
Hyper-spherical Reservoirs for Echo
State Networks

Pietro Verzelli1(B), Cesare Alippi1,2, and Lorenzo Livi3,4

1 Faculty of Informatics, Università della Svizzera Italiana,
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Abstract. In this paper, we propose a model of ESNs that eliminates
critical dependence on hyper-parameters, resulting in networks that
provably cannot enter a chaotic regime and, at the same time, denotes
nonlinear behaviour in phase space characterised by a large memory of
past inputs, comparable to the one of linear networks. Our contribution
is supported by experiments corroborating our theoretical findings, show-
ing that the proposed model displays dynamics that are rich-enough to
approximate many common nonlinear systems used for benchmarking.
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Although the use of Recurrent Neural Networks (RNNs) in machine learning
is boosting, also as effective building blocks for deep learning architectures, a
comprehensive understanding of their working principles is still missing [4,26].
Of particular relevance are Echo State Networks (ESNs), introduced by Jaeger
[13] and independently by Maass et al. [16] under the name of Liquid State
Machine (LSM), which emerge from RNNs due to their training simplicity. The
basic idea behind ESNs is to create a randomly connected recurrent network,
called reservoir, and feed it with a signal so that the network will encode the
underlying dynamics in its internal states. The desired – task dependent – output
is then generated by a readout layer (usually linear) trained to match the states
with the desired outputs. Despite the simplified training protocol, ESNs are
universal function approximators [10] and have shown to be effective in many
relevant tasks [2,3,7,19–22].

These networks are known to be sensitive to the setting of hyper-parameters
like the Spectral Radius (SR), the input scaling and the sparseness degree [13],
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which critically affect their behaviour and, hence, the performance at task. Fine
tuning of hyper-parameters requires cross-validation or ad-hoc criteria for select-
ing the best-performing configuration. Experimental evidence and some results
from the theory show that ESNs performance is usually maximised in correspon-
dence of a very narrow region in hyper-parameter space called Edge of Chaos
(EoC) [1,6,14,15,23–25,30]. However, we comment that beyond such a region
ESNs behave chaotically, resulting in useless and unreliable computations. At
the same time, it is everything but trivial configuring the hyperparameters to lie
on the EoC still granting a non-chaotic behaviour. A very important property
for ESNs is the Echo State Property (ESP), which basically asserts that their
behaviour should depend on the signal driving the network only, regardless of
its initial conditions [32]. Despite being at the foundation of theoretical results
[10], the ESP in its original formulation raises some issues, mainly because it
does not account for multi-stability and is not tightly linked with properties of
the specific input signal driving the network [17,31,32].

In this context, the analysis of the memory capacity (as measured by the
ability of the network to reconstruct or remember past inputs) of input-driven
systems plays a fundamental role in the study of ESNs [8,9,12,27]. In particu-
lar, it is known that ESNs are characterized by a memory–nonlinearity trade-
off [5,11,28], in the sense that introducing nonlinear dynamics in the network
degrades memory capacity. Moreover, it has been recently shown that optimizing
memory capacity does not necessarily lead to networks with higher prediction
performance [18].

In a recent paper [29], we proposed an ESN model that eliminates criti-
cal dependence on hyper-parameters, resulting in models that cannot enter a
chaotic regime. In addition to this major outcome, we showed that such net-
works denote nonlinear behaviour in phase space characterised by a large mem-
ory of past inputs (see Fig. 1): the proposed model generates dynamics that are
rich-enough to approximate nonlinear systems typically used as benchmarks.
Our contribution was based on a nonlinear activation function that normalizes
neuron activations on a hyper-sphere. We showed that the spectral radius of
the reservoir, which is the most important hyper-parameter for controlling the
ESN behaviour, plays a marginal role in influencing the stability of the proposed
model, although it has an impact on the capability of the network to memorize
past inputs. Our theoretical analysis demonstrates that this property derives
from the impossibility for the system to display a chaotic behaviour: in fact,
the maximum Lyapunov exponent is always null. An interpretation of this very
important outcome is that the network always operates on the EoC, regardless
of the setting chosen for its hyper-parameters.
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Fig. 1. Results of the experiments on memory for different benchmarks. Panel (a)
displays the white noise memorization task, (b) the MSO, (c) the x-coordinate of the
Lorenz system, (d) the Mackey-Glass series and (e) the Santa Fe laser dataset. As
described in the legend (f), different line types account for results obtained on training
and test data. The shaded areas represent the standard deviations, computed using 20
different realization for each point.
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16. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput. 14(11), 2531–2560 (2002). https://doi.org/10.1162/089976602760407955

17. Manjunath, G., Jaeger, H.: Echo state property linked to an input: exploring a
fundamental characteristic of recurrent neural networks. Neural Comput. 25(3),
671–696 (2013). https://doi.org/10.1162/NECO a 00411

18. Marzen, S.: Difference between memory and prediction in linear recurrent networks.
Phys. Rev. E 96(3), 032308 (2017). https://doi.org/10.1103/PhysRevE.96.032308

19. Palumbo, F., Gallicchio, C., Pucci, R., Micheli, A.: Human activity recognition
using multisensor data fusion based on reservoir computing. J. Ambient Intell.
Smart Environ. 8(2), 87–107 (2016)

20. Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: Model-free prediction of large
spatiotemporally chaotic systems from data: a reservoir computing approach. Phys.
Rev. Lett. 120(2), 024102 (2018)

https://doi.org/10.1016/j.neunet.2015.08.010
https://doi.org/10.1007/s12559-019-09634-2
https://doi.org/10.1007/s12559-019-09634-2
https://doi.org/10.1038/srep00514
https://doi.org/10.1038/srep00514
http://arxiv.org/abs/1811.10892
http://arxiv.org/abs/1812.11527
https://doi.org/10.1073/pnas.0804451105
https://doi.org/10.1073/pnas.0804451105
http://arxiv.org/abs/1604.06929
https://doi.org/10.1016/j.neunet.2018.08.025
https://doi.org/10.1038/s41598-017-10257-6
https://doi.org/10.1038/s41598-017-10257-6
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1109/TNNLS.2016.2644268
https://doi.org/10.1109/TNNLS.2016.2644268
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/NECO_a_00411
https://doi.org/10.1103/PhysRevE.96.032308


Hyper-spherical Reservoirs for Echo State Networks 93

21. Pathak, J., Lu, Z., Hunt, B.R., Girvan, M., Ott, E.: Using machine learning to repli-
cate chaotic attractors and calculate Lyapunov exponents from data. Chaos: Inter-
disc. J. Nonlinear Sci. 27(12), 121102 (2017). https://doi.org/10.1063/1.5010300

22. Pathak, J., et al.: Hybrid forecasting of chaotic processes: using machine learning
in conjunction with a knowledge-based model. Chaos: Interdisc. J. Nonlinear Sci.
28(4), 041101 (2018). https://doi.org/10.1063/1.5028373

23. Rajan, K., Abbott, L.F., Sompolinsky, H.: Stimulus-dependent suppression of chaos
in recurrent neural networks. Phys. Rev. E 82(1), 011903 (2010). https://doi.org/
10.1103/PhysRevE.82.011903

24. Rivkind, A., Barak, O.: Local dynamics in trained recurrent neural networks. Phys.
Rev. Lett. 118, 258101 (2017). https://doi.org/10.1103/PhysRevLett.118.258101

25. Sompolinsky, H., Crisanti, A., Sommers, H.J.: Chaos in random neural networks.
Phys. Rev. Lett. 61(3), 259 (1988). https://doi.org/10.1103/PhysRevLett.61.259

26. Sussillo, D., Barak, O.: Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural Comput. 25(3), 626–649 (2013).
https://doi.org/10.1162/NECO a 00409
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