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Abstract. Deep Echo State Networks (DeepESNs) recently extended
the applicability of Reservoir Computing (RC) methods towards the field
of deep learning. In this paper we study the impact of constrained reser-
voir topologies in the architectural design of deep reservoirs, through
numerical experiments on several RC benchmarks. The major outcome
of our investigation is to show the remarkable effect, in terms of predic-
tive performance gain, achieved by the synergy between a deep reservoir
construction and a structured organization of the recurrent units in each
layer. Our results also indicate that a particularly advantageous architec-
tural setting is obtained in correspondence of DeepESNs where reservoir
units are structured according to a permutation recurrent matrix.

Keywords: Deep Echo State Networks · Deep Reservoir Computing ·
Reservoir topology

1 Introduction

Reservoir Computing (RC) [21,28] delineates a class of Recurrent Neural Net-
work (RNN) models based on the idea of separating the non-linear dynamical
component of the network, i.e. the recurrent hidden reservoir layer, from the
feed-forward linear readout layer. The reservoir is initialized randomly under
stability constraints and then is left untrained, leaving the burden of training
to fall only on the readout part of the architecture, hence resulting in a strik-
ingly efficient approach to RNN design. In this context, the Echo State Network
(ESN) model [16,18] is a popular realization of the RC paradigm based on imple-
menting the reservoir in terms of a discrete-time non-linear dynamical system.
Being featured by untrained dynamics, ESNs represent an important tool to
understand and characterize the operation and potentialities of recurrent neural
models. Shaping the reservoir architecture in order to achieve desired properties
and optimized performance in applications, even in the absence of training of
the recurrent connections, is one of the key goals of RC research [9].

In this paper we bring together two major trends in the area of ESN archi-
tectural studies. The first one focuses on the pattern of connectivity among the
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recurrent units. In this case, the aim is to constrain the random reservoir initial-
ization process towards topologies that determine specific algebraic properties of
the resulting recurrent weight matrices. A relevant class of reservoir variants in
this regard is given by ESNs with orthogonal recurrent matrices [15,30], which
were shown to lead to improved performance with respect to random reservoirs
both in terms of memorization skills and in terms of predictive performance on
non-linear tasks. In particular, reservoirs whose structure is based on permu-
tation matrices represent particularly appealing instances of orthogonal ESNs
[15,26], entailing a simple and very sparse pattern of connectivity among the
recurrent units. Other relevant architectural variants are given by reservoirs
structured according to a ring topology or to form a chain of units [24,26]. The
second major line of research that we consider regards the construction of hierar-
chically structured reservoir models. While initial studies in this context focused
on composing multiple ESN modules to form ad-hoc architectures [19,27], recent
works started analyzing the effects of stacking multiple untrained reservoir layers
with the introduction of the DeepESN model [8]. On the one hand, the anal-
ysis of DeepESN dynamics contributes to uncover the intrinsic computational
properties of deep neural networks in the temporal domain [8,13]. On the other
hand, a proper architectural design of deep reservoirs might have a huge impact
in real-world applications [12], enabling effective multiple time-scales processing
and at the same time preserving the training efficiency typical of RC models.

In this paper we analyze the impact on the predictive performance given
by a constrained reservoir topology in DeepESNs. Specifically, we consider deep
architectures in which the individual reservoir layers are implemented based on
permutation matrices, as well as on ring and on chain topologies. Our study is
conducted in comparison to shallow ESN counterparts through numerical exper-
iments on several benchmarks in the RC area.

The rest of this paper is structured as follows. The DeepESN model is intro-
duced in Sect. 2, while the investigated reservoir topologies are described in
Sect. 3. The experimental analysis is reported in Sect. 4. Finally, Sect. 5 draws
conclusions and delineates future research directions.

2 Deep Echo State Networks

A DeepESN is an RC model in which the reservoir part is organized into a
stacked composition of multiple untrained recurrent hidden layers. The external
input is propagated only to the first reservoir layer, while each successive level
in the deep architecture is fed by the output of the previous one, as graphically
illustrated in Fig. 1.

To fix our notation, we use L to indicate the number of layers in the deep
reservoir, while NU and NY respectively denote the sizes of input and output
spaces. For the sake of simplicity in the presentation of the DeepESN model,
here we make the assumption that all the reservoir layers are featured by the
same number of units, indicated by NR. The operation of each reservoir layer
can be described in terms of a discrete-time non-linear dynamical system, whose
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Fig. 1. Hierarchical reservoir architecture in a DeepESN.

state update equation is given in the form of an iterated mapping. In particular,
at time-step t, the state of the first layer, i.e. x(1)(t) ∈ R

NR , is computed as
follows:

x(1)(t) = tanh(Winu(t) + Ŵ(1)x(1)(t − 1)), (1)

while the state of each successive layer l > 1, i.e. x(l)(t) ∈ R
NR , is given by:

x(l)(t) = tanh(W(l)x(l−1)(t) + Ŵ(l)x(l)(t − 1)). (2)

Here, tanh indicates the element-wise application of the hyperbolic tangent non-
linearity, u(t) ∈ R

NU represents the external input at time-step t, while Win,
W(l) and Ŵ(l) respectively denote the input weight matrix (that modulates the
external input stimulation to the first layer), the inter-layer weight matrix for
layer l (that modulates the strength of the connections from layer l − 1 to layer
l), and the recurrent reservoir weight matrix for layer l. In both the above Eqs. 1
and 2 we omitted the bias terms for the ease of notation. The interested reader
can find in [8] a more detailed description of the deep reservoir equations, framed
in the more general context of leaky integrator reservoir units. In order to set up
initial conditions for the state update Eqs. 1 and 2, at time-step 0 all reservoir
layers are set to a null state, i.e. x(l)(0) = 0 for all l = 1, . . . , L. Given this
framework, it is worth noticing that a standard shallow ESN model can be seen
as a special case of DeepESN in which a single reservoir layer is considered, i.e.
L = 1.

As in standard RC approaches, the parameters of the entire reservoir compo-
nent, i.e. the elements in all the weight matrices in Eqs. 1 and 2, are left untrained
after initialization subject to stability constraints. These are required to avoid
the system dynamics to fall into unstable regimes, which would make them
unsuitable for robust processing of time-series data. In the context of ESNs, the
analysis of asymptotic stability is usually described in terms of the Echo State
Property (ESP) [16,21], providing simple algebraic conditions for the initializa-
tion of reservoir weight matrices that have been recently extended to cope with
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the case of deep reservoirs in [6]. Under a practical view-point, the analysis in
[6] suggests to carefully control the spectral radius of all the reservoir weight
matrices in the deep reservoir. In this paper, we use ρ(l) to denote the spectral
radius in layer l, i.e. the largest among the absolute values of the eigenvalues
of Ŵ(l). A simple initialization procedure for the reservoir of a DeepESN then
consists in choosing the elements in Ŵ(l) randomly from a uniform distribution
on [−1, 1], subsequently re-scaling them to achieve desired values of ρ(l), typ-
ically not above unity. Similarly, the elements in Win and those in W(l) (for
l > 1) are initialized randomly from a uniform distribution on [−1, 1], and then
are re-scaled to control the input scaling hyper-parameter ωin = ‖Win‖2, and
the set of inter-layer scaling hyper-parameters ω

(l)
il = ‖W(l)‖2.

The output of the DeepESN is computed by a simple readout tool, which
linearly combines the reservoir representations developed in all the layers of the
deep architecture. In formulas, the output at time-step t, denoted as y(t) ∈ R

NY ,
is computed by the following equation:

y(t) = Wout [x(1)(t); . . . ;x(L)(t)], (3)

where Wout is the output weight matrix, and [x(1)(t); . . . ;x(L)(t)] represents
the global deep reservoir state at time-step t, expressed as the concatenation
of all the states in the architecture. The elements in Wout represent the only
learnable weights of the DeepESN, and are typically adjusted to fit a training
set by exploiting non-iterative training algorithms as in the case of standard
RC models [21]. Notice that, although different patterns of reservoir-to-readout
connectivity are possible [23], the one employed here, where all reservoir layers
are used to feed the readout, has the advantage to allow the training algorithms
to modulate and exploit differently the variety of representations provided by
the different levels in the deep architecture.

A more comprehensive description of the characteristics and advantages of
the DeepESN approach can be found in [7], while a constantly updated overview
on the advancements achieved in this research field is given in [10]. To date,
software implementations of the DeepESN model are made publicly available as
libraries for Python1, Matlab2 and Octave3.

3 Reservoir Topology

We consider DeepESN architectural variants where the recurrent weight matrix
in each layer l, i.e. Ŵ(l), is characterized by a specific structure, according to
the topologies described in the following. The resulting patterns of reservoir
connectivity are graphically exemplified in Fig. 2.

Sparse: Each reservoir unit is randomly connected to a subset of the others,
determining a sparse recurrent matrix Ŵ(l) (see Fig. 2(a)). This corresponds

1 https://github.com/lucapedrelli/DeepESN.
2 https://it.mathworks.com/matlabcentral/fileexchange/69402-deepesn.
3 https://github.com/gallicch/DeepESN octave.

https://github.com/lucapedrelli/DeepESN
https://it.mathworks.com/matlabcentral/fileexchange/69402-deepesn
https://github.com/gallicch/DeepESN_octave
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Fig. 2. Reservoir topologies of DeepESN layers.

to a common setting used in RC practice and serves here as baseline for our
analysis.

Permutation: The structure of the recurrence matrix Ŵ(l) is given by a per-
mutation matrix P, i.e. we have:

Ŵ(l) = λP, (4)

where P is obtained by randomly permuting the columns of the identity
matrix, and λ is a multiplicative constant that specifies the value of the non-
zero recurrent weights. In this case, the spectral radius of Ŵ(l) is determined
by the value of λ, i.e. ρ(l) = λ. The permutation topology implies that each
row and each column of the recurrence matrix have exactly one non-zero ele-
ment, resulting into a reservoir architecture that presents a variable number
of disjoint cyclic structures, as graphically exemplified in Fig. 2(b). The levels
in the deep reservoir architecture are allowed to employ different permuta-
tions, i.e. the number of cycles in each reservoir layer can be different.
In the context of shallow ESNs, this kind of topology has been empirically
studied in [2], where it was shown to achieve good memorization skills at
the same time improving the performance of randomly initialized reservoirs
in tasks involving non-linear mappings. Interestingly, the permutation topol-
ogy has been investigated in [15] as a way to implement orthogonal reservoir
matrix structures, under the name of Critical ESNs.

Ring: The reservoir units are organized to form a single ring, as shown in
Fig. 2(c). Accordingly, the recurrent weight matrix Ŵ(l) is expressed as:

Ŵ(l) = λ

⎡
⎢⎢⎢⎣

0 0 . . . 1
1 0 . . . 0
...

. . . . . .
...

0 . . . 1 0

⎤
⎥⎥⎥⎦ , (5)
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where λ is the value of non-zero recurrent weights, and determines the spectral
radius of Ŵ(l), i.e. ρ(l) = λ. The ring topology can be easily seen as a special
case of the permutation topology, where the pattern of reservoir connectivity
is ruled by the specific permutation matrix in Eq. 5, and the reservoir units
are all part of the same cyclic structure.
Reservoirs following this architectural organization have been subject of sev-
eral studies in literature on shallow RC. Notable instances in this regard are
given by the work in [26], in which the ring topology is studied in the context
of orthogonal reservoir structures, and by the work in [24], where the study
is carried out under the perspective of architectural design simplification for
minimum complexity ESN construction. One interesting outcome of previ-
ous analysis on the ring topology is that, compared to randomly initialized
reservoirs, it shows superior memory capacity that, at least in the linear case,
approaches the optimal value [24]. While this optimal memory characteriza-
tion has been extensively analyzed in literature for the more general class of
orthogonal recurrent weight matrices (see e.g. [3,17,30]), the ring topology
presents the advantage of a strikingly simple (and sparse) dynamical network
construction.

Chain: The recurrent units are arranged in a pipeline, where each unit - except
for the first one - receives in input the activation of the previous one, forming
a chain as in the example in Fig. 2(d). The only non-zero elements in Ŵ(l)

are located in the lower sub-diagonal, i.e. we have:

Ŵ(l) = λ

⎡
⎢⎢⎢⎣

0 0 . . . 0
1 0 . . . 0
...

. . . . . .
...

0 . . . 1 0

⎤
⎥⎥⎥⎦ , (6)

where as in previous cases λ identifies the value of non-zero weights. Although
in this case Ŵ(l) is nilpotent and hence its spectral radius is always 0, we
still operate on λ to control the magnitude of recurrent weights. As such,
with a slight abuse of notation, also in this case we set ρ(l) = λ. Overall, the
chain topology results in a particularly simple design strategy that, from the
architectural perspective, applies a further simplification to the ring topology
by removing one of the connections between the internal units.
Literature works on shallow ESN models pointed out the merits of reservoir
organizations based on a chain topology (also called delay-line reservoirs), as
a very simple approach to the architectural design of the network, resulting
in a model that is easier to analyze [30] and that leads to comparable or even
better performance than standard ESNs [24,26].

4 Experiments

In this section we illustrate the experimental analysis conducted in this paper.
Specifically, in Sect. 4.1 we detail the datasets considered and the experimental
settings adopted in our work, whereas in Sect. 4.2 we report and discuss the
achieved numerical results.
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4.1 Datasets and Experimental Settings

In our experiments, we considered benchmark datasets featured by univariate
time-series (i.e., NU = NY = 1).

The first dataset is obtained from a non-linear auto-regressive moving average
system of the 10-th order (NARMA10). At each time-step, the input u(t) comes
from a uniform distribution over [0, 0.5], whereas the corresponding target output
ytg(t) is given by the following relation:

ytg(t) = 0.3 ytg(t−1)+0.05 ytg(t−1)
10∑
i=1

ytg(t−i)+1.5u(t−10)u(t−1)+0.1. (7)

The second dataset that we considered is the Santa Fe Laser time-series [29],
where the input values u(t) are sampled intensities from a far-infrared laser in
chaotic regime, re-scaled by a factor of 0.01. We used the Laser dataset to define
a next-step prediction task, where ytg(t) = u(t + 1) for each time-step t.

The last two datasets are instances of the Mackey-Glass (MG) [4,22] time-
series, obtained by discretizing the following non-linear differential equation:

δu(t)
δt

=
0.2u(t − τ)

1 + u(t − τ)10
− 0.1u(t), (8)

where τ is a parameter of the system influencing its dynamical behavior. We
generated two MG time-series using τ = 17 (MG17) and τ = 30 (MG30), rep-
resenting cases with increasingly complex chaotic behavior. In both cases, the
elements of the time-series where shifted by −1 and then passed through the
tanh squashing function as in [16,18]. The two MG time-series allowed us to set
up two next-step prediction tasks, where ytg(t) = u(t + 1) for each time-step t.

For NARMA10, MG17 and MG30 we generated datasets with 10000 time-
steps, while the Laser dataset contained a number of 10092 samples. In all the
cases, the available data was split into a training set, comprising the first 5000
time-steps, and a test set, comprising the remaining samples. The first 100 time-
steps were used as transient to wash out the initial conditions. The performance
of the considered RC models was evaluated in terms of mean squared error
(MSE) in all the tasks.

In our experiments, we considered DeepESNs with a total number of 500
recurrent reservoir units, distributed evenly across the layers of the deep archi-
tecture, varying the number of layers L from 2 to 54. All the reservoir layers in
the deep architecture shared the same values for the scaling hyper-parameters ρ

and ωil, i.e. ρ = ρ(1) = . . . = ρ(L) and ωil = ω
(2)
il = . . . = ω

(L)
il . To account for

sparsity, each reservoir unit was randomly connected to 5 units in the previous
layer and to 5 units in the same layer. Of course, when considering permuta-
tion, ring and chain reservoir topologies, the connectivity of the reservoir units
in each layer followed the corresponding specific structure described in Sect. 3.
4 With the only exception of the case L = 3, where the first two layers contained 167

units and the last one contained 166 units.
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In all the cases, we used fully-connected input weight matrices. For every task
and choice of the reservoir topology, the DeepESN hyper-parametrization was
chosen by model selection on a validation set comprising the last 1000 time-steps
of the training split. To this end, we performed a random search with 50 net-
works configurations for each number of layers, sampling the value of ρ from a
uniform distribution in (0.1, 1), and the values of ωin and ωil from uniform dis-
tributions in (0.1, 2). The achieved results were averaged on 10 network guesses
for each hyper-parametrization explored, and readout training was performed
by using pseudo-inversion. Finally, our experimental analysis was conducted in
comparison with shallow ESN setups, considering the same reservoir topolo-
gies investigated in the DeepESN case, and using the same experimental setting
described above, with the only crucial exception that all the available reservoir
units were organized into a single layer (i.e., L = 1). Also note that, to provide a
fair comparative analysis, the shallow reservoir configuration is not accounted in
our experiments with DeepESNs (i.e., for DeepESNs we always consider L > 1).

4.2 Results

The test MSE values obtained by DeepESNs in correspondence of all the consid-
ered types of layer-wise reservoir topology are reported in Table 1. For the sake
of comparison, the same table shows the results achieved by shallow ESNs under
the same architectural conditions examined in the deep case. In all the cases,
the sparse reservoir topology is considered as a baseline setup for our analysis.
For completeness, in AppendixA we report the hyper-parametrization values
selected on the validation set for all the considered architectural settings.

The performance values reported in Table 1 allow us to draw several lines
of observations. First of all, our results confirm the goodness of the considered
reservoir architectural variants already in the shallow setup, showing improved
performance (i.e., a smaller MSE) with respect to the sparse baseline in all the
cases (with the sole exception of permutation shallow reservoirs on Laser). Sec-
ond, we observe that the performance of DeepESN with constrained topology
(i.e. permutation, ring and chain) enhances that one of sparse DeepESN in all
the considered tasks (with the only exception of deep reservoirs with chain archi-
tecture on Laser). Moreover, we can see that DeepESN improves the results of
shallow ESN in all the tasks and for all the choices of reservoir topology, both
in the constrained architectural cases and for the base sparse reservoir setup.
Taken together, results in Table 1 clearly indicate the performance advantage
arising from the synergy between deep organization and constrained topology as
factors of architectural design of reservoirs. Giving a structure to the architec-
ture of reservoirs both at a coarser level, i.e. organizing the recurrent units into
layers, and at a finer level, i.e. organizing individual layers’ units into cyclic or
chain structures, amplifies the benefits brought by the two factors individually.
Finally, we notice that the best performing architecture in our experiments is
the DeepESN with permutation reservoir topology, which obtained the smallest
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Table 1. Test MSE (and std) achieved by shallow ESN and DeepESN settings for
different choices of the reservoir topology. The last column reports the number of
layers selected for DeepESN. Best results for each task are underlined.

Topology ESN DeepESN

NARMA10

Sparse 1.658 10−4 (3.367 10−5) 1.647 10−4 (3.415 10−5)

Permutation 1.354 10−4 (1.589 10−5) 1.243 10−4 (1.464 10−5)

Ring 1.494 10−4 (1.547 10−5) 1.482 10−4 (1.713 10−5)

Chain 1.571 10−4 (1.780 10−5) 1.569 10−4 (2.594 10−5)

Laser

Sparse 1.226 10−3 (1.037 10−4) 8.228 10−4 (2.309 10−4)

Permutation 1.312 10−3 (1.385 10−4) 6.633 10−4 (8.861 10−5)

Ring 1.161 10−3 (7.541 10−5) 7.640 10−4 (4.331 10−5)

Chain 9.496 10−4 (1.183 10−4) 8.555 10−4 (8.302 10−5)

MG17

Sparse 3.739 10−9 (1.387 10−9) 2.328 10−9 (8.299 10−10)

Permutation 3.093 10−9 (3.241 10−10) 4.576 10−10 (6.280 10−10)

Ring 1.585 10−9 (2.989 10−10) 5.043 10−10 (3.891 10−10)

Chain 1.950 10−9 (3.745 10−10) 4.913 10−10 (2.535 10−10)

MG30

Sparse 1.476 10−8 (1.781 10−9) 1.172 10−8 (1.406 10−9)

Permutation 1.027 10−8 (5.412 10−10) 8.618 10−9 (1.457 10−9)

Ring 1.197 10−8 (1.549 10−9) 1.078 10−8 (2.066 10−9)

Chain 1.086 10−8 (9.519 10−10) 9.096 10−9 (1.803 10−9)

errors on all the tasks5, and is put forward here as a particularly effective (yet
sparse and efficient) approach to the architectural design of reservoir models. We
leave to further studies the analysis of the dynamical properties that make Deep-
ESN constructions based on permutation matrices so effective in applications,
while here we limit ourselves to intuitive yet insightful considerations that might
explain the observed results. On the one hand, recent literature works (e.g., [5,8])
provided empirical evidence of the fact that higher layers in deep reservoirs tend
to develop progressively more abstract temporal representations of the driving
input, and are naturally featured by longer memory. On the other hand, reservoir
architectures based on permutation topology present multiple ring sub-structures
that (at least in the linear approximation) are possibly featured by maximized
memory. The resulting reservoir provides a variety of memories (that can be

5 Performance differences between DeepESN with permutation topology and all the
other architectures are confirmed by Wilcoxon rank-sum test performed at 1% signif-
icance level on all the tasks (with the only exceptions of the comparisons with ESN
using chain topology on Laser, and ESN using permutation topology on MG30).
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easily controlled by scaling the strength of the recurrent connections), and the
developed state representations are enriched [15]. Our results show that Deep-
ESNs with permutation reservoir topology are able to effectively exploit both
the advantages of deep recurrent architectures and multiple ring sub-structures.

5 Conclusions

In this paper we have investigated the role of reservoir topology in the archi-
tectural design of DeepESNs. Specifically, we focused on analyzing the effects
of constraining the recurrent weight matrix of each layer according to permu-
tation, ring and chain topologies. Numerical results on several RC benchmarks
pointed out a striking beneficial effect arising from the combination of a deep
reservoir construction with a structured organization of the recurrent units in
each layer. Our results indicate that DeepESN with reservoir units arranged to
obey a permutation scheme (i.e., forming multiple rings) provides a particularly
advantageous design strategy for reservoirs, leading to the best performance in
all the explored tasks.

While already giving interesting empirical evidences on the potentialities of
deep RC architectures, the study presented in this paper opens the way to several
directions for further research. First of all, the experimental analysis described
here suggests that the use of simplified deep RC models has a great potential
that can be exploited massively in real-world applications. Leveraging the par-
simonious design approach resulting from structured sparsity of reservoir units,
the class of deep neural models studied in this work seems an ideal candidate
e.g. for embedding advanced learning capabilities on resource-constrained com-
puting devices. On the methodological side, a natural extension of the work
in this paper is to analyze the effect of a broader pool of reservoir architec-
tural variants, including e.g. small-world [20], cycles with regular jumps [25]
and concentric [1] reservoirs. Moreover, future research could pursue even fur-
ther the simplification of architectural construction in deep RC models, reducing
the impact of randomness in the network initialization in the same vein as the
works on minimum complexity ESNs [24,25]. Simplifying the reservoir structure
locally to each layer can also be exploited from a more theoretically-oriented
perspective, easing the mathematical analysis of dynamical properties naturally
emerging in deep RNNs. In this concern, it is certainly interesting to extend fun-
damental mathematical results, e.g. pertaining to short-term memory capacity
[17,24,30], or to approximation properties [14] of shallow reservoirs to the case
of DeepESN. In addition to this, we believe that the role of orthogonality in
deep reservoirs, studied in this paper in relation to the individual layers of the
architecture, is an intriguing concept that deserves to be investigated also at the
level of global (instead of local) DeepESN dynamics. Finally, the advantages of
constrained DeepESN architectures delineated in this paper can be extended to
larger classes of models, including e.g. deep RC for complex data structures [11],
as well as fully trained deep RNNs.
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A Selected Hyper-parameters

Table 2 reports the DeepESN hyper-parameters selected by model selection for
the experiments reported in Sect. 4. The reported values are the following: spec-
tral radius ρ, input scaling ωin, inter-layer scaling ωil, and number of layers L.
We recall from Sect. 4.1 that the values of ρ and ωil are shared by all the lay-
ers. The selected hyper-parametrization for (shallow) ESN, are given in Table 3,
where we report the chosen values of ρ and ωin. We also recall from Sect. 4.1
that the total number of reservoir units is set to 500 for both DeepESN and
ESN. While in the latter case all the 500 units form a single recurrent layer, in
the former they are evenly distributed across the layers in the deep reservoir.

Table 2. Selected DeepESN hyper-parameters: spectral radius ρ, input scaling ωin,
inter-layer scaling ωil, and number of layers L.

Topology ρ ωin ωil L

NARMA10 - DeepESN

Sparse 0.9578 1.6466 1.0125 2

Permutation 0.8071 0.5883 1.0448 2

Ring 0.8190 1.1392 0.6026 2

Chain 0.8644 1.1138 1.5534 2

Laser - DeepESN

Sparse 0.6866 1.7247 1.6930 5

Permutation 0.4525 1.7606 1.8147 5

Ring 0.4860 1.8217 1.5893 4

Chain 0.4755 1.8255 1.5886 4

MG17 - DeepESN

Sparse 0.9972 1.9762 0.5559 2

Permutation 0.9364 1.9384 1.3763 5

Ring 0.9658 1.1014 1.9231 5

Chain 0.9904 1.7046 1.9654 3

MG30 - DeepESN

Sparse 0.9756 1.5653 1.7706 2

Permutation 0.9690 1.9918 1.0660 3

Ring 0.9357 1.7230 1.6304 5

Chain 0.9884 1.7204 1.1962 3

Interestingly, from Table 2 we can observe that constrained reservoir topolo-
gies in DeepESNs generally tend to show smaller values of the spectral radius
and a deeper architecture than basic (i.e., sparse) reservoir settings. Comparing
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Table 3. Selected ESN hyper-parameters: spectral radius ρ and input scaling ωin.

Topology ρ ωin

NARMA10 - ESN

Sparse 0.9251 1.4523

Permutation 0.8284 0.6058

Ring 0.8324 1.1713

Chain 0.8037 1.1165

Laser - ESN

Sparse 0.5094 1.8544

Permutation 0.4594 1.9509

Ring 0.4916 1.8586

Chain 0.6964 1.9850

MG17 - ESN

Sparse 0.9406 1.5544

Permutation 0.9615 0.9063

Ring 0.9784 1.6432

Chain 0.9437 1.4265

MG30 - ESN

Sparse 0.9556 1.2408

Permutation 0.9196 1.9682

Ring 0.9468 1.1950

Chain 0.9891 1.8835

Tables 2 and 3 we also note that the values of spectral radius and input scal-
ing selected for DeepESN and ESN correspond quite well in all the analyzed
reservoir settings.
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9. Gallicchio, C., Micheli, A., Tiňo, P.: Randomized recurrent neural networks. In:
26th European Symposium on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning (ESANN 2018), pp. 415–424. i6doc.com publication
(2018)

10. Gallicchio, C., Micheli, A.: Deep echo state network (DeepESN): a brief survey.
arXiv preprint arXiv:1712.04323 (2017)

11. Gallicchio, C., Micheli, A.: Deep reservoir neural networks for trees. Inf. Sci. 480,
174–193 (2019). https://doi.org/10.1016/j.ins.2018.12.052

12. Gallicchio, C., Micheli, A., Pedrelli, L.: Design of deep echo state networks. Neural
Netw. 108, 33–47 (2018). https://doi.org/10.1016/j.neunet.2018.08.002

13. Gallicchio, C., Micheli, A., Silvestri, L.: Local lyapunov exponents of deep echo
state networks. Neurocomputing 298, 34–45 (2018). https://doi.org/10.1016/j.
neucom.2017.11.073

14. Grigoryeva, L., Ortega, J.P.: Echo state networks are universal. Neural Netw. 108,
495–508 (2018). https://doi.org/10.1016/j.neunet.2018.08.025
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