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Abstract. With the development of generative models, image synthesis con-
ditioned on the specific variable becomes an important research theme gradu-
ally. This paper presents a novel spectral normalization based Hybrid
Attentional Generative Adversarial Networks (HAGAN) for text to image
synthesis. The hybrid attentional mechanism is composed of text-image cross-
modal attention and self-attention of image sub regions. Cross-modal attention
mechanism contributes to synthesize more fine-grained and text-related image
by introducing word-level semantic information in generative model. The self-
attention solves the long distance reliance of image local-region features when
generate image. With spectral normalization, the training of GANs become more
stable than traditional GANs, which conduces to avoid model collapse and
gradient vanishing or explosion. We conduct experiments on widely used
Oxford-102 flower dataset and CUB bird dataset to validate our proposed
method. During quantitative and non-quantitative experimental comparison, the
results indicate that the proposed method achieves the best performance on
Inception score (IS), Fréchet Inception Distance (FID) and visual effect.

Keywords: Text to image synthesis � Spectral normalization � Self-attention �
Cross-modal attention � Generative Adversarial Networks

1 Introduction

Recent years have witnessed the great progress of Deep Neural Networks (DNNs),
especially various kinds of generative tasks and discriminative tasks. Particularly,
Convolutional Neural Networks (CNNs) have shown excellent performance on the
challenging multi-category classification [1]. Besides, another branch of research focus
is generative task, which is inverse mapping of discriminative task. In particular,
generative tasks based on Generative Adversarial Networks (GANs) have achieved
promising results [2] in image synthesis. Recently, photo-realistic image synthesis
gradually becomes an important research direction with many potential applications,
such as, computer graphics and photo retouching. To be specific, methods for text-to-
image synthesis need generate image that are highly similar to meanings embedded in
texts. However, image synthesis, conditioned on the given text descriptions, is also a
knotty problem because of the great gap between text modality and image modality.
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Almost all existing text-to-image synthesis methods are based on GANs and some
of them achieve remarkable performance. Generative Adversarial Networks (GANs) is
proposed by Goodfellow in 2014 [3], which has made impressive performance in
generative tasks. It is composed of two sub-networks, generator and discriminator,
trained with a competing goal in an adversarial manner. From them on, GANs related
work become a focused research direction. Meanwhile, adversarial learning mecha-
nisms have shown great progress in many complex simulating problems [4].

Although excellent performance in many tasks, GANs are well known for difficulty
in training and mode collapse. Many research works indicate that the instability in
training is due to the disjoint of the generated data distribution and the real data
distribution [5]. Besides, the mode collapse in GANs shows that the model will syn-
thesize similar samples with uniform color and single texture. For addressing the knotty
problem, many methods were proposed until now, such as WGAN [6], WGAN-GP [7]
and SNGAN [8]. Some of those methods achieve excellent performance in stabilizing
the training process and avoiding mode collapse.

Text-to-image synthesis is more challengeable than simply generate image from
random noise or category condition. Text description contains more abundant and
detailed image features, which should be drawn in synthesized image. Aiming at
synthesizing photo-realistic image, there are two main branches of methods, VAE-
based methods [9–11] and GAN-based methods [12–16]. Cai et al. [9] propose an
image synthesis framework for fine-grained image in a multi-stage variational auto-
encoder manner. Gulrajani et al. [10] present an improved PixelCNN-based model
named PixelVAE, which introduces an autoregressive decoder for natural image syn-
thesis. Deep Recurrent Attentive Writer (DRAW) [11] combines spatial attention
mechanism with sequential VAE framework for constructing complex images.

Apart from VAE-based methods, GAN-based approaches also show great effec-
tiveness in text to image synthesis. Specifically, Reed et al. [12] firstly introduce the
traditional GAN into text to image synthesis in 2016. Following on the previous work,
they propose a Generative Adversarial What-Where Network (GAWWN) [17] by using
position box as additional supervision, which achieves better performance. However,
the images synthesized by the first model are blurry and unclear. Inspired by the drawing
step of human beings, multi-stage strategy is introduced into image synthesis in recent
years, such as StackGAN [13, 14], AttnGAN [16] and CWPGGAN [15]. To be specific,
StackGAN has two versions, StackGAN-v1 [13] and StackGAN-v2 [14]. StackGAN-v1
is based on two-stage GANs, while the StackGAN-v2 is an advanced three-sage model.
Therefore, the images synthesized by the second model are more realistic and richly-
textured than the first method. Progressive growing mechanism [18] is adopted in
CWPGGAN [15], which can gradually improve the resolution and quality.

Attention mechanism shows effectiveness in many applications, especially in nat-
ural language process and computer vision. More specifically, self-attention mechanism
is introduced in image generation [19]. Besides, attention mechanism is also adopted in
text to image generative task, such as alignDRAW [20] and AttnGAN [16]. The
alignDRAW [20] based on the mentioned DRAW introduces soft attention mechanism
for attending to the relevant words of image feature. Xu et al. [16] propose a multi-
stage Attentional Generative Adversarial Network (AttnGAN) for fine-grained image
synthesis from text. Their methods not only use generator to generate high-resolution
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realistic image but also add word-level feature into generator, while others’ methods
only adopt sentence feature.

Inspired by previous work, we propose a spectral normalization based Hybrid
Attentional Generative Adversarial Networks (HAGAN) that combines the image self-
attention and text-image cross-modal attention mechanism for fine-grained image
synthesis in this paper. Firstly, the features are extracted by the pretrained model name
DAMSM [16], which contains both text and image feature embedding. Then, we feed
the encoded text feature into three-stage hybrid attentional generative adversarial net-
works for image synthesis. The self-attention mechanism is introduced in the first-stage
network and cross-modal attention is adopted in second and third stage generators. We
mainly use the publicly available Oxford-102 flowers dataset and the Caltech CUB-200
birds dataset to conduct the experimental analysis. During the evaluation metric and
side-by-side comparison with the state-of-the-art methods, the results indicate that our
proposed method can get better visual effect and competitive evaluation value.

Compared to existing works, the main contributions of our work are as follows.

(1) By developing a hybrid attention mechanism for text to image synthesis, self-
attention of image generation can solve long distance reliance between local
features and cross-modal attention can add word-level features in generator for
fine-grained image details.

(2) Due to spectral normalization, the training of the model becomes more stable than
traditional GANs. Therefore, the generator can synthesize more realistic image
due to discriminator satisfied with K-Lipschitz constraint can provide useful and
effective gradient information for model optimizing.

The rest of this paper is organized as follows. The second section presents our
proposed HAGAN approach. The third section shows the experimental results and
comparison, and the last section concludes this paper.

2 The Proposed Method

2.1 Background

A. Generative Adversarial Networks
The GANs consists of two sub-networks, a discriminator D and a generator G, that
cooperate and compete in a minimax game until the game achieves zero-sum game.
Such minimax game can be described as the following object function VðG;DÞ.

min
G

max
D

VðG;DÞ ¼Ex� pdataðxÞ½logðDðxÞÞ�
þEx� pzðzÞ½logð1� DðGðzÞÞÞ�;

ð1Þ

where x is the real image and z is random noise. In the training process, the discrim-
inator tries to maximize V, however, the generator wants to minimize the object
function. In the last, the game of the two networks achieves the Nash Equilibrium that
both can obtain the best performance.
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B. Conditional Generative Adversarial Networks
Conditional GANs add conditional variable y to control the features of output image.
The object function of conditional GAN can be described as follows.

min
G

max
D

VðG;DÞ ¼Ex� pdataðxÞ½logðDðxjyÞÞ�
þEx� pzðzÞ½logð1� DðGðzjyÞÞÞ�;

ð2Þ

where y is a conditional variable. The function of generator GðzjyÞ allows the generator
G to generate images conditioned on the given conditioning variable. The discriminator
DðxjyÞ evaluates whether the generated image is matched with conditioning variable
y or not.

2.2 The Framework of Hybrid Attentional Generative Adversarial
Networks

The HAGAN enables the generator to draw different sub-regions conditioned on
related words and other long distance related image sub-regions. Meanwhile, the
spectral normalization stabilize the training of the discriminator, which will contribute
the optimization of the generator. The framework of the HAGAN, as shown in Fig. 1.

A. Hybrid Attentional Generative Adversarial Networks
Suppose the texts and images are stored in a N-pair document corpus ðXT ;XIÞ. Here,
XT is text data and XI is image data. The text feature and image feature are extracted by
the well-trained embedding model DAMSM [16], which is based on the bi-directional
Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN).

ð�u;u; �/;UÞ ¼ FDAMSMðXT ;XIÞ; ð3Þ

where u indicates word feature matrix, �u denotes sentence feature, �/ is global image
feature and U presents the sub-region feature matrix.

The encoded sentence feature �u will be pretreated before input into the multi-stage
generative networks. As following,

~u ¼ Fcatðz;Fcað�uÞÞ; ð4Þ

where z is random noise vector, Fca denotes the Conditioning Augmentation [14]
which converts the sentence feature vector �u to the conditioning vector, and Fcat is
concatenate function. After several upsample operation, the hidden feature gradually
denotes the image features. The self-attention mechanism acts on the hidden feature
maps ðĥ0; ĥ1Þ. As following,

ĥi ¼ F̂iðhi�1;F
self attn
i ðĥi�1ÞÞ; where i ¼ 1; 2: ð5Þ

Here, Fself attn
i is the self-attention mechanism. The first-stage generator synthe-

sizes image conditioned on the output of self-attention block directly. The generative
networks consists of three generators ðG0;G1;G2Þ, which use the previous hidden
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feature ðh0; h1; h2Þ to generate different-scale images ðx̂0; x̂1; x̂2Þ. To be specific, the
process of multi-stage generator is defined as following.

x̂i ¼ GiðhiÞ; where i ¼ 1; 2: ð6Þ

The cross-modal mechanism is introduced in the second and the third networks,
which can add more detailed attribute informations in the feature matrix. Specifically,
the operation of cross-modal attention is defined as following.

hi ¼ Fiðhi�1;F
cro attn
i ðu; hi�1ÞÞ; where i ¼ 1; 2: ð7Þ

Here, u is the feature matrix of word features, and Fcro�attn
i is the cross-attention

model of the i-th stage generator. All of these functions are modeled as neural
networks.

(1) Self-Attention mechanism for the first stage generator
The generator G and discriminator D of GAN models usually consist of convo-
lutional neural networks. However, the convolutional filter only process the
information in a local neighborhood, such as window size 3� 3. Hence, long-
range dependencies cannot be considered in the convolutional process. By
introducing the self-attention mechanism into the GANs model, the generator can
use the long-distance relationships between widely separated sub-regions.
In the deep model, the feature map ĥ 2 R

C�N of previous layer presents the
hidden features of an image. We use two 1� 1 convolutional layer to convert the
feature map into two space �H; Ĥ, and then calculate the attention of the two
feature maps.

Word 
Features

Sentence 
feature

Noise

Text
Encoder

This flower is 
white, yellow, 
and pink in 
color, and has 
petals that are 
Striped

G0 G1 G2

Cross-modal 
attention 

block

Self-attention 
block

D0 D1 D2

Upsample ResidualHidden 
feature

Conditioning 
Augmentation

0h 1h 2h
0̂h 1̂h

Context 
feature

Self-Attention 
mechanism

Cross-modal 
attention 

Fig. 1. The overall pipeline of the hybrid attentional generative adversarial networks.
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bj;i ¼
expðsijÞPN
i¼1 expðsijÞ

; ð8Þ

where sij ¼ �HðxiÞTĤðxjÞ, and bj;i indicates how much attention from the i-th
location when generating the j-th region. The attention map is obtained by
weighted sum of all the output, as following.

Ĉi ¼ ðĉ1; � � � ; ĉj; � � � ; ĉNÞ 2 R
C�N ; ð9Þ

where,

ĉj ¼
XN

i¼1
bj;ihðxiÞ; hðxiÞ ¼ WhĥðxiÞ: ð10Þ

Then we apply a weight scale parameter c on attention map. The final weighted
output is given by,

ĥi ¼ cĈi þ ĥi�1; ð11Þ

where c is initialized as 0.
In short, the self-attention mechanism can be denoted as

ĥi ¼ F̂iðhi�1;F
self attn
i ðu; ĥi�1ÞÞ: ð12Þ

(2) Cross-modal Attention mechanism for the second and third stage generators
Cross-modal attention mechanism is adopted to add relevant word-level infor-
mation to networks for producing fine-grained image. The input of the cross-

modal attention mechanism is the previous hidden feature h 2 R
D̂�N of image and

the word-level features u 2 R
D�T , which is encoded by the optimized model.

Then, the word features are converted to a common space by adding a perceptron
layer. Specifically, word feature bu 2 R

D�T is converted by bu ¼ Uu, where

U 2 R
D̂�D. Then, we calculate the word-context vector of the j-th sub-region by

attention mechanism. Hidden feature h denotes the query, and the converted word
features are the value. In detail, the word-context of the j-th sub-region is cal-
culated as follows.

cj ¼
XT�1

i¼0

bj;iûi; ð13Þ

where

bj;i ¼
expðs0j;iÞPT�1
k¼0 expðs0j;kÞ

: ð14Þ
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Here, the similarity is computed by dot-product similarity

s0j;i¼hTj ûi: ð15Þ

In short, the word-context can be denotes as

C ¼ Fcro attnðu; hÞ ¼ ðc0; c1; . . .; cN�1Þ 2 R
D̂�N ð16Þ

Then, the word-context and original image hidden feature is concatenated and
feed in next layer.

(3) Objective function of multi-stage GANs
In our work, we adopt three generators and three discriminators in text-image
translation. Each stage of generator Gi i ¼ 0; 1; 2ð Þ has a corresponding discrim-
inator Di. The same with the conditional GANs, the objective function of the i-th
generator is defined as follows.

LGi ¼ � 1
2
Ex̂i � pGi

½logðDiðx̂iÞÞ� � 1
2
Ex̂i � pGi

½logðDiðx̂i; �uÞÞ�; ð17Þ

where the first part is unconditional loss and the second term is conditional loss.
Meanwhile, in order to ensure the generated image is match with the text
description, we introduce the DAMSM loss [16] into the objective function of the
last-stage generator. As following,

L ¼ LG2 þ k2LDAMSM ; ð18Þ

where k2 is a balance factor.
In the adversarial learning, the discriminators evaluate whether the synthesized
image is realistic and matched with the text or not. The objective function of each
stage discriminator is defined as follows.

LDi ¼� 1
2
Exi � pdata ½logðDiðxiÞÞ� � 1

2
Ex̂i � pGi

½logð1� Diðx̂iÞÞ� þ

� 1
2
Exi � pdatai

½logðDiðxi;�eÞÞ� � 1
2
Ex̂i � pGi

½logð1� Diðx̂i; �uÞÞ�;
ð19Þ

where xi is from the real i-th scale image and x̂i the generated image from the i-th
stage generator. By optimizing the discriminator and generator alternately, the
network will achieve zero-sum game that the generators and discriminators obtain
the best performance.

B. Spectral Normalization for Stabilizing Training
Model Collapse, gradient vanishing and gradient explosion are very popular phe-
nomena in the training of GANs. Besides, the balance of training between generator
and discriminator is hard to control, which leads to converge difficultly. In order to
solve the problem, many methods were proposed to improve the stability of model,
such as WGAN [6] and WGAN-GP [7]. The original WGAN introduces Wasserstein
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distance to measure the distance between the real data and the generated data and
minimize it. The Wasserstein distance is calculated as follows,

WðPr;PgÞ ¼ sup
fk kLip �K

Ex�Pr ½f ðxÞ� � Ex�Pg ½f ðxÞ�: ð20Þ

Here, the formula fk kLip �K indicates that the function f ð�Þ is satisfied with K-
Lipschitz constraint. The original WGAN presents a way of clipping the weights of
discriminator in ½�c; c�, which drops the fitting capacity of deep neural network.
WGAN-GP adopts Gradient Penalty in discriminator to satisfy K-Lipschitz constraint,
which increases computational effort. Therefore, those methods could not solve the
problem absolutely. For stabilizing GAN-based model, the discriminator D should
follow the Lipschitz continuity hypothesis. In other words, we need constrain the
function of discriminator to satisfy the K-Lipschitz constraint.

argmax
jjf jjLip �K

VðG;DÞ; ð21Þ

where the jjf jjLip is the smallest value of K such that jf ðx1Þ � f ðx2Þj �Kjx1 � x2j for
any x1; x2. Miyato et al. [8] propose a novel weight normalization named spectral
normalization, which stabilize the training of discriminator by forcing the network to
satisfy the Lipschitz constraint. Therefore, normalizing the weight parameters W of
each layer can ensure the fk kLip is bounded from above by 1. As following

jjrxðf ðxÞÞjj2 ¼ jjDN
WN

rðWNÞ � � �D1
W1

rðW1Þ jj2 �
YN

i¼1

rðWiÞ
rðWiÞ ¼ 1: ð22Þ

where rðWÞ is spectral normalization and DN is nonlinear activation function of the
N-th layer. With spectral normalization, the discriminator provides useful gradient to
generator for optimization so that the network optimize better and generate images that
are more realistic.

3 Experimental Results and Evaluation

3.1 Datasets and Evaluation Metric

We conduct experiments for text to image synthesis on the widely used CUB dataset
[21] and Oxford-102 dataset [22]. The statistics of each datasets as shown in Table 1.
In order to verify the effectiveness fairly, Inception Score (IS) [23] and Fréchet
Inception Distance [24] are adopted for quantitative evaluation of generative model.
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Inception Score. The Inception Score (IS) is current well-known metric for evaluating
the generative performance of GANs. The motivation of Inception Score is that
excellent generative models should generate realistic, various and meaningful images.
The calculation of IS score as follows.

IS ¼ expðEX �PG ½KLðPY jXðyjxÞÞjjPYðyÞ�Þ; ð23Þ

where x denotes sample of generated image, and y is image label predicted by the
inception model. The Eq. (22) indicates that classes of generated image should be as
diverse as possible and the label prediction probability should be as accurate as pos-
sible. Therefore, the higher KL divergence shows excellent generative ability of model.

Fréchet Inception Distance. Assuming that both the real data and the generated data
distribution following Gaussian distribution, so they have two major parameters, mean
and covariance ðm;CÞ. The distance between the two data distribution is measured by
Fréchet distance. The calculation is as following.

FID ¼ jjm� mrjj22 þ TrðCþCr � 2ðCCrÞ1
2Þ; ð24Þ

where ðm;CÞ are mean and covariance of generated data, and ðmr;CrÞ are mean and
covariance of real data. The lower distance of the mentioned two distributions presents
that the synthesized image are more similar to the original data.

3.2 Experimental Results and Comparison

(1) Evaluation Metric Comparison
In experiment, we make quantitative and non-quantitative comparison with many state-
of-art methods. Tables 2 and 3 show the quantitative comparison details of IS and FID
score on Oxford-102 dataset and CUB dataset. For fair comparison, we choose some IS
and FID value from the published paper [14, 15]. On the Oxford-102 dataset, the
proposed method achieves 3.95 of inception score and 47.32 of Fréchet Inception
Distance, which outperforms the previous methods. Likewise, the proposed method
obtains the highest IS value (from 4.36 to 4.43) and competitive FID value (44.64).
Comparing to the Oxford dataset, the CUB dataset is more difficult for text to image
generation. The bird dataset can better reflect the performance of different methods.
Significantly, the results show that the proposed method is able to achieve better
performance than other state-of-art text to image synthesis methods.

Table 1. Statistics of the datasets.

Datasets CUB Oxford-102
Train Test Train Test

Number of samples 8,855 2,933 7,034 1,155
Captions/image 10 10 10 10
Categories 200 102
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(2) Visual Effect Comparison
The comparisons of state-of-art text-to-image generative methods by side-by-side
comparison are shown in Fig. 2. Life part of Fig. 2 is various images generated by
different methods, which are conditioned on the same text description of the Oxford-
102 dataset. By scrutinizing the image details and text description roughly, the results
show that all images generated by different methods matches with the text, and all those
images are realistic and natural. However, the detailed comparison indicates that the
image generated by our method are more realistic. On the challengeable CUB dataset,
we can find that some previous methods have difficulty in generating highly real and
clear image conditioned on the given text, such as GAN-CLS, GAWWN and

Table 2. Fréchet Inception Distance and
Inception Score for the Oxford-102 dataset.

Model Resolution FID IS

GAN-INT-
CLS

64 � 64 79.55 2.66 ± 0.03

WGAN-CLS 64 � 64 – 3.11 ± 0.02

WGAN-CLS
with TTUR

64 � 64 – 3.20 ± 0.01

StackGAN-v1 256 � 256 55.28 3.71 ± 0.04
StackGAN-v2 256 � 256 48.68 3.82 ± 0.06

CLSPGGAN 256 � 256 – 3.76 ± 0.03
CWPGGAN 256 � 256 – 3.86 ± 0.02
AttnGAN 265 � 256 50.24 3.89 ± 0.02

HAGAN 256 � 256 47.32 3.95 ± 0.03

Table 3. Fréchet Inception Distance and
Inception Score for the CUB dataset.

Model Resolution FID IS

GAN-INT-
CLS

64 � 64 68.79 2.88 ± 0.04

StackGAN-v1 256 � 256 51.89 3.70 ± 0.04

StackGAN-v2 256 � 256 – 3.82 ± 0.06
GAWWN 256 � 256 67.22 3.62 ± 0.07
CWPGGAN 256 � 256 – 4.09 ± 0.03

AttnGAN 256 � 256 46.43 4.36 ± 0.04
HAGAN 256 � 256 44.64 4.43 ± 0.03

GAN-CLS

StackGAN
v2

AttnGAN

This bird is red 
and brown in
color, with a 
stubby beak

This bird is 
short and 
stubby with 
yellow on its 
body

A bird with a 
medium 
orange bill 
white body 
gray wings and 
webbed feet

This small 
black bird has 
a short, 
slightly curved 
bill and long 
legs

A small bird 
with varying
shades of 
brown with 
white under the 
eyes

StackGAN
v1

GAWWN

HAGAN

CLSPGGAN

CWPGGAN

StackGAN
v2

AttnGAN

HAGAN

This flower is white and yellow in colour, with petals that  
are multi coloured.

Fig. 2. Side-by-side comparison on the Oxford-102 dataset and CUB bird dataset.

492 Q. Cheng and X. Gu



StackGAN_v1. On the contrary, our proposed method can generate photo-realistic and
fine-grained image, especially the bird of the third column. Therefore, in conclusion,
our proposed method generates more realistic, more fine-grained and more natural
images than other methods in visual evaluation.

(3) Word-Level Attention Visualization
For better evaluating the performance of attention mechanism, we visualize the word-
level attention results as shown in Fig. 3. The attention visualization are shown below
the red box. The words belong to the paired text description, and the bright region is the
corresponding attention area of the words. However, some words do not give attention
to right area, such as articles and verbs, which make less contribution to image syn-
thesis. The words describing object attributes, such as colours, shape, and parts of
objects, can give attention to correct regions. With adding word-level semantic infor-
mation in the latter two generators, the generators can redraw the word’s information in
the corresponding region, which can saliently enhance the significant details of gen-
erated image as well as make it be suitable for the human system (Fig. 4).

64x64 128x128 256x256 64x64 128x128 256x256

Fig. 3. Word-level attention visualization of the Oxford-102 flower dataset and CUB bird
dataset.

Fig. 4. More examples synthesized by our proposed method.
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4 Conclusion

This paper presents a hybrid attentional model to fulfill text-to-image synthesis. The
hybrid attentional mechanism contributes to improve performance of generating fine-
grained and realistic image. Meanwhile, the training of network become more stable by
introducing spectral normalization in discriminator network. The conducted experi-
ments show that our proposed method synthesizes realistic images in visual compar-
ison, and outperforms the state-of-the-art approaches in FID and IS metric.
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