®

Check for
updates

The Effect of Hardware/Software
Features on the Performance of an
Open—Source Network Emulator

2(=) 2

Domenico Capriglione!®, Gianni Cerro , Luigi Ferrigno“@®,

and Gianfranco Miele?

! University of Salerno, Fisciano, Italy
dcapriglione@unisa.it
2 University of Cassino and Southern Lazio, Cassino, Italy
{gianni.cerro,luigi.ferrigno,g.miele}@unicas.it

Abstract. The authors investigate a network emulator performance
versus the variability of hardware/software features of the hosting
machine. In particular, the evaluation of static and dynamic delays is
carried out considering several testing conditions. In detail, as concerns
emulator configurations, the influence of packet rates on imposed delays
values and distributions are analyzed; as for hardware and software,
different values for RAM, CPU cores and operating system are tested.
Results, reported as mean values and standard deviation, show two main
trends: the resource availability has an important impact on the emu-
lation stability and on the measurement repeatability; secondly, higher
differences in performance levels for low imposed delay values, which
is the most interesting zone in a few milliseconds latency world. The
paper aims to show that the capability to emulate network impairments
is generally influenced by hardware/software capabilities and it must be
considered when using network emulation for specific test purposes.

Keywords: Computer networks + Network emulation -
QoS measurements - System virtualization

1 Introduction

Modern testing schemes, in most engineering fields, are especially focused on
simulations, model planning, test execution in a software—based environment
and extrapolation of theories and laws on the basis of the obtained results. This
is particularly true in telecommunication and computer science [16]. Protocol
and novel communication technology tests usually rest on simulators [14], and
emulators [9] having the purpose to replicate the real environment where com-
mercial releases should find their place. In this field, an important role is played
by network emulation [7,13,18]. It has the goal to emulate all possible impair-
ments a telecommunication network can experience in real cases, such as delays,
© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

M. Di Felice et al. (Eds.): WWIC 2019, LNCS 11618, pp. 233-245, 2019.
https://doi.org/10.1007/978-3-030-30523-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30523-9_19&domain=pdf
http://orcid.org/0000-0001-8449-1406
http://orcid.org/0000-0002-6843-7140
http://orcid.org/0000-0002-1724-5720
http://orcid.org/0000-0001-7571-6327
https://doi.org/10.1007/978-3-030-30523-9_19

234 D. Capriglione et al.

jitters, packet losses, packet duplication, just to cite a few. Emulators can be
hardware [15] or software [1,3]. Usually hardware emulators are costly but they
present certified level of performance, while software emulators and, particularly,
open source software emulators are free, flexible but their reliability is left as an
open issue to be investigated.

Starting from previous experience of the authors in such field [2,5], this paper
describes the investigation of the effect of hardware/software available resources
on the performance of a widely—known open source network emulator, namely
Net-Em [10,11], that is part of the Linux traffic control facilities and allows
to emulate several impairments in a network link. To achieve such goal, there
are two main possibilities: having several physical machines with different hard-
ware or applying a virtualization process and changing resource availability via
software. In this paper, the second choice has been selected. Virtualizing the
system leads to other sources of uncertainty and several papers address the issue
[8,12,17]. In our case, those contributions have been deliberately neglected, since
the aim of the work is to evaluate the effect of having limited—hardware/heavy—
software resources on the obtained performance. All results are presented in
relative values, taking as nominal performance the one experienced with the
maximum available resources. The output of this work represents a step forward
in the way to assign a metrological value to a software network emulator that,
through a self-calibration procedure, could provide the final user with a quan-
titative evaluation of its own expected capabilities in reproducing the required
impairments.

The organization of the paper is the following: Sect. 2 is going to describe the
adopted methodology along with the planned test conditions; Sect. 3 is intended
to present obtained results both in terms of mean value and standard deviations.
Section 4 discusses about the meaning of the obtained results in terms of general
statements the paper wants to convey and it also provides possible improvements
and developments of the experimental set—up.

2 Materials and Methods

In this section, we provide a detailed description of the adopted test set—up.
It consists of the adopted network emulator, namely Net—Em, the virtualiza-
tion schema, how the measurements are performed and which test conditions
represent the most interesting scenarios to be investigated.

2.1 The Adopted Network Emulator

Net—Em (abbreviation for Network Emulator) can be seen as a tool inside traffic
control (TC) routines by Linux Systems [10,11]. For a given network, composed
of several links, its functionalities allow to add impairments such delays, delay
variations (jitter), packet losses and other limitations to one or more links of the
networks. In this paper, only delay is considered as parameter of investigation.

The Effect of Hardware/Software Features 235

As delay setting regards, Net—Em requires three input parameters: the mean
value (u), the standard deviation (o) and the correlation coefficient (p). If not
differently specified, it generates a uniform distribution using as parameters p
and o and considering p to correlate currently generated delay with the previous
one (associated to the previous packet). Furthermore, thanks to iproute2 tool
collection, other random distributions can be associated to delay generation,
such as normal, Pareto and Pareto normal functions.

2.2 The Virtualized System

The realized test set—up is composed of three virtual machines residing on the
same PC. Figurel provides a sketch of the realized system. It is based on Vir-
tualBox, that is a virtualization product provided by Oracle, able to work on
all main operating systems and it is available for free as Open Source Software
under GPL terms. Main functionalities are summarized by Oracle in their white

paper [6].

Virtual Box

I'Pc Sender | | Network Emulatori :- ‘Pc Receiver |
: : Virtual : : Virtual : :
1 | Ethernet : | Ethernet :
: R i :
: ~— i
1 1 1 | 1
1 1 H 1 H 1
I [TGSend ! i Netem ! | ITGRecv |
_________ | S - |

Fig. 1. A sketch of the virtualized system

Inside VirtualBox container, to create a network topology, three different
virtual machines have been installed with the following tasks:

— PCSender: this machine is responsible to send data, with different features
in terms of traffic duration, packet rates and contents.

— Network Emulator: it is the core of the system. It receives data from the
sender and forwards them to the PC Receiver. According to imposed test
conditions, the forwarding process is consequently perturbed.

— PCReceiver: this machine is responsible to receive data and store them for
further processing.

As reported in Fig.1 (see ITGSend and ITGRecv), a suitable software is
adopted to generate and retrieve traffic data [4].

An important tool of this suite is IT'GDec, that can be used off-line to analyze
traffic features, as packet delays, packet-losses etc.

To be able to use Net—Em, all virtual machines are equipped with Linux
Operating Systems: Ubuntu 17.10 on PC Sender and PC Receiver, while different
versions on Network Emulator in order to assess the influence of software, as well.

236 D. Capriglione et al.

In terms of hardware equipment, both PC sender and receiver are given with
2 GB RAM and dual-core processors.

2.3 The Measurement Procedure

The authors have developed a measurement procedure proposed in [5]. This
procedure is adopted in current paper as well, to verify performance levels of the
proposed set—up and emulator.

In particular, measurement procedure is reported in Fig. 2, where the timeline
of the test operations is depicted.

It consists of three main steps:
— initialization;
— machine time synchronization;
— Traffic flow activation and data storage.

—T T TN

PC Receiver

Traffic Packet Flow

Emulator

PC Sender

(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l

|
|
|
|
|
|
|
|
|
=E
|
|
|
|
|
|
|
|
|
/

~————
VirtualBox
Appliance

Fig. 2. The adopted measurement procedure

In detail, during initializing phase, traffic profiles, emulator settings and
receiver logging function are adjusted. In the second step, machine time syn-
chronization is carried out. In particular, to avoid any influence, the emulator
machine works only as a relay machine able to forward traffic from PC Sender
to PC Receiver without adding any impairment condition. In this case, adopting
Network Time Protocol (NTP), we aligned Sender to Receiver absolute time. In
this way, delay estimation is coherently computed, adopting as sending instant
the time-stamp included by the Sender in each packet header.

The third step consists of enabling the emulator, setting suitable parameters,
such as delay value and distribution and link of interest for impairment appli-
cation. After setting—up testing conditions, receiver and sender are respectively

The Effect of Hardware/Software Features 237

activated and traffic flow is started. Packets pass through the emulator, which
corrupts the link to the receiver. They are finally received by PC receiver and
there stored to be off-line processed.

2.4 Performed Test Conditions

The evaluation of performance is subjected to the imposition of several test
conditions.

In particular, we can divide test conditions in two categories:

— imposing delay conditions to the emulator;
— changing hardware/software features of the network emulator hosting
machine.

As regards imposed delay conditions, we set:

— static delays: [0, 5, 20] ms;
— dynamic Gaussian delays: mean value p = 20 ms and standard deviations
o =1[1,2,5] ms.

As regards hardware/software features, we set:

— CPU cores: 1,2, 4;
— RAM memory: [500,2048,4096] MB;
— Operating System: Ubuntu Desktop, Ubuntu Server.

Furthermore, we tested each delay value under several network stressing con-
ditions, i.e. by imposing different packet rates to the data flow. In detail, adopted
packet rates are: [200 500 1000 2000 5000 10000] pkt/s. The data flow duration
is fixed to 15 s.

For each operating condition (combination of Net-Em and hardware fea-
tures), 20 tests are performed to estimate repeatability of the obtained measure-
ments.

3 Results

Measurement campaign results are reported in terms of mean value and standard
deviation. Their representation is organized in:

— effect of CPU core number variation on static (Figs.3 and 4) and dynamic
delays;

— effect of RAM variation on static (Figs. 5 and 6) and dynamic delays (Table 1);

— effect of Operating System variation on static (Figs.7 and 8) and dynamic
delays (Table 2).

238 D. Capriglione et al.

3.1 Static Delay Evaluation

CPU Effect. As first test group, static delays have been imposed to Net—
Em. Three different values are considered: 0 ms, 5 ms and 20 ms and results
are evaluated by testing the emulator under different CPU core numbers. In
particular we consider 1, 2 and 4 cores. To be cautionary, 4 GB RAM have been
used and Ubuntu Server Environment has been adopted as operating system
version.

Most critical situations are those referred to lowest imposed delays, namely
0 ms and 5 ms. In 0 ms case, the emulator is working only as a relay machine,
without adding any delay on the path. The experienced delay is always greater
than zero, due to the virtual link intrinsic delay. Such value is decreasing with
packet rates and it does not exhibit a clear trend behavior with respect to core
variation. The only clear difference is in terms of standard deviations: in detail, 2
core situation, reported in orange in Fig. 3, exhibits the most repeatable behavior
for any specific test condition (this phenomenon is reported with the green ver-
tical bar in the same figure). Generally, 4-core—configuration outperforms single
core case, both in terms of lower average value and standard deviation. There-
fore, for 0 ms case, the best configuration is 2—core and the worst one is single
core.

Target Delay = Oms
T T

1 core
2 cores|
34 cores|

Delay [ms]
)
=

0.1 1 1 1 1 1 1
200 500 1000 2000 5000 10000

Packet Rate [pps]

Fig. 3. Static Delay results with target value equal to 0 ms. Effect of CPU core number
variation.

In 5 ms case (see Fig.4), delay mean values have a lower variability. In par-
ticular, there is a light overestimation for all packet rate conditions, and core
number influence is less evident. Still, 2—core—case has a very stable behavior
and a very low standard deviation. Even if not reported for a sake of brevity,
when imposed delay is equal to 20ms, slight differences among different hardware
features are negligible, and results are in—line with target performance, except
at 200 packet rates, where single core case has a lower repeatability.

The Effect of Hardware/Software Features 239

Target Delay = 5ms
T T

1 core
2 cores|
7 14 cores|

"B

1

1

1

500 1000 2000 5000 10000
Packet Rate [pps]

Fig. 4. Static Delay results with target value equal to 5 ms. Effect of CPU core number
variation.

Target Delay = Oms
T T

500 MB RAM
B2 GB RAM
4 GB RAM

Delay [ms]

200 500 1000 2000 5000 10000
Packet Rate [pps]

Fig. 5. Static Delay results with target value equal to 0 ms. Effect of RAM size
variation.

RAM Effect. To evaluate the central memory effect on the performance of
the network delay emulation, we tested three different and typical RAM sizes:
500 MB, 2048 MB, 4096 MB. As core evaluation on static delays has proved
the suitability of using 2—core case, that is the CPU configuration adopted for
RAM tests. Also in this case we use 0 ms, 5 ms and 20 ms as target delay
values. When we consider 0 ms case, i.e. Fig. 5, values are generally higher than
the ones obtained when core influence is evaluated. In particular, very high
standard deviations have been obtained, especially for 500 MB case. In this
figure, result trends can be divided into two cases: before 1000 pkt/s and after
2000 pkt/s. In the first part, 2 GB case appears as the best configuration in
terms of repeatability, while in the second part 4 GB results exhibit a lower
standard deviation.

This is an expected behavior, since when packet rates are higher, the number
of packets and the data flow size increase and wider memory availability can

240 D. Capriglione et al.

help in managing emulation. Data size is, in any case, smaller than available
memory. As a general statement, measurements result in any case compatible,
where the concept of compatibility in measurement has been widely explained
in [5]. Results obtained for 5 and 20 ms follow the trends already explained in
case of core number variation. The best configuration in these cases results 4
GB RAM. Only 20 ms figure (see Fig.6) is actually reported in the paper.

Target Delay = 20ms
T T

30 T T
500 MB RAM

2 GB RAM
4 GB RAM

Delay [ms]

500 1000 2000 5000 10000

Fig. 6. Static Delay results with target value equal to 20 ms. Effect of RAM size number
variation.

OS Effect. As for the effect of the Operating System on static delay emula-
tion performance, we tested two different Linux Ubuntu versions, in particular
Ubuntu Desktop 18.10 and Ubuntu Server 18.10. The idea is to use the same
version of the operating system, in order to understand if the Graphical user
interface and the processes connected to it could have an effect on the delay

Target Delay = Oms
T T

EUbuntu Desktop)
[EMUbuntu Server

1 4

ST TN

-0.51- q

el
I3

Delay [ms]

=)

L L L L L L
200 500 1000 2000 5000 10000
Packet Rate [pps]

Fig. 7. Static Delay results with target value equal to 0 ms. Effect of Operating System
variation.

The Effect of Hardware/Software Features 241

Target Delay = 5ms
T T

T

Ubuntu Desktop
Ubuntu Server

1000 2000 5000 10000
Packet Rate [pps]

Fig. 8. Static Delay results with target value equal to 5 ms. Effect of Operating System
variation.

emulation. Ubuntu Server is, indeed, a command-line operating system. Also in
this case, we tested three static delays and results prove a generalized increase
of the measured delay when Ubuntu Desktop is adopted. This phenomenon can
be observed at lower packet rates for 0 ms delay (see Fig.7), while it is always
true when imposed delay values are set to 5 ms and 20 ms. Standard deviations
have comparable values in all cases, except for a particular case at 200 pkt/s for
0 ms delay. In this case, Ubuntu Server case exhibits a really unstable behavior.
For sake of brevity, only 0 ms and 5 ms delay cases are reported in Figs. 7 and 8.

3.2 Dynamic Delay Evaluation

The evaluation of Dynamic Delay emulation performance requires several levels
of verification. Firstly, we tested only Gaussian Distribution. Therefore, when
measurements are carried out, results must be evaluated in terms of average
value, standard deviation and correspondence between the imposed probability
density function (pdf) and obtained empirical pdf. In this subsection, we show
results that are relative to all cited parameters.

In order to be concise, we present results in form of tables. In detail, for each
influence factor (processor, memory, system), two tables report results obtained
in two packet rate conditions: low traffic (200 pkt/s) and high traffic (5000
pkt/s). Since results in terms of mean and standard deviation values are very
similar, we do not report all tables for sake of brevity. In particular, RAM and
OS effects are reported only.

Reported tables prove how standard deviation values are often lower than
the expected ones, except one case: Table 2, in 1 ms line, where all configurations
(Desktop, Server) exhibits a higher value. This phenomenon can be referred to
the limited capability of the emulator to reproduce distribution. Still, hardware
resources are not responsible for these synthetic data, since they are all compa-
rable.

242

D. Capriglione et al.

Table 1. Packet Rate 200 pkts - Dynamic Delay - RAM effect

Imp. values Obt. mean |Obt. mean |Obt. mean |Obt. std |Obt. std |Obt. std

(u, o) [ms, ms]| (512 MB) |(2 GB) (4 GB) (512 MB) |(2 GB) |(4 GB)
[ms] [ms] [ms] [ms] [ms] [ms]

(20,1) 21.05 20.91 20.99 0.99 0.95 1.00

(20,2) 21.07 20.91 20.98 1.71 1.70 1.70

(20,5) 21.09 20.97 21.01 4.22 4.20 4.24

Table 2. Packet Rate 200 pkts - Dynamic Delay - OS effect

Imp. values Obt. mean Obt. mean Obt. std Obt. std

(p, o) [ms, ms] | (Desktop) [ms] | (Server) [ms] | (Desktop) [ms] | (Server) [ms]

(20,1) 21.02 22.60 1.03 1.20

(20,2) 21.03 22.57 1.72 1.88

(20,5) 21.05 22.48 4.25 4.34

0.6 [Normalized Histogram
——Ideal Probability Density
Estimated Probability Density

0.5

Estimated pdf
o °
w IS
T

I+
N
T

0.1

delay [ms]

Fig. 9. Comparison of probability distributions: 500 MB RAM — 1 core CPU — Ubuntu
Desktop OS (Color figure online)

Furthermore, in order to show adherence between observed and expected
probability distributions, Figs.9 and 10 are reported. Each figure is characterized
by three information graphics:

— ared line: the ideal probability density function, as imposed in Net—Em set-

tings;

— a yellow line: the derived probability density function, applying Gaussian
analytic law to obtained mean and standard deviation;
— a normalized histogram: real data distribution.

The Effect of Hardware/Software Features 243

06 [ENormalized Histogram
—Ideal Probability Density
. Estimated Probability Density

Estimated pdf
o I
w B

o
N

0.1

0
14

delay [ms]

Fig. 10. Comparison of probability distributions: 2 GB RAM — 2 core CPU — Ubuntu
Desktop OS (Color figure online)

What really makes the difference when comparing results obtained with dif-
ferent hardware resources are the actual probability density functions (briefly
reported as distribution in the text, with some ambiguity). Indeed, when 500
MB RAM and 1 core are used, the obtained empirical distribution is quite far
from being Gaussian, as the histogram bins do not appear to follow the yellow
distribution line. When resources increase (see Fig. 10), experimental distribu-
tion approaches the expected one.

In both cases, the red line, i.e. the ideal distribution, is not well achieved by
the data. This can be a problem related to the emulator itself, since it is not
dependent on the adopted hardware resources.

4 Discussion

In this paper, an analysis of the impact of variable hardware resources on the
performance of a common adopted network emulator is reported. As stated in
the introduction, we did not mean to evaluate the emulator capabilities but
their stability when different resources are available. We can affirm two main
results: in static delay case, a sensitive impact can be observed in case of very
low imposed delay (in our case, 0 ms) and with high imposed packet rates.
When delay constraints are relaxed (5 ms or 20 ms), hardware resources become
less important; in dynamic case, the emulator is capable to pretty adhere to
synthetic values of a probability distribution, but hardware limitations appear as
preeminent when the probability density function is analyzed. These results make
the emulation possible also on low power machines, if some strict constraints
can be relaxed and required high performance devices when precise and very
low delays are desired. Further analyses will take care of other quantities, such
as packet loss emulation, in variable resources scenarios.

244

D. Capriglione et al.

References

10.

11.

12.

13.

14.

15.

16.

. Ahrenholz, J., Danilov, C., Henderson, T.R., Kim, J.H.: Core: a real-time network

emulator. In: 2008 IEEE MILCOM, pp. 1-7, November 2008

Angrisani, L., Capriglione, D., Cerro, G., Ferrigno, L., Miele, G.: Experimen-
tal analysis of software network emulators in packet delay emulation. In: 2017
IEEE International Workshop on Measurement and Networking (M&N), pp. 1-6,
September 2017. https://doi.org/10.1109/IWMN.2017.8078382

Beshay, J.D., Francini, A., Prakash, R.: On the fidelity of single-machine network
emulation in Linux. In: 2015 IEEE 23rd International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, pp. 19-22,
October 2015. https://doi.org/10.1109/MASCOTS.2015.18

Botta, A., Dainotti, A., Pescape, A.: A tool for the generation of realistic network
workload for emerging networking scenarios. Comput. Networks 56(15), 3531-3547
(2012)

Capriglione, D., Cerro, G., Ferrigno, L., Miele, G.: How to quantify trust in your
network emulator? In: Chowdhury, K.R., Di Felice, M., Matta, I., Sheng, B. (eds.)
WWIC 2018. LNCS, vol. 10866, pp. 171-182. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02931-9-14

Coter, S., King, G.: Oracle VM 3: Building a Demo Environment using Oracle VM
VirtualBox. Technical report, Oracle Corporation (04 2016)

Deng, B., Wang, X., Jiang, M., Liu, Y.: An emulation architecture for the inte-
gration of virtual and physical networks. In: 2017 8th IEEE ICSESS, pp. 399405,
November 2017

Edwards Sr, T.S.: Systems and methods for improving virtual machine perfor-
mance, US Patent 8,332,571, December 2012

Ferenc, G.Z., Dinic, M.D., Markovic, A.l., Jovanovic, P.D.: UHI boot protocol
implementation in android emulator for MIPS architecture. In: 2017 25th Telecom-
munication Forum (TELFOR), pp. 1-4, November 2017

Hemminger, S., et al.: Network emulation with NetEM. In: Linux Conf Au, pp.
18-23 (2005)

Jurgelionis, A., et al.: An empirical study of NetEm network emulation function-
alities. In: 2011 Proceedings of ICCCN, pp. 1-6, July 2011

Kousiouris, G., Cucinotta, T., Varvarigou, T.: The effects of scheduling, workload
type and consolidation scenarios on virtual machine performance and their predic-
tion through optimized artificial neural networks. J. Syst. Softw. 84(8), 1270-1291
(2011)

Kretsis, A., Corazza, L., Christodoulopoulos, K., Kokkinos, P., Varvarigos, E.: An
emulation environment for SDN enabled flexible IP /optical networks. In: 2016 18th
ICTON, pp. 1-4, July 2016

Masruroh, S.U., Fiade, A., Iman, M.F., Amelia: Performance evaluation of routing
protocol RIPv2, OSPF, EIGRP with BGP. In: 2017 International Conference on
Innovative and Creative Information Technology (ICITech), pp. 1-7, November
2017

Nakauchi, K., Kobayashi, K.: Studying congestion control with explicit router feed-
back using hardware-based network emulator. In: Proceedings of PFLDNET 2005,
Lyon, France (2005)

Sarkar, N.I., Halim, S.A.: A review of simulation of telecommunication networks:
simulators, classification, comparison, methodologies, and recommendations. J. Sel.
Areas Telecommun. (JSAT), 10-17 (2011)

https://doi.org/10.1109/IWMN.2017.8078382
https://doi.org/10.1109/MASCOTS.2015.18
https://doi.org/10.1007/978-3-030-02931-9_14
https://doi.org/10.1007/978-3-030-02931-9_14

The Effect of Hardware/Software Features 245

17. Tickoo, O., Iyer, R., lllikkal, R., Newell, D.: Modeling virtual machine performance:

18.

challenges and approaches. ACM SIGMETRICS Perform. Eval. Rev. 37(3), 55-60
(2010)

Zheng, P., Ni, L.M.: EMPOWER: a cluster architecture supporting network emu-
lation. IEEE Trans. Parallel Distrib. Syst. 15(7), 617-629 (2004). https://doi.org/
10.1109/TPDS.2004.21

https://doi.org/10.1109/TPDS.2004.21
https://doi.org/10.1109/TPDS.2004.21

	The Effect of Hardware/Software Features on the Performance of an Open–Source Network Emulator
	1 Introduction
	2 Materials and Methods
	2.1 The Adopted Network Emulator
	2.2 The Virtualized System
	2.3 The Measurement Procedure
	2.4 Performed Test Conditions

	3 Results
	3.1 Static Delay Evaluation
	3.2 Dynamic Delay Evaluation

	4 Discussion
	References

