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Abstract. Reservoir Computing (RC) is a high-speed machine learn-
ing framework for temporal data processing. Especially, the Echo State
Network (ESN), which is one of the RC models, has been successfully
applied to many temporal tasks. However, its prediction ability depends
heavily on hyperparameter values. In this work, we propose a new ESN
training method inspired by Generative Adversarial Networks (GANs).
Our method intends to minimize the difference between the distribu-
tion of teacher data and that of generated samples, and therefore we
can generate samples that reflect the dynamics in the teacher data. We
apply a feedforward neural network as a discriminator so that we don’t
need to use backpropagation through time in training. We justify the
effectiveness of the proposed method in time series prediction tasks.
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1 Introduction

Reservoir Computing (RC) has been widely researched as a fast machine learning
method. RC is the Recurrent Neural Network (RNN) based framework that
only trains the linear readout layer and fixes parameters in other layers before
training. RC shows excellent performance in various benchmark tasks despite
its simple training algorithm. Moreover, another major advantage is that RC is
suitable for hardware implementation with a wide variety of physical systems
[8].

Especially, Echo State Networks (ESNs) were initially proposed by Jaeger
[2] and it was shown that they were useful in nonlinear time series prediction
[4]. The underlying principle is that a well-trained ESN is able to reproduce the
attractor of given nonlinear dynamical systems. However, the performance of
the ESNs is significantly sensitive to the settings of hyperparameters such as the
input scaling and the spectral radius of the reservoir connection weight matrix.
In the case of physical implementation, it is hard to change and adjust such
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hyperparameters. Therefore, a reduction of the hyperparameter sensitivity only
by changing a training method is regarded as an important research topic.

In this work, we incorporate the concept of Generative Adversarial Networks
(GANs) [1] into ESNs to solve the abovementioned problem. A GAN consists
of two networks, a discriminator to distinguish between teacher data and gener-
ated samples and a generator to deceive the discriminator. Original GANs can
minimize the Jensen-Shannon divergence between the real data distribution and
the generated one instead of minimizing the squared error. In our method, a
generator is an ESN and a Deep Neural Network (DNN) based discriminator
distinguishes between the real time series data and those generated by the ESN.
Then we use the weighted sum of the conventional squared error and the adver-
sarial loss. By introducing the adversarial loss, it is expected that the ESN can
generate samples which reflect the dynamics underlying the given data better
than the conventional ESN training based on the least squared error.

There are three major advantages in the proposed method. First, the pre-
diction accuracy can be improved even when the settings of hyperparameters
in the ESN are inappropriate. Only by introducing the adversarial loss in the
training step, we can construct a high-quality predictor with ‘bad’ reservoirs.
Second, the computational cost for training in our method is much smaller than
that of RNNs. We use simple feedforward neural networks as a discriminator,
instead of temporal neural networks like RNNs, to avoid using computationally
expensive backpropagation through time (BPTT) [9] in training. Simultaneously,
we introduce the concept of time-delay embeddings to construct the input to a
discriminator. Therefore, we can consider time-dependent features in a discrim-
inator without BPTT. Third, trained parameters in the ESN are only those in
the readout layer, and therefore our method can be applied to other types of
reservoir models and physical reservoirs.

We demonstrate the effectiveness of our method for benchmark nonlinear
time series prediction tasks. Especially, when the settings of hyperparameters
are not so appropriate, our training method outperforms the conventional one.

2 Methods

2.1 Echo State Network

The ESN uses an RNN-based reservoir composed of discrete-time artificial neu-
rons. The time evolution of the reservoir state vector is described as follows:

r(t + Δt) = tanh [Ar(t) + W inu(t)], ŷ(t) = W outr(t), (1)

where r(t) denotes the state vector of reservoir units, W in is the weight matrix
of the input layer, and A is the reservoir connection weight matrix. The readout
layer gives the linear combination of the states of reservoir neurons with W out,
which denotes the weight matrix of the readout layer.
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In the training period −T ≤ t < 0, the readout weight is adjusted so as to
minimize the squared error between the predicted value ŷ(t) and the teacher
output y(t) as follows:

Ŵ out = argmin
W out

∑

−T≤t<0

||W outr(t) − y(t)||2 + β||W out||2, (2)

where β > 0 is the Tikhonov regularization parameter to avoid overfitting.

Fig. 1. Architecture of the ESN with adversarial training

2.2 Echo State Network with Adversarial Training

In our method, adversarial training [6] is used to optimize the readout weight in
the ESN. Figure 1 shows the architecture of the proposed model. The discrimina-
tor D is trained such that the output represents the probability that the input is
drawn from teacher data. u(t) and ŷ(t) are embedded into the same time-delay
coordinates, and then the concatenation of them are fed to the discriminator as

D

([
u(t), · · · ,u(t + (n − 1)τ)
ŷ(t), · · · , ŷ(t + (n − 1)τ)

])
:= D(u , ŷ , t), (3)

where n and τ represent the dimension and time delay of the time-delay coordi-
nates, respectively.

We define the discriminator loss as follows:

LD = E [− log (1 − D(u , ŷ , t))] + E [− log (D(u ,y , t))] . (4)

Then we define the generator loss as follows:

LG = wDLADV
G + (1 − wD)

ELADV

ELSE

LSE
G , (5)

LADV
G = E [− log (D(u , ŷ , t))] , LSE

G =
∑

−T≤t<0

||ŷ(t) − y(t)||2, (6)
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where ELADV
and ELSE

denote the expectation values of LADV
G and LSE

G , respec-
tively. wD is the weight of the adversarial loss in the generator loss. The dis-
criminator loss LD and the generator loss LG are minimized alternately. Note
that only W out is optimized in the training of the generator. The procedure is
formally presented in Algorithm 1.

3 Results

We demonstrate the effectiveness of the proposed method in prediction tasks
with two benchmark time series, NARMA10 and the Lorenz system. In these
two experiments, we set the reservoir size at 100 and the scarcity of the connec-
tion weight matrix at 0.95. Before adversarial training, we pretrained the output
weight in the ESN using Tikhonov regularization with β = 10−4. The architec-
ture of the discriminator model is a feedforward network that consists of four
hidden layers of 32 ReLU units and we set n = 20.

Algorithm 1. Stochastic gradient descent adversarial training of the ESN. We
used kG = 2 in our experiments.
Require: n, τ : the parameter of time-delay embeddings, wD: the weight of the adver-

sarial loss, m: the batch size, kG: the number of generator iterations per the dis-
criminator iteration.

1: Pretrain the readout weight W out using conventional least squares regression.
2: for number of training iterations do
3: Sample a batch t(1), · · · , t(m) from −T ≤ t < 0.
4: Update the discriminator with the stochastic gradient method:

∇θD

1

m

m∑

i=1

[
− log(1 − D(u, ŷ, t(i))) − log D(u,y, t(i))

]
. (7)

5: Calculate ELADV and ELSE .
6: for kG steps do
7: Sample a batch t(1), · · · , t(m) from −T ≤ t < 0.
8: Update W out with the stochastic gradient descent method:

∇W out

(
ωD

m

m∑

i=1

[
− log D(u, ŷ, t(i))

]
+ (1 − ωD)

ELADV

ELSE

LSE
G

)
. (8)

9: end for
10: end for

3.1 NARMA10

The NARMA10 task [3] is the identification of the order-10 discrete-time non-
linear dynamical system. We used −900 ≤ t < 0 for training and 0 ≤ t < 100 for
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testing. In this task, we set the input scaling of the ESN at 1.0. Time delay in
embeddings is τ = 1. We conducted experiments for two different cases, where
the spectral radius is good (ρ = 0.8) and bad (ρ = 0.4).

Fig. 2. RMSEs for different values of wD in the NARMA10 task. The spectral radius
of A is set at 0.8 (left) and 0.4 (right). Block dotted lines are RMSEs in the ESN with
the least squared method. The error bars represent normalized errors.

Figure 2 shows the root mean squared error (RMSE) for the NARMA10 task,
plotted against the value of wD. In the case with ρ = 0.8, we can see that the
prediction performance is improved by the introduction of the adversarial loss
in some settings. In addition, in the case with ρ = 0.4, the prediction accuracy
for 0.05 ≤ wD ≤ 0.6 is lower than the case when we use only the squared
error. From this result, we can conclude that the adversarial loss in the ESN
training improves the prediction accuracy, especially when the settings of the
hyperparameter in the ESN are not so good.

3.2 Lorenz Systems

The Lorenz system [5] is a continuous-time nonlinear dynamical system which
shows chaotic bahavior and is described by the following differential equations:

dx

dt
= 10(y − x),

dy

dt
= x(28 − y) − y,

dz

dt
= xy − 8

3
z. (9)

In this experiment, we predict the first variable x(t) to evaluate the performance
of the proposed model. We used −100 ≤ t < 0 for training and 0 ≤ t < 25 for
testing and set Δt = 0.02. The input scaling of the ESN is 0.1 and time delay
τ is 0.08. We conducted an experiment for a bad parameter setting where the
spectral radius ρ = 0.4.

Figure 3 shows the RMSE in this task, plotted against the value of wD. The
proposed method improves the prediction performance compared with the ESN
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Fig. 3. RMSEs for different values of wD in the prediction of the first variable of
the Lorenz system. Block dotted lines are RMSEs in the ESN with the least squared
method. The error bars represent normalized errors.

with the conventional training in a wide range of wD (the optimal setting of wD

appears 0.25). Our proposed method uses the concept of time-delay embeddings,
and thus we can conclude that the generator can reflect the overall dynamics
even when we can observe only one variable on the basis of Takens Embedding
Theorem [7].

4 Conclusion

In this work, we proposed a new ESN training method using adversarial training
where the loss function is described as the weighted sum of the conventional
squared error and the adversarial loss. Then we demonstrated that the proposed
method can improve the prediction accuracy in nonlinear time series prediction
tasks. In future work, we will test another model as a discriminator and check
the effectiveness for other tasks.
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