝟣≤m≤M

ℰ𝖳𝖥
m

− CZ
𝟧
𝟥

(︀
Z−𝛿 + (𝛼Z )𝛿

)︀
and therefore

(27.4.54) EA ≥
∑︁

𝟣≤m≤M

Em,Am + ℰ𝖳𝖥 −
∑︁

𝟣≤m≤M

ℰ𝖳𝖥
m −

CZ
𝟧
𝟥

(︀
Z−𝛿 + (𝛼Z )𝛿

)︀
− C𝛼b−𝟥Z 𝟤,

where the last term is due to replacement of 𝟣
𝛼

∫︀
|∇ × A|𝟤 dx by “atomized”

expressions
∑︀

𝟣≤m≤M
𝟣
𝛼

∫︀
|∇ × Am|𝟤 dx .

19) There is no binding with b ≤ Z− 𝟣
𝟥 because remainder estimate is (better than) CZ 𝟤

and binding energy excess is ≍ Z
𝟩
𝟥 .
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The last inequality (27.4.54) then obviously holds with Am replaced by
optimizers for “atomic” expressions (27.4.45) and now strong non-binding
theorem implies that

b−𝟩 ≤ CZ
𝟧
𝟥

(︀
Z−𝛿 + (𝛼Z )𝛿

)︀
+ C𝛼b−𝟥Z 𝟤

which implies (27.4.49) where we change 𝛿 > 0 as needed.

27.5 Miscellaneous Problems

Recall that in our analysis in Sections 25.5 and 25.6 the crucial role was
played by an estimate of D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) and since what we have now
(see Theorem 27.4.4) is (almost) as good as we had then, all arguments of
these Sections still work with the minimal modifications. We leave most of
the easy details to the reader but we need to deal with different magnetic
fields for different N .

27.5.1 Excessive Negative Charge

Theorem 27.5.1 20). Let condition (27.4.48) be fulfilled.

(i) In the framework of the fixed nuclei model let us assume that
I*N := E*

N−𝟣 − E*
N > 0. Then

(27.5.1) (N − Z )+ ≤ CZ
𝟧
𝟩

{︃
1 if a ≤ Z− 𝟣

𝟥 ,

Z−𝛿 + (aZ
𝟣
𝟥 )−𝛿 + (𝛼Z )𝛿 if a ≥ Z− 𝟣

𝟥 .

(ii) In particular, for a single atom and for molecule with a ≥ Z− 𝟣
𝟥
+𝛿

(27.5.2) (N − Z )+ ≤ Z
𝟧
𝟩

(︀
Z−𝛿 + (𝛼Z )𝛿

)︀
.

(iii) In the framework of the free nuclei model let us assume that ̂︀I*N :=̂︀E*
N−𝟣 − ̂︀E*

N > 0. Then estimate (27.5.2) holds.

Proof. The proof follows the proof of Theorem 25.5.2; since it is not specific
to the case where there is no magnetic field, we find that (N − Z )+ ≤ Q

𝟥
𝟩 ,

where Q is an estimate for D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥), which we established

20) Cf. Theorem 25.5.2.
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already; recall that the equivalence 𝜌𝖳𝖥 ≍ ℓ−𝟨 for ℓ ≳ Z− 𝟣
𝟥 also plays an

important role.
Here we pick up A = AN

21) and conclude that

IN(A) := EN−𝟣(A)− EN(A) ≥ E*
N−𝟣 − E*

N > 0,

and then repeat arguments of the proof of Theorem 25.5.2.
We leave the remaining easy details to the reader.

27.5.2 Estimates for iIonization Energy

Theorem 27.5.2 22). Let condition (27.4.48) be fulfilled and let N ≥ Z −
C𝟢Z

𝟧
𝟩 . Then

(i) In the framework of the fixed nuclei model

(27.5.3) I*N ≤ CZ
𝟤𝟢
𝟤𝟣 .

(ii) In the framework of the free nuclei model with N ≥ Z−C𝟢Z
𝟧
𝟩

(︀
Z−𝛿+𝛼Z 𝛿

)︀
(27.5.4) ̂︀I*N := ̂︀E*

N−𝟣 − ̂︀E*
N−𝟣 ≤ Z

𝟤𝟢
𝟤𝟣

(︀
Z−𝛿′ + (𝛼Z )𝛿

′)︀
.

Proof. Recall that Theorem 25.5.3 was proven simultaneously with Theo-
rem 25.5.2; we follow the same scheme here picking up A = AN

21). Thus
here and in the first part of the proof of Theorem 27.5.3 we estimate from
above I*N(A).

Again the remaining easy details a left to the reader.

Theorem 27.5.3 23). Let condition (27.4.48) be fulfilled and let N ≤ Z −
C𝟢Z

𝟧
𝟩 . Then in the framework of the fixed nuclei model under assumption

(25.6.2)

(27.5.5) (I*N + 𝜈)+ ≤ C (Z − N)
𝟣𝟩
𝟣𝟪 Z

𝟧
𝟣𝟪

{︃
1 if a ≤ Z− 𝟣

𝟥 ,

Z−𝛿 + (aZ
𝟣
𝟥 )−𝛿 if a ≥ Z− 𝟣

𝟥 .

21) Exactly as in the analysis of free nuclei model we pick up y for N-electrons we pick
now A for N electrons.

22) Cf. Theorem 25.5.3.
23) Cf. Theorem 25.6.3.
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Proof. To estimate I*N + 𝜈 from above we follow exactly the arguments of
Subsection 25.6.1 to estimate IN(AN) ≥ I*N .

Problem 27.5.4. To prove the same estimate for (I*N + 𝜈)−.

Remark 27.5.5. To estimate I*N +𝜈 from below we need to pick up A = AN−𝟣

rather than A = AN ; then

IN(A) = EN−𝟣(A)− EN(A) ≤ E*
N−𝟣 − E*

N = I*N

and we should follow the arguments of Subsection 25.6.2. However, in
contrast to all other proofs of this Section, here we should use the spectral
properties of HA,W (or at least an estimate from above for its lowest eigenvalue
after localization to supp(𝜃), while in all other results we need an estimate
from below for the same lowest eigenvalue after localization to supp(𝜃)).

To estimate from above the lowest eigenvalue of HA,W we need some uni-
form (i.e. with constants which do not depend on N) smoothness estimates
for AN−𝟣 where AN−𝟣 is the minimizer for EN−𝟣(A) as defined in Sections 27.4
and here (rather than as defined in Sections 27.2–27.3).

While (27.A.1) is an analogue of (27.2.14), it is still not the same, and
while it implies some estimate, it is not even remotely as good as we achieved
in Sections 27.2 and 27.3.

Sure 𝜌𝝭 is not very smooth either but it close to rather smooth 𝜌𝖳𝖥; on
the other hand, the minimizer AN is an almost-minimizer for the one-particle
trace problem studied Sections 27.2–27.3 but we don’t know how close it to
the minimizer (or one of the minimizers) of the latter problem.

27.5.3 Free Nuclei Model: Excessive Positive Charge

Theorem 27.5.6 24). Let condition (27.4.48) be fulfilled. Then in the frame-
work of free nuclei model with M ≥ 2 the stable molecule does not exist
unless

(27.5.6) Z − N ≤ Z
𝟧
𝟩

(︀
Z−𝛿 + (𝛼Z )𝛿

)︀
.

Proof. Again we just repeat the proof of Theorem 25.6.4; we leave all easy
details to the reader.

24) Cf. Theorem 25.6.4.
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27.A Appendices

27.A.1 Minimizers and Ground States

First, establish a conditional existence of the minimizer25) and the corre-
sponding ground state of the original problem:

Theorem 27.A.1. Let 𝛼Z < 𝜅* and let E*
N < E*

N−𝟣. Then there exist a
minimizer A = AN for the original multiparticle problem and the correspond-
ing ground state ΨN .

Proof. We know that for 𝛼Z < 𝜅* (with 𝜅* > 0 which does not depend on
Z or positions of the nuclei) E*(A) is bounded from below; then ‖∇×A′‖𝟤 is
bounded from above for a near-minimizer A′ (but constants do depend on Z
and (𝜅*−𝛼Z ) here). On the other hand, for A′ ∈ C∞

𝟢 and EN(A
′) < EN−𝟣(A

′)
there exists a ground state ΨN(A

′).
Therefore if A(k) ∈ C∞

𝟢 is a minimizing sequence for EN(A) we have
also a sequence ΨN(A(k)) with ‖ΨN(A(k))‖ = 1. Going if necessary to the
subsequence, we can assume that A(k) converges weakly in H𝟣 and strongly
in Lp

𝗅𝗈𝖼 for any p < 6; let A be its limit.
One can prove easily that ΨN(A(k)) converge weakly in H𝟣 and strongly

in L𝟤 to Ψ and

(HA,VΨ,Ψ) = lim
k→∞

(HA(k),VΨN(A(k)), ΨN(A(k))),

and then

(HA,VΨ,Ψ) +
1

𝛼
= lim

k→∞
EN(A(k)),

which is E*
N since A(k) is a minimizing sequence and then Ψ must be a ground

state.

Now in this framework we establish properties of the minimizer and the
ground state:

Proposition 27.A.2 26). Let Ψ = ΨN and A = AN be a ground state and
minimizer with energy E*

N < E*
N−𝟣.

(i) Ψ ∈ C𝟣 and Ψ = O(e−𝜖|x |) as |x | → ∞.

25) We do not know if it is unique.
26) Cf. Proposition 26.A.7.
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(ii) A ∈ C𝟣 and A = O(|x |−𝟤), ∇× A = O(|x |−𝟥) as |x | → ∞.

(iii) Let N < Z . Then V𝝭 − V ∈ C𝟣 and V𝝭 = (Z − N)|x |−𝟣 + O(|x |−𝟤),
∇V𝝭 = −(Z − N)x |x |−𝟥 + O(|x |−𝟥) as |x | → ∞.

Proof. An obvious proof, using also an equation

(27.A.1)
2

𝛼
ΔAj =

− 2N Re tr

∫︁
Ψ†(x , x𝟤, ... , xN)σj(D − A)x · σΨ(x , x𝟤, ... , xN) dx𝟤 · · · dxN ,

is left to the reader. This equation is similar to (27.2.14) and is also derived
from variational principles, its right-hand expression is δ𝝠

δA
where Λ is the

lowest eigenvalue of HA,V on Fock’ space.

27.A.2 Zhislin’s Theorem

Theorem 27.A.3 (Zhislin’s theorem) 27). E*
N+𝟣 < E*

N if N < Z .

Proof. An easy proof repeating with obvious modifications proof of Theo-
rem 26.A.8 is left to the reader.

27.A.3 L. Erdös–J. P. Solovej’s Lemma

We reproduce here Lemma 2.1 from L. Erdös, J. P. Solovej [1].

Lemma 27.A.4. There is a positive universal constant 𝜅* such that for
any Z ,𝛼 with Z𝛼 ≤ 𝜅* we have

inf
N
inf
A

HA,V ≥ −CZ
𝟩
𝟥 𝛿𝟣/𝟤 − Z

𝟤
𝟥 𝛿−𝟤

if CZ− 𝟤
𝟥 ≤ 𝛿 ≤ C𝟣 with a sufficiently large constant C .

Proof. Consider a pair of smooth functions 𝜃𝟢 and 𝜃𝟣, such that 𝜃𝟤𝟢 + 𝜃𝟤𝟣 = 1,
supp(𝜃𝟣) ⊂ B(0, 2r), 𝜃𝟣 = 1 on B(0, r), and |∇𝜃𝟢|, |∇𝜃𝟣| ≤ Cr−𝟣 with

r = 𝛿Z− 𝟣
𝟥 .

27) Cf. Theorem 26.A.8.
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Let 𝜒̃𝟢 be a smooth cutoff function, supported on B(0, 3r) such that
|∇𝜒̃𝟢| ≤ Cr−𝟣 and 𝜒̃𝟢 = 1 on B(0, 2r). Let Ā be an average of A over B(0, 3r).
Let A𝟢 := (A − Ā)𝜒̃𝟢, B𝟢 := ∇× A𝟢; then

∇⊗ A𝟢 = 𝜒̃𝟢∇⊗ A + (A − Ā)⊗∇𝜒̃𝟢.

Clearly∫︁
ℝ𝟥

B𝟤
𝟢 dx ≤

∫︁
ℝ𝟥

|∇⊗A𝟢|𝟤 dx ≤ 2

∫︁
ℝ𝟥

𝜒̃𝟤
𝟢|∇⊗A|𝟤 dx+Cr−𝟤

∫︁
B(𝟢,𝟥r)

(A−Ā)𝟤 dx

≤ C𝟣

∫︁
B(𝟢,𝟥r)

|∇ ⊗ A|𝟤 dx

for some universal constant C𝟣, where in the last step we used the Poincaré
inequality. Let 𝜙 be a real phase such that ∇𝜙 = Ā. Since 𝜒̃𝟢 ≡ 1 on the
support of 𝜃𝟣, we have

𝜃𝟣HA,𝟢𝜃𝟣 = 𝜃𝟣e−i𝜙HA−Ā,𝟢e i𝜙𝜃𝟣 = 𝜃𝟣e−i𝜙HA𝟢,V e i𝜙𝜃𝟣.

After these localizations, we have

(27.A.2) H𝟣
N,Z ;A :=

N∑︁
j=𝟣

[︁
𝜃𝟣

(︁
HA,𝟢 −

Z

|x |
−

(︀
|∇𝜃𝟢|𝟤 + |∇𝜃𝟣|𝟤

)︀
𝜃𝟣

]︁
j
+

1

𝛼

∫︁
B(𝟢,𝟥r)

|∇ ⊗ A|𝟤 dx

≥
N∑︁
j=𝟣

[︁
𝜃𝟣e−i𝜙

(︀
HA𝟢,𝟢 − W (x)

)︀
e i𝜙𝜃𝟣

]︁
j
+

1

2C𝟣𝛼

∫︁
B𝟤
𝟢 dx

with

W (x) =
[︁ Z

|x |
+ Cr−𝟤

]︁
1(|x | ≤ 2r),

where 1(X ) is a characteristic function of X .
Now we use the “running energy scale” argument in E. Lieb, M. Loss, M.

and J. Solovej [1].

(27.A.3)
N∑︁
j=𝟣

[︁
𝜃𝟣e−i𝜙

[︀
HA′,𝟢 − W

]︀
e i𝜙𝜃𝟣

]︁
j
≥ −

∫︁ ∞

𝟢

N−e(HA′,𝟢 − W ) de

≥ −
∫︁ 𝜇

𝟢

N−e(HA′,𝟢 − W ) de −
∫︁ ∞

𝜇

N𝟢

(︀𝜇
e

HA′,𝟢 − W + e
)︀

de

≥ −
∫︁ 𝜇

𝟢

N−e(HA′,𝟢 − W ) de −
∫︁ ∞

𝜇

N𝟢

(︀
HA′,𝟢 −

e

𝜇
W +

e𝟤

𝜇

)︁
de,
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where N−e(H) denotes the number of eigenvalues of a self-adjoint operator
H below −e.

In the first term we use the bound HA𝟢,𝟢 ≥ (D −A𝟢)
𝟤−|B𝟢| and the CLR

(i.e. Cwikel-Lieb-Rozenblum) bound:

(27.A.4)

∫︁ 𝜇

𝟢

N−e(HA𝟢,𝟢 − W ) de ≤ C

∫︁ 𝜇

𝟢

de

∫︁
ℝ𝟥

(W + |B𝟢| − e)
𝟥
𝟤
+ dx

≤ C

∫︁ 𝜇

𝟢

de

∫︁
ℝ𝟥

(W − e/2)
𝟥
𝟤
+ dx + C

∫︁ 𝜇

𝟢

de

∫︁
ℝ𝟥

(|B𝟢| − e𝟤/2𝜇)
𝟥
𝟤
+ dx

≤ C

∫︁
ℝ𝟥

W
𝟧
𝟤 dx + C𝜇

𝟣
𝟤

∫︁
ℝ𝟥

B𝟤
𝟢 dx = CZ

𝟧
𝟤 r

𝟣
𝟤 + Cr−𝟤 + C𝜇

𝟣
𝟤

∫︁
ℝ𝟥

B𝟤
𝟢 dx .

In the second term of (27.A.3) we use

HA𝟢,𝟢 −
e

𝜇
W ≥ 1

2

[︀
(D − A𝟢)

𝟤 − 2eZ

𝜇|x |
1(|x | ≤ 2r)

]︀
+

1

2
(D − A𝟢)

𝟤 − |B𝟢| −
Ce

𝜇r 𝟤
1(|x | ≤ 2r),

and that

(D − A𝟢)
𝟤 − 2eZ

𝜇|x |
1(|x | ≤ 2r) ≥ (D − A𝟢)

𝟤 − 4eZ

𝜇|x |
≥ −

(︀2eZ

𝜇

)︀𝟤
i.e.

HA𝟢,𝟢 −
e

𝜇
W ≥ 1

2
(D − A𝟢)

𝟤 − 2
(︀eZ

𝜇

)︀𝟤 − |B𝟢| −
Ce

𝜇r 𝟤
1(|x | ≤ 2r).

Let 𝜇 = 4Z 𝟤, then using Ce/𝜇r 𝟤 ≤ e𝟤/4𝜇 for 𝜇 ≤ e (i.e. C ≤ (𝛿Z 𝟤/𝟥)𝟤), we
get

(27.A.5)

∫︁ ∞

𝜇

N𝟢

(︀
HA𝟢,𝟢 −

e

𝜇
W +

e𝟤

𝜇

)︀
de

≤
∫︁ ∞

𝜇

N𝟢

(︀1
2
(D − A𝟢)

𝟤 − |B𝟢|+
e𝟤

4𝜇

)︀
de ≤ C

∫︁ 𝜇

𝟢

de

∫︁
ℝ𝟥

(|B𝟢| − e𝟤/4𝜇)
𝟥/𝟤
+ dx

≤ C𝜇
𝟣
𝟤

∫︁
ℝ𝟥

B𝟤
𝟢 dx .

Note that if Z𝛼 ≤ 𝜅* with some sufficiently small universal constant 𝜅*, then
(27.A.5) can be controlled by the corresponding term in (27.A.2). Combining
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the estimates (27.A.2), (27.A.3), (27.A.4) and (27.A.5), we obtain

HA,V ≥ −CZ
𝟧
𝟤 r

𝟣
𝟤 − Cr−𝟤

and lemma follows.

Comments

The problem was considered first in several papers of L. Erdös, J. P. Solovej [1]
and L. Erdös, S. Fournais, J. P. Solovej [1, 3, 4].

The same problem in the relativistic case was considered in L. Erdös,
S. Fournais, J. P. Solovej [2] (under assumption preventing relativistic
instability).



Chapter 28

The Case of Combined
Magnetic Field

28.1 Introduction

In this Chapter instead of the Schrödinger operator without magnetic field
as in Chapter 25, or with a constant magnetic field as in Chapter 26, or with
a self-generated magnetic field as in Chapter 27 we consider the Schrödinger
operator (27.1.1) with unknown magnetic field A, but then we add to the
ground state energy of the atom (or molecule) the energy of the self-generated
magnetic field (see selected term in (28.1.1) thus arriving to

(28.1.1) E(A) = inf Spec(HA,V ) + 𝛼−𝟣

∫︁
|∇ × (A − A𝟢)|𝟤 dx

where A𝟢 = 𝟣
𝟤
B(−x𝟤, x𝟣, 0) is a constant external magnetic field .

Then finally

(28.1.2) E* = inf
A−A𝟢∈H𝟣

𝟢

E(A),

defines a ground state energy with a combined magnetic field A while
A′ := A − A𝟢 is a self-generated magnetic field .

Note that

(28.1.3)

∫︁
|∇ × (A − A𝟢)|𝟤 dx =

∫︁ (︀
|∇ × A|𝟤 − |∇ × A𝟢|𝟤

)︀
dx

which seems to be a more “physical” definition.
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28.1.1 Plan of the Chapter

First of all, we are lacking so far a semiclassical local theory and we are
developing it in Sections 28.2–28.4, where we consider a one-particle quan-
tum Hamiltonian (28.2.1) with the external constant magnetic field A𝟢 of
intensity 𝛽, h ≪ 1 and a self-generated magnetic field (A−A𝟢). Here theory
significantly depends if 𝛽h ≲ 1 or 𝛽h ≳ 1 as it was in the case without a
self-generated magnetic field.

While Section 28.2 is preparatory and rather functional-analytical, Sec-
tions 28.3 and 28.4 are microlocal; they cover cases 𝛽h ≲ 1 and 𝛽h ≳ 1
respectively. These three sections are similar to a single Section 27.2. How-
ever in Sections 28.3 and 28.4 various non-degeneracy assumptions play a
very significant role, especially for large 𝛽.

Then in Section 28.5 we consider a global theory if a potential has
Coulomb singularities and (in some statements) behaves like (magnetic)
Thomas-Fermi potential both near singularities and far from them.

Finally, in Section 28.6 we apply these results to our original problem of
the ground state energy so far assuming that the number of nuclei is 1. One
can recover the same results if M ≥ 2 but the external magnetic field B is
weak enough. No surprise that the theory is different in the cases B ≤ Z

𝟦
𝟥

and Z
𝟦
𝟥 ≤ B ≪ Z 𝟥 (see Chapter 25 where this difference appears). Since as

M = 1 the strongest non-degeneracy assumption is surely achieved and as
M ≥ 2 much weaker non-degeneracy assumption is achieved in the border
zone (see Chapter 25) our remainder estimates for large B significantly differ
in the atomic and molecular cases.

In Appendix 28.A we first generalize Lieb-Loss-Solovej estimate to the
case of the combined magnetic field (which is necessary if 𝛽h ≳ 1), then
establish electrostatic inequality in the current settings and finally study
very special pointwise spectral expressions for a Schrödinger operator in ℝ𝟥

with linear magnetic and scalar potentials (we considered such operators
already in Section 16.6)

28.1.2 Unfinished Business

One can apply these results to estimates of the excessive positive and negative
charges (the estimates for excessive positive charges, if M ≥ 2 in the free
nuclei framework) and estimates or asymptotics of the ionization energy in
the same manner as we did it in Chapters 25–27; however there are no new
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ideas but rather tedious calculations and we leave it to those readers who
decide to explore these topics, which is clearly serious task.

28.2 Local Semiclassical Trace Asymptotics:

Preparation

28.2.1 Toy-Model

Let us consider operator (27.1.4)

(28.2.1) H = HA,V =
(︀
(hD − A) · σ

)︀𝟤 − V (x)

in ℝ𝟥 where A,V are real-valued functions and V ∈ C
𝟧
𝟤 , A−A𝟢 ∈ H𝟣

𝟢 . Then
operator HA,V is self-adjoint. We are interested in Tr−(HA,V ) = Tr−(H−

A,V )
(the sum of all negative eigenvalues of this operator). Let

E* = E*
𝜅 := inf

A−A𝟢∈H𝟣
𝟢

E(A),(28.2.2)

where

E(A) = E𝜅(A) :=
(︁
Tr−(HA,V ) + 𝜅−𝟣h−𝟤

∫︁
|𝜕(A − A𝟢)|𝟤 dx

)︁
(28.2.3)

with a matrix 𝜕A = (𝜕iAj)i ,j=𝟣,𝟤,𝟥. Recall that A𝟢 is a linear potential,
A𝟢(x) = 𝟣

𝟤
𝛽(−x𝟤, x𝟣, 0). We consider rather separately cases

(28.2.4)𝟣,𝟤 𝛽h ≲ 1 and 𝛽h ≳ 1

of the moderate and strong external magnetic field.
To deal with the described problem we need to consider first a formal

semiclassical approximation.

28.2.2 Formal Semiclassical Theory

Semiclassical Theory: 𝛽h ≲ 1

Let us replace the trace expression Tr(H−
A,V𝜓) by its magnetic semiclassical

approximation −h−𝟥
∫︀

PBh(V )𝜓 dx where B = |∇ × A| is a scalar intensity
of the magnetic field and P*(.) is a pressure. Then E(A) ≈ ℰ(A) with

(28.2.5) ℰ(A) = ℰ𝜅(A) := −h−𝟥

∫︁
PBh(V )𝜓 dx +

1

𝜅h𝟤

∫︁
|𝜕A′|𝟤 dx .
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Assuming that |𝜕A′| ≪ 𝛽, A′ = (A − A𝟢) we find out that

(28.2.6) − h−𝟥

∫︁
PBh(V )𝜓 dx

≈ −h−𝟥

∫︁ (︁
P𝛽h(V )− 𝜕𝛽P𝛽h(V )(B − 𝛽)𝜓

)︁
dx

≈ −h−𝟥

∫︁
P𝛽h(V )𝜓 dx

− h−𝟥

∫︁ [︁
𝜕x𝟤

(︀
𝜕𝛽P𝛽h(V )𝜓

)︀
· A′

𝟣 − 𝜕x𝟣
(︀
𝜕𝛽P𝛽h(V )𝜓

)︀
· A′

𝟤

]︁
dx ,

where we used that

(28.2.7) B ≈ 𝛽 − 𝜕x𝟤A
′
𝟣 + 𝜕x𝟣A

′
𝟤

and integrated by parts. Then ℰ(A) ≈ ℰ̄(A) with

(28.2.8) ℰ̄(A) = ℰ̄𝜅(A) := −h−𝟥

∫︁
P𝛽h(V )𝜓 dx

−h−𝟥

∫︁ [︁
𝜕x𝟤

(︀
𝜕𝛽P𝛽h(V )𝜓

)︀
·A′

𝟣−𝜕x𝟣
(︀
𝜕𝛽P𝛽h(V )𝜓

)︀
·A′

𝟤

]︁
dx +

1

𝜅h𝟤

∫︁
|𝜕A′|𝟤 dx

and replacing approximate equalities by exact ones and optimizing with
respect to A′ we arrive to

(28.2.9) ΔA′
𝟣 = −1

2
𝜅h−𝟣𝜕x𝟤

(︀
𝜕𝛽P𝛽h(V )𝜓

)︀
, ΔA′

𝟤 =
1

2
𝜅h−𝟣𝜕x𝟣

(︀
𝜕𝛽P𝛽(V )𝜓

)︀
,

ΔA′
𝟥 = 0

and

(28.2.10) ℰ*
𝜅 := inf

A : A−A𝟢∈H𝟣
𝟢

ℰ𝜅(A) ≈ ℰ̄*
𝜅 := inf

A : A−A𝟢∈H𝟣
𝟢

ℰ̄𝜅(A).

To justify our analysis we need to justify approximate equality

(28.2.11) − h−𝟥

∫︁
PBh(V ) dx +

1

𝜅h𝟤

∫︁
|𝜕A′|𝟤 dx

≈ −h−𝟥

∫︁
P𝛽h(V )𝜓dx − h−𝟥

∫︁ [︁
𝜕𝛽P𝛽h(V )𝜓(−𝜕x𝟤A′

𝟣 + 𝜕x𝟣A
′
𝟤)
]︁

dx+

1

𝜅h𝟤

∫︁
|𝜕A′|𝟤 dx
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and estimate an error when we minimize the right-hand expression instead
of the left-hand one. To do this observe that (even without assumptions
Bh ≲ 1, 𝛽h ≲ 1)

(28.2.12) |PBh(V )− P𝛽h(V )− 𝜕𝛽hP𝛽h(V ) · (B − 𝛽)h| ≤

C (B − 𝛽)𝟤h𝟤 + C |B − 𝛽|
𝟥
𝟤𝛽h

𝟧
𝟤 .

Indeed, one can prove it easily recalling that

(28.2.13) P𝛽h(V ) = 𝜘𝟢

∑︁
j≥𝟢

(1− 1

2
δj𝟢)(V − 2j𝛽h)

𝟥
𝟤
+𝛽h

and considering cases 𝛽h ≷ 1, Bh ≷ 1, |B − 𝛽| ≷ 𝛽h, analyzing different
terms in (28.2.13) and observing that the last term in (28.2.12) appears only
in the case 𝛽h ≲ 1, |B − 𝛽| ≲ 𝛽.

Then since |B − 𝛽| ≤ |B ′| (where B ′ = |𝜕(A−A𝟢)|) we conclude that the
left-hand expression of (28.2.11) is greater than

−h−𝟥

∫︁
P𝛽h(V )𝜓dx − C‖B ′‖𝛽h−𝟣 − C‖B ′‖

𝟥
𝟤𝛽h− 𝟣

𝟤 + 𝜅−𝟣h−𝟤‖B ′‖𝟤,

where we used that

(28.2.14) |𝜕𝛽hP𝛽h(V )| ≤ C𝛽h if V ≤ c ;

then a minimizer for the left-hand expression of (28.2.11) must satisfy

(28.2.15) ‖B ′‖ ≤ C𝜅𝛽h

and one can observe easily that the same is true and for the minimizer for
the right-hand expression as well.

Also observe that

(28.2.16) B = 𝛽 + 𝜕x𝟣A
′
𝟤 − 𝜕x𝟤A

′
𝟣 + O(𝛽−𝟣|B ′|𝟤).

Then for both minimizers the differences between the left-hand and right-
hand expressions of (28.2.11) do not exceed C𝜅

𝟧
𝟤𝛽

𝟧
𝟤 and therefore

(28.2.17) |ℰ* − ℰ̄*| ≤ C𝜅
𝟧
𝟤𝛽

𝟧
𝟤 .
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One can calculate easily the minimizer for

(28.2.18) − h−𝟥

∫︁ [︁
𝜕𝛽P𝛽h(V )𝜓(−𝜕x𝟤A′

𝟣 + 𝜕x𝟣A
′
𝟤)
]︁

dx +
1

𝜅h𝟤

∫︁
|𝜕A′|𝟤 dx

and conclude that A′
j = 𝜅𝛽haj with a𝟥 = 0 and

(28.2.19) Δa𝟣 = −(𝛽h)−𝟣𝜕x𝟤𝜕𝛽hP𝛽h(V ), Δa𝟤 = (𝛽h)−𝟣𝜕x𝟣𝜕𝛽hP𝛽h(V )

and the minimum is negative and O(𝜅𝛽𝟤); we call it correction term; in fact,
‖𝜕A′‖ ≍ 𝜅𝛽h and the minimum is ≍ −𝜅𝛽𝟤 in the generic case.

Then a minimum of the left-hand expression of (28.2.11) is equal to the

minimum of the right-hand expression modulo O(𝜅
𝟥
𝟤𝛽

𝟧
𝟤 h).

Remark 28.2.1. (i) One can improve this estimate under non-degeneracy
assumptions (28.3.60) or (28.3.65). However even in the general case observe
that

ℰ(A′′)− ℰ(A′)

≥ −C𝛽h− 𝟣
𝟤‖B ′−B ′′‖

𝟥
𝟤 −C𝛽h− 𝟣

𝟤‖B ′‖
𝟣
𝟤 · ‖B ′−B ′′‖+2𝜖𝟢𝜅

−𝟣h−𝟤‖𝜕(A′−A′′)‖𝟤

≥ −C𝜅𝟤𝛽𝟤h + 𝜖𝟢𝜅
−𝟣h−𝟤‖𝜕(A′ − A′′)‖𝟤

if A′ is the minimizer for ℰ̄ and therefore since ‖B ′‖ ≤ C𝜅𝛽h we conclude
that

ℰ* ≥ ℰ(A′)− C𝜅𝟤𝛽𝟤h(28.2.20)

and

‖𝜕(A′ − A′′)‖ ≤ C𝜅
𝟥
𝟤𝛽h

𝟣
𝟤(28.2.21)

if A′′ is an almost-minimizer for ℰ(A′′).

(ii) Observe, that picking up A′ = 0 and applying arguments of Chapter 18
we can derive an upper estimate

(28.2.22) E* ≤ −
∫︁

P𝛽h(V )𝜓 dx + O(h−𝟣);

however this estimate is not sharp for 𝜅𝛽𝟤 ≫ h−𝟣 because ℰ* is less than
the main term here with a gap ≍ 𝜅𝛽𝟤. For 𝜅 ≍ 1 it gives us a proper upper
estimate only if 𝛽 ≤ h− 𝟣

𝟤 .

Therefore for 𝜅𝛽𝟤 ≫ h−𝟣 an upper estimate is not as trivial as in
Chapter 26; in the future we pick up as A′ a minimizer for ℰ̄(A) (mollified
by x as this minimizer is not smooth enough).
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Semiclassical Theory: 𝛽h ≳ 1

Consider 𝛽h ≥ 1. Without any loss of the generality one can assume that
‖V ‖L∞ ≤ 𝛽h and ‖𝜕A′‖L∞ ≤ 𝟣

𝟤
𝛽. Then in the definition (28.2.13) of P𝛽h(V )

(etc) remains only term with j = 0:

(28.2.13)′ P𝛽h(V ) =
1

2
𝜘𝟢V

𝟥
𝟤
+𝛽h,

which leads to simplifications of ℰ(A′) and ℰ̄(A′); both of them become

(28.2.8)′
1

2
𝜘𝟢𝛽h−𝟤

∫︁
V

𝟥
𝟤
+𝜓 dx

+
1

2
𝜘𝟢h−𝟤

∫︁
V

𝟥
𝟤
+

(︀
𝜕x𝟣A

′
𝟤 − 𝜕x𝟤A

′
𝟣

)︀
𝜓 dx + 𝜅−𝟣h−𝟤‖𝜕A′‖𝟤

modulo O(𝛽−𝟣h−𝟤‖B ′‖𝟤) and equations to the minimizer become

(28.2.9)′ ΔA′
𝟣 = −1

2
𝜘𝟢𝜅𝜕x𝟤

(︀
V

𝟥
𝟤
+𝜓

)︀
, ΔA′

𝟤 =
1

2
𝜘𝟢𝜅𝜕x𝟣

(︀
V

𝟥
𝟤
+𝜓

)︀
, ΔA′

𝟥 = 0.

Then ‖B ′‖ ≍ 𝜅 and a correction term is negative and ≍ −𝜅h−𝟤 in the
generic case. An error O(𝛽−𝟣h−𝟤‖B ′‖𝟤) becomes O(𝜅𝛽−𝟣h−𝟤) (and thus not
exceeding microlocal error O(𝛽)).

28.2.3 Estimate from below

Basic Estimates

Let us estimate E(A) from below. First we need the following really simple

Proposition 28.2.2 1). Consider operator HA,V , defined on H𝟤(B(0, 1)) ∩
H𝟣

𝟢(B(0, 1)) 2). Let V ∈ L𝟦.

(i) Let 𝛽h ≤ 1. Then

E* ≥ −Ch−𝟥(28.2.23)

and either
1

𝜅h𝟤

∫︁
|𝜕(A − A𝟢)|𝟤 dx ≤ Ch−𝟥(28.2.24)

or E(A) ≥ ch−𝟥.
1) Cf. Proposition 27.2.1.
2) I.e. on H𝟤(B(𝟢, 𝟣)) with the Dirichlet boundary conditions.
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(ii) Let 𝛽h ≥ 1. Then

E* ≥ −C𝛽h−𝟤 − C𝜅
𝟣
𝟥𝛽

𝟦
𝟥 h− 𝟦

𝟥(28.2.25)

and either
1

𝜅h𝟤

∫︁
|𝜕(A − A𝟢)|𝟤 dx ≤ C𝛽h−𝟤 + C𝜅

𝟣
𝟥𝛽

𝟦
𝟥 h− 𝟦

𝟥(28.2.26)

or E(A) ≥ C𝛽h−𝟤 + C𝜅
𝟣
𝟥𝛽

𝟦
𝟥 h− 𝟦

𝟥 .

(iii) Furthermore, let 𝛽h ≥ 1 and

𝜅𝛽h𝟤 ≤ c .(28.2.27)

Then

E* ≥ −C𝛽h−𝟤(28.2.28)

and either
1

𝜅h𝟤

∫︁
|𝜕(A − A𝟢)|𝟤 dx ≤ C𝛽h−𝟤(28.2.29)

or E(A) ≥ C𝛽h−𝟤.

Proof. Using estimate (28.A.2) 3) we have

(28.2.30) E(A) ≥ −C (1 + 𝛽h)h−𝟥

− C𝛽h− 𝟥
𝟤

(︁∫︁
|𝜕A′|𝟤 dx

)︁ 𝟣
𝟦 − Ch− 𝟥

𝟤

(︁∫︁
|𝜕A′|𝟤 dx

)︁ 𝟥
𝟦
+

1

𝜅h𝟤

(︁∫︁
|𝜕A′|𝟤 dx

)︁
,

which implies both Statements (i)–(ii) while Statement (iii) is a special case
of Statement (ii).

Remark 28.2.3. (i) Definitely we would prefer to have an estimate

(28.2.31) E(A) ≥ −C (1 + 𝛽h)h−𝟥

− Ch−𝟤
(︁∫︁

|𝜕A′|𝟤 dx
)︁ 𝟣

𝟤
+

1

𝜅h𝟤

(︁∫︁
|𝜕A′|𝟤 dx

)︁
from the very beginning, but we cannot prove it without some smoothness
conditions to A and they will be proven only later under the same assumption
(28.2.27).

3) Magnetic Lieb–Thirring inequality (5) of E. H. Lieb, M. Loss, M. and J. P. Solovej [1])
would be sufficient for 𝛽h ≤ 𝟣 but will lead to a worse estimate than we claim for 𝛽h ≥ 𝟣.
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(ii) This assumption (28.2.27) in a bit stronger form (28.2.27)* will be
required for our microlocal analysis in the next Section 28.3.

Remark 28.2.4. Using Proposition 28.2.2 one can prove easily the following:

(i) Proposition 27.2.2 (existence of the minimizer) remains valid;

(ii) As in Remark 27.2.3 we do not know if the minimizer is unique. From
now on until further notice let A be a minimizer. We also assume that
V is sufficiently smooth (V ∈ C𝟤+𝛿). This is be the case for magnetic
Thomas-Fermi potential for sure.

(iii) Proposition 27.2.4 (namely, equation (27.2.14) to a minimizer) remains
valid for both A and A′ = A − A𝟢.

Proposition 28.2.5 4). (i) Let 𝛽h ≤ 1 and 0 < 𝜅 ≤ (1 − 𝜖𝟢)𝜅
*. Assume

that

E*(𝜅*, 𝛽, h) ≥ ℰ − CM ,(28.2.32)

E*(𝜅, 𝛽, h) ≤ ℰ + CM(28.2.33)

with the same number ℰ and with M ≥ Ch−𝟣 + C𝜅*𝛽𝟤. Then∫︁
|𝜕A′|𝟤 dx ≤ C𝟣𝜅h𝟤M ;(28.2.34)

(ii) Let 𝛽h ≥ 1 and 𝜅*𝛽h ≤ c, 0 < 𝜅 ≤ (1− 𝜖𝟢)𝜅
*. Assume that (28.2.32)–

(28.2.33) are fulfilled with the same number ℰ and with M ≥ C𝛽 + C𝜅*h−𝟤.
Then estimate also (28.2.34) holds.

Proof. Proof obviously follows the proof of Proposition 27.2.5.

Estimates to a Minimizer: 𝛽h ≲ 1

Consider first the simpler case 𝛽h ≤ 1.

4) Cf. Proposition 27.2.5.
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Proposition 28.2.6. Let 𝛽h ≤ 1. Then

|e(x , y , 𝜏)| ≤ C
(︀
1 + 𝜇

𝟣
𝟤 h

𝟣
𝟤

)︀
h−𝟥(28.2.35)

and

|((hD − A)x · σ)e(x , y , 𝜏)| ≤ C
(︀
1 + 𝜇

𝟣
𝟤 h

𝟣
𝟤

)︀
h−𝟥,(28.2.36)

where

𝜇 = ‖𝜕A′‖∞.(28.2.37)

Proof. Without any loss of the generality one can assume that 𝜇h ≥ 1.
Consider 𝜇− 𝟣

𝟤 h
𝟣
𝟤 -element in ℝ𝟥

x . Without any loss of the generality one can
assume that A𝟢(z) = A(z) = 0 in its center z .

Since both operators E (𝜏) and ((hD − A)x · σ)E (𝜏) have their operator
norms bounded by c in L𝟤, one can prove easily that both operators 𝜑D𝛼E (𝜏 )
and 𝜑D𝛼((hD − A)x · σ)E (𝜏) have their operator norms bounded by C𝜁 |𝛼|

with 𝜁 = 𝜇
𝟣
𝟤 h− 𝟣

𝟤 if 𝛼 ∈ {0, 1}𝟥 and 𝜑 is supported in the mentioned element.
Then operator norms of both operators γxE (𝜏 ) and γx((hD−A)x ·σ)E (𝜏 )

from L𝟤 to ℂq do not exceed C𝟢𝜁𝟣𝜁
𝟣
𝟤
𝟥 and therefore the same is true for

adjoint operators; here γz is operator of restriction to x = z .
Since E (𝜏)* = E (𝜏)𝟤 = E (𝜏) we conclude that the left-hand expressions

in (28.2.35) and (28.2.36) do not exceed C𝜁𝟥, which is exactly the right-hand
expression in both of them.

Then from equation (27.2.14), which remains valid (see Remark 28.2.4(iii))
we conclude that

‖ΔA′‖L∞ ≤ C𝜅
(︀
1 + 𝜇

𝟣
𝟤 h

𝟣
𝟤

)︀
h−𝟣(28.2.38)

and therefore

‖𝜕𝟤A′‖L∞ ≤ C𝜅| log h|
(︀
1 + 𝜇

𝟣
𝟤 h

𝟣
𝟤

)︀
h−𝟣.(28.2.39)

Further, combining (28.2.39) with (28.2.24), the standard inequality

‖𝜕A′‖L∞ ≤ ‖𝜕𝟤A′‖
𝟥
𝟧

L∞ · ‖𝜕A′‖ 𝟤
𝟧 and (28.2.37), we conclude that

𝜇 ≤ C (𝜅| log h|)
𝟦
𝟧

(︀
1 + 𝜇

𝟣
𝟤 h

𝟣
𝟤

)︀ 𝟦
𝟧 h− 𝟦

𝟧

and therefore 𝜇h ≪ 1. Then

‖𝜕A′‖L∞ ≤ C (𝜅| log h|)
𝟦
𝟧 h− 𝟦

𝟧(28.2.40)
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and therefore due to (28.2.39)

‖𝜕A′‖L∞ ≤ C𝜅| log h|h−𝟣(28.2.41)

(where for a sake of simplicity we slightly increase power of logarithm) thus
arriving to

Proposition 28.2.7. Let 𝛽h ≤ 1 and 𝜅 ≤ 𝜅*. Let A be a minimizer. Then
estimates (28.2.40) and (28.2.41) hold.

Furthermore, the standard scaling arguments applied to the results
of Section 27.2 imply that in fact the left-hand expressions of estimates
(28.2.36) and (28.2.24) do not exceed C (1+ 𝛽 +𝜇)h−𝟤 and C (1+ 𝛽 +𝜇)𝟤h−𝟣

respectively.
Therefore ‖𝜕𝟤A′‖L∞ does not exceed C𝜅| log h|(1 + 𝛽 + 𝜇) and ‖𝜕A′‖

does not exceed C𝜅
𝟣
𝟤 (1+𝛽+𝜇)h

𝟣
𝟤 , and then 𝜇 ≤ C (𝜅| log h|) 𝟦

𝟧 (1+𝛽+𝜇)
𝟦
𝟧 h

𝟣
𝟧

which implies 𝜇 ≤ C (𝜅| log h|) 𝟦
𝟧 (1 + 𝛽)

𝟦
𝟧 h

𝟣
𝟧 and finally we arrive to

Proposition 28.2.8. Let 𝛽h ≤ 1 and 𝜅 ≤ 𝜅*. Then

‖𝜕A′‖L∞ ≤ C (𝜅| log h|)
𝟦
𝟧 (1 + 𝛽)

𝟦
𝟧 h

𝟣
𝟧(28.2.42)

and

‖𝜕𝟤A′‖L∞ ≤ C𝜅| log h|(1 + 𝛽).(28.2.43)

Estimates to a Minimizer: 𝛽h ≳ 1

Consider now more complicated case 𝛽h ≥ 1.

Proposition 28.2.9. Let 𝛽h ≥ 1. Then the following estimates hold with
𝜇 = ‖𝜕A′‖∞:

|e(x , y , 𝜏)| ≤ C
(︀
𝛽 + 𝜇

)︀(︀
1 + 𝜇

𝟣
𝟤 h

𝟣
𝟤

)︀
h−𝟤(28.2.44)

and

|((hD − A)x · σ)e(x , y , 𝜏)| ≤ C
(︀
𝛽 + 𝜇

)︀(︀
1 + 𝜇

𝟣
𝟤 h

𝟣
𝟤

)︀
h−𝟤(28.2.45)

Proof. Without any loss of the generality one can assume that 𝜇 ≤ 𝛽;
otherwise we simply replace 𝛽 by 𝜇. Consider (𝛽− 𝟣

𝟤 h
𝟣
𝟤 , 𝛽− 𝟣

𝟤 h
𝟣
𝟤 , (𝜇+ 1)−

𝟣
𝟤 h

𝟣
𝟤 )-

box in ℝ𝟥
x , where recall that ∇× A𝟢 is directed along x𝟥. Without any loss

of the generality one can assume that A𝟢(z) = A′(z) = 0 in its center z .
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Since both operators E (𝜏) and ((hD − A)x · σ)E (𝜏) have their operator
norms bounded by c in L𝟤, one can prove easily that both operators 𝜑D𝛼E (𝜏 )
and 𝜑D𝛼((hD−A)x ·σ)E (𝜏 ) have their operator norms bounded by C𝜁𝛼 with

𝜁𝟣 = 𝜁𝟤 = 𝛽
𝟣
𝟤 h− 𝟣

𝟤 and 𝜁𝟥 = (h−𝟣 + 𝜇
𝟣
𝟤 h− 𝟣

𝟤 ) for 𝛼 ∈ {0, 1}𝟥 and 𝜑, supported
in the mentioned cube.

Then operator norms of both operators γxE (𝜏 ) and γx((hD−A)x ·σ)E (𝜏 )

from L𝟤 to ℂq do not exceed C𝟢𝜁𝟣𝜁
𝟣
𝟤
𝟥 and therefore the same is true for

adjoint operators; recall that γz is operator of restriction to x = z .
Since E (𝜏)* = E (𝜏)𝟤 = E (𝜏) we conclude that the left-hand expressions

in (28.2.44) and (28.2.45) do not exceed C𝜁𝟤𝟣𝜁𝟥 which is exactly the right-hand
expressions in both of them.

Then from equation (27.2.14), which remains valid (see Remark 28.2.4(iii)),
we conclude that

‖ΔA′‖L∞ ≤ C𝜅
(︀
𝛽 + 𝜇

)︀(︀
1 + 𝜇

𝟣
𝟤 h

𝟣
𝟤

)︀
(28.2.46)

and therefore

‖𝜕𝟤A′‖L∞ ≤ C𝜅| log 𝛽|
(︀
𝛽 + 𝜇

)︀(︀
1 + 𝜇

𝟣
𝟤 h

𝟣
𝟤

)︀
.(28.2.47)

Let (28.2.27)) be fulfilled. Then combining (28.2.47) with (28.2.29) and

‖𝜕A′‖L∞ ≤ ‖𝜕𝟤A′‖
𝟥
𝟧

L∞ · ‖𝜕A′‖ 𝟤
𝟧 we conclude that

𝜇 ≤ C (𝜅| log 𝛽|)
𝟥
𝟧

(︀
𝛽 + 𝜇

)︀ 𝟥
𝟧
(︀
1 + h

𝟣
𝟤𝜇

𝟣
𝟤

)︀ 𝟥
𝟧 × 𝜅

𝟣
𝟧𝛽

𝟣
𝟧

and then either

1 ≤ 𝜇h ≤ C (𝜅𝛽h| log 𝛽|)
𝟨
𝟩 (𝜅𝛽h𝟤)

𝟤
𝟩(28.2.48)

or 𝜇h ≤ 1. In the former case of (28.2.48)

‖𝜕A′‖L∞ ≤ C (𝜅𝛽| log 𝛽|)
𝟪
𝟩 h

𝟥
𝟩(28.2.49)

and

‖𝜕𝟤A′‖L∞ ≤ C (𝜅𝛽| log 𝛽|)
𝟣𝟣
𝟩 h

𝟧
𝟩 .(28.2.50)

Observe that the right-hand expression of (28.2.49) is less than C𝛽 under
assumption

(28.2.27)* 𝜅𝛽h𝟤| log 𝛽|K ≤ c
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with sufficiently large K ; however the right-hand expression of (28.2.50)
is not necessarily less than C𝛽 under this assumption and we need more
delicate arguments.

Without any loss of the generality we can assume that 𝜕𝟥A𝟥(z) = 0 (we
can reach it by a gauge transformation).

Then considering (𝛽− 𝟣
𝟤 h

𝟣
𝟤 , 𝛽− 𝟣

𝟤 h
𝟣
𝟤 , 𝜈−

𝟣
𝟥 h

𝟣
𝟥 )-box in ℝ𝟥 we can replace factor

(1 + 𝜇
𝟣
𝟤 h

𝟣
𝟤 )h−𝟣 by (1 + 𝜈

𝟣
𝟥 h

𝟤
𝟥 )h−𝟣 in all above estimates with 𝜈 = ‖𝜕𝟤A′‖L∞

and therefore (28.2.47) is replaced by

𝜈 ≤ C𝜅| log 𝛽|𝛽
(︀
1 + 𝜈

𝟣
𝟥 h

𝟤
𝟥

)︀
and then under assumption (28.2.27)*

𝜈 = ‖𝜕𝟤A′‖L∞ ≤ C𝜅| log 𝛽|𝛽(28.2.51)

which implies

‖𝜕A′‖L∞ ≤ C (𝜅| log 𝛽|𝛽)
𝟦
𝟧 .(28.2.52)

Obviously, if 𝜇h ≤ 1 we arrive to the same conclusion in easier way. Thus
we have proven

Proposition 28.2.10. Let 𝛽h ≥ 1, 𝜅 ≤ 𝜅* and (28.2.27)* be fulfilled. Then
estimates (28.2.51)–(28.2.52) hold.

28.3 Microlocal Analysis Unleashed: 𝛽h ≲ 𝟣

28.3.1 Rough Estimate to a Minimizer

Recall equation (27.2.14) to a minimizer A of E(A):

(27.2.14)
2

𝜅h𝟤
ΔAj(x) = Φj(x) :=

− Re tr
[︁
σj

(︁(︀
(hD − A)x · σe(x , y , 𝜏) + e(x , y , 𝜏) t(hD − A)y · σ

)︀)︁]︁
|y=x ,

where e(x , y , 𝜏 ) is the Schwartz kernel of the spectral projector θ(𝜏 − HA,V ).
In the current framework this equation should be replaced by

(28.3.1)
2

𝜅h𝟤
Δ
(︀
Aj(x)− A𝟢

j (x)
)︀
= Φj(x)

with Φj(x) defined above but since ΔA𝟢
j = 0 these two equations are equiva-

lent. We assume in this section that 𝛽h ≲ 1.
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Proposition 28.3.1. Let 𝛽h ≲ 1 and let

(28.3.2) ‖𝜕A′‖L∞ ≤ 𝜇 ≤ h−𝟣.

Then for 𝜃 ∈ [1, 2]

(28.3.3) ‖Φj‖L∞ + ‖h𝜕Φj‖L∞

≤ Ch−𝟤
(︁
1 + 𝛽

𝟥
𝟤 h

𝟣
𝟤 + | log h|+ (𝛽h)

𝜃−𝟣
𝜃+𝟣 ‖𝜕A′‖

𝟣
𝜃+𝟣

C𝜃 + (𝛽h)
𝜃−𝟣
𝜃+𝟣 ‖𝜕V ‖

𝟣
𝜃+𝟣

C𝜃

)︁
.

Proof. (i) Assume first that V ≍ 1,

(28.3.4) 𝛽h
𝟣
𝟥 ≲ 1 and 𝜇 = 1.

Note that we need to consider only case 𝛽 ≥ 2 because otherwise estimate has
been proven in Section 27.2 (see Proposition 27.2.16). Then the contribution
of the zone 𝒵 ′

𝜌 := {|𝜉𝟥 − A𝟥(x)| ≤ 𝜌} with 𝜌 ≥ 𝜌* := C𝟢𝛽
−𝟣 to the Tauberian

remainder with T = T* := 𝜖𝛽−𝟣 does not exceed

(28.3.5) Ch−𝟤𝜌
(︁
𝛽 + h

𝟣
𝟤
(𝜃−𝟣)‖𝜕A′‖

𝟣
𝟤

C𝜃 + h
𝟣
𝟤
(𝜃−𝟣)‖𝜕V ‖

𝟣
𝟤

C𝜃

)︁
.

Indeed, if Q is h-pseudodifferential operator supported in this zone then
exactly as in the proof of (27.2.48) for T ≤ T*

|Ft→h−𝟣𝜏 𝜒̄T (t)Γx
(︀
(hD)kQxU𝜀

)︀
| ≤ C𝜌h−𝟤

and

|Ft→h−𝟣𝜏 𝜒̄T (t)Γx
(︀
(hD)kQx(U − U𝜀)

)︀
| ≤ C𝜌h−𝟦𝜗T 𝟤,

where U and U𝜀 are Schwartz kernels of e−ih−𝟣tHA,V and e−ih−𝟣tHA𝜀,V𝜀 respec-
tively and 𝜗 is an operator norm of perturbation

(︀
HA𝜀,V𝜀 − HA,V

)︀
, A𝜀 and

V𝜀 are 𝜀-mollification of A and V respectively and 𝜀 ≥ h; then

|Ft→h−𝟣𝜏 𝜒̄T (t)Γx
(︀
(hD)kQxU

)︀
| ≤ C𝜌(h−𝟤 + h−𝟦𝜗T 𝟤)

and therefore the Tauberian error does not exceed C𝜌(h−𝟤T−𝟣 + h−𝟦𝜗T ).

Optimizing by T ≤ T* we get C𝜌(h−𝟤𝜌−𝟣 + h−𝟥𝜗
𝟣
𝟤 ) with 𝜀 = h and

𝜗 = 𝜀𝜃+𝟣‖𝜕A′‖C𝜗 , which is exactly the (28.3.5).

Further, following arguments of Section 27.2 we conclude that an error
when we pass from the Tauberian expression to the Weyl expression does
not exceed

(28.3.6) C𝜌h−𝟤
(︁
1 + h

𝟣
𝟤
(𝜃−𝟣)‖𝜕A′‖

𝟣
𝟤

C𝜃 + h
𝟣
𝟤
(𝜃−𝟣)‖𝜕V ‖

𝟣
𝟤

C𝜃

)︁
.
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(ii) On the other hand, the contribution of zone 𝒵𝜌 = {|𝜉𝟥 − A𝟥(x)| ≍ 𝜌}
with 𝜌 ≥ 𝜌* = C𝟢𝛽

−𝟣 to the Tauberian remainder with T = T * := 𝜖𝜌 does
not exceed

(28.3.7) Ch−𝟤
(︁
1 + 𝜌

𝟣
𝟤
(𝟣−𝜃)h

𝟣
𝟤
(𝜃−𝟣)‖𝜕A′‖

𝟣
𝟤

C𝜃 + 𝜌
𝟣
𝟤
(𝟣−𝜃)h

𝟣
𝟤
(𝜃−𝟣)‖𝜕V ‖

𝟣
𝟤

C𝜃

)︁
.

Indeed, if Q is h-pseudodifferential operator, supported in this zone, then
for T ≤ T *

|Ft→h−𝟣𝜏 𝜒̄T (t)Γx
(︀
(hD)kQxU𝜀

)︀
| ≤ C𝜌h−𝟤,

and for T* ≤ T ≤ T *

|Ft→h−𝟣𝜏𝜒T (t)Γx
(︀
(hD)kQxU𝜀

)︀
| ≤ C𝜌h−𝟤(h/T𝜌𝟤)s ,

and then

|Ft→h−𝟣𝜏

(︀
𝜒̄T (t)− 𝜒̄T*(t)

)︀
Γx

(︀
(hD)kQxU𝜀

)︀
| ≤ C𝜌h−𝟤(𝛽h/𝜌𝟤)s

and

|Ft→h−𝟣𝜏 𝜒̄T (t)Γx
(︀
(hD)kQxU𝜀

)︀
| ≤ C𝜌h−𝟤,

while approximation error is estimated in the same way as before but with
𝜀 = h𝜌−𝟣 and thus 𝜗 acquires factor 𝜌−𝟣−𝜃.

Then the Tauberian error is estimated and optimized by T ≤ T * and it
does not exceed (28.3.7).

Following arguments of Section 27.2 we conclude that an error when we
pass from the Tauberian expression to the Weyl expression does not exceed
(28.3.6).

Then the summation of the Tauberian error with respect to 𝜌 ranging
from 𝜌 = 𝜌′ to 𝜌 = 1 (where in what follows we use 𝜌 instead of 𝜌′ notation)
returns

(28.3.8)

Ch−𝟤
(︁
1 + | log 𝜌| + 𝜌−

𝟣
𝟤
(𝜃−𝟣)h

𝟣
𝟤
(𝜃−𝟣)‖𝜕A′‖

𝟣
𝟤

C𝜃 + 𝜌−
𝟣
𝟤
(𝜃−𝟣)h

𝟣
𝟤
(𝜃−𝟣)‖𝜕V ‖

𝟣
𝟤

C𝜃

)︁
and adding contribution of zone 𝒵 ′

𝜌 we conclude that the total Tauberian
remainder does not exceed

(28.3.9)

Ch−𝟤
(︁
𝛽𝜌 + | log 𝜌| + 𝜌−

𝟣
𝟤
(𝜃−𝟣)h

𝟣
𝟤
(𝜃−𝟣)‖𝜕A′‖

𝟣
𝟤

C𝜃 + 𝜌−
𝟣
𝟤
(𝜃−𝟣)h

𝟣
𝟤
(𝜃−𝟣)‖𝜕V ‖

𝟣
𝟤

C𝜃

)︁
.
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Meanwhile, the summation of the Tauberian-to-Weyl error with respect
to 𝜌 returns (28.3.9) albeit without logarithmic term. Optimizing with
respect to 𝜌 ≥ 𝜌* we arrive to

(28.3.10) Ch−𝟤
(︁
1 + | log h|+ (𝛽h)

𝜃−𝟣
𝜃+𝟣 ‖𝜕A′‖

𝟣
𝜃+𝟣

C𝜃 + (𝛽h)
𝜃−𝟣
𝜃+𝟣 ‖𝜕V ‖

𝟣
𝜃+𝟣

C𝜃

)︁
.

Furthermore, observe that

(28.3.11) If in 𝜖-vicinity of x inequality |∇V | ≤ 𝜁 holds (with 𝜁 ≥ | log h|−𝟣),
then we can pick up T * = 𝜖min(𝜁−𝟣𝜌, 1).

Indeed, we can introduce

p′
𝟥 := 𝜉𝟥 − A𝟥 − 𝛽−𝟣𝛼𝟣(𝜉𝟣 − A𝟣)− 𝛽−𝟣𝛼𝟤(𝜉𝟤 − A𝟤)

such that {H , p′
𝟥} = V𝜉𝟥 + O(𝜈𝛽−𝟣) with 𝜈 := ‖𝜕𝟤A‖C∞ .

Therefore, in this case the remainder does not exceed

(28.3.12) Ch−𝟤
(︁
1 + 𝜁| log h|+ (𝛽h)

𝜃−𝟣
𝜃+𝟣 ‖𝜕A′‖

𝟣
𝜃+𝟣

C𝜃 + (𝛽h)
𝜃−𝟣
𝜃+𝟣 ‖𝜕V ‖

𝟣
𝜃+𝟣

C𝜃

)︁
.

(iii) Finally, observe that the Weyl expression for Φj is just 0. Therefore
under assumption (28.3.4) slightly improved estimate (28.3.3) has been
proven: ‖Φj‖L∞ + ‖h𝜕Φj‖L∞ does not exceed expression (28.3.12).

(iv) To get rid of assumption (28.3.4) we scale x ↦→ x𝛾−𝟣, h ↦→ h𝛾−𝟣,

𝛽 ↦→ 𝛽𝛾 and pick up 𝛾 = min
(︀
(𝛽h

𝟣
𝟥 )−

𝟥
𝟤 ,𝜇−𝟣

)︀
; then 𝛽h ↦→ 𝛽h, and Ch−𝟤 ↦→

Ch−𝟤𝛾−𝟣 = C𝛽
𝟥
𝟤 h− 𝟥

𝟤 + C𝜇h−𝟤 (as we need to multiply by 𝛾−𝟥) and both

‖𝜕A′‖
𝟣

𝜃+𝟣

C𝜃 and ‖𝜕V ‖
𝟣

𝜃+𝟣

C𝜃 acquire factor 𝛾.

Observing that we can take 𝜁 = C𝛾 and that factor 𝛾 also pops up in all
other terms (except 1) in (28.3.12) we arrive to estimate (28.3.3).

Furthermore, to get rid of assumption V ≍ 1 we also can scale with
𝛾 = 𝜖|V |+ h

𝟤
𝟥 and multiply operator by 𝛾−𝟣; then h ↦→ h𝛾−

𝟥
𝟤 , 𝛽 ↦→ 𝛽𝛾

𝟣
𝟤 and

estimate (28.3.3) does not deteriorate; we need to multiply by 𝛾
𝟣
𝟤 which

does not hurt.
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Remark 28.3.2. (i) We can use 𝜃′ ̸= 𝜃 for norm of V .

(ii) If V is smooth enough we can skip the related term (details later).

(iii) We can take 𝜃 = 1 but in this case factor 𝜌−
𝟣
𝟤
(𝜃−𝟣)h

𝟣
𝟤
(𝜃−𝟣) in (28.3.8)

(i.e. after summation) and in (28.3.9) is replaced by | log 𝜌|; then taking into
account (i) we replace (28.3.10) by

(28.3.10)′ Ch−𝟤
(︁
1 + | log h|+ | log h| · ‖𝜕A′‖

𝟣
𝟤

C𝟣 + (𝛽h)
𝜃′−𝟣
𝜃′+𝟣 ‖𝜕V ‖

𝟣
𝜃′+𝟣

C𝜃′

)︁
and similarly we deal with (28.3.12) and (28.3.3):

(28.3.3)′ ‖Φj‖L∞ + ‖h𝜕Φj‖L∞ ≤

Ch−𝟤
(︁
1 + 𝛽

𝟥
𝟤 h

𝟣
𝟤 + | log h|+ | log h|‖𝜕A′‖

𝟣
𝟤

C𝟣 + (𝛽h)
𝜃′−𝟣
𝜃′+𝟣 ‖𝜕V ‖

𝟣
𝜃′+𝟣

C𝜃′

)︁
.

(iv) From the very beginning we could assume that 𝜇 ≤ 𝛽; otherwise we
could rescale as above with 𝛾 = 𝛽−𝟣 and apply arguments of Section 27.2
simply ignoring external field.

Corollary 28.3.3. Let in the framework of Proposition 28.3.1 A′ be a min-
imizer. Then for 𝜃, 𝜃′ ∈ [1, 2]

(28.3.13) | log h|−𝟣‖𝜕A′‖C𝟣 + h𝜃−𝟣‖𝜕A′‖C𝜃

≤ C𝜅
(︁
𝛽

𝟥
𝟤 h

𝟣
𝟤 + | log h|+ 𝜇+ (𝛽h)

𝟣
𝟤
(𝜃′−𝟣)‖V ‖

𝟣
𝟤

C𝜃′+𝟣

)︁
+ C𝜅𝟤| log h|| log h|𝟤 + C‖𝜕A′‖.

Proof. Indeed, the left-hand expression of (28.3.13) does not exceed

‖ΔA′‖L∞ + ‖h𝜕ΔA′|L∞ + C‖𝜕A′‖

while for a minimizer ‖ΔA′‖L∞ +‖h𝜕ΔA′|L∞ does not exceed the right-hand
expression of (28.3.3) multiplied by C𝜅h𝟤.

28.3.2 Microlocal Analysis

As long as 𝛽 ≤ C𝟢h− 𝟣
𝟥 we are rather happy with our result here, but we want

to improve it otherwise. First we will prove that singularities propagate along
magnetic lines; however since we do not know a self-generated magnetic field
we just consider all possible lines which will be in the cone {(x , y) : |x ′−y ′| ≤
C𝟢𝜇𝛽

−𝟣T} where 1 ≤ 𝜇 ≤ 𝛽.
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Proposition 28.3.4. Assume that 𝛽h ≲ 1,

‖V ‖C𝟣(B(𝟢,𝟤)) ≤ C𝟢(28.3.14)

and

‖𝜕A′‖C(B(𝟢,𝟤)) ≤ 𝜇 (1 ≤ 𝜇 ≤ 𝜖𝛽)(28.3.15)

with sufficiently small constant 𝜖 > 0.
Let U(x , y , t) be the Schwartz kernel of e ih−𝟣tHA,V . Then

(i) For T ≍ 1 estimate

(28.3.16) ‖Ft→h−𝟣𝜏 𝜒̄T (t)𝜓𝟣(x)𝜓𝟤(y)U‖ ≤ Chs

holds for all 𝜓𝟣,𝜓𝟤 ∈ C∞
𝟢 (B(0, 1)), such that dist(supp(𝜓𝟣), supp(𝜓𝟤)) ≥ C𝟢T

and 𝜏 ≤ c𝟢; here ‖.‖ means an operator norm from L𝟤 to L𝟤 and s is
arbitrarily large.

(ii) For 𝜌 ≤ 𝜌 ≲ 1 with 𝜌 := C𝟢𝜇𝛽
−𝟣 and T ≍ 𝜌 estimate

(28.3.17) ‖Ft→h−𝟣𝜏 𝜒̄T (t)𝜙𝟣(𝜌
−𝟣p𝟥x)𝜙𝟤(𝜌

−𝟣p𝟥y )𝜓𝟣(x)𝜓𝟤(y)U‖

≤ C𝜌𝟣−𝟥shs + C𝜌𝟤−𝜃h𝜃
(︀
|||A′|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀
holds for all all 𝜙𝟣,𝜙𝟤 ∈ C∞

𝟢 , 𝜓𝟣,𝜓𝟤 ∈ C∞
𝟢 (B(0, 1)), such that

dist(supp(𝜙𝟣), supp(𝜙𝟤)) ≥ C𝟢, and 𝜏 ≤ c𝟢; here and below pj = hDj − Aj ,
p𝟢
j = hDj − A𝟢

j .

(iii) For 𝜌 ≤ 𝜌 ≲ 1 and T ≍ 𝜌 ≲ 1 estimate

(28.3.18) ‖Ft→h−𝟣𝜏 𝜒̄T (t)𝜙𝟣(𝜌
−𝟣p𝟥x)𝜙𝟤(𝜌

−𝟣p𝟥y )𝜓𝟣(𝛾
−𝟣x)𝜓𝟤(𝛾

−𝟣y)U‖

≤ C𝜌𝟣−s𝛾−shs + Ch𝜃𝛾𝜌−𝜃
(︀
|||A′|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀
holds for all 𝜙𝟣,𝜙𝟤 ∈ C∞

𝟢 , 𝜓𝟣,𝜓𝟤 ∈ C∞
𝟢 , such that dist(supp(𝜓𝟣), supp(𝜓𝟤)) ≥

C𝟢, 𝛾 = 𝜌T ≥ 𝛽−𝟣, 𝜌𝛾 ≥ h and 𝜏 ≤ c𝟢.

Proof. Statement (i) claims that the general propagation speed with respect
to x is bounded by C𝟢. Further, Statement (ii) claims that the on distances
≥ C𝟢𝜌 the propagation speed with respect to p𝟥 is also bounded by C𝟢.
Finally, Statement (iii) claims that on distances ≥ C𝟢𝜌 the propagation
speed with respect to x is bounded by C𝟢𝜌. Note that from Corollary 28.3.3
we know that 𝜇 ≲ 𝛽.
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(a) Proof follows the proof of Proposition 27.2.11 in the framework of the
strong magnetic field. Namely, proof of Statement (i) is a straightforward
repetition of the proof of Proposition 27.2.11(i). Since here we do not apply
at this stage operators (hDx)

𝛼 and (hDy )
𝛼′
, no assumption to the smoothness

of A is needed.

(b) Assume that A𝟥 ≡ 0 (we will get rid of this assumption on the next
step). After Statement (i) has been proven we rescale t ↦→ t/T , x𝟥 ↦→ x𝟥/𝛾
with 𝛾 = 𝜌T (since 𝜙l depend only on 𝜉𝟥, all other coordinates are rather
irrelevant), h ↦→ ℏ = h/(𝜌𝛾), T ↦→ 1. Then we apply the arguments
used in the proof of Proposition 27.2.11(ii) and conclude that the left-hand
expression of (28.3.17) does not exceed

T
(︁
ℏs + Cℏ𝜃𝛾𝜃+𝟣

(︀
|||A′|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀)︁
,

where factor T is due to the scaling in the Fourier transform and 𝛾𝜃+𝟣 is
due to the scaling in ||| · |||-norms. Plugging ℏ,T , and 𝛾 = 𝜌𝟤 we get the
right-hand expression of (28.3.17).

Then if 𝜓l depend only on x𝟥, y𝟥 we can follow the proof of Proposi-
tion 27.2.11(iii) and prove Statement (iii).

(c) Let A𝟥 be not necessarily identically 0. To consider 𝜓l depending only on
x𝟣 or x𝟤 we should introduce (in the standard magnetic Schrödinger manner)
x ′
𝟣 := x𝟣 + 𝛽−𝟣p𝟢

𝟤 or x ′
𝟤 := x𝟤 − 𝛽−𝟣p𝟢

𝟣 respectively; recall that p𝟢
j = hDj − A𝟢

j

and pj = hDj − Aj , j = 1, 2, 3.

Then [p𝟢
𝟣, p𝟢

𝟤] = ih𝛽−𝟣, [p𝟢
j , xk ] = −ihδjk , [p

𝟢
j , x ′

k ] = 0 and one can see
easily that [pj , x ′

k ] = O(𝛽−𝟣𝜇h) (for any 𝜇 : 1 ≤ 𝜇 ≤ 𝛽) for j = 1, 2, 3 and
k = 1, 2. Now we can apply the same arguments as above as long as 𝜌 ≥ 𝜌.

(d) Next we need to recover Statement (ii) in the general case. Without
any loss of the generality we may consider a vicinity of point z where
A′(z) = 0 and also 𝜕A′(z) = 0. Indeed we can achieve the former by the
gauge transformation and the latter by a rotation of coordinates in which
case increment of p𝟢

𝟥 will be O(𝜌).

In this case we just repeat the same arguments of Part (b) of our proof.

(e) Finally, the proof of Statement (iii) as 𝜓l depend only on x𝟥 follows from
Statement (ii).
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We leave all easy details to the reader.

Proposition 28.3.5. Let 𝛽h ≲ 1 and assumptions (28.3.14) and (28.3.15)
be fulfilled. Then

(i) For h ≤ T ≤ 1 estimate

(28.3.19) |Ft→h−𝟣𝜏 𝜒̄T (t)p
𝛼
x p𝛼

′

y U | ≤ CT−sh−𝟥+s

holds for all 𝛼 : |𝛼| ≤ 2, 𝛼′ : |𝛼′| ≤ 2, and all x , y ∈ B(0, 1), such that
|x − y | ≥ C𝟢T and 𝜏 ≤ c𝟢.

(ii) In the framework of Proposition 28.3.4(ii) the following estimate holds
for all 𝛼 : |𝛼| ≤ 2, 𝛼′ : |𝛼′| ≤ 2, and 𝜏 ≤ c:

(28.3.20) |Ft→h−𝟣𝜏 𝜒̄T (t)p
𝛼
x p𝛼

′

y 𝜙𝟣(𝜌
−𝟣p𝟥x)𝜙𝟤(𝜌

−𝟣p𝟥y )𝜓𝟣(x)𝜓𝟤(y)U |

≤ C𝜌h−𝟣
(︀
𝛽h−𝟣 + 𝜌𝟤h−𝟤)

(︁
𝜌𝟣−𝟥shs + 𝜌𝟤−𝜃h𝜃

(︀
|||A′|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀)︁
;

(iii) In the framework of Proposition 28.3.4(iii) the following estimate holds
for all 𝛼 : |𝛼| ≤ 2, 𝛼′ : |𝛼′| ≤ 2, and 𝜏 ≤ c:

(28.3.21) |Ft→h−𝟣𝜏 𝜒̄T (t)p
𝛼
x p𝛼

′

y 𝜙𝟣(𝜌
−𝟣p𝟥x)𝜙𝟤(𝜌

−𝟣p𝟥y )𝜓𝟣(𝛾
−𝟣x)𝜓𝟤(𝛾

−𝟣y)U |

≤ C𝜌h−𝟣
(︀
𝛽h−𝟣 + 𝜌𝟤h−𝟤

)︀(︁
𝜌𝟣−s𝛾−shs + h𝜃𝛾𝜌−𝜃

(︀
|||A′|||𝜃+𝟣 + |||V |||𝜃+𝟣

)︀)︁
.

Proof. Observe that estimates (28.3.16)–(28.3.18) hold if one applies operator
p𝛼x p𝛼

′
y under the norm (this follows from equations for U by (x , t) and

dual equations by (y , t)). Then estimates (28.3.19)–(28.3.21) hold with
𝛼 = 𝛼′ = 0.

Really, without any loss of the generality one can assume that A′ = 0 at
some point of supp(𝜓𝟣); then estimates (28.3.16)–(28.3.18) hold if one applies
operator p𝟢𝛼

x p𝟢𝛼′
y instead. Then estimate (28.3.19) holds with 𝛼 = 𝛼′ = 0;

further, estimates (28.3.20)–(28.3.21) also hold with 𝛼 = 𝛼′ = 0 if one
applies an extra factor 𝜙𝟣(𝜌

−𝟣p𝟢
𝟥x)𝜙𝟤(𝜌

−𝟣p𝟢
𝟥y) under the norm (this follows

from the properties of p𝟢
j , j = 1, 2, 3, in particular, canonical form). However

if 𝜙l = 1 in 𝜖-vicinity of supp(𝜙l) then we can skip this factor.
Finally, appealing to equations for U by (x , t) and (y , t) again we recover

estimates (28.3.19)–(28.3.21) with |𝛼| ≤ 2, |𝛼′| ≤ 2.
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Proposition 28.3.6. Let 𝛽h ≲ 1 and (28.3.14) and (28.3.15) be fulfilled.
Let z ∈ B(0, 1). Then:

(i) The following estimate

(28.3.22) |Ft→h−𝟣𝜏 𝜒̄T (t)p
𝛼
x p𝛼

′

y 𝜙𝟣(𝜌
−𝟣p𝟥x)𝜙𝟤(𝜌

−𝟣p𝟥y )U |x=y=z |

≤ C𝜌Th−𝟣
(︀
𝛽h−𝟣 + 𝜌𝟤h−𝟤

)︀
holds for all 𝛼 : |𝛼| ≤ 2, 𝛼′ : |𝛼′| ≤ 2, and 𝜏 ≤ c.

(ii) Let Az(x) = A(z) + ⟨x − z ,∇z⟩A(z), Vz(x) = V (z) + ⟨x − z ,∇z⟩V (z)
be linear approximations to A and V at z; let Hz = HAz ,Vz , Uz(x , y , t) be its
Schwartz kernel. Then for h𝟣−𝛿 ≤ T ≤ C𝟢, 𝜌 ≤ C𝟢 estimate

(28.3.23) |Ft→h−𝟣𝜏 𝜒̄T (t)p
𝛼
x p𝛼

′

y 𝜙𝟣(𝜌
−𝟣p𝟥x)𝜙𝟤(𝜌

−𝟣p𝟥y )(U − Uz)|x=y=z |

≤ C𝜌T 𝟤h−𝟤
(︀
𝛽h−𝟣 + 𝜌𝟤h−𝟤

)︀
𝜈𝛾𝟤

holds with

𝛾 = 𝛾(𝜌,T ) := C𝟢(𝜌+ T )T + C𝟢h𝜌−𝟣,(28.3.24)

and

𝜈 =
(︀
|||A′|||𝟤 + |||V |||𝟤

)︀
+ 𝜇𝟤.(28.3.25)

Proof. (i) Proof of Statement (i) is easy and left to the reader.

(ii) To prove Statement (ii) observe that

(28.3.26) e ith−𝟣H = e ith−𝟣Hz + ih−𝟣

∫︁ t

𝟢

e i(t−t′)h−𝟣H(H − Hz)e
it′h−𝟣Hz dt ′ =

e ith−𝟣Hz +
∑︁

𝟢≤k≤K

ih−𝟣

∫︁ t

𝟢

e i(t−t′)h−𝟣H(H − Hz)𝜓ke it′h−𝟣Hz dt ′,

where 𝜓𝟢 is a 𝛾-admissible function supported in B(z , 2𝛾) and 𝜓k are 𝛾k-
admissible functions supported in B(z , 𝛾k) ∖ B(z , 𝟣

𝟤
𝛾k) with 𝛾k = 2k𝛾. Plug-

ging (28.3.26) into the left-hand expression of (28.3.23) we note that the
first term is cancelled and we have the sum with respect to k : 0 ≤ k ≤ K
obtained from this expression when we replace (U − Uz) by the Schwartz
kernel of the selected above term.
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Further, observe that the term with k = 0 does not exceed the right-hand
expression of (28.3.23).

Furthermore, terms with k : 1 ≤ k ≤ K do not exceed the right-hand
expression of (28.3.21) multiplied by CTh−𝟣 min(𝜈𝛾𝟤k , 1); indeed, we just
replace 𝜌 by T if needed. After summation with respect to k : 0 ≤ k ≤ K
we get

C𝜌h−𝟣T
(︀
𝛽h−𝟣 + 𝜌𝟤h−𝟤

)︀
×

(︁
𝜌−s𝛾−shs min(𝜈𝛾𝟤, 1) + h𝟤𝜌−𝟤𝜈min(𝜈, 1)

)︁
which again does not exceed the right-hand expression of (28.3.23).

Remark 28.3.7. Actually Statement (ii) is better than Statement (i) only if
𝜈𝛾𝟤Th−𝟣 ≤ 1.

28.3.3 Advanced Estimate to a Minimizer

Now we are going to apply the results of the previous Subsection 28.3.2 to
the right-hand expression of (27.2.14).

Tauberian Estimate

Consider different zones (based on the magnitude of |p𝟥|). Recall that

𝜌 = 𝛽−𝟣 5) and 𝜌* = (𝛽h)
𝟣
𝟤 .

Zone {𝜌′ ≲ |p𝟥| ≲ 𝜌*}. Observe that Proposition 28.3.6(ii) implies that
for 𝜙j ∈ C∞

𝟢 ([−2,−𝟣
𝟤
] ∪ [𝟣

𝟤
, 2]) estimate

|Ft→h−𝟣𝜏 𝜒̄T (t)p
𝛼
x p𝛼

′

y 𝜙𝟣(𝜌
−𝟣p𝟥x)𝜙𝟤(𝜌

−𝟣p𝟥y )U |x=y=z | ≤ CS(𝜌,T )(28.3.27)

holds with

S(𝜌,T ) =
(︀
𝛽h−𝟣 + 𝜌𝟤h−𝟤

)︀(︀
𝜌−𝟣 + 𝜌h−𝟤𝜈𝛾𝟤T 𝟤

)︀
,(28.3.28)

where 𝛾 = 𝛾(𝜌,T ) is defined by (28.3.24).
Indeed, one can prove easily that

(28.3.29) |Ft→h−𝟣𝜏 𝜒̄T (t)p
𝛼
x p𝛼

′

y 𝜙𝟣(𝜌
−𝟣p𝟥x)𝜙𝟤(𝜌

−𝟣p𝟥y )Uz |x=y=z |

≤ C (𝛽h−𝟣𝜌−𝟣 + 𝜌𝟤h−𝟤).

5) As we assume that 𝜇 = 𝟣; otherwise 𝜌 = 𝜇𝛽−𝟣.
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Let us take 𝛼 = 𝛼′, 𝜙𝟣 = 𝜙𝟤 and 𝜌𝟣 = 𝜌𝟤. Since in this case expression

(28.3.30) p𝛼x p𝛼
′

y 𝜙𝟣(𝜌
−𝟣
𝟣 p𝟥x)𝜙𝟤(𝜌

−𝟣
𝟤 p𝟥y )e(., ., 𝜏)|x=y

is a monotone function with respect to 𝜏 , then the standard Tauberian
arguments (part I–estimates; we leave easy details to the reader) imply that

(28.3.31) |p𝛼x p𝛼y 𝜙𝟣(𝜌
−𝟣p𝟥x)𝜙𝟣(𝜌

−𝟣p𝟥y )
[︀
e(., ., 𝜏)− e(., ., 𝜏 ′)

]︀
|x=y |

≤ CS(𝜌,T )
(︀
T−𝟣 + |𝜏 − 𝜏 ′|h−𝟣

)︀
for all 𝜏 ′ ≤ 𝜏 ≤ c and therefore

(28.3.32) |p𝛼x p𝛼
′

y 𝜙𝟣(𝜌
−𝟣
𝟣 p𝟥x)𝜙𝟤(𝜌

−𝟣
𝟤 p𝟥y )

[︀
e(., ., 𝜏)− e(., ., 𝜏 ′)

]︀
|x=y |

≤ C
(︀
S(𝜌𝟣,T𝟣)S(𝜌𝟤,T𝟤)

)︀ 𝟣
𝟤

(︁
T

− 𝟣
𝟤

𝟣 T
− 𝟣

𝟤
𝟤 +|𝜏−𝜏 ′|

𝟣
𝟤

(︀
T

− 𝟣
𝟤

𝟣 +T
− 𝟣

𝟤
𝟤

)︀
h− 𝟣

𝟤+|𝜏−𝜏 ′|h−𝟣
)︁
.

Then the standard Tauberian arguments (part II–asymptotics, with the
minor modifications; again we leave easy details to the reader) imply that
expression (28.3.30) is given by the standard Tauberian formula with an
error, not exceeding the right-hand expression of (28.3.32) with |𝜏 − 𝜏 ′|
replaced by hT−𝟣, which is

(28.3.33) C
(︀
S(𝜌𝟣,T𝟣)S(𝜌𝟤,T𝟤)

)︀ 𝟣
𝟤

(︁
T

− 𝟣
𝟤

𝟣 T
− 𝟣

𝟤
𝟤 +

(︀
T

− 𝟣
𝟤

𝟣 + T
− 𝟣

𝟤
𝟤

)︀
T− 𝟣

𝟤 + T−𝟣
)︁
.

Note that for T ≥ max(T𝟣,T𝟤) the second factor in (28.3.33) is ≍ T
− 𝟣

𝟤
𝟣 T

− 𝟣
𝟤

𝟤 .
In other words, a contribution of the pair (𝜌𝟣, 𝜌𝟤) to the Tauberian error

does not exceed a square root of S(𝜌𝟣,T𝟣)T
−𝟣
𝟣 × S(𝜌𝟤,T𝟤)T

−𝟣
𝟤 with

(28.3.34) S(𝜌,T )T−𝟣 = 𝛽h−𝟣
(︁
𝜌−𝟣T−𝟣 + h−𝟤𝜌𝜈T

(︀
T 𝟦 + 𝜌𝟤T 𝟤 + h𝟤𝜌−𝟤

)︀)︁
≍ 𝛽h−𝟣

(︁
𝜌−𝟣T−𝟣 + h−𝟤𝜈𝜌𝟥T 𝟥 + h−𝟤𝜈𝜌T 𝟧 + 𝜈𝜌−𝟣T

)︁
for 𝜌 ≤ 𝜌 ≤ 𝜌*.

Minimizing this expression by h ≤ T ≲ 1 we get

𝛽h−𝟣
(︁
𝜌−

𝟥
𝟦 (h−𝟤𝜈𝜌𝟥)

𝟣
𝟦 + 𝜌−

𝟧
𝟨 (h−𝟤𝜈𝜌)

𝟣
𝟨 + 𝜌−𝟣𝜈

𝟣
𝟤

)︁
≍ 𝛽h−𝟣

(︁
h− 𝟣

𝟤𝜈
𝟣
𝟦 + h− 𝟣

𝟥𝜈
𝟣
𝟨𝜌−

𝟤
𝟥 + 𝜈

𝟣
𝟤𝜌−𝟣

)︁
;
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then the summation by 𝜌 ∈ [𝜌′, 𝜌*] returns

(28.3.35) 𝛽h−𝟣
(︁

h− 𝟣
𝟤𝜈

𝟣
𝟦 | log h|+ h− 𝟣

𝟥𝜈
𝟣
𝟨𝜌−

𝟤
𝟥 + 𝜈

𝟣
𝟤𝜌−𝟣

)︁
with 𝜌 = 𝜌′ to be selected later.

Zone {𝜌* ≲ |p𝟥| ≲ 1}. Further, we claim that

(28.3.36) For h
𝟣
𝟥 ≤ 𝜌 ≤ C𝟢, h ≤ T ≤ 𝜖𝟢𝜌 we can take 𝛾 = h𝜌−𝟣.

Indeed, observe that if we use 𝜀-approximation with 𝜀 = (𝜌−𝟣h)𝟣−𝛿 then the
contribution of time intervals {t : T* ≤ |t| ≤ T *} with T* = 𝜌−𝟣(𝜌−𝟣h)𝟣−𝛿,
T * = 𝜖𝟢𝜌 is negligible and the transition from 𝜀 = (𝜌−𝟣h)𝟣−𝛿 to 𝜀 = (𝜌−𝟣h)
is done like in the previous Chapter 26. Again we leave easy details to the
reader.

Then

S(𝜌,T )T−𝟣 ≍ 𝜌h−𝟤
(︀
T−𝟣 + 𝜈T

)︀
;(28.3.37)

minimizing by T : h ≤ T ≤ 𝜖𝜌 we get

𝜌h−𝟤
(︀
𝜈

𝟣
𝟤 + 𝜌−𝟣 + 𝜈h

)︀
;

then summation by 𝜌 ∈ [𝜌*,C𝟢] returns

(28.3.38) h−𝟤
(︀
𝜈

𝟣
𝟤 + (1 + 𝜈h)| log h|

)︀
.

Observe that 𝜌* = (𝛽h)
𝟣
𝟤 ≥ h

𝟣
𝟥 as 𝛽 ≥ h− 𝟣

𝟥 .

Zone {|p𝟥| ≲ 𝜌′}. Finally, the remaining zone {|p𝟥| ≲ 𝜌′} is covered by a
single element 𝜙(𝜌−𝟣p𝟥) with 𝜙 ∈ C∞

𝟢 ([−2, 2]), 𝜌 = 𝜌′.
Then instead of minimized S(𝜌,T )T−𝟣 we can take 𝜌𝛽h−𝟤 which should

be added to the sum of expressions (28.3.38) and (28.3.35) which estimate
contributions of two other zones resulting in

(28.3.39) h−𝟤
(︀
𝜈

𝟣
𝟤 + (1 + 𝜈h)| log h|

)︀
+ 𝛽h−𝟣

[︁
h− 𝟣

𝟤𝜈
𝟣
𝟦 | log h|+ h− 𝟣

𝟥𝜈
𝟣
𝟨𝜌−

𝟤
𝟥 + 𝜈

𝟣
𝟤𝜌−𝟣 + 𝜌h−𝟣

]︁
.
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Obviously the second term in (28.3.39) should be minimized by 𝜌 = 𝜌′ ∈
[𝜌, 𝜌*], resulting in

𝛽h−𝟣
[︁

h− 𝟣
𝟤𝜈

𝟣
𝟦 | log h|+ h− 𝟤

𝟧 (h− 𝟣
𝟥𝜈

𝟣
𝟨 )

𝟥
𝟧 + h− 𝟣

𝟤 (𝜈
𝟣
𝟤 )

𝟣
𝟤

]︁
≍ 𝛽h−𝟣

[︁
h− 𝟣

𝟤𝜈
𝟣
𝟦 | log h|+ h− 𝟥

𝟧𝜈
𝟣
𝟣𝟢 + h− 𝟣

𝟤𝜈
𝟣
𝟦 )
]︁
;

two terms arising when we set 𝜌 = 𝜌* in the terms with negative power of 𝜌
and one term arising when we set 𝜌 = 𝜌 in the term with positive power of
𝜌 are absorbed by other terms in (28.3.39), which becomes

(28.3.40) h−𝟤
(︀
𝜈

𝟣
𝟤 + (1 + 𝜈h)| log h|

)︀
+ 𝛽h−𝟣

[︁
h− 𝟣

𝟤𝜈
𝟣
𝟦 | log h|+ h− 𝟥

𝟧𝜈
𝟣
𝟣𝟢 + h− 𝟣

𝟤𝜈
𝟣
𝟦

]︁
.

This is an estimate for the whole Tauberian error (with variable T =
T (𝜌)).

Calculating Tauberian Expression

Now we need to consider the Tauberian expression for p𝛼x p𝛼
′

y e(., ., 0)|x=y=z

and estimate an error made when we replace it by the Tauberian expression
for p𝛼x p𝛼

′
y ez(., ., 0)|x=y=z ; we will call it the second error in contrast to the first

(Tauberian) error. Note that we are interested only in the case |𝛼|+ |𝛼′| = 1.

Let us again consider contribution of pair (𝜌𝟣, 𝜌𝟤). First, observe that
for 𝜌𝟣 ≍ 𝜌𝟤 this error does not exceed CS(𝜌𝟤,T )T−𝟣 due to our standard
arguments and therefore we get for such pairs the same contribution to the
total error as we already got for the Tauberian error.

Second, consider pairs with 𝜌𝟣 ≫ 𝜌𝟤 and in this case redoing previous
arguments we observe that the contribution to the first error does not exceed
CS(𝜌𝟣,T )

𝟣
𝟤 S(𝜌𝟤,T )

𝟣
𝟤 T−𝟣 and the contribution to the second error does not

exceed

(28.3.41) C𝛽h−𝟣 × 𝜌
𝟣
𝟤
𝟣 𝜌

𝟣
𝟤
𝟤 h−𝟤𝜈T 𝟥(T + 𝜌𝟤)

𝟤,

where the first term which was C𝛽h−𝟣𝜌−𝟣T−𝟣 in the former case 𝜌𝟣 ≍ 𝜌𝟤
simply disappear. Indeed, it appears only due to the contribution of the
time interval {|t| ≤ 𝜌} where we should take 𝜌 = max(𝜌𝟣, 𝜌𝟤) = 𝜌𝟣 and
estimate an error due to the propagation of singularities.
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Similarly, the second term leading to expression (28.3.41) would also
disappear unless 𝜌𝟣 ≲ T again due to the propagation of singularities.
Therefore the combined contribution of any pair to both errors does not
exceed

(28.3.42)
(︁
𝜌−𝟣
𝟣 T−𝟣 + 𝜌𝟥𝟣h−𝟤𝜈T 𝟥 + 𝜌𝟣h−𝟤𝜈T 𝟧 + 𝜌−𝟣

𝟣 𝜈T
)︁ 𝟣

𝟤

×
(︁
𝜌−𝟣
𝟤 T−𝟣 + 𝜌𝟥𝟤h−𝟤𝜈T 𝟥 + 𝜌𝟤h−𝟤𝜈T 𝟧 + 𝜌−𝟣

𝟤 𝜈T
)︁ 𝟣

𝟤
+ 𝜌

𝟣
𝟤
𝟣 𝜌

𝟣
𝟤
𝟤 h−𝟤𝜈T 𝟧,

multiplied by C𝛽h−𝟣 since we consider at this moment the case of 𝜌′ ≤ 𝜌𝟤 ≪
𝜌𝟣 ≤ 𝜌* while all other cases (namely, 𝜌𝟤 ≤ 𝜌′ ≤ 𝜌𝟣 ≤ 𝜌*; 𝜌𝟤 ≤ 𝜌′ ≤ 𝜌* ≤ 𝜌𝟣;
𝜌′ ≤ 𝜌𝟤 ≤ 𝜌* ≤ 𝜌𝟣; and 𝜌

* ≤ 𝜌𝟤 ≪ 𝜌𝟣) are easier and left to the reader.
Opening parenthesis in (28.3.42) and eliminating all smaller terms we

arrive to

𝜌
− 𝟣

𝟤
𝟣 𝜌

− 𝟣
𝟤

𝟤 T−𝟣 + 𝜌
𝟣
𝟤
𝟣 𝜌

𝟣
𝟤
𝟤 h−𝟤𝜈T 𝟧 + 𝜌

𝟥
𝟤
𝟣 𝜌

𝟣
𝟤
𝟤 h−𝟤𝜈T 𝟦

+
(︀
𝜌

𝟥
𝟤
𝟣 𝜌

𝟥
𝟤
𝟤 h−𝟤𝜈 + 𝜌

𝟣
𝟤
𝟣 𝜌

− 𝟣
𝟤

𝟤 h−𝟣𝜈
)︀
T 𝟥 +

(︀
𝜌

𝟣
𝟤
𝟣 𝜌

− 𝟣
𝟤

𝟤 (h−𝟤𝜈)
𝟣
𝟤 + 𝜌

𝟥
𝟤
𝟣 𝜌

− 𝟣
𝟤

𝟤 h−𝟣𝜈
)︀
T 𝟤

+
(︀
𝜌
− 𝟣

𝟤
𝟣 𝜌

− 𝟣
𝟤

𝟤 𝜈 + 𝜌
𝟥
𝟤
𝟣 𝜌

− 𝟣
𝟤

𝟤 (h−𝟤𝜈)
𝟣
𝟤

)︀
T + 𝜌

− 𝟣
𝟤

𝟣 𝜌
− 𝟣

𝟤
𝟤 𝜈

𝟣
𝟤 ;

minimizing by T we get

𝜌
− 𝟣

𝟥
𝟣 𝜌

− 𝟣
𝟥

𝟤 (h−𝟤𝜈)
𝟣
𝟨 + 𝜌

− 𝟣
𝟣𝟢

𝟣 𝜌
− 𝟥

𝟣𝟢
𝟤 (h−𝟤𝜈)

𝟣
𝟧 + (h−𝟤𝜈)

𝟣
𝟦 + 𝜌

− 𝟣
𝟦

𝟣 𝜌
− 𝟣

𝟤
𝟤 (h−𝟣𝜈)

𝟣
𝟦

+ 𝜌
− 𝟣

𝟨
𝟣 𝜌

− 𝟣
𝟤

𝟤 (h−𝟣𝜈)
𝟣
𝟨 + 𝜌

− 𝟣
𝟤

𝟣 𝜌
− 𝟣

𝟤
𝟤 𝜈

𝟣
𝟤 + 𝜌

𝟣
𝟤
𝟣 𝜌

− 𝟣
𝟤

𝟤 (h−𝟤𝜈)
𝟣
𝟦 + 𝜌

− 𝟣
𝟤

𝟣 𝜌
− 𝟣

𝟤
𝟤 𝜈

𝟣
𝟤 .

Observe, that only the last term has 𝜌𝟣 in the positive degree. Also
observe, that the optimal T = T (𝜌) in the Tauberian error is a decreasing
function of 𝜌, so T𝟣 ≤ T𝟤 where Tj := T (𝜌j); therefore we consider the
Tauberian expression for T ≤ T𝟤 and thus for 𝜌𝟣 ≤ T ≲ T𝟤.

Therefore T𝟤 must be an upper bound for 𝜌𝟣 and therefore the summation
by 𝜌𝟣 : 𝜌𝟤 ≤ 𝜌𝟣 ≤ T𝟤 results in all the terms with negative power of 𝜌𝟣 in
the value as 𝜌𝟣 = 𝜌𝟤 and in the exceptional (last) term with 𝜌𝟣 = T𝟤:

(28.3.43) 𝜌
− 𝟤

𝟥
𝟤 (h−𝟤𝜈)

𝟣
𝟨 + 𝜌

− 𝟤
𝟧

𝟤 (h−𝟤𝜈)
𝟣
𝟧 + (h−𝟤𝜈)

𝟣
𝟦 | log 𝜌𝟤(𝜌−𝟤

𝟤 h𝟤𝜈−𝟣)−
𝟣
𝟨 |

+ 𝜌
− 𝟥

𝟦
𝟤 (h−𝟣𝜈)

𝟣
𝟦 + 𝜌−𝟣

𝟤 𝜈
𝟣
𝟤 + (𝜌−𝟤

𝟤 h𝟤𝜈−𝟣)
𝟣
𝟣𝟤𝜌

− 𝟣
𝟤

𝟤 (h−𝟤𝜈)
𝟣
𝟦
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(where we used inequality T𝟤 ≤ (𝜌−𝟤
𝟤 h𝟤𝜈−𝟣)

𝟣
𝟨 ) with the last term equal to

the first one.

Then the summation by 𝜌𝟤 ≥ 𝜌′ results in the same expression (28.3.43)
calculated for 𝜌𝟤 = 𝜌′; adding as usual 𝜌′h−𝟣 (asince 𝜌′𝛽h−𝟤 estimates the
contribution of zone {𝜌𝟤 ≤ 𝜌′}) and minimizing by 𝜌′ ≥ 𝜌, we get, after we
multiply by 𝛽h−𝟣 and add contributions of all other zones and also Tauberian
estimate (28.3.40), the following expression:

(28.3.44) h−𝟤
(︀
𝜈

𝟣
𝟤 + (𝜇+ 𝜈h)| log h|

)︀
+ 𝛽h−𝟣

[︁
h− 𝟣

𝟤𝜈
𝟣
𝟦 | log h|+ h− 𝟥

𝟧𝜈
𝟣
𝟣𝟢 + h− 𝟦

𝟩𝜈
𝟣
𝟩 + h− 𝟣

𝟤𝜈
𝟣
𝟦

]︁
.

Recall that we derived estimate for the difference between p𝛼x p𝛼
′

y e(., ., 0)|x=y=z

and p𝛼x p𝛼
′

y ez(., ., 0)|x=y=z and thus for 𝜇 = 1 we arrive to Statement (i) of
Proposition 28.3.8 below for 𝜇 = 1.

Observe, however, that in virtue of Subsection 28.3.1 the same estimate
holds for 𝛽 ≤ h− 𝟣

𝟥 . Then, if 1 ≤ 𝜇 ≤ 𝛽, one can scale x ↦→ 𝜇x , h ↦→ 𝜇h,
𝜈 ↦→ 𝜇𝟤𝜈, 𝜅 ↦→ 𝜇𝜅 and we arrive to the same statement without assumption
𝜇 = 1.

Furthermore, in virtue of Propositions 28.A.4 and 28.A.5, expression
|p𝛼x p𝛼

′
y ez(., ., 0)|x=y=z | does not exceed C𝛽

𝟣
𝟤 h−𝟤‖𝜕V ‖L∞ if |𝛼| + |𝛼′| = 1 6).

Therefore we arrive to Statement (ii) below:

Proposition 28.3.8. Let 𝛽 ≤ h−𝟣 and (28.3.14) and (28.3.15) be fulfilled.
Then

(i) |p𝛼x p𝛼
′

y

[︀
e(., ., 0) − ez(., ., 0)

]︀
|x=y=z | does not exceed expression (28.3.44)

for |𝛼| ≤ 2, |𝛼′| ≤ 2.

(ii) Consider |𝛼| + |𝛼′| = 1; then |p𝛼x p𝛼
′

y e(., ., 0)|x=y=z | does not exceed
expression (28.3.44) plus C𝜔h−𝟤 with

(28.3.45) 𝜔 =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝛽 ≤ h− 𝟣

𝟥 ,

𝛽
𝟥
𝟤 h

𝟣
𝟤 if h− 𝟣

𝟥 ≤ 𝛽 ≤ h− 𝟣
𝟤 ,

𝛽
𝟣
𝟤 if h− 𝟣

𝟤 ≤ 𝛽 ≤ h−𝟣.

6) Actually Proposition 28.A.4 provides better estimate for ‖𝜕V ‖L∞ ≤ 𝛽𝟤h.
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Remark 28.3.9. (i) Observe that for 𝛽 ≤ h− 𝟣
𝟤 we got no improvement over

results of Subsection 28.3.1.

(ii) One can replace 𝜇 in the definition of 𝜌 by 𝜈
𝟣
𝟤 . Indeed, we can assume

that 𝜕A′(z) = 0. Then 𝛾-vicinity of z we have 𝜇 = O(𝜈𝛾) and scaling we

should be concerned only abut this vicinity. We select 𝛾 = 𝜈−
𝟣
𝟤 .

Estimating |𝜕𝟤A′|

Recall that if A′ is a minimizer, then it must satisfy (27.2.14) and then

for h− 𝟣
𝟤 ≤ 𝛽 ≤ h−𝟣 due to Proposition 28.3.8(ii) ‖ΔA′‖L∞ does not exceed

C𝜅h𝟤
(︀
(28.3.44)+𝛽

𝟣
𝟤 h−𝟤

)︀
and then ‖𝜕𝟤A′‖L∞ must not exceed this expression

multiplied by C | log h| plus ‖𝜕A′‖L∞ 7):

(28.3.46) ‖𝜕𝟤A′‖L∞ ≤ C𝜅| log h|
(︀
𝜈

𝟣
𝟤 + (𝜇+ 𝜈h)| log h|

)︀
+ C𝜅𝛽h| log h|

(︀
h− 𝟥

𝟧𝜈
𝟣
𝟣𝟢 + h− 𝟦

𝟩𝜈
𝟣
𝟩 + h− 𝟣

𝟤𝜈
𝟣
𝟦 | log h|𝟤

)︀
+ C𝜅| log h|𝛽

𝟣
𝟤‖𝜕V ‖L∞

+ C‖𝜕A′‖L∞ .

Also recall that we can define 𝜈 := max
(︀
‖𝜕𝟤A′‖L∞ , 1

)︀
; then we arrive to

Proposition 28.3.10. Let 1 ≤ 𝛽 ≲ h−𝟣 and (28.3.14) be fulfilled. Let A′

be a minimizer satisfying (28.3.15).
Then one of the following two cases holds: either

(28.3.47) ‖𝜕𝟤A′‖L∞ ≤ C𝜇(𝜅| log h|𝟤 + 1)

+ C (𝜅𝛽| log h|)
𝟣𝟢
𝟫 h

𝟦
𝟫 + C (𝜅𝛽| log h|)

𝟩
𝟨 h

𝟣
𝟤 + C (𝜅𝛽| log h|𝟥)

𝟦
𝟥 h

𝟤
𝟥

+ C𝜅| log h|𝜔 + C‖𝜕A′‖L∞

with the right-hand expressions ≥ C or

(28.3.48) ‖𝜕𝟤A′‖L∞ ≤ C𝜇(𝜅| log h|𝟤 + 1)

+ C𝜅𝛽| log h|h
𝟤
𝟧 + C𝜅𝛽| log h|h

𝟥
𝟩 + C𝜅𝛽| log h|𝟥h

𝟣
𝟤

+ C𝜅| log h|𝜔 + C‖𝜕A′‖L∞

with the right-hand expression ≤ C . Recall that 𝜔 is defined by (28.3.45).

7) Which can be replaced by a different norm, say, ‖𝜕A′‖.
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Proof. Indeed, if 𝜈 ≥ C we have

𝜈 ≤ C𝜅𝜇| log h|+ C (𝜅𝛽| log h|h
𝟤
𝟧 )

𝟣𝟢
𝟫 + C (𝜅𝛽| log h|h

𝟥
𝟩 )

𝟩
𝟨 + C (𝜅𝛽| log h|𝟥h

𝟣
𝟤 )

𝟦
𝟥

+ C𝜅𝛽
𝟣
𝟤‖𝜕V ‖L∞ + C‖𝜕A′‖L∞ ,

which leads to (28.3.47); if 𝜈 ≍ 1 we have (28.3.48).

Remark 28.3.11. (i) Observe that the right-hand expressions of (28.3.47)
and (28.3.48) are either ≲ 1 or ≳ 1 simultaneously.

(ii) The second term in the right-hand expression of (28.3.47) (i.e. with
the power 𝟣𝟢

𝟫
) is always greater than the third and the fourth terms unless

𝜅𝛽h ≥ | log h|−K ). Because of this we just take power K of | log h| in this
term and skip two other terms. One can find easily that K = 4 is sufficient;

(iii) The second term in the right-hand expression of (28.3.47) is less than

the last one as 𝛽 ≤ h− 𝟪
𝟣𝟣 (𝜅| log h|)− 𝟤𝟢

𝟣𝟣 .

(iv) Obviously, in (28.3.48) we can take 𝜇 = 1; however we are missing
estimate of 𝜇 in (28.3.47). For sure, we know that 𝜇 ≤ C𝜈 but we will be
able to do a better work after we estimate ‖𝜕A′‖𝟤 in Subsubsection 28.3.5.3.
Weak Magnetic Field Approach.

28.3.4 Trace Term Asymptotics

General Microlocal Arguments

Now let us consider the trace term. We are not assuming anymore that A′

is a minimizer but that it satisfies

(28.3.49)𝟣,𝟤 ‖𝜕A′‖L∞ ≤ 𝜇, ‖𝜕𝟤A′‖L∞ ≤ 𝜈 with 1 ≤ 𝜇 ≤ 𝜈 ≤ 𝜖.

We assume that V ∈ C𝟤 uniformly. Later we will impose on V different
non-degeneracy assumptions; from now on small constant 𝜖 > 0 in conditions
(28.3.15) and (28.3.49)𝟣,𝟤 depends also on the constants in the non-degeneracy
assumption.

Let us introduce the scaling function

ℓ(x) := 𝜖𝟢
(︀
min
j

|V − 2j𝛽h|+ |𝜕V |𝟤
)︀ 𝟣

𝟤 + ℓ̄(28.3.50)
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with

ℓ̄ := C𝟢 max
(︀
𝜈𝛽−𝟣, 𝜇𝛽−𝟣, h

𝟣
𝟤

)︀
.(28.3.51)

We need the following

Proposition 28.3.12. Let 𝛽h ≲ 1 and (28.3.49)𝟣,𝟤 be fulfilled. Consider
(𝛾, 𝜌)-element with respect to (x , p𝟥) with 𝛾𝜌 ≥ h, 𝛾 ≤ max(ℓ, 𝜌) and

(28.3.52) 𝜌 ≥ 𝜌 := C𝟢 max
(︀
𝜇𝛽−𝟣, h

𝟣
𝟤

)︀
.

Then for

(28.3.53) T* := h𝜌−𝟤 ≤ T ≤ T * := 𝜖𝟢 min(1, 𝜌ℓ−𝟣)

for (𝛾, 𝜌)-element {(x , 𝜉𝟥) : x ∈ B(z , 𝛾), |𝜉𝟥 − A𝟥(z)| ≍ 𝜌} the following
estimate

(28.3.54)

|Ft→h−𝟣𝜏 𝜒̄T (t)Γ
(︀
p𝛼x p𝛼

′

y 𝜙𝟣(𝜌
−𝟣p𝟥x)𝜙𝟤(𝜌

−𝟣p𝟥y )𝜓𝟣(𝛾
−𝟣x)𝜓𝟤(𝛾

−𝟣y)U
)︀
|

≤ CS(𝜌,T )𝛾𝟥

holds with

(28.3.55) S(𝜌,T ) =
(︀
𝛽h−𝟣 + 𝜌𝟤h−𝟤

)︀(︀
𝜌−𝟣 + 𝜌−𝟥h𝜈𝟤𝜀𝟦T 𝟥

)︀
,

where 𝜀 = h𝜌−𝟣.

Observe that we redefined 𝜌 possibly increasing it.

Proof. The proof is similar to one of Theorem 27.2.17 and is based on
h𝜌−𝟣-approximation. Note first that the propagation speed with respect to
x𝟥 is ≍ 𝜌, the propagation speed with respect to p𝟥 is O(ℓ) and all other
propagation speeds are bounded by 𝜌. Therefore the shift with respect to
x𝟥 is ≍ 𝜌T ≲ ℓ as T ≤ T * and it is observable for T ≥ T* = h| log h|𝜌−𝟤 8).

Let us apply the three-term approximation. Then since the first term
does not includes any error, we can estimate it by

C
(︀
𝛽h−𝟣 + 𝜌𝟤h−𝟤

)︀
𝜌𝛾𝟥h−𝟣T* ≍ C

(︀
𝛽h−𝟣 + 𝜌𝟤h−𝟤

)︀
𝜌−𝟣𝛾𝟥,

8) But in estimates we can skip the logarithmic factor using our standard scaling
arguments.
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which delivers the first term in S(𝜌,T )ℓ𝟥.
The second term is linear with respect to the perturbation (A − A𝜀) and

asince we consider a shift by x𝟥 in the estimate of this term, we also can
take T = T*. Indeed, contributions of intervals |t| ≍ T ′ with T* ≤ T ′ ≤ T *

to this term are negligible if we include a logarithmic factor in T*
8). Then

this term does not exceed C
(︀
𝛽h−𝟣 + 𝜌𝟤h−𝟤

)︀
𝜌ℓ𝟥𝜈𝛾𝟤T 𝟤

* h−𝟤 and it is less than
the first term in S(𝜌,T )𝛾𝟥.

Finally, the third term does not exceed the second term in S(𝜌,T )𝛾𝟥.

After estimate (28.3.54) has been proven we can estimate the contribution
of the given element to the Tauberian error by CS(𝜌,T )𝛾𝟥𝜌𝟤h𝟤T−𝟤 9) which
is

(28.3.56) C (𝛽 + 𝜌𝟤h−𝟣)
(︀
𝜌T−𝟤 + 𝜌−𝟣𝜈𝟤hT

)︀
𝛾𝟥.

Consider an error appearing when we replace in the Tauberian expression
T by T*. The first two terms are negligible on intervals |t| ≍ T ′ with
T* ≤ T ′ ≤ T * and the third term contributes here

C (𝛽 + 𝜌𝟤h−𝟣)𝜌−𝟣𝜈𝟤hT ′𝛾𝟥,

which sums to its value for T ′ = T . Therefore this error does not exceed
(28.3.56) as well.

Minimizing expression (28.3.56) by T ≤ T * we get

(28.3.57) C (𝛽 + 𝜌𝟤h−𝟣)
(︀
𝜌T *−𝟤 + 𝜌−

𝟣
𝟥𝜈

𝟦
𝟥 h

𝟤
𝟥

)︀
𝛾𝟥

≍ C (𝛽 + 𝜌𝟤h−𝟣)
(︀
𝜌+ 𝜌−𝟣ℓ𝟤 + 𝜌−

𝟣
𝟥𝜈

𝟦
𝟥 h

𝟤
𝟥

)︀
𝛾𝟥,

where we do not include the last term with T = T* since then the first term
would be larger than C𝛽h−𝟤𝜌𝟥𝛾𝟥, which is the trivial estimate.

Now let us sum over the partition. Observe first that

(28.3.58) The contribution of the zone {𝜌 : 𝜌 ≥ (𝛽h)
𝟣
𝟤} does not exceed

(28.3.59) Q𝟢 := Ch−𝟣 + Ch− 𝟣
𝟥𝜈

𝟦
𝟥

since 𝜌 here would be in the positive degree. Consider now the contribution
of the zone {𝜌 : 𝜌 ≤ (𝛽h)

𝟣
𝟤}.

9) Factors 𝜌𝟤 and h𝟤T−𝟤 (rather than hT−𝟣) appear because we consider the trace
term.
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Strong Non-Degenerate Case

Here 𝜌 is in the negative degree but we can help it under strong non-
degeneracy assumption

(28.3.60) min
j

|V − 2j𝛽h|+ |𝜕V | ≥ 𝜖𝟢 in B(0, 1),

which later will be relaxed. Indeed, the relative measure of those x-balls with
𝛾 = 𝜌𝟤, where operator is non-elliptic is 𝜌𝟤(𝛽h)−𝟣 as 𝜌 ≥ h

𝟣
𝟥 . Then the total

contribution of such elements does not exceed 𝜌𝟤h−𝟣
(︀
𝜌−𝟣ℓ𝟤 + 𝜌−

𝟣
𝟥𝜈

𝟦
𝟥 h

𝟤
𝟥

)︀
and

the summation over 𝜌 results in (28.3.59). Meanwhile, the total contribution

of balls with |𝜉𝟥 − A′
𝟥| ≤ 𝜌 = h

𝟣
𝟥 does not exceed C𝜌𝟧h−𝟥, which is smaller10).

However we have another restriction, namely, 𝜌 ≥ C𝟢𝜇𝛽
−𝟣 11). Because

of this we need to increase the remainder estimate by C𝜌𝛽𝟤h−𝟣 × 𝜌𝟤(𝛽h)−𝟣

i.e. by

(28.3.61) Q ′ = 𝜇𝟥𝛽−𝟤h−𝟤.

We should not be concerned about the zone {𝜌 : 𝜌 ≥ 𝜌 ≥ (𝛽h)
𝟣
𝟤} since here

we can always use T ≍ 𝛽−𝟣 and its contribution to the remainder will be
the same 𝜇𝟥𝛽−𝟤h−𝟤.

Now we need to pass from the Tauberian expression with T = T*
to the magnetic Weyl expression and we need to consider only two first
terms in the successive approximations. We can involve our standard
methods of Section 18.9: note that |x − y | ≤ c𝜌T* = C𝜀 in the propagation
and then we consider another unperturbed operator with V = V (y) and
A′
j = A′(y) + ⟨∇Aj(y), x − y⟩ frozen at point y (when we later set x = y).

Then one can see that these terms modulo an error, not exceeding Q𝟢, are
respectively

−h−𝟥

∫︁
PB𝜀h(V )𝜓 dx(28.3.62)𝟣

and

−h−𝟥

∫︁ (︀
PB(V )− PB𝜀h(V )

)︀
𝜓 dx(28.3.62)𝟤

10) These arguments work even if 𝛽 ≤ h− 𝟣
𝟥 (and therefore (𝛽h)

𝟣
𝟤 ≤ h

𝟣
𝟥 ): we just set

𝛾 = h𝜌−𝟣 for (𝛽h)
𝟣
𝟤 ≤ 𝛽 ≤ h

𝟣
𝟥 .

11) Here we can take 𝜇 = ‖𝜕A′‖L∞ without resetting it to 𝟣 if the former is smaller.
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with B𝜀 = |∇ × (A𝟢 + A′
𝜀)|. Then we arrive to estimate (28.3.64) below.

Observe that non-degeneracy condition (28.3.60) was used only to esti-
mate by 𝜌𝟤(𝛽h)−𝟣 a relative measure of some set. However the same estimate
would be achieved under slightly weaker non-degeneracy condition

(28.3.63) min
j

|V − 2j𝛽h|+ |𝜕V |+ | det(HessV )| ≥ 𝜖𝟢 in B(0, 1);

all arguments including transition to the magnetic Weyl expression work.
Therefore under this assumption the same estimate holds and we arrive to

Proposition 28.3.13. Let 𝛽h ≲ 1 and conditions (28.3.49)𝟣,𝟤 be fulfilled.
Then under non-degeneracy assumptions (28.3.60) or (28.3.63) estimate

(28.3.64) |Tr(H−
A,V𝜓) + h−𝟥

∫︁
PBh(V )𝜓 dx | ≤ CQ

holds with Q = Q𝟢 + Q ′ with Q𝟢 and Q ′ defined by (28.3.59) and (28.3.61).

Remark 28.3.14. We will show that for a minimizer Q ≍ Q𝟢 in both cases
(and even under even weaker non-degeneracy assumption (28.3.65)).

Non-Degenerate Case

Assume now that even weaker non-degeneracy condition is fulfilled:

(28.3.65) min
j

|V − 2j𝛽h|+ |𝜕V |+ |𝜕𝟤V | ≥ 𝜖𝟢 in B(0, 1).

Then the measure of the degenerate set is 𝜌(𝛽h)−
𝟣
𝟤 but even this is sufficient

to obtain the same sum from the second term. In the first term we get
however extra C𝛽| log h| (which is O(h−𝟣) provided 𝛽 ≤ (h| log h|)−𝟣) but
we can help with this too: indeed, if we fix ℓ ≥ 2ℓ̄, then the relative measure
does not exceed 𝜌𝟤(𝛽hℓ) and summation results in O(h−𝟣). We still need
to consider set {x : ℓ(x) ≤ 2ℓ̄}, but its contribution is obviously less than
C𝛽ℓ̄| log h| which in turn is O(h−𝟣 + 𝜈| log h|) (and this is O(h−𝟣) for a
minimizer).

However contribution of the degenerate set becomes C𝛽h−𝟤𝜌𝟥ℓ̄ which
boils down to the same expression Q ′. Then we arrive to

Proposition 28.3.15. Let 𝛽h ≲ 1 and conditions (28.3.49)𝟣,𝟤 be fulfilled.
Then under non-degeneracy assumption (28.3.65) estimate (28.3.63) holds
with Q = Q𝟢 + Q ′′, Q ′′ = Q ′ + 𝜈| log h| with Q𝟢 and Q ′ defined by (28.3.59)
and (28.3.61) respectively.
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We leave easy details to the reader.

Degenerate Case

Let us derive a remainder estimate without any non-degeneracy assumptions.
In comparison with the non-degenerate case we need to sum 𝛽𝜌−

𝟣
𝟥𝜈

𝟦
𝟥 h

𝟤
𝟥 and

we sum it over 𝜌 ≥ 𝜌*, resulting in the same expression with 𝜌 replaced
by 𝜌*; adding the contribution of the degenerate zone, equal to 𝛽𝜌𝟥*, we

get 𝛽𝜌
− 𝟣

𝟥
* 𝜈

𝟦
𝟥 h

𝟤
𝟥 + 𝛽h−𝟤𝜌𝟥*, which should be minimized by 𝜌* ≥ 𝜌, resulting in

𝛽𝜈
𝟨
𝟧 h

𝟤
𝟧 + 𝛽𝜌𝟥 i.e.

(28.3.66) Q ′′′ = 𝛽𝜈
𝟨
𝟧 h

𝟤
𝟧 + 𝛽h− 𝟣

𝟤 + 𝜇𝟥𝛽−𝟤h−𝟤 + 𝜈| log h|.

Thus we arrive to

Proposition 28.3.16. Let 𝛽h ≲ 1 and conditions (28.3.49)𝟣,𝟤 be fulfilled.
Then estimate (28.3.63) holds with Q replaced by Q = Q𝟢 + Q ′′′ with Q𝟢 and
Q ′′′ are defined by (28.3.59) and (28.3.66) respectively.

Remark 28.3.17. We are going to apply our results to V = W 𝖳𝖥
B + 𝜆 with

chemical potential 𝜆. We know that

(i) For M = 1 (single nucleus case) after rescalings the non-degeneracy
condition (28.3.60) is fulfilled everywhere including the boundary zone
{x : 𝜖𝟢r̄ ≤ r(x) ≤ C𝟢r̄}.

(ii) For M ≥ 2 (multiple nuclei case) after rescalings the non-degeneracy
condition (28.3.60) is fulfilled if r(x) ≤ 𝜖d where d is the minimal distance
between nuclei.

(iii) Further, for M ≥ 2 and B ≤ Z
𝟦
𝟥 after rescalings the non-degeneracy

condition (28.3.65) is fulfilled in the zone {x : Z− 𝟣
𝟥 ≤ r(x) ≤ 𝜖𝟢r̄} where r(x)

is the distance to the closest nuclei and r̄ = min
(︀
B− 𝟣

𝟦 , (Z − N)
− 𝟣

𝟥
+

)︀
.

(iv) On the other hand, the non-degeneracy condition (28.3.63) is uncalled:
while we believe that that this condition is often fulfilled while (28.3.60)
fails we have no proof of this.

(v) For M ≥ 2 in the boundary zone a more delicate scaling needs to be
applied to improve remainder estimate which is possible not only because
W 𝖳𝖥

B is more regular than just C𝟤 but also has some special properties.
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28.3.5 Endgame

Until now in this Section we assumed only that A′ satisfies equation to the
minimizer locally (and assumptions (28.3.14)–(28.3.15)) but now we assume
that A′ is a minimizer.

Upper Estimate

Let us first derive an upper estimate for E*
𝜅 and for this we need to pick-up

some A′. First of all, we try A′ = 0 resulting in

E*
𝜅 ≤ ℰ*

𝟢 + Ch−𝟣 ≤ ℰ*
𝜅 + Ch−𝟣 + C𝜅𝛽𝟤

which is a good estimate for 𝜅𝛽𝟤 ≲ h−𝟣:

E*
𝜅 ≤ ℰ*

𝜅 + Ch−𝟣.(28.3.67)

However for 𝜅𝛽𝟤 ≳ h−𝟣 we need to be more subtle. Namely, we pick up a
mollified minimizer for the modified functional ℰ̄𝜅(A′), defined by (28.2.8).
More precisely, let A′ be the minimizer for ℰ̄𝜅(A′); then ℰ𝜅(A′) = ℰ*

𝜅+O(h−𝟣).
Still it is not a good choice since our approach relies upon C𝟤-smoothness

but A′ is only C
𝟥
𝟤 -smooth.

Proposition 28.3.18. Let 𝛽h ≲ 1 and 𝜅𝛽𝟤h ≳ 1; let A′ be a minimizer for
the modified functional ℰ̄𝜅(A′) and let A′

𝜀 be its 𝜀-mollification. Then there
exists 𝜀 > 0 such that

|𝜕A′
𝜀| ≤ C𝜇 = 𝜅𝛽h, |𝜕𝟤A′

𝜀| ≤ C𝜈 = C
(︀
1 + (𝜅𝛽)

𝟦
𝟥 h

𝟤
𝟥

)︀
| log h|(28.3.68)𝟣,𝟤

and

ℰ𝜅(A′
𝜀) = ℰ*

𝜅 + O(h−𝟣).(28.3.69)

Proof. From equation to A′ we observe that

|𝜕(A′ − A′
𝜀)| ≤ C𝜅(𝜀+ 𝛽h𝜀

𝟣
𝟤 ), |𝜕𝟤A′

𝜀| ≤ C𝜅(1 + 𝛽h𝜀−
𝟣
𝟤 )| log h|(28.3.70)

and

|ℰ𝜅(A′)− ℰ𝜅(A′
𝜀)| ≤ C (𝜀𝟤 + 𝛽h𝜀

𝟥
𝟤 )𝜅h−𝟥 + C𝜅(𝜀+ 𝛽h𝜀

𝟣
𝟤 )𝟤h−𝟤(28.3.71)

because linear with respect to 𝜕(A′ − A′
𝜀) terms disappear due to equation

to a minimizer. Then for 𝜀 ≥ h the right-hand expression of (28.3.71)



28.3. MICROLOCAL ANALYSIS UNLEASHED: 𝛽h ≲ 1 319

is O(h−𝟣 + 𝜅𝛽h−𝟤𝜀
𝟥
𝟤 ) and we take 𝜀 = min

(︀
1, (𝜅𝛽)−

𝟤
𝟥 h

𝟤
𝟥

)︀
12), resulting in

(28.3.68)𝟣,𝟤 and (28.3.69) since |𝜕A′| ≤ C𝜅𝛽h.

Then applying Propositions 28.3.12, 28.3.15 and 28.3.16 to operator
HA𝜀,V with A𝜀 = A𝟢 + A′

𝜀 we arrive to

Proposition 28.3.19. (i) For 𝛽h ≲ 1 and 𝜅𝛽𝟤h ≲ 1 estimate (28.3.67)
holds.

(ii) For 𝛽h ≲ 1 and 𝜅𝛽𝟤h ≳ 1 estimate E*
𝜅 ≤ ℰ*

𝜅 + CQ holds with Q = Q𝟢

under non-degeneracy assumption (28.3.65) and with Q = Q𝟢 + Q ′′′ in

the general case, calculated with 𝜈 =
(︀
1 + (𝜅𝛽)

𝟦
𝟥 h

𝟤
𝟥

)︀
| log h|, 𝜌 = h

𝟣
𝟤 , and

ℓ̄ = max(h
𝟣
𝟤 , 𝛽−𝟣𝜈).

Indeed, for A′ selected above 𝜇 ≤ 𝜅𝛽h and one can check easily that
Q ′ ≤ Q𝟢. Since 𝜈 here is lesser than one derived for a minimizer of E*

𝜅(A
′),

we are happy and skip calculation of Q ′′′.

Lower Estimate

Estimate (28.3.63) implies that

Tr(H−
A,V𝜓) + 𝜅−𝟣h𝟤‖𝜕A′‖𝟤

=𝖤𝜅(A′)

≥ −h−𝟥

∫︁
PBh(V )𝜓 dx + 𝜅−𝟣h−𝟤‖𝜕A′‖𝟤

=ℰ𝜅(A′)

−CQ

and therefore

E*
𝜅 ≥ ℰ*

𝜅 − CQ with E*
𝜅 = inf

A′
E𝜅(A

′), ℰ*
𝜅 = inf

A′
ℰ𝜅(A′),(28.3.72)

where A′ = A′
𝜅 is a minimizer of E𝜅(A

′) and Q is defined in Proposi-
tions 28.3.12, 28.3.15 and 28.3.16 and 𝜈 is a right-hand expression of (28.3.47)
or 1 whatever is larger. For a sake of simplicity we replace it by a marginally
larger expression

(28.3.47)* 𝜈 = (𝜇+ 1)(𝜅| log h|𝟤 + 1) + (𝜅𝛽)
𝟣𝟢
𝟫 h

𝟦
𝟫 | log h|K + 𝜅𝛽

𝟣
𝟤 | log h|;

recall that in “old” (28.3.47) 𝜇 = ‖𝜕A′‖ℒ∞ or 𝜇 = 1, whatever is larger, so
we modified the first term here accordingly.

12) Then 𝜀 ≳ h due to 𝜅𝛽𝟤h ≳ 𝟣.
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Our problem is that so far we know neither ‖𝜕A′‖ℒ∞ nor ‖𝜕A′‖. Observe
however that

E*
𝜅 = E𝜅(A

′) ≥ E𝟤𝜅(A
′) + (2𝜅)−𝟣‖𝜕A′‖𝟤 ≥ ℰ*

𝟤𝜅 + (2𝜅)−𝟣‖𝜕A′‖𝟤 − CQ

≥ ℰ*
𝜅(A

′)− C𝜅𝛽𝟤(2𝜅)−𝟣‖𝜕A′‖𝟤 − CQ

and therefore combining this with an upper estimate we arrive to estimate

‖𝜕A′‖ ≤ C (𝜅h𝟤Q)
𝟣
𝟤 + C𝜅𝛽h,(28.3.73)

and we have also

‖𝜕A′‖L∞ ≤ C‖𝜕A′‖
𝟤
𝟧 · ‖𝜕𝟤A′‖

𝟥
𝟧

L∞ .(28.3.74)

We are going to explore what happens if

(28.3.75) 𝜈 ≍ 𝜇(𝜅| log h|𝟤 + 1),

where the right-hand expression is the sum of all terms in (28.3.47)* con-
taining 𝜇.

Remark 28.3.20. (i) Observe first that remainder estimate Q = O(𝛽𝟤h−𝟣)

is guaranteed and therefore ‖𝜕A′‖ ≤ C𝛽h
𝟣
𝟤 . Then 𝜇 ≤ C𝛽

𝟤
𝟧 h

𝟣
𝟧𝜈

𝟥
𝟧 due to

(28.3.74).

(ii) Further, if (28.3.75) is fulfilled, then 𝜇 ≤ 𝛽h
𝟣
𝟤 | log h|K and the same

estimate holds for 𝜈 and then Q𝟢 ≍ h−𝟣, Q ′′′ ≤ C𝛽h− 𝟣
𝟤 | log h|K ; then the

rough estimate to Q is improved, and then 𝜇≪ 𝛽h
𝟣
𝟤 , 𝜈 ≪ 𝛽h

𝟣
𝟤 and, finally,

Q ≍ h−𝟣 under assumption (28.3.65) and Q ≍ h−𝟣 + 𝛽h− 𝟣
𝟤 in the general

case, and we also have nice estimates to 𝜇, 𝜈.

Therefore we can assume that (28.3.75) is not fulfilled, but then 𝜈 is
defined by the remaining terms and then

(28.3.76) 𝜈 = 𝜅| log h|+ 𝜅min(𝛽
𝟥
𝟤 h− 𝟣

𝟤 , 𝛽
𝟣
𝟤 )| log h|+ (𝜅𝛽)

𝟣𝟢
𝟫 h

𝟦
𝟫 | log h|K

(and from now we do not reset to 1 if this expression is smaller).

We almost proved the following estimates for Q:

(28.3.77) Q = Q𝟢 under non-degeneracy assumption (28.3.65) and Q =

Q𝟢 + 𝛽h− 𝟣
𝟤 ≍ h−𝟣 + 𝛽h− 𝟣

𝟤 in the general case.

However we need still explore what happens if Q ≍ 𝜇𝟥𝛽−𝟤h−𝟤. In this case
𝜇 ≤ (𝜇𝟥𝛽−𝟤)

𝟣
𝟧𝜈

𝟥
𝟧 and then 𝜇

𝟤
𝟧 ≤ 𝛽− 𝟤

𝟧𝜈
𝟥
𝟧 , and using (28.3.76) one can prove

easily (28.3.77) unless 𝛽 ≤ h− 𝟣
𝟧 | log h|K in which case 𝜈 = (𝜅| log h|+ 1).
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Weak Magnetic Field Approach

Consider now case 𝛽 ≲ h− 𝟣
𝟥 . Recall that then 𝜈 ≤ C𝜅| log h| and 𝜇 ≪ 1.

Then as we study propagation with respect to p𝟥 we do not need to correct
it to p′

𝟥 and then we do not need 𝜌.

Then we can apply weak magnetic field approach (see Section 13.4).
Now contribution of a partition element with 𝜌 ≥ C𝟢𝛽

−𝟣 does not exceed
𝜌𝟥h−𝟣 × 𝜌−𝟤 as we use T ≤ 𝜖𝟢𝜌 and the total contribution of such elements
does not exceed Ch−𝟣; meanwhile the total contribution of elements with
𝜌 = C𝟢𝛽

−𝟣 does not exceed C𝛽𝟤h−𝟣 × 𝛽−𝟥 ≤ Ch−𝟣 as we use T = 𝜖𝟢𝛽
−𝟣.

Main Theorem

Therefore after we plug 𝜈 into Q𝟢 we have proven our estimate from below
and also the main theorem of this Section:

Theorem 28.3.21. Let 𝛽h ≲ 1 and 𝜅 ≤ 𝜅*. Then

(i) Estimate

(28.3.78) |E*
𝜅 − ℰ*

𝜅| ≤ CQ

holds where under non-degeneracy assumption (28.3.65)

Q := h−𝟣 + 𝜅
𝟦𝟢
𝟤𝟩𝛽

𝟦𝟢
𝟤𝟩 h

𝟩
𝟤𝟩 | log h|K ,(28.3.79)

and in the general case

Q := h−𝟣 + 𝛽h− 𝟣
𝟤 .(28.3.80)

(ii) For a minimizer the following estimate holds: ‖𝜕𝟤A′‖L∞ ≤ C𝜈 with 𝜈,
defined by (28.3.76).

We leave as an easy exercise to the reader

Problem 28.3.22. (i) Starting from estimate ‖𝜕𝟤A′‖L∞ ≤ C𝜈 derive from
(28.3.73)–(28.3.74) estimate for ‖𝜕A′‖L∞ ; consider separately three cases:

1 ≤ 𝛽 ≤ h− 𝟣
𝟥 , h− 𝟣

𝟥 ≤ 𝛽 ≤ h− 𝟣
𝟤 and h− 𝟣

𝟤 ≤ 𝛽 ≤ 1.



322 CHAPTER 28. COMBINED MAGNETIC FIELD

(ii) Prove that for 𝜅𝛽𝟤h ≳ 1

(28.3.81) ‖𝜕(A′ − A′′)‖ ≤ C (𝜅Qh𝟤)
𝟣
𝟤 ,

where A′ and A′′ are minimizers for E𝜅 and ℰ̄𝜅 respectively; in particular,
observe that ‖𝜕(A′ − A′′)‖ ≪ ‖𝜕A′‖ for 𝜅𝛽𝟤h ≫ 1;

(iii) Since (28.3.81) holds for A′′ replaced by A′′
𝜀 as well and since we have

estimate ‖𝜕𝟤A′′
𝜀‖L∞ ≤ C𝜈, derive from (28.3.81) estimate for ‖𝜕(A′−A′′

𝜀)‖L∞

and then the same estimate for ‖𝜕A′‖L∞ .

Remark 28.3.23. In the following observations we use simpler but less sharp
upper estimates to critical 𝛽:

(i) Under non-degeneracy assumption (28.3.65) we conclude that Q ≤ Ch−𝟣

and 𝜈 ≤ C𝛽
𝟣
𝟤 | log h| for 𝛽 ≤ h− 𝟤

𝟥 and therefore 𝜇 ≤ 1 for 𝛽 ≤ h− 𝟤
𝟥 | log h|−K .

(ii) In the general case we see that Q ≤ Ch−𝟣 + C𝛽h− 𝟣
𝟤 and 𝜈 ≤ C𝛽

𝟣
𝟤 | log h|

for 𝛽 ≤ h− 𝟤
𝟥 and therefore 𝜇 ≤ 1 fors 𝛽 ≤ h− 𝟥

𝟧 | log h|−K ; we used here

estimate 𝜇 ≤ C (𝜅h𝟤Q)
𝟣
𝟧𝜈

𝟥
𝟧 .

28.3.6 N-Term Asymptotics

Introduction

In the application to the ground state energy one needs to consider also
N-term asymptotics and D-term estimates. Let us start from the former:
we consider N-term

(28.3.82)

∫︁
e(x , x , 0)𝜓(x) dx .

Again we consider this asymptotics in the more broad content of assumptions
V ∈ C𝟤 and (28.3.49)𝟣,𝟤 and we will follow arguments employed for a trace
term using the same notations. Then the Tauberian error does not exceed
CS(𝜌,T )𝛾𝟥hT−𝟣 13), which is

(28.3.56)′ C (𝛽 + 𝜌𝟤h−𝟣)h−𝟣
(︀
𝜌−𝟣T−𝟣 + 𝜌−𝟥𝜈𝟤hT−𝟤

)︀
𝛾𝟥.

13) With S(𝜌,T ) defined by (28.3.28).
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Minimizing by T ≤ T * we get

(28.3.57)′ C (𝛽 + 𝜌𝟤h−𝟣)h−𝟣
(︀
𝜌−𝟣 + 𝜌−𝟤ℓ+ 𝜌−

𝟧
𝟥𝜈

𝟤
𝟥 h

𝟣
𝟥

)︀
𝛾𝟥.

Then summation over zone {𝜌 : 𝜌𝟤 ≥ 𝛽h} results in

R𝟢 = C (h−𝟤 + h− 𝟧
𝟥𝜈

𝟤
𝟥 )(28.3.59)′

and we need to consider only contributions of elements belonging to the
zone {𝜌 : 𝜌𝟤 ≤ 𝛽h}

𝛽h−𝟣
(︀
𝜌−𝟣 + 𝜌−𝟤ℓ+ 𝜌−

𝟧
𝟥𝜈

𝟤
𝟥 h

𝟣
𝟥

)︀
𝛾𝟥.(28.3.83)

Strong Non-Degenerate Case

Under non-degeneracy conditions (28.3.60) or (28.3.63) expression (28.3.83)
should be multiplied by 𝜌𝟤(𝛽h)−𝟣𝛾−𝟥 and after summation by 𝜌 we get an
extra term Ch−𝟤| log h|.

However we can get rid of the logarithmic factor by the standard trick:
in one direction time could be improved to 𝜌𝟣−𝛿ℓ𝛿. We leave easy details to
the reader.

Further, adding R ′ = C𝛽h−𝟤𝜌× 𝜌𝟤(𝛽h)−𝟣 with 𝜌 = C𝟢 max(𝜇𝛽−𝟣, h
𝟣
𝟤 ) 11)

i.e.

(28.3.61)′ R ′ = 𝜇𝟥𝛽−𝟥h−𝟥,

which is a contribution of the zone {𝜌 : 𝜌 ≤ 𝜌}, we arrive to

Proposition 28.3.24. Let 𝛽h ≲ 1 and conditions (28.3.49)𝟣,𝟤 be fulfilled.
Then under non-degeneracy assumption (28.3.60) or (28.3.63) estimate

(28.3.84) |
∫︁ (︀

tr e(x , x , 0)− h−𝟥

∫︁
P ′
Bh(V )

)︀
𝜓(x) dx | ≤ CR

holds with R = R𝟢 + R ′, R𝟢, R ′ defined by (28.3.59)′ and (28.3.61)′.

Remark 28.3.25. The above estimate is sufficiently good since the weak
magnetic field approach brings remainder estimate C𝜇h−𝟤 even without any
non-degeneracy assumption. We leave easy details to the reader.
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Non-Degenerate Case

Under non-degeneracy assumption (28.3.65) we need to apply more subtle
arguments than before. Consider first subelements14) with 𝜌 ≥ ℓ; for them we
need to multiply expression (28.3.83) by 𝜌𝛾−𝟥 and sum by 𝜌 ≥ 𝜌*, resulting

in C𝛽h−𝟣| log h|+ C𝛽h− 𝟤
𝟥𝜈

𝟤
𝟥𝜌

− 𝟤
𝟥

* .
On the other hand, for subelements with 𝜌 ≤ ℓ we need to multiply

(28.3.83) by 𝜌𝟤(𝛽h)−𝟣𝛾−𝟥 and sum by 𝜌* ≤ 𝜌 ≤ ℓ and then by ℓ ≥ 𝜌*,
resulting in the same expression albeit with a factor | log h|𝟤 instead of
| log h|. Here we get also Ch−𝟤| log h| term but we deal with it exactly as in
the previous Subsubsection 28.3.6.2 Strong Non-Degenerate Case.

We need also to add contributions of subelements with 𝜌* ≤ 𝜌 ≤ ℓ ≤ ℓ̄
and with 𝜌 ≤ 𝜌*. For the former subelements we need to consider only term
𝛽h−𝟣𝜌−𝟤ℓ̄𝛾𝟥 in (28.3.83) and only if ℓ̄ = 𝜈𝛽−𝟣, resulting in 𝛽h−𝟣𝜌−𝟣

* ℓ̄𝛾𝟥 and
contribution of the latter subelements we estimate by 𝛽h−𝟤𝜌𝟤*. So we get

(28.3.85) C𝛽
(︀
h−𝟣| log h|+ h−𝟣𝜌−𝟣

* ℓ̄+ h− 𝟤
𝟥𝜈

𝟤
𝟥𝜌

− 𝟤
𝟥

* + h−𝟤𝜌𝟤*
)︀
,

which should be minimized by 𝜌* ≥ 𝜌, resulting in

C𝛽
(︀
h−𝟣| log h|𝟤 + h− 𝟦

𝟥 ℓ̄
𝟤
𝟥 + h−𝟣𝜈

𝟣
𝟤 + h−𝟤𝜌𝟤

)︀
.

Then plugging 𝜌 and ℓ̄ = 𝜈𝛽−𝟣 we arrive to

(28.3.86) R ′′ = C𝛽
(︀
h−𝟣| log h|𝟤 + h− 𝟦

𝟥𝜈
𝟤
𝟥𝛽− 𝟤

𝟥 + h−𝟣𝜈
𝟣
𝟤

)︀
+ C𝜇𝟤𝛽−𝟣h−𝟤

thus proving Proposition 28.3.26(i) below.

Degenerate cCase

In the general case we arrive to (28.3.85) albeit with factor 𝜌−𝟣
*

(28.3.87) C𝛽
(︀
h−𝟣𝜌−𝟣

* + h−𝟣𝜌−𝟤
* ℓ̄+ h− 𝟤

𝟥𝜈
𝟤
𝟥𝜌

− 𝟧
𝟥

* + h−𝟤𝜌*
)︀
,

which should be minimized by 𝜌* ≥ 𝜌, resulting in

C𝛽
(︀
h− 𝟥

𝟤 + h− 𝟧
𝟥 ℓ̄

𝟣
𝟥 + h− 𝟦

𝟥𝜈
𝟣
𝟦 + h−𝟤𝜌

)︀
.

14) We call them “subelements” but they live in the phase spaces in contrast to elements
which live in the coordinate spaces.
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Then plugging 𝜌 and ℓ̄ we arrive to

(28.3.88) R ′′′ = C𝛽
(︀
h− 𝟥

𝟤 + h− 𝟧
𝟥𝜈

𝟣
𝟥𝛽− 𝟣

𝟥 + h− 𝟦
𝟥𝜈

𝟣
𝟦

)︀
+ C𝜇h−𝟤

thus proving Proposition 28.3.26(ii):

Proposition 28.3.26. Let 𝛽h ≲ 1 and conditions (28.3.49)𝟣,𝟤 be fulfilled.
Then

(i) Under non-degeneracy assumption (28.3.65) estimate (28.3.63) holds
with R = R𝟢 + R ′′, R𝟢, R ′′ defined by (28.3.59)′ and (28.3.86).

(ii) In the general case estimate (28.3.63) holds with R = R𝟢 + R ′′′, R𝟢, R ′′′

defined by (28.3.59)′ and (28.3.88).

28.3.7 D-Term Estimate

Consider now D-term

(28.3.89) D
(︀
[e(x , x , 0)− h−𝟥P ′

Bh(V )]𝜓, [e(x , x , 0)− h−𝟥P ′
Bh(V )]𝜓

)︀
with 𝜓 ∈ C∞

𝟢 ((B(0, 1)).

Proposition 28.3.27. Let 𝛽h ≲ 1 and A′ satisfy (28.3.49)𝟣,𝟤. Then under
non-degeneracy assumption (28.3.60) D-term (28.3.89) does not exceed CR𝟤

with R = R𝟢 + R ′, R𝟢 and R ′ defined by (28.3.59)′ and (28.3.61)′.

Proof. Step 1 . Let us apply Fefferman-de Llave decomposition (16.4.1);
then we need to consider pairs of elements B(x̄ , r) and B(ȳ , r) such that
3r ≤ |x̄ − ȳ | ≤ 4r . If r ≥ 𝜌, then on each of these elements we should
consider (𝛾, 𝜌) subelements (we call them “subelements” but they live in
the phase spaces in contrast to the elements which live in the coordinate
spaces). Then we have three parameters, namely (r , 𝜌x , 𝜌y ).

Observe that for each ȳ the number of matching x-elements is ≍ 1
and that the summation with respect to 𝜌x ≥ 𝜌* = (𝛽h)

𝟣
𝟤 results in R𝟢r 𝟤

multiplied by a contribution of (𝛾, 𝜌y)-subelement; after summation by r
and then by these (𝛾, 𝜌y )-subelements we get CR𝟢R . Similarly we are dealing
with 𝜌y ≥ 𝜌*.

Therefore we need to consider only the case when both 𝜌x and 𝜌y do not
exceed 𝜌*. If r ≥ c𝜌*, then “the relative measure trick” allows us to add
factors 𝜌𝟤x(𝛽h)−𝟣 and 𝜌𝟤y(𝛽h)−𝟣 even if 𝜌𝟤x ≥ r or 𝜌𝟤y ≥ r and then the total
contribution of such subelements also does not exceed CR𝟤.
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Step 2 . Consider next h ≤ r ≤ 𝜌* 15) and we should look only at 𝜌x ≤ 𝜌*,
𝜌y ≤ 𝜌*. Further, if 𝜌𝟤x ≥ 𝜖r or 𝜌𝟤y ≥ 𝜖r we can always inject factor c𝜌𝟤x r−𝟣

or c𝜌𝟤y r−𝟣 ending up again with CR𝟤.

On the other hand, if both 𝜌𝟤x ≤ 𝜖r and 𝜌𝟤y ≤ 𝜖r but r ≥ c𝜌 we can
apply the same “relative measure trick” but comparing the measure of 𝜌𝟤x -
or 𝜌𝟤y -elements with violated ellipticity assumption to the total measure
of B(z , r); then we can inject factors (𝜌𝟤x/r)𝜃 and (𝜌𝟤y/r)𝜃 with arbitrary
0 ≤ 𝜃 ≤ 1 and we select any 𝜃 : 𝟧

𝟨
< 𝜃 < 1 to have positive powers of 𝜌x and

𝜌y and power of r (counting r−𝟣) greater than −3. We end up again with
CR𝟤.

Observe that these arguments cover also cases 𝜌x ≤ 𝜌 or 𝜌y ≤ 𝜌.

Step 3 . To estimate the contribution of zone {(x , y) : r ≤ h} we just
estimate |e(x , x , 𝜏)| ≤ Ch−𝟥.

For M ≥ 2 we will need to estimate D-term under non-degeneracy
assumptions (28.3.63), or (28.3.65), or without any non-degeneracy assump-
tion.

Proposition 28.3.28. Let 𝛽h ≲ 1 and A′ satisfy (28.3.49)𝟣,𝟤. Then D-term
(28.3.89) does not exceed CR𝟤 where

(i) Under non-degeneracy assumption (28.3.63) R = R𝟢 + R ′, R𝟢 and R ′

defined by (28.3.59)′ and (28.3.61)′.

(ii) Under non-degeneracy assumption (28.3.65) R = R𝟢 + R ′′, R𝟢 and R ′′

defined by (28.3.59)′ and (28.3.86).

(iii) In the general case R = R𝟢 + R ′′′, R𝟢 and R ′′′ defined by (28.3.59)′ and
(28.3.88).

Proof. Let us use ideas used in the proofs of Proposition 28.3.26, 28.3.24
and 28.3.26. Let us apply Fefferman-de Llave decomposition (16.4.1); then we
need to consider pairs of elements B(x̄ , r) and B(ȳ , r) with 3r ≤ |x̄ − ȳ | ≤ 4r .
If r ≥ 𝜌 on each of these elements we should consider (𝛾, 𝜌) subelements14).
Then again we have three parameters, namely (r , 𝜌x , 𝜌y ). On the other hand,
there is a scaling function ℓ(x) and covering of B(0, 1) by ℓ-elements.

15) Observe that we do not need to keep t ≥ 𝜌 but we need to keep 𝜌r ≥ h.
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Part 1 . Consider case of ℓx ≲ r (and therefore ℓy ≲ r). Then we must
assume that 𝜌xℓx ≳ h, 𝜌yℓy ≳ h. Observe as in Step 1 of the previous proof

that if 𝜌x ≳ 𝜌* = (𝛽h)
𝟣
𝟤 , then the relative density of such subelements is

𝜌𝟤x/(𝛽h) and therefore the summation over such subelements of the given
x-element results in CR𝟢ℓ

𝟥
x . Therefore the double summation over correspond-

ing subelements of x- and y -elements results in CR𝟤
𝟢 ℓ

𝟥
xℓ

𝟥
y r−𝟣. Finally, after

the double summation over x- and y -elements we get CR𝟤
𝟢

∫︀
|x − y |−𝟣 dxdy ,

which does not exceed CR𝟤
𝟢 .

Therefore in what follows we need to consider only subelements with
𝜌x ≲ 𝜌*, 𝜌y ≲ 𝜌* 16). Further, observe that the same arguments are applicable
if ℓx ≳ 𝜌*, ℓy ≳ 𝜌* and we are left with the pairs of elements with ℓx ≲ 𝜌*,
ℓy ≲ 𝜌* and their subelements with 𝜌x ≲ 𝜌*, 𝜌y ≲ 𝜌* since we will always
keep ℓx ≥ 𝜌, ℓy ≥ 𝜌.

Observe that the summation of (28.3.83) over subelements with 𝜌 ≥ ℓ of
the given element results in

(28.3.90) C𝛽h−𝟣
(︀
ℓ−𝟣 + ℓ−

𝟧
𝟥𝜈

𝟤
𝟥 h

𝟣
𝟥

)︀
ℓ𝟥.

On the other hand, for 𝜌 ≤ ℓ the relative density of 𝜌-subelements of the
given ℓ-element does not exceed C𝜌𝟤ℓ−𝟤 and therefore summation over such
subelements results in (28.3.90) again.

However in (28.3.83) if ℓ ≤ ℓ̄ we need to take in the middle term ℓ = ℓ̄
and here we can ignore other options but ℓ̄ = 𝜈𝛽−𝟣.

Then the summation of this term over subelements with 𝜌 ≥ max(ℓ, 𝜌*)
results in C𝛽h−𝟣 min(𝜌−𝟤

* , ℓ−𝟤)ℓ̄ℓ𝟥 and the summation over subelements with
𝜌* ≤ 𝜌 ≤ ℓ results in C𝛽h−𝟣𝜌−𝟤

* ℓ̄(1 + | log 𝜌*ℓ−𝟣|)ℓ𝟥 (and should be counted
as ℓ ≥ 𝜌* only.

Finally, the contribution of subelements with 𝜌 ≤ 𝜌* does not exceed
C𝛽h−𝟤𝜌𝟥*ℓ and C𝛽h−𝟤𝜌*ℓ

𝟥 if 𝜌* ≤ ℓ and 𝜌* ≥ ℓ respectively. So, in the former
case the total contribution of all subelements does not exceed

C𝛽h−𝟣
[︁
ℓ−𝟣 + ℓ−

𝟧
𝟥𝜈

𝟤
𝟥 h

𝟣
𝟥 + 𝜌−𝟤

* ℓ̄(1 + | log 𝜌*ℓ−𝟣|) + h−𝟣𝜌𝟥*ℓ
−𝟤

]︁
ℓ𝟥.(28.3.91)

16) Due to positivity quadratic form 𝖣(., .) we need to consider only “pure” pairs. We
will use this observation many times.
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Minimizing this expression by 𝜌* we get

C𝛽h−𝟣
[︁
ℓ−𝟣 + 𝜈

𝟤
𝟥 h

𝟣
𝟥 ℓ−

𝟧
𝟥 + ℓ̄

𝟥
𝟧 h− 𝟤

𝟧 (1 + | log ℓ*ℓ−𝟣|)
𝟥
𝟧 ℓ−

𝟦
𝟧 + h−𝟣𝜌𝟥ℓ−𝟤

]︁
ℓ𝟥,

(28.3.92)

achieved for

(28.3.93) 𝜌* = 𝜌*(ℓ) ≍ max((ℓ̄hℓ𝟤| log h|)
𝟣
𝟧 , 𝜌)

if ℓ ≥ ℓ* = max((ℓ̄h| log h|)
𝟣
𝟥 , 𝜌).

Then N-term does not exceed

(28.3.94)

C𝛽h−𝟣

∫︁
ℓx≥ℓ*

[︁
ℓ−𝟣
x +𝜈

𝟤
𝟥 h

𝟣
𝟥 ℓ

− 𝟧
𝟥

x + ℓ̄
𝟥
𝟧 h− 𝟤

𝟧 (1+ | log ℓ*ℓ−𝟣
x |)

𝟥
𝟧 ℓ

− 𝟦
𝟧

x +h−𝟣𝜌𝟥ℓ−𝟤
x

]︁
dx+

C𝛽h−𝟣
[︁
ℓ−𝟣
* + 𝜈

𝟤
𝟥 h

𝟣
𝟥 ℓ

− 𝟧
𝟥

* + ℓ̄
𝟥
𝟧 h− 𝟤

𝟧 ℓ
− 𝟦

𝟧
* + h−𝟣𝜌𝟥ℓ−𝟤

*

]︁
mes({ℓx ≤ ℓ*})

where the first and second terms estimate contributions of elements with
ℓx ≥ ℓ* and ℓx ≤ ℓ* respectively.

Remark 28.3.29. Observe that

(i) Under non-degeneracy assumption (28.3.60) we get C (R𝟢+R ′) as expected
and under non-degeneracy assumption (28.3.63) we get C (R𝟢 + R ′| log h|)
but this is only because we counted here the contribution of subelements
with {x : 𝜌x ≤ ℓx} in the less efficient way.

(ii) Under non-degeneracy assumption (28.3.65) we get C (R𝟢 +R ′′) and and
in the general case we get C (R𝟢 + R ′′′) where R𝟢,R ′,R ′′,R ′′′ are defined in
Propositions 28.3.24 and 28.3.26.

Similarly, the total contribution of the zone considered here (in Part I )
to D-term does not exceed

(28.3.95) C𝛽𝟤h−𝟤

∫︁∫︁
ℓx≥ℓ*,ℓy≥ℓ*,|x−y |≥𝗆𝖺𝗑(ℓx ,ℓy )
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×
[︁
ℓ−𝟣
x + 𝜈

𝟤
𝟥 h

𝟣
𝟥 ℓ

− 𝟧
𝟥

x + ℓ̄
𝟥
𝟧 h− 𝟤

𝟧 (1 + | log ℓ*ℓ−𝟣
x |)

𝟥
𝟧 ℓ

− 𝟦
𝟧

x + h−𝟣𝜌𝟥ℓ−𝟤
x

]︁
×

[︁
ℓ−𝟣
y + 𝜈

𝟤
𝟥 h

𝟣
𝟥 ℓ

− 𝟧
𝟥

y + ℓ̄
𝟥
𝟧 h− 𝟤

𝟧 (1 + | log ℓ*ℓ−𝟣
y |)

𝟥
𝟧 ℓ

− 𝟦
𝟧

y + h−𝟣𝜌𝟥ℓ−𝟤
y

]︁
× |x − y |−𝟣 dxdy

+C𝛽𝟤h−𝟤
[︁
ℓ−𝟣
* +𝜈

𝟤
𝟥 h

𝟣
𝟥 ℓ

− 𝟧
𝟥

* +ℓ̄
𝟥
𝟧 h− 𝟤

𝟧 ℓ
− 𝟦

𝟧
* +h−𝟣𝜌𝟥ℓ−𝟤

*

]︁𝟤 ∫︁∫︁
ℓx≤ℓ*,ℓy≤ℓ*

|x−y |−𝟣 dxdy .

Then under non-degeneracy assumption (28.3.60) we get C (R𝟢 + R ′)𝟤

as expected while under weaker non-degeneracy assumption (28.3.63) we
get C (R𝟢 + R ′| log h|)𝟤 but this is only because we counted here contribution
of subelements with {x : 𝜌x ≤ ℓx} in the less efficient way. Using the
method employed in the proof of Proposition 28.3.24 we can recover estimate
C (R𝟢 + R ′)𝟤 as well.

Further, under non-degeneracy assumption (28.3.63) we get C (R𝟢 + R ′′)𝟤

and under non-degeneracy assumption (28.3.65) we get C (R𝟢 + R ′′′)𝟤.

Part 2 . Consider the case of ℓx ≥ Cr (and therefore ℓy ≍ ℓx). Then we
apply the same arguments as before albeit with ℓ𝟤 replaced by ℓr . First,
consider the pair of subelements with 𝜌x ≥ 𝜌*, 𝜌y ≥ 𝜌*. Their contribution
to D-term does not exceed the product of expressions (28.3.83) with 𝜌 = 𝜌x ,
𝛾 = 𝛾x multiplied by 𝜌𝟤x(𝛽h)−𝟣 and (28.3.83) with 𝜌 = 𝜌y , 𝛾 = 𝛾y multiplied
by 𝜌𝟤x(𝛽h)−𝟣, and multiplied by |x − y |−𝟣. Then the double summation

by 𝜌x , 𝜌y results in Ch−𝟦(1 + 𝜈
𝟦
𝟥 h

𝟤
𝟥 )𝛾𝟥x𝛾

𝟥
y |x − y |−𝟣; and, finally, the double

summation over x , y returns Ch−𝟦(1 + 𝜈
𝟦
𝟥 h

𝟤
𝟥 )

∫︀∫︀
|x − y |−𝟣 dxdy ≲ CR𝟤.

Then we need to consider pairs with 𝜌x ≤ 𝜌*, 𝜌y ≤ 𝜌* and also pairs
with |x − y | ≤ h max(𝜌−𝟣

x , 𝜌−𝟣
y ).

Next consider pairs of subelements with 𝜌* ≥ 𝜌x ≥ (ℓr)
𝟣
𝟤 , 𝜌* ≥ 𝜌y ≥ (ℓr)

𝟣
𝟤 .

Their contributions to D-term does not exceed expression

C𝛽𝟤h−𝟤
(︀
𝜌−𝟣
x 𝜌−𝟣

y + ℓ̄𝟤𝜌−𝟤
x 𝜌−𝟤

y + 𝜌
− 𝟧

𝟥
x 𝜌

− 𝟧
𝟥

y 𝜈
𝟦
𝟥 h

𝟤
𝟥

)︀
𝛾𝟥x𝛾

𝟥
y |x − y |−𝟣

and the double summation over x , y in B(z , ℓ) with ℓz = ℓ results in the
same expression with the selected factor replaced by ℓ𝟧 and then the double
summation over 𝜌x , 𝜌y results in

(28.3.96) C𝛽𝟤h−𝟤
[︁
ℓ−𝟤 + ℓ̄𝟤ℓ−𝟦 + ℓ−

𝟣𝟢
𝟥 𝜈

𝟦
𝟥 h

𝟤
𝟥

]︁
ℓ𝟧.
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Meanwhile, considering pairs of subelements with (ℓr)
𝟣
𝟤 ≥ 𝜌x ≥ 𝜌* and

(ℓr)
𝟣
𝟤 ≥ 𝜌y ≥ 𝜌* (we use 𝜌* = 𝜌*(ℓ) and ℓ* introduced in (28.3.93)) we gain

factor 𝜌𝟤x𝜌
𝟤
y/(𝜌ℓ) in the summation by subelements and we arrive to the

same expression (28.3.96) but with a logarithmic factor at ℓ̄𝟤:

C𝛽𝟤h−𝟤
[︁
ℓ−𝟤 + ℓ̄𝟤ℓ−𝟦(1 + | log 𝜌*ℓ−𝟣|)𝟥 + ℓ−

𝟣𝟢
𝟥 𝜈

𝟦
𝟥 h

𝟤
𝟥

]︁
ℓ𝟧.

However we can get rid of logarithmic factors exactly as in the proof of
Proposition 28.3.26 thus getting (28.3.96). Then we need to sum by balls
B(z , ℓz) resulting in the same expression multiplied by ℓ−𝟥 and integrated:

C𝛽𝟤h−𝟤

∫︁
{ℓx≥ℓ*}

[︁
ℓ−𝟤
x + ℓ̄𝟤ℓ−𝟦

x + ℓ
− 𝟣𝟢

𝟥
x 𝜈

𝟦
𝟥 h

𝟤
𝟥

]︁
ℓ𝟤x dx ,

which we estimate by

C𝛽𝟤h−𝟤

∫︁
ℓ≥ℓ*

[︁
ℓ−𝟤 + ℓ̄𝟤ℓ−𝟦 + ℓ−

𝟣𝟢
𝟥 𝜈

𝟦
𝟥 h

𝟤
𝟥

]︁
ℓ𝟤+m dℓ(28.3.97)

with m = 2, 1, 0 under non-degeneracy assumptions (28.3.63), (28.3.65) and
in the general case respectively. Then we arrive to the terms of integrand
multiplied by ℓ and calculated either for ℓ = 1 or ℓ = ℓ*. One can see easily
that this does not exceed CR𝟤 with R defined in the corresponding statement
of Proposition 28.3.24.

One also can derive easily the same estimate for contributions of the pairs
of subelements with 𝜌x ≤ 𝜌*(ℓ), 𝜌y ≤ 𝜌*(ℓ), ℓ ≥ ℓ*, and for contributions of
the pairs of subelements with 𝜌x ≤ ℓ*, 𝜌y ≤ ℓ*, ℓ ≤ ℓ*, assuming in both
cases that 𝜌x r ≥ h, 𝜌y r ≥ h.

Finally, like in the proof of Proposition 28.3.26 we estimate the contribu-
tion of zone {x , y : 𝜌x r ≤ h, 𝜌y r ≤ h}. We leave easy details to the reader.

Remark 28.3.30. These arguments also work to estimate

(28.3.98) D
(︀
Γx(hD − A)x · σe(., ., 0), Γx

(︀
hD − A)x · σe(., ., 0)).

Indeed, Weyl expression for Γx(hD − A)x · σe(., ., 0) is just 0. Therefore
we arrive under either of non-degeneracy assumptions (28.3.60), (28.3.63),
(28.3.65) and in the general case to estimate

(28.3.99) ‖∇A′‖ ≤ C𝜅h𝟤R ,
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which could be better or worse than estimate ‖∇A′‖ ≤ C𝜅
𝟣
𝟤 which we have

already. It is not clear if estimate ‖∇A′‖ ≤ C𝜅 holds.

28.4 Microlocal Analysis: 𝛽h ≳ 𝟣

Now let us investigate the case of 𝛽h ≳ 1. In this case we assume not only
that 𝜅 ≲ 1 but also (28.2.27)*: 𝜅𝛽h𝟤| log h|K ≤ 1. We can apply the same
arguments as before and in the end of the day we will get the series of the
statements; we leave most of the easy details to the reader.

28.4.1 Estimate to a Minimizer

Observe first that

‖𝜕A′‖𝟤 ≤ C𝛽h−𝟤 × 𝜅h𝟤 = C𝜅𝛽 ≤ Ch−𝟤| log h|−K(28.4.1)

and

|ΔA′| ≤ C𝛽h−𝟤 × 𝜅h𝟤 = C𝜅𝛽 ≤ Ch−𝟤| log h|−K ,

and therefore

|𝜕𝟤A′| ≤ C𝜅𝛽 ≤ Ch−𝟤| log h|−K .(28.4.2)

First of all, repeating arguments leading to Proposition 28.4.8, we arrive
to estimate (28.3.46) modified

(28.4.3) ‖𝜕𝟤A′‖L∞ ≤ C𝜅𝛽h 𝜈
𝟣
𝟤 | log h|𝟤

+ C𝜅𝛽h| log h|
(︀
h− 𝟥

𝟧𝜈
𝟣
𝟣𝟢 + h− 𝟦

𝟩𝜈
𝟣
𝟩 +h− 𝟣

𝟤𝜈
𝟣
𝟦 | log h|𝟤

)︀
+ C𝜅| log h|𝛽

𝟣
𝟤‖𝜕V ‖L∞

+ C‖𝜕A′‖L∞ .

Note a new factor 𝛽h in the first line, which first becomes

(28.4.4) C𝜅𝛽h| log h|
(︀
𝜈

𝟣
𝟤 + (𝜇+ 𝜈h)| log h|

)︀
.

We prove it first for 𝜇 = 1 and then rescale and in virtue of Remark 28.3.9(ii)

we can always replace 𝜇 by 𝜈
𝟣
𝟤 ≪ h−𝟣; then, using 𝜈 := max

(︀
‖𝜕𝟤A′‖L∞ , 1

)︀
and assumption (28.2.27)*, we reduce (28.4.4) to its final form in (28.4.3).

Further, under additional super-strong non-degeneracy assumption

(28.4.5) min
x ,j≥𝟢

|V − 2j𝛽h| ≍ 1
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we can skip two selected terms in the second line of (28.4.3), arriving to

(28.4.6) ‖𝜕𝟤A′‖L∞ ≤ C𝜅𝛽h𝜈
𝟣
𝟤 | log h|𝟤

+ C𝜅𝛽h− 𝟣
𝟤𝜈

𝟣
𝟦 | log h|𝟥 + C𝜅| log h|𝛽

𝟣
𝟤‖𝜕V ‖L∞ + C‖𝜕A′‖L∞ .

Then we arrive to the following assertion:

Proposition 28.4.1 17). Let 𝛽h ≳ 1, 𝜅 ≤ 𝜅* and (28.2.27)* be fulfilled; let
V ∈ C𝟤; then

(i) The following estimates hold:

(28.4.7) ‖𝜕𝟤A′‖L∞ ≤ 𝜈

with

𝜈 := C𝜅𝛽
𝟣
𝟤 | log h|+ C (𝜅𝛽)

𝟣𝟢
𝟫 h

𝟦
𝟫 | log h|K for 𝜅𝛽h ≤ 1(28.4.8)

and

𝜈 := C𝜅𝛽
𝟣
𝟤 | log h|+ C (𝜅𝛽)

𝟦
𝟥 h

𝟤
𝟥 | log h|K for 𝜅𝛽h ≥ 1.(28.4.9)

(ii) Moreover, under assumption (28.4.5) estimate 𝜈 is given by (28.4.9)
even for 𝜅𝛽h ≲ 1.

Remark 28.4.2. (i) While case 𝛽h ≍ 1 has been already explored, we missed
an important case when non-degeneracy assumption (28.4.5) is fulfilled; so
we reexamine this case.

(ii) While technically (28.4.3) and (28.4.6) hold even if assumption (28.2.27)*

fails provided 𝜈 ≤ 𝜖𝛽, we cannot guarantee in this case that this inequality
holds.

28.4.2 Trace Term Asymptotics

Further, continuing our analysis we arrive to the following assertion

Proposition 28.4.3 18). Let 𝛽h ≳ 1, 𝜅 ≤ 𝜅* and 𝜈h𝟤 ≤ 1 19). Then

17) Cf. Proposition 28.3.10.
18) Cf. Propositions 28.3.13, 28.3.15 and 28.3.16; only factor 𝛽h appears in the definition

of Q𝟢.
19) In the framework of Proposition 28.4.1 for a minimizer this assumption is due to

(28.2.27)
*
.
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(i) Under non-degeneracy assumption (28.3.60), or (28.3.63) remainder
estimate

|Tr(H−
A,V𝜓) + h−𝟥

∫︁
PBh(V )𝜓 dx | ≤ Q(28.4.10)

holds with Q = Q𝟢 + Q ′,

Q𝟢 := C𝛽 + C𝛽𝜈
𝟦
𝟥 h

𝟤
𝟥 ,(28.4.11)

and Q ′ defined by (28.3.61).

(ii) Under non-degeneracy assumption (28.3.65) remainder estimate (28.4.10)
holds with Q = Q𝟢 + Q ′′ with Q ′′ = Q ′ + 𝜈| log h and Q𝟢 and Q ′ defined by
(28.4.10) and (28.3.61) respectively.

(iii) In the general case remainder estimate (28.4.10) holds with Q = Q𝟢 +
Q ′′′ with Q𝟢 and Q ′′′ defined by (28.4.10) and (28.3.66) respectively.

Applying Proposition 28.4.1 we arrive to

Corollary 28.4.4. In the framework of Proposition 28.4.3 let A′ be a min-
imizer. Then

(i) Under non-degeneracy assumption (28.3.60), or (28.3.63), or even
(28.3.65) estimate (28.4.10) holds with

Q = Q𝟢 = C𝛽 + C𝜅
𝟦𝟢
𝟤𝟩𝛽

𝟨𝟩
𝟤𝟩 h

𝟥𝟦
𝟤𝟩 | log h|K for 𝜅𝛽h ≤ 1(28.4.12)

and

Q = Q𝟢 = C𝛽 + C𝜅
𝟣𝟨
𝟫 𝛽

𝟤𝟧
𝟫 h

𝟣𝟦
𝟫 | log h|K for 𝜅𝛽h ≥ 1.(28.4.13)

(ii) Furthermore, under assumption (28.4.5) Q𝟢 is defined by (28.4.13) even
for 𝜅𝛽h ≤ 1.

(iii) In the general case estimate (28.4.10) holds with

(28.4.14) Q = Q𝟢 + 𝛽h− 𝟣
𝟤 + 𝜅

𝟪
𝟧𝛽

𝟣𝟥
𝟧 h

𝟨
𝟧 | log h|K .

Remark 28.4.5. Observe that
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(i) If assumption (28.2.27)* holds, then Q𝟢 ≲ 𝜅
𝟣
𝟥𝛽

𝟦
𝟥 h− 𝟦

𝟥 ≲ 𝛽h−𝟤, where the
middle expression appears in (28.2.25). On the other hand, if (28.2.27)*

fails, then the reverse inequalities hold. In the general case we assume that
𝛽h𝟤 ≪ 1 to get a remainder estimate smaller than the main term.

(ii) Also 𝜈 ≲ 𝛽 provided (28.2.27)* holds; if 𝜅 = 1 then 𝜈 ≲ 𝛽 if and only if
(28.2.27)* holds.

28.4.3 Endgame

Similarly to Theorem 28.3.21 we arrive to

Theorem 28.4.6. Let 𝛽h ≳ 1, 𝜅 ≤ 𝜅* and (28.2.27)* be fulfilled. Then
estimate (28.3.78)

|E*
𝜅 − ℰ*

𝜅| ≤ CQ

holds where

(i) Under non-degeneracy assumption (28.3.65) Q is defined by (28.4.12)
and (28.4.13).

(ii) In the general case Q is defined by (28.4.12); in particular, Q = 𝛽h− 𝟣
𝟤

as 𝜅𝛽h ≲ 1.

Problem 28.4.7 20). In this new settings recover estimates for ‖𝜕(A′ − A′′)‖,
‖𝜕(A′ − A′′)‖L∞ and ‖𝜕A′‖L∞ where A′′ is a minimizer for ℰ̄(A′′).

28.4.4 N-Term Asymptotics and D-Term Estimates

Repeating arguments of the proofs of Propositions 28.3.24, 28.3.26 we arrive
to

Proposition 28.4.8. Let 𝛽h ≳ 1 and conditions (28.3.49)𝟣,𝟤 be fulfilled.
Then

(i) Under non-degeneracy assumption (28.3.60) or (28.3.63) estimate (28.3.84)
holds with R = R𝟢 + R ′,

(28.4.15) R𝟢 = 𝛽h−𝟣 + 𝛽h− 𝟤
𝟥𝜈

𝟤
𝟥

and R ′ defined by (28.3.61)′.

20) Cf. Problem 28.3.22.
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(ii) Under non-degeneracy assumption (28.3.63) estimate (28.3.84) holds
with R = R𝟢 + R ′′, R𝟢 and R ′′ defined by (28.4.15) and (28.3.86).

(iii) In the general case estimate (28.3.84) holds with R = R𝟢 + R ′′′, R𝟢 and
R ′′′ defined by (28.4.15) and (28.3.88).

Repeating arguments of the proof of Propositions 28.3.27 and 28.3.27
we arrive to

Proposition 28.4.9. Let 𝛽h ≳ 1 and conditions (28.3.49)𝟣,𝟤 be fulfilled.
Then

(i) Under non-degeneracy assumptions (28.3.60) or (28.3.63) D-term (28.3.89)
does not exceed CR𝟤 with R = R𝟢 + R ′, R𝟢 and R ′ defined by (28.4.15) and
(28.3.61)′ respectively.

(ii) Under non-degeneracy assumption (28.3.65) D-term (28.3.89) does not
exceed CR𝟤 with R = R𝟢 + R ′′, R𝟢 and R ′ defined by (28.4.15) and (28.3.86).

(iii) In the general case D-term (28.3.89) does not exceed CR𝟤 with R =
R𝟢 + R ′′′, R𝟢 and R ′ defined by (28.4.15) and (28.3.88).

Problem 28.4.10. In the general case (without any non-degeneracy as-
sumptions) for 𝛽h ≲ 1 and for 𝛽h ≳ 1 improve the remainder estimates for
both the trace term and N-term and estimates for D-term (so, make R ′′′ and
Q ′′′ smaller) under assumption V ∈ Cs with s > 2.

To do this use more advanced partition of unity as in Chapter 25. Most
likely, however, it will affect only terms C𝛽h− 𝟣

𝟤 and C𝛽h− 𝟥
𝟤 in Q ′′′ and R ′′′

replacing them by C𝛽h(s−𝟦)/(s+𝟤) and C𝛽h−𝟣−𝟤/(s+𝟤) respectively.

28.5 Global Trace Asymptotics in the Case

of Thomas-Fermi Potential: B ≤ Z
𝟦
𝟥

28.5.1 Introduction

In this Section we consider global trace asymptotics for Thomas-Fermi
potential. First we consider the singularity zones where our results would
follow from Section 27.3, then we consider their interaction with the regular
zone which would lead to the deterioration of the remainder estimates for

… 335
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𝛽 ≫ h− 𝟣
𝟤 and finally the boundary zone where non-degeneration properties

could be violated (especially for M ≥ 2), which requires rather subtle analysis
and usage of the specific properties of Thomas-Fermi potential.

Remark 28.5.1. Recall that according to Chapter 25 there are two cases:

(a) B ≤ Z
𝟦
𝟥 , when the most contributing to both the number of particles

and the energy zone is {x : ℓ(x) ≍ r * = Z− 𝟣
𝟥} (where ℓ(x) is the distance to

the closest nucleus), and then rescaling x ↦→ xr *−𝟣, 𝜏 ↦→ 𝜏Z− 𝟦
𝟥 we arrive in

this zone to 𝛽 = BZ−𝟣, h = Z− 𝟣
𝟥 with 𝛽h ≤ 1.

(b) Z
𝟦
𝟥 ≤ B ≤ Z 𝟥, when the most contributing to both the number of

particles and the energy zone is {x : ℓ(x) ≍ r * = B− 𝟤
𝟧 Z

𝟣
𝟧}, and then rescaling

x ↦→ xr *−𝟣, 𝜏 ↦→ 𝜏B− 𝟤
𝟧 Z− 𝟦

𝟧 we arrive in this zone to 𝛽 = B
𝟤
𝟧 Z− 𝟣

𝟧 , h = B
𝟣
𝟧 Z− 𝟥

𝟧

with 𝛽h ≥ 1.

We also recall that in the free (movable) nuclei model the distances
between nuclei were greater than 𝜖r * (which would be the case in the current
settings as well as we show later), so we will assume that it is the case
deducting our main results.

28.5.2 Estimates to a Minimizer

Preliminary Analysis

Consider potential V with the Coulomb-like singularities, exactly as in
Section 27.3 i.e. satisfying (27.3.1)–(27.3.3).

Proposition 28.5.2 21). Let V satisfy (27.3.1)–(27.3.2) and

(28.5.1) |D𝛼W | ≤ C𝛼
∑︁

𝟣≤m≤M

zm
(︀
|x − ȳm|+ 1

)︀−𝟦|x − ȳm|−|𝛼|

∀𝛼 : |𝛼| ≤ 2.

Let 𝜅 ≤ 𝜅* and 𝛽h ≤ 1. Then the near-minimizer A satisfies

|Tr(H−
A,V ) +

∫︁
h−𝟥P𝛽h(V (x))

)︁
dx | ≤ Ch−𝟤(28.5.2)

and

‖𝜕A′‖ ≤ C𝜅
𝟣
𝟤 .(28.5.3)

21) Cf. Proposition 27.3.1.
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Proof. We follow the proof of Proposition 27.3.1. Observe that scaling
x ↦→ (x − ȳm)ℓ

−𝟣, 𝜏 ↦→ 𝜏𝜁−𝟤 leads us to

h ↦→ h𝟣 = hℓ−𝟣𝜁−𝟣, 𝛽 ↦→ 𝛽𝟣 = 𝛽ℓ𝜁−𝟣, 𝜅 ↦→ 𝜅𝟣 = 𝜅𝜁𝟤ℓ.(28.5.4)

Also observe that for 𝜁 = ℓ−
𝟣
𝟤

𝜅𝟣𝛽𝟣h𝟤
𝟣 ≳ 1 =⇒ ℓ ≳ ℓ* = (𝛽 + 1)−

𝟣
𝟤 h−𝟣(28.5.5)

and for 𝜅 ≍ 1 those are equivalent.

(i) First, we pick up A′ = 0. Then

(28.5.6) |Tr
(︀
H−

A𝟢,V (0)
)︀
+ h−𝟥

∫︁
P𝛽h(V (x)) dx | ≤ Ch−𝟤;

this estimate follows from the standard partition with ℓ-admissible partition
elements, supported in {x : ℓ(x) ≲ ℓ} for ℓ = ℓ* and and in {x : ℓ(x) ≍ ℓ}
for ℓ ≥ 2ℓ*.

(ii) On the other hand, consider A′ ̸= 0. Let us prove first that

(28.5.7) Tr−(𝜓ℓH𝜓ℓ) ≥ −C𝜀h
−𝟤 − 𝜀𝜅−𝟣h−𝟤‖𝜕A′‖𝟤

for ℓ = ℓ* = h𝟤 where one can select constant 𝜀 arbitrarily small.

Rescaling x ↦→ (x − ȳm)/ℓ and 𝜏 ↦→ 𝜏/ℓ and therefore h ↦→ hℓ−
𝟣
𝟤 ≍ 1

and A ↦→ Aℓ
𝟣
𝟤 (because singularity is Coulomb-like), we arrive to the same

problem with the same 𝜅 and with ℓ = h = 1 and with 𝛽 replaced by 𝛽h𝟥.
Then for 𝛽h𝟥 ≤ 1 we refer to Appendix 27.A.1 since HA,V ≥ HA′,V ′ with
V ′ = V − 𝛽𝟤|x |𝟤.

(iii) Consider now 𝜓ℓ as in (i) with ℓ ≥ ℓ*. Then according to Theo-
rems 28.3.21 and 28.4.6 for 𝛽𝟣h𝟣 ≲ 1 and 𝜅𝜁𝟤ℓ ≤ 𝜅*

(28.5.8) Tr−
(︀
𝜓ℓHA,V𝜓ℓ

)︀
+ h−𝟥

∫︁
P𝛽h(V (x))𝜓𝟤

ℓ (x) dx

≥ −C𝜀𝜁
𝟤(h−𝟣

𝟣 + 𝛽𝟣h−𝟣
𝟣 )− 𝜀𝜅−𝟣h−𝟤‖𝜕A′‖𝟤.

Remark 28.5.3. Observe that if 𝜓ℓ is supported in {x : 𝟣
𝟤
r ≤ ℓ(x) ≤ 2r},

then we can take a norm of 𝜕A′ over {x : 𝟣
𝟦
r ≤ ℓ(x) ≤ 4r}. Indeed, we can

just replace A′ by A′′ = 𝜑ℓ(A
′ − 𝜂) with arbitrary constant 𝜂 and with 𝜑ℓ

supported in {x : 𝟣
𝟦
r ≤ ℓ(x) ≤ 4r} and equal 1 in {x : 𝟣

𝟥
r ≤ ℓ ≤ 3r} (and 𝜀

by c𝜀).

Then summation of these norms returns −C𝟢𝜀𝜅
−𝟣h−𝟤‖𝜕A′‖𝟤.
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Furthermore, the first term in the right-hand expression of (28.5.8) is
−C𝜀(𝜁

𝟥ℓ−𝟣h−𝟣+ 𝜁𝟤ℓ𝟤𝛽h−𝟣) and summation over ℓ ≥ h𝟤 returns −C𝜀h
−𝟤 since

𝜁 = min(ℓ
𝟣
𝟤 , ℓ−𝟤).

(iv) Consider next zone where 𝛽𝟣h𝟣 ≥ 1 (and ℓ ≥ 1) but still h𝟣 ≤ 1.
According to previous Section 28.5 inequality (28.5.8) should be replaced by

(28.5.9) Tr−
(︀
𝜓ℓHA,V𝜓ℓ

)︀
+ h−𝟥

∫︁
P𝛽h(V (x))𝜓𝟤

ℓ (x) dx

≥ −C𝜀𝜁
𝟤𝛽𝟣h−𝟣

𝟣

(︀
1 + 𝜈

𝟦
𝟥
𝟣 h

𝟧
𝟥
𝟣

)︀
− 𝜀𝜅−𝟣h−𝟤‖𝜕A′‖𝟤

with 𝜈𝟣 = (𝜅𝟣𝛽𝟣)
𝟣𝟢
𝟫 h

𝟦
𝟫
𝟣 | log h|K 22) and 𝜅𝟣𝛽𝟣 = 𝜅𝛽𝜁ℓ𝟤 = 𝜅𝛽 and thus with

𝛽𝟣h−𝟣
𝟣 𝜁𝟤 = 𝛽h−𝟣𝜁𝟤ℓ𝟤. Then summation of the first term in the right-hand

expression results in its value when ℓ is the smallest i.e. 𝛽𝟣h𝟣 = 1 and one
can check easily23) that this is less than Ch−𝟤.

Further, Remark 28.5.3 remains valid. Then adding this zone does not
change inequality in question.

(v) The rest of the proof is obvious. Zone {x : ℓ(x) ≥ ℓ*} is considered as
a single element and just rough variational estimate is used there to prove
that its contribution does not exceed Ch−𝟤.

Remark 28.5.4. Later we will improve both upper and lower estimates
using different tricks: imposing non-degeneracy assumptions, picking for
an upper estimate semiclassical self-generated magnetic field, using Scott
approximation terms. These improvements will lead not only to our final goal,
but also to our intermediate one–getting better estimates for a minimizer.

Proposition 28.5.5 24). In the framework of Proposition 28.5.2 there exists
a minimizer A.

Proof. After Proposition 28.5.2 has been proven we just repeat arguments
of the proof of Proposition 27.2.2.

22) Because 𝜅𝟣𝛽𝟣h𝟣 = 𝜅𝛽hℓ ≤ 𝜅(𝛽h)
𝟥
𝟦 ≤ 𝟣.

23) Sufficient to check for 𝛽 = h−𝟣, ℓ = 𝟣 and 𝜅 = 𝟣.
24) Cf. Proposition 27.3.2.
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Estimates to a Minimizer: Interior Zone

Recall equation (27.2.14) for a minimizer A:

(27.2.14)
2

𝜅h𝟤
ΔAj(x) = Φj :=

− Re tr σj

(︁
(hD − A)x · σe(x , y , 𝜏) + e(x , y , 𝜏) t(hD − A)y · σ

)︁⃒⃒⃒
y=x

.

After rescaling x ↦→ x/ℓ, 𝜏 ↦→ 𝜏/𝜁𝟤, h ↦→ ℏ = h/(𝜁ℓ), A ↦→ A𝜁−𝟣ℓ, 𝛽 ↦→ 𝛽𝜁−𝟣ℓ
this equation becomes (27.3.13)

(27.3.13) ΔAj =

−2𝜅𝜁𝟤ℓℏ𝟤 Re tr σj

(︁
(ℏD−𝜁−𝟣A)x ·σe(x , y , 𝜏)+e(x , y , 𝜏) t(ℏD−𝜁−𝟣A)y ·σ

)︁⃒⃒⃒
y=x

and since we can take 𝜁𝟤ℓ = 1 we arrive to (27.3.14)

(27.3.14) ΔAj =

−2𝜅ℏ𝟤 Re tr σj

(︁
(ℏD−𝜁−𝟣A)x ·σe(x , y , 𝜏)+e(x , y , 𝜏) t(ℏD−𝜁−𝟣A)y ·σ

)︁⃒⃒⃒
y=x

.

Let us modify arguments of Subsection 27.3.1. First observe that

(28.5.10) |𝜕A′| ≤ C𝜅
𝟣
𝟤 h−𝟥, |𝜕𝟤A′| ≤ C𝜅

𝟣
𝟤 h−𝟧 for ℓ ≤ 2ℓ*

with ℓ* = h𝟤; this follows from above equations rescaled and from 𝛽h𝟥 ≤ 𝜖𝟢.
Let

(28.5.11) 𝜇(r) = sup
ℓ(x)≥r

|𝜕A′|ℓ𝜁−𝟣, 𝜈(r) = sup
ℓ(x)≥r

|𝜕𝟤A′|ℓ𝟤𝜁−𝟣;

then 𝜈(r) should not exceed25)

(28.5.12) F (𝜈) = C𝜅𝟣
(︁
1 + 𝜇+min

(︀
𝛽

𝟥
𝟤
𝟣 h

𝟣
𝟤
𝟣 , 𝛽

𝟣
𝟤
𝟣

)︀
+ 𝛽𝟣h𝟣

(︀
𝜈

𝟣
𝟣𝟢 h

− 𝟥
𝟧

𝟣 + 𝜈
𝟣
𝟩 h

− 𝟦
𝟩

𝟣 + 𝜈
𝟣
𝟦 h

− 𝟣
𝟤

𝟣 | log h𝟣|𝟤
)︀)︁

| log h𝟣|+ C𝜅
𝟣
𝟤 (ℓ𝜁𝟤)−

𝟣
𝟤 ,

where here 𝜈 = 𝜈(𝟣
𝟤
r), 𝜇 = 𝜇(r), the last term is just an estimate for ‖𝜕A′‖

rescaled and ℓ ≍ r in that term. Indeed, (28.5.12) is derived exactly as
(28.3.46), but here we cut a hole {x : ℓ(x) ≤ 𝟣

𝟤
r} in our domain.

25) As long as 𝛽𝟣h𝟣 ≤ 𝟣.
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We also know that 𝜇 ≤ C𝜈
𝟥
𝟧𝜅

𝟣
𝟧 (ℓ𝜁𝟤)−

𝟣
𝟧 . Using (28.5.12) and (28.5.10) one

can prove easily that 𝜈(r) does not exceed solution of the equation 𝜈 = F (𝜈)
multiplied by C 26), i.e.

(28.5.13) 𝜈 ≤ C𝜅𝟣
(︁
1 + min

(︀
𝛽

𝟥
𝟤
𝟣 h

𝟣
𝟤
𝟣 , 𝛽

𝟣
𝟤
𝟣

)︀)︁
| log h𝟣|

+ C
(︁
(𝜅𝟣𝛽𝟣)

𝟣𝟢
𝟫 h

𝟦
𝟫
𝟣 + (𝜅𝟣𝛽𝟣)

𝟦
𝟥 h

𝟤
𝟥
𝟣

)︁
| log h𝟣|K + C𝜅

𝟣
𝟤 (ℓ𝜁𝟤)−

𝟣
𝟤 .

In particular, scaling back and setting 𝜁 = ℓ−
𝟣
𝟤 we arrive to

(28.5.14) |𝜕𝟤A′| ≤ C𝜅
(︁
ℓ−

𝟧
𝟤 +min

(︀
𝛽

𝟥
𝟤 h

𝟣
𝟤 ℓ−

𝟣
𝟤 , 𝛽

𝟣
𝟤 ℓ−

𝟩
𝟦

)︀)︁
| log ℓ/ℓ*|

+ C
(︁
(𝜅𝛽)

𝟣𝟢
𝟫 h

𝟦
𝟫 ℓ−

𝟣𝟫
𝟣𝟪 + (𝜅𝛽)

𝟦
𝟥 h

𝟤
𝟥 ℓ−

𝟧
𝟨

)︁
| log ℓ/ℓ*|K + C𝜅

𝟣
𝟤 ℓ−

𝟧
𝟤 .

The same arguments work for 𝛽𝟣h𝟣 ≥ 1 but now we need to replace
| log h𝟣| by | log 𝛽𝟣| which however is also ≍ ℓ/ℓ* as 𝛽h ≤ 1.

After this estimate is proven we can remove the last term in the right-
hand expression and we arrive to

Proposition 28.5.6. In the framework of Proposition 28.5.2

(28.5.15) |𝜕𝟤A′| ≤ C𝜅
(︁
ℓ−

𝟧
𝟤 +min

(︀
𝛽

𝟥
𝟤 h

𝟣
𝟤 ℓ−

𝟣
𝟤 , 𝛽

𝟣
𝟤 ℓ−

𝟩
𝟦

)︀)︁
| log ℓ/ℓ*|

+ C
(︁
(𝜅𝛽)

𝟣𝟢
𝟫 h

𝟦
𝟫 ℓ−

𝟣𝟫
𝟣𝟪 + (𝜅𝛽)

𝟦
𝟥 h

𝟤
𝟥 ℓ−

𝟧
𝟨

)︁
| log ℓ/ℓ*|K .

Estimates to a Minimizer: Exterior Zone

Let us estimate |𝜕𝟤A′| as ℓ ≥ ℓ*. Observe that

(28.5.16) A′
j(x) = −𝜅h𝟤

4𝜋

∫︁
|x − y |−𝟣Φj(y) dy ,

where Φj is given by (27.2.14). Then 𝜕𝟤A′ is expressed via Φj as an integral
with a kernel K (x , y), singular when x = y and such that |K (x , y)| ≤
c(|x |+ |y |)−𝟥 when |x − y | ≍ |x |+ |y |. Further, applying representation like
in Proposition 27.3.9, we can get an extra factor |y |(|x |+ |y |)−𝟣 upgrading
it to |K (x , y)| ≤ c |y |(|x |+ |y |)−𝟦.

26) As long as a resulting expression rescaled, see (28.5.14) is a decaying function of ℓ.
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Then, starting from (28.5.15) and iterating (28.3.46) we arrive to estimate

|𝜕𝟤A′| ≤ C𝜅ℓ−𝟦| log h|+ C (𝜅𝛽)
𝟣𝟢
𝟫 h

𝟦
𝟫 ℓ−

𝟥𝟤
𝟫
+𝛿| log h|K for ℓ ≥ 1

with arbitrarily small 𝛿 > 0. Furthermore, using arguments of the proof of
Proposition 28.5.6 we can make 𝛿 = 0 thus arriving to

Proposition 28.5.7. In the framework of Proposition 28.5.2

(28.5.17) |𝜕𝟤A′| ≤ C𝜅ℓ−𝟦| log h|+ C (𝜅𝛽)
𝟣𝟢
𝟫 h

𝟦
𝟫 ℓ−

𝟥𝟤
𝟫 | log h|K for ℓ ≥ 1.

Remark 28.5.8. Sure, as ℓ ≥ 1, 𝛽𝟣h
𝟣
𝟤
𝟣 | log h𝟣|K ≤ 1 this estimate could be

improved but these improvements would not affect our crucial estimates.

28.5.3 Trace Asymptotics

Before proving trace estimates observe

Remark 28.5.9. (i) All local asymptotics and estimates with with mollifi-
cation with respect to spatial variables 27) proven in Sections 28.3 and 28.4
with unspecified 𝜈 ≤ 𝜖𝛽 remain valid in the more general framework of the
smooth non-degenerate external field A𝟢(x): namely

(28.5.18)𝟣,𝟤 ‖𝜕𝟦A𝟢‖ ≤ C𝟢𝛽, B𝟢 = |∇ × A𝟢| ≥ 𝜖𝟢𝛽.

Indeed, we use only 𝜀-approximations with 𝜀 = h or 𝜀 = h𝜌−𝟣 and we can
always change coordinate system so magnetic lines are (x𝟣, x𝟤) = const. We
leave easy arguments to the reader.

(ii) However since we do not have estimates (28.3.47) or (28.4.7)–(28.4.9)
in this more general framework28), we also do not have (28.4.12), (28.4.13)
then.

Now consider the trace term assuming that

(28.5.19) d := min
𝟣≤m<m′≤M

|ȳm − ȳm′ | ≳ 1.

27) Thus trace and 𝖭-term asymptotics and 𝖣-term estimates.
28) Even if we believe that these estimates are true. So far we have no need in such

generalization.
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(a) Due to the proofs of Theorem 27.3.22 and Proposition 28.5.2 we can
evaluate contribution of the zone {x : |x − ȳm| ≤ 𝜖}, provided 𝛽 ≤ 1:

(28.5.20) |Tr(H−
A,V𝜓m)− Tr(H−

A,Vm
𝜓m)

+ h−𝟥

∫︁
PBh(V )𝜓m dx − h−𝟥

∫︁
P𝟢(Vm)𝜓m dx | ≤ C

(︀
h−𝟣 + 𝜅| log 𝜅|

𝟣
𝟥 h− 𝟦

𝟥

)︀
,

where Vm = zm|x − ȳm|−𝟣 and 𝜓m is supported in {x : |x − ȳm| ≤ 𝜖} and
equal 1 in {x : |x − ȳm| ≤ 𝟣

𝟤
𝜖}.

Further, we can replace in this estimate Tr(H−
A′,Vm

𝜓m) + h−𝟥
∫︀

P𝟢(Vm)𝜓m

by

(28.5.21)

∫︁ (︁∫︁ 𝟢

−∞
eVm,A′(x , x , 𝜏) d𝜏 + h−𝟥P𝟢(Vm)

)︁
𝜓m dx

and we can also replace in the latter expression 𝜓m by 1.

(b) If 𝛽 ≥ 1, we can apply estimate (28.5.20) to the zone {x : |x − ȳm| ≤ 𝜖b}
with b = 𝛽− 𝟤

𝟥 scaling x ↦→ (x − ȳm)b
−𝟣 and 𝜏 → 𝜏 and h ↦→ h𝟣 = hb− 𝟣

𝟤 ,

𝛽 ↦→ 𝛽b
𝟥
𝟤 = 1, 𝜅 ↦→ 𝜅; now 𝜓m is supported in {x : |x − ȳm| ≤ 𝜖b} and equals

1 in {x : |x − ȳm| ≤ 𝟣
𝟤
𝜖b} and the right-hand expression of (28.5.20) becomes

(28.5.22) Cb−𝟣
(︀
h−𝟣
𝟣 + 𝜅| log 𝜅|

𝟣
𝟥 h

− 𝟦
𝟥

𝟣

)︀
= C

(︀
𝛽

𝟣
𝟥 h−𝟣 + 𝜅| log 𝜅|

𝟣
𝟥𝛽

𝟤
𝟫 h− 𝟦

𝟥

)︀
.

If 𝛽 ≥ 1, let us consider contribution of the zone {x : 𝜖𝟢b ≤ |x − ȳm| ≤ 𝜖𝟢},
where due to assumption (28.5.19) non-degeneracy condition (28.3.60) is
automatically satisfied after rescaling; namely before rescaling it is

(28.5.23) min
j

|V − 2j𝛽h|+ |∇V |ℓ ≍ 𝜁𝟤.

A contribution of ℓ-element in this zone does not exceed

C𝜁𝟤
(︀
h−𝟣
𝟣 + h

− 𝟣
𝟥

𝟣 𝜈
𝟦
𝟥

)︀
(28.5.24)

with

𝜈 = sup
|x−𝗒̄m|≍ℓ

|𝜕𝟤A′|ℓ𝟤𝜁−𝟣,(28.5.25)

and plugging (28.5.4) into (28.5.24) we get

C
(︀
ℓ−

𝟣
𝟤 h−𝟣 + (𝜅𝛽)

𝟦𝟢
𝟤𝟩 h

𝟩
𝟤𝟩 ℓ

𝟧𝟫
𝟧𝟦 | log(hℓ−

𝟣
𝟤 )|K

)︀
,
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which sums to

C
(︀
𝛽

𝟣
𝟥 h−𝟣 + (𝜅𝛽)

𝟦𝟢
𝟤𝟩 h

𝟩
𝟤𝟩 | log h|K

)︀
,(28.5.26)

which obviously does not exceed (28.5.22). Thus after scaling29) we arrive to

Proposition 28.5.10. Let V = W 𝖳𝖥
B + 𝜆 be Thomas-Fermi potential with

N ≤ Z , N ≍ Z𝟣 ≍ Z𝟤 ≍ ... ≍ ZM , B ≲ Z
𝟦
𝟥 and

(28.5.27) |ym − ym′ | ≥ d ≳ Z− 𝟣
𝟥 ∀1 ≤ m < m′ ≤ M .

Then if 𝜓m is supported in 𝜖r *-vicinity of ym

(28.5.28) |Tr(H−
A,V𝜓m)− Tr(H−

A,Vm
𝜓m)

+

∫︁
PB(V )𝜓m dx −

∫︁
P𝟢(Vm)𝜓m dx |

does not exceed CQ𝟢 with

(28.5.29) Q𝟢 :=

⎧⎨⎩
(︀
Z

𝟧
𝟥 + 𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫

)︀
for B ≤ Z ,(︀

B
𝟣
𝟥 Z

𝟦
𝟥 + 𝛼| log(𝛼Z )|

𝟣
𝟥 B

𝟤
𝟫 Z

𝟤𝟥
𝟫

)︀
for Z ≤ B ≤ Z

𝟦
𝟥 .

Furthermore, if B ≤ Z , then expression (28.5.28) does not exceed

(28.5.30) C
(︁

Z
𝟧
𝟥 [Z−𝛿 + (BZ−𝟣)𝛿 + (dZ

𝟣
𝟥 )−𝛿] + 𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫

)︁
.

Here improved estimate (28.5.30) can be proven by our standard propa-
gation arguments.

Further, let us consider the regular exterior zone {x : 𝜖𝟢r * ≤ |x−ym| ≤ 𝜖r̄}
with r̄ := min

(︀
B− 𝟣

𝟦 , (Z − N)
− 𝟣

𝟥
+

)︀
. Then due to Thomas-Fermi equation

W 𝖳𝖥
B + 𝜆 satisfies here non-degeneracy condition (28.3.65) after rescaling

and 𝜁 = ℓ−𝟤, h𝟣 = ℓ(x), 𝛽𝟣 = Bℓ𝟥.
Then the contribution of ℓ-element in this zone does not exceed (28.5.25)

as long as 𝛽𝟣h𝟣 ≤ 1, h𝟣 ≤ 1 i.e. ℓ(x) ≤ min(r̄ , 1), and due to (28.5.24) this

contribution does not exceed C𝜁𝟤
(︀
h−𝟣
𝟣 + h

− 𝟣
𝟥

𝟣 𝜈
𝟦
𝟥

)︀
, where 𝜈𝟣 is estimate for

|𝜕𝟤A′| multiplied by 𝜁−𝟣ℓ𝟤:

(28.5.31) 𝜈𝟣 = 𝜅| log h|+ (𝜅𝛽)
𝟣𝟢
𝟫 h

𝟦
𝟫 ℓ

𝟦
𝟫 | log h|K .

29) x ↦→ Z
𝟣
𝟥 x , 𝜏 ↦→ Z

𝟦
𝟥 𝜏 , 𝟣 ↦→ h = Z− 𝟣

𝟥 , B ↦→ 𝛽 = Z−𝟣, 𝛼 ↦→ 𝜅 = 𝛼Z ; recall that
𝛽h ≲ 𝟣 ⇐⇒ B ≲ Z− 𝟦

𝟥 .
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Then calculating 𝜈𝟣 and plugging it and h𝟣 = hℓ into C𝜁𝟤
(︀
h−𝟣
𝟣 + h

− 𝟣
𝟥

𝟣 𝜈
𝟦
𝟥

)︀
one

can see easily that here all terms contain ℓ in the negative powers.
Then summation by ℓ results in the same expression calculated for ℓ = r *

and one can observe easily that it does not exceed (28.5.29), (28.5.30) for

B ≤ Z , Z ≤ B ≤ Z
𝟦
𝟥 respectively. One can see easily that dealing with terms

C𝜁𝟤 × 𝜇𝟥𝛽−𝟤h−𝟤 due to (28.3.61) and C𝜁𝟤𝜈| log h| (see Propositions 28.3.13
and 28.3.15) leads to smaller expressions.

Furthermore, using the standard propagation arguments one can upgrade
(28.5.29) to (28.5.30). Therefore we conclude that

(28.5.32) Proposition 28.5.10 remains true for 𝜓m supported in the zone
{x : |x − ym| ≤ 𝜖min(r̄ , 1)}.

Consider now the contribution of the boundary zone {x : ℓ(x) ≥ min(r̄ , 1)}.

(a) Let us start from more difficult and interesting case B ≥ 1 assuming

first that Z = N . Rescale this zone first x ↦→ xB
𝟣
𝟦 , 𝜏 ↦→ 𝜏B−𝟣, then we have

h𝟣 = B− 𝟣
𝟦 , 𝛽𝟣 = B

𝟣
𝟦 . Observe that

(28.5.33) After this rescaling a rescaled magnetic field satisfies |𝜕𝟤A′| ≤ 𝜈𝟣
where 𝜈𝟣 is given by (28.5.31) for ℓ = r̄ .

As we know from Subsection 26.5.1, after the first scaling there exists
the scaling function 𝛾 such that

|𝜕𝛼V | ≤ C𝛾𝟦−|𝛼| |𝛼| ≤ 4,(28.5.34)

V ≍ 𝛾𝟦, |𝜕𝟤V | ≍ 𝛾𝟤(28.5.35)

and therefore we can use a 𝛾-admissible partition. Then scaling again
x ↦→ x𝛾−𝟣, 𝜏 ↦→ 𝜏𝛾−𝟦, h𝟣 ↦→ h𝟤 = h𝛾−𝟥, 𝛽𝟣 ↦→ 𝛽𝟤 = 𝛽𝟣𝛾

−𝟣 and 𝜈𝟣 ↦→ 𝜈𝟤 = 𝜈𝟣
we see that non-degeneracy assumption (28.3.65) is fulfilled and therefore
according to Proposition 28.4.3(ii) the contribution of 𝛾-element to the

remainder does not exceed CB𝛾𝟦𝛽𝟤
(︀
1 + h

𝟤
𝟥
𝟤 𝜈

𝟦
𝟥
𝟤

)︀
because now 𝛽𝟤h𝟤 ≥ 1. Then

the total contribution of such elements does not exceed

(28.5.36) CB

∫︁
𝛽𝟤

(︀
1 + h

𝟤
𝟥
𝟤 𝜈

𝟦
𝟥
𝟤

)︀
𝛾−𝟥 dx
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with integral taken over zone {x : 𝛾(x) ≥ 𝛾 := h
𝟣
𝟥
𝟣 } where h𝟤 ≤ 1. Plugging

𝛽𝟤, h𝟤 and 𝜈𝟤 = 𝜈𝟣 we get in the second term 𝛾−𝟤 which is not good. Let us
apply Remark 28.5.9.

Recall that A′(x) is a solution of the Laplace equation and therefore
A′(x) =

∫︀
|x − y |−𝟣F (y) dy ; then A′(x) with x ∈ B(z , 𝛾(z)) can be decom-

posed into the sum of two terms; the first one is given by the integral over
{y : |y − z | ≥ 𝟥

𝟤
𝛾(z)} and therefore is smooth and could be included in A𝟢(x)

while the second is given by integral over {y : |y − z | ≤ 2𝛾(z)} and could
be estimated by (28.3.46) with 𝛽, h, 𝜅 and 𝜈 replaced by 𝛽𝟤, h𝟤, 𝜅𝟤 = 𝜅𝟣𝛾

𝟧

and 𝜈𝟣 and then one can see easily that 𝜈𝟤 ≤ 𝜈𝟣𝛾
𝟥
𝟤
+𝛿. Therefore we conclude

that

Remark 28.5.11. In the boundary zone calculating trace term, N- and D-
terms one can take 𝜈𝟤 = 𝜈𝟣𝛾

𝟥
𝟤
+𝛿 with 𝛿 > 0.

Plugging this improved 𝜈𝟤 into (28.5.36) we get everywhere 𝛾 in the pos-
itive power and therefore expression (28.5.36) does not exceed the integrand

for 𝛾 = 1, which is CB𝛽𝟣
(︀
1 + h

𝟤
𝟥
𝟣 𝜈

𝟦
𝟥
𝟣

)︀
, which we already got when estimating

the contribution of the regular zone.

(b) In the zone {x : 𝛾(x) ≤ 𝛾} we just reset 𝛾 = 𝛾 and since h𝟤 ≍ 1 we do
not need any non-degeneracy condition here. Thus its contribution does not
exceed CB𝛽𝟣. Therefore we arrive to Proposition 28.5.12(i) with Z = N and
B ≥ 1.

(c) In the case B ≤ 1 we need no non-degeneracy assumption in the zone
{x : ℓ(x) ≳ 1} as h𝟣 = 1; Proposition 28.5.12(i) has been proven in this case
as well.

(d) Explore now case N < Z . Then eventually we will need to take V =
W 𝖳𝖥

B + 𝜆, where 𝜆 is a chemical potential. In this case the same arguments

hold provided B𝛾𝟦 ≤ |𝜆| =⇒ 𝛾 ≤ h
𝟣
𝟥
𝟣 which is equivalent to (Z −N)+ ≤ B

𝟧
𝟣𝟤

since in this case −𝜆 ≍ (Z − N)+r̄−𝟣 = (Z − N)+B
𝟣
𝟦 .

(e) Further, for M = 1 we do not need assumption N = Z since we can
always refer to non-degeneracy condition (28.5.23), which is fulfilled, and
we arrive to Proposition 28.5.12(ii). Indeed, as in Section 26.5 we do not
partition further elements where this condition is fulfilled. We arrive to
Proposition 28.5.12(i), (ii) below.
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(f) Furthermore, consider case M ≥ 2 and B
𝟧
𝟣𝟤 ≤ (Z − N)+ ≤ B

𝟥
𝟦 . Then

B𝛾𝟦 = (Z − N)+B
𝟣
𝟦 and 𝛾 = (Z − N)

𝟣
𝟦
+B− 𝟥

𝟣𝟨 .

In this case the contribution of 𝛾-element (in the excess what was
prescribed before) does not exceed term (28.3.66) multiplied by 𝜁𝟤. Note
that two last terms in (28.3.66) are not new. Meanwhile, the first term

there (i.e. C𝛽𝜈
𝟨
𝟧 h

𝟤
𝟧 ) becomes CB𝛾𝟦 × B

𝟣
𝟦𝛾−𝟣 × 𝜈

𝟨
𝟧 × (B− 𝟣

𝟦𝛾−𝟥)
𝟤
𝟧 and after

multiplication by 𝛾−𝟤| log 𝛾| it has 𝛾 in the negative degree, so it does not

exceed the same value for 𝛾 = B− 𝟣
𝟣𝟤 . After easy but tedious calculations one

can see that it is less than (28.5.22).

This leaves us with the second term in (28.3.66) (i.e. C𝛽h− 𝟣
𝟤 ), which

becomes CB𝛾𝟦 × B
𝟣
𝟦𝛾−𝟣 × B

𝟣
𝟪𝛾

𝟥
𝟤 and after multiplication by 𝛾−𝟤| log 𝛾| we

get

(28.5.37) CB
𝟣𝟣
𝟪 𝛾

𝟧
𝟤 | log 𝛾| ≍ CQ ′ := CB

𝟤𝟫
𝟥𝟤 (Z − N)

𝟧
𝟪
+

(︀
1 + | log(Z − N)+B− 𝟥

𝟦 |
)︀
.

(g) Finally, if (Z −N)+ ≥ B
𝟥
𝟦 , we again end up with the term C𝜁𝟤𝛽h− 𝟣

𝟤 this

time with 𝜁𝟤 = (Z − N)
𝟦
𝟥
+, h = (Z − N)

− 𝟣
𝟥

+ , 𝛽 = B(Z − N)−𝟣
+ (now 𝛾 ≍ 1); so

we arrive to

(28.5.38) CQ ′′ := CB(Z − N)
𝟣
𝟤
+.

Thus we arrive to Proposition 28.5.12(iii), (iv) below.

Proposition 28.5.12. Let V = W 𝖳𝖥
B + 𝜆 be Thomas-Fermi potential with

N ≤ Z , N ≍ Z𝟣 ≍ Z𝟤 ≍ ... ≍ ZM , B ≲ Z
𝟦
𝟥 and chemical potential 𝜆. Let

assumption (28.5.27) be fulfilled. Then

(i) For Z = N (𝜆 = 0) the trace remainder

(28.5.39) |Tr(H−
A,V ) +

∫︁
PBh(V ) dx−∑︁

𝟣≤m≤M

(︁
Tr(H−

A,Vm
𝜓m)−

∫︁
P𝟢(Vm)𝜓m dx

)︁
|

does not exceed CQ𝟢 with Q𝟢 defined by (28.5.29); the same is true for

(Z − N)+ ≤ B
𝟧
𝟣𝟤 .
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(ii) For M = 1 the trace remainder (28.5.39) also does not exceed CQ𝟢.

(iii) For M ≥ 1 and B
𝟧
𝟣𝟤 ≤ (Z − N)+ ≤ B

𝟥
𝟦 the trace remainder (28.5.39)

does not exceed C (Q𝟢 + Q ′) with Q ′ defined by (28.5.37).

(iv) For M ≥ 1 and (Z − N)
𝟦
𝟥
+ ≥ B the trace remainder (28.5.39) does not

exceed C (Q𝟢 + Q ′′) with Q ′′ defined by (28.5.38).

Remark 28.5.13. (i) For B ≤ Z expression (28.5.29) could be upgraded to
(28.5.30).

(ii) Terms (28.5.38) and (28.5.39) are rather superficial: they do not depend
on 𝛼 and they were not present in Chapter 25. Indeed, using more precise
arguments of Chapter 25 one can get rid of them, at least for sufficiently
small 𝛼.

However in the upper estimate we will need to deal with D-term as well
and this would give us a far larger error.

28.5.4 Endgame

Main Theorem: M = 1

For M = 1 we almost immediately arrive to the following statement which
we formulate in “rescaled” terms:

Theorem 28.5.14. Let V = W 𝖳𝖥
B + 𝜆 be a Thomas-Fermi potential as

B ≤ Z
𝟦
𝟥 , N ≍ Z and M = 1. Then

(28.5.40) ℰ*
𝟢 + 2S(𝛼Z )Z 𝟤 − CZ

𝟧
𝟥

(︀
1 + 𝛼B

)︀
≤ E*

𝛼

≤ ℰ*
𝛼 + 2S(𝛼Z )Z 𝟤 + C

(︀
Z

𝟧
𝟥 + 𝛼B𝟤Z

𝟣
𝟥

)︀
,

where S(𝛼Z )Z 𝟤 is a Scott correction term derived in Section 27.3.

Proof: Estimate from above. We already know from (28.5.20) that after the
standard rescaling for any magnetic field A′ satisfying the same estimates as
a minimizer of E𝜅(A

′) the following estimate holds:

(28.5.41) Tr(H−
A,V ) + 𝜅−𝟣h−𝟤‖𝜕A′‖𝟤

≤ −h−𝟥

∫︁
PBh(V ) dx + (28.5.21)+ 𝜅−𝟣h−𝟤‖𝜕A′‖𝟤 +(28.5.22).
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Here the left-hand expression is E𝜅(A
′) ≥ E*

𝜅 and in expression (28.5.21) we
take 𝜓𝟣 = 1.

Let us pick up A′ which is a minimizer for the Coulomb potential
V𝟣(x) = z𝟣|x − y𝟣|−𝟣 without any external magnetic field30). Then we
can replace the selected sum of two terms by 2h−𝟤S(𝜅z)z𝟤 (in virtue of
Subsubsection 27.3.5.1 an error does not exceed (28.5.22)).

Unfortunately A′ is not a minimizer for a local problem; however we can
replace PBh(V ) by

(28.5.42) P𝛽h(V ) + 𝜕𝛽P𝛽h(V ) · Φ, Φ = 𝜕𝟣A′
𝟤 − 𝜕𝟤A′

𝟣

and, if we apply partition, then on each partition element an error in (28.5.41)

does not exceed C𝜅𝟣𝜁
𝟤𝛽𝟣h

− 𝟣
𝟤

𝟣 = C𝜅𝛽h− 𝟣
𝟤 𝜁

𝟧
𝟤 ℓ

𝟧
𝟤 . Indeed, we know that for a

minimizer ‖𝜕A′‖ ≤ C (𝜅+ 𝜅
𝟣
𝟤 h

𝟣
𝟤 ) (also see in the proof of the estimate from

below).
Summation over partition results in C𝜅𝛽𝟤 and we arrive to

(28.5.43) − h−𝟥

∫︁
P𝛽h(V ) dx − h−𝟥

∫︁
𝜕𝛽P𝛽h(V ) · Φ dx + C (h−𝟣 + 𝜅𝛽𝟤)

in the right-hand expression where the first term is ℰ*
𝟢
31).

The second term is rather unpleasant because we cannot estimate it by
anything better than C𝛽h−𝟣 (see in the estimate from below) but here we
have a trick32): we replace A′ by −A′ which is also a minimizer for the same
Coulomb potential V𝟣 without external magnetic field. Then Φ and the
second term change signs and since nothing else happens we can skip the
second term which concludes the proof of the upper estimate.

Scaling back we arrive to the upper estimate in (28.5.40).

Proof: Estimate from below. Again from (28.5.20) we already know that for
a minimizer A′ of E𝜅(A

′) estimate (28.5.41) could be reversed

(28.5.44) Tr(H−
A,V ) + 𝜅−𝟣h−𝟤‖𝜕A′‖𝟤

≥ −h−𝟥

∫︁
PBh(V ) dx + (28.5.21)+ 𝜅−𝟣h−𝟤‖𝜕A′‖𝟤 −(28.5.22).

30) Actually since for the Coulomb potential the trace is infinite we take potential
V𝟣(x) + 𝜏 with 𝜏 < 𝟢, establish estimates and then tend 𝜏 → −𝟢.

31) I.e. Thomas-Fermi energy calculated for A′ = 𝟢.
32) Which unfortunately we cannot repeat in estimate from below.
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Here the left-hand expression is E𝜅(A
′) = E*

𝜅 and the selected sum of two
terms can be estimated from below by 2h−𝟤S(𝜅z)z𝟤.

Again A′ is not a minimizer for a local problem; however we can replace
PBh(V ) by P𝛽h(V ) with an error not exceeding

Ch−𝟥

∫︁
|𝜕𝛽P𝛽h(V )| · |𝜕A′| dx + Ch−𝟥

∫︁
|𝜕𝟤𝛽P𝛽h(V )| · |𝜕A′|𝟤 dx

≤ Ch−𝟥‖𝜕𝛽P𝛽h(V )‖ · ‖𝜕A′‖+ Ch−𝟥

∫︁
|𝜕𝟤𝛽P𝛽h(V )| dx × ‖𝜕A′‖𝟤

with the right-hand expression not exceeding

(28.5.45) C𝛽h−𝟣|𝜕A′‖+ Ch−𝟣‖𝜕A′‖𝟤.

However we already know that E*
𝟤𝜅 ≥ ℰ*

𝟢 − C (𝜅h−𝟤 + h−𝟣) and therefore
since E𝜅(A

′) = E𝟤𝜅(A
′) + (2𝜅h𝟤)−𝟣‖𝜕A′‖𝟤 we conclude that

(28.5.46) ‖𝜕A′‖ ≤ C (𝜅+ 𝜅
𝟣
𝟤 h

𝟣
𝟤 );

then expression (28.5.45) does not exceed C (𝜅𝛽 + 1)h−𝟣 which concludes
the proof of the lower estimate.

Since A′ is a minimizer in the presence of the external field, we cannot
replace A′ by −A′ and thus cannot repeat the trick used in the proof of the
upper estimate. Thus in the estimate from below we are left with C𝜅𝛽h−𝟣

rather than with C𝜅𝛽𝟤.

Scaling back we arrive to the lower estimate in (28.5.40).

Remark 28.5.15. (i) It is a very disheartening that our estimate deteriorated
here. However it may be that indeed the better estimate does not hold
due to the entanglement of the singularity and the regular zone via self-
generated magnetic field. Still we did not loose Scott correction term as
long as 𝜅𝛽h ≪ 1.

(ii) Recall that in the Section 27.3 we already had an entanglement of
different singularities which obviously remains with us for M ≥ 2. Surely
both of these entanglements matter only if we are looking for the remainder
estimate better than O(𝜅h−𝟤). Otherwise we can just pick up A′ = 0 near
singularities and the Scott correction term equal to 2h−𝟤S(0)z𝟤;
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(iii) The silver lining is that we do not need all these non-degeneracy
conditions for such bad estimate and we expect that our arguments would
work for M ≥ 2. Still for M ≥ 2 we will need to decouple singularities and
to do this we will need to estimate ‖𝜕A′‖L𝟤({ℓ(x)≍d}) where d is the minimal
distance between nuclei (see (28.5.19)).

For 𝛽 ≪ 1, 𝜅 ≪ h
𝟣
𝟥 | log h|− 𝟣

𝟥 we can recover even Schwinger correction
term:

Theorem 28.5.16. Let V be a Thomas-Fermi potential W 𝖳𝖥
B + 𝜆 rescaled

as B ≪ Z , N ≍ Z and M = 1. Let respectively 𝛽 = BZ−𝟣, h = Z− 𝟣
𝟥 , and

𝜅 = 𝛼Z ≤ 𝜅*. Then

(28.5.47) |E*
𝛼 −

(︀
ℰ*
𝟢 + 2S(𝛼Z )Z 𝟤 + Schwinger

)︀
|

≤ CZ
𝟧
𝟥

(︀
Z−𝛿 + B𝛿Z−𝛿)︀+ C𝛼| log𝛼Z |

𝟣
𝟥 Z

𝟤𝟧
𝟫

where Schwinger is a Schwinger correction term.

Proof. The proof is standard like in Section 27.3: we invoke propagation
arguments in the zone {x : (𝛽 + h)𝜎 ≤ ℓ(x)Z

𝟣
𝟥 ≤ (𝛽 + h)−𝜎}.

28.5.5 N-Term Asymptotics and D-Term Estimate

Consider now N-terms assuming that A′ is a minimizer.

Case M = 1

Assume first that M = 1.

(a) Consider first singular and regular zones (but not the boundary zone).
Then after rescaling the contribution of ℓ-element to the remainder does not
exceed

(28.5.48) C
(︀
h−𝟤
𝟣 + h

− 𝟧
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀
and summation over zone {x : ℓ(x) ≤ 1} results in the value of this as ℓ = 1
i.e.

(28.5.49) C
(︀
h−𝟤 + h− 𝟧

𝟥𝜈*
𝟤
𝟥

)︀
, 𝜈* = (𝜅𝛽)

𝟣𝟢
𝟫 h

𝟦
𝟫 | log h|K .
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Recall that for ℓ ≥ 1 we have h𝟣 = hℓ, 𝛽𝟣 = 𝛽ℓ𝟥 and 𝜈𝟣 is defined by (28.5.31)
which is sufficient even without invoking Remark 28.5.9 since all powers of
ℓ in (28.5.48) become negative. Therefore the contribution of the regular
exterior zone also does not exceed (28.5.49).

(b) Consider now the boundary zone. Let us repeat arguments used in the
proof of Proposition 28.5.12: the contribution of 𝛾-element does not exceed

C𝛽𝟤
(︀
h−𝟣
𝟤 + h

− 𝟤
𝟥

𝟤 𝜈
𝟤
𝟥
𝟤

)︀
and plugging 𝛽𝟤 = 𝛽𝟣𝛾

−𝟣, h𝟤 = h𝟣𝛾
−𝟥 and 𝜈𝟤 = 𝜈𝟣𝛾

𝟥
𝟤
+𝛿

we get C𝛽𝟣
(︀
h−𝟣
𝟣 𝛾𝟤 + h

− 𝟤
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣 𝛾

𝟤+𝛿
)︀
and therefore the total contribution of the

boundary zone to the remainder does not exceed

(28.5.50) C𝛽𝟣

∫︁ (︀
h−𝟣
𝟣 𝛾−𝟣 + h

− 𝟤
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣 𝛾

−𝟣+𝛿
)︀

dx ≍ C
(︀
h−𝟤
𝟣 | log h|+ h

− 𝟧
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀
since 𝛽𝟣 = h−𝟣

𝟣 and from Subsection 26.5.1 we also know that even in the
general case

(26.5.14) D(𝛾−𝟣+s , 𝛾−𝟣+s) ≤ Cs−𝟤 for s > 0.

Here we integrate over 𝛾 ≥ 𝛾 = h
𝟣
𝟥
𝟣 while the contribution of the zone

{x : 𝛾(x) ≤ 𝛾 does not exceed Ch−𝟤
𝟣 .

If 𝛾 ≥ h
𝟣
𝟥
𝟣 (i.e. (Z − N)+ ≳ B

𝟧
𝟣𝟤 ) we invoke in the zone {x : 𝛾(x) ≤ 𝛾}

the strong non-degeneracy assumption (28.3.60) fulfilled for M = 1 and
estimate its contribution by the same expression (28.5.50) albeit without

the logarithmic term. Similar arguments work also for (Z − N)+ ≥ B
𝟥
𝟦 .

(c) In expression (28.5.50) the logarithmic factor is mildly annoying. How-
ever we can get rid of it using our standard propagation arguments like in
Subsection 26.6.3; we leave easy details to the reader.

Note that so far in the estimate we also have P ′
Bh(V ) rather than P ′

𝛽h;
observe however that in the virtue of non-degeneracy assumption (28.3.60)
fulfilledfor M = 1 the error when we replace P ′

Bh(V ) by P ′
𝛽h(V ) does not

exceed C𝛽𝟣h−𝟣
𝟣 on the regular elements and Ch−𝟤

𝟤 on the boundary elements

and summation in both cases results in O(𝛽h−𝟣ℓ̄𝟤) = O(𝛽
𝟣
𝟤 h− 𝟥

𝟤 ). Therefore
in contrast to the trace estimate there is no deterioration.

Scaling back, we arrive to estimate (28.5.51) below.
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(d) In the framework of Theorem 28.5.16 we invoke our standard propagation
arguments in the zone {x : (𝛽 + h)𝜎 ≤ ℓ(x) ≤ (𝛽 + h)−𝜎}; considering D-
terms we invoke these arguments if both elements in the pair belong to this
zone. Again, we leave easy details to the reader. Scaling back, we arrive to
estimate (28.5.53) below.

(e) We deal with D-term in our usual manner considering double partition
and different pairs of partition elements–disjoint when we just apply above
arguments since the kernel |x − y |−𝟣 is smooth there and non-disjoint when
we appeal to the local estimates of D-term. We we leave easy details to the
reader.

Proposition 28.5.17. Let V = W 𝖳𝖥
B + 𝜆 be a Thomas-Fermi potential for

B ≤ Z
𝟦
𝟥 , N ≍ Z and M = 1. Then

(i)

|
∫︁ (︀

tr e(x , x , 0)− P ′
B(V (x)

)︀
dx | ≤ CR(28.5.51)

and

D
(︀
tr e(x , x , 0)− P ′

B(V (x), tr e(x , x , 0)− P ′
B(V (x)

)︀
≤ CZ

𝟣
𝟥 R𝟤(28.5.52)

with

R = R𝟢 := DefZ
𝟤
𝟥 + Z

𝟧
𝟫𝜈*

𝟤
𝟥 , 𝜈* = (𝛼B)

𝟣𝟢
𝟫 Z− 𝟦

𝟤𝟩 | log Z |K .(28.5.53)

(ii) In the framework of Theorem 28.5.16 estimates (28.5.51) and (28.5.52)
hold with

(28.5.54) R := CZ
𝟤
𝟥

(︀
Z−𝛿 + B𝛿Z−𝛿 + (𝛼Z )𝛿

)︀
.

Case M ≥ 2

Consider now M ≥ 2. In comparison with the case M = 1 we should get
some extra terms because

(a) First, in the regular zone with ℓ(x) ≥ 𝜖d the strong non-degeneracy
assumption (28.3.60) is replaced by the strong assumption (28.3.65).

(b) In the boundary zone with 𝛾(x) ≤ 𝛾 (and with 𝛾 ≥ h
𝟣
𝟥
𝟣 ) there is no

non-degeneracy assumption at all.
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Consider a regular zone first. According to (28.3.86) we get an extra
term

(28.5.55) C𝛽𝟣h−𝟣
𝟣 𝜈

𝟣
𝟤
𝟣 ≍ C𝛽h−𝟣(𝜅𝛽)

𝟧
𝟫 ℓ

𝟤𝟢
𝟫 | log h|K

since other extra terms are smaller; summation over the regular zone results
in the value with ℓ = r̄ ; since r̄ = (𝛽h)−

𝟣
𝟦 we get C𝜅

𝟧
𝟫𝛽h− 𝟣𝟦

𝟫 | log h|K . Scaling
back we arrive to

(28.5.56) CR ′′ = C𝛼
𝟧
𝟫 BZ

𝟤
𝟤𝟩 | log Z |K .

Using 𝛾-partition in the boundary zone and plugging h𝟤 = h𝟣𝛾
−𝟥, 𝛽𝟤 = 𝛽𝟣𝛾

−𝟣,
𝜈𝟤 = 𝜈𝟣𝛾

𝟥
𝟤
+𝛿 (see Remark 28.5.11) and using (28.5.52) we prove easily that

if 𝛾 = h
𝟣
𝟥
𝟣 (i.e. (Z − N)+ ≤ B

𝟧
𝟣𝟤 ) the contribution of the boundary zone is

smaller than CR ′′.
On the other hand, in the case B

𝟧
𝟣𝟤 ≤ (Z − N)+ ≤ B

𝟥
𝟦 we need to add

C𝛽𝟤h
− 𝟥

𝟤
𝟤 𝛾−𝟤(1+| log 𝛾|). Plugging h𝟤 = h𝟣𝛾

−𝟥, 𝛽𝟤 = 𝛽𝟣𝛾
−𝟣, 𝛾 = (Z−N)

𝟣
𝟦
+B− 𝟥

𝟣𝟨

and scaling back we arrive to

(28.5.57) CR ′′′ = C (Z − N)
𝟥
𝟪
+B

𝟣𝟣
𝟥𝟤

(︀
1 + | log(Z − N)+B− 𝟥

𝟦 |
)︀
.

Finally if (Z − N)+ ≥ B
𝟥
𝟦 we get C𝛽𝟣h

− 𝟥
𝟤

𝟣 with ℓ = (Z − N)
− 𝟣

𝟥
+ Z

𝟣
𝟥 i.e.

(28.5.58) CR ′′′ = C (Z − N)
− 𝟣

𝟤
+ B .

Thus we arrive to Proposition 28.5.18(i). The similar arguments work
for D-term and we arrive to Proposition 28.5.18(ii)

Proposition 28.5.18. Let V = W 𝖳𝖥
B +𝜆 be a Thomas-Fermi potential with

B ≤ Z
𝟦
𝟥 , N ≍ Z and M ≥ 2. Let d ≥ Z− 𝟣

𝟥 . Then

(i) Estimate (28.5.51) holds with R = R𝟢 + R ′′ and R ′′ defined by (28.5.56)

for (Z − N)+ ≤ B
𝟧
𝟣𝟤 , R = R𝟢 + R ′′ + R ′′′ and R ′′′ defined by (28.5.57) for

B
𝟧
𝟣𝟤 ≤ (Z − N)+ ≤ B

𝟥
𝟦 , R = R𝟢 + R ′′′ and R ′′′ defined by (28.5.58) for

(Z − N)+ ≥ B
𝟥
𝟦 .

Furthermore, if B ≤ Z estimate (28.5.51) holds with

(28.5.59) R = Z
𝟤
𝟥

[︀
Z−𝛿 + B𝛿Z−𝛿 + (dZ

𝟣
𝟥 )−𝛿 + (𝛼Z )𝛿

]︀
.
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(ii) The left-hand expression of (28.5.57) does not exceed CZ
𝟣
𝟥 R𝟤

𝟢 +CB
𝟣
𝟦 R ′′ 𝟤

if (Z −N)+ ≤ B
𝟧
𝟣𝟤 , CZ

𝟣
𝟥 R𝟤

𝟢 +CB
𝟣
𝟦 (R ′′ +R ′′′)𝟤 and R ′′′ defined by (28.5.57) if

B
𝟧
𝟣𝟤 ≤ (Z − N)+ ≤ B

𝟥
𝟦 , CZ

𝟣
𝟥 R𝟤

𝟢 + (Z − N)
𝟣
𝟥
+R ′′′ 𝟤 and R ′′′ defined by (28.5.58)

if (Z − N)+ ≥ B
𝟥
𝟦 .

Furthermore, if B ≤ Z the left-hand expression of (28.5.57) does not

exceed CZ
𝟣
𝟥 R𝟤 with R defined by (28.5.59).

28.5.6 More Estimates to a Minimizer

Now we want to provide different kinds of estimates to the minimizer for
ℓ(x) ≥ Z− 𝟣

𝟥 in the original scale. More precisely, we are looking for

(28.5.60) 𝛼−𝟣

∫︁
𝜑r (x)|𝜕A′|𝟤 dx

with 𝜑r supported in {x : ℓ(x) ≍ r} because it will appear as an error when
we decouple singularities for M ≥ 2 (in this case we should take r ≍ d .
Due to equation (27.2.14) it is D-type term as well: namely, with the

integral taken over ℝ𝟥 it would be equal to 𝛼Z
𝟧
𝟥D(𝜑Φj ,𝜑Φj) calculated in

the rescaled coordinates with Φj defined by (27.2.14); however with the
cut-off the integral kernel |x − y |−𝟣 needs to be modified. Recall that the
corresponding Weyl expression is 0.

First, using (28.5.16) and decomposition like in the proof of Proposi-
tion 27.3.9 we can rewrite (28.5.60) as

(28.5.61) I :=

∫︁
K (z ; x , y)Φ(x)Φ(y) dxdydz

multiplied by 𝛼Z
𝟧
𝟥 ; here K (z ; x , y) is supported in {z : ℓ(z) ≍ r}, singular

at x = z and y = z and satisfies

(28.5.62) |K (z ; x , y)| ≤ |x − z |−𝟤|y − z |−𝟤|x | · |y |(|x |+ r)−𝟣(|y |+ r)−𝟣.

Here we temporarily replaced r by Z
𝟣
𝟥 r .

Let us make a double ℓ-admissible partition of unity and consider pairs
of elements with ℓ(x) ≍ r𝟣 and ℓ(y) ≍ r𝟤. There are three cases: r𝟣 ≤ 𝜖r ,
r𝟣 ≍ r and r𝟣 ≥ cr , and so also for r𝟤, and we can consider only pure pairs.
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Case M = 1

Assume first that M = 1. Then the contribution of each pair with rj ≤ 𝜖r
(assuming that they belong to regular zone) does not exceed

(28.5.63) C𝜁𝟣r𝟣
(︀
h−𝟤
𝟣 + h

− 𝟧
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀
× 𝜁𝟤r𝟤

(︀
h−𝟤
𝟤 + h

− 𝟧
𝟥

𝟤 𝜈
𝟤
𝟥
𝟤

)︀
× r−𝟥,

where 𝜁j = r−𝟤
j , hj = hrj , 𝜈j = (𝜅𝛽)

𝟣𝟢
𝟫 h

𝟦
𝟫 r

𝟦
𝟫
j if rj ≥ 1 and 𝜁j = r

− 𝟣
𝟤

j , hj = hr
− 𝟣

𝟤
j ,

𝜈j = (𝜅𝛽)
𝟣𝟢
𝟫 h

𝟦
𝟫 if rj ≤ 1. Double summation returns its value if r𝟣 = r𝟤 = 1

i.e.

(28.5.64) Ch−𝟦
(︀
1 + h

𝟤
𝟥𝜈*

𝟦
𝟥

)︀
r−𝟥.

Further, using Fefferman-de Llave decomposition one can prove easily
that the contribution of pairs with r𝟣 ≍ r𝟤 ≍ r (the only case when we have
a singular kernel) does not exceed (28.5.63) calculated as r𝟣 = r𝟤 = r which
is decaying function of r and therefore does not exceed (28.5.64).

Furthermore, the contribution of each pair with rj ≥ Cr (assuming that
they belong to regular zone) does not exceed

(28.5.65) C𝜁𝟣r−𝟤
𝟣

(︀
h−𝟤
𝟣 + h

− 𝟧
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀
× 𝜁𝟤r−𝟤

𝟤

(︀
h−𝟤
𝟤 + h

− 𝟧
𝟥

𝟤 𝜈
𝟤
𝟥
𝟤

)︀
× r 𝟥,

and the double summation returns its value with r𝟣 = r𝟤 = r which is the
same as (28.5.63) calculated with r𝟣 = r𝟤 = r and again does not exceed
(28.5.64).

Finally, considering r𝟣 ≍ r𝟤 ≍ r̄ we apply for (Z − N)+ ≤ B
𝟥
𝟦 secondary

partitions with respect to x and y and using our standard arguments we
estimate the contribution of this zone by (28.5.65) calculated with r𝟣 = r𝟤 = r̄ .

Therefore we estimated expression (28.5.61) by (28.5.64). In particular, if

𝜅𝛽 ≤ h− 𝟣𝟩
𝟤𝟢 | log h|−K i.e. 𝛼B ≤ Z

𝟣𝟩
𝟨𝟢 | log Z |−K ), then 𝜈* ≤ h− 𝟣

𝟤 and expression

(28.5.61) does not exceed Ch−𝟦r−𝟥. Plugging h = Z− 𝟣
𝟥 , multiplying by 𝛼Z

𝟧
𝟥

and replacing r by Z
𝟣
𝟥 r we get 𝛼Z 𝟤r−𝟥 thus proving Proposition 28.5.19(i).

On the other hand, for 𝜅𝛽 ≥ h− 𝟣𝟩
𝟤𝟢 | log h|−K estimate (28.5.61) by (28.5.64)

could be improved. Indeed, let us apply all the above arguments only for
rj ≥ t with 1 ≤ t ≤ 𝜖r . Then we get expression (28.5.63) with r𝟣 = r𝟤 = t
i.e.

(28.5.66) Ch−𝟦 × 𝜈*
𝟦
𝟥 h

𝟤
𝟥 t−

𝟣𝟤𝟪
𝟤𝟩 r−𝟥
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where we consider only term possibly exceeding Ch−𝟦r−𝟥.
To estimate the contribution of zone {x , y : ℓ(x) ≤ t, ℓ(y) ≤ t} we replace

Φj by (𝜅h−𝟤)ΔA′
j and using the standard estimate for operator norm in L𝟤

we conclude that the corresponding part of expression (28.5.61) does not
exceed C𝜅−𝟤h−𝟦‖𝜕A′‖𝟤 × t𝟥r−𝟥 ≤ Ch−𝟦t𝟥r−𝟥 as long as ‖𝜕A′‖ ≤ C𝜅.

Adding this to (28.5.66) and minimizing by t ≲ r we get Ch−𝟦(𝜈* 𝟤h)
𝟧𝟦
𝟤𝟢𝟫 r−𝟥

provided r ≥ (𝜈* 𝟤h)
𝟣𝟪
𝟤𝟢𝟫 .

Plugging 𝜈* and h, multiplying by 𝛼Z
𝟧
𝟥 and replacing r by Z

𝟣
𝟥 r we arrive

to Proposition 28.5.19(ii).

Proposition 28.5.19. Let V = W 𝖳𝖥
B +𝜆 be a Thomas-Fermi potential with

B ≤ Z
𝟦
𝟥 , N ≍ Z and M = 1. Then

(i) A minimizer satisfies

𝛼−𝟣

∫︁
{x : ℓ(x)≥r}

|𝜕A′|𝟤 dx ≤ CT𝟢r−𝟥 = C𝛼Z 𝟤r−𝟥(28.5.67)

for r ≥ r* = Z− 𝟣
𝟥 holds provided

𝛼B ≤ Z
𝟣𝟩
𝟨𝟢 | log Z |−K .(28.5.68)

(ii) Otherwise a minimizer satisfies

𝛼−𝟣

∫︁
{x : ℓ(x)≥r}

|𝜕A′|𝟤 dx ≤ CT𝟢r−𝟥 = C𝛼Z 𝟥r 𝟥* r−𝟥 for r ≥ r*(28.5.69)

with

r* := (𝛼B)
𝟦𝟢
𝟤𝟢𝟫 Z− 𝟪𝟣

𝟤𝟢𝟫 | log Z |K ≳ Z− 𝟣
𝟥 .(28.5.70)

Remark 28.5.20. (i) Assumption (28.5.68) means exactly that r* ≤ Z− 𝟣
𝟥 .

(ii) Our usual approach implies that for B ≤ Z the Tauberian error estimate
could be slightly improved but it has no implications here because in contrast
to e(x , x , 𝜏 ) where the main term in the formal asymptotic decomposition is
h−𝟥P ′

Bh and the next one is ≍ 𝛽𝟤h−𝟤, in Φj the main term is 0 and the next
one is 𝜂h−𝟤 with the coefficient 𝜂 depending on A′ and trying to calculate it
and plug the corresponding term into (28.5.61) instead of Φj will certainly
result in the identity.

(iii) It may happen that r* ≥ r̄ ; then it follows from the proof that r* should
be truncated to r̄ in (28.5.69). Moreover, estimate (28.5.69) with r* = r̄
holds even for M ≥ 2 if no non-degeneracy assumption is made.
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Case M ≥ 2

Assume now that M ≥ 2 and that (28.5.19) is fulfilled. Then we need to
take into account excess terms in our estimates. In the regular zone such
excess term is

C𝜁𝟣r𝟣𝛽𝟣h−𝟣
𝟣 𝜈

𝟣
𝟤
𝟣 × 𝜁𝟤r𝟤𝛽𝟤h−𝟣

𝟤 𝜈
𝟣
𝟤
𝟤 × r−𝟥 for r𝟣 ≤ r , r𝟤 ≤ r(28.5.71)

and

C𝜁𝟣r−𝟤
𝟣 𝛽𝟣h−𝟣

𝟣 𝜈
𝟣
𝟤
𝟣 × 𝜁𝟤r−𝟤

𝟤 𝛽𝟤h−𝟣
𝟤 𝜈

𝟣
𝟤
𝟤 × r 𝟥 for r𝟣 ≥ r , r𝟤 ≥ r .(28.5.72)

Plugging 𝛽j , hj and 𝜈j one observes easily that the former is a growing and
the latter is a decaying function of rj and these expressions coincide at
r𝟣 = r𝟤 = r . To decouple singularities we need to consider r ≤ 𝜖d where
d is the minimal distance between singularities; so we will assume this.
Observe that extra terms appear only if rj ≥ 𝜖d , so we need to consider only
(28.5.72).

Therefore if d ≤ r̄ the summation results in expression (28.5.72) calcu-
lated at r𝟣 = r𝟤 = d which is

C𝛽𝟤h− 𝟣𝟦
𝟫 (𝜅𝛽)

𝟣𝟢
𝟫 | log h|Kd− 𝟥𝟤

𝟫 r 𝟥,

which results in the original settings in33)

CT ′r 𝟥 = C (𝛼B)
𝟣𝟫
𝟫 Bd− 𝟥𝟤

𝟫 r 𝟥;(28.5.73)

recall that we plug 𝛽, h, 𝜅, replace d and r by Z
𝟣
𝟥 d and Z

𝟣
𝟥 r , and multiply

by 𝛼Z
𝟧
𝟥 .

Meanwhile, using our standard arguments one can prove easily that the
contribution of the boundary zone is less than this provided (Z −N)+ ≤ B

𝟧
𝟣𝟤 .

On the other hand, for B
𝟧
𝟣𝟤 ≤ (Z − N)+ ≤ B

𝟥
𝟦 an extra contribution of

the boundary zone does not exceed

C𝛽𝟤h−𝟥𝛾𝟣𝟥r̄−𝟧r 𝟥(1 + | log 𝛾|)𝟤,

which results in the original settings in33)

CT ′′r 𝟥 = C𝛼(Z − N)
𝟣𝟥
𝟦
+ B

𝟣𝟥
𝟣𝟨

(︀
1 + | log(Z − N)+B− 𝟥

𝟦 |
)︀𝟤

r 𝟥.(28.5.74)

33) I.e. after we plug 𝜅,𝛽, h, replace d and r by Z
𝟣
𝟥 d and Z

𝟣
𝟥 r and multiply by 𝛼Z

𝟧
𝟥 .
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Finally, for (Z − N)+ ≥ B
𝟥
𝟦 an extra contribution of the boundary zone

does not exceed

C𝛽𝟤h−𝟥r̄−𝟧r 𝟥,

which results in the original settings in33)

CT ′′r 𝟥 = C𝛼(Z − N)
𝟧
𝟥
+B𝟤.(28.5.75)

Thus we have proven

Proposition 28.5.21. Let V = W 𝖳𝖥
B + 𝜆 be Thomas-Fermi potential with

B ≤ Z
𝟦
𝟥 , N ≍ Z𝟣 ≍ Z𝟤 ≍ ... ≍ ZM and M ≥ 2. Let r* ≪ r ≪ d ≤ 𝜖r̄ .

Then expression

(28.5.76) 𝛼−𝟣

∫︁
{x : ℓ(x)≍r}

|𝜕A′|𝟤 dx

does not exceed C
(︀
T𝟢r−𝟥 + (T ′ + T ′′)r 𝟥

)︀
with T𝟢 defined by (28.5.68) or

(28.5.69) and T ′ defined by (28.5.73), and T ′′ either 0 (as (Z − N)+ ≤ B
𝟧
𝟣𝟤 )

or defined by (28.5.74), or (28.5.75).

Remark 28.5.22. (i) Recall that the decoupling error between the singularity

and the regular part does not exceed C𝛼BZ
𝟧
𝟥 .

(ii) Meanwhile in these settings Scott− Scott𝟢 = O(𝛼Z 𝟥) and if decoupling
error is greater than this there is no point in decoupling.

(iii) Obviously we need to assume that r* ≤ 𝜖r̄ which implies that

(28.5.77) (𝛼Z )𝟦𝟢B
𝟥𝟨𝟫
𝟦 ≤ 𝜖Z 𝟣𝟤𝟣,

which is just tiny bit stronger than 𝛼Z ≲ 1, B ≲ Z
𝟦
𝟥 . For (Z − N)+ ≤ B

𝟥
𝟦

this condition is also sufficient.

(iv) Decoupling singularities we get an error (28.5.76) with integration over
{x : ℓ(x) ≍ r}; therefore if r* ≪ d ≤ r̄ then minimizing T𝟢r−𝟥 + T ′r 𝟥 by
r : r* ≤ r ≤ d we get

(28.5.78) T* :=
(︀
T𝟢(T

′ + T ′′)
)︀ 𝟣

𝟤 + (T ′ + T ′′)r 𝟥* + T𝟢d−𝟥.
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28.5.7 Endgame: M ≥ 2

For M ≥ 2 we have two rather different results. In the first (28.5.39) we
appeal to the sum of localized trace terms

∑︀
𝟣≤m≤M Tr(𝜓mH−

A,Vm
𝜓m) where

𝜓m is supported in {x : |x − ym| ≤ 𝟣
𝟥
d} (recall that d is the minimal distance

between singularities).
In the second one we want to use 2h−𝟤

∑︀
S(𝛼Zm)Z

𝟤
m instead. If A′ = 0

then transition would be immediate. However in our case we need to
“decouple” singularities. Therefore in the estimate from below we need
results from the previous subsubsection:

Theorem 28.5.23. Let V = W 𝖳𝖥
B + 𝜆 be a Thomas-Fermi potential with

B ≤ Z
𝟦
𝟥 , N ≍ Z and M ≥ 2. Let 𝜅 = 𝛼Z ≤ 𝜅*. Then if r* ≤ d ≤ r̄

(28.5.79) |E*
𝛼 +

∫︁
PB(V ) dx − 2

∑︁
S(𝛼Zm)Z

𝟤
m − Schwinger|

does not exceed C (Q + T ) where Q is the trace estimate obtained in Propo-
sition 28.5.12(iii)–(iv) and T* is an estimate for expression (28.5.76) given
by (28.5.78).

Proof. (i) In the estimate from below we just replace A′ in E𝛼(A) by the
sum

∑︀
𝟣≤m≤M A′𝜓m with 𝜓m supported in {x : |x − ym| ≤ 𝟣

𝟥
r} and equal 1 in

{x : |x − ym| ≤ 𝟣
𝟦
r} where r is the minimal distance between singularities,

and observe that 𝛼−𝟣‖𝜕A′‖𝟤 increased by no more than CT .

(ii) In the estimate from above we just plug into E𝛼(A) A′ =
∑︀

𝟣≤m≤M A′
m𝜓m

with A′
m minimizers for a single-singularity potential Vm.

Remark 28.5.24. (i) Theorem 28.5.23 makes sense only if r* ≪ d ≤ r̄ and
T* ≪ 𝛼Z 𝟥; if any of these assumptions fails, we observe that E𝛼(A

′) is
greater than ℰ𝟢 + Schwinger − CQ − C𝛼Z 𝟥 and in this case we can replace
S(𝛼Zm) by S(0); in this case in the upper estimate we pick up A′ = 0.

(ii) In the estimate from above T = maxm Tm with Tm an estimate for
a single-singularity potential Vm delivered by Proposition 28.5.19; thus
T = T𝟢d−𝟥 if r* ≤ d ≤ r̄ . Still it is at least C𝛼B

𝟥
𝟦 Z 𝟤 while decoupling error

of singularity and the regular zone is C𝛼BZ
𝟧
𝟥 which is smaller.
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28.6 Global Trace Asymptotics in the Case

of Thomas-Fermi Potential:

Z
𝟦
𝟥 ≤ B ≤ Z 3

28.6.1 Trace Estimates

In this Section we consider the case of Z
𝟦
𝟥 ≤ B ≤ Z 𝟥 (corresponding to

𝛽h ≥ 1 after rescaling34)). We start with

Remark 28.6.1. (i) In contrast to the previous Section 28.5 in this case the
remainder estimate will be at least C𝜅h−𝟤 and therefore there will be no
difficulty to decouple between singularities or between singularities and a
regular zone and the Scott correction term will be either

∑︀
2S(0)Z 𝟤

m or even
absent.

Therefore in the estimate from above we just pick up A′ = 0 both here
and in the multiparticle problem and we will need only N-term and D-terms
with A′ = 0 referring to Chapter 25.

(ii) For 𝛽h ≥ 1 we have a major dichotomy unrelated to the self-generated
magnetic field:

(a) 𝛽h𝟤 ≤ 1 (i.e. Z
𝟦
𝟥 ≤ B ≤ Z

𝟩
𝟦 ). In this case Scott correction term could

be larger than the contribution of zone {x : ℓ(x) ≍ 1} to the remainder
estimate which is no better than O(𝛽) and one probably needs to include
Scott correction term in the final trace asymptotics.

(b) 𝛽h𝟤 ≥ 1 (i.e. Z
𝟩
𝟦 ≤ B ≤ Z 𝟥). In this case the opposite is true; then

one does not need to include Scott correction term for sure. Recall that
condition C ≤ Z 𝟥 is also unrelated to self-generated magnetic field.

(iii) Recall that we need to impose condition 𝜅𝛽h𝟤| log 𝛽|K ≤ 1 which is
equivalent to

(28.6.1) 𝛼B
𝟦
𝟧 Z− 𝟤

𝟧 | log Z |K ≤ 1.

34) Recall that as Z
𝟦
𝟥 ≲ B ≲ Z 𝟥 the scaling is x ↦→ B

𝟤
𝟧 Z− 𝟣

𝟧 x (and the original distance

between nuclei is at least B− 𝟤
𝟧 Z

𝟣
𝟧 ), 𝜏 ↦→ B− 𝟤

𝟧 Z
𝟦
𝟧 𝜏 , 𝛽 = B

𝟤
𝟧 Z− 𝟣

𝟧 , h = B
𝟣
𝟧 Z− 𝟥

𝟧 and B ≲ Z 𝟥.
35) Cf. Proposition 28.5.2.
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Theorem 28.6.2 35). Let V be Thomas-Fermi potential V := W 𝖳𝖥
B +𝜆 with

Z
𝟦
𝟥 ≤ B ≤ Z 𝟥, N ≍ Z𝟣 ≍ Z𝟤 ≍ ... ≍ ZM and N ≤ Z . Let 𝛼Z ≤ 𝜅* and

assumption (28.6.1) be fulfilled. Let A′ be a minimizer. Then

(i) If either (Z − N)+ ≲ B
𝟦
𝟣𝟧 Z

𝟣
𝟧 or M = 1 and 𝛼B

𝟥
𝟧 Z

𝟣
𝟧 ≳ 1, then expression

|E𝜅(A′)− Scott𝟢 +

∫︁ ∫︁
PB(V (x)) dx |(28.6.2)

does not exceed

C
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + B

𝟦
𝟧 Z

𝟥
𝟧 + 𝛼Z 𝟥 + 𝛼

𝟣𝟨
𝟫 B

𝟪𝟤
𝟦𝟧 Z

𝟧𝟪
𝟦𝟧 | log Z |K

)︁
.(28.6.3)

(ii) If M = 1, (Z − N)+ ≳ B
𝟦
𝟣𝟧 Z

𝟣
𝟧 and 𝛼B

𝟥
𝟧 Z

𝟣
𝟧 ≲ 1, then expression (28.6.2)

does not exceed

(28.6.4) C
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + B

𝟦
𝟧 Z

𝟥
𝟧 + 𝛼Z 𝟥 + 𝛼

𝟣𝟨
𝟫 B

𝟪𝟤
𝟦𝟧 Z

𝟦𝟫
𝟦𝟧 | log Z |K

+ 𝛼
𝟦𝟢
𝟤𝟩 B

𝟩𝟦
𝟦𝟧 Z

𝟣𝟥𝟣
𝟧𝟦𝟢 (Z − N)

𝟪𝟧
𝟣𝟢𝟪
+ | log Z |K

)︁
.

(iii) If M ≥ 2 and (Z − N)+ ≳ B
𝟦
𝟣𝟧 Z

𝟣
𝟧 , then expression (28.6.2) does not

exceed

(28.6.5) C
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + B

𝟦
𝟧 Z

𝟥
𝟧 + 𝛼Z 𝟥 + 𝛼

𝟣𝟨
𝟫 B

𝟪𝟤
𝟦𝟧 Z

𝟦𝟫
𝟦𝟧 | log Z |K

+ B
𝟩
𝟣𝟢 Z

𝟣𝟣
𝟦𝟢 (Z − N)

𝟧
𝟪
+| log(Z − N)+Z−𝟣|

)︁
.

Proof. (a) Observe first that we need to prove only the estimate from below
for expression (28.6.2) without absolute value since in the estimate from
above we just pick A′ = 0 and apply results of Chapter 25 producing estimate
CB

𝟦
𝟧 Z

𝟥
𝟧 .

Proof of the estimate from below repeats the proof of Proposition 28.5.2.
Namely, we apply an appropriate partition and on each element 𝜓𝟤

𝜄 estimate
from below

(28.6.6) Tr−(𝜓𝜄HA,V𝜓𝜄) + (C𝟢𝛼)
−𝟣

∫︁
|𝜕A′|𝟤 dx +

∫︁ ∫︁
PB(V (x))𝜓𝟤

𝜄 (x) dx
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for 𝜄 ≥ 1 and

(28.6.7) Tr−(𝜓𝟢HA,V𝜓𝟢) + (C𝟢𝛼)
−𝟣

∫︁
|𝜕A′|𝟤 dx

+

∫︁ ∫︁
PB(V (x))𝜓𝟤

𝟢(x) dx − Scott𝟢.

For B ≤ Z 𝟤 we separate zone 𝒳𝟢 := {x : ℓ(x) ≤ r* = B− 𝟤
𝟥 Z

𝟣
𝟥} in which after

rescaling x ↦→ r−𝟣
* x , 𝜏 ↦→ r*Z−𝟣𝜏 , we have 𝛽 = 1, h = B

𝟣
𝟥 Z− 𝟤

𝟥 and 𝜅 = 𝛼Z .
Then for the corresponding partition element 𝜓𝟤

𝟢 expression (28.6.7) in virtue
of Chapter 26 does not exceed (by an absolute value)

C
(︀
h−𝟣 + 𝜅| log 𝜅|

𝟣
𝟥 h− 𝟦

𝟥

)︀
× Zr−𝟣

* ,

which does not exceed (28.6.3) without the last term.

For B ≥ Z 𝟤 we separate zone 𝒳𝟢 := {x : ℓ(x) ≤ r* = Z−𝟣} and after
rescaling x ↦→ r−𝟣

* x , 𝜏 ↦→ Z−𝟣r*𝜏 we have h = 1, 𝛽 = BZ−𝟤 and apply
variational estimates of Appendix 28.A.1 here. Then the contribution of 𝒳𝟢

to the remainder does not exceed C𝛽 × Zr−𝟣
* = CB ≤ CB

𝟦
𝟧 Z

𝟥
𝟧 .

(b) Further, a contribution of each regular element with r* ≤ ℓ(x) ≤ 𝜖r̄

(recall that r̄ = B− 𝟤
𝟧 Z

𝟣
𝟧 ) does not exceed

C𝜁𝟤h−𝟣
𝟣

(︁
1 + (𝜅𝟣𝛽𝟣)

𝟦𝟢
𝟤𝟩 h

𝟥𝟦
𝟤𝟩
𝟣 | log h𝟣|K

)︁
for 𝛽𝟣h𝟣 ≤ C𝟢,(28.6.8)

C𝜁𝟤𝛽𝟣
(︁
1 + (𝜅𝟣𝛽𝟣)

𝟣𝟨
𝟫 h

𝟣𝟦
𝟫
𝟣 | log h𝟣|K

)︁
for 𝛽𝟣h𝟣 ≥ C𝟢(28.6.9)

with 𝜁 = Z
𝟣
𝟤 ℓ−

𝟣
𝟤 , 𝛽𝟣 = BZ− 𝟣

𝟤 ℓ
𝟥
𝟤 , h𝟣 = Z− 𝟣

𝟤 ℓ−
𝟣
𝟤 , 𝜅𝟣 = 𝛼Z . Indeed, if 𝛽𝟣h𝟣 ≥ C𝟢

and ℓ(x) ≤ 𝜖r̄ , then the super-strong non-degeneracy assumption (28.4.5) is
fulfilled.

Observe that the first term in (28.6.8) has ℓ in the negative power and
therefore sums to its value at ℓ = r* while the second term has ℓ in the
positive power and therefore sums to its value at 𝛽𝟣h𝟣 = 1 (i.e. ℓ = B−𝟣Z ,

h𝟣 = B
𝟣
𝟤 Z−𝟣, 𝛽𝟣 = B− 𝟣

𝟤 Z ); one can see easily that it is less than 𝛼Z 𝟥.
Actually this zone appears only as B ≤ Z 𝟤.

On the other hand, both terms in (28.6.9) have ℓ in the positive power

and thus sum to their values at ℓ = r̄ , 𝛽𝟣 = B
𝟤
𝟧 Z− 𝟣

𝟧 , h𝟣 = B
𝟣
𝟧 Z− 𝟥

𝟧 and
𝜅𝟣 = 𝛼Z which are exactly the second and the fourth terms in (28.6.2).
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(c) Boundary zone {x : 𝜖 ≤ ℓ(x) ≤ c} is treated in the same way albeit

with 𝜁 = B
𝟤
𝟧 Z

𝟦
𝟧𝛾𝟤, 𝛽𝟣 = B

𝟤
𝟧 Z− 𝟣

𝟧𝛾−𝟣, h𝟣 = B
𝟣
𝟧 Z− 𝟥

𝟧𝛾−𝟥 and 𝜅𝟣 = 𝛼Z𝛾𝟧 as long

as 𝛾 ≥ C𝟢𝛾 (with 𝛾 = (Z − N)
𝟣
𝟦
+Z− 𝟣

𝟦 but reset to B
𝟣
𝟣𝟧 Z− 𝟣

𝟧 if the latter is
larger). Observe that plugging into (28.6.9) we get in both terms 𝛾 in the
power greater than 2; therefore after summation with respect to partition
elements we get expression (28.6.9) with 𝛾 = 1, 𝛽𝟣 = B

𝟤
𝟧 Z− 𝟣

𝟧 , h𝟣 = B
𝟣
𝟧 Z− 𝟥

𝟧

and 𝜅𝟣 = 𝛼Z .

This proves the lower estimate (28.6.2) in the framework of the first

clause of Statement (i) as contribution of the zone 𝛾 ≤ B
𝟣
𝟣𝟧 Z− 𝟣

𝟧 is estimated
easily; we leave it to the reader.

(d) Assume now that (Z − N)+ ≥ B
𝟦
𝟣𝟧 Z

𝟣
𝟧 . We do not partition zone

{x : 𝛾(x) ≤ C𝟢𝛾} further. In this case we need to take

𝜈𝟣 =
(︀
(𝜅𝟣𝛽𝟣)

𝟦
𝟥 h

𝟤
𝟥
𝟣 + (𝜅𝟣𝛽𝟣)

𝟣𝟢
𝟫 h

𝟦
𝟫
𝟣

)︀
| log h𝟣|K .(28.6.10)

For M = 1 we should plug it into

C𝜁𝟤𝛽𝟣
(︀
1 + h

𝟤
𝟥
𝟣 𝜈

𝟦
𝟥
𝟣

)︀
𝛾−𝟤(28.6.11)

with 𝜁 = B
𝟤
𝟧 Z

𝟦
𝟧𝛾𝟤 and 𝛾 = 𝛾.

For 𝜅𝛽h ≳ 1 we estimate it by the same expression with 𝛾 replaced by 1
but then in 𝜈𝟣 dominates the first term and we arrive to the lower estimate
(28.6.2) in the framework of the second clause of Statement (i).

(e) For M = 1 and 𝜅𝛽h ≲ 1 we need to take into account term (28.6.11) with

𝜈𝟣 = (𝜅𝟣𝛽𝟣)
𝟣𝟢
𝟫 h

𝟦
𝟫
𝟣 | log h𝟣|K which results in the last term in (28.6.4). Indeed,

as 𝛾(x) ≤ C𝟢𝛾 super-strong non-degeneracy condition is not fulfilled.

(f) For M ≥ 2, we need to take into account term C𝜁𝟤𝛽𝟣h
− 𝟣

𝟤
𝟣 𝛾−𝟤(1 + | log 𝛾|)

with 𝛾 = 𝛾 which results in the last term in (28.6.5). This concludes estimate
from below.

Corollary 28.6.3. In the framework of Theorem 28.6.2(i), (ii), (iii) ex-
pression ‖𝜕A′‖𝟤 does not exceed expressions (28.6.3), (28.6.4) and (28.6.5)
respectively, multiplied by 𝛼.

Proof. Indeed, the same estimates hold with 𝛼 replaced by 2𝛼.
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The same methods lead us to a similar result for B ≲ Z
𝟦
𝟥 (we leave the

oproof to the reader):

Theorem 28.6.4. Let V be Thomas-Fermi potential W 𝖳𝖥
B +𝜆 with B ≤ Z

𝟦
𝟥 ,

N ≍ Z𝟣 ≍ Z𝟤 ≍ ... ≍ ZM and N ≤ Z . Let 𝛼Z ≤ 𝜅*. Let A′ be a minimizer.
Then

(i) If either (Z − N)+ ≲ B
𝟧
𝟣𝟤 or M = 1, then expression

|E𝜅(A′)− Scott𝟢 +

∫︁ ∫︁
PB(V (x)) dx |(28.6.12)

does not exceed

C
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + Z

𝟧
𝟥 + 𝛼Z 𝟥

)︁
; .(28.6.13)

(ii) If M ≥ 2 and B
𝟧
𝟣𝟤 ≲ (Z − N)+ ≲ B

𝟥
𝟦 , then expression (28.6.12) does

not exceed

(28.6.14) C
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + Z

𝟧
𝟥 + 𝛼Z 𝟥 + B

𝟤𝟫
𝟥𝟤 (Z − N)

𝟧
𝟪
+| log(Z − N)+B− 𝟥

𝟦 |
)︁
.

(iii) If M ≥ 2 and (Z −N)+ ≳ B
𝟥
𝟦 , then expression (28.6.12) does not exceed

(28.6.15) C
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + Z

𝟧
𝟥 + 𝛼Z 𝟥 + B(Z − N)

𝟣
𝟤
+

)︁
.

28.6.2 Estimates to a Minimizer

Observe that only terms B
𝟣
𝟥 Z

𝟦
𝟥 and 𝛼Z 𝟥 are associated with the singularities

and they are definitely smaller than B
𝟦
𝟧 Z

𝟥
𝟧 if B ≳ Z

𝟩
𝟦 . Therefore for B ≳ Z

𝟩
𝟦

we do not expect estimate for D(𝜌𝝭 − 𝜌B , 𝜌𝝭 − 𝜌B) better than expressions
(28.6.3)–(28.6.5).

However for B ≲ Z
𝟩
𝟦 to improve such estimate we need to study a

minimizer. We assume that the remainder in Theorem 28.6.4 does not
exceed C

(︀
B

𝟣
𝟥 Z

𝟦
𝟥 + 𝛼Z 𝟥

)︀
and therefore

‖𝜕A′‖ ≤ C𝛼
𝟣
𝟤 B

𝟣
𝟨 Z

𝟤
𝟥 + C𝛼Z

𝟥
𝟤(28.6.16)

or, after our usual scaling,

‖𝜕A′‖ ≤ 𝜍 := C
(︀
𝜅+ 𝜅

𝟣
𝟤𝛽

𝟣
𝟨 h

𝟣
𝟤

)︀
.(28.6.17)

Observe that for Z
𝟦
𝟥 ≤ B ≤ Z 𝟤 we have all zones.
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Proposition 28.6.5. Let V be Thomas-Fermi potential W 𝖳𝖥
B + 𝜆 rescaled

with Z
𝟦
𝟥 ≤ B ≤ Z 𝟥, N ≍ Z𝟣 ≍ Z𝟤 ≍ ... ≍ ZM and N ≤ Z . Further, let

𝛼Z ≲ 1 and 𝛼B
𝟤
𝟧 Z− 𝟤

𝟧 | log 𝛽|K ≲ 1. Then under assumption (28.6.17) the
minimizer A′ satisfies

(i) If ℓ ≤ r* = h𝟤 (i.e. h𝟣 ≥ 1) then

(28.6.18) |𝜕𝟤A′| ≤ C 𝜍h−𝟧.

(ii) If r* ≤ ℓ ≤ c(𝛽h)−𝟣 (i.e. h𝟣 ≤ 1, 𝛽𝟣h𝟣 ≤ c), then

(28.6.19) |𝜕𝟤A′| ≤ C𝜅
(︁
𝜍ℓ−

𝟧
𝟤 +min

(︀
𝛽

𝟥
𝟤 h

𝟣
𝟤 ℓ−𝟣, 𝛽

𝟣
𝟤 ℓ−

𝟥
𝟦

)︀)︁
| log ℓ/r*|

+ C (𝜅𝛽)
𝟣𝟢
𝟫 h

𝟦
𝟫 ℓ−

𝟣𝟫
𝟫 | log ℓ/r*|K .

(iii) If c(𝛽h)−𝟣 ≤ ℓ ≤ c, then

(28.6.20) |𝜕𝟤A′| ≤ C 𝜍ℓ−
𝟧
𝟤 + C𝜅𝛽

𝟣
𝟤 ℓ−

𝟩
𝟦 | log ℓ/r*|

+ C
(︁
(𝜅𝛽)

𝟣𝟢
𝟫 h

𝟦
𝟫 ℓ−

𝟣𝟫
𝟫 + (𝜅𝛽)

𝟦
𝟥 h

𝟤
𝟥 ℓ−

𝟧
𝟨

)︁
| log ℓ/r*|K .

Proof. The proof of these two propositions repeats our standard arguments
and is left to the reader.

These propositions may not provide the best D-term estimate as 𝜅𝛽h ≤ 1
(i.e. 𝛼B

𝟥
𝟧 Z

𝟣
𝟧 ≤ 1) and could be improved in virtue of the super-strong

non-degeneracy assumption fulfilled at regular elements with ℓ ≥ c(𝛽h)−𝟣

and at border elements with 𝛾 ≥ C𝟢𝛾. We want to improve term containing
(𝜅𝛽)

𝟣𝟢
𝟫 h

𝟦
𝟪 ℓ−

𝟣𝟫
𝟫 in (28.6.20). Assume now that 𝛽h𝟤 ≤ 1 and 𝜅𝛽h ≤ 1 (case we

need to cover). Let us consider zone {x : (𝜖𝟢𝛽h ≥ V (x) ≥ C𝟢|𝜂|} where in
the corresponding scale super-strong non-degeneracy condition is fulfilled
and 𝜂 = 𝜆B− 𝟤

𝟧 Z
𝟣
𝟧 .

Proposition 28.6.6. Let conditions of Proposition 28.6.5 be fulfilled. Then

(i) Estimate

|𝜕𝟤A′(x)| ≤ C
(︁
𝜍ℓ−

𝟧
𝟤 + 𝜅𝛽

𝟣
𝟤 ℓ(x)−

𝟩
𝟦 + (𝜅𝛽)

𝟦
𝟥 h

𝟤
𝟥 ℓ(x)−

𝟧
𝟨

)︁
| log h|K(28.6.21)

holds provided

𝛽h| log h|−𝛿 ≥ V (x) ≥ |𝜂| · | log h|𝛿(28.6.22)

with arbitrarily small exponent 𝛿 > 0.
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(ii) Furthermore, if |𝜂| ≤ | log h|−𝛿, then estimate

(28.6.23) |𝜕𝟤A′(x)| ≤ C
(︁
𝜍 + 𝜅𝛽

𝟣
𝟤 + (𝜅𝛽)

𝟦
𝟥 h

𝟤
𝟥 + (𝜅𝛽)

𝟣𝟢
𝟫 h

𝟦
𝟫𝛾

𝟤𝟪
𝟫

)︁
| log h|K

holds provided |V (x)| ≲ 1, 𝛾 = |𝜂| 𝟣𝟦 .

Proof. (i) Let

𝜈n(t) = sup
𝒳n(t)

|𝜕𝟤A′(x)|ℓ(x)
𝟧
𝟤 , 𝒳n(t) = {e−𝜖n−𝟣t ≤ V (x) ≤ e𝜖n+𝟣t}.

Here 𝜖 > 0 is arbitrarily small (but constants may depend on it). Assume
that

(28.6.24) e𝜖nt ≤ 𝜖𝟢, e−𝜖nt ≥ C𝟢|𝜂|, e𝜖n ≤ | log h|.

Here first two conditions assure that in 𝒳n(t) the super-strong non-degeneracy
assumption is fulfilled after rescaling and the last condition assures that ℓ(x)
remains the same (modulo logarithmic factor) here. Then

(28.6.25) 𝜈n(t) ≤ C
(︁
𝜍 + 𝜅𝛽

𝟣
𝟤
𝟣 + C𝜅𝟣𝛽𝟣h

𝟣
𝟦
𝟣 (𝜈n+𝟣(t))

𝟣
𝟦

)︁
| log h|K𝟣

with 𝜅𝟣 = 𝜅, 𝛽𝟣 = 𝛽r
𝟥
𝟤 , h𝟣 = hr−

𝟣
𝟤 , r = min(t−𝟣, 1). Indeed, |ΔA′| in

𝒳n+𝟣/𝟤(t) does not exceed the right-hand expression (without term 𝜍 and

without logarithmic factor) multiplied by r−
𝟧
𝟤 and C 𝜍 estimates L𝟤-norm

of 𝜕A′ (and we scale it properly). Recall that we scale x ↦→ x/r if r ≤ 𝜖𝟢
and x ↦→ x/𝛾 if r ≍ 1 and in the latter case 𝛽𝟣 = 𝛽𝛾−𝟣, h𝟣 = h𝛾−𝟥 and
𝜅𝟣 = 𝜅𝛾𝟧; the uncertainty due to r or 𝛾 defined modulo logarithmic factor
compensates by | log h|K𝟣 in the right-hand expression of (28.6.25).

Therefore

Fn(t) ≤ C
(︁
𝜍r−

𝟧
𝟥 + C𝜅𝛽

𝟣
𝟤 r−

𝟣𝟣
𝟣𝟤 + C𝜅𝛽h

𝟣
𝟤 × (Fn+𝟣(t))

𝟣
𝟦

)︁
| log h|K𝟣

for Fn(t) = 𝜈n(t)r
− 𝟧

𝟥 . Iterating we see that

F𝟢(t) ≤ C
(︁
𝜍r−

𝟧
𝟥 + 𝜅𝛽

𝟣
𝟤 r−

𝟣𝟣
𝟣𝟤

)︁
| log h|K + C (𝜅𝛽h

𝟣
𝟤

)︀ 𝟦
𝟥 | log h|K × (Fn+𝟣(t))

𝟣
𝟦n .

Since Fn+𝟣(r) ≤ h−L the last factor is bounded by a constant if 2n ≥ | log h|
and we can satisfy this and (28.6.24) as long as (28.6.22) holds. This proves
Statement (i).
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(ii) Consider the remaining zone 𝒴 = {x : V (x) ≤ |𝜂| · | log h|𝛿} and let
𝜈 = sup𝒴 |𝜕𝟤A′|. Observe that in 𝒴 |ΔA′| does not exceed

C
(︁
𝜅𝛽

𝟣
𝟤 + 𝜅𝛽h

𝟣
𝟤 |𝜈|

𝟣
𝟦 + 𝜅𝛽h

𝟤
𝟧𝛾

𝟣𝟦
𝟧 𝜈

𝟣
𝟣𝟢

)︁
| log h|K

and on its border (28.6.23) is fulfilled. It implies that (28.6.23) is fulfilled in
𝒴 as well. This proves Statement (ii).

Remark 28.6.7. If |𝜂| ≥ | log h|−𝛿 then Proposition 28.6.5 is sufficiently good
in the remaining zone 𝒴 .

28.6.3 N-Term Asymptotics and D-Term Estimates

We leave to the reader not complicated but rather tedious and error-prone
task

Problem 28.6.8. Estimate remainder in N-term

|
∫︁ (︀

e(x , x ,𝜆′)− PB(V (x) + 𝜆′)
)︀

dx |(28.6.26)

and D-term

D
(︀
e(x , x ,𝜆′)− PB(V (x) + 𝜆′), e(x , x ,𝜆′)− PB(V (x) + 𝜆′)

)︀
.(28.6.27)

After usual rescaling one needs to consider the following zones:

(a) Zone {x : ℓ(x) ≤ (𝛽h)−𝟣| log h|𝛿}. In this zone one should use 𝛽𝟣 = 𝛽ℓ
𝟥
𝟤 ,

h𝟣 = hℓ−
𝟣
𝟤 and 𝜈𝟣 = (𝜅𝛽𝟣)

𝟣𝟢
𝟫 h

𝟦
𝟫
𝟣 | log h𝟣|K (other terms are not important here);

then its contributions to expressions (28.6.26) and (28.6.27) do not exceed

respectively C
(︀
h−𝟤
𝟣 + h

− 𝟧
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀
and C

(︀
h−𝟤
𝟣 + h

− 𝟧
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀𝟤
ℓ−𝟣 (for ℓ(x) ≲ (𝛽h)−𝟣

but slight extension just adds some logarithmic factor). In the final tally
ℓ = (𝛽h)−𝟣| log h|𝛿.

(b) Zone {x : (𝛽h)−𝟣| log h|𝛿 ≤ ℓ(x) ≤ | log h|−𝛿}. In this zone we have the

same expressions for h𝟣 and 𝛽𝟣 and 𝜈𝟣 = (𝜅𝛽𝟣)
𝟦
𝟥 h

𝟤
𝟥
𝟣 | log h𝟣|K ; then its contri-

butions to expressions (28.6.26) and (28.6.27) do not exceed respectively

C𝛽𝟣
(︀
h−𝟣
𝟣 + h

− 𝟤
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀
and C𝛽𝟤

𝟣

(︀
h−𝟣
𝟣 + h

− 𝟤
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀𝟤
ℓ−𝟣. In the final tally ℓ = 1.
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(c) Zone {x : ℓ(x) ≥ | log h|−𝛿, 𝛾(x) ≥ 𝛾| log h𝛿}. In this zone h𝟣 = h𝛾−𝟥 and

𝛽𝟣 = 𝛽𝛾−𝟣 and 𝜈 = (𝜅𝛽)𝟦𝟥h
𝟤
𝟥 | log h|K but we use according to Remark 28.5.9

instead 𝜈𝟣 = 𝜅𝟣𝛽𝟣h
𝟣
𝟦
𝟣 𝜈

𝟣
𝟦 with 𝜅𝟣 = 𝜅𝛾𝟧. Then

(c𝟣) For M = 1 contributions of 𝛾-element to expressions (28.6.26) and

(28.6.27) do not exceed C𝛽𝟣
(︀
h−𝟣
𝟣 + h

− 𝟤
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀
and C𝛽𝟤

𝟣

(︀
h−𝟣
𝟣 + h

− 𝟤
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀𝟤
respec-

tively.

(c𝟤) As M ≥ 2 contributions of 𝛾-element to expressions (28.6.26) and

(28.6.27) do not exceed respectively C𝛽𝟣h−𝟣
𝟣 𝜈

𝟣
𝟤
𝟣 and C𝛽𝟤

𝟣h−𝟤
𝟣 𝜈𝟣.

In the final tally 𝛾 = 1 in both cases (c𝟣) and (c𝟤).

(d) Then for M = 1 contributions of 𝛾-element to expressions (28.6.26) and
(28.6.27) do not exceed respectively (in comparison to what we have already)

C𝛽𝟣h
− 𝟤

𝟥
𝟣 𝜈

𝟤
𝟥
𝟣 and C𝛽𝟤

𝟣h
− 𝟦

𝟥
𝟣 𝜈

𝟦
𝟥
𝟣 with 𝜈𝟣 = (𝜅𝛽)

𝟣𝟢
𝟫 h

𝟦
𝟫
𝟣 𝛾

𝟧𝟪
𝟤𝟩 | log h|K .

On the other hand, for M ≥ 2 contributions of 𝛾-element to expressions
(28.6.26) and (28.6.27) do not exceed respectively (in comparison to what

we have already) C𝛽𝟣h
− 𝟥

𝟤
𝟣 and C𝛽𝟤

𝟣h−𝟥
𝟣 .

Let us partially summarize what we got. Let 𝜅𝛽h ≳ 1. Then for M = 1
the final results are C𝛽

(︀
h−𝟣 + h− 𝟤

𝟫 (𝜅𝛽)
𝟪
𝟫 | log h|K

)︀
and the same expression

squared. On the other hand, for M ≥ 2 the final results from all zones
except {x : 𝛾(x) ≤ C𝟢𝛾} are C𝛽h− 𝟣

𝟥 (𝜅𝛽)
𝟤
𝟥 | log h|K and the same expression

squared.

On the other hand, let 𝜅𝛽h ≲ 1. Then for M = 1 the final results do not
exceed C𝛽

(︀
h−𝟣 + h− 𝟣𝟢

𝟤𝟩 (𝜅𝛽)
𝟤𝟢
𝟤𝟩 | log h|K

)︀
and the same expression squared.

28.7 Applications to the Ground State

Energy

28.7.1 Preliminary Remarks

Recall that we are looking for

(28.7.1) ⟨HΨ,Ψ⟩+ 1

𝛼

∫︁
|𝜕A′|𝟤 dx ,



28.7. APPLICATIONS TO THE GROUND STATE ENERGY 369

which should be minimized by Ψ ∈ H and A′.
We know (see f.e. Subsection 25.2.1) that

(28.7.2) ⟨HΨ,Ψ⟩ ≥ Tr−(HA,W+𝜆′) + 𝜆′N +
1

2
D(𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌)

− 1

2
D(𝜌, 𝜌)− C

∫︁
𝜌

𝟦
𝟥
𝝭 dx ,

where W = V − |x |−𝟣 * 𝜌, V is a Coulomb potential of nuclei, 𝜌 and 𝜆 ≤ 0
are arbitrary.

Therefore to derive an estimate from below for expression (28.7.1) we just
need to pick up 𝜌 and 𝜆′ but we cannot pick up A′. Let us select 𝜌 and 𝜆 equal
to Thomas-Fermi density = 𝜌𝖳𝖥B and chemical potential 𝜆 respectively (but if
N ≈ Z it is beneficial to pick up 𝜆′ = 0), add 𝛼−𝟣

∫︀
|𝜕A′|𝟤 dx , and apply trace

asymptotics without any need to consider N- or D-terms and we have an
estimate from below which includes also “bonus term” 𝟣

𝟤
D(𝜌𝝭−𝜌, 𝜌𝝭−𝜌) and

is as good as a remainder estimate in the trace asymptotics rescaled–provided
we estimate properly the last term in (28.7.2).

Thus here we are missing only estimate for
∫︀
𝜌

𝟦
𝟥
𝝭 dx or more sophisticated

estimate if we are interested in Dirac and Schwinger terms. We will prove in
Appendix 28.A.2 that in the electrostatic inequality for near ground-state

one can replace this term −C
∫︀
𝜌

𝟦
𝟥
𝝭 dx by −CZ

𝟧
𝟥 for B ≤ Z

𝟦
𝟥 and −CB

𝟦
𝟧 Z

𝟥
𝟧

for Z
𝟦
𝟥 ≤ B ≤ Z 𝟥; further, for B ≤ Z one can replace it by Dirac− CZ

𝟧
𝟥
−𝛿

thus proving Bach-Graf-Solovej estimate in our current settings.
Therefore due to these arguments estimates from below in Theorems 28.7.4

and 28.7.5 follow immediately from Theorems 28.5.14, 28.5.16 and 28.5.23
for B ≤ Z

𝟦
𝟥 and estimates from below in Theorem 28.7.11 follow immediately

from Theorems 28.6.2 and 28.6.4 for Z
𝟦
𝟥 ≤ B ≤ Z 𝟥.

On the other hand, an estimate from above involves picking up 𝜌 (which
we select to be 𝜌𝖳𝖥B again) and picking A′ as well–which we choose as in
upper estimates of Section 28.5 (rescaled) and also picking up Ψ which we
select 𝜑𝟣(x𝟣, 𝜍𝟣) · · ·𝜑N(xN , 𝜍N) anti-symmetrized by (x𝟣, 𝜍𝟣), ... , (xN , 𝜍N) but
we do not select 𝜆′ in the trace asymptotics which must be equal to 𝜆N ,
which is N-th eigenvalue of HW ,A or to 0 if there are less than N negative
eigenvalues of HW ,A.

In this case we need to estimate |𝜆′ − 𝜆| and also

(28.7.3) D
(︀
tr e(x , x ,𝜆′)− 𝜌𝖳𝖥B , tr e(x , x ,𝜆′)− 𝜌𝖳𝖥B

)︀
,
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which required some efforts in Chapters 25–27 but here we will do it rather
easily because in Section 28.5 we took either A′ equal to one for Coulomb
potential and without external magnetic field (as 𝛽h𝟤 ≤ 1) or just 0 (as
𝛽h𝟤 ≥ 1).

28.7.2 Estimate from above: B ≤ Z
𝟦
𝟥

Recall that now we can select 𝜌 and A′ but cannot select 𝜆′.
If B ≤ Z

𝟦
𝟥 (or 𝛽h ≤ 1 after rescaling) we select A′ as a minimizer for one-

particle operator with Coulomb potential and without external magnetic
field. Then after rescaling x ↦→ Z

𝟣
𝟥 x , 𝜏 ↦→ Z− 𝟦

𝟥 𝜏 , h = 1 ↦→ h = Z− 𝟣
𝟥 ,

B ↦→ 𝛽 = BZ−𝟣, 𝛼 ↦→ 𝜅 = 𝛼Z

|𝜕A′| ≤ C𝜅ℓ−
𝟥
𝟤 , |𝜕𝟤A′| ≤ C𝜅ℓ−

𝟧
𝟤 | log(ℓ/h𝟤)|,(28.7.4)

or before it

|𝜕A′| ≤ C𝛼Z
𝟧
𝟥 ℓ−

𝟥
𝟤 , |𝜕𝟤A′| ≤ C𝛼Z

𝟧
𝟥 ℓ−

𝟧
𝟤 | log(Zℓ)|.(28.7.5)

Let us start from the easy case M = 1. We need the following

Proposition 28.7.1. Let M = 1, N ≍ Z , B ≲ Z
𝟦
𝟥 and 𝛼Z ≤ 𝜅*. Assume

that A′ satisfies (28.7.5). Then

(i) The remainder in the trace asymptotics does not exceed

(28.7.6)

{︃
C
(︀
Z

𝟧
𝟥 + 𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫

)︀
for B ≤ Z ,

C
(︀
B

𝟣
𝟥 Z

𝟦
𝟥 + 𝛼| log(𝛼Z )|

𝟣
𝟥 B

𝟤
𝟫 Z

𝟤𝟥
𝟫

)︀
for B ≥ Z .

(ii) The remainder in N-term asymptotics does not exceed CZ
𝟤
𝟥 .

(iii) D-term does not exceed CZ
𝟧
𝟥 .

Proof. We cannot directly apply previous results because A′ is now generated
by much slower decaying Coulomb potential. The good news however is
that A′ is generated without presence of the external magnetic field. Let us
scale as we mentioned above.

(i) Consider the remainder estimate in the trace asymptotics.
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(ia) A contribution of the near singularity zone {x : ℓ(x) ≤ ℓ* = 𝜖min(𝛽− 𝟤
𝟥 , 1)}

does not exceed

(28.7.7)

{︃
C (h−𝟣 + 𝜅| log 𝜅|

𝟣
𝟥 h− 𝟦

𝟥 ) as 𝛽 ≤ 1,

C (𝛽
𝟣
𝟥 h−𝟣 + 𝜅| log 𝜅|

𝟣
𝟥𝛽

𝟤
𝟫 h− 𝟦

𝟥 ) as 𝛽 ≥ 1.

(ib) A contribution of ℓ-element in the regular zone {x : ℓ(x) ≥ ℓ*} does not

exceed C𝜁𝟤
(︀
h−𝟣
𝟣 + h

− 𝟣
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀
. We plug h𝟣 = h/(𝜁ℓ), and in virtue of (28.7.4)

𝜈𝟣 = 𝜅ℓ−
𝟧
𝟤 · ℓ𝟥𝜁−𝟣 = 𝜅ℓ

𝟣
𝟤 𝜁−𝟣. Taking a sum we arrive to the same expression

at ℓ = ℓ* i.e. expression (28.7.7). Scaling back we arrive to (28.7.6).

(ic) We leave analysis of the boundary zone to the reader. It requires just
repetition of the corresponding arguments of Section 28.5.

(ii) Next let us consider a remainder estimate in the N-term asymptotics.

(iia) Note that a contribution of ℓ-element in the regular zone does not

exceed C
(︀
h−𝟤
𝟣 + h

− 𝟧
𝟥

𝟣 𝜈
𝟣
𝟥
𝟣

)︀
. Then plugging h𝟣, 𝜈𝟣 we arrive after summation

to the same expression at ℓ = 1 i.e. Ch−𝟤. One can prove easily that the
contribution of the near singularity zone is O(h−𝟤+𝛿).

Consider the contribution of the boundary zone. Note that this zone

appears only if B ≥ (Z − N)
𝟦
𝟥
+. Let us scale x ↦→ x ℓ̄−𝟣, 𝜏 ↦→ ℓ̄−𝟦𝜏 , with

ℓ̄ = (𝛽h)−
𝟣
𝟦 . Then h ↦→ h𝟣 = h

𝟥
𝟦𝛽− 𝟣

𝟦 , 𝛽 ↦→ 𝛽𝟣 = h−𝟣
𝟣 and after scaling A′

satisfies |𝜕𝟤A′| ≤ 𝜈𝟣 = C𝜅ℓ̄
𝟥
𝟤 | log 𝜅|.

(iib) Consider a contribution of 𝛾-element; scaling again x ↦→ x𝛾−𝟣, 𝜏 ↦→
𝛾−𝟦𝜏 , h𝟣 ↦→ h𝟤 = h𝟣𝛾

−𝟥, 𝛽𝟣 ↦→ 𝛽𝛾−𝟣, 𝜈𝟣 ↦→ 𝜈𝟤 = 𝜈𝟣 we see that it does not

exceed C𝛽𝟤
(︀
h−𝟣
𝟤 + h

− 𝟤
𝟥

𝟤 𝜈
𝟤
𝟥
𝟤

)︀
= C𝛽𝟣

(︀
𝛾𝟤h−𝟣

𝟣 + 𝛾h
− 𝟤

𝟥
𝟣 𝜈

𝟤
𝟥
𝟣

)︀
. This expression must

be divided by 𝛾𝟤 and summed resulting in

(28.7.8) C
(︀
h−𝟤
𝟣 | log 𝛾|+ 𝛾−𝟣h

− 𝟧
𝟥

𝟣 𝜈
𝟤
𝟥
𝟣

)︀
with 𝛾 ≥ h

𝟣
𝟥
𝟣 (equality is achieved if (Z − N)+ is small enough, otherwise

partitioning may be cut-off by a chemical potential). One can get rid of the
logarithmic factor by our standard propagation arguments; the second term

in (28.7.8) does not exceed Ch−𝟤
𝟣 𝜈

𝟤
𝟥
𝟣 and plugging h𝟣, 𝜈𝟣 we get O(h−𝟤) =

O(Z
𝟤
𝟥 ).
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(iii) D-term is analyzed in the same way.

Proposition 28.7.2. In the framework of Proposition 28.7.1 assume that
B ≤ Z . Then

(i) The remainder in the trace asymptotics (with the Schwinger term) does
not exceed

(28.7.9) CZ
𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿

)︀
+ 𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫 .

(ii) The remainder in N-term asymptotics does not exceed

CZ
𝟤
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿 + (𝛼Z )𝛿

)︀
.

(iii) D-term does not exceed CZ
𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿 + (𝛼Z )𝛿

)︀
.

Proof. Proof includes improved (due to the standard arguments of prop-
agation of singularities) estimates of the contributions of threshold zone
{x : h𝛿

′ ≤ ℓ(x) ≤ h−𝛿′} after rescaling. We leave details to the reader.

Since we now have exactly the same N-term asymptotics and the same
remainder term estimate as in Subsection 26.6.3 as if there was no self-
generated magnetic field we immediately arrive to the same estimates of
|𝜆N − 𝜆| as there and therefore to the same estimates for |𝜆N − 𝜆| · N and
not only for two D-terms

D
(︀
tr e(x , x , 𝜏)− P ′

B(W + 𝜏), tr e(x , x , 𝜏)− P ′
B(W + 𝜏)

)︀
with 𝜏 = 𝜆 and 𝜏 = 𝜆N but also for the third one

D
(︀
P ′
B(W + 𝜆N)− P ′

B(W + 𝜆), P ′
B(W + 𝜆N)− P ′

B(W + 𝜆)
)︀
.

The trace term however is different–with Scott correction term 2S(𝛼Z )Z 𝟤

instead of 2S(0)Z 𝟤 and the remainder estimate here includes an extra term
related to 𝛼.

It concludes the proof of the estimate from above for E*
N . Combined

with estimate from below it concludes the proof of Theorem 28.7.4.
Consider now the case M ≥ 2. Since we need to decouple singularities in

this case we need sufficiently fast decaying magnetic field and thus potential
generating it. So we will take A′ =

∑︀
m A′

m𝜑m with A′
m defined by V = W 𝖳𝖥

m
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(where W𝖳𝖥
m corresponds to a single nucleus) without any magnetic field and

with N = Z (i.e. 𝜆 = 0) and 𝜑m is supported in {x : |x − ym ≤ 𝟣
𝟥
d} and

equals 1 in {x : |x − ym ≤ 𝟣
𝟦
d}. However everywhere else we take V = W 𝖳𝖥

B .
Assume first that (Z − N)+ is sufficiently small and we take Z = N even

in the definition of W 𝖳𝖥
B . Then one can prove easily that

(28.7.10) |Tr−(HA,V ) + 𝛼−𝟣

∫︁
|𝜕A′|𝟤 dx +

∫︁
PB(V ) dx − Scott|

≤ (28.7.6)+ C𝛼Z 𝟤d−𝟥,

where the last term is due to decoupling; indeed, |𝜕A′| and |𝜕𝟤A′| decay as

ℓ−𝟥 and ℓ−𝟦 if ℓ ≥ Z− 𝟣
𝟥 .

Moreover, for B ≤ Z one can replace (28.7.6) by

(28.7.11) CZ
𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿 + (𝛼Z )𝛿 + (dZ

𝟣
𝟥 )−𝛿

)︀
+ C𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫

while including Schwinger into left-hand expression. This estimate is at least
as good as what we got in the estimate from below but probably even better
since magnetic field admits now better estimates.

Let us estimate |𝜆N | if 𝜆N < 0. To do this consider

(28.7.12)

∫︁ [︀
e(x , x ,𝜆)− e(x , x ,𝜆N)

]︀
dx

with non-negative integrand. Then the contribution of ℓ-element into the
main part of this expression, namely∫︁ [︀

e(x , x ,𝜆)− e(x , x ,𝜆N)
]︀
𝜓𝟤
𝜄 dx(28.7.13)

is ∫︁ [︀
P ′(x ,V (x) + 𝜆)− P ′(x ,V (x) + 𝜆N)

]︀
𝜓𝟤
𝜄 dx(28.7.14)

and it does not depend on A′. On the other hand, since now |𝜕𝟤A′| admits so
good estimate, the contribution of this element to the remainder estimated
as if there was no self-generated magnetic field.

The same is true for the boundary elements as well.
But then |𝜆N | is estimated exactly as if there was no self-generated

magnetic field, i.e. exactly as in Section 26.6. But then all components of
the estimate from above, with exception of the trace term, namely |𝜆N | · N
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and all three D-terms are estimated as in Section 26.6. Under assumption
small (Z − N)+ all of them do not exceed CZ

𝟧
𝟥 which could be improved to

(28.7.15) CZ
𝟧
𝟥

(︀
Z−𝛿 + (BZ−𝟣)𝛿 + (𝛼Z )𝛿 + (dZ

𝟣
𝟥 )−𝛿

)︀
for B ≤ Z .

Similarly, if (Z − N)+ is larger than the corresponding threshold, we
need to consider two cases: 0 > 𝜆 > 𝜆N and 0 > 𝜆N > 𝜆 and estimate from
below ∫︁ (︀

e(x , x ,𝜆)− e(x , x ,𝜆N)
)︀
𝜓𝟤
𝜄 dx(28.7.16)

and ∫︁ (︀
e(x , x ,𝜆N)− e(x , x ,𝜆)

)︀
𝜓𝟤
𝜄 dx(28.7.17)

respectively, leading to the estimate of |𝜆N − 𝜆| and then |𝜆N − 𝜆| · N and
all three D-terms and again here these terms are estimated as if there was
no self-generating magnetic field.

This concludes the proof of Theorem 28.7.5.

Remark 28.7.3. For M ≥ 2 one could be concerned about term coming from
C𝛽h− 𝟣

𝟤 in the trace term and C𝛽h− 𝟥
𝟤 or its square in N- and D-terms but

assuming that d ≲ r̄ we simply have A′ = 0 due to decoupling there and
therefore apply theory of Chapter 25 without any modification.

28.7.3 Main Theorems: B ≤ Z
𝟦
𝟥

Ground State Energy Asymptotics

Theorem 28.7.4. Let M = 1, N ≍ Z , B ≤ Z
𝟦
𝟥 and 𝛼 ≤ 𝜅*Z−𝟣 with small

constant 𝜅*. Then

(i) If B ≤ Z , then

(28.7.18) E*
N = ℰ𝖳𝖥

N + Scott + O
(︁

Z
𝟧
𝟥 + 𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫

)︁
with Scott = 2Z 𝟤S(𝛼Z ).
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(ii) Moreover, if B ≪ Z and 𝛼| log Z | 𝟣𝟥 ≪ Z− 𝟣𝟢
𝟫 , then this estimate could be

improved to

(28.7.19) E*
N = ℰ𝖳𝖥

N + 2Z 𝟤S(𝛼Z ) + Schwinger + Dirac

+ O
(︁

Z
𝟧
𝟥

[︀
Z−𝛿 + B𝛿Z−𝛿]︀+ 𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫

)︁
.

(iii) If Z ≤ B ≤ Z
𝟦
𝟥 , then

(28.7.20) E*
N = ℰ𝖳𝖥

N + 2Z 𝟤S(𝛼Z )

+ O
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + 𝛼| log(𝛼Z )|

𝟣
𝟥 B

𝟤
𝟫 Z

𝟤𝟥
𝟫 + 𝛼BZ

𝟧
𝟥

)︁
.

Theorem 28.7.5. Let M ≥ 2, N ≍ Z𝟣 ≍ Z𝟤 ≍ ... ≍ ZM , B ≲ Z
𝟦
𝟥 . Let

𝛼 ≤ 𝜅*Z−𝟣, d ≥ Z− 𝟣
𝟥 be a minimal distance between nuclei capped by

r̄ = min
(︀
B− 𝟣

𝟦 , (Z − N)
− 𝟣

𝟥
+

)︀
. Then

(i) If B ≤ Z , then

(28.7.21) E*
N = ℰ𝖳𝖥

N + Scott + O
(︁

Z
𝟧
𝟥 + 𝛼

[︀
| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫 + Z 𝟤d−𝟥

]︀)︁
with Scott = 2

∑︀
𝟣≤m≤M Z 𝟤

mS(𝛼Zm) and, moreover,

(28.7.22) E*
N = ℰ𝖳𝖥

N + Scott + Schwinger + Dirac

+ O
(︁

Z
𝟧
𝟥

[︀
Z−𝛿 + (BZ−𝟣)𝛿 + (dZ

𝟣
𝟥 )−𝛿

]︀
+ 𝛼

[︀
| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫 + Z 𝟤d−𝟥

]︀)︁
.

(ii) If B ≥ Z , 𝛼B ≤ Z
𝟣𝟩
𝟨𝟢 | log Z |−K and (Z − N)+ ≤ B

𝟧
𝟣𝟤 , then

(28.7.23) E*
N = ℰ𝖳𝖥

N + Scott

+ O
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + 𝛼

[︀
| log𝛼|

𝟣
𝟥 B

𝟤
𝟫 Z

𝟤𝟥
𝟫 + BZ

𝟧
𝟥 + Z 𝟤d−𝟥

]︀)︁
;

(iii) If B ≥ Z
𝟩𝟩
𝟨𝟢 | log Z |−K , 𝛼 ≥ B−𝟣Z

𝟣𝟩
𝟨𝟢 | log Z |−K , (Z − N)+ ≤ B

𝟧
𝟣𝟤 and

d ≥ d̄ = (𝛼B)
𝟦𝟢
𝟤𝟢𝟫 Z− 𝟪𝟣

𝟤𝟢𝟫 | log Z |K , then

(28.7.24) E*
N = ℰ𝖳𝖥

N + Scott

O
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + 𝛼

[︀
| log𝛼|

𝟣
𝟥 B

𝟤
𝟫 Z

𝟤𝟥
𝟫 + BZ

𝟧
𝟥 + (𝛼B)

𝟣𝟤𝟢
𝟤𝟢𝟫 Z

𝟥𝟪𝟦
𝟤𝟢𝟫 d−𝟥| log Z |K

]︀)︁
.
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(iv) In any case

(28.7.25) E*
N = ℰ𝖳𝖥

N + Scott𝟢 + O
(︀
B

𝟣
𝟥 Z

𝟦
𝟥 + 𝛼Z 𝟥

)︀
with Scott𝟢 = 2

∑︀
𝟣≤m≤M Z 𝟤

mS(0).

Recall that in the free nuclei model excess energy is ≍ d−𝟩 (as d ≤ 𝜖B− 𝟣
𝟦 )

and therefore an error must be greater than 𝜖d−𝟩. One can see easily that
d ≥ min(Z− 𝟧

𝟤𝟣 , B− 𝟣
𝟦 ) if B ≤ Z and then in estimates (28.7.21) and (28.7.22)

the last terms (with d−𝟥) could be skipped.
On the other hand, in (28.7.23)–(28.7.25) we can either skip the last terms

(with d−𝟥) or assume that d ≍ B− 𝟣
𝟦 and these terms should be calculated

under this assumption and we arrive to

Theorem 28.7.6. Let M ≥ 2, N ≍ Z𝟣 ≍ Z𝟤 ≍ ... ≍ ZM , B ≲ Z
𝟦
𝟥 and

(Z − N)+ ≲ B
𝟣
𝟤 . Consider a free nuclei model. Then

(i) If B ≤ Z , then

(28.7.26) Ê*
N = ℰ̂𝖳𝖥

N + Scott + O
(︁

Z
𝟧
𝟥 + 𝛼

[︀
| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫

]︀)︁
and moreover

(28.7.27) Ê*
N = ℰ̂𝖳𝖥

N + Scott + Schwinger + Dirac

+ O
(︁

Z
𝟧
𝟥

[︀
Z−𝛿 + (BZ−𝟣)𝛿

]︀
+ 𝛼

[︀
| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫

]︀)︁
.

(ii) If B ≥ Z , 𝛼 ≤ B−𝟣Z
𝟣𝟩
𝟨𝟢 | log Z |−K , then

(28.7.28) Ê*
N = ℰ̂𝖳𝖥

N + Scott + O
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + 𝛼

[︀
| log𝛼|

𝟣
𝟥 B

𝟤
𝟫 Z

𝟤𝟥
𝟫 + Z 𝟤B

𝟥
𝟦

]︀)︁
.

(iii) If B ≥ Z
𝟩𝟩
𝟨𝟢 | log Z |−K , B−𝟣Z

𝟣𝟩
𝟨𝟢 | log h|−K ≤ 𝛼 ≤ B− 𝟥𝟨𝟫

𝟣𝟨𝟢 Z
𝟪𝟣
𝟦𝟢 | log Z |−K , then

(28.7.29) E*
N = ℰ𝖳𝖥

N + Scott

O
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + 𝛼

[︀
| log𝛼|

𝟣
𝟥 B

𝟤
𝟫 Z

𝟤𝟥
𝟫 + (𝛼B)

𝟣𝟤𝟢
𝟤𝟢𝟫 Z

𝟥𝟪𝟦
𝟤𝟢𝟫 B

𝟥
𝟦 | log Z |K

]︀)︁
.

(iv) In any case

(28.7.30) Ê*
N = ℰ̂𝖳𝖥

N + Scott𝟢 + O
(︀
B

𝟣
𝟥 Z

𝟦
𝟥 + 𝛼Z 𝟥

)︀
.
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We leave to the reader the following

Problem 28.7.7. In the frameworks of fixed nuclei and free nuclei models
consider the case M ≥ 2, B ≥ Z and (Z − N)+ ≥ B

𝟧
𝟣𝟤 . Use results of

Sections 28.5 and 26.6. Recall that there are two cases: B
𝟧
𝟣𝟤 ≤ (Z−N)+ ≤ B

𝟥
𝟦

and (Z − N)+ ≥ B
𝟥
𝟦 .

In particular find out for which B this assumption could be skipped
without deterioration of the remainder estimates.

Ground State Density Asymptotics

Consider now asymptotics of 𝜌𝝭. Apart of independent interest one needs
them for estimate of excessive negative charge and estimate or asymptotics
of the ionization energy.

Theorem 28.7.8. Let M = 1, N ≍ Z , B ≲ Z
𝟦
𝟥 and 𝛼 ≤ 𝜅*Z−𝟣, with small

constant 𝜅*. Then

(i) If B ≤ Z , then

D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) = O
(︀
Z

𝟧
𝟥

)︀
(28.7.31)

and moreover this estimate could be improved to

D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) = O
(︁

Z
𝟧
𝟥

[︀
Z−𝛿 + B𝛿Z−𝛿 + (𝛼Z )𝛿

]︀)︁
;(28.7.32)

(ii) If Z ≤ B ≤ Z
𝟦
𝟥 , then

(28.7.33) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) = O
(︁

Z
𝟧
𝟥 + (𝛼B)

𝟦𝟢
𝟤𝟩 Z

𝟣𝟢𝟣
𝟪𝟣 | log Z |K

)︁
.

Proof. We need to consider only the case when errors in the estimates for E*
N

exceed those announced in (28.7.31)–(28.7.33). Otherwise an estimate for
D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) follow from the estimates from above and below for
E*
N as estimates from below contain the “bonus term” D(𝜌𝝭−𝜌𝖳𝖥, 𝜌𝝭−𝜌𝖳𝖥).
Let in the estimate from below pick up 𝜆′ = 𝜆N and in the estimate from

above pick up A′ as a minimizer for a potential W 𝖳𝖥
B + 𝜆′ with 𝜆′ = 𝜆N ; we
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do not calculate asymptotics of the trace terms since these terms in both
estimates coincide36); then we arrive to estimate

(28.7.34) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥)

≤ CD(tr e(x , x ,𝜆N)− 𝜌𝖳𝖥, tr e(x , x ,𝜆N)− 𝜌𝖳𝖥) + CZ
𝟧
𝟥

and we need to estimate the first term in the right-hand expression.
Let us scale as usual. Then 𝛽h ≲ 1 since B ≤ Z

𝟦
𝟥 and our standard

arguments estimate this term by C
(︀
h−𝟤+h− 𝟧

𝟥𝜈
𝟤
𝟥

)︀𝟤
with 𝜈 = (𝜅𝛽)

𝟣𝟢
𝟫 h

𝟦
𝟫 | log h|K .

Plugging 𝛽 = BZ−𝟣, h = Z− 𝟣
𝟥 , 𝜅 = 𝛼Z and multiplying by Z

𝟣
𝟥 due to

the spatial scaling we arrive exactly to (28.7.31) and (28.7.33).
Furthermore, as 𝛽 ≪ 1 let us consider contribution of the main zone

{x : h𝛿 ≤ ℓ(x) ≤ h−𝛿+(𝛽+𝜅)𝛿} and use propagation arguments and improved
electrostatic inequality; then we arrive to estimate Ch−𝟦(h + 𝛽 + 𝜅)𝛿 which
after rescaling becomes (28.7.32).

We leave all easy details to the reader.

Consider now case M ≥ 2. Then no matter what is the distance between
nuclei (as long as it is greater than 𝜖Z− 𝟣

𝟥 ) we need to add one or two more
extra terms.

(a) The first one always appears and it is what becomes from C𝛽𝟤
𝟣h−𝟤

𝟣 𝜈𝟣ℓ
−𝟣

as we plug 𝛽𝟣 = 𝛽ℓ𝟥, h𝟣 = hℓ, 𝜅𝟣 = 𝜅ℓ−𝟥, 𝜈𝟣 = (𝜅𝟣𝛽𝟣)
𝟣𝟢
𝟫 h

𝟦
𝟫
𝟣 | log h𝟣|K ≍

(𝜅𝛽)
𝟣𝟢
𝟫 h

𝟦
𝟫 ℓ

𝟦
𝟫 | log h|K , and multiply by ℓ−𝟣 we get ℓ in the positive power and

therefore we must plug the largest possible ℓ which in case (Z − N)+ ≤ B
𝟥
𝟦

is ℓ = (𝛽h)−
𝟣
𝟦 . Also plugging 𝜅 = 𝛼Z , 𝛽 = BZ−𝟣, h = Z− 𝟣

𝟥 and ℓ =

(𝛽h)−
𝟣
𝟦 = B− 𝟣

𝟦 Z
𝟣
𝟥 and multiplying by Z

𝟣
𝟥 due to the scaling (with a possible

improvement for B ≪ Z ) we arrive to 𝛼
𝟦𝟢
𝟤𝟩 B

𝟫
𝟦 | log Z |K . One can see easily

that this term is larger than the second term in (28.7.33).

For (Z −N)+ ≥ B
𝟥
𝟦 this term will be smaller than the second extra term.

(b) The second extra term appears only if (Z − N)+ ≳ B
𝟧
𝟣𝟤 .

(b)𝟣 For B
𝟧
𝟣𝟤 ≤ (Z − N)+ ≤ B

𝟥
𝟦 it is what becomes from 𝛽𝟤

𝟤h−𝟥
𝟤 𝛾−𝟦| log 𝛾|𝟤

with substitutions 𝛽𝟤 = 𝛽𝟣𝛾
−𝟣, h𝟤 = h𝟣𝛾

−𝟥, 𝛾 = (Z − N)
𝟣
𝟦
+B− 𝟥

𝟣𝟨 and with

𝛽𝟣, h𝟣, ℓ defined above (we still need to multiply by Z
𝟣
𝟥 ).

36) Due to the matching choices of A′ and 𝜆′.



28.7. APPLICATIONS TO THE GROUND STATE ENERGY 379

(b)𝟤 For (Z−N)+ ≥ B
𝟥
𝟦 it is what becomes out 𝛽𝟤

𝟣h−𝟥
𝟣 ℓ−𝟣 with ℓ = (Z−N)

− 𝟣
𝟥

+ .

Thus we arrive to

Theorem 28.7.9. Let M ≥ 2, N ≍ Z𝟣 ≍ ... ≍ ZM , B ≲ Z
𝟦
𝟥 . Further, let

𝛼 ≤ 𝜅*Z−𝟣, d ≳ Z− 𝟣
𝟥 . Then

(i) For B ≤ Z estimate (28.7.31) holds and, moreover, it could be improved
to

(28.7.35) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥)

= O
(︁

Z
𝟧
𝟥

[︀
Z−𝛿 + B𝛿Z−𝛿 + (𝛼Z )𝛿 + (dZ

𝟣
𝟥 )−𝛿

]︀)︁
.

(ii) For B ≥ Z and (Z − N)+ ≤ B
𝟧
𝟣𝟤

(28.7.36) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) = O
(︁

Z
𝟧
𝟥 + 𝛼

𝟣𝟢
𝟫 B

𝟫
𝟦 | log Z |K

)︁
.

(iii) For B ≥ Z and B
𝟧
𝟣𝟤 ≤ (Z − N)+ ≤ B

𝟥
𝟦

(28.7.37) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥)

= O
(︁

Z
𝟧
𝟥 + 𝛼

𝟣𝟢
𝟫 B

𝟫
𝟦 | log Z |K + B

𝟣𝟧
𝟣𝟨 (Z − N)

𝟥
𝟦
+(1 + | log(Z − N)+B− 𝟣

𝟥 |)𝟤
)︁
.

(iv) For B ≥ Z and (Z − N)+ ≤ B
𝟥
𝟦

(28.7.38) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) = O
(︁

Z
𝟧
𝟥 + B𝟤(Z − N)

− 𝟤
𝟥

+

)︁
.

Corollary 28.7.10. Estimates (28.7.31), (28.7.35)– (28.7.38) hold for a
free nuclei model.

28.7.4 Main Theorems: Z
𝟦
𝟥 ≤ B ≤ Z 𝟥

Ground State Energy Asymptotics

For Z
𝟦
𝟥 ≤ B ≤ Z 𝟥 we select A′ = 0 in the estimate from above and therefore

just apply an upper estimate E*
N from Subsection 26.6.3. Combined with

estimate from below provided by Theorem 28.6.2 it implies the following



380 CHAPTER 28. COMBINED MAGNETIC FIELD

Theorem 28.7.11. Let Z
𝟦
𝟥 ≲ B ≲ Z 𝟥, Z𝟣 ≍ ... ≍ ZM ≍ N, and 𝛼 ≤ 𝜅*Z−𝟣

with small constant 𝜅*, and also 𝛼 ≤ B− 𝟦
𝟧 Z

𝟤
𝟧 | log Z |−K . Then

(i) For M = 1 and either (Z − N)+ ≲ B
𝟦
𝟣𝟧 Z

𝟣
𝟧 or 𝛼B

𝟥
𝟧 Z

𝟣
𝟧 ≳ 1

|E*
N − ℰ𝖳𝖥

N − Scott𝟢|(28.7.39)

does not exceed

C
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + B

𝟦
𝟧 Z

𝟥
𝟧 + 𝛼Z 𝟥 + 𝛼

𝟣𝟨
𝟫 B

𝟪𝟤
𝟦𝟧 Z

𝟦𝟫
𝟦𝟧 | log Z |K

)︁
.(28.6.3)

(ii) For M = 1 and (Z −N)+ ≳ B
𝟦
𝟣𝟧 Z

𝟣
𝟧 and 𝛼B

𝟥
𝟧 Z

𝟣
𝟧 ≲ 1 expression (28.7.39)

does not exceed

(28.6.4) C
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + B

𝟦
𝟧 Z

𝟥
𝟧 + 𝛼Z 𝟥 + 𝛼

𝟣𝟨
𝟫 B

𝟪𝟤
𝟦𝟧 Z

𝟦𝟫
𝟦𝟧 | log Z |K

+ 𝛼
𝟦𝟢
𝟤𝟩 B

𝟣𝟥
𝟣𝟧 Z

𝟣𝟥𝟫
𝟣𝟥𝟧 (Z − N)

𝟤𝟪
𝟤𝟩
+ | log Z |K

)︁
.

(iii) For M ≥ 2 and (Z −N)+ ≲ B
𝟦
𝟣𝟧 Z

𝟣
𝟧 expression (28.7.39) does not exceed

(28.7.40) C
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 +B

𝟦
𝟧 Z

𝟥
𝟧 (1+ | logBZ−𝟥|)𝟤+𝛼Z 𝟥+𝛼

𝟣𝟨
𝟫 B

𝟪𝟤
𝟦𝟧 Z

𝟦𝟫
𝟦𝟧 | log Z |K

)︁
.

(iv) For M ≥ 2 and (Z −N)+ ≳ B
𝟦
𝟣𝟧 Z

𝟣
𝟧 expression (28.7.39) does not exceed

(28.7.41) C
(︁

B
𝟣
𝟥 Z

𝟦
𝟥 + B

𝟦
𝟧 Z

𝟥
𝟧 (1 + | logBZ−𝟥|)𝟤 + 𝛼Z 𝟥 + 𝛼

𝟣𝟨
𝟫 B

𝟪𝟤
𝟦𝟧 Z

𝟦𝟫
𝟦𝟧 | log Z |K

+ B
𝟤
𝟥 (Z − N)+(1 + | log(Z − N)+Z−𝟣|)𝟤

)︁
.

Ground State Density Asymptotics

Consider now asymptotics of 𝜌𝝭. Apart of independent interest we need
them for estimate of excessive negative charge and estimate or asymptotics
of the ionization energy. We are interested as usual in D

(︀
𝜌𝝭−𝜌𝖳𝖥B , 𝜌𝝭−𝜌𝖳𝖥B

)︀
and we know that

Corollary 28.7.12. In the framework of Theorem 28.7.11(i), (ii), (iii),
(iv) D

(︀
𝜌𝝭 − 𝜌𝖳𝖥B , 𝜌𝝭 − 𝜌𝖳𝖥B

)︀
does not exceed the corresponding remainder

estimate (28.6.3), (28.6.4), (28.7.40), (28.7.41).
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If we want to get rid of 𝛼Z 𝟥 + B
𝟣
𝟥 Z

𝟦
𝟥 terms (which may be dominant

only for B ≤ Z
𝟩
𝟦 and B ≤ Z

𝟣𝟣
𝟩 respectively) we need not to find asymptotics

of the trace term but to have trace term in the estimates from above and
below more consistent. The only explored option is to take in the estimate
from above the same A′ as in the estimate from below, which is a minimizer
for the corresponding one particle problem.

Theorem 28.7.13. Let Z
𝟦
𝟥 ≲ B ≲ Z 𝟥, Z𝟣 ≍ ... ≍ ZM ≍ N, and 𝛼 ≤ 𝜅*Z−𝟣

with small constant 𝜅*, and also 𝛼 ≤ B− 𝟦
𝟧 Z

𝟤
𝟧 | log Z |−K .

(i) Let M = 1. Then D
(︀
𝜌𝝭 − 𝜌𝖳𝖥B , 𝜌𝝭 − 𝜌𝖳𝖥B

)︀
does not exceed

(28.7.42) CB
𝟦
𝟧 Z

𝟥
𝟧

+ C
(︁
𝛼

𝟣𝟨
𝟫 B

𝟪𝟤
𝟦𝟧 Z

𝟦𝟫
𝟦𝟧 + 𝛼

𝟦𝟢
𝟤𝟩 B− 𝟣𝟢

𝟫 Z
𝟣𝟤𝟩
𝟤𝟩 + 𝛼

𝟦𝟢
𝟤𝟩 B

𝟩𝟦
𝟦𝟧 Z

𝟣𝟣
𝟫𝟢 (Z − N)

𝟤𝟫
𝟧𝟦
+

)︁
| log Z |K .

(ii) Let M = 2 and the minimal distance between nuclei d ≳ B− 𝟤
𝟧 Z

𝟣
𝟧 . Then

D
(︀
𝜌𝝭 − 𝜌𝖳𝖥B , 𝜌𝝭 − 𝜌𝖳𝖥B

)︀
does not exceed

(28.7.43) CB
𝟦
𝟧 Z

𝟥
𝟧

+ C
(︁
𝛼

𝟦
𝟥 B

𝟤𝟤
𝟣𝟧 Z

𝟣𝟫
𝟣𝟧 + 𝛼

𝟦𝟢
𝟤𝟩 B− 𝟣𝟢

𝟫 Z
𝟣𝟤𝟩
𝟤𝟩 + B

𝟥
𝟧 Z

𝟫
𝟤𝟢 (Z − N)

𝟥
𝟦
+

)︁
| log Z |K .

Proof. We will use Propositions 28.6.5 and 28.6.6 to estimate (28.6.27). Let
us consider for each partition element

(28.7.44) |
∫︁ (︀

e(x , x ,𝜆′)− PB(V (x) + 𝜆′)
)︀
𝜓(x) dx |.

(a) Zone {x : ℓ(x) ≤ B−𝟣Z | log h|𝛿}. Here for each ℓ-element expression

(28.7.44) does not exceed Ra = C (h−𝟤
𝟣 + 𝛽𝟣h−𝟣

𝟣 )(1 + 𝜈
𝟤
𝟥
𝟣 h

𝟣
𝟥
𝟣 ) with 𝛽𝟣 = 𝛽ℓ

𝟥
𝟤 ,

h𝟣 = hℓ−
𝟣
𝟤 and 𝜈𝟣 defined according to Proposition 28.6.5(ii). As usual

𝛽 = B
𝟤
𝟧 Z− 𝟣

𝟧 and h = B
𝟣
𝟧 Z− 𝟥

𝟧 .

Then one can prove easily that the total contribution of this zone to

(28.7.45) D
(︀
e(x , x ,𝜆′)− PB(V (x) + 𝜆′), e(x , x ,𝜆′)− PB(V (x) + 𝜆′)

)︀
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does not exceed CBZ−𝟣R𝟤
a
37) which is the second term in the parenthesis of

(28.7.42) and (28.7.43) 38).

(b) Zone {x : B−𝟣Z | log h|𝛿 ≤ ℓ(x) ≤ 𝜖B− 𝟤
𝟧 Z

𝟣
𝟧} (with the exception of the

case 𝛾 ≥ | log h|−𝛿 which we leave to the reader). Here for each ℓ-element

expression (28.7.44) does not exceed Rb = C𝛽𝟣h−𝟣
𝟣 (1 + 𝜈

𝟤
𝟥
𝟣 h

𝟣
𝟥
𝟣 ) with 𝛽𝟣 = 𝛽ℓ

𝟥
𝟤 ,

h𝟣 = hℓ−
𝟣
𝟤 and 𝜈𝟣 defined according to Proposition 28.6.6(i).

Then one can prove easily that the total contribution of this zone to
(28.7.45) does not exceed CB

𝟤
𝟧 Z− 𝟣

𝟧 R𝟤
b
37) which is the first term in the paren-

thesis of (28.7.42) 38).

(c) Zone {x : 𝛾| log h|𝛿 ≤ 𝛾(x) ≤ C𝟢}. Here for each 𝛾-element expression

(28.7.44) does not exceed Rc where Rc = C𝛽𝟤h−𝟣
𝟤 (1 + 𝜈

𝟤
𝟥
𝟤 h

𝟣
𝟥
𝟤 ) (as M = 1) and

Rc = C𝛽𝟤h−𝟣
𝟤 𝜈

𝟣
𝟤
𝟤 (as M ≥ 2) with 𝛽𝟤 = 𝛽𝛾−𝟣, h𝟤 = h𝛾−𝟥 and 𝜈𝟤 defined by

Proposition 28.6.6(i) and redefined by Remark 28.5.9.

Then one can prove easily that the total contribution of this zone to
(28.7.45) does not exceed CB

𝟤
𝟧 Z− 𝟣

𝟧 R𝟤
c
37) which is the first term in the paren-

thesis of (28.7.42) and (28.7.43) for M = 1 and M ≥ 2 respectively 38).

(d) Zone {x : 𝛾(x) ≤ 𝛾| log h|𝛿}. Here for each 𝛾-element expression (28.7.44)

does not exceed Rd = C𝛽𝟤h−𝟣
𝟤 (1 + 𝜈

𝟤
𝟥
𝟤 h

𝟣
𝟥
𝟤 ) (as M = 1) and Rd = C𝛽𝟤h

− 𝟥
𝟤

𝟤 (as
M ≥ 2) with 𝛽𝟤 = 𝛽𝛾−𝟣, h𝟤 = h𝛾−𝟥 and 𝜈𝟤 defined by Proposition 28.6.6(ii).

Then one can prove easily that the total contribution of this zone to
(28.7.45) does not exceed CB

𝟤
𝟧 Z− 𝟣

𝟧 R𝟤
d𝛾

−𝟦 37) which is the third term in the
parenthesis of (28.7.42) and (28.7.43) for M = 1 and M ≥ 2 respectively 38).

28.A Appendices

28.A.1 Generalization of Lieb-Loss-Solovej Estimate

Proposition 28.A.1. Consider operator H defined by (27.1.1) with A =
A′+A′′, A′ = (A′

𝟣(x
′),A′

𝟤(x
′), 0), x ′ = (x𝟣, x𝟤), and A′′ = (A′′

𝟣(x),A′′
𝟤(x),A′′

𝟥(x))

37) Calculated for ℓ or 𝛾 on its maximum.
38) Modulo term not exceeding CB

𝟦
𝟧 Z

𝟥
𝟧 .
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on Ω. Assume that

(28.A.1)

∫︁
B ′ 𝟤 dx ≥

∫︁
B ′′ 𝟤 dx

with B = |∇ × A|, B ′ = |∇ × A′|, B ′′ = |∇ × A′′|. Then

(28.A.2) − Tr(H−
A,V ) ≤

C

∫︁
V

𝟧
𝟤
+ (x) dx + C

(︁∫︁
B𝟤 dx

)︁ 𝟣
𝟤
(︁∫︁

B ′′ 𝟤 dx +

∫︁
V 𝟤 dx

)︁ 𝟣
𝟦
(︁∫︁

V 𝟦 dx
)︁ 𝟣

𝟦
+

C
(︁∫︁

B𝟤 dx
)︁ 𝟥

𝟪
(︁∫︁

V 𝟤 dx
)︁ 𝟥

𝟪
(︁∫︁

V 𝟦 dx
)︁ 𝟣

𝟦
.

Proof. Without any loss of the generality we can assume that V ≥ 0. We
apply the moving frame technique of Lieb-Loss-Solovej [1]. Obviously

(28.A.3) − Tr(H−
A,V ) =

∫︁ ∞

𝟢

N−(HA,V + 𝜆) d𝜆 =∫︁ ∞

𝟢

N−(HA,𝟢 + 𝜆− V ) d𝜆 ≤
∫︁ ∞

𝟢

N−(︀HA,𝟢 + (𝜆− V )𝜑(𝜆)
)︀

d𝜆

with 𝜑(𝜆) = max(1,𝜆𝜇−𝟣) since HA,𝟢 ≥ 0. Since

(28.A.4) HA,𝟢 =
(︀
P · σ

)︀𝟤
=

(︀
P ′ · σ′)︀𝟤 + P𝟤

𝟥 +
∑︁
j=𝟣,𝟤

[Pj ,P𝟥] [σj ,σ𝟥] ≥

H ′
A,𝟢 + P𝟤

𝟥 − B ′′

with

H ′
A,𝟢 =

(︀
P ′ · σ′)︀𝟤 = (︀∑︁

j=𝟣,𝟤

Pj · σj

)︀𝟤
,(28.A.5)

Pj = Dj − Aj , we conclude that −Tr(H−
A,V ) does not exceed∫︁ ∞

𝟢

N−(︀H ′
A,𝟢 + P𝟤

𝟥 − B ′′ + (𝜆− V )𝜑(𝜆)
)︀

d𝜆.(28.A.6)

Consider this integral over (𝜇,∞); it is equal to∫︁ ∞

𝜇

N−(︀H ′
A,𝟢 + P𝟤

𝟥 − B ′′ + (𝜆− V )𝜆𝜇−𝟣
)︀

d𝜆(28.A.7)
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and since H ′
A,𝟢 ≥ 0 this integral does not exceed∫︁ ∞

𝜇

N−(︀H ′
A,𝟢 + a[P𝟤

𝟥 − B ′′ + (𝜆− V )𝜆𝜇−𝟣]
)︀

d𝜆(28.A.8)

with a ≥ 1; since H ′
A,𝟢 ≥ P𝟤

𝟣 +P𝟤
𝟤 −|B | this integral (28.A.8) does not exceed∫︁ ∞

𝜇

N−(︀P𝟤
𝟣 + P𝟤

𝟤 − B + a[P𝟤
𝟥 − B ′′ + (𝜆− V )𝜆𝜇−𝟣]

)︀
d𝜆(28.A.9)

which can be estimated due to CLR inequality after rescaling x𝟥 ↦→ a
𝟣
𝟤 x𝟥,

P𝟥 ↦→ a− 𝟣
𝟤 P𝟥 by

C

∫︁ ∫︁ ∞

𝜇

a− 𝟣
𝟤

(︀
B + a[B ′′ + (V − 𝜆)𝜆𝜇−𝟣]

)︀ 𝟥
𝟤

+
d𝜆dx

≤C

∫︁ ∫︁ ∞

𝜇

a− 𝟣
𝟤

(︀
B − 1

3
a𝜆𝟤𝜇−𝟣

)︀ 𝟥
𝟤

+
d𝜆dx

+C

∫︁ ∫︁ ∞

𝜇

a
(︀
B ′′ − 1

3
𝜆𝟤𝜇−𝟣

)︀ 𝟥
𝟤

+
d𝜆dx

+C

∫︁ ∫︁ ∞

𝜇

a(𝜆𝜇−𝟣)
𝟥
𝟤 (V − 1

3
𝜆)

𝟥
𝟤
+ d𝜆dx

≤ Ca−𝟣𝜇
𝟣
𝟤

∫︁
B𝟤 dx + Ca𝜇

𝟣
𝟤

∫︁
B ′′𝟤 dx + Ca𝜇− 𝟥

𝟤

∫︁
V 𝟦 dx ,

where we integrated over [0,∞]. Optimizing with respect to a ≥ 1 we get

(28.A.10) C
(︁∫︁

B𝟤 dx
)︁ 𝟣

𝟤
(︁
𝜇

∫︁
B ′′𝟤 dx + 𝜇−𝟣

∫︁
V 𝟦 dx

)︁ 𝟣
𝟤

+ C𝜇
𝟣
𝟤

∫︁
B ′′𝟤 dx + C𝜇− 𝟥

𝟤

∫︁
V 𝟦 dx .

Therefore integral (28.A.7) does not exceed (28.A.10).
Consider integral (28.A.6) over [0,𝜇]; it is

(28.A.11)

∫︁ 𝜇

𝟢

N−(︀H ′
A,𝟢 + P𝟤

𝟥 − B ′′ + (𝜆− V )
)︀

d𝜆

and exactly as before it does not exceed

C

∫︁ ∫︁ 𝜇

𝟢

a− 𝟣
𝟤

(︀
B − 1

3
a𝜆

)︀ 𝟥
𝟤

+
d𝜆dx + C

∫︁ ∫︁ 𝜇

𝟢

a
(︀
B ′′ − 1

3
𝜆
)︀ 𝟥

𝟤

+
d𝜆dx

+ C

∫︁ ∫︁ 𝜇

𝟢

a(V − 1

3
𝜆)

𝟥
𝟤
+ d𝜆dx
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with a ≥ 1; in first two integrals we replace (in parenthesis) 𝜆 by 𝜆𝟤𝜇−𝟣 and
expand integral to [0,∞], arriving to

Ca−𝟣𝜇
𝟣
𝟤

∫︁
B𝟤 dx + Ca𝜇

𝟣
𝟤

∫︁
B ′′𝟤 dx + C

∫︁
aV

𝟥
𝟤 min(V ,𝜇) dx ;

optimizing with respect to a ≥ 1 we get

(28.A.12) C
(︁∫︁

B𝟤 dx
)︁ 𝟣

𝟤
(︁
𝜇

∫︁
B ′′𝟤 dx + 𝜇

𝟣
𝟤

∫︁
V

𝟥
𝟤 min(V ,𝜇) dx

)︁ 𝟣
𝟤

+ C𝜇
𝟣
𝟤

∫︁
B ′′𝟤 dx + C

∫︁
V

𝟥
𝟤 min(V ,𝜇) dx .

Therefore integral (28.A.11) does not exceed (28.A.12) and the whole ex-
pression does not exceed

C
(︁∫︁

B𝟤 dx
)︁ 𝟣

𝟤
(︁
𝜇

∫︁
B ′′𝟤 dx + 𝜇−𝟣

∫︁
V 𝟦 dx + 𝜇

𝟣
𝟤

∫︁
V

𝟥
𝟤 min(V ,𝜇) dx

)︁ 𝟣
𝟤

+ C𝜇
𝟣
𝟤

∫︁
B ′′𝟤 dx + C𝜇− 𝟥

𝟤

∫︁
V 𝟦 dx + C

∫︁
V

𝟥
𝟤 min(V ,𝜇) dx ;

replacing min(V ,𝜇) by V
𝟣
𝟤𝜇

𝟣
𝟤 and V in the first and second lines respectively

we get

C
(︁∫︁

B𝟤 dx
)︁ 𝟣

𝟤
(︁
𝜇

∫︁
B ′′𝟤 dx + 𝜇−𝟣

∫︁
V 𝟦 dx + 𝜇

∫︁
V 𝟤 dx

)︁ 𝟣
𝟤

+ C𝜇
𝟣
𝟤

∫︁
B ′′𝟤 dx + C𝜇− 𝟥

𝟤

∫︁
V 𝟦 dx + C

∫︁
V

𝟧
𝟤 dx .

We skip the last term since it is already in (28.A.2); temporarily skip
monotone increasing by 𝜇 selected term; optimizing the rest by 𝜇 > 0 we get

C
(︁∫︁

B𝟤 dx
)︁ 𝟣

𝟤
(︁∫︁

B ′′ 𝟤 dx
)︁ 𝟣

𝟦
(︁∫︁

V 𝟦 dx
)︁ 𝟣

𝟦
.

Now we are left with

C𝜇
𝟣
𝟤

(︁∫︁
B𝟤 dx

)︁ 𝟣
𝟤
(︁∫︁

V 𝟤 dx
)︁ 𝟣

𝟤
+ C𝜇− 𝟣

𝟤

(︁∫︁
B𝟤 dx

)︁ 𝟣
𝟤
(︁∫︁

V 𝟦 dx
)︁ 𝟣

𝟤
+

C𝜇− 𝟥
𝟤

∫︁
V 𝟦 dx .
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Optimizing by 𝜇 > 0 we get

C
(︁∫︁

B𝟤 dx
)︁ 𝟣

𝟤
(︁∫︁

V 𝟤 dx
)︁ 𝟣

𝟦
(︁∫︁

V 𝟦 dx
)︁ 𝟣

𝟦
+

C
(︁∫︁

B𝟤 dx
)︁ 𝟥

𝟪
(︁∫︁

V 𝟤 dx
)︁ 𝟥

𝟪
(︁∫︁

V 𝟦 dx
)︁ 𝟣

𝟦

which concludes the proof.

28.A.2 Electrostatic Inequality

Proposition 28.A.2. (i) Let B ≤ Z 𝟥, 𝛼 ≤ 𝜅*Z−𝟣, c−𝟣Z ≤ N ≤ cZ .

Further, if B ≥ Z
𝟦
𝟥 then 𝛼B

𝟦
𝟧 Z− 𝟤

𝟧 ≤ 𝜖. Then

(28.A.13)
∑︁

𝟣≤j<k≤M

∫︁
|xj − xk |−𝟣|Ψ(x𝟣, ... , xN)|𝟤 sdx𝟣 · · · dxN

≥ D(𝜌𝝭, 𝜌𝝭)− C
(︀
Z

𝟧
𝟥 + B

𝟤
𝟧 Z

𝟣𝟩
𝟣𝟧 + B

)︀
;

(ii) Further, afor B ≤ Z one can replace the last term in (28.A.13) by

Dirac− CZ
𝟧
𝟥
−𝛿.

Remark 28.A.3. Without self-generated magnetic field the last term was
−C (Z

𝟧
𝟥 + B

𝟤
𝟧 Z

𝟣𝟩
𝟣𝟧 ) and probably it holds here but does not give us any

advantage; for B ≥ Z we need only C
(︀
Z

𝟧
𝟥 + B

𝟦
𝟧 Z

𝟥
𝟧

)︀
estimate.

Proof. Since we prove estimate from below we replace first

⟨
∑︁

𝟣≤j≤N

(HA,V )xjΨ, Ψ⟩

by

⟨
∑︁

𝟣≤j≤N

(HA,W )xjΨ, Ψ⟩+
∫︁
(W − V )𝜌𝝭 dx

without changing anything else and then we estimate the first term here
from below by Tr(H−

A,W ) ; then in Tr(H−
A,W ) + 𝛼−𝟣‖𝜕A′‖𝟤 we replace A′

by a minimizer for this expression (rather than for the original problem)
only decreasing this expression. So we can now consider A′ a minimizer of
Section 28.5.
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Then we follow arguments of Appendix 26.A.1 but now we need to justify
magnetic Lieb-Thirring estimate (26.A.12)

(26.A.12) Tr(H−
A,W ) ≥ −C

∫︁
PB(W ) dx

in the current settings and with W : CP ′(W ) = 𝜌𝝭 and then W ≍
min(B−𝟤𝜌𝟤𝝭; 𝜌

𝟤
𝟥
𝝭).

Estimate (26.A.12) has been proven in L. Erdös [1] (Theorem 2.2) under

assumption that intensity of the magnetic field B⃗(x) has a constant direction
which was the case in Chapter 25 but not here.

However we actually we do not need (26.A.12); we need this estimate
but with an extra term −CR in the right-hand expression where in (i)

R = (Z
𝟧
𝟥 + B

𝟦
𝟧 Z

𝟥
𝟧 ) is the last term in (28.A.13) and in (ii) R = CZ

𝟧
𝟥
−𝛿.

Further, the same paper L. Erdös [1]) provides an alternative version of

Theorem 2.2: as long as |𝜕A′| ≤ B it is sufficient to estimate |𝜕𝟤A| ≤ cB
𝟥
𝟤 .

One can check easily that this pointwise estimate holds if either B ≤ Z 𝟤

and ℓ(x) ≥ r* := B− 𝟥
𝟤 Z

𝟣
𝟥 or Z 𝟤 ≤ B ≤ Z 𝟥 and ℓ(x) ≥ r* = Z−𝟣. Introducing

partition into two zones {x : ℓ(x) ≥ r*} and {x : ℓ(x) ≤ 2r*} adds ℓ−𝟤𝜑(x)
with 𝜑(x) = 1{x : r*≤ℓ(x)≤𝟤r*}, which adds −CR to the right-hand expression
of (26.A.12).

Therefore we need to deal with the zone {x : ℓ(x) ≤ 2r*}. In this zone
however we can neglect an external field; indeed, as in Remark 27.4.1 we
get the same estimate (27.4.25) but with B intensity of the combined field;
however

∫︀
B𝟤 dx over this zone does not exceed CR . This concludes proof of

Statement (i).
Statement (ii) is proven in the same manner as in Appendix 26.A.1. We

leave details to the reader.

28.A.3 Estimates for (hDxj − 𝜇xj)e(x , y , 𝜏)|x=y for
Toy-Model Operator

We will use here notations of Subsection 27.5.1.

Calculations

Let us calculate the required expressions as X = ℝ𝟥 and A(x) and V (x)
are linear. To do this we can consider just Schrödinger operator (acting on
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vector-functions) and then replace V by V ± 𝜇h where 𝜇 is the magnetic
intensity; since σjσk + σkσj = 2δjk we have to consider scalar a Schrödinger
operator. Let us apply calculations of Subsection 16.6.1 with operator

(28.A.14) H = h𝟤D𝟤
𝟣 + (hD𝟤 − 𝜇x𝟣)

𝟤 + hD𝟤
𝟥 − 2𝛼x𝟣 − 2𝛽x𝟥,

where without any loss of the generality we assume that 𝛼 ≥ 0, 𝛽 ≥ 0.
After rescaling x ↦→ 𝜇x , y ↦→ 𝜇y , t ↦→ 𝜇t, 𝜇 ↦→ 1 (but we will

need to use old 𝜇 in calculations), h ↦→ ℏ = 𝜇h we have U(x , y , t) =
U(𝟣)(x𝟥, y𝟥, t)U(𝟤)(x

′, y ′, t) where from (16.6.4)

(28.A.15) U(𝟣)(x𝟥, y𝟥, t) =

1

2
𝜇(2𝜋ℏ|t|)−

𝟣
𝟤 exp

(︁
iℏ−𝟣

(︀
𝜇−𝟣𝛽t(x𝟥 + y𝟥) +

1

8
t−𝟣(x𝟥 − y𝟥)

𝟤 +
1

3
𝜇−𝟤𝛽𝟤t𝟥

)︀)︁
;

and repeating (16.2.9)–(28.A.16) we get

(28.A.16) U(𝟤)(x , y , t) = i(4𝜋ℏ)−𝟣𝜇𝟤 csc(t) e iℏ−𝟣𝜑(𝟤)(x
′,y ′,t)

with

𝜑(𝟤) :=− 1

4
cot(t)(x𝟣 − y𝟣)

𝟤(28.A.17)

+
1

2
(x𝟣 + y𝟣 + 2𝛼𝜇−𝟣)(x𝟤 − y𝟤 + 2t𝛼𝜇−𝟣)

− 1

4
cot(t)(x𝟤 − y𝟤 + 2t𝛼𝜇−𝟣)𝟤 − t𝛼𝟤𝜇−𝟤.

Then

(28.A.18) U(x , y , t) = i(2𝜋h)−
𝟥
𝟤 |t|−

𝟣
𝟤𝜇

𝟥
𝟤 csc(t) e iℏ−𝟣𝜑(x ,y ,t)

with

(28.A.19) 𝜑 := −1

4
cot(t)(x𝟣 − y𝟣)

𝟤

+
1

2
(x𝟣+y𝟣+2𝛼𝜇−𝟣)(x𝟤−y𝟤+2t𝛼𝜇−𝟣)−1

4
cot(t)(x𝟤−y𝟤+2t𝛼𝜇−𝟣)𝟤−t𝛼𝟤𝜇−𝟤+

𝜇−𝟣𝛽t(x𝟥 + y𝟥) +
1

8
t−𝟣(x𝟥 − y𝟥)

𝟤 +
1

3
𝜇−𝟤𝛽𝟤t𝟥

)︀
.
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Therefore applying first ℏDx𝟣 , ℏDx𝟤 − 𝜇x𝟣, or ℏDx𝟥 and setting after this
x = y = 0 we conclude that(︀

ℏDx𝟣U)|x=y=𝟢 = i𝛼𝜇−𝟣t×(2𝜋h)−
𝟥
𝟤 |t|−

𝟣
𝟤𝜇

𝟥
𝟤 e iℏ−𝟣𝜙(t),(28.A.20)𝟣 (︀

ℏDx𝟤U)|x=y=𝟢 = i𝛼𝜇−𝟣(1− t cot(t))×(2𝜋h)−
𝟥
𝟤 |t|−

𝟣
𝟤𝜇

𝟥
𝟤 e iℏ−𝟣𝜙(t),(28.A.20)𝟤 (︀

ℏDx𝟥U)|x=y=𝟢 = i𝛽𝜇−𝟣t×(2𝜋h)−
𝟥
𝟤 |t|−

𝟣
𝟤𝜇

𝟥
𝟤 e iℏ−𝟣𝜙(t)(28.A.20)𝟥

with

(28.A.21) 𝜙(t) = 𝛼𝟤𝜇−𝟤t − 𝛼𝟤𝜇−𝟤t𝟤 cot(t) +
1

3
𝜇−𝟤𝛽𝟤t𝟥.

In other words, in comparison with U |x=y=𝟢, calculated in Subsection 16.6.1,
expressions

(︀
ℏDx𝟣U)|x=y=𝟢,

(︀
ℏDx𝟤U)|x=y=𝟢 and

(︀
ℏDx𝟥U)|x=y=𝟢 acquire factors

𝜇−𝟣𝛼t, 𝜇−𝟣𝛼(1− t cot(t)) and 𝜇−𝟣𝛽t respectively.
Recall that we had 2 cases: 𝜇𝟤h ≤ 𝛼 and 𝜇𝟤h ≥ 𝛼.

Case 𝛼 ≥ 𝜇𝟤h

Then for each k , 1 ≤ |k | ≤ C𝟢𝜇𝛼
−𝟣, the k-th tick contributed no more than

(28.A.22) C𝜇h−𝟣 (𝜇𝟤h/𝛼|k |)
𝟣
𝟤 ×(𝜇/h|k |)

𝟣
𝟤

to Ft→ℏ−𝟣𝜏U |x=y=𝟢 (see Subsection 16.6.2) and then it contributed no more
than this multiplied by |tk |−𝟣, i.e.

(28.A.23) C𝜇h−𝟣|k |−𝟣 (𝜇𝟤h/𝛼|k |)
𝟣
𝟤 ×(𝜇/h|k |)

𝟣
𝟤

to the corresponding Tauberian expression. Even when we multiply by
𝜇−𝟣|k |, we get (28.A.22) again proportional to |k |−𝟣; then summation with
respect to k , 1 ≤ |k | ≤ k* := C𝟢𝜇(𝛼 + 𝛽)−𝟣 39) returns its value at k = 1, i.e.

𝜇
𝟥
𝟤 h−𝟣𝛼− 𝟣

𝟤 multiplied by logarithm (1 + | log k*|) and therefore we arrive to
Proposition 28.A.4 below for j = 1, 3.

Let j = 2. Since tk/ cot(tk) ≍ 𝛼−𝟣𝜇 we conclude that contribution of
k-th tick does not exceed

(28.A.24) C𝜇h−𝟣|k |−𝟣 (𝜇𝟤h/𝛼|k |)
𝟣
𝟤 ×(𝜇/h|k |)

𝟣
𝟤

39) As |t| ≥ k* we have 𝜑′(t) ≥ c𝟣 and then integrating by parts there we can recover
factor (t/k*)−n thus effectively confining us to integration over {t : |t| ≤ k*}. This
observation can also improve some results of Sections 16.6–16.10.
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and summation by |k | ≥ 1 returns its value as |k | = 1 i.e. C𝜇
𝟧
𝟤 h−𝟣𝛼− 𝟣

𝟤 and
therefore we arrive to proposition 28.A.4 below for j = 2.

Proposition 28.A.4. Let 𝜇h ≤ 𝜖𝟢, 𝜏 ≍ 1, 𝛼 ≥ 𝜇𝟤h.
Then

(i) Expression (hDx𝟤 − 𝜇x𝟣)e(x , y , 𝜏)|x=y=𝟢 does not exceed C𝜇
𝟧
𝟤 h−𝟣𝛼− 𝟣

𝟤 .

(ii) Expression hDxj e(x , y , 𝜏)|x=y=𝟢 does not exceed

C𝜇
𝟥
𝟤 h−𝟣𝛼

𝟣
𝟤 (1+ | log 𝜇(𝛼+𝛽)−𝟣|), and C𝜇

𝟥
𝟤 h−𝟣𝛽𝛼− 𝟣

𝟤 (1+ | log 𝜇(𝛼+𝛽)−𝟣|) for
j = 1, 3 respectively.

Case 𝛼 ≤ 𝜇𝟤h

If 𝜇𝟤h ≥ 𝛼, then the same arguments work only for k̄ := 𝜇𝟤h𝛼−𝟣 ≤ |k | ≤ k*,

resulting in contributions C𝜇
𝟥
𝟤 h−𝟣𝛼

𝟣
𝟤 (1 + | log k*k̄−𝟣|), C𝜇

𝟣
𝟤 h−𝟤𝛼

𝟣
𝟤 , and

C𝜇
𝟥
𝟤 h−𝟣𝛽𝛼− 𝟣

𝟤 (1 + | log k*k̄−𝟣|) for j = 1, 2, 3 respectively if k̄ ≤ k* (i.e.
𝜇h𝛽 ≤ 𝛼) or 0 otherwise.

Let 1 ≤ |k | ≤ k̄ . We mainly consider the most difficult case j = 2 and
(as |t| ≥ 𝜖𝟢) only term arising from −𝛼𝜇−𝟣t cot(t) factor, namely

(28.A.25) 𝛼𝜇−𝟣 × 𝜇
𝟥
𝟤 h− 𝟥

𝟤

∫︁
|t|−

𝟣
𝟤 cos(t)(sin(t))−𝟤e iℏ−𝟣(𝜙(t)−t𝜏) dt,

where we took into account that we need to divide by t and skipped a
constant factor.

Consider first (28.A.25) with integration over interval {t : |t − tk | ≤ sk}
near tk . Observe that

(28.A.26) 𝜑′(t) = (sin(t))−𝟤𝛼𝟤𝜇−𝟤t𝟤 − 2t(sin(t))−𝟣𝛼𝟤𝜇−𝟤t𝟤 + 𝛽𝟤t𝟤

and transform (28.A.25) into

(28.A.27) 𝛼−𝟣𝜇
𝟩
𝟤 h− 𝟣

𝟤

∫︁ tk+sk

tk−sk

|t|−
𝟧
𝟤 cos(t)𝜕t

[︀
e iℏ−𝟣(𝜙(t)−t𝜏)

]︀
dt

+𝛼−𝟣𝜇
𝟧
𝟤 h− 𝟥

𝟤

∫︁ tk+sk

tk−sk

|t|−
𝟧
𝟤 cos(t)

[︀
2t(sin(t))−𝟣𝛼𝟤𝜇−𝟤−𝛽𝟤t𝟤+𝜏

]︀
e iℏ−𝟣(𝜙(t)−t𝜏).

Integrating the first term by parts we get a non-integral term

(28.A.28) 𝛼−𝟣𝜇
𝟩
𝟤 h− 𝟣

𝟤 |t|−
𝟧
𝟤 cos(t)e iℏ−𝟣(𝜙(t)−t𝜏)

⃒⃒t=tk+sk

t=tk−sk



28.A. APPENDICES 391

and we get an integral term

(28.A.29) 𝛼−𝟣𝜇
𝟧
𝟤 h− 𝟥

𝟤

∫︁ tk+sk

tk−sk

[︁
𝜇h𝜕t

[︀
|t|−

𝟧
𝟤 cos(t)

]︀
+ |t|−

𝟧
𝟤 cos(t)

[︀
2t(sin(t))−𝟣𝛼𝟤𝜇−𝟤 − 𝛽𝟤t𝟤 + 𝜏

]︀]︁
e iℏ−𝟣(𝜙(t)−t𝜏) dt

= 2𝛼𝜇
𝟣
𝟤 h− 𝟥

𝟤

∫︁ tk+sk

tk−sk

|t|−
𝟥
𝟤 cot(t)e iℏ−𝟣(𝜙(t)−t𝜏) dt + O

(︀
𝛼−𝟣𝜇

𝟧
𝟤 h− 𝟥

𝟤 sk |k |−
𝟧
𝟤

)︀
.

Repeating the same trick we can eliminate the first term in the right-most
expression. Therefore we arrive to (28.A.28) with O

(︀
𝛼−𝟣𝜇

𝟧
𝟤 h− 𝟥

𝟤 sk |k |−
𝟧
𝟤

)︀
error. When sk ≍ 𝛼𝟤𝜇−𝟥h−𝟣k𝟤 we get

(28.A.30) C𝜇
𝟥
𝟤 h− 𝟥

𝟤 × (𝛼/𝜇𝟤h)|k |−
𝟣
𝟤

error.
On the other hand, consider integral over [tk + sk , tk+𝟣− sk+𝟣], k ̸= 0. De-

composing e i𝜇−𝟣h−𝟣(𝜑(t)−t𝜏) into Taylor series with respect to 𝛼𝟤h−𝟣𝜇−𝟥 cot(t)
one can prove easily that expression in question is

𝛼−𝟣𝜇
𝟩
𝟤 h− 𝟣

𝟤 |t|−
𝟧
𝟤 cos(t)

(︀
e iℏ−𝟣(𝜙(t)−t𝜏) − e iℏ−𝟣(𝜙(𝟣)(t)−t𝜏)

)︀⃒⃒t=tk+𝟣−sk+𝟣

t=tk+sk

with 𝜙(𝟣)(t) =
𝟣
𝟥
𝜇−𝟤𝛽𝟤t𝟥 and with error not exceeding (28.A.30) multiplied

by (1 + | log sk |):

(28.A.31) C𝜇
𝟥
𝟤 h− 𝟥

𝟤 × (𝛼/𝜇𝟤h)|k |−
𝟣
𝟤 × (1 + | log(𝛼𝟤𝜇−𝟥h−𝟣k𝟤)|).

So non-integral terms with 𝜙 cancel one another because by the similar
arguments we can also cover [0, t𝟣 − s𝟣] and [t−𝟣 + s−𝟣] and due to non-
singularity of t−𝟣(1− t cot(t)) csc(t) at t = 0 there will be no non-integral
terms with k = 0. So we are left with

−𝛼−𝟣𝜇
𝟩
𝟤 h− 𝟣

𝟤 |t|−
𝟧
𝟤 cos(t)e iℏ−𝟣(𝜙(𝟣)(t)−t𝜏)

)︀⃒⃒t=tk+sk

t=tk−sk

and their absolute values do not exceed (28.A.30).
Finally, summation of (28.A.31) by k : 1 ≤ |k | ≤ min(k̄ , k*) returns

(28.A.32) C𝜇
𝟥
𝟤 h− 𝟥

𝟤 (𝛼/𝜇𝟤h)
𝟣
𝟤

×

{︃
(1 + | log(𝜇h)|) 𝛽𝜇h ≤ 𝛼,

(𝛼/𝛽𝜇h)
𝟣
𝟤 (1 + | log(𝜇h)|+ | log(𝛼/𝛽𝜇h)|) 𝛽𝜇h ≥ 𝛼.

and we arrive to Proposition 28.A.5 below for j = 2:
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Proposition 28.A.5. Let 𝜇h ≤ 𝜖𝟢, 𝜏 ≍ 1, and 𝛼 ≤ 𝜇𝟤h.
Then

(i) Expression (hDx𝟤 − 𝜇x𝟣)e(x , y , 𝜏)|x=y=𝟢 does not exceed (28.A.32).

(ii) Expression hDx𝟥e(x , y , 𝜏)|x=y=𝟢 does not exceed

(28.A.33) C

{︃
𝜇

𝟥
𝟤 h−𝟣𝛽𝛼− 𝟣

𝟤 (1 + | log(𝛼/𝛽𝜇h)|) if 𝛽𝜇h ≤ 𝛼,

𝜇h− 𝟥
𝟤𝛽

𝟣
𝟤 if 𝛽𝜇h ≥ 𝛼.

(iii) Expression hDx𝟣e(x , y , 𝜏)|x=y=𝟢 does not exceed

(28.A.34) C

{︃
𝜇

𝟥
𝟤 h−𝟣𝛼

𝟣
𝟤 (1 + | log(𝛼/𝛽𝜇h)|) if 𝛽𝜇h ≤ 𝛼,

𝜇h− 𝟥
𝟤𝛼

𝟣
𝟤 if 𝛽𝜇h ≥ 𝛼.

Case 𝜇h ≥ 𝜖𝟢

If 𝜇h ≥ 𝜖𝟢 we consider a different representation: namely (16.2.15) for a
spectral projector in dimension 2 (again after rescaling where we scale e* as
functions rather than Schwartz kernels):

(28.A.35) e(𝟤)(x
′, y ′, 𝜏) =

(2𝜋)−𝟣𝜇h−𝟣
∑︁
m∈ℤ+

∫︁
𝜐m

(︀
𝜂 + 𝜇− 𝟣

𝟤 h− 𝟣
𝟤 (x𝟣 − y𝟣)

)︀
𝜐m

(︀
𝜂 − 𝜇− 𝟣

𝟤 h− 𝟣
𝟤 (x𝟣 − y𝟣)

)︀
× θ

(︁
𝜏 − 𝛼𝜇−𝟣(x𝟣 + y𝟣)− 2𝛼𝜇− 𝟣

𝟤 h
𝟣
𝟤𝜂 − 𝛼𝟤𝜇−𝟤 − 2m𝜇h

)︁
e i𝜇−

𝟣
𝟤 h−

𝟣
𝟤 (x𝟤−y𝟤)𝜂 d𝜂,

where we also replaced H(𝟤) by H(𝟤) − 𝜇h and 𝜏 by 𝜇h + 𝜏 . Since

(28.A.36) e(x , y , 𝜏) = e(𝟤)(x
′, y ′, .) *𝜏 e(𝟣)(x𝟥, y𝟥, .),

where e(𝟣)(x𝟥, y𝟥, 𝜏) is a Schwartz kernel of the spectral projector of 1-
dimensional operator

(28.A.37) 𝜇𝟤h𝟤D𝟤
𝟥 − 2𝛽𝜇−𝟣x𝟥,

we conclude that

(28.A.38) e(x , y , 𝜏)

= (2𝜋)−𝟣𝜇h−𝟣
∑︁
m∈ℤ+

∫︁
𝜐m

(︀
𝜂 + 𝜇− 𝟣

𝟤 h− 𝟣
𝟤 (x𝟣 − y𝟣)

)︀
𝜐m

(︀
𝜂 − 𝜇− 𝟣

𝟤 h− 𝟣
𝟤 (x𝟣 − y𝟣)

)︀
×e(𝟣)

(︁
x𝟥, y𝟥, 𝜏−𝛼𝜇−𝟣(x𝟣+y𝟣)−2𝛼𝜇− 𝟣

𝟤 h
𝟣
𝟤𝜂−𝛼𝟤𝜇−𝟤−2m𝜇h

)︁
e i𝜇−

𝟣
𝟤 h−

𝟣
𝟤 (x𝟤−y𝟤)𝜂 d𝜂.



28.A. APPENDICES 393

Then

(28.A.39) (𝜇hDx𝟤 − x𝟣)e(x , y , 𝜏)
⃒⃒
x=y=𝟢

= (2𝜋)−𝟣𝜇
𝟥
𝟤 h− 𝟣

𝟤

∑︁
m∈ℤ+

∫︁
𝜐𝟤m(𝜂)𝜂×e(𝟣)

(︁
0, 0, 𝜏−2𝛼𝜇− 𝟣

𝟤 h
𝟣
𝟤𝜂−𝛼𝟤𝜇−𝟤−2m𝜇h

)︁
d𝜂

and since 𝜐m(.) is an even (odd) function for even (odd) m we can replace

e(𝟣)(0, 0, 𝜏
′ − 2𝛼𝜇− 𝟣

𝟤 h
𝟣
𝟤𝜂) by

(28.A.40) e(𝟣)(0, 0, 𝜏
′ − 2𝛼𝜇− 𝟣

𝟤 h
𝟣
𝟤𝜂)− e(𝟣)(0, 0, 𝜏

′ + 2𝛼𝜇− 𝟣
𝟤 h

𝟣
𝟤𝜂).

In virtue of Subsubsection 5.2.1.3 Asymptotics without Spatial Mollification
we know that an absolute value of this expression does not exceed Ch− 𝟣

𝟤𝛼
𝟣
𝟤
40)

we arrive to estimate41)

(28.A.41) |(hDx𝟤 − 𝜇x𝟣)e(x , y , 𝜏)
⃒⃒
x=y=𝟢

| ≤ C𝜇
𝟥
𝟤 h−𝟣𝛼

𝟣
𝟤 .

Further,

(28.A.42) 𝜇hDx𝟣e(x , y , 𝜏)
⃒⃒
x=y=𝟢

= i(2𝜋)−𝟣𝛼𝜇
∑︁
m∈ℤ+

∫︁
𝜐𝟤m(𝜂)×𝜕𝜏e(𝟣)

(︀
0, 0, 𝜏 −2𝛼𝜇− 𝟣

𝟤 h
𝟣
𝟤𝜂−𝛼𝟤𝜇−𝟤−2m𝜇h

)︀
d𝜂

= i(2𝜋)−𝟣𝜇
𝟥
𝟤 h− 𝟣

𝟤

∑︁
m∈ℤ+

∫︁
𝜐m(𝜂)𝜐

′
m(𝜂)×e(𝟣)

(︀
0, 0, 𝜏−2𝛼𝜇− 𝟣

𝟤 h
𝟣
𝟤𝜂−𝛼𝟤𝜇−𝟤−2m𝜇h

)︀
d𝜂

and using the same arguments we arrive to estimate41)

(28.A.43) |hDx𝟣e(x , y , 𝜏)
⃒⃒
x=y=𝟢

| ≤ C𝜇
𝟥
𝟤 h−𝟣𝛼

𝟣
𝟤 .

Finally,

(28.A.44) 𝜇hDx𝟥e(x , y , 𝜏)
⃒⃒
x=y=𝟢

= (2𝜋)−𝟣𝜇h−𝟣
∑︁
m∈ℤ+

∫︁
𝜐𝟤m(𝜂)

× 𝜇hDx𝟥e(𝟣)
(︀
x𝟥, y𝟥, 𝜏 − 2𝛼𝜇− 𝟣

𝟤 h
𝟣
𝟤𝜂 − 𝛼𝟤𝜇−𝟤 − 2m𝜇h

)︀⃒⃒
x𝟥=y𝟥=𝟢

d𝜂

40) Only in the worst case when |𝜏 − 𝟤m𝜇h| is not disjoint from 𝟢.
41) In the non-rescaled coordinates.



394 CHAPTER 28. COMBINED MAGNETIC FIELD

and again in virtue of Subsubsection 5.2.1.3 Asymptotics without Spatial
Mollification we know that an absolute value of selected expression does not
exceed Ch− 𝟣

𝟤𝛽
𝟣
𝟤
42) and we arrive to estimate41)

(28.A.45) |hDx𝟥e(x , y , 𝜏)
⃒⃒
x=y=𝟢

| ≤ C𝜇h− 𝟥
𝟤𝛽

𝟣
𝟤 .

Therefore we have proven

Proposition 28.A.6. Let 𝜇h ≥ 1, 𝛼 ≤ 1, 𝛽 ≤ 1, |𝜏 | ≤ c𝟢. Then for
operator (H − 𝜇h) estimates (28.A.41), (28.A.43) and (28.A.45) hold.

Tauberian Estimates

Remark 28.A.7. Assume now that all assumptions are fulfilled only in B(0, ℓ)
rather than in ℝ𝟥. Then there is also a Tauberian estimate which should be
added to Weyl estimate. This Tauberian estimate (the same for all j = 1, 2, 3)
coincides with the Tauberian estimate was calculated in Chapter 16. Namely

(i) For 𝜇h ≤ 1, ℓ ≥ C𝟢𝜇
−𝟣 this Tauberian estimate was calculated in

Proposition 16.6.2(ii)41).

(ii) For 𝜇h ≥ 1, ℓ ≥ C𝟢h this Tauberian estimate was calculated in Proposi-

tion 16.6.7(i) and corollary 16.6.8(i)41) and it does not exceed C𝜇h− 𝟥
𝟤 ℓ−𝟣.

42) Without applying (hDj − 𝜇Aj(x)) but it does not matter.
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Part. Diff. Eq., 5(6):595–611 (1980).

[3] Sur le Comportement Semi-classique du Spectre et de l’Amplitude de
Diffusion d’un Hamiltonien Quantique. Singularities in Boundary Value
Problems, NATO. D. Reidel.

Cheeger, J.; Taylor, M. E.

[1] On the diffraction of waves by conical singularities. I . Comm. Pure
Appl. Math. 35(3):275–331, 1982.



BIBLIOGRAPHY 411

[2] On the diffraction of waves by conical singularities. II . Comm. Pure
Appl. Math. 35(4):487–529, 1982.

Chen Hua

[1] Irregular but nonfractal drums andn-dimensional weyl conjecture. Acta
Mathematica Sinica, 11(2):168—178 (1995).

Cheng, Q.-M.; Yang, H.

[1] Estimates on eigenvalues of Laplacian. Mathematische Annalen,
331(2):445—460 (2005).

Chervova O.; Downes R. J.; Vassiliev, D

[1] The spectral function of a first order elliptic system. Journal of Spectral
Theory, 3(3):317–360 (2013).

[2] Spectral theoretic characterization of the massless Dirac operator . Jour-
nal London Mathematical Society-second series, 89 :301–320 (2014).

Colin de Verdiére, Y.
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[3] Spectre conjoint d’opérateurs qui commutent . Duke Math. J., 46:169–182
(1979).
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[3] Propagation des ondes dans les dièdres . Mém. Soc. Math. France (N.S.),
60, 124pp (1995).

[4] Propagation des ondes dans les variétés à coins . Ann. Sci. École Norm.
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Birkhäuser (1987).

[5] Propagation of coherent states in quantum mechanics and applications .
http://www.math.sciences.univ-nantes.fr/∼robert/proc cimpa.pdf.

Robert, D.; Tamura, H.

[1] Asymptotic behavior of scattering amplitudes in semi-classical and low
energy limits . Ann. Inst. Fourier, 39(1):155–192 (1989).

Roussarie, R.
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Spectral Asymptotics for the Semiclassical
Dirichlet to Neumann Operator *,†

Andrew Hassell‡, Victor IvriiS

Abstract

Let M be a compact Riemannian manifold with smooth boundary,
and let R(𝜆) be the Dirichlet-to-Neumann operator at frequency 𝜆.
The semiclassical Dirichlet-to-Neumann operator R𝗌𝖼𝗅(𝜆) is defined
to be 𝜆−𝟣R(𝜆). We obtain a leading asymptotic for the spectral
counting function for R𝗌𝖼𝗅(𝜆) in an interval [a𝟣, a𝟤) as 𝜆→ ∞, under
the assumption that the measure of periodic billiards on T *M is zero.
The asymptotic takes the form

𝖭(𝜆; a𝟣, a𝟤) =
(︀
𝜅(a𝟤)− 𝜅(a𝟣)

)︀
𝗏𝗈𝗅′(𝜕M)𝜆d−𝟣 + o(𝜆d−𝟣),

where 𝜅(a) is given explicitly by

𝜅(a) =
𝜔d−𝟣

(𝟤𝜋)d−𝟣

(︂
− 𝟣

𝟤𝜋

∫︁ 𝟣

−𝟣
(𝟣− 𝜂𝟤)(d−𝟣)/𝟤 a

a𝟤 + 𝜂𝟤
d𝜂

− 𝟣

𝟦
+ H(a)(𝟣 + a𝟤)(d−𝟣)/𝟤

)︂
.
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1 Introduction

Let M be a Riemannian manifold with boundary. The Dirichlet-to-Neumann
operator is a family of operators defined on L𝟤(𝜕M) depending on the
parameter 𝜆 ≥ 0. It is defined as follows: given f ∈ L𝟤(𝜕M), we solve the
equation (if possible)

(1.1) (Δ− 𝜆𝟤)u = 0 on M , u|𝜕M = f .

Then the Dirichlet-to-Neumann operator at frequency 𝜆 is the map

(1.2) R(𝜆) : f ↦→ −𝜕𝜈u|𝜕M .

Here 𝜕𝜈 is the interior unit normal derivative, and Δ is the positive Laplacian
on M .

It is well known that R(𝜆) is a self-adjoint, semi-bounded from below
pseudodifferential operator of order 1 on L𝟤(𝜕M), with domain H𝟣(𝜕M). It
therefore has discrete spectrum accumulating only at +∞. The Dirichlet-
to-Neumann operator and closely related operators are important in a
number of areas of mathematical analysis including inverse problems (such
as Calderón’s problem [Cal]), domain decomposition problems (such as the
determinant gluing formula of Burghelea-Friedlander-Kappeler [BFK]), and
spectral asymptotics (see e.g. [Fried]).

In this paper, we are interested in the spectral asymptotics of R(𝜆) in the
high-frequency limit, 𝜆→ ∞. Let us recall standard spectral asymptotics
for elliptic differential operators, for simplicity in the simplest case of a
positive self-adjoint second order scalar operator. Suppose that Q is such an
operator on a manifold M of dimension d , with principal symbol q. Then in
the case that M is closed, we have an asymptotic for the number N(𝜆) of
eigenvalues of Q (counted with multiplicity) less than 𝜆𝟤:

(1.3) N(𝜆) = (2𝜋)−d vol{(x , 𝜉) ∈ T *M | q(x , 𝜉) ≤ 𝜆𝟤}+ O(𝜆d−𝟣)

=
(︀ 𝜆
2𝜋

)︀d
vol{(x , 𝜉) ∈ T *M | q(x , 𝜉) ≤ 1}+ O(𝜆d−𝟣),

where the equality of the two expressions on the RHS is a simple consequence
of the homogeneity of q. Moreover, if the set of periodic geodesics has
measure zero, then there is a two-term expansion of the form(︀ 𝜆

2𝜋

)︀d
vol{(x , 𝜉) ∈ T *M | q(x , 𝜉) ≤ 1}+ 𝜆d−𝟣

(2𝜋)d

∫︁
{q=𝟣}

sub(Q) + o(𝜆d−𝟣)
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where sub(Q) is the subprincipal symbol of Q [DuGu]. This was generalised
to the case of manifolds with boundary by the second author [Ivr1]. For
simplicity we state the result in the case that Q = Δ is the (positive) metric
Laplacian, which satisfies sub(Δ) = 0. Then Δ is a self-adjoint operator
under either Dirichlet (−) or Neumann (+) boundary conditions, and if
the set of periodic generalised bicharacteristics has measure zero, we get a
two-term expansion for N𝝙(𝜆) of the form

(1.4)
(︀ 𝜆
2𝜋

)︀d
volB*M ± 1

4

(︀ 𝜆
2𝜋

)︀d−𝟣
volB*𝜕M + o(𝜆d−𝟣).

These statements can be generalized to the semiclassical setting. Consider
a classical Schrödinger operator on M , P = h𝟤Δ+ V (x)− 1, where h > 0
is a small parameter (“Planck’s constant”) and V is a smooth real-valued
function. We consider the asymptotic behaviour N−

h (P) of the number of
negative eigenvalues of P as h → 0. This is equivalent to the problem above
if h = 𝜆−𝟣 and V is identically zero. Define p(x , 𝜉) to be the semiclassical
symbol of P , i.e. p = |𝜉|𝟤g(x) + V (x) − 1. Then, if M is closed, under the
assumption that the measure of periodic bicharacteristics of P is zero in
T *M , and that 0 is a regular value for p, we have

(1.5) N−
h (P) = (2𝜋h)−d vol{(x , 𝜉) ∈ T *M | p(x , 𝜉) ≤ 0}+ O(h𝟣−d).

Moreover, for manifolds with boundary, we have an analogue of (1.4): under
either Dirichlet (−) or Neumann (+) boundary conditions, if the set of
periodic generalised bicharacteristics has measure zero, we get a two-term
expansion for N−

h (P) (where here we understand the self-adjoint realization
of P with either Dirichlet or Neumann boundary condition) of the form

(1.6) (2𝜋h)−d vol{(x , 𝜉) ∈ T *M | p(x , 𝜉) ≤ 0}± 1

4
(2𝜋h)𝟣−d volℋ+o(h𝟣−d),

where ℋ ⊂ T *(𝜕M) is the hyperbolic region in the boundary, that is, the
projection of the set {(x , 𝜉) | p(x , 𝜉) ≤ 0} ∩ T *

𝜕MM to T *𝜕M .
From the semiclassical point of view, since R(𝜆) is a first order operator,

it makes sense to consider R𝗌𝖼𝗅(𝜆) := 𝜆−𝟣R(𝜆) (for 𝜆 > 0), which we call the
semiclassical Dirichlet-to-Neumann operator. Like R(𝜆), it is a self-adjoint,
semi-bounded from below operator on L𝟤(𝜕M), with discrete spectrum
accumulating only at +∞. The goal of this paper is to investigate the
spectral asymptotics of R𝗌𝖼𝗅(𝜆), that is, the asymptotics of

(1.7) N(𝜆; a𝟣, a𝟤) := #{𝛽 : 𝛽 is an eigenvalue of R𝗌𝖼𝗅(𝜆), a𝟣 ≤ 𝛽 < a𝟤},
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the number of eigenvalues of R𝗌𝖼𝗅(𝜆) in the interval [a𝟣, a𝟤), as 𝜆→ ∞.
Both R(𝜆) and R𝗌𝖼𝗅(𝜆) have the disadvantage that they are undefined

whenever 𝜆𝟤 is a Dirichlet eigenvalue, since then (1.1) is not solvable for
arbitrary f ∈ H𝟣(M). Indeed, when 𝜆𝟤 is a Dirichlet eigenvalue, a necessary
condition for solvability of (1.1) is that f is orthogonal to the normal
derivatives of Dirichlet eigenfunctions at frequency 𝜆. To overcome this
issue, we introduce the Cayley transform of R𝗌𝖼𝗅(𝜆): we define

(1.8) C (𝜆) = (R𝗌𝖼𝗅(𝜆)− i)(R𝗌𝖼𝗅(𝜆) + i)−𝟣.

This family of operators is related to impedance boundary conditions: we
have C (𝜆)f = g if and only if there is a function u on M satisfying

(Δ− 𝜆𝟤)u = 0(1.9)

and
1

2
(𝜆−𝟣𝜕𝜈u − iu) = f ,

1

2
(𝜆−𝟣𝜕𝜈u + iu) = g .(1.10)𝟣,𝟤

As observed in [BH], C (𝜆) is a well-defined analytic family of operators for
𝜆 in a neighbourhood of the positive real axis, which is unitary on the real
axis. In particular, it is well-defined even when 𝜆𝟤 is a Dirichlet eigenvalue
of the Laplacian on M . As a unitary operator, C (𝜆), 𝜆 > 0, has its spectrum
on the unit circle, and as R𝗌𝖼𝗅(𝜆) has discrete spectrum accumulating only at
∞, it follows that the spectrum of C (𝜆) is discrete on the unit circle except
at the point 1. Our question can be formulated in terms of C (𝜆): given two
angles 𝜃𝟣, 𝜃𝟤 satisfying 0 < 𝜃𝟣 < 𝜃𝟤 < 2𝜋, what is the leading asymptotic for

(1.11) Ñ(𝜆; 𝜃𝟣, 𝜃𝟤) := #{e i𝜃 : e i𝜃 is an eigenvalue of C (𝜆), 𝜃𝟣 ≤ 𝜃 < 𝜃𝟤}

the number of eigenvalues of C (𝜆) in the interval {e i𝜃 : 𝜃 ∈ [𝜃𝟣, 𝜃𝟤)} of the
unit circle, as 𝜆→ ∞. Clearly, we have

(1.12) Ñ(𝜆; 𝜃𝟣, 𝜃𝟤) = N(𝜆; a𝟣, a𝟤), where e i𝜃j =
aj − i

aj + i
, i.e. aj = − cot

(︀𝜃j
2

)︀
.

To answer this question we relate it to a standard semiclassical eigenvalue
counting problem on M . To state the next result, we first define the self-
adjoint operator Pa,h on L𝟤(M) by

D(Pa,h) = {u ∈ H𝟤(M) : (h𝜕𝜈 + a)u = 0 at 𝜕M},(1.13)

Pa,h(u) = (h𝟤Δ− 1)u, u ∈ D(Pa,h).(1.14)
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It is the self-adjoint operator associated to the semi-bounded quadratic form

(1.15) h𝟤‖∇u‖𝟤M − ‖u‖𝟤M − ha‖u‖𝟤𝜕M .

The operator Pa,h is linked with the semiclassical Dirichlet-to-Neumann
operator as follows: if f is an eigenfunction of R𝗌𝖼𝗅(𝜆) with eigenvalue a, then
the corresponding Helmholtz function u defined by (1.1) is in the domain
(1.13) of Pa,h, and Pa,hu = 0 (where h = 𝜆−𝟣).

Then we have the following result, proved in Section 2.

Proposition 1.1. Let h = 𝜆−𝟣. Assume 0 < 𝜃𝟣 < 𝜃𝟤 < 2𝜋. Then the
number of eigenvalues of C (𝜆) in the interval J𝜃𝟣,𝜃𝟤 := {e i𝜃 : 𝜃 ∈ [𝜃𝟣, 𝜃𝟤)} is
equal to

Ñ(𝜆; 𝜃𝟣, 𝜃𝟤) = N(𝜆; a𝟣, a𝟤) = N−
h (a𝟤)− N−

h (a𝟣),(1.16)

where aj = − cot(𝜃j/2) and

N−
h (a) := #{𝜇 : 𝜇 is an eigenvalue of Pa,h, 𝜇 < 0}.(1.17)

Having thus reduced the problem to a standard question about semiclas-
sical spectral asymptotics, we obtain (after some calculations in Section 3)
our main result.

Theorem 1.2. (i) The following estimate for the quantity (1.11) holds:

(1.18) N(𝜆; a𝟣, a𝟤) = O(𝜆d−𝟣);

(ii) Further, if the set of periodic billiards on M has measure 0 then the
following asymptotic holds as 𝜆→ +∞:

(1.19) N(𝜆; a𝟣, a𝟤) =
(︀
𝜅(a𝟤)− 𝜅(a𝟣)

)︀
vol′(𝜕M)𝜆d−𝟣 + o(𝜆d−𝟣),

where 𝜅(a) is given explicitly by

(1.20) 𝜅(a) =
𝜔d−𝟣

(2𝜋)d−𝟣

(︂
− 1

2𝜋

∫︁ 𝟣

−𝟣

(1− 𝜂𝟤)(d−𝟣)/𝟤 a

a𝟤 + 𝜂𝟤
d𝜂

− 1

4
+ H(a)(1 + a𝟤)(d−𝟣)/𝟤

)︂
.

Here H(·) is the Heaviside function, 𝜔d is the volume of the unit ball in
ℝd , and vol(M) and vol′(𝜕M) are d-dimensional volume of M and (d − 1)-
dimensional volume of 𝜕M respectively.
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(iii) In the case d = 3, we can evaluate this integral exactly and we find that

(1.21) 𝜅(a) =
1

4𝜋

(︁
−1

4
− 1

𝜋
arccot(a)(1 + a𝟤) + (1 + a𝟤) +

1

𝜋
a
)︁

where arccot has range (0, 𝜋). This is simpler expressed in terms of 𝜃.
Defining 𝜅̃(𝜃) = 𝜅(a) where a = − cot(𝜃/2) = cot(𝜋 − 𝜃/2), we have (still
under the zero-measure assumption on periodic billiards)

Ñ(𝜆; 𝜃𝟣, 𝜃𝟤) =
(︀
𝜅̃(𝜃𝟤)− 𝜅̃(𝜃𝟣)

)︀
vol′(𝜕M)𝜆𝟤 + o(𝜆𝟤),(1.22)

𝜅̃(𝜃) =
1

4𝜋

(︁
− 1

4
+

1

2𝜋

(︀ 𝜃 − sin 𝜃

sin𝟤(𝜃/2)

)︀)︁
.(1.23)

Remark 1.3. It looks disheartening that we only get an upper bound in case
(i) and only a “o” remainder under a global geometric condition, but it is
the nature of the beast.

In regards to case (i), consider M a hemisphere; then for 𝜆𝟤n = n(n+d −1)
with n ∈ ℤ+ the operator R(𝜆) has eigenvalue 0 of multiplicity ≍ nd−𝟣, hence
N(𝜆; a𝟣, a𝟤) jumps by at least c𝜆d−𝟣 as a𝟣 or a𝟤 crosses zero. Therefore, in
this case, we do not have an asymptotic, but only an estimate.

In regards to case (ii), we believe that the “o” remainder is the best
that can be achieved using current technology. To justify this, consider the
problem of finding the spectral asymptotics of the semiclassical Dirichlet-
to-Neumann operator for the operator Δ+ 𝜆𝟤, instead of Δ− 𝜆𝟤 (for real
𝜆). In this case, one can readily check that the semiclassical Dirichlet-to-
Neumann operator is a semiclassically elliptic pseudodifferential operator on
the boundary, with principal symbol

√
1 + h𝟤Δ𝜕M . Then standard spectral

asymptotics hold for this operator, and we would get a remainder term
O(𝜆d−𝟤). However, for the operator Δ − 𝜆𝟤, the semiclassical Dirichlet-
to-Neumann operator is only microlocally elliptic in the region {(y , 𝜂) |
|𝜂|g ′ > 1} ⊂ T *𝜕M , where g ′ is the induced metric on the boundary. It is
hyperbolic in the region where |𝜂|g ′ < 1, and that means there is (currently)
no machinery for directly tackling its spectral asymptotics. Instead, we
proceed by relating it to the spectral asymptotics for the interior problem
with a family of boundary conditions depending on the spectral parameter
a. This means that the problem is in some sense really d -dimensional, and
our o(𝜆d−𝟣) remainder is the “ghost” of d -dimensional spectral asymptotics,
in which the principal, Weyl term cancels under taking the difference (1.16),
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and all we are left with is the second term — and only under the global
geometric assumption of measure zero periodic billiard trajectories.

We note that under stronger assumptions on the billiard flow, the re-
mainder could be improved, for example to O(𝜆d−𝟣−𝛿) for some 𝛿 > 0 in the
case of a Euclidean ellipse or elliptical annulus — see Section 7.4 of [Ivr4].

Remark 1.4. One can consider eigenvalues of operator 𝜌𝜆−𝟣R(𝜆) with 𝜌 > 0
smooth on 𝜕M ; then estimates (3.1), (1.18) and asymptotics (3.2), (1.19)
hold in the frameworks of Statement (i) and (ii) of Theorem 1.2 respectively
albeit with 𝜅(a) vol′(𝜕M) replaced by∫︁

𝜕M

𝜅(𝜌(x ′)a) d𝜎

where d𝜎 is a natural measure on 𝜕M ; however without this condition 𝜌 > 0
problem may be much more challenging; even self-adjointness is by no means
guaranteed.

Remark 1.5. Operators of the form Pa,h were considered by Frank and
Geisinger [FG]. They showed that the trace of the negative part of Pa,h has
a two-term expansion as h → 0 regardless of dynamical assumptions1), and
the second term in their expansion (the L

(𝟤)
d term of [FG, Theorem 1.1]) is

closely related to 𝜅(a) — see Remark 3.4.

Remark 1.6. We can rephrase Theorem 1.2 in terms of a limiting measure
on the unit circle. For each 𝜆 > 0, let 𝜇(h), h = 𝜆−𝟣, denote the atomic
measure determined by the spectrum of C (𝜆):

(1.24) 𝜇(h) = (2𝜋h)d−𝟣
∑︁

e
i𝜃j∈𝗌𝗉𝖾𝖼C(h−𝟣)

δ(𝜃 − 𝜃j),

where we include each eigenvalue according to its multiplicity as usual.
Then Theorem 1.2 can be expressed in the following way: the measures 𝜇(h)
converge in the weak-* topology as h → 0 to the measure

(1.25) 𝜔d−𝟣 vol
′(𝜕M)

d

d𝜃
𝜅̃(𝜃)d𝜃 on (0, 2𝜋), that is on S𝟣 ∖ {1}.

1) The fact that Frank and Geisinger obtain a second term regardless of dynamical
assumptions is simply due to the fact that they study 𝖳𝗋 f (Pa,h) with f (𝜆) = −𝜆H(−𝜆)
(H is the Heaviside function), which is one order smoother than f (𝜆) = H(−𝜆).
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In particular, this measure is absolutely continuous, and finite away from
e i𝜃 = 1 with an infinite accumulation of mass as 𝜃 ↑ 2𝜋. In this form, we can
compare our result with results on the semiclassical spectral asymptotics
of scattering matrices. In [DGHH] and [GHZ], the scattering matrix Sh(E )
at energy E for the Schrödinger operator h𝟤Δ+ V (x) on ℝd was studied in
the semiclassical limit h → 0. Assuming that V is smooth and compactly
supported, that E is a nontrapping energy level, and that the set of periodic
trajectories of the classical scattering transformation on T *Sd−𝟣 has measure
zero, it was shown that the measure 𝜇(h) defined by (1.24) converged weak-*
to a uniform measure on S𝟣 ∖ {1}, with an atom of infinite mass at the
point 1. On the other hand, for polynomially decaying potentials, it was
shown by Sobolev and Yafaev [H-SoYa] in the case of central potentials and
by Gell-Redman and the first author more generally [GRH] that there is a
limiting measure which is nonuniform, and is qualitatively similar to the
measure for C (h−𝟣) above in that it is finite away from 1, with an infinite
accumulation of mass at 1 from one side.

2 Reduction to Semiclassical Spectral

Asymptotics

In this section we prove Proposition 1.1. This result actually follows directly
from the Birman-Schwinger principle. As some readers may not be familiar
with this, we give the details.

Proof of Proposition 1.1. We begin by recalling that the operator Pa,h is the
self-adjoint operator associated to the quadratic form (1.15), that is,

Qa,h(u) := h𝟤‖∇u‖𝟤M − ‖u‖𝟤M − ha‖u‖𝟤𝜕M .

We recall the min-max characterization of eigenvalues: the nth eigenvalue
𝜇n(a, h) of Pa,h is equal to the infimum of

sup
v∈V ,‖v‖=𝟣

Qa,h(v)

over all subspaces V ∈ H𝟣(M) of dimension n. The monotonicity of Qa,h

in a, for fixed h, shows that the eigenvalues are monotone nonincreasing
with a. In fact, they are strictly decreasing, which follows from the fact
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a

𝜇 a = a𝟣 a = a𝟤

Figure 1: Diagram showing the variation of eigenvalues 𝜇(a, h) of Pa,h as
a function of a for fixed h. The eigenvalues are strictly decreasing in a.
Consequently, the number of negative eigenvalues of Pa𝟤,h is equal to the
number of negative eigenvalues of Pa𝟣,h together with the number that cross
the a-axis between a = a𝟣 and a = a𝟤.

that eigenfunctions of Pa,h cannot vanish at the boundary. Indeed, the
eigenfunctions satisfy the boundary condition h𝜕𝜈u = −au, which shows
that if u vanishes at the boundary, so does 𝜕𝜈u, which is impossible.

The eigenvalues 𝜇n(a, h) are thus continuous, strictly decreasing functions
of a. Let a𝟣 < a𝟤 be real numbers. The Birman-Schwinger principle [Ivr3,
Prop. 9.2.7] says that the number of negative eigenvalues of Pa𝟤,h is equal to
the number of negative eigenvalues of Pa𝟣,h, plus the number of eigenvalues
𝜇n(a, h) of Pa,h that change from nonnegative to negative as a varies from
a𝟣 to a𝟤. A diagram makes this clear: see Figure 1.

The strict monotonicity of 𝜇(a, h) in a shows that the number of eigen-
values 𝜇n(a, h) of Pa,h that change from nonnegative to negative as a varies
from a𝟣 to a𝟤 is the same as the number of 𝜇(a, h) (counted with multiplicity)
equal to zero, for a ∈ [a𝟣, a𝟤). Next, we observe that the space of eigenfunc-
tions un(a, h) of Pa,h with zero eigenvalue, i.e. 𝜇n(a, h) = 0 is in one-to-one
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correspondence with the space of eigenfunctions of C (𝜆), 𝜆 = h−𝟣, with
eigenvalue (a − i)(a + i)−𝟣, or equivalently e i𝜃 where a = − cot(𝜃/2). Indeed,
whenever un is such an eigenfunction of Pa,h, then

(2.1) f :=
1

2
(h𝜕𝜈u − iu)

⃒⃒
𝜕M

is an eigenfunction of C (𝜆), with eigenvalue (a − i)(a + i)−𝟣. Conversely,
if f is an eigenfunction of C (𝜆) with eigenvalue (a − i)(a + i)−𝟣, then by
definition there exists a Helmholtz function u such that u is related to f
according to (2.1), and we have (h𝜕𝜈 + a)u = 0 at 𝜕M . This completes the
proof.

Remark 2.1. We can apply similar arguments for 𝜆−𝛿𝜌−𝟣R(𝜆) as 𝜌 > 0 is
a smooth function on 𝜕M and then plug corresponding parameters in the
boundary conditions coming again to equality (1.16).

We next digress to prove that the eigenvalues of C (𝜆) are monotonic
(that is, they move monotonically around the unit circle) in 𝜆. This plays
no role in the remainder of our proof, but is (in the authors’ opinion) of
independent interest.

Proposition 2.2. The eigenvalues of C (𝜆) rotate clockwise around the unit
circle as 𝜆 increases.

Remark 2.3. This implies that the eigenvalues of R𝗌𝖼𝗅(𝜆) are monotone de-
creasing in 𝜆.

Proof. As discussed in the previous proof, C (𝜆) has eigenvalue e i𝜃 if and
only if Pa,h has a zero eigenvalue, where a = a(𝜃) = − cot(𝜃/2). Thus, as a
function of h = 𝜆−𝟣, 𝜃(h) is defined implicitly by the condition

𝜇(a(𝜃), h) = 0.

Since a is a strictly increasing function of 𝜃, and we have just seen that 𝜇 is
a strictly decreasing function of a, it suffices to show that when 𝜇 = 0, 𝜇 is
a strictly increasing function of h, hence a strictly decreasing function of 𝜆.



478 SEMICLASSICAL DIRICHLET TO NEUMANN OPERATOR

We now compute the derivative of 𝜇 with respect to h, at a value of a
and h where 𝜇(a, h) = 0. We have

d

dh
𝜇(a, h) =

d

dh
((h𝟤Δ− 1)u(h), u(h))M

= 2h(Δu, u)M + ((h𝟤Δ− 1)u′(h), u(h))M + ((h𝟤Δ− 1)u(h), u′(h))M

= 2h(Δu, u)M + ((h𝟤Δ− 1)u′, u)M − (u′, (h𝟤Δ− 1)u)M .

In the third line, we used the fact that (h𝟤Δ− 1)u = 0 when 𝜇(h) = 0. Note
the second term is not zero, as u′ is not in the domain of the operator due
to the changing boundary condition, so we cannot move the operator to the
right hand side of the inner product without incurring boundary terms. We
use the Gauss-Green formula to express the last two terms as a boundary
integral:

𝜇′(h) = 2h(Δu, u)M + h(h𝜕𝜈u′, u)𝜕M − h(u′, h𝜕𝜈u)𝜕M

= 2h(Δu, u)M + h(h𝜕𝜈u′, u)𝜕M + ha(u′, u)𝜕M .

Differentiating the boundary condition we find that

(h𝜕𝜈 + a)u′ = −h𝜕𝜈u at 𝜕M .

Substituting that in we get

𝜇′(h) = 2h(Δu, u)M − h(u, 𝜕𝜈u)𝜕M .

Applying Gauss-Green again, we get

𝜇′(h) = h(Δu, u)M + h‖∇u‖𝟤M
= h−𝟣

(︁
‖u‖𝟤L𝟤(M) + ‖h∇u‖𝟤L𝟤(M)

)︁
> 0.

3 Semiclassical Spectral Asymptotics

In this section, we prove Theorem 1.2. Essentially, we have arrived at a
rather standard semiclassical spectral asymptotics problem and results are
due to [Ivr3], Chapter 5 or [Ivr4], Chapter 7. See the appendix to this paper
for further discussion.
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Proposition 3.1. (i) Let N−
h (a) be as in (1.17). The following asymptotic

holds as h → +0:

(3.1) N−
h (a) = (2𝜋h)−d𝜔d vol(M) + O(h𝟣−d)

(ii) Further, if the set of periodic billiards on M has measure 0 then as
h → +0:

N−
h (a) = (2𝜋h)−d𝜔d vol(M) + h𝟣−d𝜅(a) vol′(𝜕M) + o(h𝟣−d)(3.2)

with 𝜅(a) given by (1.20).

Proof. One can check easily that the operator Pa,h is microhyperbolic at
energy level 0 at each point (x , 𝜉) ∈ T *M in the direction 𝜉; further, the
boundary value problem is microhyperbolic at each point (x ′; 𝜉′) ∈ T *𝜕M
at energy level 0 in the multidirection (𝜉′, 𝜉−𝟣 , 𝜉

+
𝟣 ) with 𝜉𝟣 = 𝜉±𝟣 roots of∑︀

g jk𝜉j𝜉k = 0; finally, the boundary value problem is elliptic at each point
of the elliptic zone (⊂ T *𝜕M) if a ≤ 0, and either elliptic or microhyperbolic
in the direction 𝜉′ at each point of the elliptic zone (⊂ T *𝜕M) if a > 0 —
see definitions in Chapters 2, 3 of [Ivr4]. Then statements (1.18), (1.19)
follow from Theorems 7.3.11 and 7.4.1 of [Ivr4].

We now assume that the set of periodic billiards on M has measure zero,
and compute the second term in the spectral asymptotic explicitly. Similar
calculations appear in [FG].

To do this, one can use method of freezing coefficients (see the appendix,
or [Ivr4], 7.2) which results in

(3.3) h𝟣−d𝜅(a) =

∫︁
ℝ+

(︀
e(0, x𝟣; 0, x𝟣; 1)− (2𝜋h)−d𝜔d

)︀
dx𝟣

where e(x ′, x𝟣; y ′, y𝟣; 𝜏) is the Schwartz kernel of the spectral projector E (𝜏)
of the operator Ha = h𝟤Δ in half-space ℝd−𝟣 × ℝ+ ∋ (x ′, x𝟣) with domain
D(Ha) = {u ∈ H𝟤 : (h𝜕x𝟣 + a)u|x𝟣=𝟢 = 0}.

We obtain this spectral projector by integrating the spectral measure.
This in turn is obtained via Stone’s formula

(3.4) dEL(𝜎) =
1

2𝜋i

(︁
(L − (𝜎 + i0))−𝟣 − (L − (𝜎 − i0)−𝟣

)︁
d𝜎.
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Consider the resolvent for Ha, (Ha − 𝜎)−𝟣, for 𝜎 ∈ ℂ ∖ ℝ. Using the
Fourier transform in the x ′ variables, we can write the Schwartz kernel of
this resolvent in the form

(3.5) (2𝜋h)𝟣−d

∫︁
e i(x ′−y ′)·𝜉′(Ta + |𝜉′|𝟤 − 𝜎)−𝟣(x𝟣, y𝟣) d𝜉′.

Here Ta is the one-dimensional operator Ta = −h𝟤𝜕𝟤+ |𝜉′|𝟤 on L𝟤(ℝ+) under
the boundary condition (h𝜕 + a)u|x𝟣=𝟢 = 0. The spectral projector EHa(1) is
therefore given by

(3.6) (2𝜋h)𝟣−d

∫︁ 𝟣

−∞

∫︁
e i(x ′−y ′)·𝜉′dETa(𝜎 − |𝜉′|𝟤)(x𝟣, y𝟣) d𝜉′ d𝜎.

Thus, we need to find the spectral measure for Ta. Write 𝜎 − |𝜉′|𝟤 = 𝜂𝟤,
where we take 𝜂 to be in the first quadrant of ℂ for Im 𝜎 > 0, and in the
fourth quadrant for Im 𝜎 < 0.

Lemma 3.2. Suppose that Im 𝜂 > 0 and Re 𝜂 ≥ 0. Then the resolvent
kernel (Ta − 𝜂𝟤)−𝟣 takes the form

(3.7) (Ta − 𝜂𝟤)(x , y) =

⎧⎨⎩
i

𝟤h𝜂

(︁
e i𝜂(x−y)/h + i𝜂−a

i𝜂+a
e i𝜂(x+y)/h

)︁
, x > y

i
𝟤h𝜂

(︁
e i𝜂(y−x)/h + i𝜂−a

i𝜂+a
e i𝜂(x+y)/h

)︁
, x < y .

If Im 𝜂 < 0 and Re 𝜂 ≥ 0, then the resolvent kernel (Ta − 𝜂𝟤)−𝟣 takes the
form

(3.8) (Ta − 𝜂𝟤)(x , y) =

⎧⎨⎩− i
𝟤h𝜂

(︁
e i𝜂(y−x)/h + i𝜂+a

i𝜂−a
e−i𝜂(x+y)/h

)︁
, x > y

− i
𝟤h𝜂

(︁
e i𝜂(x−y)/h + i𝜂+a

i𝜂−a
e−i𝜂(x+y)/h

)︁
, x < y .

Proof. In the regions x < y and x > y , the resolvent kernel must be a linear
combination of e i𝜂x/h and e−i𝜂x/h. Moreover, for Im 𝜂 > 0, we can only have
the e+i𝜂x/h term, as x → ∞, as the other would be exponentially increasing.
So we can write the kernel in the form

(3.9)

{︃
c𝟣e+i𝜂x/h, x > y

c𝟤e+i𝜂x/h + c𝟥e−i𝜂x/h, x < y .

We apply the boundary condition, and the two connection conditions at
x = y , namely continuity, and a jump in the derivative of −1/h, in order to
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obtain the delta function δ(x − y) after applying Ta. These three conditions
determine the ci uniquely, and we find that, in the case Im 𝜂 > 0,

c𝟣 =
i

2h𝜂

(︀
e−i𝜂y/h +

i𝜂 − a

i𝜂 + a
e+i𝜂y/h

)︀
,(3.10)𝟣

c𝟤 =
i

2h𝜂

i𝜂 − a

i𝜂 + a
e+i𝜂y/h, c𝟥 =

i

2h𝜂
e+i𝜂y/h,(3.10)𝟤,𝟥

yielding (3.7). A similar calculation yields (3.8).

We now apply (3.4) to find the Schwartz kernel of the spectral measure
for Ta.

Lemma 3.3. The spectral measure dETa(𝜏) is given by the following.

(i) For 𝜏 ≥ 0, 𝜏 = 𝜂𝟤

(3.11) dETa(𝜏)

=
1

4𝜋h𝜂

(︁
e i𝜂(x−y)/h+e i𝜂(y−x)/h+

i𝜂 − a

i𝜂 + a
e i𝜂(x+y)/h+

i𝜂 + a

i𝜂 − a
e−i𝜂(x+y)/h

)︁
2𝜂d𝜂.

(ii) For 𝜏 < 0, the spectral measure dE (𝜏) vanishes for a ≤ 0, while for
a > 0

(3.12) dETa(𝜏) =
2a

h
e−ax/he−ay/hδ(𝜏 + a𝟤)d𝜏 .

Proof. This follows directly from Lemma 3.2 and Stone’s formula, (3.4).
The extra term for a > 0 arises from the pole in the denominator, i𝜂 + a
for Im 𝜂 > 0 and i𝜂 − a for Im 𝜂 < 0 in the expressions (3.7), (3.8), which
only occurs for a > 0. For 𝜏 negative, we need to set 𝜂 = i

√
−𝜏 + 0 in

(3.7) and 𝜂 = −i
√
−𝜏 + 0 in (3.8), and subtract. Then everything cancels

except at the pole, where we obtain a delta function −2𝜋iδ(
√
−𝜏−a), which

arises from (
√
−𝜏 + i0 + a)−𝟣 − (

√
−𝜏 − i0 + a)−𝟣. This term arises from

the negative eigenvalue −a𝟤 which occurs for a > 0, corresponding to the
eigenfunction

√︀
2a/h e−ax/h.
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Plugging this into (3.6), and making use of the fact that d𝜎d𝜉′ = 2𝜂d𝜂d𝜉′,
we find that the Schwartz kernel of EHa(1) is given by

(3.13) (2𝜋h)−d

∫︁ 𝟣

𝟢

∫︁
H(1− |𝜉′|𝟤 − 𝜂𝟤)e i(x ′−y ′)·𝜉′

×
(︁

e i𝜂(x𝟣−y𝟣)/h+e i𝜂(y𝟣−x𝟣)/h+
i𝜂 − a

i𝜂 + a
e i𝜂(x𝟣+y𝟣)/h+

i𝜂 + a

i𝜂 − a
e−i𝜂(x𝟣+y𝟣)/h

)︁
d𝜉′ d𝜂

for a ≤ 0 while for a > 0, it is given by the sum of (3.13) and

(3.14) (2𝜋h)𝟣−d 2a

h
e−ax𝟣/he−ay𝟣/h

∫︁ 𝟣

−∞

∫︁
e i(x ′−y ′)·𝜉′δ(𝜎 − |𝜉′|𝟤 + a𝟤) d𝜉′ d𝜎.

We are actually interested in the value on the diagonal. Setting x = y , and
performing the trivial 𝜉′ integral, we find that the Schwartz kernel of the
spectral projector EHa(1)(x , x) on the diagonal is given by

(3.15)
𝜔d−𝟣

(2𝜋h)d

∫︁ 𝟣

𝟢

(1− 𝜂𝟤)(d−𝟣)/𝟤

(︃
2 +

i𝜂 − a

i𝜂 + a
e𝟤i𝜂x𝟣/h +

i𝜂 + a

i𝜂 − a
e−𝟤i𝜂x𝟣/h

)︃
d𝜂

+ H(a)
(d − 1)𝜔d−𝟣

(2𝜋h)d−𝟣

a

h
e−𝟤ax𝟣/h

∫︁ 𝟣

−a𝟤
(𝜎 + a𝟤)(d−𝟥)/𝟤 d𝜎.

Since

𝜔d−𝟣

∫︁ 𝟣

𝟢

2(1− 𝜂𝟤)(d−𝟣)/𝟤 d𝜂 = 𝜔d ,

we see by comparing with (3.3) that this term disappears in the expression
for 𝜅(a) and we have, after performing the x𝟣 integral as in (3.3)

(3.16) h𝟣−d𝜅(a) =
𝜔d−𝟣

(2𝜋h)d

∫︁ 𝟣

𝟢

(1− 𝜂𝟤)(d−𝟣)/𝟤

×

(︃
i𝜂 − a

i𝜂 + a

(︁ ih

2
(𝜂 + i0)−𝟣

)︁
− i𝜂 + a

i𝜂 − a

(︁ ih

2
(𝜂 − i0)−𝟣

)︁)︃
d𝜂

+ H(a)
(d − 1)𝜔d−𝟣

2(2𝜋h)d−𝟣

∫︁ 𝟣

−a𝟤
(𝜎 + a𝟤)(d−𝟥)/𝟤 d𝜎.
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Simplifying a bit, and performing the 𝜎 integral, we have

(3.17) 𝜅(a) = − i𝜔d−𝟣

2(2𝜋)d

∫︁ 𝟣

−𝟣

(1− 𝜂𝟤)(d−𝟣)/𝟤 (i𝜂 − a)𝟤

a𝟤 + 𝜂𝟤
(𝜂 + i0)−𝟣 d𝜂

+ H(a)
𝜔d−𝟣

(2𝜋)d−𝟣
(1 + a𝟤)(d−𝟣)/𝟤.

We further simplify this expression by expanding (i𝜂 − a)𝟤 = a𝟤 − 2ia𝜂 − 𝜂𝟤,
and noting that the contribution of the −𝜂𝟤 term is zero, as this gives an
odd integrand in the 𝜂 integral. A similar statement can be made for the a𝟤

term, except that there is a contribution from the pole in this case. This
leads to the expression

(3.18) 𝜅(a) =
𝜔d−𝟣

(2𝜋)d−𝟣

(︂
− 1

2𝜋

∫︁ 𝟣

−𝟣

(1− 𝜂𝟤)(d−𝟣)/𝟤 a

a𝟤 + 𝜂𝟤
d𝜂

− 1

4
+ H(a)(1 + a𝟤)(d−𝟣)/𝟤

)︂
.

Although not immediately apparent, this formula is continuous at a = 0. In
fact, the function a(a𝟤 + 𝜂𝟤)−𝟣 has a distributional limit (sgn a)𝜋δ(𝜂) as a
tends to zero from above or below. The change of sign as a crosses 0 means
that the integral in (3.18) has a jump of −1 as a crosses zero from negative
to positive. That exactly compensates the jump in the final term.

In odd dimensions, we can compute this integral exactly. In particular,
in dimension d = 3, we find that

(3.19) 𝜅(a) =
𝜔𝟤

(2𝜋)𝟤

(︁
− 1

4
+

a

𝜋
+ (1 + a𝟤)

(︀
1− arccot a

𝜋

)︀)︁
.

Proof of Theorem 1.2. This follows immediately from Proposition 3.1 and
Proposition 1.1.

Remark 3.4. The second term of the expansion in [FG, Theorem 1.1] is
obtained by computing

(3.20) (2𝜋h)𝟣−d

∫︁ 𝟣

−∞
(1− 𝜎)

∫︁
e i(x ′−y ′)·𝜉′dETa(𝜎 − |𝜉′|𝟤)(x𝟣, y𝟣) d𝜉′ d𝜎

instead of (3.6).
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4 Relation to Dirichlet Boundary Condition

In this section we observe that the limit a → −∞ corresponds to the
Dirichlet boundary condition. More precisely, we have

Proposition 4.1. Let N−
h (−∞) denote the limit

N−
h (−∞) := lim

a→−∞
N−

h (a),

where N−
h (a) is given by (1.17). Then we have

(4.1) N−
h (−∞) = #{𝜆j ≤ h−𝟣 | 𝜆𝟤j is a Dirichlet eigenvalue of Δ}.

Remark 4.2. Because the quadratic form (1.15) is monotone in a, the count-
ing function N−

h (a) is monotone in a. Hence the limit above exists.

Proof. We use the min-max characterisation of eigenvalues. Let ÑD(𝜆)
denote the number of Dirichlet eigenvalues (counted with multiplicity) less
than or equal to 𝜆 = h−𝟣. This is equal to the maximal dimension of a
subspace of H𝟣

𝟢 (M) on which the quadratic form QD , given by

(4.2) QD(u, u) = h𝟤‖∇u‖𝟤𝟤 − ‖u‖𝟤𝟤

is negative semidefinite. On the other hand, Ñ−
h (a) is equal to the maximal

dimension of a subspace of H𝟣(M) on which the quadratic form Qa given by
(1.15) is (strictly) negative definite.

We first show that ÑD(h
−𝟣) ≤ Ñ−

h (−∞). Let V be the vector space
spanned by Dirichlet eigenfunctions with eigenvalue ≤ 𝜆𝟤. Clearly, the
quadratic form Qa is negative semidefinite on V , and if 𝜆𝟤 is not a Dirichlet
eigenvalue, then it is negative definite, proving the assertion. In the case that
𝜆𝟤 is a Dirichlet eigenvalue, we perturb V to V𝜖, a vector space of H𝟣(M) of
the same dimension as V , so that, for for 𝜖 sufficiently small depending on
a, Qa is negative definite on V𝜖. For simplicity we only do this in the case
that the 𝜆𝟤-eigenspace is one dimensional, leaving the general case to the
reader. To do this, we choose an orthonormal basis of V (with respect to
the L𝟤 inner product) of Dirichlet eigenfunctions v𝟣, ... , vk with eigenvalues
𝜆𝟤𝟣 ...𝜆

𝟤
k , where 𝜆k = 𝜆. Then we perturb only vk , leaving the others fixed.

We choose s ∈ H𝟣
𝟢 (M)⊥, the orthogonal complement of H𝟣

𝟢 (M) in H𝟣(M)
(with respect to the inner product in H𝟣(M)), so that

(4.3) Qa(vi , s) = 0, i < k and Qa(vk , s) > 0.
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We check that this is possible. Notice that s ∈ H𝟣
𝟢 (M)⊥ implies that

(Δ + 1)s = 0 in M . Then as vi has zero boundary data, we have

(4.4) (𝜆𝟤i + 1)(vi , s)M = (Δvi , s)M − (vi , Δs)M = ⟨𝜕𝜈vi , s⟩𝜕M .

We choose s so that ⟨𝜕𝜈vi , s⟩𝜕M vanishes for i < k and is positive for i = k .
This is possible: in fact, due to the unique solvability of the boundary value
problem

(4.5) (Δ + 1)s = 0, s|𝜕M = f ∈ H𝟣/𝟤(M),

for s ∈ H𝟣(M), we see that s can have any boundary value in H𝟣/𝟤(𝜕M)
which is dense in L𝟤(𝜕M). Then using (4.4) we see that ⟨𝜕𝜈vk , s⟩𝜕M > 0
implies that (vk , s)M > 0.

We now define V𝜖 to be the span of v𝟣, ... , vk−𝟣 and vk + 𝜖s. Then we
have

(4.6) Qa(vi , vk + 𝜖s) = 0, i < k

and

Qa(vk + 𝜖s, vk + 𝜖s) = Qa(vk , vk) + 2𝜖Qa(vk , s) + 𝜖𝟤Qa(s, s)(4.7)

= 2𝜖Qa(vi , si) + 𝜖𝟤Qa(si , si)

= −2𝜖(h𝟤 + 1)(vi , si)M + O(𝜖𝟤a𝟤)

which is strictly negative for 𝜖a𝟤 small enough. It follows that Qa is negative
definite on Vk when 𝜖a𝟤 is small enough. A similar construction can be made
when 𝜆𝟤 has multiplicity greater than 1.

We next show that ÑD(h
−𝟣) ≥ N−

h (−∞). We argue by contradiction:
if not, then for any a, there is a vector space W of dimension ≥ k + 1
on which Qa is negative definite. Then there is a nonzero vector w ∈ W
orthogonal (in the H𝟣(M) inner product) to V . We can write w = w ′ + s
where w ′ ∈ H𝟣

𝟢 (M) and s ∈ H𝟣
𝟢 (M)⊥. Then w ′ is a linear combination of

Dirichlet eigenfunctions with eigenvalue ≥ 𝜆′ > 𝜆, where 𝜆′ is the smallest
eigenvalue larger than 𝜆. We then have

(4.8) 0 > Qa(w
′ + s,w ′ + s) = Qa(w

′,w ′) + 2Qa(w
′, s) + Qa(s, s)

≥ (𝜆′ − 𝜆)‖w ′‖𝟤𝟤 − 2(h𝟤 + 1)‖w ′‖𝟤‖s‖L𝟤(M) − ha‖s‖𝟤L𝟤(𝜕M).
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However, some standard potential theory shows that ‖s‖L𝟤(M) is bounded
by a constant times ‖s‖L𝟤(𝜕M). To see this, extend M to a larger manifold

M̃ of the same dimension, and let G (x , y) be the Schwartz kernel of the
inverse of (ΔM̃ + 1)−𝟣 on L𝟤(M̃), with Dirichlet boundary conditions at 𝜕M̃ .
We can write s as

∫︀
𝜕M

d𝜈y G (x , y)h(y) dy where (1/2 + D)h = s|𝜕M and D is
the double layer operator on 𝜕M determined by G . Standard arguments
show that (1/2 + D) has a bounded inverse on L𝟤(𝜕M) and d𝜈y G (x , y) is
a bounded integral operator from L𝟤(𝜕M) to L𝟤(M). So we can write, for
a < 0,

0 > Qa(w
′ + s,w ′ + s)

≥ (𝜆′ − 𝜆)‖w ′‖𝟤𝟤 − 2C (h𝟤 + 1)‖w ′‖𝟤‖s‖L𝟤(𝜕M) + h|a|‖s‖𝟤L𝟤(𝜕M)𝟤

and the RHS is clearly positive for |a| large enough, giving us the desired
contradiction.

A Appendix

A.1 Standard Semiclassical Asymptotics

The proof of the standard semiclassical asymptotics (i.e. asymptotics of
the number of negative eigenvalues of Ha := h𝟤Δ − 1 with the boundary
condition (h𝜕x𝟣 + a)u|𝜕M = 0) is in [Ivr4], Section 8.3 and also in [Ivr3],
Section 5.3, but we describe a simplified albeit less general proof. Basically
it is a simplified proof of [Ivr1], used also in [LH], Section 29.3.

A.2 Tauberian Theorem

We use the following “semiclassical” version of the Tauberian theorem
in [Ivr1].

Proposition A.1. Let eh(𝜆) be an nondecreasing function of 𝜆, depending
on the parameter h > 0, equal to zero for 𝜆 ≤ Λ𝟢. Let 𝛽 ∈ C∞

c (ℝ) be a
cutoff function with 𝛽(t) = 1, |t| ≤ 1/2, 𝛽(t) = 0, |t| ≥ 1, and 𝛽(𝜆) > 0.
Let 𝛽T (t) = 𝛽(t/T ). Assume that for all 𝜆, we have

(A.1) |eh(𝜆)| ≤ C ′(1 + |𝜆|)Mh−d
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and, for all 𝜆 ∈ [Λ𝟢, Λ𝟣] we have

(A.2)
1

h

∫︁ ∞

−∞
𝛽T

(︀𝜆− 𝜇

h

)︀
deh(𝜇) = A𝟢(𝜆)h

−d + A𝟣(𝜆)h
𝟣−d + o(h𝟣−d),

h → 0.

Then for all 𝜆 ∈ [Λ𝟢, Λ𝟣 − 𝜖] we have

(A.3)
⃒⃒⃒
eh(𝜆)− B𝟢(𝜆)h

−d − B𝟣(𝜆)h
𝟣−d

⃒⃒⃒
≤

C‖A𝟢‖L∞([𝝠𝟢,𝝠𝟣])

T
h𝟣−d + o(h𝟣−d),

where

Bi(𝜆) =

∫︁ 𝜆

−𝝠𝟢

Ai(𝜇) d𝜇

and C depends only on 𝜖, Λ𝟣, C ′ and 𝛽.

This is proved by modifying the proof of the corresponding proposition
in [Shub], pp 152-153.

A.3 Propagator

We now fix a ∈ ℝ and let eh(𝜆) be the number of eigenvalues, counting
multiplicity, of the operator Pa,h that are less than 𝜆, or equivalently, the
trace of the spectral projection Ea,h(𝜆) for Pa,h. According to Proposition A.1,
it suffices to consider the smoothed spectral projector,

(A.4) Tr
(︁1

h

∫︁ ∞

−∞
𝛽
(︀𝜆− 𝜇

h

)︀
dEa,h(𝜇)

)︁
,

since it is straightforward to show that the estimate (A.1) holds with M = d .
By the spectral theorem, this is precisely the trace of the operator

(A.5) Tr
(︁
𝛽
(︀𝜆− Pa,h

h

)︀)︁
.

If we are only interested in this for 𝜆 in some interval [Λ, Λ𝟣], then, up
to O(h∞) errors we can compose with a smooth function 𝜑(Pa,h) where
𝜑 ∈ C∞

c (ℝ), and 𝜑 = 1 on [Λ− 𝜖, Λ𝟣 + 𝜖]. Then, using the Fourier transform
we can express this operator in terms of the propagator e itPa,h/h:

(A.6)

∫︁ ∞

−∞
e−it𝜆/h𝛽(t)𝜑(Pa,h)e

itPa,h/h dt.
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Since (hDt − Pa,h)e
itPa,h/h = 0, this is the same as

(A.7)

∫︁ ∞

−∞
e−it𝜆/h𝛽(t)𝜑(hDt)e

itPa,h/h dt.

The advantage of the spectral cutoff 𝜑(hDt) is that the operator 𝜑(hDt)e
itPa,h/h

has finite speed of propagation.

A.4 Propagation of Singularities

Let uh(x , y , t) be the Schwartz kernel of e ih−𝟣tPa,h ; then uh(x , y , t) = u𝟢
h(x , y , t)+

u𝟣
h(x , y , t) where u𝟢

h(x , y , t) is a free space solution and u𝟣
h(x , y , t) satisfies

(A.8) (hDt − Pa,h)u
𝟣 = 0, u𝟣|t=𝟢 = 0, (hDx𝟣 + a)(u𝟢 + u𝟣)|𝜕M = 0.

We define

(A.9) 𝜎i
h(t) :=

∫︁
M

𝜑(hDt)u
i(x , x , t) dx , i = 0, 1.

We claim that, for suitable 𝜑, 𝜎i
h(t) has an isolated singularity (in the

semiclassical sense of nontrivial behaviour as h → 0) at t = 0. More
precisely, we claim that if 𝜑 ∈ C∞ and is supported in (−𝜖𝟢, 𝜖𝟢), then

(A.10) 𝜎i
h(t) = O(h∞) for 𝜖 ≤ |t| ≤ 𝜖𝟢,

where 𝜖𝟢 is a fixed, sufficiently small constant, and 0 < 𝜖 < 𝜖𝟢 is arbitrary.
This follows from propagation of singularities arguments. The bicharac-

teristic flow for Pa,h is given by

(A.11)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ṫ = 1,

𝜏 = 0,

ẋ i = 2g ij(x)𝜉j ,

𝜉j = −2
𝜕g kl

𝜕x j
𝜉k𝜉l .

That is, with respect to the parameter t, (x , 𝜉) moves along a geodesic
at speed 2|𝜉|g , and 𝜏 is fixed. By standard propagation of singularities
arguments, the (semiclassical) wavefront set of u𝟢 is contained in the conor-
mal bundle of {t = 0, s = y} together with the forward bicharacteristic
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flow from this conormal bundle intersected with the characteristic variety
of hDt − Pa,h, namely {𝜏 = |𝜉|𝟤g − 1}. Composing with 𝜑(hDt) restricts
this wavefront set to be contained in {𝜏 ∈ (−𝜖𝟢, 𝜖𝟢)}. That implies that⃒⃒
|𝜉|g − 1

⃒⃒
≤ 2𝜖𝟢. So for small time, the wavefront set of u𝟢 is restricted to

the set where |d(x , y) − 2t| ≤ 2𝜖𝟢t. In particular, points with x = y are
not in the wavefront set for t in a deleted neighbourhood of 0. This proves
(A.10) for i = 0.

A similar argument for u𝟣 shows that 𝜑(hDt)u
𝟣(t, x , y) is O(h∞) for

|t| ≤ 𝜖𝟢 unless we have

dist(x , 𝜕M) + dist(y , 𝜕M) ≤ 2𝜖𝟢(1 + 2𝜖𝟢).

Thus, we can work in a collar neighbourhood of 𝜕M . We can choose
coordinates x = (x𝟣, x ′) so that the boundary is given by x𝟣 = 0, x𝟣 ≥ 0
on M , and the metric takes the form dx𝟤

𝟣 + g ′
ij(x𝟣, x ′)x ′ix ′j , that is, Fermi

coordinates near the boundary. Now we split the analysis of u𝟣 into two
cases. We write the identity operator in the x ′ coordinates in the form
Id = Q𝗇𝗈𝗋𝗆 + Q𝗍𝖺𝗇, where Q* are pseudodifferential operators in the x ′

variables such that the symbol q𝗇𝗈𝗋𝗆 of Q𝗇𝗈𝗋𝗆 is supported in {|𝜉′| ≤ 2𝜖𝟣}
and q𝗍𝖺𝗇 is supported in {|𝜉′| ≥ 𝜖𝟣}.

Correspondingly, write

𝜑(hDt)u
𝟣 = 𝜑(hDt)Q𝗍𝖺𝗇(x

′, hDx ′)u
𝟣 + 𝜑(hDt)Q𝗇𝗈𝗋𝗆(x

′, hDx ′)u
𝟣.

For the first term, a standard positive commutator argument in the x ′

variables only shows that this term is O(h∞) unless dist(x ′, y ′) ≥ 2𝜖𝟣t − 𝜖′ for
arbitrary 𝜖′ > 0; in particular, if x ′ = y ′ then this is O(h∞) for t ≥ 𝜖, 𝜖 > 0
arbitrary. On the other hand, for the Q𝗇𝗈𝗋𝗆 term, then we have 𝜉𝟤𝟣 = 1+O(𝜖𝟢+
𝜖𝟣). In particular, this means that ẋ𝟣 = 1 + O(𝜖𝟢 + 𝜖𝟣), so the propagation
is transverse (in fact, nearly normal) to 𝜕M . A standard propagation of
singularities argument shows that the wavefront set of 𝜑(hDt)Q𝗇𝗈𝗋𝗆u𝟣 for
𝜖 ≤ |t| ≤ 𝜖𝟢 is contained in

WFh(𝜑(hDt)Q𝗇𝗈𝗋𝗆u𝟣) ∩ {x = y , 𝜖 ≤ |t| ≤ 𝜖𝟢}
⊂

{︀
(t, x , x ; 𝜏 , 𝜉, 𝜂) | 𝜉𝟣, 𝜂𝟣 = 1 + O(𝜖𝟢 + 𝜖𝟣)

}︀
,

since the only way to have x = y is to bounce off the boundary, in which
case 𝜉𝟣, the momentum in the normal direction, changes from being approx-
imately opposite to 𝜂𝟣 to being approximately equal. This wavefront set is
killed under restriction to x = y and then integration in x , showing that
𝜑(hDt)Q𝗇𝗈𝗋𝗆u𝟣 is also O(h∞) for 𝜖 ≤ |t| ≤ 𝜖𝟢. This establishes (A.10).
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A.5 Method of Successive Approximations

We now observe that (A.10) self-improves to the statement that

(A.12) 𝜎i
h(t) = O(h∞) for h𝟣−𝛿 ≤ |t| ≤ 𝜖𝟢, 𝛿 > 0.

This follows from a simple scaling argument. Fix a base point y ∈ 𝜕M , and
consider the scaled metric (following [Mel])

gT ,y = gij(TX + y)dX idX j

where T is a small parameter. Let uT ,ℏ(t,X ) be given by

uT ,ℏ(t,X ) = T d+𝟣
(︀
𝜑(hDt)uTℏ

)︀
(Tt, y + TX , y);

then, with ℏ := h/T we have

(A.13)
(︁
ℏDt − ℏ𝟤ΔgT ,y

)︁
uT ,ℏ(t,X ) =

T (d+𝟣)
(︁

hDt − h𝟤Δg

)︁
uh(Tt, y + TX , y) = 𝜑(hDt)δ(t)δ(X ),

(A.14) (ℏ𝜕X𝟣 + a)uT ,ℏ(t,X ) = 0, X𝟣 = 0.

Using (A.10) we see that we have

(A.15)

∫︁
M

𝜑(ℏDt)uT ,ℏ(X ,X , t) dX = O(T−(d+𝟣)h∞) for 𝜖 ≤ |t| ≤ 𝜖𝟢,

In particular, (A.15) is O(h∞) provided that T ≥ h𝟣−𝛿 for arbitrary 𝛿 > 0.
Unravelling the scaling demonstrates (A.12).

Therefore if we want to construct 𝜎(t) for |t| ≤ 𝜖𝟢 it suffices to construct
it for |t| ≤ t* = h𝟣−𝛿. However on this short interval we can construct it
by the method of successive approximations. For each y ∈ M we let Py

be the constant coefficient differential operator Pa,h with coefficients frozen
at y . Then we regard Ph,a as a perturbation of Py for x close to y . So
K = Ph,a−Py is a second order differential operator with coefficients that are
O(x−y). The perturbation K is O(t*) due to finite speed of propagation and
each successive term in the approximation acquires a factor not exceeding
Ct* · t*/h = Ct𝟤*h due to Duhamel’s principle. So the construction works for

t* ≤ h
𝟣
𝟤
+𝛿.
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If we apply this to the u𝟢 term then the calculation proceeds as follows.
We let u𝟢 denote the propagator for the constant coefficient operator Py with
coefficients frozen at y ∈ M (and taking only the second order derivatives).
Then, with E the forward fundamental solution for Py , we obtain a formula

u𝟢 = u𝟢 + EKu𝟢,

leading to a formal series

(A.16) u𝟢 =
m∑︁

k=𝟢

(EK )ku𝟢 + (EK )m+𝟣u𝟢.

Applying the Fourier transform in x , we find that the first term is

𝜑(hDt)u𝟢 = (2𝜋h)−d

∫︁
e i(x−y)·𝜉/he it(|𝜉|𝟤−𝟣)/h𝜑(|𝜉|𝟤 − 1) d𝜉.

If we then plug this term into (A.7) then we find that this term is h−d times
a smooth function of 𝜆 and a. The method of successive approximations
then generates a series of the form

∑︀∞
n=𝟣 𝜅

′
n(a,𝜆)h

−d+n, and the terms
corresponding to odd n are given by the integral in 𝜉 of an odd function of
𝜉, hence vanish.

Using this expansion of u𝟢, we compute a series for u𝟣. In this case, the
leading term u𝟣 is given as follows:

𝜑(hDt)u𝟣 = (2𝜋h)−d

∫︁
e−i(x𝟣+y𝟣)𝜉𝟣/he i(x ′−y ′)·𝜉′/he it(|𝜉|𝟤−𝟣)/h𝜑(|𝜉|𝟤−1)

i𝜉𝟣 + a

i𝜉𝟣 − a
d𝜉.

We can form a similar formal series for u𝟣, which converges when t ≤ h𝟣/𝟤+𝛿.
As with the case of u𝟢, we can check that the successive terms in the
approximation for u𝟣, when plugged into (A.7), give a series with the
contribution of 𝜑(hDt)u𝟣 at order h𝟣−d and with successive terms contributing
at increasing integer powers of h.

Now, using this together with the Tauberian theorem, Proposition A.1,
shows that we get a leading Weyl asymptotic with remainder term O(h𝟣−d),
as in (1.18).

A.6 Two Term Expansion

If we assume that the measure of periodic generalized bicharacteristics is
zero, then we can use the standard method to obtain a two-term expansion of
the counting function. We briefly recall here the argument, following [Ivr1].
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Let 𝜖 > 0 be given. Then we decompose the identity operator on L𝟤(M)
as a sum of three terms. The first is multiplication by a cutoff function 𝜁
identically 1 near 𝜕M and supported in a collar neighbourhood of 𝜕M , such
that ∫︁

M

𝜁𝟤 ≤ 𝜖.

The second and third are pseudodifferential operators chosen as follows.
With T > 1 a large constant to be chosen later, we let ΛT denote the union
of points in

{(x , 𝜉) ∈ T *M | |𝜉|g ∈ (1− 𝜖𝟢, 1 + 𝜖𝟢)}

which are either periodic with period ≤ T under generalized bicharacteristic
flow (for Pa,h), or for which the generalized bicharacteristic of length T in
both directions are not transverse to the boundary. This is a closed set of
measure zero so one can find two open sets U𝟣,U𝟤 such that T *M = U𝟣 ∪U𝟤,
ΛT ⊂ U𝟣, and the measure of U𝟣 is less than 𝜖. Then we choose (semiclassical)
pseudodifferential operators Q𝟣, Q𝟤 such that Qi is microsupported in the
conic set determined by Ui , and such that Id = 𝜁𝟤 + Q*

𝟣Q𝟣 + Q*
𝟤Q𝟤. We then

define
e𝟢
h(𝜆) = Tr 𝜁𝟤Eh,a(𝜆) = Tr 𝜁Eh,a𝜁

e i
h(𝜆) = Tr Q*

i QiEh,a(𝜆) = Tr QiEh,a(𝜆)Q
*
i , i = 1, 2;

notice that each of these is nondecreasing in 𝜆, and the sum of the three
terms is equal to the counting function for Ph,a. Correspondingly, we break
(A.7) into a sum of three terms, with i = 0, 1, 2.

Using the series for u𝟢 and u𝟣 sketched above, we compute expansions
for the three terms. Applying Proposition A.1 we find that⃒⃒⃒

e𝟢
h(𝜆)− A𝟢

𝟢(𝜆)h
−d − A𝟢

𝟣(𝜆)h
𝟣−d

⃒⃒⃒
= O(𝜖h𝟣−d),

since in this case A𝟢
𝟢(𝜆) is O(𝜖), as it is proportional to

∫︀
M
𝜁𝟤. For the term

i = 1 we similarly find that⃒⃒⃒
e𝟣
h(𝜆)− A𝟣

𝟢(𝜆)h
−d − A𝟣

𝟣(𝜆)h
𝟣−d

⃒⃒⃒
= O(𝜖h𝟣−d),

since A𝟣
𝟢(𝜆) is proportional to the integral of |𝜎(Q𝟣)|𝟤 which is also O(𝜖).

For the third term, we scale 𝛽 to 𝛽T , exploiting the condition that on the
microsupport of Q𝟤, there are no periodic bicharacteristics up to time T ,
hence the trace of 𝜑(hDt)e

itPa,h/h has no singularities for t ∈ [−T ,T ] except
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at t = 0. Hence this term also has an expansion in powers of h, and we find
that ⃒⃒⃒

e𝟤
h(𝜆)− A𝟤

𝟢(𝜆)h
−d − A𝟤

𝟣(𝜆)h
𝟣−d

⃒⃒⃒
= O(

h𝟣−d

T
).

Choosing T sufficiently large, this is also O(𝜖h𝟣−d), and we have shown the
existence of a two-term expansion.

It only remains to identify the first two terms. But once we know that
there is a two-term expansion, we can identify the coefficients from the first
two terms in the expansion of Tr 𝜑(hDt)e

itPa,h/h at t = 0. From the method of
successive approximations we see that these terms arise from the contribution
of u𝟢 and u𝟣. We observe that u𝟢 + u𝟣 gives precisely the propagator for
the h𝟤Δℝd

+
, the flat Laplacian on the half-space ℝd

+ = {x𝟣 ≥ 0}, with the

boundary condition (h𝜕x𝟣 + a)u(x , y , t) = 0 at x𝟣 = 0. It follows that the
local densities for each term of the two-term expansion is equal to the
local density for the flat half-space model. This justifies the calculations in
Section 3 based on this flat model.
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Spectral asymptotics for fractional
Laplacians*,†

Victor Ivrii‡

Abstract

In this article we consider fractional Laplacians which seem to
be of interest to probability theory. This is a rather new class of
operators for us but our methods works (with a twist, as usual).
Our main goal is to derive a two-term asymptotics since one-term
asymptotics is easily obtained by R. Seeley’s method.

In this article we consider fractional Laplacians. This is a rather new
class of operators for us but our methods works (with a twist, as usual). Our
main goal is to derive a two-term asymptotics since one-term asymptotics is
rather easily obtained by R. Seeley’s method.

1 Problem Set-up

Let us consider a bounded domain X ⊂ ℝd with the smooth boundary 𝜕X ∈
C∞ 1). In this domain we consider a fractional Laplacian Λm = (Δm/𝟤)D
with m > 0 originally defined on functions u ∈ C∞(ℝd) : θXu ∈ Hm/𝟤(ℝd)
by

(1.1) Λm,X := (Δm/𝟤)Du = RXΔ
m/𝟤(θXu)

where θX is a characteristic function of X , RX is an operator of restriction
to X and Δm/𝟤 is a standard pseudodifferential operator in ℝd with the
Weyl symbol g(x , 𝜉)m/𝟤 where as usual g(x , 𝜉) is non-degenerate Riemannian
metrics.
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Remark 1.1. (i) We consider Λm,X as an unbounded operator in L𝟤(X )
with domain D(Λm,X ) = {u ∈ L𝟤(ℝd) : supp(u) ⊂ X̄ ,RXΛm ∈ L𝟤(X )} ⊂
Hm/𝟤

𝟢 (X ).

(ii) This operator can also be introduced through positive quadratic form
with domain {u ∈ Hm(ℝd), supp(u) ⊂ X̄} and is a positive self-adjoint
operator which is Friedrichs extension of operator originally defined on
Hm

𝟢 (X ).

(iii) We can consider this operator as a bounded operator from Hm/𝟤
𝟢 (X ) to

H−m/𝟤(X ) := Hm/𝟤 *
𝟢 (X ).

(iv) Let 0 < m /∈ 2ℤ. Then D(Λm,X ) ⊂ Hm(X ) if and only if m ∈ (0, 1);
otherwise even eigenfunctions of Λm,X may not belong to Hm(X ).

(v) Since Λm does not possess transmission property for m /∈ 2ℤ, we are not
in the framework of the Boutet-de-Monvel algebra, but pretty close: Λm pos-
sess 𝜇-transmission property introduced by L. Hörmander and systematically
studied by G. Grubb in [5, 6]. We provide definition in Subsection A.2.

We are interested in the asymptotics of the eigenvalue counting function
N(𝜆) for Λm,X as 𝜆→ +∞.

2 Preliminary Analysis

As usual we reduce problem to a semiclassical one. Let A = Ah := hmΛm,X −1
with h = 𝜆−𝟣/m, eh(x , y , 𝜏) the Schwartz kernel of θ(𝜏 − Ah) a spectral
projector of Ah, and N−

h the number of negative eigenvalues of Ah.

Proposition 2.1. Let x̄ ∈ X , B(x̄ , 2𝛾) ⊂ X , 𝛾 ≥ h. Then

(2.1) |eh(x , x , 0)−Weyl(x)| ≤ Ch𝟣−d𝛾−𝟣 ∀x ∈ B(x̄ , 𝛾)

and

(2.2) |
∫︁
𝜓((x − x̄)/𝛾)

(︁
eh(x , x , 0)−Weyl(x)

)︁
dx | ≤

Ch𝟣−d𝛾d−𝟣
(︀
𝛾𝛿 + h𝛿𝛾−𝛿

)︀



PRELIMINARY ANALYSIS 497

as 𝜓 ∈ C∞
𝟢 (B(0, 1)) and 𝛿 > 0, where

Weyl(x) = (2𝜋h)−d mes({𝜉 : g(x , 𝜉) ≤ 1})

is the standard pointwise Weyl expression.

Proof. Estimate (2.1) is easily proven by just rescaling as modulo O(hs𝛾−s)
we get a ℏ-pseudodifferential operator with ℏ = h𝛾−𝟣.

Estimate (2.2) is easily proven by rescaling plus R. Seeley’s method as
described in Subsection 7.5.1 of [9]. We leave easy details to the reader.

Then we immediately arrive to

Corollary 2.2. (i) Contribution of the inner zone {x : dist(x , 𝜕X ) ≥ h}
to the Weyl remainder does not exceed Ch𝟣−d .

(ii) Contribution of the intermediate strip {x : 𝜀 ≥ dist(x , 𝜕X ) ≥ 𝜀−𝟣h} to
the Weyl remainder does not exceed 𝜂(𝜀)h𝟣−d with 𝜂(𝜀) → 0 as 𝜀→ 0.

Here and in what follows 𝜀 > 0 is an arbitrarily small constant.

Proposition 2.3. The following estimate holds:

(2.3) |eh(x , x , 0)| ≤ Ch−d .

Proof. The standard proof we leave to the reader.

Theorem 2.4. (i) For operator A the Weyl remainder in the asymptotics
for N−

h does not exceed Ch𝟣−d .

(ii) For operator Λm,X the following asymptotics holds

(2.4) N(𝜆) = 𝜅𝟢𝜆
d
m + O(𝜆

d−𝟣
m ) as 𝜆→ +∞,

where 𝜅𝟢 = (2𝜋)−d𝜛d vol(X ), 𝜛d is a volume of the unit ball in ℝd and
vol(X ) means the Riemannian volume of X .

Proof. Statement (i) follows immediately from Corollary 2.2(i) and Proposi-
tion 2.3. Statement (ii) follows immediately from (i) as d ≥ 2.

Remark 2.5. (i) Therefore, we extended the result, well-known for m ∈ 2ℤ+

to m ∈ ℝ+.
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(ii) This was easy but to recover the second term (which is also known
for m ∈ 2ℤ+ under non-periodicity condition) is a much more daunting
task requiring first to improve the contribution of the near boundary strip
{x : dist(x , 𝜕X ) ≤ 𝜀−𝟣h} and also of the inner zone {x : dist(x , 𝜕X ) ≥ 𝜀}.

3 Propagation of Singularities near the

Boundary

Without any loss of the generality one can assume that

(3.1) X = {x : x𝟣 > 0}, g jk = δ𝟣j ∀j = 1, ... , d .

First let us study the propagation of singularities along the boundary:

Theorem 3.1. On the energy level 𝜏 : |𝜏 | ≤ 𝜖𝟢

(i) Singularities (with respect to x ′) propagate with the speed not exceeding
c with respect to (x , 𝜉′).

(ii) For |𝜉′| ≍ 𝜌 ≥ Ch
𝟣
𝟤
−𝛿, and |t| ≤ T = 𝜖𝜌, singularities (with respect to

x ′) move from x ′ = y ′ with the speed ≍ 𝜌 with respect to x .

Proof. In the terminology of [9] both statements mean that u = uh(x , y , t),
the Schwartz kernel of e−ih−𝟣tA, satisfies

(3.2) Ft→h−𝟣𝜏𝜒T (t)Q𝟣,xu tQ𝟤,y = O(hs),

where Ft→h−𝟣𝜏 is h-Fourier transform, Q𝟣 = q𝟣(x , hD ′) and Q𝟤 = q𝟤(x , hD ′)
are h-pseudodifferential operators, tQ𝟤,y is a dual operator, acting with
respect to y (and we write it to the right of the function, it is applied to),
𝜒T (t) = 𝜒(t/T ), where

(a) in the Statement (i) h
𝟣
𝟤
−𝛿 ≤ T𝟢, T𝟢 is the small constant, the distance

between supp(q𝟣) and supp(q𝟤) is at least cT , and 𝜒 ∈ C∞
𝟢 ([−1, 1]).

(b) in the Statement (ii) the diameter of supp(q𝟣) ∪ supp(q𝟤) is does not
exceed 𝜖𝜌, 𝜖 is the small constant, and 𝜒 ∈ C∞

𝟢 ([−1,−𝟣
𝟤
] ∪ [𝟣

𝟤
, 1]);
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s is an arbitrarily large exponent, 𝛿 > 0 is arbitrarily small,

The proof is standard, by means of the positive commutator method,
like those proofs in the Chapters 2 and 3 of [9], since it involves only
pseudodifferential operators qj(x , hD ′) and their commutators with A, but
one can see easily that those commutators do not bring any troubles as the
energy level is ≍ 1. We leave all easy details to the reader.

Corollary 3.2. (i) Let 𝜌 ≥ Ch
𝟣
𝟤
−𝛿, h𝟣−𝛿 ≤ 𝛾 ≤ 𝜖. Then the contribution

of the zone {(x , 𝜉′) : x𝟣 ≤ 𝛾, |𝜉′| ≍ 𝜌} to the Tauberian remainder with
T ∈ (T*(𝜌),T *(𝜌)), where T*(𝜌) = h𝟣−𝛿𝜌−𝟤, T *(𝜌) = 𝜖𝜌 does not exceed

(3.3) C𝜌d−𝟣h−d × 𝛾 × h𝟣−𝛿𝜌−𝟤 × 𝜌−𝟣.

(ii) The total contribution of the zone {(x , 𝜉′) : x𝟣 ≤ 𝛾 = h𝟣−𝛿} to the
Tauberian error with T = h𝟣−𝟥𝛿 does not exceed Ch−d+𝟣+𝛿.

Proof. In the terminology of [9] the Tauberian error is the difference between
N−

h and the Tauberian expression

(3.4) N𝖳
h := h−𝟣

∫︁ 𝟢

−∞

(︁∫︁
Ft→h−𝟣𝜏 𝜒̄T (t)u(x , x , t) dx

)︁
d𝜏 ,

where 𝜒̄ ∈ C∞
𝟢 ([−1, 1]), 𝜒̄ = 1 on [−𝟣

𝟤
, 𝟣
𝟤
].

The easy and standard proof of Statement (i) is left to the reader; it is
like those proofs in Chapter 7 of [9].

Then the contribution of the zone x𝟣 ≤ h𝟣−𝛿, |𝜉′| ≥ Ch𝛿 to the Tauberian
error with T = h𝟣−𝟥𝛿 does not exceed Ch−d+𝟣+𝛿. Since the contribution of
the zone {(x , 𝜉′) : x𝟣 ≤ 𝛾 = h𝟣−𝛿, |𝜉′| ≤ Ch𝟤𝛿} to the asymptotics does not
exceed C𝜌d−𝟣h−d × 𝛾 ≤ Ch−d+𝟣+𝛿 we arrive to Statement (ii).

Therefore in this zone {(x , 𝜉′) : x𝟣 ≤ 𝛾 = h𝟣−𝛿} all we need is to pass
from the Tauberian expression to the Weyl expression.

However the inner zone should be reexamined and we need to describe
what happens with the propagation along Hamiltonian trajectory in the
zone {(x , 𝜉) : x𝟣 ≤ h𝟣−𝛿}. We can assume that |𝜉𝟣| ≥ 𝜀 since the measure
of the remaining trajectories is small, here 𝜀 > 0 is an arbitrarily small
constant.
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4 Reflection of Singularities from the

Boundary

4.1 Toy-Model

We start from the pilot-model which will be used to prove the main case.
Namely, let us consider 1-dimensional operator on half-line ℝ+ with Eu-
clidean metrics

(4.1) B := Bm,a,h = ((h𝟤D𝟤
x + a𝟤)m/𝟤)D

with a ≥ 0. We denote em,a,h(x𝟣, y𝟣, 𝜏) the Schwartz kernel of its spectral
projector.

Observe that scaling x ↦→ x𝛾−𝟣, 𝜏 ↦→ 𝜏𝜌−m transforms operator to one
with h ↦→ h/(𝜌𝛾), 𝜏 ↦→ 𝜏𝜌−m; because of this we can assume that h = 1 and
the second scaling implies that we can assume that either a = 1 or 𝜏 = 1.

Proposition 4.1. (i) The spectrum of operator Λm,a is absolutely continuos
and it coincides with [am,∞).

(ii) The following equalities hold:

(4.2) em,a,h(x , y ,𝜆) = em,𝟣,ha−𝟣(ax , ay ,𝜆a−m) =

𝜆𝟣/mem,a𝜆−𝟣/m,h(𝜆
𝟣/mx ,𝜆𝟣/my , 1) = aem,𝟣,h(ax , ay ,𝜆a−m).

Proposition 4.2. Let 𝜓 ∈ C∞
𝟢 ([−1, 1]), 𝜓𝛾(x) = 𝜓(x/𝛾) and 𝜑 ∈ C∞

𝟢 ([−1, 1]),
0 ≤ a ≤ 1− 𝜖𝟢. Then as 𝛾 ≥ h𝟣−𝛿, T ≥ C𝟢𝛾, h𝛿 ≥ 𝜂 ≥ h𝟣−𝛿T−𝟣

(4.3) ‖𝜑(𝜂−𝟣(hDt − 1))𝜓𝛾e i(mh)−𝟣tB𝜓𝛾|t=T‖ ≤ CT−𝟣𝛾 + Ch𝛿
′
.

Proof. Observe first that if for u supported in ℝ+ and L = x𝟣hD𝟣− ih/2 = L*

Re i(BLu, u) =
1

2
(i [B , L]u, u),(4.4)

and then

Re(Lu, ut − ih−𝟣Bu) =
1

2
(ih−𝟣[B , L]u, u) +

1

2
𝜕t Re(Lu, u)(4.5)
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and

(4.6) Re(ktu + Lu, ut − ih−𝟣Bu) =

1

2
𝜕t
(︀
kt‖u‖𝟤 + (Lu, u)

)︀
+

1

2

(︀
(ih−𝟣[B , L]u, u)− k‖u‖𝟤

)︀
.

Let us plug

(4.7) u = 𝜑(𝜂−𝟣(hDt − 1))e ih−𝟣TB𝜓𝛾v

with ‖v‖ = 1. Then the left hand expression in (4.6) is 0 and

(4.8)
1

2
𝜕t
(︀
kt‖u‖𝟤 + (Lu, u)

)︀
≤ 1

2

(︀
−(ih−𝟣[B , L]u, u) + k‖u‖𝟤

)︀
.

Let us estimate from above the right-hand expression; obviously

(4.9) ih−𝟣[Bm, L] = m(Bm − a𝟤Bm−𝟤).

(a) Assume first that m > 2. Then since

(1− C𝜂)‖u‖ ≤ ‖Bmu‖ ≤ (1 + C𝜂)‖u‖(4.10)

due to cutoff by 𝜑 and

Bm−𝟤 ≤ B (m−𝟤)/m
m(4.11)

in virtue of Corollary A.2 we conclude that as k = m(1− a𝟤) the right-hand
expression does not exceed C𝜂 and therefore

(4.12) m(1− a𝟤)t‖u‖𝟤 + (Lu, u) ≤ C𝛾 + C𝜂T

since the value of the left-hand expression as t = 0 does not exceed C𝛾.

Further, observe that on the energy levels from (1 − C𝟢𝜂, 1 + C𝟢𝜂)
the singularities propagate with a speed (with respect to x𝟣) not exceed-

ing m(1 − a𝟤)
𝟣
𝟤 (1 + C𝟢𝜂). Therefore we conclude that u is negligible as

|x𝟣| ≥ m(1− a𝟤)
𝟣
𝟤 (1 + C𝟢𝜂)T + C𝛾 and therefore since

‖D𝟣u‖ ≤ (B𝟤u, u) ≤ ((1− a𝟤)
𝟣
𝟤 + C𝟢𝜂),(4.13)

we conclude using (4.10) and (4.11) that

|(Lu, u)| ≤ m(1− a𝟤 + C𝟢𝜂)T + C𝛾 − 𝜖𝟢T‖𝜓𝛾(x𝟣)u‖𝟤(4.14)

and the left-hand expression of (4.12) is greater than 𝜖𝟢T‖𝜓𝛾u‖𝟤−C (𝜂T +𝛾)
and we arrive to (4.3).
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(b) Assume now that 0 < m < 2. Then our above proof fails short in both
estimating Re ih−𝟣([B , L]u, u) from below and |(Lu, u)| from above and we
need to remedy it.

Note first that away from x𝟣 = 0 only symbols are important and therefore
the right-hand expression of (4.8) does not exceed m

𝟤
(am−a𝟤)‖𝜓𝜎u‖𝟤+Ch𝟤𝜎−𝟤

since ‖Bm−𝟤‖ ≤ am−𝟤. Indeed, we need just to decompose 1 = 𝜓𝟤
𝜎 + 𝜓′ 𝟤

𝜎 and
use our standard arguments to rewrite the right-hand expression of (4.8) as
the sum of the same expressions for 𝜓𝜎u and 𝜓′

𝜎u plus Ch𝟤𝜎−𝟤‖u‖𝟤‖.
Similarly we deal Re(Lu, u) = Re(L𝜓𝜎u,𝜓𝜎u) + Re(L𝜓′

𝜎u,𝜓′
𝜎u) and the

absolute value of the second term does not exceed m(1− a𝟤)
𝟣
𝟤 T‖B

𝟣/m
m 𝜓′

𝜎‖𝟤.
We claim that

(4.15) Re(L𝜓𝜎u,𝜓𝜎u) ≤ C𝜎‖𝜓𝜎u‖𝟤 + C𝜎h𝛿;

we prove it later but now instead of (4.12) we arrive for 𝜎 = 𝜖𝟢t to

((1− a𝟤)− 𝜖)P(T ) ≤ Ch𝛿
′
+ (am − a𝟤)T−𝟣

∫︁ T

𝛾

P(t) dt + C𝛾T−𝟣

with P(t) = ‖𝜓𝜖𝟢tu(., t)‖𝟤. Then since 𝜈 = (am − a𝟤)/((1− a𝟤)− 𝜖) < 0 this
inequality implies (4.3) again.

Proof of (4.15). Indeed, as h = 1, ‖B
𝟣/m
m u‖ ≤ 1 we from G. Grubb [5, 6]

conclude that |u(x𝟣)| ≤ Cx
(m−𝟣)/𝟤
𝟣 ‖uB

𝟣/m
m u‖ and |Lu(x𝟣)| ≤ Cx

(m−𝟣)/𝟤
𝟣 and

therefore |(Lu, u)| ≤ C𝜎m‖B
𝟣/m
m u‖𝟤. Take 𝜎 = 1.

Scaling returns (4.15) as 𝜎 = h.

Proposition 4.3. Let Λ = Λm,X be a d-dimensional operator (1.1) on the
half-space X = {x ∈ ℝd , x𝟣 > 0} with Euclidean metrics (d ≥ 2) and
A = hΛ𝟣/m − 1.

Let 𝜓 ∈ C∞
𝟢 ([−1, 1]), 𝜓𝛾(x) = 𝜓(x𝟣/𝛾), 𝜑 ∈ C∞

𝟢 ([−1, 1]), 𝜙 ∈ C∞
𝟢 (ℝd−𝟣)

supported in {|𝜉′| ≤ 1 − 𝜖} with 𝜖 > 0. Finally, let 𝛾 ≥ h𝟣−𝛿, T ≥ Ch−𝛿𝛾,
h𝛿 ≥ 𝜂 ≥ h𝟣−𝛿T−𝟣. Then

(4.16) ‖𝜑(𝜂−𝟣hDt − 1)𝜙(hD ′)𝜓𝛾(x𝟣)e
ih−𝟣tA𝜓𝛾(x𝟣)|t=T‖ = O(hs)

with arbitrarily large s.
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Proof. By making Fourier transform Fx ′→h−𝟣𝜉′ we reduce the general case to
d = 1 and operator B .

According to Proposition 4.2 ‖𝜑(𝜂−𝟣hDt)𝜓𝛾e ih−𝟣TA𝜓‖ ≤ h𝛿. Thus for
s = 𝛿′ (4.16) has been proven (we reduce 𝛿′ if necessary).

Without any loss of the generality we assume that 𝜓(x𝟣) = 1 as x𝟣 ≤ 1,
𝜓(x𝟣) = 0 as x𝟣 ≥ 2. Observe that due to propagation as t ≤ T and
x𝟣 ≥ 𝛾 we see that 𝜑(𝜂−𝟣hDt)Q

+(hD𝟣)(1− 𝜓𝛾)e
ih−𝟣TA𝜓𝛾 is negligible where

Q± ∈ C∞(ℝ) is supported in {±𝜉𝟣 > 𝜖}. Furthermore, from the standard
ellipticity arguments we conclude that 𝜑(𝜂−𝟣hDt)Q

𝟢(hD𝟣)(1− 𝜓𝛾)e
ih−𝟣TA𝜓𝛾

is also negligible for Q𝟢 ∈ C∞
𝟢 ([−2𝜖, 2𝜖]).

Finally, due to propagation as t ≥ T and x𝟣 ≥ 𝛾 we conclude that
𝜑(𝜂−𝟣hDt)𝜓𝛾e ih−𝟣(t−T )AQ−(hD𝟣)(1− 𝜓𝛾)e

ih−𝟣TA𝜓𝛾 is negligible for t ≥ T .
What is left is 𝜑(𝜂−𝟣hDt)𝜓𝛾e ih−𝟣(t−T )AQ−(hD𝟣)𝜓𝛾e ih−𝟣TA𝜓𝛾 and since

(4.16) holds for s = 𝛿′ we conclude that it holds for s = 2𝛿′ and T re-
placed by 2T .

Continuing this process we see that (4.16) holds for s = n𝛿′ and T
replaced by nT . Therefore, as we redenote nT by T (and T by T/n
respectively), we acquire factor (𝛾n/T )n in our estimate and it is O(hs) for
any s as h is sufficiently small, 𝛾/T ≤ h𝛿 and n = s/𝛿′.

4.2 General Case

Theorem 4.4. Let (x̄ , 𝜉) be a point on the energy level 1. Consider a
Hamiltonian trajectory Ψt(x̄ , 𝜉) with ±t ∈ [0,mT ] (one sign only) with
T ≥ 𝜖𝟢 and assume that for each t indicated it meets 𝜕X transversally i.e.

(4.17) dist(πxΨt(x , 𝜉), 𝜕X ) ≤ 𝜖 =⇒

|d
dt

dist(πxΨt(x , 𝜉), 𝜕X )| ≥ 𝜖 ∀t : ±t ∈ [0,mT ].

Also assume that

(4.18) dist(πxΨt(x , 𝜉), 𝜕X ) ≥ 𝜖𝟢 as t = 0, ±t = mT .

Let 𝜖 > 0 be a small enough constant, Q be supported in 𝜖-vicinity of
(x , 𝜉) and Q𝟣 ≡ 1 in C𝟢𝜖-vicinity of Ψt(x , 𝜉) as t = ±mT . Then operator
(I − Q𝟣)e

−ih−𝟣tHQ is negligible as t = ±mT .
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Proof. (a) Obviously without any loss of the generality one can assume that
there is just one reflection from 𝜕X (and this reflection is transversal) and
that (3.1) is fulfilled in its vicinity.

Further, without any loss of the generality one can assume that Q is
supported in 𝜀-vicinity of (x̄ , 𝜉), Q𝟣 ≡ 1 in 𝜀-vicinity of ΨmT (x̄ , 𝜉) and T ≍ 𝜀

with 𝜀 = h
𝟣
𝟤
−𝛿′ . Then both x̄ and πxΨmT (x̄ , 𝜉) belong to C𝟢𝜀-vicinity of 𝜕X .

Indeed, it follows from the propagation inside of domain.

(b) Then instead of isotropic vicinities we can consider anisotropic ones: 𝜀
with respect to (x ′, 𝜉′), h𝟣−𝟥𝛿′ with respect to x𝟣 and h𝛿

′
with respect to 𝜉𝟣.

Let now Q and Q𝟣 be corresponding operators.

In this framework from the propagation inside of domain it follows that
without any loss of the generality one can assume that T ≍ 𝛾 = h𝟣−𝛿′′ and
both x̄ and πxΨmT (x̄ , 𝜉) belong to C𝟢𝛾-vicinity of 𝜕X .

(c) Then one can employ the method of the successive approximations
freezing coefficients at point x̄ and in this case the statement of the theorem
follows from the construction of Section 7.2 of [9]2) and Proposition 4.3. We
leave easy details to the reader.

Then we arrive immediately to

Corollary 4.5. Under standard non-periodicity condition3) N−
h is given with

o(h𝟣−d)-error by the Tauberian expression with T = h𝟣−𝛿.

Proof. Easy details are left to the reader.

5 Main Results

5.1 From Tauberian to Weyl Asymptotics

Now we can apply the method of successive approximations as described in
Section 7.2 2) and prove that for operator A the Tauberian expression with

2) Insignificant and rather obvious modifications are required.
3) The set of all periodic billiards has measure zero.
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T = h𝟣−𝛿 (with sufficiently small 𝛿 > 0) equals to Weyl expression N𝖶
h with

O(h𝟤−d−𝛿′′) error,

(5.1) N𝖶
h = 𝜅𝟢h−d + 𝜅𝟣,mh𝟣−d + o(h𝟣−m)

with the standard coefficient 𝜅𝟢 = (2𝜋)−d𝜛d vold(X ) and with

(5.2) 𝜅𝟣,m = (2𝜋)𝟣−d𝜛d−𝟣𝜘m vold−𝟣(𝜕X ),

where

(5.3) 𝜘m =

=
d − 1

m

∫︁∫︁ ∞

𝟣

𝜆−(d−𝟣)/m−𝟣
(︁
em(x𝟣, x𝟣,𝜆)− 𝜋−𝟣(𝜆− 1)𝟣/m

)︁
dx𝟣d𝜆

with em(x𝟣, y𝟣, 𝜏) = em,𝟣,𝟣(x𝟣, y𝟣, 𝜏) the Schwartz kernel of the spectral
projector of operator am := Bm,𝟣,𝟣 introduced by (4.1):

(5.4) am = ((D𝟤
x + 1)m/𝟤)D

Recall that vold and vold−𝟣 are Riemannian volumes corresponding to
metrics g and its restriction to 𝜕X respectively and 𝜋−𝟣(𝜆− 1)𝟣/m is a Weyl
approximation to em,𝟣(x𝟣, x𝟣,𝜆). Thus we arrive to

Theorem 5.1. Under standard non-periodicity condition the following asymp-
totics holds:

(5.5) N(𝜏) = 𝜅𝟢𝜏
d
m + 𝜅𝟣,m𝜏

d−𝟣
m + o(𝜏

d−𝟣
m ) as 𝜏 → +∞.

Proof. First we establish as described above asymptotics

(5.6) N−
h = 𝜅𝟢h−d + 𝜅𝟣,mh𝟣−d + o(h𝟣−d) as h → +0,

which immediately implies (5.5).

Remark 5.2. Based on our analysis one can prove easily also the asymptotics
for the Riesz means:

(5.7)
(︁
N(𝜏)−

∑︁
k<r+𝟣

𝜅k,m𝜏
d−k
m

)︁
* 𝜏 r−𝟣

+ = O(𝜏
d−𝟣
m ) as 𝜏 → +∞,

and under standard non-periodicity condition

(5.8)
(︁
N(𝜏)−

∑︁
k≤r+𝟣

𝜅k,m𝜏
d−k
m

)︁
* 𝜏 r−𝟣

+ = o(𝜏
d−𝟣
m ) as 𝜏 → +∞,

with some coefficients 𝜅k,m.
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5.2 Discussion

The following problems seem to be challenging

Problem 5.3. As m𝟣 > 0, m𝟤 > 0 consider

(5.9) K = Km𝟣,m𝟤,X := Λm,X − Λm𝟣,XΛm𝟤,X

on D(Λm) with m = m𝟣 +m𝟤. From Corollary A.2 we conclude that this is a
non-negative operator. Furthermore, due to [12, 13] it is a positive operator.
Obviously singularities of its Schwartz kernel K (x , y) belong to 𝜕X × 𝜕X .

(i) Provide an effective estimate for this operator from below.

(ii) Prove that as X = {x ∈ ℝd : x𝟣 > 0} with Euclidean metrics its
Schwartz kernel K (x , y) = k(x𝟣, y𝟣, x ′ − y ′) which is positive homogeneous
of degree −m − d satisfies

(5.10) |D𝛼
x D𝛽

y K (x , y)|

≤ C𝛼𝛽x
−m

𝟤
−𝛼𝟣

𝟣 y
−m

𝟤
−𝛽𝟣

𝟣 (x𝟣 + y𝟣 + |z |)−d−|𝛼′|+|𝛽′|.

(iii) In the general case in the local coordinates in which X = {x : x𝟣 > 0}
and x𝟣 = dist(x , 𝜕X ) not only (5.10) holds but also

(5.11) |D𝛼
x D𝛽

y

(︀
K (x , y)− K 𝟢(x , y)

)︀
|

≤ C𝛼𝛽(x𝟣 + y𝟣)
−m−𝛼𝟣−𝛽𝟣(x𝟣 + y𝟣 + |z |)−d−|𝛼′|+|𝛽′|+𝟣

where K 𝟢(x , y) = k(x𝟣, y𝟣, x ′ − y ′) and g jk = δjk at point (0, 𝟣
𝟤
(x ′ + y ′)).

Problem 5.4. For m > 0, n > 0 consider operator

(5.12) K = Km,n,X := Λm,X − Λ
m/n
n,X

on D(Λk) with k = max(m, n). Then this is a non-negative (non-positive)
operator as m > n (m < n respectively. Furthermore, due to [12,13] it is a
positive (negative) operator respectively.

(i) Provide an effective estimate for this operator from below.
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(ii) Prove that if X = {x ∈ ℝd : x𝟣 > 0} with Euclidean metrics its Schwartz
kernel K (x , y) = k(x𝟣, y𝟣, x ′ − y ′) which is positive homogeneous of degree
−(m + d) and satisfies (5.10).

(iii) Prove that in the framework of Problem 5.3(iii) both (5.10) and (5.11)
hold.

Problem 5.5. (i) Consider operators (Δm/𝟤)D with m < 0 and the asymp-
totics of eigenvalues tending to +0.

(ii) Consider operators with degenerations like Am,X = hmΛm,X + V (x).

(iii) Consider more general operators where instead of Δ general elliptic
(matrix) operator is used.

Problem 5.6. (i) Consider Neumann boundary conditions: having smooth
metrics g in the vicinity of X̄ for each point x /∈ X in the vicinity of 𝜕X
we can assign a mirror point j(x) ∈ X̄ such that x and j(x) are connected
by a (short) geodesics orthogonal to Y at the point of intersection. Each u
defined in X we can continue to the vicinity of X̄ as Ju(x) = 𝜓(x)u(j(x))
with 𝜓 supported in the vicinity of X̄ and 𝜓 = 1 in the smaller vicinity of
X̄ . Then Λmu = RXΔ

m/𝟤Ju.

- Establish eigenvalue asymptotics for this operator.

- Surely we need to prove that the choice neither of metrics outside of X
nor 𝜓 is important.

(ii) One can also try Ju(x) = −𝜓(x)u(j(x)) and prove that eigenvalue asymp-
totics for this operator do not differ from what we got just for continuation
by 0.

Problem 5.7. Consider manifolds with all geodesic billiards closed as in
Section 8.3 of [9]. To do this we need to calculate the “phase shift” at
the transversal reflection point itself seems to be an extremely challenging
problem.

6 Global Theory

Let us discuss fractional Laplacians defined by (1.1) in domain X ⊂ ℝd .
Then under additional condition

(6.1) dist(x , y) ≤ C𝟢|x − y | ∀x , y ∈ X
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(where dist(x , y) is a “connected” distance between x and y) everything
seems to work. We leave to the reader:

Problem 6.1. Under assumption (6.1)

(i) prove Lieb-Cwikel-Rozeblioum estimate (9.A.11) of [9].

(ii) Restore results of Chapter 9 of [9].

(iii) Reconsider examples of Sections 11.2 and 11.3 of [9].

Remark 6.2. Obviously domains with cuts and inner spikes (inner angles of
2𝜋) do not fit (6.1). On the other hand, in the case of the domain with the
cut due to non-locality of Δr with r ∈ ℝ+ ∖ℤ both sides of the cut “interact”
and at least coefficient in the second term of two-term asymptotics may be
wrong; in the case of the inner spike some milder effects are expected.

(a) (b)

Figure 1: Domain with a cut (a) and an inner spike (b).

The following problem seems to be very challenging:

Problem 6.3. (i) Investigate fractional Laplacians in domains with cuts
and inner spikes and save whatever is possible.

(ii) Generalize these results to higher dimensions.
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A Variational Estimates for Fractional

Laplacian

A.1 Variational Estimates for Fractional Laplacian

We follow here R. Frank and L. Geisinger [4]. This is Lemma 19 and the
next paragraph of their paper:

Lemma A.1. (i) Let B be a non-negative operator with KerB = {0} and
let P be an orthogonal projection. Then for any operator monotone function
𝜑 : (0,∞) → ℝ,

(A.1) P𝜑(PBP)P ≥ P𝜑(B)P .

(ii) If, in addition, B is positive definite and 𝜑 is not affine linear, then
𝜑(PBP) = P𝜑(B)P implies that the range of P is a reducing subspace of B.

We recall that, by definition, the range of P is a reducing subspace of a
non-negative (possibly unbounded) operator if (B + 𝜏)−𝟣 RanP ⊂ RanP for
some 𝜏 > 0. We note that this is equivalent to (B + 𝜏)−𝟣 commuting with
P , and we see that the definition is independent of 𝜏 since

(B + 𝜏 ′)−𝟣P − P(B + 𝜏 ′)−𝟣

= (B + 𝜏)(B + 𝜏 ′)−𝟣
(︀
(B + 𝜏)−𝟣P − P(B + 𝜏)−𝟣

)︀
(B + 𝜏)(B + 𝜏 ′)−𝟣.

We refer to the proof given there.

Corollary A.2. The following inequality holds

(A.2) Λm,X ≤ Λ
m/n
n,X as 0 < m < n.

Proof. Plugging into (A.1) B = Δn/𝟤 in ℝd , P = 𝜃X (x) and 𝜑(𝜆) = 𝜆m/n we
get (A.2).

Repeating arguments of Proposition 20 and following it Subsection 6.4
of R. Frank and L. Geisinger [4] (powers of operators will be different but
also negative) we conclude that

Proposition A.3. Let d ≥ 2. Then −𝜘m is positive strictly monotone
increasing function of m > 0.

We leave details to the reader.
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A.2 𝜇-Transmission Property

Proposition 1 of G. Grubb [6] claims that

Proposition A.4. A necessary and sufficient condition in order that RXPu ∈
C∞(X̄ ) for all u ∈ E𝜇(X̄ ) is that P satisfies the 𝜇-transmission condition
(in short: is of type 𝜇), namely that

(A.3) 𝜕𝛽x 𝜕
𝛼
𝜉 pj(x ,−N) = e𝜋i(m−𝟤𝜇−j−|𝛼|)𝜕𝛽x 𝜕

𝛼
𝜉 pj(x ,N) ∀x ∈ 𝜕Ω,

for all j ,𝛼, 𝛽, where N denotes the interior normal to 𝜕X at x , m is an order
of classical pseudo-differential operator P and for 𝜇 ∈ ℂ with Re𝜇 > −1.

Here E𝜇(X̄ ) denotes the space of functions u such that u = EXd(x)𝜇v
with v ∈ C∞(X̄ ) where EX is an operator of extension by 0 to ℝd ∖ X and
d(x) = dist(x , 𝜕X ).

Observe that for 𝜇 = 0 we have an ordinary transmission property (see
Definition 1.4.3) of [9].

Comments

This project started when I learned to my surprise that fractional Laplacians
are of the interest to probability theory: which seem to be of interest to prob-
ability theory starting from R. M. Blumenthal, R. M. and R. K. Getoor [3]
and then by R. Bañuelos and T. Kulczycki [1], R. Bañuelos, T. Kulczycki
and B. Siudeja [2], M. Kwaśnicki [11]; some of these authors were interested
in “Ivrii-type results” (i.e. generalizations from m = 2 to m ∈ (0, 2)

Those operators were formulated in the framework of stochastic processes
and thus were not accessible for me until I found paper R. Frank and
L. Geisinger [4] provided definition we follow here. They showed that the
trace has a two-term expansion regardless of dynamical assumptions4), and
the second term in their expansion paper [4] defined by (3.2)–(3.3) is closely
related to 𝜅𝟣,m. It corresponds to r = 1 in Remark 5.2.

Furthermore, I learned that one-term asymptotics for more general
operators (albeit without remainder estimate) was obtained by G. Grubb [7].

4) The fact that R. Frank and L. Geisinger obtain a second term regardless of dynamical
assumptions is simply due to the fact that they study 𝖳𝗋(f (𝝠m,X )) with f (𝜆) = −𝜆θ(−𝜆),
which is one order smoother than f (𝜆) = θ(−𝜆).
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Very recently I used the ideas of Section 4 to study sharp spectral
asymptotics for Dirichlet-to-Neumann operator in [10].

I express my gratitudes to G. Grubb and R. Frank for pointing to rather
nasty errors in the previous version of this article and very useful comments,
and to R. Bañuelos for very useful comments. I also express my gratitudes
to the referee of this paper for several useful remarks.
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Spectral Asymptotics for Dirichlet to
Neumann Operator in the Domains with

Edges*,†

Victor Ivrii‡

Abstract

We consider eigenvalues of the Dirichlet-to-Neumann operator for
Laplacian in the domain (or manifold) with edges and establish the
asymptotics of the eigenvalue counting function

𝖭(𝜆) = 𝜅𝟢𝜆
d + O(𝜆d−𝟣) as 𝜆→ +∞,

where d is dimension of the boundary. Further, in certain cases we
establish two-term asymptotics

𝖭(𝜆) = 𝜅𝟢𝜆
d + 𝜅𝟣𝜆

d−𝟣 + o(𝜆d−𝟣) as 𝜆→ +∞.

We also establish improved asymptotics for Riesz means.

1 Introduction

Let X be a compact connected (d + 1)-dimensional Riemannian manifold
with the boundary Y , regular enough to properly define operators J and Λ
below1). Consider Steklov problem

Δw = 0 in X ,(1.1)

(𝜕𝜈 + 𝜆)w |Y = 0,(1.2)

*2010 Mathematics Subject Classification : 35P20, 58J50.
†Key words and phrases : Dirichlet-to-Neumann operator, spectral asymptotics.
‡This research was supported in part by National Science and Engineering Research

Council (Canada) Discovery Grant RGPIN 13827.
1) Manifolds with edges are of this type.

© Springer Nature Switzerland AG 2019
V. Ivrii, Microlocal Analysis, Sharp Spectral Asymptotics 
and Applications V, https://doi.org/10.1007/978-3-030-30561-1_31

arXiv:1802.07524

513

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30561-1_31&domain=pdf


514 DIRICHLET TO NEUMANN OPERATOR

where Δ is the positive Laplace-Beltrami operator2), acting on functions on
X , and 𝜈 is the unit inner normal to Y . In the other words, we consider
eigenvalues of the Dirichlet-to-Neumann operator. For v , which is a restric-
tion to Y of C𝟤 function, we define Jv = w , where Δw = 0 in X , w |Y = v ,
and Λv = −𝜕𝜈Jv |Y .

Definition 1.1. Λ is called Dirichlet-to-Neumann operator .

The purpose of this paper is to consider manifold with the boundary
which has edges: i.e. each point y ∈ Y has a neighbourhood U in X̄ := X ∩Y ,
which is the diffeomorphic either to ℝ+ × ℝd (then y is a regular point),
or to ℝ+𝟤 × ℝd−𝟣 (then y is an inner edge point) or to (ℝ𝟤 ∖ ℝ− 𝟤)× ℝd−𝟣

(then y is an outer edge point). Let Z𝗂𝗇𝗇 and Z𝗈𝗎𝗍 be sets of the inner and
outer edge points respectively, and Z = Z𝗂𝗇𝗇 ∪ Z𝗈𝗎𝗍.

One can prove easily the following proposition:

Proposition 1.2. (i) Λ is a non-negative essentially self-adjoint operator
in L𝟤(Y ); Ker(Λ) consists of constant functions.

(ii) Λ has a discrete accumulating to infinity spectrum with eigenvalues
0 = 𝜆𝟢 < 𝜆𝟣 ≤ ... could be obtained recurrently from the following variational
problem:

(1.3)

∫︁
X

|∇w |𝟤 dx ↦→ min(= 𝜆n)

as

∫︁
Y

|w |𝟤 dx ′ = 1,

∫︁
Y

ww †
k dx ′ = 0 for k = 0, ... , n − 1.

Corollary 1.3. The number of eigenvalues of Λ, which are less than 𝜆,
equals to the maximal dimension of the linear space of C𝟤-functions, on
which the quadratic form

(1.4)

∫︁
X

|∇w |𝟤 dx − 𝜆

∫︁
Y

|w |𝟤 dx ′

is negative definite.

Proposition 1.4. Operator Λ has a domain H𝟣(Y ) and

(1.5) ‖Λu‖Y + ‖u‖Y ≍ ‖u‖H𝟣(Y ),

where (., .) and ‖.‖ denote L𝟤 inner product and norm.
2) Defined via quadratic forms.
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Proof. Let L = ℓ · ∇, ℓ be a vector field which makes an acute angle with
the inner normal (at Z–with both inner normals). Consider

(1.6) 0 = −(Δw , Lw)X = (∇w ,∇Lw)X + (𝜕𝜈w , Lw)Y =∫︁
Q(∇w) dy + O(‖w‖𝟤H𝟣(X )),

where

(1.7) Q(∇w) = (𝜈 · ∇w)(ℓ · ∇w)− 1

2
𝜈 · ℓ|∇w |𝟤.

This quadratic form has one positive and d negative eigenvalues. Further,
on the subspace orthogonal to ℓ, all eigenvalues are negative. Then

(1.8) ‖𝜕𝜈w‖𝟤 + C‖w‖𝟤H𝟣(X ) ≍ ‖w‖𝟤H(Y ).

Combined with the estimate for ‖w‖𝟤H𝟣(X ) ≤ C‖w‖𝟤
H

𝟣
𝟤 (Y )

it implies the

statement.

Remark 1.5. (i) If Y is infinitely smooth, then Λ is the first-order pseudod-
ifferential operator on Y with the principal symbol (gY (x , 𝜉))

𝟣/𝟤, where gY

is the restriction of the metrics to Y . Then the standard results hold:

(1.9) N(𝜆) = 𝜅𝟢𝜆
d + O(𝜆d−𝟣) as 𝜆→ +∞

with the standard coefficient 𝜅𝟢 = (2𝜋)−d𝜔d mes(Y ), where mes(Y ) means
d-dimensional volume of Y , 𝜔d is the volume of the unit ball in ℝd . We
also can get two-term asymptotics with the same remainder estimate for
N(𝜆) * 𝜆r−𝟣

+ , 0 < r ≤ 1.

(ii) Moreover, if the set of all periodic geodesics of Y has measure 0, then

(1.10) N(𝜆) = 𝜅𝟢𝜆
d + 𝜅𝟣𝜆

d−𝟣 + o(𝜆d−𝟣) as 𝜆→ ∞.

We also can get two-term asymptotics (three-term for r = 1) with the same
remainder estimate for N(𝜆) *𝜆r−𝟣

+ , 0 < r ≤ 1. The same asymptotics, albeit
with a larger number of terms, hold for r > 1.

(iii) “Regular” singularities of the dimension < (d − 1) (like conical points
in 3D) do not cause any problems for asymptotics of N(𝜆)—we can use a
rescaling technique to cover them; moreover, in the framework of this paper
they would not matter even combined with edges (like vertices in 3D).
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2 Dirichlet-to-Neumann Operator

2.1 Toy-Model: Dihedral Angle

Let Z = ℝd−𝟣 with the Euclidean metrics, X = 𝒳 × Z , Y = 𝒴 × Z , where
𝒳 is a planar angle of solution 𝛼, 0 < 𝛼 ≤ 2𝜋, 𝒴 = 𝒴𝟣 ∪𝒴𝟤, 𝒴j are rays (see
Figure 2).

Then one can identify Y with ℝd with coordinates (s, z), where z ∈ Z
and

- s = dist(y ,Z ) for for a point y ∈ Y𝟣 = 𝒴𝟣 × Z ,

- s = −dist(y ,Z ) for for a point y ∈ Y𝟤 = 𝒴𝟤 × Z .

Then we have a Euclidean metrics and a corresponding positive Laplacian
ΔY on Y .

Remark 2.1. (i) We can consider any angle 𝛼 > 0, including 𝛼 > 2𝜋 (in
which case X could be defined in the polar coordinates, but then we need to
address some issues with the domain of operator).

(ii) If 𝛼 = 𝜋, then Λ = Δ
𝟣/𝟤
Y .

(iii) We say that X is a proper angle if 𝛼 ∈ (0, 𝜋) and that X is a improper
angle if 𝛼 ∈ (𝜋, 2𝜋). We are not very concerned about 𝛼 = 𝜋, 2𝜋 since these
cases will be forbidden in the general case.

For this toy-model we can make a partial Fourier transform Fz→𝜁 and
then study equation in the planar angle:

(2.1) Δ𝟤w + w = 0,

where Δ𝟤 is a positive 2D-Laplacian and we made also a change of variables
x ′′ ↦→ |𝜁| · x ′′, x ′′ = (x𝟣, x𝟤). Denote by J̄ and Λ̄ operators J and Λ for (2.1).
This problem is extensively studied in Appendix A.1.

Then we can use the separation of variables. Singularities at the vertex
for solutions to (2.1) and w |Y = 0, are the same as for Δ𝟤w = 0, w |Y = 0
and they are combinations of r𝜋n/𝛼 sin(𝜋n𝜃/𝛼) with n = 1, 2, ..., where
(r , 𝜃) ∈ ℝ+ × (0,𝛼) are polar coordinates.

This show the role of 𝛼: if 𝛼 ∈ (0, 𝜋) those functions are in H𝜎
𝗅𝗈𝖼(𝒳 ) with

𝜎 < 1 + 𝜋n/𝛼, and 𝜕𝜈w |Y belong to H𝜎−𝟥/𝟤
𝗅𝗈𝖼 (𝒴).

One can prove easily the following Propositions 2.2 and 2.3 below:
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Proposition 2.2. The following are bounded operators

Δ−𝟣
𝖣 : H𝜎(X ) → H𝜎+𝟤(X ),(2.2)

J : H𝜎+ 𝟥
𝟤 (Y ) → H𝜎+𝟤(X ),(2.3)

Λ : H𝜎+ 𝟥
𝟤 (Y ) → H𝜎+ 𝟣

𝟤 (X ),(2.4)

where Δ𝖣 is an operator Δ with zero Dirichlet boundary conditions on Y
and

- 𝜎 ∈ [−𝟣
𝟤
, 0], if 𝛼 ∈ (0, 𝜋), and

- 𝜎 ∈ [−𝟣
𝟤
, 𝜎̄) with 𝜎̄ = 𝜋/𝛼− 1 otherwise.

Proposition 2.3. For equation (2.1) in 𝒳

(2.5) Λ̄− (D𝟤
s + 1)𝟣/𝟤 =

∑︁
j+k≤𝟣

D j
sK̄jkDk

s ,

where operators K̄jk have Schwartz kernels K̄jk(s, s ′) such that

(2.6) |Dp
s Dq

s′K̄jk(s, t ′)| ≤
Cpqm|s|−(𝜎̄−p)− |s ′|−(𝜎̄−q)−(|s|+ |s ′|)−p−q+(𝜎̄−p)−+(𝜎̄−q)−(|s|+ |s ′|+ 1)m

and l± := max(±l , 0) and m is arbitrarily large.

Then

Corollary 2.4. For the toy-model in X

(2.7) Λ−Δ
𝟣/𝟤
Y =

∑︁
j+k≤𝟣

D j
sKjkDk

s ,

where operators Kjk have Schwartz kernels

(2.8) Kj ,k(x
′, s; y ′, s ′) = (2𝜋)𝟣−d

∫︁∫︁
|𝜉′|𝟤−j−kK̄jk(s|𝜉′|, s ′|𝜉′|)e−i⟨x ′−y ′,𝜉′⟩ d𝜉′.
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2.2 General Case

Consider now the general case. In this case we can again introduce coordinate
s on Y and consider Y as a Riemannian manifold, but with the metrics
which is only C𝟢,𝟣 (Lipschitz class); more precisely, it is C∞ on both Y𝟣 and
Y𝟤, but the first derivative with respect to s may have a jump on Z . It does

not, however, prevent us from introduction of ΔY and therefore Δ
𝟣
𝟤
Y , but

the latter would not be necessarily the classical pseudodifferential operator.
We want to exclude the degenerate cases of the angles 𝜋 and 2𝜋. So, let

us assume that

(2.9) Z = {x : x𝟣 = x𝟤 = 0} and X = Z ×𝒳 with a planar angle 𝒳 ∋ (x𝟣, x𝟤),
disjoint from half-plane and the plane with a cut.

Definition 2.5. For z ∈ Z let 𝛼(z) be an internal angle between two leaves
of Y at point z (calculated in the corresponding metrics). Due to our
assumption either 𝛼(z) ∈ (0, 𝜋) or 𝛼(z) ∈ (𝜋, 2𝜋). Let Zj be a connected
component of Z .

(i) Zj is a inner edge if 𝛼(z) ∈ (0, 𝜋) on Zj , and

(ii) Zj is an outer edge if 𝛼(z) ∈ (𝜋, 2𝜋) on Zj .

One can prove easily

Proposition 2.6. The following are bounded operators

Δ−𝟣
𝖣 : H𝜎(X ) → H𝜎+𝟤(X ),(2.10)

J : H𝜎+ 𝟥
𝟤 (Y ) → H𝜎+𝟤(X ),(2.11)

Λ : H𝜎+ 𝟥
𝟤 (Y ) → H𝜎+ 𝟣

𝟤 (X ),(2.12)

where Δ𝖣 is an operator Δ with zero Dirichlet boundary conditions on Y
and

(i) 𝜎 ∈ [−𝟣
𝟤
, 0], if 𝛼(z) ∈ (0, 𝜋) ∀z ∈ Z , and

(ii) 𝜎 ∈ [−𝟣
𝟤
, 𝜎̄) with 𝜎̄ = 𝜋/𝛼̄− 1, 𝛼̄ = maxz∈Z 𝛼(z) otherwise.

One can also prove easily
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Proposition 2.7. In the general case, assuming that Z = {x : x𝟣 = x𝟤 = 0}
and X = Z ×𝒳 with a planar angle 𝒳 ∋ (x𝟣, x𝟤) of solution ∈ (0, 𝜋)∪ (𝜋, 2𝜋)

(2.13) Λ−Δ
𝟣/𝟤
Y = b +

∑︁
j+k≤𝟣

D j
sKjkDk

s ,

where b is a bounded operator and operators Kjk have Schwartz kernels and

(2.14) Kj ,k(x
′, s; y ′, s ′) =

(2𝜋)𝟣−d

∫︁∫︁
|𝜉′|𝟤−j−kK̄jk

(︀1
2
(x ′ + y ′), s|𝜉′|, s ′|𝜉′|

)︀
e−i⟨x ′−y ′,𝜉′⟩ d𝜉′.

Remark 2.8. On the distances ≳ 1 from Z , b is a classical 0-order pseu-
dodifferential operator, on the distance ≳ |𝜉′|−𝟣+𝛿 it is a rough 0-order
pseudodifferential operator3).

3 Microlocal Analysis

3.1 Propagation of Singularities near Edge

We are going to consider microlocal analysis near point (x̄ , 𝜉′′) ∈ T *Z under
assumption (2.9). In our approach we use definition of operator Λ rather than
its description of the previous Section 2. So, let x = (x ′′; x ′) ∈ ℝ𝟤 × ℝd−𝟣.

Proposition 3.1. (i) Let qj = qj(𝜉
′) (j = 1, 2) be two symbols, constant as

|𝜉′| ≥ C . Assume that the dist(supp(q𝟣), supp(q𝟤)) ≥ 𝜖.

Consider h-pseudodifferential operators Qj = q𝗐
j (h

−𝟣D ′), j = 1, 2. Then
the operator norms of

Q𝟣Δ
−𝟣
𝖣 Q𝟤 : L𝟤(X ) → H𝟤(X ), Q𝟣JQ𝟤 : H

𝟣
𝟤 (Y ) → H𝟤(X ),(3.1)𝟣,𝟤

Q𝟣ΛQ𝟤 : H𝟣(Y ) → L𝟤(Y )(3.1)𝟥

do not exceed C ′hs with arbitrarily large s where Δ𝖣 is an operator Δ with
zero Dirichlet boundary conditions on Y .

(ii) Let Qj(x
′) (j = 1, 2) be two functions. Then operators (3.1)𝟣−𝟥 are

infinitely smoothing by x ′.

3) I. e. with the symbols such that |D𝛼
x D𝛽

𝜉 | ≤ C𝛼𝛽𝜌
−|𝛽|𝛾−|𝛼 with 𝜌𝛾 ≥ h𝟣−𝛿, 𝜌𝛾 ≥ h𝟣−𝛿.

Here 𝜌 = 𝟣, 𝛾 = |x |.
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Proof. (i) Without any loss of the generality one can assume that qj are
constant also in the vicinity of 0. Then the operator norms of [Qj ,Δ]Δ−𝟣

𝖣

in L𝟤(X ) do not exceed Ch; replacing Qj by Q
(n)
j with Q

(𝟢)
j = Qj and

Q
(n)
j := [Q

(n−𝟣)
j ,Δ]Δ−𝟣

𝖣 for j = 1, 2, ..., we prove by induction that the

operator norms of Q
(n)
j in in L𝟤(X ) do not exceed Chn. Then one can prove

by induction easily that the operator norm of (3.1)𝟣 does not exceed Chs .

Then one can prove easily that the operator norm of (3.1)𝟤,𝟥 do not
exceed Chs as well. It concludes the proof of Statement (i).

(ii) Statement (ii) is proven by the same way.

Let u(x , y , t) be Schwartz kernel of e it𝝠, x , y ∈ Y .

Proposition 3.2. Consider h-pseudodifferential operator Q = q𝗐(x ′, h−𝟣D ′)
where q vanishes {|𝜉′| ≤ c𝟢}. Let 𝜒 ∈ C∞

𝟢 (ℝ), T ≥ h𝟣−𝛿. Then operator
norms of Ft→𝜏𝜒T (t)Qxu and Ft→𝜏𝜒T (t)u

tQy do not exceed C ′
Ths for 𝜏 ≤ c

for c𝟢 = c𝟢(c).

Proof. One need to consider v = e it𝝠f , f ∈ H𝟣(Y ), ‖f ‖L𝟤(Y ) = 1 and
observe that it satisfies (Dt − Λ)v = 0. Using (1.5) we see that operator
(Dt − V ) is elliptic in {|𝜉′| ≥ c𝟢, 𝜏 ≤ c} while Proposition 3.1 ensures its
locality.

Therefore, in what follows

Remark 3.3. Studying energy levels 𝜏 ≤ c we can always apply cut-out
domain {|𝜉′| ≥ c𝟢}.

Now we can study the propagation of singularities. Let us prove that
the propagation speed with respects to x and 𝜉′ do not exceed C𝟢. For this
and other our analysis we need the following Proposition 3.4:

Proposition 3.4. For h-pseudodifferential operator Q = q𝗐(x , hD ′) the
following formula onnecting commutators [Δ,Q] and [Λ + 𝜕𝜈 ,Q] holds:

(3.2) − Re i([Δ,Q]Jv , Jv)X = Re i(([Λ,Q] + [𝜕𝜈 ,Q])v , v)Y
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Proof. First, consider real valued symbol q = q(x , 𝜉′) and Q = q𝗐(x , hD ′)
its Weyl quantization. Let v denote just any function on Y and V its
continuation as a harmonic function. Then for w = Jv

0 = (QΔw ,w)X = (ΔQw ,w)− ([Δ,Q]w ,w)X =

− ([Δ,Q]w ,w)X + (Qw , Δw)X − (𝜕𝜈Qw ,w)Y + (Qw , 𝜕𝜈w)Y =

− ([Δ,Q]w ,w)X − (Q𝜕𝜈w ,w)Y − ([𝜕𝜈 ,Q]w ,w)Y + (Qw , 𝜕𝜈w)Y =

− ([Δ,Q]w ,w)X + (QΛv , v)Y − ([𝜕𝜈 ,Q]v , v)Y − (v ,QΛv)Y =

− ([Δ,Q]w ,w)X − (ΛQv , v)Y − ([𝜕𝜈 ,Q]v , v)Y ,

which implies (3.2).

Now we can prove that at energy levels 𝜏 ≤ c the propagation speed
with respects to x and 𝜉′ do not exceed C𝟢 = C𝟢(c).

Proposition 3.5 4). Let Qj = q𝗐
j (x , hD ′) and dist(supp(q𝟣), supp(q𝟤)) ≥

C𝟢T with fixed T > 0. Let 𝜒 ∈ C∞
𝟢 ([−1, 1]). Then for 𝜏 ≤ c

(3.3) |Ft→h−𝟣𝜏

(︀
𝜒T (t)Q𝟣xu tQ𝟤y

)︀
| ≤ Chm,

where here and below m is an arbitrarily large exponent and C = Cm.

Proof. (i) The proof is the standard one for propagation with respect to
(x ′, 𝜉′): we consider 𝜑(x ′, 𝜉′, t) and prove that under the microhyperbolicity
condition

𝜑t − {|𝜉′|,𝜑} ≥ 𝜖𝟢,(3.4)

which is equivalent to

2𝜑t − |𝜉′|−𝟣{|𝜉′|𝟤,𝜑} ≥ 2𝜖𝟢|𝜉′|,(3.5)

our standard propagation theorem (see Theorem 2.1.2) holds, just repeating
arguments of its proof, using equality (3.2) and the fact that ‖Jv‖H𝟣/𝟤(X ) ≍
‖v‖L𝟤(Y ).

Then we plug 𝜑(x ′, 𝜉′, t) = 𝜓(x ′, 𝜉′) − t with |∇x ′,𝜉′𝜓| ≤ 𝜖𝟢, and prove
that (3.3) for qj = qj(x

′, 𝜉′).

4) Cf. Theorem 3.1(i) of [Ivr2].
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(ii) We need also prove that the propagation speed with respect to (x𝟣, x𝟤)
5)

does not exceed C𝟢, but it is easy since for |s| ≥ 𝜖, Λ is a first-order
pseudodifferential operator with the symbol |𝜉|.

Remark 3.6. In fact, it follows from the proof, that the propagation speed
with respect to x ′ do not exceed C𝟢, and the propagation speed with respect
to 𝜉′ does not exceed C𝟢|𝜉′| with C𝟢, which does not depend on restriction
𝜏 ≤ c . Meanwhile, the propagation speed with respect (x𝟣, x𝟤) does not
exceed 1.

Next we prove that at energy levels 𝜏 = 1 the propagation speed with
respects to x ′ in the vicinity of (0, 𝜉′) with |𝜉′| ≥ 𝜖𝟢 is at least 𝜖𝟣 = 𝜖𝟣(𝜖𝟢).

Proposition 3.7 6). Let Qj = q𝗐
j (x , hD ′) and

distx ′(supp(q𝟣), supp(q𝟤)) ≤ 𝜖𝟣T

with fixed T > 0. Let 𝜒 ∈ C∞
𝟢 ([−1,−𝟣

𝟤
] ∪ [−𝟣

𝟤
,−1]). Then for |𝜏 − 1| ≤ 𝜖𝟢

(3.3) holds.

Proof. After propagation theorem mentioned in the proof of Proposition 3.5
is proven we just plug 𝜑(x ′, 𝜉′.t) = 𝜓(x ′, 𝜉′)− 𝜖t with 𝜉′ · ∇x ′𝜓 ≥ 1.

Corollary 3.8 7). In the framework of Proposition 3.5 consider |𝜏 − 1| ≤ 𝜖.
Then

|Ft→h−𝟣𝜏Γx𝜒T (t)u
tQy | ≤ Ch𝟣−d+mT−m(3.6)

and

|Ft→h−𝟣𝜏Γx
(︀
𝜒̄T ′(t)− 𝜒̄T (t)

)︀
u tQy | ≤ Ch𝟣−d+mT−m,(3.7)

provided 𝜒 ∈ C∞
𝟢 ([−1,−𝟣

𝟤
] ∪ [𝟣

𝟤
, 1]), 𝜒̄ ∈ C∞

𝟢 ([−1, 1]), 𝜒̄ = 1 on [−𝟣
𝟤
, 𝟣
𝟤
],

h ≤ T ≤ T ′ ≤ T𝟢 with small constant T𝟢.

Proof. For small constant T (3.6) follows directly from Proposition 3.7, after
one proves easily that we can insert Dx ′′ , Dy ′′ to the corresponding estimate,
which is easy.

For h ≤ T ≤ T𝟢 we use just rescaling like in the proof of Theorem 2.1.19.
Finally, (3.7) is obtained by the summation with respect to partition of
unity with respect to t.

5) Or, equivalently, with respect to s.
6) Cf. Theorem 3.1(ii) of [Ivr2].
7) Cf. Corollary 2.2(ii) of [Ivr2].
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This implies immediately

Corollary 3.9. Nh(𝜏 ) and Nh(𝜏 )*𝜏𝜎−𝟣
+ are approximated by the correspond-

ing Tauberian expressions with T ≍ h𝟣−𝛿 with errors O(h𝟣−d) and O(h𝟣−d+𝜎)
respectively (as 𝜏 = 1 and h → +0).

3.2 Reflection of Singularities from the Edge

The results of the previous subsubsection are sufficient to prove sharp spectral
asymptotics (with the remainder estimate O(𝜆d−𝟣)), which do not require
conditions of the global nature, but insufficient to prove sharper spectral
asymptotics (with the remainder estimate o(𝜆d−𝟣)), which require conditions
of the global nature.

For this more ambitious purpose we need to prove that the singulari-
ties propagate along geodesic billiards on the boundary Y , reflecting and
refracting on the edge Z (so billiards will be branching), and the typical
singularity (with |𝜉′| < 𝜏) does not stick to Z .

To do this we will follow arguments of Subsubsection 4 of [Ivr2]. Assuming
(2.9) consider operator Q = x𝟣D𝟣 + x𝟤D𝟤 − i/2, which acts along Y . As an
operator in L𝟤(Y ) it is self-adjoint, as an operator in L𝟤(X ) it is not, but
differs from a self-adjoint operator Q = x𝟣D𝟣 + x𝟤D𝟤 − i by i/2, which does
not affects commutators.

As a result, repeating the proof of Proposition 3.4 we arrive to

(3.8) Under assumption (2.9) equality (3.2) also holds for the operator
Q = x𝟣D𝟣 + x𝟤D𝟤 − i .

To apply arguments of the proof of Propositions 4.2 and then 4.3 of [Ivr2],
we need to check, if operator i [Λ,Q] is positive definite, which in virtue of
(3.2) is equivalent to the same property for the form in the left:

(3.9) Re(i [Δ,Q]w ,w)− Re(i [𝜕𝜈 ,Q]w ,w)Y ≥ 𝜖‖∇w‖𝟤for w : Δ = 0.

For the toy-model i [Δ,Q] = 2(D𝟤
𝟣 + D𝟤

𝟤 ), i [𝜕𝜈 ,Q] = −𝜕𝜈 , and the form on
the left coincides with ‖∇w‖𝟤 − 2‖∇′w‖𝟤 on w in question and therefore
after Fourier transform Fx ′→𝜁 and change of variables x𝟣,𝟤 it boils down to
the inequality

(3.10) ‖∇w‖𝟤 − ‖w‖𝟤 ≥ 𝜖(‖∇w‖𝟤 + ‖w‖𝟤) for w : Δ𝟤w + w = 0
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for two-dimensional Δ𝟤, norms and scalar products.
This inequality is explored in Appendix A.1, and in virtue of Proposi-

tion A.11 (3.10) holds for 𝛼 ∈ (𝜋, 2𝜋). Meanwhile due to Proposition A.16
(3.10) fails for 𝛼 ∈ (0, 𝜋).

Therefore we arrive to

Proposition 3.10 8). Consider two-dimensional toy-model (planar angle)
with 𝛼 ∈ (𝜋, 2𝜋).

Let 𝜓 ∈ C∞
𝟢 ([−1, 1]), 𝜓𝛾(x) = 𝜓(x/𝛾) and 𝜑 ∈ C∞

𝟢 ([−1, 1]), 𝜏 ≥ 1 + 𝜖𝟢.
Then as 𝛾 ≥ h𝟣−𝛿, T ≥ C𝟢𝛾, h𝛿 ≥ 𝜂 ≥ h𝟣−𝛿T−𝟣

(3.11) ‖𝜑(𝜂−𝟣(hDt − 𝜏))𝜓𝛾e it𝝠𝜓𝛾|t=T‖ ≤ CT−𝟣𝛾 + Ch𝛿
′
.

Proof. Proof follows the proof of Proposition 4.2 of [Ivr2] with m = 1, and
uses equality (3.2) to reduce calculation of the commutator [Λ,Q] to the
calculation of the commutator [Δ,Q].

Proposition 3.11 9). Consider (d + 1)-dimensional toy-model (dihedral
angle) with 𝛼 ∈ (𝜋, 2𝜋).

Let 𝜓 ∈ C∞
𝟢 ([−1, 1]), 𝜓𝛾(x) = 𝜓(x𝟣/𝛾), 𝜑 ∈ C∞

𝟢 ([−1, 1]), 𝜙 ∈ C∞
𝟢 (ℝd−𝟣)

supported in {|𝜉′| ≤ 1 − 𝜖} with 𝜖 > 0. Finally, let 𝛾 ≥ h𝟣−𝛿, T ≥ Ch−𝛿𝛾,
h𝛿 ≥ 𝜂 ≥ h𝟣−𝛿T−𝟣. Then

(3.12) ‖𝜑(𝜂−𝟣(hDt − 1))𝜙(hD ′)𝜓𝛾(x𝟣)e
it𝝠𝜓𝛾(x𝟣)|t=T‖ = O(hm)

with arbitrarily large m.

Proof. Proof follows the proof of Proposition 4.3 of [Ivr2] with m = 1.

Now we can consider the general case. Consider a point z̄ = (x̄ , 𝜉′) ∈ T *Z ,
|x̄ ′| < 1.

We can raise to points z̄± = (x̄ , 𝜉±) ∈ T *Y𝟣,𝟤|Z with |𝜉±| = 1 and
𝜄z̄± = z̄ , where 𝜄(x , 𝜉) = (x , 𝜉′) ∈ T *Z for (x , 𝜉) ∈ T *Y |Z .

Consider geodesic trajectories Ψt(z̄
±), going from z̄±) into T *Y𝟣,𝟤 for

t < 0, |t| < 𝜖; this distinguishes these two points.
We also can consider geodesic trajectories Ψt(z̄

±), going from z̄∓ into
T *Y𝟣,𝟤 for t > 0, |t| < 𝜖.

Let 𝜄−𝟣z̄ = {z̄+, z̄−} and let Ψt(𝜄
−𝟣z̄) be obtained as a corresponding

union as well10). So, for such point z̄ Ψt(𝜄
−𝟣z) with t < 0 consists of two

8) Cf. Proposition 4.2 of [Ivr2].
9) Cf. Proposition 4.3 of [Ivr2].

10) So we actually restrict 𝜄 to S*Y |Z and 𝜄−𝟣 to B*Z .
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incoming geodesic trajectories, Ψt(𝜄
−𝟣z) with t < 0 consists of two outgoing

geodesic trajectories. Similarly, for z ∈ (T *(Y ∖ Z )) we can introduce Ψt(z):
when trajectory hits Z it branches.

Theorem 3.12 11). Consider a point z = (x , 𝜉) ∈ T *Y , |𝜉| = 1. Consider
a (branching ) geodesic trajectory Ψt(z) with ±t ∈ [0,T ] (one sign only)
with T ≥ 𝜖𝟢 and assume that for each t indicated it meets 𝜕X transversally
i.e.

(3.13) dist(πxΨt(x , 𝜉), 𝜕X ) ≤ 𝜖 =⇒

|d
dt

dist(πxΨt(x , 𝜉), 𝜕X )| ≥ 𝜖 ∀t : ±t ∈ [0,mT ].

Also assume that

(3.14) dist(πxΨt(x , 𝜉), 𝜕X ) ≥ 𝜖𝟢 as t = 0, ±t = T .

Let 𝜖 > 0 be a small enough constant, Q be supported in 𝜖-vicinity of
(x , 𝜉) and Q𝟣 ≡ 1 in C𝟢𝜖-vicinity of Ψt(x , 𝜉) as t = ±T . Then operator
(I − Q𝟣)e

−it𝝠Q is negligible as t = ±mT .

Proof. Proof follows the proof of Theorem 4.4 of [Ivr2] with m = 1.

Adapting construction of the “dependence set” to our case, we arrive to
the following

Definition 3.13. (i) The curve z(t) in T *Y is called a generalized geodesic
billiard if a.e.

(3.15)
dz

dt
∈ K (z),

where

(a) K (z) = {Hg (z)}, g(z) is a metric form, if z ∈ T *(Y ∖ Z ),

(b) K (z) = {Hg (z
′) : z ′ ∈ 𝜄−𝟣𝜄z}, if z ∈ T *Y |Z .

(ii) Let Ψt(z) for t ≷ 0 be a set of points z ′ ∈ T *Y such that there exists
generalized geodesic billiard z(t ′) with 0 ≶ t ′ ≶ t, such that z(0) = z and
z(t) = z ′. Map (z , t) ↦→ Ψt(z) is called a generalized (branching) billiard
flow .

11) Cf. Theorem 4.4 of [Ivr2].
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(iii) Point z ∈ T *Y is partially periodic (with respect to Ψ) if for some
t ̸= 0 z ∈ Ψt(z). Point z ∈ T *Y is completely periodic (with respect to Ψ)
if for some t ̸= 0 {z} = Ψt(z)

Then we arrive immediately to

Corollary 3.14. Assume that Z consists only of only outer edges. Also
assume that the set of all partially periodic points is zero.

Then Nh(𝜏) and Nh(𝜏) * 𝜏 r−𝟣
+ are approximated by the corresponding

Tauberian expressions with T ≍ h𝟣−𝛿 with errors o(h𝟣−d) and o(h𝟣−d+r)
respectively (as 𝜏 = 1 and h → +0).

Proof. Easy details are left to the reader.

4 Main Results

4.1 From Tauberian to Weyl Asymptotics

Now we can apply the method of successive approximations as described in
Section 7.2, considering an unperturbed operator

(a) As one in ℝd , with the metrics, frozen at point y , if dist(y ,Z ) ≥ h𝟣−𝛿.

(b) As one in the dihedral edge, with the metrics, frozen at point (y ′, 0),
if y = (y ′; s) with |s| = dist(y ,Z ) ≤ h𝟣−𝛿,

with the following modification: We calculate Λ also this way, applying
successful approximations for both Δ, when we solve Δw = 0, w |Y = v , and
to 𝜕𝜈 , when we calculate 𝜕𝜈w |Y .

Then we prove that for operator hΛ the Tauberian expression N𝖳
h (1) for

N−
h (1) with T = h𝟣−𝛿 coincides modulo O(hm) with the (generalized) Weyl

expression

(4.1) N𝖶
h ∼ 𝜅𝟢h−d + 𝜅𝟣h𝟣−d + ... ,

with the standard coefficient 𝜅𝟢 and with 𝜅𝟣 = 𝜅𝟣,Y ∖Z + 𝜅𝟣,Z , where 𝜅𝟣,Y ∖Z
is calculated in the standard way, for the smooth boundary, and

𝜅𝟣,Z = (2𝜋)𝟣−d𝜔d−𝟣

∫︁
Z

𝜘(𝛼(y)) dy ,(4.2)
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𝜘(𝛼) =
∫︁ ∞

𝟣

∫︁ ∞

−∞
𝜆−d

(︁
e𝛼(s, s,𝜆)− 𝜋−𝟣(𝜆− 1)

)︁
dsd𝜆 ,(4.3)

e𝛼(s, s ′,𝜆) is a Schwartz kernel of the spectral projector of Λ̂ in the planar
angle of solution 𝛼 and 𝜋−𝟣(𝜆− 1) is a corresponding Weyl approximation.

4.2 Main Theorems

Thus we arrive to the corresponding asymptotics for N−
h (1) and from them,

obviously to asymptotics for N(𝜏):

Theorem 4.1. Let Y be a compact manifold with edges. Then the following
asymptotics hold as 𝜏 → +∞:

N(𝜏) = 𝜅𝟢𝜏
d + O(𝜏 d−𝟣)(4.4)

and for r > 0

N(𝜏) * 𝜏 r−𝟣
+ =

(︁∑︁
m<r

𝜅m𝜏
d−r

)︁
* 𝜏 r−𝟣

+ + O(𝜏 d−𝟣).(4.5)

Theorem 4.2. Let Y be a compact manifold with edges. Assume that Z
consists only of outer edges and that the set of all points, which are partially
periodic with respect to the generalized billiard flow, has a measure 0. Then
the following asymptotics hold as 𝜏 → +∞:

N(𝜏) = 𝜅𝟢𝜏
d + 𝜅𝟣𝜏

d−𝟣 + o(𝜏 d−𝟣)(4.6)

and for r > 0

N(𝜏) * 𝜏 r−𝟣
+ =

(︁∑︁
m≤r

𝜅m𝜏
d−r

)︁
* 𝜏 r−𝟣

+ + o(𝜏 d−𝟣).(4.7)

4.3 Discussion

Remark 4.3. (i) Even for standard ordinary non-branching billiards, billiard
flow Ψt could be multivalued. However, if through point z ∈ T *(Y ∖ Z )
(where now Y is a manifold, and Z is its boundary) passes an infinitely long
in the positive (or negative) time direction billiard trajectory, which always
meets Z transversally, and each finite time interval contains a finite number
of reflections, then Ψt(z) for ±t > 0 is single-valued. Points, which do not
have such property, are called dead-end points. For ordinary billiards the
set of dead-end points has measure zero.
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(ii) For branching billiards (with velocities c𝟣, c𝟤) we can introduce the notion
of the dead-end point as well: it is if at least one of the branches either meets
Z non-transversally, or makes an infinite number of reflections on some finite
time interval. As it was shown by Yu. Safarov and D. Vassiliev [SaVa], if c𝟣
and c𝟤 are not disjoint (our case!), the set of dead-end billiards could have
positive measure.

Remark 4.4. (i) Checking non-periodicity assumption is difficult. But in
some domains it will be doable. F.e. assume that Y = Y𝟣 ∪ Y𝟤 globally
is a domain of revolution, so Z is a (d − 1)-dimensional sphere. Then the
measure of the set of dead-end billiards is 0.

(ii) Assume that neither Y𝟣, nor Y𝟤 contains closed geodesics. Let 𝜙j(𝛽) be
the length of the segment of geodesics in Yj , with only ends on Z , where 𝛽
is the reflection angle: Assume that 𝜙j(𝛽) are analytic and 𝜙j(𝛽) → 0 as

Yj

𝛽

𝜙j

Z

Figure 1: Trajectories on the manifold of revolution

𝛽 → +0. Then the measure of the set of partially periodic billiards is 0.

Remark 4.5. Our arguments hold not only for compact X but also for
X ⊂ ℝd+𝟣 with the compact complement and with the metrics. stabilizing
to Euclidean at infinity.

Remark 4.6. (i) In the next version of this paper we want to prove sharper
asymptotics for domains with inner edges. To do this we need to understand,
how singularities propagate near inner edges. One can prove that there are
plenty of singularities, concentrated in Z × ℝ ∋ (x , t) and {|𝜉′| < 𝜏}. This
is similar to the Rayleigh waves. And, we hope, exactly like Rayleigh waves,
those singularities do not prevent us from the sharper asympotics.
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What we need to prove is that the singularities in {|𝜉′| < 𝜏}, coming
from Y ∖ Z transversally to Z , reflect and refract but leave Z instantly. In
other words, that these two kinds of waves are completely separate. It is
what I am trying to prove now.

(ii) Let 𝒦 be the linear span of the corresponding eigenfunctions. We need
to prove that ‖∇w‖ ≥ ‖w‖ holds for w = Ĵv with v ∈ 𝒦⊥. One can prove
easily that ‖∇w‖ = ‖w‖ for w = Ĵv and eigenfunction v (Proposition A.16).

A Appendix

A.1 Planar Toy-Model

Preparatory Results

Here, in contrast to the whole article, X = {x ∈ ℝ𝟤, x𝟣 ≥ |x𝟤| cot(𝛼/2)} is a
planar angle of solution 𝛼 ∈ (0, 2𝜋] with a boundary Y = Y𝟣 ∪ Y𝟤, Y𝟣,𝟤 =
{x : x𝟣 = |x𝟤| cot(𝛼/2), ±x𝟤 < 0} and a bisector Y𝟢 = {x : x𝟤 = 0, x𝟣 > 0},
and Δ = −𝜕𝟤𝟣 − 𝜕𝟤𝟤 is a positive Laplacian (so, for simplicity we do not write
“hat”).

Y

Y𝟢

X

(a) 𝛼 ∈ (𝟢,𝜋)

Y𝟢

Y

X

(b) 𝛼 ∈ (𝜋, 𝟤𝜋)

Y𝟢Y

X

(c) 𝛼 = 𝟤𝜋

Figure 2: Proper and improper angles

Remark A.1. (i) For 𝛼 = 𝜋 we have a regular half-plane {x : x𝟣 > 0}, and
for 𝛼 = 2𝜋 we have a plane with the cut {x : x𝟣 ≤ 0, x𝟤 = 0}.

(ii) One can consider 𝛼 > 2𝜋 on the covering of ℝ𝟤.
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Consider real-valued12) solutions of

(A.1) Lw := (Δ + 1)w = 0

and operators J , Λ: w = Jv solves (A.1) and w |Y = v ; Λv = −𝜕𝜈w |Y with
w = Jv . Recall that 𝜈 is an inner normal to Y .

Observe that for any angle13)

(A.2) 2

∫︁∫︁
X

Lw · wx𝟣 dx𝟣dx𝟤 =

∫︁
𝜕X

(︁
(w 𝟤

x𝟣
− w 𝟤

x𝟤
− w 𝟤)𝜈𝟣 + 2wx𝟣wx𝟤𝜈𝟤

)︁
dr ,

where dr is a Euclidean measure on Y , and the then similar formula holds
with x𝟣 and x𝟤 permuted. Then for solution of (A.1)
(A.3)∫︁
𝜕X

(︁
(w 𝟤

x𝟣
−w 𝟤

x𝟤
)(𝜈𝟣ℓ𝟣−𝜈𝟤ℓ𝟤)+2wx𝟣wx𝟤(𝜈𝟤ℓ𝟣+𝜈𝟣ℓ𝟤)−w 𝟤(𝜈𝟣ℓ𝟣+𝜈𝟤ℓ𝟤)

)︁
dr = 0.

If on Γ ⊂ 𝜕X ℓ𝟣 = 𝜈𝟣, ℓ𝟤 = 𝜈𝟤, then we can calculate invariantly as if
ℓ𝟣 = 𝜈𝟣 = 0, ℓ𝟤 = 𝜈𝟤 = 1:

(A.4) (w 𝟤
x𝟣
− w 𝟤

x𝟤
)(𝜈𝟣ℓ𝟣 − 𝜈𝟤ℓ𝟤) + 2wx𝟣wx𝟤(𝜈𝟤ℓ𝟣 + 𝜈𝟣ℓ𝟤)− w 𝟤(𝜈𝟣ℓ𝟣 + 𝜈𝟤ℓ𝟤) =

w 𝟤
𝜈 − w 𝟤

r − w 𝟤,

where wr = 𝜕rw and w𝜈 = 𝜕𝜈w .
All these formulae hold not only for the original angle, but also for the

smaller angle. Then let consider as X an upper half of the symmetric angle,
𝜕X = Y𝟤 ∪ Y𝟢, on Y𝟢 the integrand is

(A.5) ℐ := (w 𝟤
x𝟤
− w 𝟤

x𝟣
− w 𝟤)ℓ𝟤 + 2wx𝟣wx𝟤ℓ𝟣

with ℓ𝟣 = sin(𝛼/2), ℓ𝟤 = − cos(𝛼/2).
Consider different cases:
Antisymmetric case: w |Y𝟢 = 0, then ℐ = −w 𝟤

x𝟤
cos(𝛼/2) and

(A.6)

∫︁
Y𝟤

(︀
w 𝟤
𝜈 − w 𝟤

r − w 𝟤
)︀

dr − cos(𝛼/2)

∫︁
Y𝟢

w 𝟤
x𝟤

dx = 0.

Symmetric case: wx𝟤 |Y𝟢 = 0, then ℐ = (w 𝟤
x𝟣
+ w 𝟤) cos(𝛼/2) and

(A.7)

∫︁
Y𝟤

(︀
w 𝟤
𝜈 − w 𝟤

r − w 𝟤
)︀

dr + cos(𝛼/2)

∫︁
Y𝟢

(w 𝟤
x𝟣
+ w 𝟤) dx𝟣 = 0.

12) For complex-valued solutions then the main inequalities with w𝟤 replaced by |w |𝟤
follow automatically.

13) Not necessary symmetric with respect to x𝟣-axis.
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Proposition A.2. Let w satisfy (A.1). Let either 𝛼 ∈ (0, 𝜋] and w is
antisymmetric, or 𝛼 ∈ [𝜋, 2𝜋) and w is symmetric. Then

(A.8) ‖∇w‖𝟤 ≥ ‖w‖𝟤.

Proof. In both cases
∫︀
Y𝟤
(|∇w |𝟤 − w 𝟤) dr ≥

∫︀
Y𝟤
(w 𝟤

𝜈 − w 𝟤) ds ≥ 0. Applying
this inequality to the angle, shifted by t along x𝟣, and integrating by
t ∈ (0,∞), we obtain a double integral (divided by sin(𝛼/2)).

Moreover, one can see easily, that this inequality is strict unless w = 0.

Similarly, if instead of multiplying by (𝜈𝟣wx𝟣 + 𝜈𝟤wx𝟤) we multiply by
(x𝟤wx𝟣 − x𝟣wx𝟤), then extra terms in the double integral will be ±wx𝟣wx𝟤 and
they cancel one another. However, on Y we get x𝟤 = 𝜈𝟣r , x𝟣 = −𝜈𝟤r and
therefore contribution of Y𝟤 will be as in above with extra factor r :

(A.9)

∫︁
Y𝟣

(︀
w 𝟤
𝜈 − w 𝟤

r − w 𝟤
)︀

rdr .

On Y𝟢 we get extra factor x𝟣 = r , but not 𝜈𝟤 = − cos(𝛼/2), and we arrive to
Antisymmetric case: w |Y𝟢 = 0, then ℐ = w 𝟤

x𝟤
x𝟣 and

(A.10)

∫︁
Y𝟤

(︀
w 𝟤
𝜈 − w 𝟤

r − w 𝟤
)︀

rdr +

∫︁
Y𝟢

w 𝟤
x𝟤

x𝟣dx𝟣 = 0.

Symmetric case: wx𝟤 |Y𝟢 = 0, then ℐ = (−w 𝟤
x𝟣
− w 𝟤)x𝟣 and

(A.11)

∫︁
Y𝟤

(︀
w 𝟤
𝜈 − w 𝟤

r − w 𝟤
)︀

rdr −
∫︁
Y𝟢

(w 𝟤
x𝟣
+ w 𝟤) x𝟣dx𝟣 = 0.

Let us explore dependence Λ = Λ(𝛼) on 𝛼. Observe first that∫︁∫︁ (︀
∇w · ∇w ′ + ww ′)︀ dxd𝟣dx𝟤 =

∫︁
Lw · w ′ −

∫︁
𝜕X

𝜕𝜈w · w ′ dr(A.12)

where (r , 𝜃) are polar coordinates and therefore dr is an Euclidean measure
on Y . It implies

(Λv , v ′)Y =

∫︁∫︁ (︀
∇w · ∇w ′ + ww ′)︀ dx𝟣dx𝟤,(A.13)

for w = Jv , w ′ = Jv ′. Therefore
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(A.14) Λ is symmetric and nonnegative operator in L𝟤(Y ).

Consider X = X (𝛼), Y = Y (𝛼), Λ = Λ(𝛼) and keep w independent
on 𝛼. Let us replace 𝛼 by 𝛼 + δ𝛼 etc. Then for a symmetric X we have
δv = −r(𝜕𝜈w)δ𝛼 = 𝟣

𝟤
r(Λv)δ𝛼 and it follows from (A.13) that

((δΛ)v , v)Y + 2(Λv , δv)Y =
1

2

∫︁
Y

(︀
|∇w |𝟤 + |w |𝟤

)︁
rdr × δ𝛼

and therefore

((δΛ)v , v)Y = −1

2

∫︁
Y

(︀
w 𝟤
𝜈 − w 𝟤

r − |w |𝟤
)︁

rdr × δ𝛼.(A.15)

Combining with (A.10) and (A.13) we arrive to

Proposition A.3. (i) On symmetric functions Λ(𝛼) is monotone increas-
ing function of 𝛼.

(ii) On antisymmetric functions Λ(𝛼) is monotone inreasing function of 𝛼.

Let us identify Y with ℝ ∋ s, s = ∓r on Y𝟣,𝟤 respectively.

Proposition A.4. (i) On symmetric functions Λ(𝜋) = (D𝟤
s + I )

𝟣
𝟤 .

(ii) On antisymmetric functions Λ(2𝜋) ≥ (D𝟤
s + I )

𝟣
𝟤 .

Proof. Statement (i) is obvious. Statement (ii) follows from the fact that
on antisymmetric function v Λ(2𝜋)v coincides with Λ(𝜋)v 𝟢, restricted to
{x𝟣 < 0}, where v 𝟢 is v , extended by 0 to {x𝟣 > 0}.

Therefore, combining Propositions A.3 and A.4 we conclude that

Corollary A.5. (i) On symmetric functions Λ(𝛼) ≥ (D𝟤
s + I )

𝟣
𝟤 for 𝛼 ∈

[𝜋, 2𝜋].

(ii) On antisymmetric functions Λ(𝛼) ≥ (D𝟤
s + I )

𝟣
𝟤 for 𝛼 ∈ (0, 2𝜋].

Remark A.6. One can prove easily, that inequalities are strict for 𝛼 ∈ (𝜋, 2𝜋],
𝛼 ∈ (0, 2𝜋] respectively.
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Now we want to finish general arguments and to prove inequality (A.8)
for antisymmetric w and 𝛼 ∈ (𝜋, 2𝜋]. It will be more convenient to use polar
coordinates (r , 𝜃) and notations 𝒴𝛽 = {(r , 𝜃) : : 𝜃 = 𝛽}, 𝒳𝛽𝟣,𝛽𝟤 = {(r , 𝜃) : :
𝛽𝟣 ≤ 𝜃 ≤ 𝛽𝟤}. Here and below 𝛽* ∈ [−𝛼/2,𝛼/2].

Recall that

(A.16) L = −𝜕𝟤r − r−𝟣𝜕r − r−𝟤𝜕𝟤𝜃 + 1.

Proposition A.7. (i) Let w satisfy equation (A.1) in X . Then

(A.17) ℐ(𝛽) :=
∫︁
𝒴𝛽

[︁
r−𝟤w 𝟤

𝜃 − w 𝟤
r − w 𝟤

]︁
rdr

does not depend on 𝛽.

(ii) Therefore

(A.18) 𝒥 (𝛽𝟣, 𝛽𝟤) :=

∫︁∫︁
𝒳𝛽𝟣,𝛽𝟤

[︁
r−𝟤w 𝟤

𝜃 − w 𝟤
r − w 𝟤

]︁
rdrd𝜃

depends only on 𝛽𝟤 − 𝛽𝟣 and therefore is proportional to it.

Proof. One proves (i) by analyzing −
∫︀∫︀

𝒳𝛽𝟣,𝛽𝟤
Lw · 𝜕𝜃w dxdy (which actually

was done before, since w𝜃 = −x𝟤wx𝟣 + x𝟣wx𝟤 .
To prove (ii) observe that 𝜕𝛽𝒥 (𝛽𝟣, 𝛽) = ℐ(𝛽).

Proposition A.8. (i) Function

(A.19) 𝒥 (𝛽𝟣, 𝛽𝟤) :=

∫︁
𝒳𝛽𝟣,𝛽𝟤

w 𝟤r−𝟣 drd𝜃

with fixed 𝛽𝟣,𝟤 = 𝛽 ∓ 𝜎 is convex with respect to 𝛽 (if 𝜎 > 0).

(ii) Further, if w is either symmetric or antisymmetric, then it reaches
minimum as 𝛽 = 0 (i.e. 𝒳𝛽𝟣,𝛽𝟤 is symmetric with respect to Y𝟢).

Proof. (i) Consider

(A.20) 0 =

∫︁∫︁
𝒳𝛽𝟣,𝛽𝟤

Lw · w rdrd𝜃 =∫︁∫︁
𝒳𝛽𝟣,𝛽𝟤

(w 𝟤
r + r−𝟤w 𝟤

𝜃 + w 𝟤) rdrd𝜃 + ℐ ′(𝛽𝟣)− ℐ ′(𝛽𝟤)
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with

(A.21) ℐ ′(𝛽) =

∫︁
𝒴𝛽

ww𝜃 r−𝟣dr = 𝜕𝛽ℐ(𝛽), ℐ(𝛽) :=
∫︁
𝒴𝛽

w 𝟤 r−𝟣dr .

Observe that the first term is positive. Then ℐ ′(𝛽𝟤) − ℐ ′(𝛽𝟣) > 0; on the
other hand, it is the second derivative of 𝒥 (𝛽𝟣, 𝛽𝟤) with respect to 𝛽.

(ii) Moreover, for both symmetric and antisymmetric w ℐ(𝛽𝟤)− ℐ(𝛽𝟣) = 0.
And the difference ℐ(𝛽𝟤)− ℐ(𝛽𝟣) = 0 for 𝛽 = 0.

Corollary A.9. Since w𝜃 satisfies the same equation and is antisymmet-
ric (symmetric) respectively, the same conclusions (i), (ii) hold for 𝒥 :=∫︀
𝒳𝛽𝟣,𝛽𝟤

w 𝟤
𝜃 r−𝟣 rdrd𝜃.

Then in virtue of Proposition A.7(ii) the same conclusions (i), (ii) hold
for 𝒥 :=

∫︀∫︀
𝒳𝛽𝟣,𝛽𝟤

(w 𝟤
r + w 𝟤) rdrd𝜃.

Next, observe that Lr𝜕rw = 2Δw = −2w and if we use the same
arguments, as in the proof of Proposition A.8(ii) for r𝜕rw , then instead of
the first term in (A.20) we get∫︁∫︁

𝒳𝛽𝟣,𝛽𝟤

(︀
(rwr )

𝟤
r + w 𝟤

r𝜃 + (rwr )
𝟤 − w 𝟤

)︀
rdrd𝜃,(A.22)

where an additional last term appears as∫︁∫︁
𝒳𝛽𝟣𝛽𝟤

2w𝜕rw · r 𝟤drd𝜃 = −
∫︁∫︁

𝒳𝛽𝟣𝛽𝟤

w 𝟤 rdrd𝜃.

Consider last two terms and skip integration by d𝜃; plugging w = r−𝟥/𝟤u
with u(0) = 0, we arrive to∫︁ (︀

ur−
3

2
r−𝟣u)𝟤−r−𝟤u𝟤

)︀
dr =

∫︁ (︀
u𝟤
r−3r−𝟣uru+

5

4
r−𝟤u𝟤

)︀
dr =

∫︁ (︀
u𝟤
r−

1

4
r−𝟤u𝟤

)︀
dr

which is again nonnegative term. Then we arrive to

Corollary A.10. The same conclusions (i) and (ii) of Proposition A.8 hold
for 𝒥 (𝛽𝟣, 𝛽𝟤) with w replaced by rwr , i.e. 𝒥 (𝛽𝟣, 𝛽𝟤) :=

∫︀∫︀
𝒳𝛽𝟣,𝛽𝟤

w 𝟤
r rdrd𝜃.
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Then in virtue of Proposition A.7(ii) the same conclusions (i), (ii) hold
for

(A.23) 2

∫︁∫︁
𝒳𝛽𝟣,𝛽𝟤

|𝜕rw |𝟤 rdrd𝜃+∫︁∫︁
𝒳𝛽𝟣,𝛽𝟤

(r−𝟤|𝜕𝜃w |𝟤 − |𝜕rw |𝟤 − |w |𝟤|) rdrd𝜃 =

∫︁∫︁
𝒳𝛽𝟣,𝛽𝟤

(|∇w |𝟤 − |w |𝟤) dxdy .

Now we can prove

Proposition A.11. Let 𝛼 ∈ (𝜋, 2𝜋]. Then for both symmetric and anti-
symmetric w (A.8) holds.

Proof. Indeed, assume that it is not the case:
∫︀∫︀

X
(|∇w |𝟤 − w 𝟤) dxdy < 0

for some w . Then due to Corollary A.10 the same is true for X replaced
by 𝒳𝛽𝟣,𝛽𝟤 with 𝛽𝟣,𝟤 = ∓(2𝜋 − 𝛼)/2 and the same w . Then it is true for the
sum of these to expressions (with X == X−𝛼/𝟤,𝛼/𝟤 and 𝒳𝛽𝟣,𝛽𝟤), which is the
sum of the same expressions for the half-planes X𝛼/𝟤−𝜋,𝛼/𝟤 and X−𝛼/𝟤,𝜋−𝛼/𝟤.
However, for half-planes (A.8) holds.

Let P𝜏 = θ(𝜏 − Λ).

Proposition A.12. (i) Let 𝛼 ∈ [𝜋, 2𝜋]. Then for any 𝜏 > 1 for w = Jv ,
v ∈ Ran(I − P𝜏 ),

(A.24) ‖∇w‖𝟤 ≥ (1 + 𝛿)‖w‖𝟤

with 𝛿 = 𝛿(𝜏) > 0.

(ii) Let 𝛼 ∈ (0, 𝜋]. Then for any 𝜏 > 1 for antisymmetric w = Jv , v ∈
Ran(I − P𝜏 ), (A.24) holds.

Proof. Observe first that

(A.25) {v ∈ Ran(I −P𝜏 ) : ‖v‖Y = 1, : ‖∇Jv‖𝟤 ≤ (1+𝛿′)‖Jv‖𝟤} is a compact
set in L𝟤(Y ) for 𝛿′ = 𝛿′(𝜏) > 0.

Indeed, in the zone {x : |x | ≥ R} we can apply semiclassical arguments with
h := R−𝟣 after scaling x ↦→ R−𝟣x .

Since in both cases (A.8) holds with a strict inequality for w ̸= 0), we
arrive to both Statements (i) and (ii).
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A.2 Spectrum

The above results are sufficient for our needs, for 𝛼 ∈ (𝜋, 2𝜋]. However we
would like to explore the case of 𝛼 ∈ (0, 𝜋) and even 𝛼 ∈ (𝜋, 2𝜋] in more
depth.

Corollary A.13. (i) Let 𝛼 ∈ [𝜋, 2𝜋]. Then Spec(Λ) = [1,∞) and it is
continuous.

(ii) Let 𝛼 ∈ (0, 𝜋]. Then Spec(Λ𝖺𝗌𝗒𝗆) = [1,∞) and it is continuous, where
Λ𝗌𝗒𝗆 and Λ𝖺𝗌𝗒𝗆 denote the restriction of Λ to the spaces of symmetric and
antisymmetric functions, correspondingly.

Proof. We already know that the that essential spectrum of Λ is [1,∞).
We also know that in the case (i) Λ > I and in the case (ii) Λ𝖺𝗌𝗒𝗆 > I .
Therefore 1 is not an eigenvalue. Continuity of the spectrum follows from
(i [Λ,Q]v , v) ≥ 𝛿‖v‖𝟤 for v ∈ Ran(I −P𝜏 ), v is antisymmetric in the case (ii),
which is due to Statements (i) and (ii) of Propostion A.12.

Remark A.14. Paper [S-KP] is dealing mainly with the eigenvalues of Δ𝟤

in the planar sector under Robin boundary condition (𝜕𝜈 + 𝛾)w |Y = 0,
𝛾 > 0 14). Then eigenvalues 𝜏 of Λ and eigenvalues 𝜇 of that problem are
related through Birman-Schwinger principle and scaling: 𝜇k = −𝜏−𝟤

k 𝛾𝟤.
Some of the results:

(i) Theorem 3.1 states that (−∞,−𝛾𝟤) contains only discrete spectrum of
such operator and it is finite.

(ii) Theorem 2.3 states that for 𝛼 ∈ (0, 𝜋) the bottom eigenvalue−𝛾𝟤/ sin𝟤(𝛼/2)
is simple and the corresponding eigenfunction is exp(−𝛾x𝟣/ sin(𝛼/2).

(iii) Theorem 3.6 states that for 𝛼 ∈ [𝜋
𝟥
, 𝜋) there is no other eigenvalues

in (0, 1), while Theorem 4.1 implies that the number of such eigenvalues is
≍ 𝛼−𝟤 as 𝛼 → 0 15).

Then we conclude that

14)In that paper 𝛼 is a half-angle, and 𝜈 is a unit external normal. Below we refer to
this paper using our notations.

15) In fact, the compete asymptotic expansion of the eigenvalues is derived in Theo-
rem 4.16 of [S-KP].
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Corollary A.15. (i) Interval (0, 1) contains only discrete spectrum of Λ𝗌𝗒𝗆

which is finite.

(ii) For 𝛼 ∈ (0, 𝜋) the bottom eigenvalues is sin(𝛼/2) and the corresponding
eigenfunction is exp(−x𝟣).

The discrete spectrum would not prevent us from the extending our
main results to 𝛼 ∈ (0, 𝜋). Even (possible) eigenvalue 1 on the edge of the
essential spectrum would not be an obstacle. However eigenvalues embedded
into (1,∞) are an obstacle (see Proposition A.16).

Proposition A.16. If wp = Jvp where vp are eigenfunctions of Λ, corre-
sponding to eigenvalues 𝜏p, and 𝜏j = 𝜏k , then

(A.26) (∇wj ,∇wk)− (wj ,wk) = 0.

In particular,

(A.27) ‖∇wj , ‖𝟤 − ‖wj‖𝟤 = 0.

Proof. It follows from equality (3.2) for Q = x𝟣D𝟣 + x𝟤D𝟤 + i/2 and

([Q, Λ]vj , vk) = (Λvj ,Qvjk)− (Qvj , Λvk) = 0

for eigenfunction vj vk provided 𝜏j = 𝜏k .

To extend the main sharp spectral asymptotics to operators in domains
with inner edges one needs to prove the first following

Conjecture A.17. For any 𝜏 > 1 and for any w = Jv with symmetric
v ∈ Ran(I − P𝜏 ) estimate (A.24) holds.

Remark A.18. (i) Recall that this is true for 𝛼 ∈ [𝜋, 2𝜋] and, also, for
𝛼 ∈ (0, 𝜋) and antisymmetric v . So, only the case of 𝛼 ∈ (0, 𝜋) and
symmetric v needs to be covered.

(ii) So far it is unknown, if in the the case of 𝛼 ∈ (0, 𝜋) Λ𝗌𝗒𝗆 has eigenvalues
embedded into continuous spectrum (1,∞) or on its edge.

(iii) Also it is unknown in any case, if the continuous spectrum is absolutely
continuous (i.e. that the singular continuous spectrum is empty).
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Asymptotics of the Ground State Energy in
the Relativistic Settings*,†

Victor Ivrii‡

Abstract

The purpose of this paper is to derive sharp asymptotics of
the ground state energy for the heavy atoms and molecules in the
relativistic settings, and, in particular, to derive relativistic Scott
correction term and also Dirac, Schwinger and relativistic correction
terms. Also we will prove that Thomas-Fermi density approximates
the actual density of the ground state, which opens the way to estimate
the excessive negative and positive charges and the ionization energy.

1 Introduction

The purpose of this paper is to derive sharp asymptotics of the ground
state energy for heavy atoms and molecules in the relativistic settings, and,
in particular, to derive relativistic Scott correction term and also Dirac,
Schwinger and relativistic correction terms. The relativistic Scott correction
term was first derived in [SSS] which both inspired our paper and provided
necessary functional analytic tools; our improvement is achieved due to more
refined microlocal semiclassical technique.

Also we will prove that the Thomas-Fermi density approximates the
actual density of the ground state, which opens the way to estimate the
excessive negative and positive charges and the ionization energy.
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In the next paper [Ivr2] we will introduce a self-generated magnetic field
and improve results of [EFS2].

Multielectron Hamiltonian is given by

H = HN :=
∑︁

𝟣≤j≤N

HV ,xj +
∑︁

𝟣≤j<k≤N

e𝟤

|xj − xk |
(1.1)

on

H =
⋀︁

𝟣≤n≤N

H, H = L𝟤(ℝ𝟥,ℂq) ≃ L𝟤(ℝ𝟥 × {1, ... , q},ℂ)(1.2)

with

HV = T − eV (x),(1.3)

describing N same type particles in the external field with the scalar potential
−V and repulsing one another according to the Coulomb law; e is the charge
of the electron, T is an operator of the kinetic energy.

In the non-relativistic framework this operator is defined as

T =
1

2𝜇
(−iℏ∇)𝟤.(1.4)

In the relativistic framework this operator is defined as

T =
(︁

c𝟤(−iℏ∇)𝟤 + 𝜇𝟤c𝟦
)︁ 𝟣

𝟤 − 𝜇𝟤c𝟦.(1.5)

Here

V (x) =
∑︁

𝟣≤m≤M

Zme

|x − ym|
(1.6)

and

d = min
𝟣≤m<m′≤M

|ym − ym′ | > 0.(1.7)

where Zme > 0 and ym are charges and locations of nuclei.
It is well-known that the non-relativistic operator is always semibounded

from below. On the other hand, it is also well-known [Herb,LY] that

Remark 1.1. One particle relativistic operator is semibounded from below
if and only if

(1.8) Zm𝛽 ≤ 2

𝜋
∀m = 1, ... ,M ; 𝛽 :=

e𝟤

ℏc
.
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We will assume (1.8), sometimes replacing it by a strict inequality:

(1.9) Zm𝛽 ≤ 2

𝜋
− 𝜖 ∀m = 1, ... ,M ; 𝛽 :=

e𝟤

ℏc
.

We also assume that d ≥ CZ−𝟣. Then we are interested in E := inf Spec(H).

Remark 1.2. (i) In the non-relativistic theory by scaling with respect to
the spatial and energy variables we can make ℏ = e = 𝜇 = 1 while Zm are
preserved.

(ii) In the relativistic theory by scaling with respect to the spatial and
energy variables we can make ℏ = e = 𝜇 = 1 while 𝛽 and Zm are preserved.

From now on we assume that such rescaling was already made and we
are free to use letters ℏ, 𝜇 and c for other notations.

2 Functional Analytic Arguments

2.1 Estimate from below

In contrast to [SSS] we will start from the more traditional approach. We
estimate

∑︀
𝟣≤j<k≤N 〈|xj − xk |−𝟣Ψ,Ψ〉 from below, using Lieb’s electrostatic

inequality, by 𝟣
𝟤
D(𝜌𝝭, Ψ)− C

∫︀
𝜌
𝟦/𝟥
𝝭 dx where 〈·, ·〉 means the inner product

in H, 𝜌𝝭(x) is a one particle density,

D(𝜌, 𝜌′) =

∫︁∫︁
|x − y |−𝟣𝜌(x)𝜌′(y) dxdy ,

and we use notations of Chapter 25.
The the standard lower estimate (25.2.2) holds:

(2.1) 〈HNΨ,Ψ〉 ≥
∑︁

𝟣≤j≤N

〈HV ,xjΨ,Ψ〉+ 1

2
D
(︀
𝜌𝝭, 𝜌𝝭)− C

∫︁
𝜌

𝟦
𝟥
𝝭(x) dx =

∑︁
𝟣≤j≤N

〈HW ,xjΨ,Ψ〉+ 1

2
D
(︀
𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌

)︀
− 1

2
D
(︀
𝜌, 𝜌

)︀
− C

∫︁
𝜌

𝟦
𝟥
𝝭(x) dx ,

where HW is the one-particle Schrödinger operator (respectively, non-relativistic
or relativistic) with the potential

(2.2) W = V − |x |−𝟣 * 𝜌,
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and 𝜌 is an arbitrary chosen real-valued non-negative function. Then again
we get

(2.3) EN ≥ Tr(H−
W+𝜆)+𝜆N+

1

2
D
(︀
𝜌𝝭−𝜌, 𝜌𝝭−𝜌

)︀
− 1

2
D
(︀
𝜌, 𝜌

)︀
−C

∫︁
𝜌

𝟦
𝟥
𝝭(x) dx

with arbitrary 𝜆.

Remark 2.1. As usual, we will need to improve these estimates to recover a
remainder estimate better than O(Z

𝟧
𝟥 ).

Now we need to prove estimate

(2.4)

∫︁
𝜌

𝟦
𝟥
𝝭(x) dx ≤ CZ

𝟧
𝟥

for the ground state energy. It follows from

(2.5)

∫︁
𝜌

𝟧
𝟥
𝝭(x) dx ≤ CZ

𝟩
𝟥 ,

equality
∫︀
𝜌𝝭 dx = N and assumption N ≲ Z . To prove (2.5) we apply

classical arguments of Lieb–Thirring, but replacing the Lieb–Thirring in-
equality by some relativistic inequalities (see Appendix A). Namely, let

b := T − KU with U = 𝜌
𝟤
𝟥
𝝭𝜙< + 𝛽−𝟣𝜌

𝟣
𝟥
𝝭𝜙> where 𝜙≷ is the characteristic

function of {x : 𝜌𝝭 ≷ 𝛽−𝟥}.
Consider the multiparticle operator B =

∑︀
bxj and its lowest eigenvalue

E𝟢. Obviously,

(2.6) E𝟢 ≤ 〈BΨ,Ψ〉 =
∑︁
j

〈TxjΨ,Ψ〉− K

∫︁
(𝜌

𝟧
𝟥
𝝭𝜙< + 𝛽−𝟣𝜌

𝟦
𝟥
𝝭𝜙>) dx .

On the other hand, E𝟢 does not exceed the sum of negative eigenvalues of b,
and due to Daubechies inequality (A.1), the absolute value of this sum does
not exceed

(2.7) C𝟢

∫︁
max(U

𝟧
𝟤 , 𝛽𝟥U𝟦) dx ≤ C𝟢K

𝟧
𝟤

∫︁ (︀
𝜌

𝟧
𝟥
𝝭𝜙< + 𝛽−𝟣𝜌

𝟦
𝟥
𝝭𝜙>

)︀
dx .

Therefore, assuming that E𝟢 ≤ 0 we conclude that∑︁
j

〈TxjΨ,Ψ〉− K

∫︁
min(𝜌

𝟧
𝟥
𝝭, 𝛽

−𝟣𝜌
𝟦
𝟥
𝝭) + C𝟢K

𝟧
𝟤

∫︁ (︀
𝜌

𝟧
𝟥
𝝭𝜙< + 𝛽−𝟣𝜌

𝟦
𝟥
𝝭𝜙>

)︀
dx ≥ 0
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and therefore, for small positive constant K , we conclude that

(2.8)
∑︁
j

〈TxjΨ,Ψ〉 ≥ 2𝜖𝟢

∫︁
(𝜌

𝟧
𝟥
𝝭𝜙< + 𝛽−𝟣𝜌

𝟦
𝟥
𝝭𝜙>) dx .

Thus, we proved that for any Ψ ∈ H (2.8) holds. Then

(2.9)
∑︁
j

〈HxjΨ,Ψ〉 =
∑︁
j

〈TxjΨ,Ψ〉−
∫︁

V (x)𝜌𝝭(x) dx ≥∫︁ (︀
2𝜖𝟢𝜌

𝟧
𝟥
𝝭 − V (x)𝜌𝝭

)︀
𝜙< dx +

∫︁ (︀
2𝜖𝟢𝛽

−𝟣𝜌
𝟦
𝟥
𝝭 − V (x)𝜌𝝭

)︀
𝜙> dx .

We know, that the latter expression must be less than −c𝟢Z
𝟩
𝟥 (it will follow,

e. g., from the estimate from above). Observe that for ℓ(x) ≥ aZ− 𝟣
𝟥 we

have V (x) < a−𝟣Z
𝟦
𝟥 and the integral over this zone of −V 𝜌𝝭 is greater than

−C𝟢a−𝟣Z
𝟦
𝟥 N . Here and below ℓ(x) :== minj |x − yj |. Let us fix a, a large

enough constant.
Next,∫︁

{x : ℓ(x)≤aZ−𝟣/𝟥}

(︀
𝜖𝟢𝜌

𝟧
𝟥
𝝭 − V (x)𝜌𝝭

)︀
𝜙< dx ≥ −C

∫︁
{x : ℓ(x)≤aZ−𝟣/𝟥}

V
𝟧
𝟤 dx ≥ −C𝟣Z

𝟩
𝟥

and (𝜖𝟢𝛽
−𝟣𝜌

𝟣/𝟥
𝝭 − V )𝜙> is positive unless 𝜌𝜓 > 𝛽−𝟥 and V ≥ 𝜖𝟣𝛽

−𝟣𝜌
𝟣/𝟥
𝝭 ≥

𝜖𝟣𝛽
−𝟤 (and then ℓ(x) ≤ C𝟢𝛽).

Therefore, we estimate
∫︀
(𝜌

𝟧/𝟥
𝝭 𝜙< + 𝛽−𝟣𝜌

𝟦/𝟥
𝝭 𝜙<) dx from above by CZ 𝟩/𝟥

plus
∫︀
{x :ℓ(x)≤C𝛽} V 𝜌𝝭 dx , and to obtain (2.4), it is sufficient to estimate this

term. Further, it is sufficient to replace V by Vm (since V = Vm + O(𝛽𝟤),
provided distances between nuclei are ≥ C𝛽). Also we can replace Vm by
Vm + C𝛽−𝟤.

If Zm𝛽 ≤ 𝟤
𝜋
−𝜖, then we can decompose H = 𝜂(H −V 𝟣)+(1−𝜂)(H −V 𝟢),

where (1−𝜂)V 𝟢 coincides with V in the 𝛽-vicinity of ym and equals 0 outside
of the 2𝛽-vicinity of it and V 𝟣 = 𝜂−𝟣(V − (1− 𝜂)V 𝟢), and apply all above
arguments for the operator with V = V 𝟣 while simply observing that H −V 𝟢

is a positive operator for 𝜂 sufficiently small. So we have proven that

Proposition 2.2. Under assumption (1.9) for the ground state,

(2.10)

∫︁
min(𝛽−𝟣𝜌

𝟦
𝟥
𝝭, 𝜌

𝟧
𝟥
𝝭) dx ≤ CZ

𝟩
𝟥

and (2.4) holds.
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Then we immediately arrive to Statement (i) below, and Statement
(ii) follows from the main theorems of either [Bach] (Theorem 1) or [GS]
(Theorem 3):

Corollary 2.3. Under assumption (1.9)

(i) The following estimate holds

(2.11) EN ≥ Tr(H−
W+𝜆)−

1

2
D(𝜌, 𝜌)− CZ

𝟧
𝟥 +

1

2
D(𝜌− 𝜌𝝭, 𝜌− 𝜌𝝭),

where 𝜌,𝜆 are arbitrary and W = V − |x |−𝟣 * 𝜌.

(ii) Further,

(2.12) EN ≥ Tr(H−
W+𝜆)−

1

2
D(𝜌, 𝜌)−

1

2

∫︁
|x − y |−𝟣 tr

(︀
e†
N(x , y) eN(x , y)

)︀
dxdy − CZ

𝟧
𝟥
−𝛿+

1

2
D(𝜌− 𝜌𝝭, 𝜌− 𝜌𝝭),

where eN(x , y) is the Schwartz kernel of the projector to N lower eigestates
of HW and tr denotes the matrix trace.

To cover1) the critical case2) we will use (2.21) from [SSS]

(2.13)
∑︁

𝟣≤i<j≤N

|xi − xj |−𝟣 ≥
N∑︁
j=𝟣

(𝜌 * |x |−𝟣 * Φs)(xj)−
1

2
D(𝜌, 𝜌)− CN𝜀−𝟣,

where, again, 𝜌 ≥ 0 is arbitrary, 𝜆 is arbitrary, Φ ≥ 0 is spherically symmetric
with

∫︀
Φ dx = 1, Φ𝜀(x) = 𝜀−𝟥Φ(x/𝜀). Here the factor 𝟣

𝟤
is due to the

difference in notations and also now

(2.14) W := W𝜀 = V − |x |−𝟣 * 𝜌 * Φ𝜀

instead of (2.2) and the term −CNs−𝟣 replaces the last term in (2.3):

1) Unfortunately, only partially.
2) I.e. with the non-strict inequality (1.8) instead of (1.9).
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Proposition 2.4. Under assumption (1.8)

(2.15) EN ≥ Tr(H−
W+𝜆) + 𝜆N − 1

2
D(𝜌, 𝜌)− CN𝜀−𝟣.

Remark 2.5. (i) Later we set 𝜀 = Z− 𝟤
𝟥 . This would lead to O(Z

𝟧
𝟥 ) remainder

estimate.

(ii) Proposition 2.4 is weaker than Corollary 2.3 in two ways: there is
no improved version of corollary 2.3(ii) and also there is no “bonus term”
𝟣
𝟤
D(𝜌− 𝜌𝝭, 𝜌− 𝜌𝝭) in the right-hand expression.

2.2 Estimate from above

The estimate from above is straight-forward: we simply take Ψ as a Slater
determinant of N lower eigenfunctions of HW . If there are only N ′ < N
negative eigenvalues then we take only N ′ such eigenvalues, because EN ≤ EN′ .
Then we arrive to

Proposition 2.6.

(2.16) EN ≤ Tr(H−
W+𝜆)−

1

2
D(𝜌, 𝜌)+

|𝜆− 𝜈| · |N−
W+𝜈 − N |+ D(tr eN(x , x)− 𝜌, tr eN(x , x , 𝜈)− 𝜌)−

1

2

∫︁
|x − y |−𝟣 tr

(︀
e†
N(x , y)eN(x , y)

)︀
dxdy

with an arbitrary 𝜌 and any 𝜈 ≤ 0, W = V − |x |−𝟣 * 𝜌.

3 Semiclassical Methods

We will need the following semiclassical expressions:

P ′(w) = (2𝜋)−𝟥q

∫︁
{𝜉:b(𝜉)≤w}

d𝜉,(3.1)

and its integral

P(w) = (2𝜋)−𝟥q

∫︁
{𝜉:b(𝜉)≤w}

b(𝜉) d𝜉,(3.2)
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where in the non-relativistic case b(𝜉) = ℏ𝟤
𝟤𝜇
|𝜉|𝟤 and, correspondingly for

𝜇 = ℏ = 1

P𝖳𝖥 ′(w) =
q

6𝜋𝟤
w

𝟥
𝟤
+,(3.3)

P𝖳𝖥(w) =
q

15𝜋𝟤
w

𝟧
𝟤
+,(3.4)

while in the relativistic case b(𝜉) = (c𝟤ℏ𝟤|𝜉|𝟤+𝜇𝟤c𝟦)
𝟣
𝟤 −𝜇c𝟤 and, correspond-

ingly for 𝜇 = ℏ = 1

P𝖱𝖳𝖥 ′(w) =
q

6𝜋𝟤
w

𝟥
𝟤
+(1 + 𝛽𝟤w+)

𝟥
𝟤 .(3.5)

Note that P𝖱𝖳𝖥(w) is an elementary function as well, and a sadistic Calculus
instructor can give it on the test. However it turns out that we really do
not need any separate relativistic Thomas-Fermi theory.

After scalings we have a semiclassical zone 𝒳𝗌𝖼𝗅 := {x : ℓ(x) ≥ cZ−𝟣},
where the effective semiclassical parameter is h = 1/𝜁ℓ. Then, from the
semiclassical point of view, on the energy levels ≤ 0, the relativistic operator
has the same properties as the non-relativistic one.

There is also a singular zone 𝒳𝗌𝗂𝗇𝗀 := {x : ℓ(x) ≤ cZ−𝟣} and it covers the
relativistic zone 𝒳𝗋𝖾𝗅 := {x : ℓ(x) ≤ c𝛽}. The important properties are that

0 ≤ V (x)− W (x) ≤ C𝜁𝟤 := min(Z
𝟦
𝟥 ,Zℓ−𝟣),(3.6)

|𝜕𝛾(W − V )| ≤ C𝜁𝟤ℓ(x)−|𝛾| ∀𝛾 : |𝛾| ≤ 2.(3.7)

3.1 Trace Term

Now the rescaling methods allow us to prove the following:

Proposition 3.1. Let condition (1.8) be fulfilled and let W satisfy (3.6)
and (3.7).

(i) Let 𝜓𝟢(x) be ℓ-admissible function3), being equal 1 in {x : ℓ(x) ≥ 2a} and
supported in {x : ℓ(x) ≥ a}. Then for W = W 𝖳𝖥

(3.8) |Tr(H−
W+𝜆𝜓𝟢)−

∫︁
P𝖱𝖳𝖥(W + 𝜆)𝜓𝟢(x) dx | ≤

C

{︃
Z

𝟥
𝟤 a− 𝟣

𝟤 a ≤ Z− 𝟣
𝟥 ,

Z
𝟧
𝟥 (aZ

𝟣
𝟥 )−𝛿 a ≥ Z− 𝟣

𝟥 .
3) I.e. 𝜕𝛼𝜓𝟢| ≤ C𝛼ℓ

−𝛼.

https://www.wolframalpha.com/input/?i=integrate+w+%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D(1%2Bbeta+w)%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D+dw
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(ii) Let 𝜓m(x) be ℓ-admissible, equal 1 in {x : |x − ym| ≤ a} and supported
in {x : |x − ym| ≤ 2a}. Then for W = Vm = Zm|x − ym|−𝟣

(3.9) |
∫︁ (︀

tr(e𝟣(x , x , 0))− P𝖱𝖳𝖥(Vm)
)︀
(1− 𝜓m(x)) dx | ≤ Z

𝟥
𝟤 d− 𝟣

𝟤 ,

where e𝟣(., ., 𝜏) =
∫︀ 𝜏
−∞ e(., ., 𝜏 ′) d𝜏 ′.

Proof. Indeed, the contribution of the ℓ-element of the partition4) to the
remainder is O(𝜁𝟥ℓ), exactly as in the non-relativistic case. Summation by
partition elements results in the right-hand expression.

Next, we need to consider vicinities of the singularities. Then the methods
of Chapter 25 allow us to prove the following:

Proposition 3.2. In the framework of Proposition 3.1 let 𝜑m be equal
1 in {x : |x − ym| ≤ Z−𝟣

m } and supported in {x : |x − ym| ≤ 2Z−𝟣
m }. Let

|𝜆| ≤ C𝟢Zd−𝟣. Then

(3.10) |Tr(H−
W+𝜆𝜓m(1− 𝜑m))− Tr(H−

Vm
𝜓m(1− 𝜑m))+∫︁ (︀

P𝖱𝖳𝖥(W + 𝜆)− P𝖱𝖳𝖥(Vm)
)︀
𝜓m(x)(1− 𝜑m(x)) dx | ≤

C

{︃
Z

𝟥
𝟤 d− 𝟣

𝟤 d ≤ Z− 𝟣
𝟥 ,

Z
𝟧
𝟥 d ≥ Z− 𝟣

𝟥 ,

where d ≥ cZ−𝟣 is the minimal distance between nuclei.

Proof. Indeed, exactly as in the non-relativistic case, using methods of
Sections 12.6 and 25.4 we estimate the contribution of an ℓ-element to
the remainder by O(𝜁ℓ𝟥𝜁𝟤ℓ̄−𝟤) provided Z−𝟣+𝛿 ≲ ℓ ≲ d , and by O(𝜁𝟤ℓ𝟤𝜁𝟤)

provided Z−𝟣 ≲ ℓ ≲ Z−𝟣+𝛿. Here ℓ̄ = d and 𝜁 = Z
𝟣
𝟤 d− 𝟣

𝟤 . This proves the
required remainder estimate. For d ≤ Z−𝟣+𝛿 we use a rescaling.

Summation by partition elements results in the right-hand expression.

Remark 3.3. We need to include the cut-off (1−𝜑m(x)) because not only inte-
grals of P𝖱𝖳𝖥(W +𝜆) and P𝖱𝖳𝖥(Vm) (of magnitude 𝛽𝟥Z 𝟦ℓ−𝟦) and P𝖱𝖳𝖥 ′(W +
𝜆) are diverging at ym, but even integral of their difference is logarithmically
diverging.

4) I.e. ℓ-admissible function 𝜓(x), supported in 𝟣
𝟤ℓ(y) for some y ; then ℓ(x) ≍ ℓ(y) on

𝗌𝗎𝗉𝗉(𝜓).
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Now we need to consider CZ−𝟣 vicinities of ym and we will use the
following Proposition:

Proposition 3.4. In the framework of Proposition 3.1

(i) HW ≥ −C𝟢Z 𝟤.

(ii) Further,

(3.11) e(x , x ,𝜆) ≤ CZ 𝟣−𝛿ℓ(x)𝛿−𝟤 for |𝜆| ≤ c𝟢Z 𝟤.

Proof. (a) Assume first that Z ≍ 𝛽−𝟣 (i. e. Z ≥ 𝜖𝟢𝛽
−𝟣); then Statement (i)

follows immediately from Lieb-Yau inequality (Theorem A.2): in the operator
sense H ≥ 𝛽−𝟣

√
Δ− 𝛽−𝟤 − Zmr−𝟣 ≥ −𝛽−𝟤, r = |x − ym|.

Then e(x , x ,𝜆) ≤ Cℓ(x)−𝟥h−𝟥 with the semiclassical parameter h, which
is ≍ 1 for ℓ ≲ Z−𝟣, 𝜆 ≲ Z 𝟤. Therefore,

(3.12) e(x , x ,𝜆) ≤ Cℓ(x)−𝟥 for 𝜆 ≤ C𝟢Z 𝟤, ℓ(x) ≲ Z−𝟣.

Unfortunately this estimate falls short for our needs. Let us shift ym ↦→ 0,
and scale x ↦→ Zx , 𝜏 ↦→ Z−𝟤𝜏 . Then we arrive to an operator which modulo
O(1) is

√
Δ− Zr−𝟣. Due to

(3.13)
√
Δ− 2

𝜋|x |
≥ As(Δ)s − Bs

for any s ∈ [0, 1/2) and As ,Bs > 0 we can “trade” (due to Sobolev embedding
theorem) ℓ−𝟣+𝛿 by 1 in the scaled inequality (3.12) and by Z 𝟣−𝛿 in the original
one, thus arriving to (3.11).

(b) Let us consider Z ≤ 𝜖𝟢𝛽
−𝟣. Observe that in the operator sense

H ≥ (
1

4
𝛽−𝟤r−𝟤 + 𝛽−𝟦)𝟣/𝟤 − Zr−𝟣 − C𝛽−𝟤 ≥ CZ−𝟤;

the latter inequality is proven separately for r ≲ 𝛽 and for r ≳ 𝛽.

Moreover, we get H ≥ 𝜖𝟣 min(r−𝟤, 𝛽−𝟣r−𝟣) for r ≤ 𝜖𝟣Z−𝟣 and then we
can trade ℓ−𝟥 to CZ 𝟥 arriving even to the stronger version of (3.12): namely,

(3.14) e(x , x ,𝜆) ≤ CZ 𝟥.

Actually estimate (3.14) holds as Zm𝛽 ≤ 2𝜋−𝟣 − 𝜎 for 𝜎 > 0 with
C = C (𝜎) which could be calculated explicitly.
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Then we immediately conclude that

Corollary 3.5. In the framework of Proposition 3.1 for |𝜆| ≤ C𝟢Zd−𝟣

(3.15) |Tr(H−
W+𝜆𝜑m)− Tr(H−

Vm
𝜑m)| ≤ CZd−𝟣.

Now we can assemble all these results. However, before doing this we
replace P𝖱𝖳𝖥 by P𝖳𝖥:

Proposition 3.6. (i) Estimates (3.8), (3.9) and (3.10) hold with P𝖱𝖳𝖥

replaced by P𝖳𝖥.

(ii) Estimate (3.10) with P𝖱𝖳𝖥 replaced by P𝖳𝖥 also holds with 𝜑m = 0.

Proof. Statement (i) follows immediately from

(3.16) P𝖱𝖳𝖥(w)− P𝖳𝖥(w) ≍ 𝛽𝟤w
𝟩
𝟤 , P𝖱𝖳𝖥 ′(w)− P𝖳𝖥 ′(w) ≍ 𝛽𝟤w

𝟧
𝟤

for 𝛽𝟤w ≲ 1

due to (3.5). Statement (ii) follows immediately from P𝖳𝖥(w) ≍ w
𝟧
𝟤 ,

P𝖳𝖥 ′(w) ≍ w
𝟥
𝟤 .

Remark 3.7. Meanwhile,

(3.17)

∫︁ (︀
P𝖱𝖳𝖥(V + 𝜆)− P𝖳𝖥(V + 𝜆)

)︀
𝜓(x) dx ≍ 𝛽𝟤Z 𝟦,

which could be as large as Z 𝟤.

Due to the scaling properties of e(x , x , 0) for H = HV and P𝖳𝖥(V ) for
V = Vm we conclude that

(3.18)

∫︁ (︀
tr(e𝟣(x , x , 0))− P𝖱𝖳𝖥(Vm)

)︀
dx = qZ 𝟤

mS(Zm𝛽)

with an unknown function S(Zm𝛽). Indeed, if ym = 0 then x ↦→ x/k trans-
forms the operator with parameters Zm, 𝛽 into the operator with parameters
Zmk , 𝛽k−𝟣, multiplied by k−𝟤.

Remark 3.8. Obviously, S(Zm𝛽) monotonely decreases as 𝛽 → 0+ and tends
to S(0) for the Schrödinger operator.
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Then due to (3.9) for V = Vm

(3.19) |
∫︁ (︀

tr(e𝟣(x , x , 0))− P𝖳𝖥(Vm)
)︀
𝜓m(x) dx − qZ 𝟤

mS(Zm𝛽)| ≤ Z
𝟥
𝟤 d− 𝟣

𝟤

and we arrive to

Proposition 3.9. Let (1.8) be fulfilled. Then for W = W 𝖳𝖥

(3.20) |Tr(H−
W+𝜆) +

∫︁
P𝖳𝖥(W + 𝜆) dx −

∑︁
𝟣≤m≤M

qZ 𝟤
mS(Zm𝛽)| ≤

C

{︃
Z

𝟥
𝟤 d− 𝟣

𝟤 d ≤ Z− 𝟣
𝟥 ,

Z
𝟧
𝟥 d ≥ Z− 𝟣

𝟥 .

3.2 Trace Term. II

Let improve the above results for d ≫ Z− 𝟣
𝟥 . Observe first that the in

this case the error in (3.8) can be made O(Z
𝟧
𝟥 (dZ

𝟣
𝟥 )−𝛿 + Z

𝟧
𝟥
−𝛿) provided

we include the relativistic Schwinger correction term. Since this term has
magnitude Z

𝟧
𝟥 and the contributions of the zones {x : ℓ(x) ≤ Z− 𝟣

𝟥
−𝛿𝟣} and

{x : ℓ(x) ≥ Z− 𝟣
𝟥
+𝛿𝟣} in this term are O(Z

𝟧
𝟥
−𝛿), the difference between the

relativistic and the standard non-relativistic Schwinger terms is O(Z
𝟧
𝟥
−𝛿),

and we can use the latter

(3.21) Schwinger = (36𝜋)
𝟤
𝟥 q

𝟤
𝟥

∫︁
(𝜌𝖳𝖥)

𝟦
𝟥 dx .

Next, consider the relativistic correction term
(3.22)∫︁ (︁

−P𝖱𝖳𝖥(W + 𝜆) + P𝖱𝖳𝖥(Vm) + P𝖳𝖥(W + 𝜆)− P𝖳𝖥(Vm)
)︁
𝜓m(1− 𝜑m) dx .

Again, one can see easily that we need to consider only the contribution
of the threshold zone 𝒴 := {x : Z− 𝟣

𝟥
−𝛿𝟣 ≤ ℓ(x) ≤ Z− 𝟣

𝟥
+𝛿𝟣} because the

contributions of both zones {x : ℓ(x) ≤ Z− 𝟣
𝟥
−𝛿𝟣} and {x : ℓ(x) ≥ Z− 𝟣

𝟥
+𝛿𝟣} in

this term are O(Z
𝟧
𝟥
−𝛿).

One can see easily that in the threshold zone due to (3.5)

P𝖱𝖳𝖥(w)− P𝖳𝖥(w) =
q

14𝜋𝟤
𝛽𝟤w

𝟩
𝟤
+ + O(Z

𝟪
𝟥
−𝛿)
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(for both w = W 𝖳𝖥 + 𝜆 and w = Vm), and therefore modulo the same error
expression (3.22) coincides with

(3.23) RCT :=
q

14𝜋𝟤
𝛽𝟤

∫︁ (︀
−(W 𝖳𝖥 + 𝜆)

𝟩
𝟤
+ + V

𝟩
𝟤

)︀
dx

with the integral taken over this zone or ℝ𝟥 (it does not matter). Then we
arrive to

Proposition 3.10. Let (1.8) be fulfilled and d ≥ Z− 𝟣
𝟥 . Then for W = W 𝖳𝖥

(3.24) |Tr(H−
W+𝜆) +

∫︁
P𝖳𝖥(W + 𝜆) dx −

∑︁
𝟣≤m≤M

qZ 𝟤
mS(Zm𝛽)−

Schwinger − RCT| ≤ C
(︀
Z

𝟧
𝟥 (dZ

𝟣
𝟥 )−𝛿 + Z

𝟧
𝟥
−𝛿)︀.

3.3 Trace Term. III

Obviously, all these results hold for W = W𝜀 defined by (2.14) with 𝜌 = 𝜌𝖳𝖥.
However we need to estimate an error when we replace W𝜀 by W 𝖳𝖥. One
can prove easily that

(3.25) |W𝜀 − W 𝖳𝖥| ≤ Cs(Zℓ
−𝟣)

𝟥
𝟤 𝜀𝟤(𝜀ℓ−1)s

with arbitrary s for ℓ ≤ 𝜖𝟢Z− 𝟣
𝟥 and with s = 𝟣

𝟤
for ℓ ≤ 𝜖𝟢Z− 𝟣

𝟥 , and therefore,

(3.26) |
∫︁ (︀

P𝖳𝖥(W𝜀 + 𝜆)− P𝖳𝖥(W 𝖳𝖥 + 𝜆)| dx | ≤ CZ 𝟥𝜀𝟤;

adding error CZ𝜀−𝟣 in (2.15) we get C (Z 𝟥𝜀𝟤 + Z𝜀−𝟣). It reaches minimum

CZ
𝟧
𝟥 as 𝜀 ≍ Z− 𝟤

𝟥 and we arrive to

Proposition 3.11. Let (1.8) be fulfilled. Then for W = W𝜀 with 𝜀 = Z− 𝟤
𝟥 ,

(3.20) holds and the left-hand expression of (3.26) is O(Z
𝟧
𝟥 ).

3.4 N- and D-Terms

For these terms (needed for the estimate from above) arguments are simpler;
let 𝜑𝟢 = 1− 𝜑𝟣 − ...− 𝜑M .

Proposition 3.12. In the framework of Proposition 3.1
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(i) The following estimates hold

|
∫︁ (︀

e(x , x ,𝜆)− P𝖱𝖳𝖥 ′(W + 𝜆)
)︀
𝜑𝟢(x) dx | ≤ CZ

𝟤
𝟥(3.27)

and for d ≥ Z− 𝟣
𝟥

|
∫︁ (︀

e(x , x ,𝜆)− P𝖱𝖳𝖥 ′(W + 𝜆)
)︀
𝜑𝟢(x) dx | ≤ C

(︀
Z

𝟤
𝟥 (dZ

𝟣
𝟥 )−𝛿 + Z

𝟤
𝟥
−𝛿)︀.(3.28)

(ii) Further,

(3.29) |
∫︁

e(x , x ,𝜆)𝜑m(x) dx | ≤ C .

(iii) Finally,

(3.30) |
∫︁ (︀

P𝖱𝖳𝖥 ′(W + 𝜆)− P𝖳𝖥 ′(W + 𝜆)
)︀
𝜑𝟢(x) dx | ≤ CZ

𝟣
𝟥 .

Proposition 3.13. In the framework of Proposition 3.1

(i) The following estimates hold

(3.31) D
(︀
(e(x , x ,𝜆)− P𝖱𝖳𝖥 ′(W + 𝜆))𝜑𝟢, (e(x , x ,𝜆)− P𝖱𝖳𝖥 ′(W + 𝜆))𝜑𝟢

)︀
≤ CZ

𝟧
𝟥

and for d ≥ Z− 𝟣
𝟥

(3.32) D
(︀
(e(x , x ,𝜆)− P𝖱𝖳𝖥 ′(W + 𝜆))𝜑𝟢, (e(x , x ,𝜆)− P𝖱𝖳𝖥 ′(W + 𝜆))𝜑𝟢

)︀
≤ CZ

𝟧
𝟥 (dZ

𝟣
𝟥 )−𝛿 + CZ

𝟧
𝟥
−𝛿.

(ii) Further,

(3.33) D
(︀
e(x , x ,𝜆)𝜑m(x), e(x , x ,𝜆)𝜑m(x)

)︀
≤ CZ .

(iii) Finally,

(3.34) D
(︀
(P𝖱𝖳𝖥 ′(W + 𝜆)− P𝖳𝖥 ′(W + 𝜆))𝜑𝟢,

(P𝖱𝖳𝖥 ′(W + 𝜆)− P𝖳𝖥 ′(W + 𝜆))𝜑𝟢

)︀
≤ CZ .
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Proof of Propositions 3.12 and 3.13. Proof is straightforward:
Statements (i) are proven by the semiclassical scaling technique exactly

as in Chapter 25.
Statements (ii) follow from Proposition 3.4. Statements (iii) follow from

(3.5) and properties of W 𝖳𝖥.

3.5 Dirac Term

Finally, consider the term −𝟣
𝟤

∫︀∫︀
tr
(︀
e†
N(x , y)eN(x , y)

)︀
dxdy . The main con-

tribution to it is delivered by the zone 𝒴 × 𝒴 where 𝒴 is the threshold
zone, and in this zone the non-magnetic approximation delivers the correct
expression

(3.35) Dirac = −9

2
(36𝜋)

𝟤
𝟥 q

𝟤
𝟥

∫︁
(𝜌𝖳𝖥)

𝟦
𝟥 dx ,

with an error Z
𝟧
𝟥
−𝛿.

4 Main Theorems

Now repeating arguments of Section 25.4 we arrive to our main results:

Theorem 4.1 5). Let assumption (1.8) be fulfilled. Then

(i) The following asymptotics holds

(4.1) EN = ℰ𝖳𝖥
N + Scott + O

(︀
Z

𝟧
𝟥 + Z

𝟥
𝟤 d− 𝟣

𝟤

)︀
.

Recall that Scott = q
∑︀

Z 𝟤
mS(Zm𝛽) and d is the minimal distance between

nuclei.

(ii) Furthermore, let assumption (1.9) be fulfilled. Then for d ≥ Z− 𝟣
𝟥

(4.2) EN = ℰ𝖳𝖥
N + Scott + Dirac + Swinger + RCT+

O
(︀
Z

𝟧
𝟥 (dZ

𝟣
𝟥 )−𝛿 + Z

𝟧
𝟥
−𝛿)︀.

Remark 4.2. (i) For the improved upper estimate in (4.2) we do not need
assumption (1.9).

5) Cf. Theorems 25.4.8 and 25.4.13 .
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(ii) These theorems allow us to consider the free nuclei model and recover
Theorem 25.4.14, albeit without assumption (1.9) we get only 𝛿 = 0.

(iii) We also recover the estimate

(4.3) |𝜆N − 𝜈| ≤ C

{︃
Z

𝟪
𝟫 (Z − N)+ ≤ Z

𝟤
𝟥 ,

(Z − N)
𝟣
𝟥
+ (Z − N)+ ≥ Z

𝟤
𝟥 ,

where 𝜈 is a chemical potential and 𝜆N is the N-th lowest eigenvalue of HW𝖳𝖥

(reset to 0 if there are less than N negative eigenvalues). Furthermore, for

d ≥ Z− 𝟣
𝟥 one can include the factor ((dZ

𝟣
𝟥 )−𝛿 + Z−𝛿) into the right-hand

expression.

Theorem 4.3 6). Let assumption (1.9) be fulfilled. Then

(i) The following estimate holds:

(4.4) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) ≤ CZ
𝟧
𝟥 .

(ii) Furthermore, for d ≥ Z− 𝟣
𝟥

(4.5) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) ≤ C (Z
𝟧
𝟥 (dZ

𝟣
𝟥 )−𝛿 + Z

𝟧
𝟥
−𝛿).

Remark 4.4. (i) Estimates (4.4) and (4.5) allow us to consider the exces-
sive negative charge and ionization energy and, repeating arguments of
Section 25.5, to recover Theorems 25.5.2 and 25.5.3.

(ii) Further, these estimates allow us to consider the excessive positive
charge in the free nuclei model and, repeating arguments of Section 25.6, to
recover Theorems 25.6.3 and 25.6.4.

Remark 4.5. We can even make a poor man version of (4.2) in the critical
case, when only assumption (1.8) is fulfilled.

(i) Consider how our terms depend on q. In the atomic case consider given
Z , N and shift to y𝟣 = 0. Then

(4.6) 𝜌𝖳𝖥q (x) = q𝟤𝜌𝖳𝖥𝟣 (q
𝟤
𝟥 x), W 𝖳𝖥

q (x) = q
𝟤
𝟥 W 𝖳𝖥

𝟣 (q
𝟤
𝟥 x)

and ℰ𝖳𝖥 ≍ q
𝟤
𝟥 Z

𝟩
𝟥 , Scott ≍ qZ 𝟤, Dirac ≍ Schwinger ≍ q

𝟦
𝟥 Z

𝟧
𝟥 , while RCT ≍

q
𝟦
𝟥𝛽𝟤Z

𝟣𝟣
𝟥 .

6) Cf. Theorem 25.4.15.
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(ii) Repeating the corresponding arguments in [SSS], one can prove that

in the correlation inequality (2.13), the constant is C (q) ≤ C𝟢q
𝟤
𝟥 . On the

other hand, we use the estimate for |W − W𝜀| ≍ q𝜀𝟤Z
𝟥
𝟤 ℓ−

𝟥
𝟤 and then the

approximation error is C𝟢Z 𝟥q𝟤𝜀𝟤. Optimizing Z 𝟥q𝟤𝜀𝟤 + Zq
𝟤
𝟥 𝜀−𝟣 by 𝜀 we get

Cq
𝟣𝟢
𝟫 Z

𝟧
𝟥 and for a large constant q it is less than q

𝟦
𝟥 . In the “real life” q = 2.

A Some Inequalities

We follow [SSS] with some modifications:
The following two inequalities we recall are crucial in many of our

estimates. They serve as replacements for the Lieb-Thirring inequality [LT]
used in the non-relativistic case.

Theorem A.1 (Daubechies inequality). (i) One-body case:

(A.1) Tr
[︀
(𝛽−𝟤Δ+𝛽−𝟦)

𝟣
𝟤 −𝛽−𝟤−V (x)

]︀− ≥ −C

∫︁ (︁
V

(n+𝟤)/𝟤
+ +𝛽nV n+𝟣

+

)︀
dx .

where n ≥ 3 is a dimension.

(ii) Many-body case: Let Ψ ∈
⋀︀N

j=𝟣 L𝟤(ℝ𝟥;ℂq) and let 𝜌𝝭 be its one-particle
density. Then for n = 3

⟨
N∑︁
j=𝟣

[︀
(𝛽−𝟤Δj + 𝛽−𝟦)

𝟣
𝟤 − 𝛽−𝟤

]︀
Ψ,Ψ⟩ ≥

∫︁
min

(︀
𝜌

𝟧
𝟥
𝝭, 𝛽

−𝟣𝜌
𝟦
𝟥
𝝭

)︀
dx .(A.2)

This theorem also holds in the non-relativistic limit 𝛽 = 0 and operator
(𝛽−𝟤Δ+ 𝛽−𝟦)

𝟣
𝟤 − 𝛽−𝟤 replaced by 𝟣

𝟤
Δ.

Theorem A.2 (Lieb-Yau inequality). Let n = 3. Let C > 0 and R > 0
and let

(A.3) HC ,R = Δ
𝟣
𝟤 − 2

𝜋|x |
− C/R .

Then, for any density matrix 𝛾 and any function 𝜃 with support in BR =
{x | |x | ≤ R}

(A.4) Tr
[︀
𝜃𝛾𝜃HC ,R

]︀
≥ −4.4827C 𝟦R−𝟣{3/(4𝜋R𝟥)

∫︁
|𝜃(x)|𝟤 dx}.
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Note that when 𝜃 = 1 on BR then the term inside the brackets {}
equals 1.

Theorem A.3 (Critical Hydrogen inequality). Let n = 3. For any
s ∈ [0, 1/2) there exists constants As ,Bs > 0 such that

(A.5) Δ
𝟣
𝟤 − 2

𝜋|x |
≥ AsΔ

s − Bs .

Theorem A.4 (Hardy-Littlewood-Sobolev inequality). There exists
a constant C such that

(A.6) D(f ) :=

∫︁∫︁
|x − y |−𝟣f (x)f †(y) dxdy ≤ C ‖f ‖𝟤L𝟨/𝟧 .
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Asymptotics of the ground state energy in the
relativistic settings and with self-generated

magnetic field*,†

Victor Ivrii‡

Abstract

The purpose of this paper is to derive sharp asymptotics of
the ground state energy for the heavy atoms and molecules in the
relativistic settings, with the self-generated magnetic field, and, in
particular, to derive relativistic Scott correction term and also Dirac,
Schwinger and relativistic correction terms. Also we will prove that
Thomas-Fermi density approximates the actual density of the ground
state, which opens the way to estimate the excessive negative and
positive charges and the ionization energy.

1 Introduction

Multielectron Hamiltonian is defined by

H = HN :=
∑︁

𝟣≤j≤N

HV ,xj +
∑︁

𝟣≤j<k≤N

e𝟤

|xj − xk |
(1.1)

on

H =
⋀︁

𝟣≤n≤N

H, H = L𝟤(ℝ𝟥,ℂq) ≃ L𝟤(ℝ𝟥 × {1, ... , q},ℂ)(1.2)
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with

HV = T − eV (x),(1.3)

describing N same type particles in the external field with the scalar potential
−V and repulsing one another according to the Coulomb law; e is a charge
of the electron, T is an operator of the kinetic energy. Unless specifically
mentioned, q = 2.

In the non-relativistic framework this operator is defined as

T =
1

2𝜇
(−iℏ∇− eA)𝟤,(1.4)𝟣

T =
1

2𝜇

(︀
(i∇− eA) · σ

)︀𝟤
(1.4)𝟤

in the magnetic (Schrödinger) and (Schrödinger-Pauli) settings respectively.
In the relativistic framework this operator is defined as

T =
(︁

c𝟤(−iℏ∇− eA)𝟤 + 𝜇𝟤c𝟦
)︁ 𝟣

𝟤 − 𝜇𝟤c𝟦(1.5)𝟣

T =
(︁

c𝟤
(︀
(−iℏ∇− eA) · σ

)︀𝟤
+ 𝜇𝟤c𝟦

)︁ 𝟣
𝟤 − 𝜇𝟤c𝟦(1.5)𝟤

in the magnetic (Schrödinger) and (Schrödinger-Pauli) settings respectively.
Recall that in non-magnetic settings we have (1.4) and (1.5) of [Ivr2] in

the non-relativistic and relativistic settings respectively. Here

V (x) =
∑︁

𝟣≤m≤M

Zme

|x − ym|
(1.6)

and

d = min
𝟣≤m<m′≤M

|ym − ym′ | > 0.(1.7)

where Zme > 0 and ym are charges and locations of nuclei.
It is well-known that the non-relativistic operator is always semibounded

from below. On the other hand, it is also well-known [Herb,LY] that one
particle relativistic non-magnetic operator is semibounded from below if
and only if Zm𝛽 ≤ 𝟤

𝜋
for m = 1, ... ,M . In this paper we assume a strict

condition:

(1.8) Zm𝛽 ≤ 2

𝜋
− 𝜖 ∀m = 1, ... ,M ; 𝛽 :=

e𝟤

ℏc
.
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In the non-magnetic case we were interested in E := inf Spec(H). In the
magnetic case we consider only a self-generated magnetic field, that is we
consider

E* = inf
A∈H𝟣

𝟢

E(A),(1.9)

where

E(A) = inf Spec(HA,V ) +
e𝟤

𝛼ℏ𝟤

∫︁
|∇ × A|𝟤 dx ,(1.10)

𝛼Zm ≤ 𝜅*(2𝜋−𝟣 − 𝛽Zm)
𝟥
𝟤 m = 1, ... ,M .(1.11)

with a unspecified constant 𝜅* > 0. We also assume that d ≥ CZ−𝟣.

Remark 1.1. (i) In the non-relativistic theory by scaling with respect to the
spatial and energy variables we can make ℏ = e = 𝜇 = 1 while 𝛼 and Zm

are preserved.

(ii) In the relativistic theory by scaling with respect to the spatial and energy
variables we can make ℏ = e = 𝜇 = 1 while 𝛽, 𝛼 and Zm are preserved.

(iii) In the one particle case there are additional scalings with respect to
the spatial and energy variables, preserving only Zm𝛼 and Zm𝛽 (but not the
Zm,𝛼, 𝛽).

From now on we assume that such rescaling was done and we are free to
use letters ℏ, 𝜇 and c for other notations.

The sharp results in the non-relativistic frameworks, without magnetic
field and with self-generated magnetic filed were obtained in Chapters 25
and 27 respectively, and in the relativistic frameworks without magnetic
field––in [Ivr2]. The transition from the non-relativistic framework to
the relativistic one required mainly modifications of the function-analytic
arguments in the singular zone

⋃︀
m{x : |x − ym| ≤ cZ−𝟣

m }, and it was done in
many articles, listed in the references, which we heavily use. On the other
hand, transition from the non-magnetic case to the case of the self-generated
magnetic field requires microlocal semiclassical arguments of Chapter 27 in
the semiclassical zone

⋂︀
m{x : |x − ym| ≥ cZ−𝟣

m }, which we also heavily rely
upon. However relativistic settings require modifications of these arguments,
and we are providing most of details when such modifications are needed,
and are rather sketchy when no modifications are required.
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2 Local Semiclassical Trace Asymptotics

2.1 Set-up

This section matches to Section 27.2. We consider potential W supported
in B(x, r) (with r = ℓ(x) the half-distance to the nearest nucleus), and scale
it to B(0, 1) with W ≍ 1.

Recall that the original non-relativistic operator is

1

2
((D − A) · σ)𝟤 − W ,(2.1)

which after rescaling x ↦→ (x − x)/r , 𝜏 ↦→ 𝜏/(Zr−𝟣) becomes

1

2
((hD − A′) · σ)𝟤 − W , h = Z−𝟣/𝟤r−𝟣/𝟤, A′ = Z−𝟣/𝟤r 𝟣/𝟤A,(2.2)

while the “penalty” becomes
r

𝛼

∫︁
|∇ × A′|𝟤 dx =

1

𝜅h𝟤

∫︁
|∇ × A′|𝟤 dx(2.3)

with 𝜅 = Z𝛼 and we assume that 𝜅 ≤ 𝜅*.
What happens with our relativistic operator? The same scaling trans-

forms
(︀
𝛽−𝟤((D − A) · σ)𝟤 + 𝛽−𝟦

)︀𝟣/𝟤 − 𝛽−𝟤 into

(2.4) rZ−𝟣
(︀
𝛽−𝟤((r−𝟣D − A) · σ)𝟤 + 𝛽−𝟦

)︀𝟣/𝟤 − rZ−𝟣𝛽−𝟤 =(︀
𝛾−𝟤((hD − A′) · σ)𝟤 + 𝛾−𝟦

)︀𝟣/𝟤 − 𝛾−𝟤

with 𝛾 = 𝛽h−𝟣 ≤ 1.
Exactly like in Subsubsection 27.2.1 we need to start with the functional-

analytic arguments.

2.2 Functional Analytic Arguments

Estimates

Proposition 2.1 1). Let V ∈ L
𝟧
𝟤 ∩ L𝟦. Then

E* ≥ −Ch−𝟥(2.5)

1) Cf. Proposition 27.2.1.
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and either
1

𝜅h𝟤

∫︁
|𝜕A|𝟤 dx ≤ Ch−𝟥(2.6)

or E(A) ≥ ch−𝟥.

Proof. Using Theorem A.1 (magnetic Daubechies inequality rather than
magnetic Lieb-Thirring inequality) with 𝛾 := 𝛾h, V := h−𝟤V , A := h−𝟣A
and with multiplication of the result by h𝟤, we have

(2.7) Tr(H−
A,V ) ≥

− Ch−𝟥

∫︁ (︁
V

𝟧/𝟤
+ + 𝛾𝟥V 𝟦

+

)︁
dx − Ch−𝟤

(︁
|𝜕A|𝟤 dx

)︁ 𝟣
𝟦
(︁

V 𝟦
+ dx

)︁ 𝟥
𝟦

(cf. (27.2.9); only the term 𝛾𝟥V 𝟦
+ adds up); then (27.2.10) holds, which

completes the proof.

Proposition 2.2 2). Let V+ ∈ L
𝟧
𝟤 ∩ L𝟦, 𝜅 ≤ ch−𝟣 and

(2.8) V ≤ −C−𝟣(1 + |x |)𝛿 + C .

Then there exists a minimizer A.

Proof. Let us consider a minimizing sequence Aj . Without any loss of the
generality one can assume that Aj → A∞ weakly in H𝟣 and in L𝟨 and then
strongly in Lp

𝗅𝗈𝖼 with any p < 6 3). Then A∞ is a minimizer.
Really, due to (2.6) and (2.8) negative spectra of HAj ,V are discrete and

the number of negative eigenvalues is bounded by N = N(h). Consider
ordered eigenvalues 𝜆j ,k of HAj ,V . Without any loss of the generality one can
assume that 𝜆j ,k have limits 𝜆∞,k ≤ 0 (we go to the subsequence if needed).

We claim that 𝜆∞,k are also eigenvalues and if 𝜆∞,k = ... = 𝜆∞,k+r−𝟣

then it is eigenvalue of at least multiplicity r .
Indeed, let uj ,k be corresponding eigenfunctions, orthonormal in L𝟤.

Then in virtue of Aj being bounded in L𝟨 and V ∈ L𝟦 we can estimate

‖|D|𝟣/𝟤uj ,k‖ ≤ K‖uj ,k‖𝟣−𝛿𝟨 · ‖uj ,k‖𝜎 ≤ K‖|D|𝟣/𝟤uj ,k‖𝟣−𝛿 · ‖uj ,k‖𝛿

2) Cf. Proposition 27.2.2.
3) Otherwise we select a converging subsequence.
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with 𝛿 > 0 which implies ‖|D|𝟣/𝟤uj ,k‖ ≤ K . Also assumption (2.8) implies
that ‖(1 + |x |)𝛿/𝟤uj ,k‖ are bounded and therefore without any loss of the
generality one can assume that uj ,k converge strongly.

Then

lim
j→∞

Tr(H−
Aj ,V

) ≥ Tr(H−
A∞,V ),(2.9)

lim inf
j→∞

∫︁
|𝜕Aj |𝟤 dx ≥

∫︁
|𝜕A∞|𝟤 dx(2.10)

and therefore E(A∞) ≤ E*. Then A∞ is a minimizer and there are equalities
in (2.9)–(2.10) and, in particular, there no negative eigenvalues of HA∞,V

other than 𝜆∞,k .

Properties of a Minimizer

Next, we need to study the minimizer4).

Proposition 2.3 5). Let A be a minimizer. Then

(2.11)
2

𝜅h𝟤
ΔAj(x) = Φj :=

− Re tr
[︁∫︁ ∞

𝟢

σj((hD − A)x · σ)e−𝜆Se(., ., 0)e−𝜆S d𝜆
]︁⃒⃒⃒

x=y

− Re tr
[︁∫︁ ∞

𝟢

σje
−𝜆Se(., ., 0)e−𝜆S t((hD − A)y · σ) d𝜆

]︁⃒⃒⃒
x=y

.

where A = (A𝟣,A𝟤,A𝟥), σ = (σ𝟣,σ𝟤,σ𝟥) and e(x , y , 𝜏 ) is the Schwartz kernel
of the spectral projector θ(−H) of H = HA,V and tr is a matrix trace;

(2.12) S = 𝛾𝟤(T + 𝛾−𝟤) =
(︀
(𝛾𝟤(hD − A) · σ)𝟤 + 1

)︀ 𝟣
𝟤

Proof. Consider variation δA of A and variation of Tr(H−) where H− =
Hθ(−H) is a negative part of H . Then, like in the proof of Proposition 27.2.4,

(2.13) δTr(H−) = Tr
(︀
(δH)θ(−H)

)︀
.

4) We do not know if it is unique, exactly like in the non-relativistic case; see
Remark 27.2.3.

5) Cf. Proposition 27.2.4. Observe that (2.11) is more complicated than (27.2.14).
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But we need to find δH = 𝛾−𝟤δS , which is a bit more tricky than in the
non-relativistic case. Observe that

δ(S𝟤) = S(δS) + (δS)S ;(2.14)

then

δS =

∫︁ ∞

𝟢

e−𝜆Sδ(S𝟤)e−𝜆S d𝜆(2.15)

while

𝛾−𝟤S𝟤 = ((hD − A) · σ)𝟤 + 𝛾−𝟤(2.16)

and therefore

δ(𝛾−𝟤S𝟤) = −
∑︁
j

(︁
δAjσj((hD − A) · σ)− ((hD − A) · σ)δAjσj

)︁
,(2.17)

exactly like in non-relativistic case.
Therefore Tr(δS𝜃(−H)) is equal to the sum of

∫︀∞
𝟢

d𝜆 of

−Tr
(︁

e−𝜆SδAjσj((hD − A) · σ)e−𝜆Sθ(−H)
)︁

−Tr
(︁

e−𝜆S((hD − A) · σ)δAjσje
−𝜆Sθ(−H)

)︁
=

−Tr
(︁
δAjσj((hD − A) · σ)e−tSθ(−H)e−𝜆S

)︁
−Tr

(︁
δAjσje

−𝜆Sθ(−H)e−𝜆S((hD − A) · σ)
)︁
.

Then Tr(δL𝜃(−H)) =
∫︀ ∑︀

j Φj(x)δAj , which implies equality (2.11).

Proposition 2.4 6). If for 𝜅 = 𝜅*

E* ≥ Weyl𝟣 − CM(2.18)

(2.19)

with M ≥ Ch−𝟣, then for 𝜅 ≤ 𝜅*(1− 𝜖𝟢)

1

𝜅h𝟤

∫︁
|𝜕A|𝟤 dx ≤ C𝟣M .(2.20)

6) Cf. Proposition 27.2.5.
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Proof. Proof is obvious, also based on the upper estimate E* ≤ E(0) ≤
Weyl𝟣 + Ch−𝟣, which is due to [Ivr2].

Proposition 2.5 7). Let estimate (2.20) be fulfilled and let

(2.21) 𝜍 = 𝜅Mh ≤ c .

Then for 𝜏 ≤ c

(i) Operator norm in L𝟤 of (hD)kθ(𝜏 − H) does not exceed C for k = 0, 1.

(ii) Operator norm in L𝟤 of (hD)k
(︀
(hD − A) · σ

)︀
θ(𝜏 − H) does not exceed

C for k = 0.

Proof. First, let us repeat of some arguments of the proof of Proposi-
tion 27.2.6. Let u = θ(𝜏 − H)f . Then ‖u‖ ≤ ‖f ‖ and since

(2.22) ‖A‖L𝟨 ≤ C‖𝜕A‖ ≤ C (𝜅M)
𝟣
𝟤 h,

we conclude that

‖hDu‖ ≤ ‖(hD − A)u‖+ ‖Au‖ ≤ ‖(hD − A)u‖+ C‖A‖L𝟨 · ‖u‖L𝟥 ≤

‖(hD − A)u‖+ C (𝜅M)
𝟣
𝟤 h‖u‖𝟣/𝟤 · ‖u‖𝟣/𝟤L𝟨 ≤

‖(hD − A)u‖+ C (𝜅Mh)
𝟣
𝟤‖u‖𝟣/𝟤 · ‖hDu‖𝟣/𝟤 ≤

‖(hD − A)u‖+ 1

2
‖hDu‖+ C𝜅Mh‖u‖;

therefore due to (2.21)

(2.23) ‖hDu‖ ≤ 2‖(hD − A)u‖+ C𝜅Mh‖u‖.

Further, ‖Tu‖ ≤ c𝟣‖u‖ because H ≥ −c , |V | ≤ c , |𝜏 | ≤ c ; then
‖(T + 𝛾−𝟤)u ≤ (c𝟣 + 𝛾−𝟤)‖u‖ and therefore

(((T + 𝛾−𝟤)𝟤 − 𝛾−𝟦)u, u) ≤ ((c𝟣 + 𝛾−𝟤)𝟤 − 𝛾−𝟦) = (2c𝟣𝛾
−𝟤 + c𝟤

𝟣 )‖u‖𝟤,

and finally

(Lu, u) ≤ C‖u‖𝟤(2.24)

7) Cf. Proposition 27.2.6.
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with

L := ((hD − A) · σ)𝟤.(2.25)

Then, again following the same proof, we conclude that

(2.26) ‖(hD − A)u‖ ≤ C‖u‖ and ‖hDu‖ ≤ C (1 + 𝜅Mh)‖u‖,

provided 𝜅Mh𝟣+𝛿 ≤ c for sufficiently small 𝛿 > 0. Therefore under assump-
tion (2.21) for j = 0, 1 both Statements (i) and (ii) are proven.

Thus, in contrast to Proposition 27.2.6 of, we do not have k = 2 in
Statement (i), and k = 1 in Statement (ii) so far and need some extra
arguments.

Proposition 2.6. Assume that ‖V ‖C𝟤 ≤ c. Then

(2.27) ‖[S ,V ]u‖ ≤ Ch𝛾𝟤(‖L
𝟣
𝟤 u‖+ ‖u‖).

Proof. Recall that that S𝟤 = 𝛾𝟤L+1. Therefore 𝛾𝟤[L,V ] = [S ,V ]S +S [S ,V ]
and then

[S ,V ] = 𝛾𝟤
∫︁ ∞

𝟢

e−𝜆S [L,V ]e−𝜆S d𝜆.(2.28)

Also

‖[L,V ]w‖ ≤ Ch(‖L𝟣/𝟤w‖+ ‖w‖)(2.29)

and

‖e−𝜆S‖ ≤ e−𝜆.(2.30)

Proposition 2.7. (i) Assume that ‖V ‖C𝟤 ≤ c and |𝜏 | ≤ c. Then the
operator norm of (hD)kθ(𝜏 − H) does not exceed C for k = 0, 1, 2.

(ii) Assume that ‖V ‖C𝟥 ≤ c and |𝜏 | ≤ c. Then the operator norm of
operators (hD)k((hD − A)x · σ)θ(𝜏 − H) and (hD)kΦ̂jθ(𝜏 − H) with

(2.31) Φ̂j =

∫︁ ∞

𝟢

σj((hD − A)x · σ)e−𝜆Se(., ., 0)e−𝜆S d𝜆

do not exceed C for k = 0, 1, 2.
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Proof. (i) Let u = θ(𝜏 − H)f with f ∈ L𝟤. Then u satisfies (2.2) and
‖Tu‖ ≤ C‖u‖. Also, which implies

𝛾−𝟤‖Lu‖ = ‖(T + 2𝛾−𝟤)Tu‖ ≤ C𝛾−𝟤‖u‖+ C𝛾−𝟣‖[T ,V ]u‖ ≤ C𝟣𝛾
−𝟤‖u‖

due to (2.27) . Then, repeating arguments of the proof of Propositiob 27.2.6,
we conclude that ‖(hD)𝟤u‖ ≤ C‖u‖, i.e. Statement (i).

(ii) Plugging (T − V − 𝜏 )u instead of u (with ‖(T − V − 𝜏 )u‖ ≤ C‖u‖) we
have ‖L(T − 𝜏 − V )u‖ ≤ C‖u‖. Then

‖TLu‖ ≤ C‖Lu‖+ C‖[L,V ]u‖ ≤ C (‖Lu‖+ ‖u‖) ≤ C𝟣‖u‖.

Again plugging (T − V − 𝜏)u instead of u we have

𝛾−𝟤‖L𝟤u‖ = ‖(T + 2𝛾−𝟤)TLu‖ ≤
‖T (T − V − 𝜏)Lu‖ ≤ C𝛾−𝟤‖Lu‖+ C‖T [L,V ]u‖.

Further, the last term does not exceed Ch‖TV ′L
𝟣
𝟤 u‖+Ch𝟤‖TV ′′u‖ where V ′

are miscellaneous first derivatives of V and V ′′ = ΔV . Then, the former does
not exceed C‖Lu‖, while the latter does not exceed C𝛾−𝟤‖u‖+ h‖∇(V ′′u)‖,
which does not exceed C𝛾−𝟤‖u‖.

Therefore ‖L𝟤u‖ ≤ C‖u‖, which implies that ‖L((hD −A) ·σ)u‖ ≤ C‖u‖,
which in turn implies that ‖(hD)𝟤((hD − A) · σ)u‖ ≤ C‖u‖ and, finally,
‖(hD)𝟤Φ̂ju‖ ≤ C‖u‖.

Corollary 2.8. (i) Assume that ‖V ‖C𝟤 ≤ c and |𝜏 | ≤ c. Then the operator
norm of θ(𝜏 − H) from L𝟤 to C𝛿 does not exceed Ch−𝟥/𝟤−𝛿 for 0 ≤ 𝛿 ≤ 𝟣

𝟤
.

(ii) Assume that ‖V ‖C𝟥 ≤ c and |𝜏 | ≤ c. Then the operator norm of Φ̂j

from L𝟤 to C𝛿 do not exceed Ch−𝟥/𝟤−𝛿 for 0 ≤ 𝛿 ≤ 𝟣
𝟤
. Then ‖Φj‖C ≤ Ch−𝟥.

Corollary 2.9. Under assumptions (2.18)–(2.21) ‖Aj‖C𝟤−𝛿 ≤ C𝜅h−𝟣 for
any 𝛿 > 0.
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2.3 Microlocal Analysis and Local Theory

Microlocal Analysis Unleashed

Then we can apply all arguments of Subsection 27.2.28), even if expression
for Φj differs. Indeed, observe first that we can restrict ourselves by 0 ≤
𝜆 ≤ c | log h|. Then, using our standard arguments based on the analysis of
the propagation of singularities, we can prove that the Tauberian expression
with T = h𝟣−𝛿 for Φj has an error O(h−𝟤) provided

(2.32) V (x) ≍ 1.

Then our standard trick with the freezing coefficients works and with
the same O(h−𝟤) error we can replace Φj(x) by its Weyl expression, i.e.
expression we obtain if replace operators by their symbols, depending on
x and 𝜉, integrating by d𝜉 and multiplying by (2𝜋h)−𝟥. However due to
skew-symmetry with respect to 𝜉 − A(x), this Weyl expression is 0, and
Φj(x) = O(h−𝟤).

Finally, we can get rid of assumption (2.32) by the standard rescaling
arguments. We leave all the details to the reader.

Local Theory and Rescaling

Then we can apply all arguments of Subsection 27.2.3 9). As a result we
arrive under assumption (2.21) to the trace formula10) with the remainder
estimate O(h−𝟣) and to estimate ‖𝜕A‖ = O(𝜅𝟣/𝟤h𝟣/𝟤).

Moreover, under the standard assumption of the global nature we arrive
to the trace formula with the remainder estimate o(h−𝟣) (but it will have
the Schwinger-type correction term) and to estimate ‖𝜕A‖ = o(𝜅𝟣/𝟤h𝟣/𝟤).

Finally, we an apply all arguments of Subsection 27.2.4 11) and we weaken
assumption (2.21), recovering the same estimates as before. Again, we leave
all the details to the reader.

8) Namely of Subsubsections 27.2.2.1. Sharp Estimates, 27.2.2.2. Application and
27.2.2.3. Classical Dynamics and Sharper Estimates.

9) Namely, Subsubsections 27.2.3.1. Localization and Estimate from above and 27.2.3.2.
Estimate from below.

10) In the trace formula “𝖶𝖾𝗒𝗅𝟣” is given by the relativistic expression, −P𝖱𝖳𝖥(W + 𝜈).
11) Namely, Subsubsection 27.2.4.1. Case 𝜅 ≤ 𝟣 and Subsubsection 27.2.4.2. Case

𝟣 ≤ 𝜅 ≤ h−𝟣.
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3 Global Trace Asymptotics in the Case of

Coulomb-Like Singularities

3.1 Estimates to a Minimizer

Let us return to the original settings, with Coulomb-like singularities and pa-
rameters Zm,𝛼, 𝛽. At the moment we consider the one-particle Hamiltonian.
Let us deal first with the vicinity of ym.

Then we scale like in Section 27.3: x ↦→ Z
𝟣
𝟥 x , 𝜏 ↦→ Z− 𝟦

𝟥 𝜏 , A ↦→ Z− 𝟤
𝟥 A,

𝛽 ↦→ 𝛽Z
𝟥
𝟥 , arriving to the semiclassical problem with Coulomb singularities

zm|x − ym|−𝟣 (zm = ZmZ−𝟣), with h = Z− 𝟣
𝟥 and with 𝜅 = 𝛼Z

𝟤
𝟥 . In particular,

E* is a minimum with respect to A of

(3.1) E(A) := Tr(H−
A,W+𝜏 ) + 𝜅−𝟣h−𝟤‖𝜕A‖𝟤.

Let us follow arguments of Subsubsection 27.3.2.1 Preliminary Analysis.
Observe first that the estimate from above is

(3.2) E* ≤ h−𝟥

∫︁
Weyl𝟣(x) dx + Ch−𝟤;

we simply take A = 0 and refer to [Ivr2]12).

Consider now estimate from below and apply ℓ-admissible partition
exactly like in Subsection 27.3.2. Then, according to the previous section,
for any element of partition with ℓ ≥ ch−𝟤 (ℓ ≥ cZ−𝟣

m in the original
settings) its contribution is estimated from below by the corresponding Weyl
expression minus Ch−𝟣𝜁𝟤 × 𝜁ℓ = Ch−𝟣𝜁𝟥ℓ−𝟣 and summation with respect to
these elements returns ℰ𝖳𝖥 minus Ch−𝟣𝜁𝟥ℓ|ℓ=h−𝟤 , i.e.

(3.3) h−𝟥

∫︁
Weyl𝟣(x) dx − Ch−𝟤

because the contribution of the zone 𝒵𝟢 = {x : ℓ(x) ≤ ch−𝟤} to the main
term is O(h−𝟤).

On the other hand, the contribution of 𝒵𝟢 is −Ch−𝟤. Indeed, scale first
x ↦→ h−𝟤x , 𝜏 ↦→ h𝟤𝜏 , h ↦→ 1, A ↦→ hA, 𝛽 ↦→ 𝛾 = 𝛽h−𝟣, and the Coulomb

12) In the original settings the remainder estimate would be O(Z 𝟤) exactly as in the
non-relativistic case.
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singularity remains the same while the magnetic energy becomes 𝜅−𝟣‖𝜕A‖𝟤.
Observe that 𝛾 = 𝛽𝗈𝗋𝗂𝗀Zm

13), so (1.8), (1.11) become

(3.4) 𝛽 ≤ 2𝜋−𝟣 − 𝜖, 𝜅 ≤ 𝜅*(2𝜋−𝟣 − 𝛽).

Then we can apply a “singular magnetic Daubechies inequality” (A.3) and
repeat all arguments of the regular case in a simple case of h = 1. There
will be an extra terms O(1) and −C (1−𝜋𝛾/2)−

𝟥
𝟤‖𝜕A‖𝟤 and that latter term

requires (1.11).

Now we conclude that Proposition 27.3.1 holds:

Proposition 3.1 14). In our framework 𝜅 ≤ 𝜅*. Then the near-minimizer
A satisfies

|
∫︁ (︀

tr eA,𝟣(x , x , 0)−Weyl𝟣(x)
)︀

dx | ≤ Ch−𝟤(3.5)

and

‖𝜕A‖ ≤ C𝜅
𝟣
𝟤 .(3.6)

It allows us to repeat arguments of the proof Proposition 2.2 and to
prove

Proposition 3.2 15). In our framework there exists a minimizer A 4).

Now we can repeat arguments of Subsubsection 27.3.2.2 Estimates to a
Minimizer. I, albeit with the right-hand expression of (27.3.14) given now
by (2.11) and to prove the claim (27.3.28), which is marginally stronger than

(3.7) ‖𝜕𝟤A‖L∞(B(𝟢,𝟣−𝜖)) ≤ C𝜅
𝟣
𝟤 h−𝛿.

Then we can repeat arguments of Subsubsection 27.3.2.3 Estimates to a
Minimizer. II and recover Propositions 27.3.4, 27.3.6 and 27.3.7, estimating
A and its derivatives as ℓ(x) ≲ 1:

13) Considering vicinity of 𝗒m it is more convenient to take the original rescaling with
Z replaced by Zm, and therefore zm = 𝟣.

14) Cf. Proposition 27.3.1.
15) Cf. Proposition 27.3.2.
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Proposition 3.3 16). In our framework if ℓ(x) ≥ ℓ* := h𝟤, then

|A| ≤ C𝜅ℓ−
𝟣
𝟤 , |𝜕A| ≤ C𝜅ℓ−

𝟥
𝟤(3.8)

and

|𝜕A(x)− 𝜕A(y)| ≤ C𝜃𝜅ℓ
− 𝟥

𝟤
−𝜃|x − y |𝜃 as |x − y | ≤ 1

2
ℓ(x)(3.9)

for any 𝜃 ∈ (0, 1).

Consider now the non-semiclassical zone {x : ℓ(x) ≲ ℓ*}, which contains
the relativistic zone {x : ℓ(x) ≲ ℓ̄ := 𝛾h}. Using arguments of the proof of
Proposition 3.4 of [Ivr2], but additionally taking care of the magnetic field
using arguments of the proofs of Propositions 2.5, 2.6 and 2.7 (we leave all
details to the reader), we arrive to

Proposition 3.4. In our framework HW ,A ≥ C𝟢ℓ
−𝟣
* and e(x , x ,𝜆) ≤ Cℓ−𝟥

*
for ℓ(x) ≤ cℓ* and |𝜆| ≤ Ch−𝟤.

Remark 3.5. (i) Then in the original settings HW ,A ≥ C𝟢Z−𝟤 and e(x , x ,𝜆) ≤
CZ 𝟥 for ℓ(x) ≤ cZ−𝟣 and |𝜆| ≤ C𝟢Z 𝟤.

(ii) We have a better estimate than (3.11) of [Ivr2] due to assumptions (1.8)
and (1.11).

Next, we follow arguments of Subsubsection 27.3.2.4 Estimates to a
Minimizer. III and prove (again, leaving details to the reader)

Proposition 3.6 17). In our framework

|A| ≤ C𝜅ℓ−𝟤, |𝜕A| ≤ C𝜅ℓ−𝟥(3.10)

and

|𝜕A(x)− 𝜕A(y)| ≤ C𝜃𝜅ℓ
−𝟥−𝜃|x − y |𝜃 as |x − y | ≤ 1

2
ℓ(x)(3.11)

if ℓ(x) ≥ 1 (for all 𝜃 ∈ (0, 1)).

16) Cf. Proposition 27.3.7(i).
17) Cf. Proposition 27.3.9.
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3.2 Trace Estimates

Next we can go after trace asymptotics. Recall that we are dealing with
the rescaled operator. Let a be the minimal distance between nuclei (after
rescaling), capped by 1; recall that a ≥ ℓ*.

After we estimated A for ℓ(x) ≲ 1 in Proposition 3.1 and e(x , x ,𝜆) for
ℓ(x) ≲ ℓ* = h−𝟤, we can apply arguments of Subsection 27.3.3 and arrive to

Proposition 3.7 18). In our framework let 𝜓 be a-admissible and supported
in 𝟣

𝟤
a-vicinity of ym, let 𝜙 be ℓ*-admissible, supported in 2ℓ*-vicinity and

equal 1 in ℓ*-vicinity of ym, and let V 𝟢 = Zm|x |−𝟣. Then

(3.12) Tr
(︀
𝜓(H−

A,V − H−
A,V 𝟢)𝜓

)︀
=∫︁ (︀

Weyl𝟣(x)−Weyl𝟢𝟣(x)
)︀
(1− 𝜙(x)) dx + O

(︀
a− 𝟣

𝟥 h− 𝟦
𝟥

)︀
.

Remark 3.8. Here and in Proposition 3.9 Weyl and Weyl𝟣 are defined for
the relativistic operator (i.e. Weyl = P𝖱𝖳𝖥 ′(V ) and Weyl = −P𝖱𝖳𝖥(V )),
but following arguments of 3.6 of [Ivr2], we can replace it by those for
non-relativistic operator (i.e. Weyl = P𝖳𝖥 ′(V ) and Weyl = −P𝖳𝖥(V )) and
then skip the factor (1− 𝜙(x)).

Moreover, applying arguments of Subsection 27.3.4 we arrive to

Proposition 3.9 19). (i) In the framework of Proposition 3.7

(3.13) Tr
(︀
𝜓(H−

A,V − H−
A,V 𝟢)𝜓

)︀
=∫︁ (︀

Weyl𝟣(x)−Weyl𝟢𝟣(x)
)︀
𝜓𝟤(x)(1−𝜙(x)) dx+O

(︀
h− 𝟦

𝟥 a− 𝟣
𝟥𝜅| log 𝜅|

𝟣
𝟥+h−𝟣a− 𝟣

𝟤

)︀
.

(ii) In particular, if

(3.14) 𝜅 ≤ ca− 𝟣
𝟨 h

𝟣
𝟥 | log ah−𝟤|−

𝟣
𝟥 ,

then the error in (3.13) does not exceed Ch−𝟣a− 𝟣
𝟤 exactly as in the case

without magnetic field.

18) Cf. Proposition 27.3.11.
19) Cf. Proposition 27.3.16.
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Next consider the case of exactly Coulomb potential V = Z |x |−𝟣 and
𝜈 = 0. Then

Proposition 3.10 20). Let V = Z |x |−𝟣, h > 0, Z > 0, and (1.8) and (1.11)
be fulfilled. Then

(i) The following limit exists 21)

(3.15) lim
r→∞

(︂
inf
A

(︁
Tr

(︀
(𝜑rHA,V𝜑r )

−)︀+ 1

𝜅h𝟤

∫︁
|𝜕A|𝟤 dx

)︁
−

∫︁
Weyl𝟣(x)𝜑

𝟤
r (x) dx

)︂
=: 2Z 𝟤h−𝟤S(Z𝜅,Z𝛽).

(ii) And it coincides with (27.3.72) and also with (27.3.73).

(iii) We also can replace in Statement (i) Tr
(︀
(𝜑rHA,V𝜑r )

−) by Tr
(︀
𝜑rH

−
A,V𝜑r

)︀
.

Here 𝜑 ∈ C∞
𝟢 (B(0, 1)), 𝜑 = 1 in B(0, 𝟣

𝟤
), 𝜑r = 𝜑(x/r) and Weyl and Weyl𝟣

are defined for non-relativistic operator.

Then we also arrive to

Proposition 3.11 22). In the framework of Proposition 3.10 for 0 < 𝜅 < 𝜅′,
𝛽 < 𝛽′

S(𝜅′, 𝛽) ≤ S(𝜅, 𝛽) ≤ S(𝜅′, 𝛽) + C𝜅′(𝜅−𝟣 − 𝜅′−𝟣),(3.16)

S(𝜅, 𝛽) ≤ S(𝜅′, 𝛽′).(3.17)

Then, in the “atomic” case M = 1 we arrive instantly to the following
theorem:

Theorem 3.12 23). Let M = 1 and (1.8) and (1.11) be fulfilled. Then

(i) The following asymptotics holds

(3.18) E* =

∫︁
Weyl𝟣(x) dx + 2z𝟤S(z𝜅, z𝛽)h−𝟤 + O(h− 𝟦

𝟥𝜅| log 𝜅|
𝟣
𝟥 + h−𝟣).

20) Cf. Proposition 27.3.18.
21) Cf. (27.3.71) and (3.18) of [Ivr2].
22) Cf. Proposition 27.3.20 and Remark 3.8 of [Ivr2].
23) Cf. Theorem 27.3.22 and Propositions 3.9 and 3.10 of [Ivr2].



575

(ii) If 𝜅 = o(h
𝟣
𝟥 | log h|− 𝟣

𝟥 ), then

(3.19) E* =

∫︁
Weyl*𝟣(x) dx + 2z𝟤S(z𝜅, z𝛽)h−𝟤 + o(h−𝟣),

in which case Weyl*𝟣 must in addition to −h−𝟥P𝖳𝖥(W + 𝜈) contain the
Schwinger correction, and also the relativistic correction.

Next, using arguments Subsection 27.3.6, in particular, decoupling of
singularities (which is needed only in the case ofthe self-generated magnetic
field), we arrive to

Theorem 3.13 24). Let M ≥ 2, 𝜅 ≤ 𝜅* and (1.8) and (1.11) be fulfilled.
Then

(i) The following asymptotics holds

(3.20) E* =

∫︁
Weyl𝟣(x) dx + 2

∑︁
𝟣≤m≤M

z𝟤
mS(zm𝜅, zm𝛽)h

−𝟤 + O(R𝟣 + R𝟤)

with

R𝟣 =

{︃
h−𝟣 + 𝜅| log 𝜅|

𝟣
𝟥 h− 𝟦

𝟥 if a ≥ 1,

a− 𝟣
𝟤 h−𝟣 + 𝜅| log 𝜅|

𝟣
𝟥 a− 𝟣

𝟥 h− 𝟦
𝟥 if h𝟤 ≤ a ≤ 1

(3.21)

(3.22)

and

R𝟤 = 𝜅h−𝟤

{︃
a−𝟥 if a ≥ | log h|

𝟣
𝟥 ,

| log h𝟤a−𝟣|−𝟣 if h𝟤 ≤ a ≤ | log h|
𝟣
𝟥 .

(3.23)

(ii) If 𝜅 = o(h
𝟣
𝟥 | log h|− 𝟣

𝟥 ), 𝜅a−𝟥 = o(h) and a−𝟣 = o(1), then

(3.24) E* =

∫︁
Weyl*𝟣(x) dx + 2

∑︁
𝟣≤m≤M

z𝟤
mS(zm𝜅, zm𝛽)h

−𝟤 + o(h−𝟣).

24) Cf. Theorem 27.3.24.
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4 Main Results

4.1 Asymptotics of the Ground State Energy

Now we can apply arguments of Section 27.4. In addition to (1.8) and (1.11)
we assume that

d := min
𝟣≤m<m′≤M

|ym − ym′ | ≥ Z−𝟣,(4.1)

N ≍ Z𝟣 ≍ ... ≍ ZM .(4.2)

Then the estimates from below follow immediately from the trace asymp-
totics, while for the estimate from above we need also estimate N and
miscellaneous D-terems. We leave all the details to the reader.

Theorem 4.1 25). (i) Under assumptions (1.8), (1.11), (4.1) and (4.2) the
following asymptotics holds

(4.3) E*
N = ℰ𝖳𝖥

N +
∑︁

𝟣≤m≤M

2Z 𝟤
mS(𝛼Zm, 𝛽Zm) + O

(︀
Z

𝟦
𝟥 (R𝟣 + R𝟤)

)︀
with R𝟣 and R𝟤 defined by (3.21) and (3.23) respectively with 𝜅 = 𝛼Z ,

h = Z− 𝟣
𝟥 and a = Z

𝟣
𝟥 d , d is defined by (4.1), d = ∞ for M = 1.

(ii) In particular, under assumption d ≳ Z− 𝟣
𝟥 the following asymptotics

holds

(4.4) E*
N = ℰ𝖳𝖥

N +
∑︁

𝟣≤m≤M

2Z 𝟤
mS(𝛼Zm, 𝛽Zm)+

O
(︀
𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫 + Z

𝟧
𝟥 + 𝛼d−𝟥Z 𝟤

)︀
.

Theorem 4.2 26). (i) Let assumptions (1.8), (1.11), (4.1) and (4.2) be
fulfilled and let Ψ = ΨA be a ground state for a near optimizer A of the
original multiparticle problem. Then

(4.5) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) ≤ CZ
𝟧
𝟥 .

25) Cf. Theorem 27.4.3.
26) Cf. Theorem 27.4.4.
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(ii) Furthermore, if d ≥ Z− 𝟣
𝟥 , then

(4.6) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) ≤ CZ
𝟧
𝟥

(︀
Z−𝛿 + (dZ

𝟣
𝟥 )−𝛿 + (𝛼Z )𝛿

)︀
.

Theorem 4.3 27). Let assumptions (1.8), (1.11), (4.1) and (4.2) be fulfilled,

and let 𝛼 ≤ Z− 𝟣𝟢
𝟫 | log Z |− 𝟣

𝟥 . Then

(4.7) E*
N = ℰ𝖳𝖥

N +
∑︁

𝟣≤m≤M

2Z 𝟤
mS(𝛼Zm, 𝛽Zm) + Dirac + Schwinger + RCT+

O
(︀
𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫 + Z

𝟧
𝟥
−𝛿 + 𝛼d−𝟥Z 𝟤

)︀
where Dirac and Schwinger are Dirac and Schwinger correction terms defined
exactly as in non-magnetic non-relativistic case by (25.1.29) and (25.1.30)
respectively, and RCT is relativistic correction term, defined as in the non-
magnetic case by (3.23) of [Ivr2].

Theorem 4.4 28). Let assumptions (1.8), (1.11) and (4.2) be fulfilled. Let
us consider ym = y*m minimizing the full energŷ︀E*

N := E*
N +

∑︁
𝟣≤m<m′≤M

ZmZm′ |ym − ym′ |−𝟣.(4.8)

Then

d ≥ min
(︀
Z− 𝟧

𝟤𝟣
+𝛿, Z− 𝟧

𝟤𝟣 (𝛼Z )−𝛿, 𝛼− 𝟣
𝟦 Z− 𝟣

𝟤

)︀
(4.9)

and in the remainder estimates in (4.4) and (4.7) one can skip d-connected
terms; so we arrive to

(4.10) E*
N = ℰ𝖳𝖥

N +
∑︁

𝟣≤m≤M

2Z 𝟤
mS(𝛼Zm, 𝛽Zm) + O

(︀
𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫 + Z

𝟧
𝟥

)︀
and

(4.11) E*
N = ℰ𝖳𝖥

N +
∑︁

𝟣≤m≤M

2Z 𝟤
mS(𝛼Zm) + Dirac + Schwinger + RCT+

O
(︀
𝛼| log(𝛼Z )|

𝟣
𝟥 Z

𝟤𝟧
𝟫 + Z

𝟧
𝟥
−𝛿)︀

respectively and also the same asymptotics with ̂︀E*
N and ̂︀ℰ𝖳𝖥

N instead of E*
N

and ℰ𝖳𝖥
N .

27) Cf. Theorem 27.4.5.
28) Cf. Theorem 27.4.6.
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4.2 Related Problems

After Theorems 4.1–4.4 are proven, we can apply arguments of Sections 25.5
and 25.6.

Theorem 4.5 29). Let assumptions (1.8), (1.11) and (4.2) be fulfilled.

(i) In the framework of the fixed nuclei model let us assume that
I*N := E*

N−𝟣 − E*
N > 0. Then

(4.12) (N − Z )+ ≤ CZ
𝟧
𝟩

{︃
1 if d ≤ Z− 𝟣

𝟥 ,

Z−𝛿 + (dZ
𝟣
𝟥 )−𝛿 + (𝛼Z )𝛿 if d ≥ Z− 𝟣

𝟥 .

(ii) In particular, for a single atom and for molecule with d ≥ Z− 𝟣
𝟥
+𝛿

(4.13) (N − Z )+ ≤ Z
𝟧
𝟩

(︀
Z−𝛿 + (𝛼Z )𝛿

)︀
.

(iii) In the framework of the free nuclei model let us assume that ̂︀I*N :=̂︀E*
N−𝟣 − ̂︀E*

N > 0. Then estimate (4.13) holds.

Theorem 4.6 30). Let assumptions (1.8), (1.11) and (4.2) be fulfilled and

let N ≥ Z − C𝟢Z
𝟧
𝟩 . Then

(i) In the framework of the fixed nuclei model

(4.14) I*N ≤ CZ
𝟤𝟢
𝟤𝟣 .

(ii) In the framework of the free nuclei model with N ≥ Z−C𝟢Z
𝟧
𝟩

(︀
Z−𝛿+𝛼Z 𝛿

)︀
(4.15) ̂︀I*N := ̂︀E*

N−𝟣 − ̂︀E*
N−𝟣 ≤ Z

𝟤𝟢
𝟤𝟣

(︀
Z−𝛿′ + (𝛼Z )𝛿

′)︀
.

Theorem 4.7 31). Let assumptions (1.8), (1.11) and (4.2) be fulfilled and

let N ≤ Z − C𝟢Z
𝟧
𝟩 . Then in the framework of the fixed nuclei model under

assumption b ≥ C𝟣(N − Z )−
𝟣
𝟥

(4.16) (I*N + 𝜈)+ ≤ C (Z − N)
𝟣𝟩
𝟣𝟪 Z

𝟧
𝟣𝟪

{︃
1 if d ≤ Z− 𝟣

𝟥 ,

Z−𝛿 + (dZ
𝟣
𝟥 )−𝛿 if d ≥ Z− 𝟣

𝟥 .
29) Cf. Theorem 27.5.1.
30) Cf. Theorem 27.5.2.
31) Cf. Theorem 27.5.3.
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Theorem 4.8 32). Let assumptions (1.8), (1.11). Then in the framework
of free nuclei model with M ≥ 2 the stable molecule does not exist unless

(4.17) Z − N ≤ Z
𝟧
𝟩

(︀
Z−𝛿 + (𝛼Z )𝛿

)︀
.

A Some Inequalities

In this section we reproduce from [EFS2]: two new Lieb-Thirring type
inequalities for the relativistic kinetic energy with a magnetic field.

Theorem A.1 33). There exists a universal constant C > 0 such that for
any positive number 𝛾 > 0, for any potential V with V+ ∈ L𝟧/𝟤 ∩ L𝟦(ℝ𝟥),
and magnetic field B = ∇× A ∈ L𝟤(ℝ𝟥), we have

(A.1) Tr
(︁(︀√︀

𝛾−𝟤(D − A) · σ)𝟤 + 𝛾−𝟦 − 𝛾−𝟤 − U(x)
)︀−)︁ ≥

− C

{︂∫︁
U

𝟧/𝟤
+ dx + 𝛾𝟥

∫︁
U𝟦

+ dx +
(︁∫︁

|∇ × A|𝟤 dx
)︁𝟥/𝟦(︁∫︁

U𝟦
+ dx

)︁𝟣/𝟦
}︂
.

Notice that Theorem A.1 reduces to the well-known Daubechies inequality
in the case A = 0 [Dau].

For the Schrödinger case, the Daubechies inequality was generalized
(and improved to incorporate a critical Coulomb singularity) to non-zero A
in [FLS] by using diamagnetic techniques. Theorem A.1 is the generalization
of the Daubechies inequality for the Pauli operator, in which case there is
no diamagnetic inequality. Moreover, in the 𝛾 → 0 limit, (A.1) converges to
the magnetic Lieb-Thirring inequality for the Pauli operator [LLS] since

(A.2)
√︀
𝛾−𝟤(D − A) · σ)𝟤 + 𝛾−𝟦 − 𝛾−𝟤 → 1

2
(D − A) · σ)𝟤, 𝛾 → 0.

Theorem A.1 does not cover the case of a Coulomb singularity. The next
result shows that for 𝛾 smaller than the critical value 2/𝜋, the Coulomb
singularity can be included.

32) Cf. Theorem 27.5.6.
33) Theorem 2.2 of [EFS2].
34) Theorem 2.3 of [EFS2].



580 GROUND STATE ENERGY IN THE RELATIVISTIC SETTINGS

Theorem A.2 34). Let 𝜑r be a real function satisfying supp𝜑r ⊂ {|x | ≤ r},
‖𝜑r‖∞ ≤ 1. There exists a constant C > 0 such that if 𝛾 ∈ (0, 2/𝜋), then

(A.3) Tr
(︁
𝜑r

(︀√︀
𝛾−𝟤(D − A) · σ)𝟤 + 𝛾−𝟦 − 𝛾−𝟤 − 1

|x |
− U

)︀
𝜑r

)︁−

≥ −C

{︂
𝜂−𝟥/𝟤

∫︁
|∇ × A|𝟤 dx + 𝜂−𝟥r 𝟥 + 𝜂−𝟥/𝟤

∫︁
U

𝟧/𝟤
+ dx + 𝜂−𝟥𝛾𝟥

∫︁
U𝟦

+ dx

+
(︁∫︁

|∇ × A|𝟤 dx
)︁𝟥/𝟦(︁∫︁

U𝟦
+ dx

)︁𝟣/𝟦
}︂
,

where 𝜂 := 𝟣
𝟣𝟢
(1− (𝜋𝛾/2)𝟤).
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Complete Semiclassical Spectral Asymptotics
for Periodic and Almost Periodic

Perturbations of Constant Operators*,†

Victor Ivrii‡

Abstract

Under certain assumptions we derive a complete semiclassical
asymptotics of the spectral function eh,𝜀(x , x ,𝜆) for a scalar operator

A𝜀(x , hD) = A𝟢(hD) + 𝜀B(x , hD),

where A𝟢 is an elliptic operator and B(x , hD) is a periodic or almost
periodic perturbation.

In particular, a complete semiclassical asymptotics of the inte-
grated density of states also holds. Further, we consider generaliza-
tions.

1 Introduction

1.1 Preliminary Remarks

This work is inspired by several remarkable papers of L. Parnovski and
R. Shterenberg [PS1,PS2,PS3], S. Morozov, L. Parnovski and R. Shterenberg
[MPS] and earlier papers by A. Sobolev [So1,So2]. I wanted to understand the
approach of the authors and, combining their ideas with my own approach,
generalize their results.
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In these papers the complete asymptotic expansion of the integrated
density of states N(𝜆) for operatorsΔ+V was derived as 𝜆→ +∞; hereΔ is a
positive Laplacian and V is a periodic or almost periodic potential (satisfying
certain conditions). In [MPS] more general operators were considered.

Further, in [PS3] the complete asymptotic expansion of e(x , x ,𝜆) was
derived, where e(x , y ,𝜆) is the Schwartz kernel of the spectral projector.

I borrowed from these papers Conditions 1.2–1.6 and the special gauge
transformation and added the hyperbolic operator method (actually non-
stationary semiclassical Schrödinger operator method– [Ivr1]) and extremely
long propagation of singularities. I believe that this is a simpler and more
powerful approach. Also, in contrast to those papers I consider more general
semiclassical asymptotics.

Consider a scalar self-adjoint h-pseudo-differential operator A(x , hD) in
ℝd with the Weyl symbol A(x , 𝜉), such that

|D𝛼
x D𝛽

𝜉 A(x , 𝜉)| ≤ c𝛼𝛽(|𝜉|+ 1)m ∀𝛼, 𝛽 ∀x , 𝜉(1.1)

and

A(x , 𝜉) ≥ c𝟢|𝜉|m − C𝟢 ∀x , 𝜉.(1.2)

Then it is semibounded from below. Let eh(x , y ,𝜆) be the Schwartz
kernel of its spectral projector E (𝜆) = θ(𝜆− A). We are interested in the
semiclassical asymptotics of eh(x , x ,𝜆) and

(1.3) Nh(𝜆) = M[e(x , x ,𝜆)] := lim
ℓ→∞

(mes(ℓX ))−𝟣

∫︁
ℓX

e(x , x ,𝜆) dx ,

where 0 ∈ X is an open domain in ℝd . The latter expression in the cases we
are interested in does not depend on X and is called Integrated Density of
States .

It is well-known that under 𝜉-microhyperbolicity condition on the energy
level 𝜆

(1.4) |A(x , 𝜉, h)− 𝜆|+ |∇𝜉A(x , 𝜉, h)| ≥ 𝜖𝟢

the following asymptotics holds

eh(x , x ,𝜆) = 𝜅𝟢(x ,𝜆)h
−d + O(h𝟣−d) as h → +0,(1.5)

and therefore

Nh(𝜆) = 𝜅̄𝟢(𝜆)h
−d + O(h𝟣−d),(1.6)
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where here and below

𝜅̄n(𝜆) = M[𝜅n(x ,𝜆)].(1.7)

For generalization to matrix operators and degenerate scalar operators see
Chapters 4 and 5 respectively. Also there one can find slightly sharper
two-term asymptotics under non-periodicity conditions.

Also it is known (see Chapter 4) that under microhyperbolicity condition
(1.4) for |𝜏 − 𝜆| < 𝜖 the following complete asymptotics holds:

(1.8) Ft→h−𝟣𝜏

(︀
𝜒̄T (t)

(︀
Q𝟤xuh(x , y , t) tQ𝟣y

)︀
|y=x

)︀
∼

∑︁
n≥𝟢

𝜅′n,Q𝟣,Q𝟤
(x , 𝜏)h𝟣−d+n,

where uh(x , y , t) is the Schwartz kernel of of the propagator e ih−𝟣tA, 𝜒̄ ∈
C∞
𝟢 ([−1, 1]), 𝜒̄(t) = 1 at [−𝟣

𝟤
, 𝟣
𝟤
], T ∈ [h𝟣−𝛿,T *], T * is a small constant here

and Qj = Qj(x , hD) are h-pseudo-differential operator; we write operators,
acting with respect to y on Schwartz kernels to the right of it.

Further, it is known that

supp(Q𝟣) ∩ supp(Q𝟤) = ∅ =⇒ 𝜅′n,Q𝟣,Q𝟤
(x , 𝜏) = 0,(1.9)

where supp(Qj) is a support of its symbol Qj(x , 𝜉) and

𝜏 ≤ 𝜏 * = inf
x ,𝜉

A(x , 𝜉) =⇒ 𝜅′n,Q𝟣,Q𝟤
(x , 𝜏) = 0.(1.10)

Let

𝜅n,Q𝟣,Q𝟤(x , 𝜏) =

∫︁ 𝜏

−∞
𝜅′n,Q𝟣,Q𝟤

(x , 𝜏 ′) d𝜏 .(1.11)

In what follows we skip subscripts Qj = I .

Remark 1.1. This equality (1.8) plus Hörmander’s Tauberian theorem imply
the remainder estimates O(h𝟣−d) for Q𝟤xeh(x , y , 𝜏) tQ𝟣y |x=y . On the other
hand, if we can improve (1.8) by increasing T *, we can improve the remainder
estimate to O(T *−𝟣h𝟣−d) 1),2).

Observe that for A = A(hD)

eh(x , x ,𝜆) = Nh(𝜆) = 𝜅𝟢(𝜆)h
−d .(1.12)

1) Provided T * = O(h−M) for some M.
2) This plus estimate for 𝜅′𝟢 is a major method for obtaining sharp remainder estimates

in [Ivr1].
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In this paper we consider

A(x , hD) = A𝟢(hD) + 𝜀B(x , hD),(1.13)

where A𝟢(𝜉) satisfies (1.1), (1.2) and (1.4) and B(x , 𝜉) satisfies (1.1) and
𝜀 > 0 is a small parameter. Later we assume that B(x , hD) is almost periodic
and impose other conditions.

First, we claim that for operator (1.13) with 𝜀 ≤ 𝜖𝟢 the equality (1.8)
holds with T * = 𝜖𝟣𝜀

−𝟣 where 𝜖j are small constants and we assume that
𝜀 ≥ hM for some M . Then the remainder estimate is O(𝜀h𝟣−d) 3).

1.2 Main Theorem

Now we consider the main topic of this work where we will use ideas
from [PS1,PS2,PS3,MPS]: the case of an almost periodic operator B(x , hD),

(1.14) B(x , 𝜉) =
∑︁
𝜃∈𝝝

b𝜃(𝜉)e
i⟨𝜃,x⟩

with discrete (i.e. without any accumulation points) frequency set Θ.
Operator B is quasiperiodic if Θ is a finite set, periodic if Θ is a lattice

and almost periodic in the general case.
Our goal is to derive (under certain assumptions) complete semiclassical

asymptotics:

(1.15) eh,𝜀(x , x , 𝜏) ∼
∑︁
n≥𝟢

𝜅n,𝜀x(x , 𝜏)h
−d+n.

First, in addition to microhyperbolicity condition (1.4) we assume that
Σ𝜆 = {𝜉 : A𝟢(𝜉) = 𝜆} is a strongly convex surface i.e.

(1.16) ±
∑︁
j ,k

A𝟢
𝜉j𝜉k

(𝜉)𝜂j𝜂k ≥ 𝜖|𝜂|𝟤 ∀𝜉 : A𝟢(𝜉) = 𝜆 ∀𝜂 :
∑︁
j

A𝟢
𝜉j
(𝜉)𝜂j = 0,

where the sign depends on the connected component of Σ𝜆, containing 𝜉.
Without any loss of generality we assume that

(1.17) Θ spans ℝd , contains 0 and is symmetric about 0.

3) See Theorem 2.4.
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Condition 1.2. For each 𝜃𝟣, ... , 𝜃d ∈ Θ either 𝜃𝟣, ... , 𝜃d are linearly inde-
pendent over ℝ or they linearly dependent over ℤ.

Assume also that

Condition 1.3. For any arbitrarily large L and for any sufficiently large real
number 𝜔 there are a finite symmetric about 0 set Θ′ := Θ′

(L,𝜔) ⊂ (Θ∩B(0,𝜔))
(with B(𝜉, r) the ball of the radius r and center 𝜉) and a “cut-off” coefficients
b′
𝜃 := b′

𝜃,(L,𝜔), such that

B ′ := B ′
(L,𝜔)(x , 𝜉) :=

∑︁
𝜃∈𝝝′

b′
𝜃(𝜉)e

i⟨𝜃,x⟩(1.18)

satisfies

‖D𝛼
x D𝛽

𝜉

(︀
B − B ′)︀‖L∞ ≤ 𝜔−L(|𝜉|+ 1)m ∀𝛼, 𝛽 : |𝛼| ≤ L, |𝛽| ≤ L.(1.19)

Remark 1.4. (i) Then

|D𝛽
𝜉 b𝜃| = O(|𝜃|−∞(|𝜉|+ 1)m) as |𝜃| → ∞(1.20)

and

|D𝛽
𝜉 (b𝜃 − b′

𝜃)| = O(𝜔−∞(|𝜉|+ 1)m).(1.21)

Indeed, one suffices to observe that b𝜃(𝜉) = M(B(x , 𝜉)e−i⟨𝜃,x⟩) etc.

(ii) On the other hand, under additional assumption

(1.22) #{𝜃 ∈ Θ, |𝜃| ≤ 𝜔} = O(𝜔p) as 𝜔 → ∞

for some p, (1.20) implies Condition 1.3 with Θ′
(L,𝜔) := Θ∩B(0,𝜔). However

we will need Θ′
(L,𝜔) in the next condition.

(iii) We need only to estimate the operator norm of the difference between
B(x , hD) and B ′(x , hD) (from Hm to L𝟤); therefore for differential operators
we can weaken (1.19): if

(1.23) B =
∑︁

𝜇,𝜈:|𝛼|≤m′,|𝛽|≤m′

D𝛼b𝛼𝛽(x)D
𝛽, b𝛼𝛽 = b†

𝛽𝛼,

where we assume that b𝛼𝜈(x) and b′
𝛼𝛽(x) have similar decompositions (1.14)

and (1.18) respectively, then (1.19) should be replaced by

(1.24) ‖D𝛼
x

(︀
b𝛼𝛽 − b′

𝛼𝛽

)︀
‖L∞ ≤ 𝜔−L ∀𝛼.
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(iv) While Condition 1.3 is Condition B of [PS3], adopted to our case,
Condition 1.2 and Conditions 1.5, 1.6 below are borrowed without any
modifications (except changing notations).

The next condition we need to impose is a version of the Diophantine
condition on the frequencies of B . First, we need some definitions. We fix a
natural number K (the choice of K will be determined later by how many
terms in the asymptotic decomposition of e(x , x ,𝜆) we want to obtain) and
consider Θ′

K , which here and below denotes the algebraic sum of K copies
of Θ′:

(1.25) Θ′
K :=

∑︁
𝟣≤i≤K

Θ.

We say that V is a quasilattice subspace of dimension q, if V is a linear
span of q linear independent vectors 𝜃𝟣, ... , 𝜃q ∈ Θ′

K ∖ 0. Obviously, the
zero space is a quasilattice subspace of dimension 0 and ℝd is a quasilattice
subspace of dimension d .

We denote by 𝒱q the collection of all quasilattice subspaces of dimension
q and also 𝒱 :=

⋃︀
q≥𝟢 𝒱q.

Consider V,U ∈ 𝒱 . We say that these subspaces are strongly distinct , if

neither of them is a subspace of the other one. Next, let (̂V,U) ∈ [0, 𝜋/2]
be the angle between them, i.e. the angle between V ⊖ W and U ⊖ W,
W = U ∩V. This angle is positive iff V and U are strongly distinct.

Condition 1.5. For each fixed L and K the sets Θ′
(L,𝜔) satisfying (1.18)

and (1.19) can be chosen in such a way that for sufficiently large 𝜔 we have

s(𝜔) = s(Θ′
K ) := inf

V,U∈𝒱
sin((̂V,U)) ≥ 𝜔−𝟣(1.26)

and

r(𝜔) := inf
𝜃∈𝝝′

K∖𝟢
|𝜃| ≥ 𝜔−𝟣,(1.27)

where the implied constant (i.e. how large should 𝜔 be) depends on L and K .

Let V be the span of 𝜃𝟣, ... , 𝜃q ∈ Θ′
K ∖ 0. Then due to Condition 1.2

each element of the set Θ′
K ∩ V is a linear combination of 𝜃𝟣, ... , 𝜃q with

rational coefficients. Since the set Θ′
K ∩V is finite, this implies that the set

Θ′
∞ ∩V is discrete and is, therefore, a lattice in V. We denote this lattice

by Γ(𝜔;V).
Our final condition states that this lattice cannot be too dense.
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Condition 1.6. We can choose Θ′
(L;𝜔), satisfying Conditions 1.3 and 1.5

in such a way that for sufficiently large 𝜔 and for each V ∈ 𝒱, V ̸= ℝd , we
have

(1.28) vol(V/Γ(𝜔;V)) ≥ 𝜔−𝟣.

Remark 1.7. See Section 2 of [PS3] for discussion of these conditions. In
particular, if Θ is a lattice, then Conditions 1.2–1.6 are fulfilled. Further,
if Θ is a finite set and Condition 1.2 is fulfilled, then Θ∞ :=

⋃︀
K≥𝟣ΘK is a

lattice and Conditions 1.3–1.6 are fulfilled. Furthermore, the same is true, if
Θ is an arithmetic sum of a finite set and a lattice.

The main theorem of this paper is

Theorem 1.8. Let A be a self-adjoint operator (1.13), where A𝟢 satisfies
(1.1), (1.2), (1.4) and (1.16) and B satisfies (1.1).

Let Conditions 1.2–1.6 be fulfilled. Then for |𝜏 − 𝜆| < 𝜖, 𝜀 ≤ h𝜗, 𝜗 > 0

(1.29) eh,𝜀(x , x , 𝜏) ∼
∑︁
n≥𝟢

𝜅n(x , 𝜏 ; 𝜀)h
−d+n.

Corollary 1.9. In the framework of Theorem 1.8

(1.30) Nh,𝜀(𝜏) ∼
∑︁
n≥𝟢

𝜅̄n(𝜏 ; 𝜀)h
−d+n.

1.3 Plan of the Paper

Section 2 is devoted to the proof of Theorem 1.8. In Subsection 2.1 we
make some general remarks, and, in particular, we prove more general albeit
far less precise Theorem 2.4. Then, in Subsection 2.2 we describe a gauge
transformation.

In Subsection 2.3 we consider a non-resonant zone and justify such
transformation, which reduces operator microlocally to a constant symbol
operator A′′(hD, h). This allows us to study a propagation of singularities
with respect to 𝜉 and prove that the singularities do not propagate with
respect to 𝜉 4). In Subsection 2.5 we consider a resonant zone and justify
such transformation, which reduces operator microlocally to an operator

4) For time T * = h−M with arbitrarily large M.
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A′′(x ′, hD, h), where x ′ ∈ V the corresponding resonant subspace, and prove
that the singularities propagate only with respect to 𝜉′. Then the convexity
condition implies that the singularities actually do not propagate with
respect to 𝜉 4).

In Subsection 2.6 we consider propagation with respect to x and using the
results of Subsections 2.3 and 2.5 we prove that the singularities “propagate
away” and do not return4). The we apply Tauberian theorem with T = T *

and prove Theorem 1.8.
In Section 3 we generalize Theorem 1.8. First, in Subsection 3.1 we

consider matrix operators with the simple eigenvalues of A𝟢(𝜉).
Then, in Subsection 3.2 we consider operators A𝟢(hD) + 𝜀V (x , hD)

where symbol V (x , 𝜉) decays as |x | → ∞ and hybrid operators A𝟢(hD) +
𝜀(B(x , hD) + V (x , hD)) with almost periodic B and decaying V and show
that our methods work for them as well.

Finally, in Subsection 3.3 we discuss differentiability of our asymptotics
with respect to 𝜏 .

2 Proof of the Main Theorem

2.1 Preliminary Analysis

Remark 2.1. (i) It follows from Section 4 that the contribution of the zone
{𝜉 : |A𝟢(𝜉) − 𝜏 | ≥ C𝟢𝜀 + h𝟣−𝜍} to the remainder is negligible. Here and
below 𝜍 > 0 is an arbitrarily small exponent. Namely, let Qj = Qj(hD) be
operators with the symbols Qj(𝜉), such that

supp(Q𝟣) ∩ supp(Q𝟤) ∩ Ω𝜏 = ∅(2.1)

with

Ω𝜏 := {𝜉 : |A𝟢(𝜉)− 𝜏 | ≤ C𝟢𝜀+ h𝟣−𝜍}(2.2)

and satisfying

|D𝛼Qj | ≤ C𝛼h−(𝟣−𝜍)|𝛼| ∀𝛼.(2.3)

Then

(Q𝟤xe(x , y , 𝜏) tQ𝟣y )|y=x = 𝜅𝟢,Q𝟣,Q𝟤h
−d + O(h∞)(2.4)

with

𝜅𝟢,Q𝟣,Q𝟤 = (2𝜋)−d

∫︁
θ(𝜏 − A𝟢(𝜉))Q𝟣(𝜉)Q𝟤(𝜉) d𝜉(2.5)
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with θ(𝜏 − A𝟢(𝜉)) equal to either 0 or 1 on each connected component of
Ω𝜏 ∩ supp(Q𝟣) ∩ supp(Q𝟤)).

Therefore we restrict ourself by the analysis in the zone Ω𝜏 .

(ii) To upgrade (1.8) with T = T* (a small constant) to (1.8) with T = T *

it is sufficient to prove that

(2.6) |Ft→h−𝟣𝜏

(︀
𝜒T (t)

(︀
Q𝟤xuh(x , y , t) tQ𝟣y

)︀⃒⃒
y=x

)︀
| ≤ Csh

−d+s ,

for |𝜏 − 𝜆| ≤ 𝜖, T ∈ [T*, T *] and 𝜒 ∈ C∞
𝟢 ([−1,−𝟣

𝟤
] ∪ [𝟣

𝟤
, 1]), where s is an

arbitrarily large exponent.

In the very general setting for |t| ≤ h−M the propagation speed with
respect to 𝜉 does not exceed C𝜀. More precisely

Proposition 2.2. Let A = A𝟢 + 𝜀B where A𝟢(hD) and B(x , hD) are matrix
operators satisfying (1.1). Let Qj(hD) be operators with symbols satisfying
(2.3). Further, let supp(Qj) ⊂ {𝜉 : |𝜉| ≤ c} and

dist(supp(Q𝟣), supp(Q𝟤)) ≥ max(C𝟢𝜀T , h𝟣−𝜍)(2.7)

with T ≤ h−M . Then for |t| ≤ T

‖Q𝟤e ih−𝟣tAQ𝟣‖ ≤ CM,sh
s .(2.8)

Proof. One can prove easily by arguments of the proof of Theorem 2.1.2,
applied to operator 𝜀−𝟣A = 𝜀−𝟣A𝟢(hDx) + B(x , hD) and 𝜑(𝜉, t), that the
propagation speed with respect 𝜉 does not exceed C𝟢; presence of the term
𝜀−𝟣A𝟢(hDx) does not matter since it disappears in the commutator with
𝜑(hD). Changing t ↦→ 𝜀t we conclude that for operator A the propagation
speed with respect to 𝜉 does not exceed C𝟢𝜀.

We do not need compactness of the domain in the phase space with
respect to x since the propagation speed with respect to x does not exceed
C𝟢 and we have such compactness implicitly. We leave easy details to the
reader.

Proposition 2.3. In the framework of Proposition 2.2 assume that A𝟢(hD)
is microhyperbolic on the energy level 𝜆 5).

Then for T* ≤ T ≤ T * = min(𝜖𝟢𝜀
−𝟣, h−M) (2.6) holds.

5) For definition for matrix operators see Definition 2.1.1.
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Proof. It is sufficient to prove for supp(Q𝟣) contained in the small vicinity of
some point 𝜉. Then due to Proposition 2.2 e ih−𝟣tAQ𝟣 ≡ Q𝟤e ih−𝟣tAQ𝟣 modulo
operators with O(h∞)-norms 6) and with Q𝟤 also supported in the small
vicinity of 𝜉 and equal 1 in the vicinity of supp(Q𝟣).

Then on supp(Q𝟤) operator is microhyperbolic with respect to vector
ℓ and we can employ the proof of Theorem 2.1.2 again, this time with
𝜑(x , t) = ℓx − 𝜖𝟢t. For further details see Chapter 4.

Then in virtue of (1.8) with t = T* (which is also due to the microhy-
perbolicity condition) (1.8) also holds with T = T * and applying Hörman-
der’s Tauberian theorem we arrive to the remainder estimate Ch𝟣−dT *−𝟣 =
C𝜀h𝟣−d , thus proving the following theorem:

Theorem 2.4. Let A = A𝟢(hD) + 𝜀B(x , hD) with A𝟢 satisfying conditions
(1.1), (1.2) and (1.4) and B satisfying conditions (1.1). Then

(2.9) eh(x , x , 𝜏) =
∑︁

𝟢≤n≤M

𝜅n(x , 𝜏)h
−d+n + O(𝜀h𝟣−d)

provided 𝜀 ≥ hM , |𝜏 − 𝜆| ≤ 𝜖.

From now on we discuss only Theorem 1.8.

Remark 2.5. (i) It suffices to prove asymptotics

(2.10) eh(x , x , 𝜏) =
∑︁

𝟢≤n≤M

𝜅n(x , 𝜏)h
−d+n + O(h−d+M)

with arbitrarily large fixed M . To do so we will use the hyperbolic operator
method (which we implement as semiclassical Schrödinger operator method)
with maximal time T * = h−M .

(ii) Then we can replace operator B by operator B ′, provided operator norm
of B − B ′ from Hm to L𝟤 does not exceed Ch𝟥M .

Indeed, let A′ = A𝟢 + 𝜀B ′. Due to Remark 2.1 we need to compare only
Q𝟣e ih−𝟣tA′

Q𝟣 and Q𝟣e ih−𝟣tAQ𝟣. Observe that due to (1.2)

|||e ih−𝟣tAQ𝟣 − Q𝟤e ih−𝟣tAQ𝟣|||k ≤ Ck,sh
s

6) By default, operator norm is from L𝟤 to L𝟤.
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with arbitrarily large k , s, where |||.|||k denotes an operator norms from L𝟤 to
Hk provided supp(Qj) ⊂ {𝜉 : A𝟢(𝜉) ≤ 2jc} and Q𝟤 = 1 in {𝜉 : A𝟢(𝜉) < 3c}.
The same is true for A′ as well.

Then equality

e ih−𝟣tA′ − e ih−𝟣tA = ih−𝟣

∫︁ t

𝟢

e ih−𝟣(t−t′)A(A′ − A)e ih−𝟣t′A′
dt ′

and restriction |t| ≤ T * imply that |||
(︀
e ih−𝟣tA′ − e ih−𝟣tA

)︀
Q|||k does not exceed

Ck,sh
s + Ch−𝟣−M |||Q𝟤(B − B ′)Q𝟤|||k .

Finally, observe that |||Q𝟤(B − B ′)Q𝟤|||k ≤ Ckh−k−m|||(B − B ′)|||′k where
|||.|||′k denotes an operator norm from Hm to L𝟤.

(iii) Since Nh(𝜏) could be defined equivalently as

(2.11) Nh(𝜆) = lim
ℓ→∞

(mes(ℓX ))−𝟣Nh(𝜆, ℓX )e(x , x ,𝜆) dx ,

where Nh(𝜆,X ) is an eigenvalue counting function for operator A in X with
the Dirichlet (or Neumann–does not matter) boundary conditions on 𝜕X , for
Nh(𝜏) we can arrive to the same conclusion from the variational arguments.

(iv) First such replacement will be B ′ := B ′
(L,𝜔) from Condition 1.3 with

𝜔 = h−𝜎, arbitrarily small 𝜎 > 0 and L = 3M/𝜎.

So, from now Θ and B are effectively replaced by Θ′ := Θ′
(L,𝜔) and B ′

(L,𝜔)

correspondingly .

2.2 Gauge Transformation

Consider now the “gauge” transformation A ↦→ e−i𝜀h−𝟣PAe i𝜀h−𝟣P with h-
pseudodifferential operator P . Observe that

(2.12) e−i𝜀h−𝟣PAe i𝜀h−𝟣P = A − i𝜀h−𝟣[P ,A] +
∑︁

𝟤≤n≤K−𝟣

1

n!
(−i𝜀h−𝟣)n AdnP(A)

+

∫︁ 𝟣

𝟢

1

(K − 1)!
(1− s)K−𝟣(−i𝜀h−𝟣)Ke−i𝜀h−𝟣sP AdKP (A)e

i𝜀h−𝟣sP ds,

where Ad𝟢P(A) = A and Adn+𝟣
P (A) = [P , AdnP(A)] for n = 0, 1, ....
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Thus formally we can compensate 𝜀B , taking

P =
∑︁
𝜃

ih
(︀
A𝟢(𝜉 + 𝜃h/2)− A𝟢(𝜉 − 𝜃h/2)

)︀−𝟣
b𝜃(𝜉)e

i⟨𝜃,x⟩,(2.13)

so that

ih−𝟣[P ,A𝟢] = B =⇒ ih−𝟣[P ,A] = B + i𝜀h−𝟣[P ,B].(2.14)

Then perturbation 𝜀B is replaced by 𝜀𝟤B ′, which is the right hand
expression in (2.12) minus A𝟢, i.e.

(2.15) B ′ = −ih−𝟣[P ,B] +
∑︁

𝟤≤n≤K−𝟣

1

n!
𝜀n−𝟤(−ih−𝟣)n AdnP(A),

where we ignored the remainder.

New perturbation, again formally, has a magnitude of 𝜀𝟤. Repeating this
process we will make a perturbation negligible.

Remark 2.6. However, we need to address the following issues issues:

(i) Denominator h−𝟣
(︀
A𝟢(𝜉 + 𝜃h/2)− A𝟢(𝜉 − 𝜃h/2)

)︀
= ⟨∇𝜉A

𝟢, 𝜃⟩+ O(h𝟣−𝜎)
could be small.

(ii) In B ′ set Θ′ increases: 𝜀𝟤B ′ = 𝜀𝟤B ′
𝟤 + 𝜀𝟥B ′

𝟥 + ... + 𝜀MB ′
M , where for B ′

j

the frequency set is Θ′
j (the arithmetic sum of j copies of Θ′).

(iii) We need to prove that the remainder is negligible.

(iv) This transformation was used in Section 9 of [PS3] (etc); in contrast to
these papers we use Weyl quantization instead of pq-quantization, and have
therefore

(︀
A𝟢(𝜉 + 𝜃h/2)− A𝟢(𝜉 − 𝜃h/2)

)︀
instead of

(︀
A𝟢(𝜉 + 𝜃h)− A𝟢(𝜉)

)︀
.

2.3 Non-Resonant Zone

2.4 Gauge Transformation

One can see easily that if inequality

(2.16) |⟨∇𝜉A
𝟢(𝜉), 𝜃⟩| ≥ 𝛾 := 𝜀

𝟣
𝟤 h−𝛿
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holds for all 𝜃 ∈ Θ′
K ∖ 0, then the terms could be estimated by h𝛿n and our

construction works with K = 3M/𝛿. Here and below without any loss of the
generality we assume that 𝜀 ≥ h; so, in fact,

(2.17) h𝜗 ≥ 𝜀 ≥ h.

Indeed, if P = P(x , hD) has the symbol, satisfying

|D𝛼
𝜉 D𝛽

x P | ≤ c𝛼𝛽𝛾
−𝟣−|𝛼| ∀𝛼, 𝛽,(2.18)

then B ′ = 𝜀h−𝟣[P ,B] has a symbol, satisfying

|D𝛼
𝜉 D𝛽

x B ′| ≤ c ′
𝛼𝛽𝜀𝛾

−𝟤−|𝛼| ∀𝛼, 𝛽,(2.19)

so indeed 𝜀′ = 𝜀𝛾−𝟤.
Then we can eliminate a perturbation completely, save terms with the

frequency 0, both old and new. The set of 𝜉 satisfying (2.16) for all 𝜃 ∈ Θ′
K

we call non-resonant zone and denote by 𝒵. Thus, we arrive to

Proposition 2.7. Let Q = Q(hD) with the symbol supported in 𝒵 ∩Ω and
satisfying (2.3)

Then there exists a pseudo-differential operator P = P(x , hD) with the
symbol, satisfying (2.18) and such that(︀

e−i𝜀h−𝟣PAe i𝜀h−𝟣P − A′′)︀Q ≡ 0(2.20)

with

A′′ = A𝟢(hD) + 𝜀B ′′
𝟢 (hD)(2.21)

modulo operator from Hm to L𝟤 with the operator norm O(h𝟥M).

Remark 2.8. (i) This proposition is similar to Lemma 9.3 of [PS3]. However,
in contrast to [PS1, PS2, PS3, MPS], after it is proven we do not write
asymptotic decomposition there, but simply prove that singularities do not
propagate with respect to 𝜉 there.

(ii) It is our second replacement of operator A; recall that the first one was
based on Condition 1.3, and now we ignore the remainder after transforma-
tion, which is justified by Remark 2.5(i).
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Propagation.

Proposition 2.9. Let Qj = Qj(hD) with the symbols, satisfying (2.3) and
let symbol of Q𝟣 be supported in 𝒵 ∩ Ω.

Let dist(supp(Q𝟣), supp(Q𝟤)) ≥ c𝛾. Then

(2.22) ‖Q𝟤e ih−𝟣tAQ𝟣‖ = O(h𝟤M) as |t| ≤ T * = h−M .

Proof. One can prove easily that the operator norms of Q𝟤e ih−𝟣tA′′
Q𝟣 and

Q𝟤e±i𝜀h−𝟣PQ𝟣 are O(h𝟤M). We leave all easy details to the reader.

2.5 Resonant Zone

Consider now resonant zone

Λ :=
⋃︁

𝜃∈𝝝′
K∖𝟢

Λ(𝜃),(2.23)

where Λ(𝜃) is the set of 𝜉, violating (2.16) for given 𝜃:

Λ(𝜃) = Λ𝛿(𝜃) := {𝜉 : |⟨∇𝜉A
𝟢(𝜉), 𝜃⟩| ≥ 𝛾 = c𝜀

𝟣
𝟤 h−𝛿}.(2.24)

Case d = 2. We start from the easiest case d = 2 (in the trivial case d = 1
there is no resonant zone). Observe that due to assumption (1.16) for each 𝜃

(2.25) mes𝟣(Λ(𝜃) ∩ Σ𝜆) ≤ C𝛾.

Further, #Θ′
K ≤ Ch−𝜎 (as h ≤ h𝟢(K ,𝜎)) due to Condition 1.5. Thus

mes𝟣(Λ ∩ Σ𝜆) ≤ 𝛾h−𝜎. Recall, that 𝜎 > 0 is arbitrarily small.
Since due to Proposition 2.9, the propagation which starts in the non-

resonant zone 𝒵 remains there7) we conclude that the propagation which
is started in some connected component of the resonant zone also remains
there7).

Thus, ∇𝜉A
𝟢(𝜉) does not change by more than 𝛾h−𝜎 and since 𝜎 ais

arbitrarily small we conclude that (2.22) also holds for Q𝟣, supported in the
resonant zone. Therefore

7) May be, with different constant c in the definition of 𝛾.
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(2.26) Estimate (2.22) holds for all Q𝟣, Q𝟤 satisfying (2.3) and

(2.27) dist(supp(Q𝟣), supp(Q𝟤)) ≥ 𝛾.

Remark 2.10. (i) In the proof of Theorem 1.8 we need only to have estimate
(2.22) holding for all Q𝟣, Q𝟤 satisfying (2.3) and (2.27) with arbitrarily small
constant 𝛾.

(ii) Then for d = 2 we can replace assumption (1.16) by

(2.28) 𝜘(s) (a curvature of Σ𝜆, naturally parametrized by s) has zeroes only
of the finite order.

Indeed, then (2.25) will be replaced by mes𝟣(Λ(𝜃)∩Σ𝜆) ≤ C𝛾𝜈 , 𝜈 = 1/(q+1)
with q the maximal order of zeroes of 𝜘(s).

General Case: Gauge Transformation. Consider now the general case
d ≥ 2. In this case due Conditions 1.2, 1.5 and 1.6 we can cover Λ ∩ Ω𝜏 by
Λ*,

(2.29) Λ ∩ Ω𝜏 ⊂ Λ* =
⋃︁

𝟣≤j≤d−𝟣

Λ*
j ,

defined as:

(2.30) Let 𝜉 ∈ Ω𝜏 ; then 𝜉 ∈ Λ*
j iff there exist 𝜃𝟣, ... , 𝜃j ∈ Θ′

K which are
linearly independent and such that 𝜉 ∈ Λ𝛿j (𝜃k) for all k = 1, ... , j ,

where 0 < 𝛿 = 𝛿𝟣 < 𝛿𝟤 < ... < 𝛿d−𝟣 are arbitrarily fixed and we chose
sufficiently small 𝜎 > 0 afterwards.

Further, due to Conditions 1.2, 1.5, 1.6 and (1.16) Λ*
d−𝟣 ∩ Ω𝜏 could be

covered by no more than 𝛾d−𝟣-vicinities of some points 𝜉𝜄, 𝜄 = 1, ... ,𝜔g ,
g = g(d). Recall that Ω𝜏 := {𝜉 : |A𝟢(𝜉)− 𝜏 | ≤ C𝟢𝜀+ h𝟣−𝜍}.

Consider some connected component Ξ of Λ*
j . Let some point 𝜉 of it

belong to
⋂︀

𝟣≤k≤j Λ𝛿j (𝜃k) ∩ Ω𝜏 with linearly independent 𝜃𝟣, ... , 𝜃j . Observe
that diam(

⋂︀
𝟣≤k≤j Λ𝛿j (𝜃k) ∩ Ω) ≤ c𝛾j due to strong convexity assumption

(1.16). Then this set either intersects or does not intersect with Λ*
j+𝟣 ∩ Ω.

In the former case we include it to Λ*
j+𝟣 and exclude it from Λ*

j .
After we redefined Λ*

j we arrive to the following proposition:
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Proposition 2.11. Equation (2.29) still holds where now each connected
component Ξ of Λ*

j has the following properties:

(i) diamΞ ≤ c𝛾j .

(ii) There exist linearly independent 𝜃𝟣, ... , 𝜃j ∈ Θ′
K , such that for each 𝜉 ∈ Ξ

|⟨∇𝜉A
𝟢(𝜉), 𝜃⟩| ≤ cj𝛾j for all 𝜃 ∈ V∩ (Θ′

K ∖ 0) and |⟨∇𝜉A
𝟢(𝜉), 𝜃⟩| ≥ 𝜖j𝛾j+𝟣 for

all 𝜃 ∈ Θ′
K ∖V) with V = Span(𝜃𝟣, ... , 𝜃j).

Now we generalize Proposition 2.7:

Proposition 2.12. Let Q = Q(hD) with the symbol supported in the con-
nected component Ξ of Λ*

j , corresponding to subspace V, and satisfying
(2.3). Then there exists a pseudo-differential operator P = P(x , hD) with
the symbol, satisfying (2.18) and such that(︀

e−i𝜀h−𝟣PAe i𝜀h−𝟣P − A′′)︀Q ≡ 0(2.31)

modulo operator from Hm to L𝟤 with the operator norm O(h𝟥M), where
A′′ = A𝟢 + 𝜀B ′′(x , hD), where B ′′ is an operator with Weyl symbol

B ′′(x , 𝜉) =
∑︁

𝜃∈𝝝′
K∩V

bV,𝜃(𝜉)e
i⟨𝜃,x⟩.(2.32)

Proof. The proof obviously generalizes the proof of Proposition 2.7. We
eliminate all 𝜃 /∈ V exactly in the same way as it was done there.

General Case: Propagation.

Proposition 2.13. Let Qj = Qj(hD) with the symbols, satisfying (2.3) and
let symbol of Q𝟣 be supported in Λ*

j .

Let dist(supp(Q𝟣), supp(Q𝟤)) ≥ C𝟢𝛾j . Then ‖Q𝟤e ih−𝟣tAQ𝟣‖ = O(h𝟤M) for
|t| ≤ T* = h−M .

Proof. In virtue of Proposition 2.9 it is sufficient to consider supp(Q𝟣)
belonging to the connected component Ξ′ of Λ*

j . Indeed, the values of
𝛿𝟣, ... , 𝛿d−𝟣 are arbitrarily small.

One can prove easily that the operator norm of Q𝟤e±i𝜀h−𝟣PQ𝟣 are O(h𝟤M).
We need to prove that the operator norm of Q𝟤e±ih−𝟣tA′′

Q𝟣 is also O(h𝟤M).
In the coordinates (x ′; x ′′) ∈ V⊕ (ℝd ⊖V) we observe that the propagation
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speed is only along V as long as it remains in 𝜖𝛾j vicinity of supp(Q𝟣). The
proof is similar to the proof of Proposition 2.2 and we leave it to the reader.

However propagation is confined to Ω′
𝜏 := {𝜉 : |A𝟢(𝜉)− 𝜏 | ≤ C𝜀+2h𝟣−𝜍})

and due to (1.16) it remains in that vicinity as 𝜍 < 𝛿.

Now we arrive to the following proposition:

Proposition 2.14. Let Q𝟣,Q𝟤 satisfy (2.3) and supp(Q𝟣) ⊂ Ω. Then for
T* ≤ T ≤ T *

(2.33) Ft→h−𝟣𝜏

(︀
𝜒T (t)Q𝟤xu(x , y , t) tQ𝟣y

)︀
= O(h𝟤M).

Proof. It is standard, due to Proposition 2.13, microhyperbolicity condition
and the results of Chapter 2 of [Ivr1] we conclude that if |ℓ| = 1 and

⟨ℓ,∇𝜉A
𝟢(𝜉)⟩ ≥ 𝜖𝟢 ∀𝜉 ∈ supp(Q𝟣)(2.34)

and

⟨ℓ, x − y⟩ ≤ 𝜖𝟣T ∀x ∈ supp(𝜑𝟣), y ∈ supp(𝜑𝟤),(2.35)

then ‖𝜑𝟤e ih−𝟣tAQ𝟣𝜑𝟤‖ = O(h𝟤M) for T ≤ t ≤ 2T .
This implies (2.33) provided diam(supp(Q𝟣)) ≤ 𝜖. But then for (2.33) we

can drop this assumption.

2.6 End of the Proof

Now we conclude that

(2.36) Ft→h−𝟣𝜏

(︀
[𝜒̄T (t)− 𝜒̄T*(t)]Q𝟤xu(x , y , t) tQ𝟣y

)︀⃒⃒
x=y

= O(h𝟤M)

and since

(2.37) Ft→h−𝟣𝜏

(︀
𝜒̄T (t)Q𝟤xu(x , y , t) tQ𝟣y

)︀⃒⃒
x=y

=∑︁
𝟢≤n≤M

𝜅′n(x , 𝜀)h
𝟣−d+n + O(hM+𝟣)

holds for T = T*, it also holds for T = T *.
Finally, Hörmander’s Tauberian theorem implies Theorem 1.8.
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3 Generalizations and Discussion

3.1 Matrix Operators

Consider now n × n-matrix operators A𝟢 and B ; then (1.2) should be under-
stood in the matrix sense. Assume that

(3.1) Symbol A𝟢(𝜉) has only simple eigenvalues a𝟢
𝟣(𝜉), ... , a𝟢

n(𝜉), which also
satisfy (1.4) and (1.16).

Then there exists a unitary transformation R𝟢 = R(𝜉), such that
R𝟢 †(𝜉)A𝟢(𝜉)R𝟢(𝜉) = diag(a𝟢

𝟣(𝜉), ... , a𝟢
n(𝜉)).

Then one can prove easily, that there exists a unitary operator R(x , hD) =
R𝟢(hD)+𝜀R ′(x ,D), such that R*AR = diag(a𝟣, ... , an), where aj = aj(x , hD) =
a𝟢
j (hD) + 𝜀bj(x , hD) (and we assume as before that (2.17) holds.

If Conditions 1.2–1.6 are fulfilled for A(x , hD), then they are also fulfilled
for aj(x , hD) and we can apply the same propagation arguments as before
and Theorem 1.8 extends to such operators provided conditions (1.4) and
(1.16) are fulfilled for aj(x , hD) with j = 1, ... , n.

Let us replace (1.2) by more general ellipticity assumption

(3.2) |A𝟢(𝜉)v | ≥ 𝜖|𝜉|m|v | ∀v ∈ ℂn ∀𝜉 : |𝜉| ≥ C𝟢.

Then we cannot restrict e(x , y ,𝜆) to x = y but we can restrict e(x , y ,𝜆,𝜆′),
the Schwartz kernel of the difference of the corresponding projectors.

Theorem 1.8 trivially extends to such operators, if instead of e(x , x ,𝜆)
we consider e(x , x ,𝜆,𝜆′) provided conditions (1.4) and (1.16) are fulfilled
for aj(x , hD) with j = 1, ... , n and for both 𝜆 and 𝜆′. It also extends to

(3.3)

∫︁
e(x , y ,𝜆,𝜆′)𝜑(𝜆′) d𝜆′, 𝜑 ∈ C∞

𝟢 (ℝ),

provided conditions (1.4) and (1.16) are fulfilled for aj(x , hD) with j = 1, ... , n
for 𝜆.

Remark 3.1. Our reduction construction fails in the case of a scalar operator
A𝟢 and a matrix operator B unless either 𝜀 = h𝟣+𝛿 or the principal symbol of
B satisfies some very restrictive condition. Therefore for a matrix operator
A𝟢 with the eigenvalues of A𝟢(𝜉) of constant multiplicities our construction
works only under similar assumptions.
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3.2 Perturbations

Consider operators in question, perturbed by 𝜀V (x , hD) where V (x , 𝜉) decays
as |x | → ∞. Such perturbations do not affect Nh(𝜆), but they do affect
eh(x , x ,𝜆).

Decaying Perturbations. We start from the easy case

A = A𝟢(hD) + 𝜀V (x , hD),(3.4)

where

|D𝛼
𝜉 D𝛽

x V (x , 𝜉)| ≤ c𝛼𝛽(|𝜉|+ 1)m(|x |+ 1)−𝛿−|𝛽| ∀𝛼, 𝛽 ∀x , 𝜉.(3.5)

First of all, we claim that

(3.6) Under assumption (3.7) below the propagation speed with respect to
𝜉 does not exceed c𝜀(|x |+ 1)−𝛿.

Indeed, note first that due to Proposition 2.2 the propagation speed with
respect to 𝜉 does not exceed c𝜀. Next, consider domain {x : |x | ≍ r} with
r ≥ 1. Scaling x ↦→ x/r , t ↦→ t/r we get a domain {x : |x | ≍ 1}, h ↦→ ℏ = h/r
and we need to prove that after this scaling the propagation speed with
respect to 𝜉 does not exceed 𝜈 = c𝜀r−𝛿, on the time interval {t : |t| ≤ 1}.

To prove this we can apply Proposition 2.2 but ewe need to have the
microlocal uncertainty principle fulfilled: 𝜈 ≥ ℏ𝟣−𝜎 with 𝜎 > 0, where 𝜈 is a
shift with respect to 𝜉. This inequality is equivalent to 𝜀r−𝛿 ≥ h𝟣−𝜎r−𝟣+𝜎

i.e. 𝜀r 𝟣−𝜎−𝛿 ≥ h𝟣−𝜎 and it suffice to have

(3.7) 𝛿 < 1, 𝜀 ≥ h𝟣−𝜎 with 𝜎 > 0.

To join different time intervals one can use the technique of Subsec-
tion 12.7.6.

Consider now 𝜉 in the vicinity of 𝜉 and x with |x | ≤ c . Then as long as
|𝜉 − 𝜉| ≤ 𝜖 with small enough constant 𝜖 > 0, evolution goes away from 0
with the speed ≍ 1, so we are in the zone {x : |x | ≍ |t|} and in this zone the
propagation speed with respect to 𝜉 does not exceed c𝜀r−𝟣−𝛿, and therefore
|𝜉 − 𝜉| ≤ c𝜀

∫︀∞
𝟣

t−𝟣−𝛿 dt ≤ c𝜀 and this is less that 𝜖/2 as 𝜀 ≤ 𝜖𝟢.
We can also consider evolution which starts from x with |x | ≥ 1. Then

the same arguments work albeit with r ≍ |t − t*| for some t* with |t*| ≤ c |x |.
Then we arrive to
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Theorem 3.2. Consider operator (3.4) with V satisfying (3.5). Let mic-
rohyperbolicity condition (1.4) on the energy level 𝜆 be fulfilled and 𝜀 ≤ 𝜖𝟢.
Then the complete spectral asymptotics (1.29) holds.

Hybrid Perturbations. Now we consider the hybrid operators, contain-
ing both 𝜀B and 𝜀V . However, trying to eliminate 𝜀B by the same approach
as in Subsubsection 2.5.2, we get an another type of terms, and it is only
natural to consider them being in the operator from the beginning:

A = A𝟢(hD) + 𝜀
(︀
B(x , hD) + V (x , hD)

)︀
,(3.8)

where

V (x , 𝜉) =
∑︁
𝜃∈𝝝

e i⟨𝜃,x⟩V𝜃(x , 𝜉),(3.9)

|D𝛼
𝜉 D𝛽

x V (x , 𝜉)| ≤ c𝛼𝛽(|𝜉|+ 1)m(|x |+ 1)−𝛿 ∀𝛼, 𝛽 ∀x , 𝜉.(3.10)

We impose condition

Condition 3.3. For each 𝜔 and L for the same set Θ′ as before there exists

V ′(x , 𝜉) =
∑︁
𝜃∈𝝝′

e i⟨𝜃,x⟩V ′
𝜃(x , 𝜉),(3.11)

such that

‖D𝛼
x D𝛽

𝜉

(︀
V − V ′)︀‖L∞ ≤ 𝜔−L(|𝜉|+ 1)m(3.12)

and

|D𝛼
x D𝛽

𝜉 V ′
𝜃| ≤ cLs𝛼𝛽(|x |+ 1)−𝟣−𝛿−|𝛼|(|𝜃|+ 1)−s(3.13)

∀𝛼, 𝛽 : |𝛼| ≤ L, |𝛽| ≤ L ∀s.

Non-Resonant Zone. We deal with the purely exponential terms in our
standard way and with the hybrid terms as if they were purely exponential
(i.e. as if V ′

𝜃 were not depending on x), then a new kind of terms will be
produced: they acquire factor h(A𝟢(𝜉 + 𝜃h/2) − A𝟢(𝜉 − 𝜃h/2))−𝟣 and the
derivative with respect to x to V ′

𝜃.
Eventually we end up with the operator of the same type (3.8) with

B(x , 𝜉) replaced by B ′′(𝜉) and with V𝜃(x , 𝜉) replaced by V ′′
𝜃 (x , 𝜉), such that

|D𝛼
𝜉 D𝛽

x V ′′
𝜃 (x , 𝜉)| ≤ Cn𝛼𝛽𝜀

k+𝟣𝛾−𝟤k−n−|𝛼|(|x |+ 1)−n−𝛿−|𝛽|
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with n + k ≥ 3K .
Then

|D𝛼
𝜉 D𝛽

x

[︀
V ′′
𝜃 (x , 𝜉)e

i⟨𝜃,x⟩]︀| ≤ Cs𝛼𝛽𝜀
k+𝟣𝛾−𝟤k−n−|𝛼|(|x |+ 1)−n−𝛿(|𝜃|+ 1)|𝛽|;

recall that |𝜃| ≤ CKh−𝜎.
Let us pick up 𝛾 = h𝛿 with 𝛿 = 𝜗/6K . Then, ignoring therms with

k ≥ K which are negligible, and following the proof of (3.6), we can recover
the same statement for the operator after transform, and, finally, to the
analogue of Proposition 2.9.

Resonant Zone. If d = 2 we arrive to the analogue of Proposition 2.2 in
the virtue of the we arguments as in Subsubsection 2.5.1.

If d ≥ 3 we apply the reduction, similar to one, used in Subsubsec-
tion 2.5.3, and arrive again to operator of the type (3.8) with B replaced by
B ′′(x , 𝜉′) and with V𝜃(x , 𝜉) replaced by V ′′

𝜃 (x , 𝜉).
Then we observe that the shift in direction ℝd ⊖V does not exceed c𝜀𝛿/𝟤

and if it is ≪ 𝛾𝟤 we arrive to the analogue of Proposition 2.13. It is doable
by the choice of really small 𝜎𝟣 < ... < 𝜎d−𝟣. Then we arrive to the analogue
of Proposition 2.14 and, finally, to

Theorem 3.4. Let A be a self-adjoint operator (3.8), where A𝟢 satisfies
(1.1), (1.2), (1.4) and (1.16) and B satisfies (1.1), V satisfies (3.9) and
(3.10).

Let Conditions 1.2–3.3 be fulfilled. Then for |𝜏 − 𝜆| < 𝜖, 𝜀 ≤ h𝜗, 𝜗 > 0
asymptotics (1.29) holds.

3.3 Differentiability

It also follows from Corollary 1.9 that

(3.14)
1

𝜈

[︁
Nh,𝜀(𝜏 + 𝜈)− Nh,𝜀(𝜏)

]︁
=

1

𝜈

[︁
𝒩h,𝜀(𝜏 + 𝜈)−𝒩h,𝜀(𝜏)

]︁
+ O(h∞)

provided 𝜈 ≥ hM , where 𝒩h,𝜀(𝜏) is the right-hand expression of (1.30).
The question remains, if (3.14) holds for smaller 𝜈, in particular, if it

holds in 𝜈 → 0 limit? If the latter holds, then

(3.15)
𝜕

𝜕𝜏
Nh,𝜀(𝜏) =

𝜕

𝜕𝜏
𝒩h,𝜀(𝜏) + O(h∞)
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and we call the left-hand expression the density of states .
It definitely is not necessarily true, at least in dimension 1. From now on

we consider only asymptotics with respect to 𝜏 → +∞. Let A = Δ+ V (x)
with periodic V . It is well-known that for d = 1 and generic periodic V all
spectral gaps are open which contradicts to

(3.16)
𝜕

𝜕𝜏
N(𝜏) =

𝜕

𝜕𝜏
𝒩 (𝜏) + O(𝜏−∞).

On the other hand, this objection does not work in case d ≥ 2 since only
several the lowest spectral gaps are open (Bethe-Sommerfeld conjecture,
proven in [PS]).

Assume for simplicity, that A = Δ+ V has no negative eigenvalues; then
we can apply wave operator method8). We consider u(x , y , t), the Schwartz
kernel of cos(

√
At),

(3.17) u(x , y , t) =

∫︁
cos(t𝜏) d𝜏e(x , y , 𝜏 𝟤).

Then, for compactly supported V 9)

(3.18) u(x , y , t) =

{︃
O(e−𝜖|t|) for odd d ,

O(|t|−d) for even d

as |x |+ |y | ≤ c , |t| → +∞ and 𝜕
𝜕𝜏

e(x , x , 𝜏 𝟤) could be completely restored by
inverse cos-Fourier transform, without any Tauberian theorem, and we arrive
to asymptotics of 𝜕

𝜕𝜏
e(x , x , 𝜏 𝟤). Moreover, we can differentiate complete

asymptotics of the Birman-Krein spectral shift function

𝜉(𝜏) :=

∫︁ (︀
e(x , x , 𝜏 𝟤)− e𝟢(x , x , 𝜏 𝟤)

)︀
dx ∼

∑︁
n≥𝟢

𝜅̄n𝜏
−d+n,(3.19)

with

𝜅̄n :=

∫︁
(𝜅n(x)− 𝜅𝟢n) dx ,(3.20)

where e𝟢(x , y , 𝜏) and 𝜅𝟢n correspond to A𝟢 = Δ. In the case of A = Δ in the
exterior of smooth, compact and non-trapping obstacle and A𝟢 = Δ in ℝd

such asymptotics was derived in [PP].

8) It could be applied without this assumption, but with tweaking.
9) It, probably could be proven for V , decaying fast enough at infinity
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Complete Differentiable Semiclassical Spectral
Asymptotics*,†

Victor Ivrii‡

Abstract

For an operator A := Ah = A𝟢(hD) + V (x , hD) with a “potential”
V decaying as |x | → ∞ we establish under certain assumptions the
complete and differentiable with respect to 𝜏 asymptotics of eh(x , x , 𝜏)
where eh(x , y , 𝜏) is the Schwartz kernel of the spectral projector.

1 Introduction

Consider a self-adjoint matrix operator

A := Ah = A𝟢(hD) + V (x , hD),(1.1)

where

|D𝛽
𝜉 A𝟢(𝜉)| ≤ c𝛼𝛽(|𝜉|+ 1)m ∀𝛽 ∀𝜉(1.2)

and

A𝟢(𝜉) ≥ c𝟢|𝜉|m − C𝟢 ∀𝜉.(1.3)

We assume that A𝟢(𝜉) is 𝜉-microhyperbolic at energy level 𝜆, i.e. for each 𝜉
there exists a direction ℓ(𝜉) such that |ℓ(𝜉)| ≤ 1 and

(1.4) (⟨ℓ(𝜉),∇𝜉⟩A𝟢(𝜉)v , v) + |(A𝟢(𝜉)− 𝜆)v | ≥ 𝜖𝟢|v |𝟤 ∀v .

Further, we assume that V (x , 𝜉) is a real-valued function, satisfying

|D𝛼
𝜉 D𝛽

x V (x , 𝜉)| ≤ c𝛼𝛽(|𝜉|+ 1)m(|x |+ 1)−𝛿−|𝛽| ∀𝛼, 𝛽 ∀x , 𝜉(1.5)
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and

|D𝛼
𝜉 D𝛽

x V (x , 𝜉)| ≤ 𝜀 ∀𝛼, 𝛽 : |𝛼|+ |𝛽| ≤ 1 ∀x , 𝜉.(1.6)

Our main theorem is

Theorem 1.1. Let conditions (1.2)– (1.4) and (1.6) with sufficiently small
constant 𝜀 > 0 be fulfilled. Then

(i) The complete spectral asymptotics holds for 𝜏 : |𝜏 − 𝜆| ≤ 𝜖:

(1.7) eh(x , x , 𝜏) ∼
∑︁
n≥𝟢

𝜅n(x , 𝜏)h
−d+n

where eh(x , y , 𝜏 ) is the Schwartz kernel of the spectral projector θ(𝜏 − Ah) of
Ah.

(ii) This asymptotics is infinitely differentiable with respect to 𝜏 .

Remark 1.2. (i) Statement (i) was sketched under much more restrictive
assumptions in Theorem 3.2 of [Ivr3]; however we provide here more detailed
exposition.

(ii) In Theorem 2.8 we provide the dependence of the remainder on |x |.

(iii) This asymptotics is also infinitely differentiable with respect to x but
it is really easy.

Differentiability and completeness of the spectral asymptotics are really
different. F.e. for operators with almost periodic with respect to x per-
turbation V (x , hD) the spectral asymptotics are complete (see [Ivr3] and
references there) but in dimension 1 it is not necessarily differentiable even
once due to spectral gaps. Furthermore, if we perturb an operator we study
in this paper by an appropriate “negligible” operator (i. e. with O(h∞)
norm), the absolutely continuous spectrum on the segment [𝜆−,𝜆+] with
𝜆∓ = 𝜆+O(h∞) will be replaced by an eigenvalue of the infinite multiplicity
and then the spectral asymptotics will complete albeit non-differentiable
even once.

To establish spectral asymptotics we apply the “hyperbolic operator
method”; namely, let us consider the Schwartz kernel of the propagator
e ih−𝟣tAh :

(1.8) u := uh(x , y , t) =

∫︁
e ih−𝟣t𝜏 d𝜏eh(x , y , 𝜏).
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Then under ellipticity and microhyperbolicity conditions (1.3) and (1.4)

(1.9) Ft→h−𝟣𝜏 𝜒̄T (t)uh(x , x , t) ∼
∑︁
n≥𝟢

𝜅′n(x , 𝜏)h
𝟣−d+n,

where here and below 𝜒 ∈ C∞
𝟢 ([−1,−𝟣

𝟤
] ∪ [𝟣

𝟤
, 1]), 𝜒̄ ∈ C∞

𝟢 ([−1, 1]), 𝜒̄(t) = 1
on [−𝟣

𝟤
, 𝟣
𝟤
], 𝜒T (t) = 𝜒(t/T ) etc, 𝜅′n(x , 𝜏) = 𝜕𝜏𝜅n(x , 𝜏), and T = T* > 0 is a

small constant here.

Then, due to Tauberian theorem we arrive to the spectral asymptotics
with the remainder estimate O(h𝟣−d). Next, under different assumptions
one, using propagation of singularities technique, can prove that

(1.10) |Ft→h−𝟣𝜏𝜒T (t)uh(x , x , t)| = O(h∞)

for all T ∈ [T*,T *]. Then (1.9) holds with T = T * and again, due
to Tauberian theorem, we arrive to the spectral asymptotics with the
remainder estimate O(T *−𝟣h𝟣−d) (provided T * = O(h−K )). In particular, if
(1.10) holds provided T * = h−∞, we arrive to complete spectral asymptotics.
This happens f.e. in the framework of [Ivr3].

However we do not have Tauberian theorems for the derivatives (with
respect to 𝜏) and we need to use an inverse Fourier transform and its
derivatives

(1.11) 𝜕n𝜏 eh(x , x , 𝜏) = (2𝜋h)−𝟣

∫︁
ℝ

e−ih−𝟣𝜏 t(−ih−𝟣t)n−𝟣uh(x , x , t) dt

for n ≥ 1. If we insert a factor 𝜒̄T (t) into integral, we will get exactly n-th
derivative of the right-hand expression of (1.7). However we need to estimate
the remainder

(1.12) (2𝜋h)−𝟣

∫︁
ℝ

e−ih−𝟣𝜏 t(−ih−𝟣t)n−𝟣(1− 𝜒̄T (t))uh(x , x , t) dt

and to do this we need to properly estimate the left-hand expression of
(1.10) for all T ≥ T* (rather than for T ∈ [T*,T *]).

To achieve this we will use a more subtle propagation technique and
prove that for T ≥ T*(R) the left-hand expression of (1.10) is O((h/T )∞),
provided |x | ≤ R .
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2 Proofs

2.1 Preliminary Remarks

Observe that, due to assumptions (1.6) and (1.5) a propagation speed with
respect to 𝜉 does not exceed min

(︀
𝜀, C (|x |+1)−𝟣−𝛿)︀ and one can prove easily,

that for for a generalized Hamiltonian trajectory1) (x(t), 𝜉(t)) on energy
level 𝜏 ≤ c

(2.1) Σ𝜏 := {(x , 𝜉) : Ker(A(x , 𝜉)− 𝜏) ̸= {0}}

with A(x , 𝜉) = A𝟢(𝜉) + V (x , 𝜉) we have |𝜉(t) − 𝜉(0)| ≤ 𝜀′ for all t with
𝜀′ = 𝜀′(𝜀) → 0 as 𝜀→ 0 and therefore

(2.2) Let conditions (1.2)–(1.4), (1.5) and (1.6) with 𝜀 = 𝜀(𝜀′) > 0 with
arbitrarily small 𝜀′ be fulfilled. Then for a generalized Hamiltonian trajectory
(x(t), 𝜉(t)) on Σ𝜏

(2.3) |𝜉(t)− 𝜉(0)| ≤ 𝜀′ and |x(t)− x(0)| ≥ 𝜖𝟤|t| ∀t ∈ ℝ.

Then we conclude immediately that inequality

(2.4) |Ft→h−𝟣𝜏𝜒T (t)uh(x , x , t)| ≤ C ′
s(T )hs

holds for arbitrarily constant T > 0.
Combining with (1.9) for small constant T we conclude that

(2.5) Let conditions (1.2)–(1.4), (1.5) and (1.6) with sufficiently small con-
stant 𝜀 > 0 be fulfilled. Then asymptotic decomposition (1.9) holds with an
arbitrarily large constant T .

2.2 Propagation and Local Energy Decay

First we have the finite speed with respect to x propagation:

Proposition 2.1. For 𝜏 ≤ c the following estimate holds

(2.6) |Ft→h−𝟣𝜏

(︁
𝜒T (t)u(x , y , t)

)︁
| ≤ C ′

sh
sR−s

∀x , y : |x − y | ≥ C𝟢T , |x |+ |y | ≍ R .

1) For a definition of the generalized Hamiltonian trajectory see Definition 2.2.8
of [Ivr1].
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Proof. In the zone {x : |x | ≍ R} we can apply scaling x ↦→ xR−𝟣, t ↦→ tR−𝟣,
h ↦→ hR−𝟣 and apply the standard theory of Chapter 2 of [Ivr1]. The rest is
trivial.

Next, we consider R ≤ 𝜖𝟣T and apply energy estimate method to
prove the local energy decay. Observe that one can select smooth ℓ(𝜉) in
condition (1.4). Consider operator L𝟢(x , hF ) with Weyl symbol −⟨x , ℓ(𝜉)⟩
and L(x , hD; t) = L𝟢 + 𝜀t.

Then

(2.7) 2h−𝟣 Re i((hDt − A)v , Lv)𝝮T
=

(Lv , v)
⃒⃒t=T

t=𝟢
− Re ih−𝟣([hDt − A, L]v , v)𝝮T

=

(Lv , v)
⃒⃒t=T

t=𝟢
− 𝜀‖v‖𝟤𝝮T

+ Re(ih−𝟣[A, L]v , v)𝝮T
,

where ‖.‖𝝮 and (., .)𝝮 are a norm and an inner product in L𝟤(Ω) with
Ω = ΩT = ℝd × [0,T ] ∋ (x , t). Indeed, writing the left-hand expression as

ih−𝟣
[︀
((hDt − A)v , Lv)𝝮T

− (L, (hDt − A)v)𝝮T

]︀
=

ih−𝟣
[︀
(L(hDt − A)v , v)𝝮T

− ((hDt − A)L, v)𝝮T

]︀
+ (Lv , v)

⃒⃒t=T

t=𝟢

because L* = L, we arrive to (2.7).
In virtue of (1.5) and (1.6) for sufficiently small constant 𝜀 and for

h ≤ h𝟢(𝜀𝟣) the operator norm of h−𝟣[V , L] from Hm(ℝd) to L𝟤(ℝd) does
not exceed 𝜀𝟣 with 𝜀𝟣 = 𝜀𝟣(𝜀) → 0 as 𝜀→ 0, and then due to the microhy-
perbolicity assumption we conclude that

(2.8) Re(ih−𝟣[A, L]v , v) ≥ (𝜖𝟢 − 2𝜀𝟣)‖v‖𝟤 − C‖(A − 𝜏)v‖𝟤

for both ℝd and ΩT .
Let us plug into (2.7) v = 𝜙𝜀(A − 𝜏)e ihtAw where 𝜙 ∈ C∞

𝟢 ([−1, 1]),
0 ≤ 𝜙 ≤ 1; then for sufficiently small constant 𝜀 > 0 we arrive to

(2.9) 𝜖‖v‖𝟤𝝮T
+ (Lv , v)

⃒⃒
t=T

≤ (Lv , v)
⃒⃒
t=𝟢

.

On the other hand,

Re(Lv , v)|t=T ≥ 𝜀T‖v‖𝟤 − C‖|x |
𝟣
𝟤 v‖𝟤(2.10)
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with

‖|x |
𝟣
𝟤 v‖𝟤 = ‖|x |

𝟣
𝟤 v‖𝟤B(𝟢,R) + ‖|x |

𝟣
𝟤 v‖𝟤B(𝟢,R′)∖B(𝟢,R) + ‖|x |

𝟣
𝟤 v‖𝟤ℝd∖B(𝟢,R′)

with R ′ = C𝟢T and therefore for R ≤ 𝜀T

(2.11) Re(Lv , v)|t=T ≥ 𝜀T‖v‖𝟤 − CR ′‖v‖𝟤B(𝟢,R′)∖B(𝟢,R) − ‖|x |
𝟣
𝟤 v‖𝟤ℝd∖B(𝟢,R′).

Observe that

|(Lv , v)|t=𝟢 ≤ C
(︁
‖v𝟢‖𝟤 + ‖|x |

𝟣
𝟤 v𝟢‖𝟤

)︁
and then (2.9) and (2.10) imply that if R ≤ 𝜀T then

(2.12) ‖v‖𝟤B(𝟢,r) ≤ 𝜎‖v𝟢‖𝟤 + CT−𝟣
(︁
‖|x |

𝟣
𝟤 v‖𝟤ℝd∖B(𝟢,R′) + ‖v𝟢‖𝟤 + ‖|x |

𝟣
𝟤 v𝟢‖𝟤

)︁
with 𝜎 < 1 and v |𝟢 = v |t=𝟢; recall that ‖v‖ = ‖v𝟢‖.

Recall that v = e ih−𝟣tA𝜙𝜀(A − 𝜏)𝜓R(x)w where we plugged 𝜓Rw instead
of w , 𝜓 ∈ C∞

𝟢 (B(0, 1)), 0 ≤ 𝜓 ≤ 1 and 𝜓 = 1 in B(0, 𝟣
𝟤
).

One can prove easily that Q = 𝜙𝜀(A − 𝜏) is an operator with Weyl
symbol Q(x , 𝜉), satisfying

|D𝛼
𝜉 D𝛽

x Q| ≤ C𝛼𝛽𝜀
−|𝛼|−|𝛽|(|x |+ 1)−|𝛽|.

Then ‖v𝟢‖ℝd∖B(𝟢,𝟤R) ≤ C (h/R)s‖w‖ and therefore ‖|x | 𝟣𝟤 v𝟢‖𝟤 ≤ 2R‖w‖𝟤. Fur-
ther, then Proposition 2.1 implies that ‖|x | 𝟣𝟤 v‖𝟤ℝd∖B(𝟢,R′) ≤ C (h/T )s‖w‖
provided or R ′ ≥ C𝟢T with sufficiently large C𝟢 and we arrive to

Proposition 2.2. In the framework of Theorem 1.1

(2.13) ‖𝜓Re ih−𝟣TA𝜙𝜀(A − 𝜆)𝜓R‖ < 1

provided 𝜀T ≥ R ≥ 1.

While this statement looks weak, it will lead to much stronger one:

Proposition 2.3. In the framework of Theorem 1.1

(2.14) ‖𝜓Re ih−𝟣TA𝜙𝜀(A − 𝜆)𝜓R‖ ≤ CsR
sT−s

provided T ≥ C𝟢R, R ≥ 1.
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Proof. We want to prove by induction that

(2.15) ‖𝜓Re inh−𝟣TA𝜙𝜀(A − 𝜆)𝜓R‖ ≤ C𝜈N + CsnR sT−s

with 𝜈 < 1.
Assuming that for n we have (2.15), we apply the previous arguments

on the interval [nt, (n + 1)T ] to v = e ih−𝟣tA𝜙𝜀(A − 𝜆)𝜓R/𝟤e ih−𝟣nTA𝜓Rw and
derive an estimate

(2.16) ‖𝜓Re ih−𝟣tA𝜙𝜀(A − 𝜆)𝜓R/𝟤e ih−𝟣nTA𝜓Rw‖ ≤
𝜈‖𝜙𝜀(A − 𝜆)𝜓Re ih−𝟣nTA𝜓Rw‖+ C ′

K (h/R)K‖w‖

with 𝜈 < 1.
To make a step of induction we weed to estimate the norm of

(2.17) 𝜓Re ih−𝟣tA𝜙𝜀(A − 𝜆)(1− 𝜓R/𝟤)e
ih−𝟣nTA𝜓Rw =

𝜓Re ih−𝟣tA𝜙𝜀(A − 𝜆)(1− 𝜓R/𝟤)Q
+e ih−𝟣nTA𝜓R+

𝜓Re ih−𝟣tA𝜙𝜀(A − 𝜆)(1− 𝜓R/𝟤)Q
−e ih−𝟣nTA𝜓R ,

with Q± = Q±(x , hD), Q+ + Q− = I to be selected to ensure that

(2.18) Generalized Hamiltonian trajectories on Σ𝜏 , starting as t = 0 from
supp(Q±) ∩ supp(1− 𝜓R/𝟤) in the positive (negative) time direction, remain
in the zone {|x | ≥ 𝜖𝟣R + 𝜖𝟤|t|}.

Then we show that

‖𝜓Re ih−𝟣tA𝜙𝜀(A − 𝜆)(1− 𝜓R/𝟤)Q
+‖ ≤ Cs(h/R)s(2.19)

and

‖𝜙𝜀(A − 𝜆)(1− 𝜓R/𝟤)Q
−e ih−𝟣nTA𝜓R‖ ≤ Cs(h/R)s .(2.20)

To achieve that consider A𝟢(𝜉) and for each 𝜉 in the narrow vicinity 𝒲 of
Σ𝜏 let K+(𝜉) ⊂ ℝd

x×ℝ̄+ be a forward propagation cone and K−(𝜉) = −K+(𝜉)
be a backward propagation cone. Let

(2.21) Ω± = {(x , 𝜉) : x /∈ πxK±(𝜉)}

where πx is x-projection.
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Then Ω± are open sets and since πxK+(𝜉)∩πxK−(𝜉) = {0} we conclude
that Ω+∪Ω− ⊃ 𝕊d−𝟣×𝒲 . We can then find smooth positively homogeneous
of degree 0 with respect to x symbols q±(x , 𝜉) supported in Ω± such that
q+ + q− = 1 on 𝕊d−𝟣 ×𝒲 . Let q𝟢 = 1− (q+ + q−); then (A𝟢 − 𝜏 ) is elliptic
on supp(q𝟢).

Finally, let Q± and Q𝟢 be operators with the symbols q±(x , 𝜉)𝜑R(x)
and q𝟢(x |, 𝜉)𝜑R(x) correspondingly, where 𝜑 ∈ C∞

𝟢 (ℝd ∖ 0), equal 1 as
c−𝟣 ≤ |x | ≤ c with large enough constant c . Then

(2.22) Q+ + Q− + Q𝟢 = 𝜑R(x),

where (2.18) holds and (A − 𝜏) is elliptic on the support of the symbol of
Q𝟢.

Then Proposition 2.4 below implies that for R ≤ 𝜀T with sufficiently
small constant 𝜀 both (2.19) and (2.20) hold. On the other hand, ellipticity
of (A − 𝜏) on supp(Q𝟢) implies that

(2.23) ‖𝜙𝜀(A − 𝜆)(1− 𝜓R/𝟤)Q
𝟢‖ ≤ Cs(h/R)s .

Then we can make an induction step by n and to prove (2.15). After
this, let us replace in (2.15) R and T by r and t. Next, for given R ,T such

that R ≤ 𝜀𝟥T let us plug into (2.15) n = (T/R)
𝟣
𝟥 , t = T

𝟤
𝟥 R

𝟣
𝟥 = T/n and

r = T
𝟣
𝟥 R

𝟤
𝟥 = nR (obviously r ≤ 𝜀t). We arrive to (2.14) with a different but

still arbitrarily large exponent s.

As mentioned, we need the following proposition:

Proposition 2.4. Let conditions of Theorem 1.1 be fulfilled. Let x̄ ∈ ℝd ∖0,
𝜉 ∈ 𝒲 and assume that 0 /∈ x̄ + 𝜋xK∓(𝜉). Let 𝒦∓ be a conical 𝜂-vicinity of
K∓(𝜉) and 𝒱 be 𝜂R-vicinity of x̄ , R = |x |. Then

(2.24) ‖Q ′e±ih−𝟣TAQ‖ ≤ Cs(h/R)s

provided Q = Q(x , hD) and Q ′ = Q ′(x , hD) are operators with the symbols
satisfying

(2.25) |D𝛼
𝜉 D𝛽

x Q| ≤ c𝛼𝛽r−|𝛽|

with r = T + R and r = R respectively, R ≥ R(𝜂) and support of symbol
of Q does not intersect with 𝒱 +𝒦∓|t=T , symbol of Q ′ is supported in the
sufficiently small vicinity of (x̄ , 𝜉).
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Proof. Considering propagation in the zone {x : |x | ≍ r}, we see that the
propagation speed with respect to 𝜉 does not exceed Cr−𝟣−𝛿. To prove this
we scale x ↦→ xr−𝟣, t ↦→ tr−𝟣, h ↦→ ℏ = hr−𝟣 and apply the standard energy
method (see Chapter 2 of [Ivr1]). We leave the easy details to the reader.

Therefore for time t ≍ r variation of 𝜉 does not exceed Cr−𝛿. Then, the
propagation speed with respect to ⟨x , ℓ(𝜉)⟩ (which increases) is of magnitude
1 (as long as 𝜉 remains in the small vicinity of 𝜉). Again, to prove it we
scale and apply the energy method (see Chapter 2 of [Ivr1]).

But then the contribution of the time interval t ≍ r to the variation of
𝜉 does not exceed Cr−𝛿 and therefore the variation of 𝜉 for a time interval
[0,T ] with T ≥ 0 does not exceed CR−𝛿 ≤ 𝜂 for R ≥ R(𝜂).

Proposition 2.5. In the framework of Theorem 1.1

(2.26) ‖𝜓Re ih−𝟣TA𝜙𝜀(A − 𝜆)𝜓R‖ ≤ Csh
s ,

provided T ≥ C𝟢R, R ≥ 1.

Proof. It follows immediately from Proposition 2.4 with the semiclassical
parameter hr−𝟣 and with r set to its minimal value along the cone of
propagation, which is 1.

Combining Propositions 2.3 and 2.5 we arrive to

Corollary 2.6. In the framework of Theorem 1.1

(2.27) ‖𝜓Re ih−𝟣TA𝜙𝜀(A − 𝜆)𝜓R‖ ≤ Csh
sR sT−s

provided T ≥ C𝟢R, R ≥ 1.

2.3 Traces and the End of the Proof

Proposition 2.7. In the framework of Theorem 1.1 the following estimates
hold for T ≥ 1

|Ft→𝜏𝜒T (t)u(x , x , t)| ≤ Csh
s(|x |+ 1)s+𝟣((|x |+ 1) + T )−s ,(2.28)

|Ft→𝜏𝜒T (t)

∫︁
𝜓R(x)u(x , x , t) dx | ≤ Csh

sT−s ,(2.29)
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provided 𝜓 ∈ C∞
𝟢 (B(0, 1)). Further,

|Ft→𝜏𝜒T (t)

∫︁
𝜓R(x)u(x , x , t) dx | ≤ Csh

sR−sT−s ,(2.30)

provided 𝜓 ∈ C∞
𝟢 (B(0, 1) ∖ B(0, 𝟣

𝟤
).

Proof. Estimate (2.28) follows immediately from (2.26). Estimate (2.30)
follows from (2.26) and

|Ft→𝜏𝜒T (t)

∫︁
𝜓R(x)u(x , x , t) dx | ≤ Csh

sR−sT ,

which holds because we can chose the time direction on the partition element
(see Chapter 4 of [Ivr1]) and we chose the one in which |x | ≳ R (which is
possible; see the part of proof of Proposition 2.3 dealing with Q± and Q𝟢).

Finally, estimate (2.29) follows from (2.30).

Then we immediately arrive to the following theorem, which in turn
implies Theorem 1.1:

Theorem 2.8. In the framework of Theorem 1.1 the following estimates
hold

(2.31) |𝜕k𝜏
(︁

e(x , x , 𝜏)−
∑︁

n≤N−𝟣

𝜅n(x , 𝜏)h
−d+n

)︁
| ≤

CNh−d+N(|x |+ 1)−N + Csh
s(|x |+ 1)k

and for 𝜓 ∈ C∞
𝟢 (B(0, 1))

(2.32) |𝜕k𝜏
∫︁ (︁

e(x , x , 𝜏)−
∑︁

n≤N−𝟣

𝜅n(x , 𝜏)h
−d+n

)︁
𝜓R(x) dx | ≤ CNh−d+N .

2.4 Discussion

Corollary 2.9. Let conditions of Theorem 1.1 be fulfilled. Assume that

(2.33) |D𝛼
x V | ≤ c𝛼(|𝜉|+ 1)m(|x |+ 1)−d−|𝛼|−𝛿.

Then the asymptotics of the Birman-Schwinger spectral shift function

(2.34) Nh(𝜏) :=

∫︁ (︁
eh(x , x , 𝜏)− e𝟢

h(x , x , 𝜏)
)︁

dx ∼
∑︁
n≥𝟢

𝜘h−d+n
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is infinitely differentiable with respect to 𝜏 . Here e𝟢
h(x , x , 𝜏) = 𝜅𝟢𝟢h−d and

e𝟢
h(x , y , 𝜏) is the Schwartz kernel of spectral projector for A𝟢(hD), and

(2.35) 𝜘n(𝜏) =

∫︁ (︀
𝜅n(x , 𝜏)− δn𝟢𝜅

𝟢
)︀

dx .

Indeed, condition (2.33) guarantees the absolute convergence of integrals
in (2.35).

Remark 2.10. Our results could be easily generalized to non-semi-bounded
elliptic A𝟢 (like in Subsection 3.1 of [Ivr3]). Then instead of e(x , y ,𝜆) one
needs to consider e(x , y ,𝜆,𝜆′) the Schwartz kernel of θ(𝜆− A)− θ(𝜆′ − A)
and either impose conditions for both 𝜆 and 𝜆′, or only for 𝜆 and mollify
with respect to 𝜆′.

It looks strange that the last term in the remainder estimate (2.31)
increases as |x | increases, but so far I can neither improve it to the uniform
with respect to x in the general case, nor show by the counter-example that
such improvement is impossible. However I hope to prove

Conjecture 2.11. Assume in addition that A𝟢 is a scalar operator and
Σ𝟢
𝜆 = {𝜉 : A𝟢(𝜉) = 𝜆} is a strongly convex surface i.e.

(2.36) ±
∑︁
j ,k

A𝟢
𝜉j𝜉k

(𝜉)𝜂j𝜂k ≥ 𝜖|𝜂|𝟤 ∀𝜉 ∈ Σ𝟢
𝜆 ∀𝜂 :

∑︁
j

A𝟢
𝜉j
(𝜉)𝜂j = 0,

where the sign depends on the connected component of Σ𝜆, containing 𝜉.
Then the last term in the right-hand expression of (2.31) could be replaced

by Csh
s(|x |+ 1)k−d .

Rationale here is that only few Hamiltonian trajectories from x with
|x | = R ≫ 1 pass close to the origin and even they do not spend much time
there.
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Bethe-Sommerfeld Conjecture in Semiclassical
Settings *,†

Victor Ivrii‡

Abstract

Under certain assumptions (including d ≥ 𝟤) we prove that the
spectrum of a scalar operator in L𝟤(ℝd)

A𝜀(x , hD) = A𝟢(hD) + 𝜀B(x , hD),

covers interval (𝜏 − 𝜖, 𝜏 + 𝜖), where A𝟢 is an elliptic operator and
B(x , hD) is a periodic perturbation, 𝜀 = O(h𝜘), 𝜘 > 𝟢.

Further, we consider generalizations.

1 Introduction

1.1 Preliminary Remarks

This work is inspired by a paper [PS3] by L. Parnovski and A. Sobolev,
in which a classical Bethe-Sommerfeld conjecture was proven for operators
(−Δ)m + B(x ,D) with operator B of order < 2m. In this paper the crucial
role was played by a (pseudodifferential) gauge transformation and thorough
analysis of the resonant set, both introduced in the papers of L. Parnovski
and R. Shterenberg [PSh1, PSh2, PSh3], S. Morozov, L. Parnovski and
R. Shterenberg [MPS] and earlier papers by A. Sobolev [So2,So2], devoted
to complete asymptotics of the integrated density of states.

Later in [Ivr3] I used the gauge same transformation in the semiclassical
settings, which allowed me to generalize the results and simplify the proofs
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of those papers1). Now I would like to apply this gauge transform to Bethe-
Sommerfeld conjecture in the semiclassical settings. The results obtained
are more general (except the smoothness with respect to 𝜉 assumptions
in [PS3] are more general than here) and the proofs are simpler.

Consider a scalar self-adjoint h-pseudo-differential operator Ah := A(x , hD)
in ℝd with the Weyl symbol A(x , 𝜉), such that2)

|D𝛼
x D𝛽

𝜉 A(x , 𝜉)| ≤ c𝛼𝛽(|𝜉|+ 1)m ∀𝛼, 𝛽(1.1)

and

A(x , 𝜉) ≥ c𝟢|𝜉|m − C𝟢 ∀(x , 𝜉) ∈ ℝ𝟤d .(1.2)

Then Ah is semibounded from below. Also we assume that it is Γ-periodic
with the lattice of periods Γ:

(1.3) A(x + y, 𝜉) = A(x , 𝜉) ∀x ∈ ℝn ∀y ∈ Γ.

We assume that Γ is non-degenerate3) and denote by Γ* the dual lattice:

(1.4) 𝛾 ∈ Γ* ⇐⇒ ⟨𝛾, y⟩ ∈ 2𝜋ℤ ∀y ∈ Γ;

since we use Γ* and it’s elements in the paper much more often, than Γ and
it’s elements, it is more convenient for us to reserve notation 𝛾 for elements
of Γ*.

Also let 𝒪 = ℝd/Γ and 𝒪* = ℝd/Γ* be fundamental domains ; we identify
them with domains in ℝd .

It is well-known that Spec(A) has a band-structure. Namely, consider
in L𝟤(𝒪) operator Ah(ξ) = A(x , hD) with the quasi-periodic boundary
condition:

(1.5) u(x + y) = e i⟨𝗒,ξ⟩u(x) ∀x ∈ 𝒪 ∀y ∈ Γ

with ξ ∈ 𝒪*; it is called a quasimomentum. Then Spec(Ah(ξ)) is discrete

(1.6) Spec(Ah(ξ)) =
⋃︁
n

𝜆n,h(ξ)

1) The other components of the proof were not only completely different, but in the
framework of the different paradigm.

2) In fact, we consider Ah := A(x , hD, h).
3) I.e. with the 𝝘 = {𝗒 = n𝟣𝗒𝟣+...+nd𝗒d , (n𝟣, ... , nd ) ∈ ℤd} with linearly independent

𝗒𝟣, ... , 𝗒d ∈ ℝd .
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and depends on ξ continuously. Further,

(1.7) Spec(Ah) =
⋃︁

ξ∈𝒪*

Spec(Ah(ξ)) =:
⋃︁
n

Λn,h,

with the spectral bands Λn,h :=
⋃︀

ξ∈𝒪*{𝜆n,h(ξ)}.
One can prove that the with of the spectral band near energy level 𝜏

is O(h). Spectral bands could overlap but they also could leave uncovered
intervals, called spectral gaps. It follows from [Ivr3] that in our assumptions
(see below) the width of the spectral gaps near energy level 𝜏 is O(h∞).
Bethe-Sommerfeld conjecture in the semiclassical settings claims that there
are no spectral gaps near energy level 𝜏 (in the corresponding assumptions,
which include d ≥ 2).

1.2 Main Theorem (Statement)

We assume that

(1.8) Ah := A(x , hD) = A𝟢(hD) + 𝜀B(x , hD),

where A𝟢(𝜉) satisfies (1.1), (1.2) and B(x , 𝜉) satisfies (1.1) and (1.3) and
𝜀 > 0 is a small parameter. For A𝟢(𝜉) instead of 𝜆n(ξ) we have

(1.9) 𝜆𝟢𝛾(ξ) := A𝟢(h(𝛾 + ξ)) with 𝛾 ∈ Γ*.

Recall that (as in [Ivr3])

B(x , 𝜉) =
∑︁
𝛾∈𝝘

b𝛾(𝜉)e
i⟨𝛾,x⟩(1.10)

with Θ = Γ* where due to (1.1)

|D𝛽
𝜉 b𝛾(𝜉)| ≤ CL𝛽(|𝛾|+ 1)−L(|𝜉|+ 1)m ∀𝛽 ∀(x , 𝜉) ∈ ℝ𝟤d(1.11)

with an arbitrarily large exponent L.

Theorem 1.1. Let d ≥ 2 and let operator Ah be given by (1.8) with 𝜀 =
O(h𝜗) with arbitrary 𝜘 > 0 and with A𝟢

h = A𝟢(hD) satisfying (1.1), (1.2)
and B(x , 𝜉) satisfying (1.1) and (1.3).
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Further, assume that the microhyperbolicity and strong convexity con-
ditions on the energy level 𝜏 are fulfilled:

(1.12) |A𝟢(𝜉)− 𝜏 |+ |∇𝜉A
𝟢(𝜉)| ≥ 𝜖𝟢

and

(1.13) ±
∑︁
j ,k

A𝟢
𝜉j𝜉k

(𝜉)𝜂j𝜂k ≥ 𝜖𝟢|𝜂|𝟤

∀𝜉 : A𝟢(𝜉) = 𝜏 ∀𝜂 :
∑︁
j

A𝟢
𝜉j
(𝜉)𝜂j = 0.

Furthermore, assume that there exists 𝜉 ∈ Σ𝜏 such that for every 𝜂 ∈ Σ𝜏 ,
𝜂 ̸= 𝜉, such that ∇𝜂A𝟢(𝜂) is parallel to ∇𝜉A

𝟢(𝜉) 4)

(1.14) Σ𝜏 , intersected with some vicinity of 𝜂 and shifted by (𝜉−𝜂), coincides
in the vicinity of 𝜉 with {𝜁 : 𝜁k = g(𝜁k̂} and Σ𝜏 coincides in the vicinity of 𝜉
with {𝜁 : 𝜁k = f (𝜁k̂} 5) and ∇𝛼(f − g)(0) ̸= 0 for some 𝛼 : |𝛼| = 2 6).

Then Spec(Ah) ⊃ [𝜏 − 𝜖, 𝜏 + 𝜖] for sufficiently small 𝜖 > 0.

Remark 1.2. (i) If Σ𝜏 is strongly convex and connected then for every 𝜉 ∈ Σ𝜏
there exists exactly one antipodal point 𝜂 ∈ Σ𝜏 ; then 𝜈 < 0 and assumption
(1.14) is fulfilled. In particular, if A𝟢(𝜉) = |𝜉|m, then 𝜂 = −𝜉 and 𝜈 = −1.

(ii) If Σ𝜏 is is strongly convex and consists of p connected components, then
the set Z(𝜉) = {𝜂 ∈ Σ𝜏 , 𝜂 ̸= 𝜉 : ∇𝜂A𝟢(𝜂) ‖ ∇𝜉A

𝟢(𝜉)} contains exactly 2p − 1
elements, and for p of them 𝜈 < 0 and assumption (1.14) is fulfilled for sure,
while for (p − 1) of them 𝜈 > 0.

1.3 Idea of the Proof and the Plan of the Paper

One needs to understand, how gaps could appear, why they appear if d = 1
and why it is not the case if d ≥ 2. Observe that 𝜆n(ξ) can be identified
with some 𝜆𝟢𝛾(ξ) only locally, if 𝜆𝟢𝛾(ξ) is sufficiently different from 𝜆𝟢𝛾′(ξ) for
any 𝛾′ ̸= 𝛾.

4) I.e. 𝜂A𝟢(𝜂) = 𝜈∇𝜉A𝟢(𝜉) with 𝜈 ̸= 𝟢; we call 𝜂 antipodal point.
5) With 𝜁k̂ meaning all coordinates except 𝜁k .
6) Obviously ∇(f − g)(𝟢) = 𝟢. One can prove easily, that if this condition holds at 𝜉

with some 𝛼 : |𝛼| > 𝟤, then changing slightly 𝜉, we make it fulfilled with |𝛼| = 𝟤.
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Indeed, in the basis of eigenfunctions of A𝟢
ξ(hD) 7) perturbation 𝜀B(x , hD)

can contain out-of-diagonal elements 𝜀b𝛾−𝛾′(ξ) and such identification is
possible only if |𝜆𝟢𝛾(ξ)− 𝜆𝟢𝛾′(ξ)| is larger than the size of such element.

If d = 1, A𝟢(𝜉) = 𝜉𝟤 and 𝜀 ≤ 𝜖′h with sufficiently small 𝜖′ > 0 and 𝜏 ≍ 1,
it can happen only if 𝛾′ coincides with −𝛾 or with one of two adjacent points
in Γ* and |ξ− 𝟣

𝟤
(𝛾 + 𝛾′)| = O(𝜀h∞). This exclude from possible values of

either 𝜆𝟢𝛾(ξ) or 𝜆
𝟢
𝛾′(ξ) the interval of the width O(𝜀h∞) and on such interval

can happen (and really happens for a generic perturbation) the realignment:

ξ

𝜆𝟢n(ξ)

𝜆𝟢m(ξ)

(a)

ξ

𝜆n(ξ)

𝜆m(ξ)

ξ

𝜆n(ξ)

𝜆m(ξ)

(b)

Figure 1: Spectral gap is a gray interval

If d ≥ 2 the picture becomes more complicated: there are much more
opportunities for 𝜆𝟢𝛾(ξ) and 𝜆

𝟢
𝛾′(ξ) to become close, even if 𝛾 and 𝛾′ are not

that far away; on the other hand, there is a much more opportunities for
us to select 𝜉 = h(𝛾 + ξ) ∈ Σ𝜏 and then to adjust ξ so that 𝜉 = h(𝛾 + ξ)
remains on Σ𝜏 but 𝜂 = h(𝛾′ + ξ) moves away from Σ𝜏 sufficiently far away8)

and then tune-up ξ once again so that 𝜏 ∈ Spec(Ah(ξ)).
In fact, we prove the following statement which together with Theorem 1.1

(which follows from it trivially) are semiclassical analogue of Theorem 2.1
of [PS3]:

Theorem 1.3. In the framework of Theorem 1.1 there exist n and ξ* such
that 𝜆n(ξ

*) = 𝜏 and 𝜆n(ξ) covers interval [𝜏 − 𝜐h, 𝜏 + 𝜐h] when ξ runs ball
B(ξ*, 𝜐) while |𝜆m(ξ)− 𝜏 | ≥ 𝜖𝜐h for all m ̸= n and ξ ∈ B(ξ*, 𝜐). Here

(1.15) 𝜐 = 𝜖

{︃
h(d−𝟣)𝟤 min(1, 𝜀−𝟥(d−𝟣)/𝟤h(d−𝟣)+𝜎) d ≥ 3,

h min(| log h|−𝟣, 𝜀−𝟥/𝟤h𝜎) d = 2
7) Consisting of 𝖾𝗑𝗉(i⟨x , 𝛾 + ξ⟩).
8) This will happen if either ∇𝜂A𝟢(𝜂) differs from 𝜈∇𝜉A𝟢(𝜉), or if coincides with it but

(1.14) is fulfilled.
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with arbitrarily small exponent 𝜎 > 0.

Proof of Theorem 1.3 occupies two next sections. In Section 2 we reduce
operator in the vicinity of Σ𝜏 to the block-diagonal form and study its
structure. To do this we need to examine the structure of the resonant set
of the operator. In Section 3 we prove Theorem 1.3 and thus Theorem 1.1.

Finally, in Section 4 we discuss our results and the possible improvements.

2 Reduction of Operator

2.1 Reduction

On this step we reduce A to the block-diagonal form in the vicinity of Σ𝜏

(2.1) Ω𝜏 := {𝜉 : |A𝟢(𝜉)− 𝜏 | ≤ C𝜀h−𝛿}.

In what follows, we assume that 𝜀 ≥ h, i.e.

(2.2) h ≤ 𝜀 ≤ h𝜗, 𝜗 > 0.

To do this we need just to repeat with the obvious modifications defi-
nitions and arguments of Sections 1 and 2 of [Ivr3]. Namely, now Θ := Γ*

is a non-degenerate lattice rather than the pseudo-lattice, as it was in
that paper, and all conditions 1.2, 1.3, 1.5, 1.6, and 3.3, are fulfilled with
Θ′ := Θ ∩ B(0,𝜔) with 𝜔 = h−𝜘 where we select sufficiently small 𝜘 > 0
later and Θ′

K = Θ ∩ B(0,K𝜔) be an arithmetic sum of K copies of Θ′ with
sufficiently large K to be chosen later.

We call point 𝜉 non-resonant if

(2.3) |⟨∇𝜉A
𝟢(𝜉), 𝜃⟩| ≥ 𝜌 ∀𝜃 ∈ Θ′

K ∖ 0

with 𝜌 ∈ [𝜀𝟣/𝟤h−𝛿, h𝛿] with arbitrarily small 𝛿 > 0. Otherwise we call it
resonant. More precisely

(2.4) Λ :=
⋃︁

𝜃∈𝝝′
K∖𝟢

Λ(𝜃),

where Λ(𝜃) is the set of 𝜉, violating (2.3) for given 𝜃 ∈ Θ′
K ∖ 0.

It obviously follows from the microhyperbolicity and strong convexity
assumptions (1.12) and (1.13) that
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(2.5) µ𝜏 -measure9) of Λ∩Σ𝜏 , does not exceed C𝟢rd−𝟣𝜌 and Euclidean measure
of Λ ∩ {𝜉 : |A𝟢(𝜉)− 𝜏 | ≤ 𝜍} does not exceed C𝟢rd−𝟣𝜌𝜍, where r = Kh−𝜘.

Indeed, (d − 1)-dimensional measure of {x : |x | = 1, |⟨x , 𝜃⟩| ≤ 𝜌} does
not exceed C𝟢|𝜃|−𝟣𝜌 and and due to microhyperbolicity and strong convexity
assumptions maps Σ𝜏 → ∇A𝟢(𝜉)/|∇A𝟢(𝜉)| ∈ 𝕊d−𝟣 and

{𝜉 : |A𝟢(𝜉)− 𝜏 | ≤ 𝜍} → (∇A𝟢(𝜉)/|∇A𝟢(𝜉)|,A𝟢(𝜉)) ∈ ℝd

are diffeomorphisms.
Furthermore, according to Proposition 2.7 of [Ivr3] that on the non-

resonant set one can “almost” diagonalize A(x , hD). More precisely

Proposition 2.1. Let assumptions (1.12) and (1.13) be fulfilled.

(i) Then there exists a periodic pseudodifferential operator P = P(x , hD)
such that (︀

e−i𝜀h−𝟣PAe i𝜀h−𝟣P −𝒜
)︀
Q ≡ 0(2.6)

with

𝒜 = A𝟢(hD) + 𝜀B ′(hD) + 𝜀B ′′(x , hD)(2.7)

modulo operator from Hm to L𝟤 with the operator norm O(hM) with M
arbitrarily large and K = K (M , d , 𝛿) in the definition of non-resonant point
provided Q = Q(hD) has a symbol, supported in {𝜉 : |A𝟢(𝜉)− 𝜏 | ≤ 2𝜀h−𝛿}.

Here P(x , hD), B ′(hD) and B ′′(x , hD) are operator with Weyl symbols
of the same form (1.10) albeit such that

|D𝛼
𝜉 D𝛽

x P | ≤ c𝛼𝛽𝜌
−𝟣−|𝛼| ∀𝛼, 𝛽,(2.8)

|D𝛼
𝜉 D𝛽

x B ′′| ≤ c ′
𝛼𝛽𝜌

−|𝛼| ∀𝛼, 𝛽,(2.9)

and symbol of B ′ also satisfies (2.9).

(ii) Further,

(2.10) 𝜉 /∈ Λ(𝜃) =⇒ b′′
𝜃 (𝜉) = 0.

and B ′(𝜉) coincides with b𝟢(𝜉) modulo O(𝜀𝜌−𝟤).

9) µ𝜏 = d𝜉 : dA𝟢(𝜉) is a natural measure on 𝝨𝜏 .
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In what follows

(2.11) 𝒜𝟢(hD) := A𝟢(hD) + 𝜀B ′(hD) and ℬ := B ′′(x , hD).

Remark 2.2. (i) Eigenvalues of 𝒜𝟢 are

(2.12) 𝜆𝛾(ξ) = 𝒜𝟢(h(𝛾 + ξ)).

(ii) If 𝜉 = h(𝛾 + ξ) is non-resonant, then due to (2.10) in 𝜖′𝜌-vicinity of 𝜉
this 𝜆𝛾(ξ) is also an eigenvalue of 𝒜.

(iii) Without any loss of the generality one can assume that

(2.13) |𝜃| ≥ 𝜀h−𝛿 =⇒ b′′
𝜃 = 0.

We assume that this is the case.

(iv) Let us replace operator 𝒜 defined by (2.7) by operator

(2.14) 𝒜′ = 𝒜𝟢(hD) + 𝜀ℬ′(x , hD), ℬ′(x , hD) = T (hD)ℬT (hD)

with T (hD) operator with symbol T (𝜉) which is a characteristic function of
Ω𝜏 defined by (2.1) with C = 6. Then (2.6) holds.

From now on 𝒜 := 𝒜′ and ℬ := ℬ′.

It would be sufficient to prove Theorem 1.3 for operator 𝒜. Indeed,

Proposition 2.3. (i) For each point 𝜆 ∈ Spec(A(ξ)) ∩ {|𝜆 − 𝜏 | ≤ 𝜀h−𝛿}
dist(𝜆, Spec(𝒜(ξ)) ≤ ChM .

(ii) Conversely, for each point 𝜆 ∈ Spec(𝒜(ξ)) ∩ {|𝜆− 𝜏 | ≤ 𝜀h−𝛿}
dist(𝜆, Spec(A(ξ)) ≤ ChM .

(iii) Furthermore, if 𝜆 ∈ Spec(A(ξ))∩{|𝜆−𝜏 | ≤ 𝜀h−𝛿} is a simple eigenvalue
separated from the rest of Spec(A(ξ)) by a distance at least 2hM−𝟣, then
there exists 𝜆′ ∈ Spec(𝒜(ξ)) ∩ {|𝜆′ − 𝜆| ≤ ChM} separated from the rest of
Spec(𝒜(ξ)) by a distance at least hM−𝟣.

(iv) Conversely, if 𝜆′ ∈ Spec(𝒜(ξ))∩{|𝜆−𝜏 | ≤ 𝜀h−𝛿} is a simple eigenvalue
separated from the rest of Spec(𝒜(ξ)) by a distance at least 2hM−𝟣, then
there exists 𝜆 ∈ Spec(A(ξ)) ∩ {|𝜆′ − 𝜆| ≤ ChM} separated from the rest of
Spec(A(ξ)) by a distance at least hM−𝟣.
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Proof. Trivial proof is left to the reader.

Remark 2.4. One can generalize Statements (iii) and (iv) of Proposition 2.3
from simple eigenvalues to subsets of Spec(A(ξ)) and Spec(𝒜(ξ)) separated
by the rest of the spectra; these subsets will contain the same number of
elements.

2.2 Classification of Resonant Points

We start from the case d = 2. Then we have only one kind of resonant points
Ξ𝟣 = Λ. If d ≥ 3 then there are (d − 1) kinds of resonant points. First,
following [PS3] consider lattice spaces V spanned by n linearly independent
elements 𝜃𝟣, ... , 𝜃n ∈ Γ* ∩ B(0, r), where we take r = Kh−𝜘. Let 𝒱n be the
set of all such spaces.

It is known [PS3] that

Proposition 2.5. For V ∈ 𝒱n, W ∈ 𝒱m either V ⊂ W, or W ⊂ V or the
angle10) between V and W is at least 𝜖r−L with L = L(d) and 𝜖 = 𝜖(d , Γ).

Fix 0 < 𝛿𝟣 < ... < 𝛿n arbitrarily small and for V ∈ 𝒱n let us introduce

(2.15) Λ(V, 𝜌n) := {𝜉 ∈ Ω𝜏 : |⟨∇𝜉A
𝟢(𝜉), 𝜃⟩| ≤ 𝜌n|𝜃| ∀𝜃 ∈ V}

with 𝜌n = 𝜀
𝟣
𝟤 h−𝛿n .

We define Ξn by induction. First, Ξd = ∅. Assume that we defined
Ξd , ... , Ξn+𝟣. Then we define

(2.16) Ξn :=
⋃︁

V∈𝒱n, 𝜉∈𝝠(V)∩𝝮𝜏

(𝜉 +V) ∩ Ω𝜏 .

It follows from Proposition 2.5 that

Proposition 2.6. Let 𝜘 > 0 in the definition of Θ′ and 𝛿 > 0 in the
definition of Ω𝜏 be sufficiently small 11). Then for sufficiently small h

(i) Ξn ⊂
⋃︀

V∈𝒱 Λ(V, 2𝜌n).

10) This angle ̂(V,W) is defined as the smallest possible angle between two vectors
v ∈ V⊖ (V ∩W) and w ∈ W⊖ (V ∩W).

11) They depend on 𝜗 and 𝛿𝟣, ... , 𝛿n.
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(ii) If 𝜉 /∈ Ξn+𝟣 and 𝜉 ∈ 𝜉′ +V, 𝜉 ∈ 𝜉′′ +W for 𝜉′ ∈ Λ(V), 𝜉′′ ∈ Λ(W) with
V,W ∈ 𝒱n, then V = W.

Corollary 2.7. Let 𝜘 > 0 in the definition of Θ′ and 𝛿 > 0 in the definition
of Ω𝜏 be sufficiently small 11). Let h be sufficiently small.

Then for each 𝜉 ∈ Ξn ∖ Ξn+𝟣 is defined just one V = V(𝜉) such that
𝜉 ∈ 𝜉′ +V for some 𝜉′ ∈ Λ(V).

(2.17) We slightly change definition of Ξn: 𝜉 = h(𝛾+ξ) ∈ Ξn,𝗇𝖾𝗐 iff h𝛾 ∈ Ξn.
From now on Ξn := Ξn,𝗇𝖾𝗐.

Consider 𝜉′, 𝜉′′ ∈ Ξn ∖ Ξn+𝟣. We say that 𝜉′ ∼= 𝜉′′ if there exists 𝜉 ∈ V,
V ∈ 𝒱 such that 𝜉′, 𝜉′′ ∈ 𝜉 +V and if 𝜉′ − 𝜉′′ ∈ Γ. In virtue of above

(2.18) This relation is reflexive, symmetric and transitive.

For 𝜉 ∈ Ξn we define

X(𝜉) = {𝜉′ : 𝜉′ ∼= 𝜉}.(2.19)

Then

diam(X(𝜉)) ≤ C𝜌d−𝟣.(2.20)

2.3 Structure of Operator 𝒜
For 𝜉 ∈ Ξn ∖Ξn+𝟣 denote by H(𝜉) the subspace L𝟤(𝒪) consisting of functions
of the form

(2.21)
∑︁

𝜉′∈X(𝜉)

c𝜉′e
i⟨x ,𝜉′⟩.

In virtue of the properties of 𝒜 and ℬ and of resonant sets we arrive to

Proposition 2.8. Let 𝜘 > 0 in the definition of Θ′ and 𝛿 > 0 in the
definition of Ω𝜏 be sufficiently small 11). Let h be sufficiently small.

Then for 𝜉 ∈ Ξn ∖ Ξn+𝟣 operators ℬ and 𝒜 transform H(𝜉) into H(𝜉).

Let us denote by 𝒜𝛾(ξ) and ℬ𝛾(ξ) restrictions of 𝒜 and ℬ to H(h(𝛾+ξ)).
Here for n = 0 we consider Ξ𝟢 to be the set of all non-resonant points and
X(𝜉) = {𝜉} for 𝜉 ∈ Ξ𝟢.

Then due to Propositions 2.5 and 2.8 we arrive to
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Proposition 2.9. (i) For each point 𝜆 ∈ Spec(A(ξ)) ∩ {|𝜆 − 𝜏 | ≤ 𝜀h−𝛿}
exists 𝛾 ∈ Γ* such that 𝜉 = h(𝛾 + ξ) ∈ Ω𝜏 and dist(𝜆, Spec(𝒜𝛾(ξ)) ≤ ChM .

(ii) Conversely, for each point 𝜆 ∈ Spec(𝒜𝛾(ξ)) ∩ {|𝜆− 𝜏 | ≤ 𝜀h−𝛿}
and 𝜉 = h(𝜉 + 𝛾), dist(𝜆, Spec(A(ξ)) ≤ ChM .

(iii) Further, if 𝜆 ∈ Spec(A𝛾(ξ)) ∩ {|𝜆− 𝜏 | ≤ 𝜀h−𝛿} is a simple eigenvalue
separated from the rest of Spec(A(ξ)) by a distance at least 2hM−𝟣, then there
exist 𝛾 and 𝜆′, such that for 𝜉 = h(𝛾+ξ), 𝜆′ ∈ Spec(𝒜(𝜉))∩{|𝜆′−𝜆| ≤ ChM},
separated from the rest of Spec(𝒜𝛾(𝜉)) by a distance at least hM−𝟣 and from⋃︀
𝛾′∈𝝘*, 𝛾′ ̸=𝛾 Spec(𝒜𝛾′(ξ) by a distance at least hM−𝟣 as well.

(iv) Conversely, if 𝜆′ ∈ Spec(𝒜𝛾(ξ))∩{|𝜆−𝜏 | ≤ 𝜀h−𝛿} is a simple eigenvalue
separated from the rest of Spec(𝒜𝛾(ξ)) by a distance at least 2hM−𝟣, and
also separated from

⋃︀
𝛾′∈𝝘*, 𝛾′ ̸=𝛾 Spec(𝒜𝛾′(ξ)) by a distance at least 2hM−𝟣,

then there exists 𝜆 ∈ Spec(A(ξ)) ∩ {|𝜆′ − 𝜆| ≤ ChM} separated from the rest
of Spec(A(ξ)) by a distance at least hM−𝟣.

Proof. Proof is trivial.

3 Proof of Theorem 1.3

3.1 Choosing 𝛾*

The first approximation is 𝜉* ∈ Σ𝜏 satisfying (1.14). Any 𝜉 ∈ Σ𝜏 in 𝜖
′-vicinity

of 𝜉* also fits provided 𝜖′ > 0 is sufficiently small.

(3.1) One can select 𝜉*𝗇𝖾𝗐 ∈ Σ𝜏 such that |𝜉*𝗇𝖾𝗐 − 𝜉*| ≤ h𝛿 and 𝜉*𝗇𝖾𝗐 satisfies
(1.14) with 𝜌 = 𝛾 := h𝛿. Here 𝛿 > 0 is arbitrarily small and 𝜘 = 𝜘(𝛿).

Indeed, it follows from (2.5). From now on 𝜉* := 𝜉*𝗇𝖾𝗐.
Then, according to Proposition 2.1 we can diagonalize operator in

𝛾-vicinity of 𝜉* and there 𝜌 = 𝛾. Then there

|∇𝛼(𝒜𝟢 − A𝟢)| ≤ C𝛼(𝜀+ 𝜀𝟤𝜌−𝟤−|𝛼|)(3.2)

and in particular

|∇𝛼(𝒜𝟢 − A𝟢)| ≤ Ch𝛿 for |𝛼| ≤ 2.(3.3)
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Let

Σ′
𝜏 = {𝜉 : 𝒜𝟢(𝜉) = 𝜏}.(3.4)

Then in the non-resonant points we are interested in functions 𝜆𝛾(ξ) =
𝒜𝟢(h(𝛾 + ξ)) rather than in 𝜆𝟢𝛾(ξ) = A𝟢(h(𝛾 + ξ)). One can prove easily the
following statements:

Proposition 3.1. (i) One can select 𝜉* := 𝜉*𝗇𝖾𝗐 ∈ Σ′
𝜏 satisfying (1.14) and

non-resonant with 𝜌 = 𝛾.

(ii) Further, all antipodal to 𝜉* points 𝜉*𝟣 ,. . . , 𝜉
*
𝟤p−𝟣 have the same properties.

Let 𝜉* =: h(𝛾* + ξ*), 𝛾* ∈ Γ* and ξ* ∈ 𝒪*. Then values in the nearby
points are sufficiently separated:

(3.5) |𝜆𝛾(ξ)− 𝜆𝛾*(ξ)| ≥ 𝜖h𝟣+𝛿 ∀𝛾 : |𝛾 − 𝛾*| ≤ Kh−𝜘 ∀ξ ∈ 𝒪*.

Indeed, |𝛾 − 𝛾*| ≤ Kh−𝜘 implies that (𝛾 − 𝛾*) ∈ Θ′
K and then

|⟨∇𝒜𝟢(𝜉*), 𝛾 − 𝛾*⟩| ≥ 𝛾

while

|𝜆𝛾(ξ)− 𝜆𝛾*(ξ)− h⟨∇𝒜𝟢(𝜉*), 𝛾 − 𝛾*⟩| ≤ Ch𝟥−𝟥𝜘.

3.2 Non-Resonant Points

Consider other non-resonant points (with 𝜌 = 𝜀𝟣/𝟤h−𝛿). Let us determine
how 𝜆𝛾(ξ) changes when we change ξ. Due to (3.3)

(3.6) δ𝜆𝛾 := 𝜆𝛾(ξ+ δξ)− 𝜆𝛾(ξ) = h⟨∇A𝟢(𝜉), δξ⟩+ O(h𝟤|δξ|𝟤).

To preserve 𝜆𝛾*(ξ) = 𝜏 in the linearized settings we need to shift ξ by
δξ which is orthogonal to ∇𝜉𝒜(𝜉*).

Let us take δξ = t𝜂

(3.7) ℓ : |𝜂| = 1, ⟨∇𝒜𝟢(𝜉*), 𝜂⟩ = 0.

Then in all non-resonant 𝜉 the shift will be ⟨∇𝜉𝒜(𝜉), δξ⟩ with an absolute
value |⟨∇𝜉𝒜(𝜉), 𝜂⟩| · |t|.
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Case d = 2. Let us start from the easiest case d = 2. Without any loss
of the generality we assume that ξ* is strictly inside 𝒪* (at the distance at
least C 𝜖* from the border). Then there is just one tangent direction 𝜂 and

(3.8) |⟨∇𝜉𝒜𝟢(𝜉)|𝜉=h𝛾, 𝜂⟩| ≍ | sin𝜙(𝛾*, 𝛾)| ≍ h min
𝟣≤k≤𝟤p

|𝛾 − 𝛾*k |

where 𝜙(𝛾*, 𝛾) is an angle between ∇𝜉𝒜𝟢(𝜉)|𝜉=h𝛾* and ∇𝜉𝒜𝟢(𝜉)|𝜉=h𝛾, and
𝜉*𝟣 , ... , 𝜉

*
𝟤p−𝟣 are antipodal points, and 𝜉*𝟤p = 𝜉*.

As long as min𝟣≤k≤𝟤p |𝛾 − 𝛾*k | ≳ h𝟣−𝜘 we may replace here 𝜉 = h(𝛾 + ξ)
by 𝜉 = h𝛾 and 𝒜𝟢 by 𝒜. In the nonlinear settings to ensure that

(3.9) 𝜆𝛾*(ξ
* + δξ(t)) = 𝜏

we need to include in δξ(t) a correction: δξ(t) = t𝜂 + O(t𝟤) but still

(3.10)
d

dt
𝜆𝛾(ξ

* + δξ(t)) ≍ h⟨∇𝜉𝒜(𝜉)|𝜉=h𝛾, 𝜂⟩−𝟣.

Then the set 𝒯 (𝜉) := {t : |t| ≤ 𝜖𝟢, |𝒜𝟢(𝜉(t))− 𝜏 | ≤ 𝜐h} is an interval of the
length ≍ 𝜐 and then the union of such sets over 𝜉 = h𝛾 + ξ with indicated
𝛾 does not exceed R𝜐 with

(3.11) R :=
∑︁
𝛾

|⟨∇𝜉𝒜(𝜉)|𝜉=h𝛾, 𝜂⟩|−𝟣,

where we sum over set {𝛾 : |𝛾 − 𝛾*| ≳ h−𝜘 & |𝜆𝛾(h𝛾) − 𝜏 | ≤ 2Ch}. The
last restriction is due to the fact that 𝒯 (𝜉) ̸= ∅ only for points with
|𝜆𝛾(h𝛾)− 𝜏 | ≤ 2Ch.

One can see easily that R ≍ h−𝟣| log h|. Then, as R𝜐 ≤ 𝜖′ the set
[−𝜖𝟢, 𝜖𝟢] ∖

⋃︀
𝛾 𝒯 (h(𝛾 + ξ)) contains an interval of the length ℓ = 𝜐 and for

all t, belonging to this interval,

(3.12) |𝜆𝛾(h(𝛾 + ξ+ δξ(t)))− 𝜏 | ≥ 𝜖𝜐h.

Then we need to take 𝜐 = 𝜖R−𝟣 = 𝜖h| log h|−𝟣 and for d = 2 as far as
non-resonant are concerned, Theorem 1.3 is almost proven12).

12) We need to cover almost antipodal points and it will be done in the end of this
subsection. We need to consider resonant points and as well, and it will be done in the
next subsection.



632 BETHE-SOMMERFELD CONJECTURE

Case d ≥ 3. In this case we need to be more subtle and to make (d − 1)
steps. We start from the point 𝜉* = h(𝛾* + ξ*); again without any loss of
the generality we assume that ξ* is strictly inside 𝒪* (at the distance at
least C 𝜖* from the border). Then after each step below it still will be the
case (with decreasing constant).

Step I . On the first step we select 𝜂 = 𝜂𝟣 and consider only 𝛾 such that
(3.8) holds; more precisely, the left-hand expression needs to be greater than
the right-hand expression, multiplied by 𝜖 13). Then R ≍ h𝟣−d and therefore
exists ξ* such that 𝜆𝛾*(ξ

*) = 𝜏 and |𝜆𝛾(ξ*)− 𝜏 | ≥ 𝜖𝜐𝟣h with 𝜐𝟣 = 𝜖hd−𝟣 for
all 𝛾 indicated above.

Step II . On the second step we select 𝜂 = 𝜂𝟤 perpendicular to 𝜂𝟣. To
preserve inequality (3.12) (with smaller constant 𝜖) for 𝛾, already covered
by Step I , we need to take |δ𝜉| ≤ 𝜖′𝜐𝟣 and consider δξ = t𝜂𝟤 + O(t𝟤).

Then the same arguments as before results in inequality (3.12) with
𝜐 := 𝜐𝟤 = 𝜖R−𝟣𝜐𝟣 for a new bunch of points. Then for d = 3 as far as
non-resonant are concerned, Theorem 1.3 is almost proven13).

Next steps . Continuing this process, on k-th step we select 𝜂k orthogonal
to 𝜂𝟣, ... , 𝜂k−𝟣. Then we get 𝜐k = 𝜖R−𝟣𝜐k−𝟣 and on the last (d − 1)-th step
we achieve a separation at least 𝜐d−𝟣 = 𝜖R𝟣−d .

Remark 3.2. In Subsection 4.1 we discuss how to increase 𝜐 for d ≥ 3.

Almost Antipodal Points. We need to cover points with |𝜉−𝜉*k | ≤ h𝟣−𝜅

for k = 1, ... , 2p − 1 and as we already know for each k (and fixed ξ) there
exists no more than one such point 𝜉 = h(𝛾 + ξ) with |𝜆𝛾(ξ)− 𝜏 | ≲ h𝟣+𝛿.

We take care of such points during Step I . Observe that during this step
we automatically take care of any point with

(3.13) |∇𝜉𝒜𝟢(𝜉), 𝜂𝟣⟩| ≥ 𝜖h,

assuming that |t| ≤ 𝜖𝟢 with sufficiently small 𝜖𝟢 = 𝜖𝟢(𝜖).
Let us select 𝜂𝟣 so that on 𝜂𝟣 quadratic forms at points 𝜉*𝟣 , ... , 𝜉

*
𝟤p−𝟣 in

condition (1.14) are different from one at point 𝜉* by at least 𝜖𝟢. Then for
each j = 1, ... , 2p − 1 the the measure of the set

{t : |t| ≤ 𝜖𝟢, |𝜆𝛾j (ξ+ δξ(t))| ≤ 𝜐h}
13) One can see easily, that the opposite inequality holds.
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does not exceed Ch−𝟣(𝜐h)
𝟣
𝟤 , and then the measure of the union of such sets

(by j) also does not exceed it and therefore for 𝜐𝟣 = 𝜖𝟣hd−𝟣 (for d ≥ 3) and
𝜐𝟣 = 𝜖𝟣h| log h|−𝟣 (for d = 2) with sufficiently small 𝜖𝟣 we can find t : |t| ≤ 𝜖𝟢
so that condition (3.8) is fulfilled for all non-resonant points.

3.3 Resonant Points

Next on this step we need to separate 𝜆𝛾*(ξ) from all 𝜆n(ξ) (save one,
coinciding with it) by the distance at least 𝜐h by choosing ξ. We can
during the same steps as described in the previous section: let 𝜆𝛾,j(ξ) denote
eigenvalues of 𝒜𝛾(ξ) with j = #X(𝛾h).

Observe that both 𝒜𝛾(ξ) and #X(𝛾h) depend on the equivalency class
[𝛾] of 𝛾 rather than on 𝛾 itself and that

(3.14)
∑︁
[𝛾]

#X(𝛾h) =
∑︁

𝟣≤n≤d−𝟣

#(Ξn) = O(h𝟣−d+𝜎′
+ 𝜀𝟥/𝟤h−d−𝜎),

where on the left [𝛾] runs over all equivalency classes with 𝛾 ∈
⋃︀

𝟣≤n≤d−𝟣 Ξn.
We also observe that for resonant points

(3.15) | sin𝜙(𝜉, 𝜉*)| ≥ 𝜖h𝛿

and therefore for 𝜆′𝛾, which are eigenvalues of 𝒜𝟢(h(𝛾 + ξ)) 14) (3.10) holds
and signs are the same for 𝛾 in the same block. On the other hand,

(3.16) |d
dt

ℬ(h(𝛾 + ξ* + δξ(t))| ≤ C𝜀h ≪ h𝟣+𝛿′

and therefore for 𝜆𝛾,j(t) which are eigenvalues of 𝒜[𝛾](ξ) (3.10) sill holds.
Therefore the arguments of each Step I , Step II etc extends to resonant

points as well. However the number of new points to be taken into account
on each step is given by the right-hand expression of (3.14) and therefore R
needs to be redefined

(3.17) R := h𝟣−d + 𝜀𝟥/𝟤h−d−𝜎.

This leads to the final expression (1.15) for 𝜐. Theorem 1.3 is proven.

14) Recall, that 𝒜𝟢 is diagonal matrix.
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4 Discussion

4.1 Improving 𝜐

Can we improve (increase) expression for 𝜐 given by (1.15)? I do not know

if one can do anything with the restriction 𝜐 ≤ 𝜖𝜀−
𝟥
𝟤
(d−𝟣)hd(d−𝟣) which is

due to resonant points, but restriction 𝜐 ≤ 𝜖h(d−𝟣)𝟤 could be improved for
d ≥ 3, which makes sense only if

(4.1) h ≤ h ≤ h
𝟤
𝟥
−𝜎.

Indeed, on Step n, n ≥ 2, we need to take into account only non-resonant
points belonging to the set

(4.2) 𝒥 := h(Γ* + ξ) ∩ {𝜉 : |𝒜𝟢(𝜉)− 𝜏 | ≤ C𝜐n−𝟣h}.

Determination of upper estimate for such number falls into realm of the
Number Theory. I am familiar only with the estimate

(4.3) #𝒥 ≤ Ch𝟣−d𝜐n−𝟣 + Ch𝟤−d−𝟤/(d+𝟣),

which follows from Theorem at page 224 of [Gui]. Probably it was improved,
but those improvement have no value here.

The second term in the right-hand expression of (4.2) is larger, however,
the second term in the right-hand expression of (3.17) is still larger and
therefore on each Step n ≥ 2 we have R := 𝜀𝟥/𝟤h−d−𝜎, and this leads us to
the following improvement of Theorem 1.3:

Theorem 4.1. In the framework of Theorem 1.1, under additional assump-
tions d ≥ 3 and (4.1), the statement of Theorem 1.3 holds with

(4.4) 𝜐 = 𝜖𝜀−𝟥(d−𝟤)/𝟤hd𝟤−d−𝟣−𝜎

with arbitrarily small exponent 𝜎 > 0. In particular, 𝜐 = 𝜖hd𝟤−𝟧d/𝟤+𝟥−𝜎 for
𝜀 = h.

Remark 4.2. One can try to improve further (4.4) for 𝜀 ≤ h. In this case
resonant points become the main obstacle. In the definition of resonant
points we need to take 𝜌 = h𝟣/𝟤−𝛿; however only resonant points 𝜉 with

X(𝜉) ∩ {𝜉′ : |𝒜𝟢(𝜉′)− 𝜏 | ≤ C (𝜐n−𝟣h + 𝜀)} ≠ ∅

should be taken into account on n-th step.
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4.2 Condition (1.14)

We know that for connected component Σ𝜏 this condition (1.14) is fulfilled
automatically.

On the other hand, let Σ𝜏 =
⋃︀

𝟣≤j≤p Σ
(j)
𝜏 with connected Σ

(j)
𝜏 . Let p = 2

and condition (1.14) be violated at each point of Σ𝜏 . Does it mean that

Σ
(𝟤)
𝜏 = Σ

(𝟣)
𝜏 + 𝜂 (i.e. Σ

(𝟣)
𝜏 shifted by 𝜂)?

Next, let Σ
(j)
𝜏 = Σ

(𝟣)
𝜏 + 𝜂j for j = 2, ... , q. Then for these components

instead of condition (1.14) one can impose the similar condition involving
level surfaces 𝜎𝜏 ,𝜀 of 𝒜𝟢(𝜉) + 𝜀B𝟢(𝜉). This would affect only Step I of our
analysis, leading to 𝜐𝟣,𝗇𝖾𝗐 := min(𝜀h, 𝜐𝟣) with 𝜐𝟣 defined without taking into
account of antipodal points. Since 𝜐𝟣 ≤ hd−𝟣 anyway, under assumption
𝜀 ≥ h we get the same formulae for 𝜐 for d ≥ 3 as stated in Theorems 1.3
and 4.1, while for d = 2 we get

(4.5) 𝜐 = h min(𝜀, 𝜀−𝟥/𝟤h𝜎).

4.3 Differentiability

Definitely our result would follow from the asymptotics of the density of
states

N′
h(𝜏) :=

dNh(𝜏)

d𝜏
= (𝜅′𝟢(𝜏) + o(1))h−d as h → +0,(4.6)

where

Nh(𝜏) =

∫︁
𝒪*

Nh(ξ, 𝜏) dξ(4.7)

is an integrated density of states:

Nh(ξ, 𝜏) = #{𝜇 < 𝜏 , 𝜇 is an eigenvalue of Ah(ξ)}.(4.8)

However, despite Nh(ξ, 𝜏) has a complete asymptotics (see f.e. [Ivr3]), we
do not know anything about asymptotics of N′

h(𝜏) (even N′
h(𝜏) ≍ h−d is

unknown).

4.4 Bethe-Sommerfeld Conjecture for Almost
Periodic Perturbations

While both the proof of Bethe-Sommerfeld conjecture and the statement
of Theorem 1.3 rely upon periodicity, the conjecture itself (as stated in
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Theorem 1.1) does not. It is only natural to try to prove it for almost
periodic perturbations as in [Ivr3].
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100 years of Weyl’s Law

Victor Ivrii

July 11, 2019

Abstract

We discuss the asymptotics of the eigenvalue counting function
for partial differential operators and related expressions paying the
most attention to the sharp asymptotics. We consider Weyl asymp-
totics, asymptotics with Weyl principal parts and correction terms
and asymptotics with non-Weyl principal parts. Semiclassical mi-
crolocal analysis, propagation of singularities and related dynamics
play crucial role.

We start from the general theory, then consider Schrödinger and
Dirac operators with the strong magnetic field and, finally, applica-
tions to the asymptotics of the ground state energy of heavy atoms
and molecules with or without a magnetic field.

1 Introduction

A Bit of History

In 1911, Hermann Weyl, who at that time was a young German mathemati-
cian specializing in partial differential and integral equations, proved the
following remarkable asymptotic formula describing distribution of (large)
eigenvalues of the Dirichlet Laplacian in a bounded domain X ⊂ ℝd :

(1.1) N(𝜆) = (2𝜋)−d𝜔d vol(X )𝜆d/𝟤(1 + o(1)) as 𝜆→ +∞,

where N(𝜆) is the number of eigenvalues of the (positive) Laplacian, which
are less than 𝜆 1), 𝜔d is a volume of the unit ball in ℝd , vol(X ) is the

1) 𝖭(𝜆) is called the eigenvalue counting function.
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volume of X . This formula was actually conjectured independently by
Arnold Sommerfeld [Som] and Hendrik Lorentz [Lor] in 1910 who stated
the Weyl’s Law as a conjecture based on the book of Lord Rayleigh “The
Theory of Sound” (1887) (for details, see [ANPS]).

H. Weyl published several papers [2–5,W1](1911–1915) devoted to the
eigenvalue asymptotics for the Laplace operator (and also the elasticity
operator) in a bounded domain with regular boundary. In [W4], he published
what is now known as Weyl’s conjecture

(1.2) N(𝜆) = (2𝜋)−d𝜔d vol(X )𝜆d/𝟤 ∓ 1

4
(2𝜋)𝟣−d𝜔d−𝟣 vol

′(𝜕X )𝜆(d−𝟣)/𝟤

as 𝜆→ +∞

for Dirichlet and Neumann boundary conditions respectively where vol′(𝜕X )
is the (d − 1)-dimensional volume of 𝜕X ∈ C∞. Both these formulae appear
in the toy-model of a rectangular box X = {0 < x𝟣 < a𝟣, ... , 0 < xd < ad}
and then N(𝜆) is the number of integer lattice points in the part of ellipsoid
{z𝟤

𝟣/a𝟤
𝟣+...+z𝟤

d/a𝟤
d < 𝜋𝟤𝜆} with zj > 0 and zj ≥ 0 for Dirichlet and Neumann

boundary conditions respectively2).
After his pioneering work, a huge number of papers devoted to spectral

asymptotics were published. Among the authors were numerous prominent
mathematicians.

After H. Weyl, the next big step was made by Richard Courant [Cour](1920),
who further developed the variational method and recovered the remainder
estimate O(𝜆(d−𝟣)/𝟤 log 𝜆). The variational method was developed further by
many mathematicians, but it lead to generalizations rather than to getting
sharp remainder estimates and we postpone its discussion until Section 3.
Here we mention only Mikhail Birman, Elliott Lieb and Barry Simon and
their schools.

The next development was due to Torsten Carleman [C1,C2](1934, 1936)
who invented the Tauberian method and was probably the first to consider
an arbitrary spacial dimension (H. Weyl and R. Courant considered only
dimensions 2 and 3) followed by Boris Levitan [Lev1](1952) and V. G. Avaku-
movič [Av](1956) who, applied hyperbolic operator method (see Section 1)
to recover the remainder estimate O(𝜆(d−𝟣)/𝟤), but only for closed manifolds
and also for e(x , x ,𝜆) away from the boundary3).

2) Finding sharp asymptotics of the number of the lattice points in the inflated domain
is an important problem of the number theory.

3) Where here and below e(x , y ,𝜆) is the Schwartz kernel of the spectral projector.

https://en.wikipedia.org/wiki/Arnold_Sommerfeld
https://en.wikipedia.org/wiki/Hendrik_Lorentz
https://en.wikipedia.org/wiki/John_William_Strutt,_3rd_Baron_Rayleigh
https://archive.org/details/theoryofsound02raylrich
https://archive.org/details/theoryofsound02raylrich
https://en.wikipedia.org/wiki/Richard_Courant
https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D1%80%D0%BC%D0%B0%D0%BD%2C_%D0%9C%D0%B8%D1%85%D0%B0%D0%B8%D0%BB_%D0%A8%D0%BB%D1%91%D0%BC%D0%BE%D0%B2%D0%B8%D1%87
https://en.wikipedia.org/wiki/Elliott_H._Lieb
https://en.wikipedia.org/wiki/Barry_Simon
https://en.wikipedia.org/wiki/Torsten_Carleman
https://en.wikipedia.org/wiki/Boris_Levitan
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After this, Lars Hörmander [Hör1, Hör2](1968, 1969) applied Fourier
integral operators in the framework of this method. Hans Duistermaat and
Victor Guillemin [DG](1975) recovered the remainder estimate o(𝜆(d−𝟣)/𝟤)
under the assumption that

(1.3) The set of all periodic geodesics has measure 0

observing that for the sphere neither this assumption nor (1.2) hold. Here,
we consider the phase space T *X equipped with the standard measure dxd𝜉
where X is a manifold4). This was a very important step since it connected
the sharp spectral asymptotics with classical dynamics.

The main obstacle was the impossibility to construct the parametrix of
the hyperbolic problem near the boundary5). This obstacle was partially
circumvented by Robert Seeley [See1,See2](1978, 1980) who recovered re-
mainder estimate O(𝜆(d−𝟣)/𝟤); his approach we will consider in Subsection 4.
Finally the Author [Ivr1](1980), using very different approach, proved (1.2)
under assumption that

(1.4) The set of all periodic geodesic billiards has measure 0,

which obviously generalizes (1.3). Using this approach, the Author in [Ivr2]
(1982) proved (1.1) and (1.2) for elliptic systems on manifolds without
boundary; (1.2) was proven under certain assumption similar to (1.3).

The new approaches were further developed during the 35 years to follow
and many new ideas were implemented. The purpose of this article is to
provide a brief and rather incomplete survey of the results and techniques.
Beforehand, let us mention that the field was drastically transformed.

First, at that time, in addition to the problem that we described above,
there were similar but distinct problems which we describe by examples:

(b) Find the asymptotics as 𝜆→ +∞ of N(𝜆) for the Schrödinger operator
Δ+ V (x) in ℝd with potential V (x) → +∞ at infinity;

(c) Find the asymptotics as 𝜆→ −0 of N(𝜆) for the Schrödinger operator in
ℝd with potential V (x) → −0 at infinity (decaying more slowly than |x |−𝟤);

4) In fact the general scalar pseudodifferential operator and Hamiltonian trajectories
of its principal symbol were considered.

5) Or even inside for elliptic systems with the eigenvalues of the principal symbol
having the variable multiplicity.

https://en.wikipedia.org/wiki/Lars_H%C3%B6rmander
https://en.wikipedia.org/wiki/Hans_Duistermaat
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(d) Find the asymptotics as h → +0 of N−(h) the number of the negative
eigenvalues for the Schrödinger operator h𝟤Δ+ V (x).

These four problems were being studied separately albeit by rather
similar methods. However, it turned out that the latter problem (d) is more
fundamental than the others which could be reduced to it by the variational
Birman-Schwinger principle.

Second, we should study the local semiclassical spectral asymptotics ,
i.e. the asymptotics of

∫︀
e(x , x , 0)𝜓(x) dx where 𝜓 ∈ C∞

𝟢 supported in the
ball of radius 1 in which6) V is of magnitude 1 7). By means of scaling we
generalize these results for 𝜓 supported in the ball of radius 𝛾 in which6)

V is of magnitude 𝜌 with 𝜌𝛾 ≥ h because in scaling h ↦→ h/𝜌𝛾. Then in
the general case we apply partition of unity with scaling functions 𝛾(x) and
𝜌(x).

Third, in the singular zone {x : 𝜌(x)𝛾(x) ≤ h}b we can apply variational
estimates and combine them with the semiclassical estimates in the regular
zone {x : 𝜌(x)𝛾(x) ≥ h}. It allows us to consider domains and operators
with singularities.

Some further developments will be either discussed or mentioned in the
next sections. Currently, I am working on the Monster book [Ivr4] which
summarizes this development. It is almost ready and is available online and
we will often refer to it for details, exact statements and proofs.

Finally, I should mention that in addition to the variational methods
and method of hyperbolic operator, other methods were developed: other
Tauberian methods (like the method of the heat equation or the method of
resolvent) and the almost-spectral projector method [ST]. However, we will
neither use nor even discuss them; for survey of different methods, see [RSS].

Method of the Hyperbolic Operator

The method of the hyperbolic operator is one of the Tauberian methods
proposed by T. Carleman. Applied to the Laplace operator, it was designed
as follows: let e(x , y ,𝜆) be the Schwartz kernel of a spectral projector and

6) Actually, in the proportionally larger ball.
7) Sometimes, however, we consider pointwise semiclassical spectral asymptotics , i.e.

asymptotics of e(x , x , 𝟢).
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let

(1.5) u(x , y , t) =

∫︁ ∞

𝟢

cos(𝜆t) d𝜆e(x , y ,𝜆𝟤);

observe, that now 𝜆𝟤 is the spectral parameter. Then, u(x , y , t) is a propa-
gator of the corresponding wave equation and satisfies

utt +Δu = 0,(1.6)

u|t=𝟢 = 𝛿(x − y), u|t=𝟢 = 0(1.7)

(recall that Δ is a positive Laplacian).
Now we need to construct the solution of (1.6)–(1.7) and recover e(x , y , t)

from (1.5). However, excluding some special cases, we can construct the
solution u(x , y , t) only modulo smooth functions and only for t : |t| ≤ T ,
where usually T is a small constant. It leads to

(1.8) Ft→𝜏

(︀
𝜒̄T (t)u(x , x , t)

)︀
= T

∫︁ ̂︀𝜒((𝜆− 𝜏)T ) d𝜆e(x , x ,𝜆𝟤) =

c𝟢(x)𝜆
d−𝟣 + c𝟣(x)𝜆

d−𝟤 + O(𝜆d−𝟥)

where F denotes the Fourier transform, 𝜒̄ ∈ C∞
𝟢 (−1, 1), 𝜒̄(0) = 1, 𝜒̄′(0) = 0

and 𝜒̄T (t) = 𝜒̄(t/T ) 8).
Then using Hörmander’s Tauberian theorem9), we can recover

(1.9) e(x , x ,𝜆𝟤) = c𝟢(x)d
−𝟣𝜆d + O(𝜆d−𝟣T−𝟣).

To get the remainder estimate o(𝜆d−𝟣) instead, we need some extra
arguments. First, the asymptotics (1.8) holds with a cut-off:

(1.10) Ft→𝜏

(︀
𝜒̄T (t)(Qxu)(x , x , t)

)︀
= T

∫︁ ̂︀𝜒((𝜆− 𝜏)T ) d𝜆(Qxe)(x , x ,𝜆𝟤) =

c𝟢Q(x)𝜆
d−𝟣 + c𝟣Q(x)𝜆

d−𝟤 + OT (𝜆
d−𝟥)

where Qx = Q(x ,Dx) is a 0-order pseudo-differewntial operator (acting with
respect to x only, before we set x = y ; and T = T𝟢 is a small enough
constant. Then the Tauberian theory implies that

(1.11) (Qxe)(x , x ,𝜆𝟤) = c𝟢Q(x)d
−𝟣𝜆d + c𝟣Q(x)(d − 1)−𝟣𝜆d−𝟣+

O
(︀
𝜆d−𝟣T−𝟣µ(supp(Q))

)︀
+ oQ,T

(︀
𝜆d−𝟣

)︀
8) In fact, there is a complete decomposition.
9) Which was already known to Boris Levitan.
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where µ = dxd𝜉
dg

is a natural measure on the energy level surface Σ = {(x , 𝜉) :
g(x , 𝜉) = 1} and we denote by supp(Q) the support of the symbol Q(x , 𝜉).

On the other hand, propagation of singularities (which we discuss in
more details later) implies that if for any point (x , 𝜉) ∈ supp(Q) geodesics
starting there are not periodic with periods ≤ T then asymptotics (1.10)
and (1.11) hold with T .

Now, under the assumption (1.4), for any T ≥ T𝟢 and 𝜀 > 0, we
can select Q𝟣 and Q𝟤, such that Q𝟣 + Q𝟤 = I , µ(supp(Q𝟣)) ≤ 𝜀 and for
(x , 𝜉) ∈ supp(Q𝟤) geodesics starting from it are not periodic with periods
≤ T . Then, combining (1.11) with Q𝟣,T𝟢 and with Q𝟤,T , we arrive to

(1.12) e(x , x ,𝜆𝟤) = c𝟢(x)d
−𝟣𝜆d + c𝟣(x)(d − 1)−𝟣𝜆d−𝟣+

O
(︀
𝜆d−𝟣(T−𝟣 + 𝜀)

)︀
+ o𝜀,T (𝜆

d−𝟣)

with arbitrarily large T and arbitrarily small 𝜀 > 0 and therefore

(1.13) e(x , x ,𝜆𝟤) = c𝟢(x)d
−𝟣𝜆d + c𝟣(d − 1)−𝟣𝜆d−𝟣 + O(𝜆d−𝟣T−𝟣).

holds. In these settings, c𝟣 = 0.
More delicate analysis of the propagation of singularities allows under

certain very restrictive assumptions to the geodesic flow to boost the remain-
der estimate to O(𝜆d−𝟣/ log 𝜆) and even to O(𝜆d−𝟣−𝛿) with a sufficiently
small exponent 𝛿 > 0.

2 Local Semiclassical Spectral Asymptotics

Asymptotics Inside the Domain

As we mentioned, the approach described above was based on the represen-
tation of the solution u(x , y , t) by an oscillatory integral and does not fare
well in (i) domains with boundaries because of the trajectories tangent to
the boundary and (ii) for matrix operators whose principal symbols have
eigenvalues of variable multiplicity. Let us describe our main method. We
start by discussing matrix operators on closed manifolds.

So, let us consider a self-adjoint elliptic matrix operator A(x ,D) of order
m. For simplicity, let us assume that this operator is semibounded from
below and we are interested in N(𝜆), the number of eigenvalues not exceeding
𝜆, as 𝜆 → +∞. In other words, we are looking for the number N−(h) of
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negative eigenvalues of the operator 𝜆−𝟣A(x ,D) − I = H(x , hD, h) with
h = 𝜆−𝟣/m 10).

Propagation of Singularities

Thus, we are now dealing with the semiclassical asymptotics. Therefore,
instead of individual functions, we should consider families of functions
depending on the semiclassical parameter h 11) and we need a semiclassical
microlocal analysis. We call such family temperate if ‖uh‖ ≤ Ch−M where
‖ · ‖ denotes usual L𝟤-norm.

We say that u := uh is s-negligible at (x̄ , 𝜉) ∈ T *ℝd if there exists a
symbol 𝜑(x , 𝜉), 𝜑(x̄ , 𝜉) = 1 such that ‖𝜑(x , hD)uh‖ = O(hs). We call the
wave front set of uh the set of points at which uh is not negligible and denote
by WFs(uh); this is a closed set. Here, −∞ < s ≤ ∞.

Our first result is rather trivial: if P = P(x , hD, h),

(2.1) WF s(u) ⊂ WF s(Pu) ∪ Char(P)

where Char(P) = {(x , 𝜉), detP𝟢(x , 𝜉) = 0}; we call P𝟢(x , 𝜉) := P(x , 𝜉, 0) the
principal symbol of P and Char(P) the characteristic set of L.

We need to study the propagation of singularities (wave front sets). To
do this, we need the following definition:

Definition 2.1. Let P𝟢 be a Hermitian matrix. Then P is microhyperbolic
at (x , 𝜉) in the direction ℓ ∈ T (T *ℝd), |ℓ| ≍ 1 if

(2.2) ⟨(ℓP𝟢)(x , 𝜉)v , v⟩ ≥ 𝜖|v |𝟤 − C |P𝟢(x , 𝜉)v |𝟤 ∀v

with constants 𝜖,C > 0 12).

Then we have the following statement which can be proven by the method
of the positive commutator :

Theorem 2.2. Let P = P(x , hD, h) be an h-pseudodifferential operator
with a Hermitian principal symbol. Let Ω ⋐ T *ℝd and let 𝜑j ∈ C∞ be real-
valued functions such that P is microhyperbolic in Ω in the directions ∇#𝜑j ,

10) If operator is not semi-bounded we consider the number of eigenvalues in the interval
(𝟢,𝜆) (or (−𝜆, 𝟢)) which could be reduced to the asymptotics of the number of eigenvalues
in the interval (−𝟣, 𝟢) (or (𝟢, 𝟣)) of H(x , hD, h).

11) Which in quantum mechanics is called Planck constant and usually is denoted by ℏ.
12) Here and below ℓP𝟢 in is the action of the vector field ℓ upon P𝟢.
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j = 1, ... , J where ∇#𝜑 = ⟨(∇𝜉𝜑),∇x⟩ − ⟨(∇x𝜑),∇𝜉⟩ is the Hamiltonian
field generated by 𝜑.

Let u be tempered and suppose that

WFs+𝟣(Pu) ∩ Ω ∩ {𝜑𝟣 ≤ 0} ∩ · · · ∩ {𝜑J ≤ 0} = ∅,(2.3)

WFs(u) ∩ 𝜕Ω ∩ {𝜑𝟣 ≤ 0} ∩ · · · ∩ {𝜑J ≤ 0} = ∅.(2.4)

Then,

WFs(u) ∩ Ω ∩ {𝜑𝟣 ≤ 0} ∩ · · · ∩ {𝜑J ≤ 0} = ∅.(2.5)

Proof. This is Theorem 2.1.2 from [Ivr4]. See the proof and discussion
there.

The above theorem immediately implies:

Corollary 2.3. Let H = H(x , hD, h) be an h-pseudodifferential operator
with a Hermitian principal symbol and let P = hDt − H. Let us assume that

(2.6) |𝜕x ,𝜉H𝟢v | ≤ C𝟢|v |+ C |(H𝟢 − 𝜏)v | ∀v .

Let u(x , y , t) be the Schwartz kernel of e ih−𝟣tH .

(i) For a small constant T * > 0,

(2.7) WF (u) ∩ {|t| ≤ T *, 𝜏 = 𝜏} ⊂ {|x − y |𝟤 + |𝜉 + 𝜂|𝟤 ≤ (C𝟢t)𝟤}.

(ii) Assume that H is microhyperbolic in some direction ℓ = ℓ(x , 𝜉) at the
point (x , 𝜉) at the energy level 𝜏 13). Then for a small constant T * > 0,

(2.8) WF (u) ∩ {0 ≤ ±t ≤ T *, 𝜏 = 𝜏} ⊂
{±(⟨ℓx , x − y⟩+ ⟨ℓ𝜉, 𝜉 + 𝜂⟩) ≥ ±𝜖𝟢t}.

Proof. It is sufficient to prove the above statements for t ≥ 0. We apply
Theorem 2.2 with

(i) 𝜑𝟣 = t and 𝜑𝟤 = t − C−𝟣
𝟢 (|x − x̄ |𝟤 + 𝜖𝟤)

𝟣
𝟤 + 𝜀,

(ii) 𝜑𝟣 = t and 𝜑𝟤 = (⟨ℓx , x − y⟩+ ⟨ℓ𝜉, 𝜉 + 𝜂⟩)− 𝜖𝟢t + 𝜀,

13) Which means that H − 𝜏 is microhyperbolic in the sense of Definition 2.1.
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where 𝜀 > 0 is arbitrarily small.

Corollary 2.4. (i) In the framework of Corollary 2.3(ii) with ℓ = (ℓx , 0),
the inequality

(2.9) |Ft→h−𝟣𝜏𝜒T (t)(Q𝟣xu tQ𝟤y )(x , x , t)| ≤ Csh
−d(h/|t|)s

holds for all s, 𝜏 : |𝜏 − 𝜏 | ≤ 𝜖, h ≤ |t| ≲ T ≤ T * where Q𝟣x = Q𝟣(x , hDx),
Q𝟤y = Q𝟤(y , hDy) are operators with compact supports, tQ𝟤 is the dual
rather than the adjoint operator and we write it to the right of the function,
𝜒 ∈ C∞

𝟢 ([−1,−𝟣
𝟤
] ∪ [𝟣

𝟤
, 1]), 𝜒T (t) = 𝜒(t/T ), and 𝜖, T * are small positive

constants.

(ii) In particular, we get the estimate O(hs) as T* := h𝟣−𝛿 ≤ |t| ≤ T ≤ T *.

(iii) More generally, when ℓ = (ℓx , ℓ𝜉), the same estimates hold for the
distribution 𝜎Q𝟣,Q𝟤(t) =

∫︀
(Q𝟣xu tQ𝟤y )(x , x , t) dx .

Proof. (i) If t ≍ 1, (2.9) immediately follows from Corollary 2.3(ii). Con-
sider t ≍ T with h ≤ T ≤ T * and make the rescaling t ↦→ t/T , x ↦→
(x − y)/T , h ↦→ h/T . We arrive to the same estimate (with T−d(h/T )s

in the right-hand expression where the factor T−d is due to the fact that
u(x , y , t) is a density with respect to y). The transition from |t| ≍ T to
|t| ≲ T is trivial.

(ii) Statement (ii) follows immediately from Statement (i).

(iii) Statement (iii) follows immediately from Statements (i) and (ii) if we
apply the metaplectic transformation (x , 𝜉) ↦→ (x − B𝜉, 𝜉) with a symmetric
real matrix B .

Therefore under the corresponding microhyperbolicity condition, we
can construct (Q𝟣xu tQ𝟤y)(x , x , t) or 𝜎Q𝟣,Q𝟤(t) for |t| ≤ T* and then we
automatically get it for |t| ≤ T *. Since the time interval |t| ≤ T* is very
short, we are able to apply the successive approximation method.

Successive Approximation Method

Let us consider the propagator u(x , y , t). Recall that it satisfies the equations

(hDt − H)u = 0,(2.10)

u|t=𝟢 = δ(x − y)I(2.11)
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and therefore,

(hDt − H)u± tQ𝟤y = ∓ihδ(t)δ(x − y) tQ𝟤y ,(2.12)

where u± = uθ(±t), θ is the Heaviside function, I is the unit matrix,
Q𝟣x = Q𝟣(x , hDx), Q𝟤y = Q𝟤(y , hDy ) have compact supports, tQ is the dual
operator 14) and we write operators with respect to y on the right from u in
accordance with the notations of matrix theory.

Then,

(2.13) (hDt − H̄)u± tQ𝟤y = H ′u ∓ ihδ(t)δ(x − y) tQ𝟤y I

with H̄ = H(y , hDx , 0) obtained from H by freezing x = y and skipping lower
order terms and H ′ = H ′(x , y , hDx , h) = H − H̄ . Therefore,

u± tQ𝟤y = Ḡ±ihH ′u± tQ𝟤y ± ihḠ∓δ(t)δ(x − y) tQ𝟤y I .(2.14)

Iterating, we conclude that

u± tQ𝟤y =
∑︁

𝟢≤n≤N−𝟣

(Ḡ±ihH ′)nū± tQ𝟤y + (Ḡ±ihH ′)Nu± tQ𝟤y ,(2.15)

ū± = ∓ihḠ±δ(t)δ(x − y) tQ𝟤y I(2.16)

where Ḡ± is a parametrix of the problem

(2.17) (ihDt − H̄)v = f , supp(v) ⊂ {±t ≥ 0}

and G± is a parametrix of the same problem problem albeit for H .
Observe that

(2.18) H ′ =
∑︁

𝟣≤|𝛼|+m≤N−𝟣

(x − y)𝛼hmR𝛼,m(y , hDx)+∑︁
|𝛼|+m=N

(x − y)𝛼hmR𝛼,m(x , y , hDx);

therefore due to the finite speed of propagation, its norm does not exceed CT
as long as we only consider strips Π±

T := {0 ≤ ±t ≤ T}. Meanwhile, due to
the Duhamel’s integral, the operator norms of G± and Ḡ± from L𝟤(Π±

T ) to
L𝟤(Π±

T ) do not exceed Ch−𝟣T and therefore each next term in the successive

14) I.e. tQv = (Q*v†)† where v† is the complex conjugate to v .



LOCAL SEMICLASSICAL SPECTRAL ASYMPTOTICS 651

approximations (2.15) acquires an extra factor Ch−𝟣T 𝟤 = O(h𝛿) as long as

T ≤ h
𝟣
𝟤
(𝟣+𝛿) and the remainder term is O(hs) if N is large enough.

To calculate the terms of the successive approximations, let us apply
h-Fourier transform F(x ,t)→h−𝟣(𝜉,𝜏) with 𝜉 ∈ ℝd , 𝜏 ∈ ℂ∓ := {𝜏 : ∓ Im 𝜏 > 0}
and observe that δ(t)δ(x − y) ↦→ (2𝜋)−d−𝟣e−ih−𝟣⟨y ,𝜂⟩, tQ𝟤y and R𝛼,m become
multiplication by Q𝟤(y , 𝜂) and R𝛼,m(y , 𝜉) respectively, and Ḡ± becomes
multiplication by (𝜏 − H𝟢(y , 𝜉))−𝟣. Meanwhile, (xj − yj) becomes −ih𝜕𝜉j .

Therefore the right-hand expression of (2.15) without the remainder
term becomes a sum of terms ∓iℱm(y , 𝜉, 𝜏)h

m+𝟣e−ih−𝟣⟨y ,𝜂⟩ with m ≥ 0 and
ℱm(y , 𝜉, 𝜏) the sum of terms of the type

(2.19) (𝜏 − H𝟢(y , 𝜉))−𝟣b*(y , 𝜉)(𝜏 − H𝟢(y , 𝜉))−𝟣b*(y , 𝜉) · · · b*(y , 𝜉)×
(𝜏 − H𝟢(y , 𝜉))−𝟣Q𝟤(y , 𝜂)

with no more than 2m + 1 factors (𝜏 − H𝟢(y , 𝜉))−𝟣. Here, the b* are regular
symbols. In particular,

(2.20) ℱ𝟢(y , 𝜉, 𝜏) = (2𝜋)−d−𝟣(𝜏 − H𝟢(y , 𝜉))−𝟣Q𝟤(y , 𝜂).

If we add the expressions for u+ and u− instead of ℱm(y , 𝜉, 𝜏) with 𝜏 ∈ ℂ∓,
we get the distributions

(︀
ℱm(y , 𝜉, 𝜏 + i0)−ℱm(y , 𝜉, 𝜏 − i0)

)︀
with 𝜏 ∈ ℝ.

Applying the inverse h-Fourier transform with respect to x , operator Q𝟣x ,
and setting x = y , we cancel the factor e−ih−𝟣⟨y ,𝜂⟩ and gain a factor of h−d .
Thus we arrive to the Proposition 2.5(i) below; applying Corollary 2.4(ii)
and (iii), we arrive to its Statements (ii) and (iii). We also need to use

(2.21) u(x , y , t) =

∫︁
e ih−𝟣t𝜏 d𝜏e(x , y , 𝜏).

Proposition 2.5. (i) As T* = h𝟣−𝛿 ≤ T ≤ h
𝟣
𝟤
+𝛿 and 𝜒̄ ∈ C∞

𝟢 ([−1, 1])

(2.22) T

∫︁ ̂︀𝜒(︀(𝜆− 𝜏)Th−𝟣
)︀

d𝜏 (Q𝟣xe tQ𝟤y )(y , y , 𝜏) ∼∑︁
m≥𝟢

h−d+mT

∫︁ ̂︀𝜒(︀(𝜆− 𝜏)Th−𝟣
)︀
𝜅′m(y , 𝜏)d𝜏 ,

where ̂︀𝜒 is the Fourier transform of 𝜒̄ and

(2.23) 𝜅′m(y) =

∫︁ (︀
ℱm(y , 𝜉, 𝜏 + i0)−ℱm(y , 𝜉, 𝜏 − i0)

)︀
d𝜂.
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(ii) If H is microhyperbolic on the energy level 𝜏 on supp(Q𝟤) in some
direction ℓ with ℓx = 0 then (2.21) holds with T* ≤ T ≤ T *, |𝜆 − 𝜏 | ≤ 𝜖,
where T * is a small constant.

(iii) On the other hand, if ℓx ̸= 0, then (2.21) still holds with T ≤ T *, albeit
only after integration with respect to y :

(2.24) T

∫︁ ̂︀𝜒(︀(𝜆− 𝜏)Th−𝟣
)︀

d𝜏
(︀∫︁

(Q𝟣xe tQ𝟤y )(y , y , 𝜏) dy
)︀
∼∑︁

m≥𝟢

h−d+mT

∫︁ ̂︀𝜒(︀(𝜆− 𝜏)Th−𝟣
)︀
𝜘′

m(𝜏) d𝜏

with

(2.25) 𝜘′
m(𝜏) =

∫︁∫︁ (︀
ℱm(y , 𝜉, 𝜏 + i0)−ℱm(y , 𝜉, 𝜏 − i0)

)︀
dyd𝜂.

For details, proofs and generalizations, see Section 4.3 of [Ivr4].

Recovering Spectral Asymptotics

Let 𝛼(𝜏) denote (Q𝟣xe tQ𝟤y )(y , y , 𝜏) (which may be integrated with respect
to y) and 𝛽(𝜏 ) denote the convolution of its derivative 𝛼′(𝜏 ) with T̂︀𝜒(𝜏T/h).
To recover 𝛼(𝜏) from 𝛽(𝜏), we apply Tauberian methods. First of all, we
observe that under the corresponding microhyperbolicity condition the
distribution 𝜅′m(y , 𝜏 ) or 𝜘′

m(𝜏 ) is smooth and the right-hand side expression
of (2.22) or (2.24) does not exceed Ch−d+𝟣.

Let us take Q𝟣 = Q𝟤; then 𝛼(y , 𝜏 ) or 𝛼(𝜏 ) is a monotone non-decreasing
matrix function of 𝜏 . We choose a Hörmander function15) 𝜒̄(t) and estimate
the left-hand expressions of (2.22) or (2.24) from below by

𝜖𝟢T
(︀
𝛼(𝜆+ hT−𝟣)− 𝛼(𝜆− hT−𝟣)

)︀
,

which implies that
(︀
𝛼(𝜆+hT−𝟣)−𝛼(𝜆−hT−𝟣)

)︀
≤ CT−𝟣h−d+𝟣 and therefore

(2.26) |𝛼(𝜆)− 𝛼(𝜇)| ≤ Ch−d+𝟣|𝜆− 𝜇|+ CT−𝟣h−d+𝟣

as 𝜆,𝜇 ∈ (𝜏 − 𝜖, 𝜏 + 𝜖). Then (2.26) automatically holds, even if Q𝟣 and Q𝟤

are not necessarily equal.

15) I.e. a compactly supported function with positive Fourier transform.
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Further, (2.26) implies that

|𝛼(𝜆)− 𝛼(𝜇)− h−𝟣

∫︁ 𝜆

𝜇

𝛽(𝜏) d𝜏 | ≤ CT−𝟣h−d+𝟣(2.27)

and therefore

|
∫︁ (︁

𝛼(𝜆)− 𝛼(𝜇)− h−𝟣

∫︁ 𝜆

𝜇

𝛽(𝜏) d𝜏
)︁
𝜑(𝜇) d𝜇| ≤ CT−𝟣h−d+𝟣(2.28)

if 𝜒̄ = 1 on [−𝟣
𝟤
, 𝟣
𝟤
], 𝜆,𝜇 ∈ (𝜏 − 𝜖, 𝜏 + 𝜖) and 𝜑 ∈ C∞

𝟢 ((𝜏 − 𝜖, 𝜏 + 𝜖)) with∫︀
𝜑(𝜏) d𝜏 = 1.

On the other hand, even without the microhyperbolicity condition, our
successive approximation construction is not entirely useless. Let us apply
𝜙L(hDt − 𝜆) with 𝜙 ∈ C∞

𝟢 ([−1, 1]) and L ≥ h
𝟣
𝟤
−𝛿, and then set t = 0. We

arrive to

(2.29)

∫︁
𝜙((𝜏 − 𝜆)L−𝟣)

(︀
𝛼′(𝜏)− 𝛽(𝜏)

)︀
d𝜏 = O(h∞).

This allows us to extend (2.28) to 𝜑 ∈ C∞
𝟢 (bR)) with

∫︀
𝜑(𝜏) d𝜏 = 1. For

full details and generalizations, see Section 4.4 of [Ivr4].

Thus, we have proved:

Theorem 2.6. Let H = H(x , hD, h) be a self-adjoint operator. Then,

(i) The following asymptotics holds for L ≥ h
𝟣
𝟤
−𝛿:

(2.30)

∫︁
𝜑((𝜏 − 𝜆)L−𝟣)

(︁
d𝜏 (Q𝟣xe tQ𝟤y )(y , y , 𝜏)−

∑︁
m≥𝟢

h−d+m𝜅′(y , 𝜏) d𝜏
)︁

= O(h∞).

(ii) Let H be microhyperbolic on the energy level 𝜏 in some direction ℓ with
ℓx = 0. Then for |𝜆− 𝜏 | ≤ 𝜖,

(2.31) (Q𝟣xe tQ𝟤y )(y , y ,𝜆) = h−d𝜅𝟢(y ,𝜆) + O(h−d+𝟣)

with 𝜅m(y ,𝜆) :=
∫︀ 𝜆
−∞ 𝜅′m(y , 𝜏) d𝜏 .
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(iii) Let H be microhyperbolic on the energy level 𝜏 in some direction ℓ.
Then for |𝜆− 𝜏 | ≤ 𝜖,

(2.32)

∫︁
(Q𝟣xe tQ𝟤y )(y , y ,𝜆) dy = h−d𝜘𝟢(𝜆) + O(h−d+𝟣)

with 𝜘m(y) :=
∫︀ 𝜆
−∞ 𝜘′

m(𝜏) d𝜏 .

(iv) In particular, it follows from (2.20) that

𝜅𝟢(𝜆, x) = (2𝜋)−d

∫︁
q𝟢
𝟣(x , 𝜉)θ(𝜆− H𝟢(x , 𝜉))q𝟢

𝟤(x , 𝜉) d𝜉(2.33)

and

𝜘𝟢(𝜆) = (2𝜋)−d

∫︁
q𝟢
𝟣(x , 𝜉)θ(𝜆− H𝟢(x , 𝜉))q𝟢

𝟤(x , 𝜉) dxd𝜉(2.34)

Remark 2.7. (i) So far we have assumed that Q𝟣,Q𝟤 had compactly sup-
ported symbols in (x , 𝜉). Assuming that these symbols are compactly
supported with respect to x only, in particular when Q𝟣 = 𝜓(x), Q𝟤 = 1,
with 𝜓 ∈ C∞

𝟢 (X ), we need to assume that

(2.35) {𝜉 : ∃x ∈ X : SpecH𝟢(x , 𝜉) ∩ (−∞,𝜆+ 𝜖𝟢] ̸= ∅} is a compact set.

(ii) If we assume only that

(2.36) {𝜉 : ∃x ∈ X : SpecH𝟢(x , 𝜉) ∩ (𝜇− 𝜖𝟢,𝜆+ 𝜖𝟢] ̸= ∅} is a compact set,

instead of (2.31) and (2.32), we get

|(Q𝟣xe tQ𝟤y )(y , y ,𝜆,𝜇)− h−𝟣𝜅𝟢(y ,𝜆,𝜇)| ≤ Ch−d+𝟣(2.37)

and

|
∫︁∫︁

(Q𝟣xe tQ𝟤y )(y , y ,𝜆,𝜇) dy − h−𝟣𝜘𝟢(𝜆,𝜇)| ≤ Ch−d+𝟣,(2.38)

where 𝜇 ≤ 𝜆, e(x , y ,𝜆,𝜇) := e(x , y ,𝜆)−e(x , y ,𝜇), 𝜅m(y ,𝜆) :=
∫︀ 𝜆
𝜇
𝜅′m(y , 𝜏 ) d𝜏 ,

𝜘m(y ,𝜆) :=
∫︀ 𝜆
𝜇
𝜘′

m(y , 𝜏) d𝜏 and we assume that the corresponding microhy-
perbolicity assumption is fulfilled on both energy levels 𝜇 and 𝜆.
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(iii) If H𝟢(x , 𝜉) is an elliptic symbol which is positively homogeneous of
degree m > 0 with respect to 𝜉, then the microhyperbolicity condition
is fulfilled with ℓ = (0,±𝜉) on energy levels 𝜏 ̸= 0. Furthermore, the
compactness condition of (ii) is fulfilled, and if H𝟢(x , 𝜉) is also positive-
definite, then the compactness condition of (i) is also fulfilled.

Second Term and Dynamics

Propagation of Singularities To derive two-term asymptotics, one can
use the scheme described in Section 1, albeit one needs to describe the
propagation of singularities. For matrix operators, this may be slightly
tricky.

Let us introduce the characteristic symbol g(x, ξ) := det(𝜏 − H𝟢(x, 𝜉))
where x = (x𝟢, x), ξ = (𝜉𝟢, 𝜉) etc; then Char(𝜉𝟢 − H(x , 𝜉)) = {(x , ξ) :

g(x , ξ) = 0}. Let 𝜉𝟢 be a root of multiplicity r of g(x , 𝜉𝟢, 𝜉); then g
(𝛼)
(𝛽) (x , ξ) =

0 for all 𝛼, 𝛽 : |𝛼|+ |𝛽| < r . Let us consider the r -jet of g at such a point:

(2.39) g(x ,ξ)(y ,η) :=
∑︁

𝛼,𝛽:|𝛼|+|𝛽|<r

1

𝛼!𝛽!
g
(𝛼)
(𝛽) (x , ξ)y

𝛽η𝛼;

it is a hyperbolic polynomial with respect to 𝜂𝟢. Consider its hyperbolic-
ity cone K (x , ξ), which is the connected component of {(y; η) ∈ ℝ𝟤d+𝟤 :
g(x ,ξ)(y, η) ̸= 0} containing {(y , 𝜂) : 𝜂𝟢 = 1, y = 𝜂 = 0} and the dual
hyperbolicity cone

(2.40) K#(x , ξ) = {(y′,η′) : ⟨y′,η⟩ − ⟨y,η′⟩ > 0} ⊂ {y𝟢 = 0}.

Definition 2.8. (i) An absolutely continuous curve (x(t), ξ(t)) (with x𝟢 =
t) is called a generalized Hamiltonian trajectory if a.e.

(2.41) (1,
dx

dt
;

dξ

dt
) ∈ K#(x , 𝜉𝟢, 𝜉).

Note that 𝜉𝟢 = 𝜏 remains constant along the trajectory.

(ii) Let 𝒦±(x , ξ) denote the union of all generalized Hamiltonian trajectories
issued from (x , ξ) in the direction of increasing/decreasing t.
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If g = 𝛼g r
𝟣 where 𝛼 ̸= 0 and g𝟣 = 0 =⇒ ∇g𝟣 ̸= 0, the generalized

Hamiltonian trajectories are just (ordinary) Hamiltonian trajectories of g𝟣

and 𝒦±(x , ξ) are just half-trajectories16).
The following theorem follows from Theorem 2.2:

Theorem 2.9. If u(x , y , t) is the Schwartz kernel of e ih−𝟣tH , then

(2.42) WF(u) ⊂ {(x , 𝜉; y ,−𝜂; t, 𝜏) : ±t > 0, (t, x ; 𝜏 , 𝜉) ∈ K±(0, y ; 𝜏 , 𝜂)}.

Then, we obtain:

Corollary 2.10. In the framework of Theorem 2.9,

WF(𝜎Q𝟣,Q𝟤(t)) ⊂ {(t, 𝜏) : ∃(x , 𝜉) : (t, x ; 𝜏 , 𝜉) ∈ 𝒦±(0, x ; 𝜏 , 𝜉)},(2.43)

and for any x ,

WF(Q𝟣xu tQ𝟤y ) ⊂ {(t, 𝜏) : ∃𝜉, 𝜂 : (t, x ; 𝜏 , 𝜉) ∈ 𝒦±(0, x ; 𝜏 , 𝜂)}.(2.44)

Definition 2.11. (i) A periodic point is a point (x , 𝜉) which satisfies (t, x ; 𝜏 , 𝜉) ∈
𝒦±(0, x ; 𝜏 , 𝜉) for some t ̸= 0.

(ii) A loop point is a point x which satisfies (t, x ; 𝜏 , 𝜉) ∈ 𝒦±(0, x ; 𝜏 , 𝜂) for
some t ̸= 0, 𝜉, 𝜂; we call 𝜂 a loop direction.

Application to Spectral Asymptotics Combining Corollary 2.10 with
the arguments of Section 1, we arrive to

Theorem 2.12. (i) In the framework of Theorem 2.6(ii) let for some x
the set of all loop directions at point x on energy level 𝜆 have measure 0 17).
Then,

(2.45) (Q𝟣xe tQ𝟤y )(y , y ,𝜆) = h−d𝜅𝟢(y ,𝜆) + h𝟣−d𝜅𝟣(y ,𝜆) + o(h−d+𝟣).

(ii) In the framework of Theorem 2.6(iii), suppose that the set of all periodic
points on energy level 𝜆 has measure 0 18). Then,

(2.46)

∫︁
(Q𝟣xe tQ𝟤y )(y , y ,𝜆) dy = h−d𝜘𝟢(𝜆) + h𝟣−d𝜘𝟣(𝜆) + o(h−d+𝟣).

16) Since e ih−𝟣tH describes evolution with revert time, time is also reverted along
(generalized) Hamiltonian trajectories.

17) There exists a natural measure µ𝜆,x on {𝜉 : 𝖽𝖾𝗍(𝜆− H𝟢(x , 𝜉)) = 𝟢}.
18) There exists a natural measure µ𝜆 on {(x , 𝜉) : 𝖽𝖾𝗍(𝜆− H𝟢(x , 𝜉)) = 𝟢}.
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Remark 2.13. (i) When studying propagation, we can allow H to also de-
pend on x𝟢 = t; for all details and proofs, see Sections 2.1 and 2.2 of [Ivr4].

(ii) Recall that e(x , y ,𝜆) is the Schwartz kernel of θ(𝜆− H). We can also
consider e𝜈(x , y , 𝜏 ) which is the Schwartz kernel of (𝜆−H)𝜈+ := (𝜆−H)𝜈θ(𝜆−
H) with 𝜈 ≥ 0. Then in the Tauberian arguments, h−d × (h/T ) is replaced
by h−d × (h/T )𝟣+𝜈 and then in the framework of Theorem 2.6(ii) and (iii)
remainder estimates are O(h−d+𝟣+𝜈) and in the framework of Theorem 2.6(i)
and (ii), the remainder estimates are o(h−d+𝟣+𝜈); sure, in the asymptotics
one should include all the necessary terms 𝜅mh−d+m or 𝜘mh−d+m 19).

(iii) Under more restrictive conditions on Hamiltonian trajectories instead
of T an arbitrarily large constant, we can take T depending on h 20); see
Section 2.4 of [Ivr4]. Usually, we can take T = 𝜖| log h| or even T = h−𝛿.

Then in the remainder estimate, the main term is

C
(︀
µ(ΠT ,𝛾)h

−d+𝟣 + h−d+𝟣+𝜈T−𝟣−𝜈)︀,
where ΠT ,𝛾 is the set of all points z = (x , 𝜉) (on the given energy level)
such that dist(Ψt(z), z) ≤ 𝛾 for some t ∈ (𝜖,T ) and 𝛾 = h𝟣/𝟤−𝛿′ . Here,
however, we assume that either H𝟢 is scalar or its eigenvalues have constant
multiplicities and apply the Heisenberg approach to the long-term evolution.

Then the remainder estimates could be improved to O(h−d+𝟣+𝜈 | log h|−𝟣−𝜈)
or even to O(h−d+𝟣+𝜈+𝛿) respectively. As examples, we can consider the
geodesic flow on a Riemannian manifold with negative sectional curvature
(log case) and the completely integrable non-periodic Hamiltonian flow
(power case). For all details and proofs, see Section 4.5 of [Ivr4].

Rescaling Technique

The results we proved are very uniform: as long as we know that operator
in question is self-adjoint and that the smoothness and non-degeneracy
conditions are fulfilled uniformly in B(x̄ , 1), then all asymptotics are also
uniform (as x ∈ B(x̄ , 𝟣

𝟤
) or supp(𝜓) ⊂ B(x̄ , 𝟣

𝟤
)). Then these results could

self-improve.

19) Here, we need to assume that H is semi-bounded from below; otherwise some
modifications are required.

20) Usually these restrictions are T ≤ h−𝛿 and |D𝝭t(z)| ≤ h−𝛿 with sufficiently small
𝛿 > 𝟢.
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Here we consider only the Schrödinger operator away from the boundary;
but the approach could be generalized for a wider class of operators. For
generalizations, details and proofs, see Chapter 5 of [Ivr4].

Proposition 2.14. Consider the Schrödinger operator. Assume that 𝜌𝛾 ≥
h and in B(x̄ , 𝛾) ⊂ X ,

(2.47)𝟣,𝟤 |𝜕𝛼g jk | ≤ c𝛼𝛾
−|𝛼|, |𝜕𝛼V | ≤ c𝛼𝜌

𝟤𝛾−|𝛼|.

Then,

(i) In B(x̄ , 𝟣
𝟤
𝛾),

(2.48) e(x , x , 0) ≤ C𝜌dh−d .

(ii) If in addition |V | + |∇V |𝛾 ≥ 𝜖𝜌𝟤, then for supp(𝜓) ⊂ B(x̄ , 𝟣
𝟤
𝛾) such

that |𝜕𝛼𝜓| ≤ c𝛼𝛾
−|𝛼|,

(2.49)

⃒⃒⃒⃒∫︁ (︀
e(x , x , 0)− 𝜅𝟢V

d/𝟤
−

)︀
dx

⃒⃒⃒⃒
≤ C𝜌d−𝟣𝛾d−𝟣h𝟣−d ;

(iii) If in addition |V | ≥ 𝜖𝜌𝟤 in B(x̄ , 𝛾) then

(2.50) |e(x , x , 0)− 𝜅𝟢V
d/𝟤
− | ≤ C𝜌d−𝟣𝛾−𝟣h𝟣−d ;

(iv) If in addition V ≥ 𝜖𝜌𝟤 in B(x̄ , 𝛾), then for any s,

(2.51) |e(x , x , 0)| ≤ C𝜌d−s𝛾−shs−d .

Proof. Indeed, we have already proved this in the special case 𝜌 = 𝛾 = 1,
h ≤ 1. In the general case, we can reduce the problem to the special case by
rescaling x ↦→ x𝛾−𝟣, 𝜏 ↦→ 𝜏𝜌−𝟤 (so we multiply operator by 𝜌−𝟤) and then
automatically h ↦→ ℏ = h𝜌−𝟣𝛾−𝟣. Recall that e(x , y , 𝜏) is a function with
respect to x but a density with respect to y so an extra factor 𝛾−d appears
in the right-hand expressions.

Let us assume that the conditions (2.47)𝟣,𝟤 are fulfilled with 𝜌 = 𝛾 = 1.
We want to get rid of the non-degeneracy assumption |V | ≍ 1 in the pointwise
asymptotics. Let us introduce the scaling function 𝛾(x) and also 𝜌(x)

𝛾(x) = 𝜖|V (x)|+ 𝛾 with 𝛾 = h
𝟤
𝟥 , 𝜌(x) = 𝛾(x)

𝟣
𝟤 .(2.52)
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One can easily see that

|∇𝛾| ≤ 1

2
, 𝜌𝛾 ≥ h,(2.53)

(2.47)𝟣,𝟤 are fulfilled and either |V | ≥ 𝜖𝜌𝟤 or 𝜌𝛾 ≍ h and therefore (2.50)
holds (ℏ ≍ 1 as 𝜌𝛾 ≍ h and no non-degeneracy condition is needed). Note
that for d ≥ 3, the right-hand expression of (2.50) is O(h𝟣−d) and for

d = 1, 2, it is O(h− 𝟤
𝟥
d). So, we got rid of the non-degeneracy assumption

|V | ≍ 1, and the remainder estimate deteriorated only for d = 1, 2.

Remark 2.15. (i) We can improve the estimates for d = 1, 2 to O(h
𝟣
𝟥
− 𝟤

𝟥
d),

but then we will need to add some correction terms first under the assumption
|V |+ |∇V | ≍ 1 and then get rid of it by rescaling; these correction terms

are of boundary-layer type (near V = 0) and are O(h− 𝟤
𝟥
d) and are due to

short loops. For details, see Theorems 5.3.11 and 5.3.16 of [Ivr4].

(ii) If d = 2, then under the assumption |V |+ |∇V | ≍ 1, the weight 𝜌−𝟣𝛾−𝟣

is integrable, and we arrive to the local asymptotics with the remainder
estimate O(h𝟣−d).

(iii) We want to get rid of the non-degeneracy assumption |V |+ |∇V | ≍ 1
in the local asymptotics. We can do it with the scaling function

(2.54) 𝛾(x) = 𝜖
(︀
|V (x)|+ |∇V |𝟤)

𝟣
𝟤 + 𝛾 with 𝛾 = h

𝟣
𝟤 , 𝜌(x) = 𝛾(x).

Then for d = 2, we recover remainder the estimate O(h−𝟣); while for d = 1,

the remainder estimate O(h− 𝟣
𝟤 ) which could be improved further up to O(1)

under some extremely weak non-degeneracy assumption or to O(h−𝛿) with
an arbitrarily small exponent 𝛿 > 0 without it.

(iv) If d ≥ 2, then in the framework of Theorem 2.12(i), we can get rid
of the non-degeneracy assumption as well. This is true for the magnetic
Schrödinger operator as well if d ≥ 2; when d = 2, some modification of the
statement is required; see Remark 5.3.4 of [Ivr4].

(v) Furthermore, if we consider asymptotics for Tr((𝜆 − H)𝜈+𝜓) (see Re-
mark 2.13(ii)) with 𝜈 > 0 then in the local asymptotics, we get the remainder
estimate O(h𝟣−d+s) without any non-degeneracy assumptions. For details,
see Theorem 5.3.5 of [Ivr4].
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Operators with Periodic Trajectories

Preliminary Analysis Consider a scalar operator H . For simplicity, as-
sume that X is a compact closed manifold. Assume that all the Hamiltonian
trajectories are periodic (with periods not exceeding C (𝜇) on the energy
levels 𝜆 ≤ 𝜇). Then the period depends only on the energy level and let
T (𝜆) be the minimal period such that all trajectories on the energy level 𝜆
are T (𝜆) periodic21).

Without any loss of the generality, one can assume that T (𝜆) = 1.
Indeed, we can replace H by f (H) with f ′(𝜆) = 1/T (𝜆). Then,

e∇#H𝟢

= I(2.55)

and therefore,

e ih−𝟣H = e i𝜀h−𝟣B ,(2.56)

where B = B(x , hD, h) is an h-pseudo-differential operator which could be
selected to commute with H , at this point, 𝜀 = h. Then, H𝟢 = H − 𝜀B
satisfies

(2.57) e ih−𝟣H𝟢 = I =⇒ Spec(H𝟢) ⊂ 2𝜋hℤ;

we call this quantum periodicity in contrast to the classical periodicity (2.55).

We can calculate the multiplicity Nk,h = O(h𝟣−d) of the eigenvalue 2𝜋hk
with k ∈ ℤ modulo O(h∞). The formula is rather complicated especially
since subperiodic trajectories21) cause the redistribution of multiplicities
between eigenvalues (however, this causes no more than O(h𝟣−d+r ) error).

We consider H := H𝜀 = H𝟢 + 𝜀B as a perturbation of H𝟢 and we assume
only that 𝜀≪ 1. If 𝜀 ≤ 𝜖𝟢h, the spectrum of H consists of eigenvalue clusters
of the width C𝟢𝜀 separated by spectral gaps of the width ≍ h, but if 𝜀 ≥ 𝜖𝟢h,
these clusters may overlap.

Long Range Evolution Consider

(2.58) e ih−𝟣tH = e ih−𝟣tH𝟢e−ih−𝟣t𝜀B = e ih−𝟣t′H𝟢e ih−𝟣t′′B

21) However, there could be subperiodic trajectories , i.e. trajectories periodic with
period T (𝜆)/p with p = 𝟤, 𝟥, .... It is known that the set 𝝠p of subperiodic trajectories
with subperiod T (𝜆)/p is a union of symplectic submanifolds 𝝠p,r of codimension 𝟤r .
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with t ′′ = 𝜀t, t ′ = t − ⌊t⌋. We now have a fast evolution e ih−𝟣t′H𝟢 and a slow
evolution e ih−𝟣t′′B and both t ′, t ′′ are bounded as |t| ≤ T * := 𝜀−𝟣. Therefore,
we can trace the evolution up to time T *.

Let the following non-degeneracy assumption be fulfilled:

(2.59) |∇𝝨(𝜆)b| ≥ 𝜖𝟢,

where b is the principal symbol of B , Σ(𝜆) := {(x , 𝜉) : H𝟢(x , 𝜉) = 𝜆} and
∇𝝨(𝜆) is the gradient along Σ(𝜆). Then using our methods, we can prove
that

|Ft→h−𝟣𝜏𝜒T (t)

∫︁
u(x , x , t)𝜓(x) dx | ≤ CTh𝟣−d(h/𝜀T )s ,(2.60)

and therefore

Ft→h−𝟣𝜏 𝜒̄T (t)

∫︁
u(x , x , t)𝜓(x) dx | ≤ Ch𝟣−d(𝜀−𝟣h + 1)(2.61)

for 𝜖𝟢(𝜀
−𝟣h + 1) ≤ T ≤ 𝜖𝟢𝜀

−𝟣; recall that 𝜒 ∈ C∞
𝟢 ([−1,−𝟣

𝟤
] ∪ [𝟣

𝟤
, 1] and

𝜒̄ ∈ C∞
𝟢 ([−1, 1], 𝜒̄ = 1 on [−𝟣

𝟤
, 𝟣
𝟤
].

Then the Tauberian error does not exceed the right-hand expression
of (2.61) multiplied by T *−𝟣 ≍ 𝜀, i.e. Ch𝟣−d(𝜀 + h). In the Tauberian
expression, we need to take T = 𝜖𝟢(𝜀

−𝟣h𝟣−𝛿 + 1).

Calculations We can pass from Tauberian expression to a more explicit
one. Observe that the contribution to the former are produced only by time
intervals t ∈ [n−h𝟣−𝛿, n+h𝟣−𝛿] with |n| ≤ T*; contribution of the remaining
interval will be either negligible (if there are no subperiodic trajectories) or
O(h𝟤−d) (if such trajectories exist). Such an interval with n = 0 produces
the standard Weyl expression.

Consider n ̸= 0. Then the contribution of such intervals lead to a
correction term

(2.62) N𝖼𝗈𝗋𝗋,Q𝟣,Q𝟤(𝜆) := (2𝜋)−dh𝟣−d

∫︁
𝝨𝜏

q𝟢
𝟣ϒ𝟣

(︀
h−𝟣(H𝟢 − 𝜀b)

)︀
dµ𝜏q𝟢

𝟤 ,

where ϒ𝟣(t) = 2𝜋⌈ t
𝟤𝜋
⌉ − t + 𝟣

𝟤
.

Theorem 2.16. Under assumptions (2.55), (2.56), (2.59) and 𝜀 ≥ hM ,

(2.63)

∫︁
(Q𝟣xe tQ𝟤y )(y , y ,𝜆) dy = h−d𝜘𝟢,Q𝟣,Q𝟤(𝜆)

+ h𝟣−d𝜘𝟣,Q𝟣,Q𝟤(𝜆) + N𝖼𝗈𝗋𝗋,Q𝟣,Q𝟤(𝜆) + O
(︀
h𝟣−d(𝜀+ h)).
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For a more general statement with (2.59) replaced by a weaker non-
degeneration assumption, see Theorem 6.2.24 of [Ivr4]. Further, we can skip
a correction term (2.62) if 𝜀 ≥ h𝟣−𝛿; while if hM ≤ 𝜀 ≤ h𝟣−𝛿, this term is
O(h𝟣−d(h/𝜀)s) for 𝜀 ≥ h and of magnitude h𝟣−d for hM ≤ 𝜀 ≤ h.

For further generalizations, details and proofs, see Sections 6.2 and
6.3 of [Ivr4]. For related spectral asymptotics for a family of commuting
operators, see Section 6.1 of [Ivr4].

One can also consider the case when there is a massive set of periodic
trajectories, yet non-periodic trajectories exist. For details, see [SV1] and
Subsection 6.3.7 of [Ivr4].

Boundary Value Problems

Preliminary Analysis

Let X be a domain in ℝd with boundary 𝜕X and H an h-differential matrix
operator which is self-adjoint in L𝟤(X ) under the h-differential boundary
conditions. Again, we are interested in the local and pointwise spectral
asymptotics, i.e. those of

∫︀
e(x , x , 0)𝜓(x) dx with 𝜓 ∈ C∞

𝟢 (B(0, 𝟣
𝟤
)) and of

e(x , x , 0) with x ∈ B(0, 𝟣
𝟤
).

Assume that in B(0, 1), everything is good: 𝜕X and coefficients of H are
smooth, H is 𝜉-microhyperbolic on the energy levels 𝜆𝟣,𝟤 (𝜆𝟣 < 𝜆𝟤) and also
H is elliptic as a differential operator, i.e.

||H(x , 𝜉)v || ≥ (𝜖𝟢|𝜉|m − C𝟢)||v || ∀v ∀x ∈ B(0, 1) ∀𝜉.(2.64)

Then,

e(x , x ,𝜆𝟣,𝜆𝟤) = 𝜅𝟢(x ,𝜆𝟣,𝜆𝟤)h
−d + O(h𝟣−d𝛾(x)−𝟣)(2.65)

for x ∈ B(0, 𝟣
𝟤
) and 𝛾(x) ≥ h,

𝜅𝟢(x ,𝜆𝟣,𝜆𝟤) = (2𝜋)−d

∫︁ (︀
θ(𝜆𝟤 − H𝟢(x , 𝜉))− θ(𝜆𝟣 − H𝟢(x , 𝜉))

)︀
d𝜉(2.66)

and 𝛾(x) = 𝟣
𝟤
dist(x , 𝜕X ).

Indeed, the scaling x ↦→ (x − y)/𝛾 and h ↦→ ℏ/𝛾 brings us into the
framework of Theorem 2.6(ii) because 𝜉-microhyperbolicity (in contrast to
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the (x , 𝜉)-microhyperbolicity) survives such rescaling. Then,

(2.67)

∫︁
{x : 𝛾(x)≥h}

(︀
e(x , x ,𝜆𝟣,𝜆𝟤)− h−d𝜅𝟢(x ,𝜆𝟣,𝜆𝟤)

)︀
𝜓(x) dx

= O(h𝟣−d log h),

since
∫︀
{x : 𝛾(x)≥h} 𝛾(x)

−𝟣 dx ≍ | log h|.
One can easily show that if the boundary value problem for H is elliptic

then

e(x , x ,𝜆𝟣,𝜆𝟤) = O(h−d)(2.68)

and therefore,∫︁ (︀
e(x , x ,𝜆𝟣,𝜆𝟤)− h−d𝜅𝟢(x ,𝜆𝟣,𝜆𝟤)

)︀
𝜓(x) dx = O(h𝟣−d log h).(2.69)

To improve this remainder estimate, one needs to improve (2.67) rather than
(2.65) but to get sharper asymptotics, we need to improve both. We will
implement the same scheme as inside the domain.

Propagation of Singularities

Toy-Model: Schrödinger Operator Let us consider the Schrödinger
operator

H := h𝟤Δ+ V (x)(2.70)

with the boundary condition(︀
𝛼(x)h𝜕𝜈 + 𝛽(x)

)︀
v |𝜕X = 0,(2.71)

where

Δ =
∑︁
j ,k

Djg
jkDk , 𝜕𝜈 =

∑︁
j

g j𝟣𝜕j(2.72)

is derivative in the direction of the inner normal 𝜈 (we assume that X =
{x : x𝟣 > 0} locally22)), 𝛼 and 𝛽 are real-valued and do not vanish simulta-
neously. Without any loss of the generality, we can assume that locally

(2.73) g j𝟣 = δj𝟣.

22) I.e. in intersection with B(𝟢, 𝟣).
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First of all, near the boundary, we can study the propagation of singular-
ities using the same scheme as in Subsection 2 as long as 𝜑j(x , 𝜉) = 𝜑j(x , 𝜉

′)
do not depend on the component of 𝜉 which is “normal to the boundary”.
The intuitive way to explain why one needs this is that at reflections, 𝜉𝟣
changes by a jump.

For the Schrödinger operator, it is sufficient for our needs: near glanc-
ing points (x , 𝜉′) (which are points such that x𝟣 = 0 and the set {𝜉𝟣 :
H𝟢(x ′, 𝜉′, 𝜉𝟣) = 𝜏} consists of exactly one point), we can apply this method.
On the other hand, near other points, we can construct the solution by
traditional methods of oscillatory integrals.

It is convenient to decompose u(x , y , t) into the sum

(2.74) u = u𝟢(x , y , t) + u𝟣(x , y , t),

where u𝟢(x , y , t) is a free space solution (without boundary) which we studied
in Subsection 2 and u𝟣 := u − u𝟢 is a reflected wave.

Observe that even for the Schrödinger operator, we cannot claim that
the singularity of u(x , x , t) at t = 0 is isolated. The reason are short loops
made by trajectories which reflect from the boundary in the normal direction
and follow the same path in the opposite direction. However, these short
loops affect neither u(x , x , t) at the points of the boundary nor u(x , x , t)
integrated in any direction transversal to the boundary (and thus do not
affect 𝜎𝜓(t) defined below).

Furthermore, they do not affect (Q𝟣xu tQ𝟤y )(x , x , t) as long as at least one
of operators Qj = Qj(x , hD ′, hDt) cuts them of. Then we get the estimate
(2.9). Consider Q𝟣 = Q𝟤 = 1. Then, if V (x) − 𝜆 > 0, we get the same
estimate at the point x ∈ 𝜕X . On the other hand, if either V (x)− 𝜆 < 0 or
V (x) = 𝜆, ∇𝜕XV (x) ̸= 0 (where ∇𝜕X means “along 𝜕X”) at each point of
supp(𝜓), we get the same estimate for 𝜎𝜓(x) =

∫︀
u(x , x , t) dx . As usual, 𝜆

is an energy level.
Moreover, 𝜎𝟣

𝜓(t) =
∫︀

u𝟣(x , x , t)𝜓(x) dx satisfies

(2.75) |Ft→h−𝟣𝜏𝜒T (t)𝜎
𝟣
𝜓(t)| ≤ Csh

𝟣−d(h/|t|)s .

In contrast to the Dirichlet (𝛼 = 0, 𝛽 = 1) or Neumann (𝛼 = 1, 𝛽 = 0)
conditions, under the more general boundary condition (2.71), the classically
forbidden level 𝜆 (i.e. with 𝜆 < infB(𝟢,𝟣) V ) may be not forbidden after all.
Namely, in this zone, the operator hDt − H is elliptic and we can construct
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the Dirichlet-to-Neumann operator L : v |𝜕X → h𝜕𝟣v |𝜕X as (hDt − H)v ≡ 0.
This is an h-pseudo-differential operator on 𝜕X with principal symbol

L𝟢(x ′, 𝜉′, 𝜏) = −
(︀
V +

∑︁
j ,k≥𝟤

g jk𝜉j𝜉k − 𝜏
)︀ 𝟣

𝟤 .(2.76)

Then the boundary condition (2.71) becomes

Mw := (𝛼L + 𝛽)w ≡ 0, w = v |𝜕X .(2.77)

The energy level 𝜆 < V (x) is indeed forbidden if the operator M is elliptic
as 𝜏 = 𝜆, i.e. if M𝟢(x ′, 𝜉′,𝜆) = 𝛼L𝟢(x ′, 𝜉′,𝜆) + 𝛽 ̸= 0 for all 𝜉′; it happens as
either 𝛼−𝟣𝛽 < 0 or W := V − 𝛼−𝟤𝛽𝟤 > 𝜆. Otherwise, to recover (2.75)23),
we assume that M is either 𝜉′-microhyperbolic or (x ′, 𝜉′)-microhyperbolic
(W > 𝜆 and W = 𝜆 =⇒ ∇𝜕XW ̸= 0 respectively).

General Operators For more general operators and boundary value
problems, we use similar arguments albeit not relying upon the representation
of u(x , y , t) via oscillatory integrals. It follows from (2.74) that

(hDt − H)u𝟣± = 0,(2.78)

Bu𝟣±|x𝟣=𝟢 = −Bu𝟢±|x𝟣=𝟢,(2.79)

where as before, uk ± = ukθ(±t), k = 0, 1. Assuming that H satisfies (2.64),
we reduce (2.78)–(2.79) to the problem

𝒜U𝟣± := (𝒜𝟢hD𝟣 +𝒜𝟣)U
𝟣± ≡ 0,(2.80)

ℬU𝟣±|x𝟣=𝟢 = −ℬU𝟢±(2.81)

with 𝒜k = 𝒜k(x , hD ′, hDt), ℬ = ℬ(x , hD ′, hDt) and U = Sxu tSy with S =
S(x , hDx , hDt) etc

24).
In a neighbourhood of any point (x̄ ′, 𝜉′,𝜆), the operator 𝒜 could be

reduced to the block-diagonal form with blocks 𝒜kj (k = 0, 1, j = 1, ... ,N)
such that

(a) For each j = 1, ... ,N − 1, the equation det(𝒜𝟢
𝟢j𝜂 +𝒜𝟢

𝟣j) = 0 has a single

real root 𝜂j (at the point (x̄ ′, 𝜉′,𝜆) only), 𝜂j are distinct, and

23) With d replaced by d − 𝟣.
24) If H is a 𝖣×𝖣 matrix operator of order m then 𝒜 and S are m𝖣×m𝖣 and m𝖣×𝖣

matrix operators, B and ℬ are 𝟣
𝟤m𝖣× 𝖣 and 𝟣

𝟤m𝖣× m𝖣 matrix operators respectively.
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(b) 𝒜kN =
(︁

𝟢 𝒜′
kN

𝒜′′
kN 𝟢

)︁
with det(𝒜′ 𝟢

𝟢N𝜂 +𝒜′ 𝟢
𝟣N) = 0 and det(𝒜′′ 𝟢

𝟢N𝜂 +𝒜′′ 𝟢
𝟣N) = 0

has only roots with Im 𝜂 < 0 and with Im 𝜂 > 0 respectively.

We can prove a statement similar to Theorem 2.2, but instead of func-
tions 𝜑*(x , 𝜉), we now have arrays of functions 𝜑*j(x , t, 𝜉′, 𝜏 ) (j = 1, ... ,N−1)
coinciding with 𝜑*N(x

′, t, 𝜉′, 𝜏) as x𝟣 = 0. Respectively, instead of micro-
hyperbolicity of the operator in the direction ℓ ∈ T (T *(X × ℝ)), we now
have the microhyperbolicty of the boundary value problem in the multi-
direction (ℓ′, 𝜈𝟣, ... , 𝜈N−𝟣) ∈ T (T *(𝜕X × ℝ)) × ℝN−𝟣; see Definition 3.1.4
of [Ivr4]. It includes the microhyperbolicity of 𝒜j in the direction (ℓ′, 0, 𝜈j) for
j = 1, ... ,N −1 and a condition invoking 𝒜N and ℬ and generalizing the mic-
rohyperbolicity of operator M for the Schrödinger operator. Respectively, in-
stead of the microhyperbolicity of an operator in the direction ∇#𝜑*, we want
the microhyperbolicity in the multidirection (∇′#𝜑*, 𝜕𝟣𝜑*𝟣, ... , 𝜕𝟣𝜑*(N−𝟣)).

As a corollary, under the microhyperbolicity assumption on the energy
level 𝜆, we prove estimates (2.9) for 𝜎𝟢

𝜓(t), 𝜎𝜓(t) and (2.75) for 𝜎𝟣
𝜓(t) as 𝜏

is close to 𝜆. Furthermore, if the operator H is elliptic on this energy level
then 𝜎𝟢

𝜓(t) is negligible and (2.75) holds for 𝜎𝟣
𝜓(t) and 𝜎𝜓(t).

For details, proofs and generalizations, see Chapter 3 of [Ivr4].

Successive Approximations Method

After the (2.9) and (2.75)-type estimates are established, we can apply
the successive approximations method like in Subsection 2 but with some
modifications: to construct Bu𝟢±|x𝟣=𝟢 and from it to construct u𝟣±, we
freeze coefficients in (y ′, 0) rather than in y . As a result, we can calculate all
terms in the asymptotics and under microhyperbolicity in the multidirection
condition, we arrive to the formulae (2.24) for e𝟢(., ., 𝜏), e𝟣(., ., 𝜏) and
e(., ., 𝜏) 25) with m ≥ 1 for e𝟣(., ., 𝜏).

The formulae for 𝜘𝟣
m(𝜏 ) (and thus for 𝜘m(𝜏 ) = 𝜘𝟢

m(𝜏 )+𝜘𝟣
m(𝜏 ) are however

rather complicated and we do not write them here. For the Schrödinger
operator with V = 0 and boundary condition (2.71), the calculation of 𝜘𝟣

𝟣(𝜏 )
is done in [HA].

Similar formulae also hold if we take x𝟣 = y𝟣 = 0 and integrate over 𝜕X
(but in this case m ≥ 0 even for e𝟣(., ., 𝜏)).

Furthermore, if ℓ′x = 0 and 𝜈𝟣 = ... = 𝜈N−𝟣 in the condition of mic-
rohyperbolicity, we are able to get formulae for e𝟢(x , x , 𝜏), e𝟣(x , x , 𝜏) and

25) With the obvious definitions of e𝟢(., ., 𝜏) and e𝟣(., ., 𝜏).
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e(x , x , 𝜏) without setting x𝟣 = 0 and without integrating but e𝟣(x , x , 𝜏) is a
boundary-layer type term.

For details and proofs, see Section 7.2 of [Ivr4].

Recovering Spectral Asymptotics

Repeating the arguments of Subsection 2, we can recover the local spectral
asymptotics:

Theorem 2.17. (i) Let an operator H be microhyperbolic on supp(𝜓) on
the energy levels 𝜆𝟣 and 𝜆𝟤 (𝜆𝟣 < 𝜆𝟤) and the boundary value (H ,B) problem
be microhyperbolic on supp(𝜓) ∩ 𝜕X on these energy levels. Then,

(2.82)

∫︁
X

e(y , y ,𝜆𝟣,𝜆𝟤)𝜓(y) dy

= h−d

∫︁
X

𝜅𝟢(y ,𝜆𝟣,𝜆𝟤)𝜓(y) dy + O(h−d+𝟣).

(ii) Suppose that an operator H is elliptic on supp(𝜓) on the energy levels 𝜆𝟣
and 𝜆𝟤 (𝜆𝟣 < 𝜆𝟤)

26) and the boundary value (H ,B) problem is microhyperbolic
on supp(𝜓) ∩ 𝜕X on these energy levels. Then,

(2.83)

∫︁
X

e(y , y ,𝜆𝟣,𝜆𝟤)𝜓(y) dy

= h𝟣−d

∫︁
X

𝜅𝟣(y ,𝜆𝟣,𝜆𝟤)𝜓(y) dy + O(h−d+𝟤).

On the other hand, for the Schrödinger operator, we can calculate the
contributions of near normal trajectories explicitly and then we arrive to:

Theorem 2.18. Let (H ,B) be the Schrödinger operator (2.70)–(2.71) and
let |V | ̸= 𝜆 on supp(𝜓). Then,

(2.84) e(y , y ,𝜆) = h−d
(︀
𝜅𝟢(x ,𝜆) +𝒬(x ′,𝜆; h−𝟣x𝟣)

)︀
+ O(h−d+𝟣)

where 𝒬 depends on the “normal variables” (x ′,𝜆) and a “fast variable”
s = h−𝟣x𝟣 and decays as O(s−d+𝟣/𝟤) as s → +∞. Here, x𝟣 = dist(x , 𝜕X ).

For details, exact statement and proofs, see Section 8.1 of [Ivr4].

26) Then, it is elliptic on all energy levels 𝜏 ∈ [𝜆𝟣,𝜆𝟤].
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Second Term and Dynamics

As in Subsection 2, we can improve our asymptotics under certain conditions
to the dynamics of propagation of singularities. However, in the case that the
manifold has a non-empty boundary, propagation becomes really complicated.
For Schrödinger operators, we can prove that singularities propagate along
Hamiltonian billiards unless they “behave badly” that is become tangent to
𝜕X at some point or make an infinite number of reflections in finite time.
However, the measure of dead-end points27) is 0.

Thus, applying the arguments of Section 1 we arrive to

Theorem 2.19. Let d ≥ 2, |V − 𝜆|+ |∇V | ̸= 0 on supp(𝜓) and |V − 𝜆|+
|∇𝜕XV | ̸= 0 on supp(𝜓) ∩ 𝜕X . Further, assume that the measure of periodic
Hamiltonian billiards passing through points of {H𝟢(x , 𝜉) = 0} ∩ supp(𝜓) is
0 28). Then,

(2.85)

∫︁
e(y , y ,𝜆)𝜓(y) dy = h−d

∫︁
𝜅𝟢(y ,𝜆)𝜓(y) dy + o(h−d+𝟣).

Remark 2.20. If we are interested in the propagation of singularities without
applications to spectral asymptotics, the answer is “singularities propagate
along the generalized Hamiltonian billiards” (see Definition 3.2.2 in [Ivr4]).

One can easily show:

Theorem 2.21. Let d ≥ 3. Assume that we are in the framework of
Theorem 2.17(ii). Further assume that the set of periodic trajectories of the
Schrödinger operator on 𝜕X with potential W introduced after (2.77) has
measure 0. Then,

(2.86)

∫︁
e(y , y ,𝜆)𝜓(y) dy = h𝟣−d𝜘𝟣,𝜓(𝜆) + h𝟤−d𝜘𝟤,𝜓(𝜆) + o(h−d+𝟤).

Remark 2.22. Analysis becomes much more complicated for more general
operators even if we assume that the inner propagation is simple. For
example, if the operator in question is essentially a collection of m Schrödinger
operators intertwined through boundary conditions then every incidence
ray after reflection generates up to m reflected rays and we have branching

27) I.e. points z ∈ 𝝨(𝜆) the billiard passing through which behaves badly.
28) There is a natural measure dxd𝜉 : dH𝟢.
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Hamiltonian billiards . Here, a dead-end point is a point z ∈ Σ(𝜆) such that
some of the branches behave badly and a periodic point is a point z ∈ Σ(𝜆)
such that some of the branches return to it.

Assume that the sets of all periodic points and all dead-end points on the
energy level Σ(𝜆) have measure 0 (as shown in [SV2], the set of all dead-end
points may have positive measure). Then, the two-term asymptotics could
be recovered. However, the investigation of branching Hamiltonian billiards
is a rather daunting task.

Rescaling Technique

The rescaling technique could be applied near 𝜕X as well. Assume that
𝜆 = 0. Then to get rid of the non-degeneracy assumption V (x) ≤ −𝜖, we
use scaling functions 𝛾(x) and 𝜌(x) as in Subsection 2. It may happen that
B(x , 𝛾(x)) ⊂ X or it may happen that B(x , 𝛾(x)) intersects 𝜕X . In the
former case, we are obviously done and in the latter case we are done as
well because in the condition (2.71) we scale 𝛼 ↦→ 𝛼𝜌𝜈, 𝛽 ↦→ 𝛽𝜈 where 𝜈 > 0
is a parameter of our choice. Thus, in the pointwise asymptotics, we can
get rid of this assumption for d ≥ 3, and in the local asymptotics for d ≥ 2
assuming that |V |+ |∇V | ≍ 1 because the total measure of the balls of radii
≤ 𝛾 which intersect 𝜕X is O(𝛾). For details, exact statements and proofs,
see Section 8.2 of [Ivr4].

Operators with Periodic Billiards

Simple Billiards Consider an operator on a manifold with boundary.
Assume first that all the billiard trajectories (on energy levels close to 𝜆)
are simple (i.e. without branching) and periodic with a period bounded
from above; then the period depends only on the energy level. Example: the
Laplace-Beltrami operator on the semisphere. Under some non-degeneracy
assumptions similar to (2.59), we can derive asymptotics similar to (2.63)
but with two major differences:

(i) We assume that 𝜀 ≍ h and recover remainder estimate only O(h𝟣−d+𝛿);
it is still good enough to have the second term of the non-standard type.

(ii) We can consider b(x , 𝜉) (which is invariant with respect to the Hamilto-
nian billard flow) as a phase shift for one period. Now, however, it could
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be a result not only of the quantum drift as in Subsection 2, but also of an
instant change of phase at the moment of the reflection.

For exact statements, details and proofs, see Subsection 8.3.2 of [Ivr4].

Branching Billiards with “Scattering” We now assume that the bil-
liard branches but only one (“main”) branch is typically periodic. For exam-
ple, consider two Laplace-Beltrami operators intertwined through boundary
conditions: one of them is an operator on the semisphere X𝟣 and another
on the disk X𝟤 with 𝜕X𝟣 and 𝜕X𝟤 glued together. Then all billiards on X𝟣

are periodic but there exist nowhere dense sets Λj(𝜆) of measure 0, such
that the billiards passing through Σj(𝜆) ∖ Λj(𝜆) and containing at least one
segment in X𝟤 are not periodic. Assume also that the boundary conditions
guarantee that at reflection, the “observable” part of energy escapes into
X𝟤. Then to recover the sharp remainder estimates, we do not need a phase
shift because for time T ≫ 1, we have

(2.87) T |Ft→h−𝟣𝜏 𝜒̄T (t) d𝜏e(y , y , 𝜏) dy | ≤ C𝟢h𝟣−d
∑︁
|n|≤T

qn + oT (h
𝟣−d),

where q ≤ 1 estimates from above the “portion of energy” which goes back to
X𝟣 at each reflection; if q < 1, as we have assumed the right-hand expression
does not exceed C𝟣h𝟣−d + oT (h

𝟣−d) and we recover asymptotics similar to
(2.63) with the remainder estimate o(h𝟣−d).

For exact statements, details and proofs, see Subsection 8.3.3 of [Ivr4].

Two Periodic Billiards We can also consider the case when the billiards
flows in X𝟣 and X𝟤 are both periodic but “magic” happens at reflections.
For exact statements, details and proofs, see Subsection 8.3.4 of [Ivr4].

3 Global Asymptotics

In this section, we consider global spectral asymptotics. Here we are mainly
interested in the asymptotics with respect to the spectral parameter 𝜆. We
consider mainly examples.
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Weyl Asymptotics

Regular Theory

We start from examples in which we apply only the results of the previous
Chapter 2 which may be combined with Birman-Schwinger principle and
the rescaling technique.

Simple Results

Example 3.1. Consider a self-adjoint operator A with domain D(A) = {u :
Bu|𝜕X = 0}. We assume that A is elliptic and the boundary value problem
(A,B) is elliptic as well.

(i) We are interested in N(0,𝜆), the number of eigenvalues of A in [0,𝜆).
Instead we consider N(𝜆/2,𝜆), which is obviously equal to Nh(

𝟣
𝟤
, 1), the

number of eigenvalues of Ah = 𝜆−𝟣A that lie in [𝟣
𝟤
, 1), with h = 𝜆−𝟣/m where m

is the order of A. In fact, more is true: the principal symbols of semiclassical
operators Ah and Bh coincide with the senior symbols of A and B . Then the
microhyperbolicity conditions are satisfied and the semiclassical asymptotics
with the remainder estimate O(h𝟣−d) hold which could be improved to
two-term asymptotics under our standard non-periodicity condition. As a
result, we obtain

N(0,𝜆) = 𝜘𝟢𝜆
d
m + O(𝜆

d−𝟣
m )(3.1)

and

N(0,𝜆) = 𝜘𝟢𝜆
d
m + 𝜘𝟣𝜆

d−𝟣
m + o(𝜆

d−𝟣
m ),(3.2)

as 𝜆 → +∞ in the general case and under the standard non-periodicity
condition respectively. Here,

(3.3) 𝜘𝟢 = (2𝜋)−d

∫︁∫︁
n(x , 𝜉) dxd𝜉

where n(x , 𝜉) is the number of eigenvalues of A𝟢(x , 𝜉) in (0, 1) and m = mA

is the order of A.

(ii) Suppose that AB is positive definite (then mA ≥ 2) and V is an operator
of the order mB < mA, symmetric under the same boundary conditions. We
are interested in N(0,𝜆), the number of eigenvalues of VA−𝟣

B in (𝜆−𝟣,∞).
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Using the Birman-Schwinger principle, we can again reduce the problem to
the semiclassical one with H = hmAA − hmV V , h = 𝜆−𝟣/m, m = mA − mV .
The microhyperbolicity condition is fulfilled automatically unless 𝜉 = 0 and
V 𝟢(x , 𝜉) is degenerate. Still under certain appropriate assumptions about
V 𝟢, we can ensure microhyperbolicity (for mB = 0, 1 only). Then (3.1) and
(3.2) (the latter under standard non-periodicity condition) hold with n(x , 𝜉)
the number of eigenvalues of V 𝟢(x , 𝜉)(A𝟢(x , 𝜉)−𝟣) in (1,∞).

(iii) Alternatively, we can consider the case when V is positively defined
(and AB may be not).

(iv) For scalar operators, one can replace microhyperbolicity by a weaker
non-degeneracy assumption. Furthermore, without any non-degeneracy
assumption we arrive to one-term asymptotics with the remainder estimate
O(𝜆(d−𝟣+𝛿)/m).

(v) Also one can consider operators whose all Hamiltonian trajectories are
periodic; in this case the oscillatory correction term appears.

(vi) Suppose the operator AB has negative definite principal symbol but AB

is not semi-bounded from above and V is positive definite. Then instead of
(3.1) or (3.2), we arrive to

N(0,𝜆) = 𝜘𝟣𝜆
d−𝟣
m + O(𝜆

d−𝟤
m )(3.4)

and

N(0,𝜆) = 𝜘𝟣𝜆
d−𝟣
m + 𝜘𝟤𝜆

d−𝟤
m + o(𝜆

d−𝟤
m ),(3.5)

(the latter under an appropriate non-periodicity assumption).

Fractional Laplacians The fractional Laplacian Λm,X appears in the
theory of stochastic processes. For m > 0, it is defined first on ℝd as Δm/𝟤,
and in a domain X ⊂ ℝd , it is defined as Λm,Xu = RXΔ

m/𝟤(θXu) where RX

is the restriction to X and θX is the characteristic function of X . It differs
from the m/2-th power of the Dirichlet Laplacian in X and for m /∈ 2ℤ, it
does not belong to the Boutet de Monvel’s algebra. In particular, even if
X is a bounded domain with 𝜕X ∈ C∞ and u ∈ C∞(X̄ ), Λm,Xu does not
necessarily belong to C∞(X̄ ) (smoothness is violated in the direction normal
to 𝜕X ).
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Then the standard Weyl asymptotics (3.1) and (3.2) hold (the latter
under standard non-periodicity condition) with the standard coefficient
𝜘𝟢 = (2𝜋)−d𝜔d−𝟣 vold(X ) and with

(3.6) 𝜘𝟣,m = (2𝜋)𝟣−d𝜔d−𝟣𝜎m vold−𝟣(𝜕X ),

(3.7) 𝜎m =

=
d − 1

m

∫︁∫︁ ∞

𝟣

𝜏−(d−𝟣)/m−𝟣
(︁
em(x𝟣, x𝟣, 𝜏)− 𝜋−𝟣(𝜏 − 1)𝟣/m

)︁
dx𝟣d𝜏

where em(x𝟣, y𝟣, 𝜏 ) is the Schwartz kernel of the spectral projector of operator

(3.8) am = ((D𝟤
x + 1)m/𝟤)𝖣

on ℝ+. To prove this, we need to redo some analysis of Chapter 2. While
tangent rays are treated exactly as for the ordinary Laplacian, normal rays
require some extra work. However, we can show that the singularities coming
along transversal rays do not stall at the boundary but reflect according the
standard law. For exact statements, details and proofs, see [Ivr5].

Semiclassical Dirichlet-to-Neumann Operator Consider the Lapla-
cian Δ in X . Assuming that 𝜆 is not an eigenvalue of Δ𝖣, we can introduce
the Dirichlet-to-Neumann operator L𝜆 : v ↦→ 𝜆−

𝟣
𝟤𝜕𝜈u|𝜕X where u is defined

as (Δ − 𝜆)u = 0, u|𝜕X = v and 𝜈 is the inner unit normal. Here, L𝜆 is a
self-adjoint operator and we are interested in N𝜆(a𝟣, a𝟤), the number of its
eigenvalues in the interval [a𝟣, a𝟤). Due to the Birman-Schwinger principle,
it is equal to N−

h (a𝟣)− N−
h (a𝟤) where N−

h (a) is the number of the negative
eigenvalues of h𝟤Δ− 1 under the boundary condition (h𝜕𝜈 − a)u|𝜕X = 0 and
then we arrive to

N𝜆(a𝟣, a𝟤) = O(𝜆
d−𝟣
m )(3.9)

and

N𝜆(a𝟣, a𝟤) = 𝜘𝟣(a𝟣, a𝟤)𝜆
d−𝟣
𝟤 + o(𝜆

d−𝟣
𝟤 )(3.10)

(the latter under a standard non-periodicity condition). For exact statements,
details and proofs, see [HA].
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Rescaling Technique We are interested in the asymptotics of either

N−(𝜆) =

∫︁
e(x , x ,𝜆) dx(3.11)

or

N(𝜆𝟣,𝜆𝟤) =

∫︁
e(x , x ,𝜆𝟣,𝜆𝟤) dx with 𝜆𝟣 < 𝜆𝟤 :(3.12)

with respect to either the spectral parameter(s), or semiclassical parameter(s),
or some other parameter(s). We assume that there exist scaling functions
𝛾(x) and 𝜌(x) satisfying

(3.1.13)𝟣,𝟤 |∇𝛾| ≤ 1

2
, |x − y | ≤ 𝛾(y) =⇒ c−𝟣 ≤ 𝜌(x)/𝜌(y) ≤ c ,

such that after rescaling x ↦→ x/𝛾(y) and 𝜉 ↦→ 𝜉/𝜌(y) in B(y , 𝛾(y)), we
find ourselves in the framework of the previous chapter with an effective
semiclassical parameter ℏ ≤ 1 29).

To avoid non-degeneracy assumptions, we consider only the Schrödinger
operator (2.70) in ℝd , assuming that g jk = g kj ,

|∇𝛼g jk | ≤ c𝛼𝛾
−|𝛼|, |∇𝛼V | ≤ c𝛼𝜌

𝟤𝛾−|𝛼|(3.14)

and ∑︁
j ,k

g jk𝜉j𝜉k ≥ 𝜖𝟢|𝜉|𝟤 ∀x , 𝜉.(3.15)

In the examples below, h ≍ 1.

Example 3.2. (i) Suppose the conditions (3.14), (3.15) are fulfilled with
𝛾(x) = 𝟣

𝟤
(|x | + 1) and 𝜌(x) = |x |m, m > 0. Further, assume that the

coercivity condition

(3.16) V (x) ≥ 𝜖𝟢𝜌
𝟤

holds for |x | ≥ c𝟢. Then if |x | ≤ C𝜆𝟣/𝟤m, for the operator H − 𝜆, we can
use 𝜌𝜆(x) = 𝜆𝟣/𝟤 and then the contribution of the ball B(x , 𝛾(x)) to the
remainder does not exceed C𝜆(d−𝟣)/𝟤𝛾d−𝟣(x); summation over these balls
results in O

(︀
𝜆(d−𝟣)(m+𝟣)/𝟤m

)︀
.

29) In purely semiclassical settings, ℏ = h/𝜌𝛾 and we assume 𝜌𝛾 ≥ h.
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On the other hand, if |x | ≤ C𝜆
𝟣
𝟤m , for the operator H − 𝜆 we can use

𝜌(x) = 𝛾m(x) but there the ellipticity condition is fulfilled and then the
contribution of the ball B(x , 𝛾(x)) to the remainder does not exceed C𝛾−s ;
summation over these balls results in o

(︀
𝜆(d−𝟣)(m+𝟣)/𝟤m

)︀
. Then we arrive to

(3.17) N(𝜆) = c𝟢h−d

∫︁
(𝜆− V (x))

d
𝟤
+ + O

(︀
𝜆(d−𝟣)(m+𝟣)/𝟤m

)︀
as 𝜆→ +∞. Obviously the main part of the asymptotics is ≍ 𝜆d(m+𝟣)/𝟤m.

(ii) Suppose instead 0 > m > −1. We are interested in its eigenvalues
tending to the bottom of the continuous spectrum (which is 0) from below.
We no longer require the assumption (3.16).

We use the same 𝛾(x) but now 𝜌𝜆(x) = 𝛾(x)m for |x | ≤ C |𝜆|𝟣/𝟤m. Then
the contribution of the ball B(x , 𝛾(x)) to the remainder does not exceed
C𝛾(x)(d−𝟣)(m+𝟣); summation over these balls results in O

(︀
|𝜆|(d−𝟣)(m+𝟣)/𝟤m

)︀
.

On the other hand, if |x | ≥ C |𝜆|𝟣/𝟤m, for the operator H − 𝜆 we can

use 𝜌𝜆(x) = |𝜆| 𝟣𝟤 , but there the ellipticity condition is fulfilled and then
the contribution of the ball B(x , 𝛾(x)) to the remainder does not exceed
C |𝜆|−s𝛾d−s ; summation over these balls results in o

(︀
|𝜆|(d−𝟣)(m+𝟣)/𝟤m

)︀
. Then

we arrive to asymptotics (3.17) again as 𝜆→ −0.

Obviously the main part of the asymptotics is O(|𝜆|d(m+𝟣)/𝟤m) and under
the assumption V (x) ≤ −𝜖𝜌(x)𝟤, in some cone it is ≍ |𝜆|d(m+𝟣)/𝟤m.

(iii) In both cases (i) and (ii), the main contribution to the remainder is
delivered by the zone {𝜀 < |x ||𝜆|−𝟣/𝟤m < 𝜀−𝟣} and assuming that g jk(x) and
V (x) stabilize as |x | → +∞ to g jk𝟢(x) and V 𝟢(x), positively homogeneous
functions of degrees 0 and 2m respectively, and that the set of periodic
trajectories of the Hamiltonian

∑︀
j ,k g jk(x)𝜉j𝜉k + V 𝟢(x) on energy level 1 in

(i) or −1 in (ii) has measure 0, we can improve the remainder estimates to
o
(︀
|𝜆|(d−𝟣)(m+𝟣)/𝟤m

)︀
.

Example 3.3. Consider the Dirac operator

(3.18) H =
∑︁

𝟣≤j≤d

σjDj + M𝜎𝟢 + V (x),

where σj (j = 0, ... , d) are Pauli matrices in the corresponding dimension
and M > 0. Let V (x) → 0 as |x | → ∞. Then the essential spectrum of H
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is (−∞,−M ] ∪ [M ,∞) and for V as in Example 3.2(ii), we can get similar
results for the asymptotics of eigenvalues tending to M − 0 or −M + 0: so
instead of N(𝜆), we consider N(0,M − 𝜂) or N(M + 𝜂, 0) with 𝜂 → +0.

Example 3.4. Consider the Schrödinger operator, either in a bounded do-
main X ∋ 0 or in ℝd like in Example 3.2(i) and assume that g jk(x) and
V (x) have a singularity at 0 satisfying there (3.14)–(3.16) with 𝛾(x) = |x |
and 𝜌(x) = |x |m with m < −1.

Consider the asymptotics of eigenvalues tending to +∞. As in Exam-
ple 3.2(i), we take 𝛾(x) = 𝟣

𝟤
|x | and 𝜌𝜆(x) = 𝜆𝟣/𝟤 for |x | ≥ 𝜖𝟢𝜆

𝟣/𝟤m (then the
contribution of B(x , 𝛾(x)) to the remainder does not exceed 𝜆(d−𝟣)/𝟤|x |d−𝟣)
and 𝜌𝜆(x) = |x |m as |x | ≤ 𝜖𝟢𝜆

𝟣/𝟤m (then due to the ellipticity the contribution
of B(x , 𝛾(x)) to the remainder does not exceed 𝜌−s𝛾−s−d). We conclude that
the contribution of B(0, 𝜖) to the remainder does not exceed C𝜆(d−𝟣)/𝟤𝜖d−𝟣

which means that this singularity does not prevent remainder estimate as
good as o(𝜆(d−𝟣)/𝟤). However, this singularity affects the principal part
which should be defined as in (3.17).

Example 3.5. (i) When analyzing the asymptotics of the large eigenvalues,
we can consider a potential that is either rapidly increasing (with 𝜌 =
exp(|x |m), 𝛾(x) = |x |𝟣−m, m > 0), or slowly increasing (with 𝜌 = (| log x |)m,
𝛾(x) = |x |, m > 0) which affects both the magnitude of the main part and
the remainder estimate.

(ii) When analyzing the asymptotics of the eigenvalues tending to the
bottom of the essential spectrum, we can consider a potential that is either
rapidly decreasing (with 𝜌 = |x |−𝟣(log |x |)m with m > 0, 𝛾(x) = |x |, m > 0)
or slowly decreasing (with 𝜌 = (| log x |)m, 𝛾(x) = |x |, m < 0) which affects
both the magnitude of the main part as well as the remainder estimate.

Remark 3.6. We can consider the same examples albeit assuming only that
h ∈ (0, 1); then the remainder estimate acquires the factor h−d+𝟣.

Singularities

Let us consider other types of singularities when there is a singular zone
where after rescaling ℏ ≤ 1 29). Still, it does not prevent us from using the
approach described above to get an estimate from below for (3.11) or (3.12):
we only need to decrease these expressions by inserting 𝜓 (0 ≤ 𝜓 ≤ 1) that
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is supported in the regular zone (aka the semiclassical zone) defined by
ℏ ≤ 2ℏ𝟢 after rescaling and equal to 1 for ℏ ≤ ℏ𝟢 and applying the rescaling
technique there.

Let us discuss an estimate from above. If there was no regular zone at
all, we would have no estimate from below at all but there could be some
estimate from above of variational nature. The best known is the LCR
(Lieb-Cwikel-Rosenblum) estimate

(3.19) N−(0) ≤ Ch−d

∫︁
V

d
𝟤
− dx

for the Schrödinger operator with Dirichlet boundary conditions as d ≥ 3.
For d = 2, the estimate is marginally worse (see [Roz1] for the most general
statement for arbitrary orders of operators and dimensions and [Shar] for
the most general results for the Schrödinger operator in dimension 2).

It occurs that we can split our domain into an overlapping regular zone
{x : 𝜌(x)𝛾(x) ≥ h} and a singular zone {x : 𝜌(x)𝛾(x) ≤ 3h}, then evaluate
the contribution of the regular zone using the rescaling technique and the
contribution of the singular zone by the variational estimate as if on the inner
boundary of this zone (i.e. a part of its boundary which is not contained in
𝜕X ) the Dirichlet boundary condition was imposed, and we add these two
estimates:

(3.20) − Ch𝟣−d

∫︁
{𝜌𝛾≥h,V≤𝜖𝜌𝟤}

𝜌d−𝟣𝛾−𝟣√g dx

≤ N−(0)− (2𝜋)−d𝜔dh−d

∫︁
{𝜌𝛾≥h}

V
d/𝟤
− dx

≤ Ch𝟣−d

∫︁
{𝜌𝛾≥h,V≤𝜖𝜌𝟤}

𝜌d−𝟣𝛾−𝟣 dx + Ch−d

∫︁
{𝜌𝛾≤h,V≤𝜖𝜌𝟤}

𝜌d dx .

See Theorems 9.1.7 and 9.1.13 of [Ivr4] for more general statements. Further,
similar statements could be proven for operators which are not semi-bounded
(see Theorems 10.1.7 and 10.1.8 of [Ivr4]).

In particular, we have:

Example 3.7. (i) Let ∫︁
𝜌d−𝟣𝛾−𝟣 dx <∞.(3.21)
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Then,

N−(0) = (2𝜋)−d𝜔dh−d

∫︁
V

d/𝟤
−

√
g dx + O(h𝟣−d).(3.22)

(ii) If in addition the standard non-periodicity condition is satisfied then

(3.23) N−(0) = (2𝜋)−d𝜔dh−d

∫︁
V

d/𝟤
−

√
g dx−

1

4
(2𝜋)𝟣−d𝜔d−𝟣h𝟣−d

∫︁
V

(d−𝟣)/𝟤
− dS + o(h𝟣−d),

where dS is a corresponding density on 𝜕X .

Example 3.8. Consider the Dirichlet Laplacian in a domain X assuming
that there exists scaling function 𝛾(x) such that (3.14) holds and

(3.24) For each y ∈ X , the connected component of B(y , 𝛾(x))∩X containing
y coincides with {x ∈ B(0, 1), x𝟣 ≤ f (x ′}, where x ′ = (x𝟤, ... , xd) and

(3.25) |∇𝛼f | ≤ C𝛼𝛾
𝟣−|𝛼| ∀𝛼,

where we rotate the coordinate system if necessary30).

(i) Then the principal part of asymptotics is

c𝟢𝜆
d
𝟤 h−d

∫︁
{x :𝛾(x)≥𝜆−

𝟣
𝟤 }

dx(3.26)

and the remainder does not exceed

C𝜆
d−𝟣
𝟤 h𝟣−d

∫︁
{x :𝛾(x)≥𝜆−

𝟣
𝟤 }
𝛾(x)−𝟣 dx + C𝜆

d
𝟤 h−d

∫︁
{x :𝛾(x)≤𝜆−

𝟣
𝟤 }

dx .(3.27)

(ii) In particular, if

(3.28)

∫︁
X

𝛾(x)−𝟣 dx <∞,

30) It is precisely the condition that we need to impose on the boundary for the rescaling
technique to work.
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then the standard asymptotics with the remainder estimate O(𝜆(d−𝟣)/𝟤h𝟣−d)
hold. Moreover, under the standard condition (1.3), we arrive to the two-
term asymptotics (1.2).

These conditions are satisfied for domains with vertices, edges and conical
points. In fact, we may allow other singularities including outer and inner
spikes and cuts.

Furthermore, these conditions are satisfied for unbounded domains with
cusps (exits to infinity) provided these cusps are thin enough (basically
having finite volume and area of the boundary).

(iii) These results hold under the Neumann or mixed Dirichlet-Neumann
boundary condition, but then we need to assume that the domain satisfies
the cone condition; for the two-term asymptotics, we also need to assume
that the border between the parts of 𝜕X with the Dirichlet and Neumann
boundary conditions has (d − 1)-dimensional measure 0.

Example 3.9. (i) Suppose that the potential is singular at 0 ∈ X like |x |𝟤m
with m ∈ (−1, 0). Then this singularity does not affect the asymptotics of
large eigenvalues.

(ii) Let us consider Example 3.2(i) albeit allow V ≥ 0 to vanish along
certain directions. Then we have canyons and {x : V (x) ≤ 𝜆} are cusps. If
the canyons are narrow and steep enough then the same asymptotics (3.17)
hold. Moreover, under the non-periodicity condition, the remainder estimate
is “o”.

(iii) Let us consider Example 3.2(ii) albeit allow V ≥ 0 to be singular along
certain directions. Then we have gorges and {X : V (x) ≤ 𝜆} are cusps. If
the gorges are narrow and shallow enough then the same asymptotic (3.17)
hold. Moreover, under the non-periodicity condition, the remainder estimate
is “o”.

Example 3.10. We can consider also multiparameter asymptotics, for ex-
ample with respect to h → +0 and 𝜆. In addition to what we considered
above, the following interesting possibility appears: 𝜆 ↘ 𝜆* := inf V (x)
which is either finite or −∞. Then if 𝜆 tends to 𝜆* slowly enough so that
N−

h (𝜆) → +∞, we get interesting asymptotics.
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In particular, as either V (x) ≍ |x |𝟤m with m > 0 and 𝜆 → +0 or
V (x) ≍ |x |𝟤m with 0 > m > −1 and 𝜆 → −∞, then this condition is
h = o(|𝜆|(m+𝟣)/𝟤m).

Remark 3.11. We can also consider Tr((−H)𝜈θ(−H)) with 𝜈 > 0. Then in
the estimates above, 𝜌d ↦→ 𝜌d+𝟤𝜈 and 𝜌d−𝟣 ↦→ 𝜌d+𝜈−𝟣𝛾−𝜈−𝟣.

For full details, proofs and generalizations, see Chapter 11 of [Ivr4] which
covers also non-semibounded operators.

Non-Weyl Asymptotics

Partially Weyl Theory

Analyzing the examples of the previous section, one can observe that for
some values of the exponents, the condition (3.21) (or it special case (3.28))
fails but the main term of the asymptotics is still finite and has the same
rate of the growth as it had before, while for other values of the exponent,
it is infinite. In the former case, we get Weyl asymptotics but with a worse
remainder estimate, in the latter case, all we can get is an estimate rather
than the asymptotics. Can one save the day?

In many cases, the answer is positive and we can derive either the Weyl
asymptotics but with a non-Weyl correction term or completely non-Weyl
asymptotics. The main but not the only tool is the spectral asymptotics for
operators with operator-valued symbols. Namely, in some zone of the phase
space, we separate the variables31) x = (x ′; x ′′) and (𝜉′; 𝜉′′) respectively and
consider the variables (x ′, 𝜉′) as semiclassical variables (or Weyl variables),
similar to (x , 𝜉) in the previous scheme. So we get an operator H(x ′,D ′)
with an operator-valued symbol which we can study in the same way as the
operator H before.

One can say that we have a matrix operator but with a twist: first, instead
of finite-dimensional matrices, we have unbounded self-adjoint operators in
the auxilary infinite-dimensional Hilbert space ℍ (usually L𝟤 in the variables
x ′′); second, we are interested in the asymptotics

(3.29)

∫︁
trℍ

(︀
ê(x ′, x ′,𝜆)

)︀
dx ′,

31) After some transformation, the transformations and separations in the different
zones are not necessarily the same.
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rather than in the asymptotics without trace where ê(x ′, y ′;𝜆) is an operator
in ℍ (with Schwartz kernel e(x ′, y ′; x ′′, y ′′;𝜆)); and, finally, the main term
in asymptotics is

(3.30)

∫︁
trℍ

(︀
e(x ′, 𝜉′;𝜆)

)︀
d𝜉′dx ′,

where e(x ′, 𝜉′,𝜆) is a spectral projector (in ℍ) of H(x ′, 𝜉′). Here, we need
to assume that H(x ′, 𝜉′) is microhyperbolic with respect to (x ′, 𝜉′). Since
the operator trℍ is now unbounded, both the main term of the asymptotics
of (3.29) and the remainder estimate may have magnitudes different from
what they would be without trℍ.

Since the operator H(x ′, 𝜉′) is rather complicated, we want to replace it
by some simpler operator and add some easy to calculate correction terms.

We consider multiple examples below. Magnetic Schrödinger, Schrödinger-
Pauli and Dirac operators studied in Sections 2 and 3 are also of this type.

Domains with Thick Cusps

This was done in Section 12.2 of [Ivr4] for operators in domains with thick
cusps of the form {x : x ′′ ∈ f (x ′)Ω} where Ω is a bounded domain in ℝd ′′

with
smooth boundary, defining the cusp crossection. Here again we consider for
simplicity the Dirichlet Laplacian. Assume first that the metric is Euclidean
and the domain X = {x = (x ′, x ′′) : x ′ ∈ X ′ := ℝd ′

, x ′′ ∈ f (x ′)Ω}. Then, the
change of variables x ′′ ↦→ x ′′/f (x ′) transforms Δ to the operator

(3.31) P =
∑︁

𝟣≤j≤d ′

(︁
Dj + gxj L +

id ′′

2
gxj

)︁(︁
Dj + gxj L − id ′′

2
gxj

)︁
+

1

f 𝟤
Δ′′

in L𝟤(X ′ × Ω) = L𝟤(ℝd ′
,ℍ) where L = ⟨x ′′,D ′′⟩, g = − log f , ℍ = L𝟤(Ω),

Δ′ is a Laplacian in X ′, and Δ′′ = Δ′′
𝖣 is a Dirichlet Laplacians in Ω, and we

simultaneously multiply u by f −d ′′/𝟤 to have the standard Euclidean measure
rather than the weighted one f d ′′

dx . We consider the operator (3.31) as a
perturbation of the operator

(3.32) P̄ := Δ′ +
1

f 𝟤
Δ′′,

which is a direct sum of d ′-dimensional Schrödinger operators Pn = Δ′+𝜇nf −𝟤

in X ′ where 𝜇n > 0 are the eigenvalues of Δ′′
𝖣. Assuming that

(3.33) f ≍ |x |−m, |∇f | ≍ |x |−m−𝟣 for |x ′| ≥ c ,
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we can ensure that the microhyperbolicity condition (with respect to (x ′; 𝜉′))
is fulfilled for Pn, P̄ , as well as for P .

Then according to the previous section, for Pn the eigenvalue counting
function is

(3.34) Nn(𝜆) = cd ′

∫︁ (︀
𝜆−𝜇nf −𝟤(x ′)

)︀ d′
𝟤

+
dx ′+O

(︀
𝜆(d

′−𝟣)(m+𝟣)/𝟤m𝜇−(d ′−𝟣)/𝟤m
n

)︀
,

where the remainder estimate is uniform with respect to n. Observe that for
P̄ the eigenvalue counting function is N̄(𝜆) =

∑︀
n Nn(𝜆). Using 𝜇n ≍ n𝟤/d ′′

,
we arrive to

Nn(𝜆) = cd ′

∫︁∫︁
(𝜆− 𝜇f −𝟤(x ′))

d′
𝟤
+ dx ′d𝜇n(𝜇) + O(R(𝜆))(3.35)

with

R(𝜆) = 𝜆
𝟣
𝟤
(d−𝟣) + 𝜆

m+𝟣
𝟤m

(d ′−𝟣) + δ(d ′−𝟣),md ′′𝜆
𝟣
𝟤
(d−𝟣) log 𝜆,(3.36)

where n(𝜇) is the eigenvalue counting function for Δ′′
𝖣.

We show, moreover, that the same asymptotics holds for our original
operator (3.31). Furthermore, if the first term in (3.35) is dominant, then
under the standard non-periodicity assumption we can replace O(𝜆(d−𝟣)/𝟤)
by o(𝜆(d−𝟣)/𝟤); we need to add the standard boundary term to the right-hand
expression in (3.35).

On the other hand, if the second term in (3.35) dominates, then assuming
that f stabilizes as |x ′| → ∞ to a positively homogeneous function f𝟢, under
the corresponding non-periodicity assumption (now in T *ℝd ′

) for |𝜉′|𝟤 +
f −𝟤
𝟢 (x ′), we can replace O(𝜆(m+𝟣)(d ′−𝟣)/𝟤m) by o(𝜆(m+𝟣)(d ′−𝟣)/𝟤m). Finally, if
both powers coincide then under the stabilization condition, the remainder
estimate is o(𝜆(d−𝟣)/𝟤 log 𝜆) but we need to add the modified boundary term
to the right-hand expression in (3.35).

Obviously, the principal part in (3.35) is of the magnitude

(3.37) S(𝜆) = 𝜆
𝟣
𝟤
d + 𝜆

m+𝟣
𝟤m

d ′
+ δd ′,md ′′𝜆

𝟣
𝟤
d log 𝜆.

If X is not exactly of the same form and the metric only stabilizes (fast
enough) at infinity to g jk𝟢 := δjk , then we can recover the same remainder
estimate and reduce the principal part to

(3.38) cd ′

∫︁∫︁
(𝜆− 𝜇f −𝟤(x ′))

d′
𝟤
+ 𝜑(x

′) dx ′d𝜇n(𝜇)

+ cd𝜆
d/𝟤

∫︁
X

(
√︀

g −
√︀

g 𝟢𝜑(x ′)) dx ,
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where supp(𝜑) ⊂ {|x ′| ≥ c}, 𝜑 = 1 in {|x ′| ≥ c}. Here, the first part is
exactly as above and the second term is actually the sum of two terms; one of
them cd𝜆

d/𝟤
∫︀ √

g(1− 𝜑(x ′)) dx is the contribution of the “finite part of the

domain” (without the cusp) and the second cd𝜆
d/𝟤

∫︀
(
√︀

g −
√︀

g 𝟢)𝜑(x ′) dx is
a contribution of the cusp in the correction.

Note that now to get the remainder estimate o(𝜆(d−𝟣)/𝟤), one needs to
include the standard boundary term in the second part of (3.38).

The crucial part of our arguments is a multiscale analysis. As long as
r ≤ c𝜆𝟣/𝟤m−𝛿, we can scale x ↦→ xrm and consider 𝜎𝟢(t) = Tr

(︀
e ih−𝟣tH𝜑(x ′/r)

)︀
;

here H = 𝜆−𝟣P , h = 𝜆−𝟣/𝟤rm. From the propagation with respect to (x , 𝜉),
we know that on energy level 1, the time interval (h𝟣−𝛿, 𝜖) contains no
singularities of 𝜎𝟢(t).

On the other hand, for r ≥ c , we can scale x ↦→ x/r and consider
𝜎𝟣(t) = Tr

(︀
e iℏ−𝟣tH𝜑(x ′/r)

)︀
; here ℏ = 𝜆−𝟣/𝟤r−𝟣. From the propagation with

respect to (x ′, 𝜉′), we know that on energy level 1, the time interval (ℏ𝟣−𝛿, 𝜖)
contains no singularities of 𝜎𝟣(t).

Observe first that 𝜎𝟣(t) = 𝜎𝟢(r
−𝟣−mt) and therefore the time interval

(h𝟣−𝛿, 𝜖rm+𝟣) contains no singularities of 𝜎𝟢(t). This allows us to improve
the remainder estimate in the full Weyl asymptotics but we need to include
many terms which are difficult to calculate.

On the other hand, for 𝜆𝛿 ≤ r ≤ c𝜆𝟣/𝟤m, we can consider H as a
perturbation of H̄ = 𝜆−𝟣P̄ . We do it first in the framework of the theory of
operators with operator-valued symbols. Then we consider all perturbation
terms and apply to them “full Weyl theory” and due to the stabilization
assumption, the error is less than (3.36). This gives us another asymptotics,
also with many terms which are difficult to calculate.

Comparing these two asymptotics in their common domain 𝜆𝛿 ≤ r ≤
𝜆𝟣/𝟤m−𝛿, we conclude that all terms but those present in both must be 0;
it allows us to eliminate almost all the terms and sew these asymptotics
resulting in (3.38).

Using the same approach, we can consider higher order operators, the
case when X ′ is a conical set and there are several cusps Xk which may have
different dimensions d ′

k and rates of decay (then both the principal part and
the remainder estimate should be modified accordingly).
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Neumann Laplacian in Domains with Ultra-Thin Cusps

Consider the Neumann Laplacian in domains with cusps. Recall that since
these domains do not satisfy the cone condition, we so far have no results
even if the cusp is thin. Applying the same arguments as before, we hit
two obstacles. The first (minor) obstacle is that the Neumann boundary
condition for the operator (3.31) coincides with the same condition for Δ′′

only asymptotically. The second (major) obstacle is that 𝜇𝟣 = 0 and P𝟣 = Δ′

has a continuous spectrum. In fact, we should not reduce P to P̄ ; from
(3.31) we conclude that

P𝟣 =
∑︁

𝟣≤j≤d ′

(︁
Dj +

id ′′

2
gxj

)︁(︁
Dj −

id ′′

2
gxj

)︁
= Δ′ + W(3.39)

with

W =
d ′′𝟤

4
|∇g |𝟤 + d ′′

2
Δ′g .(3.40)

Still this operator may have a continuous spectrum unless |∇g | → ∞ as
|x | → ∞. We need to assume that f has superexponential decay: f = e−g

with

|∇𝛼g | ≤ c𝛼|x |𝟣+m−|𝛼| ∀𝛼,(3.41)

g ≍ |x ′|m+𝟣, |∇g | ≍ |x ′|m for |x ′| ≥ c ,(3.42)

|∇|∇g |𝟤| ≍ |x |𝟤m−𝟣 for |x ′| ≥ c ,(3.43)

where m > 0 and (3.43) is a microhyperbolicity condition for P𝟣. Then one
can prove easily that when d ′′ ≥ 2,

N(𝜆) = cd𝜆
d/𝟤

∫︁
X

√
g dx + cd ′

∫︁
(𝜆− W )

d ′/𝟤
+ dx ′ + O(R(𝜆))(3.44)

with

R(𝜆) = 𝜆
𝟣
𝟤
(d−𝟣) + 𝜆

m+𝟣
𝟤m

(d ′−𝟣).(3.45)

Moreover, if the first term in (3.35) dominates, then under the standard
non-periodicity assumption, we can replace O(𝜆(d−𝟣)/𝟤) by o(𝜆(d−𝟣)/𝟤) (si-
multaneously including the standard boundary term); if the second term
dominates, then assuming that W stabilizes as |x ′| → ∞ to a positively homo-
geneous function W𝟢, under the corresponding assumption for |𝜉′|𝟤 + W𝟢(x

′)
we can replace O(𝜆(m+𝟣)(d ′−𝟣)/𝟤m) by o(𝜆(m+𝟣)(d ′−𝟣)/𝟤m).
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One can see easily that N(𝜆) ≍ S(𝜆) = 𝜆
𝟣
𝟤
d + 𝜆

m+𝟣
𝟤m

d ′
. Observe that in

contrast to (3.36) and (3.37), even if the exponents coincide, a logarithmic
factor does not appear.

The case d ′′ = 1 is special since even an ultra-thin cusp is also thick
(according to the classification of the previous Subsection 3) and the corre-
sponding formulae should include a modified boundary term containing the
double logarithm of 𝜆. For this and other generalizations, see Section 12.7
of [Ivr4]. Also one can consider spikes with supp(f ) = {|x ′| ≤ L}, in which
case the standard Weyl asymptotics holds.

Operators in ℝd

The scheme of Subsection 3 is repeated in many similar cases.
First, consider eigenvalues tending to +∞ for the Schrödinger operator

with potential V which generically is ≍ |x |𝟤m but vanishes along some
directions.

For example, consider the toy-model V = |x |𝟤m−𝟤m′ |x ′′|𝟤m′
with m >

m′ > 0. Let X ′ = ℝd ′ ∋ x ′ and X ′′ = ℝd ′′ ∋ x ′′. Consider only the
conical vicinity of X ′ and here we instead consider the potential V =
|x ′|𝟤m−𝟤m′ |x ′′|𝟤m′

. Consider only the part of operator which is related to
x ′′: Δ′′ + |x ′|𝟤m−𝟤m′ |x ′′|𝟤m′

and after the change of variables x ′′ ↦→ x ′′|x ′|k
with k = (m − m′)/(m′ + 1), it becomes |x ′|𝟤kL with L = Δ′′ + U(x ′′),
U = |x ′′|𝟤m′′

. The condition m′′ > 0 ensures that the spectrum of L is
discrete and accummulates to +∞.

So basically we have a mixture of the Schrödinger operator on ℝd with a
potential growing as |x |𝟤m and the Schrödinger operator with the operator-
valued symbol on ℝd ′′

with a potential growing as |x |𝟤k and we recover the
asymptotics with the remainder estimate O(R(𝜆)), where

R(𝜆) = 𝜆
m(d−𝟣)
(m+𝟣) + 𝜆

k(d′−𝟣)
(k+𝟣) + δm(d−𝟣)

(m+𝟣)
, k(d

′−𝟣)
(k+𝟣)

𝜆
m(d−𝟣)
(m+𝟣) log 𝜆(3.46)

and the principal part is ≍ S(𝜆), where

S(𝜆) = 𝜆
md

(m+𝟣) + 𝜆
kd′

(k+𝟣) + δmd/(m+𝟣)
,

kd′
(k+𝟣)

𝜆
md

(m+𝟣) log 𝜆.(3.47)

In a rather general situation, this principal part is similar to the one in (3.38)
where n(𝜇) is the eigenvalue counting function for L. Further, under similar



686 100 YEARS OF WEYL’S LAW

non-periodicity assumptions, we can replace “O” by “o”. For generalizations,
details and proofs, see Section 12.3 of [Ivr4].

Second, consider eigenvalues tending to −0 for the Schrödinger operator
with a potential V which generically is ≍ |x |𝟤m with m ∈ (−1, 0) but is sin-
gular in some directions. Again, consider a toy-model V = −|x |𝟤m−𝟤m′ |x ′′|𝟤m′

with −1 < m < m′ < 0. Again, L = Δ′′ + U(x ′′), U = −|x ′′|𝟤m′′
and its

negative spectrum is discrete and accummulates to −0. The formulae (3.46)
and (3.47) remain valid (albeit 𝜆 → −0). For generalizations, details and
proofs, see Section 12.4 of [Ivr4].

Maximally Hypoelliptic Operators

Third, consider the eigenvalues tending to +∞ for maximally hypoelliptic
operators with a symplectic manifold of degeneration. Consider the toy-
model P = Δ′′ + |x ′′|𝟤mΔ′. In this case, after the partial Fourier transform,
we get Δ′′ + |x ′′|𝟤m|𝜉′|𝟤 and after the change of variables x ′′ ↦→ |𝜉′|kx ′′, we
get |𝜉′|𝟤kL, L = Δ′′ + |x ′′|𝟤m and k = 1/(m + 1).

This toy-model is maximally hypoelliptic as the spectrum of L is discrete
and accummulates to +∞. So basically we have a blend of operator of
order 2 on ℝd and of order 2k on ℝd ′

and we recover the asymptotics with
remainder estimate O(R(𝜆)) with

R(𝜆) = 𝜆
(d−𝟣)

𝟤 + 𝜆
(d′−𝟣)

𝟤k + δd−𝟣,(d ′−𝟣)/k𝜆
(d−𝟣)

𝟤 log 𝜆(3.48)

and principal part ≍ S(𝜆) with

S(𝜆) = 𝜆
d
𝟤 + 𝜆

d′
𝟤k + δd ,d ′/k𝜆

d
𝟤 log 𝜆.(3.49)

Further, under similar non-periodicity assumptions, we can replace “O” by
“o”. For generalizations, details and proofs, see Section 12.5 of [Ivr4].

Trace Asymptotics for Operators with Singularities

Here, we also consider only one example (albeit the most interesting one)
of a Schrödinger operator H := h𝟤Δ− V (x) in ℝ𝟥 with potential V (x) at 0
stabilizing to a positive homogeneous function V𝟢 of degree −1:

(3.50) |∇𝛼(V − V𝟢)| ≤ c𝛼|x |−|𝛼| ∀𝛼.
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We assume that V (x) decays fast enough at infinity and we are interested
in the asymptotics of Tr(H−), which is the sum of the negative eigenvalues
of H . While generalizations are considered in Section 12.6 of [Ivr4], exactly
this problem with V𝟢 = |x |−𝟣 arises in the asymptotics of the ground state
energy of heavy atoms and molecules.

It follows from Section 3 that N−
h has purely Weyl asymptotics with

the remainder estimate O(h−𝟤) and32) it could be improved to o(h−𝟤) but
we have a different object and if the potential had no singularities, the
remainder estimate would be O(h−𝟣) or even o(h−𝟣) 32),33).

Therefore considering the contribution of the ball B(x , 𝛾(x)) with 𝛾(x) =
𝟣
𝟤
|x |, we have a contribution to the Weyl expression

(3.51) − ch−𝟥

∫︁
V

𝟧
𝟤
+ dx

of magnitude C𝜌𝟤(h/𝜌𝛾)−𝟥 = Ch−𝟥𝜌𝟧𝛾𝟥, while the contribution to the re-

mainder does not exceed C𝜌𝟤(h/𝜌𝛾)−𝟣 = Ch−𝟣𝜌𝛾 with 𝜌 = |x |− 𝟣
𝟤 . We see

that the former converges at 0 and the latter diverges. This analysis could
be done for 𝜌𝛾 ≥ h i.e. if |x | ≥ h𝟤. Then we conclude that the contribution

of the zone {x : |x | ≥ a} to the remainder does not exceed Ch−𝟣a− 𝟣
𝟤 which

as a = h𝟤 is O(h−𝟤). On the other hand, one can easily prove that the
contribution of B(0, h𝟤) to the asymptotics is also O(h−𝟤).

To improve this estimate, we analyze B(0, a) in more detail. In virtue of
(3.50), we can easily prove that the contribution of B(x , 𝛾) to Tr(H− − H𝟢−)
(with H𝟢 = h𝟤Δ−V𝟢) does not exceed C (h/𝜌𝛾)−𝟤 = Ch−𝟤𝜌𝟤𝛾𝟤 and therefore
the contribution of B(0, a) to the remainder is O(h−𝟤a). Minimizing the

total error h−𝟤a + h−𝟣a− 𝟣
𝟤 in a, we get a = h

𝟤
𝟥 and the remainder O(h− 𝟦

𝟥 ),
which is better than O(h−𝟤) but not as good as O(h−𝟣).

But then we need to include in the asymptotics the extra term

(3.52)

∫︁ (︀
e𝟣
𝟢(x , x , 0)− cV

𝟧
𝟤
+ (x)

)︀
𝜓(a−𝟣x) dx ,

where e(·, ·,𝜆) is the Schwartz kernel of the spectral projectors for H ,

e𝟣(·, ·, 0) =
∫︀ 𝟢

−∞ 𝜆 d𝜆e(·, ·,𝜆) and the subscript 0 means that it is for H𝟢

and 𝜓 ∈ C∞
𝟢 (B(0, 2)) and equals 1 in B(0, 1).

32) Under the standard non-periodicity condition.
33) But then the principal part of asymptotics should include the third term ch−𝟣 while

the second term vanishes.
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Basically, all that we achieved so far was to replace H by H𝟢 in (3.52).
The same arguments allow us to replace 𝜓 by 1 in this expression with the
same error O(h−𝟣a− 𝟣

𝟤 ). This time, we cannot decompose it as the difference
of two integrals because each of them is diverging at infinity (since V𝟢 decays
there not fast enough). Further, due to the homogeneity of V𝟢, one can prove
that this remodelled expression (3.52) is homogeneous of degree −2 with
respect to h and thus is equal to 𝜅h−𝟤. Here, 𝜅 is some unknown constant,
but for V𝟢 = |x |−𝟣, it could be calculated explicitly.

Therefore, we conclude that with the remainder estimate O(h− 𝟦
𝟥 ), Tr(H−)

is given by the Weyl expression plus the Scott corretion term 𝜅h−𝟤.
To improve this remainder estimate, we should carefully study the

propagation of singularities. We can prove that if h𝟤−𝛿 ≤ 𝛾 ≤ 1, then
the singularities do not come back “in real time” ≍ 1, which is a vast
improvement over ≍ 𝛾𝜌−𝟣 ≍ 𝛾

𝟥
𝟤 . Then the contribution of B(x , 𝛾) to the

“trace remainder” does not exceed Ch−𝟣𝜌𝟤𝛾𝟥 but then the principal part of
asymptotics should have a lot of terms; the n-th term is of the magnitude
h−𝟥+𝟤n𝜌𝟤−𝟤n𝛾𝟥−𝟤n; however, using (3.50) we conclude that the difference
between such terms for H and H𝟢 is O(h−𝟥+𝟤n𝜌−𝟤n𝛾𝟥−𝟤n) which leads to the
estimate

(3.53)

⃒⃒⃒⃒∫︁ (︀
e𝟣(x , x , 0)− e𝟣

𝟢(x , x , 0)− cV
𝟧
𝟤
+ (x) + cV

𝟧
𝟤
𝟢+(x)

)︀
dx

⃒⃒⃒⃒
≤ Ch−𝟣.

This estimate implies that with the remainder estimate O(h−𝟣), Tr(H−) is
given by the Weyl expression plus 𝜅h−𝟤. Moreover, this estimate could be
further improved to o(h−𝟣) 32),33).

Similar results hold for other singularities (including singularities of the
boundary), dimensions and Tr(H𝜈

−) with 𝜈 > 0. However, note that there
could be more than one such correction term.

Periodic Operators

Finally, consider an operator H𝟢 = H𝟢(x ,D) with periodic coefficients (with
the lattice of periods Γ). Then its spectrum is usually absolutely continuous
and consists of spectral bands {𝜆k(𝜉) : 𝜉 ∈ 𝒬′} separated by spectral gaps .
Here, 𝜆k are the eigenvalues of operator H𝟢 with quasiperiodic boundary
conditions

(3.54) u(x + n) = T ne i⟨n,𝜉⟩(x) ∀n ∈ Γ,
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Γ* is the dual lattice34), 𝒬 and 𝒬′ are corresponding elementary cells35); 𝜉 is
called the quasimomentum. Here, T = (T𝟣, ... ,Td) is a family of commuting
unitary matrices.

Let us consider an operator Ht = H𝟢− tW (x) with W (x) > 0 decaying at
infinity. Then, while the essential spectra of H and Ht are the same, Ht can
have discrete eigenvalues in the spectral gaps and these eigenvalues decrease
as t increases.

Let us fix an observation point E belonging to either the spectral gap or
its boundary and introduce NE (𝜏 ), the number of eigenvalues of Ht crossing
E as t changes between 0 and 𝜏 . We are interested in the asymptotics of
NE (𝜏) as t → ∞.

Then using Gelfand’s transform,

(3.55) ℱu(𝜉, x) = (2𝜋)
d
𝟤 (vol(𝒬′))−𝟣

∑︁
n∈𝝘

T ne−i⟨n−x ,𝜉⟩u(x − n)

with (x , 𝜉) ∈ 𝒬×𝒬′, this problem is reduced to the problem for operators
with operator-valued symbols on L𝟤(𝒬′,ℍ𝜉,{T}) where ℍ𝜉,{T} is the space
of functions satisfying (3.54).

After that, different results are obtained in three essentially different
cases: when E belongs to the spectral gap, E belongs to the bottom of the
spectral gap, and E belongs to the top of the spectral gap. For exact results,
proofs and generalizations, see Section 12.8 of [Ivr4].

4 Non-Smooth Theory

So far we have considered operators with smooth symbols in domains with
smooth boundaries. Singularities were possible but only on “lean” sets.
However, it turns out that many results remain true under very modest
smoothness assumptions.

Non-Smooth Symbols and Rough Microlocal Analysis

To deal with non-smooth symbols, we approximate them by rough symbols
p ∼

∑︀
m pm, depending on a small mollification parameter 𝜀 and satisfying

|∇𝛼
𝜉∇𝛽

x pm(x , 𝜉)| ≤ Cm𝛼𝛽𝝆
−𝛼𝜸−𝛽𝜀−m(1.1)

34) I.e. if 𝝘 = ℤe𝟣 ⊕ℤe 𝟤⊕ ...⊕ℤed then 𝝘* = ℤe′
𝟣 ⊕ℤe′

𝟤 ⊕ ...⊕ℤe′
d with ⟨ej , e′

k⟩ = δjk .
35) I.e. 𝒬 = {x𝟣e𝟣 + ... + xded : x ∈ [𝟢, 𝟣]d} and 𝒬′* = {𝜉𝟣e′

𝟣 + ... + 𝜉de′
d : 𝜉 ∈ [𝟢, 𝟣]d}.
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with

min
j
𝜌j𝛾j ≥ 𝜀 ≥ Ch𝟣−𝛿(1.2)

(microlocal uncertainty principle), which could be weakened to

(1.3) |∇𝛼
𝜉∇𝛽

x pm(x , 𝜉)| ≤ C |𝛼|+|𝛽|+m+𝟣𝛼!𝛽!m!𝝆−𝛼𝜸−𝛽𝜀−m

∀𝛼, 𝛽,m : |𝛼|+ |𝛽|+ 2m ≤ N = C | log h|−𝟣

with

(1.4) min
j
𝜌j𝛾j ≥ 𝜀 ≥ Ch| log h|

(logarithmic uncertainty principle). At this point, microlocal analysis ends:
the assumptions cannot be weakened any further.

Assuming that

|∇𝛼
𝜉∇𝛽

x∇p𝟢(x , 𝜉)| ≤ C |𝛼|+|𝛽|+𝟣𝛼!𝛽!𝝆−𝛼𝜸−𝛽(1.5)

and

|∇𝛼
𝜉∇𝛽

x∇pm(x , 𝜉)| ≤ C |𝛼|+|𝛽|+m+𝟣𝛼!𝛽!m!𝝆−𝛼𝜸−𝛽𝜀𝟣−m (m ≥ 1),(1.6)

we can restore Theorem 2.2 (see Theorem 2.3.2 of [Ivr4]) and therefore also
the Corollaries 2.3 and 2.4, assuming 𝜉-microhyperbolicity instead of the
usual microhyperbolicity. For proofs and details, see Section 2.3 of [Ivr4].

After this, we can than use the successive approximation method like
in Subsection 2 (definitely some extra twisting required) and then re-
cover the spectral asymptotics – originally only for operators which are
𝜉-microhyperbolic.

To consider non-smooth symbols, we can bracket them between rough
symbols: for example, for the Schrödinger operator p−(x , 𝜉, h) ≤ p(x , 𝜉, h) ≤
p+(x , 𝜉, h) where p± = p𝜀 ± C𝜈(𝜀) and p𝜀 is the symbol p, 𝜀-mollified and
𝜈(𝜀) is the modulus of continuity of the metric and potential; 𝜀 = Ch| log h|.

Then for 𝜈(𝜀) = O(𝜀| log 𝜀|−𝟣) 36), we can recover the remainder estimate
O(h𝟣−d); under even weaker regularity conditions by rescaling, we can recover
weaker remainder estimates. On the other hand, if 𝜈(𝜀) = o(𝜀| log 𝜀|−𝟣),

36) Which means that the first partial derivatives are continuous with modulus of
continuity 𝜈𝟣(𝜀) = 𝜈(𝜀)𝜀−𝟣.
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we can recover the remainder estimate o(h𝟣−d) under the standard non-
periodicity condition37). For proofs and details, see Section 4.6 of [Ivr4].
There is an alternative to the bracketing construction based on perturbation
theory, which works better for the trace asymptotics and also covers the
pointwise asymptotics. For an exposition, see Section 4.6 of [Ivr4].

Further, for scalar and similar operators, the rescaling technique allows
us to replace 𝜉-microhyperbolicity by microhyperbolicity under really weak
smoothness assumptions; here we also use 𝜀 depending on the point so that
we can consider scalar symbols under weaker and weaker non-degeneracy
assumptions albeit stronger and stronger smoothness assumptions. See
Section 5.4 of [Ivr4].

Non-Smooth Boundaries

Let us consider a domain with non-smooth boundary (with the Dirichlet
boundary condition). Here, the standard trick to flatten out the boundary
by the change of variables x𝟣 ↦→ x𝟣 − 𝜑(x ′) works very poorly: the operator
principal symbol contains the first partial derivatives 𝜑 and therefore we
need to require 𝜑 ∈ C𝟤. Fortunately, the method of R. Seelley [See1] can
help us. This method was originally developed for the Laplacian with a
smooth metric and a smooth boundary.

Here, we consider only the Schrödinger operator; assume first that the
metric and potential are smooth. Consider a point x̄ ∈ X and assume that
the metric is Euclidean at x̄ and nearby, X looks like {x : x𝟣 ≥ 𝜑(x ′)} with
∇′𝜑(x̄ ′) = 0. Observe that these assumptions do not require any smoothness
beyond C𝟣.

Consider a trajectory starting from (x̄ , 𝜉). If |𝜉𝟣| < 𝜌 := Ch| log h|/𝛾, the
trajectory starts parallel to 𝜕X and 𝜕X can “catch up” only at time at least
T = 𝜎(𝛾) where 𝛾 = 𝟣

𝟤
dist(x , 𝜕X ) and 𝜎 is the inverse function to 𝜈, which

is a modulus of continuity for 𝜑 36).

If 𝜉𝟣 > 𝜌 then this trajectory “runs away from 𝜕X” and 𝜕X can “catch
up” only at time at least T = 𝜎(𝛾) + 𝜎𝟣(𝜉𝟣) where 𝜎𝟣 is the inverse function
to 𝜈𝟣

36). On the other hand, if 𝜉𝟣 < −𝜌, then we can revert the trajectory
(which works only for local but not pointwise spectral asymptotics).

37) However, even for the Schrödinger operator without boundary, the dynamic equations
do not satisfy the Lipschitz condition and thus the flow could be multivalued.
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These arguments allow us to estimate the contribution of B(x , 𝛾(x)) to
the remainder by Ch𝟣−d𝛾dh| log h|𝜎(𝛾)−𝟣 and then the total remainder by
Ch𝟣−d

∫︀
𝜎(𝛾)−𝟣 dx . The latter integral converges for 𝜈(t) = t| log t|−𝟣−𝛿.

Sure, this works only when 𝛾 ≥ 𝛾 = Ch| log h|. However, if we smoothen
the boundary with a smoothing parameter C𝛾, for 𝛾 ≤ 𝛾, we will be in the
framework of the smooth theory after rescaling and we can take T = 𝛾. The
contribution of this strip to the remainder does not exceed Ch𝟣−d𝛾T−𝟣 as
its measure does not exceed C𝛾. One can easily check that the variation of
vol(X ) due to the smoothing of the boundary is Ch𝟣−d and we can use the
bracketing of X as well.

We can even improve the remainder estimate to o(h𝟣−d) under the
standard non-periodicity condition.

Furthermore, if the metric and potential are not smooth, we need to
mollify them, taking the mollification parameter 𝜀 larger near 𝜕X and taking
𝜌 = Ch| log h|/𝜀, but it works. For systems, we can exploit the fact that most
of the cones of dependence are actually trajectories. For exact statements,
proofs and details, see Section 7.5 of [Ivr4].

Aftermath

After the non-smooth local theory is developed, we can use all the arguments
of Section 3 and consider “stronger but more concentrated” singularities
added on the top of the weaker ones.

2 Magnetic Schrödinger Operator

Introduction

This Section is entirely devoted to the study of the magnetic Schrödinger
operator

H = (−ih∇− 𝜇A(x))𝟤 + V (x)(2.1)

and of the Schrödinger-Pauli operator

H = ((−ih∇− 𝜇A(x)) · σ)𝟤 + V (x)(2.2)

with a small semiclassical parameter h and largemagnetic intensity parameter
(coupling constant) responsible for the interaction of a particle with the
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magnetic field 𝜇. Here, σ = (σ𝟣, ... ,σd) where σ𝟣, ... ,σd are Pauli D × D-
matrices and A is magnetic vector potential. We are interested in the
two-parameter asymptotics (with respect to h and 𝜇) as well as related
asymptotics.

Standard Theory

Preliminaries

For a detailed exposition, generalizations and proofs, see Chapter 13 of [Ivr4].
Consider the most interesting cases d = 2, 3 with smooth V (x) and A(x).

If d = 2, the magnetic field could be described by a single (pseudo)scalar
F𝟣𝟤 = 𝜕𝟣A𝟤 − 𝜕𝟤A𝟣 and by a scalar F = |F𝟣𝟤|. If d = 3, the magnetic field
could be described by a (pseudo)vector F = ∇×A (vector magnetic intensity)
and by a scalar F = |F | (scalar magnetic intensity). As a toy-model, we
consider an operator in ℝd with constant V and F . Then canonical form of
the operator (2.1) is

(2.3) H = h𝟤D𝟤
𝟣 + (hD𝟤 − 𝜇Fx𝟣)

𝟤 + h𝟤D𝟤
𝟥 +V ,

with the third term omitted when d = 3. Then we can calculate

e(x , x , 𝜏) = h−d𝒩𝖬𝖶
d (𝜏 − V ,𝜇hF )(2.4)

with

𝒩𝖬𝖶
d (𝜏 ,F ) = 𝜅d

∑︁
n≥𝟢

(︀
𝜏 − (2n + 1)F

)︀ 𝟣
𝟤
(d−𝟤)

+
F ,(2.5)

where 𝜅𝟤 = 1/(2𝜋), 𝜅𝟥 = 1/(2𝜋𝟤). In particular, if d = 2, F ̸= 0 this operator
has a pure point spectrum of infinite multiplicity. Eigenvalues (2m + 1)𝜇hF
are called Landau levels . If d = 3, this operator has an absolutely continuous
spectrum.

In these cases, the operator (2.2) is a direct sum of D/2 operators H−
and D/2 operators H+ where H∓ = H𝟢 ∓ 𝜇hF , H𝟢 is the operator (2.1); then

(2.6) 𝒩𝖬𝖶
d (𝜏 − V ,𝜇hF ) := 𝜅dD

(︁1
2
𝜏

𝟣
𝟤
(d−𝟤)

+ +
∑︁
n≥𝟣

(︀
𝜏 − 2nF

)︀ 𝟣
𝟤
(d−𝟤)

+

)︁
F

Classical dynamics are different as well: when d = 2, the trajectories
are magnetrons–circles of radii (𝜇F )−𝟣, while if d = 3, there is also free
movement along magnetic lines–integral curves of F , so the trajectories are
solenoids.
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Canonical Form

Using the ℏ-Fourier transform, we can reduce the magnetic Schrödinger
operator to its microlocal canonical form

𝜇𝟤
∑︁
n≥𝟢

Bn(x𝟣, ℏD𝟣,𝜇
−𝟤, ℏ)ℒn

𝟢 for d = 2,(2.7)

h𝟤D𝟤
𝟤 + 𝜇𝟤

∑︁
n≥𝟢

Bn(x
′, ℏD𝟣,𝜇

−𝟤, ℏ)ℒn
𝟢 for d = 3,(2.8)

with ℏ = 𝜇−𝟣h, ℒ𝟢 = x𝟤
d + ℏ𝟤D𝟤

d , x ′ = x𝟣 and x ′ = (x𝟣, x𝟤) when d = 2, 3
respectively. Further, the principal symbols of the operators B𝟢 and B𝟣 are
𝜇−𝟤V ∘Ψ and F ∘Ψ respectively, where Ψ is a diffeomorphism (x ′, 𝜉𝟣) → x .

This canonical form allows us to study both the classical trajectories and
the propagation of singularities in the general case. When d = 2, there is
still movement along the magnetrons but magnetrons are drifting with the
velocity v = 𝜇−𝟣(∇((V − 𝜏)/F𝟣𝟤))

⊥ where ⊥ denotes the counter-clockwise
rotation by 𝜋/2. If d = 3, trajectories are solenoids winding around magnetic
lines and the movement along magnetic lines is described by an 1-dimensional
Hamiltonian but there there is also side-drift as in d = 2.

We can replace then ℒ𝟢 by its eigenvalues which are (2j + 1)ℏ, thus
arriving to a family of ℏ-pseudodifferential operators with respect to x𝟣 if
d = 2 and to a family of ℏ-pseudodifferential operators with respect to x𝟣
which is also a Schrödinger operator with respect to x𝟤.

Asymptotics: Moderate Magnetic Field

We can always recover the estimate O(𝜇h𝟣−d) with the standard Weyl
principal part simply by using the scaling x → 𝜇x , h ↦→ 𝜇h, 𝜇 ↦→ 1. On the
other hand, for d = 2, we cannot in general improve it as follows from the
example with constant F and V .

However, under a(THE?) non-degeneracy assumption, the remainder
estimate is much better:

Theorem 2.1. Let d = 2, F ≍ 1, 𝜇h ≲ 1 and

|∇VF−𝟣|+ | det HessVF−𝟣| ≥ 𝜖.(2.9)

Then ∫︁ (︁
e(x , x , 0)− h−𝟤𝒩𝖬𝖶

𝟤 (x ,−V ,𝜇hF )
)︁
𝜓(x) dx = O(𝜇−𝟣h−𝟣).(2.10)
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The explanation is simple: each of the non-degenerate 1-dimensional
ℏ-pseudodifferential operators contributes O(1) to the remainder estimate
and there is ≍ (𝜇h)−𝟣 of them which should be taken into account. Another
explanation is that under the non-degeneracy assumption, the drift of the
magnetrons destroys the periodicity but we can follow the evolution for time
T * = 𝜖𝜇, so the remainder estimate is O(T *−𝟣h−𝟣).

If d = 3, we cannot get the local remainder estimate better than O(h−𝟤)
without global non-periodicity conditions due to the evolution along magnetic
lines. On the other hand, we do not need strong non-degeneracy assumptions:

Theorem 2.2. Let d = 3, F ≍ 1 and 𝜇h ≲ 1. Then,∫︁ (︁
e(x , x , 0)− h−𝟥𝒩𝖬𝖶

𝟥 (x ,−V ,𝜇hF )
)︁
𝜓(x) dx = O(h−𝟤 + 𝜇h−𝟣−𝛿)(2.11)

in the general case and∫︁ (︁
e(x , x , 0)− h−𝟥𝒩𝖬𝖶

𝟥 (x ,−V ,𝜇hF )
)︁
𝜓(x) dx = O(h−𝟤),(2.12)

provided ∑︁
𝛼: 𝟣≤|𝛼|≤K

|∇𝛼VF−𝟣| ≥ 𝜖.(2.13)

Further, in the general case, as(FOR?) 𝜇 ≤ h− 𝟣
𝟥 , we can replace the magnetic

Weyl expression 𝒩𝖬𝖶
𝟥 by the standard Weyl expression 𝒩𝟥.

Asymptotics: Strong Magnetic Field

Let us now consider the strong magnetic field case 𝜇h ≳ 1. Then the
remainder estimates (2.10), (2.11) and (2.12) acquire a factor of 𝜇h−𝟣:

Theorem 2.3. Let d = 2, F ≍ 1 and 𝜇h ≳ 1. Then for the operator (2.3),

(i) Under the assumption

|𝜏V − (2j + 1)𝜇hF | ≥ 𝜖𝟢 ∀j ∈ ℤ+,(2.14)

the following asymptotics holds:

e(x , x , 𝜏)− h−𝟤𝒩𝖬𝖶
𝟤 (x , 𝜏 − V ,F ) = O(𝜇−shs).(2.15)
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(ii) Under the assumption

(2.16) |𝜏V − (2j + 1)𝜇hF |+ |∇((V − 𝜏)F−𝟣)|+
| det Hess((V − 𝜏)F−𝟣)| ≥ 𝜖𝟢 ∀j ∈ ℤ+,

the following asymptotics holds:

(2.17)

∫︁ (︁
e(x , x , 𝜏)− h−𝟤𝒩𝖬𝖶

𝟤 (x , 𝜏 − V ,F )
)︁
𝜓(x) dx = O(1).

Remark 2.4. If d = 2, we only need that 𝜇−𝟣h ≪ 1 rather than h ≪ 1.

Theorem 2.5. Let d = 3, F ≍ 1 and 𝜇h ≳ 1. Then for the operator (2.3),∫︁ (︁
e(x , x , 0)− h−𝟥𝒩𝖬𝖶

𝟥 (x ,−V ,𝜇hF )
)︁
𝜓(x) dx = O(𝜇h−𝟣−𝛿)(2.18)

in the general case and∫︁ (︁
e(x , x , 0)− h−𝟥𝒩𝖬𝖶

𝟥 (x ,−V ,𝜇hF )
)︁
𝜓(x) dx = O(𝜇h−𝟣)(2.19)

under the assumption

(2.20) |V + (2j + 1)𝜇hF |+
∑︁

𝛼: 𝟣≤|𝛼|≤K

|∇𝛼VF−𝟣| ≥ 𝜖 ∀j ∈ ℤ+.

Remark 2.6. (i) 𝒩𝖬𝖶
d = O(𝜇h) for 𝜇h ≳ 1.

(ii) For the Schrödinger-Pauli operator (2.4), one only needs to replace
“(2j + 1)” by “2j” in the assumptions above.

2D case, Degenerating Magnetic Field

Preliminaries

Since 𝜇F plays such a prominent role when d = 2, one may ask what
happens if F vanishes somewhere? Obviously, one needs to make certain
assumptions; it turns out that in the generic case

|F |+ |∇F | ≍ 1,(2.21)
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the degeneration manifold Σ := {x : F (x) = 0} is a smooth manifold and
the operator is modelled by

h𝟤D𝟤
𝟣 + (hD𝟤 − 𝜇x𝟤

𝟣/2)
𝟤 + V (x𝟤),(2.22)

which we are going to study. We consider the local spectral asymptotics
for 𝜓 supported in a small enough vicinity of Σ. Under the assumption
(2.21) (or, rather more a general one), the complete analysis was done in
Chapter 14 of [Ivr4].

Moderate and Strong Magnetic Field

We start from the case 𝜇h ≲ 1. Without any loss of the generality, one
can assume that Σ = {x : x𝟣 = 0}. Then, the scaling x ↦→ x/𝛾(x̄)
(with 𝛾(x) = 𝟣

𝟤
dist(x , Σ)), brings us to the case of the non-degenerate

magnetic field with h ↦→ h𝟣 = h/𝛾 and 𝜇 ↦→ 𝜇𝟣 = 𝜇𝛾𝟤 as long as 𝛾 ≥ 𝜇− 𝟣
𝟤 .

Then the contribution of B(x , 𝛾(x)) to the remainder does not exceed
C𝜇−𝟣

𝟣 h−𝟣
𝟣 = C𝜇−𝟣h−𝟣𝛾−𝟣 and the total contribution of the regular zone

𝒵 = {𝛾(x) ≥ C𝟢𝜇
− 𝟣

𝟤} does not exceed C
∫︀
𝜇−𝟣h−𝟣𝛾−𝟥 dx = Ch−𝟣.

On the other hand, in the degeneration zone 𝒵𝟢 = {𝛾(x) ≤ C𝟢𝜇
− 𝟣

𝟤}, we
use 𝛾 = 𝜇− 𝟣

𝟤 and the contribution of B(x , 𝛾(x)) does not exceed Ch−𝟣
𝟣 =

Ch−𝟣𝜇− 𝟣
𝟤 and the total contribution of this zone also does not exceed Ch−𝟣.

Thus we conclude that the left-hand expression of (2.10) is now O(h−𝟣).
Can we do any better than this?

Analysis of the evolution and propagation in the zone 𝒵 shows that
there is a drift of magnetic lines along Σ with speed C𝜇−𝟣𝛾−𝟣 which allows
us to improve T * ≍ 𝜇𝛾𝟤 to T * ≍ 𝜇𝛾 (both before rescaling) and improve
the estimate of the contribution of B(x , 𝛾(x)) to C𝜇−𝟣h−𝟣 and the total

contribution of this zone to C
∫︀
𝜇−𝟣h−𝟣𝛾−𝟤 dx = C𝜇− 𝟣

𝟤 h−𝟣.
Analysis of evolution and propagation in the zone 𝒵𝟢 is more tricky.

It turns out that there are short periodic trajectories with period ≍ 𝜇− 𝟣
𝟤 ,

but there are not many of them which allows us to improve the remainder
estimate in this zone as well.

Theorem 2.7. Let d = 2 and suppose the condition (2.21) is fulfilled. Let
Σ := {F = 0} = {x𝟣 = 0} and −V ≍ 1. Let 𝜇 ≤ h−𝟣. Then,

(i) The left-hand expression of (2.17) is O(𝜇− 𝟣
𝟤 h−𝟣 + h−𝟣(𝜇

𝟣
𝟤 h| log h|) 𝟣

𝟤 ). In

particular, for 𝜇 ≲ (h| log h|)− 𝟤
𝟥 , it is O(𝜇− 𝟣

𝟤 h−𝟣).
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(ii) Further,

(2.23)

∫︁ (︁
e(x , x , 0)− h−𝟤𝒩𝖬𝖶

𝟤 (x ,−V ,𝜇hF )
)︁
𝜓(x) dx−

h−𝟣

∫︁
𝒩𝖬𝖶

𝖼𝗈𝗋𝗋 (x𝟤, 0)𝜓(x𝟤, 0) = O(𝜇− 𝟣
𝟤 h−𝟣 + h−𝛿)

with

(2.24) h−𝟣𝒩𝖬𝖶
𝖼𝗈𝗋𝗋 :=

(2𝜋h)−𝟣

∫︁
n𝟢(𝜉𝟤,−W (x𝟤), ℏ) d𝜉𝟤 − h−𝟤

∫︁
𝒩𝖬𝖶(−W (x𝟤),𝜇hF (x𝟣)) dx𝟣

where n𝟢(𝜉𝟤, 𝜏 , ℏ) is an eigenvalue counting function for the operator a𝟢(𝜉𝟤, ℏ) =
ℏ𝟤D𝟤

𝟣 + (𝜉𝟤 − x𝟤
𝟣/2)

𝟤 on ℝ𝟣 ∋ x𝟣, ℏ = 𝜇
𝟣
𝟤 h and W (x𝟤) = V (0, x𝟤).

(iii) Furthermore, under the non-degeneracy assumption

(2.25)
∑︁

𝟣≤k≤m

|𝜕kx𝟤W | ≍ 1

(in the framework of assumption (2.22)), one can take 𝛿 = 0 in (2.23).

Remark 2.8. (i) Under some non-degeneracy assumptions, Theorem 2.7(i)
could also be improved.

(ii) Theorem 2.7 remains valid for h−𝟣 ≤ 𝜇 ≲ h−𝟤 as well but then the zone
{x : 𝛾(x) ≥ C (𝜇h)−𝟣} is forbidden, contribution to the principal part is
delivered by the zone {x : 𝛾(x) ≲ (𝜇h)−𝟣} and it is ≲ 𝜇−𝟣h−𝟥.

(iii) As 𝜇 ≥ Ch𝟤, the principal part is 0 and the remainder is O(𝜇−s).

For further details, generalizations and proofs, see Section 14.6 of [Ivr4].

Strong and Superstrong Magnetic Field

Assume now that 𝜇 ≳ h−𝟣 and replace V by V − (2j + 1)𝜇hF𝟣𝟤 with j ∈ ℤ+.
Then the zone {x : 𝛾(x) ≥ C (𝜇h)−𝟣} is no longer forbidden, the principal
part of asymptotics is of the magnitude 𝜇h−𝟣 (cf. Remark 2.8(ii) and the

remainder estimate becomes O(𝜇− 𝟣
𝟤 h−𝟣+h−𝛿) (and under the non-degeneracy

assumption one can take 𝛿 = 0).
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Furthermore, the case 𝜇 ≥ Ch−𝟤 is no longer trivial. First, one needs to
change the correction term by replacing a𝟢 with a𝟤j+𝟣 := a𝟢 − (2j + 1)ℏx𝟣.
Second, the non-degeneracy condition should be relaxed by requiring (2.25)
only if

(2.26) |ℏ𝟤/𝟥𝜆j ,n(𝜂) + W (x𝟤)|+ |𝜕𝜂𝜆j ,n(𝜂) ≥ 𝜖 ∀𝜂,

fails, where 𝜆j ,n are the eigenvalues of a𝟤j+𝟣 with ℏ = 1.
Furthermore, if

(2.27) |ℏ𝟤/𝟥𝜆j ,n(𝜂) + W (x𝟤)| ≥ 𝜖 ∀𝜂,

then 0 belongs to the spectral gap and the remainder estimate is O(𝜇−s).
For further details, exact statements, generalizations and proofs, see

Sections 14.7 and 14.8 of [Ivr4].

2D Case, near the Boundary

Moderate Magnetic Field

We now consider the magnetic Schrödinger operator with d = 2, F ≍ 1 in
a compact domain X with C∞-boundary. While the dynamics inside the
domain do not change, the dynamics in the boundary layer of the width
≍ 𝜇−𝟣 are completely different. When the magnetron hits 𝜕X , it reflects
according to the standard “incidence angle equals reflection angle” law
and thus the “particle” propagates along 𝜕X with speed O(1) rather than
O(𝜇−𝟣). Therefore, physicists distinguish between bulk and edge particles .
Note however that in general, this distinction is not as simple as in the
case of constant F and V . Indeed, a drifting inner trajectory can hit 𝜕X
and become a hop trajectory , while the latter could leave the boundary and
become an inner trajectory.

It follows from Section 2 that the contribution of B(x , 𝛾(x)) with 𝛾(x) =
𝟣
𝟤
dist(x , 𝜕X ) ≥ 𝛾 = C𝜇−𝟣 to the remainder is O(𝜇−𝟣h−𝟣𝛾𝟤T (x)−𝟣), where

T (x) is the length of the drift trajectory inside the bulk zone {x ∈ X :
𝛾(x) ≥ 𝛾}. Then the total contribution of this zone to the remainder does

not exceed C𝜇−𝟣h−𝟣
∫︀

T (x)−𝟣 dx = O(𝜇−𝟣h−𝟣) since T (x) ≳ 𝛾(x)
𝟣
𝟤 (in the

proper direction).
On the other hand, due to the rescaling x ↦→ x/𝛾, the contribution of

B(x , 𝛾) with 𝛾(x) ≤ 𝛾 to the remainder does not exceed C𝜇h−𝟣𝛾𝟤 and the
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total contribution of the edge zone {x ∈ X : 𝛾(x) ≤ 𝛾} does not exceed
C𝜇h−𝟣𝛾 = Ch−𝟣 and the total remainder is O(h−𝟣). Thus, if we want a
better estimate, we need to study propagation along 𝜕X .

Theorem 2.9. Under the non-degeneracy assumption |∇𝜕X (VF−𝟣)| ≍ 1 on
supp(𝜓) (contained in the small vicinity of 𝜕X ) for 𝜇h ≲ 1

(2.28)

∫︁
X

(︁
e(x , x , 0)− h−𝟤𝒩𝖬𝖶(x , 0,𝜇h)

)︁
𝜓(x) dx−

h−𝟣

∫︁
𝜕X

𝒩𝖬𝖶
*,𝖻𝗈𝗎𝗇𝖽(x , 0,𝜇h)𝜓(x) dsg = O(𝜇−𝟣h−𝟣),

where 𝒩𝖬𝖶
*,𝖻𝗈𝗎𝗇𝖽 is introduced in (5.4.2)𝖣 or (5.4.2)𝖭 below for the Dirichlet or

Neumann boundary conditions respectively with ℏ = 𝜇hF (x) and 𝜏 replaced
by −V (x).

Here,

(5.4.2)𝖣 𝒩𝖬𝖶
𝖣,𝖻𝗈𝗎𝗇𝖽(𝜏 , ℏ) :=

(2𝜋)−𝟣

∫︁ ∞

𝟢

∑︁
j≥𝟢

(︁∫︁
θ
(︀
𝜏 − ℏ𝜆𝖣,j(𝜂)

)︀
𝜐𝟤𝖣,j(x𝟣, 𝜂) d𝜂− θ

(︀
𝜏 − (2j +1)ℏ

)︀)︁
ℏ

𝟣
𝟤 dx𝟣

and

(5.4.2)𝖭 𝒩𝖬𝖶
𝖭,𝖻𝗈𝗎𝗇𝖽(𝜏 , ℏ) :=

(2𝜋)−𝟣

∫︁ ∞

𝟢

∑︁
j≥𝟢

(︁∫︁
θ
(︀
𝜏−ℏ𝜆𝖭,j(𝜂)

)︀
𝜐𝟤𝖭,j(x𝟣, 𝜂) d𝜂−θ

(︀
𝜏−(2j+1)ℏ+

)︀)︁
ℏ

𝟣
𝟤 dx𝟣,

where 𝜆𝖣,j(𝜂) and 𝜆𝖭,j(𝜂) are eigenvalues and 𝜐𝖣,j and 𝜐𝖭,j are eigenfunctions
of operator

(2.30) a(𝜂, x𝟣,D𝟣) = D𝟤
𝟣 + x𝟤

𝟣 as x𝟣 < 𝜂

with the Dirichlet or Neumann boundary conditions respectively at x𝟣 = 𝜂.

Remark 2.10. Under weaker non-degeneracy assumptions |∇VF−𝟣| ≍ 1 and
∇𝜕XVF−𝟣 = 0 =⇒ ±∇𝟤

𝜕XVF−𝟣 ≥ 𝜖, less sharp remainder estimates are
derived. The sign in the latter inequality matters since it affects the dynamics.
It also matters whether Dirichlet or Neumann boundary conditions are
considered: for the Dirichlet boundary condition we get a better remainder
estimate.
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For exact statements, generalizations and proofs, see Sections 15.2
and 15.2 of [Ivr4].

Strong Magnetic Field

We now consider the strong magnetic field 𝜇h ≳ 1 and for simplicity assume
that F = 1. In this case, we need to study an auxillary operator D𝟤

𝟣+(x𝟣−𝜂)𝟤
as x𝟣 < 0 with either the Dirichlet or Neumann boundary conditions at
x𝟣 = 0 or equivalently the operator (2.30) and our operator is basically
reduced to a perturbed operator

(2.31) a(ℏD𝟤, x𝟣,D𝟣)− (2j + 1)− (𝜇h)−𝟣W (x𝟤) ℏ = 𝜇−𝟣h,

with W (x𝟤) = V (0, x𝟤). Then we need to analyze either 𝜆𝖣,j(𝜂) or 𝜆𝖭,j(𝜂)
more carefully. It turns out that:

Proposition 2.11. 𝜆𝖣,n(𝜂) and 𝜆𝖭,n(𝜂), n = 0, 1, 2, ... are real analytic
functions with the following properties:

(i) 𝜆𝖣,k(𝜂) are monotone decreasing for 𝜂 ∈ ℝ; 𝜆𝖣,k(𝜂) ↗ +∞ as 𝜂 → −∞;
𝜆𝖣,k(𝜂) ↘ (2k + 1) as 𝜂 → +∞; 𝜆𝖣,k(0) = (4k + 3).

(ii) 𝜆𝖭,k(𝜂) are monotone decreasing for 𝜂 ∈ ℝ−; 𝜆𝖭,k(𝜂) ↗ +∞ as 𝜂 →
−∞; 𝜆𝖭,k(𝜂) < (2n + 1) as 𝜂 ≥ (2n + 1)

𝟣
𝟤 ; 𝜆𝖭,k(0) = (4n + 1).

(iii) 𝜆𝖭,k(𝜂) < 𝜆𝖣,k(𝜂) < 𝜆𝖭,(k+𝟣)(𝜂); 𝜆𝖣,k(𝜂) > (2k+1), 𝜆𝖭,n(𝜂) > (2k−1)+.

Proposition 2.12. (i) 𝜕𝜂𝜆𝖣,k(𝜂) < 0.

(ii) 𝜕𝜂𝜆𝖭,n(𝜂) ⪌ 0 if and only if

(2.32) 𝜆𝖭,k(𝜂) ⪋ 𝜂𝟤.

(iii) 𝜆𝖭,k(𝜂) has a single stationary point38) 𝜂k , it is a non-degenerate mini-
mum, and at this point (2.32) holds.

(iv) In particular, (𝜆𝖭,k(𝜂)− 𝜂𝟤) has the same sign as (𝜂k − 𝜂).

38) And it must have one due to Proposition 2.11.
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We see the difference between the Dirichlet and Neumann cases because
we need non-degeneracy for 𝜆*,k(ℏD𝟤)− (2j + 1) + W (x𝟤). It also means the
difference in the propagation of singularities along 𝜕X : in the Dirichlet case,
all singularities move in one direction (constant sign of 𝜆′𝖣,k), while in the
Neumann case, some move in the opposite direction (variable sign of 𝜆′𝖭,k);
this effect plays a role also in the case when 𝜇h ≲ 1.

Assume here that 𝜏 is in an “inner” spectral gap:

(2.33) |(2j + 1)𝜇h + V − 𝜏 | ≥ 𝜖𝟢𝜇h ∀x ∀j ∈ ℤ+.

Theorem 2.13. Suppose that 𝜇h ≳ 1 and the condition (2.33) is fulfilled.
Then,

(i) In case of the Dirichlet boundary condition, the left-hand expression in
(2.28) is O(1).

(ii) In case of the Neumann boundary condition, assume additionally that

(5.4.7)± |
(︀
𝜆𝖭,j(𝜂)𝜇h + V − 𝜏 | ≤ 𝜖𝟢𝜇h,

|𝜆′𝖭,j(𝜂)|+ |𝜕x𝟤V | ≤ 𝜖𝟢 =⇒ ±𝜕𝟤x𝟤V ≥ 𝜖𝟢 ∀j = 0, 1, 2, ...

Then, the left-hand expression in (2.28) is O(1) under the assumption (2.34)+
and O(log h) under the assumption (2.34)−.

Remark 2.14. (i) If (2.33) is fulfilled for all 𝜏 ∈ [𝜏𝟣, 𝜏𝟤], then the asymptotics
is “concentrated” in the boundary layer.

(ii) For a more general statement when (2.33) fails (i.e. when 𝜏 is no longer
in the “inner” spectral gap) and is replaced with the condition

(2.35) |V + (2j + 1)𝜇h − 𝜏 |+ |∇V | ≍ 1

on supp(𝜓), see Theorem 15.4.18 of [Ivr4].

Pointwise Asymptotics and Short Loops

We are now interested in the pointwise asymptotics inside the domain.
Surprisingly, it turns out that the standard Weyl formula for this purpose is
better than the Magnetic Weyl formula.
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Case d = 2

We start from the case d = 2, F = 1, |∇V | ≍ 1. One can easily see that
in classical dynamics, short loops of the lengths ≍ 𝜇−𝟣n with n = 1, ... ,N ,
N ≍ 𝜇 appear. We would like to understand how these loops affect the
asymptotics in question.

Theorem 2.15. For the magnetic Schrödinger operator which satisfies the
above assumptions in a domain X ⊂ ℝ𝟤, with B(0, 1) ⊂ X , the following
estimates hold at a point x ∈ B(0, 𝟣

𝟤
)

(i) For 1 ≤ 𝜇 ≤ h− 𝟣
𝟤 ,

(2.36) |e(x , x , 𝜏)− h−𝟤𝒩𝖶
x (𝜏)| ≤ C𝜇−𝟣h−𝟣 + C𝜇

𝟣
𝟤 h− 𝟣

𝟤 + C𝜇𝟤h− 𝟣
𝟤

and

(2.37) R𝖶
x(r) := |e(x , x , 0)− h−𝟤

(︀
𝒩𝖶

x (0) +𝒩𝖶
x ,𝖼𝗈𝗋𝗋(r)(0)

)︀
| ≤

C𝜇−𝟣h−𝟣 + C𝜇
𝟣
𝟤 h− 𝟣

𝟤 + C𝜇h−𝟣
(︀
𝜇𝟤h)r+

𝟣
𝟤+

C

⎧⎨⎩
(︁

h−𝟣
(︀
h𝜇

𝟧
𝟤

)︀r+ 𝟣
𝟤 + 𝜇

𝟣
𝟥 h− 𝟤

𝟥

)︁
as 𝜇 ≤ h− 𝟤

𝟧 ,

𝜇
𝟧
𝟥 h− 𝟣

𝟥 as 𝜇 ≥ h− 𝟤
𝟧

where 𝒩𝖶
x ,𝖼𝗈𝗋𝗋(r) is the r -term stationary phase approximation to some explicit

oscillatory integral (see Section 16.3 of [Ivr4]).

(ii) For h− 𝟣
𝟥 ≤ 𝜇 ≤ h−𝟣,

(2.38) R𝖶′′
x(r) :=

|
(︁

e(x , x , 𝜏)− h−𝟤𝒩x ,𝖼𝗈𝗋𝗋(r) − ēx(x , x , 𝜏) + h−𝟤𝒩̄x ,𝖼𝗈𝗋𝗋(r)

)︁
| ≤

C𝜇
𝟣
𝟤 h− 𝟣

𝟤 + C

{︃
𝜇−𝟤h−𝟤(𝜇𝟤h)r+

𝟣
𝟤 for 𝜇 ≤ h− 𝟣

𝟤

h−𝟣 for 𝜇 ≥ h− 𝟣
𝟤

+ C

⎧⎪⎪⎨⎪⎪⎩
h−𝟣

(︀
𝜇

𝟧
𝟤 h

)︀r+ 𝟣
𝟤 + 𝜇

𝟣
𝟥 h− 𝟤

𝟥 for 𝜇 ≤ h− 𝟤
𝟧

𝜇
𝟧
𝟥 h− 𝟣

𝟥 for h− 𝟤
𝟧 ≤ 𝜇 ≤ h− 𝟣

𝟤

𝜇− 𝟣
𝟥 h− 𝟦

𝟥 as 𝜇 ≥ h− 𝟣
𝟤
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while for r = 0,

(2.39) R𝖶′′
x(𝟢) := |e(x , x , 𝜏)− ēx(x , x , 𝜏)| ≤ C𝜇

𝟣
𝟤 h− 𝟣

𝟤+

C

{︃
h−𝟣𝜇

𝟣
𝟤 for 𝜇 ≤ h− 𝟣

𝟤 ,

𝜇− 𝟣
𝟤 h− 𝟥

𝟤 for 𝜇 ≥ h− 𝟣
𝟤

where here and in (iii), ēy is constructed for the toy-model in y (with
F = F (y) and V (x) = V (y) + ⟨∇V (y), x − y⟩).

(iii) For 𝜇 ≥ h−𝟣, 𝜏 ≤ c𝜇h,

(2.40) |e(x , x , 𝜏)− ēx(x , x , 𝜏)| ≤ C𝜇
𝟣
𝟤 h− 𝟣

𝟤 .

Case d = 3

For d = 3, we cannot expect a remainder estimate better than O(h−𝟣).
On the other hand, the purely Weyl approximation has a better chance
to succeed as the loop condition now includes returning free movement
along the magnetic line in addition to the returning circular movement. We
formulate only one theorem out of many from Section 16.7 of [Ivr4]:

Theorem 2.16. Let d = 3. Then,

(i) In the general case,

(2.41) |e(x , x , 𝜏)− h−𝟥𝒩𝖶
x (x , x , 𝜏)| ≤ Ch−𝟤 + C𝜇

𝟥
𝟤 h− 𝟥

𝟤 .

(ii) Under non-degeneracy condition

(2.42) |∇⊥F (V − 𝜏)/F | ≍ 1,

where ∇⊥ is the component of the gradient perpendicular to F , for 𝜇 ≤ h− 𝟣
𝟤 ,

we have the estimates

(2.43) |e(x , x , 𝜏)− h−𝟥𝒩𝖶
x (x , x , 𝜏)| ≤ Ch−𝟤 + C𝜇

𝟧
𝟤 h−𝟣

and

(2.44) |e(x , x , 𝜏)− h−𝟥𝒩𝖶
x (x , x , 𝜏)− h−𝟥𝒩x ,𝖼𝗈𝗋𝗋(r)| ≤

Ch−𝟤 + C𝜇
𝟥
𝟤 h− 𝟥

𝟤 (𝜇𝟤h)r+
𝟣
𝟤 .

Here we use stationary phase approximations again.
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Remark 2.17. One can also consider the cases h− 𝟣
𝟤 ≲ 𝜇 ≲ h−𝟣 and 𝜇 ≳ h−𝟣.

But then one needs to include the toy-model expression (with constant F
and ∇V ) into the approximation.

Related Asymptotics

Apart from the pointwise asymptotics, one can consider the related asymp-
totics of

(2.45)

∫︁
𝜔(

1

2
(x + y), x − y)e(x , y , 𝜏)e(y , x , 𝜏) dxdy

and estimates of

(2.46)

∫︁
𝜔(

1

2
(x + y), x − y)

(︀
e(x , x , 𝜏)− e𝖶(x , x , 𝜏)

)︀
×(︀

e(y , y , 𝜏)− e𝖶(y , y , 𝜏)
)︀

dxdy .

For all the details, see Chapter 16 of [Ivr4]. These expressions play important
role in Section 4.

Magnetic Dirac oOperators

We discuss the magnetic Dirac operators

H = ((−ih∇− 𝜇A(x)) · σ) + σ𝟢M + V (x)(2.47)

and

H = ((−ih∇− 𝜇A(x)) · σ) + V (x).(2.48)

If d = 3, for the second operator, we can consider 2× 2 matrices rather than
4× 4 matrices.

If V = 0 then H𝟤 equals to the Schrödinger-Pauli operator (plus M𝟤) and
therefore the theory of magnetic Dirac and Schrödinger operators are closely
connected. If V = 0 and 0 ̸= F is constant then the operator for d = 2 has
a pure point spectrum of infinite multiplicity consisting of ±

√︀
M𝟤 + 2j𝜇hF

with j ∈ ℤ+ 39) and for d = 3, this operator has absolutely continuous
spectrum (−∞,−M ] ∪ [M ,∞). Thus we get corresponding Landau levels .

The results similar to those of Section 2 hold (for details, exact statements
and proofs, see Chapter 17 of [Ivr4]. Further, the results of Sections 2 and 2
probably are not difficult to generalize, and maybe the results of Section 2
as well under correctly posed boundary conditions.

39) However, one of the points ±M is missing depending on whether F𝟣𝟤 ≷ 𝟢 and
σ𝟣σ𝟤σ𝟥 = ±i .
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3 Magnetic Schrödinger Operator. II

Higher Dimensions

General Theory

We can consider a magnetic Schrödinger (and also Schrödinger-Pauli and
Dirac) operators in higher dimensions. In this case, the magnetic intensity
is characterized by the skew-symmetric matrix Fjk = 𝜕jAk − 𝜕kAj rather
than by a pseudo-scaler F𝟣𝟤 or a pseudo-vector F . As a result, the magnetic
Weyl expression becomes more complicated; as before, it is exactly e(x , x , 𝜏 )
for the operator in ℝd if Fjk and V constant:

(3.1) h−d𝒩𝖬𝖶
d (𝜏) :=

(2𝜋)−r𝜇rh−r
∑︁
𝛼∈ℤ+r

(︁
𝜏 −

∑︁
j

(2𝛼j + 1)fj𝜇h − V
)︁ 𝟣

𝟤
(d−𝟤r)

+
f𝟣 · · · fr

√
g ,

where 2r = rank(Fjk) and ±ifj (with j = 1, ... , r , fj > 0) are its eigenvalues40)

which are not 0; recall that z𝟢
+ = θ(z).

One can see that H has pure point of infinite multiplicity spectrum when
d = 2r and H has an absolutely continuous spectrum when d > 2r . In any
case, the bottom of the spectrum is 𝜇h(f𝟣 + ... + fr ).

We are interested in the asymptotics with the sharpest possible remainder
estimate like the one for d = 2 or d = 3 in the cases d = 2r and d > 2r
respectively41). Asymptotics without a remainder estimate were derived
in [Rai1,Rai2].

As we try to reduce the operator to the canonical form, we immediately
run into problem of resonances when f𝟣m𝟣 + ... + frmr = 0 at some point
with m ∈ ℤd ; |m𝟣|+ ... + |mr | is an order of resonance. If the lowest order
of resonances is k , then we can reduce the operator to its canonical form
modulo O(𝜇−k) for 𝜇h ≤ 1 (when 𝜇h ≥ 1, this problem is less acute).

It turns out, however, that we can deal with an incomplete canonical
form (with a sufficiently small remainder term).

Another problem is that we cannot in general assume that the fj are
constant (for d = 2, 3, we could achieve this by multiplying the operator by

f
−𝟣/𝟤
𝟣 ) and the microhyperbolicity condition becomes really complicated.

40) In the general case, the eigenvalues of (F j
k) = (g jl)(Flk) where (g jk) is a metric.

41) We assume that (Fjk(x)) has constant rank.
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Case 2r = d In this case, only the resonances of orders 2, 3 matter as
we are looking for an error O(𝜇−𝟣h𝟣−d) when 𝜇h ≤ 1. If the magnetic
field is weak enough, we use the incomplete canonical form only to study
propagation of the singularities and if the magnetic field is sufficiently strong,
the omitted terms O(𝜇−𝟦) in the canonical form are small enough to be
neglected.

As a result, the indices j = 1, ... , r are broken into several groups (indices
j and k belong to the same group if they “participate” in the resonance of
order 2 or 3 after all the reductions). Then under a certain non-degeneracy
assumption called N-microhyperbolicity (see Definition 19.2.5 of [Ivr4]) in
which this group partition plays a role, we can recover the remainder estimate
O(𝜇−𝟣h𝟣−d) for 𝜇h ≲ 1 (in which case, the principal part has magnitude
h−d) and O(𝜇r−𝟣h𝟣−d+r) for 𝜇h ≳ 1 (in which case, the principal part has
magnitude 𝜇rhr−d). If we ignore the resonances of order 3, we get a partition
into smaller groups and we need a weaker non-degeneration assumption
called microhyperbolicity (see Definition 19.2.4 of [Ivr4]) but the remainder
estimate would be less sharp.

In an important special case of constant f𝟣, ... , fr , both these conditions
are equivalent to |∇V | disjoint from 0 (on supp(𝜓)) but it could be weakened
to V having only non-degenerate critical points (if there are saddles, we
need to add a logarithmic factor to the remainder estimate).

On the other hand, without any non-degeneracy assumptions, the re-
mainder estimate can be as bad as O(𝜇h𝟣−d) for 𝜇h ≲ 1 and as bad as the
principal part itself for 𝜇h ≳ 1.

For exact statements, details, proofs and generalizations, see Chapter 19
of [Ivr4].

Case 2r < d In this case, only the resonances of order 2 matter since
we are expecting a larger error than in the previous case. As a result, the
indices j = 1, ... , r are broken into several groups (indices j and k belong to
the same group if fj = fk).

Then under a certain non-degeneracy assumption called microhyperboli-
city (see Definition 20.1.2 of [Ivr4]) in which this group partition plays a
role, we can recover the remainder estimate O(h𝟣−d) for 𝜇h ≲ 1 (then the
principal part is of the magnitude h−d) and O(𝜇rh𝟣−d+r) for 𝜇h ≳ 1 (then
the principal part is of the magnitude 𝜇rhr−d).

In an important special case of constant f𝟣, ... , fr , this condition is equiv-
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alent to |∇V | being disjoint from 0 (on supp(𝜓)) but it could be weakened
to “∇V = 0 =⇒ HessV has a positive eigenvalue”; if we assume only that
“∇V = 0 =⇒ HessV has a non-zero eigenvalue”, but we need to add a
logarithmic factor to the remainder estimate.

As expected, for 2r = d−1, we can recover less sharp remainder estimates
even without any non-degeneracy assumptions and for 2r ≤ d −2, we do not
need any non-degeneracy conditions at all. For exact statements, details,
proofs and generalizations, see Chapter 20 of [Ivr4].

Case d = 4: More Results

This case is simpler than the general one since we have only f𝟣 and f𝟤 and
resonance happens if either f𝟣 = f𝟤 or f𝟣 = 2f𝟤 (or f𝟤 = 2f𝟣).

If we assume that the magnetic intensity matrix (Fjk) has constant rank
4, this case is simpler than the general one (d = 2r) and we can recover sharp
remainder estimates under less restrictive conditions. For exact statements,
details, proofs and generalizations, see Chapter 22 of [Ivr4].

On the other hand, if we consider (Fjk) of variable rank, then in the
generic case, it has the eigenvalues ±if𝟣 and ±if𝟤 and Σ = {x : f𝟣(x) = 0}
is a C∞ manifold of dimension 3, ∇f𝟣 ̸= 0 on Σ, while f𝟤 is disjoint from 0.
It is similar to a 2-dimensional operator which we considered in Section 2,
although with a twist: the symplectic form restricted to Σ has rank 2
everywhere except on a 1-dimensional submanifold Λ where it has rank 0.

Our results are also similar to those of Section 2 with rather obvious
modifications but the proofs are more complicated.

For exact statements, details, proofs and generalizations, see Chapter 21
of [Ivr4].

Non-Smooth Theory

As in Chapter 4, we do not need to assume that the coefficients are very
smooth. As before, we bracket the operator in question between two “rough”
operators with the same asymptotics and with sharp remainder estimates.
However, the lack of sufficient smoothness affects the reduction to the
canonical form: it will be incomplete even if there are no resonances. Because
of this, to get as sharp asymptotics as in the smooth case, we need to request
more smoothness than in Chapter 4.
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Case d = 2 For d = 2, we require smoothness of F𝟣𝟤, g jk and V marginally
larger than C𝟤 to recover the same remainder estimate as in the smooth
case, but there is a twist: unless the smoothness is C𝟥, a correction term
needs to be included. This is due to the fact that V (x) and W (x) differ
and a more precise formula should use W (x) rather than V (x). Here, W
is V averaged along a magnetron with center x . In fact, it is possible to
consider V of the lesser smoothness than C𝟤 (but marginally better than
C𝟣), but one gets a worse remainder estimate. For exact statements, details
and proofs, see Chapter 18 of [Ivr4] and especially Section 18.5.

Case d = 3 Results are similar to those in the smooth case. However, in
this case, if we assume no non-degeneracy conditions then the exponent 𝛿 in
the estimates (2.11) and (2.18) depends on the smoothness and if we assume
a non-degeneracy condition (2.13) or (2.20) then obviously K depends on
the smoothness. Under the non-degeneracy assumption with K = 1, we need
smoothness marginally better than C𝟣 but again unless the smoothness is
C𝟤, we need to use the averaged potential W (x) rather than V (x).

For exact statements, details and proofs, see Chapter 18 of [Ivr4] and
especially Section 18.9.

Case d ≥ 4 Basically, the results are similar to those for d = 2 (if
rank(Fjk) = d) or for d = 3 (if rank(Fjk) < d), but we cannot recover the
sharp remainder estimate if the smoothness of V is less than C𝟥 or C𝟤

respectively because we cannot replace V (x) by its average W (x) in the
canonical form.

For exact statements, details and proofs, see Chapters 19 (if rank(Fjk) =
d) and Chapters 20 (if rank(Fjk) < d) of [Ivr4].

Global Asymptotics

For magnetic Schrödinger and Dirac operators, one can derive results similar
to those of Sections 3 and 3. We describe here only some results which are
very different from those already mentioned and only for the Schrödinger
operator.
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Case d = 2r

Assume that Fjk = const, rank(Fjk) = 2r = d , 𝜇 = h = 1 and V decays
at infinity. Then instead of an eigenvalue of infinite multiplicity 𝜆j ,∞ =
(2j𝟣+1)f𝟣+...+ (2jr +1)fr (with j ∈ ℤ+ r ), we have a sequence of eigenvalues
𝜆j ,n tending to 𝜆j ,∞ as n → ∞ and we want to consider the asymptotics of
N−

j (𝜂) which is the number of eigenvalues in (𝜆j ,∞ − 𝜖,𝜆j ,∞ − 𝜂) and N+
j (𝜂)

which is the number of eigenvalues in (𝜆j ,∞ + 𝜂,𝜆j ,∞ + 𝜖), as 𝜂 → +0.
It turns out that in contrast to the Schrödinger operator without a

magnetic field, there are meaningful results no matter how fast V decays.

Theorem 3.1. Let us consider a Schrödinger operator in ℝ𝟤 satisfying the
above conditions, 𝜇 = h = 1 and

(3.2) |∇𝛼V | ≤ c𝛼𝜌
𝟤𝛾−|𝛼|,

with 𝜌 = ⟨x⟩m, 𝛾 = ⟨x⟩, m < 0. Let

(6.3.2)∓ ∓ V ≥ −𝜖𝜌𝟤 =⇒ |∇V | ≥ 𝜖𝜌𝟤𝛾−𝟣 for |x | ≥ c .

Then,

(i) The asymptotics

N∓
j (𝜂) = 𝒩∓(𝜂) + O(log 𝜂)(6.3.3)±

hold with

𝒩∓(𝜂) =
1

2𝜋

∫︁
{∓V>𝜂}

F dx(6.3.4)±

and in our conditions 𝒩∓(𝜂) = O(𝜂𝟣/m). Moreover, 𝒩∓(𝜂) ≍ 𝜂𝟣/m provided
that ∓V ≥ 𝜖𝜌𝟤 for x ∈ Γ, where Γ is a non-empty open sector (cone) in ℝ𝟤.

(ii) Furthermore, if

(6.3.5)± ∓ V ≥ 𝜖𝜌𝟤 for |x | ≥ c ,

then the remainder estimate is O(1). In this case, the points (2j + 1)F ± 0
are not limit points of the discrete spectrum.

This theorem is proved by rescaling the results of Subsection 2 which
do not require h ≪ 1, but only 𝜇h ≳ 1 and 𝜇−𝟣h ≪ 1 (see Remark 2.4);
in our case, after rescaling 𝜇 = 1/𝜌𝛾 and 𝜇 = 𝛾/𝜌, so that 𝜇h = 1/𝜌𝟤 and
𝜇−𝟣h = 𝛾−𝟤. Therefore, the remainder does not exceed

∫︀
𝛾−𝟤 dx , where

we integrate over {x : |V (x)| ≥ (1 − 𝜖)𝜂} in the general case and over
{x : (1 + 𝜖)𝜂 ≥ |V (x)| ≥ (1− 𝜖)𝜂} under the assumption (6.3.5)±.
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Remark 3.2. (i) Similar results hold in the d-dimensional case (d ≥ 4)
when (F ) = const and d = rank(F ): the remainder is O(𝜂(d−𝟤)/𝟤m) and the
principal part is O(𝜂d/𝟤m).

(ii) One can consider the case 𝜌 = exp(−⟨x⟩m), 𝛾 = ⟨x⟩𝟣−m, 0 < m < 1,
and recover remainder estimate O(| log 𝜂|(d−𝟤)/m+𝟤) in the general case and
O(| log 𝜂|(d−𝟤)/m+𝟣) under the assumption (6.3.5)±with𝒩∓(𝜂) =O(| log 𝜂|d/m).

(iii) On the other hand, the cases when V decays like exp(−2⟨x⟩) or faster, or
is compactly supported, are out of reach of our methods but the asymptotics
(without a remainder estimate) were obtained in [MR,RT,RW].

For exact statements, details, proofs and generalizations for arbitrary
rank(Fjk) = d = 2r , see Subsection 23.4.1 of [Ivr4].

Case d > 2r . I

This case is less “strange” than case d = 2. Here, we can discuss only the
eigenvalue counting function N−

𝟢 (𝜂).

Theorem 3.3. Let us consider a Schrödinger operator in ℝ𝟥 satisfying
F = const and (3.2) with 𝜌 = ⟨x⟩m, 𝛾 = ⟨x⟩, m ∈ (−1, 0). Then,

(i) The asymptotics

N−
𝟢 (𝜂) = 𝒩−(𝜂) + O(𝜂

𝟣
m
−𝛿)(6.3.6)−

hold with

𝒩−(𝜂) =
1

2𝜋𝟤

∫︁
F (−V − 𝜂)

𝟣
𝟤
+ dx(3.8)

and arbitrarily small 𝛿 > 0, and furthermore, 𝒩−(𝜂) = O(𝜂
𝟥
𝟤m

+ 𝟣
𝟤 ). Moreover,

𝒩−(𝜂) ≍ 𝜂
𝟥
𝟤m

+ 𝟣
𝟤 , provided −V ≥ 𝜖𝜌𝟤 for x ∈ Γ where Γ is a non-empty open

cone in ℝ𝟥.

(ii) Further, under the assumption

(3.9)
∑︁
|𝛼|≤K

|∇𝛼V | · 𝛾|𝛼| ≥ 𝜖𝜌𝟤 for |x | ≥ c ,

the asymptotics (3.8) hold with 𝛿 = 0.
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Remark 3.4. (i) Similar results hold in the d -dimensional case when (Fjk) =
const and d > 2r = rank(Fjk): the remainder estimate is
O(𝜂(d−𝟤r−𝟣)/𝟤+(d−𝟣)/𝟤m−𝛿) 42) and 𝒩−(𝜂) = O(𝜂(d−𝟤r)/𝟤+d/𝟤m).

(ii) Observe that for m = −1, both the principal part and the remainder
estimate have magnitude 𝜂−r .

(iii) One can also consider 𝜌 = ⟨x⟩−𝟣| log⟨x⟩|𝛼 with 𝛼 > 0.

For exact statements, details, proofs and generalizations, see Subsec-
tion 24.4.1 of [Ivr4].

Case d > 2r . II

We now discuss faster decaying potentials. Assume that d = 2r+1 (otherwise
there will be no interesting results). Assume for simplicity that g jk = δjk and
Fdk = 0. Further, one can assume that Ad(x) = 0; otherwise one can achieve
it by a gauge transformation. Then, Aj = Aj(x

′) with x ′ = (x𝟣, ... , x𝟤r) and
the operator is of the form

(3.10) D𝟤
d + V (x) + H ′

𝟢, with H ′
𝟢 :=

∑︁
𝟣≤j≤d−𝟣

(Dj − Aj(x
′))𝟤.

For any fixed x ′ : |x ′| ≥ c , consider the one-dimensional operator

(3.11) L := D𝟤
t + V (x ′; t)

on ℝ ∋ t. It turns out that under the assumption

(3.12) |V (x ′; t)| ≤ 𝜀t−𝟤,

with 𝜀 ≤ (𝟣
𝟦
− 𝜖), this operator has no more than one negative eigenvalue

𝜆(x ′); moreover, it has exactly one negative eigenvalue

𝜆(x ′) = −1

4
W (x ′)𝟤 + O(𝜀𝟥),(3.13)

provided

W (x ′) :=

∫︁
ℝ

V (x ′; t) < 0 and − W (x ′) ≍ 𝜀.(3.14)

42) Where 𝛿 = 𝟢 if either d ≥ 𝟤r + 𝟤 or the assumption (3.9) is fulfilled.
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Furthermore, in this case 𝜆(x ′) nicely depends on x ′.
Let

(3.15) |∇𝛼V | ≤ c𝛼𝜌
𝟤𝛾

−|𝛼′|
𝟣 𝛾−𝛼d ,

with 𝜌 = ⟨x⟩l⟨x ′⟩k , 𝛾 = ⟨x⟩, 𝛾𝟣 = ⟨x ′⟩ and l ≤ −2, m := 2l + 2k + 1 < 0 and
if

(3.16) W (x ′) < 0, W (x ′) ≍ 𝜌′, 𝜌′ := ⟨x ′⟩m,

then we are essentially in the (d − 1)-dimensional case of an operator
H ′ := H ′

𝟢 + 𝜆(x ′), and for N−(𝜂), we have the corresponding asymptotics of
Subsubsection 3.

For exact statements, details, proofs and generalizations, see Subsec-
tions 24.4.2 of [Ivr4]. For improvements for slower decaying potentials, see
Subsections 24.4.3 of [Ivr4].

4 Applications to Multiparticle Quantum

Theory

Problem Set-up

In this Chapter, we discuss an application to Thomas-Fermi Theory. Con-
sider a large (heavy) atom or molecule; it is described by a Multiparticle
Quantum Hamiltonian

(4.1) HN =
∑︁

𝟣≤n≤N

HV (xn) +
∑︁

𝟣≤n<k≤N

1

|xn − xk |

where H is a one-particle quantum Hamiltonian, Planck constant ℏ = 1, elec-
tron mass = 𝟣

𝟤
, electron charge = −1. This operator acts on the space H :=

∧𝟣≤j≤NL𝟤(ℝ𝟥,ℂ𝟤) of totally antisymmetric functions Ψ(x𝟣, 𝜍𝟣; ... ; xN , 𝜍N)
because the electrons are fermions, xn = (x𝟣

n , x𝟤
n , x𝟥

n ) is a coordinate and
𝜍n ∈ {−𝟣

𝟤
, 𝟣
𝟤
} is the spin of n-th particle. We identify the ℂ𝟤-valued function

𝜓(x) on ℝ𝟥 with a scalar-valued function 𝜓(x , 𝜍).
If the electrons did not interact between themselves, but the field po-

tential was −W (x), then they would occupy the lowest eigenvalues and
the ground state wave functions would be the anti-symmetrized product
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𝜑𝟣(x𝟣, 𝜍𝟣)𝜑𝟤(x𝟤, 𝜍𝟤) ...𝜑N(xN , 𝜍N), where 𝜑n and 𝜆n are the eigenfunctions and
eigenvalues of HW respectively.

Then the local electron density would be 𝜌𝝭 =
∑︀

𝟣≤n≤N |𝜑n(x)|𝟤 and
according to the pointwise Weyl law (if there is no magnetic field)

(4.2) 𝜌𝝭(x) ≈
1

3𝜋𝟤
(W + 𝜈)

𝟥
𝟤
+,

where 𝜈 = 𝜆N . We first assume that there is no magnetic field and therefore,
HV = −Δ− V (x).

This density would generate the potential −|x |−𝟣 *𝜌𝝭 and we would have
W ≈ V − |x |−𝟣 * 𝜌𝝭.

Replacing all approximate equalities by strict ones, we arrive to the
Thomas-Fermi equations :

V − W 𝖳𝖥 = |x |−𝟣 * 𝜌𝖳𝖥,(4.3)

𝜌𝖳𝖥 =
1

3𝜋𝟤
(W 𝖳𝖥 + 𝜈)

𝟥
𝟤
+,(4.4) ∫︁

𝜌𝖳𝖥 dx = N ,(4.5)

where 𝜈 ≤ 0 is called the chemical potential and in fact approximates 𝜆N .

Considering atoms and molecules, we assume that

(4.6) V (x) =
∑︁

𝟣≤m≤M

Zm

|x − ym|
,

where ym is the position and Zm is the charge of the m-th nuclei, M is fixed
and Z𝟣 ≍ Z𝟤 ≍ ... ≍ ZM ≍ N → ∞.

Thomas-Fermi theory has been rigorously justified (with pretty good
error estimates) and we want to explain how.

Reduction to One-Particle Problem

Estimate from below

We start from the estimate from below. The ground state energy
EN := inf 〈HNΨ,Ψ〉, taken over all Ψ ∈ H with ‖Ψ‖ = 1, where 〈·, ·〉
denotes the inner product in H. Classical mathematical physics provides
a wealth of results. One of them is the electrostatic inequality due to
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E. H. Lieb [L]:

(4.7)
∑︁

𝟣≤j<k≤N

∫︁
|xj − xk |−𝟣|Ψ(x𝟣, ... , xN)|𝟤 dx𝟣 · · · dxN ≥

1

2
D(𝜌𝝭, 𝜌𝝭)− C

∫︁
𝜌

𝟦
𝟥
𝝭(x) dx ,

with 𝜌𝝭 defined by (4.2). This inequality holds for all (not necessarily
antisymmetric) functions Ψ with ‖Ψ‖L𝟤(ℝ𝟥N) = 1. Therefore,

(4.8) 〈HNΨ,Ψ〉 ≥
∑︁

𝟣≤j≤N

〈HV ,xjΨ,Ψ〉+ 1

2
D
(︀
𝜌𝝭, 𝜌𝝭)− C

∫︁
𝜌

𝟦
𝟥
𝝭(x) dx =

∑︁
𝟣≤j≤N

〈HW ,xjΨ,Ψ〉+ 1

2
D
(︀
𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌

)︀
− 1

2
D
(︀
𝜌, 𝜌

)︀
− C

∫︁
𝜌

𝟦
𝟥
𝝭(x) dx

and HW is a one-particle Schrödinger operator with potential

W = V − |x |−𝟣 * 𝜌,(4.9)

where 𝜌 is an arbitrarily chosen real-valued non-negative function and
therefore,

(V − W , 𝜌𝝭) = −D(𝜌, 𝜌𝝭).(4.10)

The physical sense of the second term in W is transparent: it is a
potential created by the charge −𝜌. Skipping the positive second term in
the right-hand expression of (4.8) and believing that the last term is not
very important for the ground state function Ψ 43), we see that we need to
estimate from below the first term. Since the first term is simply the sum of
operators acting with respect to different variables, we can estimate it from
below by

(4.11) 〈(HW ,xj − 𝜈)Ψ,Ψ〉+ 𝜆N

with arbitrary 𝜈; therefore, it is bounded from below by Tr((HW − 𝜈)−),
where (HW − 𝜈)− denotes the negative part of the operator (HW − 𝜈), and
hence its trace is the sum of the negative eigenvalues.

43) When we derive the upper estimate for 𝖤, we will get an upper estimate for this
term as a bonus.
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Here, the assumption that Ψ is antisymmetric is crucial. Namely, for
general (or symmetric–does not matter) Ψ, the best possible estimate is 𝜆𝟣N
where 𝜆𝟣 is the lowest eigenvalue of HW (we always assume that there are
sufficiently many eigenvalues below the bottom of the essential spectrum of
HW ) and we cannot apply semiclassical theory.

Thus we arrive to

(4.12) EN ≥ Tr((HW − 𝜈)−) + 𝜈N − 1

2
D
(︀
𝜌, 𝜌

)︀
− CN

𝟧
𝟥 ,

where we used another result of E. H. Lieb [L]:
∫︀
𝜌

𝟦
𝟥
𝝭(x) dx ≤ CN

𝟧
𝟥 for the

ground state Ψ.

Estimate from above

Here, we simply plug in a test function Ψ which is an (anti-symmetrized)
product 𝜑𝟣(x𝟣, 𝜍𝟣)𝜑𝟤(x𝟤, 𝜍𝟤) ...𝜑N(xN , 𝜍N) where 𝜑n and 𝜆n are eigenfunctions
and eigenvalues of HW respectively, and we pick W later. It may happen,
however, that HW does not have N negative eigenvalues, then we can reduce
N and use the inequality EN ≤ EN′ as N ′ ≤ N .

Then, EN is estimated from above by

(4.13) 〈HNΨ,Ψ〉 =∑︁
n

(HW ,xj − 𝜆)Ψ,Ψ〉+ 𝜆N − (V − W , 𝜌𝝭) +
1

2
D(𝜌𝝭, 𝜌𝝭)

− 1

2

∑︁
n

∫︁∫︁
|x − y |−𝟣|𝜓n(x)|𝟤|𝜓n(y)|𝟤 dxdy

and therefore recalling (4.10), we obtain

(4.14) EN ≤ Tr((HW − 𝜆)−) + 𝜆N +
1

2
D(𝜌𝝭 − 𝜌, 𝜌𝝭 − 𝜌)− 1

2
D(𝜌, 𝜌)

and 𝜌𝝭 = tr eN(x , x) where eN(x , y) and e(x , y ,𝜆) are the Schwartz kernels
of the projector to the N lowest eigenvalues of HW and of the operator
θ(𝜆 − HW ) respectively; here tr denotes the matrix trace, and 𝜆 = 𝜆N if
𝜆N < 0 and 𝜆 = 0 otherwise. Finally, we conclude that

(4.15) EN ≤ Tr((HW − 𝜈)−) + 𝜈N + |𝜆− 𝜈| · |N−(HW − 𝜈)− N |

+
1

2
D(tr eN(x , x)− 𝜌, tr eN(x , x)− 𝜌)− 1

2
D(𝜌, 𝜌)

with arbitrary 𝜈 ≤ 0.
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Semiclassical Approximation

Estimate from below

In the estimate from below (4.12), we replace Tr((HW − 𝜈)−) by its semi-
classical approximation

Tr((HW − 𝜈)−) ≈ −
∫︁

P(W + 𝜈) dx(4.16)

with

P(W + 𝜈) :=
2

5𝜋𝟤
(W + 𝜈)

𝟧
𝟤
+,(4.17)

and also plug in 𝜌 = 𝟣
𝟦𝜋
Δ(W − V ); then we obtain the functional

(4.18) Φ*(W , 𝜈) = −
∫︁

P(W + 𝜈) dx − 1

8𝜋
‖∇(W − V )‖𝟤 + 𝜈N ;

maximizing it, we arrive to the Thomas-Fermi equations and its maxi-
mal value is ℰ𝖳𝖥

N , delivered by Thomas-Fermi theory. Then, we need to
understand the semiclassical error. To do this, we use the properties of
the Thomas-Fermi potential and rescale x ↦→ xN

𝟣
𝟥 and 𝜏 ↦→ N− 𝟦

𝟥 𝜏 (so,

𝜈 ↦→ N− 𝟦
𝟥𝜈) with

(4.19) HW = −h𝟤∇𝟤 − W ,

where near ym, the rescaled potential is Coulomb-like: W ∼ zm|x − y |−𝟣

with zm = ZmN−𝟣.
Then, we can apply results Subsection 3 (see (3.53)): for the operator

(4.19),

(4.20) Tr((HW − 𝜈)−) = −h−𝟥

∫︁
P(W + 𝜈) dx + 𝜅h−𝟤 + O(h−𝟣),

where in this case, the numerical value of 𝜅 = 2
∑︀

m z𝟤
m is well-known. Scaling

back, we obtain ℰ𝖳𝖥
N +Scott+O(N

𝟧
𝟥 ) where the leading term is of magnitude

N
𝟩
𝟥 and the Scott correction term Scott = 2

∑︀
m Z 𝟤

m. Here, we need to assume

that |ym − ym′ | ≳ 1 after rescaling (and |ym − ym′ | ≳ N− 𝟣
𝟥 before it).

Indeed, after rescaling, we get an operator which is uniformly in the
framework of Subsection 3 due to the following properties of the Thomas-
Fermi potential:



718 100 YEARS OF WEYL’S LAW

(4.21) Before rescaling, W 𝖳𝖥 = Zm|x − ym|−𝟣 + O(N) for |x − ym| ≲ N− 𝟣
𝟥

and W 𝖳𝖥 ≍
∑︀

m

(︀
|x − ym|−𝟦 + (Z − N)+|x − ym|−𝟣

)︀
for |x − ym| ≳ 1 for all

m = 1, ... ,M .

In fact, the analysis of Subsection 3 was mainly motivated by this
problem.

Estimate from above

Again, using the semiclassical approximation (4.16) for Tr((HW − 𝜈)−) and

also eN(x , x) ≈ P ′(W +𝜈) with P ′ = 𝟣
𝟥𝜋𝟤 (W +𝜈)

𝟥
𝟤 the derivative of P(W +𝜈),

we arrive to the functional

(4.22) Φ*(W , 𝜈) = −
∫︁

P(W + 𝜈) dx − 1

8𝜋
‖∇(W − V )‖𝟤 + 𝜈N

+ D(P ′(W + 𝜈)− 1

4𝜋
Δ(W − V ), P ′(W + 𝜈)− 1

4𝜋
Δ(W − V ));

minimizing it, we again arrive to the Thomas-Fermi equations and the
minimal value is ℰ𝖳𝖥

N , again delivered by Thomas-Fermi theory.
However, in addition to the semiclassical error for the trace, we have

other errors from (4.15):

|𝜆− 𝜈| · |N−(HW − 𝜈)− N |,(4.23)

D(tr e(x , x , 𝜈)− P ′(W + 𝜈), tr e(x , x , 𝜈)− P ′(W + 𝜈))(4.24)

and

D(tr eN(x , x)− tr e(x , x , 𝜈), tr eN(x , x)− tr e(x , x , 𝜈)).(4.25)

The expression (4.24) is the semiclassical error and after rescaling it, we can
estimate it by O(h−𝟦) (due to the pointwise spectral asymptotics). When

scaling back, we gain the factor N
𝟣
𝟥 , resulting in O(N

𝟧
𝟥 ).

Expressions (4.23) and (4.25) can be also estimated by O(N
𝟧
𝟥 ) based on

another semiclassical error

(4.26) N−(HW − 𝜎)−
∫︁

P ′(W + 𝜎) dx = O(h−𝟤),

(for 𝜎 ≤ 0) after rescaling and thus, O(N
𝟤
𝟥 ) in the original scale, due to

the definitions of 𝜆 and 𝜈. One needs to consider four cases depending on
whether 𝜆 < 0 (i.e. N−(HW ) ≥ N) or 𝜆 = 0 (i.e. N−(HW ) < N) and whether
𝜈 < 0 (i.e. N < Z ) or 𝜈 = 0 (i.e. N ≥ Z ), where Z = Z𝟣 + ... + ZM is the
total charge of the nuclei.
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More Precise Estimates

If we want to improve the remainder estimate O(N
𝟧
𝟥 ), then we need to

improve the semiclassical remainder estimates and also deal with O(N
𝟧
𝟥 ) in

Lieb’s electrostatic inequality (4.7).
The first task could be done under the assumption

(4.27) a := min
m ̸=m′

|ym − ym′ | ≫ ā := N− 𝟣
𝟥 ,

which is completely reasonable (see Section 4). In this case, in each zone
𝒴m := {x : |x − ym| ≤ a𝟣−𝜂ā𝜂}, with 𝜂 > 0, both 𝜌𝖳𝖥 and W 𝖳𝖥 are close to
those of a single atom which are spherically symmetric. Then one can prove
easily that the standard conditions to the trajectories are fulfilled and we may
use the improved remainder estimates. On the other hand, contributions
of the “outer” zone 𝒴𝟢 := {x : |x − ym| ≥ a𝟣−𝜂ā𝜂 ∀m = 1, ... ,M} to these
remainders is smaller.

Therefore all remainder estimates acquire the factor (h𝛿 + b−𝛿) with

b = aā−𝟣 before scaling back, i.e. (N
𝟣
𝟥
𝛿 + (aN

𝟣
𝟥 )−𝛿) after it. However,

the trace asymptotics should also include the term −𝜅𝟣h−𝟣 before scaling
back or −𝜅𝟣N

𝟧
𝟥 after it; for the potential W 𝖳𝖥, it is numerically equal to

Schwinger = −c𝟣
∫︀
𝜌𝖳𝖥

𝟦
𝟥 dx which is called the Schwinger correction term.

The second task requires an improvement in Lieb’s electrostatic inequality
due to [GS] and [Ba]: one can replace the last term in (4.8) for the ground
state energy Ψ by

(4.28) − 1

2

∫︁∫︁
|x − y |−𝟣 tr

(︀
e†
N(x , y)eN(x , y)

)︀
dxdy − O(N

𝟧
𝟥
−𝛿),

where the first term coincides with the last term in (4.13) (the estimates

from above) and again modulo O(N
𝟧
𝟥
−𝛿) can be rewritten as

(4.29) − 1

2

∫︁∫︁
|x − y |−𝟣 tr

(︀
e†(x , y , 𝜈)e(x , y , 𝜈)

)︀
dxdy .

So far, we have not explored such expressions but we can handle them.
For this expression, after rescaling, we can derive the asymptotics with

principal term −𝜅𝟤h−𝟦 and with remainder estimate as good as O(h−𝟥),

which after scaling back becomes O(N
𝟦
𝟥 ) (which is an overkill). Here, we

use the representation of e(x , y , 𝜈) by an oscillatory integral modulo a term
whose L𝟤(ℝ𝟨) norm does not exceed Ch−𝟤.
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To calculate 𝜅𝟤, we can consider the operator with constant potential W ,
and for this operator, we calculate −𝟣

𝟤

∫︀
|x − y |−𝟣 tr

(︀
e†(x , y , 𝜈)e(x , y , 𝜈)

)︀
dy

obtaining −const(W + 𝜈)𝟤h−𝟦, then plug in W = W (x) and integrate over

x . For W = W 𝖳𝖥, after scaling back, we arrive to Dirac = −c𝟤
∫︀
𝜌𝖳𝖥

𝟦
𝟥 dx

which is called the Dirac correction term.
Despite having completely different origins, these correction terms differ

only by numerical constants.
We arrive to the theorem:

Theorem 4.1. As Z = Z𝟣 + ... + ZM ≍ N → ∞, M remains bounded,
a = minm ̸=m′ |ym − ym′ | ≳ N− 𝟣

𝟥 and

(4.30) EN = ℰ𝖳𝖥
N + Scott + Schwinger + Dirac + O(R)

with R = N
𝟧
𝟥

(︀
N−𝛿 + (aN

𝟣
𝟥 )−𝛿

)︀
where 𝛿 > 0 is unspecified.

As a byproduct of the proof, we obtain

(4.31) D(𝜌𝝭 − 𝜌𝖳𝖥, 𝜌𝝭 − 𝜌𝖳𝖥) = O(R).

For details and proofs, see Sections 25.1–25.4 of [Ivr4].

Ramifications

First, instead of the fixed nuclei model , we can consider the free nuclei model
where we add to both EN and ℰ𝖳𝖥

N the energy of nuclei-to-nuclei interaction

(4.32)
∑︁
m<m′

ZmZm′ |ym − ym′ |−𝟣

and minimize the results by the position of nuclei (y𝟣, ... , ym); denote the

results by ̂︀EN and ̂︀ℰ𝖳𝖥
N respectively.

Combining (4.30) with the non-binding theorem in Thomas-Fermi the-
ory44), we obtain that in the free nuclei model (with Z𝟣 ≍ ... ≍ ZM ≍ Z ≍ N),

(4.33) a = min
m ̸=m′

|ym − ym′ | ≳ N− 𝟧
𝟥
+𝛿

and then (4.30) and (4.31) hold with R = N
𝟧
𝟥
−𝛿.

44) In the Thomas-Fermi theory, molecules do not exist.
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Next, using methods already developed by mathematical physicists
before asymptotics (4.30) and (4.31) were derived, we can answer several
questions with far better precision than before; for simplicity, we assume
that a ≥ N− 𝟣

𝟥
+𝛿.

(i) How many extra electrons can the system bind? In other words, if
EN < EN−𝟣, what we can say about N −Z? According to a classical theorem
due to G. Zhislin, the system can bind at least Z electrons. Our answer:
(N − Z )+ = O(N

𝟧
𝟩
−𝛿), based on the fact that in the Thomas-Fermi theory,

negative ions do not exist.

(ii) What we can say about the ionization energy IN = EN−𝟣 − EN? Our

answer: IN = O(N
𝟤𝟢
𝟤𝟣
−𝛿) if N−Z ≥ −CN

𝟧
𝟩
−𝛿 and IN = −𝜈+O((Z −N)

𝟣𝟩
𝟣𝟪 Z

𝟧
𝟣𝟪
−𝛿

if N − Z ≤ −CN
𝟧
𝟩
−𝛿; if N ≤ Z 𝜈 ≍ (Z − N)

𝟦
𝟥 .

(iii) In the free nuclei model (with M ≥ 2), what can we say about N−Z > 0

if a stable configuration exists? Our answer: Z − N ≤ CN
𝟧
𝟩
−𝛿 (again based

on the non-binding theorem).

For details and proofs, see Sections 25.5 and 25.6 of [Ivr4].

Adding Magnetic Field

Adding External Magnetic Field

Consider the Schrödinger-Pauli operator with magnetic field

(4.34) HA,V = ((−ih∇− 𝜇A(x)) · σ)𝟤 − V (x).

Then instead of P(w) defined by (4.17), we need to define it according to
(2.5) by

(4.35) P(w) =
2

𝜋𝟤

(︁1
2

w
𝟥
𝟤
+B +

∞∑︁
j=𝟣

(w − 2jB)
𝟥
𝟤
+B

)︁
,

where B is the scalar intensity of the magnetic field. This changes both the
Thomas-Fermi theory and properties of the Thomas-Fermi potential W 𝖳𝖥

and Thomas-Fermi density 𝜌𝖳𝖥.
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Case B ≲ Z 𝟦/𝟥 For B ≲ Z 𝟦/𝟥, the main contributions to the (approximate)
electronic charge

∫︀
𝜌𝖳𝖥 dx and the energy ℰ𝖳𝖥 come from the zone {x :

d(x) ≍ Z−𝟣/𝟥} (d(x) = minm |x − ym|), exactly as for B = 0.
Furthermore, W 𝖳𝖥 ≍ Zmd(x)−𝟣 if d(x) ≲ Z−𝟣/𝟥 and (for Z = N) W 𝖳𝖥 ≍

d(x)−𝟦 if Z−𝟣/𝟥 ≤ d(x) ≲ B−𝟣/𝟦 but 𝜌𝖳𝖥 = 0 if d(x) ≥ C𝟢B−𝟣/𝟦 45).
Finally, as we using scaling to bring our problem to the standard one,

we get that in the zone {x : d(x) ≍ Z−𝟣/𝟥}, the effective semiclassical
parameter is h𝖾ff = Z−𝟣/𝟥 which leads to ℰ𝖳𝖥 ≍ Z 𝟩/𝟥 again exactly as for
B = 0.

As a result, assuming that M = 1, we can recover asymptotics for the
ground state energy E with the Scott correction term but with the remainder
estimate O(Z 𝟧/𝟥 + Z 𝟦/𝟥B𝟣/𝟥). For M ≥ 2 and N ≥ Z , our estimates are
almost as good (provided a = minm ̸=m′ |ym − ym′ | ≥ Z−𝟣/𝟥), but deteriorate
when both (Z − N)+ and B are large.

Moreover, for B ≪ Z assuming (4.27), we can marginally improve these
results and include the Schwinger and Dirac correction terms.

The main obstacles we need to overcome are that now W 𝖳𝖥 is not
infinitely smooth but only belongs to the class C𝟧/𝟤 and that for M ≥ 2, the
nondegeneracy assumption (|∇W | ≍ 1 after rescaling) fails.

Case B ≳ Z 𝟦/𝟥 On the other hand, for B ≳ Z 𝟦/𝟥, the the main contri-
butions to the (approximate) electronic charge and the energy ℰ𝖳𝖥 come
from the zone {x : d(x) ≍ B−𝟣/𝟦} and (for Z = N) W 𝖳𝖥 ≍ Zd(x)−𝟣 if
d(x) ≲ B−𝟣/𝟦 but W 𝖳𝖥 = 0 if d(x) ≥ C𝟢B−𝟣/𝟦. In this case, E𝖳𝖥 ≍ B𝟤/𝟧Z 𝟫/𝟧.

Further, as we using scaling to bring our problem to the standard
one, we see that in the zone {x : d(x) ≍ B−𝟣/𝟦}, the effective semiclassical
parameter is h𝖾ff = B𝟣/𝟧Z−𝟥/𝟧 and therefore unless B ≪ Z 𝟥, the semiclassical
approximation fails and the correct answer should be expressed in completely
different terms [LSY1].

As a result, assuming that M = 1 if Z 𝟦/𝟥 ≤ B ≤ Z 𝟥, we can recover the
asymptotics for E with the Scott correction term but with the remainder
estimate O(B𝟦/𝟧Z 𝟥/𝟧 + Z 𝟦/𝟥B𝟣/𝟥).

For M ≥ 2 and N ≥ Z , our estimates are almost as good (provided
a = minm ̸=m′ |ym − ym′ | ≥ B−𝟣/𝟦), but deteriorate when (Z − N)+ is large.

Again the main obstacles we need to overcome are that now W 𝖳𝖥 is
not infinitely smooth but only belongs to C𝟧/𝟤 and that for M ≥ 2, the
nondegeneracy assumption (|∇W | ≍ 1 after rescaling) fails.

45) So, the radii of atoms in Thomas-Fermi theory are ≍ 𝗆𝗂𝗇(B−𝟣/𝟦, (Z − N)
−𝟣/𝟥
+ ).
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For details, exact statement and proofs, see Sections 26.1 and 26.6
of [Ivr4]. We also estimate the left-hand expression of (4.20) and are able
to obtain results similar to those mentioned in Section 4. For details and
proofs, see Sections 26.7–26.8 of [Ivr4].

Adding Self-Generated Magnetic Field

Let

E(A) = inf Spec(HA,V ) + 𝛼−𝟣

∫︁
|∇ × A|𝟤 dx(4.36)

and

E* = inf
A∈H𝟣

𝟢

E(A),(4.37)

where A is an unknown magnetic field and the underlined term is its energy.
One can prove that an “optimal” magnetic field exists (for given parameters
Z𝟣, ... ,ZM , y𝟣, ... , yM ,N) but we do not know if it is unique46).

Using the same arguments as before, we can reduce this problem to the
one-particle problem with inf Spec(HA,V ) replaced by Tr((HA,W + 𝜈)−) plus
some other terms. However, in the estimate from below, most of the terms
do not depend on A and in the estimate from above, we pick up A.

Then after the usual rescalings, the problem is reduced to the problem
of minimizing

(4.38) Tr((HA,W + 𝜈)−) +
1

𝜅h𝟤

∫︁
|∇ × A|𝟤 dx

and then the optimal magnetic potential A must satisfy

(4.39)
2

𝜅h𝟤
ΔAj(x) = Φj :=

− Re tr
(︁
σj

(︁
(hD − A)x · σe(x , y , 𝜏) + e(x , y , 𝜏) t(hD − A)y · σ

)︁⃒⃒⃒
y=x

)︁
,

where e(x , y , 𝜏) is the Schwartz kernel of the spectral projector θ(−H) of
H = HA,W and tr is the matrix trace. As usual, we are mainly interested in
h = Z−𝟣/𝟥 (and then 𝜅 = 𝛼Z ).

46) If it was unique, then for M = 𝟣, the spherical symmetry would imply that A = 𝟢.
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First, (4.39) allows us to claim a certain smoothness of A. Second,
the right-hand expression is something we studied in pointwise spectral
asymptotics, and the Weyl expression here is 0, so the right-hand expression
of (4.39) is something that we could estimate. Surely, it is not that simple
but improving our methods in the case of smooth W , we are able to prove
that A is so small that the ordinary asymptotics with remainder estimates
O(h−𝟤) and O(h−𝟣) would hold in both the pointwise asymptotics and the
trace asymptotics. Moreover, under standard conditions, we would be able
to get the remainder estimates o(h−𝟤) and o(h−𝟣) in the eigenvalue counting
and the trace asymptotics respectively.

However, in reality, the above is not exactly true since W has Coulomb-
like singularities W ∼ zm|x − ym|−𝟣 with zm ≍ 1. If M = 1, zm = 1, a
singularity leads us to the Scott correction term S(𝜅)h−𝟤 derived in the same
way as without a self-generated magnetic field. However, we do not have an
explicit formula for S(𝜅); we even do not know its properties except that it
is non-increasing function of 𝜅 ∈ [0,𝜅*); we even do not know if we can take
𝜅* = ∞. If the optimal magnetic potential A was unique, then A = 0 and
S(𝜅) = S(0), which corresponds to this term without a magnetic field.

Then as M ≥ 2, the Scott correction term is
∑︀

𝟣≤m≤M S(𝜅zm)z
𝟤
mh−𝟤 in

the general case. However, as M ≥ 2 we need to decouple singularities
as all of them are served by the same A and it leads to decoupling errors
depending on the internuclei distance.

For details, exact statements and proofs, see Sections 27.2–27.3 of [Ivr4].

As a result, we derive the ground state asymptotics with the Scott correc-
tion term

∑︀
𝟣≤m≤M S(𝛼Zm)Z

𝟤
m. We also estimate the left-hand expression of

(4.20) and are able to obtain results similar to those mentioned in Section 4.
For details, exact statements and proofs, see Sections 27.3–27.4 of [Ivr4].

Combining External and Self-Generated Magnetic Fields

We can also combine a constant strong external magnetic field and a self-
generated magnetic field. Results are very similar to those of Subsection 4,
but this time, the Scott correction term and the decoupling errors are like
in Subsection 4. For details, exact statements and proofs, see Chapter 28
of [Ivr4].
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