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Abstract. We present an analysis of the robustness of deep LSTM
networks for freehand gesture recognition against temporal shifts of
the performed gesture w.r.t. the “temporal receptive field”. Such shifts
inevitably occur when not only the gesture type but also its onset needs
to be determined from sensor data, and it is imperative that recognizers
be as invariant as possible to this effect which we term gesture onset
variability. Based on a real-world hand gesture classification task we find
that LSTM networks are very sensitive to this type of variability, which
we confirm by creating a synthetic sequence classification task of similar
dimensionality. Lastly, we show that including gesture onset variability
in the training data by a simple data augmentation strategy leads to
a high robustness against all tested effects, so we conclude that LSTM
networks can be considered good candidates for real-time and real-world
gesture recognition.
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1 Introduction

This article is in the context of freehand gesture recognition using 3D sensors
and Long Short-Term Memory (LSTM) networks. We present a case study on
the robustness properties of such a system, notably w.r.t. delays and variations
in gesture onset. Such effects play a strong role in real-world applications, such
as systems that allow the user to interact using dynamic freehand gestures, for
example within the scope of 3D object manipulation or augmented reality. In
this context, the time at which gestures are initiated is not known and therefore
the system needs to be able to not only recognize the gesture itself but also
its onset. This is, in some ways, analogous to visual object detection problems
where the identity as well as the location of an object needs to be estimated.

In that regard, it is very important to investigate to what extent popular
sequence recognizers like LSTM networks are capable of handling onset vari-
ations of the gestures (sequences) they are trained to recognize. This article
investigates, first of all, the “native” robustness of LSTM networks to such vari-
ations and then goes on to specifically train LSTM networks to be robust to
such variations by including them into the training data. As in visual object
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recognition data augmentation is used by simply generating new training data
that contain the undesirable variations from existing samples and training new
classifiers from these transformed data. We investigate several possible types
of onset variations and show what effect training LSTM classifiers with those
variations included has on classification accuracy.

Fig. 1. Overview of the “shifted recognizer” architecture used to recognize freehand
gestures. Exemplarily, we show an architecture using 4 recognizers that are shifted
w.r.t. each other by a time interval of Δ = T/4 frames. The temporal receptive fields
(TRFs) of each recognizer are indicated by blue bars, and each recognizer is run in a
continuous loop. A freehand gesture, indicated by a red bar, will usually fall into the
TRF of exactly one recognizer which will then hopefully report this, thus giving both
gesture type and gesture onset, the accuracy of the latter being principally determined
by Δ. (Color figure online)

2 Our Approach

For addressing the issue of recognizing gestures that can start at any given
moment in time we propose a solution analogous to object detection where N
identical gesture recognizers are run in a continuous loop in parallel. Recognizers
are trained to recognize gestures of fixed length T which determines their tem-
poral receptive field (TRF). Each recognizer is reset after a full TRF and each
receives the same frames from a 3D sensor. However, each recognizer is delayed
by Δ = T

N frames w.r.t. the other recognizers so if enough recognizers are run
in parallel it can be hoped that a gesture of length τ < T will fall fully into
the TRF of a single recognizer which will then report it. This approach, which
is visualized in Fig. 1 (where the gesture falls into the TRF of recognizer R3),
suffers from some obvious problems:

– In general, gesture onset will not coincide with the first frame of the recog-
nizer’s TRF.

– If gestures are performed without breaks between them there will be appended
or prepended frames to each elementary gesture, coming from other gestures
in a recognizers TRF.

This raises the question of how well a LSTM network is able to deal with different
onsets consisting of either random frames or frames containing parts of other
gestures. Here is where our work comes in.
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3 Related Work: RNNs and Dynamic Hand Gesture
Recognition

Recurrent Neural Networks (RNNs) are primarily used because of their abil-
ity to remember the past activities or inputs and then produce an output that
takes past inputs and states into consideration. Due to this specific property of
RNNs they are used in fields which involve temporal dependencies over several
time steps, such as gesture recognition, activity recognition or speech recogni-
tion. LSTM networks were introduced by [7] to specifically address the van-
ishing gradient problem that was complicating efficient RNN training. LSTM
networks have been used for language modelling [12], sequence generation [4],
speech recognition [6] and image captioning [8].

There are various approaches to freehand gesture recognition with LSTM
networks (of course, this kind of recognition task can also be performed with-
out LSTMs, e.g., [1,3,9,11,20]). Especially in visually defined problems where
camera images are analyzed, several authors employ LSTM networks as the
top layer of a Convolutional Neural Network (CNN), which performs the basic
image transformations that are required for sufficient invariance and robust-
ness [13,14,18]. The precise way of setting up the CNN and coupling CNN and
LSTM can of course vary considerably. In case of multiple input streams (e.g.,
camera and 3D sensors), the underlying CNN architecture can become consid-
erably more complex and offers more design choices, yet many authors still let
LSTM recognizers operate on the top layer activities of a (possibly hybrid) CNN
architecture, e.g., in [19]. Explicit extensions to the basic deep LSTM model are
proposed in [21] in the form of a convolutional LSTM architecture.

4 Methods and Data

We use two datasets in this study: a real-world freehand gesture dataset that we
recorded ourselves and a synthetic one constructed from the well-known visual
MNIST benchmark [10]. Our own freehand gesture dataset is introduced because
we find that using a single ToF-sensor to capture hand gestures for interacting
with a device (for example mobile devices or vehicles) allows for more freedom
and increased expressiveness [17]. The synthetic dataset is introduced because
the real-world gesture dataset is relatively small and we wish to exclude that
results are due to overfitting. Table 1 gives an overview over the properties of
each dataset.

4.1 Freehand Gesture Dataset

Data Acquisition. Data is collected from a DepthSense ToF sensor at a resolu-
tion of 320×160 pixels. Depth thresholding removes most of the irrelevant back-
ground information, leaving only hand and arm voxels. Principal-Component
Analysis (PCA) is utilized to crop most of the negligible arm parts. The remain-
ing part of the point cloud carries the relevant information, i.e. the shape of the
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Table 1. Properties of the two datasets used in this study. The real-world hand gesture
dataset is relatively small, which is why we decided to complement it by a large-scale
sequence classification dataset constructed from the MNIST classification benchmark.
Sequences in both datasets have a length of 40 frames and the frame dimensionalities in
both datasets are comparable (625 vs. 784). Both datasets consist of equally distributed
classes.

Dataset Training
samples

Test
samples

Frames Dimensions Classes Class
distrib.

MNIST sequences 20.000 5.000 40 784 4 Balanced

3D hand gestures 320 80 40 625 4 Balanced

hand. We record four different hand gesture types from ten different people for
our database: close hand, open hand, pinch-in and pinch-out. The latter gestures
are performed by closing/opening two fingers. For recording a single dynamic
gesture, 40 consecutive snapshots are taken from the sensor and cropped by the
aforementioned procedure. We recorded ten gesture samples per person and ges-
ture type, giving a total of 400 gestures or 100 per gesture type (class). As 40
frames per gesture are present, this sums up to a total of 16,000 sensor frames
(point clouds). Figure 2 shows the color-coded snapshot of one of the recorded
hand postures.

Fig. 2. Individual point clouds (frames) from the freehand gesture dataset after crop-
ping from the front (left) and side view (right) during a grabbing motion. Point clouds
such as these are further processed to form a 625-dimensional feature vector before
being presented to the LSTM-based gesture recognizer. (Color figure online)

Data Pre-processing. From each frame represented by a point cloud, we
extract a descriptor of fixed size (regardless of the size of the point cloud)
that can be fed to the deep LSTM recognizers [16,17]. Such descriptors need
to describe the phenomenology of hand, palm and fingers in a precise manner,
while remaining computationally feasible. In this contribution, we decided on
a representation that is largely based on surface normals. First, these normals
are computed for all points. Then, we repeatedly (5000 times) select two ran-
dom points and compute their point feature histogram (PFH) descriptor [2,15]
which yields four numbers based on the distance and the relative orientation of
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the surface normals. Each of the four numbers is coarsely quantized into five
bins, giving a total of 625 discrete possibilities and a histogram over all 5000
realizations is taken. These 625-dimensional histograms, each describing a single
point cloud, form the individual frames of the sequences we use for training and
testing deep LSTM recognizers.

Dataset Creation. The set of 400 recorded gesture samples can be described
by a three-dimensional tensor G, indexed by sequence index 0 ≤ i < 400, frame
index 0 ≤ j < 40 and histogram index 0 ≤ h < 625. A single histogram entry
accesses as Gijh. The available gesture samples are split into training and test
samples for the LSTM recognizers, the train to test ratio being 80/20.

Fig. 3. Six sample sequences from the synthetic MNIST-based dataset. Three sequences
(above) come from class 0 and three sequences (below) come from class 1. Classes 3
and 4 are not shown. Please note that sequences from the synthetic dataset have a
length of 40 frames, but only the first 15 frames are shown due to space constraints.

4.2 Synthetic Dataset

The synthetic dataset is created to be largely analogous in structure to the
freehand gesture dataset, having the same number of frames per sequence and
a similar dimensionality per frame. However, due to the synthetic nature of this
dataset, we can generate a larger amount of samples with very little effort. The
construction is straightforward: we generate four 40-element sequence templates
(as shown in Fig. 3). The sequences equate to concatenated frames from a video.
Each sequence template is described by the vectors s0 to s3, where each position
j in all vectors contains integers that indicate a randomly drawn MNIST class:
sij ∈ [0, 9]. For each sequence template sk we generate 25,000 sequences of
0 ≤ j < 40 frames each, each frame j being represented by a (flattened) randomly
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drawn MNIST sample of class skj . Thus, the synthetic data can be represented
by a three-dimensional tensor accessed by sequence index 0 ≤ i < 25, 000, frame
index 0 ≤ j < 40 and image index 0 ≤ h < 28 × 28. Again, a train/test split of
80/20 is performed subsequently.

4.3 Deep LSTM for Recognition

In our model for dealing with the video frames sequentially, we use a deep RNN
with LSTM model neurons. The LSTM term for neuron is “memory cell” and
the term for hidden layer is “memory block”. A single memory cell at time t has
a dynamic state or activity ct, whereas the vector of all activities in a memory
block is denoted ct.

Any change to the cell state is done with the help of gates: input gate it
and forget gate ft, each gate having a value between 0 and 1. The input gate
determines how much of the input is forwarded and the forget gate determines
how much of the cell’s previous state to retain. Output to subsequent layers,
denoted ht, is generated via a simple transfer function (termed output gate).

The LSTM model equations for computing activations ht of a single LSTM
layer read as follows:

it = σ (Wxixt + Whiht−1 + Wcict−1 + bi) (1)
f t = σ (Wxfxt + Whfht−1 + Wcfct−1 + bf ) (2)
ct = f tct−1 + it tanh (Wxcxt + Whcht−1 + bc) (3)
ot = σ (Wxoxt + Whoht−1 + Wcoct + bo) (4)
ht = ot tanh(ct) (5)

Equation 1 describes the calculation of the input gate. The output of the input
gate is a value between 0 and 1. Equation 2 refers to the calculation of the forget
gate. The output of the forget gate also is a value between 0 and 1. Equation 3
describes the calculation of the new cell state, replacing the old one. Equation 4
refers to the calculation of the output gate. The output of the output gate is a
value between 0 and 1. Equation 5 refers to the calculation of the hidden state or
the output of the memory block, which is the input for the next memory block.
Due to the tanh function it can output a value between −1 and 1.

We use a standard deep LSTM architecture with linear softmax readout layer
and cross-entropy loss function as outlined in [5]. Number and size of memory
blocks, which are all set to have the same number of memory cells, are denoted
(L, S). The final output of the LSTM network is produced by applying a linear
regression readout layer that transforms the states ht of the last hidden layer into
class membership estimates, using the standard softmax non-linearity leading to
positive, normalized class membership estimates.

4.4 TensorFlow Implementation

We use the TensorFlow (v1.11) implementation of a Recurrent Neural Network
with multiple LSTM cells under Python (v3.6) - mainly the classes MultiRNN-
Cell and LSTMCell, which allow to create networks of stacked LSTM cells. We
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always use the Adam optimizer included in TensorFlow for performing gradient
descent as well as a linear softmax readout layer and cross-entropy loss function.

5 Experiments

For our experiments we use a deep LSTM architecture consisting of three hidden
layers with ten LSTM cells each (L, S) = (3, 10), a fixed learning rate of ε = 0.001
and a training to test data ratio of 80/20. During a test phase we varied the
learning rate in the range of ε ∈ [0.0001, 0.1] and the amount of layers and cells
in the range of L ∈ [1, 10] and S ∈ [5, 50] and used the learning rate, amount of
hidden layers and LSTM cells for our architecture that performed best on the
test sets. Our architecture has a TRF of T = 60 frames. Since the gestures in our
database have a length of 40 frames, they can be offset by 20 frames at most.
Parameters like learning rate, number of hidden layers and amount of LSTM
cells per hidden layer need to be chosen depending on the test and training data
since in general the quality of the results can depend on the parameters.

At first, we describe two preliminary experiments to test our network and
databases, then we continue with four experiments about the robustness of
LSTM networks.

5.1 Preliminary Experiment: Ahead-of-Time Classification

Recurrent neural networks are able to estimate a class before the end of the
sequence they are currently classifying. For the use of LSTM networks in real-
world scenarios this ability can be very helpful because the network does not
have to wait until the end of the sequence to classify it. Therefore, we test the
classification accuracy for our 40-frame sequences after 0 < n ≤ 40 frames.

As can be seen in Fig. 4, the classification accuracy is only slightly below its
maximum value even for small n. This shows that our network is able to obtain
a high accuracy very early in the process of classifying a sequence. Hence, an
action can be performed according to the “guessed” classification output before
the whole gesture is processed. This allows for faster response times and offers a
significant advantage in comparison to having to wait for the whole sequence to
be processed. As expected, the results for the artificial dataset are as high as all
previous work using MNIST. This is a well-known fact since MNIST is a very
easy-to-solve benchmark even when considering only image classification instead
of sequences as we do here.

5.2 Preliminary Experiment: Feasibility of the Database

The reason for this experiment is to test if our database of hand gestures is big
enough. We use two different strategies to split our data into train and test sets:
The first strategy randomly chooses 20% of samples from the whole database
as a test set and uses the rest for training. This strategy is only used for our
experiment to show that overfitting is a problem here. As required by machine
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Fig. 4. Classification accuracy depending on the output frame used to generate the
gesture classification.

learning theory, data used for training and testing need to be independent and
identically distributed.

The second strategy chooses all the gestures from eight people for training
and all gestures from the remaining two people for testing, achieving the same
80/20 split as before. As Fig. 5 shows, there is a significant difference in accuracy
between the two strategies. Since different people perform the same gesture quite
differently the differences between the training and the test set of the second
strategy are too big to achieve better results. A bigger database with gestures
from substantially more people would be required to decrease this overfitting
behavior and train the network well enough to generalize the classification for
gestures from unfamiliar people. Comparing the results from our own database
to the artificial image dataset proves this point: The experiments with MNIST
data shows overall better results.

In a real-life scenario, the system usually would be trained with gestures from
different people than the ones using the trained system later on. Therefore, more
training data is needed for real-world applications.

5.3 Dependency of LSTM Networks on Previous States and Results

To asses whether our network needs to be reset after a TRF traversal, we con-
catenate two randomly picked gestures and feed them to our trained network.
Accuracy is measured for the classification of the second gesture after 80 frames.
For this experiment, the TRF of our network is extended to 80 frames instead
of the usual 60 frames.
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Fig. 5. Classification accuracy depending on the strategy used to split the database
into test and training sets.

Figure 6 shows that the network depends on a clean state for well recognizing
a gesture since the memory of the first gesture strongly affects the classification
of the second gesture and therefore leads to a very low classification accuracy.
Thus, we can conclude that the LSTM network has to be reset at the start of
every TRF to ensure a correct classification.

5.4 Fixed Noisy or Clean Gesture Onsets

In this experiment, we investigate the robustness of our LSTM network to gesture
shifts (onset variability) of a fixed number of frames. For this, we create new test
samples from our dataset that consist of 60 frames and contain the actual 40-
frame gesture starting at frame n. Hence, the gesture being fed to the trained
network consists of three parts which total 60 frames: x1x2x3 with 0 ≤ |x1| ≤ 20,
x2 being the actual gesture with |x2| = 40 and |x3| = 60−|x1|− |x2|. Both parts
x1 and x3 either are initialized to zero-frames or random frames picked from the
database.

Fig. 6. Classification accuracy whether only one gesture (left) is classified or the second
of two concatenated gestures is classified (right).
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Fig. 7. Classification accuracy for a fixed clean (left) or noisy (right) gesture onset of
n frames.

The results in Fig. 7 show that our network can hardly handle any amount
of random frames prior or after an actual hand gesture. In contrast to this, it is
possible for our network to work decently with fixed-time gesture onsets filled
with zero-frames but zero-frames after the actual gesture considerably influence
the accuracy.

For the MNIST dataset the results are similar. Zero-frames after the actual
sequence strongly influence the accuracy while zero-frames before the sequence
hardly do. The effect of random frames prior or after an MNIST sequence is
lower than for hand gestures but still visible.

5.5 Random Noisy or Clean Gesture Onsets

Unlike the last experiment where we used a fixed gesture onset, we now embed
each test sample into a new 60-frame sample at a random point in time. The
samples are initialized either to zero or to random frames from the database.
According to the last experiment, each gesture being fed to the trained network
also consists of three parts which total 60 frames: x1x2x3 with 0 ≤ |x1| ≤ 20
with a random length |x1| for each gesture, x2 being the actual gesture with
|x2| = 40 and |x3| = 60 − |x1| − |x2|.

As can be seen in Fig. 8, choosing a random onset for each gesture leads to
a notably decreased accuracy. Since the trained network is the same as for the
setting in the last experiment (cf. Sect. 5.4), the results for the random gesture
onset correspond to the average results from our experiments with a fixed gesture
onset.
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Fig. 8. Classification accuracy for a clean (left) or noisy (right) gesture onset of a
random amount of frames.

5.6 Random Clean Gesture Onset Included in Training and Testing

As the last three experiments show, our network has difficulties handling ges-
tures that do not start right at the beginning of the TRF but are padded with
additional frames. A possible solution to this is to train the network in such a
way that allows it to learn to ignore padding around the actual gestures. To show
the effects of this, we train our network with 60 frame gestures, compound as
described for the last two experiments: a random amount of zero-frames between
0 and 20 before the actual gesture and then filled up with zero-frames afterwards.

Figure 9 combines the results from multiple experiments: The accuracy shown
on the left is the result of a network trained and tested with just the gestures
and without any padding (cf. Sect. 5.2). This is the baseline of how good the
accuracy can be without any additional frames distracting from the gesture.
The accuracy shown in the middle is the result of a network trained with just
the gestures and tested on gestures with a clean random onset (cf. Sect. 5.5).
And the accuracy on the right is the result on a network trained and tested on
gestures with a clean random onset.

As can be seen, the accuracy can be considerably increased by training the
network with padded gestures. Then, our network is able to ignore zero-frames
before and after the actual gesture to some extent. The effect can be improved
by training the network with more variations of the same gesture instead of just
one random padding for each gesture as done in our experiment.

6 Discussion and Conclusion

This article investigates robustness properties of LSTMs in the context of
sequence classification in general and hand gesture recognition in particular.
Our main findings are twofold:
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Fig. 9. Classification accuracy for gestures with no padding at all (left) and for gestures
with a clean random onset - trained with just the gestures (mid) or with a clean random
onset (right).

LSTMs Are Vulnerable to Sequence Onset Variability. First of all, LSTM
networks are very sensitive to variability in sequence onset (of which gesture
onset is a special case). This has not been empirically studied before, which is
why we consider these insights highly relevant for applied settings. The generality
and credibility of our results comes from using two sequence learning tasks that
derive from very different domains for this investigation.

Robustness Can Be Achieved by Data Augmentation. Secondly, we find
that LSTMs can be made very robust against sequence onset variability if this
variability is incorporated into the training data by data augmentation strategies.
This is particularly straightforward for sequences as the type of variability can be
reduced to the maximal delay of sequence onset that a LSTM recognizer should
be able to process, which mainly depends on the number of parallel recognizers
we can run, see Fig. 1. In other words, we need to first think about robustness
properties and then actively include them in the training data.

Conclusion and Future Work. We find the problem of real-world LSTM
sequence recognition to be remarkably analogous to training visual sliding-
window object detectors, where similar data augmentation strategies must be
employed to make detectors robust against small shifts in object position. Data
augmentation works for LSTM networks which have, after all, a dynamic inter-
nal structure which is potentially much more complex than that of feed-forward
CNN models. Further investigations on real-world gesture and activity recogni-
tion can build on this insight in order to implement robust real-world sequence
recognition. In addition, a comparison to other sequence classification models
should be done to further investigate the applicability of the proposed system.
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