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Abstract. Model-free reinforcement learning has seen tremendous
advances in the last few years, however practical applications of pure
reinforcement learning are still limited by sample inefficiency and the
difficulty of giving robustness and stability guarantees of the proposed
agents. Given access to an expert policy, one can increase sample effi-
ciency by in addition to learning from data, and also learn from the
experts actions for safer learning.

In this paper we pose the question whether expert learning can be
accelerated and stabilized if given access to a family of experts which are
designed according to optimal control principles, and more specifically,
linear quadratic regulators. In particular we consider the nominal model
of a system as part of the action space of a reinforcement learning agent.
Further, using the nominal controller, we design customized reward func-
tions for training a reinforcement learning agent, and perform ablation
studies on a set of simple benchmark problems.
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Consider a standard problem in optimal control where one wants to find a
sequence of control signals ut such that the following optimization is solved.

min
u

E

[
T∑

t=0

�(yt, ut, t)

]
(1a)

xt+1 = f(xt, ut) + vt, t = 0, . . . , T − 1, (1b)
yt = g(xt, ut) + wt, t = 0, . . . , T, (1c)

This work was developed in Fraunhofer Cluster of Excellence Cognitive Internet Tech-
nologies. It has also partially been funded by the Swedish Foundation for Strategic
Research.

c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11731, pp. 403–407, 2019.
https://doi.org/10.1007/978-3-030-30493-5_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30493-5_40&domain=pdf
https://doi.org/10.1007/978-3-030-30493-5_40
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where � denotes a loss function, f and g denote the system and observation
dynamics, and where vt and wt denote system and observation noise, respec-
tively. Further, we assume that we are presented with a nominal version of (1),
where � is a quadratic form, and f(x, u) = Ax + Bu, g(x, u) = Cx, for some
matrices A,B,C, and where vt, wt are i.i.d. samples of zero-mean Gaussian dis-
tributions with covariance matrices V and W , respectively. In the sequel we will
refer to the A,B,C-matrices of (1) whenever we are talking about a nominal
model.

Given the above nominal model, it is well-known from control theory that we
can design an optimal nominal controller as a linear quadratic regulator (LQR),
consisting of a Kalman estimator, with Kalman gains Kt, and linear feedbacks
Lt (see e.g. [1]). From the optimal LQR we have a feedback law that explicitly
gives the control signal through

x̂t+1 = Ax̂t + But + Kt [yt − C (Ax̂t + But)] (2a)
ut = Ltx̂t. (2b)

One can alternatively consider a model-free reinforcement learning approach to
solving the problem (1). Given the recent highly impressive successes of model-
free reinforcement learning to highly complex domains (e.g. AlphaZero), it is
perhaps surprising that such an approach can fail to perform on even simple
problems [6], in particularly with regards to sample efficiency and robustness. In
the authors’ view, this failure is in large part due to an inherent disadvantage
of model-free approaches as compared to model-based approaches in the case
where good models are available.

Here we consider an indirectly model based approach to solving the prob-
lem (1). Given a fixed nominal model, we ask whether it is possible to modify
the operation of the nominal controller using a reinforcement learning agent.
That is, instead of using a reinforcement learning agent for directly providing
actual control signals ut as actions, we investigate various ways of letting the
reinforcement learning agent’s actions affect the control law in (2). This requires
some care when defining the action space of the agent, and also opens up for
designing various reward functions guided by the fixed nominal model, and we
perform ablation studies over these design choices. We note the previous similar
work done in [3,5], however, to the authors’ knowledge, direct manipulation of
nominal models seems to be unexplored in the literature.

1 Actions

There are many ways of modifying the operations of the nominal controller, but
for brevity we here only discuss what we consider to be illustrative subsets of
the full action space, left undefined here. This subset consists of

(a) Perturbations δAt of the nominal A-matrix.
(b) Perturbations δut of the nominal control signal ut.
(c) Hidden (explained later) perturbations δuh

t of the nominal control signal ut.
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For completeness, the control law (2) using the possible actions (a)–(c) is

x̂t+1 = (A + δAt)x̂t + B(ut − δuh
t ) + Lt

[
yt − C

(
(A + δAt)x̂t + B(ut − δuh

t

)]
, (3a)

ut = Ktx̂t + δut + δuh
t , (3b)

where the Kalman filter Kt and feedback Lt are adjusted according to the per-
turbations in the A-matrix. Note the difference that δuh

t does not affect the state
estimation Eq. (3a), whereas δut does.

2 Environment

For the observation space we will, again for brevity, only use a rolling window
of measurements, that is, the observation ot at time t that the agent receives is
[yt, yt−1, . . . , yt−m]T for a window length m. To facilitate online learning, we will
introduce normal shocks to the benchmark problems, simulating control towards
a varying reference signal. We thus also extend the size and timing of the normal
shocks to the observations. We point out however that the observation space can
be extended in many different ways, e.g., by including the nominally estimated
states, the nominal value function etc. to the observation.

As rewards we use the following signals:

System loss: Rt = −�(yt, ut, t),
Innovation: Rt = −‖yt − C (Ax̂t + But) ‖2, and
Nominalized: Rt = −�(yt, ut, t) − δRnom

t ,

as well as a weighted aggregation of the above. System loss represents the näıve
reward derived from (1), Innovation represents modifying the nominal model
such that the system estimations becomes correct, Nominalized reward repre-
sents a reward shaping [4], intended to reduce the variance of stochastic pol-
icy gradient estimates as in Generalized Advantage Estimation [7], by factor-
ing out a part of the raw system reward that can be considered as being the
responsibility of nominal controller. That is, we may take δRnom

t (xt, ut, xt+1) =
γV nom(xt+1) − V nom(xt), where V nom(xt) denotes the (known) value function
of the nominal control policy assuming the nominal model to be exactly correct.
Concretely we implement an approximation of this by letting

δRnom
t = −�(x̂t+1|t,ut

) ≈ Eπnom [−�(xt+1, ut)|x0, . . . , xt, u0, . . . , ut−1] . (4)

3 Experimental results

In view of [6], and the therein demonstrated failure of model-free reinforcement
learning approaches to optimal control for even simple problems, we take as
benchmark problems perturbations of a discrete-in-time frictionless unit mass
double integrator system. The nominal model is thus

fnom(x, y) =
[
1 dt
0 1

]
x +

[
dt2/2

dt

]
u, gnom(x, u) =

[
1 0

]
u. (5a)
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We train all agents with a PPO2 algorithm [8], as implemented in [2], with an
increased learning rate, and use neural networks to approximate both the value
functions and the policy. We train in an online fashion, i.e., we learn from a
single trajectory of the system. Further, we induce large random shocks to the
system at regular intervals, and all agents are trained using 10000 samples.

Misidentified linear system. The (2, 2)-component of the A-matrix is
replaced by 1 − μ ∈ (0, 1], representing friction.

Piecewise linear system. f(x, u) = fnom(x, u) + I‖x‖>1

[
0

−sgn(x) sin θ

]
cor-

responding to a mass on plane that at unit distance away from the origin slopes
downward at an angle θ.

(a) Misidentified linear system (b) P.W.L. system

Fig. 1. Median reward of 12 agents compared to an optimal controller, evaluated after
every 256 samples during training on a set of fixed episodes. Trained agent is in blue,
nominal controller is in orange, and shaded regions indicate the 10–90th percentiles.
(a) Varying reward signals. (b) Varying action spaces. (Color figure online)

Main results are presented in Fig. 1. Figure 1a shows a clear improvement in
sample efficiency using reward nominalization, compared to both raw system loss
and innovation rewards. A weighted aggregation appears to show an additional
increase in robustness, indicated by relatively narrower error bars. Figure 1b
illustrates the importance of choosing the correct action, in the top row the
agents’ actions enters the feedback loop of the nominal controller, and the action
of the agent causes severe problems for the nominal state estimator. On the other
hand, when acting invisibly, the agent successfully learns to compensate for the
unmodelled nonlinearities using only roughly 1000 samples.
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